Skip to content

Latest commit

 

History

History

hbridge

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

\mainpage Main Page


H-Bridge Click

H-Bridge Click is a high-efficiency dual H-bridge driver Click board™, capable of providing reasonably high current while driving the connected load with up to 7V. Since the used driver IC has two full H-bridge channels, this Click board™ is an ideal solution for driving smaller bipolar stepper motors. H-Bridge Click provides driving in both directions, with an addition of the brake mode, and the high impedance mode (Hi-Z). Overshoot current suppression algorithm protects the output stages from being damaged if both high-side and low-side MOSFETs on a single H-bridge channel become conductive.

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Feb 2024.
  • Type : GPIO type

Software Support

We provide a library for the H-Bridge Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for H-Bridge Click driver.

Standard key functions :

  • hbridge_cfg_setup Config Object Initialization function.
void hbridge_cfg_setup ( hbridge_cfg_t *cfg );
  • hbridge_init Initialization function.
err_t hbridge_init ( hbridge_t *ctx, hbridge_cfg_t *cfg );

Example key functions :

  • hbridge_set_step_mode This function sets the step mode resolution settings in @b ctx->step_mode.
void hbridge_set_step_mode ( hbridge_t *ctx, uint8_t mode );
  • hbridge_set_direction This function sets the motor direction to clockwise or counter-clockwise in @b ctx->direction.
void hbridge_set_direction ( hbridge_t *ctx, uint8_t dir );
  • hbridge_drive_motor This function drives the motor for the specific number of steps at the selected speed.
void hbridge_drive_motor ( hbridge_t *ctx, uint32_t steps, uint8_t speed );

Example Description

This example demonstrates the use of the H-Bridge Click board by driving the motor in both directions for a desired number of steps.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    hbridge_cfg_t hbridge_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    hbridge_cfg_setup( &hbridge_cfg );
    HBRIDGE_MAP_MIKROBUS( hbridge_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == hbridge_init( &hbridge, &hbridge_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

Application Task

Drives the motor clockwise for 200 full steps and then counter-clockiwse for 400 half steps with a 2 seconds delay before changing the direction. All data is being logged on the USB UART where you can track the program flow.

void application_task ( void )
{
    hbridge_set_step_mode ( &hbridge, HBRIDGE_MODE_FULL_STEP );
    hbridge_set_direction ( &hbridge, HBRIDGE_DIR_CW );
    hbridge_drive_motor ( &hbridge, 200, HBRIDGE_SPEED_MEDIUM );
    log_printf ( &logger, " Move 200 full steps clockwise\r\n\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    
    hbridge_set_step_mode ( &hbridge, HBRIDGE_MODE_HALF_STEP );
    hbridge_set_direction ( &hbridge, HBRIDGE_DIR_CCW );
    hbridge_drive_motor ( &hbridge, 400, HBRIDGE_SPEED_FAST );
    log_printf ( &logger, " Move 400 half steps counter-clockwise\r\n\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.HBridge

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.