\mainpage Main Page
GNSS 18 Click is a compact add-on board designed for high-precision GNSS applications. This board features the SAM-M10Q-00B-00B, M10 standard precision GNSS module from u-blox, known for exceptional sensitivity and rapid acquisition of L1 GNSS signals. It supports concurrent reception of GPS, Galileo, GLONASS, and BeiDou B1C, with additional support for QZSS and SBAS. Featuring u-blox Super-S technology for improved dynamic position accuracy and low power consumption of 37mW in continuous tracking mode, it is ideal for battery-operated devices.
- Author : Stefan Ilic
- Date : Mar 2024.
- Type : UART type
We provide a library for the GNSS 18 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for GNSS 18 Click driver.
gnss18_cfg_setup
Config Object Initialization function.
void gnss18_cfg_setup ( gnss18_cfg_t *cfg );
gnss18_init
Initialization function.
err_t gnss18_init ( gnss18_t *ctx, gnss18_cfg_t *cfg );
gnss18_generic_read
This function reads a desired number of data bytes from the module.
err_t gnss18_generic_read ( gnss18_t *ctx, uint8_t *data_out, uint8_t len );
gnss18_reset_device
This function resets the device by toggling the RST pin.
void gnss18_reset_device ( gnss18_t *ctx );
gnss18_parse_gpgga
This function parses the GPGGA data from the read response buffer.
err_t gnss18_parse_gpgga ( uint8_t *rsp_buf, uint8_t gpgga_element, uint8_t *element_data );
This example demonstrates the use of GNSS 18 Click by reading and displaying the GNSS coordinates.
The demo application is composed of two sections :
Initializes the driver and resets the Click board.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
gnss18_cfg_t gnss18_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
gnss18_cfg_setup( &gnss18_cfg );
GNSS18_MAP_MIKROBUS( gnss18_cfg, MIKROBUS_1 );
err_t init_flag = gnss18_init( &gnss18, &gnss18_cfg );
if ( ( UART_ERROR == init_flag ) || ( I2C_MASTER_ERROR == init_flag ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
Reads the received data, parses the GPGGA info from it, and once it receives the position fix it will start displaying the coordinates on the USB UART.
void application_task ( void )
{
if ( GNSS18_OK == gnss18_process( &gnss18 ) )
{
if ( PROCESS_BUFFER_SIZE == app_buf_len )
{
gnss18_parser_application( app_buf );
}
}
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.GNSS18
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.