\mainpage Main Page
FRAM 5 Click is a compact add-on board representing a highly reliable ferroelectric random access memory solution. This board features the FM24V10, a 1Mbit nonvolatile memory employing an advanced ferroelectric process organized as 128K words of 8 bits each from Infineon. This I2C configurable FRAM performs read and write operations similar to a RAM providing reliable data retention for 151 years while eliminating the complexities, overhead, and system-level reliability problems caused by EEPROM and other nonvolatile memories.
- Author : Stefan Filipovic
- Date : Mar 2022.
- Type : I2C type
We provide a library for the FRAM 5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for FRAM 5 Click driver.
fram5_cfg_setup
Config Object Initialization function.
void fram5_cfg_setup ( fram5_cfg_t *cfg );
fram5_init
Initialization function.
err_t fram5_init ( fram5_t *ctx, fram5_cfg_t *cfg );
fram5_check_communication
This function checks the communication by reading and verifying the device ID.
err_t fram5_check_communication ( fram5_t *ctx );
fram5_memory_write
This function writes a desired number of data bytes starting from the selected memory address.
err_t fram5_memory_write ( fram5_t *ctx, uint32_t address, uint8_t *data_in, uint8_t len );
fram5_memory_read
This function reads a desired number of data bytes starting from the selected memory address.
err_t fram5_memory_read ( fram5_t *ctx, uint32_t address, uint8_t *data_out, uint8_t len );
This example demonstrates the use of FRAM 5 Click board by writing specified data to the memory and reading it back.
The demo application is composed of two sections :
Initializes the driver and checks the communication with the Click board.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
fram5_cfg_t fram5_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
fram5_cfg_setup( &fram5_cfg );
FRAM5_MAP_MIKROBUS( fram5_cfg, MIKROBUS_1 );
if ( I2C_MASTER_ERROR == fram5_init( &fram5, &fram5_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( FRAM5_ERROR == fram5_check_communication ( &fram5 ) )
{
log_error( &logger, " Check communication." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
Writes a desired number of bytes to the memory and then verifies that it's written correctly by reading from the same memory location and displaying the memory content on the USB UART.
void application_task ( void )
{
uint8_t data_buf[ 128 ] = { 0 };
if ( FRAM5_OK == fram5_memory_write ( &fram5, STARTING_ADDRESS,
DEMO_TEXT_MESSAGE, strlen ( DEMO_TEXT_MESSAGE ) ) )
{
log_printf ( &logger, "Data written to address 0x%.5lx: %s\r\n", ( uint32_t ) STARTING_ADDRESS,
( char * ) DEMO_TEXT_MESSAGE );
}
if ( FRAM5_OK == fram5_memory_read ( &fram5, STARTING_ADDRESS,
data_buf, strlen ( DEMO_TEXT_MESSAGE ) ) )
{
log_printf ( &logger, "Data read from address 0x%.5lx: %s\r\n\n", ( uint32_t ) STARTING_ADDRESS,
data_buf );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.FRAM5
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.