\mainpage Main Page
3D Hall 11 Click is a compact add-on board used to detect the strength of a magnetic field in all three dimensions. This board features the TMAG5273, a low-power linear 3D Hall-effect sensor from Texas Instruments. A precision analog signal chain alongside an integrated 12-bit ADC digitizes the measured analog magnetic field values and passes them via the I2C interface to the microcontroller for further processing. It can achieve ultra-high precision at speeds up to 20kSPS for faster and more accurate real-time control and has an integrated temperature sensor available for multiple system functions.
- Author : Stefan Filipovic
- Date : May 2022.
- Type : I2C type
We provide a library for the 3D Hall 11 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for 3D Hall 11 Click driver.
c3dhall11_cfg_setup
Config Object Initialization function.
void c3dhall11_cfg_setup ( c3dhall11_cfg_t *cfg );
c3dhall11_init
Initialization function.
err_t c3dhall11_init ( c3dhall11_t *ctx, c3dhall11_cfg_t *cfg );
c3dhall11_default_cfg
Click Default Configuration function.
err_t c3dhall11_default_cfg ( c3dhall11_t *ctx );
c3dhall11_write_register
This function writes a desired data to the selected register by using I2C serial interface.
err_t c3dhall11_write_register ( c3dhall11_t *ctx, uint8_t reg, uint8_t data_in );
c3dhall11_read_register
This function reads data from the selected register.
err_t c3dhall11_read_register ( c3dhall11_t *ctx, uint8_t reg, uint8_t *data_out );
c3dhall11_read_data
This function reads new data which consists of X, Y, and Z axis values in mT, and temperature in Celsius. It also reads the angle in Degrees between X and Y by default, and magnitude data as well.
err_t c3dhall11_read_data ( c3dhall11_t *ctx, c3dhall11_data_t *data_out );
This example demonstrates the use of 3D Hall 11 Click board by reading the magnetic flux density from 3 axes, and the angle and magnitude between X and Y axes as well as the sensor internal temperature.
The demo application is composed of two sections :
Initializes the driver and performs the Click default configuration.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
c3dhall11_cfg_t c3dhall11_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
c3dhall11_cfg_setup( &c3dhall11_cfg );
C3DHALL11_MAP_MIKROBUS( c3dhall11_cfg, MIKROBUS_1 );
if ( I2C_MASTER_ERROR == c3dhall11_init( &c3dhall11, &c3dhall11_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( C3DHALL11_ERROR == c3dhall11_default_cfg ( &c3dhall11 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
Reads data from the sensor approximately every 100ms and displays the measurement values on the USB UART.
void application_task ( void )
{
c3dhall11_data_t sensor_data;
if ( C3DHALL11_OK == c3dhall11_read_data ( &c3dhall11, &sensor_data ) )
{
log_printf( &logger, " X-axis: %.1f mT\r\n", sensor_data.x_axis );
log_printf( &logger, " Y-axis: %.1f mT\r\n", sensor_data.y_axis );
log_printf( &logger, " Z-axis: %.1f mT\r\n", sensor_data.z_axis );
log_printf( &logger, " Angle: %.1f Degrees\r\n", sensor_data.angle );
log_printf( &logger, " Magnitude: %u\r\n", ( uint16_t ) sensor_data.magnitude );
log_printf( &logger, " Temperature: %.2f Celsius\r\n\n", sensor_data.temperature );
Delay_ms ( 100 );
}
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.3DHall11
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.