Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

visulization is not so good #81

Open
DRosemei opened this issue Apr 1, 2022 · 4 comments
Open

visulization is not so good #81

DRosemei opened this issue Apr 1, 2022 · 4 comments

Comments

@DRosemei
Copy link

DRosemei commented Apr 1, 2022

Thanks for your great work! I am using your provided model to evaluate single image and find that the visualization is not so good? How could I get better results?
Images are shown here:
demo
test
Codes are shown below:

code
import os
import cv2
import numpy as np
import torch
import time
from tqdm import tqdm
from models.model_stages_trt import BiSeNet
import torchvision.transforms as transforms
from PIL import Image
import torch.nn.functional as F

def render_semantic(label, colors):
    label_rgb = cv2.cvtColor(label.astype("uint8"), cv2.COLOR_GRAY2BGR)
    rendered_label = np.array(cv2.LUT(label_rgb, colors))
    rendered_label = cv2.cvtColor(rendered_label, cv2.COLOR_RGB2BGR)
    return rendered_label

def cityscape_color_maps():
    colors = np.zeros((256, 1, 3), dtype='uint8')
    colors[0, :, :] = [128, 64, 128] # road
    colors[1, :, :] = [244, 35, 232] # sidewalk
    colors[2, :, :] = [70, 70, 70] # building
    colors[3, :, :] = [102, 102, 156] # wall
    colors[4, :, :] = [190, 153, 153] # fence
    colors[5, :, :] = [153, 153, 153] # pole
    colors[6, :, :] = [250, 170, 30] # traffic light
    colors[7, :, :] = [220, 220, 0] # traffic sign
    colors[8, :, :] = [107, 142, 35] # vegetation
    colors[9, :, :] = [152, 251, 152] # terrain
    colors[10, :, :] = [70, 130, 180] # sky
    colors[11, :, :] = [220, 20, 60] # person
    colors[12, :, :] = [255, 0, 0] # rider
    colors[13, :, :] = [0, 0, 142] # car
    colors[14, :, :] = [0, 0, 70] # truck
    colors[15, :, :] = [0, 60, 100] # bus
    colors[16, :, :] = [0, 80, 100] # train
    colors[17, :, :] = [0, 0, 230] # motocycle
    colors[18, :, :] = [119, 11, 32] # bicycle
    return colors

def compute_latency_ms_pytorch(input_file_list=None, color_maps=None, device=None):
    
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True
    # Configuration ##############
    use_boundary_2 = False
    use_boundary_4 = False
    use_boundary_8 = True
    use_boundary_16 = False
    use_conv_last = False
    n_classes = 19

    # STDC2Seg-75 97.0FPS on NVIDIA GTX 1080Ti
    backbone = 'STDCNet1446'
    methodName = 'STDC2-Seg'
    inputSize = 768
    inputScale = 75
    inputDimension = (1, 3, 768, 1536)

    model = BiSeNet(backbone=backbone, n_classes=n_classes, 
    use_boundary_2=use_boundary_2, use_boundary_4=use_boundary_4, 
    use_boundary_8=use_boundary_8, use_boundary_16=use_boundary_16, 
    input_size=inputSize, use_conv_last=use_conv_last)
    
    to_tensor = transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
                ])
    print('loading parameters...')
    respth = './checkpoints/{}/'.format(methodName)
    save_pth = os.path.join(respth, 'model_maxmIOU{}.pth'.format(inputScale))
    model.load_state_dict(torch.load(save_pth))
    model = model.to(device)
    model.eval()
    # input = torch.randn(*inputDimension).to(device)
    input = Image.open(input_file_list[0]).convert('RGB')
    input = to_tensor(input).to(device)[None]
    N, C, H, W = input.shape
    input = F.interpolate(input, (768, 1536), mode='bilinear', align_corners=True)
    result = model(input)
    # result = F.interpolate(result, [H, W], mode='bilinear', align_corners=True)
    result = torch.softmax(result, dim=1)
    result = torch.argmax(result, dim=1).cpu().numpy()
    result = result.transpose(1, 2, 0)
    result = render_semantic(result, color_maps)
    cv2.imwrite("./test.png", result)
    

if __name__ == "__main__":
    device = torch.device('cuda:0')
    file_list = ["./demo.png"]
    color_maps = cityscape_color_maps()
    compute_latency_ms_pytorch(input_file_list=file_list, color_maps=color_maps, device=device)
@localryu
Copy link

@DRosemei
I have same issue during inference. Did you solve the problem?

@DRosemei
Copy link
Author

@DRosemei I have same issue during inference. Did you solve the problem?

Not yet

@samxu29
Copy link

samxu29 commented Sep 28, 2022

@DRosemei Any progress?

@085410
Copy link

085410 commented Dec 15, 2024

笑死我了

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants