Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

无法复现论文中的精度 #103

Open
Asuna88 opened this issue Feb 19, 2024 · 2 comments
Open

无法复现论文中的精度 #103

Asuna88 opened this issue Feb 19, 2024 · 2 comments

Comments

@Asuna88
Copy link

Asuna88 commented Feb 19, 2024

作者您好,我看到有人提出相似的问题,但是没有找到答案。

我采用batchsize 8 iter60000 初始0.01学习率的策略,但是最终只能在cityscapes val上到大约67%,68%的miou(STDC1-50)。
我使用的训练脚本就是github README.MD中的训练脚本。

请问我是不是哪里使用错误了么?为什么原封不动的使用您的代码,却无法达到(或者接近)您论文中的mIOU指标?至少相差6-7个百分点)

希望您能给点建议,非常感谢!

训练脚本如下:

export CUDA_VISIBLE_DEVICES=0
python -m torch.distributed.launch \
--nproc_per_node=1 train.py \
--respath checkpoints/train_STDC1-Seg/ \
--backbone STDCNet813 \
--mode train \
--n_workers_train 12 \
--n_workers_val 1 \
--max_iter 60000 \
--use_boundary_8 True \
--pretrain_path checkpoints/STDCNet813M_73.91.tar
@lijunger
Copy link

你好,请问你现在复现到了吗,是不是初始学习率设置的问题

@085410
Copy link

085410 commented Dec 15, 2024

一样无法复现,STDC2最高精度如图
c871c925600425941e4f512a5ccc4e5c_720

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants