diff --git a/neural_lam/constants.py b/neural_lam/constants.py index 4b18081d..4b9ec009 100644 --- a/neural_lam/constants.py +++ b/neural_lam/constants.py @@ -179,7 +179,7 @@ # Plotting FIG_SIZE = (15, 10) EXAMPLE_FILE = "data/cosmo/samples/train/data.zarr" -EVAL_DATETIMES = ["2020050400"] # prev_prev timestep (t-2) +EVAL_DATETIMES = ["2015112800"] # prev_prev timestep (t-2) EVAL_PLOT_VARS = ["T_2M"] STORE_EXAMPLE_DATA = True SELECTED_PROJ = ccrs.PlateCarree() diff --git a/offline.py b/offline.py index 52496bc9..6651d8bc 100644 --- a/offline.py +++ b/offline.py @@ -49,7 +49,7 @@ def offline_plotting(): parser.add_argument( "--variable_to_plot", type=str, - default="TQV", + default="T_2M", help="Variable to plot in short format", ) @@ -86,7 +86,7 @@ def offline_plotting(): start_time = pd.to_datetime(start_time_str, format="%Y%m%d%H") # Output the prediction time range - time_range = len(predictions[1, :, 1, 1]) # Number of time steps + time_range = len(predictions[0, :, 0, 0]) # Number of time steps # Calculate end time by adding the total duration of the time steps end_time = start_time + pd.Timedelta(hours=2 * time_range)