-
Notifications
You must be signed in to change notification settings - Fork 82
/
coq-metacoq-quotation.opam
50 lines (48 loc) · 2.02 KB
/
coq-metacoq-quotation.opam
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
opam-version: "2.0"
version: "dev"
maintainer: "[email protected]"
homepage: "https://metacoq.github.io/metacoq"
dev-repo: "git+https://github.com/MetaCoq/metacoq.git#main"
bug-reports: "https://github.com/MetaCoq/metacoq/issues"
authors: ["Abhishek Anand <[email protected]>"
"Danil Annenkov <[email protected]>"
"Simon Boulier <[email protected]>"
"Cyril Cohen <[email protected]>"
"Yannick Forster <[email protected]>"
"Jason Gross <[email protected]>"
"Fabian Kunze <[email protected]>"
"Meven Lennon-Bertrand <[email protected]>"
"Kenji Maillard <[email protected]>"
"Gregory Malecha <[email protected]>"
"Jakob Botsch Nielsen <[email protected]>"
"Matthieu Sozeau <[email protected]>"
"Nicolas Tabareau <[email protected]>"
"Théo Winterhalter <[email protected]>"
]
license: "MIT"
build: [
["bash" "./configure.sh"]
[make "-j" "%{jobs}%" "-C" "quotation"]
]
install: [
[make "-C" "quotation" "install"]
]
depends: [
"coq-metacoq-template" {= version}
"coq-metacoq-pcuic" {= version}
"coq-metacoq-template-pcuic" {= version}
]
synopsis: "Gallina quotation functions for Template Coq"
description: """
MetaCoq is a meta-programming framework for Coq.
The Quotation module is geared at providing functions `□T → □□T` for
`□T := Ast.term` (currently implemented) and for `□T := { t : Ast.term
& Σ ;;; [] |- t : T }` (still in the works). Currently `Ast.term →
Ast.term` and `(Σ ;;; [] |- t : T) → Ast.term` functions are provided
for Template and PCUIC terms, in `MetaCoq.Quotation.ToTemplate.All`
and `MetaCoq.Quotation.ToPCUIC.All`. Proving well-typedness is still
a work in progress.
Ultimately the goal of this development is to prove that `□` is a lax monoidal
semicomonad (a functor with `cojoin : □T → □□T` that codistributes over `unit`
and `×`), which is sufficient for proving Löb's theorem.
"""