forked from Cyn7hia/PAED
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer_finetune.py
759 lines (625 loc) · 30.9 KB
/
trainer_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
'''
Author: Luyao Zhu
Email: [email protected]
'''
import argparse
import yaml
import json
import random
from tqdm import tqdm
import numpy as np
import os
import math
import torch
import torch.nn as nn
from torch.nn.utils import clip_grad_norm_
from fire import Fire
from pathlib import Path
from typing import Any
from pydantic import BaseModel
from transformers import Seq2SeqTrainingArguments, TrainingArguments, IntervalStrategy, get_linear_schedule_with_warmup
from transformers.utils import logging
from model.RelationExt import RelationExt
from model.VAESampler import MetaVAE
from config import DataTrainingArguments, ModelArguments
from model.configs.config import get_config
from dataset import ExtDataTr, VAEData, get_dataloader
from cst_trainer import CustomTrainer as FTTrainer
from wrapper import Dataset as wr_Dataset
from wrapper import Sentence, Generator
from encoding import ExtractEncoder
from generation import LabelConstraint, TripletSearchDecoderPro
from utils import safe_divide, _get_learning_rate
os.environ["TOKENIZERS_PARALLELISM"] = "false"
class Trainer(nn.Module):
def __init__(self, train_args, vae_args, data_args,
num_training_steps_ext, num_training_steps_vae, search_threshold: float = -0.9906):
super(Trainer, self).__init__()
self.ext_model = RelationExt(train_args)
self.vae = MetaVAE(vae_args)
self.cuda = False
self.max_length = data_args.max_target_length
self.search_threshold = search_threshold
if torch.cuda.is_available() and train_args.device.type == 'cuda':
self.ext_model.cuda()
self.vae.cuda()
self.cuda = True
self.optimizer_ext = torch.optim.AdamW(
self.ext_model.parameters(), lr=train_args.learning_rate, weight_decay=train_args.weight_decay
)
self.optimizer_vae = torch.optim.AdamW(
self.vae.parameters(), lr=vae_args.exp_params.LR, weight_decay=vae_args.exp_params.weight_decay
)
num_warmup_steps_ext = num_training_steps_ext * train_args.warmup_ratio
num_warmup_steps_vae = num_training_steps_vae * train_args.warmup_ratio
self.scheduler_ext = get_linear_schedule_with_warmup(self.optimizer_ext, num_warmup_steps=num_warmup_steps_ext,
num_training_steps=num_training_steps_ext)
self.scheduler_vae = get_linear_schedule_with_warmup(self.optimizer_vae, num_warmup_steps=num_warmup_steps_vae,
num_training_steps=num_training_steps_vae)
def train_step(self, data_batch, model_type='extraction', clip=1., gradient_accumulation_steps=1, k=3,
grad_step=True):
losses = []
if model_type in ['extraction', 'both']:
if model_type == 'extraction':
data_ext = {key: value.cuda() if self.cuda else value for key, value in data_batch.items()}
outputs_gen = self.ext_model(data_ext, model_type=model_type)
else:
data_ext, data_cnt, _ = {key: value.cuda() if self.cuda else value for key, value in
data_batch[0].items()}, \
{key: value.cuda() if self.cuda else value for key, value in
data_batch[1].items()}, \
data_batch[2]
outputs_gen, logits_cnt = self.ext_model([data_ext, data_cnt], model_type='both')
loss_cnt = self.ext_model.compute_cnt_loss(logits_cnt, temperature=1, k=k, kl_type='sum')
# loss: extraction
loss_gen = self.ext_model.compute_ce_loss(self.ext_model.model, data_ext, outputs_gen)
if model_type == 'extraction':
loss = loss_gen
else:
loss = loss_gen + 0.5* loss_cnt
loss = loss / gradient_accumulation_steps
loss.backward()
if grad_step:
clip_grad_norm_(self.ext_model.parameters(), clip)
self.optimizer_ext.step()
self.scheduler_ext.step()
self.ext_model.zero_grad()
if model_type == 'extraction':
losses.append({'loss': loss.detach().item(), 'loss_gen': loss_gen.detach().item(),
'loss_cnt': 0.})
else:
losses.append({'loss': loss.detach().item(), 'loss_gen': loss_gen.detach().item(),
'loss_cnt': loss_cnt.detach().item()})
if model_type in ['vae', 'both']:
if model_type == 'vae':
input_vae, input_length, relations = [item.cuda() if self.cuda else item for item in data_batch]
else:
_, _, data_vae = data_batch
data_vae = {key: value.cuda() if self.cuda else value
for key, value in data_vae.items()}
input_vae = data_vae['input_vae']
input_length = data_vae['input_length']
relations = data_vae['relations']
res_vae = self.vae(input_vae, input_length=input_length.squeeze(1), relations=relations)
# loss: vae
losses_vae = self.vae.loss_function(*res_vae, input_length=input_length.squeeze(1))
loss_vae = losses_vae.pop('loss')
loss_vae = loss_vae / gradient_accumulation_steps
loss_vae.backward()
if grad_step:
clip_grad_norm_(self.vae.parameters(), clip)
self.optimizer_vae.step()
self.scheduler_vae.step()
self.vae.zero_grad()
losses_vae['loss'] = loss_vae.detach().item()
losses.append(losses_vae)
return losses
def eval_step(self, data_batch, model_type='extraction', k=3):
losses = []
if model_type in ['extraction', 'both']:
if model_type == 'extraction':
data_ext = {key: value.cuda() if self.cuda else value for key, value in data_batch.items()}
outputs_gen = self.ext_model(data_ext, model_type=model_type)
else:
data_ext, data_cnt, _ = {key: value.cuda() if self.cuda else value for key, value in
data_batch[0].items()}, \
{key: value.cuda() if self.cuda else value for key, value in
data_batch[1].items()}, \
data_batch[2]
outputs_gen, logits_cnt = self.ext_model([data_ext, data_cnt], model_type=model_type)
loss_cnt = self.ext_model.compute_cnt_loss(logits_cnt, temperature=1, k=k, kl_type='sum')
# loss: extraction
loss_gen = self.ext_model.compute_ce_loss(self.ext_model.model, data_ext, outputs_gen)
if model_type == 'extraction':
loss = loss_gen
losses.append({'loss': loss.detach().item(),
'loss_gen': loss_gen.detach().item(),
'loss_cnt': 0.})
else:
loss = loss_gen + 0.5* loss_cnt
losses.append({'loss': loss.detach().item(),
'loss_gen': loss_gen.detach().item(),
'loss_cnt': loss_cnt.detach().item()})
if model_type in ['vae', 'both']:
if model_type == 'vae':
input_vae, input_length, relations = [item.cuda() if self.cuda else item for item in data_batch]
else:
_, _, data_vae = data_batch
data_vae = {key: value.cuda() if self.cuda else value
for key, value in data_vae.items()}
input_vae = data_vae['input_vae']
input_length = data_vae['input_length']
relations = data_vae['relations']
res_vae = self.vae(input_vae, input_length=input_length.squeeze(1), relations=relations)
# loss: vae
losses_vae = self.vae.loss_function(*res_vae, input_length=input_length.squeeze(1))
loss_vae = losses_vae['loss']
losses_vae['loss'] = loss_vae.detach().item()
losses.append(losses_vae)
return losses
def predict(self, path_in: str, path_out: str, tokenizer: Any, batch_size: int = 32,
model_type: str = 'extraction', use_label_constraint: bool = True, use_mask: bool = False):
if model_type in ['extraction', 'both']:
data = wr_Dataset.load(path_in)
texts = [s.text for s in data.sents]
encoder = ExtractEncoder()
self.ext_model.tokenizer = tokenizer
constraint = LabelConstraint(labels=data.get_labels(), tokenizer=tokenizer)
sents = []
for i in tqdm(range(0, len(texts), batch_size), desc='predicting'):
batch = texts[i: i + batch_size]
if use_mask:
x = [encoder.encode_x_(t) for t in batch]
else:
x = [encoder.encode_x(t) for t in batch]
outputs = self.ext_model.run(x, tokenizer=tokenizer,
max_length=self.max_length,
save_scores=use_label_constraint,
num_return=1,
num_beams=1,
do_sample=False)
for j, raw in enumerate(outputs):
if use_mask:
triplet = encoder.safe_decode_(x[j], y=raw)
else:
triplet = encoder.safe_decode(x[j], y=raw)
if use_label_constraint:
assert self.ext_model.scores is not None
triplet = constraint.run(triplet, self.ext_model.scores[j])
sents.append(Sentence(triplets=[triplet]))
wr_Dataset(sents=sents).save(path_out)
def predict_single(self, path_in: str, path_out: str, tokenizer: Any, use_mask: bool = False):
stem = Path(path_out).stem
path_raw = path_out.replace(stem, f"{stem}_raw")
print(dict(predict_single=locals()))
data = wr_Dataset.load(path_in)
encoder = ExtractEncoder()
self.ext_model.tokenizer = tokenizer
constraint = LabelConstraint(labels=data.get_labels(), tokenizer=tokenizer)
searcher = TripletSearchDecoderPro(
gen=self.ext_model, encoder=encoder, constraint=constraint, top_k=2
)
sents = [
Sentence(tokens=s.tokens, triplets=searcher.run(s.text, use_mask=use_mask))
for s in tqdm(data.sents)
]
wr_Dataset(sents=sents).save(path_raw)
for s in sents:
scores = [t.score for t in s.triplets]
top_idx = np.argmax(scores)
s.triplets = [s.triplets[top_idx]]
wr_Dataset(sents=sents).save(path_out)
def predict_multi(self, path_in: str, path_out: str, tokenizer: Any, use_mask: bool = False):
stem = Path(path_out).stem
path_raw = path_out.replace(stem, f"{stem}_raw")
print(dict(predict_multi=locals()))
data = wr_Dataset.load(path_in)
encoder = ExtractEncoder()
self.ext_model.tokenizer = tokenizer
constraint = LabelConstraint(labels=data.get_labels(), tokenizer=tokenizer)
searcher = TripletSearchDecoderPro(
gen=self.ext_model, encoder=encoder, constraint=constraint
)
sents = [
Sentence(tokens=s.tokens, triplets=searcher.run(s.text, use_mask=use_mask))
for s in tqdm(data.sents)
]
wr_Dataset(sents=sents).save(path_raw)
for s in sents:
s.triplets = [t for t in s.triplets if t.score > self.search_threshold]
wr_Dataset(sents=sents).save(path_out)
def finetune_with_sampler(self, dataset, val_dataset, training_args,
logger, path, k=3):
logger.info("*** Model initialization ***")
trainer = FTTrainer(
model=self.ext_model, # the instantiated 🤗 Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=dataset, # training dataset
eval_dataset=val_dataset, # evaluation dataset
data_collator=dataset.collate_fn,
vae_sampler=self.vae,
k=k,
path=path,
)
logger.info("*** Train ***")
train_model(trainer, dataset)
logger.info("*** Evaluate ***")
eval_model(trainer, val_dataset)
def train_no_sampler(self, epoch, logger, dataloaders, path, accumulate_gr=1, model_type='extraction', save_each=False):
path_model = Path(path) / f"{model_type}.pt"
dataloader_tr, dataloader_dev = dataloaders
best_loss = 1e+6
if model_type == 'extraction':
model = self.ext_model
else:
model = self.vae
model.zero_grad()
for i in tqdm(range(epoch), desc='train ' + model_type, leave=True):
model.train()
results = {}
for idx, dataset in tqdm(enumerate(dataloader_tr), desc='iteration', leave=True, position=0):
grad_step = ((idx + 1) % accumulate_gr == 0) or (idx + 1 == len(dataloader_tr))
res = self.train_step(dataset, gradient_accumulation_steps=accumulate_gr,
model_type=model_type, grad_step=grad_step)
results = Trainer._summary(results, res[0])
logs = {k: v / len(dataloader_tr) for k, v in results.items()}
if model_type == 'extraction':
logs.update({'lr_ext': _get_learning_rate(self.scheduler_ext)})
else:
logs.update({'lr_vae': _get_learning_rate(self.scheduler_vae)})
logger.info(logs)
with torch.no_grad():
model.eval()
results = {}
for dataset in tqdm(dataloader_dev, desc='iteration', leave=True, position=1):
res = self.eval_step(dataset, model_type=model_type)
results = Trainer._summary(results, res[0])
logger.info({k: v / len(dataloader_dev) for k, v in results.items()})
if results['loss'] / len(dataloader_dev) <= best_loss:
best_loss = results['loss'] / len(dataloader_dev)
model_state = model.state_dict()
torch.save(model_state, path_model)
if save_each:
model_state = model.state_dict()
path_model_ = Path(path) / f"{model_type}_{i}.pt"
torch.save(model_state, path_model_)
@staticmethod
def _summary(results, res):
for k, v in res.items():
if k not in results:
results[k] = v
else:
results[k] += v
return results
def evaluate(self):
return
def load_model(self, model_ext, model_vae):
self.ext_model.load_state_dict(torch.load(model_ext))
self.vae.load_state_dict(torch.load(model_vae))
def load_model_(self, model_ext, model_vae):
self.ext_model.model.load_state_dict(torch.load(model_ext))
self.vae.load_state_dict(torch.load(model_vae))
@staticmethod
def score(path_pred: str, path_gold: str) -> dict:
pred = wr_Dataset.load(path_pred)
gold = wr_Dataset.load(path_gold)
assert len(pred.sents) == len(gold.sents)
num_pred = 0
num_gold = 0
num_correct = 0
for i in range(len(gold.sents)):
num_pred += len(pred.sents[i].triplets)
num_gold += len(gold.sents[i].triplets)
for p in pred.sents[i].triplets:
for g in gold.sents[i].triplets:
if (p.head, p.tail, p.label) == (g.head, g.tail, g.label):
num_correct += 1
precision = safe_divide(num_correct, num_pred)
recall = safe_divide(num_correct, num_gold)
info = dict(
path_pred=path_pred,
path_gold=path_gold,
precision=precision,
recall=recall,
score=safe_divide(2 * precision * recall, precision + recall),
)
return info
# train model with trainer
def train_model(trainer, train_dataset):
train_result = trainer.train()
trainer.save_model()
metrics = train_result.metrics
metrics["train_samples"] = len(train_dataset)
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# evaluate model with trainer
def eval_model(trainer, val_dataset):
metrics = trainer.evaluate()
metrics["eval_samples"] = len(val_dataset)
try:
perplexity = math.exp(metrics["eval_loss"])
except OverflowError:
perplexity = float("inf")
metrics["perplexity"] = perplexity
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
def training(save_dir, path_model, data_name, split, logger):
ext_save_dir = str(Path(save_dir) / "extractor")
model_args, train_args, data_args, vae_args = get_args(ext_save_dir, do_pretrain=True)
train_vae = VAEData(path=save_dir, train_args=train_args, name='train', data_name=data_name, split=split)
dev_vae = VAEData(path=save_dir, train_args=train_args, name='dev', data_name=data_name, split=split)
vae_dataloader_tr, _ = get_dataloader(train_vae, model_type='single_vae', bz=train_args.per_device_train_batch_size)
vae_dataloader_dev, _ = get_dataloader(dev_vae, model_type='single_vae', bz=train_args.per_device_train_batch_size)
ext_dataloader_tr, _ = get_dataloader(['train_syn', save_dir, model_args, train_args, data_args, vae_args,
data_name, split],
model_type='single_ext', bz=train_args.per_device_train_batch_size)
ext_dataloader_dev, _ = get_dataloader(['dev', save_dir, model_args, train_args, data_args, vae_args,
data_name, split],
model_type='single_ext', bz=train_args.per_device_train_batch_size)
len_dataloader = len(ext_dataloader_tr)
num_update_steps_per_epoch = len_dataloader // train_args.gradient_accumulation_steps
num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
num_training_steps_ext = math.ceil(train_args.num_train_epochs * num_update_steps_per_epoch)
num_training_steps_vae = math.ceil(vae_args.trainer_params.max_epochs * num_update_steps_per_epoch)
vae_num_class = len(train_vae.rel_vocab)
vae_vocab_size = len(train_vae.vae_vocab.word2index)
vae_args.model_params.num_classes = vae_num_class
vae_args.model_params.vocab_size = vae_vocab_size
trainer = Trainer(train_args, vae_args, data_args, num_training_steps_ext, num_training_steps_vae)
if not Path(path_model).exists():
Path(path_model).mkdir(exist_ok=True, parents=True)
trainer.train_no_sampler(vae_args.trainer_params.max_epochs, logger, [vae_dataloader_tr, vae_dataloader_dev],
path_model,
model_type='vae', accumulate_gr=train_args.gradient_accumulation_steps)
trainer.train_no_sampler(train_args.num_train_epochs, logger, [ext_dataloader_tr, ext_dataloader_dev], path_model,
model_type='extraction', accumulate_gr=train_args.gradient_accumulation_steps)
def finetuning(save_dir, path_model, data_name, split, logger, last=False, k=3):
ext_save_dir = str(Path(save_dir) / "extractor")
model_args, train_args, data_args, vae_args = get_args(ext_save_dir, do_pretrain=False)
train_vae = VAEData(path=save_dir, train_args=train_args, name='synthetic', data_name=data_name, split=split)
dev_vae = VAEData(path=save_dir, train_args=train_args, name='dev', data_name=data_name, split=split)
vae_dataloader_tr, _ = get_dataloader(train_vae, model_type='single_vae', bz=train_args.per_device_train_batch_size)
vae_dataloader_dev, _ = get_dataloader(dev_vae, model_type='single_vae', bz=train_args.per_device_train_batch_size)
dev_data = ExtDataTr('dev', save_dir, model_args, train_args, data_args, vae_args,
data_name=data_name, split=split)
len_dataloader = len(vae_dataloader_tr)
num_update_steps_per_epoch = len_dataloader // train_args.gradient_accumulation_steps
num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
num_training_steps = math.ceil(train_args.num_train_epochs * num_update_steps_per_epoch)
train_data = ExtDataTr('synthetic', save_dir, model_args, train_args, data_args, vae_args,
data_name=data_name, split=split)
vae_num_class = len(train_data.rel_vocab)
vae_vocab_size = len(train_data.vae_vocab.word2index)
vae_args.model_params.num_classes = vae_num_class
vae_args.model_params.vocab_size = vae_vocab_size
trainer = Trainer(train_args, vae_args, data_args, num_training_steps, num_training_steps)
path_model_ext = Path(path_model) / "extraction.pt"
path_model_vae = Path(path_model) / "vae.pt"
if Path(str(path_model_ext)).exists() and Path(str(path_model_vae)).exists():
trainer.load_model(path_model_ext, path_model_vae)
print("using trained model")
else:
print("using pretrained model from huggingface")
trainer.train_no_sampler(train_args.num_train_epochs, logger, [vae_dataloader_tr, vae_dataloader_dev],
path_model,
model_type='vae', accumulate_gr=train_args.gradient_accumulation_steps, save_each=True)
del vae_dataloader_dev, vae_dataloader_tr
trainer.finetune_with_sampler(train_data, dev_data, train_args, logger,
path_model, k=k)
def get_args(ext_save_dir: str, do_pretrain: bool = False):
model_name: str = "facebook/bart-base"
max_source_length: int = 128
max_target_length: int = 128
encoder_name: str = "new_generate"
pipe_name: str = "summarization"
data_dir = str(Path(ext_save_dir) / "data")
train_file = str(Path(data_dir) / f"{'train'}.json")
validation_file = str(Path(data_dir) / f"{'dev'}.json")
kwargs = {}
data_args = DataTrainingArguments(
train_file=train_file,
validation_file=validation_file,
overwrite_cache=True,
max_target_length=max_target_length,
max_source_length=max_source_length,
**kwargs,
)
extarg = ExtractorArg(
model_dir=str(Path(ext_save_dir) / "model"),
data_dir=data_dir,
do_pretrain=do_pretrain)
train_args = extarg.get_train_args(do_eval=True)
kwargs = {
k: v for k, v in train_args.to_dict().items() if not k.startswith("_") and
k not in ['log_level', 'log_level_replica']
}
train_args = Seq2SeqTrainingArguments(**kwargs)
model_args = ModelArguments(
model_name_or_path=model_name
)
parser = argparse.ArgumentParser(description='Generic runner for VAE models')
parser.add_argument('--config', '-c',
dest="filename",
metavar='FILE',
help='path to the config file',
default='./model/configs/cvae.yaml')
args = parser.parse_args()
with open(args.filename, 'r') as file:
try:
vae_args = yaml.safe_load(file)
except yaml.YAMLError as exc:
print(exc)
vae_args = get_config(vae_args)
return model_args, train_args, data_args, vae_args
def gen_synthetic(
save_dir: str,
path_train: str,
path_dev: str,
path_test: str
):
generator = Generator(
load_dir="gpt2", # str(Path(save_dir) / "generator" / "model") use this for load trained generator
save_dir=str(Path(save_dir) / "generator"),
)
generator.fit(path_train, path_dev)
path_synthetic = str(Path(save_dir) / "synthetic.jsonl")
labels_dev = wr_Dataset.load(path_dev).get_labels()
labels_test = wr_Dataset.load(path_test).get_labels()
generator.generate(labels_dev + labels_test, path_out=path_synthetic)
def main(
path_train: str,
path_dev: str,
path_test: str,
save_dir: str,
path_model: str,
data_name: str,
split: str,
last: bool = False,
):
# gen_synthetic(save_dir, path_train, path_dev, path_test)
logging.set_verbosity_info()
logger = logging.get_logger("transformers")
training(save_dir, path_model, data_name, split, logger)
finetuning(save_dir, path_model, data_name, split, logger, last=last)
print("done!")
def run_eval(save_dir: str, path_model: str, path_test: str, data_name: str, split: str, mode: str,
last: bool = False, limit: int = 0):
print(dict(run_eval=locals()))
ext_save_dir = str(Path(save_dir) / "extractor")
model_args, train_args, data_args, vae_args = get_args(ext_save_dir)
data = wr_Dataset.load(path_test)
data_dir = str(Path(ext_save_dir) / "data")
path_vocab = Path(data_dir) / "vae_vocab.json"
path_rel = Path(data_dir) / "rel_vocab.json"
if Path(str(path_vocab)).exists():
with open(path_vocab, 'r') as f:
vae_vocab = json.load(f)
vae_vocab_size = len(vae_vocab)
vae_args.model_params.vocab_size = vae_vocab_size
if Path(str(path_rel)).exists():
with open(path_rel, 'r') as f:
vae_rel = json.load(f)
vae_num_class = len(vae_rel)
vae_args.model_params.num_classes = vae_num_class
trainer = Trainer(train_args, vae_args, data_args, 1, 1)
if not last:
# path_model_ext = Path(path_model) / "pytorch_model.bin"
path_model_ext = Path(train_args.model_dir) / "pytorch_model.bin"
else:
path_model_ext = Path(path_model) / "extraction_last.pt"
path_model_vae = Path(path_model) / "vae_final.pt"
if Path(str(path_model_ext)).exists() and Path(str(path_model_vae)).exists():
trainer.load_model(path_model_ext, path_model_vae)
else:
print("using pretrained model from huggingface")
if mode == "single" or mode == "trsingle":
data.sents = [s for s in data.sents if len(s.triplets) == 1]
elif mode == "multi":
data.sents = [s for s in data.sents if len(s.triplets) > 1]
else:
raise ValueError(f"mode must be single or multi")
if limit > 0:
random.seed(0)
random.shuffle(data.sents)
data.sents = data.sents[:limit]
path_in = str(Path(path_model) / f"pred_in_{mode}.jsonl")
path_out = str(Path(path_model) / f"pred_out_{mode}.jsonl")
data.save(path_in)
test_data, tokenizer = get_dataloader(['test', save_dir, model_args, train_args, data_args, vae_args,
data_name, split],
model_type='single_ext', shuffle=False)
if mode == "single":
trainer.predict(path_in=path_in, path_out=path_out,
tokenizer=tokenizer, batch_size=train_args.per_device_train_batch_size)
elif mode == "trsingle":
trainer.predict_single(path_in=path_in, path_out=path_out,
tokenizer=tokenizer)
else:
trainer.predict_multi(path_in=path_in, path_out=path_out, tokenizer=tokenizer)
results = trainer.score(path_pred=path_out, path_gold=path_in)
path_results = str(Path(path_model) / f"results_{mode}.json")
results.update(mode=mode, limit=limit, path_results=path_results)
print(json.dumps(results, indent=2))
with open(path_results, "w") as f:
json.dump(results, f, indent=2)
class ExtractorArg(BaseModel):
model_dir: str
do_pretrain: bool
batch_size: int = 8
grad_accumulation: int = 4
random_seed: int = 42
warmup_ratio: float = 0.2
lr_pretrain: float = 3e-5
lr_finetune: float = 6e-6
epochs_pretrain: int = 5
epochs_finetune: int = 5
label_smoothing_factor: float = 0.
train_fp16: bool = True
def get_train_args(self, do_eval: bool) -> TrainingArguments:
return TrainingArguments(
seed=self.random_seed,
do_train=True,
do_eval=do_eval or None, # False still becomes True after parsing
overwrite_output_dir=True,
per_device_train_batch_size=self.batch_size,
gradient_accumulation_steps=self.grad_accumulation,
warmup_ratio=self.warmup_ratio,
output_dir=self.model_dir,
save_strategy=IntervalStrategy.EPOCH,
evaluation_strategy=IntervalStrategy.EPOCH
if do_eval
else IntervalStrategy.NO,
learning_rate=self.get_lr(),
num_train_epochs=self.get_epochs(),
load_best_model_at_end=True,
fp16=self.train_fp16,
label_smoothing_factor=self.label_smoothing_factor,
)
def get_lr(self) -> float:
return self.lr_pretrain if self.do_pretrain else self.lr_finetune
def get_epochs(self) -> int:
return self.epochs_pretrain if self.do_pretrain else self.epochs_finetune
if __name__ == "__main__":
num_test_labels = [10] # [5, 10, 15]
seeds = [0] # [0, 1, 2, 3, 4]
for n in num_test_labels:
for s in seeds:
split_ = f"unseen_{n}_seed_{s}"
print("processing split:", split_)
run_name = '/runs'
data_name = 'u2t_map_all'
save_dir = "outputs/wrapper/" + data_name + "/" + split_
path_model = save_dir + run_name
path_train = "outputs/data/splits/zero_rte/" + data_name + "/" + split_ + "/train.jsonl"
path_dev = "outputs/data/splits/zero_rte/" + data_name + "/" + split_ + "/dev.jsonl"
path_test = "outputs/data/splits/zero_rte/" + data_name + "/" + split_ + "/test.jsonl"
split = split_ + "/"
main(
path_train=path_train,
path_dev=path_dev,
path_test=path_test,
save_dir=save_dir,
path_model=path_model,
data_name=data_name,
split=split,
last=False)
run_eval(save_dir=save_dir,
path_model=path_model,
path_test=path_test,
split=split,
data_name=data_name,
mode='single',
last=False)
# run_eval(save_dir=save_dir,
# path_model=path_model,
# path_test=path_test,
# data_name=data_name,
# split=split,
# mode='trsingle',
# last=False)
# run_eval(save_dir=save_dir,
# path_model=path_model,
# path_test=path_test,
# split=split,
# mode='multi')