Skip to content

Latest commit

 

History

History

Hydrogen

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

Hydrogen simulation using Quantum Mechanics

Usage

from quantumhydrogen import plot_hydrogen_orbitals

## Quantum numbers
n=3
l=2
m=0

# 1D plot (Radial wavefunction)
plot_hydrogen_orbitals(n,l,m,posy=None)

# 2D plot
plot_hydrogen_orbitals(n,l,m)

# 3d plot (UPCOMING)
plot_hydrogen_orbitals(n,l,m,posz=(-12,12))

Radial (1D) with n=2,l=0,m=0 :

alt

2D with n=4,l=1,m=-1 :

alt

Hydrogen Wave Function Equations

Hydrogen Wavefunction

The hydrogen wavefunction equals to :

$$\psi_{n \ell m}(r, \theta, \phi)=R_{n \ell}(r) Y_{\ell}^{m}(\theta, \phi)$$

With n,l,m the first 3 quantum numbers, $R_{n \ell}$ the radial wavefunction and $Y_{\ell}^{m}$ the angular wavefunction.

Angular wavefunction / Spherical Harmonics

The regularized angular wavefunction (called spherical harmonics) equals to : $$Y_{\ell}^{m}(\theta, \phi)=\sqrt{\frac{(2 \ell+1)}{4 \pi} \frac{(\ell-m) !}{(\ell+m) !}} e^{i m \phi} P_{\ell}^{m}(\cos \theta)$$

Where $P_{\ell}^{m}$ is an associated Legendre polynomial, defined by the diffential equation :

$$ {\frac {d}{dx}}\left[(1-x^{2}){\frac {d}{dx}}P_{\ell }^{m}(x)\right]+\left[\ell (\ell +1)-{\frac {m^{2}}{1-x^{2}}}\right]P_{\ell }^{m}(x)=0$$

Radial Wavefunction

The Radial wavefunction equals to :

$$ R_{n \ell}(r) = \sqrt{\left(\frac{2}{n a}\right)^{3} \frac{(n-\ell-1) !}{2 n(n+\ell) !}} e^{-r / n a}\left(\frac{2 r}{n a}\right)^{\ell}\left[L_{n-\ell-1}^{2 \ell+1}(2 r / n a)\right] $$

Where $L_{n}^{\alpha}$ is an associated Laguerre polynomial, defined to be the solutions to the differential equations :

$$ x,y'' + (\alpha +1 - x),y' + n,y = 0 $$

TODO

  • Compute wavefunction of hydrogen
  • Plot orbitals
  • Compute laguerre and legendre polynomials without scipy.
  • Add possibility to fully either compute using scipy or only personnalized functions.
  • Plot 3D orbitals

Some external references