-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
347 lines (301 loc) · 14.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# --------------------------------------------------------
# TinyViT Utils (save/load checkpoints, etc.)
# Copyright (c) 2022 Microsoft
# Based on the code: Swin Transformer
# (https://github.com/microsoft/swin-transformer)
# Adapted for TinyViT
# --------------------------------------------------------
import os
import torch
import torch.distributed as dist
import subprocess
def add_common_args(parser):
parser.add_argument('--cfg', type=str, required=True,
metavar="FILE", help='path to config file', )
parser.add_argument(
"--opts",
help="Modify config options by adding 'KEY VALUE' pairs. ",
default=None,
nargs='+',
)
# easy config modification
parser.add_argument('--batch-size', type=int,
help="batch size for single GPU")
parser.add_argument('--data-path', type=str, help='path to dataset')
parser.add_argument('--pretrained',
help='pretrained weight from checkpoint, could be imagenet22k pretrained weight')
parser.add_argument('--resume', help='resume from checkpoint')
parser.add_argument('--accumulation-steps', type=int,
help="gradient accumulation steps")
parser.add_argument('--use-checkpoint', action='store_true',
help="whether to use gradient checkpointing to save memory")
parser.add_argument('--disable_amp', action='store_true',
help='Disable pytorch amp')
parser.add_argument('--output', default='output', type=str, metavar='PATH',
help='root of output folder, the full path is <output>/<model_name>/<tag> (default: output)')
parser.add_argument('--tag', help='tag of experiment')
parser.add_argument('--eval', action='store_true',
help='Perform evaluation only')
parser.add_argument('--only-cpu', action='store_true',
help='Perform evaluation on CPU')
parser.add_argument('--throughput', action='store_true',
help='Test throughput only')
parser.add_argument('--use-sync-bn', action='store_true',
default=False, help='sync bn')
parser.add_argument('--use-wandb', action='store_true',
default=False, help='use wandb to record log')
# distributed training
parser.add_argument("--local_rank", type=int,
help='local rank for DistributedDataParallel')
def load_checkpoint(config, model, optimizer, lr_scheduler, loss_scaler, logger):
logger.info(
f"==============> Resuming form {config.MODEL.RESUME}....................")
if config.MODEL.RESUME.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
config.MODEL.RESUME, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(config.MODEL.RESUME, map_location='cpu')
params = checkpoint['model']
now_model_state = model.state_dict()
mnames = ['head.weight', 'head.bias'] # (cls, 1024), (cls, )
if mnames[-1] in params:
ckpt_head_bias = params[mnames[-1]]
now_model_bias = now_model_state[mnames[-1]]
if ckpt_head_bias.shape != now_model_bias.shape:
num_classes = 1000
if len(ckpt_head_bias) == 21841 and len(now_model_bias) == num_classes:
logger.info("Convert checkpoint from 21841 to 1k")
# convert 22kto1k
fname = './imagenet_1kto22k.txt'
with open(fname) as fin:
mapping = torch.Tensor(
list(map(int, fin.readlines()))).to(torch.long)
for name in mnames:
v = params[name]
shape = list(v.shape)
shape[0] = num_classes
mean_v = v[mapping[mapping != -1]].mean(0, keepdim=True)
v = torch.cat([v, mean_v], 0)
v = v[mapping]
params[name] = v
msg = model.load_state_dict(params, strict=False)
logger.info(msg)
max_accuracy = 0.0
if not config.EVAL_MODE:
if 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint:
if optimizer is not None:
optimizer.load_state_dict(checkpoint['optimizer'])
if lr_scheduler is not None:
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
logger.info(
f"=> loaded successfully '{config.MODEL.RESUME}' (epoch {checkpoint['epoch']})")
if 'max_accuracy' in checkpoint:
max_accuracy = checkpoint['max_accuracy']
if 'epoch' in checkpoint:
config.defrost()
config.TRAIN.START_EPOCH = checkpoint['epoch'] + 1
config.freeze()
del checkpoint
torch.cuda.empty_cache()
return max_accuracy
def load_pretrained(config, model, logger):
logger.info(
f"==============> Loading weight {config.MODEL.PRETRAINED} for fine-tuning......")
checkpoint = torch.load(config.MODEL.PRETRAINED, map_location='cpu')
state_dict = checkpoint['model']
# delete relative_position_index since we always re-init it
relative_position_index_keys = [
k for k in state_dict.keys() if "relative_position_index" in k]
for k in relative_position_index_keys:
del state_dict[k]
# delete relative_coords_table since we always re-init it
relative_position_index_keys = [
k for k in state_dict.keys() if "relative_coords_table" in k]
for k in relative_position_index_keys:
del state_dict[k]
# delete attn_mask since we always re-init it
attn_mask_keys = [k for k in state_dict.keys() if "attn_mask" in k]
for k in attn_mask_keys:
del state_dict[k]
model_state_dict = model.state_dict()
# bicubic interpolate relative_position_bias_table if not match
relative_position_bias_table_keys = [
k for k in state_dict.keys() if "relative_position_bias_table" in k]
for k in relative_position_bias_table_keys:
relative_position_bias_table_pretrained = state_dict[k]
relative_position_bias_table_current = model_state_dict[k]
L1, nH1 = relative_position_bias_table_pretrained.size()
L2, nH2 = relative_position_bias_table_current.size()
if nH1 != nH2:
logger.warning(f"Error in loading {k}, passing......")
else:
if L1 != L2:
# bicubic interpolate relative_position_bias_table if not match
S1 = int(L1 ** 0.5)
S2 = int(L2 ** 0.5)
relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate(
relative_position_bias_table_pretrained.permute(1, 0).view(1, nH1, S1, S1), size=(S2, S2),
mode='bicubic')
state_dict[k] = relative_position_bias_table_pretrained_resized.view(
nH2, L2).permute(1, 0)
# bicubic interpolate attention_biases if not match
relative_position_bias_table_keys = [
k for k in state_dict.keys() if "attention_biases" in k]
for k in relative_position_bias_table_keys:
relative_position_bias_table_pretrained = state_dict[k]
relative_position_bias_table_current = model_state_dict[k]
nH1, L1 = relative_position_bias_table_pretrained.size()
nH2, L2 = relative_position_bias_table_current.size()
if nH1 != nH2:
logger.warning(f"Error in loading {k}, passing......")
else:
if L1 != L2:
# bicubic interpolate relative_position_bias_table if not match
S1 = int(L1 ** 0.5)
S2 = int(L2 ** 0.5)
relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate(
relative_position_bias_table_pretrained.view(1, nH1, S1, S1), size=(S2, S2),
mode='bicubic')
state_dict[k] = relative_position_bias_table_pretrained_resized.view(
nH2, L2)
# bicubic interpolate absolute_pos_embed if not match
absolute_pos_embed_keys = [
k for k in state_dict.keys() if "absolute_pos_embed" in k]
for k in absolute_pos_embed_keys:
# dpe
absolute_pos_embed_pretrained = state_dict[k]
absolute_pos_embed_current = model.state_dict()[k]
_, L1, C1 = absolute_pos_embed_pretrained.size()
_, L2, C2 = absolute_pos_embed_current.size()
if C1 != C1:
logger.warning(f"Error in loading {k}, passing......")
else:
if L1 != L2:
S1 = int(L1 ** 0.5)
S2 = int(L2 ** 0.5)
absolute_pos_embed_pretrained = absolute_pos_embed_pretrained.reshape(
-1, S1, S1, C1)
absolute_pos_embed_pretrained = absolute_pos_embed_pretrained.permute(
0, 3, 1, 2)
absolute_pos_embed_pretrained_resized = torch.nn.functional.interpolate(
absolute_pos_embed_pretrained, size=(S2, S2), mode='bicubic')
absolute_pos_embed_pretrained_resized = absolute_pos_embed_pretrained_resized.permute(
0, 2, 3, 1)
absolute_pos_embed_pretrained_resized = absolute_pos_embed_pretrained_resized.flatten(
1, 2)
state_dict[k] = absolute_pos_embed_pretrained_resized
# check classifier, if not match, then re-init classifier to zero
head_bias_pretrained = state_dict['head.bias']
Nc1 = head_bias_pretrained.shape[0]
Nc2 = model.head.bias.shape[0]
if (Nc1 != Nc2):
if Nc1 == 21841 and Nc2 == 1000:
logger.info("loading ImageNet-21841 weight to ImageNet-1K ......")
map22kto1k_path = f'./imagenet_1kto22k.txt'
with open(map22kto1k_path) as fin:
mapping = torch.Tensor(
list(map(int, fin.readlines()))).to(torch.long)
for name in ['head.weight', 'head.bias']:
v = state_dict[name]
mean_v = v[mapping[mapping != -1]].mean(0, keepdim=True)
v = torch.cat([v, mean_v], 0)
v = v[mapping]
state_dict[name] = v
else:
torch.nn.init.constant_(model.head.bias, 0.)
torch.nn.init.constant_(model.head.weight, 0.)
del state_dict['head.weight']
del state_dict['head.bias']
logger.warning(
f"Error in loading classifier head, re-init classifier head to 0")
msg = model.load_state_dict(state_dict, strict=False)
logger.warning(msg)
logger.info(f"=> loaded successfully '{config.MODEL.PRETRAINED}'")
del checkpoint
torch.cuda.empty_cache()
def save_checkpoint(config, epoch, model, max_accuracy, optimizer, lr_scheduler, loss_scaler, logger):
save_state = {'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'max_accuracy': max_accuracy,
'scaler': loss_scaler.state_dict(),
'epoch': epoch,
'config': config}
save_path = os.path.join(config.OUTPUT, f'ckpt_epoch_{epoch}.pth')
logger.info(f"{save_path} saving......")
torch.save(save_state, save_path)
logger.info(f"{save_path} saved !!!")
def auto_resume_helper(output_dir):
checkpoints = os.listdir(output_dir)
checkpoints = [ckpt for ckpt in checkpoints if ckpt.endswith('pth')]
print(f"All checkpoints founded in {output_dir}: {checkpoints}")
if len(checkpoints) > 0:
latest_checkpoint = max([os.path.join(output_dir, d)
for d in checkpoints], key=os.path.getmtime)
print(f"The latest checkpoint founded: {latest_checkpoint}")
resume_file = latest_checkpoint
else:
resume_file = None
return resume_file
def reduce_tensor(tensor, n=None):
if n is None:
n = dist.get_world_size()
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt = rt / n
return rt
def ampscaler_get_grad_norm(parameters, norm_type: float = 2.0) -> torch.Tensor:
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = [p for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.)
device = parameters[0].grad.device
if norm_type == float('inf'):
total_norm = max(p.grad.detach().abs().max().to(device)
for p in parameters)
else:
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(),
norm_type).to(device) for p in parameters]), norm_type)
return total_norm
class NativeScalerWithGradNormCount:
state_dict_key = "amp_scaler"
def __init__(self, grad_scaler_enabled=True):
self._scaler = torch.cuda.amp.GradScaler(enabled=grad_scaler_enabled)
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
self._scaler.scale(loss).backward(create_graph=create_graph)
if update_grad:
if clip_grad is not None and clip_grad > 0.0:
assert parameters is not None
# unscale the gradients of optimizer's assigned params in-place
self._scaler.unscale_(optimizer)
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
else:
self._scaler.unscale_(optimizer)
norm = ampscaler_get_grad_norm(parameters)
self._scaler.step(optimizer)
self._scaler.update()
else:
norm = None
return norm
def state_dict(self):
return self._scaler.state_dict()
def load_state_dict(self, state_dict):
self._scaler.load_state_dict(state_dict)
def is_main_process():
return dist.get_rank() == 0
def run_cmd(cmd, default=None):
try:
return subprocess.check_output(cmd.split(), universal_newlines=True).strip()
except:
if default is None:
raise
return default
def get_git_info():
return dict(
branch=run_cmd('git rev-parse --abbrev-ref HEAD', 'custom'),
git_hash=run_cmd('git rev-parse --short HEAD', 'custom'),
)