From 3a93eb2523cf0c35ddcf54bf3659a178fa9cefeb Mon Sep 17 00:00:00 2001 From: Matteo Bongiovanni <40599507+MatBon01@users.noreply.github.com> Date: Mon, 28 Aug 2023 10:43:10 +0100 Subject: [PATCH] Proof read (#103) * Change introduction of ethics * Proof read the introduction * Fix cross referencing * Remove introduction for the relational model * Proof read relational model * Proof read benchmarking databases * Proof section on category theory * Proof read databaes implementation * Proof read implementation chapter * Proof read benchmark chapter * Proof read evaluation * Proof check the conclusion * Fix significant figures in mean table * Fix figure and table placements and size * Fix listing style * Add information on shuffling table rows --- analysis/joinbench.ipynb | 168 ++--- .../benchmark_group_table_generator.py | 4 +- report/.hunspell | 15 + report/background/benchmarking.tex | 218 ++++--- report/background/categorytheory.tex | 24 +- report/background/databaserepresentation.tex | 17 +- report/background/relationalmodel.tex | 63 +- report/conclusion/conclusion.tex | 41 +- report/ethics/final.tex | 2 +- report/evaluation/benchmark.tex | 60 +- report/evaluation/databaseimplementation.tex | 15 +- report/evaluation/syntheticdatabase.tex | 80 ++- ...-evenOnePercent-and-oddOnePercent-1000.pgf | 134 ++-- ...-join-onePercent-and-fiftyPercent-1000.pgf | 224 +++++-- ...od-join-onePercent-and-onePercent-1000.pgf | 126 ++-- ...join-onePercent-and-twentyPercent-1000.pgf | 224 +++++-- ...join-twentyPercent-and-onePercent-1000.pgf | 224 +++++-- .../indexed-equijoin-query-comparison.pgf | 486 +++++++-------- ...-evenOnePercent-and-oddOnePercent-1000.pgf | 68 +- ...-and-oddOnePercent-by-tuple-with-inset.pgf | 584 ++++++++++------- ...OnePercent-and-oddOnePercent-by-tuples.pgf | 406 +++++++----- .../join-onePercent-and-fiftyPercent-1000.pgf | 72 +-- ...ent-and-fiftyPercent-by-tuple-smallest.pgf | 302 ++++++--- ...t-and-fiftyPercent-by-tuple-with-inset.pgf | 588 ++++++++++-------- ...-onePercent-and-fiftyPercent-by-tuples.pgf | 410 +++++++----- .../join-onePercent-and-onePercent-1000.pgf | 68 +- ...ent-and-onePercent-by-tuple-with-inset.pgf | 496 +++++++-------- ...in-onePercent-and-onePercent-by-tuples.pgf | 322 +++++----- ...join-onePercent-and-twentyPercent-1000.pgf | 72 +-- ...-and-twentyPercent-by-tuple-with-inset.pgf | 588 ++++++++++-------- ...onePercent-and-twentyPercent-by-tuples.pgf | 410 +++++++----- ...and-twentyPercent-flipped-10000-tuples.pgf | 134 ++-- ...join-twentyPercent-and-onePercent-1000.pgf | 72 +-- ...ent-and-onePercent-by-tuple-with-inset.pgf | 584 ++++++++++------- ...twentyPercent-and-onePercent-by-tuples.pgf | 406 +++++++----- .../non-standard-query-with-1000-tuples.pgf | 232 +++++-- .../non-standard-query-with-10000-tuples.pgf | 142 ++--- .../non-standard-query-with-5000-tuples.pgf | 134 ++-- .../onePercent-joins-with-1000-tuples.pgf | 250 +++++--- .../onePercent-joins-with-10000-tuples.pgf | 250 +++++--- .../onePercent-joins-with-5000-tuples.pgf | 152 ++--- report/introduction/final.tex | 68 +- report/packages.tex | 22 + report/project/benchmark/benchmark.tex | 9 +- report/project/benchmark/database.tex | 33 +- report/project/benchmark/databasecreation.tex | 65 +- report/project/benchmark/experiment.tex | 6 +- report/project/benchmark/functions.tex | 20 +- report/project/benchmark/queries.tex | 18 +- report/project/benchmark/results.tex | 36 +- report/project/benchmark/workflow.tex | 32 +- report/project/database/database.tex | 35 +- ...-join-evenOnePercent-and-oddOnePercent.tex | 6 +- ...f-means-join-onePercent-and-onePercent.tex | 6 +- ...eans-join-twentyPercent-and-onePercent.tex | 6 +- 55 files changed, 5413 insertions(+), 3816 deletions(-) diff --git a/analysis/joinbench.ipynb b/analysis/joinbench.ipynb index 7adf343a..8b84846e 100644 --- a/analysis/joinbench.ipynb +++ b/analysis/joinbench.ipynb @@ -61,7 +61,7 @@ " 'font.family': 'serif',\n", " 'text.usetex': True,\n", " 'pgf.rcfonts': False,\n", - " 'figure.figsize': [6, 3.5],\n", + " 'figure.figsize': [6, 3.7],\n", " \"figure.autolayout\": True,\n", "})" ] @@ -255,9 +255,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAFUCAYAAABlQUuyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvIUlEQVR4nO3dz27jVp728ceDBmrVNku1a0yAhJ4L6NDSDYzp2WTZkn0DsTTrAUYqL2szitSzeHcTqXIDttjZZdEQuy+gXWJyA2IKKKB3kSgHeAFvWu/CLzmi/pKybNL29wMIsMjDc44Oj6ifDw/Jvel0OhUAAAAy9U9ZVwAAAAAEZQAAALlAUAYAAJADBGUAAAA5QFAGAACQAwRlAAAAOUBQBgAAkAMEZQAAADnwbIMy3/fVaDT0+vVrHR4erk17eHio169fq9FoKAiCx6kgcsPzPJ2cnGzsJw/JcZzMyn5s4Xdzb29Ph4eHarfbarfbqtVqqlQqL6ottlWr1fT69Wu5rpt1VR7Mc+0n3W5XR0dHmZUfHu+yrMNT8ui/D9NnrtVqTQ3DmA4Gg6Xr+/3+tFwuT6vV6iPXbLlOp7OwrF6vT8vlcga1ubOsTs9Nv9+fmqaZaptdtUuv11tYNh6P1/bbZbLuJ2nZtr30e2ea5rTVamVQo+Ty8J2wLGva7/cTpc26vvcp/7n1k+FwOK3X66m+20ms+v4vq8M2x7vQeDyedjqdqW3bS9e3Wq1pp9OZdjqdpfvnvutXecg+fp/2SuvZjpSFDMPQ6empOp3O0vV5Gxnr9/sLy05OTnR2dpZBbe4sq9NzUygUUm+zq3YxDGPpsmq1KtM0E+eTdT/ZlVqtpkajkXU11npq34ms6/sQ5T/VfmKapmq12tLv/X2s+v4vq8M2xzvpbtTo6upKQRBoNBotrG+325KkarWqarUqy7JUq9V2tn6dh+zj27bXNn7zaCVlqFar6fj4eCEwC4Ig1Y/eQ+t2u/J9f2G5bdsZ1ObOqjq9dLtsF8/z5Hme6vV6bHmr1UqVT5b9ZJfCH6sgCHb+w7ULT+07kXV9H6r8p9xPPM9TuVzeaXnLvv+7bnvLsmRZ1spTx81mUz///HOsTicnJ9Fv733Xr5J1H9+lFxGUWZalQqEgx3FiX4QPHz6s/SFrt9syTVO+78s0zWjbIAjU7XZlmqb6/b5qtZosy5Ikua4b/ff2/v17+b4v3/f1yy+/rP2RdV1X/X5fvu9H/y3U63V5nqdGoyHf9zUcDleWMRqNNBgM1Ol01O12VSgUdHl5qYuLi6humz5X0jrN5yPdzf+YDypW6Xa7sffVanVjntt+5nC7QqGgSqUi6W7/bdof8/WZbauk7bKpfUOGYajVasXyqNVqurq60vv372Pbr2qfpP0kSV/cVFaafNO2hSQNBgNZlhX7oV21HxqNRjTyEP6nHNYhST9blt+6z7Vp3y+zq+NFu92WYRip/mtfVl/TNKMyO52OfN9Xq9WSYRjq9XoqFAo6Pj5WEATq9XpRXbdps1Xt5TiOms2mfN9Xr9eTbdvyfV8nJycyTVOdTmfjP8xPtZ8kCSIdx0m1jyQt/f5v6que56U+Lqzi+/7Kz+a6rkzTvNf6Vb/VaX47G42Gut2uWq2WqtXqg/w+SIq+70EQyPf96MxHIo9ykjRD4XnmZefbw7k8y+aUlcvl2Fwf27ajOQD1en06HA6jdaZpTsfjcfQ+PP88O9/DNM2Ncwj6/f7UsqyF5YPBYOF89qoy6vV67PPN57fuc6WpU7lcjpU9HA5XzjGY1Wq1Fuo4ux/W5bntZ+71elNJsX1Wr9dj+3xZG69rq3XtkqZ917FtO5bXpvZJ00821WnbfTGb76a2mJ8rNB6Pp61Wa2pZVuz7tC6fcH/3+/3pYDCI+sKmfrZuv276XKv2/Sq7OF7U6/XYnJnxeDyVlGhO2bL6zs8JWtZes3W+T5utaq9l83SWzSF6Kf1kXtp9tOr7v+o3xTCM1MeF2bLn8+33+9NlIYVhGNNer3fv9euk6WO2bce+S7v+fej1erH8h8Nhqvluz35OWahWq8lxnGgOme/7CyNIId/3F0bVKpVKNITq+37sqifTNGPvC4WCfN+PRfZhNL0rq8qYZVlWrMxNnyspz/MW/nMxTVOj0Wjt1WBBEKjRaOji4iJadnl5Kd/3E+W5zWeW7kaiLMuKpb24uFg75L1NW+2qfWfrHdq2zbfpi/fZF2G+Sdviw4cP6na76na7urq6km3bGgwG0WfflI9hGPI8T7Zty7IstVqttf1sU34P8d297/EiCAK12+3Yf9phn97W6enpQr+ZPSU1Go1io6QP0Wa2bWs0GsnzvNh2y7yEfjIvzT7aRhAED1r/UKFQWDr/bFfrN5U9b34k7iF+H3q9XhRrmKapYrGYuM4v4vSldNcwlmXp6upK1Wp17Tl913VlGEbsCzEcDqMdFA4Xh0OTo9FoodPMf1kMw9i6Y62yrIx1l+1u+lxJffjwYenBIDw9s2qY+cOHDzIMI/alCNsyHO7dlGfaz7xKWA/P85aWu01b7ap9l9m2zcM0szb1xaRlrcs3aVsUi8W1w/pJ8pmvx6Z+lja/+35373u8CNtgl8IfovCHZTa4ma/LNvsgaZtVq1VdXl7Ksqy1p6heQj+Zl2YfbeMxfqMkbczzvusfwn1+H8rlsjqdjl6/fi3LsnR2dpZ4ao/0goIy6W60rNPpqFqtrj3IhRcAzB4gZv/2PE/NZlMnJyc6PT19sIsFdvXlC236XEnrtO0Vq+u2y9tVsGnbKmyX+7bvuvo8ll2Utau2SJLP/Hd5Uz/b9T7a9D3dxfFil1d/hfU9OzuLAqJisRidTbBtO9Ymu26z2fY6OzvT8fGxWq3WwshTGs+hnyyTdB89ZB2SWpVv2Jb3XZ/Gus/5GMe3fr8fnXEIR8+SBmYv5vSldDcc7HmeHMdZO5y47BSYdLcjgiDQ8fGxLi4uouBu9pToLs0O6+/Cus+VVHgKYFk+vu+rVCqtLX9ZWeEw+jZ5bivcl6tOAaVtK8/zdtK+qzxm++yirF21xTb5rOtnD7GP1n1Pd3G8WFXnbYX1LZfLchxHruvKsqzoP/z5kdJdt9lse81ehHWfwPOp95NVku6jh6xDUqZpyjCMpe1m2/a916ex7nMmGXm7z+9DeOGIZVmq1+saDAa6vLxMWPMXEJSFV11Id/8p2baty8vLtSNltm2rWCwuXPZ7dXUVjYjM7qxwJ286OG8yPycn7ZyRTWWs+1xp6mRZlmzbjg3dzh7o1+VVLpejK2TCOl9dXW2dZ9KDpOd5sbTNZnPtfcA2tdWydtmmfZPatn2W2dRmu9gXu2qLbfvsqn62TX7z7ZXme7qL44VpmqpWq7GrBIMgWOjTq6yqbzilIzxGht+F+Tzv22ab2qtWq+n8/Pxet4h46v1kXR2T7KN12yetQ5qAc1Vgc3FxETtuOI4TO+183/WrrOvjs8FT8P+nEMx/1l3+PswGZrP1SyzxJQFPzHA4nFar1amkabVaja6smL26JryKxzCM6O7Qs1fzhFc8zW4TLq/X69N+vz/t9/vT4XAYXYkxGAym5XJ5Kim6kigsw7KsjVeRhHmHV2ssy29dGbZtR1cYhWnq9Xqiz5W0TvP5dDqd2FVBSfJrtVoLV6msy/M+nzm8Mie8wqfVasWu8prfbll9lrXVpnZJ2r6rzF/dk7Z9dtEX0+6L+XyXtcVwOFz7vVtXl9l8+v3+1LbtqWEY01arFbt6KtxmUz+bzS/t51q271fVfRfHi/CzhPlYlpX4rv6r6ttqtWJX3C1rx1202br2Cttj2fKX1E9WSbKPltVpVR3uc1wI94llWdHxcj592Ja9Xm/p78J916+yro/P5lkul6emacb6xy5/H8JjZrgsSb+dtTedTqfJQzjg6QnvRTMYDLKuSiqVSkVnZ2c7v8kkkCdBEGy8ZyTwUPL2+/DsT18CT0k4vB7+veur7oA8mD1VFJ4uBEBQBuRKs9mMnvXm+36q+9sAT0V4Z3XpcZ8rCOQdQRmeNdd11Wq15HlebEJvXtVqNZ2cnESPAmGkDM9R+I9Ht9vl9Dwyk8ffB+aUAQAA5AAjZQAAADlAUAYAAJADBGUAAAA58KKefbkr//jHP/T3v/9dv/3tb7W3t5d1dQAAwD1Mp1P9+uuv+t3vfqd/+qfsxqsIyrbw97//XZ999lnW1QAAADv06dMn/fM//3Nm5WcWlPm+L8dxomdThQ/rTZs2fBK7JF1fX+v9+/fRunXbpSl/3m9/+1tJdztvf39/2yYAAAA5cHNzo88++yz6fc9M4gcy7ZhlWdHfq559liTt7DOqwmdyJdkuTfnzJpPJVNJ0Mpkk3gYAAORTXn7XMzlxOvvUdunuCeqzT4ZPmtbzPDWbzWhduVyW53nyfX/tdmnKBwAAeAyZBGWu6y48WqNQKMjzvFRpLcvS+/fvo+Xh89QKhcLa7dKUDwAA8BgymVM2+zDaWaPRKHXa2Ud0XF5eyrZtGYaxdrs05UvS7e2tbm9vo/c3NzdL0wEAAGwrV/cpWxUsJUkbBIEcx1Gv19u6jFXrms2mDg4OohdXXgIAgF3LJCgzDGNhVGo0Gi29+jFp2kajoX6/Hy1ft12a8iXp4uJCk8kken369GnzhwQAAEghk6DMtu2ly4vF4lZp2+22Go2GTNNUEAQKgmDtdmnKl6RXr15pf38/9gIAANilTIIy0zRj733fV7FYjN17LLxCclNax3FkWVYUkF1dXckwjLXbbcoTAADgse1Np9NpFgX7vq9Op6NSqaTr62tdXFxEQVGlUlGpVFK9Xl+b1vd9HR4exvI1DEPj8XhjGevWbXJzc6ODgwNNJhNGzQAAeOLy8rueWVD2lOVl5wEAgPvLy+86z77Mmc/f/pB1FZATH7/5KusqAAAeUa5uiQEAAPBSEZQBAADkAEEZAABADhCUAQAA5ABBGQAAQA4QlAEAAOQAQRkAAEAOEJQBAADkAEEZAABADhCUAQAA5ABBGQAAQA4QlAEAAOQAQRkAAEAOEJQBAADkAEEZAABADhCUAQAA5ABBGQAAQA4QlAEAAOQAQRkAAEAOEJQBAADkQGZBme/7arfbchxH7XZbQRBsndbzPB0dHS1s5ziOgiBYmrfnefI8L8o//BsAACALv8mq4EqlosFgIOkuKDo/P1ev10ud1nEcmaa5NKiqVCoLy1qtlur1ujqdjrrdriTJtu2VZQMAADyGTIIy3/dj703TlOu6W6Utl8tLtwuCQL1eL7a+3W6rXq9Lko6OjjQejyVJhmGk/gwAAAC7lMnpS9d1VSgUYssKhcLS0a40aefNBmSO4ywEcIZhEJABAIBcyGSkbNX8sdFodK+0s2aDrSAINBqNZJpmbJnjOJKk6+tr1Wq12PpZt7e3ur29jd7f3NysLRsAACCtzOaULbNusv990jYaDbVardiyarUaBW6maerk5ETD4XDp9s1mU+/evUtcHgAAQFqZnL40DGNhpGs0Gi09lZgm7TJBEMh13YX0s3PVTNOU7/sL89dCFxcXmkwm0evTp0+JygYAAEgqk6DMtu2ly4vF4r3SLvPhw4eFgMzzPB0fHy+knZ+7Fnr16pX29/djLwAAgF3KJCibn7vl+76KxWIUPHmeF41abUo7a9X9yOaDLdM0Y6czXddVuVxm0j8AAMhMZnPKer2eGo2GSqWSrq+vY/cJazabKpVK0e0r1qV1XVf9fj+23fxVlvOBnWEYKhaLarfbMgxDw+GQ+5QBAIBM7U2n02nWlXhqbm5udHBwoMlksvNTmZ+//WGn+eHp+vjNV1lXAQBehIf8XU+DZ18CAADkAEEZAABADhCUAQAA5ABBGQAAQA4QlAEAAOQAQRkAAEAOEJQBAADkAEEZAABADhCUAQAA5ABBGQAAQA4QlAEAAOQAQRkAAEAOEJQBAADkAEEZAABADhCUAQAA5ABBGQAAQA4QlAEAAOQAQRkAAEAOEJQBAADkAEEZAABADhCUAQAA5MBvsirY9305jiPTNOX7vqrVqgzD2Cqt53k6Pz/XYDCIbed5niTJsiz5vq8gCGRZVuryAQAAHlpmQVmlUomCKN/3dX5+rl6vlzptGFiFAdisTqejbrcrSbJtO5Z/mvIBAAAeWiZBme/7sfemacp13a3SlsvlleUcHR1pPB5LUmwULE35AAAAjyGTOWWu66pQKMSWFQqFpaNdadIuYxjGwmnJ++YJAACwa5mMlAVBsHT5aDS6V9pl2zqOI0m6vr5WrVaTaZqp87y9vdXt7W30/ubmZmPZAAAAaWQ2p2yZVcHStmlnJ++bpqmTkxMNh8PUeTabTb179y5x3QAAANLK5PSlYRgLo1Kj0Wjp1Y9p0s6bnTsWXmXp+37qPC8uLjSZTKLXp0+fNpYNAACQRiZBmW3bS5cXi8V7pZ3leZ6Oj48XlhcKhdR5vnr1Svv7+7EXAADALmUSlJmmGXvv+76KxWI0UuV5XjTKtSntrNnTj6ZpqtVqRe9d11W5XJZhGKnyBAAAeAyZzSnr9XpqNBoqlUq6vr6O3SOs2WyqVCqpXq9vTOu6rvr9fmy7MPgqFotqt9syDEPD4TC23bo8AQAAHtvedDqdZl2Jp+bm5kYHBweaTCY7P5X5+dsfdpofnq6P33yVdRUA4EV4yN/1NHj2JQAAQA4QlAEAAOQAQRkAAEAOEJQBAADkAEEZAABADhCUAQAA5ABBGQAAQA4QlAEAAOQAQRkAAEAOEJQBAADkAEEZAABADhCUAQAA5ABBGQAAQA4QlAEAAOQAQRkAAEAOEJQBAADkAEEZAABADhCUAQAA5ABBGQAAQA4QlAEAAOTAb7Iq2Pd9OY4j0zTl+76q1aoMw9gqred5Oj8/12AwiG3neZ5c15UkXV9f6/3799F2nudJkizLku/7CoJAlmXt/HMCAAAkkVlQVqlUoiDK932dn5+r1+ulThsGa2GQNct1XdXrdUlSu93W8fFxlE+n01G325Uk2ba9smwAAIDHkMnpS9/3Y+9N04xGtNKmLZfLS0e4PM9Ts9mMpfM8L8rv6OhI4/FY4/FY/X5/5SgdAADAY8gkKHNdV4VCIbasUCisHO1KmnaWZVl6//599D4IgmjbkGEYBGMAACAXMjl9GQZI80aj0b3SziuXy9Hfl5eXsm07CsKCIJDjOJLu5pvVajWZprkxTwAAgIeQ2ZyyZVYFYLtI6zhO7EKA2YsFTNPUycmJhsPh0u1vb291e3sbvb+5uUlcNgAAQBKZnL40DGNhpGs0Gi09lZgm7SqNRmNh3tjsXLXwqs75+WuhZrOpg4OD6PXZZ58lLhsAACCJTIIy27aXLi8Wi/dKu0y73Vaj0ZBpmgqCQEEQyPM8HR8fL6Sdn7sWuri40GQyiV6fPn1KVDYAAEBSmQRl83O3fN9XsViM3UMsHLXalHbW/ClNx3FkWVYUkF1dXckwDJmmqVarFaVzXVflcnnl6NurV6+0v78fewEAAOxSZnPKer2eGo2GSqWSrq+vY/cJazabKpVK0T3G1qV1XVf9fj+2Xblclu/7qlQqsTINw4jmkhWLRbXbbRmGoeFwyH3KAABApvam0+k0zQYfP35Ur9dTv9/XeDyOlhcKBZ2cnKhcLuvzzz/fdT1z5ebmRgcHB5pMJjsfNfv87Q87zQ9P18dvvsq6CgDwIjzk73oaqUbK3r59q729PZ2enuo///M/F9b/+OOP+vbbb7W3txe7cSsAAADWSxyU/fGPf9TFxYUODg5Wpvnyyy/15ZdfajKZ6OLigsAMAAAgocRB2bKRsVUODg4IyAAAAFLY+urLt2/f6rvvvtNkMtG//du/6ezsTN9///0u6wYAAPBibB2UlUolff311+p2uzo6OtLl5aV++eWXXdYNAADgxdg6KHv9+rUk6erqSmdnZ5JW33wVAAAA6219n7LhcKjpdKrhcKjf//73+vnnn2O3yAAAAEByW4+UnZ6eyvM8DQYDTSYTdTqdVA8JBwAAwP9KNFI2mUw0Ho9jN4U9ODiIXZH5zTffxLa5ubmRJB5JBAAAkECikbKDgwP1+/3EV1f+6U9/0tXVFQEZAABAQonnlJ2fn+vHH3/U6empDg8PVSqVZJqmDMNQEATyfV9/+9vf9PPPP6tWq+kPf/jDQ9YbAADgWUk10f/LL7/U1dWVJpOJrq6u9Le//U1BEMgwDB0eHqpWq+mLL754qLoCAAA8W1tdfXlwcKDz8/Nd1wUAAODF2vrqSwAAAOwOQRkAAEAOEJQBAADkAEEZAABADtwrKPvjH/8YPffyL3/5S3TDWAAAAKSzdVD29u1bGYYh27YlScfHx3Jdd2cVAwAAeEm2DspKpZLOz89lmuYu6wMAAPAibR2U/fzzz5Kkvb29aNn19fX9awQAAPACbXXzWOnu7v7FYlFv3rxRv9+X67pqtVqJt/d9X47jyDRN+b6varUqwzC2Sut5ns7PzzUYDBJvl6Z8AACAh7Z1UHZ8fKxer6dOp6PpdKput6svv/wy8faVSiUKonzf1/n5uXq9Xuq0YWDleV6q7dKUDwAA8NC2Dsok6YsvvtA333wTvb+5udH+/v7G7Xzfj703TXPlRQKb0pbL5dTbpSkfAADgMdzrlhg3Nzf6+PFj9Go0Gom2c11XhUIhtqxQKCwd7UqTNul22+YJAADwULYeKfv3f/93ua4bm4f1888/63/+5382bhsEwdLlo9HoXmmTbpc2z9vbW93e3kbvuR8bAADYta2DssPDQ3377bexZe/fv79XZVYFS/dNm3S7VeuazabevXu3VXkAAABJbH36Mrxp7KyTk5NE2xqGsTAqNRqNll79mCZt0u3S5nlxcaHJZBK9Pn36tLZsAACAtLYOyl6/fq3//u//1vfff6+//vWv+v777xPPKVsW0ElSsVi8V9qk26XN89WrV9rf34+9AAAAdmnr05f1el1BEMRGl3788cdE284/BcD3fRWLxSgvz/NkGIZM09yYdtZsfdZtN7/tujwBAAAew9ZB2cnJic7Pz2PL/vSnPyXevtfrqdFoqFQq6fr6OnaPsGazqVKppHq9vjGt67rq9/ux7cLbZKzbbt06AACAx7Y3nU6n22z417/+Vf/6r/8aW/bTTz/p97///S7qlWs3Nzc6ODjQZDLZ+anMz9/+sNP88HR9/OarrKsAAC/CQ/6up7H1SNlwOFSn01GpVJIkTadTXV1d8fxLAACALWw90b/T6eiLL77QdDpVONi25aAbAADAi7f1SFmr1dLx8XFs2aqrGgEAALDe1iNl8wGZdHebDAAAAKSXeKTs+++/l23b0QS47777LrY+CAL1+339+c9/3m0NAQAAXoDEI2X/9V//pQ8fPkTvv/32W43H4+g1nU71yy+/PEglAQAAnrvEI2WzAZl095zLL7/8MraMOWUAAADbSRyU/fTTT/J9X6PRSKenpwsBmaSlywAAALBZ4tOXlUpFpmnq66+/5tmPAAAAO5Y4KPvDH/6w8W79P/300z2rAwAA8DIlDsr+5V/+ZWOa+XlnAAAASCbxnLJvv/1Wg8FgbRrXdfX111/fu1IAAAAvTao7+nPLCwAAgIeROCir1Wo6Pz9fm+b9+/f3rhCA/Pj87Q9ZVwE58PGbr7KuAvAiJJ5TNplMNqYxTfNelQEAAHipEgdl3377rT5+/Lg2zbLnYQIAAGCzxEFZp9PRYDDQd999p5ubm4esEwAAwIuTeE4Zo2AAAAAPJ/FIGQAAAB4OQRkAAEAOEJQBAADkQKqbx+6S7/tyHEemacr3fVWrVRmGkTrtunWO48i2bUlayNvzPEmSZVnyfV9BEMiyrIf4qAAAABtlFpRVKpXosU2+7+v8/Fy9Xi912k3r5rVaLdXrdXU6HXW7XUmSbdsrywYAAHgMmQRlvu/H3pumKdd1U6ddty4IAvV6PZXL5Wh9u91WvV6XJB0dHWk8HktaHEUDAAB4bJnMKXNdV4VCIbasUChEpxSTpt2Uz2xA5jhO7L10F4wRkAEAgDzIZKQsCIKly0ejUaq069bNzg8LgkCj0Sj2GKggCOQ4jiTp+vpatVpt5WOibm9vdXt7G73n5rkAAGDXMptTtsyqICtt2vl1jUZDrVYrtmz2ggDTNHVycqLhcLg0v2azqXfv3iWuGwAAQFqZnL40DGNhVGw0Gi09lbgubZJ8giCQ67oLec/ORwuv3Jyfoxa6uLjQZDKJXp8+fUrwKQEAAJLLJCgLb1Mxr1gspkqbJJ8PHz4svR3GssdGzc9PC7169Ur7+/uxFwAAwC5lcvpyfu6W7/sqFotR8OR5ngzDkGmaa9MuG/2azSfMaz7YMk0zdjrTdV2Vy2Um/QMAgMxkNqes1+up0WioVCrp+vo6dp+wZrOpUqkU3b5iXdp160LzgZ1hGCoWi2q32zIMQ8PhkPuUAQCATO1Np9Np1pV4am5ubnRwcKDJZLLzU5mfv/1hp/nh6fr4zVdZV4H+CEn56IvAQ3rI3/U0ePYlAABADhCUAQAA5ECu7lMGAMAynEqH9PxPpTNSBgAAkAMEZQAAADlAUAYAAJADBGUAAAA5QFAGAACQAwRlAAAAOUBQBgAAkAMEZQAAADlAUAYAAJADBGUAAAA5QFAGAACQAwRlAAAAOUBQBgAAkAMEZQAAADlAUAYAAJADBGUAAAA5QFAGAACQAwRlAAAAOfCbrAr2fV+O48g0Tfm+r2q1KsMwUqddt87zPEmSZVnyfV9BEMiyrNTlAwAAPLTMgrJKpaLBYCDpLkA6Pz9Xr9dLnXbduk6no263K0mybTuWf5ryAQAAHlomQZnv+7H3pmnKdd3UaTflc3R0pPF4LEmxUbA05QMAADyGTOaUua6rQqEQW1YoFKLTjUnTJsnHMIyF05JpygcAAHgMmYyUBUGwdPloNEqVdlM+QRDIcRxJ0vX1tWq1mkzTTFW+JN3e3ur29jZ6f3NzszQdAADAtjKbU7bMqmApbdpw3ezkfdM0dXJyouFwmDrPZrOpd+/eJa4bAABAWpmcvjQMY2FUajQaLb36cV3aTfnMzh0Lr7L0fT9V+ZJ0cXGhyWQSvT59+pTwkwIAACSTSVBm2/bS5cViMVXades8z9Px8fHCukKhkKp8SXr16pX29/djLwAAgF3K5PSlaZqx977vq1gsxu4vZhiGTNNcm3Z+ZGt2nWmaarVa0TrXdVUulzduBwAAkIXM5pT1ej01Gg2VSiVdX1/H7hHWbDZVKpVUr9c3pl21zjAMFYtFtdttGYah4XCYaDsAAIAs7E2n02nWlXhqbm5udHBwoMlksvNTmZ+//WGn+eHp+vjNV1lXgf4ISfRF5MdD9cWH/F1Pg2dfAgAA5ABBGQAAQA4QlAEAAOQAQRkAAEAOEJQBAADkAEEZAABADhCUAQAA5ABBGQAAQA4QlAEAAOQAQRkAAEAOEJQBAADkAEEZAABADhCUAQAA5ABBGQAAQA4QlAEAAOQAQRkAAEAOEJQBAADkAEEZAABADhCUAQAA5ABBGQAAQA78JquCfd+X4zgyTVO+76tarcowjNRp163zPE+u60qSrq+v9f79+9g6SbIsS77vKwgCWZb1kB8ZAABgpcyCskqlosFgIOkusDo/P1ev10uddt0613VVr9clSe12W8fHx1HaTqejbrcrSbJte2XZAAAAjyGT05e+78fem6YZjWilSbtuned5ajab0bpyuSzP86Jtjo6ONB6PNR6P1e/3V47SAQAAPIZMgjLXdVUoFGLLCoVCdEoxadp16yzL0vv376PlQRBE60OGYRCMAQCAXMjk9GUYIM0bjUap0m7Kp1wuR8suLy9l23YUhAVBIMdxJN3NN6vVajJNc2l+t7e3ur29jd7f3NwsTQcAALCtzOaULbMqyEqbdn5dGICF88kkxS4IME1TJycnGg6HS/NrNpt69+5d4roBAACklcnpS8MwFkbFRqPR0lOJ69ImzafRaCzMG5udjxZeuTk/Ry10cXGhyWQSvT59+pTgUwIAACSXSVBm2/bS5cViMVXaJPm02201Gg2ZpqkgCBQEgTzP0/Hx8cJ28/PTQq9evdL+/n7sBQAAsEuZBGXzc7d831exWIzdQywctVqXdlM+juPIsqwoILu6uoq2a7Va0Xau66pcLjPpHwAAZCazOWW9Xk+NRkOlUknX19ex+4Q1m02VSqXoHmPr0q5a5/u+KpVKrEzDMKK5ZMViUe12W4ZhaDgccp8yAACQqb3pdDrNuhJPzc3NjQ4ODjSZTHZ+KvPztz/sND88XR+/+SrrKtAfIYm+iPx4qL74kL/rafDsSwAAgBwgKAMAAMgBgjIAAIAcICgDAADIAYIyAACAHCAoAwAAyAGCMgAAgBwgKAMAAMgBgjIAAIAcICgDAADIAYIyAACAHCAoAwAAyAGCMgAAgBwgKAMAAMgBgjIAAIAcICgDAADIAYIyAACAHCAoAwAAyAGCMgAAgBwgKAMAAMgBgjIAAIAc+E1WBfu+L8dxZJqmfN9XtVqVYRip0z7EOgAAgMeWWVBWqVQ0GAwk3QVI5+fn6vV6qdM+xDoAAIDHlsnpS9/3Y+9N05TruqnTPsQ6AACALGQSlLmuq0KhEFtWKBTkeV6qtA+xDgAAIAuZnL4MgmDp8tFolCrtQ6xb5vb2Vre3t9H7yWQiSbq5uVma/j7+cft/d54nnqaH6F9p0R8h0ReRHw/VF8N8p9Ppg+SfVGZzypZZFSylTbvrdc1mU+/evVtY/tlnn63MC7ivg/+TdQ2AO/RF5MVD98Vff/1VBwcHD1vIGpkEZYZhLIxKjUajpVc/rkv7EOuWubi40H/8x39E7//xj39oNBrpzZs32tvb2/RxkdLNzY0+++wzffr0Sfv7+1lXBy8YfRF5QV98WNPpVL/++qt+97vfZVqPTIIy27bV6XQWlheLxVRpTdPc+bplXr16pVevXsWWcfuMh7e/v8/BB7lAX0Re0BcfTpYjZKFMgjLTNGPvfd9XsViMAh3P82QYhkzTXJt2PjDaxToAAIAsZDanrNfrqdFoqFQq6fr6OnaPsGazqVKppHq9vjHtQ6wDAAB4bHvTrC81AObc3t6q2Wzq4uJi4bQx8Jjoi8gL+uLLQFAGAACQAzyQHAAAIAcIygAAAHKAoOwZ8TxPtVpNe3t7ajQa6na7ajQaqlQqO322Z7fb1evXr5/0Y6mOjo7kOE70vtvt6uTkZKttn4uwv3S7XTmOI9d11e12F54Vmyeu6+ro6EjdbvdRyntK+54+/r9c140dG7c5Hj7mcS+rYyx9JgemeFbG4/FU0nQ8Hi8sGwwGOyvHtu2d5Tdb18fS7/dj5Q6Hw2m/399q2+fAtu1pp9OJLRsMBlNJ0+FwmFGtkqnX6wt1fyhPad/Tx+OGw+HCsTGtXR738lRWiD6TvVw9ZgkPI7zn2+XlpSzLyro6Mb7vy3VdVavVRy3Xtu3Y+2X3xEu67VPXbrclaWEfWJb16PtlG2/evHm0sp7SvqePxxUKhayrkHv0mexx+vKFGI1GOjw8zLoaC1qtVtZVePGazaZqtdrSdZVK5ZFrAwAvF0HZMxcEgRqNhmzbVrValeu6Ojw8VLfbVbfb1dHRkaS7+WjtdluO46jdbi/MI/I8T41GQ47jyHGc2LNDw3k94YiL4zg6PDyMzdvwfT/avtvtKggCua6rDx8+qN/vr5275LpuVLdGoxGrU61Wi+rkOI48z9tYH8/zYvOQgiBQrVaLBa2r2mN+29k5TeEcrKcUyPi+ryAIVv43bNt2tG5Vm6xqA9/3o21mg76wD4b7rtvtqlarKQiC2Pr5PrqqH0iK+tOy9l+23ab9FgRBtC7cbn7fb9Mmq9DHH1+Sz7XuuBfmMb/fHMfR0dFR1NbtdluHh4fRvlq3r9eVtaz+9JlnKOvzp9itcP5Yq9Wa9nq9aa/XW5gTVK1Wp9VqdTqdTqP1tm3H0liWFc0PGI/HU9M0F9bPzndotVrTVqsVvS+Xy9FchHD7ML96vR6l3TQfaDgcTi3Lit53Op1pq9WajsfjqWEYsTkMhmFEdVpXn3D9fLmGYURlrmuP+W3r9fq0XC5H77OYC7KtcJ7NpvpuapNlbTDb/rP7P0w/u77X68XyX9ZHl/WD6fRuf6xq/3XbrdtvrVYr1l/C/T2777dpk2XtTB9/HMvm2677XJuOe+v61ng8jtqz0+lEZa7b15uOsbPoM88Xc8qeqWq1uvJZnoZhRPNwyuWyGo3Gwlwz0zR1dXWlarWqq6urhfVp5mdcXV3JNM2oPhcXF4m37XQ6KhQKsVG36+trGYYh27Zjn3HVA+XT6nQ6a9tj3ps3b2LzmgzD2Phfbl6Eo2C+7y+db+j7vgqFwsY2WdYGs6NvYZvM7q/Zv8vlsiqVioIgiJ5PO99Hl/WDUKlUWihLWt1/pPX7rVwu6+joSKZp6uzsbOl+36ZNlvUL+nh21n2uTce9dX3LMAy9f/9eR0dH6vV60T5ct6/THGPpM88XQdkLlXTy5i6EP7ShVcHifLqQZVmxSaTVavXRboHwEtTrdXU6HZXL5YV1nuctXZ7Eqv2c1HwfXdYPkthmu0KhoPF4LM/zdHl5qUqlon6/n7Dm6dHHn6Z1fSsMtOYvsNrVvqbPPE/MKXumNv1HMrv+7Oxs4b49nufp9PRU0t28ovn75czP/zIMQ7/88kv03nXdaI5QuVxe2H7ZfYKWLVtWN9d1dXp6urZO6+oTmn+/rszZ9li37VMUXmwxf0Cf/YxJ2mTepjaaXe84zsJ/+Jv6aJJ7TW27XbPZjEYPW61WrF5hvbdpkzR1pI/vVtpRmk3HvXV9K5zj2Ov15Pt+dP+uVdskOcbOos88X4yUPSPhf/XS3Q9trVZbGG52XVeu68rzPJmmKdu2ox+edrst0zR1fX0dG3I3TVO9Xk+NRkMnJyfRiFaz2VSr1ZJpmjo9PY3dlNG27Wi42zRNdTodNRqN6DRT+B9erVZTq9VSt9tdekl1WLf5bQ3DWFqn0Lr6BEGgy8tLFQoFlcvlpSMyq9ojbONw2zCvsIxwcnun00l1OXnW+v2+2u22Go2GDg8Po1Mn4ShZkjaR4m0Qbue6rnzfV6vVigU4w+Ew+lEI85PW99H5frCq7LD9t93uzZs3cl1XhUJBo9FIZ2dnC/t+mzZZ1i/o4w8vDJCku4D77OxMkjZ+rnXHvVX7rdvtRsdf6e7U+vn5uXzfV71eT7WvZ4+xs+gzzxcPJMezcXJyEh0st/H69WuNx+Md1wrLhMHfU7gPWp7Qx5EWfeZpYaQMz8Y2k0i73a6Gw6FqtdrOJsQCD4U+jrToM08Lc8rwLIT3Oet0OqnmNdi2rTdv3shxHHU6nYerICLh6cler/ekn5/62OjjSIs+8/Rw+hIAACAHGCkDAADIAYIyAACAHCAoAwAAyAGCMgAAgBwgKAPw5Hiep1qtpr29PTUaDXW7XbXb7WjZY99Z/OjoKLprOwBsi6svATxJvu/r8PBQ4/E4dtfybrerYrG49c0yk5i/U7rruioWi/d+3ieAl42RMgBPUvgoqHmnp6db3TAzKd/3dXV1FVs2/9xOANgGQRmAZ8HzvGgE6yGfrRc+wB0Ado2gDMCzED4AWbobzTo6OlK73ZYkOY6jw8PD6EHMruvq6OhI3W5Xruuq2+2qUqnE8vN9X41GQ47jqNvtKggCua6rDx8+qN/vR3dL9zwvyivkeZ7a7bYcx1G73Zbv+4nLBfBy8exLAE9aGAy5rquLiwtJd6cTz87OojTlcjkWtNm2Ldu21e/31ev1JCl67JNlWQqCQCcnJxoMBjIMI7qYoF6vy7bthYepz5YVBnP9fj9adnR0pL/85S8bywXwshGUAXjSqtWqDMNIHdS8efNGb968id4bhhHNRbu6upJpmtE8sTDYS6LT6SzUxTRNXV1dqVqtri0XwMtGUAbgWbBte2d5zV9duWoS/3w6ALgP5pQBeJI2jS4ZhqFffvkleu+6buL7l5XLZXmeF1sWzkdbtSzM++zsbCGt53k6PT1NVDaAl4uRMgBPjud56nQ6kqRGo6GTkxOVy+VYmtPTUzUajShAsm07OrUYBEE0x8y27WjCfqfTkWmaMk1TnU5HjUZDpVIpSidJtVpNrVZL3W5Xtm3L8zxdXl6qUCioXC7Lsiy1Wi21222Zpqnr62v1ej0ZhhGlXVcugJeLm8cCAADkAKcvAQAAcoCgDAAAIAcIygAAAHKAoAwAACAHCMoAAABygKAMAAAgBwjKAAAAcoCgDAAAIAcIygAAAHKAoAwAACAHCMoAAABygKAMAAAgB/4fgqGzFQrluqAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAFoCAYAAAAW+YxkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvuUlEQVR4nO3dz27rRp73/48HDXjVNo/OrjEBEnouoENLNzCmZ5Nly/YNxNKsBxjpeHk2o0g9i2c3kU7fgC12dlkMxO4LaB8xuQExAQ7Qu0iUAzyAN63fwj/yEfWXlCWTtt8vQIBFFqtKxRL1dbFI7k0mk4kAAACQqX/KugIAAAAgKAMAAMgFgjIAAIAcICgDAADIAYIyAACAHCAoAwAAyAGCMgAAgBwgKAMAAMiBFxuU+b6ver2uN2/e6OjoaGXao6MjvXnzRvV6XUEQPE0FkRue5+n09HRtP9klx3EyK/uphd/Nvb09HR0dqdVqqdVqqVqt6uzs7FW1xaaq1arevHkj13WzrsrOvNR+0ul0dHx8nFn54fEuyzo8J0/++zB54ZrN5sQwjEm/31+4vtfrTcrl8qRSqTxxzRZrt9tzy2q12qRcLmdQmweL6vTS9Hq9iWmaqbbZVrt0u925ZaPRaGW/XSTrfpKWbdsLv3emaU6azWYGNUouD98Jy7ImvV4vUdqs6/uY8l9aPxkMBpNarZbqu53Esu//ojpscrwLjUajSbvdnti2vXB9s9mctNvtSbvdXrh/Hrt+mV328ce0V1ovdqQsZBiGzs/P1W63F67P28hYr9ebW3Z6eqqLi4sMavNgUZ1emkKhkHqbbbWLYRgLl1UqFZmmmTifrPvJtlSrVdXr9ayrsdJz+05kXd9dlP9c+4lpmqpWqwu/94+x7Pu/qA6bHO+kh1Gjm5sbBUGg4XA4t77VakmSKpWKKpWKLMtStVrd2vpVdtnHN22vTfzmyUrKULVa1cnJyVxgFgRBqh+9Xet0OvJ9f265bdsZ1ObBsjq9dttsF8/z5HmearVabHmz2UyVT5b9ZJvCH6sgCLb+w7UNz+07kXV9d1X+c+4nnuepXC5vtbxF3/9tt71lWbIsa+mp40ajoZ9++ilWp9PT0+i397Hrl8m6j2/TqwjKLMtSoVCQ4zixL8LHjx9X/pC1Wi2Zpinf92WaZrRtEATqdDoyTVO9Xk/ValWWZUmSXNeN/nv78OGDfN+X7/v65ZdfVv7Iuq6rXq8n3/ej/xZqtZo8z1O9Xpfv+xoMBkvLGA6H6vf7arfb6nQ6KhQKur6+1tXVVVS3dZ8raZ1m85Ee5n/MBhXLdDqd2PtKpbI2z00/c7hdoVDQ2dmZpIf9t25/zNZnuq2Stsu69g0ZhqFmsxnLo1qt6ubmRh8+fIhtv6x9kvaTJH1xXVlp8k3bFpLU7/dlWVbsh3bZfqjX69HIQ/ifcliHJP1sUX6rPte6fb/Ito4XrVZLhmGk+q99UX1N04zKbLfb8n1fzWZThmGo2+2qUCjo5OREQRCo2+1Gdd2kzZa1l+M4ajQa8n1f3W5Xtm3L932dnp7KNE212+21/zA/136SJIh0HCfVPpK08Pu/rq96npf6uLCM7/tLP5vrujJN81Hrl/1Wp/ntrNfr6nQ6ajabqlQqO/l9kBR934MgkO/70ZmPRJ7kJGmGwvPMi863h3N5Fs0pK5fLsbk+tm1HcwBqtdpkMBhE60zTnIxGo+h9eP55er6HaZpr5xD0er2JZVlzy/v9/tz57GVl1Gq12OebzW/V50pTp3K5HCt7MBgsnWMwrdlsztVxej+synPTz9ztdieSYvusVqvF9vmiNl7VVqvaJU37rmLbdiyvde2Tpp+sq9Om+2I633VtMTtXaDQaTZrN5sSyrNj3aVU+4f7u9XqTfr8f9YV1/WzVfl33uZbt+2W2cbyo1WqxOTOj0WgiKdGcskX1nZ0TtKi9puv8mDZb1l6L5uksmkP0WvrJrLT7aNn3f9lvimEYqY8L02XP5tvr9SaLQgrDMCbdbvfR61dJ08ds2459l7b9+9DtdmP5DwaDVPPdXvycslC1WpXjONEcMt/350aQQr7vz42qnZ2dRUOovu/HrnoyTTP2vlAoyPf9WGQfRtPbsqyMaZZlxcpc97mS8jxv7j8X0zQ1HA5XXg0WBIHq9bqurq6iZdfX1/J9P1Gem3xm6WEkyrKsWNqrq6uVQ96btNW22ne63qFN23yTvviYfRHmm7QtPn78qE6no06no5ubG9m2rX6/H332dfkYhiHP82TbtizLUrPZXNnP1uW3i+/uY48XQRCo1WrF/tMO+/Smzs/P5/rN9Cmp4XAYGyXdRZvZtq3hcCjP82LbLfIa+smsNPtoE0EQ7LT+oUKhsHD+2bbWryt71uxI3C5+H7rdbhRrmKapYrGYuM6v4vSl9NAwlmXp5uZGlUpl5Tl913VlGEbsCzEYDKIdFA4Xh0OTw+FwrtPMflkMw9i4Yy2zqIxVl+2u+1xJffz4ceHBIDw9s2yY+ePHjzIMI/alCNsyHO5dl2faz7xMWA/P8xaWu0lbbat9F9m0zcM009b1xaRlrco3aVsUi8WVw/pJ8pmtx7p+lja/x353H3u8CNtgm8IfovCHZTq4ma3LJvsgaZtVKhVdX1/LsqyVp6heQz+ZlWYfbeIpfqMkrc3zset34TG/D+VyWe12W2/evJFlWbq4uEg8tUd6RUGZ9DBa1m63ValUVh7kwgsApg8Q0397nqdGo6HT01Odn5/v7GKBbX35Qus+V9I6bXrF6qrt8nYVbNq2Ctvlse27qj5PZRtlbastkuQz+11e18+2vY/WfU+3cbzY5tVfYX0vLi6igKhYLEZnE2zbjrXJtttsur0uLi50cnKiZrM5N/KUxkvoJ4sk3Ue7rENSy/IN2/Kx69NY9Tmf4vjW6/WiMw7h6FnSwOzVnL6UHoaDPc+T4zgrhxMXnQKTHnZEEAQ6OTnR1dVVFNxNnxLdpulh/W1Y9bmSCk8BLMrH932VSqWV5S8qKxxG3yTPTYX7ctkpoLRt5XneVtp3madsn22Uta222CSfVf1sF/to1fd0G8eLZXXeVFjfcrksx3Hkuq4sy4r+w58dKd12m0231/RFWI8JPJ97P1km6T7aZR2SMk1ThmEsbDfbth+9Po1VnzPJyNtjfh/CC0csy1KtVlO/39f19XXCmr+CoCy86kJ6+E/Jtm1dX1+vHCmzbVvFYnHust+bm5toRGR6Z4U7ed3BeZ3ZOTlp54ysK2PV50pTJ8uyZNt2bOh2+kC/Kq9yuRxdIRPW+ebmZuM8kx4kPc+LpW00GivvA7aurRa1yybtm9Sm7bPIujbbxr7YVlts2meX9bNN8pttrzTf020cL0zTVKVSiV0lGATBXJ9eZll9wykd4TEy/C7M5vnYNlvXXtVqVZeXl4+6RcRz7yer6phkH63aPmkd0gScywKbq6ur2HHDcZzYaefHrl9mVR+fDp6C/38Kwexn3ebvw3RgNl2/xBJfEvDMDAaDSaVSmUiaVCqV6MqK6atrwqt4DMOI7g49fTVPeMXT9Dbh8lqtNun1epNerzcZDAbRlRj9fn9SLpcnkqIricIyLMtaexVJmHd4tcai/FaVYdt2dIVRmKZWqyX6XEnrNJtPu92OXRWUJL9mszl3lcqqPB/zmcMrc8IrfJrNZuwqr9ntFtVnUVuta5ek7bvM7NU9adtnG30x7b6YzXdRWwwGg5Xfu1V1mc6n1+tNbNueGIYxaTabsaunwm3W9bPp/NJ+rkX7flndt3G8CD9LmI9lWYnv6r+svs1mM3bF3aJ23EabrWqvsD0WLX9N/WSZJPtoUZ2W1eExx4Vwn1iWFR0vZ9OHbdntdhf+Ljx2/TKr+vh0nuVyeWKaZqx/bPP3ITxmhsuS9Ntpe5PJZJI8hAOen/BeNP1+P+uqpHJ2dqaLi4ut32QSyJMgCNbeMxLYlbz9Prz405fAcxIOr4d/b/uqOyAPpk8VhacLARCUAbnSaDSiZ735vp/q/jbAcxHeWV162ucKAnlHUIYXzXVdNZtNeZ4Xm9CbV9VqVaenp9GjQBgpw0sU/uPR6XQ4PY/M5PH3gTllAAAAOcBIGQAAQA4QlAEAAOQAQRkAAEAOvKpnX27LP/7xD/3973/Xb3/7W+3t7WVdHQAA8AiTyUS//vqrfve73+mf/im78SqCsg38/e9/12effZZ1NQAAwBZ9+vRJ//zP/5xZ+QRlG/jtb38r6WHnHRwcZFwbAADwGHd3d/rss8+i3/esZBaU+b4vx3GiB4ZWKpWl92RaldbzvOgBpre3t/rw4UO0btV2acqfFZ6yPDg4ICgDAOCFyHxKUuKnZG6ZZVnR38seSJsk7fSDQ8MHpSbZLk35s8bj8UTSZDweJ94GAADkU15+1zOZzRY+2y9kmmY02pUmred5ajQa0bpyuSzP8+T7/srt0pQPAADwFDIJylzXnXveWaFQkOd5qdJalqUPHz5Ey8OH3BYKhZXbpSkfAADgKWQypywMnmYNh8PUaaefm3Z9fS3btmUYxsrt0pQvSff397q/v4/e393dLUwHAACwqVzdPHZZsJQkbRAEchxH3W534zKWrWs0Gjo8PIxe3A4DAABsWyZBmWEYc6NSw+Fw4dWPSdPW63X1er1o+art0pQvSVdXVxqPx9Hr06dP6z8kAABACpkEZbZtL1xeLBY3SttqtVSv12WapoIgUBAEK7dLU74k7e/vR7e/4DYYAABgFzIJykzTjL33fV/FYjF277HwCsl1aR3HkWVZUUB2c3MjwzBWbrcuTwAAgKe2N5lMJlkU7Pu+2u22SqWSbm9vdXV1FQVFZ2dnKpVKqtVqK9P6vq+jo6NYvoZhaDQarS1j1bp17u7udHh4qPF4zKgZAADPXF5+1zMLyp6zvOw8AADweHn5XefZlznz+bvvs64CcuLnb77KugoAgCeUq1tiAAAAvFYEZQAAADlAUAYAAJADBGUAAAA5QFAGAACQAwRlAAAAOUBQBgAAkAMEZQAAADlAUAYAAJADBGUAAAA5QFAGAACQAwRlAAAAOUBQBgAAkAMEZQAAADlAUAYAAJADBGUAAAA5QFAGAACQAwRlAAAAOUBQBgAAkAMEZQAAADlAUAYAAJADBGUAAAA5kFlQ5vu+Wq2WHMdRq9VSEAQbp/U8T8fHx3PbOY6jIAgW5u15njzPi/IP/wYAAMjCb7Iq+OzsTP1+X9JDUHR5ealut5s6reM4Mk1zYVB1dnY2t6zZbKpWq6ndbqvT6UiSbNteWjYAAMBTyCQo830/9t40Tbmuu1Hacrm8cLsgCNTtdmPrW62WarWaJOn4+Fij0UiSZBhG6s8AAACwTZmcvnRdV4VCIbasUCgsHO1Kk3bWdEDmOM5cAGcYBgEZAADIhUxGypbNHxsOh49KO2062AqCQMPhUKZpxpY5jiNJur29VbVaja2fdn9/r/v7++j93d3dyrIBAADSymxO2SKrJvs/Jm29Xlez2Ywtq1QqUeBmmqZOT081GAwWbt9oNPT+/fvE5QEAAKSVyelLwzDmRrqGw+HCU4lp0i4SBIFc151LPz1XzTRN+b4/N38tdHV1pfF4HL0+ffqUqGwAAICkMgnKbNteuLxYLD4q7SIfP36cC8g8z9PJyclc2tm5a6H9/X0dHBzEXgAAANuUSVA2O3fL930Vi8UoePI8Lxq1Wpd22rL7kc0GW6Zpxk5nuq6rcrnMpH8AAJCZzOaUdbtd1et1lUol3d7exu4T1mg0VCqVottXrErruq56vV5su9mrLGcDO8MwVCwW1Wq1ZBiGBoMB9ykDAACZ2ptMJpOsK/Hc3N3d6fDwUOPxeOunMj9/9/1W88Pz9fM3X2VdBQB4FXb5u54Gz74EAADIAYIyAACAHCAoAwAAyAGCMgAAgBwgKAMAAMgBgjIAAIAcICgDAADIAYIyAACAHCAoAwAAyAGCMgAAgBwgKAMAAMgBgjIAAIAcICgDAADIAYIyAACAHCAoAwAAyAGCMgAAgBwgKAMAAMgBgjIAAIAcICgDAADIAYIyAACAHCAoAwAAyAGCMgAAgBwgKAMAAMiB32RVsO/7chxHpmnK931VKhUZhrFRWs/zdHl5qX6/H9vO8zxJkmVZ8n1fQRDIsqzU5QMAAOxaZkHZ2dlZFET5vq/Ly0t1u93UacPAKgzAprXbbXU6HUmSbdux/NOUDwAAsGuZBGW+78fem6Yp13U3Slsul5eWc3x8rNFoJEmxUbA05QMAADyFTOaUua6rQqEQW1YoFBaOdqVJu4hhGHOnJR+bJwAAwLZlMlIWBMHC5cPh8FFpF23rOI4k6fb2VtVqVaZpps7z/v5e9/f30fu7u7u1ZQMAAKSR2ZyyRZYFS5umnZ68b5qmTk9PNRgMUufZaDT0/v37xHUDAABIK5PTl4ZhzI1KDYfDhVc/pkk7a3ruWHiVpe/7qfO8urrSeDyOXp8+fVpbNgAAQBqZBGW2bS9cXiwWH5V2mud5Ojk5mVteKBRS57m/v6+Dg4PYCwAAYJsyCcpM04y9931fxWIxGqnyPC8a5VqXdtr06UfTNNVsNqP3ruuqXC7LMIxUeQIAADyFzOaUdbtd1et1lUol3d7exu4R1mg0VCqVVKvV1qZ1XVe9Xi+2XRh8FYtFtVotGYahwWAQ225VngAAAE9tbzKZTLKuxHNzd3enw8NDjcfjrZ/K/Pzd91vND8/Xz998lXUVAOBV2OXveho8+xIAACAHCMoAAABygKAMAAAgBwjKAAAAcoCgDAAAIAcIygAAAHKAoAwAACAHCMoAAABygKAMAAAgBwjKAAAAcoCgDAAAIAcIygAAAHKAoAwAACAHCMoAAABygKAMAAAgBwjKAAAAcoCgDAAAIAcIygAAAHKAoAwAACAHCMoAAABygKAMAAAgBwjKAAAAcoCgDAAAIAd+k1XBvu/LcRyZpinf91WpVGQYxkZpPc/T5eWl+v1+bDvP8+S6riTp9vZWHz58iLbzPE+SZFmWfN9XEASyLGvrnxMAACCJzIKys7OzKIjyfV+Xl5fqdrup04bBWhhkTXNdV7VaTZLUarV0cnIS5dNut9XpdCRJtm0vLRsAAOApZHL60vf92HvTNKMRrbRpy+XywhEuz/PUaDRi6TzPi/I7Pj7WaDTSaDRSr9dbOkoHAADwFDIJylzXVaFQiC0rFApLR7uSpp1mWZY+fPgQvQ+CINo2ZBgGwRgAAMiFTE5fhgHSrOFw+Ki0s8rlcvT39fW1bNuOgrAgCOQ4jqSH+WbValWmaS7M5/7+Xvf399H7u7u7tWUDAACkkdmcskWWBWDbSOs4TuxCgOmLBUzT1OnpqQaDwcLtG42G3r9/n7g8AACAtDI5fWkYxtxI13A4XHgqMU3aZer1+ty8sem5auFVnbPz10JXV1caj8fR69OnT4nLBgAASCKToMy27YXLi8Xio9Iu0mq1VK/XZZqmgiBQEATyPE8nJydzaWfnroX29/d1cHAQewEAAGxTJkHZ7Nwt3/dVLBZj9xALR63WpZ02e0rTcRxZlhUFZDc3NzIMQ6ZpqtlsRulc11W5XGbSPwAAyExmc8q63a7q9bpKpZJub29j9wlrNBoqlUrRPcZWpXVdV71eL7ZduVyW7/s6OzuLlWkYRjSXrFgsqtVqyTAMDQYD7lMGAAAytTeZTCZZV+K5ubu70+Hhocbj8dZPZX7+7vut5ofn6+dvvsq6CgDwKuzydz0Nnn0JAACQA6lPX/7888/qdrvq9XoajUbR8kKhoNPTU5XLZX3++efbrCMAAMCLlyooe/funfb29nR+fq7//M//nFv/ww8/6Ntvv9Xe3l7sEUcAAABYLXFQ9sc//lFXV1c6PDxcmubLL7/Ul19+qfF4rKurKwIzAACAhBIHZYtGxpY5PDwkIAMAAEhh44n+796905/+9CeNx2P927/9my4uLvTdd99ts24AAACvxsZBWalU0tdff61Op6Pj42NdX1/rl19+2WbdAAAAXo2Ng7I3b95Ikm5ubnRxcSFp+WOKAAAAsNrGd/QfDAaaTCYaDAb6/e9/r59++il2iwwAAAAkt/FI2fn5uTzPU7/f13g8Vrvdnnv2JAAAAJJJNFI2Ho81Go1iN4U9PDyMXZH5zTffxLa5u7uTpEwfVwAAAPBcJBopOzw8VK/XS3x15Z///Gfd3NwQkAEAACSUeE7Z5eWlfvjhB52fn+vo6EilUkmmacowDAVBIN/39be//U0//fSTqtWq/vCHP+yy3gAAAC9Kqon+X375pW5ubjQej3Vzc6O//e1vCoJAhmHo6OhI1WpVX3zxxa7qCgAA8GJtdPXl4eGhLi8vt10XAACAV2vjqy8BAACwPQRlAAAAOUBQBgAAkAMEZQAAADnwqKDsj3/8Y/Tcy7/85S/RDWMBAACQzsZB2bt372QYhmzbliSdnJzIdd2tVQwAAOA12TgoK5VKury8lGma26wPAADAq7RxUPbTTz9Jkvb29qJlt7e3j68RAADAK7TRzWOlh7v7F4tFvX37Vr1eT67rqtlsJt7e9305jiPTNOX7viqVigzD2Cit53m6vLxUv99PvF2a8gEAAHZt46Ds5ORE3W5X7XZbk8lEnU5HX375ZeLtz87OoiDK931dXl6q2+2mThsGVp7npdouTfkAAAC7tnFQJklffPGFvvnmm+j93d2dDg4O1m7n+37svWmaSy8SWJe2XC6n3i5N+QAAAE/hUbfEuLu7088//xy96vV6ou1c11WhUIgtKxQKC0e70qRNut2meQIAAOzKxiNl//7v/y7XdWPzsH766Sf9z//8z9ptgyBYuHw4HD4qbdLtNs0TAABgVzYOyo6OjvTtt9/Gln348OFRlVkWLD02bdLtlq27v7/X/f199J6b5AIAgG3b+PRleNPYaaenp4m2NQxjblRqOBwuvPoxTdqk26XNs9Fo6PDwMHp99tlnK8sGAABIa+Og7M2bN/rv//5vfffdd/rrX/+q7777LvGcskUBnSQVi8VHpU26Xdo8r66uNB6Po9enT59Wlg0AAJDWxqcva7WagiCIjS798MMPibadfQqA7/sqFotRXp7nyTAMmaa5Nu206fqs2m5221V5StL+/r729/cTfTYAAIBNbByUnZ6e6vLyMrbsz3/+c+Ltu92u6vW6SqWSbm9vY/cIazQaKpVKqtVqa9O6rqterxfbLrxNxqrtVq0DAAB4anuTyWSyyYZ//etf9a//+q+xZT/++KN+//vfb6NeuXZ3d6fDw0ONx+NE92VL4/N33281PzxfP3/zVdZVAIBXYZe/62lsPFI2GAzUbrdVKpUkSZPJRDc3Nzz/EgAAYAMbT/Rvt9v64osvNJlMFA62bTjoBgAA8OptPFLWbDZ1cnISW7bsqkYAAACstvFI2WxAJj3cJgMAAADpJR4p++6772TbdjQB7k9/+lNsfRAE6vV6+t///d/t1hAAAOAVSDxS9l//9V/6+PFj9P7bb7/VaDSKXpPJRL/88stOKgkAAPDSJR4pmw7IpIfnXH755ZexZcwpAwAA2EzioOzHH3+U7/saDoc6Pz+fC8gkLVwGAACA9RKfvjw7O5Npmvr6668zvbEaAADAS5Q4KPvDH/6w9m79P/744yOrAwAA8DolDsr+5V/+ZW2a2XlnAAAASCbxnLJvv/1W/X5/ZRrXdfX1118/ulIAAACvTao7+nPLCwAAgN1IHJRVq1VdXl6uTPPhw4dHVwgAAOA1SjynbDwer01jmuajKgMAAPBapZpTVi6X9fnnny9Ns+h5mACer8/ffZ91FZADP3/zVdZVAF6FxCNl7XZb/X5ff/rTn3R3d7fLOgEAALw6iUfKGAUDAADYncQjZQAAANgdgjIAAIAcICgDAADIAYIyAACAHCAoAwAAyAGCMgAAgBxI9ezLbfJ9X47jyDRN+b6vSqUiwzBSp121znEc2bYtSXN5e54nSbIsS77vKwgCWZa1i48KAACwVmZB2dnZmfr9vqSHwOry8lLdbjd12nXrZjWbTdVqNbXbbXU6HUmSbdtLywYAAHgKmQRlvu/H3pumKdd1U6ddtS4IAnW7XZXL5Wh9q9VSrVaTJB0fH2s0GkmaH0UDAAB4apnMKXNdV4VCIbasUChEpxSTpl2Xz3RA5jhO7L30EIwRkAEAgDzIZKQsCIKFy4fDYaq0q9ZNzw8LgkDD4VCmacaWOY4jSbq9vVW1Wo2tn3Z/f6/7+/voPc/+BAAA25bZnLJFlgVZadPOrqvX62o2m7Fl0xcEmKap09NTDQaDhfk1Gg29f/8+cd0AAADSyuT0pWEYc6Niw+Fw4anEVWmT5BMEgVzXnct7ej5aeOXm7By10NXVlcbjcfT69OlTgk8JAACQXCZBWXibilnFYjFV2iT5fPz4ceHtME5OTua2m52fFtrf39fBwUHsBQAAsE2ZnL6cnbvl+76KxWIUPHmeJ8MwZJrmyrSLRr+m8wnzmg22TNOMnc50XVflcplJ/wAAIDOZzSnrdruq1+sqlUq6vb2N3Ses0WioVCpFt69YlXbVutBsYGcYhorFolqtlgzD0GAw4D5lAAAgU3uTyWSSdSWem7u7Ox0eHmo8Hm/9VObn777fan54vn7+5qusq0B/hKR89EVgl3b5u54Gz74EAADIAYIyAACAHMjVfcoAAFiEU+mQXv6pdEbKAAAAcoCgDAAAIAcIygAAAHKAoAwAACAHCMoAAABygKAMAAAgBwjKAAAAcoCgDAAAIAcIygAAAHKAoAwAACAHCMoAAABygKAMAAAgBwjKAAAAcoCgDAAAIAcIygAAAHKAoAwAACAHCMoAAABygKAMAAAgBwjKAAAAcoCgDAAAIAd+k1XBvu/LcRyZpinf91WpVGQYRuq0q9Z5nidJsixLvu8rCAJZlpW6fAAAgF3LLCg7OztTv9+X9BAgXV5eqtvtpk67al273Van05Ek2bYdyz9N+QAAALuWSVDm+37svWmacl03ddp1+RwfH2s0GklSbBQsTfkAAABPIZM5Za7rqlAoxJYVCoXodGPStEnyMQxj7rRkmvIBAACeQiYjZUEQLFw+HA5TpV2XTxAEchxHknR7e6tqtSrTNFOVL0n39/e6v7+P3t/d3S1MBwAAsKnM5pQtsixYSps2XDc9ed80TZ2enmowGKTOs9Fo6P3794nrBgAAkFYmpy8Nw5gblRoOhwuvflyVdl0+03PHwqssfd9PVb4kXV1daTweR69Pnz4l/KQAAADJZBKU2ba9cHmxWEyVdtU6z/N0cnIyt65QKKQqX5L29/d1cHAQewEAAGxTJqcvTdOMvfd9X8ViMXZ/McMwZJrmyrSzI1vT60zTVLPZjNa5rqtyubx2OwAAgCxkNqes2+2qXq+rVCrp9vY2do+wRqOhUqmkWq22Nu2ydYZhqFgsqtVqyTAMDQaDRNsBAABkYW8ymUyyrsRzc3d3p8PDQ43H462fyvz83fdbzQ/P18/ffJV1FeiPkERfRH7sqi/u8nc9DZ59CQAAkAMEZQAAADlAUAYAAJADBGUAAAA5QFAGAACQAwRlAAAAOUBQBgAAkAMEZQAAADlAUAYAAJADBGUAAAA5QFAGAACQAwRlAAAAOUBQBgAAkAMEZQAAADlAUAYAAJADBGUAAAA5QFAGAACQAwRlAAAAOUBQBgAAkAMEZQAAADlAUAYAAJADBGUAAAA5QFAGAACQA7/JqmDf9+U4jkzTlO/7qlQqMgwjddpV6zzPk+u6kqTb21t9+PAhtk6SLMuS7/sKgkCWZe3yIwMAACyVWVB2dnamfr8v6SGwury8VLfbTZ121TrXdVWr1SRJrVZLJycnUdp2u61OpyNJsm17adkAAABPIZPTl77vx96bphmNaKVJu2qd53lqNBrRunK5LM/zom2Oj481Go00Go3U6/WWjtIBAAA8hUyCMtd1VSgUYssKhUJ0SjFp2lXrLMvShw8fouVBEETrQ4ZhEIwBAIBcyOT0ZRggzRoOh6nSrsunXC5Hy66vr2XbdhSEBUEgx3EkPcw3q1arMk1zYX739/e6v7+P3t/d3S1MBwAAsKnM5pQtsizISpt2dl0YgIXzySTFLggwTVOnp6caDAYL82s0Gnr//n3iugEAAKSVyelLwzDmRsWGw+HCU4mr0ibNp16vz80bm56PFl65OTtHLXR1daXxeBy9Pn36lOBTAgAAJJdJUGbb9sLlxWIxVdok+bRaLdXrdZmmqSAIFASBPM/TycnJ3Haz89NC+/v7Ojg4iL0AAAC2KZOgbHbulu/7KhaLsXuIhaNWq9Kuy8dxHFmWFQVkNzc30XbNZjPaznVdlctlJv0DAIDMZDanrNvtql6vq1Qq6fb2NnafsEajoVKpFN1jbFXaZet839fZ2VmsTMMworlkxWJRrVZLhmFoMBhwnzIAAJCpvclkMsm6Es/N3d2dDg8PNR6Pt34q8/N33281PzxfP3/zVdZVoD9CEn0R+bGrvrjL3/U0ePYlAABADhCUAQAA5ABBGQAAQA4QlAEAAOQAQRkAAEAOEJQBAADkAEEZAABADhCUAQAA5ABBGQAAQA4QlAEAAOQAQRkAAEAOEJQBAADkAEEZAABADhCUAQAA5ABBGQAAQA4QlAEAAOQAQRkAAEAOEJQBAADkAEEZAABADhCUAQAA5ABBGQAAQA4QlAEAAOQAQRkAAEAO/Cargn3fl+M4Mk1Tvu+rUqnIMIzUaXexDgAA4KllFpSdnZ2p3+9LegiQLi8v1e12U6fdxToAAICnlsnpS9/3Y+9N05TruqnT7mIdAABAFjIJylzXVaFQiC0rFAryPC9V2l2sAwAAyEImpy+DIFi4fDgcpkq7i3WL3N/f6/7+Pno/Ho8lSXd3dwvTP8Y/7v/v1vPE87SL/pUW/RESfRH5sau+GOY7mUx2kn9Smc0pW2RZsJQ27bbXNRoNvX//fm75Z599tjQv4LEO/0/WNQAe0BeRF7vui7/++qsODw93W8gKmQRlhmHMjUoNh8OFVz+uSruLdYtcXV3pP/7jP6L3//jHPzQcDvX27Vvt7e2t+7hI6e7uTp999pk+ffqkg4ODrKuDV4y+iLygL+7WZDLRr7/+qt/97neZ1iOToMy2bbXb7bnlxWIxVVrTNLe+bpH9/X3t7+/HlnH7jN07ODjg4INcoC8iL+iLu5PlCFkok6DMNM3Ye9/3VSwWo0DH8zwZhiHTNFemnQ2MtrEOAAAgC5nNKet2u6rX6yqVSrq9vY3dI6zRaKhUKqlWq61Nu4t1AAAAT21vkvWlBsCM+/t7NRoNXV1dzZ02Bp4SfRF5QV98HQjKAAAAcoAHkgMAAOQAQRkAAEAOEJS9IJ7nqVqtam9vT/V6XZ1OR/V6XWdnZ1t9tmen09GbN2+e9WOpjo+P5ThO9L7T6ej09HSjbV+KsL90Oh05jiPXddXpdOaeFZsnruvq+PhYnU7nScp7TvuePv7/uK4bOzZucjx8yuNeVsdY+kwOTPCijEajiaTJaDSaW9bv97dWjm3bW8tvuq5PpdfrxcodDAaTXq+30bYvgW3bk3a7HVvW7/cnkiaDwSCjWiVTq9Xm6r4rz2nf08fjBoPB3LExrW0e9/JUVog+k71cPWYJuxHe8+36+lqWZWVdnRjf9+W6riqVypOWa9t27P2ie+Il3fa5a7VakjS3DyzLevL9som3b98+WVnPad/Tx+MKhULWVcg9+kz2OH35SgyHQx0dHWVdjTnNZjPrKrx6jUZD1Wp14bqzs7Mnrg0AvF4EZS9cEASq1+uybVuVSkWu6+ro6EidTkedTkfHx8eSHuajtVotOY6jVqs1N4/I8zzV63U5jiPHcWLPDg3n9YQjLo7j6OjoKDZvw/f9aPtOp6MgCOS6rj5+/Kher7dy7pLrulHd6vV6rE7VajWqk+M48jxvbX08z4vNQwqCQNVqNRa0LmuP2W2n5zSFc7CeUyDj+76CIFj637Bt29G6ZW2yrA1834+2mQ76wj4Y7rtOp6NqtaogCGLrZ/vosn4gKepPi9p/0Xbr9lsQBNG6cLvZfb9JmyxDH396ST7XquNemMfsfnMcR8fHx1Fbt1otHR0dRftq1b5eVdai+tNnXqCsz59iu8L5Y81mc9LtdifdbnduTlClUplUKpXJZDKJ1tu2HUtjWVY0P2A0Gk1M05xbPz3fodlsTprNZvS+XC5HcxHC7cP8arValHbdfKDBYDCxLCt63263J81mczIajSaGYcTmMBiGEdVpVX3C9bPlGoYRlbmqPWa3rdVqk3K5HL3PYi7IpsJ5Nuvqu65NFrXBdPtP7/8w/fT6brcby39RH13UDyaTh/2xrP1XbbdqvzWbzVh/Cff39L7fpE0WtTN9/Gksmm+76nOtO+6t6luj0Shqz3a7HZW5al+vO8ZOo8+8XMwpe6EqlcrSZ3kahhHNwymXy6rX63NzzUzT1M3NjSqVim5ububWp5mfcXNzI9M0o/pcXV0l3rbdbqtQKMRG3W5vb2UYhmzbjn3GZQ+UT6vdbq9sj1lv376NzWsyDGPtf7l5EY6C+b6/cL6h7/sqFApr22RRG0yPvoVtMr2/pv8ul8s6OztTEATR82ln++iifhAqlUpzZUnL+4+0er+Vy2UdHx/LNE1dXFws3O+btMmifkEfz86qz7XuuLeqbxmGoQ8fPuj4+Fjdbjfah6v2dZpjLH3m5SIoe6WSTt7chvCHNrQsWJxNF7IsKzaJtFKpPNktEF6DWq2mdrutcrk8t87zvIXLk1i2n5Oa7aOL+kESm2xXKBQ0Go3keZ6ur691dnamXq+XsObp0cefp1V9Kwy0Zi+w2ta+ps+8TMwpe6HW/Ucyvf7i4mLuvj2e5+n8/FzSw7yi2fvlzM7/MgxDv/zyS/Tedd1ojlC5XJ7bftF9ghYtW1Q313V1fn6+sk6r6hOafb+qzOn2WLXtcxRebDF7QJ/+jEnaZNa6Nppe7zjO3H/46/pokntNbbpdo9GIRg+bzWasXmG9N2mTNHWkj29X2lGadce9VX0rnOPY7Xbl+350/65l2yQ5xk6jz7xcjJS9IOF/9dLDD221Wp0bbnZdV67ryvM8maYp27ajH55WqyXTNHV7exsbcjdNU91uV/V6Xaenp9GIVqPRULPZlGmaOj8/j92U0bbtaLjbNE21223V6/XoNFP4H161WlWz2VSn01l4SXVYt9ltDcNYWKfQqvoEQaDr62sVCgWVy+WFIzLL2iNs43DbMK+wjHBye7vdTnU5edZ6vZ5arZbq9bqOjo6iUyfhKFmSNpHibRBu57qufN9Xs9mMBTiDwSD6UQjzk1b30dl+sKzssP033e7t27dyXVeFQkHD4VAXFxdz+36TNlnUL+jjuxcGSNJDwH1xcSFJaz/XquPesv3W6XSi46/0cGr98vJSvu+rVqul2tfTx9hp9JmXiweS48U4PT2NDpabePPmjUaj0ZZrhUXC4O853ActT+jjSIs+87wwUoYXY5NJpJ1OR4PBQNVqdWsTYoFdoY8jLfrM88KcMrwI4X3O2u12qnkNtm3r7du3chxH7XZ7dxVEJDw92e12n/XzU58afRxp0WeeH05fAgAA5AAjZQAAADlAUAYAAJADBGUAAAA5QFAGAACQAwRlAJ4dz/NUrVa1t7ener2uTqejVqsVLXvqO4sfHx9Hd20HgE1x9SWAZ8n3fR0dHWk0GsXuWt7pdFQsFje+WWYSs3dKd11XxWLx0c/7BPC6MVIG4FkKHwU16/z8fKMbZibl+75ubm5iy2af2wkAmyAoA/AieJ4XjWDt8tl64QPcAWDbCMoAvAjhA5Clh9Gs4+NjtVotSZLjODo6OooexOy6ro6Pj9XpdOS6rjqdjs7OzmL5+b6ver0ux3HU6XQUBIFc19XHjx/V6/Wiu6V7nhflFfI8T61WS47jqNVqyff9xOUCeL149iWAZy0MhlzX1dXVlaSH04kXFxdRmnK5HAvabNuWbdvq9XrqdruSFD32ybIsBUGg09NT9ft9GYYRXUxQq9Vk2/bcw9SnywqDuV6vFy07Pj7WX/7yl7XlAnjdCMoAPGuVSkWGYaQOat6+fau3b99G7w3DiOai3dzcyDTNaJ5YGOwl0W635+pimqZubm5UqVRWlgvgdSMoA/Ai2La9tbxmr65cNol/Nh0APAZzygA8S+tGlwzD0C+//BK9d1038f3LyuWyPM+LLQvnoy1bFuZ9cXExl9bzPJ2fnycqG8DrxUgZgGfH8zy1221JUr1e1+npqcrlcizN+fm56vV6FCDZth2dWgyCIJpjZtt2NGG/3W7LNE2Zpql2u616va5SqRSlk6Rqtapms6lOpyPbtuV5nq6vr1UoFFQul2VZlprNplqtlkzT1O3trbrdrgzDiNKuKhfA68XNYwEAAHKA05cAAAA5QFAGAACQAwRlAAAAOUBQBgAAkAMEZQAAADlAUAYAAJADBGUAAAA5QFAGAACQAwRlAAAAOUBQBgAAkAMEZQAAADlAUAYAAJAD/x+OELHGytTfZwAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -265,9 +265,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnsAAAFUCAYAAABcJvrpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAuF0lEQVR4nO3dz27jVp728ceDALVqm6XaNaaACj0X0EVLNzCmZ5PdRLZvIJZmPcBI5WVtRpF68y4jVW7AFju7LAZibqBdYvoGxBRQQO8i0Q4wgDetd1Ev+Yr6S8pSUWK+H8CARR4eHh4eUz8fnkMejMfjsQAAAJBL/5R1AQAAALA9BHsAAAA5RrAHAACQYwR7AAAAOUawBwAAkGMEewAAADlGsAcAAJBjBHsAAAA5lnmw5/u+6vW6nj9/ruPj46Vpj4+P9fz5c9XrdQVB8HkKiJ3heZ7Ozs5WtpNtchwns33vqiAIVK/X5TiOHMdRp9NRp9PZ+H7Ca8XBwYGOj4/VarXUarVUrVZ1fn7OuUmgWq3q+fPncl03k7yXpaEdPU2n09HJyUmmZQiv0VmXY1981u+08Y5oNptjwzDG/X5/7vperzcul8vjSqXymUs2X7vdnllWq9XG5XI5g9J8Mq9MedPr9camaabaZlP10u12Z5aNRqOl7XaerNvJJvX7/bFt2+PRaBRb3u12x7Ztb2Wftm3PvQ6YpjluNptb2eem7MLfqGVZ416vl1ne89LQjtKZ144Gg8G4VquluhYlteiaNa8c61yjQ6PRaNxutxee82azOW632+N2uz33HD11/SLb/Lt9Sn2lkXnPXsgwDF1cXKjdbs9dv2s9eb1eb2bZ2dmZLi8vMyjNJ/PKlDeFQiH1NpuqF8Mw5i6rVCoyTTNxPlm3k006PT1VvV6fqZtyuSzTNFWtVj9bWarVqur1+mfb3zp+D3+j66AdpTOvHYX1NO869VSLrlnzyrHONVr61Mt1e3urIAg0HA5n1rdaLUlSpVJRpVKRZVmxdvHU9cts8+923fpKa2eCPenTH9nt7e3M8iAIUn2Zblun05Hv+zPLbdtWuVzOoESLy/R7t8l68TwvumBMajabqS6wWbaTTarX6zJNU7ZtL1z/OdtleA527R/DEH+j89GO0llWF57nbeW7ct41a9PnxLKspf84NxoNVSqVWJkmb/M/df0iefm7/SLrAkyyLEuFQkGO48Qa1vv37xdeCKRPEbtpmvJ9X6ZpRtsGQaBOpyPTNNXr9VStVmVZliTJdd3ov7d3797J9335vq9ff/1VzWZz4b5c11Wv15Pv+9EXf61Wk+d5qtfr8n1fg8Fg4T6Gw6H6/b7a7bY6nY4KhYJubm50fX0dlW3VcSUt03Q+0qfxKpPrlpn+Q5j8Q1mU57rHHG5XKBR0fn4u6dP5W3U+psszWVdJ62VV/YYMw1Cz2YzlEf6D8u7du9j2i+onaTtJ0haXHYfjOGo0GvJ9X91uV7Zty/d9nZ2dyTRNtdttmaa5sN6SlMdxnJk2Oyk8fsdxVKvVUh1n2nMjSf1+X5ZlxQLvZccX9oSE/7WHZUjS7tPW16q2OM+mrl+tVkuGYazVg7Dq2pEk71VpaEebaUdBECT6p9NxnGg/7XZbvu9H/7B2u10VCgWdnp4qCAJ1u11JmnvNWtWePc9LfS1bxPf9hcfnuq5M03zS+kXxRZrv+/CfkmazqUqlspXvNEnRNSEIAvm+H91dWmnrN4oTCu+JzxsbEI6Vmjdmr1wux8ZS2bYdjVmo1WrjwWAQrTNNMzYmJLxXPjl+xDTNlWMeer3e2LKsmeX9fn/m3vuifdRqtdjxTee37LjSlKlcLsf2PRgMEo2BaTabM2WcPA/L8lz3mLvd7lhS7JzVarXYOZ9Xx8vqalm9pKnfZWzbjuW1qn7StJNVZVp17NP7mRynkmTbZeWRtHLci2masb/nJPmuOjfTY61Go9G42WyOLcuK/X0vyydsf71eb9zv96O2uardP6W+FrXFRTZx/arVarHxRqPRaCwp0Zi9Ve04Sd5J0tCOttuO5pkeFzevvJNtb9E1a9H3oGEYqa9lk/uezrfX643nhSuGYYy73e6T1y+z6DjnXV9t2461901/p3W73Vj+g8Eg8XjCnQv2BoPBWFL0xzYYDKKKmg72wrTT+YRpyuVyrCKmv5T7/f7M9tNp5kkT7C3ax+Qf1mAwGBuGkfi4kpYp/KObtmoQdXhBnr7gNZvNRHmuc8yLjiEsS9gGput4VV3Ny3Od+l1m8g8zaf0kbSfL2mKS45iePDL9d7Zo2yTlkRQ7p/NMf0mvyjfJMdm2PbYsKxpo3W63Z75IkrSL6fXL2v0m6ivtl/RTr1/h8UxLMoliVTtOknfS/dOOttuO5pk+N81mM3ZNmg4g0gZ763yvhtIEe6Zpjtvt9pPXL5Pm+376b3bT32nhhKXJtpU0iN6p27jSpy57y7J0e3urSqUiz/OW3r40DCM2jX8wGET318Mu6LC7czgczgz8nB4fYBjG3MGhTzFvH8umWq86rqTev38/d/xDeFtoUdf1+/fvZRhGrMs7rMuwC3lVnmmPeZGwHIvGoqxTV5uq33nWrfMwzaRVbTHJcVQqFbXbbbXbbbmuq4uLi8TbripPeIthGd/3ZwZBL8s36bkpFotLb12sc3yr2v1T6yutp16/wjpYx6p2nOSWYdL90462247mMQxDlmVFQ6bCsoa3DJ/qcxyDpJV5PnX9NjzlO61cLqvdbuv58+eyLEuXl5eJh2XtXLAnfRoH1W63ValUll4swokbk1+gk797nqdGo6GzszNdXFxsbZLHpv5AQquOK2mZ1h1gvGy7XRu0nLauwnp5av0uK8/nkuQ4qtWqTk5OorE54fpN1IFt20ufqeZ5Xup8N3VukuQzfW1Z1e433WZWXTc2cf1ad6ZfknacJO8kaWhH221Hi1xeXurm5kaWZalYLKparcpxHNm2vVaZNv09OGlRvmF9PnV9GsuOcxPX/1VtpNfryfM8ua4bPb0kScC3U7NxQxcXF/I8T47jqFgsLkxnWdbc/wiDIFAQBDo9PdX19XUUNIYnYtMza8KL0aYsO66kPM+LBuVP831fpVJp6f7n7SsIgrXzXFd4LhcN4E5bV57nbaR+F/mc9ZPkOEzTjCY9TX7xbqIOms2mhsPhwofQ1uv16BEHSW3q3KyTz7J2v402s+y6sYnr16IyJ7GqHSfJO+n+aUfba0fLhBO5XNeVZVlRr9GiXt1tlSMJ0zRlGMbCp2A8dX0ay44zSU/hU77Twkk/lmWpVqup3+/r5uYmUbl3JtgLZ7RIn/5Tsm1bNzc3S3v2bNtWsVicuUjc3t5GPTiTFRqeiFUX2VUmbzv4vp/qIpRkH8uOK02ZLMua+a85PPZls9LCmT+TjxkJgkC3t7dr55n0YuZ5XixtOF1+0cVnVV3Nq5d16jepdetnnk21k2q1qqurq5n/FNPWwXR5wtl74azfSeFFKcmss8l8N3Vu1v0bWtTuN1Ffaa4bm7h+maapSqUSmxUaBMHM39g8q9pxkryT7p92tL12tEw4ZCr87g2vsUmv1WnKkSaYXRQwXV9fx9qj4zixW/BPXb/IouOcHn4Q/L/hFtPHusnvtMmAb7J8iSQa2bdFg8FgXKlUxpLGlUolGrQ4OXspnCVlGEb0dPPJAYrhjK/JbcLltVpt3Ov1xr1ebzwYDKLB9P1+f1wul2MzwcJ9WJa1cjBpmHc4GHNefsv2Ydt2NIMrTFOr1RIdV9IyTefTbrdXDoSe3q7ZbM7MAFqW51OOORzMGs6eajabsVl609vNK8+8ulpVL0nrd5HpmVNp62cTbXHZcYxGo4WTT+Ztm7Y8o9Eodrzhz7Q0+c4r12AwWHodSHp8vV5vbNv22DCMaND89Dar2v269bWoLS4q+yauX+GxhPlYlpX4LRqrrh1J8k66f9rRdtrRMuGku8nP08cxr1yLyvGUa1l4XizLiq7x0+nD+ux2u0vb47rrF1lU3+F3VJhnuVwem6YZayOb/E4L/ybCZUnabuhgPB6Pk4WFwHaFzyXq9/tZFyWV8/NzXV5e5uJByQCAzdil77SduY0L7JOwyz78fd1ZjwAAbBvBHrCGRqMRPQrC9/2lE4kAAMgSwR52guu6ajabC98/u2uq1arOzs6i1+PQswcACO3adxpj9gAAAHKMnj0AAIAcI9gDAADIMYI9AACAHNvJd+Puun/84x/6+9//rj/84Q86ODjIujgAAOAJxuOxfvvtN/3xj3/UP/1T/vrBCPbW8Pe//10vX77MuhgAAGCDPn78qH/+53/OuhgbR7C3hj/84Q+SPjWKw8PDjEsDAACe4uHhQS9fvoy+3/OGYG8N4a3bw8NDgj0AAHIir0Oz8ndjGgAAABGCPQAAgBwj2AMAAMgxgj0AAIAcI9gDAADIMYI9AACAHCPYAwAAyDGCPQAAgBwj2AMAAMgx3qCxY169+THrImBHfPj2q6yLAADIAXr2AAAAcoxgDwAAIMcI9gAAAHKMYA8AACDHCPYAAAByjGAPAAAgxwj2AAAAcoxgDwAAIMcI9gAAAHKMYA8AACDHCPYAAAByjGAPAAAgxwj2AAAAcoxgDwAAIMcyC/Z831er1ZLjOGq1WgqCYO20nufp5ORkZjvHcRQEwdy8Pc+T53lR/uHvAAAAefJFVjs+Pz9Xv9+X9CnYurq6UrfbTZ3WcRyZpjk3WDs/P59Z1mw2VavV1G631el0JEm2bS/cNwAAwD7LJNjzfT/22TRNua67VtpyuTx3uyAI1O12Y+tbrZZqtZok6eTkRKPRSJJkGEbqYwAAANgHmdzGdV1XhUIhtqxQKMztnUuTdtpkoOc4zkxgaBgGgR4AAMi1THr2Fo3PGw6HT0o7aTKIC4JAw+FQpmnGljmOI0m6u7tTtVqNrZ/0+Piox8fH6PPDw8PSfQMAAOyKzMbszbNsksZT0tbrdTWbzdiySqUSBYSmaers7EyDwWDu9o1GQ2/fvk28PwAAgF2RyW1cwzBmeuaGw+HcW6pp0s4TBIFc151JPzkW0DRN+b4/Mz4wdH19rfv7++jn48ePifYNAACQtUyCPdu25y4vFotPSjvP+/fvZwI9z/N0eno6k3Z6bGDo2bNnOjw8jP0AAADsg0yCvemxcb7vq1gsRkGZ53lRL9uqtJMWPU9vOogzTTN2W9d1XZXLZSZrAACA3MlszF6321W9XlepVNLd3V3sOXeNRkOlUil6TMqytK7rqtfrxbabnnU7HTAahqFisahWqyXDMDQYDHjOHgAAyKWD8Xg8zroQ++bh4UFHR0e6v7/f+C3dV29+3Gh+2F8fvv0q6yIAwO/CNr/XdwHvxgUAAMgxgj0AAIAcI9gDAADIMYI9AACAHCPYAwAAyDGCPQAAgBwj2AMAAMgxgj0AAIAcI9gDAADIMYI9AACAHCPYAwAAyDGCPQAAgBwj2AMAAMgxgj0AAIAcI9gDAADIMYI9AACAHCPYAwAAyDGCPQAAgBwj2AMAAMgxgj0AAIAcI9gDAADIsS+y2rHv+3IcR6Zpyvd9VSoVGYaxVlrP83R1daV+vx/bzvM8SZJlWfJ9X0EQyLKs1PsHAADYV5kFe+fn51Fw5vu+rq6u1O12U6cNA7YwsJvUbrfV6XQkSbZtx/JPs38AAIB9lUmw5/t+7LNpmnJdd6205XJ54X5OTk40Go0kKdZrl2b/AAAA+yyTMXuu66pQKMSWFQqFub1zadLOYxjGzO3Zp+YJAACwLzLp2QuCYO7y4XD4pLTztnUcR5J0d3enarUq0zSflCcAAMA+yWzM3jyLgrB1005OujBNU2dnZxoMBqnzfHx81OPjY/T54eEhcTkBAACylMltXMMwZnrRhsPh3NmwadJOmxybF8669X0/dZ6NRkNHR0fRz8uXL1fuGwAAYBdkEuzZtj13ebFYfFLaSZ7n6fT0dGZ5oVBInef19bXu7++jn48fPy7dNwAAwK7I5DauaZqxz77vq1gsRj1rnufJMAyZprky7aQgCGK3bZvNZrTOdV2Vy+W5EzaW5SlJz54907Nnz1IdIwAAwC7IbMxet9tVvV5XqVTS3d1d7Bl3jUZDpVJJtVptZVrXddXr9WLbhUFdsVhUq9WSYRgaDAax7ZblCQAAkBcH4/F4nHUh9s3Dw4OOjo50f3+vw8PDjeb96s2PG80P++vDt19lXQQA+F3Y5vf6LuDduAAAADlGsAcAAJBjBHsAAAA5RrAHAACQYwR7AAAAOUawBwAAkGMEewAAADlGsAcAAJBjBHsAAAA5RrAHAACQYwR7AAAAOUawBwAAkGMEewAAADlGsAcAAJBjBHsAAAA5RrAHAACQYwR7AAAAOUawBwAAkGMEewAAADlGsAcAAJBjBHsAAAA5RrAHAACQY19ktWPf9+U4jkzTlO/7qlQqMgxjrbSe5+nq6kr9fj+2ned5cl1XknR3d6d3795F23meJ0myLEu+7ysIAlmWtfHjBAAAyFJmwd75+XkUnPm+r6urK3W73dRpwyAwDN4mua6rWq0mSWq1Wjo9PY3yabfb6nQ6kiTbthfuGwAAYJ9lchvX9/3YZ9M0ox64tGnL5fLcHjnP89RoNGLpPM+L8js5OdFoNNJoNFKv11vYqwgAALDPMgn2XNdVoVCILSsUCgt755KmnWRZlt69exd9DoIg2jZkGAZBHgAAyLVMbuOGgde04XD4pLTTyuVy9PvNzY1s246CuyAI5DiOpE/j+arVqkzTnJvP4+OjHh8fo88PDw8r9w0AALALMhuzN8+iwG4TaR3HiU3gmJzkYZqmzs7ONBgM5m7faDT09u3bxPsDAADYFZncxjUMY6Znbjgczr2lmibtIvV6fWZc3uRYwHCW7/T4wND19bXu7++jn48fPybeNwAAQJYyCfZs2567vFgsPintPK1WS/V6XaZpKggCBUEgz/N0eno6k3Z6bGDo2bNnOjw8jP0AAADsg0yCvemxcb7vq1gsxp6BF/ayrUo7afrWruM4siwrCvRub29lGIZM01Sz2YzSua6rcrnMZA0AAJA7mY3Z63a7qtfrKpVKuru7iz3nrtFoqFQqRc/IW5bWdV31er3YduVyWb7v6/z8PLZPwzCisXrFYlGtVkuGYWgwGPCcPQAAkEsH4/F4nHUh9s3Dw4OOjo50f3+/8Vu6r978uNH8sL8+fPtV1kUAgN+FbX6v7wLejQsAAJBjBHsAAAA5RrAHAACQY6knaHz48EHdble9Xk+j0ShaXigUdHZ2pnK5rFevXm2yjAAAAFhTqmDvzZs3Ojg40MXFhf7rv/5rZv3PP/+s7777TgcHB2o0GhsrJAAAANaTONj785//rOvrax0dHS1M8/r1a71+/Vr39/e6vr4m4AMAAMhY4mBvXk/eIkdHRwR6AAAAO2DtCRpv3rzR999/r/v7e/3bv/2bLi8v9cMPP2yybAAAAHiitYO9Uqmkb775Rp1ORycnJ7q5udGvv/66ybIBAADgidYO9p4/fy5Jur291eXlpaRPM3IBAACwO9Z+N+5gMNB4PNZgMNCf/vQn/fLLL7FHsQAAACB7a/fsXVxcyPM89ft93d/fq91uKwiCDRYNAAAAT5WoZ+/+/l6j0Sj2sOSjo6PYDN1vv/02ts3Dw4Mk5fKFwgAAAPsiUc/e0dGRer1e4tm2f/nLX3R7e0ugBwAAkLHEY/aurq70888/6+LiQsfHxyqVSjJNU4ZhKAgC+b6vv/71r/rll19UrVb19ddfb7PcAAAASCDVBI3Xr1/r9vZW9/f3ur291V//+lcFQSDDMHR8fKxqtaovv/xyW2UFAABASmvNxj06OtLV1dWmywIAAIANW3s2LgAAAHYfwR4AAECOEewBAADkGMEeAABAjj0p2Pvzn/8cvRf3p59+ih6kDAAAgN2w9rtx37x5o+PjY9m2LUk6PT3VDz/8oH//939PtL3v+3IcR6Zpyvd9VSoVGYaxVlrP83R1daV+v594uzT7BwAA2FdrB3ulUklff/21fvrpp7W2Pz8/j4Iz3/d1dXWlbrebOm0YsHmel2q7NPsHAADYV2vfxv3ll18kSQcHB9Gyu7u7RNv6vh/7bJqmXNddK225XJZlWam2S7N/AACAfbZ2sPf69WsVi0U1m01dX1+rVCrp7Ows0bau66pQKMSWFQqFub1zadIm3W7dPAEAAPbN2sHe6emput2uXr9+rfF4rE6no3/9139NtG0QBHOXD4fDJ6VNul3aPB8fH/Xw8BD7AQAA2Adrj9mTpC+//FLffvtt9Pnh4UGHh4dr57coCHtq2qTbLVrXaDT09u3btfYHAACQpSc9euXh4UEfPnyIfur1eqLtDMOY6UUbDodzZ8OmSZt0u7R5Xl9f6/7+Pvr5+PHj0n0DAADsirWDvf/4j/+QZVkql8vRz+3tbaJtw8e1TCsWi09Km3S7tHk+e/ZMh4eHsR8AAIB9sPZt3OPjY3333XexZe/evUu0rWmasc++76tYLEY9a57nyTAMmaa5Mu2kIAii5cu2m952WZ4AAAD7bO1gb17vWNLZuJLU7XZVr9dVKpV0d3cXe8Zdo9FQqVRSrVZbmdZ1XfV6vdh25XJ55XbL1gEAAOTFwXg8Hq+z4YcPH6IHGhuGoSAIdHNzo5ubm02Xcec8PDzo6OhI9/f3G7+l++rNjxvND/vrw7dfZV0EAPhd2Ob3+i5Yu2evVqvFbptK0s8//7yJMgEAAGBD1g72zs7OdHV1FVv2l7/85ckFAgAAwOasPRv3+Pg40TIAAABkZ+2evcFgoHa7rVKpJEkaj8e6vb1N/H5cAAAAbN/aPXvtdltffvmlxuOxwjkea871AAAAwJas3bPXbDZ1enoaW7boYcUAAADIxto9e9OBniQ9f/78SYUBAADAZiXu2fvhhx9k23b0/Jnvv/8+tj4IAvV6Pf3P//zPZksIAACAtSXu2fvv//5vvX//Pvr83XffaTQaRT/j8Vi//vrrVgoJAACA9STu2ZsM9KRP78F9/fp1bBlj9gAAAHZL4mDvb3/7m3zf13A41MXFxUygJ2nuMgAAAGQn8W3c8/Nzmaapb775JpfvjQMAAMijxMHe119/rT/96U9L0/ztb397YnEAAACwSYmDvX/5l39ZmWZ6XB8AAACylXjM3nfffad+v780jeu6+uabb55cKAAAAGxGqjdo8GgVAACA/ZI42KtWq7q6ulqa5t27d08uEAAAADYn8Zi9+/v7lWlM03xSYQAAALBZqcbslctlvXr1amGaee/LBbC/Xr35MesiYAd8+ParrIsA4AkS9+y12231+319//33enh42GaZAAAAsCGJe/botQMAANg/qWbjbpLv+3IcR6Zpyvd9VSoVGYaROu2ydY7jRO/rnc7b8zxJkmVZ8n1fQRDIsqxtHCoAAEBmMgv2zs/Po+f2+b6vq6srdbvd1GlXrZvWbDZVq9XUbrfV6XQkSbZtL9w3AADAPssk2PN9P/bZNE25rps67bJ1QRCo2+2qXC5H61utlmq1miTp5OREo9FI0myvHwAAQF4knqCxSa7rqlAoxJYVCoXo1mrStKvymQz0HMeJfZY+BXkEegAAIM8y6dkLgmDu8uFwmCrtsnWT4++CINBwOIw9BzAIAjmOI0m6u7tTtVpd+JzAx8dHPT4+Rp+ZjQwAAPZFZmP25lkUvKVNO72uXq+r2WzGlk1O5DBNU2dnZxoMBnPzazQaevv2beKyAQAA7IpMbuMahjHTizccDufeUl2WNkk+QRDIdd2ZvCfH+4UzeafHAIaur691f38f/Xz8+DHBUQIAAGQvk2AvfBzKtGKxmCptknzev38/97Er854bOD3+L/Ts2TMdHh7GfgAAAPZBJrdxp8fG+b6vYrEYBWWe58kwDJmmuTTtvN66yXzCvKaDONM0Y7d1XddVuVxmsgYAAMidzMbsdbtd1et1lUol3d3dxZ5z12g0VCqVosekLEu7bF1oOmA0DEPFYlGtVkuGYWgwGPCcPQAAkEsH4/F4nHUh9s3Dw4OOjo50f3+/8Vu6vHgeoV14+TztEdJutEVgm7b5vb4LMhmzBwAAgM+DYA8AACDHCPYAAAByjGAPAAAgxwj2AAAAcoxgDwAAIMcI9gAAAHKMYA8AACDHCPYAAAByjGAPAAAgxwj2AAAAcoxgDwAAIMcI9gAAAHKMYA8AACDHCPYAAAByjGAPAAAgxwj2AAAAcoxgDwAAIMcI9gAAAHKMYA8AACDHCPYAAAByjGAPAAAgx77Iase+78txHJmmKd/3ValUZBhG6rTL1nmeJ0myLEu+7ysIAlmWlXr/AAAA+yqzYO/8/Fz9fl/Sp8Dr6upK3W43ddpl69rttjqdjiTJtu1Y/mn2DwAAsK8yCfZ83499Nk1TruumTrsqn5OTE41GI0mK9dql2T8AAMA+y2TMnuu6KhQKsWWFQiG67Zo0bZJ8DMOYuT2bZv8AAAD7LJOevSAI5i4fDoep0q7KJwgCOY4jSbq7u1O1WpVpmqn2L0mPj496fHyMPj88PMxNBwAAsGsyG7M3z6IgLG3acN3kpAvTNHV2dqbBYJA6z0ajobdv3yYuGwAAwK7I5DauYRgzvWjD4XDubNhlaVflMzk2L5x16/t+qv1L0vX1te7v76Ofjx8/JjxSAACAbGUS7Nm2PXd5sVhMlXbZOs/zdHp6OrOuUCik2r8kPXv2TIeHh7EfAACAfZDJbVzTNGOffd9XsViMPR/PMAyZprk07XRP3OQ60zTVbDajda7rqlwur9wOAAAgTzIbs9ftdlWv11UqlXR3dxd7xl2j0VCpVFKtVluZdtE6wzBULBbVarVkGIYGg0Gi7QAAAPLkYDwej7MuxL55eHjQ0dGR7u/vN35L99WbHzeaH/bXh2+/yroItEdI2o22CGzTNr/XdwHvxgUAAMgxgj0AAIAcI9gDAADIMYI9AACAHCPYAwAAyDGCPQAAgBwj2AMAAMgxgj0AAIAcI9gDAADIMYI9AACAHCPYAwAAyDGCPQAAgBz7IusCAACwyqs3P2ZdBOyAD99+lXUR9hI9ewAAADlGsAcAAJBjBHsAAAA5RrAHAACQYwR7AAAAOUawBwAAkGMEewAAADlGsAcAAJBjmT1U2fd9OY4j0zTl+74qlYoMw0iddtk6z/Pkuq4k6e7uTu/evYutkyTLsuT7voIgkGVZ2zxkAACAzy6zYO/8/Fz9fl/Sp4Dt6upK3W43ddpl61zXVa1WkyS1Wi2dnp5GadvttjqdjiTJtu2F+wYAANhnmdzG9X0/9tk0zagHLk3aZes8z1Oj0YjWlctleZ4XbXNycqLRaKTRaKRer7ewVxEAAGCfZRLsua6rQqEQW1YoFKJbq0nTLltnWZbevXsXLQ+CIFofMgyDIA8AAORaJrdxw8Br2nA4TJV2VT7lcjladnNzI9u2o+AuCAI5jiPp03i+arUq0zSTHQAAAMCeyGzM3jyLgre0aafXhYFdOF5PUmwih2maOjs702AwmJvf4+OjHh8fo88PDw+JywkAAJClTG7jGoYx04s3HA7n3lJdljZpPvV6fWZc3uR4v3Am7/QYwFCj0dDR0VH08/LlywRHCQAAkL1Mgj3btucuLxaLqdImyafVaqler8s0TQVBoCAI5HmeTk9PZ7abHv8Xur6+1v39ffTz8ePHuekAAAB2TSbB3vTYON/3VSwWY8/AC3vZlqVdlY/jOLIsKwr0bm9vo+2azWa0neu6KpfLCydrPHv2TIeHh7EfAACAfZDZmL1ut6t6va5SqaS7u7vYc+4ajYZKpVL0jLxlaRet831f5+fnsX0ahhGN1SsWi2q1WjIMQ4PBgOfsAQCAXDoYj8fjrAuxbx4eHnR0dKT7+/uN9/K9evPjRvPD/vrw7VdZF4H2CEm0ReyObbXFbX6v7wLejQsAAJBjBHsAAAA5RrAHAACQYwR7AAAAOUawBwAAkGMEewAAADlGsAcAAJBjBHsAAAA5RrAHAACQYwR7AAAAOUawBwAAkGMEewAAADlGsAcAAJBjBHsAAAA5RrAHAACQYwR7AAAAOUawBwAAkGMEewAAADlGsAcAAJBjBHsAAAA5RrAHAACQYwR7AAAAOfZFVjv2fV+O48g0Tfm+r0qlIsMwUqfdxjoAAIC8yCzYOz8/V7/fl/Qp8Lq6ulK3202ddhvrAAAA8iKT27i+78c+m6Yp13VTp93GOgAAgDzJJNhzXVeFQiG2rFAoyPO8VGm3sQ4AACBPMrmNGwTB3OXD4TBV2m2sm+fx8VGPj4/R5/v7e0nSw8PD3PRP8Y/H/914nthP22hfadEeIdEWsTu21RbDfMfj8Vbyz1pmY/bmWRSEpU276XWNRkNv376dWf7y5cuFeQFPdfR/si4B8AltEbti223xt99+09HR0XZ3koFMgj3DMGZ60YbD4dzZsMvSbmPdPNfX1/rP//zP6PM//vEPDYdDvXjxQgcHB6sOFyk9PDzo5cuX+vjxow4PD7MuDn7HaIvYFbTF7RqPx/rtt9/0xz/+MeuibEUmwZ5t22q32zPLi8ViqrSmaW583TzPnj3Ts2fPYst4TMv2HR4eclHDTqAtYlfQFrcnjz16oUyCPdM0Y59931exWIwCKM/zZBiGTNNcmnY64NrEOgAAgDzJbMxet9tVvV5XqVTS3d1d7Bl3jUZDpVJJtVptZdptrAMAAMiLg3Fep55gbz0+PqrRaOj6+nrm9jnwOdEWsStoi3gKgj0AAIAcy+ShygAAAPg8CPYAAAByjGAvRzzPU7Va1cHBger1ujqdjur1us7Pzzf67t9Op6Pnz5/v9evlTk5O5DhO9LnT6ejs7GytbfMibC+dTkeO48h1XXU6nZl3Se8S13V1cnKiTqfzWfa3T+eeNv7/ua4buzaucz38nNe9rK6xtJkcGyNXRqPRWNJ4NBrNLOv3+xvbj23bG8tvsqyfS6/Xi+13MBiMe73eWtvmgW3b43a7HVvW7/fHksaDwSCjUiVTq9Vmyr4t+3TuaeNxg8Fg5tqY1iave7u0rxBtJr926nVp2I7wmYU3NzeyLCvr4sT4vi/XdVWpVD7rfm3bjn2e90zHpNvuu1arJUkz58CyrM9+Xtbx4sWLz7avfTr3tPG4QqGQdRF2Hm0mv7iN+zsxHA51fHycdTFmNJvNrIvwu9doNFStVueuOz8//8ylAQBsGsFezgVBoHq9Ltu2ValU5Lqujo+P1el01Ol0dHJyIunTeL9WqyXHcdRqtWbGaXmep3q9Lsdx5DhO7N3C4bipsIfIcRwdHx/HxsX4vh9t3+l0FASBXNfV+/fv1ev1lo4Nc103Klu9Xo+VqVqtRmVyHEee560sj+d5sXFeQRCoWq3GguFF9TG97eSYsXCM2z4FSL7vKwiChf+927YdrVtUJ4vqwPf9aJvJYDJsg+G563Q6qlarCoIgtn66jS5qB5Ki9jSv/udtt+q8BUEQrQu3mz7369TJIrTxzy/JcS277oV5TJ83x3F0cnIS1XWr1dLx8XF0rpad62X7mld+2gwSy/o+MjYrHJ/XbDbH3W533O12Z8ZcVSqVcaVSGY/H42i9bduxNJZlReMvRqPR2DTNmfWT40mazea42WxGn8vlcjTWI9w+zK9Wq0VpV423GgwGY8uyos/tdnvcbDbHo9FobBhGbIyIYRhRmZaVJ1w/vV/DMKJ9LquP6W1rtdq4XC5Hn7MYa7OucBzTqvKuqpN5dTBZ/5PnP0w/ub7b7cbyn9dG57WD8fjT+VhU/8u2W3bems1mrL2E53vy3K9TJ/PqmTb+ecwbz7zsuFZd95a1rdFoFNVnu92O9rnsXK+6xk6izSAtxuzlVKVSWfiuX8MwonFO5XJZ9Xp9ZiyfaZq6vb1VpVLR7e3tzPo0419ub29lmmZUnuvr68TbttttFQqFWC/h3d2dDMOQbduxYywWi4nzXbXPZfUx7cWLF7FxY4ZhrPyvfFeEvXa+788dz+n7vgqFwso6mVcHk72FYZ1Mnq/J38vlss7PzxUEQfT+6uk2Oq8dhEql0sy+pMXtR1p+3srlsk5OTmSapi4vL+ee93XqZF67oI1nZ9lxrbruLWtbhmHo3bt3Ojk5Ubfbjc7hsnOd5hpLm0FaBHu/U0kH3W5C+AUeWhSETqcLWZYVG/xbqVQ+26M2fg9qtZra7bbK5fLMOs/z5i5PYtF5Tmq6jc5rB0mss12hUNBoNJLnebq5udH5+bl6vV7CkqdHG99Py9pWGMBNT4zb1LmmzSANxuzl1Kr/oCbXX15ezjx3yvM8XVxcSPo0bmv6eU/T4+sMw9Cvv/4afXZdNxqDVS6XZ7af95yrecvmlc11XV1cXCwt07LyhKY/L9vnZH0s23YfhZNkpr8oJo8xSZ1MW1VHk+sdx5npkVjVRpM8K23d7RqNRtTb2Ww2Y+UKy71OnaQpI218s9L2Kq267i1rW+EY0m63K9/3o+fPLdomyTV2Em0GadGzlyNhL4T06Qu8Wq3OdLu7rivXdeV5nkzTlG3b0Rdaq9WSaZq6u7uL3XowTVPdblf1el1nZ2dRD1yj0VCz2ZRpmrq4uIg9rNS27ajb3zRNtdtt1ev16HZb+B9ptVpVs9lUp9OZO3U/LNv0toZhzC1TaFl5giDQzc2NCoWCyuXy3B6kRfUR1nG4bZhXuI9wUkK73U712IKs9Xo9tVot1et1HR8fR7eQwl69JHUixesg3M51Xfm+r2azGQucBoNB9GUT5ictb6PT7WDRvsP6X3e7Fy9eyHVdFQoFDYdDXV5ezpz7depkXrugjW9fGHhJnwL5y8tLSVp5XMuue4vOW6fTia6/0qchBldXV/J9X7VaLdW5nrzGTqLNIK2D8Xg8zroQwCacnZ1FF+F1PH/+XKPRaMOlwjxhULkPz/HbJbRxpEWbgUTPHnJkncG/nU5Hg8FA1Wp1YwOZgW2hjSMt2gwkxuwhJ8Ln9LXb7VTjRmzb1osXL+Q4jtrt9vYKiEh4m7bb7e71+5U/N9o40qLNIMRtXAAAgByjZw8AACDHCPYAAAByjGAPAAAgxwj2AAAAcoxgD8De8TxP1WpVBwcHqtfr6nQ6arVa0bLP/ST/k5OT6C0JALBrmI0LYC/5vq/j42ONRqPYWwI6nY6KxeLaD5FNYvrNBK7rqlgsPvl9wACwDfTsAdhL4Svdpl1cXKz1INmkfN/X7e1tbNn0e30BYJcQ7AHIBc/zoh63bb57s9lsbi1vANgGgj0AuRC+eF361Pt2cnKiVqslSXIcR8fHx9EL4F3X1cnJiTqdjlzXVafT0fn5eSw/3/dVr9flOI46nY6CIJDrunr//r16vV70dgLP86K8Qp7nqdVqyXEctVot+b6feL8AsGm8GxfAXguDLNd1dX19LenTbdXLy8soTblcjgWDtm3Ltm31ej11u11Jil7fZlmWgiDQ2dmZ+v2+DMOIJoHUajXZtq3j42NVKpUov8l9hUFir9eLlp2cnOinn35auV8A2AaCPQB7rVKpyDCM1MHSixcv9OLFi+izYRjRWL/b21uZphmNwwuDyCTa7fZMWUzT1O3trSqVytL9AsA2EOwByAXbtjeW1/Rs20WTL6bTAcAuYswegL20qjfMMAz9+uuv0WfXdRM/f69cLsvzvNiycLzfomVh3peXlzNpPc/TxcVFon0DwKbRswdg73iep3a7LUmq1+s6OztTuVyOpbm4uFC9Xo8CL9u2o1usQRBEY/hs244mWrTbbZmmKdM01W63Va/XVSqVonSSVK1W1Ww21el0ZNu2PM/Tzc2NCoWCyuWyLMtSs9lUq9WSaZq6u7tTt9uVYRhR2mX7BYBN46HKAAAAOcZtXAAAgBwj2AMAAMgxgj0AAIAcI9gDAADIMYI9AACAHCPYAwAAyDGCPQAAgBwj2AMAAMgxgj0AAIAcI9gDAADIMYI9AACAHCPYAwAAyLH/C6vWzahRhPfqAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnsAAAFnCAYAAADeyI/qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAuiElEQVR4nO3dz27jVp73/48HAbxqm6XaNaaAhJ4L6KKlGxjTs8luIts3EEuzLmCk8mrQm1Gk3jy7iVR9A7bY2WUxEHMD7RLTNyCmgAC9i0QrwAN40/ot6kc+ov6SslS0mPcLEGCRh4eHh0fk14eH5MFkMpkIAAAAufRPWRcAAAAAu0OwBwAAkGMEewAAADlGsAcAAJBjBHsAAAA5RrAHAACQYwR7AAAAOUawBwAAkGOZB3u+76ter+vFixc6OTlZmfbk5EQvXrxQvV5XEASfpoB4NjzP0/n5+dp2skuO42S27ucqCALV63U5jiPHcdTpdNTpdLa+nvBYcXBwoJOTE7VaLbVaLVWrVV1cXLBvEqhWq3rx4oVc180k71VpaEdP0+l0dHp6mmkZwmN01uXYF5/0nDZ5JprN5sQwjEm/3184v9frTcrl8qRSqXziki3WbrfnptVqtUm5XM6gNB8tKlPe9Hq9iWmaqZbZVr10u925aaPRaGW7XSTrdrJN/X5/Ytv2ZDQaxaZ3u92Jbds7Wadt2wuPA6ZpTprN5k7WuS3P4TdqWdak1+tllveiNLSjdBa1o8FgMKnVaqmORUktO2YtKscmx+jQaDSatNvtpfu82WxO2u32pN1uL9xHT52/zC5/t0+przQy79kLGYahy8tLtdvthfOfW09er9ebm3Z+fq6rq6sMSvPRojLlTaFQSL3MturFMIyF0yqVikzTTJxP1u1km87OzlSv1+fqplwuyzRNVavVT1aWarWqer3+yda3id/Cb3QTtKN0FrWjsJ4WHaeeatkxa1E5NjlGSx97ue7u7hQEgYbD4dz8VqslSapUKqpUKrIsK9Yunjp/lV3+bjetr7SeTbAnffyR3d3dzU0PgiDVyXTXOp2OfN+fm27btsrlcgYlWl6m37pt1ovnedEBY1qz2Ux1gM2ynWxTvV6XaZqybXvp/E/ZLsN98Nz+MQzxG12MdpTOqrrwPG8n58pFx6xt7xPLslb+49xoNFSpVGJlmr7M/9T5y+Tld/tZ1gWYZlmWCoWCHMeJNaz3798vPRBIHyN20zTl+75M04yWDYJAnU5Hpmmq1+upWq3KsixJkuu60X9v7969k+/78n1fv/zyi5rN5tJ1ua6rXq8n3/ejE3+tVpPnearX6/J9X4PBYOk6hsOh+v2+2u22Op2OCoWCbm9vdXNzE5Vt3XYlLdNsPtLH8SrT81aZ/SFM/1CW5bnpNofLFQoFXVxcSPq4/9btj9nyTNdV0npZV78hwzDUbDZjeYT/oLx79y62/LL6SdpOkrTFVdvhOI4ajYZ831e325Vt2/J9X+fn5zJNU+12W6ZpLq23JOVxHGeuzU4Lt99xHNVqtVTbmXbfSFK/35dlWbHAe9X2hT0h4X/tYRmStPu09bWuLS6yreNXq9WSYRgb9SCsO3YkyXtdGtrRdtpREASJ/ul0HCdaT7vdlu/70T+s3W5XhUJBZ2dnCoJA3W5XkhYes9a1Z8/zUh/LlvF9f+n2ua4r0zSfNH9ZfJHmfB/+U9JsNlWpVHZyTpMUHROCIJDv+9HVpbV2fqE4ofCa+KKxAeFYqUVj9srlcmwslW3b0ZiFWq02GQwG0TzTNGNjQsJr5dPjR0zTXDvmodfrTSzLmpve7/fnrr0vW0etVott32x+q7YrTZnK5XJs3YPBINEYmGazOVfG6f2wKs9Nt7nb7U4kxfZZrVaL7fNFdbyqrlbVS5r6XcW27Vhe6+onTTtZV6Z12z67nulxKkmWXVUeSWvHvZimGfs9J8l33b6ZHWs1Go0mzWZzYllW7Pe9Kp+w/fV6vUm/34/a5rp2/5T6WtYWl9nG8atWq8XGG41Go4mkRGP21rXjJHknSUM72m07WmR2XNyi8k63vWXHrGXnQcMwUh/Lptc9m2+v15ssClcMw5h0u90nz19l2XYuOr7ath1r79s+p3W73Vj+g8Eg8XjCZxfsDQaDiaToxzYYDKKKmg32wrSz+YRpyuVyrCJmT8r9fn9u+dk0i6QJ9patY/qHNRgMJoZhJN6upGUKf3Sz1g2iDg/Iswe8ZrOZKM9NtnnZNoRlCdvAbB2vq6tFeW5Sv6tM/zCT1k/SdrKqLSbZjtmbR2Z/Z8uWTVIeSbF9usjsSXpdvkm2ybbtiWVZ0UDrdrs9dyJJ0i5m569q99uor7Qn6acev8LtmZXkJop17ThJ3knXTzvabTtaZHbfNJvN2DFpNoBIG+xtcl4NpQn2TNOctNvtJ89fJc35fvY3u+1zWnjD0nTbShpEP6vLuNLHLnvLsnR3d6dKpSLP81ZevjQMI3Yb/2AwiK6vh13QYXfncDicG/g5Oz7AMIyFg0OfYtE6Vt1qvW67knr//v3C8Q/hZaFlXdfv37+XYRixLu+wLsMu5HV5pt3mZcJyLBuLskldbat+F9m0zsM009a1xSTbUalU1G631W635bquLi8vEy+7rjzhJYZVfN+fGwS9Kt+k+6ZYLK68dLHJ9q1r90+tr7SeevwK62AT69pxkkuGSddPO9ptO1rEMAxZlhUNmQrLGl4yfKpPsQ2S1ub51Pm78JRzWrlcVrvd1osXL2RZlq6urhIPy3p2wZ70cRxUu91WpVJZebAIb9yYPoFO/+15nhqNhs7Pz3V5ebmzmzy29QMJrduupGXadIDxquWe26DltHUV1stT63dVeT6VJNtRrVZ1enoajc0J52+jDmzbXvlMNc/zUue7rX2TJJ/ZY8u6dr/tNrPuuLGN49emd/olacdJ8k6Shna023a0zNXVlW5vb2VZlorFoqrVqhzHkW3bG5Vp2+fBacvyDevzqfPTWLWd2zj+r2sjvV5PnufJdd3o6SVJAr5ndTdu6PLyUp7nyXEcFYvFpeksy1r4H2EQBAqCQGdnZ7q5uYmCxnBHbPvOmvBgtC2rtispz/OiQfmzfN9XqVRauf5F6wqCYOM8NxXuy2UDuNPWled5W6nfZT5l/STZDtM0o5uepk+826iDZrOp4XC49CG09Xo9esRBUtvaN5vks6rd76LNrDpubOP4tazMSaxrx0nyTrp+2tHu2tEq4Y1cruvKsqyo12hZr+6uypGEaZoyDGPpUzCeOj+NVduZpKfwKee08KYfy7JUq9XU7/d1e3ubqNzPJtgL72iRPv6nZNu2bm9vV/bs2batYrE4d5C4u7uLenCmKzTcEesOsutMX3bwfT/VQSjJOlZtV5oyWZY1919zuO2r7koL7/yZfsxIEAS6u7vbOM+kBzPP82Jpw9vllx181tXVonrZpH6T2rR+FtlWO6lWq7q+vp77TzFtHcyWJ7x7L7zrd1p4UEpy19l0vtvaN5v+hpa1+23UV5rjxjaOX6ZpqlKpxO4KDYJg7je2yLp2nCTvpOunHe2uHa0SDpkKz73hMTbpsTpNOdIEs8sCppubm1h7dBwndgn+qfOXWbads8MPgv9/uMXstm7znDYd8E2XL5FEI/t2aDAYTCqVykTSpFKpRIMWp+9eCu+SMgwjerr59ADF8I6v6WXC6bVabdLr9Sa9Xm8yGAyiwfT9fn9SLpdjd4KF67Asa+1g0jDvcDDmovxWrcO27egOrjBNrVZLtF1JyzSbT7vdXjsQena5ZrM5dwfQqjyfss3hYNbw7qlmsxm7S292uUXlWVRX6+olaf0uM3vnVNr62UZbXLUdo9Fo6c0ni5ZNW57RaBTb3vAzK02+i8o1GAxWHgeSbl+v15vYtj0xDCMaND+7zLp2v2l9LWuLy8q+jeNXuC1hPpZlJX6LxrpjR5K8k66fdrSbdrRKeNPd9PfZ7VhUrmXleMqxLNwvlmVFx/jZ9GF9drvdle1x0/nLLKvv8BwV5lkulyemacbayDbPaeFvIpyWpO2GDiaTySRZWAjsVvhcon6/n3VRUrm4uNDV1VUuHpQMANiO53ROezaXcYF9EnbZh39vetcjAAC7RrAHbKDRaESPgvB9f+WNRAAAZIlgD8+C67pqNptL3z/73FSrVZ2fn0evx6FnDwAQem7nNMbsAQAA5Bg9ewAAADlGsAcAAJBjz/J1ac/dP/7xD/3973/X7373Ox0cHGRdHAAA8ASTyUS//vqrfv/73+uf/il//WAEexv4+9//rlevXmVdDAAAsEU///yz/vmf/znrYmwdwd4Gfve730n62CiOjo4yLg0AAHiK8XisV69eRef3vCHY20B46fbo6IhgDwCAnMjr0Kz8XZgGAABAhGAPAAAgxwj2AAAAcoxgDwAAIMcI9gAAAHKMYA8AACDHCPYAAAByjGAPAAAgxwj2AAAAcoxgDwAAIMd4Xdoz8/nb77MuAp6JD998mXURAAA5QM8eAABAjhHsAQAA5BjBHgAAQI4R7AEAAOQYwR4AAECOEewBAADkGMEeAABAjhHsAQAA5BjBHgAAQI4R7AEAAOQYwR4AAECOEewBAADkGMEeAABAjhHsAQAA5BjBHgAAQI4R7AEAAORYZsGe7/tqtVpyHEetVktBEGyc1vM8nZ6ezi3nOI6CIFiYt+d58jwvyj/8GwAAIE8+y2rFFxcX6vf7kj4GW9fX1+p2u6nTOo4j0zQXBmsXFxdz05rNpmq1mtrttjqdjiTJtu2l6wYAANhnmQR7vu/HvpumKdd1N0pbLpcXLhcEgbrdbmx+q9VSrVaTJJ2enmo0GkmSDMNIvQ0AAAD7IJPLuK7rqlAoxKYVCoWFvXNp0s6aDvQcx5kLDA3DSBToPT4+ajwexz4AAAD7IJNgb9n4vOFw+KS006aDuCAINBwOZZpmbJrjOHIcR/V6fa4HcVqj0dDx8XH0efXq1cp1AwAAPBeZjdlbZNVNGk9JW6/X1Ww2Y9MqlUoUEJqmqfPzcw0Gg4XL39zc6M2bN9H38XhMwAcAAPZCJj17hmHM9cwNh8OFl1TTpF0kCAK5rjuXfronzzRN+b6/tHfv8PBQR0dHsQ8AAMA+yCTYs2174fRisfiktIu8f/9+LtDzPE9nZ2dzaWfHBgIAAOy7TIK96bFz0sdetmKxGAVlnudFvWzr0k5b9jy92SDONM3YZV3XdVUul7krFwAA5E5mY/a63a7q9bpKpZLu7+9jz7lrNBoqlUrRY1JWpXVdV71eL7bc7F23swGjYRgqFotqtVoyDEODwYDn7AEAgFw6mEwmk6wLsW/G47GOj4/18PCw9fF7n7/9fqv5YX99+ObLrIsAAL8JuzyvPwe8GxcAACDHCPYAAAByjGAPAAAgxwj2AAAAcoxgDwAAIMcI9gAAAHKMYA8AACDHCPYAAAByjGAPAAAgxwj2AAAAcoxgDwAAIMcI9gAAAHKMYA8AACDHCPYAAAByjGAPAAAgxwj2AAAAcoxgDwAAIMcI9gAAAHKMYA8AACDHCPYAAAByjGAPAAAgxwj2AAAAcoxgDwAAIMcI9gAAAHLss6xW7Pu+HMeRaZryfV+VSkWGYWyU1vM8XV9fq9/vx5bzPE+SZFmWfN9XEASyLCv1+gEAAPZVZsHexcVFFJz5vq/r62t1u93UacOALQzsprXbbXU6HUmSbdux/NOsHwAAYF9lEuz5vh/7bpqmXNfdKG25XF66ntPTU41GI0mK9dqlWT8AAMA+y2TMnuu6KhQKsWmFQmFh71yatIsYhjF3eTZtno+PjxqPx7EPAADAPsgk2AuCYOH04XD4pLSLlnUcR47jqF6vRz16afNsNBo6Pj6OPq9evVq7bgAAgOcgszF7iywLwjZNO33ThWmaOj8/12AwSJ3nzc2N3rx5E30fj8cEfAAAYC9k0rNnGMZcL9pwOFx4N2yatLOmx+aFd936vp86z8PDQx0dHcU+AAAA+yCTYM+27YXTi8Xik9JO8zxPZ2dnc9MLhcLGeQIAAOybTII90zRj333fV7FYjHrWPM+LeuXWpZ02fRnWNE01m83ou+u6KpfLMgwjVZ4AAAD7LLMxe91uV/V6XaVSSff397Fn3DUaDZVKJdVqtbVpXddVr9eLLRcGdcViUa1WS4ZhaDAYxJZblScAAEBeHEwmk0nWhdg34/FYx8fHenh42Pr4vc/ffr/V/LC/PnzzZdZFAIDfhF2e158D3o0LAACQYwR7AAAAOUawBwAAkGMEewAAADlGsAcAAJBjBHsAAAA5RrAHAACQYwR7AAAAOUawBwAAkGMEewAAADlGsAcAAJBjBHsAAAA5RrAHAACQYwR7AAAAOUawBwAAkGMEewAAADlGsAcAAJBjBHsAAAA5RrAHAACQYwR7AAAAOUawBwAAkGMEewAAADlGsAcAAJBjBHsAAAA59llWK/Z9X47jyDRN+b6vSqUiwzA2Sut5nq6vr9Xv92PLeZ4n13UlSff393r37l20nOd5kiTLsuT7voIgkGVZW99OAACALGUW7F1cXETBme/7ur6+VrfbTZ02DALD4G2a67qq1WqSpFarpbOzsyifdrutTqcjSbJte+m6AQAA9lkml3F93499N00z6oFLm7ZcLi/skfM8T41GI5bO87wov9PTU41GI41GI/V6vaW9igAAAPssk2DPdV0VCoXYtEKhsLR3LmnaaZZl6d27d9H3IAiiZUOGYRDkAQCAXMvkMm4YeM0aDodPSjurXC5Hf9/e3sq27Si4C4JAjuNI+jier1qtyjTNhfk8Pj7q8fEx+j4ej9euGwAA4DnIbMzeIssCu22kdRwndgPH9E0epmnq/Pxcg8Fg4fKNRkN//OMfE68PAADgucjkMq5hGHM9c8PhcOEl1TRpl6nX63Pj8qbHAoZ3+c6ODwzd3Nzo4eEh+vz888+J1w0AAJClTII927YXTi8Wi09Ku0ir1VK9XpdpmgqCQEEQyPM8nZ2dzaWdHRsYOjw81NHRUewDAACwDzIJ9mbHxvm+r2KxGHsGXtjLti7ttNlLu47jyLKsKNC7u7uTYRgyTVPNZjNK57quyuUyN2sAAIDcyWzMXrfbVb1eV6lU0v39few5d41GQ6VSKXpG3qq0ruuq1+vFliuXy/J9XxcXF7F1GoYRjdUrFotqtVoyDEODwYDn7AEAgFw6mEwmk6wLsW/G47GOj4/18PCw9Uu6n7/9fqv5YX99+ObLrIsAAL8JuzyvPwe8GxcAACDHCPYAAAByjGAPAAAgxwj2AAAAcoxgDwAAIMcI9gAAAHIs9XP2Pnz4oG63q16vp9FoFE0vFAo6Pz9XuVzW559/vs0yAgAAYEOpgr23b9/q4OBAl5eX+s///M+5+T/++KO+/fZbHRwcqNFobK2QAAAA2EziYO9Pf/qTbm5udHx8vDTN69ev9fr1az08POjm5oaADwAAIGOJg71FPXnLHB8fE+gBAAA8AxvfoPH27Vv9+c9/1sPDg/7t3/5NV1dX+u6777ZZNgAAADzRxsFeqVTS119/rU6no9PTU93e3uqXX37ZZtkAAADwRBsHey9evJAk3d3d6erqStLHO3IBAADwfKR+9EpoMBhoMploMBjoD3/4g3766afYo1gAAACQvY179i4vL+V5nvr9vh4eHtRutxUEwRaLBgAAgKdK1LP38PCg0WgUe1jy8fFx7A7db775JrbMeDyWJB0dHW2hmAAAANhEop694+Nj9Xq9xHfb/uUvf9Hd3R2BHgAAQMYSj9m7vr7Wjz/+qMvLS52cnKhUKsk0TRmGoSAI5Pu+/vrXv+qnn35StVrVV199tctyAwAAIIFUN2i8fv1ad3d3enh40N3dnf76178qCAIZhqGTkxNVq1V98cUXuyorAAAAUtrobtzj42NdX19vuywAAADYso3vxgUAAMDzR7AHAACQYwR7AAAAOUawBwAAkGNPCvb+9Kc/Re/F/eGHH6IHKQMAAOB52PjduG/fvtXJyYls25YknZ2d6bvvvtO///u/J1re9305jiPTNOX7viqVigzD2Cit53m6vr5Wv99PvFya9QMAAOyrjYO9Uqmkr776Sj/88MNGy19cXETBme/7ur6+VrfbTZ02DNg8z0u1XJr1AwAA7KuNL+P+9NNPkqSDg4No2v39faJlfd+PfTdNU67rbpS2XC7LsqxUy6VZPwAAwD7bONh7/fq1isWims2mbm5uVCqVdH5+nmhZ13VVKBRi0wqFwsLeuTRpky6XNs/Hx0eNx+PYBwAAYB9sHOydnZ2p2+3q9evXmkwm6nQ6+td//ddEywZBsHD6cDh8Utqky6XNs9Fo6Pj4OPq8evVq5boBAACei43H7EnSF198oW+++Sb6Ph6PdXR0tHF+y4Kwp6ZNutyyeTc3N3rz5k30fTweE/ABAIC98KRgbzwex3rDms2m/ud//mftcoZhzPWiDYfDhXfDpkmbdLm0eR4eHurw8HDl+gAAAJ6jjS/j/sd//Icsy1K5XI4+d3d3iZYNH9cyq1gsPilt0uU2zRMAAGDfbNyzd3Jyom+//TY27d27d4mWNU0z9t33fRWLxahnzfM8GYYh0zTXpp0WBEE0fdVys8uuyhMAAGCfbRzsLeodS3o3riR1u13V63WVSiXd39/HnnHXaDRUKpVUq9XWpnVdV71eL7ZcuVxeu9yqeQAAAHlxMJlMJpss+OHDh+iBxoZhKAgC3d7e6vb2dttlfHbG47GOj4/18PDwpBtSFvn87fdbzQ/768M3X2ZdBAD4Tdjlef052Lhnr1arxS6bStKPP/64jTIBAABgSzYO9s7Pz3V9fR2b9pe//OXJBQIAAMD2bHw37snJSaJpAAAAyM7GPXuDwUDtdlulUkmSNJlMdHd3l/j9uAAAANi9jXv22u22vvjiC00mE4X3eGx4rwcAAAB2ZOOevWazqbOzs9i0ZQ8rBgAAQDY27tmbDfQk6cWLF08qDAAAALYrcc/ed999J9u2o+fP/PnPf47ND4JAvV5P//u//7vdEgIAAGBjiXv2/vu//1vv37+Pvn/77bcajUbRZzKZ6JdfftlJIQEAALCZxD1704Ge9PE9uK9fv45NY8weAADA85I42Pvb3/4m3/c1HA51eXk5F+hJWjgNAAAA2Ul8Gffi4kKmaerrr7/O5XvjAAAA8ihxsPfVV1/pD3/4w8o0f/vb355YHAAAAGxT4mDvX/7lX9ammR3XBwAAgGwlHrP37bffqt/vr0zjuq6+/vrrJxcKAAAA25HqDRo8WgUAAGC/JA72qtWqrq+vV6Z59+7dkwsEAACA7Uk8Zu/h4WFtGtM0n1QYAAAAbFfiYO/bb7/Vhw8fVqZZ9L5cAAAAZCfxZdx2u61+vy/XdXV5ecmz9oDfgM/ffp91EfAMfPjmy6yLAOAJEgd79NoBAADsn8SXcQEAALB/CPYAAAByjGAPAAAgx1I9VHmbfN+X4zgyTVO+76tSqcgwjNRpV81zHEe2bUvSXN6e50mSLMuS7/sKgkCWZe1iUwEAADKTWbB3cXERvX7N931dX1+r2+2mTrtu3qxms6laraZ2u61OpyNJsm176boBAAD2WSbBnu/7se+macp13dRpV80LgkDdblflcjma32q1VKvVJEmnp6cajUaS5nv9AAAA8iKTMXuu66pQKMSmFQqF6NJq0rTr8pkO9BzHiX2XPgZ5SQK9x8dHjcfj2AcAAGAfZBLsBUGwcPpwOEyVdtW86SAuCAINh8PY69yCIJDjOHIcR/V6fa6XcFqj0dDx8XH0efXq1dK0AAAAz0lmY/YWWRa8pU07O69er6vZbMamTd/IYZqmzs/PNRgMFuZ3c3OjN2/eRN/H4zEBHwAA2AuZ9OwZhjHXizfbG5ckbZJ8giCQ67pzeU/35IV38i7r3Ts8PNTR0VHsAwAAsA8yCfbCx6HMKhaLqdImyef9+/cLH7uy6PVvs+P/AAAA9l0ml3Gnx85JH3vZisViFJR5nifDMGSa5sq0i3rrpvMJ85oN4kzTjF3WdV1X5XKZu3IBAEDuZDZmr9vtql6vq1Qq6f7+Pvacu0ajoVKpFD0mZVXaVfNCswGjYRgqFotqtVoyDEODwYDn7AEAgFw6mEwmk6wLsW/G47GOj4/18PCw9fF7n7/9fqv5YX99+ObLrItAe4Sk59EWgV3a5Xn9OeDduAAAADlGsAcAAJBjBHsAAAA5RrAHAACQYwR7AAAAOUawBwAAkGMEewAAADlGsAcAAJBjBHsAAAA5RrAHAACQYwR7AAAAOUawBwAAkGMEewAAADlGsAcAAJBjBHsAAAA5RrAHAACQYwR7AAAAOUawBwAAkGMEewAAADlGsAcAAJBjBHsAAAA5RrAHAACQYwR7AAAAOUawBwAAkGOfZbVi3/flOI5M05Tv+6pUKjIMI3XaVfM8z5MkWZYl3/cVBIEsy0q9fgAAgH2VWbB3cXGhfr8v6WPgdX19rW63mzrtqnntdludTkeSZNt2LP806wcAANhXmQR7vu/HvpumKdd1U6ddl8/p6alGo5EkxXrt0qwfAABgn2UyZs91XRUKhdi0QqEQXXZNmjZJPoZhzF2eTbN+SXp8fNR4PI59AAAA9kEmwV4QBAunD4fDVGnX5RMEgRzHkeM4qtfrUY9emvVLUqPR0PHxcfR59erVwnQAAADPTWZj9hZZFoSlTRvOm77pwjRNnZ+fazAYpM7z5uZGb968ib6Px2MCPgAAsBcy6dkzDGOuF204HC68G3ZV2nX5TI/NC++69X0/1fol6fDwUEdHR7EPAADAPsgk2LNte+H0YrGYKu2qeZ7n6ezsbG5eoVBItX4AAIB9lsllXNM0Y99931exWIw9H88wDJmmuTLtbE/c9DzTNNVsNqN5ruuqXC6vXQ4AACBPMhuz1+12Va/XVSqVdH9/H3vGXaPRUKlUUq1WW5t22TzDMFQsFtVqtWQYhgaDQaLlAAAA8uRgMplMsi7EvhmPxzo+PtbDw8PWx+99/vb7reaH/fXhmy+zLgLtEZKeR1sEdmmX5/XngHfjAgAA5BjBHgAAQI4R7AEAAOQYwR4AAECOEewBAADkGMEeAABAjhHsAQAA5BjBHgAAQI4R7AEAAOQYwR4AAECOEewBAADkGMEeAABAjhHsAQAA5NhnWRcAAIB1Pn/7fdZFwDPw4Zsvsy7CXqJnDwAAIMcI9gAAAHKMYA8AACDHCPYAAAByjGAPAAAgxwj2AAAAcoxgDwAAIMcI9gAAAHKMYA8AACDHCPYAAAByLLPXpfm+L8dxZJqmfN9XpVKRYRip066a53meXNeVJN3f3+vdu3exeZJkWZZ831cQBLIsa5ebDAAA8MllFuxdXFyo3+9L+hiwXV9fq9vtpk67ap7ruqrVapKkVquls7OzKG273Van05Ek2ba9dN0AAAD7LJPLuL7vx76bphn1wKVJu2qe53lqNBrRvHK5LM/zomVOT081Go00Go3U6/WW9ioCAADss0x69lzXVaFQiE0rFAryPG/uUuqqtO/fv1+Zz7t376LpQRBE80NJA7zHx0c9Pj5G38fjcaLlAAAAspZJz14YeM0aDoep0q7Lp1wuR9Nub29l23YU4AVBIMdx5DiO6vX6XC/htEajoePj4+jz6tWrpWkBAACek8zG7C2yLHhLm3Z2XhjYheP1JMVu5DBNU+fn5xoMBgvzu7m50Zs3b6Lv4/GYgA8AAOyFTHr2DMOY68UbDocLL6uuSps0n3q9Pjcub7onL7yTd1nv3uHhoY6OjmIfAACAfZBJsGfb9sLpxWIxVdok+bRaLdXrdZmmqSAIFASBPM/T2dnZ3HKz4/8AAAD2XSbBnmmase++76tYLMaegRf2sq1Kuy4fx3FkWVYU6N3d3UXLNZvNaDnXdVUul7kjFwAA5E5mY/a63a7q9bpKpZLu7+9jz7lrNBoqlUrRM/JWpV02z/d9XVxcxNZpGEY0Vq9YLKrVaskwDA0GA56zBwAAculgMplMsi7EvhmPxzo+PtbDw8PWx+99/vb7reaH/fXhmy+zLgLtEZJoi3g+dtUWd3lefw54Ny4AAECOEewBAADkGMEeAABAjhHsAQAA5BjBHgAAQI4R7AEAAOQYwR4AAECOEewBAADkGMEeAABAjhHsAQAA5BjBHgAAQI4R7AEAAOQYwR4AAECOEewBAADkGMEeAABAjhHsAQAA5BjBHgAAQI4R7AEAAOQYwR4AAECOEewBAADkGMEeAABAjhHsAQAA5BjBHgAAQI4R7AEAAOTYZ1mt2Pd9OY4j0zTl+74qlYoMw0iddhfzAAAA8iKzYO/i4kL9fl/Sx8Dr+vpa3W43ddpdzAMAAMiLTC7j+r4f+26aplzXTZ12F/MAAADyJJOePdd1VSgUYtMKhYI8z5NlWYnTvn//fuvzZtcvSY+Pj3p8fIy+Pzw8SJLG43HCLU7uH4//d+t5Yj/ton2lRXuERFvE87GrthjmO5lMdpJ/1jIJ9oIgWDh9OBymSruLeYs0Gg398Y9/nJv+6tWrhemBbTj+P1mXAPiItojnYtdt8ddff9Xx8fFuV5KBzMbsLbIsCEubdtvzbm5u9ObNm+j7P/7xDw2HQ718+VIHBwdrSoq0xuOxXr16pZ9//llHR0dZFwe/YbRFPBe0xd2aTCb69ddf9fvf/z7rouxEJsGeYRhzvWjD4XDh3bCr0u5i3iKHh4c6PDycKxd26+joiIMangXaIp4L2uLu5LFHL5TJDRq2bS+cXiwWU6XdxTwAAIA8yaRnzzTN2Hff91UsFqPeMs/zZBiGTNNcmXa2d20b8wAAAPIkszF73W5X9XpdpVJJ9/f3sWfcNRoNlUol1Wq1tWl3MQ/ZOjw81H/913/NXToHPjXaIp4L2iKe4mCS1/uMAQAAwLtxAQAA8oxgDwAAIMcI9gAAAHKMYC9HPM9TtVrVwcGB6vW6Op2O6vW6Li4utvru306noxcvXsjzvK3l+amdnp7KcZzoe6fT0fn5+UbL5kXYXjqdjhzHkeu66nQ6c++Sfk5c19Xp6ak6nc4nWd8+7Xva+P/jum7s2LjJ8fBTHveyOsbSZnJsglwZjUYTSZPRaDQ3rd/vb209tm1vLb/psn4qvV4vtt7BYDDp9XobLZsHtm1P2u12bFq/359ImgwGg4xKlUytVpsr+67s076njccNBoO5Y2Na2zzuPad1hWgz+fWsXpeG3QifWXh7eyvLsrIuTozv+3JdV5VK5ZOud/bB2oue6Zh02X3XarUkaW4fWJb1yffLJl6+fPnJ1rVP+542HlcoFLIuwrNHm8kvLuP+RgyHQ52cnGRdjDnNZjPrIvzmNRoNVavVhfMuLi4+cWkAANtGsJdzQRCoXq/Ltm1VKhW5rquTkxN1Oh11Oh2dnp5K+jjer9VqyXEctVqtuXFanuepXq/LcRw5jhN7t3A4birsIXIcRycnJ7FxMb7vR8t3Oh0FQSDXdfX+/Xv1er2VY8Nc143KVq/XY2WqVqtRmRzHked5a8vjeV5snFcQBKpWq7FgeFl9zC47PWYsHOO2TwGS7/sKgmDpf++2bUfzltXJsjrwfT9aZjqYDNtguO86nY6q1aqCIIjNn22jy9qBpKg9Lar/Rcut229BEETzwuVm9/0mdbIMbfzTS7Jdq457YR6z+81xHJ2enkZ13Wq1dHJyEu2rVft61boWlZ82g8Syvo6M7QrH5zWbzUm32510u925MVeVSmVSqVQmk8kkmm/bdiyNZVnR+IvRaDQxTXNu/vR4kmazOWk2m9H3crkcjfUIlw/zq9VqUdp1460Gg8HEsqzoe7vdnjSbzcloNJoYhhEbI2IYRlSmVeUJ58+u1zCMaJ2r6mN22VqtNimXy9H3LMbabCocx7SuvOvqZFEdTNf/9P4P00/P73a7sfwXtdFF7WAy+bg/ltX/quVW7bdmsxlrL+H+nt73m9TJonqmjX8ai8Yzr9qudce9VW1rNBpF9dlut6N1rtrX646x02gzSIsxezlVqVSWvuvXMIxonFO5XFa9Xp8by2eapu7u7lSpVHR3dzc3P834l7u7O5mmGZXn5uYm8bLtdluFQiHWS3h/fy/DMGTbdmwbi8Vi4nzXrXNVfcx6+fJlbNyYYRhr/yt/LsJeO9/3F47n9H1fhUJhbZ0sqoPp3sKwTqb31/Tf5XJZFxcXCoIgen/1bBtd1A5CpVJpbl3S8vYjrd5v5XJZp6enMk1TV1dXC/f7JnWyqF3QxrOzarvWHfdWtS3DMPTu3Tudnp6q2+1G+3DVvk5zjKXNIC2Cvd+opINutyE8gYeWBaGz6UKWZcUG/1YqlU/2qI3fglqtpna7rXK5PDfP87yF05NYtp+Tmm2ji9pBEpssVygUNBqN5Hmebm9vdXFxoV6vl7Dk6dHG99OqthUGcLM3xm1rX9NmkAZj9nJq3X9Q0/Ovrq7mnjvleZ4uLy8lfRy3Nfu8p9nxdYZh6Jdffom+u64bjcEql8tzyy96ztWiaYvK5rquLi8vV5ZpVXlCs99XrXO6PlYtu4/Cm2RmTxTT25ikTmatq6Pp+Y7jzPVIrGujSZ6VtulyjUYj6u1sNpuxcoXl3qRO0pSRNr5daXuV1h33VrWtcAxpt9uV7/vR8+eWLZPkGDuNNoO06NnLkbAXQvp4Aq9Wq3Pd7q7rynVdeZ4n0zRl23Z0Qmu1WjJNU/f397FLD6Zpqtvtql6v6/z8POqBazQaajabMk1Tl5eXsYeV2rYddfubpql2u616vR5dbgv/I61Wq2o2m+p0Ogtv3Q/LNrusYRgLyxRaVZ4gCHR7e6tCoaByubywB2lZfYR1HC4b5hWuI7wpod1up3psQdZ6vZ5arZbq9bpOTk6iS0hhr16SOpHidRAu57qufN9Xs9mMBU6DwSA62YT5Savb6Gw7WLbusP43Xe7ly5dyXVeFQkHD4VBXV1dz+36TOlnULmjjuxcGXtLHQP7q6kqS1m7XquPesv3W6XSi46/0cYjB9fW1fN9XrVZLta+nj7HTaDNI62AymUyyLgSwDefn59FBeBMvXrzQaDTacqmwSBhU7sNz/J4T2jjSos1AomcPObLJ4N9Op6PBYKBqtbq1gczArtDGkRZtBhJj9pAT4XP62u12qnEjtm3r5cuXchxH7XZ7dwVEJLxM2+129/r9yp8abRxp0WYQ4jIuAABAjtGzBwAAkGMEewAAADlGsAcAAJBjBHsAAAA5RrAHYO94nqdqtaqDgwPV63V1Oh21Wq1o2qd+kv/p6Wn0lgQAeG64GxfAXvJ9XycnJxqNRrG3BHQ6HRWLxY0fIpvE7JsJXNdVsVh88vuAAWAX6NkDsJfCV7rNury83OhBskn5vq+7u7vYtNn3+gLAc0KwByAXPM+Letx2+e7NZrO5s7wBYBcI9gDkQvjidelj79vp6alarZYkyXEcnZycRC+Ad11Xp6en6nQ6cl1XnU5HFxcXsfx831e9XpfjOOp0OgqCQK7r6v379+r1etHbCTzPi/IKeZ6nVqslx3HUarXk+37i9QLAtvFuXAB7LQyyXNfVzc2NpI+XVa+urqI05XI5Fgzati3bttXr9dTtdiUpen2bZVkKgkDn5+fq9/syDCO6CaRWq8m2bZ2cnKhSqUT5Ta8rDBJ7vV407fT0VD/88MPa9QLALhDsAdhrlUpFhmGkDpZevnyply9fRt8Nw4jG+t3d3ck0zWgcXhhEJtFut+fKYpqm7u7uVKlUVq4XAHaBYA9ALti2vbW8Zu+2XXbzxWw6AHiOGLMHYC+t6w0zDEO//PJL9N113cTP3yuXy/I8LzYtHO+3bFqY99XV1Vxaz/N0eXmZaN0AsG307AHYO57nqd1uS5Lq9brOz89VLpdjaS4vL1Wv16PAy7bt6BJrEATRGD7btqMbLdrttkzTlGmaarfbqtfrKpVKUTpJqlarajab6nQ6sm1bnufp9vZWhUJB5XJZlmWp2Wyq1WrJNE3d39+r2+3KMIwo7ar1AsC28VBlAACAHOMyLgAAQI4R7AEAAOQYwR4AAECOEewBAADkGMEeAABAjhHsAQAA5BjBHgAAQI4R7AEAAOQYwR4AAECOEewBAADkGMEeAABAjv1/utmsAY9xvcEAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -275,9 +275,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAFUCAYAAAD8uZIHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsf0lEQVR4nO3dT2/bSJ7/8Y8XDeQ0NqPsabABuul9ABNaegJrei99HMl+Am1pzw2sFB9zWbU0e/jdtqX0E7DFmVsfFuI8gbHFnicgJkCAuUWi1cACvgx/By+5okT9oSxGsfN+AUa3yGJVsViivikWyb0wDEMBAABg6/5h1xUAAAB4qgi0AAAAckKgBQAAkBMCLQAAgJwQaAEAAOSEQAsAACAnBFoAAAA5IdACAADICYGWJN/31Wg09Pz5cx0eHi5Ne3h4qOfPn6vRaCgIgk9TQXw2PM/TycnJyn6SJ8dxdlb2pxZ9N/f29nR4eKh2u612u61araZKpfJFtcWmarWanj9/Ltd1d1qPp3osu92ujo6OdlZ+dE7aZR0ek52cw0PEWq1WaBhGOBgMUtf3+/2wXC6H1Wr1E9csXafTmVtWr9fDcrm8g9rcS6vTU9Pv90PTNDNts6126fV6c8vG4/HSfptm1/0kK9u2U793pmmGrVZrBzVa3+fwnbAsK+z3+7uuRhiGT+9YDofDsF6vZ/r+rWPRdzStDpuckyLj8TjsdDqhbdup61utVtjpdMJOp5N6fB66fpE8vzcPaa9NMKI1xTAMnZ6eqtPppK7/3Eaw+v3+3LKTkxOdnZ3toDb30ur01BQKhczbbKtdDMNIXVatVmWa5tr57LqfbEutVlOj0dh1NZb6Er4T2/BYj6VpmqrVaqnfzYdY9B1Nq8Mm5yTpfnTn6upKQRBoNBrNrW+325KkarWqarUqy7JUq9W2tn6ZPL83m7bXpr76pKU9ArVaTcfHx3PBVhAEmX7I8tbtduX7/txy27Z3UJt7i+r0pdtmu3ieJ8/zVK/XE8tbrVamfHbZT7Yp+nELgmDrP3TbwHdifY/5WHqep3K5vNXy0r6j2+5PlmXJsqyFl22bzabevXuXqNPJyUn8+/jQ9Ys8te8NgdYMy7JUKBTkOE7ii3Nzc7P0x6ndbss0Tfm+L9M0422DIFC325Vpmur3+6rVarIsS5Lkum78L7i3b9/K9335vq+PHz8u/eF0XVf9fl++78f/YqjX6/I8T41GQ77vazgcLixjNBppMBio0+mo2+2qUCjo8vJSFxcXcd1W7de6dZrNR7qfqzEbKCzS7XYTn6vV6so8N93naLtCoaBKpSLp/vitOh6z9Zluq3XbZVX7RgzDUKvVSuRRq9V0dXWlt2/fJrZf1D7r9pN1+uKqsrLkm7UtJGkwGMiyrMQP86Lj0Gg04tGH6F/LUR3W6Wdp+S3br1XHPs22zhftdluGYWz0L3eOZbZjuU5g6DhOXEan05Hv+2q1WjIMQ71eT4VCQcfHxwqCQL1eT5JSv6Or+pPneZm/u4v4vr9w31zXlWmaD1q/6Pc0y+9bo9FQt9tVq9VStVrN5RwuKf5OBkEg3/fjqwhr+2QXKR+B6Jpw2rXxaG5M2hytcrmcmDtj23Z8vb5er4fD4TBeZ5pmOB6P48/RteLp+ROmaa683t/v90PLsuaWDwaDuWvPi8qo1+uJ/ZvNb9l+ZalTuVxOlD0cDhfOB5jWarXm6jh9HJbluek+93q9UFLimNXr9cQxT2vjZW21rF2ytO8ytm0n8lrVPln6yao6bXospvNd1Raz83rG43HYarVCy7IS36dl+UTHu9/vh4PBIO4Lq/rZsuO6ar8WHftFtnG+qNfrifkt4/E4lLTWHC2O5faO5azZeVBpdZ0+9ou+o4vO+4ZhZP7uTpc9m2+/3w/TQgTDMMJer/fg9css2s+0uVW2bSf6+7bP4b1eL5H/cDjMPH+MQGtK1HjD4TCUFH/ph8NhfNBmA60o7Ww+UZpyuZw4KLM/iIPBYG772TRpsgRai8qY/pIPh8PQMIy192vdOkUngFmrJudGPw6zJ95Wq7VWnpvs86J9iOoS9YHZNl7VVml5btK+y0yfJNZtn3X7ybK++JBjEeW7TlvYth1alhVPqu10OnM/Iusch9n1y/rZqvzWaa+sP84PPV9E+zNrncnwHMvtHstZs8em1WolvoOzP95ZA61NfkciWQIt0zTDTqfz4PXLZPl9m/3ObPsc3uv1Qtu2E/0q6z+IuXSYwjRNWZalq6srVavVpdffXdeVYRiJW6eHw2F8fTkaBo6GHEej0dykw9m5X4ZhpE5MfIi0Mpbd3rpqv9Z1c3OTOrctujSyaPj45uZGhmEkhp2jtoyGcVflmXWfF4nq4XlearmbtNW22jfNpm0epZm2qi+uW9ayfNdti2KxuHS4fp18Zuuxqp9lze+h392Hni+iNtgExzLf87BhGPF8qHK5HNczukz1UJ/id0TSyjwfuj4PDzmHl8tldTodPX/+XJZl6ezsbO2pLxECrQVqtZo6nY6q1erSE1c0SX76x2v6/z3PU7PZ1MnJiU5PT3ObUL+tL2tk1X6tW6dN79Rctt3ndvdn1raK2uWh7busPp/KNsraVlusk8/sd3lVP9v2MVr1Pd3G+WLTO6o4ltlscs49OzvT5eWlLMtSsVhUrVaT4ziybXuj+mz7vD9tUb5RWz50fRbL9vNT9Nt+vy/P8+S6bjyRP0uwxeMdFjg9PZXneXIcR8VicWE6y7JSRyGCIFAQBDo+PtbFxUUcsEWdYtt3VHiet9X8lu3XujzPk23bqfn4vq9SqbS0/LSygiDYOM9NRcdy9kaBSNa28jxvK+27yKdsn22Uta222CSfZf0sj2O07Hu6jfPFojqvg2OZzSbn3HK5LMdx5LquLMuKR0sWjSbmUYd1maYpwzAW3t3+0PVZLNvPdUbIHnIOj26usCxL9Xpdg8FAl5eXa9b8HoHWlOhOBun+X0u2bevy8nLpiJZt2yoWi3O3x15dXcUjF9MHN+oUq064q0R3Rkj3J8JFHWjTMpbtV5Y6WZYl27YTQ7LRvi+7Eym64yO66ySq89XV1cZ5rntS9TwvkbbZbC59TtWqtkprl03ad12btk+aVW22jWOxrbbYtM8u6meb5DfbXlm+p9s4X5imqWq1mrjzLgiCuT6dhmOZ9JBjuayOlmXFvzXROWXdc1OWOmQJIhcFKxcXF4n+4DhO4pLvQ9cvsmg/p5dL/3eJfXZft3kOnw62puuXSaYZXU/UcDgMq9VqKCmsVqvxhLnpO1aiO2MMw4ifYDw9OS6602d6m2h5vV4P+/1+2O/3w+FwGE9cHgwGYblcDiXFT8yNyrAsa+VExijvaCJgWn7LyrBtO75rJ0pTr9fX2q916zSbT6fTSUxIXye/Vqs1d+fHsjwfss/RRMrorplWq5V4mvHsdmn1SWurVe2ybvsuMnvHTNb22UZfzHosZvNNa4vhcLj0e7esLtP59Pv90Lbt0DCMeHL07Dar+tl0fln3K+3YL6r7Ns4X0b5E+ViWtfbT4TmW2zmWi0Q39Ex/nt2HtDotqsNDvrvRMbEsKz6nzaaP2rLX66Weux+6fpFFbR2dk6M8y+VyaJpmon9s8xwefReiZev021l7YRiG2UIz4OmKnsMyGAx2XZVMKpWKzs7Otv7QRAB4TD7HcziXDoFHKho2j/5/07vNAAD5IdACHqlmsxm/N8z3/aU3bQAAdoNAC/hfruuq1WrJ87zEhNrPVa1W08nJSfwKCka0AHzJPtdzOHO0AAAAcsKIFgAAQE4ItAAAAHJCoAUAAJAT3nW4gb///e/629/+pt/85jfa29vbdXUAAMADhGGoX3/9Vb/97W/1D/+w3TEoAq0N/O1vf9PLly93XQ0AALBFHz580D/90z9tNU8CrQ385je/kXR/QPb393dcGwAA8BCTyUQvX76Mf9+3iUBrA9Hlwv39fQItAACeiDymAzEZHgAAICcEWgAAADkh0AIAAMjJzgIt3/fVbrflOI7a7baCINg4red5Ojo6mtvOcRwFQZCat+d58jwvzj/6fwAAgG3Z2WT4SqWiwWAg6T7QOT8/V6/Xy5zWcRyZppkaKFUqlbllrVZL9XpdnU5H3W5XkmTb9sKyAQAANrWTQMv3/cRn0zTluu5Gacvlcup2QRCo1+sl1rfbbdXrdUnS0dGRxuOxJMkwjMz7AAAAsMpOLh26rqtCoZBYVigUUkelsqSdNR1kOY4zF5QZhkGQBQAAcrOTEa1F87FGo9GD0k6bDqCCINBoNJJpmolljuNIkq6vr1Wr1RLrp93d3enu7i7+PJlMlpYNAAAgfWYPLF02If4haRuNhlqtVmJZtVqNgzHTNHVycqLhcJi6fbPZ1Js3b9YuDwAAQNpRoGUYxtyI1Gg0Sr2MlyVtmiAI5LruXHrf92VZlqT7QMv3ffm+nzqqdXFxoe+//z7+HD2qPw9fv/45l3zx+Lz/4dtdVwEA8EA7maNl23bq8mKx+KC0aW5ubuaCLM/zdHx8PJd2di5Y5NmzZ/HrdnjtDgAAWNdOAq3ZUSPf91UsFuOAyPO8+G7DVWmnLXpe1mwAZZpm4lKi67oql8tMjAcAAFu1szlavV5PjUZDpVJJ19fXiedYNZtNlUql+FEMy9K6rqt+v5/YbvbuwtlgzTAMFYtFtdttGYah4XDIc7QAAMDW7YVhGO66Eo/NZDLRwcGBbm9vt34ZkTlaiDBHCwA+jTx/13nXIQAAQE4ItAAAAHJCoAUAAJATAi0AAICcEGgBAADkhEALAAAgJwRaAAAAOSHQAgAAyAmBFgAAQE4ItAAAAHJCoAUAAJATAi0AAICcEGgBAADkhEALAAAgJwRaAAAAOSHQAgAAyAmBFgAAQE4ItAAAAHJCoAUAAJATAi0AAICcEGgBAADkhEALAAAgJwRaAAAAOSHQAgAAyMlXuyrY9305jiPTNOX7vqrVqgzD2Cit53k6Pz/XYDBIbOd5niTJsiz5vq8gCGRZVubyAQAANrGzQKtSqcSBke/7Oj8/V6/Xy5w2CpaioGpap9NRt9uVJNm2ncg/S/kAAACb2Emg5ft+4rNpmnJdd6O05XJ5YTlHR0caj8eSlBitylI+AADApnYyR8t1XRUKhcSyQqGQOiqVJW0awzDmLgk+NE8AAIB17GREKwiC1OWj0ehBadO2dRxHknR9fa1arSbTNB+UJwAAwLp2NkcrzaIAaNO00xPcTdPUycmJhsNh5jzv7u50d3cXf55MJmvXEwAAfLl2cunQMIy50aPRaJR611+WtLOm52JFdxf6vp85z2azqYODg/jv5cuXK8sGAADYSaBl23bq8mKx+KC00zzP0/Hx8dzyQqGQOc+Liwvd3t7Gfx8+fFhaNgAAgLSjS4emaSY++76vYrEYjyh5nifDMGSa5sq004IgSFwqbLVa8TrXdVUul1Mnxy/LU5KePXumZ8+eZdpHAACAnc3R6vV6ajQaKpVKur6+TjzDqtlsqlQqqV6vr0zruq76/X5iuyigKhaLarfbMgxDw+Ewsd2yPAEAALZhLwzDcNeVeGwmk4kODg50e3ur/f39reb99euft5ofHq/3P3y76yoAwBchz9913nUIAACQEwItAACAnBBoAQAA5IRACwAAICcEWgAAADkh0AIAAMgJgRYAAEBOCLQAAAByQqAFAACQEwItAACAnBBoAQAA5IRACwAAICcEWgAAADkh0AIAAMgJgRYAAEBOCLQAAAByQqAFAACQEwItAACAnBBoAQAA5IRACwAAICcEWgAAADkh0AIAAMgJgRYAAEBOCLQAAAByQqAFAACQk692VbDv+3IcR6Zpyvd9VatVGYaxUVrP83R+fq7BYJDYzvM8ua4rSbq+vtbbt2/j7TzPkyRZliXf9xUEgSzL2vp+AgCAL9fOAq1KpRIHRr7v6/z8XL1eL3PaKACLAqdpruuqXq9Lktrtto6Pj+N8Op2Out2uJMm27YVlAwAAbGonlw593098Nk0zHnnKmrZcLqeORHmep2azmUjneV6c39HRkcbjscbjsfr9/sLRNAAAgE3tJNByXVeFQiGxrFAoLByVWjftNMuy9Pbt2/hzEATxthHDMAiwAABAbnZy6TAKemaNRqMHpZ1VLpfj/7+8vJRt23FgFQSBHMeRdD9/q1aryTTN1Hzu7u50d3cXf55MJivLBgAA2NkcrTSLgqptpHUcJzFZfnpCvWmaOjk50XA4TN2+2WzqzZs3a5cHAAAg7ejSoWEYcyNSo9Eo9TJelrSLNBqNuXlY03O/orsZZ+eDRS4uLnR7exv/ffjwYe2yAQDAl2sngZZt26nLi8Xig9KmabfbajQaMk1TQRAoCAJ5nqfj4+O5tLNzwSLPnj3T/v5+4g8AAGCVnQRas3OhfN9XsVhMPOMqGl1alXba7OVEx3FkWVYcZF1dXckwDJmmqVarFadzXVflcpmJ8QAAYKt2Nker1+up0WioVCrp+vo68RyrZrOpUqkUPwNrWVrXddXv9xPblctl+b6vSqWSKNMwjHhuVrFYVLvdlmEYGg6HPEcLAABs3V4YhuGuK/HYTCYTHRwc6Pb2duuXEb9+/fNW88Pj9f6Hb3ddBQD4IuT5u867DgEAAHJCoAUAAJATAi0AAICcEGgBAADkhEALAAAgJwRaAAAAOSHQAgAAyAmBFgAAQE4ItAAAAHJCoAUAAJATAi0AAICcEGgBAADkhEALAAAgJwRaAAAAOSHQAgAAyAmBFgAAQE4ItAAAAHJCoAUAAJCTr7Ju8P79e/V6PfX7fY3H43h5oVDQycmJyuWyvv76623WEQAA4FHKFGi9fv1ae3t7Oj091b//+7/Prf/ll1/0448/am9vT81mc2uVBAAAeIzWDrT+8Ic/6OLiQgcHBwvTvHr1Sq9evdLt7a0uLi4ItgAAwBdt7UArbQRrkYODA4IsAADwxdt4Mvzr16/1008/6fb2Vv/6r/+qs7Mz/elPf9pm3QAAAB61jQOtUqmk7777Tt1uV0dHR7q8vNTHjx+3WTcAAIBHbeNA6/nz55Kkq6srnZ2dSbq/8xAAAAD3Mj/eITIcDhWGoYbDoX73u9/p3bt3icc9rOL7vhzHkWma8n1f1WpVhmFslNbzPJ2fn2swGKy9XZbyAQAANrFxoHV6eqput6vBYKDb21t1Oh394z/+49rbVyqVODDyfV/n5+fq9XqZ00bBkud5mbbLUj4AAMAm1gq0bm9vNR6PEw8iPTg4SNyJ+MMPPyS2mUwmkqT9/f25/HzfT3w2TVOu66aWvSptuVzOvF2W8gEAADa11hytg4MD9fv9te8q/OMf/6irq6vUIEuSXNedm89VKBRSR6WypF13u03zBAAAyGLtS4fn5+f65ZdfdHp6qsPDQ5VKJZmmKcMwFASBfN/XX/7yF7179061Wk2///3vF+YVBEHq8tFo9KC0626XNc+7uzvd3d3Fn6PROgAAgGUyzdF69eqVrq6udHt7q6urK/3lL39REAQyDEOHh4eq1Wr65ptvNq7MogDooWnX3W7RumazqTdv3mxUHgAA+HJtNBn+4OBA5+fnGxdqGMbc6NFoNEq96y9L2nW3y5rnxcWFvv/++/jzZDLRy5cvl5YPAACw8XO0HsK27dTlxWLxQWnX3S5rns+ePdP+/n7iDwAAYJWdBFqmaSY++76vYrEYjyh5nhffGbgq7bTpS3/LtsuSJwAAwKY2fo7WQ/V6PTUaDZVKJV1fXyeeYdVsNlUqlVSv11emdV1X/X4/sV30yIdl2y1bBwAAsA17YRiGu67EYzOZTHRwcKDb29utX0b8+vXPW80Pj9f7H77ddRUA4IuQ5+/6gy4d/uEPf4jfc/jnP/+Zxx4AAABM2TjQev36tQzDiCeWHx8f83R1AACAKRsHWqVSSefn53MTywEAAHBv40Dr3bt3kqS9vb142fX19cNrBAAA8ERsfNfhq1evVCwW9eLFC/X7fbmuq1artc26AQAAPGobj2gdHx+r1+vp1atXCsNQ3W5X//Iv/7LNugEAADxqD3qO1jfffKMffvgh/jyZTHhqOgAAwP960OMdJpOJ3r9/H/81Go1t1QsAAODR23hE69/+7d/kum7itTXv3r3Tf/3Xf22jXgAAAI/exoHW4eGhfvzxx8Syt2/fPrhCAAAAT8XGlw6jB5VOOzk5eVBlAAAAnpKNR7SeP3+u//zP/5RpmjIMQ0EQ6PLyUpeXl9usHwAAwKO1caBVr9cVBEFijtYvv/yyjToBAAA8CRsHWicnJzo/P08s++Mf//jgCgEAADwVG8/ROjw8XGsZAADAl2rjEa3hcKhOp6NSqSRJCsNQV1dXvO8QeEK+fv3zrquAz8D7H77ddRWAR2vjEa1Op6NvvvlGYRgqDENJiv8LAACAB4xotVotHR8fJ5alPfIBAADgS/Wgl0rPev78+YMqAwAA8JSsPaL1pz/9SbZtxy+N/umnnxLrgyBQv9/Xf//3f2+3hgAAAI/U2iNa//Ef/6Gbm5v4848//qjxeBz/hWGojx8/5lJJAACAx2jtEa3pIEu6f6/hq1evEsuYowUAAPB/1g60/vrXv8r3fY1GI52ens4FWZJSlwEAAHyp1r50WKlUZJqmvvvuu3ieFgAAABZbe0Tr97//vX73u98tTfPXv/51ZZqI7/tyHEemacr3fVWr1cR7E9dNu2yd4zjx5czZvD3PkyRZliXf9xUEgSzLWqvuAAAA61g70Prnf/7nlWlubm7WDrQqlYoGg4Gk+2Dp/PxcvV4vc9pV62a1Wi3V63V1Oh11u11J93PLFpUNAACwqbUDrR9//DEOaBZxXVfffffdyrx83098Nk1TrutmTrtsXRAE6vV6KpfL8fp2u616vS5JOjo60ng8ljQ/2gUAALANmZ4Mv63HN7iuq0KhkFhWKBTked7c5btlaW9ubhauM00zEWQ5jpP4LBFgAQCAfK0daNVqNZ2fny9N8/bt27XyCoIgdfloNMqUdtm66YAtCAKNRiOZpplY5jiOJOn6+lq1Wi2xftrd3Z3u7u7iz5PJJDUdAADAtLUDrdvb25VpFgUq61oUOGVNO7uu0Wio1Wollk1PmjdNUycnJxoOh6n5NZtNvXnzZu26AQAASBke7/Djjz/q/fv3S9Okvf8wjWEYc6NXo9Eo9VLesrTr5BMEgVzXnct7en5XdMfi7JyvyMXFhW5vb+O/Dx8+rLGXAADgS7d2oNXpdDQYDPTTTz89+NLZoifIF4vFTGnXyefm5ib10Q5pQeHsfK/Is2fPtL+/n/gDAABYZe1Lh+uOVq1j9hKj7/sqFotxQOR5ngzDkGmaS9OmjVJN5xPlNRtAmaaZuJTouq7K5TKT4wEAwFZluutwm3q9nhqNhkqlkq6vrxPPsWo2myqVSvGjGJalXbYuMhusGYahYrGodrstwzA0HA55jhYAANi6vTAMw11X4rGZTCY6ODjQ7e3t1i8jfv36563mh8fr/Q/f7roK9EdI+jz6IpCnPH/X156jBQAAgGwItAAAAHJCoAUAAJATAi0AAICcEGgBAADkhEALAAAgJwRaAAAAOSHQAgAAyAmBFgAAQE4ItAAAAHJCoAUAAJATAi0AAICcEGgBAADkhEALAAAgJwRaAAAAOSHQAgAAyAmBFgAAQE4ItAAAAHJCoAUAAJATAi0AAICcEGgBAADkhEALAAAgJwRaAAAAOSHQAgAAyAmBFgAAQE6+2lXBvu/LcRyZpinf91WtVmUYRua0y9Z5nidJsixLvu8rCAJZlpW5fAAAgE3sLNCqVCoaDAaS7oOe8/Nz9Xq9zGmXret0Oup2u5Ik27YT+WcpHwAAYBM7CbR83098Nk1TrutmTrsqn6OjI43HY0lKjFZlKR8AAGBTO5mj5bquCoVCYlmhUIgv9a2bdp18DMOYuySYpXwAAIBN7WREKwiC1OWj0ShT2lX5BEEgx3EkSdfX16rVajJNM1P5knR3d6e7u7v482QySU0HAAAwbWdztNIsCoCypo3WTU9wN01TJycnGg6HmfNsNpt68+bN2nUDAACQdnTp0DCMudGj0WiUetffsrSr8pmeixXdXej7fqbyJeni4kK3t7fx34cPH9bcUwAA8CXbSaBl23bq8mKxmCntsnWe5+n4+HhuXaFQyFS+JD179kz7+/uJPwAAgFV2cunQNM3EZ9/3VSwWE8+/MgxDpmkuTTs7AjW9zjRNtVqteJ3ruiqXyyu3AwAA2JadzdHq9XpqNBoqlUq6vr5OPMOq2WyqVCqpXq+vTLtonWEYKhaLarfbMgxDw+Fwre0AAAC2ZS8Mw3DXlXhsJpOJDg4OdHt7u/XLiF+//nmr+eHxev/Dt7uuAv0Rkj6PvgjkKc/f9c/qrkMAANIQ9EN6nEE/L5UGAADICYEWAABATgi0AAAAckKgBQAAkBMCLQAAgJwQaAEAAOSEQAsAACAnBFoAAAA5IdACAADICYEWAABATgi0AAAAckKgBQAAkBMCLQAAgJwQaAEAAOSEQAsAACAnBFoAAAA5IdACAADICYEWAABATgi0AAAAckKgBQAAkBMCLQAAgJwQaAEAAOSEQAsAACAnX+2qYN/35TiOTNOU7/uqVqsyDCNz2mXrPM+T67qSpOvra719+zaxTpIsy5Lv+wqCQJZl5bnLAADgC7OzQKtSqWgwGEi6D5bOz8/V6/Uyp122znVd1et1SVK73dbx8XGcttPpqNvtSpJs215YNgAAwKZ2cunQ9/3EZ9M045GnLGmXrfM8T81mM15XLpfleV68zdHRkcbjscbjsfr9/sLRNAAAgE3tJNByXVeFQiGxrFAoxJfz1k27bJ1lWXr79m28PAiCeH3EMAwCLAAAkJudXDqMgp5Zo9EoU9pV+ZTL5XjZ5eWlbNuOA6sgCOQ4jqT7+Vu1Wk2maa63AwAAAGvY2RytNIsCp6xpZ9dFQVU0P0tSYtK8aZo6OTnRcDhMze/u7k53d3fx58lksnY9AQDAl2snlw4Nw5gbvRqNRqmX8ZalXTefRqMxNw9ren5XdMfi7JyvSLPZ1MHBQfz38uXLNfYSAAB86XYSaNm2nbq8WCxmSrtOPu12W41GQ6ZpKggCBUEgz/N0fHw8t93sfK/IxcWFbm9v478PHz6kpgMAAJi2k0Brdi6U7/sqFouJZ1xFo0vL0q7Kx3EcWZYVB1lXV1fxdq1WK97OdV2Vy+WFE+OfPXum/f39xB8AAMAqO5uj1ev11Gg0VCqVdH19nXiOVbPZVKlUip+BtSztonW+76tSqSTKNAwjnptVLBbVbrdlGIaGwyHP0QIAAFu3F4ZhuOtKPDaTyUQHBwe6vb3d+ujW169/3mp+eLze//DtrqtAf4Qk+iI+H3n1xTx/13nXIQAAQE4ItAAAAHJCoAUAAJATAi0AAICcEGgBAADkhEALAAAgJwRaAAAAOSHQAgAAyAmBFgAAQE4ItAAAAHJCoAUAAJATAi0AAICcEGgBAADkhEALAAAgJwRaAAAAOSHQAgAAyAmBFgAAQE4ItAAAAHJCoAUAAJATAi0AAICcEGgBAADkhEALAAAgJwRaAAAAOSHQAgAAyAmBFgAAQE6+2lXBvu/LcRyZpinf91WtVmUYRua0eawDAADYhp0FWpVKRYPBQNJ90HN+fq5er5c5bR7rAAAAtmEnlw593098Nk1TrutmTpvHOgAAgG3ZSaDluq4KhUJiWaFQkOd5mdLmsQ4AAGBbdnLpMAiC1OWj0ShT2jzWpbm7u9Pd3V38+fb2VpI0mUxS0z/E3+/+Z+t54nHKo39lRX+ERF/E5yOvvhjlG4bh1vPe2RytNIsCoKxpt72u2WzqzZs3c8tfvny5MC/goQ7+365rANyjL+JzkXdf/PXXX3VwcLDVPHcSaBmGMTd6NBqNUu/6W5Y2j3VpLi4u9P3338ef//73v2s0GunFixfa29tbtbvIaDKZ6OXLl/rw4YP29/d3XR18weiL+FzQF/MVhqF+/fVX/fa3v9163jsJtGzbVqfTmVteLBYzpTVNc+vr0jx79kzPnj1LLONREPnb39/nhILPAn0Rnwv6Yn62PZIV2UmgZZpm4rPv+yoWi3Hw4nmeDMOQaZpL084GO9tYBwAAsC07m6PV6/XUaDRUKpV0fX2deIZVs9lUqVRSvV5fmTaPdQAAANuwF+YxxR54gLu7OzWbTV1cXMxdsgU+JfoiPhf0xceLQAsAACAnvFQaAAAgJwRaAAAAOSHQekI8z1OtVtPe3p4ajYa63a4ajYYqlcpW3+XY7Xb1/PnzR/3KoqOjIzmOE3/udrs6OTnZaNunIuov3W5XjuPIdV11u925d4N+TlzX1dHRkbrd7icp7zEde/r4/3FdN3Fu3OR8+CnPe7s6x9JnchLiSRmPx6GkcDwezy0bDAZbK8e27a3lN13XT6Xf7yfKHQ6HYb/f32jbp8C27bDT6SSWDQaDUFI4HA53VKv11Ov1ubrn5TEde/p40nA4nDs3ZrXN897nVFaEPpOPz+oVPMhH9Eyyy8tLWZa16+ok+L4v13VVrVY/abm2bSc+pz2zbd1tH7t2uy1Jc8fAsqxPflw28eLFi09W1mM69vTxpEKhsOsqfPboM/ng0uEXYjQa6fDwcNfVmNNqtXZdhS9es9lUrVZLXVepVD5xbQDgaSHQeuKCIFCj0ZBt26pWq3JdV4eHh+p2u+p2uzo6OpJ0P7+r3W7LcRy12+25eTme56nRaMhxHDmOk3hXZDRPJhoZcRxHh4eHiXkQvu/H23e7XQVBINd1dXNzo36/v3QukOu6cd0ajUaiTrVaLa6T4zjyPG9lfTzPS8zrCYJAtVotEYguao/ZbafnCEVzmh5TcOL7voIgWPivVtu243WL2mRRG/i+H28zHchFfTA6dt1uV7VaLX6p+6I+uqgfSIr7U1r7p2236rgFQRCvi7abPfabtMki9PFPb539Wnbei/KYPW6O4+jo6Chu63a7rcPDw/hYLTvWy8pKqz995pHY9bVLbFc0H6vVaoW9Xi/s9Xpzc2yq1WpYrVbDMAzj9bZtJ9JYlhVfbx+Px6FpmnPrp+cPtFqtsNVqxZ/L5XJ8bT/aPsqvXq/HaVfNrxkOh6FlWfHnTqcTtlqtcDweh4ZhJOYEGIYR12lZfaL1s+UahhGXuaw9Zret1+thuVyOP+9ibsWmonkrq+q7qk3S2mC6/aePf5R+en2v10vkn9ZH0/pBGN4fj0Xtv2y7Zcet1Wol+kt0vKeP/SZtktbO9PFPI23+6rL9WnXeW9a3xuNx3J6dTicuc9mxXnWOnUafeVyYo/VEVavVhe9uNAwjntdSLpfVaDTm5m6ZpqmrqytVq1VdXV3Nrc8y3+Hq6kqmacb1ubi4WHvbTqejQqGQGB27vr6WYRiybTuxj4teCp5Vp9NZ2h6zXrx4kZgnZBjGyn+Nfi6i0Srf91Pn7/m+r0KhsLJN0tpgepQsapPp4zX9/+VyWZVKRUEQxO8jne2jaf0gUiqV5sqSFvcfaflxK5fLOjo6kmmaOjs7Sz3um7RJWr+gj+/Osv1add5b1rcMw9Dbt291dHSkXq8XH8NlxzrLOZY+87gQaH2h1p3guA3Rj2dkUQA4my5iWVZiomW1Wv1kt/N/Cer1ujqdjsrl8tw6z/NSl6/joS9pn+2jaf1gHZtsVygUNB6P5XmeLi8vValU1O/316x5dvTxx2lZ34qCp9mbkLZ1rOkzjwdztJ6oVf9ymF5/dnY291wZz/N0enoq6X6ezuzzXGbnUxmGoY8fP8afXdeN59yUy+W57dOeY5O2LK1uruvq9PR0aZ2W1Scy+3lZmdPtsWzbxyi6IWH2JD29j+u0yaxVbTS93nGcuX+Jr+qj6zwLadPtms1mPMrXarUS9YrqvUmbZKkjfXy7so6mrDrvLetb0ZzBXq8n3/fj50st2madc+w0+szjwojWExL961u6//Gs1WpzQ72u68p1XXmeJ9M0Zdt2/GPSbrdlmqaur68Tw92maarX66nRaOjk5CQeeWo2m2q1WjJNU6enp4kHAdq2HQ81m6apTqejRqMRX+KJ/iVWq9XUarXU7XZTbw+O6ja7rWEYqXWKLKtPEAS6vLxUoVBQuVxOHTlZ1B5RG0fbRnlFZUQTwDudTqZbo3et3++r3W6r0Wjo8PAwvmwRjWat0yZSsg2i7VzXle/7arVaiaBlOBzGJ/ooP2l5H53tB4vKjtp/0+1evHgh13VVKBQ0Go10dnY2d+w3aZO0fkEfz18U9Ej3QfTZ2ZkkrdyvZee9Rcet2+3G51/p/rL2+fm5fN9XvV7PdKynz7HT6DOPCy+VxpNxcnISnwA38fz5c43H4y3XCmmigO4xPKfrc0IfR1b0md1jRAtPxiYTLbvdrobDoWq12tYmjQJ5oY8jK/rM7jFHC09C9ByuTqeTaZ6Abdt68eKFHMdRp9PJr4KIRZcGe73eo35f5qdGH0dW9JnPA5cOAQAAcsKIFgAAQE4ItAAAAHJCoAUAAJATAi0AAICcEGgBeHQ8z1OtVtPe3p4ajYa63a7a7Xa87FM/ofro6Ch++jcATOOuQwCPku/7Ojw81Hg8Tjz9utvtqlgsbvyAxnXMPnHbdV0Vi8UHv98RwNPDiBaARyl6TdCs09PTjR7SuC7f93V1dZVYNvueRgCIEGgBeBI8z4tHmvJ8l1r0Em4AWAeBFoAnIXqJrXQ/6nR0dKR2uy1JchxHh4eH8ct0XdfV0dGRut2uXNdVt9tVpVJJ5Of7vhqNhhzHUbfbVRAEcl1XNzc36vf78VO3Pc+L84p4nqd2uy3HcdRut+X7/trlAnhaeNchgEctCnBc19XFxYWk+0t5Z2dncZpyuZwIxGzblm3b6vf76vV6khS/EsiyLAVBoJOTEw0GAxmGEU+4r9frsm177oXY02VFAVq/34+XHR0d6c9//vPKcgE8PQRaAB61arUqwzAyByovXrzQixcv4s+GYcRzu66urmSaZjzvKgrg1tHpdObqYpqmrq6uVK1Wl5YL4Okh0ALwJNi2vbW8Zu8qXDTRfTYdAMxijhaAR2nVKJBhGPr48WP82XXdtZ+vVS6X5XleYlk0v2vRsijvs7OzubSe5+n09HStsgE8LYxoAXh0PM9Tp9ORJDUaDZ2cnKhcLifSnJ6eqtFoxEGPbdvxZb0gCOI5W7Ztx5PaO52OTNOUaZrqdDpqNBoqlUpxOkmq1WpqtVrqdruybVue5+ny8lKFQkHlclmWZanVaqndbss0TV1fX6vX68kwjDjtsnIBPC08sBQAACAnXDoEAADICYEWAABATgi0AAAAckKgBQAAkBMCLQAAgJwQaAEAAOSEQAsAACAnBFoAAAA5IdACAADICYEWAABATgi0AAAAckKgBQAAkJP/DzcdTdutGe7tAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAFoCAYAAACPAVXRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAs+klEQVR4nO3dwW7bWJ7v8Z8HDWTVMaPsGhOgmp4H6NDSC4zp2dSyZfsFytKsCxgpXmYzKqlncXdTUvoFbLF7V4uB2C/Qjlj9AmIFCNC7kmgVcAFvmnfhS44oURIpi1HkfD+AgYg8POfw8Ij65/CQPAjDMBQAAAC27p92XQEAAICnikALAACgIARaAAAABSHQAgAAKAiBFgAAQEEItAAAAApCoAUAAFAQAi0AAICCEGhJ8n1fzWZTL1680NHR0cq0R0dHevHihZrNpoIg+DQVxGfD8zydnp6u7SdFchxnZ2V/atF38+DgQEdHR+p0Oup0OqrX6zo7O/ui2mJT9XpdL168kOu6O63HUz2WvV5Px8fHOys/Oiftsg77ZCfn8BCxdrsdGoYRDofD1PWDwSCsVqthrVb7xDVL1+12F5Y1Go2wWq3uoDYP0ur01AwGg9A0zVzbbKtd+v3+wrLJZLKy36bZdT/Jy7bt1O+daZphu93eQY2y+xy+E5ZlhYPBYNfVCMPw6R3L0WgUNhqNXN+/LJZ9R9PqsMk5KTKZTMJutxvatp26vt1uh91uN+x2u6nH57Hrlynye/OY9toEI1ozDMPQ+fm5ut1u6vrPbQRrMBgsLDs9PdXFxcUOavMgrU5PTalUyr3NttrFMIzUZbVaTaZpZs5n1/1kW+r1uprN5q6rsdKX8J3Yhn09lqZpql6vp343H2PZdzStDpuck6SH0Z2bmxsFQaDxeLywvtPpSJJqtZpqtZosy1K9Xt/a+lWK/N5s2l6b+tUnLW0P1Ot1nZycLARbQRDk+iErWq/Xk+/7C8tt295BbR4sq9OXbpvt4nmePM9To9FILG+327ny2WU/2aboxy0Igq3/0G0D34ns9vlYep6narW61fLSvqPb7k+WZcmyrKWXbVutln766adEnU5PT+Pfx8euX+apfW8ItOZYlqVSqSTHcRJfnPfv36/8cep0OjJNU77vyzTNeNsgCNTr9WSapgaDger1uizLkiS5rhv/D+7du3fyfV++7+vnn39e+cPpuq4Gg4F834//x9BoNOR5nprNpnzf12g0WlrGeDzWcDhUt9tVr9dTqVTS9fW1rq6u4rqt26+sdZrPR3qYqzEfKCzT6/USn2u12to8N93naLtSqaSzszNJD8dv3fGYr89sW2Vtl3XtGzEMQ+12O5FHvV7Xzc2N3r17l9h+Wftk7SdZ+uK6svLkm7ctJGk4HMqyrMQP87Lj0Gw249GH6H/LUR2y9LO0/Fbt17pjn2Zb54tOpyPDMDb6nzvHMt+xzBIYOo4Tl9HtduX7vtrttgzDUL/fV6lU0snJiYIgUL/fl6TU7+i6/uR5Xu7v7jK+7y/dN9d1ZZrmo9Yv+z3N8/vWbDbV6/XUbrdVq9UKOYdLir+TQRDI9/34KkJmn+wi5R6IrgmnXRuP5sakzdGqVquJuTO2bcfX6xuNRjgajeJ1pmmGk8kk/hxdK56dP2Ga5trr/YPBILQsa2H5cDhcuPa8rIxGo5HYv/n8Vu1XnjpVq9VE2aPRaOl8gFntdnuhjrPHYVWem+5zv98PJSWOWaPRSBzztDZe1Var2iVP+65i23Yir3Xtk6efrKvTpsdiNt91bTE/r2cymYTtdju0LCvxfVqVT3S8B4NBOBwO476wrp+tOq7r9mvZsV9mG+eLRqORmN8ymUxCSZnmaHEst3cs583Pg0qr6+yxX/YdXXbeNwwj93d3tuz5fAeDQZgWIhiGEfb7/UevX2XZfqbNrbJtO9Hft30O7/f7ifxHo1Hu+WMEWjOixhuNRqGk+Es/Go3igzYfaEVp5/OJ0lSr1cRBmf9BHA6HC9vPp0mTJ9BaVsbsl3w0GoWGYWTer6x1ik4A89ZNzo1+HOZPvO12O1Oem+zzsn2I6hL1gfk2XtdWaXlu0r6rzJ4ksrZP1n6yqi8+5lhE+WZpC9u2Q8uy4km13W534Ucky3GYX7+qn63LL0t75f1xfuz5ItqfeVkmw3Mst3ss580fm3a7nfgOzv945w20NvkdieQJtEzTDLvd7qPXr5Ln923+O7Ptc3i/3w9t2070q7z/IebSYQrTNGVZlm5ublSr1VZef3ddV4ZhJG6dHo1G8fXlaBg4GnIcj8cLkw7n534ZhpE6MfEx0spYdXvruv3K6v3796lz26JLI8uGj9+/fy/DMBLDzlFbRsO46/LMu8/LRPXwPC+13E3aalvtm2bTNo/SzFrXF7OWtSrfrG1RLpdXDtdnyWe+Huv6Wd78Hvvdfez5ImqDTXAsiz0PG4YRz4eqVqtxPaPLVI/1KX5HJK3N87Hri/CYc3i1WlW329WLFy9kWZYuLi4yT32JEGgtUa/X1e12VavVVp64oknysz9es//2PE+tVkunp6c6Pz8vbEL9tr6skXX7lbVOm96puWq7z+3uz7xtFbXLY9t3VX0+lW2Uta22yJLP/Hd5XT/b9jFa9z3dxvli0zuqOJb5bHLOvbi40PX1tSzLUrlcVr1el+M4sm17o/ps+7w/a1m+UVs+dn0eq/bzU/TbwWAgz/Pkum48kT9PsMXjHZY4Pz+X53lyHEflcnlpOsuyUkchgiBQEAQ6OTnR1dVVHLBFnWLbd1R4nrfV/FbtV1ae58m27dR8fN9XpVJZWX5aWUEQbJznpqJjOX+jQCRvW3met5X2XeZTts82ytpWW2ySz6p+VsQxWvU93cb5Ylmds+BY5rPJObdarcpxHLmuK8uy4tGSZaOJRdQhK9M0ZRjG0rvbH7s+j1X7mWWE7DHn8OjmCsuy1Gg0NBwOdX19nbHmDwi0ZkR3MkgP/1uybVvX19crR7Rs21a5XF64Pfbm5iYeuZg9uFGnWHfCXSe6M0J6OBEu60CblrFqv/LUybIs2badGJKN9n3VnUjRHR/RXSdRnW9ubjbOM+tJ1fO8RNpWq7XyOVXr2iqtXTZp36w2bZ8069psG8diW22xaZ9d1s82yW++vfJ8T7dxvjBNU7VaLXHnXRAEC306Dccy6THHclUdLcuKf2uic0rWc1OeOuQJIpcFK1dXV4n+4DhO4pLvY9cvs2w/Z5dL/3uJfX5ft3kOnw22ZuuXS64ZXU/UaDQKa7VaKCms1WrxhLnZO1aiO2MMw4ifYDw7OS6602d2m2h5o9EIB4NBOBgMwtFoFE9cHg6HYbVaDSXFT8yNyrAsa+1ExijvaCJgWn6ryrBtO75rJ0rTaDQy7VfWOs3n0+12ExPSs+TXbrcX7vxYledj9jmaSBndNdNutxNPM57fLq0+aW21rl2ytu8y83fM5G2fbfTFvMdiPt+0thiNRiu/d6vqMpvPYDAIbdsODcOIJ0fPb7Oun83ml3e/0o79srpv43wR7UuUj2VZmZ8Oz7HczrFcJrqhZ/bz/D6k1WlZHR7z3Y2OiWVZ8TltPn3Ulv1+P/Xc/dj1yyxr6+icHOVZrVZD0zQT/WOb5/DouxAty9Jv5x2EYRjmC82Apyt6DstwONx1VXI5OzvTxcXF1h+aCAD75HM8h3PpENhT0bB59O9N7zYDABSHQAvYU61WK35vmO/7K2/aAADsBoEW8P+5rqt2uy3P8xITaj9X9Xpdp6en8SsoGNEC8CX7XM/hzNECAAAoCCNaAAAABSHQAgAAKAiBFgAAQEF41+EG/vGPf+jvf/+7fv3rX+vg4GDX1QEAAI8QhqF++eUX/eY3v9E//dN2x6AItDbw97//Xa9evdp1NQAAwBZ9/PhR//zP/7zVPAm0NvDrX/9a0sMBef78+Y5rAwAAHmM6nerVq1fx7/s2EWhtILpc+Pz5cwItAACeiCKmAzEZHgAAoCAEWgAAAAUh0AIAACgIgRYAAEBBdhZo+b6vTqcjx3HU6XQUBMHGaT3P0/Hx8cJ2juMoCILUvD3Pk+d5cf7RvwEAALZlZ3cdnp2daTgcSnoIdC4vL9Xv93OndRxHpmmmBkpnZ2cLy9rtthqNhrrdrnq9niTJtu2lZQMAAGxqJ4GW7/uJz6ZpynXdjdJWq9XU7YIgUL/fT6zvdDpqNBqSpOPjY00mE0mSYRi59wEAAGCdnVw6dF1XpVIpsaxUKqWOSuVJO282yHIcZyEoMwyDIAsAABRmJyNay+ZjjcfjR6WdNRtABUGg8Xgs0zQTyxzHkSTd3t6qXq8n1s+6v7/X/f19/Hk6na4sGwAAQPrMngy/akL8Y9I2m0212+3EslqtFgdjpmnq9PRUo9EodftWq6W3b99mLg8AAEDaUaBlGMbCiNR4PE69jJcnbZogCOS67kJ63/dlWZakh0DL9335vp86qnV1daVvv/02/hy9E6kIX735oZB8sX8+fPf1rqsAAHiknczRsm07dXm5XH5U2jTv379fCLI8z9PJyclC2vm5YJFnz57F7zXk/YYAACCrnQRa86NGvu+rXC7HAZHnefHdhuvSzlr2vKz5AMo0zcSlRNd1Va1WmRgPAAC2amdztPr9vprNpiqVim5vbxPPsWq1WqpUKvGjGFaldV1Xg8Egsd383YXzwZphGCqXy+p0OjIMQ6PRiOdoAQCArTsIwzDcdSX2zXQ61eHhoe7u7rZ+GZE5WogwRwsAPo0if9d51yEAAEBBCLQAAAAKQqAFAABQEAItAACAghBoAQAAFIRACwAAoCAEWgAAAAUh0AIAACgIgRYAAEBBCLQAAAAKQqAFAABQEAItAACAghBoAQAAFIRACwAAoCAEWgAAAAUh0AIAACgIgRYAAEBBCLQAAAAKQqAFAABQEAItAACAghBoAQAAFIRACwAAoCAEWgAAAAUh0AIAACgIgRYAAEBBCLQAAAAKQqAFAABQkF/tqmDf9+U4jkzTlO/7qtVqMgxjo7Se5+ny8lLD4TCxned5kiTLsuT7voIgkGVZucsHAADYxM4CrbOzszgw8n1fl5eX6vf7udNGwVIUVM3qdrvq9XqSJNu2E/nnKR8AAGATOwm0fN9PfDZNU67rbpS2Wq0uLef4+FiTyUSSEqNVecoHAADY1E7maLmuq1KplFhWKpVSR6XypE1jGMbCJcHH5gkAAJDFTka0giBIXT4ejx+VNm1bx3EkSbe3t6rX6zJNM3ee9/f3ur+/jz9Pp9O1ZQMAAOxsjlaaZQHQpmlnJ7ibpqnT01ONRqPcebZaLb19+zZz3QAAAKQdXTo0DGNh9Gg8Hqfe9Zcn7bzZuVjR3YW+7+fO8+rqSnd3d/Hfx48f15YNAACwk0DLtu3U5eVy+VFpZ3mep5OTk4XlpVIpd57Pnj3T8+fPE38AAADr7CTQMk0z8dn3fZXL5XhEyfO8eDRqXdpZs5f+TNNUu92OP7uuq2q1KsMwcuUJAACwqZ3N0er3+2o2m6pUKrq9vU08w6rVaqlSqajRaKxN67quBoNBYrsooCqXy+p0OjIMQ6PRKLHdqjwBAAC24SAMw3DXldg30+lUh4eHuru72/plxK/e/LDV/LC/Pnz39a6rAABfhCJ/13nXIQAAQEEItAAAAApCoAUAAFAQAi0AAICCEGgBAAAUhEALAACgIARaAAAABSHQAgAAKAiBFgAAQEEItAAAAApCoAUAAFAQAi0AAICCEGgBAAAUhEALAACgIARaAAAABSHQAgAAKAiBFgAAQEEItAAAAApCoAUAAFAQAi0AAICCEGgBAAAUhEALAACgIARaAAAABSHQAgAAKAiBFgAAQEEItAAAAApCoAUAAFCQX+2qYN/35TiOTNOU7/uq1WoyDGOjtJ7n6fLyUsPhMLGd53lyXVeSdHt7q3fv3sXbeZ4nSbIsS77vKwgCWZa19f0EAABfrp0FWmdnZ3Fg5Pu+Li8v1e/3c6eNArAocJrluq4ajYYkqdPp6OTkJM6n2+2q1+tJkmzbXlo2AADApnZy6dD3/cRn0zTjkae8aavVaupIlOd5arVaiXSe58X5HR8fazKZaDKZaDAYLB1NAwAA2NROAi3XdVUqlRLLSqXS0lGprGlnWZald+/exZ+DIIi3jRiGQYAFAAAKs5NLh1HQM288Hj8q7bxqtRr/+/r6WrZtx4FVEARyHEfSw/yter0u0zTX5gkAAJDVzuZopVkWVG0jreM4icnysxPqTdPU6empRqNR6vb39/e6v7+PP0+n08xlAwCAL9dOLh0ahrEwIjUej1Mv4+VJu0yz2VyYhzU79yu6m3F+Plik1Wrp8PAw/nv16lXmsgEAwJdrJ4GWbdupy8vl8qPSpul0Omo2mzJNU0EQKAgCeZ6nk5OThbTzc8EiV1dXuru7i/8+fvyYqWwAAPBl20mgNT8Xyvd9lcvlxDOuotGldWlnzV9OdBxHlmXFQdbNzY0Mw5Bpmmq323E613VVrVaXjpI9e/ZMz58/T/wBAACss7M5Wv1+X81mU5VKRbe3t4nnWLVaLVUqlfgZWKvSuq6rwWCQ2K5arcr3fZ2dnSXKNAwjnptVLpfV6XRkGIZGoxHP0QIAAFt3EIZhuOtK7JvpdKrDw0Pd3d1tfXTrqzc/bDU/7K8P33296yoAwBehyN913nUIAABQEAItAACAghBoAQAAFIRACwAAoCAEWgAAAAUh0AIAACgIgRYAAEBBCLQAAAAKQqAFAABQEAItAACAghBoAQAAFIRACwAAoCAEWgAAAAUh0AIAACgIgRYAAEBBCLQAAAAKQqAFAABQEAItAACAghBoAQAAFIRACwAAoCAEWgAAAAUh0AIAACjIr/Ju8OHDB/X7fQ0GA00mk3h5qVTS6empqtWqvvrqq23WEQAAYC/lCrTevHmjg4MDnZ+f6z/+4z8W1v/444/6/vvvdXBwoFartbVKAgAA7KPMgdYf/vAHXV1d6fDwcGma169f6/Xr17q7u9PV1RXBFgAA+KJlDrTSRrCWOTw8JMgCAABfvI0nw79580Z//OMfdXd3p3/7t3/TxcWF/vznP2+zbgAAAHtt40CrUqnom2++Ua/X0/Hxsa6vr/Xzzz9vs24AAAB7Lfddh5EXL15Ikm5ubvTu3TtJD3ceZuX7vhzHkWma8n1ftVpNhmFslNbzPF1eXmo4HGbeLk/5AAAAm9g40BqNRgrDUKPRSL/73e/0008/JR73sM7Z2VkcGPm+r8vLS/X7/dxpo2DJ87xc2+UpHwAAYBMbXzo8Pz+X53kaDoe6u7tTt9tVEASZtvV9P/HZNE25rrtR2mq1Ksuycm2Xp3wAAIBNZRrRuru702QySTyI9PDwMHEn4nfffZfYZjqdSpKeP3++kJ/ruguXGUulkjzPWwia8qTNut379+83yhMAACCPTCNah4eHGgwGme8q/NOf/qSbm5vUIEvS0pGv8Xj8qLRZt8ub5/39vabTaeIPAABgncxztC4vL/Xjjz/q/PxcR0dHqlQqMk1ThmEoCAL5vq+//vWv+umnn1Sv1/X73/8+d2WyXnrMmzbrdsvWtVotvX37dqPyAADAlyvXZPjXr1/r5uZGd3d3urm50V//+lcFQSDDMHR0dKR6va7f/va3a/MxDGNh9Gg8Hqfe9Zcnbdbt8uZ5dXWlb7/9Nv48nU716tWrleUDAABsdNfh4eGhLi8vNy7Utm11u92F5eVy+VFps25nmmauPJ89e6Znz56tLA8AAGDexncdPoZpmonPvu+rXC7HI0qe58V3Bq5LO2v20t+q7fLkCQAAsKmNn6P1WP1+X81mU5VKRbe3t4lnWLVaLVUqFTUajbVpXdfVYDBIbFetVtdut2odAADANhyEYRjuuhL7Zjqd6vDwUHd3d0vvrNzUV29+2Gp+2F8fvvt611UAgC9Ckb/rO7l0CAAA8CV4VKD1hz/8QRcXF5Kkv/zlLzxfCgAAYMbGgdabN29kGIZs25YknZyc8BobAACAGRsHWpVKRZeXlwt38AEAAODBxoHWTz/9JEk6ODiIl93e3j6+RgAAAE/Exo93eP36tcrlsl6+fKnBYCDXddVut7dZNwAAgL228YjWycmJ+v2+Xr9+rTAM1ev19K//+q/brBsAAMBee9QDS3/729/qu+++iz9Pp9OtP38CAABgXz3q8Q7T6VQfPnyI/5rN5rbqBQAAsPc2HtH693//d7mum3g/4E8//aT//u//3ka9AAAA9t7GgdbR0ZG+//77xLJ37949ukIAAABPxcaXDqMHlc46PT19VGUAAACeko1HtF68eKH/+q//kmmaMgxDQRDo+vpa19fX26wfAADA3to40Go0GgqCIDFH68cff9xGnQAAAJ6EjQOt09NTXV5eJpb96U9/enSFAAAAnoqN52gdHR1lWgYAAPCl2nhEazQaqdvtqlKpSJLCMNTNzQ3vOwQAAPj/Ng60ut2ubNtWGIbxstl/A9h/X735YddVwGfgw3df77oKwN7aONBqt9s6OTlJLEt75AMAAMCX6lEvlZ734sWLR1UGAADgKck8ovXnP/9Ztm3HL43+4x//mFgfBIEGg4H+53/+Z7s1BAAA2FOZR7T+8z//U+/fv48/f//995pMJvFfGIb6+eefC6kkAADAPso8ojUbZEkP7zV8/fp1YhlztAAAAP5X5kDrb3/7m3zf13g81vn5+UKQJSl1GQAAwJcq86XDs7Mzmaapb775Jp6nBQAAgOUyB1q///3v9bvf/W5lmr/97W+PrA4AAMDTkTnQ+pd/+Ze1aebncQEAAHzJMs/R+v777zUcDlemcV1X33zzTab8fN+X4zgyTVO+76tWq8kwjNxpV61zHCeeoD+ft+d5kiTLsuT7voIgkGVZmeoOAACQRa4nw2/z8Q1nZ2dx4Ob7vi4vL9Xv93OnXbduXrvdVqPRULfbVa/Xk/Rwt+SysgEAADaVOdCq1+u6vLxcmebdu3eZ8vJ9P/HZNE25rps77ap1QRCo3++rWq3G6zudjhqNhiTp+PhYk8lE0uJoFwAAwDZknqN1d3e3No1pmpnycl1XpVIpsaxUKsWX87KmXZfPbJDlOE7is/QQYBFkAQCAomQOtL7//nt9+PBhZZq09x+mCYIgdfl4PM6VdtW62QAqCAKNx+NEIBgEgRzHkeM4ajabC6Njs+7v7zWdThN/AAAA62S+dNjtdjUcDuW6rs7Pzwt5ltaywClv2vl1zWZT7XY7sWx20rxpmjo9PdVoNErNr9Vq6e3bt5nrBgAAIOUItLKOVmVhGMbC6NX8KFSWtFnyCYJArusu5O37fnyXYXTHou/7qZc/r66u9O2338afp9OpXr16lWVXAQDAFyzzpcNtWvZOxHK5nCttlnzev3+f+miHtMBxfr5X5NmzZ3r+/HniDwAAYJ1cj3fYlvlRI9/3VS6X44DI8zwZhiHTNFemTRulms0nyms+gDJNM3Ep0XVdVatVJsYDAICt2kmgJUn9fl/NZlOVSkW3t7eJ51i1Wi1VKpX4UQyr0q5aF5kP1gzDULlcVqfTkWEYGo1GPEcLAABs3UEYhuGuK7FvptOpDg8PdXd3t/XLiF+9+WGr+WF/ffju611Xgf4ISZ9HXwSKVOTv+k7maAEAAHwJCLQAAAAKQqAFAABQEAItAACAghBoAQAAFIRACwAAoCAEWgAAAAUh0AIAACgIgRYAAEBBCLQAAAAKQqAFAABQEAItAACAghBoAQAAFIRACwAAoCAEWgAAAAUh0AIAACgIgRYAAEBBCLQAAAAKQqAFAABQEAItAACAghBoAQAAFIRACwAAoCAEWgAAAAUh0AIAACgIgRYAAEBBCLQAAAAKQqAFAABQkF/tqmDf9+U4jkzTlO/7qtVqMgwjd9pV6zzPkyRZliXf9xUEgSzLyl0+AADAJnYWaJ2dnWk4HEp6CHouLy/V7/dzp121rtvtqtfrSZJs207kn6d8AACATewk0PJ9P/HZNE25rps77bp8jo+PNZlMJCkxWpWnfAAAgE3tZI6W67oqlUqJZaVSKb7UlzVtlnwMw1i4JJinfAAAgE3tZEQrCILU5ePxOFfadfkEQSDHcSRJt7e3qtfrMk0zV/mSdH9/r/v7+/jzdDpNTQcAADBrZ3O00iwLgPKmjdbNTnA3TVOnp6cajUa582y1Wnr79m3mugEAAEg7unRoGMbC6NF4PE69629V2nX5zM7Fiu4u9H0/V/mSdHV1pbu7u/jv48ePGfcUAAB8yXYSaNm2nbq8XC7nSrtqned5Ojk5WVhXKpVylS9Jz5490/PnzxN/AAAA6+zk0qFpmonPvu+rXC4nnn9lGIZM01yZdn4EanadaZpqt9vxOtd1Va1W124HAACwLTubo9Xv99VsNlWpVHR7e5t4hlWr1VKlUlGj0Vibdtk6wzBULpfV6XRkGIZGo1Gm7QAAALblIAzDcNeV2DfT6VSHh4e6u7vb+mXEr978sNX8sL8+fPf1rqtAf4Skz6MvAkUq8neddx0CAAAU5LN6vAMAAGkYXYW0n6OrjGgBAAAUhEALAACgIARaAAAABSHQAgAAKAiBFgAAQEEItAAAAApCoAUAAFAQAi0AAICCEGgBAAAUhEALAACgIARaAAAABSHQAgAAKAiBFgAAQEEItAAAAApCoAUAAFAQAi0AAICCEGgBAAAUhEALAACgIARaAAAABSHQAgAAKAiBFgAAQEEItAAAAApCoAUAAFAQAi0AAICCEGgBAAAUhEALAACgIL/aVcG+78txHJmmKd/3VavVZBhG7rSr1nmeJ9d1JUm3t7d69+5dYp0kWZYl3/cVBIEsyypylwEAwBdmZ4HW2dmZhsOhpIdg6fLyUv1+P3faVetc11Wj0ZAkdTodnZycxGm73a56vZ4kybbtpWUDAABsaieXDn3fT3w2TTMeecqTdtU6z/PUarXiddVqVZ7nxdscHx9rMploMploMBgsHU0DAADY1E4CLdd1VSqVEstKpVJ8OS9r2lXrLMvSu3fv4uVBEMTrI4ZhEGABAIDC7OTSYRT0zBuPx7nSrsunWq3Gy66vr2XbdhxYBUEgx3EkPczfqtfrMk0zNb/7+3vd39/Hn6fTaWo6AACAWTubo5VmWeCUN+38uiioiuZnSUpMmjdNU6enpxqNRqn5tVotvX37NnPdAAAApB1dOjQMY2H0ajwep17GW5U2az7NZnNhHtbs/K7ojsX5OV+Rq6sr3d3dxX8fP37MsJcAAOBLt5NAy7bt1OXlcjlX2iz5dDodNZtNmaapIAgUBIE8z9PJycnCdvPzvSLPnj3T8+fPE38AAADr7CTQmp8L5fu+yuVy4hlX0ejSqrTr8nEcR5ZlxUHWzc1NvF273Y63c11X1WqVifEAAGCrdjZHq9/vq9lsqlKp6Pb2NvEcq1arpUqlEj8Da1XaZet839fZ2VmiTMMw4rlZ5XJZnU5HhmFoNBrxHC0AALB1B2EYhruuxL6ZTqc6PDzU3d3d1i8jfvXmh63mh/314buvd10F+iMk0Rfx+SiqLxb5u867DgEAAApCoAUAAFAQAi0AAICCEGgBAAAUhEALAACgIARaAAAABSHQAgAAKAiBFgAAQEEItAAAAApCoAUAAFAQAi0AAICCEGgBAAAUhEALAACgIARaAAAABSHQAgAAKAiBFgAAQEEItAAAAApCoAUAAFAQAi0AAICCEGgBAAAUhEALAACgIARaAAAABSHQAgAAKAiBFgAAQEEItAAAAApCoAUAAFAQAi0AAICC/GpXBfu+L8dxZJqmfN9XrVaTYRi50xaxDgAAYBt2FmidnZ1pOBxKegh6Li8v1e/3c6ctYh0AAMA27OTSoe/7ic+macp13dxpi1gHAACwLTsJtFzXValUSiwrlUryPC9X2iLWAQAAbMtOLh0GQZC6fDwe50pbxLo09/f3ur+/jz/f3d1JkqbTaWr6x/jH/f/dep7YT0X0r7zoj5Doi/h8FNUXo3zDMNx63jubo5VmWQCUN+2217VaLb19+3Zh+atXr5bmBTzW4f/ZdQ2AB/RFfC6K7ou//PKLDg8Pt5rnTgItwzAWRo/G43HqXX+r0haxLs3V1ZW+/fbb+PM//vEPjcdjvXz5UgcHB+t2FzlNp1O9evVKHz9+1PPnz3ddHXzB6Iv4XNAXixWGoX755Rf95je/2XreOwm0bNtWt9tdWF4ul3OlNU1z6+vSPHv2TM+ePUss41EQxXv+/DknFHwW6Iv4XNAXi7PtkazITgIt0zQTn33fV7lcjoMXz/NkGIZM01yZdj7Y2cY6AACAbdnZHK1+v69ms6lKpaLb29vEM6xarZYqlYoajcbatEWsAwAA2IaDsIgp9sAj3N/fq9Vq6erqauGSLfAp0RfxuaAv7i8CLQAAgILwUmkAAICCEGgBAAAUhEDrCfE8T/V6XQcHB2o2m+r1emo2mzo7O9vquxx7vZ5evHix168sOj4+luM48eder6fT09ONtn0qov7S6/XkOI5c11Wv11t4N+jnxHVdHR8fq9frfZLy9unY08f/l+u6iXPjJufDT3ne29U5lj5TkBBPymQyCSWFk8lkYdlwONxaObZtby2/2bp+KoPBIFHuaDQKB4PBRts+BbZth91uN7FsOByGksLRaLSjWmXTaDQW6l6UfTr29PGk0Wi0cG7Ma5vnvc+prAh9phif1St4UIzomWTX19eyLGvX1UnwfV+u66pWq33Scm3bTnxOe2Zb1m33XafTkaSFY2BZ1ic/Lpt4+fLlJytrn449fTypVCrtugqfPfpMMbh0+IUYj8c6OjradTUWtNvtXVfhi9dqtVSv11PXnZ2dfeLaAMDTQqD1xAVBoGazKdu2VavV5Lqujo6O1Ov11Ov1dHx8LOlhflen05HjOOp0OgvzcjzPU7PZlOM4chwn8a7IaJ5MNDLiOI6Ojo4S8yB834+37/V6CoJAruvq/fv3GgwGK+cCua4b163ZbCbqVK/X4zo5jiPP89bWx/O8xLyeIAhUr9cTgeiy9pjfdnaOUDSnaZ+CE9/3FQTB0v+12rYdr1vWJsvawPf9eJvZQC7qg9Gx6/V6qtfr8Uvdl/XRZf1AUtyf0to/bbt1xy0IgnhdtN38sd+kTZahj396WfZr1XkvymP+uDmOo+Pj47itO52Ojo6O4mO16livKiut/vSZPbHra5fYrmg+VrvdDvv9ftjv9xfm2NRqtbBWq4VhGMbrbdtOpLEsK77ePplMQtM0F9bPzh9ot9thu92OP1er1fjafrR9lF+j0YjTrptfMxqNQsuy4s/dbjdst9vhZDIJDcNIzAkwDCOu06r6ROvnyzUMIy5zVXvMb9toNMJqtRp/3sXcik1F81bW1Xddm6S1wWz7zx7/KP3s+n6/n8g/rY+m9YMwfDgey9p/1Xarjlu73U70l+h4zx77TdokrZ3p459G2vzVVfu17ry3qm9NJpO4PbvdblzmqmO97hw7iz6zX5ij9UTVarWl7240DCOe11KtVtVsNhfmbpmmqZubG9VqNd3c3CyszzPf4ebmRqZpxvW5urrKvG2321WpVEqMjt3e3sowDNm2ndjHZS8Fz6vb7a5sj3kvX75MzBMyDGPt/0Y/F9Fole/7qfP3fN9XqVRa2yZpbTA7Sha1yezxmv13tVrV2dmZgiCI30c630fT+kGkUqkslCUt7z/S6uNWrVZ1fHws0zR1cXGRetw3aZO0fkEf351V+7XuvLeqbxmGoXfv3un4+Fj9fj8+hquOdZ5zLH1mvxBofaGyTnDchujHM7IsAJxPF7EsKzHRslarfbLb+b8EjUZD3W5X1Wp1YZ3neanLs3jsS9rn+2haP8hik+1KpZImk4k8z9P19bXOzs40GAwy1jw/+vh+WtW3ouBp/iakbR1r+sz+YI7WE7Xufw6z6y8uLhaeK+N5ns7PzyU9zNOZf57L/HwqwzD0888/x59d143n3FSr1YXt055jk7YsrW6u6+r8/HxlnVbVJzL/eVWZs+2xatt9FN2QMH+Snt3HLG0yb10bza53HGfhf+Lr+miWZyFtul2r1YpH+drtdqJeUb03aZM8daSPb1fe0ZR1571VfSuaM9jv9+X7fvx8qWXbZDnHzqLP7BdGtJ6Q6H/f0sOPZ71eXxjqdV1XruvK8zyZpinbtuMfk06nI9M0dXt7mxjuNk1T/X5fzWZTp6en8chTq9VSu92WaZo6Pz9PPAjQtu14qNk0TXW7XTWbzfgST/Q/sXq9rna7rV6vl3p7cFS3+W0Nw0itU2RVfYIg0PX1tUqlkqrVaurIybL2iNo42jbKKyojmgDe7XZz3Rq9a4PBQJ1OR81mU0dHR/Fli2g0K0ubSMk2iLZzXVe+76vdbieCltFoFJ/oo/yk1X10vh8sKztq/023e/nypVzXValU0ng81sXFxcKx36RN0voFfbx4UdAjPQTRFxcXkrR2v1ad95Ydt16vF59/pYfL2peXl/J9X41GI9exnj3HzqLP7BdeKo0n4/T0ND4BbuLFixeaTCZbrhXSRAHdPjyn63NCH0de9JndY0QLT8YmEy17vZ5Go5Hq9frWJo0CRaGPIy/6zO4xRwtPQvQcrm63m2uegG3bevnypRzHUbfbLa6CiEWXBvv9/l6/L/NTo48jL/rM54FLhwAAAAVhRAsAAKAgBFoAAAAFIdACAAAoCIEWAABAQQi0AOwdz/NUr9d1cHCgZrOpXq+nTqcTL/vUT6g+Pj6On/4NALO46xDAXvJ9X0dHR5pMJomnX/d6PZXL5Y0f0JjF/BO3XddVuVx+9PsdATw9jGgB2EvRa4LmnZ+fb/SQxqx839fNzU1i2fx7GgEgQqAF4EnwPC8eaSryXWrRS7gBIAsCLQBPQvQSW+lh1On4+FidTkeS5DiOjo6O4pfpuq6r4+Nj9Xo9ua6rXq+ns7OzRH6+76vZbMpxHPV6PQVBINd19f79ew0Gg/ip257nxXlFPM9Tp9OR4zjqdDryfT9zuQCeFt51CGCvRQGO67q6urqS9HAp7+LiIk5TrVYTgZht27JtW4PBQP1+X5LiVwJZlqUgCHR6eqrhcCjDMOIJ941GQ7ZtL7wQe7asKEAbDAbxsuPjY/3lL39ZWy6Ap4dAC8Beq9VqMgwjd6Dy8uVLvXz5Mv5sGEY8t+vm5kamacbzrqIALotut7tQF9M0dXNzo1qttrJcAE8PgRaAJ8G27a3lNX9X4bKJ7vPpAGAec7QA7KV1o0CGYejnn3+OP7uum/n5WtVqVZ7nJZZF87uWLYvyvri4WEjreZ7Oz88zlQ3gaWFEC8De8TxP3W5XktRsNnV6eqpqtZpIc35+rmazGQc9tm3Hl/WCIIjnbNm2HU9q73a7Mk1Tpmmq2+2q2WyqUqnE6SSpXq+r3W6r1+vJtm15nqfr62uVSiVVq1VZlqV2u61OpyPTNHV7e6t+vy/DMOK0q8oF8LTwwFIAAICCcOkQAACgIARaAAAABSHQAgAAKAiBFgAAQEEItAAAAApCoAUAAFAQAi0AAICCEGgBAAAUhEALAACgIARaAAAABSHQAgAAKAiBFgAAQEH+H2YgXyzDhfaJAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -285,9 +285,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAFUCAYAAABlQUuyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvF0lEQVR4nO3dQW/qWJ738V9GJWXViS9311JJVc68gL4E3sDEmU3tpiB5AxWY9UgDN8u7GQp6Fs9uCm69gQS6d7UY4XoDneDq/QyukiLNrsCkpEfKpnkW97EHgwGbQOwk34+EFOzjc47tY/PP8bG9N51OpwIAAECq/i7tCgAAAICgDAAAIBMIygAAADKAoAwAACADCMoAAAAygKAMAAAgAwjKAAAAMoCgDAAAIANebFDmuq7q9brevHmjo6OjlWmPjo705s0b1et1eZ73NBVEZjiOo9PT07XtZJd6vV5qZb8k/nG/t7eno6MjtVottVotVatVlctltnMM1WpVb968kW3bqdbjpe7LTqej4+Pj1Mr3z3dp1uE5efLfh+kL12w2p4ZhTAeDQeT8fr8/LZVK00ql8sQ1i9Zutxem1Wq1aalUSqE2n0TV6aXp9/tT0zQTLbOt7dLtdhemjcfjle02yrbbSRb2+6Z1sCwr8pg2TXPabDYfW62dysJ2z+fz036/n3Y1ptPpy9uXw+FwWqvVEh3bcSw7/qPqsMn5zjcej6ftdntqWVbk/GazOW2329N2ux25fx47f5ldHjeP2V5JvdieMp9hGDo7O1O73Y6cn7WesX6/vzDt9PRU5+fnKdTmk6g6vTS5XC7xMtvaLoZhRE6rVCoyTTN2PttuJ1nY79uuQ7VaVb1e32qe25aF7f4cPNd9aZqmqtVq5HH/GMuO/6g6bHK+kz71Gl1fX8vzPI1Go4X5rVZLklSpVFSpVJTP51WtVrc2f5VdHjebbq9NfPZkJaWoWq3q5ORkITDzPC/Rj96udTodua67MN2yrBRq88myOr1229wujuPIcRzVarXQ9GazmSifbbaTLOz3XdTB/yH0PG/rP4rbkIXt/lw8533pOI5KpdJWy4s6/rfdnvL5vPL5/NJLx41GQz///HOoTqenp8Fv72PnL/OSjptXEZTl83nlcjn1er3QgXB7e7vyh6zVask0TbmuK9M0g2U9z1On05Fpmur3+6pWq8rn85Ik27aD/94+fvwo13Xluq5+/fXXlT+ytm2r3+/Ldd3gv4VarSbHcVSv1+W6robD4dIyRqORBoOB2u22Op2Ocrmcrq6udHl5GdRt3XrFrdN8PtKn8R/zQcUynU4n9L1SqazNc9N19pfL5XIql8uSPu2/dftjvj6z2yrudlm3fX2GYajZbIbyqFarur6+1sePH0PLL9s+cdvJpm3RNM0gr3a7Ldd11Ww2ZRiGut2ucrmcTk5O5Hmeut1usP2Xbb919VpWh0ajIdd11e12ZVmWXNfV6empTNNUu91e+0/WYDBQPp8P/YivqqPfq+H/F+7XL04b3sY6rzumtnUuarVaMgxjox6BJMfsqvKTHDPS892XcYLIXq+X6HiTFHn8r2tPjuPEPi+s47ru0nWzbVumaT5q/rLf6iS/nfV6XZ1OR81mU5VKZSe/D5KCY9LzPLmuG1z5iOVJLpKmyL/OHHW93R/LEzWmrFQqhcb6WJYVjAGo1WrT4XAYzDNNczoej4Pv/vXn2TEZpmmuHUPQ7/en+Xx+YfpgMFi4nr2sjFqtFlq/+fxWrVeSOpVKpVDZw+Fw6RiDWc1mc6GOs/thVZ6brnO3251KCu2zWq0W2udR23jVtlq1XZJs31UsywrltW77JGknm7TF+XEkUftydhuv237r6hVVh6ixHVHjTubHIY3H42mz2Zzm8/nQsbqqjn5b6vf708FgEKzruja87XVeZRvnolqtFhqPMx6Pp5JijSnb9JidLX/dMfNa9uW8pMfbsuN/2W+KYRiJzwuzZUcdm1EhhWEY0263++j5qyxbz6jzhWVZofa+7d+Hbrcbyn84HCYa7/bix5T5qtWqer1eMIbMdd2FHiSf67oLvWrlcjnoQnVdN3Rnkmmaoe+5XE6u64Yiez+a3pZlZczK5/OhMtetV1yO4yz852Kapkaj0co7tjzPU71e1+XlZTDt6upKruvGynOTdZY+9UTl8/lQ2svLy5Vd3ptsq21t39l6+zbd5ttsi2dnZwtlzV7GGI1GoR6TVdti03pZlqXRaCTHcULLRbm9vVWn01Gn09H19bUsy9JgMAi267o6GoYhx3FkWZby+byazebKNryrdV7lseciz/PUarVC/8X7x8s6jzlm/fLjHjOvYV/OS3K8bcLzvJ3W35fL5SLHn21r/rqy5833xO3i96Hb7QaxhmmaKhQKsev8Ki5fSp82TD6f1/X1tSqVyspr+rZtyzCM0AExHA6DHeR3F/tdk6PRaKHRzB8shmFs3LCWiSpj1W2769Yrrtvb28iTgX8JZVk38+3trQzDCB0U/rb0u3vX5Zl0nZfx6+E4TmS5m2yrbW3fKJtucz/NrE3bon/y8k9Gsz+I82XE2Rab1qtSqejq6kr5fH7lZY1CobDyksEmdVzXhne1zss89lzkb4NNxG2Tccpfd8y8hn05L8nxtomn+I2StDbPx87fhcf8PpRKJbXbbb1580b5fF7n5+exh/ZIrygokz71lrXbbVUqlZUnIv8GgNmT/ezfjuOo0Wjo9PRUZ2dnO7tZYFsHn2/desWt06Z3rK5aLmt3wSbdVv52eez2XVWfNPlt8fz8PAiICoVC0ANtWVZoXXexLWbrcHJyomazudBbkUScOs6fJ9a14V2t8zLbOBdtemfZNtrktrbZS9iXUeIeb7usQ1zL8vW35WPnJ7FqPZ+i3fb7/aAn2e89ixuYvZrLl9Kn7mDHcdTr9VZ2J0ZdApM+7QjP83RycqLLy8sguJu9JLpNs5dotmHVesXlXwKIysd1XRWLxZXlR5Xld6Nvkuem/H257DJN0m3lOM5Wtu8yT7195vltsVQqqdfrybZt5fP54L/C+V6TXWwLvw6zN+485lb1Teq4qg3vcp2jbONctKzOcWyjTW5rmz33fblM3ONtl3WIyzRNGYYRud0sy3r0/CRWrWecnrfH/D74N47k83nVajUNBgNdXV3FrPkrCMr8uy6kT/8pWZalq6urlT1llmWpUCgs3PZ7fX0d9IjM7ix/J687ga4zP9YizriOJGWsWq8kdcrn87IsK9R1O/ujvSqvUqkU3CHj1/n6+nrjPOOeJB3HCaVtNBornwO2bltFbZdNtm9cm26fKI9pi/4wAP+48rfffJ6bbIv5PFYdD9VqVRcXF496rMCmx8OyNrzrdZ63jXORaZqqVCqhOxA9z1s4XqJs45jd1jHz3PflqjrGOd5WLR+3DkkCzmWBzeXlZag99Hq90GXnx85fZtX5ajZ48v7/Zf75dd3m78NsYDZbv9hi3xLwzAyHw2mlUplKmlYqleDOitm7a/y7eAzDCJ4OPXs3j39X0uwy/vRarTbt9/vTfr8/HQ6HwZ0Yg8FgWiqVppKCu8L8MvL5/Nq7SPy8/bs1ovJbVYZlWcEdRn6aWq0Wa73i1mk+n3a7HborKE5+zWZz4S6VVXk+Zp39O3P8O3yazWbojr355aLqE7Wt1m2XuNt3mfm7e5Jun223RV+z2QzdpdVsNkN3LkXVd3ZbJKnXsjr4x9y84XC48piOW8d+vz+1LGtqGEbk+sVpw9te52V138a5yF8XP598Ph/7qf6bHLNR6zy/zV7bvlwmzvEWVadldXjMecHfJ/l8Pjhfzqf3t2W32438XXjs/GVWna9m8yyVSlPTNEPtY5u/D/6x4E+L025n7U2n02n8EA54fvxn0QwGg7Srkki5XNb5+fnWHzL5Eniet/Y5gwCwTtZ+H1785UvgOfG71/2/N70z7iWavbzgX2ICgJeEoAzIkEajEbzrzXXdRM+3een8p3FLT/suOgB4KgRleNFs21az2ZTjOKEBvVlVrVZ1enoavAqEnrL/5QernU6HS7oAHi2Lvw+MKQMAAMgAesoAAAAygKAMAAAgA1J7zZL/Qk//4W6rXn20Kq3/KgNJurm50cePHxdeUhu1XJLyAQAAdi21oKxcLgfPBXFdVxcXF8HLYJOktW07eKdUq9XSyclJkHbVcknKn/e3v/1N//M//6Pf/e532tvb22T1AQBARkynU/3222/6/e9/r7/7uxQvIsZ+zOwWDYfDaT6fD00zDCNx2sFgEFpuOBxOJU2Hw+HK5ZKUH+Xu7m4qiQ8fPnz48OHzgj53d3exY4FdSKWnzLbthecM5XK54KXOSdJ+/PgxmO4/XDKXy+n6+nrpcre3t7HLj/K73/1OknR3d6eDg4O16QEAQHbd39/r888/D37f05JKULbsxadRLzldl3b2eUVXV1eyLEuGYaxcLkn5kvTw8KCHh4fg+2+//SZJOjg4ICgDAOCFSHtIUqbuvkzylvr5tJ7nqdfrrR0XtqqMZfMajYYODw+Dz+effx67ngAAAHGkEpQZhrHQKzUajSLvfoybtl6vq9/vB9NXLZekfEm6vLzUZDIJPnd3d+tXEgAAIIFUgrJlLxKOes9fnLStVkv1el2macrzPHmet3K5JOVL0v7+fnCpkkuWAABgF1IJykzTDH33X7w8++wx13Vjpe31esrn80FAdn19LcMwVi63Lk8AAICnltq7L13XVbvdVrFY1M3NjS4vL4OgqFwuq1gsBs8fW5bWdV0dHR2F8jUMQ+PxeG0Zq+atc39/r8PDQ00mE3rNAAB45rLyu84LyTeQlZ0HAAAeLyu/65m6+xIAAOC1IigDAADIAIIyAACADEjtheSI9sX7H9KuAjLil2+/SrsKAIAnRE8ZAABABhCUAQAAZABBGQAAQAYQlAEAAGQAQRkAAEAGEJQBAABkAEEZAABABhCUAQAAZABBGQAAQAYQlAEAAGQAQRkAAEAGEJQBAABkAEEZAABABhCUAQAAZABBGQAAQAYQlAEAAGQAQRkAAEAGpBaUua6rVqulXq+nVqslz/M2Tus4jo6PjxeW6/V68jwvMm/HceQ4TpC//zcAAEAaPkur4HK5rMFgIOlTUHRxcaFut5s4ba/Xk2makUFVuVxemNZsNlWr1dRut9XpdCRJlmUtLRsAAOAppBKUua4b+m6apmzb3ihtqVSKXM7zPHW73dD8VqulWq0mSTo+PtZ4PJYkGYaReB0AAAC2KZXLl7ZtK5fLhablcrnI3q4kaefNBmS9Xm8hgDMMg4AMAABkQio9ZcvGj41Go0elnTUbbHmep9FoJNM0Q9N6vZ4k6ebmRtVqNTR/1sPDgx4eHoLv9/f3K8sGAABIKrUxZVFWDfZ/TNp6va5msxmaVqlUgsDNNE2dnp5qOBxGLt9oNPThw4fY5QEAACSVyuVLwzAWerpGo1HkpcQkaaN4nifbthfSz45VM01TrusujF/zXV5eajKZBJ+7u7tYZQMAAMSVSlBmWVbk9EKh8Ki0UW5vbxcCMsdxdHJyspB2fuyab39/XwcHB6EPAADANqUSlM2P3XJdV4VCIQieHMcJeq3WpZ217Hlk88GWaZqhy5m2batUKjHoHwAApCa1MWXdblf1el3FYlE3Nzeh54Q1Gg0Vi8Xg8RWr0tq2rX6/H1pu/i7L+cDOMAwVCgW1Wi0ZhqHhcMhzygAAQKr2ptPpNO1KPDf39/c6PDzUZDLZ+qXML97/sNX88Hz98u1XaVcBAF6FXf6uJ8G7LwEAADKAoAwAACADCMoAAAAygKAMAAAgAwjKAAAAMoCgDAAAIAMIygAAADKAoAwAACADCMoAAAAygKAMAAAgAwjKAAAAMoCgDAAAIAMIygAAADKAoAwAACADCMoAAAAygKAMAAAgAwjKAAAAMoCgDAAAIAMIygAAADKAoAwAACADCMoAAAAy4LO0CnZdV71eT6ZpynVdVSoVGYaxUVrHcXRxcaHBYBBaznEcSVI+n5fruvI8T/l8PnH5AAAAu5ZaUFYul4MgynVdXVxcqNvtJk7rB1Z+ADar3W6r0+lIkizLCuWfpHwAAIBdSyUoc1039N00Tdm2vVHaUqm0tJzj42ONx2NJCvWCJSkfAADgKaQypsy2beVyudC0XC4X2duVJG0UwzAWLks+Nk8AAIBtS6WnzPO8yOmj0ehRaaOW7fV6kqSbmxtVq1WZppk4z4eHBz08PATf7+/v15YNAACQRGpjyqIsC5Y2TTs7eN80TZ2enmo4HCbOs9Fo6MOHD7HrBgAAkFQqly8Nw1jolRqNRpF3PyZJO2927Jh/l6XruonzvLy81GQyCT53d3drywYAAEgilaDMsqzI6YVC4VFpZzmOo5OTk4XpuVwucZ77+/s6ODgIfQAAALYplaDMNM3Qd9d1VSgUgp4qx3GCXq51aWfNXn40TVPNZjP4btu2SqWSDMNIlCcAAMBTSG1MWbfbVb1eV7FY1M3NTegZYY1GQ8ViUbVabW1a27bV7/dDy/nBV6FQUKvVkmEYGg6HoeVW5QkAAPDU9qbT6TTtSjw39/f3Ojw81GQy2fqlzC/e/7DV/PB8/fLtV2lXAQBehV3+rifBuy8BAAAygKAMAAAgAwjKAAAAMoCgDAAAIAMIygAAADKAoAwAACADCMoAAAAygKAMAAAgAwjKAAAAMoCgDAAAIAMIygAAADKAoAwAACADCMoAAAAygKAMAAAgAwjKAAAAMoCgDAAAIAMIygAAADKAoAwAACADCMoAAAAygKAMAAAgAwjKAAAAMuCztAp2XVe9Xk+macp1XVUqFRmGsVFax3F0cXGhwWAQWs5xHNm2LUm6ubnRx48fg+Ucx5Ek5fN5ua4rz/OUz+e3vp4AAABxpBaUlcvlIIhyXVcXFxfqdruJ0/rBmh9kzbJtW7VaTZLUarV0cnIS5NNut9XpdCRJlmUtLRsAAOAppHL50nXd0HfTNIMeraRpS6VSZA+X4zhqNBqhdI7jBPkdHx9rPB5rPB6r3+8v7aUDAAB4CqkEZbZtK5fLhablcrmlvV1x087K5/P6+PFj8N3zvGBZn2EYBGMAACATUrl86QdI80aj0aPSziuVSsHfV1dXsiwrCMI8z1Ov15P0abxZtVqVaZpr8wQAANiF1MaURVkWgG0jba/XC90IMHuzgGmaOj091XA4jFz+4eFBDw8Pwff7+/vYZQMAAMSRyuVLwzAWerpGo1HkpcQkaZep1+sL48Zmx6r5d3XOj1/zNRoNHR4eBp/PP/88dtkAAABxpBKUWZYVOb1QKDwqbZRWq6V6vS7TNOV5njzPk+M4Ojk5WUg7P3bNd3l5qclkEnzu7u5ilQ0AABBXKkHZ/Ngt13VVKBRCzxDze63WpZ01f0mz1+spn88HAdn19bUMw5Bpmmo2m0E627ZVKpWW9r7t7+/r4OAg9AEAANim1MaUdbtd1et1FYtF3dzchJ4T1mg0VCwWg2eMrUpr27b6/X5ouVKpJNd1VS6XQ2UahhGMJSsUCmq1WjIMQ8PhkOeUAQCAVO1Np9Np2pV4bu7v73V4eKjJZLL1XrMv3v+w1fzwfP3y7VdpVwEAXoVd/q4nwbsvAQAAMiDx5ctffvlF3W5X/X5f4/E4mJ7L5XR6eqpSqaQvvvhim3UEAAB48RIFZe/fv9fe3p7Ozs70r//6rwvzf/rpJ3333Xfa29sLveIIAAAAq8UOyv74xz/q8vJSh4eHS9O8e/dO796902Qy0eXlJYEZAABATLGDsqiesWUODw8JyAAAABLYeKD/+/fv9f3332symegf//EfdX5+rj//+c/brBsAAMCrsXFQViwW9c0336jT6ej4+FhXV1f69ddft1k3AACAV2PjoOzNmzeSpOvra52fn0ta/poiAAAArLbxE/2Hw6Gm06mGw6H+8Ic/6Oeffw49IgMAAADxbdxTdnZ2JsdxNBgMNJlM1G63F949CQAAgHhi9ZRNJhONx+PQQ2EPDw9Dd2R+++23oWXu7+8liZd3AwAAxBCrp+zw8FD9fj/23ZV/+tOfdH19TUAGAAAQU+wxZRcXF/rpp590dnamo6MjFYtFmaYpwzDkeZ5c19Vf/vIX/fzzz6pWq/r66693WW8AAIAXJdFA/3fv3un6+lqTyUTX19f6y1/+Is/zZBiGjo6OVK1W9eWXX+6qrgAAAC/WRndfHh4e6uLiYtt1AQAAeLU2vvsSAAAA20NQBgAAkAEEZQAAABlAUAYAAJABjwrK/vjHPwbvvfzxxx+DB8YCAAAgmY2Dsvfv38swDFmWJUk6OTmRbdtbqxgAAMBrsvELyYvFor7++mv9+OOPGy3vuq56vZ5M05TruqpUKjIMY6O0juPo4uJCg8Eg9nJJygcAANi1jYOyn3/+WZK0t7cXTLu5udE//dM/xVq+XC4HQZTrurq4uFC3202c1g+sHMdJtFyS8gEAAHZt46Ds3bt3KhQKevv2rfr9vmzbVrPZjLWs67qh76ZpLr30uS5tqVRKvFyS8gEAAJ7CxmPKTk5O1O129e7dO02nU3U6Hf3DP/xDrGVt21YulwtNy+Vykb1dSdLGXW7TPAEAAHZl454ySfryyy/17bffBt/v7+91cHCwdjnP8yKnj0ajR6WNu9ymeQIAAOzKo4Ky+/v7UCDTbDb1H//xHxvntyxYemzauMstm/fw8KCHh4fgO4/+AAAA27ZxUPbP//zPsm07dMfizz//HCsoMwxjoVdqNBpF3v2YJG3c5ZLm2Wg09OHDh5XlAQAAPMbGY8qOjo703//937q9vQ0+s5cyV/GfbTavUCg8Km3c5ZLmeXl5qclkEnzu7u5Wlg0AAJDUxj1lUYHN6elprGVN0wx9d11XhUIh6KlyHEeGYcg0zbVpZ3meF0xftdz8sqvylKT9/X3t7+/HWjcAAIBNbByUvXnzRv/+7/8u0zRlGIY8z9PV1ZWurq5iLd/tdlWv11UsFnVzcxN6Rlij0VCxWFStVlub1rZt9fv90HL+YzJWLbdqHgAAwFPbm06n000WPDs7C/VMSdJPP/2k//qv/9pW3TLr/v5eh4eHmkwmse42TeKL9z9sNT88X798+1XaVQCAV2GXv+tJbNxTdnp6qouLi9C0P/3pT4+uEAAAwGv0qIH+caYBAABgvY17yobDodrttorFoiRpOp3q+vpaNzc3W6scAADAa7FxT1m73daXX36p6XQqf1jahsPTAAAAXr2Ne8qazaZOTk5C05Y9/wsAAACrPeqF5PPevHnzqMoAAAC8VrF7yv785z/LsqzgVtHvv/8+NN/zPPX7ff3nf/7ndmsIAADwCsTuKfu3f/s33d7eBt+/++47jcfj4DOdTvXrr7/upJIAAAAvXeyestmATJI+fvyod+/ehaYxpgwAAGAzsYOyv/71r3JdV6PRSGdnZwsBmaTIaQAAAFgv9uXLcrks0zT1zTffpPoKAgAAgJcodlD29ddf6w9/+MPKNH/9618fWR0AAIDXKXZQ9vd///dr08yPOwMAAEA8sceUfffddxoMBivT2Latb7755tGVAgAAeG0SPdGfR14Ar8sX739IuwrIgF++/SrtKgCvQuygrFqt6uLiYmWajx8/PrpCAAAAr1HsMWWTyWRtGtM0H1UZAACA1yp2UPbdd9/pl19+WZkm6n2YAAAAWC92UNZutzUYDPT999/r/v5+l3UCAAB4dWKPKaMXDAAAYHdi95QBAABgdwjKAAAAMiDRc8q2yXVd9Xo9maYp13VVqVRkGEbitKvm9Xo9WZYlSQt5O44jScrn83JdV57nKZ/P72JVAQAA1kotKCuXy8EbAlzX1cXFhbrdbuK06+bNazabqtVqarfb6nQ6kiTLspaWDQAA8BRSCcpc1w19N01Ttm0nTrtqnud56na7KpVKwfxWq6VarSZJOj4+1ng8lrTYiwYAAPDUUhlTZtu2crlcaFoulwsuKcZNuy6f2YCs1+uFvkufgjECMgAAkAWp9JR5nhc5fTQaJUq7at7s+DDP8zQajUJvHPA8T71eT5J0c3OjarW69I0EDw8Penh4CL7znDYAALBtqY0pi7IsyEqadn5evV5Xs9kMTZu9IcA0TZ2enmo4HEbm12g09OHDh9h1AwAASCqVy5eGYSz0io1Go8hLiavSxsnH8zzZtr2Q9+x4NP/Ozfkxar7Ly0tNJpPgc3d3F2MtAQAA4kslKPMfUzGvUCgkShsnn9vb28jHYUS9oWB+fJpvf39fBwcHoQ8AAMA2pXL5cn7sluu6KhQKQfDkOI4Mw5BpmivTRvV+zebj5zUfbJmmGbqcadu2SqUSg/4BAEBqUhtT1u12Va/XVSwWdXNzE3pOWKPRULFYDB5fsSrtqnm++cDOMAwVCgW1Wi0ZhqHhcMhzygAAQKr2ptPpNO1KPDf39/c6PDzUZDLZ+qXML97/sNX88Hz98u1XaVeB9ghJ2WiLwC7t8nc9Cd59CQAAkAEEZQAAABlAUAYAAJABBGUAAAAZkKkn+gMAEIWbTiC9/JtO6CkDAADIAIIyAACADCAoAwAAyACCMgAAgAwgKAMAAMgAgjIAAIAMICgDAADIAIIyAACADCAoAwAAyACCMgAAgAwgKAMAAMgAgjIAAIAMICgDAADIAIIyAACADCAoAwAAyACCMgAAgAz4LK2CXddVr9eTaZpyXVeVSkWGYSROu2qe4ziSpHw+L9d15Xme8vl84vIBAAB2LbWgrFwuazAYSPoUIF1cXKjb7SZOu2peu91Wp9ORJFmWFco/SfkAAAC7lkpQ5rpu6LtpmrJtO3HadfkcHx9rPB5LUqgXLEn5AAAATyGVMWW2bSuXy4Wm5XK54HJj3LRx8jEMY+GyZJLyAQAAnkIqPWWe50VOH41GidKuy8fzPPV6PUnSzc2NqtWqTNNMVL4kPTw86OHhIfh+f38fmQ4AAGBTqY0pi7IsWEqa1p83O3jfNE2dnp5qOBwmzrPRaOjDhw+x6wYAAJBUKpcvDcNY6JUajUaRdz+uSrsun9mxY/5dlq7rJipfki4vLzWZTILP3d1dzDUFAACIJ5WgzLKsyOmFQiFR2lXzHMfRycnJwrxcLpeofEna39/XwcFB6AMAALBNqVy+NE0z9N11XRUKhdDzxQzDkGmaK9PO92zNzjNNU81mM5hn27ZKpdLa5QAAANKQ2piybrerer2uYrGom5ub0DPCGo2GisWiarXa2rTL5hmGoUKhoFarJcMwNBwOYy0HAACQhr3pdDpNuxLPzf39vQ4PDzWZTLZ+KfOL9z9sNT88X798+1XaVaA9QhJtEdmxq7a4y9/1JHj3JQAAQAYQlAEAAGQAQRkAAEAGEJQBAABkAEEZAABABhCUAQAAZABBGQAAQAYQlAEAAGQAQRkAAEAGEJQBAABkAEEZAABABhCUAQAAZABBGQAAQAYQlAEAAGQAQRkAAEAGEJQBAABkAEEZAABABhCUAQAAZABBGQAAQAYQlAEAAGQAQRkAAEAGfJZWwa7rqtfryTRNua6rSqUiwzASp101z3Ec2bYtSbq5udHHjx9D8yQpn8/LdV15nqd8Pr/LVQYAAFgqtaCsXC5rMBhI+hRYXVxcqNvtJk67ap5t26rVapKkVqulk5OTIG273Van05EkWZa1tGwAAICnkMrlS9d1Q99N0wx6tJKkXTXPcRw1Go1gXqlUkuM4wTLHx8caj8caj8fq9/tLe+kAAACeQipBmW3byuVyoWm5XC64pBg37ap5+XxeHz9+DKZ7nhfM9xmGQTAGAAAyIZXLl36ANG80GiVKuy6fUqkUTLu6upJlWUEQ5nmeer2epE/jzarVqkzTjMzv4eFBDw8Pwff7+/vIdAAAAJtKbUxZlGVBVtK08/P8AMwfTyYpdEOAaZo6PT3VcDiMzK/RaOjDhw+x6wYAAJBUKpcvDcNY6BUbjUaRlxJXpY2bT71eXxg3Njsezb9zc36Mmu/y8lKTyST43N3dxVhLAACA+FIJyizLipxeKBQSpY2TT6vVUr1el2ma8jxPnufJcRydnJwsLDc/Ps23v7+vg4OD0AcAAGCbUgnK5sduua6rQqEQeoaY32u1Ku26fHq9nvL5fBCQXV9fB8s1m81gOdu2VSqVGPQPAABSk9qYsm63q3q9rmKxqJubm9BzwhqNhorFYvCMsVVpl81zXVflcjlUpmEYwViyQqGgVqslwzA0HA55ThkAAEjV3nQ6naZdiefm/v5eh4eHmkwmW7+U+cX7H7aaH56vX779Ku0q0B4hibaI7NhVW9zl73oSvPsSAAAgAwjKAAAAMoCgDAAAIAMIygAAADKAoAwAACADCMoAAAAygKAMAAAgAwjKAAAAMoCgDAAAIAMIygAAADKAoAwAACADCMoAAAAygKAMAAAgAwjKAAAAMoCgDAAAIAMIygAAADKAoAwAACADCMoAAAAygKAMAAAgAwjKAAAAMoCgDAAAIAM+S6tg13XV6/VkmqZc11WlUpFhGInT7mIeAADAU0stKCuXyxoMBpI+BUgXFxfqdruJ0+5iHgAAwFNL5fKl67qh76ZpyrbtxGl3MQ8AACANqQRltm0rl8uFpuVyOTmOkyjtLuYBAACkIZXLl57nRU4fjUaJ0u5iXpSHhwc9PDwE3yeTiSTp/v4+Mv1j/O3h/249TzxPu2hfSdEeIdEWkR27aot+vtPpdCf5x5XamLIoy4KlpGm3Pa/RaOjDhw8L0z///POleQGPdfh/0q4B8AltEVmx67b422+/6fDwcLeFrJBKUGYYxkKv1Gg0irz7cVXaXcyLcnl5qX/5l38Jvv/tb3/TaDTS27dvtbe3t251kdD9/b0+//xz3d3d6eDgIO3q4BWjLSIraIu7NZ1O9dtvv+n3v/99qvVIJSizLEvtdntheqFQSJTWNM2tz4uyv7+v/f390DQen7F7BwcHnHyQCbRFZAVtcXfS7CHzpRKUmaYZ+u66rgqFQhDoOI4jwzBkmubKtPOB0TbmAQAApCG1MWXdblf1el3FYlE3NzehZ4Q1Gg0Vi0XVarW1aXcxDwAA4KntTdO+1QCY8/DwoEajocvLy4XLxsBToi0iK2iLrwNBGQAAQAbwQnIAAIAMICgDAADIAIKyF8RxHFWrVe3t7aler6vT6aher6tcLm/13Z6dTkdv3rx51q+lOj4+Vq/XC753Oh2dnp5utOxL4beXTqejXq8n27bV6XQW3hWbJbZt6/j4WJ1O50nKe077njb+v2zbDp0bNzkfPuV5L61zLG0mA6Z4Ucbj8VTSdDweL0wbDAZbK8eyrK3lN1vXp9Lv90PlDofDab/f32jZl8CyrGm73Q5NGwwGU0nT4XCYUq3iqdVqC3Xflee072njYcPhcOHcmNQ2z3tZKstHm0lfpl6zhN3wn/l2dXWlfD6fdnVCXNeVbduqVCpPWq5lWaHvUc/Ei7vsc9dqtSRpYR/k8/kn3y+bePv27ZOV9Zz2PW08LJfLpV2FzKPNpI/Ll6/EaDTS0dFR2tVY0Gw2067Cq9doNFStViPnlcvlJ64NALxeBGUvnOd5qtfrsixLlUpFtm3r6OhInU5HnU5Hx8fHkj6NR2u1Wur1emq1WgvjiBzHUb1eV6/XU6/XC7071B/X4/e49Ho9HR0dhcZtuK4bLN/pdOR5nmzb1u3trfr9/sqxS7ZtB3Wr1+uhOlWr1aBOvV5PjuOsrY/jOKFxSJ7nqVqthoLWZdtjftnZMU3+GKznFMi4rivP85b+N2xZVjBv2TZZtg1c1w2WmQ36/Dbo77tOp6NqtSrP80Lz59vosnYgKWhPUds/arl1+83zvGCev9z8vt9kmyxDG396cdZr1XnPz2N+v/V6PR0fHwfbutVq6ejoKNhXq/b1qrKi6k+beYHSvn6K7fLHjzWbzWm32512u92FMUGVSmVaqVSm0+k0mG9ZVihNPp8PxgeMx+OpaZoL82fHOzSbzWmz2Qy+l0qlYCyCv7yfX61WC9KuGw80HA6n+Xw++N5ut6fNZnM6Ho+nhmGExjAYhhHUaVV9/Pnz5RqGEZS5anvML1ur1aalUin4nsZYkE3542zW1XfdNonaBrPbf3b/++ln53e73VD+UW00qh1Mp5/2x7Ltv2q5Vfut2WyG2ou/v2f3/SbbJGo708afRtR421Xrte68t6ptjcfjYHu22+2gzFX7et05dhZt5uViTNkLValUlr7L0zCMYBxOqVRSvV5fGGtmmqaur69VqVR0fX29MD/J+Izr62uZphnU5/LyMvay7XZbuVwu1Ot2c3MjwzBkWVZoHZe9UD6pdru9cnvMe/v2bWhck2EYa//LzQq/F8x13cjxhq7rKpfLrd0mUdtgtvfN3yaz+2v271KppHK5LM/zgvfTzrfRqHbgKxaLC2VJy9uPtHq/lUolHR8fyzRNnZ+fR+73TbZJVLugjadn1XqtO++taluGYejjx486Pj5Wt9sN9uGqfZ3kHEubebkIyl6puIM3t8H/ofUtCxbn0/ny+XxoEGmlUnmyRyC8BrVaTe12W6VSaWGe4ziR0+NYtp/jmm+jUe0gjk2Wy+VyGo/HchxHV1dXKpfL6vf7MWueHG38eVrVtvxAa/4Gq23ta9rMy8SYshdq3X8ks/PPz88XntvjOI7Ozs4kfRpXNP+8nPnxX4Zh6Ndffw2+27YdjBEqlUoLy0c9JyhqWlTdbNvW2dnZyjqtqo9v/vuqMme3x6plnyP/Zov5E/rsOsbZJvPWbaPZ+b1eb+E//HVtNM6zpjZdrtFoBL2HzWYzVC+/3ptskyR1pI1vV9JemnXnvVVtyx/j2O125bpu8PyuZcvEOcfOos28XPSUvSD+f/XSpx/aarW60N1s27Zs25bjODJNU5ZlBT88rVZLpmnq5uYm1OVumqa63a7q9bpOT0+DHq1Go6FmsynTNHV2dhZ6KKNlWUF3t2maarfbqtfrwWUm/z+8arWqZrOpTqcTeUu1X7f5ZQ3DiKyTb1V9PM/T1dWVcrmcSqVSZI/Msu3hb2N/WT8vvwx/cHu73U50O3na+v2+Wq2W6vW6jo6Ogksnfi9ZnG0ihbeBv5xt23JdV81mMxTgDIfD4EfBz09a3Ubn28Gysv3tv+lyb9++lW3byuVyGo1GOj8/X9j3m2yTqHZBG989P0CSPgXc5+fnkrR2vVad95btt06nE5x/pU+X1i8uLuS6rmq1WqJ9PXuOnUWbebl4ITlejNPT0+BkuYk3b95oPB5vuVaI4gd/z+E5aFlCG0dStJnnhZ4yvBibDCLtdDoaDoeqVqtbGxAL7AptHEnRZp4XxpThRfCfc9ZutxONa7AsS2/fvlWv11O73d5dBRHwL092u91n/f7Up0YbR1K0meeHy5cAAAAZQE8ZAABABhCUAQAAZABBGQAAQAYQlAEAAGQAQRmAZ8dxHFWrVe3t7aler6vT6ajVagXTnvrJ4sfHx8FT2wFgU9x9CeBZcl1XR0dHGo/HoaeWdzodFQqFjR+WGcf8k9Jt21ahUHj0+z4BvG70lAF4lvxXQc07Ozvb6IGZcbmuq+vr69C0+fd2AsAmCMoAvAiO4wQ9WLt8t57/AncA2DaCMgAvgv8CZOlTb9bx8bFarZYkqdfr6ejoKHgRs23bOj4+VqfTkW3b6nQ6KpfLofxc11W9Xlev11On05HnebJtW7e3t+r3+8HT0h3HCfLyOY6jVqulXq+nVqsl13Vjlwvg9eLdlwCeNT8Ysm1bl5eXkj5dTjw/Pw/SlEqlUNBmWZYsy1K/31e325Wk4LVP+Xxenufp9PRUg8FAhmEENxPUajVZlrXwMvXZsvxgrt/vB9OOj4/1448/ri0XwOtGUAbgWatUKjIMI3FQ8/btW719+zb4bhhGMBbt+vpapmkG48T8YC+Odru9UBfTNHV9fa1KpbKyXACvG0EZgBfBsqyt5TV/d+WyQfzz6QDgMRhTBuBZWte7ZBiGfv311+C7bduxn19WKpXkOE5omj8ebdk0P+/z8/OFtI7j6OzsLFbZAF4vesoAPDuO46jdbkuS6vW6Tk9PVSqVQmnOzs5Ur9eDAMmyrODSoud5wRgzy7KCAfvtdlumaco0TbXbbdXrdRWLxSCdJFWrVTWbTXU6HVmWJcdxdHV1pVwup1KppHw+r2azqVarJdM0dXNzo263K8MwgrSrygXwevHwWAAAgAzg8iUAAEAGEJQBAABkAEEZAABABhCUAQAAZABBGQAAQAYQlAEAAGQAQRkAAEAGEJQBAABkAEEZAABABhCUAQAAZABBGQAAQAYQlAEAAGTA/wP0092HgpE8hQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAFoCAYAAAAW+YxkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvqUlEQVR4nO3dQW/qWJ738V9GJd1VJ77cXUtXqnLmBfR14BXEmU3tpiB5AxWYdUsDN8u7GQp6Fs9uClJvIIHuXS1GuN9A5+LqN4CrpCvNrsBJSY+UTfMs7mMPBgM2gdhJvh8JKdjH5xzbx+af42N7bzqdTgUAAIBM/VPWFQAAAABBGQAAQC4QlAEAAOQAQRkAAEAOEJQBAADkAEEZAABADhCUAQAA5ABBGQAAQA4826DM8zw1Gg29fv1ah4eHK9MeHh7q9evXajQa8n3/cSqI3HBdVycnJ2vbyS71+/3Myn5OguN+b29Ph4eHarfbarfbqtVqqlQqbOcEarWaXr9+LcdxMq3Hc92X3W5XR0dHmZUfnO+yrMNT8ui/D9NnrtVqTQ3DmA6Hw9j5g8FgWi6Xp9Vq9ZFrFq/T6SxMq9fr03K5nEFtPour03MzGAympmmmWmZb26XX6y1Mm0wmK9ttnG23kzzs903rYNt27DFtmua01Wo9tFo7lYftblnWdDAYZF2N6XT6/PblaDSa1uv1VMd2EsuO/7g6bHK+C0wmk2mn05nath07v9VqTTudzrTT6cTun4fOX2aXx81Dtldaz7anLGAYhk5PT9XpdGLn561nbDAYLEw7OTnR2dlZBrX5LK5Oz02hUEi9zLa2i2EYsdOq1apM00ycz7bbSR72+7brUKvV1Gg0tprntuVhuz8FT3VfmqapWq0We9w/xLLjP64Om5zvpM+9RtfX1/J9X+PxeGF+u92WJFWrVVWrVVmWpVqttrX5q+zyuNl0e23ii0crKUO1Wk3Hx8cLgZnv+6l+9Hat2+3K87yF6bZtZ1Cbz5bV6aXb5nZxXVeu66per0emt1qtVPlss53kYb/vog7BD6Hv+1v/UdyGPGz3p+Ip70vXdVUul7daXtzxv+32ZFmWLMtaeum42Wzq559/jtTp5OQk/O196PxlntNx8yKCMsuyVCgU1O/3IwfCx48fV/6QtdttmaYpz/Nkmma4rO/76na7Mk1Tg8FAtVpNlmVJkhzHCf97u7y8lOd58jxPv/7668ofWcdxNBgM5Hle+N9CvV6X67pqNBryPE+j0WhpGePxWMPhUJ1OR91uV4VCQVdXV7q4uAjrtm69ktZpPh/p8/iP+aBimW63G/lerVbX5rnpOgfLFQoFVSoVSZ/337r9MV+f2W2VdLus274BwzDUarUiedRqNV1fX+vy8jKy/LLtk7SdbNoWTdMM8+p0OvI8T61WS4ZhqNfrqVAo6Pj4WL7vq9frhdt/2fZbV69ldWg2m/I8T71eT7Zty/M8nZycyDRNdTqdtf9kDYdDWZYV+RFfVcegVyP4LzyoX5I2vI11XndMbetc1G63ZRjGRj0CaY7ZVeWnOWakp7svkwSR/X4/1fEmKfb4X9eeXNdNfF5Yx/O8pevmOI5M03zQ/GW/1Wl+OxuNhrrdrlqtlqrV6k5+HySFx6Tv+/I8L7zykcijXCTNUHCdOe56ezCWJ25MWblcjoz1sW07HANQr9eno9EonGea5nQymYTfg+vPs2MyTNNcO4ZgMBhMLctamD4cDheuZy8ro16vR9ZvPr9V65WmTuVyOVL2aDRaOsZgVqvVWqjj7H5Yleem69zr9aaSIvusXq9H9nncNl61rVZtlzTbdxXbtiN5rds+adrJJm1xfhxJ3L6c3cbrtt+6esXVIW5sR9y4k/lxSJPJZNpqtaaWZUWO1VV1DNrSYDCYDofDcF3XteFtr/Mq2zgX1ev1yHicyWQylZRoTNmmx+xs+euOmZeyL+elPd6WHf/LflMMw0h9XpgtO+7YjAspDMOY9nq9B89fZdl6xp0vbNuOtPdt/z70er1I/qPRKNV4t2c/pixQq9XU7/fDMWSe5y30IAU8z1voVatUKmEXqud5kTuTTNOMfC8UCvI8LxLZB9H0tiwrY5ZlWZEy161XUq7rLvznYpqmxuPxyju2fN9Xo9HQxcVFOO3q6kqe5yXKc5N1lj73RFmWFUl7cXGxsst7k221re07W+/Aptt8m23x9PR0oazZyxjj8TjSY7JqW2xaL9u2NR6P5bpuZLk4Hz9+VLfbVbfb1fX1tWzb1nA4DLfrujoahiHXdWXbtizLUqvVWtmGd7XOqzz0XOT7vtrtduS/+OB4Wechx2xQftJj5iXsy3lpjrdN+L6/0/oHCoVC7Pizbc1fV/a8+Z64Xfw+9Hq9MNYwTVPFYjFxnV/E5Uvp84axLEvX19eqVqsrr+k7jiPDMCIHxGg0CndQ0F0cdE2Ox+OFRjN/sBiGsXHDWiaujFW37a5br6Q+fvwYezIILqEs62b++PGjDMOIHBTBtgy6e9flmXadlwnq4bpubLmbbKttbd84m27zIM2sTdticPIKTkazP4jzZSTZFpvWq1qt6urqSpZlrbysUSwWV14y2KSO69rwrtZ5mYeei4JtsImkbTJJ+euOmZewL+elOd428Ri/UZLW5vnQ+bvwkN+HcrmsTqej169fy7IsnZ2dJR7aI72goEz63FvW6XRUrVZXnoiCGwBmT/azf7uuq2azqZOTE52enu7sZoFtHXyBdeuVtE6b3rG6arm83QWbdlsF2+Wh23dVfbIUtMWzs7MwICoWi2EPtG3bkXXdxbaYrcPx8bFardZCb0UaSeo4f55Y14Z3tc7LbONctOmdZdtok9vaZs9hX8ZJerztsg5JLcs32JYPnZ/GqvV8jHY7GAzCnuSg9yxpYPZiLl9Kn7uDXddVv99f2Z0YdwlM+rwjfN/X8fGxLi4uwuBu9pLoNs1eotmGVeuVVHAJIC4fz/NUKpVWlh9XVtCNvkmemwr25bLLNGm3leu6W9m+yzz29pkXtMVyuax+vy/HcWRZVvhf4XyvyS62RVCH2Rt3HnKr+iZ1XNWGd7nOcbZxLlpW5yS20Sa3tc2e+r5cJunxtss6JGWapgzDiN1utm0/eH4aq9YzSc/bQ34fghtHLMtSvV7XcDjU1dVVwpq/gKAsuOtC+vyfkm3burq6WtlTZtu2isXiwm2/19fXYY/I7M4KdvK6E+g682MtkozrSFPGqvVKUyfLsmTbdqTrdvZHe1Ve5XI5vEMmqPP19fXGeSY9SbquG0nbbDZXPgds3baK2y6bbN+kNt0+cR7SFoNhAMFxFWy/+Tw32Rbzeaw6Hmq1ms7Pzx/0WIFNj4dlbXjX6zxvG+ci0zRVrVYjdyD6vr9wvMTZxjG7rWPmqe/LVXVMcrytWj5pHdIEnMsCm4uLi0h76Pf7kcvOD52/zKrz1Wzw5P//y/zz67rN34fZwGy2foklviXgiRmNRtNqtTqVNK1Wq+GdFbN31wR38RiGET4devZunuCupNllgun1en06GAymg8FgOhqNwjsxhsPhtFwuTyWFd4UFZViWtfYukiDv4G6NuPxWlWHbdniHUZCmXq8nWq+kdZrPp9PpRO4KSpJfq9VauEtlVZ4PWefgzpzgDp9WqxW5Y29+ubj6xG2rddsl6fZdZv7unrTbZ9ttMdBqtSJ3abVarcidS3H1nd0Waeq1rA7BMTdvNBqtPKaT1nEwGExt254ahhG7fkna8LbXeVndt3EuCtYlyMeyrMRP9d/kmI1b5/lt9tL25TJJjre4Oi2rw0POC8E+sSwrPF/Opw+2Za/Xi/1deOj8ZVadr2bzLJfLU9M0I+1jm78PwbEQTEvSbmftTafTafIQDnh6gmfRDIfDrKuSSqVS0dnZ2dYfMvkc+L6/9jmDALBO3n4fnv3lS+ApCbrXg783vTPuOZq9vBBcYgKA54SgDMiRZrMZvuvN87xUz7d57oKncUuP+y46AHgsBGV41hzHUavVkuu6kQG9eVWr1XRychK+CoSesv8VBKvdbpdLugAeLI+/D4wpAwAAyAF6ygAAAHKAoAwAACAHMnvNUvBCz+DhbqtefbQqbfAqA0m6ubnR5eXlwktq45ZLUz4AAMCuZRaUVSqV8Lkgnufp/Pw8fBlsmrSO44TvlGq32zo+Pg7TrlouTfnz/vGPf+h//ud/9Lvf/U57e3ubrD4AAMiJ6XSq3377Tb///e/1T/+U4UXExI+Z3aLRaDS1LCsyzTCM1GmHw2FkudFoNJU0HY1GK5dLU36cT58+TSXx4cOHDx8+fJ7R59OnT4ljgV3IpKfMcZyF5wwVCoXwpc5p0l5eXobTg4dLFgoFXV9fL13u48ePicuP87vf/U6S9OnTJ+3v769NDwAA8uvu7k5v374Nf9+zkklQtuzFp3EvOV2XdvZ5RVdXV7JtW4ZhrFwuTfmSdH9/r/v7+/D7b7/9Jkna398nKAMA4JnIekhSru6+TPOW+vm0vu+r3++vHRe2qoxl85rNpg4ODsLP27dvE9cTAAAgiUyCMsMwFnqlxuNx7N2PSdM2Gg0NBoNw+qrl0pQvSRcXF7q9vQ0/nz59Wr+SAAAAKWQSlC17kXDce/6SpG2322o0GjJNU77vy/f9lculKV+SXr16FV6q5JIlAADYhUyCMtM0I9+DFy/PPnvM87xEafv9vizLCgOy6+trGYaxcrl1eQIAADy2zN596XmeOp2OSqWSbm5udHFxEQZFlUpFpVIpfP7YsrSe5+nw8DCSr2EYmkwma8tYNW+du7s7HRwc6Pb2ll4zAACeuLz8rvNC8g3kZecBAICHy8vveq7uvgQAAHipCMoAAABygKAMAAAgBwjKAAAAciCT1yxhuS/f/5h1FZATv3z3ddZVAAA8InrKAAAAcoCgDAAAIAcIygAAAHKAoAwAACAHCMoAAABygKAMAAAgBwjKAAAAcoCgDAAAIAcIygAAAHKAoAwAACAHCMoAAABygKAMAAAgBwjKAAAAcoCgDAAAIAcIygAAAHKAoAwAACAHCMoAAABygKAMAAAgBwjKAAAAciCzoMzzPLXbbfX7fbXbbfm+v3Fa13V1dHS0sFy/35fv+7F5u64r13XD/IO/AQAAsvBFVgVXKhUNh0NJn4Oi8/Nz9Xq91Gn7/b5M04wNqiqVysK0Vquler2uTqejbrcrSbJte2nZAAAAjyGToMzzvMh30zTlOM5Gacvlcuxyvu+r1+tF5rfbbdXrdUnS0dGRJpOJJMkwjNTrAAAAsE2ZXL50HEeFQiEyrVAoxPZ2pUk7bzYg6/f7CwGcYRgEZAAAIBcy6SlbNn5sPB4/KO2s2WDL932Nx2OZphmZ1u/3JUk3Nzeq1WqR+bPu7+91f38ffr+7u1tZNgAAQFqZjSmLs2qw/0PSNhoNtVqtyLRqtRoGbqZp6uTkRKPRKHb5ZrOpDx8+JC4PAAAgrUwuXxqGsdDTNR6PYy8lpkkbx/d9OY6zkH52rJppmvI8b2H8WuDi4kK3t7fh59OnT4nKBgAASCqToMy27djpxWLxQWnjfPz4cSEgc11Xx8fHC2nnx64FXr16pf39/cgHAABgmzIJyubHbnmep2KxGAZPruuGvVbr0s5a9jyy+WDLNM3I5UzHcVQulxn0DwAAMpPZmLJer6dGo6FSqaSbm5vIc8KazaZKpVL4+IpVaR3H0WAwiCw3f5flfGBnGIaKxaLa7bYMw9BoNOI5ZQAAIFN70+l0mnUlnpq7uzsdHBzo9vZ265cyv3z/41bzw9P1y3dfZ10FAHgRdvm7ngbvvgQAAMgBgjIAAIAcICgDAADIAYIyAACAHCAoAwAAyAGCMgAAgBwgKAMAAMgBgjIAAIAcICgDAADIAYIyAACAHCAoAwAAyAGCMgAAgBwgKAMAAMgBgjIAAIAcICgDAADIAYIyAACAHCAoAwAAyAGCMgAAgBwgKAMAAMgBgjIAAIAcICgDAADIAYIyAACAHCAoAwAAyIEvsirY8zz1+32ZpinP81StVmUYxkZpXdfV+fm5hsNhZDnXdSVJlmXJ8zz5vi/LslKXDwAAsGuZBWWVSiUMojzP0/n5uXq9Xuq0QWAVBGCzOp2Out2uJMm27Uj+acoHAADYtUyCMs/zIt9N05TjOBulLZfLS8s5OjrSZDKRpEgvWJryAQAAHkMmY8ocx1GhUIhMKxQKsb1dadLGMQxj4bLkQ/MEAADYtkx6ynzfj50+Ho8flDZu2X6/L0m6ublRrVaTaZoPyhMAAGAXMhtTFmdZsLRp2tnB+6Zp6uTkRKPRKHWe9/f3ur+/D7/f3d0lricAAEASmVy+NAxjoVdqPB7H3v2YJu282bFjwV2WnuelzrPZbOrg4CD8vH37dm3ZAAAAaWQSlNm2HTu9WCw+KO0s13V1fHy8ML1QKKTO8+LiQre3t+Hn06dPK8sGAABIK5PLl6ZpRr57nqdisRj2VLmuK8MwZJrm2rSzfN+PXK5stVrhPMdxVC6XYwf+r8pTkl69eqVXr16lWkcAAIA0MhtT1uv11Gg0VCqVdHNzE3lGWLPZVKlUUr1eX5vWcRwNBoPIckHwVSwW1W63ZRiGRqNRZLlVeQIAADy2vel0Os26Ek/N3d2dDg4OdHt7q/39/a3m/eX7H7eaH56uX777OusqAMCLsMvf9TR49yUAAEAOEJQBAADkAEEZAABADhCUAQAA5ABBGQAAQA4QlAEAAOQAQRkAAEAOEJQBAADkAEEZAABADhCUAQAA5ABBGQAAQA4QlAEAAOQAQRkAAEAOEJQBAADkAEEZAABADhCUAQAA5ABBGQAAQA4QlAEAAOQAQRkAAEAOEJQBAADkAEEZAABADhCUAQAA5ABBGQAAQA4QlAEAAOTAF1kV7Hme+v2+TNOU53mqVqsyDGOjtK7r6vz8XMPhMLKc67pyHEeSdHNzo8vLy3A513UlSZZlyfM8+b4vy7K2vp4AAABJZBaUVSqVMIjyPE/n5+fq9Xqp0wbBWhBkzXIcR/V6XZLUbrd1fHwc5tPpdNTtdiVJtm0vLRsAAOAxZHL50vO8yHfTNMMerbRpy+VybA+X67pqNpuRdK7rhvkdHR1pMploMploMBgs7aUDAAB4DJkEZY7jqFAoRKYVCoWlvV1J086yLEuXl5fhd9/3w2UDhmEQjAEAgFzI5PJlECDNG4/HD0o7r1wuh39fXV3Jtu0wCPN9X/1+X9Ln8Wa1Wk2macbmc39/r/v7+/D73d3d2rIBAADSyGxMWZxlAdg20vb7/ciNALM3C5imqZOTE41Go9jlm82mPnz4kLg8AACAtDK5fGkYxkJP13g8jr2UmCbtMo1GY2Hc2OxYteCuzvnxa4GLiwvd3t6Gn0+fPiUuGwAAIIlMgjLbtmOnF4vFB6WN02631Wg0ZJqmfN+X7/tyXVfHx8cLaefHrgVevXql/f39yAcAAGCbMgnK5sdueZ6nYrEYeYZY0Gu1Lu2s+Uua/X5flmWFAdn19bUMw5Bpmmq1WmE6x3FULpcZ9A8AADKT2ZiyXq+nRqOhUqmkm5ubyHPCms2mSqVS+IyxVWkdx9FgMIgsVy6X5XmeKpVKpEzDMMKxZMViUe12W4ZhaDQa8ZwyAACQqb3pdDrNuhJPzd3dnQ4ODnR7e7v1S5lfvv9xq/nh6frlu6+zrgIAvAi7/F1Pg3dfAgAA5ABBGQAAQA4QlAEAAORA6oH+v/zyi3q9ngaDgSaTSTi9UCjo5ORE5XJZX3755TbrCAAA8OylCsrev3+vvb09nZ6e6t///d8X5v/000/6/vvvtbe3F3kZOAAAAFZLHJT96U9/0sXFhQ4ODpameffund69e6fb21tdXFwQmAEAACSUOCiL6xlb5uDggIAMAAAghY0H+r9//14//PCDbm9v9S//8i86OzvTX/7yl23WDQAA4MXYOCgrlUr69ttv1e12dXR0pKurK/3666/brBsAAMCLsXFQ9vr1a0nS9fW1zs7OJC1/oTcAAABW2/jdl6PRSNPpVKPRSH/4wx/0888/Rx6RAQAAgOQ27ik7PT2V67oaDoe6vb1Vp9OR7/tbrBoAAMDLkain7Pb2VpPJJPJQ2IODg8gdmd99911kmbu7O0nK9MWeAAAAT0WinrKDgwMNBoPEd1f++c9/1vX1NQEZAABAQonHlJ2fn+unn37S6empDg8PVSqVZJqmDMOQ7/vyPE9/+9vf9PPPP6tWq+mbb77ZZb0BAACelVQD/d+9e6fr62vd3t7q+vpaf/vb3+T7vgzD0OHhoWq1mr766qtd1RUAAODZ2ujuy4ODA52fn2+7LgAAAC/WxndfAgAAYHsIygAAAHKAoAwAACAHCMoAAABy4EFB2Z/+9KfwvZd//etfwwfGAgAAIJ2Ng7L379/LMAzZti1JOj4+luM4W6sYAADAS7JxUFYqlXR+fi7TNLdZHwAAgBdpo+eUSdLPP/8sSdrb2wun3dzc6F//9V8TLe95nvr9vkzTlOd5qlarMgxjo7Su6+r8/FzD4TDxcmnKBwAA2LWNg7J3796pWCzqzZs3GgwGchxHrVYr8fKVSiUMojzP0/n5uXq9Xuq0QWDlum6q5dKUDwAAsGsbB2XHx8fq9XrqdDqaTqfqdrt69+5domU9z4t8N01z6Xi0dWnL5XLq5dKUDwAA8Bg2Dsok6auvvtJ3330Xfr+7u9P+/v7a5RzHUaFQiEwrFApyXVeWZW2cNulyHz9+3ChPAACAXXlQUHZ3d6fxeBx+b7Va+q//+q+1y/m+Hzt9Nq9N0iZdLm2e9/f3ur+/D7/z6A8AALBtGwdl//Zv/ybHcSKD43/++edEQdkyy4Klh6ZNutyyec1mUx8+fNioPAAAgCQ2DsoODw/1/fffR6ZdXl4mWtYwjIVeqfF4HHv3Y5q0SZdLm+fFxYX++Mc/ht/v7u709u3bleUDAACksfFzyoKHxs46OTnZeFlJKhaLD0qbdLm0eb569Ur7+/uRDwAAwDZt3FP2+vVr/ed//qdM05RhGPJ9X1dXV7q6ulq77PwDZz3PU7FYDHuqXNeVYRgyTXNt2lm+74fTVy03v+yqPAEAAB7DxkFZvV6PBEGS9NNPPyVevtfrqdFoqFQq6ebmJvKMsGazqVKppHq9vjat4zgaDAaR5YLHZKxabtU8AACAx7Y3nU6nmyx4eXmp8/PzyLQ///nP+uabb7ZSsTy7u7vTwcGBbm9vt34p88v3P241Pzxdv3z3ddZVAIAXYZe/62lsPKbs8PAw0TQAAACst/Hly9FopE6no1KpJEmaTqe6vr7Wzc3N1ioHAADwUmzcU9bpdPTVV19pOp0quAK64ZVQAACAF2/jnrJWq6Xj4+PItGWPmgAAAMBqG/eUzQdk0ufHZAAAACC9xD1lf/nLX2TbdnhXwg8//BCZ7/u+BoOB/vu//3u7NQQAAHgBEveU/cd//Ic+fvwYfv/+++81mUzCz3Q61a+//rqTSgIAADx3iXvKZgMy6fNzyt69exeZxpgyAACAzSQOyv7+97/L8zyNx2Odnp4uBGSSYqcBAABgvcSXLyuVikzT1LfffssLuQEAALYscVD2zTff6A9/+MPKNH//+98fWB0AAICXKXFQ9s///M9r08yPOwMAAEAyiceUff/99xoOhyvTOI6jb7/99sGVAgAAeGlSPdGfR14AAADsRuKgrFar6fz8fGWay8vLB1cIAADgJUoclN3e3q5NY5rmgyoDIF++fP9j1lVADvzy3ddZVwF4ERIP9P/+++/1yy+/rEwT9z5MAAAArJc4KOt0OhoOh/rhhx90d3e3yzoBAAC8OIkvX9ILBgAAsDuJe8oAAACwOwRlAAAAOUBQBgAAkAMEZQAAADmQ6on+2+R5nvr9vkzTlOd5qlarMgwjddpV8/r9vmzblqSFvF3XlSRZliXP8+T7vizL2sWqAgAArJVZUFapVMJ3aXqep/Pzc/V6vdRp182b12q1VK/X1el01O12JUm2bS8tGwAA4DFkEpR5nhf5bpqmHMdJnXbVPN/31ev1VC6Xw/ntdlv1el2SdHR0pMlkImmxFw0AAOCxZTKmzHEcFQqFyLRCoRBeUkyadl0+swFZv9+PfJc+B2MEZAAAIA8y6SnzfT92+ng8TpV21bzZ8WG+72s8Hkfezen7vvr9viTp5uZGtVpt6bs77+/vdX9/H37njQYAAGDbMhtTFmdZkJU27fy8RqOhVqsVmTZ7Q4Bpmjo5OdFoNIrNr9ls6sOHD4nrBgAAkFYmly8Nw1joFRuPx7GXElelTZKP7/tyHGch79nxaMGdm/Nj1AIXFxe6vb0NP58+fUqwlgAAAMllEpQFj6mYVywWU6VNks/Hjx9jH4cR9y7P+fFpgVevXml/fz/yAQAA2KZMLl/Oj93yPE/FYjEMnlzXlWEYMk1zZdq43q/ZfIK85oMt0zQjlzMdx1G5XGbQPwAAyExmY8p6vZ4ajYZKpZJubm4izwlrNpsqlUrh4ytWpV01LzAf2BmGoWKxqHa7LcMwNBqNeE4ZAADI1N50Op1mXYmn5u7uTgcHB7q9vd36pcwv3/+41fzwdP3y3ddZV4H2CEn5aIvALu3ydz0N3n0JAACQAwRlAAAAOUBQBgAAkAMEZQAAADlAUAYAAJADuXrNEgAAcbgTGNLzvxOYnjIAAIAcICgDAADIAYIyAACAHCAoAwAAyAGCMgAAgBwgKAMAAMgBgjIAAIAcICgDAADIAYIyAACAHCAoAwAAyAGCMgAAgBwgKAMAAMgBgjIAAIAcICgDAADIAYIyAACAHCAoAwAAyAGCMgAAgBwgKAMAAMiBL7Iq2PM89ft9maYpz/NUrVZlGEbqtKvmua4rSbIsS57nyfd9WZaVunwAAIBdyywoq1QqGg6Hkj4HSOfn5+r1eqnTrprX6XTU7XYlSbZtR/JPUz4AAMCuZRKUeZ4X+W6aphzHSZ12XT5HR0eaTCaSFOkFS1M+AADAY8hkTJnjOCoUCpFphUIhvNyYNG2SfAzDWLgsmaZ8AACAx5BJT5nv+7HTx+NxqrTr8vF9X/1+X5J0c3OjWq0m0zRTlS9J9/f3ur+/D7/f3d3FpgMAANhUZmPK4iwLltKmDebNDt43TVMnJycajUap82w2m/rw4UPiugEAAKSVyeVLwzAWeqXG43Hs3Y+r0q7LZ3bsWHCXped5qcqXpIuLC93e3oafT58+JVxTAACAZDIJymzbjp1eLBZTpV01z3VdHR8fL8wrFAqpypekV69eaX9/P/IBAADYpkwuX5qmGfnueZ6KxWLk+WKGYcg0zZVp53u2ZueZpqlWqxXOcxxH5XJ57XIAAABZyGxMWa/XU6PRUKlU0s3NTeQZYc1mU6VSSfV6fW3aZfMMw1CxWFS73ZZhGBqNRomWAwAAyMLedDqdZl2Jp+bu7k4HBwe6vb3d+qXML9//uNX88HT98t3XWVeB9ghJtEXkx67a4i5/19Pg3ZcAAAA5QFAGAACQAwRlAAAAOUBQBgAAkAMEZQAAADlAUAYAAJADBGUAAAA5QFAGAACQAwRlAAAAOUBQBgAAkAMEZQAAADlAUAYAAJADBGUAAAA5QFAGAACQAwRlAAAAOUBQBgAAkAMEZQAAADlAUAYAAJADBGUAAAA5QFAGAACQAwRlAAAAOUBQBgAAkAMEZQAAADnwRVYFe56nfr8v0zTleZ6q1aoMw0iddtU813XlOI4k6ebmRpeXl5F5kmRZljzPk+/7sixrl6sMAACwVGZBWaVS0XA4lPQ5sDo/P1ev10uddtU8x3FUr9clSe12W8fHx2HaTqejbrcrSbJte2nZAAAAjyGTy5ee50W+m6YZ9milSbtqnuu6ajab4bxyuSzXdcNljo6ONJlMNJlMNBgMlvbSAQAAPIZMgjLHcVQoFCLTCoVCeEkxadpV8yzL0uXlZTjd9/1wfsAwDIIxAACQC5lcvgwCpHnj8ThV2nX5lMvlcNrV1ZVs2w6DMN/31e/3JX0eb1ar1WSaZrIVAAAA2LLMxpTFWRZkpU07Py8IwILxZJIiNwSYpqmTkxONRqPY/O7v73V/fx9+v7u7S1xPAACAJDK5fGkYxkKv2Hg8jr2UuCpt0nwajcbCuLHZ8WjBnZvzY9QCzWZTBwcH4eft27cJ1hIAACC5TIIy27ZjpxeLxVRpk+TTbrfVaDRkmqZ835fv+3JdV8fHxwvLzY9PC1xcXOj29jb8fPr0KTYdAADApjIJyubHbnmep2KxGHmGWNBrtSrtunz6/b4sywoDsuvr63C5VqsVLuc4jsrl8tJB/69evdL+/n7kAwAAsE2ZjSnr9XpqNBoqlUq6ubmJPCes2WyqVCqFzxhblXbZPM/zVKlUImUahhGOJSsWi2q32zIMQ6PRiOeUAQCATO1Np9Np1pV4au7u7nRwcKDb29ut95p9+f7HreaHp+uX777Ougq0R0iiLSI/dtUWd/m7ngbvvgQAAMgBgjIAAIAcICgDAADIAYIyAACAHCAoAwAAyAGCMgAAgBwgKAMAAMgBgjIAAIAcICgDAADIAYIyAACAHCAoAwAAyAGCMgAAgBwgKAMAAMgBgjIAAIAcICgDAADIAYIyAACAHCAoAwAAyAGCMgAAgBwgKAMAAMgBgjIAAIAcICgDAADIAYIyAACAHCAoAwAAyAGCMgAAgBz4IquCPc9Tv9+XaZryPE/ValWGYaROu4t5AAAAjy2zoKxSqWg4HEr6HCCdn5+r1+ulTruLeQAAAI8tk8uXnudFvpumKcdxUqfdxTwAAIAsZBKUOY6jQqEQmVYoFOS6bqq0u5gHAACQhUwuX/q+Hzt9PB6nSruLeXHu7+91f38ffr+9vZUk3d3dxaZ/iH/c/9+t54mnaRftKy3aIyTaIvJjV20xyHc6ne4k/6QyG1MWZ1mwlDbttuc1m019+PBhYfrbt2+X5gU81MH/yboGwGe0ReTFrtvib7/9poODg90WskImQZlhGAu9UuPxOPbux1VpdzEvzsXFhf74xz+G3//xj39oPB7rzZs32tvbW7e6SOnu7k5v377Vp0+ftL+/n3V18ILRFpEXtMXdmk6n+u233/T73/8+03pkEpTZtq1Op7MwvVgspkprmubW58V59eqVXr16FZnG4zN2b39/n5MPcoG2iLygLe5Olj1kgUyCMtM0I989z1OxWAwDHdd1ZRiGTNNcmXY+MNrGPAAAgCxkNqas1+up0WioVCrp5uYm8oywZrOpUqmker2+Nu0u5gEAADy2vWnWtxoAc+7v79VsNnVxcbFw2Rh4TLRF5AVt8WUgKAMAAMgBXkgOAACQAwRlAAAAOUBQ9oy4rqtaraa9vT01Gg11u101Gg1VKpWtvtuz2+3q9evXT/q1VEdHR+r3++H3brerk5OTjZZ9LoL20u121e/35TiOut3uwrti88RxHB0dHanb7T5KeU9p39PG/5fjOJFz4ybnw8c872V1jqXN5MAUz8pkMplKmk4mk4Vpw+Fwa+XYtr21/Gbr+lgGg0Gk3NFoNB0MBhst+xzYtj3tdDqRacPhcCppOhqNMqpVMvV6faHuu/KU9j1tPGo0Gi2cG9Pa5nkvT2UFaDPZy9VrlrAbwTPfrq6uZFlW1tWJ8DxPjuOoWq0+arm2bUe+xz0TL+myT1273ZakhX1gWdaj75dNvHnz5tHKekr7njYeVSgUsq5C7tFmssflyxdiPB7r8PAw62osaLVaWVfhxWs2m6rVarHzKpXKI9cGAF4ugrJnzvd9NRoN2batarUqx3F0eHiobrerbrero6MjSZ/Ho7XbbfX7fbXb7YVxRK7rqtFoqN/vq9/vR94dGozrCXpc+v2+Dg8PI+M2PM8Ll+92u/J9X47j6OPHjxoMBivHLjmOE9at0WhE6lSr1cI69ft9ua67tj6u60bGIfm+r1qtFglal22P+WVnxzQFY7CeUiDjeZ5831/637Bt2+G8Zdtk2TbwPC9cZjboC9pgsO+63a5qtZp834/Mn2+jy9qBpLA9xW3/uOXW7Tff98N5wXLz+36TbbIMbfzxJVmvVee9II/5/dbv93V0dBRu63a7rcPDw3BfrdrXq8qKqz9t5hnK+voptisYP9Zqtaa9Xm/a6/UWxgRVq9VptVqdTqfTcL5t25E0lmWF4wMmk8nUNM2F+bPjHVqt1rTVaoXfy+VyOBYhWD7Ir16vh2nXjQcajUZTy7LC751OZ9pqtaaTyWRqGEZkDINhGGGdVtUnmD9frmEYYZmrtsf8svV6fVoul8PvWYwF2VQwzmZdfddtk7htMLv9Z/d/kH52fq/Xi+Qf10bj2sF0+nl/LNv+q5Zbtd9arVakvQT7e3bfb7JN4rYzbfxxxI23XbVe6857q9rWZDIJt2en0wnLXLWv151jZ9Fmni/GlD1T1Wp16bs8DcMIx+GUy2U1Go2FsWamaer6+lrValXX19cL89OMz7i+vpZpmmF9Li4uEi/b6XRUKBQivW43NzcyDEO2bUfWcdkL5dPqdDort8e8N2/eRMY1GYax9r/cvAh6wTzPix1v6HmeCoXC2m0Stw1me9+CbTK7v2b/LpfLqlQq8n0/fD/tfBuNaweBUqm0UJa0vP1Iq/dbuVzW0dGRTNPU2dlZ7H7fZJvEtQvaeHZWrde6896qtmUYhi4vL3V0dKRerxfuw1X7Os05ljbzfBGUvVBJB29uQ/BDG1gWLM6nC1iWFRlEWq1WH+0RCC9BvV5Xp9NRuVxemOe6buz0JJbt56Tm22hcO0hik+UKhYImk4lc19XV1ZUqlYoGg0HCmqdHG3+aVrWtINCav8FqW/uaNvM8MabsmVr3H8ns/LOzs4Xn9riuq9PTU0mfxxXNPy9nfvyXYRj69ddfw++O44RjhMrl8sLycc8JipsWVzfHcXR6erqyTqvqE5j/vqrM2e2xatmnKLjZYv6EPruOSbbJvHXbaHZ+v99f+A9/XRtN8qypTZdrNpth72Gr1YrUK6j3JtskTR1p49uVtpdm3XlvVdsKxjj2ej15nhc+v2vZMknOsbNoM88XPWXPSPBfvfT5h7ZWqy10NzuOI8dx5LquTNOUbdvhD0+73ZZpmrq5uYl0uZumqV6vp0ajoZOTk7BHq9lsqtVqyTRNnZ6eRh7KaNt22N1tmqY6nY4ajUZ4mSn4D69Wq6nVaqnb7cbeUh3UbX5ZwzBi6xRYVR/f93V1daVCoaByuRzbI7NsewTbOFg2yCsoIxjc3ul0Ut1OnrXBYKB2u61Go6HDw8Pw0knQS5Zkm0jRbRAs5ziOPM9Tq9WKBDij0Sj8UQjyk1a30fl2sKzsYPtvutybN2/kOI4KhYLG47HOzs4W9v0m2ySuXdDGdy8IkKTPAffZ2ZkkrV2vVee9Zfut2+2G51/p86X18/NzeZ6ner2eal/PnmNn0WaeL15Ijmfj5OQkPFlu4vXr15pMJluuFeIEwd9TeA5antDGkRZt5mmhpwzPxiaDSLvdrkajkWq12tYGxAK7QhtHWrSZp4UxZXgWguecdTqdVOMabNvWmzdv1O/31el0dldBhILLk71e70m/P/Wx0caRFm3m6eHyJQAAQA7QUwYAAJADBGUAAAA5QFAGAACQAwRlAAAAOUBQBuDJcV1XtVpNe3t7ajQa6na7arfb4bTHfrL40dFR+NR2ANgUd18CeJI8z9Ph4aEmk0nkqeXdblfFYnHjh2UmMf+kdMdxVCwWH/y+TwAvGz1lAJ6k4FVQ805PTzd6YGZSnufp+vo6Mm3+vZ0AsAmCMgDPguu6YQ/WLt+tF7zAHQC2jaAMwLMQvABZ+tybdXR0pHa7LUnq9/s6PDwMX8TsOI6Ojo7U7XblOI663a4qlUokP8/z1Gg01O/31e125fu+HMfRx48fNRgMwqelu64b5hVwXVftdlv9fl/tdlue5yUuF8DLxbsvATxpQTDkOI4uLi4kfb6ceHZ2FqYpl8uRoM22bdm2rcFgoF6vJ0nha58sy5Lv+zo5OdFwOJRhGOHNBPV6XbZtL7xMfbasIJgbDAbhtKOjI/31r39dWy6Al42gDMCTVq1WZRhG6qDmzZs3evPmTfjdMIxwLNr19bVM0wzHiQXBXhKdTmehLqZp6vr6WtVqdWW5AF42gjIAz4Jt21vLa/7uymWD+OfTAcBDMKYMwJO0rnfJMAz9+uuv4XfHcRI/v6xcLst13ci0YDzasmlB3mdnZwtpXdfV6elporIBvFz0lAF4clzXVafTkSQ1Gg2dnJyoXC5H0pyenqrRaIQBkm3b4aVF3/fDMWa2bYcD9judjkzTlGma6nQ6ajQaKpVKYTpJqtVqarVa6na7sm1bruvq6upKhUJB5XJZlmWp1Wqp3W7LNE3d3Nyo1+vJMIww7apyAbxcPDwWAAAgB7h8CQAAkAMEZQAAADlAUAYAAJADBGUAAAA5QFAGAACQAwRlAAAAOUBQBgAAkAMEZQAAADlAUAYAAJADBGUAAAA5QFAGAACQAwRlAAAAOfD/AM2Czcz8C1HvAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -295,9 +295,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAFUCAYAAADxp+JAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvLElEQVR4nO3dz27j2J328ceDAF7FZql2wRTQTc8FpGjpCkzPJstI9g20pVkHGKm87M2opczi3U1L7guIJSa7XsyIuYHYYnIDYjdQQHYtUW7gBbyJ3oWHfEWJ+kNJLNmu7wcwUCIPzzk8PKJ+dXhIHkwmk4kAAACQmX/adwUAAABeOwIuAACAjBFwAQAAZIyACwAAIGMEXAAAABkj4AIAAMgYARcAAEDGCLgAAAAy9lkHXL7vq1ar6c2bNzo5OVma9uTkRG/evFGtVlMQBJ+mgng2PM/T+fn5yn6SJcdx9lb2pxZ+Nw8ODnRycqJms6lms6lKpaJSqfRZtcWmKpWK3rx5I9d110ofBIFqtZra7bYcx1G73Z5L47quKpWKKpXKxsfgtR7bdrut09PTvZUfnqP2WYeXZC/n9AkmjUZjYhjGpN/vJ67v9XqTYrE4KZfLn7hmyVqt1tyyarU6KRaLe6jNk6Q6vTa9Xm9immaqbXbVLt1ud27ZaDRa2m+T7LufpGXbduL3zjTNSaPR2EON1vccvhOWZU16vd5aaU3TnAwGg+izYRixz5PJZCJpMhqNJr1eL8p30/18bcd2MBhMqtVqqu/jOhZ9Z5PqsMk5KjQajSatVmti23bi+kajMWm1WpNWq5V4fLZdv0iW36Nt2msTn/UIV8gwDF1cXKjVaiWuf24jWr1eb27Z+fm5Li8v91CbJ0l1em1yuVzqbXbVLoZhJC4rl8syTXPtfPbdT3alUqmoVqvtuxpLvaTvhOd5Mgwj1pe63W7ss+d5Mk1ThmHItm3Zti1p9/v5Uo+taZqqVCqJ39VtLPrOJtVhk3OU9HRsO52OgiDQcDicW99sNiVJ5XJZ5XJZlmWpUqnsbP0yWX6PNm2vTf3ik5b2jFUqFZ2dnc0FXUEQpPpBy1q73Zbv+3PLw5PfPiyq0+dul+3ieZ48z1O1Wo0tbzQaqfLZZz/ZpfBHLQiCnf/A7cJL+04Mh8O5H5+kvjLb1lns50s+tp7nqVgs7rS8pOOw63a3LEuWZS28nFuv1/XDDz/E6nR+fh79Xm67fpGX9j1ahYDrf1mWpVwuJ8dxYl+Y+/v7pT9SzWZTpmnK932ZphltGwSB2u22TNNUr9dTpVKRZVmSnuZBhP+Du7m5ke/78n1fP/3009IfUNd11ev15Pt+9D+GarUqz/NUq9Xk+74Gg8HCMobDofr9vlqtltrttnK5nG5vb3V9fR3VbdV+rVun2Xykp7kbswHDIrPzR8rl8so8N93ncLtcLqdSqSTp6fitOh6z9Zluq3XbZVX7hgzDUKPRiOVRqVTU6XR0c3MT235R+6zbT9bpi6vKSpNv2raQpH6/L8uyYj/Ii45DrVaLRh/C/y2HdVinnyXlt2y/Vh37JLs6XzSbTRmGkep/7q7rqtVqxeo7GAzU6XTU7XZl27Y8z4ulCUe6ZvfTNE3V63X5vh9t6/u+zs/PZZqmWq3Wyv/AvtRju06A6DhOVEbYno1GQ4ZhqNvtKpfL6ezsTEEQqNvtSlLid3ZV//I8L/V3eRHf9xfum+u6Mk1zq/WLfl/T/N6Fcw8bjYbK5XIm53RJ0Xc0CAL5vh9dZVjbJ7t4+YyF14iTrpWHc2eS5nAVi8XY3BrbtqPr99VqNTb/wTTNyWg0ij6H146n51eYprny+n+v15tYljW3vN/vz12LXlRGtVqN7d9sfsv2K02disVirOzBYLBwfsC0RqMxV8fp47Asz033udvtTiTFjlm1Wo0d86Q2XtZWy9olTfsuY9t2LK9V7ZOmn6yq06bHYjrfVW0xO89nNBpNGo3GxLKs2PdpWT7h8e71epN+vx/1hVX9bNlxXbVfi479Irs4X1Sr1dh8l9FoNJG01hyupPrOzv9a1Hdmt0uaF5M0Z+dzObazZudJJdV1ui+s2+5hWsMwUn+Xp8tOOp5JoYJhGJNut7v1+mUW7WdSH7NtO9b/d31O73a7sfwHg0Hq+WXM4ZoS3nkTztnyfX9u5Cfk+/7caFipVIqGSH3fj90dZJpm7HMul5Pv+7HoPoyod2VRGdMsy4qVuWq/1uV53tz/XkzT1HA4XHrXVHin1PX1dbTs9vZWvu+vlecm+yw9jSBZlhVLe319vXRIe5O22lX7Ttc7tGmbb9IXtzkWYb7rtsX9/b3a7bba7bY6nY5s21a/34/2fVU+hmHI8zzZti3LstRoNJb2s1X5ZfHd3fZ8EQSBms1m7H/bYZ/+1Gzb1nA4lOd5sbom+RyO7ayLi4u57+P0pbzhcLjVNJYgCDKtfyiXyyXO99rV+lVlz5odQcvinN7tdqP4wDRN5fP5VPXmkuIU0zRlWZY6nY7K5fLS6/Gu68owjNgXZzAYRAcyHA4Ohx6Hw+Fc55r9UhmGsXEHXCSpjGW3wa7ar3Xd398nnjTCSyaLhpHv7+9lGEbsyxO2ZTicuyrPtPu8SFiPcLLwrE3aalftm2TTNg/TTFvVF9cta1m+67ZFPp9fOmy/Tj6z9VjVz9Lmt+13d9vzRdgGz0W5XNbt7a0sy1p62ehzOLazwkAg/GGfDi53MV/4U/yuSFqZ57brs7DNOb1YLKrVaunNmzeyLEuXl5drT5EJEXDNqFQqarVaKpfLS09g4WT66RPJ9L89z1O9Xtf5+bkuLi4ym3i/qy9paNV+rVunTe/sXLbdc7tbNG1bhe2ybfsuq8+nsouydtUW6+Qz+11e1c92fYxWfU93cb741HdcJQn38/LyUmdnZ2o0GnMjRmm8hmOb5PLyMgpI8/l8dHVl+u7PrOuwrkX5hm257fo0lu3npzgn9Xq9aHQ/HPVKE3RxSXHGxcWFPM+T4zhLhwuTLktJTwcsCAKdnZ3p+vo6CtymL1Pu0vSw/S4s2691hUP8Sfn4vq9CobC0/KSywmHyTfLcVHgsF12WSdtWnuftpH0X+ZTts4uydtUWm+SzrJ9lcYyWfU93cb5YVOdPLdzP6ZuQtgkEX/qxXaRYLMpxHLmuK8uyotGTRSPHWdRhXeENEkntZtv21uvTWLaf64yYbXNOD2/CsCxL1WpV/X5ft7e3a9b8CQGXFN3pID39b8m2bd3e3i4d4bJtW/l8fu422k6nE41kTB/UsDOsOvGuMjsHJu0cjVVlLNuvNHWyLEu2bceGZsN9X3YXWnhHSHhXSljnTqezcZ7rnkw9z4ulrdfrS59ztaqtktplk/Zd16btk2RVm+3iWOyqLTbts4v62Sb5zbZXmu/pLs4XpmmqXC7H7swLgmCuT+/asv2sVCq6urra6jEJL/3YLqujZVnRb094jln3WKWpQ5rjvyhoub6+jn3XHceJXQredv0ii/Zzdl5aeCl+dl93eU6fDrqm65dKqin2r8xgMJiUy+WJpEm5XI7uZpi+oyW8c8YwjOgJyNN30IR3Bk1vEy6vVqvRE5kHg0F090O/358Ui8WJpOjunbAMy7JW3rkR5h3eIZGU37IybNuO7uoJ01Sr1bX2a906zebTarVid+Ksk1+j0Zi7M2RZntvsc3g3THhXTaPRiN1ZNbtdUn2S2mpVu6zbvovM3lGTtn120RfTHovZfJPaYjAYLP3eLavLdD69Xm9i2/bEMIxJo9GYe3L6Ov1sOr+0+5V07BfVfRfni3Bfwnwsy1r5tPnZNprOf9H3ZvbuyKT9DPdh1ud2bBdpNBqxdkzah6Q6LarDNt/l8JhYlhUd49n0YVt2u93Ec/m26xdZ1NbhOTrMs1gsTkzTjPWPXZ7Tw/NcuGydfjvrYDKZTNKFaMDrEz63pd/v77sqqZRKJV1eXu78YYvAtoIgWPkcQyArz/GcziVF4IUJh8/Dfz+nu9PweZu+fBNewgPwhIALeGHq9Xr0HjLf91M/CwbISvjEb+l53DUJPCcEXPjsua6rRqMhz/NiE22fq0qlovPz8+hVFoxw4bkI/yPQbre5zI29ea7ndOZwAQAAZIwRLgAAgIwRcAEAAGSMgAsAACBjvEtxA//4xz/097//Xb/85S91cHCw7+oAAIAtTCYT/fzzz/rVr36lf/qnbMaiCLg28Pe//13v3r3bdzUAAMAOffz4Uf/8z/+cSd4EXBv45S9/KenpwBwdHe25NgAAYBsPDw969+5d9PueBQKuDYSXEY+Ojgi4AAB4JbKcJrS3gMv3fTmOE731u1wuL3yA47K0nudFbyG/u7vTzc1NtG7ZdmnKBwAA2EqqV13vkGVZ0b8XvVV+nbTTb/8O33a+znZpyp81Ho8nkibj8XjtbQAAwPP0KX7X9/JYiPDFuyHTNKNRqjRpPc9TvV6P1hWLRXmeJ9/3l26XpnwAAIBt7SXgcl137sWmuVxOnuelSmtZlm5ubqLl4Zvqc7nc0u3SlA8AALCtvczhCgOjWcPhMHXa6Rek3t7eyrZtGYaxdLs05UvS4+OjHh8fo88PDw+J6QAAAJI8qyfNLwqE1kkbBIEcx1G32924jEXr6vW6jo+Poz+ewQUAANLYS8BlGMbcaNJwOEy8S3DdtLVaTb1eL1q+bLs05UvS9fW1xuNx9Pfx48fVOwkAAPC/9hJw2baduDyfz2+UttlsqlaryTRNBUGgIAiWbpemfEk6PDyMnrnFs7cAAEBaewm4TNOMffZ9X/l8PvZsrfBOwlVpHceRZVlRsNXpdGQYxtLtVuUJAACwSweTyWSyj4J931er1VKhUNDd3Z2ur6+jgKdUKqlQKKharS5N6/u+Tk5OYvkahqHRaLSyjGXrVnl4eNDx8bHG4/HOR7u++PD9TvPDy/XjN7/ZdxUA4LOQ5e96aG8B10tGwIVPgYALAD6NTxFwPau7FAEAAF4jAi4AAICMEXABAABkjIALAAAgYwRcAAAAGSPgAgAAyBgBFwAAQMYIuAAAADJGwAUAAJAxAi4AAICMEXABAABkjIALAAAgYwRcAAAAGSPgAgAAyBgBFwAAQMYIuAAAADJGwAUAAJAxAi4AAICMEXABAABkjIALAAAgY3sLuHzfV7PZlOM4ajabCoJg47Se5+n09HRuO8dxFARBYt6e58nzvCj/8N8AAAC79ot9FVwqldTv9yU9BTxXV1fqdrup0zqOI9M0EwOmUqk0t6zRaKhararVaqndbkuSbNteWDYAAMC29hJw+b4f+2yaplzX3ShtsVhM3C4IAnW73dj6ZrOparUqSTo9PdVoNJIkGYaReh8AAADWtZdLiq7rKpfLxZblcrnEUao0aWdNB1uO48wFZ4ZhEGwBAIDM7WWEa9F8reFwuFXaadOBVBAEGg6HMk0ztsxxHEnS3d2dKpVKbD0AAMCu7G0OV5JlE+e3SVur1dRoNGLLyuVyFJSZpqnz83MNBoPE7R8fH/X4+Bh9fnh4WLtsAACAvVxSNAxjboRqOBwmXt5LkzZJEARyXXcu/fTcMNM05fv+3HyxUL1e1/HxcfT37t27tcoGAACQ9hRw2baduDyfz2+VNsn9/f1csOV5ns7OzubSzs4VC11fX2s8Hkd/Hz9+XKtsAAAAaU+XFGfnSvm+r3w+HwVGnufJMAyZprky7bQgCBKDq9lAyjTN2CVG13VVLBYXjpodHh7q8PBwvZ0DAACYsbc5XN1uV7VaTYVCQXd3d7HnYNXrdRUKhegRDsvSuq6rXq8X2272bsTZoM0wDOXzeTWbTRmGocFgwHO4AABAZg4mk8lk35V4aR4eHnR8fKzxeKyjo6Od5v3Fh+93mh9erh+/+c2+qwAAn4Usf9dDvEsRAAAgYwRcAAAAGSPgAgAAyBgBFwAAQMYIuAAAADJGwAUAAJAxAi4AAICMEXABAABkjIALAAAgYwRcAAAAGSPgAgAAyBgBFwAAQMYIuAAAADJGwAUAAJAxAi4AAICMEXABAABkjIALAAAgYwRcAAAAGSPgAgAAyBgBFwAAQMYIuAAAADL2i30V7Pu+HMeRaZryfV/lclmGYWyU1vM8XV1dqd/vx7bzPE+SZFmWfN9XEASyLCt1+QAAANvYW8BVKpWiAMn3fV1dXanb7aZOGwZNYXA1rdVqqd1uS5Js247ln6Z8AACAbewl4PJ9P/bZNE25rrtR2mKxuLCc09NTjUYjSYqNXqUpHwAAYFt7mcPluq5yuVxsWS6XSxylSpM2iWEYc5cKt80TAAAgjb2McAVBkLh8OBxulTZpW8dxJEl3d3eqVCoyTTN1no+Pj3p8fIw+Pzw8rCwbAAAgtLc5XEkWBUKbpp2eCG+aps7PzzUYDFLnWa/X9fXXX69dNwAAgGl7uaRoGMbcaNJwOEy8SzBN2lnTc7XCuxF930+d5/X1tcbjcfT38ePHlWUDAACE9hJw2baduDyfz2+VdprneTo7O5tbnsvlUud5eHioo6Oj2B8AAMC69hJwmaYZ++z7vvL5fDTC5HleNDq1Ku206UuCpmmq0WhEn13XVbFYlGEYqfIEAADY1t7mcHW7XdVqNRUKBd3d3cWegVWv11UoFFStVlemdV1XvV4vtl0YWOXzeTWbTRmGocFgENtuWZ4AAAC7dDCZTCb7rsRL8/DwoOPjY43H451fXvziw/c7zQ8v14/f/GbfVQCAz0KWv+sh3qUIAACQMQIuAACAjBFwAQAAZIyACwAAIGMEXAAAABkj4AIAAMgYARcAAEDGCLgAAAAyRsAFAACQMQIuAACAjBFwAQAAZIyACwAAIGMEXAAAABkj4AIAAMgYARcAAEDGCLgAAAAyRsAFAACQMQIuAACAjBFwAQAAZIyACwAAIGO/2FfBvu/LcRyZpinf91Uul2UYxkZpPc/T1dWV+v1+bDvP8+S6riTp7u5ONzc30Xae50mSLMuS7/sKgkCWZe18PwEAAPYWcJVKpShA8n1fV1dX6na7qdOGgVgYQE1zXVfValWS1Gw2dXZ2FuXTarXUbrclSbZtLywbAABgW3u5pOj7fuyzaZrRSFTatMViMXFkyvM81ev1WDrP86L8Tk9PNRqNNBqN1Ov1Fo6uAQAAbGsvAZfrusrlcrFluVxu4SjVummnWZalm5ub6HMQBNG2IcMwCLQAAEDm9nJJMQx+Zg2Hw63SzioWi9G/b29vZdt2FGAFQSDHcSQ9ze+qVCoyTXNlngAAAGntbQ5XkkXB1S7SOo4Tm1Q/PfHeNE2dn59rMBgkbv/4+KjHx8fo88PDw9plAwAA7OWSomEYcyNUw+Ew8fJemrSL1Gq1uXla03PDwrsfZ+eLher1uo6Pj6O/d+/erV02AADAXgIu27YTl+fz+a3SJmk2m6rVajJNU0EQKAgCeZ6ns7OzubSzc8VC19fXGo/H0d/Hjx/XKhsAAEDaU8A1O1fK933l8/nYM7LC0aZVaafNXmZ0HEeWZUXBVqfTkWEYMk1TjUYjSue6rorF4sJRs8PDQx0dHcX+AAAA1pV6DtePP/6obrerXq+n0WgULc/lcjo/P1exWNQXX3yxMp9ut6taraZCoaC7u7vYc7Dq9boKhUL0DK1laV3XVa/Xi21XLBbl+75KpVKsTMMworlb+XxezWZThmFoMBjwHC4AAJCZg8lkMlk38YcPH3RwcKCLiwu9f/9+bv1f//pX3d7e6uDgIPYMrNfm4eFBx8fHGo/HOx/t+uLD9zvNDy/Xj9/8Zt9VAIDPQpa/66G1R7h+//vf6/r6WsfHxwvTvH//Xu/fv9d4PNb19fWrDroAAADWtXbA9e///u9rZ3p8fEywBQAA8L82njT/4cMHfffddxqPx/rXf/1XXV5e6k9/+tMu6wYAAPAqbBxwFQoFffXVV2q32zo9PdXt7a1++umnXdYNAADgVdg44Hrz5o0kqdPp6PLyUtLi51gBAAB8zjZ+tc9gMNBkMtFgMNCvf/1r/fDDD7HHRAAAAODJxiNcFxcX8jxP/X5f4/FYrVYr1fsNAQAAPhdrjXCNx2ONRqPYA02Pj49jdy5+8803sW3CFzzzVHYAAPC5W2uE6/j4WL1eb+27EP/4xz+q0+kQbAEAACjFHK6rqyv99a9/1cXFhU5OTlQoFGSapgzDUBAE8n1ff/nLX/TDDz+oUqnot7/9bZb1BgAAeDFSTZp///69Op2OxuOxOp2O/vKXvygIAhmGoZOTE1UqFX355ZdZ1RUAAOBF2uguxePjY11dXe26LgAAAK/SxncpAgAAYD0EXAAAABkj4AIAAMgYARcAAEDGtgq4fv/730fvUfzzn/8cPewUAAAA/9/GAdeHDx9kGIZs25YknZ2dyXXdnVUMAADgtdg44CoUCrq6upJpmrusDwAAwKuzccD1ww8/SJIODg6iZXd3d9vXCAAA4JXZ6MGn0tNT5/P5vN6+fateryfXddVoNHZZNwAAgFdh44Dr7OxM3W5XrVZLk8lE7XZb79+/X3t73/flOI5M05Tv+yqXyzIMY6O0nufp6upK/X5/7e3SlA8AALCNjQMuSfryyy/1zTffRJ8fHh50dHS01ralUikKkHzf19XVlbrdbuq0YdDkeV6q7dKUDwAAsI2tAq6HhwcNh8Poc6PR0H/913+t3M73/dhn0zQX3uG4Km2xWEy9XZryAQAAtrVxwPVv//Zvcl03dhnuhx9+WCvgcl1XuVwutiyXy8nzPFmWtXHadbe7v7/fKE8AAIBNbBxwnZyc6Ntvv40tu7m5WWvbIAgSl0+Plm2Sdt3t0ub5+Piox8fH6DMPeAUAAGls/FiI8IGn087Pz7eqzKJAaNu06263aF29Xtfx8XH09+7du43KBgAAn6eNR7jevHmj//zP/5RpmjIMQ0EQ6Pb2Vre3tyu3NQxjbjRpOBwm3iWYJu2626XN8/r6Wr/73e+izw8PDwRdAABgbRuPcFWrVf3P//yP/vCHP+jbb7/VH/7wh8Q7BZMkjY5JUj6f3yrtutulzfPw8FBHR0exPwAAgHVtPMJ1fn6uq6ur2LI//vGPa207+zog3/eVz+ejESbP82QYhkzTXJl2WhAE0fJl281uuyxPAACAbW01aX6dZYt0u13VajUVCgXd3d3FnoFVr9dVKBRUrVZXpnVdV71eL7Zd+KiIZdstWwcAALBLB5PJZLLJhjc3N3JdV4VCQZI0mUzU6XQ+i/cpPjw86Pj4WOPxeOeXF7/48P1O88PL9eM3v9l3FQDgs5Dl73po4zlcrVZLX375pSaTicKYbcPYDQAA4FXb+JJio9HQ2dlZbNmiyegAAACfs41HuGaDLenpUREAAACIW3uE609/+pNs246ubX733Xex9UEQqNfr6b//+793W0MAAIAXbu0Rrv/4j//Q/f199Pnbb7/VaDSK/iaTiX766adMKgkAAPCSrT3CNR1sSU93Kb5//z62jDlcAAAA89YOuP72t7/J930Nh0NdXFzMBVuSEpcBAAB87ta+pFgqlWSapr766itebQMAAJDC2gHXb3/7W/36179emuZvf/vbltUBAAB4fdYOuP7lX/5lZZrZeV4AAABIMYfr22+/Vb/fX5rGdV199dVXW1cKAADgNUn1pHke+wAAAJDe2gFXpVLR1dXV0jQ3NzdbVwgAAOC1WTvgGo/HK9OYprlVZQA8L198+H7fVcAz8OM3v9l3FYAXb+1J899++61+/PHHpWmS3q8IAADwuVs74Gq1Wur3+/ruu+/08PCQZZ0AAABelbUvKTJ6BQAAsJm1R7gAAACwGQIuAACAjBFwAQAAZCzVg093yfd9OY4j0zTl+77K5bIMw0iddtk6x3Fk27YkzeXteZ4kybIs+b6vIAhkWVYWuwoAAD5zewu4SqVS9Kog3/d1dXWlbrebOu2qdbMajYaq1aparZba7bYkybbthWUDAABsay8Bl+/7sc+macp13dRpl60LgkDdblfFYjFa32w2Va1WJUmnp6cajUaS5ke/AAAAdmkvAZfrusrlcrFluVxOnufNXdZblvb+/n7hOtM0Y8GW4zixzxKBFgC8FLz1ANLLfuvBXgKuIAgSlw+Hw1Rpl62bDtyCINBwOIy9eigIAjmOI0m6u7tTpVLh1UQAACATe5vDlWRRAJU27ey6Wq2mRqMRWzY9ud40TZ2fn2swGCTm9/j4qMfHx+gzT9oHAABp7OWxEIZhzI1mDYfDxEt8y9Kuk08QBHJddy7v6flf4R2Os3PCQvV6XcfHx9Hfu3fv1thLAACAJ3sJuMJHNczK5/Op0q6Tz/39feIjIZJeVTQ7Hyx0fX2t8Xgc/X38+DExHQAAQJK9XFKcnSvl+77y+XwUGHmeJ8MwZJrm0rRJo1bT+YR5zQZSpmnGLjG6rqtisbhwEv3h4aEODw/T7SQAAMD/2tscrm63q1qtpkKhoLu7u9hzsOr1ugqFQvQIh2Vpl60LzQZthmEon8+r2WzKMAwNBgOewwUAADJzMJlMJvuuxEvz8PCg4+NjjcdjHR0d7TRvbn1G6Dnc/kx/hERfxPORVV/M8nc9xLsUAQAAMkbABQAAkDECLgAAgIwRcAEAAGSMgAsAACBjBFwAAAAZI+ACAADIGAEXAABAxgi4AAAAMkbABQAAkDECLgAAgIwRcAEAAGSMgAsAACBjBFwAAAAZI+ACAADIGAEXAABAxgi4AAAAMkbABQAAkDECLgAAgIwRcAEAAGSMgAsAACBjv9hXwb7vy3EcmaYp3/dVLpdlGEbqtMvWeZ4nSbIsS77vKwgCWZaVunwAAIBt7C3gKpVK6vf7kp6Cn6urK3W73dRpl61rtVpqt9uSJNu2Y/mnKR8AAGAbewm4fN+PfTZNU67rpk67Kp/T01ONRiNJio1epSkfAABgW3uZw+W6rnK5XGxZLpeLLgGum3adfAzDmLtUmKZ8AACAbe1lhCsIgsTlw+EwVdpV+QRBIMdxJEl3d3eqVCoyTTNV+ZL0+Piox8fH6PPDw0NiOgAAgCR7m8OVZFEglDZtuG56Irxpmjo/P9dgMEidZ71e19dff7123QAAAKbt5ZKiYRhzo0nD4TDxLsFlaVflMz1XK7wb0ff9VOVL0vX1tcbjcfT38ePHNfcUAABgTwGXbduJy/P5fKq0y9Z5nqezs7O5dblcLlX5knR4eKijo6PYHwAAwLr2cknRNM3YZ9/3lc/nY8/PMgxDpmkuTTs7IjW9zjRNNRqNaJ3ruioWiyu3AwAA2LW9zeHqdruq1WoqFAq6u7uLPQOrXq+rUCioWq2uTLtonWEYyufzajabMgxDg8Fgre0AAAB27WAymUz2XYmX5uHhQcfHxxqPxzu/vPjFh+93mh9erh+/+c2+q0B/hCT6Ip6PrPpilr/rId6lCAAAkDECLgAAgIwRcAEAAGSMgAsAACBjBFwAAAAZI+ACAADIGAEXAABAxgi4AAAAMkbABQAAkDECLgAAgIwRcAEAAGSMgAsAACBjBFwAAAAZI+ACAADIGAEXAABAxgi4AAAAMkbABQAAkDECLgAAgIwRcAEAAGSMgAsAACBjv9hXwb7vy3EcmaYp3/dVLpdlGEbqtMvWeZ4n13UlSXd3d7q5uYmtkyTLsuT7voIgkGVZWe4yAAD4TO0t4CqVSur3+5Kegqarqyt1u93UaZetc11X1WpVktRsNnV2dhalbbVaarfbkiTbtheWDQAAsK29XFL0fT/22TTNaCQqTdpl6zzPU71ej9YVi0V5nhdtc3p6qtFopNFopF6vt3B0DQAAYFt7Cbhc11Uul4sty+Vy0WW+ddMuW2dZlm5ubqLlQRBE60OGYRBoAQCAzO3lkmIY/MwaDoep0q7Kp1gsRstub29l23YUYAVBIMdxJD3N76pUKjJNc70dAAAASGFvc7iSLAqg0qadXRcGV+H8LUmxyfWmaer8/FyDwSAxv8fHRz0+PkafHx4e1q4nAADAXi4pGoYxN5o1HA4TL+8tS7tuPrVabW6e1vT8r/AOx9k5YaF6va7j4+Po7927d2vsJQAAwJO9BFy2bScuz+fzqdKuk0+z2VStVpNpmgqCQEEQyPM8nZ2dzW03Ox8sdH19rfF4HP19/PgxMR0AAECSvQRcs3OlfN9XPp+PPSMrHG1alnZVPo7jyLKsKNjqdDrRdo1GI9rOdV0Vi8WFE+gPDw91dHQU+wMAAFjX3uZwdbtd1Wo1FQoF3d3dxZ6DVa/XVSgUomdoLUu7aJ3v+yqVSrEyDcOI5m7l83k1m00ZhqHBYMBzuAAAQGYOJpPJZN+VeGkeHh50fHys8Xi889GuLz58v9P88HL9+M1v9l0F+iMk0RfxfGTVF7P8XQ/xLkUAAICMEXABAABkjIALAAAgYwRcAAAAGSPgAgAAyBgBFwAAQMYIuAAAADJGwAUAAJAxAi4AAICMEXABAABkjIALAAAgYwRcAAAAGSPgAgAAyBgBFwAAQMYIuAAAADJGwAUAAJAxAi4AAICMEXABAABkjIALAAAgYwRcAAAAGSPgAgAAyNgv9lWw7/tyHEemacr3fZXLZRmGkTptFusAAAB2aW8BV6lUUr/fl/QU/FxdXanb7aZOm8U6AACAXdrLJUXf92OfTdOU67qp02axDgAAYNf2EnC5rqtcLhdblsvl5HleqrRZrAMAANi1vVxSDIIgcflwOEyVNot1SR4fH/X4+Bh9Ho/HkqSHh4fE9Nv4x+P/3XmeeJmy6F9p0R8h0RfxfGTVF8N8J5NJJvlLe5zDlWRRIJQ27a7X1et1ff3113PL3717tzAvYFvH/2ffNQCe0BfxXGTdF3/++WcdHx9nkvdeAi7DMOZGk4bDYeJdgsvSZrEuyfX1tX73u99Fn//xj39oOBzq7du3Ojg4WLW7SOnh4UHv3r3Tx48fdXR0tO/q4DNGX8RzQV/M1mQy0c8//6xf/epXmZWxl4DLtm21Wq255fl8PlVa0zR3vi7J4eGhDg8PY8t4hET2jo6OOLHgWaAv4rmgL2Ynq5Gt0F4CLtM0Y59931c+n4+CGM/zZBiGTNNcmnY26NnFOgAAgF3b2xyubrerWq2mQqGgu7u72DOw6vW6CoWCqtXqyrRZrAMAANilg0mWU/KBDTw+Pqper+v6+nruUi7wKdEX8VzQF18+Ai4AAICM8fJqAACAjBFwAQAAZIyA6xXxPE+VSkUHBweq1Wpqt9uq1WoqlUo7fVdku93WmzdvXvSrkE5PT+U4TvS53W7r/Px8o21fi7C/tNttOY4j13XVbrfn3j36nLiuq9PTU7Xb7U9S3ks69vTx/8913di5cZPz4ac87+3rHEufydgEr8poNJpImoxGo7ll/X5/Z+XYtr2z/Kbr+qn0er1YuYPBYNLr9Tba9jWwbXvSarViy/r9/kTSZDAY7KlW66lWq3N1z8pLOvb08bjBYDB3bkxrl+e951RWiD6TrWf1ah9kI3ym2e3trSzL2nd1Ynzfl+u6KpfLn7Rc27Zjn5Oe+bbuti9ds9mUpLljYFnWJz8um3j79u0nK+slHXv6eFwul9t3FZ49+ky2uKT4mRgOhzo5Odl3NeY0Go19V+GzV6/XValUEteVSqVPXBsAeJ0IuF65IAhUq9Vk27bK5bJc19XJyYna7bba7bZOT08lPc3/ajabchxHzWZzbt6O53mq1WpyHEeO48TeRRnOowlHShzH0cnJSWyehO/70fbtdltBEMh1Xd3f36vX6y2dK+S6blS3Wq0Wq1OlUonq5DiOPM9bWR/P82LzfoIgUKVSiQWki9pjdtvpOUThnKeXFKT4vq8gCBb+L9a27WjdojZZ1Aa+70fbTAd0YR8Mj1273ValUoleHr+ojy7qB5Ki/pTU/knbrTpuQRBE68LtZo/9Jm2yCH3801tnv5ad98I8Zo+b4zg6PT2N2rrZbOrk5CQ6VsuO9bKykupPn3lh9n1NE7sVztdqNBqTbrc76Xa7c3NwyuXypFwuTyaTSbTetu1YGsuyouvxo9FoYprm3Prp+QWNRmPSaDSiz8ViMbr2H24f5letVqO0q+bfDAaDiWVZ0edWqzVpNBqT0Wg0MQwjNmfAMIyoTsvqE66fLdcwjKjMZe0xu221Wp0Ui8Xo8z7mXmwqnNeyqr6r2iSpDabbf/r4h+mn13e73Vj+SX00qR9MJk/HY1H7L9tu2XFrNBqx/hIe7+ljv0mbJLUzffzTSJrfumy/Vp33lvWt0WgUtWer1YrKXHasV51jp9FnXibmcL1S5XJ54bshDcOI5r0Ui0XVarW5uV2maarT6ahcLqvT6cytTzMfotPpyDTNqD7X19drb9tqtZTL5WKjZXd3dzIMQ7Ztx/Zx0cvH02q1WkvbY9bbt29j84gMw1j5v9PnIhy98n0/cX6f7/vK5XIr2ySpDaZHzcI2mT5e0/8uFosqlUoKgiB63+lsH03qB6FCoTBXlrS4/0jLj1uxWNTp6alM09Tl5WXicd+kTZL6BX18f5bt16rz3rK+ZRiGbm5udHp6qm63Gx3DZcc6zTmWPvMyEXB9ptadCLkL4Y9oaFEgOJsuZFlWbEJmuVz+ZI8B+BxUq1W1Wi0Vi8W5dZ7nJS5fx7Yvg5/to0n9YB2bbJfL5TQajeR5nm5vb1UqldTr9daseXr08ZdpWd8Kg6jZm5V2dazpMy8Pc7heqVX/k5hef3l5OfdcGs/zdHFxIelpHs/s82Bm51sZhqGffvop+uy6bjQnp1gszm2f9BycpGVJdXNdVxcXF0vrtKw+odnPy8qcbo9l275E4Y0Lsyfr6X1cp01mrWqj6fWO48z9z3xVH13nWUqbblev16NRv0ajEatXWO9N2iRNHenju5V2dGXVeW9Z3wrnFHa7Xfm+Hz2fatE265xjp9FnXiZGuF6R8H/j0tOPaKVSmRsCdl1XruvK8zyZpinbtqMflWazKdM0dXd3FxsGN01T3W5XtVpN5+fn0UhUvV5Xo9GQaZq6uLiIPVDQtu1oCNo0TbVaLdVqtejST/g/s0qlokajoXa7nXhbcVi32W0Nw0isU2hZfYIg0O3trXK5nIrFYuJIyqL2CNs43DbMKywjnCjearVS3VK9b71eT81mU7VaTScnJ9HljHB0a502keJtEG7nuq5831ej0YgFL4PBIDrhh/lJy/vobD9YVHbY/ptu9/btW7muq1wup+FwqMvLy7ljv0mbJPUL+nj2wuBHegqmLy8vJWnlfi077y06bu12Ozr/Sk+Xu6+uruT7vqrVaqpjPX2OnUafeZl4eTVejfPz8+hEuIk3b95oNBrtuFZIEgZ2L+E5X88JfRxp0WeeD0a48GpsMiGz3W5rMBioUqnsbHIpkBX6ONKizzwfzOHCqxA+x6vVaqWaR2Dbtt6+fSvHcdRqtbKrICLhJcNut/ui38f5qdHHkRZ95nnhkiIAAEDGGOECAADIGAEXAABAxgi4AAAAMkbABQAAkDECLgAvjud5qlQqOjg4UK1WU7vdVrPZjJZ96iden56eRk8TB4Ak3KUI4EXyfV8nJycajUaxp2m3223l8/mNH/S4jtkneLuuq3w+v/X7IwG8XoxwAXiRwtcPzbq4uNjoYY/r8n1fnU4ntmz2PZAAMIuAC8Cr4HleNPKU5bvawpd9A0AaBFwAXoXwZbnS0yjU6empms2mJMlxHJ2cnEQv7XVdV6enp2q323JdV+12W6VSKZaf7/uq1WpyHEftdltBEMh1Xd3f36vX60VP8fY8L8or5Hmems2mHMdRs9mU7/trlwvgdeJdigBetDDQcV1X19fXkp4u8V1eXkZpisViLCCzbVu2bavX66nb7UpS9Kohy7IUBIHOz8/V7/dlGEY0Mb9arcq27bkXb0+XFQZqvV4vWnZ6eqo///nPK8sF8HoRcAF40crlsgzDSB2wvH37Vm/fvo0+G4YRzf3qdDoyTTOalxUGcutotVpzdTFNU51OR+VyeWm5AF4vAi4Ar4Jt2zvLa/YuxEUT4mfTAcAizOEC8CKtGhUyDEM//fRT9Nl13bWfz1UsFuV5XmxZOP9r0bIw78vLy7m0nufp4uJirbIBvE6McAF4cTzPU6vVkiTVajWdn5+rWCzG0lxcXKhWq0XBj23b0eW+IAiiOV22bUeT31utlkzTlGmaarVaqtVqKhQKUTpJqlQqajQaarfbsm1bnufp9vZWuVxOxWJRlmWp0Wio2WzKNE3d3d2p2+3KMIwo7bJyAbxOPPgUAAAgY1xSBAAAyBgBFwAAQMYIuAAAADJGwAUAAJAxAi4AAICMEXABAABkjIALAAAgYwRcAAAAGSPgAgAAyBgBFwAAQMYIuAAAADJGwAUAAJCx/wdWpHZTVjCPYgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAFnCAYAAABzSZdDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvhUlEQVR4nO3dz27j2J33/48HAbyKzVLtgimgm54LSNPSFZieTZaR7RtoS7NuYKTyatCbUUuZxW83JbkvILaY7LKYEXMDscXkBsRuoIDsWqLVwAN4E/4WfshHlKg/lMSS7Xq/AANF8vCcw8Mj6luHh9ReGIahAAAAkJt/2nUFAAAAXjsCLgAAgJwRcAEAAOSMgAsAACBnBFwAAAA5I+ACAADIGQEXAABAzgi4AAAAcvZZB1y+76ter+vNmzc6OjpamPbo6Ehv3rxRvV5XEASfpoJ4NjzP0+np6dJ+kifHcXZW9qcWfTb39vZ0dHSkVqulVqularWqs7Ozz6ot1lWtVvXmzRu5rrtS+iAIVK/X1el05DiOOp3OTBrXdVWtVlWtVtc+B6/13HY6HR0fH++s/Ogatcs6vCQ7uaaHCJvNZmgYRtjv91O393q9sFwuh5VK5RPXLF273Z5ZV6vVwnK5vIPaPEmr02vT6/VC0zQz7bOtdul2uzPrRqPRwn6bZtf9JCvbtlM/d6Zphs1mcwc1Wt1z+ExYlhX2er2V0pqmGQ4Gg3jZMIzEchiGoaRwNBqFvV4vznfd43xt53YwGIS1Wi3T53EV8z6zaXVY5xoVGY1GYbvdDm3bTt3ebDbDdrsdttvt1POz6fZ58vwcbdJe6/isR7gihmHo/Pxc7XY7dftzG9Hq9Xoz605PT3VxcbGD2jxJq9NrUygUMu+zrXYxDCN1XaVSkWmaK+ez636yLdVqVfV6fdfVWOglfSY8z5NhGIm+1O12E8ue58k0TRmGIdu2Zdu2pO0f50s9t6Zpqlqtpn5WNzHvM5tWh3WuUdLTub29vVUQBBoOhzPbW62WJKlSqahSqciyLFWr1a1tXyTPz9G67bWuX3zS0p6xarWqk5OTmaArCIJMX2h563Q68n1/Zn108duFeXX63G2zXTzPk+d5qtVqifXNZjNTPrvsJ9sUfakFQbD1L7hteGmfieFwOPPlk9ZXpts6j+N8yefW8zyVy+Wtlpd2Hrbd7pZlybKsubdzG42Gfvjhh0SdTk9P4+/LTbfP89I+R8sQcP1flmWpUCjIcZzEB+b+/n7hl1Sr1ZJpmvJ9X6ZpxvsGQaBOpyPTNNXr9VStVmVZlqSneRDR/+Cur6/l+75839dPP/208AvUdV31ej35vh//j6FWq8nzPNXrdfm+r8FgMLeM4XCofr+vdrutTqejQqGgm5sbXV1dxXVbdlyr1mk6H+lp7sZ0wDDP9PyRSqWyNM91jznar1Ao6OzsTNLT+Vt2PqbrM9lWq7bLsvaNGIahZrOZyKNarer29lbX19eJ/ee1z6r9ZJW+uKysLPlmbQtJ6vf7siwr8YU87zzU6/V49CH633JUh1X6WVp+i45r2blPs63rRavVkmEYmf7n7rqu2u12or6DwUC3t7fqdruybVue5yXSRCNd08dpmqYajYZ834/39X1fp6enMk1T7XZ76X9gX+q5XSVAdBwnLiNqz2azKcMw1O12VSgUdHJyoiAI1O12JSn1M7usf3mel/mzPI/v+3OPzXVdmaa50fZ5369Zvu+iuYfNZlOVSiWXa7qk+DMaBIF834/vMqzsk928fMaie8Rp98qjuTNpc7jK5XJibo1t2/H9+1qtlpj/YJpmOBqN4uXo3vHk/ArTNJfe/+/1eqFlWTPr+/3+zL3oeWXUarXE8U3nt+i4stSpXC4nyh4MBnPnB0xqNpszdZw8D4vyXPeYu91uKClxzmq1WuKcp7XxorZa1C5Z2ncR27YTeS1rnyz9ZFmd1j0Xk/kua4vpeT6j0ShsNpuhZVmJz9OifKLz3ev1wn6/H/eFZf1s0Xlddlzzzv0827he1Gq1xHyX0WgUSlppDldafafnf83rO9P7pc2LSZuz87mc22nT86TS6jrZF1Zt9yitYRiZP8uTZaedz7RQwTCMsNvtbrx9kXnHmdbHbNtO9P9tX9O73W4i/8FgkHl+GXO4JkRP3kRztnzfnxn5ifi+PzMadnZ2Fg+R+r6feDrINM3EcqFQkO/7ieg+iqi3ZV4ZkyzLSpS57LhW5XnezP9eTNPUcDhc+NRU9KTU1dVVvO7m5ka+76+U5zrHLD2NIFmWlUh7dXW1cEh7nbbaVvtO1juybpuv0xc3ORdRvqu2xf39vTqdjjqdjm5vb2Xbtvr9fnzsy/IxDEOe58m2bVmWpWazubCfLcsvj8/upteLIAjUarUS/9uO+vSnZtu2hsOhPM9L1DXN53Bup52fn898Hidv5Q2Hw42msQRBkGv9I4VCIXW+17a2Lyt72vQIWh7X9G63G8cHpmmqWCxmqje3FCeYpinLsnR7e6tKpbLwfrzrujIMI/HBGQwG8YmMhoOjocfhcDjTuaY/VIZhrN0B50krY9FjsMuOa1X39/epF43olsm8YeT7+3sZhpH48ERtGQ3nLssz6zHPE9Ujmiw8bZ222lb7plm3zaM0k5b1xVXLWpTvqm1RLBYXDtuvks90PZb1s6z5bfrZ3fR6EbXBc1GpVHRzcyPLshbeNvoczu20KBCIvtgng8ttzBf+FN8rkpbmuen2PGxyTS+Xy2q323rz5o0sy9LFxcXKU2QiBFxTqtWq2u22KpXKwgtYNJl+8kIy+W/P89RoNHR6eqrz8/PcJt5v60MaWXZcq9Zp3Sc7F+333J4WzdpWUbts2r6L6vOpbKOsbbXFKvlMf5aX9bNtn6Nln9NtXC8+9RNXaaLjvLi40MnJiZrN5syIURav4dymubi4iAPSYrEY312ZfPoz7zqsal6+UVtuuj2LRcf5Ka5JvV4vHt2PRr2yBF3cUpxyfn4uz/PkOM7C4cK021LS0wkLgkAnJye6urqKA7fJ25TbNDlsvw2LjmtV0RB/Wj6+76tUKi0sP62saJh8nTzXFZ3LebdlsraV53lbad95PmX7bKOsbbXFOvks6md5nKNFn9NtXC/m1flTi45z8iGkTQLBl35u5ymXy3IcR67ryrKsePRk3shxHnVYVfSARFq72ba98fYsFh3nKiNmm1zTo4cwLMtSrVZTv9/Xzc3NijV/QsAlxU86SE//W7JtWzc3NwtHuGzbVrFYnHmM9vb2Nh7JmDypUWdYduFdZnoOTNY5GsvKWHRcWepkWZZs204MzUbHvugptOiJkOiplKjOt7e3a+e56sXU87xE2kajsfA9V8vaKq1d1mnfVa3bPmmWtdk2zsW22mLdPjuvn62T33R7ZfmcbuN6YZqmKpVK4sm8IAhm+vS2LTrOarWqy8vLjV6T8NLP7aI6WpYVf/dE15hVz1WWOmQ5//OClqurq8Rn3XGcxK3gTbfPM+84p+elRbfip491m9f0yaBrsn6ZZJpi/8oMBoOwUqmEksJKpRI/zTD5REv05IxhGPEbkCefoImeDJrcJ1pfq9XiNzIPBoP46Yd+vx+Wy+VQUvz0TlSGZVlLn9yI8o6ekEjLb1EZtm3HT/VEaWq12krHtWqdpvNpt9uJJ3FWya/ZbM48GbIoz02OOXoaJnqqptlsJp6smt4vrT5pbbWsXVZt33mmn6jJ2j7b6ItZz8V0vmltMRgMFn7uFtVlMp9erxfath0ahhE2m82ZN6ev0s8m88t6XGnnfl7dt3G9iI4lyseyrKVvm59uo8n8531upp+OTDvO6BimfW7ndp5ms5lox7RjSKvTvDps8lmOzollWfE5nk4ftWW32029lm+6fZ55bR1do6M8y+VyaJpmon9s85oeXeeidav022l7YRiG2UI04PWJ3tvS7/d3XZVMzs7OdHFxsfWXLQKbCoJg6XsMgbw8x2s6txSBFyYaPo/+/ZyeTsPnbfL2TXQLD8ATAi7ghWk0GvHvkPm+n/ldMEBeojd+S8/jqUngOSHgwmfPdV01m015npeYaPtcVatVnZ6exj9lwQgXnovoPwKdTofb3NiZ53pNZw4XAABAzhjhAgAAyBkBFwAAQM74aZ81/OMf/9Df//53/fKXv9Te3t6uqwMAADYQhqF+/vln/epXv9I//VM+Y1EEXGv4+9//rnfv3u26GgAAYIs+fvyof/7nf84lbwKuNfzyl7+U9HRiDg4OdlwbAACwifF4rHfv3sXf73kg4FpDdBvx4OCAgAsAgFciz2lCTJoHAADIGQEXAABAznZ2S9H3fTmOI9M05fu+KpXK3DdmL0rreZ5c15Uk3d3d6fr6Ot62aL8s5QMAAGwk3BHLsuJ/DwaDsFwur5W22Wwm/j2ZdtF+Wcqf9vDwEEoKHx4eVt4HAAA8T5/ie30ntxR9308sm6YZj1JlSet5nhqNRrytXC7L8zz5vr9wvyzlAwAAbGonAZfrujO/JF8oFOR5Xqa0lmXp+vo6Xh8EQbx90X5Zypekx8dHjcfjxB8AAMCqdhJwRYHRtOFwmDnt5C/S39zcyLZtGYaxcL8s5UtSo9HQ4eFh/MdLTwEAQBbP6inFeYHQKmmDIJDjOOp2u2uXMW/b1dWVHh4e4r+PHz+uXE8AAICdPKVoGMbMaNJwOEx9SnDVtPV6Xb1eL16/aL8s5UvS/v6+9vf3lx8YAABAip2McNm2nbq+WCyulbbVaqler8s0TQVBoCAIFu6XpXwAAIBN7WSEyzTNxLLv+yoWi4l3axmGIdM0l6Z1HEeWZcXB1u3tbeo7tSb3W7Rt1754/6ddVwHPxI/f/WbXVQAAbMnOXnza7XZVr9dVKpV0d3eXmHvVaDRUKpVUq9UWpvV9X2dnZ4l8DcNQpVJZWsaibQAAANu0F4ZhuOtKvDTj8ViHh4d6eHjY+o9XM8KFCCNcAPBp5Pm9HnlWTykCAAC8RgRcAAAAOSPgAgAAyBkBFwAAQM4IuAAAAHJGwAUAAJAzAi4AAICcEXABAADkjIALAAAgZwRcAAAAOSPgAgAAyBkBFwAAQM4IuAAAAHJGwAUAAJAzAi4AAICcEXABAADkjIALAAAgZwRcAAAAOSPgAgAAyBkBFwAAQM4IuAAAAHJGwAUAAJCznQVcvu+r1WrJcRy1Wi0FQbB2Ws/zdHx8PLOf4zgKgiA1b8/z5HlenH/0bwAAgG37xa4KPjs7U7/fl/QU8FxeXqrb7WZO6ziOTNNMDZjOzs5m1jWbTdVqNbXbbXU6HUmSbdtzywYAANjUTgIu3/cTy6ZpynXdtdKWy+XU/YIgULfbTWxvtVqq1WqSpOPjY41GI0mSYRiZjwEAAGBVO7ml6LquCoVCYl2hUEgdpcqSdtpksOU4zkxwZhgGwRYAAMjdTka45s3XGg6HG6WdNBlIBUGg4XAo0zQT6xzHkSTd3d2pWq0mtk96fHzU4+NjvDwejxeWDQAAMGlnc7jSLJo4v0naer2uZrOZWFepVOKgzDRNnZ6eajAYpO7faDT07bffrlweAADApJ3cUjQMY2aEajgcpt7ey5I2TRAEcl13Jv3k3DDTNOX7/sx8scjV1ZUeHh7iv48fP65UNgAAgLSjgMu27dT1xWJxo7Rp7u/vZ4Itz/N0cnIyk3Z6rlhkf39fBwcHiT8AAIBV7STgmp4r5fu+isViHBh5nhePNi1LO2ne+7amAynTNBO3GF3XVblcZgI9AADIxc7mcHW7XdXrdZVKJd3d3SXeg9VoNFQqleJXOCxK67quer1eYr/ppxGngzbDMFQsFtVqtWQYhgaDAe/hAgAAudkLwzDcdSVemvF4rMPDQz08PGz99uIX7/+01fzwcv343W92XQUA+Czk+b0e4bcUAQAAckbABQAAkDMCLgAAgJwRcAEAAOSMgAsAACBnBFwAAAA5I+ACAADIGQEXAABAzgi4AAAAckbABQAAkDMCLgAAgJwRcAEAAOSMgAsAACBnBFwAAAA5I+ACAADIGQEXAABAzgi4AAAAckbABQAAkDMCLgAAgJwRcAEAAOSMgAsAACBnBFwAAAA5I+ACAADI2S92VbDv+3IcR6Zpyvd9VSoVGYaxVlrP83R5eal+v5/Yz/M8SZJlWfJ9X0EQyLKszOUDAABsYmcB19nZWRwg+b6vy8tLdbvdzGmjoCkKria12211Oh1Jkm3bifyzlA8AALCJnQRcvu8nlk3TlOu6a6Utl8tzyzk+PtZoNJKkxOhVlvIBAAA2tZM5XK7rqlAoJNYVCoXUUaosadMYhjFzq3DTPAEAALLYyQhXEASp64fD4UZp0/Z1HEeSdHd3p2q1KtM0M+f5+Piox8fHeHk8Hi8tGwAAILKzOVxp5gVC66adnAhvmqZOT081GAwy59loNPTtt9+uXDcAAIBJO7mlaBjGzGjScDhMfUowS9ppk3O1oqcRfd/PnOfV1ZUeHh7iv48fPy4tGwAAILKTgMu27dT1xWJxo7STPM/TycnJzPpCoZA5z/39fR0cHCT+AAAAVrWTgMs0zcSy7/sqFovxCJPnefHo1LK0kyZvCZqmqWazGS+7rqtyuSzDMDLlCQAAsKmdzeHqdruq1+sqlUq6u7tLvAOr0WioVCqpVqstTeu6rnq9XmK/KLAqFotqtVoyDEODwSCx36I8AQAAtmkvDMNw15V4acbjsQ4PD/Xw8LD124tfvP/TVvPDy/Xjd7/ZdRUA4LOQ5/d6hN9SBAAAyBkBFwAAQM4IuAAAAHJGwAUAAJAzAi4AAICcEXABAADkjIALAAAgZwRcAAAAOSPgAgAAyBkBFwAAQM4IuAAAAHJGwAUAAJAzAi4AAICcEXABAADkjIALAAAgZwRcAAAAOSPgAgAAyBkBFwAAQM4IuAAAAHJGwAUAAJAzAi4AAICcEXABAADkjIALAAAgZ7/YVcG+78txHJmmKd/3ValUZBjGWmk9z9Pl5aX6/X5iP8/z5LquJOnu7k7X19fxfp7nSZIsy5Lv+wqCQJZlbf04AQAAdhZwnZ2dxQGS7/u6vLxUt9vNnDYKxKIAapLruqrVapKkVqulk5OTOJ92u61OpyNJsm17btkAAACb2sktRd/3E8umacYjUVnTlsvl1JEpz/PUaDQS6TzPi/M7Pj7WaDTSaDRSr9ebO7oGAACwqZ0EXK7rqlAoJNYVCoW5o1Srpp1kWZaur6/j5SAI4n0jhmEQaAEAgNzt5JZiFPxMGw6HG6WdVi6X43/f3NzItu04wAqCQI7jSHqa31WtVmWaZmo+j4+Penx8jJfH4/HSsgEAACI7m8OVZl5wtY20juMkJtVPTrw3TVOnp6caDAap+zcaDX377bcrlwcAADBpJ7cUDcOYGaEaDoept/eypJ2nXq/PzNOanBsWPf04PV8scnV1pYeHh/jv48ePK5cNAACwk4DLtu3U9cVicaO0aVqtlur1ukzTVBAECoJAnufp5ORkJu30XLHI/v6+Dg4OEn8AAACr2knANT1Xyvd9FYvFxDuyotGmZWknTd9mdBxHlmXFwdbt7a0Mw5Bpmmo2m3E613VVLpeZQA8AAHKxszlc3W5X9XpdpVJJd3d3ifdgNRoNlUql+B1ai9K6rqter5fYr1wuy/d9nZ2dJco0DCOeu1UsFtVqtWQYhgaDAe/hAgAAudkLwzDcdSVemvF4rMPDQz08PGz99uIX7/+01fzwcv343W92XQUA+Czk+b0eyTzC9eOPP6rb7arX62k0GsXrC4WCTk9PVS6X9cUXX2yzjgAAAC9apoDr/fv32tvb0/n5uf793/99Zvtf//pXffjwQXt7e4m3vAMAAHzOVg64fve73+nq6kqHh4dz03z11Vf66quv9PDwoKurK4IuAAAAZQi40ka05jk8PCTYAgAA+L/Wfi3E+/fv9f333+vh4UH/+q//qouLC/3xj3/cZt0AAABehbUDrlKppK+//lqdTkfHx8e6ubnRTz/9tM26AQAAvAprB1xv3ryRJN3e3uri4kLS/De1AwAAfM7WfvHpYDBQGIYaDAb69a9/rR9++CHxmggAAAA8WXuE6/z8XJ7nqd/v6+HhQe12e+andQAAALDiCNfDw4NGo1HihaaHh4eJJxe/++67xD7j8ViS+KFnAADw2VtphOvw8FC9Xm/lpxD/8Ic/6Pb2lmALAABAGeZwXV5e6q9//avOz891dHSkUqkk0zRlGIaCIJDv+/rLX/6iH374QdVqVb/97W/zrDcAAMCLkWnS/FdffaXb21s9PDzo9vZWf/nLXxQEgQzD0NHRkarVqr788su86goAAPAirfWU4uHhoS4vL7ddFwAAgFdp7acUAQAAsBoCLgAAgJwRcAEAAOSMgAsAACBnGwVcv/vd7+LfUfzzn/8cv+wUAAAA/8/aAdf79+9lGIZs25YknZycyHXdrVUMAADgtVg74CqVSrq8vJRpmtusDwAAwKuzdsD1ww8/SJL29vbidXd3d5vXCAAA4JVZ68Wn0tNb54vFot6+fateryfXddVsNrdZNwAAgFdh7YDr5ORE3W5X7XZbYRiq0+noq6++Wnl/3/flOI5M05Tv+6pUKjIMY620nufp8vJS/X5/5f2ylA8AALCJtQMuSfryyy/13Xffxcvj8VgHBwcr7Xt2dhYHSL7v6/LyUt1uN3PaKGjyPC/TflnKBwAA2MRGAdd4PNZwOIyXm82m/vu//3vpfr7vJ5ZN05z7hOOytOVyOfN+WcoHAADY1NoB17/927/Jdd3EbbgffvhhpYDLdV0VCoXEukKhIM/zZFnW2mlX3e/+/j5Tno+Pj3p8fIyXed8YAADIYu2A6+joSB8+fEisu76+XmnfIAhS10+Olq2TdtX9subZaDT07bffLiwPAABgnrVfCxG98HTS6enpRpWZFwhtmnbV/eZtu7q60sPDQ/z38ePHtcoGAACfp7VHuN68eaP/+q//kmmaMgxDQRDo5uZGNzc3S/c1DGNmNGk4HKY+JZgl7ar7Zc1zf39f+/v7C8sDAACYZ+0Rrlqtpv/93//V73//e3348EG///3vU58UTJM2OiZJxWJxo7Sr7rdungAAAOtYe4Tr9PRUl5eXiXV/+MMfVtp3+ueAfN9XsViMR5g8z5NhGDJNc2naSUEQxOsX7Te976I8AQAANrXRpPlV1s3T7XZVr9dVKpV0d3eXeAdWo9FQqVRSrVZbmtZ1XfV6vcR+0asiFu23aBsAAMA27YVhGK6z4/X1tVzXValUkiSFYajb29vP4vcUx+OxDg8P9fDwsPKLXlf1xfs/bTU/vFw/fvebXVcBAD4LeX6vR9aew9Vut/Xll18qDENFMduasRsAAMCrtvYtxWazqZOTk8S6eZPRAQAAPmdrj3BNB1vS06siAAAAkLTyCNcf//hH2bYd39v8/vvvE9uDIFCv19P//M//bLeGAAAAL9zKI1z/+Z//qfv7+3j5w4cPGo1G8V8Yhvrpp59yqSQAAMBLtvII12SwJT09pfjVV18l1jGHCwAAYNbKAdff/vY3+b6v4XCo8/PzmWBLUuo6AACAz93KtxTPzs5kmqa+/vrr3N5RAQAA8BqtHHD99re/1a9//euFaf72t79tWB0AAIDXZ+WA61/+5V+Wppme5wUAAIAMc7g+fPigfr+/MI3ruvr66683rhQAAMBrkulN87z2AQAAILuVA65qtarLy8uFaa6vrzeuEAAAwGuzcsD18PCwNI1pmhtVBsDz8sX7P+26CngGfvzuN7uuAvDirTxp/sOHD/rxxx8Xpkn7fUUAAIDP3coBV7vdVr/f1/fff6/xeJxnnQAAAF6VlW8pMnoFAACwnpVHuAAAALAeAi4AAICcEXABAADkjIALAAAgZwRcAAAAOSPgAgAAyFmm31LcJt/35TiOTNOU7/uqVCoyDCNz2kXbHMeRbduSNJO353mSJMuy5Pu+giCQZVl5HCoAAPjM7SzgOjs7U7/fl/QUNF1eXqrb7WZOu2zbtGazqVqtpna7rU6nI0mybXtu2QAAAJvaScDl+35i2TRNua6bOe2ibUEQqNvtqlwux9tbrZZqtZok6fj4WKPRSNLs6BcA4Hnhdz0hvezf9dzJHC7XdVUoFBLrCoVCfJtv1bTL8pkMthzHSSxLT4HWKsHW4+OjxuNx4g8AAGBVOwm4giBIXT8cDjOlXbRtMpAKgkDD4VCmaSbWOY4jx3FUr9dnRssmNRoNHR4exn/v3r2bmxYAAGDazuZwpZkXQGVNO72tXq+r2Wwm1k1OrjdNU6enpxoMBqn5XV1d6ZtvvomXx+MxQRcAAFjZTka4DMOYGc2aHpVaJe0q+QRBINd1Z/KeHNGKnnCcN8q1v7+vg4ODxB8AAMCqdhJwRa9qmFYsFjOlXSWf+/v71FdCnJyczOw3PR8MAABgG3ZyS3FyLpX0NNpULBbjwMjzPBmGIdM0F6ZNG7WazCfKazqQMk0zcYvRdV2Vy2WeVgQAALnY2Ryubrerer2uUqmku7u7xHuwGo2GSqVS/AqHRWkXbYtMB22GYahYLKrVaskwDA0GA97DBQAAcrMXhmG460q8NOPxWIeHh3p4eNj6fC7eNYPIc3jfDP0REn0Rz0defTHP7/UIv6UIAACQMwIuAACAnBFwAQAA5IyACwAAIGcEXAAAADkj4AIAAMgZARcAAEDOCLgAAAByRsAFAACQMwIuAACAnBFwAQAA5IyACwAAIGcEXAAAADkj4AIAAMgZARcAAEDOCLgAAAByRsAFAACQMwIuAACAnBFwAQAA5IyACwAAIGcEXAAAADkj4AIAAMgZARcAAEDOfrGrgn3fl+M4Mk1Tvu+rUqnIMIzMaRdt8zxPkmRZlnzfVxAEsiwrc/kAAACb2FnAdXZ2pn6/L+kp+Lm8vFS3282cdtG2drutTqcjSbJtO5F/lvIBAAA2sZOAy/f9xLJpmnJdN3PaZfkcHx9rNBpJUmL0Kkv5AAAAm9rJHC7XdVUoFBLrCoVCfAtw1bSr5GMYxsytwizlS9Lj46PG43HiDwAAYFU7CbiCIEhdPxwOM6Vdlk8QBHIcR47jqF6vxyNbWcqXpEajocPDw/jv3bt3qekAAADS7GwOV5p5gVDWtNG2yYnwpmnq9PRUg8Egc55XV1f65ptv4uXxeEzQBQAAVraTES7DMGZGk4bDYepTgovSLstncq5W9DSi7/uZypek/f19HRwcJP4AAABWtZOAy7bt1PXFYjFT2kXbPM/TycnJzLZCoZCpfAAAgE3t5JaiaZqJZd/3VSwWE+/PMgxDpmkuTDs9IjW5zTRNNZvNeJvruiqXy0v3AwAA2LadzeHqdruq1+sqlUq6u7tLvAOr0WioVCqpVqstTTtvm2EYKhaLarVaMgxDg8Fgpf0AAAC2bS8Mw3DXlXhpxuOxDg8P9fDwsPX5XF+8/9NW88PL9eN3v9l1FeiPkERfxPORV1/M83s9wm8pAgAA5IyACwAAIGcEXAAAADkj4AIAAMgZARcAAEDOCLgAAAByRsAFAACQMwIuAACAnBFwAQAA5IyACwAAIGcEXAAAADkj4AIAAMgZARcAAEDOCLgAAAByRsAFAACQMwIuAACAnBFwAQAA5IyACwAAIGcEXAAAADkj4AIAAMgZARcAAEDOCLgAAAByRsAFAACQs1/sqmDf9+U4jkzTlO/7qlQqMgwjc9pF2zzPk+u6kqS7uztdX18ntkmSZVnyfV9BEMiyrDwPGQAAfKZ2FnCdnZ2p3+9LegqaLi8v1e12M6ddtM11XdVqNUlSq9XSyclJnLbdbqvT6UiSbNueWzYAAMCmdnJL0ff9xLJpmvFIVJa0i7Z5nqdGoxFvK5fL8jwv3uf4+Fij0Uij0Ui9Xm/u6BoAAMCmdjLC5bquCoVCYl2hUJDneTO39Ralvb+/X5jP9fV1vD4Ignh7ZNUg6/HxUY+Pj/HyeDxeaT8AAABpRyNcUfAzbTgcZkq7LJ9yuRyvu7m5kW3bcZAVBIEcx5HjOKrX6zOjZZMajYYODw/jv3fv3s1NCwAAMG1nc7jSzAugsqad3hYFV9H8LUmJyfWmaer09FSDwSA1v6urK33zzTfx8ng8JugCAAAr28kIl2EYM6NZw+Ew9RbforSr5lOv12fmaU2OaEVPOM4b5drf39fBwUHiDwAAYFU7Cbhs205dXywWM6VdJZ9Wq6V6vS7TNBUEgYIgkOd5Ojk5mdlvej4YAADANuwk4DJNM7Hs+76KxWLiHVnRaNOitMvycRxHlmXFwdbt7W28X7PZjPdzXVflcpknFQEAQC52Noer2+2qXq+rVCrp7u4u8R6sRqOhUqkUv0NrUdp523zf19nZWaJMwzDiuVvFYlGtVkuGYWgwGPAeLgAAkJu9MAzDXVfipRmPxzo8PNTDw8PW53N98f5PW80PL9eP3/1m11WgP0ISfRHPR159Mc/v9Qi/pQgAAJAzAi4AAICcEXABAADkjIALAAAgZwRcAAAAOSPgAgAAyBkBFwAAQM4IuAAAAHJGwAUAAJAzAi4AAICcEXABAADkjIALAAAgZwRcAAAAOSPgAgAAyBkBFwAAQM4IuAAAAHJGwAUAAJAzAi4AAICcEXABAADkjIALAAAgZwRcAAAAOSPgAgAAyBkBFwAAQM5+sauCfd+X4zgyTVO+76tSqcgwjMxp89gGAACwTTsLuM7OztTv9yU9BT+Xl5fqdruZ0+axDQAAYJt2ckvR9/3Esmmacl03c9o8tgEAAGzbTka4XNdVoVBIrCsUCvI8T5ZlrZz2/v5+69umy5ekx8dHPT4+xssPDw+SpPF4vOIRr+4fj/9n63niZcqjf2VFf4REX8TzkVdfjPINwzCX/KUdBVxBEKSuHw6HmdLmsS1No9HQt99+O7P+3bt3qemBbTj8/3ZdA+AJfRHPRd598eeff9bh4WEuee9sDleaeYFQ1rTb3nZ1daVvvvkmXv7HP/6h4XCot2/fam9vb0lNkdV4PNa7d+/08eNHHRwc7Lo6+IzRF/Fc0BfzFYahfv75Z/3qV7/KrYydBFyGYcyMJg2Hw9SnBBelzWNbmv39fe3v78/UC/k6ODjgwoJngb6I54K+mJ+8RrYiO5k0b9t26vpisZgpbR7bAAAAtm0nI1ymaSaWfd9XsViMR408z5NhGDJNc2Ha6VGmbWwDAADYtp3N4ep2u6rX6yqVSrq7u0u8A6vRaKhUKqlWqy1Nm8c27Nb+/r7+4z/+Y+Y2LvCp0RfxXNAXX769MM9nIAEAAMBvKQIAAOSNgAsAACBnBFwAAAA5I+B6RTzPU7Va1d7enur1ujqdjur1us7Ozrb6W5GdTkdv3ryR53lby/NTOz4+luM48XKn09Hp6ela+74WUX/pdDpyHEeu66rT6cz89uhz4rqujo+P1el0Pkl5L+nc08f/H9d1E9fGda6Hn/K6t6trLH0mZyFeldFoFEoKR6PRzLp+v7+1cmzb3lp+k3X9VHq9XqLcwWAQ9nq9tfZ9DWzbDtvtdmJdv98PJYWDwWBHtVpNrVabqXteXtK5p48nDQaDmWtjVtu87j2nsiL0mXw9q5/2QT6id5rd3Nyk/jj3Lvm+L9d1ValUPmm50y+/TXvn26r7vnStVkuSZs6BZVmf/Lys4+3bt5+srJd07unjSYVCYddVePboM/niluJnYjgc6ujoaNfVmNFsNnddhc9eo9FQtVpN3XZ2dvaJawMArxMB1ysXBIHq9bps21alUpHrujo6OlKn01Gn09Hx8bGkp/lfrVZLjuOo1WrNzNvxPE/1el2O48hxnMRvUUbzaKKREsdxdHR0lJgn4ft+vH+n01EQBHJdV/f39+r1egvnCrmuG9etXq8n6lStVuM6OY4jz/OW1sfzvMS8nyAIVK1WEwHpvPaY3ndyDlE05+klBSm+7ysIgrn/i7VtO942r03mtYHv+/E+kwFd1Aejc9fpdFStVuMfj5/XR+f1A0lxf0pr/7T9lp23IAjibdF+0+d+nTaZhz7+6a1yXIuue1Ee0+fNcRwdHx/Hbd1qtXR0dBSfq0XnelFZafWnz7wwu76nie2K5ms1m82w2+2G3W53Zg5OpVIJK5VKGIZhvN227UQay7Li+/Gj0Sg0TXNm++T8gmazGTabzXi5XC7H9/6j/aP8arVanHbZ/JvBYBBalhUvt9vtsNlshqPRKDQMIzFnwDCMuE6L6hNtny7XMIy4zEXtMb1vrVYLy+VyvLyLuRfriua1LKvvsjZJa4PJ9p88/1H6ye3dbjeRf1ofTesHYfh0Pua1/6L9Fp23ZrOZ6C/R+Z489+u0SVo708c/jbT5rYuOa9l1b1HfGo1GcXu22+24zEXnetk1dhJ95mViDtcrValU5v42pGEY8byXcrmser0+M7fLNE3d3t6qUqno9vZ2ZnuW+RC3t7cyTTOuz9XV1cr7ttttFQqFxGjZ3d2dDMOQbduJY9zWj4+32+2F7THt7du3iXlEhmEs/d/pcxGNXvm+nzq/z/d9FQqFpW2S1gaTo2ZRm0yer8l/l8tlnZ2dKQiC+PdOp/toWj+IlEqlmbKk+f1HWnzeyuWyjo+PZZqmLi4uUs/7Om2S1i/o47uz6LiWXfcW9S3DMHR9fa3j42N1u934HC4611musfSZl4mA6zO16kTIbYi+RCPzAsHpdBHLshITMiuVyid7DcDnoFarqd1uq1wuz2zzPC91/So2/TH46T6a1g9Wsc5+hUJBo9FInufp5uZGZ2dn6vV6K9Y8O/r4y7Sob0VB1PTDSts61/SZl4c5XK/Usv9JTG6/uLiYeS+N53k6Pz+X9DSPZ/p9MNPzrQzD0E8//RQvu64bz8kpl8sz+6e9BydtXVrdXNfV+fn5wjotqk9kenlRmZPtsWjflyh6cGH6Yj15jKu0ybRlbTS53XGcmf+ZL+ujq7xLad39Go1GPOrXbDYT9YrqvU6bZKkjfXy7so6uLLvuLepb0ZzCbrcr3/fj91PN22eVa+wk+szLxAjXKxL9b1x6+hKtVqszQ8Cu68p1XXmeJ9M0Zdt2/KXSarVkmqbu7u4Sw+Cmaarb7aper+v09DQeiWo0Gmo2mzJNU+fn54kXCtq2HQ9Bm6apdruter0e3/qJ/mdWrVbVbDbV6XRSHyuO6ja9r2EYqXWKLKpPEAS6ublRoVBQuVxOHUmZ1x5RG0f7RnlFZUQTxdvtdqZHqnet1+up1WqpXq/r6Ogovp0RjW6t0iZSsg2i/VzXle/7ajabieBlMBjEF/woP2lxH53uB/PKjtp/3f3evn0r13VVKBQ0HA51cXExc+7XaZO0fkEfz18U/EhPwfTFxYUkLT2uRde9eeet0+nE11/p6Xb35eWlfN9XrVbLdK4nr7GT6DMv014YhuGuKwFsw+npaXwhXMebN280Go22XCukiQK7l/Cer+eEPo6s6DPPByNceDXWmZDZ6XQ0GAxUrVa3NrkUyAt9HFnRZ54P5nDhVYje49VutzPNI7BtW2/fvpXjOGq32/lVELHolmG3233Rv8f5qdHHkRV95nnhliIAAEDOGOECAADIGQEXAABAzgi4AAAAckbABQAAkDMCLgAvjud5qlar2tvbU71eV6fTUavVitd96jdeHx8fx28TB4A0PKUI4EXyfV9HR0cajUaJt2l3Oh0Vi8W1X/S4iuk3eLuuq2KxuPHvRwJ4vRjhAvAiRT8/NO38/Hytlz2uyvd93d7eJtZN/w4kAEwj4ALwKnieF4885flbbdGPfQNAFgRcAF6F6MdypadRqOPjY7VaLUmS4zg6OjqKf7TXdV0dHx+r0+nIdV11Oh2dnZ0l8vN9X/V6XY7jqNPpKAgCua6r+/t79Xq9+C3enufFeUU8z1Or1ZLjOGq1WvJ9f+VyAbxO/JYigBctCnRc19XV1ZWkp1t8FxcXcZpyuZwIyGzblm3b6vV66na7khT/1JBlWQqCQKenp+r3+zIMI56YX6vVZNv2zA9vT5YVBWq9Xi9ed3x8rD//+c9LywXwehFwAXjRKpWKDMPIHLC8fftWb9++jZcNw4jnft3e3so0zXheVhTIraLdbs/UxTRN3d7eqlKpLCwXwOtFwAXgVbBte2t5TT+FOG9C/HQ6AJiHOVwAXqRlo0KGYeinn36Kl13XXfn9XOVyWZ7nJdZF87/mrYvyvri4mEnreZ7Oz89XKhvA68QIF4AXx/M8tdttSVK9Xtfp6anK5XIizfn5uer1ehz82LYd3+4LgiCe02Xbdjz5vd1uyzRNmaapdruter2uUqkUp5OkarWqZrOpTqcj27bleZ5ubm5UKBRULpdlWZaazaZarZZM09Td3Z263a4Mw4jTLioXwOvEi08BAAByxi1FAACAnBFwAQAA5IyACwAAIGcEXAAAADkj4AIAAMgZARcAAEDOCLgAAAByRsAFAACQMwIuAACAnBFwAQAA5IyACwAAIGf/P1nhV7W74RpsAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -419,15 +419,15 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 16, "id": "e9d6fbb2-0c20-453c-9cb0-15f78196e82d", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFUCAYAAAA5ywiWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6aUlEQVR4nO3dT2/r2H3/8Y8nf24xQK5pGQ3aoDeYS/cB9FLSE4ipdpFdRraB3zqW2m3QSte7zia6VLL47RrpzhOwxcwui1aceQCxxcm6rXinuMC0aDsS7QA/1Egn+i0uyIj6S8myJdvvF3AxI/Lw8PDwiPr68PBwazAYDAQAAICZ3lt3AQAAAO4DgiYAAIAUCJoAAABSIGgCAABIgaAJAAAgBYImAACAFAiaAAAAUiBoAgAASIGgCZKkIAhUrVa1s7Ojvb29mWn39va0s7OjarWqMAzvpoB4FFzXXXcR7kT0fdva2tLe3p7q9brq9brK5bIODg4eTT3cVLlc1s7OjjzPW1sZHvK5bDabymaz6y7GZhkAQxzHGRiGMeh0OhPXt9vtQbFYHJRKpTsu2WSNRmNsWaVSGRSLxTWU5p1JZXqoVnmsrVZrbFm/35/ZHidZ9/lfhG3bE79LpmkOHMdZQ4kWswlt3bKsQbvdXncxHuS57Ha7g0qlstD376GjpwkJhmHo8PBQjUZj4vpN61lqt9tjywqFgo6OjtZQmncmlemhWuWxGoYxcVmpVJJpmqnzWff5X4VyuaxqtbruYsz1mNr6su7zuTRNU+VyeeJ387EiaMKYcrmss7OzseVhGC7043Xbms2mgiAYW27btorF4hpKNL1MD9Gqj9X3fdXr9bHljuMsdNFe5/lfleh4N+2PlGGPqa3fxH0/l77vb9R1f92+ue4CYPNYlqVMJiPXdRM/PhcXF7Jte+p29XpdpmkqCAKZphlvG4ahms2mTNNUu91WuVyWZVmSJM/z4r/CXr9+rSAIFASBvvrqKzmOM3Vfnuep3W4rCIL4h7ZSqcj3fVWrVQVBoG63O3UfvV5PnU5HjUZDzWZTmUxGp6enOjk5ics277jSlmk0H+ndOIjhdbNM2n+z2VSj0ZDv+2q1WioWi3Gwe3h4mAg0ZpW/2Wwm9lUqlSbWYbVaVbPZlOM4KpVKqY91Xp0NMwxDjuMk8omO6fXr14k8ptVl2vOfpo3N2s8ieS5TF51OR5ZlJYLFSflE5Yh6BKLegqgMk85vmvzmHde88z/Jqq4D9XpdhmEok8nMrcfR7TiXi53LMAzpZRq17vuD2CzRfe1J40KiMSeTxjQVi8XEmBTbtuP74JVKZdDtduN1pmkO+v1+/Lndbg9M00yMSzBNc+599Ha7PbAsa2x5p9MZmKY5lnbSPiqVSuL4RvObdVyLlKlYLCb23e12B7Ztzzi6dPsfHu/TaDTGyjZre8dxxo4/ShvV1zDbthPjHmYd6yJ1No9t24n85tXlIud/Vrnm7SdNnvPqYnQcTL/fHziOM7AsK/EdmZVP1G7b7fag0+nE53TW+Z2VX9q6mnb+p1nFdaBSqSTaYL/fH0iaO6aJc7nac/mYETQhIbogdbvdgaT4y97tduML3mjQFKUdzSdKUywWExe60R/BTqcztv1omkkWCZqm7WP4QtTtdgeGYaQ+rrRl6nQ6iXwj8wawptl/dFHsdrtj9TVr++jHZvRiHg1YnVSHo+dx0rEuU2fzDP8opKnLRc7/tDaWdj+z8kxTF7ZtDyzLGjQajfjf6A/avHza7fbY+lnnd15+aetq0R/am14HomMaNe97xLlc/bl8zLg9h4lM05RlWTo7O4tv2cy6LWUYRuKx3263G98jb7Vakt519Ua3xnq93tj+hhmGMZbmpibtY9b0CvOOK62Li4uJYwKi2xTTbnmm2b9t27JtWwcHB+p0Oqm3v7i4kGEYia736DzdxKrqbJpl6zJKM2xWG0u7n1l5pq2LXC6XuNUyKk0+o+WYdX6bzebC+a3i+3jT60BUD4viXN7+tfUxIWjCVOVyWY1GQ6VSaebFKhogPvyDNfz/vu+rVqupUCjo8PDw1gYVRvfzV2XecaUt07IDQNPuP5vNyvM8+b6fGI81a/tl5o6ZdxzRsd60zm5Shk3az6rqIk0+o9/PWeW/rXM07/u3iuvAouOYJM7lMlZ9LX1IeHoOUx0eHsr3fbmuq1wuNzWdZVkTexLCMFQYhtrf39fJyUkcfEUXgVU/eeP7/krzm3Vcafm+L9u2J+YTBIHy+fyN9h9d3BqNhg4ODlJvb1nWxOOYdWzz/jqNgrab1tksy9blOvazqrpYJp9Z5/e2ztGs798qrgPTyj0P53Jxq76WPiQETUiInjiS3v3FY9u2Tk9PZ/Y02batXC431ntxdnYW9z4M94BEP77zLrLzRE+LSO8ugKNPvc0zbx+zjmuRMlmWJdu2E13o0bHPevomzf4bjUZ8i862bZXL5VTbR0/YDD/iH4ZhnPfwcUTrRnvNJh3rMnW2iGXrcpJ5P1TL7Gc4z1XVxbLtcNr5XSa/SXW1yPdvFdcB0zRVKpUST5GFYSjf9zmXd3guH711D6rCZuh2u4NSqTSQNCiVSvGg7+GnNKKnQQzDiGe5HR6cGD3ZMrxNtLxSqQza7fag3W4Put1uPLi30+kMisXiQFI8CDnah2VZcweDR3lHA0wn5TdrH7Ztx0+qRGkqlUqq40pbptF8Go1GYgB6mvxG9+84zsA0zcSA56j8pVJp4hNHk8pfqVQGjuMMWq3WWHkdx4nXtVqtQbFYHJimOfHcTjvWtHU2y+jTQcP5j9bloud/XhtbZD/T8pxUF91ud+Z3aVZZRp9ytG17YBhGPDB4dJtp53dSfovW1bTzP638q7gORMcT5WNZVqpZwTmXqzuXj9nWYDAYrCVaA4AUDg4OdHR0dO8nrARw/3F7DsDGiW4HRv/PBHsANgFBE4CNU6vV4vFZQRDMfBABAO4Kt+cAbJwgCOS6bvy6DG7NAdgEBE0AAAApcHsOWAHP85TNZlUoFNZdlNR831ehUJg5KzrSieoym82uNN9yuaydnZ3E4/J37baO7aHie/WwETQBK2Dbtk5OTu7V6wksy4rfgn4bRt/KLknVanVsEs77aPTYorpc9YzljUbj1mZmnnYuVn1sYRiq2WxO/YOiXq+r2Wyq2Wwm5iJa1fppJrXPVbjt7xXWi6AJWJH7+ITXMq+lSKvdbo8tKxQKOjo6urV93pVJx3abdXkbpp2LVR6b7/s6OztTGIYT/6CIgpxSqaRSqSTLshITtN50/SyTjnNV7ltbQHq8ew7AyjWbzYmvd1jle+jWZdqx3TeTzsWqjy2aEX/auw5rtZrevHmTKFOhUFCj0VjJ+mkeyjnE3aOnCRurXq/HXe+u68r3/Xhsx6RxA9VqVTs7O2Pd7vV6Xa7rxv+V/jAG6eDgQJ7nqVqtqlqtynVdZbPZxDiSIAi0t7enQqGQ6kLruq5c103cLrhpvpOOIU2eYRjG25TL5bnvlEpbr7Py9TxP7XZbQRDE53Ba3qPHFx3jcF7ZbFbZbDZ+D2K9Xk91+2PSts1mM+6JiNrVwcHBxHqZ1m4mHdtoHc4q57RjHV4flS3ti5Vd19Xe3p729vbkeZ6azab29vaUzWbjdpDNZrW3tyff9yeei1Uc2yKick3qofU878brp1mkfY62/eGxi8O3BNPWxaQ2Jb1ri57nxetu69YhVmCd05ED05RKpUGpVIo/d7vdsVcltNvtxGtEBoPBwLbtxGsARl/BYdt2/IqRVqsV59npdOJXK0zKN3oNwSztdnsgKfEKhUajER/HsvnOOoZ5eVYqlcTrGEzTTJSv0+mMbZ+mXuflG73eYtSk/RWLxcR57Xa7A9u2x8oznMY0zcSrYqaZtu3wazSidjBapll1Pu3YDMOYWc55xzr6Got+vz+QNPcVIYPBu7Y2nJfjOGPHOXzOpp37ZY9tlkl1HH1fRhmGEb8m5SbrZ5l2nGnafqvVGkhK1GWlUklcr6a180ltavS1KN1ul1eZbDB6mrBxooGjjuPEy0zTHBuIOmncwPBfndFcP8Nz/BwcHMRd94ZhyPd92bYty7Li/dm2rV6vl+h9SDsY17KsRBmiF4wGQbBUvvOOYVKeo3Uw/Fe3aZpzn8SaV6/L5jtJ1Hs4fKvINE31er04v0wmE9ffcJo0vX7Tth02+qb4eXU+SxiGU8s571ij3rtSqRSvNwwj9ctTDw8Px87BcG9Gr9e70aDyWce2SplMZuYDFTddP2/fo0bbfnROhuvy5ORk5i2/eW2q1WrF1zfTNJnMdYMxpgkbx/M8GYYx8WK1TD7DPyTdbjdxYZv2I1IqlXR6eirLssZ+6BZlmqZ834/f0r5IvmmOoVQqqdFoqNFoyPM8HR4exutarZakP7yWpNfrreQJv1Xle3FxMfEcmKapdrsd189oGsMwUu9v0razHgdPU+eL7Csq57xjvenrYqIf8+jHOcorCIKVPIF3k3OwiHl53nT9bYiuV9H3fNSsNlUsFtVoNLSzsyPLsnR0dKRKpXKXxccCCJrwoAz3RoVhKNM0E4HJaJAy7Ufq6OhI+/v7chxnrKdiUcMX8UXzTXMM5XJZ2WxWjUZjLE/f91Wr1VQoFHR4eLj0j+doL9+i+U774V71I/qrkKbOh6UNStIc602fujo6OoqD8lwup3K5LNd1Zdv2Um14VQHXJNPyjer/pusXMes4V9FG57Wpdrsd90RGvU8ETpuJ23PYOJZlKQzDpS5WwwHK6G2XSJp8LctSJpOR67o3/iELwzC+xbJovmmOwTTNiXmGYaj9/X2dnJyoVCrJMIx4u0VvqwzX6zL5ThuAbtv2xG2CIFA+n1+ojKuyaLuZN7g+Mu9Yp+13EcViUa7ryvM8WZYV92JM6+WaJ+2xLcM0TRmGMfUpy5uuX8Ss40zTcxVdr6bdSp3VpqJB35ZlqVKpqNPp6PT0NGXJcdcImrBxottYw0+QBEEwdtEZHVMR3SqKftxs21Yulxt7Auns7CxVOcrlso6Pjxd679nw/qV3T8WUSqXED9Yi+aY9hijP4R+LqCzDF/LoB2DWj8S8ek2T73AeQRDM/DGxbTtx2yLKY1b93OSv/3nbzqvztMc2uq95xzqp3YdhKN/3Ux+vaZqyLEvdbjf+PFqOedsvc2zzTAs8Tk5OEvXhum5iTNdN108z7Tjntf3I6Dmp1Wpj3/Nhs9rUcOA0XD5sqHWPRAemiZ4karfb8dMuo08ROY4zcBxn0Gq1Bq1Wa1AsFgemaSaeUonyidIMBu+ekrFte2AYxsBxnMSTMJFutzsoFoupy9vpdAbtdjveT6PRmPh03KL5TjuGYf1+P/H0zvB2lUolrsNo361Wa9DpdAbFYnEgKfGU1WAwv15n5Tu67+hJoOH9jdZLlK7RaCTKMmkbx3EGhmEMLMua+ZTUrG1t246fmhyug+EnAGfVeZpjm1bOacc6XPfR02FRu5/U9qdxHCfxVNuk9j3vXCx7bKO63e7AcZyBZVlxHY+mH25ns+pj2fXTjB7ncH6z2n50TqJzFKWPzPpeTWpTUVuIljmOk2iH2Cy8sBf3RjableM4dzZBYhiGuri4WPn+bitfALcvmtet0+msuyhYA27PAUOGu9zPzs5WFtjcVr4AgLtD0AQMqVar8fiCVb4/6rbyBQDcHYIm3Av1el2+78txnKUmUUxr+BUbiwwAX1e+AO6O53lyHEe+7098zQwePsY0AQAApEBPEwAAQAoETQAAACkQNAEAAKTAu+eW8Pvf/15ffvmlvvOd72hra2vdxQEAACkNBgP99re/1fe+9z29995ifUcETUv48ssv9ezZs3UXAwAALOnt27f6sz/7s4W2IWhawne+8x1J7yr86dOnay4NAABI6+rqSs+ePYt/yxdB0LSE6Jbc06dPCZoAALiHlhlew0BwAACAFAiaAAAAUlhb0BQEger1ulzXVb1eT7zQdNG0vu8rm82Obee6rsIwnJi37/vyfT/OP/p/AACASdY2pung4ECdTkfSu6Dl+PhYrVZr4bSu68o0zYlBz8HBwdgyx3FUqVTUaDTiF6jatj113wCA1fj666/1u9/9bt3FwCPw7W9/e+HpBNJYS9AUBEHis2maU1/COi/ttJefhmGoVquVWF+v11WpVCRJ2WxW/X5fkmQYxsLHAABIZzAY6D/+4z9m3lEAVum9997T8+fP9e1vf3ul+a4laPI8T5lMJrEsk8nI931ZlrV02lHDAZPrumMBFsESANy+KGD67ne/q/fff59JgXGrogmo//3f/13f//73V9re1hI0Tftro9fr3SjtsOGAKAxD9Xo9maaZWOa6riTp/Pxc5XI5sX7Y9fW1rq+v489XV1cz9w0AeOfrr7+OA6bd3d11FwePxB//8R/ryy+/1P/+7//qW9/61sry3ah5mhbpul0kbbValeM4iWWlUikOrEzTVKFQULfbnbh9rVbTRx99lHp/AIB3ojFM77///ppLgsckui339ddfrzRoWsvTc4ZhjPUU9Xq9ibfLFkk7SRiG8jxvLP3wWCnTNBUEwdj4qcjJyYkuLy/jf2/fvk21bwDAO6u+Jef7vsrlsra2tlStVtVsNlWv11WtVrWzszN1nGwanucpm83GDwvdhmw2G9/tuC9WWS/NZlM7Ozu39uT6bd0CXktPk23bajQaY8tzudyN0k5ycXExFjD5vq/9/f14IHhkdOxU5MmTJ3ry5Emq/d3UBy9/dSf7WaUvXv1w3UUA8MhYlhUHSycnJ4nr/NHRkS4uLpbO27ZtHR0draCUfxCGYaKMjuOk/h1bp+Fy27Yt27ZXkm+pVLqXT62vpadpdOxQEATK5XLxifF9P+71mZd22LT5mEaDIdM0E7frPM9TsVhkYDgA3CPT/tCd95DQXQuCQGdnZ4lltm1v/G/OpHI/9nFpaxvT1Gq1VK1Wlc/ndX5+nog4a7Wa8vl8PD3ArLSe56ndbie2G31KbjTwMgxDuVxO9XpdhmGo2+3ey4gXAPAHvu/LMAyZpqnDw8N1FyfmOM7ECZg33X0t921aW9A03NszGuSMBjCz0kbdhaMDvSNR4DXKsqyN+2sEALC4aIzN6elp/PthGIZc11W1WpVlWWq1WgrDUNlsNh724bquDMNQEATqdrtTf0c8z1O1WtXR0ZEqlUqcb6PRiG9XTcvL8zxdXFzEY3Nt21YYhjo+Pla5XFapVJL0LuDzPC8eY1ssFuN5CavVavyEdxAEarfbU//Qn5becZx4jG+3200Me/E8T77vyzRNnZ+fy3GcieWOOiCifCaVZdpxROtOT0+Vz+clzX8KfhNt1NNzAAAsavhp6GHFYlG9Xi9+o4RhGKpWq3GgcnBwoG63K9u2VS6XJ87nJ42PcSoWizo9PU2kmZZX9If93t5evF9JifyCIFC1Wo3vmkjvBop/+umn8fbDwUmr1Zo6V+G09K7rqlKpyLIs7e3txWOVon1HddTr9eKJoCeVW3o3Tc/wnaCoLLOOY7iOIrVabaz8m46gCQDwIAwHPJ7nybZtlUol7ezsqNFoKAzDxHCNfr8fBw69Xm/qE9Rp3CSvRqMxFgCZpqmzszOVSiXt7u4mxhJNeqp82KT0w8cdbW8YhhqNhjKZTOJpw/Pz85nljXqKRssy6zik8bFm08akbTKCJgDAgzAcGAwHLYeHh/EtvOFek1qtpt3d3cQtpGWlzWv0Kbq7MmuflmUlnoob7VmS1lfuTbOWp+cAALipab0tYRjGt5ukP0xwPNyzEY3jqVQqMk0zfvp6uMdl+IlswzD01VdfJbYf3mZeXsPbjeZ/dHQ0ltb3/ZUOZp82IfSkfc8r9zSzjsO27bE5mW7Ss7cu9DQBAO4d3/fjwcy1Wk17e3uSpG63G8/dFDFNc6w3JZq6JvqRPzg4UKPRkGma8YBl6d0YIcuydHh4qGq1GqePBpNbljUzL0kql8tyHEfNZjMOHk5PT5XJZFQsFmVZlhzHUb1ejwdjt1otGYYxVpYgCOJjN01zrFdrWnrpXY9SNIDbcRw5jhPvO3pCPdpuVrmnlWXWcRiGET8JXygU4p6rWq0mx3Fu3NN3V7YGg8Fg3YW4b66urrS9va3Ly0s9ffp0pXkzuSWAh+R//ud/9ObNGz1//lx/9Ed/tO7i4JGY1e5u8hvO7TkAAIAUCJoAAABSIGgCAABIgaAJAAAgBYImAACAFAiaAAAAUiBoAgAASIGgCQAAIAWCJgAAlhSGYeKVKrhbd13/BE0AACwhDEMdHx/LNE3t7++vuzj3iud5ymaz8YuUl7GO+ufdcwCAtbjL10bdxuuePM9TPp+XaZr69NNPV57/VH+/fXf7kqS/v1x5lrZtJ94FuIx11D89TQAALCEIAhmGIUnxf5He7u7ujbZfR/0TNAEAAKRA0AQAwIjhMTee56nZbOrg4CBe7/u+2u22Wq3WjcblPDSu62pnZ0flclm+76tQKKhQKMQDtnd2duS6bpw+Wj5av5ta/wRNAACMiMbctNtt2batUqmkMAzl+74kybKsOCAolUprLu3mKBaLKpVK2tvbk2VZqlarMgxDhmHItm05jqNisRinPz8/n1i/m1r/BE0AAEywu7urfD4ffzYMQ71eb40luh/K5bJOT08lvetJCoIg7lE6PDxMpJ1Vv5tY/2t7ei4IArmuK9M0FQSBSqXS1IFc89L6vq/j42N1Op3EdsMRaXTSLMtaeP8AACAd0zQl/eE3+OjoSGdnZ8pkMvf+d3ZtQdPBwUEc5ARBoOPjY7VarYXTRoFPdHKGNRqN+F6nbduJ/BfZPwAASK9cLsedGWEYan9/XycnJ+su1o2tJWgKgiDx2TRNeZ63VNrhe6Ojstms+v2+pOTjiIvsHwDw+Pi+H99ism1bQRDI9301Gg2ZpqkwDHV6eqpMJiPTNGf+Fj1Gh4eHcceEYRhjdZS2fuetv+v6X0vQ5HmeMplMYlkmk5Hv+/Hts2XSTjKpK/CmeQIAbu42JpxcFcuyEkM+LMsa+2EeHRJyZ25hsslVMwxDjUYj/jx6J2fR+t2U+l9L0DTtHTGTBngtknbSttGjjefn5yqXy3GEumyeAADgcdqo16gs8sK9NGmHB3ebpqlCoaBut7twntfX17q+vo4/X11dpS4nAAB4GNYy5cCkxwZ7vd7EW2mLpB01PHYpekoumnZ9kTxrtZq2t7fjf8+ePZu7bwAA8LCsJWia9pK+XC53o7TDfN+f+NbjTCazcJ4nJye6vLyM/719+3bmvgEAwMOzlttz0RwOkSAIlMvl4p4e3/fj0fbz0g4LwzBxO85xnHid53kqFovxzKRp85SkJ0+e6MmTJwsdIwAAeFjWNqap1WqpWq0qn8/r/Pw8MbK+Vqspn8+rUqnMTet5ntrtdmK7KDjK5XKq1+syDEPdbjex3aw8AQCrNRgM1l0EPCK31d62BrTkhV1dXWl7e1uXl5d6+vTpSvP+4OWvVprfXdjkx4YBrNfXX3+tf/7nf9Z3v/td7e7urrs4eCQuLy/15Zdf6s///M/1rW99K7HuJr/hG/X0HADgYfnGN74hwzD0n//5n5Kk999/X1tbW2suFR6y3//+9/qv//ovvf/++/rmN1cb5hA0AQBu1Z/8yZ9IUhw4Abftvffe0/e///2VB+gETQCAW7W1taU//dM/1Xe/+1397ne/W3dx8Ah8+9vf1nvvrX6CAIImAMCd+MY3vqFvfOMb6y4GsLS1zNMEAABw3xA0AQAApEDQBAAAkAJBEwAAQAoETQAAACkQNAEAAKRA0AQAAJACQRMAAEAKBE0AAAApEDQBAACkQNAEAACQAkETAABACgRNAAAAKRA0AQAApEDQBAAAkAJBEwAAQAoETQAAACkQNAEAAKRA0AQAAJDCN9e14yAI5LquTNNUEAQqlUoyDGOptL7v6/j4WJ1OJ7Gd7/vyPE+SdH5+rtevX8fb+b4vSbIsS0EQKAxDWZa18uMEAAAPw9qCpoODgzjICYJAx8fHarVaC6eNgqkoCBrmeZ4qlYokqV6va39/P86n0Wio2WxKkmzbnrpvAAAAaU2354IgSHw2TTPuEVo0bbFYnNhD5Pu+arVaIp3v+3F+2WxW/X5f/X5f7XZ7ai8XAACAtKagyfM8ZTKZxLJMJjO1tyht2mGWZen169fx5zAM420jhmEQLAEAgFTWcnsuCmBG9Xq9G6UdVSwW4/8/PT2VbdtxkBSGoVzXlfRuvFO5XJZpmhPzub6+1vX1dfz56upq7r4BAMDDsrYxTZNMC5BWkdZ13cRA8eHB5KZpqlAoqNvtTty+Vqvpo48+Sr0/AADw8Kzl9pxhGGM9Rb1eb+KtskXSTlOtVsfGLQ2PlYqeyhsdPxU5OTnR5eVl/O/t27ep9w0AAB6GtQRNtm1PXJ7L5W6UdpJ6va5qtSrTNBWGocIwlO/72t/fH0s7OnYq8uTJEz19+jTxDwAAPC5rCZpGxw4FQaBcLpeYQynq9ZmXdtjoLTvXdWVZVhwwnZ2dyTAMmaYpx3HidJ7nqVgsMigcAABMtfCYpi+++EKtVkvtdlv9fj9enslkVCgUVCwW9cEHH8zNp9VqqVqtKp/P6/z8PDFPUq1WUz6fj+dYmpXW8zy12+3EdsViUUEQ6ODgILFPwzDisUy5XE71el2GYajb7TJPEwAAmGlrMBgM0iZ++fKltra2dHh4qBcvXoyt//zzz3V6eqqtra3EHEkPzdXVlba3t3V5ebnyW3UfvPzVSvO7C1+8+uG6iwAAQCo3+Q1P3dP0s5/9TCcnJ9re3p6a5sWLF3rx4oUuLy91cnLyoAMnAADwuKQOmv7u7/4udabb29sETAAA4EFZeiD4y5cv9fHHH+vy8lJ/+Zd/qaOjI33yySerLBsAAMDGWDpoyufz+vGPf6xms6lsNqvT01N99dVXqywbAADAxlg6aNrZ2ZEknZ2d6ejoSNL0eY4AAADuu6Vfo9LtdjUYDNTtdvUXf/EXevPmTWIKAgAAgIdk6Z6mw8ND+b6vTqejy8tLNRqNhd4HBwAAcJ+k6mm6vLxUv99PTFq5vb2deKLu1atXiW2urq4kiVeOAACAByFVT9P29rba7Xbqp+N++ctf6uzsjIAJAAA8GKnHNB0fH+vzzz/X4eGh9vb2lM/nZZqmDMNQGIYKgkC//vWv9ebNG5XLZX344Ye3WW4AAIA7tdBA8BcvXujs7EyXl5c6OzvTr3/9a4VhKMMwtLe3p3K5rOfPn99WWQEAANZmqafntre3dXx8vOqyAAAAbKyln54DAAB4TAiaAAAAUiBoAgAASIGgCQAAIIUbBU0/+9nP4vfOffrpp/GElgAAAA/N0kHTy5cvZRiGbNuWJO3v78vzvJUVDAAAYJMsHTTl83kdHx/LNM1VlgcAAGAjLR00vXnzRpK0tbUVLzs/P795iQAAADbQUpNbSu9mB8/lctrd3VW73ZbneXIcZ5VlAwAA2BhL9zTt7++r1WrpxYsXGgwGajab+sEPfrDKsgEAAGyMpXuaJOn58+d69epV/Pnq6kpPnz5NtW0QBHJdV6ZpKggClUolGYaxVFrf93V8fKxOp5N6u0X2DwAAcKOg6erqSr1eL/7sOI7+4R/+IdW2BwcHcZATBIGOj4/VarUWThsFPr7vL7TdIvsHAABYOmj667/+a3mel+idefPmTaqgKQiCxGfTNKdOVzAvbbFYXHi7RfYPAAAg3WBM097env71X/9VFxcX8b/hW3WzeJ6nTCaTWJbJZCb2Fi2SNu12y+YJAAAer6V7mqJJLYcVCoVU24ZhOHH58K2+ZdKm3W7RPK+vr3V9fR1/ZuZzAAAen6WDpp2dHf385z+XaZoyDENhGOr09FSnp6dLF2ZaMHPTtGm3m7auVqvpo48+Wmp/AADgYVg6aKpUKgrDMDGm6fPPP0+1rWEYY706vV5v4tNri6RNu92ieZ6cnOgnP/lJ/Pnq6krPnj2buX8AAPCwLD2mqVAo6J/+6Z90dnYW/0s7pmnSrT1JyuVyN0qbdrtF83zy5ImePn2a+AcAAB6XGw0ET7NsktH31QVBoFwuF/f0+L4fP+E2L+2w4dtrs7ZbJE8AAADpBrfnut2uGo2G8vm8JGkwGOjs7Cz1++darZaq1ary+bzOz88TcyTVajXl83lVKpW5aT3PU7vdTmwXTUMwa7tZ6wAAAEZtDQaDwTIbRre5dnd342Wnp6e6uLhYWeE21dXVlba3t3V5ebnyW3UfvPzVSvO7C1+8+uG6iwAAQCo3+Q1fuqfJcRzt7+8nlk0bKwQAAHDf3eiFvaN2dnZuVBgAAIBNlbqn6ZNPPpFt23FX1scff5xYH4ah2u22/vEf/3G1JQQAANgAqXuafvrTnybGK/3iF79Qv9+P/w0GA3311Ve3UkgAAIB1S93TNDrA+/Xr13rx4kViGWOaAADAQ7X0mKbh8UuXl5f65S9/yZgmAADwYC0dNHmeF///9va2Pvzww8QyAACAh2ShKQcuLy91dnamra2teELJYZ1ORz/+8Y9XVjgAAIBNsVDQtL29Ldu25TiOut2unj9/nlgfzeANAADw0Cw8ueXz58/1i1/8Qp9++unEuZoAAAAeopVObgkAAPBQLR00AQAAPCYETQAAACkQNAEAAKSw8EDwWb744gt98MEHq8wSwD33wctfrbsIC/vi1Q/XXQQAG+hGQdNvfvMb9Xq9+HOj0dDp6emNCwUAALBplg6aDg8PFYahDMOIl33++eerKBMAAMDGWTpoKhQKOj4+Tiz75S9/eeMCAQAAbKKlB4Lv7e2lWgYAAPAQLN3T1O121Wg0lM/nJUmDwUBnZ2c6Pz9fWeEAAAA2xdI9TY1GQ8+fP9dgMNBgMJCk+L8AAAAPzdI9TY7jjL1KxbbtGxcIAABgEy0dNI0GTJ999pnCMNSLFy9SbR8EgVzXlWmaCoJApVIp8SRe2rSz1rmuGwdyo3n7vi9JsixLQRAoDENZlpXu4AEAwKNzo3maPvnkEwVBIOndrbmLiwv96Ec/SrXtwcGBOp2OpHeBz/HxsVqt1sJp560b5TiOKpWKGo2Gms2mpHc9ZNP2DQAAIN0gaHr58qXCMFSv15NpmgrDUOVyOdW2UaAVMU1TnuctnHbWujAM1Wq1VCwW4/X1el2VSkWSlM1m1e/3JY33QgEAAIxaOmja29vT8fGx3rx5o62tLX3wwQf67LPPUm3reZ4ymUxiWSaTke/7Y7fIZqW9uLiYus40zUTA5Lpu4rNEsAQAANJb+uk50zT1b//2b3r+/Llc111o2zAMJy4ffiVLmrSz1g0HRMM9YsPLXNeV67qqVqtjvVbDrq+vdXV1lfgHAAAel6V7msIwlGma6vf7+u///m/91V/9lQzD0A9+8IOlCzMtCFo07ei6arUqx3ESy4YHjJumqUKhoG63OzG/Wq2mjz76KHXZAADAw7N0T9OHH36or7/+Wk+fPtWrV69UqVTigdXzGIYx1qs02juUJm2afMIwlOd5Y3kP9yxFT95N6206OTnR5eVl/O/t27cpjhIAADwkSwdNkvSzn/1MR0dH8eetra1U202bzymXyy2UNk0+FxcXE6cbGJ0yQdLY+KjIkydP9PTp08Q/AADwuCwdNL18+VKGYcSBy/7+/tQn4EYNjy2S3vX65HK5OLjxfT/u9ZmVdl4+UV6jwZBpmonbdZ7nqVgsMjAcAABMtfSYpnw+rw8//FCffvrpUtu3Wi1Vq1Xl83mdn58n5kmq1WrK5/Px9ACz0s5aFxkNrgzDUC6XU71el2EY6na7zNMEAABm2hos+cK4n//85/rbv/1bffbZZ/Hg75OTE9VqtZUWcBNdXV1pe3tbl5eXK79V98HLX600v7vwxasfrrsI2GC0aQCb5Ca/4Uv3NL148UK5XE67u7tqt9vyPG/sCTUAAICHYukxTfv7+2q1Wnrx4oUGg4GazeaNphsAAADYZDd699zz58/16tWrVZUFAABgY6Xuafr5z38+N83HH398o8IAAABsqtQ9TT/96U/Vbrdnprm4uNCPf/zjGxcKAABg06QOmvb397W7u6tsNjs1zZIP4gEAAGy81EFTq9XS5eWlLi4uJL2bp2n0Ub1pM2oDAADcdwsNBN/e3o5fP/L555+r1+tpa2srfmruww8/XH0JAQAANsCN5mmKfPbZZ2q32yoUCkw7AAAAHqQbvbD3N7/5jf7mb/5GxWJR7XY7fl8cAADAQ7NwT9MXX3yhVqulRqOhra0tffjhh+p0Onr+/PltlA8AAGAjpO5p+vjjj5XP55XNZhUEgVqtlv7lX/5Fr169igOmTz755NYKCgAAsE6pe5pKpZKKxaJevnwpwzDU7/f12Wefxev7/b5evXqlH/3oR7dSUAAAgHVaKGiq1+sz52I6PT1dSaEAAAA2TeqgqVwuj83LNOrk5OTGBQIAANhEqcc0DU8xcJM0AAAA99GNphwAAAB4LAiaAAAAUiBoAgAASIGgCQAAIAWCJgAAgBQImgAAAFJY+N1zqxIEgVzXlWmaCoJApVJJhmEsnHbWOt/3JUmWZSkIAoVhKMuyFt4/AADA2oKmg4MDdTodSe8CmOPjY7VarYXTzlrXaDTUbDYlSbZtJ/JfZP8AAABrCZqCIEh8Nk1TnuctnHZePtlsVv1+X5ISvUiL7B8AAEBa05gmz/OUyWQSyzKZTHw7LW3aNPkYhjF2222R/QMAAEhr6mkKw3Di8l6vt1DaefmEYSjXdSVJ5+fnKpfLMk1zof0DAABIaxzTNMm0YGbRtNG64cHdpmmqUCio2+0unOf19bWur6/jz1dXV6nLCQAAHoa13J4zDGOsV6fX6018em1W2nn5DI9dip6SC4Jgof1LUq1W0/b2dvzv2bNnKY8UAAA8FGsJmmzbnrg8l8stlHbWOt/3tb+/P7Yuk8kstH9JOjk50eXlZfzv7du3E9MBAICHay2350zTTHwOgkC5XC4xv5JhGDJNc2ba0Z6h4XWmacpxnHid53kqFotzt5vkyZMnevLkyVLHCgAAHoa1jWlqtVqqVqvK5/M6Pz9PzJFUq9WUz+dVqVTmpp22zjAM5XI51et1GYahbrebajsAAIBJtgaDwWDdhbhvrq6utL29rcvLSz19+nSleX/w8lcrze8ufPHqh+suAjYYbRrAJrnJb/hGPT0HAMCm4w+Bx4sX9gIAAKRA0AQAAJACQRMAAEAKBE0AAAApEDQBAACkQNAEAACQAkETAABACgRNAAAAKRA0AQAApEDQBAAAkAJBEwAAQAoETQAAACkQNAEAAKRA0AQAAJACQRMAAEAKBE0AAAApEDQBAACkQNAEAACQAkETAABACgRNAAAAKRA0AQAApEDQBAAAkMI317XjIAjkuq5M01QQBCqVSjIMY+G0s9b5vi/P8yRJ5+fnev36dWKdJFmWpSAIFIahLMu6zUMGAAD32NqCpoODA3U6HUnvAp/j42O1Wq2F085a53meKpWKJKler2t/fz9O22g01Gw2JUm2bU/dNwAAgLSm23NBECQ+m6YZ9wgtknbWOt/3VavV4nXFYlG+78fbZLNZ9ft99ft9tdvtqb1cAAAA0pqCJs/zlMlkEssymUx8yyxt2lnrLMvS69ev4+VhGMbrI4ZhECwBAIBU1nJ7LgpgRvV6vYXSzsunWCzGy05PT2XbdhwkhWEo13UlvRvvVC6XZZrmxPyur691fX0df766upqYDgCAjfT32+suwXL+/nLdJUhY25imSaYFQYumHV0XBUjReCZJiQHjpmmqUCio2+1OzK9Wq+mjjz5KXTYAAPDwrOX2nGEYY71KvV5v4q2yWWnT5lOtVsfGLQ2Ph4qevBsdIxU5OTnR5eVl/O/t27cpjhIAADwkawmabNueuDyXyy2UNk0+9Xpd1WpVpmkqDEOFYSjf97W/vz+23ej4qMiTJ0/09OnTxD8AAPC4rCVoGh07FASBcrlcYg6lqNdnVtp5+biuK8uy4oDp7Ows3s5xnHg7z/NULBYZFA4AAKZa25imVqularWqfD6v8/PzxDxJtVpN+Xw+nmNpVtpp64Ig0MHBQWKfhmHEY5lyuZzq9boMw1C322WeJgAAMNPWYDAYrLsQ983V1ZW2t7d1eXm58lt1H7z81UrzuwtfvPrhuouADUabxkNzL9v0H/2fdRdhObfw9NxNfsN59xwAAEAKBE0AAAApEDQBAACkQNAEAACQAkETAABACgRNAAAAKRA0AQAApEDQBAAAkAJBEwAAQAoETQAAACkQNAEAAKRA0AQAAJACQRMAAEAKBE0AAAApEDQBAACkQNAEAACQAkETAABACgRNAAAAKRA0AQAApEDQBAAAkAJBEwAAQAoETQAAACl8c107DoJAruvKNE0FQaBSqSTDMBZOexvrAAAARq0taDo4OFCn05H0LoA5Pj5Wq9VaOO1trAMAABi1lttzQRAkPpumKc/zFk57G+sAAAAmWUvQ5HmeMplMYlkmk5Hv+wulvY11AAAAk6zl9lwYhhOX93q9hdLexrpJrq+vdX19HX++vLyUJF1dXU1MfxO/v/5/K8/ztt1GPeDhoE3jobmXbXprsO4iLOcWvovR93swWLxO1jamaZJpwcyiaVe9rlar6aOPPhpb/uzZs6l5PSbb/3fdJQBWizaNh2Z73QVY1qvbK/lvf/tbbW8vlv9agibDMMZ6dXq93sSn12alvY11k5ycnOgnP/lJ/Pn3v/+9er2ednd3tbW1Ne9wsaSrqys9e/ZMb9++1dOnT9ddHODGaNN4aO5jmx4MBvrtb3+r733vewtvu5agybZtNRqNseW5XG6htKZprnzdJE+ePNGTJ08Sy5ie4O48ffr03nwZgTRo03ho7lubXrSHKbKWoMk0zcTnIAiUy+XiQMT3fRmGIdM0Z6YdDVxWsQ4AAGCStY1parVaqlaryufzOj8/T8yRVKvVlM/nValU5qa9jXUAAACjtgbLDB8H7sD19bVqtZpOTk7Gbo8C9xFtGg/NY2vTBE0AAAAp8MJeAACAFAiaAAAAUiBoeoB831e5XNbW1paq1aqazaaq1aoODg5W+o69ZrOpnZ2de/36mWw2K9d148/NZlOFQmGpbZEUtbtmsynXdeV5nprN5ti7HzeJ53nKZrNqNpt3sr/71Ib4rqye53mJa/Uy1+e7vA6v65q/UW1vgAep3+8PJA36/f7Ysk6ns7L92La9svyGy3pX2u12Yr/dbnfQbreX2hZ/YNv2oNFoJJZ1Op2BpEG3211TqdKpVCpjZb8t96kN8V25Hd1ud+xavahVXoc3aV+RTWp7G/UaFdyuaO6r09NTWZa17uIkBEEgz/NUKpXudL+2bSc+T5obLO22eKder0vS2Lm0LOvOz+8ydnd372xf96kN8V25HaMvj8e4TWp73J57ZHq9nvb29tZdjDGO46y7CFiRWq2mcrk8cd3BwcEdlwYAVoeg6ZEIw1DValW2batUKsnzPO3t7anZbKrZbCqbzUp6Nx6qXq/LdV3V6/Wx8Se+76tarcp1Xbmum3iHXzQeJOppcF1Xe3t7ifv0QRDE2zebTYVhKM/zdHFxoXa7PXPMi+d5cdmq1WqiTOVyOS6T67ryfX9ueXzfT4xfCcNQ5XI5EVROq4/RbYfHwkRjdx5jgBAEgcIwnPpXoG3b8bppdTutLoMgiLcZDsqithy1gWazqXK5HL+Ae1pbn9aeJMXtctJ5nLTdvPMfhmG8LtputA0tUyfT8F25v9LUz6zrcJTH6Pl3XVfZbDY+Z/V6XXt7e/E5n9VmZu1rUvkfdNtb2Y0+bJRo/JLjOINWqzVotVpjY0lKpdKgVCoNBoNBvN627UQay7Li+8H9fn9gmubY+uH7247jDBzHiT8Xi8X43nO0fZRfpVKJ084bR9LtdgeWZcWfG43GwHGcQb/fHxiGkbhnbRhGXKZZ5YnWj+7XMIx4n7PqY3TbSqUyKBaL8ed13Ptft2h8xrzjnle3k+py+DwOt6Mo/fD6VquVyH9SW5/UngaDd+d12nmctd2s8+84TqLdRe1muA0tUyeT6pnvyv0yafzprPqZdx2e1Ub7/X58XhqNRrzPWW1m3jV/2GNoe4xpeuBKpdLUd+oZhhGP3ygWi6pWq2NjnUzT1NnZmUqlks7OzsbWL3I//uzsTKZpxuU5OTlJvW2j0VAmk0n0Wp2fn8swDNm2nTjGaS9eXlSj0ZhZH6N2d3cT42EMw5j7V9lDE/UiBUEwcdxcEATKZDJz63ZSXQ73XkV1O3zeh/+/WCzq4OBAYRjG75scbeuT2lMkn8+P7Uua3g6l2ee/WCwqm83KNE0dHR1NbD/L1Mmk9sV35f6bVT/zrsOz2qhhGHr9+rWy2axarVbcFma1mUWu+Y+h7RE0PXJpB9OtQvQDFpkWzI2mi1iWlRjUVyqV7uzRcKRXqVTUaDRULBbH1vm+P3F5Gjd9ofZoW5/UntJYZrtMJqN+vy/f93V6eqqDgwO12+2UJV8c35XHbVYbjQKh0QeCVtVmHnrbY0zTAzcvgh5ef3R0NDZPiO/7Ojw8lPRuPMro/Byj448Mw9BXX30Vf/Y8Lx5bUiwWx7afNC/JpGWTyuZ5ng4PD2eWaVZ5IqOfZ+1zuD5mbfuYRYP6Ry+Uw3WVpm5Hzavr4fWu6479ZTuvraeZI2fZ7Wq1Wtz75jhOolxRuZepk0XKyHdlMy3awzbvOjyrjUZj9VqtloIgiOcvmrZNmmv+sMfQ9uhpeoCiv2aldz9g5XJ5rPvS8zx5niff92Wapmzbji/o9Xpdpmnq/Pw80YVrmqZarZaq1aoKhULcI1Sr1eQ4jkzT1OHhYWKSNtu24+5T0zTVaDRUrVbj2x/RXyTlclmO46jZbE58RDQq2+i2hmFMLFNkVnnCMNTp6akymYyKxeLEnohp9RHVcbRtlFe0j2jQcqPRWOjx2Iei3W6rXq+rWq1qb28v7tKPepnS1K2UrMtoO8/zFASBHMdJBCDdbje+2Eb5SbPb+mh7mrbv6Dwuu93u7q48z1Mmk1Gv19PR0dFYG1qmTia1L74r90cUwEjvAuujoyNJmls/s67D085/s9mMfw+kd7egj4+PFQSBKpXKQm1m+Jo/7DG0PV7YiwenUCjEF49l7OzsqN/vr7hUuE1RcHYf5oHaJHxXsC73te3R04QHZ5kBpc1mU91uV+VyeWUDFIFNx3cF63Jf2x5jmvCgRPM8NRqNhe5j27at3d1dua6rRqNxewXEykW331qt1r1+D+Jd47uCdbnPbY/bcwAAACnQ0wQAAJACQRMAAEAKBE0AAAApEDQBAACkQNAE4N6I3pS+tbWlarWqZrOper0eL7vrWaez2Ww8qzKAh4+n5wDcK0EQaG9vT/1+PzGrcLPZVC6XW3qyvDRGZzL2PE+5XO7G78UDcD/Q0wTgXpn2lvXDw8OlJsxLKwgCnZ2dJZaNvt8OwMNG0ATgXvN9P+4Bus33lkUvIgbweBE0AbjXohdwSu96g7LZrOr1uiTJdV3t7e3FLwL1PE/ZbFbNZlOe56nZbOrg4CCRXxAEqlarcl1XzWYzfjP8xcWF2u12PJux7/txXhHf91Wv1+W6rur1evwm9zT7BbD5ePccgHspClY8z9PJyYmkd7fLojfFS1KxWEwEVbZty7Zttdvt+O3y0etXojeqFwoFdTodGYYRDzavVCqybXvspcDD+4qCrXa7HS/LZrP69NNP5+4XwP1A0ATgXiqVSjIMY+GgY3d3V7u7u/FnwzDisVBnZ2cyTTMepxQFY2k0Go2xspimqbOzM5VKpZn7BXA/EDQBuNds215ZXqNPx00b5D2aDsDjwJgmAPfKvN4ZwzD01VdfxZ89z0s9f1OxWJTv+4ll0XioacuivI+OjsbS+r6vw8PDVPsGsPnoaQJwb/i+r0ajIUmqVqsqFAoqFouJNIeHh6pWq3EAY9t2fOssDMN4jJNt2/GA7kajIdM0ZZqmGo2GqtWq8vl8nE6SyuWyHMdRs9mUbdvyfV+np6fKZDIqFouyLEuO46her8s0TZ2fn6vVaskwjDjtrP0C2HxMbgkAAJACt+cAAABSIGgCAABIgaAJAAAgBYImAACAFAiaAAAAUiBoAgAASIGgCQAAIAWCJgAAgBQImgAAAFIgaAIAAEiBoAkAACAFgiYAAIAU/j8kaFxrmeaajQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFoCAYAAABKc89AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6vklEQVR4nO3dz2/r2H3//5cnP24wQK5pGQ3aoBPMpf+BDiX9AzXVLrLLyDbwXcdSuw1Q6XrX2USXShbfXYe68wfElmZ2WbTizB8QW5zsC/FOcYG0aDsS7QBF3Haiz8IgK+onJcuWbD8fwMWMyMPDw8Mj6u3Dw8OtwWAwEAAAAGZ6Z90FAAAAeAgImgAAAFIgaAIAAEiBoAkAACAFgiYAAIAUCJoAAABSIGgCAABIgaAJAAAgBYImSJKCIFC1WtXOzo729vZmpt3b29POzo6q1arCMLyfAuJJaLVa6y7CvYi+b1tbW9rb21O9Xle9Xle5XNbBwcGTqYfbKpfL2tnZked5ayvDYz6XjUZD2Wx23cXYLANgiOM4A8MwBp1OZ+L6drs9KBaLg1KpdM8lm8x13bFllUplUCwW11CaG5PK9Fit8libzebYsn6/P7M9TrLu878I27YnfpdM0xw4jrOGEi1mE9q6ZVmDdru97mI8ynPZ7XYHlUploe/fY0dPExIMw9Dh4aFc1524ftN6ltrt9tiyQqGgo6OjNZTmxqQyPVarPFbDMCYuK5VKMk0zdT7rPv+rUC6XVa1W112MuZ5SW1/WQz6XpmmqXC5P/G4+VQRNGFMul3V2dja2PAzDhX687lqj0VAQBGPLbdtWsVhcQ4mml+kxWvWx+r6ver0+ttxxnIUu2us8/6sSHe+m/ZEy7Cm19dt46OfS9/2Nuu6v27fXXQBsHsuylMlk1Gq1Ej8+FxcXsm176nb1el2maSoIApmmGW8bhqEajYZM01S73Va5XJZlWZIkz/Piv8Jev36tIAgUBIG+/vprOY4zdV+e56ndbisIgviHtlKpyPd9VatVBUGgbrc7dR+9Xk+dTkeu66rRaCiTyej09FQnJydx2eYdV9oyjeYj3YyDGF43y6T9NxoNua4r3/fVbDZVLBbjYPfw8DARaMwqf6PRSOyrVCpNrMNqtapGoyHHcVQqlVIf67w6G2YYhhzHSeQTHdPr168TeUyry7TnP00bm7WfRfJcpi46nY4sy0oEi5PyicoR9QhEvQVRGSad3zT5zTuueed/klVdB+r1ugzDUCaTmVuPo9txLhc7l2EY0ss0at33B7FZovvak8aFRGNOJo1pKhaLiTEptm3H98Erlcqg2+3G60zTHPT7/fhzu90emKaZGJdgmubc++jtdntgWdbY8k6nMzBNcyztpH1UKpXE8Y3mN+u4FilTsVhM7Lvb7Q5s255xdOn2Pzzex3XdsbLN2t5xnLHjj9JG9TXMtu3EuIdZx7pInc1j23Yiv3l1ucj5n1WueftJk+e8uhgdB9Pv9weO4wwsy0p8R2blE7Xbdrs96HQ68TmddX5n5Ze2rqad/2lWcR2oVCqJNtjv9weS5o5p4lyu9lw+ZQRNSIguSN1udyAp/rJ3u934gjcaNEVpR/OJ0hSLxcSFbvRHsNPpjG0/mmaSRYKmafsYvhB1u92BYRipjyttmTqdTiLfyLwBrGn2H10Uu93uWH3N2j76sRm9mEcDVifV4eh5nHSsy9TZPMM/CmnqcpHzP62Npd3PrDzT1IVt2wPLsgau68b/Rn/Q5uXTbrfH1s86v/PyS1tXi/7Q3vY6EB3TqHnfI87l6s/lU8btOUxkmqYsy9LZ2Vl8y2bWbSnDMBKP/Xa73fgeebPZlHTT1RvdGuv1emP7G2YYxlia25q0j1nTK8w7rrQuLi4mjgmIblNMu+WZZv+2bcu2bR0cHKjT6aTe/uLiQoZhJLreo/N0G6uqs2mWrcsozbBZbSztfmblmbYucrlc4lbLqDT5jJZj1vltNBoL57eK7+NtrwNRPSyKc3n319anhKAJU5XLZbmuq1KpNPNiFQ0QH/7BGv5/3/dVq9VUKBR0eHh4Z4MKo/v5qzLvuNKWadkBoGn3n81m5XmefN9PjMeatf0yc8fMO47oWG9bZ7cpwybtZ1V1kSaf0e/nrPLf1Tma9/1bxXVg0XFMEudyGau+lj4mPD2HqQ4PD+X7vlqtlnK53NR0lmVN7EkIw1BhGGp/f18nJydx8BVdBFb95I3v+yvNb9ZxpeX7vmzbnphPEATK5/O32n90cXNdVwcHB6m3tyxr4nHMOrZ5f51GQdtt62yWZetyHftZVV0sk8+s83tX52jW928V14Fp5Z6Hc7m4VV9LHxOCJiRETxxJN3/x2Lat09PTmT1Ntm0rl8uN9V6cnZ3FvQ/DPSDRj++8i+w80dMi0s0FcPSpt3nm7WPWcS1SJsuyZNt2ogs9OvZZT9+k2b/ruvEtOtu2VS6XU20fPWEz/Ih/GIZx3sPHEa0b7TWbdKzL1Nkilq3LSeb9UC2zn+E8V1UXy7bDaed3mfwm1dUi379VXAdM01SpVEo8RRaGoXzf51ze47l88tY9qAqbodvtDkql0kDSoFQqxYO+h5/SiJ4GMQwjnuV2eHBi9GTL8DbR8kqlMmi324N2uz3odrvx4N5OpzMoFosDSfEg5GgflmXNHQwe5R0NMJ2U36x92LYdP6kSpalUKqmOK22ZRvNxXTcxAD1NfqP7dxxnYJpmYsBzVP5SqTTxiaNJ5a9UKgPHcQbNZnOsvI7jxOuazeagWCwOTNOceG6nHWvaOptl9Omg4fxH63LR8z+vjS2yn2l5TqqLbrc787s0qyyjTznatj0wDCMeGDy6zbTzOym/Retq2vmfVv5VXAei44nysSwr1azgnMvVncunbGswGAzWEq0BQAoHBwc6Ojp68BNWAnj4uD0HYONEtwOj/2eCPQCbgKAJwMap1Wrx+KwgCGY+iAAA94XbcwA2ThAEarVa8esyuDUHYBMQNAEAAKTA7TlgBTzPUzabVaFQWHdRUvN9X4VCYeas6EgnqstsNrvSfMvlsnZ2dhKPy9+3uzq2x4rv1eNG0ASsgG3bOjk5eVCvJ7AsK34L+l0YfSu7JFWr1bFJOB+i0WOL6nLVM5a7rntnMzNPOxerPrYwDNVoNKb+QVGv19VoNNRoNBJzEa1q/TST2ucq3PX3CutF0ASsyEN8wmuZ11Kk1W63x5YVCgUdHR3d2T7vy6Rju8u6vAvTzsUqj833fZ2dnSkMw4l/UERBTqlUUqlUkmVZiQlab7t+lknHuSoPrS0gPd49B2DlGo3GxNc7rPI9dOsy7dgemknnYtXHFs2IP+1dh7VaTW/evEmUqVAoyHXdlayf5rGcQ9w/epqwser1etz13mq15Pt+PLZj0riBarWqnZ2dsW73er2uVqsV/1f6vzFIBwcH8jxP1WpV1WpVrVZL2Ww2MY4kCALt7e2pUCikutC2Wi21Wq3E7YLb5jvpGNLkGYZhvE25XJ77Tqm09TorX8/z1G63FQRBfA6n5T16fNExDueVzWaVzWbj9yDW6/VUtz8mbdtoNOKeiKhdHRwcTKyXae1m0rGN1uGsck471uH1UdnSvli51Wppb29Pe3t78jxPjUZDe3t7ymazcTvIZrPa29uT7/sTz8Uqjm0RUbkm9dB6nnfr9dMs0j5H2/7w2MXhW4Jp62JSm5Ju2qLnefG6u7p1iBVY53TkwDSlUmlQKpXiz91ud+xVCe12O/EakcFgMLBtO/EagNFXcNi2Hb9ipNlsxnl2Op341QqT8o1eQzBLu90eSEq8QsF13fg4ls131jHMy7NSqSRex2CaZqJ8nU5nbPs09Tov3+j1FqMm7a9YLCbOa7fbHdi2PVae4TSmaSZeFTPNtG2HX6MRtYPRMs2q82nHZhjGzHLOO9bR11j0+/2BpLmvCBkMbtracF6O44wd5/A5m3bulz22WSbVcfR9GWUYRvyalNusn2XacaZp+81mcyApUZeVSiVxvZrWzie1qdHXonS7XV5lssHoacLGiQaOOo4TLzNNc2wg6qRxA8N/dUZz/QzP8XNwcBB33RuGId/3Zdu2LMuK92fbtnq9XqL3Ie1gXMuyEmWIXjAaBMFS+c47hkl5jtbB8F/dpmnOfRJrXr0um+8kUe/h8K0i0zTV6/Xi/DKZTFx/w2nS9PpN23bY6Jvi59X5LGEYTi3nvGONeu9KpVK83jCM1C9PPTw8HDsHw70ZvV7vVoPKZx3bKmUymZkPVNx2/bx9jxpt+9E5Ga7Lk5OTmbf85rWpZrMZX99M02Qy1w3GmCZsHM/zZBjGxIvVMvkM/5B0u93EhW3aj0ipVNLp6aksyxr7oVuUaZryfT9+S/si+aY5hlKpJNd15bquPM/T4eFhvK7ZbEr6v9eS9Hq9lTzht6p8Ly4uJp4D0zTVbrfj+hlNYxhG6v1N2nbW4+Bp6nyRfUXlnHest31dTPRjHv04R3kFQbCSJ/Bucw4WMS/P266/C9H1Kvqej5rVporFolzX1c7OjizL0tHRkSqVyn0WHwsgaMKjMtwbFYahTNNMBCajQcq0H6mjoyPt7+/LcZyxnopFDV/EF803zTGUy2Vls1m5rjuWp+/7qtVqKhQKOjw8XPrHc7SXb9F8p/1wr/oR/VVIU+fD0gYlaY71tk9dHR0dxUF5LpdTuVxWq9WSbdtLteFVBVyTTMs3qv/brl/ErONcRRud16ba7XbcExn1PhE4bSZuz2HjWJalMAyXulgNByijt10iafK1LEuZTEatVuvWP2RhGMa3WBbNN80xmKY5Mc8wDLW/v6+TkxOVSiUZhhFvt+htleF6XSbfaQPQbdueuE0QBMrn8wuVcVUWbTfzBtdH5h3rtP0uolgsqtVqyfM8WZYV92JM6+WaJ+2xLcM0TRmGMfUpy9uuX8Ss40zTcxVdr6bdSp3VpqJB35ZlqVKpqNPp6PT0NGXJcd8ImrBxottYw0+QBEEwdtEZHVMR3SqKftxs21Yulxt7Auns7CxVOcrlso6Pjxd679nw/qWbp2JKpVLiB2uRfNMeQ5Tn8I9FVJbhC3n0AzDrR2JevabJdziPIAhm/pjYtp24bRHlMat+bvPX/7xt59V52mMb3de8Y53U7sMwlO/7qY/XNE1ZlqVutxt/Hi3HvO2XObZ5pgUeJycnifpotVqJMV23XT/NtOOc1/Yjo+ekVquNfc+HzWpTw4HTcPmwodY9Eh2YJnqSqN1ux0+7jD5F5DjOwHGcQbPZHDSbzUGxWByYppl4SiXKJ0ozGNw8JWPb9sAwjIHjOIknYSLdbndQLBZTl7fT6Qza7Xa8H9d1Jz4dt2i+045hWL/fTzy9M7xdpVKJ6zDad7PZHHQ6nUGxWBxISjxlNRjMr9dZ+Y7uO3oSaHh/o/USpXNdN1GWSds4jjMwDGNgWdbMp6RmbWvbdvzU5HAdDD8BOKvO0xzbtHJOO9bhuo+eDova/aS2P43jOImn2ia173nnYtljG9XtdgeO4wwsy4rreDT9cDubVR/Lrp9m9DiH85vV9qNzEp2jKH1k1vdqUpuK2kK0zHGcRDvEZuGFvXgwstmsHMe5twkSwzDUxcXFyvd3V/kCuHvRvG6dTmfdRcEacHsOGDLc5X52draywOau8gUA3B+CJmBItVqNxxes8v1Rd5UvAOD+EDThQajX6/J9X47jLDWJYlrDr9hYZAD4uvIFcH88z5PjOPJ9f+JrZvD4MaYJAAAgBXqaAAAAUiBoAgAASIGgCQAAIAXePbeEP/7xj/rd736n73//+9ra2lp3cQAAQEqDwUC///3v9cMf/lDvvLNY3xFB0xJ+97vf6b333lt3MQAAwJLevn2rP//zP19oG4KmJXz/+9+XdFPhz58/X3NpAABAWldXV3rvvffi3/JFEDQtIbol9/z5c4ImAAAeoGWG1zAQHAAAIAWCJgAAgBQImgAAAFJY25imIAjUarVkmqaCIFCpVJJhGEul9X1fx8fH6nQ6ie1arVb8NvnRvH3flyRZlqUgCBSGoSzLWtnxAQCSvvnmG/3P//zPuouBJ+C73/3uwtMJpLG2oOng4CAOcoIg0PHxsZrN5sJpo2AqCoJGtxvlOI4qlYpc143fOm/b9tR9AwBuZzAY6N/+7d8UhuG6i4In4p133tGLFy/03e9+d6X5riVoCoIg8dk0zalvrp+Xdtob48MwVLPZTKyv1+uqVCqSpGw2q36/L2m8FwoAsDpRwPSDH/xA7777LpMC405FE1D/67/+q370ox+ttL2tJWjyPE+ZTCaxLJPJyPf9sVtki6QdNRwwtVqtsQCLYAkA7tY333wTB0y7u7vrLg6eiD/5kz/R7373O/3v//6vvvOd76ws37UETdO6aHu93q3SDhsOiMIwVK/Xk2maiWWtVkuSdH5+rnK5nFg/7Pr6WtfX1/Hnq6urmfsGANyIxjC9++67ay4JnpLottw333yz0qBpo56eW+R+9yJpq9WqDg8PE8tKpZKKxaKKxaKOjo5UKBSmbl+r1bS9vR3/4xUqALCYVd+S831f5XJZW1tbqlarajQaqtfrqlar2tnZmTrkIw3P85TNZuNxr3chm83Gf7g/FKusl0ajoZ2dnYnjkVfhrm4Br6WnyTCMsZ6iXq838XbZImknCcNQnueNpQ+CIL69Fz2VFwTBxN6mk5MT/exnP4s/R1Ow34X3X/76TvK9S1+9+vG6iwDgibEsKw6WTk5OEtf4o6MjXVxcLJ23bds6OjpaQSn/TxiGiTI6jqNcLrfSfdyF4XLbth0/kX5bpVLpQT6AtZaepmmVPqkBLZJ2kouLi4nTDezv74+lHR07FXn27Fn8yhRenQIAm2HaNXvTpo8JgkBnZ2eJZbZtb/y42knlfurj0tYSNI325gRBoFwuFzcg3/fjp+bmpR026Zad7/tjXyzTNOU4TvzZ8zwVi8WNb8AAgOmGfztGh2Ss0/DvzUPyUMt9l9Y2T1Oz2VS1WlU+n9f5+Xmim65Wqymfz8fTA8xK63me2u12YrvRp+RGAy/DMJTL5VSv12UYhrrd7oPsJgQAKB5jc3p6Gl/LDcNQq9VStVqVZVlqNpsKw1DZbFa2bct1XbVaLRmGoSAI1O12pwYJnuepWq3q6OhIlUolztd13fhuyLS8PM/TxcVFPMzEtm2FYajj42OVy2WVSiVJNwGf53nxcJFisRhPsVOtVuOHlYIgULvdnvqbNS294zjxcJVutyvXdRPb+L4v0zR1fn4ux3Emljv6LY3ymVSWaccRrTs9PVU+n5c0/4GuTbQ1GAwG6y7EQ3N1daXt7W1dXl6u/FYdY5oAPCZ/+MMf9ObNG7148ULf+973Vpp3GIba2dlRv9+XYRiq1+uJH2npJqDqdDpxkNBoNOJAZWtrS91uV6Zpqlwuq1AoxH90R39UR2nr9bokxX/MHxwcqFwux0HTrLyq1ar29vbivEbzD4JA5XI57gCQbgaKf/755zIMQ9VqVUEQxMFJoVCQ4zhTb0NOSl8oFOKy7+3tqdPpxEHe8ATSjUZDYRiqUqlMLfdw58VwWWYdR/T/3W43se7169d3cjt1Vru7zW/42nqaAABYpeG7DJ7nybZtlUol7ezsyHVdhWGYCKiiYCsIAvV6vbHJlBdxm7xc1x0LHEzT1NnZmUqlknZ3dxNjiSY9IDVsUvrh4462NwxDrusqk8kknjY8Pz+fWd6op2i0LLOOQxofazZtTNomI2gCADwKw4HBcNByeHgY38Ib7jWp1Wra3d0d651aRtq8Rp+iuy+z9mlZVuKhq+E6iqyr3Jtmo+ZpAgAgrWm9LWEYJl7gXq1W5ThOomcjGsdTqVRkmmb8INFwj8vww0WGYejrr79ObD+8zby8hrcbzf/o6Ggsre/7Kx3MPm1uw0n7nlfuaWYdh23bY3My3aZnb13oaQIAPDi+78fjlGq1mvb29iRJ3W43nrspYprmWG9K9BR29CN/cHAg13XjF8Cfnp5KuhkAbVmWDg8PVa1W4/TRYHLLsmbmJUnlclmO46jRaMTBw+npqTKZjIrFoizLkuM4qtfr8WDsZrMpwzDGyhIEQXzspmmO9WpNSy/d9ChFA7gdx4nHIjmOEz9sFW03q9zTyjLrOAzDiB/qKhQKcc9VrVaT4zi37um7LwwEXwIDwZMYCA5gmrscCA5Mc1cDwbk9BwAAkAJBEwAAQAoETQAAACkQNAEAAKRA0AQAAJACQRMAAEAKBE0AAAApEDQBAACkQNAEAMCSwjBMvFIF9+u+65+gCQCAJYRhqOPjY5mmqf39/XUX50HxPE/ZbDZ+kfIy1lH/vHsOALAW9/naqLt43ZPnecrn8zJNU59//vnK85/q77fvb1+S9PeXK8/Stu3EuwCXsY76p6cJAIAlBEEgwzAkKf4v0tvd3b3V9uuof4ImAACAFAiaAAAYMTzmxvM8NRoNHRwcxOt931e73Vaz2bzVuJzHptVqaWdnR+VyWb7vq1AoqFAoxAO2d3Z21Gq14vTR8tH63dT6J2gCAGBENOam3W7Ltm2VSiWFYSjf9yVJlmXFAUGpVFpzaTdHsVhUqVTS3t6eLMtStVqVYRgyDEO2bctxHBWLxTj9+fn5xPrd1PonaAIAYILd3V3l8/n4s2EY6vV6ayzRw1Aul3V6eirppicpCIK4R+nw8DCRdlb9bmL9EzQBAICVMU1TkuJeoaOjI52dnSkMwwc/YJ4pBwAAwEqVy2UdHx+r0+koDEPt7+/r5ORk3cW6NYImAABG+L4f32KybVtBEMj3fbmuK9M0FYahTk9PlclkZJpmYpwOpMPDQ3U6HUk3t9VG6yht/c5bf9/1vzUYDAb3sqdH5OrqStvb27q8vNTz589Xmvd9Tva2KncxaRyAx+EPf/iD3rx5oxcvXuh73/veuouDJ2JWu7vNb/jaepqCIFCr1ZJpmgqCQKVSaeq9znlpfd+PuwGHDY+yjwaiWZa18P4BAADWFjQdHBzEQU4QBDo+Plaz2Vw4bRT4RAHSMNd14/kbbNtO5L/I/gEAANYSNAVBkPhsmqY8z1sq7az7mNlsVv1+X1JyivVF9g8AACCtacoBz/OUyWQSyzKZzMTeokXSThJNqrXKPAEAwNOzlp6mMAwnLp80adUiaSdtG03Xfn5+rnK5HI+6XyTP6+trXV9fx5+vrq7m7hsAADwuGzXlwLRgZtm0w4O7TdNUoVBQt9tdOM9araaPPvooddkAAEk8qI37dFftbS235yZNhd7r9SY+vbZI2lHDY5eip+SCIFg4z5OTE11eXsb/3r59O3ffAADpO9/5jiTpv/7rv9ZcEjwl//3f/y1J+ta3vrXSfNfS02TbtlzXHVuey+VulXaY7/va39+PB4JHMpnMwnk+e/ZMz549m7k/AMC4b33rWzIMQ//+7/8uSXr33Xe1tbW15lLhMfvjH/+o//iP/9C7776rb397tWHOWoKm6L00kSAIlMvl4p4e3/fjGUTnpR02/F4b0zTlOE68zvM8FYvFiQPDZ+UJALidP/3TP5WkOHAC7to777yjH/3oRysP0Nc2pqnZbKparSqfz+v8/DwxR1KtVlM+n1elUpmb1vM8tdvtxHZRcJTL5VSv12UYhrrdbmK7WXkCAFZna2tLf/Znf6Yf/OAH+p//+Z91FwdPwHe/+129887qRyDxGpUl8BqVJF6jAgB4KG7zG76WgeAAAAAPDUETAABACgRNAAAAKRA0AQAApEDQBAAAkAJBEwAAQAoETQAAACkQNAEAAKRA0AQAAJACQRMAAEAKBE0AAAApEDQBAACkQNAEAACQAkETAABACgRNAAAAKRA0AQAApEDQBAAAkAJBEwAAQAoETQAAACkQNAEAAKRA0AQAAJACQRMAAEAKBE0AAAApEDQBAACkQNAEAACQwrfXteMgCNRqtWSapoIgUKlUkmEYS6X1fV/Hx8fqdDqJ7Xzfl+d5kqTz83O9fv063s73fUmSZVkKgkBhGMqyrJUfJwAAeBzWFjQdHBzEQU4QBDo+Plaz2Vw4bRRMRUHQMM/zVKlUJEn1el37+/txPq7rqtFoSJJs2566bwAAAGlNt+eCIEh8Nk0z7hFaNG2xWJzYQ+T7vmq1WiKd7/txftlsVv1+X/1+X+12e2ovFwAAgLSmoMnzPGUymcSyTCYztbcobdphlmXp9evX8ecwDONtI4ZhECwBAIBU1nJ7LgpgRvV6vVulHVUsFuP/Pz09lW3bcZAUhqFarZakm/FO5XJZpmlOzOf6+lrX19fx56urq7n7BgAAj8vaxjRNMi1AWkXaVquVGCg+PJjcNE0VCgV1u92J29dqNX300Uep9wcAAB6ftdyeMwxjrKeo1+tNvFW2SNppqtXq2Lil4bFS0VN5o+OnIicnJ7q8vIz/vX37NvW+AQDA47CWoMm27YnLc7ncrdJOUq/XVa1WZZqmwjBUGIbyfV/7+/tjaUfHTkWePXum58+fJ/4BAICnZS1B0+jYoSAIlMvlEnMoRb0+89IOG71l12q1ZFlWHDCdnZ3JMAyZpinHceJ0nuepWCwyKBwAAEy1tjFNzWZT1WpV+Xxe5+fniXmSarWa8vl8PMfSrLSe56ndbie2KxaLCoJABwcHiX0ahhGPZcrlcqrX6zIMQ91ul3maAADATFuDwWCw7kI8NFdXV9re3tbl5eXKb9W9//LXK83vPnz16sfrLgIAAKnc5jecd88BAACkQNAEAACQwsJjmr766is1m0212231+/14eSaTUaFQULFY1Pvvv7/KMgIAAKzdQkHTy5cvtbW1pcPDQ/3d3/3d2Povv/xSH3/8sba2thLvfQMAAHjoUgdNv/jFL3RycqLt7e2paT744AN98MEHury81MnJCYETAAB4NFIHTZN6lqbZ3t4mYAIAAI/K0gPBX758qU8++USXl5f6q7/6Kx0dHemzzz5bZdkAAAA2xtJBUz6f109/+lM1Gg1ls1mdnp7q66+/XmXZAAAANsbSQdPOzo4k6ezsTEdHR5Kmv7sNAADgoVv6NSrdbleDwUDdbld/8Rd/oTdv3iSmIAAAAHhMlu5pOjw8lO/76nQ6ury8lOu6Yy/MBQAAeCxS9TRdXl6q3+8nJq3c3t5OPFH36tWrxDZXV1eStPJ3swEAAKxDqp6m7e1ttdvt1E/Hffrppzo7OyNgAgAAj0bqMU3Hx8f68ssvdXh4qL29PeXzeZmmKcMwFIahgiDQb37zG71580blclkffvjhXZYbAADgXi00EPyDDz7Q2dmZLi8vdXZ2pt/85jcKw1CGYWhvb0/lclkvXry4q7ICAACszVJPz21vb+v4+HjVZQEAANhYSz89BwAA8JQQNAEAAKRA0AQAAJACQRMAAEAKtwqafvGLX8Tvnfv888/jCS0BAAAem6WDppcvX8owDNm2LUna39+X53krKxgAAMAmWTpoyufzOj4+lmmaqywPAADARlo6aHrz5o0kaWtrK152fn5++xIBAABsoKUmt5RuZgfP5XLa3d1Vu92W53lyHGeVZQMAANgYSwdN+/v7ajabcl1Xg8FAjUZDH3zwQertgyBQq9WSaZoKgkClUkmGYSyV1vd9HR8fq9PppN5ukf0DAAAsHTRJ0osXL/Tq1av489XVlZ4/f55q24ODgzjICYJAx8fHajabC6eNAh/f9xfabpH9AwAA3Cpourq6Uq/Xiz87jqN/+Id/mLtdEASJz6ZpTn3ybl7aYrG48HaL7B8AAEC6RdD0N3/zN/I8L3FL682bN6mCJs/zlMlkEssymYx835dlWUunTbvdxcXFUnkCAICna+mgaW9vTx9//HFi2evXr1NtG4bhxOXDvVbLpE273aJ5Xl9f6/r6Ov7MJJ4AADw9S085EE1qOaxQKNyqMNOCmdumTbvdtHW1Wk3b29vxv/fee2+pfQMAgIdr6Z6mnZ0d/fKXv5RpmjIMQ2EY6vT0VKenp3O3NQxjrFen1+tNfHptkbRpt1s0z5OTE/3sZz+LP19dXRE4AQDwxCzd01SpVPRP//RP+tWvfqWPP/5Yv/rVryY+wTbJpF4qScrlcrdKm3a7RfN89uyZnj9/nvgHAACelqV7mgqFgo6PjxPLPv3001Tbjr56JQgC5XK5uKfH930ZhiHTNOemHRaGYbx81naj287KEwAAQLrlQPA0y6ZpNpuqVqvK5/M6Pz9PzJFUq9WUz+dVqVTmpvU8T+12O7FdNA3BrO1mrQMAABi1NRgMBsts+Pr1a3mep3w+L0kaDAY6Ozt7Eu+fu7q60vb2ti4vL1d+q+79l79eaX734atXP153EQAASOU2v+FLj2lyXVcvXrzQYDBQFHctGX8BAABsvKVvzzmOo/39/cSyaQOsAQAAHrqle5pGAybpZhoCAACAxyh1T9Nnn30m27bj+3+ffPJJYn0Yhmq32/rHf/zH1ZYQAABgA6Tuafr5z3+ui4uL+PPHH3+sfr8f/xsMBvr666/vpJAAAADrlrqnaThgkm6envvggw8SyxjTBAAAHqulxzQNj1+6vLzUp59+ypgmAADwaC0dNHmeF///9va2Pvzww8QyAACAx2ShKQcuLy91dnamra2teBbuYZ1ORz/96U9XVjgAAIBNsVDQtL29Ldu25TiOut2uXrx4kVgfvfYEAADgsVl4cssXL17o448/1ueffz5xriYAAIDHaKWTWwIAADxWSwdNAAAATwlBEwAAQAoETQAAACmsNGj66quvVpkdAADAxlj46blhv/3tb9Xr9eLPruvq9PT01oUC8Hi8//LX6y7Cwr569eN1FwHABlo6aDo8PFQYhjIMI1725ZdfrqJMAAAAG2fpoKlQKOj4+Dix7NNPP711gQAAADbR0mOa9vb2Ui0DAAB4DJbuaep2u3JdV/l8XpI0GAx0dnam8/PzlRUOAABgUyzd0+S6rl68eKHBYKDBYCBJ8X8BAAAem6V7mhzHGXuVim3bty4QAADAJlrZu+e++OILvXnz5tYFAgAA2ES3mqfps88+UxAEkm5uzV1cXOgnP/nJSgoGAACwSZYOml6+fKkwDNXr9WSapsIwVLlcTr19EARqtVoyTVNBEKhUKiXmfEqbdta6VqsV3zIczdv3fUmSZVkKgkBhGMqyrIXqAAAAPB1LB017e3s6Pj7WmzdvtLW1pffff19ffPFF6u0PDg7U6XQk3QQ+x8fHajabC6edt26U4ziqVCpyXVeNRkPSzVisafsGAACQbjGmyTRN/cu//ItevHihVqu10LbRLb3hvDzPWzjtrHVhGKrZbMZP9w0GgzhgkqRsNqt+v69+v692uz21lwsAAEC6RdAUhqFM09TV1ZX+8z//U3/9138t13VTbet5njKZTGJZJpOJb5mlTTsvn2KxGC9vtVqJz9LNLTuCJQAAkMbSt+c+/PBDffPNN5KkV69e6fPPP1cul0u1bRiGE5cPv/w3TdpZ64bHJw2PvRpeFvWQnZ+fq1wuJ9YPu76+1vX1dfz56upqYjoAAPB43erpuV/84he6uLjQ6empJGlra+tWhZkWBC2adnRdtVqV4ziJZcMDxk3TVKFQULfbnZhfrVbTRx99lLpsAADg8Vn69tzLly9lGEb8dNr+/v7UcUmjDMMY61Xq9XoTb5XNSpsmnzAM5XneWN7D46GiJ+9Gx0hFTk5OdHl5Gf97+/ZtiqMEAACPydJBUz6f1/Hx8dRbWrNMmzl80u29WWnT5HNxcTFxuoHRyTkljY2Pijx79kzPnz9P/AMAAE/L0kFTNPv38C25tC/rHQ20giBQLpeLgxvf9+Nen1lp5+UT5TUaDJmmmbhd53meisUig8IBAMBUS49p+uCDD5TL5bS7u6t2uy3P88bGDc3SbDZVrVaVz+d1fn6emCepVqspn8/H0wPMSjtrXWQ0uDIMQ7lcTvV6XYZhqNvtMk8TAACYaWswGAyW3fjNmzfxNANHR0f64IMPVlawTXZ1daXt7W1dXl6u/Fbd+y9/vdL87sNXr3687iJgg9GmAWyS2/yG3+rpuRcvXujVq1e3yQIAAOBBSD2m6Ze//OXcNJ988smtCgMAALCpUvc0/fznP1e73Z6Z5uLiQj/96U9vXSgAAIBNkzpo2t/f1+7urrLZ7NQ0txgeBQAAsNFSB03NZlOXl5e6uLiQdDNP0+gAqmnzHAEAADx0Cw0E397ejieF/PLLL9Xr9bS1taW//Mu/lHTzPjoAAIDH6FbzNEW++OILtdttFQqFOIACAAB4TJaeEVySfvvb3+pv//ZvVSwW1W63p767DQAA4KFbuKfpq6++UrPZlOu62tra0ocffqhOp6MXL17cRfkAAAA2Quqepk8++UT5fF7ZbFZBEKjZbOqf//mf9erVqzhg+uyzz+6soAAAAOuUuqepVCqpWCzq5cuXMgxD/X5fX3zxRby+3+/r1atX+slPfnInBQUAAFinhYKmer0+cy6m09PTlRQKAABg06QOmsrl8twX252cnNy6QAAAAJso9Zim4SkGbpMGAADgIbrVlAMAAABPBUETAABACgRNAAAAKRA0AQAApEDQBAAAkAJBEwAAQAoETQAAACkQNAEAAKRA0AQAAJACQRMAAEAKBE0AAAAppH5h76oFQaBWqyXTNBUEgUqlkgzDWDjtrHW+70uSLMtSEAQKw1CWZS28fwAAgLUFTQcHB+p0OpJuApjj42M1m82F085a57quGo2GJMm27UT+i+wfAABgLUFTEASJz6ZpyvO8hdPOyyebzarf70tSohdpkf0DAABIaxrT5HmeMplMYlkmk4lvp6VNmyYfwzDGbrstsn8AAABpTT1NYRhOXN7r9RZKOy+fMAzVarUkSefn5yqXyzJNc6H9S9L19bWur6/jz1dXVxPTAQCAx2ttY5ommRbMLJo2Wjc8uNs0TRUKBXW73YXzrNVq+uijj1KXDQAAPD5ruT1nGMZYr06v15v49NqstPPyGR67FD0lFwTBQvuXpJOTE11eXsb/3r59m/JIAQDAY7GWoMm27YnLc7ncQmlnrfN9X/v7+2PrMpnMQvuXpGfPnun58+eJfwAA4GlZy+050zQTn4MgUC6XS8yvZBiGTNOcmXa0Z2h4nWmachwnXud5norF4tztAAAAJlnbmKZms6lqtap8Pq/z8/PEHEm1Wk35fF6VSmVu2mnrDMNQLpdTvV6XYRjqdruptgMAAJhkazAYDNZdiIfm6upK29vbury8XPmtuvdf/nql+d2Hr179eN1FwAajTQPYJLf5Dd+op+cAANh0/CHwdPHCXgAAgBQImgAAAFIgaAIAAEiBoAkAACAFgiYAAIAUCJoAAABSIGgCAABIgaAJAAAgBYImAACAFAiaAAAAUiBoAgAASIGgCQAAIAWCJgAAgBQImgAAAFIgaAIAAEiBoAkAACAFgiYAAIAUCJoAAABSIGgCAABIgaAJAAAgBYImAACAFAiaAAAAUiBoAgAASIGgCQAAIIVvr2vHQRCo1WrJNE0FQaBSqSTDMBZOO2ud7/vyPE+SdH5+rtevXyfWSZJlWQqCQGEYyrKsuzxkAADwgK0taDo4OFCn05F0E/gcHx+r2WwunHbWOs/zVKlUJEn1el37+/txWtd11Wg0JEm2bU/dNwAAgLSm23NBECQ+m6YZ9wgtknbWOt/3VavV4nXFYlG+78fbZLNZ9ft99ft9tdvtqb1cAAAA0pqCJs/zlMlkEssymUx8yyxt2lnrLMvS69ev4+VhGMbrI4ZhECwBAIBU1nJ7LgpgRvV6vYXSzsunWCzGy05PT2XbdhwkhWGoVqsl6Wa8U7lclmmaE/O7vr7W9fV1/Pnq6mpiOgAANtLfb6+7BMv5+8t1lyBhbWOaJpkWBC2adnRdFCBF45kkJQaMm6apQqGgbrc7Mb9araaPPvooddkAAMDjs5bbc4ZhjPUq9Xq9ibfKZqVNm0+1Wh0btzQ8Hip68m50jFTk5OREl5eX8b+3b9+mOEoAAPCYrCVosm174vJcLrdQ2jT51Ot1VatVmaapMAwVhqF839f+/v7YdqPjoyLPnj3T8+fPE/8AAMDTspagaXTsUBAEyuVyiTmUol6fWWnn5dNqtWRZVhwwnZ2dxds5jhNv53meisUig8IBAMBUaxvT1Gw2Va1Wlc/ndX5+npgnqVarKZ/Px3MszUo7bV0QBDo4OEjs0zCMeCxTLpdTvV6XYRjqdrvM0wQAAGbaGgwGg3UX4qG5urrS9va2Li8vV36r7v2Xv15pfvfhq1c/XncRsMFo03hsHmSb/t7/t+4iLOcOnp67zW84754DAABIgaAJAAAgBYImAACAFAiaAAAAUiBoAgAASIGgCQAAIAWCJgAAgBQImgAAAFIgaAIAAEiBoAkAACAFgiYAAIAUCJoAAABSIGgCAABIgaAJAAAgBYImAACAFAiaAAAAUiBoAgAASIGgCQAAIAWCJgAAgBQImgAAAFIgaAIAAEiBoAkAACAFgiYAAIAUCJoAAABSIGgCAABI4dvr2nEQBGq1WjJNU0EQqFQqyTCMhdPexToAAIBRawuaDg4O1Ol0JN0EMMfHx2o2mwunvYt1AAAAo9Zyey4IgsRn0zTled7Cae9iHQAAwCRrCZo8z1Mmk0ksy2Qy8n1/obR3sQ4AAGCStdyeC8Nw4vJer7dQ2rtYN8n19bWur6/jz5eXl5Kkq6urielv44/X/7XyPO/aXdQDHg/aNB6bB9mmtwbrLsJy7uC7GH2/B4PF62RtY5ommRbMLJp21etqtZo++uijseXvvffe1Lyeku3/f90lAFaLNo3HZnvdBVjWq7sr+e9//3ttby+W/1qCJsMwxnp1er3exKfXZqW9i3WTnJyc6Gc/+1n8+Y9//KN6vZ52d3e1tbU173CxpKurK7333nt6+/atnj9/vu7iALdGm8Zj8xDb9GAw0O9//3v98Ic/XHjbtQRNtm3Ldd2x5blcbqG0pmmufN0kz54907NnzxLLmJ7g/jx//vzBfBmBNGjTeGweWptetIcpspagyTTNxOcgCJTL5eJAxPd9GYYh0zRnph0NXFaxDgAAYJK1jWlqNpuqVqvK5/M6Pz9PzJFUq9WUz+dVqVTmpr2LdQAAAKO2BssMHwfuwfX1tWq1mk5OTsZujwIPEW0aj81Ta9METQAAACnwwl4AAIAUCJoAAABSIGh6hHzfV7lc1tbWlqrVqhqNhqrVqg4ODlb6jr1Go6GdnZ0H/fqZbDarVqsVf240GioUCktti6So3TUaDbVaLXmep0ajMfbux03ieZ6y2awajca97O8htSG+K6vneV7iWr3M9fk+r8PruuZvVNsb4FHq9/sDSYN+vz+2rNPprGw/tm2vLL/hst6Xdrud2G+32x202+2ltsX/sW174LpuYlmn0xlIGnS73TWVKp1KpTJW9rvykNoQ35W70e12x67Vi1rldXiT9hXZpLa3Ua9Rwd2K5r46PT2VZVnrLk5CEATyPE+lUule92vbduLzpLnB0m6LG/V6XZLGzqVlWfd+fpexu7t7b/t6SG2I78rdGH15PMZtUtvj9twT0+v1tLe3t+5ijHEcZ91FwIrUajWVy+WJ6w4ODu65NACwOgRNT0QYhqpWq7JtW6VSSZ7naW9vT41GQ41GQ9lsVtLNeKh6va5Wq6V6vT42/sT3fVWrVbVaLbVarcQ7/KLxIFFPQ6vV0t7eXuI+fRAE8faNRkNhGMrzPF1cXKjdbs8c8+J5Xly2arWaKFO5XI7L1Gq15Pv+3PL4vp8YvxKGocrlciKonFYfo9sOj4WJxu48xQAhCAKFYTj1r0DbtuN10+p2Wl0GQRBvMxyURW05agONRkPlcjl+Afe0tj6tPUmK2+Wk8zhpu3nnPwzDeF203WgbWqZOpuG78nClqZ9Z1+Eoj9Hz32q1lM1m43NWr9e1t7cXn/NZbWbWviaV/1G3vZXd6MNGicYvOY4zaDabg2azOTaWpFQqDUql0mAwGMTrbdtOpLEsK74f3O/3B6Zpjq0fvr/tOM7AcZz4c7FYjO89R9tH+VUqlTjtvHEk3W53YFlW/Nl13YHjOIN+vz8wDCNxz9owjLhMs8oTrR/dr2EY8T5n1cfotpVKZVAsFuPP67j3v27R+Ix5xz2vbifV5fB5HG5HUfrh9c1mM5H/pLY+qT0NBjfnddp5nLXdrPPvOE6i3UXtZrgNLVMnk+qZ78rDMmn86az6mXcdntVG+/1+fF5c1433OavNzLvmD3sKbY8xTY9cqVSa+k49wzDi8RvFYlHVanVsrJNpmjo7O1OpVNLZ2dnY+kXux5+dnck0zbg8Jycnqbd1XVeZTCbRa3V+fi7DMGTbduIYp714eVGu686sj1G7u7uJ8TCGYcz9q+yxiXqRgiCYOG4uCAJlMpm5dTupLod7r6K6HT7vw/9fLBZ1cHCgMAzj902OtvVJ7SmSz+fH9iVNb4fS7PNfLBaVzWZlmqaOjo4mtp9l6mRS++K78vDNqp951+FZbdQwDL1+/VrZbFbNZjNuC7PazCLX/KfQ9gianri0g+lWIfoBi0wL5kbTRSzLSgzqK5VK9/ZoONKrVCpyXVfFYnFsne/7E5encdsXao+29UntKY1ltstkMur3+/J9X6enpzo4OFC73U5Z8sXxXXnaZrXRKBAafSBoVW3msbc9xjQ9cvMi6OH1R0dHY/OE+L6vw8NDSTfjUUbn5xgdf2QYhr7++uv4s+d58diSYrE4tv2keUkmLZtUNs/zdHh4OLNMs8oTGf08a5/D9TFr26csGtQ/eqEcrqs0dTtqXl0Pr2+1WmN/2c5r62nmyFl2u1qtFve+OY6TKFdU7mXqZJEy8l3ZTIv2sM27Ds9qo9FYvWazqSAI4vmLpm2T5po/7Cm0PXqaHqHor1np5gesXC6PdV96nifP8+T7vkzTlG3b8QW9Xq/LNE2dn58nunBN01Sz2VS1WlWhUIh7hGq1mhzHkWmaOjw8TEzSZtt23H1qmqZc11W1Wo1vf0R/kZTLZTmOo0ajMfER0ahso9sahjGxTJFZ5QnDUKenp8pkMioWixN7IqbVR1TH0bZRXtE+okHLrusu9HjsY9Fut1Wv11WtVrW3txd36Ue9TGnqVkrWZbSd53kKgkCO4yQCkG63G19so/yk2W19tD1N23d0Hpfdbnd3V57nKZPJqNfr6ejoaKwNLVMnk9oX35WHIwpgpJvA+ujoSJLm1s+s6/C0899oNOLfA+nmFvTx8bGCIFClUlmozQxf84c9hbbHC3vx6BQKhfjisYydnR31+/0Vlwp3KQrOHsI8UJuE7wrW5aG2PXqa8OgsM6C00Wio2+2qXC6vbIAisOn4rmBdHmrbY0wTHpVonifXdRe6j23btnZ3d9VqteS67t0VECsX3X5rNpsP+j2I943vCtblIbc9bs8BAACkQE8TAABACgRNAAAAKRA0AQAApEDQBAAAkAJBE4AHI3pT+tbWlqrVqhqNhur1erzsvmedzmaz8azKAB4/np4D8KAEQaC9vT31+/3ErMKNRkO5XG7pyfLSGJ3J2PM85XK5W78XD8DDQE8TgAdl2lvWDw8Pl5owL60gCHR2dpZYNvp+OwCPG0ETgAfN9/24B+gu31sWvYgYwNNF0ATgQYtewCnd9AZls1nV63VJUqvV0t7eXvwiUM/zlM1m1Wg05HmeGo2GDg4OEvkFQaBqtapWq6VGoxG/Gf7i4kLtdjuezdj3/TiviO/7qtfrarVaqtfr8Zvc0+wXwObj3XMAHqQoWPE8TycnJ5JubpdFb4qXpGKxmAiqbNuWbdtqt9vx2+Wj169Eb1QvFArqdDoyDCMebF6pVGTb9thLgYf3FQVb7XY7XpbNZvX555/P3S+Ah4GgCcCDVCqVZBjGwkHH7u6udnd348+GYcRjoc7OzmSaZjxOKQrG0nBdd6wspmnq7OxMpVJp5n4BPAwETQAeNNu2V5bX6NNx0wZ5j6YD8DQwpgnAgzKvd8YwDH399dfxZ8/zUs/fVCwW5ft+Ylk0Hmrasijvo6OjsbS+7+vw8DDVvgFsPnqaADwYvu/LdV1JUrVaVaFQULFYTKQ5PDxUtVqNAxjbtuNbZ2EYxmOcbNuOB3S7rivTNGWaplzXVbVaVT6fj9NJUrlcluM4ajQasm1bvu/r9PRUmUxGxWJRlmXJcRzV63WZpqnz83M1m00ZhhGnnbVfAJuPyS0BAABS4PYcAABACgRNAAAAKRA0AQAApEDQBAAAkAJBEwAAQAoETQAAACkQNAEAAKRA0AQAAJACQRMAAEAKBE0AAAApEDQBAACkQNAEAACQwv8DcC9mzKQwsCoAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -435,9 +435,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFUCAYAAAA5ywiWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1Q0lEQVR4nO3dzW7j2J338Z+fnqAyAVKmZSBIgmmgi7qBKcq+gZieWWSXlu0biKWZbTAjlXfpTVRUsp+mqm/AltK7LAZi9QXEFjv7gVg9aCAYNKZk2gEaKQQJn0WBHFGv1IstWf5+gEK3+HJ4eHhE/X14eM5WFEWRAAAAMNH/W3UGAAAAHgKCJgAAgAwImgAAADIgaAIAAMiAoAkAACADgiYAAIAMCJoAAAAyIGgCAADIgKBpgwRBoGq1qp2dHeXz+Ynb5vN57ezsqFqtKgzD+8kgHoVWq7XqLNyL+Pu2tbWlfD6ver2uer2ucrmso6OjR1MOiyqXy9rZ2ZHneavOyp3Z1LrSaDRUKBRWnY37FWHjOI4TGYYRdTqdkevb7XZULBajUql0zzkbzXXdoWWVSiUqFosryM17o/K0qZZ5rs1mc2jZ9fX1xPo4yqqv/yxs2x75XTJNM3IcZwU5ms061HXLsqJ2uz11u3XI6yJ5eMh1ZdR5d7vdqFKpzPTdfuhoadpAhmHo+PhYruuOXL9uLUvtdnto2eHhoU5OTlaQm/dG5WlTLfNcDcMYuaxUKsk0zczprPr6L0O5XFa1Wl11NqZ6SHV9HfJ6F3l4CHVl1HmbpqlyuTzye7+pCJo2VLlc1sXFxdDyMAxn+vG6a41GQ0EQDC23bVvFYnEFORqfp0207HP1fV/1en1oueM4M91YV3n9lyU+33X7I6XfQ6rr65DXu8rDuteVSeft+/5a/abctb9bdQZwNyzLUi6XU6vVSv34XF1dybbtsfvV63WZpqkgCGSaZrJvGIZqNBoyTVPtdlvlclmWZUmSPM9L/kp69eqVgiBQEAR6+/atHMcZeyzP89RutxUEQfJDW6lU5Pu+qtWqgiBQt9sde4xer6dOpyPXddVoNJTL5XR+fq6zs7Mkb9POK2ueBtOR3vdT6F83yajjNxoNua4r3/fVbDZVLBaTYPf4+DgVaEzKf6PRSB2rVCqNLMNqtapGoyHHcVQqlTKf67Qy62cYhhzHSaUTn9OrV69SaYwry6zXP0sdm3ScWdKcpyw6nY4sy0oFi6PSifMR/9Ue/0Uf52HU9c2S3rTzmnb9R1nWfaBer8swDOVyuanlOCmvrVYrOabrugqCIPneNJtN5XI5HRwcKAxDNZtNWZY1d5lNykOtVlMQBGo2m7JtW0EQ6PDwUKZpynXdqUHFYF15KPUkDMNH1cokiT5Nmyh+9jyqX0jc52RUn6ZisZjqk2LbdvKsulKpRN1uN1lnmmZ0fX2dfG6325Fpmql+CaZpTn3W3W63I8uyhpZ3Op3INM2hbUcdo1KppM5vML1J5zVLnorFYurY3W43sm17wtllO35/fx/XdYfyNml/x3GGzj/eNi6vfrZtp/omTDrXWcpsGtu2U+lNK8tZrv+kfE07TpY0p5XFYD+V6+vryHGcyLKs1HdkUjpxvW2321Gn00mu6aTrOym9rGU17vqPs4z7QKVSSdXB6+vrSNLUPk3j8uq6buqajiqzOM+Lltm4PIz6ro3qo5SlrmxCPdlkBE0bKL4hdbvdSFLyZex2u6mbR/+XN952MJ14m2KxmLrRDf4Idjqdof0HtxlllqBp3DH6bxbdbjcyDCPzeWXNU6fTSaUbm9aBNcvx4xtXt9sdKq9J+8c/NoM/zPHNelQZDl7HUec6T5lN03/jzlKWs1z/cXUs63EmpZmlLGzbjizLilzXTf4N/uhMS6fdbg+tn3R9p6WXtaxm/TFc9D4Qn9OgLB3Bx+V1ME3HcVJ1Z/B+2G/WMptUXoMvO4yql9PqyqbUk03G47kNZpqmLMvSxcVF8shm0mMpwzBSr/12u93kOXaz2ZT0vjk2fjTW6/WGjtfPMIyhbRY16hiThleYdl5ZXV1djWxijx9TjHvkmeX4tm3Ltm0dHR2p0+lk3v/q6kqGYaSax+PrtIhlldk485ZlvE2/SXUs63EmpZm1LPb29lKPQwZlSWcwH5Oub6PRmDm9ZXwfF70PxOWwTIZhyLKspCtCnH78KCo2zzWYpcxKpZLOz89lWZY8zxtbjyfVlU2pJ5uMoGnDlctlua6rUqk08WYVdxDv/6L3/7/v+6rVajo8PNTx8fGddfwbvNEtatp5Zc3TvB00sx6/UCjI8zz5vp/qjzVp/3nGdpl2HvG5Llpmi+RhnY6zrLLIks7g93NS/u/qGk37/i3jPpC1H9M0/Xk9OTlJApa9vT2Vy2W1Wq3kDxLpbspsMA8HBwdyHEdBEDzqerLJeHtuwx0fH8v3fbVaLe3t7Y3dzrKskS0JYRgqDEMdHBzo7OwsCb7iL+qy3yTxfX+p6U06r6x83086dw4KgkD7+/sLHT++Abmuq6Ojo8z7W5Y18jwmndu0vyDjoG3RMptk3rJcxXGWVRbzpDPp+t7VNZr0/VvGfWBcvufRn9disahWqyXP82RZlorFolzXTbU23kWZ9eeh/+WbeQPDTagnm46gaQPFbxxJ7/8qsW1b5+fnE1uabNvW3t7eUOvFxcVF0vrQ3wIS//hOu8lOE7/RIb2/8Q6+9TbNtGNMOq9Z8mRZlmzbTjVzx+c+6U2qLMd3XTf5i9i2bZXL5Uz7x2/B9L/iH4Zhknb/ecTrBlvNRp3rPGU2i3nLcpRpPybzHKc/zWWVxbz1cNz1nSe9UWU1y/dvGfcB0zRVKpVSb3qFYSjf96d+lyflNe6KEN/74kBp0Ws5mKdp5VUul3V6ejr3cBmbUE823qo7VWF5ut1uVCqVIklRqVRKOn33v0kRv61hGEYyCm1/B8L4zZb+feLllUolarfbUbvdjrrdbtK5t9PpRMViMZKUdEKOj2FZ1tTO4HHacYfNUelNOoZt28nbJPE2lUol03llzdNgOq7rpjqgZ0lv8Phxh9X+Tqtx/kul0sg3jkblv1KpRI7jRM1mcyi/juMk65rNZlQsFiPTNEde23HnmrXMJhl8g6c//cGynPX6T6tjsxxnXJqjyqLb7U78Lk3Ky+BbjrZtR4ZhJJ13B/cZd31HpTdrWY27/uPyv4z7QHw+cTqWZWXqDD4pr47jpL4zo8pyGWU2KQ9xeYxaPktdeej1ZJNtRVEUrSRaA/BoHB0d6eTk5MEPWAlMEobh1LHw8LDxeA7AnYgfB8b//+gGwcOj0P84K34khs1F0ATgTtRqtaR/VhAEE19EAB6qeKR9aXlvBmJ98XgOwJ0IgkCtViuZLoNHc9hEvu/r6upKkiaO1YXNQNAEAACQAY/ngDl5nqdCoaDDw8NVZyUz3/d1eHg4cRR1ZBOXZaFQWGq65XJZOzs7qaES7ttdndum4nv1eBA0AXOybVtnZ2cPasoBy7KSmc3vwuBM69L7Ph+Dg3Y+RIPnFpflskc4d133zkZbHnctln1uYRiq0WiM/YOiXq+r0Wio0Wikxhda1vpxRtXPZbjr7xXWB0ETsICH+EbYXXZWbbfbQ8sODw91cnJyZ8e8L6PO7aF1/B13LZZ5br7v6+LiQmEYjvyDIg5ySqWSSqWSLMtKDei66PpJRp3nsjy0uoD5MPccgKVoNBojp2zYhFewx53bQzPqWiz73OIR9MfNjVir1fTmzZtUng4PD+W67lLWj7Mp1xCrRUsT1kq9Xk+a3lutlnzfT/p2jOo3UK1WtbOzM9TsXq/X1Wq1kv9K/9cH6ejoSJ7nqVqtqlqtqtVqqVAopPqRBEGgfD6vw8PDTDfaVqulVquVelywaLqjziFLmmEYJvuUy+Wp80RlLddJ6Xqep3a7rSAIkms4Lu3B84vPsT+tQqGgQqGQzJtYr9czPf4YtW+j0UhaIuJ6dXR0NLJcxtWbUec2WIaT8jnuXPvXx3nLOhFzq9VSPp9XPp+X53lqNBrK5/MqFApJPSgUCsrn8/J9f+S1WMa5zSLO16gWWs/zFl4/ziz1c7Du9/dd7H8kmLUsRtUp6X1d9DwvWXdXjw6xZKscjhzoVyqVolKplHzudrtDUyu02+3UtCNRFEW2baeG9h+cssO27WR6hWazmaTZ6XSSaTVGpRtPLTBJu92OJKWmRHBdNzmPedOddA7T0qxUKqkpFkzTTOWv0+kM7Z+lXKelG0+HMWjU8YrFYuq6drvdyLbtofz0b2OaZmqajHHG7ds/hUpcDwbzNKnMx52bYRgT8zntXAenpri+vo4kTZ1SJIre17X+tBzHGTrP/ms27trPe26TjCrj+PsyyDCMZFqVRdZPMu48s9T9ZrMZSUqVZaVSSd2vxtXzUXVqcKqTbrf76KcneShoacJaiDuOOo6TLDNNc6gj6qh+A/1/dcZjA/WPCXR0dJQ03RuGId/3Zdu2LMtKjmfbtnq9Xqr1IWtnXMuyUnmIJyQNgmCudKedw6g0B8ug/69u0zSnvok1rVznTXeUuPWw/1GRaZrq9XpJerlcLim//m2ytPqN27ff4Ozv08p8kjAMx+Zz2rnGrXf94/sYhpF5QtTj4+Oha9DfmtHr9RbqVD7p3JYpl8tNfKFi0fXTjj1osO7H16S/LM/OziY+8ptWp5rNZnJ/M02TwV8fCPo0YS14nifDMEberOZJp/+HpNvtpm5s435ESqWSzs/PZVnW0A/drEzTlO/7yazus6Sb5RxKpZJc15XruvI8T8fHx8m6ZrMp6f+mMen1ekt5w29Z6V5dXY28BqZpqt1uJ+UzuI1hGJmPN2rfSa+DZynzWY4V53PauS46vUz8Yx7/OMdpBUGwlDfwFrkGs5iW5qLr70J8v4q/54Mm1alisSjXdbWzsyPLsnRycqJKpXKf2cecCJrw4PW3RoVhKNM0U4HJYJAy7kfq5OREBwcHchxnqKViVv038VnTzXIO5XJZhUJBrusOpen7vmq1mg4PD3V8fDz3j+dgK9+s6Y774V72K/rLkKXM+2UNSrKc66JvXZ2cnCRB+d7ensrlslqtlmzbnqsOLyvgGmVcunH5L7p+FpPOcxl1dFqdarfbSUtk3PpE4LT+eDyHtWBZlsIwnOtm1R+gDD52iWVJ17Is5XI5tVqthX/IwjBMHrHMmm6WczBNc2SaYRjq4OBAZ2dnKpVKMgwj2W/Wxyr95TpPuuM6oNu2PXKfIAi0v78/Ux6XZdZ6M61zfWzauY477iyKxaJarZY8z5NlWUkrxrhWrmmynts8TNOUYRhj37JcdP0sJp1nlpar+H417lHqpDoVd/q2LEuVSkWdTkfn5+cZc45VImjCWogfY/W/QRIEwdBNZ7BPRfyoKP5xs21be3t7Q28gXVxcZMpHuVzW6enpTPOk9R9fev9WTKlUSv1gzZJu1nOI0+z/sYjz0n8jj38AJv1ITCvXLOn2pxEEwcQfE9u2U48t4jQmlc8if/1P23damWc9t8FjTTvXUfU+DEP5vp/5fE3TlGVZ6na7yefBfEzbf55zm2Zc4HF2dpYqj1arlerTtej6ccad57S6Hxu8JrVabeh73m9SneoPnPrzhwdg1T3RgX7xm0Ttdjt522XwLSLHcSLHcaJmsxk1m82oWCxGpmmm3lKJ04m3iaL3b8nYth0ZhhE5jpN6EybW7XajYrGYOb+dTidqt9vJcVzXHfl23KzpjjuHftfX16m3d/r3q1QqSRnGx242m1Gn04mKxWIkKfWWVRRNL9dJ6Q4eO34TqP94g+USb+e6biovo/ZxHCcyDCOyLGviW1KT9rVtO3lrsr8M+t8AnFTmWc5tXD7HnWt/2cdvh8X1flTdH8dxnNRbbaPq97RrMe+5Dep2u5HjOJFlWUkZD27fX88mlce868cZPM/+9CbV/fiaxNco3j426Xs1qk7FdSFe5jhOqh5ifTFhL9ZaoVCQ4zj3NkBiGIa6urpa+vHuKl0Ady8e163T6aw6K1gxHs/h0etvcr+4uFhaYHNX6QIAVoOgCY9etVpN+hcsc/6ou0oXALAaBE1YW/V6Xb7vy3GcuQZRzKp/io1ZOoCvKl0A98fzPDmOI9/3R04zg8eFPk0AAAAZ0NIEAACQAUETAABABgRNAAAAGTD33Bh/+9vf9Mc//lHf//73tbW1tersAACAJYmiSH/605/04x//WP/v/2VvPyJoGuOPf/yjPvzww1VnAwAA3JGvv/5a//AP/5B5+5UFTUEQqNVqJfP+xJOAzrptPEu0JF1eXurVq1fJulmOMej73/++pPcF+vTp00VOFQAArJHb21t9+OGHyW99VisLmo6OjpIh6YMg0OnpqZrN5szbep6nSqUi6f24PgcHB8m2sxxjUPxI7unTpwRNAABsoFm736ykI/iomevHDV44aVvf91Wr1ZJ1xWJRvu8rCIKZjgEAADDNSoImz/OGppXI5XLyfX+mbS3L0qtXr5Ll8VxfuVxupmMAAABMs5LHc/0Tmfbr9Xozb9s/PcX5+bls25ZhGDMdQ5LevXund+/eJZ9vb29HbgcAAB6ntXp7blygk2XbMAzVarWSPkyzHqNWq+mTTz7JfHwAwOz++te/6i9/+cuqs4EN953vfEcffPDB0tNdSdBkGMZQi0+v1xv5ZlvWbavVqtrtdrJ8lmNI0tnZmX7xi18kn+Oe9QCAxUVRpP/5n/+Z6Y9jYBGGYeiHP/zhUsdaXEnQZNu2XNcdWr63tzfXtvV6XdVqVaZpJl/IWY4hSU+ePNGTJ0+yngIAYAZxwPSDH/xA3/ve9xg0GHcmiiJ9++23+uabbyRJP/rRj5aW9kqCJtM0U5+DINDe3l5q7CXDMGSa5tRtW62WLMtKAqaLi4uR4zEN7gcAuB9//etfk4Bpd3d31dnBI/D3f//3kqRvvvlGP/jBD5b2qG5lfZqazaaq1ar29/d1eXmZGj+pVqtpf38/GX9p3LZBEOjo6CiVrmEYKpVKU48BALgfcR+m733veyvOCR6TuL795S9/WVrQtBVFUbSUlDbM7e2ttre3dXNzw+CWALCAP//5z3rz5o2ePXum7373u0tL1/d9ua6rRqOhSqWifD6vMAz19u1bNRoNNZtN2bY9V9qe56larapcLid/iC9boVDQ2dlZ6i3wdbfMcmk0GqpWq3r9+rUsy1pSDv/PpHo372/8Wr0995h89OJ3q87CXL56+dNVZwEAJEmWZalararRaOjs7CzV/eLk5ERXV1dzp23btk5OTpaQy/8ThmEqj47jjO1nu076823b9tyB6KBSqfTgngCtZHBLAACWYXAQ49hdtFwsIggCXVxcpJbF4wqus1H5fsz90giaAAAbI55KS5KOj49XnJv/4zjOqrMwl4ea77vC4zkAwIPXaDQkvZ8ZIn7kYxiGWq2WqtWqLMtSs9lUGIYqFArJsDStVkuGYSgIAnW73bFBQtyX5+TkRJVKJUnXdd3kcdW4tDzP09XVVTJ2oG3bCsNQp6enqb5Bvu/L8zyZpqkgCFQsFpN5U+N+RPG6drs99tHWuO0dx1EYhvI8T91uNzUsj+d58n1fpmnq8vJSjuOMzHf8Rnuczqi8jDuPeN35+bn29/cljZ+lY10RNAEAHrxRQ81I76fa6vV6yWwRhmGoWq0mgcrR0ZG63a5s21a5XFar1RrZMXuwj1OxWNT5+Xlqm3Fpxf2A8vl8qvN0f3pBECSDNMcKhYJev36d7N8fnDSbzWQO1lF5HbV9q9VSpVKRZVlJp/k4yKtWq0kZ9Xo91et1VSqVkfmWpMvLy9Qb7nFeJp1HfxnFarXaUP7XGUETAGBj9Ac8nufJtm2VSiXt7OzIdV2FYZga/+/6+joJHHq9XvJobx6LpOW67lAAZJpmMvbg7u5uqi/RqFkv+o3avv+84/0Nw5DruslE97HLy8uJ+Y1bigbzMuk8pOG+ZuP6pK0rgiYAwMboDwz6g5bj4+PkEV5/q0mtVtPu7m7qEdK8sqY1+BbdfZl0TMuyUm/FjRpOYFX5Xid0BAcAPFjjWlvCMExN4F6tVuU4TqplI+7HU6lUUtNw9be49M+VZxiG3r59m9q/f59pafXvN5j+ycnJ0La+7y+1M/u4ef9GHXtavseZdB62bcv3/dS6RVr2VoGWJgDAgxQPbim9b+XJ5/OSpG63m4zdFDNNc6g1JZ5aK/6RPzo6kuu6Mk0z6bAsve8jZFmWjo+PVa1Wk+3jzuSWZU1MS5LK5bIcx1Gj0UiCh/Pzc+VyORWLRVmWJcdxVK/Xk87YzWZThmEM5SUIguTcR003Nm576X2LUtyB23EcOY6THDueQSPeb1K+x+Vl0nkYhpHM1HF4eJi0XNVqNTmOs3BL331gRPAx7npEcAa3BPBY3NWI4MAkdzEiOI/nAAAAMiBoAgAAyICgCQAAIAOCJgAAgAwImgAAADIgaAIAAMiAoAkAACADgiYAAIAMCJoAAJhTGIap6VRw/+7zGhA0AQAwhzAMdXp6KtM0dXBwsOrsPDie56lQKCQTKc/jvq8Bc88BAFbivqeTWvY0UJ7naX9/X6Zp6vXr10tNe6pfbt/z8W6WnqRt26m5AOdx39eAliYAAOYQBIEMw5Ck5L+Yze7u7kL73/c1IGgCAADIgKAJAIAB/f1tPM9To9HQ0dFRst73fbXbbTWbzYX65GyiVqulnZ0dlctl+b6vw8NDHR4eJh22d3Z21Gq1ku3j5YNlvI7XgKAJAIABcX+bdrst27ZVKpUUhqF835ckWZaVBAOlUmnFuV0vxWJRpVJJ+XxelmWpWq3KMAwZhiHbtuU4jorFYrL95eXlyDJex2tA0AQAwAi7u7va399PPhuGoV6vt8IcPRzlclnn5+eS3rckBUGQtCgdHx+ntp1Uxut2DQiaAADAUpmmKUlJq9DJyYkuLi4UhuGD7jTPkAMAAGDpyuWyTk9P1el0FIahDg4OdHZ2tupsLYSgCQCAAb7vJ4+XbNtWEATyfV+u68o0TYVhqPPzc+VyOZmmmeqjg/eOj4/V6XQkvX+sNlhOWct42vr7vAZbURRFd36UB+j29lbb29u6ubnR06dPl57+fQ/qtizLHhwOwOb785//rDdv3ujZs2f67ne/u+rs4JGYVO/m/Y2nTxMAAEAGBE0AAAAZEDQBAABkQNAEAACQAUETAABABgRNAIB7wcvauE93Ud8ImgAAd+o73/mOJOnbb79dcU7wmMT1La5/y8DglgCAO/XBBx/IMAx98803kqTvfe972traWnGusKmiKNK3336rb775RoZh6IMPPlha2gRNAIA798Mf/lCSksAJuGuGYST1blkImgAAd25ra0s/+tGP9IMf/EB/+ctfVp0dbLjvfOc7S21hihE0AQDuzQcffHAnP2bAfaAjOAAAQAYETQAAABkQNAEAAGRA0AQAAJABQRMAAEAGBE0AAAAZEDQBAABksLJxmoIgUKvVkmmaCoJApVJJhmHMta3v+zo9PVWn00nt5/u+JMmyLAVBoDAMZVnWXZ0SAADYYCsLmo6OjpIgJwgCnZ6eqtlszrxtHEzFAVI/13XVaDQkSbZtj00fAABgmpUETUEQpD6bpinP8+batlgsjj1OoVDQ9fW1JI1txQIAAMhiJX2aPM9TLpdLLcvlciNbi2bZdhTDMAiYAADAwlbS0hSG4cjlvV5voW1H7dtqtSRJl5eXKpfLMk1z5Lbv3r3Tu3fvks+3t7dT0wcAAI/HWk3YOy5Amnfb/g7jpmnq8PBQ3W535La1Wk2ffPJJ5uMDAIDHZSWP5wzDGGop6vV6Ix+jzbLtoP7+UPGbd4N9pGJnZ2e6ublJ/n399dfTTwQAADwaKwmabNseuXxvb2+hbfv5vq+Dg4Oh5YP9o2JPnjzR06dPU/8AAABiKwmaBvsVBUGgvb29pPXI9/2kRWjatv36H9mZpinHcZLPnuepWCzSKRwAAMxlZX2ams2mqtWq9vf3dXl5mRpDqVaraX9/X5VKZeq2nuep3W6n9ouDo729PdXrdRmGoW63yzhNAABgbltRFEWrzsQ6ur291fb2tm5ubu7kUd1HL3639DTvw1cvf7rqLAAAsJB5f+OZew4AACADgiYAAIAMCJoAAAAyIGgCAADIgKAJAAAgA4ImAACADAiaAAAAMiBoAgAAyICgCQAAIAOCJgAAgAxmnnvuq6++UrPZVLvd1vX1dbI8l8vp8PBQxWJRH3300TLzCAAAsHIzBU0vXrzQ1taWjo+P9e///u9D67/88kt9+umn2traUq1WW1omAQAAVi1z0PTrX/9aZ2dn2t7eHrvN8+fP9fz5c93c3Ojs7IzACQAAbIzMQdOolqVxtre3CZgAAMBGmbsj+IsXL/TZZ5/p5uZG//RP/6STkxN9/vnny8wbAADA2pg7aNrf39fPf/5zNRoNFQoFnZ+f6+3bt8vMGwAAwNqYO2ja2dmRJF1cXOjk5ETS+zfoAAAANtHMQw7Eut2uoihSt9vVP/7jP+rNmzepIQgAAAA2ydwtTcfHx/J9X51ORzc3N3JdV2EYLjFrAAAA6yNTS9PNzY2ur69Tg1Zub2+n3qh7+fJlap/b21tJ0tOnT5eQTQAAgNXK1NK0vb2tdrud+e243/72t7q4uCBgAgAAGyNzn6bT01N9+eWXOj4+Vj6f1/7+vkzTlGEYCsNQQRDo97//vd68eaNyuayPP/74LvMNAABwr2bqCP78+XNdXFzo5uZGFxcX+v3vf68wDGUYhvL5vMrlsp49e3ZXeQUAAFiZud6e297e1unp6bLzAgAAsLbmfnsOAADgMSFoAgAAyICgCQAAIAOCJgAAgAwWCpp+/etfJ/POvX79OhnQEgAAYNPMHTS9ePFChmHItm1J0sHBgTzPW1rGAAAA1sncQdP+/r5OT09lmuYy8wMAALCW5g6a3rx5I0na2tpKll1eXi6eIwAAgDU01+CW0vvRwff29rS7u6t2uy3P8+Q4zjLzBgAAsDbmbmk6ODhQs9nU8+fPFUWRGo2GfvKTnywzbwAAAGtj7pYmSXr27JlevnyZfL69vdXTp08XzhQAAMC6WWjIgdvbW3311VfJv2q1uqx8AQAArJW5W5r+5V/+RZ7nyTCMZNmbN2/0H//xH8vIFwAAwFqZO2jK5/P69NNPU8tevXq1cIYAAADW0dyP5+JBLfsdHh4ulBkAAIB1NXdL087Ojn7zm9/INE0ZhqEwDHV+fq7z8/Nl5g8AAGAtzB00VSoVhWGY6tP05ZdfLiNPAAAAa2fuoOnw8FCnp6epZb/97W8XzhAAAMA6mrtPUz6fz7QMAABgE8zd0tTtduW6rvb39yVJURTp4uKC+ecAAMBGmrulyXVdPXv2TFEUKYoiSUr+CwAAsGnmbmlyHEcHBwepZaOGIQAAANgEC03YO2hnZ2ehzAAAAKyrzC1Nn3/+uWzbTibk/eyzz1LrwzBUu93Wf/7nfy43hwAAAGsgc9D0q1/9SoZh6Cc/+Ykk6dNPP9XJyUlqm7dv32Y+cBAEarVaMk1TQRCoVCqlxnyaZVvf93V6eqpOpzP3MQAAACbJHDRdXV2lPr969UrPnz9PLZulT9PR0VES5ARBoNPTUzWbzZm3jYMi3/cXOgYAAMAkC02jEru5uZHneSoUCpn2DYIg9dk0TXmeN9e2xWJx4WMAAABMM3dH8P4AZHt7Wx9//HHmoMTzPOVyudSyXC43srVolm2XsR8AAMAoM7U03dzc6OLiQltbW2q320PrO52Ofv7zn09NJwzDkct7vd5C2y5jPwAAgFFmCpq2t7dl27Ycx1G329WzZ89S6yuVykKZGRfoLLptlv3evXund+/eJZ9vb2/nSh8AAGymmfs0PXv2TJ9++qlev349cqymLAzDGGrx6fV6I99sm2XbRfar1Wr65JNPpuYdAAA8Tksd3DKrcW/Z7e3tLbTtIvudnZ3p5uYm+ff1119PTB8AADwuc789twjTNFOfgyDQ3t5e0grk+74Mw5BpmlO37ReGYbJ8lv0k6cmTJ3ry5Mlc5wMAADbfSoImSWo2m6pWq9rf39fl5WVq/KRarab9/f2kj9SkbT3PSzqlx/vFwxBM2g8AAGAWW1EURavOxDq6vb3V9va2bm5ukqljlumjF79bepr34auXP111FgAAWMi8v/Fz92ka5auvvlpmcgAAAGtjocdzf/jDH1JvqLmuq/Pz84UzBQAAsG7mDpqOj49THa8l6csvv1xGngAAANbO3EHT4eGhTk9PU8t++9vfLpwhAACAdTR3n6Z8Pp9pGQAAwCaYu6Wp2+3KdV3t7+9LkqIo0sXFhS4vL5eWOQAAgHUxd0uT67p69uyZoihSPGoBoxcAAIBNNXdLk+M4Q1OpjJu6BAAA4KFb2txzX3zxhd68ebNwhgAAANbRQuM0ff755wqCQNL7R3NXV1f62c9+tpSMAQAArJO5g6YXL14oDEP1ej2ZpqkwDFUul5eZNwAAgLUxd9CUz+d1enqqN2/eaGtrSx999JG++OKLZeYNAABgbcwdNJmmqf/+7//Ws2fP9Jvf/Eb/9m//tsx8AXigmIwawKaaO2gKw1Cmaer6+lr/+7//q3/+53+WYRj6yU9+ssz8AQAArIW5g6aPP/5Yf/3rXyVJL1++1OvXr7W3t7e0jAEAAKyTuYcckKRf//rXOjk5ST5vbW0tnCEAAIB1NHfQ9OLFCxmGkQxoeXBwIM/zlpYxAACAdTJ30LS/v6/T01OZprnM/AAAAKyluYOmePTv/kdyTNYLAAA21dwdwZ8/f669vT3t7u6q3W7L8zw5jrPMvAEAAKyNheaeazabev78uaIoUqPRYLgBAACwsRaae+7Zs2d6+fLlsvICAACwtjK3NP3mN7+Zus1nn322UGYAAADWVeaWpl/96ldqt9sTt7m6utLPf/7zhTMFAACwbjIHTQcHB9rd3VWhUBi7TRRFS8kUAADAuskcNDWbTd3c3Ojq6krS+3Ganj59mtoml8stN3cAAABrYqaO4Nvb2zo4OJAkffnll+r1etra2kremvv444+Xn0MAAIA1sNA4TbEvvvhC7XZbh4eHDDsAAAA20kIT9v7hD3/Qv/7rv6pYLKrdbisIgmXlCwAAYK3M3NL01VdfqdlsynVdbW1t6eOPP1an09GzZ8/uIn8AAABrIXNL02effab9/X0VCgUFQaBms6n/+q//0suXL5OA6fPPP7+zjAIAAKxS5pamUqmkYrGoFy9eyDAMXV9f64svvkjWX19f6+XLl/rZz352JxkFAABYpZmCpnq9PnEspvPz86VkCgCAdfTRi9+tOgtz+erlT1edhY2QOWgql8tD4zINOjs7WzhDAAAA6yhzn6b+IQYW2QYAAOAhWmjIAQAAgMeCoAkAACADgiYAAIAMCJoAAAAyIGgCAADIgKAJAAAgA4ImAACADAiaAAAAMiBoAgAAyICgCQAAIAOCJgAAgAwImgAAADIgaAIAAMiAoAkAACCDv1vVgYMgUKvVkmmaCoJApVJJhmHMvO2kdb7vS5Isy1IQBArDUJZl3cPZAQCATbOyoOno6EidTkfS+8Dn9PRUzWZz5m0nrXNdV41GQ5Jk2/bY9AEAAKZZSdAUBEHqs2ma8jxv5m2npVMoFHR9fS1JY1uxAAAAslhJnybP85TL5VLLcrlc8jgt67ZZ0jEMg4AJAAAsbCUtTWEYjlze6/Vm2nZaOmEYqtVqSZIuLy9VLpdlmubIfd69e6d3794ln29vb8fkHgAAPEYr69M0yrggaNZt43X9ncJN09Th4aG63e7IfWq1mj755JPMxwcAAI/LSh7PGYYx1KrU6/VGPkabtO20dPr7PMVv1w32g4qdnZ3p5uYm+ff111/PcWYAAGBTrSRosm175PK9vb2Ztp20zvd9HRwcDK0b7AMVe/LkiZ4+fZr6BwAAEFvJ47nBfkVBEGhvby81vpJhGDJNc+K2gy1T/etM05TjOMk6z/NULBbpFA4AAOaysj5NzWZT1WpV+/v7ury8TI2hVKvVtL+/r0qlMnXbcesMw9De3p7q9boMw1C322WcJgAAMLetKIqiVWdiHd3e3mp7e1s3Nzd38qjuoxe/W3qa9+Grlz9ddRaw5qjb2GTU780w7288c88BAABkQNAEAACQAUETAABABgRNAAAAGRA0AQAAZEDQBAAAkAFBEwAAQAYETQAAABkQNAEAAGRA0AQAAJABQRMAAEAGBE0AAAAZEDQBAABkQNAEAACQAUETAABABgRNAAAAGRA0AQAAZEDQBAAAkAFBEwAAQAYETQAAABkQNAEAAGRA0AQAAJABQRMAAEAGBE0AAAAZ/N2qMwAAAO7YL7dXnYP5/PJm1TlIoaUJAAAgA4ImAACADAiaAAAAMiBoAgAAyICgCQAAIAOCJgAAgAwImgAAADIgaAIAAMiAoAkAACADgiYAAIAMCJoAAAAyIGgCAADIgKAJAAAgA4ImAACADAiaAAAAMiBoAgAAyICgCQAAIAOCJgAAgAwImgAAADIgaAIAAMiAoAkAACADgiYAAIAMCJoAAAAy+LtVHTgIArVaLZmmqSAIVCqVZBjGzNvOuw5z+uX2qnMwu1/erDoHAIANsLKg6ejoSJ1OR9L74Ob09FTNZnPmbeddBwAAMIuVPJ4LgiD12TRNeZ4387bzrgMAAJjVSlqaPM9TLpdLLcvlcvJ9X5ZlZd726upqrnWDxwCAB/noWeLxM3CPVhI0hWE4cnmv15tp23nXjfLu3Tu9e/cu+Xxz8/5GdHt7O3L7Rf3t3bd3ku5du92KVp2F2d3RNcRo1O17Rv2+V9Tve3ZH9Tv+bY+i2cplZX2aRhkX6My67TzrarWaPvnkk6HlH374YeY8PQYP8m/xlw8y17hnD7aWUL+RwYOtJXdcv//0pz9pezv7MVYSNBmGMdTi0+v1Rr7ZNmnbedeNcnZ2pl/84hfJ57/97W/q9Xra3d3V1tbWDGeHWd3e3urDDz/U119/radPn646O8BSUb+xyR5q/Y6iSH/605/04x//eKb9VhI02bYt13WHlu/t7c20rWmac60b5cmTJ3ry5ElqGcMT3K+nT58+qC8dMAvqNzbZQ6zfs7QwxVYSNJmmmfocBIH29vaSIMX3fRmGIdM0J247GNRkXQcAADCrlfVpajabqlar2t/f1+XlZWr8pFqtpv39fVUqlanbzrsOAABgFlvRrF3HgSV79+6darWazs7Ohh6RAg8d9Rub7LHVb4ImAACADJiwFwAAIAOCJgAAgAwImh443/dVLpe1tbWlarWqRqOharWqo6Ojpc6112g0tLOzI9/3l5bmfSsUCmq1WsnnRqOhw8PDufbFeHEdbDQaarVa8jxPjUZjaD7IdeJ5ngqFghqNxr0c7yHVJ743d8fzvNT9e5579n3em1f1O7BWdTDCg3d9fR1Jiq6vr4eWdTqdpR3Htu2lpdef1/vSbrdTx+12u1G73Z5rX4xm23bkum5qWafTiSRF3W53RbnKplKpDOX9rjyk+sT35m51u92h+/eslnlvXqdjxdapDq7VNCpYnnicq/Pz87WboDgIAnmep1KpdK/HtW079XnUOGBZ98Wwer0uSUPX1bKse7/W89jd3b23Yz2k+sT35m4NTiyPYetUB3k8t8F6vZ7y+fyqszHEcZxVZwF3oFarqVwuj1x3dHR0z7kBgOUjaNpAYRiqWq3Ktm2VSiV5nqd8Pq9Go6FGo6FCoSDpfX+oer2uVquler0+1OfE931Vq1W1Wi21Wq3UXH5xH5C4daHVaimfz6eeyQdBkOzfaDQUhqE8z9PV1ZXa7fbEfi6e5yV5q1arqTyVy+UkT61WS77vT82P7/upPithGKpcLqeCynHlMbhvf/+XuL/OYw8KgiBQGIZj//qzbTtZN66cx5VrEATJPv1BWVyv4/rQaDRULpeTSbnH1ftxdUtSUkdHXdNR+02rC2EYJuvi/Qbr0zxlMg7fm4cvSzlNujfHaQzWg1arpUKhkFy7er2ufD6fXPtJdWfSsUblf6Pr4NIe9GFl4v5LjuNEzWYzajabQ/1HSqVSVCqVoiiKkvW2bae2sSwrefZ7fX0dmaY5tL7/WbbjOJHjOMnnYrGYPGeO94/Tq1QqybbT+o50u93Isqzks+u6keM40fX1dWQYRur5tGEYSZ4m5SdeP3hcwzCSY04qj8F9K5VKVCwWk8+reM6/TuJ+GdPKYFo5jyrX/mvaX6fi7fvXN5vNVPqj6v2ouhVF76/xuGs6ab9JdcFxnFQdjOtQf32ap0xGlTPfm4dpVJ/USeU07d48qa5eX18n18d13eSYk+rOtN+Bfo+hDtKnaYOUSqWxc+sZhpH02SgWi6pWq0N9nUzT1MXFhUqlki4uLobWz/Ls/eLiQqZpJvk5OzvLvK/rusrlcqlWq8vLSxmGIdu2U+c4bgLmWbmuO7E8Bu3u7qb6wBiGMfUvsE0WtyIFQTCyD10QBMrlclPLeVS59rdexeXcXwf6/79YLOro6EhhGCZzUA7W+1F1K7a/vz90LGl8nZQm14VisahCoSDTNHVycjKyLs1TJqPqGt+bzTGpnKbdmyfVVcMw9OrVKxUKBTWbzaROTKo7s/wOPIY6SND0iGTtOLcM8Y9WbFwwN7hdzLKsVAe+Uql0b6+DYz6VSkWu66pYLA6t831/5PIsFp1ke7Dej6pbWcyzXy6X0/X1tXzf1/n5uY6OjtRutzPmfHZ8byBNrqtxIDT4ktCy6s6m10H6NG2QadFy//qTk5OhMUF839fx8bGk931QBsfiGOx/ZBiG3r59m3z2PC/pT1IsFof2HzUGyahlo/LmeZ6Oj48n5mlSfmKDnycds788Ju2L9+IO/oM3yP5yy1LOg6aVe//6Vqs19BfttHqfZWycefer1WpJ65vjOKl8xfmep0xmySPfm/U2a0vbtHvzpLoa99lrNpsKgiAZv2jcPll+B/o9hjpIS9MDF/8FK73/0SqXy0NNlZ7nyfM8+b4v0zRl23ZyE6/X6zJNU5eXl6nmWtM01Ww2Va1WdXh4mLQI1Wo1OY4j0zR1fHycGpDNtu2kqdQ0Tbmuq2q1mjzyiP/6KJfLchxHjUZj5Ougcd4G9zUMY2SeYpPyE4ahzs/PlcvlVCwWR7Y+jCuPuIzjfeO04mPEHZVd153pVdhN1G63Va/XVa1Wlc/nk6b8uJUpSzlL6XKN9/M8T0EQyHGcVADS7XaTm2ycnjS53g/WrXHHjq/pvPvt7u7K8zzlcjn1ej2dnJwM1ad5ymRUXeN78/DEAYz0PsA+OTmRpKnlNOnePK4eNBqN5DdCev8o+vT0VEEQqFKpzFR3+n8H+j2GOsiEvXjQDg8PkxvFPHZ2dnR9fb3kXOG+xMHZQxgHap3wvcGqPdQ6SEsTHrR5OpE2Gg11u12Vy+WldUYEHhK+N1i1h1oH6dOEByse58l13ZmeWdu2rd3dXbVaLbmue3cZxJ2KH781m80HPSfifeN7g1V7yHWQx3MAAAAZ0NIEAACQAUETAABABgRNAAAAGRA0AQAAZEDQBGCtxbOjb21tqVqtqtFoqF6vJ8vue8TpQqGQjKQM4HHh7TkAay8IAuXzeV1fX6dGEm40Gtrb25t7gLwsBkcv9jxPe3t7C8+JB+DhoaUJwNobN7P68fHxXIPkZRUEgS4uLlLLBue2A/B4EDQBeHB8309agO5yzrJ4EmIAkAiaADxA8aSb0vvWoEKhoHq9LklqtVrK5/PJ5J+e56lQKKjRaMjzPDUaDR0dHaXSC4JA1WpVrVZLjUYjmQ3+6upK7XY7GcHY9/0krZjv+6rX62q1WqrX68ns7VmOC+BhYe45AA9GHKx4nqezszNJ7x+XxbPDS1KxWEwFVbZty7ZttdvtZEb5eOqVeBb1w8NDdTodGYaRdDavVCqybXtoQuD+Y8XBVrvdTpYVCgW9fv166nEBPDwETQAejFKpJMMwZg46dnd3tbu7m3w2DCPpC3VxcSHTNJN+SnEwloXrukN5MU1TFxcXKpVKE48L4OEhaALw4Ni2vbS0Bt+OG9fJe3A7AI8PfZoArL1prTOGYejt27fJZ8/zMo/fVCwW5ft+alncH2rcsjjtk5OToW1939fx8XGmYwN4WGhpArDWfN+X67qSpGq1qsPDQxWLxdQ2x8fHqlarSQBj23by6CwMw6SPk23bSYdu13VlmqZM05TruqpWq9rf30+2k6RyuSzHcdRoNGTbtnzf1/n5uXK5nIrFoizLkuM4qtfrMk1Tl5eXajabMgwj2XbScQE8LAxuCQAAkAGP5wAAADIgaAIAAMiAoAkAACADgiYAAIAMCJoAAAAyIGgCAADIgKAJAAAgA4ImAACADAiaAAAAMiBoAgAAyICgCQAAIAOCJgAAgAz+P/po8n/CuApxAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFoCAYAAABKc89AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9s0lEQVR4nO3dz2/r2H3//5cnP24wQK5puQ3aoBPMpfsH9FLSPxDT7SK7jGwD33UspdsAla53uZvoUpN9h7rzD9hiZpdFIc78AbHFyb4Q7xQDpEXbkWkHKOKmE30X90NG1E9Kli1bfj6AixmJh4eHh0fS24eH52z0+/2+AAAAMNU7qy4AAADAQ0DQBAAAkAFBEwAAQAYETQAAABkQNAEAAGRA0AQAAJABQRMAAEAGBE0AAAAZEDStqTAMVavVtLW1pZ2dnalpd3Z2tLW1pVqtpiiK7qaAeBQ8z1t1Ee5E/Hnb2NjQzs6OGo2GGo2GKpWK9vf3H0093FSlUtHW1pZ83191UW7NuraVZrOpfD6/6mLcvj7WmuM4fcMw+p1OZ+z2drvdL5VK/XK5fMclG8913ZH3qtVqv1QqraA0b40r07pa5rm2Wq2R9y4uLqa2x3FWff3nYdv22M+SaZp9x3FWUKL53Ie2bllWv91uz0x3H8p6kzI85LYy7ry73W6/Wq3O9dl+iOhpWnOGYejg4ECu647dft96ltrt9sh7e3t7Ojw8XEFp3hpXpnW1zHM1DGPse+VyWaZpZs5n1dd/GSqVimq12qqLMdNDauv3oay3UYaH0FbGnbdpmqpUKmM/9+uEoOkRqFQqOj09HXk/iqK5frxuW7PZVBiGI+/btq1SqbSCEk0u0zpa9rkGQaBGozHyvuM4c32xrvL6L0t8vvftj5RBD6mt34ey3lYZ7ntbmXbeQRDcq9+U2/DNVRcAt8+yLOVyOXmel/rxOT8/l23bE/drNBoyTVNhGMo0zWTfKIrUbDZlmqba7bYqlYosy5Ik+b6f/JX0+vVrhWGoMAz11VdfyXGcicfyfV/tdlthGCY/tNVqVUEQqFarKQxDdbvdicfo9XrqdDpyXVfNZlO5XE4nJyc6Pj5OyjbrvLKWaTgf6e04hcFt04w7frPZlOu6CoJArVZLpVIpCXYPDg5Sgca08jebzdSxyuXy2Dqs1WpqNptyHEflcjnzuc6qs0GGYchxnFQ+8Tm9fv06lcekusx6/bO0sWnHmSfPReqi0+nIsqxUsDgun7gc8V/t8V/0cRnGXd8s+c06r1nXf5xlfQ80Gg0ZhqFcLjezHqeV1fO85Jiu6yoMw+Rz02q1lMvltLu7qyiK1Gq1ZFnWwnU2rQz1el1hGKrVasm2bYVhqL29PZmmKdd1ZwYVw23lobSTKIrWvpdJEmOa1l1873ncuJB4zMm4MU2lUik1JsW27eRedbVa7Xe73WSbaZr9i4uL5HW73e6bppkal2Ca5sx73e12u29Z1sj7nU6nb5rmSNpxx6hWq6nzG85v2nnNU6ZSqZQ6drfb7du2PeXssh1/cLyP67ojZZu2v+M4I+cfp43ra5Bt26mxCdPOdZ46m8W27VR+s+pynus/rVyzjpMlz1l1MTxO5eLiou84Tt+yrNRnZFo+cbttt9v9TqeTXNNp13daflnratL1n2QZ3wPVajXVBi8uLvqSZo5pmlRW13VT13RcncVlvmmdTSrDuM/auDFKWdrKOrSTdUPQtObiL6Rut9uXlHwYu91u6stj8MMbpx3OJ05TKpVSX3TDP4KdTmdk/+E048wTNE06xuCXRbfb7RuGkfm8spap0+mk8o3NGsCa5fjxF1e32x2pr2n7xz82wz/M8Zf1uDocvo7jznWROptl8Is7S13Oc/0ntbGsx5mWZ5a6sG27b1lW33Xd5N/wj86sfNrt9sj2add3Vn5Z62reH8Obfg/E5zQsy0DwSWUdztNxnFTbGf4+HDRvnU2rr+GHHca1y1ltZV3aybrh9twjYZqmLMvS6elpcstm2m0pwzBSj/12u93kPnar1ZL0tjs2vjXW6/VGjjfIMIyRNDc17hjTpleYdV5ZnZ+fj+1ij29TTLrlmeX4tm3Ltm3t7++r0+lk3v/8/FyGYaS6x+PrdBPLqrNJFq3LOM2gaW0s63Gm5Zm1LgqFQup2yLAs+QyXY9r1bTabc+e3jM/jTb8H4npYJsMwZFlWMhQhzj++FRVb5BrMU2flclknJyeyLEu+709sx9Payrq0k3VD0PSIVCoVua6rcrk89csqHiA++EEf/P8gCFSv17W3t6eDg4NbG/g3/EV3U7POK2uZFh2gmfX4+Xxevu8rCILUeKxp+y8yt8us84jP9aZ1dpMy3KfjLKsusuQz/PmcVv7bukazPn/L+B7IOo5plsGyHh4eJgFLoVBQpVKR53nJHyTS7dTZcBl2d3flOI7CMHzU7WTd8PTcI3JwcKAgCOR5ngqFwsR0lmWN7UmIokhRFGl3d1fHx8dJ8BV/UJf9JEkQBEvNb9p5ZRUEQTK4c1gYhioWizc6fvwF5Lqu9vf3M+9vWdbY85h2brP+goyDtpvW2TSL1uUqjrOsulgkn2nX97au0bTP3zK+ByaVexGDZS2VSvI8T77vy7IslUolua6b6m28jTobLMPgwzeLBobr0E7WEUHTmoufOJLe/lVi27ZOTk6m9jTZtq1CoTDSe3F6epr0Pgz2gMQ/vrO+ZGeJn+iQ3n7xDj/1NsusY0w7r3nKZFmWbNtOdXPH5z7tSaosx3ddN/mL2LZtVSqVTPvHT8EMPuIfRVGS9+B5xNuGe83GnesidTaPRetynFk/JoscZzDPZdXFou1w0vVdJL9xdTXP528Z3wOmaapcLqee9IqiSEEQzPwsTytrPBQh/u6LA6WbXsvhMs2qr0qloqOjo4Wny1iHdrKWVj2oCrej2+32y+VyX1K/XC4ng74Hn6SIn9YwDCOZhXZwAGH8ZMvgPvH71Wq13263++12u9/tdpPBvZ1Op18qlfqSkkHI8TEsy5o5GDzOOx6wOS6/acewbTt5miROU61WM51X1jIN5+O6bmoAepb8ho8fD1gdHLQal79cLo994mhc+avVat9xnH6r1Ropr+M4ybZWq9UvlUp90zTHXttJ55q1zqYZfoJnMP/hupz3+s9qY/McZ1Ke4+qi2+1O/SxNK8vwU462bfcNw0gG7w7vM+n6jstv3rqadP0nlX8Z3wPx+cT5WJaVaTD4tLI6jpP6zIyry2XU2bQyxPUx7v152spDbyfrZqPf7/dXEq0BeJT29/d1eHj44CesBKaJomjmXHh4eLg9B+DWxbcD4/9/FJPg4dEZvJ0V3xLDeiFoAnDr6vV6Mj4rDMOpDyIAD1U80760vCcDcb9wew7ArQvDUJ7nJctlcGsO6ygIAp2fn0vS1Lm68HARNAEAAGTA7TlgCXzfVz6f197e3qqLklkQBNrb25s6izqyiesyn88vNd9KpaKtra3UVAl37bbObV3xuVpvBE3AEti2rePj4we15IBlWcnK5rdheKV16e2Yj+FJOx+i4XOL63LZM5y7rntrsy1PuhbLPrcoitRsNif+QdFoNNRsNtVsNlPzCy1r+yTj2ucy3PbnCqtF0AQsyUN8Iuw2B6u22+2R9/b29nR4eHhrx7wr487toQ38nXQtlnluQRDo9PRUURSN/YMiDnLK5bLK5bIsy0pN6HrT7dOMO89leWhtAdmx9hyApWs2m2OXbFiHR7AnndtDM+5aLPvc4hn0J62NWK/X9ebNm1SZ9vb25LruUrZPsi7XEHePnibcW41GI+l69zxPQRAkYzvGjRuo1Wra2toa6XZvNBryPC/5r/TnMUj7+/vyfV+1Wk21Wk2e5ymfz6fGkYRhqJ2dHe3t7WX6ovU8T57npW4X3DTfceeQJc8oipJ9KpXKzHWistbrtHx931e73VYYhsk1nJT38PnF5ziYVz6fVz6fT9ZNbDQamW5/jNu32WwmPRFxu9rf3x9bL5PazbhzG67DaeWcdK6D2+OyZV2I2fM87ezsaGdnR77vq9lsamdnR/l8PmkH+XxeOzs7CoJg7LVYxrnNIy7XuB5a3/dvvH2SedrncNsfHLs4eEswa12Ma1PS27bo+36y7bZuHWIJVjkdOTBJuVzul8vl5HW32x1ZWqHdbqeWHen3+33btlNT+w8v2WHbdrK8QqvVSvLsdDrJshrj8o2XFpim3W73JaWWRHBdNzmPRfOddg6z8qxWq6klFkzTTJWv0+mM7J+lXmflGy+HMWzc8UqlUuq6drvdvm3bI+UZTGOaZmqZjEkm7Tu4hErcDobLNK3OJ52bYRhTyznrXIeXpri4uOhLmrmkSL//tq0N5uU4zsh5Dl6zSdd+0XObZlwdx5+XYYZhJMuq3GT7NJPOM0vbb7VafUmpuqxWq6nvq0ntfFybGl7qpNvtPsrlSR4Keppw78QDRx3HSd4zTXNkIOq4cQODf3XGcwMNzgm0v7+fdN0bhqEgCGTbtizLSo5n27Z6vV6q9yHrYFzLslJliBckDcNwoXxnncO4PIfrYPCvbtM0Zz6JNateF813nLj3cPBWkWma6vV6SX65XC6pv8E0WXr9Ju07aHj191l1Pk0URRPLOetc4967wfl9DMPIvCDqwcHByDUY7M3o9Xo3GlQ+7dyWKZfLTX2g4qbbZx172HDbj6/JYF0eHx9PveU3q021Wq3k+800TSZ/vccY04R7x/d9GYYx9stqkXwGf0i63W7qi23Sj0i5XNbJyYksyxr5oZuXaZoKgiBZ1X2efLOcQ7lcluu6cl1Xvu/r4OAg2dZqtST9eRmTXq+3lCf8lpXv+fn52Gtgmqba7XZSP8NpDMPIfLxx+057HDxLnc9zrLics871psvLxD/m8Y9znFcYhkt5Au8m12Aes/K86fbbEH9fxZ/zYdPaVKlUkuu62trakmVZOjw8VLVavcviYw4ETVgrg71RURTJNM1UYDIcpEz6kTo8PNTu7q4cxxnpqZjX4Jf4vPlmOYdKpaJ8Pi/XdUfyDIJA9Xpde3t7Ojg4WPjHc7iXb958J/1wL/sR/WXIUueDsgYlWc71pk9dHR4eJkF5oVBQpVKR53mybXuhNrysgGucSfnG9X/T7fOYdp7LaKOz2lS73U56IuPeJwKn+4nbc7h3LMtSFEULfVkNBijDt11iWfK1LEu5XE6e5934hyyKouQWy7z5ZjkH0zTH5hlFkXZ3d3V8fKxyuSzDMJL95r2tMlivi+Q7aQC6bdtj9wnDUMVica4yLsu87WbW4PrYrHOddNx5lEoleZ4n3/dlWVbSizGpl2uWrOe2CNM0ZRjGxKcsb7p9HtPOM0vPVfx9NelW6rQ2FQ/6tixL1WpVnU5HJycnGUuOu0bQhHsnvo01+ARJGIYjXzrDYyriW0Xxj5tt2yoUCiNPIJ2enmYqR6VS0dHR0VzrpA0eX3r7VEy5XE79YM2Tb9ZziPMc/LGIyzL4RR7/AEz7kZhVr1nyHcwjDMOpPya2baduW8R5TKufm/z1P2vfWXWe9dyGjzXrXMe1+yiKFARB5vM1TVOWZanb7Savh8sxa/9Fzm2WSYHH8fFxqj48z0uN6brp9kkmneesth8bvib1en3kcz5oWpsaDJwGy4d7atUj0YFJ4ieJ2u128rTL8FNEjuP0Hcfpt1qtfqvV6pdKpb5pmqmnVOJ84jT9/tunZGzb7huG0XccJ/UkTKzb7fZLpVLm8nY6nX673U6O47ru2Kfj5s130jkMuri4SD29M7hftVpN6jA+dqvV6nc6nX6pVOpLSj1l1e/Prtdp+Q4fO34SaPB4w/USp3NdN1WWcfs4jtM3DKNvWdbUp6Sm7WvbdvLU5GAdDD4BOK3Os5zbpHJOOtfBuo+fDovb/bi2P4njOKmn2sa171nXYtFzG9btdvuO4/Qty0rqeDj9YDubVh+Lbp9k+DwH85vW9uNrEl+jOH1s2udqXJuK20L8nuM4qXaI+4UFe/Fg5PN5OY5zZxMkRlGk8/PzpR/vtvIFcPvied06nc6qi4IV4PYcMGCwy/309HRpgc1t5QsAuDsETcCAWq2WjC9Y5vpRt5UvAODuEDThQWg0GgqCQI7jLDSJYlaDS2zMMwB8VfkCuDu+78txHAVBMHaZGaw/xjQBAABkQE8TAABABgRNAAAAGRA0AQAAZMDacwv405/+pN/97nf67ne/q42NjVUXBwAAZNTv9/X73/9e3//+9/XOO/P1HRE0LeB3v/ud3nvvvVUXAwAALOjLL7/U3/zN38y1z8qCpjAM5XlestZPvPDnvGnjlaEl6ezsTK9fv062TdtvnuMP++53vyvpbYU/ffp00SoAAAB37OrqSu+9917yWz6XVa3fYllW8v+z1uKalnZwzZ94jaMs+81z/GGXl5d9Sf3Ly8vM+wAAgNW7yW/4SgaCj1utftKEhdPSBkGger2ebCuVSgqCQGEYTt1vnuMDAABIK3p6zvf9kaUkcrmcgiCYK61lWXr9+nXyfry+Vy6Xm7rfPMcHAACQVhQ0DS5eOqjX682ddnBJipOTE9m2LcMwpu43z/EBAACke/b03KRgJkvaKIrkeZ46nc7Cx5i07fr6WtfX18nrq6urrMUEAPw/X3/9tf74xz+uuhh4BL797W/PPZ1AFisJmgzDGOnV6fV6Y59ey5q2Vqup3W4n70/bb57jS1K9XtfLly9nnxgAYES/39d//Md/zPWHMXAT77zzjp49e6Zvf/vbS813JQv2hmGo/f39VK/Q1taW3rx5MxK4ZEnbaDRUKpVkmmbyoez1ehP3m7ZtXOA0rqfpvffe0+XlJVMOAMAM//7v/64oivS9731P7777LpMC41bFE1B/61vf0g9+8IOR9nZ1daXNzc2FfsNX0tNkmmbqdRiGKhQKqbmXDMOQaZoz03qeJ8uykoDp9PR07JxLg/tN2zbOkydP9OTJk0VPFwAera+//joJmLa3t1ddHDwSf/mXf6nf/e53+r//+z9961vfWlq+KxvT1Gq1VKvVVCwWdXZ2plarlWyr1+sqFouqVqtT08a9UIMMw1C5XJ55jGnbAADLEY9hevfdd1dcEjwm8W25r7/+eqlB00puzz10N+naA4DH5A9/+IPevHmjZ8+e6Tvf+c7S8g2CQK7rqtlsqlqtamdnR1EU6auvvlKz2VSr1ZJt2wvl7fu+arWaKpVK8kf4suXzeR0fH6eeAL/vllkvzWZTtVpNn376qSzLWlIJ/2xau3twt+cw2fsvfr3qIszti1c/WnURADwylmWpVqup2Wzq+Pg4Nbzi8PBQ5+fnC+dt27YODw+XUMo/i6IoVUbHcVQoFJZ6jNswWG7bthcORIeVy+UHeYdnJfM0AQBwU8OTFMduo+fiJsIw1Onpaeq9eE7B+2xcuR/7uDSCJgDAWoiX0ZKkg4ODFZfmzxzHWXURFvJQy32buD0HAHjQms2mpLerQsS3fAzDkOd5qtVqsixLrVZLURQpn8/Ltm25rivP82QYhsIwVLfbnRgkxGN5Dg8PVa1Wk3xd101uV03Ky/d9nZ+fJ3MD2ratKIp0dHSUGhsUL/FlmqbCMEym0RkcRxRva7fbE29tTUrvOI6iKJLv++p2u3JdN7VPEAQyTVNnZ2dyHGdsueOn2eN8xpVl0nnE205OTlQsFiU9zFU4CJoAAA/auGlmpLfLbPV6vWROPsMwVKvVkkBlf39f3W5Xtm2rUqnI87yxA7OHxziVSiWdnJyk0kzKKx4HtLOzkxo8PZhfGIbJBM2xfD6vTz/9NNl/MDhptVrJ+qvjyjouved5qlarsiwrGTQfB3m1Wi2po16vp0ajoWq1OrbcknR2dpZ6uj0uy7TzGKyjWL1eHyn/fUfQBABYC4MBj+/7sm1b5XJZW1tbcl1XURSl5v67uLhIAoder5fc2lvETfJyXXckADJNM5l3cHt7OzWWaNyqFoPGpR8873h/wzDkum6yyH3s7OxsannjnqLhskw7D2l0rNmkMWn3GUETAGAtDAYGg0HLwcFBcgtvsNekXq9re3s7dQtpUVnzGn6K7q5MO6ZlWamn4sZNJ7Cqct83DAQHADxIk3pboihKLZNVq9XkOE6qZyMex1OtVlNLcA32uAyulWcYhr766qvU/oP7zMprcL/h/A8PD0fSBkGw1MHsk9b9G3fsWeWeZNp52LatIAhS227Ss7cq9DQBAB6ceHJL6W0vz87OjiSp2+0mczfFTNMc6U2Jl86Kf+T39/fluq5M00wGLEtvxwhZlqWDgwPVarUkfTyY3LKsqXlJUqVSkeM4ajabSfBwcnKiXC6nUqkky7LkOI4ajUYyGLvVaskwjJGyhGGYnPu4pcYmpZfe9ijFA7gdx5HjOMmx4xUy4v2mlXtSWaadh2EYyUoce3t7Sc9VvV6X4zg37um7K8wIvoDbnBGcyS0BrJPbmhEcmOa2ZgTn9hwAAEAGBE0AAAAZEDQBAABkQNAEAACQAUETAABABgRNAAAAGRA0AQAAZEDQBAAAkAFBEwAAC4qiKLWkCu7WXdc/QRMAAAuIokhHR0cyTVO7u7urLs6D4vu+8vl8spDyIlZR/6w9BwBYibtcNuo2lnvyfV/FYlGmaerTTz9dev4T/Xzz7o4lST+/XHqWtm2n1gJcxCrqf2U9TWEYqtFoyPM8NRqNqV1rs9IGQaB8Pj+yn+d5iqJobN5BECSLGA4uaAgAQBZhGMowDElK/ovstre3b7T/Kup/ZT1N+/v76nQ6kt6e+NHRkVqt1txpPc9LVqUet98wx3FUrVblum7SLWjb9sRjAwAASCvqaQrDMPXaNE35vr9Q2lKpJMuyRvaLokitVkv9fj/5FwdMkpTP53VxcaGLiwu1223+SgAAJAbH3Pi+r2azmfpDPAgCtdtttVqtG43LWTee52lra0uVSkVBEGhvb097e3vJgO2trS15npekj98frt/7Wv8rCZp831cul0u9l8vlxvYWzZN2WKlUSv7f87zUa+ltdx7BEgBgWDzmpt1uy7ZtlctlRVGU/PZYlpUEBOVyecWlvT9KpZLK5bJ2dnZkWZZqtVryW2vbthzHSf0Wn52dja3f+1r/K7k9N2n8Uq/Xu1HaQYPBUBRF6vV6Mk0z9V4c7Z6dnalSqaS2AwAet+3t7dS4G8MwZv72QKpUKtrf31e1WlUURQrDUFEU6fz8XAcHB6m0xWIx+f/h+r2P9X+vnp6bZ56FedLWajU5jpN6r1wuJ4GVaZra29tTt9sdu//19bWur6+T11dXV5mPDQDAYxJ3QMS9QoeHhzo9PVUul3vwd3dWcntuXLTY6/XGVuY8aceJ75cOpx8cK2WapsIwHBk/FavX69rc3Ez+vffee5mODQDAY1SpVHR0dJTcrnNdd9VFWoqV9DTZtj22AguFwo3SjnN+fj4SMAVBoN3dXV1cXKTeHx47FTs+PtbPfvaz5PXV1RWBEwCssSAIdHJyIunt71A8NY3rujJNU1EU6eTkRLlcTqZpjoyZfewODg6Sp94Nwxipo6z1O2v7Xdf/SoKm4bFDYRiqUCgkwU0QBEklz0o7KIqisQHScDBkmmbqdp3v+yqVShN7r548eaInT55kOzkAQCa3MeHksliWlfzox6+Hf5gHt9+pW5hsctkMw0h1eAxP6zNv/d6X+l/ZmKZWq6VaraZisaizs7NUhdbrdRWLxWR6gGlpfd9Xu91O7TdcscOBl2EYKhQKajQaMgxD3W6XeZoAAMBUG/1+v7/qQjw0V1dX2tzc1OXlpZ4+fbrUvO9yWYFluc9/LQJYrT/84Q968+aNnj17pu985zurLg4eiWnt7ia/4SzYCwAAkAFBEwAAQAYETQAAABkQNAEAbh3DZ3GXbqu9ETQBAG7Nt771LUnS//zP/6y4JHhM/vd//1eS9I1vfGOp+d6rZVQAAOvlG9/4hgzD0H/+539Kkt59911tbGysuFRYZ3/605/0X//1X3r33Xf1zW8uN8whaAIA3Kq/+qu/kqQkcAJu2zvvvKMf/OAHSw/QCZoAALdqY2NDf/3Xf63vfe97+uMf/7jq4uAR+Pa3v6133ln+CCSCJgDAnfjGN76x9DEmwF1iIDgAAEAGBE0AAAAZEDQBAABkQNAEAACQAUETAABABgRNAAAAGRA0AQAAZEDQBAAAkAFBEwAAQAYETQAAABkQNAEAAGRA0AQAAJABQRMAAEAG31zVgcMwlOd5Mk1TYRiqXC7LMIyF0gZBoKOjI3U6ndR+QRBIkizLUhiGiqJIlmXNfXwAAICVBU37+/tJkBOGoY6OjtRqteZOGwc+cYA0yHVdNZtNSZJt26n85zk+AADASoKmMAxTr03TlO/7C6UtlUoTj5PP53VxcSFJqV6keY4PAAAgrWhMk+/7yuVyqfdyudzY3qJ50o5jGMbIbbeb5gkAAB6flfQ0RVE09v1er3ejtOP29TxPknR2dqZKpSLTNOfO8/r6WtfX18nrq6urmccGAADrZWVjmsaZFMwsmnZwcLdpmtrb21O32507z3q9rpcvX2YuGwAAWD8ruT1nGMZIr06v1xv79No8aYcNjl2Kn5ILw3DuPI+Pj3V5eZn8+/LLL2ceGwAArJeVBE22bY99v1Ao3CjtoCAItLu7O/J+LpebO88nT57o6dOnqX8AAOBxWUnQZJpm6nUYhioUCklPTxAESS/RrLSDBm+vmaYpx3GS177vq1QqyTCMufIEAACQVjimqdVqqVarqVgs6uzsLDVHUr1eV7FYVLVanZnW93212+3UfnFwVCgU1Gg0ZBiGut1uar9peQIAAAzb6Pf7/VUX4qG5urrS5uamLi8vl36r7v0Xv15qfnfhi1c/WnURAADI5Ca/4aw9BwAAkAFBEwAAQAYETQAAABkQNAEAAGRA0AQAAJABQRMAAEAGBE0AAAAZEDQBAABkQNAEAACQAUETAABABgRNAAAAGRA0AQAAZEDQBAAAkAFBEwAAQAbfnHeHL774Qq1WS+12WxcXF8n7uVxOe3t7KpVKev/995dZRgAAgJWbK2h68eKFNjY2dHBwoH/6p38a2f7555/ro48+0sbGhur1+tIKCQAAsGqZg6YPP/xQx8fH2tzcnJjm+fPnev78uS4vL3V8fEzgBAAA1kbmoGlcz9Ikm5ubBEwAAGCtLDwQ/MWLF/r44491eXmpv//7v9fh4aE++eSTZZYNAADg3lg4aCoWi/rJT36iZrOpfD6vk5MTffXVV8ssGwAAwL2xcNC0tbUlSTo9PdXh4aGkt0/QAQAArKO5pxyIdbtd9ft9dbtd/d3f/Z3evHmTmoJgljAM5XmeTNNUGIYql8syDGOhtEEQ6OjoSJ1OJ7VfEATyfV+SdHZ2ptevXyf7BUEgSbIsS2EYKooiWZaVvQIAAMCjsnDQdHBwoGazqU6no8vLS7muq7/4i7/IvP/+/n4S5IRhqKOjI7VarbnTxsFUHAQN8n1f1WpVktRoNLS7u5vk47qums2mJMm27YnHBgAAkKSNfr/fn5Xo8vJSFxcXc01aeXV1JUl6+vTpyLYwDFOBkPT2dt+4nqqsaTc2NjR4KkEQaHd3N0kXhqF2dnbU7XZlmqaazaYODg4kaWIP17Rz29zc1OXl5djzu4n3X/x6qfndhS9e/WjVRQAAIJOb/IZnGtO0ubmpdrud+em4X/3qVzo9PZ1YGN/3R8Y/5XK5ib1FWdMOsixLr1+/Tl5HUZTsGzMMY+6ACQAAPE6Zb88dHR3p888/18HBgXZ2dlQsFmWapgzDUBRFCsNQv/nNb/TmzRtVKhV98MEHE/OKA5hhvV7vRmmHlUql5P9PTk5k23YSJEVRJM/zJL0d71SpVGSa5th8rq+vdX19nbyOe9EAAMDjMdeYpufPn+v09FSXl5c6PT3Vb37zG0VRJMMwtLOzo0qlomfPni1cmEkB0jLSep6XusU3OJjcNE3t7e2p2+2O3b9er+vly5eZjwcAANbPQgPBNzc3dXR0tPBBDcMY6Snq9Xpjb5XNk3aSWq2mdrud2icMw+RpufipvDAMx/Y2HR8f62c/+1ny+urqSu+9917m4wMAgIdv4XmabsK27bHvFwqFG6Udp9FoqFaryTRNRVGkKIqSQeLDJs0z9eTJEz19+jT1DwAAPC4rCZqGe3PCMFShUEjNoRSGYaa0g4Zv2XmeJ8uykoDp9PRUhmHINE05jpOk831fpVKJQeEAAGCihedpuqlWq6VaraZisaizs7PUPEn1el3FYjGZY2laWt/31W63U/uVSqVkqoJBhmEkY5kKhYIajYYMw1C322WeJgAAMFWmeZqQxjxNaczTBAB4KG59nqZJPvzww2TduU8//ZRH8QEAwNpaOGh68eKFDMNIBmrv7u4m67wBAACsm4WDpmKxqKOjo4kTQgIAAKyThYOmN2/eSHq75lvs7Ozs5iUCAAC4hxZ+eu758+cqFAra3t5Wu92W7/upx/gBAADWycI9Tbu7u2q1Wnr+/Ln6/b6azaZ++MMfLrNsAAAA98aN5ml69uyZXr16lby+urpitmwAALCWbjTlwNXVlb744ovkX61WW1a5AAAA7pWFe5p++tOfyvf91NIjb9680T//8z8vo1wAAAD3ysJB087Ojj766KPUe69fv75xgQAAAO6jhW/PxZNaDtrb27tRYQAAAO6rhXuatra29Mtf/lKmacowDEVRpJOTE52cnCyzfAAAAPfCwkFTtVpVFEWpMU2ff/75MsoEAABw7ywcNO3t7eno6Cj13q9+9asbFwgAAOA+WnhM087OTqb3AAAA1sHCPU3dbleu66pYLEqS+v2+Tk9PWX8OAACspYV7mlzX1bNnz9Tv99Xv9yUp+S8AAMC6WbinyXEc7e7upt4bNw0BAADAOrjRgr3Dtra2blQYAACA+ypzT9Mnn3wi27aTBXk//vjj1PYoitRut/Uv//Ivyy0hAADAPZC5p+kXv/iFzs/Pk9cfffSRLi4ukn/9fl9fffXVrRQSAABg1TL3NA0GTNLbdeaeP3+eem+eMU1hGMrzPJmmqTAMVS6XUxNlzpM2CAIdHR2p0+lk3m+e4wMAANxoGZXY5eWlfN9XPp/PvP/+/n4S5IRhqKOjI7VarbnTxoFPEARz7TfP8QEAABYeCO77fvL/m5ub+uCDD1LvTROGYeq1aZoT952VtlQqybKsufab5/gAAADSnD1Nl5eXOj091cbGhtrt9sj2Tqejn/zkJzPz8X1fuVwu9V4ul1MQBCMB0Dxps+53fn6+UJ4AAODxmito2tzclG3bchxH3W5Xz549S22vVquZ8omiaOz7vV7vRmmz7jdvntfX17q+vk5eX11dTT02AABYP3OPaXr27Jk++ugjffrpp2PnarqJScHMTdNm3W/Stnq9rpcvXy50PAAAsB6WOrllVoZhjPTq9Hq9sU+vzZM2637z5nl8fKzLy8vk35dffjn12AAAYP0sHDTdxKSpCQqFwo3SZt1v3jyfPHmip0+fpv4BAIDHZSVBk2maqddhGKpQKCQ9PUEQJE+4zUo7aPD22rT95skTAABAusE8TTfVarVUq9VULBZ1dnaWmiOpXq+rWCwmA8unpfV9P3mSL96vVCrN3G/aNgAAgGEb/X6/v6zMvvjiC73//vvLyu7eurq60ubmpi4vL5d+q+79F79ean534YtXP1p1EQAAyOQmv+E36mn67W9/mxpQ7bquTk5ObpIlAADAvbRw0HRwcKAoilLjgD7//PNllAkAAODeWTho2tvb09HRUeq9X/3qVzcuEAAAwH208NNzOzs7md4DAABYBwv3NHW7Xbmuq2KxKEnq9/s6PT3V2dnZ0goHAABwXyzc0+S6rp49e6Z+v6/4AbwlPogHAABwryzc0+Q4zshSKpNm2gYAAHjolrb23GeffaY3b97cuEAAAAD30Y3mafrkk0+S5U76/b7Oz8/14x//eCkFAwAAuE8WDppevHihKIrU6/VkmqaiKFKlUllm2QAAAO6NhYOmnZ0dHR0d6c2bN9rY2ND777+vzz77bJllAwAAuDcWHtNkmqb+7d/+Tc+ePZPnecssEwAAwL2zcE9TFEUyTVMXFxf67//+b/3DP/yDDMPQD3/4w2WWDwAA4F5YOGj64IMP9PXXX0uSXr16pU8//VSFQmFpBQOwHt5/8etVF2FuX7z60aqLAOAeWvj2nCR9+OGHOjw8TF5vbGzcuEAAAAD30cJB04sXL2QYRjKh5e7urnzfX1rBAAAA7pOFg6ZisaijoyOZprnM8gAAANxLCwdN8ezfg7fkWKwXAACsq4UHgj9//lyFQkHb29tqt9vyfV+O4yyzbAAAAPfGjdaea7Vaev78ufr9vprNJtMNAACAtXWjteeePXumV69eLassAAAA91bmnqZf/vKXM9N8/PHHmQ8chqEajYY8z1Oj0VAURQulnbbN8zxFUTQ27yAIFARBkkf8/wAAAONk7mn6xS9+oXa7PTXN+fm5fvKTn2TKb39/X51OR9LboOXo6EitVmvutLO2DXMcR9VqVa7rqtlsSpJs2554bAAAAGmOoGl3d1fb29vK5/MT0/T7/Ux5hWGYem2a5sQ5nqalnbYtiiK1Wi2VSqVke6PRULValSTl83ldXFxIkgzDyFRuAADweGUOmlqtli4vL3V+fi7p7TxNT58+TaXJ5XKZ8vJ9fyRtLpdTEASyLCtz2vPz84nbTNNMBUye56VeSwRLAAAgu7kGgm9ubmp3d1eS9Pnnn6vX62ljYyN5au6DDz7IlM+k8Uu9Xm+utNO2DQZfURSp1+ulJuKMokie50l6O79UpVKZOFHn9fW1rq+vk9dXV1dj0wEAgPV1o3maYp999pna7bb29vZuNO3AtMHg86Qd3lar1UbmkCqXy0lPk2ma2tvbU7fbHZtfvV7Xy5cvM5cNAACsnxst2Pvb3/5W//iP/6hSqaR2uz0yxmgSwzBGepV6vd7Y22XT0mbJJ4oi+b4/kvdgWU3TVBiGE8t/fHysy8vL5N+XX36Z4SwBAMA6mTto+uKLL/Thhx/qb//2b7W/v6/NzU11Op25npyLF/kdVigU5kqbJZ/z8/ORgCkIguQ246BJY7KePHmip0+fpv4BAIDHJXPQ9PHHH6tYLCqfzysMQ7VaLf3rv/6rXr16pWfPnkmSPvnkk0x5DY8dCsNQhUIhCW6CIEh6faalnZVPnNdwMGSaZup2ne/7KpVKDAwHAAATZR7TVC6XVSqV9OLFCxmGoYuLC3322WfJ9ouLC7169Uo//vGPM+XXarVUq9VULBZ1dnaWmiepXq+rWCwm0wNMSzttW2w4uDIMQ4VCQY1GQ4ZhqNvtMk8TAACYaqOfcXKln/70p2o0GlPnYjo6OtLp6enSCndfXV1daXNzU5eXl0u/Vff+i18vNb+78MWrH626CLjHaNMA7pOb/IZn7mmqVCozMz8+Pp7r4AAAAA9F5jFNg1MM3CQNAADAQ7TwPE0AADxG3HJ+vG40TxMAAMBjQdAEAACQAUETAABABgRNAAAAGRA0AQAAZEDQBAAAkAFBEwAAQAYETQAAABkQNAEAAGRA0AQAAJABQRMAAEAGBE0AAAAZEDQBAABkQNAEAACQAUETAABABgRNAAAAGRA0AQAAZEDQBAAAkME3V3XgMAzleZ5M01QYhiqXyzIMY+6007YFQSBJsixLYRgqiiJZljX38QEAAFYWNO3v76vT6Uh6G8AcHR2p1WrNnXbaNtd11Ww2JUm2bafyn+f4AAAAKwmawjBMvTZNU77vz512Vj75fF4XFxeSlOpFmuf4AAAA0orGNPm+r1wul3ovl8slt9Oyps2Sj2EYI7fd5jk+AACAtKKepiiKxr7f6/XmSjsrnyiK5HmeJOns7EyVSkWmac51fEm6vr7W9fV18vrq6mpsOgAAsL5WNqZpnEnBzLxp422Dg7tN09Te3p663e7cedbrdb18+TJz2QAAwPpZye05wzBGenV6vd7Yp9empZ2Vz+DYpfgpuTAM5zq+JB0fH+vy8jL59+WXX2Y8UwAAsC5WEjTZtj32/UKhMFfaaduCINDu7u7ItlwuN9fxJenJkyd6+vRp6h8AAHhcVnJ7zjTN1OswDFUoFFLzKxmGIdM0p6Yd7hka3GaaphzHSbb5vq9SqTRzPwAAgHFWNqap1WqpVqupWCzq7OwsNUdSvV5XsVhUtVqdmXbSNsMwVCgU1Gg0ZBiGut1upv0AAADG2ej3+/1VF+Khubq60ubmpi4vL5d+q+79F79ean534YtXP1p1EXCP0aaxbmjTD9tNfsNZew4AACADgiYAAIAMCJoAAAAyIGgCAADIgKAJAAAgA4ImAACADAiaAAAAMiBoAgAAyICgCQAAIAOCJgAAgAwImgAAADIgaAIAAMiAoAkAACADgiYAAIAMCJoAAAAyIGgCAADIgKAJAAAgA4ImAACADAiaAAAAMiBoAgAAyICgCQAAIINvrurAYRjK8zyZpqkwDFUul2UYxtxpp20LgkC+70uSzs7O9Pr169Q2SbIsS2EYKooiWZZ1m6cMAAAesJUFTfv7++p0OpLeBj5HR0dqtVpzp522zfd9VatVSVKj0dDu7m6S1nVdNZtNSZJt2xOPDQAAIK3o9lwYhqnXpmkmPULzpJ22LQgC1ev1ZFupVFIQBMk++XxeFxcXuri4ULvdntjLBQAAIK0oaPJ9X7lcLvVeLpdLbpllTTttm2VZev36dfJ+FEXJ9phhGARLAAAgk5XcnosDmGG9Xm+utLPyKZVKyXsnJyeybTsJkqIokud5kt6Od6pUKjJNc2x+19fXur6+Tl5fXV2NTQcAANbXysY0jTMpCJo37fC2OECKxzNJSg0YN01Te3t76na7Y/Or1+t6+fJl5rIBAHCv/Hxz1SVYzM8vV12ClJXcnjMMY6RXqdfrjb1VNi1t1nxqtdrIuKXB8VDxk3fDY6Rix8fHury8TP59+eWXGc4SAACsk5UETbZtj32/UCjMlTZLPo1GQ7VaTaZpKooiRVGkIAi0u7s7st/w+KjYkydP9PTp09Q/AADwuKwkaBoeOxSGoQqFQmoOpbjXZ1raWfl4nifLspKA6fT0NNnPcZxkP9/3VSqVGBQOAAAmWtmYplarpVqtpmKxqLOzs9Q8SfV6XcViMZljaVraSdvCMNT+/n7qmIZhJGOZCoWCGo2GDMNQt9tlniYAADDVRr/f76+6EA/N1dWVNjc3dXl5ufRbde+/+PVS87sLX7z60aqLgHuMNo118yDb9Hf+v1UXYTG3MBD8Jr/hrD0HAACQAUETAABABgRNAAAAGRA0AQAAZEDQBAAAkAFBEwAAQAYETQAAABkQNAEAAGRA0AQAAJABQRMAAEAGBE0AAAAZEDQBAABkQNAEAACQAUETAABABgRNAAAAGRA0AQAAZEDQBAAAkAFBEwAAQAYETQAAABkQNAEAAGRA0AQAAJDBN1d14DAM5XmeTNNUGIYql8syDGPutLexDXP6+eaqS7CYn1+uugQAgAdkZUHT/v6+Op2OpLcBzNHRkVqt1txpb2MbAADAsJXcngvDMPXaNE35vj932tvYBgAAMM5Kepp831cul0u9l8vlFASBLMvKnPb8/Hzp24aPD+AR4pYzgDFWEjRFUTT2/V6vN1fa29g2zvX1ta6vr5PXl5dvv5iurq7Gpr+JP13/z9LzvG1XG/1VF2Ext3D9MIo2fYdo03eCNn2HbqFNx7/d/f78dbKyMU3jTApm5k277G31el0vX74cef+9996bmNdj8kD/JpdePdiS45Y92JZBm8YED7Zl3GKb/v3vf6/NzfnyX0nQZBjGSK9Or9cb+/TatLS3sW2c4+Nj/exnP0te/+lPf1Kv19P29rY2NjZmnS4WdHV1pffee09ffvmlnj59uuriADdGm8a6eYhtut/v6/e//72+//3vz73vSoIm27bluu7I+4VCYa60pmkufds4T5480ZMnT1LvMT3B3Xn69OmD+TACWdCmsW4eWpuet4cptpKgyTTN1OswDFUoFJJAJAgCGYYh0zSnph0OXJaxDQAAYJyVjWlqtVqq1WoqFos6OztLzZFUr9dVLBZVrVZnpr2NbQAAAMM2+osMHwfuwPX1ter1uo6Pj0dujwIPEW0a6+axtWmCJgAAgAxYsBcAACADgiYAAIAMCJrWUBAEqlQq2tjYUK1WU7PZVK1W0/7+/lLX2Gs2m9ra2lIQBEvL867l83l5npe8bjab2tvbW2hfpMXtrtlsyvM8+b6vZrM5svbjfeL7vvL5vJrN5p0c7yG1IT4ry+f7fuq7epHv57v8Hl7Vd/69ant9rKWLi4u+pP7FxcXIe51OZ2nHsW17afkNlvWutNvt1HG73W6/3W4vtC/+zLbtvuu6qfc6nU5fUr/b7a6oVNlUq9WRst+Wh9SG+Kzcjm63O/JdPa9lfg/fp2PF7lPbu1fLqOB2xXNfnZyc3LuFicMwlO/7KpfLd3pc27ZTr8fNDZZ1X7zVaDQkaeRaWpZ159d3Edvb23d2rIfUhvis3I7hxeMx6j61PW7PPTK9Xk87OzurLsYIx3FWXQQsSb1eV6VSGbttf3//jksDAMtD0PRIRFGkWq0m27ZVLpfl+752dnbUbDbVbDaVz+clvR0P1Wg05HmeGo3GyPiTIAhUq9XkeZ48z0ut4RePB4l7GjzP087OTuo+fRiGyf7NZlNRFMn3fZ2fn6vdbk8d8+L7flK2Wq2WKlOlUknK5HmegiCYWZ4gCFLjV6IoUqVSSQWVk+pjeN/BsTDx2J3HGCCEYagoiib+FWjbdrJtUt1OqsswDJN9BoOyuC3HbaDZbKpSqSQLcE9q65Pak6SkXY67juP2m3X9oyhKtsX7DbehRepkEj4rD1eW+pn2PRznMXz9Pc9TPp9Prlmj0dDOzk5yzae1mWnHGlf+tW57S7vRh3slHr/kOE6/1Wr1W63WyFiScrncL5fL/X6/n2y3bTuVxrKs5H7wxcVF3zTNke2D97cdx+k7jpO8LpVKyb3neP84v2q1mqSdNY6k2+32LctKXruu23ccp39xcdE3DCN1z9owjKRM08oTbx8+rmEYyTGn1cfwvtVqtV8qlZLXq7j3v2rx+IxZ5z2rbsfV5eB1HGxHcfrB7a1WK5X/uLY+rj31+2+v66TrOG2/adffcZxUu4vbzWAbWqROxtUzn5WHZdz402n1M+t7eFobvbi4SK6L67rJMae1mVnf+YMeQ9tjTNOaK5fLE9fUMwwjGb9RKpVUq9VGxjqZpqnT01OVy2Wdnp6ObJ/nfvzp6alM00zKc3x8nHlf13WVy+VSvVZnZ2cyDEO2bafOcdLCy/NyXXdqfQzb3t5OjYcxDGPmX2XrJu5FCsNw7Li5MAyVy+Vm1u24uhzsvYrrdvC6D/5/qVTS/v6+oihK1pscbuvj2lOsWCyOHEua3A6l6de/VCopn8/LNE0dHh6ObT+L1Mm49sVn5eGbVj+zvoentVHDMPT69Wvl83m1Wq2kLUxrM/N85z+GtkfQ9MhlHUy3DPEPWGxSMDecLmZZVmpQX7lcvrNHw5FdtVqV67oqlUoj24IgGPt+FjddUHu4rY9rT1kssl8ul9PFxYWCINDJyYn29/fVbrczlnx+fFYet2ltNA6Ehh8IWlabWfe2x5imNTcrgh7cfnh4ODJPSBAEOjg4kPR2PMrw/BzD448Mw9BXX32VvPZ9PxlbUiqVRvYfNy/JuPfGlc33fR0cHEwt07TyxIZfTzvmYH1M2/cxiwf1D39RDtZVlrodNquuB7d7njfyl+2stp5ljpxF96vX60nvm+M4qXLF5V6kTuYpI5+V+2neHrZZ38PT2mg8Vq/VaikMw2T+okn7ZPnOH/QY2h49TWso/mtWevsDVqlURrovfd+X7/sKgkCmacq27eQLvdFoyDRNnZ2dpbpwTdNUq9VSrVbT3t5e0iNUr9flOI5M09TBwUFqkjbbtpPuU9M05bquarVacvsj/oukUqnIcRw1m82xj4jGZRve1zCMsWWKTStPFEU6OTlRLpdTqVQa2xMxqT7iOo73jfOKjxEPWnZdd67HY9dFu91Wo9FQrVbTzs5O0qUf9zJlqVspXZfxfr7vKwxDOY6TCkC63W7yZRvnJ01v68PtadKx4+u46H7b29vyfV+5XE69Xk+Hh4cjbWiROhnXvvisPBxxACO9DawPDw8laWb9TPsennT9m81m8nsgvb0FfXR0pDAMVa1W52ozg9/5gx5D22PBXqydvb295MtjEVtbW7q4uFhyqXCb4uDsIcwDdZ/wWcGqPNS2R08T1s4iA0qbzaa63a4qlcrSBigC9x2fFazKQ217jGnCWonneXJdd6772LZta3t7W57nyXXd2ysgli6+/dZqtR70Ooh3jc8KVuUhtz1uzwEAAGRATxMAAEAGBE0AAAAZEDQBAABkQNAEAACQAUETgAcjXil9Y2NDtVpNzWZTjUYjee+uZ53O5/PJrMoA1h9PzwF4UMIw1M7Oji4uLlKzCjebTRUKhYUny8tieCZj3/dVKBRuvC4egIeBniYAD8qkVdYPDg4WmjAvqzAMdXp6mnpveH07AOuNoAnAgxYEQdIDdJvrlsULEQN4vAiaADxo8QKc0tveoHw+r0ajIUnyPE87OzvJQqC+7yufz6vZbMr3fTWbTe3v76fyC8NQtVpNnuep2WwmK8Ofn5+r3W4nsxkHQZDkFQuCQI1GQ57nqdFoJCu5ZzkugPuPtecAPEhxsOL7vo6PjyW9vV0WrxQvSaVSKRVU2bYt27bVbreT1eXj5VfiFdX39vbU6XRkGEYy2Lxarcq27ZFFgQePFQdb7XY7eS+fz+vTTz+deVwADwNBE4AHqVwuyzCMuYOO7e1tbW9vJ68Nw0jGQp2enso0zWScUhyMZeG67khZTNPU6empyuXy1OMCeBgImgA8aLZtLy2v4afjJg3yHk4H4HFgTBOAB2VW74xhGPrqq6+S177vZ56/qVQqKQiC1HvxeKhJ78V5Hx4ejqQNgkAHBweZjg3g/qOnCcCDEQSBXNeVJNVqNe3t7alUKqXSHBwcqFarJQGMbdvJrbMoipIxTrZtJwO6XdeVaZoyTVOu66pWq6lYLCbpJKlSqchxHDWbTdm2rSAIdHJyolwup1KpJMuy5DiOGo2GTNPU2dmZWq2WDMNI0k47LoD7j8ktAQAAMuD2HAAAQAYETQAAABkQNAEAAGRA0AQAAJABQRMAAEAGBE0AAAAZEDQBAABkQNAEAACQAUETAABABgRNAAAAGRA0AQAAZEDQBAAAkMH/DyYIVpi3LYWeAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -445,9 +445,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFUCAYAAAA5ywiWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1QUlEQVR4nO3dT2/jyJ3/8Y93EnQ2QNq0DARJgAGmqSewTdlPIKZ3D7llZPsJxNLudYGV2redS9xUcvjddqieJ2BLM7ccFuLMA4gtTu67Ys+igd3FYMemPcAgjSDh79AgI0qURP2xJcvvF2DMSCSLVcWS9O1isWojiqJIAAAAGOtvlp0BAACAh4CgCQAAIAeCJgAAgBwImgAAAHIgaAIAAMiBoAkAACAHgiYAAIAcCJoAAAByIGhaI0EQqF6va2trS8Vicey+xWJRW1tbqtfrCsPwfjKIR6Hdbi87C2sh/jxvbGyoWCyq0Wio0WioWq3q4OCAes6hWq1qa2tLnuctLQ/rfB2bzaZKpdKys3G/Iqwdx3EiwzCibrebub3T6UTlcjmqVCr3nLNsrusOvVer1aJyubyE3LyTlad1tciytlqtofeur6/Htscsi7z+q3At58mDbduZn1XTNCPHcebJ1p1bhbq3LCvqdDrLzsaDvo5RlH0te71eVKvVpvpsP3T0NK0hwzB0eHgo13Uzt69az1Kn0xl6b39/X0dHR0vIzTtZeVpXiyyrYRiZ71UqFZmmmTudRV7/VbiWd5GHarWqer2+8HQXaRXqftU9hOsoZV9L0zRVrVYzP/friqBpTVWrVZ2fnw+9H4bhVD9ed63ZbCoIgqH3bdtWuVxeQo5G52kdLbqsvu+r0WgMve84zlRfrIu6/qtwLe8qD3F9rto/gmKrUPcPwapfR2n8tfR9f6V+U+7a95adAdwNy7JUKBTUbrdTPz6Xl5eybXvkcY1GQ6ZpKggCmaaZHBuGoZrNpkzTVKfTUbValWVZkiTP85J/Kb169UpBECgIAn3zzTdyHGfkuTzPU6fTURAEyQ9trVaT7/uq1+sKgkC9Xm/kOa6urtTtduW6rprNpgqFgs7OznRycpLkbVK58uZpMB3p3ViF/m3jZJ2/2WzKdV35vq9Wq6VyuZwEu4eHh6lAY1z+m81m6lyVSiWzDuv1uprNphzHUaVSyV3WSXXWzzAMOY6TSicu06tXr1JpjKrLvNd/UhsbVb52u52k5bqugiBI6rrVaqlQKGhvb09hGKrVasmyrMy6yJOncXk4PT1VEARqtVqybVtBEGh/f1+macp13Yk/RN1uV5ZljW0jcR7jHoG4tyDOX1bbGbw+05Z5XLnHWdR3TKPRkGEYKhQKY883aFR7nPbc035mBq/jqHRW8VqGYfioepkkMaZpHcX3nrPGhcRjTrLGNJXL5dSYFNu2k3vVtVot6vV6yTbTNKPr6+vkdafTiUzTTI0dME1z4r3uTqcTWZY19H63241M0xzaN+sctVotVb7B9MaVa5o8lcvl1Ll7vV5k2/aY0uU7f/94H9d1h/I27njHcYbKH+8b11c/27ZTYxPGlXWaOpvEtu1UepPqcprrP8u1dF03db6seozb+7i6yJOnUXnIuj5ZY1sGx8JcX19HjuNElmUln8FxeYw/E51OJ+p2u0k5x7Wdecs8rtyjLOI7plarpdr39fV1JGnimKZJ7THPuSd9ZvJcx0npPJRruc4ImtZQ/KXR6/UiSckHstfrpX4I+j/A8b6D6cT7lMvl1JfR4I9gt9sdOn5wnyzTBE2jztH/ZdHr9SLDMHKXK2+eut1uKt3YpEGmec4ff3H1er2h+hp3fPyDMPiFG//wZtXh4HXMKussdTZJ/xd3nrqc5vqPa2Oj2ldcdzHHcVLnG/wM9euvizx5GveDMzhAPqsstm1HlmVFrusmf/3HTMpjp9MZ2j6u7SyizJPKnWXe75jBaxqb9BnN2x7HnTvPZ2bSdcyTzkO5luuM23NrzDRNWZal8/Pz5JbNuNtShmGkHs3t9XrJfexWqyXpXXdsfGvs6upq6Hz9DMMY2mdeWecYN73CpHLldXl5mXm7JL6VMOqWZ57z27Yt27Z1cHCgbreb+/jLy0sZhpHqHo+v0zwWVWejzFqX8T79Zm1jhmHIsqzk9nVch/Hti1ieupgnT5VKRWdnZ7IsS57njSz7zs5O6nZLv1nyOK7tNJvNOy3zKPN+x8T1MK287THPuSd9ZsZdx7zpPIRruc4ImtZctVqV67qqVCpjv1DiAeL9X9r9/+/7vk5PT7W/v6/Dw8M7G/g3+KM1r0nlypunWQdp5j1/qVSS53nyfT81Hmvc8bPM7zKpHHFZ562zefJwl/rb19HRURKw7OzsqFqtqt1uJ0FsnNdF18VgHvb29uQ4joIgmCntPHkc/OyPuwZ3df0nfbYX8R0z7TgmaTHtcVF1ti7Xcp3x9NyaOzw8lO/7arfb2tnZGbmfZVmZPQlhGCoMQ+3t7enk5CQJvuIP6qKfjvF9f6HpjStXXr7vJwN1BwVBoN3d3bnOH38Bua6rg4OD3MdblpVZjnFlm/QvyDhom7fOxpm1Lhehv32Vy2W12215nifLslQul+W6bqrn4S7qoj8P/Q9szPKDH6cxbR7HtZ27uv7jPtuL+I4Zle9JFtEeF1Vn63At1x1B0xqKnziS3v2rxLZtnZ2dje1psm1bOzs7Q70X5+fnSe9Dfw9I/OM76YtwkviJDundl9TgU2+TTDrHuHJNkyfLsmTbdqqbOy77uCdk8pzfdd2kd8O2bVWr1VzHx0/B9D/iH4ZhknZ/OeJtg71mWWWdpc6mMWtdZpl0/ce1r/j2dfx5iQOl/jRnqYvBPE1q49VqVcfHxzNPsTBrGx/VdhZR5vgceT/bi/iOMU1TlUol9RRZGIbyfX9i0DFLe5y3nWRZh2u59pY9qAqL0+v1okqlEkmKKpVKMui7/0mK+IkNwzCSmWj7BxDGT5/0HxO/X6vVok6nE3U6najX6yWDe7vdblQulyNJySDk+ByWZU0cDB6nHQ8CzUpv3Dls206eJon3qdVqucqVN0+D6biumxqAnie9wfPHg4/7ByDH+a9UKplPBWXlv1arRY7jRK1Wayi/juMk21qtVlQulyPTNDOv7aiy5q2zcQaf4OlPf7Aup73+k9rYqPLFafTXczx4NiuNwbqYJk/j8hB/lrLeH/dZzZPHTqcT2bYdGYaRWbZxbWfeMk8qd1b+F/EdE5cnTseyrFyzgk/THsdd58E6m/Y6jkrnIV3LdbYRRVG0lGgNwKNxcHCgo6OjpU1YusrCMJw4fxqA1cDtOQB3Ir4dGP//o5sEb4z+WyDxbRQAq4+gCcCdOD09TcZnBUEw9kGExyaenV2a7YkvAMvB7TkAdyIIArXb7WRJC27N/ZXv+7q8vJSksfP2AFgtBE0AAAA5cHsOmJHneSqVStrf3192VnLzfV/7+/tjZ1FHPnFdlkqlhaZbrVa1tbWVegT+vt1V2dYVn6vHg6AJmJFt2zo5OXlQSw5YlpWsbH4XBldal96N3xmctPMhGixbXJeLnuHcdd07m2151LVYdNnCMFSz2Rz5D4pGo6Fms6lms5maX2hR20fJap+LcNefK6wOgiZgDg/xibC7HHjc6XSG3tvf39fR0dGdnfO+ZJXtoQ3iHnUtFlk23/d1fn6uMAwz/0ERBzmVSkWVSkWWZaUmdJ13+zhZ5VyUh9YWMBvWngOwEM1mM3PJhnV4nH5U2R6arGux6LLFM+iPWhvx9PRUr1+/TuVpf39frusuZPso63INsVz0NGGlNBqNpOu93W7L9/1kbEfWuIF6va6tra2hbvdGo6F2u538V/rrGKSDgwN5nqd6va56va52u61SqZQaRxIEgYrFovb393N90bbbbbXb7dTtgnnTzSpDnjTDMEyOqVarE9eJyluv49L1PE+dTkdBECTXcFTag+WLy9ifVqlUUqlUStZNbDQauW5/ZB3bbDaTnoi4XR0cHGTWy6h2k1W2wTocl89RZe3fHuct70LM7XZbxWJRxWJRnuep2WyqWCyqVCol7aBUKqlYLMr3/cxrsYiyTSPOV1YPred5c28fZZr2Odj2+8cu9t8SzFsXWW1KetcWPc9Ltt3VrUMs2DKnIwf6VSqVqFKpJK97vd7Q8gedTie17EgURZFt26mp/QeX7LBtO1kqo9VqJWl2u91kuYSsdOOlBcbpdDqRpNSyCK7rJuWYNd1xZZiUZq1WSy2xYJpmKn/dbnfo+Dz1OindeMmKQVnnK5fLqeva6/Ui27aH8tO/j2maqSVPRhl1bP/SGHE7GMzTuDofVTbDMMbmc1JZB5emuL6+jiRNXPYjit61tf60HMcZKmf/NRt17Wct2zhZdRx/XgYZhpEsfTLP9nFGlTNP22+1WpGkVF3WarXU99Wodp7VpgaXOun1eo9+eZKHgp4mrIR44KjjOMl7pmkODUTNGjfQ/6/OeG6g/jmBDg4Okq57wzDk+75s25ZlWcn5bNvW1dVVqvch72Bcy7JSeYgXDQ2CYKZ0J5UhK83BOuj/V7dpmhOfxJpUr7OmmyXuPey/VWSapq6urpL0CoVCUn/9++Tp9Rt1bL/B1d8n1fk4YRiOzOekssa9d/1zNRmGkXtB1MPDw6Fr0N+bcXV1Ndeg8nFlW6RCoTD2gYp5t08696DBth9fk/66PDk5GXvLb1KbarVayfebaZpM/vpAMKYJK8HzPBmGkfllNUs6/T8kvV4v9cU26kekUqno7OxMlmUN/dBNyzRN+b6frLw+Tbp5ylCpVOS6rlzXled5Ojw8TLa1Wi1Jf13G5OrqaiFP+C0q3cvLy8xrYJqmOp1OUj+D+xiGkft8WceOexw8T51Pc644n5PKOu/yMvGPefzjHKcVBMFCnsCb5xpMY1Ka826/C/H3Vfw5HzSuTZXLZbmuq62tLVmWpaOjI9VqtfvMPmZE0IQHr783KgxDmaaZCkwGg5RRP1JHR0fa29uT4zhDPRXT6v8SnzbdPGWoVqsqlUpyXXcoTd/3dXp6qv39fR0eHs784znYyzdtuqN+uBf9iP4i5KnzfnmDkjxlnfepq6OjoyQo39nZUbVaVbvdlm3bM7XhRQVcWUalG9f/vNunMa6ci2ijk9pUp9NJeiLj3icCp9XH7TmsBMuyFIbhTF9W/QHK4G2XWJ50LctSoVBQu92e+4csDMPkFsu06eYpg2mamWmGYai9vT2dnJyoUqnIMIzkuGlvq/TX6yzpjhqAbtt25jFBEGh3d3eqPC7KtO1m0uD62KSyjjrvNMrlstrttjzPk2VZSS/GqF6uSfKWbRamacowjJFPWc67fRrjypmn5yr+vhp1K3Vcm4oHfVuWpVqtpm63q7Ozs5w5xzIRNGElxLex+p8gCYJg6EtncExFfKso/nGzbVs7OztDTyCdn5/nyke1WtXx8fFU66T1n19691RMpVJJ/WBNk27eMsRp9v9YxHnp/yKPfwDG/UhMqtc86fanEQTB2B8T27ZTty3iNMbVzzz/+p907KQ6z1u2wXNNKmtWuw/DUL7v5y6vaZqyLEu9Xi95PZiPScfPUrZJRgUeJycnqfpot9upMV3zbh9lVDkntf3Y4DU5PT0d+pz3G9em+gOn/vzhAVj2SHSgX/wkUafTSZ52GXyKyHGcyHGcqNVqRa1WKyqXy5FpmqmnVOJ04n2i6N1TMrZtR4ZhRI7jpJ6EifV6vahcLufOb7fbjTqdTnIe13Uzn46bNt1RZeh3fX2denqn/7harZbUYXzuVqsVdbvdqFwuR5JST1lF0eR6HZfu4LnjJ4H6zzdYL/F+ruum8pJ1jOM4kWEYkWVZY5+SGnesbdvJU5P9ddD/BOC4Os9TtlH5HFXW/rqPnw6L231W2x/FcZzUU21Z7XvStZi1bIN6vV7kOE5kWVZSx4P797ezcfUx6/ZRBsvZn964th9fk/gaxfvHxn2ustpU3Bbi9xzHSbVDrC4W7MVKK5VKchzn3iZIDMNQl5eXCz/fXaUL4O7F87p1u91lZwVLxu05PHr9Xe7n5+cLC2zuKl0AwHIQNOHRq9fryfiCRa4fdVfpAgCWg6AJK6vRaMj3fTmOM9Mkinn1L7ExzQDwZaUL4P54nifHceT7fuYyM3hcGNMEAACQAz1NAAAAORA0AQAA5LC0ZVTixQzjicXiWYan3Teehl6SLi4u9OrVq9T6S3nPAQAAMM7SgqaDg4NkzosgCHR8fJwsCDrNvp7nJev1NBoN7e3tJftOc45Bf/nLX/Tf//3f+tGPfqSNjY3ZCwoAAFZKFEX69ttv9bOf/Ux/8zdT3HRbxoyavV4vsiwr9Z5hGFPv2+12U8f1er1IUtTr9aY6R5Y3b95Ekvjjjz/++OOPvzX9e/PmTe64IIqiaCk9TZ7nDc1bUygU5Pv+0LpHk/Z99epV8n48mWChUND5+Xnuc2T50Y9+JEl68+aNnj59mrtsAABgtd3e3ur9999PfuvzWkrQNGrRx6wFHift2z//zdnZmWzbTq3AnucckvT27Vu9ffs2ef3tt99Kkp4+fUrQBADAGpp2+M1KPT03zQrag/uGYah2uz1xzNKoc5yenmpzczP5e//993PnBQAArL+lBE2GYQz1+FxdXWU+2ZZ333q9rk6nk7w/zTkk6eTkRDc3N8nfmzdvpioTAABYb0sJmkYtXLqzszPTvo1GQ/V6XaZpKgxDhWE41Tkk6cmTJ8mtOG7JAQCAQUsZ02SaZup1EATa2dlJzb1kGIZM05y4b7vdlmVZScB0fn6eOR/T4HEAgPv35z//WX/605+WnQ2sue9///t67733Fp7u0taeC4JArutqd3dXFxcXOjk5SQKag4MD7e7uJvMvjdo3CAIVi8VUuoZh6Pr6euI5Jrm9vdXm5qZubm7odQKAOUVRpP/93/+dauwqMA/DMPSTn/wkc7D3rL/xLNg7AkETACzO//zP/ygMQ/34xz/WD3/4QyYNxp2Jokjfffedvv76axmGoZ/+9KdD+8z6G7+0GcEBAI/Dn//85yRg2t7eXnZ28Aj87d/+rSTp66+/1o9//OOF3apbqSkHAADrJx7D9MMf/nDJOcFjEre3RY6hI2gCANyLRd+S831f1WpVGxsbqtfrajabydPUW1tbyWLus/A8T6VSSc1mc4E5TiuVSmq323eW/l1YZL00m01tbW3J9/0F5GzYXdwC5vbcknzw4nfLzsJMvnr5i2VnAQAkSZZlJcHS4IM+R0dHury8nDlt27Z1dHS0gFz+VRiGqTw6jjNyGpxV0p9v27ZHTukzrUqlMnFC6lVDTxMA4MEaXGM0lmeN0fsUBIHOz89T78XLfq2yrHw/5nFpBE0AgLXh+76CIJAkHR4eLjk3f+U4zrKzMJOHmu+7wu05AMCDF4+xOTs7S275GIahdruter0uy7LUarUUhqFKpZJs25brumq328m8f71eb2SQ4Hme6vW6jo6OVKvVknRd101uV41Ky/M8XV5eJkt72batMAx1fHysarWqSqUi6V3A53meTNNUEAQql8syTTM5d7VaTbZ1Op2Rt7ZG7e84jsIwlOd56vV6cl03dYzv+zJNUxcXF3IcJzPf8YTTcTpZeRlVjnjb2dmZdnd3JWloubNVR9AEAHjwslaCkKRyuayrqyt1u11J7wKper2eBCoHBwfq9XqybVvValXtdlvlcnkoncExTuVyWWdnZ6l9RqUVjwMqFovJeSWl0guCIFlDNVYqlfT5558nx/cHJ61WS77vZ96GHLV/u91WrVaTZVkqFovJWKX43HEdXV1dqdFoqFarZeZbki4uLpIJqPvzMq4c/XUUOz09Hcr/KiNoAgCsjf6Ax/M82batSqWira0tua6rMAxTy3NdX18ngcPV1VVya28W86Tluu5QAGSaZrI02Pb2dmosUdai9P2y9u8vd3y8YRhyXVeFQiH1tOHFxcXY/MY9RYN5GVcOaXis2agxaauKoAkAsDb6A4P+oOXw8DC5hdffa3J6eqrt7e3ULaRZ5U1r8Cm6+zLunJZlpZ6KG+xZkpaX71XCQHAAwIM1qrclDMPkdpMk1et1OY6T6tmIx/HUarVk0ff4/f50YoZh6Jtvvkkd33/MpLT6jxtM/+joaGhf3/cXOph91Lp/WeeelO9RxpXDtu2hOZnm6dlbBnqaAAAPku/7yWDm09PTZAH3Xq+XzN0UM01zqDdlZ2dHhmEkP/IHBwdyXVemaSYDlqV3Y4Qsy9Lh4aHq9XqyfzyY3LKssWlJUrValeM4ajabSfBwdnamQqGgcrksy7LkOI4ajUYyGLvVaskwjKG8BEGQlN00zaFerVH7S+96lOIB3I7jyHGc5Nz1ej257RbX06h8j8rLuHIYhqFWq6V6va79/f2k5+r09FSO48zd03cfWLB3hLtesJfJLQE8Fn/84x/1+vVrPXv2TD/4wQ+WnR08EuPa3ay/8dyeAwAAyIGgCQAAIAeCJgAAgBwImgAAAHIgaAIAAMiBoAkAACAHgiYAAIAcCJoAAAByIGgCAGBGYRimllPB/bvPa0DQBADADMIw1PHxsUzT1N7e3rKz8+B4nqdSqZQspDyL+74GrD0HAFiK+15OatHLQHmep93dXZmmqc8//3yhaU/0r5v3fL6bhSdp23ZqLcBZ3Pc1oKcJAIAZBEEgwzAkKfkvprO9vT3X8fd9DQiaAAAAciBoAgBgQP94G8/z1Gw2dXBwkGz3fV+dTketVmuuMTnrqN1ua2trS9VqVb7va39/X/v7+8mA7a2tLbXb7WT/+P3BOl7Fa0DQBADAgHi8TafTkW3bqlQqCsNQvu9LkizLSoKBSqWy5NyulnK5rEqlomKxKMuyVK/XZRiGDMOQbdtyHEflcjnZ/+LiIrOOV/EaEDQBAJBhe3tbu7u7yWvDMHR1dbXEHD0c1WpVZ2dnkt71JAVBkPQoHR4epvYdV8erdg0ImgAAwEKZpilJSa/Q0dGRzs/PFYbhgx40z5QDAABg4arVqo6Pj9XtdhWGofb29nRycrLsbM2FoAkAgAG+7ye3l2zbVhAE8n1fruvKNE2FYaizszMVCgWZppkao4N3Dg8P1e12Jb27rTZYT3nreNL2+7wGG1EURXd+lgfo9vZWm5uburm50dOnTxee/n1P6rYoi54cDsD6++Mf/6jXr1/r2bNn+sEPfrDs7OCRGNfuZv2NZ0wTAABADgRNAAAAORA0AQAA5EDQBAAAkANBEwAAQA4ETQCAe8HD2rhPd9HeCJoAAHfq+9//viTpu+++W3JO8JjE7S1uf4vA5JYAgDv13nvvyTAMff3115KkH/7wh9rY2FhyrrCuoijSd999p6+//lqGYei9995bWNoETQCAO/eTn/xEkpLACbhrhmEk7W5RCJoAAHduY2NDP/3pT/XjH/9Yf/rTn5adHay573//+wvtYYoRNAEA7s177713Jz9mwH1gIDgAAEAOBE0AAAA5EDQBAADkQNAEAACQA0ETAABADkt7ei4IArXbbZmmqSAIVKlUZBjGTPv6vq/j42N1u93Ucb7vS5Isy1IQBArDUJZl3VWRAADAGlta0HRwcJAEOUEQ6Pj4WK1Wa+p942AqDpD6ua6rZrMpSbJte2T6AAAAkywlaAqCIPXaNE15njfTvuVyeeR5SqWSrq+vJWlkLxYAAEAeSxnT5HmeCoVC6r1CoZDZWzTNvlkMwyBgAgAAc1tKT1MYhpnvX11dzbVv1rHtdluSdHFxoWq1KtM0M/d9+/at3r59m7y+vb2dmD4AAHg8VmoZlVEB0qz79g8YN01T+/v76vV6mfuenp7qo48+yn1+AADwuCzl9pxhGEM9RVdXV5m30abZd1D/eKj4ybvBMVKxk5MT3dzcJH9v3ryZXBAAAPBoLCVosm078/2dnZ259u3n+7729vaG3h8cHxV78uSJnj59mvoDAACILSVoGhxXFASBdnZ2kt4j3/eTHqFJ+/brv2VnmqYcx0lee56ncrnMoHAAADCTpY1parVaqtfr2t3d1cXFRWoOpdPTU+3u7qpWq03c1/M8dTqd1HFxcLSzs6NGoyHDMNTr9ZinCQAAzGwjiqJo2ZlYRbe3t9rc3NTNzc2d3Kr74MXvFp7mffjq5S+WnQUAAOYy6288a88BAADkQNAEAACQA0ETAABADgRNAAAAORA0AQAA5EDQBAAAkANBEwAAQA4ETQAAADkQNAEAAORA0AQAAJADQRMAAEAOBE0AAAA5fG/aA7766iu1Wi11Oh1dX18n7xcKBe3v76tcLuuDDz5YZB4BAACWbqqg6cWLF9rY2NDh4aH+5V/+ZWj7l19+qY8//lgbGxs6PT1dWCYBAACWLXfQ9Jvf/EYnJyfa3Nwcuc/z58/1/Plz3dzc6OTkhMAJAACsjdxBU1bP0iibm5sETAAAYK3MPBD8xYsX+uSTT3Rzc6O///u/19HRkT777LNF5g0AAGBlzBw07e7u6le/+pWazaZKpZLOzs70zTffLDJvAAAAK2PmoGlra0uSdH5+rqOjI0nvnqADAABYR1NPORDr9XqKoki9Xk9/93d/p9evX6emIAAAAFgnM/c0HR4eyvd9dbtd3dzcyHVdhWG4wKwBAACsjlw9TTc3N7q+vk5NWrm5uZl6ou7ly5epY25vbyVJT58+XUA2AQAAlitXT9Pm5qY6nU7up+M+/fRTnZ+fEzABAIC1kXtM0/Hxsb788ksdHh6qWCxqd3dXpmnKMAyFYaggCPT73/9er1+/VrVa1YcffniX+QYAALhXUw0Ef/78uc7Pz3Vzc6Pz83P9/ve/VxiGMgxDxWJR1WpVz549u6u8AgAALM1MT89tbm7q+Ph40XkBAABYWTM/PQcAAPCYEDQBAADkQNAEAACQA0ETAABADnMFTb/5zW+Sdec+//zzZEJLAACAdTNz0PTixQsZhiHbtiVJe3t78jxvYRkDAABYJTMHTbu7uzo+PpZpmovMDwAAwEqaOWh6/fq1JGljYyN57+LiYv4cAQAArKCZJreU3s0OvrOzo+3tbXU6HXmeJ8dxFpk3AACAlTFzT9Pe3p5arZaeP3+uKIrUbDb185//fJF5AwAAWBkz9zRJ0rNnz/Ty5cvk9e3trZ4+fTp3pgAAAFbNXFMO3N7e6quvvkr+6vX6ovIFAACwUmbuafrHf/xHeZ4nwzCS916/fq1/+7d/W0S+AAAAVsrMQVOxWNTHH3+ceu/Vq1dzZwgAAGAVzXx7Lp7Ust/+/v5cmQEAAFhVM/c0bW1t6be//a1M05RhGArDUGdnZzo7O1tk/gAAAFbCzEFTrVZTGIapMU1ffvnlIvIEAACwcmYOmvb393V8fJx679NPP507QwAAAKto5jFNxWIx13sAAADrYOaepl6vJ9d1tbu7K0mKokjn5+esPwcAANbSzD1Nruvq2bNniqJIURRJUvJfAACAdTNzT5PjONrb20u9lzUNAQAAwDqYa8HeQVtbW3NlBgAAYFXl7mn67LPPZNt2siDvJ598ktoehqE6nY7+/d//PVd6QRCo3W7LNE0FQaBKpZKavmCafX3f1/Hxsbrd7sznAAAAGCd30PTrX/9ahmHo5z//uSTp448/1tHRUWqfb775JveJDw4OkiAnCAIdHx+r1WpNvW8cFPm+P9c5AAAAxskdNF1eXqZev3r1Ss+fP0+9l3dMUxAEqdemacrzvJn2LZfLc58DAABgkpnHNPWPX7q5udGnn36ae0yT53kqFAqp9wqFQmZv0TT7LuI4AACALDMHTf29Npubm/rwww9z9+SEYZj5/tXV1Vz7znPc27dvdXt7m/oDAACITTXlwM3Njc7Pz7WxsaFOpzO0vdvt6le/+tXMmRkV6My7b57jTk9P9dFHH82UJgAAWH9T9TRtbm7Ktm1dXl6q1+vpP//zP1N/tVotVzqGYQz1+FxdXWU+2TbNvvMcd3Jyopubm+TvzZs3E8sBAAAej6knt3z27Jk+/vhjff7555lzNeVh27Zc1x16f2dnZ6595znuyZMnevLkydg0AQDA47XQyS3zMk0z9ToIAu3s7CS9QL7vJ0+/Tdq3X/+tt2mOAwAAmGTmZVTm1Wq1VK/Xtbu7q4uLi9T8Saenp9rd3U1u943b1/O8ZHxVfFw8DcG44wAAAKaxEbHKbqbb21ttbm7q5uYmmQV9kT548buFp3kfvnr5i2VnAQCAucz6Gz/z7TkAAIDHZKFB01dffbXI5AAAAFbGXGOa/vCHP6Qe63ddV2dnZ3NnCgAAYNXMHDQdHh4qDMPU02hffvnlIvIEAACwcmYOmvb393V8fJx679NPP507QwAAAKto5jFNxWIx13sAAADrYOaepl6vJ9d1tbu7K0mKokjn5+e6uLhYWOYAAABWxcw9Ta7r6tmzZ4qiSPFUT0z5BAAA1tXMPU2O4wwtpWLb9twZAgAAWEULW3vuiy++0OvXr+fOEAAAwCqaa56mzz77LFlYN4oiXV5e6pe//OVCMgYAALBKZg6aXrx4oTAMdXV1JdM0FYahqtXqIvMGAACwMmYOmorFoo6Pj/X69WttbGzogw8+0BdffLHIvAF4gFiMGsC6mnlMk2ma+q//+i89e/ZM7XZ7kXkCAABYOTP3NIVhKNM0dX19rf/7v//TP/zDP8gwDP385z9fZP4AAABWwsxB04cffqg///nPkqSXL1/q888/187OzsIyBgAAsEpmvj0nSb/5zW90dHSUvN7Y2Jg7QwAAAKto5qDpxYsXMgwjmdByb29PnuctLGMAAACrZOagaXd3V8fHxzJNc5H5AQAAWEkzB03x7N/9t+RYrBcAAKyrmQeCP3/+XDs7O9re3lan05HneXIcZ5F5AwAAWBlzrT3XarX0/PlzRVGkZrPJdAMAAGBtzbX23LNnz/Ty5ctF5QUAAGBl5e5p+u1vfztxn08++WSuzAAAAKyq3D1Nv/71r9XpdMbuc3l5qV/96ldzZwoAAGDV5A6a9vb2tL29rVKpNHKfKIoWkikAAIBVkztoarVaurm50eXlpaR38zQ9ffo0tU+hUFhs7gAAAFbEVAPBNzc3tbe3J0n68ssvdXV1pY2NjeSpuQ8//HDxOQQAAFgBc83TFPviiy/U6XS0v7/PtAMAAGAtzbVg7x/+8Af90z/9k8rlsjqdjoIgWFS+AAAAVsrUPU1fffWVWq2WXNfVxsaGPvzwQ3W7XT179uwu8gcAALAScvc0ffLJJ9rd3VWpVFIQBGq1WvqP//gPvXz5MgmYPvvsszvLKAAAwDLl7mmqVCoql8t68eKFDMPQ9fW1vvjii2T79fW1Xr58qV/+8pd3klEAAIBlmipoajQaY+diOjs7W0imAABYRR+8+N2yszCTr17+YtlZWAu5g6ZqtTo0L9Ogk5OTuTMEAACwinKPaeqfYmCefQAAAB6iuaYcAAAAeCwImgAAAHIgaAIAAMiBoAkAACAHgiYAAIAcCJoAAAByIGgCAADIgaAJAAAgB4ImAACAHAiaAAAAciBoAgAAyIGgCQAAIAeCJgAAgBy+t6wTB0Ggdrst0zQVBIEqlYoMw5h633HbfN+XJFmWpSAIFIahLMu6h9IBAIB1s7Sg6eDgQN1uV9K7wOf4+FitVmvqfcdtc11XzWZTkmTb9sj0AQAAJllK0BQEQeq1aZryPG/qfSelUyqVdH19LUkje7EAAADyWMqYJs/zVCgUUu8VCoXkdlreffOkYxgGARMAAJjbUnqawjDMfP/q6mqqfSelE4ah2u22JOni4kLValWmaWYe8/btW719+zZ5fXt7OyL3AADgMVramKYso4KgafeNt/UPCjdNU/v7++r1epnHnJ6e6qOPPsp9fgAA8Lgs5facYRhDvUpXV1eZt9HG7Tspnf4xT/HTdYPjoGInJye6ublJ/t68eTNDyQAAwLpaStBk23bm+zs7O1PtO26b7/va29sb2jY4Bir25MkTPX36NPUHAAAQW8rtucFxRUEQaGdnJzW/kmEYMk1z7L6DPVP920zTlOM4yTbP81QulxkUDgAAZrK0MU2tVkv1el27u7u6uLhIzaF0enqq3d1d1Wq1ifuO2mYYhnZ2dtRoNGQYhnq9HvM0AQCAmW1EURQtOxOr6Pb2Vpubm7q5ubmTW3UfvPjdwtO8D1+9/MWys4AVR9vGOqN9r4dZf+NZew4AACAHgiYAAIAcCJoAAAByIGgCAADIgaAJAAAgB4ImAACAHAiaAAAAciBoAgAAyIGgCQAAIAeCJgAAgBwImgAAAHIgaAIAAMiBoAkAACAHgiYAAIAcCJoAAAByIGgCAADIgaAJAAAgB4ImAACAHAiaAAAAciBoAgAAyIGgCQAAIAeCJgAAgBwImgAAAHIgaAIAAMjhe8vOAAAAuGP/urnsHMzmX2+WnYMUepoAAAByIGgCAADIgaAJAAAgB4ImAACAHAiaAAAAciBoAgAAyIGgCQAAIAeCJgAAgBwImgAAAHIgaAIAAMiBoAkAACAHgiYAAIAcCJoAAAByIGgCAADIgaAJAAAgB4ImAACAHAiaAAAAciBoAgAAyIGgCQAAIAeCJgAAgBwImgAAAHIgaAIAAMiBoAkAACAHgiYAAIAcvresEwdBoHa7LdM0FQSBKpWKDMOYet9ZtwEAAExjaUHTwcGBut2upHfBzfHxsVqt1tT7zroNAABgGku5PRcEQeq1aZryPG/qfWfdBgAAMK2lBE2e56lQKKTeKxQK8n1/qn1n3QYAADCtpdyeC8Mw8/2rq6up9p11W5a3b9/q7du3yeubmxtJ0u3tbeb+8/rL2+/uJN27dlf1gfVB28Y6e7DteyNadhZmc0efy/jzHkXT1cvSxjRlGRXoTLvvLNtOT0/10UcfDb3//vvv587TY7D5/5adA+Bu0LaxzjaXnYFZvbzbnH/77bfa3Mx/jqUETYZhDPX4XF1dZT7ZNm7fWbdlOTk50T//8z8nr//yl7/o6upK29vb2tjYmKJ0mNbt7a3ef/99vXnzRk+fPl12doCFon1jnT3U9h1Fkb799lv97Gc/m+q4pQRNtm3Ldd2h93d2dqba1zTNmbZlefLkiZ48eZJ6j+kJ7tfTp08f1IcOmAbtG+vsIbbvaXqYYksJmkzTTL0OgkA7OztJkOL7vgzDkGmaY/cdDGrybgMAAJjW0sY0tVot1et17e7u6uLiIjV/0unpqXZ3d1Wr1SbuO+s2AACAaWxE0w4dBxbs7du3Oj091cnJydAtUuCho31jnT229k3QBAAAkAML9gIAAORA0AQAAJADQdMD5/u+qtWqNjY2VK/X1Ww2Va/XdXBwsNC19prNpra2th70MjSlUkntdjt53Ww2tb+/P9OxGC1ug81mU+12W57nqdlsDq0HuUo8z1OpVFKz2byX8z2k9sTn5u54npf6/p7lO/s+v5uX9TuwUm0wwoN3fX0dSYqur6+H3ut2uws7j23bC0uvP6/3pdPppM7b6/WiTqcz07HIZtt25Lpu6r1utxtJinq93pJylU+tVhvK+115SO2Jz83d6vV6Q9/f01rkd/MqnSu2Sm1wpZZRweLE81ydnZ3JsqxlZyclCAJ5nqdKpXKv57VtO/U6ax6wvMdiWKPRkKSh62pZ1r1f61lsb2/f27keUnvic3O3BheWx7BVaoPcnltjV1dXKhaLy87GEMdxlp0F3IHT01NVq9XMbQcHB/ecGwBYPIKmNRSGoer1umzbVqVSked5KhaLajabajabKpVKkt6Nh2o0Gmq322o0GkNjTnzfV71eV7vdVrvdTq3lF48BiXsX2u22isVi6p58EATJ8c1mU2EYyvM8XV5eqtPpjB3n4nlekrd6vZ7KU7VaTfLUbrfl+/7E/Pi+nxqzEoahqtVqKqgcVR+Dx/aPf4nH6zz2oCAIAoVhOPJff7ZtJ9tG1fOoeg2CIDmmPyiL23XcHprNpqrVarIo96h2P6ptSUraaNY1zTpuUlsIwzDZFh832J5mqZNR+Nw8fHnqadx3c5zGYDtot9sqlUrJtWs0GioWi8m1H9d2xp0rK/9r3QYXdqMPSxOPX3IcJ2q1WlGr1RoaP1KpVKJKpRJFUZRst207tY9lWcm93+vr68g0zaHt/feyHceJHMdJXpfL5eQ+c3x8nF6tVkv2nTR2pNfrRZZlJa9d140cx4mur68jwzBS96cNw0jyNC4/8fbB8xqGkZxzXH0MHlur1aJyuZy8XsZ9/lUSj8uYVAeT6jmrXvuvaX+bivfv395qtVLpZ7X7rLYVRe+u8ahrOu64cW3BcZxUG4zbUH97mqVOsuqZz83DlDUmdVw9TfpuHtdWr6+vk+vjum5yznFtZ9LvQL/H0AYZ07RGKpXKyLX1DMNIxmyUy2XV6/WhsU6maer8/FyVSkXn5+dD26e5935+fi7TNJP8nJyc5D7WdV0VCoVUr9XFxYUMw5Bt26kyjlqAeVqu646tj0Hb29upMTCGYUz8F9g6i3uRgiDIHEMXBIEKhcLEes6q1/7eq7ie+9tA//+Xy2UdHBwoDMNkDcrBdp/VtmK7u7tD55JGt0lpfFsol8sqlUoyTVNHR0eZbWmWOslqa3xu1se4epr03TyurRqGoVevXqlUKqnVaiVtYlzbmeZ34DG0QYKmRyTvwLlFiH+0YqOCucH9YpZlpQbwVSqVe3scHLOp1WpyXVflcnlom+/7me/nMe8i24PtPqtt5THLcYVCQdfX1/J9X2dnZzo4OFCn08mZ8+nxuYE0vq3GgdDgQ0KLajvr3gYZ07RGJkXL/duPjo6G5gTxfV+Hh4eS3o1BGZyLY3D8kWEY+uabb5LXnucl40nK5fLQ8VlzkGS9l5U3z/N0eHg4Nk/j8hMbfD3unP31Me5YvBMP8B/8guyvtzz1PGhSvfdvb7fbQ/+indTu88yNM+txp6enSe+b4zipfMX5nqVOpskjn5vVNm1P26Tv5nFtNR6z12q1FARBMn/RqGPy/A70ewxtkJ6mBy7+F6z07kerWq0OdVV6nifP8+T7vkzTlG3byZd4o9GQaZq6uLhIddeapqlWq6V6va79/f2kR+j09FSO48g0TR0eHqYmZLNtO+kqNU1TruuqXq8ntzzif31Uq1U5jqNms5n5OGict8FjDcPIzFNsXH7CMNTZ2ZkKhYLK5XJm78Oo+ojrOD42Tis+RzxQ2XXdqR6FXUedTkeNRkP1el3FYjHpyo97mfLUs5Su1/g4z/MUBIEcx0kFIL1eL/mSjdOTxrf7wbY16tzxNZ31uO3tbXmep0KhoKurKx0dHQ21p1nqJKut8bl5eOIARnoXYB8dHUnSxHoa9908qh00m83kN0J6dyv6+PhYQRCoVqtN1Xb6fwf6PYY2yIK9eND29/eTL4pZbG1t6fr6esG5wn2Jg7OHMA/UKuFzg2V7qG2QniY8aLMMIm02m+r1eqpWqwsbjAg8JHxusGwPtQ0ypgkPVjzPk+u6U92ztm1b29vbarfbcl337jKIOxXffmu1Wg96TcT7xucGy/aQ2yC35wAAAHKgpwkAACAHgiYAAIAcCJoAAAByIGgCAADIgaAJwEqLV0ff2NhQvV5Xs9lUo9FI3rvvGadLpVIykzKAx4Wn5wCsvCAIVCwWdX19nZpJuNlsamdnZ+YJ8vIYnL3Y8zzt7OzMvSYegIeHniYAK2/UyuqHh4czTZKXVxAEOj8/T703uLYdgMeDoAnAg+P7ftIDdJdrlsWLEAOARNAE4AGKF92U3vUGlUolNRoNSVK73VaxWEwW//Q8T6VSSc1mU57nqdls6uDgIJVeEASq1+tqt9tqNpvJavCXl5fqdDrJDMa+7ydpxXzfV6PRULvdVqPRSFZvz3NeAA8La88BeDDiYMXzPJ2cnEh6d7ssXh1eksrlciqosm1btm2r0+kkK8rHS6/Eq6jv7++r2+3KMIxksHmtVpNt20MLAvefKw62Op1O8l6pVNLnn38+8bwAHh6CJgAPRqVSkWEYUwcd29vb2t7eTl4bhpGMhTo/P5dpmsk4pTgYy8N13aG8mKap8/NzVSqVsecF8PAQNAF4cGzbXlhag0/HjRrkPbgfgMeHMU0AVt6k3hnDMPTNN98krz3Pyz1/U7lclu/7qffi8VCj3ovTPjo6GtrX930dHh7mOjeAh4WeJgArzfd9ua4rSarX69rf31e5XE7tc3h4qHq9ngQwtm0nt87CMEzGONm2nQzodl1XpmnKNE25rqt6va7d3d1kP0mqVqtyHEfNZlO2bcv3fZ2dnalQKKhcLsuyLDmOo0ajIdM0dXFxoVarJcMwkn3HnRfAw8LklgAAADlwew4AACAHgiYAAIAcCJoAAAByIGgCAADIgaAJAAAgB4ImAACAHAiaAAAAciBoAgAAyIGgCQAAIAeCJgAAgBwImgAAAHIgaAIAAMjh/wOr2wvfJw2/gAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFoCAYAAABKc89AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9q0lEQVR4nO3dzW7jWH7//497HmrQwJRpGRkkA/Sgi76BFCXdQJtOFrOblm3gv25LWQ8QqbxLbUYlzSx+uzRVfQO22L2bRSBWX8DYYs8FRKwOCpgESVqi3UAwzqRH/0WBHFGPlCyXZPn9AoxuiYeHh4dH0rcOD8/Z6vf7fQEAAGCq91ZdAAAAgPuAoAkAACAFgiYAAIAUCJoAAABSIGgCAABIgaAJAAAgBYImAACAFAiaAAAAUiBo2lBBEKhSqWhnZ0d7e3tT0+7t7WlnZ0eVSkVhGL6bAuJBcF131UXYCNHneWtrS3t7e6rX66rX6yqVSjo8PKSeUyiVStrZ2ZHneSsrwyZfx0ajoWw2u+pi3L0+NlqtVusbhtFvt9tjt7darX6hUOgXi8V3XLLxHMcZea9cLvcLhcIKSvPWuDJtqmWea7PZHHmv1+tNbY/jLPP6r8O1vE0ZbNse+1k1TbNfq9VuU6w7tw51b1lWv9VqrboY9/o69vvjr2Wn0+mXy+W5Ptv3ET1NG84wDB0dHclxnLHb161nqdVqjbx3cHCg4+PjFZTmrXFl2lTLPFfDMMa+VywWZZpm6nyWef3X4VreRRlKpZIqlcrS812mdaj7dXcfrqM0/lqapqlSqTT2c79JCJoegFKppPPz85H3wzCc68frrjUaDQVBMPK+bdsqFAorKNHkMm2iZZ+r7/uq1+sj79dqtbm+WJd1/dfhWt5VGaL6XLd/BEXWoe7vg3W/jtL0a+n7/lr9ptyF76+6ALh7lmUpk8nIdd3Ej8/l5aVs2564X71el2maCoJApmnG+4ZhqEajIdM01Wq1VCqVZFmWJMnzvPhfSi9fvlQQBAqCQN98841qtdrEY3mep1arpSAI4h/acrks3/dVqVQUBIE6nc7EY3S7XbXbbTmOo0ajoUwmo7OzM52ensZlm3Veacs0nI/0dqzC4LZpxh2/0WjIcRz5vq9ms6lCoRAHu0dHR4lAY1r5G41G4ljFYnFsHVYqFTUaDdVqNRWLxdTnOqvOBhmGoVqtlsgnOqeXL18m8phUl2mv/6w2Nun8XNeN83IcR0EQxHXdbDaVyWS0v7+vMAzVbDZlWdbYukhTpmllqFarCoJAzWZTtm0rCAIdHBzINE05jjPzh6jdbsuyrKltJCpj1CMQ9RZE5RvXdoavz7znPO28p1nWd0y9XpdhGMpkMlOPN2xSe5z32PN+Zoav46R81vFahmG48b1MkhjTtOmie8/jxoVEY07GjWkqFAqJMSm2bcf3qsvlcr/T6cTbTNPs93q9+HWr1eqbppkYO2Ca5sx73a1Wq29Z1sj77Xa7b5rmSNpxxyiXy4nzG85v2nnNU6ZCoZA4dqfT6du2PeXs0h1/cLyP4zgjZZu2f61WGzn/KG1UX4Ns206MTZh2rvPU2Sy2bSfym1WX81z/Ra6l4ziJ442rx6i9T6uLNGWaVIZx12fc2JbhsTC9Xq9fq9X6lmXFn8FpZYw+E61Wq99ut+PznNZ2bnvO0857kmV8x5TL5UT77vV6fUkzxzTNao9pjj3rM5PmOs7K575cy01D0LThoi+NTqfTlxR/IDudTuKHYPADHKUdzidKUygUEl9Gwz+C7XZ7ZP/hNOPMEzRNOsbgl0Wn0+kbhpH6vNKWqd1uJ/KNzBpkmub40RdXp9MZqa9p+0c/CMNfuNEP77g6HL6O4851kTqbZfCLO01dznP9p7WxSe0rqrtIrVZLHG/4MzRosC7SlGnaD87wAPlx52Lbdt+yrL7jOPHf4D6zythqtUa2T2s7yzjnWec9zm2/Y4avaWTWZzRte5x27DSfmVnXMU0+9+Vabhpuzz0QpmnKsiydn5/Ht2ym3ZYyDCPxaG6n04nvYzebTUlvu2OjW2PdbnfkeIMMwxhJc1vjjjFteoVZ55XW5eXl2Nsl0a2ESbc80xzftm3Ztq3Dw0O12+3U+19eXsowjET3eHSdbmNZdTbJonUZpRm0aBszDEOWZcW3r6M6jG5fRNLUxW3KVCwWdXZ2Jsuy5HnexHPP5XKJ2y2DFinjtLbTaDTu9Jwnue13TFQP80rbHtMce9ZnZtp1TJvPfbiWm4ag6QEplUpyHEfFYnHqF0o0QHzwS3vw/33fV7Va1cHBgY6Oju5s4N/wj9ZtzTqvtGVadJBm2uNns1l5niff9xPjsabtv8j8LrPOIzrX29bZbcpwlwbb1/HxcRyw5HI5lUolua4bB7FRWZddF8Nl2N/fV61WUxAEC+WdpozDn/1p1+Curv+sz/YyvmPmHcckLac9LqvONuVabhqenntAjo6O5Pu+XNdVLpebmM6yrLE9CWEYKgxD7e/v6/T0NA6+og/qsp+O8X1/qflNO6+0fN+PB+oOC4JA+Xz+VsePvoAcx9Hh4WHq/S3LGnse085t1r8go6DttnU2zaJ1uQyD7atQKMh1XXmeJ8uyVCgU5DhOoufhLupisAyDD2ws8oMf5TFvGae1nbu6/tM+28v4jplU7lmW0R6XVWebcC03EUHThoueOJLe/qvEtm2dnZ1N7WmybVu5XG6k9+L8/DzufRjsAYl+fGd9Ec4SPdEhvf2SGn7qbZZZx5h2XvOUybIs2bad6OaOzn3aEzJpju84Tty7Ydu2SqVSqv2jp2AGH/EPwzDOe/A8om3DvWbjznWROpvHonU5zqzrP619Rbevo89LFCgN5rlIXQyXaVYbL5VKOjk5WXiKhUXb+KS2s4xzjo6R9rO9jO8Y0zRVLBYTT5GFYSjf92cGHYu0x9u2k3E24VpupFUPqsLd6HQ6/WKx2JfULxaL8aDvwScpoic2DMOIZ6IdHEAYPX0yuE/0frlc7rdarX6r1ep3Op14cG+73e4XCoW+pHgQcnQMy7JmDgaP8o4GgY7Lb9oxbNuOnyaJ0pTL5VTnlbZMw/k4jpMYgJ4mv+HjR4OPBwcgR+UvFotjnwoaV/5yudyv1Wr9ZrM5Ut5arRZvazab/UKh0DdNc+y1nXSuaetsmuEneAbzH67Lea//rDY26fyiPAbrORo8Oy6P4bqYp0zTyhB9lsa9P+2zmqaMrVarb9t23zCMsec2re3c9pxnnfe48i/jOyY6nygfy7JSzQo+T3ucdp2H62ze6zgpn/t0LTfNVr/f768kWgPwIB0eHur4+HhlE5auszAMZ86fBmB1uD0H4M5FtwOj/38Qk+ClNHgLJLqNAmA9ETQBuHPVajUenxUEwdQHER6aaHZ2abEnvgC8O9yeA3DngiCQ67rxkhbcmvsL3/d1eXkpSVPn7QGwegRNAAAAKXB7DlgCz/OUzWZ1cHCw6qKk5vu+Dg4Ops6ijnSiusxms0vNt1QqaWdnJ/EI/Lt2V+e2qfhcbTaCJmAJbNvW6enpvVpywLKseGXzuzC80rr0dvzO8KSd99HwuUV1uewZzh3HubPZliddi2WfWxiGajQaE/9BUa/X1Wg01Gg0EvMLLWv7JOPa5zLc9ecKq0XQBCzJfXwi7C4HHrdarZH3Dg4OdHx8fGfHfFfGndt9G8Q96Vos89x839f5+bnCMBz7D4ooyCkWiyoWi7IsKzGh6223TzPuPJflvrUFpMfacwCWrtFojF2yYRMep590bvfNuGux7HOLZtCftDZitVrV69evE2U6ODiQ4zhL2T7JplxDvHv0NGFt1ev1uOvddV35vh+P7Rg3bqBSqWhnZ2ek271er8t13fi/0l/GIB0eHsrzPFUqFVUqFbmuq2w2mxhHEgSB9vb2dHBwkOqL1nVdua6buF1w23zHnUOaPMMwjPcplUoz14lKW6/T8vU8T61WS0EQxNdwUt7D5xed42Be2WxW2Ww2XjexXq+nuv0xbt9GoxH3RETt6vDwcGy9TGo3485tuA6nlXPSuQ5uj8qWdiFm13W1t7envb09eZ6nRqOhvb09ZbPZuB1ks1nt7e3J9/2x12IZ5zaPqFzjemg9z7v19knmaZ/DbX9w7OLgLcG0dTGuTUlv26LnefG2u7p1iCVY5XTkwCTFYrFfLBbj151OZ2T5g1arlVh2pN/v923bTkztP7xkh23b8VIZzWYzzrPdbsfLJYzLN1paYJpWq9WXlFgWwXGc+DwWzXfaOczKs1wuJ5ZYME0zUb52uz2yf5p6nZVvtGTFsHHHKxQKieva6XT6tm2PlGcwjWmaiSVPJpm07+DSGFE7GC7TtDqfdG6GYUwt56xzHV6aotfr9SXNXPaj33/b1gbzqtVqI+c5eM0mXftFz22acXUcfV6GGYYRL31ym+3TTDrPNG2/2Wz2JSXqslwuJ76vJrXzcW1qeKmTTqfzIJcnuS/oacLaiQaO1mq1+D3TNEcGoo4bNzD4r85obqDBOYEODw/jrnvDMOT7vmzblmVZ8fFs21a32030PqQdjGtZVqIM0aKhQRAslO+scxiX53AdDP6r2zTNmU9izarXRfMdJ+o9HLxVZJqmut1unF8mk4nrbzBNml6/SfsOGl79fVadTxOG4cRyzjrXqPducK4mwzBSL4h6dHQ0cg0GezO63e6tBpVPO7dlymQyUx+ouO32WcceNtz2o2syWJenp6dTb/nNalPNZjP+fjNNk8lf1xhjmrB2PM+TYRhjv6wWyWfwh6TT6SS+2Cb9iBSLRZ2dncmyrJEfunmZpinf9+OV1+fJN805FItFOY4jx3HkeZ6Ojo7ibc1mU9JfljHpdrtLecJvWfleXl6OvQamaarVasX1M5zGMIzUxxu377THwdPU+TzHiso561xvu7xM9GMe/ThHeQVBsJQn8G5zDeYxK8/bbr8L0fdV9DkfNq1NFQoFOY6jnZ0dWZal4+Njlcvld1l8zIGgCRtlsDcqDEOZppkITIaDlEk/UsfHx9rf31etVhvpqZjX4Jf4vPmmOYdSqaRsNivHcUby9H1f1WpVBwcHOjo6WvjHc7iXb958J/1wL/sR/WVIU+eD0gYlac71tk9dHR8fx0F5LpdTqVSS67qybXuhNrysgGucSflG9X/b7fOYdp7LaKOz2lSr1Yp7IqPeJwKn9cTtOawdy7IUhuFCX1aDAcrwbZdImnwty1Imk5Hrurf+IQvDML7FMm++ac7BNM2xeYZhqP39fZ2enqpYLMowjHi/eW+rDNbrIvlOGoBu2/bYfYIgUD6fn6uMyzJvu5k1uD4y61wnHXcehUJBruvK8zxZlhX3Ykzq5Zol7bktwjRNGYYx8SnL226fx7TzTNNzFX1fTbqVOq1NRYO+LctSuVxWu93W2dlZypLjXSNowtqJbmMNPkESBMHIl87wmIroVlH042bbtnK53MgTSOfn56nKUSqVdHJyMtc6aYPHl94+FVMsFhM/WPPkm/YcojwHfyyisgx+kUc/ANN+JGbVa5p8B/MIgmDqj4lt24nbFlEe0+rnNv/6n7XvrDpPe27Dx5p1ruPafRiG8n0/9fmapinLstTpdOLXw+WYtf8i5zbLpMDj9PQ0UR+u6ybGdN12+ySTznNW248MX5NqtTryOR80rU0NBk6D5cOaWvVIdGCS6EmiVqsVP+0y/BRRrVbr12q1frPZ7DebzX6hUOibppl4SiXKJ0rT7799Ssa27b5hGP1arZZ4EibS6XT6hUIhdXnb7Xa/1WrFx3EcZ+zTcfPmO+kcBvV6vcTTO4P7lcvluA6jYzebzX673e4XCoW+pMRTVv3+7Hqdlu/wsaMngQaPN1wvUTrHcRJlGbdPrVbrG4bRtyxr6lNS0/a1bTt+anKwDgafAJxW52nObVI5J53rYN1HT4dF7X5c25+kVqslnmob175nXYtFz21Yp9Pp12q1vmVZcR0Ppx9sZ9PqY9Htkwyf52B+09p+dE2iaxSlj0z7XI1rU1FbiN6r1WqJdoj1woK9uDey2axqtdo7myAxDENdXl4u/Xh3lS+AuxfN69Zut1ddFKwAt+eAAYNd7ufn50sLbO4qXwDAu0PQBAyoVCrx+IJlrh91V/kCAN4dgibcC/V6Xb7vq1arLTSJYlqDS2zMMwB8VfkCeHc8z1OtVpPv+2OXmcHmY0wTAABACvQ0AQAApEDQBAAAkMLKllGJFjCMJhOLZhaeN2009bwkXVxc6OXLl4k1lybtN8/xAQAAVhY0HR4exvNcBEGgk5OTeBHQedJ6nhev0VOv17W/vx+nnbbfPMcf9uc//1l/+MMf9OMf/1hbW1uLnD4AAFiBfr+vb7/9Vj/96U/13ntz3nBbxYyanU6nb1lW4j3DMOZO2263E/t1Op2+pH6n05m63zzHH+fNmzd9Sfzxxx9//PHH3z39e/PmTerf/chKepo8zxuZqyaTycj3/ZG1jmalffnyZfx+NIFgJpPR+fn5xP0uLy9TH3+cH//4x5KkN2/e6PHjxzPTAwCA9XB9fa0PPvgg/i2fx0qCpkkLPY5b1HFW2sE5b87OzmTbdmLV9XH7zXN8Sbq5udHNzU38+ttvv5UkPX78mKAJAIB7aJHhNWv19Nw8q2YPpw3DUK7rzhyXNO0Yk7ZVq1Vtb2/Hfx988EHqcgIAgM2wkqDJMIyRXp1utzv26bW0aSuVilqtVvz+tP3mOb4knZ6e6urqKv578+bN7JMEAAAbZSVB06TFSnO53EJp6/W6KpWKTNNUGIYKw3DqfvMcX5IePXoU34rjlhwAAA/TSsY0maaZeB0EgXK5XGLuJcMwZJrmzLSu68qyrDhgOj8/Hzvn0uB+07YBAO7Gd999pz/96U+rLgYegB/+8IfzTyeQwsrWnguCQI7jKJ/P6+LiQqenp3HQcnh4qHw+H8+/NCltEATa29tL5GsYhnq93sxjTNs2y/X1tba3t3V1dUWvEwDM0O/39R//8R9zjVsFbuO9997TkydP9MMf/nBk221+w1mwdwEETQCQ3r//+78rDEP95Cc/0fvvv8+kwLhT0QTUP/jBD/Szn/1spL3d5jd8ZTOCAwA233fffRcHTLu7u6suDh6Iv/qrv9If/vAH/d///Z9+8IMfLC3ftZpyAACwWaIxTO+///6KS4KHJLot99133y01X4ImAMCdW/YtOd/3VSqVtLW1pUqlokajET9JvbOzEy/kvgjP85TNZtVoNJZY4qRsNivXde8s/7uwzHppNBra2dmR7/tLKNmou7oFzO25NfPhs9+uughz+/rFz1ddBAAPjGVZcbA0/CDP8fGxLi8vF87btm0dHx8voZR/EYZhooy1Wm3iNDfrZLDctm1PnLJnXsViceZk1OuIniYAwL00vIZoJM0aou9SEAQ6Pz9PvBct+bXOxpX7oY9LI2gCAGwE3/cVBIEk6ejoaMWl+YtarbbqIizkvpb7LnF7DgBwr0VjbM7OzuJbPoZhyHVdVSoVWZalZrOpMAyVzWZl27Ycx5HruvGcf51OZ2KQ4HmeKpWKjo+PVS6X43wdx4lvV03Ky/M8XV5exkt32batMAx1cnKiUqmkYrEo6W3A53meTNNUEAQqFAoyTTM+dqlUire1Wq2Jt7Ympa/VagrDUJ7nqdPpyHGcxD6+78s0TV1cXKhWq40tdzTZdJTPuLJMOo9o29nZmfL5vCSNLGd2HxA0AQDutXGrQEhSoVBQt9tVu92W9DaQqlQqcaByeHioTqcj27ZVKpXkuq4KhcJIPsNjnAqFgs7OzhJpJuUVjQPa29uLjyspkV8QBPH6qZFsNqtXr17F+w8GJ81mU77vj70NOSm967oql8uyLEt7e3vxWKXo2FEddbtd1et1lcvlseWWpIuLi3jy6cGyTDuPwTqKVKvVkfKvO4ImAMBGGAx4PM+TbdsqFova2dmR4zgKwzCxNFev14sDh263G9/aW8Rt8nIcZyQAMk0zXhZsd3c3MZZo3KLzg8alHzzvaH/DMOQ4jjKZTOJpw4uLi6nljXqKhssy7Tyk0bFmk8akrTOCJgDARhgMDAaDlqOjo/gW3mCvSbVa1e7ubuIW0qLS5jX8FN27Mu2YlmUlnoob7lmSVlfudcNAcADAvTSptyUMw/h2kyRVKhXVarVEz0Y0jqdcLscLvkfvD+YTMQxD33zzTWL/wX1m5TW433D+x8fHI2l931/qYPZJ6/6NO/asck8y7Txs2x6Zk+k2PXurQk8TAODe8X0/HsxcrVbjxds7nU48d1PENM2R3pRcLifDMOIf+cPDQzmOI9M04wHL0tsxQpZl6ejoSJVKJU4fDSa3LGtqXpJUKpVUq9XUaDTi4OHs7EyZTEaFQkGWZalWq6ler8eDsZvNpgzDGClLEATxuZumOdKrNSm99LZHKRrAXavVVKvV4mNXKpX4tltUT5PKPaks087DMAw1m01VKhUdHBzEPVfValW1Wu3WPX3vCgv2LuAuF+xlcksAm+SPf/yjXr9+rSdPnuhHP/rRqouDB2Jau7vNbzi35wAAAFIgaAIAAEiBoAkAACAFgiYAAIAUCJoAAABSIGgCAABIgaAJAAAgBYImAACAFAiaAABYUBiGiSVV8G696/pfWdAUBIHq9bpc11W9Xp96wrPS+r6vbDY7sp/rugrDcGzevu/HU8sPTjMPAEAaYRjq5OREpmlqf39/1cW5VzzPUzabjRdSXsQq6n9la88dHh7GCyoGQaCTkxM1m82507quG68VNG6/YbVaTeVyWY7jxBfLtu2JxwYA3I13uWzUXSz35Hme8vm8TNPUq1evlp7/RP+0/e6OJUn/dLX0LG3bTqwFuIhV1P9KgqbhlY1N05y4gvKstIVCYex+YRiq2WwmttfrdZXLZUlSNptVr9eT9Hb1agAA5hEEQfz7we/I/HZ3d2+1/yrqfyW35zzPUyaTSbyXyWTG9hbNk3bYYMDkuu5IgBWtvAwAADDLSoKmSeOXut3urdIOGgyGwjBUt9uVaZqJ91zXleu6qlQqIz1ag25ubnR9fZ34AwBsrsExN57nqdFoJIZ8+L6vVqulZrN5q3E5m8Z1Xe3s7KhUKsn3fR0cHOjg4CAesL2zsyPXdeP00fvD9buu9b+yMU3jzDP6fZ60lUpFtVot8V6xWIwDK9M0dXBwoE6nM3b/arWq58+fpz4eAOB+i8bcRD/MktRsNuX7vizLkmVZOjg4kPT29wRvFQoFXVxcaHd3V5ZlqVKpyHEcGYYh27ZVq9USd30uLi7iYTOD9buu9b+SnibDMEZ6irrd7thbZfOkHSeKYofTD/YsmaapIAgm9jadnp7q6uoq/nvz5k2qYwMA7q/d3V3l8/n49bjfI4wqlUo6OzuT9PY3OAiC+Lf46OgokXZa/a5j/a8kaJo0Yj6Xy90q7TiXl5cjAZPv+2MfTxweOxV59OiRHj9+nPgDAACjoqEw0djj4+NjnZ+fKwzDez+OeCW35wbHFklve31yuVxcmb7vyzAMmaY5M+2gcRfE9/2RYMg0zcTtOs/zVCgU7v3FBABgHZRKJZ2cnKjdbisMQ+3v7+v09HTVxbq1lY1pajabqlQqyufzuri4SMyTVK1Wlc/nE/c5J6X1PE+tViux3/BTcsOBl2EYyuVyqtfrMgxDnU6HeZoAADHf9+NbTLZtx5MgO44j0zQVhqHOzs6UyWRkmubE6W8eqqOjo3h+xagTZLCO0tbvrO3vuv63+v1+/50caYNcX19re3tbV1dXS79V9y4ne1uWu5g0DsBm+OMf/6jXr1/ryZMn+tGPfrTq4uCBmNbubvMbztpzAAAAKRA0AQAApEDQBAAAkAJBEwAAQAoETQAAACkQNAEA7hwPauNduqv2RtAEALgzP/jBDyRJ//M//7PikuAh+d///V9J0ve+972l5rtWC/YCADbL9773PRmGof/8z/+UJL3//vva2tpacamwyf785z/rv/7rv/T+++/r+99fbphD0AQAuFN//dd/LUlx4ATctffee08/+9nPlh6gEzQBAO7U1taW/uZv/kY/+clP9Kc//WnVxcED8MMf/lDvvbf8EUgETQCAd+J73/ve0seYAO8SA8EBAABSIGgCAABIgaAJAAAgBYImAACAFAiaAAAAUiBoAgAASIGgCQAAIAWCJgAAgBQImgAAAFIgaAIAAEhhZcuoBEEg13VlmqaCIFCxWJRhGAul9X1fJycnarfbif1835ckWZalIAgUhqEsy5r7+AAAACsLmg4PD+MgJwgCnZycqNlszp02CnyiAGmQ4zhqNBqSJNu2E/nPc3wAAICVBE1BECRem6Ypz/MWSlsoFCYeJ5vNqtfrSVKiF2me4wMAAEgrGtPkeZ4ymUzivUwmM7a3aJ604xiGMXLb7bZ5AgCAh2clPU1hGI59v9vt3irtuH1d15UkXVxcqFQqyTTNufO8ubnRzc1N/Pr6+nrmsQEAwGZZ2ZimcSYFM4umHRzcbZqmDg4O1Ol05s6zWq3q+fPnqcsGAAA2z0puzxmGMdKr0+12xz69Nk/aYYNjl6Kn5IIgmDvP09NTXV1dxX9v3ryZeWwAALBZVhI02bY99v1cLnertIN839f+/v7I+5lMZu48Hz16pMePHyf+AADAw7KSoMk0zcTrIAiUy+Xinh7f9+NeollpBw3eXjNNU7VaLX7teZ4KhYIMw5grTwAAAGmFY5qazaYqlYry+bwuLi4ScyRVq1Xl83mVy+WZaT3PU6vVSuwXBUe5XE71el2GYajT6ST2m5YnAADAsK1+v99fdSHum+vra21vb+vq6mrpt+o+fPbbpeb3Lnz94uerLgIAAKnc5jectecAAABSIGgCAABIgaAJAAAgBYImAACAFAiaAAAAUiBoAgAASIGgCQAAIAWCJgAAgBQImgAAAFIgaAIAAEiBoAkAACAFgiYAAIAUCJoAAABSIGgCAABIgaAJAAAgBYImAACAFAiaAAAAUvj+vDt8/fXXajabarVa6vV68fuZTEYHBwcqFAr68MMPl1lGAACAlZsraHr27Jm2trZ0dHSkf/zHfxzZ/tVXX+nTTz/V1taWqtXq0goJAACwaqmDpl//+tc6PT3V9vb2xDRPnz7V06dPdXV1pdPTUwInAACwMVIHTeN6libZ3t4mYAIAABtl4YHgz54902effaarqyv93d/9nY6Pj/XFF18ss2wAAABrY+GgKZ/P65NPPlGj0VA2m9XZ2Zm++eab1PsHQaB6vS7XdVWv1xWG4cJpfd9XNpsd2c/3fdXrddXrdR0eHib2831fvu/H+Uf/DwAAMM7cT89FdnZ2JEnn5+d6+fKlpLdP0KV1eHiodrst6W3QcnJyomazOXda13VlmubYoMfzPJXLZUlSvV7X/v5+nI/jOGo0GpIk27YnHhsAAEC6RU9Tp9PRq1ev1Ol09Ld/+7d6/fp1YgqCaYIgSLw2TVOe5y2UtlAoyLKskf1830+MqyoUCvJ9P84vm82q1+up1+up1WrJMIxUZQcAAA/TwkHT0dGRfN9Xu93W1dWVHMeZeottkOd5I71SmUxmYm9R2rSDLMuKe8AkxWUbzMswDIIlAACQSqrbc1dXV+r1eolJK7e3txNP1L148SKxz/X1tSTp8ePHI/lNCq663e6t0g4rFArx/5+dncm27ThICsNQrutKki4uLlQqlWSa5th8bm5udHNzE7+Ozg0AADwcqYKm7e1tnZ+fa3d3V7/4xS9mpv/888/V6/X0ySefzFWYtD1Vi6R1XTcezyRJxWIxDqBM09TBwYE6nc7Y/avVqp4/f576eAAAYPOkHgh+cnKir776SkdHR9rb21M+n5dpmjIMQ2EYKggC/e53v9Pr169VKpX08ccfT8zLMIyRnqJutzv2Vtk8aSepVCoj45aCIIjHQpmmqSAIFATB2N6m09NT/fKXv4xfX19f64MPPkh9fAAAcP/N9fTc06dPdX5+rqurK52fn+t3v/udwjCUYRja29tTqVTSkydPZuZj27Ycxxl5P5fL3SrtOPV6XZVKRaZpxr1TQRBof39/ZOD6pKf/Hj16pEePHqU6HgAA2EwLTTmwvb2tk5OThQ863JsTBIFyuVzcE+T7vgzDkGmaM9MOigK4iOu6siwrDpjOz89VLBZlmqZqtVqczvM8FQoFBoUDAICJFp6n6baazaYqlYry+bwuLi4S8yRVq1Xl8/l4jqVpaT3PU6vVSuxXKBQUBIEODw8TxzQMIx7LlMvlVK/XZRiGOp0O8zQBAICptvr9fn/Vhbhvrq+vtb29raurq7FPB97Gh89+u9T83oWvX/x81UUAACCV2/yGLzxPEwAAwENC0AQAAJDCrYKmX//61zo+PpYkvXr1ikkfAQDAxlo4aHr27JkMw5Bt25Kk/f39ievHAQAA3HcLB035fF4nJycTlx4BAADYJAsHTa9fv5YkbW1txe9dXFzcvkQAAABraOF5mp4+fapcLqfd3V21Wi15npeYMBIAAGCTLNzTtL+/r2azqadPn6rf76vRaOijjz5aZtkAAADWxq1mBH/y5IlevHgRv76+vl76ZI8AAADr4FZTDlxfX+vrr7+O/yqVyrLKBQAAsFYW7mn6h3/4B3mel1jk9vXr1/rnf/7nZZQLAABgrSwcNO3t7enTTz9NvPfy5ctbFwgAAGAdLXx7LprUctDBwcGtCgMAALCuFu5p2tnZ0W9+8xuZpinDMBSGoc7OznR2drbM8gEAAKyFhYOmcrmsMAwTY5q++uqrZZQJAABg7SwcNB0cHOjk5CTx3ueff37rAgEAAKyjhcc07e3tpXoPAABgEyzc09TpdOQ4jvL5vCSp3+/r/Pyc9ecAAMBGWrinyXEcPXnyRP1+X/1+X5Li/wIAAGyahXuaarWa9vf3E++Nm4YAAABgE9xqwd5hOzs7tyoMAADAukrd0/TFF1/Itu14Qd7PPvsssT0MQ7VaLf3Lv/xLqvyCIJDrujJNU0EQqFgsJqYvmCet7/s6OTlRu91Ovd88xwcAAEgdNP3qV7+SYRj66KOPJEmffvqpjo+PE2m++eab1Ac+PDyMg5wgCHRycqJmszl32ijw8X1/rv3mOT4AAEDqoOny8jLx+uXLl3r69GnivbRjmoIgSLw2TVOe5y2UtlAozL3fPMcHAACQbjGmaXD80tXVlT7//PPUY5o8z1Mmk0m8l8lkxvYWzZM27X6L5gkAAB6uhYOmwZ6Z7e1tffzxx6l7a8IwHPt+t9u9Vdq0+82b583Nja6vrxN/AADgYZlryoGrqyudn59ra2tLrVZrZHu73dYnn3yycGEmBTO3TZt2v0nbqtWqnj9/vtDxAADAZpirp2l7e1u2bevy8lKdTkf/+q//mvgrl8up8jEMY6RXp9vtjn16bZ60afebN8/T01NdXV3Ff2/evJl6bAAAsHnmntzyyZMn+vTTT/Xq1auxczWlYdu2HMcZeT+Xy90qbdr9TNOcK89Hjx7p0aNHU48HAAA221Int0zLNM3E6yAIlMvl4p4e3/fjJ9xmpR00eHtt2n7z5AkAACDdYhmV22o2m6pUKsrn87q4uEjMkVStVpXP5+PbfdPSep4Xj6+K9oumIZi237RtAAAAw7b6rLI7t+vra21vb+vq6iqeIX1ZPnz226Xm9y58/eLnqy4CAACp3OY3fOHbcwAAAA/JUoOmr7/+epnZAQAArI1bjWn6/e9/n3h033EcnZ2d3bpQAAAA62bhoOno6EhhGCaeOPvqq6+WUSYAAIC1s3DQdHBwoJOTk8R7n3/++a0LBAAAsI4WHtO0t7eX6j0AAIBNsHBPU6fTkeM4yufzkqR+v6/z83NdXFwsrXAAAADrYuGeJsdx9OTJE/X7fUVTPTHlEwAA2FQL9zTVarWRpVRs2751gQAAANbR0tae+/LLL/X69etbFwgAAGAd3Wqepi+++CJeWLff7+vy8lK/+MUvllIwAACAdbJw0PTs2TOFYahutyvTNBWGoUql0jLLBgAAsDYWDpr29vZ0cnKi169fa2trSx9++KG+/PLLZZYNAABgbSw8psk0Tf3bv/2bnjx5Itd1l1kmAACAtbNwT1MYhjJNU71eT//93/+tv//7v5dhGProo4+WWT4A99yHz3676iLM7esXP191EQCsoYWDpo8//ljfffedJOnFixd69eqVcrnc0goGAACwTha+PSdJv/71r3V8fBy/3traunWBAAAA1tHCQdOzZ89kGEY8oeX+/r48z1tawQAAANbJwkFTPp/XycmJTNNcZnkAAADW0sJBUzT79+AtORbrBQAAm2rhgeBPnz5VLpfT7u6uWq2WPM9TrVZbZtkAAADWxsJB0/7+vprNphzHUb/fV6PR0NOnT1PvHwSBXNeVaZoKgkDFYlGGYcyddto213XjMVfDefu+L0myLEtBECgMQ1mWNVcdAACAh+NWa889efJEL168WGjfw8NDtdttSW8Dn5OTEzWbzbnTzto2rFarqVwuy3EcNRoNSZJt2xOPDQAAIM0xpuk3v/nNzDSfffZZqryiRX4jpmlOfPJuWtpp28IwVLPZVL/fj/+igEmSstmser2eer2eWq3WxF4uAAAAaY6epl/96ldqtVpT01xeXuqTTz6ZmZfnecpkMon3MpmMfN8fuUU2Le3l5eXEbaZpqlAoxO+7rpt4LY3esgMAAJgkddC0v7+v3d1dZbPZiWn6/X6qvMIwHPt+t9udK+20bYPBVxiG6na7iekRwjCM18y7uLhQqVRi+gQAADBR6qCp2Wzq6upKl5eXkt7O0/T48eNEmuFen3lNCoLmTTu8rVKpjDzZNzhg3DRNHRwcqNPpjM3v5uZGNzc38evr6+vU5QQAAJthrnmatre3tb+/r/39fXU6Hb169UpffvllvP3jjz9OlY9hGCO9St1ud+ztsmlp0+QThqE8zxvJe3A8VPTk3fAYqUi1WtX29nb898EHH6Q4SwAAsEkWntzy6dOn2t/f10cffaQvv/xSp6eniQBqmmgagGHjFvydljZNPpeXl2OnG9jf3x/Zb1JP2enpqa6uruK/N2/ejE0HAAA2162mHPj9738vx3F0dnYm0zS1t7enjz76aOZ+w2OHgiBQLpeLgxvf92UYhkzTnJp2XO/RYD5RXsPBkGmaidt1nuepUChMHBj+6NEjPXr0aOZ5AQCAzTV30PT111/Hk1pubW3p448/Vrvd1pMnT+bKp9lsqlKpKJ/P6+LiIjFPUrVaVT6fj6cHmJZ22rbIcOBlGIZyuZzq9boMw1Cn02GeJgAAMNVWP+Ujb5999pkcx1EQBDo6OlKxWByZAfyLL77QL37xizsp6Dq5vr7W9va2rq6uRgbD39aHz3671Pzeha9f/HzVRcAao00DWCe3+Q1P3dNULBZVKBT07NkzGYahXq+XGMPU6/X04sWLBxE0AQCAh2euoKler0+di+ns7GwphQIAAFg3qYOmUqk0sxvr9PT01gUCAABYR6mnHBgev7RoGgAAgPto4XmaAAAAHpJbzdMEAMBDwxOhDxc9TQAAACkQNAEAAKRA0AQAAJACQRMAAEAKBE0AAAApEDQBAACkQNAEAACQAkETAABACgRNAAAAKRA0AQAApEDQBAAAkAJBEwAAQAoETQAAACkQNAEAAKRA0AQAAJACQRMAAEAK31/VgYMgkOu6Mk1TQRCoWCzKMIy5007b5vu+JMmyLAVBoDAMZVnW3McHAABYWdB0eHiodrst6W0Ac3JyomazOXfaadscx1Gj0ZAk2badyH+e4wMAAKwkaAqCIPHaNE15njd32ln5ZLNZ9Xo9SUr0Is1zfAAAAGlFY5o8z1Mmk0m8l8lk4ttpadOmyccwjJHbbvMcHwAAQFpRT1MYhmPf73a7c6WdlU8YhnJdV5J0cXGhUqkk0zTnOr4k3dzc6ObmJn59fX09Nh0AANhcKxvTNM6kYGbetNG2wcHdpmnq4OBAnU5n7jyr1aqeP3+eumwAAGDzrOT2nGEYI7063W537NNr09LOymdw7FL0lFwQBHMdX5JOT091dXUV/7158yblmQIAgE2xkqDJtu2x7+dyubnSTtvm+7729/dHtmUymbmOL0mPHj3S48ePE38AAOBhWcntOdM0E6+DIFAul0vMr2QYhkzTnJp2uGdocJtpmqrVavE2z/NUKBRm7gcAADDOysY0NZtNVSoV5fN5XVxcJOZIqlaryufzKpfLM9NO2mYYhnK5nOr1ugzDUKfTSbUfAADAOFv9fr+/6kLcN9fX19re3tbV1dXSb9V9+Oy3S83vXfj6xc9XXQSsMdo0Ng1t+n67zW84a88BAACkQNAEAACQAkETAABACgRNAAAAKRA0AQAApEDQBAAAkAJBEwAAQAoETQAAACkQNAEAAKRA0AQAAJACQRMAAEAKBE0AAAApEDQBAACkQNAEAACQAkETAABACgRNAAAAKRA0AQAApEDQBAAAkAJBEwAAQAoETQAAACkQNAEAAKTw/VUdOAgCua4r0zQVBIGKxaIMw5g77bRtvu/L8zxJ0sXFhV6+fJnYJkmWZSkIAoVhKMuy7vKUAQDAPbayoOnw8FDtdlvS28Dn5OREzWZz7rTTtnmep3K5LEmq1+va39+P0zqOo0ajIUmybXvisQEAAKQV3Z4LgiDx2jTNuEdonrTTtvm+r2q1Gm8rFAryfT/eJ5vNqtfrqdfrqdVqTezlAgAAkFYUNHmep0wmk3gvk8nEt8zSpp22zbIsvXz5Mn4/DMN4e8QwDIIlAACQykpuz0UBzLButztX2ln5FAqF+L2zszPZth0HSWEYynVdSW/HO5VKJZmmme4EAADAg7OyMU3jTAqC5k07vC0KkKLxTJISA8ZN09TBwYE6nc7Y/G5ubnRzcxO/vr6+Tl1OAACwGVYSNBmGMdKr1O12x94qm5Y2bT6VSmVk3FIQBPHTctGTd0EQjO1tqlarev78+RxnCADAGvmn7VWXYDH/dLXqEiSsZEyTbdtj38/lcnOlTZNPvV5XpVKRaZoKw1BhGMr3fe3v74/sNzw+KnJ6eqqrq6v4782bN2PTAQCAzbWSoGm4NycIAuVyucQcStFTbtPSzsrHdV1ZlhUHTOfn5/F+tVot3s/zPBUKhYmDwh89eqTHjx8n/gAAwMOysjFNzWZTlUpF+XxeFxcXiXmSqtWq8vl8PMfStLSTtgVBoMPDw8QxDcOIxzLlcjnV63UZhqFOp8M8TQAAYKqtfr/fX3Uh7pvr62ttb2/r6upq6b1OHz777VLzexe+fvHzVRcBa4w2jU1zL9v0j/6/VRdhMXcwpuk2v+GsPQcAAJACQRMAAEAKBE0AAAApEDQBAACkQNAEAACQAkETAABACgRNAAAAKRA0AQAApEDQBAAAkAJBEwAAQAoETQAAACkQNAEAAKRA0AQAAJACQRMAAEAKBE0AAAApEDQBAACkQNAEAACQAkETAABACgRNAAAAKRA0AQAApEDQBAAAkAJBEwAAQArfX9WBgyCQ67oyTVNBEKhYLMowjLnT3sU2AACAYSsLmg4PD9VutyW9DWBOTk7UbDbnTnsX2wAAAIat5PZcEASJ16ZpyvO8udPexTYAAIBxVhI0eZ6nTCaTeC+Tycj3/bnS3sU2AACAcVZyey4Mw7Hvd7vdudLexbZxbm5udHNzE7++urqSJF1fX49Nfxt/vvmfped51+6iHrA5aNPYNPeyTW/1V12ExdzBZzH6fPf789fJysY0jTMpmJk37bK3VatVPX/+fOT9Dz74YGJeD8n2/1t1CYDlok1j02yvugCLenF3Jf/222+1vT1f/isJmgzDGOnV6Xa7Y59em5b2LraNc3p6ql/+8pfx6z//+c/qdrva3d3V1tbWrNPFgq6vr/XBBx/ozZs3evz48aqLA9wabRqb5j626X6/r2+//VY//elP5953JUGTbdtyHGfk/VwuN1da0zSXvm2cR48e6dGjR4n3mJ7g3Xn8+PG9+TACadCmsWnuW5uet4cpspKgyTTNxOsgCJTL5eJAxPd9GYYh0zSnph0OXJaxDQAAYJyVjWlqNpuqVCrK5/O6uLhIzJFUrVaVz+dVLpdnpr2LbQAAAMO2+osMHwfegZubG1WrVZ2eno7cHgXuI9o0Ns1Da9METQAAACmwYC8AAEAKBE0AAAApEDRtIN/3VSqVtLW1pUqlokajoUqlosPDw6WusddoNLSzs3Ovl5/JZrNyXTd+3Wg0dHBwsNC+SIraXaPRkOu68jxPjUZjZO3HdeJ5nrLZrBqNxjs53n1qQ3xWls/zvMR39SLfz+/ye3hV3/lr1fb62Ei9Xq8vqd/r9Ubea7fbSzuObdtLy2+wrO9Kq9VKHLfT6fRbrdZC++IvbNvuO46TeK/dbvcl9TudzopKlU65XB4p+125T22Iz8rd6HQ6I9/V81rm9/A6HSuyTm1vrZZRwd2K5r46OzuTZVmrLk5CEATyPE/FYvGdHte27cTrcXODpd0Xb9XrdUkauZaWZb3z67uI3d3dd3as+9SG+KzcjeHF4zFqndoet+cemG63q729vVUXY0StVlt1EbAk1WpVpVJp7LbDw8N3XBoAWB6CpgciDENVKhXZtq1isSjP87S3t6dGo6FGo6FsNivp7Xioer0u13VVr9dHxp/4vq9KpSLXdeW6bmINv2g8SNTT4Lqu9vb2EvfpgyCI9280GgrDUJ7n6fLyUq1Wa+qYF8/z4rJVKpVEmUqlUlwm13Xl+/7M8vi+nxi/EoahSqVSIqicVB/D+w6OhYnG7jzEACEIAoVhOPFfgbZtx9sm1e2kugyCIN5nMCiL2nLUBhqNhkqlUrwA96S2Pqk9SYrb5bjrOG6/Wdc/DMN4W7TfcBtapE4m4bNyf6Wpn2nfw1Eew9ffdV1ls9n4mtXrde3t7cXXfFqbmXasceXf6La3tBt9WCvR+KVardZvNpv9ZrM5MpakWCz2i8Viv9/vx9tt206ksSwrvh/c6/X6pmmObB+8v12r1fq1Wi1+XSgU4nvP0f5RfuVyOU47axxJp9PpW5YVv3Ycp1+r1fq9Xq9vGEbinrVhGHGZppUn2j58XMMw4mNOq4/hfcvlcr9QKMSvV3Hvf9Wi8RmzzntW3Y6ry8HrONiOovSD25vNZiL/cW19XHvq999e10nXcdp+065/rVZLtLuo3Qy2oUXqZFw981m5X8aNP51WP7O+h6e10V6vF18Xx3HiY05rM7O+8wc9hLbHmKYNVywWJ66pZxhGPH6jUCioUqmMjHUyTVPn5+cqFos6Pz8f2T7P/fjz83OZphmX5/T0NPW+juMok8kkeq0uLi5kGIZs206c46SFl+flOM7U+hi2u7ubGA9jGMbMf5VtmqgXKQiCsePmgiBQJpOZWbfj6nKw9yqq28HrPvj/hUJBh4eHCsMwXm9yuK2Pa0+RfD4/cixpcjuUpl//QqGgbDYr0zR1fHw8tv0sUifj2heflftvWv3M+h6e1kYNw9DLly+VzWbVbDbjtjCtzczznf8Q2h5B0wOXdjDdMkQ/YJFJwdxwuohlWYlBfcVi8Z09Go70yuWyHMdRoVAY2eb7/tj307jtgtrDbX1ce0pjkf0ymYx6vZ5839fZ2ZkODw/VarVSlnx+fFYetmltNAqEhh8IWlab2fS2x5imDTcrgh7cfnx8PDJPiO/7Ojo6kvR2PMrw/BzD448Mw9A333wTv/Y8Lx5bUigURvYfNy/JuPfGlc3zPB0dHU0t07TyRIZfTzvmYH1M2/chiwb1D39RDtZVmrodNquuB7e7rjvyL9tZbT3NHDmL7letVuPet1qtlihXVO5F6mSeMvJZWU/z9rDN+h6e1kajsXrNZlNBEMTzF03aJ813/qCH0PboadpA0b9mpbc/YKVSaaT70vM8eZ4n3/dlmqZs246/0Ov1ukzT1MXFRaIL1zRNNZtNVSoVHRwcxD1C1WpVtVpNpmnq6OgoMUmbbdtx96lpmnIcR5VKJb79Ef2LpFQqqVarqdFojH1ENCrb8L6GYYwtU2RaecIw1NnZmTKZjAqFwtieiEn1EdVxtG+UV3SMaNCy4zhzPR67KVqtlur1uiqVivb29uIu/aiXKU3dSsm6jPbzPE9BEKhWqyUCkE6nE3/ZRvlJ09v6cHuadOzoOi663+7urjzPUyaTUbfb1fHx8UgbWqROxrUvPiv3RxTASG8D6+PjY0maWT/TvocnXf9GoxH/Hkhvb0GfnJwoCAKVy+W52szgd/6gh9D2WLAXG+fg4CD+8ljEzs6Oer3ekkuFuxQFZ/dhHqh1wmcFq3Jf2x49Tdg4iwwobTQa6nQ6KpVKSxugCKw7PitYlfva9hjThI0SzfPkOM5c97Ft29bu7q5c15XjOHdXQCxddPut2Wze63UQ3zU+K1iV+9z2uD0HAACQAj1NAAAAKRA0AQAApEDQBAAAkAJBEwAAQAoETQDujWil9K2tLVUqFTUaDdXr9fi9dz3rdDabjWdVBrD5eHoOwL0SBIH29vbU6/USswo3Gg3lcrmFJ8tLY3gmY8/zlMvlbr0uHoD7gZ4mAPfKpFXWj46OFpowL60gCHR+fp54b3h9OwCbjaAJwL3m+37cA3SX65ZFCxEDeLgImgDca9ECnNLb3qBsNqt6vS5Jcl1Xe3t78UKgnucpm82q0WjI8zw1Gg0dHh4m8guCQJVKRa7rqtFoxCvDX15eqtVqxbMZ+74f5xXxfV/1el2u66per8cruac5LoD1x9pzAO6lKFjxPE+np6eS3t4ui1aKl6RCoZAIqmzblm3barVa8ery0fIr0YrqBwcHarfbMgwjHmxeLpdl2/bIosCDx4qCrVarFb+XzWb16tWrmccFcD8QNAG4l4rFogzDmDvo2N3d1e7ubvzaMIx4LNT5+blM04zHKUXBWBqO44yUxTRNnZ+fq1gsTj0ugPuBoAnAvWbb9tLyGn46btIg7+F0AB4GxjQBuFdm9c4YhqFvvvkmfu15Xur5mwqFgnzfT7wXjYea9F6U9/Hx8Uha3/d1dHSU6tgA1h89TQDuDd/35TiOJKlSqejg4ECFQiGR5ujoSJVKJQ5gbNuOb52FYRiPcbJtOx7Q7TiOTNOUaZpyHEeVSkX5fD5OJ0mlUkm1Wk2NRkO2bcv3fZ2dnSmTyahQKMiyLNVqNdXrdZmmqYuLCzWbTRmGEaeddlwA64/JLQEAAFLg9hwAAEAKBE0AAAApEDQBAACkQNAEAACQAkETAABACgRNAAAAKRA0AQAApEDQBAAAkAJBEwAAQAoETQAAACkQNAEAAKRA0AQAAJDC/w8p7T/cUgF7iwAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -455,9 +455,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFUCAYAAAA5ywiWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1FklEQVR4nO3dX2/jVn7/8Y+bBrMIsGNaBoLdRQNkKKDXHcl+AmuqvejdRrafQCy1t0Urje82N6uhsvcNNXkCtpTc7UUhTh7A2mL2uoU4KQIsiqAj0w4Q7GCR5e9ifmRF/aX+2JLs9wsYJBLJw3MOj6SvDw/P2QrDMBQAAAAm+qtVZwAAAGATEDQBAACkQNAEAACQAkETAABACgRNAAAAKRA0AQAApEDQBAAAkAJBEwAAQAoETQ+M7/uqVqva2dlRNpuduG82m9XOzo6q1aqCILibDOJBaLVaq87CnYg+b1tbW8pms6rX66rX6yqXyzo8PHww9bCocrmsnZ0dua47dd8gCFStVtVoNNRqtdRoNIb2cV1X5XJZ5XJ5oWtwX69vo9FQPp9fdTbWU4gHybbt0DCMsNPpjNzebrfDYrEYlkqlO87ZaI7jDL1XqVTCYrG4gty8NSpP99Uyy9psNofeu7q6mtgeR1n19Z+FZVkjP0umaYa2ba8gR7NZh7aey+XCdrs9dT/TNMNutxu/Ngwj8ToMw1BSeHV1Fbbb7TjNRcq4ydd3VLm73W5YqVRm+jw+FPQ0PVCGYejo6EiO44zcvm49S+12e+i9QqGg4+PjFeTmrVF5uq+WWVbDMEa+VyqVZJpm6nRWff2XoVwuq1qtrjobU21KW/c8T4ZhJNpRs9lMvPY8T6ZpyjAMWZYly7Ik3U4ZN+H6jiq3aZoql8sjP6sPHUHTA1Yul3V+fj70fhAEM/143bZGoyHf94fetyxLxWJxBTkan6f7aNll9TxP9Xp96H3btmf6kl7l9V+WqLzr9kdKv01q671eT5lMJvFeFBT1G2xnt1XGdb++k8odBZdI+utVZwCrk8vllMlk1Gq1Ej8+l5eXI79oIvV6XaZpyvd9maYZHxsEgRqNhkzTVLvdVrlcVi6Xk/R2DEH0F9eLFy/k+75839fr169l2/bYc7muq3a7Ld/34x/aSqUiz/NUrVbl+7663e7Yc/R6PXU6HTmOo0ajoUwmo7OzM52ensZ5m1autHkaTEd6O+ahf9sko87faDTkOI48z1Oz2VSxWIyD3aOjo0SgMSn/g+M6SqXSyDqMxoLYtq1SqZS6rNPqrJ9hGLJtO5FOVKYXL14k0hhXl2mvf5o2Nuk8s6Q5T110Oh3lcrnEj/iodKJ8RD0AUe9AlIdR1zdNetPKNe36j7Ks74F6vS7DMIaCoHFc15XjOIm8drtdnZ+fq9lsyrIseZ6X2CfqcRpVxlarpVqtJt/34+N931ehUJBpmnIcZ2pQMXh9N+XaBkFAL9M4q74/iNWI7mOPGhcSjTkZNaapWCwmxqRYlhXf965UKomxA6ZphldXV/HrdrsdmqaZGJdgmubU++btdjvM5XJD73c6ndA0zaF9R52jUqkkyjeY3qRyzZKnYrGYOHe32w0ty5pQunTn7x/v4zjOUN4mHW/b9lD5o32j+upnWVZinMOkss5SZ9NYlpVIb1pdznL9J+Vr2nnSpDmtLgbHvFxdXYW2bYe5XC7xGZmUTtRu2+122Ol04ms66fpOSi9tXY27/uMs43ugUqkk2uDV1VUoaeqYplF5HRwLNa7djCrjqM/HqDFKaa7vfbi2CEOCpgcq+kLqdrvxoMjodfSFNxg0RfsOphPtUywWE190gz+CnU5n6PjBfUaZJWgad47+L55utxsahpG6XGnz1Ol0EulGpg1gTXP+6Euw2+0O1dek46Mfm8Ef5uiLf1QdDl7HUWWdp86m6f8RSFOXs1z/cW0s7XkmpZmmLizLCnO5XOg4Tvxv8AdsWjrtdnto+6TrOy29tHU16w/rot8DUZkGpRkIvuygKQzDoQcURrWladf3vlxbhCG35x440zSVy+V0fn4e37KZdFvKMIzEY7/dbje+J95sNiW97dqNbo31er2h8/UzDGNon0WNOsek6RWmlSuty8vLkd310W2Kcbc805w/GrB6eHioTqeT+vjLy0sZhpHoao+u0yKWVWfjzFuX0T79JrWxtOeZlGbautjb20vcWhmUJp3BfEy6vo1GY+b0lvF5XPR7IKqHdVEqlXR2dqZcLifXdce2vUnX975cWzCmCXo7nsRxHJVKpYlfVtEA8f4vjf7/9zxPtVpNhUJBR0dHtzaIMLp/vyzTypU2T/MO9kx7/nw+L9d15XleYjzWpOPnmSdmWjmisi5aZ4vkYZ3Os6y6SJPO4OdzUv5v6xpN+/wt43sg7Tim29JfxuPjYx0cHMi2bfm+/6CvLXh6DpKOjo7keZ5arZb29vbG7pfL5Ub2JARBoCAIdHBwoNPT0zj4ij70y34qxfO8paY3qVxpeZ4XDxQd5Pu+9vf3Fzp/9GXmOI4ODw9TH5/L5UaWY1LZpv01GgVti9bZJPPW5SrOs6y6mCedSdf3tq7RpM/fMr4HxuX7LvWXsf+BmXmDuftwbfEWQdMDFT1xJCmer+Ts7GxiT5NlWdrb2xvqvTg/P497H/p7QKIf32lfstNET4dIb794B596m2baOSaVa5Y85XI5WZaV6DKPyj7pSao053ccJ75FZ1mWyuVyquOjJ2r6H/EPgiBOu78c0bbBXrNRZZ2nzmYxb12OMu2HaZ7z9Ke5rLqYtx2Ou77zpDeqrmb5/C3je8A0TZVKpcRTY0EQyPO8W+uBnFbGcrmsk5OTuae4uA/XFv/fqgdV4W51u92wVCqFksJSqRQP+u5/KiN68sMwjHhG2/7BiNGTLf3HRO9XKpV4lt1utxsP7u10OmGxWAwlxYOQo3Pkcrmpg8GjtKMBpqPSm3QOy7LiJ1OifSqVSqpypc3TYDqO4yQGoKdJb/D8tm2HpmkmBq5G+S+VSiOfOBqV/0qlEtq2HTabzaH82rYdb2s2m2GxWAxN0xx5bceVNW2dTTL4NFB/+oN1Oev1n9bGZjnPuDRH1UW32534WZqUl8GnHC3LCg3DiAcCDx4z7vqOSm/Wuhp3/cflfxnfA1F5onRyudzEweCDddSf9rjP/+DnZ1wZozKMen+W67vp1xZhuBWGYbiSaA0A+hweHur4+HjjJ6zE/RMEwdT56/AwcHsOwMpEtwOj/1+np6bwsPXfzopuiQEETQBWplarxeOzfN+f+CACcJei2fGl1T/Nh/XB7TkAK+P7vlqtVrxcBrfmsC48z9Pl5aUkTZxfCw8LQRMAAEAK3J4D5uS6rvL5vAqFwqqzkprneSoUChNnSEc6UV3m8/mlplsul7Wzs5OYBuGu3VbZ7is+Vw8HQRMwJ8uydHp6ulFLE+RyuXgF9NswuCK79HZsyOCEnJtosGxRXS577iDHcW5tVuZx12LZZQuCQI1GY+wfFPV6XY1GQ41GIzEP0bK2jzOqfS7DbX+usD4ImoAFbOLTXrc5qLXdbg+9VygUdHx8fGvnvCujyrZpA4THXYtlls3zPJ2fnysIgpF/UERBTqlUUqlUUi6XS0zWuuj2SUaVc1k2rS1gPqw9B2ApGo3GyKUd7sOj2uPKtmlGXYtlly2aHX/cuoe1Wk2vXr1K5KlQKMhxnKVsH+e+XEOsFj1NWCv1ej3uem+1WvI8Lx7bMWrcQLVa1c7OzlC3e71eV6vViv8r/d8YpMPDQ7muq2q1qmq1qlarpXw+nxhH4vu+stmsCoVCqi/aVqulVquVuF2waLqjypAmzSAI4mPK5fLU9aTS1uukdF3XVbvdlu/78TUcl/Zg+aIy9qeVz+eVz+fjNRHr9Xqq2x+jjm00GnFPRNSuDg8PR9bLuHYzqmyDdTgpn+PK2r89ylvaRZZbrZay2ayy2axc11Wj0VA2m1U+n4/bQT6fVzabled5I6/FMso2iyhfo3poXdddePs4s7TPwbbfP3ax/5Zg2roY1aakt23Rdd14223dOsSSrXI6cqBfqVQKS6VS/Lrb7Q4tm9ButxNLioRhGFqWlVgCYHA5Dsuy4uUSms1mnGan04mXzBiVbrQEwSTtdjuUlFg6wXGcuBzzpjupDNPSrFQqiaUYTNNM5K/T6Qwdn6Zep6UbLXUxaNT5isVi4rp2u93Qsqyh/PTvY5pmYtmLccYd2788StQOBvM0qc7Hlc0wjIn5nFbWwSUsrq6uQkljlwvp5zhOIi3btofK2X/Nxl37ecs2yag6jj4vgwzDiJdMWWT7JOPKmabtN5vNUFKiLiuVSuL7alw7H9WmBpdE6Xa7LGOyIehpwlqIBo7ath2/Z5rm0EDUUeMG+v/qjOb96Z/v5/DwMO66NwxDnufJsizlcrn4fJZlqdfrJXof0g7GzeVyiTxEi436vj9XutPKMCrNwTro/6vbNM2pT2JNq9d50x0l6j3sv1VkmqZ6vV6cXiaTieuvf580vX7jju03uEr8tDqfJAiCsfmcVtao965/HiDDMFIvnHp0dDR0Dfp7M3q93kKDyieVbZkymczEByoW3T7t3IMG2350Tfrr8vT0dOItv2ltqtlsxt9vpmkyseuGYEwT1oLrujIMY+SX1Tzp9P+QdLvdxBfbuB+RUqmks7Mz5XK5oR+6WZmmKc/z4hXbZ0k3TRlKpZIcx5HjOHJdV0dHR/G2ZrMp6f+WKOn1ekt5wm9Z6V5eXo68BqZpqt1ux/UzuI9hGKnPN+rYSY+Dp6nzWc4V5XNaWRddOib6MY9+nKO0fN9fyhN4i1yDWUxLc9HttyH6voo+54MmtalisSjHcbSzs6NcLqfj42NVKpW7zD7mRNCEjdffGxUEgUzTTAQmg0HKuB+p4+NjHRwcyLbtoZ6KWfV/ic+abpoylMtl5fN5OY4zlKbnearVaioUCjo6Opr7x3Owl2/WdMf9cC/7Ef1lSFPn/dIGJWnKuuhTV8fHx3FQvre3p3K5rFarJcuy5mrDywq4RhmXblT/i26fxaRyLqONTmtT7XY77omMep8InNYft+ewFnK5nIIgmOvLqj9AGbztEkmTbi6XUyaTUavVWviHLAiC+BbLrOmmKYNpmiPTDIJABwcHOj09ValUkmEY8XGz3lbpr9d50h03AN2yrJHH+L6v/f39mfK4LLO2m2mD6yPTyjruvLMoFotqtVpyXVe5XC7uxRjXyzVN2rLNwzRNGYYx9inLRbfPYlI50/RcRd9X426lTmpT0aDvXC6nSqWiTqejs7OzlDnHKhE0YS1Et7H6nyDxfX/oS2dwTEV0qyj6cbMsS3t7e0NPIJ2fn6fKR7lc1snJyUxroPWfX3r7VEypVEr8YM2SbtoyRGn2/1hEeen/Io9+ACb9SEyr1zTp9qfh+/7EHxPLshK3LaI0JtXPIn/9Tzt2Wp2nLdvguaaVdVS7D4JAnuelLq9pmsrlcup2u/HrwXxMO36esk0zLvA4PT1N1Eer1UqM6Vp0+zjjyjmt7UcGr0mtVhv6nPeb1Kb6A6f+/GEDrHokOtAvepKo3W7HT7sMPkVk23Zo23bYbDbDZrMZFovF0DTNxFMqUTrRPmH49ikZy7JCwzBC27YTT8JEut1uWCwWU+e30+mE7XY7Po/jOCOfjps13XFl6Hd1dZV4eqf/uEqlEtdhdO5msxl2Op2wWCyGkhJPWYXh9HqdlO7guaMngfrPN1gv0X6O4yTyMuoY27ZDwzDCXC438SmpScdalhU/NdlfB/1PAE6q8zRlG5fPcWXtr/vo6bCo3Y9q++PYtp14qm1U+552LeYt26Butxvath3mcrm4jgf3729nk+pj3u3jDJazP71JbT+6JtE1ivaPTPpcjWpTUVuI3rNtO9EOsb5YsBdrLZ/Py7btO5sgMQgCXV5eLv18t5UugNsXzevW6XRWnRWsGLfn8OD1d7mfn58vLbC5rXQBAKtB0IQHr1qtxuMLlrl+1G2lCwBYDYImrK16vS7P82Tb9lyTKKbVv8TGLAPAV5UugLvjuq5s25bneSOXmcHDwpgmAACAFOhpAgAASIGgCQAAIAWCJgAAgBRYe26Mv/zlL/rjH/+on/70p9ra2lp1dgAAwJKEYajvv/9ev/jFL/RXf5W+/4igaYw//vGP+uCDD1adDQAAcEu+/fZb/c3f/E3q/QmaxvjpT38q6W2FPn78eMW5AQAAy3Jzc6MPPvgg/q1Pa2VBk+/7arVa8WKJ0crps+7reV48h8/FxYVevHgRb5vlHIOiW3KPHz8maAIA4B6adfjNyoKmw8PDeB0f3/d1cnKiZrM5876u66pSqUh6OxniwcFBvO8s5wAAAJhkJU/P+b6feG2a5tgZnyft63mearVavK1YLMrzPPm+P9M5AAAApllJ0OS67tBaXJlMRp7nzbRvLpfTixcv4vejBVIzmcxM5wAAAJhmJbfn+ld/79fr9Wbet39Nr7OzM1mWJcMwZjoHAOBu/Pjjj/rzn/+86mzgnnv33Xf1zjvvLD3dtXp6blygk2bfIAjUarXiMUyznuPNmzd68+ZN/Prm5iZ1XgAAk4VhqP/5n/+Z6XseWIRhGPrZz3621LkWVxI0GYYx1OPT6/VGPtmWdt9qtap2ux2/P8s5JKlWq+mTTz6ZqRwAgHSigOn999/Xe++9x6TBuDVhGOqHH37Qd999J0n6+c9/vrS0t8IwDJeWWkq+7yeebJOknZ0dvXr1aiioSbNvvV5XsViUaZrxXzG9Xi/1OaTRPU0ffPCBrq+vmXIAABbw448/6j//8z/1/vvva3d3d9XZwQPx+vVrfffdd/rbv/3boVt1Nzc32t7envk3fiUDwU3TTLz2fV97e3uJuZeip9+m7dtqtZTL5eKA6fz8XIZhTD1u0KNHj+I5mZibCQCWJxrD9N577604J3hIova2zDF0K1uwt9lsqlqtqtVqyXGcxPxJtVpNrVZr6r5RL1ShUNDW1pZ2dnZUrVZTnQMAcLeWfUvO8zyVy2VtbW2pWq2q0WioXq+rWq1qZ2dnoWlmXNdVPp9Xo9FYYo6T8vl84rduEyyzXhqNhnZ2dm7tqfbbuAW8kttzm2Derru0Pnz2u6WneRe+ef6Pq84CgA3zpz/9Sa9evdKTJ0/0k5/8ZKlp+76vbDarq6urxJ0Ez/N0eXmpUqk0d9r1el2GYSyURr8gCBJ5dF134h2QdTGY72q1qmw2u5R6KRQKsm1buVxu4bQGTWp3G3V7DgCAZRicjy9yGz/Ci/B9X+fn54n3oily1tmofD/kcWkETQCAe6N/TOzR0dGKc/N/bNtedRbmsqn5vi1rNU8TAADziMbYnJ2dxeNXDcNQq9VStVpVLpdTs9lUEATK5/OyLEuO46jVaskwDPm+r263OzZIcF1X1WpVx8fHqlQqcbqO48iyLEkam5brurq8vIynwbEsS0EQ6OTkROVyOb7NFS1AHy0yHz0VHp27XC7H29rt9thxuuP2t21bQRDIdV11u105jpM4xvM8maapi4sL2bY9Mt/RQ1ZROqPyMq4c0bazszPt7+9L2rwJpwmaAAAbr1QqjbzVVSwW1ev14ulnDMNQtVqNA5XDw0N1u11ZlqVyuaxWq5VYaSJiWZaOj48T6Z6dnSX2GZeWZVmyLGtoHFB/er7vx/MNRvL5vF6+fBkf3x+cNJvNeDmxUXkdtX+r1VKlUlEul1M2m43HKkXnjuqo1+upXq+rUqmMzLckXVxcqFKpDOVlUjn66yjSv37sJiBoAgDcG/0Bj+u6sixLpVJJOzs7chxHQRAkpqSJBpD7vq9erze02PssFknLcZyhAMg0TZ2fn6tUKml3dzcxlmjUBM79Ru3fX+7oeMMw5DhOvGZr5OLiYmJ+o56iwbxMKoc0PNZs3Ji0dUXQBAC4N/oDg/6g5ejoKL6F199rUqvVtLu7m7iFNK+0aQ0+jXZXJp0zl8vFtxkljXwyblX5XicMBAcAbKxxvS1BECRWhKhWq7JtO9GzEY3jqVQqiRUl+ntc+tfKMwxDr1+/Thzff8y0tPqPG0z/+Ph4aF/P85Y6mH3cun+jzj0t3+NMKodlWUNzMi3Ss7cK9DQBADaS53nxYOZaraZsNitJ6na7ajQaOj09jfc1TXOoNyWaIyn6kT88PJTjODJNMx6wLL0dI5TL5XR0dKRqtRrvHw0mz+VyE9OSpHK5LNu21Wg04uDh7OxMmUxGxWJRuVxOtm2rXq/Hg7GbzaYMwxjKi+/7cdlN0xzq1Rq3v/S2RykawG3bdjxHkm3bqlar8W23qJ7G5XtcXiaVwzCMeNLpQqEQ91zVajXZtr1wT99dYHLLMZjccjQmtwQwq9uc3BIYh8ktAQAAVoSgCQAAIAWCJgAAgBQImgAAAFIgaAIAAEiBoAkAACAFgiYAAIAUCJoAAABSIGgCAGBOQRAkllPB3bvLa0DQBADAHIIg0MnJiUzT1MHBwaqzs3Fc11U+n48XUp7HXV8D1p4DAKzEXS8ntexloFzX1f7+vkzT1MuXL5ea9lS/3r7j810vPUnLshJrAc7jrq8BPU0AAMzB930ZhiFJ8X8xm93d3YWOv+trQNAEAACQAkETAAAD+sfbuK6rRqOhw8PDeLvneWq322o2mwuNybmPWq2WdnZ2VC6X5XmeCoWCCoVCPGB7Z2dHrVYr3j96f7CO1/EaEDQBADAgGm/TbrdlWZZKpZKCIJDneZKkXC4XBwOlUmnFuV0vxWJRpVJJ2WxWuVxO1WpVhmHIMAxZliXbtlUsFuP9Ly4uRtbxOl4DgiYAAEbY3d3V/v5+/NowDPV6vRXmaHOUy2WdnZ1JetuT5Pt+3KN0dHSU2HdSHa/bNSBoAgAAS2WapiTFvULHx8c6Pz9XEAQbPWieKQcAAMDSlctlnZycqNPpKAgCHRwc6PT0dNXZWghBEwAAAzzPi28vWZYl3/fleZ4cx5FpmgqCQGdnZ8pkMjJNMzFGB28dHR2p0+lIentbbbCe0tbxtO13eQ22wjAMb/0sG+jm5kbb29u6vr7W48ePl57+XU/qtizLnhwOwP33pz/9Sa9evdKTJ0/0k5/8ZNXZwQMxqd3N+xvPmCYAAIAUCJoAAABSIGgCAABIgaAJAAAgBYImAACAFAiaAAB3goe1cZduo70RNAEAbtW7774rSfrhhx9WnBM8JFF7i9rfMjC5JQDgVr3zzjsyDEPfffedJOm9997T1tbWinOF+yoMQ/3www/67rvvZBiG3nnnnaWlTdAEALh1P/vZzyQpDpyA22YYRtzuloWgCQBw67a2tvTzn/9c77//vv785z+vOju45959992l9jBFCJoAAHfmnXfeuZUfM+AuMBAcAAAgBYImAACAFAiaAAAAUiBoAgAASIGgCQAAIAWCJgAAgBQImgAAAFIgaAIAAEhhZZNb+r6vVqsl0zTl+75KpZIMw5hrX8/zdHJyok6nkzjO8zxJUi6Xk+/7CoJAuVzutooEAADusZUFTYeHh3GQ4/u+Tk5O1Gw2Z943CqaiAKmf4zhqNBqSJMuyxqYPAAAwzUqCJt/3E69N05TrunPtWywWx54nn8/r6upKksb2YgEAAKSxkjFNrusqk8kk3stkMiN7i2bZdxTDMAiYAADAwlbS0xQEwcj3e73eQvuOOrbVakmSLi4uVC6XZZpm6nwCAABEVjamaZRxAdK8+/YPGDdNU4VCQd1ud+S+b9680Zs3b+LXNzc3qfMCAADuv5XcnjMMY6inqNfrjbyNNsu+g/rHQ0VP3g2OkYrUajVtb2/H/z744IPpBQEAAA/GSoImy7JGvr+3t7fQvv08z9PBwcHQ+4PjoyKnp6e6vr6O/3377bcT0wcAAA/LSm7PDY4r8n1fe3t7ce+R53kyDEOmaU7dt18QBInbcbZtx9tc11WxWBzbQ/Xo0SM9evRo7jIBAID7bWVjmprNpqrVqvb393VxcZGYQ6lWq2l/f1+VSmXqvq7rqt1uJ46LgqO9vT3V63UZhqFut8s8TQAAYG5bYRiGq87EOrq5udH29raur6/1+PHjpaf/4bPfLT3Nu/DN839cdRYAAFjIvL/xrD0HAACQAkETAABACgRNAAAAKRA0AQAApEDQBAAAkAJBEwAAQAoETQAAACkQNAEAAKRA0AQAAJDCzMuofPPNN2o2m2q327q6uorfz2QyKhQKKhaL+vDDD5eZRwAAgJWbKWh69uyZtra2dHR0pH/7t38b2v7111/rs88+09bWlmq12tIyCQAAsGqpg6ZPP/1Up6en2t7eHrvP06dP9fTpU11fX+v09JTACQAA3Bupg6ZRPUvjbG9vEzABAIB7Ze6B4M+ePdPnn3+u6+tr/f3f/72Oj4/15ZdfLjNvAAAAa2PuoGl/f18ff/yxGo2G8vm8zs7O9Pr162XmDQAAYG3MHTTt7OxIks7Pz3V8fCzp7RN0AAAA99HMUw5Eut2uwjBUt9vV3/3d3+nVq1eJKQgAAADuk7l7mo6OjuR5njqdjq6vr+U4joIgWGLWAAAA1keqnqbr62tdXV0lJq3c3t5OPFH3/PnzxDE3NzeSpMePHy8hmwAAAKuVqqdpe3tb7XY79dNxX3zxhc7PzwmYAADAvZF6TNPJyYm+/vprHR0dKZvNan9/X6ZpyjAMBUEg3/f1+9//Xq9evVK5XNZHH310m/kGAAC4UzMNBH/69KnOz891fX2t8/Nz/f73v1cQBDIMQ9lsVuVyWU+ePLmtvAIAAKzMXE/PbW9v6+TkZNl5AQAAWFtzPz0HAADwkBA0AQAApEDQBAAAkAJBEwAAQAoLBU2ffvppvO7cy5cv4wktAQAA7pu5g6Znz57JMAxZliVJOjg4kOu6S8sYAADAOpk7aNrf39fJyYlM01xmfgAAANbS3EHTq1evJElbW1vxexcXF4vnCAAAYA3NNbml9HZ28L29Pe3u7qrdbst1Xdm2vcy8AQAArI25e5oODg7UbDb19OlThWGoRqOhX/7yl8vMGwAAwNqYu6dJkp48eaLnz5/Hr29ubvT48eOFMwUAALBuFppy4ObmRt988038r1qtLitfAAAAa2XunqZ/+qd/kuu6Mgwjfu/Vq1f693//92XkCwAAYK3MHTRls1l99tlnifdevHixcIYAAADW0dy356JJLfsVCoWFMgMAALCu5u5p2tnZ0W9/+1uZpinDMBQEgc7OznR2drbM/AEAAKyFuYOmSqWiIAgSY5q+/vrrZeQJAABg7cwdNBUKBZ2cnCTe++KLLxbOEAAAwDqae0xTNptN9R4AAMB9MHdPU7fbleM42t/flySFYajz83PWnwMAAPfS3D1NjuPoyZMnCsNQYRhKUvxfAACA+2bunibbtnVwcJB4b9Q0BAAAAPfBQgv2DtrZ2VkoMwAAAOsqdU/Tl19+Kcuy4gV5P//888T2IAjUbrf1H//xH8vNIQAAwBpI3dP0m9/8RpeXl/Hrzz77TFdXV/G/MAz1+vXrW8kkAADAqqXuaeoPmKS368w9ffo08d4sY5p831er1ZJpmvJ9X6VSKTFR5iz7ep6nk5MTdTqduc8BAAAwyULLqESur6/luq7y+Xzq4w8PD+Mgx/d9nZycqNlszrxvFBR5nrfQOQAAACaZeyC467rx/29vb+ujjz5KvDeJ7/uJ16Zpjj122r7FYlG5XG6hcwAAAEwzU0/T9fW1zs/PtbW1pXa7PbS90+no448/npqO67rKZDKJ9zKZjDzPGwqAZtl3GccBAACMMlPQtL29LcuyZNu2ut2unjx5ktheqVRSpRMEwcj3e73eQvsuctybN2/05s2b+PXNzc3E9AEAwMMy85imJ0+e6LPPPtPLly9HztW0iHGBzqL7pjmuVqvpk08+mStNAABw/y11csu0DMMY6vHp9Xojn2ybZd9Fjjs9PdX19XX879tvv51aDgAA8HDMHTQtYtzUBHt7ewvtu8hxjx490uPHjxP/AAAAIisJmkzTTLz2fV97e3txL5DnefHTb9P27dd/622W4wAAAKaZe56mRTWbTVWrVe3v7+vi4iIxf1KtVtP+/n48sHzSvq7rxk/yRccVi8WpxwEAAMxiKwzDcFmJffPNN/rwww+XldxK3dzcaHt7W9fX17dyq+7DZ79bepp34Zvn/7jqLAAAsJB5f+MX6mn6wx/+kBhs7TiOzs7OFkkSAABgLc0dNB0dHSkIgsQYoa+//noZeQIAAFg7cwdNhUJBJycnife++OKLhTMEAACwjuZ+ei6bzaZ6DwAA4D6Yu6ep2+3KcRzt7+9LksIw1Pn5uS4uLpaWOQAAgHUxd0+T4zh68uSJwjBU9ADeEh/EAwAAWCtz9zTZtj20lMq4WbgBAAA23dLWnvvqq6/06tWrhTMEAACwjhaap+nLL7+MlzsJw1CXl5f61a9+tZSMAQAArJO5g6Znz54pCAL1ej2ZpqkgCFQul5eZNwAAgLUxd9CUzWZ1cnKiV69eaWtrSx9++KG++uqrZeYNAABgbcw9psk0Tf33f/+3njx5olartcw8AQAArJ25e5qCIJBpmrq6utL//u//6h/+4R9kGIZ++ctfLjN/ADYMi1EDuK/mDpo++ugj/fjjj5Kk58+f6+XLl9rb21taxgAAANbJ3LfnJOnTTz/V8fFx/Hpra2vhDAEAAKyjuYOmZ8+eyTCMeELLg4MDua67tIwBAACsk7mDpv39fZ2cnMg0zWXmBwAAYC3NHTRFs3/335JjsV4AAHBfzT0Q/OnTp9rb29Pu7q7a7bZc15Vt28vMGwAAwNpYaO25ZrOpp0+fKgxDNRoNphsAAAD31kJrzz158kTPnz9fVl4AAADWVuqg6be//a3+9V//deI+n3/+uT7++OOFMwUAwDpi8taHLXXQ9Jvf/EbtdnviPpeXlwRNAADgXkodNB0cHGh3d1f5fH7sPmEYLiVTAAAA6yZ10NRsNnV9fa3Ly0tJb+dpevz4cWKfTCaz3NwBAACsiZkGgm9vb+vg4ECS9PXXX6vX62lrayt+au6jjz5afg4BAADWwELzNEW++uortdttFQoFph0AAAD30kIL9v7hD3/QP//zP6tYLKrdbsv3/WXlCwAAYK3M3NP0zTffqNlsynEcbW1t6aOPPlKn09GTJ09uI38AAABrIXVP0+eff679/X3l83n5vq9ms6n/+q//0vPnz+OA6csvv7y1jAIAAKxS6p6mUqmkYrGoZ8+eyTAMXV1d6auvvoq3X11d6fnz5/rVr351KxkFAABYpZmCpnq9PnEuprOzs6VkCgAAYN2kDprK5fLQvEyDTk9PF84QAADAOko9pql/ioFF9gEAANhEC005AAAA8FAQNAEAAKRA0AQAAJACQRMAAEAKBE0AAAApEDQBAACkQNAEAACQAkETAABACgRNAAAAKRA0AQAApEDQBAAAkAJBEwAAQAoETQAAACkQNAEAAKTw16s6se/7arVaMk1Tvu+rVCrJMIyZ9520zfM8SVIul5Pv+wqCQLlc7g5KBwAA7puVBU2Hh4fqdDqS3gY+JycnajabM+87aZvjOGo0GpIky7LGpg8AADDNSoIm3/cTr03TlOu6M+87LZ18Pq+rqytJGtuLBQAAkMZKxjS5rqtMJpN4L5PJxLfT0u6bJh3DMAiYAADAwlbS0xQEwcj3e73eTPtOSycIArVaLUnSxcWFyuWyTNMcecybN2/05s2b+PXNzc2Y3AMAgIdoZWOaRhkXBM26b7Stf1C4aZoqFArqdrsjj6nVavrkk09Snx8AADwsK7k9ZxjGUK9Sr9cbeRtt0r7T0ukf8xQ9XTc4Dipyenqq6+vr+N+33347R8kAAMB9tZKgybKske/v7e3NtO+kbZ7n6eDgYGjb4BioyKNHj/T48ePEPwAAgMhKbs8NjivyfV97e3uJ+ZUMw5BpmhP3HeyZ6t9mmqZs2463ua6rYrHIoHAAADCXlY1pajabqlar2t/f18XFRWIOpVqtpv39fVUqlan7jttmGIb29vZUr9dlGIa63S7zNAEAgLlthWEYrjoT6+jm5kbb29u6vr6+lVt1Hz773dLTvAvfPP/HVWcBa462jfuM9n0/zPsbz9pzAAAAKRA0AQAApEDQBAAAkAJBEwAAQAoETQAAACkQNAEAAKRA0AQAAJACQRMAAEAKBE0AAAApEDQBAACkQNAEAACQAkETAABACgRNAAAAKRA0AQAApEDQBAAAkAJBEwAAQAoETQAAACkQNAEAAKRA0AQAAJACQRMAAEAKBE0AAAApEDQBAACkQNAEAACQAkETAABACn+96gwAAIBb9uvtVedgPr++XnUOEuhpAgAASIGgCQAAIAVuz2E2m9jFu2bduwCAzURPEwAAQAoETQAAACkQNAEAAKRA0AQAAJACQRMAAEAKBE0AAAApEDQBAACkQNAEAACQAkETAABACgRNAAAAKRA0AQAApEDQBAAAkAJBEwAAQAp/veoMAMBa+PX2qnMwn19frzoHwINBTxMAAEAKBE0AAAApEDQBAACkQNAEAACQAkETAABACgRNAAAAKaxsygHf99VqtWSapnzfV6lUkmEYM+877zYAAIBZrCxoOjw8VKfTkfQ2uDk5OVGz2Zx533m3AQAAzGIlt+d830+8Nk1TruvOvO+82wAAAGa1kqDJdV1lMpnEe5lMRp7nzbTvvNsAAABmtZLbc0EQjHy/1+vNtO+820Z58+aN3rx5E7++vn67NMHNzc3I/Rf1lzc/3Eq6t+1mK1x1FmZ3S9cQo9G27xjt+07Rvu/YLbXv6Lc9DGerl7Vae25coDPrvvNsq9Vq+uSTT4be/+CDD1Ln6SHYyNW5nm9krnHHNraV0L6Rwsa2kltu399//722t9OfYyVBk2EYQz0+vV5v5JNtk/add9sop6en+pd/+Zf49V/+8hf1ej3t7u5qa2trhtJhVjc3N/rggw/07bff6vHjx6vODrBUtG/cZ5vavsMw1Pfff69f/OIXMx23kqDJsiw5jjP0/t7e3kz7mqY517ZRHj16pEePHiXeY3qCu/X48eON+tABs6B94z7bxPY9Sw9TZCVBk2maide+72tvby8OUjzPk2EYMk1z4r6DQU3abQAAALNa2ZimZrOparWq/f19XVxcJOZPqtVq2t/fV6VSmbrvvNsAAABmsRXOOnQcWLI3b96oVqvp9PR06BYpsOlo37jPHlr7JmgCAABIgQV7AQAAUiBoAgAASIGgacN5nqdyuaytrS1Vq1U1Gg1Vq1UdHh4uda29RqOhnZ2djV6GJp/Pq9Vqxa8bjYYKhcJcx2K8qA02Gg21Wi25rqtGozG0HuQ6cV1X+XxejUbjTs63Se2Jz83tcV038f09z3f2XX43r+p3YK3aYIiNd3V1FUoKr66uht7rdDpLO49lWUtLrz+vd6XdbifO2+12w3a7PdexGM2yrNBxnMR7nU4nlBR2u90V5SqdSqUylPfbskntic/N7ep2u0Pf37Na5nfzOp0rsk5tcK2WUcHyRPNcnZ2dKZfLrTo7Cb7vy3VdlUqlOz2vZVmJ16PmAUt7LIbV63VJGrquuVzuzq/1PHZ3d+/sXJvUnvjc3K7BheUxbJ3aILfn7rFer6dsNrvqbAyxbXvVWcAtqNVqKpfLI7cdHh7ecW4AYPkImu6hIAhUrVZlWZZKpZJc11U2m1Wj0VCj0VA+n5f0djxUvV5Xq9VSvV4fGnPieZ6q1aparZZarVZiLb9oDEjUu9BqtZTNZhP35H3fj49vNBoKgkCu6+ry8lLtdnviOBfXdeO8VavVRJ7K5XKcp1arJc/zpubH87zEmJUgCFQulxNB5bj6GDy2f/xLNF7noQcFvu8rCIKxf/1ZlhVvG1fP4+rV9/34mP6gLGrXUXtoNBoql8vxotzj2v24tiUpbqOjrumo46a1hSAI4m3RcYPtaZ46GYfPzeZLU0+TvpujNAbbQavVUj6fj69dvV5XNpuNr/2ktjPpXKPyf6/b4NJu9GFlovFLtm2HzWYzbDabQ+NHSqVSWCqVwjAM4+2WZSX2yeVy8b3fq6ur0DTNoe3997Jt2w5t245fF4vF+D5zdHyUXqVSifedNnak2+2GuVwufu04Tmjbdnh1dRUahpG4P20YRpynSfmJtg+e1zCM+JyT6mPw2EqlEhaLxfj1Ku7zr5NoXMa0OphWz6Pqtf+a9repaP/+7c1mM5H+qHY/qm2F4dtrPO6aTjpuUluwbTvRBqM21N+e5qmTUfXM52YzjRqTOqmepn03T2qrV1dX8fVxHCc+56S2M+13oN9DaIOMabpHSqXS2LX1DMOIx2wUi0VVq9WhsU6maer8/FylUknn5+dD22e5935+fi7TNOP8nJ6epj7WcRxlMplEr9XFxYUMw5BlWYkyjluAeVaO40ysj0G7u7uJMTCGYUz9C+w+i3qRfN8fOYbO931lMpmp9TyqXvt7r6J67m8D/f9fLBZ1eHioIAjiNSgH2/2othXZ398fOpc0vk1Kk9tCsVhUPp+XaZo6Pj4e2ZbmqZNRbY3Pzf0xqZ6mfTdPaquGYejFixfK5/NqNptxm5jUdmb5HXgIbZCg6QFJO3BuGaIfrci4YG5wv0gul0sM4CuVSnf2ODjmU6lU5DiOisXi0DbP80a+n8aii2wPtvtRbSuNeY7LZDK6urqS53k6OzvT4eGh2u12ypzPjs8NpMltNQqEBh8SWlbbue9tkDFN98i0aLl/+/Hx8dCcIJ7n6ejoSNLbMSiDc3EMjj8yDEOvX7+OX7uuG48nKRaLQ8ePmoNk1Huj8ua6ro6OjibmaVJ+IoOvJ52zvz4mHYu3ogH+g1+Q/fWWpp4HTav3/u2tVmvoL9pp7T7N3DjzHler1eLeN9u2E/mK8j1PncySRz43623WnrZp382T2mo0Zq/ZbMr3/Xj+onHHpPkd6PcQ2iA9TRsu+gtWevujVS6Xh7oqXdeV67ryPE+macqyrPhLvF6vyzRNXVxcJLprTdNUs9lUtVpVoVCIe4RqtZps25Zpmjo6OkpMyGZZVtxVapqmHMdRtVqNb3lEf32Uy2XZtq1GozHycdAob4PHGoYxMk+RSfkJgkBnZ2fKZDIqFosjex/G1UdUx9GxUVrROaKByo7jzPQo7H3UbrdVr9dVrVaVzWbjrvyolylNPUvJeo2Oc11Xvu/Ltu1EANLtduMv2Sg9aXK7H2xb484dXdN5j9vd3ZXruspkMur1ejo+Ph5qT/PUyai2xudm80QBjPQ2wD4+PpakqfU06bt5XDtoNBrxb4T09lb0ycmJfN9XpVKZqe30/w70ewhtkAV7sdEKhUL8RTGPnZ0dXV1dLTlXuCtRcLYJ80CtEz43WLVNbYP0NGGjzTOItNFoqNvtqlwuL20wIrBJ+Nxg1Ta1DTKmCRsrmufJcZyZ7llblqXd3V21Wi05jnN7GcStim6/NZvNjV4T8a7xucGqbXIb5PYcAABACvQ0AQAApEDQBAAAkAJBEwAAQAoETQAAACkQNAFYa9Hq6FtbW6pWq2o0GqrX6/F7dz3jdD6fj2dSBvCw8PQcgLXn+76y2ayurq4SMwk3Gg3t7e3NPUFeGoOzF7uuq729vYXXxAOweehpArD2xq2sfnR0NNckeWn5vq/z8/PEe4Nr2wF4OAiaAGwcz/PiHqDbXLMsWoQYACSCJgAbKFp0U3rbG5TP51Wv1yVJrVZL2Ww2XvzTdV3l83k1Gg25rqtGo6HDw8NEer7vq1qtqtVqqdFoxKvBX15eqt1uxzMYe54XpxXxPE/1el2tVkv1ej1evT3NeQFsFtaeA7AxomDFdV2dnp5Kenu7LFodXpKKxWIiqLIsS5Zlqd1uxyvKR0uvRKuoFwoFdTodGYYRDzavVCqyLGtoQeD+c0XBVrvdjt/L5/N6+fLl1PMC2DwETQA2RqlUkmEYMwcdu7u72t3djV8bhhGPhTo/P5dpmvE4pSgYS8NxnKG8mKap8/NzlUqliecFsHkImgBsHMuylpbW4NNx4wZ5D+4H4OFhTBOAtTetd8YwDL1+/Tp+7bpu6vmbisWiPM9LvBeNhxr3XpT28fHx0L6e5+no6CjVuQFsFnqaAKw1z/PkOI4kqVqtqlAoqFgsJvY5OjpStVqNAxjLsuJbZ0EQxGOcLMuKB3Q7jiPTNGWaphzHUbVa1f7+fryfJJXLZdm2rUajIcuy5Hmezs7OlMlkVCwWlcvlZNu26vW6TNPUxcWFms2mDMOI9510XgCbhcktAQAAUuD2HAAAQAoETQAAACkQNAEAAKRA0AQAAJACQRMAAEAKBE0AAAApEDQBAACkQNAEAACQAkETAABACgRNAAAAKRA0AQAApEDQBAAAkML/AwAA7dQ1qDTZAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFoCAYAAABKc89AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9nUlEQVR4nO3dX2/j2H3/8Y83fyZYIGNaboM26AQ7dB9Ah5KeQEy3F7nLyjbwu46l9DZApfFd9yYaanPfpWafgC1m73JRiLsPILa4eQLibLFAWrRdiXaAIm66q9/FgIyov5QsW/7zfgGDXYmHh4eHR9LXh4fnbAwGg4EAAAAw0zvrLgAAAMB9QNAEAACQAUETAABABgRNAAAAGRA0AQAAZEDQBAAAkAFBEwAAQAYETQAAABkQND1iYRiqVqtpa2tLOzs7M9Pu7Oxoa2tLtVpNURTdTgHxKHiet+4i3Ir487axsaGdnR01Gg01Gg1VKhXt7+8/mnq4rkqloq2tLfm+PzdtFEWq1WpqNpvyPE/NZnMsje/7qlQqqlQq17oGD/X6NptN5fP5dRfj7hjg0XMcZ2AYxqDT6Uzc3m63B6VSaVAul2+5ZJO5rjv2XrVaHZRKpTWU5q1JZXqoVnmurVZr7L1+vz+zPU6y7uu/CNu2J36WTNMcOI6zhhIt5i60dcuyBu12e2460zQH3W43eW0YRur1YDAYSBr0+/1Bu91O8rzOOd7n6zvpvLvd7qBarS70eXzI6GmCDMPQwcGBXNeduP2u9Sy12+2x9/b29nR4eLiG0rw1qUwP1SrP1TCMie+Vy2WZppk5n3Vf/1WoVCqq1WrrLsZc96WtB0EgwzBS7ajVaqVeB0Eg0zRlGIZs25Zt25Ju5hzvw/WddN6maapSqUz8rD5GBE2Q9PYDfXp6OvZ+FEUL/XjdtGazqTAMx963bVulUmkNJZpepodo1ecaBIEajcbY+47jLPQlvc7rvyrx+d61P1KG3ae23uv1lMvlUu/FQdGw0XZ2U+d416/vrPOOg0tI3153AXA3WJalXC4nz/NSPz7n5+cTv2hijUZDpmkqDEOZppnsG0WRms2mTNNUu91WpVKRZVmS3o4hiP/iev36tcIwVBiG+uqrr+Q4ztRj+b6vdrutMAyTH9pqtaogCFSr1RSGobrd7tRj9Ho9dTodua6rZrOpXC6nk5MTHR8fJ2Wbd15ZyzSaj/R2zMPwtlkmHb/ZbMp1XQVBoFarpVKplAS7BwcHqUBjVvlHx3WUy+WJdRiPBXEcR+VyOfO5zquzYYZhyHGcVD7xOb1+/TqVx7S6zHr9s7SxWcdZJM9l6qLT6ciyrNSP+KR84nLEPQBx70BchknXN0t+885r3vWfZFXfA41GQ4ZhjAVB0/i+L9d1U2Xtdrs6PT1Vq9WSbdsKgiCVJu5xmnSOnuepXq8rDMNk/zAMtbe3J9M05bru3KBi9Prel2sbRRG9TMPWfX8Q6xffx540LiQeczJpTFOpVEqNSbFtO7nvXa1WU2MHTNMc9Pv95HW73R6Yppkal2Ca5tz75u12e2BZ1tj7nU5nYJrmWNpJx6hWq6nzG81v1nktUqZSqZQ6drfbHdi2PePssh1/eLyP67pjZZu1v+M4Y+cfp43ra5ht26lxDrPOdZE6m8e27VR+8+pykes/q1zzjpMlz3l1MTrmpd/vDxzHGViWlfqMzMonbrftdnvQ6XSSazrr+s7KL2tdTbv+06zie6BarabaYL/fH0iaO6ZpUllHx0JNazeTznHS52PSGKUs1/chXNvHiqAJyRdSt9tNBkXGr+MvvNGgKU47mk+cplQqpb7oRn8EO53O2P6jaSZZJGiadozhL55utzswDCPzeWUtU6fTSeUbmzeANcvx4y/Bbrc7Vl+z9o9/bEZ/mOMv/kl1OHodJ53rMnU2z/CPQJa6XOT6T2tjWY8zK88sdWHb9sCyrIHrusm/0R+wefm02+2x7bOu77z8stbVoj+s1/0eiM9pVJaB4KsOmgaDwdgDCpPa0rzr+1Cu7WPF7TkkTNOUZVk6PT1NbtnMui1lGEbqsd9ut5vcE2+1WpLedu3Gt8Z6vd7Y8YYZhjGW5romHWPW9Arzziur8/Pzid318W2Kabc8sxw/HrC6v7+vTqeTef/z83MZhpHqao+v03Wsqs6mWbYu4zTDZrWxrMeZlWfWuigUCqlbK6Oy5DNajlnXt9lsLpzfKj6P1/0eiOvhriiXyzo5OZFlWfJ9f2rbm3V9H8q1fawImpBSqVTkuq7K5fLML6t4gPjwl8bw/wdBoHq9rr29PR0cHNzYIML4/v2qzDuvrGVadrBn1uPn83n5vq8gCFLjsWbtv8w8MfPOIz7X69bZdcpwl46zqrrIks/o53NW+W/qGs37/K3ieyDrOKabMnyOh4eH2t3dleM4CsPwUV/bx4qn55BycHCgIAjkeZ4KhcLUdJZlTexJiKJIURRpd3dXx8fHSfAVf+hX/VRKEAQrzW/WeWUVBEEyUHRUGIYqFovXOn78Zea6rvb39zPvb1nWxPOYdW7z/hqNg7br1tksy9blOo6zqrpYJp9Z1/emrtGsz98qvgemlfs2DZ/j8AMzywZzD+HaPmYETUieOJKUzFdycnIys6fJtm0VCoWx3ovT09Ok92G4ByT+8Z33JTtP/HSI9PaLd/Spt3nmHWPWeS1SJsuyZNt2qss8PvdZT1JlOb7rusktOtu2ValUMu0fP1Ez/Ih/FEVJ3sPnEW8b7TWbdK7L1Nkilq3LSeb9MC1znOE8V1UXy7bDadd3mfwm1dUin79VfA+YpqlyuZx6aiyKIgVBcGM9kPPOsVKp6OjoaOkpLh7CtX3U1j2oCuvT7XYH5XJ5IGlQLpeTQd/DT2XET34YhpHMaDs8GDF+smV4n/j9arWazLLb7XaTwb2dTmdQKpUGkpJByPExLMuaOxg8zjseYDopv1nHsG07eTIlTlOtVjOdV9Yyjebjum5qAHqW/EaP7zjOwDTN1MDVuPzlcnniE0eTyl+tVgeO4wxardZYeR3HSba1Wq1BqVQamKY58dpOO9esdTbL6NNAw/mP1uWi139eG1vkONPynFQX3W535mdpVllGn3K0bXtgGEYyEHh0n2nXd1J+i9bVtOs/rfyr+B6IzyfOx7KsmYPBR+toOO9pn//Rz8+0c4zPYdL7i1zf+35tH6uNwWAwWEu0BgBT7O/v6/Dw8N5PWImHJ4qiufPX4eHi9hyAOyG+HRj//116agqP2/DtrPiWGB4ngiYAd0K9Xk/GZ4VhOPNBBOA2xbPjS+t/mg/rxe05AHdCGIbyPC9ZLoNbc7grgiDQ+fm5JM2cXwsPH0ETAABABtyeA1bA933l83nt7e2tuyiZBUGgvb29mTOkI5u4LvP5/ErzrVQq2traSk2DcNtu6tweKj5XDxtBE7ACtm3r+Pj4Xi1NYFlWsgL6TRhdkV16OzZkdELO+2j03OK6XPXcQa7r3tiszNOuxarPLYoiNZvNqX9QNBoNNZtNNZvN1DxEq9o+zaT2uQo3/bnCehE0AStyH5/2uslBre12e+y9vb09HR4e3tgxb8ukc7tvA4SnXYtVnlsQBDo9PVUURRP/oIiDnHK5rHK5LMuyUpO1Xnf7LJPOc1XuW1tAdqw9B2Dlms3mxKUdHsKj2tPO7b6ZdC1WfW7x7PjT1j2s1+t68+ZNqkx7e3tyXXcl26d5KNcQt4+eJtxZjUYj6Xr3PE9BECRjOyaNG6jVatra2hrrdm80GvI8L/mv9OcxSPv7+/J9X7VaTbVaTZ7nKZ/Pp8aRhGGonZ0d7e3tZfqi9TxPnuelbhdcN99J55AlzyiKkn0qlcrc9aSy1uusfH3fV7vdVhiGyTWclvfo+cXnOJxXPp9XPp9P1kRsNBqZbn9M2rfZbCY9EXG72t/fn1gv09rNpHMbrcNZ5Zx2rsPb47JlXWTZ8zzt7OxoZ2dHvu+r2WxqZ2dH+Xw+aQf5fF47OzsKgmDitVjFuS0iLtekHlrf96+9fZpF2udo2x8euzh8SzBrXUxqU9Lbtuj7frLtpm4dYgXWOR05ME25XB6Uy+XkdbfbHVs2od1up5YUGQwGA9u2U0sAjC7HYdt2slxCq9VK8ux0OsmSGZPyjZcgmKXdbg8kpZZOcF03OY9l8511DvPyrFarqaUYTNNMla/T6Yztn6Ve5+UbL3UxatLxSqVS6rp2u92Bbdtj5RlOY5pmatmLaabtO7w8StwORss0q86nnZthGDPLOe9cR5ew6Pf7A0lTlwsZ5rpuKi/HccbOc/iaTbv2y57bLJPqOP68jDIMI1ky5TrbZ5l2nlnafqvVGkhK1WW1Wk19X01r55Pa1OiSKN1ul2VM7jB6mnDnxANHHcdJ3jNNc2wg6qRxA8N/dcbz/gzP97O/v5903RuGoSAIZNu2LMtKjmfbtnq9Xqr3IetgXMuyUmWIFxsNw3CpfOedw6Q8R+tg+K9u0zTnPok1r16XzXeSuPdw+FaRaZrq9XpJfrlcLqm/4TRZev2m7TtsdJX4eXU+SxRFU8s571zj3rvheYAMw8i8cOrBwcHYNRjuzej1etcaVD7r3FYpl8vNfKDiutvnHXvUaNuPr8lwXR4fH8+85TevTbVareT7zTRNJna9wxjThDvH930ZhjHxy2qZfIZ/SLrdbuqLbdqPSLlc1snJiSzLGvuhW5RpmgqCIFmxfZF8s5xDuVyW67pyXVe+7+vg4CDZ1mq1JP15iZJer7eSJ/xWle/5+fnEa2CaptrtdlI/o2kMw8h8vEn7znocPEudL3KsuJzzzvW6S8fEP+bxj3OcVxiGK3kC7zrXYBHz8rzu9psQf1/Fn/NRs9pUqVSS67ra2tqSZVk6PDxUtVq9zeJjAQRNeFCGe6OiKJJpmqnAZDRImfYjdXh4qN3dXTmOM9ZTsajhL/FF881yDpVKRfl8Xq7rjuUZBIHq9br29vZ0cHCw9I/naC/fovlO++Fe9SP6q5ClzodlDUqynOt1n7o6PDxMgvJCoaBKpSLP82Tb9lJteFUB1yTT8o3r/7rbFzHrPFfRRue1qXa7nfRExr1PBE53E7fncOdYlqUoipb6shoOUEZvu8Sy5GtZlnK5nDzPu/YPWRRFyS2WRfPNcg6maU7MM4oi7e7u6vj4WOVyWYZhJPsteltluF6XyXfaAHTbtifuE4ahisXiQmVclUXbzbzB9bF55zrtuIsolUryPE++78uyrKQXY1ov1zxZz20ZpmnKMIypT1led/siZp1nlp6r+Ptq2q3UWW0qHvRtWZaq1ao6nY5OTk4ylhy3jaAJd058G2v4CZIwDMe+dEbHVMS3iuIfN9u2VSgUxp5AOj09zVSOSqWio6OjhdZAGz6+9PapmHK5nPrBWiTfrOcQ5zn8YxGXZfiLPP4BmPUjMa9es+Q7nEcYhjN/TGzbTt22iPOYVT/X+et/3r7z6jzruY0ea965Tmr3URQpCILM52uapizLUrfbTV6PlmPe/suc2zzTAo/j4+NUfXielxrTdd3t00w7z3ltPzZ6Ter1+tjnfNisNjUcOA2XD3fUukeiA9PETxK12+3kaZfRp4gcxxk4jjNotVqDVqs1KJVKA9M0U0+pxPnEaQaDt0/J2LY9MAxj4DhO6kmYWLfbHZRKpczl7XQ6g3a7nRzHdd2JT8ctmu+0cxjW7/dTT+8M71etVpM6jI/darUGnU5nUCqVBpJST1kNBvPrdVa+o8eOnwQaPt5ovcTpXNdNlWXSPo7jDAzDGFiWNfMpqVn72radPDU5XAfDTwDOqvMs5zatnNPOdbju46fD4nY/qe1P4zhO6qm2Se173rVY9txGdbvdgeM4A8uykjoeTT/czmbVx7Lbpxk9z+H8ZrX9+JrE1yhOH5v1uZrUpuK2EL/nOE6qHeJuYcFe3Bv5fF6O49zaBIlRFOn8/Hzlx7upfAHcvHhet06ns+6iYA24PQcMGe5yPz09XVlgc1P5AgBuD0ETMKRWqyXjC1a5ftRN5QsAuD0ETbgXGo2GgiCQ4zhLTaKY1fASG4sMAF9XvgBuj+/7chxHQRBMXGYGDx9jmgAAADKgpwkAACADgiYAAIAMCJoAAAAyYO25JXzzzTf6/e9/r+9///va2NhYd3EAAEBGg8FAf/jDH/TDH/5Q77yzWN8RQdMSfv/73+vZs2frLgYAAFjSl19+qb/5m79ZaB+CpiV8//vfl/S2wp8+fbrm0gAAgKwuLy/17Nmz5Ld8EQRNS4hvyT19+pSgCQCAe2iZ4TVrC5rCMJTnecmq0uVyWYZhLJw2CIJkssOzszO9fv062TZrv0WODwAAoHWtFGxZVvL/81Z9n5V2eHXpeDXtLPstcvxRFxcXA0mDi4uLzPsAAID1u85v+FqmHAjDMPXaNM2pS2PMShsEger1erKtVCopCAKFYThzv0WODwAAIK3p9pzv+2OLluZyOQVBIMuyFkr7+vXr5P14JflcLqfT09Op+52fn2c+PgBgNb7++mv96U9/Wncx8Ah897vfXXg6gSzWEjTFwc2oXq+3cNrhxU9PTk5k27YMw5i53yLHl6SrqytdXV0lry8vLyemAwCMGwwG+o//+I+p373Aqr3zzjt6/vy5vvvd76403zv19NwiH6jRtFEUyfM8dTqdpY8xbVu9XtcHH3yQuWwAgD+LA6Yf/OAHevfdd5kUGDcqnoD63//93/WjH/1ope1tLUGTYRhjvTq9Xm/i02tZ09ZqNbXb7eT9WfstcnxJOj4+1i9+8YvkdTzHAwBgtq+//joJmLa3t9ddHDwSf/mXf6nf//73+r//+z995zvfWVm+axkIbtv2xPcLhcJSaRuNhmq1mkzTVBRFiqJo5n6LHF+Snjx5kszJxNxMAJBdPIbp3XffXXNJ8JjEt+W+/vrrlea7lqDJNM3U6zAMVSgUUnMvxU+4zUvreZ4sy0oCptPTUxmGMXO/eXkCAFZr1bfkgiBQpVLRxsaGarWams1m8gf01tbWtZ6I9n1f+XxezWZzhSVOy+fz8jzvxvK/Causl2azqa2tLQVBsIKSjbupW8BrG9PUarVUq9VULBZ1dnamVquVbKvX6yoWi6pWqzPThmGo/f39VL6GYahcLs89xqxt6/Tey9+suwgL++LVT9ZdBACPjGVZSbB0fHyc+qP38PBQ5+fnS+dt27YODw9XUMo/i6IoVUbHcabe3bhLhstt2/bUOzWLKpfLd+Z3dxFrC5pM05TjOJLST8BJGqvIaWlN09RgMFjqGLO2AQDuvtGpY2KWZV0raFq1MAzl+37yB700fejJXTKp3I99XNpabs8BALBqw0M7Dg4O1lyaP4v/QL9v7mu5b9KdmnIAAIBFxWNsTk5OkjsVhmHI8zzVajVZlqVWq6UoipTP52XbtlzXled5MgxDYRiq2+1ODRJ831etVtPh4aGq1WqSr+u6SY/RtLx839f5+XnyxLZt24qiSEdHR6pUKkkvTryOarweaqlUSlarqNVqqlQqybZ2uz311ta09I7jKIoi+b6vbrcr13VT+wRBINM0dXZ2JsdxJpY7Hg8c5zOpLNPOI952cnKiYrEoafrciHcZQRMA4F6btuB6qVRSr9dL5u8zDEO1Wi0JVPb399XtdmXbtiqVijzPmzhcY3SMU6lU0snJSSrNtLzicUA7Ozup21zD+YVhmEybE8vn8/r000+T/YeDk1arNXUFi2npPc9TtVqVZVna2dlJxirFx47rqNfrqdFoqFqtTiy3JJ2dnaXGHMdlmXUew3UUG14G7b4gaAIAPAjDAY/v+7JtW+VyWVtbW3JdV1EUpZ6e7vf7SeDQ6/XG1iVdxHXycl13LAAyTVOnp6cql8va3t5OjSWaNNfgsEnph8873t8wDLmuq1wul3ra8OzsbGZ5456i0bLMOg9JY9umjUm7ywiaAAAPwnBgMBy0HBwcJLfwhntN6vW6tre3U7eQlpU1r9Gn6G7LrGNalpUamD7asyStr9x3DQPBAQD30rTeliiKUktq1Wo1OY6T6tmIx/FUq9Vknr/4/eF8YoZh6KuvvkrtP7zPvLyG9xvN//DwcCxtEAQrHcw+bZmwSceeV+5pZp2HbdtjczJdp2dvXehpAgDcO0EQJIOZ6/W6dnZ2JEndbjeZuylmmuZYb0o8oXH8I7+/vy/XdWWaZjJgWXo7RsiyLB0cHKhWqyXp48HklmXNzEuSKpWKHMdRs9lMgoeTkxPlcjmVSiVZliXHcdRoNJLB2K1WS4ZhjJUlDMPk3E3THOvVmpZeetujFA/gdhxHjuMkx47nLYz3m1XuaWWZdR6GYSTzI+7t7SU9V/V6XY7jXLun77ZsDGZNdISJLi8vtbm5qYuLi5UvqcLklgAekj/+8Y968+aNnj9/ru9973vrLg4eiVnt7jq/4dyeAwAAyICgCQAAIAOCJgAAgAwImgAAADIgaAIAAMiAoAkAACADgiYAAIAMCJoAAAAyIGgCAGBJURSlllTB7brt+idoAgBgCVEU6ejoSKZpand3d93FuVd831c+n08WUl7GOuqftecAAGtxm8tG3cRyT77vq1gsyjRNffrppyvPf6p/3ry9Y0nSP1+sPEvbtlNrAS5jHfVPTxMAAEsIw1CGYUhS8l9kt729fa3911H/BE0AAAAZrC1oCsNQjUZDnuep0WjMHMQ1L20QBMrn82P7eZ6nKIom5h0EgYIgSPKP/x8AgOExN77vq9lsan9/P9keBIHa7bZarda1xuU8NJ7naWtrS5VKRUEQaG9vT3t7e8mA7a2tLXmel6SP3x+t37ta/2sb07S/v69OpyPpbdBydHSkVqu1cFrP82Sa5sSgZ7iCY47jqFqtynXdpKJt2556bADA4xOPuYl/mCWp1WopCAJZliXLsrS3tydJKpfL6yzqnVIqlXR2dqbt7W1ZlqVarSbXdWUYhmzbluM4KpVKSfqzszNVq1VJ6fq9q/W/lqApDMPUa9M05fv+UmmHK39YFEVqtVqp7Y1GI7k4+Xxe/X5fEveiAQDjtre3U+NuDMNQr9dbY4nuh0qlov39fVWrVUVRpDAMFUWRzs/PdXBwkEpbLBaT/x+t37tY/2u5Pef7vnK5XOq9XC43sbdokbSjhgMmz/PGAizDMAiYAABYIdM0JSn5nT48PNTp6amiKLr3v7lr6WmaNn5pUgS5SNphwxcmiiL1er3kQsbvxfdVz87OVKlUUtuHXV1d6erqKnl9eXk589gAADxmlUpFR0dH6nQ6iqJIu7u7Oj4+Xnexru1OzdO0yIyei6St1WpyHCf1XrlcTgIr0zS1t7enbrc7cf96va4PPvgg8/EAAPdbEAQ6OTmR9HZ8U/zAkOu6Mk1TURTp5OREuVxOpmlOHSryWB0cHCRjkQ3DGKujrPU7b/tt1//GYDAY3MqRhjSbTbmum1SoJG1tbanVao1NdpU17cbGhiadShRFyufzYwFRPJgsTrO1taVutzuxt2lST9OzZ890cXGhp0+fLnj2s93mZG+rchOTxgF4GP74xz/qzZs3ev78ub73ve+tuzh4JGa1u8vLS21ubi71G76WMU3TZgEtFArXSjvJ+fn52D3UIAgmTrk+OnYq9uTJEz19+jT1DwAAPC5rCZpGe3PCMFShUEiCmyAIkqfm5qUdNm0+ptFgyDTN1O063/dVKpXu/QA1AABwc9Y2pqnVaqlWq6lYLOrs7Cw1T1K9XlexWEzN3TAtre/7arfbqf1G722OBl6GYahQKKjRaMgwDHW7XeZpAgAAM61lTNN9d537ofMwpgnAQ8KYJqzDgxrTBAAAcN8QNAEAbhw3NXCbbqq9ETQBAG7Md77zHUnS//zP/6y5JHhM/vd//1eS9K1vfWul+d6pyS0BAA/Lt771LRmGof/8z/+UJL377rva2NhYc6nwkH3zzTf6r//6L7377rv69rdXG+YQNAEAbtRf/dVfSVISOAE37Z133tGPfvSjlQfoBE0AgBu1sbGhv/7rv9YPfvAD/elPf1p3cfAIfPe739U776x+BBJBEwDgVnzrW99a+RgT4DYxEBwAACADgiYAAIAMCJoAAAAyIGgCAADIgKAJAAAgA4ImAACADAiaAAAAMiBoAgAAyICgCQAAIAOCJgAAgAwImgAAADIgaAIAAMiAoAkAACADgiYAAIAMvr2uA4dhKM/zZJqmwjBUuVyWYRhLpQ2CQEdHR+p0Oqn9giCQJFmWpTAMFUWRLMta+PgAAABrC5r29/eTICcMQx0dHanVai2cNg584gBpmOu6ajabkiTbtlP5L3J8AACAtQRNYRimXpumKd/3l0pbKpWmHiefz6vf70tSqhdpkeMDAABIaxrT5Pu+crlc6r1cLjext2iRtJMYhjF22+26eQIAgMdnLT1NURRNfL/X610r7aR9Pc+TJJ2dnalSqcg0zYXzvLq60tXVVfL68vJy7rEBAMDDsrYxTZNMC2aWTTs8uNs0Te3t7anb7S6cZ71e1wcffJC5bAAA4OFZy+05wzDGenV6vd7Ep9cWSTtqeOxS/JRcGIYL53l8fKyLi4vk35dffjn32AAA4GFZS9Bk2/bE9wuFwrXSDguCQLu7u2Pv53K5hfN88uSJnj59mvoHAAAel7UETaZppl6HYahCoZD09ARBkPQSzUs7bPj2mmmachwnee37vkqlkgzDWChPAAAAaY1jmlqtlmq1morFos7OzlJzJNXrdRWLRVWr1blpfd9Xu91O7RcHR4VCQY1GQ4ZhqNvtpvablScAAMCojcFgMFh3Ie6by8tLbW5u6uLiYuW36t57+ZuV5ncbvnj1k3UXAQCATK7zG87acwAAABkQNAEAAGRA0AQAAJABQRMAAEAGBE0AAAAZEDQBAABkQNAEAACQAUETAABABgRNAAAAGRA0AQAAZEDQBAAAkAFBEwAAQAYETQAAABl8e9EdvvjiC7VaLbXbbfX7/eT9XC6nvb09lUolvffee6ssIwAAwNotFDS9fPlSGxsbOjg40D/90z+Nbf/888/10UcfaWNjQ/V6fWWFBAAAWLfMQdOHH36o4+NjbW5uTk3z4sULvXjxQhcXFzo+PiZwAgAAD0bmoGlSz9I0m5ubBEwAAOBBWXog+MuXL/Xxxx/r4uJCf//3f6/Dw0N98sknqywbAADAnbF00FQsFvWzn/1MzWZT+XxeJycn+uqrr1ZZNgAAgDtj6aBpa2tLknR6eqrDw0NJb5+gAwAAeIgWnnIg1u12NRgM1O129Xd/93d68+ZNagoCAACAh2TpoOng4EDNZlOdTkcXFxdyXVd/8Rd/kXn/MAzleZ5M01QYhiqXyzIMY6m0QRDo6OhInU4ntV8QBPJ9X5J0dnam169fJ/sFQSBJsixLYRgqiiJZlpW9AgAAwKOSKWi6uLhQv99PTVq5ubmZeqLu1atXqX0uLy8lSU+fPp2Y5/7+fhLkhGGoo6MjtVqthdPGwVQcBA3zfV/ValWS1Gg0tLu7m+Tjuq6azaYkybbtqccGAACQMo5p2tzcVLvdzvx03K9//Wudnp5ODZjCMEy9Nk0z6RFaNG2pVJrYQxQEQWrag1KppCAIkvzy+bz6/b76/b7a7fbUXi4AAABpgdtzR0dH+vzzz3VwcKCdnR0Vi0WZpinDMBRFkcIw1G9/+1u9efNGlUpF77///tS8fN8fGzSey+UUBMFYALRI2mGWZen169fJ6yiKkn1jBEoAACCrhcY0vXjxQqenp7q4uNDp6al++9vfKooiGYahnZ0dVSoVPX/+fG4+cQAzqtfrXSvtqFKplPz/ycmJbNtOAqUoiuR5nqS3450qlYpM05yYz9XVla6urpLX8a1HAADweCw1EHxzc1NHR0erLsvUAGkVaT3PSw0UHx5Mbpqm9vb21O12J+5fr9f1wQcfZD4eAAB4eJaep+k6DMMY6ynq9XoTb5ctknaaWq02Nm5peKxU/FTe6Pip2PHxsS4uLpJ/X375ZeZjAwCAh2EtQZNt2xPfLxQK10o7SaPRUK1Wk2maiqJIURQpCALt7u6OpZ02OeeTJ0/09OnT1D8AAPC4rCVoGh07FIahCoVCag6luNdnXtpho7fsPM+TZVlJwHR6eirDMGSaphzHSdL5vq9SqcTAcAAAMNXSk1teV6vVUq1WU7FY1NnZWWqepHq9rmKxmMyxNCut7/tqt9up/UqlksIw1P7+fuqYhmEkY5kKhYIajYYMw1C322WeJgAAMNPGYDAYLLvzhx9+qPPzc52cnOjTTz9VsVh8FLeuLi8vtbm5qYuLi5Wf73svf7PS/G7DF69+su4iAACQyXV+w5e+Pffy5UsZhpGMOdrd3Z06QSUAAMB9t3TQVCwWdXR0NHVuIwAAgIdk6aDpzZs3kqSNjY3kvbOzs+uXCAAA4A5aeiD4ixcvVCgUtL29rXa7Ld/3U0+kAQAAPCRL9zTt7u6q1WrpxYsXGgwGajab+vGPf7zKsgEAANwZ15py4Pnz53r16lXy+vLy8lE8PQcAAB6fa01ueXl5qS+++CL5V6vVVlUuAACAO2Xpnqaf//zn8n0/NYv2mzdv9C//8i+rKBcAAMCdsnTQtLOzo48++ij13uvXr69dIAAAgLto6dtzkxbS3dvbu1ZhAAAA7qqle5q2trb0q1/9SqZpyjAMRVGkk5MTnZycrLJ8AAAAd8LSQVO1WlUURakxTZ9//vkqygQAAHDnLB007e3t6ejoKPXer3/962sXCAAA4C5aekzTzs5OpvcAAAAegqV7mrrdrlzXVbFYlCQNBgOdnp6y/hwAAHiQlu5pcl1Xz58/12Aw0GAwkKTkvwAAAA/N0j1NjuNod3c39d6kaQgAAAAegmst2Dtqa2vrWoUBAAC4qzL3NH3yySeybTtZkPfjjz9ObY+iSO12W//6r/+62hICAADcAZl7mn75y1/q/Pw8ef3RRx+p3+8n/waDgb766qsbKSQAAMC6Ze5pGg6YpLfrzL148SL13iJjmsIwlOd5Mk1TYRiqXC6nJspcJG0QBDo6OlKn08m83yLHBwAAuNYyKrGLiwv5vq98Pp95//39/STICcNQR0dHarVaC6eNA58gCBbab5HjAwAALD0Q3Pf95P83Nzf1/vvvp96bJQzD1GvTNKfuOy9tqVSSZVkL7bfI8QEAAKQFe5ouLi50enqqjY0Ntdvtse2dTkc/+9nP5ubj+75yuVzqvVwupyAIxgKgRdJm3e/8/HypPAEAwOO1UNC0ubkp27blOI663a6eP3+e2l6tVjPlE0XRxPd7vd610mbdb9k8AQDA47XwmKbnz5/ro48+0qeffjpxrqbrmBbMXDdt1v2mbbu6utLV1VXy+vLycqljAwCA+2ulk1tmZRjGWK9Or9eb+PTaImmz7rdonvV6XZubm8m/Z8+ezTw2AAB4eJYOmq5j2tQEhULhWmmz7rdonsfHx7q4uEj+ffnllzOPDQAAHp6lpxy4DtM0U6/DMFShUEh6eoIgkGEYMk1zbtphURQl78/ab3TfWXlK0pMnT/TkyZPM5wcAAB6etQRNktRqtVSr1VQsFnV2dpaaI6ler6tYLCYDy2el9X0/eZIv3q9UKs3db9Y2AACAURuDwWCwqsy++OILvffee6vK7s66vLzU5uamLi4ukrX4VuW9l79ZaX634YtXP1l3EQAAyOQ6v+HX6mn63e9+lxpQ7bquTk5OrpMlAADAnbR00HRwcJAaQyRJn3/++SrKBAAAcOcsHTTt7e3p6Ogo9d6vf/3raxcIAADgLlp6yoGdnZ1M7wEAADwES/c0dbtdua6rYrEoSRoMBjo9PdXZ2dnKCgcAAHBXLN3T5Lqunj9/rsFgoPgBvBU+iAcAAHCnLN3T5DjO2FIq02baBgAAuO9WtvbcZ599pjdv3ly7QAAAAHfRteZp+uSTTxSGoaS3t+bOz8/105/+dCUFAwAAuEuWDppevnypKIrU6/VkmqaiKFKlUlll2QAAAO6MpYOmnZ0dHR0d6c2bN9rY2NB7772nzz77bJVlAwAAuDOWHtNkmqb+7d/+Tc+fP5fneassEwAAwJ2zdE9TFEUyTVP9fl///d//rX/4h3+QYRj68Y9/vMryAQAA3AlLB03vv/++vv76a0nSq1ev9Omnn6pQKKysYAAehvde/mbdRVjYF69+su4iALiDlr49J0kffvihDg8Pk9cbGxvXLhAAAMBdtHTQ9PLlSxmGkUxoubu7K9/3V1YwAACAu2TpoKlYLOro6Eimaa6yPAAAAHfS0kFTPPv38C05FusFAAAP1dIDwV+8eKFCoaDt7W212235vi/HcVZZNgAAgDvjWmvPtVotvXjxQoPBQM1mk+kGAADAg3WtteeeP3+uV69eraosAAAAd1bmnqZf/epXc9N8/PHHmQ8chqEajYY8z1Oj0VAURUulnbXN8zxFUTQx7yAIFARBkkf8/wAAAJNk7mn65S9/qXa7PTPN+fm5fvazn2XKb39/X51OR9LboOXo6EitVmvhtPO2jXIcR9VqVa7rqtlsSpJs2556bAAAAGmBoGl3d1fb29vK5/NT0wwGg0x5hWGYem2a5tQ5nmalnbUtiiK1Wi2VSqVke6PRULValSTl83n1+31JkmEYmcoNAAAer8xBU6vV0sXFhc7PzyW9nafp6dOnqTS5XC5TXr7vj6XN5XIKgkCWZWVOe35+PnWbaZqpgMnzvNRriWAJALA4lgZ6vBYaCL65uand3V1J0ueff65er6eNjY3kqbn3338/Uz7Txi/1er2F0s7aNhx8RVGkXq+XmogziiJ5nifp7fxSlUqFiToBAMBU15qnKfbZZ5+p3W5rb2/vWtMOzBoMvkja0W21Wm1sDqlyuZz0NJmmqb29PXW73Yn5XV1d6erqKnl9eXmZuZwAAOBhuNaCvb/73e/0j//4jyqVSmq322NjjKYxDGOsV6nX6028XTYrbZZ8oiiS7/tjeQ+X1TRNhWE4tfz1el2bm5vJv2fPnmU4SwAA8JAsHDR98cUX+vDDD/W3f/u32t/f1+bmpjqdzkJPzsWL/I4qFAoLpc2Sz/n5+VjAFARBcptx2LQxWcfHx7q4uEj+ffnllxPTAQCAhyvz7bmPP/5YrusqDEMdHBwks4EP++STT/TTn/50bl6jY4fCMFShUEiCmyAIZBiGTNOcmXZS79FwPnFeo8GQaZqp23W+76tUKk0dGP7kyRM9efJk7nkBAICHK3PQVC6XVSqV9PLlSxmGoX6/r88++yzZ3u/39erVq0xBk/T2abxaraZisaizs7PUPEn1el3FYjGZHmBW2lnbYqOBl2EYKhQKajQaMgxD3W6XeZoAAMBMG4OMkyv9/Oc/V6PRmDkX09HRkU5PT1dWuLvq8vJSm5uburi4GJt24bp4lBUPDW0aDw1t+n67zm945p6mSqUyN/Pj4+OFDg4AAHBfZB4IPjp+adk0AAAA99G1phwAAAB4LAiaAAAAMiBoAgAAyICgCQAAIAOCJgAAgAwImgAAADIgaAIAAMiAoAkAACADgiYAAIAMCJoAAAAyIGgCAADIgKAJAAAgA4ImAACADAiaAAAAMiBoAgAAyICgCQAAIAOCJgAAgAwImgAAADIgaAIAAMjg2+s6cBiG8jxPpmkqDEOVy2UZhrFw2lnbgiCQJFmWpTAMFUWRLMta+PgAAABrC5r29/fV6XQkvQ1gjo6O1Gq1Fk47a5vrumo2m5Ik27ZT+S9yfAAAgLUETWEYpl6bpinf9xdOOy+ffD6vfr8vSalepEWODwAAIK1pTJPv+8rlcqn3crlccjsta9os+RiGMXbbbZHjAwAASGvqaYqiaOL7vV5vobTz8omiSJ7nSZLOzs5UqVRkmuZCx5ekq6srXV1dJa8vLy8npgMAAA/X2sY0TTItmFk0bbxteHC3aZra29tTt9tdOM96va4PPvggc9kAAMDDs5bbc4ZhjPXq9Hq9iU+vzUo7L5/hsUvxU3JhGC50fEk6Pj7WxcVF8u/LL7/MeKYAAOChWEvQZNv2xPcLhcJCaWdtC4JAu7u7Y9tyudxCx5ekJ0+e6OnTp6l/AADgcVnL7TnTNFOvwzBUoVBIza9kGIZM05yZdrRnaHibaZpyHCfZ5vu+SqXS3P0AAAAmWduYplarpVqtpmKxqLOzs9QcSfV6XcViUdVqdW7aadsMw1ChUFCj0ZBhGOp2u5n2AwAAmGRjMBgM1l2I++by8lKbm5u6uLhY+a26917+ZqX53YYvXv1k3UXAHUabxkNDm77frvMbztpzAAAAGRA0AQAAZEDQBAAAkAFBEwAAQAYETQAAABkQNAEAAGRA0AQAAJABQRMAAEAGBE0AAAAZEDQBAABkQNAEAACQAUETAABABgRNAAAAGRA0AQAAZEDQBAAAkAFBEwAAQAYETQAAABkQNAEAAGRA0AQAAJABQRMAAEAGBE0AAAAZfHtdBw7DUJ7nyTRNhWGocrkswzAWTjtrWxAE8n1fknR2dqbXr1+ntkmSZVkKw1BRFMmyrJs8ZQAAcI+tLWja399Xp9OR9DbwOTo6UqvVWjjtrG2+76tarUqSGo2Gdnd3k7Su66rZbEqSbNueemwAAABpTbfnwjBMvTZNM+kRWiTtrG1BEKheryfbSqWSgiBI9snn8+r3++r3+2q321N7uQAAAKQ1BU2+7yuXy6Xey+VyyS2zrGlnbbMsS69fv07ej6Io2R4zDINgCQAAZLKW23NxADOq1+stlHZePqVSKXnv5OREtm0nQVIURfI8T9Lb8U6VSkWmaU7M7+rqSldXV8nry8vLiekAAMDDtbYxTZNMC4IWTTu6LQ6Q4vFMklIDxk3T1N7enrrd7sT86vW6Pvjgg8xlAwAAD89agibDMMZ6lXq93sRbZbPSZs2nVquNjVsKwzB5Wi5+8i4Mw4m9TcfHx/rFL36RvL68vNSzZ8+ynCoAAOv3z5vrLsFy/vli3SVIWcuYJtu2J75fKBQWSpsln0ajoVqtJtM0FUWRoihSEATa3d0d2290fFTsyZMnevr0aeofAAB4XNbS0zTamxOGoQqFQmoOJcMwZJrmzLSjPUqj+XieJ8uykoDp9PRU5XJZpmnKcZxkP9/3VSqVGBS+LP6CAQA8Amsb09RqtVSr1VQsFnV2dpaaJ6ler6tYLCZzLM1KO21bGIba399PHdMwjGQsU6FQUKPRkGEY6na7zNMEAABm2hgMBoN1F+K+uby81Obmpi4uLlZ+q+69l79ZaX634Yvv/b91F2E59DTdinvZpl/9ZN1FwB12L9s039OJ6/yGs/YcAABABgRNAAAAGRA0AQAAZEDQBAAAkAFBEwAAQAYETQAAABkQNAEAAGRA0AQAAJABQRMAAEAGBE0AAAAZEDQBAABkQNAEAACQAUETAABABt9edwEA4M755811l2A5N7AiPIA/o6cJAAAgA4ImAACADAiaAAAAMiBoAgAAyICgCQAAIAOCJgAAgAwImgAAADJY2zxNYRjK8zyZpqkwDFUul2UYxsJpb2IbAADAqLUFTfv7++p0OpLeBjBHR0dqtVoLp72JbQAAAKPWcnsuDMPUa9M05fv+wmlvYhsAAMAkawmafN9XLpdLvZfL5RQEwUJpb2IbAADAJGu5PRdF0cT3e73eQmlvYtskV1dXurq6Sl5fXLxd3+ny8nJi+uv45up/Vp7nTbvcGKy7CMu5geuHcbTpW0SbvhW06Vt0A206/u0eDBavkzu1YO+0YGbRtKveVq/X9cEHH4y9/+zZs6l5PSb3dGlT6dW9LTlu2L1tGbRpTHFvW8YNtuk//OEP2txcLP+1BE2GYYz16vR6vYlPr81KexPbJjk+PtYvfvGL5PU333yjXq+n7e1tbWxszDtdLOny8lLPnj3Tl19+qadPn667OMC10abx0NzHNj0YDPSHP/xBP/zhDxfedy1Bk23bcl137P1CobBQWtM0V75tkidPnujJkyep95ie4PY8ffr03nwYgSxo03ho7lubXrSHKbaWoMk0zdTrMAxVKBSSQCQIAhmGIdM0Z6YdDVxWsQ0AAGCStY1parVaqtVqKhaLOjs7S82RVK/XVSwWVa1W56a9iW0AAACjNgbLDB8HbsHV1ZXq9bqOj4/Hbo8C9xFtGg/NY2vTBE0AAAAZsGAvAABABgRNAAAAGRA0PUBBEKhSqWhjY0O1Wk3NZlO1Wk37+/srXWOv2Wxqa2vrXi8/k8/n5Xle8rrZbGpvb2+pfZEWt7tmsynP8+T7vprN5tjaj3eJ7/vK5/NqNpu3crz71Ib4rKye7/up7+plvp9v83t4Xd/5d6rtDfAg9fv9gaRBv98fe6/T6azsOLZtryy/4bLelna7nTput9sdtNvtpfbFn9m2PXBdN/Vep9MZSBp0u901lSqbarU6Vvabcp/aEJ+Vm9Htdse+qxe1yu/hu3Ss2F1qe3dqGRXcrHjuq5OTE1mWte7ipIRhKN/3VS6Xb/W4tm2nXk+aGyzrvnir0WhI0ti1tCzr1q/vMra3t2/tWPepDfFZuRmji8dj3F1qe9yee2R6vZ52dnbWXYwxjuOsuwhYkXq9rkqlMnHb/v7+LZcGAFaHoOmRiKJItVpNtm2rXC7L933t7Oyo2Wyq2Wwqn89LejseqtFoyPM8NRqNsfEnQRCoVqvJ8zx5npdawy8eDxL3NHiep52dndR9+jAMk/2bzaaiKJLv+zo/P1e73Z455sX3/aRstVotVaZKpZKUyfM8BUEwtzxBEKTGr0RRpEqlkgoqp9XH6L7DY2HisTuPMUAIw1BRFE39K9C27WTbtLqdVpdhGCb7DAdlcVuO20Cz2VSlUkkW4J7W1qe1J0lJu5x0HSftN+/6R1GUbIv3G21Dy9TJNHxW7q8s9TPrezjOY/T6e56nfD6fXLNGo6GdnZ3kms9qM7OONan8D7rtrexGH+6UePyS4ziDVqs1aLVaY2NJyuXyoFwuDwaDQbLdtu1UGsuykvvB/X5/YJrm2Pbh+9uO4wwcx0lel0ql5N5zvH+cX7VaTdLOG0fS7XYHlmUlr13XHTiOM+j3+wPDMFL3rA3DSMo0qzzx9tHjGoaRHHNWfYzuW61WB6VSKXm9jnv/6xaPz5h33vPqdlJdDl/H4XYUpx/e3mq1UvlPauuT2tNg8Pa6TruOs/abdf0dx0m1u7jdDLehZepkUj3zWblfJo0/nVU/876HZ7XRfr+fXBfXdZNjzmoz877zhz2GtseYpgeuXC5PXVPPMIxk/EapVFKtVhsb62Sapk5PT1Uul3V6ejq2fZH78aenpzJNMynP8fFx5n1d11Uul0v1Wp2dnckwDNm2nTrHaQsvL8p13Zn1MWp7ezs1HsYwjLl/lT00cS9SGIYTx82FYahcLje3bifV5XDvVVy3w9d9+P9LpZL29/cVRVGy3uRoW5/UnmLFYnHsWNL0dijNvv6lUkn5fF6maerw8HBi+1mmTia1Lz4r99+s+pn3PTyrjRqGodevXyufz6vVaiVtYVabWeQ7/zG0PYKmRy7rYLpViH/AYtOCudF0McuyUoP6yuXyrT0ajuyq1apc11WpVBrbFgTBxPezuO6C2qNtfVJ7ymKZ/XK5nPr9voIg0MnJifb399VutzOWfHF8Vh63WW00DoRGHwhaVZt56G2PMU0P3LwIenj74eHh2DwhQRDo4OBA0tvxKKPzc4yOPzIMQ1999VXy2vf9ZGxJqVQa23/SvCST3ptUNt/3dXBwMLNMs8oTG30965jD9TFr38csHtQ/+kU5XFdZ6nbUvLoe3u553thftvPaepY5cpbdr16vJ71vjuOkyhWXe5k6WaSMfFbupkV72OZ9D89qo/FYvVarpTAMk/mLpu2T5Tt/2GNoe/Q0PUDxX7PS2x+wSqUy1n3p+75831cQBDJNU7ZtJ1/ojUZDpmnq7Ows1YVrmqZarZZqtZr29vaSHqF6vS7HcWSapg4ODlKTtNm2nXSfmqYp13VVq9WS2x/xXySVSkWO46jZbE58RDQu2+i+hmFMLFNsVnmiKNLJyYlyuZxKpdLEnohp9RHXcbxvnFd8jHjQsuu6Cz0e+1C02201Gg3VajXt7OwkXfpxL1OWupXSdRnv5/u+wjCU4zipAKTb7SZftnF+0uy2Ptqeph07vo7L7re9vS3f95XL5dTr9XR4eDjWhpapk0nti8/K/REHMNLbwPrw8FCS5tbPrO/hade/2WwmvwfS21vQR0dHCsNQ1Wp1oTYz/J0/7DG0PRbsxYOzt7eXfHksY2trS/1+f8Wlwk2Kg7P7MA/UXcJnBetyX9sePU14cJYZUNpsNtXtdlWpVFY2QBG46/isYF3ua9tjTBMelHieJ9d1F7qPbdu2tre35XmeXNe9uQJi5eLbb61W616vg3jb+KxgXe5z2+P2HAAAQAb0NAEAAGRA0AQAAJABQRMAAEAGBE0AAAAZEDQBuDfildI3NjZUq9XUbDbVaDSS92571ul8Pp/Mqgzg4ePpOQD3ShiG2tnZUb/fT80q3Gw2VSgUlp4sL4vRmYx931ehULj2ungA7gd6mgDcK9NWWT84OFhqwryswjDU6elp6r3R9e0APGwETQDutSAIkh6gm1y3LF6IGMDjRdAE4F6LF+CU3vYG5fN5NRoNSZLnedrZ2UkWAvV9X/l8Xs1mU77vq9lsan9/P5VfGIaq1WryPE/NZjNZGf78/FztdjuZzTgIgiSvWBAEajQa8jxPjUYjWck9y3EB3H2sPQfgXoqDFd/3dXx8LOnt7bJ4pXhJKpVKqaDKtm3Ztq12u52sLh8vvxKvqL63t6dOpyPDMJLB5tVqVbZtjy0KPHysONhqt9vJe/l8Xp9++unc4wK4HwiaANxL5XJZhmEsHHRsb29re3s7eW0YRjIW6vT0VKZpJuOU4mAsC9d1x8pimqZOT09VLpdnHhfA/UDQBOBes217ZXmNPh03bZD3aDoAjwNjmgDcK/N6ZwzD0FdffZW89n0/8/xNpVJJQRCk3ovHQ017L8778PBwLG0QBDo4OMh0bAB3Hz1NAO6NIAjkuq4kqVaraW9vT6VSKZXm4OBAtVotCWBs205unUVRlIxxsm07GdDtuq5M05RpmnJdV7VaTcViMUknSZVKRY7jqNlsyrZtBUGgk5MT5XI5lUolWZYlx3HUaDRkmqbOzs7UarVkGEaSdtZxAdx9TG4JAACQAbfnAAAAMiBoAgAAyICgCQAAIAOCJgAAgAwImgAAADIgaAIAAMiAoAkAACADgiYAAIAMCJoAAAAyIGgCAADIgKAJAAAgA4ImAACADP4/YF3VPmCyVPYAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -465,9 +465,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFUCAYAAAA5ywiWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8PElEQVR4nO3dT2/jRp438K+TmXEQYNq0jB3sDrYH6dIb2KakNzCmdg/PbZqSgTnH0u41wIrtW3IZNZW5b6jOG7DJ5DaHhdh5AWOLmftC7F40kF3sbiTKAQbjnU34HAxyRImiSn9syvb3AzQSkcVisVSSfi4Wq3bCMAxBRERERJneybsARERERHcBgyYiIiIiCQyaiIiIiCQwaCIiIiKSwKCJiIiISAKDJiIiIiIJDJqIiIiIJDBoIiIiIpLAoClnvu/DMAzs7++jWCxmpi0Wi9jf34dhGAiC4HYKSA+C4zh5F2HrBEEAwzDgOA4cx0G320W32934eaLvgJ2dHRSLRXQ6HXQ6HTSbTdRqNb43EprNJvb39+G6bi55Z6VhO1pPt9tFqVTKuxh/EdJWME0zVBQl7Pf7qft7vV6o63rYaDRuuWTpLMua2dZqtUJd13MozbW0Mt1Xm7xW27Znto1Go8z2mCbv93+T+v1+qGlaOBqNEttt2w41TbuRc2qalvr5FkKEpmneyDk3ZRs+e6qqhr1eL7e809KwHS0nrR0NBoOw1Wot9V10k9jTtCUURUG9XodlWan7t61nqdfrzWyrVqs4OjrKoTTX0sp0X23yWhVFSd3WaDQghJDOJ+/3f5MODw9hGMZM3ei6DiEEms3mrZWl2WzCMIxbO98qHtJnbxlsR8tJa0dRPaV9T+WBQdMWaTabODs7m9keBMFSP143rdvtwvf9me2apkHX9RxKNL9M99Gmr9XzPHQ6nZntpmku9UWV5/u/SYZhQAgBTdPm7r/N9ha9B9v2h1PkIX32lsF2tJysuvA8b2t+A3+UdwHoL1RVRaFQgOM4iR+fi4uLuR88AOh0OhBCwPd9CCHiY4MgQLfbhRACvV4PzWYTqqoCAFzXjf/qePnyJXzfh+/7+Pbbb2Ga5txzua6LXq8H3/fjH9pWqwXP82AYBnzfx2AwmHuO4XCIfr8Py7LQ7XZRKBRwenqKk5OTuGyLrku2TNP5ANf3/Sf3ZUk7f7fbhWVZ8DwPtm1D1/U42K3X64lAI6v802MaGo1Gah1GX6ymaaLRaEhf66I6m6QoCkzTTOQTXdPLly8TecyrS9n3X6aNzbsOx3HQbrfh+z5s24amafB9H9VqFUIIWJYVly3teNnyOI4z0xYnRedwHAetVmup61zl/en3+1BVNbNdRWWI/iqP/mKPzp/W3rLKJHtNi9pjmk19L3U6HSiKgkKhsLAOp49b9H0gk/eiNGxHm2lHQRBsTS8TAI5p2hbRvdy0cSHRmJO0MU26rifGpGiaFt/7bbVa4WAwiPcJIRL31nu9XiiESNyHF0IsvHfc6/VCVVVntvf7/VAIMZM27RytVitxfdP5ZV3XMmXSdT1x7sFgIDWWYNH5J8f7WJY1U7as403TnLn+KG1UX5M0TUvc68+61mXqbBFN0xL5LarLZd7/rHJlXUda/UyP05A5Pqs8ABaO/RBCJD6nMvkuen+mx6KMRqPQNM1QVdX4c5uVR/Q56vV6Yb/fj9tYVntbt66idGntcZ5NfC+1Wq3EZ2I0GoUAFo47kvk+kMlbJg3b0c22o7wwaNoS0QdwMBiEAOLGPRgM4i+Y6aApSjudT5RG1/XEB3v6R7Df788cP50mzTJB07xzTH74BoNBqCiK9HXJlqnf7yfyjSwa1Clz/uiLYDAYzNRX1vHRl+vkj4Su6/GXa1odTr+Pade6Sp0tMvlFKFOXy7z/89qYzHVMD1CfrJtFx8uUB0CifaaZ/rFblK/MdWmaFqqqGlqWFf+bvM5FefR6vZn9We1tE3UVnXeZH7t1v5eia5q26HMt04Zl8pY9P9vRzbajvPD23JYRQkBVVZydncW3bLJuSymKknjMdTAYxPeFbdsGcN29Gd0aGw6HM+ebpCjKTJp1pZ0ja3qFRdcl6+LiIvU+eHRbYN4tT5nza5oGTdNQq9XQ7/elj7+4uICiKInu5uh9Wsem6myeVesySjMpq43JXEej0YBlWbAsC67rol6vL3X8ovJEtxiy+L4/M4g3K1/Z96dcLidueUxa5dqy2lu32127rlax7vdSVA/LkmnDMnnLnp/t6GbbUV4YNG2hZrMJy7LQaDQyP5zRAPHJH6zJ//c8D+12G9VqFfV6/cYG0kX3sDdl0XXJlmnVAY+y5y+VSnBdF57nJcYuZB2/ylwpi64jutZ162ydMmzyPIuuo9lsolQqwbIs+L6f2L+Jeoh+POfxPG/pfDdRLpk8pr8vst63m2ozi74PNvG9tOw4JkC+DcvkLZOG7Wg9m/5d2RQ+PbeF6vU6PM+D4zgol8tz06mqmvqXTBAECIIAh4eHODk5iYOvqOFv+mmN6MO/KVnXJcvzvHig8DTf91GpVNY6f/SBtiwLtVpN+nhVVVOvI+vaFv1FFgVt69ZZllXrclky1yGEiB+YmP7x2kQ9mKaJ4XA4N8A1DAONRiNzkO+0TZRrlTyy2ttNtZms74NNfC/NK/ciMm1YJm/Z87MdyZcpzaZ/VzaFQdOWiJ44Aq6jfE3TcHp6mtnTpGkayuXyzIfy7Ows7n2Y/EBGP76LvtQWmex29n1/qQ+9zDmyrmuZMqmqOvPXXnTtWU+byJzfsqz4Fp2maYku9qzjo6dKJh/xD4Igznu6Sz+6hTEdNExf6yp1toxV6zJN1vsvex3NZhPHx8czf9GuUg/T5VEUBbZtx0/qTYqeHlr09N90vpt4f1b9XMxrb5uoq+gcst8Hm/heEkKg0WgknuQKggCe5y384V/UhmXylj0/29HNtaNc5T2o6qEbDAZho9EIAYSNRiMe9D35ZEL09IOiKPGsrpMD8qInOSaPiba3Wq2w1+uFvV4vHAwG8eDefr8f6rqeeMIjOoeqqgsHg0d5RwM60/LLOoemafHTGVGaVqsldV2yZZrOx7KshQMz046bPL9pmqEQIjHgOSp/o9FIfcInrfytVis0TTO0bXumvKZpxvts2w51XQ+FEKnv7bxrla2zLNNPxEzmP12Xy77/i9rYousYjUaZg9zTjl+2PKPRKHG90b9py+SbVq7BYJD5+Za5tl6vF2qaFiqKEg/OnT5mXnvbRF3Na4/zyr+J76XoeqJ8VFWVmrlb5vtAJm/Z87Md3Uw7ystOGIZhHsEaEW23Wq2Go6OjezFhJRHRJvD2HBHFotuB0f9v1aRyREQ5Y9BERLF2ux2Pz/J9P/NBBCKih4a354go5vs+HMeJl4fgrTkior9g0EREREQkgbfniDbAdV2USiVUq9W8iyLN8zxUq9XM2dlJTlSXpVJpo/k2m03s7+9nTpJ4027q2u4rfq7uNwZNRBugaRpOTk7u1NIAqqrGK5DfhOkV0YHrCf2mJwO9i6avLarLTc+cblnWjc2KPO+92PS1BUGAbrc79w+KTqeDbreLbrebmAdoU/vnSWufm3DTnyvKF4Mmog25i0+arbIchaxerzezrVqt4ujo6MbOeVvSru0m6/ImzHsvNnltnufh7OwMQRCk/kERBTmNRiOeHXtyoth192dJu85NuWttgeRx7Tki2rhut5u6tMIm18PLy7xru2vS3otNX1s0M/+8pUTa7TZev36dKFO1WoVlWRvZP899eQ/p9rGnibZWp9OJu94dx4HnefHYjrRxA4ZhYH9/f6bbvdPpwHGc+L/AX8Yg1Wo1uK4LwzBgGAYcx0GpVEqMI/F9H8ViEdVqVeqL1nEcOI6TuF2wbr5p1yCTZxAE8THNZnPhek6y9ZqVr+u66PV68H0/fg/n5T19fdE1TuZVKpVQKpXi9Rg7nY7U7Y+0Y7vdbtwTEbWrWq2WWi/z2k3atU3XYVY5513r5P6obLILPDuOg2KxiGKxCNd10e12USwWUSqV4nZQKpVQLBbheV7qe7GJa1tGVK60HlrXddfeP88y7XO67U+OXZy8JShbF2ltCrhui67rxvtu6tYhbUCe05ETzdNoNBLLZAwGg5klCnq9XmI5kzAMQ03TElPwTy8FomlavNSJbdtxnv1+P15SIS3faAmALL1eLwSQWLrAsqz4OlbNN+saFuXZarUSSyEIIRLl6/f7M8fL1OuifKNlJaalnU/X9cT7OhgMQk3TZsozmUYIkViyZp55x04unxG1g+kyZdX5vGtTFCWznIuudXoJidFoFAJYuDRIGF63tcm8TNOcuc7J92zee7/qtWVJq+Po8zJNUZR4eZJ19meZd50ybd+27RBAoi5brVbi+2peO09rU9NLkgwGg61eRuShY08TbZ1o4OjkYpZCiJmBqGnjBib/6ozmHJqca6hWq8Vd94qiwPM8aJoGVVXj82mahuFwmOh9kB2Mq6pqogzRwp6+76+U76JrSMtzug4m/+oWQix8EmtRva6ab5qo93DyVpEQAsPhMM6vUCjE9TeZRqbXb96xk6ZXaV9U51mCIJhbzkXXGvXeNRqNeL+iKNILl9br9Zn3YLI3YzgcrjWoPOvaNqlQKGQ+ULHu/kXnnjbd9qP3ZLIuT05OMm/5LWpTtm0nFgTmpLLbi2OaaOu4rgtFUVK/rFbJZ/KHZDAYJL7Y5v2INBoNnJ6eQlXVmR+6ZQkh4HlevDr6MvnKXEOj0YBlWbAsC67rol6vx/ts2wbwl+VRhsPhRp7w21S+FxcXqe+BEAK9Xi+un+k0iqJIny/t2KzHwWXqfJlzReVcdK3rLlsT/ZhHP85RXr7vb+QJvHXeg2UsynPd/Tch+r6KPufTstqUruuwLAv7+/tQVRVHR0dotVq3WXxaAoMmulcme6OCIIAQIhGYTAcp836kjo6OcHh4CNM0Z3oqljX5Jb5svjLX0Gw2USqVYFnWTJ6e56HdbqNaraJer6/84zndy7dsvvN+uDf9iP4myNT5JNmgROZa133q6ujoKA7Ky+Uyms0mHMeBpmkrteFNBVxp5uUb1f+6+5eRdZ2baKOL2lSv14t7IqPeJwZO24m352jrqKqKIAhW+rKaDFCmb7tEZPJVVRWFQgGO46z9QxYEQXyLZdl8Za5BCJGaZxAEODw8xMnJCRqNBhRFiY9b9rbKZL2uku+8AeiapqUe4/s+KpXKUmXclGXbzaLB9ZFF1zrvvMvQdR2O48B1XaiqGvdizOvlWkT22lYhhICiKHOfslx3/zKyrlOm5yr6vpp3KzWrTUWDvlVVRavVQr/fx+npqWTJ6bYxaKKtE93GmnyCxPf9mS+d6TEV0a2i6MdN0zSUy+WZJ5DOzs6kytFsNnF8fLzU+muT5weun4ppNBqJH6xl8pW9hijPyR+LqCyTX+TRD0DWj8SiepXJdzIP3/czf0w0TUvctojyyKqfdf76X3TsojqXvbbpcy261rR2HwQBPM+Tvl4hBFRVxWAwiF9Pl2PR8atc2yLzAo+Tk5NEfTiOkxjTte7+eeZd56K2H5l+T9rt9sznfFJWm5oMnCbLR1sq75HoRPNETxL1er34aZfpp4hM0wxN0wxt2w5t2w51XQ+FEImnVKJ8ojRheP2UjKZpoaIooWmaiSdhIoPBINR1Xbq8/X4/7PV68Xksy0p9Om7ZfOddw6TRaJR4emfyuFarFddhdG7btsN+vx/quh4CSDxlFYaL6zUr3+lzR08CTZ5vul6idJZlJcqSdoxpmqGiKKGqqplPSWUdq2la/NTkZB1MPgGYVecy1zavnPOudbLuo6fDonaf1vbnMU0z8VRbWvte9F6sem3TBoNBaJpmqKpqXMfT6SfbWVZ9rLp/nunrnMwvq+1H70n0HkXpI1mfq7Q2FbWFaJtpmol2SNuFC/bSnVEqlWCa5q1NkBgEAS4uLjZ+vpvKl4huXjSvW7/fz7solAPeniOaMNnlfnZ2trHA5qbyJSKi28OgiWiCYRjx+IJNrh91U/kSEdHtYdBEd0Kn04HneTBNc6VJFGVNLrGxzADwvPIlotvjui5M04TneanLzND9xzFNRERERBLY00REREQkgUETERERkQQGTUREREQSuPbcCn744Qd88803+OlPf4qdnZ28i0NERESSwjDEd999h5///Od4553l+o4YNK3gm2++wePHj/MuBhEREa3o7du3+Nu//duljmHQtIKf/vSnAK4r/NGjRzmXhoiIiGRdXl7i8ePH8W/5Mhg0rSC6Jffo0SMGTURERHfQKsNrOBCciIiISAKDJiIiIiIJDJqIiIiIJHBMExER3Yrvv/8ef/7zn/MuBj0AP/nJT5aeTkAGgyYiIrpRYRjiP//zPxEEQd5FoQfinXfewZMnT/CTn/xko/kyaCIiohsVBUw/+9nP8P7773NSYLpR0QTU//Ef/4Ff/OIXG21vDJqIiOjGfP/993HAdHBwkHdx6IH4q7/6K3zzzTf4v//7P/z4xz/eWL4cCE5ERDcmGsP0/vvv51wSekii23Lff//9RvNl0ERERDdu07fkPM9Ds9nEzs4ODMNAt9tFp9OBYRjY39+H67or5+26LkqlErrd7gZLnFQqleA4zo3lfxM2WS/dbhf7+/vwPG8DJZt1U7eAeXtuy3zw/Hd5F2Fpb178v7yLQEQPjKqqcbB0cnICRVHifUdHR7i4uFg5b03TcHR0tIFS/kUQBIkymqaJcrm80XPchMlya5oGTdM2km+j0YBt2xvJ6zaxp4mIiO6kQqGQul1V1VsuSTbf93F2dpbYpmlaIojaRmnlfujj0hg0ERHRveB5HnzfBwDU6/WcS/MXpmnmXYSV3NVy3yTenqP1fbyXdwlW8/E47xIQ0QZEY2xOT0/jWz6KosBxHBiGAVVVYds2giBAqVSCpmmwLAuO40BRFPi+j8FgMDdIcF0XhmHg6OgIrVYrzteyrPh21by8XNfFxcUFhsMhgOsepiAIcHx8jGaziUajAeA64HNdF0II+L4PXdchhIjP3Ww24329Xm/ura156U3TRBAEcF0Xg8EAlmUljvE8D0IInJ+fwzTN1HILIQAgzietLPOuI9p3enqKSqUCAHHedwmDJiIiutMajUbqrS5d1zEcDtHv9wFcB1KGYcSBSq1Ww2AwgKZpaDabcBwHuq7P5DM9xknXdZyenibSzMsrGgdULBbj8wJI5Of7PgzDQK/Xi7eVSiW8evUqPn4yOLFtG57npd6GnJfecRy0Wi2oqopisRiPVYrOHdXRcDhEp9NBq9VKLTcAnJ+fo9VqzZQl6zom6yjSbrdnyr/tGDQREdG9MBnwuK4LTdPQaDSwv78Py7IQBEHc6wEAo9EoDhyGw2F8a28V6+RlWdZMACSEwNnZGRqNBg4ODhJjiRRFyeylSUs/ed3R8YqiwLIsFAqFxNOG5+fnmeWNeoqmy5J1HcDsWLN5Y9K2GYMmIiK6FyYDg8mgpV6vx7fwJntN2u02Dg4OEreQViWb1/RTdLcl65yqqiaeipvuWQLyK/e24UBwIiK6k+b1tgRBEN9uAgDDMGCaZqJnIxrH02q1IISI18Wb7HGZXCtPURR8++23ieMnj1mU1+Rx0/kfHR3NpPU8b6OD2eet+5d27kXlnifrOjRNm5mTaZ2evbywp4mIiO4cz/PiwcztdhvFYhEAMBgM4rmbIkKImd6UcrkMRVHiH/larQbLsiCEiAcsA9djhFRVRb1eh2EYcfpoMLmqqpl5AUCz2YRpmuh2u3HwcHp6ikKhAF3XoaoqTNNEp9OJB2Pbtg1FUWbK4vt+fO1CiJlerXnpgesepWgAt2maME0zPrdhGPFtt6ie5pV7XlmyrkNRFNi2DcMwUK1W456rdrsN0zTX7um7LTthGIZ5F+Kuuby8xN7eHsbjMR49erTRvO/k5Jbv/TrvIqyGT88R3bg//elPeP36NZ48eYL33nsv7+LQA5HV7tb5DeftOSIiIiIJDJqIiIiIJDBoIiIiIpKQW9Dk+z46nQ4cx0Gn05k7sl8mred5KJVKM8c5joMgCFLz9jwvHhw3OVCOiIiIKE1uT8/VarX4kVDf93F8fDx3WvistI7jxE87pB03zTRNtFotWJYVz9uhadqdXG2ZiIiIbk8uQdP03AzR+jqrpE2b8h64npPCtu3E/mhqeOB6avfRaAQge9IvIiIiIiCn23Ou685Mn14oFFJ7i5ZJO20yYEpbUyiaO4KIiIhokVx6muaNX0qb3XWZtJMmg6EgCDAcDhOTZwVBAMdxAFyvsxOtCJ3m6uoKV1dX8evLy8vMcxMREdH9s1UzgmcNBl8nbTSF/qTJVbGFEKhWq4nVlye122188skn0ucjIqKHIQgCXFxcxLOC0+267frP5fZc2grN0YrL66RNEwQBXNedST85VkoIAd/3566Dc3JygvF4HP97+/at1LmJiOj+CoIAx8fHEELg8PAw7+LcKa7rolQqxQ9krSKP+s+lpylas2dauVxeK22ai4uLmYDJ8zwcHh7GA8Ej02OnIru7u9jd3ZU6HxERybnNZaPevPh/G8/TdV1UKhUIIfDq1auN5z/Xx3u3dy7gRpac0jQtsRbgKvKo/1x6mqbHDvm+n+ha8zwv7vVZlHbSvPmYpoMhIUTidp3rutB1nV2rREQkzff9+HeDvx/LOzg4WOv4POo/tzFN0WrHlUolXgk50m63UalU4ukBstK6roter5c4bvopuenAS1EUlMtldDodKIqCwWDAeZqIiIgoU25B02Rvz3SQMx3AZKWNuvimB3pHosBrmqqqUFV1pbITEdH95rouDMOIn6z2fR+9Xi/+ffI8L/6DHbh+uIiup/c5Pj5GvV5Hs9mEYRgArn/XLy4uUKvV8PLly/i3PBp3PF2/21r/XHuOiIhoSvQHea/Xg6ZpaDQaCIIgniNQVVVUq1VUq1UGTBN0XUej0UCxWISqqjAMI54TMergmOz8OD8/T63fba1/Bk1EREQpDg4OUKlU4tdpT3PTrGazidPTUwDXPUm+78c9SvV6PZE2q363sf4ZNBEREdHGROOIo16ho6MjnJ2dIQiCOz9gfqsmtyQiIqK7r9ls4vj4GP1+H0EQ4PDwECcnJ3kXa20MmoiIiKZ4nhffYtI0Db7vw/M8WJYFIQSCIMDp6SkKhQKEEHMXj3+o6vU6+v0+gOvbatN1JFu/i/bfdv3vhGEY3sqZ7pHLy0vs7e1hPB7j0aNHG837Nid725Q37/067yKs5gYmbCOipD/96U94/fo1njx5gvfeey/v4tADkdXu1vkN55gmIiIiIgkMmoiIiIgkMGgiIiIiksCgiYiIiEgCgyYiIiIiCQyaiIjoxvFBbbpNN9XeGDQREdGN+fGPfwwA+OMf/5hzSegh+d///V8AwLvvvrvRfDm5JRER3Zh3330XiqLgv/7rvwAA77//PnZ2dnIuFd1nP/zwA/77v/8b77//Pn70o82GOQyaiIjoRv31X/81AMSBE9FNe+edd/CLX/xi4wE6gyYiIrpROzs7+Ju/+Rv87Gc/w5///Oe8i0MPwE9+8hO8887mRyAxaCIiolvx7rvvbnyMCdFt4kBwIiIiIgkMmoiIiIgk5HZ7zvd9OI4DIQR830ej0YCiKCul9TwPx8fH6Pf7ieM8zwMAqKoK3/cRBAFUVV36/ERERES5BU21Wi0Ocnzfx/HxMWzbXjptFPhEAdIky7LQ7XYBAJqmJfJf5vxEREREuQRNvu8nXgsh4LruSml1XZ97nlKphNFoBACJXqRlzk9EREQE5DSmyXVdFAqFxLZCoZDaW7RM2jSKoszcdls3TyIiInp4culpCoIgdftwOFwrbdqxjuMAAM7Pz9FsNiGEWDrPq6srXF1dxa8vLy8XnpuIiIjul62ap2leMLNq2snB3UIIVKtVDAaDpfNst9v45JNPpMtGRERE908ut+cURZnp1RkOh6lPry2Tdtrk2KXoKTnf95fO8+TkBOPxOP739u3bhecmIiKi+yWXoEnTtNTt5XJ5rbSTPM/D4eHhzPZCobB0nru7u3j06FHiHxERET0suQRNQojEa9/3US6X454ez/PiXqJFaSdN3l4TQsA0zfi167rQdR2KoiyVJxERERGQ45gm27ZhGAYqlQrOz88TcyS1221UKhW0Wq2FaV3XRa/XSxwXBUflchmdTgeKomAwGCSOy8qTiIiIaNpOGIZh3oW4ay4vL7G3t4fxeLzxW3UfPP/dRvO7DW/e+3XeRVjNx+O8S0BERLdsnd9wrj1HREREJIFBExEREZEEBk1EREREEhg0EREREUlg0EREREQkgUETERERkQQGTUREREQSGDQRERERSWDQRERERCSBQRMRERGRBAZNRERERBIYNBERERFJYNBEREREJIFBExEREZEEBk1EREREEn607AFv3ryBbdvo9XoYjUbx9kKhgGq1Cl3X8cEHH2yyjERERES5Wypoev78OXZ2dlCv1/HP//zPM/u//vprfPbZZ9jZ2UG73d5YIYmIiIjyJh00ffrppzg5OcHe3t7cNE+fPsXTp08xHo9xcnLCwImIiIjuDemgKa1naZ69vT0GTERERHSvrDwQ/Pnz5/j8888xHo/x93//9zg6OsKXX365ybIRERERbY2Vg6ZKpYIPP/wQ3W4XpVIJp6en+Pbbb6WP930fnU4HjuOg0+kgCIKV03qeh1KpNHOc53nodDrodDqo1WqJ4zzPg+d5cf7R/xMRERGlWfrpucj+/j4A4OzsDC9fvgRw/QSdrFqthn6/D+A6aDk+PoZt20undRwHQojUoMd1XbRaLQBAp9PB4eFhnI9lWeh2uwAATdPmnpuIiIgIWKOnaTAY4NWrVxgMBvi7v/s7vH79OjEFQRbf9xOvhRBwXXeltLquQ1XVmeM8z0uMq9J1HZ7nxfmVSiWMRiOMRiP0ej0oiiJVdiIiInqYVg6a6vU6PM9Dv9/HeDyGZVmZt9gmua470ytVKBTm9hbJpp2kqmrcAwYgLttkXoqiMFgiIiIiKVK358bjMUajUWLSyr29vcQTdS9evEgcc3l5CQB49OjRTH7zgqvhcLhW2mm6rsf/f3p6Ck3T4iApCAI4jgMAOD8/R7PZhBAiNZ+rqytcXV3Fr6NrIyIioodDKmja29vD2dkZDg4O8Ktf/Wph+i+++AKj0QgffvjhUoWR7alaJa3jOPF4JgBoNBpxACWEQLVaxWAwSD2+3W7jk08+kT4fERER3T/SA8GPj4/x9ddfo16vo1gsolKpQAgBRVEQBAF838fvf/97vH79Gs1mE8+ePZubl6IoMz1Fw+Ew9VbZMmnnMQxjZtyS7/vxWCghBHzfh+/7qb1NJycn+Oijj+LXl5eXePz4sfT5iYiI6O5b6um5p0+f4uzsDOPxGGdnZ/j973+PIAigKAqKxSKazSaePHmyMB9N02BZ1sz2crm8Vto0nU4HhmFACBH3Tvm+j8PDw5mB6/Oe/tvd3cXu7q7U+YiIiOh+WmnKgb29PRwfH6980uneHN/3US6X454gz/OgKAqEEAvTTooCuIjjOFBVNQ6Yzs7O0Gg0IISAaZpxOtd1oes6B4UTERHRXCvP07Qu27ZhGAYqlQrOz88T8yS1221UKpV4jqWstK7rotfrJY7TdR2+76NWqyXOqShKPJapXC6j0+lAURQMBgPO00RERESZdsIwDPMuxF1zeXmJvb09jMfj1KcD1/HB899tNL/b8Oa9X+ddhNV8PM67BEREdMvW+Q1feZ4mIiIiooeEQRMRERGRhLWCpk8//RRHR0cAgFevXnHSRyIiIrq3Vg6anj9/DkVRoGkaAODw8HDu+nFEREREd93KQVOlUsHx8fHcpUeIiIiI7pOVg6bXr18DAHZ2duJt5+fn65eIiIiIaAutPE/T06dPUS6XcXBwgF6vB9d1ExNGEhEREd0nK/c0HR4ewrZtPH36FGEYotvt4pe//OUmy0ZERES0NdaaEfzJkyd48eJF/Pry8nLjkz0SERERbYO1phy4vLzEmzdv4n+GYWyqXERERERbZeWepn/8x3+E67qJRW5fv36Nf/mXf9lEuYiIiIi2yspBU7FYxGeffZbY9vLly7ULRERERLSNVr49F01qOalara5VGCIiIqJttXJP0/7+Pn77299CCAFFURAEAU5PT3F6errJ8hERERFthZWDplarhSAIEmOavv76602UiYiIiGjrrBw0VatVHB8fJ7Z98cUXaxeIiIiIaButPKapWCxKbSMiIiK6D1buaRoMBrAsC5VKBQAQhiHOzs64/hwRERHdSyv3NFmWhSdPniAMQ4RhCADxf4mIiIjum5V7mkzTxOHhYWJb2jQE8/i+D8dxIISA7/toNBqJQeXLpPU8D8fHx+j3+9LHLXN+IiIiopWDpumACbiehkBWrVaLgxzf93F8fAzbtpdOGwU+nuctddwy5yciIiKSDpq+/PJLaJoWL8j7+eefJ/YHQYBer4d//dd/XZiX7/uJ10IIuK67Ulpd15c+bpnzExEREQFLjGn6zW9+g4uLi/j1Z599htFoFP8LwxDffvutVF6u66JQKCS2FQqF1N6iZdLKHrdqnkRERPRwSfc0TQZMwPU6c0+fPk1skx3TFARB6vbhcLhWWtnjls3z6uoKV1dX8evLy8vMcxMREdH9s/LTc5Pjl8bjMb744oulxjSlmRfMrJtW9rh5+9rtNvb29uJ/jx8/XuncREREdHetHDRNjgHa29vDs2fPpMcFKYoy06szHA5Tn15bJq3sccvmeXJygvF4HP97+/Zt5rmJiIjo/lnq6bnxeIyzszPs7Oyg1+vN7O/3+/jwww8X5qNpGizLmtleLpfXSit7nBBiqTx3d3exu7ubeT4iIiK635YKmvb29qBpGkzTxGAwwJMnTxL7W62WVD5CiMRr3/dRLpfjnh7P86AoCoQQC9NOmlxAOOu46WOz8iQiIiICVpin6cmTJ/jss8/w6tWr1LmaZNm2DcMwUKlUcH5+npgjqd1uo1KpxEFYVlrXdeNer+i4aBqCrOOy9hERERFN2wm59snSLi8vsbe3h/F4HM9btSkfPP/dRvO7DW/e+3XeRVjNx+O8S0BERLdsnd/wlQeCExERET0kDJqIiIiIJDBoIiIiIpKw0aDpzZs3m8yOiIiIaGss/fTcpD/84Q+JSSIty8Lp6enahSIiIiLaNisHTfV6PTEvEgB8/fXXmygTERER0dZZOWiqVqs4Pj5ObPviiy/WLhARERHRNlp5TFOxWJTaRkRERHQfrNzTNBgMYFkWKpUKACAMQ5ydneH8/HxjhSMiIiLaFiv3NFmWhSdPniAMQ0STinNycSIiIrqvVu5pMk1zZu05TdPWLhARERHRNlq5p2k6YPrqq6/w+vXrtQtEREREtI3Wmqfpyy+/hO/7AK5vzV1cXOBXv/rVRgpGREREtE1WDpqeP3+OIAgwHA4hhEAQBGg2m5ssGxEREdHWWDloKhaLOD4+xuvXr7Gzs4MPPvgAX3311SbLRkSUj4/38i7Baj4e510Contt5TFNQgj8+7//O548eQLHcTZZJiIiIqKts3JPUxAEEEJgNBrhf/7nf/AP//APUBQFv/zlLzdZPiIiIqKtsHLQ9OzZM3z//fcAgBcvXuDVq1col8sbKxgR3Q8fPP9d3kVY2pv38i4BEW2jlW/PAcCnn36Ko6Oj+PXOzs7aBSIiIiLaRisHTc+fP4eiKPGEloeHh3Bdd2MFIyIiItomK9+eq1QqePbsGV69erXS8b7vw3EcCCHg+z4ajQYURVk6bdY+x3HioG46b8/zAACqqsL3fQRBAFVVV7oWIiIiuv9WDpqi2b8nb8mdn59LT25Zq9XQ7/cBXAc+x8fHsG176bSL9k0zTROtVguWZaHb7QK4Xv5l3rmJiIiIgDWCpqdPn6JcLuPg4AC9Xg+u68I0Taljo1nEI0KIubf2stJm7QuCALZtQ9f1eH+n00Gr1QIAlEoljEYjALO9UERERETT1lp7zrZtPH36FGEYotvtSk834LouCoVCYluhUIhvmcmmXZTPZMDkOE7iNXAdLDFgIiIiIhlrrT335MkTvHjxYunjgiBI3T4cDpdKm7VvcnzS5HIvk9uiSTnPz8/RbDYT+yddXV3h6uoqfn15eZmajoiIiO4v6Z6m3/72twvTfP7552sVZl4QtGza6X2GYaBerye2NRoN6LoOXddxdHSEarU6N792u429vb343+PHj6XLSURERPeDdE/Tb37zG/R6vcw0FxcX+PDDDxfmpSjKTK/ScDhMvVWWlVYmnyAI4LruTN6+78e9UdGTd77vp/Y2nZyc4KOPPopfX15eMnAiIiJ6YKSDpsPDQxwcHKBUKs1NE4ahVF6apsGyrJntaTOKZ6UVQizM5+LiInW6gcPDw3ggeGR6fFRkd3cXu7u7qfuIiIjoYZAOmmzbxng8xsXFBYDreZoePXqUSDMv6Jg23Zvj+z7K5XIc3HieB0VRIITITJvWezSZT5TXdLmEEIkn/VzXha7rHBROREREcy01EHxvbw+Hh4cAgK+//hrD4RA7OzvxU3PPnj2Tzsu2bRiGgUqlgvPz88Q8Se12G5VKJZ4eICtt1r7IdOClKArK5TI6nQ4URcFgMOA8TURERJRpJ5S9p5bhq6++Qq/XQ7ValZ524C67vLzE3t4exuPxTG/buu7m4qa/zrsIq/l4nHcJHgS26VvENk200Dq/4Wst2PuHP/wB//RP/wRd19Hr9WYmmyQiIiK6L5aep+nNmzewbRuWZWFnZwfPnj1Dv9/HkydPbqJ8RERERFtBuqfp888/R6VSQalUgu/7sG0b//Zv/4YXL17EAdOXX355YwUlIiIiypN0T1M0GeTz58+hKApGoxG++uqreP9oNMKLFy+kF+wlIiIiukuWCpo6nU7mXEynp6cbKRQRERHRtpEOmprN5sJR5icnJ2sXiIiIiGgbSY9pevr06UbSEBEREd1Fa005QERERPRQMGgiIiIiksCgiYiIiEgCgyYiIiIiCQyaiIiIiCQwaCIiIiKSwKCJiIiISAKDJiIiIiIJDJqIiIiIJDBoIiIiIpLAoImIiIhIAoMmIiIiIgk/yuvEvu/DcRwIIeD7PhqNBhRFWTpt1j7P8wAAqqrC930EQQBVVZc+PxEREVFuQVOtVkO/3wdwHcAcHx/Dtu2l02btsywL3W4XAKBpWiL/Zc5PRERElEvQ5Pt+4rUQAq7rLp12UT6lUgmj0QgAEr1Iy5yfiIiICMhpTJPruigUColthUIhvp0mm1YmH0VRZm67LXN+IiIiIiCnnqYgCFK3D4fDpdIuyicIAjiOAwA4Pz9Hs9mEEGKp8wPA1dUVrq6u4teXl5ep6YiIiOj+ym1MU5p5wcyyaaN9k4O7hRCoVqsYDAZL59lut/HJJ59Il42IiIjun1xuzymKMtOrMxwOU59ey0q7KJ/JsUvRU3K+7y91fgA4OTnBeDyO/719+1bySomIiOi+yCVo0jQtdXu5XF4qbdY+z/NweHg4s69QKCx1fgDY3d3Fo0ePEv+IiIjoYcnl9pwQIvHa932Uy+XE/EqKokAIkZl2umdocp8QAqZpxvtc14Wu6wuPIyIiIkqT25gm27ZhGAYqlQrOz88TcyS1221UKhW0Wq2FaeftUxQF5XIZnU4HiqJgMBhIHUdERESUZicMwzDvQtw1l5eX2Nvbw3g83vitug+e/26j+d2GN+/9Ou8irObjcd4leBDYpm8R2zTRQuv8hnPtOSIiIiIJDJqIiIiIJDBoIiIiIpLAoImIiIhIAoMmIiIiIgkMmoiIiIgkMGgiIiIiksCgiYiIiEgCgyYiIiIiCQyaiIiIiCQwaCIiIiKSkNuCvURERHRLPt7LuwSr2bL1FBk0ERERLeFuLkKddwnuB96eIyIiIpLAoImIiIhIAoMmIiIiIgkMmoiIiIgkMGgiIiIiksCgiYiIiEhCblMO+L4Px3EghIDv+2g0GlAUZem0Wfs8z4PrugCA8/NzvHz5MrEPAFRVhe/7CIIAqqre5CUTERHRHZZb0FSr1dDv9wFcBz7Hx8ewbXvptFn7XNdFq9UCAHQ6HRweHsZpLctCt9sFAGiaNvfcREREREBOt+d830+8FkLEPULLpM3a53ke2u12vE/XdXieFx9TKpUwGo0wGo3Q6/Xm9nIRERERATkFTa7rolAoJLYVCoX4lpls2qx9qqri5cuX8fYgCOL9EUVRGCwRERGRlFxuz0UBzLThcLhU2kX56Loebzs9PYWmaXGQFAQBHMcBcD3eqdlsQgghdwFERET04GzV2nPzgqBl007viwKkaDwTgMSAcSEEqtUqBoNBan5XV1e4urqKX19eXkqXk4iIiO6HXG7PKYoy06s0HA5Tb5VlpZXNxzCMmXFLk+OhoifvpsdIRdrtNvb29uJ/jx8/lrhKIiIiuk9yCZo0TUvdXi6Xl0ork0+n04FhGBBCIAgCBEEAz/NweHg4c9z0+KjIyckJxuNx/O/t27ep6YiIiOj+yiVomh475Ps+yuVyYg6lqNcnK+2ifBzHgaqqccB0dnYWH2eaZnyc67rQdX3uoPDd3V08evQo8Y+IiIgeltzGNNm2DcMwUKlUcH5+npgnqd1uo1KpxHMsZaWdt8/3fdRqtcQ5FUWJxzKVy2V0Oh0oioLBYMB5moiIiCjTThiGYd6FuGsuLy+xt7eH8Xi88V6nD57/bqP53YY37/067yKs5uNx3iV4ENimbxHb9K1gm75FN9Cm1/kN59pzRERERBIYNBERERFJYNBEREREJIFBExEREZEEBk1EREREEhg0EREREUlg0EREREQkgUETERERkQQGTUREREQSGDQRERERSWDQRERERCSBQRMRERGRBAZNRERERBIYNBERERFJYNBEREREJIFBExEREZEEBk1EREREEhg0EREREUlg0EREREQkgUETERERkYQf5XVi3/fhOA6EEPB9H41GA4qiLJ32JvYRERERTcstaKrVauj3+wCuA5jj42PYtr102pvYR0RERDQtl9tzvu8nXgsh4Lru0mlvYh8RERFRmlyCJtd1USgUEtsKhQI8z1sq7U3sIyIiIkqTy+25IAhStw+Hw6XS3sS+NFdXV7i6uopfj8djAMDl5WVq+nX8cPXHjed50y53wryLsJobeP9oFtv0LWKbvhVs07foBtp09NsdhsvXSW5jmtLMC2aWTbvpfe12G5988snM9sePH8/N6yHZy7sAq3pxZ0tON+zOtgy2aZrjzraMG2zT3333Hfb2lss/l6BJUZSZXp3hcJj69FpW2pvYl+bk5AQfffRR/PqHH37AcDjEwcEBdnZ2Fl0urejy8hKPHz/G27dv8ejRo7yLQ7Q2tmm6b+5imw7DEN999x1+/vOfL31sLkGTpmmwLGtme7lcXiqtEGLj+9Ls7u5id3c3sY3TE9yeR48e3ZkPI5EMtmm6b+5am162hymSS9AkhEi89n0f5XI5DkQ8z4OiKBBCZKadDlw2sY+IiIgoTW5jmmzbhmEYqFQqOD8/T8yR1G63UalU0Gq1Fqa9iX1ERERE03bCVYaPE92Cq6srtNttnJyczNweJbqL2KbpvnlobZpBExEREZEELthLREREJIFBExEREZEEBk33kOd5aDab2NnZgWEY6Ha7MAwDtVpto2vsdbtd7O/v3+nlZ0qlEhzHiV93u11Uq9WVjqWkqN11u104jgPXddHtdmfWftwmruuiVCqh2+3eyvnuUhviZ2XzXNdNfFev8v18m9/DeX3nb1XbC+leGo1GIYBwNBrNbOv3+xs7j6ZpG8tvsqy3pdfrJc47GAzCXq+30rH0F5qmhZZlJbb1+/0QQDgYDHIqlZxWqzVT9ptyl9oQPys3YzAYzHxXL2uT38PbdK7INrW9rVpGhW5WNPfV6ekpVFXNuzgJvu/DdV00Go1bPa+maYnXaXODyR5L1zqdDgDMvJeqqt76+7uKg4ODWzvXXWpD/KzcjOnF42nWNrU93p57YIbDIYrFYt7FmGGaZt5FoA1pt9toNpup+2q12i2Xhohocxg0PRBBEMAwDGiahkajAdd1USwW0e120e12USqVAFyPh+p0OnAcB51OZ2b8ied5MAwDjuPAcZzEGn7ReJCop8FxHBSLxcR9et/34+O73S6CIIDruri4uECv18sc8+K6blw2wzASZWo2m3GZHMeB53kLy+N5XmL8ShAEaDabiaByXn1MHzs5FiYau/MQAwTf9xEEwdy/AjVNi/fNq9t5den7fnzMZFAWteWoDXS7XTSbzXgB7nltfV57AhC3y7T3Me24Re9/EATxvui46Ta0Sp3Mw8/K3SVTP1nfw1Ee0++/4zgolUrxe9bpdFAsFuP3PKvNZJ0rrfz3uu1t7EYfbZVo/JJpmqFt26Ft2zNjSRqNRthoNMIwDOP9mqYl0qiqGt8PHo1GoRBiZv/k/W3TNEPTNOPXuq7H956j46P8Wq1WnHbROJLBYBCqqhq/tiwrNE0zHI1GoaIoiXvWiqLEZcoqT7R/+ryKosTnzKqP6WNbrVao63r8Oo97/3mLxmcsuu5FdZtWl5Pv42Q7itJP7rdtO5F/WltPa09heP2+znsfs47Lev9N00y0u6jdTLahVeokrZ75Wblb0safZtXPou/hrDY6Go3i98WyrPicWW1m0Xf+pIfQ9jim6Z5rNBpz19RTFCUev6HrOgzDmBnrJITA2dkZGo0Gzs7OZvYvcz/+7OwMQoi4PCcnJ9LHWpaFQqGQ6LU6Pz+HoijQNC1xjfMWXl6WZVmZ9THt4OAgMR5GUZSFf5XdN1Evku/7qePmfN9HoVBYWLdpdTnZexXV7eT7Pvn/uq6jVqshCIJ4vcnptp7WniKVSmXmXMD8dghkv/+6rqNUKkEIgaOjo9T2s0qdpLUvflbuvqz6WfQ9nNVGFUXBy5cvUSqVYNt23Bay2swy3/kPoe0xaHrgZAfTbUL0AxaZF8xNp4uoqpoY1NdoNG7t0XCS12q1YFkWdF2f2ed5Xup2GesuqD3d1tPak4xVjisUChiNRvA8D6enp6jVauj1epIlXx4/Kw9bVhuNAqHpB4I21Wbue9vjmKZ7blEEPbn/6OhoZp4Qz/NQr9cBXI9HmZ6fY3r8kaIo+Pbbb+PXruvGY0t0XZ85Pm1ekrRtaWVzXRf1ej2zTFnliUy/zjrnZH1kHfuQRYP6p78oJ+tKpm6nLarryf2O48z8ZbuorcvMkbPqce12O+59M00zUa6o3KvUyTJl5GdlOy3bw7boezirjUZj9Wzbhu/78fxF846R+c6f9BDaHnua7qHor1ng+ges2WzOdF+6rgvXdeF5HoQQ0DQt/kLvdDoQQuD8/DzRhSuEgG3bMAwD1Wo17hFqt9swTRNCCNTr9cQkbZqmxd2nQghYlgXDMOLbH9FfJM1mE6Zpotvtpj4iGpVt+lhFUVLLFMkqTxAEOD09RaFQgK7rqT0R8+ojquPo2Civ6BzRoGXLspZ6PPa+6PV66HQ6MAwDxWIx7tKPeplk6hZI1mV0nOu68H0fpmkmApDBYBB/2Ub5Adltfbo9zTt39D6uetzBwQFc10WhUMBwOMTR0dFMG1qlTtLaFz8rd0cUwADXgfXR0REALKyfrO/hee9/t9uNfw+A61vQx8fH8H0frVZrqTYz+Z0/6SG0PS7YS/dOtVqNvzxWsb+/j9FotOFS0U2KgrO7MA/UNuFnhfJyV9see5ro3lllQGm328VgMECz2dzYAEWibcfPCuXlrrY9jmmieyWa58myrKXuY2uahoODAziOA8uybq6AtHHR7Tfbtu/0Ooi3jZ8Vystdbnu8PUdEREQkgT1NRERERBIYNBERERFJYNBEREREJIFBExEREZEEBk1EdGdEK6Xv7OzAMAx0u110Op14223POl0qleJZlYno/uPTc0R0p/i+j2KxiNFolJhVuNvtolwurzxZnozpmYxd10W5XF57XTwiuhvY00REd8q8Vdbr9fpKE+bJ8n0fZ2dniW3T69sR0f3GoImI7jTP8+IeoJtctyxaiJiIHi4GTUR0p0ULcALXvUGlUgmdTgcA4DgOisVivBCo67oolUrodrtwXRfdbhe1Wi2Rn+/7MAwDjuOg2+3GK8NfXFyg1+vFsxl7nhfnFfE8D51OB47joNPpxCu5y5yXiLYf154jojspClZc18XJyQmA69tl0UrxAKDreiKo0jQNmqah1+vFq8tHy69EK6pXq1X0+30oihIPNm+1WtA0bWZR4MlzRcFWr9eLt5VKJbx69WrheYnobmDQRER3UqPRgKIoSwcdBwcHODg4iF8rihKPhTo7O4MQIh6nFAVjMizLmimLEAJnZ2doNBqZ5yWiu4FBExHdaZqmbSyv6afj5g3ynk5HRA8DxzQR0Z2yqHdGURR8++238WvXdaXnb9J1HZ7nJbZF46HmbYvyPjo6mknreR7q9brUuYlo+7GniYjuDM/zYFkWAMAwDFSrVei6nkhTr9dhGEYcwGiaFt86C4IgHuOkaVo8oNuyLAghIISAZVkwDAOVSiVOBwDNZhOmaaLb7ULTNHieh9PTUxQKBei6DlVVYZomOp0OhBA4Pz+HbdtQFCVOm3VeItp+nNySiIiISAJvzxERERFJYNBEREREJIFBExEREZEEBk1EREREEhg0EREREUlg0EREREQkgUETERERkQQGTUREREQSGDQRERERSWDQRERERCSBQRMRERGRBAZNRERERBL+P+LtxKaFDPvoAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFoCAYAAABKc89AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8jElEQVR4nO3dX2/j2H3/8Y83f2axQMa0jAZt0A126CfQ1Z8nEFPtxe8uK9tArmOp1wEqje92bqKhkvsuNfsEbHH3LheFOPsAaoub+0KcKQZIi7Yr0Q4QxE03+l0YZET9pWTZ8p/3Cxjsijw8PDw6kr4+PDxnYzAYDAQAAICZ3lt3AQAAAO4DgiYAAIAUCJoAAABSIGgCAABIgaAJAAAgBYImAACAFAiaAAAAUiBoAgAASIGgac2CIFCtVtPW1pZ2dnZmpt3Z2dHW1pZqtZrCMLydAuJRcF133UW4c8IwVK1Wk+u6cl1XzWZTzWZz5eeJvgM2Nja0s7OjRqOhRqOhSqWivb093psUKpWKtra25HneWvKelYZ2dD3NZlO5XG7dxfiLAe4E27YHhmEMOp3OxP3tdntQKpUG5XL5lks2meM4Y9uq1eqgVCqtoTRXJpXpoVrltbZarbFt/X5/ZnucZN3v/yp1Op2BZVmDfr+f2N5qtQaWZd3IOS3Lmvj5Nk1zYNv2jZxzVe7CZy+bzQ7a7fba8p6Uhna0mEntqNvtDqrV6kLfRTeJnqY7wjAM7e/vy3GcifvvWs9Su90e21YsFnVwcLCG0lyZVKaHapXXahjGxG3lclmmaabOZ93v/yrt7u6qVquN1U2pVJJpmqpUKrdWlkqlolqtdmvnW8Zj+uwtgna0mEntKKqnSd9T60DQdIdUKhWdnJyMbQ/DcKEfr5vWbDYVBMHYdsuyVCqV1lCi6WV6iFZ9rb7vq9FojG23bXuhL6p1vv+rVKvVZJqmLMuauv8221v0Hty1P5wij+mztwja0WJm1YXv+3fmN/C76y4A/iKbzSqTych13cSPz9nZ2dQPniQ1Gg2ZpqkgCGSaZnxsGIZqNpsyTVPtdluVSkXZbFaS5Hle/FfHq1evFASBgiDQN998I9u2p57L8zy1220FQRD/0FarVfm+r1qtpiAI1O12p56j1+up0+nIcRw1m01lMhkdHx/r6OgoLtu860pbptF8pKv7/sP7Zpl0/mazKcdx5Pu+Wq2WSqVSHOzu7+8nAo1Z5R8d01AulyfWYfTFatu2yuVy6mudV2fDDMOQbduJfKJrevXqVSKPaXWZ9v1P08amXYfruqrX6wqCQK1WS5ZlKQgCFYtFmaYpx3Hisk06Pm15XNcda4vDonO4rqtqtbrQdS7z/nQ6HWWz2ZntKipD9Fd59Bd7dP5J7W1WmdJe07z2OMmqvpcajYYMw1Amk5lbh6PHzfs+SJP3vDS0o9W0ozAM70wvkyTGNN0V0b3cSeNCojEnk8Y0lUqlxJgUy7Lie7/VanXQ7XbjfaZpJu6tt9vtgWmaifvwpmnOvXfcbrcH2Wx2bHun0xmYpjmWdtI5qtVq4vpG85t1XYuUqVQqJc7d7XZTjSWYd/7h8T6O44yVbdbxtm2PXX+UNqqvYZZlJe71z7rWRepsHsuyEvnNq8tF3v9Z5Zp1HZPqZ3ScRprjZ5VH0tyxH6ZpJj6nafKd9/6MjkXp9/sD27YH2Ww2/tzOyiP6HLXb7UGn04nb2Kz2dt26itJNao/TrOJ7qVqtJj4T/X5/IGnuuKM03wdp8k6ThnZ0s+1oXQia7ojoA9jtdgeS4sbd7XbjL5jRoClKO5pPlKZUKiU+2KM/gp1OZ+z40TSTLBI0TTvH8Iev2+0ODMNIfV1py9TpdBL5RuYN6kxz/uiLoNvtjtXXrOOjL9fhH4lSqRR/uU6qw9H3cdK1LlNn8wx/Eaapy0Xe/2ltLM11jA5QH66becenKY+kRPucZPTHbl6+aa7LsqxBNpsdOI4T/xu+znl5tNvtsf2z2tsq6io67yI/dtf9XoquadS8z3WaNpwm77Tnpx3dbDtaF27P3TGmaSqbzerk5CS+ZTPrtpRhGInHXLvdbnxfuNVqSbrq3oxujfV6vbHzDTMMYyzNdU06x6zpFeZdV1pnZ2cT74NHtwWm3fJMc37LsmRZlvb29tTpdFIff3Z2JsMwEt3N0ft0Hauqs2mWrcsozbBZbSzNdZTLZTmOI8dx5Hme9vf3Fzp+XnmiWwyzBEEwNoh3Vr5p3598Pp+45TFsmWub1d6azea162oZ1/1eiuphUWnacJq8056fdnSz7WhdCJruoEqlIsdxVC6XZ344owHiwz9Yw//v+77q9bqKxaL29/dvbCBddA97VeZdV9oyLTvgMe35c7mcPM+T7/uJsQuzjl9mrpR51xFd63Xr7DplWOV55l1HpVJRLpeT4zgKgiCxfxX1EP14TuP7/sL5rqJcafIY/b6Y9b7dVJuZ932wiu+lRccxSenbcJq806ShHV3Pqn9XVoWn5+6g/f19+b4v13WVz+enpstmsxP/kgnDUGEYand3V0dHR3HwFTX8VT+tEX34V2XWdaXl+348UHhUEAQqFArXOn/0gXYcR3t7e6mPz2azE69j1rXN+4ssCtquW2ezLFuXi0pzHaZpxg9MjP54raIebNtWr9ebGuDWajWVy+WZg3xHraJcy+Qxq73dVJuZ9X2wiu+laeWeJ00bTpN32vPTjtKXaZJV/66sCkHTHRE9cSRdRfmWZen4+HhmT5NlWcrn82MfypOTk7j3YfgDGf34zvtSm2e42zkIgoU+9GnOMeu6FilTNpsd+2svuvZZT5ukOb/jOPEtOsuyEl3ss46PnioZfsQ/DMM479Eu/egWxmjQMHqty9TZIpaty0lmvf9pr6NSqejw8HDsL9pl6mG0PIZhqNVqxU/qDYueHpr39N9ovqt4f5b9XExrb6uoq+gcab8PVvG9ZJqmyuVy4kmuMAzl+/7cH/55bThN3mnPTzu6uXa0VuseVPXYdbvdQblcHkgalMvleND38JMJ0dMPhmHEs7oOD8iLnuQYPibaXq1WB+12e9Butwfdbjce3NvpdAalUinxhEd0jmw2O3cweJR3NKBzUn6zzmFZVvx0RpSmWq2muq60ZRrNx3GcuQMzJx03fH7btgemaSYGPEflL5fLE5/wmVT+arU6sG170Gq1xspr23a8r9VqDUql0sA0zYnv7bRrTVtns4w+ETOc/2hdLvr+z2tj866j3+/PHOQ+6fhFy9Pv9xPXG/0btUi+k8rV7XZnfr7TXFu73R5YljUwDCMenDt6zLT2toq6mtYep5V/Fd9L0fVE+WSz2VQzd6f5PkiTd9rz045uph2ty8ZgMBisI1gDcLft7e3p4ODgQUxYCQCrwO05ALHodmD0/3dqUjkAWDOCJgCxer0ej88KgmDmgwgA8Nhwew5ALAgCua4bLw/BrTkA+AuCJgAAgBS4PQesgOd5yuVyKhaL6y5Kar7vq1gszpydHelEdZnL5Vaab6VS0dbW1sxJEm/aTV3bQ8Xn6mEjaAJWwLIsHR0d3aulAbLZbLwC+U0YXRFduprQb3Qy0Pto9Nqiulz1zOmO49zYrMjT3otVX1sYhmo2m1P/oGg0Gmo2m2o2m4l5gFa1f5pJ7XMVbvpzhfUiaAJW5D4+abbMchRptdvtsW3FYlEHBwc3ds7bMunabrIub8K092KV1+b7vk5OThSG4cQ/KKIgp1wux7NjD08Ue939s0y6zlW5b20B6bH2HICVazabE5dWWOV6eOsy7drum0nvxaqvLZqZf9pSIvV6XW/evEmUqVgsynGcleyf5qG8h7h99DThzmo0GnHXu+u68n0/HtsxadxArVbT1tbWWLd7o9GQ67rxf6W/jEHa29uT53mq1Wqq1WpyXVe5XC4xjiQIAu3s7KhYLKb6onVdV67rJm4XXDffSdeQJs8wDONjKpXK3PWc0tbrrHw9z1O73VYQBPF7OC3v0euLrnE4r1wup1wuF6/H2Gg0Ut3+mHRss9mMeyKidrW3tzexXqa1m0nXNlqHs8o57VqH90dlS7vAs+u62tnZ0c7OjjzPU7PZ1M7OjnK5XNwOcrmcdnZ25Pv+xPdiFde2iKhck3poPc+79v5pFmmfo21/eOzi8C3BtHUxqU1JV23R87x4303dOsQKrHM6cmCacrmcWCaj2+2OLVHQbrcTy5kMBoOBZVmJKfhHlwKxLCte6qTVasV5djqdeEmFSflGSwDM0m63B5ISSxc4jhNfx7L5zrqGeXlWq9XEUgimaSbK1+l0xo5PU6/z8o2WlRg16XylUinxvna73YFlWWPlGU5jmmZiyZppph07vHxG1A5GyzSrzqddm2EYM8s571pHl5Do9/sDSXOXBhkMrtracF62bY9d5/B7Nu29X/baZplUx9HnZZRhGPHyJNfZP8u060zT9lut1kBSoi6r1Wri+2paO5/UpkaXJOl2u3d6GZHHjp4m3DnRwNHhxSxN0xwbiDpp3MDwX53RnEPDcw3t7e3FXfeGYcj3fVmWpWw2G5/Psiz1er1E70PawbjZbDZRhmhhzyAIlsp33jVMynO0Dob/6jZNc+6TWPPqddl8J4l6D4dvFZmmqV6vF+eXyWTi+htOk6bXb9qxw0ZXaZ9X57OEYTi1nPOuNeq9K5fL8X7DMFIvXLq/vz/2Hgz3ZvR6vWsNKp91bauUyWRmPlBx3f3zzj1qtO1H78lwXR4dHc285TevTbVarcSCwEwqe3cxpgl3jud5Mgxj4pfVMvkM/5B0u93EF9u0H5Fyuazj42Nls9mxH7pFmaYp3/fj1dEXyTfNNZTLZTmOI8dx5Hme9vf3432tVkvSX5ZH6fV6K3nCb1X5np2dTXwPTNNUu92O62c0jWEYqc836dhZj4OnqfNFzhWVc961XnfZmujHPPpxjvIKgmAlT+Bd5z1YxLw8r7v/JkTfV9HnfNSsNlUqleQ4jra2tpTNZnVwcKBqtXqbxccCCJrwoAz3RoVhKNM0E4HJaJAy7Ufq4OBAu7u7sm17rKdiUcNf4ovmm+YaKpWKcrmcHMcZy9P3fdXrdRWLRe3v7y/94znay7dovtN+uFf9iP4qpKnzYWmDkjTXet2nrg4ODuKgPJ/Pq1KpyHVdWZa1VBteVcA1ybR8o/q/7v5FzLrOVbTReW2q3W7HPZFR7xOB093E7TncOdlsVmEYLvVlNRygjN52iaTJN5vNKpPJyHXda/+QhWEY32JZNN8012Ca5sQ8wzDU7u6ujo6OVC6XZRhGfNyit1WG63WZfKcNQLcsa+IxQRCoUCgsVMZVWbTdzBtcH5l3rdPOu4hSqSTXdeV5nrLZbNyLMa2Xa56017YM0zRlGMbUpyyvu38Rs64zTc9V9H017VbqrDYVDfrOZrOqVqvqdDo6Pj5OWXLcNoIm3DnRbazhJ0iCIBj70hkdUxHdKop+3CzLUj6fH3sC6eTkJFU5KpWKDg8PF1p/bfj80tVTMeVyOfGDtUi+aa8hynP4xyIqy/AXefQDMOtHYl69psl3OI8gCGb+mFiWlbhtEeUxq36u89f/vGPn1Xnaaxs917xrndTuwzCU7/upr9c0TWWzWXW73fj1aDnmHb/Mtc0zLfA4OjpK1IfruokxXdfdP82065zX9iOj70m9Xh/7nA+b1aaGA6fh8uGOWvdIdGCa6EmidrsdP+0y+hSRbdsD27YHrVZr0Gq1BqVSaWCaZuIplSifKM1gcPWUjGVZA8MwBrZtJ56EiXS73UGpVEpd3k6nM2i32/F5HMeZ+HTcovlOu4Zh/X4/8fTO8HHVajWuw+jcrVZr0Ol0BqVSaSAp8ZTVYDC/XmflO3ru6Emg4fON1kuUznGcRFkmHWPb9sAwjEE2m535lNSsYy3Lip+aHK6D4ScAZ9V5mmubVs5p1zpc99HTYVG7n9T2p7FtO/FU26T2Pe+9WPbaRnW73YFt24NsNhvX8Wj64XY2qz6W3T/N6HUO5zer7UfvSfQeRekjsz5Xk9pU1BaibbZtJ9oh7hYW7MW9kcvlZNv2rU2QGIahzs7OVn6+m8oXwM2L5nXrdDrrLgrWgNtzwJDhLveTk5OVBTY3lS8A4PYQNAFDarVaPL5gletH3VS+AIDbQ9CEe6HRaMj3fdm2vdQkimkNL7GxyADwdeUL4PZ4nifbtuX7/sRlZvDwMaYJAAAgBXqaAAAAUiBoAgAASIGgCQAAIAXWnlvCn//8Z/3ud7/TD37wA21sbKy7OAAAIKXBYKDf//73+tGPfqT33lus74igaQm/+93v9OGHH667GAAAYEnv3r3T3/7t3y50DEHTEn7wgx9Iuqrwp0+frrk0AAAgrYuLC3344Yfxb/kiCJqWEN2Se/r0KUETAAD30DLDaxgIDgAAkAJBEwAAQAoETQAAACkwpgkAcCu+/fZb/elPf1p3MfAIfP/73194OoE0CJoAADdqMBjoP//zPxWG4bqLgkfivffe07Nnz/T9739/pfkSNAEAblQUMP3whz/UBx98wKTAuFHRBNT/8R//oR//+McrbW8ETQCAG/Ptt9/GAdP29va6i4NH4q/+6q/0u9/9Tv/3f/+n733veyvLl4HgAIAbE41h+uCDD9ZcEjwm0W25b7/9dqX5EjQBAG7cqm/J+b6vSqWijY0N1Wo1NZtNNRoN1Wo1bW1tyfO8pfP2PE+5XE7NZnOFJU7K5XJyXffG8r8Jq6yXZrOpra0t+b6/gpKNu6lbwNyeu2M+ev6bdRdhYW9f/r91FwHAI5PNZuNg6ejoSIZhxPsODg50dna2dN6WZeng4GAFpfyLMAwTZbRtW/l8fqXnuAnD5bYsS5ZlrSTfcrmsVqu1krxuEz1NAIB7KZPJTNyezWZvuSSzBUGgk5OTxDbLshJB1F00qdyPfVwaQRMA4EHwfV9BEEiS9vf311yav7Bte91FWMp9LfdN4vYcAOBei8bYHB8fx7d8DMOQ67qq1WrKZrNqtVoKw1C5XE6WZclxHLmuK8MwFASBut3u1CDB8zzVajUdHByoWq3G+TqOE9+umpaX53k6OztTr9eTdNXDFIahDg8PValUVC6XJV0FfJ7nyTRNBUGgUqkk0zTjc1cqlXhfu92eemtrWnrbthWGoTzPU7fbleM4iWN835dpmjo9PZVt2xPLbZqmJMX5TCrLtOuI9h0fH6tQKEhSnPd9QtCE6/t0c90lWM6n5+suAYAVKJfLE291lUol9Xo9dTodSVeBVK1WiwOVvb09dbtdWZalSqUi13VVKpXG8hkd41QqlXR8fJxIMy2vaBzQzs5OfF5JifyCIFCtVlO73Y635XI5vX79Oj5+ODhptVryfX/ibchp6V3XVbVaVTab1c7OTjxWKTp3VEe9Xk+NRkPVanViuSXp9PRU1Wp1rCyzrmO4jiL1en2s/HcdQRMA4EEYDng8z5NlWSqXy9ra2pLjOArDMO71kKR+vx8HDr1eL761t4zr5OU4zlgAZJqmTk5OVC6Xtb29nRhLZBjGzF6aSemHrzs63jAMOY6jTCaTeNrw9PR0ZnmjnqLRssy6Dml8rNm0MWl3GUETAOBBGA4MhoOW/f39+BbecK9JvV7X9vZ24hbSstLmNfoU3W2Zdc5sNpt4Km60Z0laX7nvGgaCAwDupWm9LWEYxrebJKlWq8m27UTPRjSOp1qtyjTNeF284R6X4bXyDMPQN998kzh++Jh5eQ0fN5r/wcHBWFrf91c6mH3aun+Tzj2v3NPMug7LssbmZLpOz9660NMEALh3fN+PBzPX63Xt7OxIkrrdbjx3U8Q0zbHelHw+L8Mw4h/5vb09OY4j0zTjAcvS1RihbDar/f191Wq1OH00mDybzc7MS5IqlYps21az2YyDh+PjY2UyGZVKJWWzWdm2rUajEQ/GbrVaMgxjrCxBEMTXbprmWK/WtPTSVY9SNIDbtm3Zth2fu1arxbfdonqaVu5pZZl1HYZhqNVqqVarqVgsxj1X9Xpdtm1fu6fvtmwMBoPBugtx31xcXGhzc1Pn5+d6+vTpSvO+l5Nbvv+zdRdhOQwEB27cH//4R71580bPnj3T+++/v+7i4JGY1e6u8xvO7TkAAIAUCJoAAABSIGgCAABIgaAJAAAgBYImAACAFNYWNAVBoEajIdd11Wg0ps4hkSat7/vK5XJjx7muqzAMJ+bt+378GObwI5kAAACTrG2epr29vXjysSAIdHh4OHUBwllpXdeN59WYdNwo27ZVrVblOE48Q6xlWVPPDQAAIK0paBqdBTRayXmZtJMWV5SuZj9ttVqJ/dEihNLVIoL9fl/S7OnlAQAApDXdnvM8b2yhvkwmM7G3aJG0o4YDpkmrV0ezlAIAsIwwDBNLquB23Xb9ryVomnZxk9YRWiTtsOFgKAxD9Xq9xDTtYRjKdV25rqtarTZzDZzLy0tdXFwk/gEAHrcwDHV4eCjTNLW7u7vu4twrnucpl8vFw2SWsY76v1Nrzy0SKS6SNlqscVi5XI4DK9M0VSwW1e12Jx5fr9f14sWL1OcDAMx3m8tGvX35/1aep+d5KhQKMk1Tr1+/Xnn+U326eXvnkm5kySnLshJrAS5jHfW/lp4mwzDGeop6vd7EW2WLpJ0k6robTT/cs2SapoIgmNrbdHR0pPPz8/jfu3fvUp0bAPBwBUEQ/7Yw1GNx29vb1zp+HfW/lqBpWnSZz+evlXaSs7Ozscr0fX9iV97o2KnIkydP9PTp08Q/AADwuKwlaBoeWyRdRYv5fD4Obnzfj3t95qUdNm0+ptFgyDTNxO06z/NUKpX4SwEAICk55sbzPDWbzcQ0Nr7vq91uq9VqXWtczkPjuq62trZUqVTk+76KxaKKxWJ812dra0uu68bpo+2j9XtX639tY5parZZqtZoKhYJOT08T8yTV63UVCoV4eoBZaT3PU7vdThw3+pTcaOBlGIby+bwajYYMw1C322WeJgBALBpzE/0wS1e/Rb7vK5vNKpvNqlgsSroaI4srpVJJp6en2t7eVjabVa1Wk+M4MgxDlmXJtu3Eb/Tp6Wnitz6q37ta/2sLmoZ7e0aDnNEAZlbaqGJHB3pHojdjVFTpAABMsr29nRh3M2mMLcZVKhXt7e2pWq0qDEMFQaAwDHV2dqb9/f1E2kKhEP//aP3exfpn7TkAALAy0d2daD7Fg4MDnZycKAzDez8M5k5NOQAAAO6/SqWiw8NDdTodhWGo3d1dHR0drbtY10bQBADACN/3dXx8LOlqGEi0sLvjODJNU2EY6vj4WJlMRqZpTl3S67Ha39+P14w1DGOsjtLW77z9t13/G4PBYHArZ3pALi4utLm5qfPz85VPP3Cbk72tytv3f7buIiznBiZsA5D0xz/+UW/evNGzZ8/0/vvvr7s4eCRmtbvr/IYzpgkAACAFgiYAAIAUCJoAAABSIGgCAABIgaAJAAAgBYImAMCN40Ft3Kabam8ETQCAG/O9731PkvSHP/xhzSXBY/K///u/kqTvfOc7K82XyS0BADfmO9/5jgzD0H/9139Jkj744ANtbGysuVR4yP785z/rv//7v/XBBx/ou99dbZhD0AQAuFF//dd/LUlx4ATctPfee08//vGPVx6gEzQBAG7UxsaG/uZv/kY//OEP9ac//WndxcEj8P3vf1/vvbf6EUgETQCAW/Gd73xn5WNMgNvEQHAAAIAUCJoAAABSIGgCAABIgaAJAAAgBYImAACAFAiaAAAAUiBoAgAASGFt8zQFQSDXdWWapoIgULlclmEYS6X1fV+Hh4fqdDqJ43zflyRls1kFQaAwDJXNZhc+PwAAwNqCpr29vTjICYJAh4eHarVaC6eNAp8oQBrmOI6azaYkybKsRP6LnB8AAGAtQVMQBInXpmnK87yl0pZKpannyeVy6vf7kpToRVrk/AAAANKaxjR5nqdMJpPYlslkJvYWLZJ2EsMwxm67XTdPAADw+KylpykMw4nbe73etdJOOtZ1XUnS6empKpWKTNNcOM/Ly0tdXl7Gry8uLuaeGwAAPCx3asHeacHMsmmHB3ebpqlisahut7twnvV6XS9evEhdNgAA8PCs5facYRhjvTq9Xm/i02uLpB01PHYpekouCIKF8zw6OtL5+Xn87927d3PPDQAAHpa1BE2WZU3cns/nr5V2mO/72t3dHdueyWQWzvPJkyd6+vRp4h8AAHhc1hI0maaZeB0EgfL5fNzT4/t+3Es0L+2w4dtrpmnKtu34ted5KpVKMgxjoTwBAACkNY5parVaqtVqKhQKOj09TcyRVK/XVSgUVK1W56b1PE/tdjtxXBQc5fN5NRoNGYahbrebOG5WngAAAKM2BoPBYN2FuG8uLi60ubmp8/Pzld+q++j5b1aa3214+/7P1l2E5Xx6vu4SAABu2XV+w1l7DgAAIAWCJgAAgBQImgAAAFIgaAIAAEiBoAkAACAFgiYAAIAUCJoAAABSIGgCAABIgaAJAAAgBYImAACAFAiaAAAAUiBoAgAASIGgCQAAIAWCJgAAgBQImgAAAFIgaAIAAEiBoAkAACAFgiYAAIAUCJoAAABSIGgCAABI4buLHvD27Vu1Wi212231+/14eyaTUbFYVKlU0kcffbTKMgIAAKzdQkHT8+fPtbGxof39ff3TP/3T2P6vv/5an332mTY2NlSv11dWSAAAgHVLHTT96le/0tHRkTY3N6em+fjjj/Xxxx/r/PxcR0dHMwOnIAjkuq5M01QQBCqXyzIMY6m0vu/r8PBQnU4ncZzv+/I8T5J0enqqV69excf5vi9JymazCoJAYRgqm82mqAkAAPAYpQ6aJvUsTbO5uTm3p2lvby8OcoIg0OHhoVqt1sJpo2AqCoKGeZ6narUqSWo0Gtrd3Y3zcRxHzWZTkmRZ1tRzAwAASNcYCP78+XN9/vnnOj8/19///d/r4OBAX375ZapjgyBIvDZNM+4RWjRtqVSa2EPk+34icCuVSvJ9P84vl8up3++r3++r3W5P7eUCAACQrhE0FQoF/fznP1ez2VQul9Px8bG++eabVMd6nqdMJpPYlslkpvYWpU07LJvN6tWrV/HrMAzjYyOGYRAsAQCAVBZ+ei6ytbUlSTo5OYmDk9HgZpoogBnV6/WulXZUqVSK///4+FiWZcVBUhiGcl1X0tV4p0qlItM0J+ZzeXmpy8vL+PXFxcXccwMAgIdl6aCp2+1qMBio2+3q7/7u7/TmzZvEFATLmBYgrSKt67qJgeLDg8lN01SxWFS32514fL1e14sXL1KfDwAAPDxL357b39+X7/vqdDo6Pz+X4zipAxnDMMZ6inq93sRbZYuknaZWq42NWxoeKxU9lTc6fipydHSk8/Pz+N+7d+9SnxsAADwMqXqazs/P1e/3E5NWbm5uJp6oe/nyZeKY6BbW06dPx/KzLEuO44xtz+fz10o7SaPRUK1Wk2macVAXBIF2d3fHesam3V588uSJnjx5kup8AADgYUrV07S5ual2u5366bgvvvhCJycnEwMmSWNjh4IgUD6fT8yhFPX6zEs7bLSny3VdZbPZOGA6OTmRYRgyTVO2bcfpPM9TqVRiUDgAAJgq9Zimw8NDff3119rf39fOzo4KhYJM05RhGArDUEEQ6F//9V/15s0bVSoVffLJJzPza7VaqtVqKhQKOj09TcyTVK/XVSgU4jmWZqX1PE/tdjtxXKlUUhAE2tvbS5zTMIx4LFM+n1ej0ZBhGOp2u8zTBAAAZtoYDAaDRQ86Pz/XycmJut2uwjCUYRja2dmRZVl69uzZTZTzTrm4uNDm5qbOz8+n9qYt66Pnv1lpfrfh7fs/W3cRlvPp+bpLAAC4Zdf5DV/q6bnNzU0dHh4ucygAAMC9tPTTcwAAAI8JQRMAAEAKBE0AAAApEDQBAACkcK2g6Ve/+pUODg4kSa9fv2ZNNgAA8GAtHTQ9f/5chmHIsixJ0u7urjzPW1nBAAAA7pKlg6ZCoaDDw8OxGbsBAAAeoqWDpjdv3kiSNjY24m2np6fXLxEAAMAdtNTklpL08ccfK5/Pa3t7W+12W57nJdZzAwAAeEiW7mna3d1Vq9XSxx9/rMFgoGazqZ/85CerLBsAAMCdsXRPkyQ9e/ZML1++jF9fXFysfC02AACAu+BaUw5cXFzo7du38b9arbaqcgEAANwpS/c0/eM//qM8z5NhGPG2N2/e6J//+Z9XUS4AAIA7ZemgaWdnR5999lli26tXr65dIAAAgLto6dtz0aSWw4rF4rUKAwAAcFct3dO0tbWlX//61zJNU4ZhKAxDHR8f6/j4eJXlAwAAuBOWDpqq1arCMEyMafr6669XUSYAAIA7Z+mgqVgs6vDwMLHtiy++uHaBAAAA7qKlxzTt7Oyk2gYAAPAQLN3T1O125TiOCoWCJGkwGOjk5IT15wAAwIO0dE+T4zh69uyZBoOBBoOBJMX/BQAAeGiW7mmybVu7u7uJbZOmIZgmCAK5rivTNBUEgcrlcmJQ+SJpfd/X4eGhOp1O6uMWOT8AAMDSQdNowCRdTUOQ1t7eXhzkBEGgw8NDtVqthdNGgY/v+wsdt8j5AQAAUgdNX375pSzLihfk/fzzzxP7wzBUu93Wv/zLv8zNKwiCxGvTNOV53lJpS6XSwsctcn4AAABpgTFNv/zlL3V2dha//uyzz9Tv9+N/g8FA33zzTaq8PM9TJpNJbMtkMhN7ixZJm/a4ZfMEAACPV+qepuGASbpaZ+7jjz9ObEs7pikMw4nbe73etdKmPW7RPC8vL3V5eRm/vri4mHluAADw8Cz99Nzw+KXz83N98cUXC41pmmRaMHPdtGmPm7avXq9rc3Mz/vfhhx8udW4AAHB/LR00DY8B2tzc1CeffJJ6XJBhGGO9Or1eb+LTa4ukTXvconkeHR3p/Pw8/vfu3buZ5wYAAA/PQk/PnZ+f6+TkRBsbG2q322P7O52Ofv7zn8/Nx7IsOY4ztj2fz18rbdrjTNNcKM8nT57oyZMnM88HAAAetoWCps3NTVmWJdu21e129ezZs8T+arWaKh/TNBOvgyBQPp+Pe3p835dhGDJNc27aYcMLCM86bvTYWXkCAABIS8zT9OzZM3322Wd6/fr1xLma0mq1WqrVaioUCjo9PU3MkVSv11UoFOIgbFZaz/PiXq/ouGgaglnHzdoHAAAwamPA2icLu7i40Obmps7Pz+N5q1blo+e/WWl+t+Ht+z9bdxGW8+n5uksAALhl1/kNX3ogOAAAwGNC0AQAAJACQRMAAEAKKw2a3r59u8rsAAAA7oyFn54b9tvf/jYxSaTjODo+Pr52oQAAAO6apYOm/f39xLxIkvT111+vokwAAAB3ztJBU7FY1OHhYWLbF198ce0CAQAA3EVLj2na2dlJtQ0AAOAhWLqnqdvtynEcFQoFSdJgMNDJyYlOT09XVjgAAIC7YumeJsdx9OzZMw0GA0WTijO5OAAAeKiW7mmybXts7TnLsq5dIAAAgLto6Z6m0YDpq6++0ps3b65dIAAAgLvoWvM0ffnllwqCQNLVrbmzszP99Kc/XUnBAAAA7pKlg6bnz58rDEP1ej2ZpqkwDFWpVFZZNgAAgDtj6aBpZ2dHh4eHevPmjTY2NvTRRx/pq6++WmXZAAAA7oylxzSZpql///d/17Nnz+S67irLBAAAcOcs3dMUhqFM01S/39f//M//6B/+4R9kGIZ+8pOfrLJ8AHD7Pt1cdwmW8+n5uksAPGhLB02ffPKJvv32W0nSy5cv9fr1a+Xz+ZUVDAAA4C5Z+vacJP3qV7/SwcFB/HpjY+PaBQIAALiLrvX03M7OTjyh5e7urr788kumHACQ8NHz36y7CAt7+/66SwDgLlq6p6lQKOjw8FCmaa6yPAAAAHfS0kFTNPv38C05FusFAAAP1dK35z7++GPl83ltb2+r3W7L8zzZtp36+CAI5LquTNNUEAQql8syDGPhtLP2ua4b3z4czdv3fUlSNptVEAQKw1DZbHahOgAAAI/H0kHT7u6uWq2WHMfRYDBQs9nUxx9/nPr4vb09dTodSVeBz+HhoVqt1sJp5+0bZdu2qtWqHMdRs9mUdLXQ8LRzAwAASNdce+7Zs2d6+fLlwsdF69VFTNOU53kLp521LwxDtVotlUqleH+j0VC1WpUk5XI59ft9SeO9UAAAAKNSj2n69a9/PTfN559/niovz/OUyWQS2zKZTHzLLG3aefkMB0yu6yZeS1fBEgETAABII3VP0y9/+Uu12+2Zac7OzvTzn/98bl5hGE7c3uv1Fko7a9/w+KThhYWHt0XLv5yenqpSqUx9EvDy8lKXl5fx64uLi4npAADAw5U6aNrd3dX29rZyudzUNIPB4FqFmRYELZp2dF+tVhsbpD48YNw0TRWLRXW73Yn51et1vXjxInXZAADAw5M6aGq1Wjo/P9fZ2Zmkq3manj59mkgzeqtsGsMwxnqVer3exFtls9KmyScMQ3meN5Z3EARxb1T05F0QBBN7m46OjvSLX/wifn1xcaEPP/wwzaUCAIAHYqF5mjY3N7W7u6vd3V11u129fv1aX331Vbz/k08+SZVPNA3AqElr181Kmyafs7OzidMN7O7ujh03Leh78uSJnj59mvgHAAAel2vN0xT56quv1G63VSwW9ZOf/GTusaO9OUEQKJ/Px8GN7/syDEOmac5MO6n3aDifKK/RYMg0zcTtOs/zVCqVGBQOAACmutaUA7/97W/lOI6Oj49lmqZ2dnZSBU3S1e2+Wq2mQqGg09PTxDxJ9XpdhUIhnh5gVtpZ+yKjgZdhGMrn82o0GjIMQ91ul3maAADATBuDBUdvv337Np7UcmNjQ5988okqlYqePXt2U2W8cy4uLrS5uanz8/OV36q7n4ub/mzdRVjOp+frLsGjQJu+RbRpYK7r/IanHtP0+eefq1AoKJfLKQgCtVot/du//ZtevnwZB0xffvnlYiUHAAC4J1LfniuXyyqVSnr+/LkMw1C/308MAu/3+3r58qV++tOf3khBAQAA1mmhoKnRaMyci+n4+HglhQIAALhrUgdNlUpl7r2/o6OjaxcIAADgLko9pml4ioHrpAEAALiPFprcEgAA4LEiaAIAAEiBoAkAACAFgiYAAIAUCJoAAABSIGgCAABIgaAJAAAgBYImAACAFAiaAAAAUiBoAgAASIGgCQAAIAWCJgAAgBQImgAAAFIgaAIAAEiBoAkAACAFgiYAAIAUCJoAAABS+O66ThwEgVzXlWmaCoJA5XJZhmEsnHbWPt/3JUnZbFZBECgMQ2Wz2YXPDwAAsLagaW9vT51OR9JVAHN4eKhWq7Vw2ln7HMdRs9mUJFmWlch/kfMDAACsJWgKgiDx2jRNeZ63cNp5+eRyOfX7fUlK9CItcn4AAABpTWOaPM9TJpNJbMtkMvHttLRp0+RjGMbYbbdFzg8AACCtqacpDMOJ23u93kJp5+UThqFc15UknZ6eqlKpyDTNhc4vSZeXl7q8vIxfX1xcTEwHAAAerrWNaZpkWjCzaNpo3/DgbtM0VSwW1e12F86zXq/rxYsXqcsGAAAenrXcnjMMY6xXp9frTXx6bVbaefkMj12KnpILgmCh80vS0dGRzs/P43/v3r1LeaUAAOChWEvQZFnWxO35fH6htLP2+b6v3d3dsX2ZTGah80vSkydP9PTp08Q/AADwuKzl9pxpmonXQRAon88n5lcyDEOmac5MO9ozNLzPNE3Zth3v8zxPpVJp7nEAAACTrG1MU6vVUq1WU6FQ0OnpaWKOpHq9rkKhoGq1OjfttH2GYSifz6vRaMgwDHW73VTHAQAATLIxGAwG6y7EfXNxcaHNzU2dn5+v/FbdR89/s9L8bsPb93+27iIs59PzdZfgUaBN3yLaNDDXdX7DWXsOAAAgBYImAACAFAiaAAAAUiBoAgAASIGgCQAAIAWCJgAAgBQImgAAAFIgaAIAAEiBoAkAACAFgiYAAIAUCJoAAABSIGgCAABI4bvrLgAAALhhn26uuwTLuWOLUBM0AQCwgI+e/2bdRVjY2/fXXYKHgdtzAAAAKRA0AQAApEDQBAAAkAJBEwAAQAoETQAAACkQNAEAAKRA0AQAAJACQRMAAEAKa5vcMggCua4r0zQVBIHK5bIMw1g47ax9vu/L8zxJ0unpqV69epXYJ0nZbFZBECgMQ2Wz2Zu8ZAAAcI+tLWja29tTp9ORdBX4HB4eqtVqLZx21j7P81StViVJjUZDu7u7cVrHcdRsNiVJlmVNPTcAAIC0pttzQRAkXpumGfcILZJ21j7f91Wv1+N9pVJJvu/Hx+RyOfX7ffX7fbXb7am9XAAAANKagibP85TJZBLbMplMfMssbdpZ+7LZrF69ehVvD8Mw3h8xDINgCQAApLKW23NRADOq1+stlHZePqVSKd52fHwsy7LiICkMQ7muK+lqvFOlUpFpmhPzu7y81OXlZfz64uJiYjoAAPBwrW1M0yTTgqBF047uiwKkaDyTpMSAcdM0VSwW1e12J+ZXr9f14sWL1GUDAAAPz1puzxmGMdar1Ov1Jt4qm5U2bT61Wm1s3NLweKjoybvRMVKRo6MjnZ+fx//evXuX4ioBAMBDspagybKsidvz+fxCadPk02g0VKvVZJqmwjBUGIbyfV+7u7tjx42Oj4o8efJET58+TfwDAACPy1qCptGxQ0EQKJ/PJ+ZQinp9ZqWdl4/ruspms3HAdHJyEh9n23Z8nOd5KpVKDAoHAABTrW1MU6vVUq1WU6FQ0OnpaWKepHq9rkKhEM+xNCvttH1BEGhvby9xTsMw4rFM+XxejUZDhmGo2+0yTxMAAJhpYzAYDNZdiPvm4uJCm5ubOj8/X/mtuo+e/2al+d2Gt+//bN1FWM6n5+suwaNAm75FtOlbQZu+RTfQpq/zG87acwAAACkQNAEAAKRA0AQAAJACQRMAAEAKBE0AAAApEDQBAACkQNAEAACQAkETAABACgRNAAAAKRA0AQAApEDQBAAAkAJBEwAAQAoETQAAACkQNAEAAKRA0AQAAJACQRMAAEAKBE0AAAApEDQBAACkQNAEAACQAkETAABACgRNAAAAKRA0AQAApPDddZ04CAK5rivTNBUEgcrlsgzDWDjtTewDAAAYtbagaW9vT51OR9JVAHN4eKhWq7Vw2pvYBwAAMGott+eCIEi8Nk1TnuctnPYm9gEAAEyylqDJ8zxlMpnEtkwmI9/3F0p7E/sAAAAmWcvtuTAMJ27v9XoLpb2JfZNcXl7q8vIyfn1+fi5Juri4mJj+Ov58+YeV53nTLjYG6y7Ccm7g/cM42vQtok3fCtr0LbqBNh39dg8Gi9fJ2sY0TTItmFk07ar31et1vXjxYmz7hx9+ODWvx2Rz3QVY1st7W3LcsHvbMmjTmOLetowbbNO///3vtbm5WP5rCZoMwxjr1en1ehOfXpuV9ib2TXJ0dKRf/OIX8es///nP6vV62t7e1sbGxrzLxZIuLi704Ycf6t27d3r69Om6iwNcG20aD819bNODwUC///3v9aMf/WjhY9cSNFmWJcdxxrbn8/mF0pqmufJ9kzx58kRPnjxJbGN6gtvz9OnTe/NhBNKgTeOhuW9tetEepshagibTNBOvgyBQPp+PAxHf92UYhkzTnJl2NHBZxT4AAIBJ1jamqdVqqVarqVAo6PT0NDFHUr1eV6FQULVanZv2JvYBAACM2hgsM3wcuAWXl5eq1+s6Ojoauz0K3Ee0aTw0j61NEzQBAACkwIK9AAAAKRA0AQAApEDQ9AD5vq9KpaKNjQ3VajU1m03VajXt7e2tdI29ZrOpra2te738TC6Xk+u68etms6lisbjUsUiK2l2z2ZTruvI8T81mc2ztx7vE8zzlcjk1m81bOd99akN8VlbP87zEd/Uy38+3+T28ru/8O9X2BniQ+v3+QNKg3++Pbet0Ois7j2VZK8tvuKy3pd1uJ87b7XYH7XZ7qWPxF5ZlDRzHSWzrdDoDSYNut7umUqVTrVbHyn5T7lMb4rNyM7rd7th39aJW+T18l84VuUtt704to4KbFc19dXx8rGw2u+7iJARBIM/zVC6Xb/W8lmUlXk+aGyztsbjSaDQkaey9zGazt/7+LmN7e/vWznWf2hCflZsxung8xt2ltsftuUem1+tpZ2dn3cUYY9v2uouAFanX66pUKhP37e3t3XJpAGB1CJoeiTAMVavVZFmWyuWyPM/Tzs6Oms2mms2mcrmcpKvxUI1GQ67rqtFojI0/8X1ftVpNruvKdd3EGn7ReJCop8F1Xe3s7CTu0wdBEB/fbDYVhqE8z9PZ2Zna7fbMMS+e58Vlq9VqiTJVKpW4TK7ryvf9ueXxfT8xfiUMQ1UqlURQOa0+Ro8dHgsTjd15jAFCEAQKw3DqX4GWZcX7ptXttLoMgiA+Zjgoi9py1AaazaYqlUq8APe0tj6tPUmK2+Wk93HScfPe/zAM433RcaNtaJk6mYbPyv2Vpn5mfQ9HeYy+/67rKpfLxe9Zo9HQzs5O/J7PajOzzjWp/A+67a3sRh/ulGj8km3bg1arNWi1WmNjScrl8qBcLg8Gg0G837KsRJpsNhvfD+73+wPTNMf2D9/ftm17YNt2/LpUKsX3nqPjo/yq1Wqcdt44km63O8hms/Frx3EGtm0P+v3+wDCMxD1rwzDiMs0qT7R/9LyGYcTnnFUfo8dWq9VBqVSKX6/j3v+6ReMz5l33vLqdVJfD7+NwO4rSD+9vtVqJ/Ce19UntaTC4el+nvY+zjpv1/tu2nWh3UbsZbkPL1Mmkeuazcr9MGn86q37mfQ/PaqP9fj9+XxzHic85q83M+84f9hjaHmOaHrhyuTx1TT3DMOLxG6VSSbVabWysk2maOjk5Ublc1snJydj+Re7Hn5ycyDTNuDxHR0epj3UcR5lMJtFrdXp6KsMwZFlW4hqnLby8KMdxZtbHqO3t7cR4GMMw5v5V9tBEvUhBEEwcNxcEgTKZzNy6nVSXw71XUd0Ov+/D/18qlbS3t6cwDOP1Jkfb+qT2FCkUCmPnkqa3Q2n2+18qlZTL5WSapg4ODia2n2XqZFL74rNy/82qn3nfw7PaqGEYevXqlXK5nFqtVtwWZrWZRb7zH0PbI2h65NIOpluF6AcsMi2YG00XyWaziUF95XL51h4NR3rValWO46hUKo3t831/4vY0rrug9mhbn9Se0ljmuEwmo36/L9/3dXx8rL29PbXb7ZQlXxyflcdtVhuNAqHRB4JW1WYeettjTNMDNy+CHt5/cHAwNk+I7/va39+XdDUeZXR+jtHxR4Zh6Jtvvolfe54Xjy0plUpjx0+al2TStkll8zxP+/v7M8s0qzyR0dezzjlcH7OOfcyiQf2jX5TDdZWmbkfNq+vh/a7rjv1lO6+tp5kjZ9nj6vV63Ptm23aiXFG5l6mTRcrIZ+VuWrSHbd738Kw2Go3Va7VaCoIgnr9o2jFpvvOHPYa2R0/TAxT9NStd/YBVKpWx7kvP8+R5nnzfl2masiwr/kJvNBoyTVOnp6eJLlzTNNVqtVSr1VQsFuMeoXq9Ltu2ZZqm9vf3E5O0WZYVd5+apinHcVSr1eLbH9FfJJVKRbZtq9lsTnxENCrb6LGGYUwsU2RWecIw1PHxsTKZjEql0sSeiGn1EdVxdGyUV3SOaNCy4zgLPR77ULTbbTUaDdVqNe3s7MRd+lEvU5q6lZJ1GR3neZ6CIJBt24kApNvtxl+2UX7S7LY+2p6mnTt6H5c9bnt7W57nKZPJqNfr6eDgYKwNLVMnk9oXn5X7IwpgpKvA+uDgQJLm1s+s7+Fp73+z2Yx/D6SrW9CHh4cKgkDVanWhNjP8nT/sMbQ9FuzFg1MsFuMvj2VsbW2p3++vuFS4SVFwdh/mgbpL+KxgXe5r26OnCQ/OMgNKm82mut2uKpXKygYoAncdnxWsy31te4xpwoMSzfPkOM5C97Ety9L29rZc15XjODdXQKxcdPut1Wrd63UQbxufFazLfW573J4DAABIgZ4mAACAFAiaAAAAUiBoAgAASIGgCQAAIAWCJgD3RrRS+sbGhmq1mprNphqNRrzttmedzuVy8azKAB4+np4DcK8EQaCdnR31+/3ErMLNZlP5fH7pyfLSGJ3J2PM85fP5a6+LB+B+oKcJwL0ybZX1/f39pSbMSysIAp2cnCS2ja5vB+BhI2gCcK/5vh/3AN3kumXRQsQAHi+CJgD3WrQAp3TVG5TL5dRoNCRJrutqZ2cnXgjU8zzlcjk1m015nqdms6m9vb1EfkEQqFaryXVdNZvNeGX4s7MztdvteDZj3/fjvCK+76vRaMh1XTUajXgl9zTnBXD3sfYcgHspClY8z9PR0ZGkq9tl0UrxklQqlRJBlWVZsixL7XY7Xl0+Wn4lWlG9WCyq0+nIMIx4sHm1WpVlWWOLAg+fKwq22u12vC2Xy+n169dzzwvgfiBoAnAvlctlGYaxcNCxvb2t7e3t+LVhGPFYqJOTE5mmGY9TioKxNBzHGSuLaZo6OTlRuVyeeV4A9wNBE4B7zbKsleU1+nTctEHeo+kAPA6MaQJwr8zrnTEMQ99880382vO81PM3lUol+b6f2BaNh5q2Lcr74OBgLK3v+9rf3091bgB3Hz1NAO4N3/flOI4kqVarqVgsqlQqJdLs7++rVqvFAYxlWfGtszAM4zFOlmXFA7odx5FpmjJNU47jqFarqVAoxOkkqVKpyLZtNZtNWZYl3/d1fHysTCajUqmkbDYr27bVaDRkmqZOT0/VarVkGEacdtZ5Adx9TG4JAACQArfnAAAAUiBoAgAASIGgCQAAIAWCJgAAgBQImgAAAFIgaAIAAEiBoAkAACAFgiYAAIAUCJoAAABSIGgCAABIgaAJAAAgBYImAACAFP4/8jTB2IHtPmcAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -575,9 +575,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsaElEQVR4nO3deVhb55k28FvsYAMH4d3xdsjq2EkswFmaLolFk6ZN2jQCuqb92ho1nWmnk7YozHzT1P1mgkW6TGdpIpxmpmm6AEraJF2cSk7TLWkMyE7jOM2ig5d4wwYEGMwmne+PwzlIQhtCQgLu33Vxgc766pVAD+/yvDpZlmUQERERUVQZqS4AERER0XzBwImIiIgoRgyciIiIiGLEwImIiIgoRgyciIiIiGLEwImIiIgoRgyciIiIiGLEwImIiIgoRgycEkSSJFgsFpSUlKCsrCzisWVlZSgpKYHFYoHH45mbAlLacLlcqKqqivo+SSa73Z6ye8819XdTp9OhrKwMTU1NaGpqgtlsRnV19aKqi3iZzWaUlJTA6XSmuihJs1DfJ83NzSgvL091MRYWmRLKarXKgiDInZ2dIfc7HA7ZZDLJdXV1c1yy0Gw227Rt9fX1sslkSkFpFKHKtNA4HA5ZFMUZnZOoemlra5u2ra+vL+L7NpRUv09mymg0hvy9E0VRtlqtKShR7NLhd8JgMMgOhyOmY1Nd3tncf6G9T9xut1xfXz+j322KjC1OCSYIAmpqamCz2ULuT7cWJofDMW1bVVUVamtrU1AaRagyLTR6vX7G5ySqXgRBCLmtrq4OoijGfJ1Uv08SxWw2w2KxpLoYEc2334lUlzcZ95+v7xNRFGE2m0P+3lN8GDglgdlsRmtr67TtHo9nRh9Mydbc3AxJkqZtNxqNMJlMKShR+DItdomsF5fLhaampmnbrVbrjP64pvJ9kkjqc063f2pU8+13ItXlTdb95/P7xOVypdVnz3yXleoCLEQGgwF6vR52uz3gg6WjowNGozHseU1NTRBFEZIkQRRF7VyPx4Pm5maIogiHwwGz2QyDwQAAcDqd2n9Be/bsgSRJkCQJPT09sFqtYe/ldDrhcDggSZL2IVpfXw+XywWLxQJJkuB2u8Peo7e3F52dnbDZbGhuboZer0dLSwsaGhq0skV7XrGWKfg6gDIewX9fJM3NzQGP6+rqol4z3uesnqfX61FdXQ1Aef2ivR7B5fGvq1jrJVr9qgRBgNVqDbiGGuzv2bMn4Pxw9RPr+ySW92K0e83kujOtCwDo7OyEwWAICBrDvQ4Wi0X7D179714tQyzvs1DXi/S8or32oSTq70VTUxMEQZhR62io8oqiqN3TZrNBkiQtSG9ra4Ner8eOHTvg8XjQ1tamlTWeOgtXX3a7HY2NjZAkCW1tbTAajZAkCVVVVRBFETabLWpgMV/fJx6PJ+Z/iNRz1dddFEX09vbCaDSG/J23WCxobm6G1WqN+XkE10tlZeWsX5s5l+q+woVG7WMONf5DHVsSaoyTyWQKGHtiNBq1Pun6+nrZ7XZr+0RRlPv6+rTH6ngZ//EHoihG7dN2OByywWCYtr2zs3Pa+Jtw96ivrw94fsHXi/S8ZlImk8kUcG+32y0bjcYIz05htVqnldH/dYh0zXifc1tbmwwg4DWrr68PeM1D1XGkuopULzOp30iMRmPAtaLVz0zeJ9HKFO9r4X/daHURPHalr69PtlqtssFgCPh9inQd9fV2OBxyZ2en9l6I9j6L9LpGe17hXvtwEvH3or6+PmC8TF9fnwwgpjFOocprs9kCXs9Q9eVf5tnUWbj6CjWuMNSYpcXyPglWV1cX8Lzdbve0cW2h6tBoNAa8V+Kpl1hfm3TBwCnB1DeQ2+2WAWi/aG63W/vDEBw4qccGX0c9xmQyBbwxgz/gOjs7p50ffEwoMwmcwt3D/4+A2+2WBUGI+XnFWqbOzs6A66qiDVZV/9gH/7GzWq0xXTOe5xzuOahlUd8DwXUcra5CXTOe+o3E/w9erPUT6/sk0ntxNq+Fet1Y6sJoNMoGg0G22WzaV3BAF8vrELw/0vss2vViqa+ZfiDO9u+F+nyCxTo4PNL7X2W1WgPeO/7lnW2dRaqv4AkQod6Xi+V9Eq1ssixPC9bC/cMX/LkX7nmEqhdVLK9NumBXXZKIogiDwYDW1lbU1dXB5XJF7KISBCFgqq/b7db6q9va2gAoTa5ql1Fvb++0+/kTBGHaMbMV6h6RptRHe16x6ujoCNlUq3ZFhOv+7OjogCAIAc3Ual2qXRnRrjnT5xyOWo5wYw3iqatE1W8o8da5eoy/aO/FWO8V6bqx1kVFRUVAl0KwWK4TXI5o77OZXm+2v7uz/Xuh1kEiCYIAg8GgDV9Qr6925fiL5zWItc7q6urQ0tICg8EAp9MZ9n28GN4noZ5P8Os+0/dBPPWiivW1SQcMnJLIbDbDZrOhrq4u4htQHTTu/0bx/9nlcqGxsRFVVVWoqalJWn9vqD9isxHtecVapngHY0Y6L90GeM60rtR6mW39RirPXEnEvRJVF7FcJ/h3Odr7LNGvUbTf00T8vYhn1mc4anlra2u1D8aKigqYzWbY7XYYjcaAOkl0nfnXV21tLXbs2AGr1QpJkuK+7kJ4nySK//OKp15UiXpt5gJn1SVRTU0NXC4X7HY7Kioqwh5nMBhCthJ4PB54PB7s2LEDDQ0NWgCmvlETPXPE5XIl9HqRnlesXC6XNlgwmCRJqKysjHj/UPfyeDxxXzNe6msZPHBeNdO6crlcCanfcOayfhJxr0TVRTzXifQ+S8ZrFOn3NBF/L8KVOV5qeU0mE+x2O5xOJwwGA0wmE2w227QWx0TXmX99+U/cmU1wON/fJ+HKFs/9/Fu9ZvM8EvXazAUGTgmmzjYAlMjaaDSipaUlYouT0WhERUXFtMy0ra2tWsuC/weu+kaN9gc0GnXWA6D8UQ33oR7vPSI9r5mUyWAwwGg0BjT/+v8xjnQtk8kUMPXe4/GgtbU17mvG+ofF5XIFHNvY2BgxT1K0ugpVL/HUb6zirZ9QotVZIl6LRNVFvO/ZcO+zeK4XXF8z+T1NxN8LURRRV1cXMPvL4/FMe0+HE6686vAF9W+k+rsQfM3Z1lm0+jKbzdi5c+esUmnM9/dJqLIFv+bq7L1w91DL4N8rMNvfw0S8NnMi1YOsFgq32y3X1dXJAOS6ujptELD/rAl1doYgCFoWWv/BeOpMFv9z1O319fWyw+GQHQ6H7Ha7tYG8nZ2dsslkkgFosxDUexgMhqgD7NRrq4P7Ql0v0j2MRqM2Q0I9pr6+PqbnFWuZgq9js9kCBmjHcj2r1Sq3tbXFfM3ZPGd1kGZbW5vscDhkq9UaMEMk+LxQ5QlVV9HqJdb6DSd4NsxM6ycR78WZvhbB1w1VF263O+LvXaSy+F/H4XDIRqNRFgRBG9AbfE6095n/9Wb6vEK99uHKnoi/F+pzUa9jMBhiHiAerrzqxAz/x8H1mIg6i1Rfan2E2r6Y3ieRno//ax78eqt/z9QymkwmWRTFqL+H0epFlsO/NulGJ8uynIJ4jWjBUvOVdHZ2prooM1JdXY3a2tr0/2+PaBY8Hk/UnHqkKC8vh9VqnbO6mi+vDbvqiBYxtald/TnRs6mI0oF/t5baNUbpYT6+NgyciBaxxsZGmM1mAMqYhkiTGIjmKzXDNZDYGYM0e/PxtWFXHVECOZ1ObemH4GVN0pEkSbDb7doSC+ymo4XI5XKho6MDACLmZ6IpTU1NsFgsMBqN2vdkmI+vDQMnIiIiohixq46I4mY2m1FSUhKQSoDCc7lcqKqqiiv7PBGlBwZORBS3UCuXWywWVFdXz2k5glecT7frqQwGg7bS/UKQrHoiSmcMnIgooaqqqlBbWzun93Q4HGl9PX/zZQBsLJJZT0TpimvVEVFCzfV04ubm5oQuEZLo6y1UrCdarBg4EaUxj8eD5uZmiKIIh8MBs9k8bSmF4O4S/5kpkfY1NTVp3WySJGkzANUEnqIowmw2a60KVqtVO0+dhRfM5XLBYrFAkiRtaQ31egCwZ88ebSmHnp4e7Zrqc7VYLCgvL0dnZyfKyspgMBhgs9m0VeSDOZ1OOBwOSJKkLWXhP5Mx3HMMJ9z1Qj0vdRq11WpFXV2d9jz1er3WVenxeKY9z3DUsqqLs0ab4RjPazuT5wGEf72i1TvRgpbKtOVEFFl9fX3A0gSiKAYsA2G1WgOWJ/Ff4iDSPpPJFLCUgtvtlo1GY8Cx6nILnZ2d2nWCl3Po6+uTAQRcq7OzUxZFMeB5OBwOWRTFgONEUQxYfsN/yZe+vr5p1whHXRoiWLTnONPrqc/Bn9FoDKiPtrY2GUDAa1ZfXy/X1dVpj0PVT/ByN0ajMaBugs3mtY3lecTyeoWrJ6KFjmOciNKYJEkBM9ZEUdQeqy00DQ0N2v6WlhZt0c1w+1wuF5xOZ0CXmiiK6O3t1a4tCAJcLheMRiMMBgOsVis8Hg+ampoCWjYEQYhpMVG9Xg9Jkqbd07+rx263a9cSBCHkIqOxiuU5zlSoFrbgTOtqffgPmG9oaIjYraXm0vJvYaqurobNZgt5/Gxf21ieRyyvF9Fixa46ojSmdlGpS6P09vZqq913dHRAEISADz31eKfTGXaf2vUXTO0OVD8sg49Rrxmv4OsJgqA9F0CZcRZqxfd4dHR0xPQc54L6OrhcrpBlUuvVP6Bzu91hg5RIr3usr20sor1eRIsVAyeiNOZyudDY2IiqqirU1NQEfJgFBxn+4t3nL1SQlMwZYWazGY2NjdizZw+am5vDtrhEo7a4JYo65iiURNzH4/FAFMWAoCZSgJOI1zZR5/mLVE9ECwm76ojSlMfjwY4dO9DQ0IC6ujoIgqB9wEmSFLKFRj0v0j6j0RiyNUOSJFRWVoYtj8FgSHpXzZ49e+B0OmEymeJefkHtYoznOYa7XjixtMB4PB7tNQklXL2GC2aS8domoiUpUj0RLSQMnIjSlNpy4v+Bq37Aqd0+JpNJm9UEKB+era2tEfcZDAYYjcaAriH1Qy/STC5RFFFXVxcwm8vj8cDlcsXVYhF8TmdnJwRBgMlkmlHLhf/YGzWgjPc5hrte8Ha1/KFat4Lro7GxEXV1dWGfk9FoREVFBex2e8D21tbWsOWbzWsb6/MIFqobNVQ9ES10XKuOKI2p08KrqqoAKB9WFosFtbW12gehxWJBaWmpNgjYv6Um2j516Q+32x0w1dxqtaKjowMNDQ3TAhl1qrvalaeW0Wq1Qq/Xo7GxEXa7XVvkWO1u9N/W1NSExsZGiKKo3cNut6O6ulpLdSAIAsxmc0wtT2oZysrKYnqO8V5PDVbU+mhpaYHL5YLVaoXJZNKm8jc0NGjjmgAEpANQ66K+vj6gPGpZ1e7QaAFePK9tLM9DFMWYXq9I9US0kDFwIqKU83g82LlzJ/bs2aN1SUqSpC3fMl8+lNXAqbOzM9VFIaIkYVcdEaVcc3MzzGaz1oqlTuu3Wq0MQogorTBwIqKUMxgMIbODO51OrZuSiCgdsKuOiNKC0+kMyHUU69Ij6UIdG6Z+5xIkRAsTAyciIiKiGLGrjoiIiChGDJyIiIiIYpSyJVfUxSgBoL29XZuGHIq6CKaacE3NokxEREQ0l1IWODmdTm3wZFNTE3bs2BF22nF1dbW2T5Ik7Ny5M+QMnFB8Ph9OnjyJwsJC6HS6xBSeiIiIFgxZljE4OIg1a9YgIyNKZ5ycAp2dnbIgCNpjt9stA5Ddbve0Y91ut2wwGAK2+Z8bzfHjx2UA/OIXv/jFL37xi18Rv44fPx41rkhJi5PBYMCePXu0x+oaSKFWXnc6ndO26/V6uFyumNZGKiwsBAAcP34cRUVFsyg1ERERLUQDAwNYt26dFjNEkrKuOv/cLC0tLTAajSHHLYVbeDLcat6jo6MYHR3VHg8ODgIAioqKGDgRERFRWLEM6Un5rDqPxwO73R7zmCX/80JpbGxEcXGx9rVu3boElJKIiIgoDQIni8UCh8MRdpacIAjTWpd6e3vDHt/Q0ID+/n7t6/jx4wkuMRERES1WKQ2cmpqaYLFYIIoiPB5PyFYko9EY8tyKioqQ23Nzc7VuOXbPERERUSKlbIyT3W6HwWDQgqbW1lbU1dUBUHI8CYIAURS1datUkiShoqIi4XmcvF4vxsfHE3pNovkgOzsbmZmZqS4GEVFIXp+M/V296B4cwYrCPGzfpEdmRurSC6VkrTpJklBWVhawTRAE9PX1AVDyNlVWVmp5niRJgs1mQ2VlJdrb29HQ0BBz4DQwMIDi4mL09/eHbH2SZRmnT58OO2aKaDEQBAGrVq1irjMiSit7D53CrmcO41T/iLZtdXEe7r99M27dsjph94kWK/hb8Iv8RquMU6dOwePxYMWKFSgoKOAHBy0qsixjeHgY3d3dEAQBq1cn7g8REdFs7D10Cvc87kJwkKJ+Sj/0CUPCgqeZBE4p66pLB16vVwuaSktLU10copTIz88HAHR3d2PFihXstiOilPP6ZOx65vC0oAlQMlXqAOx65jCqNq+a8267lM+qSyV1TFNBQUGKS0KUWurvAMf5EVE62N/VG9A9F0wGcKp/BPu7Qud0TKZFHTip2D1Hix1/B4gonXQPhg+a4jkukRg4JYDXJ+NFdw+eOngCL7p74PUlb9iYy+WC2WyGTqeDxWJBc3MzLBYLqqur4XQ6E3af5uZmlJSUwOVyJeyac628vBx2u1173NzcjKqqqrjOJSKiubOiMC+hxyXSoh7jlAhzNeJfZTAYYLVa0dzcHDC70OPxoKSkBJ2dnTGt4RdNXV3djLO5R+LxeBKeQiIaq9UakO/LaDROS28R67lERDR3MjOUcUzhmiF0AFYVK6kJ5hpbnGZBHfEf3A97un8E9zzuwt5Dp+asLGreq5aWljm7Z6wkSUJra+uc3zd4/UNRFMMmVI12LhERzQ3H4TP45A/2a0FT8EAC9fH9t29OST4nBk5+ZFnG8NhETF+DI+O4/+lXw474B4BvPH0YgyPjMV0vEVkhent7p+XHSgdWqzXVRSAionngp/uPwfyjDoxO+HDz5SvwvY9cg1XFgd1xq4rzEpqKYKbYVefnwrgXm7/+bEKuJQM4PTCCrd/4bUzHH/7mLSjIie/l8Hg8aGxshNFoRF1dHZxOJ8xmMywWCwDAZrOhs7MTLpcLTqcToihCkiSYTKaAriuXy4WWlhZUVlYCQMAagU6nExaLBbW1taivr4fdbofFYoHNZtNacfwTlfb29qKmpgYdHR3o6OjQrhWuu8zpdMLlckEURbS3t2vBlsvlgs1mCxibJIoient7I5bH5XJh586dMJvNqKurg8fjgcVigdPphNvt1q4dqj6Cz1Wfu9ls1o51OBwJ7cokIlrMZFnG9/a9iX93vgkAqKm4CA/cuRVZmRn4wFVr0ipzOAOneay5uVkLQtQPdUAJToxGIzo7O2Gz2aDX6yFJkragsqq8vBz79u2DIAjweDyorq7WggoAaGxs1H42Go2ora3VHptMpoBuQY/Hg6qqKnR2dkIQBG3gen19PYxGI8rKyrQldYKpZevs7ASgBGxNTU2oq6vDjh070NXVpXWblZSUYN++fVHLYzAYAvYLggCbzYaSkpKAe4aqj+Bz1fr0D5ba2trgcrkSMp6MiGgxm/D68C9PvYqf7j8GAPjizRfj3qpLtdm+mRk6XF+WPrkWGTj5yc/OxOFv3hLTsfu7evHp/2mPetz//p/KmAav5WfPPOlgXV1d2HE4giBoST1NJhMsFsu0D3lRFLU1AltbW6ft1+tjH3TX2toKURS18jQ0NMR8rhrc+c8KbG9vhyAI08YaJWrAts1mi1gfwUpLSwOSpAqCENAiR0REM3dhzIsv/vQAnK+dgU4HfPODW/DJ6zakulgRMXDyo9PpYu4ue+cly7G6OA+n+0dCjnNSR/y/85LlKWtSjHUGWSIEz5oLF9CFm11nMBgCBm7X1dWhubk5waUkIqJ04Rkew2d/2IHOo33IycrAf3zkmpSNW5oJDg6PU2aGDvffvhlA6kb8R2vx8N9fW1s7Lc+Ty+VCTU0NAGjjgvxJkhTwWBAE9PT0aI+dTqe2OLLJZJp2fqi8UqG2hSqb0+lETU1NxDJFKo8q3OLN0eoj0rlERDQ7JzwXYHr4RXQe7UNRXhYe/+y18yJoAtjiNCu3blmNhz5hmJbHaVUS8zipA7gBZbaa2Wye1uXkdDoDBlsbjUYt/1NTU5M2ALutrU1r/RFFEW1tbbBYLKiqqtJahhobG2G1WiGKImpqarQB1oASbKldXqIowmazwWKxaIPL1RYks9ms5Z4KlQ5ALVvwuYIghCyTKlJ5PB4PWlpaoNfrpw2C979nqPpQ61g9V72Weg9JkrRB66IozmnLHhHRfPe30wP41KP7cWZgFKuL8/DDz2zHpSsLU12smOnkRMyDT2ORVjweGRlBV1cXNm3ahLy8+LOPen1yWo34X8iqqqpgtVrjHpRdUlKCvr6+BJdq/kvU7wIRUSR/kXqw87EODI5M4JIVS/HDz2zHGiE/1cWKGCsEY4tTAqTbiP+FLJ4B2c3NzXC73TCbzcwGTkSUIr9+5RS+/LODGPP6sH2jHnvurkBxQXaqizVjHONE80Zzc7OWK2om44+MRiNKS0tht9ths9mSV0AiIgrphy8cwd/9xIUxrw+3XLkSj312+7wMmgB21bF7ggj8XSCi5JBlGQ8++zq+/7ySI/AT163Hrju2pN1wFnbVERERUUqNe32474lX8ITrbQDAV997Kf7upou1xJbzFQMnIiIiSqjhsQl84ccuPP/6WWRm6NB451bUVK5LdbESgoETERERJUzP+VF85n/b8fLb/cjLzsD3P27AzZevTHWxEoaBExERESXEsZ5h3P3oSzjSM4ySgmz84NOVMKwvSXWxEoqBExEREc3aoRP9+PT/tOPc+VGsFfLx2Ge3o2z50lQXK+GYjmAea25uhsViQXNzM+x2O5xOpzZlP105nU6Ul5fP2Tp05eXlsNvtc3Kv2Qoua3NzM6qqquI6l4hoLv3xzbOotb2Ic+dHccXqIvz8CzcsyKAJYItTYvi8wNEXgPNngKUrgQ03ABmZSb1lVVUVqqurYbVatW0ulwtVVVVwu91JvfdsGI3GkMuuJIvVap03SS+Dy2o0GmNezmU+PU8iWlh+ceAEvtr2MiZ8Mm4oK8XDnyxHUd78zNEUCwZOs3X4aWCvBRg4ObWtaA1wqxXYfEdSbtnU1AQAqKurC9huMBimbUtHpaVzl2V9LoO02Qou60zWwZtPz5OIFo49f5Dwb79+DQDwgatW49s1VyM3K7kNB6nGrrrZOPw00Hp3YNAEAAOnlO2Hn07KbRsbG2E2m0Puq66uTso9iYiIVD6fjH/95WEtaPrMOzbhPz6ybcEHTQADp0CyDIwNxfY1MgD8ph5AqMTrk9v2WpTjYrlejAncJUmCx+MJ2xLh373jcrnQ1NQEu92OpqYmbeyT/zgjdVxUdXU1JEnSzvEPzJxOJ8rKymA2m2G329Hc3Ayz2awte6Lub25uRnNzM8rLy7Xt6v0tFktAOT0eT8C9/YU6L1yZ/a+n7lPPc7lc08ZTzbROwgn33Fwul1ZP6pfL5dKur7YW2u12lJWVwel0auf5l9Xj8cBsNqOsrCxq2YPPnelzISKaidEJL77cchCP/KkLAPBPt12Of/nAFchIs2zgycKuOn/jw8ADaxJ0MVlpidodY8KvfzoJ5CxJ0L2VAMtiscDhcGjbysvLsW/fPm2ckcPhQFtbGwCgra0Ndrsd9fX1MBgMKCsrg8fjgSAIMBqNMJlMKC0thclkAqB88FdXV8PhcGjX6+zshM1mg16v1+7f2dkJQFmct6mpCfX19QCA9vZ27ee2tja4XC4YDIaI54Uqs3pec3MzDAaD1mXV29sLg8GA2traWdWJev1QdRtcxrq6OuzYsQNdXV0QBAEAUFJSol3fvywmkwktLS3a4+CyCoIAm82GkpKSqGUPPncmz4WIaCYGR8bx+cc78ee3epCVocOD1Vfhzm0XpbpYc4qB0zyjtiZJkhTyQ1CSJOj1ethstmn7RVFEa2sr6urqUFpaGjDWSBCEgFYsQRDQ29urBQDqNpXJZEJ1dbUWXAmCoF3PZDLBYrFAr9drLSqAEiypKisrp90LgBZ4hTovVJnV80wmE8rLyyGKImpra0OO9YqnTtTrB18nVBnVINO/nhI1YDta2YPF+lyIiGLVPTiCTz/ajsOnBrAkJxMPfaIc77p0eaqLNecYOPnLLlBafmJx9AXgx6box33crsyyi+XeMaqvr4fNZtNaf/y5XK6Q22Ph/4Efj+DuQ/8WIGD6YPZw4jlPr9ejr68PLpcLLS0tWmtYsoQq41ylWCAimmvS2fO4+9H9eLvvApYtzcH/fHo7tl5UnOpipQTHOPnT6ZTusli+ym5WZs8hXJ+uDihaqxwXy/VmsOihmoIg+INaHXMEALW1tQEtIoASVNXU1IS9rv/50fbb7fZprSv+LRqh7h/8OJR4z2tsbNRa4axWa0C51HLHUyczKWNNTQ1cLlfAdv+cWoIgoKenJ+Cc4DoP9xrEUvZorx8RUTwOHOuD6eEX8XbfBWwoLcAT99ywaIMmgC1O8cvIVFIOtN4NJXjyH9w9GQTdujtp+ZwcDgeamppgsVhQVlYGvV4PAFprkxpANDU1QRRFtLe3o62tDYIgaK0ygDIeRh0Urp7ndDohSRKsVmtAEOJ2u7UPe/V6gBIAOJ1OuFwuiKIIo9Go3d9isWjdckajMey9bTYbRFGM+7zS0lI4nU7o9Xr09vaitrZWO0ev18NkMsVVJ+r1/VvTwpVREAS0tbXBYrGgqqpK68ZU1dTUwGKxaAGQ0WjUuuA8Hk9AWUO13kUru3queq1YngsRUSS/+1s3vvBjFy6Me3HVRcV49NOVWLY0N9XFSimdLMc4nWueGhgYQHFxMfr7+1FUVBSwb2RkBF1dXdi0aRPy8vLiu0HIPE5rlaApSXmcUkEN0OZDnqh0UlVVBavVGveg7JKSEvT19SW4VNMl5HeBiBaU1o7jaHjyFXh9Mt516XI89HEDluQuzPaWSLFCsIVZA3Np8x3A5e+f88zhND/EMyC7ubkZbrcbZrOZ2cCJaM7JsozvP+/Gg8++DgD48La1sJquQnYmR/cAHOOUGBmZwKZ3AltNyvcFFjSpXXHqlHaKjbpuoM1mm9H4I6PRiNLSUtjtdthstuQVkIgoiNcn4+tPvaoFTZ9/dxm+XXM1gyY/7Kpj9wQRfxeICCPjXnz5Zwex99XT0OmAr39gM/7POzalulhzgl11REREFLP+C+PY+VgH9nf1IiczA9+pvRofuCpRCaEXFgZOREREi9ip/gv49KPteP3MIApzs2C7uxw3lC1LdbHSFgMnIiKiRerNM4P41KP7cbJ/BCsKc/HDz2zHFasjd1UtdgyciIiIFqGOI7347A870H9hHOLyJXjsM9txUUnsq1gsVgyciIiIFjivT8b+rl50D45gRWEePMNj+HLLQYxO+LBtvYBHP1WJkiU5qS7mvMDAiYiIaAHbe+gUdj1zGKf6R6btM16xAv/5UQPycxZWGp1kYmKGBPD6vGg/3Y5fS79G++l2eH3epN3L6XTCbDZDp9MFLN8xE83NzSgpKZmTnExzeS9/5eXlsNvtAeWoqqqK61wiovlq76FTuOdxV8igCQDu3LaWQdMMscVplpxHndi9fzfODJ/Rtq0sWIn7tt8H4wZjwu9nNBohiiKam5vR0NAQsBZarOrq6rR15pJtLu/lz2q1BmTdVustnnOJiOYjr0/GrmcOI1yyRh2Af/3Va7h1y2pkZsS+0PxixxanWXAedeLe5+8NCJoAoHu4G/c+fy+cR2feGhQLdUFfCk9ddFelLj4cz7lERPPR/q7esC1NgLI0/an+EezvmvnSUIsZW5z8yLKMCxMXYjrW6/OicX8j5BCxvLpt9/7duHbVtciMYQmW/Kx86HSM+ImIKDG6B8MHTfEcR4qUBU4ulws7d+5EZ2dn1OMAwGAwQJIkeDyeuFeaj+bCxAVc+5NrE3a9M8NncMPPbojp2Jc+9hIKsuObBup0OmGxWGA2myGKIiRJgsPhCOgic7lcaGlpQWVlJYDpi886nU64XC6Iooj29nZYrVbY7XY0NjbC4/HA7XajqakJNpsNZrMZ9fX1Ic+J5V6hyh/uOjabLWBskiiK6O3thcViQW1tLerr62G322GxWGCz2WA0GrX3ltlsRl1dHTwejzYezO12a9d2Op1afZlMJoiiOO3cWOqWiCjdyLKMjiN9MR27opDLLM1ESgInu92ufUhFY7PZ0NzcDEDpQuEH1nRGoxFGozHgA11dkNdgMMDj8aC6uloLGgCgsbFR+1mSJFgsFi2I7e3tRVNTE+rr62E0GrFjxw54PB4IgoDOzk4IghD2nLq6uoj3ChbpOjt27EBXV5fWbVZSUoJ9+/bBaDSitrZWu4bJZEJLS4v22GAwBOwXBAE2mw0lJSUB93Q4HNox5eXl2Ldv37Rzo9UtEVG6OT86AcsTf8Wv/noq4nE6AKuK87B9E4d/zERKAieTyRTzseXl5ejrU6LmZI87yc/Kx0sfeymmYzvPdOIL+74Q9bjv7/g+yleWx3Tv2SgtLUVpaan2WBAEraWntbV12oe8/zgpm80GvV4fMEOvvb1du86ePXtQXl6OtrY27TUId44gCBHvFSzSdYLHGiVqwLbNZptWRlEU0drairq6umnHR6pbIqJ08lb3IMw/6oT77BCyMnT4sGEt2jreBoCAgSXqwJD7b9/MgeEzNC/GOM3VQF2dThdzd9kNa27AyoKV6B7uDjnOSQcdVhasxA1rbohpjFOqGQyGgMHT/gGEGgy1tLQEBByhzlFbB2d773iuQ0S0mD3z8klYnvgrhse8WFWUh//+uAHlG0pw8+UrpuVxWlWch/tv34xbt6xOYYnnp7SfVefxeGC327VxLJIkpbpIAIDMjEzct/0+AEqQ5E99bNluSUrQNNPWDnXcjz//eqytrZ2WD0p97PF44HQ60dbWBkmStPxG4c6Jdq9g4a5TU1MT8TqCIKCnpyfgHI/HE3B88ONI93S5XKipqYl6LhFRuhmb8GHXM6/iiz89gOExL64XS/HLL92I8g3K8IRbt6zGnyw346c7r8P3PnINfrrzOvzJcjODpjilfYtTXV2d1uIkiiKqqqoCxs8EGx0dxejoqPZ4YGAgaWUzbjDiO+/5Tsg8TpbtlqTkcVKDGEAZO6SOx1HH+BiNRkiSpA2sFkURoiiira0NFosFVVVV2nilxsZGWK1WGAwGWK1WWCwWbUC30WhEc3MzrFYrzGYzAKCyshI7d+6EJEmor68PeY4gCBHvFZxLKdy9w11HVVNTE5AA1Gg0al1wHo8HLS0t0Ov12qDvUPdsamrSBqSr3ZDqwHb1XPVakeqWiChVTveP4O9+4kLnUWVIyxfeU4Z7qy5FVmZgu0hmhg7Xl5WGugTNkE6W5XC5sZJ/c50O0W7vPwjX4/GgpKQEbrc77AfWN77xDezatWva9v7+fhQVBa74PDIygq6uLmzatAl5efHPKvD6vHB1u3B2+CyWFyyHYYVhXnTPzTdVVVVaoBePkpISbbwcBUrU7wIRzZ0X3OfwpZ8ewLnzYyjMy8K3q6/Ge69clepizUsDAwMoLi4OGSsES+sWJ5fLhR07dkz7sIs02LihoQH33nuv9nhgYADr1q1LWhkBpduuclVlUu9BM++iBJSlVtxuN8xmM7OBE9GCIMsyHv69hAef/Rt8MnD5qkI8/IlybFy2JNVFWxRSPsYpeCyJy+XSxrKIoqjl9AGUbiqTyRRxsHhubi6KiooCvmj+a25uhiRJsNlsMxp/ZDQaUVpaCrvdDpvNlrwCEhHNgYGRcZh/1AnrXiVo+rBhLX7+hXcwaJpDKemqczqdcDgcWq6gyspKLUVBdXU1KisrUV9fD2AqUaEgCHC73QGBVCwiNb+xe4JIwd8FovT32qkB3PN4J470DCMnMwPfuONKfHT7Oq46kQAz6apL6RinucDAiSg6/i4QpbcnXW/jn37+CkbGfVgr5OOhTxhw1UVCqou1YCyYMU5zZYHHjkRR8XeAKD2NTnjxzWcO48cvHQMAvOvS5fhe7TUoWZKT4pItXos6cMrOzgYADA8PIz9/dpm7ieaz4eFhAFO/E0SUeic8F/CFxzvx8tv90OmAL918Cb604xJm+k6xRR04ZWZmQhAEdHd3AwAKCgrYV0yLiizLGB4eRnd3NwRBQGYm02gQpYM/vHEW//CzA+gbHodQkI3v1l6Dmy5bkepiERZ54AQAq1YpOS/U4IloMRIEQftdIKLU8flk/Nfv3sJ3nW9AloGta4vx/Y8bsE4f23JglHyLPnDS6XRYvXo1VqxYgfHx8VQXh2jOZWdns6WJKA14hsfw5ZaDeP71swCAj25fj/tv34y8bP5+ppNFHzipMjMz+eFBREQpcehEPz7/eCfe7ruA3KwM/OuHtqC6IrnJmyk+DJyIiIhSqKX9GP7lqVcxNuHDen0BHvqEAVeuKU51sSgMBk5EREQpMDLuxdefOoTWjrcBAMYrVuDbNdegOJ+zW9MZAyciIqI5dqxnGPf8uBOvnhxAhg74ynsvwz3vLkMGUw2kPQZOREREc2jfa2fwjy0HMTAygdIlOfiPj27DOy5elupiUYwYOBEREc0Br0/Gdx1v4L9+9xYAYNt6Ad//uAGri5mAeT5h4ERERJRkPedH8Q8/O4g/vXUOAPDpGzbin267AjlZGSkuGc0UAyciIqIkOnCsD3/3YxdO9o8gPzsTu+/aig9eszbVxaI4MXAiIiJKAlmW8fhfjuKbvzyMca8McdkSPPzJcly6sjDVRaNZYOBERESUYMNjE/jnnx/Czw+cAAC8b8sqNJmuQmEeUw3MdzMOnI4cOYK2tjY4HA709fVp2/V6PaqqqmAymbBx48ZElpGIiGjekM6exz2Pu/D6mUFkZujQ8L7L8dkbN3ER+QViRoHTfffdB51Oh5qaGnzta1+btv/AgQN4+OGHodPp0NjYmLBCEhERzQd7D53CV9v+ivOjE1hemIv//pgB2zfpU10sSiCdLMtyLAc++OCDqKurQ3Fx9DTw/f392L17d1oETwMDAyguLkZ/fz+KiopSXRwiIlqAJrw+PPjs67D9QQIAbN+ox399bBtWFOWluGQUi5nECjEHTvMVAyciIkqm7sERfPEnB/BSVy8AoO5dIr52y2XIzmSqgfliJrFC3IPD77vvPlx88cWorq5GdXU1SkpKUFtbiw9/+MPxXpKIiGheaT/Si7/7sQvdg6NYmpuFB01X4X1bV6e6WJREcYfDlZWV+NznPofm5maUl5ejpaUFPT09iSwbERFRWvD6ZLzo7sFTB0/gRXcPJrw+PPJHCR9p/gu6B0dxyYqleOrv38GgaRGIu8WppKQEANDa2oo9e/YAUGbWERERLSR7D53CrmcO41T/iLYtLzsDI+M+AMAdV69B44e3YkkuM/wsBnG/ym63G7Isw+1245prrkFXV1dAegIiIqL5bu+hU7jncReCBwOrQVNtxTrsvmsrUw0sInF31dXU1MDlcqGzsxP9/f2w2WzweDwJLBoREVHqeH0ydj1zeFrQ5O8Pb56Fb0FPsaJgMc2q6+/vR19f34wSWw4MDABAymeycVYdERHF40V3Dz665y9Rj/vpzutwfVnpHJSIkmUmsUJMLU7FxcVwOBx48sknYyrAE088gdbWVgYqREQ0b3UPjkQ/aAbH0cIQ8xinnTt34sCBA6ipqUFZWRkqKyshiiIEQYDH44EkSdi/fz+6urpgNptx1113JbPcRERESTMy7sWzh07HdOyKQia5XEziSoDZ39+P1tZWuN1ueDweCIKAsrIyGI1GbNq0KRnljBu76oiIaCZePdmPf2w5iDfOnI94nA7AquI8/MlyMzIzODh8Pkt6Aszi4mLs3LkzrsIRERGlI69Phu0PbnzX8QbGvTKWLc1FbeVF+P7v3AAQMEhcDZPuv30zg6ZFhkkniIho0TvWM4x7Ww+i46iSVueWK1figTu3onRpLrauLZ6Wx2lVcR7uv30zbt3ChJeLDQMnIiJatGRZRmvHcXzzmcMYGvNiaW4WvnHHlbjLsFbLzXTrltWo2rwK+7t60T04ghWFedi+Sc+WpkWKgRMRES1K586P4r4nXoHztTMAgO2b9Ph29dVYpy+Ydmxmho4pBwgAAyciIlqEHIfP4L4n/oqeoTHkZGbgq7dcis/eKLIViaKKO3M4ADz44IOora0FAOzbt09LeklERJSOzo9OwGL/K3Y+1oGeoTFcvqoQT/39O1D3rjIGTRSTuAOn++67D4IgwGg0AgB27NgBp9OZsIIRERElUseRXrzve39AS8dx6HSA+V0invr7d+CK1UxVQ7GLu6uusrISd911F/bt25fI8hARESXU2IQP33W+Advv3fDJwFohH9+puRrXihyzRDMXd4tTV1cXAASsCN3e3j77EhERESXIG2cG8aH//jMeel4JmkzlF2Hvl9/JoIniFneL07Zt21BRUYHS0lI4HA44nU5YrdZElo2IiCguPp+MR//chaZnX8fYhA/6JTl44M6tuHXLqlQXjea5uJZcUXV1dcFmswEAamtrsW3btoQVLFG45AoR0eJywnMBX219GS9KPQCAmy9fgd13beWachTWTGKFWQVOoW6cbsEJAyciosVBlmX84uAJfP2pVzE4MoH87Ez8ywc246Pb1wUMKyEKlvS16vxv1Nvbqz22Wq146KGHZnNJIiKiGesbGsP//cUh/OqVUwCAbesFfLfmGmxctiTFJaOFJu7A6fOf/zycTicEQdC2dXV1MXAiIqI59fs3zuJrbS+je3AUWRk6fNl4CT7/7jJkZc4qVSFRSHEHTmVlZXj44YcDtu3Zs2fWBSIiIorFhTEvGn/zGh578SgAoGz5Evx77TZsvag4xSWjhSzuwElNfOmvqqpqVoUhIiKKxcHjHtzbchDSuSEAwKdv2Ij73nc58rIzU1wyWujiDpxKSkrwrW99C6IoQhAEeDwetLS0oKWlJZHlIyIi0ox7ffjv372F/3zuLXh9MlYV5eFb1VfjxkuWpbpotEjEHTjV19fD4/EEjHE6cOBAIspEREQ0jXT2PP6x9WW8fNwDALjj6jX4fx/cguKC7NQWjBaVuAOnqqoq7Ny5M2DbE088MesCERER+ZNlGY//5Sj+7devYWTch6K8LPzrnVtxx9VrUl00WoRmNTg8lm3huFwu7Ny5E52dnRGPkyQJdrsdoihCkiTU1dUFtHIREdHCdWZgBF+z/xV/eOMsAODGi5fhweqrsLo4P8Ulo8Uq7sDJ7XbDZrOhsrISgPIfQWtra0zr1amBkMvlinpsdXW1FlxJkoSdO3eira0t3mITEdE88au/nsI//+IVeIbHkZuVgYb3XY67r9+IjAwms6TUiTtwstlsMBqN8E88HmsScpPJFNNxkiQFPBZFEU6nM/ZCEhHRvNN/YRzfePpV/PzACQDA1rXF+G7t1bh4RWGKS0Y0i8DJarVix44dAdtCpSiYDafTCb1eH7BNr9fD5XLBYDAk9F5ERJR6L7jP4autL+Nk/wgydMDf33QxvrjjEmQzmSWlibgDp+CgCVBSFCSSx+MJud1/mZdgo6OjGB0d1R4PDAwktExERJR4I+NePPjs6/jBn7oAABtLC/DtmmtQviGxnytEsxVz4PTkk0/CaDRqi9898sgjAfs9Hg8cDgeeffbZxJYwhHABFQA0NjZi165dSS8DERElxqET/bi39SDeOHMeAPCxa9fjn2+7AktyZ7WcKlFSxNz2+cADD6Cjo0N7/PDDD6Ovr0/7kmUZPT09CS2cIAjTWpd6e3sjzqpraGhAf3+/9nX8+PGElomIiGbO65PxorsHTx08gRfdPfD6ZHh9Mr7//Fu48/t/xhtnzmPZ0lw8+ukKPHDnVgZNlLZifmf6B02Asi7dtm3bArYleoyT0WiEzWabtr2ioiLsObm5ucjNzU1oOYiIKH57D53CrmcO41T/iLZt+dJcFOVnwX1WWTLllitX4oE7t6J0Kf9+U3qb1ZIrqv7+fjidTpSXl8/4OsHZx10uFwRBgCiKEEUx4FhJklBRUcE8TkRE88TeQ6dwz+MuBM+5Pnt+FGfPjyIvKwP/eudW3GVYC52OaQYo/cU9TcE/LUBxcTHuuuuumFMFOJ1OWCwWAMqYJLvdru0LftzW1gaLxQK73Q6bzcYcTkRE84TXJ2PXM4enBU3+ivKzcec2Bk00f+jkWJMvQWlZam1thU6ng8PhQFVVVcD+zs5OPPTQQwkv5GwMDAyguLgY/f392sB2IiJKvhfdPfjonr9EPe6nO6/D9WWlc1AiotBmEivMqKuuuLgYRqMRVqsVbrcbmzZtCthfX18/89ISEdGC1D0wEv0gAN2DsR1Hi5TPCxx9ATh/Bli6EthwA5CRmbLizHiM06ZNm/Dwww9j3759IXM5ERERvdV9Hj/4c1dMx64ozEtyaWjeOvw0sNcCDJyc2la0BrjVCmy+IyVFSmgCTCIiWtz6L4zje8438diLRzDhizwSRAdgVXEetm/SRzyOFqnDTwOtdwPBo+QGTinbax5LSfDEHPZERDRrXp+Mn7x0DDd963k8+ucuTPhkGK9YiW/ecSV0UIIkf+rj+2/fjEwu2kvBfF6lpSnk1ILJbXvvU46bY8wwRkREs/KS1INdzxzG4VPKElcXr1iKr39gM9516XIAwIqi3Gl5nFYV5+H+2zfj1i2rU1JmSnNHXwjsnptGBgZOKMdteuecFQtg4ERERHF6u28Yjb/5G37111MAgKK8LPxj1aX4xHUbAhblvXXLalRtXoX9Xb3oHhzBikKle44tTRTW+TOJPS6BEho4HTlyBBs3bkzkJYmIKM1cGPPi4d+78fDv3Rid8CFDp6wvd2/VZdAvyQl5TmaGjikHKDpZBo6/BHT+T2zHL12Z3PKEMKvA6eDBgwFrydlsNrS0tMy6UERElH5kWcYzfz2F3b9+DScnu92u3aTH/bdfic1rmCePZmFiFDj0JPDSw8CpgzGcoFNm1224IdklmybuwKmmpmbacikHDhxIRJmIiCjNHDrRj13PvIr2I30AgLVCPv75/VfgfVtWMes3xW/wNND+A6WFaeissi0rD9haDSy/HPjt/5080H+Q+OT77dbdKcnnFHfgVFVVhZ07dwZse+KJJ2ZdICIiSh/nzo/iW8++jpaO45BlID87E194Txl2vktEXnbqkhDSPPd2J/DSQ8CrPwd8E8q2wjXA9s8Bhk8DSya7dYX1YfI47Z5/eZzKyspi2kZERPPP2IQPj714BN9zvonBUeWD7YPXrMF977scq4vzU1w6mpcmxoDXngb+8hBwomNq+7rrgGvNwBW3A5nZgedsvgO4/P3zO3O4yu12w2azobKyEoDS993a2or29vaEFY6IiObe717vxv/75WFIZ4cAAFvWFuEbt1+Jio1MVElxOH9W6Ypr/wFw/rSyLTMH2HKXEjCt2Rb5/IzMOU85EEncgZPNZoPRaIT/GsEzWC+YiIjSjHT2PP7fLw/jd68rY02WLc1B/S2Xw1R+ETKYOoBm6uRB4CUbcMgOeMeUbUtXAhWfBSr+D7B0RUqLF6+4Ayer1Tpt2RWj0TjrAhER0dwaGBnHf+57E//zZ2WZlOxMHf7POzbhizdfjMK87OgXIFJ5J4C/PaMETMdenNq+thy49h5g8weBrNApK+aLhK1V99xzz8Hj8WDbtihNbkRElBa8Phn2zuN48NnXce680iJw8+Ur8H/ffwXE5UtTXDqaV4Z6ANcPgfZHlIzeAJCRBVx5J3Dt54GLKlJbvgSaVR6nJ598EpIkAVC66To6OvDhD384IQUjIqLkaT/Si13PvIpDJ5RlUsTlS/AvH9iMmy6bn90nlCKnDym5l15pAyYml9QpWAZUfEb5Klp4S+rEHTjdd9998Hg86O3thSiK8Hg8MJvNiSwbEREl2EnPBez+zd/w9MvK9O7CvCz8w45L8KkbNgYsk0IUls8LvP4bJWA68sep7auuAq67B7jyw0B2XurKl2SzSkewc+dOdHV1QafTYePGjXjuuecSWTYiIkqQkXEvbL+X8NDv38LIuA86HfCRyvX4ynsvxbKluakuHs0HF/oA14+A9j2A55iyTZeppBG49vPA+uuARZAMNe7ASRRFHD16FJs2bcK3vvUtfPWrX01kuYiIKAFkWcavXzmNB379Gk54LgAAtm/U4+u3b8aWtcUpLh3NC91/A/bbgJd/BowPK9vyS4DyTwOVnwOKL0pp8eZa3IGTx+OBKIro6+vDuXPncMstt0AQBNx8882JLB8REcXp8MkB7HrmVbzUpawpuqY4Dw23XYEPXLWay6RQZD4f8OZvle446XdT21dcCVz3eWVJlOzFmQhVJyco+dK+fftQUVGB4uL0+g9mYGAAxcXF6O/vR1ERF6EkooWv5/wovu14Az/bfww+GcjLzsDn310G87vKkJ/DZVIogpF+4OBPlHQCfV3KNl0GcNltSnfcxhsXZHfcTGKFWc2qe/DBB9HR0YGWlhYA4H8wREQpNO714UcvHsW/O9/AwIiyTMoHrlqNhtuuwFphcbYO0CSfN/KyJefeUrrjDv4EGDuvbMsrBgx3K91xJRtTUux0NKtZdWVlZVrSyx07duDJJ59kOgIioiTx+mTs7+pF9+AIVhTmYfsmPTInM3r/4Y2z+OYvD+OtbuVDb/PqInzjjiuxfROXSVn0Dj8deqHcW3YDuUuAvzwMvOWY2rfsMmUplKs/AuQsmfvyprm4A6fKykrcdddd2LdvXyLLQ0REIew9dAq7njmMU/0j2rbVxXn4/LvL8Mc3z8L5WjcAQL8kB1+75TLUVKzTgipaxA4/DbTeDSBoVM7ASaDtbr8NOuDSW5SASbxpQXbHJUrcgVNXl9L36d89197ezhYnIqIE23voFO553BX80YdT/SO4/+lXAQBZGTp86oaN+NKOS1Ccz2VSCEr33F4LpgVNAXTA9jolYCotm6uSzWtxB07btm1DRUUFSktL4XA44HQ6YbVaE1k2IqJFz+uTseuZwxE/+nKzMvD039+Iy1YVzlm5aB44+kJg91xIspKHiUFTzOJOE7tjxw60tbVh27ZtkGUZzc3NTEVARJRg+7t6A7rnQhmd8KF3aGyOSkRp74IHOPBj4Df1sR1//kxSi7PQzGpW3aZNm7B79+5ElYWIiIJ0D0YOmmZ6HC1QY0PKMiiHnlQGentnEEgvXZm8ci1AMbc4fetb34p6zCOPPDKrwhAR0ZRDJ/rxP3/uiunYFYULd20wCmNiFPjbrwD7Z4AHLwae+Czw+q+UoGn55cB7/glYugJAuIHeOqBorZKagGIWc4vTAw88AIfDEfGYjo4OfO5zn5t1oYiIFrO3ugfxHccb+PUrp6MeqwOwqjiPaQcWC+8E0PW80rL02i+B0f6pfSUbgS13AVtMwMrNyrYVV0zOqtMhcJD4ZDB16+7AfE4UVcyB044dO1BaWory8vKwxyQoCTkR0aJ0rGcY/77vDfziwAn4ZGVG+B1Xr4FhfQm+MTl7LsRHH+6/fTNTDyxkPh9w7EXg0BPA4V8Awz1T+wrXAFs+rHytMUxPI7D5DqDmsdB5nG7dreynGYk5cGpra0N/fz86OjoAKHmcgtOS6/X8j4eIaKZO94/gP597Ey3txzHhU0KjW65ciXurLtNmyq0syp2Wx2lVcR7uv30zbt2yOiXlpiSSZeCkC3jlCeDVnwODfkFPQSmw+UNK69L664GMKKNuNt8BXP7+yJnDKWZxr1V34MAB9Pb2QqfTpfVsOq5VR0Tpquf8KB563o0f/eUoRid8AIB3XbocX33vpbjqImHa8ZEyh9MCceZVpWXp0BNA35Gp7blFStqALXcBm94NZM5qbhcFmZO16rZt26b9/Nxzz8HhcKCqqiqtgygionTQf2Ecj/xRwqN/6sLQmBcAsH2jHl9576W4ViwNe15mhg7Xl4XfT/NUj1sZs3ToCeDsa1PbswuAy96nBEtlO4BsTgBIB7MKWQ8ePAibzYaWlhaIooiysjIGTkREYQyNTuB/XzgC2+/d2iK8W9cW46u3XIZ3XbKMC6UvJv1vTwVLpw5Obc/MAS6uUsYsXfY+rhWXhmYcOB05cgRtbW2w2WzQ6XS466670NnZiU2bNiWjfERE897IuBc/fukYHnr+LZw7r+TXuXTlUtxbdRluuXIlA6bF4nw3cPgpJVg69uLUdl0mIL5bmQ13+fuBfCFlRaToYg6cHnnkEdhsNkiShJqaGi1ruL8nn3ySa9UREU0a9/rQ1vE2/vO5N7VB3RtKC/CPxktx+9VrOD5pMbjQp6QNOGQHuv4AyL6pfRveobQsXfFBYOny1JWRZiTmweEZGRkwmUyora2FIAjT/kPq6+vD7t270d7enpSCxouDw4lornl9Mp5++QT+3fkmjvYMAwBWF+fhSzsugan8ImRnxr3aFaWKzxv7rLTR88Abe4FX7MBbTsA3PrVvjUEZs3TlnUDx2rkpO0WVlMHhdXV1aGpqipirqaWlJfZSEhEtMLIs49lXT+M7jjfwxpnzAIBlS3PwhfdcjI9dux552Zz+PS8dfjpMHiTrVB6k8RFlqZNDTwCv7wUmLkwdu+LKqVxLenFuy04JF3PgZDabo0ZhDQ0Nsy4QEdF8I8syfv/GWXz7t2/glRNKJueivCyY312GT9+wEUtyOXV83jr89GTm7aBGg4FTyvZ3fhUYOAH87ZfA6MDUfr04mcX7LiV7Ny0Ycedxmi/YVUdEyfSS1INv//YN7D/SCwAoyMnEZ2/chM+9U0RxfnaKS0ez4vMC/74lsKUpkqK1ky1LdwGrr5mexZvS1pzkcSIiWsxePu7Bt377Ov745jkAQE5WBu6+bgPueU8ZSpfmprh0lBBHX4gtaLrs/cANXwTWXRs9izfNewyciIhm4PXTg/j2b1/Hbw+fAQBkZehQW7kOX7z5EqwqZoLCBcM7AUjPx3bslg8DG65PanEofTBwIiKKwZFzQ/iu8w08/fJJyDKQoQM+tG0tvrzjUqwvLUh18SgRvONKyoDDTwF/+xUwfC6285auTG65KK0wcCIiiuCE5wL+c9+baOt8G97JBXhv27oK91ZdiotXFKa4dDRrE6NKy5IaLI14pvblCYB3DBgfDnOyTpldt+GG5JeT0gYDJyKiEM4OjuK/f/cWfvLSMYx5laSFN122HF9572XYsrY4xaWjWRm/ALy1D3jtaeD13wTOhitYpiymu/mDwMYblf2td0/u9J9LNTnw+9bd4fM50YKUssBJkiTY7XaIoghJklBXVwdBEEIe63K5AAAGgwGSJMHj8cBgMMxhaYlosfAMj8H2Bwn/++cjuDCuLMB7najHV997GSo26lNcOorb2BDw5m+V9AJvPAuMD03tW7pKyce0+YPA+usDA6HNdwA1j4XJ47R7Ko8TLRopC5yqq6vR2dkJQAmidu7ciba2tpDH2mw2NDc3AwCMRmPY44iIIvH6ZOzv6kX34AhWFOZh+ya9tuzJ+dEJ/OCPXXjkjxIGR5UFeK9eJ+Br770M77i4lOvJzUcjA0qQ9NpTwJvOwKSURRcpgdLmO4CLtkeeDbf5DmUNuVgzh9OClpLASZKkgMeiKMLpdIY9vry8HH19fQAQtlWKiCiSvYdOYdczh7U14wBlGZSG912OMwOj+P7zb6FvWFka4/JVhfjKey+D8YoVDJjmmwt9Subuw08B7n3KGCVVyUYlWLrig8Baw8zyLGVkApvemfDi0vyTksDJ6XRCrw9s8tbr9XC5XGG74BgwEVG89h46hXsedwXnfsap/hF86WcHtcfisiX4ctWl+MDW1cjgArzzx1AP8PqvlGBJeh7wTUztK70Y2PwhpdVo1VVMSkmzlpLAyePxhNze29sb9ni73Q4AaG9vh9lshiiGXu9ndHQUo6Oj2uOBgYGQxxHR4uD1ydj1zOFpQZO/TB3wb3duhan8ImRxAd754Xw38NozSrB05E+A7J3at2LzZMvSHcpyJwyWKIHSalZduIDKf+C4KIqoqqqC2+0OeWxjYyN27dqVpBIS0Xyzv6s3oHsuFK8MbChdwqAp3Q2cnAqWjr6AgFluq65SWpWu+CCw/NKUFZEWvpQEToIgTGtd6u3tDdsdJ0mS1oWnzsKTJClkq1NDQwPuvfde7fHAwADWrVuXuMIT0bxy8HhfTMd1D0YOrihFPMeUmXCvPQ0cfylw39pypVVp8x3KorpEcyAlgZPRaITNZpu2vaKiYto2l8uFHTt2aIPDVcFjpFS5ubnIzeU6UUSL2bjXh9++egY/fOGItvhuNCsKuVxKUvm8sc9K63ErgdLhp4GTrsB9666bbFm6HRDWJ7/cREFSEjgFtxRJkoSKigqtxcnlckEQBIiiCFEUYbVatWOdTidMJhMHixPRNGcHR/Gz/cfw45eO4fSA0oKUoVMW4B0Z94U8RwdgVbGSmoCS5PDTYfIgWafyIJ19Q+mCe+0p4PQrU8fpMoD1N0yOWfqAch5RCqVsjFNbWxssFgsqKyvR3t4ekJupsbERlZWVqK+vhyAIqKioQFNTEwRBgNvtZh4nIgpw4FgfHnvxKH7111Nalu9lS3Pw0e3r8fFrN+Dg8T7c87jSchEi9zPuv32zls+JEuzw05OZt4OG5w+cAlo/CWy+Ezj7N+Dsa1P7dJNT/zd/ELj8A8DSFXNaZKJIdLIsR5psMu8NDAyguLgY/f39KCoqSnVxiChBRsa9+NVfT+GxF4/g5bf7te3XrBPw6Rs24n1bVyE3a6orKFwep/tv34xbt6ye07IvGj4v8O9bAluawsnIBsT3TAZL7wcK2AJIc2cmsUJazaojIormpOcCfvzSUfxs/3H0DCnJDXMyM/CBq1fjU9dvxNXrhJDn3bplNao2rwqbOZyS4OgLsQVNN94LvOMfgHwh6UUimi0GTkSU9mRZxktdvfjhC0fw28Nn4PUpDeWri/Pwies24COV61C6NPqkkMwMHa4vK012cRe38QvAsRcB93PAoV/Eds7KKxk00bzBwImI0tbw2AR+fuAEHnvhKF4/M6htv07U49M3bITxipXMvZRqPh/Q/aoSKLl/pwRNEzNM7bB0ZXLKRpQEDJyIKO0c7RnCYy8eRWvHcQyOKMtn5Gdn4k7DWnzq+o24bFVhiku4yA2cAqTfKYGS9Dtg6Gzg/sI1QNnNgPhu4Lf/oqQgCJm7XafMkttww1yUmighGDgRUVrw+WT84c2z+OELR/D8G2ehTlvZUFqAT163AdUV61Ccn53aQi5WY0PKeCX375SWJf8ZcACQvQTYeCNQdpMSMC27dGqZk6y8yVl1OoSc03jr7vD5nIjSEAMnIkqpgZFxtHW8jR+9eARHeoa17e+5bDk+df1GvPvS5Vxwd675fMDpl6cCpeMvAd4xvwN0wJptU4HSRduBrJzQ19p8B1DzWJg8Trun8jgRzRMMnIgoJd44M4gfvnAEPz9wAsNjygKthXlZqC5fh09evwGbli1JcQkXmf63pwKlrt8Dwz2B+4vXTQVKm949s3QBm+9QUgzEmjmcKI0xcCKiOTPh9cH5Wjd++MIRvChNfTBfunIp7r5+I+7cthZLcvlnaU6MDgJH/qwEStLvgHNvBO7PKVSSUJbdDIg3AaVlU91v8ciYTGpJNM/xLxQRJV3v0Bh+1n4MP/7LMZzwXACgLIXy3s2rcPcNG3C9WArdbD6UKTqfFzh5cCpQOv4S4JuY2q/LUBbNVQOliyqATI4pIwrGwImIkuaVt/vxvy8cwTN/PYmxCWUpFP2SHHykch0+ft0GrBXyU1zCeWYmC+UCQN/RqUBJ+j0w4gncX7JxKlDa9C7mUiKKAQMnIpoRr0+OmH17bMKH3xw6hf994QgOHPNo27euLcanbtiID1y1GnnZHNsyY7EslDvSD3T9cTJVwHNArxR4jdxiQHyXEiiV3QToAxdcJ6LoGDgRUcwirfe2bX0JfvzSMfzkpWM4d34UAJCdqcP7t67G3TdsxLZ1Arvj4hVtodwrPwwMnADe7gBk79R+XSawbvtkoHSzMhMuk3/2iWaDi/wSUUz2HjqFex53hUxjCChjliZXQsHKolx8/NoN+Mj2dVhRmDdnZVyQZrJQLgCUXjwVKG28Ecjj3z2iaLjILxEllNcnY9czh8MGTYASNFVuKMGn3rERt1y5CtlcCmX2vBPAgcdiC5qu/yJwbR0grE9+uYgWMQZORBTV/q7egO65cO5972VcRHc2xoaU7rZjf1HWfHu7HRg7H9u5a65h0EQ0Bxg4EVFYE14f/iL14r+ffzOm47sHZ7i462I3dG4qSDr2InDq5cAUAYCynMn4UPRrcaFcojnBwImIAqjB0q9eOYVnXz2N3qGx6CdN4nimCGQZ6OtSAqWjLyjfe0IEpEVrgfXXA+uvU74vuxT4j6uVgeBcKJco5Rg4EVHEYKmkIBvvvXIVHIfPoG9oLNxHN1YVK6kJaJJ3AjhzyK9F6S/A+dPTj1t+BbDh+qlgKVR3261WLpRLlCYYOBEtUhNeH17q6sUv/xo6WLp1yyq8f+saXCfqkZWZgZsuU2bVhfnoxv23bw7I57TojA0DJ/zGJx1vB8YGA4/JyAbWGiaDpOuVVAGxrPnGhXKJ0gbTERAtImqw9KtXTuHZQ6fREyJYum3ralwvliIrxKy4SHmcbt2yek6eQ9oY6pkam3TsL8Cpg9PHJ+UWAeuuVVqSNtyg5FHKnkW29JlmDieimMwkVmDgRLTAxRosXSeWxpRCIFrm8LQWb+Ahy0DfkcBAKXhRXAAoXBPY7bZiMwMbonmAeZyIFrkJrw/7u3rxyzDB0i1XrsL7r4o9WPKXmaGbnykHYlmyROXzTo1PUgdyhxufpA7iVscnMTs60YLGwIlogVCDpV+9cgp7wwRLt21djevLZh4szXsRlyy5G/jwHqBw1eT4pBeijE+aDJTWXRvb+CQimhWvzwtXtwtnh89iecFyGFYYkJnCllwGTkTzmNcn4yWpR5sNd+78VLAkFGTj1sUcLKl8XqWlKeR8wMltT35u+q7cImXwtjqQe61hduOTiGjGnEed2L1/N84Mn9G2rSxYifu23wfjBmNKysTAiWie8fpkvNTVg1/9NXSwdMtmpRtuUQdL/t50xrZkSb4eEN+jBEkbruf4JKIUcx514t7n74Uc9E9P93A37n3+XnznPd9JSfDEwIloHlCDpV9PdsOFCpZuu2o1bljswdLoeeD0X4GTB4GTB5SvUEkmQ3lfE3BVdVKLR0Sx8fq82L1/97SgCQBkyNBBB+t+K25ad9Ocd9sxcCKaY7HOSgsMls7g3PlRbV9x/mQ33GIOlsaGgdOvTAVIpw4CZ19H6C65GBSuSmTpiGgGJnwTOHn+JI4NHsOxgWNoP90e0D0XTIaM08On4ep2oXJV5RyWlIET0ZyKlgdJDap+9crJkMHSLVeuxPuvWrP4gqXxC8DpQ0pwpAZKZ/8GyL7pxxauUfIlrdmmLHy7civwyE1csoQoxcZ94zh5/iSODhzF8cHjODZwDEcHj+L4wHGcPH8SE/JE9IsEOTt8NgkljYyBE9Ec2XtIybwd/NF9un8En3/chXdfuhyvnhwIGSzdtnU13nHxssURLE2MKqkA1ADp5MtA92FA9k4/dulKvyBpG7D6GqAwxGK3XLKEaE6Me8fx9vm3cWzgmNZ6dHzwOI4OHMWpoVPwhvo9npSbmYt1heuwvnA9sjOz8eyRZ6Peb3nB8kQWPyYMnIjmgNcnY9czhyPN68Lv31D+c1pUwdLEGND9auCYpO7XAN/49GMLlikz21ZfMxUoFcWYrZxLltAil8gp/aPeUZwYPIFjg8cCWo+ODR7DqaFT8IVqCZ6Un5WvBUfritZhQ+EGrC9aj3WF67CiYAUydBlaeQ92H0T3cHfIcU466LCyYCUMKwxxPYfZYOBENAf+9NbZgO65cCy3XobP3igiJyuNg6V4s297x5WgyH9M0plXAe/Y9GPz9YEtSWuuAYrWzi655OY7gMvfzyVLaNGJZ0r/yMQI3h58W2s1OjY41YJ0euh0yGBGlZ+Vj/WF67G+aP2078vzl0MXw+9xZkYm7tt+H+59/l7ooAu4n26ypdiy3ZKSfE5ccoUoCXrOj6LzaB86j/ah42gfDh7zwBvDr9r3PnINPnjN2jkoYZxizb7tnVDGIKkB0skDyhgl7+i0SyJPmAqO1ECpeB0zcFNaSbckjLEKN6VfDUa+VvE1rF26FkcHj2rdascGleAokiXZSwKConWF67ChSGk9Ks0rjSk4irX8wUHfqoJVsGy3JDQVAdeq88PAiZJNlmV0nRtCx5E+dBztRcfRPkhnh+K61k93Xpe+y5mEy76tjhvaXqc8VIOkiQvTr5FbDKy5OnBMUslGBkmU1tIxCWOwcd84hseHMTw+jKHxIQxNDGFwbBD3/fE+9I/2x3XNpdlLsb5oPTYUbsC6onUBgZI+T5+w4CiauQhaGTj5YeBEiTY64cWhEwPoPNqL9iN9cB3tC1jeRHXxiqWo3FiC8g16bFsn4OM/eAln+kfCzevCquI8/Mlyc3oumOvzAv++JbZEkqqcQqUVabVfoFSyCchI425IoiCRWmwAxJ2Ecdw7jqHxIQxPTAY640NK4OP/eMIvEAp+PDEUECiN+UJ0ecdoY9FGXFF6hdJi5Nd6JOQKcxYcpRoX+SVKIM/wmNbl1nGkFy+/3Y+xicDBjzlZGbj6omKUb9CjcmMJDOtLULIkJ+CYb9y+Gfc87go3rwv33745PYIm7wTgOQr0uJXkkefeBN7uiC1ouuJDwBXvV4IkfRmDJNLMx66uaEkYAWDXi7swMDaACxMXcGHighbkDI0PRXw8HmoCRALkZORgSfYSFGQXwCt7o3a5AcA9V9+D28TbklKehYiBE5EfWZZxrHcY7Uf60Hm0Fx1H+vBm9/lpx+mX5KB8QwkqNpSgYmMJtqwtRm5W5A+BW7esxkOfMEzL47TKL4/TnBruVYIiNTjqeUv53tcVesB2LDbfDmw1JbacNO+lQ1fXqHcUg2OD2tf5sfMYGB/Qfh4cG8TA2ADOj5/XjjkzdCZiEkYA8Ix6cP8L98ddLv9AZ0n2EhRkFUR8rG7THmf5HZtdgOyMbO3a7afb8ZlnPxO1DKmY0j+fMXCiRW3c68OrJwfQcaR3coxSX0AeJZW4bAkqNpagYoMe5RtLIC5bElcT9q1bVqNq86qYMocnxMSYEghpAdJbU4HShd7w52XlKS1GpWXAsksAnw/483ej329piBxKtKglYr0xWZYxPDEcEPgMjg1icDwoEBqbDIT8gh/1azZdWdFcWnIpNhRtCAhsAoKdyeCmILsAS7KWaPuCA51EM6wwYGXByrSc0j+fMXCieSfWJUtC6b8wDtexPnQe6UP7kV68/LYHI+OB3W7ZmTpsXVuMyo16lG8oQfmGEpQuzU1Y+TPhw/UZh4HMM0DGSgA3AJhFl4UsA+e7p7cc9bwJ9B0NnThSVbQWKL1YCY5KLwGWXax8L14X2M3m8wKvtDD7dorNt+6uWLq6vv7C1/G33r9haHwoICAKDoQi5QaKlQ46LM1eisKcQizNUb4X5hSiMLtw6me/rxODJ/Dtzm9Hve592++b82U/YpHOU/rnMw4Op3kl2pIl/mRZxtt9F5SZbkeU1ACvnxlE8DteKMhG+foSlG8sQeVGPbauLUZedpL+kMQ6nT+UsWGg1z09OOpxA6MD4c/LWaq0HJVeMhkgXTz1PWfJzMreevfkgxCjtGoeYyLJJEp1d5csyxgaH8LA2AD6R/sxMDagfI0OaD9r2ye3dQ934+yFxC2JkaXLQlFuUUDwU5RTpPycvTQw8AkRDC3JXqIlWIyF1+fFLU/cErXFZu9de9M6+JirKf3zGWfV+WHgtHCEW7JEbWv6r49tw3r9ErQf6Z0czN2LMwPTu902lhagfIN+suutBGXLlyJjLgZlR5zODyXwuPwDwMCJ6d1qPW8B/cfDX1uXAQjrA4MjNUAqXJ246f4hA7+18yb79nxrsVElamaX2uUVKdhRf+4f6w/YNjg2GHG5jNm4btV1uHLZldMCnaXZfoFRzlLkZebN+Swvte4BhGyxiXdW3Vybr+/9ucLAyQ8Dp4XB65Nxo/W5iNm3g2erAUBWhg5Xri1G5eQgbsOGEqwozEtqWUOKZTp/RjagywS8ETKM5wnTu9WWXaJM88+eo+cVb+bwFEt1i0281FaPSIOUhVwBXzZ8GefHzwe2Bo0NYHB0UAuQBscG41pI1V9ORg6KcotQlFOE4txiFOUoP4faduL8CTTub4x6zUdveTQtu7pUbLFZ+Bg4+WHgNL+NTnhxvPcCnn31FB589o2ox+dnZ+BasXRytpseV18kID9nDj/UfT5g6KzSajR4SgmUBk4qSSGl38V2jYwsJRAK6FabDJAKSpksMg7JysUTK5/sw/D4MM6Pnw/Iw6Pm7jk/fl772T9nz9D4EE4PnYbULyW0PFkZWSjOKdaCHTXwmbYtxPa8rNgD9IXS1QWwxWahYx4nmldGxr14u28YXeeGcbRnCEd6hnDk3DCO9AzhpOcCfEF/bzPgw/aMv2EFPOiGgP2+y+GDMm6h8cNX4UPbkrRkycSYEgwNnlICowE1MPILkgZPAb5Z/Ed/ywPAdjOQmb6/mvPtAyTaAGUddLDut+KmdTcFPI8x71jIgGZoYghDY0MBSQj9Exhq5/glMrwQKot6gl1WchnKhLKA1p+AFiC/bflZ+XPS5bWQBidnZmSmdasYzZ30/etMC8rIuBfHeodx5NwQjvYMo6tnSAmSzg3jZP+FaQO2/S3JycSypbk42juMWzL24/7sx7BGNzWV/qSsx67xu/GsbztWFsXZXTV6PiggOjEVCKnbhrpjvJgOKFyljC0qWqOMAZoYAVw/BAB4AbjycnE2MxPLvV4YRkan5tStuiqtg6Z07e6a8E3gwsQFLfOy/8+vnHslYjeXDBmnh0/jtieVBIBqS9DEbALgMLJ0WYH5eIKmpy/NXjotZ8/JwZP475f/O+q1LdstafnBbtxgxHfe852Q7xt2ddF8xK66RWo2U/rDGRn34mjP8GSL0RCO9Ey2IJ0bwqmBkYjB0dLcLGwoLcDGZUuwsbQAG0uXYOOyJdhQWoDlS3Phk4F/fuABPDDeBADwL6raIvVP2fX4t3/6p8DnIcvAhb4QAdFkF5raahTrWk6ZOZMB0VqgyC8w0ratUcb9BAc/k2OcnBMe7C4VcCZrav/KiQnc1+OBMasE+PIraTteKBHdXV6fFyPeES2oGR6fDHJC/BwcAF0YvxD22GTm6MnPytfy8vh/+efoiRT4qDl8luYsRU5GzoxbehZKd9d8a6mkxYVjnPwslsBpbGICP3n5eRwbOI31Ravwsavfg5ys0C0Xew+dwjeffhmlXgcKss5heGIZejKr8PU7ro6avfrCmBdHe6cCI+W70ooUaeA2ABTmZmnB0KZlS7ChdDJIWrYEpUuifKD4vLjw4GbkDp+GrJveYpMhAxM5Rciu/BQweHoqSBo8pbT2xCJnqV9AtDawxUjdNosxRs4/NeLet36sfPT5XUM3+Sv4nYs/DuONDXFdO1FkWVZab7wXMDIxgtGJUVzwKsHLl577EvpG+8Kem5+Vj5vW3aQtPeEf4KgB0Eikge8JkKXLQn52vpZZOT8rHxO+CbzRF3183FfKv4LyleXTsjanw4f7QpnZRZSu5kXgJEkS7HY7RFGEJEmoq6uDIAizPjZYMgOn80MD+Lb985BG3kQusnHjmtuRnZOHnvMnsKJoPT70bjNycpTEiWNjo/jF723oHjg2bV8oMzn+wT+24UdvfA9y1lSriW6iGJ+89B/wtXdWBxy799Ap/ODpf8G5lS/iXNZUPpNlEz4sO3M9PnvH/8O7Ll2OI5Pjjbp6hnB0crzRkZ6hkNP7/RXmZWHTsiVKi1FpgRIcTbYi6UMFR+MjwEg/MOKZ/D75daEv8HHPW8DRP8NZkI/dpSUhWmz6YByOMI6koDR065B/kJSXvMA62swoHYCVBavCthrIsoxR7yhGJkYw4h0J+H5h4oK2L+BnNfjx26c+vjBxASNeJTAa8QbuS9aUc38ZugwluMkq0AKd/Kx8LdhRAx//7f7BUKifC7IKkJ05PQvzQmmx4cwuouSZF4FTeXk5Ojs7ASiBkcViQVtb26yPDZaswOkrj9wKR9bbkCO0Piyb8OGjyz4EAPjpuV9MC1Q+uuxDqPvgv007r/mpf475+Af/2IbH3N8EIAe2hMgyAB3uLvu6Fjx5fTI+8917cKD0T2FbPS47dR3a+++M+NyL87O1YGhTSS4uKZ7AxiUTWJc/jkIMQRccBE0LivweeyMHYv6cBfm4d8Wy8C023edgXP0OQHzXVGBUuFr5muFUfa/Pi3HfOMZ945jwTQT+7B0Pv883ru3339fV34W2N6K/Z8uKy5CdmR0YIE3+PNcydBnIy8xDXlYeZFmO2Nqkev+m96N8VXnE4CY/Kx+5mblzmo9nobTYsLuLKDnSPnCSJAnV1dVaMAQAJSUl6Oub/od5JseGkozA6SuP3IrfZr2tPIjwx18nB/1/G+LD/u9LPhgQDDU/9c/4r76nwgYH/sePTUzgHT+8ASOZwyHLoZNl5EwU4Ors/0Tf0ARO9g0gf9VXcS5TF/b4ZV4Zl7jvxOrcCawvGMfa/DGszB5BaeYFFOmGsUQ+j6zRAWCkH/JIPybGh+DV6eAFMKEDvNDBO/l9Qgf4Jr8Hb1cfTwDw6jLgzVmCiZwCeLML4M0pUH7OyoM3Ox/erDyMjQ7g+wOvYjAjdNkhy8iXZdy6+h2YWLJsWuASHPSE3DcZ9EzIEwlZ3iFZsjOytYBG+8oM830G2/Iz85Gblav9nJWRpQU3sS4Wms75eNhiQ0ThpH06AqfTCb1eH7BNr9fD5XLBYDDEfexcOD80AEcMQRMApTVKjUuDjlX3/U/PUzj9myLIkDE2Nornen4BOURwoB7/aM8v8Nx//g0+2YfzGYMYKbyAqdzZ0+8/mn0BvcN1KJKBi0rH8XpW+P9OZZ0OZ7N0yBCfwDHIeEELiJTvWoC0RAfvkkz4dKUASiPWwcwNK1/jUL78e98yIyyVoNPhgk6Hn595McHlmby1LhPZGdnKV2Y2snRZyM5UHmdlZGn71J+zMgO39Y/244WTL0S9z99d/XfYunzrtKAmNzNXa6nJypj7X9uFsFiocYMRN627iS02RDQrKQmcPB5PyO29vdNXa5/JsQAwOjqK0dGp7p+BgQhreMXhu098IWL33DSRjtXpcD4TaOt+fGpblOBgKFOHV4uiD3T191aB2noS2wfEmezZvS0ydBnI1GUiKyMLmbpMZGZkKo91WVM/B+/LyAp5nnpO93A3Xjn3StR737rxVmxZtiVkMBPwc4SgJ3ifWrbZiHWczc6rdqblB/lCycfDXDxENFtplTAmXJA0k2MbGxuxa9euxBQohLOjp4CcxF5z88gYVnp96M7MwKt50S9ePqLDppwinJ0Ywu9zouea+ZBuDbaur8DRPgmPDRyKeny9aMLWyz4YMoAJF/T4P55tkBFKrF1FNZfVpOUH40IIPJiPh4goRYGTIAjTWox6e3tDzpSbybEA0NDQgHvvvVd7PDAwgHXr1s26zKrluasBOdZEiLG5S/w71FR9Ca2O/8CrJ/dEPf428XOoqfoSxtzP47bn70F3ZmbIVjCdLGOl14t/eU8DcsreA+/EGPY+ZsDZDIQ9foUP+Nj1DcjMSnB0OEsLpatovgce7O4iosUu8U0DMTAaQ39AVFRUzOpYAMjNzUVRUVHAVyL9413fVwZqxzqmPsKxOlnG8gkfPvRuMwDgQ+82Y9mETxsIHu34nE3vxL2DsrYv+FgA+MdBGTmb3gkAyMzKQcOlH494/H2XfjztgiZgqsUGmGqhUc2XFhtACTyevetZPHrLo7C+04pHb3kUe+/aOy+CJpXa3XWbeBsqV1WmfZ0TESVSSgInURQDHkuShIqKCq0VyeVyQZKkmI6da0uXFKFq4iLlQZTgyT84CReofGTZh7T8TDk5uVr6gliOR0YmbntvE77d3YMV3sDcOyu8Xny7uwe3vbcpIBO18cYGfOfij2NF0KSxlb70SMAYidpis6JgRcD2lQUr5810coCBBxHRfJbSBJg2mw2VlZVob29HQ0ODFgxVV1ejsrIS9fX1UY+NJpV5nJZP+PCRMHmc1H2x5nGKdDwOP42JvRYcGOvRsmlvy1mGrFt3A5vvCFk278QYXK/8CGcHjmF50XoYtn4yLVuaQmEuGyIiSqS0z+M0lxZD5nAAylpoR18Azp9R1krbcEParnlGRESUThg4+Vksa9URERFRfGYSK6RkjBMRERHRfMTAiYiIiChGDJyIiIiIYpRWmcOTQR3CleilV4iIiGhhUGOEWIZ9L/jAaXBwEAASmj2ciIiIFp7BwUEUFxdHPGbBz6rz+Xw4efIkCgsLoZvJ4rwxUJdzOX78OGfszTHWfWqx/lOHdZ86rPvUSXbdy7KMwcFBrFmzBhkZkUcxLfgWp4yMDFx00UVJvUcylnah2LDuU4v1nzqs+9Rh3adOMus+WkuTioPDiYiIiGLEwImIiIgoRgycZiE3Nxf3338/cnMjLIVCScG6Ty3Wf+qw7lOHdZ866VT3C35wOBEREVGisMWJiIiIKEYMnIiIiIhitODTESSLJEmw2+0QRRGSJKGurg6CIKS6WPOWy+WC0+kEALS3t2PPnj1afUaq63j3UXgWiwUNDQ2s/znkdDohSRJEUQQAGI1GAKz7ZJMkCU6nE3q9HpIkwWQyaa8B6z7xXC4Xdu7cic7OzoDtyajrpL4OMsXFYDBoP7vdbtlkMqWwNPOf1WoN+Nm/fiPVdbz7KLTOzk4ZgNzX16dtY/0nl8PhkOvq6mRZVupJFEVtH+s+ufz/7siyrL0Ossy6T7S2tjbt70uwZNR1Ml8HBk5xcLvdAS+KLMuyIAgpKs3819nZGVB/brdbBiC73e6IdR3vPgqvra1NFkVRC5xY/8nnX9+yrNSd+p11n1zB9eQfwLLukyM4cEpGXSf7deAYpzioTbv+9Ho9XC5Xiko0vxkMBuzZs0d77PF4ACh1Gqmu491HodntdphMpoBtrP/kkiQJvb29EAQBLpcLHo9H6ypi3SefXq9HeXm51mVXVVUFgHU/l5JR18l+HRg4xUH9YA/W29s7twVZQPw/sFtaWmA0GiEIQsS6jncfTefxeEL2/7P+k8vlckGv12tjMZqbm2G32wGw7udCW1sbAKCsrAxtbW3a3yHW/dxJRl0n+3Xg4PAECvdiUew8Hg/sdvu0wYOhjkv0vsWstbUVdXV1MR/P+k+M3t5eSJKk/aNQV1eHkpISyBHS67HuE8fpdMJqtUKSJJjNZgCAzWYLezzrfu4ko64T9TqwxSkOgiBMi1zV5naaHYvFAofDodVlpLqOdx8FcjqdqKmpCbmP9Z9coihq9QVA++5yuVj3SSZJEtrb22E0GlFXVwe3243W1lZIksS6n0PJqOtkvw4MnOKgThUOVlFRMcclWViamppgsVggiiI8Hg88Hk/Euo53H03X2tqK5uZmNDc3Q5IkNDY2wuVysf6TTB3PFArrPrlcLhcqKyu1x6IooqGhgX935lgy6jrZrwO76uIQ/MdOkiRUVFTwv4pZsNvtMBgMWtCkdh0F16l/Xce7jwIF/5Exm80wm80hP9RZ/4kliiIqKiq0MWZqLieDwTDtWNZ9YhkMBthstoDxlT09Paz7OeA/pjLS52m6/v3nWnVxkiQJNpsNlZWVaG9vD0gYSDMjSRLKysoCtgmCgL6+Pm1/uLqOdx9N5/F40NzcDIvFgrq6OpjNZhgMBtZ/knk8HlgsFpSXl6Ozs1NrdQX43k82p9OpdYsCyj8RrPvkcDqdcDgcaGpqQn19PSorK7WgNRl1nczXgYETERERUYw4xomIiIgoRgyciIiIiGLEwImIiIgoRgyciIiIiGLEwImIiIgoRgyciIiIiGLEwImIiIgoRgyciCjpnE4nysrK0NTUhObmZpSXl6O8vFxLuFlWVgaXyzXre6jXJCJKFi65QkRJ5/F44HA4tKzMDocDer0edXV1AIDa2lpIkhRyuYtYGY1G1NbWJqS8c8F/2Qkimj/Y4kRESdfb2xtxQVuDwTBtNfOFTJIktLa2proYRBQHBk5ElHQ1NTUJOWahsFqtqS4CEcWJgRMRJV0sXVIdHR0oLy9HU1MTAMBut6OsrAxOpxPA1Dgps9kMu92O5uZmmM1meDyesNd0Op1oamqC3W6HxWIJe5wkSbBYLNp11Wu6XC7t/KamJkiSpF03WlnV8VZOpxPNzc2orq7W9nV0dMDhcKC5uVm7JhHNDxzjRERpIXiMkslkQktLS8B+k8mE0tJSbVV1u92O6upqOByOaddTg6HOzk4ASnehujK7P4/Hg6qqKnR2dkIQBFgsFjQ3N8NkMsFisQRcu7y8HPv27YuprEajEQ6HA21tbQCAtrY2uFwubV9ZWZk2xouI5g8GTkQ0r/i3XplMJlRXV4ccaG2z2aDX67VWIABob2+fdr3W1laIoqid39DQAABobGycNlhdFEW0trbGFPCUlpaitLQ0oNyLaRwX0ULFwImIFiyDwQCj0ag9DhXwBAddcz3TjbPriOYXjnEiorQhCAJ6enq0x06nc9oYJv/HdrsdRqMxIPBQ99fW1ga0NqnXC2YymablkHI6nSHPd7lc2iD2WMoai1BlIqL0pZNlWU51IYhocXA6nZAkSZtVZrFYUFFRoXWJeTweWCwWbSC1zWaDx+OBzWaDKIqwWCzweDxa91x7ezsaGhogCAJcLhd27twJANizZw8MBgOcTiccDgcqKysBYFqQ5V+uUMc5nU64XC6Iooj29nbU1tbGVFaPxxNQFnW8lcFg0J671WpFeXk5jEZjxFQNRJReGDgR0byhZhnnoGoiShV21RERERHFiIETEc0LTqcTTqdTm9ZPRJQK7KojIiIiihFbnIiIiIhixMCJiIiIKEYMnIiIiIhixMCJiIiIKEYMnIiIiIhixMCJiIiIKEYMnIiIiIhixMCJiIiIKEYMnIiIiIhi9P8BxeSXPmp6xwQAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFnCAYAAABQEsaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB11UlEQVR4nO3deXhb5Zk3/q+824ntYzn7QuJjCBASILIdlkIpWC6ZFmgB2S60pRuRSqfvTIdfx8LTt2XSmdaR25e205kpkmmnC22xJVIKnTZUCm0pFIjtE5YQVh0nZCNOLB/bieNNOr8/js+xdh3JWu37c12+bJ310SPZuv0s96MRRVEEIYQQQgiJKS/TBSCEEEIIyRUUOBFCCCGEqESBEyGEEEKIShQ4EUIIIYSoRIETIYQQQohKFDgRQgghhKhEgRMhhBBCiEoUOBFCCCGEqESBU4rwPA+z2YyqqirU1tZGPba2thZVVVUwm80QBCE9BSRZg+M4NDU1xXyfpJLD4cjYvdNN/t3UaDSora1FZ2cnOjs7YTKZ0NzcvKjqIlEmkwlVVVVwuVyZLkrKLNT3ic1mQ11dXaaLkdtEklIWi0VkGEbs7+8Pu9/pdIoGg0E0Go1pLll4Vqs1ZFtbW5toMBgyUBpJuDItNE6nU2RZNq5zklUvdrs9ZNvw8HDU9204mX6fxEuv14f9vWNZVrRYLBkokXrZ8Duh0+lEp9Op6thMl3c+919o7xO32y22tbXF9btNAlGLU4oxDIOWlhZYrdaw+7OthcnpdIZsa2pqQmtrawZKIwlXpoVGq9XGfU6y6oVhmLDbjEYjWJZVfZ1Mv0+SxWQywWw2Z7oYUeXa70Smy5uK++fq+4RlWZhMprC/90QdCpzSwGQyoaenJ2S7IAhxfTClms1mA8/zIdv1ej0MBkMGShS5TItdMuuF4zh0dnaGbLdYLHH9cc3k+ySZ5Oecbf/UyHLtdyLT5U3V/XP5fcJxXFZ99uSagkwXYDHQ6XTQarVwOBwBHyx9fX3Q6/URz+vs7ATLsuB5HizLKucKggCbzQaWZeF0OmEymaDT6QAALpdL+S+oq6sLPM+D53kMDQ3BYrFEvJfL5YLT6QTP88qHaFtbGziOg9lsBs/zcLvdEe/h8XjQ398Pq9UKm80GrVaL7u5utLe3K2WL9bzUlin4OoA0HsF/XzQ2my3gsdFojHnNRJ+zfJ5Wq0VzczMA6fWL9XoEl8e/rtTWS6z6lTEMA4vFEnANOdjv6uoKOD9S/ah9n6h5L8a6VzzXjbcuAKC/vx86nS4gaIz0OpjNZuU/ePm/e7kMat5n4a4X7XnFeu3DSdbfi87OTjAME1fraLjysiyr3NNqtYLneSVIt9vt0Gq1aGxshCAIsNvtSlkTqbNI9eVwONDR0QGe52G326HX68HzPJqamsCyLKxWa8zAIlffJ4IgqP6HSD5Xft1ZloXH44Ferw/7O282m2Gz2WCxWFQ/j+B6aWhomPdrk3KZ7itc6OQ+5nDjP+SxJeHGOBkMhoCxJ3q9XumTbmtrE91ut7KPZVlxeHhYeSyPl/Eff8CybMw+bafTKep0upDt/f39IeNvIt2jra0t4PkFXy/a84qnTAaDIeDebrdb1Ov1UZ6dxGKxhJTR/3WIds1En7PdbhcBBLxmbW1tAa95uDqOVlfR6iWe+o1Gr9cHXCtW/cTzPolVpkRfC//rxqqL4LErw8PDosViEXU6XcDvU7TryK+30+kU+/v7lfdCrPdZtNc11vOK9NpHkoy/F21tbQHjZYaHh0UAqsY4hSuv1WoNeD3D1Zd/medTZ5HqK9y4wnBjlhbL+ySY0WgMeN5utztkXFu4OtTr9QHvlUTqRe1rkykUOKWY/AZyu90iAOUXze12K38YggMn+djg68jHGAyGgDdm8Adcf39/yPnBx4QTT+AU6R7+fwTcbrfIMIzq56W2TP39/QHXlcUarCr/sQ/+Y2exWFRdM5HnHOk5yGWR3wPBdRyrrsJdM5H6jcb/D57a+lH7Pon2XpzPayFfV01d6PV6UafTiVarVfkKDujUvA7B+6O9z2JdT019xfuBON+/F/LzCaZ2cHi097/MYrEEvHf8yzvfOotWX8ETIMK9LxfL+yRW2URRDAnWIv3DF/y5F+l5hKsXmZrXJlOoqy5NWJaFTqdDT08PjEYjOI6L2kXFMEzAVF+32630V9vtdgBSk6vcZeTxeELu549hmJBj5ivcPaJNqY/1vNTq6+sL21Qrd0VE6v7s6+sDwzABzdRyXcpdGbGuGe9zjkQuR6SxBonUVbLqN5xE61w+xl+s96Lae0W7rtq6qK+vD+hSCKbmOsHliPU+i/d68/3dne/fC7kOkolhGOh0OmX4gnx9uSvHXyKvgdo6MxqN6O7uhk6ng8vlivg+Xgzvk3DPJ/h1j/d9kEi9yNS+NplAgVMamUwmWK1WGI3GqG9AedC4/xvF/2eO49DR0YGmpia0tLSkrL833B+x+Yj1vNSWKdHBmNHOy7YBnvHWlVwv863faOVJl2TcK1l1oeY6wb/Lsd5nyX6NYv2eJuPvRSKzPiORy9va2qp8MNbX18NkMsHhcECv1wfUSbLrzL++Wltb0djYCIvFAp7nE77uQnifJIv/80qkXmTJem1SgWbVpVFLSws4joPD4UB9fX3E43Q6XdhWAkEQIAgCGhsb0d7ergRg8hs12TNHOI5L6vWiPS+1OI5TBgsG43keDQ0NUe8f7l6CICR8zUTJr2XwwHlZvHXFcVxS6jeSdNZPMu6VrLpI5DrR3mepeI2i/Z4m4+9FpDInSi6vwWCAw+GAy+WCTqeDwWCA1WoNaXFMdp3515f/xJ35BIe5/j6JVLZE7uff6jWf55Gs1yYVKHBKMXm2ASBF1nq9Ht3d3VFbnPR6Perr60My0/b09CgtC/4fuPIbNdYf0FjkWQ+A9Ec10od6oveI9rziKZNOp4Nerw9o/vX/YxztWgaDIWDqvSAI6OnpSfiaav+wcBwXcGxHR0fUPEmx6ipcvSRSv2olWj/hxKqzZLwWyaqLRN+zkd5niVwvuL7i+T1Nxt8LlmVhNBoDZn8JghDyno4kUnnl4Qvy30j5dyH4mvOts1j1ZTKZsHPnznml0sj190m4sgW/5vLsvUj3kMvg3ysw39/DZLw2KZHpQVYLldvtFo1GowhANBqNyiBg/1kT8uwMhmGULLT+g/HkmSz+58jb29raRKfTKTqdTtHtdisDefv7+0WDwSACUGYhyPfQ6XQxB9jJ15YH94W7XrR76PV6ZYaEfExbW5uq56W2TMHXsVqtAQO01VzPYrGIdrtd9TXn85zlQZp2u110Op2ixWIJmCESfF648oSrq1j1orZ+IwmeDRNv/STjvRjvaxF83XB14Xa7o/7eRSuL/3WcTqeo1+tFhmGUAb3B58R6n/lfL97nFe61j1T2ZPy9kJ+LfB2dTqd6gHik8soTM/wfB9djMuosWn3J9RFu+2J6n0R7Pv6vefDrLf89k8toMBhElmVj/h7GqhdRjPzaZJpGFEUxA/EaIYuGnK+kv78/00WJS3NzM1pbW7Pvvz1CkkgQhJg59Yikrq4OFoslbXWVra8NddURQhRyU7v8c7JnUxGSDfy7teSuMZIdcuG1ocCJEKLo6OiAyWQCII1piDaJgZBcJWe4BpI7Y5DMXy68NtRVR0gKuVwuZemH4GVNshHP83A4HMoSC9RNRxYijuPQ19cHAFHzM5E5nZ2dMJvN0Ov1yvdUyIXXhgInQgghhBCVqKuOEJI0JpMJVVVVAakESGQcx6GpqSmh7POEkMygwIkQkjThVi43m81obm5OazmCV5zPtuvJdDqdstL9QpCqeiIkm1DgRAhJqaamJrS2tqb1nk6nM6uv5y9bB8AmIpX1REi2oLXqCCEple7pxDabLalLhCT7egsV1RNZLChwIiSHCIIAm80GlmXhdDphMplCllII7i7xn5kSbV9nZ6fSzcbzvDIDUE7gybIsTCaT0qpgsViU8+RZeME4joPZbAbP88rSGvL1AKCrq0tZymFoaEi5pvxczWYz6urq0N/fj9raWuh0OlitVmUV+WAulwtOpxM8zytLWfjPZIz0HCOJdL1wz0ueRm2xWGA0GpXnqdVqla5KQRBCnmckclnlxVljzXBM5LWN53kAkV+vWPVOyIKSybTlhJD4tLW1BSxNwLJswDIQFoslYHkS/yUOou0zGAwBSym43W5Rr9cHHCsvt9Df369cJ3g5h+HhYRFAwLX6+/tFlmUDnofT6RRZlg04jmXZgOU3/Jd8GR4eDrlGJPLSEMFiPcd4ryc/B396vT6gPux2uwgg4DVra2sTjUaj8jhc/QQvd6PX6wPqJth8Xls1z0PN6xWpnghZaGiMEyE5hOf5gBlrLMsqj+UWmvb2dmV/d3e3suhmpH0cx8HlcgV0qbEsC4/Ho1ybYRhwHAe9Xg+dTgeLxQJBENDZ2RnQssEwjKrFRLVaLXieD7mnf1ePw+FQrsUwTNhFRtVS8xzjFa6FLTjTulwf/gPm29vbo3Zrybm0/FuYmpubYbVawx4/39dWzfNQ83oRslhQVx0hOUTuopKXRvF4PMpq9319fWAYJuBDTz7e5XJF3Cd3/QWTuwPlD8vgY+RrJir4egzDKM8FkGachVvxPRF9fX2qnmM6yK8Dx3FhyyTXq39A53a7IwYp0V53ta+tGrFeL0IWCwqcCMkhHMeho6MDTU1NaGlpCfgwCw4y/CW6z1+4ICmVM8JMJhM6OjrQ1dUFm80WscUlFrnFLVnkMUfhJOM+giCAZdmAoCZagJOM1zZZ5/mLVk+E5DLqqiMkRwiCgMbGRrS3t8NoNIJhGOUDjuf5sC008nnR9un1+rCtGTzPo6GhIWJ5dDpdyrtqurq64HK5YDAYEl5+Qe5iTOQ5RrpeJGpaYARBUF6TcCLVa6RgJhWvbTJakqLVEyG5jAInQnKE3HLi/4Erf8DJ3T4Gg0GZ1QRIH549PT1R9+l0Ouj1+oCuIflDL9pMLpZlYTQaA2ZzCYIAjuMSarEIPqe/vx8Mw8BgMMTVcuE/9kYOKBN9jpGuF7xdLn+41q3g+ujo6IDRaIz4nPR6Perr6+FwOAK29/T0RCzffF5btc8jWLhu1HD1RMhCQ2vVEZJD5GnhTU1NAKQPK7PZjNbWVuWD0Gw2o7q6WhkE7N9SE2ufvPSH2+0OmGpusVjQ19eH9vb2kEBGnuoud+XJZbRYLNBqtejo6IDD4VAWOZa7G/23dXZ2oqOjAyzLKvdwOBxobm5WUh0wDAOTyaSq5UkuQ21trarnmOj15GBFro/u7m5wHAeLxQKDwaBM5W9vb1fGNQEISAcg10VbW1tAeeSyyt2hsQK8RF5bNc+DZVlVr1e0eiJkIaHAiRCSdQRBwM6dO9HV1aV0SfI8ryzfkisfynLg1N/fn+miEEKShLrqCCFZx2azwWQyKa1Y8rR+i8VCQQghJKMocCKEZB2dThc2O7jL5VK6KQkhJBOoq44QkpVcLldAriO1S49kC3lsmPydliAhZGGgwIkQQgghRCXqqiOEEEIIUYkCJ0IIIYQQlRb1kis+nw8nTpxAeXk5NBpNpotDCCGEkAwQRRFjY2NYs2YN8vKityllLHCSV+0GgN7eXiVfSzjyauFyZlp5uYlY+2I5ceIE1q9fn4RnQwghhJBcd/ToUaxbty7qMRkLnFwulzLLpLOzE42NjRHzszQ3Nyv7eJ7Hzp07lanK0fbFUl5eDkCqqIqKink9H0IIIYTkptHRUaxfv16JC6LJyKw6juPQ2NiI4eFhAFLAU1tbC7fbHbJ+E8/zAcERAFRVVWF4eDjqPjVGR0dRWVmJkZERCpwIIYSQRSqeeCAjLU46nQ5dXV3KY3mxSHlNJn8ulytku1arBcdx6Ovri7gv3AKTk5OTmJycVB6Pjo7O52kQQgghZJHJ2Kw6/yR23d3d0Ov1YccmRVqh2+PxRN0XTkdHByorK5UvGt9ECCGEkHhkPB2BIAhwOByqxyX5nxfvvvb2doyMjChfR48ejeuehBBCCFncMp6OwGw2w+l0RpwJxzBMSAuSx+MBwzBR94VTXFyM4uLiuMrn8/kwNTUV1zmELBSFhYXIz8/PdDEIISRrZDRw6uzshNlsBsuySitRcNCj1+thtVpDzq2vrwfLshH3JcPU1BQGBgbg8/mScj1CchHDMFi1ahXlOiOEZIzXJ2L/gAeDYxNYUV6C7TVa5Odl5m9SxgInh8MBnU6nBE09PT0wGo0ApFl3DMOAZdmws+zq6+uVFqdI++ZLFEWcPHkS+fn5WL9+fcyEWIQsNKIoYnx8HIODgwCA1atXZ7hEhJDFaO/Bk9j11CGcHJlQtq2uLMGDt27Gji3p/7uUkXQEcvoBfwzDKGkEmpub0dDQoOR54nkeVqsVDQ0N6O3tRXt7e0ACzEj7Yok2/XB6ehrvvvsu1qxZg8rKyvk9YUJy2NDQEAYHB7Fp0ybqtiOEpNXegydx36McggMVua3pR5/SJSV4iicdQUYCp2wRraImJiYwMDCAjRs3orS0NEMlJCTzzp8/j8OHD6OmpgYlJSWZLg4hZJHw+kRcZ3kmoKXJnwbAqsoSPGe+ad7ddvEETtT/FAON6yCLHf0OEEIyYf+AJ2LQBAAigJMjE9g/ED4FUapkfFbdQpdNA9oIIYSQXDE4FjloSuS4ZKEWpxTae/AkrrM8g7u6XsQ/PvYy7up6EddZnsHegydTcj+O42AymaDRaGA2m2Gz2WA2m9Hc3KwsqJwMNpsNVVVV4DguaddMt7q6OjgcDuWxzWZDU1NTQucSQghJvuVL1aUPWlGe3iEENMYpxhinRMd1pGtAWzBBEJT1+uRB8vK2/v7+sEvRJKKpqQkWiyUp1xMEISkzIePhcrkCZmDyPA+e56HX6+M+d6Gb7+8CIYTEy+cT0f6bV9HdeyziMZka40RddSqJoojz015Vx3p9Ih588vWQoAmQ+mQ1AP71yUP4wIXLVL3YpYX58xpnIqd26O7uTlrglCw8z8PlcimpKNIlOEAKl/pC7bmEEEKSx+sT8cDjr8LefwwazH1u+n+myp+ID966Oe3DXyhwUun8tBebv/F0Uq4lAnh/dAJb//WPqo4/9M2bUVY0v5fK4/GEpIDIBhaLBXV1dZkuBiGEkCzg9Yn4Z8cr2MMdR54G+F7rlSguyAvJ47Qqg3mcaIzTAicIAsxmM/R6PYxGI1wuF2pra2Gz2WCz2ZSgheM4dHZ2wuFwoLOzEzzPB1yH4ziYzWY4HA44HI6ApW5cLhfq6urQ2dkJQEpuWltbGzCuiud55XybzQZBEOByudDX1wen0wmbzRZyT//ry2Uzm80BZTKZTEqZHA4HOI6LWR6O41BXVwebzabUkclkCggsI9VH8LnyvWw2G1wuF2w2G5qbmxN4pQghZHGb8fpwf8/L2MMdR36eBv9x1zZ87Mq12LFlNZ4z34Rf77waP/jElfj1zqvxnPmmjARNALU4qVZamI9D37xZ1bH7Bzz47P/0xjzup59rwPYarap7x8tmsyldTyaTSflZr9dDr9ejv78fVqsVWq1WCWqcTqdyfl1dHfbt2weGYSAIApqbm+F2u5X9HR0dys96vR6tra3KY4PBgO7ubuWxIAhoampCf38/GIZRBq63tbVBr9ejtrY2YledXLb+/n4AUstZZ2cnjEYjGhsbMTAwoIw1qqqqwr59+2KWR6fTBexnGAZWqxVVVVUB9wxXH8HnyvXpdDqVhartdjs4jsu6blFCCMlWM14fvtL9Mn736kkU5Gnww7u24e+2zgVG+XkaXFNbncESzqHASSWNRqO6u+z6i5ZjdWUJ3h+ZCDvOSR7Qdv1Fy1PWN2s0GqMunFxdLb0BDQYDzGZzyIc8y7LKMjg9PT0h+7Xa2AGfrKenByzLKuVpb29Xfa4c3Pm3XvX29oJhGOj1+oDnmKw1Cq1Wa9T6CFZdXa3UJxB+YWpCCCHhTXt9+MfHDuD3r72PwnwN/utuHT582apMFysi6qpLgfw8DR68dTOAuQFsskwOaPOndiB0MgTPmgu3zqB8XDg6nU5p2TEajUrLDiGEkNw2NePDl3/F4fevvY+i/Dw8/Km6rA6aAAqcUmbHltX40ad0WFUZOH17VWVJylIR+IvV4uG/v7W1NSTPE8dxaGlpASB1RwXnbAoej8QwDIaGhpTHLpdLCYQMBkPI+eHySoXbFq5sLpcLLS0tUcsUrTyySIFarPqIdi4hhBB1Jme8+NIv+/H066dQVJAH66fr0HjpykwXKybqqkuhHVtWo2nzqrRlDuc4ThnLY7FYYDKZQrqcXC4XXC4XOI4Dy7LQ6/XQ6XSwWCzo7OwEy7Lo7e2F3W5XWoVYloXdbofZbEZTU5PSgtTR0QGLxQKWZdHS0gKz2awEHHq9XunyYlkWVqsVZrMZDQ0Nyn5AGn9lsVhgs9nCTvOXyxZ8LsMwYcski1YeQRDQ3d0NrVYLg8EQ0voWrT7kOpbPla8l34PneXAcB6vVGleKA0IIWUwmpr2479F+/Omt0yguyEPXPfX44KblmS6WKpQAM0UJMEn6zTcpp5w4lASi3wVCSDJNTHth/EU/nn37NEoK8/DjzzTgAxcuy2iZKAEmWZQSGZBts9ngdrthMpmSNricEEJIeOenvNj58z489+4ZlBbm4yefbcia2XJq0RgnsiDIeaCsVmtc44/0ej2qq6vhcDhgtVpTV0BCCFnkxqdm8Pmf9uK5d8+grCgfP/v89pwLmgDqqqOuOkJioN8FQsh8nZucwed+2ov9Ax4sLS7ATz/XgPqN6tPapBp11RFCCCEkK4xNTONz/9OLviPDKC8uwM++sB26C6oyXayEUeBECCGEkJQYnZjGZ36yHwfeE1BRUoBffOEqXLGeyXSx5oUCJ0IIIYQk3cj5adzz45fwyrERVJYW4pf3XoUtayszXax5y9jgcHmx1FgcDgcEQQg74JfjOCUJopw/hxBCCCGZJYxP4VOPSEFTVVkhfrVzYQRNQIYCJ4fDAQCqAp3m5mZUVVWhqqoKGo0GGo1GWfXearWirq4OGo0mYCFbQgghhGTG8Lkp3N31El47PoLqJUX4tfFqXLZmYQRNQIYCJ4PBoCpJoSAIsNvtEEVR+bJYLGhrawMgrVg/PDyM4eFhOJ3OiIvaZpTPCwz8FXjNIX33edNyW5vNBrPZDJvNBofDAZfLpUzZz1Yulwt1dXWw2WxpuV9dXZ0SxGe74LLabDY0NTUldC4hhKTK0NlJ3NX1Ig6dHMWypVLQdMmq6LPUck3Wj3EyGAzKzw6HI+AxgOwMlmSHngT2moHRE3PbKtYAOyzA5ttSdtumpiY0NzfDYrEo2ziOQ1NTE9xud8ruO1/yQr7pYrFYcibpZXBZ9Xq96hbWXHqehJDcdXpsEp985EW8feoslpcX49c7r8KFK8ozXayky+rAyT8oEgQBHo8n4MNCEATlP+ne3t6Y3XWTk5OYnJxUHo+Ojia/0LJDTwI99wAISpM1elLa3vLzlARPcjem0WgM2K7T6UK2ZaPq6vQlQ0tnkDZfwWWNZx28XHqehJDcNDg6gbsfeQnvDp7Fyopi/Grn1ahdvjTTxUqJrA6c/JnN5oAWFEAKDvwXoo3VotLR0YFdu3YlVgBRBKbH1R3r8wJ/aENI0CRdCIBGaoliPwTk5ce+XmEZoFG3MHBHRwe6urrC7mtublZ1DUIIIUSt90cmcHfXi+DPnMPqyhL8eufV2LhsSaaLlTI5ETgJggCXyxXSLcfzvDJWimVZ8DwPnucj/ife3t6O+++/X3k8OjqK9evXqyvE9Djw7TUJlT+UKHXf7VZ57385ARTFfhPyPA9BECI+f/+WB47j4HK5lHozGAxgWRYulwtms1lpveN5Hk6nExaLRXkd3G63sjyJy+WCyWSCXq9HU1MTPB4P+vv7YbFYwDCMst9sNgOQBvT39/fD5XKB4ziwLIve3t6AoFi+j3xvu92u7At3XqQyy+cJgoCenh6wLAtBENDb24vW1lbs3LkTJpNJaYmLt078y+Uv0nPjOA5WqzVgbBLLsvB4PDCbzWhtbUVbWxscDgfMZjOsViv0ej04jgsoqyAIMJvNymsRrezB58b7XAghJJqTI+dxl+1FHB4ax1qmFL/eeTUuqC7LdLFSKicCp76+vpCgieM4NDY2hqxmr9VGTuFeXFyM4uLiVBQxp/A8D7PZDKfTqWyrq6vDvn37lHFG/h+mdrsdDocDbW1t0Ol0qK2thSAIYBgGer0eBoMB1dXVyvgzh8OB5uZmOJ1O5Xr9/f2wWq3QarXK/fv7+wFIi/N2dnYqg/57e3uVn+12OziOg06ni3peuDLL59lsNuh0OiVw9Hg80Ol0aG1tnVedyNcPV7fBZTQajWhsbMTAwIDyXq6qqlKu718Wg8GA7u5u5XFwWRmGgdVqRVVVVcyyB58bz3MhhJBojgtS0PSeZxzrqqSgab12YQdNQBYETvIHsIzjODAME9BqwnFcSEDEsmxAK4XL5YLBYEjdYPHCMqnlR40jfwN+aYh93CcdwIZr1d1bBbnO/Fvi/PE8D61WC6vVGrKfZVn09PTAaDSiuro6YKxR8OvBMAw8Hk9AXfv/bDAY0NzcrLy2DMMo1zMYDDCbzdBqtXC5XMo5vb29ys8NDQ0h9wKgBF7hzgtXZvk8g8GAuro6sCyL1tbWsGO9EqkT+frB1wlXRjnI9K+nZA3YjlX2YGqfCyGERHLUM467ul7EseHzuEBbhl8br8ZapjTTxUqLjAROLpdL+e+4o6MDDQ0NSmuF/FhucZAFdz8xDIP6+np0dnaCYRi43e7UdjdoNKq6ywAAtTdJs+dGTyL8OCeNtL/2JnVjnOLQ1tYGq9UaMvsQkALQcNvVmG9AGvz6+bcAAaGD2SNJ5DytVovh4WFwHIfu7m6lNSxVwpUxXSkWCCEk1d4bkoKm48J5bKyWgqbVlYsjaAIylMdJr9fDYrEoeZn8P8ztdntI0CQHA8F0Oh3a2tpgNBpDBo5nVF6+lHIAABA8qHv28Y7dSQ+aACj1EPxB7Z95vbW1NaBFBJCCqpaWlojXDZe5PdJ+h8MR0rri36IR7v7Bj8NJ9LyOjg6lFU4eexVc7kTqJJ4ytrS0hCR89c+pxTAMhoaGAs4JrvNIr4Gassd6/QghRI2BM+fQansBx4XzYJctQbfpmkUVNAFZ0FW3YG2+TUo5EDaP0+6U5nFyOp3o7OyE2WxGbW2t0s0pB6hyANHZ2akMYLbb7WAYRmmVAaQA138pG51OpwzatlgsAUGI2+1WPuzl6wFSAOA/WFqv1yv3N5vNSrecPAg63L2tVitYlk34vOrqarhcLmi1Wng8HrS2tirnaLVaJSFrvHUiX9+/NS1SGRmGgd1uh9lsRlNTU0gXdUtLizLgWz5H7oITBCGgrOFa72KVXT5Xvpaa50IIIf7cp8/i7q4XcWp0EheuWIpf3XsVVlSUZLpYaacRRTFcX9KiMDo6isrKSoyMjKCiIjCz6cTEBAYGBlBTU4OSknm8MXxeaczT2VPA0pXSmKYUtDRlkhyg5UKeqGzS1NQEi8WS8KDsqqqqkMkRqZC03wVCSM56d3AMd3W9hNNjk7h4ZTkevfcqLC9fOJOtosUDwajFKdXy8oGa6zNdCpKFEhmQbbPZ4Ha7YTKZKBs4ISQt3j41hru7XsSZs1O4ZFU5fnnvVaheunCCpnhlZIwTWTjkrjh5SjtRR1430Gq1xjX+SK/Xo7q6Gg6HI+y4P0IISaY3To7iEzYpaNq8ugK/3nn1og6aAOqqS31XHSE5jn4XCFmcXj8xgk898hKGx6exdW0lfvGF7WDKijJdrJSgrjpCCCGEJOzg8RF88pGXMHJ+GlesZ/Dzz29HZWlhpouVFShwIoQQQojilaMCPv3jlzA6MYNtFzD42ee3o6KEgiYZBU6EEEIIAQBw7w3jMz/ej7HJGdRvqML/fK4B5RQ0BaDAiRBCCCHoO+zBZ/+nF2cnZ7C9Rov/+WwDlhRTmBCMaoQQQghZ5F7ih/C5n/ZifMqLa9hq/Piz9SgrohAhHKqVFPP6vOAGOZweP43lZcuhW6FD/gJLgEkIISR3veAewud/2ovz015cd+EydN1Tj9Ii+pyKhPI4pZDriAs3P34zPv/052H+qxmff/rzuPnxm+E6Ent9tYTu53LBZDJBo9EELN8RD5vNhqqqqrTkZErnvfzV1dXB4XAElKOpqSmhcwkhJJc9/+4ZfO6n+3F+2osPblqORz5DQVMslMcpRXmcXEdcuP/P90NEYPVqZhf5fehDD0G/QZ944SPgeR61tbUYHh4OWAstHvNdCiRb7yVzuVyor69X6ofnefA8D70+9usRfO5iQHmcCFkYvD4R+wc8GBybwIryEkxMe/HFR/sxOePDjRcvx48+VYeSwsUZNFEepxQQRRHnZ86rOtbr86Jjf0dI0ARA2bZ7/25cteoqVd12pQWl0Gg0qu4tL+hLIgsOkOJZ3FZNcEUIIdlm78GT2PXUIZwcmQjZp790Bf7rkzoUFyzOoCleFDipdH7mPK761VVJu96p8VO49rFrVR370t0voaywLGn3JoQQsnjsPXgS9z3KhflXXvKxK9dS0BQHGuO0wLlcLtTV1cFms8HlcsFms6G5uTngGI7jYDab4XA44HA4Qhafdblc6OzshMPhgNlsBgA4HA7U1dWhtrYWANDZ2Yna2lp0dnZGPEfNvcKVP9J1TCaTch2HwwGO45TnK5fD4XCgtrZWGe/FcZxSHwAgCAJMJpPyPORj5Ht2dnaC5/mw56qpW0IIySSvT8Supw5FDJo0AL79+zfg9S3aUTtxoxYnlUoLSvHS3S+pOrb/VD++tO9LMY/778b/Rt3KOlX3TpRer4der4fT6YTdbgcAZUFenU4HQRDQ3NwMt9utnNPR0aH8zPM8zGYz+vv7AQAejwednZ1oa2uDXq9HY2MjBEEAwzDo7+8HwzARzzEajVHvFSzadRobGzEwMKCMNaqqqsK+ffug1+vR2tqqXMNgMKC7u1t5rNPpAvYzDAOr1YqqqqqAezqdTuWYuro67Nu3L+TcWHVLCCGZtn/AE7Z7TiYCODkygf0DHlxTW52+guUwCpxU0mg0qrvLrl1zLVaWrcTg+GDYcU4aaLCybCWuXXNtWlITVFdXo7p67heCYRilpaenpyfkQ95/nJTVaoVWqw2Yodfb26tcp6urC3V1dbDb7UoQE+kchmGi3itYtOvo9fqAAdr19fWxqkEVq9UaUkaWZdHT0wOj0RhyfLS6JYSQTBscixw0JXIcocApJfLz8vHA9gdw/5/vhwaagOBJnlVn3m7OmXxOOp0uYFC0fwAhB0Pd3d0BAUe4c+QurvneO5HrEELIYsSUqVsuZUU5zZhVi8Y4pYh+gx4PfeghrChbEbB9ZdnKlKUiABB3a4derw/JoySP6QGA1tbWkHxQ8mNBEOByuWC328HzvJLfKNI5se4VLNJ1Wlpaol6HYRgMDQ0FnCMIQsDxwY+j3ZPjOLS0tMQ8lxBCssmZs5P4vvPtqMdoAKyuLMH2GpqRrVbGWpw4jsPOnTuV8SvRjgOklgee5yEIgtKyIX9YsywLnudhNBqzKr+OfoMeN66/MW2Zw+UgBpDGDsnjceQxPnq9HjzPg+M4WK1WZRq+3W6H2WxGU1OTMl6po6NDya9ksVhgNpvR0NCgXMdms8FiscBkMgEAGhoasHPnTvA8j7a2trDnMAwT9V7BKQEi3TvSdWQtLS0BCUD1er3SBScIArq7u6HVamEwGCLes7OzEyzLore3V+mG5Dgu4Fz5WtHqlhBCMuGdU2P43E97cWz4PEoL83B+2gcNEDB4RE5y8+Ctm5Gfpy7lDclQAkw52Kmrq0Os25tMJqVrRq/XB4ylqaurUwIveVCvHDiokcoEmCS95ptIs6qqCsPDw0ku1cJAvwuE5JZn3z6Nv/8lh7HJGWyoLsNPPtuAd06NheRxWl1Zggdv3YwdW1ZnsLTZIesTYBoMBtXH1tXVKR9o/q0KwV08LMsmtMQIWRgSGZBts9ngdrthMpmSNricEEIy6dEXj+DBJ1+H1ydi+0YtHv50HbRLilC7fCmaNq8KyBy+vUZLLU0JyIkxTgzDhHTBuVyukBlZWq027euekcyz2WzgeR5WqzWu8Ud6vR7V1dVwOBywWq2pKyAhhKSY1yfi3353CP/3iYPw+kTcsW0tfnHvdmiXFCnH5OdpcE1tNT525VpcU1tNQVOCsn5WnSAIyqDj3t5emEwmsCwb8QMyWsvD5OQkJicnlcejo6NJLSvJDKPRGDZVQCwsy6KtrS0FJSKEkPQ5NzmDf3zsAFxvDAIAvvrhTfj7Gy9UvVQXiU/WB07+A75ZlkVTU1NAAsVg0VocOjo6sGvXrrjuv4jXQCYEAP0OEJLNTo6cxxd+2odDJ0dRVJCHh1quwC2Xr8l0sRa0rO+q8x/LJM+e43k+bKJBj8cTdVZde3s7RkZGlK+jR49GPDY/X5r5NjU1Nb8nQEiOGx8fBwAUFqrLB0MISY/Xjo3gY//5PA6dHMWypUV4zHg1BU1pkNUtThzHobGxMWS2k1arVaaYB4s2yLe4uBjFxcWq7l1QUICysjKcPn0ahYWFyMvL+hiTkKQSRRHj4+MYHBwEwzDKPxOEkMx7+vX38ZXHXsb5aS82rVyKH3+mAeu1tBh8OmQ8cArOwcNxHBiGUfLgWCwWZZ/L5YLBYAg7WJznedTX1yctj5NGo8Hq1asxMDCAI0eOJOWahOQihmGwatWqTBeDEALpH5quv/Lo+MObEEXgg5uW4z/v3oaKEmoRTpeMBE4ul0tZRLWjowMNDQ1KigL5cVtbGxiGQX19PTo7O8EwDNxud0CeJjkJYkNDg5KoMJmKiopw0UUXUXcdWbQKCwuppYmQLDHt9eHrTxzEY73SMJNPX70BD966GQX51COSThlJgJkt4kl4RQghhGTKyPg07vtlP/7mHkKeBvj6LZvx2Ws30sy5JMn6BJiEEEIIUefI0Dl87qe94E+fQ1lRPn541zY0Xroy08VatChwIoQQQrJU72EPjD/vw/D4NFZXluDHn2nA5jXUQ5JJFDgRQgghWeg3B47B7HgNU14fLl9XiUfuqceKClovMtMocCKEEEKyiCiK+J7zbfzHM+8CAHZctgrfa70SpUU0USMbUOBECCGEZImJaS/+2fEqnnrlBADgizfUou3mi5FH68plDQqcCCGEkCxw5uwkjD/vA/eegII8Db59+1a0NKzPdLFIEAqcCCGEkAx7+9QYPv/TXhwbPo+KkgI8/Ok6XFu7LNPFImFQ4EQIIYRk0LNvn8bf/5LD2OQMNlSX4SefbUDt8qWZLhaJgAInQgghJEN+8eIR/OuTr8PrE7F9oxYPf7oO2iVFmS4WiYICJ0IIISTNvD4R3/rfN/CT5wcAAHfo1qLjjq0oLqCZc9mOAidCCCEkjc5NzuAffn0A+94cBAB89cOb8Pc3XkjLp+QICpwIIYSQNDkhnMcXftaHN06OoqggDw+1XIFbLl+T6WKROFDgRAghhKTBa8dG8IWf9WJwbBLLlhbBdk89dBdUZbpYJE4UOBFCCCEptvfg+/hK9wFMTPuwaeVS/PgzDVivLct0sUgCKHAihBBCUkQURdie5bF775sQReCDm5bjP+/ehoqSwkwXjSSIAidCCCEkBaa9Pnz9iYN4rPcoAODTV2/Ag7duRkF+XoZLRuaDAidCCCEkyUbGp3HfL/vxN/cQ8jTA12/ZjM9eu5Fmzi0AFDgRQgghSXT4zDl8/me94E+fw5KifPzw7m246ZKVmS4WSRIKnAghhJAk2T/ggekXfRgen8bqyhL8+DMN2LymItPFIklEgRMhhBCSBL85cAxmx2uY8vpw+bpKPHJPPVZUlGS6WCTJ4g6cDh8+DLvdDqfTieHhYWW7VqtFU1MTDAYDNm7cGPM6HMdh586d6O/vj3mcy+UCAPT29qKrqwsMwyj7AECn04HneQiCAJ1OF+9TIoQQQhLm84n4nutt/PCZdwEAOy5bhe+1XonSIlo+ZSGKK3B64IEHoNFo0NLSgn/+538O2X/gwAE8/PDD0Gg06OjoiHgdh8MBlmWVwCcal8uFtrY2AEBnZycaGxuVYMtqtcJmswEA9Ho97HZ7PE+HEEIIiYvXJ2L/gAeDYxNYUV6Cy9dVwvz4q/jdqycBAF+8oRZtN1+MvDwaBL5QaURRFNUc+J3vfAdGoxGVlZUxjx0ZGcHu3bujBk8AoNFoEO32HMehsbFRadnieR61tbVwu91gWRY2mw0tLS0AoLRCxWN0dBSVlZUYGRlBRQX1QRNCCIls78GT2PXUIZwcmVC2FeZrMO0VUZCnwbdv34qWhvUZLCFJVDzxgOoWp3AtTJFUVlbGDJrU0Ol06OrqUh4LggBA6haUJRIwEUIIIfHYe/Ak7nuUQ/C/+tNeacuXb7qQgqZFIuEsXA888AAeeeQRjIyM4MMf/jBaW1uxZ8+eZJYNAGAwGJSfu7u7odfrlWBJEAQ4HA44HA6YzWbwPB/1WpOTkxgdHQ34IoQQQqLx+kTseupQSNDkr7v3KLw+VR04JMclHDg1NDTg3nvvhc1mQ11dHbq7uzE0NJTMsgWQgyT/cUxGoxEGgwEGgwGtra1oamqKeo2Ojg5UVlYqX+vX038HhBBCots/4Anongvn5MgE9g940lQikkkJB05VVdKKzj09PWhtbQUQ2IWWbGazGU6nM6Brzr+FiWVZ8DwftdWpvb0dIyMjytfRo0dTVl5CCCELw+BY9KAp3uNIbks4j5Pb7YYoinC73bjyyisxMDAQkJ4gmTo7O2E2m8GyrDLOief5gIHjsmjBW3FxMYqLi1NSRkIIIQvTuckZVcetKKecTYtBwi1OLS0t4DgO/f39GBkZgdVqVYKaeASfw3FcQKuRw+GATqdTgqaenh4wDAOWZWGxWJTjXC4XDAYDDRYnhBCSFKIo4pcvHcGDT74e9TgNgNWVJdhek7peF5I9VKUjGBkZwfDwsKrEljJ54HW4aX0ulwtOpxOdnZ1oa2tDQ0ODMgi8ubkZDQ0NaGtrU9IP+GMYRmllkpNjMgwDt9sdEEipLSOlIyCEEBLs3OQMvvab1/DEyycAAFvXVuDgcelzzf9DU87W9KNP6bBjy+r0FpIkTTzxgOo8Tl1dXaiursYdd9wR89jHH38cw8PDuPfee9WVOEMocCKEEBLsnVNjuO+XHN4dPIv8PA3++eaLYbyexR8PvR+Sx2l1ZQkevHUzBU05LiWBEyBlBu/o6EBtbS0aGhrAsiwYhoEgCOB5Hvv378fAwABMJhNuuummeT+RVKPAiRBCiL8nDhxH+57XcH7aixXlxfjhXdtwFVut7A/OHL69Rot8yhKe81IWOMlGRkbQ09MDt9sNQRDAMAxqa2uh1+tRU1OTcMHTjQInQgghADAx7cU3f3cIv3rpPQDAtbXV+MEntmF5OU0oWgxSkjncX2VlJXbu3JlQ4QghhJBs8t7QOL70q34cPD4KjQb4PzdeiH/Ub6KWJBJWwukICCGEkFz39Ovv46v2VzA2MYOqskJ8r/VKfOjiFZkuFsliFDgRQghZdKa9PnTufRNdfx0AAOguYPCfd+uwhinNcMlItqPAiRBCyKJycuQ8/s+vDqDviJTa5gvX1cC84xIUFSSc2pAsIhQ4EUIIWTT++s5p/ONjL8NzbgrlxQX4TvPllEqAxGVe4fV3vvMdZZ26ffv2KUkvCSGEkGzi9Yn4nvNt3POT/fCcm8Lm1RV46v9cR0ETiVvCgdMDDzwAhmGg1+sBAI2NjXC5XEkrGCGEEJIMZ85O4jM/2Y8f7HsHogjctX099nzpWmxctiTTRSM5KOGuuoaGBtx5553Yt29fMstDCCGEJE3vYQ++/CsOp0YnUVqYj2/dvgV36NZlulgkhyXc4jQwIM1E0Gjm8lz09vbOv0SEEELIPImiCNuzbnzC9iJOjU6idvkS/PbLH6Cgicxbwi1O27ZtQ319Paqrq+F0OuFyueJeZJcQQghJtpHxaXzV8Qqch04BAG67Yg067tiKJcU0H4rMX0JLrsgGBgZgtVoBAK2trdi2bVvSCpYOtOQKIYQsLK8dG8GXftWPo57zKMrPw9dv3YxPXXVBQO8IIcFSvlZdtBvnUgBCgRMhhCwMoiji0Zfew789dQhTXh/Wa0vx33fXYeu6ykwXjeSAlK9V538jj8ejPLZYLPjRj340n0sSQgghcTk3OYN/+c1r+O3LJwAA+ktX4v81X4HKssIMl4wsRAkHTl/84hfhcrnAMIyybWBggAInQgghafPOqTHc90sO7w6eRX6eBm03XwzjB1nqmiMpk3DgVFtbi4cffjhgW1dX17wLRAghhKjxmwPH8C97DuL8tBcrK4rxw7t02F6jzXSxyAKXcOAkJ77019TUNK/CEEIIIbFMTHux66lD+PX+9wAAH7iwGj/4xDYsW1qc4ZKRxSDhwKmqqgrf/e53wbIsGIaBIAjo7u5Gd3d3MstHCCGEKI4MncN9j3I4dHIUGg3wf266CP/YeBHy86hrjqRHwoFTW1sbBEEIGON04MCBZJSJEEIICbH34En8s/1VjE3OQLukCN9vvRIf3LQ808Uii0zCgVNTUxN27twZsO3xxx9XfT7Hcdi5cyf6+/ujHsfzPBwOB1iWBc/zMBqNSrAWbR8hhJCFYdrrw+4/vIkfPyetWFG3oQr/efc2rK4szXDJyGI0r8HharaFIwc7HMfFPLa5uVkJrniex86dO2G322PuI4QQkvtOCOfx5V9x4N4TAAA7r69B245LUJif8IphhMxLwoGT2+2G1WpFQ0MDACn5WE9Pj6r16gwGg6p78Dwf8JhlWbhcrpj7CCGE5L6/vH0aX3nsAIbHp1FeUoDvNl+Bmy9blelikUUu4cDJarVCr9fDP/F4EpOQAwBcLhe02sCppVqtFhzHoa+vL+I+nU4X9nqTk5OYnJxUHo+Ojia1vIQQQubP6xPxA9fb+OGf3oUoApetqcB/f1KHDdVLMl00QhIPnCwWCxobGwO2hUtRMB+CIITd7vF4ou6LpKOjA7t27UpCyQghhKTCmbOT+MfHDuD5d4cAAHdfdQG+cctmlBTmZ7hkhEgS7iQODpoAKUVBOkQKmmLta29vx8jIiPJ19OjR5BeOEEJIQvYPePCRH/wVz787hNLCfHyv9Qp8+/atFDSRrKK6xWnPnj3Q6/XK4nePPPJIwH5BEOB0OvH0008nrXAMw4S0IHk8HjAME3VfJMXFxSgupgRphBCSSV6fiP0DHgyOTWBFeQnqN1Thx88P4DtPvwWvT8SFK5biR5/U4aKV5ZkuKiEhVAdO3/72t8EwDG666SYAwMMPP4zW1taAY4aGhpJaOL1eD6vVGrK9vr4eLMtG3EcIISQ77T14ErueOoSTIxPKtuKCPEzO+AAAH79yDb51+1YsKZ7XGvSEpIzqd2ZfX1/A466uLmzbti1gWyJjnIKTaHIcB4ZhwLIsWJYNOJbnedTX1ystTpH2EUIIyT57D57EfY9yCJ5GJAdNd29fj2/dvpUW6CVZbV5LrshGRkbgcrlQV1en6lyXywWn0wlAGrDd0NCgpCiQH7e1tQEA7HY7zGYzGhoa0NvbG5CnKdo+Qggh2cPrE7HrqUMhQZO/P711Gj4RyKe4iWQxjZhgDoFHHnkE9957b8xt2Wx0dBSVlZUYGRlRxm4RQghJvhfcQ7ir68WYx/1659W4prY6DSUiZE488UBcLU4jIyPo6emBRqNRWoz89ff351TgRAghJD3eHzmv6rjBsYnYBxGSQXEFTpWVldDr9bBYLHC73aipqQnYL3evEUIIIbLXT4zgP555V9WxK8pLUlwakpN8XuDI34Czp4ClK4EN1wJ5mUlTEfcYp5qaGjz88MPYt29f2FxOhBBCCACcn/Li+/vexiN/HYDXJ0IDRBzjpAGwqrIE22u0EY4gi9ahJ4G9ZmD0xNy2ijXADguw+ba0FyepCTAJIYQQAHjunTO4+fvPwvoXHl6fiI9sXYXdd2yFBlKQ5E9+/OCtm5GfRyPDiZ9DTwI99wQGTQAwelLafujJtBeJEmUQQghJGs+5Kfz7/x7CHu44AGB1ZQm++bEtaNq8EgBQWVYYksdpVWUJHrx1M3ZsWZ2RMpMs5fNKLU1h2ylFABpg7wPAJR9Na7cdBU6EEELmTRRFPPHycfzb796A59wUNBrgnqs34Ks3X4zykkLluB1bVqNp86qAzOHba7TU0kRCHflbaEtTABEYPS4dV3N92opFgRMhhJB5OeoZx9eeOIhn3z4NALh4ZTk67twK3QXh1y/Nz9NQygES24kD6o47eyq15QiS1MDp8OHD2LhxYzIvSQghJEvNeH34n+cP4yHn2zg/7UVRQR7+4aYLYfxgLYoKEh5CSxa74/3AXx8C3vyduuOXrkxteYLMK3B6+eWXAxbatVqt6O7unnehCCGEZLeDx0fwwJ5XcfD4KADgqhotOu7YCnb50gyXjOQkUQQG/iIFTAN/mdteUALMRMrtpZFm1224Ni1FVIqU6IktLS0h68wdOKCyWY0QQkhOGp+awfdd7+DHz0kpBipKCvC1j16Klvr1tMYciZ/PB7z1v1LAdIKTtuUVAFtbgOu+Apx+S5o9ByBwkPjse23H7rTnc0o4cGpqasLOnTsDtj3++OPzLhAhhJDs9Ozbp/G1J17DUY+UBfyWy1fjG7dupqSVJH7eaeA1O/Dc94Ezb0nbCkoB3T3AtV8GmAukbcsvBlp+HiGP0+6M5HFKOHCqra1VtY0QQkhuGzo7iX//3zfwmwNSioE1lSX499u34KZL0ju2hCwAU+PAgV8Af/shMHJU2lZcCWzfCVz1RWDp8tBzNt8mpRzI1czhMrfbDavVioaGBgDSVNSenh709vYmrXCEEEIyRxRF7OGO49//9xCGx6eh0QCfuWYjvnrzxVhaTJOySRzOC0BvF/Diw8D4GWnbkhXANV8C6r8AlERfWBd5+WlNORBNwu98q9UKvV4PUZzrc/T/mRBCSO56b2gcX3viNfz1HelD7pJV5dh95+W4cj2T2YKR3DJ2Cnjxv4DenwBTY9I2ZgPwgX8ArvwUUJh73bwJB04WiyVk2RW9Xj/vAhFCCMmcGa8Pjzw3gO+73sbEtA9FBXn4x8aLYPwgi8J8SjFAVPIMAH/7D+DALwHvpLRtxWbgun8CLrsDyM/dFsuESx4cND3zzDMQBAHbtm2bd6EIIYSk32vHRmB+/FUcOimlGLi2thrfun0rapYtyXDJSM449Trw3PeAg3sA0SttW7cduP5+4KKbgbzcD77nFfLt2bMHPM8DkLrp+vr6cMcddySlYIQQQtJjfGoGD/3xbfzk+QH4RKCytBD/96OXwlC3jlIMEHXeewl47iHg7b1z22obpYBpwweABfQ+SjhweuCBByAIAjweD1iWhSAIMJlMySwbIYSQFPvzW4P42m8O4rggpRi47Yo1+Matm7FsaXGGS0aynigC7+6TAqYjz89u1ACbPyZ1ya25MpOlS5l5pSPYuXMnBgYGoNFosHHjRjzzzDPJLBshhJAUOXN2Ev/2u0P47ctSbpy1TCn+/eNbcOMlKzJcMpL1fF7g0G+lLrn3X5W25RUCV3wC+MBXgGUXZrR4qZZw4MSyLI4cOYKamhp897vfxVe/+tVklosQQkgKiKIIR/8xfOv3b0AYn0aeBvjcB2pwf9MmLKEUAySamUnglceA538AeNzStsIlQN1ngWv+Hqhcm9HipUvCvyWCIIBlWQwPD+PMmTO4+eabwTAMbrrpJlXn8zwPh8MBlmXB8zyMRmPA8i3+HA6HMmMv+BiOk1K063Q68DwPQRCg0+kSfVqEELJgHT5zDl974jU8/+4QAODS1RXYfcdWXEEpBkg0k2eB/p8CL/wXMDabvbuEkRJWXmUCyrSZLF3aacQkJV/at28f6uvrUVlZqer4uro69Pf3A5CCKLPZDLvdHr6QYQaVWSwWtLW1wWQywWazAZDSIdjt9ogBWLDR0VFUVlZiZGQEFRUxkm8RQkiOmvb60PVXHj9wvYPJGR+KC/LwT02b8IXraijFAIls3AO8ZAX2W4Hzw9K28tXANV+WWpmKF86CzvHEA/Nql/3Od76Dvr4+dHd3Awgf4IQjz8STsSwLl8sV9lhBEGC322EwGJRtnZ2daGtrAyAFYMPD0guqNmAihJDF4pWjAh7Y8xremE0x8IELq/Ht27diQzWlGCARjJ6QWpf6/geYPidt07LS+KUrPgEULO6JA/OaVVdbW6t0oTU2NmLPnj2q0hG4XC5otYFNe1qtFhzHhe1m8w+aHA5HwGNAfcA0OTmJyclJ5fHo6Kiq8wghJNecm5zBd//4Fn72t8PwiQBTVoivf3Qz7tCtpRQDi5XPG329tyE38Pz3gZd/DfimpW2rtgLX3S/NlMvQ2nDZJuHAqaGhAXfeeSf27dsX97mCIITd7vF4Qrb5B0X+6Q/8tzkcDgBAb28vTCZTwH5/HR0d2LVrV9zlJYSQXPKnNwfxf5+YSzHw8SvX4Ou3bEY1pRhYvA49Cew1S61Jsoo1wA4LULVBmiH3+hMAZkfvbPiAFDBd2LigcjAlQ8KB08DAAIDA7rne3t55JcCMFFDJzGYzLBZLwDb/QeUsy6KpqQlutzvs+e3t7bj//vuVx6Ojo1i/fn3C5SWEkEzx+kTsH/BgcGwCK8pLsL1GC8+5KXzzd4fw1CvSh+O6qlJ86/atuGFTmBXnyeJx6Emg5x4oQZFs9ATQ8+nAbZt2SAHTBVelrXi5JuHAadu2baivr0d1dTWcTidcLldIUBMJwzAhrUsejydql5sgCHC5XCHH8DyvdO/JM/R4ng/b6lRcXIziYvqPixCS2/YePIldTx3CyZEJZVtlaSGmvT6MT3mRpwG+cF0N/qlpE8qKKMXAoubzSi1NwUFTsC0GKcv3ysvSUqxclvB0isbGRtjtdmzbtg2iKMJms6lORRBpMeD6+vqI5/T19YVNRRC8Zh6AkPFThBCyUOw9eBL3PcoFBE0AMHJ+GuNTXqyvKsVv//46fO2jmyloItKYJv/uuUjqPktBk0rz+q2qqanB7t274z4vuDWI53nU19crgRHHcWAYJuA4juNCAiKWZQNauVwuFwwGA82uI4QsSF6fiF1PHYradjDjE7F5DaVXIZBam94NP2M9xNlTqS3LAqK6xem73/1uzGMeeeQR1Te22+0wm81wOBywWq0BOZw6OjqUAd/+ggMuhmFQX1+Pzs5O2Gw29Pb2RswFRQghuW7/gCekpSnYyZEJ7B8InWhDFpEz7wKuXcD3tkiz5NRYujKlRVpIVCfA1Gq1aGhoiHpMX18fhoaGklKwdKAEmISQXPKjP78Ly963Yh73g09ciY9duTiWvyCzJkaB138DvPwr4OiLc9tLGCm1wNS5CCdqpNl1X3ltUacbSEkCzMbGRlRXV6Ouri7iMUlKQk4IIcTPmbOT+H9/fBuP7X9P1fEryktSXCKSFXw+4PBfpWDp0G+BGSn9BDR5wIVNwJV3Axf/HfD207Oz6oDAQeKzs+J37F7UQVO8VAdOdrsdIyMj6OvrAyDlcQqOymhQNiGEJM/kjBc/ff4wfvjMuzg7OQMAKCnMw8S0L+zxGgCrKqXUBGQBGz4sJal85VeA4BdML9sEXPlJKbt3+aq57ZtvA1p+HiGP025pP1Et4bXqDhw4AI/HA41Go3o2XbahrjpCSDYSRRFPv34K3/79G3jPMw4A2Lq2Et+4dTOGzk7ivkelxc3DtB3gR5/SYceW1ektMEm9qXNSPqaXfym1MsmKK4AtdwLbPgWsrYuerDJW5vBFLC1r1W3btk35+ZlnnoHT6URTU1POBlGEEJINDh4fwb/97hBemh3gvaK8GG07LsEd29YiL0/6UPzRp3QheZxWVZbgwVs3U9C0kIgi8N6LUrD0+hPA1NjsDg3AfkhqXbr0FqCwVN318vKBmutTVNjFY17pCF5++WVYrVZ0d3eDZVnU1tZS4EQIIQkYHJvA/3v6bfT0H4UoAsUFeTB+kMUXb6jFkuLAP9U7tqxG0+ZVIZnD8/NoaYwFYeQ48MqvpbFLHr+VMKpq5rriGFr1IlPiDpwOHz4Mu90Oq9UKjUaDO++8E/39/aipqUlF+QghZEGbmPbix88N4L//9C7OTXkBALddsQbmv7sEa5nILQn5eRpcU1udrmKSVJueAN78ndS65P4TlI7YwiXAZbdLA703XEvrxmUB1YHTI488AqvVCp7n0dLSomQN97dnz555rVVHCCGLhSiK+P1r76PjD2/g2LA0G+qK9Qy+cculqNtAg7sXBVEETnDAgV8CBx3AxMjcvg3XScHS5o8BxUszV0YSQvXg8Ly8PBgMBrS2toJhmIDFfQFgeHgYu3fvRm9vb0oKmgo0OJwQkgmvHRvBN3/3OnoPDwMAVlWUwPx3F+NjV8yNYyIL2Ngp4NVuqSvu9Btz2yvXA1fcBVx5F6ANXW+VpE5KBocbjUZ0dnZGzdXU3d2tvpSEELLInBqdQOfet/A4dwyAlFrgizfUwvhBltaVW+hmpoC390pdce84AVHqlkVBCXDpbcC2TwIbPwjkJbyELEkT1b+pJpMpZhTW3t4+7wIRQshCMzHtRdezPH70FzfGZ8cx3b5tLdp2XIzVlSpnRJHcdPJVqWXptR5g3G9ljXXbpa64LXcAJZWZKx+Jm+rAKXg8U6LHEELIYiGKIp569SR2//4NnJhNHbDtAgbfuGUztl1QleHSkYSoyYV0bgh4zQ68/Cjw/mtz25eukmbEXflJYPmm9JabJA21DRNCSAq8fFTAN596Hdx7AgBgTWUJHvjIpbj18tUhY0RJjjj0ZITs2xbg4o8A77qkYOmtvdL6cACQXyTt2/YpgL0RyKeP3VxHryAhhCTRyZHz6Nz7Fn5z4DgAoLQwH1/6UC3uvZ5FaRFlac5Zh56cXe8taJzv6Amg59NSd5v/rLjVV0otS1sNQBnNklxIKHAihJAkOD/lhfVZNx7+i1tZS+5O3Tq07bgYKyto0d2c5vNKLU3BQZO/iRGgtHq2K+5uYNWWtBWPpBcFToQQMg8+n4jfvnIcnXvfUpZAadhYha/fshmXr2MyWziSHEf+Ftg9F8mdPwYuvDH15SEZRYETIYQkqP/IML75u0N45agAAFjLlOJfPnIpPrJ1FY1jWghEETj6EvDsd9Udf34o9jEk51HgRAghcTounIflD2/iyVekVoglRfn40o0X4gvX1aCkkMYx5bzTb0vpA17tAYQj6s9bujJ1ZSJZgwInQghR6dzkDB7+ixu2Z3lMzvig0QDNdevw1Q9fjBU0jim3nR0EDj4uZfQ+cWBue9FS4JJbgHedwLgH4cc5aaTZdRuuTVdpSQZR4EQIITH4fCL2HDiOzr1vYnBsEgCwvUaLb9yyGVvWUvLCnDV5Fnjzf6Vgif8TIEqD+pFXANQ2Ape3SKkEisr8ZtVpEBg8zXbJ7tgdms+JLEgUOBFCSBS9hz345lOH8Npxaar5em0pvvaRS3HzZTSOKSd5Z6Qg6dUe4M3fAdPjc/vWNQCXtwKX3Q4sWRZ43ubbgJafR8jjtFvaTxaFjAVOPM/D4XCAZVnwPA+j0QiGYcIey3EcAECn04HneQiCAJ1OF/d1CCHEn9cnYv+AB4NjE1hRXoLtNVrkzy6ye9Qzjt1738T/vnoSALC0uABfvulCfPbajTSOKdeIInCCk4Klg48D507P7dPWSi1LW5uB6tro19l8G3DJR2NnDicLWsYCp+bmZvT39wOQgp+dO3fCbreHPdZqtcJmswEA9Hp9wHHxXIcQQmR7D57ErqcOKSkEAGB1ZQnadlyCd06N4ZHnBjA1O47pEw0X4P6mTVheXpzBEpO4eXjgVbvUFedxz20vWwZsuVNqXVqrA+JpOczLB2quT35ZSc7ISODE83zAY5Zl4XK5Ih5fV1eH4eFhAAhoTYr3OoQQAkhB032PciHDfE+OTOCful9WHl/DVuPrt2zG5jXRFzgnWeTcEPD6Hql16dj+ue0FpVJr0eWtQO2NQH5h5spIclpGAieXywWtNjAFvVarBcdxShdcsHDdb/FeZ3JyEpOTk8rj0dHRBEpPCMllXp+IXU8dipYDGvl5GvzXXdtw8xYax5QTps8Db/1eCpbedQG+GWm7Jg9gPyQFS5d8FCguz2gxycKQkcBJEISw2z0eT8TjHQ4HAKC3txcmkwksy8Z9nY6ODuzatSvu8hJCFo79A56A7rlwvD4RlWVFFDRlM58XOPxXKVg69CQwNTa3b/WV0rilLXcC5asyVkSyMGXVrLpIgZD/gG+WZdHU1AS32x322GjXaW9vx/333688Hh0dxfr16xMtLiEkBw2ORg+alOPG1B1H0kgUgfdfk8YsHXwcGDs5t4+5ANjaIgVMyy/OXBnJgpeRwIlhmJBWIY/HE3E2HM/zStebPHuO5/m4r1NcXIziYhrcSchi5POJ+OOhU/iPZ95RdfyKckpomTWEo8Brdql16fQbc9tLGGDLHVLAtP4qIC8vY0Uki0dGAie9Xg+r1Rqyvb6+PmQbx3FobGxUBofLtFptXNchhCxOkzNePHHgOKzP8uBPn4t5vAbAqkopNQFJEZ839pT+88PAod9KwdKR5+e25xcDF++Qxi1dqAcK6J9hkl4ZCZxYlg14zPM86uvrlZYijuPAMAxYlgXLsrBYLMqxLpcLBoMBDMOEtCwFX4cQsniNTUzjVy+9h588P4BTo9KkkPKSAnz66g3YUF2GBx5/DUDYHNB48NbNSj4nkmSHnoyQRNICbLoZePtpaZ24t58GvFOzB2iAjddJ3XCX3gaUMpkoOSEAAI0oitEml6QMz/OwWq1oaGhAb28v2tvblYCnubkZDQ0NaGtrAyAFUi6XCwzDwO12BwRS0a4Ty+joKCorKzEyMoKKCppuTMhCMDg2gf95/jAeffEIxiak2VUrK4rxhetqcNf2C1BeIk1Dj5TH6cFbN2PHltUZKfuCpyxbEuFjp7AsMJP3istmk1MagMp1aSkiWZziiQcyFjhlAwqcCFk4Bs6cg+1ZHo9zxzA1I605Vrt8CUwfrMXHtq1BcUFodudomcNJkvm8wPe3BLY0hbN0NXBFizRuadWW9JSNLHrxxANZNauOEELi9eoxAQ//xY0/HHwf8r+BugsYfPGGWugvXYm8KIFQfp4G19RWp6mkixz/bOygCQDusALsDakvDyEJosCJEJJzRFHEX985g4f/4sbf3EPK9psuWYEv3lCLho1VlIMpG5wbAt51Am/9QRqzpOqc07GPISSDKHAihOSMGa8Pvz/4Pqx/ceP1E1Lm/4I8DW67Yg2MN7C4ZBV1uWeUKAKDh4C390qB0tH9iDieKZKlK1NSNEKShQInQkjWm5j2wt53FLa/8jjqOQ8AKC3Mxye2r8e917NYy5RmuISL2PQEcPi5uWBp5L3A/au2Apt2ABc2AY7PAqMnET6Y0kiz6zZcm4ZCE5I4CpwIIVlLGJ/Cz184gp/97TCGzklT07VLivCZazbinms2oGpJUYZLuEiNvQ+880fgrb0A/6fAmXAFJUDNDVKupYs+HDgbbodldladBmETQezYHZrPiZAsQ4ETISTrnBDO45G/DuCx3vcwPuUFAKyrKsXO61m01K9HaRF9uKaVKAInX5ltVdoLnDgQuL98jZSDadMOoOaDQFFZ+Otsvg1o+XmEPE67pf2EZDkKnAghWePtU2N4+C9uPPnyCcz4pBaJS1dX4Is3sPjo1tUoyKclNdJmahzg/ywFSu/8MXBdOABYWycFSptuBlZdDqgdjL/5NuCSj8bOHE5IlqLAiRCScb2HPXj4z27se3NQ2XYNWw3TDSxu2LScZsili3AUeOdpaazSwLPAjN9Cx4VLgNobpWDpog8D5fMYxJ2XD9RcP//yEpIBFDgRQjLC5xOx781BPPwXN/qPSGtRajTAjstWwXRDLa5cz2S2gIuBzwsc5+YGdp96LXA/cwGw6e+kVqWN19G6cISAAidCSJpNzfjw25ePw/Ysj3cGzwIAivLzcGfdWuy8ngW7fGmGS7jATYxKA7rfmu2CGz8zt0+TB6y/am680vJL1HfBEbJIUOBECEmLs5MzeGz/e/jxcwPK+nDlxQX45NUb8PkPbMSKipIMlzDH+Lzqxwl5eKlF6e29wOHnAd/03L7iSuDCxtkuuCagTJue8hOSoyhwIoTMS6z13k6PTeJnfzuMn79wGKOzi+6uKC/G56+rwd1XXYCK2UV3SRwOPRlhZppFGnztnQGOvjTXBXfmrcDzqy+cHdi9A7jgaiCfXgNC1KLAiRCSsL0HT2LXU4eUFiQAWF1Zggdv3YxLV1fA9iwPR/8xTM4uussuWwLjB1ncrlsbdtFdosKhJ2dzIQUlkRw9CfR8GrjgGmDwDWBCmNuXVyC1SG3aAVx0M7DswnSWmJAFRSOKYpz58BeOeFZDJoQE2nvwJO57lIu4oIZ/isMr10uL7jZtXhnQGkXi5PMC39+ibrHcUq00+23TzVJXXEll6stHSI6KJx6gFidCSNy8PhG7njoUdRUyEcANm5bhvg9diKtqtJRSIBlef0Jd0PR33wEavkC5kQhJAQqcCCFx2z/gCeiei+SLN1yIq9nqNJRogTo7KOVTkr+GB9SdV6aloImQFKHAiRASl6kZH/a9cUrVsYNjsYMr4ue8ABx5fi5QGjwUdEAeAF/s6yydR3JKQkhUFDgRQmISRRGvHBvBHu4YnnrlBIbHp2OfBGBFOaUYiGrqHPDeC3OB0slXADEoMFq1VVo0t+YGYP124EfXSAPBw3aUaqTZdRuuTUfpCVmUKHAihER0bHgcTxw4jj0HjoM/fU7ZvmxpEc5PeXFudgHeYBoAqyql1ATEz8wkcKwPGPiLFCgd6wvMqQQAyzZJC+XWfBDYeH1oXqUdltlZdf7D7zH7GNJiudRNR0jKUOBECAkwNjGNP7z2PvYcOIYXeY+yvaQwDzsuW4XbdevwgdpquN44hfse5QCE/fjGg7duphl03hmpFUkOlN57EZg5H3hM5QUA+0GpRWnj9UDF6ujX3Hwb0PLzCHmcdkv7CSEpk7F0BDzPw+FwgGVZ8DwPo9EIhmHCHstxHFwuFwCgt7cXXV1dyrEcJ/3h1ul04HkegiBAp9OpKgOlIyBEMuP14bl3z2APdxxPv/6+kndJo5EW271921r83dbVWFoc+L9WtDxOO7bECAAWIp9PGpckd70deR6YHA08ZsmKuRalmg8CVRsTW9YknszhhJCociIdQXNzM/r7+wFIQdTOnTtht9vDHutyudDW1gYA6OzsRGNjo3Ku1WqFzWYDAOj1+ojXIISEOnRiFHu4Y3ji5RM4c3ZS2V67fAnu0K3Dx7etxVqmNOL5O7asRtPmVVEzhy9ooigtZzLwF4D/C3D4r8D4UOAxJZVSS1LNDVKgtPzi5Kz/lpcP1Fw//+sQQuKSkRYnnucDAicAqKqqwvDwcMixHMehsbFR2cfzPGpra+F2u8GyLGw2G1paWgAgYotVJNTiRBajU6MT+O3Lx7GHO4433x9TtmuXFOG2K9bgDt1abF1buTjyLiXSajNyLDBFwOjxwP2FZdJ15BalVZdTSxAhWS7rW5xcLhe02sABj1qtFhzHhXSz6XQ6dHV1KY8FQVCOl6kNmCYnJzE5Ofdf9ejoaJSjCVk4xqdm8MfXT2HPgeN47p3T8M3+u1SUnwf95hW4fds63LBpOYoK8jJb0HSKtd6b7Oxp4LBfoOThA6+TXwSs2w6wsy1Ka3RAQVF6ngMhJO0yEjjJwU8wj8cTdrvBYFB+7u7uhl6vV4IlQRDgcDgASOOfTCYTWJYNe52Ojg7s2rUr8YITkkN8PhEvDgxhD3ccf3jtZMAMuPoNVbhdtxa3bF2DyrJFuMBr1PXe7gE+8BVgZmI2l9Lrgcdo8qTgSG5RWn8VUFSWrpITsih5fV5wgxxOj5/G8rLl0K3QIT9DLblZNasuUkDlv9/hcAR08fkPKmdZFk1NTXC73WHPb29vx/333688Hh0dxfr16+ddbkKyybuDY9jDHccTB47jhN+g7fXaUtyxbR1u37YWG5ctyWAJM8znlVqawuZBmt32/PcCN6/cOhcobbiG1n0jJI1cR1zYvX83To3PJd5dWbYSD2x/APoN+rSXJyOBE8MwIa1LHo8nZpeb2WyG0+kMOI7neaV7T56hx/N82Fan4uJiFBcXz7v8hGSbobOTeOqVE9hz4DhePTaibC8vKcAtl6/Bnbq1qNtQtTjGLUUjisDrv1G33tumvwOuaJUGdi9ZlvqyEUJCuI64cP+f74cY9I/O4Pgg7v/z/XjoQw+lPXjKSOCk1+thtVpDttfX10c8p7OzE2azGSzLKi1TPM8HDByXBY+fImQhmpj24pk3B7GHO4Y/v3UaM7MDlwryNPjQxctx+7Z1aLx0BUoKF/HA5OnzwIkDwNH9wLFe6eusuuVisNUAXHZ7astHCInI6/Ni9/7dIUETAIgQoYEGlv0W3Lj+xrR222UkcApuDeJ5HvX19QG5mRiGUY5zOBzQ6XRK0NTT0wOj0QiWZWGxWJTruFwuGAyGuGfXEZJpXp+oakq/KIroPzKMx7nj+N9XT2B0YkbZd/m6StyxbS1uvWINqpcuwpZVUQSGD0vZuI/tl4KlUwcB30zgcZq80GVNwqH13ghJu/HpcQyMDmBgZADPH38+oHsumAgR74+/D26QQ8OqhrSVMWNjnOx2O8xmMxoaGtDb2xuQf6mjowMNDQ1oa2tTUhf4YxhGGdtUX1+Pzs5OMAwDt9tNeZxIzlGTRPLI0Dn85sBx/ObAcRwZGg847uPb1uKObWtx0crytJc9o6bOSa1Jx3qBo71SsHTudOhxS1cB6xuAdQ3S7LdVW4H/aqD13gjJEFEUcWr8FAZGBua+RgdweORw1EApktPjYX7vUyhjmcOzAeVxIpm29+BJ3PcoF/LxLbc13bX9Arx9agx9R+a6o5cU5WPHltW4U7cWV7HViyPZpCgCwwNzAdKxXuD9g4AYtFZeXiGw+nIpQFpXLy2KW7k+NOGkMqsOCLtgTMvPaekSQuZpYmYCR0aP4PDo4YAg6fDoYZwPXnrIj7ZEi5rKGiwpXIJnjz0b8z4/ufkn825xyvo8ToQQqXtu11OHos3twq/2vwcAyNMAH7hwGe7UrcOHL1uJsqIF/qs7eXa2NWn/bLDUC4yfCT2ufLXUkrR+uxQsrb4CKCyJfX1a740sQqmY0i+KIoYmhpSAyD9AOnH2RNjxSQBQoCnAuvJ1qKmsUb42VmxETWUNKosrlfLe/PjNGBwfDHsdDTRYWbYSuhXqlllLlgX+15eQ7LV/wBPQPRfJJ69aj39o3ISVFSoCgkyY75pp8rIlx3pnB3HvB04dCm1Nyi+SAqN1DXPBUsXaxJcv2XwbcMlHab03sijMd0r/tG8aR8eOzrUajRxWxiKNTY1FPK+8qFwKjCpqAoKkdeXrUJgXPYdcfl4+Htj+AO7/8/3QQBMQPGlmW4fN281pz+dEXXXUVUfS7NzkDHoPe/CLF49g3xuDMY//wSeuxMeuXJuGkiVAbfZtf5NngeP9s11ufbOtSUOhx1WsDQySVl2urjWJEBIg0pR+Ofjwn9I/MjkSMO5IDpKOjR3DjDgTcm35OmuXrpVajSo3BgRK2hLtvNOghAv6VpWtgnm7OWmpCOKJByhwosCJpNj5KS/6jwzjBf4MXnAP4dVjI0rqADV+vfNqXFNbncISJihS9m3/cUKX3goMuedmuR3rkzJxB89qyy8CVl852+U2GyxVZmmwSBa1bMpgrYbc3RVt0HVpQSkuqboER8aOwDMRfgUP+Til1ahiLkjaULEBxfmpncmb6nqnMU6EZNDEtBcH3hPwAj+EF91DOHB0GNPewOBiXVUprq7RwvnGIEbOT4e9jgbAqkopNUHWUZN9e8+9QEEpMCGEHlKxbnam2/bZ1qStQMEiTKFAckq2ZLD2iT6cnzmPs1NncW76HM5On8XZ6dmf/badmz4HfoSPOVPt/Mx5HDh9QHm8smxl2LFHK8tWZiyJbn5eflpTDkRDgRMh8zQ148MrxwS84B7CC+4hcO8NY3ImsEVldWUJrmGrcXVtNa5hq7FeK61tJs+qA8LO7cKDt27OzllzR56PnX17ZlL6yi8G1mybm+W2rkHqziMkhyQjg/WMbwbnps8FBDbBgc7Z6bNht52bmnt8bvpcxEHXifrExZ/A7Rfdjo0VG1FWSGsvRkNdddRVR+I04/Xh1eMjeME9hBf5IfQdHsb56cCBzMvLi3ENW41rZgOlDdVlEf9TU5PHKWNEETg7CJx+Axh8Ezg9+3XyFWB6PPb5N35NWjC3oCjlRSW5I9e6u2a8M7h5jzS7K5IlhUtwC3tLSEuQ//doU/ATka/Jx9KipVhauBRLCpcEfi+SvgsTAp5wPxHzWsmY0p/LqKuOkCTy+kQcOjGqjFHaP+DBuanAQEm7pAhXs1pcU7sM17DVqF2+RHWT9o4tq9G0eZWqzOEp4x8gnX4LGHxjLkg6Pxz7/EguuIaCJhIgU91doiji/Mx5jE6NSl+T0veRyZHQbVMjGJscU7YLEwJ8iJ5t/tz0OXS/1a2qLMX5xYGBTlFo4BNumxwMyY+L84tj/p3x+rx44eQLWTelP5dRixO1OJEgPp+IN98fwwv80GygNBSwtAkAVJYW4qoardSiVFuNTSvKkZeNXWrBlABpNiganA2UTr8RJUDSANoaYPmlwIpLgOWXANUXAY/dBYy9j6jZt7/yGk3vJ4p4ZndFMjEzERjwzAY78lfY7ZNSMDQTvPxOkt20/iZcueLK6MFP4RIU5kefhp9scr0DCDulPxML5WYbmlWnEgVOC4va9d6CiaKIdwbPKmOUXhoYwvB44IDt8uICbJ8NlK5mq7F5dUVyA6X55kIKNt8AafnFwIpLpSBp2UVAYWno4ZR9O6NyrbtLzeyu8qJy3H3J3Tg7fTYg8PEPhqZ8U/MqR74mHxVFFagorkBlUSXKi8ulx7NflcWVyn552+GRw/jqs1+Nee1s7u5Kx5T+XEaBk0oUOC0c8YwTEkUR/JlzUqDED+Elfghnzgb+MS4rykfDRq0yRumyNRUoyM9LTeETyYUkE0VpfTb/rrXBN5MbIMVd9rWUfTvFsml219jUGEYmRyBMCiHf/X8+cfYE3ht7Lyn3zdPkBQQ7chDkH+z4/+wfDJUVRB5vGInaDNZ779yb9cFrLgXb6USBk0oUOC0MsdZ7++9P6rB5TYUSKL3ID+HU6GTAsSWFeajfMNeidPm6ShSmKlDypyYX0ubbggKktwIHa5+PlHdFDpBmu9dWzAZKyzbFHyBFk+zWMhJVMrq7wpmYmQgb9IQLguTtI1Mj8AXn5Jqnq1ZdhS3LtoRt+ZEDpCWF6scQJgt1dy1sFDipRIFT7vP6RFxneSbq0iX5GiAojRKK8vOg28DgGnYZrqmtxhXrK1FckOYPe58X+P6W6NP6C5dIGbPPvJX5AGkByrX/wGN1d2mgwYqyFXjso49hbHpMVRAkTAoYnRzFhDf28j+RlBaUgilmwBQzqCyuVL7LPzPFDE6Nn8IPuB/EvBZ1d5FMoFl1ZNF4kR+Kud6bV5QWydVdUKV0vek2VKGkMEMfkJNngZFjwNt7Y+dCmj4HHH1h9gEFSMmULd1dwaZ900rOHjmnj/zz62dejzpGSISIU+OncKP9xoTuXaApQEVxRUgQxBQzEbdXFleiKD/2zEmvz4vH3nwsp2d36TfoceP6G3Mq2CbJRy1O1OKUE85OzoA/fRbu02fhHjwnfZ/92aviLfwdw+Vorl+f+oL6fMC5QSkwEt6Tvo8cA0aOzn4di396f/29QN09WRsg5VqrDZCa7i6vz4tzM+ciBj3yz+emz2FsakxJfhi8bT4tP/7KC8sDWn2Cg53gx0wxk/IuMOruItmKWpxIThJFESdHJmYDorNwnz4H/owUHL0/GvvDJA8+bM97EysgYBAM9vsugQ/SOKV1VUnKhDt93i8QOgYIR4MCo+OAL/wSKgFKKoHSKmD4cOxjL/s4sPqK+ZY8JbK11SYar8+L3ft3h231kLd984VvYsY3g/GZcSWZ4dj0WNigRw6KxmdUJASNQ2lBaUhenynvFLhBLua5tiYbrllzTVLLkwz6DXo89KGHwr5nqLuL5ApqcaIWp7SbmPZi4IzUasSfnms94k+fw3hQYkl/y5YWo3b5EtSuWIra5UtRu3wJNlYvwSdsL+LKs8/iG4U/xxrN3DigE6IW35y+B6+UfxDPmW+KnZpAFIFzZwJbh4JbjsbPxH6CmjygfA3ArAcq1/l9XTD3c0mF3xink/BCBFdSjNP5+Vju9UI3MYn8LM+FlKpByrGIoogJ74SUiXn6vNTKM7sMxfj0+NzPM+Nzj2fm9g+OD+Lw6OGkl0tWlFcUkM25vKg8IPjx/x5p/5LCJSjIC/2/lmZ3EZIa1OJEEpZoLqRgoijizNmpkODIffosjg2fR6RwvSBPgw3VZVJg5BcgscuXorI0fNK4H9UdwxV/+37I9lXw4L8Lv49XdKz0HGYm/brOjoUGSCPHgBkV3SRFS4HK2aBICY78vpevBvJV/Grl5QM7LHD9zoTd1QxOFcyds3JmBg8MCdDv2J2VQVOsVhsNNLDst+DG9TciT5OHSe8kxmfGQ4KbczPSY/8AJyD4mR5XzvN/7BUjB9jJsrFiIzZUbFAV9JQXlitZndWM90lUfl4+Htj+AO7/8/3QQBO2u8u83Zz1QUg2LdhKSLyoxWmBtzjFEwjtPXgS33zyFVR7nSgrOIPxmWUYym/CN267IuKaadNeH97zjCtda3Njj86GZNv2V1FSgAtnAyN2NjiqXbEUF2jL4ksDMNtqI46egA8IabXJA6DJLwRKqqSxRzFpgPJVfoHQbDDk33pUwgBJGgcitdr8E0RRDLimZvbxQx/6Xtq6L7w+rxLgnJ85j4mZCZyfOR/y8/mZ83h7+G08/s7jMa9ZWlCKKe9UygKdsoIyLClcgiWFS1BWOPtzwRKUFpYqPwfsK1yCY2PH8B8H/iPmtWl2FyGLB6UjUClVgdPU1CQe/9N/4cDRfRj2DoMpqMTSgipUla3EKqYGH7/BhKKiYuXYJ/5ixeDoe1hRcUHAvkjXVnt8PIHQ3oMn8eMnv44zK1/AmYK5wGXZjA/LTl2DT9z8r6hZviQkQHpvaBwzvvBvIY0GWFdVOttqNNd6VLtiKaqXFIUOQvXOABOCNHg64CvMNvm4s4PA5ChcZaXYXV0VptVmGPpxv4U1C0qDutD8us+Y9VIXW5rWVlMztdy/2yWewCbc9gnvhHTutPRz8DGT3smw5Uim0oLSuUDHP+gpKAsIbuRgJyQwKpjbX1JQgjxN/Lm2qLuLEBIsJwInnufhcDjAsix4nofRaATDMHEfG891gqUicLL99mv42dBvMJof+Q/Yshkf7lr2cQDAr888ERKo3LXs4zB+7Fthr632+FiB0Bdu+zclePL6RHz+e/fhQPVz0sdIcMsHgE0nrkbf6O1hn09pYT5qVyyRAqNlS3CRtgAXVUxjfckkiqdHVARDsz9PjUWss2hcZaW4f8WyiGV/aPAM9Fd/Faj7HFCmVd1aJIoivKIX075pTPumMeWdwoxvBtPe2ce+KeVneb/887RvOvI+r3TusbFj+NPRP8Usx5LCJZjxzaQlsAGkwKGkoASlBaUBX/7bzk6dxfMnno95rW994Fu4es3VWFK4BKUFpQkFOqlAs7sIIf5yInCqq6tDf38/ACn4MZvNsNvtcR8bz3WCJTtwsv32a/jh8G+lB9E+nIOrPMyH/ZerPhYQDNl++zX85/BvIwYH/serCYQue/9aaKo/h6Gz0zg5Mobq9W04k68JW26NKGK5V0TD0dtxMSPigtJJrCqawLL8cVTgLEqmR6GZmAuCRO8kZgB4NRp4AcxoNMrjGQ3ghfR9Bhp4Z7/7b/cWLcVM0RLMFC+Ft2gJvEVLMF1UCm9hGbyFpZgpLMFMQTG8BcWYOnsaPz7xJ5zNC192iCJKRBHXLddhppSRgh2/4CUgwPELdORgJ1yLRKaFC2xK8ktQWuj3c1DQEy74KSkoQVlBWch2tSuu53qrDXV3EUJkWR848TyP5uZmJeABgKqqKgwPh+a3iXZsPNcJJ5mB09TUJD78Cx2GIgQfIeRqj/BhX+EDWi5uA3wizk+O48n3/hNjUYKDpT4RG8br4PV5MTMzgRPMmxiPEUxcdrYEeRofzhVM4VBp7JaANdPTKBKBaY0U8MwFRXMBkFcjBUgLVWFeIYryi1CYV6h8FeUXoSCvQHqcX4iivCLl58K82cezPxfkFSjnnx4/jaf4p2Le898+8G/Yvmq7EuCU5JekfbmJcBZCqw11dxFCgByYVedyuaDVagO2abVacBwHnU6n+ti+vj7V1wGAyclJTE7OdXeMjo7O96konviLFUMFcXRDRPvg02gwmg888u535rZFGzCt0eBsvgavlx/w2xj9+AmNBv0VU7GP9XOiMPysNrUKNAXIz8tHQV4B8jXSd3mb8thvX35ePgo0c9vkc/2vc/LsSVV5bT5e+3FsW7ltLuDJLwwJfvz3+Qc78rYCTUFSAxavz4v97++P2WpzK3trVn6YL4ScPDS7ixASr4wEToIghN3u8YSuxRXt2HiuAwAdHR3YtWuXmiLGbXA0Oat++6udmsJyrxdD+fl4pyj2gOXLJ31Yn1eGk+IEOBXjm29ENRrW1uHoyBH8+uxbMY//as2d2HrxbSEBTUiQMxsIFeYVKj/na/JT0krS+34vPv/052Med9uFt2XdB+RCmFpOS1AQQhabrMrjFCkQivfYSPva29tx//33K49HR0exfn1yluFYUXEBcDYpl1J8av29MDR+GfY/P4xvnvhJzOM/VmNCS9M/4EXuEex8LfZimndv/RSu1t0L78wU9v1ch9N5gBhhjNMKH/Cpa/8F+WmacaaWboUOK8tW5uz6V9RqQwghuSUjU1wYhglpFfJ4PGFnw0U7Np7rAEBxcTEqKioCvpLl4zeYUD3jCx34HYkoRjxWI4pYPuPDbTf9A1BYio/d8CUsm/EpA7sjHf/xG0wAgIbL78EKrxj1+JVeEQ2X3wMAyC8oQvumTyr7go8FgAc2fTLrgiZgrtUGmGulkeVSq83Tdz6Nn9z8E1iut+AnN/8Ee+/cmxNBEyGELDYZCZz0+vAfCPX19XEdG891Uq2oqBh3z6YYiBk8+e2PFKh8YtnHlfxMRUXFSvoCNccnEgjpr2vHQxd+Eit8gUVd6QMeuvCT0F/XHv05ZZDcarOibEXA9pVlK3NigDIw12rzEfYjaFjVkNWBHiGELGYZ6apjWTbgMc/zqK+vV1qKOI4DwzBgWTbqscEtS8HXSTfjx74F/BYx8zgt94r4REAep7mWkmWz+4LzMsnXVnu8/rp2PARg99u/xCm/oqz0AeZN4QMh/XXtuPHq/w/ca7/A6dH3sLziAui2fjorW5qC0VgbQggh6ZDRBJhWqxUNDQ3o7e1Fe3u7EvA0NzejoaEBbW1tMY+Nti+WhZ45HAC8M1M5GQgRQggh6ZL1eZyyxWJYq44QQggh0cUTD2TH+geEEEIIITmAAidCCCGEEJUocCKEEEIIUYkCJ0IIIYQQlbIqc3i6yePik7lmHSGEEEJyixwHqJkvt6gDp7GxMQBI2rIrhBBCCMldY2NjqKysjHrMok5H4PP5cOLECZSXlyd9AVp5HbyjR49SqoM0onrPDKr3zKB6zwyq98xIZb2LooixsTGsWbMGeXnRRzEt6hanvLw8rFu3LqX3SPaaeEQdqvfMoHrPDKr3zKB6z4xU1XusliYZDQ4nhBBCCFGJAidCCCGEEJUocEqR4uJiPPjggygujryOHEk+qvfMoHrPDKr3zKB6z4xsqfdFPTicEEIIISQe1OJECCGEEKISBU6EEEIIISpR4EQIIYQQotKizuOUCjzPw+FwgGVZ8DwPo9EIhmEyXaycxXEcXC4XAKC3txddXV1KfUar60T3kVBmsxnt7e1U72nicrnA8zxYlgUA6PV6AFTvqcTzPFwuF7RaLXieh8FgUOqf6j15OI7Dzp070d/fH7A9FXWc0voXSVLpdDrlZ7fbLRoMhgyWJvdZLJaAn/3rN1pdJ7qPBOrv7xcBiMPDw8o2qvfUcTqdotFoFEVRqiOWZZV9VO+p4/93RhRF5TUQRar3ZLHb7crfk2CpqONU1j8FTknkdrsDXixRFEWGYTJUmtzX398fUH9ut1sEILrd7qh1neg+Esput4ssyyqBE9V7avnXtShK9SZ/p3pPneA68g9eqd6TKzhwSkUdp7r+aYxTEslNvf60Wi04jstQiXKbTqdDV1eX8lgQBABSnUar60T3kUAOhwMGgyFgG9V76vA8D4/HA4ZhwHEcBEFQuouo3lNLq9Wirq5O6bJramoCQPWeDqmo41TXPwVOSSR/sAfzeDzpLcgC4v/B3d3dDb1eD4ZhotZ1ovvIHEEQwo4HoHpPHY7joNVqlXEZNpsNDocDANV7qtntdgBAbW0t7Ha78neH6j31UlHHqa5/GhyeBpFeRKKeIAhwOBwhgwrDHZfsfYtRT08PjEaj6uOp3ufP4/GA53nlnwOj0YiqqiqIUXIUU70nh8vlgsViAc/zMJlMAACr1RrxeKr31EtFHSer/qnFKYkYhgmJaOWmdzI/ZrMZTqdTqctodZ3oPiJxuVxoaWkJu4/qPXVYllXqCoDyneM4qvcU4nkevb290Ov1MBqNcLvd6OnpAc/zVO9pkIo6TnX9U+CURPK04WD19fVpLsnC0tnZCbPZDJZlIQgCBEGIWteJ7iNzenp6YLPZYLPZwPM8Ojo6wHEc1XsKyeOZwqF6Tx2O49DQ0KA8ZlkW7e3t9HcmTVJRx6muf+qqS6LgP3w8z6O+vp7+y5gHh8MBnU6nBE1yF1JwnfrXdaL7iCT4j47JZILJZAr7wU71njwsy6K+vl4ZXybnctLpdCHHUr0nj06ng9VqDRhPOTQ0RPWeQv5jKKN9bmbr33la5DfJeJ6H1WpFQ0MDent7AxIHkvjwPI/a2tqAbQzDYHh4WNkfqa4T3UfmCIIAm80Gs9kMo9EIk8kEnU5H9Z5CgiDAbDajrq4O/f39SksrQO/3VHK5XEqXKCD980D1nlwulwtOpxOdnZ1oa2tDQ0ODEqymoo5TWf8UOBFCCCGEqERjnAghhBBCVKLAiRBCCCFEJQqcCCGEEEJUosCJEEIIIUQlCpwIIYQQQlSiwIkQQgghRCUKnAghhBBCVKLAiRCSdi6XC7W1tejs7ITNZkNdXR3q6uqUhJu1tbXgOG7e95CvSQghyUJLrhBC0k4QBDidTiU7s9PphFarhdFoBAC0traC5/mwy16opdfr0drampTypoP/MhSEkOxFLU6EkLTzeDxRF7XV6XQhq5svZDzPo6enJ9PFIISoQIETISTtWlpaknLMQmGxWDJdBEKIShQ4EULSTk2XVF9fH+rq6tDZ2QkAcDgcqK2thcvlAjA3TspkMsHhcMBms8FkMkEQhIjXdLlc6OzshMPhgNlsjngcz/Mwm83KdeVrchynnN/Z2Qme55XrxiqrPN7K5XLBZrOhublZ2dfX1wen0wmbzaZckxCSnWiMEyEkKwWPUTIYDOju7g7YbzAYUF1drayy7nA40NzcDKfTGXI9ORjq7+8HIHUXyiu1+xMEAU1NTejv7wfDMDCbzbDZbDAYDDCbzQHXrqurw759+1SVVa/Xw+l0wm63AwDsdjs4jlP21dbWKmO8CCHZiwInQkhO82+9MhgMaG5uDjvQ2mq1QqvVKq1AANDb2xtyvZ6eHrAsq5zf3t4OAOjo6AgZrM6yLHp6elQFPNXV1aiurg4o92Iax0XIQkGBEyFk0dDpdNDr9crjcAFPcNCV7pluNLuOkOxGY5wIIVmLYRgMDQ0pj10uV8gYJv/HDocDer0+IPCQ97e2tga0NsnXC2YwGEJySLlcrrDncxynDGJXU1Y1wpWJEJI9NKIoipkuBCFkcXK5XOB5XplVZjabUV9fr3SJCYIAs9msDKS2Wq0QBAFWqxUsy8JsNkMQBKV7rre3F+3t7WAYBhzHYefOnQCArq4u6HQ6uFwuOJ1ONDQ0AEBIkOVfrnDHuVwucBwHlmXR29uL1tZWVWUVBCGgLPJ4K51Opzx3i8WCuro66PX6qKkaCCGZRYETISRnyVnGaVA1ISRdqKuOEEIIIUQlCpwIITnJ5XLB5XIp0/oJISQdqKuOEEIIIUQlanEihBBCCFGJAidCCCGEEJUocCKEEEIIUYkCJ0IIIYQQlShwIoQQQghRiQInQgghhBCVKHAihBBCCFGJAidCCCGEEJX+f8shkNWwqSZHAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -585,9 +585,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkp0lEQVR4nO3de3wb1Zk//o/sOHaci8dyLk5CSDLm1hAIyDYUWraFyEt6gVKQ7d637TZSabv7/ZW2Ft5dlk1vRm6X3W23BSn0sixt17agLZQ2rRRglxZKHAkCIVBA44RLnIRYlu3EsWNL8/tDnrHuGsuSJdmfd155JZrrM0dj6fE5Z87RybIsg4iIiIjSKsl3AERERETFgokTERERkUZMnIiIiIg0YuJEREREpBETJyIiIiKNmDgRERERacTEiYiIiEgjJk5EREREGi24xEmSJFitVlRXV6Ouri7ltnV1daiurobVakUgEJibAKlgeL1eNDU1pb1PcsnpdObt3IUqEAjAarXC6XTC6XTC4XDA4XBk/TzKZ4VOp0NdXR06OzvR2dkJi8WC5uZmvjcaWCwWVFdXw+125+XYqbbhfTQ7DocD9fX1+Q4jP+QFymazyYIgyB6PJ+F6l8slm0wm2Ww2z3Fkidnt9rhlbW1tsslkykM0YYlimm9cLpcsiuKM9slWufT09MQtGxwcTHnfJpLv+ySbPB6PbDQa5cHBwajlPT09stFozMk5jUZjws8BURRlm82Wk3NmSyH8jBoMBtnlcuXt2Im24X00M4nuI5/PJ7e1tc3os2i+WHA1TgpBENDS0gK73Z5wfaHVMLlcrrhlTU1NaG1tzUM0YYlimm/0ev2M98lWuQiCkHCZ2WyGKIqaj5Pv+ySbtm/fDqvVGlc2JpMJoijCYrHMWSwWiwVWq3XOzpeJhfAzmgneRzOT6D5SyinR59R8t2ATJyB8w3Z3d8ctDwQCM/piyjWHwwFJkuKWG41GmEymPESUPKaFLpvl4vV60dnZGbfcZrPN6MMqn/dJNlmtVoiiCKPRmHT9XN6XyntQaL9kKfgzmhjvo5lJVRZer7egvivnyqJ8B5BPBoMBer0eTqcz6otl//79SX+oAKCzsxOiKEKSJIiiqO4bCATgcDggiiJcLhcsFgsMBgMAwO12q79V7N69G5IkQZIkDAwMwGazJT2X2+2Gy+WCJEnql2hbWxu8Xi+sViskSYLP50t6Dr/fD4/HA7vdDofDAb1ej66uLrS3t6uxpbsurTHFHgcIt+9Hrksltn+B2WxOe8xMr1nZT6/Xo7m5GUD4/Uv3fsTGE1lWWsslXfkqBEGAzWaLOoaS7O/evTtq/2Tlo/U+0XIvproOp9OJjo4OSJKEnp4eGI1GSJKEpqYmiKIIu90OURSTlpuWeJxOZ9w9G0m5fqfTiba2thld50zfGwDweDwwGAxRSWyq61N+Q1d+e1di0HLfz7S80t2LiWTr86uzsxOCIGRUW5vus0PLsdNtw/soO/dRIBCY0S9wyv7KeyOKIvx+P4xGY8LPKSWBtdlsmq8ltmwaGxs1fS7NWL7bCvNFabNN1P9D6VuSqI+TyWSK6ntiNBrVNt62tjbZ5/Op60RRjGpDV/rLRLa3i6KYto3Y5XLJBoMhbrnH44nrf5PsHG1tbVHXF3u8VNc1k5hMJlPUuX0+n6Y+AzabLS7GyPch1TEzveaenh4ZQNR71tbWFvWeJyrjVGWVqlxmUr6pGI3GqGOlK5+Z3CfpYkp37bHniey7oWXfVPEASNsXRBTFqJ9nLcdN997E9k0ZHByUbTabbDAYon6+Ux1Huf9cLpfs8XjUezPdfT+b8kp2LyaTjc+vtra2qP4wg4ODMgBNfZzS3cdajq1lG95Hub2PEjGbzVHX7vP54vqeJfr8MBqNUe9nJmWT7nMpEws+cfL5fDIA9cb1+Xzqh0ds4qRsG3scZRuTyRT1Jsd+wXk8nrj9Y7dJZCaJU7JzRP5Q+Xw+WRAEzdelNSaPxxN1XEW6DpzKh1vsh4fNZtN0zEyuOdk1KLEo90BsGacrq0THzKR8U4n88NBaPlrvk1T3opbriO24HvtzlmxfLfEAiHpPE4n9wkt3XC3XZDQaZYPBINvtdvVvbIKp5b6IXZ/qvs9Gec30C2+2n1/K9cTS0oE73X2s5dhaz8/7KLf3UaxE8cmyHJewJfslVetnSKKyUcR+LqX7zk1nQTfVAeFqWYPBgO7ubpjNZni93pRNVIIgRD3a6vP51Pbfnp4eAOEqTKXJyO/3x50vkiAIcdvMVqJzpHqkPt11abV///6E1Z5K1X+y5s/9+/dDEISoal+lLJWmg3THnOk1J6PEkaztPpOyylb5JpJpmSvbREp3L2q5DrPZDLvdDrvdDrfbjZaWFs37potHqZ5PRZKkuI69qY6r9b1paGiIai6Ilcn1pbvvZ1teMzXbzy+lDDKR7j7W0iyk9fy8j3J7H8VSrin2vZnpvZJJ2SjMZjO6urpgMBjgdrtTfi5qseATJyDcb8Rut8NsNqd8M5VO45GFHvl/r9eLjo4ONDU1oaWlJWed5pS23WxJd11aY8q0c2Oq/Qqtw+RMy0opl9mWb6p45oqW67BYLKivr4fdbockSer6bJSB0WhMOWaP1+ud8XGz9d5oOU7sZ0u6+z7b90y6z41sfH5l0q8J0HYfazm2lm14H+X2PsqmyGvLpGwUra2t2L59O2w2W9TnUqYW9FN1ipaWFni9XjidTjQ0NCTdzmAwJPxNJRAIIBAIYPv27Whvb1cTMOVNz/bTGcoPdrakui6tvF6v2vEuliRJaGxsTHn+ROcKBAIZHzNTynuZrPPoTMvK6/VmpXyTmcvy0XIdoiiqD1xEfollowxsNhv8fn/SAQOtVivMZnPKjr+xsvXeZHKcVPd9Lu6ZVJ8b2fj8ShazFunuYy3H1np+3ke5u48SUeLL5JyRNV+zuZbIB8EyTe4jLdjESem5D4SzVKPRiK6urpQ1TkajEQ0NDXE/cN3d3WrNQuQPm/Kmp/vASieyalmSpBn9QGs5R6rrmklMBoMh7rc55dpTPV2iPBkR+eh9IBBAd3d3xsfU+kPq9Xqjtu3o6Eg5TlK6skpULpmUr1aZlk8i2bpPLBYLdu7cGfeb4UzLIDYeQRDQ09OjPiUTSXmiSMtTgZHHzdZ7k+nPULL7PhvlNZPPjWx8fomiCLPZHPV0VyAQiPsZSyTdfazl2FrPz/sod/dRsvhi3xflCb5k51HiiGzJmG0ZK59LWRmaZVY9pIqQz+eTzWazDEA2m81qJ+DIpxCUpx0EQVBHdY3s2KY8uRG5j7K8ra1Ndrlcssvlkn0+n9qR1+PxyCaTKeqJDuUcBoMhbWc15dhKR7lEx0t1DqPRqD5toGzT1tam6bq0xhR7HLvdnrYTZux+NptN7unp0XzM2Vyz0umxp6dHdrlcss1mi3raIna/RPEkKqt05aK1fJOJfbJkpuWTjXsx1XUMDg4m7fieaN+ZxjM4OBh1vcrfWDM5bqK4fD5fys8Brdfncrlko9EoC4KgdtiN3SfdfZ9peSW7F5PFno3PL+ValOMYDAbNo4en++zQcmyt5+d9lJv7KN01Rb4vse+J8hmsxGkymWRRFNOWcbqykWVZvZ+zQSfLsjz79Iuo+Chjf3g8nnyHMiPNzc1obW2dF4NaEtHCVF9fD5vNlrX+nukEAoG0YzRqtWCb6oiKiVJtrfw/06eXiIgWishmR6XpMhuYOBEVgY6ODvXxaEmSUj7EQERE06OPA5k/8ZkIEydakNxuN2w2W9L54AqNxWJBU1OTOgUBa5yIqFh1dnbC6/XCZrOlHBpitpRfNh0OR1a7NrCPExEREZFGrHEiooxZLBZUV1fn9LfG+cTr9aKpqSmjUe2JqDAwcSKijCWaXdxqtaK5uXlO44idGb7QjqcwGAzqjPTzQa7KiaiQMXEioqxqampCa2vrnJ7T5XIV9PEiZbOTar7lspyIChXnqiOirJqrcVkUDocjq9MaZft48xXLiRYqJk5EBSwQCMDhcKizxFsslrgpD2KbSyJnX0+1rrOzU21mkyQJbW1tAKYHBhVFERaLRa1VUKah6OzshCAICWtOvF4vrFYrJElSpzVSjgcAu3fvVqdbGBgYiJraIhAIwGq1or6+Hh6PB3V1dTAYDLDb7eps77HcbjdcLhckSVKfjlSuI9U1JpPseImuS3nU2WazwWw2q9ep1+vVpspAIBB3nckosSqTqKZ7CiiT93Ym1wEkf7/SlTvRvJaV8ceJKCfa2tqipg8QRTFqugabzRY1NUXkNASp1plMpqjpDnw+n2w0GqO2VaZE8Hg86nFip10YHByUAUQdy+PxyKIoRl2Hy+WSRVGM2k4URdnj8aivI6eSGRwcjDtGMsr0DbHSXeNMj6dcQySj0RhVHj09PTKAqPesra0tagqaROUTO42O0WiMKptYs3lvtVyHlvcrWTkRzXfs40RUwCRJinpiTRRF9bVSQ9Pe3q6u7+rqUifGTLbO6/XC7XZHNamJogi/368eWxAEeL1eGI1GGAwG2Gw2BAIBdHZ2RtVsCIKgadJPvV4PSZLizhnZ1ON0OtVjCYKQcCJQrbRc40wlqmGLHU9LKY/IDvPt7e0pm7UkSYLT6YyqYWpubobdbk+4/WzfWy3XoeX9Ilqo2FRHVMCUJiplyhW/36/OWr9//34IghD1pads73a7k65Tmv5iKc2Bypdl7DbKMTMVezxBENRrAcJPnCWamT0T+/fv13SNc0F5H7xeb8KYlHKNTOh8Pl/SJCXV+671vdUi3ftFtFAxcSIqYF6vFx0dHWhqakJLS0vUl1lskhEp03WREiVJuXwizGKxoKOjA7t374bD4Uha45KOUuOWLUqfo0SycZ5AIABRFKOSmlQJTjbe22ztFylVORHNJ2yqIypQgUAA27dvR3t7O8xmMwRBUL/gJElKWEOj7JdqndFoTFibIUkSGhsbk8ZjMBhy3lSze/duuN1umEymqCbBmVCaGDO5xmTHS0ZLDUwgEFDfk0SSlWuyZCYX7202apJSlRPRfMLEiahAKTUnkV+4yhec0uxjMpmi5toLBALo7u5Ouc5gMMBoNEY1DSlfeqme5BJFEWazOepprkAgAK/Xm1GNRew+Ho8HgiDAZDLNqOYisu+NklBmeo3Jjhe7XIk/Ue1WbHl0dHTAbDYnvSaj0YiGhgY4nc6o5d3d3Unjm817q/U6YiVqRk1UTkTzHeeqIypgymPhTU1NAMJfVlarFa2treoXodVqRU1NjdoJOLKmJt06ZeoPn88X9ai5zWbD/v370d7eHpfIKI+6K015Sow2mw16vR4dHR1wOp2w2Wzqo/yxyzo7O9HR0QFRFNVzOJ1ONDc3q0MdCIIAi8WiqeZJiaGurk7TNWZ6PCVZUcqjq6tLnazUZDKpj/K3t7er/ZoARA0HoJRFW1tbVDxKrEpzaLoEL5P3Vst1iKKo6f1KVU5E8xkTJyLKu0AggJ07d2L37t1qk6QkSer0LcXypawkTh6PJ9+hEFGOsKmOiPLO4XDAYrGotVjKY/02m41JCBEVFCZORJR3BoMh4ejgbrdbbaYkIioEbKojooLgdrujxjrSOvVIoVD6hin/cgoSovmJiRMRERGRRmyqIyIiItKIiRMRERGRRkyciIiIiDSa93PVhUIhHD16FMuXL4dOp8t3OERERFRgZFnGyMgI1q1bh5KS1HVK8z5xOnr0KDZs2JDvMIiIiKjAvfHGGzjnnHNSbjPvE6fly5cDCBfGihUr8hwNERERFZrh4WFs2LBBzRlSmfeJk9I8t2LFCiZORERElJSWLj3sHE5ERESkERMnIiIiIo2YOBERERFpNO/7OGkVDAYxMTGR7zCI5lxZWRlKS0vzHQYRUULBkIx9fX6cGBnD6uUVuGKzHqUl+RteaMEnTrIs49ixYwgEAvkOhShvBEFAbW0txzojooKy52A/dj1yCP1DY+qytVUVuPOGLdixdW1eYlrwiZOSNK1evRqVlZX84qAFRZZljI6O4sSJEwCAtWvz80FERBRrz8F+3PqAF3LM8mNDY7j1AS/u+YQhL8nTgk6cgsGgmjTV1NTkOxyivFiyZAkA4MSJE1i9ejWb7Ygo74IhGbseORSXNAGADEAHYNcjh9C0pXbOm+0WdOdwpU9TZWVlniMhyi/lZ4D9/IioEOzr80c1z8WSAfQPjWFfn3/ugpqyoBMnBZvnaKHjzwARFZITI8mTpky2yyYmTlkQDMl42jeAXz/3Fp72DSAYSlS5mB1erxcWiwU6nQ5WqxUOhwNWqxXNzc1wu91ZO4/D4UB1dTW8Xm/WjjnX6uvr4XQ61dcOhwNNTU0Z7UtERHNn9fKKrG6XTQu6j1M2zHWPf4PBAJvNBofDgfb2dgiCAAAIBAKorq6Gx+OBwWCY9XnMZjN6enpmfRxFIBBQY50rNpsNDQ0N6muj0QhRFDPal4iI5k4oJEMHJOzjBIT7ONVWhYcmmGuscZoFpcd/bDus0uN/z8H+OYtFEASIooiurq45O6dWkiShu7t7zs9rNBqjkjVRFGE0GjPal4iI5sYjB47iMz/tVZOm2I4Eyus7b9iSl/GcWOMUQZZlnJkIato2GJJx58Mvpuzx/y8PH8K7zlup6Y1dUlY6634mfr8fdXV1szpGLthsNtTX1+c7DCIiKnD3PSnhm4++BAB439ZavG9rLTp+93JUBUUtx3EqHGcmgtjyz7/PyrFkAMeGx3DJv/xB0/aHvn49Khdn9nYEAgF0dHTAaDTCbDbD7XbDYrHAarUCAOx2OzweD7xeL9xuN0RRhCRJMJlMUU1XXq8XXV1daGxsBBBOxBRutxtWqxWtra1oa2uD0+mE1WqF3W5Xa3EkSYLdbkdjYyP8fj9aWlqwf/9+7N+/Xz1WsuYyt9sNr9cLURTR29sLm82mxmS326P6JomiCL/fnzIer9eLnTt3wmKxwGw2IxAIwGq1wu12w+fzqcdOVB6x+yrXbrFY1G1dLldWmzKJiBayUEjGt377En70xz4AwKev3oQ7PhiuUfrApes4cjhlh8PhUJMQ5UsdCCcnRqMRHo8Hdrsder0ekiTBarXC5XKp+9fX12Pv3r0QBAGBQADNzc1qUgEAHR0d6v+NRiNaW1vV1yaTKapZMBAIoKmpCR6PB4IgqB3X29raYDQaUVdXB7PZnPA6lNg8Hg+AcMLW2dkJs9mM7du3o6+vT202q66uxt69e9PGYzAYotYLggC73Y7q6uqocyYqj9h9lfKMTJZ6enrg9Xqz0p+MiGghG58M4rbuA3j0+XD3lvb3XQTzX4lqK0xpiQ5X1RXOWItMnCIsKSvFoa9fr2nbfX1+fPonvWm3++lnGjV1XltSNvNBB81mc9J+OIIgqIN6mkwmWK3WuC95URTR3d0Ns9mM7u7uuPV6vfZOd93d3RBFUY2nvb1d875Kchf5VGBvby8EQYjra5StDtt2uz1lecSqqamJGiRVEISoGjkiIpq5oTMTMN+/H8/0+VFWqsN3m7fhQ5etz3dYKTFxiqDT6TQ3l11z/iqsrarAsaGxhP2clB7/15y/Km9VilqfIMuG2KfmkiV0yZ6uMxgMUR23zWYzHA5HlqMkIqJCcTRwBp/+yT68cvwUlpUvgv2T9XjXeSvzHVZafKouQ6UlOtx5wxYA+evxn67GI3J9a2tr3DhPXq8XLS0tAKD2C4okSVLUa0EQMDAwoL52u93q5Mgmkylu/0TjSiValig2t9uNlpaWlDGlikeRbPLmdOWRal8iIpqdl48N4+YfPoVXjp/C6uXl6LZcVRRJE8Aap1nZsXUt7vmEIW4cp1z2+Fc6cAPhp9UsFktck5Pb7Y7qbG00GtXxnzo7O9UO2D09PWrtjyiK6OnpgdVqRVNTk1oz1NHRAZvNBlEU0dLSonawBsLJltLkJYoi7HY7rFar2rlcqUGyWCzq2FOJhgNQYovdVxCEhDEpUsUTCATQ1dUFvV4f1wk+8pyJykMpY2Vf5VjKOSRJUjuti6I4pzV7RETF7mnfAMz/vR8jY5M4b/Uy/PQzjTinunimPtPJspy7Ya4LwPDwMKqqqjA0NIQVK1ZErRsbG0NfXx82b96MiorMRx8NhuSC6vE/nzU1NcFms2XcKbu6uhqDg4NZjqr4ZetngYgolUcOHMVXug/gbDCExk3V2P2pBgiVi/MdVspcIRZrnLKg0Hr8z2eZdMh2OBzw+XywWCwcDZyIKE9ix2j6t9bLUJHBg1H5xj5OVDQcDoc6VtRM+h8ZjUbU1NTA6XTCbrfnLkAiIooTCsn4xm8OqUnTp6/ehP/8mKEokyaATXVsniACfxaIKDfSjdFUKNhUR0RERHlVjGM0acHEiYiIiLKqWMdo0oKJExEREWXNy8eG8ekf9+LY8BhWLy/HTz9zBbasS938VUyYOBEREVFWFPsYTVowcSIiIqJZK9QxmrKNwxEUMYfDAavVCofDAafTCbfbrT6yX6jcbjfq6+vnbB66+vp6OJ3OOTnXbMXG6nA40NTUlNG+RERz6b4nJfzdL57F2WAI79tai//+2yvnZdIEsMYpO0JB4MhTwKnjwLI1wMargZLcjk/R1NSE5uZm2Gw2dZnX60VTUxN8Pl9Ozz0bRqMx4bQruWKz2Ypm0MvYWI1Go+bpXIrpOolo/giFZHzrty/hR3/sAxAeo+mOD+Z2ntZ8Y+I0W4ceBvZYgeGj08tWrAN22IAtN+bklJ2dnQAAs9kctdxgMMQtK0Q1NXM3yvpcJmmzFRvrTObBK6brJKL5oVjGaMo2NtXNxqGHge5PRSdNADDcH15+6OGcnLajowMWiyXhuubm5pyck4iISDF0ZgKf+tE+PPp8P8pKdfiPj1wGy3vq5n3SBDBxiibLwNnT2v6ODQO/awOQaOD1qWV7rOHttBxP4wDukiQhEAgkrYmIbN7xer3o7OyE0+lEZ2en2vcpsp+R0i+qubkZkiSp+0QmZm63G3V1dbBYLHA6nXA4HLBYLOq0J8p6h8MBh8OB+vp6dblyfqvVGhVnIBCIOnekRPsliznyeMo6ZT+v1xvXn2qmZZJMsmvzer1qOSl/vV6venylttDpdKKurg5ut1vdLzLWQCAAi8WCurq6tLHH7jvTayEimomjgTNovvcpPNPnx7LyRfjpZ66YFwNbasWmukgTo8C312XpYHK4JuquDdo2/4ejwOKlWTp3OMGyWq1wuVzqsvr6euzdu1ftZ+RyudDT0wMA6OnpgdPpRFtbGwwGA+rq6hAIBCAIAoxGI0wmE2pqamAymQCEv/ibm5vhcrnU43k8Htjtduj1evX8Ho8HQHhy3s7OTrS1tQEAent71f/39PTA6/XCYDCk3C9RzMp+DocDBoNBbbLy+/0wGAxobW2dVZkox09UtrExms1mbN++HX19fRAEAQBQXV2tHj8yFpPJhK6uLvV1bKyCIMBut6O6ujpt7LH7zuRaiIhmYr6P0aQFE6cio9QmSZKU8EtQkiTo9XrY7fa49aIooru7G2azGTU1NVF9jQRBiKrFEgQBfr9fTQCUZQqTyYTm5mY1uRIEQT2eyWSC1WqFXq9Xa1SAcLKkaGxsjDsXADXxSrRfopiV/UwmE+rr6yGKIlpbWxP29cqkTJTjxx4nUYxKkhlZTtnqsJ0u9lhar4WISKuFMEaTFkycIpVVhmt+tDjyFPAzU/rtPu4MP2Wn5dwatbW1wW63q7U/kbxeb8LlWkR+4WcitvkwsgYIiO/Mnkwm++n1egwODsLr9aKrq0utDcuVRDHO1RALRERzbaGM0aQF+zhF0unCzWVa/tZdF356Dsk6wumAFevD22k53gw61ClDEMR+USt9jgCgtbU1qkYECCdVLS0tSY8buX+69U6nM652JbJGI9H5Y18nkul+HR0dai2czWaLikuJO5MymUmMLS0t8Hq9Ucsjx9QSBAEDAwNR+8SWebL3QEvs6d4/IqJMRI7RtOPi+T1GkxasccpUSWl4yIHuTyGcPEV27p5KgnbclbPxnFwuFzo7O2G1WlFXVwe9Xg8Aam2TkkB0dnZCFEX09vaip6cHgiCotTJAuD+M0ilc2c/tdkOSJNhstqgkxOfzqV/2yvGAcALgdrvh9XohiiKMRqN6fqvVqjbLGY3GpOe22+0QRTHj/WpqauB2u6HX6+H3+9Ha2qruo9frYTKZMioT5fiRtWnJYhQEAT09PbBarWhqalKbMRUtLS2wWq1qAmQ0GtUmuEAgEBVrotq7dLEr+yrH0nItRETJxI7R9DdXbcQ/33DxvB6jSQudLGt8nKtIDQ8Po6qqCkNDQ1ixIroD29jYGPr6+rB582ZUVFRkdoKE4zitDydNORrHKR+UBK0YxokqJE1NTbDZbBl3yq6ursbg4GCWo4qXlZ8FIpo3xieD+Er3Afxmaoym2993ESzzeIymVLlCLNY4zdaWG4GLPjDnI4dTccikQ7bD4YDP54PFYuFo4EQ054bOTMDy3/vxZ8mPslIdvmPahpsuXzjDDaTDPk7ZUFIKbL4GuMQU/neeJU1KU5zySDtpo8wbaLfbZ9T/yGg0oqamBk6nE3a7PXcBEhHF6B86g5Z7n8afpfAYTT/59BVMmmKwqY7NE0T8WSAi/OXYCD79k33oHwqP0fSTzzTi4nVV+Q5rTrCpjoiIiDT7szSAnfeHx2iqW7UU//XZKxbkGE1aMHEiIiJawH7z/FHc1hUeo6lhYzXu+5uFO0aTFkyciIiIFqj7npTwzUdfAgDsuLgW//6Ry1BRNr/66WYbEyciIqJ5LhiSsa/PjxMjY1i9vAING6th2/My7uMYTTPGxImIiGge23OwH7seOYT+oTF1WUVZCcYmQgDm/xhN2Za34Qi8Xi/q6+s1bac8Ah85wjURERGltudgP259wBuVNAFQk6bPvGsTPv+eOiZNM5CXxMnpdAKApiTIbrejvr4eOp0OFoulIKeLCIaC6D3Wi99Kv0XvsV4EQ8GcncvtdsNisUCn00VN3zETDocD1dXVc5KEzuW5ItXX16v3mRJHU1NTRvsSERWjYEjGrkcOIdWYQ3sOHkMwNK9HJcq6vDTVKfOpaVFfX69OORE571ehcB9x4659d+H46HF12ZrKNbj9itth3GjM+vmMRiNEUYTD4UB7e3tGZWI2m9V55nJtLs8VyWazRY26rZRbJvsSERWjfX3+uJqmWP1DY9jX58dVdTVzFFXxK4o+ToWYMAHhpOm2J26DHJPPnxg9gdueuA13v/funCRPyoS+lJzRGF3uM5ncNnZfIqJidGIkddI00+0orOATp0AgoDab9Pb2pm2uGx8fx/j4uPp6eHhY87lkWcaZyTOatg2GgujY1xGXNAFQl9217y5cWXslSjVMwbJk0RK2MRMRUdbULNU2FtPq5ZwtYCYKPnEym81qjZMoimhqaoLP50u6fUdHB3bt2pXRuc5MnsGVP78yo30TOT56HFf/z9Watn3mY8+gsiyzUVrdbjesVquaVEqSBJfLFdVE5vV60dXVhcbGRgDxk8+63W54vV6Iooje3l7YbDY4nU50dHQgEAjA5/Ohs7MTdrsdFosFbW1tCffRcq5E8Sc7jt1uj+qbJIoi/H4/rFYrWltb0dbWBqfTCavVCrvdDqPRCK/Xi507d8JiscBsNiMQCKj9wZR7x+v1wu12q+VlMpkgimLcvlrKloio0JwYGcO/u19JuY0OQG1VBa7YzFaMmSj4xEmSJBgMBgBQv7gkSUpa69Te3o7bbrtNfT08PIwNGzbMSaz5YjQaYTQao77QlQl5DQYDAoEAmpuboxLOjo4O9f+SJMFqtcLj8QAIJzqdnZ1oa2uD0WjE9u3bEQgEIAgCPB4PBEFIuo/ZbE55rlipjrN9+3b09fWpiXN1dTX27t0Lo9GI1tZW9RgmkwldXV3qa4PBELVeEATY7XZUV1dHndPlcqnb1NfXY+/evXH7pitbIqJC4zkyiC/8zIPjw+OoWFSCsckQdEBU+4jSvnHnDVs4dtMMFXTi5PV6sX37drVzuCJVH5/y8nKUl5dndL4li5bgmY89o2lbz3EPvrD3C2m3++H2H6J+TfphF5YsWqLpvMnU1NSgpma6c58gCGpNT3d3d9yXfGQZ2u126PX6qCf0ent71ePs3r0b9fX16OnpUZOYZPsIgpDyXLFSHcdoNEb1b8tWh2273R4XoyiK6O7uhtlsjts+VdkSERUKWZbxs2dex65HXsREUMb5q5fh3k/W49XjI3HjONVWVeDOG7Zgx9a1eYy4OOU9cVJqMhRerxeCIKideZVmGyDcpGMymXLWWVyn02luLrt63dVYU7kGJ0ZPJOznpIMOayrX4Op1V2vq45RvBoMhqlN0ZAKhJENdXV1RCUeifRwOR1bOnclxiIgWqrGJIO741UH0eN4EALz/klp0mrZhWfki1K1ahqYttVEjh1+xWc+apgzlZRwnpd8IEG7GiRwzJ/K1IAhoaGhAZ2cnHA4Hent7C6ZvSWlJKW6/4nYA4SQpkvLaeoU1J0nTTGs7lH4/kSRJUv/f2toaNx6U8joQCMDtdqOnpweSJKnvTbJ90p0rVrLjtLS0pDyOIAgYGBiI2icQCERtH/s61Tm9Xi9aWlrS7ktEVGjeCpxB871Po8fzJkp04ZHAf/AxA5aVT9eNlJbocFVdDT502XpcVVfDpGkW8lLjpPQbiaxNUsQmRgaDoWD7khg3GnH3e+9OOI6T9QprToYiUJIYIJxkKv1xlD4+RqNRHWHdbrerNXc9PT2wWq1oampSa/k6Ojpgs9lgMBhgs9lgtVrVDt1GoxEOhwM2mw0WiwUA0NjYiJ07d0KSJLS1tSXcRxCElOeK7ZuW7NzJjqNoaWmJGgDUaDSqTXCBQABdXV3Q6/Vqp+9E5+zs7FQ7pCvNkErHdmVf5VipypaIKF+eeu0kvvSLZ+E/fRbVlWX4/kcNePf5K/Md1rymk2V5Xg8ZOjw8jKqqKgwNDWHFihVR68bGxtDX14fNmzejoiLzxzGDoSC8J7x4e/RtrKpcBcNqQ1E0zxWbpqYmNdHLRHV1dVx/OQrL1s8CEc0NWZax+0kJd/3uZYRkYOv6Fbjn4/XYoM/s6eyFLlWuECvvfZzmg9KSUjTWNuY7jHkvkw7ZDocDPp8PFouFo4ET0bxwenwSbQ8+j0ef7wcA3GI4B9/68FZUlPEX9rmQt0l+iWbC4XBAkiTY7fYZ9T8yGo2oqamB0+mE3W7PXYBERHOg7+RpfPiHf8Kjz/djUYkO3/jQxfhu86VMmuYQm+rYPEHEnwWiIuA+dBxf7noOI+OTWLW8HPd83ICGTRy8MhvYVEdERDRPhEIy/n3vq/je3lcBAA0bq/HDjxuwegV/yckHJk4Id7IjWsj4M0BUmIbOTODLXc/hsZdPAAD+5qqN+McPbMHiRexpky8LOnEqKysDAIyOjmLJktmN3E1UzEZHRwFM/0wQUf69fGwYlv/24MjAKMoXleBbH74Epvpz8h3WgregE6fS0lIIgoATJ8KZfGVlJXQ6DgpGC4csyxgdHcWJEycgCAJKS9nBlKgQPHzgKKzO53FmIoj1whLYP1mPreur8h0WYYEnTgBQW1sLAGryRLQQCYKg/iwQUf5MBkOw7XkZu5/sAwC8+7yV+N5HL4d+6eI8R0aKBZ846XQ6rF27FqtXr8bExES+wyGac2VlZaxpIioAJ0+N40s/9+LPUnjMus+/pw5fu/5CTo9SYBZ84qQoLS3llwcREeXFgTcC+PwDHvQPjWHp4lJ8t3kb3nfJ2nyHRQkwcSIiIsqjrt7XccevXsTZYAjiyqWwf7Ie569Znu+wKAkmTkRERHkwPhnErkcO4efPvA4AML5jDe5u3YYVFXy6tZAxcSIiIppj/UNncOsDXjz3RgA6HXCb8QJ88drzUML+TAWPiRMREdEc+rM0gC/93IuTp85iRcUi/MdHL8e1F67Od1ikERMnIiKiOSDLMn7yp8P41m9fQjAk46La5bB/sh4ba5bmOzSaASZOREREOXbmbBDtDz2PXz13FADwocvWoePmS1C5mF/DxYbvGBERUQ69PjAKywMevNQ/jNISHf7h/e/AZ9+1iTNVFCkmTkRERDnyxF9O4P/9z3MYOjOBlcsW4z8/ZsA7xZp8h0WzwMSJiIgoy0IhGT984jX8q+sVyDJw2QYB93zCgLVVnFC+2M04cTp8+DB6enrgcrkwODioLtfr9WhqaoLJZMKmTZuyGSMREVHRGB6bwFe6D8B16DgA4KNXnIt/uXELyhdxdor5YEaJ0+233w6dToeWlhZ87Wtfi1v/7LPP4t5774VOp0NHR0fWgiQiIioGr50Ygfl+D6STp7G4tARf/9DF+MgV5+Y7LMoinSzLspYNv/Od78BsNqOqqirttkNDQ7jrrrsKInkaHh5GVVUVhoaGsGLFinyHQ0RE89Seg/34SvcBnD4bxNqqCtzziXpctkHId1ikwUxyBc2JU7Fi4kRERLkUDMn47h/+gnue8AEArtysxw8+bsDKZeV5joy0mkmukHHn8Ntvvx3nnXcempub0dzcjOrqarS2tuLmm2/O9JBERERFZfD0Wfz9/zyLJ189CQD43Ls34/b3XYRFpSV5joxyJeN3trGxEZ/73OfgcDhQX1+Prq4uDAwMZDM2IiKighAMyXjaN4BfP/cWnvYNIBiScfCtIXzw+3/Ek6+exJKyUnzvo5fjnz64hUnTPJdxjVN1dTUAoLu7G7t37wYQfrKOiIhoPtlzsB+7HjmE/qExdVnVkjKcHp/EZEjGxppK3PuJerxjLbuDLAQZJ04+nw+yLMPn8+Gyyy5DX19f1PAERERExW7PwX7c+oAXsZ2Bh85MAAC2rluBn33unaiqLJv74CgvMq5PbGlpgdfrhcfjwdDQEOx2OwKBQBZDIyIiyp9gSMauRw7FJU2RBk6fxbIKjiW9kGh6qm5oaAiDg4MzGthyeHgYAPL+JBufqiMiokw87RvAR3f/Oe12v9j5TlxVx2lUitlMcgVNNU5VVVVwuVx46KGHNAXw4IMPoru7m4kKEREVrRMjY+k3msF2ND9orl/cuXMnnn32WbS0tKCurg6NjY0QRRGCICAQCECSJOzbtw99fX2wWCy45ZZbchk3ERFRTp08Na5pu9XLK3IcCRWSjAbAHBoaQnd3N3w+HwKBAARBQF1dHYxGIzZv3pyLODPGpjoiIpqJsYkgvvv7v+C+P/al3E4HoLaqAn+0XofSEt3cBEc5kfMBMKuqqrBz586MgiMiIipUL7w5hC93P4fXTpwCALyrrgZP+cJjFEbWMihp0p03bGHStMDwUQAiIlrwJoIh/PBxH77/2KuYDMlYuawctlsuwfZ3rEk4jlNtVQXuvGELdmxdm8eoKR+YOBER0YL22olTuK37OTz/5hAA4P2X1OKbN10C/dLFAIAdW9eiaUst9vX5cWJkDKuXV+CKzXrWNC1QTJyIiGhBCoVk/PSpw7DteRnjkyGsqFiEb9y0FTduWwedLjopKi3RccgBAsDEiYiIFqA3B0fxtZ7n8bQU7r90zfkr8R3TNtRW8Qk5Sm1WMxF+5zvfQWtrKwBg79696qCXREREhUiWZXTvfwM7/v1JPC0NYElZKb5x01bc/9krmDSRJhknTrfffjsEQYDRaAQAbN++HW63O2uBERERZdPbI+PYeb8Hbc7ncWp8EoZzBfzu/12DT75zY1zTHFEyGTfVNTY24pZbbsHevXuzGQ8REVHW7TnYj3/45UH4T59FWakOX266AJa/qmMHb5qxjBOnvr7wwGCRWXpvby9uvvnm2UdFRESUBUNnJrDr4Rfx0LNvAQAuql2Of2u9DO9YywGRKTMZJ06XX345GhoaUFNTA5fLBbfbDZvNls3YiIiIMvbkq2+jzfk8+ofGUKIDPv+eOvw/4/koX1Sa79CoiGU05Yqir68PdrsdANDa2orLL788a4FlC6dcISJaWEbPTuKu372M+58+AgDYWFOJu1u2oX6jPs+RUaGaSa4wq8Qp0YkLLTlh4kREtHB4Xx/EV7oPoO/kaQDAJ9+5Ee3vvwiVizn6DiWX87nqIk/k9/vV1zabDffcc89sDklERDRjZydD+N7eV/HDJ15DSAZqV1Sg03Qp/uqCVfkOjeaZjBOnz3/+83C73RAEQV3W19fHxImIiObUy8eGcVvXARzqD48leNNl67Drxq2oqizLc2Q0H2WcONXV1eHee++NWrZ79+5ZB0RERKRFMCRj95MS7v7DKzgbDKG6sgzf+vAleP8lnHiXcifjxEkZ+DJSU1OT5v29Xi927twJj8eTcjtJkuB0OiGKIiRJgtlsjqrlIiKihefIwGl8pfsA9h8ZBABsv2g1Om65BKuXc/Rvyq2ME6fq6mp897vfhSiKEAQBgUAAXV1d6OrqSruvkgh5vd602zY3N6vJlSRJ2LlzJ3p6ejINm4iIipgsy/j5vtfxrUdfwujZIJaVL8I/f3ALmhvO4ejfNCcyTpza2toQCASian+effZZTfuaTCZN20mSFPVaFEVO60JEtEAdGxqD9cHn8b+vvA0AuHKzHt9t3oYN+so8R0YLScaJU1NTE3bu3Bm17MEHH5x1QJHcbjf0+uhxN/R6PbxeLwwGQ1bPRUREhevhA0dxx68OYujMBBYvKkHb9Rfis+/ajBJOmUJzbFadw7Usm41AIJBweeQQCLHGx8cxPj6uvh4eHs5qTERENHcGT5/FP/36IB59vh8AcMn6Ktzdsg3nr1me58hooco4cfL5fLDb7WhsbAQQbnfu7u5Gb29v1oJLJllCBQAdHR3YtWtXzmMgIqLcevzlE2h78Hm8PTKO0hId/u668/DFa89DWWlJvkOjBSzju89ut2Pz5s2QZRnK4ONZHIQcACAIQlztkt/vT/lUXXt7O4aGhtS/b7zxRlZjIiKi3Do1Pon2h57HZ37ai7dHxlG3ail++YWr8f8ZL2DSRHmXcY2TzWbD9u3bo5YlGqJgNoxGozoXXqSGhoak+5SXl6O8vDyrcRAR0dx4RhrAV50H8Ib/DADgb9+9GV+7/kJUlHFiXioMGSdOsUkTEB6iYKZin8zzer0QBAGiKEIUxahtJUlCQ0MDx3EiIppnxiaCuNv1CnY/KUGWgfXCEny3eRuuqqvJd2hEUTQnTg899BCMRqM6+d19990XtT4QCMDlcuH3v/992mO53W64XC4A4T5JjY2N6hAFyuu2tjYAQE9PD6xWKxobG9Hb28sxnIiI5pmDbw3htu7n8MrxUwCAloZzcMcHt2B5BadMocKjkzV2TGpoaEBnZyeuu+469XVra2vUNl1dXdi/f3/2o5yFmcx4TEREuREMydjX58eJkTGsXl6BKzbrIcsy7nnCh//Y+yomQzJWLluMu26+FMYta/IdLi0wM8kVNNc4xSZEu3fvxuWXXx61LNt9nIiIqPjtOdiPXY8cQv/QmLps1bLFqCxfhCMDowCAHRfX4lsf3oqaZeyjSoVtVlOuKIaGhuB2u1FfX5+VoIiIaH7Yc7Aftz7gRWzTxtunzgKnzqKirAQdN1+Cmy5bzylTqChk/Fxn5NQnVVVVuOWWWzgdChERqYIhGbseORSXNEVaUVGGG7cxaaLiMaMap6GhIXR3d0On06mduyN5PB587nOfy1pwRERUvPb1+aOa5xI5MTKOfX1+Pj1HRWNGiVNVVRWMRiNsNht8Ph82b94ctV55Eo6IiOjESOqkaabbERWCGfdx2rx5M+69917s3bs34VhOREREb4+Mo2f/m5q2Xb28IsfREGVPVgfAJCKihS0YkvGzZ47gO7//C0bGJlNuqwNQWxUemoCoWGScOBEREUU68EYA//Srg3jhrSEAwCXrq/CBS9bCtudlAIjqJK50Bb/zhi0oLWHHcCoeTJyIiGhWhkYn8J0/vIyfPfM6ZBlYXrEIbddfiI9duRGlJTpsWlkZN45TbVUF7rxhC3ZsXZvHyIlmjokTERFlRJZl/PLZt/Dt376Ek6fOAgA+fPl6/MP734FVy6cHstyxdS2attTGjRzOmiYqRllNnA4fPoxNmzZl85BERFSAXj0+gn/61UE80+cHAJy3ehm+8aGtSYcVKC3RccgBmhdmlTg999xz8Pv96mu73Y6urq5ZB0VERIVp9Owkvrf3Ndz3pITJkIyKshL8/fbz8bl3i1i8KOMxlYmKRsaJU0tLCwKBAARBUJc9++yz2YiJiIgKjCzL+MOh4/j6I4fwVuAMAKBpyxrcecMWnFNdmefoiOZOxolTU1MTdu7cGbXswQcfnHVARERUWN7wj+JfHn4Re18+AQBYLyzBrhsvhnHLmjxHRjT3Mk6c6urqNC0jIqLiND4ZxO7/k/D9x17D+GQIZaU6mP9KxJeuPR9LFpfmOzxaKEJB4MhTwKnjwLI1wMargZL83X8ZJ04+nw92ux2NjY0AwtW43d3d6O3tzVpwRESUH3967STu+PVBSG+fBgBcJdbgGzdtxXmrl+U5MlpQDj0M7LECw0enl61YB+ywAVtuzEtIGSdOdrsdRqMRsjw9pFnk/4mIqPicGB7DNx99CQ8fCH9RrVxWjjs++A7cuG0ddDoOH0Bz6NDDQPenED10KoDh/vDylvvzkjxlnDjZbLa4aVeMRuOsAyIiork3GQzhgT8fwb/+4RWMjE+iRAd86qpN+HLTBahaUpbv8GihCQXDNU2xSRMwtUwH7LkduOgDc95sl7W56h577DEEAgFcfvnlsw6KiIjmzrOvD+KffnUQLx4dBgBsO6cK37zpElxyTlWeI6MF68hT0c1zcWRg+K3wdpuvmbOwgFmO4/TQQw9BkiQA4Wa6/fv34+abb85KYERElFuB0bPo/P1f8It94alSVlQsQtuOi/DRK87lqN6UH6feBl76NfCMQ+P2x3MbTwIZJ0633347AoEA/H4/RFFEIBCAxWLJZmxERJQDsizjQe9b6PjtSxg4HZ4q5RbDOWh//0VYuaw8zd5EWXb6JPDSI8CLvwQOPwnIIe37Lpv7ITFmNRzBzp070dfXB51Oh02bNuGxxx7LZmxERJRlfzk2gjt+dRD7DodnfbhgTXiqlCtFTodCc2jUP50s9f0fIAen1627HNjyIeDP9wCnTiBxPydd+Om6jVfPVcSqjBMnURRx5MgRbN68Gd/97nfx1a9+NZtxERFRFp0en8R/7H0VP/pjH4IhGUvKSvH/Gc/HZ9+9GWWlnCqF5sCZQeDlR8PJkvQEEJqcXrd2G3Dxh4EtNwH6zeFl+rqpp+p0iE6eppqRd9yVl/GcMk6cAoEARFHE4OAgTp48ieuvvx6CIOC6667LZnxERDQLsizj9y8ew65HDqF/aAwAsOPiWtxxwxasF5bkOTqa984EgL/8Npws+R4HQhPT69ZcAlx8UzhhqkkwgPaWG8NDDiQcx+muvI3jpJOzNPjS3r170dDQgKqqwnoKY3h4GFVVVRgaGsKKFSvyHQ4R0Zx5fWAUdz58EI//5W0AwAb9Enz9xq249qLVeY6M5rWxYeAvv5tKlvYCwbPT61ZfHE6ULr4JWHm+tuPNwcjhM8kVZvVU3Xe+8x3s378fXV1dAMDB0YiICsD4ZBD2/5Xwg8fDU6UsLi3B598j4gvXnoeKMk6VQjkwPgL8ZU84WXrNDQTHp9etvBDYenM4YVp14cyPXVI650MOpDKrp+rq6urUQS+3b9+Ohx56iMMREBHl0ZOvvo1//vWL6DsZnirl3eetxK4PXYy6VZwqhbJs/BTw6u/DydKrLmBybHpdzfnTydLqd+QvxhzIOHFqbGzELbfcgr1792YzHiIiysDx4TF84zeH8Jvn+wEAq5eX444PbsEHL13L1gDKnrOjwKt/AF58CHjlD8Dkmel1+rqIZGkLME/vu4wTp76+PgDRzXO9vb2scSIiypFgSMa+Pj9OjIxh9fIKXLFZD1mWcf/TR3C36xWcmpoq5W+u3oTbmi7A8gpOlUJZMHEmXKP04i+BV/YAE6PT66o3ARdPJUu1l8zbZClSxonT5ZdfjoaGBtTU1MDlcsHtdsNms2UzNiIimrLnYH/Uk3EAULN0MSrKSvFWIPxb/+XnCvjmTVtx8brCekiHitDEWLhj98GHwsnS2VPT64Rzp5OltdsWRLIUaVZP1fX19cFutwMAWltbC3KeOj5VR0TFbs/Bftz6gDfhMIAAULm4FHd8cAtaGzaghFOlUCJankybHAd8j4Vrll7+LXB2ZHpd1YbpoQPWGeZdsjRnT9Vt3rwZd91112wOQUREKQRDMnY9cihp0gQAyysWoYVJEyVz6OEkYyHZgAt2hAejfPGh8OCU48MR26yfGjrgw8D6+nmXLGVKc+KkZXTw++67D5/73OdmHRQREYXt6/NHNc8lcnx4HPv6/LiqjtOmUIxDD0+Nvh2Teg8fBbo/CZRVRvdZWr42PHr3xR8GzmkESjiqfCzNidO3v/1tuFyulNvs37+fiRMRUZaMTQTxkPdNTdueGEmdXNECFAqGa5pS1VdOjAJLV0/XLG24kslSGpoTp+3bt6Ompgb19fVJt8nSIORERAva6NlJ/PyZ1+H4PwknRsbT7wBg9fKKHEdFRefIU9HNc8ncch8gvif38cwTmhOnnp4eDA0NYf/+/QDC4zjFdqDS6/XZjY6IaAEZGZvA/U8fwY/+2Af/6fA0FWtXlOP02SBGxiaTzRGP2qrw0AREAIBTJ4AXnMCff6ht+9Nv5zaeeWZGncOrqqqwfft2AMCzzz4Lv98PnU6nTux7yy23ZD9CIqJ5LjB6Fj/+02H89E99GB4Lzxh/rr4SX7y2Dh++/Bw89vJx3PqAN9kc8bjzhi0oZcfwhW1iLDyZ7oH/CU95Ige177tsTe7imodmNY6T4rHHHoPL5UJTU5OaRBERUWonT43jvif78N9PH8bps+EvurpVS/Gl687DDZeuw6LScF+THVvX4p5PGOLGcaqtqsCdN2zBjq1r8xI/5ZksA288Azz3c+DFXwHjQ9Pr1jcAl7YAf7wbGDmOxP2cdOGn6zZePUcBzw+zGo7gueeeg91uR1dXF0RRRF1dHRMnIqI0jg2Nwf5/Pvxi3+sYmwgBAN6xdgX+7rrzsOPi2oTDCuzYuhZNW2rjRg5nTdMC5O8Dnu8CDvwCGDw8vbxqA3BpK7DtI8DK88PLlq+deqouSX3ljrvix3OilGacOB0+fBg9PT2w2+3Q6XS45ZZb4PF4sHnz5lzER0Q0b7zhH8W9/+tDz/43cTYYTpi2bRDwd9eeh+3vWJ12TrnSEh2HHFiozgSAQ78KN8W9/vT08sXLgC0fCidLG98d/0TclhuBlvuTjON0V3g9zYjmxOm+++6D3W6HJEloaWlBT09P3EjhDz30EOeqIyKKIb19Cj98wodfPvsWgqHwb/1XbNbj7647D+8+byUn4aXEgpPhaU8O/CI8kndQecJSB9RdC2z7KHDRB4DFS1MfZ8uN4e3SjRxOmmiecqWkpAQmkwmtra0QBCHuB31wcBB33XUXent7cxJopjjlChHly8vHhvGDx3149PmjmMqXcM35K/Gla8/DlSJrjigBWQaOvRCuWXqhO/qJt1UXhZOlS1vCNUaUNTmZcsVsNqOzszPlWE1dXV3aoyQimqdeeHMI33/sVfzh0HF1mfEdq/HFa8/D5edW5zEyKlgjx4Dnu8MJ04kXp5dXrgQuaQ43xS3ACXULkebEyWKxpM3C2tvbZx0QEVGx8hzx4/uPvYYn/hKuJdDpgPdvXYsvXFuHi9dV5Tk6KjhnR6eGEPhFeHJdOdzvDaWLgQvfB2z7GHDedqC0LL9xUhTNiVNsf6ZMtyEimk9kWcbTvgF8/7HX8LQ0ACDciftD29bhC9fW4bzVy/McIRWUUAh4/alwsvTir4GzI9PrNlwZrlm6+MPAEtZMFqpZDUdARLRQybKMJ155G//52GvwHBkEAJSV6nCL4Rzc+t46bKxJ02GXFpYBX7gZ7vn/AQKvTy8Xzp3qt9QK1NTlLz7SjIkTEdEMhEIy/nDoOP7z8Vdx8K1hAMDiRSX4aOMGmN9Th/XCkjxHSAVj1A+8+MtwwvTmvunli5cDF98UTpjOvYqT6hYZJk5ERBoEQzIefaEfP3jsNfzleLh5ZUlZKT7xznOx8xoRq1dwkt15LRTU9jh/cAJ41RVuintlDxAMzzkIXQlQtz3cFHfh+4HFlXMbP2VN3hInSZLgdDohiiIkSYLZbIYgCAm39Xq9AACDwQBJkhAIBGAwGOYwWiJaqCaCIfzq2bfwwyd86Dt5GgCwvHwR/ubqTfjsuzdDv3RxniOknDv0cJIBJG3hMZJkGeh/bmoIgR5gdGB6u9UXA5d9NPxk3PLaOQ+dsi9viVNzczM8Hg+AcBK1c+dO9PT0JNzWbrfD4XAAAIxGY9LtiIiyZXwyiJ79b+KeJ3x4K3AGACBUluFv37UZn7p6E6qW8EmnBeHQw1NTlsQMxTPcH15+aTPQ/zzw9svT65auDo+1tO0jQO0lcxou5V5eEidJkqJei6IIt9uddPv6+noMDoY7XyarlSIiyoYzZ4P4xb7XYf8/H44Ph0dqXrlsMXZeI+IT79yIpeXs4bBghILhmqaEE+ROLXu+O/xvaXl4dO5tHwXqrgNKeZ/MV3l5Z91uN/R6fdQyvV4Pr9ebtAmOCRMRzVYwJCedJPfU+CT+++kjuO9JCQOnw/1SaldU4PPvEfGRK85FRRmnp1hwjjwV3TyXzFV/B/zVV4ElQs5DovzLS+IUCAQSLvf7/Um3dzqdAIDe3l5YLBaIophw2/HxcYyPj6uvh4eHZxcsEc0Lew72Y9cjh9A/NKYuW1tVga/+9YV4Y3AUP/nTYQydmQAAbNAvwRfeex5uNqxH+SImTAvO2dHwWEvP2LVtv+4yJk0LSEHVJSZLqCI7jouiiKamJvh8voTbdnR0YNeuXTmKkIiK0Z6D/bj1AW9cg0v/0Bi+0nNAfS2uWoovvvc83HjZOpSV8hHxBSMUAo4fBKTHwyN4H3k6YkJdDZatyV1sVHDykjgJghBXu+T3+5M2x0mSpDbhKU/hSZKUsNapvb0dt912m/p6eHgYGzZsyF7wRFRUgiEZux45lLCXimJRiQ53t2zDBy5dpzbd0Tw3cgzwTSVK0uPRk+kCwIr1gPge4C+/A84EkLifky78dN3Gq+cgYCoUeUmcjEYj7Pb4KtCGhoa4ZV6vF9u3b1c7hyti+0gpysvLUV5enp1Aiajo7evzRzXPJTIZkrFqeQWTpvls4ky4z5LvsXDCFDmRLgCUVQKbrgl37K67Flh5QXiyQfWpOh2ik6epe2XHXYnHc6J5Ky+JU2xNkSRJaGhoUGucvF4vBEGAKIoQRRE2m03d1u12w2QysbM4EaU1PhnEb57X0LkXwImR1MkVFRlZDje/+R5L0vymA9Zum0qUrgM2XAEsSvBL95YbgZb7k4zjdFd4PS0oeevj1NPTA6vVisbGRvT29kaNzdTR0YHGxka0tbVBEAQ0NDSgs7MTgiDA5/NxHCciSunY0Bh+9swR/GLf6zh56qymfVYv58jfRW/k+HQ/Jd/jwOkT0etXrA/XJtVdB2x+L7C0Rttxt9wYHmpAy8jhNO/pZFlO1fRf9IaHh1FVVYWhoSGsWLEi3+EQUY7Isgzv64P46VNH8LsX+jEZCn+01a4ox6nxIE6PTybrpYLaqgr80Xodm+qKjdL8Jj0eTpSOH4xeX1YJbHr3dK2S0vxGFGMmuUJBPVVHRDRT45NB/OZAP3761GG88NaQuvyKTXp8+l2b8Ndb1sD90nHc+oA3WS8V3HnDFiZNxUCWgeMvRjS/PRX/9Nvay6b7KW24MnHzG9EsMHEioqKkNMf9/JnX1QErFy8qwU2XrcPfXL0JF6+rUrfdsXUt7vmEIW4cp9qqCtx5wxbs2Lp2zuNfcLROkhtLbX57PPzvqePR65evm06UxPcCS1fmJHwiBRMnIioaSnPcT/50GHsOHlOb49ZWVeCTV23ERxrPTTrp7o6ta9G0pTbpyOGUQ+kmyY00cQZ4/enpfkrJmt/Eqb5Kqy5k8xvNKSZORFTwxiaC+M3z/fiv2Oa4zXp8+upwc9wiDQNWlpbocFWdxg7BlB3pJslt+S+g5rzo5rfJmCcco55+Y/Mb5RcTJyIqWDNpjqMCpGWS3J5PA3IoetXytdOJEpvfqMAwcSKigjKb5jgqMFomyZVDQMni8CjdSrLE5jcqYEyciKggZKs5jgqA8vSb57+0bX/j94DLPprbmIiyhIkTEeVVoua48kUl+BCb44qLMveb8gRc7OCTqVSdk7u4iLKMiRMRzTk2x80DZ0eB15+amig3ydxv514NvNkLjA8lPgYnyaUixMSJiOYMm+OKWCgEHH9hKlF6DHj9zynmfosYfFJ9qg7gJLk0HzBxIqKcY3NckRo+Op0oSU8Aoyej12uZ+42T5NI8w8SJiHKCzXFF6Oxp4PCfpifKffvl6PVlS4HN10wPPrnyfG1Pv3GSXJpHmDgR0YwEQ3LK0beV5rifPtWHg28Nq8vZHFeAQiHg2IHpUbrfeAYIno3YQAesu3x6mIBzGoFFGSa7JaXhpIuoyDFxIiLN9hzsj5vvbe3UfG+XbajGA38+gl/sY3NcQRt6M7r57Yw/en3VuVPNb9cCm98DVOrzEiZRoWLiRESa7DnYj1sf8MaNAd0/NIbPP+BFiQ6Yao1jc1yuZDJR7vgp4PAfp5vfTr4SvX7x8nBNkFKrpBc5+CRRCkyciCitYEjGrkcOJZw4QxGSgcZN1fjsuzajic1x2ad1otxQEOh/LqL5bR8QmpherysB1tdP91M6pwEoLZuzyyAqdkyciCitfX3+qOa5ZG5rupCT6OZCuolyP3h3OCHyPR5ufhsLRG8nbJyuUdp8DbCkeo4CJ5p/mDgRUVLBkIzew3784PHXNG1/YiR9ckUzpGWi3N98OXpx+Qpg819NDxWgF3MdJdGCwcSJiKIoydKjz/fjdweP4eSp8fQ7TVm9vCKHkS1QR/6UfqJcAFj1DuDim8JNcOvrgVJ+vBPlAn+yiEgdYuC3L8QnSysqFuGvt6zB3pdPIDA6kbDeQwegtio8NAHN0qkTwFte4C1P+O/rf9a23199FbjElNvYiIiJE9FClS5Zuv7iWrz/0rV4V91KLF5Uoj5Vp0PCiTNw5w1bosZzIg3GhsMduZVE6eizwNAbmR1r2ZqshkZEiTFxIlpAUiVLVUvK8Ndb1kQlS5F2bF2Lez5hiBvHqXZqHKcdW9fO2XUUpclx4PjBqSRpKlE6+Qri+y7pgFUXAusMwHoDsPaycAfwkf4E205tz4lyieYMEyeieU5Jlh594Sj2HDyeMFn6wKVrcXWCZCnWjq1r0bSlNuXI4YTwiNwDr041t00lSccPxozKPaVqQzhBWmcI901auw2oWBG9zftsU0/VJanv40S5RHOGiRPRPJTNZClWaYmOQw5EkuXwaNxHvdOJ0tHngLMj8dsuqQ4nR+vrp2uUlq1Ofw5OlEtUMJg4Ec0TwZCMZ/oG8NsX+hMmS9dfvAbvvySzZGneyGTk7Vij/qkkKSJROn0ifruyynDt0fr68Hxv6+uB6k2Zj8rNiXKJCgITJ6IiFp0sHcPJU9NNQZHJ0rvOW4myhT6St9aRtyOdHQX6D0TXJg32xW+nKwXWbImuTVp1UfaHBOBEuUR5x8SJqMgwWcpAupG3W+4HLnwfcOKlqafbpmqUTrwEyMH44+nrws1sSpJUewmwuHJOLoWI8ouJE1ERUJKlR5/vx+9fTJwsfeDSdbi6robJUiwtI28/+LcASoBggpHPl60B1jcA6y+fbnbjlCVECxYTJ6I5pnTcTvdU2mQwNNXBm8nSrEhPpB95W3narXzFVH+kiNqkFesy75dERPMOEyeiObTnYH/cOEhrI8ZBSpUsCZVluH5LeFBKJksJKE+3HX8x/Oj/8RfDf0++om3/v/4m8M4vAiUsVyJKjokT0RxRRt6ObTA6NjSGzz/gxTXnr8Sho8MYOM1kKa3xU+H+R5EJ0vEXgfGhzI+59jImTUSUFhMnojkQDMnY9cihVL1s8OSrJwEwWYoSCoWfYlOTo6lEKdGTbQBQsghYeSGw5uKpv1vDT7f9uCncEZwjbxPRLDFxIpoDf3zt7ajmuWTa33cRPvvuzQszWTozCBw/FJ0gnXgJmDidePtltdEJ0pqLgZUXAIsWx2+7gyNvE1F2MHEiyoGBU+PwHBnE/iOD6D3sx/NvBDTtV1tVUfhJ02wHkQxOAn4fcOyF6Ga24TcTb19aDqx+x3RypPxdulL7OTnyNhFlCRMnolmSZRmHB0bRe9iP/Yf92H9kENLbSWpJ0li9vCLL0WXZTAeRPH0yph/SQeDEy0BwPH5bAKg6Nzo5WrMV0IvZGUiSI28TURYwcSKaobOTIbx4dAj7Dw9i/xE/PEcGo55+U1ywZhkaNunRsLEahnOr8ZHdf8bxobFkvWxQWxUemqBgpRtE8q+/Ga4FikyUTh1PfKzFy4DVW6ITpNXvAJYIub0GjrxNRLPExIkojeGxCXiPDGL/4XCz24E3AxibCEVts3hRCbadU4WGTXo0bgonSkJldF+bf7lhC259wJuslw3uvGFLwvGcCoKWQST/8I8J1unCNUaR/ZDWXAwIG/kEGxEVJSZORDHeCpzB/sP+qaa3Qfzl+AjkmHyhurIM9Rv1aNhUjcZN1di6vgrli1I3+ezYuhb3fMIQN45TbcQ4TgVh8iwQeD3cD8kvhf++uT/9IJJAODna+K6IWqSLgMVLcx8zEdEcYeJEC1owJOPlY8PwHBlE7+FB7D/sT/j026aaStRvDNcmNWzSo27VUugyGE16x9a1aNpSq2nk8JyaGAMCR6YTo4GIJGnoDUAOpT9GIu/+MnCJKbuxEhEVECZOVHS0TlmSyOjZSTz3RkBtdnv29QBOjU9GbVNaosPWdSvU/kn1m6qz2mm7FCFcVXIIKD0OlKwBcDWAHHRQnjgD+PumE6LIv0NvInGz25SypeEmNv1moKYu3FT31PfSn3PZmqyFT0RUiJg4UVFJN2VJrBMjY/AcDtcmeY74cfDoMIKh6IRhWfkiGDZWo2FjNRo2VeOyDQIqF+foR2OmT6Wlc/Z0RHKk1BpNvR5+K/W+i5cDNeJUghT5tw5Ytjp6frZQEDjo5CCSRLTg6WQ5tvfG/DI8PIyqqioMDQ1hxYoV+Q6HZiHZlCXK1/sPP27A+WuWTdUmhZ94OzIwGnectVUVaifu+o3VuKh2xdw0lSV7Kk25gpb7EydP4yPxNUYDU/+eOpb6nOVVMclR3fT/l66c2eS1avxAwu7tyeInIipwM8kVWONERUHLlCVf+Lk3rhO3TgdcuGY5GjeFO3I3bNJjvbAk1+HGS/tUmg549CvA5BgweCQ6STp9IvWxl1RHJ0TK35q68LoM+mIlxEEkiYiYOFFhC4VkHBsew29f6E87ZYksA2WlOtRvrEbD1BNvl59bjaolZXMUbRLBCeCl36R5Kk0OJ0gP7Uy8unJlfFKk3wxUbwYq53DsJw4iSUQLHBMnyrtgSMbRwBkcHjiNwwOjOHJy6t+B0zjiH8XZyegnvEoQwhUlL2M1AjgBAftCFyGE8JhAtpsvxc3158xR4BPAqRPh5rKRY8BIPzByPPzvqePTr0+/jZQdsSPpzwPOvTKcFEUmShVVOb2UGeEgkkS0gDFxojkxEQzhrcFwcnRkYBR9J0+HE6OBUbwxOIqJYPLEoqxUh5VLy9E/PIbrS/bhzrL7sU7nV9cflfXYNfEp/D50BdZmoxlOSYhGjk0lRf1TidGxiGXHwtOJaE2IUAJAwyP+N/w7kxIiogLGxGmBms0j/cmMTwbxhv8MjgxM1xgp/745eCbuabZIixeVYKO+EhtrlmJTTSU2rgz/u6lmKdZWVUCn0+Efv/1tfHvi3+P2rYUf95T9O/6hrA1XbH5/iouemKoJUmqFjkUnREpSNJOEqGRRuLlqeS2wrDb8r/I38nWFAHxvG59KI6K8CIaC8J7w4u3Rt7GqchUMqw0oLZIm9kKLnYnTPDGTRGjPwX584+EXsOHUAbW5641l23DHjZekHb16bCKI1/2jOHwyXFsUWYN0dOhMXOfsSBVlJdhUsxQbpxKiyCRp7YoKlKRK3EJB3Fl2PzABxG5WogNCMrCr9EcofekS4PTx6KYypRltdAAzS4hqgeVrgOVrp5KjtfGvK2u0Tx2ywwZ0fwpB6OCtWIy3S0uxKhiEYexseBSnHXcVRV+hQvsQm4lijh0o7viLOXaguON3H3Hjrn134fjo9NyRayrX4PYrbodxozGPkaVXiLHnbTgCSZLgdDohiiIkSYLZbIYgCLPeNlYuhyM4dXoY/+r8PKSxV1GOMrx73Q0oW1yBgVNvYfWKc3HTeyxYvLgcAHD27Dh+9b92nBh+PW5dIjPZfs/Bfnz94QOoCbpQuegkRidXYqC0Cf9847a4RGjPwX786uf34h/L7sexJafVL+/aM0vxrYlP4aaPfR7XnL8KR2JqjJQEKV0H7aWLS7Fp5dKYBKkSm1Yuxerl5clH2548C4wPA2ND03/Hh4GxqWXHDwIHfgEACALwVpRHJB7j2oePLCmbriFKVDO0vDacEC3R52QuNfcfO3DXKz/D8dLpclgTlHH7BR+H8d3tWT9fthXih5hWxRw7UNzxF3PsQHHH7z7ixm1P3AY55pdG3dQwIne/9+6CvYa5jH0muULeEqf6+np4PB4A4cTIarWip6dn1tvGylXi9JX7dsC16E3IKR71XjkZwkdX3gQA+MXJX+HkopK4deYPfStuP8ev/1Hz9nsO9uNHD9+Bk2uejtt+5fGr8Lc3fkNNnoIhGf/47W/jurLvo3NlNY4vmq5wXDM5ibaTg/jlsAW/C16R8tqXVyzC5pURNUb6CtQtl3Hu0gnoS89ANz4Sn/iMKwnRcESCFPH/ydQJmcJduQR31cTHfvvAIIyjZ8JPma25ODoJikyMcpQQaYq9iD/AgOKOv5hjB4o7/mKOHSju+IOhIK5/8PqohC+SDjqsqVyDPbfsKbjas7mOveATJ0mS0NzcrCZDAFBdXY3BwcFZbZtILhKnr9y3A39Y9Gb4RYrESSfH/KhFbKubKvYvVX8oKhly/Pof8Z+Dvw7vl2b7YEjGZ//tVjxb88ek21987GosWfM5+Ecn0D84gq+UfQnfXFORdPs7j4/iN0OfwZrySZy7dBIblpzFmvKzWLloHELJKJZhFGWTp6BTEp+xIeDsiKZy02Tx8vATZBUrwv+Wrwj//+xpuN94HLetXpk09rtPnISxuacgO1cX8wcYUNzxF3PsQGbxKx/rMmTIsgzlz9TCqNfq+oivgsj9Il/HHTtyeczxAGAyNImP//bjOHnmZNLrW7lkJX50/Y9QgpLpuOToGEJTcyfGXU/EdiGEEl93RDwhORS9TI6+jth/g3IQu57ehcB4IGn8VeVV+FrD11CiK4k7fmRckXEr1xOSQ3HnjT2G8hoy1GNF7R8Zf0w59J/qx9439iaNXfGude/CyiUr4++JNGUVuW1knHFlmuA9TVX+ADB8dhivBV5LG/uPr/8xGmsb026XTsEnTg6HAz09PXC5XOqyuro69PT0wGAwZLxtItlOnE6dHsbVPVcj9ss7KaV4E20ry1geknHj+s9BlnU4e/YMfn/yAYyU6FJuf9HQ5ZBDIYSCZ/HqypdSbr8iJOP9A0uwGDKWYBS/qNFhuKQkxfYh/N3gEEoQ3RtIjvk37v86hJvBFlUAZRXAogrIiyqAsiXh/5dVAKVT/y6KXF+uvsaicsjQRRx/+gzB0AR+5PkeTumSl+UyGfj05V+ErqQ0/sNcOZb6T/yHfaLXKbdJdswE2x07fQyuI9P3cDLXbrgWq5asUveL/WJK9MWgnFP9MIp4HfvBFBtn3HGSfJgFxgM4ePJg2vgvqr4Iy8uXR8eQoDxjv3yVcoyLP2b7RPEn3Cbi+KOTozh2Os0I6wBWVqxE+aLp5vCkicNUGUXGH1u2M90/dvvIawjKQUyEJtLGT7QQ2a6x4f1iioeCNCr4kcMDgUDC5X6/P27ZTLYFgPHxcYyPj6uvh4eHZxxfKv/24BdSNs/FSbWtToeRUh1+duzH08tKUzQjTW3fqz8QsTD19sOlOvzPaqU80rzdOh2GS0vxrZWzHVAxCOB0+O8Ewn/PzPKQQHyv8Eg6HU7pgP888MMsnCh/Hn/j8XyHMCsvD76c7xAydnIsea0IaaODDjqdDsqfkBxCSMMwHOWl5VhcshjQxR9D/X/EstjtSnQl8eef+hcAdDodSlCi9rFMdHwAKNGVRC0bHB/EGyNvpI3/fOF8rKpcFRVPbMwlupKo2EpQol5H7Pax20ZeY9yxI64t9nxHTx3Fo32Ppo3/lvNvwYblG+LKJVGZJnqfY88dW/ZJl0UuV97TqWW+QR9+cOAHaWNfVbkq7TbZVlBP1SVLkmaybUdHB3bt2pWdgBJ4e7wfWJzdY54/fhYrgzJOlpbg1fL0o1yfNwGsXrQUbwfP4NVF6T+UzscyrBfOwfHTJ/DSROKEM9KWZedinf4CAEjYmVu5+WPXqz8UEeuj/6tLuk+y9Yo3R96E94Q3bexX1F6BDcs3RB0nNq7Y48cuT/ZayzHVbdV/wv85duoYfnv4t2njv7HuRpyz7Jyo/RN9cKnrEnzQxa2L+bCLPa4Sf+Q1xX7I9Q314ccHIxL8JCyXWnCecF5c/InOkXabBNcTu73yYZvsGgDgZf/L6OztTBv7P1z5D9hSsyVpPFHnioknMt5M9k91PQfePoC2/2tLG/+/vfffcNnqy+Lfv5j3OfKcia4h0ZdbZGzJ7qlEeo/14rO//2za2O8x3pOV5pZs0xp/+5XtBRl/MBTE/uP7cWL0RFRtpkKHcDPvHe+8o+Caqa/bcB2crzrTxm5Ynb7lKdvykjgJghBXY+T3+xM+KTeTbQGgvb0dt912m/p6eHgYGzZsmHXMilXlawE5zdxhM/SRzV9ES9Pfo9v1PXzj6O6023904060NP09/uy9Dztf+I+027dd8rd4p+Fz6D36Z3zWlWRKjwhfveoONK57p6bY54rWD7DPb/t8wX6AeU540n4IfP3qrxfcBxgQjv9R6dG08d+67daCi9+w2oD/evG/0sbeckFLwcUOhJ/e+tfKf00b/7Ubri24+A2rDVhTuaYgv/y0KPb4S0tKcfsVt+O2J26DDrqoa1ASYusV1oK7b4DCjj0vjxcZjYmfQGhoaJjVtgBQXl6OFStWRP3Npi/f8sNwZ2StXcNSbKuTZayaDOGm91gAADe9x4KVkyG1s3O67Rsv/RRWB+WU268Jymi8NDyjvaG2EWvKVqTcvnZxFQwFmHgoH2BRtVkRdNChtrK24D/AAMRdQ74/BLQo5viLOXaguOMv5tiB4o8fAIwbjbj7vXdjdeXqqOVrKtcU9BOBQOHGnpfESRTFqNeSJKGhoUGtRfJ6vZAkSdO2c23Z0hVompyaCy1N8hSZoMQmK8rrj6y8SR2fafHicnX4Ai3bly5ajPYLPp5y+9sv+DhKF4XbFktLSnH7u3YBOl3i7XU6WK/+l4L8EOAHWP4Vc/zFHDtQ3PEXc+xA8ccPhK/h97f8Hj++/sewXWPDj6//MfbcsoexZyivA2Da7XY0Njait7cX7e3tajLU3NyMxsZGtLW1pd02nXyO47RqMoSPJBnHSVmndRynVNsnGlSxNijDmmRQxUSDudVWroG1SAZzi4+9FtYrrAUfu6KYRyAGijv+Yo4dKO74izl2oPjjp9QKfjiCubQQRg4HgODkWXhf+G+8Pfw6Vq04F4ZLPqnWNCXcvog/BIo5diIiKjxMnCLkMnEiIiKi4jeTXCE/c08QERERFSEmTkREREQaMXEiIiIi0qigRg7PBXXCwCxPvUJERETzg5IjaOn2Pe8Tp5GREQDI6ujhRERENP+MjIygqqoq5Tbz/qm6UCiEo0ePYvny5SnnVMqEMp3LG2+8wSf25hjLPr9Y/vnDss8fln3+5LrsZVnGyMgI1q1bh5KS1L2Y5n2NU0lJCc4555ycniMXU7uQNiz7/GL55w/LPn9Y9vmTy7JPV9OkYOdwIiIiIo2YOBERERFpxMRpFsrLy3HnnXeivDz5VCiUGyz7/GL55w/LPn9Y9vlTSGU/7zuHExEREWULa5yIiIiINGLiRERERKTRvB+OIFckSYLT6YQoipAkCWazGYIg5DusouX1euF2uwEAvb292L17t1qeqco603WUnNVqRXt7O8t/DrndbkiSBFEUAQBGoxEAyz7XJEmC2+2GXq+HJEkwmUzqe8Cyzz6v14udO3fC4/FELc9FWef0fZApIwaDQf2/z+eTTSZTHqMpfjabLer/keWbqqwzXUeJeTweGYA8ODioLmP555bL5ZLNZrMsy+FyEkVRXceyz63Izx1ZltX3QZZZ9tnW09Ojfr7EykVZ5/J9YOKUAZ/PF/WmyLIsC4KQp2iKn8fjiSo/n88nA5B9Pl/Kss50HSXX09Mji6KoJk4s/9yLLG9ZDped8i/LPrdiyykygWXZ50Zs4pSLss71+8A+ThlQqnYj6fV6eL3ePEVU3AwGA3bv3q2+DgQCAMJlmqqsM11HiTmdTphMpqhlLP/ckiQJfr8fgiDA6/UiEAioTUUs+9zT6/Wor69Xm+yampoAsOznUi7KOtfvAxOnDChf7LH8fv/cBjKPRH5hd3V1wWg0QhCElGWd6TqKFwgEErb/s/xzy+v1Qq/Xq30xHA4HnE4nAJb9XOjp6QEA1NXVoaenR/0cYtnPnVyUda7fB3YOz6JkbxZpFwgE4HQ64zoPJtou2+sWsu7ubpjNZs3bs/yzw+/3Q5Ik9RcFs9mM6upqyCmG12PZZ4/b7YbNZoMkSbBYLAAAu92edHuW/dzJRVln631gjVMGBEGIy1yV6naaHavVCpfLpZZlqrLOdB1Fc7vdaGlpSbiO5Z9boiiq5QVA/dfr9bLsc0ySJPT29sJoNMJsNsPn86G7uxuSJLHs51AuyjrX7wMTpwwojwrHamhomONI5pfOzk5YrVaIoohAIIBAIJCyrDNdR/G6u7vhcDjgcDggSRI6Ojrg9XpZ/jmm9GdKhGWfW16vF42NjeprURTR3t7Oz505louyzvX7wKa6DMR+2EmShIaGBv5WMQtOpxMGg0FNmpSmo9gyjSzrTNdRtNgPGYvFAovFkvBLneWfXaIooqGhQe1jpozlZDAY4rZl2WeXwWCA3W6P6l85MDDAsp8DkX0qU32fFurnP+eqy5AkSbDb7WhsbERvb2/UgIE0M5Ikoa6uLmqZIAgYHBxU1ycr60zXUbxAIACHwwGr1Qqz2QyLxQKDwcDyz7FAIACr1Yr6+np4PB611hXgvZ9rbrdbbRYFwr9EsOxzw+12w+VyobOzE21tbWhsbFST1lyUdS7fByZORERERBqxjxMRERGRRkyciIiIiDRi4kRERESkERMnIiIiIo2YOBERERFpxMSJiIiISCMmTkREREQaMXEiopxzu92oq6tDZ2cnHA4H6uvrUV9frw64WVdXB6/XO+tzKMckIsoVTrlCRDkXCATgcrnUUZldLhf0ej3MZjMAoLW1FZIkJZzuQiuj0YjW1tasxDsXIqedIKLiwRonIso5v9+fckJbg8EQN5v5fCZJErq7u/MdBhFlgIkTEeVcS0tLVraZL2w2W75DIKIMMXEiopzT0iS1f/9+1NfXo7OzEwDgdDpRV1cHt9sNYLqflMVigdPphMPhgMViQSAQSHpMt9uNzs5OOJ1OWK3WpNtJkgSr1aoeVzmm1+tV9+/s7IQkSepx08Wq9Ldyu91wOBxobm5W1+3fvx8ulwsOh0M9JhEVB/ZxIqKCENtHyWQyoaurK2q9yWRCTU2NOqu60+lEc3MzXC5X3PGUZMjj8QAINxcqM7NHCgQCaGpqgsfjgSAIsFqtcDgcMJlMsFqtUceur6/H3r17NcVqNBrhcrnQ09MDAOjp6YHX61XX1dXVqX28iKh4MHEioqISWXtlMpnQ3NycsKO13W6HXq9Xa4EAoLe3N+543d3dEEVR3b+9vR0A0NHREddZXRRFdHd3a0p4ampqUFNTExX3QurHRTRfMXEionnLYDDAaDSqrxMlPLFJ11w/6can64iKC/s4EVHBEAQBAwMD6mu32x3XhynytdPphNFojEo8lPWtra1RtU3K8WKZTKa4MaTcbnfC/b1er9qJXUusWiSKiYgKl06WZTnfQRDRwuB2uyFJkvpUmdVqRUNDg9okFggEYLVa1Y7UdrsdgUAAdrsdoijCarUiEAiozXO9vb1ob2+HIAjwer3YuXMnAGD37t0wGAxwu91wuVxobGwEgLgkKzKuRNu53W54vV6Iooje3l60trZqijUQCETFovS3MhgM6rXbbDbU19fDaDSmHKqBiAoLEyciKhrKKOPsVE1E+cKmOiIiIiKNmDgRUVFwu91wu93qY/1ERPnApjoiIiIijVjjRERERKQREyciIiIijZg4EREREWnExImIiIhIIyZORERERBoxcSIiIiLSiIkTERERkUZMnIiIiIg0YuJEREREpNH/DwyItEQt/AxJAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFoCAYAAAChRHRDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABw00lEQVR4nO3deVwb950//pfAgI0PBuH7iO0hp+vEsQDn6JXGoknbTdomAto07fay1GN/7W6+W2S3323q9rslIml3t7ttKrl30wNQ0ibptk6ReyVtUgOykzhO4kRDHMe3EQO2MWDQ/P4YZtCtQUhIwOuZRx5GM58ZvecjIb35fD7z+ZgURVFARERERCkV5DoAIiIioumCiRMRERGRQUyciIiIiAxi4kRERERkEBMnIiIiIoOYOBEREREZxMSJiIiIyCAmTkREREQGzfrESZIkOJ1OlJeXo7KyMmnZyspKlJeXw+l0QpblqQmQ8obf70dtbW3K90k2eb3enD13vpJlGU6nE16vF16vFx6PBx6PJ+PPo31WmEwmVFZWorm5Gc3NzXA4HKirq+NrY4DD4UB5eTl8Pl9Ozp2sDN9Hk+PxeFBVVZXrMKaGQoqiKIrL5VIEQVC6urri7m9vb1dsNptit9unOLL43G53zLbGxkbFZrPlIBpVvJhmmvb2dkUUxQkdk6l6aWtri9nW29ub9H0bT67fJ5nU1dWlWK1Wpbe3N2J7W1ubYrVas/KcVqs17ueAKIqKy+XKynNmSj78jlosFqW9vT1n545Xhu+jiYn3PgoEAkpjY+OEPoumq1nf4qQRBAH19fVwu91x9+dbC1N7e3vMttraWjQ0NOQgGlW8mGYas9k84WMyVS+CIMTdZrfbIYqi4fPk+n2SSVu3boXT6YypG5vNBlEU4XA4piwWh8MBp9M5Zc+XjtnwO5oOvo8mJt77SKuneJ9TMw0TpzAOhwOtra0x22VZntAXU7Z5PB5IkhSz3Wq1wmaz5SCixDHNdpmsF7/fj+bm5pjtLpdrQh9WuXyfZJLT6YQoirBarQn3T+X7UnsN8u2PLA1/R+Pj+2hiktWF3+/Pq+/KbJmT6wDyicVigdlshtfrjfhi6ezsTPhLBQDNzc0QRRGSJEEURf1YWZbh8XggiiLa29vhcDhgsVgAAD6fT/+rYteuXZAkCZIkoaenBy6XK+Fz+Xw+tLe3Q5Ik/Uu0sbERfr8fTqcTkiQhEAgkfI5gMIiuri643W54PB6YzWa0tLRgx44demyprstoTNHnAdT+/fB9yUSPL7Db7SnPme41a8eZzWbU1dUBUF+/VK9HdDzhdWW0XlLVr0YQBLhcrohzaMn+rl27Io5PVD9G3ydG3ovJrsPr9aKpqQmSJKGtrQ1WqxWSJKG2thaiKMLtdkMUxYT1ZiQer9cb854Np12/1+tFY2PjhK5zoq8NAHR1dcFisUQkscmuT/sLXfvrXYvByPt+ovWV6r0YT6Y+v5qbmyEIQlqttak+O4ycO1UZvo8y8z6SZXlCf8Bpx2uvjSiKCAaDsFqtcT+ntATW5XIZvpbouqmpqTH0uZRSrvsK84XWZxtv/Ic2tiTeGCebzRYx9sRqtep9vI2NjUogEND3iaIY0YeujZcJ728XRTFlH3F7e7tisVhitnd1dcWMv0n0HI2NjRHXF32+ZNc1kZhsNlvEcwcCAUNjBlwuV0yM4a9DsnOme81tbW0KgIjXrLGxMeI1j1fHyeoqWb1MpH6TsVqtEedKVT8TeZ+kiinVtUc/T/jYDSPHJosHQMqxIKIoRvw+GzlvqtcmemxKb2+v4nK5FIvFEvH7new82vuvvb1d6erq0t+bqd73k6mvRO/FRDLx+dXY2BgxHqa3t1cBYGiMU6r3sZFzGynD91F230fx2O32iGsPBAIxY8/ifX5YrdaI1zOdukn1uWQEE6cx2osRCAQUAPobNxAI6B8e0YmTVjb6PFoZm80W8SJHf8F1dXXFHB9dJp6JJE6JniP8lyoQCCiCIBi+LqMxdXV1RZxXk2oAp/bhFv3h4XK5DJ0znWtOdA1aLNp7ILqOU9VVvHOmU7/JhH94GK0fo++TZO9FI9cRPXA9+vcs0bFG4gEQ8ZrGE/2Fl+q8Rq7JarUqFotFcbvd+v/RCaaR90X0/mTv+0zU10S/8Cb7+aVdTzQjA7hTvY+NnNvo8/N9lN33UbR48SmKEpOwJfoj1ehnSLy60UR/LqX6zo3GrroooijCYrGgtbUVdrsdfr8/aReVIAgRt7YGAgG9/7etrQ2A2oSpdRkFg8GY5wsnCEJMmcmK9xzJbqlPdV1GdXZ2xm321Jr+E3V/dnZ2QhCEiGZfrS61roNU55zoNSeixZGo7z6duspU/caTbp1rZcKlei8auQ673Q632w232w2fz4f6+nrDx6aKR2ueT0aSpJiBvcnOa/S1qa6ujuguiJbO9aV630+2viZqsp9fWh2kI9X72Ei3kNHn5/sou++jaNo1Rb82E32vpFM3GrvdjpaWFlgsFvh8vqSfi/EwcYrD4XDA7XbDbrcnfTG1QePhlR7+s9/vR1NTE2pra1FfX5+1QXNa326mpLouozGlO7gx2XH5NmByonWl1ctk6zdZPFPFyHU4HA5UVVXB7XZDkiR9fybqwGq1Jp2zx+/3T/i8mXptjJwn+rMl1fs+0++ZVJ8bmfj8SmdcE2DsfWzk3EbK8H2U3fdRJoVfWzp1o2loaMDWrVvhcrkiPpeM4l11cdTX18Pv98Pr9aK6ujphOYvFEvcvFVmWIcsytm7dih07dugJmPaiZ/ruDO0XO1OSXZdRfr9fH3gXTZIk1NTUJH3+eM8ly3La50yX9lomGjw60bry+/0Zqd9EprJ+jFyHKIr6DRfhX2KZqAOXy4VgMJhwwkCn0wm73Z504G+0TL026Zwn2fs+G++ZZJ8bmfj8ShSzEanex0bObfT5+T7K3vsoHi2+dJ4zvOVrMtcSfiNYOsk9E6cx2sh9QM1SrVYrWlpakrY4Wa1WVFdXx/zCtba26i0L4b9s2oue6gMrlfCmZUmSJvQLbeQ5kl3XRGKyWCwxf81p157s7hLtzojwW+9lWUZra2va5zT6S+r3+yPKNjU1JZ0nKVVdxauXdOrXqHTrJ55MvU8cDge2bdsW85fhROsgOh5BENDW1qbfJRNOu6PIyF2B4efN1GuT7u9Qovd9JuprIp8bmfj8EkURdrs94u4uWZZjfsfiSfU+NnJuo8/P91H23keJ4ot+XbQ7+BI9jxZHeE/GZOtY+1xKa2qWCY2ImoECgYBit9sVAIrdbtcHAYffhaDd7SAIgj6ra/jANu3OjfBjtO2NjY1Ke3u70t7ergQCAX0gb1dXl2Kz2SLu6NCew2KxpByspp1bGygX73zJnsNqtep3G2hlGhsbDV2X0Ziiz+N2u1MOwow+zuVyKW1tbYbPOZlr1gY9trW1Ke3t7YrL5Yq42yL6uHjxxKurVPVitH4Tib6zZKL1k4n3YrLr6O3tTTjwPd6xE42nt7c34nq1/6NN5Lzx4goEAkk/B4xeX3t7u2K1WhVBEPQBu9HHpHrfp1tfid6LiWLPxOeXdi3aeSwWi+HZw1N9dhg5t9Hn5/soO++jVNcU/rpEvybaZ7AWp81mU0RRTFnHqepGURT9/ZwOk6IoysTTLaKZR5v7o6urK9ehTEhdXR0aGhpmxKSWRDQ7VVVVweVyZWy8ZyqyLKecozERdtURTUNas7X2c7p3LxERzRbh3Y5a12U6mDgRTUNNTU367dGSJCW9iYGIiMZnHwfSv+MTYOJEBEDtpnO5XAnXg8s3DocDtbW1+hIEbHEioumqubkZfr8fLpcr6dQQk6X9senxeCY1tIFjnIiIiIgMYosTEWWMw+FAeXl5Vv9qnEn8fj9qa2vTmtWeiHKDiRMRZUy81cWdTifq6uqmNI7oleHz7Xwai8Wir0g/E2SrnojyCRMnIsqq2tpaNDQ0TOlztre35/X5wk1mkGq+yWY9EeULrlVHRFk1VfOyaDweT0aXNcr0+WYq1hPNFkyciKYRWZbh8Xj0VeIdDkfMkgfR3SXhq68n29fc3Kx3s0mShMbGRgDjE4OKogiHw6G3KmjLUDQ3N0MQhLgtJ36/H06nE5Ik6csaaecDgF27dunLLfT09EQsbSHLMpxOJ6qqqtDV1YXKykpYLBa43W59tfdoPp8P7e3tkCRJvztSu45k15hIovPFuy7tVmeXywW73a5fp9ls1rsqZVmOuc5EtFi1RVRT3QWUzms7kesAEr9eqeqdaEZJa75xIsqJxsbGiOUDRFGMWK7B5XJFLE0RvgxBsn02my1iuYNAIKBYrdaIstqSCF1dXfp5opdd6O3tVQBEnKurq0sRRTHiOtrb2xVRFCPKiaKodHV16Y/Dl5Lp7e2NOUci2vIN0VJd40TPp11DOKvVGlEfbW1tCoCI16yxsTFiCZp49RO9jI7Vao2om2iTeW2NXIeR1ytRPRHNNBzjRDSNSJIUcceaKIr6Y62FZseOHfr+lpYWfWHMRPv8fj98Pl9El5ooiggGg/q5BUGA3++H1WqFxWKBy+WCLMtobm6OaNkQBMHQop9msxmSJMU8Z3hXj9fr1c8lCELchUCNMnKNExWvhS16Pi2tPsIHzO/YsSNpt5YkSfB6vREtTHV1dXC73XHLT/a1NXIdRl4votmCXXVE04jWRaUtuRIMBvVV6zs7OyEIQsSXnlbe5/Ml3Kd1/UXTugO1L8voMto50xV9PkEQ9GsB1DvO4q3Mno7Ozk5D1zgVtNfB7/fHjUmr1/CELhAIJExSkr3uRl9bI1K9XkSzBRMnomnE7/ejqakJtbW1qK+vj/gyi04ywqW7L1y8JCmbd4Q5HA40NTVh165d8Hg8CVtcUtFa3DJFG3MUTyaeR5ZliKIYkdQkS3Ay8dpm6rhwyeqJaDpjVx3RNCHLMrZu3YodO3bAbrdDEAT9C06SpLgtNNpxyfZZrda4rRmSJKGmpiZhPBaLJetdNbt27YLP54PNZovoEpwIrYsxnWtMdL5EjLTAyLKsvybxJKrXRMlMNl7bTLQkJasnoumMiRPRNKG1nIR/4WpfcFq3j81mi1hrT5ZltLa2Jt1nsVhgtVojuoa0L71kd3KJogi73R5xN5csy/D7/Wm1WEQf09XVBUEQYLPZJtRyET72Rkso073GROeL3q7FH691K7o+mpqaYLfbE16T1WpFdXU1vF5vxPbW1taE8U3mtTV6HdHidaPGqyeimYZr1RFNI9pt4bW1tQDULyun04mGhgb9i9DpdKKiokIfBBzeUpNqn7b0RyAQiLjV3OVyobOzEzt27IhJZLRb3bWuPC1Gl8sFs9mMpqYmeL1euFwu/Vb+6G3Nzc1oamqCKIr6c3i9XtTV1elTHQiCAIfDYajlSYuhsrLS0DWmez4tWdHqo6WlRV+s1Gaz6bfy79ixQx/XBCBiOgCtLhobGyPi0WLVukNTJXjpvLZGrkMURUOvV7J6IppJmDgRUd6RZRnbtm3Drl279C5JSZL05Vumy5eyljh1dXXlOhQiyhB21RFR3vF4PHA4HHorlnZbv8vlYhJCRDnFxImI8o7FYok7O7jP59O7KYmIcoFddUSUl3w+X8RcR0aXHskX2tgw7V8uQUI0MzBxIiIiIjKIXXVEREREBjFxIiIiIjKIiRMRERGRQbN6rbpQKIRjx45h4cKFMJlMuQ6HiIiIckBRFJw9exYrV65EQUHyNqVZnTgdO3YMa9asyXUYRERElAeOHDmC1atXJy0zqxOnhQsXAlAratGiRTmOhoiIiHKhv78fa9as0fOCZGZ14qR1zy1atIiJExER0SxnZNgOB4cTERERGcTEiYiIiMggJk5EREREBs3qMU5GhEIhDA8P5zoMopwoKipCYWFhrsMgIsobTJySGB4eRnd3N0KhUK5DIcoZQRCwfPlyznVGRDkzGlKwtzuIU2cHsXThXGxZb0ZhQW4+k5g4JaAoCo4fP47CwkKsWbMm5YRYRDONoigYGBjAqVOnAAArVqzIcURENBvtPnAcOx8/iON9g/q2FWVzce9tG3Drxqn/XGLilMDIyAgGBgawcuVKlJaW5jocopyYN28eAODUqVNYunQpu+2IaErtPnAcn37IDyVq+4m+QXz6IT8evNsy5ckTm1ESGB0dBQAUFxfnOBKi3NL+cLh48WKOIyGi2WQ0pGDn4wdjkiYA+radjx/EaCheiexh4pQCx3XQbMffASLKhb3dwYjuuWgKgON9g9jbHZy6oMDEKetGQwqeDvTg0f1H8XSgJ6uZsd/vh8PhgMlkgtPphMfjgdPpRF1dHXw+X8aex+PxoLy8HH6/P2PnnGpVVVXwer36Y4/Hg9ra2rSOJSKizDt1NnHSlE65TOEYpyya6gFtFosFLpcLHo8HO3bsgCAIAABZllFeXo6uri5YLJZJP4/dbkdbW9ukz6ORZVmPdaq4XC5UV1frj61WK0RRTOtYIiLKvCULSgyVW7pwbpYjicQWpyzRBrRFNzNqA9p2Hzg+ZbEIggBRFNHS0jJlz2mUJElobW2d8ue1Wq0RyZooirBarWkdS0REmTUaUuDteiNpGRPUxogt681TE9QYtjgZpCgKLlwcNVR2NKTg3sdeSDigzQTgK48dxJsvXWxoHop5RYWTHmcSDAZRWVk5qXNkg8vlQlVVVa7DICKiPDEyGsI9rc/isWePocAEhBT1ezP8O1X7Rrz3tg1TPp8TEyeDLlwcxYYvP5GRcykATvQP4uqv/N5Q+YNfvQWlxem9VLIso6mpCVarFXa7HT6fDw6HA06nEwDgdrvR1dUFv98Pn88HURQhSRJsNltE15Xf70dLSwtqamoAqImYxufzwel0oqGhAY2NjfB6vXA6nXC73XorjiRJcLvdqKmpQTAYRH19PTo7O9HZ2amfK1F3mc/ng9/vhyiK6OjogMvl0mNyu90RY5NEUUQwGEwaj9/vx7Zt2+BwOGC32yHLMpxOJ3w+HwKBgH7uePURfax27Q6HQy/b3t6e0a5MIqLZ4uJoCJ//5T789vkTKCo04b8/uBkAYoa9LOc8TpRpHo9HT0K0L3VATU6sViu6urrgdrthNpshSRKcTifa29v146uqqrBnzx4IggBZllFXV6cnFQDQ1NSk/2y1WtHQ0KA/ttlsEd2CsiyjtrYWXV1dEARBH7je2NgIq9WKyspK2O32uNehxdbV1QVATdiam5tht9uxdetWdHd3691m5eXl2LNnT8p4LBZLxH5BEOB2u1FeXh7xnPHqI/pYrT7Dk6W2tjb4/f6MjCcjIpothkZG8dmf7YPvxZMoLizAg3dbsPWqZQCA2g3LOXP4dDOvqBAHv3qLobJ7u4P46A87Upb70cdqDPXNziua+KSDdrs94TgcQRBQUVEBQE0qnE5nzJe8KIpobW2F3W5Ha2trzH6z2XifcmtrK0RR1OPZsWOH4WO15C78rsCOjg4IghAz1ihTA7bdbnfS+ohWUVGh1yeg1m94ixwRESU3eHEUn3qoC396+TRK5hTA85FqvP3yJfr+wgITbqisSHKGqcPEySCTyWS4u+ytly3BirK5ONE3GHeckwlqM+NbL1uSs4zZ6B1kmRB911yihC7R3XUWiyVi4LbdbofH48lwlERElAsXhkex7SedeOrVM5hbVIDv/2MN3nzp4lyHlRDvqsuCwgIT7r1tA4DxAWyaqRrQlqrFI3x/Q0NDzDxPfr8f9fX1AKCPCwonSVLEY0EQ0NPToz/2+XyQZRmA2qoVfXy8eaXibYsXm8/nQ319fdKYksWjiX6c7DnD6yPZsUREZNz5oRF87Ed78dSrZ1BaXIgff2xLXidNAFucsubWjSvw4N2WKR3Qpg3gBtS71RwOR0yXk8/nixhsbbVa9fmfmpub9QHYbW1teuuPKIpoa2uD0+lEbW2t3jLU1NQEl8sFURRRX1+vD7AG1GRL6/ISRRFutxtOp1MfXK61IDkcDn3uqXjTAWixRR8rCELcmDTJ4pFlGS0tLTCbzTGD4MOfM159aHWsHaudS3sOSZL0QeuiKE5pyx4R0XRydvAiPvbDDnQe7sXCkjn40cdrULV2aqcWSIdJUZSpXeQlj/T396OsrAx9fX1YtGhRxL7BwUF0d3dj/fr1mDs3/cm1RkNK3gxom+lqa2vhcrnSHpRdXl6O3t7eDEc1/WXqd4GISNN34SL+8Qd7sf+IjEVz5+Ann7gO164RchZPsnwgWs666vx+v6H5e7xeL2RZjts14vf79e4a7S/9fKMNaHvvtatwQ2UFk6YsSmdAtrYsjSRJnA2ciGgKyAPD+ND3nsH+IzKE0iL8fNv1OU2aJioniZO2zpeRRKeurg7l5eUoLy+HyWSCyWRCc3MzAPXup6qqKphMpohb7mn28Xg8+lxRExl/ZLVaUVFRAa/XC7fbnb0AiYgIPeeG8AHPMzhwtB8V84vxS/v12LiqLNdhTUhOu+pMJhOSPb0sy/D5fLDZbPq25uZmNDY2AlC/LLUBu+ksgTEVXXVE0x1/F4goE06dHcSHdv0dr5w6hyULS/DzT16Hy5YtzHVYACbWVZf3g8PDkyav1xvxGEgvYSIiIqKpc6JvEHd97xlIp89j+aK5+Pm26yAuWZDrsNKS14lTeFIkyzKCwWBEd5wsy3q3X0dHR8ruuqGhIQwNDemP+/v7Mx80ERER6Y7KF3DXrmdwuGcAq4R5+Pm267C2Yn6uw0pbXidO4ZxOp75GmSZ8dmxRFFFbWxuxLEi0pqYm7Ny5M5thEhER0ZgjwQF8cNczeKP3AtaY5+EX267H6vLSXIc1KdNiAkxtrFN0t1z4hIfaAqvREzOG27FjB/r6+vT/jxw5kq2QiYiIZrXXzpxHg/tpvNF7AesXz0er44ZpnzQB06TFqbOzMyZp8vv92Lp1a8y8O8nWUCspKUFJSUk2QiQiIqIxr546h7t2PYNTZ4dQuWQ+frHteixdNDNuLsl5i1P0reN+vz+m1cjv98ckRKIoRnTdaXffcbC4SpufyOPxwOv1wufz6bfs5yufz4eqqqopW4euqqpKHyOX76Jj9Xg8qK2tTetYIqJsevnEWXzAoyZNVyxbiF/ab5gxSROQoxYnn8+H9vZ2AOq4o5qaGv1uOe2xNuWAJnrQtyAIqK6uRnNzMwRBQCAQQFtb29RcwESERoHDfwPOnQQWLAPW3ggUFGb1KWtra1FXVxeRWPr9/pRjwHLNarXGXXYlW1wu17SZ9DI6VqvVanjesul0nUQ0vR081o+7v/93BM8PY8OKRXjok9fBPL8412FlFJdcyeY8TgcfA3Y7gf5j49sWrQRudQEbbp9E5Ik1Nzejvb1dT0zDORwOOJ3OvJ4oVEuE7XZ7rkOhMZzHiYiMeP6NPtz9/b+j78JFXLO6DD/5+BYIpdMjaZoWS67MeAcfA1o/Epk0AUD/cXX7wcey8rRNTU1wOBxx99XV1WXlOYmIaHbzv96Lu773DPouXITlEgEPffK6aZM0TRQTJ6MUBRg+b+z/wX7gd40A4jXmjW3b7VTLGTmfwUZBSZIgy3LCFqXw7h2/34/m5mZ4vV40NzfrY5/Cxxlp46Lq6ur0tQCbm5sjEjOfz4fKyko4HA54vV54PB44HA597Jq23+PxwOPx6OsT+nw+/fmdTmdEnNpdlNpzh4t3XKKYw8+n7dOO09ZKDB9PNdE6SSTRtfn9fr2etP/9fr9+fm0pIa/Xi8rKSvh8Pv248FhlWYbD4UBlZWXK2KOPnei1EBGl0vFaEB/5/l6cHRzBlnVm/OQT12HR3KJch5U10+KuurxwcQD4+soMnUxRW6LuW2Os+BePAcWZmyxMkiQ4nc6I7ryqqirs2bNHH2fU3t6ujxlra2uD1+tFY2MjLBYLKisrIcsyBEGA1WqFzWZDRUWFPk7N6/Wirq4O7e3t+vm6urrgdrthNpv15+/q6gKgLs4bvpROR0eH/nNbWxv8fj8sFkvS4+LFrB3n8XhgsVj08VPBYBAWiwUNDQ2TqhPt/PHqNjpGu92OrVu3oru7W7+Boby8XD9/eCw2mw0tLS364+hYBUGA2+1GeXl5ytijj53ItRARpfJ0oAef+HEHBoZHcYNYge9/tBqlxTM7tZjZVzfLaK1JkiTF/RKUJAlmsxlutztmvyiKaG1thd1uR0VFBSoqKvR9giBEtGIJgoBgMBhxB2P4zzabDXV1dXpyJQiCfj6bzQan0wmz2ay3qABqsqSpqamJeS4AeuIV77h4MWvH2Ww2VFVVQRRFNDQ0xB0/lU6daOePPk+8GLUkM7yeMjVgO1Xs0YxeCxFRMk++chrbftKJwYshvPWyxfB8uBrzirN781M+YOJkVFGp2vJjxOG/AT+zpS73Ia96l52R5zaosbERbrc7Zk0/QO22ibfdiMlO8xDdfRjeAgTA8GDwdI4zm83o7e2F3+9HS0uL3hqWLfFinKopFoiIpsIfXzoFx0NdGB4J4eYrl+I7H7JgbtHMT5oAjnEyzmRSu8uM/F95s3r3HEyJTgYsWqWWM3I+U6LzxNKmIIj+og6fL6uhoSGiRQRQk6r6+vqE542ebyvZfq/XG9O6Et6iEe/5ox/Hk+5xTU1Neiucy+WKWQMx0blT1clEYqyvr4ff74/YHj6nliAI6OnpiTgmus4TvQZGYk/1+hERGfX7F07A/tNODI+EcMubluG7d1fNmqQJYItTdhQUqlMOtH4EavIUPrh7LAm69b6szefU3t6O5uZmOJ1OVFZW6pOHaq1NWgLR3NwMURTR0dGBtrY2CIKgt8oA6ngYbVC4dpzP54MkSXC5XBFJSCAQ0L/stfMBagLg8/ng9/shiiKsVqv+/E6nU++Ws1qtCZ/b7XZDFMW0j6uoqIDP54PZbEYwGERDQ4N+jNlshs1mS6tOtPOHt6YlilEQBLS1tcHpdKK2tlbvxtTU19fD6XTqCZDVatW74GRZjog1Xutdqti1Y7VzGbkWIqJov33+OD73i30YCSl4zzUr8J8N16KocHa1wXAepymfx2mVmjRlaR6nXNASNM69NDG1tbVwuVxpD8ouLy+PWXIoGziPExEBwKP7j+Ke1mcxGlLwvmtX4oG6TZgzQ5KmiczjxBanbNpwO3Dle6Z85nCaHtIZkO3xeBAIBOBwODgbOBFNGW/XG/iC91koCmCrWg3XndegsMD4MJKZZGakivmsoBBY/1bgapv67wxLmrSuOO2WdjJGWzfQ7XZPaPyR1WpFRUUFvF4v3G539gIkIhrzi72v60nTB7dcguZZnDQB7KrLblcd0QzA3wWi2esnT7+GLz/6AgDgH29Yi6/c/iaYJnDD0nTBrjoiIiKalO89KeH//e+LAIBtb12PL777qhmZNE0UEyciIiKK8OCfAnDtfgkA8JmbKvGFW65g0jSGiRMRERHpvrXnFXyz/RAA4J+tl+HzWy9j0hSGiRMRERFBURR8s/0Q/vsPrwIAvnDLFfjsOy7NcVT5h4kTERHRLKcoCu773Utw/0Vd0eBL774K297GCXHjYeJEREQ0iymKgq/+5iB++NfXAABfuW0DPvrm9bkNKo9xHqcsGw2NouNEB34r/RYdJzowGhrN2nP5fD44HA6YTKaI5TsmwuPxoLy8fErmZJrK5wpXVVUFr9cbEUdtbW1axxIRTWehkIJ/e/SAnjT9+/s3MmlKgS1OWeQ77MN9e+/DyYGT+rZlpcuwfct2WNdaM/58VqsVoijC4/Fgx44dEWuhGWW32/V15rJtKp8rnMvliph1W6u3dI4lIpquRkMKvvjI82jpPAKTCXDdeQ3qq9fkOqy8x8QpS3yHfbjnT/dAQeT8oqcGTuGeP92Db970zawkT9qCvpSY1RpZ7xNZ3Db6WCKi6WI0pGBvdxCnzg5i8YISeDuP4Ff7j6HABHyjfhPev3l1rkOcFnKWOPn9fmzbtg1dXV0pywHqCvCSJEGWZX1RVEmS4PV6IYoiJEmC3W5Pq5XFCEVRcGHkgqGyo6FRNO1tikmaAOjb7tt7H65bfh0KDSzBMm/OPN4KSkREadt94Dh2Pn4Qx/sGI7YXmID/+sBm3LZpZY4im35ykjhpyY6RsS1utxsejweA+td+eNdOXV2dnnhJkoRt27ZlrevnwsgFXPfz6zJ2vpMDJ3HjL280VPbvd/0dpUWlaT2Pz+eD0+mEw+HQE8z29vaIevL7/WhpaUFNTQ2A2MVnfT4f/H4/RFFER0cHXC4XvF4vmpqaIMsyAoEAmpub4Xa74XA40NjYGPcYI88VL/5E53G73RFjk0RRRDAYhNPpRENDAxobG+H1euF0OuF2u2G1WvWE3eFwwG63Q5ZlfTxYIBDQz+3z+fT6stls+vs1/FgjdUtElGu7DxzHpx/yx/lTHggpQFEh/zCfiJwkTjabzXDZqqoq9Pb2AkBEa5IkSRHlRFFMazD0TGe1WmG1WiO+0LUFeS0WC2RZRl1dnZ40AEBTU5P+syRJcDqdeoIaDAbR3NyMxsZGWK1WbN26FbIsQxAEdHV1QRCEhMfY7fakzxUt2Xm2bt2K7u5u/T1RXl6OPXv2wGq1oqGhQT+HzWZDS0uL/thisUTsFwQBbrcb5eXlEc/Z3t6ul6mqqsKePXtijk1Vt0REuTYaUrDz8YNxkyYAMAHY+fhB1G5YPqsX7p2IaTHGKV73m8/nixnPYzabs/alNW/OPPz9rr8bKtt1sguf2fOZlOW+s/U7qFpWZei5J6OiogIVFRX6Y0EQ9Jae1tbWmPoKr1e32w2z2RyRlHZ0dOjn2bVrF6qqqtDW1qa/TomOEQQh6XNFS3Yeq9Ua8b7I1IBtt9sdE6MoimhtbYXdbo8pn6xuiYhybW93MKZ7LpwC4HjfIPZ2B3FDZUXCcjQu7xMnWZb12787Ojr0bhFZluOWz9aXlslkMtxdduPKG7GsdBlODZyKO87JBBOWlS7DjStvNDTGKdcsFkvEoOjwBEJLhlpaWiISjnjHaF2uk33udM5DRDQbnTqbOGlKpxxNg3mc7HY7bDYbbDYbGhoaUs63kyihAoChoSH09/dH/J8NhQWF2L5lOwA1SQqnPXZucWYlaZpo4qiN+wkX3g3a0NAQ0wWqPZZlGT6fD21tbfpA/WTHpHquaInOU19fn/Q8giCgp6cn4pjo90Wi90m85/T7/aivr095LBFRvum/cNFQuaUL52Y5kpkj71ucJEnSWzK0AbiSJMXtEgkGg0nvqmtqasLOnTuzGa7OutaKb970zbjzODm3OLMyFYGWxADqtWrjcbQxPlarFZIk6QOrtdvw29ra4HQ6UVtbq49XampqgsvlgsVigcvlgtPp1Ad0W61WeDweuFwuOBwOAEBNTQ22bdsGSZLQ2NgY9xhBEJI+V/SUAImeO9F5NPX19RETgFqtVr0LTpZltLS0wGw264O+4z1nc3OzPiBd64bUBrZrx2rnSla3RES5svvACXztNweTljEBWF42F1vWcyobo0yKoiQaM5b9JzeZkOzp/X4/tm7dqg8Ol2UZ5eXl6O3tRTAYjLirDlAHCIcPGI42NDSEoaEh/XF/fz/WrFmDvr4+LFq0KKLs4OAguru7sX79esydm34mPhoahf+UH6cHTmNJ6RJYllqmRffcdFNbW6sneunQ3lcUK1O/C0Q0NRRFwfef6sa///ZFKAqwceUivHBM7WEJ/8bV+kMevNuCWzeumPI480l/fz/Kysri5gPRct7iFN1a4Pf7IQiC/he7dvs5oLao2Gw2CIIQkxxJkoTq6uqkLU4lJSUoKSnJ8BUkV1hQiJrlNVP6nLNROmPbPB4PAoEAHA4HZwMnohlhNKTgq4+/gB8/fRgA8KHrLsHO298E34snY+ZxWl42F/fetmHWJ00TlZPEyefz6bd7NzU1oaamRp+iQHvc2NgIQRBQXV2N5uZmCIKAQCAQMUeO1l1TU1Ojd6nQ7OPxeCBJEtxuN1wul+FJUK1Wq37zgdvtzm6QRERZNjA8gs/9Yh98L54CAHzx3Vdi21tFmEwm3LpxBWo3LNdnDl+6UO2e4xQEE5fTrrpcS9Y0x+4JIhV/F4jy36n+QXzix514/mgfSuYU4D8arsW7r2ZLklHTqquOiIiI0nfo5Fl87IcdOCpfgHl+MXZ9pBpVa8tzHdaMxcQphVncIEcEgL8DRPnsb6+egeOhLpwdHMH6xfPxo4/VYG3F/FyHNaMxcUqgsFC98214eBjz5k1u5m6i6WxgYAAAUFRUlONIiCict+sNbH/4OYyEFNSsK4fnw9Uon1+c67BmPCZOCcyZMwelpaU4ffo0ioqKUFCQ93OFEmWUoigYGBjAqVOnIAiC/scEEeWWoij4D98r+NaeVwAAt21aiftt12BuEX9HpwITpwRMJhNWrFiB7u5uHD58ONfhEOWMIAhYvnx5rsMgIgDDIyFsf/g5PLLvKADgs++oxP+pvQIFvDtuyjBxSqK4uBiXXXYZhoeHcx0KUU4UFRWxpYkoT/QNXITjoU48IwVRWGDCv79vIz6w5ZJchzXrMHFKoaCggLdgExFRTh0JDuCjP9yLwOnzWFAyB9/+kAVvv3xJrsOalZg4ERER5bH9R2R88scdOHNuGCvK5uIHH63BVSuSzzVE2cPEiYiIKE898cIJfP6X+zB4MYQNKxbhBx+twfIy9oLkEhMnIiKiPPSDp7rxtf89CEUBbrpiCf7nLgsWlPBrO9f4ChAREeWR0ZCCr/3mIH70t9cAAHdddwm+evubMKeQ0+LkAyZOREREeWJgeASf/+V+tB88CQDY8a4rYX+bulAv5QcmTkRERHng1NlBfPLHnXjujT4UzynAf9Rfi/dcw4V68w0TJyIiohx75eRZfHRsod7y0iJ87x+rUbXWnOuwKA4mTkRERDn0t8AZOH6qLtS7rqIUP/rYFqxbzIV68xUTJyIiohx5uOsNbH/kOVwcVVC9thyej1TDzIV68xoTJyIioimmKAr+a88r+E+fulDvP1yzAg/UbeJCvdMAEyciIqIpNDwSwvZHnsMjfnWh3k/fVIkvvJML9U4XTJyIiIimSN+Fi/jUT7vwtNSDwgITvvbejbjrOi7UO50wcSIiIpoCR4ID+PiPOvDKqXOYX1yIb3/IgpuuWJrrsGiCmDgRERFl2XNvyPj4jzpx5twQli9SF+rdsJIL9U5HOZu/3e/3o6qqylC55uZmNDc3o66uDrIsR+zz+/0AAEmS9J+JiIjyRfvBk2hwP4Mz54Zw5fKF+NVnb2TSNI3lJHHyer0AYCjR8fl8aGxsRGNjI2pqarB161Z9n9vtRlVVFUwmExwOB0RRzFrMREREE/Wjv3bD/tNOXLg4irddvgRtn7oBK8rm5TosmgSToihKzp7cZEKyp/f7/di6dSt6e3sBqK1KlZWVCAQCEEURHo8H9fX1AABBECb8/P39/SgrK0NfXx8WLWL2T0REmTEaUvDv//sifvDXbgDAB7dcgq++900o4kK9eWki+UBej3GyWCzYtWuX/ljrpjObx6ehTydhIiIiypYLw6P4/C/34fdjC/Vuf9eVcHCh3hkjrxMnALDZbPrPLS0tsFqterIky7Le7dfR0cHuOiIiyqnTZ4fwyZ904tkjMornFOAbdZtw26aVuQ6LMmjCidNrr72GtrY2tLe3611ogNoKVFtbC5vNhnXr1mUyRgDjSVJXV5e+zW6360mUKIqora1FIBBIeI6hoSEMDQ3pj/v7+zMeJxERzU6vnlIX6n2j9wKE0iLs+kg1atZxod6ZZkKJ0/bt22EymVBfX48vfOELMfv37duH7373uzCZTGhqaspYkADgdDrR3t4e0TUnSRIsFgsANXGSJAmSJCVsdWpqasLOnTszGhcREdHTgR44ftqJ/sERrB1bqHc9F+qdkQwPDr///vtht9tRVlaWsmxfXx/uu+++lMlTqsHhmubmZthsNoiiqI9zkiQpYuC4LMsoLy9Hb29vwnFP8Vqc1qxZw8HhRERkyGhIwd7uIE6dHcTShXOxZb0Zjz17FI1edaHeqrXl8Hy4ChULSnIdKk3ARAaH5/yuuuhEx+/3QxAEvdXI6/VCEARYrVbIsozW1lbY7faIn7VyLS0taGtrM/z8vKuOiIiM2n3gOHY+fhDH+wb1bQtK5uDc0AgA4D1Xr8A36rlQ73Q0JXfVbd++HZdeeinq6upQV1eH8vJyNDQ04I477kh5rM/nQ3t7OwC1+6ympkYfBK49bmxshCRJqKurizhWEAR9bFN1dTWam5shCAICgcCEkiYiIiKjdh84jk8/5Ed0S4OWNNVuWIb//uBmLtQ7C6Td4vTwww/jzjvvxP33349gMIimpibs2rUL27Zty3SMWcMWJyIiSmU0pOAtrj9EtDRFW1E2F085b0YhE6dpaSL5QNozcZWXlwMAWltb0dDQACByfiUiIqKZYG93MGnSBADH+waxtzs4RRFRLqXdVRcIBKAoCgKBAK699lp0d3dHTE9AREQ0E5w6mzxpmmg5mt7SbnGqr6+H3+9HV1cX+vr64Ha7IxbgJSIimgnMpcWGyi1dODfLkVA+MDTGqa+vD729vROa2FKbXDKfxw5xjBMRESVzJDiAz/6sC88dTTxhsgnAco5xmtYyPsaprKwM7e3teOSRRwwF8PDDD6O1tZXJCBERTVu/f+EE3vOtJ/Hc0X6UFqtTDESnRdrje2/bwKRpljA8xmnbtm3Yt28f6uvrUVlZiZqaGoiiCEEQIMsyJEnC3r170d3dDYfDgTvvvDObcRMREWXF8EgIrt0v4ftPdQMANl8i4H/usuD5N+SYeZyWl83FvbdtwK0bV+QqXJpiaU1H0NfXh9bWVgQCAciyDEEQUFlZCavVivXr12cjzqxgVx0REYV7o3cA//Tzfdh/RAYAfPIt69F465UonqN20MSbOZwtTdPftJk5PNeYOBERkcZ38CT+T9uz6LtwEYvmzsEDdZvwzjctz3VYNAWmZOZwIiKimeDiaAj3P/EyPH+RAACb1gj4nw9uxhpzaY4jo3zExImIiGato/IF/NPP/dj3ugwA+Pib12P7u8a75oiiMXEiIqJZ6Q8vncQ9rc9CHriIhWNdc7ewa45SYOJERESzysXREB74/ctw/1ntmrtmdRm+fZeFXXNkyKTaIu+//359nbo9e/bok14SERHlo2PyBXzA84yeNH30xnVo+9QNTJrIsLQTp+3bt0MQBFitVgDA1q1b4fP5MhYYERFRJv3x5VN4z7eeRNfhXiycOwffvduCr9z+JpTMKcx1aDSNpN1VV1NTgzvvvBN79uzJZDxEREQZNTIawjfaD+HBPwUAAFevUrvmLqlgKxNNXNotTt3d6oyqJtP4xF8dHR2Tj4iIiChDTvQN4oO7ntGTpn+8YS28n76BSROlLe0Wp82bN6O6uhoVFRVob2+Hz+eDy+XKZGxERERp+/Oh0/iXlv0Inh/GgpI5cN15Dd5zDZdGocmZ1Mzh3d3dcLvdAICGhgZs3rw5Y4FNBc4cTkQ084yMhvAfvkP49h/VVqY3rVyEb99lwbrF83McGeWrnC250t/fP60SECZOREQzy8n+Qfx/v9iHvd1BAMDd11+C//ueDZhbxAHglNiULbnS39+PYDCoP3a5XHjwwQcnc0oiIqK0PPnKafzzL/ejZ6xrrumOq3HbppW5DotmmLQTp0996lPw+XwQBEHf1t3dzcSJiIim1GhIwX/5DuG///gqFAW4asUifOdDFqxn1xxlQdqJU2VlJb773e9GbNu1a5fh4/1+P7Zt24aurq6k5SRJgtfrhSiKkCQJdrtdT9aS7SMiopnvVP8gPvfLfXhGUns/7rruEnz5H9g1R9mTduKkTXwZrra21tCxWrLj9/tTlq2rq9OTK0mSsG3bNrS1taXcR0REM9tfXz2Dz/9yH86cG8b84kJ8/Y6r8d5rV+U6LJrh0k6cysvL8cADD0AURQiCAFmW0dLSgpaWlpTH2mw2Q88hSVLEY1EU9dnJk+0jIqKZazSk4Ft7XsG3/vAKFAW4cvlCfPtDFlQuWZDr0GgWSDtxamxshCzLEV1j+/bty0RMOp/PB7PZHLHNbDbD7/ejs7Mz4T6LxZLROIiIKD+cOjuIf/7lfvwt0AMA+OCWNbj3tjexa46mTNqJU21tLbZt2xax7eGHH550QOFkWY67PRgMJt1HREQzz99ePYPP/XI/zpwbQmlxIb7+/qvxvs3smqOpNanB4Ua2ZUOipCnVvqGhIQwNDemP+/v7MxgVERFlw2hIwf/84VX8155DCCnAFcvUrrlLl7JrjqZe2olTIBCA2+1GTU0NAEBRFLS2tmZ0vTpBEGJakILBIARBSLovkaamJuzcuTNj8RERUXadPjuEf2nZj6dePQMAaKheg6/c/ibMK2bXHOVG2ov8ut1urF+/HoqiQJt8PIOTkAOIf+ceAFRXVyfdl8iOHTvQ19en/3/kyJGMxElERJn3dKAH7/7Wk3jq1TOYV1SIb9Rtgst2DZMmyqm0W5xcLhe2bt0asS1RMpNM9ABzv98PQRAgiiJEUYwoK0kSqqur9RanRPsSKSkpQUlJyYRjJCKiqRMKKfj2H1/Ff/jUrrnLli7Adz5kwWXLFuY6NKL0E6fopAlQpygwwufzob29HYDafVZTU6NPUaA9bmxsBAC0tbXB6XSipqYGHR0dEfM0JdtHRETTz5lzatfck6+oXXO2qtX46nvfhNLiSa0QRpQxhhf5feSRR2C1WvXF7773ve9F7JdlGe3t7XjiiScyH2WWcJFfIqL88XepB5/75T6c7B/C3KICfO29G1FXvSbXYdEskJVFfr/+9a9DEATcfPPNAIDvfve7aGhoiCjT09OTRrhERDSbjIYU7O0O4tTZQSxdOBfVa8vheVLCN37/MkIKcOlY19zl7JqjPGQ4cers7Ix4vGvXLmzevDliWzpjnIiIaPbYfeA4dj5+EMf7BvVtxXMKMDwSAgDcYVmF//e+jeyao7w1qSVXNH19ffD5fKiqqspIUERENPPsPnAcn37Ij+jxIVrS9OHr1+Kr730TTCbT1AdHZFDa0xGErwtXVlaGO++8k2vFERFRXKMhBTsfPxiTNIXzvXgSoczOakOUcRNqcerr60NraytMJpN+V1y4rq4ufPKTn8xYcERENDPs7Q5GdM/Fc7xvEHu7g7ihsmKKoiKauAklTmVlZbBarXC5XAgEAli/fn3Efm0KASIionAn+5MnTZpTZ42VI8qVCY9xWr9+Pb773e9iz549cedyIiIiCnckOADPXyRDZZcunJvlaIgmJ6MTYBIREWkURcHP/v46mn77Is4PjyYtawKwvGwutqw3T01wRGni/Z5ERJRxb/QOYPvDz+uL825ZZ8Ztm1bgy4++AAARg8S1e+juvW0DCgt4Rx3lNyZORESUMYqi4Bd7j+Drv30R54ZGMLeoAI23XImP3rgOBQUmLFlYEjOP0/Kyubj3tg24deOKHEZOZAwTJyIiyoij8gVsf/g5fZ256rXluL9uE9Yvnq+XuXXjCtRuWB4xc/iW9Wa2NNG0kdHE6bXXXsO6desyeUoiIspziqKgtfMIvvYbtZWpZE4BvnDLFfjYm9fHTYgKC0yccoCmrUklTvv370cwGNQfu91utLS0TDooIiKaHo73XcD2h5/Hnw+dBgBYLhFwf90mVC5ZkOPIiLIj7cSpvr4esixDEAR92759+zIRExER5TlFUdDW9Qa+9vhBnB0aQfGcAvzrOy/HJ94istuNZrS0E6fa2lps27YtYtvDDz886YCIiCi/negbxI5HnsMfX1Zbma5dI+CBuk24dClbmWjmSztxqqysNLSNiIhmBkVR8LD/KHY+/gLODqqtTPfUXo5tb2UrE80eaSdOgUAAbrcbNTU1AMYGB7a2oqOjI2PBERFRfjjZP4gvPvI89rx0CgCwaXUZHqjbhMuWLcxxZDQrhEaBw38Dzp0EFiwD1t4IFBTmJJS0Eye32w2r1QpFGZ/GLPxnIiKa/hRFwa/2HcVXHnsB/YMjKC4swD/XXgb7W0XMKSzIdXg0Gxx8DNjtBPqPjW9btBK41QVsuH3Kw0k7cXK5XDHLrlit1kkHRERE+eHU2UF88ZED8L14EgBw9aoyfKN+Ey5nKxNNlYOPAa0fQeRc8wD6j6vb638y5clTxtaq+8Mf/gBZlrF58+ZJB0VERLmjKAoe3X8M9z72AvouXERRoQn/bL0cjrexlYmmUGhUbWmKTpqAsW0mYPd24Mr3TGm33aTmcXrkkUcgSeqK14qioLOzE3fccUdGAiMioql3+uwQvvSr5/H7g2or08ZVi/BA3SZcuXxRjiOjWefw3yK752IoQP9Rtdz6t05ZWGknTtu3b4csywgGgxBFEbIsw+FwGD5ekiR4vV6IoghJkmC32yPmhArn9Xr1bsDoMn6/HwBgsVggSRJkWYbFYknrmoiIZitFUfD4c8dx76MH0DugtjJ97ubL8KmbKlHEViaaaudOAft+arDsyezGEmVS0xFs27YN3d3dMJlMWLduHf7whz8YPr6urg5dXV0A1CRq27ZtaGtrS1g2msvlQmNjI9xuNzweDwB1jFWicxARUXxnzg3h//7qAHa/cAIAsGHFInyjfhOuWsFWJppCFweBQ78D9v8CeNUHKKPGjluwLLtxRUk7cRJFEYcPH8b69evxwAMP4F//9V8NH6t174Wfy+fzxS0ryzLa2tpgs9n0bc3NzWhsbAQAVFVVobe3F0BsaxQRESX3m+eO4cuPvoDg+WHMKTDhn26+FJ99x6VsZaKpoSjAkb3As78AXngEGOwb37fSAgQDwGA/4o9zMql31629caqiBTCJxEmWZYiiiN7eXpw5cwa33HILBEHAzTffnPJYn88Hs9kcsc1sNsPv98ftZgtPmrxeb8RjgAkTEdFE9ZwbwpcffQH/+/xxAMCVyxfiG/Wb8KaVZTmOjGaF3sPAcy1qwhQMa0xZtAq4pgHY9AFgyRVhd9WZEJk8jU24eut9Uz6fU9qJ05133onRUbUZ7b777sOePXtQXV1t6FhZluNuD18wWBOeFIWPqQrf5vV6AQAdHR1wOBwR+8MNDQ1haGhIf9zf328oXiKimeR3zx/H//31AfScH0ZhgQmffcel+Kd3XIriOWxloiwaOgscfBR49pfAa0+Oby8qBa66Hbj2g8C6t0YmQhtuV6cciDuP033Tax4nALj//vvR2dmJlpYWAIDJNLkp9xMlVBqn0wmXyxWxLXxQuSiKqK2tRSAQiHt8U1MTdu7cOakYiYimq+D5YXz50QP4zXPjrUwP1G3CxlVsZaIsCY0C3X9Wxy29+DgwcmFsh0m9E27TB9WkqSTJOocbblenHJjuM4dv374dlZWV+t1uW7duxSOPPGJoOgJBEGJal4LBYNIuN1mW4fP5YspIkqR372l36EmSFLfVaceOHbjnnnv0x/39/VizZk3KeImIprvdB07g//76eZw5p7YyfeamSvx/N1/GVibKjlMvqd1wz7UCZ8NaiiouVZOlaxoAYQLfvwWFUzrlQDJpJ041NTW48847sWfPngkfa7Va4Xa7Y7Yn6+rr7OyMOxXB1q1b9cHhmujxU5qSkhKUlJRMOF4ioumq9/ww7n3sBTz2rPrldfmyBXigbhOuWS3kNjCaec73AAe8asJ0bN/49rkCsPFO4Nq7gFVVwCR7p3It7cSpu7sbQGT3XEdHh6EWp+jWIEmSUF1drSdGfr8fgiBElPP7/TEJkSiKEV13Pp8PNpuNg8WJiAD8/oUT+OKvDuDMuSEUmIBPvb0Sn7dehpI5uenioBloZBh45Qm1K+6VJ4DQiLq9YA5w2TvVQd6X3wrMmTmNFmknTps3b0Z1dTUqKirQ3t4On88XM/4omba2NjidTtTU1KCjoyNi/qWmpibU1NToUw5oohMuQRBQXV2N5uZmCIKAQCDAeZyIaNaTB4bxlcdewK/3q61Mly5VW5muXSPkNjCaGRQFOOpXW5YOeIELYb0+KzYBm+5SW5gWLMldjFlkUhQl3uQIhnR3d+tdbg0NDdNunbr+/n6UlZWhr68PixZxojcimj5GQwr2dgdx6uwgli6ciy3rzSgsMMF38CR2/Op5nD6rtjLZ31aJf7ZehrlFbGWiSep7Y2wKgV8CZw6Nb1+wHLimXh27tGxD7uKbhInkA5NKnKY7Jk5ENB3tPnAcOx8/iON9g/q2ZYtKsK5iPv7erd54U7lkPh6o24TNl5TnKkyaCYbOAS/9Btj/c6D7L9DnUpozD7jqH9SuOPEdObvDLVMmkg8Y7qozMjv49773PXzyk580ekoiIpqg3QeO49MP+WPmUT7ZP4ST/UMwAbC/TcS/1F7OViZKTyikzrP07C/VeZcunh/ft/bNasvShvcCc2dng4PhFiez2YyampqkZTo7O9HT05ORwKYCW5yIaDoZDSl4i+sPES1N0SoWFGPvF60oLJjedy5RFoRGk8+FdOYVddzSsy1A/xvj28vXq8nSpgagfN2Uhz0VstLitHXrVlRUVKCqqiphmVnc60dElHV7u4NJkyYA6Dk3jL3dQdxQWTFFUdG0cPCx+LNv3/xvwMUB9a64o53j+0rKgI3vVxOmNddN+ykEMslw4tTW1oa+vj50dqoVW1NTE5OVJZo/iYiIJu9Uf/KkSS931lg5miX09d6iGjf6jwG//vT4Y1MhcOlWNVm64l1A0bwpDXO6mNB0BGVlZdi6dSsAYN++fQgGgzCZTPrCvnfeeWfmIyQiInS8FsR3/vSqobJLF87NcjQ0bYRG1ZammFFxYQqKgK1fVmfzXrhsykKbriY1j5PmD3/4A9rb21FbW6snUURENHkvnejH/btfxp6XTqUsawKwvEydmoAIACD9MbJ7Lp7QRWDlZiZNBk1qkd/9+/fD7XajpaUFoiiisrKSiRMRUQYcCQ7gP9oP4Vf7j0JRgMICE+qr1+Ca1WX44iPPA4hsQ9BGoNx72wYODCfg9CGg64dA14+MlT93MqvhzCQTTpxee+01tLW1we12w2Qy4c4770RXVxfWr1+fjfiIiGaV02eH8O0/voqf/f0wLo6qqdF7rlmB/1N7OcQl6gry5aVFMfM4LS+bi3tv24BbN67ISdyUB0aGgBcfBzp/ABz+68SOXcDWJqMMJ07f+9734Ha7IUkS6uvr0dbWFjNT+COPPGJorToiIop0dvAidj3Zje89KWFgeBQA8NbLFuMLt1wRsyDvrRtXoHbD8rgzh9Ms1BNQW5f2/xwYGJsSyFSgrhG3+SPAb+8B+o8j/jgnk3p33dobpzLiac3wPE4FBQWw2WxoaGiAIAgRi/sCQG9vL+677z50dHRkJdBs4DxORJRrgxdH8dAzh/HtP76K3oGLAIBNq8vQeOuVePOli3McHeWtkWHg5f8FOn8IdP95fPvClUDVPwKbPwyUrVK36XfVAXE7eOt/Amy4fSqizltZmcfJbrejubk56VxNLS0txqMkIprFRkZDeGTfUfxn+yEcG+tyE5fMR+MtV+CWNy2P+eOUCADQ+xrQ9WNg30+B86fHNpqAy2qBqo8Bl70TKIz6at9wu5ocxZvH6db7Zn3SNFGGW5z27duXchFfI2XyCVuciGiqKYqC3x88ifufeBmvnjoHAFhRNhf/bL0Md1pWY05hQY4jpLwzOgIc+p3auhT4A/RWowXL1JYly0eA8rWpz5Nq5vBZjIv8GsTEiYim0tOBHrh2v4T9R2QAgFBahM/edCk+fMNaritHseQjgP8nauvS2ePj28V3ANUfVyepLCzKXXwzSFa66oiIKD0Hjvah+YmX8ZdDatfKvKJCfOIt62F/u4hFc/nFR2FCo8Ar7epg71d+DyghdXvpYmDz3er4JbOY2xhnOSZORERZ8tqZ8/hG+yE8/qw6rmROgQl3XXcJ/unmSzm7N0XqPwb4f6q2MIUvsLvurUD1x4ArbwPmFOcuPtIxcSIiyrCT/YP41p5X0NJxBCMhdTTEe69diXtqL8faivk5jo7yRiikjlnq+iHw8u8ARZ2GAvPKgWs/pA72XnxpbmOkGEyciIgypO/CRXz3zwH88K/dGLyodrG844ol+NdbrsCbVpblODrKG2dPAvsfUmf1ll8f337JjWrr0lW3A0VskcxXTJyIiCbpwvAofvz0a3jwTwH0XVDnYqpaW47GW67AdWJFjqOjvBAKAa/9RZ3V+6X/BUIj6va5ZcCmD6qtS0uvzG2MZAgTJyKiNI2MhtDa+Qb+a88hnOwfAgBcvmwBGm+5EluvWsq5mAg4fwbY/zO1dSkojW9fvUVtXdrwPqC4NFfRURqYOBERTVAopOB3B07gG79/GdKZ8wCAVcI83FN7Od63eRWXPpnJjMyFpCjqWnGdPwRefAwYHVa3Fy8ENjWorUvLN0597JQROUucJEmC1+uFKIqQJAl2ux2CIMQt6/f7AQAWiwWSJEGWZVgslgmfh4hoMhRFwVOvnkHz7pfx/NE+AEDF/GL8082X4q7rLkHJHM7FNKMdfCzB7NsudfbtgSDw7C/U1qUzh8bLrNyszru08U6gmDcHTHc5S5zq6urQ1dUFQE1+tm3bhra2trhl3W43PB4PAMBqtUaUm8h5iIjStf+IjObdL+FvAXUR1fnFhdj2NhGffKuIBSVsvJ/x9PXeouaM7j8OtH4YWPtm4I1OYFTtskXRfOCaOrV1aeW1Ux0tZVFOftslSYp4LIoifD5fwvJVVVXo7e0FgIjWpImeh4hool49dQ4PPPEydr9wAgBQXFiAu69fi8++oxIVC0pyHB1NidCo2tIUnTQB49sO/1X9d/nVarJ0dR0wlytSzEQ5SZx8Ph/MZnPENrPZDL/fr3fBRYvX/ZbOeYiINKMhBXu7gzh1dhBLF87FlvVmfXzSMfkC/sv3Ctq6jiCkAAUm4A7Lavyz9TKsLudg3lnl8N8iu+cSefc3gZqPA7wpYEbLSeIky3Lc7cFgMGF5r9cLAOjo6IDD4YAoihM+z9DQEIaGhvTH/f39xoMmohll94Hj2Pn4QRzvG9S3rSibi/9TezlePnkWP376MIZH1LmYajcswxduuQKXL1uYq3ApV86eAJ43OPxjXhmTplkgrzrmEyVC4QO+RVFEbW0tAoHAhM/T1NSEnTt3TjJKIprudh84jk8/5I/peDneN4h/9T6nP96y3gznrVeiam351AZIuaMowInngJd3A4d2A8f8xo9dsCx7cVHeyEniJAhCTKtQMBhMeDecJEl615t295wkSRM+z44dO3DPPffoj/v7+7FmzZr0L4SIpp3RkIKdjx+MO1pFM6fABPeHq3DzlZyLaVa4eAHo/ou67MmhJ4CzUd1yKy1AzyvA0NkEJzCpd9etvTHroVLu5SRxslqtcLvdMdurq6tjtvn9fmzdulUfHK4xm80TOg8AlJSUoKSEgzmJZrO93cGI7rl4RkIKSovnMGmayfqPA688obYsSX8CRi6M7ysqBSpvBi6/BbjsFmDhsrC76oDIQeJj75Fb74udz4lmpJwkTqIoRjyWJAnV1dV6S5Hf74cgCBBFEaIowuVy6WV9Ph9sNhsEQYhpWYo+DxFRtCO9A4bKnTqbPLmiaUZRgOP71Rall3+n/hxu0WrgiluBy28F1r01dq24DbcD9T9JMI/Tfep+mhVyNsapra0NTqcTNTU16OjoiJh7qampCTU1NWhsbIQgCKiurkZzczMEQUAgEIgom+w8RESannND+OFfX8MPnpJSFwawdCEXWZ32hgeA7j+ridIrvwfOHg/baQJWVY0nS8s2ph7YveF24Mr3pJ45nGY0k6Ioybr6Z7T+/n6UlZWhr68PixZxvg2imehIcADfe1JCS+cRDF5U75IrLDBhNBT/o88EYHnZXDzlvJlLp0xH/cfUQd0v71aTppGwlsOi+UDlO4Ar3gVc9k5gwdLcxUl5ZSL5QF7dVUdElCkvnzgL958DePTZY3qSdM3qMnzmpkqEQsBnf67eLRVntAruvW0Dk6bpIhQa64LbrbYsnXgucn/ZGrVF6YqxLrg5HOdKk8PEiYhmlK7DvXjwT6/C9+IpfdtbLl2Mz9xUiRsqK/QB3w8WWGLmcVpeNhf33rYBt25cMeVx0wQMnwekPwOHfgcc+j1w7kTYThOwukYd2H3Fu4ClGzi3EmUUEycimvYURcGfDp3Gg38KYG+3OkWJyQS8a+NyfOrtlbhmtRBzzK0bV6B2w/KEM4dTnul7Qx3YfWi3OnVAeBdc8YKxu+BuHeuCW5K7OGnGY+JERNPWyGgIvz1wAg/+KYAXj6srARQVmnDH5tVwvF2EuGRB0uMLC0y4obJiKkKlcKHR1AOsQyHg2D41UTr0O+DE85H7hUuAy9+ldsGtfTO74GjKMHEiomln8OIoHva/AfefJbweVKcXKC0uxIeuuwSfeIuI5WW8Iy5vHXwswS39LuDSrUDgj+NdcOdPhR1oAtZsGRuv9C5gyZXsgqOcYOJERNNG/+BF/OyZ1/H9p7px5py67mR5aRE+9ub1+MgNayGUFuc4QkpKn0Qy6o7G/mNA64eBgjlAaGR8e/FCNZnSuuDms3WQco+JExHlvdNnh/DDv3bjp08fxtkh9Yt1ZdlcbHubiIaaNSgt5kdZ3guNqi1NyRa7CY0Awlrginerg7vXvhmYw2SY8gs/bYgobx0JDsD9lwBaO9/A8Ig6B9NlSxfgU2+vxO3XrkRRYUGOIyRDhs4CT387snsukff+D7D+bdmPiShNTJyIKO+8eLwf3/1zAL957rg+B9O1awR85qZKWK9ahgLe+Zb/el9TJ6E8tBt47SkgdNHYcedOpS5DlENMnIgob3S8FsSDfwrgDy+Nf3m+7fIl+MxNlbhuvZmL7uaz0RHgjY6xgd1PAKdfity/cEXUkicJLFiWnfiIMoSJExHllKIo+OPLp/CdPwbQebgXAFBgAt599Qp86u2V2LiqLMcRUkIXZCCwR21ZerUduNA7vs9UqE4zcPkt6rQB5vXAf24E+o8j/jgnk3p33dobpyh4ovQwcSKinBgZDeE3zx3Hd/8cwEsnzgIAigsLcGfVajjeJmLd4vk5jpDiOvPq2NxKu4HXn468C26uoN79dvkt6t1w88ojj73VNXZXnQlxF7u59T4umEt5j4kTEU2pwYujaOs8AvdfJLzRewEAsKBkDj50/SX4xJvXY+kizsGUV0YvqgnSoSfUteCCgcj9i69QJ6G8/FZg9RagMMnXyobbgfqfJJjH6T51P1GeY+JERFOi78JFPPTMYfzgqW70nB8GAFTML8bH37Ied1+/FmXzinIcIekGgsAr7Wqr0qt7gKG+8X0FRcC6N6vdb5e/EzCLEzv3htuBK9+TeuZwojzFxImIJmU0pCRd7+1U/yC+/9du/OyZ13FubA6mVcI8ON4uor56DeYW8Qsz5xQFOP3y+MDuI38HlND4/tIK4LJb1JYl8R3A3EWTe76CQmD9Wyd3DqIcYeJERGnbfeA4dj5+EMf7xhdcXVE2F/fetgFXLl8Ez5MSvF3jczBdsWwhPn1TJd5zzQrOwZRrI0PA4b+OTxkgH47cv2zj+MDuVRa2CBGNYeJERGnZfeA4Pv2QP+b+qON9g/jUQ/6I4b9Va8vxmZsqcfOVSzmlQC6dOw288nu1ZSnwR2D43Pi+whJ14snLb1HHKwlrchcnUR5j4kREEzYaUrDz8YPJFs+AAuAdVyzBZ95xKWrWmacqtNkjNJp6nJCiACcPqC1KL+8GjnYh4m62BcvGEyXxJqCYdzISpcLEiYgmbG93MKJ7LhH72yqZNGXDwccS3JnmAi6rBbqfHJsy4Amg/43IY1dcqyZKl9+i/lzALlOiiWDiREQTMjIawp8OGVsW49TZ1MkVTdDBx8bmQopq7+s/BrR+GCgsBkaHx7fPmae2Jl1xqzrH0qKVUxkt0YzDxImIUlIUBS8c68ev9h3Fo/uP4cy5IUPHLV3IOZkyKjSqtjQl6yQdHQYWrgSueJfasrT+rUDRvCkLkWimy1niJEkSvF4vRFGEJEmw2+0QBCFuWb/fD5/PBwDo6OjArl279LJ+vx8AYLFYIEkSZFmGxWKZiksgmvFO9A3i1/uP4lf+o3j55Fl9e3lpEYZGQhgYHo17nAnA8jJ1agLKgL43gNefAV74VWT3XCJ3uNWB3kSUcTlLnOrq6tDV1QVATaK2bduGtra2uGV9Ph8aGxsBAM3Nzdi6dat+rNvthsfjAQBYrdaE5yAiY84PjWD3gRP41b6j+GvgDJSxxo3iOQWovWoZ7rCswtsuX4I9L57Epx9S/3CJs3gG7r1tQ8R8TmTQ6Ig6oPvI39Vk6cje2HFKqZwz1pVKRBOXk8RJkqSIx6Io6i1K0fx+P5qamvTEyWazwel0QpIkiKKIqqoq9PaqC0smarEiouRGQwr+FjiDR/xHsfvACVy4ON6StGWdGe+3rMK7r14RMbv3rRtX4MG7LTHzOC0fm8fp1o0rpvQapq3BPuCNDuD1vwNHngHe6AIuno8sYyoEll8NlK0BXno89TkXLMtOrESUm8TJ5/PBbI5swjebzfD7/THdbBaLBbt27dIfy7Ksl9cwYSJKz0sn+vEr/1H8ev9RnOwfH7e0rqIUd1hW4/2bV2GNuTTh8bduXIHaDcuTzhxOYRQF6H1NbUU68oyaLJ06iJgxSyVlwJoaYM31wJotwKoqoGSBOsbpPzcC/cdjjwEAmNTB32tvzP61EM1SOUmctOQnWjAYjLvdZrPpP7e0tMBqterJkizL8Hq9ANTxTw6HA6IYf+2koaEhDA2Nfzn09/enET3R9Hbq7CAe238Mj/iP4uDx8d+BsnlFuG3TCtxhWY3NawTDE1UWFphwQ2VFtsKd3kaGgRPPhXW7/V2ddyla+To1SbrkOmDNdcCSq+JPE1BQqE450PoRIGKKUUDvJL31Ps7yTZRFeXVXXaKEKny/1+vVxzcBiBhULooiamtrEQgE4h7f1NSEnTt3ZipcomnjwvAofn/wBB7xH8WTr5xGaOz7tqjQhJuvXIr3b16Nd1y5BCVz+IU7KQPB8dakI3vVCSdHoqZkKCgCVmwCLrleTZLWXAcsnEDX2obbgfqfJJjH6T51PxFlTU4SJ0EQYlqXgsFgyi43p9OJ9vb2iHKSJOnde9odetr4p2g7duzAPffcoz/u7+/HmjVcVoBmplBIwTPdPfiV/yh+d+CEvsAuAGy+RMAdltX4h6tXoHx+cQ6jzDEjs28noihAT2Csy20sUTrzcmy5eeXjCdIl1wMrN09+eoANtwNXvif92IkobTlJnKxWK9xud8z26urqhMc0NzfD6XRCFEW9ZUqSJGzdulUfHK6JHj+lKSkpQUlJSfqBE00Dr546i0f86nxLR+UL+vbV5fNwx+ZVeL9lNdYv5tIaSWffjtdqc3EQOL5/vMvtyN+BgZ7YchWXjXe5rbkeWHwZkI31+QoK1TmaiGhK5SRxim4NkiQJ1dXVEXMzCYKgl/N6vbBYLHrS1NraCrvdDlEU4XK59PP4fD7YbDYOFqdZp+fcEB5/9hge2XcUz73Rp29fOHcO/uGaFXj/5tWoXluOAg7aViWcffu4ur3+J8AlN4wlSGODuI/vj5yRG1AXxl1lGW9RWnMdMJ/jvYhmMpOiKMnW6cwaSZLgdrtRU1ODjo4O7NixQ0946urqUFNTg8bGRkiShMrKyohjBUHQW5m0yTEFQUAgEIhIpFLp7+9HWVkZ+vr6sGjRooxdG9FUGLw4ij0vnsKv9r2BP718GiNjA5fmFJjw9suX4A7Lamy9ainmFrH7JoJ+Z1qSiSRNhYASZ3LP+UvGu9zWXKeOVZrDVmyi6W4i+UDOEqd8wMSJ8sVoSDF0S7+iKOg83ItH/G/gN88dx9nB8XFL16wuw/s3r8Jtm1Zi8QJ+mSfU/Rfgx7cZK7vkqrFut7E73srXZ6fbjYhyaiL5QF7dVUc0G+0+cDxmEskVUZNIvnbmPB7ZdxS/2vcGjgTHxy2tLJuL921ehTssq3Dp0oVTHnveUxRAPgwcfxY4tl/998heY8fe9l9A1UezGR0RTUNMnIhyaPeB4/j0Q/6YqQxP9A3i0w/50bBlDQ6dOAv/67K+b35xId599Qq837IK16+v4LglTSgE9HarY5HCE6VBOb3zmStTlyGiWYeJE1GOjIYU7Hz8YNz5n7Vtv9x7BABQYALeetkS3GFZhXduWI55xbN83FJoVJ0KIDxJOvEcMBRnUtuCImDZBnU80oprgWVXA20fAc6eAGffJqKJYuJElCN7u4MR3XOJ3H39JfjczZdh6aK5UxBVHhodAc4cUhMkLVE6/lzsem6Aepfb8o3jSdKKTcDSq2IHcL+rmbNvE1FamDgRTbFzQyPo6A7ip88cNlS+Zp159iRNoxeBUy9GJkknDgAjF2LLzpmnLny78trxRGnJFUBhUWzZaJx9m4jSxMSJKMsuDI+i83AQTwd68LTUg+fe6MNoyPjNrEsX5nnSlO7s2yND6gK32lik4/uBky/EzpUEAMULgOXXqAmSligtvnxyrUKcfZuI0sDEiSjDhkZGse91WU2UAj3Yd6QXF0cjE6VLzKW4XjTj9y+chHzhYtzzmAAsL1OnJshbRmffvnhBTYqO7x9PlE69CITiXHtJGbBCS5I2q/+aK+MvejtZnH2biCaIiRPRJF0cDeG5N/rwdOAMnpZ60PlaL4ZGQhFlVpbNxfWVFbhBrMANlRVYXV4KALj5SvWuOiDuSBvce9uGuPM55YWks29/GNj8YbU16vizwOmX4k8oOa88cjzSymsBYV12kiQiogzgBJicAJMmaDSk4IVjfXg60IO/BXrQ8VoQA8ORScHiBSW4sVJNkm4QK7C2ohSmBBMnGpnHKe8YmX07WuniyPFIKzYBwiWcUJKIco4TYBJlUCik4OWTZ/G3sa63v3f3RMzYDQDlpUW4fqw16cbKClQuWZAwUYp268YVqN2w3NDM4TkxdA7oeQU486p6d9uZQ2qXm5GkadMHgatuUxOlRSuZJBHRtMfEiSiKoigInD6ntyg9I/WgdyByLM7Ckjm4TjTjhsrFuEGswJXLF05qIsrCAhNuqMzh4rCKAvQfBc68Mvb/obFk6RV1e7outaoDsImIZggmTjRjGF3vLZqiKHg9OKC3KD0t9eD02aGIMqXFhahZZ9ZblN60six/WoQm4uIFdeLIM4fUpKhnLEk682r8eZE0pYvVu9gWX6b+P3oR2LMz9fMtWJa52ImI8gATJ5oRJjpO6Kh8Qb/r7enAGRyLmoiyZE4BqtaW6+OUrlktoKgwiwOW072lPx5FAc6dGu9WC0+Q5COIP1s2AFMhYBbHEqRLx/69HKi4FCiNurMvNAp07FIHgnP2bSKaRZg40bSXar23B++2wHJJOZ6WxluUDvcMRJQtKjRh85pyXD/WonTtGgFzi6ZoPh+jt/RHGxkCgt3jCVLPq+OJUrylRzRzy4DFV4y3Hi2+HKi4DChfB8wpNhZzQaEaH2ffJqJZhnfV8a66aW00pOAtrj8kXbqksMAUM+FkYYEJV68q01uUqtaWo7Q4B39HJLqlX0s+6n8CrH1zWHIUNgap9zVACSEuUwEgrI3sXtMSpPmLMzdIO27St4qzbxPRtMK76mjW2Nvdk3K9Ny1p2rhqkT6PUs06MxbONbA0RzaFRtWkI9kyv3GTqjDFC8MSo7DkyCwCRVMw4zhn3yaiWYaJE00LQyOjONwzAOn0OQROn0fg1DkEzpzHy8eTdEmFabpjIz64ZW2Wo0xgsF9tkek/Ovbv2M8nDhi4pX8saSq7JGzc0WVqcrT4cmDh8tzf4s/Zt4loFmHiRHlDURT0nB+GdPo8AqfPIXDqHKQz6s9HggNItbxbAULYUvASlkLGKQjYG7oSIagDutdVLMhGwMCgHJkMaf/2hSVJw2cn9zzv/Q6w+UMZCZmIiCaHiRNNueGREF4PDqjJ0elzeqIknT6PvgTrtgHq3EnikvmoXLIAlUsXQFw8H+sWz8fHfrgX1557El8u+glWmoJ6+WOKGV+9+BE8u/BtE1/vTVGAgZ7IZCgmQToGXBxIfS5AHZC9aJU66HvRSvXn4fPA376V+ljhkonFTkREWcPEiSKkOxdSPL3nh+MmR4eDAzGDtTUmE7BKmKcmR0sWjCdKS+ZjycKSuLNxP1h1FJv+9p8x25cjiO8U/SeetYiR1xAKAedPJU6G+o+qt9mPDsWcM67SivFkKDwx0v5duAIoidPiFRoFDnh5Sz8RTYnR0Cj8p/w4PXAaS0qXwLLUgsJpMh4xn2Jn4jTDTSQR2n3gOL722PNYc+5ZvbvryIJN+Lfbr064ZtrIqNZ6dH5s/NF4khQ923a40uLCqMRI/Xn94vkTmwYgNIrNL9wHxTS+MK6mwKSmI5u7vgj0/RE4e1xNjM4eA0Ij8c4Wa8GyJEnRSjUpKppnPN6IAGfGLf359IE2UYw9Nxj71PMd9uG+vffh5MBJfduy0mXYvmU7rGutOYwstXyLPWfTEUiSBK/XC1EUIUkS7HY7BEGYcNmJnCdatqYjGB4ewsN//Db2HdmD3tFeCHPKsGBOOcpLl2G5sB7ve7sDxcUletlf/9mNU/2vY+miSyL2JTq30fK7DxzHVx97FhWj7SidcwYDI4vRU1iLL9++KSYR2n3gOH798+/iS0U/wYl553G6sBBLRkex/MJ8/PvFj6D2zm1Yt3i+PjhbS5JeDw7g4mjit9AqYZ6eHIUnScsWxW89AqDOSn1BBgb71DFEF+Sxf3vDHo/tC74GnHxePQyAf26JHrtlcAgJP85MBcCC5fGTobLV6r8Llhuf12gyDj6G0d1O+Id7xmMvXozCaXBLf759oE0EY88Nxj71fId9uOdP90CJatk2jf2B9s2bvpm38U9V7BPJB3KWOFVVVaGrqwuAmvw4nU60tbVNuOxEzhMtG4mT59Ev4cc9v0J/YeK/QBaPhPDBxe8DAPzizK9xZk5BzD77e/897rmNlt994Di+/9i/4cyyp2PKLz55Az5x+9f05Gk0pOBLX/86bi76bzQvLsfJOeMNkctGRtB4phcP9znwRGhL3OuZV1SI9Yvn6+OOKpcuwKXlhVi34CJKR86pCc5gX1gCFPVv9L5kS38k4Cudh/sqYmPf3tML68AF4JoG4Ip3jydIC5YBhfnR4MoP46nH2HODsU+90dAobnn4lojPl3AmmLCsdBl237k771rOpjL2vE+cJElCXV2dnvAAQHl5OXp7eydUdiLniSfTiZPn0S/hv3sfVR8ku0U8usrDyprG9v1T+XsjkiHPo1/C//Q+qv7Kpig/GlLw8f/4NPZVPJWw/IYTNwLlH8OZ88M42Xce/1b6Ofy/ZXMTlv/KyQE8deFjuKJcwZp5F7Fy7iCWFA2i3DSAeaNnYYpOgEaSz61kSMkiYK4AzCsb+1cI+3ds27mT8HX+D+5Zujhh7N88dQbWura8vGWeH8ZTb7bGrigKFCjj/2rvOQX64/Ay+nFRx0Tsi7NdO2/0840qo7j7t3fjzIUzCa9v8bzF2PXOXSgwFajHRZ0/6b9xtoXGJogNf6yoFxz5OEWZUWUU//7Mv6NvuC9h7IuKF+Ffqv4lss4UBSGEIuLSzp9qn/bc2jXE2xd9XLyypwZO4cmjTyaMW1O9rBrlc8vjv1fi1XG8ekzyXtJjCi+X7PWFgvPD53HsfKopW4Af3PID1CyvSVkumbyfANPn88FsjrzLyWw2w+/3w2KxGC7b2dlp+DzZNjw8hJ+f+TVQaEo9r47JNJ48RZVVxvb9uOdRhJ6+GiHFhKGhQXh7fg2lIPbc4+V/jb//p4zQ6Agujgyie0knFCQu/8bSv+K2089hLkYxv3QA31pSjOjEI7z8N5fMhbPnOzANA6Fh4I0+4Ih+PWNltR/mFkLBfHVbUSlQXKr+q/1fPA8oKoUyZ97Yvnlj++aNlZsHZc5coKAg4kNajynsAzq0YB7+Z0ls0hQe+5eXLMax8wGYDr4Wc3z0efUP0bAP0+iy8b4gIh5rZZXYbRGxKyH84qVfxMQRXv5LT30J/pN+vVsz+gsq+sMm/DomWjaiDuJ8AIbvD14IJvzy1p7vxMAJ3P27u1FWXJbw+cKfJ2J/nC9u/eex+KKvK7psov3nh88biv2Wh29BSWFJbN1o5eI8b6LXPt6x4dcT8R6Kc6z282hoFMOh4ZSxb/7p5vHzTSNnLpzB+x99f67DSEv/cD92Pm1g4es81XmyM9chpO30wOkpfb6cJE6yLMfdHgwGY7YlKzuR8wDA0NAQhobG75Tq7zc2eaIRv/6zGz1zJrAIbLLkymRCfyHw7UNh3W/JFpg1mdBfaMLe8r+EbUxevq/QhIeWn09dVi9fiC8uXZy8XEIKgPPq/xeh/p9Jye76M5lw1gTc3/WNDD/p1BgYGcBPX/xprsNI24EzB3IdQtqSJVf5LtcJkwkmmEwmaP/BpCaLo8poymPnFs5FcWExCkwF+nkAjD8eO58Jppgy+rax5444TitjMqEAkWVitpkQ8Tg4GMRr/a+ljP0q81VYVrpMPy48lvA4op8vvJyRfQWmgpgYTSa1bAEi9x07dwwPv/JwytjvuvIurCtbp9dxqvqKeI3DXuvwOtS2adcevi3ZObRyh3oP4YHOB1LGvqR0ScoymZQfgzzGJEqEJlo20b6mpibs3JmdvwhO9b+e8XNeMnwR5aEQegsK8Hpx6uVB1lxUYC4oRq9yEa8beGXXYB6WL1iKM4O96B5JnURWlq7A4rJL9F8eYLxLKfyDK2xnZJnw46LKp3vciYEThr6cNy3ehJULVsaeO/zDIOpakl1f+HHxYjNyrsP9h/G3Y39LGfvbV78dYpkY90MnPJZ4HzzxyugxRn3YxWyPij28/OH+w4YSuo9v/DjEMjGmvqLrPWJ/othT7Y8Tr/4zxm+7PBQ8hG8YSKS312zHVRVXZST26GNj9oe9L5PF/vzp5+F80pky9m++/ZvYvGyzfo7o5w7/Uox+3njv+XjvrZh9KVraO0504ONPfDxl7N+xfmfS3S6ZZjT2L9R8Ie9iHw2N4qmjT+HUwKm4CbUJavduY01j3nVNb1m+BT89+NOUsVuWTm0PU04SJ0EQYlqFgsFg3LvhkpWdyHkAYMeOHbjnnnv0x/39/VizZk16FxFl6aJLgHMZOZXuY2s+AdvNn0Xbn9z46vEfpCz/0bV21Nd+Ds/4v4dtz/9XyvJfvtqO6y2fRMexZ/Dx9m0py3/pzV9FzcrrDcU+VYx+oH2+6vN594HWcaLDUOL0j2/6x7yLfTQ0it8f/n3KD7TPbf5c3n0YX7f8Ojz04kMpY//AlR/Iu9hXzl+Jb3Z9M2XsN19yc97FbllqwbLSZXn3JWjEdI69sKAQ27dsxz1/ugcmmCLi1xJg5xZn3r1fgPyNfQJ9S5ljtcYf7FpdXT2hshM5DwCUlJRg0aJFEf9nyvve7kDFSCh24HciipKwrElRsGQkhNtv/hxQXIr33vQZLB4J6YOdE5V/39sdAICaaz6CpaNK0vLLRhXUXPMRAIBleQ2WFS1KWn55cRksefblDYx/oIX/VR/OBBOWly7Pyw+06Ry79oEGICb+6fJhDDD2qcTYc8e61opv3vRNLC1dGrF9WemyvL0BRZOPseckcRJFMeKxJEmorq7WW4r8fj8kSUpZNtV5plJxcQnuGptiIGXyFLY/OlnRHn9g8fv0+ZmKi0v06QuMlC+cU4wdl38oafntl38IhWNzFBUWFGL7m3cCJlP88iYTnDd+JS8/FKbzB9p0jh3Izw80oxh7bjD23LGuteKJO5/AD275AVxvdeEHt/wAu+/cnfdxA/kXe04nwHS73aipqUFHRwd27NihJzx1dXWoqalBY2NjyrLJ9qWSq3mcloyE8IEE8zhp+4zO45SsvO+pJtx36Gc4WTj+pbx8VIHz8g/B+pYdseXjzCe0vHQZnHk+nxCQKPblcG5xMvYsm64zKQOMPVcYO+WbvJ/HKV/M9JnDAWB0ZBj+53+K0/2vY8miS2C5+sN6S1Pc8tP4Q4GxExFROpg4GZStxImIiIimj4nkAzkZ40REREQ0HTFxIiIiIjKIiRMRERGRQUyciIiIiAzKqyVXppo2Lj6Ta9YRERHR9KLlAUbul5vVidPZs2cBIGPLrhAREdH0dfbsWZSVlSUtM6unIwiFQjh27BgWLlyYcoHKidLWwTty5AinOphCrPfcYL3nBus9N1jvuZHNelcUBWfPnsXKlStRUJB8FNOsbnEqKCjA6tWrs/ocmV4Tj4xhvecG6z03WO+5wXrPjWzVe6qWJg0HhxMREREZxMSJiIiIyCAmTllSUlKCe++9FyUlideRo8xjvecG6z03WO+5wXrPjXyp91k9OJyIiIhoItjiRERERGQQEyciIiIig2b1dATZIEkSvF4vRFGEJEmw2+0QBCHXYU1bfr8fPp8PANDR0YFdu3bp9ZmsrtPdR7GcTid27NjBep8iPp8PkiRBFEUAgNVqBcB6zyZJkuDz+WA2myFJEmw2m17/rPfM8fv92LZtG7q6uiK2Z6OOs1r/CmWUxWLRfw4EAorNZsthNNOfy+WK+Dm8fpPVdbr7KFJXV5cCQOnt7dW3sd6zp729XbHb7YqiqHUkiqK+j/WePeGfM4qi6K+BorDeM6WtrU3/PImWjTrOZv0zccqgQCAQ8WIpiqIIgpCjaKa/rq6uiPoLBAIKACUQCCSt63T3Uay2tjZFFEU9cWK9Z1d4XSuKWm/av6z37Imuo/DklfWeWdGJUzbqONv1zzFOGaQ19YYzm83w+/05imh6s1gs2LVrl/5YlmUAap0mq+t091Ekr9cLm80WsY31nj2SJCEYDEIQBPj9fsiyrHcXsd6zy2w2o6qqSu+yq62tBcB6nwrZqONs1z8TpwzSvtijBYPBqQ1kBgn/4m5paYHVaoUgCEnrOt19NE6W5bjjAVjv2eP3+2E2m/VxGR6PB16vFwDrPdva2toAAJWVlWhra9M/d1jv2ZeNOs52/XNw+BRI9CKScbIsw+v1xgwqjFcu0/tmo9bWVtjtdsPlWe+TFwwGIUmS/seB3W5HeXk5lCRT7bHeM8Pn88HlckGSJDgcDgCA2+1OWJ71nn3ZqONM1T9bnDJIEISYjFZreqfJcTqdaG9v1+syWV2nu49UPp8P9fX1cfex3rNHFEW9rgDo//r9ftZ7FkmShI6ODlitVtjtdgQCAbS2tkKSJNb7FMhGHWe7/pk4ZZB223C06urqKY5kZmlubobT6YQoipBlGbIsJ63rdPfRuNbWVng8Hng8HkiShKamJvj9ftZ7FmnjmeJhvWeP3+9HTU2N/lgURezYsYOfM1MkG3Wc7fpnV10GRX/wSZKE6upq/pUxCV6vFxaLRU+atC6k6DoNr+t095Eq+kPH4XDA4XDE/WJnvWeOKIqorq7Wx5dpczlZLJaYsqz3zLFYLHC73RHjKXt6eljvWRQ+hjLZ92a+fs5zrboMkyQJbrcbNTU16OjoiJg4kCZGkiRUVlZGbBMEAb29vfr+RHWd7j4aJ8syPB4PnE4n7HY7HA4HLBYL6z2LZFmG0+lEVVUVurq69JZWgO/3bPL5fHqXKKD+8cB6zyyfz4f29nY0NzejsbERNTU1erKajTrOZv0zcSIiIiIyiGOciIiIiAxi4kRERERkEBMnIiIiIoOYOBEREREZxMSJiIiIyCAmTkREREQGMXEiIiIiMoiJExFNOZ/Ph8rKSjQ3N8Pj8aCqqgpVVVX6hJuVlZXw+/2Tfg7tnEREmcIlV4hoysmyjPb2dn125vb2dpjNZtjtdgBAQ0MDJEmKu+yFUVarFQ0NDRmJdyqEL0NBRPmLLU5ENOWCwWDSRW0tFkvM6uYzmSRJaG1tzXUYRGQAEycimnL19fUZKTNTuFyuXIdARAYxcSKiKWekS6qzsxNVVVVobm4GAHi9XlRWVsLn8wEYHyflcDjg9Xrh8XjgcDggy3LCc/p8PjQ3N8Pr9cLpdCYsJ0kSnE6nfl7tnH6/Xz++ubkZkiTp500VqzbeyufzwePxoK6uTt/X2dmJ9vZ2eDwe/ZxElJ84xomI8lL0GCWbzYaWlpaI/TabDRUVFfoq616vF3V1dWhvb485n5YMdXV1AVC7C7WV2sPJsoza2lp0dXVBEAQ4nU54PB7YbDY4nc6Ic1dVVWHPnj2GYrVarWhvb0dbWxsAoK2tDX6/X99XWVmpj/EiovzFxImIprXw1iubzYa6urq4A63dbjfMZrPeCgQAHR0dMedrbW2FKIr68Tt27AAANDU1xQxWF0URra2thhKeiooKVFRURMQ9m8ZxEc0UTJyIaNawWCywWq3643gJT3TSNdV3uvHuOqL8xjFORJS3BEFAT0+P/tjn88WMYQp/7PV6YbVaIxIPbX9DQ0NEa5N2vmg2my1mDimfzxf3eL/frw9iNxKrEfFiIqL8YVIURcl1EEQ0O/l8PkiSpN9V5nQ6UV1drXeJybIMp9OpD6R2u92QZRlutxuiKMLpdEKWZb17rqOjAzt27IAgCPD7/di2bRsAYNeuXbBYLPD5fGhvb0dNTQ0AxCRZ4XHFK+fz+eD3+yGKIjo6OtDQ0GAoVlmWI2LRxltZLBb92l0uF6qqqmC1WpNO1UBEucXEiYimLW2WcQ6qJqKpwq46IiIiIoOYOBHRtOTz+eDz+fTb+omIpgK76oiIiIgMYosTERERkUFMnIiIiIgMYuJEREREZBATJyIiIiKDmDgRERERGcTEiYiIiMggJk5EREREBjFxIiIiIjKIiRMRERGRQf8/f+LZYFzskicAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -595,9 +595,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvHElEQVR4nO3deXhb5Zk3/q8kb3Hi+FjOvpD4GAKEsES2w94ClktmKF1AtruvRBramc40M7Xw27dD085bR4bSZYa2Ujpd+DFtbQko0NIwUqArtLF1AiSEsOg4C4mzWT52EsebdH5/HJ9j7TqSJUuy7891+bJ11kePZOv2s9yPRhRFEYQQQgghJCltrgtACCGEEFIoKHAihBBCCFGJAidCCCGEEJUocCKEEEIIUYkCJ0IIIYQQlShwIoQQQghRiQInQgghhBCVKHAihBBCCFGJAqc8wPM8rFYrqqqqUFtbm/DY2tpaVFVVwWq1QhCE2SkgyRscx6GpqSnp+ySbXC5Xzu492+TfTY1Gg9raWnR2dqKzsxMWiwXNzc3zqi7SZbFYUFVVBY/Hk9NyzNXX0uFwoK6uLtfFmF9EkjdsNpvIMIzo9Xpj7ne73aLJZBLNZvMslyw2u90eta2trU00mUw5KI0kVpnmGrfbLbIsm9I5maoXp9MZtW1wcDDh+zaWXL9PUmU0GmP+3rEsK9psthyUSL18+J0wGAyi2+3OdTFEUZx7r6XP5xPb2tpS+v0jM0MtTnmEYRi0tLTAbrfH3J9vLUxutztqW1NTE1pbW3NQGkmsMs01er0+5XMyVS8Mw8TcZjabwbKs6uvk+n2SKRaLBVarNdfFSGg+/E5kQqG+lizLwmKxxPzdJNlBgVOesVgs6O7ujtouCEJKH0zZ5nA4wPN81Haj0QiTyZSDEsUv03yXyXrhOA6dnZ1R2202W0p/uHP5Pskk+Tnn2z81MvqdUK+QX0uO4/Lq82GuK8p1AUg4g8EAvV4Pl8sV9sHS29sLo9EY97zOzk6wLAue58GyrHKuIAhwOBxgWRZutxsWiwUGgwEA4PF4lP+wdu3aBZ7nwfM8BgYGYLPZ4t7L4/HA7XaD53nlQ7StrQ0cx8FqtYLnefh8vrj38Pv98Hq9sNvtcDgc0Ov16OrqQnt7u1K2ZM9LbZkirwNIYx1C9yXicDjCHpvN5qTXTPc5y+fp9Xo0NzcDkF6/ZK9HZHlC60ptvSSrXxnDMLDZbGHXkIP9Xbt2hZ0fr37Uvk/UvBeT3SuV66ZaFwDg9XphMBjCgsZ4r4PValVaB+SWA7kMat5nsa6X6Hkle+1jydTfi87OTjAMk1brKL2Wqb2WgiCo/qdFPld+bViWhd/vh9FojPl7abVa4XA4YLPZVD+PyHppaGhAR0cHeJ6H0+mE0WgEz/NoamoCy7Kw2+2FF/Tluq+QTJP7r2ON/5DHlsQa42QymcLGnhiNRqW/u62tTfT5fMo+lmXFwcFB5bE8XiZ0/AHLskn7y91ut2gwGKK2e73eqPE38e7R1tYW9vwir5foeaVSJpPJFHZvn88nGo3GBM9OYrPZosoY+jokuma6z9npdIoAwl6ztra2sNc8Vh0nqqtE9ZJK/SZiNBrDrpWsflJ5nyQrU7qvReh1k9VF5LiYwcFB0WaziQaDIez3KdF15Nfb7XaLXq9XeS8ke58lel2TPa94r308mfh70dbWFjYWZ3BwUASgaowTvZaZey0jmc3msOft8/mixp7FGj9pNBrDXs906iXWdfN9PFkiFDjlEfnN6fP5RADKL7HP51P+mEUGTvKxkdeRjzGZTGFv+sgPOK/XG3V+5DGxpBI4xbtH6B8Yn88nMgyj+nmpLZPX6w27rizZYFX5j33kH1Kbzabqmuk853jPQS6L/B6IrONkdRXrmunUbyKhf0zV1o/a90mi9+JMXgv5umrqwmg0igaDQbTb7cpXZECn5nWI3J/ofZbsemrqK9UP25n+vZCfTyQ1g8Pptczsa5msbKIoRgVr8f4pi/xsivc8YtWLLHICSbLPmHxGXXV5iGVZGAwGdHd3w2w2g+O4hF1UDMOETfX1+XxKX7jT6QQgNefKXUZ+vz/qfqEYhok6ZqZi3SPRlPpkz0ut3t7emM3AcldEvO7P3t5eMAwT1gQu16XclZHsmqk+53jkcsQbx5BOXWWqfmNJt87lY0Iley+qvVei66qti/r6+rDuikhqrhNZjmTvs1SvN9Pf3Zn+vZDrIB30Wmbv77D8fCJfm1Rfq3TqRWY2m9HV1QWDwQCPx5Pw70C+o8ApT1ksFtjtdpjN5oRvbnnQeOibMPRnjuPQ0dGBpqYmtLS0ZK0vWe7rzpRkz0ttmdId6JnovHwbPJpqXcn1MtP6TVSe2ZKJe2WqLtRcJ/J3Odn7LNOvUbLf00z8vUhnXBNAr2WqMv03N57Q55VOvchaW1vR2NgIm80GnucLOnCiWXV5qqWlBRzHweVyob6+Pu5xBoMhZiuBIAgQBAGNjY1ob29XAjD5lyDTM204jsvo9RI9L7U4jlMGIkbieR4NDQ0J7x/rXoIgpH3NdMmvZeTAeVmqdcVxXEbqN57ZrJ9M3CtTdZHOdRK9z7LxGiX6Pc3E34t4ZVaDXsvUpPI3Vy5bOvcLbfWayfMInfiUbnCdLyhwyiPyTAZAitqNRiO6uroStjgZjUbU19dHZb3t7u5WWhZCP3DlX4Jkf0CTkWdUANIftngf6uneI9HzSqVMBoMBRqMxrGlZfu6JZtrIM0VCp94LgoDu7u60r6n2jxbHcWHHdnR0JMyTlKyuYtVLOvWrVrr1E0uyOsvEa5Gpukj3PRvvfZbO9SLrK5Xf00z8vWBZFmazOWxmmSAIUe/pWOi1DDeT1zJW2SJfF3n2Xrx7yGUIbbmfaf1aLBZs27at8FOR5HqQFZEG3JnNZhGAaDablUHAoTMy5JkfDMMoGW5DB/rJM1lCz5G3t7W1iW63W3S73aLP51MG8nq9XtFkMokAlBkO8j0MBkPSwXvyteWBg7Gul+geRqNRmX0hH9PW1qbqeaktU+R17HZ72ABtNdez2Wyi0+lUfc2ZPGd5AKjT6RTdbrdos9nCZp9EnherPLHqKlm9qK3feCJn2qRaP5l4L6b6WkReN1Zd+Hy+hL93icoSeh232y0ajUaRYRhlsHDkOcneZ6HXS/V5xXrt45U9E38v5OciX8dgMKjOHk6vZWZey0TPJ/R1iXxN5L85chlNJpPIsmzS+k1WL6IoKu+nQqcRRVHMQbxGCIlBzoXi9XpzXZSUNDc3o7W1tfD/kyRkHqmrq4PNZpu18UaCICTNSVgIqKuOEJIWuRlf/pmWfCCERArtcpS7LQsdBU6EkLR0dHTAYrEAkMZLJJrEQAiZn+Ts40D6My7zDQVOhOQJj8cDm80Wdz24fGOxWNDU1KQsyUAtToQUjs7OTnAcB5vNFjYgP9Pkf64cDsec6cqnMU6EEEIIISpRixMhJGMsFguqqqqy+h/sXMJxHJqamtLKKE8IyQ0KnAghGRNrpXOr1Yrm5uZZLUfkCvX5dj2ZwWCA1WrNyrVzIVv1REg+ocCJEJJVTU1NaG1tndV7ut3uvL5eqLkyYBbIbj0Rki9orTpCSFbN9vRjh8OR0SWFMn29uYrqicwXFDgRUkAEQYDD4VBWjLdYLFFLL0R2l4SuAp9oX2dnp9LNxvM82traAEwn5WRZFhaLRWlVsNlsynkMw8RsOeE4DlarFTzPK0sKydcDgF27dilLPwwMDCjXlJ+r1WpFXV0dvF4vamtrYTAYYLfblVXnI3k8HrjdbvA8r8xMlJ9HoucYT7zrxXpe8rRrm80Gs9msPE+9Xq90VQqCEPU845HLKi/mmmxGUjqvbSrPA4j/eiWrd0LmlNwmLieEpKKtrS1sKQOWZcOWjbDZbGHLVIQuiZBon8lkClt6wefziUajMexYeXkGr9erXCdy+YfBwUERQNi1vF6vyLJs2PNwu90iy7Jhx7EsK3q9XuVx6DIug4ODUdeIR15KIlKy55jq9eTnEMpoNIbVh9PpFAGEvWZtbW2i2WxWHseqn8glbIxGY1jdRJrJa6vmeah5veLVEyFzDY1xIqSA8DwfNmONZVnlsdxC097eruzv6upSFumMt4/jOHg8nrAuNZZl4ff7lWszDAOO42A0GmEwGGCz2SAIAjo7O8NaNhiGUbX4qF6vB8/zUfcM7epxuVzKtRiGibkoqVpqnmOqYrWwReaykusjdMB8e3t7wm4tnufhcrnCWpiam5tht9tjHj/T11bN81DzehEyX1BXHSEFRO6ikpc78fv9ygr2vb29YBgm7ENPPt7j8cTdJ3f9RZK7A+UPy8hj5GumK/J6DMMozwWQZpzFWiE+Hb29vaqe42yQXweO42KWSa7X0IDO5/PFDVISve5qX1s1kr1ehMwXFDgRUkA4jkNHRweamprQ0tIS9mEWGWSESndfqFhBUjZnhFksFnR0dGDXrl1wOBxxW1ySkVvcMkUecxRLJu4jCAJYlg0LahIFOJl4bTN1XqhE9URIIaOuOkIKhCAIaGxsRHt7O8xmMxiGUT7geJ6P2UIjn5don9FojNmawfM8Ghoa4pbHYDBkvatm165d8Hg8MJlMYV2CqZC7GNN5jvGuF4+aFhhBEJTXJJZ49RovmMnGa5uJlqRE9URIIaPAiZACIbechH7gyh9wcrePyWQKW+dOEAR0d3cn3GcwGGA0GsO6huQPvUQzuViWhdlsDpvNJQgCOI5Lq8Ui8hyv1wuGYWAymVJquQgdeyMHlOk+x3jXi9wulz9W61ZkfXR0dMBsNsd9TkajEfX19XC5XGHbu7u745ZvJq+t2ucRKVY3aqx6ImSuobXqCCkg8rTwpqYmANKHldVqRWtrq/JBaLVaUV1drQwCDm2pSbZPXvrD5/OFTTW32Wzo7e1Fe3t7VCAjT3WXu/LkMtpsNuj1enR0dMDlcsFmsylT+SO3dXZ2oqOjAyzLKvdwuVxobm5WUh0wDAOLxaKq5UkuQ21trarnmO715GBFro+uri5l4VSTyaRM5W9vb1fGNQEISwcg10VbW1tYeeSyyt2hyQK8dF5bNc+DZVlVr1eieiJkLqHAiRCSdwRBwLZt27Br1y6lS5LneWX5lkL5UJYDJ6/Xm+uiEEIyhLrqCCF5x+FwwGKxKK1Y8rR+m81GQQghJKcocCKE5B2DwRAzO7jH41G6KQkhJBeoq44Qkpc8Hk9YriO1S4/kC3lsmPydliAhZG6gwIkQQgghRCXqqiOEEEIIUYkCJ0IIIYQQlShwIoQQQghRaV6vVRcMBnHixAlUVFRAo9HkujiEEEIIyQFRFHHu3DmsWrUKWm3iNqV5HTidOHECa9euzXUxCCGEEJIHjh07hjVr1iQ8JmeBE8dx2LZtW9Jkdi6XS1kZPHJ1dnn5AnlRzEQLZ8ZSUVEBQKqoxYsXp1B6QgghhMwVw8PDWLt2rRIXJJKTwMnlcoFlWVWrZzc3N0dtk3Oi2O12ZYFRo9EYM2FeInL33OLFiylwIoQQQuY5NcN2chI4qU1gJwgCnE5n2PGdnZ1KIrm6ujoMDg4CiG6NIoQQQgjJtLwf4xQaNLlcrqigiwImQgghhMyWvA6cQoMiQRDg9/uV5RfkbS6XCwDQ09MDi8UStp8QQgghJJPyOnAKZbVaYbPZwraZzWYluGJZFk1NTfD5fHGvMTY2hrGxMeXx8PBw0vsGg0GMj4+nV2hCClxxcTF0Ol2ui0EImecCQRF7+/w4fW4UyyrKsKVGD502N2mECiJwEgQBHo8nqluO53llFh3LsuB5XlkINJaOjg7s2LFD9X3Hx8fR19eHYDCYdtkJKXQMw2DFihWU64wQkhO7D/Rjx7MH0T80qmxbWVmGB+/eiK2bVs56eQoicOrt7Y2ZiqCxsVEZHC7T6/Vxr9Pe3o7t27crj+Xph7GIooj+/n7odDqsXbs2aUIsQuYaURQxMjKC06dPAwBWrpz9P1CEkPlt94F+3P84BzFi+8mhUdz/OIcffsIw68FTzgMnQRDCgiKO48AwTFirEcdxUQERy7JhXXcejwcmkynhYPHS0lKUlpaqKtfk5CRGRkawatUqlJeXq3syhMwxCxYsAACcPn0ay5Yto247QsisCQRF7Hj2YFTQBAAiAA2AHc8eRNPGFbPabZeTZhSPxwOr1QpA6j6TB3jHeiyL7H5jGAb19fXo7OyEw+FAT09PynmcEgkEAgCAkpKSjF2TkEIk/+MwMTGR45IQQuaTvX3+sO65SCKA/qFR7O3zz16hAGhEUYwVzM0Lw8PDqKysxNDQUFQCzNHRUfT19aGmpgZlZWU5KiEhuUe/C4SQXHj6leP451+9kvS4733kOnzwutUzuleieCASDdzJskBQxMu+ATz9ynG87BtAIJi9OJXjOFgsFmg0GlitVjgcDlitVjQ3N8Pj8WTsPg6HA1VVVaoyv+erurq6sJZNh8OBpqamtM4lhBCSeUx5sarjllXM7j90OR/jNJfN9kwAg8EAm80Gh8OB9vZ2ZbyXIAioqqqC1+tNaS2/eMxmc0a7RSPHuc0Gm82G+vp65bHRaFSdAyzyXEIIIZk1NDKB/9rzTsJjNABWVEqpCWYTtThliTwTILJ/Vp4JsPtA/6yVRR5s39XVNWv3VIvneXR3d8/6fY1GY1iwxrKssph0qucSQgjJnP6hi2ixv4yeI4MoK5LClMih3/LjB+/eOOv5nKjFSSVRFHFxIqDq2EBQxIPPvJ5wJsDXnzmImy9douoFX1Csm3EOHb/fj9ra2hldIxtsNhvq6upyXQxCCCF54O1T5/Dpn+zFiaFRLKsoxc8/twVHBi5E9d6soDxO+e/iRAAb//35jFxLBHByeBRXf/1/VR1/8Bt3orwkvZdKEAR0dHTAaDTCbDbD4/HAYrEosxrtdju8Xi84joPH41ESiZpMpqiUEF1dXWhoaAAgBWIyeZZka2sr2tra4HK5YLVaYbfblVYcnudht9vR0NAAv9+PlpYW9Pb2ore3V7lWvO4yj8cDjuPAsix6enqUNBQcx8Fut4eNTWJZFn6/P2F5OI7Dtm3bYLFYYDabIQgCrFYrPB6Pknk+Xn1Enis/d3m5H57n4Xa7M9qVSQgh84H3iB+f+1kvhi5OgF26EI99bgvWVJXjypWL0bRxBWUOJ9nlcDiUICR0DT+j0Qij0Qiv1wu73Q69Xg+e52G1WuF2u5Xz6+rqsGfPHjAMA0EQ0NzcHLacTUdHh/Kz0WhEa2ur8thkMoV1CwqCgKamJni9XjAMowxcb2trg9FoRG1tLcxmc8znIZfN6/UCkAK2zs5OmM1mNDY2oq+vT+k2q6qqwp49e5KWx2AwhO1nGAZ2ux1VVVVh94xVH5HnyvUZGiw5nU5wHJeR8WSEEDIfuA+ewj/+gsPYZBDXrWXwk880QL9wOh2QTqvBjbXVOSzhNAqcVFpQrMPBb9yp6ti9fX585qc9SY/72WcbVA1qW1CcetLB0HX8IjEMg+pq6Q1oMplgtVqjPuRZlkV3dzfMZjO6u7uj9ifK0B6pu7sbLMsq5Wlvb1d9rhzchc4K7OnpAcMwUWONMjVg2263J6yPSNXV1Up9AlL9hrbIEUIIie9Xe4/i/zy1H0ERuP3ypXj044a0e1lmQ/6WLM9oNBrVL+Stly3FysoynBwajTnOSZ4JcOtlS3PW1Kh2BlkmRM6aixfQxZtdZzAYwgZum81mOByODJeSEELIbBJFEf/1wjv4tvstAEBz3Rp8656rUazL73lr+V26AqXTavDg3RsB5G4mQLIWj9D9ra2tUXmeOI5DS0sLACjjgkLxPB/2mGEYDAwMKI89Hg8EQQAgtWpFnh8rr1SsbbHK5vF40NLSkrBMicoji3yc6J6h9ZHoXEIIIckFgiK+9vQBJWj64u216DRdk/dBE0AtTlmzddNK/PAThlmdCSAP4Aak2WoWiyWqy8nj8YQNtjYajUr+p87OTmUAttPpVFp/WJaF0+mE1WpFU1OT0jLU0dEBm80GlmXR0tKiDLAGpGBL7vJiWRZ2ux1Wq1UZXC63IFksFiX3VKx0AHLZIs9lGCZmmWSJyiMIArq6uqDX66MGwYfeM1Z9yHUsnytfS74Hz/PKoHWWZWe1ZY8QQgrB6EQA//KrV7D79ZPQaIAH378Rn7m5JtfFUo2WXMnykiuBoJg3MwHmuqamJthstrQHZVdVVWFwcDDDpSp8tOQKISRThi5OYNtjvdjb50eJTotHWq/F+69ZletipbTkCrU4ZVk+zQSY69IZkO1wOODz+WCxWCgbOCGEZNHJoVF85qd7cejkOVSUFsH+qTrcVLsk18VKWf53JhKigsPhUHJFpTL+yGg0orq6Gi6XC3a7PXsFJISQeeyd0+dw7w9fwqGT57C0ohRdlhsLMmgCqKsu6111hBQ6+l0ghMyE98ggPv/zHggjE2CXLMTPP7cFa/XluS5WGOqqI4QQQkjO7XnjFL74Cw6jE0Fcu5bBTz5dj+pFpbku1oxQ4EQIIYSQjOvuOYb2p/YjEBRx2+VL8YM8T2ypVuE/A0IIIYTkDVEU8eiL7+Dh/5VyNN1rWIOd9+Z/Yku1KHAihBBCSEYEgiJ2PPs6Hnv5CADg/ttq0Xbn5dBo5k4aHgqcCCGEEDJjoxMBbO9+Bc/tlxJb/vv7N+KzBZTYUq250W5GojgcDlitVjgcDrhcLng8HmXKfr7yeDyoq6ubtXXo6urq4HK5ZuVeMxVZVofDgaamprTOJYSQTBsencCnf7IXz+0/iRKdFt//yOY5GTQB1OKUfcEAcOQl4PwpYNFyYN1NgFaX1Vs2NTWhubkZNptN2cZxHJqamuDz+bJ675kwGo0xl13JFpvNVjBJLyPLajQaVS/nUkjPkxBSeE4Nj+LTP5ESWy4qLYLjk3W46dLCzNGkBgVO2XTwGWC3FRg+Mb1t8Spgqw3Y+IGs3LKzsxMAYDabw7YbDIaobfmounr2sqzPZpA2U5FlTWUdvEJ6noSQwuI7cx6f+u+9OC5cxNKKUvzssw24alVlrouVVTnrquM4DnV1daqO4zgOAJQFVGU8z6OzsxMulwudnZ35tWL9wWeA7k+FB00AMNwvbT/4TFZu29HRAYvFEnNfc3NzVu5JCCFk/uGODsL0w5dwXLiImiUL8eT9N835oAnIUeAkj7cIDYLisdvtqKurg0ajgcViCfsvu7m5GW1tbTCZTDCZTNi2bVvWygxRBMYvqPsaHQZ+1wYgVlL2qW27rdJxaq6nMrk7z/MQBCFuS0Ro9w7HcWFBpzz2KXSckTwuqrm5WQlaOzs7wwIzj8eD2tpaWCwWuFwuOBwOWCwWJYiV9zscDjgcDiVY9ng8yv2tVmtYOQVBCLt3qFjnxStz6PXkffJ5cuAeOp4q1TqJJ95z4zhOqSf5i+M45fpya6HL5UJtbS08Ho9yXmhZBUGAxWJBbW1t0rJHnpvqcyGEkFheOHQKH9v1VwyOTODaNZVw/cONeZcNPFty0lVnMplUH1tXV6esWM8wjLI9cpAzy7LKB01WTIwA38rUCs6i1BK1c626w//PCaBkYYbuLdWd1WqF2+1WttXV1WHPnj3KOCO32w2n0wkAcDqdcLlcaGtrg8FgQG1tLQRBAMMwMBqNMJlMqK6uVl5Xl8uF5uZmuN1u5Xperxd2ux16vV65v9frBSAtztvZ2Ym2tjYAQE9Pj/Kz0+kEx3EwGAwJz4tVZvk8h8MBg8GgdFn5/X4YDAa0trbOqE7k68eq28gyms1mNDY2oq+vT3kfV1VVKdcPLYvJZEJXV5fyOLKsDMPAbrejqqoqadkjz03luRBCSCzdvcfQ/qSU2PK9G6TElgtL58/In4J4pqEBk8zj8UCv14dt0+v18/oDQG5N4nk+Zh3wPA+9Xg+73R61n2VZdHd3w2w2o7q6OmysEcMwYa1YDMPA7/eHvS6hP5tMJjQ3NyvBFcMwyvVMJhOsViv0en1YoNvT06P83NDQEHUvAErgFeu8WGWWzzOZTKirqwPLsmhtbY051iudOpGvH3mdWGWUg8zQesrUgO1kZY+k9rkQQkgoURTxg9/78NDzbwIA7jGshu3ea+ZMYku18j5wEgRB6drr6elRuuvijWdK9AEwNjaGsbEx5fHw8LD6ghSXSy0/ahx5CfgfFa1qH3dJs+zU3FultrY22O32mK16HMel1NoXKlbwmorI7sPQFiAgejB7POmcp9frMTg4CI7j0NXVpbSGZUusMs5WigVCCMmGQFDEN39zED976TAAwPJeFg9svWJOJbZUK+/DRLPZrIxham1tTZq7JtEA8Y6ODlRWVipfa9eq7CoDAI1G6i5T81V7hzR7DvHeUBpg8WrpODXXS+GNKacgiPygDq2X1tbWqG5NjuPQ0tIS97rJBt6H7ne5XFGtK6EBbaz7q+lmTfe8jo4OpRXOZrOFlUsudzp1kkoZW1paosb0hXY3MwyDgYGBsHMi6zzea6Cm7Hk1cYIQUlDGJgP40i/3KUHT196/Ee1/d+W8DJqAAmhxCu12YlkWPM+D5/mY3QuR3UeR2tvbsX37duXx8PBwasGTWlqdlHKg+1OQgqfQwd1Tb7StO7OWz8ntdqOzsxNWqxW1tbVKl6bc2iQHEJ2dnWBZFj09PXA6nWAYRmmVAaTxMKEzGQ0GAzweD3ieh81mCwtCfD6f8mEvXw+QAgCPxwOO48CyLIxGo3J/q9WqdMsZjca497bb7WBZNu3zqqurla5dv9+P1tZW5Ry9Xg+TyZRWncjXD21Ni1dGhmHgdDphtVrR1NSkdGPKWlpaYLValQDIaDQqXXCCIISVNVbrXbKyy+fK11LzXAghZHh0AubHevFX3o9inQbfbrkOH7g2U+N9C5NGFFVO2crGzTUaJLo9x3FobGxUBocLgoCqqioMDg7C7/ejublZGYQLSINtQwffJjM8PIzKykoMDQ1h8eLFYftGR0fR19eHmpoalJWVpf7kgDh5nFZLQVOW8jjlghygFUKeqHzS1NQEm82W9pg8+Xch2zLyu0AIKTinh0fx6Z/24I3+YSwqLYL9k3W4eY4mtkwUD0TKeYtT5H/eHMcpg5FZlg3Lfu3xeGAymZQBx6F4nkd9ff2Mx+Jk1MYPAFfcNeuZw0lhSGdAtsPhgM/ng8VioWzghJCs8Z05j0//ZC/eHbyIJYukxJabVs/9HE1q5CRw8ng8yuDcjo4ONDQ0KN1I8uO2tjYwDIP6+np0dnaCYRj4fD6lCwiA0vXR0NAQ1j2UV7Q6oObWXJcia0K74urr6+ftjMZUyesG2u32qHFXiRiNRmXChN1uz24hCSHz0r6jg/jcz3owODKB9dXleOxz1+OS6vmRo0mNnHbV5VrWu+oImQPod4GQ+ePFN0/jC49zuDgRwNWrK/HTzzZgyaLSXBcr6wqqq44QQgghuefyvgvrE68hEBRx62VL8KNP1M2rxJZqUY0QQggh85goivjRH3jYdh8CAHx4s5TYsqQo7zMW5QQFToQQQsg8FQyK+OZvD+KnfzkMADC/R0psqdXOzxxNalDgRAghhMwDgaCIvX1+nD43imUVZbh2bSW+4noNv32tHwDwf++6EvfdSrnckqHAiRBCCJnjdh/ox45nD6J/aFTZVqLTYjwQRLFOg4ebr8UHr1udwxIWDgqcCCGEkDls94F+3P84h8gp9OOBIADg/ttqKWhKAY38yrJAMICekz14jn8OPSd7EAgGsnYvj8cDi8UCjUYTtnxHKhwOB6qqqqLWVcuG2bxXqLq6OmXhaLkcydZAjHcuIYTks0BQxI5nD0YFTaGcve8iEJy3mYlSRi1OWeQ54sHOvTtxauSUsm15+XI8sOUBGNcZM34/o9EIlmXhcDjQ3t6eVhZ1s9k8a4lEZ/NeoWw2W1jWbbne0jmXEELy2d4+f1j3XCz9Q6PY2+fHjbXVs1SqwkYtTlniOeLB9t9vDwuaAOD0yGls//12eI6k3hqkhrygL4lPXnRXJi8+nM65hBCSz06fSxw0pXocoRYn1URRxMXJi6qODQQD6NjbATFG46i8befenbh+xfXQqVi3bkHRAmg0NDWUEEJIahaWqPuYX1ZBqwKoRYGTShcnL+L6X1yfseudGjmFm351k6pj//axv6G8OL11gjweD6xWKywWC1iWBc/zcLvdYV1kHMehq6sLDQ0NAKIXn5XXomNZFj09PbDZbHC5XOjo6IAgCPD5fOjs7ITdbofFYkFbW1vMc9TcK1b5413HbreHjU1iWRZ+vx9WqxWtra1oa2uDy+WC1WqF3W6H0WgEx3HYtm0bLBYLzGYzBEFQxoP5fD7l2h6PR6kvk8kElmWjzlVTt4QQkiuvHhPw4DMHEh6jAbCisgxbaqi3Qi0KnOY4o9EIo9EY9oHudDrBcRwMBgMEQUBzc7MSNADSQssynudhtVrh9XoBSIFOZ2cn2traYDQa0djYCEEQwDAMvF4vGIaJe47ZbE54r0iJrtPY2Ii+vj6l26yqqgp79uyB0WhEa2urcg2TyYSuri7lscFgCNvPMAzsdjuqqqrC7ikvQg1IA8L37NkTdW6yuiWEkFwQRRGPvXwE//Hbg5gIiFiyqARnz49DA4T1g8j9GA/evRE6SnipGgVOKi0oWoC/fexvqo71nvLiC3u+kPS4HzT+AHXL61Tdeyaqq6tRXT096I9hGKWlp7u7O+pDPnSclN1uh16vD5uh19PTo1xn165dqKurg9PpVIKYeOcwDJPwXpESXSdyrFGmBmzb7faoMrIsi+7ubpjN5qjjE9UtIYTMtnOjE3jgyf1KUss7r1qOTtO1eNl3NiqP04rKMjx490Zs3bQyV8UtSBQ4qaTRaFR3l9206iYsL1+O0yOnY45z0kCD5eXLcdOqm1SNcco1g8EQNng6NICQg6Gurq6wgCPWOQ6HIyP3Tuc6hBAy1x08MYwv/oJD39kLKNJq0P73V+JzN6+HRqPB1k0r0bRxRVjm8C01emppSgPNqssCnVaHB7Y8AEAKkkLJj61brFkJmlJt7ZDH/YTieV75ubW1NSoflPxYEAR4PB44nU7wPK/kN4p3TrJ7RYp3nZaWloTXYRgGAwMDYecIghB2fOTjRPfkOA4tLS1JzyWEkFwQRRFdPUfx4R/8BX1nL2BlZRm6LDfi87fUhE0s0mk1uLG2Gh+8bjVurK2moClN1OKUJcZ1Rjxy2yMx8zhZt1izksdJDmIAaeyQPB5HHuNjNBrB87wysJplWbAsC6fTCavViqamJmW8UkdHB2w2GwwGA2w2G6xWqzKg22g0wuFwwGazwWKxAAAaGhqwbds28DyPtra2mOcwDJPwXpG5lOLdO951ZC0tLWEJQI1Go9IFJwgCurq6oNfrlUHfse7Z2dmpDEiXuyHlge3yufK1EtUtIYRk08j4JL7269fxBPcuAOC2y5fikZbroF9YkuOSzV0aURTnbbrQ4eFhVFZWYmhoCIsXLw7bNzo6ir6+PtTU1KCsLP1pmoFgANxpDmdGzmBp+VIYlhkKonuu0DQ1NSmBXjqqqqowODiY4VLNDZn6XSCEZNY7p8/hC//D4a1T56HVAP/6vstx/3troaWWpJQligciUYtTlum0OjSsaMh1Mea8dAZkOxwO+Hw+WCwWygZOCCkoT79yHO1P7sfIeABLK0rx/Y9spszfs4TGOJGC53A4wPM87HZ7SuOPjEYjqqur4XK5YLfbs1dAQgjJkNGJAL761H78869ewch4ADey1fjtl26hoGkWUVddlrvqCCl09LtASH44MnABX/gfDq+fGIZGA/zj7ZfiX4wbaJB3BlBXHSGEEDKH7D5wEl9xvYpzo5OoKi/Gd1qvw22XL8t1sealnAVO8vIVclboRMfJs6N6enqwa9cuZQaVPCXdYDCA53kIgpDxjM3zuEGOEAD0O0BILo1PBmHbfQj//ec+AEDduir850c3YxUzs8TIJH05GeMk5/uJzMUTi8fjQVtbG9ra2tDQ0IDGxkZln91uR11dHTQajbJeWKbodNLMt/Hx8Yxdk5BCNDIyAgAoLi7OcUkImV+OCxfR6nhZCZq23VqDX5lvoKApx3I6xkmj0ST8b5bjODQ2NirTxHmeR21tLXw+H1iWhcPhUBIThubxUStRn6Yoijh69CgmJiawatUqaLU0jp7ML6IoYmRkBKdPnwbDMFi5kpZlIGS2vPjmaXy56xUIIxOoKCvCw83X4s6rVuS6WHPWnBnjZDAYsGvXLuWxPGMqdH2zdAImNTQaDVauXIm+vj4cOXIkK/cgpBAwDIMVK+gPNiGzYTIQxHc8b+HRF6XF0K9eXYlHP2bAJdXqlvwi2ZfXgRMgrW4v6+rqClvcVRAEpduvp6cnaXfd2NgYxsbGlMfDw8MJ711SUoLLLruMuuvIvFVcXKx0WxNCsuv08Ci+9Kt9+Csv5aX75A3r8NW7rkRZMf0O5pO8D5xkcpAUOpjcbDYrQRTLsmhqaoLP54t7jY6ODuzYsSOl+2q1WpqCTQghJKte8p3Fl375Cs6eH8PCEh067r0GH7h2Va6LRWIomIE7VqsVbrc7rGsudGFXlmXB83zCRWPb29sxNDSkfB07diybRSaEEEISCgZF/Oeet/GJH/8NZ8+P4fLlFXjmn26hoCmPFUSLU2dnJ6xWK1iWVcY58TwfNnBcFjr+KVJpaSlKS0uzWVRCCCFEFf+FcfxL1yv441tnAACmujX45gc3YUEJdc3ls5y3OEUukcFxXFirkcvlgsFgUIKm7u5uMAwDlmVhs9mU4zweD0wmU9YGixNCCCGZ4j3ix99/70/441tnUFasRafpGjzcfC0FTQUgJy1OHo8HbrcbgDTuqKGhQRkELj9ua2sDz/Nobm4OO5dhGGVsU319PTo7O8EwDHw+H5xO56w/F0IIIUQtURTx4z/1wbb7ECaDItglC/GDTxhwxYrEU+BJ/qC16lTmbSCEEEJmYmhkAv/mehXug6cAAO+/ZiV23nsNFpUWxKiZOW3O5HEihBBC5oL97w7hC7/w4pj/Ikp0Wnzt/VfiEzesg0ZDC/QWGgqcCCGEkCwRRRGP//UIvvmbNzAeCGJN1QL84OMGXLOGyXXRSJoocCKEEEKy4PzYJNqf3I9nXz0BAGjauBwPm65FZTmt+1jIKHAihBBCMuzQyWF84XEO/NkL0Gk1eGDrFbjv1hrqmpsDUg6cDh8+DKfTCbfbHZZDSa/Xo6mpCSaTCevXr89kGQkhhJCC0d17DP/+9AGMTgSxYnEZ/utjm1G/Pn6OQVJYUgqcHnjgAWg0GrS0tOArX/lK1P59+/bhRz/6ETQaDTo6OjJWSEIIISTfXRwP4GtPH4DL+y4A4D0bluI7LdeiehElXp5LVKcjeOihh2A2m1FZWZn02KGhIezcuTPvgydKR0AIISQTfGfO4wuPc3jz1DloNcCXjRvwxdsvhVZLXXOFIJV4gPI4UeBECCFEpUBQxN4+P06fG8WyijJsqdHjt/v70f7Ea7gwHsCSRaX4/keuw02XLsl1UUkKZiWP0wMPPIBLL70Uzc3NaG5uRlVVFVpbW3HPPfeke0lCCCEkb+0+0I8dzx5E/9Cosq28RIeR8QAA4PoaPf7zo5uxbHFZropIZkHaa9U1NDTgvvvug8PhQF1dHbq6ujAwMJDJshFCCCF5YfeBftz/OBcWNAFQgqatm5bjf+67noKmeSDtwKmqqgoA0N3djdbWVgDSzDpCCCFkLgkERex49iASjWt59dgQpRqYJ9LuqvP5fBBFET6fD9dddx36+vrC0hMQQgghc8HePn9US1Ok/qFR7O3z48ba6lkqFcmVtFucWlpawHEcvF4vhoaGYLfbIQhCBotGCCGE5N7pc4mDplSPI4VNVYvT0NAQBgcHwxJbVlZWhuVy2rlzZ9g5w8PDAECz1QghhBS0w2cvqDpuWQWNb5oPVLU4VVZWwu1248knn1R10SeeeALd3d0UNBFCCClYY5MBPPj0AXzH83bC4zQAVlZKqQnI3Kd6jNO2bduwb98+tLS0oLa2Fg0NDWBZFgzDQBAE8DyPvXv3oq+vDxaLBffee282y00IIYRkzeGzF/CPv+Rw4LjUe9K0cTk8B08BQNggcXk4+IN3b4SOkl3OC2klwBwaGkJ3dzd8Ph8EQQDDMKitrYXRaERNTU02ypkVlACTEEJIpGdfPYH2J/fj/NgkqsqL8e2Wa3HHFctj5nFaWVmGB+/eiK2bVuawxGSmKHO4ShQ4EUIIkY1OBPCN3xzEL/52FADQsL4K3//oZqysXKAcEytzOLU0Fb5ZyRxOCCGEzBW+M+fxxf/hcOjkOWg0wBduq8WXjRtQpAsfCqzTaijlwDxHgRMhhJB57al97+KrTx3AyHgA1QtL8J3W6/CeDUtzXSySpyhwIoQQMi9dHA/gwWcOoLv3XQDADawe3/vIZiynZVNIAjkLnDiOw7Zt2+D1ehMex/M8XC4XWJYFz/Mwm81gGCbpPkIIISSet0+dwxf+h8Pbp89DowG+dMdl+FLjZTReiSQ1o8DpoYceQm9vL7q6urBnzx40NDSoGmQtBzscxyU9trm5WQmueJ7Htm3b4HQ6k+4jhBBCIomiCKf3Xfz70wcwOhHE0opSfK/1Otx06ZJcF40UiLSXXHnggQfAMAyMRiMAoLGxER6PR9W5JpMJBoMh6XE8z4c9ZllWuUeifYQQQkikC2OT+NfuV9Hmeg2jE0HccukSPPelWyloIilJu8WpoaEB9957L/bs2ZPJ8oTxeDzQ68Mzser1enAch97e3rj71ARlhBBC5o83+ofxj7/g4DtzAVoNsL1pA75w26XQUtccSVHagVNfXx8AQKOZftP19PTgnnvumXmppsRbNNjv9yfcF8/Y2BjGxsaUx/J6eoQQQuYmURTxy73HsOPZ1zE2GcTyxaX4/kc243qWUgqQ9KQdOG3evBn19fWorq6G2+2Gx+OBzWbLZNniihc0JdvX0dGBHTt2ZL5AhBBC8s650Qn8n6cO4NlXTwAAbrt8Kb7dfC2qF5XmuGSkkKU9xqmxsRFOpxObN2+GKIpwOBy44447Mlk2MAwT1YLk9/vBMEzCffG0t7djaGhI+Tp27FhGy0sIISQ/HDg+hLv/88949tUT0Gk1eODvrsBPPt1AQROZsYwuuTI8PJzS0iUajQaJbs/zfNjMOQCoqqpCX18f/H5/3H1qUxLQkiuEEDK3iKKIx/96BN/8zRsYDwSxqrIM//mxzahbp09+Mpm3Zm3JleHh4bBWH5vNhh/+8IcpXUNeJFjGcRwYhgHLsmBZNuxYnudRX1+vtDjF20cIIWT+Gbo4gfYnX8Nz+08CAIxXLsPDzdeCKS/JccnIXJJ24PQP//AP8Hg8YYFKX1+fqsDJ4/HA7XYDkMYdNTQ0wGQyhT1ua2sDADidTlitVjQ0NKCnpycsT1OifYQQQuaPV48J+Mdfcjjmv4hinQbWrVfg87fUhE1gIiQT0u6qe+ihh/CVr3wlbNuuXbuwbdu2jBRsNlBXHSGEFDZRFPGTvxzGzt+9gYmAiDVVC/BfHzPgurVMrotGCsisdNXJiS9DNTU1pXs5QgghJCXCyDi+4noN7oOnAABbr1oBm+kaVC4oznHJyFyWduBUVVWFhx9+GCzLgmEYCIKArq4udHV1ZbJ8hBBCSBTu6CD+6Rf7cFy4iBKdFl+960p86sZ11DVHsi7twKmtrS1qYPe+ffsyUSZCCCEkpmBQxK4/8Xjo+TcxGRSxrrocj37MgE2rK3NdNDJPpB04NTU1RY1neuKJJ2ZcIEIIISQW/4Vx/JvzVbxw6DQA4P3XrETHPVejooy65sjsSTtwqq2tVbWNEEIImam9fX586Zf7cHJ4FCVFWnz97qvw0S1rqWuOzLq0Ayefzwe73Y6GhgYA0syG7u5u9PT0ZKxwhBBC5rdgUMQP/+DDI+63EAiKYJcsxKMfN+DKlTQTmuRG2oGT3W6H0WgMy/ydwSTkhBBC5rmz58fw5a5X8Ke3zwIAPrx5Nf7jQ5uwsHRGuZsJmZG03302mw2NjY1h22KlKCCEEEJS9bJvAP/8q304fW4MZcVafOMDm9Bcv4a65kjOpR04RQZNgJSigBBCCElXICjiP194G9/f8zaCInDZskV49OMGbFhekeuiEQIghcDpySefhNFoVDJq/vjHPw7bLwgC3G43nn/++cyWkBBCyLxw+two/uVXr+Al3wAAoLluDXZ88CqUl1DXHMkfqt+N3/rWt8AwDO644w4AwI9+9CO0traGHTMwMJDZ0hFCCJlzAkERe/v8OH1uFMsqyrClRo+XfQP4l659OHt+HOUlOvzHhzbhHsOaXBeV5ItgADjyEnD+FLBoObDuJkCry0lRVAdOvb29YY937dqFzZs3h22jMU6EEEIS2X2gHzuePYj+oVFl26JSHc6PBQAAV6yowH99zIBLly3KVRFJvjn4DLDbCgyfmN62eBWw1QZs/MCsF0eb7omh45mGhobwxBNP0BgnQgghce0+0I/7H+fCgiYAStB0y6VL8Osv3kxBE5l28Bmg+1PhQRMADPdL2w8+M+tFSjtw8ng8ys+VlZW49957w7YRQgghskBQxI5nDyJR0hrfmfMo1qX9sUTmmmBAammK+a6Z2rb7Aem4WZTSiLuhoSF0d3dDo9HA7XZH7fd6vbjvvvsyVjhCCCFzw94+f1RLU6T+oVHs7fPjxtrqWSoVyWtHXopuaQojAsPHpeNqbp21YqUUOFVWVsJoNMJms8Hn86GmpiZsf1tbW0YLRwghZG44IYyoOu70ucTBFZlHzvWrO+78qeyWI0LKczxramrwox/9CHv27ImZy4kQQgiRiaKIPW+cRufzb6o6fllFWZZLRPLe5Diw3wm8+C11xy9ant3yRMhoAkxCCCFE9vapc/jGbw4qS6ZoNUAwziAnDYAVlVJqAjJPjZ0HuMeAl/9L6oIDIL0z4o2M00iz69bdNEsFlFBWMUIIIRk1NDKB7+55C4+9fASBoIgSnRafv7UGG5ZXYHvXKwDCPwrlRVQevHsjdFpaUmXeGfEDex3A334EXByUti1aDtz4RWDRCuApy9SBMd41W3fOej4nCpwIIYRkRCAo4pd7j+Lb//smBkcmAABNG5fj/951JdZVLwQALCjWRuVxWlFZhgfv3oitm1bmpNwkR4beBV5+FPD+DJiYGgNXVQPc/M/AtR8Fiqe6bYsXxMnjtDMneZw0oigmmh06pw0PD6OyshJDQ0PKUjKEEEJS97JvADuefR2HTp4DIK0x9+93b8Stly2NOjZW5nBqaZpHzrwF/OV7wGtdQFAKsLHiGuCWLwMbPxi7BSnLmcNTiQcy2uJ0+PBhrF+/XtWxPM/D5XKBZVnwPA+z2QyGYWIe63K5lKzkkcdwHAcAMBgM4HkegiDAYDCk+xQIIYSk4Jh/BB2/ewPP7T8JAFhcVoTtTRvwiRvWoShOTiadVkMpB+ajd73Anx8BDv0WSrfb+luBW/4FqG0ENAmCZ61uVlMOJDKjwOmVV16B3+9XHtvtdnR1dak6t7m5GV6vF4AURG3btg1OpzPusZFsNhva2tpgt9vhcDgASEu+xLsGIYSQzBkZn8SPfu+D/Y88xiaD0GqAj1+/Dl9u2gD9wpJcF4/kC1EE+BeBP38H6Pvj9PYr3g/c/C/A2oacFS1daQdOLS0tEAQhrAVo3759qs7leT7sMcuycbOOC4IAp9MJk8mkbOvs7FRyRtXV1WFwUBpMFq/FihBCSGaIoohnXj2Bnb87pIxTupGtxoMf2IgrVtCQBzIlGADeeEYKmPpflbZpi4CrW6QxTMuuyG35ZiDtwKmpqQnbtm0L2/bEE0+oOtfj8UCvD59yqtfrwXFczG620KDJ5XKFPQYoYCKEkNmw/90h7Hj2dfQekf5ZXVO1AP/3ritx51UroEnUzULmj8kx4NVfSWOY/D5pW3E5YPi0NEuOWZvb8mVA2oFTbW2tqm2xCIIQc3tot58sNCgSBAF+vx8sy4Ztc7lcAICenh5YLJaw/aHGxsYwNjamPB4eHlZVXkIImc/OnBvDw8+/iW7vMYgisKBYh3+841J8/pYalBXP7lRwkqfGzgG9P5VmyZ2XxruhjAGutwBbLMDCuTOmLe3AyefzwW63o6FB6p8URRHd3d3o6elJuzDxAiqZ1WqFzWYL2xY6qJxlWTQ1NcHn88U8v6OjAzt27Ei7fIQQMp+MTwbxs5f68P097+D82CQA4MObV8O69QqsqKQM3wTAhbNS/qW9DmB0SNpWsQq46R+lVqbSRbktXxakHTjZ7XYYjUaEZjNQm9mAYZio1iW/35+wy00QBHg8nqhjeJ5XuvfkGXo8z8dsdWpvb8f27duVx8PDw1i7tvCbDQkhJJNEUcSLb57GN3/zBvrOXgAAXLumEv9+91WoW1eV49KRvCAcBV76T4D7/4DJi9K26kulAd/XtABFpTktXjalHTjZbLaoZVfklAHJGI1G2O32qO319fVxz+nt7Y2ZiqCxsVEZHC6LHD8lKy0tRWnp3H0xCSFkpt45fR7f/M1B/OGtMwCAJYtKYd16Oe41rIGWci2RUwel8Uv7nYAYkLat2gzcsh244q5Zz+KdCxlbq+6FF16AIAjYvHlz0nMjW4N4nkd9fb0SGHEcB4Zhwo7jOC4qIGJZNqzrzuPxwGQy0WBxQghJ0dDFCXzP8zYee/kwJqeWSfncLTX44u21qCgrznXxSK4d2wv86RHgrd9Nb2Nvk5JW1rw3cQ6mOWZGeZyefPJJJbWAKIro7e3FPffco+pcp9MJq9WKhoYG9PT0hOVf6ujoQENDg5JyQBYZcDEMg/r6enR2doJhGPh8PsrjRAghKQgERXT1HMPD//sm/BfGAQDGK6VlUtYvWZjj0pGcEkXgHY+UUuDIX6Y2aoAr75YCptXzM9l02kuuPPDAA2Gz3ARBQEtLC+64445MlzFraMkVQsh89jd+ADuePYiD/dIM40uXLcLX3r8R790QvUwKmUcCk8DBXwN//i5war+0TVsMXPsRKQfTkstyWbqsmJUlV2pra7Ft2zb09fVBo9Fg/fr1eOGFF9K9HCGEkFny7uAIOn53CL99rR+AtEzKl6eWSSmOs0wKmQOSrfc2MQq88j/AS98HBg9L24oXAvWflXIwLV6Vk2Lnm7QDJ5ZlceTIEdTU1ODhhx/Gv/3bv2WyXIQQQjLs4ngAP/yDD/Y/+JRlUj665RJsb9qA6kU0cWZOO/gMsNsKDJ+Y3rZ4FbDVBrDvBXp/Arz8A+DCaWnfAj1ww/1Aw31AeewJV/NV2oGTIAhgWRaDg4M4e/Ys7rzzTjAMU1BddYQQMh+IoohnX+tHx3NvKMukXF+jx4N3X4WNq2iYwpx38Bmg+1NQFtaVDfcD3Z8EihZMpxRYvAa46Z8AwyeBEhrjFkvaY5wi7dmzB/X19aisrMzE5WYFjXEihMx1B44P4evPTC+TsppZgK/edSX+bhMtkzIvBAPAdzeFtzTFsuRyacD31SZAN/9mUc7KGCcAeOihh9Db24uuri4AoF9CQgjJE2fPS8ukdPVOL5Pyhdtqse09LC2TMp8ceSl50AQAf/8wwL4n++WZA9IOnB544AHU1tYqSS8bGxvx5JNPqk5HQAghJH2BoIi9fX6cPjeKZRVl2FKjh06rwfhkED9/6TC+v+dtnJtaJuWD163CA393BVZWLshxqcmsEkXgXZXLoMljm0hSaQdODQ0NuPfee7Fnz55MlocQQkgSuw/0Y8ezB5XxSgCwsrIM9xhW43f7T4KfWibl6tWVePDujahfT4N755XBw1Jm79ecwNk31Z2zaHlWizSXpB049fX1AQjvnuvp6aEWJ0IIyaLdB/px/+Nc5DBf9A+N4tEXpQXOlywqQdudV8BUR8ukzBsXzgKvPyUFTMf+Nr1dWwJotcDkaJwTNdLsunU3zUox54K0A6fNmzejvr4e1dXVcLvd8Hg8YcufEEIIyaxAUMSOZw9GBU2hFpbq4Nn+XjDlJbNWLpIj4xeAQ88B+7sB3wtAUOqahUYL1LwHuLpZyvLN/2FqVh0QPrNuKqjeunNerDGXKTNaq87pdMJut0MURTgcDlXr1BFCCEnP3j5/WPdcLBfGAnij/xxurK2epVKRWRWYAHwvSsHSod8CEyPT+1ZeB1zTAmy6F6hYMb194weAlsfi5HHaKe0nqs1oVl1NTQ127tyZqbIQQghJ4ORw4qBJdvqcuuNIgRBFaZHd/d1Sd9zIwPS+qhopWLq6OfFSKBs/AFxxV+LM4UQV1YGTmuzgP/7xj3HffffNuFCEEEKmiaKI3QdO4qHnD6k6fllFWZZLRGbF6UPSmKX9TkA4Mr194VLgqnukgGl1HaA2FZBWB9Tcmp2yziOqE2Dq9Xo0NDQkPKa3txcDAwMJj8knlACTEJLPRFHEn985i4eefxOvvTsEQPqMjPdXWwNgRWUZ/my9AzoaFF6Yhk8A+11S69LJ/dPbSxYBV7wfuKYZqLkN0M2ow4hEyEoCzMbGRlRXV6Ouri7uMRlKQk4IIfMed3QQnbsP4a+8HwBQXqLDfbfUYP2ShfjX7lcBxBzmiwfv3khBU6G5KAAHn5Zalg7/Gcorqy0CLm2SgqUNfweUlOeylGSK6sDJ6XRiaGgIvb29AKQ8TpFRmV5PuUIIIWQmDp0cxsPPvwXPG6cAACU6LT5xwzp84fZaLJlaiLe8RBeVx2lFZRkevHsjtm5amZNykxRNjAJvPw+81g28/b9AYHx63yU3SmOWrvowLbCbh9Jeq27fvn3w+/3QaDQFu7AvddURQvLFkYEL+I77LTz96gmIIqDVAM11a/El42VYzURn/I6XOZzksWAAOPwnKTHlG88AY8PT+5ZtlIKlq00Ac0nuyjhPzcpadaGpB1544QW43W40NTUVbBBFCCG5cGp4FN/f8za6eo5hMij9H3vX1Sux/X0bULt0UdzzdFoNpRwoBKII9L8iBUsHngDOn5zet3iNFChd0wIsvypnRSSpmdHosldeeQV2ux1dXV1gWRa1tbUUOBFCiAqDF8bxoz/68POXDmN0IggAeO+Gpfi3912Oq9dU5rh0JK5gQN2Ufj8vDfJ+rRsYeHt6exkjdcFd3Sx1yWm1s1Z0khkpB06HDx9WEl9qNBrce++98Hq9qKmpyUb5CCFkTrkwNomf/LkPjj/yyiK8deuq0Hbn5biepRakvHbwmThJJG1SnqTzZ4DXn5SCpeO908cUlQGX/x1wdQtwqREooqzuhUx14PTjH/8YdrsdPM+jpaUFTqczKlP4k08+SWvVEUJIDKMTAfzib0fx6IvvYOCCNBD4ypWL8ZU7N+D2y5eFrftJ8tDBZ6aWLYkYFjzcD3R/ElhxDXDqdUAMSNs1WoC9TQqWrnw/UFox2yUmWaJ6cLhWq4XJZEJraysYhon6JR8cHMTOnTvR09OTlYJmAw0OJ4Rk22QgiCe54/iu5y2cmJoFt766HNvfdznef/VKWoS3EAQDwHc3hbc0xbO6bmpG3D1AxfLsl41kRFYGh5vNZnR2dibM1dTV1aW6kDzPw+VygWVZ8DwPs9kMhmFiHstxHADAYDCA53kIggCDwZDydQghZLYEgyJ+d+Akvu1+E/yZCwCAFYvL8KXGy9BcvwbFOhrbUjCOvKQuaPqwA7i2NfvlITmlOnCyWCxJo7D29nbVN25ubobX6wUgBT/btm2D0+mMeazdbofD4QAAGI3GsONSuQ4hhGSbKIr449tn8dDzh3DguDTdvKq8GF+47VJ88sZ1KCumtcEKip8H9jrUHUvrvs0LqgOnyPFM6R4DSAFOKJZl4fF44h5fV1eHwcFBAAhrTUr1OoQQkk3eI37Ydr+JvX1Stu+FJTrcdyuL+26tQUVZcY5LR1Qb8UuDvF/tAt7dq/68RdQ1Nx/kZLEbj8cTlWVcr9eD4zilCy5SrO63dK5DCCGZdvDEMB7+3zfxwqHTAICSIi0+dcM63H9bLaqnsn2TPDc5Bry1W5oR99bzQHBC2q7RSmvDndgHjAqIGhwuHSTNrlt306wVl+ROTgInQRBibvf7/XGPd7lcAICenh5YLBawLJvydQghJJP6zkrZvp95VRr/otNq0Fy3Bl9qvAyrYmT7JnkmGASO/RV4rQt4/SlgdGh634qrgWs+IiWorFgRMqtOg5irBG7dSV1180ReLa8cLxAKHfDNsiyamprg8/lSvs7Y2BjGxsaUx8PDwzGPI4SQRE4OjeJ7e95Gd+8xBKayfb//mpXY3rQBbIJs3yRPnH0HeO1XUsAkHJ3evni1NCPumlZg+cbwczZ+AGh5LE4ep53SfjIv5CRwYhgmqlXI7/fHnQ3H87zS9SbPnuN5PuXrdHR0YMeOHTMuPyFkfvJfGMcPf/8OHnv5CMYmpWzft1++FP/6vsuxaTVl+85rF85KS5681gUc905vL6kANn5QWvZk/a2JM3lv/ABwxV3qMoeTOSvtRX5nguf5sNlwAFBVVYW+vr6ooIfjODQ2NiqDwwVBQFVVFQYHB+H3+1VfB4jd4rR27VrK40QISej82CT++0992PUnHuensn03rK/CV+68AltqaPX6vDVxEXjzOWnc0jseICi9dtDogEsbpZaly/8eKCnPbTlJzs3KIr8zwbJs2GOe51FfX68EOxzHgWEYsCwLlmVhs9mUYz0eD0wmExiGiQqOIq8TqbS0FKWlNFCTEKLO6EQAj//1CH7wex/8U9m+N65cjK9svRy3bVhK2b7zUTAIHPmL1BV38BlgLGRIxqrN0rilTfcCi5bmroykoOVsjJPT6YTVakVDQwN6enrCci91dHSgoaEBbW1tYBgG9fX16OzsBMMw8Pl8Yccmug4hhCQSCIrY2+fH6XOjWFZRhi01eui0GkwGgnB538X39ryN/qls3zVLFmJ70wbcRdm+89PpQ1PjlpzA8LvT2ysvkbrhrmkFlm7IXfnInJGTrrp8QUuuEDJ/7T7Qjx3PHlQCI0DK7H3XNSvxwqHT6DsrZfteWVmGf268DKa6NSiibN/55dwp4IBLGrfU/+r09tJK4KoPScHSJTcmHrdECAqgq44QQnJp94F+3P84F5WR5+TwKP77z30AAP3CEnzhtlp84gbK9p1Xxi8Ah56TWpd8LwCiNEgf2iLgsvdJwdKGrUBxWW7LSeYsCpwIIfNKIChix7MHY6YxlC0qLcKL/3YbKhdQtu+8EAwAfX+UWpbeeBYYPz+9b02DFCxddQ+wsDp3ZSTzBgVOhJB5ZW+fP6x7LpbzY5M4eGIYN9bSB3FWBAPqpvSfPCC1LO13Aef6p7dXrZcGeV/TAlTXzlqxCQEocCKEzCMD58fw+F8Pqzr29LnEwRVJ08Fn4iSRtEl5koZPAPudUgqBUwemj1lQJbUqXdMKrN0C0IxGkiMUOBFC5rwDx4fw85cO4+lXT2B8KnFlMssqaIxMxinLlkR0lA73A92fBJZfBZw6OL1fVwJsuFNqXbrsfUBRyWyXmJAoFDgRQuakyUAQ/3vwFH72l8PYe3h6hYGrVy/GUf9FDF+ciLdcK1ZUllFiy0wLBqSWppi1PrXt1OvS90tunBq39CGppYmQPEKBEyFkThm8MI5f9hzF4y8fwYmpsUxFWg3+7uqV+OzN67F5LYPnXz+J+x/n4i3Xigfv3ggd5WrKrCMvhXfPxXPvj6X14gjJUxQ4EULmhDf6h/Hzlw7jqX3HlXXkqheW4GPXX4KPX78OKyqnu962blqJH37CEJ3HqbIMD969EVs3rZz18s9JgUngeC/wzh5pzJIqFLCS/EaBEyGkYAWCIjxvnMJP/9KHv/LT3XFXrVqMz9y0HndfuypuDqatm1aiaeOKmJnDyQwIxwDfHmltOP6PwNhQaucvWp6dchGSIRQ4EUIKztDIBLp6j+Kxl4/g3cGLAACdVoOtV63AZ25ej/p1VarWkdNpNZRyYKbGR6RuuHc8UsB09q3w/QuqAPZ2oPYO4IX/kFIQxBtdtniVlJqAkDxGgRMhpGC8feocfvrSYTzFHcfFiQAAgCkvxke3XIJP3LAOq5kFOS7hPCCKwJlDUqD0zh4paAqMTe/XaKWklJcagdpGYNV10zmayiqnZtXFGV22dWfsfE6E5BEKnAgheS0QFPHiodP42UuH8ed3zirbr1hRgc/evB4fvG41LYmSbSN+gP/9VBfcC8C5iEHei9cAlzZKXzXvBRYwsa+z8QNAy2Nx8jjtlPYTkucocCKE5KXh0Qk4e9/Fz186jKP+EQCAVgM0bVyOz95cg+tr9Kq640gaApPACU5qUfLtAY57p9eEA4CiMmD9LVKL0qWNwJIN6hNSbvwAcMVd6jKHE5KHKHAihOQV35nz+PlLh+HyvouRcak7bnFZkdIdt1ZfnuMSzlFDx0MGdf8eGI0Y1L30SilIqr1DCnSKZ9AtqtUBNbfOqLiE5AoFToSQnAsGRfzh7TP42V8O4w9vnVG2X7ZsET5z83p8ePNqlJfQn6uMmrg4Nah7qlXpzKHw/WWV0qBuOViqXJObchKSZ+gvESEkZ86PTcLVeww/f/kI+s5eACD1+DResRyfvXk9bqqtpu64eNQulCsTReDMm1OtSnuAI38BJkPW49NogdV1091vqwyAjj4iCIlEvxWEkFl3+OwF/Pzlw3D2vovzY5MAgIrSIrQ0rMWnblyHddULc1zCPJdsoVzZRSF8UPfwu+HXqVgFXHqHFCyxtwHltMwMIclQ4EQImRWiKOLP75zFT/9yGC++eRri1Gx0dulCfPam9bjHsAYLS+lPUlIJF8r9FND4IBAYl4Kld3vCB3XrSqWWqUsbpXQBS69QP6ibEAKAAidCyAwFgmLC7NsXxibx5L7j+PlLh/HO6fPK9tsvX4rP3FyDWy9dAi1l61ZHzUK5e74evnnJhunut3U3AyU0uJ6QmaDAiRCStt0H+qPWe1s5td7bVasq8fOXDqOr9xjOjUrdcYtKi2CqW4NP37QeNUuoOy5lahfKveRG4NqPSIO6mUuyXy5C5hEKnAghadl9oB/3P85FtX30D43iHx7nwratry7Hp29aD1PdGlSUFc9eIeeCi4IUMB3+M/DGM+rOabgPuNqU1WIRMl9R4EQISVkgKGLHswdjdhiFuuXSanz+Fhbv3bCUuuPUGh0Gjr4M9P1RCpZOvhY+TkkNWiiXkKzJWeDE8zxcLhdYlgXP8zCbzWAYJuaxHMfB4/EAAHp6erBr1y7lWI6T/rM1GAzgeR6CIMBgMMzGUyBk3trb5w/rnovni7dfRovoJjN2Hjj6V+DwH4G+PwH9r0QHSvpaKWHkupuB//0aLZRLSA7lLHBqbm6G1+sFIAVR27Ztg9PpjHmsx+NBW1sbAKCzsxONjY3KuXa7HQ6HAwBgNBrjXoMQMnOTgSD+yvvx6O/fVnX86XPJg6t5Z/wCcOxvUpB0+E/AcQ4QA+HHVNVIS5rUvEf6vnjV9L6iMlool5AcykngxPN82GOWZZUWpUgcx6Gjo0MJnEwmE6xWK3ieB8uyqKurw+DgIADEbbEihKRvMhDE3/r8+M1r/Xj+9ZPwXxhXfe6yirIslqxATFwMCZT+LK37FpwIP4a5BFg/FSTV3Jo4SzctlEtITuUkcPJ4PNDrwxOt6fV6cBwX1c1mMBiwa9cu5bEgCMrxMgqYCMmsQFDE3/gB/HZ/P3YfOImBkGCpqrwY77tqBdwHT2Hwwni8DiOsqJRSE8w7E6NS/qTDU4HSuz1SXqVQi9dIAdL6W6VgqWpdaveghXIJyZmcBE5y8BPJ7/fH3G4yTc8O6erqgtFoVIIlQRDgcrkASOOfLBYLWJaNeZ2xsTGMjY0pj4eHh9MoPSFzk5yP6bf7T2D3gZM4ez48WNq6aQXuunoVbmD1KNJpcfvl0qy6OB1GePDujWH5nOasyTGpFUnueju2FwiMhR9TsVIKkuRgqWr9zBNP0kK5hOREXs2qixdQhe53uVzK+CYAYYPKWZZFU1MTfD5fzPM7OjqwY8eOTBWXkIIXCIroOezHc/v78dz+kzh7fvoDnykvxp0bV+Cua1bixtpqFOu0Yedu3bQSP/yEISqP04qpPE5bN62cteeRtlTXewOAyXHgBCcFSX1TgdLkxfBjFi2fbk2qeQ+gZylDNyFzRE4CJ4ZholqX/H5/0i43q9UKt9sddhzP80r3njxDTx7/FKm9vR3bt29XHg8PD2Pt2rXpPxFCClAwKKL3yCB++9oJPHfgJM6cmw6WKhcU486rluOua1bhphjBUqStm1aiaeOKhJnD85ba9d4CE8CJV6RZb4f/LM2AmxgJv9bCpVKQtH6qRWnJZRQoETJH5SRwMhqNsNvtUdvr6+vjntPZ2Qmr1QqWZZWWKZ7n0djYqAwOl0WOn5KVlpaitLQ0/YITUqCCQRHeo4P47Wv9+N2Bfpwang6WFpcV4X1XSS1LN9cuQUlR4mApkk6rKbyUA8nWezM+CEAjtSod/Sswfj78uPLq8EBp6eUUKBEyT+QkcIpsDeJ5HvX19WG5mRiGUY5zuVwwGAxK0NTd3Q2z2QyWZWGz2ZTreDwemEwmGixOCKRgad+xQfzmtX78bv9JnBye7k6rKCvC+zauwPuvWYmbL009WCpoatZ783w9fPOCKimHkpweYOmVgHYe1RkhRKERRTFZ8t+s4HkedrsdDQ0N6OnpQXt7uxLwNDc3o6GhAW1tbeB5HrW1tWHnMgyjtDLJyTEZhoHP5wsLpJIZHh5GZWUlhoaGsHjx4ow9N0JyRQqWhKkxS/1hY48qSovQtHE57rpmJW65bAlKi+bhDCxRBF5/CnB9Nvmxa68HNn5IGoC97CoKlAiZw1KJB3IWOOUDCpzIXCCKIl45JuC3r0nB0omQYGmRHCxdvRK3bpiHwdKFAWkg93Fu+vuF0+rOvfe/ab03QuaJVOKBvJpVRwhRRxRFvPruEJ7b34/fvtaP48L0rK6FJToYp4Kl92xYirLieRIsjZ2TBnGHBkrC0RgHagGoWPuN1nsjhMRAgRMheUDOoZRoZpooith/fAi/fa0fv93fj3cHp4Ol8hIdjFdK3XDvnQ/B0sQocOpAeEvS2bcQc9xS9aXAKgOw2iB9X7YR+MEWaSA4rfdGCEkRBU6E5NjuA/1RuZBWTuVCuvOqFThwfBi/2X8Cz+3vxzF/eLDUeOVy3HX1Ctx2+bK5GywFJoEzh8Jbkk4djF62BJAycq/ePB0orbwOWMBEH7fVRuu9EULSQmOcaIwTyaHdB6Ts2/F+CZcsKgnL4L2gWIc7rlyG91+9ErddvgwLSubYh7soAn4+vCXp5GvReZMAKSVAaEvSagOwaJn6e8XM47Sa1nsjZB6iMU6EFIBAUMSOZw/GDZoA4Oz5cZQWaaZallbh9iuWorwkz35t08m+DUhB0vCJ8JakE/uA0aHoY0sqgFXXAas2TwdKzCUzy51E670RQtKQZ3+BCZkfxieD+OXeo2Hdc/HYP1mP2y5PoSVlNqnNvg0AI/7wlqQTnBSwRNKVAiuuDm9Jqr4sO+kAaL03QkiKKHAiZBZcGJvEvqMC9h72o6fPj33HBjE6oWJmF4ChizHG8uSDZNm3b28HihZMB0rCkehraHTAsivDW5KWbQSKSmblKRBCSKoocCIkCwYvjKPnsB97+/zoOezHgRPDCATDA4xFpTqcHwskvdayirJsFTN9arJvv/it6F362vCWpBXXACXl2SwpIYRkFAVOhGTAceEievr8SovS26fPRx2zmlmAhvVVaKjRY8t6PdZXL8R7HnoRJ4dG402Kx4pKKTVBzokicOEMcOZNado//2J491w8a28ANrxPCpRWXSctXUIIIQWMAidCUiSKInxnzmNv3yD29g2g5/BgWAJK2WXLFilBUkONHquZBVHHPHj3Rtz/OBdvUjwevHtjVD6nrAoGgaGjwJm3gLNvTgdKZ94ERoXUr7dlG2XfJoTMKRQ4EZLEZCCI108MK11vvUcG4b8wHnaMTqvBplWL0TAVJDWs10O/MPk4na2bVuKHnzBE5XFaMZXHaeumlRl/PgCAyTFgwDcVHE0FSWffAs6+A0xGB4ESjTSTbenlQHE5cPDXye9D2bcJIRkQCAbAneZwZuQMlpYvhWGZAboczYClwImQCKMTAWkg99T4JO7oIEbGw8cilRVrsXntdLfb5ksYLCxN79dp66aVaLpiKQ797XlcHDyOBVWrccX174WuKAO/nqPDwNm3o1uPBg8DYpzxVboSKdv2kg1SkLRkw9TXZUDxVKtZMAB8dy9l3yaEZJ3niAc79+7EqZHpWbjLy5fjgS0PwLjOOOvloQSYlABzzlCzbEksQyMT6D0yPT5p//EhTATCfy0WlxWFtSZdvboSJUUZmh6fypT+WEQROH86Ojg6+xZwrj/+eSUVwNINwJLLQ75fDjDrAJ2KoE2ZVQfE7GhseYwSSRKSR/Kp1UYtzxEPtv9+O8SIf9A0U39nHrntkYwET6nEAxQ4UeA0JyRatiSyu+vU8Cj29k3PeHvz1DlE/hasWFw21ZoktSptWFYBbTbGGsWb0h8r+AgGpCn9Z9+eCoxCutliJY2ULVoe0nokB0kbgIqVM0sgKZefsm8TkvfyrdVGjUAwgDufuDOszKE00GB5+XLsvnf3jANACpxUosBpboi3bIkywPoDG7GgWIe9fYPoOezHUX/08h3skoVKi9KW9Xqs1S+AZqZBRTLBAPDdTYlnp5VWALVGYOBtYOAdYDJewkwNULUuuvVoyWXZn8mWbuZwQgoQtdqoI4oiRgOjGJkYkb4mp74mRnBh4oLyc6zvFyYuYGRiBGcvnsXRc0eT3usnd/4EDSsaZlReWnKFzBuJli2Rt339mYNh27UaYOPUQO4t6/WoX6/H0orSrJdVEZiQutAOPZd8Sv/YOeDgU9OPdaXS+KPILrbq2unxR7ONsm+TFBVi8AEUbqvNzr07o4ImABAhQgMNbHttuHHljRgLjilBy8XJi1KQM3khboATGehEnhPrntlwZuTMrNxHRoETKTiiKOLs+XEcHrgAz8FTqpYtuWJ5BRo3LkPDej3q1lWhoqw4W4UDLpwFho4Bw8eBoXenv4aPA0PHgfMnAVFd1nAAwCaTNKV/yQagaj215pCCVojBBxC/1eb0yGls//32rLTaBMUgxgJjGJscw2hgFGOBMYxOjko/R2wbC4yF/Swfc+zcsbhdXYAUPJ0cOYkbfnlDRsseakHRAiwsXojyonKUF5ejvKgcC4oXYGHRQuVxeXE5FhYvxIKiBcrj4+eO4zvcd5Jef2n50qyVPRYKnEheEkURAxfGcfjsBRweGMHhsxfQN3ABh89ewJGBEZwfm4w6R4sgtmgPYRkEnAaDvcErEIQ0gPv+22vxwetWz7xgo8PTAVDM4OgEEBhLfh1tMVCuj71WW6S6z1CLDolSiK02uQg+MiFZqw0AfOPlb6BIW4TxwLgSuChBTOT3qaAm9Oew46e2jQfHo+6XbQuKFsQMdCK/LyxemDQIKi8qR1lRGbSa9CbSBIIB/OLQL3B65HTMupfHOBmWGWb6tFNCgRPJGVEU4b8wrgRGhwcuoG8qMDp89gLOxQiOZBoNsKpyAarKi3HgxDDu1O7Fg8WPYZXGrxxzQtRjx8Sn8Hxwi7plSybHpMBHaR06JgVISnB0HBhLMAh7unTSWJ/KNUDlamDxmumfK9dIjxcuBSBOjXGiKf25UojBB1CYrTZqu4xuX3u78hqIoojJ4CTGg+NKQDIRmMB4UPp5PDCOieCE8rN8XNhXcDz5vpCfxwJjmAhOhN1vNDCKiWDiNSMHxwbxTy/8U1bqDgCKtEUo05WhVFeKsiLpe+jPZboylBZJ30P3n714Fk+981TS6z/a+ChuXnVzXr3/dVodHtjyALb/fjs00IS9d+TxWdYt1lkvMw0Op8HhYdKd0p/I4IVxpbVIaUGaCpLOjSYPjtYvKcf66oXS15KFqFlSjrX6cpQW6RAIivjqt76Fb010ApDGL8nkpeH+T3Eb/l/7A9CNnInRdRYSHKlp/QGAskqgcq00e0wJiOTHq4GKVeoXqZ0DU/op+JhduRroG68rSO4uitV1FNqycvTcUfzx3T8mvdfi4sUQISqBzGyNk8mENYvWYFn5sqhgJl5gEyvoKdWVhv0sH1OkTa+dQ56ZlqzVJhMz07Il1u/qivIVsG6xZuy9TrPqVJoPgVNgcjIiseKdcRMr7j7Qj2888yqqA26UF53FyOQSDOia8O8fuDZpBmthZFxpLeqbaj2Sg6Shi4n/U1tVWYb1SxZiXbUUFK2vXoiaJQuxVl+OsuIkv8jjFzH6yNUovXgGQQ3AlZXijE6HpYEADKNj0IqAqNVBCw0gxg/SFEVlIQHRmtjBUemi5NdJxcFnENhtBTc+MF32kiXQFcCUfgo+ZtdkYBJ3Pil9CMZTVVqFHTftUFplYo5/SdJlFBkIjanpfp4FRZoilOhKpC9tyfTPsbZN/VyqK0Wxtnj6Z10xSrTSzyW6EhRri5WfI8+V973hfwNtf2xLWr5MzO7KBvn9DiBmq02+vt9DZfsftIIInHieh8vlAsuy4HkeZrMZDMOkfGwq14mUrcBpfHwMT7z4KPYd24PBwCCYokosKqpCVflyrGBq8KH3WlBSUqoc++s/2HF6+CiWLb4kbF+8a6s9ft/zP8fyl3fgeNl55QN59eginLrxQWy+89Nhx+4+0I//fuZrOLv8ZZwNSey4ZDKIJaduxOc/8E3cyC5B38AFHJlqLQptPRJGEgdHKyvLsK66HDVLpluO1lcvxLrqcpQVaaXZYxcHpa9RYfrni0LEdiF8+8QFAICnfAF2VlfhVEhQuHxyEg8MDMI4MrWEiEYrtQZVrg4PjkIDpPLqmec2ShEFH7NLTfBRXVaN797+XQTFICaCE5gMTqr6HrUtMIFJcTLmtrDvIftjbQvdl2s6jS5pd1GsVpSzF8/iad/TSa//9Ru/jrrldTEDmXTHyswUtdrMfQURONXV1cHr9QKQgh+r1Qqn05nysalcJ1I2AifH01/FzweewrAu/i/PkskgPrrkQwCAX579dVSg8tElH4L5g/8v5rXVHr/v+Z/jzCtWdC6JDibazg5i6XU2JXgKBEV87jv3Y1/1n6U/CSGBg2bq7XF5/w3oGfpwwue+ukKLq6pEXF45CbZiEpeUjWJl6SiW6C6iZGIoTiA0tS3e8h8qeMoXYPuyJXHL/sjpszC+dwdQ/3l1GbFnUSEHH1uf3Jpwts6SBUvwaOOjEEVRCSpCg4cJcSIsQIgXgKg+JiIYSRTQzHVqu4zCAqAY22KdV6xNb0ZqoQcf1Gozt+V94MTzPJqbm5WABwCqqqowODiY0rGpXCeWTAdOjqe/iv8cnPqPKlGrRWSVx/iw/8eqD4YFQ46nv4r/Gnw6bnAQenxgchJPPXIlvrGsNO7xXzs1hueXPYazI0GcGBzCwpVfwVmdJma5NaKIpYEgmvibsLp0HKtKR7Gs+CL02guoEM9jQeAcisaGoJlq/UlbUZmUrHFBFVDGTP+8gJn6it4eOH0Qd/7lKzil08Wuc1HE8kAAT73ne9CsuwlBBCGKIoJiMOxLRPS2mMemcH6ya04GJ9HZ04nh8eG4VbKoeBE+fdWnIUJEIBiQzhMnp38OTiIoBhEQA9JXMIBJcWpbMDC9fWpf6PfI82NdK9a5chnmuqrSKiwuXYxibTGKtEVR32NtU7OvWFuc9jUPnD2AL//+y0nLTl1G2UGtNnNX3ifA9Hg80Ov1Ydv0ej04joPBYFB9bG9vr+rrZNv4+Bh+cfbXQJzgI4xGMx08RRwrTu376cDTOPm7BRBF6dov+H8NURt97enjf42Xv38ICAaxKOBH75KSqKAp9PhvLyvB3w99DpcAWF8VwJ6i+N2DokaD00U6HF7ze5wLBHBQo0EQUL5EjQaB8gUIYoH0s7YIoq4YQV0xgtqikC8dglodRK0OAY0WQY0WokaLgEYDUb7mVIAREAMQxQEEJ88gOBSUvkKDElGc+rCfwHiixXA1GpwqKsJNL/0r8FLilyUfnZ84j0dfeTTXxUhbRXEFFpUsih086IpRpClCsa44blCh/JzBY9UGH9++7dt5F3wsXbAUy8uX5930bLWM64x45LZHYnZNF0LwYVxnxO1rb6dWm3kuJ4GTIAgxt/v9/qhtiY5N5ToAMDY2hrGx6UGOw8Px/9NP1a//YMdAKou+JgquNBqc1wHO013T23QJrq3R4LxOg97Kt0I2Jj7+gkYDZ5V8jLq3wV/KU81MPSF9yRFWHtJqtNBCC41GI/0sf6ndptFCg/jbdBqdco4GGui0OuU6AxcH8LbwdtIyblmxBesXr4dWo0WRtki6rlaHIs30zzpNyJc2xs9anXS+pijs58hrhV4/5vWmHr925jVVwcf37vgeBR8ZlK/Ts1NR6MGHTqvLu/c0mV15NeAjXiCU6rHx9nV0dGDHjh2pFUql08PJ19NJ1abRcSwPiDil0+BAWfLp7ZvGtVhTUonjkxewvyh54rTNRStx1YqrcHL4KDzDbyU9/t7lN2PdmuujAoTQ4CD0ZznYCDteIx0f69xY1w09R6PRSNfTTl/3wNkDsP7JmrTsP2j8ARpWNEQFMllfjy6BnpM9+Nzzn0t63D9c+w9594f69rW3U/CRI4XeagNQ8EEKW04CJ4ZholqF/H5/zNlwiY5N5ToA0N7eju3btyuPh4eHsXbt2vSeRIRliy8BzmfkUooPs19ES9OX0O3+Pg6c2JX8+PWfR0vTl/DX43/FNs+2pMd/4bZv4IbVNyAwOY73PWbAGe1UV14EjShiWRD4mvH70KnNTzRLVi9ajUe8jyT9AL9p1U1590FoWGag4CNHCj34KPRWG0IKWU7mdhqNsf8o1dfXp3RsKtcBgNLSUixevDjsK1M+9F4LqieD0QO/4xHFuMdqRBFLJ4P40HstyrWXTAaVgd3Jjm9Y2QC9dlHC4/XaCjSslP7j0xWVoH3Dx5V9kccCwAMbPp53QRMw/QEOTH9gy/L9A7yQyw5MBx/LypeFbV9evjzvB/kCUvmfv/d5/OTOn8B2qw0/ufMn2H3v7rwvt0xutfl79u+l1tQ8fZ8QMtfkJHBiWTbsMc/zqK+vV1qKOI4Dz/NJj012ndlUUlKKj02lGEgaPIXsjxeofGTJh5T8TCUlpUr6AjXH67Q6fO0931QGgkfeW9Ro8LX3fCPsD63xlnY8cunHsSxiLNLyIPDIpR+H8Zb2xM8phwr5A7yQyw5Q8EEImX9ymgDTbrejoaEBPT09aG9vVwKe5uZmNDQ0oK2tLemxifYlk6s8Tksng/hInDxO8j61eZwSHZ9OYsXA5Di4/f8fzgwfxdLFl8Bw9SfzsqUplkLOUVLIZSeEkEKX93mc8sVczxwO0AcyIYQQkgwFTirNh7XqCCGEEJJYKvFAbhb+IYQQQggpQBQ4EUIIIYSoRIETIYQQQohKeZU5fLbJw7syufQKIYQQQgqLHAeoGfY9rwOnc+fOAUDGsocTQgghpHCdO3cOlZWVCY+Z17PqgsEgTpw4gYqKioyvWSYv53Ls2DGasTeLqN5zg+o9N6jec4PqPTeyWe+iKOLcuXNYtWoVtNrEo5jmdYuTVqvFmjVrsnqPTC/tQtShes8NqvfcoHrPDar33MhWvSdraZLR4HBCCCGEEJUocCKEEEIIUYkCpywpLS3Fgw8+iNLS+MuhkMyjes8NqvfcoHrPDar33MiXep/Xg8MJIYQQQlJBLU6EEEIIISpR4EQIIYQQotK8TkeQDTzPw+VygWVZ8DwPs9kMhmFyXayCxXEcPB4PAKCnpwe7du1S6jNRXae7j0SzWq1ob2+nep8lHo8HPM+DZVkAgNFoBED1nk08z8Pj8UCv14PneZhMJqX+qd4zh+M4bNu2DV6vN2x7Nuo4q/UvkowyGAzKzz6fTzSZTDksTeGz2WxhP4fWb6K6TncfCef1ekUA4uDgoLKN6j173G63aDabRVGU6ohlWWUf1Xv2hP6dEUVReQ1Ekeo9U5xOp/L3JFI26jib9U+BUwb5fL6wF0sURZFhmByVpvB5vd6w+vP5fCIA0efzJazrdPeRaE6nU2RZVgmcqN6zK7SuRVGqN/k71Xv2RNZRaPBK9Z5ZkYFTNuo42/VPY5wySG7qDaXX68FxXI5KVNgMBgN27dqlPBYEAYBUp4nqOt19JJzL5YLJZArbRvWePTzPw+/3g2EYcBwHQRCU7iKq9+zS6/Woq6tTuuyampoAUL3PhmzUcbbrnwKnDJI/2CP5/f7ZLcgcEvrB3dXVBaPRCIZhEtZ1uvvINEEQYo4HoHrPHo7joNfrlXEZDocDLpcLANV7tjmdTgBAbW0tnE6n8neH6j37slHH2a5/Ghw+C+K9iEQ9QRDgcrmiBhXGOi7T++aj7u5umM1m1cdTvc+c3+8Hz/PKPwdmsxlVVVUQE6Tao3rPDI/HA5vNBp7nYbFYAAB2uz3u8VTv2ZeNOs5U/VOLUwYxDBMV0cpN72RmrFYr3G63UpeJ6jrdfUTi8XjQ0tIScx/Ve/awLKvUFQDlO8dxVO9ZxPM8enp6YDQaYTab4fP50N3dDZ7nqd5nQTbqONv1T4FTBsnThiPV19fPcknmls7OTlitVrAsC0EQIAhCwrpOdx+Z1t3dDYfDAYfDAZ7n0dHRAY7jqN6zSB7PFAvVe/ZwHIeGhgblMcuyaG9vp78zsyQbdZzt+qeuugyK/MPH8zzq6+vpv4wZcLlcMBgMStAkdyFF1mloXae7j0gi/+hYLBZYLJaYH+xU75nDsizq6+uV8WVyLieDwRB1LNV75hgMBtjt9rDxlAMDA1TvWRQ6hjLR52a+/p2nteoyjOd52O12NDQ0oKenJyxxIEkNz/Oora0N28YwDAYHB5X98eo63X1kmiAIcDgcsFqtMJvNsFgsMBgMVO9ZJAgCrFYr6urq4PV6lZZWgN7v2eTxeJQuUUD654HqPbM8Hg/cbjc6OzvR1taGhoYGJVjNRh1ns/4pcCKEEEIIUYnGOBFCCCGEqESBEyGEEEKIShQ4EUIIIYSoRIETIYQQQohKFDgRQgghhKhEgRMhhBBCiEoUOBFCCCGEqESBEyFk1nk8HtTW1qKzsxMOhwN1dXWoq6tTEm7W1taC47gZ30O+JiGEZAotuUIImXWCIMDtdivZmd1uN/R6PcxmMwCgtbUVPM/HXPZCLaPRiNbW1oyUdzaELkNBCMlf1OJECJl1fr8/4aK2BoMhanXzuYzneXR3d+e6GIQQFShwIoTMupaWlowcM1fYbLZcF4EQohIFToSQWaemS6q3txd1dXXo7OwEALhcLtTW1sLj8QCYHidlsVjgcrngcDhgsVggCELca3o8HnR2dsLlcsFqtcY9jud5WK1W5bryNTmOU87v7OwEz/PKdZOVVR5v5fF44HA40NzcrOzr7e2F2+2Gw+FQrkkIyU80xokQkpcixyiZTCZ0dXWF7TeZTKiurlZWWXe5XGhubobb7Y66nhwMeb1eAFJ3obxSeyhBENDU1ASv1wuGYWC1WuFwOGAymWC1WsOuXVdXhz179qgqq9FohNvthtPpBAA4nU5wHKfsq62tVcZ4EULyFwVOhJCCFtp6ZTKZ0NzcHHOgtd1uh16vV1qBAKCnpyfqet3d3WBZVjm/vb0dANDR0RE1WJ1lWXR3d6sKeKqrq1FdXR1W7vk0jouQuYICJ0LIvGEwGGA0GpXHsQKeyKBrtme60ew6QvIbjXEihOQthmEwMDCgPPZ4PFFjmEIfu1wuGI3GsMBD3t/a2hrW2iRfL5LJZIrKIeXxeGKez3GcMohdTVnViFUmQkj+0IiiKOa6EISQ+cnj8YDneWVWmdVqRX19vdIlJggCrFarMpDabrdDEATY7XawLAur1QpBEJTuuZ6eHrS3t4NhGHAch23btgEAdu3aBYPBAI/HA7fbjYaGBgCICrJCyxXrOI/HA47jwLIsenp60NraqqqsgiCElUUeb2UwGJTnbrPZUFdXB6PRmDBVAyEktyhwIoQULDnLOA2qJoTMFuqqI4QQQghRiQInQkhB8ng88Hg8yrR+QgiZDdRVRwghhBCiErU4EUIIIYSoRIETIYQQQohKFDgRQgghhKhEgRMhhBBCiEoUOBFCCCGEqESBEyGEEEKIShQ4EUIIIYSoRIETIYQQQohKFDgRQgghhKj0/wNysw5uYnrQ6QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFnCAYAAABQEsaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzUUlEQVR4nO3deXhb1Z0//rfkNc7iazn7BrliTRMgss2SlqVEHtIFaEG2W0rbmRZbpdPftMNMLdzODE2nxcjttNNvZwpSmM6UUlrbAlroArUCdGOJoxsoEFZdZyF7Ist24niT7u+PG11LslZbsmT7/XoeP7bucnR0tH18zueeo1MURQERERERJaXPdQWIiIiIZgoGTkREREQpYuBERERElCIGTkREREQpYuBERERElCIGTkREREQpYuBERERElCIGTkREREQpYuCUB2RZhs1mQ0VFBYxGY8JjjUYjKioqYLPZ4Pf7p6eClDckSUJtbW3S10k2uVyunN33dAu9N3U6HYxGI9ra2tDW1gar1Yq6uro51RaTZbVaUVFRAbfbndN6zNbn0ul0oqqqKtfVmFsUyht2u10RBEHxeDwx93d1dSkWi0Vpamqa5prF5nA4Jmxrbm5WLBZLDmqjilWn2aarq0sRRTGtczLVLp2dnRO29fb2JnzdxpLr10m6zGZzzPedKIqK3W7PQY1Slw/vCZPJpHR1deW6GoqizL7n0uv1Ks3NzWm9/2hq2OOURwRBQH19PRwOR8z9+dbD1NXVNWFbbW0tGhoaclAbVaw6zTYGgyHtczLVLoIgxNzW1NQEURRTLifXr5NMsVqtsNlsua5GQnPhPZEJM/W5FEURVqs15nuTsoOBU56xWq3o6OiYsN3v96f1xZRtTqcTsixP2G42m2GxWHJQo/h1musy2S6SJKGtrW3CdrvdntYHdy5fJ5kUesz59k9NCN8TqZvJz6UkSXn1/TDbFea6AhTJZDLBYDDA5XJFfLHs2rULZrM57nltbW0QRRGyLEMURe1cv98Pp9MJURTR1dUFq9UKk8kEAHC73dp/WNu3b4csy5BlGSdPnoTdbo97X263G11dXZBlWfsSbW5uhiRJsNlskGUZXq837n34fD54PB44HA44nU4YDAa0t7ejpaVFq1uyx5VqnaLLAdRch/B9iTidzojbTU1NScuc7GMOnWcwGFBXVwdAff6SPR/R9Qlvq1TbJVn7hgiCALvdHlFGKNjfvn17xPnx2ifV10kqr8Vk95VOuem2BQB4PB6YTKaIoDHe82Cz2bTegVDPQagOqbzOYpWX6HEle+5jydTnRVtbGwRBmFTvKJ/L9J5Lv9+f8j8toXNDz40oivD5fDCbzTHflzabDU6nE3a7PeXHEd0uNTU1aG1thSzL6OzshNlshizLqK2thSiKcDgcMy/oy/VYIY0LjV/Hyv8I5ZbEynGyWCwRuSdms1kb725ubla8Xq+2TxRFpbe3V7sdypcJzz8QRTHpeHlXV5diMpkmbPd4PBPyb+LdR3Nzc8Tjiy4v0eNKp04WiyXivr1er2I2mxM8OpXdbp9Qx/DnIVGZk33MnZ2dCoCI56y5uTniOY/VxonaKlG7pNO+iZjN5oiykrVPOq+TZHWa7HMRXm6ytojOi+nt7VXsdrtiMpki3k+Jygk9311dXYrH49FeC8leZ4me12SPK95zH08mPi+am5sjcnF6e3sVACnlOPG5zNxzGa2pqSnicXu93gm5Z7HyJ81mc8TzOZl2iVVuvueTJcLAKY+EXpxer1cBoL2JvV6v9mEWHTiFjo0uJ3SMxWKJeNFHf8F5PJ4J50cfE0s6gVO8+wj/gPF6vYogCCk/rlTr5PF4IsoNSZasGvqwj/4gtdvtKZU5mccc7zGE6hJ6DUS3cbK2ilXmZNo3kfAP01TbJ9XXSaLX4lSei1C5qbSF2WxWTCaT4nA4tJ/ogC6V5yF6f6LXWbLyUmmvdL9sp/p5EXo80VJJDudzmdnnMlndFEWZEKzF+6cs+rsp3uOI1S4h0ReQJPuOyWccqstDoijCZDKho6MDTU1NkCQp4RCVIAgRl/p6vV5tLLyzsxOA2p0bGjLy+XwT7i+cIAgTjpmqWPeR6JL6ZI8rVbt27YrZDRwaiog3/Llr1y4IghDRBR5qy9BQRrIy033M8YTqES+PYTJtlan2jWWybR46Jlyy12Kq95Wo3FTborq6OmK4Iloq5UTXI9nrLN3ypvrenernRagNJoPPZfY+h0OPJ/q5Sfe5mky7hDQ1NaG9vR0mkwlutzvh50C+Y+CUp6xWKxwOB5qamhK+uENJ4+EvwvC/JUlCa2sramtrUV9fn7Wx5NBYd6Yke1yp1mmyiZ6Jzsu35NF02yrULlNt30T1mS6ZuK9MtUUq5US/l5O9zjL9HCV7n2bi82IyeU0An8t0ZfozN57wxzWZdglpaGjAli1bYLfbIcvyjA6ceFVdnqqvr4ckSXC5XKiuro57nMlkitlL4Pf74ff7sWXLFrS0tGgBWOhNkOkrbSRJymh5iR5XqiRJ0hIRo8myjJqamoT3H+u+/H7/pMucrNBzGZ04H5JuW0mSlJH2jWc62ycT95WptphMOYleZ9l4jhK9TzPxeRGvzqngc5medD5zQ3WbzP2F93pN5XGEX/g02eA6XzBwyiOhKxkANWo3m81ob29P2ONkNptRXV09Ydbbjo4OrWch/As39CZI9gGaTOiKCkD9YIv3pT7Z+0j0uNKpk8lkgtlsjuhaDj32RFfahK4UCb/03u/3o6OjY9JlpvqhJUlSxLGtra0J50lK1lax2mUy7ZuqybZPLMnaLBPPRabaYrKv2Xivs8mUF91e6bxPM/F5IYoimpqaIq4s8/v9E17TsfC5jDSV5zJW3aKfl9DVe/HuI1SH8J77qbav1WpFY2PjzJ+KJNdJVqQm3DU1NSkAlKamJi0JOPyKjNCVH4IgaDPchif6ha5kCT8ntL25uVnp6upSurq6FK/XqyXyejwexWKxKAC0KxxC92EymZIm74XKDiUOxiov0X2YzWbt6ovQMc3NzSk9rlTrFF2Ow+GISNBOpTy73a50dnamXOZUHnMoAbSzs1Pp6upS7HZ7xNUn0efFqk+stkrWLqm2bzzRV9qk2z6ZeC2m+1xElxurLbxeb8L3XaK6hJfT1dWlmM1mRRAELVk4+pxkr7Pw8tJ9XLGe+3h1z8TnReixhMoxmUwpzx7O5zIzz2WixxP+vEQ/J6HPnFAdLRaLIopi0vZN1i6Komivp5lOpyiKkoN4jYhiCM2F4vF4cl2VtNTV1aGhoWHm/ydJNIdUVVXBbrdPW76R3+9POifhTMChOiKalFA3fuhvLvlARNHChxxDw5YzHQMnIpqU1tZWWK1WAGq+RKKLGIhobgrNPg5M/orLfMPAiShPuN1u2O32uOvB5Rur1Yra2lptSQb2OBHNHG1tbZAkCXa7PSIhP9NC/1w5nc5ZM5TPHCciIiKiFLHHiYgyxmq1oqKiIqv/wc4mkiShtrZ2UjPKE1FuMHAiooyJtdK5zWZDXV3dtNYjeoX6fCsvxGQywWazZaXsXMhWOxHlEwZORJRVtbW1aGhomNb77Orqyuvyws2WhFkgu+1ElC+4Vh0RZdV0X37sdDozuqRQpsubrdhONFcwcCKaQfx+P5xOp7ZivNVqnbD0QvRwSfgq8In2tbW1acNssiyjubkZwPiknKIowmq1ar0KdrtdO08QhJg9J5IkwWazQZZlbUmhUHkAsH37dm3ph5MnT2plhh6rzWZDVVUVPB4PjEYjTCYTHA6Htup8NLfbja6uLsiyrF2ZGHociR5jPPHKi/W4Qpdd2+12NDU1aY/TYDBoQ5V+v3/C44wnVNfQYq7JrkiazHObzuMA4j9fydqdaFbJ7cTlRJSO5ubmiKUMRFGMWDbCbrdHLFMRviRCon0WiyVi6QWv16uYzeaIY0PLM3g8Hq2c6OUfent7FQARZXk8HkUUxYjH0dXVpYiiGHGcKIqKx+PRbocv49Lb2zuhjHhCS0lES/YY0y0v9BjCmc3miPbo7OxUAEQ8Z83NzUpTU5N2O1b7RC9hYzabI9om2lSe21QeRyrPV7x2IpptmONENIPIshxxxZooitrtUA9NS0uLtr+9vV1bpDPePkmS4Ha7I4bURFGEz+fTyhYEAZIkwWw2w2QywW63w+/3o62tLaJnQxCElBYfNRgMkGV5wn2GD/W4XC6tLEEQYi5KmqpUHmO6YvWwRc9lFWqP8IT5lpaWhMNasizD5XJF9DDV1dXB4XDEPH6qz20qjyOV54toruBQHdEMEhqiCi134vP5tBXsd+3aBUEQIr70Qse73e64+0JDf9FCw4GhL8voY0JlTlZ0eYIgaI8FUK84i7VC/GTs2rUrpcc4HULPgyRJMesUatfwgM7r9cYNUhI976k+t6lI9nwRzRUMnIhmEEmS0NraitraWtTX10d8mUUHGeEmuy9crCApm1eEWa1WtLa2Yvv27XA6nXF7XJIJ9bhlSijnKJZM3I/f74coihFBTaIAJxPPbabOC5eonYhmMg7VEc0Qfr8fW7ZsQUtLC5qamiAIgvYFJ8tyzB6a0HmJ9pnN5pi9GbIso6amJm59TCZT1odqtm/fDrfbDYvFEjEkmI7QEONkHmO88uJJpQfG7/drz0ks8do1XjCTjec2Ez1JidqJaCZj4EQ0Q4R6TsK/cENfcKFhH4vFErHOnd/vR0dHR8J9JpMJZrM5Ymgo9KWX6EouURTR1NQUcTWX3++HJEmT6rGIPsfj8UAQBFgslrR6LsJzb0IB5WQfY7zyoreH6h+rdyu6PVpbW9HU1BT3MZnNZlRXV8PlckVs7+joiFu/qTy3qT6OaLGGUWO1E9Fsw7XqiGaQ0GXhtbW1ANQvK5vNhoaGBu2L0GazobKyUksCDu+pSbYvtPSH1+uNuNTcbrdj165daGlpmRDIhC51Dw3lhepot9thMBjQ2toKl8sFu92uXcofva2trQ2tra0QRVG7D5fLhbq6Om2qA0EQYLVaU+p5CtXBaDSm9BgnW14oWAm1R3t7u7ZwqsVi0S7lb2lp0fKaAERMBxBqi+bm5oj6hOoaGg5NFuBN5rlN5XGIopjS85WonYhmEwZORJR3/H4/GhsbsX37dm1IUpZlbfmWmfKlHAqcPB5PrqtCRBnCoToiyjtOpxNWq1XrxQpd1m+32xmEEFFOMXAiorxjMplizg7udru1YUoiolzgUB0R5SW32x0x11GqS4/ki1BuWOg3lyAhmh0YOBERERGliEN1RERERCli4ERERESUojm95EowGMShQ4ewcOFC6HS6XFeHiIiIckBRFAwMDGDlypXQ6xP3Kc3pwOnQoUNYs2ZNrqtBREREeeDAgQNYvXp1wmPmdOC0cOFCAGpDLVq0KMe1ISIiolzo7+/HmjVrtLggkTkdOIWG5xYtWsTAiYiIaI5LJW0nZ8nhkiShqqoq6XEul0tbTTxWGaG1n2RZ5mrcRERElFU5CZxCq36nEujU1dWhoqICFRUV0Ol00Ol02oKUDocDVVVV0Ol0sFqtaa2gTkRERJSunAzVpTrzr9/vR2dnZ8TxbW1t2gy8VVVV6O3tBQBtTSsiIiKibMn7HKfwoMnlck0IutIJmIaHhzE8PKzd7u/vT3pOMBjEyMhIyvdBNJsUFRWhoKAg19UgIsobeR04hQdFfr8fPp8vYjjO7/drw37d3d1Jh+taW1uxbdu2lO9/ZGQEPT09CAaD6VeeaJYQBAHLly/nXGdElDOBoIKdPT4cGxjC0oWluHydAQX63Hwm5XStOp1Oh1Tv3mq1wm63TwimQrclSUJdXR28Xm/cMmL1OK1ZswZ9fX0TrqpTFAX79+/H6OhoShNiEc02iqJgcHAQx44dgyAIWLFiRa6rRERz0FOvHca2J/fgcN+Qtm1FeSnuuXE9tm7IzOdSf38/ysvLY8YD0fK6xynE7/fD7XZPGJaTZRkmkwkAIIoiZFnWVlCPpaSkBCUlJSnd59jYGAYHB7Fy5UqUlZVNqf5EM9W8efMAAMeOHcPSpUs5bEdE0+qp1w7jzoclRHexHOkbwp0PS7j/dlPGgqdUzYhulF27dk0ImiRJwpYtWyYcazAYMnKfgUAAAFBcXJyR8ohmqtA/DqOjozmuCRHNJYGggm1P7pkQNAHQtm17cg8CwekdOMt54BQ9P5MkSZBlecK26IBIFEXY7XbtttvthsViyfjVdczroLmO7wEiyoWdPb6I4bloCoDDfUPY2eObvkohR0N1brcbXV1dANSE7ZqaGu1qudDt0JQDIdHDb4IgoLq6Gm1tbRAEAV6vF52dndPzANKQTwltREREM8WxgfhB02SOy5ScJofnWqJksKGhIfT09GDdunUoLS2dVPnTkdAWTpIkOBwOOJ1ONDc3w2g0wuv1QpZlWK1WmM3mjNyP0+mEzWbDjh07tByzmaaqqgotLS1awO50OtHZ2akF9OmcO9tl4r1ARJSu5989gdsefCnpcT9vvBJXGSundF/pJIczcMpS4BQvoS3U15SthDa/34+Kigr09vZqw5ahbR6PJ2OBTm1tLex2e0bKC786crq43W5UV1dr9xu6sCCV4DL63NmOgRMRTbdAUMFXO1/BY7sPxj1GB2B5eSn+bLt+yiM5s+6qunygKArOjAZSOjYQVHDPE6/HTWjTAfjGE3vw/vMWp/RkzysqmFKeiSAIEEUR7e3teddDJMsy3G43mpqapvV+owMkURRTXrInUz13REQ00VggiLs6XsETrxyCXgcEFfV7M/w7NfSNeM+N66c9/YWBU4rOjAaw/t+ezkhZCoAj/UPY+I3fp3T8nm/egLLiqT1VPp8PRqNxSmVkg91uT2mxZyIimv1GA0F8+Re78dtXj6CoQIcfftIEQJmQ9rI8i2kvyeT8qjrKLr/fD5vNBrPZjKamJrjdbhiNRjidTjidTi1okSQJbW1tcLlcaGtri3llo81mg8vlgsvlgs83fhWD2+1GVVWVtviyy+WC0WiE2+3WjpFlWTvf6XRqc3Pt2rULXV1dcDqdE+4zvPxQ3Ww2W0SdrFarVieXywVJkpLWR5IkVFVVwel0am1ktVojAst47RF9bui+nE4n3G43nE4n6urqJvFMERHNbcNjAdz5sITfvnoExQV6PHB7FbZuWI6tG1bgz7br8fPGK/GDT1yGnzdeiT/brs9J0ASwxyll84oKsOebN6R07M4eH/72f7uTHvd/f1eDy9cln3dqXlH6kw46nU5t6Cl8KRqz2Qyz2QyPxwOHwwGDwaAFNeGJ0VVVVdixYwcEQYDf758wK3tra6v2t9lsRkNDg3bbYrGgvb1du+33+1FbWwuPxwNBEGCz2bQEdrPZDKPRGHeoLlQ3j8cDQO05a2trQ1NTE7Zs2YKenh4t16iiogI7duxIWh+TyRSxXxAEOBwOVFRURNxnrPaIPjfUnl1dXdpVnZ2dnZAkKe+GRYmI8tXQaABfeNiD5946jpJCPZyfqca1FyzR9hfodVNOAM8UBk4p0ul0KQ+XXX3+EqwoL8WRvqGYeU6hhLarz1+StbHZpqamuMnLgiCgslJ9AVosFthstglf8qIooqOjA01NTejo6JiwP52JRjs6OiCKolaflpaWlM8NBXfhvVfd3d0QBAFmszniMVZXV6dcbrL7TNQe0SorK7X2BNT2De+RIyKi+M6MBND40C78+d0TKC3S438+W4P3n7c419WKi0N1WVCg1+GeG9cDGE9gC8llQlu4VBOhMyH6qjlBEGIGddGToYaYTCatZ6epqSkv5+siIqL0nR4ew9/93078+d0TmF9cgJ/83eV5HTQBDJyyZuuGFbj/dhOWl0devr28vHRa1tZJ1uMRvr+hoSGiRwdQc3nq6+sBqMNRkiRF7I/ORxIEASdPntRuu91uLRCyWCwTzo++v3jbYtXN7Xajvr4+YZ0S1SckXqCWrD0SnUtERKkZGBrFZ3+8Ey/KPiwsKcRDn78cV4j5MRyXCIfqsmjrhhWoXb982mYOlyRJy+Wx2+2wWq0ThpzcbjfcbjckSYIoijCbzTCZTLDb7Whra4Moiuju7kZnZ6fWKySKIjo7O2Gz2VBbW6v1ILW2tsJut0MURdTX18Nms2kBh9ls1oa8RFGEw+GAzWZDTU2Nth9Q86/sdjucTmfMy/xDdYs+VxCEmHUKSVQfv9+P9vZ2GAwGWCyWCb1vidoj1Mahc0Nlhe5DlmVtItJ0pjggIppL+s6oQdPLB/xYVFqIn37+Cly6Rsh1tVLCCTCzOHM4Ta+pTsoZmjiUIvG9QESZ5B8cwe3/8xJeO9gPoawID3/+CmxYVZ7TOnECTJqTJpOQ7XQ64fV6YbVaM5ZcTkREsZ08NYxPPfgS3jwygMr5xfhZ4xW4aHniQCXfMMeJZoXQPFAOhyOt/COz2YzKykq4XC44HI7sVZCIaI47NjCETzhfxJtHBrBkYQl+0XTljAuaAA7VcaiOKAm+F4hoqo70DeG27S9CPnEayxeV4pHGKyAuWZDramk4VEdERER54aD/DG7b/iL2nRzEKmEeHmm8AudUzs91tSaNgRMRERFlxQHfID65/UW813sGaw1leKTxCqyuKMt1taaEgRMRERFl3N4Tp/HJ7S/icN8Q1i2ej0car8CK8nm5rtaUMXAiIiKijHr32Cnctv1FHBsYxnlLF+CRO67A0kWzI0eSgRMRERFlzFtHBvCpB1/EiVMjuGj5Qjx8xxVYvKAk19XKGE5HkG3BANDzJ+BVl/o7GJiWu3U6nbDZbHA6nXC5XHC73dol+/nK7XajqqoKTqdzWu6vqqoKLpdrWu5rqqLr6nQ6UVtbO6lziYiyZc+hfnxyuxo0rV+xCI80XjmrgiaAPU7ZtecJ4Ckb0H9ofNuilcBWO7D+pqzdbW1tLerq6mC327VtkiShtrYWXq83a/c7VaGFfKeL3W6fMZNeRtfVbDanvJzLTHqcRDRz/fU9Pz79PzvRd2YUl64ux0OfuwLlZUW5rlbGMXDKlj1PAB2fARA1TVb/YXV7/UNZCZ7a2toAAE1NTRHbTSbThG35qLJy+hZ4nM4gbaqi65rOOngz6XES0cwk7e/FZ/9nJwaGx2BaK+D/Pnc5FpXOvqAJYOCUOkUBRgdTOzYYAH7XjAlBk1oQAJ3aEyVeB+gLkpdXVAboUlsYuLW1Fdu3b4+5r66uLqUyiIiIUtW914e//fFOnB4J4PJ1Bvz4b2uwoGT2hhez95Fl2uggcO/KDBWmqMN3961J7fCvHQKKk08WJssy/H5/3J6I8J4HSZLgdrshiiJkWYbFYoEoinC73bDZbLBardq+rq4u2O12+P1+uN1ueL1ebXkSt9sNq9UKs9mM2tpa+Hw+eDwe2O12CIKg7bfZbAAAh8MBj8cDt9sNSZIgiiK6u7sjhhVD9xO6787OTm1frPPi1Tl0nt/vR0dHB0RRhN/vR3d3NxoaGtDY2Air1ar1xKXbJuH1ChfvsUmSBIfDEZGbJIoifD4fbDYbGhoa0NzcDJfLBZvNBofDAbPZDEmSIurq9/ths9m05yJR3aPPTfexEBEl8rz3BD7/f7twZjSAzcZKPPjZapQVz+7QYnY/OopJlmXYbDZ0dXVp26qqqrBjxw4tzyj8y7SzsxMulwvNzc0wmUwwGo3w+/0QBAFmsxkWiwWVlZWwWCwAAJfLhbq6OnR1dWnleTweOBwOGAwG7f49Hg8AdXHetrY2NDc3AwC6u7u1vzs7OyFJEkwmU8LzYtU5dJ7T6YTJZNICR5/PB5PJhIaGhim1Saj8WG0bXcempiZs2bIFPT09EAQBAFBRUaGVH14Xi8WC9vZ27XZ0XQVBgMPhQEVFRdK6R5+bzmMhIkrkj28fR+NDuzA8FsQ1FyyB89NVKC1KYRRlhstZ4BT6Tzj0BZPoOADaF6ff79c+4GVZhsvl0v5zbmpq0r6UMq6oTO35ScW+54GfWZIf9ykXcM7m1O47BaGeJlmWY34JyrIMg8EAh8MxYb8oiujo6EBTUxMqKysjco0EQYjoxRIEAT6fL6Ktw/+2WCyoq6vTgitBELTyLBYLbDYbDAYD3G63dk53d7f2d01NzYT7AqAFXrHOi1Xn0HkWiwVVVVUQRRENDQ0xc70m0yah8qPLiVXHUJAZ3k6ZSthOVvdoqT4WIqJ4nn3zGKwPezAyFsSWi5bivz9lmhNBE5CjwCkU7ISCokQcDod2ebrZbI4YUqirq9MCL1mW0djYmL0hB50upeEyAIDxevXquf7DiJ3npFP3G69PLccpDc3NzXA4HFrvTzhJkmJuT8VUA9Lo4cPwHiBgYjJ7PJM5z2AwoLe3F5Ikob29XesNy5ZYdZyuKRaIiLLt968fwd8/ImE0oOCG9y3DDz9pQnHh3JndKCeP1GKxpDwsUFVVhd7eXvT29qKrq0v7Ao+ejyiUi5IX9AXqlAMAgOik7rO3t96X8aAJgJZPE/1F7ff7tb8bGhomtJUkSaivr49bbvj5yfa7XK4JvSvhPRqx7j+V526y57W2tmq9cKHcq+h6T6ZN0qljfX39hH8Uwl/DgiDg5MmTEedEt3m85yCVuid7/oiIUvGbvx7GF3+mBk0fvWQF/uu2uRU0ATMkxylWb4fb7YbBYIjYZjAYEuZqDA8PY3h4WLvd39+f0XpGWH+TOuVAzHmc7svqPE5dXV1oa2uDzWaD0WjU2inU2xQKINra2rQE5s7OTgiCoPXKAGoPnyzLEcOloaRtu90eEYR4vV7tyz5UHqA+T+HJ0mazWbt/m82mDcuFkqBj3bfD4YAoipM+r7KyUnu9+Hw+NDQ0aOcYDAYtkE+3TULlh/emxaujIAjo7OyEzWZDbW2tNowZUl9fryV8h84JDcH5/f6IusbqvUtW99C5obJSeSxEROF+9fJB/GP7ywgqwC2bVqHNcgkKC+ZW0AQAOkVRYo0lTc+d63RIdvehLwNAzRUJXQ3U1taGrq6uiCEXo9GoXYkUyze+8Q1s27Ztwva+vj4sWrQoYtvQ0BB6enqwbt06lJZOYX2dYEDNeTp1FFiwTM1pykJPUy6FArSZME9UPqmtrYXdbp90UnZFRQV6e3szXKuJMvZeIKIZy+V5D191vQJFAeqrV6P1lktQoE9tmpyZoL+/H+Xl5THjgWh53+MUnvAtimLS2a8TDUm0tLTgrrvu0m739/djzZoUpwSYLH0BsO7q7N4HzUiTSch2Op3wer2wWq2cDZyIpsXPd+7H1x5/FYoCfOqKtfj3mzdAP4uCpnTlfR9beB5I6Oo5WZZjXgkUfaVXtJKSEixatCjih6YmNBQXuqSdUhNaN9DhcKSVf2Q2m1FZWQmXy6XNpUVElC0PvbAXLY+pQdPfbj4X3/rY3A6agDwfqpMkCVu2bNGGI/x+vzY84fP5Iq6qA9Shi/B5cpJJ1DXH4QkiFd8LRHPTg3+S8a3fvAEAaLpGRMuHLoIuxVUsZpp0hupy3uMU/d+2JElaL5MoihEzSrvdblgslgnzCgFqz1R1dXX25nEiIiKaI3703Lta0PSlD543q4OmdOUkx8ntdmtJ3a2traipqdGu+Ardbm5uhiAIqK6uRltbGwRBgNfrjZinKXSVUk1NTcSVXERERDQ5P3C/g++73wYA/KP5AnzZfH6Oa5RfcjpUl2scqiNKju8ForlBURT8x+/fxn89+y4AoHnrhfjidefluFbTY1ZdVUdERETZpSgKWn/3Jpx/VFNl/uUjF+OOqzmvWywMnIiIiOYwRVGw7ck9+L/n9wIAtt30Pnx287k5rVM+Y+CUZYFgANIxCccHj2NJ2RKYlppQMMsmwCQiopkpGFTwr796DT97aT90OuDbH9uI265Ym+tq5bWcX1U3m7n3uXHDozfgc09/DrY/2fC5pz+HGx69Ae592VlTz+12w2q1QqfTRSzfkQ6n04mKioppmZNpOu8rXFVVFVwuV0Q9amtrJ3UuEdFMFQgquPuxv2pBU9utlzBoSgGTw7OUHO7e58Zdz90FBZHNqzu7yO/3rvsezOfEXhpmKmRZhtFoRG9v76SnZpjqUiD5el8hbrc7YuqK0KSq8ZbqSXTuXMDkcKLZIRBUsLPHh2MDQ6icXwyX5z388uVD0OuA79Vfho9tWpXrKuYMk8OzQFEUnBk7k9KxgWAArTtbJwRNALRt9+28D1csvyKlYbt5hfNSnj8jeuFjmig6QEpncdtUgisionzz1GuHse3JPTjcNxSxXa8DfvhJEz5yyYoc1WzmYeCUojNjZ3DFI1dkrLyjg0ex+RebUzr2pdteQllRWcbum4iI5o6nXjuMOx+WYvwrDwQVoIBJO2lhc81ybrcbVVVVcDqdcLvdcDqdqKurizhGkiTYbDa4XC64XK4JawC63W60tbXB5XLBZrMBAFwuF6qqqmA0GgEAbW1tMBqNaGtri3tOKvcVq/7xyrFarVo5LpcLkiRpjzdUD5fLBaPRqOV7SZKktQegzlxvtVq1xxE6JnSfbW1t2kz20eem0rZERLkUCKpXzMXLydEB2PbkHgSCczZrJ23scUrRvMJ5eOm2l1I61nPUgy/u+GLS43605UeoWlaV0n1PltlshtlsRldXlzazemhBXpPJBL/fj7q6Oni9Xu2c1tZW7W9ZlmGz2bQ1AX0+H9ra2tDc3Ayz2YwtW7bA7/dDEAR4PB4IghD3nKampoT3FS1ROVu2bIlYl7CiogI7duyA2WxGQ0ODVobFYkF7e7t222QyRewXBAEOhwMVFRUR9xma2R5QE8J37Ngx4dxkbUtElGs7e3wThufCKQAO9w1hZ48PVxkrp69iMxgDpxTpdLqUh8s2r9yMZWXLcGzwWMw8Jx10WFa2DJtXbp6WqQkqKytRWTn+hhAEQevp6ejomPAlH54n5XA4YDAYIq7Q6+7u1srZvn07qqqq0NnZqQUx8c4RBCHhfUVLVI7ZbI5I0K6urk7WDClxOBwT6iiKIjo6OtDU1DTh+ERtS0SUa8cG4gdNkzmOGDhlRYG+AHdffjfueu4u6KCLCJ5CV9XZLrfNmPmcTCZTRFJ0eAARCoba29sjAo5Y54SGuKZ635Mph4hoLvIeO5XScUsX8orZVDHHKUvM55jxveu+h6VlSyO2LytblrWpCACk3dthNpsnzKMUyukBgIaGhgnzQYVu+/1+uN1udHZ2QpZlbX6jeOcku69o8cqpr69PWI4gCDh58mTEOX6/P+L46NuJ7lOSJNTX1yc9l4goXwSDCv7j92/h/z3zbsLjdABWlJfi8nW8IjtV7HHKIvM5ZnxwzQenbebwUBADqLlDoXycUI6P2WyGLMuQJAkOh0O7DL+zsxM2mw21tbVavlJra6s2v5LdbofNZkNNTY1WjtPphN1uh9VqBQDU1NSgsbERsiyjubk55jmCICS8r+gpAeLdd7xyQurr6yMmADWbzdoQnN/vR3t7OwwGAywWS9z7bGtrgyiK6O7u1oYhJUmKODdUVqK2JSKabqeGx/CP7S+ja89RAEDt+mVwn/07PHkkNMnNPTeuR4E+tSlviBNgZm0CTJpeU51Is6KiAr29vRmu1ezA9wLRzHHAN4g7frILbx0dQHGhHvfdshG3mFbHnMdpRXkp7rlxPbZu4BxOnACT5pzJJGQ7nU54vV5YrdaMJZcTEeXKC96T+OLPPOgdHMXShSVwfLoKm9aqVwxv3bACteuXazOHL12oDs+xpyl9zHGiGc/pdEKWZTgcjrTyj8xmMyorK+FyueBwOLJXQSKiLHv4xX349P+8hN7BUVyyuhxPfOkDWtAUUqDX4SpjJW6+bBWuMlYyaJokDtVxqI4oIb4XiPLXaCCIbU++jodf3A8AuPmylbDfeglKi2bGVdv5gkN1GTSH40oiAHwPEOUr3+kRfPFnHrwo+6DTAc03XIQvXCumvLYpTQ4DpzgKCtRofWRkBPPmTX7mbqKZbnBwEABQVFSU45oQUchbRwZwx0PdOOA7g/nFBfjBJzbBvH5Zrqs1JzBwiqOwsBBlZWU4fvw4ioqKoNczHYzmFkVRMDg4iGPHjkEQBO2fCSLKrd+/fgT/2P4yTo8EsNZQhgc/W40Lli3MdbXmDAZOceh0OqxYsQI9PT3Yt29frqtDlDOCIGD58uW5rgbRnKcoCv772Xfx3d+/DQDYbKzEf99mQsX84hzXbG5h4JRAcXExzj//fIyMjOS6KkQ5UVRUxJ4mojxwZiSAr7pewa//ehgA8NmrzsG/fHQ9igo4GjLdGDglodfreSURERHlzCH/GTT9dBdeO9iPQr0O37x5A267Ym2uqzVnMXAiIiLKU559vbD+1IMTp4ZhmF+M+z9lwhViZa6rNaflLHCSJAmNjY3weDxJjwutOdbd3Y3t27dr65KFFno1mUyQZRl+v3/SS24QERHlk85dB/D1x1/DSCCIi5YvxPbPVGONoSzX1ZrzcjI46nK5AGDCCvexuN1uNDc3o7m5GTU1NdiyZYu2z+FwoKqqCjqdDlarlYuqEhHRjDcWCOJbv96Dr7r+ipFAEDe8bxkevXMzg6Y8kdOZw3U6XcLJ9SRJwpYtW7TFV2VZhtFohNfrhSiKcDqdqK+vBwCtFyod6cwUSkRElG19Z0bx//18N/749nEAwJe3nI8vbzkfei6PklWzZuZwk8mE7du3a7dD65AZDAZtWzoB0/DwMIaHh7Xb/f39U64jERFRJniPn0LjT3ZBPnEapUV6/EfdZfjIJStyXS2KkteBEwBYLBbt7/b2dpjNZi1Y8vv92rBfd3d30uG61tZWbNu2Lav1JSIiStcf3j6OLz0iYWBoDCvLS+H8TDU2rCrPdbUohrweqgvn9/tRVVUFj8cTETiFJ4rX1dXB6/XGLSNWj9OaNWs4VEdERDmhKAr+5889uPe3byCoANXnVOD+26uwZGFJrqs2p8yaobpwNpsNXV1dEUNzsixrV9GJoghZliHLctxep5KSEpSU8MVIRES5NzQawNcffw2PSu8BAOqrV+PfP7YBJYWcdDafzYjAqa2tDTabDaIoanlOsixHJI6HhOc/ERER5aNjA0Ow/tSD3fv90OuAf/3oevzt5nOh0zEJPN/lfK72UCAUIkkSZFnWbrtcLphMJi1o6ujogCAIEEURdrtdO87tdsNisUzq6joiIqLp8up7fbj5v/6C3fv9WFRaiJ987nL83fvXMWiaIXLS4+R2u9HV1QVATdiuqanRksBDt5ubmyHLMurq6iLOFQQBTU1NEAQB1dXVaGtrgyAI8Hq96OzsnPbHQkRElKonXjmEr3a+guGxIIxL5uPBz9Zg3eL5ua4WpSGnyeG5xnmciIhoOgSDCv6j6y3897PqBUwfvHAJfvDJTVhUWpTjmhEwS5PDiYiIZqJTw2P4yi9ehvuNowAA67Uimm+4CAWc1HJGYuBERESUJftPDuKOh7rx9tFTKC7U475bNuIW0+pcV4umgIETERFRFjzvPYEv/kyCf3AUSxeWwPHpKmxaW5HratEUMXAiIiLKsJ++uA/bnngdY0EFl6wuh/PT1VheXprralEGMHAiIiLKkNFAEN944nX87KX9AICbL1sJ+62XoLSIk1rOFgyciIiIMsB3egR3PuzBSz0+6HRA8w0X4QvXipyfaZZh4ERERDRFbxzuR+NDu/Be7xksKCnEDz5xGbZcvCzX1aIsYOBERESUokBQwc4eH44NDGHpwlJcvs4A9xtH8Y/tL2NwJIC1hjI8+NlqXLBsYa6rSlmSduC0d+9edHZ2oqurK2KdOIPBgNraWlgsFpx77rmZrCMREVHOPfXaYWx7cg8O9w1p2xaUFOLU8BgAYLOxEv99mwkV84tzVUWaBmkFTnfffTd0Oh3q6+vx1a9+dcL+3bt344EHHoBOp0Nra2vGKklERJRLT712GHc+LCF6qY1Q0PTBC5fA+ZlqFBXkfAlYyrKUA6fvfOc7aGlpQXl5edxjNm3ahE2bNqGvrw8tLS0MnoiIaMYLBBVse3LPhKAp3JtHBqBnEvicwLXquFYdEREl8IL3JD65/cWkx/288UpcZaychhpRpqUTD0y6T/Huu+/Ggw8+iL6+PvzN3/wNGhoa8Nhjj022OCIiorx0bGAo+UFpHEcz26QDp5qaGtxxxx1wOp2oqqpCe3s7Tp48mcm6ERER5ZyhLLVk76ULOTP4XDDpwKmiQl1vp6OjAw0NDQDUK+uIiIhmi2MDQ/hP99sJj9EBWFGuTk1As9+k53Hyer1QFAVerxeXXXYZenp6IqYnICIimsleOeCH9aceHOkfQmmhHkNjQeiAiCTxUDr4PTeuR4GeyeFzwaR7nOrr6yFJEjweD/r6+uBwOOD3+zNYNSIiotx41PMe6hwv4Ej/EIxL5uM3X74aD9xumrBQ7/LyUtx/uwlbN6zIUU1puqV0VV1fXx96e3vTmtiyv78fAPL6ajVeVUdEROHGAkF8+7dv4H//shcAYL54Kb7XcBkWlRYBiD1zOHuaZr504oGUhurKy8vR0dGByspK3HLLLUmPf/TRR9Hb24s77rgjtRoTERHlmO/0CL70iITnveqFTv9w/Xn4ivkC6MMCowK9jlMOzHEp5zg1NjZi9+7dqK+vh9FoRE1NDURRhCAI8Pv9kGUZO3fuRE9PD6xWK2699dZs1puIiChj9hzqR9NP1UV6y4oL8L36Szn8RjFNagLMvr4+dHR0wOv1wu/3QxAEGI1GmM1mrFu3Lhv1zAoO1RER0ZOvHMJXXa9gaDSItYYybP9MNS5czkV655KMD9VFKy8vR2Nj46QqR0RElA8CQQXfefotPPAHLwDg6vMX44ef3AQhxXmbaG6a9HQEREREM1Xf4Cj+4Re78Ye3jwMArNeIaN56ERO9KamcBU6SJKGxsREejyfhcbIsw+VyQRRFyLKMpqYmCIKQdB8REVEs7xwdQONDu7D35CBKi/Sw33oJbr5sVa6rRTNETgKnULAjSVLSY+vq6rTgSpZlNDY2orOzM+k+IiKiaE+/fgR3tb+M0yMBrBLmwfHpKmxYVZ7ratEMkpPAyWKxpHScLMsRt0VRhNvtTrqPiIgoXDCo4Ac73sEPdrwDALhSNOC/bzOhckFJjmtGM82kZw4HgO985zvaOnU7duzQJr3MFLfbPWH9O4PBAEmSEu4jIiIKGRgahfVhjxY0/e3mc/HTz1/BoIkmZdKB09133w1BEGA2mwEAW7ZsyXiPT7wlXHw+X8J98QwPD6O/vz/ih4iIZq+eE6fx8R89j649R1FcoEeb5RJ846b3oahgSv0GNIdN+pVTU1ODxsZGiKKYyfqkJNGaeIn2tba2ory8XPtZs2ZN5itHRER54dm3juGm//oz3j12CssWlaDdeiXqq/m5T1Mz6cCpp6cHAKDTjV+62d3dPfUahREEYUIPks/ngyAICffF09LSgr6+Pu3nwIEDGa0vERHlnqIo+NFz7+Jz/9eNgaExmNYKePJLH8CmtRW5rhrNApNODt+0aROqq6tRWVmJrq4uuN1u2O32TNYNZrMZDodjwvbq6mqIohh3XzwlJSUoKeGYNhHRbDU4Moavuv6K3/z1MADgk5evwTdueh9KCgtyXDOaLSbd47RlyxZ0dnZi06ZNUBQFTqcT119/fdrlRA+tSZKkXTEXPQwoyzKqq6shCELCfURENPcc8A3i1vtfwG/+ehiFeh2+9bENuPfjGxk0UUZNaTqCdevW4b777tNu9/f3p7Tmm9vtRldXFwA176impkaboiB0u7m5GQDQ2dkJm82GmpoadHd3R8zTlGgfERHNHc+/ewJ//4iE3sFRLF5QjB99qgqXrzMkP5EoTZNa5Dekv78/Is/Ibrfj/vvvz0jFpgMX+SUimtkURcGP/7IX9/72DQSCCjauKofj01VYKczLddVoBsn6Ir8A8IUvfAFutztiaKynp2dGBU5ERDRzDY0G8LXHX8Vj0kEAwC2bVuHeWzaitIhDc5Q9kw6cjEYjHnjggYht27dvn3KFiIiIkjncdwbWn3rw1/f6UKDX4Wsfvhife/+5EVd6E2XDpAOn0MSX4Wpra6dUGSIiomS69/pw58MenDg1AqGsCP99mwnvP29xrqtFc8SkA6eKigp897vfhSiKEAQBfr8f7e3taG9vz2T9iIiIND97aR++8cTrGA0ouGj5Qmz/TDXWGMpyXS2aQyYdODU3N8Pv90fkOO3evTsTdSIiIoowMhbEPU+8jp/v3A8A+MjGFfhO3SUoK87JWvU0h036FVdbW4vGxsaIbY8++uiUK0RERBTu2MAQ7nxYgmdfL3Q64Ks3XIg7rzUyn4lyYkrJ4alsIyIimqyXD/jxhZ96cKR/CAtLC/H/PrEJH7xoaa6rRXPYpAMnr9cLh8OBmpoaAOpcGh0dHRlfr46IiOYml+c9fO3xVzEyFsR5SxfA+ekqiEsW5LpaNMdNOnByOBwwm80Inz9zCnNpEhERAQBGA0F8+zdv4P+e3wsAMF+8DN9vuBQLS4tyWzEiTCFwstvt2LJlS8S2WFMUEBERpcp3egR//zMJL8gnAQBf3nI+vrzlfOj1zGei/DDpwCk6aALUKQqIiIgm4/VDfWh6yIOD/jOYX1yA/6i/DFs3LM91tYgipBw4PfbYYzCbzdoaLg8++GDEfr/fj66uLjz99NOZrSEREc0qgaCCnT0+HBsYwtKFpbh8nQG/efUwml2vYGg0iHMry+D8TDUuWLYw11UlmiDlwOnee++FIAi4/vrrAQAPPPAAGhoaIo45efJkZmtHRESzylOvHca2J/fgcN+Qtm1+cQFOjwQAANdcsAQ//MQmlJcxn4nCBAPAvueBU0eBBcuAczYD+tysSZhy4LRr166I29u3b8emTZsitjHHiYiI4nnqtcO482EJ0ZcRhYKmv1m/DPffXoUC5jNRuD1PAE/ZgP5D49sWrQS22oH1N017dfSTPTE8n6mvrw+PPvooc5yIiCimQFDBtif3TAiawr16sG/a6kMzxJ4ngI7PRAZNANB/WN2+54lpr9KkAye32639XV5ejltvvTViGxERUcjOHl/E8Fwsh/uGsLPHN001orwXDKg9TTHD7bPbnrpbPW4apXVVXV9fHzo6OqDT6dDV1TVhv8fjwR133JGxyhER0exwbCBx0JTucTQH7Ht+Yk9TBAXoP6get+7qaatWWoFTeXk5zGYz7HY7vF4v1q1bF7G/ubk5o5UjIqKZb2g0gOfeOpbSsUsXlma5NjQjDJ8Cdv04tWNPHc1uXaKkPY/TunXr8MADD2DHjh0x53IiIiIK+cu7J/D1x1/F3pODCY/TAVherk5NQHPYyCDQ/SDwl/8EBlO8Un/BsqxWKVpGJ8AkIiICgJOnhvHt37yBx3YfBAAsXViCj122Etv/1AMgMmsldA3dPTeu5xV1c9XoGWDX/wJ//j5w+mzvZIUIDPUCZ/yIneekU6+uO2fzNFZ0CoETERFRNEVR0Ol5D/f+9g34B0eh0wGfufIc/NMNF2JRaRFM51RMmMdpeXkp7rlxPbZuWJHDmlNOjA0Dnp8Af/oP4NQRdZtwDnCtDbikAXjrt+rVc9AhZri99b5pn89Jp8zhlXn7+/tRXl6Ovr4+bUZ0IiKaHO/xU/jaY6/ipbNXxl20fCFab9mITWsjp6qJNXM4e5rmmLERYPdP1YCpX+2VRPka4JqvApfdBhSETYAacx6nVWrQlKF5nNKJB9jjREREUzI8FsCPnvXi/ue8GAkEUVqkxz+aL8DnPrAORQUTZ70p0OtwlbEyBzWlnAuMAq/8HPjDd4C+/eq2hSuBa/4Z2PRpoLB44jnrbwIu+sjMmzk8FXv37sW5556bySKJiCiPveA9ia8//irkE6cBANdduAT/fvMGrDGU5bhmlFcCY8CrHcAf7EDvXnXbgmXA1f8EmD4LFCW5mlJfMK1TDiQypcDp5Zdfhs83PlmZw+FAe3t7SufKsgyXywVRFCHLMpqamiAIQsxjXS6XtpxL9DGSJAEATCYTZFmG3++HyWRK/8EQEVHKek+P4N7fvoFOz3sAgMULSvCNm9bjIxtXQKfjsBudFQwArz0KPHcf4POq2+YvAT7wj0D154Ciebmt3yRMOnCqr6+H3++PCGR2796d8vl1dXXweDwA1CCqsbERnZ2dcY+NZrfb0dzcDIfDAafTCUBdKy9eGURENHWKouDx3Qfxrd+8Ad/pEQDAp65Yi+atF6F8HhfmpbOCQWDPL9WA6cRb6rZ5BuADXwFq7gCK5+eydlMy6cCptrYWjY2NEdseffTRlM6VZTnitiiKcZdr8fv96OzshMVi0ba1tbVpk21WVVWht7cXwMTeKCIiypyeE6fxL798FX95V51f54JlC9B6y0ZUncO5l+isYBB489fAc63AsT3qtlIB2Pz/AVdYgZKFOa1eJkw6cDIajSlti8XtdsNgiHyjGQwGSJIUc5gtPGhyuVwRtwEGTERE2TQyFoTjD1788Nl3MTIWREmhHl82n487PiCiuHDSS57SbKIowFu/A567FzjyqrqtpBy46u+BK78AlJbntn4ZNOnAyev1wuFwoKamBoDafdvR0YHu7u6k5/r9/pjbw/OlQsKDIr/fD5/PB1EUI7a5XC4AQHd3N6xWa8T+cMPDwxgeHtZu9/f3J60rEdFc1r3Xh5bHXsW7x04BAK4+fzG+9bENOKdy5g61UAYpCvBOlxowHTqbrlO8ELjyTuCqLwLzKhKfPwNNOnByOBwwm80InwZqqlNCxQuoQmw2G+x2e8S28KRyURRRW1sLr9cb8/zW1lZs27ZtSnUkIpoL+gZH0fq7N/CL7gMAgMULivGvH12Pmy5dyeRvUgMm+Vng2XuB9852mBTNB65oAjb/A1A2e4dvJx042e32CcuuhK58S0YQhAm9Sz6fL+GQm9/vh9vtnnCMLMva8F7oCj1ZlmP2OrW0tOCuu+7Sbvf392PNmjUp1ZmIaC5QFAVPvHII//7rPThxSk3+/kTNGtz9oYsglMWYY4fmnp4/qgHT/hfU24XzgMvvADZ/GViwJLd1mwYZW6vumWeegd/vx6ZNm5Keazab4XA4Jmyvrq6Oe86uXbtiTkWwZcsWLTk8JDp/KqSkpAQlJSVJ60dENBftO3ka//LL1/Cnd04AAM5bugD3fnwjF94l1b7n1YBp75/U2wUlQM3ngfd/BVg4vQvt5tKU5nF67LHHtCvkFEXBrl27cMsttyQ9L7o3SJZlVFdXa4GRJEkQBCHiOEmSJgREoihGDN253W5YLBYmixMRpWE0EMT2P8n4gfsdDI8FUVyox//3wfNgvdbI5G8CDuxUAyb5WfV2QbE6aeXVd6mL7M4xkw6c7r777ohkbb/fD6vVmvL5nZ2dsNlsqKmpQXd3d8T8S62traipqdGmHAiJDrgEQUB1dTXa2togCAK8Xi/ncSIiSoNnXy++9tireOvoAABgs7ES3/rYBohLFuS4ZpRzBz3As63Au13qbX2huizK1f8ECHM3zWXSi/xu374djY2N6OnpgU6nw7nnnotnnnkG119/fabrmDVc5JeI5qq+M6Noe+pNPLJzPxQFqCgrwr98ZD1uMa1i8vdcd/gVNWB6+3fqbV2BuvDuNV8FKs7Jbd2yZFoW+RVFEfv27cO6devw3e9+F//8z/882aKIiGiaKIqC37x6GNue3IPjA+r0LJaq1fjahy+GYT6Tv+e0I6+pE1e++Wv1tk4PXNKgBkyVqc3TOBdMOnDy+/0QRRG9vb04ceIEbrjhBgiCMKN6nIiI5pIDvkH8269ew7NvHQcAiIvn49sf34irjJU5rhlNi2BATfA+dVRdYPeczeriucfeVAOmPb88e6AO2GgBrrUBi8/PZY3z0qSH6qLt2LED1dXVKC+fObODcqiOiOaCsUAQP/5LD77f9Q7OjAZQXKDHndcZ8cUPGlFSWJDr6tF02PME8JQN6D80vm3BUsBgBPa/COBsKPC+jwPX3g0svSgn1cyVaRmqA4DvfOc72LVrF9rb2wGA4+JERHnm5QN+tDz2Kt44rK6UcMU6A7798Y04bymTv+eMPU8AHZ+BFhyFnDqm/gDARR8FrmsBlm+Y9urNNFO6qs5oNGqTXm7ZsgWPPfZYStMREBFRdg0MjeK7T7+Fh17cB0UBhLIifO3DF6OuajX/yZ1LggG1pyk6aAo3fylQ/5A6bEdJTTpwqqmpwa233oodO3Zksj5ERDQFiqLg6deP4J4nXsfRfjX5+5ZNq/D1j1yMygWcAHjOeefpyOG5WE4fU3Of1l09PXWa4SYdOPX09ACIHJ7r7u5mjxMR0TQIBBXs7PHh2MAQli4sxeXrDDjSP4R7fvU63G8cBQCcW1mGb31sIz5w/uIc15amVTAI7P0jsPth4PVfpnbOqaNZrdJsMunAadOmTaiurkZlZSW6urrgdrsnLMBLRESZ99Rr6nQCh/uGtG0LSwsxPBbEyFgQRQU6WK8x4kvXn4fSIg6/zBn+/cDLjwC7fwb07U/v3AVzZ8mUqZrSVXU9PT3amnMNDQ0prVOXT3hVHRHNNE+9dhh3PizFzVgxLpmP+2+vwgXLFk5rvShHRofUeZd2PwzIz0HLZSopV6cUuPSTQOdngP7DiJ3npFOXTfnKq3M6x2narqpbt24d7rvvvqkUQUREKQoEFWx7ck+iNF8MjgRg5HIps9/hVwDpp8CrHcBQ3/j2ddeoy6JcfCNQNE/dttV+9qo6HSKDp7OpNlvvm9NBU7pSXr3xu9/9btJjHnzwwSlVhoiI4tvZ44sYnovlcN8Qdvb4pqlGNK0GfcBLDuCBDwCOa4Du7WrQtGi1Olnll18BPvskcEn9eNAEAOtvUq+aW7QisrxFK9Xt62+a3scxw6Xc43Tvvfeiq6sr4TG7du3CHXfcMeVKERHRRH9593hKxx0bSBxc0QwSDKhDcLsfVofkAiPq9oJide6lTbcD4nXJe4zW3wRc9JHYM4dTWlIOnLZs2YLKykpUVVXFPSZDk5ATEVGYnhOnce9v30DXntSufFq6sDTLNaKs692rJnm//AjQ/9749mUbAdOngY11QJkhvTL1BZxyIANSDpw6OzvR19eHXbt2AVDncYpOoDIY0nwSiYgorr4zo/jhjnfwkxf2YjSgQK8DSosKcGYkEC/NF8vL1akJaAYaPQO88SSw+6dAzx/Ht5cK6vDbptuBFZfmrHqkmvRVdbt374bP54NOp5uxC/vyqjoiykdjgSB+3n0A3+96G77T6tDMdRcuwb985GK8e+wU7nxYAhAzzRf3327C1g1RuSyUvxQFOLRbHYp71QUMhxK9deoQ3Kbb1SG5IvYiZtO0XFUXPvXAM888g66uLtTW1s7YIIqIKB/88e3j+NZv9uDto6cAAOctXYB/+cjFuO7CpWdvL8T9t5smzOO0vLwU99y4nkHTTHH6JPDXdjVgOvb6+HZhLXDZ7cBln1T/prwzpekIXn75ZTgcDrS3t0MURRiNRgZOREST8O6xU7j3t2/gmTfVRVeFsiLcVXsBbrt8LQoLIi+A3rphBWrXL58wc3iBnmvQ5bVgAPA+ow7FvflbIDiqbi8oUZO3N90OnHsNoE/5gnfKgbQDp71796KzsxMOhwM6nQ633norPB4P1q1bl436ERHNav7BEfyn+x08/OI+jAUVFOp1+Ozmc/EP15+P8rKiuOcV6HW4ylg5jTWlSfPJ44neA2Hrxq24TA2WNlqAeRU5qx6lJ+XA6cEHH4TD4YAsy6ivr0dnZ+eEmcIfe+wxrlVHRJSC0UAQP3txH77vfgd9Z9SeB/PFS/G1D18MkRNYznwjg8CeX6lDcfv+PL59XgVwySeATZ8Clm/MXf1o0lJODtfr9bBYLGhoaIAgCBGL+wJAb28v7rvvPnR3d2elotnA5HAiyoVn3zqGb/16D7zHTwMALly2EP/60fVcjHcmCAbiz4WkKMBBjzoU9+qjwMjA2ZN0wHlb1N6lCz8MFJbkrPoUW1aSw5uamtDW1pZwrqb29vbUa0lENMe8fXQA3/rNG/jj2+pElob5xfinv7kADdVrJuQxUR7a8wTwlA3oDxtuW7QSuO7rwJBf7V06/sb4vopzxxO9y1dPd20pS1IOnKxWa9IorKWlZcoVIiKabXynR/D9rrfxyM79CAQVFBXo8Ln3r8PfX38eFpXGz2OiPLLnibPrvUV1HvQfAp74+/HbhfOA9TervUvnvJ+J3rNQyoFTdD7TZI8hIporRsaCeOiFvfjBjncwMDQGALjhfcvQ8qGLce7i+TmuHaUsGFB7mhItr1xQpC6Wu7EOKC2ftqrR9JvSdARERDSRoijY8cYxfPu3b6DnhJrHdPGKRfi3j67nlXAzkfxc5PBcLIFRYPGFDJrmgJwFTrIsw+VyQRRFyLKMpqYmCIIQ81hJUmfJNZlMkGUZfr8fJpMp7XKIiLLtjcP9+NZv9uAv754EACxeUIKv3nABLFVrOM/STHPkNUB6SE32TsWp1NYSpJktZ4FTXV0dPB4PADX4aWxsRGdnZ8xjHQ4HnE4nAMBsNkccl045RETZcuLUMP7j92+jvXs/ggpQXKjH5z+wDl+8zoiFzGOaOYYHgNceVQOmg570zl2wLDt1orySk8BJluWI26Iowu12xz2+qqoKvb29ABDRm5RuOUREmTY8FsD//WUv/uuZdzEwrOYxfWTjCtz9oYuwxlCW49pRShQFeG8XIP0EeO0xYFQdXoW+CLjow8BlnwJ+/RWg/zBi5znp1Kvrztk8jZWmXMlJ4OR2u2EwRK7ebTAYIEmSNgQXLdbwW7rlDA8PY3h4WLvd398/idoTEal5TE+/fhT3/vYN7PcNAgA2rirHv350PS5fZ0hyNuWFQZ+6Xpz0EHBsz/j2yvMB02eASz8JLFiibttqP3tVnQ4xl1feet/4fE40q+UkcPL7/TG3+3y+uMe7XC4AQHd3N6xWK0RRTLuc1tZWbNu2Le36EhGFe+1gH/7913vwUo/6WbN0YQmat16EWzatgp55TPktGAT2/kntXXrjSSAwom4vnAe872OA6bPA2iuBqEmesf4moP6h2PM4bb1P3U9zQl5dVRcvEApP+BZFEbW1tfB6vWmX09LSgrvuuku73d/fjzVr1ky2ukQ0xxwbGMJ3n34LnZ73oChASaEeTdeI+MK1RswvyauPU4o2cAR4+WeA9FOgt2d8+/KNarC0sQ6YJyQuY/1NwEUfiT9zOM0JOXmnC4IwoVfI5/PFvRpOlmVt6C109Zwsy2mXU1JSgpISTnVPROkZGg3gf/7cgx89+y5OjwQAADdduhK2D12EVcK8HNeO4gqMAe+61d6lt58GFPW5Q8kidWFd02eBlZelV6a+AFh3dcarSjNHTgIns9kMh8MxYXt1dfWEbZIkYcuWLVpyeIjBYEirHCKidCmKgt++egStv3sD7/WeAQBcukbAv310ParO4Wr2eat3r9qz9PLPgIHD49vXXAlUfVad2buYE5DS5OQkcBJFMeK2LMuorq7WeookSYIgCBBFEaIowm63a8e63W5YLBYIgjChZym6HCKiRAJBBTt7fDg2MISlC0tx+TqDNtfSX9/z499/vQfde9V/2pYvKsXdH7oIN126knlM+WhsGHjz12qit/zc+PaySjXJ2/QZYMmFOasezR45G5Tv7OyEzWZDTU0Nuru7I+Zeam1tRU1NDZqbmyEIAqqrq9HW1gZBEOD1eiOOTVQOEVE8T712GNue3IPDfUPathXlpfiHLeeje68Pj0kHAQDzigpgvVZE0zUiyoqZx5R3jr2pBkuv/Bw4E5a6IX5Q7V268MNAIVM0KHN0iqIkWHxnduvv70d5eTn6+vqSLmBMRLPHU68dxp0PS4lWHgMA3LJpFb669UKsKGceU14ZOQ28/rgaMB14aXz7wpXq4rqbPgVUnJuz6tHMk048wH+fiGhOCQQVbHtyT8KgqahAh180XcU8pnyiKMCh3Wqw9KoLGBlQt+sKgAs/pA7FGbcABfxao+ziK4yI5pSdPb6I4blYRgMKRsaC01QjSuhMrxooeX4CHH11fHvFOjVYuuw2YOHy3NWP5hwGTkQ0pxzpO5PScccGEgdXNAXBQOK5kBRF3S/9BNjzK2Ds7HNRUKLOpWT6DHDOBwC9Pjf1pzmNgRMRzQlDowF07jqA//fMOykdv3RhaZZrNEfteSLO7Nt2dcbulx8Bdv8UOPnu+P6l69U5ly6pB8q4nA3lFgMnIprV+gZH8dMX9+J//7IXJ0+ry2vodGqnRiw6AMvLS7neXDbseeLsem9Rjd9/COj4NKDTA8rZIdKi+cDGW9WAaVXVxCVQiHKEgRMRzUqH+87gf/7Ug5/v3K/N9r26Yh4arxYhlBXhK794GUDM5Vpxz43rtfmcKEOCAbWnKVFavhIEVlap0whsuAUoWTht1SNKFQMnIppV3j02AMcfZPzy5YMYDahf0hctX4g7rzPiIxtXoLBAzYspKdRPmMdpeXkp7rlxPbZuWJGTus9q+/4SOTwXT+02LmlCeY2BExHNCtL+Xtz/nBdde45q265YZ8AXrjPiuguWQBc11LN1wwrUrl8ed+ZwyoCxYWDvn4C3ngJeezS1c04dTX4MUQ4xcCKiGUtRFDz31nHc/wcvdvaMzxr9N+uX4QvXGWFam3gepgK9DlcZK7Ndzbnl9Al1Qd23fwd4nwVGTqV3/oJl2akXUYYwcCKiGWcsEMSv/3oYD/zBizePqBMhFhXo8PFNq9B0jRHnLV2Q4xrOIYoCHH8TeOu3as/Se92IyGNasBy44Abg/BuA3/4TMHAEsfOcdOrVdedsnqaKE00OAycimjHOjATQ3r0f2//Ug4N+dT6m+cUFuO2Ktfj8B0QsL+cUAtNibETNWXr7KeCt3wH+fZH7l29U14i7YCuw4rLx+ZaUwNmr6nSImZa/9b7I+ZyI8hADJyLKe72nR/DQC/vwkxf2wnd2SoHFC4rxd+9fh9uvOAflZUU5ruEcMOgD3vm9Gih5nwGG+8f3FZQA664BLtyqBkvlq2OXsf4moP6hOPM43afuJ8pzDJyIKG8d9J/Bg3+S8YudB3BmVJ1SYK2hDI3XiKirWo3SIvZOZI2iACfeUYfg3n5KXUxXCVuGZv4SdQjugg8Bxg8CxfNTK3f9TcBFH0k8czhRHmPgRER55+2jA3jgD1488fIhjAXVIZ31KxbhzuuM+NCG5dqUApRhgVFg/wtqrtLbvwN8cuT+ZRvUHqULPwSsNE1+yRN9AaccoBmLgRMR5Y1de3144A9euN84pm3bbKzEF6414urzF0+YUoAy4Ewv8I5bDZTedQNDfeP7CoqBcz9wNl/pBkBYm7t6EuUJBk5ElFPBoIJn3zqG+5/zYte+XgDq6hpb37ccX7jWiEvXCLmt4Gx04l01UHrrKbWHSQmM7yurVK+Au3ArYLyes3cTRWHgREQ5MRoI4omXD8HxRy/ePqrO9VNcoMetVavQeLUIcQmnFEgoGEg9TygwpuYovf07Nbk7fAFdAFhy8dnE7g8Bq6uZb0SUAAMnIppWgyNj+MXOA3jwTzIOnV3uZEFJIT515Vp8/v3rsHQRpxRIas8Tca5Ms49fmTbUpw69vfWUejXckH/8WH0hcM77x4fgDOumtfpEMxkDJyKaFr7TI/i/5/fioRf2wj84CgBYvKAEn/vAufjUFeegfB6nFEjJnifOzoUUNYlk/2F1+2W3AX0H1N6o4Nj4/nkVwPl/oyZ3n7cFKC2f1moTzRYMnIhoSgJBJeF6b+/1DuLBP/XgF937MTSqXs5+bmUZmq4x4hbTKk4pkI5gQO1pijnz9tltL/9sfNPiC8avglt9OVDAj3yiqeK7iIgm7anXDmPbk3tw+OyQGwCsKC/FPTeux7mL5+OB57x48q+HETg7pcDGVeX4wrVGbN2wnIvpTsa+5yOH5+KpuQO48otApTH7dSKaYxg4EdGkPPXaYdz5sDSh7+Nw3xC+8LAUse0D5y3GndcZsdlYySkF0jVyWg2YvM8Ar/8ytXPWXsWgiShLGDgRUdoCQQXbntwTc8Ao3Ic3Lsed156HjauZT5OyYBA4+qoaKHmfAfa/CARG0itjwbLs1I2IGDgRUfp29vgihufi+fSV5zJoSkX/YUB+9myw9CwweCJyf/kadVkT8Trg6a8BA0cRO89Jp15dd87maag00dyUs8BJlmW4XC6IoghZltHU1ARBEGIeK0kS3G43AKC7uxvbt2/XjpUkdUjAZDJBlmX4/X6YTKbpeAhEc9Lp4TH8+q8p5NkAODaQPLiak0YGgf3Pq0GS9xng2J7I/UXz1UVzjR9UJ6GsPE+dFRQA9EVnr6rTITJ4Ort/632ch4koi3IWONXV1cHj8QBQg6jGxkZ0dnbGPNbtdqO5uRkA0NbWhi1btmjnOhwOOJ1OAIDZbI5bBhFN3lggiL94T+Jx6T08/fpRbcHdZJYu5JxMANQFc4++Nj78tu8FIDAcdoAOWLlJDZKM1wOra4DC4thlrb8JqH8ozjxO943P40REWaFTFCVZmkLGybIcETgBQEVFBXp7eyccK0kStmzZou2TZRlGoxFerxeiKMLpdKK+vh4A4vZYxdPf34/y8nL09fVh0aJFk39ARLOQoijYc7gfj0sH8atXDuH4wPgX/TmGeTh5ehSnhsdinqsDsLy8FH+2XT93r54bOBo5/Hb6WOT+RavGAyXxOqDMkF756cwcTkQJpRMP5KTHye12w2CI/JAwGAyQJGnCMJvJZML27du1236/Xzs+JNWAaXh4GMPD4x/+/f39adacaPY73HcGv3r5EB6XDuKtowPa9oqyItx46Up8fNMqXLZGwNOvH8GdZ6+eizFghHtuXD+3gqbRM+q6b6FA6ehrkfuLyoBzrx4PlhafPz78Nhn6AmDd1VOrMxGlLSeBUyj4iebz+WJut1gs2t/t7e0wm81asOT3++FyuQCo+U9WqxWiKMYsp7W1Fdu2bZt8xYlmqVPDY/jdq4fx+O6DeEE+iVA/dHGhHuaLl+Ljm1bj2guWoLhQr52zdcMK3H+7acI8TsvPzuO0dcOK6X4Y00tR1NwkbfjteWAsKqdrxWXjgdKay4HCkpxUlYgyJ6+uqosXUIXvd7lcEUN84UnloiiitrYWXq835vktLS246667tNv9/f1Ys2bNlOtNNBONBYL407sn8Lh0EL/fc0Sb1RsALj/XgI+bVuHDG1ckXApl64YVqF2/POHM4Xkt3eGuU8cA+bnxYOnU0cj9C1eeDZTOXgE3f3E2a09EOZCTwEkQhAm9Sz6fL+mQm81mQ1dXV8Rxsixrw3uhK/RkWY7Z61RSUoKSEv7HR3OXoih4/VA/HpMO4olXDuHEqfGha3HJfNyyaRVuvmwV1hjKUi6zQK/DVcbKbFQ3u1JZKHd0CDjw4nigdOTVyDIK5wHnfmC8V2nJhVMbfiOivJeTwMlsNsPhcEzYXl1dHfectrY22Gw2iKKo9UzJshyROB4SnT9FNNcd9J/BL3cfxC93H8Q7x05p2w3zi3HT2bylS1aXz51ZvRMulPtp4NLb1N6kfc8DY2cij1l+yXigtPZKDr8RzTE5CZyie4NkWUZ1dXXE3EyCIGjHuVwumEwmLWjq6OhAU1MTRFGE3W7XynG73bBYLGlfXUc0Gw0MjeJ3rx7BY7vfw0s9voi8pdr1y3DLplW45oIlKCrQJy5otkllodxXHhnftGB55NVvC5ZMQyWJKF/lZDoCQA2WHA4Hampq0N3djZaWFi3gqaurQ01NDZqbm7XpB8IJgqD1MoUmxxQEAV6vNyKQSobTEdBsMxoI4k/vHMdj0kF07TmK4bHxvKUr1hlwi2kVPrRxBRaVxs9bmtWCAeDlR4AnvpT82OrPq4vlLr2Yw29Es1w68UDOAqd8wMCJZgNFUfDX9/rw+O6DePKVQzh5enxds/OWLsDHN63CzZetxOqK1POWZo0zfuDgLuDATvXnoAcYTnEaklv/B9hoSX4cEc14eT+PExFN3Xu9g/jl7oN4fPdBeI+f1rYvXlCMGy9diVs2rcaGVYvmTt5SMAicfBc48BLw3k7gQDdw/E1MGJIrKAUCKSwFw4VyiSgGBk5EeSAQVFK6pL/vzCh+9+phPLb7IHb2jF+ZWlKox9+8bzlu2bQKHzh/8dzIWxoeUHuQDnSfDZa6gSH/xOMq1qlzKK25HFh9ObD4QuCHl6mJ4Fwol4jSxMCJKMeeeu3whEkkV4RNIjkyFsQf3z6Ox3cfRNcbRzFyNm9JpwOuXFeJj5tW4UMblmPhbM5bUhTAJ6vB0YGX1GDp2OuAEow8rrAUWGmKDJRiJXNvtXOhXCKaFOY4MceJcuip1w7jzoelCf0eoa/zay9Ygr++50fv4Ki274JlC/DxTatx82UrsVKYN53VnT4jg8Ch3eM9SQd2AoMnJh5XvhZYU6MGSGsuB5ZvBApSDCBjzuO0igvlEs1BzHEimgECQQXbntyT6KJ4/OHt4wCAxQtKcPNl6nxL71s5y/KWFAXw7x8PkA68pK7zFoxaQLigWF3CJLw3adEUlnVZfxNw0Ue4UC4RpYWBE1GO7OzxRQzPxWPbeiEarxZRmK95S+kuWzI6BBx+5WwC99lht1NHJh63cMV4gLTmcmDFpZmfbJIL5RJRmhg4EU2jQFDBG4f78bz3BB7ffTClc1YK8/I3aEpl2ZL+Q+MB0ns71aApMBJZjr5QnZE7vDepfDXnTyKivMPAiSiLFEWB9/gp/OXdk3jeewIvyj70nRlNfmKYpQtLs1S7KYq7bMkhddmSNVcAfQeB/vcmnjt/yXhP0prL1SG44jk4zxQRzTgMnIgy7IBvEM97T+B570k87z2J4wPDEfsXlBTiinUGXCEa4PyjjJOnRuJdFI/l5erUBHknGAB+14zYl/OfdeAl9bdODyzbEDnsVnEue5OIaEZi4EQ0Rcf6h/CCfBJ/eVcNlt7rjVwUtqRQj5pzDbjKWInNxkpsXFWuDb2tNZThzoeleBfF454b18ecz2laBQOAr0e9/P/YG8CxPcB7HmDgcPJzb7gXMH0WKFmQ/XoSEU0DBk5EafIPjuBF+aTWo/TusVMR+wv1Oly2RsBmYyWuMi7GprUCSotiJ0tv3bAC999umjCP0/KweZymjaIA/QfHg6Oje9TfJ94GxlKYaTuWBcsYNBHRrMLAiSiJ08Nj2LnXhxe8ap7S64f6ET77mU4HbFhZfjZQqkTNuQbML0n9rbV1wwrUrl+e0szhGTPoiwyOjr2h/gz3xT6+cB6w9CJg6Xr1JxgA3P+W/H64bAkRZUAgGIB0TMLxweNYUrYEpqUmFORo6hAGTkRRhkYDkPb3ng2UTuKVA36MBSNzec5fukDrUbpSNEAoK57SfRbodbjKWDmlMmIaOQ0cezMsODobKJ06Gvt4XQGw+PzxAGnpxcCy9YBwTuQUA8EAsPMBLltCRFnn3ufGfTvvw9HB8c+tZWXLcPfld8N8jnna68PAiWaNVNd7izYWCOKvB/u0HqVde3sxPBa5lMdaQ5nWo3SVsTLzV7qlOxfShAcxoi5wGx0g9e6Nf45wTlhw9D71d+V5qc2VpC/gsiVElHXufW7c9dxdUKL+QTs2eAx3PXcXvnfd96Y9eOKSK1xyZVZItt5buGBQwZtHBrQr33b2+HBqOHKW6qULS7DZWInNxsW4yliJNYYsXiqfylxI45UH/PvGA6PQENuJd4BgnGkO5i+NDI6WrgeWXAiULMxS3blsCVE+yqfhrlQEggHc8OgNET1N4XTQYVnZMjx161NTfhzpxAMMnBg4zXiJ1nsDgB99yoQLli/E896TeMF7Ai94T0as/QYAQlkRrhIrteE345L507OsSby5kEK1v/arQKkwnot0/E1gdDB2WSWLzgZGF4/3JC1dD8xfnMUHgKn3lhHNIDMt+AjJh+EuRVEwHBjGqdFTGBwdxOnR05E/Y6cxODqIU6OncHr0NPb17cMfD/4xabk/vuHHqFleM6W6MXBKEQOnmS8QVPAB+zMJly7R64CoFCXMLy7A5esMWo/S+hWLoJ/uy/6DAeD770vtsv5wBSXAkgvCgqOzPUmcaZsoq/Ih+JiMeMNdurP/oCUa7goqQZwZO4NTI6e0wOb06On4wU+CQGhwdBABJZDxx2e/2o4Pix+eUhlc5JfmjBflk0nXewsq6hQBaqCk9ihdsrocRdOxjMnIINB3QF3E1r/v7O/9gP+AmpM05E9extqrgHXXjvcgGUSggG9dmrlmYq9NPubahFMUBSPBEQyNDeHM2BkMjQ1hODCM06On8c0Xvjmh3gC0bS1/asGv3v0VBsfGA6FQwDM4FqeHe4rKCsswv2h+xE9ZkbptQdEClBWVofdML37p/WXSspaULclKHePhpy/NCKeHxyAfPw3v8VPaj3z8NN4Jm0NJjyAu17+JpfDjGATsDF6EINTg6L5bN8JStSbzFRs5rQZBEwKj/WrAdPr41O+j5g5go2Xq5RDlgZnYaxMIBnDfzvviBh866GDfaccH13xwQgAYK6AZCgxF/g7tCwxheGwYZwJntO1DgchAKPzY8GOGxoZi1i8VQ4EhPPfecwmPKdAVaIHN/ML5mF989vfZgGdB0YKYwU/E32HH63XJ/3ENBAN44fALODZ4LOZjC+U4mZaaJvW4J4uBE+UNRVFwuG9IC4q0IOnYaRzpT9yrdIN+J+4peggrdT5t2yHFgG2jn8HTwcuxSphkcvfwQFhgtB/o2x8ZHA2eTF5G8UKg4hxAWDv+U75GPffXX0l+PudCohjYa5O+seAYRgIjGA4MYzgwjNHAqPp3cFjbHr4/9Pe7ve/GTVAG1ODpyOAR3PTLm1CgL8hYQDNZhfpClBaUorSwFMFgEL5hX9JzPn7ex3HliivjBj+lBaXTk/cZpkBfgLsvvxt3PXcXdNBFtGNomNF2uW3aX/cMnGjaDY0G0HPitBYUeY+fgnxCDZYGR+KPfy9eUAxxyQIYlyyAccl8GJcswLmV8+Fw/CfuHf3PCccvhw/3F/0nvlbUjMvXxRn/HuoPG0qL8XMm+QcOSsuB8rWRgZH2s0ZN7o71gRMMAH9s41xIOTQTgw9gdvbaAMA3X/gmdNBhVBkdD2oCiYOa8N8jwcTHZSO/Jtz+gf0J9xfqCzGvYB5KC9WgpqSgBPMKz94+G+jMK5yHkoISbVtof7Jj5xXOQ2lBKUoKS1CkL9Lus/tINz739OeS1v1G441TTrDOBvM5Znzvuu/FfL3bLrfl5PXO5HAmh0eY7FxI0RRFwfFTw/AeOw35xHiA5D1+Cgf9ZxDvVVeo12FtZdnZ4OhsgLR0AYyLF6C8rGjiCcEAznxnPUoGjyBWNYMKMFK6GKU3/wDofy9ySK3vAHCmN/mDKRXCAqFz1GAovOdonpBO00TSrqoDYs6FVP9Q3l/Wz+Bjek0l0TeeseDYhKGj6OGkM2NntKGi0PDR8Njw+N+hfWNDOBOI3Bc6fzTelBk5UKgvRElBCUoKSlBcUIySAjXgiN5WXFCMgZEBvHj4xaRlfsX0FVyy5BItiAkFSLECmukSuqQ/2XBXJi7pz6Zsf87wqroUzYXAKTA2hjdfehpneg9iXsUqXHTFDSgojN3R+NRrh/HvT7yKNade0fKEDiy4FP9608a4a6aNjAWx33ca74YFRqFhtoGhsZjnAMCi0kKct1QNjsSwAGmtoSxx0raiqJfjD/rU3iD5D0DXv6qPFYBUWoLjBQVYEgjANDSMlN5W8yqiAqOwoEhYo/YoZdOeJxB4ygZp5OR43YsXo2AGzIXE4CMzAsEARoOj2s9YcEz9OzAasX14bBj//Id/Ru9w/IB/ftF83Gy8WcurGQ4Mj+fWxMqvCQxhLBj/vTrd1ixcg2VlyyYEL6Hfob9LCkpQrI/cH+/Y6P3F+uK0vnRnevARer0DiDnclevE9nzAwClF2QqcRkaG8eiz/43dB3agN9ALobAcCworUFG2DMuFdfjYtVYUF5dox/7yDw4c69+PpYvWRuyLV3aqx+9++idY9sI2HCw9pX0hrxpagKNX3YNNN3w24tinXjuMXz7yAL5e9BCOzDutHb/8zHx8e/QzMN9yB85dPD8qQfs09vsGEYi+1v8svQ5YXVGmDasZtUBpPirnF0OnKOpVZaEgKOHvXjUnaNAHBIYn3Je7bB7uq6zA0bCgcNnYGO4+2Qvz4Bk1IFpx6cTgSFiTmYkgp4DBR+YpioKAEhaMhAUgQ4EhND7diJND8fPTyovL8WXTl2OWoQU1McqODnriHRu9PagE49ZlOumgixgKih4eKiksiRhqCu9V0Y4tmLivtLAUb/neQvMfm5PWIRNz8mTDTA8+Yn3OLC9bnrPhrnwzIwInWZbhcrkgiiJkWUZTUxMEQUj72HTKiZaNwMn5q6/jJycfR39B/P86Fo8F8cnFHwMA/PzEL3GiUD9hX9PN345ZdqrH7376Jzj+sg1tiycGE80nerHkMrsWPAWCCr5+77dxfdF/xT3+0T4rng5eHvPxzC8uwIVLSrCxIoALF41CXDCMNaVDWFpwGkXDvWeDnhjB0JAfmOwXhr4IKDMABSVwjx7HXUsXqx9lYblEurMv7e8dOwFzXSew7urJ3VcW5XPwES6oBBEIBjCmjCEQDGAkMALLkxYcPxP/qkFDqQHffv+3I4OPsOBhJDASuT0qsJiwPypAGQmMxO2ZGQmMTHtCbiYV6gpRVFA0/ltfiCJ9EYYDwzhx5kTS869bfR3et/h9EXkvpYWlmFcwT/07Tu5Msb44awnAM73XBpj5wcdMHVafDjMicKqqqoLH4wGgBj82mw2dnZ1pH5tOOdEyHTg5f/V1/LD3V+qNRB8+0U0e48v+SxU3RwRDzl99Hf/V+6u4wUH48YGxMTz+vYvxzaUlcY//l6PDeHTRj3FiMICj/tP4twVfxreWlcY9/ltHB3D0zBacu2AUy4sGUak/hUXBAcwb64N+qBe60dPJGyie4oVAWQUwz6AGQ6HfZZVh2yoi9xUvAHQ6BMZGcMNDJhzVI2ab6xQFS4PA45/8C/SFhQgqQe0noASgKMr4NgQj9k/4QRDBoPo71KMRVMb/1n5DiSg//H7C948Fx/B9z/fRP9Ift2kWFC3AJy76hFbOWHBMu9/Q3+EBTUAJaNui9wWVYMRx4eeHnxdR1tnfMzkICQkFH1CAM4EzSY+/2HAxVi9crZ1XpB8PYIoKirRt2k9B1DFR21M9rlBfGPdS7VQTfdlrkz0MPmanvA+cZFlGXV2dFvAAQEVFBXp7J47bJzo2nXJiyWTgNDIyjL/5qQknC3Spzd4cavZYxyoKFgYBy3n/ACUIDI+cwZPvOXFKH6dsRcHCoIILT5mgBAIoHzuO7sqDGNDr4x6/IKjgZn8QgA5FuhF0CiU4rYtffpmi4KOn1OAoAB0UnZpTpAAI6HQIAgjqdAgWFIf9FJ39KURQr/4E9AUI6gsQ1BUgqNcjqNMjCCVusBIefMQKYkJDL5SfVsxfgcrSyvHgIUHAEfopLiiOua9QX6jdLtYXp1VWob5Q60mZycEHe22IsiPvZw53u90wGAwR2wwGAyRJgslkSvnYXbt2pVwOAAwPD2N4eDw/pr8//n/66frlHxw4WZggqTlaouBKp8NAAfC/PT8c35YoYVqnw0CBDrvKXw7bmOBDU6fDqQIdflYZKnNe0roO6nToWJRqLlAQwBCgDAFjUH/ylF6nhx569bdOD51OhwJdgfZbr9NDh8htOp0Oep1+4rawcsKPi/gJO+bEmRN4w/dG0jpuXrkZRsGIQp3aE1GgL0ChrhAF+gIU6ApQqC/U6hr6O3pf+Lbo82MeH7Uv+v6koxIauxqT1v3bH/h23gUfpqUmLCtblneT6qUiX+e1SYf5HDM+uOaD7LWhGSsngZPf74+53eebOGdOomPTKQcAWltbsW3btlSqmLZj/Ynn75iMC4ZHsCQQwImCArxVUpz8+BFgeeF8HA0O4a3C5POVbChYgguWnI/3+g9g5+CBpMdfX3kpLlr9/onBQNRPREABHQr0BVrwEfOYGMHKhGBDr48ZmLx+4nW0/Lklad1/tOVHqFleExkcQTftE7qFS7Xn446Nd+Rd8FGzvIbBR47k47w26SrQF+Tda5ooVXk1AWa8QCjdY+Pta2lpwV133aXd7u/vx5o1mVmGY+mitcCp5Mel4xPnWFFn/gd0PPMj/Puh7UmPbzi3EfW1/4AXD76IRnfy3oAvf/BeXLnqSnQfehE7U+g9uN30JdSsvDKluk+XtQvX4j+l/0z6Bb555ea8+yJkz0fuzPTgg702RLkzDaucTiQIwoReIZ/PF/NquETHplMOAJSUlGDRokURP5nysWutqBwLTkz8jkdR4h6rUxQsGQvi5g/+PVBQiI9da8XisaCWqB3v+I9dawUA1KyogUG/IOHxBv1C1KxQ/+MzLa/BsqJFCY9fXlwOUx7+hxj6AgfGv7BD8v0LfCbXHRgPPpaWLY3Yvqxs2YxI8jWfY8bTtz6NH9/wY9ivtuPHN/wYT936VN7XOyTUa/Nh8cOoWV6Tt68TotkmJ4GT2Rz7g6m6ujqtY9MpJ9uKi0tw29kpBpIGT2H7o4OV0O1PLP6YNj9TcXGJNn1BKscX6Avwr9f8OxSdbmJdFAWKTod/veab2gdtgb4Ad79/G6DTxS5fp4Nt8zfy9oN5Jn+Bz+S6Aww+iGjuyclQnSiKEbdlWUZ1dbXWUyRJEgRBgCiKCY+N7lmKLme6Nd38beBXSDqP05KAgk9EzOM03tuw+Oy+6HmZQmWnerz5HDO+f933Jw5FzF8ec2JF9Qs89vG2PJ+IEZjZQxczue4A81WIaG7J6QSYDocDNTU16O7uRktLixbw1NXVoaamBs3NzUmPTbQvmdk+cziQ/pwjnKOEiIjmmryfxylfzIW16oiIiCixdOKBnOQ4EREREc1EDJyIiIiIUsTAiYiIiChFDJyIiIiIUpRXM4dPt1BefCbXrCMiIqKZJRQHpHK93JwOnAYGBgAgY8uuEBER0cw1MDCA8vLyhMfM6ekIgsEgDh06hIULF2Z8sdfQOngHDhzgVAfTiO2eG2z33GC75wbbPTey2e6KomBgYAArV66EXp84i2lO9zjp9XqsXr06q/eR6TXxKDVs99xgu+cG2z032O65ka12T9bTFMLkcCIiIqIUMXAiIiIiShEDpywpKSnBPffcg5KS+OvIUeax3XOD7Z4bbPfcYLvnRr60+5xODiciIiJKB3uciIiIiFLEwImIiIgoRQyciIiIiFI0p+dxygZZluFyuSCKImRZRlNTEwRByHW1ZixJkuB2uwEA3d3d2L59u9aeidp6svtoIpvNhpaWFrb7NHG73ZBlGaIoAgDMZjMAtns2ybIMt9sNg8EAWZZhsVi09me7Z44kSWhsbITH44nYno02zmr7K5RRJpNJ+9vr9SoWiyWHtZn57HZ7xN/h7ZuorSe7jyJ5PB4FgNLb26ttY7tnT1dXl9LU1KQoitpGoihq+9ju2RP+OaMoivYcKArbPVM6Ozu1z5No2WjjbLY/A6cM8nq9EU+WoiiKIAg5qs3M5/F4ItrP6/UqABSv15uwrSe7jybq7OxURFHUAie2e3aFt7WiqO0W+s12z57oNgoPXtnumRUdOGWjjbPd/sxxyqBQV284g8EASZJyVKOZzWQyYfv27dptv98PQG3TRG092X0UyeVywWKxRGxju2ePLMvw+XwQBAGSJMHv92vDRWz37DIYDKiqqtKG7GprawGw3adDNto42+3PwCmDQl/s0Xw+3/RWZBYJ/+Jub2+H2WyGIAgJ23qy+2ic3++PmQ/Ads8eSZJgMBi0vAyn0wmXywWA7Z5tnZ2dAACj0YjOzk7tc4ftnn3ZaONstz+Tw6dBvCeRUuf3++FyuSYkFcY6LtP75qKOjg40NTWlfDzbfep8Ph9kWdb+OWhqakJFRQWUBHMUs90zw+12w263Q5ZlWK1WAIDD4Yh7PNs9+7LRxplqf/Y4ZZAgCBMi2lDXO02NzWZDV1eX1paJ2nqy+0jldrtRX18fcx/bPXtEUdTaCoD2W5IktnsWybKM7u5umM1mNDU1wev1oqOjA7Iss92nQTbaONvtz8Apg0KXDUerrq6e5prMLm1tbbDZbBBFEX6/H36/P2FbT3Yfjevo6IDT6YTT6YQsy2htbYUkSWz3LArlM8XCds8eSZJQU1Oj3RZFES0tLfycmSbZaONstz+H6jIo+oNPlmVUV1fzv4wpcLlcMJlMWtAUGkKKbtPwtp7sPlJFf+hYrVZYrdaYX+xs98wRRRHV1dVaflloLieTyTThWLZ75phMJjgcjoh8ypMnT7Ldsyg8hzLR92a+fs5zkd8Mk2UZDocDNTU16O7ujpg4kNIjyzKMRmPENkEQ0Nvbq+2P19aT3Ufj/H4/nE4nbDYbmpqaYLVaYTKZ2O5Z5Pf7YbPZUFVVBY/Ho/W0Any9Z5Pb7daGRAH1nwe2e2a53W50dXWhra0Nzc3NqKmp0YLVbLRxNtufgRMRERFRipjjRERERJQiBk5EREREKWLgRERERJQiBk5EREREKWLgRERERJQiBk5EREREKWLgRERERJQiBk5ENO3cbjeMRiPa2trgdDpRVVWFqqoqbcJNo9EISZKmfB+hMomIMoVLrhDRtPP7/ejq6tJmZ+7q6oLBYEBTUxMAoKGhAbIsx1z2IlVmsxkNDQ0Zqe90CF+GgojyF3uciGja+Xy+hIvamkymCaubz2ayLKOjoyPX1SCiFDBwIqJpV19fn5FjZgu73Z7rKhBRihg4EdG0S2VIateuXaiqqkJbWxsAwOVywWg0wu12AxjPk7JarXC5XHA6nbBarfD7/XHLdLvdaGtrg8vlgs1mi3ucLMuw2WxauaEyJUnSzm9ra4Msy1q5yeoayrdyu91wOp2oq6vT9u3atQtdXV1wOp1amUSUn5jjRER5KTpHyWKxoL29PWK/xWJBZWWltsq6y+VCXV0durq6JpQXCoY8Hg8AdbgwtFJ7OL/fj9raWng8HgiCAJvNBqfTCYvFApvNFlF2VVUVduzYkVJdzWYzurq60NnZCQDo7OyEJEnaPqPRqOV4EVH+YuBERDNaeO+VxWJBXV1dzERrh8MBg8Gg9QIBQHd394TyOjo6IIqidn5LSwsAoLW1dUKyuiiK6OjoSCngqaysRGVlZUS951IeF9FswcCJiOYMk8kEs9ms3Y4V8EQHXdN9pRuvriPKb8xxIqK8JQgCTp48qd12u90TcpjCb7tcLpjN5ojAI7S/oaEhorcpVF40i8UyYQ4pt9sd83xJkrQk9lTqmopYdSKi/KFTFEXJdSWIaG5yu92QZVm7qsxms6G6ulobEvP7/bDZbFoitcPhgN/vh8PhgCiKsNls8Pv92vBcd3c3WlpaIAgCJElCY2MjAGD79u0wmUxwu93o6upCTU0NAEwIssLrFes4t9sNSZIgiiK6u7vR0NCQUl39fn9EXUL5ViaTSXvsdrsdVVVVMJvNCadqIKLcYuBERDNWaJZxJlUT0XThUB0RERFRihg4EdGM5Ha74Xa7tcv6iYimA4fqiIiIiFLEHiciIiKiFDFwIiIiIkoRAyciIiKiFDFwIiIiIkoRAyciIiKiFDFwIiIiIkoRAyciIiKiFDFwIiIiIkrR/w9sMMmTlIxXVQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -605,9 +605,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpgElEQVR4nO3deXhb9Z0v/rcsb3Fi+1jO4mwkOSYsIQEi22EpdMFyCXSgTJHtttBlOo1UZmlvmdYiM7dD6dypI9Npp53eKVJ6Oy2l03qBKfAbCJXCtNMWhjhWWEJYdZwQEidOLMtLHG/S+f0hn2PtlmXJku3363n82Do6y0dfbR9/V40syzKIiIiIaEY5mQ6AiIiIaKFg4kRERESUICZORERERAli4kRERESUICZORERERAli4kRERESUICZORERERAli4kRERESUICZOKSJJEiwWC8rKylBZWRl338rKSpSVlcFiscDr9c5PgJQ1XC4X6urqZnydpFNHR0fGrr2YKO97jUaDyspKtLS0oKWlBWazGfX19SznBJjNZpSVlcHpdGY0jsX6XNrtdlRVVWU6jMVFppSyWq2yIAhyV1dX1PsdDodsNBplk8k0z5FFZ7PZIrY1NTXJRqMxA9EERItpsXE4HLIoirM6JlXl0t7eHrGtv78/7us2mlS/TrLheU82BoPBEPU9LYqibLVa5xpWWmVDuev1etnhcGQ6DFmWF99z6Xa75aamplm9tyk+1jilmCAIaGhogM1mi3p/ttUwORyOiG11dXVobGzMQDQB0WJabHQ63ayPSVW5CIIQdZvJZIIoigmfJ9Wvk2x43lMdg9lshsViSek5Uy0byn0hWKjPpSiKMJvNUd/3lBwmTmlgNpvR1tYWsd3r9c7qiynd7HY7JEmK2G4wGGA0GjMQUeyYlrpUlovL5UJLS0vEdqvVOqsP11S+TrLheU9HDEp5Zts/TIpsKPeFYiE/ly6XK6u+exa63EwHsBjp9XrodDp0dHSEfLEcPnwYBoMh5nEtLS0QRRGSJEEURfVYr9cLu90OURThcDhgNpuh1+sBAE6nU/0vaP/+/ZAkCZIkoa+vD1arNea1nE4nHA4HJElSv0SbmprgcrlgsVggSRLcbnfMa3g8HnR1dcFms8Fut0On06G1tRV79+5VY5vpcSUaU/h5gEB/hOD74rHb7SG3TSbTjOdM9jErx+l0OtTX1wMIPH8zPR/h8QSXVaLlMlP5KgRBgNVqDTmHkuzv378/5PhY5ZPo6yTZ16Ioiuq5bDYbJElSE7v29nbodDrU1tbC6/Wivb1dLf9Y5TdTXLFiaG5uhiRJaG9vh8FggCRJqKurgyiKsNlsM34ZdXV1Qa/XhySk8WJUageUmgMlvkRew6l4zDO9p1L1WdTS0gJBEJKqeZ3Nezbe9WfzngEW7nPp9XoT/odIOVZ5bkRRhMfjgcFgiPqet1gssNvtsFqtCT+O8HKpqamZ8/ts3mW6rXCxUdqYo/X/UPqWROvjZDQaQ/qeGAwGtU26qalJdrvd6n2iKMr9/f3qbaW/THAfAVEUZ2zTdjgcsl6vj9je1dUV0f8m1jWamppCHl/4+eI9rtnEZDQaQ67tdrtlg8EQ59EFWK3WiBiDn4d450z2Mbe3t8sAQp6zpqamkOc8WhnHK6t45TKb8o3HYDCEnGum8pnN6ySZ16LNZgu5XrTnMriMZyq/meKKFkO0vmjR+rmE94vp7++XrVarrNfrQ96r8WJUXksOh0Pu6upSH+tMr+FUP+Z4UvFZ1NTUFNIXp7+/XwaQUB+nZN+zwdef6T2zVJ7LcCaTKeRxu93uiL5n0d4PBoMh5PlMplwSfZ9lCyZOKaa8gNxutwxAfaO53W71Ayc8cVL2DT+Pso/RaAx5YYZ/wXV1dUUcH75PNLNJnGJdI/hDwO12y4IgJPy4Eo2pq6sr5LyKmTqUKh/I4R92Vqs1oXMm85hjPQYlFuU1EF7GM5VVtHMmU77xBH/gJVo+ib5OknktKmWmsFqtIdcLfk/MVBaJxBXr/RDeaT7aYzEYDLJer5dtNpv6E54sJvIch98f7zWczsccy1w/i8KfU0UincPn8p5Vrp/Ie2apPJczxSbLckSyFusfvvDvvViPI1q5KBJ5n2ULNtWliSiK0Ov1aGtrg8lkgsvlittEJQhCyHBct9uttle3t7cDCFS5Kk1GHo8n4nrBBEGI2Geuol0j3pD6mR5Xog4fPhy1qlZpLojV/Hn48GEIghBSTa2UpdLcMNM5Z/uYY1HiiNXXIJmySlX5RpNsmSv7BEv2tSgIAvR6vdrkrTyPSvV/sETKItm4TCYTWltbodfr4XQ6Yz726urqkOaKcMnEONNrOF2POZa5fhYpZZCMRF+TiVx/pvfMUnguoz2e8Odmts9VMuWiSPR9lg2YOKWR2WyGzWaDyWSK+wJUOo0Hv1CC/3a5XGhubkZdXR0aGhrS1t4b7QtpLmZ6XInGlGxnzHjHZVsHz9mWlVIucy3fePFkkvJabGxsVD9Mq6urYTab0dHRAYPBEPJY01EWwTHU1tbCarVCkqSkz5tIjOGfEzO9htP1mGNJxWdRMv2agNS8JlNVZovhuUyV4MeVTLkoUvU+mw8cVZdGDQ0NcLlc6OjoQHV1dcz99Hp91FoCr9cLr9eL2tpa7N27V03AlBdqqkfDuFyulJ4v3uNKlMvlUjsLhpMkCTU1NXGvH+1aXq836XMmS3kuwzvOK2ZbVi6XKyXlG8t8l0845bVoNBrR0dEBp9MJvV4Po9EIm80WUfuQjrJQYgge7JHsl75yntnGGO81nM7HHE0qPotixZyIVLwmU1VmC/25jBVbMtcLrvWay+NI1ftsPjBxSjFltAEQyKwNBgNaW1vj1jgZDAZUV1dHzEzb1tam1iwEf+EqL9SZPuRmoox6AAIfPrG+1JO9RrzHNZuY9Ho9DAZDSPVv8BdrvHMZjcaQofderxdtbW1JnzPRDxaXyxWyb3Nzc9x5kmYqq2jlkkz5JirZ8olmLq9FpclbeV8p5Rd+zmTKIvwc8d4PZrMZe/bsmdP0C8m+H2K9htP9mMOl4rNIFEWYTKaQkWVerzfi/RJNKt6zqXrPLPTnMlps4c+LMnov1jWUGIJbBeZavql4n82LTHeyWizcbrdsMplkALLJZFI7AQePmlBGZwiCoM5CG9wZTxltEnyMsr2pqUl2OByyw+GQ3W632pG3q6tLNhqNMgB1FIJyDb1eP2MHO+XcSue+aOeLdw2DwaCOkFD2aWpqSuhxJRpT+HlsNltIB+1Ezme1WuX29vaEzzmXx6x00mxvb5cdDodstVpDRoiEHxctnmhlNVO5JFq+sYSPhplt+aT6tahQOvMH3w4e2RUt3uCymE1csWJQ3nPh3G533Pd0ojE6HA7ZYDDIgiBEfXyJvIZT/ZhjxZ6KzyLlsSjn0ev1Cc8ensx7NtpjDi+zpfZcxns8wc9L+HOifJ4pMRqNRlkUxRnLd6ZykeXY77Nso5FlWc5Avka0aCnzlXR1dWU6lFmpr69HY2Nj9v+3lwFer3fGediIFpuqqipYrdZ5e90vlPcZm+qIljClql35O9kRT4tRcFOI0pxCRKm1EN9nTJyIlrDm5maYzWYAgT4N8QYxLDXKrMhA8iPBiCi+hfg+Y1MdUQo5nU5YrVb1d6LLwmSKJEno6OhQl1hgM900l8uFw4cPA0DcOX2IFqOWlhZYLBYYDAb1dzosxPcZEyciIiKiBLGpjoiSZjabUVZWFjJEnGJzuVyoq6tLavZ5IsoOTJyIKGnRVi63WCyor6+f1zjCV5zPtvMp9Hq9utL9YpCuciLKZkyciCil6urq0NjYOK/XdDgcWX2+YAulA2wi0llORNmKa9URUUrN93Biu92e0uWHUn2+xYrlREsVEyeiLOb1emG329UV4M1mc8RSCuHNJcEjU+Ld19LSojazSZKkjgBUJvAURRFms1mtVbBarepxyii8cC6XCxaLBZIkqcukKOcDgP3796tLOfT19annVB6rxWJBVVUVurq6UFlZCb1eD5vNpq4iH87pdMLhcECSJHUpi+CRjLEeYyyxzhftcSnDqK1WK0wmk/o4dTqd2lTp9XojHmcsSqzK4qwzjXBM5rmdzeMAYj9fM5U70aKWyWnLiSi+pqamkKUJRFEMWQbCarWGLDsRvMRBvPuMRmPIUgput1s2GAwh+yrLLXR1dannCV/Oob+/XwYQcq6uri5ZFMWQx+FwOGRRFEP2E0UxZCmV4CVf+vv7I84Ri7I0RLiZHuNsz6c8hmAGgyGkPNrb22UAIc9ZU1OTbDKZ1NvRyid8uRuDwRBSNuHm8twm8jgSeb5ilRPRYsc+TkRZTJKkkBFroiiqt5Uamr1796r3t7a2qotuxrrP5XLB6XSGNKmJogiPx6OeWxAEuFwuGAwG6PV6WK1WeL1etLS0hNRsCIKQ0GKiOp0OkiRFXDO4qaejo0M9lyAIURcZTVQij3G2otWwhc+0rpRHcIf5vXv3xm3WUubSCq5hqq+vh81mi7r/XJ/bRB5HIs8X0VLFpjqiLKY0USlLo3g8HnVF+sOHD0MQhJAvPWV/p9MZ8z6l6S+c0hyofFmG76OcM1nh5xMEQX0sQGDEWbQV35Nx+PDhhB7jfFCeB5fLFTUmpVyDEzq32x0zSYn3vCf63CZipueLaKli4kSUxVwuF5qbm1FXV4eGhoaQL7PwJCNYsvcFi5YkpXNEmNlsRnNzM/bv3w+73R6zxmUmSo1bqih9jqJJxXW8Xi9EUQxJauIlOKl4blN1XLB45US0mLCpjihLeb1e1NbWYu/evTCZTBAEQf2CkyQpag2Ncly8+wwGQ9TaDEmSUFNTEzMevV6f9qaa/fv3w+l0wmg0Jr38gtLEmMxjjHW+WBKpgfF6vepzEk2sco2VzKTjuU1FTVK8ciJaTJg4EWUppeYk+AtX+YJTmn2MRqM6qgkIfHm2tbXFvU+v18NgMIQ0DSlfevFGcomiCJPJFDKay+v1wuVyJVVjEX5MV1cXBEGA0WicVc1FcN8bJaFM9jHGOl/4diX+aLVb4eXR3NwMk8kU8zEZDAZUV1ejo6MjZHtbW1vM+Oby3Cb6OMJFa0aNVk5Eix3XqiPKYsqw8Lq6OgCBLyuLxYLGxkb1i9BisaC8vFztBBxcUzPTfcrSH263O2SoudVqxeHDh7F3796IREYZ6q405SkxWq1W6HQ6NDc3o6OjQ13kWGluDN7W0tKC5uZmiKKoXqOjowP19fXqVAeCIMBsNidU86TEUFlZmdBjTPZ8SrKilEdraytcLhesViuMRqM6lH/v3r1qvyYAIdMBKGXR1NQUEo8Sq9IcOlOCl8xzm8jjEEUxoecrXjkRLWZMnIgo47xeL/bs2YP9+/erTZKSJKnLtyyUL2Ulcerq6sp0KESUJmyqI6KMs9vtMJvNai2WMqzfarUyCSGirMLEiYgyTq/XR50d3Ol0qs2URETZgE11RJQVnE5nyFxHiS49ki2UvmHKby5BQrQ4MXEiIiIiShCb6oiIiIgSxMSJiIiIKEFMnIiIiIgStOjXqvP7/Th9+jSKi4uh0WgyHQ4RERFlGVmWMTQ0hHXr1iEnJ36d0qJPnE6fPo2NGzdmOgwiIiLKcidPnsSGDRvi7rPoE6fi4mIAgcIoKSnJcDRERESUbQYHB7Fx40Y1Z4hn0SdOSvNcSUkJEyciIiKKKZEuPewcTkRERJQgJk5ERERECWLiRERERJSgRd/HKVE+nw8TExOZDoNo3uXl5UGr1WY6DCKiqHx+GYe6PegdGsXq4kLs2qKDNidz0wst+cRJlmWcOXMGXq8306EQZYwgCKioqOBcZ0SUVQ4c7cFDTx9Dz8Coum1taSEevGMbdm9fm5GYlnzipCRNq1evRlFREb84aEmRZRkjIyPo7e0FAKxdm5kPIiKicAeO9uC+x1yQw7afGRjFfY+58KN79RlJnpZ04uTz+dSkqby8PNPhEGXEsmXLAAC9vb1YvXo1m+2IKON8fhkPPX0sImkCABmABsBDTx9D3baKeW+2W9Kdw5U+TUVFRRmOhCizlPcA+/kRUTY41O0JaZ4LJwPoGRjFoW7P/AU1ZUknTgo2z9FSx/cAEWWT3qHYSVMy+6USE6cU8PllvOjuw5Mvn8KL7j74/NEqF1PD5XLBbDZDo9HAYrHAbrfDYrGgvr4eTqczZdex2+0oKyuDy+VK2TnnW1VVFTo6OtTbdrsddXV1SR1LRETzZ3VxYUr3S6Ul3ccpFea7x79er4fVaoXdbsfevXshCAIAwOv1oqysDF1dXdDr9XO+jslkQnt7+5zPo/B6vWqs88VqtaK6ulq9bTAYIIpiUscSEdH8kWUZGiBqHycg0MepojQwNcF8Y43THCg9/sPbYZUe/weO9sxbLIIgQBRFtLa2zts1EyVJEtra2ub9ugaDISRZE0URBoMhqWOJiGh+/OerPfj8v3WqSVN4RwLl9oN3bMvIfE5MnILIsoyR8cmEfoZGJ/DgU6/H7PEPAN986hiGRicSOp8sz715z+PxoLKycs7nSTWr1ZrpEIiIaAH4tz92469+6cK4z4+PbluDH3zyWlSUhjbHVZQWZmwqAoBNdSEuTviw7e+fS8m5ZABnBkex45u/SWj/Y9+6FUX5yT0dXq8Xzc3NMBgMMJlMcDqdMJvNsFgsAACbzYauri64XC44nU6IoghJkmA0GkOarlwuF1pbW1FTUwMgkIgpnE4nLBYLGhsb0dTUhI6ODlgsFthsNrUWR5Ik2Gw21NTUwOPxoKGhAYcPH8bhw4fVc8VqLnM6nXC5XBBFEZ2dnWqy5XK5YLPZQvomiaIIj8cTNx6Xy4U9e/bAbDbDZDLB6/XCYrHA6XTC7Xar545WHuHHKo/dbDar+zocjpQ2ZRIRLWV+vwzrgTdh+28JAPCZ6zfhm3deBW2OBh+7eh1nDqfUsNvtahKifKkDgeTEYDCgq6sLNpsNOp0OkiTBYrHA4XCox1dVVeHgwYMQBAFerxf19fVqUgEAzc3N6t8GgwGNjY3qbaPRGNIs6PV6UVdXh66uLgiCoHZcb2pqgsFgQGVlJUwmU9THocTW1dUFIJCwtbS0wGQyoba2Ft3d3WqzWVlZGQ4ePDhjPHq9PuR+QRBgs9lQVlYWcs1o5RF+rFKewclSe3s7XC5XSvqTEREtZeOTfny94xU8+fJpAMDXb70cf/HhSnW0rzZHgxsqs2euRSZOQZblaXHsW7cmtO+hbg8+/2+dM+730z+rSajz2rK82U86aDKZYvbDEQRBndTTaDTCYrFEfMmLooi2tjaYTCa0tbVF3K/TJd7prq2tDaIoqvHs3bs34WOV5C54VGBnZycEQYjoa5SqDts2my1ueYQrLy8PmSRVEISQGjkiIpq9odEJfOmxLvzx3T7k5miw7+6rYazakOmw4mLiFESj0STcXHbz1lVYW1qIMwOjUfs5KT3+b966KmNViomOIEuF8FFzsRK6WKPr9Hp9SMdtk8kEu92e4iiJiChbnB0cxef/rRNv9AyiKF+LH91bhQ9dtirTYc2IncOTpM3R4ME7tgHIXI//mWo8gu9vbGyMmOfJ5XKhoaEBANR+QcEkSQq5LQgC+vr61NtOp1NdHNloNEYcH21eqWjbosXmdDrR0NAQN6Z48ShiLd48U3nEO5aIiObm3d5hfOJfX8AbPYNYuSIfraYbFkTSBLDGaU52b1+LH92rj5jHqSKN8zgpHbiBwGg1s9kc0eTkdDpDOlsbDAZ1/qeWlha1A3Z7e7ta+yOKItrb22GxWFBXV6fWDDU3N8NqtUIURTQ0NKgdrIFAsqU0eYmiCJvNBovFonYuV2qQzGazOvdUtOkAlNjCjxUEIWpMinjxeL1etLa2QqfTRXSCD75mtPJQylg5VjmXcg1JktRO66IozmvNHhHRQtd1woM//9lheEcmsGXlcvzsz3bhkvKFs/SZRk7FOPgsNjg4iNLSUgwMDKCkpCTkvtHRUXR3d2PLli0oLEx+9lGfX86qHv+LWV1dHaxWa9KdssvKytDf35/iqBa+VL0XiIjiee71M/jyL49gbNKPazcK+H+fq0b5ioJMhxU3VwjHGqcUyLYe/4tZMh2y7XY73G43zGYzZwMnIsqQn//PCTz45FH4ZaD2itX44af1WJY/+4FRmcY+TrRg2O12da6o2fQ/MhgMKC8vR0dHB2w2W/oCJCKiCLIs4+Hn3sQ3fh1Imj61ayNsn6lakEkTwKY6Nk8Qge8FIkqPCZ8fDzz+Gh53vQ8A+KrhMny59lJ1jqZswaY6IiIiyqgLY5O47xcu/Pfb56DN0eDbf7odjTWXZDqsOWPiRERERCl1bmgMX/hpJ147NYBleVr833t24pYr1mQ6rJRg4kREREQp033+Aj77k5dw0nMRuuX5+Mnna3DtRiHTYaUMEyciIiJKiZdPevGFn3bCc2Ecl+iK8LMv7MKWlcszHVZKMXEiIiKiOXv+zbP4y18cwcUJH3asL8VPPl+DVcWZn6Mp1TgdwQJmt9thsVhgt9vR0dEBp9OpDtnPVk6nE1VVVfO2Dl1VVRU6Ojrm5VpzFR6r3W5HXV1dUscSEc2nXx16D3se7cLFCR8+dNkq/Mp0/aJMmgDWOKWG3weceAEYPgusWANsuhHISe/8FHV1daivr4fValW3uVwu1NXVwe12p/Xac2EwGKIuu5IuVqt1wUx6GR6rwWBIeDmXhfQ4iWjxkGUZ3z/4Dv7Z+Q4AwFi1Ac2f2IE87eKtl2HiNFfHngIOWIDB09PbStYBu63AtjvTcsmWlhYAgMlkCtmu1+sjtmWj8vL5m2V9PpO0uQqPdTbr4C2kx0lEi8Okz4///euj+FXnSQDAX33kUvzNRy/LujmaUm3xpoTz4dhTQNtnQ5MmABjsCWw/9lRaLtvc3Ayz2Rz1vvr6+rRck4iISDEyPgnzz7vwq86TyNEA/+eu7fjarZcv+qQJYOIUSpaB8QuJ/YwOAs82AYg28frUtgOWwH6JnC/BCdwlSYLX641ZExHcvONyudDS0oKOjg60tLSofZ+C+xkp/aLq6+shSZJ6THBi5nQ6UVlZCbPZjI6ODtjtdpjNZnXZE+V+u90Ou92OqqoqdbtyfYvFEhKn1+sNuXawaMfFijn4fMp9ynEulyuiP9VsyySWWI/N5XKp5aT8uFwu9fxKbWFHRwcqKyvhdDrV44Jj9Xq9MJvNqKysnDH28GNn+1iIiGajb3gMn97/Eg6+2YuC3Bw8cm8V7r1+U6bDmjdsqgs2MQJ8e12KTiYHaqL2bUxs9789DeSnbsimJEmwWCxwOBzqtqqqKhw8eFDtZ+RwONDe3g4AaG9vR0dHB5qamqDX61FZWQmv1wtBEGAwGGA0GlFeXg6j0Qgg8MVfX18Ph8Ohnq+rqws2mw06nU69fldXF4DA4rwtLS1oamoCAHR2dqp/t7e3w+VyQa/Xxz0uWszKcXa7HXq9Xm2y8ng80Ov1aGxsnFOZKOePVrbhMZpMJtTW1qK7uxuCIAAAysrK1PMHx2I0GtHa2qreDo9VEATYbDaUlZXNGHv4sbN5LEREs/Fe3wg+92+H0H3+AoSiPPy/z1WjapMu02HNKyZOC4xSmyRJUtQvQUmSoNPpYLPZIu4XRRFtbW0wmUwoLy8P6WskCEJILZYgCPB4PGoCoGxTGI1G1NfXq8mVIAjq+YxGIywWC3Q6nVqjAgSSJUVNTU3EtQCoiVe046LFrBxnNBpRVVUFURTR2NgYta9XMmWinD/8PNFiVJLM4HJKVYftmWIPl+hjISJK1GvvD+DPfnoI54fHsV5Yhp99YRcuXb0i02HNOyZOwfKKAjU/iTjxAvAL48z73dMRGGWXyLUT1NTUBJvNptb+BHO5XFG3JyL4Cz8Z4c2HwTVAQGRn9liSOU6n06G/vx8ulwutra1qbVi6RItxvqZYICKab797+xzue6wLI+M+bFtbgp/+WQ1WlyzNBcHZxymYRhNoLkvkp/KWwOg5xOoIpwFK1gf2S+R8s+hQp0xBEP5FrfQ5AoDGxsaQGhEgkFQ1NDTEPG/w8TPd39HREVG7ElyjEe364bejSfa45uZmtRbOarWGxKXEnUyZzCbGhoYGuFyukO3Bc2oJgoC+vr6QY8LLPNZzkEjsMz1/RETJ6Oh6H3/+006MjPtw06Ur0Wq+fskmTQBrnJKXow1MOdD2WQSSp+DO3VNJ0O59aZvPyeFwoKWlBRaLBZWVldDpAm3MSm2TkkC0tLRAFEV0dnaivb0dgiCotTJAoD+M0ilcOc7pdEKSJFit1pAkxO12q1/2yvmAQALgdDrhcrkgiiIMBoN6fYvFojbLGQyGmNe22WwQRTHp48rLy+F0OqHT6eDxeNDY2Kgeo9PpYDQakyoT5fzBtWmxYhQEAe3t7bBYLKirq1ObMRUNDQ2wWCxqAmQwGNQmOK/XGxJrtNq7mWJXjlXOlchjISKKRZZl/Otv3Xj4ubcAAHdduw4txmuQn7u061w0spzgcK4FanBwEKWlpRgYGEBJSUnIfaOjo+ju7saWLVtQWJhk9hx1Hqf1gaQpTfM4ZYKSoC2EeaKySV1dHaxWa9KdssvKytDf35/iqCKl5L1ARIuGzy/jm0+9jp//zwkAgPlDIiy3XoGcnMU53UC8XCEca5zmatudwBUfm/eZw2lhSKZDtt1uh9vthtls5mzgRDTvRid8+PIvj+A3x85CowEe/JNt+PwHtmQ6rKyxtOvbUiVHC2y5GdhhDPxeZEmT0hSnDGmnxCjrBtpstln1PzIYDCgvL0dHRwdsNlv6AiQiCuMdGcc9P34Jvzl2Fvm5Ofi/n9YzaQrDpjo2TxDxvUBEeL9/BJ/7ySG4z11ASWEu9n+2GteJ87dEViaxqY6IiIgS9vrpAfzZv3Wid2gMa0sL8bMv7MJla4ozHVZWYuJERES0hP3x3fMw/7wLw2OTuHxNMX76hRqsLV2W6bCyFhMnIiKiJerJl0/ha+2vYMIn43pRB9tnqlG6LC/TYWU1Jk5ERESLnM8v41C3B71Do1hdXIiazWX4yR+78e1n3gQAfOzqtfhuwzUoyF1cg5vSgYkTERHRInbgaA8eevoYegZG1W1F+VqMjPsAAH9+0xb83e1XLto5mlKNiRMREdEideBoD+57zIXw4fNK0mTUr8c3/mTb/Ae2gHEepxTw+X3oPNOJZ6Rn0HmmEz6/L23XcjqdMJvN0Gg0Ict3zIbdbkdZWdm8zMk0n9cKVlVVhY6OjpA46urqkjqWiGgh8vllPPT0sYikKdgf3X3w+Rf1rEQpl7EaJ5fLhT179qCrq2vG/YDAWl2SJMHr9Sa9fEU6OE84se/QPpwdOatuW1O0Bg/segCGTYaUX89gMEAURdjtduzduzdkLbREmUwmdZ25dJvPawWzWq0hs24r5ZbMsUREC9Ghbk9I81w0PQOjONTtwQ2VS2O+plTISI2T8t98IrUQNpsNVVVV0Gg0MJvNWbVAqfOEE/f/9v6QpAkAekd6cf9v74fzxOxrgxKhLOhLsSmL7iqUxYeTOZaIaCHqHYqfNM12PwrISI2T0WhMeN+qqip1kdN0f5nJsoyLkxcT2tfn96H5UDPkKJWgyrZ9h/bhuorroE1gCZZlucug0bBjHhERpcbq4oIE9+NqAbOxIDqHz9d//xcnL+K6f78uZec7O3IWN/7qxoT2fenTL6Eoryip6zidTlgsFrVGTpIkOByOkCYyl8uF1tZW1NTUAIhcfNbpdMLlckEURXR2dsJqtaKjowPNzc3wer1wu91oaWmBzWaD2WxGU1NT1GMSuVa0+GOdx2azhfRNEkURHo8HFosFjY2NaGpqQkdHBywWC2w2GwwGg9oMbDabYTKZ4PV61f5gbrdbPbfT6VTLy2g0QhTFiGMTKVsiomwzNDqBf/tjd9x9NAAqSguxawtbMWYj6xMnr9erNu11dnbO2Fw3NjaGsbEx9fbg4GDaY8w0g8EAg8EQ8oWuLMir1+vh9XpRX1+vJg0A0NzcrP4tSRIsFova38zj8aClpQVNTU0wGAyora2F1+uFIAjo6uqCIAgxjzGZTHGvFS7eeWpra9Hd3a0mzmVlZTh48CAMBgMaGxvVcxiNRrS2tqq39Xp9yP2CIMBms6GsrCzkmg6HQ92nqqoKBw8ejDh2prIlIso275wdgvmxLkjnLiA3R4NJvwwNENI+orRvPHjHNmg5DcGsZH3iZDKZ1C9OURRRV1cX8qUcrrm5GQ899FBS11qWuwwvffqlhPbtOtuFvzj4FzPu96+1/4qqNVUJXXsuysvLUV4+3blPEAS1pqetrS3iSz64n5TNZoNOpwsZodfZ2ameZ//+/aiqqkJ7e7v6XMQ6RhCEuNcKF+884X2NUtVh22azRcQoiiLa2tpgMpki9o9XtkRE2eSZ13rwtfZXMDLuw9rSQvzo3iqcGbgYMY9TRWkhHrxjG3ZvX5vBaBemrE+cJElSv+SUphJJkmLWOu3duxf333+/entwcBAbN25M6FoajSbh5rIb192INUVr0DvSG7WfkwYarClagxvX3ZhQH6dM0+v1IZ2ngxMIJRlqbW0NSTiiHWO321Ny7WTOQ0S0VE36/Hj4ubdg+28JAHBjZTn+5VM7Ub6iANgooG5bRcjM4bu26FjTlKSsnsfJ5XKhtrY2Ynu8GoyCggKUlJSE/KSDNkeLB3Y9ACCQJAVTblt2WdKSNM22tkPp9xNMkiT178bGxoj5oJTbXq8XTqcT7e3tkCRJbTaNdcxM1woX6zwNDQ1xzyMIAvr6+kKO8Xq9IfuH3453TZfLhYaGhhmPJSLKNueHx/CZ/3dITZrMHxTx6Bd2BZKmKdocDW6oLMfHr12PGyrLmTTNQcZrnJS+MwqXywVBECCKIkRRVDsKA4EvR6PRmDVDxQ2bDPjuh78bdR4nyy5LWuZxUpIYINAsqfTHUfr4GAwGSJKkdqxWyrG9vR0WiwV1dXVqmTc3N8NqtUKv18NqtcJisagdug0GA+x2O6xWK8xmMwCgpqYGe/bsgSRJaGpqinqMIAhxrxVeUxjr2rHOo2hoaAiZANRgMKhNcF6vF62trdDpdGqn72jXbGlpUTukK82QSsd25VjlXPHKlogoU14+6cV9j3WhZ2AUy/O1eLj+Gty+g81v6aSRZXnepwx1Op1wOBxqB+Samhp1ioL6+nrU1NSgqakJwPToJ0EQ4Ha7QxKpRAwODqK0tBQDAwMRtU+jo6Po7u7Gli1bUFiY/HBMn98HV68L50bOYVXRKuhX6xdE89xCU1dXpyZ6ySgrK1OntqBQqXovENH8+eWh9/Dgk69j3OeHuGo57J+pwqWrizMd1oIUL1cIl5EaJ2WkUrQkKHyYt16vz/rRS9ocLWoqajIdxqKXTIdsu90Ot9sNs9nM2cCJaFEYnfDhwSdfR+vhkwCAW69ag+/UX4PiwrwMR7Y0ZHUfJyKF3W6HJEmw2Wyz6n9kMBhQXl6Ojo4O2Gy29AVIRDQPTnkvosH2IloPn0SOBmjafTkeubeKSdM8ykhT3Xyaj6Y6ooWO7wWi7PeHd87jr3/pQv/IBMqK8vCDT+3EzVtXZTqsRSHrm+qIiIgoMbIs40e/c+M7z70FvwzsWF+KH92rx4ay5FaboLlh4oTAi5JoKeN7gCg7DY1O4Ovtr+LA62cAAA3VG/Ctj29HYR4HIGXKkk6c8vICbcIjIyNYtmxuM3cTLWQjIyMApt8TRJR57/YOwfzzLrjPXUCeVoOH7tyOT+3ayAXhM2xJJ05arRaCIKC3txcAUFRUxBckLSmyLGNkZAS9vb0QBAFaLf+LJcoGz04tnXJh3IeKkkL86F49dl5SlumwCEs8cQKAiooKAFCTJ6KlSBAE9b1ARJkz6fPj4d+8BdvvArOAXy/q8MNP67EyaBZwyqwlnzhpNBqsXbsWq1evxsTERKbDIZp3eXl5rGkiygJ9w2P4618ewQvuwHJSpg+KaLr1cuRqOXNQNlnyiZNCq9Xyy4OIiDLilamlU04PjKIoX4sW49X4k6vXZTosioKJExERUQb96tB7+Htl6ZSVy/HIZ6pw2RounZKtmDgRERFlwOiED9986nX8qjOwdErdtjX4p4ZrUMJZwLMaEyciIqJ5dtp7Efc91oVX3h+ARgN87aOX474PVSInhyO7sx0TJyIionn0wrvn8Ve/PALPhXEIRXn4wSd34oOXcemUhYKJExER0TyQZRm2/5bQcuBN+GXgqnUleOTeKmzUcemUhYSJExERUZoNj03i6+2v4NmjgaVTjFUb8H/u4tIpCxETJyIiojR6t3cYX3qsC+/2DiNPq8GDd1yFe667hCtVLFBMnIiIiNLkwNEefK39VQyPTaKipBD/eq8eei6dsqAxcSIiIkoxn1/Gd37zFn70WzcA4LotgaVTVhVz6ZSFbtaJ0/Hjx9He3g6Hw4H+/n51u06nQ11dHYxGIzZv3pzKGImIiBYMz4VxfPmXR/CHd88DAL540xY8cNsVXDplkZhV4vTAAw9Ao9GgoaEBX//61yPuP3LkCB555BFoNBo0NzenLEgiIqKF4NX3vbjvMRdOeS+iKF8L691X445ruHTKYqKRZVlOZMeHH34YJpMJpaWlM+47MDCAffv2ZUXyNDg4iNLSUgwMDKCkpCTT4RAR0SLV1nkS//vJoxif9GPLyuV45N4qXF7BpVMWgtnkCgknTgsVEyciIkqnsUkfvvnUMfzy0HsAAMOVa/DdRi6dspDMJldIunP4Aw88gEsvvRT19fWor69HWVkZGhsb8YlPfCLZUxIRES0op70Xcd8vXHjlpBcaDfA3dZfhLz58KZdOWcSS7qlWU1ODL37xi7Db7aiqqkJrayv6+vpSGRsREVFW8PllvOjuw5Mvn8KL7j74/DJecJ/HHf/yB7xy0ovSZXn46Z/twl/dspVJ0yKXdI1TWVlgHoq2tjbs378fQGBkHRER0WJy4GgPHnr6GHoGRtVtxYW5GB6dhAxg29oS2D7DpVOWiqQTJ7fbDVmW4Xa7ce2116K7uztkegIiIqKF7sDRHtz3mAvhnYGHRicBANdvKcdPv1DDpVOWkKSb6hoaGuByudDV1YWBgQHYbDZ4vd4UhkZERJQ5Pr+Mh54+FpE0BTvhuYA8zs+0pCQ0qm5gYAD9/f2zmthycHAQADI+ko2j6oiIKBkvuvvwqf3/M+N+v9xzPW6oLJ+HiChdZpMrJJQml5aWwuFw4IknnkgogMcffxxtbW1MVIiIaMHqHRqdeadZ7EeLQ8J9nPbs2YMjR46goaEBlZWVqKmpgSiKEAQBXq8XkiTh0KFD6O7uhtlsxt13353OuImIiNLqRN9IQvutLi5McySUTZKaAHNgYABtbW1wu93wer0QBAGVlZUwGAzYsmVLOuJMGpvqiIhoNoZGJ/AP/98xtB1+P+5+GgAVpYX4g+UWaDkFwYKW9gkwS0tLsWfPnqSCIyIiylaHuj24v+1lvN9/ERoNUHflGjiOnQWAkE7iSpr04B3bmDQtMUlPR0BERLRYjE368F3H27D/twRZBjaULcN3G67Fri26qPM4VZQW4sE7tmH39rUZjJoygYkTEREtaW/0DOKrrS/jzTNDAICG6g34xp9sQ/HUWnO7t69F3bYKHOr2oHdoFKuLC7Fri441TUsUEyciIlqSfH4ZP/69hH/6zdsY9/lRvjwfzZ/YgY9eVRGxrzZHwykHCAATJyIiWoJOekbwN+2v4FC3BwBguHI1mj9xNVYVF2Q4Msp2c5ru9OGHH0ZjYyMA4ODBg+qkl0RERNlIlmW0Hz6J277/exzq9mB5vhbWu3dg/2ermTRRQpJOnB544AEIggCDwQAAqK2thdPpTFlgREREqdQ3PAbzz7vw9Y5XMTw2iepNZXj2Kx9EY80l0GjYX4kSk3RTXU1NDe6++24cPHgwlfEQERGl3ME3zsLy+Ks4PzyOPK0GX627DOYPVrKDN81a0jVO3d3dABCSpXd2ds49IiIiohS5MDaJvU+8ij//2WGcHx7HZWtW4Nd/+QH8xYcvZdJESUm6xmnnzp2orq5GeXk5HA4HnE4nrFZrKmMjIiJKWtcJD77a+gre84xAowG+eNMW/M1HL0dhnjbTodECltSSK4ru7m7YbDYAQGNjI3bu3JmywFKFS64QES0t45N+/LPzbTzyOzf8MrBeWIbv1F/D6QQoptnkCnNKnKJdONuSEyZORERLx9tnh/C/fvUyjvUERnl/Qr8e37zzKpRMTWZJFE3a16oLvpDH41FvW61W/OhHP5rLKYmIiGbN75fxkz92o+W5tzA+6UdZUR6+/ac7cNsOLolCqZV04vSlL30JTqcTgiCo27q7u5k4ERHRvDrlvYivtb2CF6U+AMBHLl8F691XY3VJYYYjo8Uo6cSpsrISjzzySMi2/fv3zzkgIiKiRMiyjF+/fAp//+vXMTQ2iWV5WvzvP7kSn97FeZkofZJOnJSJL4PV1dXNKRgiIqJE9F8Yx9/9+jU889oZAMDOSwR8r+FabF65PMOR0WKXdOJUVlaG73znOxBFEYIgwOv1orW1Fa2trQkd73K5sGfPHnR1dcXdT5IkdHR0QBRFSJIEk8kU0jxIRERLy3+91YumjldxbmgMuTka/C/DVnzpQ5XI1c5pFTGihCSdODU1NcHr9YYkMUeOHEnoWCURcrlcM+5bX1+vJleSJGHPnj1ob29PKmYiIlq4RsYn8Y//+QZ+8dJ7AIBLV6/A9xquxY4NpRmOjJaSpBOnuro67NmzJ2Tb448/ntCxRqMxof0kSQq5LYoi18MjIlqCjrzXj/vbXkH3+QsAgD/7wGZYdl/BySxp3s2pc3gi2+bC6XRCp9OFbNPpdHC5XNDr9Sm9FhERZZ8Jnx//cvAd/N/fuuHzy1hbWoiHjdfgpq0rMx0aLVFJJ05utxs2mw01NTUAAqMb2traUrpendfrjbo9eO4oIiJanN7tHcJXW1/Ba6cGAAAfv3YdvnXndpQWcTJLypykEyebzQaDwYDgicdTOAl5XLESKgAYGxvD2NiYentwcHAeIiIiolTx+2X87MXj2Pfsmxib9KN0WR7+8U+340+uXpfp0IiST5ysVitqa2tDtkWbomAuBEGIqF3yeDxxR9U1NzfjoYceSmkcREQ0P3oGLuLr7a/iD++eBwDcvHUlHjZeg4pSTmZJ2SGla9UdP34cmzdvTvziGk3cWipJkkJG1QGBaRC6u7tjJk/Rapw2btzIteqIiLLcky+fwjd+fRSDo5MozMvB395+JT5z/SZOZklpl5a16p544gkYDAb1hD/+8Y9D7vd6vXA4HHjuuedmFWz4lAYulwuCIEAURYiiGLKvJEmorq6OW+NUUFCAgoKCWcVARESZ4x0ZxzeefB1Pv3IaAHDNhlJ8t/FaVK5akeHIiCIlnDh9+9vfhiAIuOWWWwAAjzzyCBobG0P26evrS+hcTqcTDocDQKBpraamRp2iQLnd1NQEAGhvb4fFYkFNTQ06Ozs5hxMR0QLk88s41O1B79AoVhcXYtcWHbQ5Gvz32+fw9Y5XcHZwDNocDf76lkvxlx+5FHmczJKyVNJNdUeOHMHOnTtn3JZps6l+IyKi1DtwtAcPPX0MPQOj6raKkgJcUVGC3759DgAgrlyO7zVei2s2ChmKkpaytDTVhSsrK1P/HhgYgNPpRFVVVbKnIyKiRejA0R7c95gL4f+hnxkcw5nBQNL0uRs24YHbrsSyfE5mSdkv6brQ4Bm8S0tLcffdd3NWbyIiUvn8Mh56+lhE0hRMtzwff3/HVUyaaMGYVY3TwMAA2traoNFo1D5Kwbq6uvDFL34xZcEREdHCdajbE9I8F43nwjgOdXtwQ2X5PEVFNDezSpxKS0thMBhgtVrhdruxZcuWkPuVDt1ERES9Q/GTptnuR5QNZt3HacuWLXjkkUdw8ODBiAkwiYiIAGDS54frRH9C+64u5uSWtHAk3TmcSRMREUVz+LgH//vXR/HmmaG4+2kAVJQGpiYgWiiSTpyIiIiCnRsaw75n38TjrvcBAKXL8nD7jgr86tBJAAjpJK7MBf7gHdugzeHM4LRwMHEiIqI5mfT58YuX3sN3fvMWhkYnAQCfrNmIpt1XQLc8Hx+6bFXkPE6lhXjwjm3YvX1tpsImSgoTJyIiStrh4x5848nX8UbPIABgx/pSfOvjV2HnJdNz/e3evhZ12yqizhxOtNCkNHGa7SK/RES0MJ0fDjTLdXRNN8t9/dbL8aldl0RNiLQ5Gk45QIvCnBKnl19+GR6PR71ts9nQ2to656CIiCg7RWuWa6zeiKbdl6N8BRdYpzTw+4ATLwDDZ4EVa4BNNwI5mZswNenEqaGhAV6vF4IgqNuOHDmSipiIiCgLdZ3w4Bu/fh3HpprlrlpXgn+4azv0Qc1yRCl17CnggAUYPD29rWQdsNsKbLszIyElnTjV1dVhz549Idsef/zxOQdERETZ5fzwGKzPvon2qWa5ksJcfH33Ffh0jGY5opQ49hTQ9lkgfNGewZ7A9oZHM5I8JZ04VVZWJrSNiIgWJp9fxi9eOoHvPPcWBtksR/PJ7wvUNEVd6VAGoAEOPABc8bF5b7ZLOnFyu92w2WyoqakBAMiyjLa2NnR2dqYsOCIiyoyuE/34+yeP4vXT081y3/r4dlRtYrMczYMTL4Q2z0WQgcFTgf223DxvYQFzSJxsNhsMBgNkeTobDP6biIgWnr7hMVgPvIm2w0HNcrdejk9ft4nNcjR/vCcS22/4bHrjiCLpxMlqtUYsu2IwGOYcEBERzT+fX8a/v3QCDwc1y9VXbYDltiuwks1yNB9kGeh5GXA9Crzyq8SOWbEmrSFFk7K16p5//nl4vV7s3LlzzkEREdH8cb0XaJY7eirQLLdtbWC0HJvlaF5c7Ade6wBcPwPOvDa9XaMFZF+MgzSB0XWbbpyXEIPNaR6nJ554ApIkAQg00x0+fBif+MQnUhIYERGlV7Rmua/dejnuYbMcpZssAyf+GKhdOvYkMDm1HI+2ANj2cUD/WWDEA7R/Tjkg6OCp1+bufRmZzynpxOmBBx6A1+uFx+OBKIrwer0wm82pjI2IiNLA55fx74few8MH3mSzHM2vobPAK/8OuH4OeNzT21dfBVR9DthRDxTpprdrHo0xj9O+hTePU2VlJfbs2YPu7m5oNBps3rwZzz//fCpjIyKiFDvyXj++EdEsdxWqNulmOJIoSX4f8K4zULv01rPTzW/5K4AdxkDt0jo9oIlSy7ntzsCUA4th5nBRFHHixAls2bIF3/nOd/C1r30tlXEREVEK9Q2PoeXAW2g9fBIAUFyYi6999HLcc90lyNXmZDg6WpT6TwBHHgv8DAXVGG28LpAsbbsLKFgx83lytPM+5UA8SSdOXq8Xoiiiv78f58+fx6233gpBEHDLLbekMj4iIpoDn1/GLw+9h4efewsDFycAAMaqDbDsvgKritksRyk2OQa8+Z+B2iXpt1D7Ji3TAdd+Gtj5GWD1FZmMcM40coomXzp48CCqq6tRWlqaitOlzODgIEpLSzEwMICSkpJMh0NENG/Cm+WuXFuCf/j4VajezGY5SrHeNwL9ll75JXDRM71d/EigdumKjwG52ZuozyZXmNOouocffhiHDx9Ga2srAEATrX2SiIjmlefCOFoOvIlfdbJZjtJobBh4/T8CtUvvH5reXrwO2HkvsPMeoGxzxsJLlzmNqqusrFQnvaytrcUTTzzB6QiIiDLE55fxq8730HJgulnubv0GPHAbm+UoRWQZOOUKzLl09HFgfDiwPScXuGw3oP8ccGltRjtvp1vSiVNNTQ3uvvtuHDx4MJXxEBFRDD6/jEPdHvQOjWJ1cSF2bdGp8y29fNKLv3/yKF59fwAAcEVFMf7hru2oYbMcpcKIB3i1LVC71Pv69HZdZaAp7ppPAcXzP4t3JiSdOHV3dwMIbZ7r7OxkjRMRURocONqDh54+hp6BUXXb2tJC3F93GVzv9eNXnSchy0BxQS7+5qOX4d7rN7FZjubG7wdO/GFqksqnAN9YYHtu4fQklZs+EH0agUUs6cRp586dqK6uRnl5ORwOB5xOJ6xWaypjIyIiBJKm+x5zIXwkT8/AKL7e8ap6+xP69dh725VslqO5GeyZnqSyv3t6+5odU5NUGoFlS3c5njmNquvu7obNZgMANDY2ZuU6dRxVR0QLmc8v4ybr8yE1TeFyczR47IvX4XqxfB4jowXF74s/iaRvEnjXEahdevu5oEkqi4Gr6wO1S2uvXbS1S/M2qm7Lli3Yt2/fXE5BRERxHOr2xE2aAGDSLyM1E8vQonTsqRjLlliBiu1Tk1T+Ahg+M33/JTdMTVL5cSB/+fzHnMUSTpwSmR38xz/+Mb74xS/OOSgiIgroHYqfNM12P1pijj0FtH0WCG/oHTwNtH0mdFtReaCTt/6zwKrL5y3EhSbhxOnb3/42HA5H3H0OHz7MxImIKEVOeS/i6VdOz7wjgNXFhWmOhhYcvy9Q0xTROy6MeEug79LltwO5+fMS2kKWcOJUW1uL8vJyVFVVxdwnRZOQExEtae/3j+Bff+tG++GTmPDF/1zVAKgoDUxNQBTixAuhzXOx3Hx/Vq0Fl+0STpza29sxMDCAw4cPAwjM4xTegUqn4xuXiChZJz0j+NffvouOrvfVhOkGsRw3VJbje463AYTWHSjddB+8Y5s6nxMRet8AXv91oKN3IobPpjWcxWZWncNLS0tRW1sLADhy5Ag8Hg80Go26sO/dd9+d+giJiBa59/pG8H//61087nofk/5AavSBS8vxldrL1Jqky9asiJjHqaK0EA/esQ27t6/NSNyURZRk6divgXNvzu7YFUtj4spUmdM8Tornn38eDocDdXV1ahJFRETxvdc3gh/+1zt43HUKvqmE6eatK/GV2q0RC/Hu3r4WddsqYs4cTkuMLAeSpWO/DiRM59+avi8nL7DsyZV3As//AzB0BtH7OWkCo+s23Tg/MS8Sc5qO4OWXX4bNZkNraytEUURlZSUTJyKiGRw/fwE//K938R9HQhOm/2XYiqpNsbs8aHM0uKGSczUtWUqy9Pp/BBKm829P36fNBypvAbbdBVx+G7BMCGwvKJ4aVadB1Ibe3fsW9bpy6TDrxOn48eNob2+HzWaDRqPB3Xffja6uLmzZsiUd8RERLRrd5y/gX55/B0++fFpNmD502Sp8xbAV+kuW7kzMFIcsA73HppvhIpKlWuCquwLJUmFp5PHb7gQaHo0xj9O+wP00KwknTj/+8Y9hs9kgSRIaGhrQ3t4eMVP4E088wbXqiIjCuM8N44fPv4snXz6FqXwJH7l8Fb5cuxU7mTBROFkGzr4+3QzX9870fdp84FLDVM3S7ujJUrhtdwJXfCz+zOGUsISXXMnJyYHRaERjYyMEQQhZ3BcA+vv7sW/fPnR2dqYl0GRxyRUiypR3e4fxw+ffwVOvnFYTpluuWI0v127FtRuFjMZGWUZJlpRmuL53p+/TFgT6LM0mWaJZScuSKyaTCS0tLXHnamptbU08SiKiRerd3iH84OC7ePrV0+pSKIYrAwnT1RuEjMZGWUSWgbNHp5vhIpIlQ6AZ7rLdQCH/8c8WCSdOZrN5xixs7969cw6IiGihevvsEH5w8B3852s9asJUt20NvlK7FdvXs5aAEEiWzrw23QzncU/fpy0AttYFapYuu5XJUpZKOHEK78+U7D5ERIvNW2eG8IPn38EzQQnTR7etwZeZMBEwnSwpzXAeafo+JVm66k8DyVJBccbCpMTMaToCIqKl7M0zg/jBwXfwzGvTq8rvvqoCX67dim3rWFuwpMkycObV6Wa44GQpt3CqGY7J0kLExImIaJaOnQ4kTAden06Ybt9Rgb++ZSuuXMuEaVHy+2YelSbLQM8r081w/d3T9+UWhjbDMVlasJg4EREl6PXTA/jBwXfw3OuBtb00GuD2HWvx5Vu24vIKfhEuWseeijEPkhW48o5AsvT6fwDHngxLlpZNNcPdBWy9FShYMe+hU+oxcSIimsHRUwP4/sF34Dg2nTB9bMdafLl2Ky5bw4RpUTv21NTM22EjygdPA22fAZavAi6cm96euwy47KOBmqWtH2WytAhlLHGSJAkdHR0QRRGSJMFkMkEQhKj7ulwuAIBer4ckSfB6vdDr9fMYLREtRa+9P4DvH3wbzjd6AQQSpjuuXoe/vuVSbGXCtPj5fYGapqjrvE25cA7QFgKX3zrdDJe/fL4ipAzIWOJUX1+Prq4uAIEkas+ePWhvb4+6r81mg91uBwAYDIaY+xERpcKr73vxfec7OPhmIGHK0QB3XrMOf3XLVly6mjUIS4b7v0Kb52L55GOBJjlaEjKSOEmSFHJbFEU4nc6Y+1dVVaG/vx8AYtZKERHNxOeXcajbg96hUawuLsSuLTpoc6ZXQXj5pBffd76N/3or0PSSowE+fu16/NUtl6JyFROmJWHoDPD2AeCtA8C7sb+XQowOpDcmyioZSZycTid0utAVwHU6HVwuV8wmOCZMRDQXB4724KGnj6FnYFTdtra0EA/esQ2rSwrxfec7+N3b0wnTXTvX468+cilEJkyLmzLH0tsHgLeeBU67Zn+OFWtSHxdlrYwkTl6vN+p2j8cTc/+Ojg4AQGdnJ8xmM0RRjLrv2NgYxsbG1NuDg4NzC5aIFrwDR3tw32OuiJ4qPQOj+NJj01+U2hwN/nQqYdq8kv1UFq3JMaD798DbzwZqlgbfD71/fRVw+W3ApR8FfvVJYLAH0fs5aQKj6zbdOB9RU5bIqlF1sRKq4I7joiiirq4Obrc76r7Nzc146KGH0hQhES00Pr+Mh54+Fq97LwDAqF+Pv67dik3lTJgWpQvngXd+A7z1TKDv0vjw9H25y4DKWwIL6G69FSgOqkHabZ0aVadBaPI01cS7e1/kfE60qGUkcRIEIaJ2yePxxGyOkyRJbcJTRuFJkhS11mnv3r24//771duDg4PYuHFj6oInogXlULcnpHkulrurNjJpWkxkGTj31lSt0rPAyUMISXyK1wYWz738NmDLB4G8ZdHPs+1OoOHRGPM47QvcT0tKRhIng8EAm80Wsb26ujpim8vlQm1trdo5XBHeR0pRUFCAgoKC1ARKRAue+9zwzDsB6B2aObmiLOebCMzu/faBQM1S//HQ+yuuDiRKl98GrL02ML9EIrbdCVzxsZlnDqclISOJU3hNkSRJqK6uVmucXC4XBEGAKIoQRRFWq1Xd1+l0wmg0srM4EcX1ykkvfvbicTz1cgLDyQGsLi5Mc0SUFhf7gXecgZqld5zAWNAIN21BoDbp8t2B2qXSDclfJ0cLbLl57vHSgpexPk7t7e2wWCyoqalBZ2dnyNxMzc3NqKmpQVNTEwRBQHV1NVpaWiAIAtxuN+dxIqKoxiZ9eOa1HvzshRN4+aRX3Z6n1WDCF72XkwZARWlgagJaIPrcgea3tw8EaoFk3/R9RSunmuB2A+JHOHM3pZxGluWZ+kwuaIODgygtLcXAwABKSrj4JtFidGZgFL946QR+eeg9nB8eBwDka3PwsavX4nM3bsaZgYu4b2r0XJTuvfjRvXrs3r52foOmxPl9gT5Kbz0TSJbOvx16/+pt0/2V1lexCY1mbTa5QlaNqiMiSpQsy+g83o+fvXAcB14/A58/kBJVlBTinusuwSd3XYJVxVP9HTcK+NG9+oh5nCqm5nFi0jQP/L7Z9REaHQTczwdqlt75DXAxaEBRTi6w6QPA5bcHapbKNqc9fCIFEyciWlAujvvw5Mun8LMXT+CNnul52nZt0eFzN2zGR69agzxtTsRxu7evRd22irgzh1OaHHsqxqg0a+ioNO97gXmV3noGOP4HwD8xfV+hEFg09/LbgEtrgcLSeQufKBgTJyJaEN7rG8FjL51Aa+dJDFwMfKEW5uXgT3eux2eu34xt62ZuitfmaHBDZXm6Q6Vgx56amgcprFfIYE9ge+2DgTmV3noW6H09dJ/yS6ea4G4HNl4HaPmVRZnHVyERZS2/X8Yf3j2PR188joNv9kLpkblRtwyfvX4z6qs3QCjKz2yQFJvfF6hpijr96NS2g9+c3qTJAS65Ybq/0sqt8xAk0ewwcSKirDM0OoHHu97Ho/9zAtK5C+r2m7euxOdv3IwPX76aTWwLwYkXQpvnYtl8E7Dzs8DWOqCIoxspuzFxIqKs8W7vMB598Tge73ofF8YDQ8xXFOTCWLUBn7lhEyq54G72mxwPLJR7/PfA0ccTO6bqz4AdxvTGRZQiTJyIKKN8fhkH3ziLR188gT+8e17dXrlqOT5342Z8Qr8BKwr4UZW1ghOl438A3nsJmLw4u3OsWDPzPkRZgp9GRJQR/RfG0Xr4JH7+4gmc8ga+aHM0QO2Va/C5GzbjA5eWQ5Pokhg0fybHgdNHphOlky8BEyOh+xStDDS/bboR+O/vABfOIXo/J01gdN2mG+cjcqKUYOJERPPq9dMD+NkLx/Hky6cxNukHAAhFeWis2Yh7r9uEjbqiDEdIIRJKlMoDidLmmwO/V10xvQ5c8dqpUXUaRJ1+dPc+TlhJCwoTJyJKuwmfHweOnsHPXjiOwyemF+zetrYEn79xM+68dh0K8/jlmRV8E4FEqfu/k0uUwm27E2h4NMY8TvtC53EiWgCYOBFR2vQOjeKXL53EL146gd6hMQBAbo4Gu7dX4PM3bkbVpjI2x2WakiipfZT+J3qitOkDoYlSTuQkozFtuxO44mOzmzmcKEsxcSKiWfH55bizb8uyDNd7Xjz64nE881qPurjuyhUF+PR1l+Ce6y7BmpLCTIVPEYnSS8DEhdB9lukia5RmkyhFk6MFttw8t3MQZQEmTkSUsANHeyLWe1s7td7bhy9fjadfOY1HXzyB104NqPfrLxHwuRs347bta5GfO8cv36Vutuu9AVOJ0sthNUrREiWlRunm1CRKRIsUEyciSsiBoz247zFXxNionoFRfOkxF5bna9W5l/Jzc3DnNevwuRs2Y8cGrimWEomu9zbrROkmYNWVTJSIEsTEiYhm5PPLeOjpY1EHlCsujPuwtqQAn7lxMxqrN6J8RcG8xbfoJbLemwbTidL4cOh+y8qm+yhtuZmJEtEcMHEiohkd6vaENM/F8nD9Nbhp66p5iGgJme16b0BoorT5JmD1NiZKRCnCxImI4nq3dxg/f/F4Qvv2XRhPbzBL0dvPJbbe28brgavuCiRLTJSI0oaJExGFkGUZ7/QO45nXevDMaz14++zwzAdNWV3M0XJz4vcD598KzJ10sjPwu++dxI7dtYfrvRHNAyZORARZlvFGzxCePRpIltznpjsT52k1uLGyHC+fHMDgxYlYC2egojQwNQHNwuggcOowcPJQ4Of9w8DYwMzHRcP13ojmBRMnoiVKlmW8fnoQ//laD559rQfH+6YnPczX5uCDl63EbdvXwnDlGpQW5amj6mIsnIEH79gWMp8ThZFloM8dqEV6fypR6n0DEX2X8oqA9VXAxl3AxuuAdXrA/sFAR3Cu90aUcUyciJYQWZbxyvsDePa1HjxztAcnPdOr2Ofn5uDDl63C7TvWovbK1SguzAs5dvf2tfjRvfqIeZwqpuZx2r197bw9jgVh/AJwyjWVKHUGEqWLnsj9yjYDG3ZNJUq7gNVXAdqwj+bdVq73RpQlNLIsxxthvOANDg6itLQUAwMDKCkpyXQ4RPPO75dx5KQXz7zWgwNHz+CUdzpZKszLwS1XrMZt29fiI1esxoqCmf+Xmmnm8CVJlgHviaAmt0PAmaOA7AvdT1sArNcDG2oCtUkbaoDiBJvYos7jtJ7rvRGlwGxyBdY4ES1CPr+MrhP9arJ0ZnC6hqgoX4tbrliN23esxYcvX4Wi/Nl9DGhzNLihsjzVIS8sE6NAz8tTnbinkqULvZH7lWwANtZM1ShdB1TsAHLzk7sm13sjygpMnIgWCaUm6NmjPXj26Bmcm1pUFwBWFOTCcOVq3LZjLT502SoU5i3RL9tkliwBgIFT0/2STh4Cel4B/BOh++TkAWuvmW5y27ALKF2f2vi53hstQT6/D65eF86NnMOqolXQr9ZDm8F/GJg4ES1gkz4//kfy4JmjPfjN62dwfnh6HqXiwlzUbVuD27evxU1bVy7dZEmR6JIlk+PAmdemEqWpaQEG34883/LV00nSxuuAtdcCeZyOgSiVnCec2HdoH86OnFW3rSlagwd2PQDDJkNGYmIfJ6IFZsLnxwvuPjz7Wg+ee/0M+kemaz6Eojx8dNsa3LZjLT5QuZKL6ipiLVmidK7+wFcA2R/oxH36CDAZNku6RgtUbJ9ucttYAwibAM0S79tFlEbOE07c/9v7IYe9bzVT79vvfvi7KUueZpMrMHEiWgDGJn3447vn8cxrZ+A4dhYDF6eTJd3yfNx61Rrctn0tbqgsR56WyVIIvw/45+2Jzb6tWKabam6b6sS9Xg/kL09fjEQUwuf34dbHbw2paQqmgQZritbgwN0HUtJsx87hRFks0VFpoxM+/P6d83jmtR44j53F0Niket/KFQXYvT3QDLdriw65TJZCyTIw1BMY2fbm04klTZfdCmy7K1CrVF7J2iSieTA0PoRTw6dwauhU4PfUzzv978RMmgBAhowzI2fg6nWhpqJmHiNm4kQ0rw4c7YmYB2lt0DxIF8d9+N3bvXjmtTM4+MZZXBifHs6+urgAt22vwO071qJ6M6cAUE2OA+feBM4eDSRKZ18L/I42Z1I8Oxq4ZAlRio1MjOD08OmQpOjU8CmcHj6N94ffx9D40JzOf27kXIoiTRwTJ6J5osy8Hd42fmZgFF96zAX9JgFv9gxhJChZWltaiNu2r8XtOyqgv6QMOUs9WbpwPtBx++zRwO8zRwNru/knI/fVaIGVlwErVgPdv5v53FyyhBaxdI1MG/eN4/TwaTURUpIiJUHyjM78D0xZQRnWr1iPdSvWYX3xemxYsQHD48P4nut7Mx67qmjVnB/DbDFxIpoHPr+Mh54+FnXBDGWb64QXALBeWIbbdwRqlq7ZICzNZMk3CfS9O50gKbVJw2ei719YCqzZEejAXbEDWLMdWHVFYJSb2seJS5bQ0jSXkWmT/kmcHTkb0ZSm/JwbORfReTtccV4x1hevx7rlgcRo/Yrpn3Ur1mF5XmT/QZ/fh39/89/RO9Ib9fxKHyf9an2CpZA6TJyI5sFvXj8T0jwXyz/etR2fvu4SaLK5f02ycyHFctELnH19Kjl6NZAgnXszcmQbAEAD6MRAgqQkSmu2A6UbYvdJytFyyRKas2ybSyhRsUam9Y704v7f3o/vfOg7uGbVNVGb0k4Nn8KZC2fgC58BP8yy3GXTNUYrIhOj0oLSWcetzdHigV0P4P7f3g8NNCHxK6PqLLssGXkOOKqOKMVkWYb73DA6j/ej87gHh4/34z3PyMwHAvj+J6/Fx69N8aSJqZToXEjR+P1Af3dQX6Sp3wPvRd8/bzmw5qrp5KjiamD1lUDBihTGziVLaGbZOJdQLBP+CVycvIiRiREMTQzhi899MaHmsnjycvJCkqJ1K9Zhw4oN6t+6Ql3a/tmLVvYVRRWw7LKktOw5HUEQJk6UbmOTPhw9NYjDxz3oPN6PrhOekLmVZuOXe67P3uVMZpoLqeHR6QRk/AJw9ligBklJkHqPAePD0c9deklQgjT1u2wLkJPi0YKpri2jRS9dcwnJsoxR3yhGJkYwMjmCkYkRNeEZmQz8XJy4qP4dvF/IfcpxU3+P+8dnvniYHORg7Yq1IYnR+hXrsaF4A9YtX4dVRauQo8ncyN35qO1j4hSEiROl2sDFCbje61cTpVdOejE26Q/ZpzAvB9duFFCzWYfqzTpcvaEUt3//9zgzMBqrlw0qSgvxB8st2TlaLpG5kApKAPHDgWY3j4So/Ym0BYFao4od032R1lwFLBPSFDhli4XY1DXTXEIAUFpQiq/s/IqaBAUnMREJUFiSNFPfoLnI1eQiLycPF30XZ9z32zd9G3dU3pG2WBYCzuNElEKnvBenkqRAs9tbZ4cQ/u+Gbnk+qjeVTSVKZbhqXWnErN0P3rEN9z3mitXLBg/esS07kyYAOP6HmedCGhsE3nhq+vaKiqBapKkkqfxSQMuPnaUm001dsizj4uRFDI4PYmh8SP0Jvz08MRyy7dzIOfRejLJ4c5CBsQF863++Naf4luUuQ1FuEYryiiJ+L8tdFrhf2Rbl/mjH5mnz0HmmE1947gszXr9iecWc4l9qWONEFMTnl/H22SG1NunwcQ9OR+nUvWXlclRvKkP15jJUb9ZBXLk8oTb+meZxyii/Dxh4H/C4gT434OkO+lsCZuggCgDYUQ9ce08gUVq+Mv0xU9ZLRVOXX/YH+uyEJzsTQyGJT9SkaGIIw+PDM3ZwnosrdVdic+nmhJOaotwiLMsL3FeYW5i2ZjClxmymkWmpmn17IWNTXRAmThTP6IQPr5z04vCJQEfurhP9GBoNnRNIm6PB9nUlqN6sQ83mMlRt0mFVcUHS10x05vC08PuAwVNTyZAb6JMCSZHHDfQfB3yz7x8R4nP/H7Dl5pSESpEWWnNXIk1dxfnFuOeKezA8MRwzIRqeGIZf9sc8R6Jyc3JRkl+C4vxiFOcVB35P/ZTkl2BF/oqQ2+8PvY/mQ80znvcnt/5k3mevTpSSuAKIOjItleu9LWRsqqNFbS6Jh+fCOA4f96iJ0tFTA5jwhf7vsDxfC/2mMlRvCiRK114ioCg/dW8VLfy4IecYoD0L5KwBcCOAFH75+f3A4PuBhEipLVL+7j8O+MbiBJcf6JStEwPLjii/hU3AT2/nXEgZlOnmLoUsyxieGIZ3zAvvqDfwO+hnYGxAve/08Om4SRMQWHLjkVcfSejaeTl504lPlJ+S/JK4CVGhtnBWo798fh9+cvQnWTmXUKIMmwz47oe/G/W1k+qRaUsFa5xoQZlNU5csy3jPM6I2uXUe98B97kLEOVcXF6h9k2o263BFRXH61n6by3D+YH5/oOZIqS0KblrzdMdPjnLyAN1UcqSrBMqnfuvEwHxIsWow1FF1QNReWsGj6iil0jWyy+f3YXB8cDrxGY1MgvpH+0MSooGxAUzKUWZqn4PrK67HVSuvip8Q5RejQJt8TW+yFkuNzUKrrZxvbKoLwsRp8Yi1ZIny/+MPP70Tl+iWBzpxnwj0UTo3FJlAbF29Qm12q9msw4ayZfMz4eRshvMDgeRo6HRQzdFUUtTnDsyHFHWCyCk5eUDZ5siaI50IlG5Mfgg+50Kad4muEv/0XU9jaGII/WP907U+cWqF+kf7MTQ+lPTIrmW5y1BaUAqhQFB/SgtKUVZYpv7de6E3oWUzsrmpC5i/uYQoc5g4BWHitDj4/DJusj4fd/bt8NFqAJCn1eDqDUKgNmmTDlWbylC2PD+tsUaVyHD+QgHYeW+gOc0jBZKkyThDiXNyp5MjXeV0YqQkR+kavbaA50JaCP91y7KMkckRNck5dPoQvuv6blqvWZxXPJ0EFQohyZBQIKC0sBRlBdMJkVAgoDC3cMbzLqbOyQvhtUPJYx8nWjQmfH6c9IzguaMzL1kiA1iWl4PrxfKpGqXA/EmFeRn6cJNlYMQDDPUA7zpnHs4/6gVe/GHotpzcQP8itcZIqT0SA5NGZmJof452QXYAz0QfoUn/pNoUNjA2oNb+hNQIhfUNGhgbwIQ/uQlUczQ5KM0vjZsEBW8vLQjsm5eTl+JHHpDNy2bMljZHm9W1YjR/WONEGTc26cNJz0Wc6LuA7vMXcKJvBMf7Ar9PeS/C5w99iebAj105b2I1vOiFgEP+K+BHoE/SPzdei7t2pnnJElkGRgeAoTOBpCjq7zOBBWlnO0qtsha47NbpmiPhEkCbni+1ZC3E/7xT0Ufo4uRFNbnpHw1tDov199D4UNIx5+fkQygQkKfNw6nhUzPu/4OP/AAf2vihjM7wHAubuijbscaJss7ohA/veUZwPCwx6j5/AacHLkZMKBlsWZ4WK1fk42T/RdyacwgP5j2KdZrptZdOyzo8NPFZPOffhTUlMzcfxDU2PENCNPU7XhNauKKVQEFxoF8SAB8AV2EBzmm1WOXzQT86Nj2m7qavZnVtTraM7JoNn9+HfYf2RW0qUrZ984Vv4uTQSQyND8VMhsbidbifQXBTWGlh4HdZQVlIH6Hwv5flBvreJdrc9cENH8zKpAkIjOz6yMaPLLiEmyga1jgtUemYS+jiuA8nPBdw/PwITvRdwPG+6b97BkfjJkfL87XYvHI5Npcvx6byImwuXz51uwirigvgl4G/+/a38e2JFgBAcKhKhdTf5jXhH//2b6M/jomL0zVB8WqJZlNDUCgAxWuB4orYv1esAXLz1T5Ozkkv9pULOJs7/T/LmslJPNDnhSG3DPhfr2Vtf6F0jewK5vP7MOobxcXJi7g4eRGjk6OBn7Bt6m9f6H7RtntHvTPO/pyoXE1u1GaweAlQaUEpcnPm9j/qYhnZRZSt2Dk8yFJJnMYnJ/Hvr/wW7w2ewSUlFfj0NR9Gfm70D+sDR3vwradeQbnPgaLc8xiZXIk+bR3+/s5rZpy9+sLYpFpjdLzvAk6cn649OjMYvw9ScUEuNq8MJEZbVi7HpvJAYrSpfDlWrsiPP7LN78PFh7ehYOQMZE1kjY1GBiYLBOTX/m2g0/JgT2hiNOqdqQin5RdPJT9xEqLiCiBvWeLnBOD8QzPuf/cXga+9oMeqmXoLfvfSe2C4ae+szjlfJn2TuPWJQK1HLEKBgK9Vfw1jvrHQBMcXSGpGJkdCE5wo25NZoDRVrll1DbaVb4tIfoJvL89LbIb4dGBzF1H6LIjESZIkdHR0QBRFSJIEk8kEQRDmvG+4dCZOwxcG8U8dX4I0+g4KkIeb1t2BvPxC9A2fwuqSS3DXh8zIzw/MOzI+PoZf/86G3sH3Iu6LZjb7P/z7dvz87e9Dzh1Qt2kmS/GZy76Cr99cH7LvgaM9+H9PfQPn17yI80Frqa2c9GPl2Rvw53f+Az5w6cqQ5rTj56dqj/pGog7vD1a6LE+tKQpOjLasXI6yorzILx1ZBiZGgNHBQL8h5WdsMJDsjA4E7jv3JvD2ATiLlmFfeVmUGpt+GEZmaD7LLZxKfOLVEq0JNKul2MxDyoE1RRUzji7y+X0Y841h3DeOUd9oyO8x3xjGJscCv/1Bf0/9hBwzGXRMvPunzjPqi58Up8Oy3GUo1BYGfucWojB3+u9l2mUR25X9w/c7Pnh8wc/+rFiI/cuIFoIFkThVVVWhq6sLQCAxslgsaG9vn/O+4dKVOP3Nj3fDkfs+5Dj/fa6c9ONTK+8CAPzy/K8jEpVPrbwLpo//Y8Rx9if/LuH9H/59Ox51fwuAHFKLEWgX0+CzlX+vJk8+v4wvfO8+HCn/Q8xaj8t7rkfnwJ/Gfey65flqc9omXSG2CsDm5ZPYWDSOElwMS36UZMgbmhwF3+dPbDI9Z9Ey3L96Zewam97zMAhXAhtqoidGhaWhZRSHLMuY9E9iwj8x/eML/I61Pd7t7sFudLzdMeN1Lyu7DIXawpCEJvhnMsGyypStwlZcUnJJIKHRBiU0yu28ZZHblcRHu0z9u0BbkLKancU0JJ6I0iPrEydJklBfX68mQwBQVlaG/v7+Oe0bTToSp7/58W78Jvf9wI04H+4aOexjOsqX/V+VfTwkGbI/+Xf4Yf+TMZOD4P3HJyfxgZ/diFHtSNQ4NLKM/Mki7ND+AJ4RH057BrBi3ddxXquJuf9Kn4yt7j/F+sJJXFI0iXWFY1idP45y7UWUaEawXL6A3PEhNenxjw3CBxmTGg38ACY1gA8a+MJ+h24HfBoNfIB6nE+jxWT+cvjyl8OXXwRf/jL48gI/k7mFmBy7gO+NvIWhnJzoZS7LKJJlfGzdh+AvXh09gQnbFpIAhe2b7QkKEFh3q0BbEP0ntwD52nwU5AT+jrVfvjYfhbmFgX3jnOuNvjfw1d9+dcaYsrXWhn2EiCierB9V53Q6odPpQrbpdDq4XC7o9fqk950PwxcG4UggaQIQqI1S8tKwfZX7/q3vSZx5thiyDIyPj+J5z68h50QmNsr+P+n7NZ7/lzchyz4MaYYwWnIR03NnR15/LO8iBkfMKIOM/FWTeDM39n/UskaDc7ka5IiP4yRk/DEo4fFrgElo4MsBfIWAb5kGPpRA1pTGL7BZ8wMYDvxMIPCj0MapDdBoMKLRoP3M74EzKQ5pSn5OPvK0ecjLCfrR5iFXkxuxPVebG3J7YGwAfzz9xxmv8aVrvoRtum1qwhKR5Gink5z5rB2pKKrAmqI1C3bNLq7XRUSpkpHEyev1Rt3u8Xgits1mXwAYGxvD2Nh0P5zBwcFZxxfP9x7/i7jNcxHi7avRYFgLtPf+YnpbvDXSNBpc0GrwesnbiV8fwNtFyqriiX3Rns2b+8tCAw20OVrkanKhzdFCq5n6mfo7NycXOZoc9e/g+5S/lWNzNDnou9iHNzxvzHjd2ktqsa18W0RyE5Hs5IQmNrk5kclP8G2tRjunpqNEm4u+dPWXsrK5aDFMZMgh8USUClk1j1OsJGk2+zY3N+Ohhx5KTUBRnBvrAVK8Yse20XFU+Pw4q83B64Uzn7xqTIMt+aU4N3EBv8ufeYbhu3LWYccl1+FE/7t4dOC1Gff/ung3rr78rpjJTE5O/IRHq9GmfD6ZzjOd+MJzX5hxv3uuvCcrm4oWS+Kx0GttOPszEc1VRhInQRAiaow8Hk/UkXKz2RcA9u7di/vvv1+9PTg4iI0bN845ZsWqgrWAnJo5YRR3i3+Jhrovo83xA7x+ev+M+9++5YtoqPsyxt2/xe2/vQ+9Wm3UWjCNLGONz4dvfHgv8is/DN/kOA48qse5HMTcf7UfuOeGv4U2NwPrucWhX61f0E1FwOJIPFhrQ0RLXUammTUYon9BVFdXz2lfACgoKEBJSUnITyp99e5/DXTUTrRPfZx9NbKMVZN+3PUhMwDgrg+ZsXLSr3YEn2n//C034/4hWb0vfF8A+OqQjPypmai1ufnYe9k9cfd/4LJ7si5pAqZrbIDpGhrFQqmxAQKJx3N3P4ef3PoTWG+24ie3/gQH7j6wIJImhVJrc7t4O2oqarK+zImIUikjiZMoiiG3JUlCdXW1WovkcrkgSVJC+863FctLUDe5IXBjhuQpODmJlah8cuVd6vxM+fkF6vQFieyPHC1u/2gL/qm3D6t9vpD9V/t8+KfePtz+0ZaQmagNN+3Fdy+9B6v9IbtjjT+7J2AEpmtsVhetDtm+pmjNghoVxcSDiGjhyugEmDabDTU1Nejs7MTevXvVZKi+vh41NTVoamqacd+ZZHIep1WTfnwyxjxOyn2JzuMUb38cewqTByw4Mt6nzqa9M38lcnfvA7bdGTU23+Q4XK/9HOcG38Oqkkug3/GZrKxpioaTABIRUSpl/TxO82kpzBwOILAW2okXAsuNrFgDbLoxa9c8IyIiyiZMnIIslbXqiIiIKDmzyRUy0seJiIiIaCFi4kRERESUICZORERERAnKqpnD00HpwpXqpVeIiIhocVByhES6fS/6xGloaAgAUjp7OBERES0+Q0NDKC2Nv3j9oh9V5/f7cfr0aRQXF89pkdZolOVcTp48yRF784xln1ks/8xh2WcOyz5z0l32sixjaGgI69atQ05O/F5Mi77GKScnBxs2bEjrNdKxtAslhmWfWSz/zGHZZw7LPnPSWfYz1TQp2DmciIiIKEFMnIiIiIgSxMRpDgoKCvDggw+ioCDOUiiUFiz7zGL5Zw7LPnNY9pmTTWW/6DuHExEREaUKa5yIiIiIEsTEiYiIiChBi346gnSRJAkdHR0QRRGSJMFkMkEQhEyHtWC5XC44nU4AQGdnJ/bv36+WZ7yyTvY+is1isWDv3r0s/3nkdDohSRJEUQQAGAwGACz7dJMkCU6nEzqdDpIkwWg0qs8Byz71XC4X9uzZg66urpDt6SjrtD4PMiVFr9erf7vdbtloNGYwmoXParWG/B1cvvHKOtn7KLquri4ZgNzf369uY/mnl8PhkE0mkyzLgXISRVG9j2WfXsGfO7Isq8+DLLPsU629vV39fAmXjrJO5/PAxCkJbrc75EmRZVkWBCFD0Sx8XV1dIeXndrtlALLb7Y5b1sneR7G1t7fLoiiqiRPLP/2Cy1uWA2Wn/GbZp1d4OQUnsCz79AhPnNJR1ul+HtjHKQlK1W4wnU4Hl8uVoYgWNr1ej/3796u3vV4vgECZxivrZO+j6Do6OmA0GkO2sfzTS5IkeDweCIIAl8sFr9erNhWx7NNPp9OhqqpKbbKrq6sDwLKfT+ko63Q/D0yckqB8sYfzeDzzG8giEvyF3draCoPBAEEQ4pZ1svdRJK/XG7X9n+WfXi6XCzqdTu2LYbfb0dHRAYBlPx/a29sBAJWVlWhvb1c/h1j28ycdZZ3u54Gdw1Mo1pNFifN6vejo6IjoPBhtv1Tft5S1tbXBZDIlvD/LPzU8Hg8kSVL/UTCZTCgrK4McZ3o9ln3qOJ1OWK1WSJIEs9kMALDZbDH3Z9nPn3SUdaqeB9Y4JUEQhIjMValup7mxWCxwOBxqWcYr62Tvo1BOpxMNDQ1R72P5p5coimp5AVB/u1wuln2aSZKEzs5OGAwGmEwmuN1utLW1QZIklv08SkdZp/t5YOKUBGWocLjq6up5jmRxaWlpgcVigSiK8Hq98Hq9ccs62fsoUltbG+x2O+x2OyRJQnNzM1wuF8s/zZT+TNGw7NPL5XKhpqZGvS2KIvbu3cvPnXmWjrJO9/PAprokhH/YSZKE6upq/lcxBx0dHdDr9WrSpDQdhZdpcFknex+FCv+QMZvNMJvNUb/UWf6pJYoiqqur1T5mylxOer0+Yl+WfWrp9XrYbLaQ/pV9fX0s+3kQ3Kcy3vdptn7+c626JEmSBJvNhpqaGnR2doZMGEizI0kSKisrQ7YJgoD+/n71/lhlnex9FMnr9cJut8NiscBkMsFsNkOv17P808zr9cJisaCqqgpdXV1qrSvA1366OZ1OtVkUCPwTwbJPD6fTCYfDgZaWFjQ1NaGmpkZNWtNR1ul8Hpg4ERERESWIfZyIiIiIEsTEiYiIiChBTJyIiIiIEsTEiYiIiChBTJyIiIiIEsTEiYiIiChBTJyIiIiIEsTEiYjSzul0orKyEi0tLbDb7aiqqkJVVZU64WZlZSVcLtecr6Gck4goXbjkChGlndfrhcPhUGdldjgc0Ol0MJlMAIDGxkZIkhR1uYtEGQwGNDY2piTe+RC87AQRLRyscSKitPN4PHEXtNXr9RGrmS9mkiShra0t02EQURKYOBFR2jU0NKRkn8XCarVmOgQiShITJyJKu0SapA4fPoyqqiq0tLQAADo6OlBZWQmn0wlgup+U2WxGR0cH7HY7zGYzvF5vzHM6nU60tLSgo6MDFosl5n6SJMFisajnVc7pcrnU41taWiBJknremWJV+ls5nU7Y7XbU19er9x0+fBgOhwN2u109JxEtDOzjRERZIbyPktFoRGtra8j9RqMR5eXl6qrqHR0dqK+vh8PhiDifkgx1dXUBCDQXKiuzB/N6vairq0NXVxcEQYDFYoHdbofRaITFYgk5d1VVFQ4ePJhQrAaDAQ6HA+3t7QCA9vZ2uFwu9b7Kykq1jxcRLRxMnIhoQQmuvTIajaivr4/a0dpms0Gn06m1QADQ2dkZcb62tjaIoqgev3fvXgBAc3NzRGd1URTR1taWUMJTXl6O8vLykLiXUj8uosWKiRMRLVp6vR4Gg0G9HS3hCU+65nukG0fXES0s7ONERFlDEAT09fWpt51OZ0QfpuDbHR0dMBgMIYmHcn9jY2NIbZNyvnBGozFiDimn0xn1eJfLpXZiTyTWRESLiYiyl0aWZTnTQRDR0uB0OiFJkjqqzGKxoLq6Wm0S83q9sFgsakdqm80Gr9cLm80GURRhsVjg9XrV5rnOzk7s3bsXgiDA5XJhz549AID9+/dDr9fD6XTC4XCgpqYGACKSrOC4ou3ndDrhcrkgiiI6OzvR2NiYUKxerzckFqW/lV6vVx+71WpFVVUVDAZD3KkaiCi7MHEiogVDmWWcnaqJKFPYVEdERESUICZORLQgOJ1OOJ1OdVg/EVEmsKmOiIiIKEGscSIiIiJKEBMnIiIiogQxcSIiIiJKEBMnIiIiogQxcSIiIiJKEBMnIiIiogQxcSIiIiJKEBMnIiIiogQxcSIiIiJK0P8Pxq+5aWKi5fgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFnCAYAAABQEsaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzW0lEQVR4nO3deXwbd5038I9857LHcu7USTPuRZpesl3aQimtZZoHtqVQ2YZSWI7agmUPtgtWvfvsluyBK8PDshdUSjmWLYdttZSWXQJWCmyhtHE86ZGGXho3SXPH8thOHF/SPH8oM9Z9WbJk+/N+vfKyNedXP0nWN7/ToKqqCiIiIiJKqCDXARAREREtFEyciIiIiJLExImIiIgoSUyciIiIiJLExImIiIgoSUyciIiIiJLExImIiIgoSUyciIiIiJLExClLZFmGzWZDZWUlampq4h5bU1ODyspK2Gw2KIoyPwFS3pAkCY2NjQnfJ9nkcrlydu/FRPvcGwwG1NTUoKurC11dXbBarWhqamI5J8FqtaKyshJutzuncSzW19LpdKK2tjbXYSxsKmWV3W5XBUFQBwYGou7v6+tTLRaL2tbWNs+RRedwOCK2tbe3qxaLJQfRBESLabHp6+tTRVFM6ZxMlUtvb2/EtuHh4bjv22gy/T7Jh9c93RjMZnPUz7Qoiqrdbp9rWFmVD+VuMpnUvr6+XIehquriey09Ho/a3t6e0mebQrHGKcsEQUBzczMcDkfU/flWw9TX1xexrbGxES0tLTmIJiBaTIuN0WhM+ZxMlYsgCFG3tbW1QRTFpK+T6fdJPrzumY7BarXCZrNl9JqZlg/lvhAs1NdSFEVYrdaon3tKDhOneWC1WtHT0xOxXVGUlL6Yss3pdEKW5YjtZrMZFoslBxHFjmmpy2S5SJKErq6uiO12uz2lP66ZfJ/kw+uejRi08sy3/zBp8qHcF4qF/FpKkpRX3z0LTVGuA1gKTCYTjEYjXC5XyBfLvn37YDabY57X1dUFURQhyzJEUdTPVRQFTqcToiiir68PVqsVJpMJAOB2u/X/Be3atQuyLEOWZQwNDcFut8e8l9vtRl9fH2RZ1r9E29vbIUkSbDYbZFmGx+OJeQ+v14uBgQE4HA44nU4YjUZ0d3ejo6NDjy3R80o2pvDrAIH+CMH74nE6nSGP29raEl4z3eesnWc0GtHU1AQg8Polej3C4wkuq2TLJVH5agRBgN1uD7mGluzv2rUr5PxY5ZPs+yTd96Ioivq1HA4HZFnWE7ve3l4YjUY0NDRAURT09vbq5R+r/BLFFSuGzs5OyLKM3t5emM1myLKMxsZGiKIIh8OR8MtoYGAAJpMpJCGNF6NWO6DVHGjxJfMezsRzTvSZytTfoq6uLgiCkFbNayqf2Xj3T+UzAyzc11JRlKT/Q6Sdq702oijC6/XCbDZH/czbbDY4nU7Y7fakn0d4udTX18/5c5Z1uW4rXOy0NuZo/T+0viXR+jhZLJaQvidms1lvk25vb1c9Ho++TxRFdXh4WH+s9ZcJ7iMgimLCNu2+vj7VZDJFbB8YGIjofxPrHu3t7SHPL/x68Z5XKjFZLJaQe3s8HtVsNsd5dgF2uz0ixuDXId41033Ovb29KoCQ16y9vT3kNY9WxvHKKl65pFK+8ZjN5pBrJSqfVN4n6bwXHQ5HyP2ivZbBZZyo/BLFFS2GaH3RovVzCe8XMzw8rNrtdtVkMoV8VuPFqL2X+vr61IGBAf25JnoPZ/o5x5OJv0Xt7e0hfXGGh4dVAEn1cUr3Mxt8/0SfmaXyWoZra2sLed4ejyei71m0z4PZbA55PdMpl2Q/Z7nCxCnLtDeQx+NRAegfNI/Ho//BCU+ctGPDr6MdY7FYQt6Y4V9wAwMDEeeHHxNNKolTrHsE/xHweDyqIAhJP69kYxoYGAi5riZRh1LtD3L4Hzu73Z7UNdN5zrGegxaL9h4IL+NEZRXtmumUbzzBf/CSLZ9k3yfpvBe1MtPY7faQ+wV/JhKVRTJxxfo8hHeaj/ZczGazajKZVIfDof8LTxaTeY3D98d7D2fzOccy179F4a+pJpnO4XP5zGr3T+Yzs1Rey0SxqaoakazF+g9f+PderOcRrVw0yXzOcoVNdfNEFEWYTCb09PSgra0NkiTFbaISBCFkOK7H49Hbq3t7ewEEqly1JiOv1xtxv2CCIEQcM1fR7hFvSH2i55Wsffv2Ra2q1ZoLYjV/7tu3D4IghFRTa2WpNTckumaqzzkWLY5YfQ3SKatMlW806Za5dkywdN+LgiDAZDLpTd7a66hV/wdLpizSjautrQ3d3d0wmUxwu90xn3tdXV1Ic0W4dGJM9B7O1nOOZa5/i7QySEey78lk7p/oM7MUXstozyf8tUn1tUqnXDTJfs5ygYnTPLJarXA4HGhra4v7BtQ6jQe/UYJ/lyQJnZ2daGxsRHNzc9bae6N9Ic1FoueVbEzpdsaMd16+dfBMtay0cplr+caLJ5e092JLS4v+x7Surg5WqxUulwtmsznkuWajLIJjaGhogN1uhyzLaV83mRjD/04keg9n6znHkom/Ren0awIy857MVJkthtcyU4KfVzrlosnU5ywbOKpuHjU3N0OSJLhcLtTV1cU8zmQyRa0lUBQFiqKgoaEBHR0degKmvVEzPRpGkqSMXi/e80qWJEl6Z8Fwsiyjvr4+7v2j3UtRlLSvmS7ttQzvOK9JtawkScpI+cYy3+UTTnsvWiwWuFwuuN1umEwmWCwWOByOiNqHbJSFFkPwYI90v/S166QaY7z3cDafczSZ+FsUK+ZkZOI9makyW+ivZazY0rlfcK3XXJ5Hpj5n2cDEKcu00QZAILM2m83o7u6OW+NkNptRV1cXMTNtT0+PXrMQ/IWrvVET/ZFLRBv1AAT++MT6Uk/3HvGeVyoxmUwmmM3mkOrf4C/WeNeyWCwhQ+8VRUFPT0/a10z2D4skSSHHdnZ2xp0nKVFZRSuXdMo3WemWTzRzeS9qTd7a50orv/BrplMW4deI93mwWq1obW2d0/QL6X4eYr2Hs/2cw2Xib5EoimhrawsZWaYoSsTnJZpMfGYz9ZlZ6K9ltNjCXxdt9F6se2gxBLcKzLV8M/E5y4pcd7JarDwej9rW1qYCUNva2vROwMGjJrTRGYIg6LPQBnfG00abBJ+jbW9vb1f7+vrUvr4+1ePx6B15BwYGVIvFogLQRyFo9zCZTAk72GnX1jr3RbtevHuYzWZ9hIR2THt7e1LPK9mYwq/jcDhCOmgncz273a729vYmfc25PGetk2Zvb6/a19en2u32kBEi4edFiydaWSUql2TLN5bw0TCplk+m34sarTN/8OPgkV3R4g0ui1TiihWD9pkL5/F44n6mk42xr69PNZvNqiAIUZ9fMu/hTD/nWLFn4m+R9ly065hMpqRnD0/nMxvtOYeX2VJ7LeM9n+DXJfw10f6eaTFaLBZVFMWE5ZuoXFQ19ucs1wyqqqo5yNeIlgxtvpKBgYFch5KSpqYmtLS05N//9vKAoigJ52EjWmxqa2tht9vn7X2fr58zNtURkU6ratd+T3fE02IU3BSiNacQUWYthM8ZEyci0nV2dsJqtQII9GmIN4hhqdFmRQbSHwlGRPEthM8Zm+qIssjtdsNut+s/k10WJldkWYbL5dKXWGAz3SxJkrBv3z4AiDunD9Fi1NXVBZvNBrPZrP/MhoXwOWPiRERERJQkNtURUcZYrVZUVlaGDBGn2CRJQmNjY1qzzxNRbjBxIqKMibZyuc1mQ1NT07zGEb7ifL5dT2MymfSV7heDbJUTUT5h4kREWdXY2IiWlpZ5vWdfX19eXy9YvnaATUc2y4koX3CtOiLKqvkeTux0OjO6/FCmr7dYsZxoqWDiRLSAKIoCp9OprwBvtVojllIIby4JHpkSb19XV5fezCbLsj4CUJvAUxRFWK1WvVbBbrfr52mj8MJJkgSbzQZZlvVlUrTrAcCuXbv0pRyGhob0a2rP1Wazoba2FgMDA6ipqYHJZILD4dBXkQ/ndrvR19cHWZb1pSyCRzLGeo6xxLpetOelDaO22+1oa2vTn6fRaNSbKhVFiXiesWixaouzJhrhmM5rm8rzAGK/XonKnWhRyeW05USUmvb29pClCURRDFkGwm63hyw7EbzEQbx9FoslZCkFj8ejms3mkGO15RYGBgb064Qv5zA8PKwCCLnWwMCAKopiyPPo6+tTRVEMOU4UxZClVIKXfBkeHo64Riza0hDhEj3HVK+nPYdgZrM5pDx6e3tVACGvWXt7u9rW1qY/jlY+4cvdmM3mkLIJN5fXNpnnkczrFauciBYb9nEiWkBkWQ4ZsSaKov5Yq6Hp6OjQ93d3d+uLbsbaJ0kS3G53SJOaKIrwer36tQVBgCRJMJvNMJlMsNvtUBQFXV1dITUbgiAktZio0WiELMsR9wxu6nG5XPq1BEGIushospJ5jqmKVsMWPtO6Vh7BHeY7OjriNmtpc2kF1zA1NTXB4XBEPX6ur20yzyOZ14toqWBTHdECojVRaUujeL1efUX6ffv2QRCEkC897Xi32x1zn9b0F05rDtS+LMOP0a6ZrvDrCYKgPxcgMOIs2orv6di3b19Sz3E+aK+DJElRY9LKNTih83g8MZOUeK97sq9tMhK9XkRLBRMnogVEkiR0dnaisbERzc3NIV9m4UlGsHT3BYuWJGVzRJjVakVnZyd27doFp9MZs8YlEa3GLVO0PkfRZOI+iqJAFMWQpCZegpOJ1zZT5wWLV05ECxmb6ogWCEVR0NDQgI6ODrS1tUEQBP0LTpblqDU02nnx9pnN5qi1GbIso76+PmY8JpMp6001u3btgtvthsViSXv5Ba2JMZ3nGOt6sSRTA6Moiv6aRBOrXGMlM9l4bTNRkxSvnIgWMiZORAuEVnMS/IWrfcFpzT4Wi0Uf1QQEvjx7enri7jOZTDCbzSFNQ9qXXryRXKIooq2tLWQ0l6IokCQprRqL8HMGBgYgCAIsFktKNRfBfW+0hDLd5xjreuHbtfij1W6Fl0dnZyfa2tpiPiez2Yy6ujq4XK6Q7T09PTHjm8trm+zzCBetGTVaOREtNlyrjmgB0YaFNzY2Agh8WdlsNrS0tOhfhDabDVVVVXon4OCamkT7tKU/PB5PyFBzu92Offv2oaOjIyKR0Ya6a015Wox2ux1GoxGdnZ1wuVz6Isdac2Pwtq6uLnR2dkIURf0eLpcLTU1N+lQHgiDAarUmVfOkxVBTU5PUc0z3elqyopVHd3c3JEmC3W6HxWLRh/J3dHTo/ZoAhEwHoJVFe3t7SDxarFpzaKIEL53XNpnnIYpiUq9XvHIiWkyYOBFR3lEUBa2trdi1a5feJCnLsr58y0L5UtYSp4GBgVyHQkQZwqY6Iso7TqcTVqtVr8XShvXb7XYmIUSUU0yciCjvmEymqLODu91uvZmSiCgX2FRHRHnJ7XaHzHWU7NIj+ULrG6b95BIkRIsDEyciIiKiJLGpjoiIiChJTJyIiIiIkrSkl1zx+/04duwYVq1aBYPBkOtwiIiIKAdUVcXY2Bg2btyIgoL4dUpLOnE6duwYqqurcx0GERER5YEjR47goosuinvMkk6cVq1aBSBQUOXl5TmOhoiIiHJhdHQU1dXVel4Qz5JOnLTmufLyciZORERES1wy3XbYOZyIiIgoSUyciIiIiJLExImIiIgoSUu6j1My/H4/pqamch0GUU4UFxejsLAw12EQEeUNJk5xTE1NYXBwEH6/P9ehEOWMIAhYv3495zojopzx+VXsHfTi1NgE1q4qw/VbjSgsyM3fJCZOMaiqiuPHj6OwsBDV1dUJJ8QiWmxUVcX4+DhOnToFANiwYUOOIyKipWj3gePY+dRBHB+Z0LdtqCjDg3dsw47t8/93iYlTDDMzMxgfH8fGjRuxfPnyXIdDlBPLli0DAJw6dQpr165lsx0RzavdB47jc49KUMO2nxiZwOcelfCte03znjyxGiUGn88HACgpKclxJES5pf3HYXp6OseRENFS4vOr2PnUwYikCYC+bedTB+HzRzsie5g4JcB+HbTU8TNARLmwd9Ab0jwXTgVwfGQCewe98xcU2FSXdfnUoY2IiGihODUWO2lK57hMYY1TFu0+cBzvtj+Nj+56Dn/x4xfw0V3P4d32p7H7wPGs3E+SJFitVhgMBthsNjidTthsNjQ1NcHtdmfsPk6nE5WVlZAkKWPXnG+1tbVwuVz6Y6fTicbGxrTOJSKizFuzsjSp49auKstyJKEMqqrOb+NgHhkdHUVFRQVGRkYi1qqbmJjA4OAgtm7dirKy1F+UWB3atLqmbHVoUxQFlZWVGB4ehiAIIdsGBgZgMpkycp/GxkbY7faMXE9RFD3W+eJ2u1FXV6ffV5ZlyLIMs9mc8rmL3Vw/C0REqfL5VbS7XsRj0tGYxxgArK8ow29tt825JSdePhCOTXVJUlUV56d9SR3r86t48MlXYnZoMwD48pMH8a5LVif1Yi8rLpxTPxNBECCKIrq7uzOWOGWKLMtwu91oa2ub1/uGJ0iiKEIUxbTOJSKizJnx+fHF3hfxxAvHUGAA/GrgezP4O1X7Rnzwjm3z3v2FiVOSzk/7sO3vfpGRa6kAToxO4Kov/zKp4w/+/e1YXjK3l8rr9aKmpmZO18gGu92O2traXIdBRER5YNrnx192v4CfvXQcRQUG/OtHr0OBARHzOK3P4TxO7OO0yCmKApvNBrPZjLa2NrjdbtTU1MDpdMLpdOpJiyRJ6OrqgsvlQldXF2RZDrmOJEmw2WxwuVxwuVzwemdHMbjdbtTW1qKrqwsA4HK5UFNTE9KvSpZl/Xyn0wlFUeB2u7Fv3z709fXB6XRG3DP4+lpsNpstJCar1arH5HK5IElSwngkSUJtbS2cTqdeRlarNSSxjFUe4edq93I6nXC73XA6nWhqakrjlSIiWtqmZvz4sx/ux89eOo7iQgO++TET3n/VBuzYvgG/td2GH7XegH/5yLX4UesN+K3ttpwkTQBrnJK2rLgQB//+9qSO3TvoxSe/25/wuO99qh7XbzUmde9UOZ1OvenJarXqv5vNZpjNZgwMDMDhcMBoNOpJTV9fn35+bW0t9uzZA0EQoCgKmpqa4PF49P2dnZ3672azGS0tLfpji8WC7u5u/bGiKGhsbMTAwAAEQdA7rre3t8NsNqOmpiZmU50W28DAAIBAzVlXVxfa2trQ0NCAwcFBva9RZWUl9uzZkzAek8kUsl8QBDgcDlRWVobcM1p5hJ+rlWdfXx96e3sBAL29vZAkKe+aRYmI8tXkjA+f/4EE9x9OoaSwAA9/3ITbrlin7y8sMODGmqocRjiLiVOSDAZD0s1lN1+6BhsqynBiZCJqPyetQ9vNl67JWttsW1tbzM7LgiCgqirwBrRYLLDZbBFf8qIooqenB21tbejp6YnYbzQmTvg0PT09EEVRj6ejoyPpc7XkLrj2qr+/H4IgwGw2hzzHurq6pK+b6J7xyiNcVVWVXp5AoHyDa+SIiCi2iWkfPvvoAH792mmUFhXA+Yk63HLZmlyHFROb6rKgsMCAB+/YBmC2A5smlx3agiXbEToTwkfNCYIQNalTFCXq+SaTSa/ZaWtr02t2iIhoYTs/5UPr9/fh16+dxrLiQnz3k/V5nTQBTJyyZsf2DfjWvSasrwgdvr2+omxe1tZJVOMRvL+lpSVinidJktDc3Awg0BwVPmdTeH8kQRAwNDSkP3a73XoiZLFYIs6PNq9UtG3RYnO73Whubo4bU7x4NLEStUTlEe9cIiJKzrnJGXzqe3vxzBtnsLykEN/7VD1uumR1rsNKiE11WbRj+wY0bls/bzOHS5Kk9+Wx2+2wWq0RTU5utxtutxuSJEEURZjNZphMJtjtdnR1dUEURfT396O3t1evFRJFEb29vbDZbGhsbNRrkDo7O2G32yGKIpqbm2Gz2fSEw2w2601eoijC4XDAZrOhvr5e3w8E+l/Z7XY4nc6ow/y12MLPFQQhakyaePEoioLu7m4YjUZYLJaI2rd45aGVsXaudi3tHrIsQ5IkOByOlKY4ICJaSs5OzuBT392L/reGsbK0CP/56XrUbkm+C0gucQLMLE2ASfNvrpNyahOHUih+Fogok0YnpvHH39mL/YcVrCorwn995p24tlrIbUycAJOWonQ6ZDudTng8Hlit1ox1LiciouhGxqfx8e88j5feHoGwvBiPfuad2L6pItdhpYR9nGhR0OaBcjgcKfU/MpvNqKqqgsvlgsPhyF6ARERLnPfcFD666zm89PYIjCtK8MP7blhwSROQw6Y6SZLQ2tqqz88Ti8vl0vu+hI/E0joHm0wmyLIMRVFSaqZhUx1RYvwsENFcnTk7iXsfeR6vnhjD6pWl+GHrO3HZulW5DkuXSlNdTmqctJXlw0dFRdPU1ITKykpUVlbCYDDAYDDoM0I7HA7U1tbCYDCETPJIRERE+eHU6AQ+4nwOr54Yw9pVpfhx2w15lTSlKid9nCwWS1LHKYqC3t7ekOO7urrQ3t4OIDCbs9aZd6msVE9ERLRQnBiZwD27noN85hw2VJThh603YOvqFbkOa07yvnN4cNLkcrkikq5UEqbJyUlMTk7qj0dHR+ccHxEREUU6qpzHPbuew6GhcWwSluFHrTdgc9XyXIc1Z3ndOTw4KVIUBV6vN6Q5TlEUfXFXm80Wc5FYTWdnJyoqKvR/1dXV2QqdiIhoyTriHUeL4/c4NDSOauMydFsXR9IE5HgeJ4PBgGRvr02UGJ5MaY8lSYpYiDZctBqn6upqdg4nioOfBSJKxVtnzuGeXc/h2MgEtq5egR+2vhMbKpblOqy48r5zeKoURYHb7Y5olguuYRJFEbIsx611Ki0tRXl5eci/rPP7gMFngJddgZ9+X/bvicDwfJvNBqfTCZfLBbfbrQ/Zz1dutxu1tbVwOp3zcr/a2lp9oEK+C4/V6XSisbExrXOJiLLFc/osWpy/x7GRCdSsWYEft92Q90lTqvK+jxMA7Nu3L+pUBA0NDREzPRuNeTRl+8Engd02YPTY7LbyjcAOO7DtzqzdtrGxEU1NTbDb7fo2SZLQ2NgYt0Yu17SFfOeL3W5fMJNehsdqNpuTHkW6kJ4nES1cb5wcw0d3PY8zZydx2bqV+MF9N2DNqtJch5VxOU+cwtcYkyQJgiCEfClIkhSREImiGJIYuN1uWCyW/Bldd/BJoOcTAMKaIkePB7Y3fz8ryZM2VUNbW1vIdpPJFLEtH1VVVc3bveYzSZur8FhTWQdvIT1PIlqY/nB8FPc+8jyGzk3hHRvK8ehnrkfVysWXNAE5Spzcbjf6+voABDps19fX66PltMfalAOa8C8JQRBQV1eHrq4uCIIAj8eD3t7e7AWtqsD0eHLH+n3Az9sRkTQFLgTAEKiJEt8LFBQmvl7xcsCQ3MLAnZ2d2LVrV9R9TU1NSV2DiIgoWQeOjuDebz8PZXwaV22qwH995noIy0tyHVbWcJHfZGcOnzoHfGVjbgL962NASeJ5L2RZRk1NDQYGBhLOoC5JEtxut943zGKxQBRFuN1u2Gw2fUJRWZbR19cHu92u9zXzeDz68iRutxtWqxVmsxmNjY3wer0YGBjQO/Jr+202G4DApKUDAwNwu92QJAmiKKK/v1+vPdRqzLTZ4Pv6+kIS4mjnxYpZO09RFPT09EAURSiKgv7+frS0tKC1tRVWq1WviUu1TGIl6rGemyRJcDgcIX2TRFGE1+uFzWZDS0sL2tvb9VGiDocDZrNZn2Vfi1VRFNhsNv21iBd7+LmpPheAncOJKLYXjyj4+Lefx+jEDK6tFvCfn74eFcuKcx1WyrjIL8UlyzJsNpte6wcEOhDv2bNH72cU/GXa29sLl8uF9vZ2mEwm1NTU6E2sZrMZFosFVVVVeq2hy+VCU1MT+vr69OsNDAzA4XDAaDTq99eW2/F6vSETm/b39+u/9/b2QpIkPZGKdV60mLXznE4nTCaT3mTl9XphMpnQ0tIypzLRrh+tbMNjbGtrQ0NDAwYHB/Xm5MrKSv36wbFYLBZ0d3frj8NjFQQBDocDlZWVCWMPPzeV50JEFM/AoWF88jt7MTY5g9otlfjep+qxqmzhJU2pYuKUrOLlgZqfZBx6FvhBErOjf8wFbLkpuXsnQWvOlGU56pegLMswGo1wOBwR+0VRRE9PD9ra2lBVVRXS1yi8z5kgCPB6vSH9yYJ/t1gsaGpq0pMrQRD061ksFthsNhiNRrjdbv2c/v5+/ff6+vqIewHQE69o50WLWTvPYrGgtrYWoiiipaUlal+vdMpEu374daLFqCWZweWUqQ7biWIPl+xzISKKpf8tLz75nb04N+XD9VuN+O4n67GidGmkFEvjWWaCwZBUcxkAoOa2wOi50eOI3s/JENhfc1tyfZxS0N7eDofDEXVZG0mSkl7uJtxcO92H91ELrgECIjuzx5LOeUajEcPDw5AkCd3d3XptWLZEi3G+plggIsq233uG8Onv9eP8tA/vuqQKuz5Rh+UlSyedWBDzOC04BYWBKQcAAOGdui883vFQxpMmAHp/mvAvakVR9N9bWlpCakSAQFLV3Nwc87rB5yfa73K5ImpXgms0ot0//HE06Z7X2dmp18JFm0Q11rUTlUkqMTY3N0csah08p5YgCBgaGgo5J7zMY70GycSe6PUjIkrGM2+cxqe+txfnp314z2Vr8O0/rl9SSRPAGqfs2XZnYMqBqPM4PZTVeZz6+vrQ1dUFm82GmpoafSoHrbZJSyC6urr0Dsy9vb0QBEGvlQEC/WFkWda/8E0mE9xuN2RZht1uD0lCPB6P/mWvXQ8IJADBnaXNZrN+f5vNpjfLaZ2go93b4XBAFMW0z6uqqoLb7YbRaITX60VLS4t+jtFohMViSatMtOsH16bFilEQBPT29sJms6GxsTFiGo7m5ma9w7d2jtYEpyhKSKzRau8Sxa6dq10rmedCRBTsV6+dgvW/BjA148dtV6zFNz9mQllx5isA8h1H1SU7qi5dfl+gz9PZk8DKdYE+TVmoacolLUFbCPNE5ZPGxkbY7fa0O2VXVlZGTACbDRxVR0R9B0/i8z+QMOXz433b1uHf7zGhpGjxNFpxVF0+KSgEtt6c6ygoD6XTIdvpdMLj8cBqtXI2cCKaFz9/+Tj+7Ef7MeNX8YGrNuAbH7kWxYWLJ2lK1dJ95pQRWlOcNqSdkqOtG+hwOFLqf2Q2m1FVVQWXy6XPpUVElC1PvXgMf3ohafrgtRvxL0s8aQLYVJf9pjqiBY6fBaKl6Sf738Zf9bwIvwp82LQJX7Vcg8KC5FaxWGhSaapb2mkjERERRejZdwT3X0iaPlJfja8t4qQpVezjRERERLofPn8Yf/2TlwEA996wGX9/53YUMGnSMXEiIiIiAMB/PvsWHnzyFQDAp951Mf7uj7bBkOQi80sFEyciIiLCI8/I+Mf//gMAoO09Ijr+zxVMmqJg4kRERLTEfevXHth3vwoA+PytNfji+y5n0hQDE6cs8/l9kE5JOD1+GmuWr4FprQmFi2wCTCIiWrj+dc8b+Hrf6wCAL5gvxV80XMqkKQ6Oqssi9yE3bn/sdnz6F5+G7RkbPv2LT+P2x26H+1Di9dXSup/bDavVCoPBELJ8RyqcTicqKyvnZU6m+bxXsNraWrhcrpA4Ghsb0zqXiGihUlUVX//la3rS9KXbL8cXzJcxaUqA8zhlaR4n9yE37v/1/VARWryGC4v8fv29X4d5izn94GOQZRk1NTUYHh4OWQstFXNdCiRf76Vxu92oq6vTy0eWZciyDLM58esRfu5SwHmciBYHn1/F3kEvTo1NYO2qUvz69dNw/Caw2HjH/7kC1ltqchxh7nDJlSxQVRXnZ84ndazP70Pn3s6IpAmAvu2hvQ/hnevfmVSz3bKiZUn/D0Bb0JdiC0+QUlncNpnkiogo3+w+cBw7nzqI4yMTEfv+7o+24dPv3pqDqBYmJk5JOj9zHu/84Tszdr2T4ydx049vSurY5+95HsuLl2fs3kREtHTsPnAcn3tUivJf+YCNAmuSU8E+Touc2+1GbW0tnE4n3G43nE4nmpqaQo6RJAk2mw0ulwsulyti8Vm3242uri64XC7YbDYAgMvlQm1tLWpqAlW7XV1dqKmpQVdXV8xzkrlXtPhjXcdqterXcblckCRJf75aHC6XCzU1NXp/L0mS9PIAAEVRYLVa9eehHaPds6urC7IsRz03mbIlIsoln1/FzqcOxkyaDAB2PnUQPv+S7bWTMtY4JWlZ0TI8f8/zSR07cHIAf7LnTxIe982Gb6J2XW1S906X2WyG2WxGX18fent7AUBfkNdkMkFRFDQ1NcHj8ejndHZ26r/LsgybzYaBgQEAgNfrRVdXF9rb22E2m9HQ0ABFUSAIAgYGBiAIQsxz2tra4t4rXLzrNDQ0YHBwUO9rVFlZiT179sBsNqOlpUW/hsViQXd3t/7YZDKF7BcEAQ6HA5WVlSH37Ovr04+pra3Fnj17Is5NVLZERLm2d9AbtXlOowI4PjKBvYNe3FhTNX+BLWA5S5wkSUJra6v+pRjvOCDwhSfLMhRF0b+UZFmGy+WCKIqQZRltbW1Z67RrMBiSbi67aeNNWLd8HU6Nn4raz8kAA9YtX4ebNt40L1MTVFVVoapq9gMhCIJe09PT0xPxJR/cT8rhcMBoNIaM0Ovv79evs2vXLtTW1qK3t1cv+1jnCIIQ917h4l3HbDaHvNZ1dXWJiiEpDocjIkZRFNHT04O2traI4+OVLRFRrp0ai500pXMc5Shx0pKdZIahOxwOvWnEbDbr/7MHgKamJj3xkmUZra2tIftzpbCgEA9c/wDu//X9MMAQkjxpo+ps19sWzHxOJpMppFN0cAKhJUPd3d0hCUe0c7TXca73Tuc6RERLUbJNcGtXsZ9TsnLSx8lisSTdlFFbW4vh4WEMDw+jr68vZAh5MFEU05q3KFvMW8z4+nu/jrXL14ZsX7d8XdamIgCQcm2H2WyOSGCDy7alpSWiXLXHiqLA7Xajt7dXr/2Ld06ie4WLdZ3m5ua41xEEAUNDQyHnKIoScnz443j3lCQJzc3NCc8lIsonewe92PnUK3GPMQDYUFGG67dyRHayFkQfp2jNb263O6KZx2g0xu1fMjk5icnJSf3x6OhoRuMMZ95ixq3Vt87bzOFaEgME+g5p/XG0Pj5msxmyLEOSJDgcDn0Yfm9vL2w2GxobG/X+Sp2dnfr8Sna7HTabDfX19fp1nE4n7HY7rFYrAKC+vh6tra2QZRnt7e1RzxEEIe69wqcEiHXvWNfRNDc3h0wAajab9SY4RVHQ3d0No9EIi8US855dXV0QRRH9/f16M6QkSSHnateKV7ZERLnwxP6jaHe9hCmfH1uqluPQ0DgMQEjnEW2Smwfv2IbCAk56maycToBpMBiQ6PbaFxgQ6N9itVohiiK6urrQ19cX0om3pqYGDocj5lw7X/7yl7Fz586I7dmYAJPm11wn0qysrMTw8HCGo1oc+FkgWjhUVcW/Pf2mPhv4/9m+Hl9vvha/ef1UxDxOGyrK8OAd27Bj+4ZchZs3FtUEmMEdvkVRRGNjY8iorHDxmlE6Ojpw//33649HR0dRXV2dqVAph9LpkO10OuHxeGC1WjPWuZyIKFemZvzoePxlPCa9DQBoe4+IB3ZcgYICA3Zs34DGbeuDZg4PNM+xpil1eZ84ybKs1yJoo+dkWY46esnr9cYdVVdaWorS0tJshks54HQ6IcsyHA4H7HZ70iMrzWYzFEWBy+WCw+HIbpBERFk0Mj6Nzz46gN/LQygsMGDnnVfi3hu2hBxTWGDglAMZkNdNdZIkoaGhQW9CURRFb1Lxer0ho+qAQHNL8Nw+iWRzrTqixYKfBaL8dsQ7jk9+dy88p89hRUkh/uNjJrz38rWJTyTdgmqqC+/YK0kSBEHQO9fa7XZ9n9vthsVigSAIEcmRLMtZWXx1Ca+BTASAnwGifLb/8DBav78PZ85OYX15Gb7zyXps2xj/i5/mJieJk9vt1jt1d3Z2or6+HhaLJeRxe3s7BEFAXV0durq6IAgCPB5PyDxN2siq+vp6ffRTphQWBka+TU1NYdmy9GfuJlroxsfHAQDFxcU5joSIgu0+cBx/8eMXMDnjx5Uby/HtP67H+grWCmdbTpvqci1e1Zyqqjh8+DCmp6exceNGFBRwWT9aWlRVxfj4OE6dOgVBELBhA0feEOUDVVXxyDOD+MrP/wBVBW67Yi3+7aPXYUVpzhuRFqwF1VSXrwwGAzZs2IDBwUEcOnQo1+EQ5YwgCFi/fn2uwyAiADM+Px588hX84PnDAIBP3LgFf/dH21BUyP/czxcmTnGUlJTg0ksvxdTUVK5DIcqJ4uJivdmaiHLr7OQM/vSHEn792mkYDMD//cA2fPpdF8Ng4JQC84mJUwIFBQUcSURERDl1fOQ8PvXdfrx6YgxlxQX4l49ch9uvZE1wLjBxIiIiymMHjo7gM//Zj5Ojk1i9shTf/uM6XFMt5DqsJYuJExERUZ761aun8PkfShif8uHStSvxnU/Wo9q4PNdhLWlMnIiIiPLQf/3+LTz45Cvwq8C7L1mN//iYCRXLOC1IrjFxIiIiyiM+v4rO//kDHvntIACgue4i/NOHrkIxR87lBSZOREREeeL8lA9f6N6PX7xyEgDwpdsvx5+8t4Yj5/IIEyciIqI8cGpsAq3/uQ8vvj2CkqICfK3pGtx5zcZch0VhmDgRERHl2Osnx/Cp7/bjqHIelcuLsesTdai72JjrsCgKJk5EREQ59Ls3z+Czjw5gbGIGW1evwHc/WY+LV6/IdVgUAxMnIiKiHOnZdwR//fjLmPGruP5iIxwfr0XlipJch0VxMHEiIiKaZ6qq4v/98nX8+6/eBAB88NqN6LJcjdIiLnGU75g4ERERzaOJaR/aXS/hyRePAQD+/LZL8JeNl3Hk3ALBxImIiGieeM9Nwfpf+9D/1jCKCgz4yoevQnNdda7DohQwcSIiIpoHg2fO4VPf3Yu3hsaxqqwIjntrcdMlq3MdFqWIiRMREVGW9b/lRev390EZn8ZFlcvw3U/W49J1q3IdFqWBiRMREVEW/fSFo/hS70uY8vlxTbWARz5RhzWrSnMdFqWJiRMREVEWqKqK//jVm/jaL18HAOy4cj3+ueVaLCvhyLmFjIkTERFRhk37/Pjrx19G78DbAIC294h4YMcVKCjgyLmFLmeJkyRJaG1txcDAQMLj3G43AKC/vx+7du2CIAj6PgAwmUyQZRmKosBkMmU1biIionhGzk/jT34wgN+9OYQCA7Dzg9vx8Ru25DosypCCXNzU5XIBmE184nG73Whvb0d7ezvq6+vR0NCg73M4HKitrYXBYIDVaoUoilmLmYiIKJEj3nFYvvUsfvfmEFaUFOLbn6xn0rTIGFRVVXN2c4MB8W4vSRIaGhowPDwMAJBlGTU1NfB4PBBFEU6nE83NzQCg10KlYnR0FBUVFRgZGUF5eXlaz4GIiAgAXjyi4DP/uQ9nzk5ifXkZvvPJemzbyO+WhSCVfCDlprq33noLvb296Ovr0xMaADAajWhsbITFYsHFF1+cctDRmEwm7Nq1S3+sKIp+L00qCdPk5CQmJyf1x6Ojo3OOkYiIaPeBE/hC935MTPuxbUM5vvPJeqyvKMt1WJQFKSVODzzwAAwGA5qbm/GlL30pYv/+/fvx8MMPw2AwoLOzMyMBWiwW/ffu7m6YzWY9WVIURW/26+/vT9hc19nZiZ07d2YkLiIiWnp8fhV7B704NTaBtavKUH9xJb737Fv4p//5A1QVuPXyNfi3e0xYWcqxV4tV0k11X/3qV9HW1oaKioqEx46MjOChhx5KmDwlaqoLpigKamtrMTAwEJI4BXcUb2pqgsfjiXmNaDVO1dXVbKojIqKEdh84jp1PHcTxkQl92/KSQoxP+QAAH79hCx68YxuKCnPSfZjmIJWmurzu4xTMarXCZrOF1ChJkqSPolMUBZWVlXr/p2SwjxMRESVj94Hj+NyjEmJ9Y1lMm/DVpmu4UO8ClUo+kHZa/MADD+CRRx7ByMgI3ve+96GlpQWPP/54upeLq6urS0+aFEWBoih6x/Fwwf2fiIiI5srnV7HzqYMxkyYA+J1nCP6cVUPQfEo7caqvr8d9990Hp9OJ2tpadHd3Y2hoKOXraB2+NZIkQZZl/bHL5YLJZNKTpp6eHgiCAFEUYbfb9ePcbjcsFktao+uIiIhi2TvoDWmei+b4yAT2DnrnKSLKpbR7r1VWVgIAenp69JFvydb2uN1u9PX1AQh02K6vr9c7gWuP29vbIcsympqaQs4VBAFtbW0QBAF1dXXo6uqCIAjweDzo7e1N9+kQERFFdWosftKU6nG0sKWdOHk8HqiqCo/Hg2uvvRaDg4Mh0xPEYzabYTabQ2qMNMHJjyiKcftAmUwmzhRORERZtaqsOKnj1q7i9ANLQdpNdc3NzZAkCQMDAxgZGYHD4YhodiMiIlrIXjsxhn/42StxjzEA2FBRhuu3so/tUpDUqLqRkREMDw+nNLGlNrlkPo9W46g6IiKKxTXwNv7vEy9jYtoPYXkxlPFpGICQTuLaGLpv3WvCju0bchAlZULGR9VVVFSgr68v6VFzjz32GHp6epiMEBHRgjMx7YPN9RK+2PsiJqb9eM9la/D0X70XD99ripgNfH1FGZOmJSaleZz279+Pzs5O1NTUoL6+HqIoQhAEKIoCWZaxd+9eDA4Owmq14rbbbstm3BnBGiciIgo2eOYcPvfoAF49MYYCA/CX5svw+VsvQUFBoG4pfObw67caUVjAuZsWuqxPgDkyMoKenh54PB599u6amhqYzWZs3bo17cDnGxMnIiLS/PdLx2F77CWcnZzB6pWl+NePXIubLlmd67BoHmR1kV8g0HTX2tqaVnBERET5ZGrGj6/8zx/wvWffAgBcv9WIf//odVhbzlFyFImrEBIR0ZL19vA4Pv/D/XjxiAIA+JP31uD+xsu43hzFxMSJiIiWpKdfPYm/7H4RI+enUbGsGP/ccg1uu2JdrsOiPMfEiYiIlpQZnx//r+91fOvXHgDANdUC/uOe63BR5fIcR0YLARMnIiJaMk6NTuBPf7RfX1fukzddjL9+/ztQUsSmOUrOnN4pX/3qV9HS0gIA2LNnjz7pJRERUb559s0zeP+/PoO9g16sLC3Cf9xjwpfvvJJJE6Uk7XfLAw88AEEQYDabAQANDQ1wu90ZC4yIiCgT/H4V/7rnDdz77edx5uwUrli/Ck/+6bvwgas5aSWlLu2muvr6etx9993Ys2dPJuMhIiLKGO+5KXyh+wX87+unAQAfqa/Gl++8EmXFhTmOjBaqtGucBgcHAQAGw+yMqf39/XOPiIiIKAMGDnnxgX99Bv/7+mmUFRfga03X4KG7r2bSRHOSdo3Tddddh7q6OlRVVaGvrw9utxt2uz2TsREREaVMVVV8+7eDeOjnr2LGr0JcswLf+lgtLl+/Kteh0SKQ1pIrmsHBQTgcDgBAS0sLrrvuuowFNh+45AoR0eIycn4a7a4X8YtXTgIA7rhmIzo/fBVWlnIQOcWW9bXq4t14ISUgTJyIiBaPA0dH8Cc/kHDYO46SwgL87R3bcO87N4d0KSGKJutr1QXfyOv16o/tdju+9a1vzeWSREREKVFVFT/cexg7nzqIqRk/Lqpchm9+zISrLxJyHRotQmknTp/97GfhdrshCIK+bXBwkIkTERHNm3OTM/ibn7yMJ144BgAwv2Md/l/TNahYXpzjyGixSjtxqqmpwcMPPxyybdeuXXMOiIiIKBlvnBzD534g4c1TZ1FYYIBtx+VovVlk0xxlVdqJkzbxZbDGxsY5BUNERJSMn+x/G3/9+AGcn/ZhfXkZ/v2e61B3sTHXYdESkHbiVFlZia997WsQRRGCIEBRFHR3d6O7uzup8yVJQmtrKwYGBuIeJ8syXC4XRFGELMtoa2vTmwfj7SMiosVnYtqHnU8dxI/2HgYA3Hzpanyj5VpUrSzNcWS0VKSdOLW3t0NRlJBEZf/+/UmdqyU7kiQlPLapqUlPrmRZRmtrK3p7exPuIyKixeWtM+fwJz+QcPD4KAwG4C8aLsWf3XYpCgvYNEfzJ+3EqbGxEa2trSHbHnvssaTOtVgsSR0ny3LIY1EU9fXw4u0jIqLFZfeB4/hS70sYm5xB1YoSfOMj1+LmS9fkOixagubUOTyZbXPhdrthNIa2WRuNRkiShH379sXcZzKZol5vcnISk5OT+uPR0dGMxktERJk1NePHQz9/Fd/5XWCZr/qLK/FvHzVhfUVZjiOjpSrtxMnj8cDhcKC+vh5AYB6Nnp6ejK5XpyhK1O1erzfuvlg6Ozuxc+fODERGRETZdlQ5jz/9oYT9hxUAgPUWEV983+UoLkx7mVWiOUv73edwOLB161aoqgpt8vEMTkIeV6ykKdG+jo4OjIyM6P+OHDmS+eCIiGjOfvXaKXzgX5/B/sMKysuKsOsTdej4P+9g0kQ5l3aNk91uR0NDQ8i2aFMUzIUgCBE1SF6vF4IgxN0XS2lpKUpLOfKCiChfzfj8+Ib7Dfz7r94EAFx9UQX+4x4Tqo3LcxwZUUDaqXt40gQEpijIpFiJWF1dXdx9RES08Jwam8C9335eT5o+ceMW9H72RiZNlFeSrnF6/PHHYTab9cXvHnnkkZD9iqKgr68Pv/jFL1IKIHxKA0mSIAgCRFGEKIohx8qyjLq6Or3GKdY+IiLKXz6/ir2DXpwam8DaVWW4fqsRewe9+PMf78fpsUmsKCnEQ3dfjTuu2ZjrUIkiJJ04feUrX4EgCLjtttsAAA8//DBaWlpCjhkaGkrqWm63G319fQACHbbr6+v1KQq0x+3t7QCA3t5e2Gw21NfXo7+/P2Sepnj7iIgo/+w+cBw7nzqI4yMT+raVpUU4NzkDFcDl61bhm/eaULNmZe6CJIrDoKbZo3v//v247rrrEm7LZ6Ojo6ioqMDIyIhek0ZERNmx+8BxfO5RCbG+dG4Uq/CdT9ZjWUnhvMZFlEo+kHYfp+D+TCMjI3jssccy3seJiIgWB59fxc6nDsZMmgDgraFzKCniqDnKb2m/Q4Nn6a6oqMDdd9/NmbuJiCiqvYPekOa5aI6PTGDvYOy5+IjyQUrTEYyMjKCnpwcGg0HvoxRsYGAA9913X8aCIyKixeHUWPykKdXjiHIlpcSpoqICZrMZdrsdHo8HW7duDdmvdegmIiLSTM348ZvXTiV17NpVXEqF8lvKE2Bu3boVDz/8MPbs2RN1LiciIiLNS28r+FLvS3jt5Fjc4wwA1lcEpiYgymcZnQCTiIgIACamfXjo56/irv/4HV47OYaqFSVovXkrDAgkScG0xw/esQ2FBeF7ifJL2kuuEBERRTNwyIsvuV6CfPocAODOazbiy3deCeOKEtRuqYyYx2l9RRkevGMbdmzfkKuQiZLGxImIiDLi/JQPX/vla/jO7wahqsDaVaX4x7u2431XrteP2bF9Axq3rY+YOZw1TbRQMHEiIqI5e04egu2xl3BoaBwAcLfpIvzdH21DxfLiiGMLCwy4saZqvkMkyoiMJk5vvfUWLr744kxekoiI8ti5yRnYd7+K7//+EABgQ0UZvvLhq3Dr5WtzHBlRdswpcXrhhRfg9c5OVuZwONDd3T3noIiIKP/99o0zsD32Eo4q5wEAH72+Gh3vfwfKyyJrmYgWi7QTp+bmZiiKAkEQ9G379+/PRExERJTHRiem0fk/f8CP9h4BAFxUuQwPffhqvPvS1TmOjBYtvw849Cxw9iSwch2w5SagIDdrGqadODU2NqK1tTVk22OPPTbngIiIKH/96rVT+OvHX9ZHxf3xjVvQvuMKrChll1nKkoNPArttwOix2W3lG4EddmDbnfMeTtrv9JqamqS2ERHRwjcyPo2dP3sFj0tHAQBbqpaj6+6r8U6Rnbwpiw4+CfR8AghfHnr0eGB78/fnPXlKO3HyeDxwOByor68HAKiqip6eHvT392csOCIiyr1fvnICf/PEAZwem4TBAHzmXVvxV++7HMtKctNUQkuE3xeoaQpPmoAL2wzA7geAKz4wr812aSdODocDZrMZqjr7hIJ/JyKihc17bgoPPvkKnnox0ERSs2YFuizXoHZLZY4joyVh8JnQ5rkIKjB6NND3aevN8xZW2omT3W6PWHbFbDbPOSAiIsq9/37pOP7upwcwdG4KBQbAeksN/qLhUpQVs5aJsuzcECB9D3j235I7/uzJrIYTLu3EKTxpevrpp6EoCq677ro5B0VERLlxemwSf/fTA/j5gRMAgMvXrcJXm67G1RcJuQ2MFr/jLwF7HcBLvYBvMvnzVq7LXkxRzGkYxOOPPw5ZlgEEmun27duHD3/4wxkJjIiI5o+qqnjihaPY+dRBKOPTKCow4E9uvQR/euslKClKez14ovh8M8CrPwOedwCHn53dvuFa4Po24Ol/AMZOIHo/J0NgdN2Wm+Yp2IC0E6cHHngAiqLA6/VCFEUoigKr1ZrJ2IiIaB6cGJnA3/zkZex59RQA4MqN5eiyXI0rN1bkODJatM4NAdJ/Av3fBkbfDmwrKAK2fRC43gpUXw8YDEDpqguj6gwITZ4urG2446F5n89pTtMRtLa2YnBwEAaDARdffDGefvrppM+XZRkulwuiKEKWZbS1tYVMphnM5XLp/afCj5EkCQBgMpkgyzIURYHJZErrORERLSWqqqJ34G38w88OYmxiBiWFBfjzhktgvaUGxYWsZaIs0JrjXnYBM4G5wLB8NVD3KaDu04EapGDb7gxMORB1HqeHFtY8TqIo4tChQ9i6dSu+9rWv4Ytf/GJK5zc1NWFgYABAIIlqbW1Fb29vzGPD2e12tLe3w+FwwOl0Agh0To91DSIimnVUOY8HHnsJz7xxBgBwzUUV+GrTNbhs3aocR0aLTrzmuHd+FrjyQ0BxWezzt90ZmHJgoc8crigKRFHE8PAwzpw5g9tvvx2CIOC2225LeK7WL0ojiiLcbnfM+/T29sJisejburq60N7eDgCora3F8PAwgMjaKCIiCuX3q/jh3sPo/J8/4NyUDyVFBfirxsvwmXdvRRFrmSiTkm2OS0ZB4bxOORBP2onT3XffDZ/PBwB46KGHsGfPHtTV1SV1rtvthtFoDNlmNBohSVLUZrbgpMnlcoU8BpgwEREl4/DQOGyPvYTfy0MAgNotleiyXI2aNStzHBktKqk2xy0wcxpV99WvfhX79u1Dd3c3AMCQZOaoKErU7V6vN2JbcFIU3Bk9eJvL5QIA9Pf3w2q1huwPNjk5icnJ2SGOo6OjScVLRLSQ+f0q/vP3b6Fr92s4P+1DWXEB2m+/An9808UoLEjyf/xE8fhmgNf+O9Acd+h3s9s3XAO883OJm+MWkDmNqqupqdE7bTc0NODxxx+f03QEsRIqjc1mg91uD9kW3KlcFEU0NjbC4/FEPb+zsxM7d+5MOz4iooVGPn0W7a6XsO9QoEvDDaIR9ruvxpaqFTmOjBaFWM1x77gz0H8plea4BSLtxKm+vh5333039uzZk/K5giBE1C55vd64TW6KosDtdkccI8uy3rynjdCTZTlqrVNHRwfuv/9+/fHo6Ciqq6tTjp+IKN/5/Cq+/VsZ/++Xr2Nyxo8VJYV44P3vwMeu34wC1jLRXC3y5rh40k6cBgcHAYQ2z/X39ydV42Q2m+FwOCK2x+sjtW/fvqhTETQ0NOidwzXh/ac0paWlKC0tTRgfEdFC9sbJMXzR9RJePKIAAG6+dDU6P3wVLqpcntvAaGFbQs1x8aSdOF133XWoq6tDVVUV+vr64Ha7I5rRYgmvDZJlGXV1dXpiJEkSBEEIOU6SpIiESBTFkHu63W5YLBZ2FieiRc/nV7F30ItTYxNYu6oM1281wq+qcP6vjH9xv4Epnx+rSovwf//oHWiuq066DypRhCXYHBfPnNaq6+3thcPhgKqqcDqdKa1T19vbC5vNhvr6evT394fMv9TZ2Yn6+np9ygFNeMIlCALq6urQ1dUFQRDg8Xg4jxMRLXq7DxzHzqcO4vjIhL5t9coSLCspxBHveQDArZevwVc+fBU2VCzLVZi00J14OVC79HLvkmuOi8egqmq0BWCWhNHRUVRUVGBkZATl5eW5DoeIKKHdB47jc49KUVfuAoDlJYX4x7u240PXbWItE6UubnPcZ4ErP7wom+NSyQeSnu3sa1/7WsJjHnnkkWQvR0REKfL5Vex86mDMpAkAVpUV4YPXMmmiKPw+YPCZQIfuwWcCjzXjXuC3/wz8yzWBteEO/Q4wFAYSpU//Emj7DXDtPYsyaUpV0k11X/nKV9DX1xf3mH379uG+++6bc1BERBRp76A3pHkumpOjk9g76MWNNVXzFBUtCAefjL7e2w2fB06/GtkcV/vJQHNcxaachJvPkk6cGhoaUFVVhdra2pjHLOFWPyKirDsyPJ7UcafG4idXtMQcfDJQixReVzl6DPjl38w+XuTNcZmSdOLU29uLkZER7Nu3D0BgHqfwdsBY0wAQEVH6pn1+/Lj/CL66+9Wkjl+7il96dIHfF6hpitfAW7QMuPdxYMuNS2p0XLpSGlVXUVGBhoYGAMD+/fvh9XphMBj0hX3vvvvuzEdIRLREqaqKX7xyAl27X4N85hwAoLDAAJ8/+pegAcD6isDUBEQAAM+vQpvnopk5D6g+Jk1JmtM8Tpqnn34afX19aGxs1JMoIiJKX/9bXnT+zx8gHVYAAFUrSvDnDZfCuKIEf/6j/QBC6xC0r7wH79jG9eeWOr8feOsZ4KXuQEfwZJw9md2YFpE5LfL7wgsvwOFwoLu7G6IooqamhokTEdEcvHnqLOy7X0XfwcAX2bLiQtx381a0vUfEqrJiAEBxoSFiHqf1FWV48I5t2LF9Q07ipjxw6lXgpR8DL/XOTlSZrJXrshPTIpRy4vTWW2/pE18aDAbcfffdGBgYwNatW7MRHxHRknBqdAL/7H4DPfuOwOdXUWAAWuo34y/Nl2JteWifpR3bN6Bx2/qImcNZ07QEnT0NHHABL/4IOP7i7PayisASKNubgJ+0AqPHEb2fkyEwum7LTfMV8YKXdOL0yCOPwOFwQJZlNDc3o7e3N2Km8McffzypteqIiCjg7OQMnL/xYNczgzg/HZhXp3HbOth2XI5L1q6KeV5hgYFTDixV0+eB1/4HePHHwJt7Av2TgMAyKJe+D7i6Bbhsx+zIuB32C6PqDIjawLvjIaCgcB6fwMKW9MzhBQUFsFgsaGlpgSAIEZOrDQ8P46GHHkJ/f39WAs0GzhxORLky7fPjR3sP41/cb2Do3BQA4NpqAX/9/newczdF8vuBw88GapYOPglMjs7u21QLXP0RYPuHgRWro58fdR6nTYGkadud2Y19AUglH0i6xqmtrQ1dXV1x52rq7u5OPkoioiVIVVX8/MAJdO1+FW8NBeZl2rp6Bdpvvxw7tq/njN8U6swbgZqll3qAkcOz2ys2A1c3A9d8BFh9aeLrbLsTuOIDwKFnAx3BV64LNM+xpillSSdOVqs1YRbW0dEx54CIiBar5+UhdP78VbxwRAEQWJj3LxouxUeu34ziwqRXwKLF7twQcOCxQO3SMWl2e2k5sO2DgWRp801AQYrvmYJCYOvNmY11CUo6cQrvz5TuMURES80bJ8dg3/0q3H84BSAwUq71PSLa3iNiZemcBjfTYjE9Aby++0K/pT7APxPYbigELjED17QAl78fKF6W2zhpbtMREBFRbCdHJ/DPfa+jZ98R+NVAh+6W+mp8oSFypBwtQaoKHH4uULP0yhPA5Mjsvg3XBmqWtluAlWtyFSFFwcSJiCjDxiam4fiNjEd+K2Ni2g8AeN+2dWjfcQUuWbsyx9FRzg15LvRb6gaUQ7PbyzcF+i1d/RFg7RW5i4/iYuJERJQhUzN+/PD5Q/jXp9+E98JIOdPmwEi5uos5Um5JG/cCrzweSJjeDhp9XrJytt/Slnen3m+J5h0TJyKiOVJVFf/98nF89Rev4dCFkXLi6hVo33EFbr9yHUfKLVUzk8AbvwwkS6//AvBPB7YbCoCa2wI1S1d8AChZnts4KSVMnIiI5uC5CyPlXtRHypXiC+ZL0VJfzZFyi5HfF39Iv6oGapRe/BFw4HFgQpndt/6qQLJ0lQVYtX7eQ6fMYOJERJSG10+Owf7zV7Hn1cBIueUlhWh7j4jWm0Ws4Ei5xSnqJJIbAzNzr78q0GfppW7AK8/uX7UBuKop0BS37sr5j5kyjp9uIqIUnBiZwNf7XoNr4G19pNxHr6/GXzRchjWrSnMdHmXLwScvLFsSNgn06DGg5+Oh24pXAO+4I5AsbX0PJ5lcZJg4ERElYXRiGg//2oPv/G5QHym348r1+NKOy1GzhiPlFjW/L1DTFHWR3CBb3wtce0+g31Ip3xOLVc4SJ1mW4XK5IIoiZFlGW1sbBEGIeqwkBWZONZlMkGUZiqLAZDKlfB0iolRNzfjx6HOH8G9Pv4Hh8UDn3rotleh4/xWo3cKRckuC/OvQ5rlY3vNFzsy9BOQscWpqasLAwACAQPLT2tqK3t7eqMc6HA44nU4AgNlsDjkulesQESXL71fxs5eP42u/eA2HvRdGyq1ZgQd2XIHGbRwpt+hNTwCePYGJKQ8+mdw5Z09mNSTKDzlJnGRZDnksiiLcbnfM42trazE8PAwAIbVJqV6HiCiYz69i76AXp8YmsHZVGa7fakRhgQHPes7goZ+/ipfeDszkvGZVKf7SfBma6y5CEUfKLV7T54E33cDBnwKv7QamxlI7f+W67MRFeSUniZPb7YbRGFrFbTQaIUmS3gQXLlrzW6rXmZycxOTkpP54dHQ0jeiJaDHYfeA4dj51EMdHJvRtq1eWYF15GV45FvjbsKKkENZbanDfzVuxvIRdQhel6fPAG33AwScCcy1NnZ3dV74pMDnlFXcAj38GGD2O6P2cDIHRdVtumqegKZdy8pdAUZSo271eb8zjXS4XAKC/vx9WqxWiKKZ8nc7OTuzcuTPleIlocdl94Dg+96gU8RV45uwUzpydQoEBuPeGLfjzhkuxeiVHyi06U+OBiSkP/jSQLE2fm91XUR1IlrZ9ENhUNzuT9w77hVF1BoQmTxeabHc8xNFzS0Re/RcqViIU3OFbFEU0NjbC4/GkfJ2Ojg7cf//9+uPR0VFUV1enGy4RLUA+v4qdTx2MOz6qamUpHrzjShQWsB/TojF1LpAsvfJE4Of0+Oy+is3AtjuBKz8EbKoFovVf23Yn0Pz9GPM4PRTYT0tCThInQRAiaoW8Xm/M0XCyLOtNb9roOVmWU75OaWkpSkv5v0eipWzvoDekeS6a02OT2DvoxY01VfMUFWXF5NkLNUtPAK//Epg5P7tP2HyhZulDwCZT9GQp3LY7A1MNxJs5nBa9nCROZrMZDocjYntdXV3ENkmS0NDQoHcO1xiNxpSuQ0T0h+Oj+NovX03q2FNj8ZMrylOTZ4HXdweSpTfcYcnSFuDKu4BtdwEbr0suWQpXUMgpB5a4nCROoiiGPJZlGXV1dXpNkSRJEAQBoihCFEXY7Xb9WLfbDYvFAkEQImqWwq9DRKSqKp6TvXj4Nx785vXTSZ+3dlVZFqOijJocC/RVeuUngVFxM0FJb+XFgUTpyruADdemlywRBclZH6fe3l7YbDbU19ejv78/ZO6lzs5O1NfXo729HYIgoK6uDl1dXRAEAR6PJ+TYeNchoqXL71fxy4Mn8K3fyPoCvAUGYMf29Xh+0Avv2alY46OwviIwNQHlsYnRQM3SK08EkiXf7IhpGMXZZGn91UyWKKMMqqommEN+8RodHUVFRQVGRkZQXl6e63CIKAMmZ3z4iXQUzv+VIZ8JjJYqKSpAU+1FaL1ZxMWrV+ij6oCo46PwrXtN2LF9w/wGTolNjATmVzr4BPDmnrBkqWa2GW79VUyWKCWp5AN5NaqOiChdYxPT+MHzh/Gd3w7i1FjgC7W8rAgfv3ELPnnT1pAFeHds34Bv3WuKmMdpfUUZHrxjG5OmbPP7ku9gfV4BXvt5YOoAzx7ANzW7r+rS2WRp3ZVMlmheMHEiogXt1OgEvvO7t/CD5w5hbHIGALC+vAyfefdWfPSdm7GyNPqfuR3bN6Bx2/qoM4dTFh18MsaQfvvskP7zCvDa/wSa4TxPA/7p2WNXXzbbDLd2G5MlmndMnIhoQRo8cw7O//XgsYGjmPL5AQA1a1bAeksN7rp2E0qKEi+NUlhg4JQD8+ngkxcmkQzrITJ6PLC9/j5AOQR4fhWaLK25IihZesc8BkwUiYkTES0oLx5R8PBvPNj9ygloPTRNmwV89pYamN+xDgWsMcpPfl+gpilql/wL2/p3zW5a847ZZri1V2Q/PqIkMXEiorynqir+940zePjXHvxeHtK333bFWnz2lhrUX1wJA5ts8tuhZ0Ob52K59l7gXX8OrLk8+zERpYGJExHlrRmfH//98nE4fiPj4PHAwrtFBQbcec1GWG+pweXrV+U4Qkpo3AsM/gbY+0hyx9fcyqSJ8hoTJyLKO+enfOgdOIJdz8g44g3M/LysuBAfub4a990sYpOwLMcRUky+aeDtfYFO3Z49wFEJ0ZvnYli5LmuhEWUCEyciyhvK+BS+//tD+N6zb8F7LjDs3LiiBH9848X4xI1bULmiJMcRUlRe+UKi9Ctg8H+BydHQ/WveAYjvBV7uCdRAxZp6tHxjYGoCojzGxImIcu6Ych6PPDOIH/cfxviUDwBwUeUytN4sormuGstKuIhqXpkYDSRInqcD/4YHQ/cvMwaa3GpuA8RbgYpNge1bbrowqs6AqFOP7niIC+ZS3mPiREQ58/rJMTz8Gw+efOEYZvyBL9J3bCjHZ28R8YGrNqCoMPGUAjQP/D7g2AuBpjfP08CRvYDqm91fUARU3zCbLG24JnoCtO1OoPn7MeZxemh2HieiPMbEiYjmXf9bXjz8aw/2vHpK33aDaMRnb6nBLZet4Qi5fDDydmBZE8/TgPxrYEIJ3W+sAS5pCCRKF78bKE2yo/62O4ErPpD8zOFEeYaJExHNC79fxZ5XT+Hh33gwcGgYQGDS59u3rcdn31uDa6uF3Aa41E2dA9763Wyt0pnXQ/eXVgDie4CahkDNUuXF6d+roBDYevOcwiXKFSZORDQnPr8ad9mSqRk/fvpCYNHdN06dBQCUFBbgw6ZNaH2PiJo1K3MV+tLm9wMnXw4kSW/uAY48H7oOnKEA2FQXqFG6pAHYaAIK+ZVBxE8BEaVt94HjEQvlbriwUO67L12DH+89jG//dlDfv6q0CPfcsBmfeddWrC0vy1XYi0MqC+Vqxk4ERr55ngbkXwHnTofur9gMXHJbIFnaeguwTMha+EQLFRMnIkrL7gPH8blHpYiB5cdHJvDZRyUsKy7A+enAGnJrVpXiM+/einveuRnlZcXzH+xik8xCuQAwPQEcfnZ2qoCTB0KvU7ISuPjm2Volo8hFc4kSYOJERCnz+VXsfOpg3GkNz0/7cXHVcnz2lhp8yLQJpUXs/JsRiRbKvf0rgOoPJEuHfgfMTAQdZAA2XhtIlGpuAy66Hiji3FhEqWDiREQp2zvoDWmei+WfPnQV3nXJ6nmIaIlIZqHcX3SEbl61YbZDt3grsKIq21ESLWpMnIgoJaqqYv/h4aSOPXN2MsvRLDHJLpS70QRcZQnUKq25gs1vRBnExImIknJ85Dye2H8MT+w/itdOjiV1ztpV7AA+Z+PeQJPbW78DXv1Zcufc+PlA4kREGcfEiYhiGp2Yxu6XT+An+4/iucEhqBdag4oLDCgsMGBixh/1PAOA9RWBqQkoRWdPzSZKh34HnDqY+jW4UC5R1uQscZJlGS6XC6IoQpZltLW1QRCEqMdKkgS32w0A6O/vx65du/RjJUkCAJhMJsiyDEVRYDKZ5uMpEC1K0z4/fvPaafzkhaNwHzyJyaDk6PqtRnzouk14//YN+L18Bp97NPD5i7LqGB68Y1vIfE4Uw+jxC4nSbwM/wyeeBALNbVveBWy5EfjF/w1MQcCFcolyImeJU1NTEwYGBgAEkqjW1lb09vZGPdbtdqO9vR0A0NXVhYaGBv1ch8MBp9MJADCbzTGvQUSxqaqK/UcUPLH/KJ568RiGx6f1fTVrVuDDpovwwWs34qLK5fr2Hds34Fv3miLmcVp/YR6nHds3zOtzWDCUI6GJkleOPGbd9kCidPG7Aj9XBHWwLyzlQrlEOWRQVTXeiOKskGU5JHECgMrKSgwPR3Y4lSQJDQ0N+j5ZllFTUwOPxwNRFOF0OtHc3AwAMWusYhkdHUVFRQVGRkZQXl6e/hMiWqDeOnMOT7xwFE/sP4q3hsb17atXluKD127Eh67bhCs3lsddOy7RzOFLmqoCw28FNb39FlAOhx5jKADWXwVseXcgUdp8I7A8QRNn1HmcNnGhXKI0pZIP5KTGye12w2gM/cNgNBohSVJEM5vJZMKuXbv0x4qi6MdrUk2YiJYy77kp/PdLx/D4/qPYf1jRty8rLsSO7etx13Wb8K6aKhQVFiR1vcICA26s4RB3AIFEacgTSJC0PkqjR0OPMRQG5lLa8q7A4ribbwDKKlK7DxfKJcqZnCROWvITzuv1Rt1uscyODunu7obZbNaTJUVR4HK5AAT6P1mtVoiiGPU6k5OTmJycHR49OjqaRvREC8/EtA97/nAKP9n/Nn792mnM+AMVzQUG4N2XrsGHrtuI921bjxWlHC+SElUFTr8WlCg9C5w9EXpMQTGwyTTb9Fb9TqB01dzvzYVyiXIir/5Kxkqogve7XK6QJr7gTuWiKKKxsREejyfq+Z2dndi5c2emwiXKa36/iucHvfjJ/rfx85dPYGxyRt+3fVM57rp2E+68ZuPSXjMu1fXe/P7AKDe9j9KzwPiZ0GMKS4GL6mYTpYuuB0qWR78eESXF5/dBOiXh9PhprFm+Bqa1JhTmqIY1J4mTIAgRtUterzdhk5vNZkNfX1/IcbIs68172gg9WZaj1jp1dHTg/vvv1x+Pjo6iuro6/SdClIdePzmGx6WjePKFozgW1Gl7k7BM77d06boM1HgsdMms9+b3ASdenu2jdPhZ4HxYX8yiZUB1/WwfpU11QPESTkaJMsx9yI2H9j6Ek+Mn9W3rlq/DA9c/APMW87zHk1edwwcHB2MmT11dXbBYLBBFUa+ZkmU5pOO4oih6J/Nk+j2xczgtFqdGJ/DTF47hJ/uP4uDx2SboVWVF+MBVG/Ch6zah/mIjCthpOyDWem/aSLWrPxJIkA4/B0yOhB5SvALY/M7ZPkobTVzvjShL3IfcuP/X90MN+6waLowi/fp7v56R5CnvO4eH1wbJsoy6urqQuZkEQdCPc7lcMJlMetLU09ODtrY2iKIIu92uX8ftdsNisbCzOC0J5yZnsPvACTzxwlH87s0z8GuTUxYa8N7L1+LD123CrVesRVkxOwyHSGa9t5d+PLuptDzQgVtLlDZcAxQWz0ekREuaz+/DQ3sfikiaAECFCgMMsO+149bqW+e12S4nNU5AIFlyOByor69Hf38/Ojo69ISnqakJ9fX1aG9v16cfCCYIgl7LpE2OKQgCPB5PSCKVCGucKF8kO6R/xufHM2+ewRP7j+KXr5zE+Wmfvq92SyU+dN0mfOCqDahcwRqQCNMTwMlXgJd7gOcfTnx83WcA08eB9VdztBpRFqmqiuHJYRwePYwjY0dweOwwDo8exqtDr0IejTLPWZjv3P4d1K+vn1MMqeQDOUuc8gETJ8oHuw8cj5hEckPQJJKqquLloyP4yYXJKc+cndKP27p6BT503Sbcde0mbK5iB2TdzGQgSTr+AnBsf+DfqT8A/pmEp+ru/jbXeyPKEL/qx+nx0zg8dhhvj72tJ0daonRu+lza17bfbMf7xffPKb68b6ojooDdB47jc49KERXRJ0Ym8NlHJdx5zQa8cmwUntOzf1SMK0pw5zUbcdd1m3DNRRVxJ6dcEmamgNN/mE2Qjr0QSJr805HHLl8NCFuAYwOR+8JxvTdaZLI9Ms3n9+HE+Ak9IToydgSHRw/rydKEbyLu+etXrMfmVZtRvaoa1auqMeWbwjdf/GbC+65ZviZTTyEpTJyIcsTnV7HzqYPxetrgyRePAwBKiwrwvivX40PXbcTNl65BcZKTUy46vmng9KthSdIBwDcVeewyY2CiyY3XBf5tuBaouAhQ/cA3tgfWiON6b7REZGpk2rR/GsfOHtMTouAE6e2zb2MmTq1ugaEAG1dsxObyQHKkJUmbyzdj08pNKCsKHY3q8/vw2BuP4dT4qaj9nAwwYN3ydTCtnd/1aZk4EeXI3kFvSPNcLJ99j4jP33YJVpUtsQ7JvhngzGuzCdKx/YGpAXyTkceWVYQmSBuvA4TNQLTaOENhYMoBrvdGS0SskWmnxk/h/l/fHzEybWJmAm+Pva03owXXHJ04dwI+1Rd+C11xQTE2rdyEzeWbQxKj6lXV2LhiI4pTGFhRWFCIB65/APf/+n4YYAiJXxtVZ7veNu/zOTFxIppnbw+P41nPEHr6jyR1/Ds2lud30pTqJJKxrnHm9dkESUuSZs5HHltaAWy8JjRJqrw4epIUy7Y7gebvx5jHieu9UWz5NBFjMhKNTAOAv/3d3+KZt5/BkbOBBCm4ViqassIyVJdXhzSraYnSuuXrMloe5i1mfP29X49aW2a73rZ05nHKF+wcTvPh1OgEfi8P4dk3h/CsfAZHvFGSgTh+1HpD/q4Fl8wkkuH8PmDozbAk6SVgejzy2JJVgea2DdfM1ihVbgUKMtRUmYmkj5aMfJmI0a/6cX7mPM5Nn8O56XMYnx7Xfz83E/rYo3jgPuxO+R4ri1eGJETBCdKaZWvmvW9lthNWjqpLEhMnyobhc1N4Th7Cs54hPOs5E9KxGwgsinvNRRW4QazCj/uPYPjcVKyeNlhfUYbf2m6LOjVBzsWdRBKBGp0r/gjwyrMJ0vEXgOMvAlNnI69XsjIw9F9LkDZeCxhrMpckEc3BXCZiVFUVU/6pkETn7PTZhEnP+PQ4zs1EJkfjM1H+kzFH5s1m3Lb5Nr1ZrbK0ckkNPOGoOqJ5NDoxjf5B74VEaQh/OB66eLTBAFy5sRw31azGjTVVqL/YiJUXFtO9+qIKfO5RKVZPGzx4x7b8TJqSmUTysfuAwhJgaizykOLlQUnStYGfVZewtmeJWEjNXZO+SQxPDOMfn/vHuM1dHc904Geen2F8ZjxqAjSjpjAVRpIKDAVYUbQCy4uXY0XxCqwovvB70ezvo5Oj+PlbP094rXvecc+c50JaKpg4EaVofGoG+94aDjS/eYbw8tuKPmu35vJ1q3BjTRVurKnCDVurULE8eh+lHds34Fv3miLmcVofNI9T3lFV4A9PhTbPReObDPwrKruQJF07W5u0+jImSUtULpq7ZvwzGJsaw+jUKEYnRzEyNRL15+jUKEYmR/TjRqdGEw6h10z4JrDnyJ6Exy0rWjab5BSFJTzFK0KSHm1frGPLCssS1gppSWq+jUxbyNhUx6Y6SmByxof9hxU86xnCc54h7D8yjGlf6Mdm6+oVuEGswk01VbhBrMKaVaUp3SPZmcPn1cxUoJntzOth/96I3tQWjfnLwI1/BhTy/2g09+auc9PnoiY54T+DE5+RyRGcnU7y/RpD+IiuWO6quQvXb7heT2xWFq8MqQFaVrQsJzVrWrkDiDoyLVPrvS1k7OOUJCZOFM2Mz4+Xjo7g954h/N4zhP63vJic8Yccs7GiDDddsho3ioFapY3CshxFmwHnlUAydOb1wPB/7XfvIBBz2HEBAH+MfUH++GfA1pszGCwtVD6/D7c/dnvcEVsrilfgA1s/gLHpQO3Q2ORYSKIUbxh8MlYUr0BFSQXKS8tRXlKOitIKlJeURzzWt1/4/eDQQdz3y/sSXj8TS39kS7SavvXL1+dsZFq+YR8nWpLSrbXx+1UcPD4aSJTkIewd9OLsZGh/hNUrS3HThaa3m2qqsNm4fGF1nPT7gdGjoYnRmTeA068B507FPq9kFbD60kDT2prLAj9XXwZUbAb+3cRJJHMoX/oJzfhnoEwqGDo/hOHJYQxPDMM74Y34eezcsYTD3M9Nn0PP6z1xjykpKIlMcKIkQlqCpP1cVbIKxQXpTetRt64O65avW9DNXeYtZtxafWtevGcWOiZOtCgkWu8tmKqqePPUWX3U2/ODXijjoctzVCwrxo1iFW66pAo3ilW4ZO3K7CZKmRoWPz0BeD2hidGZ1wPD/6MN99es2hiaGK2+FFh9ObBqfez5kTiJZM5ks5/QtG8aw5OBZEdLfPQkaHIY3vPekARpdGo08UVTcFv1bTCtM0UkR9rP8Nml50O+TsSYqsKCwrytEVtI2FTHproFL9Z6b9rX/Tc/ZsK2jeX6qLffe4Zw5mzo7NMrSgrxzqA+Sts2lKNgvvoYpTMX0rh3ts/R6aBaJOVQYEmRaAqKgaqa2Rqk1Zdf+P1SoHRVBmPfxEkksyjVfkJTvqmQmh89GbqQ/AxNDOnJ0fDEMMamo4yCTMAAA4RSAcYyIyrLKlFZVqn/rv08de4UvrrvqwmvxeYuygX2cUoSE6eFz+dX8W7703GXLikwIGLUW2lRAeovNuoj367aVJGb9d8SzYX0ga8FFqXVao7OvBFobhsfin3N0ooLtUeXByVJlwVm185GJ21OIjlvfH4f3vfY+3BqPHbzamlhKS4TLgskRpPDaa06X2Ao0BMhPRkqjUyGtJ8VJRUJa1u0Pk6Jmrt23707r2tu8qWJlDKLfZxoyXhOHkq43ptfBQoLgNrNs4nSdZsFlBbl+I+d3wf8PMFcSP/9V7HPr9gclBhdCqy5PPD7ijWpLT8yVwWFC7YDeK6/BFVVxdnpsyH9gbSaIO334OayM+fPYMofZUHjIJO+Sbw89HLItiJDEYQyIZDslBrj1gwZS40oLy1HgSGz/5FgcxctFkycaEE4NzkD+fQ5yGfOwnPqLDynz8Fz+izePJXcMOOHPnw1muqqsxxlGN80MHY80Iw18nbg5+jRwL+Ro4FRaxPDia8jXByYA2n1ZReSo0sDk0WWrMj2M1jUstFPyK/6MTI5EtInSPtdmVRCkiAtMZr2Tye+cIo+/o6Pw7zFrCdD5SXleTGYIR/XHSNKFRMnyhuqquL4yATkC0mR5/RZ/fdEtUoAUAA/ri94FWuh4BQE7PVfAT8C/2u+qHJ5ZoP1zcwmRaMXkqKRo7OJ0egxYOwEotcmpajhb4GrLHO/TpbkutYmHcmuFj/tn4YyoUQkQcGJT/DvyqQCf6w+ZnEsK1oGY5kRQqkwW/tTGlojVFlWibdH38YDv30g4fVu3XwrTOvyc4QXR3fRQsfEiebdxLQPg2cuJEenLtQiXUiSxqdiz9OyemUJxNUrUbN2BWrWrIS4ZgUurlqBe3Y9j2vP/i/+rvj72Gjw6scfU434++lP4MVV78H1W43JB+ibAc6eCKopOhpZa3T2ZOxO2MEKigMdvSsuCnSa1n/fCJw9BfzsC4FbApDKSnG6sBBrfD6YJiahf42sXJd87PMsXxY9jcav+jExM4HxmXGcnz4f+DlzHmenz2Ln73fGXT7ji7/5IpYVLUt74sRVJasikp+QpEhrJisN/J7sSLHtVdvxz9I/L+hh8QCbu2hhY+JEITI1g7Wqqjh9dhKeU+dCao48p8/iqHIesYYkFBUYsLlqOWrWrNSTo8DvKyAsL4l6zrdq38Y1z34jYvt6ePHN4m/gRZM4+xx8M4GkJ7jJLLzW6OyJ1JKi8k1AxYWkqPxCUlSxKbB9+erYi9T6fcD/dsE9o+ChKgEni2Y/jutmZvDAkAJzUWXezoWUbK1NPNrip+PTgaTm/Mz50N9nZn+P2JfguGSXyojGp/r0pEnrKK0lQSHJT9A2rfO0UCakPV9QIoulnxDRQsZRdYt8VF0qidDuA8fx90++iCpfH5YXncH4zGoMFTbi7+68JuaaaVMzfhwaOqf3OQr8Owf59FmMTcRe1LK8rAiXrF0J8UKCVLNmBWrWrsRm4/LURrf5fcA3tkMdPQY/ImttCgAYipYB664MNK2NnYgzG3aQgmKgfMOFWqJN0WuN4iVFSXL/thP3v/mDwNdfUB8Uw4WP5dcv+RjM7+6Y0z3mwuf3YdI3iQnfBCZmJjDhm8DkzCTOz5zHF371BQxPxu6jtaxoGW6rvg0TvomIRCc42UmnaSsVBhiwrGiZ/m9GncGJcycSnvdXtX+FD17yQVSUVmS8o/RccVg8UWZxOoIkZStxmpqaxGO/+g/sP7IHw75hCEUVWFlUicrl67Be2Iq7brGipKRUP/aJ3zhwavQw1pZvDtkX69rJHp9KIrT7wHF8+8m/xZl1v8eZotkvidUzfqw+eSOa3/cgtq5eoSdGnlNnIZ85h8PecfjCx/pfUGAAqo3LIa6+UGu0drYWqWpFSfTOqtPnA0uATCiBn+eHZ3+fuPA4eP+FmiP38mV4qKoySq3NMMzj58MCKwpM+KjXEm2KrDVasWbOSVEiiZagMABYt3x9yPBsrflp0jcZSGguJDPJbJv0BRKeSd8kJmcCyVDw8dG2zfgzv6J7LKWFpSEJzvKi5VhWHPS7tr14eegx0bYH/R6+EGr/iX58+hefThhPPs8nBCzMvmVE+WpBJE6yLMPlckEURciyjLa2NgiCkPKxqVwnXDYSJ+dP/wb/OfQTjBbG/gO2esaPj66+CwDwozNPRCQqH119F9o++E9Rr53s8YkSoc/c+Q968uTzq/j0P38O+6t+G7Pm47JjN2Df6IeiPp+VpUUhTWqXGEtwSfkMqpdNonR6LPkk6Pww4JuMeo943MuX4f61q2PX2pw6A/PVnwK2WwLJ0Yo1Sc8zpKoqZvwzmPJPYdo3Hfjpn8aUL/Bz2jcd8lj/eeH4af+0flz4uW+PvY1fHflVwhgqSirghx+TM5MJh6JnU0lBCUqLSlFWWAaf6oN3wpvwnPdvfT9Ma00xkxot8SkrKkNRwfz0HFgs8wkRUeYsiMSptrYWAwMDAALJj81mQ29vb8rHpnKdcJlOnJw//Rv82/BPAw/iDf0NL/IoX/Z/WvnBkGTI+dO/wb8P/zRmchB8fDKJ0LYTN0Gt/CTOnJ3CSWUMay5+AGcKDVHjNqgq1vhU3HDkLlwmANXLJrG+5DxWF55HueEcSmdGYTivzCZB0+PwI9DhecZggA+Az2DAzIWf2vYZA+CDAT4D9H0zMMBXUICZkpXwla6Ar2QlZkpWwFeyHDPFy+Ar1n6WwVdUiqlzQ/jmyWdwtiB67FBVLFNVvHft9ZhZUTmb6IQlQrESoGwMFc+U4oJilBWWobSoFKWFgYSmrKgs8Lv2M9q2ojL9vLLC+NuCfwY3Vy30WhuuFk9EwfI+cZJlGU1NTXrCAwCVlZUYHo7sLxHv2FSuE00mE6epqUm8779MGIqRfETQij3Gl325H2i+/Evw+1VMTIzjqSP/gbE4ycFKv4ot50zw+32Y9k3gmPAaxuMcX6aquOpsCQwGFeeKpvHKssTNUhunp1GiAr4LCc+MITQxCk6U/HkwZ0w2FBgKUFJQguKCYhQXFqO4oBglhSUhP7V92nHB+4sKivTHp8+fxlOepxLe88s3fhmmdaaIxCaXtSGLodaG/YSISJP3M4e73W4YjaHDw41GIyRJgslkSvrYffv2JX0dAJicnMTk5GxT0Oho5hanfOI3DgwVpdAnJl5iYTBgtBB45M2vzW6L12HaYMDZQgNeKX8haGP84ycMBvSXzyQ+Nsix4rmPFCoyFKGwoBCFhkIUFhSGPC4qKEJRQVHovgu/x9p/avwUXjrzUsL7fmDrB3DN2mtCE5mCEj35iZYAhSc6JQUlGU0CfH4f9h7fmzD5uOuSu/Iu+VgMo7s4nxARpSMniZOiKFG3e72RfSbiHZvKdQCgs7MTO3fuTCbElJ0aPZzxa9ZMTWGtz4czBYV4ozT6UPxgV0+qqC5cjuP+CUgliSsSbzOsRt2mOhwZeQs/Gns14fF/tfXD2H7ZHdETnHjJj5YoGQozPntxsk1Gd192d941GS305GMxzALN+YSIKFV5NY9TrEQo1WNj7evo6MD999+vPx4dHUV1dWaW4VhbvhlIb668mD5W3Yqmhs+j99cP4++PfSfh8R/c2obmxj/Hc9IjaH35XxIe/9HtH8MNpvvgm5nCnu+bcLoAUGP0cVrrBz5+09+gsChxAjefTGtNWLd83YKdEHChJx+stSGipSYniZMgCBG1Ql6vN+pouHjHpnIdACgtLUVpaeyh/nNx1y1WfPO/HBnp42RQVaz2qfjgbX8GFJfig7f8Cb75X49gqNAQM7FZ7VNx1y1WAED91Z/A2he+kTARqr/6EwCAwqISdFz2Mdz/5g9gUNWQc7TO5A9c9rG8S5qAhV9rAyz85IO1NkS0lORkVjezOfr/ouvq6lI6NpXrZFtJSSnuuTDFQMxpsTVB+w1hx2qPP7L6Ln1+ppKSUn36gmSO1xKheMeHJ0Lmd3fg65d8DGvD5iJc58/9JIyJaLU2a5evDdm+bvm6BTM6Sks+3i++H/Xr6xdM0kREtNTkpMZJFMWQx7Iso66uTq8pkiQJgiBAFMW4x4bXLIVfZ761ffCfgJ8i4TxOa3wqPhIyj9NsDc/qC/vC52XSrp3s8eZ3d+DrAB56/Qc4GRTKOj9guyx6ImR+dwduveGvIL38Xzg9ehhryjfDdNXH87KmKdxCr7UhIqKFIacTYDocDtTX16O/vx8dHR16wtPU1IT6+nq0t7cnPDbevkQW+8zhAOCbmVqQiRAREdF8yft5nPLFUlirjoiIiOJLJR/Ir5UriYiIiPIYEyciIiKiJDFxIiIiIkoSEyciIiKiJOXVzOHzTesXn8k164iIiGhh0fKAZMbLLenEaWxsDAAytuwKERERLVxjY2OoqKiIe8ySno7A7/fj2LFjWLVqVcYXn9XWwTty5AinOphHLPfcYLnnBss9N1juuZHNcldVFWNjY9i4cSMKCuL3YlrSNU4FBQW46KKLsnqP8vJyfrBygOWeGyz33GC55wbLPTeyVe6Japo07BxORERElCQmTkRERERJYuKUJaWlpXjwwQdRWhp7HTnKPJZ7brDcc4Plnhss99zIl3Jf0p3DiYiIiFLBGiciIiKiJDFxIiIiIkoSEyciIiKiJC3peZyyQZZluFwuiKIIWZbR1tYGQRByHdaCJUkS3G43AKC/vx+7du3SyzNeWae7jyLZbDZ0dHSw3OeJ2+2GLMsQRREAYDabAbDcs0mWZbjdbhiNRsiyDIvFopc/yz1zJElCa2srBgYGQrZno4yzWv4qZZTJZNJ/93g8qsViyWE0C5/dbg/5Pbh845V1uvso1MDAgApAHR4e1rex3LOnr69PbWtrU1U1UEaiKOr7WO7ZE/x3RlVV/TVQVZZ7pvT29up/T8Jlo4yzWf5MnDLI4/GEvFiqqqqCIOQomoVvYGAgpPw8Ho8KQPV4PHHLOt19FKm3t1cVRVFPnFju2RVc1qoaKDftJ8s9e8LLKDh5ZblnVnjilI0yznb5s49TBmlVvcGMRiMkScpRRAubyWTCrl279MeKogAIlGm8sk53H4VyuVywWCwh21ju2SPLMrxeLwRBgCRJUBRFby5iuWeX0WhEbW2t3mTX2NgIgOU+H7JRxtkufyZOGaR9sYfzer3zG8giEvzF3d3dDbPZDEEQ4pZ1uvtolqIoUfsDsNyzR5IkGI1GvV+G0+mEy+UCwHLPtt7eXgBATU0Nent79b87LPfsy0YZZ7v82Tl8HsR6ESl5iqLA5XJFdCqMdlym9y1FPT09aGtrS/p4lvvceb1eyLKs/+egra0NlZWVUOPMUcxyzwy32w273Q5ZlmG1WgEADocj5vEs9+zLRhlnqvxZ45RBgiBEZLRa1TvNjc1mQ19fn16W8co63X0U4Ha70dzcHHUfyz17RFHUywqA/lOSJJZ7FsmyjP7+fpjNZrS1tcHj8aCnpweyLLPc50E2yjjb5c/EKYO0YcPh6urq5jmSxaWrqws2mw2iKEJRFCiKEres091Hs3p6euB0OuF0OiHLMjo7OyFJEss9i7T+TNGw3LNHkiTU19frj0VRREdHB//OzJNslHG2y59NdRkU/odPlmXU1dXxfxlz4HK5YDKZ9KRJa0IKL9Pgsk53HwWE/9GxWq2wWq1Rv9hZ7pkjiiLq6ur0/mXaXE4mkyniWJZ75phMJjgcjpD+lENDQyz3LAruQxnvezNf/85zkd8Mk2UZDocD9fX16O/vD5k4kFIjyzJqampCtgmCgOHhYX1/rLJOdx/NUhQFTqcTNpsNbW1tsFqtMJlMLPcsUhQFNpsNtbW1GBgY0GtaAb7fs8ntdutNokDgPw8s98xyu93o6+tDV1cX2tvbUV9fryer2SjjbJY/EyciIiKiJLGPExEREVGSmDgRERERJYmJExEREVGSmDgRERERJYmJExEREVGSmDgRERERJYmJExEREVGSmDgR0bxzu92oqalBV1cXnE4namtrUVtbq0+4WVNTA0mS5nwP7ZpERJnCJVeIaN4pioK+vj59dua+vj4YjUa0tbUBAFpaWiDLctRlL5JlNpvR0tKSkXjnQ/AyFESUv1jjRETzzuv1xl3U1mQyRaxuvpjJsoyenp5ch0FESWDiRETzrrm5OSPHLBZ2uz3XIRBRkpg4EdG8S6ZJat++faitrUVXVxcAwOVyoaamBm63G8BsPymr1QqXywWn0wmr1QpFUWJe0+12o6urCy6XCzabLeZxsizDZrPp19WuKUmSfn5XVxdkWdavmyhWrb+V2+2G0+lEU1OTvm/fvn3o6+uD0+nUr0lE+Yl9nIgoL4X3UbJYLOju7g7Zb7FYUFVVpa+y7nK50NTUhL6+vojracnQwMAAgEBzobZSezBFUdDY2IiBgQEIggCbzQan0wmLxQKbzRZy7draWuzZsyepWM1mM/r6+tDb2wsA6O3thSRJ+r6amhq9jxcR5S8mTkS0oAXXXlksFjQ1NUXtaO1wOGA0GvVaIADo7++PuF5PTw9EUdTP7+joAAB0dnZGdFYXRRE9PT1JJTxVVVWoqqoKiXsp9eMiWiyYOBHRkmEymWA2m/XH0RKe8KRrvke6cXQdUX5jHyciyluCIGBoaEh/7Ha7I/owBT92uVwwm80hiYe2v6WlJaS2SbteOIvFEjGHlNvtjnq+JEl6J/ZkYk1GtJiIKH8YVFVVcx0EES1Nbrcbsizro8psNhvq6ur0JjFFUWCz2fSO1A6HA4qiwOFwQBRF2Gw2KIqiN8/19/ejo6MDgiBAkiS0trYCAHbt2gWTyQS3242+vj7U19cDQESSFRxXtOPcbjckSYIoiujv70dLS0tSsSqKEhKL1t/KZDLpz91ut6O2thZmsznuVA1ElFtMnIhowdJmGWenaiKaL2yqIyIiIkoSEyciWpDcbjfcbrc+rJ+IaD6wqY6IiIgoSaxxIiIiIkoSEyciIiKiJDFxIiIiIkoSEyciIiKiJDFxIiIiIkoSEyciIiKiJDFxIiIiIkoSEyciIiKiJP1/tcoa6Ugs2C8AAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -615,9 +615,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABuIklEQVR4nO3deXwb5Z0/8I9824ntsZzYDpDD4yRACJDIdgoplELkEqDQLvhol17bbazS7bZdtrVw+9uldLc4Mt0eexTk9FhYetgWtEALoVYovaDEtggkhCuScxEnTizLduJbmt8f8ox1S5YlS7Y/79dLr1ijmdEzz8jWN8/xfVSSJEkgIiIiorBSEl0AIiIiooWCgRMRERFRhBg4EREREUWIgRMRERFRhBg4EREREUWIgRMRERFRhBg4EREREUWIgRMRERFRhBg4zTObzQa9Xo+CggKUlZWF3LesrAwFBQXQ6/VwOBzzU0BKGhaLBVVVVWE/J/FkMpkS9t7zTf7dVKlUKCsrQ3NzM5qbm6HT6VBTU7Ok6iJaOp0OBQUFMJvNEe3vcDig1+vR0tICk8mElpYWv33MZjN0Oh10Ol3U92Cx3tuWlhaUl5cnuhhLj0QJYTAYJEEQpO7u7oCvd3R0SNXV1VJ9ff08lywwo9Hot62hoUGqrq5OQGncApVpseno6JBEUZzVMbGql/b2dr9tAwMDIT+3gST6czJbWq024O+dKIqSwWBIQIkilwy/ExqNRuro6IhoX1EUJavVqjwXBMHruSRJEgBpYGBA6ujoUM4b7XUutntrtVqlhoaGWf0+0tyxxSlBBEFAbW0tjEZjwNeTrYWpo6PDb1tVVRXq6uoSUBq3QGVabNRq9ayPiVW9CIIQcFt9fT1EUYz4PIn+nMSKTqeDXq9PdDFCWki/ExaLBYIgeH2W2tvbvZ5bLBaIoghBEKDVaqHVagHE/joX6r0VRRE6nS7g7yrFDwOnBNLpdGhra/Pb7nA4ZvXFFG8tLS2w2Wx+27VaLaqrqxNQouBlWupiWS8WiwXNzc1+2w0Gw6z+UCfycxJL8jUn239qZAvtd8Jut/v9x0AOjDz5ftbicZ0L+d7KwSXNn7REF2Ap02g0UKvVMJlMXl8sXV1dAf+AyJqbmyGKImw2G0RRVI51OBxoaWmBKIro6OiATqeDRqMB4B4nIP+Pas+ePbDZbLDZbOjv74fBYAj6XmazGR0dHbDZbMqXaENDAywWC/R6PWw2G6xWa9D3sNvt6O7uhtFoREtLC9RqNVpbW9HY2KiULdx1RVom3/MA7rENnq+F4ju+or6+Puw5o71m+Ti1Wo2amhoA7vsX7n74lsezriKtl3D1KxMEAQaDwesccrC/Z88er+OD1U+kn5NIPovh3ms2551tXQBAd3c3NBqN1xd5sPug1+uV1gC5pUAuQySfs0DnC3Vd4e59ILH6e9Hc3AxBEGbVOmo2m2E0Gr3Ka7Va0dbWhvb2dmi1WlgsFq995JYn3+sURRFNTU2w2WzKsTabDVVVVRBFEUajMWxgsVDvrcPhiPg/MfKx8r0SRRF2u12pa9/fU3nsmcFgiPg6fOulsrJyzvcmKSW6r3CpkvurA43/kMeWBBrjVF1d7TX2RKvVKv3bDQ0NXuMDRFGUBgYGlOfyeBnP8QeiKIbtH+/o6JA0Go3f9u7ubr/xN8Heo6Ghwev6fM8X6rpmU6bq6mqv97ZarZJWqw1xdW4Gg8GvjJ73IdQ5o73m9vZ2CYDXPWtoaPC654HqOFRdhaqX2dRvKFqt1utc4epnNp+TcGWK9l54njdcXfiOgxkYGJAMBoOk0Wi8fp9CnUe+3x0dHVJ3d7fyWQj3OQt1X8NdV7B7H0ws/l40NDR4jb0ZGBiQAEQ0xilQeX3HRwX77PgeF2gsYKAxS0vl3vqqr6/3um6r1epX14HqUKvVet3faOol0nuzkDBwShD5w2i1WpXBj/Jz+Y+Zb+Ak7+t7Hnmf6upqrw+57xdcd3e33/G++wQym8Ap2Ht4/kGxWq2SIAgRX1ekZeru7vY6ryzcYFX5j73vH06DwRDROaO55mDXIJdF/gz41nG4ugp0zmjqNxTPP56R1k+kn5NQn8W53Av5vJHUhVarlTQajWQ0GpWHb0AXyX3wfT3U5yzc+SKpr9l+uc7174V8Pb4iHRwey8BJkiS/SQuBPktL5d6GK5skSX7BWrD/pPl+VwW7jkD1Iovk3iwk7KpLMFEUodFo0NbWhvr6elgslpBdVIIgeE31tVqtSt93e3s7AHfzrdxlZLfb/d7PkyAIfvvMVaD3CDWlPtx1Raqrqytgs6/cFRGs+7OrqwuCIHg1ect1KXdlhDvnbK85GLkcwcYtRFNXsarfQKKtc3kfT+E+i5G+V6jzRloXFRUVXt0TviI5j285wn3OZnu+uf7uzvXvhVwHyaK+vh6tra3QaDQwm81BP3tL4d4Guh7fezXbexdNvcgivTcLBQOnJKDT6WA0GlFfXx/ywywPGvf80Hn+bLFY0NTUhKqqKtTW1sat71ju246VcNcVaZmiHdgZ6rhkGyw627qS62Wu9RuqPPMlFu8Vq7qI5Dy+v8vhPmexvkfhfk9j8fcimlmfsSZfZ11dHXbs2AGDwQCbzRZ1/S2GexsrntcVTb3IYnVvkgVn1SWB2tpaWCwWmEwmVFRUBN1Po9EEbCVwOBxwOBzYsWMHGhsblQBM/tDHegaKxWKJ6flCXVekLBaLMvDQl81mQ2VlZcj3D/ReDocj6nNGS76XvgPnZbOtK4vFEpP6DWY+6ycW7xWruojmPKE+Z/G4R6F+T2Px9yJYmeebfJ2ek23mEtAt9HsbrGzRvJ9nq9dcriNW9yZZMHBKEHnmAgAlR0lra2vIFietVouKigq/LLdtbW1Ky4LnF678oQ/3BzQceQYF4P6jGuxLPdr3CHVdsymTRqOBVqv1akqWrz3UrCl5Zojn1HuHw4G2traozxnpHymLxeK1b1NTU8g8SeHqKlC9RFO/kYq2fgIJV2exuBexqotoP7PBPmfRnM+3vmbzexqLvxeiKKK+vt5rJpnD4fD7TMdaqOvU6XTYtWvXnNJfLPR7G6hsvvdJnr0X7D3kMni25M/1dycW9yZpJHqQ1VJjtVql+vp6CYBUX1+vDAL2nIEhz/QQBEHJaOs5sE+eyeJ5jLy9oaFBybBrtVqVgbzd3d1SdXW1BECZ0SC/h0ajCTtYTz63PFAw0PlCvYdWq1VmW8j7NDQ0RHRdkZbJ9zxGo9FrgHYk5zMYDFJ7e3vE55zLNcsDPtvb26WOjg7JYDB4zTbxPS5QeQLVVbh6ibR+g/GdWTPb+onFZ3G298L3vIHqwmq1hvy9C1UWz/N0dHRIWq1WEgRBGRzse0y4z5nn+WZ7XYHufbCyx+LvhXwt8nk0Gk3YAeK+deR5/mC/N76z+QJdp3wNvpbavQ11PZ73yfceyX+D5DJWV1dLoiiG/d0JVy+SFPzeLEQqSZKkBMRrREuenPuku7s70UWZlZqaGtTV1S2O/znSouJwOMLmwSO38vJyGAyGeaurxXRv2FVHRGHJzfbyz8k0m4qWNs9uLblrjJLDYr03DJyIKKympibodDoA7vERoSYxEM0nOcM1kByz/GjGYr037KojSgCz2QyDwaD8G+myMIlis9lgMpmU5RrYTUfJwmKxoKurCwBC5meiGc3NzdDr9dBqtcq/8bBY7w0DJyIiIqIIsauOiKKm0+lQUFDglSKAgrNYLKiqqooqqzwRJQcGTkQUtUCrm+v1etTU1MxrOXxXpU+288k0Gg30en1czp0I8aonomTGwImIYqqqqgp1dXXz+p4dHR1JfT5Pi2mQbDzriShZca06Ioqp+Z5y3NLSEtOlP2J9vsWK9URLFQMnoiTmcDjQ0tICURTR0dEBnU7nt9yCb3eJ5+yVUK81Nzcr3Ww2m02Z2Scn5hRFETqdTmlVMBgMynHy7DpfFosFer0eNptNWVZIPh8A7NmzR1nuob+/XzmnfK16vR7l5eXo7u5GWVkZNBoNjEajstK8L7PZjI6ODthsNmW5C88ZisGuMZhg5wt0XfJUa4PBgPr6euU61Wq10lXpcDj8rjMYuazyAq7hZi5Gc29ncx1A8PsVrt6JFrVEpi0notAaGhq8li8QRdFrqQiDweC17IjnMgihXquurvZabsFqtUpardZrX3lJhu7ubuU8vks+DAwMSAC8ztXd3S2Jouh1HR0dHZIoil77iaLotYyG51IuAwMDfucIRl4+wle4a5zt+eRr8KTVar3qo729XQLgdc8aGhqk+vp65Xmg+vFdxkar1XrVja+53NtIriOS+xWsnogWO45xIkpiNpvNa8aaKIrKc7mFprGxUXm9tbVVWZgz2GsWiwVms9mrS00URdjtduXcgiDAYrFAq9VCo9HAYDDA4XCgubnZq2VDEISIFhxVq9Ww2Wx+7+nZ1WMymZRzCYIQcCHSSEVyjbMVqIXNN4O6XB+eA+YbGxtDdmvJObI8W5hqampgNBoD7j/XexvJdURyv4iWKnbVESUxuYtKXvLEbrcrq9h3dXVBEASvLz15f7PZHPQ1uevPl9wdKH9Z+u4jnzNavucTBEG5FsA94yzQqvDR6Orqiuga54N8HywWS8AyyfXqGdBZrdagQUqo+x7pvY1EuPtFtFQxcCJKYhaLBU1NTaiqqkJtba3Xl5lvkOEp2tc8BQqS4jkjTKfToampCXv27EFLS0vQFpdw5Ba3WJHHHAUSi/dxOBwQRdErqAkV4MTi3sbqOE+h6oloMWFXHVGScjgc2LFjBxobG1FfXw9BEJQvOJvNFrCFRj4u1GtarTZga4bNZkNlZWXQ8mg0mrh31ezZswdmsxnV1dVRL9EgdzFGc43BzhdMJC0wDodDuSeBBKvXYMFMPO5tLFqSQtUT0WLCwIkoScktJ55fuPIXnNztU11drcxqAtxfnm1tbSFf02g00Gq1Xl1D8pdeqJlcoiiivr7eazaXw+GAxWKJqsXC95ju7m4IgoDq6upZtVx4jr2RA8porzHY+Xy3y+UP1LrlWx9NTU2or68Pek1arRYVFRUwmUxe29va2oKWby73NtLr8BWoGzVQPREtdlyrjiiJydPCq6qqALi/rPR6Perq6pQvQr1ej8LCQmUQsGdLTbjX5KU/rFar11Rzg8GArq4uNDY2+gUy8lR3uStPLqPBYIBarUZTUxNMJpOyeLHc3ei5rbm5GU1NTRBFUXkPk8mEmpoaJdWBIAjQ6XQRtTzJZSgrK4voGqM9nxysyPXR2toKi8UCg8GA6upqZSp/Y2OjMq4JgFc6ALkuGhoavMojl1XuDg0X4EVzbyO5DlEUI7pfoeqJaDFj4ERECedwOLBr1y7s2bNH6ZK02WzK8i0L5UtZDpy6u7sTXRQiihN21RFRwrW0tECn0ymtWPK0foPBwCCEiJIKAyciSjiNRhMwO7jZbFa6KYmIkgG76ogoKZjNZq9cR5EuPZIs5LFh8r9cgoRocWLgRERERBQhdtURERERRYiBExEREVGEGDgRERERRShha9XJq3gDQGdnp5K/JRB59XA5U628/EQkXC4XTp06hdzcXKhUqhiVnoiIiBYLSZIwPDyMiy66CCkpYdqUpAQxGAxeP2s0mqD7er5mtVql6urqiN/nxIkTEgA++OCDDz744IOPkI8TJ06EjSsSMqvOYrFgx44dGBgYAOBuUSorK4PVavVbz8lms6GmpsYrCV5BQYFybDiDg4MQBAEnTpxAXl5e7C6CiIiIFoWhoSGsXr0aDocD+fn5IfdNSFedRqPBnj17lOfy4pHyGk2ezGaz33a1Wg2LxRLRopJy91xeXh4DJyIiIgoqkiE9CRvj5JnUrrW1FVqtNuC4pWArdsurxPsaHx/H+Pi48nxoaGhO5SQiIiKSJXxWncPhgMlkCrjcQrjjAmlqakJ+fr7yWL16dQxKSURERJQEgZNer0dHR0fQWXKCIPi1Ltnt9qD7NzY2YnBwUHmcOHEixiUmIiKipSphXXUA0NzcDL1eD1EUlRYk34BIq9XCaDT6HVtRURHwnJmZmcjMzJx1WZxOJyYnJ2d9HNFCl56ejtTU1EQXg4goIKdLwv4eO/qGx1CUm4VtpWqkpiQuvVDCAieTyQSNRqMETW1tbaivrwfgnnUnCAJEUQw4y66ioiLiPE7hSJKE06dPB+36I1oKBEFASUkJc50RUVLZe6gXDzxzGL2DY8q2VflZuP/2Tdi5eVVCypSQdARy+gFPgiAoKQZqampQWVmprC5us9lgNBpRWVmJzs5ONDY2Rhw4DQ0NIT8/H4ODgwFn1fX29sLhcKCoqAg5OTn84qAlRZIkjIyMoK+vD4IgYNWqxPwhIiLytfdQL+553ALfIEX+ln74E5qYBU/hYgWv909E4DSfQlWG0+nEO++8g6KiIhQWFiaohESJ19/fj76+PmzcuJHddkSUcE6XhOsML3i1NHlSASjJz8Kf9TfFpNtuNoFTwgeHJ5I8piknJyfBJSFKLPl3gOP8iCgZ7O+xBw2aAHea797BMezvCZyaKJ6WdOAkY/ccLXX8HSCiZNI3HDxoima/WGLgFANOl4SXrf146sB7eNnaD6crfr2fFosFOp0OKpUKer0eLS0t0Ov1qKmpURZNjoWWlhYUFBTAYrHE7Jzzrby8HCaTSXne0tKCqqqqqI4lIqL5U5SbFdP9Yimh6QgWg/ke8a/RaGAwGNDS0uI1SN7hcKCgoADd3d0RLUUTTn19/ayTkobicDhiNhMyUgaDwStthVar9ZulGemxREQ0f5ZlpiJFBQRrh5DHOG0r9V+qLd7Y4jQH8oh/337Y04NjuOdxC/Ye6p23ssjpG1pbW+ftPSNls9nQ1tY27+/ru4yPKIrQarVRHUtERPPjZWs/7t7zSsigCQDuv31TQvI5MXDyIEkSRiamInoMj03i/qff8JsmCUDZ9s2nD2N4bDKi88VicqPdbvdL85AMDAZDootAREQLwN5Dvfj0T/djeHwK20rV+G7t1ViV790dV5KfFdNUBLPFrjoPo5NObPrX52NyLgnA6aExXPnN30W0/+Fv3YycjOhuh8PhQFNTE7RaLerr62E2m6HT6aDX6wEARqMR3d3dsFgsMJvNEEURNpsN1dXVXl1XFosFra2tqKysBOC9kLLZbIZer0ddXR0aGhpgMpmg1+thNBqVVhzPfFt2ux21tbXo6upCV1eXcq5g3WVmsxkWiwWiKKKzs1MJtiwWC4xGo9fYJFEUYbfbQ5bHYrFg165d0Ol0qK+vh8PhgF6vh9lshtVqVc4dqD58j5WvXafTKft2dHTEtCuTiGip+8X+4/jGrw7CJQEf2lSM//z4VmSlp+IjWy5m5nCKjZaWFiUIkb/UAXdwotVq0d3dDaPRCLVaDZvNpqwLKCsvL8e+ffsgCAIcDgdqamqUoAJwL5gs02q1qKurU55XV1d7dQs6HA5UVVWhu7sbgiAoA9cbGhqg1WpRVlamZIb3JZetu7sbgDtga25uRn19PXbs2IGenh6l26ygoAD79u0LWx6NRuP1uiAIMBqNKCgo8HrPQPXhe6xcn57BUnt7OywWS0zGkxERLWWSJOF/fn8E3/ndOwCAj1Wuxr9/dDPSUt2dYqkpKlxbljy5Fhk4echOT8Xhb90c0b77e+z4zE87w+73v39XGdHgtez02ScdrK+vD7k4spzUs7q6Gnq93u9LXhRFZambtrY2v9fV6sgH3bW1tUEURaU8jY2NER8rB3eeswI7OzshCILfWKNYDdg2Go0h68NXYWGhV5LUQItPExHR7LhcEr71m8P435eOAgC+eON6/POHNiZ1ihQGTh5UKlXE3WXXb1iJVflZOD04FnCckzzi//oNKxPWpBjpDLJY8J01FyygCza7TqPReA3crq+vR0tLS4xLSUREyWJiyoV/bn8Nz7x2CoB7sPffvb80waUKj4PDo5SaosL9t28CMDPCXzZfI/7DtXh4vl5XV+eX58lisaC2thYAlHFBnmw2m9dzQRDQ39+vPDebzcriyNXV1X7HB8orFWhboLKZzWbU1taGLFOo8siCLd4crj5CHUtERHNzYXwKf/9oJ5557RTSUlT4wce2LIigCWCL05zs3LwKD39C45fHqSSOeZzkAdyAe7aaTqfz63Iym81eg621Wq2S/6m5uVkZgN3e3q60/oiiiPb2duj1elRVVSktQ01NTTAYDBBFEbW1tcoAa8AdbMldXqIowmg0Qq/XK4PL5RYknU6n5J4KlA5ALpvvsYIgBCyTLFR5HA4HWltboVar/QbBe75noPqQ61g+Vj6X/B42m00ZtC6K4ry27BERLXT2CxP4u5/ux2snB5GTkYqHP1GOGzauTHSxIrakF/kdGxtDT08PSktLkZUVffZRp0tKqhH/i1lVVRUMBkPUg7ILCgowMDAQ41ItfLH6XSAiCuXkwAg+9ZP9sJ29gIKcdPzkM5XYuqYg0cWa1SK/bHGKgWQb8b+YRTMgu6WlBVarFTqdjtnAiYgS5J0zw/jUj/fj9NAYLsrPwmN//z6sL1qe6GLNGsc40YLR0tKi5IqazfgjrVaLwsJCmEwmGI3G+BWQiIgC6j5mR80jL+P00Bg2FC3HE1/YviCDJoBddeyeIAJ/F4gofl546wy+8DMLxiZd0KwR8JPPVELIyUh0sbywq46IiIgS7onuk2h44nU4XRJuvHQlfnh3ObIzZp+3MJkwcCIiIqKYa/mjFQ8++xYA4M6tF8NQfRXSUxf+CCEGTkRERBQzkiRh93NvwfhHd969XdeXovGWy5GySGabM3AiIiKimJhyunDfkwdh6j4JAGi85TLobihLcKlii4ETERERzdnohBNf/LkF+97qQ2qKCk13XonaitWJLlbMLfzOxiWspaUFer0eLS0tMJlMMJvNypT9ZGU2m1FeXj5v69CVl5fDZDLNy3vNlW9ZW1paUFVVFdWxRETzaXBkEp/88SvY91YfMtNSYPxE+aIMmgC2OMWGywkcewk4fwZYXgys3Q6kxHfWQFVVFWpqamAwGJRtFosFVVVVsFqtcX3vudBqtQGXXYkXg8GwYJJe+pZVq9VGvJzLQrpOIlpcTg+O4dM/2Y+3zwwjLysNP/5MJSrXqRNdrLhh4DRXh58G9uqBoVMz2/IuAnYagE13xOUtm5ubAQD19fVe2zUajd+2ZFRYOH9Z1uczSJsr37LOZh28hXSdRLR4WM+ex6d+vB/vOUZRnJeJRz+7DZeVhM6DtNCxq24uDj8NtH3KO2gCgKFe9/bDT8flbZuamqDT6QK+VlNTE5f3JCIi8vTaCQdqHnkZ7zlGUbpiGUyf377ogyaAgZM3SQImLkT2GBsCnmsAECjx+vS2vXr3fpGcL8IE7jabDQ6HI2hLhGf3jsViQXNzM0wmE5qbm5WxT57jjORxUTU1NbDZbMoxnoGZ2WxGWVkZdDodTCYTWlpaoNPplGVP5NdbWlrQ0tKC8vJyZbv8/nq93qucDofD6709BTouWJk9zye/Jh9nsVj8xlPNtk6CCXZtFotFqSf5YbFYlPPLrYUmkwllZWUwm83KcZ5ldTgc0Ol0KCsr8zp3oLL7HjvbayEimq0/vXsWH9/zV9gvTODKi/PR/vlrsVqdk+hizQt21XmaHAEevChGJ5PcLVG7Ixwc9/VTQMayGL23O8DS6/Xo6OhQtpWXl2Pfvn3KOKOOjg60t7cDANrb22EymdDQ0ACNRoOysjI4HA4IggCtVovq6moUFhaiuroagPuLv6amBh0dHcr5uru7YTQaoVarlffv7u4G4F6ct7m5GQ0NDQCAzs5O5ef29nZYLBZoNJqQxwUqs3xcS0sLNBqN0mVlt9uh0WhQV1c3pzqRzx+obn3LWF9fjx07dqCnpweCIAAACgoKlPN7lqW6uhqtra3Kc9+yCoIAo9GIgoKCsGX3PXY210JENFvPvHYK97YdwKRTwnXrV+CRT5ZjeebSCSeWzpUuEnJrks1mC/glaLPZoFarYTQa/V4XRRFtbW2or69HYWGh11gjQRC8WrEEQYDdblcCAHmbrLq6GjU1NUpwJQiCcr7q6mro9Xqo1WqlRQVwB0uyyspKv/cCoARegY4LVGb5uOrqapSXl0MURdTV1QUc6xVNncjn9z1PoDLKQaZnPcVqwHa4svuK9FqIiGbj0ZeO4pvPvAFJAj581Sr8R+3VyExb2EuozBYDJ0/pOe6Wn0gcewn4WXX4/e42uWfZRfLeEWpoaIDRaFRafzxZLJaA2yPh+YUfDd/uQ88WIMB/MHsw0RynVqsxMDAAi8WC1tZWpTUsXgKVcb5SLBARzTdJkvC9jnfwny8cAQB8+tq1uP/2KxZNNvDZ4BgnTyqVu7sskkfZTe7Zcwj2oVEBeRe794vkfKrIP3xyCgLfL2p5zBEA1NXVebWIAO6gqra2Nuh5PY8P97rJZPJrXfFs0Qj0/r7PA4n2uKamJqUVzmAweJVLLnc0dTKbMtbW1sJisXht98ypJQgC+vv7vY7xrfNg9yCSsoe7f0RE0XC6JHzj14eUoOneqo345h1LM2gC2OIUvZRUd8qBtk/BHTx5Du6e/jDt3B23fE4dHR1obm6GXq9HWVkZ1Gp3zgy5tUkOIJqbmyGKIjo7O9He3g5BEJRWGcA9HkYeFC4fZzabYbPZYDAYvIIQq9WqfNnL5wPcAYDZbIbFYoEoitBqtcr76/V6pVtOq9UGfW+j0QhRFKM+rrCwEGazGWq1Gna7HXV1dcoxarUa1dXVUdWJfH7P1rRgZRQEAe3t7dDr9aiqqlK6MWW1tbXQ6/VKAKTVapUuOIfD4VXWQK134couHyufK5JrISIKZWzSiX9qPYDnDp2GSgX820c24xPXrE10sRJKJUkRTudaoIaGhpCfn4/BwUHk5XlPkxwbG0NPTw9KS0uRlZUV3RsEzON0sTtoilMep0SQA7SFkCcqmVRVVcFgMEQ9KLugoAADAwMxLpW/mPwuENGiMjw2iV2PdeGvNjsyUlPwg49twS1Xrkp0seIiVKzgiy1Oc7XpDuCy2+Y9czgtDNEMyG5paYHVaoVOp2M2cCJKiLPD4/jMT/fjjVNDWJ6ZhpZPlWN72YpEFyspcIxTLKSkAqXXA1dWu/9dZEGT3BUnT2mnyMjrBhqNxlmNP9JqtSgsLITJZILRaIxfAYmIAjjeP4LqR17CG6eGsGJ5Bn5Zfw2DJg/sqmP3BBF/F4gIAHD41BA+/dP9ODs8jtXqbPzfZ9+HdStil2MwWbGrjoiIiGblr7Z+7Hq0C8PjU7h8VR4e/btKFOXxP1K+GDgREREtcc+/cRr/+ItXMTHlwrZSNX706QrkZaUnulhJiYETERHREvbL/cfx9V8dhEsCPrSpGP/58a3ISl9cY3VjiYETERHREiRJEn74ohUPPf82AKCuYjW+/TebkZbKeWOhMHAiIiJa5JwuCft77OgbHkNRbhYq1hbgwefexE//chQA8A83luGrH7oUqlmsYrFUMXAiIiJaxPYe6sUDzxxG7+CYsi0rPQVjky4AwP23b8Lfvb80UcVbcNgeFwNOlxOdpzvxrO1ZdJ7uhNPljNt7mc1m6HQ6qFQqr+U7ZqOlpQUFBQXzkpNpPt/LU3l5OUwmk1c5qqqqojqWiGih2nuoF/c8bvEKmgAoQdNn37+OQdMsscVpjszHzNi9fzfOjJxRthXnFOO+bfdBu1Yb8/fTarUQRREtLS1obGz0WgstUvX19co6c/E2n+/lyWAweGXdlustmmOJiBYip0vCA88cRqhkjc8dOo1v3LYJqUt0wd5osMVpDszHzLj3xXu9giYA6Bvpw70v3gvzsdm3BkVCXtCXgpMX3ZXJiw9HcywR0UK0v8fu19Lkq3dwDPt7Zr801FLGFicPkiRhdGo0on2dLiea9jdBChDLy9t279+N95W8D6kRLMGSnZbNQXlERBQzfcOhg6bZ7kduDJw8jE6N4n0/f1/Mzndm5Ay2/3J7RPu+8revICc9J6r3MZvN0Ov10Ol0EEURNpsNHR0dXl1kFosFra2tqKysBOC/+KzZbIbFYoEoiujs7ITBYIDJZEJTUxMcDgesViuam5thNBqh0+nQ0NAQ8JhI3itQ+YOdx2g0eo1NEkURdrsder0edXV1aGhogMlkgl6vh9FohFarhcViwa5du6DT6VBfXw+Hw6GMB7Narcq5zWazUl/V1dUQRdHv2EjqlogoGa1YnhnRfkW5zA4+GwkLnOQvqO7u7rD7AYBGo4HNZoPD4YBGo5mPIi4YWq0WWq3W6wtdXpBXo9HA4XCgpqZGCRoAoKmpSfnZZrNBr9cr98Jut6O5uRkNDQ3QarXYsWMHHA4HBEFAd3c3BEEIekx9fX3I9/IV6jw7duxAT0+P0m1WUFCAffv2QavVoq6uTjlHdXU1WltblecajcbrdUEQYDQaUVBQ4PWeHR0dyj7l5eXYt2+f37Hh6paIKBmdOz+O/37h3ZD7qACU5GdhWymHf8xGQgInk8mk/O8+HKPRiJaWFgDuL7F4/k8/Oy0br/ztKxHt232mG1/Y94Ww+/1wxw9RXlwe0XvPRWFhIQoLC5XngiAoLT1tbW1+X/Ke46SMRiPUarXXDL3Ozk7lPHv27EF5eTna29uVICbYMYIghHwvX6HO4zvWKFYDto1Go18ZRVFEW1sb6uvr/fYPVbdERMmm66gd//BzC84MjSMjLQUTUy6oAK+BJfLAkPtv58Dw2UpI4FRdXR3xvuXl5RgYGACAuA/YValUEXeXbb9oO4pzitE30hdwnJMKKhTnFGP7RdsjGuOUaBqNxmvwtGcAIQdDra2tXgFHoGPkIHeu7x3NeYiIljJJkvDTvxzFg8++iSmXhPVFy/HIJzQ40nfeL49TSX4W7r99E3ZuXpXAEi9MC2JWnSAISTfLKTUlFfdtuw+AO0jyJD/Xb9PHJWiabWuHPO7Hk81mU36uq6vzywclP3c4HDCbzWhvb4fNZlPyGwU7Jtx7+Qp2ntra2pDnEQQB/f39Xsc4HA6v/X2fh3pPi8WC2trasMcSESWj8+NT+OIvXsW3fnMYUy4Jt199EZ76h/djfVEudm5ehT/rb8Ivdl2DH3xsC36x6xr8WX8Tg6YoJf3gcIfDoXxZd3Z2KoN0gxkfH8f4+LjyfGhoKG5l067V4rsf/G7APE76bfq45HGSgxjAPXZIHo8jj/HRarWw2WzKwGpRFCGKItrb26HX61FVVaWMV2pqaoLBYIBGo4HBYIBer1cGdGu1WrS0tMBgMECn0wEAKisrsWvXLthsNjQ0NAQ8RhCEkO/le++CvXew88hqa2u9EoBqtVqlC87hcKC1tRVqtVoZ9B3oPZubm5UB6XI3pDywXT5WPleouiUiSqR3zgzj8493w3b2AtJTVfjGrZfj09vXec3UTk1R4dqywhBnoUipJEkKlRsrvm+uUiHc23t+YVosFr+Bx76++c1v4oEHHvDbPjg4iLy8PK9tY2Nj6OnpQWlpKbKyop9V4HQ5Yemz4OzIWazMWQlNkWZBdM8tNFVVVUqgF42CggKl25e8xep3gYjm11MH3sN9TxzE6KQTJXlZ+J+7NShfW5DoYi04Q0NDyM/PDxgr+Er6FiebzaZ8UcrTwW02W9D/6Tc2NuLee+9Vng8NDWH16tVxLWNqSioqSyrj+h40+y5KwL3UitVqhU6nYzZwIlo0JqZc+PZvD+PRl48BAK5bvwI/+NgWFEaYgoCil9RjnCwWC3bs2OG3PdQsrczMTOTl5Xk9aOFraWmBzWaD0Wic1fgjrVaLwsJCmEwmGI3G+BWQiGienHKMotb4shI0/eNN6/HoZ7cxaJonCW9x8h27YrFYIAiCMn5EToYIuMf3VFdXJ91AcYq/+vr6gKkCwhFFEQ0NDXEoERHR/PvjO2fx5V++ioGRSeRnp+N7dVfjpsuKE12sJSUhgZPZbFaSDzY1NaGyslJJUSA/b2hogCAIqKioQHNzMwRBgNVqZcZmIiJaclwuCf/9+yP4nvkdSBKw+eI8PHx3OVaro1txgqKX0MHh8yHUgC95QOy6deuQnT23BJREC9no6CiOHj3KweFESWjgwgT+qe0AXnz7LADg49vW4P7bNyErnZOQYmVRDQ6Pp/T0dADAyMgIAyda0kZGRgDM/E4QUXJ4/aQD9zxuwXuOUWSmpeDfP7oZNRXxnfBEoS3pwCk1NRWCIKCvrw8AkJOT45X3gmixkyQJIyMj6OvrgyAISE3l/2CJkoEkSfj5/uN44OnDmHC6sLYwBw/fXY5NF3HCU6It6cAJAEpKSgBACZ6IliJBEJTfBSJKrNEJJ77x64N40vIeAOBDm4rxUM3VyM9mi3AyWPKBk0qlwqpVq1BUVITJyclEF4do3qWnp7OliShJ9Jy7gHse78Zbp4eRogL0Oy9D/QdE9oYkkSUfOMlSU1P55UFERAmz91Avvtb+OobHp7BieSb+6+NbuUxKEmLgRERElEBTThean38bLX90L2S+bZ0a//23W1GUxxmuyYiBExERUYL0DY3hi794Fft73EtK1X9AxNduvhTpqUm9sMeSxsCJiIgoAf5q68cXf/4qzp0fx/LMNDxUfRVuuXJVootFYTBwIiIimkeSJKHljzY0P/82nC4Jlxbn4uFPaCCuXJ7oolEEGDgRERHNk6GxSXyt/TU8/8YZAMDfbL0Y3/6bzcjJ4NfxQsE7RURENA/e7B3CPY9342j/CDJSU/Cvt2/C3e9bw1QDCwwDJyIiojgzdZ/E//v1QYxNunCxkI0f3q3B1auFRBeLosDAiYiIKE7GJp144JnD+MX+4wCAGzauxPfrtqBgWUaCS0bRYuBEREQUByfsI/jCzyw4+N4gVCrgKzs24h9vWo+UFHbNLWSzDpyOHj2K9vZ2dHR0YGBgQNmuVqtRVVWF6upqrFu3LpZlJCIiWlB+/1YfvtJ6AIOjkyjIScf3P7YVN2xcmehiUQzMKnC67777oFKpUFtbi6997Wt+r7/66qt45JFHoFKp0NTUFLNCEhERLQROl4QfmN/Bf75wBABw9WoBP7xbg4uF7ASXjGJFJUmSFMmODz30EOrr65Gfnx9238HBQezevTspgqehoSHk5+djcHAQeXl5iS4OEREtUv3nx/GV1gP407vnAACfvGYt/t+HL0dmGtdBTXaziRUiDpwWKgZOREQUb5bjA/iHn1nQOziG7PRU7L7rSnxky8WJLhZFaDaxQtSDw++77z6sX78eNTU1qKmpQUFBAerq6nDnnXdGe0oiIqIFRZIkPPrSUXz72Tcx6ZQgrliGRz5Zjo3FuYkuGsVJ1KsIVlZW4nOf+xxaWlpQXl6O1tZW9Pf3x7JsREREScHpkvCytR9PHXgPL1v74XRJuDA+hS/98gC++cxhTDol3HplCZ764vsZNC1yUbc4FRQUAADa2tqwZ88eAO6ZdURERIvJ3kO9eOCZw+gdHFO2rViegbSUFJweGkNaigqNt16Oz75/HbOALwFRB05WqxWSJMFqtWLLli3o6enxSk9ARES00O091It7HrfAdzDwufMTAIC8rDT8+DOVqFzHhoOlIuquutraWlgsFnR3d2NwcBBGoxEOhyOGRSMiIkocp0vCA88c9guaPGVnpEKzpmDeykSJF9GsusHBQQwMDMwqseXQ0BAAJHwmG2fVERFRNF629uPje/4adr9f7LoG15YVzkOJKF5mEytE1OKUn5+Pjo4OPPnkkxEV4IknnkBbWxsDFSIiWrD6hsfC7zSL/WhxiHiM065du/Dqq6+itrYWZWVlqKyshCiKEAQBDocDNpsN+/fvR09PD3Q6He666654lpuIiCiu0lMjG81SlJsV55JQMokqAebg4CDa2tpgtVrhcDggCALKysqg1WpRWloaj3JGjV11REQ0W8+8dgrf+NVBDI1NBd1HBaAkPwt/1t+EVC7cu6DFPQFmfn4+du3aFVXhiIiIkpVjZAL/8tQbeOa1UwCANeocHLePQAV4DRKXw6T7b9/EoGmJiTodARER0WLy4tt9aDC9jr7hcaSmqPDFG9fjizetx743z/jlcSrJz8L9t2/Czs2rElhiSgQGTkREtKSNTEzh2799Ez975TgAQFy5DN+r3YKrVwsAgJ2bV6FqUwn299jRNzyGotwsbCtVs6VpiWLgRERES1b3MTvubXsNx/pHAACf2b4O+p2XITsj1Wu/1BQVUw4QAAZORES0BE1MufB98zt45A9WuCRgVX4WHqq+GtdtWJHoolGSizpzOAA89NBDqKurAwDs27dPSXpJRESUrN46PYSP/M9f8MMX3UHTnVsvxt6vfIBBE0Uk6sDpvvvugyAI0Gq1AIAdO3bAbDbHrGBERESx5HRJMP7Bijv+6y94s3cIBTnpePhuDb5btwX52emJLh4tEFF31VVWVuKuu+7Cvn37YlkeIiKimDveP4J/bj+AzqPuxeh3XFaEpruuZPJKmrWoW5x6enoAACrVzKyCzs7OuZeIiIgoRiRJwi/3H8ctP/gjOo8OYFlGKgx3XYkffbqCQRNFJeoWp61bt6KiogKFhYXo6OiA2WyGwWCIZdmIiIii1jc8hvueOIgX3uoDAGxbp8Z/1F6N1eqcBJeMFrKollyR9fT0wGg0AgDq6uqwdevWmBUsVrjkChHR0vPswV5841cHMTAyiYzUFHzt5kvx2etKmXuJAppNrDCnwCnQGydbcMLAiYho6RgcmcT9Tx/Crw+4l0zZtCoP36vbgktLchNcMkpmcV+rzvON7Ha78txgMODhhx+eyymJiIii8qd3z+Jr7a/j9NAYUlTAFz64Hl/asQEZaXPKvEPkJerA6fOf/zzMZjMEQVC29fT0MHAiIqJ5NTrhxO7n3sSjLx8DAJSuWIb/qL0amjUFCS4ZLUZRB05lZWV45JFHvLbt2bNnzgUiIiKK1KvHB/DPba/Bdu4CAOBT167FfbdchpwMLoxB8RH1J0tOfOmpqqpqToUhIiKKxMSUC//1wrv4n98fgUsCSvKy0Fx9FT6wcWWii0aLXNSBU0FBAb7zne9AFEUIggCHw4HW1la0trbGsnxERERe3j0zjH9qO4BD77mX+frIlovwrTs2Iz+H2b8p/qIOnBoaGuBwOLzGOL366quxKBMREZEfl0vCT/7Sg+bn38bElAtCTjr+/aOb8eGrLkp00WgJiTpwqqqqwq5du7y2PfHEE3MuEBERka8T9hF8tf01vNLjnsn9wUtXwnDXVSjOY/Zvml9zGhweybZgLBYLdu3ahe7u7pD72Ww2mEwmiKIIm82G+vp6r1YuIiJavCRJQnv3SXzrmcM4Pz6FnIxU/L/bNuHj21Z7LflFNF+iDpysViuMRiMqKysBuD/cbW1tEa1XJwdCFosl7L41NTVKcGWz2bBr1y60t7dHW2wiIlogzg6Po/HJgzC/eQYAULG2AP9RezXWFi5LcMloKYs6cDIajdBqtfBMPB5pEvLq6uqI9rPZbF7PRVGE2WyOvJBERLQg7T10Gt/41UH0X5hAeqoK91ZdivoPiFwyhRIu6sDJYDBgx44dXtsCpSiYC7PZDLVa7bVNrVbDYrFAo9HE9L2IiCjxhsYm8cDTh/GE5SQA4LKSXHyvbgsuX8Ulsyg5RB04+QZNgDtFQSw5HI6A2z2XefE1Pj6O8fFx5fnQ0FBMy0RERPHx0pFz+Gr7azg16F4yRXdDGb6i3YDMtNREF41IEXHg9OSTT0Kr1SqL3/3oRz/yet3hcKCjowPPP/98bEsYQLCACgCamprwwAMPxL0MREQUG2OTThj2voWf/uUoAGCNOgffrb0aFevUoQ8kSoCIVz588MEH0dXVpTx/5JFHMDAwoDwkSUJ/f39MCycIgl/rkt1uDzmrrrGxEYODg8rjxIkTMS0TERHNntMl4WVrP5468B5etvbD6XKPiX39pAO3/eeflKDpb9+3Bs99+XoGTZS0Im5x8gyaAPe6dFu3bvXaFusxTlqtFkaj0W97RUVF0GMyMzORmZkZ03IQEVH09h7qxQPPHEbv4JiyrSQvCxXrCvDcodNwuiQU5WbCUH0Vbry0KIElJQov4hYnX57jmQYHB/HEE09ENcbJt9vNYrEos+lEUfR6zWazoaKignmciIgWiL2HenHP4xavoAkATg+N4Tev98LpknDbVavw/Fc+wKCJFoSoAyfPtAD5+fm46667Ik4VYDabodfrAbjHJJlMJuU13+ft7e3Q6/UwmUwwGo3M4UREtEA4XRIeeOYwQiWqEXLS8Z8f24qCZRnzVi6iuVBJkSZfgrtlqa2tDSqVCh0dHaiqqvJ6vbu7Gw8//HDMCzkXQ0NDyM/Px+DgoDKwnYiI4u9laz8+vuevYff7xa5rcG1Z4TyUiCiw2cQKs0pHkJ+fD61WC4PBAKvVitLSUq/XGxoaZl9aIiJalPqGx8LvNIv9iJLBrPM4lZaW4pFHHsG+ffsC5nIiIiKSJAnvnBmOaN+iXC7USwtHTBNgEhERvXNmGP/y60N4pSd4smIAUAEoyc/CtlKmHqAQXE7g2EvA+TPA8mJg7XYgJXFJUaMOnIiIiDydH5/Cf+57Fz/5cw+mXBKy0lNw8xUlePrAKQDwGiQurzh3/+2buP4cBXf4aWCvHhg6NbMt7yJgpwHYdEdCisTAiYiI5kSSJPz2YC/+/Tdv4vSQe7zShzYV418+vAmr1Tm4ZXOJfx6n/Czcf/sm7Ny8KlHFpmR3+Gmg7VOA77zMoV739trHEhI8zWpW3ULEWXVERPFjPXse9z/1Bv585BwA93Ip37xjE266rNhrP6dLwv4eO/qGx1CU6+6eY0sTBeVyAt/f7N3S5EXlbnn6ysGYdNvFbVZdOEePHsW6detieUoiIkpCIxNT+O8XjmDPn2yYdErISEvBFz5Yhs/fUIasdP8vstQUFVMOUOSOvRQiaAIACRh6z71f6fXzVixgjoHTgQMHvNaSMxqNaG1tnXOhiIgoOUmShOffOIN/+81hvOcYBQDceOlKfPOOK7C2cFmCS0eLxvkzsd0vhqIOnGpra+FwOLyWP3n11VdjUSYiIkpCR89dwDefeQMvvn0WAHCxkI37b9+Eqk3FUKnY7UYx4HIB1n3AK49Etv/y4vD7xFjUgVNVVRV27drlte2JJ56Yc4GIiCi5jE068cMXrXjkD1ZMTLmQnqpC/QdEfPHGDcjOSNy0cFpERuzAq48DXT8GBo5GcMD0GKe12+NdMj9RB05lZWURbSMiooVr35tn8M1n3sAJu7tb7voNK/DAHVdAXLk8wSWjReG9bqDzx8ChJ4Cp6VmXWfnAlk8ABeuA5+QVSQIks9i5OyH5nKIOnKxWK4xGIyorKwG4+73b2trQ2dkZs8IREVFinLCP4IFn3oD5zT4AQEleFv719k24ZXMJu+VobiZHgUNPAp17gFMeQ3xKrgK27QI2VwMZOe5tuSVB8jjtXnh5nIxGI7RaLTyzGSzyzAZERIve2KQTLX+04X9+fwTjUy6kpajw99eX4ks3bcCyTKb+oznotwJdP3F3yY053NtSM4Ar7nQHTBeXA75B+aY7gMtuWxyZww0Gg9+yK1qtds4FIiKixPjDO2dx/1OHcLR/BABwjajGv31kMzYU5ya4ZLRguZzAu78DOn8EHDHPbBfWABWfBbZ+Eli2IvQ5UlLnPeVAKDFbq+6FF16Aw+HA1q1b51woIiKaP6cco/jWM4ex943TAICi3Ex847bLccfVF7FbjqJz4RxgeQzo+ikweHx6owpYr3W3Lq3XJrTVaC7m1O765JNPwmazAXB303V1deHOO++MScGIiCi+JqZc+PGfe/Cf+97F6KQTqSkqfGb7OnxFuwG5WemJLh4tNJIEnOwE9u8BDv8acE64t2cXAFs/4W5hUosJLWIsRB043XfffXA4HLDb7RBFEQ6HAzqdLpZlIyKiOHnpyDn8y1OHYD17AQBQua4A3/rIZly+iktT0SxNXAAOmtyDvU8fnNl+kcbdunTF3wDp2YkrX4zNKR3Brl270NPTA5VKhXXr1uGFF16IZdmIiCjGTg+O4dvPvolnXnPPUipcloHGWy/HXZqL2S1Hs3PuiHvs0oGfA+OD7m1pWe5ZcZWfdQ/2XoSiDpxEUcSxY8dQWlqK73znO/jqV78ay3IREVEMTTpdePSlo/hexzu4MOFEigr4xDVr8c8fuhT52eyWowg5p4B3nnMHTLYXZ7YXlAKVfw9suRvIUSesePMh6sDJ4XBAFEUMDAzg3LlzuPnmmyEIAm666aZYlo+IiOboFVs//vWpN/D2mWEAwJbVAv79o5ux+eL8BJeMFozhM+7B3t0/dS+uCwBQARt3ApWfA8puAlJSElrE+aKSYpR8ad++faioqEB+fnL9Ig4NDSE/Px+Dg4PIy2PfPREtHX3DY2h69i386lX3F11BTjruu+Uy1JSvRkoKu+UoDEkCjr/sbl06/DTgmnRvzykENJ8Cyv8OKFib2DLGyGxihTnNqnvooYfQ1dWF1tZWAGD/OBFREphyuvD4X4/hP373DobHp6BSAR+rXIOGmy9FwbKMRBePkt34MPB6m3splL43ZrZfss3dunTFR4G0zIQVL9HmNKuurKxMSXq5Y8cOPPnkk0xHQESUQN3H7PiXX7+Bw71DAIArL87Hv310M7asFhJbMEoslzN89u2+t9yL7B74BTDh7tZFWjZwVY07YFp19fyXOwlFHThVVlbirrvuwr59+2JZHiIiikL/+XHsfu4ttHefBADkZ6fjazdfio9vW4NUdsstbYefDrLemwG49Bbgrd+4W5eO/mnm9cL17mDp6o8D2cK8FzmZRR049fT0APDunuvs7GSLExFRnDhdEvb32NE3PIai3CxsK3XPXvr5/uN4aO9bGBqbAgDUVlwC/c7LULh86Xan0LTDTwNtnwLgM5x5qBdo+ySQJcysG6dKAS691R0wld6wZAZ7z1bUgdPWrVtRUVGBwsJCdHR0wGw2w2AwxLJsREQ0be+hXjzwzGH0Do4p2wqXZWB5VhqOTa8td/mqPPz7R69A+drFPR2cIuRyuluafIMmYGbbmAPIWQlUfAYo/wyQf8m8FW+hmtOsup6eHhiNRgBAXV1dUq5Tx1l1RLTQ7T3Ui3setwT8+gOArLQU6G+5DJ+8Zi3SUtlKQNN6/gQ8+uHw+33i18D6G+NenGQ2b7PqSktLsXv37rmcgoiIQnC6JDzwzOGgQRMA5Oek41PXruNYJpoxNgQceiKyfUf741uWRSbi/5p85zvfCbvPj370ozkVhoiIvO3vsXt1zwVyZmgc+3vs81QiSlrOSeDtvUD73wHf2eBOVhmJ5cXxLdciE3GL04MPPoiOjo6Q+3R1deFzn/vcnAtFRETAxJQLTx14L/yOcCe7pCVIkoD3uoHXW90tTCMerUeFG4Dzp4Hx8wg8zknlnl23dvt8lXZRiDhw2rFjBwoLC1FeHnzRvhglISciWtLGp5wwdZ/ED39vxXuO0YiOKcrNinOpKKnYbcDr7e6AyW6d2b5spXuR3avrgFVbgDefmZ5Vp4J38DTdrbtzt38+Jwop4sCpvb0dg4OD6OrqAuDO4+Q7gEqt5kwOIqJojU060dZ1Ag+/aFW65wqXZWDC6cL5salgbQYoyZ9JTUCL2IgdeONJd1bvE6/MbE/LBi7/MHDVxwDxg0Cqx1f7pjuA2seC5HHa7X6dZiXqWXWvvvoq7HY7VCpVUi/sy1l1RJTsxiad+MX+43jkD1acGRoHABTlZuLzN5Thb9+3Bi++3Yd7HrcACNhmgIc/ocHOzavmt9A0PybHgHf2uoOld383s16cKsWda+nqjwGX3QZk5oY+TySZw5ew2cQKMVnk94UXXkBHRweqqqqSLohi4EREyWp0womfvXIMj/zBhnPn3QHTqvws3PPBMtRWrEZW+swXW6A8Tqvys3D/7ZsYNC02Lpd7cd3Xfwm88RQwPjjzWsmVwFV17u64PN73WJm3dAQHDhyA0WhEa2srRFFEWVlZ0gVORETJ5sL4FB7/6zHs+ZMN585PAAAuFrJxzwfLUFNxCTLT/FsCdm5ehapNJX6Zw5mCYBE5+zbw2i+Bg+3A4ImZ7XkXA1fWuAOm4k2JKx8BiCJwOnr0KNrb22E0GqFSqXDXXXehu7sbpaWl8SgfEdGicX58Co+9fBQ/+lMP7BfcAdMlBdn44o3rcafmEmSkhc4Qk5qiwrVlhfNRVJovw2eAQyb3IO/e12a2Z+a5xx9d9TFg7fu5/EkSiThw+tGPfgSj0QibzYba2lq0t7f7ZQp/8sknuVYdEZGPobFJPPqXo/jxX3rgGHGPUVlbmIN/uHE9/mbrxUhntu+lZeIC8NZv3a1Ltt8Dksu9PSUNWF/lnhG3cSeQnp3YclJAEY9xSklJQXV1Nerq6iAIgtfivgAwMDCA3bt3o7OzMy4FjRbHOBFRogyOTOKnL/XgJ3/uURbgFVcswxdvWo87rr6Iy6MsJc4poOcP7palN38DTF6Yee2SSnc33BV3AsvYopgIcRnjVF9fj+bm5pC5mlpbWyMvJRHRIjVwYQI/+UsP/vcvRzE87g6YylYuw5d2bMCHr7qI45KWCkkCTr8OvNbq7o47f2bmtYJSd7B0VS1QWJa4MtKsRRw46XS6sFFYY2PjnAtERLRQ2S9M4Ed/suHRl47iwoQTALCxeDm+tGMDbtm8igHTQjab6fyOE+4B3q+3AmffmtmerQY23+kOmC6pBFT8PCxEEQdOvuOZot2HiGixOXd+HHv+aMP//fUYRqYDpstKcvHlHRtw8xUlSGHAtLAdfjpIAknDTALJUQfw5tPufEtH/zSzX2omcOkt7mBpvRZIy5jXolPszSkdARHRUtY3PIaWP9jw+CvHMDbpHuB7xUV5+NKODai6vJgB02Jw+OnpJUt8hqkM9bq3v/8rwEAP8PZzgHN85vV117u74S6/A8gW5rHAFG8MnIiIZunM0BgeftGKX+w/jvEpd8B01SX5+PKODbjpsiK/yTO0QLmc7pamgIvdTG/7y/dmNq28zN2ydGUNIKyejxJSAjBwIiKKUO/gKB5+0Ypfdp7AxHTAtGW1gC9rN+CDG1cyYFpsjr3k3T0XzKaPAtffC5RcxXFLSwADJyKiME4OjODhF61o7zqJCac7YKpYW4AvazfguvUrGDAtRmNDwFu/iWzfy28HVl0d3/JQ0mDgREQUxAn7CP7n90dg6j6JKZe7a+Z9pWp8eccGXFtWyIBpsTl3BHj3efeiusdeAlxTkR23vDi+5aKkkrDAyWazwWQyQRRF2Gw21NfXQxCEgPtaLO5VwTUaDWw2GxwOBzQazTyWloiWkqPnLuB/fn8ET776HpzTAdP2skJ8accGXCMyQeGiMTUBHH8JeOd598Nu9X5dvR44fxqYOB/kBCr37Lq12+NeVEoeCQucampq0N3dDcAdRO3atQvt7e0B9zUajWhpaQEAaLXaoPsREYXidEkhF8m1nT2P//79ETx14JQSMF2/YQW+tGMDKtepE1VsiqXzfcC7He5WJevvgYnhmddS0oF173cvd7LhQ+7ElMqsOsB7kPj052bn7uD5nGhRSkjgZLPZvJ6Logiz2Rx0//LycgwMDABA0FYpIqJQ9h7qxQPPHEbv4JiybVV+Fu6/fRPWFy3Hf71wBM+8dgrT8RI+eOlKfGnHBmjWFCSoxBQTkuRePPfd37mDpfe6vV9fVuQOkjbeDJTdCGTmer++6Q6g9rEgeZx2z+RxoiUjIYGT2WyGWu39vze1Wg2LxRK0C44BExFFa++hXtzzuMVvUnnv4Bg+/7jFa5v28iL8400bcPVqYd7KRzE2cQGwvegOlN7tAIZ7vV9ftcXdqrTxQ8CqrUBKmDUDN90BXHZb5JnDaVFLSODkcDgCbrfb7UH3N5lMAIDOzk7odDqIohhw3/HxcYyPzyQhGxoamlthiWhBc7okPPDM4YCZeDxVXV6EL2s3YvPF+fNSLoqxgaPAO9OtSkf/7J2MMn2ZuzVp483u1qXcktmfPyUVKL0+ZsWlhSupZtUFC6g8B46LooiqqipYrdaA+zY1NeGBBx6IUwmJaKHZ32P36p4L5rPXiQyaFhLnFHDilelZcM97rwkHAMLa6Valm4F11wFpmYkpJy06CQmcBEHwa12y2+1Bu+NsNpvShSfPwrPZbAFbnRobG3Hvvfcqz4eGhrB6NTO4Ei1Vx+wXItqvbzh8cEUJNmIHjpjdgdKRDmBscOY1VSqw5lp399vGncCKjUxGSXGRkMBJq9XCaDT6ba+oqPDbZrFYsGPHDmVwuMx3jJQsMzMTmZn8nwXRUvfumWE8+vJRtHedjGj/otysOJdoiXM5Zz9GSJKAvjfd3W/vPA+c3A9IrpnXsws8Bnbf5H5OFGcJCZx8W4psNhsqKiqUFieLxQJBECCKIkRRhMFgUPY1m82orq7mYHEi8jPldMH8Zh8ee/koXrL2K9tTU1RKegFfKgAl+e7UBBQnh58OMivN4D8rbXIU6PnTTBfc4Anv14s3TwdLO4FLKjhAm+ZdwsY4tbe3Q6/Xo7KyEp2dnV65mZqamlBZWYmGhgYIgoCKigo0NzdDEARYrVbmcSIiL/YLE/hl53H87K/H8Z5jFACQogK0lxfj09vXYWh0El/4mXv2XIBMPLj/9k1e+ZwohpQ8SD6B61Cve3vtY8DF5dOB0u/cs+GmRmf2S8sCSm9wd8FtuJmL51LCqSRJCjfZZEEbGhpCfn4+BgcHkZeXl+jiEFEMHTw5iEdfPoqnXzulLLpbkJOOj21bg7vftwaXFOQo+4bK47Rz86p5L/uS4HIC398ceqHclHTANem9Le9id/fbxp3AuuuBjJzAxxLFyGxihaSaVUdEFM7ElAvPHerFoy8dheW4Q9m++eI8fPradbj96ouQle7ffbNz8ypUbSoJmTmcYuzYS6GDJmAmaLpk20ywVHwFB3ZT0mLgREQLwpmhMfzsleP4+SvHce68O0dPeqoKt165Cp+6dh00a4Swi+6mpqhwbRnXmps3p1+PbL8Pfw+o+Gx8y0IUIwyciChpSZKErmMD+N+XjuL5Q6cxNT3Auyg3E3e/by0+/r7VnA2XTJyTwPG/zsyC6383suMKN8S3XEQxxMCJiJLO6IQTTx14D4++fAxv9s5k/69cV4BPb1+Hm68oQXpqmGUyaH6M2GcWzT2yDxj3ya2Ukgo4J4IcrHLPrlu7fV6KShQLDJyIKGmcsI/g//56DK2dJzA46h77kpmWgo9uuRif2r4WV1zEzN4JJ0nuLN1yq9KJV7xzK+UUume/yYvm2v4wPasOCDinceduphSgBYWBExEllMsl4c9HzuGxl49i31t9kOf5XlKQjU9duxa1Fash5GQktpBL3dQ4cPRP7kDpnb2A47j368Wbpwd23wJcrPEOhDbd4U45EDCP027/PE5EPpwuJyx9FpwdOYuVOSuhKdIgNYHBNgMnIkqI4bFJPNF9Eo/99RhsZ2eWRbl+wwp8+tp1uPGyIs54S6ThM8C704vmWn8PTHosXZOaCYg3TC+aG0FupU13AJfdNvvM4bTkmY+ZsXv/bpwZOaNsK84pxn3b7oN2rTYhZWIeJyKaV0f6hvHYy8fwRPdJXJhwAgCWZ6ahuvwSfOKatVhftDzBJVyiJAnofW2mVemUxfv15SXuQOnSW4DSDwAZyxJTTloyzMfMuPfFeyH5JE9VTXfzfveD341Z8MQ8TkSUVJwuCfvePINHXz6KvxyZWQqlbOUyfHr7OtypuQTLM/nnaN5NjAA9f5gZrzTc6/36RRp3XqWNNwOrrmZuJZo3TpcTu/fv9guaAECCBBVUMOw34MbVN857tx3/UhFR3AxcmMAvO0/g8b8e81oKZcflxfjM9nXYXlYYNvcSxZjjxMw6cD1/BKZmMqkjfZl7QPfGm93rweWWJK6ctKRZ+ixe3XO+JEg4PXIalj4LKksq57FkDJyIaJacLils9u1D7w3i0ZfcS6GMTy+FIuSk42OV7qVQVqu5hMa8cTmB9ywzrUpnDnq/nr8GuHS6VWntdUA682JRYgyMDeDVvldxoO8A9h3fF9ExZ0fOxrlU/hg4EVHEQq33dtNlxXjuUC8ee/kYuo8NKK9fcVEePr19He4IshQKzYLLGdkA67EhwPqCO1B693fAyLmZ11QpM8ubXHoLsPIydsHRvJMkCceHj8NyxoIDZw/AcsaCo0NHZ32elTkrY1+4MBg4EVFE9h7qxT2PW/xGHPQOjuHzj1uQl5WGobEpAEBainsplE9vXwvNmgJ2x8XC4aeDTOk3uGet2W0zA7uP/sV74dzMfGD9Dvd4pfVaYBmXnaH5NemcxJv2N/Fq36vKwz5m99uvLL8MW4u34uqVV+MHlh+gf7Q/4DgnFVQozimGpkgzH8X3wsCJiMJyuiQ88MzhAH++ZgyNTWHF8gx84pq1+Ntta1CUxy6fmDn89HQSSZ87MHQKaPskkLvKf2B34frpgd07gTXXAKnp81ZcoqGJIbzW95oSJB08dxDjznGvfdJT0nHliiuxpWgLNEUabCnagvzMmSS3y9OX494X74UKKq/gSZ5Vp9+mT0g+JwZORBTW/h67V/dcMN+r3YLrN85/0/mi5nK6W5pCha3Dve7lTda93x0obbgZWLF+3opIS5skSei90AtLnwUH+g7A0mfBkYEjfi1FQqaALUVbsLVoKzRFGmwq3ISM1ODJbbVrtfjuB78bMI+Tfps+YXmcGDgRUUgn7CP4Zefx8DsCsI8EW5OMZm1yFDj1KvBaq3f3XDAf+7l7kDdRnE25pvDuwLtegVLfSJ/ffmty12Br0Vb3o3grSvNKZ91tr12rxY2rb2TmcCJKbsf7R/DsoV48e7AXr58cDH/AtKJcds9FRZLcy5ic7ARO7AdO7gdOHwRcU5GfY+J8/MpHC95cli0ZmRzB6+dex6tn3N1ur519DSNTI177pKnScHnh5V7dbiuyV8Sk7KkpqfOeciAUBk5EBAA4eu6CEiwdem9I2Z6iAratU+Nw75Ay+NuXCkBJvjs1AUVgchQ4dcAdIJ3Y7w6YzgfIWbO8BFCXAsdfDn/O5cUxLyYtDrNdtqRvpM9rEPfb9rfhlJxe+yxPX46ri67G1pVboSnWYPOKzchOy477tSQDBk5ES5jt7Hk8d+g0fvt6Lw73egdL15YV4pbNq3DzFSVYmZupzKoDAq5xj/tv38S15QKRJGDwxEyAdEJuTZr03i8lDSi5Cli9Dbik0v1v/mpAcgHf3wwM9SLwOCeVe3bd2u3zcTW0wARbtqRvpA/3vngvvnPDd1CaX+oVKL13/j2/86xatmqm261oK9YL6xPaXZZIXKuOaImxnj2PZ1/vxW8P9uKt08PK9tQUFbYrwVIxCpdn+h0bKo/Tzs2r5qX8SW9yDOg9MNPldqITOH/af7/lxTMB0iXbgIu2AOlB/seuzKoDAoattY+5UxIQeXC6nLj5iZtDZuD2nbEGACmqFGws2IgtK7dAU6zB1qKtKFm2uLPIc606IvJypG8Yv339NJ492Iu3z8wES2kpKmxfvwK3bi7Bh64ogXpZ8BkuALBz8ypUbSoJmzl8SRk86dGa9ArQ+3qQ1qQr3QGS3KIkrIk88eSmO9zBUcA8TrsZNJEfl+TC80efDxk0Ae6lSzJSMrC1aKsyPumqlVdheQYX2w6GLU5Ei9Q7Z4bx29fdY5be7ZsZOJyWosJ1G1bg1s2rULWpGAVhgqVFJdLM28FMjQO9r3m3Jg0HmPG2rMi7y23VFiAjBsvMzLX8tOhMOidxfPg4bIM22Bw2WAet6BnswdHBoxhzhk8hAgAPXvcgbi+7Pc4lTW5scSJagiRJwttnhvHs67149tBpHPEIltJTVbh+w0rcsrkEH9pUgvycJZgMMVzm7UAG35sJkE7udwdNTp+UC6pUoGQzsPp90y1KlYCwNj7LmKSkAqXXx/68lPRGJkfQM9jjDpCmgyTboA0nhk/4DdyWpahS4JJcYc+92LvhYo2BE9ECJkkS3uwdxrMHe/HsoV7Yzl5QXstITcEHNq7ALZtXQbupGPnZSzBYkgXNvN3r3l77mHvttt7XvWe6DfkPkkXOCu/WpIu2AhnL5uUyaPGzj9mVoMgzUDp9IcA4uWk5aTkQ80WIgojS/FL3z/kiVi1bhdt+dRv6RvqSbtmShYyBE9ECI0kS3jg1hOcO9eLZg6fRc84jWEpLwQc2rMRtV5Vgx+XFyMtawsGSLGTm7eltT/y9+0dXgNak4itmBnCvrgQKSrko7hI0lzxIviRJwukLp2daj6ZbkHoGezAwPhD0OHWWWgmKPIOk4pzioIkl79t2X1IuW7KQMXAiWgAkScKh94aUPEvH+meSz2WkpeCDG1fitqtW4abLipDLYMnbsb+Ez7wtd7/lFM4ESJdsAy7WsDWJZp0HSTbpmsSJ4RPocfR4BUk9gz0YnRoNetxFyy5CqVCKsvwyJUgS80WvddwilazLlixkHBxONM+cLimiWWmSJOH1k4N49lAvnjt4GsftM8FSZloKbry0CLdOB0vLM/l/IACAcxI49647T9Lp193/nuwCJi+EP/bmB4FrvsDWJPISLA+S3GLz3Q9+F++/+P0z3WqOmS6248PHMRUk+3uaKg1r8tZAzJ9uOZoOjtblrUNOegwmEviIZYvZYsTB4URJKlweJEmScOCEA88dcqcOODkw87/SrPQU3HRZEW69chVuvLQIy5Z6sDQ2BJx5wztI6nsT8FmBPWIlVzFoIi9OlxO79+8OOD5I3vbVP3w16OBsAMhOy/YadyTmiygVSrE6dzXSU+avdTjZli1ZyJb4X16i+SNn3vb9E3x6cAyff9yCHZcV4a3Tw3jPMRMsZaen4qbLi3DblavwwUtXIidjCf7KSpK7q+30Qe8gaaAn8P4Zue6cSfKjaBPQejcwfBrMvE2+xp3jODtyFudGz+Hc6DmcHT2LsyNn0T/Wj3cH3g2bB0kOmgoyC7xajuRH8bJipKhS5uNSaJ4swb/CRPPP6ZLwwDOHQw1Pxr633KuL52SkYsflxbjtyhLcsLEI2RlLqDk9UFfb6YPAqD3w/nmXeAdJJVe6UwGk+HxR3dI8PatOhYCZt3fuZj6kOJvPriJJkjA0MeQVDJ0bmf7Xc9voOQxPDIc/YRj/cs2/oPbS2hiUnBYCBk5E8+ClI+e8uueCubdqI+o/ICIrPYm/xGOVhHE2XW2qVGDlZf5BUk6Eiwoz83ZCRTu42teUawr2MTvOjp5F/2g/zo6c9Q+GRtw/T/jOkAwhIyUDK3NWYkX2CqzMXonC7EKszF6J85Pn8b9v/G/Y40vzSyN+L1r4GDgRxcHgyCS6j9vRdXQAXccGYDkWfIqxp7WFOckdNEWTRDKqrrbN7jFHcoC08jIgPWtuZd90B3DZbcy8Pc/CLTIrD64+N3IO58bOhQyG7GP2gOONgsnNyMXK7JVewdDKHI+fs1diRc4K5KbnBpzO73Q58VzPc8yDRF4YOBHNkSRJOGEfRdcxOzqPDqD7mB3vnDkf/sAAinLnGBzEUyRJJC+9FTj3ziy62i4O0NW2zr+rLVaYeXtejU2O4duvfDvk4OpAQVUoKaoUFGYVYkX2CncL0XRLkdxaJG8rzCpEVtrcfp9SU1KZB4n8MHAimqVJpwuHTw2h65g7SOo8OoCzw/7dS6UrlqF8bQEq1xVgy+oCfPqn+3FmcCzY8GSU5LtTEySlSJJImj4LQOWfRBKY7mq71DtAKr4SWFYYx0JTPI1NjaFvpA9nRs7g9IXTODNyBmcunHH/O3IGfSN9ODd6Lux55GAkKzUrbDC0InsFCjIL5jVQYR4k8sXAiSiMobFJvHrcga6j7q63AyccGJ30nn6cnqrC5ovzUbG2ABXr1ChfW4AVyzO99vnm7Ztwz+OWYMOTcf/tmwLmc0ool8u9iO0bvwqfRNI16f5X6WrzCJJWXj73rjaatwHWFyYv4MyFMzg9ctorGDpz4YwSLDnGHTF7v29e+03cueHOoNmvE027VosbV9/IPEgEgIETkRdJkvCeYxTdxwbQdXQAnUftePvMMHzTxOZlpSkBUsXaAly9Wgg7Nmnn5lV4+BMavzxOJR55nBJCkoARO9B/xP2wW6d/trofITIc+7n5QeB998Svq20Ji8UAa3m2mdJC5NFK1DfSp/x8fjKyrubstGwU5xS7H8uKvX4uyinCqfOn8E8v/lPY86zJW5O0QZOMeZBIxsCJlrQppwtvnR52tyYdG0D3sYGAs9/WqHOU1qSKdQVYv3I5UqJoHdq5eRWqNpVElDk85sbPTwdF8uPIzGPMEfy4lDT3QOpAC976KrmKQVMcRDLA+qY1N8E+ZvfuMvMMiqafjznDz+4EgNz03JlgKEBQVJxTjLyMvJABz6UFl6I4p5iDq2lRYeBEC06kS5YEcn58CgeOO9B51I7uYwN49fgALkx4d7ulpqiw+aI8lK91B0kVawtQlBe7bqZUuHBtymEg9QyQUgxgO4AYNflPTQCOY95BkRwkDfeGPjZ/NaAWgcL1Ho8yd14klQr4/mb3QHAmkZxXk85JPPjKg2GzVwMImcHaU0FmgV8w5BsULUuf+xp9HFxNixEDJ1pQwi1Z4qt3cBRdR90tSZ1H7Xizdwgun++f3Mw0bF1bgMq1BShfV4Atq4X4ZeiOZjq/L5fL3frjGxj1HwEcx4FQX545hd5BkfxzQSmQEWZ9rJ2GBZ9EMlnW6xqbGoN9zK48+kf70T/WP7Nt1Ps1F1whzycHTCqosCJ7hV8wpARIOcUoWlaEzNTMkOeLJQ6upsWGi/zSghFsyRK5rel//laD0pXLlG63rqMDXsuXyC4Wst0tSevUqFhbgI3FufPTVRZsOr98BbWPzQRPkgSM9AdoObK6u9umQnS3pC/zDoqUhwhkF8z9GvwCv4sXRBLJWCVhDMTpcmJwYhD9o/1+AZHy81i/EhCNTI2EP+ksNW5rRM2lNfO6/tlsJEvQShTIbGIFBk60IDhdEq4zvBAy+7ZvOwgApKiAy1floVIeyL2uAKvys+Na1oBczumurhAz0zLzgI03A3bb9LijweD7pqQD6lL/liN1GZBbEt/FamOVOXweRbLCvWfwJEkSRqdGZ1qBRj2CnwDPHeMOuKTQrUK+0lPSUZhdCHWWWnkUZk0/z575+fjQcXz1j18Ne76f3PwTDl4mitJsYgV21VFSm3K6cHJgFM8d6g27ZIkEICstRRnAXbFWjS1rBCzPTNDHfHzYvbDscC9g+0P46fzjQ8DBdo8NKve4IyUw8vg3fw2QmpjrcgKwZGfhrJSDldlZ0CBmI7TiIpIV7r/+56/jV+/+yqu1KNJB1J6ETME7EPIIjAqzCqHOnnltefryiGaSbSzYyAHWREmEgRMl3MSUCycHRnC0/wKOnhvBsf4LONrv/vfkwCimfAYlpcCFbSlvoQgO9EHAftdlcME9k6vpzivxN5pL4lvgydGZgGi41+Pn094/T0SRPfyKO4Er/ma69agUSE9A61gI8ezuCkVuARqaGMLwxLDyr/yzsn3c//VIgqDRqVH88b0/+m3PSs3yaxVSHh6tQoXZhRAyBaSlxP5PKgdYEyUXBk40L8Ymne7g6Nx0gNR/Acf63T+/NzDqN2DbU2ZaCopyM3FiYBQ3p+zH/emP4SLVzBIepyQ1Hpj8FJ53bUPJXLrhpibc3U9egVCAf0NN3fcrfJ676ywty70ECaZbbLIycTY1FSudTmjGxmdabCo+m7RLgkQyJT5U8DTpnPQLfDz/9QqGpgOg4cmZn6ekqbhe310b7sINl9ygtAoVZhUiJz3MgPl5wgHWRMmDY5yWqLlM6Q9mbNKJ4/YR9Jy74NVqdPTcCE4NjvolkfSUnZ6KtYU5KF2xDGsLl2FdYQ7WFi5D6YplKMrNhATgGw8+iAcnm+EEcCB7JvDYMuoOPL6e3oBvf/3r/tfhcgIXzgYOgoY8fh4JvzyEIi0byFsF5K5yB0aB/l1eDGQunynD9zfDPOXA7kIBZ9Jm/s9SPDWF+/od0KYVAF85mJTjhcYmx3Drr27F2dGzQfdZlr4MHxY/jAuTF/xagIYnhzE6m0SaQaSp0pCXmYfcjFzkpufO/JyRi7yMPOVfz5+PDh7F1//y9bDnXghjhDjAmig+ODjcw1IJnCampvDz117E8aHTWJNXgr+9+oPISAvcoLj3UC++9fRrKHR2ICftHEamVqA/tQr/esfVYbNXj0xM4Vj/THfa0XMzrUfhxiAtz0zD2sIcrCtchnUrcqYDJHeQtDI3M/R4D5cTow9twp8wiOYVBX6BR8O5AXxwKgMZ7/+Cf6vR+TNApAN3U9I9gp8gAVFuCZCVP+sB2OY/N+HeIz9zt9d4HKua/hX87vq7ob2ucVbnlLkkF8amxjA6Ner38Nw+MjUSdh/lMTnzcyxbe3LTpwOdEAGQZ/DjGRRlp2XPOsO00+XEzU/cHHaM0N679jIIIVqiFkTgZLPZYDKZIIoibDYb6uvrIQjCnPf1Fc/A6fyFIfyH6fOwjb2LTKTjuotuR3pGFvrPv4eivDX46A06ZGS486VMTIzj138wom/ouN9rgcxm/4f+1I7/e+cHkNJmZmGppvLxyY1fxteur/Had++hXvz46X/BueKXcS5tJsPziikXVpy5Fn9/x7/hug0rcfTcTFeaZ5DUF2AxW0+5WWkBWo3c/xYuy/D/0puacM8eUx6OwD+fOwJzXyfuLVoRPPDoOwftSJBWDVWKuwUoVDCUuwrIVsc887XT5cTo1Cju+PUdIVts8jPy8cWtX8S4c1wJcMIFNKNToxhzjsWkNScWblp9EzTFGr8WIDkAWp6+PCHBidzNCCDgGKFw3YxEtLgtiMCpvLwc3d3dANyBkV6vR3t7+5z39RWvwOmff7QTHWknIYX43++KKRc+vuKjAIBfnPu1X6Dy8RUfRf1Hvu13XMtT34h4/4f+1I7HrN8CIHm3gEgSABU+VfavSvDkdEn47PfuwauFfw4afFzaew06B/8m5LULOenugKgwB+vUmdiQ78LaZVNYnT2JPFyAyiv4CRYUTT8mI8tn4wRw8+qLcCY1NWBLj0qSUOx0Ym9KKVLXvh+u5cWYzC3CeI4aEzmFmMzKxbhrChOuCUw4px+ePzsnMO4cx6RrEuPO8YCvy8/HneOYdE5iwuX/c6BzR5rNOVay07KRlZqF7LTsmUd6tvfz6UdWWhZy0nICvua5z5v9b+JLv/9S2PdO5u6uQAPbS3JKOEaIiJI/cLLZbKipqVGCIQAoKCjAwMDAnPYNJB6B0z//aCd+l3bS/SRE4KSSfDoGAgQqXyz4iFcw1PLUN/DfA08FDWw895+YmsL7H92OsdSRoMFExlQOrkr7LwyMTOGUfQg5q76Kc6mqoPuvcErYYL0TqzKnsHrZBIqzxlCYPob8tBFkq0aQ4boAafI8psaHMTUxjKmpEUxBhSkVMKlSYQrAlErlfmB6m8f2SRWU/d3bp39Oy8RUWiYmUzMwlZaBqdR0TKWmYzIlDVMpqTg3MYzXnSHyGk3LSknHFCRMueI7kDheNqk3oVQoDRjA5KTlICstK2yQk6KK/Vpxi6W7i2OEiCiQpM/jZDaboVarvbap1WpYLBZoNJqo950P5y8MoSOCoAmAuzVKjkt99pVf+0n/Uzj+2wxMwYWJiXH8xfEbSKrg+++xP4WnH7bAJbkwmnIBY9mjmMmd7f/+4+mjODaxC1lpQG6xE2fSgn+pSioVzqapMLDhV3CpAFeg60sFkA4gJwVA/vQjlibdDxcQZpWJgMZckwG3Z6RkIDM1E+mp6chInf45JR2ZqZnISM1ARkqG+1+fn5Vjpo/PSM3wPs732OnnvscdPHcQX9j3hbDl/2rlV5OyxWaxTInnCvdENFcJCZwcDkfA7Xa73W/bbPYFgPHxcYyPz4zDGRoamnX5QvneE18I2T3nJ9S+KhUupAJPnTPNbAs1s02lwpgKOJZzMvL3B9CXIX/JRdYSMRWiDGmqVKSrUpGWkjb9SEdaarr7X3mbKg3pns9T/J+nqSJ7TX79xPAJ/O8b/xu27E3XNaGipMIrgElLSZv1gOJY237R9gWfxJBT4omIkiyPU7AgaTb7NjU14YEHHohNgQI4O94LZMT2nJrRMVwyJeFUagq6csIvvrljRIXNmYU4OTmIJ7ICt7B4+mzKOmxbfwPePvsGvjfQFXZ/w6WfReVVn/ALbFJVqQkLQJwuJ57reQ59I2cChB3uNrfinBLcUnpLUrZ6LJYWG+1aLW5cfSO7u4hoyYr9YIgICILg12Jkt9sDzpSbzb4A0NjYiMHBQeVx4sSJWBUbALAyM/R0/WjcVvaP+PYXj+CW9V+MaP/t6z+Hz3329/i69rsonppSxj/5UkkSSqam8A/b/xnvv/ar+PStRhQ5pZD7Fzsl3FzxD1iZsxIFWQXIzchFVlpWwltt5MDDHWZ4l8P9XJX0gYfcYlOUU+S1vTineEHN6pK7u24Vb0VlSWVS1zkRUawlJHDSagN/QVRUVMxpXwDIzMxEXl6e1yOW/umuH7oDj0jH1IfYVyVJWDnlwkdv0AEAPnqDDiumXCEDG8/9M0qvx73DkvKa774A8E/DEjKmM1GnpmWgcePdIfe/b+PdSE2LcZNajCyGwEO7Vovn73oeP7n5JzBcb8BPbv4J9t61d0GUnYiIEtRVJ4qi13ObzYaKigqlFclisUAQBIiiGHbf+bZ8WR6qpi5xz6qTpJBjmDxn1akkyWtslByofGzFR5X8TBkZmfj4io/ivweeimh/pKTi1g81I/03Ohh8slEXOZ3Q9ztQ9WGjVyZq7XWN+C6A3e/8DGc8GgqKXYB+Y/QJGOfLYugq4gBlIqKFK6EJMI1GIyorK9HZ2YnGxkYlGKqpqUFlZSUaGhrC7htOIvM4rZxy4WNB8jjJr0WaxynU/jj8NKb26vHqRL+yDMnWjBVI27kb2HRHwLI5pyZgOfh/ODt0HCvz1kBz5SeTtqWJiIgonpI+j9N8WgqZwwG410I79pJ7eZHlxcDa7Um55hkREVGyYeDkYamsVUdERETRmU2skJDB4UREREQLEQMnIiIioggxcCIiIiKKUFJlDo8HeQhXrJdeISIiosVBjhEiGfa96AOn4eFhAMDq1asTXBIiIiJKZsPDw8jPD714/aKfVedyuXDq1Cnk5ubGfMmQoaEhrF69GidOnOCMvXnGuk8s1n/isO4Th3WfOPGue0mSMDw8jIsuuggpKaFHMS36FqeUlBRccsklcX2PeCztQpFh3ScW6z9xWPeJw7pPnHjWfbiWJhkHhxMRERFFiIETERERUYQYOM1BZmYm7r//fmRmhlgKheKCdZ9YrP/EYd0nDus+cZKp7hf94HAiIiKiWGGLExEREVGEGDgRERERRWjRpyOIF5vNBpPJBFEUYbPZUF9fD0EQEl2sBctiscBsNgMAOjs7sWfPHqU+Q9V1tK9RcHq9Ho2Njaz/eWQ2m2Gz2SCKIgBAq9UCYN3Hm81mg9lshlqths1mQ3V1tXIPWPexZ7FYsGvXLnR3d3ttj0ddx/U+SBQVjUaj/Gy1WqXq6uoElmbhMxgMXj971m+ouo72NQqsu7tbAiANDAwo21j/8dXR0SHV19dLkuSuJ1EUlddY9/Hl+XdHkiTlPkgS6z7W2tvblb8vvuJR1/G8DwycomC1Wr1uiiRJkiAICSrNwtfd3e1Vf1arVQIgWa3WkHUd7WsUXHt7uySKohI4sf7jz7O+Jcldd/K/rPv48q0nzwCWdR8fvoFTPOo63veBY5yiIDftelKr1bBYLAkq0cKm0WiwZ88e5bnD4QDgrtNQdR3taxSYyWRCdXW11zbWf3zZbDbY7XYIggCLxQKHw6F0FbHu40+tVqO8vFzpsquqqgLAup9P8ajreN8HBk5RkL/Yfdnt9vktyCLi+YXd2toKrVYLQRBC1nW0r5E/h8MRsP+f9R9fFosFarVaGYvR0tICk8kEgHU/H9rb2wEAZWVlaG9vV/4Ose7nTzzqOt73gYPDYyjYzaLIORwOmEwmv8GDgfaL9WtLWVtbG+rr6yPen/UfG3a7HTabTfmPQn19PQoKCiCFSK/Huo8ds9kMg8EAm80GnU4HADAajUH3Z93Pn3jUdazuA1ucoiAIgl/kKje309zo9Xp0dHQodRmqrqN9jbyZzWbU1tYGfI31H1+iKCr1BUD512KxsO7jzGazobOzE1qtFvX19bBarWhra4PNZmPdz6N41HW87wMDpyjIU4V9VVRUzHNJFpfm5mbo9XqIogiHwwGHwxGyrqN9jfy1tbWhpaUFLS0tsNlsaGpqgsViYf3HmTyeKRDWfXxZLBZUVlYqz0VRRGNjI//uzLN41HW87wO76qLg+8fOZrOhoqKC/6uYA5PJBI1GowRNcteRb5161nW0r5E33z8yOp0OOp0u4Jc66z+2RFFERUWFMsZMzuWk0Wj89mXdx5ZGo4HRaPQaX9nf38+6nweeYypDfZ8m699/rlUXJZvNBqPRiMrKSnR2dnolDKTZsdlsKCsr89omCAIGBgaU14PVdbSvkT+Hw4GWlhbo9XrU19dDp9NBo9Gw/uPM4XBAr9ejvLwc3d3dSqsrwM9+vJnNZqVbFHD/J4J1Hx9msxkdHR1obm5GQ0MDKisrlaA1HnUdz/vAwImIiIgoQhzjRERERBQhBk5EREREEWLgRERERBQhBk5EREREEWLgRERERBQhBk5EREREEWLgRERERBQhBk5EFHdmsxllZWVobm5GS0sLysvLUV5eriTcLCsrg8VimfN7yOckIooXLrlCRHHncDjQ0dGhZGXu6OiAWq1GfX09AKCurg42my3gcheR0mq1qKuri0l554PnshNEtHCwxYmI4s5ut4dc0Faj0fitZr6Y2Ww2tLW1JboYRBQFBk5EFHe1tbUx2WexMBgMiS4CEUWJgRMRxV0kXVJdXV0oLy9Hc3MzAMBkMqGsrAxmsxnAzDgpnU4Hk8mElpYW6HQ6OByOoOc0m81obm6GyWSCXq8Pup/NZoNer1fOK5/TYrEoxzc3N8NmsynnDVdWebyV2WxGS0sLampqlNe6urrQ0dGBlpYW5ZxEtDBwjBMRJQXfMUrV1dVobW31er26uhqFhYXKquomkwk1NTXo6OjwO58cDHV3dwNwdxfKK7N7cjgcqKqqQnd3NwRBgF6vR0tLC6qrq6HX673OXV5ejn379kVUVq1Wi46ODrS3twMA2tvbYbFYlNfKysqUMV5EtHAwcCKiBcWz9aq6uho1NTUBB1objUao1WqlFQgAOjs7/c7X1tYGURSV4xsbGwEATU1NfoPVRVFEW1tbRAFPYWEhCgsLvcq9lMZxES1WDJyIaNHSaDTQarXK80ABj2/QNd8z3Ti7jmhh4RgnIkoagiCgv79feW42m/3GMHk+N5lM0Gq1XoGH/HpdXZ1Xa5N8Pl/V1dV+OaTMZnPA4y0WizKIPZKyRiJQmYgoeakkSZISXQgiWhrMZjNsNpsyq0yv16OiokLpEnM4HNDr9cpAaqPRCIfDAaPRCFEUodfr4XA4lO65zs5ONDY2QhAEWCwW7Nq1CwCwZ88eaDQamM1mdHR0oLKyEgD8gizPcgXaz2w2w2KxQBRFdHZ2oq6uLqKyOhwOr7LI4600Go1y7QaDAeXl5dBqtSFTNRBRcmHgREQLhpxlnIOqiShR2FVHREREFCEGTkS0IJjNZpjNZmVaPxFRIrCrjoiIiChCbHEiIiIiihADJyIiIqIIMXAiIiIiihADJyIiIqIIMXAiIiIiihADJyIiIqIIMXAiIiIiihADJyIiIqIIMXAiIiIiitD/B0t3Rs9N0HkqAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFoCAYAAAChRHRDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1AElEQVR4nO3deVxb550v/o/YjRcOwsZ4jw9ZndUC3CZNJk0Rjadt0jQRMN1nOjFqO53e+eW2KNy5d3LdO1Ms2ulsbRPJnU6n7bQDKOkk6TRpkdM9aQwcZ3U262DH8YaNOGCbXTq/P47PQTsCJCTg8369eIHOpuc8EujLs3wfk6qqKoiIiIhoRjmZLgARERHRYsHAiYiIiChJDJyIiIiIksTAiYiIiChJDJyIiIiIksTAiYiIiChJDJyIiIiIksTAiYiIiChJDJwySJZlOBwOlJaWorKyMuGxlZWVKC0thcPhgKIoC1NAyhqSJKGurm7G90k6eTyejD33QtN/N00mEyorK9HW1oa2tjbY7XbU19cvq7qYK7vdjtLSUni93qSOVxQFDocDbrcbHo8Hbrc76hiv1wu73Q673T7n12CpvrZutxtVVVWZLsbyoFLGOZ1OVRAEtbe3N+b+rq4u1WazqU1NTQtcsthcLlfUtubmZtVms2WgNJpYZVpqurq6VFEUZ3VOquqls7Mzatvg4GDC920smX6fzJbVao35eyeKoup0OjNQouRlw++ExWJRu7q6kjpWFEXV5/MZjwVBCHusqqoKQB0cHFS7urqM6871Ppfaa+vz+dTm5uZZ/T7S3LDFKQsIgoCGhga4XK6Y+7OthamrqytqW11dHRobGzNQGk2sMi01ZrN51uekql4EQYi5rampCaIoJn2dTL9PUsVut8PhcGS6GAktpt8JSZIgCELYe6mzszPssSRJEEURgiDAarXCarUCSP19LtbXVhRF2O32mL+rlFoMnLKE3W5HR0dH1HZFUWb1wZRubrcbsixHbbdarbDZbBkoUfwyLXeprBdJktDW1ha13el0zuoPdSbfJ6mk33O2/VOjW2y/E36/P+ofAz0wChX5XkvHfS7m11YPLim98jJdANJYLBaYzWZ4PJ6wD5aenp6Yf0B0bW1tEEURsixDFEXjXEVR4Ha7IYoiurq6YLfbYbFYAGjjBPT/qPbv3w9ZliHLMgYGBuB0OuM+l9frRVdXF2RZNj5Em5ubIUkSHA4HZFmGz+eL+xx+vx+9vb1wuVxwu90wm81ob29HS0uLUbaZ7ivZMkVeB9DGNoTuSyRyfEVTU9OM15zrPevnmc1m1NfXA9Bev5lej8jyhNZVsvUyU/3qBEGA0+kMu4Ye7O/fvz/s/Hj1k+z7JJn34kzPNZvrzrYuAKC3txcWiyXsgzze6+BwOIzWAL2lQC9DMu+zWNdLdF8zvfaxpOrvRVtbGwRBmFXrqNfrhcvlCiuvz+dDR0cHOjs7YbVaIUlS2DF6y1PkfYqiiNbWVsiybJwryzLq6uogiiJcLteMgcVifW0VRUn6nxj9XP21EkURfr/fqOvI31N97JnT6Uz6PiLrpaamZt6vTdbIdF8hTfdXxxr/oY8tiTXGyWazhY09sVqtRv92c3Nz2PgAURTVwcFB47E+XiZ0/IEoijP2j3d1dakWiyVqe29vb9T4m3jP0dzcHHZ/kddLdF+zKZPNZgt7bp/Pp1qt1gR3p3E6nVFlDH0dEl1zrvfc2dmpAgh7zZqbm8Ne81h1nKiuEtXLbOo3EavVGnatmepnNu+Tmco019ci9Loz1UXkOJjBwUHV6XSqFosl7Pcp0XX017urq0vt7e013gszvc8Sva4z3Ve81z6eVPy9aG5uDht7Mzg4qAJIaoxTrPJGjo+K996JPC/WWMBYY5aWy2sbqampKey+fT5fVF3HqkOr1Rr2+s6lXpJ9bbIdA6csoL8ZfT6fMfhRf6z/MYsMnPRjI6+jH2Oz2cLe5JEfcL29vVHnRx4Ty2wCp3jPEfoHxefzqYIgJH1fyZapt7c37Lq6mQar6n/sI/9wOp3OpK45l3uOdw96WfT3QGQdz1RXsa45l/pNJPSPZ7L1k+z7JNF7cT6vhX7dZOrCarWqFotFdblcxldkQJfM6xC5P9H7bKbrJVNfs/1wne/fC/1+IiU7ODyVgZOqqlGTFmK9l5bLaztT2VRVjQrW4v2TFvlZFe8+YtWLLpnXJtuxqy6LiKIIi8WCjo4ONDU1QZKkhF1UgiCETfX1+XxG33dnZycArflW7zLy+/1RzxdKEISoY+Yr1nMkmlI/030lq6enJ2azr94VEa/7s6enB4IghDV563Wpd2XMdM3Z3nM8ejnijVuYS12lqn5jmWud68eEmum9mOxzJbpusnVRXV0d1j0RKZnrRJZjpvfZbK8339/d+f690OsgWzQ1NaG9vR0WiwVerzfue285vLax7ifytZrtazeXetEl+9pkMwZOWcZut8PlcqGpqSnhm1kfNB76pgv9WZIktLa2oq6uDg0NDWnrO9b7tlNlpvtKtkxzHdiZ6LxsGyw627rS62W+9ZuoPAslFc+VqrpI5jqRv8szvc9S/RrN9Huair8Xc5n1mWr6fTY2NqK2thZOpxOyLM+5/pbCa5sqofc1l3rRpeq1ySTOqssyDQ0NkCQJHo8H1dXVcY+zWCwxWwkURYGiKKitrUVLS4sRgOlv+lTPQJEkKaXXS3RfyZIkyRh4GEmWZdTU1CR8/ljPpSjKnK85V/prGTlwXjfbupIkKSX1G89C1k8qnitVdTGX6yR6n6XjNUr0e5qKvxfxyrzQ9PsMnWwzn4Busb+28co2l+cLbfWaz32k6rXJJAZOWUCfuQDAyFHS3t6esMXJarWiuro6KsttR0eH0bIQ+oGrv+ln+gM6E30GBaD9UY33oT7X50h0X7Mpk8VigdVqDWtK1u890awpfWZI6NR7RVHQ0dEx52sm+0dKkqSwY1tbWxPmSZqprmLVy1zqN1lzrZ9YZqqzVLwWqaqLub5n473P5nK9yPqaze9pKv5eiKKIpqamsJlkiqJEvadTLdF92u127NmzZ17pLxb7axurbJGvkz57L95z6GUIbcmf7+9OKl6bjMr0IKvlzOfzqU1NTSoAtampyRgEHDoDQ5/pIQiCkdE2dGCfPpMl9Bx9e3Nzs5Fh1+fzGQN5e3t7VZvNpgIwZjToz2GxWGYcrKdfWx8oGOt6iZ7DarUasy30Y5qbm5O6r2TLFHkdl8sVNkA7mes5nU61s7Mz6WvO5571AZ+dnZ1qV1eX6nQ6w2abRJ4Xqzyx6mqmekm2fuOJnFkz2/pJxXtxtq9F5HVj1YXP50v4e5eoLKHX6erqUq1WqyoIgjE4OPKcmd5nodeb7X3Feu3jlT0Vfy/0e9GvY7FYZhwgHllHodeP93sTOZsv1n3q9xBpub22ie4n9HWKfI30v0F6GW02myqK4oy/OzPVi6rGf20WC5OqqmoG4jUiCqHnPunt7c10UWalvr4ejY2Ni/c/R1qyFEWZMQ8eaaqqquB0Ohesrhb7a8OuOiKaFb3ZXv85m2ZT0fIW2q2ld41RdlhKrw0DJyKaldbWVtjtdgDa+IhEkxiIFpKe4RrIjll+NG0pvTbsqiPKMK/XC6fTaXxPdlmYTJFlGR6Px1iugd10lC0kSUJPTw8AJMzPRNPa2trgcDhgtVqN7+mwlF4bBk5ERERESWJXHRGljN1uR2lpaViaAIpPkiTU1dXNKbM8EWUGAyciSplYK5w7HA7U19cvaDkiV6bPtuvpLBYLHA5HWq6dCemqJ6JswsCJiNKqrq4OjY2NC/qcXV1dWX29UIt9oGyodNYTUbbgWnVElFYLPe3Y7XandPmPVF9vqWI90XLBwIloEVEUBW63G6IooqurC3a7PWrJhcjuktAZLIn2tbW1Gd1ssiwbs/v05JyiKMJutxutCk6n0zhPn2EXSZIkOBwOyLJsLC2kXw8A9u/fbyz5MDAwYFxTv1eHw4Gqqir09vaisrISFosFLpfLWG0+ktfrRVdXF2RZNpa8CJ2lGO8e44l3vVj3pU+3djqdaGpqMu7TbDYbXZWKokTdZzx6WfVFXGeavTiX13Y29wHEf71mqneiJSWTacuJaHaam5vDljAQRTFsuQin0xm29EjoUgiJ9tlstrAlF3w+n2q1WsOO1Zdl6O3tNa4TuezD4OCgCiDsWr29vaooimH30dXVpYqiGHacKIphS2mELucyODgYdY149CUkIs10j7O9nn4PoaxWa1h9dHZ2qgDCXrPm5ma1qanJeByrfiKXsrFarWF1E2k+r20y95HM6xWvnoiWGo5xIlpEZFkOm7EmiqLxWG+haWlpMfa3t7cbi3PG2ydJErxeb1iXmiiK8Pv9xrUFQYAkSbBarbBYLHA6nVAUBW1tbWEtG4IgJLXoqNlshizLUc8Z2tXj8XiMawmCEHMx0mQlc4+zFauFLTKLul4foQPmW1paEnZr6XmyQluY6uvr4XK5Yh4/39c2mftI5vUiWi7YVUe0iOhdVPqyJ36/31jJvqenB4IghH3o6cd7vd64+/Suv0h6d6D+YRl5jH7NuYq8niAIxr0A2oyzWCvDz0VPT09S97gQ9NdBkqSYZdLrNTSg8/l8cYOURK97sq9tMmZ6vYiWCwZORIuIJElobW1FXV0dGhoawj7MIoOMUHPdFypWkJTOGWF2ux2tra3Yv38/3G533BaXmegtbqmijzmKJRXPoygKRFEMC2oSBTipeG1TdV6oRPVEtJixq45okVAUBbW1tWhpaUFTUxMEQTA+4GRZjtlCo5+XaJ/Vao3ZmiHLMmpqauKWx2KxpL2rZv/+/fB6vbDZbHNepkHvYpzLPca7XjzJtMAoimK8JrHEq9d4wUw6XttUtCQlqieixYyBE9EiobechH7g6h9werePzWYzZjUB2odnR0dHwn0WiwVWqzWsa0j/0Es0k0sURTQ1NYXN5lIUBZIkzanFIvKc3t5eCIIAm802q5aL0LE3ekA513uMd73I7Xr5Y7VuRdZHa2srmpqa4t6T1WpFdXU1PB5P2PaOjo645ZvPa5vsfUSK1Y0aq56IlhquVUe0iOjTwuvq6gBoH1YOhwONjY3GB6HD4UBZWZkxCDi0pWamffrSHz6fL2yqudPpRE9PD1paWqICGX2qu96Vp5fR6XTCbDajtbUVHo/HWMBY724M3dbW1obW1laIomg8h8fjQX19vZHqQBAE2O32pFqe9DJUVlYmdY9zvZ4erOj10d7eDkmS4HQ6YbPZjKn8LS0txrgmAGHpAPS6aG5uDiuPXla9O3SmAG8ur20y9yGKYlKvV6J6IlpKGDgRUdZRFAV79uzB/v37jS5JWZaN5VsWy4eyHjj19vZmuihElCLsqiOirON2u2G3241WLH1av9PpZBBCRBnFwImIso7FYomZHdzr9RrdlEREmcCuOiLKSl6vNyzXUbJLj2QLfWyY/p1LkBAtDQyciIiIiJLErjoiIiKiJDFwIiIiIkoSAyciIiKiJGVsrTp91W4A6O7uNvK1xKKvFq5nptWXm5hp30yCwSBOnjyJ1atXw2QypeCuiIiIaLFRVRXnz5/Hxo0bkZMzQ5uSmiFOpzPsZ4vFEvfY0H0+n0+12WxJ7ZvJ8ePHVQD84he/+MUvfvGLX+rx48dnjB0yMqtOkiTU1tZicHAQgNZqVFlZCZ/PF7V+kyzLqK+vD0t6V1paisHBwYT7kjE0NARBEHD8+HGsWbMmBXdGREREi83w8DC2bNkCRVFQUlKS8NiMdNVZLBbs37/feKwvFqmvyRTK6/VGbTebzZAkCT09PXH3JbPApN49t2bNGgZOREREy1wyw3YyNsYpNIlde3s7rFZrzLFJ8Vbo9vv9CffFMj4+jvHxcePx8PBw0uUlIiIiyvisOkVR4PF4Yi6vMNN5s93X2tqKkpIS42vLli2zek4iIiJa3jIeODkcDnR1dcWdCScIQlQLkt/vhyAICffF0tLSgqGhIePr+PHjqbgFIiIiWiYy1lUHAG1tbXA4HBBF0Wgligx6rFYrXC5X1LnV1dUQRTHuvlgKCwtRWFg4qzIGg0FMTEzM6hyipSI/Px+5ubmZLgYRUdbIWODk8XhgsViMoKmjowNNTU0AtFl3giBAFMWYs+yqq6uNFqd4+1JhYmICfX19CAaDKbke0WIkCAIqKiqY64yIMiYQVHGwz4/+82MoX12EXdvNyM3JzN+kjKQj0NMPhBIEwUgjUF9fj5qaGmM1cVmW4XK5UFNTg+7ubrS0tIQlwIy3bybDw8MoKSnB0NBQ1Kw6VVXx9ttvY3JyMrmEWERLjKqqGBkZQX9/PwRBwIYNGzJdJCJahp5+5RT2PnkYp4bGjG0bSorw0F07sPu61PxdShQPRMpI4JQtElXU5OQkjhw5go0bN86Y04FoKRsYGEB/fz+uvPJKdtsR0YJ6+pVT+NwPJUQGKnpb08OfsKQkeJpN4MRmlDgCgQAAoKCgIMMlIcqs4uJiANo/E0RECyUQVLH3ycNRQRMAY9veJw8jEFzY9h8GTjPguA5a7vg7QESZcLDPH9Y9F0kFcGpoDAf7YuduTBcGTmkWCKp4zjeAx184ged8A2mNjCVJgt1uh8lkgsPhgNvthsPhQH19vbGgciq43W6UlpZCkqSUXXOhVVVVwePxGI/dbjfq6urmdC4REaVe//n4QdNcjkuVjKYjWOoWYkBbKIvFAqfTCbfbHTZIXlEUlJaWore3N6mlaGbS1NQ064SliSiKkrKZkMlyOp1haSusVmvUDM5kzyUiotQrX51c+qDy1UVpLkk4tjiliT6gLbKZ8fTQGD73QwlPv3Jqwcqip3Zob29fsOdMlizL6OjoWPDnjVziRxRFWK3WOZ1LRESppaoqug6fSXiMCVpjxK7t0evcphNbnJKkqipGJwNJHRsIqnjoiVfjDmgzAfi/TxzGey5fm1QeihX5ufMeZ+L3+6NSQGQDp9OJqqqqTBeDiIiyhKqq+Lv/fg3f/f1RY5sJCPtM1T8RH7prx4Lnc2LglKTRyQB2/M3PU3ItFcDp4TFc/39/kdTxh79yJ4oL5vZSKYqC1tZWWK1WNDU1wev1wm63w+FwAABcLhd6e3shSRK8Xi9EUYQsy7DZbGFdV5Ikob29HTU1NQDCF1L2er1wOBxobGxEc3MzPB4PHA4HXC6X0YoTmm/L7/ejoaEBPT096OnpMa4Vr7vM6/VCkiSIooju7m44nU6jTC6XK2xskiiK8Pv9CcsjSRL27NkDu92OpqYmKIoCh8MBr9cLn89nXDtWfUSeq9+73W43ju3q6kppVyYR0XKhB03f+V0fAOBv77kOa1cVRA17qUjjsJeZMHBaotxutxGE6B/qgBacWK1W9Pb2wuVywWw2Q5ZlY81AXVVVFQ4cOABBEKAoCurr642gAtAWTNZZrVY0NjYaj202W1i3oKIoqKurQ29vLwRBMAauNzc3w2q1orKy0sgaH0kvW29vLwAtYGtra0NTUxNqa2vR19dndJuVlpbiwIEDM5bHYrGE7RcEAS6XC6WlpWHPGas+Is/V6zM0WOrs7IQkSSkZT0ZEtFzECpo+8e5tAIC6HRVZkzmcgVOSVuTn4vBX7kzq2IN9fvzpv3XPeNz3/qwmqb7ZFfmzTzrY1NSUcOHksrIyAFpQ4XA4oj7kRVE0lsHp6OiI2m82J9+n3NHRAVEUjfK0tLQkfa4e3IXOCuzu7oYgCFFjjVI1YNvlciWsj0hlZWVGfQKxF6YmIqL4EgVNAJCbY8LNlWXxTl9QDJySZDKZku4uu+2KddhQUoTTQ2MxxzmZoDUz3nbFuoxFzMnOIEuFyFlz8QK6eLPrLBZL2MDtpqYmuN3uFJeSiIgyYaagKdtwVl0a5OaY8NBdOwBMD2DTLdSAtplaPEL3NzY2RuV5kiQJDQ0NAGCMCwoly3LYY0EQMDAwYDz2er1QFAWA1qoVeX6svFKxtsUqm9frRUNDQ8IyJSqPLvJxoucMrY9E5xIRUfIWW9AEsMUpbXZftwEPf8KyoAPa9AHcgDZbzW63R3U5eb3esMHWVqvVyP/U1tZmDMDu7Ow0Wn9EUURnZyccDgfq6uqMlqHW1lY4nU6IooiGhgZjgDWgBVt6l5coinC5XHA4HMbgcr0FyW63G7mnYqUD0MsWea4gCDHLpEtUHkVR0N7eDrPZHDUIPvQ5Y9WHXsf6ufq19OeQZdkYtC6K4oK27BERLSaLMWgCuMhv3EX9xsbG0NfXh+3bt6OoaO7JtQJBNWsGtC11dXV1cDqdcx6UXVpaisHBwRSXavFL1e8CEZEu24Km2SzyyxanNMumAW1L3VwGZLvdbvh8PtjtdmYDJyJaANkWNM0WxzjRkuB2u41cUbMZf2S1WlFWVgaPxwOXy5W+AhIR0aIPmgB21aW9q45osePvAhGlQjYHTbPpqmOLExEREaVVNgdNs8XAiYiIiNJmKQVNAAMnIiIiSpOlFjQBDJyIiIgoDZZi0ARkMHCSJAlVVVUzHufxeKAoSsyZUpIkGdmj9cSDRERElFlLNWgCMhQ4eTweAEgq0Kmvr0dpaSlKS0thMplgMpnQ1tYGQFuMtaqqCiaTCXa7nVmaQ7jdbjgcDrjdbng8Hni9XmPKfrbyer2oqqpasHXoqqqqjPditossq9vtRl1d3ZzOJSJKp6UcNAEZSoBps9mSOk5RFHR2doYd39bWhubmZgDaB4Ke6TnewrEZFwwAx54FLpwBVq0Htt0C5OSm9Snr6upQX18Pp9NpbJMkCXV1dfD5fGl97vmwWq0xl11JF6fTuWiSXkaW1Wq1Jv2PwmK6TyJa3JZ60AQsgszhoUGTx+OJCrqyNmACgMNPAE87gOGT09vWbAR2O4Edd6flKfXWuKamprDtFoslals2KitbuCzrCxmkzVdkWWezDt5iuk8iWryWQ9AEZHngFBoUKYoCv98f9mGhKIrRBdHd3T1jd934+DjGx8eNx8PDw6kvtO7wE0DHpwBE5BcdPqVtb/h+WoKn1tZW7N+/P+a++vr6lD8fERHRcgmagCwPnEI5HI6wridAa1XRgytRFGfsimptbcXevXvnVgBVBSZHkjs2GACeakZU0KRdCIBJa4kS35tct11+MWCaeWFgWZahKErc4DG05UGSJHi9XoiiCFmWYbPZIIoivF4vHA6HEYTKsoyuri44nU4oigKv1wufz2csT+L1emG322G1WlFXVwe/34/e3l44nU4IgmDsdzgcALRxab29vfB6vZAkCaIooru7O+y11Z9Hf+7Ozk5jX6zz4pVZP09RFHR0dEAURSiKgu7ubjQ2NmLPnj2w2+1GS9xs6yS0XKHi3ZskSXC5XGFjk0RRhN/vh8PhQGNjI5qbm+HxeOBwOOByuWC1WiFJUlhZFUWBw+EwXotEZY88d7b3QkQ0k+UUNAGLJHDSP0gju+VkWYbFYgEA40NAluW4gUNLSwseeOAB4/Hw8DC2bNmSXCEmR4CvbpxT+aOpWvfdviSf+3+dBApWpui5tXpzOBzo6uoytlVVVeHAgQPGOKPQD9POzk54PB40NzfDYrGgsrISiqJAEARYrVbYbDaUlZUZ3agejwf19fXo6uoyrtfb2wuXywWz2Ww8f29vLwBtcd7QsWvd3d3Gz52dnZAkCRaLJeF5scqsn+d2u2GxWIzA0e/3w2KxoLGxcV51ol8/Vt1GlrGpqQm1tbXo6+sz3selpaXG9UPLYrPZ0N7ebjyOLKsgCHC5XCgtLZ2x7JHnzuZeiIhmstyCJmCRBE49PT1RQZMkSaitrTUGh+vMZnPc6xQWFqKwsDAdRcwKesAYGlCGkmUZZrMZLpcrar8oiujo6EBTUxPKysrCxhoJghAWjAqCAL/fH/aahP5ss9lQX19vBFeCIBjXs9lscDgcMJvN8Hq9xjnd3d3GzzU1NVHPBcAIvGKdF6vM+nk2mw1VVVUQRRGNjY0xx3rNpU7060deJ1YZ9SAztJ5SNWB7prJHSvZeiIgSWY5BE5AFgZP+4aqTJCnqg1qSpKiASBTFsO4dr9cLm82WvsHi+cVay08yjj0L/EcSMwc/7tFm2SXz3Elqbm6Gy+WKOXNRkqSkZzRGmm+9RrYChrYAAdGD2eOZy3lmsxmDg4OQJAnt7e1Ga1i6xCrjQqVYICJaCMs1aAIylMdJH2cBaOOOQnPMRD7WRX7wCoKA6upqtLW1we12o7u7O73jNEwmrbssma/K92mz5xBvXJIJWLNJOy6Z6yUxvkmnB5ORH9ShCUQbGxvDWkQALahqaGiIe91YCUjj7fd4PFGtK6EtGrGeP/JxLHM9r7W11WiF08deRZZ7LnUymzI2NDRE5S0LzaklCAIGBgbCzoms83ivQTJln+n1IyJK1nIOmoAMtTjp4ywiB3sDiBn86ONdIlksluwcl5GTq6Uc6PgUtOApdJD4pSBo97605XPq6upCW1sbHA4HKisrjdY6vbVJDyDa2tqMAcydnZ0QBMFolQG01yk0I7vFYjEGbTudzrAgxOfzGR/2oUGs1+sNGyxttVqN53c4HEa3nD4IOtZzu1wuiKI45/PKysrg9XphNpvh9/vR2NhonGM2m2Gz2eZUJ/r1Q4P6eGUUBAGdnZ1wOByoq6uLamltaGgwBnzr5+hdcIqihJU1VuvdTGXXz9Wvlcy9EBFFWu5BEwCYVFWNNfVrWRgeHkZJSQmGhoawZs2asH1jY2Po6+vD9u3bUVRUNLcniJnHaZMWNKUpj1Mm6AHaYsgTlU3q6urgdDrnHPyXlpZGjfFLh5T8LhDRoreUg6ZE8UCkjI9xWtJ23A1c/cEFzxxOi8NcBmS73W74fD7Y7XZmAyeiBbOUg6bZytgiv8tGTi6w/Tbgepv2fYkFTXpXnD6lnZKjrxvocrlmNf7IarWirKwMHo/HyKVFRJRODJrCsasunV11REsAfxeIlq/lEjTNpquOLU5EREQUZbkETbPFwImIiIjCMGiKj4ETERERGRg0JcbAiYiIiAAwaEoGAyciIiJi0JQkBk5ERETLHIOm5DFwSrNAMIDu0934mfwzdJ/uRiAYSNtzeb1e2O12mEymsOU7ZsPtdqO0tHRBcjIt5HOFqqqqClsP0e12o66ubk7nEhEtdgyaZoeZw9PIe8yLfQf34czIGWPb+uL1eHDXg7Bus6b8+axWK0RRhNvtRktLS9haaMlqampK72LJGXquUE6nMyzrtl5vczmXiGgxY9A0e2xxShPvMS8e+NUDYUETAPSP9OOBXz0A77HZtwYlQ1/Ql+LTF93V6YsPz+VcIqLFikHT3LDFKUmqqmJ0ajSpYwPBAFoPtkJFdFJ2fdu+g/vwrop3ITeJJVhW5K2AyWSaXYGJiIhCBIIqDvb50X9+DOWrC9F1+Ay++/ujABg0zQYDpySNTo3iXT96V8qud2bkDG75z1uSOvb5jz2P4vziOT2P1+uFw+GA3W6HKIqQZRldXV1hXWSSJKG9vR01NTUAohef9Xq9kCQJoiiiu7sbTqcTHo8Hra2tUBQFPp8PbW1tcLlcsNvtaG5ujnlOMs8Vq/zxruNyucLGJomiCL/fD4fDgcbGRjQ3N8Pj8cDhcMDlcsFqtUKSJOzZswd2ux1NTU1QFMUYD+bz+Yxre71eo75sNhtEUYw6N5m6JSLKBk+/cgp7nzyMU0NjUfsYNM0OA6clzmq1wmq1hn2g6wvyWiwWKIqC+vp6I2gAgNbWVuNnWZbhcDjQ29sLQAt02tra0NzcDKvVitraWiiKAkEQ0NvbC0EQ4p7T1NSU8LkiJbpObW0t+vr6jG6z0tJSHDhwAFarFY2NjcY1bDYb2tvbjccWiyVsvyAIcLlcKC0tDXvOrq4u45iqqiocOHAg6tyZ6paIKBs8/copfO6HUow+EM3aVQULWp7FjoFTklbkrcDzH3s+qWN7z/Ti8wc+P+Nx3679NqrWVyX13PNRVlaGsrIy47EgCEZLT0dHR9SHfOg4KZfLBbPZHDZDr7u727jO/v37UVVVhc7OTiOIiXeOIAgJnytSoutEjjVK1YBtl8sVVUZRFNHR0YGmpqao4xPVLRFRpgWCKvY+eThu0GQCsPfJw6jbUYHcHA4JSQYDpySZTKaku8tu2XgL1hevR/9If8xxTiaYsL54PW7ZeEtSY5wyzWKxhA2eDg0g9GCovb09LOCIdY7b7U7Jc8/lOkREy9HBPn/M7jmdCuDU0BgO9vlxc2VZ3ONoGmfVpUFuTi4e3PUgAC1ICqU/duxypCVomm1rhz7uJ5Qsy8bPjY2NUfmg9MeKosDr9aKzsxOyLBv5jeKdM9NzRYp3nYaGhoTXEQQBAwMDYecoihJ2fOTjRM8pSRIaGhpmPJeIKNv0n48fNM3lOGKLU9pYt1nxjfd+I2YeJ8cuR1ryOOlBDKCNHdLH4+hjfKxWK2RZNgZWi6IIURTR2dkJh8OBuro6Y7xSa2srnE4nLBYLnE4nHA6HMaDbarXC7XbD6XTCbrcDAGpqarBnzx7Isozm5uaY5wiCkPC5InMpxXvueNfRNTQ0hCUAtVqtRhecoihob2+H2Ww2Bn3Hes62tjZjQLreDakPbNfP1a+VqG6JiDIpGIzXSReufHVRmkuydJhUVU2uVlNMn6GkD/xNdBygfaDJsgxFUYwuIb2VQ5/R1NTUNKscO8PDwygpKcHQ0BDWrFkTtm9sbAx9fX3Yvn07iorm/oYKBAOQ+iWcHTmLdcXrYCm3LIruucWmrq7OCPTmorS0FIODgyku1dKQqt8FIlpYz8sDaPpBD4ZGp+IeYwJQUVKE3znet6zHOCWKByJlpMVJD3aSWWrD5XIZY1qsVmvYVO/6+noj8JJlGXv27Mm6qeC5ObmoqajJdDGWvLkMyHa73fD5fLDb7cwGTkRLiqf3HbQ89hImAyq2lRXj2MAITEDYqFs9THrorh3LOmiarYyMcbLZbEm3DFRVVWFwcBCDg4Po6uoyWpQix8aIojintdlo8XO73ZBlGS6Xa1bjj6xWK8rKyuDxeOByudJXQCKiBRIMqmh7+nV8qfNFTAZUfOD6Cjz9P/4Ij3zCgoqS8BbjipIiPPwJC3ZftyFDpV2cFsUYp1jdb16vN2oqu9lsZg6dZaipqSlmqoCZiKKI5ubmNJSIiGjhjU4E8EDHC3jqldMAgC/ccTkeqLsSOTkm7L5uA+p2VIRkDi/Cru1mtjTNQdYHToqiGLO1uru7jSzN8VoWEnXZjI+PY3x83Hg8PDyc0rISERFlQv/wGO7/fg9eemcI+bkm7Lv3BtxXtTnsmNwcE1MOpEDWB06hA75FUURdXV1Y5ulIibpqWltbsXfv3lk9f4bGzhNlDf4OEGW3V08O4f5/78GpoTGUFufD9clq7NrOBd/TJevzOIWOZdJnz8myHDNDs9/vTzirrqWlBUNDQ8bX8ePH4x6bm6vNfJuYmJjfDRAtciMjIwCA/Pz8DJeEiCJ5D59B/SPP4dTQGCrXrcR//cV7GDSlWVa3OEmShNra2qhp4maz2cjNEynR7KjCwkIUFhYm9dx5eXkoLi7G2bNnkZ+fj5ycrI8xiVJKVVWMjIygv78fgiAY/0wQUeapqop//V0f/u5nr0FVgfdcXoZvf7wKJSv4D066ZTxwikxeKEkSBEEwEgg6nU5jn9frhc1mgyAIUS1Lsiyjurp6VnmcEjGZTNiwYQP6+vpw7NixlFyTaDESBAEVFRWZLgYRXTIZCOJvHn8VPz74NgDgo7u24isfvhb5ufwHfyFkJHDyer3G6vOtra2oqamBzWYLe9zc3AxBEFBdXY22tjYIggCfzxeWp0nPHl1TU2NkeE6lgoICXHHFFeyuo2UrPz+fLU1EWWRoZBKf/1Evfn9kACYT8NcfuAZ/fut2mEycHbdQMpY5PBvMJlMoERFRJh0buIg/+1435LMXUVyQi3/+k52w7lif6WItCVmfOZyIiIiSd7DPD/sPejA4MokNJUX410/XYMdG/sOfCQyciIiIstijve/gwUvLp9ywuQTf+VQ1ytdw3chMYeBERESUhYJBFX/f9Qa+9Ustd+EHrq/A39ffhBUFHHeYSQyciIiIsszoRAD/s/MF/OxlbfmUv7ijEv+z7irkcImUjGPgRERElEX6h8ew5/s9ePHS8imt994AW8TyKZQ5DJyIiIiyxOGTw7j/37txcmgMQnE+XJ+owrtEri+XTRg4ERERZYEDr53BF398CBcnAhDXrcR3P12Dy9auzHSxKAIDJyIiogyKuXzKx6pQUszlU7IRAyciIqIMmQwE8dATr+JHz3P5lMWCgRMREVEGDI1O4gs/kvDbt85x+ZRFhIETERHRAjs2cBGf+V43fJeWT/mnP9mJOi6fsigwcCIiIlpA3Uf9aPr+9PIp3/l0Na7dWJLpYlGSGDgREREtkMekd/Dgoy9jIhDk8imLFAMnIiKiNAsGVXyj601885dHAAC7r63APzRy+ZTFiIETERFRGo1NBvA/O1/Ef790CgDw+fdW4kvv5/IpixUDJyIiojTpPz+GPd/vxYvHFeTnmvDVj1yP+uotmS4WzQMDJyIiojR47dQw/vx7XD5lqWHgRERElGLPvH4Gf/mjS8unrF2J7/4pl09ZKhg4ERERpYiqqvi33x/F3/73YQRV4JbKMjz8cS6fspTMOnA6evQoOjs70dXVhcHBQWO72WxGXV0dbDYbLrvsslSWkYiIKOtNBoLY++Sr+OEf9OVTtuArH76Oy6csMbMKnB588EGYTCY0NDTgy1/+ctT+Q4cO4ZFHHoHJZEJra2vCa0mShD179qC3t3fG47xeLwCgu7sb+/fvhyAIxj4AsFgskGUZiqLAYrHM5paIiIjmLXL5lP/1x9fg/tu4fMpSlHTg9LWvfQ0tLS0oKYmf3XTnzp3YuXMnhoaG0NLSEjd48ng8EEXRCHwS8Xq9aG5uBgC0tbWhtrbWCLZcLhfcbjcAwGq1orOzM9nbISIiSom3B0bwmX/vxpH+C1iRn4t/+pOb8P5rKzJdLEoTk6qqasae3GRCoqeXJAm1tbVGl6Asy6isrITP54MoinC73WhoaAAAoxVqNoaHh1FSUoKhoSGsWbNmTvdARETLRyCo4mCfH/3nx1C+ugg5JuBz/yHBf3ECFWu05VOu28TlUxab2cQDcx4c/uCDD+Lyyy9HfX096uvrUVpaisbGRtx7771zvWQUi8WC/fv3G48VRQGgjafSzSVgIiIimq2nXzmFvU8exqmhsah9128qwXc+XY31XD5lyZvziLWamhrcf//9cLvdqKqqQnt7OwYGBlJZNgCAzWYzfm5vb4fVajWCJUVR4PF44PF44HA4IMtywmuNj49jeHg47IuIiGgmT79yCp/7oRQzaAKA+2/bzqBpmZhzi1NpaSkAoKOjw2gVCm0JSjU9SAodTN7U1GQEUaIooq6uDj6fL+41WltbsXfv3rSVkYiIlp5AUMXeJw8j3sASE4B9T72OD92wEblcRmXJm3OLk8/nw4EDB+Dz+XDTTTehr68vLD1BqjkcDnR1dYV1zYW2MImiCFmWE7Y6tbS0YGhoyPg6fvx42spLRERLw8E+f9yWJgBQAZwaGsPBPv/CFYoyZs4tTg0NDXC73ejt7cXQ0BBcLhfWrl2byrIZ2tra4HA4IIqiMc5JluWwgeO6RK1ehYWFKCwsTEsZiYhoaeo/Hz9omstxtLglFTgNDQ1hcHAwLLFlSUlJWC6nffv2hZ2jjx+aaXS6oihhrUiSJEEQBIiiCEBLXWCxWIygqaOjA01NTRBFEU6n0zjP6/XCZrNxsDgREaXM2GQAT754Mqljy1dzjNNykFTgVFJSgo6ODpSVlSU1a+7RRx/F4OAg7r///pj7vV4vurq6AGjjjmpqaoxB4Prj5uZmyLKM+vr6sHMFQTDGNlVXV6OtrQ2CIMDn8zGPExERpczRcxfxFz+S8OrJxBOJTAAqSoqwa3v6xvlS9phVHqdDhw6htbUVlZWVqKmpgSiKEAQBiqJAlmUcPHgQfX19sNvteN/73pfOcqcE8zgREVEsT718Cs2el3B+fArmlQX4+Lu24pvPHAGAsEHi+lDwhz9hwe7rNix4OSk1ZhMPzCkB5tDQEDo6OuDz+YyutsrKSlitVmzfvn3OBV9oDJyIiCjU+FQArT97Hd979igAoOayUvzLRy2oKCmKmcdpQ0kRHrprB4OmRS7tgdNSwcCJiIh0x/0j+MKPJLz4zhAA4LO3V+JL778SeSGL9EZmDt+13cwUBEvAgmQOJyIiWip+8eppfKnzRQyPTUEozsc3Gm7E+65eH3Vcbo4JN1eWZaCElC0YOBER0bI1GQjC+dTr+M7v+gAAO7cK+ObHLNgkrMhwyShbMXAiIqJl6YQyii/8SMKhtxUAwP23bkfz7qtRkDfn3NC0DDBwIiKiZeeZ18/ggY4XoYxMYnVRHr5efyPuvLYi08WiRWBeYfXXvvY1NDY2AgAOHDjARXOJiCirTQWC2PfU6/jM93qgjEzihs0l+NkXb2PQREmbc+D04IMPQhAEWK1WAEBtbS28Xm/KCkZERJRKp4fG8NH9f8Ajv9YWg//TWy5D52dvxhZzcYZLRovJnLvqampqcN999+HAgQOpLA8REVHK/ebNs/ir9hfgvziB1YV5cNpuwAeuZ+4lmr05tzj19WkzEEym6fwV3d3d8y8RERFRigSCKv7+F2/g0/92EP6LE9ixYQ2e/MtbGTTRnM25xWnnzp2orq5GWVkZurq64PV6wxbdJSIiyqT+4TF88T8P4Q+yHwDw8Xdtxf/50A4U5edmuGS0mM0rc3hfXx9cLhcAoLGxETt37kxZwRYCM4cTES1Nzx45hy/+5ws4d2EcKwty8dV7r8eHb9qU6WJRlsrYkivDw8OLKgBh4EREtLQEgiq++cwR/OOBN6GqwNUVq/Gtj1tQuW5VpotGWWzBllwZHh6G3+83HjudTjz88MPzuSQREdGcnLswjr/6zxfwuyPnAACN1Vvwf+++FisK2DVHqTPnwOmzn/0svF4vBEEwtvX19TFwIiKiBfe8PIC//PEh9J8fx4r8XPztPdfhvqrNmS4WLUFzDpwqKyvxyCOPhG3bv3//vAtERESUrGBQxcO/9uHvf/EGgipwRfkqfPvjFlyxfnWmi0ZL1JwDJz3xZai6urp5FYaIiChZ/osTeKDjBfzqjbMAgHstm/C391yH4gKuJkbpM+d3V2lpKb7+9a9DFEUIggBFUdDe3o729vZUlo+IiChKz1E//vLHh3BqaAyFeTn4fx++DvXVm8NyCxKlw5wDp+bmZiiKEjbG6dChQ6koExERUUyqqmL/b2U4n34DgaAKce1KfOvjFlyzgTOjaWHMOXCqq6vDnj17wrY9+uij8y4QERFRLMrIBL7U+SK8r/UDAO6+cSO+eu/1WFXIrjlaOPMaHJ7MtngkScKePXvQ29ub8DhZluHxeCCKImRZRlNTk9HKlWgfEREtHYfeHsQXfnQIJ5RRFOTl4KG7duBju7aya44W3JwDJ5/PB5fLhZqaGgBa82lHR0dS69XpwY4kSTMeW19fbwRXsixjz5496OzsnHEfEREtfqqq4t9+fxStT72GyYCKbWXF+NbHLLhuU0mmi0bL1JwDJ5fLBavVitDE48kmIbfZbEkdJ8ty2GNRFOH1emfcR0REi9/Q6CQcnpfw9KunAQAfuL4C++67AWuK8jNcMlrO5hw4OZ1O1NbWhm2LlaJgPrxeL8xmc9g2s9kMSZLQ09MTd5/FYklpOYiIaGG9/M4QPv+jXhz3jyI/14S//sA1+PQtl7FrjjJuzoFTZNAEaCkKUklRlJjb/X5/wn3xjI+PY3x83Hg8PDw8n+IREVGKqaqKH/zhGP72p69hIhDE5tIV+NbHLLhxi5DpohEBmEXg9Nhjj8FqtRqL333nO98J268oCrq6uvDzn/88tSWMIV7QNNO+1tZW7N27N/UFIiKieTs/NokHH3sZ//3SKQBA3Y71+LrtRpQUs2uOskdOsgd+9atfRU9Pj/H4kUceweDgoPGlqioGBgZSWjhBEKJakPx+PwRBSLgvnpaWFgwNDRlfx48fT2l5iYhoZoGgiud8A3j8hRN4zjeAQFDF4ZPDuPubv8d/v3QKeTkm/O8PXgP3J6sYNFHWSbrFKTRoArR16Xbu3Bm2LdVjnKxWK1wuV9T26upqiKIYd188hYWFKCwsTGkZiYgoeU+/cgp7nzyMU0NjxraSFfm4OD6FqaCKjSVF+ObHLbBsTe3QD6JUmdeSK7qhoSF4vV5UVVXN+jqR2cclSYIgCBBFEaIohh0ryzKqq6uNFqd4+4iIKPs8/copfO6HEiLnXw+NTgIArtu0Bj/4zLtQurJg4QtHlKSku+oihU79LykpwX333Zd0OgCv1wuHwwFAG3fk8XiMfZGPOzs74XA44PF44HK5wvI0JdpHRETZIxBUsffJw1FBU6iBCxNYs4Jdc5TdTGqyyZegtSx1dHTAZDKhq6sLdXV1Yft7e3vx8MMPp7yQ6TI8PIySkhIMDQ0Zg96JiCj1nvMN4KP7/zDjcT/e827cXFm2ACUimjabeGBWXXUlJSWwWq1wOp3w+XzYvn172P7m5ubZl5aIiJa8/vNjMx80i+OIMmXWY5y2b9+ORx55BAcOHIiZy4mIiChUMKii9+hgUseWry5Kc2mI5ielCTCJiIhCyWcvoNnzEnqOJQ6cTAAqSoqwa7s54XFEmTbnwImIiCieQFDFd3/Xh6//4g2MTwWxsiAXd9+0Ef95UMufFzq4Vl9E5aG7diA3h0uqUAzBAHDsWeDCGWDVemDbLUBObkaKwsCJiIhS6kj/BXzZ8yIOva0AAG69fC323Xc9NpcW4/Yr10XlcaooKcJDd+3A7us2ZKjElNUOPwE87QCGT05vW7MR2O0Edty94MWZ1ay6pYaz6oiIUmcqEMR3fteHb3S9iYmpIFYV5uF/f/AaNNZsCVucNxBUcbDPj/7zYyhfrXXPsaWJYjr8BNDxKSAqkcWl90vD91MSPKVtVt1Mjh49issuuyyVlyQiokXgzTPn8eXOF/HiO0MAgNuvXIfWe6/HRmFF1LG5OSamHKCZBQNaS1PM7F8qABPw9IPA1R9c0G67eQVOL7zwQth6cS6XC+3t7fMuFBERLQ5TgSBcv5HxT963MBEIYnVRHv7Ph3agvmpzWCsT0awdeza8ey6KCgyf0I7bftuCFWvOgVNDQ0PUcimHDh1KRZmIiGgReP30ML7c+RJePqG1Mr3v6nJ89SPXo6KEKQUoBQZ8yR134Ux6yxFhzoFTXV0d9uzZE7bt0UcfnXeBiIgou00Ggnj4Vz78yzNvYTKgYk1RHh6661rca9nEViaav8GjwHPfBnq/l9zxq9anszRR5hw4VVZWJrWNiIiWjsMnh/Flz4t49eQwAMB6zXp89SPXoXwNW5lonk5IwLP/DBx+HFCD2racfCA4GecEkza7btstC1ZEYB6Bk8/ng8vlQk1NDQBAVVV0dHSgu7s7ZYUjIqLsMDEVxLd+eQTf+uURTAVVCMX52Hv3tbj7xo1sZaK5CwaBI13A7/8ZOPa76e3iHcB7vgiMnwc6Pn1pY4zsX7v3LXg+pzkHTi6XC1arFaHZDJZxZgMioiXrlRND+FLni3j99HkAwO5rK/CVe67l8ig0d1PjwMudwLP/Apx9XduWkwdcdx9wy18CFddPH9vw/Th5nPZlJI/TnAMnp9MZteyK1Wqdd4GIiCg7jE8F8M1njuDbv/IhEFRhXlmAr3z4Wnzw+g1sZaK5GR0Eev4NeN4FXDitbStYDVR9Gnj354CSzdHn7LhbSzmw2DOHRwZNzzzzDBRFwc6dO+ddKCIiyqyX3lHwpc4X8eaZCwCAD16/AXs/fC3WrirMcMloUVLeBv7wMCB9H5jQ3lNYvUELlqr+FCgqSXx+Tu6CphxIZF55nB577DHIsgxA66br6enBvffem5KCERHRwhubDOCfDrwF929kBIIqylYW4P/dcx0+cD2XQ6E5OPWiNn7p1Z8AakDbVr5D6467zgbkFWS2fHMw58DpwQcfhKIo8Pv9EEURiqLAbrensmxERLSADr09iC97XsKRfq1F4K4bN2Lv3dfCvHLxfbhRBqkqcOSANkOu79fT27ffDtzyReDyWmARd/XOKx3Bnj170NfXB5PJhMsuuwzPPPNMKstGREQLYGwygH/oehP7fysjqAJrVxXib++5Druvq8h00WgxmZoAXnlUG/Dd/6q2zZQLXPsRrYVp400ZLV6qzDlwEkURx44dw/bt2/H1r38dX/rSl1JZLiIiWgC9x/z4suclyGcvAgA+snMT/uZDO1DKViZK1tiQlqzyD48A5y/NfMtfOT3gW9ia0eKl2pwDJ0VRIIoiBgcHce7cOdx5550QBAHve9/7kjpflmV4PB6IoghZltHU1BS2fEsoj8djzNiLPEaSJACAxWKBLMtQFAUWi2Wut0VEtCyMTgTw9794A//6+z6oKlC+uhBf/cj1sO5Y2CzMtIgNvaMN+O79d2BCS1WBVeuBd30WqP4zYEVpZsuXJiY1RcmXDhw4gOrqapSUzDAy/pKqqir09vYC0IIoh8OBzs7O2IWM0RfqdDrR3NwMu90Ot9sNQEuH0NnZGTcAizQ8PIySkhIMDQ1hzZo1SZ1DRLTYHezzo9nzIo4OjAAA7rNsxt98aAdKivMzXDJaFE6/rHXHvfIoEJzStq29SuuOu6EByFt8My9nEw/Ma1bd1772NfT09KC9vR1A7AAnFn0mnk4URXi93pjHKoqCzs5O2Gw2Y1tbWxuam5sBaAHY4OAggOjWKCIimjYyMYW2p9/Avz93FKoKVKwpQuu91+OOq8szXTTKdqoKyL/UAiZfyHjmbbdqGb4vrwNycjJXvgU0r1l1lZWVRhdabW0tHnvssaTSEXi9XpjN5rBtZrMZkiTF7GYLDZo8Hk/YY4ABExHRTP4gD6DZ8xLe9mutTA3Vm/HXH9yBkhVsZaIEApNaKoFn/1lraQIAUw6w48NaC9OmqsyWLwPmHDjV1NTgvvvuw4EDB2Z9rqIoMbf7/f6obaFBUWj6g9BtHo8HANDd3Q273R62n4hoObs4PgXn06/j+88dAwBsKCnCvvtuwO1XrstwySirjQ1rySr/8DAw/I62Lb8Y2PlJ4ObPA6WXZbR4mTTnwKmvrw9AePdcd3f3vBJgxguodA6HA06nM2xb6KByURRRV1cHn88X8/zx8XGMj48bj4eHh+dcViKibPfskXNofvQlvDM4CgD46K6t+F8fuBqri9jKRHEMnwKefxjo+R4wPqRtW7kOeJcdqP5zoNic8PTlYM6B086dO1FdXY2ysjJ0dXXB6/VGBTXxCIIQ1brk9/sTdrkpigKv1xt1jCzLRveePkNPluWYrU6tra3Yu3dvUmUkIlqszo9NovWp1/Gj598GAGwSVsB53w249Yq1GS4ZZVQwEH+9tzOHgee+CbzUAQQntW1lV1wa8N0I5HNBZ928ZtX19fXB5XIBABobG5Nep06WZdTX1xuz6gCgtLQUfX19cYMnr9cLh8MRdo4kSaitrTUGhyuKgtLSUgwODsa8TqwWpy1btnBWHREtOoGgioN9fvSfH0P56iLs2m5Gbo4Jv33rLB589GWcULRWpk++exscf3w1VhXOay4QLXaHnwCedgDDJ6e3rdkIWD4NvNMDHOma3r71Fi1gunL3shnwvWCz6rZv3459+/bN+rzI1iBZllFdXW0EO5IkQRCEsOMkSYoaUC6KYlgrl9frhc1mixt8FRYWorBw8U2TJCIK9fQrp7D3ycM4NTRmbFu/phCXr1uF3/sGAABbzFor0y2VbGVa9g4/AXR8CkBEO8nwSeBXrZcemIBr7gLe8z+AzdULXcJFJenAKZns4N/5zndw//33J3W9zs5OOBwO1NTUoLu7OyyHU2trK2pqaoyUA7rIgEsQBFRXV6OtrQ2CIMDn88XNBUVEtBQ8/copfO6HUuRHIM4Mj+PMsNai/qe3XIYv33kVVrKViYIBraUp6h0TomAl0PRrYO0VC1asxSzprjqz2YyampqEx/T09GBgYCAlBVsITIBJRItJIKjiVuczYS1NkcpWFuDgX1uRm7N4F1GlFOr7DfDvd8183Kd/Cmy/Lf3lyVJp6aqrra1FWVkZqqri52xIURJyIiKK4WCfP2HQBAADFydwsM+PmyvLFqhUlJVG/MBL7cDv/zm54y+cSW95lpCkA6fOzk4MDQ2hp6cHgJbHKTIqixyDREREqdM/nDhoMo47n9xxtMSoKnDs99racYcfBwLjM5+jW8U1CpM1qw7wkpIS1NbWAgAOHToEv98Pk8lkLOx73333pb6ERESEl95R4P6tPPOBAMpXc+r4snLxHPDCjwDp34GBI9Pb118PWD4J/O4fgPOnEXuck0mbXbftloUq7aI3rzxOumeeeQZdXV2oq6szgigiIpq/YwMX8bWfv4GfvnRqxmNNACpKtNQEtMQFg0Dfr7Vg6bWfTudeKlgFXHcfUPVpYKMFMJmA1RsuzaozITx4ujQObve+6XxONKN5Tbl44YUX4HK50N7eDlEUUVlZycCJiCgFzl0Yx78ceAv/8fzbmAqqMJmAe27ahKptpfg///UKgJgfgXjorh0cGL6UnT8NHPohcOgHwODR6e0bLVqwdN19QOHq8HN23A00fD92Hqfd+7T9lLRZB05Hjx5FZ2cnXC4XTCYT7rvvPvT29mL79u3pKB8R0bJycXwK3/ltH9y/8eHiRAAA8EdXroNj91W4dmMJAGDtqoKoPE4VJUV46K4d2H3dhoyUm9IoGACOHNBal954ClC19wUK1wA3NGhJLDfckPgaO+4Grv5g/MzhlLSkA6fvfOc7cLlckGUZDQ0N6OzsjMoU/thjj81rrToiouVqMhDEf3Yfxz9538K5C9qg3us3leDBP74a77k8PInl7us2oG5HRczM4bSEDL2jtS5JP5heaBcAtrxLC5auvUfLwZSsnNxlnXIgVZLO45STkwObzYbGxkYIghC2uC8ADA4OYt++feju7k5LQdOBeZyIKNNUVcVTr5zG137+BvrOXQQAbDUX48t3XoUPXr8BOQyGlpfAFPDWz7WZcUe6ADWobS8SgJs+Blg+BZRfk9EiLkVpyePU1NSEtra2hLma2tvbky8lEdEy9wd5AK1PvY4XjysAtOSVX6y9Ah/dtRUFectjjTC6ZPCo1rJ06IfAhdPT27fdClT9qbYcChfazQpJB052u33GKKylpWXeBSIiWupePz2MtqffwDOv9wMAigtycf9tIvbcth2ri/IzXDpaMFMTwBs/A3q/B8i/gjHcv3jtpdalTwNrL89gASmWpAOnyPFMcz2GiGi5OqGM4h+63sSj0jtQVSA3x4SP7tqCL9ZewdxLy8mATxvofeg/gJFz09vFO7SZcVd9EMgryFz5KCGuAElElGZDI5P49q+O4N+ePYqJKW3Mygeur8CX3n8VxHWrMlw6WhCTY8DrP9Val47+dnr7qgpg58eBnZ8EzJydvhgwcCIiSpOxyQD+/dmj+NYvj2B4bAoAsGu7GS1/fDV2bi3NcOloQfS/rrUuvfhjYHRQ22bKAS63amOXrrgTyOVH8WLCV4uIKMUCQRWPSe/gH7rexMlLuZauWr8ajj++CndcVR41K5kWkWBg5lxIEyPA4f/SZsYd/8P09jWbtFlxOz8BlGxe0GJT6jBwIiJKEVVV8cs3+uF86g28ceY8AGBDSREeqLsS91o2M8/SYnf4iTjZt51agsnTL2vB0ksdwPiQtt+UC1y5W2tduryWCSeXAAZOREQpcOjtQex76nU83+cHAKwpysNf3HE5Pn3LZSjK54flonf4iUvrvUWk5Bk+BXR8EjCLgD9kEWZhm9a6dNPHgTXM5r6UMHAiIpoH+ewFfP0Xb+BnL2u5dwrycvBnt1yGz7/3cpQUM7XAkhAMaC1NkUETML3NLwOmPOCaD2kz47a/F8hhLq6liIETEdEc9J8fwz9538J/dh9H4NIivPdZNuOBuiuxUViR6eJRKh17Nrx7Lp767wE77kp7cSizGDgREc3ChfEpuH/tw/7f9mF0Ultstfbqcnx591W4uoJLNy0pqgqcfR04uD+54wPj6S0PZQUGTkRESZiYCuLHB9/GPx94CwMXJwAAN20R8OAfX413i2UZLh2ljKoCp14EXntCG9c08Fby565an75yUdbIWOAkyzI8Hg9EUYQsy2hqaoIgCDGPlSQJAGCxWCDLMhRFgcVimfV1iIhmKxhU8d8vn8LXf/EGjg2MAAC2r12J5juvwu7rKphaYCkIBoF3urVg6bUnAOXt6X25Bdp4pXcOAmNDiD3OyaTNrtt2y8KUlzIqY4FTfX09ent7AWjBz549e9DZ2RnzWJfLBbfbDQCwWq1hx83mOkREs/HskXNofep1vHxCm1q+dlUh/sp6BRprtiA/lwN/F7XAFPD2s1qr0us/Bc6fmt6XX6wlqNzxYeCK9wNFa0Jm1ZkQHjxdCpx372OqgWUiI4GTLMthj0VRhNfrjXt8VVUVBge1jKuhrUmzvQ4RUahAUMXBPj/6z4+hfHURdm03IzfHhMMnh7Hv6dfxmzfPAgBWFuTCfnsl/vzW7VhZyBEOi9bUBND3G+C1x4HX/xsYGZjeV7AauGo3cM3dWtBUUBx+7o67gYbvx8njtE/bT8tCRv4CeL1emM3msG1msxmSJBldcJFidb/N5TpERADw9CunsPfJwzh1KbM3AKxbXYjta1ei+6gfqgrk55rw8XdtwxfedznWrirMYGlpziZHAd8zWovRG09NJ6YEgBWl2oK6O+4GxPcCeTO8xjvuBq7+4MyZw2lJy0jgpChKzO1+vz/u8R6PBwDQ3d0Nu90OURRnfZ3x8XGMj0/PehgeHk6+0ES0ZDz9yil87odS1GiVs+fHcfa89jfirhs34kvvvxLbylYufAFpfsYvAG/9HHjtSeDNXwCTF6f3rVoPXP0h4Jq7gMtuBXJnmWsrJxfYfltqy0uLSla1OccLhEIHfIuiiLq6Ovh8vllfp7W1FXv37p1nKYloMQsEVex98nDMIb66tasK8I+NN3GJlMVkdBB442ltcPeRA+GpAdZs1lqLrrkb2LKLLUQ0LxkJnARBiGoV8vv9cWfDybJsdL3ps+dkWZ71dVpaWvDAAw8Yj4eHh7Fly5a53wgRLToH+/xh3XOxnLswgYN9ftxcyTQDWe3iOW1g9+EngL5fA8Gp6X1mUQuUdtwNbLQAnP1IKZKRwMlqtcLlckVtr66ujtomSRJqa2uNweE6s9k8q+sAQGFhIQoLOU6BaLk6NnAR33wmubw8/ecTB1eUIcMngdd+qrUsHfs9oAan9627Zrplaf21DJYoLTISOImiGPZYlmVUV1cbLUWSJEEQBIiiCFEU4XQ6jWO9Xi9sNhsEQYhqWYq8DhERALxyYggP/9qHp14+hWCiProQ5auL0lsoSt7gUa1V6bUntHxLoTbcNB0srb0iE6WjZSZjY5w6OzvhcDhQU1OD7u7usNxLra2tqKmpQXNzMwRBQHV1Ndra2iAIAnw+X9ixia5DRMuXqqr43ZFzcP1axu+OnDO2337lWrx8YhiDFyfipTJERYmWmoDSJBiYeWba2Te1tAGHnwBOvxS+b8u7tEDpmruA0m0LV24iACZVVZP8/2vpGR4eRklJCYaGhrBmDdeYIloKpgJBPPXKabh+48MrJ7SZs7k5Jtx1wwbYb6/ENRvWGLPqgJipDPHwJyzYfd2GhS34cnH4ifi5kMzidMvS2den95tygG3v0RJSXv0hYA1fG0qt2cQDDJwYOBEtCWOTAXT2HMf+3/bhbb+2NMqK/Fw01mzB/bdtx+bS8ISGsfI4bSgpwkN37WDQlC5G9u0kPnZy8rXcStfcpeVOWrk23aWjZWw28UBWpSMgIpotZWQCP3juGL737FFj8d3S4nx8+pbL8KmbL4N5ZUHM83ZftwF1OypiZg6nNAgGtJammYKmqz6otSxdeSewQliIkhHNCgMnIlqUTiqj+Nff9eHHB9/GyEQAALBJWIE9t21HQ80WFBfM/OctN8fElAMLITAFPP9IePdcPO/+HBNMUlZj4EREi8qbZ87D9WsZj79wAlOXpshdXbEan3tvJT5w/QYuvpstEq0Ll8iFM+ktF9E8MXAiokWh+6gfj/zKhwOv9xvb3i2a8dnbK3H7letgYs6ezJscA+RfAocfB974GTAWsi5cwWpg4vzM11i1Pn3lI0oBBk5ElLWCQRXe187A9RsZvce0JLgmE7D72grYb6/ETVuEzBaQgIkR4EiXNvD7zaeBiQvT+1aWa4O7d9wNbLkZ+JebgOFTiD3OyaTNrtt2ywIVnGhuGDgRUdaZmAriv144AfdvZBzp1z6IC3JzcF/VJuy5TYS4blWGS7jMjZ8H3vy51rJ0xAtMjkzvW71RC5R2fFjLtxSan2m389KsOhNiJoLYvY/ryFHWY+BERFnjwvgUfvz82/jX3/Xh9LCWJmB1YR4+/u5t+Mx7LkP5GmbzzphRRWtROvx49CK6wlYtULrmw8CmKiAnzjizHXcDDd+Pn8dpx91pvQVavALBAKR+CWdHzmJd8TpYyi3IzVCQzcCJiDLu7PlxfO/ZPvzguWMYHtMWai1fXYjP3LodH3vXVqwpys9wCZepiwPAG/+tdcPJvwKCk9P7zJVasLTjw8CGG5NfF27H3VpeppkyhxNd4j3mxb6D+3BmZHriwPri9Xhw14OwbrMueHmYAJMJMIky5ui5i3D/Voan9x1MTGmLtYrrVsL+RyLu2bkJhXn8MF1w588Ar/9Ua1k6+jtADUzv0xfR3fFhoHwHF9GltPMe8+KBXz0ANWJcnOlS9+433vuNlARPTIBJRFnt5XeG8MivfXjqlelFd2/aIuCzt1fi/TvWI4dJKBfW0AngtSe1pU6OPYuw8UcV1093w627MmNFpOUnEAxg38F9UUETAKhQYYIJzoNO3LHljgXttmPgREQLQlVV/Patc3jk1z4865vO6XPHVevw2dsrsWu7mSkFFtLgMS1QOvw48E53+L5NVdoiujvu1taPI8qArmNdYd1zkVSoOD1yGlK/hJqKmgUrFwMnIpqXQFBNuGzJVCCIn71yGq5f+/DqyelFd+++cSPst4u4uoLd5Avm3BEtIeXhJ4BTL4Tv2/LuSy1LdwHClowUj5a3syNncfD0QXSf7sbB0wdx/PzxpM9bSAyciGjOEi2Ue/uV5ejsPY79v5Vx3D8KIPGiuzRLwUByA6z7X9dalQ4/DvS/Or3dlANse48WLF39IWANFzamheUf86P7dLcRKPUN9YXtz0EOggjOeJ11xevSVcSYGDgR0Zw8/copfO6HUtTog9NDY/jsDyWsKszDhXFthlxpcT7+9Jbt+NTN21AaZ9FdmoXDT8SZ0u/UWoxOv6wFSq89AZx7c/oYUy4g3q51w139IWDVwn7g0PI2ND6EnjM9RqD01uBbYftNMOFq89V414Z3oaaiBjeuvRH3PXkf+kf6Y45zMsGE9cXrYSm3LNQtAGDgRERzEAiq2Pvk4Zj5n/VtF8ansEkoQtMfVaKhegtWFHCGXEocfuJSEsmI2h8+CXR8Eli5DrgY0nWRWwCId2gtS1f9MVBsXtDi0vJ1YeICpH4JB08dxMHTB/G6//WoAOiK0iuwq2IXdlXsQtX6KpQUloTtf3DXg3jgVw/ABFPYufqsOscux4Lnc2LgRESzdrDPH9Y9F4/zvhtw6xVs1UiZYEBraYoZsl5y8SyQWwhcUacFS1feCRSVxD+eKEVGp0ZxqP8QDp7Sxim9OvAqAqHpLABsL9mOXRW7UFNRg5qKGpiLEgfy1m1WfOO934iZx8mxy5GRPE4MnIho1l45MTTzQQAGLk6kuSTLyNQ40PNv4d1z8TT+ELjy/ekvEy1r44FxvHT2JTx/6nl0n+7GS+dewlRwKuyYLau3GIHSropdcxqPZN1mxR1b7mDmcCJaXM5dGMeTL57ETw6dwEvvJBc4la/mEilzNjECvHNQGwB+9PdayoDQZU4SGR9Ob9loWZoMTOKVgVeMQOmF/hcwEQz/52jDyg1GkLSrYhc2rErNpIPcnNwFTTmQCAMnIoprbDKArsNn8JNDJ/DrN88icClbZY4JyM/NwfhU7BkvJgAVJVpqAkrS2DBw/CBw7HdasHRCCl/iBNC63MaSCFpXrU9PGWlRm+16b1PBKbw28BoOntbGKB3qP4TRqdGwY9auWGsESbsqdmHz6s1LPh9bxgInWZbh8XggiiJkWUZTUxMEQYh5rCRJ8Hq9AIDu7m7s37/fOFaSJACAxWKBLMtQFAUWy8KOsCdaSoJBFc/3+fGTQ+/gqZdP4/z4dNP7DZtL8JGdm3DXjRvRc9SPz/1Q+/2Lsc49HrprR1g+J4owOggcew449nvt69SLgBoRiK7eCFz2Hi1twLb3aMko/+l6YPgUYo9zMmmz67bdshB3QItIMuu9BdUg3vC/YQRK0hkJFyYvhF2ntLDUaFGq2VCD7Wu2L/lAKVLGAqf6+nr09vYC0IKoPXv2oLOzM+axXq8Xzc3NAIC2tjbU1tYa57pcLrjdbgCA1WqNew0iSuytM+fx2KETePzQCZwMGfi9SViBe3ZuxEd2bsbl5auM7buv24CHP2GJyuNUcSmP0+7rmBcozIWzl4KkZ7XvZ15FVPAjbAMuu1ULfLa9Byi9LHo9uN3OS7PqTIgZsu7exwVzKUy89d76R/rx//3q/8NHLv+IkSpgeCK8m3d1wWpUr682UgRcLlyOHFPOQhY/62RkkV9ZlsMCJwAoLS3F4OBg1LGSJKG2ttbYJ8syKisr4fP5IIoi3G43GhoaACBui1U8XOSXlruz58fxxIsn8ZND7+CVE9N/MFcX5eGD12/APTs3Yddl5oRrx82UOXzZGj6pjU3SW5RC8ynpyq4IaVG6BSjZnNy1Y+Zx2qQFTTvuTk35aUkIBAO489E7Ey5dEmpl/kpYyi1GoHRV6VUZG4S9kLJ+kV+v1wuzOXzsg9lshiRJUd1sFosF+/fvNx4rimIcr5ttwES0nI1OBPCLw6fxk0Mn8Nu3zhnjlvJyTHjvVevwkZ2bUXtNOYryk/tjmZtjws2VZekscvZTVUA5Nj2Q+9jvgcG+6OPKr70UKF1qUVpVPrfn23E3cPUHk8scTsvSwOgA3lLewoFjB5IKmu674j7ce8W92FG2A3k5HP6cSEZqRw9+Ivn9/pjbbTab8XN7ezusVqsRLCmKAo/HA0Ab/2S32yGKsRelHB8fx/j49KyU4WHOPKHlIRhU8Qd5AI8dOoGnXzltZPQGgBu3CLh35yZ86IYNKFtVmMFSZkCyy5ZEUlVgwKcN5D56qftt+J3wY0w5QMUNWoB02XuArTenNvlkTi6w/bbUXY8WpdGpUciKjDcH38Rbylt4a/AtvDn4JvxjsT9P49lVsQs3rLshTaVcWrIqrIwXUIXu93g8YV18oYPKRVFEXV0dfD5fzPNbW1uxd+/eVBWXKOu9cfo8Hjv0Dp544WTYOKTNpSvwkZ2bcM/OTahctyrBFZawRMuWRHZ3BYPA2denu930YCtUTh6w0aIFX5fdCmzZxcSTlDKBYADHzx83gqO3Bt/CW8pbeHv47bjLkWxevRlri9bi0NlDM15/odd7W8wyEjgJghDVuuT3+2fscnM4HOjq6go7TpZlo3tPn6Eny3LMVqeWlhY88MADxuPh4WFs2cJVwGlp6T8/hideOInHpBM4fGq6VXVNUR4+eMNG3GvZhKqtpQnHLS15cZctOaVtr/+eNjDbGMz9LDAa8R98biGwuXq6RWlzDVCwcoFugJYqVVUxMDagtSCFBEiyImMsEDtbv7nIjCuEK3BF6aUv4QpUCpUozi82xjhl23pvi1lGAier1QqXyxW1vbq6Ou45bW1tcDgcEEXRaJmSZTls4LgucvyUrrCwEIWFy6wrgpaFkYkp/OLVM3js0An87q2zuDRsCfm5Jrz3qnLcu3MT7rg6+XFLS1rCZUsubev80+j9+cVaK9K2S7PeNlUB+UzwudzMNhdSIiOTIziiHDGCIz1QGhyPnigFAEW5RagUKo3gSA+U1q5YG/c5cnNys3K9t8UsI4FTZGuQLMuorq4Oy80kCIJxnMfjgcViMYKmjo4ONDU1QRRFOJ1O4zperxc2m42DxWlZCARVPOs7h59cGrc0MjG9JtTOrfq4pY0oXVmQwVJmoWO/T2LZElULlC67dTqH0sabgNz8hSghZalkciHFMhWcwtvDb+NNJaQVafAtvHPhnZjH55hysHX11qgAafOqzXMKcLJxvbfFLCPpCAAtWHK5XKipqUF3dzdaWlqMgKe+vh41NTVobm420g+EEgTBaGXSk2MKggCfzxcWSM2E6QhoMXrt1DB+cugEHn/hBM4MT0922Gouxkd2bsJHdm7CZWvZZWS4OACclLRM3CcPaYFTMkuS3LsfuKEh/eWjRSFeLiS91eYb7/0GarfWon+kP2ockqzIUUuT6NauWBvezVZ6BSpLKlGUl/rWzFS2li01s4kHMhY4ZQMGTpQtZsqFdGZ4DI+/cAKPSSfw+unzxvaSFfn40A0bcK9lEyxbS5ddBt8oY0PAyRe0AOmkBJw4BAy9PbdrffqnnLVGAJLLhZSfk48VeSuiEkjqVuStiBqHdHnp5TAXcVmibJD1eZyIaNrTr5yKyr69oaQIjt1XI6iq+MmhE/j9kXNh45bed3U5PrJzM+64eh0K85bpf4wTI8Dpl8Nbkwbein1s2RXAJguwcSdQcSPw6GeA86fBZUsolsnAJPpH+9E/0o8zF8+g+3T3jLmQJoOTmJyYRK4pF1vXbMWVpVeGBUqbVm1a9hm3lwoGTkQZ9PQrp/C5H0pRH9+nhsbwV+0vhG2r3laKj1g24YPXb4BQvMzGLU1NAP2vTgdIJw8B/a8BaiD6WGGrFiBttGjB0oYbo9MC/HEbly3JoEx1GamqiuGJYfSPXAqKRs7gzMgZ47H+NdscSLov7vwiPnXtp1CYy0lISxkDJ6IMCQRV7H3ycMw2D11ujglfuONy3GfZjK1lxQtWtowKBoCzb4R0t0nAmVeAQIwxIqvWTwdIG3dqXyvjzzAy7LgbaPh+nDxOXLYkneY6wHomk8FJDIwOGIHQmYtnjOAoNCiKN6U/UkFOAcqLy1FeXI48Ux4Onjk44zk3ld/EoGkZYOBEtMBGJwLoPTYIT+/xsO65WAJBFe8Wy7I7aJpr9m1Ay8Dtl7UgSW9NOvUiMHkx+tgiISRAuhQsrd4QvQhusrhsyYJLtNjsA796AN947zdiBk8XJi6EBUGR3/tH+jEwOhAzT1EsJYUlKC8ux/ri9VhfvN4IkPRt5cXlEAoFY8wgcyFRKAZORGk2PhXAobcVPOcbwHPyAF54W8FEIJj0+f3nk/sPOSNmk31bVYHhEyHdbZe+jw1FXzd/pTb9X29F2mQBSrfPPUiKh8uWLJhAMIB9B/fFDDz0bQ89+xBeOvsSzo2eCwuMRqZGknqOPFMe1hWvCwuAQgOj9cXrsa543axnrDEXEoVi4ESUYhNTQbz0znSg1HtsEONT4YHShpIiXL5uFX575NyM1ytfnaVJFmfKvn33N7VFbEMHb1/sj75ObiFQcf10gLTRAqy9gi0/S8CFiQs4dfEUTl08hedOPjfjAOvhiWH826v/FnPf6vzV4S1DK6Nbi8xF5rQNwGYuJNIxHQHTEdA8TQWCePnEEJ6TB/CcbwA9RwcxOhk+aHnd6kLcLJbh5soy3CyWYVtZMYIqcKvzGZweGos3twsVJUX4neN9YakJskIwAPzjdUkkkoxgygXW75jubtu4EyjfAeQts8HuS0BQDWJgdAAnL57UgqMLp4zv+rbzE+dnvlCEmzfejF0Vu6K60Yrzs6O7mrmQliamIyBKo0BQxeGTw3hOPofnfAPoPjqIC+NTYceYVxbg3aIZN1euxc1iGSrXrYzKsZRrAh66awc+90Mp3twuPHTXjuwKmi6e0wZuv/7T5IKmNZu17Nt6a1LF9UD+ivSXcxlI9wf4RGACpy+e1oKgS0HRyQsnjW2nL57GZHByxuusKViDjas2oii3CC+cfWHG4/dcvwc1FTUpuIP0yM3JzeryUfoxcCKaQTCo4o0z542ut+flAQyPhQdKJSvy8a7tZq1FqbIMV5avTmoR3d3XbcDDn7BE5XGqKCnCQ3ftwO7rNqT8fmakqlpQdO4NLUjSv869AYwMzO5adXuB623pKecyNt+Zafq0/NAWotMXT+PkhZNG19q50Zm7kXNMOSgvLseGlRuMr42rNk4/XrUBK/O1LPYcYE1LBbvq2FVHEVRVxZH+C0bX2x/kAQyOhP9nvbowD7suBUrvFstwzYY182oZmilzeFoEA4Dy9nRQFBokJepiEbYCK8uBEz0zPwezb6dcMkt/3LHlDpwdPRvedaZ3pV36uhhr5mKEotwibFgVPygqLy5Hfk7y6/fpZQcQc4B1vFl1ROnGJVeSxMBpaZlr8KGqKvrOXQwJlPw4d2E87JjiglxUX2bGLZfGKF27cQ3ychdJFuDApDbl/+zrwNk3te/n3gDOvQVMxZmxZ8oFzCKw7irta63+/QqgYGXIGKdTSJh9+69e5iDvFEpm6Y9cUy6gAgHESA4aobSwFBtWbcDGlRtRsbJiOjC6tC10Sn6qxGotqyiu4ABryiiOcaJlJ96yJbG6u1RVxXH/qDFG6Q+yH6eHwwOIwrwcVF9WagzovmGzgPx0BkrzyYWkmxzVgiGjBelSoOT3AcGp2OfkFmrB0NorgXVXA+sufTeLQF6CRH45uVrKgUWefTubBvqOTI5gYHQA58bO4dzoOZwdOYtzo+cwMDZgPD514RSUCSXhdQKXsqnnmnKxvnh9VGC0ceVGVKyqwIaVG7Aib+HHm1m3WXHHljuypt6JZostTmxxWvTiLVui/5/88CcsuH6zoI1RutT1dkIZDTu2IDcHO7cKxqy3m7YKC7cG3GxyIQHA2DBw7s1L3WqvTwdKg8cQu/UHWl4kPSgKbUEqvWx+wU3Msm9aFNm305XBOlQgGMDg+CDOjU4HQ6GBUGhglEzXWbJadrWg8apGBiNESWJXXZIYOC1+gaCKW53PJMzAnZtjQiAY/jbPyzHhpi3TgZJlWymK8jPwIRMvF5Ie9t3xv7QlRELHH51PMJutSJgOjkK72Uo2pz55pC4VrWULLJlxQvGCJ1VVMTI1Mh38jJ3TWopiPPaP+RFUk092WphbiLUr1mLdinVYu2ItylaUhT0+M3IG/+8P/2/G63z3zu9y5hfRLLCrjpaN5+WBpJYtyTEB128WjDFK1ZeVorggw2//qUngZ19G7FaiS9t++Xexz11VMd2CtDakJWnluvQFSPEssuzbyWSw/spzX4EyrhgBUGgr0cDYAEanRqPOjccEE8xFZqxdsdYIhvRAKPLxyvzotBWRZXe/5ObMNKIMYuBEi8LoRADyuQvwnb0IX/8F+M5egHz2It7qTy7BXuu916OxZmuaSxkiGARGzgFD72jdWMMnwn8ePgEMnQDUmQfwYmMVsO3mSy1IlwKlFULabyFZ2TROCNBahEanRjE0PoShiSHte8jPb/jfmDGD9eD4IPY+tzfhMcV5xUbwk+irtKgUeTmp+VPLpT+IMo+BE2UNVVXRf37cCIx8Zy8aAVLkmKRYchDErpzXUQ4F/RBwMHg1gtAGdG81r0xlQbV8RkPvXAqCTkb/fP4UEJhIzfPd/PmszYWUznFCQTWI8xPnMTw+HDMAGhofwvDEcNT24YlhTMUbDD8LV5VehR1lO+IGRJnKZM2lP4gyi4ETLbixyQCODYxowVH/BcjnpgOkyAzcocwrCyCuXYnKdatQWa5931a2Ep/4zvO46cJv8Df538dGk984/qRqxlcmP4UXV/8Rdm03J1c4VQVG/MDwOyEB0cnpFiI9OAqMz3wtmLQxPyWbtMHeazZr30s2aT8PvQM8+hkAQACAVFSIs7m5WBcIwDI2DqPNYNX65Mq+wJJd6X4yOGkEP8Pjw/GDn4j9w+PDSa92H0t+Tj5KCktQUlCCksISrClcg5KCEoxOjeIXx34x4/mOXY6sHSfEmWlEmcPAicKkKhGjqqoYuDgxHRiFtCK9MziCYJzPw9wcE7aai1G57lKAtG4VxHUrIa5bBfPK2OuZPVz1Dm589h8RANAdEnzcNOrHt/P/ES9aRO0eVBUYHYwIgmK0GMXLbRRp1fpLAdEm7atkU/jPqzcAuQmSAwarga7/De+Ugn1lAs7kTf86rp+awoMDCqx5pdpg6wyYCk5hdGoUI5MjGJm69DU5gtGpUVyYuIC/e/7vEo4T+p+//p8oyi1KemX7eFbkrQgLgEoKS7CmYI3xsxEYhWxbU7AGK/JWxBwvFAgG8OKjLy76cUJc+oMoMxg4LXETU1P40Yu/wtvDp7F1TQU+duN7UZAX+2V/+pVT+MoTL6Is0IXivHMYmVqLgdw6/M3dN8Zd+mMyEMSxgRHIIV1reuvR0Gj8daxWF+UZgVFl+UqIa1fh8vKV2GpeiYK8WeRLCgaw89V96Fq5As6y0qjgwzEwiLqDXwbe+Cet+2wyyQ/xlesuBUCbYwRHG4HVG+e/MG1OLry7PoUHjvxH1Md3f24uHigvwzcu/zisM7QiqKqKieDEdIAT43tYABQRCI1MTe8PPW48qVa1+IJqMCxoWl2wejq4mSEICt1XkJvaBYA5ToiI5iNj6QhkWYbH44EoipBlGU1NTRAEYdbHzuY6kdKVjmBiYhyP/vJbOHT8AAYDgxDySrAqrxSlxetRIWzHPbfbUVBQaBz7X792oX/4bZSv2Rq2L961kz3+a7/txA/e/CeoeUPGNtNUCT555f/Al2+rDzv26VdO4V+f+D84t/45nAsJXNZOBbH2zM34kzsfwmVrVxmBka//IuRzF/D2wAim4jQfmUzA5tIVYS1H+s9rVxVEtwYEA8DYkNYqNKpc+j4IjIX8HLp9dBC40A9vzhgeKF+rffyFXNN06a39jf5zsI6EjJEqXhveOrRm46UASe9S25g4+eMsqKqKKXUKE4EJjAfGje/jgXGMTY3hCwe+gMHxwbjnF+cV4/3b3o/RwGh0IDQ1gtFJ7XsgmUHmc5RrykVxfjGK84pRnF+MFXkrMDo5ir7hvhnP/XL1l3F35d1YVbAqZQOkU4UZrIlItyjyOFVVVaG3txeAFvw4HA50dnbO+tjZXCdSOgIn9+N/jX8f+AmGc+P/t7p2KoiPrr0HAPDjc/8VFah8dO09aPpw9DR09+N/nfTxX/ttJ77v+woANXx6uqoCMOFTlX9jBE+BoIrP/MPncKjsd3GDjytPvhs9wx+JeT/FBbmXAiKtS+0Kcx6uWD2BLSsmUDg5HCP4iRMYjQ3FvH4iAQB3btmIM7m5Mafhm1QV5YEA/mtLAwI33IvxFWaM5yAskBkLjIUFNLGCnNCf4+2Ld/xs8vjMV1FukRHcGMHOpYAnNPAJ+zk/4piI4/Nz8qOC3O7T3fjMzz8zY3myPZ9Qts0IJKLMyPo8TrIshz0WRRFer3fWx87mOgvB/fhf418GHwdyEnc1ncs1accBQG74B9JArgnfHHwceBxhwZD78b/GNwcfh5rE8RNTU+h482tArhodTJhMMKkq2t/4Gnpf24iBC1M4PXQea7f+FipMUcerl44fXP8cPjpRgatKgU1FY1hXMAIhdwQrcAG5U0OYGhvC5KlhTB4dxmRgAuMm4DWTCVMmEyYB7XvEz1MmYBKXjikEpgrXaMfkFWAqrwiT+YWYyivEZG4+pnLzMZmTj6ncPEzm5GDSlIMpUw78Y36cGY+/irtqMuFMXh5uPvUYcOqxhK/LQsjPyUdhbiEKcgsQVINQxpUZz9l92W7cVH5TzMAn9PuKvBUL9qFvKbdgffF6jhMiomUnI4GT1+uF2Rw+y8lsNkOSJFgslqSP7enpSfo66TYxMY4fnfsvLRCaKQGh6dJAZf3nEOqlfd8beByDv9mCoBrE2PgIfj7wONSc+Md/x/84nnj4NQTVKYyYzmOseBTTi44g6pzx/FGcG/88VqwENq4O4GSCcUWqyYT+PBN+vu0neMpkQkAvg/55mQtgJYCV+QDKEt/7rExoXwEgifVKk5JnykNBboERvIR+j7ct0b7ZHF+QW4Ac03Q9J9tq03BVQ9Z9uHOcEBEtVxkJnBRFibnd7/dHbUt07GyuAwDj4+MYH58e8Do8PJywnLPxX792YWA2g5oTBVcmE87nAj/s+9b0ttzEx4+agGPFbyX//ADOFOpdSMnNmptM0JKWb8pDfk4e8nLykJ9bgPycgks/52vfc6K/x9oWtS83P+Gxx4aO4VsvfituuXTfrv02bt54c1aNs1nsrTbMJ0REy1H2fIogfpA022Pj7WttbcXevYmzAc9V//DbKb/mjrFxbAoEcCY3By8VFc14/O0jQVyTtxqnAiN4fMXMQ9f+1LQFlu234K2B1/EvQy/OeHzrVX+GXTd8Iip4yTXlJlwmIp0CwQA8b3nQP3ImZsYfE4D1xRW4ZeMtWdf6sRRabZhPiIiWm1k0kaSOIAhRrUJ+vz/mbLhEx87mOgDQ0tKCoaEh4+v48ePzuo9Q5WtSv5xH/bb78Y37X8Y92z+f1PF/dLkdf7HnD/ibun/G+qkpY2B3JJOqomJqCn/5nmbccdv/xp9/6LsoD6gJj18fUPHH1V9AeXE5SotKsbpgNYryipCXk5exoAmYDj60UCO8HNpjU1YHH3qrTXlxedj29cXrEy40m030cUIfED+AmoqarK1rIqJUyEjgZLXG/jCorq6e1bGzuQ4AFBYWYs2aNWFfqXLP7XaUTQWnxy7NRFXjHmtSVaybCuLu9/0PoKAYH37v57F2KpgwsFk3FcQ9t9sBAAXbb8MD51VjX+SxAPD/nVdRcGlh1ty8ArRc+fGExz945ceRO9+8RWmy2IMP6zYrfn7fz/HdO78L521OfPfO7+Lp+57O+nITES1HGemqE0Ux7LEsy6iurjZaiiRJgiAIEEUx4bGRLUuR11lIBQWF+Njae7TZcmqM2WyhQoITk6pqA7xDHgPAn6y9x8jPVFBQiI+uvQffHHw8qeORk4sPvL8N+T+1wxmRkbo8EIBjQEHdh1zaqvaXWG9twTcA7HvzP3AmpMFgfRBwXPlxWG9tmXWdLKTF3mXE2V1ERItDRhNgulwu1NTUoLu7Gy0tLUbAU19fj5qaGjQ3N894bKJ9M8lUHqd1U0H8SZw8Tvq+ZPM4JToeh5/A1NMOHJoYMJYh2VmwFnm79wE77o5ZtsDUBKSXf4Czw29j3ZqtsFz/yaxtaSIiIkqFRZEAMxss9czhALRs3MeeBS6c0dZW23ZLWEsTERHRcsfAKUnpCpyIiIho8ZhNPJCRweFEREREixEDJyIiIqIkMXAiIiIiShIDJyIiIqIkZdWSKwtNHxefyjXriIiIaHHR44Bk5sst68Dp/PnzAIAtW7ZkuCRERESUaefPn0dJSUnCY5Z1OoJgMIiTJ09i9erVKV9vbXh4GFu2bMHx48eZ6mABsd4zg/WeGaz3zGC9Z0Y6611VVZw/fx4bN25ETk7iUUzLusUpJycHmzdvTutzpHpNPEoO6z0zWO+ZwXrPDNZ7ZqSr3mdqadJxcDgRERFRkhg4ERERESWJgVOaFBYW4qGHHkJhYYJ15CjlWO+ZwXrPDNZ7ZrDeMyNb6n1ZDw4nIiIimg22OBEREREliYETERERUZKWdTqCdJBlGR6PB6IoQpZlNDU1QRCETBdr0ZIkCV6vFwDQ3d2N/fv3G/WZqK7nuo+iORwOtLS0sN4XiNfrhSzLEEURAGC1WgGw3tNJlmV4vV6YzWbIsgybzWbUP+s9dSRJwp49e9Db2xu2PR11nNb6VymlLBaL8bPP51NtNlsGS7P4OZ3OsJ9D6zdRXc91H4Xr7e1VAaiDg4PGNtZ7+nR1dalNTU2qqmp1JIqisY/1nj6hf2dUVTVeA1VlvadKZ2en8fckUjrqOJ31z8AphXw+X9iLpaqqKghChkqz+PX29obVn8/nUwGoPp8vYV3PdR9F6+zsVEVRNAIn1nt6hda1qmr1pn9nvadPZB2FBq+s99SKDJzSUcfprn+OcUohvak3lNlshiRJGSrR4maxWLB//37jsaIoALQ6TVTXc91H4TweD2w2W9g21nv6yLIMv98PQRAgSRIURTG6i1jv6WU2m1FVVWV02dXV1QFgvS+EdNRxuuufgVMK6R/skfx+/8IWZAkJ/eBub2+H1WqFIAgJ63qu+2iaoigxxwOw3tNHkiSYzWZjXIbb7YbH4wHAek+3zs5OAEBlZSU6OzuNvzus9/RLRx2nu/45OHwBxHsRKXmKosDj8UQNKox1XKr3LUcdHR1oampK+njW+/z5/X7Ismz8c9DU1ITS0lKoCVLtsd5Tw+v1wul0QpZl2O12AIDL5Yp7POs9/dJRx6mqf7Y4pZAgCFERrd70TvPjcDjQ1dVl1GWiup7rPtJ4vV40NDTE3Md6Tx9RFI26AmB8lySJ9Z5Gsiyju7sbVqsVTU1N8Pl86OjogCzLrPcFkI46Tnf9M3BKIX3acKTq6uoFLsnS0tbWBofDAVEUoSgKFEVJWNdz3UfTOjo64Ha74Xa7IcsyWltbIUkS6z2N9PFMsbDe00eSJNTU1BiPRVFES0sL/84skHTUcbrrn111KRT5h0+WZVRXV/O/jHnweDywWCxG0KR3IUXWaWhdz3UfaSL/6Njtdtjt9pgf7Kz31BFFEdXV1cb4Mj2Xk8ViiTqW9Z46FosFLpcrbDzlwMAA6z2NQsdQJvrczNa/81yrLsVkWYbL5UJNTQ26u7vDEgfS7MiyjMrKyrBtgiBgcHDQ2B+vrue6j6YpigK32w2Hw4GmpibY7XZYLBbWexopigKHw4Gqqir09vYaLa0A3+/p5PV6jS5RQPvngfWeWl6vF11dXWhra0NzczNqamqMYDUddZzO+mfgRERERJQkjnEiIiIiShIDJyIiIqIkMXAiIiIiShIDJyIiIqIkMXAiIiIiShIDJyIiIqIkMXAiIiIiShIDJyJacF6vF5WVlWhra4Pb7UZVVRWqqqqMhJuVlZWQJGnez6Ffk4goVbjkChEtOEVR0NXVZWRn7urqgtlsRlNTEwCgsbERsizHXPYiWVarFY2NjSkp70IIXYaCiLIXW5yIaMH5/f6Ei9paLJao1c2XMlmW0dHRkeliEFESGDgR0YJraGhIyTFLhdPpzHQRiChJDJyIaMEl0yXV09ODqqoqtLW1AQA8Hg8qKyvh9XoBTI+Tstvt8Hg8cLvdsNvtUBQl7jW9Xi/a2trg8XjgcDjiHifLMhwOh3Fd/ZqSJBnnt7W1QZZl47ozlVUfb+X1euF2u1FfX2/s6+npQVdXF9xut3FNIspOHONERFkpcoySzWZDe3t72H6bzYaysjJjlXWPx4P6+np0dXVFXU8Phnp7ewFo3YX6Su2hFEVBXV0dent7IQgCHA4H3G43bDYbHA5H2LWrqqpw4MCBpMpqtVrR1dWFzs5OAEBnZyckSTL2VVZWGmO8iCh7MXAiokUttPXKZrOhvr4+5kBrl8sFs9lstAIBQHd3d9T1Ojo6IIqicX5LSwsAoLW1NWqwuiiK6OjoSCrgKSsrQ1lZWVi5l9M4LqKlgoETES0bFosFVqvVeBwr4IkMuhZ6phtn1xFlN45xIqKsJQgCBgYGjMderzdqDFPoY4/HA6vVGhZ46PsbGxvDWpv060Wy2WxROaS8Xm/M8yVJMgaxJ1PWZMQqExFlD5OqqmqmC0FEy5PX64Usy8asMofDgerqaqNLTFEUOBwOYyC1y+WCoihwuVwQRREOhwOKohjdc93d3WhpaYEgCJAkCXv27AEA7N+/HxaLBV6vF11dXaipqQGAqCArtFyxjvN6vZAkCaIooru7G42NjUmVVVGUsLLo460sFotx706nE1VVVbBarQlTNRBRZjFwIqJFS88yzkHVRLRQ2FVHRERElCQGTkS0KHm9Xni9XmNaPxHRQmBXHREREVGS2OJERERElCQGTkRERERJYuBERERElCQGTkRERERJYuBERERElCQGTkRERERJYuBERERElCQGTkRERERJYuBERERElKT/H/oW9Q9MbumgAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -676,9 +676,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsIElEQVR4nO3deXzb9X0/8Jcs34ltWU5ix+Ty1wFCAgRkGwb0ACIDLU3WFdnuelC2Eqtrd7LOwvttZWm3OnI7tm7dihTaUXqstgXrCLS0UigtHZTYFiRAOIK+TjiS2Ilt2U58S9/fH8r3a0nWbR0+Xs/Hww9b3/Ojj2Tr7c/x/qgkSZJARERERFFlZboAREREREsFAyciIiKiGDFwIiIiIooRAyciIiKiGDFwIiIiIooRAyciIiKiGDFwIiIiIooRAyciIiKiGDFwSgNRFGEymVBaWorq6uqIx1ZXV6O0tBQmkwlutzs9BaRFw+l0or6+Pur7JJVsNlvG7p1u8u+mSqVCdXU12tvb0d7eDqPRiIaGhhVVF4kyGo0oLS2Fw+HIdFFSZrm+T6xWK2pqajJdjKVHorQxm82SRqORent7Q+632+2SwWCQmpub01yy0CwWy7xtLS0tksFgyEBpfEKVabmx2+2SIAhxnZOseunq6pq3bXh4OOL7NpRMv0/ipdfrQ/7eCYIgmc3mDJQodovhd0Kn00l2uz2mYzNd3oXcf7m9T1wul9TS0hLX7zZJEluc0kij0aCxsREWiyXk/sXWwmS32+dtq6+vR1NTUwZK4xOqTMuNVquN+5xk1YtGowm5rbm5GYIgxHydTL9PksVoNMJkMmW6GBEttd+JTJc3Ffdfqu8TQRBgNBpD/t5TeAyc0sxoNKKzs3PedrfbHdcHU6pZrVaIojhvu16vh8FgyECJwpdppUtmvTidTrS3t8/bbjab4/rjmsn3STLJz3mx/VMjW2q/E5kub6ruv5TfJ06nc1F99iwF2ZkuwEqj0+mg1Wphs9kCPlh6enqg1+vDntfe3g5BECCKIgRBUM51u92wWq0QBAF2ux1GoxE6nQ4A4HA4lP+CDhw4AFEUIYoiBgcHYTabw97L4XDAbrdDFEXlQ7SlpQVOpxMmkwmiKMLlcoW9x9DQEHp7e2GxWGC1WqHVatHR0YHW1lalbNGeV6xlCr4O4BuP4L8vEqvVGvC4ubk56jUTfc7yeVqtFg0NDQB8r1+01yO4PP51FWu9RKtfmUajgdlsDriGHOwfOHAg4Pxw9RPr+ySW92K0e8Vz3XjrAgB6e3uh0+kCgsZwr4PJZFL+g5f/u5fLEMv7LNT1Ij2vaK99KMn6e9He3g6NRhNX62io8gqCoNzTYrFAFEUlSO/q6oJWq8WuXbvgdrvR1dWllDWROgtXXzabDW1tbRBFEV1dXdDr9RBFEfX19RAEARaLJWpgsVTfJ263O+Z/iORz5dddEAQMDQ1Br9eH/J03mUywWq0wm80xP4/geqmrq1vwa5MSme4rXEnkPuZQ4z/ksSWhxjgZDIaAsSd6vV7pk25paZFcLpeyTxAEaXh4WHksj5fxH38gCELUPm273S7pdLp523t7e+eNvwl3j5aWloDnF3y9SM8rnjIZDIaAe7tcLkmv10d4dj5ms3leGf1fh0jXTPQ5d3V1SQACXrOWlpaA1zxUHUeqq0j1Ek/9RqLX6wOuFa1+4nmfRCtToq+F/3Wj1UXw2JXh4WHJbDZLOp0u4Pcp0nXk19tut0u9vb3KeyHa+yzS6xrteYV77cNJxt+LlpaWgPEyw8PDEoCYxjiFKq/FYgl4PUPVl3+ZF1Jn4eor1LjCUGOWVsr7JFhzc3PA83a5XPPGtYWqQ71eH/BeSaReYn1t0omBUxrJbyCXyyUBUH7RXC6X8ochOHCSjw2+jnyMwWAIeGMGf8D19vbOOz/4mFDiCZzC3cP/j4DL5ZI0Gk3MzyvWMvX29gZcVxZtsKr8xz74j53ZbI7pmok853DPQS6L/B4IruNodRXqmonUbyT+f/BirZ9Y3yeR3osLeS3k68ZSF3q9XtLpdJLFYlG+ggO6WF6H4P2R3mfRrhdLfcX7gbjQvxfy8wkW6+DwSO9/mdlsDnjv+Jd3oXUWqb6CJ0CEel+ulPdJtLJJkjQvWAv3D1/w51645xGqXmSxvDbpxK66DBAEATqdDp2dnWhubobT6YzYRaXRaAKm+rpcLqW/uqurC4CvyVXuMhoaGpp3P38ajWbeMQsV6h6RptRHe16x6unpCdlUK3dFhOv+7OnpgUajCWimlutS7sqIds14n3M4cjnCjTVIpK6SVb+hJFrn8jH+or0XY71XpOvGWhe1tbUBXQrBYrlOcDmivc/ivd5Cf3cX+vdCroNk0mg00Ol0yvAF+fpyV46/RF6DWOusubkZHR0d0Ol0cDgcYd/HK+F9Eur5BL/u8b4PEqkXWayvTbowcMoQo9EIi8WC5ubmiG9AedC4/xvF/2en04m2tjbU19ejsbExZf29of6ILUS05xVrmRIdjBnpvMU2wDPeupLrZaH1G6k86ZKMeyWrLmK5TvDvcrT3WbJfo2i/p8n4e5HIrM9w5PI2NTUpH4y1tbUwGo2w2WzQ6/UBdZLsOvOvr6amJuzatQtmsxmiKCZ83eXwPkkW/+eVSL3IkvXaJAtn1WVIY2MjnE4nbDYbamtrwx6n0+lCthK43W643W7s2rULra2tSgAmv1GTPXPE6XQm9XqRnlesnE6nMlgwmCiKqKuri3j/UPdyu90JXzNR8msZPHBeFm9dOZ3OpNRvOOmsn2TcK1l1kch1Ir3PUvEaRfo9Tcbfi3BlTpRcXoPBAJvNBofDAZ1OB4PBAIvFMq/FMdl15l9f/hN3FhIcLvX3SbiyJXI//1avhTyPZL02ycLAKY3k2QaAL7LW6/Xo6OiI2OKk1+tRW1s7LzNtZ2en0rLg/4Erv1Gj/QGNRp71APj+qIb7UE/0HpGeVzxl0ul00Ov1Ac2//n+MI13LYDAETL13u93o7OxM+Jqx/mFxOp0Bx7a1tUXMkxStrkLVSyL1G6tE6yeUaHWWjNciWXWR6Hs23PsskesF11c8v6fJ+HshCAKam5sDZn+53e557+lwwpVXHr4g/42UfxeCr7nQOotWX0ajEXv37l1QKo2l/j4JVbbg11yevRfuHnIZ/HsFFvp7mIzXJmkyOsJqhXC5XFJzc7MEQGpublYGAfvPmpBnZ2g0GiULrf9gPHkmi/858vaWlhbJbrdLdrtdcrlcykDe3t5eyWAwSACUWQjyPXQ6XdQBdvK15cF9oa4X6R56vV6ZISEf09LSEtPzirVMwdexWCwBA7RjuZ7ZbJa6urpivuZCnrM8SLOrq0uy2+2S2WwOmCESfF6o8oSqq2j1Emv9hhM8Gybe+knGezHe1yL4uqHqwuVyRfy9i1QW/+vY7XZJr9dLGo1GGdAbfE6095n/9eJ9XqFe+3BlT8bfC/m5yNfR6XQxDxAPV155Yob/4+B6TEadRaovuT5CbV9J75NIz8f/NQ9+veW/Z3IZDQaDJAhC1N/DaPUiSeFfm0xQSZIkZSBeI1qR5Hwlvb29mS5KXBoaGtDU1LQ4/tsjShG32x01px751NTUwGw2p62uFtNrw646IgpJbmqXf072bCqixcC/W0vuGqPFYbG+NgyciCiktrY2GI1GAL4xDZEmMRAtVXKGayC5MwZp4Rbra8OuOqI0cTgcytIPwcuaLEaiKMJmsylLLLCbjpYjp9OJnp4eAIiYn4nmtLe3w2QyQa/XK99TYbG+NgyciIiIiGLErjoiSgmj0YjS0tKAVAIUntPpRH19fULZ54kofRg4EVFKhFq53GQyoaGhIa3lCF5xfrFdT6bT6ZSV7peDVNUTUaYxcCKitKmvr0dTU1Na72m32xf19fwtpgGwC5XKeiLKJK5VR0Rpk+7pxFarNalLhCT7essV64mWMwZOREuU2+2G1WqFIAiw2+0wGo3zllII7i7xn5kSaV97e7vSzSaKojIDUE7gKQgCjEaj0qpgNpuV8+RZeMGcTidMJhNEUVSW1pCvBwAHDhxQlnIYHBxUrik/V5PJhJqaGvT29qK6uho6nQ4Wi0VZRT6Yw+GA3W6HKIrKUhb+MxnDPcdwwl0v1POSp1GbzWY0Nzcrz1Or1SpdlW63e97zDEcuq7w4a7QZjom8tvE8DyD86xWt3omWvEymLSeixLW0tAQsTSAIQsAyEGazOWB5Ev8lDiLtMxgMAUspuFwuSa/XBxwrL7fQ29urXCd4OYfh4WEJQMC1ent7JUEQAp6H3W6XBEEIOE4QhIDlN/yXfBkeHp53jXDkpSGCRXuO8V5Pfg7+9Hp9QH10dXVJAAJes5aWFqm5uVl5HKp+gpe70ev1AXUTbCGvbSzPI5bXK1w9ES0HHONEtESJohgwY00QBOWx3ELT2tqq7O/o6FAW3Qy3z+l0wuFwBHSpCYKAoaEh5doajQZOpxN6vR46nQ5msxlutxvt7e0BLRsajSamxUS1Wi1EUZx3T/+uHpvNplxLo9GEXGQ0VrE8x3iFamELzrQu14f/gPnW1taI3VpyLi3/FqaGhgZYLJaQxy/0tY3lecTyehEtZ+yqI1qi5C4qeWmUoaEhZbX7np4eaDSagA89+XiHwxF2n9z1F0zuDpQ/LIOPka+ZqODraTQa5bkAvhlnoVZ8T0RPT09MzzEd5NfB6XSGLJNcr/4BncvlChukRHrdY31tYxHt9SJazhg4ES1RTqcTbW1tqK+vR2NjY8CHWXCQ4S/Rff5CBUmpnBFmNBrR1taGAwcOwGq1hm1xiUZucUsWecxRKMm4j9vthiAIAUFNpAAnGa9tss7zF6meiJYadtURLUFutxu7du1Ca2srmpubodFolA84URRDttDI50Xap9frQ7ZmiKKIurq6sOXR6XQp76o5cOAAHA4HDAZDwssvyF2MiTzHcNcLJ5YWGLfbrbwmoYSr13DBTCpe22S0JEWqJ6KlhoET0RIkt5z4f+DKH3Byt4/BYFBmNQG+D8/Ozs6I+3Q6HfR6fUDXkPyhF2kmlyAIaG5uDpjN5Xa74XQ6E2qxCD6nt7cXGo0GBoMhrpYL/7E3ckCZ6HMMd73g7XL5Q7VuBddHW1sbmpubwz4nvV6P2tpa2Gy2gO2dnZ1hy7eQ1zbW5xEsVDdqqHoiWg64Vh3REiVPC6+vrwfg+7AymUxoampSPghNJhPKysqUQcD+LTXR9slLf7hcroCp5mazGT09PWhtbZ0XyMhT3eWuPLmMZrMZWq0WbW1tsNlsyiLHcnej/7b29na0tbVBEATlHjabDQ0NDUqqA41GA6PRGFPLk1yG6urqmJ5joteTgxW5Pjo6OuB0OmE2m2EwGJSp/K2trcq4JgAB6QDkumhpaQkoj1xWuTs0WoCXyGsby/MQBCGm1ytSPREtdQyciGhRc7vd2Lt3Lw4cOKB0SYqiqCzfslQ+lOXAqbe3N9NFIaIFYFcdES1qVqsVRqNRacWSp/WbzWYGIUSUdgyciGhR0+l0IbODOxwOpZuSiChd2FVHRIuew+EIyHUU69Iji4U8Nkz+ziVIiJYuBk5EREREMWJXHREREVGMGDgRERERxYiBExEREVGMuFZdGF6vF6dOnUJRURFUKlWmi0NEREQpIkkSxsbGUFlZiaysyG1KDJzCOHXqFDZu3JjpYhAREVGavPvuu9iwYUPEYzIWOImiCJvNpqxpJC9UGu+xTqdTWXupu7tbyS4c7z2CFRUVAfBVYnFx8UKeKhERES1io6Oj2Lhxo/LZH0nGAqeGhgYl668oiti7d2/IJHfRjnU4HEpOlPb2duzatUs5Np57BJO754qLixk4ERERrQCxDM3JyOBw/9W3Ad9ikv4rdsd6rLwopsxgMMDpdEIUxbjuQURERBSLjARODodDWeVbptVqldXCYz1Wp9PhwIEDyna3263sj+ceRERERLHISFedHOAEGxoaivtY/yUXOjo6oNfrlRXUY70HAExNTWFqakp5PDo6GvI4IiIiWrkW1ay6cMFOLMe63W7YbLaoq6WHu0dbWxv27dsX8/0BX8qC6enpuM4hWi5ycnKgVqszXQwiWgE8XgmH+4YwMDaJdUX5uK5KC3VWZlIFZSRw0mg081p+hoaGQs54i/VYk8kEu92ubI/nHgDQ2tqK++67T3ksj7APZ3p6Gn19ffB6vWGPIVruNBoNKioqmOuMiFLm6VdPY9/BYzg9MqlsW1+Sjwd2b8cdV65Pe3kyEjjp9XpYLJZ522traxM6tr29HSaTCYIgKC1K8dwDAPLy8pCXlxdT+SVJwunTp6FWq7Fx48aoybKIlhtJkjA+Po6BgQEAwPr16f/jRUTL39Ovnsaf/NAJKWj7mZFJ/MkPnfjOZ3RpD54yEjgJghDwWBRF1NbWBuRm0mg0EAQh6rE2mw06nU4Jmjo7O0Pmawo+byFmZ2cxPj6OyspKFBYWLvh6REtRQUEBAGBgYADr1q1jtx0RJZXHK2HfwWPzgiYAkACoAOw7eAz12yvS2m2XsTFOXV1dMJlMqKurQ3d3d0B+pba2NtTV1Sn5mcIdK4oiGhoaAq6r0WjQ3Nwc9R4L4fF4AAC5ublJuR7RUiX/4zAzM8PAiYiS6nDfUED3XDAJwOmRSRzuG8IN1WVpK5dKkqRQwdyKNzo6ipKSEoyMjMxLgDk5OYm+vj5UVVUhPz8/QyUkyjz+LhBRqvzvy+/jL37yctTjvvXJa/D711yyoHtF+swPxsE5GeTxSnjBNYj/ffl9vOAahMebuhjW6XTCaDRCpVLBZDLBarXCZDKhoaEhqYlBrVYrSktLl3S+rJqaGthsNuWx1WpFfX19QucSEVFi1q6ObdzxuqL0/tO2qNIRrCTpniWg0+lgNpthtVrR2tqqjPVyu90oLS1Fb28vdDrdgu/T3NyctC5RwFe+ZIxLi4fZbA6YRKDX6+eNtYv1XCIiit/49Cweeb4v4jEqABUlvtQE6cQWpwyQZwkE993KswSefvV02soiD8Lv6OhI2z1jJYoiOjs7035fOYmqTBAE6PX6hM4lIqL49I9OosnyO/zy2ACyLw76Dh76LT9+YPf2tOdzYotTEkiShIkZT0zHerwSHnjitYizBP7hiWO4aeuamN4MBTnqBefQGRoaQnV19YKukQpmsxk1NTWZLgYREaXJsVOj+Pz3u3F6ZBLaVbmwfrYG585PzeuhqVhpeZyWm4kZD7Z/5RdJuZYE4MzoJK76h1/GdPyxr96OwtzEXka32422tjbo9Xo0NzfD4XDAaDTCZDIBACwWC3p7e+F0OuFwOCAIAkRRhMFgCOi6cjqd6OjoQF1dHYDAZW0cDgdMJhOamprQ0tICm80Gk8kEi8WitOKIogiLxYK6ujoMDQ2hsbERPT096OnpUa4VrrvM4XDA6XRCEAR0d3fDbDYrZbJYLAFjkwRBwNDQUMTyOJ1O7N27F0ajEc3NzXC73TCZTHA4HHC5XMq1Q9VH8Lnyczcajcqxdrs9qV2ZRETLxTNv9OPPfvwSLkx7UL12Fb53Tx02l60CANRvr1jZmcMps6xWqxKEyB/qgC840ev16O3thcVigVarhSiKSlZ2WU1NDQ4dOqSsCdjQ0KAEFYAvnYRMr9ejqalJeWwwGAK6Bd1uN+rr69Hb2wuNRqMMXG9paYFer0d1dbWSXiKYXDZ5mZ2hoSG0t7ejubkZu3btQl9fn9JtVlpaikOHDkUtj06nC9iv0WhgsVhQWloacM9Q9RF8rlyf/sFSV1eXskA1ERH5em0eef4EvvbkMXgl4MbqMnzn0zUoKcxRjlFnqdKaciASBk5JUJCjxrGv3h7TsYf7hnDPf3VHPe6RP6qLacBbQU78uXNCJQiVaTQalJX53pwGgwEmk2neh7wgCEqi0c7Oznn7tdrYB+p1dnZCEASlPK2trTGfKwd3/rMCu7u7odFo5o01StaAbYvFErE+gpWVlSn1CYReCoiIaKWa9Xix7+Ax/OB3JwEAn6zbiK99/ErkqBfvEGwGTkmgUqli7i774KVrsb4kH2dGJkOOc5JnCXzw0rUZa4aMdQZZMgTPmgsX0IWbXafT6QIGbjc3N8NqtSa5lERElGxjkzP40x+/hF+/dRYqFXD/HdvQ/CFh0a99uXhDumVKnaXCA7u3A8jcLIFoLR7++5uamubleXI6nWhsbAQAZVyQP1EUAx5rNBoMDg4qjx0Oh7KmoMFgmHd+qLxSobaFKpvD4UBjY2PEMkUqjyz4caR7+tdHpHOJiMjnveFxGL7zAn791lnk52ThO5+ugfHD1Ys+aALY4pQRd1y5Ht/5jC6tswTkAdyAb7aa0Wic1+XkcDgCBlvr9Xol/1N7e7syALurq0tp/REEQVnapr6+XmkZamtrg9lshiAIaGxsVAZYA3MLMMtrDFosFmVpHHk/4Bt/JeeeCpUOQC5b8LkajSZkmWSRyuN2u9HR0QGtVjtvELz/PUPVh1zH8rnyteR7iKKoDFoPtQ4jEdFK8NI7w9j7aC/OnZ/CuqI8PPy5Wly9QZPpYsWMS66EkY4lVzxeadHMElju6uvrYTabEx6UXVpaiuHh4SSXaunjkitEFI+fvXIaf9XxMqZmvdhWUYTv3VOHSk1BposV15IrbHHKoMU0S2C5S2RAttVqhcvlgtFoZDZwIqIFkCQJ//msC9/4xZsAgFu3rcO//eG1WJ239MIQjnGiZc9qtSq5ouIZf6TX61FWVgabzQaLxZK6AhIRLWPTs178je2oEjT90U1bcODu2iUZNAHsqgsrHV11REsdfxeIKBL3+DSMP+jFi31DyFIB/7BnB+6+YUumizUPu+qIiIgoo/rOXcDnH+mGeO4CVudl49ufuhY3X74u08VaMAZORERElFQvioMw/rAX7vEZXKIpwHfvqcW2isgtOUsFAyciIiJKmsd638P9jx/FjEfCzo0aHLi7BuuKlk9XPgMnIiIiWjCvV8K/ON7Cvz/zNgDgo1dV4J8brkFBbvxLgy1mDJyIiIhoQSZnPPhy1xE8efQ0AOCLN1fjy7ddjqxlmJuQ6QhWIKvVCpPJBKvVCpvNBofDoUzZX6wcDgdqamrStg5dTU0NbDZbWu61UMFltVqtqK+vT+hcIqJ4nR2bwh8e+B2ePHoaOWoV2g1Xo+WObcsyaALY4pRZXg9w8nngfD+wuhzYfCOQldomzfr6ejQ0NMBsNivbnE4n6uvr4XK5UnrvhdDr9SGXXUkVs9m8ZJJeBpdVr9fHvJzLUnqeRLT4vNU/hj9+pBvvDU+gpCAHD32mZtkndmbglCnHngCeNgGjp+a2FVcCd5iB7XtScsv29nYAQHNzc8B2nU43b9tiVFaWvl/GdAZpCxVc1njWwVtKz5OIFpffvHUWX/qRE2NTs9hSVojv3VMHYe3qTBcr5dhVlwnHngA67w4MmgBg9LRv+7EnUnLbtrY2GI3GkPsaGhpSck8iIlp+fvi7k/ijR7oxNjWL67Zo8fgXb1oRQRPAwCk5JAmYvhDb1+Qo8PMWAKEStl/c9rTJd1ws14sx8bsoinC73WFbIvy7d5xOJ9rb22Gz2dDe3q6MffIfZySPi2poaIAoiso5/oGZw+FAdXU1jEYjbDYbrFYrjEajsuyJvN9qtcJqtaKmpkbZLt/fZDIFlNPtdgfc21+o88KV2f968j75PKfTOW88Vbx1Ek645+Z0OpV6kr+cTqdyfbm10Gazobq6Gg6HQznPv6xutxtGoxHV1dVRyx58brzPhYhWHo9XwteePIa/++mr8HglfEJ3CX5w73XQrsrNdNHShl11yTAzDny9MkkXk3wtUfs3xnb4354Cclcl6d6+AMtkMsFutyvbampqcOjQIWWckd1uR1dXFwCgq6sLNpsNLS0t0Ol0qK6uhtvthkajgV6vh8FgQFlZGQwGAwDfB39DQwPsdrtyvd7eXlgsFmi1WuX+vb29AHyL87a3t6OlpQUA0N3drfzc1dUFp9MJnU4X8bxQZZbPs1qt0Ol0SpfV0NAQdDodmpqaFlQn8vVD1W1wGZubm7Fr1y709fVBo9EAAEpLS5Xr+5fFYDCgo6NDeRxcVo1GA4vFgtLS0qhlDz43nudCRCvPhalZ/MVPXobj9X4AwJdvuwxfumUrVKrlOQg8HAZOK4TcmiSKYsgPQVEUodVqYbFY5u0XBAGdnZ1obm5GWVlZwFgjjUYT0Iql0WgwNDSkBADyNpnBYEBDQ4MSXGk0GuV6BoMBJpMJWq1WaVEBfMGSrK6ubt69ACiBV6jzQpVZPs9gMKCmpgaCIKCpqSnkWK9E6kS+fvB1QpVRDjL96ylZA7ajlT1YrM+FiFaW0yMT+PwjPTh2ehS52Vn454ad2L0zWQ0GSwsDp2TIKfS1/MTi5PPAjwzRj/u0zTfLLpZ7x6ilpQUWi0Vp/fHndDpDbo+F/wd+IoK7D/1bgID5g9nDSeQ8rVaL4eFhOJ1OdHR0KK1hqRKqjOlKsUBElIhX3x/B57/fjf7RKZStyoX17lrUbC7NdLEyhmOckkGl8nWXxfJVfatv9hzCNW2qgOJLfMfFcr04mkjlFATBH9TymCMAaGpqCmgRAXxBVWNjY9jr+p8fbb/NZpvXuuLfohHq/sGPQ0n0vLa2NqUVzmw2B5RLLncidRJPGRsbG+F0OgO2++fU0mg0GBwcDDgnuM7DvQaxlD3a60dEK9cvXzuDhodeQP/oFC5dtxo//dJNKzpoAtjilH5Zal/Kgc674Que/Ad3XwyC7tifsnxOdrsd7e3tMJlMqK6uhlarBQCltUkOINrb2yEIArq7u9HV1QWNRqO0ygC+8TDyoHD5PIfDAVEUYTabA4IQl8ulfNjL1wN8AYDD4YDT6YQgCNDr9cr9TSaT0i2n1+vD3ttisUAQhITPKysrg8PhgFarxdDQEJqampRztFotDAZDQnUiX9+/NS1cGTUaDbq6umAymVBfX690Y8oaGxthMpmUAEiv1ytdcG63O6CsoVrvopVdPle+VizPhYiWN0mS8N3f9uGffvY6JAn44KVr8B+f1qE4PyfTRcs4lSTFOC1rhRkdHUVJSQlGRkZQXBy4ovPk5CT6+vpQVVWF/PwEFy4MmcfpEl/QlKI8TpkgB2hLIU/UYlJfXw+z2ZzwoOzS0lIMDw8nuVTzJeV3gYgWlRmPFw888Rp+/OI7AIBPXb8J+/bsQI56+XZSRfrMD8YWp0zZvgfYdmfaM4fT0pDIgGyr1QqXywWj0chs4ESUkNHJGXzpR048d/wcVCrg/330Cnz+A1UrbuZcJMs3fFwKstRA1QeBqwy+78ssaJK74uQp7RQbed1Ai8US1/gjvV6PsrIy2Gw2WCyW1BWQiJald4fGcdd/Po/njp9DQY4a1s/W4t4PCgyagrCrLoyUd9URLQP8XSBaHnpPDqP50R4MXphGeXEevvu5Olx5SUmmi5U27KojIiKimDxx5BS+3HUE07Ne7Kgsxnc/V4eKEv4jFA4DJyIiohVIkiR8+5m38c/2twAA+ivK8a1PXoNVeQwNImHtEBERrTBTsx60PvYKHn/pfQDAvR+oQutHr4A6i+OZomHgREREtIIMXZjGF37Qi8MnhqDOUuGrv78Dn75+c6aLtWQwcCIiIlohXGfP448f6cbJwXEU5WXjPz+jwwcvXZvpYi0pDJyIiIhWgBdcg/jCD3sxMjGDDaUF+K976nBpeVGmi7XkMI9TBnm8HnSf6cbPxJ+h+0w3PF5Pyu7lcDhgNBqhUqkClu+Ih9VqRWlpaVpyMqXzXv5qampgs9kCylFfX5/QuUREi0Vnz7v47HdfxMjEDK7dpMFPv3QTg6YEscUpQxwnHdh/eD/6x/uVbeWF5bj/uvuh36xP+v30ej0EQYDVakVra2vAWmixam5uVtaZS7V03suf2WwOyLot11si5xIRZZrXK+Ebv3wT33nWBQD42NXr8c2GncjPWV4Jl9OJgVMGOE46cN+z90FCYO7RgfEB3PfsfXjw5gdTEjzJC/pSeHp9YL3Hs7ht8LlERJk0Me3BfZ0v4+evngEA/PmtW/GX+suQxZlzC8LAKQkkScLE7ERMx3q8HrQdbpsXNAFQtu0/vB/XV1wPdQxLsBRkFzAdPhERBRgYm8Te7/fgyHsjyFGrsP8TV+Oumg2ZLtaywMApCSZmJ3D9j69P2vX6x/tx409ujOnYFz/1IgpzChO6j8PhgMlkgtFohCAIEEURdrs9oIvM6XSio6MDdXV1AOYvPutwOOB0OiEIArq7u2E2m2Gz2dDW1ga32w2Xy4X29nZYLBYYjUa0tLSEPCeWe4Uqf7jrWCyWgLFJgiBgaGgIJpMJTU1NaGlpgc1mg8lkgsVigV6vh9PpxN69e2E0GtHc3Ay3262MB3O5XMq1HQ6HUl8GgwGCIMw7N5a6JSJKhTfOjOLzj/TgffcENIU5sHymBtcLZZku1rLBwGkF0+v10Ov1AR/o8oK8Op0ObrcbDQ0NStAAAG1tbcrPoijCZDKht7cXgC/QaW9vR0tLC/R6PXbt2gW32w2NRoPe3l5oNJqw5zQ3N0e8V7BI19m1axf6+vqUcVylpaU4dOgQ9Ho9mpqalGsYDAZ0dHQoj3U6XcB+jUYDi8WC0tLSgHva7XblmJqaGhw6dGjeudHqlogoFX715gD+7Mcv4fzULIQ1q/C9e+qwZc2qTBdrWclY4CSKImw2m/LfeHNzc9gBy9GOlf/blz9E/bcDvg9EURThdrtT8qFVkF2AFz/1YkzH9vb34ouHvhj1uP/c9Z+oKa+J6d4LUVZWhrKyuf9ENBqN0tLT2dk5r778x0lZLBZotdqAGXrd3d3KdQ4cOICamhp0dXUpr1e4czQaTcR7BYt0Hb1eH/D+SNaAbYvFMq+MgiCgs7MTzc3N846PVLdERMn26Asn8A9PvAavBPyeoMVDn6mBpjA308VadjIWODU0NCiBjiiK2Lt3b9hujEjHygFVqGnrFosFVqsVgK8FIFXdJCqVKubushsrb0R5YTkGxgdCjnNSQYXywnLcWHljTGOcMk2n0wUMivYPIORgqKOjIyDgCHWO/Dot9N6JXIeIaCnzeCV87cljeOT5EwCAhpoN+Kc/uAq52cw4lAoZqVVRFAMeC4IQNq9QtGMNBkPYVqSamhoMDw9jeHgYdrs9oSn4yabOUuP+6+4H4AuS/MmPTdeZUhI0xdvaIY/78ef/ejQ1Nc173eTHbrcbDocDXV1dSothpHOi3StYuOs0NjZGvI5Go8Hg4GDAOW63O+D44MeR7ul0OtHY2Bj1XCKiVDg/NYu9j/YoQVPLHZej3XA1g6YUykiLk8PhmNcNo9VqQ47/iOfYUBZDsBRMv1mPB29+MGQeJ9N1ppSkIpCDGMA3dkgejyOP8dHr9RBFURlYLU/D7+rqgslkQn19vTJeqa2tDWazGTqdDmazGSaTSRnQrdfrYbVaYTabYTQaAQB1dXXYu3cvRFFES0tLyHM0Gk3EewWnBAh373DXkTU2NgYkANXr9UoXnNvtRkdHB7RarTLoO9Q929vblQHpcjekPLBdPle+VqS6JSJaiFPuCfzxI91448wY8rKz8C9N1+CjV63PdLGWPZUkSfP7i1Ksvb0ddrs9YJBtdXW1MrspkWNVKhWCn4r8AQf4xr/IM5xCmZqawtTUlPJ4dHQUGzduxMjICIqLiwOOnZycRF9fH6qqqpCfnx/ns5/j8XrgHHDi7PhZrC1cC9063ZLonltq6uvrlUAvEaWlpRgeHk5yqZaHZP0uEFF8jr7nxue/34OzY1NYszoPD3+uFtds1GS6WEvW6OgoSkpKQn7mB1tUs+ri6eaI5Vj/QeSCIKC+vj5g1pa/trY27Nu3L+b7J4M6S426irq03nMlSmRAttVqhcvlgtFoZDZwIlpUnn71NP6y42VMznixraIID3+uFhtKE0tLQ/HLSCdoqNlFQ0NDIbvV4jk2mP/YFnlGXrhxM62trRgZGVG+3n333ehPhBY9q9UKURRhsVjiCsz1ej3Kyspgs9lgsVhSV0AiohhJkoSHfu3CF37oxOSMFzdfvhZdX7iBQVOaZaSrThTFgJlygK87xD/3TrzHBnfVOZ1O7Nq1S+licbvdSpdLLEFXpGY7dk8Q+fB3gSg9Zjxe/P1PX8VPun3/1N99w2Z85WPbka3mIPBkWPRddcHjjERRRG1trRLQOJ1OaDSakINog4/15z8QWBAEJZM04BscbTAYFuVgcSIionBGxmfwJz/qxfOuQWSpgK98bDvuuakq08VasTI2xkme+VRXV6fMTpK1tbWhrq4OLS0tUY91OBzKwHH5PDlAqq2tRXt7OzQaDVwuV9LzOGWgsY5oUeHvAFFqnRy8gD96pBvi2QtYlavGv3/qWty6rTzTxVrRMtJVtxREarabmZnB22+/jcrKSpSUlGSohESZNzg4iIGBAVx22WVQqzkjlCiZek4MofkHvRi6MI31Jfn47ufqsL0ycjcSJWbRd9UtddnZ2SgsLMTZs2eRk5ODrCz2MdPKIkkSxsfHMTAwAI1Gw6CJKMl++tL7aLEdxbTHi6suKcF3P1eLdcUcR7gYMHBKgEqlwvr169HX14eTJ09mujhEGaPRaFBRUZHpYhAtG5Ik4V8dx/GtQ8cBALfvKMe/NF2Dwlx+XC8WfCUSlJubi0svvRTT09OZLgpRRuTk5LCliSiJJmc8aLEdxRNHTgEAjB8WYLp9G7KyVFHOpHRi4LQAWVlZnIJNREQLNnh+Cs0/6EXvyWFkZ6nwjx+/Ep+8blOmi0UhMHAiIiLKoLcHxvBHj3Tj3aEJFOVn46HP1OCmrWsyXSwKg4ETERFRhvzf2+fwhR/2YmxyFpu0hfjePXXYum51potFETBwIiIiyoD/PvwO/v6nr2LWK6F2cymsd9dCuyo308WiKBg4ERERpZHXK8H89Buw/Ma3durvX1MJ811XIz+Hky2WAgZOREREaTI+PYu//MnL+OWxfgDAX+kvw5/v2gqVijPnlgoGTkRERGnQPzqJe7/fg1feH0GuOgvfaLgav3/NJZkuFsWJgRMREVGKHTs1is9/vxunRyahXZUL62drULtFm+liUQIYOBEREaXQodf78Wf//RLGpz2oXrsK/3XPddhUVpjpYlGCGDgRERGlgCRJ+K//O4F/fOoYvBJw09Yy/Oena1BSkJPpotECxB04nThxAl1dXbDb7RgeHla2a7Va1NfXw2AwYMuWLcksIxER0ZIy6/Fi38Fj+MHvfOuZfrJuI7728SuRo+ai8EtdXIHT/fffD5VKhcbGRvzN3/zNvP0vvfQSHnroIahUKrS1tSWtkEREREvF2OQM/vTHL+HXb52FSgW0fmQb9n5Q4My5ZUIlSZIUy4Hf+MY30NzcjJKSkqjHjoyMYP/+/Us6eBodHUVJSQlGRkZQXFyc6eIQEdES8N7wOD7/SA/e7B9Dfk4W/rXpWtxxZUWmi0VRxPOZH3PgtNIwcCIioni89M4w9j7ai3Pnp7CuKA/f/VwdrtoQvbGBMi+ez/yEO1vvv/9+PPzwwxgZGcFtt92GpqYmPP7444lejoiIaMl66uhpfNL6O5w7P4Ur1hfjp1+6iUHTMpVw4FRXV4d7770XVqsVNTU16OjowODgYDLLRkREtKhJkoT/+NXb+NKPnZia9eLWbevQ9YUbUKkpyHTRKEUSTkdQWloKAOjs7MSBAwcA+GbWERERrQTTs1787f+8AlvvewCAP76pCv/vziugzuIg8OUs4cDJ5XJBkiS4XC5cc8016OvrC0hPQEREtFy5x6dh/EEvXuwbQpYK2LdnBz57w5ZMF4vSIOGuusbGRjidTvT29mJkZAQWiwVutzuJRSMiIlp8+s5dwB/85/N4sW8Iq/Oy8b176hg0rSAxzaobGRnB8PBwXIktR0dHAWDJzkjjrDoiIgr2ojgI4w974R6fwSWaAnzvnjpcXlGU6WLRAiV9Vl1JSQnsdnvMs+Yee+wxdHZ2MuAgIqJl47He9/CZ774I9/gMdm7U4H++dCODphUo5jFOe/fuxUsvvYTGxkZUV1ejrq4OgiBAo9HA7XZDFEUcPnwYfX19MBqNuOuuu1JZbiIiorTweiU8aH8L3/7V2wCAO69aj39u3In8HHWGS0aZkFACzJGREXR2dsLlcsHtdkOj0aC6uhp6vR5VVVWpKGfasauOiIgmZzz4664jeOroaQDAl26pxl/XX44szpxbVuL5zE9oVl1JSQn27t2bUOGIiIiWgrNjU9j7aA9efteNHLUKX/+Dq9BQuzHTxaIMSzgdARER0XL1Vv8Y/ui/uvG+ewIlBTl46DM1uKG6LNPFokWAgRMREZGfX791Fn/6IyfGpmaxpawQ37unDsLa1ZkuFi0SDJyIiIgu+uHvTuKBJ16DxyvhuiotLJ+pQemq3EwXixYRBk5ERLTiebwSvv6z1/Hd3/YBAD6huwRtn7gKedmcOUeBEs4cDgDf+MY30NTUBAA4dOiQkvSSiIhoqbgwNQvjD3qUoOnLt12Gf27YyaCJQko4cLr//vuh0Wig1+sBALt27YLD4UhawYiIiFLt9MgEGh56AY7XB5CbnYVvf+pa/Omtl0KlYroBCi3hrrq6ujrcddddOHToUDLLQ0RElBavvj+Cz3+/G/2jUyhblYsDn6uFblNppotFi1zCLU59fb4mTf+ovLu7e+ElIiIiSrFfvnYGDQ+9gP7RKVy6bjV++qWbGDRRTBJucbr22mtRW1uLsrIy2O12OBwOmM3mZJaNiIgoqSRJwsPP9eHrP38dkgR88NI1+I9P61Ccn5PpotESkdCSK7K+vj5YLBYAQFNTE6699tqkFSzTuOQKEdHyMuPx4oEnXsOPX3wHAPDp6zdh354dyFYvaJ4ULQPxfOYvKHAKdePlEmQwcCIiWj5GJmbwpz924rnj56BSAX9353b88U1bOAicAKRhrTr/Gw0NDSmPzWYzvvOd7yzkkkRERAvi8Uo43DeEgbFJrCvKx/qSfNz7aA/eHjiPwlw1vvXJa1G/vTzTxaQlKuHA6Qtf+AIcDgc0Go2yra+vj4ETERFlzNOvnsa+g8dwemRS2ZalArwSUFGcj4c/V4srLynJYAlpqUs4cKqursZDDz0UsO3AgQMLLhAREVEinn71NP7kh04Ejz/xXtzwF/pLGTTRgiU8Ik5OfOmvvr5+QYUhIiJKhMcrYd/BY/OCJpkKwL8dOg6PN2nDemmFSrjFqbS0FN/85jchCAI0Gg3cbjc6OjrQ0dGRzPIRERFFdbhvKKB7LpgE4PTIJA73DeGG6rL0FYyWnYQDp5aWFrjd7oAxTi+99FIyykRERBSX106NxHTcwFj44IooFgkHTvX19di7d2/Atscee2zBBSIiIorV2OQMvv2rt/Hwc2JMx68ryk9xiWi5W9Dg8Fi2ERERJZvXK8HmfA/tT7+Jc+enAAC52VmYnvWGPF4FoKIkH9dVadNYSlqOEg6cXC4XLBYL6urqAPjS2Hd2dsa8Xp0oirDZbBAEAaIoorm5OaDbL55jnU4n9u7di97e3oTvQURES0PvyWHsO/gajr7n657bUlaIv//YdkzPevHFHzkBIGCQuJzi8oHd26HOYsJLWpiEAyeLxQK9Xg//xOPxJCFvaGhQAh1RFLF37150dXXFfawcGDmdzgXdg4iIFrczI5MwP/0G/uel9wEAq/Oy8ee7tuKeG6uQm+2bJP6dz+jm5XGqKMnHA7u3444r12ek3LS8JBw4mc1m7Nq1K2BbqBQFoYhiYF+0IAhwOBwJHWswGBZ8DyIiWrwmZzx4+DkR//ErFyZmPFCpgIaaDfjy7ZfPG7N0x5XrUb+9IiBz+HVVWrY0UdIkHDgFB02AL0VBLBwOB7TawH5mrVYLp9MJnU6X8LHJOI+IiBYHSZLwi9fO4B+feh3vDU8AAGo2l+KB3dtx9QZN2PPUWSqmHKCUiTlwevzxx6HX65XF7x5++OGA/W63G3a7Hb/4xS+iXsvtdofc7r/uXSLHLuS8qakpTE1NKY9HR0cjXp+IiFLnjTOj+OrBY3jeNQjAt1xK60e3Yc/OSi7MSxkVc+D09a9/HRqNBrfeeisA4KGHHkJTU1PAMYODgwsqTLhgZ6HHxnJeW1sb9u3bl9A1iYgoOYYvTONB+1v40Ysn4ZV8M+WMHxLwhQ9XY1XegtalJ0qKmN+FPT09AY8PHDiAa6+9NmBbrGOcNBrNvJafoaGhkDPe4jl2Iee1trbivvvuUx6Pjo5i48aNEe9BRETJMevx4kcvvoMH7W9hZGIGAPCRKyvwtx+9Ahu1hRkuHdGchNeq8x/PNDIygsceeyzmMU7hAqza2toFHbuQ8/Ly8lBcXBzwRUREqfd/b5/DR//tOTzwxGsYmZjBtooi/Hjv9fjOZ2oYNNGik3Dg5D9DraSkBHfddVfMs9YEQQh4LIoiamtrldYgp9OpzIqLdqw//264eM4jIqL0e2dwHMYf9ODTD7+It/rPQ1OYg699/Eo8+WcfwI3VazJdPKKQ4uowHhkZQWdnJ1QqFex2+7z9vb29uPfee2O6VldXF0wmE+rq6tDd3R2QX6mtrQ11dXVoaWmJeqzD4VDKIp8npyiIdB4REWXGhalZ/Mev3sbDz/Vh2uOFOkuFz/7eZvyl/lJoCnMzXTyiiFRSPFkrAfT19cFsNqOnp2ded5jRaERVVVVSC5gpo6OjKCkpwcjICLvtiIiSwOuV8NOX38f+n7+BgTHfLOYPbF2Dr+zejsvKizJcOlrJ4vnMjztwkh06dChkLqflgoETEVHyvPyuG/sOvoaX3nEDADZpC/F3d16B+u3lTC9AGRfPZ35SE2ASERH5GxidhPnpN/GY8z0AQGGuGn9661Z8/gNVyMtWZ7h0RPFjUgwiIkq6qVkPvvfbE/j2M8dxYdoDAPiE7hKY7tiG8uL8KGcTLV4MnIiIKGkkSYLj9QH841PHcHJwHACwc6MG/7B7O67dFFvKGqLFjIETERElxfH+MXz1yWN47vg5AMDaojzcf8c2/MG1lyCLi+zSMpHUwOnEiRPYsmVLMi9JRESL3Mj4DP7F8RZ+8LuT8Hgl5Kqz8PkPVuFLt2zFai6TQsvMgt7RL7/8csCyJhaLBR0dHQsuFBERLX4er4T/PvwO/vmXb2J43LdMym3by/H/7rwCm8tWZbh0tKx4PcDJ54Hz/cDqcmDzjUBWZiYXJBw4NTY2wu12B2Tifumll5JRJiIiWuRecA1i38HX8MaZMQDApetW44HdO/CBS5nxm5Ls2BPA0yZg9NTctuJK4A4zsH1P2ouTcOBUX1+PvXv3Bmx77LHHFlwgIiJavN4dGkfbz1/Hz145AwAozs/GffWX4TO/txnZ6oRX8SIK7dgTQOfdAIJSTo6e9m1vfDTtwVPCgVN1dXVM24iIaOkbn57FQ8+6YPmNiKlZL7JUwKev34y/qr8M2lVcJoVSwOvxtTQFB03AxW0q4On7gW13prXbLuHAyeVywWKxoK6uDoBvCmpnZye6u7uTVjgiIsosSZLwxJFT2P/zN3B6ZBIA8HuCFg/s3oEr1nNVBUqhk88Hds/NIwGj7/uOq/pg2oqVcOBksVig1+vhv2JLgqu3EBHRIvTKeyPYd/A19JwcBgBsKC3A3915BW7fUcFlUih1ZqeBt+3Ac/8c2/Hn+1NbniAJB05ms3nesivBi/4SEdHSc3ZsCt/8xZvo7H0XkgQU5KjxpVuqce8HBeTncJkUSgFJAt49DBztAF57HJgYjv3c1eWpK1cISVur7plnnoHb7ca111674EIREVH6Tc968f3nT+DfDh3H2NQsAODj11Ti/o9cgYoSLpNCKXDuOHC00xcwuU/ObV9dAVz5CeCVLuDCOYQe56Tyza7bfGO6SgtggXmcHn/8cYiiCMDXTdfT04NPfOITSSkYERGlzzNv9ONrT76OvnMXAABXbyjBA7u3o2azNsMlo2Xn/Fng1cd8wdIp59z23NXAFbuBqxuBqg/7BnxvuuHirDoVAoOni13Fd+xPez6nhAOn+++/H263G0NDQxAEAW63G0ajMZllIyKiFHt74Dz+8aljePbNswCANavz0HLH5TDoNnCZFEqe6QvAGz/zBUuuZwDJt/AzVGpg6y7g6ibg8o8AuUGJU7fv8aUcCJnHaf/SyuNUXV2NvXv3oq+vDyqVClu2bMEzzzyTzLIREVGKjEzM4N8PHccjz5/ArFdCjlqFP76pCn9661YU5edkuni0HHg9QN+vgSMdwOsHgZkLc/suqfEFSzs+AaxeG/k62/f4Ug4s9czhgiDg5MmTqKqqwje/+U18+ctfTma5iIgoBTxeCZ097+Kbv3gTgxemAQC7tq3D331sO6rWcJkUWiBJAs4c9Y1besUGnD8zt690iy9YuqoRWLM1vutmqdOaciCShAMnt9sNQRAwPDyMc+fO4fbbb4dGo8Gtt96azPIREVGSHO4bwr6Dr+G1U6MAgOq1q/D3H9uOmy9fl+GS0ZLnfsc3kPtoJ3D2jbntBaXAlXf5AqYNdcAySGOhkpKUfOnQoUOora1FSUlJMi6XcaOjoygpKcHIyAiKi5nkjYiWrvfdE9j/8zdw8IhvjEhRfjb+Un8Z7r5hM3K4TAolamIYOPa/vmDp5P/NbVfn+cYrXd0EbNUD2Ys/s3w8n/kLmlX3jW98Az09Pejo6AAAJkQjIlpEJqY9sPzGhYd+7cLkjBcqFfDJuk348m2XoWx1XqaLR0vR7BRw3O4b5P3W04Bn+uIOFbDlA75gafseIH95NKKEsqBZddXV1UrSy127duHxxx9nOgIiogyTJAlPvXIabT97A++7JwAA123R4oE927Gjcvl+oFGKeL3Auy9eTE75P8Cke27fuu0Xxy0ZgJINGStiOiUcONXV1eGuu+7CoUOHklkeIiJagNdOjWDfwWM43DcEAKgsycff3nkF7rxqPXsFKD5n3/IFS690+sYwyYrW+wKlqz8JVFyZufJlSMKBU19fH4DA7rnu7m62OBERZcDg+Sn8s/0t/OTwO/BKQH5OFv7kw1vR/CEBBblcJoViNNY/l5zy9Mtz23OLfF1wVzcCWz6YsVQAi0HCgdO1116L2tpalJWVwW63w+FwwGw2J7NsREQUxYzHi0dfOIl/dbyFsUnfMikfu3o9Wj96BS7RFGS4dLQkTF8A3njKLzml17c9K9s3uPvqRuCyjwC5hRkrosfrgXPAibPjZ7G2cC1063RQZyh4W9Csur6+PlgsFgBAU1PTslqnjrPqiGix+/VbZ/HVg6/BddaXWHBHZTEe2L0D11VxmRSKwjML9D3rmxH3+pOBySk31F1MTvkHwKo1GSuizHHSgf2H96N/vF/ZVl5Yjvuvux/6zfqk3COez/ykpSNYbhg4EdFi1XfuAv7pqWNwvD4AAChblYu/uf1yNNRuhJrLpFA4kuTrfpOTU14YmNtXWgXs/CRwVQNQVp2xIgZznHTgvmfvgxS0yK/q4lp1D978YFKCp5SkI4glO/jDDz+Me++9N9ZLEhFRHMYmZ/DtZ97G9/6vDzMeCdlZKtxz4xb82a5LUVLAZVIojOGTvgHeRzuBc2/NbS/Q+iWnrF10ySk9Xg/2H94/L2gCAAkSVFDBfNiMWzbektZuu5gDp69//euw2+0Rj+np6WHgRESUZF6vBJvzPbQ//SbOnZ8CAHz4srX4+49tx9Z1qzNcOlqUJoaB137qC5beeX5ue3Y+cPlHLyan3AWoF2/A7RxwBnTPBZMg4cz4GTgHnKirqEtbuWIOnHbt2oWysjLU1NSEPYa9fkREydV7chj7Dr6Go++NAACq1qzC33/sCty6rTzDJaNFZ3YKeOsXvkHex38ZmJyy6kO+YOmK3UD+4hp+IkkSzk2cQ99In+9r1Pf92OCxmM4/O342xSUMFHPg1NXVhZGREfT09ADw5XEK7gfUajkgkYgoGc6MTGL/z1/HT1/2LZOyOi8bf7HrUnzuxi3IzeYyKXSR1wu884IvWDr2U2ByZG5f+VW+GXFXGYDiyowVUTbjmcE7Y+/MBUh+gdIF/8HpcVpbuDaJpYwu4cHhL730EoaGhqBSqZblwr4cHE5EmTA548HDz4n4j1+5MDHjgUoFNNZsxJdvvxxri7hMCl008MbF5JRdwMi7c9uLKoGrG3ytS+U7MlK0kamRkMHRe2PvwSN5Qp6TpcrCxqKNqCquwpaSLagqqcLm4s34m1//Dc5NnAs5zkkFFcoLy/H0XU8veIxTWtaq80898Mwzz8But6O+vn5ZBlFERKkmSRJ+8doZ/ONTr+O9Yd8yKTWbS/EPu3fgqg1cJoUAjJ3xS055ZG57XvHF5JRNwOYPAFmpb5H0eD04deHUvADpxOgJDE0OhT1vVc4qVBVXoaok8Gtj0UbkqucvBvy31/8t7nv2PqigCgie5Fl1putMac/ntKBFfl9++WVYLBZ0dHRAEARUV1czcCIiitMbZ0ax74ljeEEcBABUFOej9aPbsGdnJZdJWemmzgNvPOkLlsRnA5NTXnrbxeSUdwA5qUl2Oj4zrow58g+OTo6cxLR3Oux5FasqQgZIawvWxvWe1m/W48GbHwyZx8l0nSlpeZziEXfgdOLECXR1dcFisUClUuGuu+5Cb28vqqqqUlE+IqJla/jCNB60v4UfvXgSXgnIy86C8UMCvnBzNQpzF/R/LS1lnllA/JUvWHrjKWBmfG7fxut9wdL2PwBWlSXldpIkYWB8YF6A1DfSF3FWW25WLjaXbJ4XIG0p3oLCnORlGddv1uOWjbcsmszhMf9mPvzww7BYLBBFEY2Njejq6pqXKfzxxx/nWnVERFHMerz40Yvv4EH7WxiZmAEAfPSqCrR+5Aps1GZuWQvKIEkCTr3kC5ZefQy44DdTTFvt64a7ugHQCgnfYtozjXdG3wkZII3Pjoc9T5uvnQuM/IKk9avWpy14UWep05pyIJKYB4dnZWXBYDCgqakJGo1mXlPb8PAw9u/fj+7u7pQUNN04OJyIUuH/3j6HfQdfw1v95wEA2yqK8MDuHbihOjmtB7TEDJ8Ajnb5AqbB43PbC9fMJae8RBdXcsrhyeF5XWt9I3147/x78MpdfUHUKjU2Fm1UBmb7B0glect/jF1KBoc3Nzejvb09Yq6mjo6O2EtJRLSCnBy8gH966nX88piv66O0MAd/fdvl+GTdRmSrmV5gRRkfAl77H19yynd/N7c9uwDYdqcvWKq+JWJyylnvLE6dPzUv91HfSB/cU+6w563OWR047qh4bnB2ziJOhrmYxBw4GY3GqFFYa2vrggtERLScXJiaxX/86m08/Fwfpj1eqLNU+OzvbcZf6S9DSSE/qFaMmUngrad9wdLxXwJeXxctVFlA1YcvJqf8GJBXFHDahZkLODFyAuKIGNB6dHL0JGbka4RQuaoyYMyR/POagjWccLBAMQdOweOZEj2GiGgl8Hol/PTl97H/529gYMy3TMoHL12Dr3xsOy4tL4pyNi0LXq9vuZOjHcBr/wtM+SWnrLgKuPqTwJV3QSqqQP94P8TBV3Bi5ERAC9LA+EDYy+ep8wKCIvlrU9GmpA7OpkCctkFElGQvvTOMfQeP4eV33QCAzWWF+Ls7t0N/xTr+t78SDLzuC5aOdgGj7ymbp4o34OQVt6Gv8kr0YcYXIP36L3Bi9AQmZifCXq4sv2xecCQPzs5SsZs33Rg4ERElycDoJMxPv4nHnL4Py1W5avzprZfijz+wBXnZmZk6TWkyehp41Qbp6E8wPHAMfTk56MvNRt/acvRp1qMvOwvvTw5CGnAAA455p2ersrGhaMO84GhL8ZYVMTh7KWHgRES0QFOzHnzvtyfw7WeO48K0b0kJQ80GtNx+OdYV52e4dJQKs95ZvDf4Jk4cs6HvxDPoG3tHCZZGNm8IOngImPX9WJRThCpN1bzcRxuKNiAni2PelgIGTkRECZIkCfZj/finn72Ok4O+PDjXbNTgH/bswDUbNZkt3Arm8XqSlixxbHrMN+5InrXmdqHv3Gt4Z+IsZv3XTytarfyoggqVqyt9U/uDAqSy/DJ21y5xDJyIiBJwvH8MX33yGJ47fg4AsK4oD/d/ZBs+fs0lyMriB2OmOE46Qi7Pcf9194ddnsMredF/oX/etP6+kT6cnTgb8hwAyPd6sUVSo6p4M6ouuQFVFTrf4OziTSjITs0SKJR5GQucRFGEzWaDIAgQRRHNzc3QaDRxHxtpn9PpBADodDqIogi32w2dTpeGZ0dEy9XI+Az+xfEWfvC7k/B4JeSqs7D3Q1X44s1bsSqP/4tmkuOkA/c9e1/AYrAAMDA+gPuevQ/7P7gf1ZrqgODoxMiJqIOz13qBqqlJVM3MoGpmBlvUq1BVfQcqrrkbWZfUxJWckpa+mDOHJ1tNTQ16e3sB+IIfk8mErq6uuI+NtM9oNMJqtQIA9Ho9urq6wgZnwZg5nIj8ebwSfnz4HTz4yzcxPO7Ln3Pb9nL83Z3bsamMU78zzeP14PbHbo+4tlok2apsbCrehKpVl6BqagJV/cdR1f8mtszMoEiSgJxCYNvHfPmWhJsBNYPk5SQlmcOTSRTFgMeCIMDhmD/LINqx0a5TU1OD4eFhAIg5YCIiCvaCaxD7Dr6GN86MAQAuK1+Nr3xsBz5w6ZoMl2xlmZydRP94P/ov9OPM+Bnf9wtnfDmQ3GJMQVNBdgEuK70sMHP2qvW45NSryHn1MV8aAe/FkdyqLEC41RcsbbsTyFsd+eK0ImQkcHI4HNBqtQHbtFotnE7nvK60SMf29PREvQ4DJiKKxOOVcLhvCANjk1hXlI/rqrRQXxyj9O7QONp+/jp+9soZAEBJQQ7++rbL8KnrNnGZlCSb8kyh/0I/+sfngqEzF84EBEnDU8MLvs8DNzyAO4U7fckpT/4WeKkDOPYEMDU6d9D6a3zB0pV3AUXlC74nLS8ZCZzcbnfI7UNDQ3EdG+06brcbNpsNANDd3Q2j0QhBSHxlaSJaXp5+9TT2HTyG0yOTyrb1Jfm4/yPb4Bo4D8tvREzNepGlAj5zcZmU0lW5GSzx0jTtmVYCoICg6GLrUf94P4Ym5//9D6UguwDlheUoX1WOisIK3/dVFRiZGsG3nN+Kev66yQuA/SvAKzZg9P25HSWbgKsbgKsagXXbEn2qtAIsqk7acIFQvMfK+/wHiguCgPr6erhcrpDnTE1NYWpqSnk8Ojoa8jgiWh6efvU0/uSHTgQP8jw9Mom/+MnLyuMbhDI8sGc7tlVwrGMo057psN1n8vdYg6J8dT4qVlUogVF5oS8okrdVrKpAcW5xyOn8Hq8HP3nlvzAwPQIpxH6VJKHcC+g69/rdsATY8Qe+1qWNvwdksRWRostI4KTRaOa1Lg0NDYXsVot0bLTriKKodNnJs+5EUQzZ6tTW1oZ9+/Yt4FkR0VLh8UrYd/DYvKDJn1oF/Psf6vCRqypWbN6dGc+MLygK03125sKZmIOiPHVeQAAUT1AUCzWA+4eGcd/qLKgkKSB4Ul2cA2U6dw7qrBzg8jt8wdKltwHZeQndj1aujAROer0eFotl3vba2tq4jhUEIew+p9OJXbt2KYPDZcFjomStra247777lMejo6PYuHFj1OdCREvP4b6hgO65UDwSULoqd9kGTTPeGQyMD8xrIfL/eXByMKZr5anz5gVEyveLXWoleSWprcu+30B/7n08OF6A/WWl6M+e+3gr93hgGhyGfnwC+MP/Bi7/aOrKQcteRgKn4BYfURRRW1sbkH9Jo9FAEISIxwa3UPnvEwQBZrNZ2edwOGAwGMIOFs/Ly0NeHv/zIFruvF4JL7jOxXTswFjk4GqxmvHO4Oz42ZDBkNxaNDgxOC/fUSi5WbnKOKJwwZEmT5P+ANPrBQaOAX2/BsRnAfHXAAD9+ARuGZ+AMz8PZ9VqrPV4oJucgpI3fHo8veWkZSdjY5y6urpgMplQV1eH7u7ugBxObW1tqKurQ0tLS9Rjw+3TaDSora1Fe3s7NBoNXC5X2DxRRLS8SZKEo++N4OCRU3jy6GmcGY0tIFpXtPjWmZv1zuLs+Nmw44nOXDiDcxPnYgqKcrJy5rUMBQ+6Ls0rXTytbsMn5wKlvt8AF0Jn9VYDqJucCrkPqzlLjhYmYwkwFzsmwCRa+t48M4aDR07h4NFTylpyALA6Tw2PF5iY8YQ8TwWgoiQfvzXdqqQmSIdZ7yzOTZzztRIFBUbyz+cmz8EreaNeKzsrO+J4ovLCcmjztYsnKArlwiBw4je+1iTxWWC4L3B/TiGw+SZfQsotHwB+8ofA6GkgZNCoAoorgb98BUhw3TpavhZ9AkwiolQ5ce4Cnjx6CgePnMab/WPK9oIcNfTby7FnZyU+dNka/OqNAfzJD50AvMgq7IMqewzSbBG841UAsvDA7u1JDZr8g6J5g639WoriCYpCthb5BUVZqiU2S2x6HHjnhYtdb88CZ15BQBCkUgMb6gDhw75g6ZJaINsvPcQdZqDzbvhCX//g6eLreMd+Bk20YAyciGjJOz0ygaeOnsbBI6dw5L0RZXuuOgsfvnwt9uysxK4r1qEwd+5P3h1XrscX7xzHD47/GyS1W9mu8mjw2Uv/HHdcuT7m+3u8Hl9QFKX7zCOFbuHy5x8UBXefyUHSkgyKQvHMAqdeutj19mvg3RcBz3TgMeu2+4Kkqg8Dm28E8iO0BmzfAzQ+CjxtAkZPzW0vrvQFTdv3pOJZ0ArDwImIlqTB81P42atncPDlUzh8Ym5KvDpLhRury7BnZyVu21GBkoKckOc7TjrwA/FrkNRB3TrqEfxA/Bqu3VQK/WY9PF4PBicHw2azPjN+BmfHz8YWFKmysa5wXcgWIrkrbdkERaFIEnD2zblxSid+G5ixGwCKN/gCJeFmoOpD8Wfu3r7HtzzKyeeB8/2+MU2bb2RLEyUNxziFwTFORIvPyMQMfvnaGTxx5BSedw3C453783XdFi12X1OJj1xZgTWrI8+QnfXM4vbHb8fA+EDYY3KyclCWX4ZzE+cwK81GLZtapfYFRWHGE8lBkXqlfYCPvB848+38mcD9+RpfgCQHS1oBWMzjrmhZ4hgnIlo2xqdncej1ATxx5BR+/eZZTHu8gGoWqqwJXLExBzddtgrXbMlHbs4YxqZ78NTJ8xibHsPY9BjOz5zH6PQozk+fx/mZue1j02NRZ53NeGdwZtz3Ia9WqbG2cG3IWWdyUFSWX7bygqJQJoZ9LUnygO7B44H7s/OBTTfMjVOquJqtQbSkMHAiorTyeD1KEOMfzPj/PDI1huNnz0IcPIf+C25IqgmosiaRI0wiTz0JqHwtQO8B6Djl+0qFL17zRXxi6yewpmANg6JwZiZ9Y5PkAd2nXwb8B7irsoDKa+dalDZcB+QsvjQPRLFi4EREMZMkCROzEwGtONF+Dg6KxmfjS0CYVRh6uwoqrM5ZjdW5q1GUW4TVOb7v836+uL8oZ+5n17AL9/36vtAX9lNbXovyVcz7E8DrAU4fmRvQ/c7vgNmgvFhrLpsb0L3lA0CBJgMFJUoNBk5EcfB4PXAOOHF2/CzWFq6Fbp1uSbVETHumQ7bwxPrz+enzMQ2CjkVBdgFW56xGtqoAk1N5cJ/PwvRMHiRPPuDNx6rsIlxVWY7rNldiR0W5EhAV5xZjde5qrMpZlfAg6s1Fm1FeWI6B8YGQXXYqqFBeWA7dOt1Cn+bSJ0nAoAvoe/ZisPQcMOkOPKZovS9IEm72dcEVV6a/nERpwsCJKEaOkw7sP7wf/eP9yrbywnLcf9390G/Wp/z+chdXQDAzfR5jM34/RxjXc37mPKY8YbIpxylbla205vgHM/4tPSFbfnJ8206elfCzV/rx5NHTAWvGaVfl4qNXVWD31ZWo26JFVoqST6qz1Lj/uvtx37P3QQVVQPCkupjzx3SdaUkFxUk11h84oHv0vcD9ecXAlg/OjVNacxkHdNOKwVl1YaRqVl2yWixS3fKx1FtWks1x0oH7nr1vXuuE/CH74M0PRgye5C6uWFt3Qu27MHMhac9HDmjkYCZUEBTcveX/c746P+6M08f7x/DEkVM4eOQUTvhl8S7Ky8btV1Zg985K3FRdhmx1+qbihwqGKworYLrOlJZgeNGYHAVO/t/cgO6zrwfuV+cCG6+/GCjdAqy/BlDz/25aPuL5zGfgFEYqAqdoLRaxBiupbvnIdMvKYuHxejDlmcL4zDganmzAuYnwC8OuylmF36/+faU7a2xmrgVI/jlZXVz56vyQwUy4lp/gVqCFdHHF653BcRw86guW3jgzl8U7PycL+ivKsXtnJT582Vrk52QuKF+R/yTMTgPvdc8N6H6/Fwh4f6qA9VfPjVPadAOQG2awGdEywMApCZIdOEVrsbhnxz34Wd/PogYrC235WGg5F3r9RM16ZzHtmcakZxJTs1O+754p35ff48nZybnj/PZFOnfKM6Xsk7dPeiYx642euyde2arsqIFNqO4t/59z1KETOi4WZ0YmfUueHD2NI++6le05ahU+fNk67N65HvoryrEqjy0WaeP1Av2vzg3oPvk8MBM0SF8rzI1TqvoQUKjNREmJMoKBUxIkM3DyeD24/bHbA4KiWAQHK9GuIw9offqupxPu/ovl+gf/4CA8kgeTs5Mhgw45gAn1WAli/PYHBzuhgp9YEhBm2i0bb8E1666ZFxT5twIVZBcs7kVVEzR0YRo/e8W35MnhE0OQ/6pkqYCbtq7B7qsrcfuOCpQULu6gb1kZ6psbp9T3G2B8MHD/qrWBA7o1mzJRSqJFgQkwFxnngDPuoAmA0urzwPMP4Oz4WbjcrojXkSDhzPgZfPHQF1GaXwqv1wsvvPBKXni8Hngl32OP5Jm3T4KEkamRmK5f96O6uJ9LMuVm5SIvOw/56nzkqfN8X/6Ps/OU7fnqfGVfrjo34LH/uf7HBp979OxR3PvLe6OW67PbP4u6iszWTTqNTs7gl6/14+CRU/jt2+cCsnjXbSnF7p2V+MiV67G2KHIWb0qSC+cCB3S7Twbuz1nlSw0gD+het50DuokSwMApDc6On13Q+aPTo/j64a/HfPzzp55f0P3ioQQfcrCRnR+4zS9Iyc/2C16iHBvq3Dx1HnLVuWlfx6u2vJZT1y+amPbg0Bu+YOlXb57F9OxcosOrLinB7p3rcefVlbhEU5DBUq4QU+eBd16YC5T6Xwncn5UNbKibG6d0SQ2QnZuJkhItKwyc0mBt4doFX+PKsitRmFOIw2cORz228bJGbCreBLVKjSxVlvIV6bFapcbb7rfx7Ze/HfX6/3bLv+GGyhsyEsRkwkqfuj4968Vv3jqLg0dPwX6sH+PTc4OIt65bjT07K/Gxq9dDWLs6g6VcATwzwPvOuQHd73UD3pnAY8qvnOt+23wjkMfXhCjZOMYpjFSMcQrXYhGL793+PejW6SJeJ1ljnFJ1/aVuJU1dn/V48TtxCAePnMLPXz2N0cm5MWYbtQXYfXUldu+sxLaKomU5ZmtRkCRg4PW5Ad0nfgtMnw88pmTTXNdb1YeB1Qv/J41oJeIYp0UmUotFNP7dQKlu+VjpLSvR6DfrccvGW5bt1HWvV4LznWEcPHIKT71yGufOTyv71hXl4WNXV2L3zvW4ZqOGwVKquN8NHKd0YSBwf0HpxRali8FSaRXHKRGlGVucwkhXHqeKwgp8pOojeOS1RwAgZLASnAIg1S0fK6llZaWTJAmvnRrFwSOn8OTR03jfPaHsKy3MwUeuWo89O31ZvNUpyuK9oo0PASeem0s8OeQK3J9dAGy+YW6B3PKrgKzl3z1OlG5MR5AE6c4cHm+wwszhtBBvD4zhiSOn8eSRUxDPzWUkX52Xjdt2lGPPzkrctHUNctKYxXtFmJm4OKD7YqB0+gjg3wKtyvIN4pa73jZeB2RzViJRqjFwSoJUBU6RMFihVHp3yJfF+4mXA7N452XPZfG++fLMZvFedrwe4NTLgPgrXxfcOy8CwesFrt02N6B7y01AfkkmSkq0onGM0xKlzlKvqDxAlHr9o5N46uhpPHHkFF4OyuL9oUvXYs81ldh1RTlWM4t3ckgScO743IDuvueAqZHAY4oq55JOVn0YKF6fiZISUYL415JomRm+MI2fv3oGTxx5Hy/2BWbxvqG6DHt2+rJ4awqZ0ycpRk8HDugeOxW4P68EqPrg3Dilsq0c0E20hDFwIloGxiZnYD/WjyeOnMJvj5/DrF8W75rNpdh99Xp89Or1WFeUn8FSLlJej2/ttvP9wOpyX/6jSF3kkyO+1ADyOKVzbwbuV+cBm66/OE7pZmD9TkDNP7VEywV/m4mWqMkZD555YwBPvHwKz7w5EJDFe0dlMXZfTEy5oZSr2od17AngaRMw6tdKVFwJ3GEGtu/xPZ6dAt59cS5QOuUEJK/fRVRA5TVz45Q2/R6Qw8zpRMsVAyeiJWR61ovnjp/FwSO+LN4X/LJ4C2tXYc9OX2LKambxju7YE0Dn3UBwXrXR00DnZ4Grm4ALZ4GTLwCzE4HHaKvnut62fAAo1Kap0ESUaQyciBY5j1fC78TBi1m8z2BkYm6ZjUs0Bdi9sxJ7dlbiivXM4h0zr8fX0hQyGe3FbUc75jatWhc4oFuzMQ2FJKLFiIET0SIkSXIW79N48uhpnDs/N4V9bVEe7rxqPfZcU4lrmcU7Nl4PMPIeMHgcGHQBfb8J7J4Lp24vUPvHwLorOKCbiAAwcCJaNJQs3kdP4ckjgVm8NYU5+MiVFdi9sxLXV5Uxi3cokgSMD/rSAQy+7fflAobE+fmTYrHp94Dy7ckvKxEtWQyciDLs7YHzOHjkFA4ePQXx7FwW71W5aty2o0LJ4p2bzSzeAIDpC4FBkX+QNDkS/rysHEArAGsu9WXjfvWx6PdaXZ68chPRssDAiSgD3h0ax5NHT+PgkVM4dnpU2Z6XnYVdV6zD7qsrccu2dSs3i7dnBhg+GdRydDFQCs6TFKxkoy9XUsBXNaDZNJdmwOvxLX0yehqhxzmpfLPrNt+Y7GdGREscAyeiNBkYncRTr/iCJec7bmV7dpYKH7psLXbvXA/9FeUoys/JXCHTSZKAsdOhW4+GTwDe2fDnFpYFBkXyz1ohtlQAWWpfyoHOuwGoEBg8XewGvWN/5HxORLQiMXAiSqHhC9N4+rUzOHjkFH4nDkLOS6lSATcIZdi9sxJ37KhA6aplnMV7wj2/S00OlGYuhD8vu2B+YCQ/Tsb0/+17gMZHw+Rx2j+Xx4mIyA8DJ6I4eLwSDvcNYWBsEuuK8nFdlXbeQO3zU7OwHzuDg0dO4zdvnQ3I4q3bpMHunZW486r1WFe8jLJ4z075BmAHB0aDb/tyIYWjUgOlm0O3HhVVAlkpHte1fQ+w7c74MocT0YrGwIkoRk+/ehr7Dh7D6ZFJZdv6knw8sHs7br58HX71xgAOHj2FQ68PYMovi/f29XNZvDdql3AWb68XGHk39KBs9zsIPVbootUVoVuPSrcA2RlubctS+9aSIyKKAQMnohg8/epp/MkPnfNCg9Mjk/jCD53Iz87CpF+wJKxZhd07K7F753psXVeU3sIuhDylP1S32qAr8pT+3CJgTYhB2dpqIL84fc+BiCiFGDgRReHxSth38Fik9hRMznpRWZKP3ddUYvfVldhRWby4E1NOX/BrNQqe0u8Of548pT9U69HqdUwSSUTLHgMnoiCTMx6IZy/g7bPn8fbAeRwWBwO658L5ZsNO3Lh1TRpKGCPPLOAOM6V/9P3I55ZsDD0ou2QToOafDSJaufgXkFas0ckZvD3gC45cF7+/ffY83hkahxSpeSmMs+cTyEy9UJIEjJ0JPSh7uC/ylP4Cbfgp/blLeCwWEVEKMXCiZU2SJJw7P43jA2MBwdHbA+fRPxo+0CkpyMHWdauxde1q5KhV+OGL70S917qiFM6SmxwJ3a026AKmz4c/L7vgYlAU3Hq0NTlT+omIVhgGTrQseL0S3ndP+IKi/sAAaWRiJux55cV5SoC0dd1qVK9bjUvXFWHN6lxljJLHK+HQGwM4MzIJFby4LusNrIMbA9DgsHcbJGShosSXmmBBZqeAob4wU/oHwp+nygI0Yab0F1+S+in9REQrCAMnWlJmPF6cHLyAtwfO43j/XHAknr2AiRlPyHNUKmCTtjAgONp68as4hizd6iwVHti9HT/98UP4Ss6jqFQNKftOSVp8deZufHz3F2JbeNfrBUbfCz+lX/KGP3d1eYQp/XnR701ERAvGwIkWpfHpWd8A7Yvda8cHxvD2wHmcHBwPSCjpL0etgrAmKDhauxrC2lULXvPtjqxu3J77LUhBc+sqVEP4Tu63oMqqAeCXafpCmCn9Qy5gNsJA89yi+YHRmq2c0k9EtEgwcKKMco9PK8GR3L12vP883ndPhD1nVa56XnC0dd1qbNIWIludgm4prwd42gQVJAS3KfnuJgH/+yXgjSfnsmdPDIe/XlYOoK0Kaj26lFP6iYiWAAZOFFIsS4vESpIk9I9OXQyOxpTutbcHLuBchJlo2lW5vqCofC442rpuNdaX5Cc/R5LXC0yN+AIe5cvt+37q5cC1zEKZGgWOdgRuK94Q2Hq05lJO6SciWuL415vmefrV0/jaE69g4/kjyiDod1fvxN/vuQp3XLk+7Hker4T3hscDxh7JU/3HpsJPi68syVcGZW/1G3+kTWThW8+sL4FjQAAUy5cbEZcMicX2jwM7Pu5rPeKUfiKiZSljgZMoirDZbBAEAaIoorm5GRqNJu5jE92XKZ7ZWbzx4i8wMfw+Ckovwbbrb4c6OzvqvniusxBPv3oaP/3xQ+jKeRSVuX6DoKe0+OqP7wY+9QXcsm0dTpwbV8YdyV/iuQuYng09uFmdpcJmbeHFAGkuOKpeuxqr8kKUe2YSGD0dX+Az6fa1/CxEziqgoPTil8b3fXYKOP6L6OfW3cs1z4iIljmVJCWS6m/hampq0NvbC8AX4JhMJnR1dcV9bKL7ohkdHUVJSQlGRkZQXJycQbkv/eL7qHxhH8oxqGzrRxlO3fAAAITdd+3tn4v5OsHHxsPjlfD/vv51fH2mHQDg3zMnj8f+0uxf4RfeOoQZn4287CwIcrfamlXYtiYLlxbNYkP+JHKng7vCQnSLyV+z4cc4xSS/xC8AuviVr5m/LeBLE3p2mtcD/OuVvkAuZKuUCiiuBP7yFd+CsUREtKTE85mfkRYnURQDHguCAIfDEfexie7LhJd+8X3sfP7PfQ/8ApK10iDWPv/nUOHiR3KIfS8BSkAU7Tr+x0qShPNTsxiZmIF7fAajEzO+ny9+D95+angMP5x5GEBg0CQ/9krAV7O/hwszOSjPm8LW1TPYXDiFytxJrM0eR4nqAgpmR6GaGAbeGwaODwPe8DmUolJlRQl0wnzllyQ3gMlSA3eYgc67gblXSi6k79sd+xk0ERGtABkJnBwOB7TawGSBWq0WTqcTOp0u5mN7enoS2hd8j1TzzM6i8oV9AEIHJHKbX7hg5ZIXHsCvNTswMzONnS98BSrMn3glH7v5+b/FP/a6MDszA8/MJHKkGeRiBnmYQa5qBrmYRR5moMEM1qlmkYdpZdsalRuVWUMIJ0sFrMUIHs31tUjh/MWvaNS5vuU9QrXwRNqWW7R4kjdu3wM0Pgo8bQocKF5c6Quatu8Jfy4RES0bGQmc3G53yO1DQ/M/tCMdm+i+UKampjA1NTfDa3R0gWNl/Lzx4i+wA4OYN5f9okgTxLJUwDoMY93Pd/mdEP5YLc7j76a/5duQold3clUl8tdWx94ClFOwPKbYb98DbLsTOPk8cL7fl5By841saSIiWkEW1ay6cMFOvMcmsq+trQ379u2L+f7xmBiOshJ9DGaghoQs5CJ619fZAgEFa7cgO7cAOXn5UOcUANm5gDrPN4YnO8/XCpSd7/c4D55BF9S/MUe9fs5dFkD40IKf05KUpeYAcCKiFSwjgZNGo5nX8jM0NBRyxlukYxPdF0prayvuu+8+5fHo6Cg2btwYx7MKr6D0kgVf4636HwAAdtg/FfXYgQ/8I3bcdGfc91B7PZjo/j7yxs/M6zYEfF2BU4UVKNhyU9zXJiIiWg4yMoBEr9eH3F5bWxvXsYnuCyUvLw/FxcUBX8my7frb0Y+ysDPRJGlunFMwrwScQRm2XX971Ov4H5uQLDUKdn8DKpUKwUkFvABUKhUKdn+DXVNERLRiZSRwEgQh4LEoiqitrVVag5xOpzIrLtKxie5LN3V2tpJyIDjo8Upzc7RC7QOA0zc8AHV2dtTr+B+bsO17oGp8FKriyoDNquJLoGp8lIOgiYhoRctYHidRFGGxWFBXV4fu7m60trYqQU1DQwPq6urQ0tIS9dhE90WTrjxOZ1CG02HyOMn7YsnjFO7YhHk9HARNREQrQjyf+RkLnBa7VAROwOLPHE5ERLTSMHBKglQFTkRERLS4xPOZv0iyCxIREREtfgyciIiIiGLEwImIiIgoRhxNHIY89CuZS68QERHR4iN/1scy7JuBUxhjY2MAkLTs4URERLS4jY2NoaSkJOIxnFUXhtfrxalTp1BUVATVAhaolZdueffddzk7L41Y7+nHOs8M1nv6sc4zI5X1LkkSxsbGUFlZiaysyKOY2OIURlZWFjZs2JC06yV7GReKDes9/VjnmcF6Tz/WeWakqt6jtTTJODiciIiIKEYMnIiIiIhixMApxfLy8vDAAw8gLy8v00VZUVjv6cc6zwzWe/qxzjNjsdQ7B4cTERERxYgtTkREREQxYuBEREREFCOmI0ghURRhs9kgCAJEUURzczM0Gk2mi7XkOZ1OOBwOAEB3dzcOHDig1GukOufrkTwmkwmtra2s9zRwOBwQRRGCIAAA9Ho9ANZ5KomiCIfDAa1WC1EUYTAYlPpnvSeP0+nE3r170dvbG7A90TpOW/1LlDI6nU752eVySQaDIYOlWT7MZnPAz/71HKnO+XokR29vrwRAGh4eVrax3lPDbrdLzc3NkiT56k4QBGUf6zx1/P/GSJKkvAaSxHpPlq6uLuVvSbBE6zhd9c/AKUVcLlfAiyhJkqTRaDJUmuWjt7c3oB5dLpcEQHK5XBHrnK9H8nR1dUmCICiBE+s9dfzrWZJ89Sl/Z52nTnD9+QevrPfkCg6cEq3jdNY/xziliNzM60+r1cLpdGaoRMuDTqfDgQMHlMdutxuAr24j1Tlfj+Sw2WwwGAwB21jvqSGKIoaGhqDRaOB0OuF2u5XuItZ5amm1WtTU1ChddvX19QBY7+mQaB2ns/4ZOKWI/IEebGhoKL0FWYb8P7g7Ojqg1+uh0Wgi1jlfj4Vzu90hxwuw3lPD6XRCq9UqYzasVitsNhsA1nmqdXV1AQCqq6vR1dWl/M1hvadeonWczvrn4PA0C/fiUvzcbjdsNtu8gYWhjktkHwXq7OxEc3NzzMez3hdmaGgIoigq/xg0NzejtLQUUoTUe6zz5HA4HDCbzRBFEUajEQBgsVjCHs96T71E6zgV9c8WpxTRaDTzIl252Z2Sw2QywW63K3Uaqc75eiyMw+FAY2NjyH2s99QQBEGpQwDKd6fTyTpPIVEU0d3dDb1ej+bmZrhcLnR2dkIURdZ7GiRax+msfwZOKSJPGQ5WW1ub5pIsT+3t7TCZTBAEAW63G263O2Kd8/VYuM7OTlitVlitVoiiiLa2NjidTtZ7isjjmUJhnaeO0+lEXV2d8lgQBLS2tvJvTJokWsfprH921aVI8B89URRRW1vL/z6SwGazQafTKUGT3IUUXLf+dR5pH0UX/EfJaDTCaDSG/HBnvSeHIAiora1VxpbJuZx0Ot28Y1nnyaPT6WCxWALGUg4ODrLeU8h//GSkz87F8jeea9WlkCiKsFgsqKurQ3d3d0DCQEqMKIqorq4O2KbRaDA8PKzsD1fnfD0Wzu12w2q1wmQyobm5GUajETqdjvWeIm63GyaTCTU1Nejt7VVaWQG+11PJ4XAoXaKA7x8H1ntyORwO2O12tLe3o6WlBXV1dUqwmmgdp6v+GTgRERERxYhjnIiIiIhixMCJiIiIKEYMnIiIiIhixMCJiIiIKEYMnIiIiIhixMCJiIiIKEYMnIiIiIhixMCJiDLK4XCguroa7e3tsFqtqKmpQU1NjZJos7q6Gk6nc8H3kK9JRLQQXHKFiDLK7XbDbrcrmZntdju0Wi2am5sBAE1NTRBFMeSSF7HS6/VoampKSnnTwX8JCiJaXNjiREQZNTQ0FHFBW51ON2/V8+VMFEV0dnZmuhhEFAYDJyLKqMbGxqQcs1yYzeZMF4GIImDgREQZFUuXVE9PD2pqatDe3g4AsNlsqK6uhsPhADA3TspoNMJms8FqtcJoNMLtdoe9psPhQHt7O2w2G0wmU9jjRFGEyWRSritf0+l0Kue3t7dDFEXlutHKKo+3cjgcsFqtaGhoUPb19PTAbrfDarUq1ySixYNjnIho0Qseo2QwGNDR0RGw32AwoKysTFlh3WazoaGhAXa7fd715GCot7cXgK+7UF6l3Z/b7UZ9fT16e3uh0WhgMplgtVphMBhgMpkCrl1TU4NDhw7FVFa9Xg+73Y6uri4AQFdXF5xOp7KvurpaGeNFRIsLAyciWjb8W68MBgMaGhpCDrS2WCzQarVKKxAAdHd3z7teZ2cnBEFQzm9tbQUAtLW1zRusLggCOjs7Ywp4ysrKUFZWFlDulTSOi2gpY+BERCuSTqeDXq9XHocKeIKDrnTPdOPsOqLFh2OciGhJ0Gg0GBwcVB47HI55Y5j8H9tsNuj1+oDAQ97f1NQU0NokXy+YwWCYl0PK4XCEPN/pdCqD2GMpayxClYmIMkslSZKU6UIQETkcDoiiqMwqM5lMqK2tVbrE3G43TCaTMpDaYrHA7XbDYrFAEASYTCa43W6le667uxutra3QaDRwOp3Yu3cvAODAgQPQ6XRwOByw2+2oq6sDgHlBln+5Qh3ncDjgdDohCAK6u7vR1NQUU1ndbndAWeTxVjqdTnnuZrMZNTU10Ov1EVM1EFH6MXAiomVBzjLOQdVElErsqiMiIiKKEQMnIlryHA4HHA6HMq2fiChV2FVHREREFCO2OBERERHFiIETERERUYwYOBERERHFiIETERERUYwYOBERERHFiIETERERUYwYOBERERHFiIETERERUYwYOBERERHF6P8DdCUMWu2RSPkAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFnCAYAAABQEsaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2RUlEQVR4nO3deXhb5Zk3/q+8xEu8HMtZnMVZjhMSQkKJZIdCNyAyScsAU5DtLtDSxVLbmXf6m8yMFXfeGRpmpo7cDrO+LVLoRuliS6QtdAGkUBhaGGLrhCWEQKLjhCxOnFg+lhPv0vn9oZxj7Zu12b4/1+Ur1lkfPZKsO89yPwpRFEUQQgghhJCY8rJdAEIIIYSQuYICJ0IIIYSQOFHgRAghhBASJwqcCCGEEELiRIETIYQQQkicKHAihBBCCIkTBU6EEEIIIXGiwIkQQgghJE4UOGUBz/MwGAyoqqpCXV1d1GPr6upQVVUFg8EAQRAyU0CSMziOQ2NjY8z3STpZrdas3TvTpM+mQqFAXV0dOjs70dnZCb1ej6ampgVVF8nS6/WoqqqC3W7PdlHSZr6+T8xmM9RqdbaLkftEkjVGo1FkGEZ0OBxh99tsNlGr1Yo6nS7DJQvPZDKFbGtraxO1Wm0WSuMTrkzzjc1mE1mWTeicVNWLxWIJ2TY0NBT1fRtOtt8nidJoNGE/dyzLikajMQslil8ufCZUKpVos9niOjbb5Z3N/efb+8TpdIptbW0JfbYXImpxyiKGYdDc3AyTyRR2f661MNlstpBtjY2NaGlpyUJpfMKVab5RKpUJn5OqemEYJuw2nU4HlmXjvk623yepotfrYTAYsl2MqObaZyLb5U3H/efq+4RlWej1+rCfezKDAqcs0+v16O7uDtkuCEJCX0zpZjabwfN8yHaNRgOtVpuFEkUu00KXynrhOA6dnZ0h241GY0J/XLP5Pkkl6Tnn2n9qJHPtM5Ht8qbr/nP5fcJxXE599+SigmwXYKFTqVRQKpWwWq0BXyy9vb3QaDQRz+vs7ATLsuB5HizLyucKggCz2QyWZWGz2aDX66FSqQAAdrtd/l/QgQMHwPM8eJ7H4OAgjEZjxHvZ7XbYbDbwPC9/iba1tYHjOBgMBvA8D6fTGfEeLpcLDocDJpMJZrMZSqUSXV1daG9vl8sW63nFW6bg6wC+8Qj++6Ixm80Bj3U6XcxrJvucpfOUSiWampoA+F6/WK9HcHn86yreeolVvxKGYWA0GgOuIQX7Bw4cCDg/Uv3E+z6J570Y616JXDfRugAAh8MBlUoVEDRGeh0MBoP8P3jpf/dSGeJ5n4W7XrTnFeu1DydVfy86OzvBMExCraPhysuyrHxPk8kEnuflIN1isUCpVGLnzp0QBAEWi0UuazJ1Fqm+rFYrOjo6wPM8LBYLNBoNeJ5HY2MjWJaFyWSKGVjM1feJIAhx/4dIOld63VmWhcvlgkajCfuZNxgMMJvNMBqNcT+P4HppaGiY9WuTEtnuK1zIpD7mcOM/pLEl4cY4abXagLEnGo1G7pNua2sTnU6nvI9lWXFoaEh+LI2X8R9/wLJszD5tm80mqlSqkO0OhyNk/E2ke7S1tQU8v+DrRXteiZRJq9UG3NvpdIoajSbKs/MxGo0hZfR/HaJdM9nnbLFYRAABr1lbW1vAax6ujqPVVbR6SaR+o9FoNAHXilU/ibxPYpUp2dfC/7qx6iJ47MrQ0JBoNBpFlUoV8HmKdh3p9bbZbKLD4ZDfC7HeZ9Fe11jPK9JrH0kq/l60tbUFjJcZGhoSAcQ1xilceU0mU8DrGa6+/Ms8mzqLVF/hxhWGG7O0UN4nwXQ6XcDzdjqdIePawtWhRqMJeK8kUy/xvjbpRIFTFklvIKfTKQKQP2hOp1P+wxAcOEnHBl9HOkar1Qa8MYO/4BwOR8j5wceEk0jgFOke/n8EnE6nyDBM3M8r3jI5HI6A60piDVaV/tgH/7EzGo1xXTOZ5xzpOUhlkd4DwXUcq67CXTOZ+o3G/w9evPUT7/sk2ntxNq+FdN146kKj0YgqlUo0mUzyT3BAF8/rELw/2vss1vXiqa9EvxBn+/dCej7B4h0cHu39LzEajQHvHf/yzrbOotVX8ASIcO/LhfI+iVU2URRDgrVI/+EL/t6L9DzC1YskntcmnairLgewLAuVSoXu7m7odDpwHBe1i4phmICpvk6nU+6vtlgsAHxNrlKXkcvlCrmfP4ZhQo6ZrXD3iDalPtbzildvb2/YplqpKyJS92dvby8YhgloppbqUurKiHXNRJ9zJFI5Io01SKauUlW/4SRb59Ix/mK9F+O9V7TrxlsX9fX1AV0KweK5TnA5Yr3PEr3ebD+7s/17IdVBKjEMA5VKJQ9fkK4vdeX4S+Y1iLfOdDodurq6oFKpYLfbI76PF8L7JNzzCX7dE30fJFMvknhfm3ShwClH6PV6mEwm6HS6qG9AadC4/xvF/3eO49DR0YHGxkY0Nzenrb833B+x2Yj1vOItU7KDMaOdl2sDPBOtK6leZlu/0cqTKam4V6rqIp7rBH+WY73PUv0axfqcpuLvRTKzPiORytvS0iJ/MdbX10Ov18NqtUKj0QTUSarrzL++WlpasHPnThiNRvA8n/R158P7JFX8n1cy9SJJ1WuTLJpVlyOam5vBcRysVivq6+sjHqdSqcK2EgiCAEEQsHPnTrS3t8sBmPRGTfXMEY7jUnq9aM8rXhzHyYMFg/E8j4aGhqj3D3cvQRCSvmaypNcyeOC8JNG64jguJfUbSSbrJxX3SlVdJHOdaO+zdLxG0T6nqfh7EanMyZLKq9VqYbVaYbfboVKpoNVqYTKZQlocU11n/vXlP3FnNsHhXH+fRCpbMvfzb/WazfNI1WuTLAqcskiabQD4ImuNRoOurq6oLU4ajQb19fUhmWm7u7vllgX/L1zpjRrrD2gs0qwHwPdHNdKXerL3iPa8EimTSqWCRqMJaP71/2Mc7VparTZg6r0gCOju7k76mvH+YeE4LuDYjo6OqHmSYtVVuHpJpn7jlWz9hBOrzlLxWqSqLpJ9z0Z6nyVzveD6SuRzmoq/FyzLQqfTBcz+EgQh5D0dSaTySsMXpL+R0mch+JqzrbNY9aXX69Ha2jqrVBpz/X0SrmzBr7k0ey/SPaQy+PcKzPZzmIrXJmkZHVFFRFH0DYrT6XQiAFGn08mDgP1nTUizMxiGkbPQ+g/Gk2ay+J8jbW9raxNtNptos9lEp9MpD+R1OByiVqsVAcizEKR7qFSqmAPspGtLg/vCXS/aPTQajTxDQjqmra0trucVb5mCr2MymQIGaMdzPaPRKFoslrivOZvnLA3StFgsos1mE41GY8AMkeDzwpUnXF3Fqpd46zeS4NkwidZPKt6Lib4WwdcNVxdOpzPq5y5aWfyvY7PZRI1GIzIMIw/oDT4n1vvM/3qJPq9wr32ksqfi74X0XKTrqFSquAeIRyqvNDHD/3FwPaaizqLVl1Qf4bYvpPdJtOfj/5oHv97S3zOpjFqtVmRZNubnMFa9iGLk1yYTFKIoipkP1wghwEyuHIfDke2iJKSpqQktLS3zIqklIZEIghAzpx7xUavVMBqNGaurbL421FVHCImL1NQu/Z7q2VSE5AL/bi2pa4zkhlx5bShwIoTEpaOjA3q9HoBvTEO0SQyEzFVShmsgtTMGyezlymtDXXWEZIndbpeXfghe1iQX8TwPq9UqL7FA3XRkPuI4Dr29vQAQNT8TmdHZ2QmDwQCNRiP/mw658tpQ4EQIIYQQEifqqiOEZIRer0dVVVVAKgESGcdxaGxsTCr7PCEkfShwIoRkRLiVyw0GA5qamjJajuAV53PtehKVSiWvdD8fpKueCMk0CpwIIVnT2NiIlpaWjN7TZrPl9PX8zafByemsJ0IyidaqI4RkTaanE5vN5pQuEZLq681XVE9kPqHAiZB5QhAEmM1msCwLm80GvV4fspRCcHeJ/8yUaPs6Ozvlbjae5+UZgFICT5Zlodfr5VYFo9EonyfNwgvGcRwMBgN4npeX1pCuBwAHDhyQl3IYHByUryk9V4PBALVaDYfDgbq6OqhUKphMJnkV+WB2ux02mw08z8tLWfjPZIz0HCOJdL1wz0uaRm00GqHT6eTnqVQq5a5KQRBCnmckUlmlxVljzXBM5rVN5HkAkV+vWPVOyJyTlXzlhJCUa2trC1iagGXZgGUgjEZjwPIk/kscRNun1WoDllJwOp2iRqMJOFZabsHhcMjXCV7OYWhoSAQQcC2HwyGyLBvwPGw2m8iybMBxLMsGLL/hv+TL0NBQyDUikZaGCBbrOSZ6Pek5+NNoNAH1YbFYRAABr1lbW5uo0+nkx+HqJ3i5G41GE1A3wWbz2sbzPOJ5vSLVEyFzEY1xImSe4Hk+YMYay7LyY6mFpr29Xd7f1dUlL7oZaR/HcbDb7QFdaizLwuVyyddmGAYcx0Gj0UClUsFoNEIQBHR2dga0bDAME9diokqlEjzPh9zTv6vHarXK12IYJuwio/GK5zkmKlwLW3Cmdak+/AfMt7e3R+3WknJp+bcwNTU1wWQyhT1+tq9tPM8jnteLkPmEuuoImSekLippaRSXyyWvdt/b2wuGYQK+9KTj7XZ7xH1S118wqTtQ+rIMPka6ZrKCr8cwjPxcAN+Ms3Arviejt7c3rueYCdLrwHFc2DJJ9eof0DmdzohBSrTXPd7XNh6xXi9C5hMKnAiZJziOQ0dHBxobG9Hc3BzwZRYcZPhLdp+/cEFSOmeE6fV6dHR04MCBAzCbzRFbXGKRWtxSRRpzFE4q7iMIAliWDQhqogU4qXhtU3Wev2j1REiuo646QuYBQRCwc+dOtLe3Q6fTgWEY+QuO5/mwLTTSedH2aTSasK0ZPM+joaEhYnlUKlXau2oOHDgAu90OrVab9PILUhdjMs8x0vUiiacFRhAE+TUJJ1K9Rgpm0vHapqIlKVo9EZLrKHAiZB6QWk78v3ClLzip20er1cqzmgDfl2d3d3fUfSqVChqNJqBrSPrSizaTi2VZ6HS6gNlcgiCA47ikWiyCz3E4HGAYBlqtNqGWC/+xN1JAmexzjHS94O1S+cO1bgXXR0dHB3Q6XcTnpNFoUF9fD6vVGrC9u7s7Yvlm89rG+zyChetGDVdPhMxFtFYdIfOENC28sbERgO/LymAwoKWlRf4iNBgMqK6ulgcB+7fUxNonLf3hdDoDppobjUb09vaivb09JJCRprpLXXlSGY1GI5RKJTo6OmC1WuVFjqXuRv9tnZ2d6OjoAMuy8j2sViuamprkVAcMw0Cv18fV8iSVoa6uLq7nmOz1pGBFqo+uri5wHAej0QitVitP5W9vb5fHNQEISAcg1UVbW1tAeaSySt2hsQK8ZF7beJ4Hy7JxvV7R6omQuYYCJ0LInCIIAlpbW3HgwAG5S5LneXn5lrnypSwFTg6HI9tFIYQkgLrqCCFzitlshl6vl1uxpGn9RqORghBCSNpR4EQImVNUKlXY7OB2u13upiSEkHShrjpCyJxjt9sDch3Fu/RIrpDGhkn/0hIkhMwdFDgRQgghhMSJuuoIIYQQQuJEgRMhhBBCSJxoyZUkeL1enD9/HuXl5VAoFNkuDiGEEEJmQRRFjIyMYOXKlcjLi96mRIFTEs6fP4/a2tpsF4MQQgghKXTmzBmsXr066jEUOCWhvLwcgK+CKyoqslwaQgghhMyG2+1GbW2t/P0eTdYCJ57nYbVa5TWMpIVJEz2W4zh5raWenh45m3Cs8xK5fzCpe66iooICJ0IIIWSeiGv4jZglKpVK/t3pdIparTapY41GY8Dv/sdGOy+R+wcbHh4WAYjDw8Nxn0MIIYSQ3JTI93pWZtX5r7YN+BaP9F+hO95jpUUwJVqtFhzHgef5qOclcn9CCCGEEElWAie73S6v6i1RKpXy6uDxHqtSqXDgwAF5uyAI8v5o5yVyfwCYmJiA2+0O+CGEEELIwpOVMU5SgBPM5XIlfKz/EgtdXV3QaDTyiumRzkvk/gDQ0dGBffv2hd0XicfjwdTUVELnEDJfFBYWIj8/P9vFIISQlMupWXWRApp4jhUEAVarNebq6NHuEWlfe3s79uzZIz+WRt+HI4oiLly4kNBzIWQ+YhgGNTU1lOuMEDJrHq+Iw30uDIyMY1l5MXasVyI/Lzt/W7ISODEME9K643K5ws5qi/dYg8EAm80mb492XiL3B4CioiIUFRXFfmKAHDQtW7YMpaWl9KVBFhxRFDE6OoqBgQEAwIoVK7JcIkLIXPbs0X7se+YY+ofH5W0rKovx8N1bsHtr5v++ZCVw0mg0MJlMIdvr6+uTOrazsxMGgwEsy8otPdHOY1k27vsnwuPxyEFTdXX1rK5FyFxWUlICABgYGMCyZcuo244QkpRnj/bjq09yEIO2Xxgex1ef5PC9B1QZD56yMjicZdmAxzzPo76+PiA3kzTzLdaxVqsVKpVKDpq6u7vBMEzU82JdM1nSmKbS0tJZXYeQ+UD6HNBYP0JIMjxeEfueORYSNAGQt+175hg83nBHpE/WxjhZLBYYDAY0NDSgp6cHFotF3tfR0YGGhga0tbVFPZbneTQ1NQVcl2EY6HS6mPeItm+2qHuOEPocEEJm53CfK6B7LpgIoH94HIf7XLilLnO9PApRFDMbqs0DbrcblZWVGB4eDsgcPj4+jr6+Pqxfvx7FxcWzukcuDYQjJBmp/DwQQhaeX79+Dl//xesxj/uPT92Ee29aNat7RfpeDycrXXUkumeP9uPDxhfw6QP/i6//4nV8+sD/4sPGF/Ds0f603I/jOOj1eigUChgMBpjNZhgMBjQ1NaU0MajZbEZVVVXEfFlzgVqthtVqlR+bzWY0NjYmdS4hhJDIlpXH9x+ueI9LlZxKR0CyMxBOpVLBaDTCbDajvb1dHuslCAKqqqrgcDigUqlmfR+dTpfSLlFBEGY9Li1RRqMxYBKBRqMJGTMX77mEEEIiy88DFEDYMU6Ab19Npa9HJpMocEozURQxNuWJ61iPV8TDT78dcSCcAsA3nz6GD21YEle3XUlh/qzGmUgD6bu6ulISOKUSz/Ow2+3yeLZM0Wg0AY9Zlo07cAo+lxBCSHj/894l6H/ikL8PgwMo6Zvt4bu3ZHwYCwVOaTY25cGWf3wuJdcSAVxwj2PbN5+P6/hjj+xC6aLZvcQulwt1dXWzukY6GI1GqNXqbBeDEEJIiv3urX58/RdHMOUR8bHrluI+1Srs//3xgIHiNVnM40RjnEhYgiDAYDBAo9FAp9PBbrejrq4OZrMZZrNZDlo4jkNnZyesVis6OztDFlDmOA4GgwFWqxVWqzUg8ajdbodarUZnZycAX2qJurq6gHFVPM/L55vNZgiCALvdjt7eXthsNpjN5pB7+l9fKpvBYAgok16vl8tktVrlNQyjlYfjOKjVapjNZrmO9Hp9QGAZqT6Cz5XuZTabYbfbYTabQ2aIEkLIQtPdcwZ/+TMOUx4Rd924Agc+V497b1qFPxruwM9bP4j/+NRN+HnrB/FHwx1ZCZoAanFKu5LCfBx7ZFdcxx7uc+GhH/bEPO5HX2iIq0+3pDDxpINms1nuetLr9fLvGo0GGo0GDocDJpMJSqVSDmpsNpt8vlqtxqFDh+T1ApuamuB0OuX9HR0d8u8ajQYtLS3yY61Wi66uLvmxIAhobGyEw+EAwzDywPW2tjZoNBrU1dVF7KqTyiYtweNyudDZ2QmdToedO3eir69PHh9VVVWFQ4cOxSyPSqUK2M8wDEwmE6qqqgLuGa4+gs+V6tNms8njviwWi7x4NSGELDSPv8zjn3/7DgDg0ztq8c9/vk3uhsvPU2Q05UA0FDilmUKhiLu77CMbl2JFZTEuDI+HHeckDYT7yMalaevT1el0EQdcMwwjZ0TXarUwGAwhX/Isy6K7uxs6nQ7d3d0h+5XK+AfxdXd3g2VZuTzt7e1xnysFd/6tVz09PWAYRl4IWpKqAdsmkylqfQSrrq4OyDAfbikgQgiZ70RRxL8+/x7++w8nAQD6j7HYu3tzzuaCo666HJKfp8DDd28BMDPwTZLNgXD+4h0InQrBs+akdQbDHReOSqWSW3ZSPaOPEELI7HmvTYqSgqa23ZvQ/vHrczZoAihwyjm7t67A9x5QoaYyMC9FTWVxRtbkidXi4b+/paUlJM8Tx3Fobm4G4OuOCs7ZFDweiWEYDA4Oyo/tdrscCGm12pDzw+WVCrctXNnsdjuam5ujlilaeSSRArVY9RHtXEIIWWimPF78jeUNPPHqaSgUwD/9+VZ87bYN2S5WTNRVl4N2b12Bxi01GcscznGcPJbHaDRCr9eHdDnZ7XbY7XZwHAeWZaHRaOT8T52dnWBZVl66RmoVYllWXtqmsbFRbkHq6OiA0WgEy7Jobm6GwWCQAw5pcWZp/UGTySQvjSPtB3zjr6TcU+Gm+UtlCz6XYZiwZZJEK48gCOjq6oJSqYRWqw1pfYtWH1IdS+dK15LuwfM8OI6DyWRKKMUBIYTMReNTHvzlzzjY3xlAQZ4C/9r8gVln/84UWnIlCZlYcoVkTmNjI4xGY9KDsquqqjA0NJTiUs199HkghIRzZWIaX/5xD/6Xd6GoIA/fe0CFOzYvz2qZEllyhVqcyIKXzIBss9kMp9MJvV5P2cAJISROrquTeOiHh/Hm2WGUFRXg8c/X44NsbsyWixeNcSILmpQHymQyJTT+SKPRoLq6GlarFSaTKX0FJISQeeLC8DhaTK/izbPDqCotxM9bPzjngiaAuuqSQl11hMRGnwdCiOT04FV89vHXcHZoDCsqi/GTL+3AhmXl2S6WjLrqCCGEEJITjl9w48HvH8alkQmsqy7Fk1++GaurSrNdrKRR4EQIIYSQtODeH8IXftiD4bEpXL+iAk98cQeWlhdlu1izQoETIYQQQlLujycuQ/eTXoxOeqBeW4UfPNSAypLCbBdr1ihwIoQQQkhKPXv0Av7q50cw6fHiIxuXwPSgOu7lx3Ld/HgWhBBCCMkJlt4zMDz1Jrwi8IltNfi3lptQVJD4ovO5itIR5CqvB+h7GXjL6vvX68nIbc1mMwwGA8xmM6xWK+x2uzxlP1fZ7Xao1WqYzeaM3E+tVsNqtWbkXrMVXFaz2YzGxsakziWEkFi+/8c+/J3VFzS11Nfivz6tmldBE5DFFiee52G1WsGyLHieh06nC7uAazzHchyH1tZWOByOgPOsVqu8HEfwtaX1ylQqFXiehyAISWeOTrljTwPPGgD3+ZltFSuB3UZgyz1pu21jYyOamppgNBrlbRzHobGxEU6nM233nS1pId9MMRqNcybpZXBZNRpN3Mu5zKXnSQjJLlEU8W/2E/jPQycAAK0fWY9vfCK3F+tNVtYCp6amJjnQ4Xkera2tEVevj3asFFAFL9wqnRfMaDSira0NJpNJbqHQaDQR751xx54Guj8HICi9lrvft735ibQET52dnQAAnU4XsF2lUoVsy0XV1ZlLopbJIG22gsuayDp4c+l5EkKyx+sV8chvjuFHr5wCAPztndfhL27fMC+DJiBLgVNwtw/LsmFXuI/nWK1WG/Y8QRBgsVgC9nd2dqKtrQ2ArxtCWl8sUktXSogiMDUa37FeD/D7NoQETb4LAVD4WqLY24C8OJo+C0uBON+4HR0dOHDgQNh94QJQQgghZNrjRdtTb+Igdw4A8Mi9N+Bzt6zLbqHSLCuBk91uh1KpDNimVCrBcVxId1kixwbzD5qsVmtIkBVvwDQxMYGJiQn5sdvtjus8AL6g6Vsr4z8+KtHXfbe/Nr7Dv3EeWLQ45mFSV2Wklgj/lgeO42C32+VuU61WKwezBoMBer1e3mez2WA0GiEIAux2O5xOp7w8id1uh16vh0ajQWNjI1wuFxwOB4xGIxiGkfcbDAYAgMlkgsPhgN1uB8dxYFkWPT09Ad2K0n2ke/u3IoY7L1KZpfMEQUB3dzdYloUgCOjp6UFLSwtaW1uh1+vllrhE6yRS62ak58ZxHEwmU8DYJJZl4XK5YDAY0NLSgra2NlitVhgMBphMJmg0GrkLWyqrIAgwGAzyaxGt7MHnJvpcCCHz3/iUB3/18yN4/thF5Ocp8J2mG/HJ7auzXay0y0rgFGlNsHCLrSZyrD//oEgQBLhcroDAQBAEeeBrT0+P/IUQTkdHB/bt2xf1fgsBz/MwGAyw2WzyNrVajUOHDsnjjPy/TC0WC6xWK9ra2qBSqVBXVwdBEMAwDDQaDbRaLaqrq+WA1mq1oqmpCTabTb6ew+GAyWSCUqmU7y9127pcroBWxJ6eHvl3i8UiB9fRzgtXZuk8s9kMlUolB44ulwsqlQotLS2zqpNwQX+kMup0OuzcuRN9fX3ye7qqqkq+vn9ZtFoturq65MfBZWUYBiaTCVVVVTHLHnxuIs+FEDL/XZmYhu6JXrziHMSigjz8v8+o0LhlebaLlRE5lY4gkUVWEznWYDAEtEwACBhgzrJs1AHQ7e3t2LNnj/zY7XajtjbOVp/CUl/LTzxOvwL8NHzXY4DPWoG1t8Z37zhIASPP82G/BHmeh1KphMlkCtnPsiy6u7uh0+lQXV0dMNaIYZiAYJRhGLhcroCg1v93rVaLpqYmObhiGEa+nlarhcFggFKpDOiq7enpkX9vaGgIuRcAOfAKd164MkvnabVaqNVqsCyLlpaWsGO9kqmTcEF/pDJKQaZ/PaVqwHassgeL97kQQuY3YXQSn/9hD944I2Dxonwc+Hw9bq1bku1iZUxWAqdwf3CDv1CTOTYcqfsm+Hj/IEHqeuB5PmyrU1FREYqKkkwRr1DE1V0GAKi7wzd7zt2P8OOcFL79dXfEN8YpAdKA+XBjxjiOiziWLJbZjh8Lfj38W4CA0MHskSRznlKpxNDQEDiOQ1dXl9wali7hypipFAuEEBKPi+5xPPj91/DexStgSgvx4y/swAdqmWwXK6Oykscp0mydcP+TTuTYcHp7e8OmIti5c2fIscFjqTIuL9+XcgAAEDyo+9rj3ftTHjQBkFvkgr+o/Vv2WlpaQgbxcxyH5ubmiNeN1TLov19KH+H/evkHzeHuH2lSgb9kz+vo6JADbGnsVXC5k6mTRMrY3NwcMmPUf8IEwzAYHBwMOCe4ziO9BvGUPZGWXULI/Pb+4CiaHnsV7128guUVRejW37LggiYgSy1Owa0IPM+jvr5e/mLiOE7u5ol1rD+pi8cfx3EhARHLsgFdd3a7HVqtNr2z6+K15R5fyoGweZz2pzWPk81mQ2dnJwwGA+rq6uR6k1qbpACis7NTHsBssVjAMIzcKgP4gl2e5wNyZUmDto1GY0AQ4nQ65S976XqA7zXxHyyt0Wjk+xsMBrlbThoEHe7eJpMJLMsmfV51dbU8OcHlcqGlpUU+R6lUQqvVJlUn0vX939uRysgwDCwWCwwGAxobG0Pe483NzfKAb+kcqQtOEISAsoZrvYtVdulc6VrxPBdCyPzz3sURPPD4axgYmcAaZSl++uWbUauMbzjIfKMQRTFcn1Da8TwPk8mEhoYG9PT0oL29Xf5CaGpqQkNDgzzQN9qxdrtd/sJva2tDQ0NDSAoC/9lcEmk2EcMwcDqdIWOgonG73aisrMTw8DAqKirk7ePj4+jr68P69etRXFycZM1c4/X4xjxduQiULfeNaUpDS1M2SQHaXMgTlUsaGxthNBqTHpRdVVUlp+JIp5R+HgghWfP6GQEP/fAwhNEpbK4pxxNf3IFlFfPrMx3pez2crAVOc1lGAqcFgAKn5KjVahw4cCChwMlsNsPpdEKv10Ov16d1rJaEPg+EzH2vnLyM1id6cXXSg+1rGPzwoQYwpYuyXayUSyRworXqSFZIXXHSlHYSH2ndQJPJlND4I41Gg+rqalit1pDWV0IICef5ty/goR/14OqkBx/esARPfunmeRk0JYpanJJALU6ExEafB0LmrqccZ9H21JvweEXsvqEG//Hpm+bdYr3+Emlxyqk8ToQQQgjJrh/9qQ/ffOYYAECrXo39921DQT51UEkocCKEEEIIRFHEfx46iX+zvwcA+OKH1uP/3nU98vLm52K9yaLAiRBCCFngvF4R//zbd/CDP/UBAP5acx3+aucGKOJcKH4hocCJEEIIWcCmPV7sPfgWrI6zAICH796CL3xofZZLlbsocCKEEEIWqIlpD77+89fx7NsXkJ+nQOf9N+J+9epsFyunUeCUozxeD7gBDpdGL2Fp6VKolqmQP88SYBJCCMmeqxPT+MqTDrx84jIW5efhvz6zHbtuqMl2sXIeDZPPQfbTdux6ahe++NwXYXjZgC8+90XsemoX7Kdjr6+W1P3sduj1eigUioDlOxJhNptRVVWVkZxMmbyXP7VaDavVGlCOxsbGpM4lhJBsGh6dwgPffw0vn7iM0kX5+OEXGihoihPlcUpCOvM42U/bsefFPRAR+LIori3y++htj0KzNvzCx7PB8zzq6uowNDSU9Jp9s10KJFfvJbHb7QHrJPI8D57nIy5EHe3chYDyOBGSmwZGxvG57x/G8QsjqCwpxI++0IDta6qyXaysojxOOUQURYxNj8V1rMfrQcfhjpCgCYC8bf/h/bi55ua4uu1KCkrinhERvBAyCRUcICWyuG08wRUhhKTbGdcoHvj+azg9OIpl5UX4yZduxqaa8mwXa06hwCnNxqbHcPPPbk7Z9S6OXsStv7g1rmNf+8xrKC1cmKtXE0IICXTi4gge+P5ruOieQK2yBE9+6WasrV6c7WLNOTTGiYRlt9uhVqthNptht9thNpvR1NQUcAzHcTAYDLBarbBarXC5XCHX6OzshNVqhcFgAABYrVao1WrU1dUBADo7O1FXV4fOzs6I58Rzr3Dlj3QdvV4vX8dqtYLjOPn5SuWwWq2oq6uTx3txHCfXBwAIggC9Xi8/D+kY6Z6dnZ3geT7sufHULSGEpNKbZwU0m17FRfcENi4rg/Urt1LQlCRqcUqzkoISvPaZ1+I61nHRga8d+lrM476787tQL1fHde9kaTQaaDQa2Gw2WCwWAJAX5FWpVBAEAU1NTXA6nfI5HR0d8u88z8NgMMDhcAAAXC4XOjs70dbWBo1Gg507d0IQBDAMA4fDAYZhIp6j0+mi3itYtOvs3LkTfX198lijqqoqHDp0CBqNBi0tLfI1tFoturq65McqlSpgP8MwMJlMqKqqCrinzWaTj1Gr1Th06FDIubHqlhBCUulV5yBan+jFlYlpfGB1JX70hR2oWkyL9SaLAqc0UygUcXeX3bryViwvXY6B0YGw45wUUGB56XLcuvLWjKQmqK6uRnV1tfyYYRi5pae7uzvkS95/nJTJZIJSqQyYodfT0yNf58CBA1Cr1bBYLHIQE+kchmGi3itYtOtoNJqAAdr19fWxqiEuJpMppIwsy6K7uxs6nS7k+Gh1SwghqWI/dhFf+xmHyWkvbq2rhvlz9Sgroq/+2aDayyH5efnYu2Mv9ry4BwooAoInaVadYYdhzuRzUqlUAYOi/QMIKRjq6uoKCDjCnSN1cc323slchxBC5qpfHjmLv7W8CY9XROOW5fivT29HceHc+P7IZTTGKcdo1mrw6G2PYlnpsoDty0uXpy0VAYCEWzs0Gk1IHiVpTA8AtLS0hOSDkh4LggC73Q6LxQKe5+X8RpHOiXWvYJGu09zcHPU6DMNgcHAw4BxBEAKOD34c7Z4cx6G5uTnmuYQQkmpPvHoKf931BjxeEfepVuF7n1VR0JQi1OKUgzRrNbi99vaMZQ6XghjAN3ZIGo8jjfHRaDTgeR4cx8FkMsnT8C0WCwwGAxobG+XxSh0dHXJ+JaPRCIPBgIaGBvk6ZrMZRqMRer0eANDQ0IDW1lbwPI+2traw5zAME/VewSkBIt070nUkzc3NAQlANRqN3AUnCAK6urqgVCqh1Woj3rOzsxMsy6Knp0fuhuQ4LuBc6VrR6pYQQpIhiiL+3x9O4jvPvwcAeOjWdfjHP9uCvDxarDdVKAFmEtKZAJNk1mwTaVZVVWFoaCjFpZof6PNASGaJoohv/e4dHHi5DwDwVzs34q81G+PO57eQzYkEmFIXDcuy4HkeOp0uYlblWMdyHIfW1lZ5FpX/dsDXGsDzPARBkL8gE7k/mb+SGZBtNpvhdDqh1+tTNricEEJmw+MV8Y2Db6Gr9wwA4B/+bAu+9OH1WS7V/JS1wKmpqUkOdHieR2trq9xdlMixUvATbt0yk8kkDwjWaDQB10/k/mR+MpvN4HkeJpMJRqMx7sBZo9FAEARYrVaYTKb0FpIQQmKYmPbgr7tex+/euoA8BbD//hvRXF+b7WLNW1kJnIIH9rIsG3Fh2VjHarXaiPdRq9VyN4r/l2Ii9yfzl06nC5sqIBaWZdHW1paGEhFCSGJGJ6eh/4kDL5+4jEX5efjPT9+E3VtXZLtY81pWZtXZ7faQPDxKpTJsq1Eix4bDMExIS8JsrxkLDRsjhD4HhKTb8NgUHvz+Ybx84jJKCvPx/YfqKWjKgKy0OEWalh1uvEkix4Y7V5rq3tPTA71eD5ZlE77mxMQEJiYm5MdutzvscYWFhQCA0dFRlJQkn7WbkPlgdHQUwMznghCSOpdGJvC5HxzGO/1uVBQX4Idf2AH12qpsF2tByKl0BInkuYnnWP8B3yzLorGxMWDZjniv2dHRgX379sW8X35+PhiGwcDAAACgtLSUZjOQBUcURYyOjmJgYAAMwyA/n3LHEJJKZ4dG8eD3D6Pv8lUsKSvCT760A9eviD4TjKROVgKncMtLuFyusINzEzk2GM/z8iw6afYcz/MJX7O9vR179uyRH7vdbtTWhh94V1NTAwBy8ETIQsUwjPx5IISkxsmBK3jw+6+hf3gcq5gS/PTLN2PdElqsN5OyEjhJiQWDhZvancix/jiOw86dO0Ny7CiVyoSvWVRUhKKioqj3kygUCqxYsQLLli3D1NRUXOcQMt8UFhZSSxMhKXb03DA+94PDcF2dxIZlZXjySzejppJypGVaVgKn4MzIPM+jvr5ebvHhOA4Mw4TNohx8rD//TNAsy8JoNMr77HY7tFpt2MHi0a6ZrPz8fPriIIQQkhKv8YP40o97cWViGttWVeLHX9wB5eJF2S7WgpS1MU7S0hcNDQ3y8hSSjo4ONDQ0yFO+ox1rt9ths9kCzpMCpPr6enR2doJhGDidzoDzol2TEEIIyRUvHL+Irz7JYWLai5vXK/H45+tRXkyTLrKFllxJQiKp2QkhhJBk/fr1c/ib7jcw7RWxc/My/D9arDct5sSSK4QQQgiJ7Mn/PY1/+PVRiCLw5zetxLebPoDC/KykXyR+KHAihBBCcsx3XzyJzmffBQB87pa1+ObdNyAvj9Lb5AIKnAghhJAcIYoi9j97HKaXfEuD/eXtG/A3d15HOQFzCAVOhBBCSA7weEX8318dxc8Pvw8A+PtPXI/Wj7IxziKZRoETIYQQkmWT017s6X4dv3mzH3kKoOO+bWhpWJPtYpEwKHAihBBCsmhs0oOv/tSBF9+9hMJ8Bf7jU9vxiW20WG+uosCJEEIIyRL3+BS+9KMe9JwaQnFhHkwP1uNj1y3NdrFIFBQ4EUIIIVlw+coEPv+Dw3j7vBvlxQX44UMNqF+nzHaxSAwUOBFCCCEZdk4Yw4OPvwb+8lUsKVuEH39xB25YWZntYpE4UOBECCGEZBB/6QoeePw1nB8exyqmBD/50g6wS8uyXSwSJwqcCCGEkAw5em4Yn//BYQxenQS7dDGe/NLNWMmUZLtYJAEUOBFCCCEZ0HPKhS/+sAcjE9PYuqoCP/7CDlSXFWW7WCRBFDgRQgghafaHdwfw1ScdGJ/yYsc6JR5/qB4VxYXZLhZJAgVOhBBCSBo988Z5/HXX65j2irh901J897NqlCzKz3axSJIocCKEEELS5OeH38c3fvkWRBG4+wMr8a9NH8CigrxsF4vMAgVOhBBCSBo89pIT+39/HADwmZvX4J/u3Yr8PFqsd66jwIkQQghJIVEU0fncu/jei04AwFdvq0Pbrk1QKChomg8ocCKEEEJSxOsV8Q+/PoqfvvY+AGDvxzfjKx+ry3KpSColHDidOnUKFosFNpsNQ0ND8nalUonGxkZotVqsW7culWUkhBBCct6Ux4u/6X4DT79xHgoF8C9/vg2fuXlNtotFUiyhwGnv3r1QKBRobm7G3/3d34XsP3LkCB577DEoFAp0dHSkrJCEEEJILhuf8uBrP+XwwvEBFOQp8G8tN+HuD6zMdrFIGihEURTjOfDb3/42dDodKitjr6UzPDyM/fv3Rw2eeJ6H1WoFy7LgeR46nQ4MwyR1LMdxaG1thcPhCDiP4zjY7XYAQE9PDw4cOCCfx3EcAEClUoHneQiCAJVKFfO5AYDb7UZlZSWGh4dRUVER1zmEEELmp5HxKXzpx7043OdCcWEevveAGrdvWpbtYpEEJPS9LmaJSqWSf3c6naJWq03qWIvFIjocDjHcUzEajQG/+19Hp9OJAEQAokajEYeGhuIu+/DwsAhAHB4ejvscQggh88/lkXHxrv/8H3Gt4Tfi1n98VnyNH8x2kUgSEvleTzqZxN69e/H4449jeHgYd955J1paWnDw4MG4zuV5PuAxy7Jyy1Cix2q12rAtRRzHBbR4abVacBwnX0+tVmNoaAhDQ0Ow2WwRW7sIIYSQcPqHx9BsehVHz7lRvXgRfq77IHasV2a7WCTNkg6cGhoa8OUvfxlmsxlqtRpdXV0YHByM61y73Q6lMvDNpVQq5e6zZI/1p1KpcODAAfmxIAjyuRKGYeIKmCYmJuB2uwN+CCGELFx9l69C+71X4bx0FSsri9H9lVuwdVXsoSxk7ks6cKqqqgIAdHd3o6WlBQBCApxIpCAmmMvlmtWxwbRarfx7V1cXNBqNHCgJggCr1Qqr1QqDwRDSsuWvo6MDlZWV8k9tbW3MexNCCJmfjp13o+mxV3FOGAO7ZDEsX70VdUvLsl0skiFJ53FyOp0QRRFOpxM33XQT+vr6AtITJCNSkJSKY61Wa8Dgcf8B5izLorGxEU6nM+z57e3t2LNnj/zY7XZT8EQIIQtQ7ykXvvCjHoyMT2PLigo88aUdWFJWlO1ikQxKusWpubkZHMfB4XBgeHgYJpMp7mCGYZiQFiOXyxW22yyRYyMxGAwh45j8W5ik2XqRWp2KiopQUVER8EMIIWRheem9S3jg+69hZHwa9Wur8HPdByloWoDiSkcwPDyMoaGhhBJbSuOAwgUZPM+jqakpoAWoqqoKfX19IQFRvMcqFAqEeyqdnZ3QarVgWVYO7Hiex86dO+UWMkEQUFVVhaGhobgCMkpHQAghC8vv3urH139xBFMeER+7bikee0CNkkX52S4WSZFEvtfjanGqrKyEzWaLe9bcU089he7u7og3Z1k24DHP86ivrw/IsSS1/sQ61l9wi5fVaoVKpZKDpu7ubjAMA5ZlYTQa5ePsdju0Wi3NrCOEEBKiq+d9/OXPOEx5RNy1bQUOfK6egqYFLO4EmIAvM3hHRwfq6urQ0NAAlmXBMAwEQQDP8zh8+DD6+vqg1+txxx13RL0Wz/MwmUxoaGhAT08P2tvb5cClqakJDQ0NaGtri3ms3W6HzWZDZ2cn2tra0NDQAK1WC57nUVcXuD4QwzByK5OUHJNhGDidzoBAKhZqcSKEkIXhwP/w+JffvQMA+FRDLf7lk9uQn0eL9c43iXyvJxQ4SYaHh9Hd3Q2n0wlBEMAwDOrq6qDRaLB+/fqkCz5XUOBECCHzmyiK+Nfn38N//+EkAED/URZ7P74ZCgUFTfNRIt/rSc2qq6ysRGtra1KFI4QQQnKZ1yvim8+8jSdePQ0A+Ltdm/C12+ooaCIAZpGOgBBCCJlvpjxetFnfxC+PnINCATxy71Y8+MG12S4WySEUOBFCCCEAxqc8+MufcbC/M4CCPAX+tfkDuPemVdkuFskxFDgRQghZ8K5MTOPLP+7B//IuFBXk4XsPqHDH5uXZLhbJQRQ4EUIIWdBcVyfx0A8P482zwygrKsDjn6/HB9nqbBeL5KikM4cDwLe//W15nbpDhw7R4reEEELmlAvD42gxvYo3zw6jqrQQP2/9IAVNJKqkA6e9e/eCYRhoNBoAwM6dO2G321NWMEIIISSdTl2+Cu1jr+DEwBXUVBTD8pVbsG11ZbaLRXJc0oFTQ0MDWltbQzJ7E0IIIbnunX43tI+9irNDY1hXXQrLV27BhmXl2S4WmQOSDpz6+voAICCvRU9Pz+xLRAghhKSR4/QQWkyv4vKVCWyuKUf3V25BrbI028Uic0TSg8O3b9+O+vp6VFdXw2azwW63J7RsCSGEEJJpL5+4BN0TDoxNeaBaw+CHD+1AZWlhtotF5pCkllyR9PX1wWQyAQBaWlqwffv2lBUsl9GSK4QQkvs8XhGH+1wYGBnHsvJiDF2dwP/X9QYmPV58ZOMSmB5Uo3QRTS4nGVirLtqNF0IgQYETIYTktmeP9mPfM8fQPzwesu/jW2vw75+6CUUF+VkoGclFiXyvzyodgdvtxqlTp+Qfg8Ewm8sRQgghs/bs0X589UkubNAEAH924woKmkjSkm6j/MpXvgK73Q6GYeRtfX19+N73vpeKchFCCCEJ83hF7HvmGCJ1pSgA/PNv38HurSuQn0eL9pLEJR041dXV4bHHHgvYduDAgVkXiBBCCEnW4T5XxJYmABAB9A+P43CfC7fUUaJLkriku+qkxJf+GhsbZ1UYQgghZDbOC6NxHTcwEjm4IiSapFucqqqq8J3vfAcsy4JhGAiCgK6uLnR1daWyfIQQQkhcek658K+29+I6dll5cZpLQ+arpAOntrY2CIIQMMbpyJEjqSgTIYQQEjf3+BSMvz+On772PgAgTwF4IwxyUgCoqSzGjvXKzBWQzCtJB06NjY1obW0N2PbUU0/NukCEEEJIvJ49egEPP30UF90TAICW+lrsWF+Fv7W8CQABg8SloeAP372FBoaTpM1qcHg82wghhJBUuzA8jn/89VE8f+wiAGD9ksX41ie3yQO+FxcVhORxqqksxsN3b8HurSuyUmYyPyQdODmdTphMJjQ0NAAARFFEd3d33OvV8TwPq9UKlmXB8zx0Ol1At18ix3Ich9bWVjgcjrjPS+T+hBBCcoPXK+Knh99H5++PY2RiGgV5Cug/xuL/3LERxYUzuZl2b12Bxi01AZnDd6xXUksTmbWkAyeTyQSNRgP/xOOJJCFvamqSAx2e59Ha2gqLxZLwsVLww3FcQuclcn9CCCHZd+LiCNoPvoXe00MAgJtqGey/fxs214TP9Jyfp6CUAyTlkg6cjEYjdu7cGbAtXIqCcHieD3jMsizsdntSx2q12oTPS+T+hBBCsmti2oPv/sGJ7754ElMeEYsX5ePvdm3Cg7esoxYkknFJ53EKDpoAX4qCeNjtdiiVgTMalEpl2FajRI6N97xErzkxMQG32x3wQwghJP0O97nwif94Gf9x6ASmPCJ2bl4G256P4aEPraegiWRF3C1OBw8ehEajkRe/e/zxxwP2C4IAm82G5557Lua1BEEIu93lcs3q2HjPS/SaHR0d2LdvX9T7EUIISZ3hsSns//1x/PywL8XAkrIifPOeLbhr2wooFBQwkeyJu8XpW9/6Fnp7e+XHjz32GIaGhuQfURQxODg4q8JECmhme2y850Xa197ejuHhYfnnzJkzSd2bEEJIdKIo4vdv9aPx0ZfkoOlTDbU4tOdj+LMbV1LQRLIu7hYn/6AJ8K1Lt3379oBt8Y5xYhgmpHXH5XKFndWWyLHxnpfoNYuKilBUVBT1foQQQmbnwvA4/uHXR2G7lmKAXbIY37pvGz7I0gBvkjuSHuPkP55peHgYTz31VNxjnCIFWPX19bM6Nt7zkr0mIYSQ1PN6Rfzk1VPQPPoSbMcuoiBPgf9zxwb87usfoaCJ5JykAyf/WWiVlZW4//77456ZxrJswGOe51FfXy+3+HAcJ898i3WsP/+utmjnJXJNQggh6fPexRFoH3sF//Drt3FlYhrb1zD47V99BH9z56aAvEyE5IqE0hEMDw+ju7sbCoUCNpstZL/D4cCXv/zluK5lsVhgMBjQ0NCAnp6egBxKHR0daGhoQFtbW8xj7Xa7XBbpPClFQbTzou0jhBCSXuNTHnz3DyfxvZeccoqBtt2b8cAH19JsOZLTFGIiWSsB9PX1wWg0ore3N6TLS6/XY/369SktYC5yu92orKzE8PCwPMuQEEJIfA73ubD34JvgL10FAGiuX4ZH7t2KlUxJlktGFqpEvtcTDpwkhw4dCpvLaSGgwIkQQhIXnGJgaXkR9t1zAz6+tYZmy5GsSuR7PenM4Qs1aCKEEJIYURTx+6MX8PDTb+PSyAQA4NM7arF39/WoLC3McukISUzSgRMhhBASS//wGP7hV2/D/g6lGCDzAwVOhBBCUs7jFfHk/57Gt597F1cmplGQp8BXb6vDX9y+gWbLkTmNAidCCCEp9e6FEew9+CaOvC8AAFRrGHTcdyM21ZRnt2CEpEBKA6dTp05h3bp1qbwkIYSQOWJ8yoP/94eTeOxaioGyogK07d6EB25eizxKMUDmiVkFTq+//nrA0iUmkwldXV2zLhQhhJC55X/5QXzj4FvgL/tSDDRuWY5H7r0BKyopxQBJAa8HOP0KcOUiULYcWHsrkJedLt+kA6fm5mYIghCQbfvIkSOpKBMhhJA5Ynh0Ch2/fwe/6PEtfr60vAiP3HMDdlOKAZIqx54GnjUA7vMz2ypWAruNwJZ7Ml6cpAOnxsZGtLa2Bmx76qmnZl0gQgghuU8URfzuLV+KgctXpBQDa7D345tRWUIpBkiKHHsa6P4cgKCUk+5+3/bmJzIePCUdONXV1cW1jRBCyPxyXhjDP/76KOzvDAAA2KWL0fHJbbiZUgyQVPJ6fC1NwUETcG2bAnh2L7D5rox22yUdODmdTphMJjQ0NADw/e+ju7sbPT09KSscIYSQ3OHxivjJq6fw7efexdVJDwrzFfjqbRvwF7fXoaiAUgyQFDv9SmD3XAgRcJ/zHbf+IxkrVtKBk8lkgkajgf+KLUmu3kIIISTHHb/gRvvBt+QUA+q1Vei4bxuuW04pBkgaiCJw6k/xHXvlYnrLEiTpwMloNIYsuxK86C8hhJC5bXzKg/9+wZdiYNrrSzFg2L0Jn6UUAyQdRl3AG78AuB8Dl47Hd07Z8vSWKUjK1qp74YUXIAgCtm/fPutCEUIIyb5XnYP4xi/fQh+lGCDpJIrAqZcBx4+Bd54BPL7JBsgvBvLygKnRCCcqfLPr1t6asaICs8zjdPDgQfA8D8DXTdfb24v77rsvJQUjhBCSHcOjU/jW795BV68vxcCy8iI8cu8N2L11RZZLRuaVKwPA6z8FuCcAFz+zveZGQP15YFsTwL90bVYdEDhI/Fpr5+79Gc/nlHTgtHfvXgiCAJfLBZZlIQgC9Hp9KstGCCEkg0RRxG/f6sc3nz4mpxj4zM1rYNhNKQZIing9gPMPAPcj4N3fA95p3/ZF5cA2rS9gWunXc7XlHl/KgbB5nPbPrTxOdXV1aG1tRV9fHxQKBdatW4cXXnghlWUjhBCSIeeEMfzjr47i0HFfioG6pYux//4b0bBOmeWSkXlh+Bxw5Enfz/D7M9tXNwCqzwM3fBIoKgt/7pZ7fCkH5nrmcJZlcfr0aaxfvx7f+c538Ld/+7epLBchhJAM8HhFPPHqKXzHL8XA127bgK9RigEyW55p4MTzvoHeJ54HRK9ve3ElcOOnfK1Ly2+I71p5+RlNORBN0oGTIAhgWRZDQ0O4fPkydu3aBYZhcMcdd6SyfIQQQtLk+AU39j71Fl4/IwAA6q+lGNhIKQbIbAydArif+MYvjfTPbF/7IV/r0pZ7gMK5O8FAIaYo+dKhQ4dQX1+PysrKuI7neR5WqxUsy4Lneeh0uoB17+I9Nto+q9Uqp0gIvjbHcQAAlUoFnuchCAJUKlVcZXe73aisrMTw8DAqKiriOocQQnLF+JQH//XCCZhe4jHtFVFeVADDxzfjMzvWUIoBkpzpSeDd3/pmxvF/mNleugS46dO+gGnJxuyVL4ZEvtdnNavu29/+Nnp7e9HV1QUACS3o2NTUBIfDAcAX/LS2tsJisSR8bKx9wYxGI9ra2mAymWA2mwH48k9FujchhMwnrzgv4+9/eVROMbDrhuXYd89W1FQWZ7lkZE66fMLXFff6z4HRyzPb2dt9XXGb7gIKFmWvfGkwq1l1dXV1covOzp07cfDgwbjSEUgpDCQsy8Jutyd8bLR9giDAYrFAq9XK+zs7O9HW1gYAUKvVGBoaAhDaGkUIIfONMDqJb/3uHXT3ngUgpRjYit1ba7JcMjLnTI35Ft/lfgyc9svuXVYDbH8AUD0IVK3LWvHSLenAqaGhAffffz8OHTqU8Ll2ux1KZeBMDaVSCY7jQrrLoh3b29sbcR/LsgFBk9VqDXgMxB8wTUxMYGJiQn7sdrvjOo8QQrJNFEX85s1+7HvmbVy+MgkAeOCDa9C2ezMqiinFAEnAxbd9XXFv/gIYH/ZtU+QBG+/0dcVtvBPIn1VH1pyQ9DPs6+sDENg919PTE1eLkyAIYbe7XK6Ejo22zz8A88835b/NarXK5dbr9QH7/XV0dGDfvn1h9xFCSK46J4zhH351FC9cSzGwYVkZ9t+3DfWUYoDEa+IK8PZBX8B0rndme+UaX8vSTZ8FKldlr3xZkHTgtH37dtTX16O6uho2mw12ux1Go3FWhYkUCCV6bPA+g8EQUjb/QeQsy6KxsRFOpzPs9drb27Fnzx75sdvtRm1tbdxlJYSQTPJ4Rfz4lVP4zvPvYnTSg0X5efja7XX46m2UYoDEQRSB80d8XXFvPQVMjvi25xUAmz7hG7vE3p61PErZNqu16iwWC0wmE0RRhNlsjnudOoZhQlqXXC5X2K6zaMfGcx1BEGC320OuzfO83ColzcjjeT5sq1NRURGKioriem6EEJJN7/S7sffgW3jDL8XA/vu3YcMySjFAYhgfBt7s9gVMF96a2a5kfV1xN30GKFuWvfLliFl1Rq5fvx779+9P+DyNRgOTyRSyvb6+PqFjWZaNeZ3e3t6wqQh27twpDw6XBI+XIoSQuWJ8yoP/OHQCB/5nJsXA3k9sxqcbKMUAiUIUgTOv+bri3v4lMD3m256/CNhyry9gWvdhIIFZ8+ng8XrADXC4NHoJS0uXQrVMhfxczxweT3bwxx9/HF/+8pdjXiu4VYfnedTX18sBDsdxYBgGLMtGPTZcK5L/daRrBQdELMsGdN3Z7XZotVqaXUcImZNeOXkZ3/jlWzg16FtFfvcNNdh37w1YXkEpBkgEoy7gjV/4WpcuHZ/ZvnSzL1j6wKeA0txoTLCftmP/4f24OHpR3ra8dDn27tgLzVpNxssTdwJMpVKJhoaGqMf09vZicHAwrhvzPA+TyYSGhgb09PSgvb1dDlyamprQ0NAgpw6Idmy0fYAvBYHT6QxpmeI4Tu7CczqdCY3PogSYhJBcIIxO4l9++w4sDl+KgeUVvhQDu26gFAMkDFEETr3sa11652nA45tliYISYOt9voCpdkfWW5f82U/bsefFPRARGKoo4Cvjo7c9mpLgKZHv9bgDp6amJlRXV0OtVkc8xmKx4Pnnn0+stHMQBU6EkGwSRRHPvNmPR66lGFAogAduXou/272JUgyQUFcGfMufcE8ALr/8hzU3+gZ6b2vyrR+XYzxeD3Y9tSugpcmfAgosL12OZ+9/dtbddmnJHG6xWDA8PIzeXt90xIaGhpCL0xghQghJr7NDo/i/vzqKF9+9BADYuKwM++/fBvVa+vtL/Hg9gPMPAPcj4N3fA95p3/ZF5cA2rS9gWhnfhK5s+dO5P0UMmgBAhIgLoxfADXBoqIneI5ZKCQ0Or6ysxM6dOwEAR44cgcvlgkKhkBf2vf/++1NfQkIIIfB4RfzolVP4V78UA39x+wZ85TaWUgyQGcPngCNPAkd+Agyfmdm+usHXFXfDJ4GisuyVL4zx6XHwwzxOCidxcuik71/hJPqv9sc+GcCl0UtpLmGgWeVxkrzwwguw2WxobGyUgyhCCCGpcey8G+0H38QbZ33ZmnesU+Jb923DhmW59QVIssQzDZx4zjd26aQNEL2+7cWMb5C36vPA8i1ZLSIATHmncHr4NE4KJ3FCOAGn4MRJ4STOjJyBVypzEpaWLk1hKWObVTqC119/HSaTCV1dXWBZFnV1dRQ4EUJIikgpBsz/w8PjFVFeXID2j1+PTzXUUooBAgyd8o1bOvJT4MqFme1rP+zrirv+bqCwJOPF8ng9OHflHE4IJ3By6CScghMnhBM45T6FaanLMAhTxGADswEbmA3YWLURG5gNWFexDs2/acbA6EDI4HBgZoyTapkqzBXTJ+HA6dSpU3LiS4VCgfvvvx8OhwPr169PR/kIIWRB+tO1FAOnr6UY+PjWGuy75wYsoxQDC9v0JHD8N740AvyLM9tLl/gSVKo+DyzZkJGiiKKIi6MXcWLohNy9dlI4CV7gMe4ZD3tOaUEpNlRtwEbGFxxtqPIFS9XF1QFLuEn27tiLPS/ugQKKgOBJmlVn2GHIeD6nuAOnxx9/HCaTCTzPo7m5GRaLJSRT+MGDB+Naq44QQkh4Q1cn8c+/fQdPcb4UAzUVxXjk3htwJ6UYWNgunwAcPwLe+DkwKqX9UQB1t/uCpU2fAAoWpe32g2ODAcGRNBbpytSVsMcvyluEOqYuIDjayGxEzeKasAFSJJq1Gjx626Nh8zgZdhhyO49TXl4etFotWlpawDBMyBMfGhrC/v370dPTk5aC5hJKR0AISTVRFPH0G+fxyDPHMHjVl2LgwQ+uxd/t2oRySjGwME2NAcd+7euOO/2nme3lK4DtD/h+qtal9JbuSbc89sh/oLZr3BX2+AJFAdZWrA0IjjZUbcDqstUpbQlKd+bwtKQj0Ol06OzsRLQ4q6urK/5SEkIIAQCccflSDLz0nm920HXLy9BxH6UYWLAuHPV1xb3Z5Vs/DgAUecDGOwH1Q8CGRiB/VkOUMTo1ir7hPnmQtjQeKVrOpNXlq8OOQyrMT39gn5+Xn9GUA9HEXfN6vT5mFNbe3j7rAhFCyEIx7fFeSzHwHsamfCkG/s8dG6D/WB0WFeRlu3gkkyauAG8f9M2MO9c7s71yDaB6ELjps0DlqoQvO+WZQp+7L6D16KRwEmdHzoYdcA34usGCxyGxlSxKCjI/0DwXxR04BY9nSvYYQgghwNvnh7H3qbfw1rlrKQbWK9Fx3zbULaUUAwuGKALnj/hal96yApPXxgvlFfjGLKk/D7B3AHmxg2iP14MzI2dCxiGddp/GtBh+JltVUZXcciQFSizDomIRDUGJZnZtfYQQQhIyNunBvx96D4+/3CenGPjGJ65HSz2lGFgwxoeBN7t9AdOFt2a2K+sA1ed8s+PKloU9VRRF9F/tDxmkzQ/zmPBMhD2nrLAsYJC29FNdUp2OZzfvUeBECCEZ8scTvhQD77t8KQY+sa0G37ybUgwsCKIInHnN1xX39i+B6THf9vwiYMs9vplx6z4sL7AriiIGxwdxYmgmUaQ0Hunq1NWwtyjOLwbLsAGDtDcwG7C8dHlCM9lIdBQ4EUJImgWnGFhRWYxH7t2Kxi3Ls1wyknajLl8KAe4J4NLxme1Lr/d1xd3YguH8fJwUTsL5niUgJ5IwIYS9ZIGiAOsq1wUERxuYDVhVtirjOY0WIgqcCCEkTURRxK9fP49HfnMMrmspBj73wbX4W0oxML95vcCpl31dce88A3gmAQCji0rBX9eIE7U34WSeByeF13HyN1YMjA2EvYwCCqypWDPTvVa1ARsqN2BtxdqMzGQj4VHgRAghaRA+xcCNUK+tynLJSNqMXARe/ykmuR+j78o5nFxUiJMVJThZXosTxSU4N+UGrh4Bjh8JOXXF4hUBg7TrmDqwlSyKC6gbN9dQ4EQIISk07fHih386hUdtlGJgvpv2TuPM8GmcfPdXOHny9zjhPoWThQV4v7IAHmaF35FTwNQUAKC6uDpgqn8dU4c6pg7li8qz8yRIwihwIoSQFDl6bhjtB2dSDNy8XolvUYqBrElVtmmv6PXNZBvyDdA+KZzEycvvgHefwhS8MwcunslzVF5YHjDVXwqSlMWU1HSuo8CJEEJmaWzSg3+3v4fH/+hLMVBxLcVAM6UYyBr7aXvY9c327tgbcX0zURRxeeyynEXbPyfSmDQLLkiJ14u6aREbKtZiw9rbsaH2Q9jAbMCy0mU0k22eosCJEEJm4eUTl/CNX76FMy7fF+tdN67Aw3dvwbJyGpuSLfbTdux5cU9IZuyB0QHseXEPHr3tUdQvrw8IjKTZbO5Jd9hrFiIP66ensWF8DBsnp7Bhcgp1yz6AVaovIW/LPUAhvd4LBQVOhBCSBNfVSfzzb47h4JFzAHwpBv7p3q3QUIqBrPJ4Pdh/eH/Y5USkbX/z4t/A69/F5idPkYc15WuwsZLFhmkv6vqPYePZ11E7NY1CAChdAtz0kC/v0pIN6XsiJGdlLXDieR5WqxUsy4Lneeh0OjAMk/Cx0fZxHAcAUKlU4HkegiBApVIlfH9CCJGIoohfvX4O//Sbd+QUA5+/ZR3+dtcmlBXR/0UzSRRFDE8M49zVc+i/0o/zV87jyMCRiAvVSqSgaVXZKnmqfx1Th41VG7F+yoOi138G9P4cGB28doYCqLvDFyxt+gRQsCjNz4zksqx9ypuamuBwOAD4gpjW1lZYLJaEj422z2QywWw2AwA0Gk3A9RO5PyGEAL4UA3//q6P4n2spBjYtL0fH/dugWkMpBtLBK3oxODaI81fPo/9KP85dOYf+q74A6fyV8zh/9XzEsUexPHLrI/jkxk/6HkyNAcd+Dbz018D7r8wcVL4C2P4AsP1BoGptCp4RmQ+yEjjxPB/wmGVZ2O32hI+NdR21Wo2hoSEACGhNSuT+hJCFw+MVcbjPhYGRcSwrL8aO9Urk5ykw7fHiB3/qw6O29zA+5cWigjx8fedG6D7KojCfUgwka9o7jUujl3D+6nk5GOq/OhMg9V/px6R3MuZ1qoursapsFVaUrYACCjx76tmY56wuXw1cOOpLUvlml2/9OABQ5AEbd/myem9oBPKpFZEEyso7wm63Q6kMnJKpVCrBcZzclRbPsb29vTGvE677LZH7A8DExAQmJmYWT3S7ww8eJITMXc8e7ce+Z46hf3hc3raishhfuHUdnn7zPI6e833uP8gq8a1PbgNLKQZimvJM4cLVCzNdaUEB0oWrF+ARPVGvkafIw7LSZVi5eCVWlq3EisUrsLJs5czjshUoyi+Sj/d4PTgycAQDoxfDjHICFACWF5ZD9UwbcI6b2VG5xrfA7vbPAhUrU1MBZF7KSuAkCELY7S6XK6FjY11HEARYrVYAQE9PD/R6PViWTej+ANDR0YF9+/aF3UcImfuePdqPrz7JhXzR9g+P41u/960vVlFcgL+/y5digKaZ+4xNj4UERNLv/Vf6cWnsUthB2v4K8gpQU1ojtxhJAZEUJC1fvByFefEvL5Kfl4+9K3Ziz8mfQgFA9HutFKKvLIazPPJHx4C8AmDzXb6xS+ztQB61HpLYcqoNMlJAk+ix0j7/Ad8sy6KxsRFOpzPha7a3t2PPnj3yY7fbjdra2rjLSgjJXR6viH3PHIv69V5cmIfn/vqjWFFZEuWo+WdkciQgIPIPkvqv9sM1Hv4/m/6K8ovkFqIVZSt8AZJfq9GSkiWpXZjW64Hm8BN4dHoI+6urcLFg5mtuuccDw+AQNGOTgOabwE0PAGVLU3dvsiBkJXBiGCakdcflcoXtVot2bKzr8Dwvd71Js+d4nk/o/gBQVFSEoqKisPsIIXPb4T5XQPdcOONTXpy6PDqvAidRFDE0MRS2xUiaoTYyNRLzOmWFZb6AaHH4FiNlsTJzLXTTk0DPAcB9HhoAt4+OgSsuwqX8fCz1eKAan4Acoq2qp6CJJCUrgZNGo4HJZArZXl9fn9CxLMtG3MdxHHbu3CkPDpcolcqE7k8Imb+8XhF/Onk5rmMHRqIHV7nGK3pxeexySEAkjTfqv9of14w0poiJ3GJUthIViyoy8GyicPcDJ+3AiecA54vA5Eywlw+gYXwi/HlXoqcsICSSrAROLMsGPOZ5HvX19QH5lxiGAcuyUY8NbiHy38eyLIxGo7zPbrdDq9XGPI8QMv+dHRrFU45zsHJn5IzfseRaJvBp7zQGRgfCTtGXAqMp71TM6ywtWRrSYuQfIJUWlmbg2STA6wHO9gInnvf9XHgzcH9x5cwMuWjKKFEpSU7WxjhZLBYYDAY0NDSgp6cnIIdSR0cHGhoa0NbWFvPYSPsYhkF9fT06OzvBMAycTmdc5xFC5qexSQ+ee/sCLI4zeMU5iGvjhLF4UT681/aHowBQU+lLTZBJk55JOSCSp+j7dasNjA7ENSNteenyiC1GNYtrAmak5ayrg4DzEPDec75/x/x7EhTAKpUvhcDGRmD5NuA/b/S1REWaV1exElh7a4YKT+YbhSiK0ac8kBButxuVlZUYHh5GRUWWm6kJIRGJogjufQFWxxn85o1+jExMy/turatGU/1q7L5hBV56bwBffZID4EVeaR8UBSMQp8vhHV0PIA/fe0CF3VtXpLRso1OjYQMiqcXo0tilmNcozCvEisUrwo4tWlW2CstKl6EgL6fmAMXH6wUuvAGcsPlalc72IiAIKmaADTuBjXcCdTtDxyodexro/ty1B/5fcdfGWjU/AWy5J33lJ3NOIt/rc/ATRQgh0V10j+Mgdw5Wxxk4L12Vt9cqS6BV1eI+1SrUKme6oHZvXYGv3TWKn5z4T4j5grxd4WHw4Ma/Sipock+6Q5M6+gVIwoQQ8xolBSUBM9CCA6QlJUuQp5gnU+jHhwHnH3zB0klb6Bikmm2+QGnjnb6B3dESU265xxccPWsA3OdntlesBHbvp6CJzAoFToSQeWFi2oND7wzA0nsGL713Cd5rDQ0lhfn4+LYaNKlrcfN6JfLyQmd42U/b8RP+nyDmBzXA5w/jJ/w/YfuaKmjWauTNoijCNe4KO7ZIGnx9ZepKzDKXF5bLSRz9AyLpd6aImb85o0QRGHjn2lglG3DmfwHvTIsgFpUB7G3XgqXGxJNSbrnHl6Pp9Cu+IKxsua97LpWpD8iCRF11SaCuOkJygyiKePu8G1bHWfzq9XMQRmcGQ9evrUJT/Wp8YtsKlBdHTqDo8Xqw66ldUReGLSssw651u3Dh6gU5QBr3xJ5lpyxWRm0xKl9UntgTnusmrwJ9/zMTLA2fCdy/5LqZVqU1t9BiuiRjqKuOEDKvDV6ZwK9ePw9L7xkcvzAz/bymohj3qVZBq16N9UsW4+rUVbgnL+Gcyw33hBvuSTdGJkfgnnRjeGIY7kk3+ob7ogZNAHBl6gqeOvFUwDYFFFhasjRii1HN4prcm5GWDYPOmRlwp/4IePzWnisoBtZ/1BcobdAAyvXZKychcaLAiRCSs7yiVw50hsaG8bLzfbxw4jTevnABXowB+WMoXTmGGkZEdYUHeQXjeHHUjWcOjWBkciTmrLNE7FyzEx9b/TF56v7yxcuxKJ9aREJMjQOn/zQzsNsVtFoDs8Y3A+66XcC6DwOF8yepKFkYKHAihKTVtHdaDn6kVh/p95GpkZBt8u+TblyZvBJ2rbPCoBQ8l0TgUoTUPYvyFqGiqALli8pRsajC91NUIf8ujAvoeq8r5vP47PWfRUNNQzJVMP8JZ2a63/peAqZGZ/blFfrGFkldcEs2AvN13BZZEChwIoTENOmZDB/cBHV/BQc+7gk3RqdHY98gBtFbCNFTgnyxFNWlDNZWVWNVRXVIIBQuOCouiJ640uP14MWzL2JgdCBskKaAAstLl0O1TDXr5zFveKaAM6/NBEsDxwL3l6/wDejeeCew/mNAMY0FJfMHBU6EzJLH6wE3wOHS6CUsLV0K1TJVahctTQFRFDHuGfe18khBTphAaGQyfAtQPAOhY1lcuFgOauQAx6/lp2xRBS64FHCcGoejbxxTk0W+YAmluH3TSjTtWI3bNy9DYX5qp9/n5+Vj74692PPiHiigCAieFNfy/hh2GHLuNc24kYu+NAEnnvelDZhwz+xT5AG1N88ES8u3UqsSmbcocCJkFuyn7dh/eH/A4OLlpcuxd8fegOnrqSCKIkanR8O26kRsAfLbFs/yG9EooEDZorKZFp2gwCfgdyk48msJipSI8dTlq7A6zuJH3Nlri+36ZpptWl6OpvrV+PPtq7CkLL3ZrTVrNXj0tkfDvpaGHYaUv5ZzgtcDnONmBnb3vx64v7Qa2NDoC5bq7gBKM5tZnZBsoXQESUhHOoK50GoBzJ1yZoL9tB17XtwT0r0jtVI8etujIV+4XtGLK1NXondxRQh+RiZHMC1OYzbyFfkB3Vn+wU24QMj/2LLCspS91lcmpvG7t/ph7T2Lw6dc8vbKkkLce9NKNKlrsXVVRcZzGC349/eoCzh5yBconbQDY67A/Su3X1va5E7f73nzJPkmWfAS+V6nwCkJqQ6cYrVaJPrHPF1//DPZupJLpr3TmPBMYHx6HOOecYxPj2N0ahR/cegvMDQxFPG8ovwifGDpBwICpStTV+AVvbMqT0FeQdSxPZVFlRGDn8WFi7OWUFEURbzW54Kl9yx+f7Qfo9fWhstTAB/ZuBRN9auhuX45igsXUKCSbaLoWyRXGqt0tgfwf38WVQIb7phJF1C2LHtlJSSNKHBKs1QGTrFaLR664SH8ru93cQcr6QpukmldSSdRFDHpnfQFM34BjfTvhGcCY9NjkX/3jGNiegLjnnGMTY/JgZH/79L1ZtvFFU5RflHk4Ceoyys4+CkpKJlT2aTPCWN4ynEWVsdZvO+aGSi+fsliaNWrcb9qNWoqow/gJik07gb4P1wLluzAlQuB+5fdAFx3bQbc6h3RlzYhZJ6gwCnNUhU4xZOxOJxIwUq6gptY5ZRmHT17/7MAEBKcjHmuBS3+vwcFM8FBy5hnTA5sAgIjv9/DzYBKt+L8YhQVFEEURbgn3TGPb9nUgo+u/mhIYDQnVqSfhfEpD557+wIsvWfxJ+dlSH9lFi/Kx5/duBJN9auhXls1pwLAOUsUgUvvzoxVev/VwKVNChdfW9rk2nilytVZKyoh2UKZw+cIboBLOGgCIAcMj7z6CPIUeZjyTmF8ehydPZ1hgwlp29//8e/Rc6EHIkR4RS88ogde0Sv/eEQPvN6Z7dK/g+ODUcspQsSF0QtQP6lOacLBeOUr8lFSUIKi/CIUFxQH/F5cUIzi/Bj/Rvo96N9F+YvkBVV7LvTgi899MWbZdq3btWBy/4iiiCNnBFgdZ/HMG+cxMj7z5XwLWw2tejU+vq0GpYvoz07aTY4GLW3yfuD+6g0zeZXW3goUzO9AnpBUor9gWXRp9NKszh+aGMLX//D1uI8fnR7Fz47/bFb3jCY4aJJaZ4rzEwhm/H4vyi9CSUFJ4O/Xrun/e2Fe5HXI0kW1TIXlpcsp9w+AAfc4Dh45B6vjLE4OzCxsu4opgVa9Glr1atQqaemRtHPxM9m6+14GPBMz+/KLgPUfmRmrVF2XvXISMsdR4JRFS0uXzvoateW1WFa6DO4JN04IJ2Ief3vt7dhYtRH5inwoFArkK/KRp8gL/2+e79/T7tP4wdEfxLz2dz76Hdy84mYUFRShKL9Ibp2ZjxZ67p/JaS8OvXMRFsdZvPTeJXi8vudfXJiHj29dgSb1anyQrUZeHnXFpc30BHD6lZkuuMGTgfsr1/i63q7bBaz7CLCIgldCUoECpyyK1WoRj3237kNDTUPcXUcPbnkw4a4jj9eD3/K/jdm6olmrmbeBQjgLMffP2+eHYek9i1+/fg5DozOD5lVrGDTV1+KuG1egojjzLYALxvDZa61KNoB/EZi6OrMvrwBYc8tMF9zSTZSEkpA0oMApi6K1WsQS3BWUzq6jhd66Eo1mrQa3194+r3P/uK5O4tevn4Ol9yyO9c8MiF9WXoT7VL6uuA3LyrJYwnnMMw2cPQy899y1pU3eDtxftnwmWzd7G1BcmZViErKQ0Ky6JGQij1NNaQ0+vv7j+NHbPwKAsMFKpFl18R6fqnLO19aVhWza48VL712CpfcsDh2/iCmP7/20KD8PjVuWQ1u/Gh/ZsAQFKV7+hAC4MuBLPnnieeDkC8CE3+rFijxgdYPf0ibbKAklISkwJ9IR8DwPq9UKlmXB8zx0Oh0Yhkn42Gj7OI6D3W4HAPT09ODAgQMB+wBApVKB53kIggCVKr7WmExmDk80WEl3cLPgMyvPcycHRmDpPYuDR87h0sjM4OKtqyrQpK7FPR9YiarFi7JYwnnI6wXOHwFOPOcLls4fCdxfovQN6N54J7BhJy1tQkgazInASa1Ww+FwAPAFPwaDARaLJeFjo+3r7OxEW1ub/HtXV5d8rF6vh9lsBgBoNBpYLJaIgVuwdARO0eRK5nAyP7nHp/DMG+dh6T2L188I8nbl4kX485tWoal+Na5fQavbp9SoC3C+4Ot+O2kHRi8H7l/xgZmlTVapAPr8EpJWOZ/Hief5gMcsy8otQ4kcG20fx3Ho6OiQAyetVguDwQCe58GyLNRqNYaGfMtlxBswZUt+Xn5CA7oTPZ4sPF6viFecg7A4zuDZoxcwMe1bZiM/T4HbNy2FVl2LOzYvw6IC6gZKCVEELh6dyat05rWgpU0qgLrbZ9IFlNdkr6yEkKiyEjjZ7XYolYHNzUqlEhzHhXSXRTu2t7c36nUOHDggbxcEQd4vyfWAiZBUOz14FVbHWTzlOIvzw+Py9uuWl6FJXYs/374KS8spGWJKTIz4Zr5JwdJIf+D+pdfPLG1SezOQT7MRCZkLshI4SUFMMJfLFbIt2rGxrqPVauVtXV1d0Gg0crAkCAKsVisA3/gnvV4PlmXDXm9iYgITEzPjPdzu2EttEJIrrk5M43dv9cPiOIvDfTOfsYriAtxz00o0qWtx4+pKWv5ktkQRuHziWqD0HHD6VcB/ncPCUmD9x2aWNmHWZK+shJCk5VQ6gkiBUKLHBu+TgiRpfBOAgEHkLMuisbERTqcz7PU6Ojqwb9++uMtGSLaJooieU0Ow9J7Bb9/qx+ikL6u7QgF8eMMSNNXX4s4ty1FcSGNnAng9vqSSVy76pvqvvTX6+KLJUeDUH2eSUAqnA/dXrfcloNx4J7D2Q0AhLWZMyFyXlcCJYZiQ1iWXyxW26yzasfFex2AwwGazBWzneV7uFpRm5Enjn4K1t7djz5498mO3243a2tp4niohGXVeGMNB7iysjrM4NTgqb19XXQqtejXuU63GSqYkiyXMYceeBp41AO7zM9sqVgK7jcCWe2a2DZ3ydb299xxw6mVgeqbLE/mLgHUfnklCSUubEDLvZCVw0mg0MJlMIdvr6+sTOpZl2ZjX6ezshMFgAMuycksUz/PYuXOnPDhcEjxeSlJUVISiIhr3QXLT+JQHz719AVbHWfzx5GVI82QXL8rHXTeuQFN9LerXVlFXXDTHnga6PwcEJ4919/u2f8wATF7xtSpdfi/wmIrVgUubFFEyUELms6wETsGtOjzPo76+PiDHEsMwYFk26rHBLUvB17FarVCpVHLQ1N3dDZ1OB5ZlYTQa5fPsdju0Wi0NFidzhiiKeOPsMCy9Z/D0G+cxMj4t77t5vRJN9bX4+NYaLC7Kqd743OT1+Fqawmbuv7btpf0zmxT515Y2uZaEctn1tLQJIQtIVhNgmkwmNDQ0oKenB+3t7XLg0tTUhIaGBjmVQLRjI+3jeR51dYHN5AzDyK1MUnJMhmHgdDoDAqlYMp3HiRDJwMg4fnXEt/zJiYEr8vZVTAnuV63C/erVWFu9OIslnENEEbh6GXirG3juG7GPr9MAqgcA9naghEl78QghmTMnEmDOZRQ4kUyanPbiheMXYek9ixffuwSP1/eRLSrIw+6tNWhS1+LWumrk5VGrR1ii6EsFcOk4cOndwH/HhmKfL7n/+8A2bezjCCFzTs4nwCSExHbsvBsWxxn8+vXzcF2dlLdvX8OgSV2Lu25cgcoSyv0j83qB4TOhwdHl94CJSClEFL7Zc1cuxL5+2fKUFpcQMjdR4ERIDhm6Oolfv34OFsdZvH1+5st+aXkR7lOtQpN6NTYsK89iCXOA1+Ob2XbpeFCAdAKYGg1/jiIfULLA0k3A0s3XfjYBSzb6ZsL9+1bfQPCw45wUvtl1a29N45MihMwVFDgRkmXTHi9ePnEZFscZ2I8NYNLjW4qjMF8BzfXL0VS/Gh/duBQF+Qts+ZPpScDFh7YeXT4BeCbCn5O/CKje4BcgXftXWQcURFmceLfx2qw6BQKDp2vdn7v303pxhBAAFDgRkjUnB67A4jiDX3LnMDAyEwhsWVGBpvrVuPemVVAujvJlP19MjQODJ/y62I4Dl94DXE7AOx3+nIISX2uRf3C0dDNQtQ7IT+LP2pZ7gOYnIuRx2h+Yx4kQsqBR4ERIBrnHp/CbN/phcZzBkfcFeXtVaSH+fPsqaNWrccPKyuwVMJ0mrvhajPxbjy4d93W7+S94629RWWjr0dJNQOUaIC/FLXBb7gE235VY5nBCyIJDgRMhs+Txijjc58LAyDiWlRdjx3ol8v1muHm9Il7lB2HpPYNn376A8SlfkJCfp8Bt1y1FU/1q3LF5ORYVzJOuuDFhJii69O7Mz/D7kc8pZkKDo6WbgIpVmc2RlJcPrP9I5u5HCJlzKHAiZBaePdqPfc8cQ//wzLIbKyqL8fDdW3DDykpYHGfxlOMszglj8v4Ny8rQpF6NT25fhWUVc3jtsquDM11r/oHSSH/kcxYvDQ2QlmwCypZREklCyJxAgRMhSXr2aD+++iQXMg+rf3gcX3mSC9hWXlyAuz+wEk3q1biplpk7y5+Ioq/bShp35D9Qe/Ry5PPKV4a2Hi3ZBCyuzlzZCSEkDShwIiQJHq+Ifc8cCzt53d+HN1Sjqb4Wu26oQXFhDo+VEUVg+KwvKLoclAdpfDjyecyawBakJZuApdcBxfN0nBYhZMGjwImQOA2PTuH4BTeOXxjBS+9dCuiei+Qvbt+IW+pyqJXF6wGE98MniZy8Ev4cRR5QtT6w9WjpJmDJdcAiWt6FELKwUOBESJCJaQ+cA1fx7kU3jveP4PiFEbx7YQQX3LEDpWADI4mfkxKeaWCoL3ySyOkIZcormMmBtGTTTCtS9QagcA6PxSKEkBSiwIksWKIo4uzQGN69MIJ3L47gnX433r0wgr7LVzHtDd8Jt4opweaacpQVFeDXb5wPe4y/ZeVpDjimJ4BBZ+g6bIMnAe9U+HPyi3ytRf6tR0s3+zJr59MSLoQQEg0FTmRBkLrZ3r3oa0E63u/Gexev4MpE+ASLFcUF2FxTgU015dhUU47NNeW4rqYcFcW+wMLjFXH4lAsXhscjLdKBmkpfaoKUmBwNShJ57V9XHyB6wp9TWBraerR0ky9JJOUmIoSQpFDgROaVgG62a11sx/sjd7MV5itQt7QMm2vKsamm4tq/5VhRWRx15lt+ngIP370FX32SQz68aMg7jmUQMAAGPd7N8CIPD9+9JSCfU3xPYMRv9trxmcHaQ6cRfh01AEUVgS1HUoBUsTr1SSIJIWSBo8CJzEnB3Wy+IMkN/lLsbraZVqQKsEsXozDJNeB2b12Bg7dfxspX92E5BuXtF1GN87c8jO1bV0Q+eWwoqPXo2o/7bORzSpRhkkRuBsprKAcSIYRkCAVOJOcFd7O9e2EE710YwUiS3Wwpc+xpbH/16xCDWoKWwYXlr34dqGWANbeGth5deteXGymSsuVhlhnZDCxektryE0IISRgFTiRnhOtme/fCSMRp/8l2s6WE1+NbEBYigu+kkAKp7s8jYvca4OtKCwmQrgNKqtJUaEIIIbNFgRNJSKx12eIhiiLOCWM43p+9brawvF5gXABGXcCYCxgdvPYT9PuYCxDOAO5Ys+quPZeqdWGWGbkOKCpPXdkJIYRkBAVOJG7PHu3HPz39FmqvvCEPhD5T9gH8wz3bsDvCeJ7hsSnfAO0L7sx2s0lB0NhQhABoMHTfmAsQvQnWSgz3fhfY/tnUXpMQQkjWUOCUIzzT0zj+2nMYGzqHkqpV2HzzLuQXFMTcl+i1kvXs0X786mePwVL4BFYucsnbz08o8cjPPoepFj02LCvDuxdG8M4Fd2q72bzea0GOK0IA5ArdN5sgaFE5UKoESqv9/r32e8m1x+5zwHPfiH0tZk1yZSCEEJKTshY48TwPq9UKlmXB8zx0Oh0Yhkn42HTsy7Qjz/0YK1/dhxv8Z2bZfDOzAETct33X5xO6Vrjj4+HxinjxVz/Adwv/PWRfDVz4buG/46tdwHPeHWHPD+hmW74YW5TAupJxFE4IwOhFYPQYMDgInPUPflyBgdGsgyD/AKj6WgAUJjgqUQIFi2Jf1+sBXv1vwN2P8OOYFEDFSmDtrcmVmxBCSE5SiKIYa53StFCr1XA4HAB8QYzBYIDFYkn42HTsi8XtdqOyshLDw8OoqKhI5unLjjz3Y3zglb8CAPgPFZKG+ijg+1oOt++NW/8zIBiKdS3/48enPBBGpzA0Oomhq5MYuva7MOr/u+/fi0NXYZ3UowYuhBvO5BWBQVTgYW8rbqgSwZZNorZoDMsLroBRXEHh+FBg91ikhI2xLCoHSquCgh+/1qCQ4KgKKChK7l7xOPY00P25aw/8P0bXKqn5CWDLPem7PyGEkJRI5Hs9Ky1OPM8HPGZZFna7PeFj07EvkzzT01j56j4ACAlI8hS+Besj7fOKwIpX96GX3YnpaQ/Gx0ex5dWHox6/5pW/x97D72NqahJ5nnEUYWrmR+H7dzEmofR7XIQpLIMLK/NdiCRPASyFG9/N/1fADd9PLIvKZgKdkqCAJ2xwpExvEJSMLff4gqNnDYEDxStWArv3U9BECCHzUFYCJ7vdDqUycCkKpVIJjuOgUqniPra3tzfl+4LvDwATExOYmJiQH7vd8UQGsR1/7Tlfl1qESWnRZtTnKYAaDKLmpzcEnRT5+GqMYL/nO0AefD8pNr54NYprNoVvBQpuHcq1IChZW+4BNt8FnH7Fl5upbLmve46WNCGEkHkpK4GTIAhht7tcoa0a0Y5Nx75wOjo6sG/fvrD7ZmNs6FzKrxnLUEktSqrXIr+oGAWLSqAoKPYFMQXF136KQv71uk4h70//FvPahfd/D2A/moFnkWPy8oH1H8l2KQghhGRATs2qixTQJHpsqve1t7djz5498mO3243a2toYJYytpGrVrK/xzu2P4/pb7sKx157HlkOxB3+f/7ARN3zoroTukef1YIz7OYpGL0Qc4zRRWoOSdR9K6LqEEELIXJOVFUAZhglp3XG5XGFntUU7Nh37wikqKkJFRUXATypsvnkXLqIaEXI+QhRnxjkF84rABVTjug99ElhUik23/FnUa0nHb755V+IFzctHyd3fhkKhQPDcNi8AhUKBkru/Td1ThBBC5r2sBE4ajSbs9vr6+oSOTce+TMovKJBTDgQHPF5xZp5WuH0A0H/Lw3J+pljXCj4+YVvugaL5CSgqVgZsVlSsgoJmjxFCCFkgstJVx7JswGOe51FfXy+3+HAcB4ZhwLJs1GODW4hSsS/Ttu/6PI7Al6tpuV/upQFFNfr98jiF2xeclynWtZLN4yTbcg8UQQOhFTQQmhBCyAKStTxOPM/DZDKhoaEBPT09aG9vlwOXpqYmNDQ0oK2tLeax6dgXSyrzOElyPXM4IYQQMl8l8r2etcBpLktH4EQIIYSQ7Ejkez0rY5wIIYQQQuYiCpwIIYQQQuJEgRMhhBBCSJwocCKEEEIIiRNNtUqCNJ4+VWvWEUIIISR7pO/zeObLUeCUhJGREQBIybIrhBBCCMkNIyMjqKysjHoMpSNIgtfrxfnz51FeXg6FIszibXGS1rw7c+YMpTXIAKrvzKL6zjyq88yi+s6sdNa3KIoYGRnBypUrkZcXfRQTtTglIS8vD6tXr07Z9VK5/h2Jjeo7s6i+M4/qPLOovjMrXfUdq6VJQoPDCSGEEELiRIETIYQQQkicKHDKoqKiIjz88MMoKirKdlEWBKrvzKL6zjyq88yi+s6sXKlvGhxOCCGEEBInanEihBBCCIkTBU6EEEIIIXGiwIkQQgghJE6UxykLeJ6H1WoFy7LgeR46nQ4Mw2S7WHMex3Gw2+0AgJ6eHhw4cECu12h1Tq/H7BkMBrS3t1N9p5ndbgfP82BZFgCg0WgAUH2nC8/zsNvtUCqV4HkeWq1Wrnuq89njOA6tra1wOBwB25Ot24zVu0gyTqVSyb87nU5Rq9VmsTTzh9FoDPjdv56j1Tm9HrPjcDhEAOLQ0JC8jeo79Ww2m6jT6URR9NUby7LyPqrv9PD/myKKolz/okh1PlsWi0X+2xEs2brNVL1T4JRhTqcz4MUVRVFkGCZLpZk/HA5HQD06nU4RgOh0OqPWOb0es2exWESWZeXAieo7PfzrWBR9dSn9S/WdHsF15x+4Up2nRnDglGzdZrLeaYxThknNvv6USiU4jstSieYHlUqFAwcOyI8FQQDgq9todU6vx+xYrVZotdqAbVTfqcfzPFwuFxiGAcdxEARB7jKi+k4fpVIJtVotd9k1NjYCoDpPp2TrNpP1ToFThklf6MFcLldmCzIP+X+Bd3V1QaPRgGGYqHVOr0fyBEEIO36A6jv1OI6DUqmUx2+YzWZYrVYAVN/pZLFYAAB1dXWwWCzy3xiq8/RJtm4zWe80ODxHRHrRSeIEQYDVag0ZcBjuuGT2EZ/u7m7odLq4j6f6Tp7L5QLP8/J/BnQ6HaqqqiBGyV9M9T17drsdRqMRPM9Dr9cDAEwmU8Tjqc7TJ9m6TUe9U4tThjEMExIBS03wJDUMBgNsNptcp9HqnF6P5NjtdjQ3N4fdR/WdeizLyvUHQP6X4ziq7zTheR49PT3QaDTQ6XRwOp3o7u4Gz/NU52mUbN1mst4pcMowafpwsPr6+gyXZH7q7OyEwWAAy7IQBAGCIEStc3o9ktfd3Q2z2Qyz2Qye59HR0QGO46i+00AazxQO1Xd6cByHhoYG+THLsmhvb6e/KWmWbN1mst6pqy7Dgv8A8jyP+vp6+t9IClitVqhUKjlokrqSguvWv86j7SORBf+R0uv10Ov1Yb/gqb5nj2VZ1NfXy+PKpFxOKpUq5Fiq79RQqVQwmUwBYycHBwepztPAf7xktO/IXPlbTov8ZgHP8zCZTGhoaEBPT09A4kCSHJ7nUVdXF7CNYRgMDQ3J+yPVOb0eyRMEAWazGQaDATqdDnq9HiqViuo7DQRBgMFggFqthsPhkFtWAXp/p4vdbpe7QwHffxiozlPDbrfDZrOhs7MTbW1taGhokIPUZOs2U/VOgRMhhBBCSJxojBMhhBBCSJwocCKEEEIIiRMFToQQQgghcaLAiRBCCCEkThQ4EUIIIYTEiQInQgghhJA4UeBECCGEEBInCpwIITnFbrejrq4OnZ2dMJvNUKvVUKvVcqLNuro6cBw363tI1ySEkETQkiuEkJwiCAJsNpucodlms0GpVEKn0wEAWlpawPN82KUv4qXRaNDS0pKS8maC/5IUhJDsohYnQkhOcblcURe1ValUIaugz2c8z6O7uzvbxSCEXEOBEyEkpzQ3N6fkmPnCaDRmuwiEED8UOBFCcko8XVK9vb1Qq9Xo7OwEAFitVtTV1cFutwOYGSel1+thtVphNpuh1+shCELEa9rtdnR2dsJqtcJgMEQ8jud5GAwG+brSNTmOk8/v7OwEz/PydWOVVRpvZbfbYTab0dTUJO/r7e2FzWaD2WyWr0kIyR4a40QImXOCxyhptVp0dXUF7NdqtaiurpZXXLdarWhqaoLNZgu5nhQMORwOAL7uQmnVdn+CIKCxsREOhwMMw8BgMMBsNkOr1cJgMARcW61W49ChQ3GVVaPRwGazwWKxAAAsFgs4jpP31dXVyWO8CCHZRYETIWTe8m+90mq1aGpqCjvQ2mQyQalUyq1AANDT0xNyve7ubrAsK5/f3t4OAOjo6AgZrM6yLLq7u+MKeKqrq1FdXR1Q7oU0jouQuYQCJ0IIgW/QuUajkR+HC3iCg65Mz3Sj2XWEZB+NcSKEzEkMw2BwcFB+bLfbQ8Yw+T+2Wq3QaDQBgYe0v6WlJaC1SbpeMK1WG5JDym63hz2f4zh5EHs8ZY1HuDIRQjJLIYqimO1CEEJIMLvdDp7n5VllBoMB9fX1cpeYIAgwGAzyQGqTyQRBEGAymcCyLAwGAwRBkLvnenp60N7eDoZhwHEcWltbAQAHDhyASqWC3W6HzWZDQ0MDAIQEWf7lCnec3W4Hx3FgWRY9PT1oaWmJq6yCIASURRpvpVKp5OduNBqhVquh0WiipmoghKQfBU6EkHlJyjJOg6oJIalEXXWEEEIIIXGiwIkQMu/Y7XbY7XZ5Wj8hhKQKddURQgghhMSJWpwIIYQQQuJEgRMhhBBCSJwocCKEEEIIiRMFToQQQgghcaLAiRBCCCEkThQ4EUIIIYTEiQInQgghhJA4UeBECCGEEBKn/x+h5R6KxNsNjgAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -686,9 +686,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAFUCAYAAAAEWWnwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnJElEQVR4nO3deXwb5Z0/8I/kO4c9lsllCEnGAUK4ZRsK9CRyoZSkB7K9293Sbkukdq/2x3Ytststpdutkdvtds8ihXYLPba2VdqGlkKl0BtKbCkJRzg1Tgg4iRPLYztxfEnz+0OesSTrsixZPj7v1yuvWHM888yjkear53nmeXSKoiggIiIiolnR5zsDRERERIsRgygiIiKiDDCIIiIiIsoAgygiIiKiDDCIIiIiIsoAgygiIiKiDDCIIiIiIsoAgygiIiKiDDCIiiBJEmw2GyorK1FTU5N025qaGlRWVsJms0GW5fnJIC0YPp8PDQ0NKa+TXHK5XHk79kIlyzJsNhtcLhdcLhecTiecTmfWj6N+V+h0OtTU1KCtrQ1tbW2wWq1obGzke5MGq9WKyspKeDyevKSdbBteR3PjdDpRW1ub72zMD4VmsNvtiiAIitfrjbve7XYrZrNZsVgs85yz+BwOx4xlLS0titlszkNuwuLlaalxu92KKIqz2idb5dLZ2Tlj2cDAQNLrNp58XyfZ5PV6FZPJpAwMDEQt7+zsVEwmU06OaTKZ4n4PiKKo2O32nBwzWxbCZ9RoNCputztvacfbhtfR7MS7jvx+v9LS0jKr76LFijVRcQiCgKamJjgcjrjrF1rNk9vtnrGsoaEBzc3NechNWLw8LTUGg2HW+2SrXARBiLvMYrFAFMW008n3dZJNO3bsgM1mm1E2ZrMZoijCarXOW16sVitsNtu8HS8Ty+EzmgleR7MT7zpSyyne99RSwyAqAavVio6OjhnLZVme1U0q15xOJyRJmrHcZDLBbDbnIUeJ87TcZbNcfD4f2traZiy32+2z+uLK53WSTTabDaIowmQyJVw/n9el+h4stB9cKn5G4+N1NDvJysLn8y2oe2WuFOY7AwuV0WiEwWCAy+WKusl0d3cn/IABQFtbG0RRhCRJEEVR21eWZTidToiiCLfbDavVCqPRCADweDzar429e/dCkiRIkoT+/n7Y7faEx/J4PHC73ZAkSbuhtrS0wOfzwWazQZIk+P3+hMcIBALwer1wOBxwOp0wGAxob2/Hnj17tLylOq908xSbDhDuDxC5LpnY/ggWiyVlmpmes7qfwWBAY2MjgPD7l+r9iM1PZFmlWy6pylclCALsdntUGmrgv3fv3qj9E5VPutdJOtdisvNwuVxobW2FJEno7OyEyWSCJEloaGiAKIpwOBwQRTFhuaWTH5fLNeOajaSev8vlQktLy6zOc7bvDQB4vV4YjcaogDbZ+am/3NVf9Woe0rnuZ1teqa7FeLL1/dXW1gZBEDKqxU313ZFO2qm24XWUnetIluVZ/ZhT91ffG1EUEQgEYDKZ4n5PqcGs3W5P+1xiy6a+vj6t76WU8t2euBCpbbzx+ouofVHi9Ykym81RfVVMJpPWJtzS0qL4/X5tnSiKUW3uav+ayPZ5URRTtim73W7FaDTOWO71emf010l0jJaWlqjzi00v2XnNJk9msznq2H6/P60+Bna7fUYeI9+HZGlmes6dnZ0KgKj3rKWlJeo9j1fGycoqWbnMpnyTMZlMUWmlKp/ZXCep8pTq3GOPE9nXI519k+UHQMq+I6IoRn2e00k31XsT25dlYGBAsdvtitFojPp8J0tHvf7cbrfi9Xq1azPVdT+X8kp0LSaSje+vlpaWqP4zAwMDCoC0+kSluo7TSTudbXgd5fY6isdisUSdu9/vn9FXLd73h8lkino/MymbVN9L6WAQFYf6xvj9fgWAdhH7/X7tiyQ2iFK3jU1H3cZsNke94bE3O6/XO2P/2G3imU0QlegYkR8wv9+vCIKQ9nmlmyev1xuVripV50/1iy72i8Rut6eVZibnnOgc1Lyo10BsGacqq3hpZlK+yUR+kaRbPuleJ8muxXTOI7bTe+znLNG+6eQHQNR7Gk/szS9Vuumck8lkUoxGo+JwOLR/scFmOtdF7Ppk1302ymu2N7+5fn+p5xMrnc7fqa7jdNJO9/i8jnJ7HcWKlz9FUWYEb4l+sKb7HRKvbFSx30up7rmx2JyXhCiKMBqN6OjogMVigc/nS9qMJQhC1OOyfr9fay/u7OwEEK7mVJuVAoHAjONFEgRhxjZzFe8YyR7TT3Ve6eru7o5bNao2DyRqIu3u7oYgCFFVw2pZqs0LqdKc7TknouYjUVt/JmWVrfKNJ9MyV7eJlOpaTOc8LBYLHA4HHA4HPB4Pmpqa0t43VX7UKvxkJEma0Sk4Wbrpvjd1dXVRTQqxMjm/VNf9XMtrtub6/aWWQSZSXcfpNB2le3xeR7m9jmKp5xT73sz2WsmkbFQWiwXt7e0wGo3weDxJvxfjYRCVgtVqhcPhgMViSfrGqh3OI9+AyL99Ph9aW1vR0NCApqamnHW4U9uCsyXVeaWbp0w7Ribbb6F1tpxtWanlMtfyTZaf+ZLOeVitVtTW1sLhcECSJG19NsrAZDIlHRPI5/PNOt1svTfppBP73ZLqus/2NZPqeyMb31+Z9IMC0ruO00k7nW14HeX2OsqmyHPLpGxUzc3N2LFjB+x2e9T3Urr4dF4KTU1N8Pl8cLlcqKurS7id0WiM+wtGlmXIsowdO3Zgz549WjCmXgDZfspD/ZBnS7LzSpfP59M67cWSJAn19fVJjx/vWLIsZ5xmptT3MlHH09mWlc/ny0r5JjKf5ZPOeYiiqD2sEXlDy0YZ2O12BAKBhIMT2mw2WCyWpJ2GY2XrvckknWTXfS6umWTfG9n4/kqU53Skuo7TSTvd4/M6yt11FI+av0yOGVkjNpdziXyILJNAn0FUHOoTAEA4ejWZTGhvb09aE2UymVBXVzfjw9fR0aHVOER+8NQLINWXVyqR1c+SJM3qw53OMZKd12zyZDQaZ/zKU8892VMq6hMWkY/zy7KMjo6OjNNM9wPr8/mitm1tbU06DlOqsopXLpmUb7oyLZ94snWdWK1W7N69e8YvxtmWQWx+BEFAZ2en9rRNJPXJpHSeLoxMN1vvTaafoUTXfTbKazbfG9n4/hJFERaLJeopMVmWZ3zG4kl1HaeTdrrH53WUu+soUf5i3xf1ScBEx1HzEdnCMdcyVr+XMhruZVY9qJY4v9+vWCwWBYBisVi0DsSRTzOoT00IgqCNJhvZKU59AiRyH3V5S0uL4na7Fbfbrfj9fq0TsNfrVcxmc9STIeoxjEZjyo5uatpqJ7t46SU7hslk0p5aULdpaWlJ67zSzVNsOg6HI2UHztj97Ha70tnZmXaaczlntcNkZ2en4na7FbvdHvXURux+8fITr6xSlUu65ZtI7BMqsy2fbFyLyc5jYGAgYaf5ePvONj8DAwNR56v+izWbdOPly+/3J/0eSPf83G63YjKZFEEQtM6+sfukuu4zLa9E12KivGfj+0s9FzUdo9GY9qjlqb470kk73ePzOsrNdZTqnCLfl9j3RP0OVvNpNpsVURRTlnGqslEURbueM6FTFEWZfehFtLSpY4t4vd58Z2VWGhsb0dzcvCQG0CSi5am2thZ2uz1r/UNTkWU55RiQibA5j2iRU6u21b8zfQqKiGi5iGyaVJs3M8EgimiRa21t1R65liQp6QMQREQ0Peo5kPmTowCDKKIZPB4P7HZ7wvnpFhqr1YqGhgZtGgTWRBHRYtXW1gafzwe73Z50uIm5Un94Op3OOXV/YJ8oIiIiogywJoqIcsJqtaKysjKnvyaXEp/Ph4aGhoxG0yei/GAQRUQ5EW8WdJvNhsbGxnnNR+wM9gstPZXRaITNZstJ2vmQq3IiWkgYRBHRvGloaEBzc/O8HtPtdi/o9CLNpYPrQpPLciJaKDh3HhHNm/ka90XldDqzOrVSttNbqlhOtFwwiCJapGRZhtPp1Gazt1qtM6ZdiG1SiZwlPtm6trY2rSlOkiS0tLQAmB6EVBRFWK1WrbZBnQqjra0NgiDErVHx+Xyw2WyQJEmbWklNDwD27t2rTfnQ398fNb2GLMuw2Wyora2F1+tFTU0NjEYjHA6HNit9LI/HA7fbDUmStKcs1fNIdo6JJEov3nmpj0/b7XZYLBbtPA0Gg9acKcvyjPNMRM2rOsFrqqeJMnlvZ3MeQOL3K1W5Ey0pGY1zTkR519LSEjWFgSiKUVNG2O32qOkxIqdCSLbObDZHTbng9/sVk8kUta06LYPX69XSiZ36YWBgQAEQlZbX61VEUYw6D7fbrYiiGLWdKIqK1+vVXkdOZzMwMDAjjUTUKSRipTrH2aannkMkk8kUVR6dnZ0KgKj3rKWlJWoanHjlEzuVj8lkiiqbWHN5b9M5j3Ter0TlRLTUsE8U0SIlSVLUk2+iKGqv1ZqbPXv2aOvb29u1STsTrfP5fPB4PFHNbqIoIhAIaGkLggCfzweTyQSj0Qi73Q5ZltHW1hZV4yEIQloTkhoMBkiSNOOYkc1BLpdLS0sQhLiTlKYrnXOcrXg1b7HjdanlEdnZfs+ePUmbviRJgsvliqp5amxshMPhiLv9XN/bdM4jnfeLaLlgcx7RIqU2Y6nTvgQCAQQCAQBAd3c3BEGIugGq23s8noTr1ObBWGqToXrjjN1GTTNTsekJgqCdCxB+ci3eDPKZ6O7uTusc54P6Pvh8vrh5Uss1Mrjz+/0JA5Zk73u67206Ur1fRMsFgyiiRcrn86G1tRUNDQ1oamqKurHFBhyRMl0XKV7AlMsny6xWK1pbW7F37144nc6ENTGpqDVx2aL2UYonG8eRZRmiKEYFOMmCnWy8t9naL1KyciJazNicR7QIybKMHTt2YM+ePbBYLBAEQbvZSZIUt+ZG3S/ZOpPJFLeWQ5Ik1NfXJ8yP0WjMeXPO3r174fF4YDabo5oNZ0NthszkHBOll0g6NTOyLGvvSTyJyjVRYJOL9zYbNUzJyoloMWMQRbQIqTUqkTdf9WanNg2Zzeaouf9kWUZHR0fSdUajESaTKar5SL0BJnsiTBRFWCyWqKfCZFmGz+fLqCYjdh+v1wtBEGA2m2dVoxHZV0cNLjM9x0TpxS5X8x+v1iu2PFpbW2GxWBKek8lkQl1dHVwuV9Tyjo6OhPmby3ub7nnEitfUGq+ciJYazp1HtEipj5o3NDQACN+4bDYbmpubtZuizWZDVVWV1oE4sgYn1Tp1+hG/3x/1+Lrdbkd3dzf27NkzI6hRH59Xm/vUPNrtdhgMBrS2tsLlcsFut2vDA8Qua2trQ2trK0RR1I7hcrnQ2NioDZ8gCAKsVmtaNVJqHmpqatI6x0zTUwMXtTza29u1iVTNZrM2PMCePXu0flAAooYYUMuipaUlKj9qXtUm01TBXibvbTrnIYpiWu9XsnIiWkoYRBHRgibLMnbv3o29e/dqzZaSJGlTyCyWG7QaRHm93nxnhYiyhM15RLSgOZ1OWK1WrXZLHSrAbrczICGivGIQRUQLmtFojDsqucfj0ZoyiYjygc15RLTgeTyeqLGU0p3+ZKFQ+5Kp/3MaFKKlgUEUERERUQbYnEdERESUAQZRRERERBlgEEVERESUAc6dl0AoFEJvby9Wr14NnU6X7+wQERFRjiiKguHhYVRXV0OvT79+iUFUAr29vdi4cWO+s0FERETz5Pjx47jooovS3p5BVAKrV68GEC7Q8vLyPOeGiIiIcmVoaAgbN27U7v3pYhCVgNqEV15eziCKiIhoGZht9x12LCciIiLKAIMoIiIiogwwiCIiIiLKAPtEzUEoFML4+Hi+s0GUF0VFRSgoKMh3NohoGQiGFBzoCaBveBRrV5fi+i0GFOjzP/wQg6gMjY+Po6enB6FQKN9ZIcobQRCwfv16jqVGRDnzxAsncP9jR3BicFRbtqGiFPft3I7brtyQx5wxiMqIoig4ceIECgoKsHHjxlkNzEW0FCiKgpGREfT19QEANmzI7xcZES1NT7xwAp/+ng9KzPKTg6P49Pd8+OafG/MaSDGIysDk5CRGRkZQXV2NFStW5Ds7RHlRVlYGAOjr68PatWvZtEdEWRUMKbj/sSMzAigAUADoANz/2BE0bF+ft6Y9VqFkIBgMAgCKi4vznBOi/FJ/RExMTOQ5J0S01BzoCUQ14cVSAJwYHMWBnsD8ZSoGg6g5YD8QWu74GSCiXOkbThxAZbJdLjCIyqNgSMEz/n789NBbeMbfj2AoXqVldvh8PlitVuh0OthsNjidTthsNjQ2NsLj8WTtOE6nE5WVlfD5fFlLc77V1tbC5XJpr51OJxoaGjLal4iIMnPBqpK0tlu7ujTHOUmMfaLyZL6fNjAajbDb7XA6ndizZw8EQQAAyLKMyspKeL1eGI3GOR/HYrGgs7NzzumoZFnW8jpf7HY76urqtNcmkwmiKGa0LxERzd7ZsUk89Dsp6TY6AOsrwsMd5AtrovJAfdogtq1XfdrgiRdOzFteBEGAKIpob2+ft2OmS5IkdHR0zPtxTSZTVOAmiiJMJlNG+xIR0ey8JZ+H+ZtP41evnEbhVIfx2I4D6uv7dm7P63hRrInKAkVRcH4imNa2wZCC+/a9mPRpgy/uO4Kbt16Q1oVRVlQw534pgUAANTU1c0ojF+x2O2pra/OdDSIimieHjsu4++FunDk7hgtWleChj9Xh5OD5GS036zlO1NJxfiKI7V94MitpKQBODo3iqi/+Mq3tj3zpVqwozuxtlGUZra2tMJlMsFgs8Hg8sFqtsNlsAACHwwGv1wufzwePxwNRFCFJEsxmc1Tzls/nQ3t7O+rr6wGEgzKVx+OBzWZDc3MzWlpa4HK5YLPZ4HA4tNodSZLgcDhQX1+PQCCApqYmdHd3o7u7W0srUZOax+OBz+eDKIro6uqC3W7X8uRwOKL6MomiiEAgkDQ/Pp8Pu3fvhtVqhcVigSzLsNls8Hg88Pv9WtrxyiN2X/XcrVartq3b7c5qcycR0VLxs+d68XcdhzE2GcK29avxrY/X40KhDNgooGH7eo5YTguD0+nUAhL1Bg+EAxWTyQSv1wuHwwGDwQBJkmCz2eB2u7X9a2trsX//fgiCAFmW0djYqAUYANDa2qr9bTKZ0NzcrL02m81RTYeyLKOhoQFerxeCIGid3ltaWmAymVBTUwOLxRL3PNS8eb1eAOHgra2tDRaLBTt27EBPT4/WtFZZWYn9+/enzI/RaIxaLwgCHA4HKisro44Zrzxi91XLMzJw6uzshM/ny0r/MyKipUBRFPzXU6/jX92vAgB2bFuLf//T67CqZDpEKdDrcGNNVb6ymBCDqCwoKyrAkS/dmta2B3oC+Pj/dqXc7jt/UZ9WZ7myotkPcGixWBL22xEEAVVV4QvVbDbDZrPNuOGLooiOjg5YLBZ0dHTMWG8wpN/Jr6OjA6IoavnZs2dP2vuqgV7k04VdXV0QBGFG36RsdfZ2OBxJyyNWVVWVVp5AuHwja+qIiJazsckg7v3R8/jxwbcAAJ98+xb8w+2XL4hapnQwiMoCnU6XdpPaOy5Zgw0VpTg5OBq3X5T6tME7LlmTt4so3SfRsiH26btEwV2ip/SMRmNUp2+LxQKn05nlXBIRUbb1nx2D9btedB8bQIFehy994Ar82Q2b8p2tWeHTefOsQK/DfTu3A8jf0wapakIi1zc3N88YR8rn86GpqQkAtH5EkSQp+rFUQRDQ39+vvfZ4PJBlGUC4tit2/3jjVsVbFi9vHo8HTU1NSfOULD+q2NfJjhlZHsn2JSKisNdODeOD//MHdB8bwOrSQjz8F9cvugAKYE1UXtx25QZ888+N8/q0gdr5Gwg/9Wa1Wmc0S3k8nqiO2iaTSRtfqq2tTeu83dnZqdUKiaKIzs5O2Gw2NDQ0aDVGra2tsNvtEEURTU1NWudsIBx4qc1ioijC4XDAZrNpHdPVmiWr1aqNbRVviAE1b7H7CoIQN0+qZPmRZRnt7e0wGAwzOtBHHjNeeahlrO6rpqUeQ5IkrcO7KIrzWuNHRLRQ/ObV0/jr7/swPDaJiw0r8O2P12Pr2lX5zlZGdIqi5G6Y7EVsaGgIFRUVGBwcRHl5edS60dFR9PT0YMuWLSgtzXyk1GBIWZBPGyxFDQ0NsNvtGXforqysxMDAQJZztfhl67NARMvDd585ii8+dgTBkILrNxvw4EdrYViZ/3lok93zk2FNVB4t1KcNlqJMOnM7nU74/X5YrVaOQk5ENAeTwRC+/POX8J2njwIA7jRehK98+EqUFM7+4aiFhH2iaMlzOp3aWFSz6a9kMplQVVUFl8sFh8ORuwwSES1hw6MTuPuRbi2AarntMnyt8epFH0ABbM5LaD6a84gWO34WiCiZ44ER3P1wN145NYzSIj3+relavO+q/I4yHg+b84iIiGjB8B4bgPW73ThzdhxrVpfgWx+rw9UXCfnOVlYxiCIiIqKs+umht/D3rucwPhnC9g3leOhjdagWyvKdraxjEEVERERZoSgK/n3/a/iG5zUAgOnydfj3P7kWK0uWZrixNM+KiIiI5tXoRBAtruew73AvAMDyThG227Yt6aF7GEQRERHRnJweHoPlu904+IaMQr0OX/7glfiT6y/Od7ZyjkMcLENOpxM2mw1OpxMulwsej0cbBmCh8ng8qK2tnbd58Wpra+FyueblWHMVm1en04mGhoaM9iUimq1XTg7jg//9Bxx8Q0Z5aSEe+cT1yyKAAlgTlV+hIHDsaeDsKWDVOmDTTYA+t+NmNDQ0oLGxEXa7XVvm8/nQ0NAAv9+f02PPhclkijv1S67Y7fZFM8BmbF5NJlPaU8ospvMkooXnV6/04W9+cBBnxyaxuSo8hYu4ZnFO4ZIJBlH5cmQf8IQNGOqdXlZeDdxmB7bvyskh29raAAAWiyVqudFonLFsIaqqmr/R3eczYJur2LzOZl6+xXSeRLSwfOcPPfjSz44gpAA3bDHgwT+vReUCmMJlPrE5Lx+O7AM67ooOoABg6ER4+ZF9OTlsa2srrFZr3HWNjY05OSYRES0tk8EQvvDTF/DFx8IBVGPtRfjuJ29YdgEUwCAqOxQFGD+X3r/RIeAXLQDiDRQ/tewJW3i7dNJLc8B5SZIgy3LCGorIJiCfz4e2tja4XC60tbVpfaUi+yWp/agaGxshSZK2T2SQ5vF4UFNTA6vVCpfLBafTCavVqk29oq53Op1wOp2ora3VlqvHt9lsUfmUZTnq2JHi7Zcoz5HpqevU/Xw+34z+V7Mtk0QSnZvP59PKSf3n8/m09NVaRJfLhZqaGng8Hm2/yLzKsgyr1YqampqUeY/dd7bnQkTLz9DoBP7iO1145Jlj0OmAe9+3DW3mq1FcuDzDCTbnZcPECPCV6iwlpoRrqB7YmN7m/9ALFK/M0rHDwZbNZoPb7daW1dbWYv/+/Vq/JLfbjc7OTgBAZ2cnXC4XWlpaYDQaUVNTA1mWIQgCTCYTzGYzqqqqYDabAYSDgMbGRrjdbi09r9cLh8MBg8GgHd/r9QIITxzc1taGlpYWAEBXV5f2d2dnJ3w+H4xGY9L94uVZ3c/pdMJoNGrNWoFAAEajEc3NzXMqEzX9eGUbm0eLxYIdO3agp6cHgiAAACorK7X0I/NiNpvR3t6uvY7NqyAIcDgcqKysTJn32H1ncy5EtPy80T+CTz7chdf6zqKsqAD/1nwtbrtyfb6zlVcMopYJtZZJkqS4N0RJkmAwGOBwOGasF0URHR0dsFgsqKqqiuqbJAhCVO2WIAgIBAJaMKAuU5nNZjQ2NmqBliAIWnpmsxk2mw0Gg0GraQHCgZOqvr5+xrEAaEFYvP3i5Vndz2w2o7a2FqIoorm5OW7fsEzKRE0/Np14eVQDzshyylZn71R5j5XuuRDR8tJ9NADLd70InBvHuvISfOtj9bjywop8ZyvvGERlQ9GKcI1QOo49DXzfnHq7P3OFn9ZL59hpamlpgcPh0GqFIvl8vrjL0xF5889EbBNjZM0QMLMjfCKZ7GcwGDAwMACfz4f29natlixX4uVxvoZtICLKxE8OvoUW13MYD4Zw5YXleOiueqyv4ITjAPtEZYdOF25SS+dfzS3hp/CQaARXHVB+YXi7dNLTpT8SrDqsQexNW+2jBADNzc1RNSVAOMBqampKmG7k/qnWu1yuGbUukTUd8Y4f+zqeTPdrbW3VaufsdntUvtR8Z1Ims8ljU1MTfD5f1PLIMbsEQUB/f3/UPrFlnug9SCfvqd4/IlqeQiEFX//lK/hs+yGMB0O49Yp16LDeyAAqAmui5pu+IDyMQcddCAdSkR3DpwKi2x7I2XhRbrcbbW1tsNlsqKmpgcFgAACtFkoNJtra2iCKIrq6utDZ2QlBELTaGiDcf0btUK7u5/F4IEkS7HZ7VEDi9/u1G7+aHhAOBjweD3w+H0RRhMlk0o5vs9m0pjuTyZTw2A6HA6IoZrxfVVUVPB4PDAYDAoEAmpubtX0MBgPMZnNGZaKmH1nLliiPgiCgs7MTNpsNDQ0NWlOnqqmpCTabTQuGTCaT1kwny3JUXuPV6qXKu7qvmlY650JES9voRBB/13kYP3/uBADgU++qQcutl0G/hKdwyYROUdJ8vGuZGRoaQkVFBQYHB1FeXh61bnR0FD09PdiyZQtKSzOMyOOOE3VhOIDK0ThR+aAGa4thHKqFpKGhAXa7PeMO3ZWVlRgYGMhyrmbKymeBiBaUvuFR7H7Ei8PHw1O4fOXDV6GpLs2HnRapZPf8ZFgTlS/bdwHb3j/vI5bT4pBJZ26n0wm/3w+r1cpRyIkoIy+dGMInv9OF3sFRCCuK8M0/q8WNNfM30PFiwz5R+aQvALa8A7jKHP5/iQVQanOd+pg8pUedx9DhcMyqv5LJZEJVVRVcLhccDkfuMkhES9JTL5+C+ZtPo3dwFOIFK/Hjv7yZAVQKbM5LIOfNeURLAD8LRIufoij49h+O4l9+Hh6B/EaxCt/8cyOEFctnBHI25xEREdGsTARDuG/fi/jBs28AAP6kfiP++YNXoqiADVXpYBBFRES0DA2en8Bf/8CH3712Bjod8A/vuxx3v2MLdLMYOme5YxBFRES0zBzrP4dPfKcL/tPnsKK4AP/+J9ehYfu6fGdr0WEQRUREtIwc6AnA+t1uDIxMYENFKR76WB2uqOYULplgEEVERLRM/Mj7Ju599DlMBBVcfVEFHrqrDmvL+VBIphhEERERLXGhkIJ/db+C//6VHwDwvivX4+tN16KseGkNrTPf2P0+j4KhILpOduFx6XF0nexCMBTM2bE8Hg+sVit0Ol3UFCKz4XQ6UVlZOS9jPs3nsSLV1tbC5XJF5aOhoSGjfYmIFoLz40H81Q98WgD1V++pwX9/xMgAKgvyVhMlSRJcLhdEUYQkSbBYLFHzhc1mW5/Ph927d8Pr9UbtFzmvmyRJkGU542k0ss1zzIMHDjyAUyOntGXrVqzDvdffC9MmU9aPZzKZIIoinE4n9uzZk7Csk7FYLNq8d7k2n8eKZLfbo0b7Vsstk32JiPKtb2gUdz/SjefeHERRgQ4PfPhq3Fl7Ub6ztWTkLYhqbGzUgh5JkrB79+6EN81k26rBVbwaC4fDAafTCSB8M8zHTTkezzEP7vn1PVAQPc5p30gf7vn1Pfj6u7+ek0BKnWyYEjOZost9NhPvxu5LRJRPL/YO4u6Hu3FicBSVK4rg+Ggdrt/C+0A25SWIkiQp6rUoigmbl1JtazabEx6ntrZWm4Q1k5qXdCmKgvOT59PaNhgKovVA64wACoC27IEDD+CG9TegII1pYMoKyzimBxERRXEfOYXP/PAgRsaDqFmzEt/+eD02Va3Md7aWnLwEUR6PZ0atiMFggM/nm9HcNptt48ll8KQ6P3keN/zghqyld2rkFG764U1pbfvsR57FiqIVGR3H4/HAZrPBarVqTaVutzuqxs7n86G9vR319fUAZk6M6/F44PP5IIoiurq6YLfb4XK50NraClmW4ff70dbWBofDAavVipaWlrj7pHOsePlPlI7D4YjqyySKIgKBAGw2G5qbm9HS0gKXywWbzQaHwwGTyaQ1C1utVlgsFsiyrPUf8/v9Wtoej0crL7PZrNWERu6bTtkSEWWboih46Hc9+MovXoKiAG/fegH++8+MqCgrynfWlqS8BFGJJlWNd9Oczbbx9lU7+nZ1dWk3NAozmUwwmUxRN3d1smCj0QhZltHY2KgFEADQ2tqq/S1JEmw2m9bUGggE0NbWhpaWFphMJuzYsQOyLEMQBHi9XgiCkHAfi8WS9FixkqWzY8cO9PT0aAF0ZWUl9u/fD5PJhObmZi0Ns9mM9vZ27bXRaIxaLwgCHA4HKisro47pdru1bWpra7F///4Z+6YqWyKibJsIhvCFn76A/ztwHADwkRsuxv27ruAULjm0oIY4mM2M9elsG9kBXRRFNDQ0RN2kI42NjWFsbEx7PTQ0lHZeygrL8OxHnk1rW+8pL/5y/1+m3O5/dvwPatfVpnXsuaiqqkJV1fQs3YIgaAFqR0fHjBt+ZK2gw+GAwWCIal7t6urS0tm7dy9qa2vR2dmpvQ+J9hEEIemxYiVLx2QyRdVAZquzt8PhmJFHURTR0dEBi8UyY/tkZUtElE2DIxP49Pe9eNrfD50O+Pz7t+MTN29md48cy0sQFe9mEggE4ja9zWbbWJIkaTc9tUlFkqS4tVGtra24//770z+JCDqdLu0mtZuqb8K6FevQN9IXt1+UDjqsW7EON1XflFafqHwzGo1RHaojgwk1MGpvb48KPuLtoz4AMNdjZ5IOEdFi1nPmHD75nS5IZ85hZXEB/uNPr8OOyzmFy3zISx1foqeY4tUYzGbbSD6fDzt27JixPFHtxp49ezA4OKj9O378eNL0M1WgL8C9198LIBwwRVJf26635SSAmm0tiNpPKFJkR//m5uYZDwSor2VZhsfjQWdnpzZERbJ9Uh0rVqJ0mpqakqYjCAL6+/uj9omt1UxUyxnvmD6fD01NTSn3JSLKhT9K/fjQ//wB0plzqK4ohevTNzGAmkd5qYmKrQmSJAl1dXVa7ZLP54MgCHEfL4/dNpLa/0Y9htrRGAjfLM1mc8IarJKSEpSUlGR8TrNh2mTC19/99bjjRNmut+VkeAM1oAHCtW5q/x21T5DJZIIkSVqnbLXsOzs7YbPZ0NDQoJVva2sr7HY7jEYj7HY7bDab1hncZDLB6XTCbrfDarUCAOrr67F7925IkoSWlpa4+wiCkPRYsddBomMnSkfV1NQUNdioyWTSmulkWUZ7ezsMBoPWYTzeMdva2rTO7GpTpdopXt1XTStZ2RIRzUVH93H844+fx0RQwTUbBey9qxZrV3MKl/mkUxRlZpvSPJAkCQ6HA/X19ejq6ooaALKxsRH19fVoaWlJua3H44Hb7dY6NNfX12vDHqhPUgmCAL/fHxVUpTI0NISKigoMDg6ivLw8at3o6Ch6enqwZcsWlJZmfsEGQ0H4+nw4PXIaa1asgXGtcVE04S02DQ0NWtCXicrKSm2oDIqWrc8CEaUvFFLQ9uQrePA34T6+7796A/618RqUFvH+kalk9/xk8hZELXTzEUTR/KitrcXevXtnFUQ5nU74/X5YrVZYrdaoJ/JoGj8LRPNrZHwS/6/9EJ58MdyK8be3bMVnTZdCr2cH8rnINIjic4+0pDmdTq0mczb9lUwmE6qqquByueBwOHKXQSKiNJ0cHEWT4xk8+eIpFBfo8Y3ma3HPey9jAJVHrIlKgDVRRKnxs0A0P154axCffLgLp4bGYFhZDOdHa1G3mVO4ZEumNVELapwoIiIiivbkiyfx2R8ewvmJIC5Zuwrf+lg9Lq7KbKYKyi4GUXPASjxa7vgZIModRVHg+K0E+xMvQ1GAd1wSnsKlvJRTuCwUDKIyUFAQfgJifHwcZWVzGzGcaDEbGRkBABQV8UudKJvGJ0P4/E+eR0f3mwCAj75tE+7buR2FnMJlQWEQlYHCwkKsWLECp0+fRlFREfR6XtS0vCiKgpGREfT19UEQBO2HBRHNnTwyjk99z4s/SgHodcAX7tiOj9+8Jd/ZojgYRGVAp9Nhw4YN6OnpwbFjx/KdHaK8EQQB69evz3c2iJYM6fRZfPLhbvScOYdVJYX4z49ch/dctjbf2aIEGERlqLi4GJdccgnGx8fznRWivCgqKmINFFEWPe0/g09/z4fB8xO4UCjDtz9ej8vWr853tigJBlFzoNfr+Vg3ERHN2Q8PvIHP/+QFTIYUXHexAOdH67Bm9fxMRUaZYxBFRESUJ8GQAvsTL8P52/BE6buuqUab+WpO4bJIMIgiIiLKg3Njk/jMDw/B81J4CpfPmi7BZ3ZcAp2OI5AvFgyiiIiI5tmJwfP45He6ceTEEIoL9fiq+Wp84NoL850tmiUGUURERPPouTdl3P1wN/qGx3DBqmI4PlqH2k2V+c4WZYBBFBER0Tz5xfMn8P86DmF0IoTL1q3GQx+rw0YDp3BZrBhEERER5ZiiKPifX/vx1SdfAQC8+7I1+M8/vQ6rOYXLosYgioiIKIfGJoP4h0dfwI984SlcPn7TZnz+/ZdzCpclgEEUERFRjgTOjeNT3/XiwNEACvQ6fHHndnz0xs35zhZlCYMoIiKiHHi97yw++XAXjvWPYHVJIf7rz4x416Vr8p0tyqJZB1FHjx5FZ2cn3G43BgYGtOUGgwENDQ0wm83YvHlzNvNIRES0qPz+tTP49Pe9GB6dxEWV4SlcLl3HKVyWmlkFUffeey90Oh2amprw93//9zPWHzx4EA8++CB0Oh1aW1uzlkkiIqLF4vvPHsMXfvoigiEFtZsq4fxoLapWcQqXpUinKIqSzoZf/epXYbFYUFFRkXLbwcFBPPDAA4s6kBoaGkJFRQUGBwdRXl6e7+wQEdECFwwp+MrjL+Fbv+8BAHzougvR+uGrOIXLIpDpPT/tIGq5YRBFRETpOjs2ic/830Hsf7kPAPB3DZfir2/ZyilcFolM7/kZdyy/9957sXXrVjQ2NqKxsRGVlZVobm7Ghz/84UyTJCIiWnTeks/jk9/pwssnh1FSqMe/Nl2DO66uzne2aB5kPEhFfX097r77bjidTtTW1qK9vR39/f3ZzBsREdGCdui4jA/81x/w8slhXLCqBO3WGxlALSMZ10RVVobn+eno6MDevXsBhJ/QIyIiWg5+9lwv/q7jMMYmQ9i2fjW+9fF6XCiU5TtbNI8yDqL8fj8URYHf78e1116Lnp6eqCEPiIiIliJFUfBfT72Of3W/CgC4Zdta/MefXodVJRx6cbnJuDmvqakJPp8PXq8Xg4ODcDgckGU5i1kjIiJaWMYmg7in47AWQH3y7Vuw9646BlDLVFpP5w0ODmJgYGBWg2gODQ0BwKJ9so1P5xERUaT+s2OwfteL7mMDKNDrcP+uK/Dnb9uU72xRFmR6z0+rJqqiogJutxuPPvpoWon+6Ec/QkdHB4MPIiJaEl47NYwP/s8f0H1sAKtLC/HwX1zPAIrS7xO1e/duHDx4EE1NTaipqUF9fT1EUYQgCJBlGZIk4cCBA+jp6YHVasWdd96Zy3wTERHNi9++ehp/9X0fhscmcbFhBb798XpsXbsq39miBSCjwTYHBwfR0dEBv98PWZYhCAJqampgMpmwZcuWXORz3rE5j4iIvvvHY/jivvAULtdvNuDBj9bCsLI439miLJvXwTYrKiqwe/fuTHYlIiJa8CaDIXz55y/hO08fBQDcabwIX/nwlSgp5BQuNI2PExAREUUYHp3A3/zfQfz6ldMAgL+/9TL85btrOIULzcAgioiIaMrxwAjufrgbr5waRmmRHl9vuha3X7Uh39miBYpBFBEREQDfGwOwPNKNM2fHsWZ1CR66qw7XbBTynS1awBhEERHRsrfvcC8+13kY45MhbN9Qjoc+VodqTuFCKWQ8YjkAfPWrX0VzczMAYP/+/doAm0RERIuBoij4hudV/O3/HcT4ZAimy9eh81M3MoCitGQcRN17770QBAEmkwkAsGPHDng8nqxljIiIKJdGJ4L4zA8P4Rue1wAAlneKcHy0Fis5hQulKeMrpb6+HnfeeSf279+fzfwQERHl3OnhMVi/2w3fGzIK9Tp8+YNX4k+uvzjf2aJFJuOaqJ6eHgCIeuSzq6tr7jkiIiLKoVdODuOD//0H+N6QUV5aiEc+cT0DKMpIxjVR1113Herq6lBVVQW32w2PxwO73Z7NvBEREWXVr17pw9/84CDOjk1ic9UKfOvj9ahZwylcKDMZ10Tt2LEDnZ2duO6666AoCpxOJ2655ZZs5o2IiChrvvOHHnzyO104OzaJG7YY8OO/vJkBFM1JRnPnJTI0NLRk5pnj3HlERItTMKTgQE8AfcOjWLu6FMaLBfzL4y/hkWeOAQAaay/Cv3zoKhQXzukBdVpC5nXuvMiDBgIB7bXdbsc3v/nNuSRJRESUsSdeOIH7HzuCE4Oj2rLiQj3GJ0PQ6QDbbdtgfafIKVwoKzIOoj71qU/B4/FAEARtWU9PD4MoIiLKiydeOIFPf8+H2OaV8ckQAMDyDhGfelfN/GeMlqyMg6iamho8+OCDUcv27t075wwRERHNVjCk4P7HjswIoCLtO9yLltu2oUDPWijKjowbhNVBNiM1NDTMKTNERESZONATiGrCi+fE4CgO9ASSbkM0GxnXRFVWVuJrX/saRFGEIAiQZRnt7e1ob2/PZv6IiIhSOjmUPIBS9Q2ntx1ROjIOolpaWiDLclSfqIMHD6a9vyRJcLlcEEURkiTBYrFEpTWbbX0+H3bv3g2v15vxMYiIaHF6VurHv7lfTWvbtatLc5wbWk4yDqIaGhqwe/fuqGU/+tGP0t6/sbFRC3okScLu3bvR2dk5623VIMnn883pGEREtLi8OTCC1l+8jJ8/dwIAoAMS9onSAVhfUYrrtxjmK3u0DMypY3k6y+KRJCnqtSiKCScvTrWt2Wye8zGIiGjxOD8exIO/8ePB3/gxNhmCXgf86fUX49qNAlpczwGIDqbUbuT37dzOTuWUVRkHUX6/Hw6HA/X19QAARVHQ0dGR1vx5Ho8HBkP0rwGDwQCfzwej0ZjxttnYj4iIFiZFUfDz50+g9fGX8ZZ8HgBwwxYD7tt5BbZXhwdIXF1aOGOcqPUVpbhv53bcduWGvOSblq6MgyiHwwGTyYTIAc/THfxcluW4yyMH7sxk27nsNzY2hrGxMe310NBQ0vSJiGj+vNg7iPsfO6I9XXehUIZ/uP1y3H7V+qiBM2+7cgMatq+PGrH8+i0G1kBRTmQcRNntduzYsSNqWbxhD2YjUeAz123T2a+1tRX3339/RmkSEVFuBM6N42u/fAU/PPAGQgpQWqTHp9+1FdZ3iSgtKoi7T4FehxtrquY5p7QcZRxExQZQQHjYg3QIgjCjRigQCMR9cm42285lvz179uCee+7RXg8NDWHjxo1Jj0FERLkxEQzhu88cwzc8r2JodBIAcMfVG7Dn9stxoVCW59wRhaUdRD366KMwmUzaxHwPPfRQ1HpZluF2u/Hkk0+mTMtkMsHhcMxYXldXN6dt57JfSUkJSkpKkqZJRES597vXTuNLjx3Ba31nAQDbN5Tji7uu4JN1tOCkHUR95StfgSAIuOWWWwAADz74IJqbm6O26e/vTystURSjXkuShLq6Oq2WyOfzQRAEiKKYcttIkeNWzWY/IiLKv2P95/Dln78E95FTAADDymJ87r2Xobl+I/s00YKUdhDV3d0d9Xrv3r247rrropbNpk9UZ2cnbDYb6uvr0dXVFTV+U2trK+rr69HS0pJyW4/HA7fbHbWfOuxBsv2IiGhhODs2if/+1ev41u96MB4MoVCvw103bsZndlyCihVF+c4eUUI6Jd1H6mIcPXoUmzdvBgAMDg7C4/GgtrZWW7bYDQ0NoaKiAoODg1oTJhERZU8opOAnh97CA794GX3D4aej33HJBbhv53ZsXbs6z7mj5STTe37GExBHDlxZUVGBO++8k4NZEhFRWg4dl3Hng0/jno7D6Bsew6aqFdh7Vx0e+cT1DKBo0ZjV03mDg4Po6OiATqfTmtAieb1e3H333VnLHBERLS19w6Noe+IVuLxvAgBWFhfgr2+5BJ94+2aUFMYfsoBooZpVEFVRUQGTyQS73Q6/348tW7ZErVf7MBEREUUamwziO384iv986nWcHQsPWfBh44W497ZtWFvOSYFpccq4T9T+/fvjjhW1VLBPFBHR3CmKgqde7sM//+wIjvaPAACu2Sjgizu347qL0xtbkCjXMr3nZ3WwTSIiItXrfWfxpZ8dwW9fPQ0AWLO6BLbbtuHD110IPYcsoCUg4yCKiIgonsHzE/iP/a/h4aePYjKkoLhAj0+8fQv++patWFXC2w4tHbyaiYgoK4IhBR3dx/G1J19B/7lxAIDp8nX4/Psvx+YLVuY5d0TZxyCKiIjmrOtoAF/c9yJe7B0CANSsWYkv7LwC77p0TZ5zRpQ7WQ2iIgfgJCKipa9XPo8HfvEy9h3uBQCsLi3EZ02X4q4bN6GoIOOhCIkWhTkFUYcOHUIgENBeOxwOtLe3zzlTRES0sI1OBOH8rYRv/tqP8xNB6HTAn9RvxOfeexmqVnEyd1oeMg6impqaoib8BYCDBw9mI09ERLRAKYqCJ144iX95/CW8OXAeAFC/uRL37bwCV15YkefcEc2vjIOohoYG7N69O2rZj370ozlniIiIFqaXTgzhS48dwTNSPwCguqIUe26/HHdcvQE6HYcsoBwKBYFjTwNnTwGr1gGbbgL0+R/hPuMgqqamJq1lRES0uA2cG8fX3a/i+88eQ0gBSgr1sL6rBp9+Vw3KivN/I6Ml7sg+4AkbMNQ7vay8GrjNDmzflb98YQ5BlN/vh8PhQH19PYBwFW9HRwe6urqyljkiIsqfyWAI33/2DXzd/SoGz08AAN5/1Qbc+75t2GhYkefc0bJwZB/QcReAmMlVhk6Elzc9ktdAKuMgyuFwwGQyIXLWmAxnkCEiogXm6dfP4P7HjuCVU8MAgG3rV+O+nVfgxpqqPOeMlo1QMFwDFRtAAVPLdMAT9wLb3p+3pr2Mgyi73T5j6heTyTTnDBERUf4cD4zgX37+Ep548SQAQFhRhL9772X40/qNKOSQBTSfpN9GN+HNoABDb4X7Sm15x7xlK1LW5s576qmnIMsyrrvuujlnioiI5tfI+CT+51d+OH8nYXwyhAK9Dh992yZ81nQJhBXF+c4eLRfBCUD6DXDkx8ALj6a3z9lTuc1TEnMaJ+rRRx+FJEkAwk153d3d+PCHP5yVjBERUe4pioKfHurFA794GSeHRgEAN2+twhfuuAKXrV+d59zRshCcAHp+A7z4E+DlnwHnB2a3/6p1OclWOjIOou69917IsoxAIABRFCHLMqxWazbzRkREOfT8m4P44mMvwnssfNPaaCjD59+/He/dvo5DFlBuBSeAnt8CR34CvPRYdOC0cm24s/jlu4CffCrciTxuvyhd+Cm9TTfNU6ZnmtMQB7t370ZPTw90Oh02b96Mp556Kpt5IyKiHDg9PIavPfkKOrzHoShAWVEB/vqWrfjk27egtIhDFlCOBCeBo78N1zi99BhwfnrGE6xcEw6arvhQ9BhQt9mnns7TITqQmgryb3sgr+NFZRxEiaKIY8eOYcuWLfja176Gz33uc9nMFxERZdn4ZAgPP30U/7H/NQyPTQIAPnhtNe593+VYX1Ga59zRkhScBI7+brrGaaR/et2KC8I1Tld8CNh0c/xgaPuu8DAGcceJemDxjhMlyzJEUcTAwADOnDmDW2+9FYIg4JZbbslm/oiIKAt+9Uof/vlnRyCdPgcAuPqiCty3cztqNxnynDNacoKTwLE/AC/+GHhpX0zgVBVR43QzUJBGGLJ9V3gYgwU4YrlOydLgTvv370ddXR0qKpbG3ElDQ0OoqKjA4OAgysvL850dIqKMSKfP4p9/dgS/euU0AOCCVcVouXUbzLUXQa9nvyfKklBwOnA6sg8YOTO9rswQUeP09vQCp3mW6T1/Tmfy1a9+Fd3d3WhvbwcAdkQkIloghkcn8J9PvY7//UMPJoIKigp0+Iubt+Cvb9mK8tKifGePlgJ1Pju1xunc6el1ZQbg8p3hwGnzOxZk4JQNc3o6r6amRhtgc8eOHXj00Uc5xAERUR6FQgpc3jfR9uTLOHN2HADwnsvW4J/u2A5xzao8544WvVAQeOOZ6Rqnc33T68oqYwKnpR+sZxxE1dfX484778T+/fuzmR8iIsqQ99gA7n/sRTz35iAAQLxgJf7pju14z7a1ec4ZLWqhIPDGH6drnCIHtywVpgOnLe9cFoFTpIyDqJ6eHgDRTXhdXV2siSIimmcnB0dhf+Jl/PjgWwCA1SWF+Nsdl+BjN21GcSGnaqEMhELA8anA6chP4wROd0wFTu9adoFTpIyDqOuuuw51dXWoqqqC2+2Gx+OB3W7PZt6IiCiJ0YkgvvX7Hvz3r17HyHgQOh3QVLsRn7v1MqxZXZLv7NFiEwoBx5+NCJxOTq8rrQC2RdQ4FXIqIGCOT+f19PTA4XAAAJqbm5fUvHl8Oo+IFipFUfDLI6fwLz9/CW8ERgAAtZsqcd/O7bj6IiG/maPFJRQC3jwwHTgNn5heV1IRrnHa/kFAfPeSDpwyvednbYiDpYZBFBEtRK+eGsb9j72IP7weHntnXXkJ9rzvcnzg2mo+IU3pCYWAN7siAqeIQSxLKsJjMl3xQUB8z5IOnCLlfIiDdEYlf+ihh3D33XenfXAiIkrP4MgE/s3zKr77x2MIhhQUF+pheYeIT7+7BitLlubj45RFoRDwVvd04DT01vS6kvJw4LT9g0DNe4BCNgWnK+2aKIPBgPr6+qTbdHd3o7+/P+k2iwVroohoIQiGFPzgwBv4+i9fwcDIBADgtivW4x9uvxwXV63Ic+5oQVMU4M3IwOnN6XUl5cBlt4drnGpuWfaBU85ronbs2IGqqirU1tYm3IYtg0RE2fOMvx/3P/YiXj45DAC4dN0q3LfzCty89YI854wWLEUB3vJOB06Dx6fXFa8Gtt0+VeN0C1DE+RLnKu0gqrOzE4ODg+ju7gYQHicqNlozGDgHExHRXL05MIKvPP4SHn8+/HRURVkR7mm4FH92w8UoLOCQBRRDUYC3fMCRHwMv/hQYfGN6XfEq4LL3hZ+qq9nBwCnLMu5YfvDgQQQCAeh0uiU56TCb84hovp0fD+Kbv/HD8Rs/xiZD0OuAj9xwMf6u4TJUrlweHXwpTYoC9PqAF38CHPkJIMcETpfeFg6ctu4AisrylctFY97nzosczuCpp56C2+1GQ0PDkgyoiIhySVEUPPbcCbQ+/hJODI4CAN4mGnDfzitw+Qb+iKMpigL0HgwHTS/+ODpwKloJXKYGTiYGTvNkTo90HDp0CA6HA+3t7RBFETU1NQyiiIhm4YW3BvGlx47gwNEAAOBCoQyff//luO3K9RyygMKB04lD4RqnF38MyMem1xWtBC69NRw4XdLAwCkPZh1EHT16FJ2dnXA4HNDpdLjzzjvh9XqxZcuWXOSPiGhJ6j87hq/98lX8sOsNKApQWqTHX757KyzvFFFaVJDv7FE+KQpw4vB0jdPA0el1RSumA6etDUAxn9DMp7SDqIceeggOhwOSJKGpqQmdnZ0zRih/9NFHOXceEVESE8EQHnnmGL7heRXDo5MAgF3XVOPe921DtcCahGVLUYCTz03XOA30TK8rLIuucSpembdsUrS0O5br9XqYzWY0NzdDEIQZ1cwDAwN44IEH0NXVlZOMzjd2LCeibPvtq6fxpZ8dwet9ZwEAV1SX44u7rkD9Zj7ZvCwpCnDqhXDQ9OKPgYA0va6wDLj0vVOB03sZOOVYzjuWWywWtLW1JR0Lqr29Pe0DExEtF0fPnMOXf34Enpf6AACGlcX4+1svQ1PdRhTo2e9pWVEU4NSLEYGTf3pdYWk4YFIDp5JV+csnpSXtIMpqtaaMzvbs2TPnDBERLRVnxybxX0+9jm//vgfjwRAK9Tp87KbN+Nsdl6CirCjf2aP5oihA35HpwKn/9el1haXhJrorPgRccisDp0Um7SAqtv9TptsQES11oZCCRw++BfsTL+P08BgA4J2XrsEX7rgcW9euznPuaF4oCtD3UkTg9Nr0uoKS6cDp0luBEl4TixVnrSQiyqKDbwzgi48dweHjMgBgc9UK/NMd23HLtrUcsmA5iAyczrw6vVwNnLZ/MDyeEwOnJYFBFBFRFvQNjcL+xCv4kS88yevK4gL8zY5L8Bc3b0ZJIYcsWNL6Xp6aq+4nwOmXp5cXFIeHIbjig+ERxEv5kNJSwyCKiGgOxiaD+Pbvj+K/nnoN58aDAABz7UVoufUyrC3nPGVL1ulXpmqcfgKcfml6eUFxeMRwtcaptCJfOaR5wCCKiCgDiqLA81IfvvzzIzjWPwIAuHajgC/uugLXbhTymznKjdOvTg+A2XdkenlBcXhy3ys+GJ7sl4HTspG3IEqSJLhcLoiiCEmSYLFYIAjCrLdNts7n8wEAjEYjJEmCLMswGo3zcHZEtJS93jeM+x87gt+9dgYAsGZ1Ce69bRs+dN2F0HPIgqXlzGvTA2D2vTi9XF8E1NwS7hx+2fuAMiFfOaQ8ylsQ1djYCK/XCyAcCO3evRudnZ2z3jbZOofDAafTCQAwmUwJ0yciSsfg+Ql8w/MqHnnmGIIhBcUFenzyHVvwV+/ZilUlrNhfMs68DhyZaqo79cL0cn0RUPOeqcDpdgZOlJ8gSpKkqNeiKMLj8cx621Tp1NbWYmBgAAAS1nIREaUSDClo7zqOr/3yFQTOjQMATJevw+fffzk2X8CRpJeEfv90H6dTz08v1xcC4lTgtO12oKwyb1mkhScvQZTH44HBED3NgcFggM/nm9Hclmzb7u7ulOkweCKiuTjQE8AX972IIyeGAABb167CF+7YjndeuibPOaOEQkHg2NPA2VPAqnXAppsAfZwnJPv9032cTsYGTu+ernFawWl5KL68BFGyLMddHggEZrVtqnRkWYbL5QIAdHV1wWq1QhTFuPuMjY1hbGxMez00NJQg90S0lARDCg70BNA3PIq1q0tx/RYDCvQ69Mrn8ZXHX8LPnjsBAFhdWoj/Z7oUH71xE4oK9HnONSV0ZB/whA0Y6p1eVl4N3GYHtu8Kz0+n9nE6+dz0NvpCYMu7pmqc3s/AidKyoBrxEwVFs91WXRfZyVwURTQ0NMDv98fdp7W1Fffff3/axyeixe+JF07g/seO4MTgqLZsfXkJ6jYb4HnpFEYnQtDpgD+9/mL8XcOlqFpVksfcUkpH9gEddwGImeN16ATQ8VFA2ATIx6aX6woAUQ2c7mDgRLOWlyBKEIQZtU6BQCBu01uybVOlI0mS1qynPr0nSVLc2qg9e/bgnnvu0V4PDQ1h48aNmZweES0CT7xwAp/+ni/2douTQ2Na7dP1mw24b9d2XFHNR9YXvFAwXAM14x3F9DL5GAB9dOC0smoeM0lLTV7qpE0mU9zldXV1s9o22Tqfz4cdO3bMWBfbh0pVUlKC8vLyqH9EtDQFQwruf+xI3NutSlhRhB/svoEB1GLxmie6CS+R5u8Bd/0EqP0YAyias7zURMXWBEmShLq6uqjxnQRBgCiKSbeNrbmKXCeKIux2u7bO4/HAbDazozkR4UBPIKoJLx55ZAJdRwdwYw1vtAtSKAScOAj4nwJefwo4/sf09ps8n9t80bKStz5RnZ2dsNlsqK+vR1dXV9QYTq2traivr0dLS0vKbROtEwQBdXV1aGtrgyAI8Pv9HCeKaJnrGxrFY8+dwMNPH01v++HkgRbNs6HeqaBpPyD9Gjg/82GklFaty3q2aPnSKYqSrEZ72RoaGkJFRQUGBwfZtEe0iMkj4/jFCyex71Av/tjTj9l84/3f7rexJiqfJs4Dx/4QrmnyPxU9Rx0AlJQDW94ZHjl8y7uAR3aGO5HHbajVhZ/S++zz8Yc7oGUt03v+gno6j4goG0bGJ+E+cgqPHe7Fb149jYng9E3VeLGAO67egAd/I+H08Fii2y3WV4SHO6B5pCjhOele3x8Omo49DQSnh56BTg9UG8NB09YdwIV1QEHEbew2+9TTeTpEB1JTU/Hc9gADKMoqBlFEtCSMT4bwm1dPY9/hXniOnML5iaC2btv61dh1bTV2Xl2NjYYVAIBqoQyf/p4v0e0W9+3cjgLOg5d7584A/l+Fgyb/U8DZk9Hryy+cDpq2vCv5MATbdwFNjyQYJ+qB8HqiLGJzXgJsziNa+IIhBc9K/dh3uBe/eOEkBs9PaOsuNqzAB66txq5rqnHJutVx9483TtSGilLct3M7brtyQ87zvyxNjgPHn50KmvYDJw5Hry8sAza/PRw01dwCXHApoJtlMJvuiOVEUzK95zOISoBBFNHCpCgKDh2Xse9wL37+3An0DU8396xdXYI7rq7Grmurcc1FFdClcfNNNGI5ZYmihKdXUYOmnt8BE+eit1l3FbD1lnDQdPGNQCEHNaX5xT5RRLSkvXpqGPsO9WLf4V68ERjRlleUFeH2q9Zj5zXVuGFL1awDoAK9jp3Hs+28DPT8Nhw0+Z8C5Dei169cEw6Yam4JT+67mk/M0eLEIIqIFqzjgRHsO9yLxw734uWTw9rysqICNGxfh13XVOOdl65BcSHnssurUBB4yzcdNL3ZDSjTfdJQUAxc/LapwGkHsO5KQM/3jNIXDAXh6/Ph9MhprFmxBsa1RhQsgCZaBlFEtKCcHh7Dz58L1zj53pC15UUFOrzr0rXYdW01TJevxYpifn3llXx8OmiSfg2MDkavv+DS6aBp881A8cp5y9pCveFSZjzHPHjgwAM4NXJKW7ZuxTrce/29MG2KP3PJfOG3EBHl3eD5CTz5wknsO9yLp/1nEJrqqanTATeKVdh1TTXed+UGVKwoym9Gl7Pxc8DR308Pdtn/WvT60gpAfHc4aKq5BRDyM/foQr7h0ux5jnlwz6/vgRIzGEnfSB/u+fU9+Pq7v57X95UdyxNY7h3L+UuOcu38eBD7Xz6FfYd68etXTmM8GNLWXbtRwK5rqnHH1Ruwtrw0p/ngtZ5AKAScen46aDr+LBAcn16vKwAuqpsOmi405v0JuEQ3XN3UwBX5vuHS7ARDQdz6o1ujAuJIOuiwbsU6PHHnE3P+zLJj+SKxGL6w+UsuscXw/i1kE8EQfvfaaew71Av3kVM4Nz7db+bSdauw65pq7LymGpuq5qfph9d6jOFTgPSrqWlVfgWcOx29Xrh4Omja8k6gTMhLNuMJhoJ44MADMwIoAFCgQAcd7AfseM/G9yyoz6yiKAgpIYQQmv5bCUGBov0fb3lICW+vbacoCGF6eWSaUdvEHCvZ/lHHRuL908pfzPLYvMXLw1tn30oYQAHh9/XkyEn4+nyoX18/j+/aNNZEJZCLmqhUX9izuUHn6mbOX3KJ8YabmVBIwbM9gamxnE5AHpkey+miyjLsuiY8JMG29fNb47ucr/WQEkJQCSI0PoLg8T8i5P8Vgj2/Q+j0EQQBBHU6hAAEi1YgtLEewY1vQ+jiGxAs34AQFASVIIKh4HQ66v+hmNdKCJPKZNTyGfsoIUyGJuMuV4+hLkt4XCWEvpE+HDh5IOW5b6vchlXFqzILVBLc8KEgOgBBgiAnTgBCc2d/hx23i7fPKQ2OE5Vl2Q6iUn1hf/yKj+PxnsfTukHn6mY+n1Wni81yvuFmQlEUPP/WIPYd6sXPnjuBk0PTg1lesKoEd1y9AbuurcZ1GwVtLKfIm1jkTUi9Sap/R97IYm9oQSUYnU7ETSty3WRoEp/7zecwMDaQ8ByEEgEt9eFJ0BPd7OPd8LWbfYKgQtsmFJwZNMQEJFoQkiRISRqERB4zNJ0vWrz0Oj300EOn00EHHfS68N+Ry/U6PfQ6/Yzt1eWR+6l/a+lAP2Nd7HI1jXjLZ523iPzE5u3UuVPwvOFJWSbfvvXbc66JYhCVZdkMolIFJ4nEu0FncjNXFAUjkyOQx2QMjg1q/8f+fXToKJ4/83zKfBXpi1CkL0KBrgB6vV77EKmvC3QF2gdCW67LYLm+QPvwRaabaToFugLooIt6rS3X6Wakoy7XQYcvPP0FyGNywjKpLKnEl27+EgBE38gRCt8M49zII9dFBQkRv2QjgwQtmIgTRMT7BR0bSMw4RsTydI6v3pTjBjFQEAwFMR4M4tz4BM6PT2IyFAR0CgAFep2CwgKgsEAHvW5msBRSQgnLluZf5Gcg3ucl9vMVd13MZzbestj/I9OKl16hrjDhZ/vN4Tfxw1d+mPLcPnX1p7C1cqv23QIdEgcCU0FCvAAkKpCIXR65X4YBTKJAZTlR7519I31xa+0WQp8oBlEJZDOI6jrZhU88+YmM919TtgYP3foQxoPjsLqtCIwGEm5bVliGG9bfgKHxoekgaXwQk6HJjI9PtNCoAa4e4Rtp5I1JvcHqoJveLiK41uv0ODdxDmfOn0l5nJqKGqxdsTb+DTxRoBBzc48XKCQMSvQx6SQIPAp1hYkDEkWB/vTLKDx+APo3/oiCU0egRwgFCqAHUKAvhv6iehSI70SB+G7o12xHQUH0uS1G83nDpfmjVhwAiHpfs90KwI7lC9jpkdOpN0q2//nT+MBPPpDWtucnz+PXb/467rpifTGEEgEVpRXh/4srUFES/ieUCBgYHcD/vvi/KY9hf6cdV1VdFa4ZmapNide8kahZIVk/ilntF9lnIiYfGaUXmpn/kBJCYDSAN8++mbJcLlp1ESpLK7UbeeSvzMhfmwW6ghm/TiN//Ube+CODhagAQf11GlETGPuLNjK4iFqfJLhQ10X9Ktfpo34JF+gKMDw6ia6jMp55PYBXTp4FoIcCHQp0elx3sQHvvnQt3iZegJXFRTOOEe88461Lloe5SveHzT++7R/z1mF1VgaOhjuD+58KjxQ+NhS9fs3lU3PRvQfYdDNQVJaXbOZSgb4A915/L+759T3QQRf3hmu73sYAapExbTLh6+/+etwuLLbrbXnvRsEgah6sWbFmzmmUFJSgUF+Ic7FzTsXxoa0fws0X3gyhRAgHS1OBUllh8i/OYCiIx3seT/lL7tZNty6rL6J0b7hfuvlLi+OGm6Hh0Qk8+eIp7Dvciz+8PohgqBDAWuh0a3HDFgN2XXMh3nflelSuLM53VlMyrjVi3Yp1Ka9141pjHnKXhrHh8Bx06mCXASl6fZkhHDCpU6uUV+cnn/Nsod9wKTOmTSa8Z+N7FuST0Qyi5kGqL+x0fNP0TQBI62a+s2ZnRjdz/pKLb9HfcOdgdCKIp17uw75DvXjqlT6MT073Xbr6ooqpsZyqsb4it2M5Zduiu9ZDIeDEoamg6VfhMZsim+j1hcDGG6YCpx3AhmvyPmZTvizkGy5lrkBfsCB/pLJPVAK5ejoPwKwCqch2fADz0uYf7+m/9SvWL+tfcvPVLr8QTARD+MPrZ7DvcC9++eIpnB2bvllvXTs9ltOWC+ZvGo9cWdDX+lBvuJbJ/1Q4cDof0xfSIEZMq/J2oHT5DQpMlC3sWJ5l8zVO1PoV6/G+Le/Dd178DoDUN+j5uplzUMmZFvQNd45CIQXdxwaw7/BbePz5kwicmx6Z+kKhDDuvqcaua6px+YbVS+4JoQVzrU+cB449PT1C+OmXotcXrwbEd0030Rm2zH8eiZYoBlFZlqtpXxJ9Yc/mBr2Ub+YL3YK54WaBoih4sXcIjx3uxWOHe9E7OD2WU9XKYrz/6g3YdU01jBdXQq9fWoHTgqAoQN+R6dqmY08Dk6MRG+jCU6moI4RfVAcUcO5AolxgEJVl+Zg7byGMWE5Ln3T6LPYd7sW+w72QTk8/qLC6pBC3Xrkeu66pxk01VSgsWJyPui9o5/rD06mogdPwiej15RdO1zSJ7wZWGPKSTaLlhkMcLAGz6Ti3UDvZ0cLUK5/Hz54LB04vvDX9+HtJoR47Ll+LXddU492XrUVpEQPxrJocB948MN1Ed+IwENmfsbAs3J+p5pbwEAQXXAosseZSoqWMQRTREhU4N47Hnz+BfYd6ceDodKfkAr0O77jkAuy6phoN29dhdSmbiLJGUcLDDahjNh39HTB+NnqbdVeFn6LbugPY+DagaHE92UhE0xhEES0hZ8cm8csXT2Lf4V78/rUzmAxN13pcv9mAnddW4/Yr16NqVUkec7nEjA4C0m+mmuj2A/Ib0etXXDBd0yS+B1i9Lj/5JKKsYxBFtMiNTgTx61dOY9/ht7D/pT6MRYzldOWF5dpYTtXC0hulOitCwXCn7rOngFXrgE03JR9jKRQE3vJN92t6swuInNRXXwRc/LapEcJvCdc86dm/jGgpYhBFtAhNBkN42t+PfYd78eQLJzEcMZaTeMFK7Lo2PJZTzZpVeczlInBkH/CELTwmk6q8GrjNDmzfNb1s8M2pJrr94VqnUTk6napLpoOmzW8Hihf/GFpElBqDKKJFQlEU+N4YwE8P9eLx50/gzNnpsZw2VJRqYzldUV2+5MZyyokj+4COu4DYgWuHToSXv+PvgPFz4cDpzKvR25RWhJ+eU5+kEy6er1wT0QLCIIpoAVMUBS+dGMa+qbGc3pLPa+sqVxRNjeV0Ieo2cSynWQkFwzVQcWcPmFr2u69NL9LpgYvqp0cIr74OKODXJ9Fyx28BogXo6Jlz2lhOr/dNP921srgAt16xHjuvrcbbt16AIo7lNDujg0D/68DLj0c34SVy6a3AtX8ObHknUCbkPHtEtLgwiCJaIE4NjWqjhx9+c1BbXlyoxy2XrcWua6txyzaO5ZTSxHkg0BMOlvpfB/r9QMAf/vvc6dmldVVTdN8oIqIIDKKI8kgeGcfjz5/EvsNv4dmeANT5Awr0OtxUU4Vd11Tj1ivXo5xjOUULTgLysfCYTFqwNBUwDb6J+M10U1atB1ZeAJx6IfVxVnE4AiJKjEEU0Tw7NzYJz0unsO9QL3772mlMBKdv+HWbKrHr2mrcftUGXLDcx3JSlPC0KJEBUv9UjdLAUSA0kXjf0gqgauv0P4M49XcNULI63CfqG1eGO5HHDbh04af0Nt2Uo5MjoqWAQRTRPBibDOI3r5zGvsO98Lx0CqMT02M5Xb4hPJbTzms24KLKFXnMZZ6MBKaDI/VfwA/0S8DEucT7FZZNBUc10QFTVQ2woir59Cn6gvAwBh13AdAhOpCa2u+2B5KPF0VEyx6DKKJZCIYUHOgJoG94FGtXl+L6LQYUJHgqLhhS8EepHz899BaeeOEkhkanx3LaXLUCu66pxq5rq7F17er5yn7+jJ+L7psUGTSdH0i8n64AqNw8HRxFBkyrq+c2iOX2XUDTIwnGiXqAfaGIKCUGUURpeuKFE7j/sSM4MTiqLdtQUYr7dm7HbVduABAekuDgcRn7DvXi58+fwOnhMW3bdeUluOPq8FhOV19UsfTGcpocD/dTiu2j1O8HhlM8CVd+YXSAZJj6u3ITUJDD/mDbdwHb3j+7EcuJiKboFEVJ0gNz+RoaGkJFRQUGBwdRXl6e7+xQnj3xwgl8+nu+Gb1n1DDo83dsR//ZMTz2XC+OB6bHchJWFOF9V27Armuqk9ZaLRqhEDD0VkyQNPW3/Eb09CexVlRNB0dRAZMIFC/DZkwiWjAyveezJooohWBIwf2PHUk2LCP++WdHtGUrigvw3u3rsOvaarx96xoUFy6ysZwUBTh3JqJvUuRQARIwOZp436KVEQFSTKC0wjB/50BENA8YRBGlcKAnENWEl0jtpkp8/KbNMF2+DmXFi6A5aHRoKkiK7afkB8YGE++nLwIMW6IDJbWGafX65B26iYiWEAZRRBFGJ4KQTp/Da33D8PedxWt9Z3HwjSQdnyPcdeMm7LymOsc5nKWJUWCgJ+bpN3Xgyb4kO+oAYWN0gKQGTRUbOeUJEREYRNEydXZsUguSXu87i9f7hvFa31kcD4wglGEvwbWrS7ObyXSFguH+SGpwFNkEJx9H0oEnV66NaXpTO3RvAYrydD5ERIsEgyha0uSRcbw+FSy9duosXj99Fq+fGkZvkua58tJCXLJuNS5Zuwpb166CeMFK2B59HmeGxxINy4j1FeHhDnJGUcJPj8V78m2gBwiOJ963pDz+WEqGGqCUD00QEWWKQRQteoqi4PTZMbw+FSS9duqsFjidOTuWcL8LVpVogdIl68L/b127CmtWlcwYfuCfPxDCp7/nQwFCqNe/jLWQ0QcBXaFtCEGP+3Zuz86Td+cHokfm1gaflIDxs4n3KyiZHkfJEBMwrbyA/ZSIiHKAQRQtGoqioHdwFK+dGp5qgptujhs8n3gKkOqKUmyNqFlS/xdWFKd97Nuu3IBH33MG1c/cj3Xo15afQhV6b7wP102NE5WW8ZHoOd8i/x7pT7yfTg8Im6Jrk9QapvKL5jbwJBERzRqDKFpwgiEFxwMj4Sa4vumAyd93FufG449DpNcBFxtWTNUmTQdMNWtXYVVJFi7zI/tw3TOfgRLToLcWAax75jPAxsroEa6DE1P9lF6P+ScBQ28mP9bq6pmjc1dtDQdQhekHfkRElFsMoihvxidDONp/LlyjpDXFDUM6cw7jk6G4+xTqddhywcpw89uaVdi6bjW2rlkFcc1KlBblaFiBUDA8NQgUxDaK6dSgat/fhEe9VmuV5GNAaDI2pWmlAnDBJdH9k9TxlEpW5eY8iIgoqxhEUVyzmSMulfPjQfhPn4V/qr+SWrt0tH8EwQSPwpUU6lGzJtxXSa1V2rp2NTZVrUBRQY6arYKTwKgc7pd0Xv1/AHjLGz23WjyjMvDsN6OXFa2YCo7iTZDLgSeJiBY7BlE0wxMvnMA/73seG88e1jpQH191Df5p11XaHHHxDI9OaP2U1OEDXusbxpsD55FocqFVJYVah+7pPkurcWFlWWZBm6KEJ7tVAyAtKIoJjKKWD4b/Hx+e/fEiXfJe4LL3RUyQu4EduomIlrC8BVGSJMHlckEURUiSBIvFAkEQZr1tpuvyJTg5iZeffRLnB95CWeWF2HbDrSgoLEy5bjbpzMUTL5zAT37wIDqLHkF1cUBb3jtmwJd+cBfwkU/h+i1VU8HSMF47NV3DdHIo8bABlSuKcMna1dg61QynPg23vrw0/kS8wUngnJwi+EmwPFkzWjpKKoAyASirDP8fmgSO/j71fjf9LbDlHXM7NhERLRp5m4C4trYWXq8XQDjYsdls6OzsnPW2ma5LJRcTEB988uGET3cBSPzk160fSzud2G1nIxhS8I9f+Qq+MtEGINxZW6W2uv3V5Gfxi+D1CdNYV16i1SbVrFmJywx6XLJ6ApX6kTRqhOTpdXOtFSoongqCKsP9j9S/y4Tky0srAH1M36pQEPjGlcDQCcQfuFIHlFcDn31+5r5ERLTgLaoJiCVJinotiiI8Hs+st810XT4cfPJhXPP034ZfRAQna5R+rHn6b6HD1O05zrqDgBYcpUoncttgSMHQ+QnI5ycgj4xDPj+BwZHpv+WRiaj1p+Rz6Jx4CEB0AKW+DinAlwq/jVGlAJtXBlGzagIXl41hffEoqgpGUI5hFI0PhYOgVwaAQzIQSjz0QFq0WiFhdkFRUVn2mtL0BcBtdqDjLmD6nZoydYzbHmAARUS0zOQliPJ4PDAYojvWGgwG+Hw+GI3GtLft7u7OaF3sMXItODmJ6mfuBxA/OFHrAhMFLhc+cx9+I1yBsYkJXPfMF6DDzPhA3XbT0/+AL3X5MTk5htDEGEowgWJMokQ3Pv03xnEhJrBFNzm1bAIlmMAFukFU6wNIRK8D1mAI/1v8r8AEgIGpf6noiyKCnjRrhMoqwyNtL5Q52rbvApoeCT+lF9nJvLw6HEBFDm9ARETLQl7uULIsx10eCMy8gSfbNtN18YyNjWFsbHp066GhobjbZeLlZ5/EFejHjOfjpySrMNHrgLUYwNpf7IjYIfG2BpzFFyb/PbygKLP8pjK68iKUrq1JPyAqWrE0Olhv3wVse394KIOzp4BV64BNN7EGiohomVogP/PDEgU+s902k3Wtra24//770z7+bJwfeGvOaUxCjxD0KEbqTtNnykSUrd2CwuJSFJWUQV9UGp4WpLA0PFhjYSlQWDK1TP1XimC/HwW//krK9Ivu/CYgvnPO57Qo6QvYeZyIiADkKYgSBGFGjVAgEIj75FyybTNdF8+ePXtwzz33aK+HhoawcePGWZxVYmWVF845jVcavgcAuML9kZTbnnr7l3HFze+f9TEKQkGcf/bbKBk5OaNpEQg3F46tWI+yzTfPOm0iIqKlJi+TbZlMprjL6+rqZrVtpuviKSkpQXl5edS/bNl2w604hSokGFcSioKE4yiFFOAkqrDthltTphO5bUb0BSjb+VXodDrEjhceAqDT6VC286tsviIiIkKegihRFKNeS5KEuro6rZbI5/NpT9cl2zbTdfOtoLBQG8YgNgAKKdPPesVbBwAnbrwPBYWFKdOJ3DZj23dB1/QIdOXVUYt15RdC1/QIO1ATERFNyds4UZIkweFwoL6+Hl1dXdizZ48W4DQ2NqK+vh4tLS0pt810XSrzNU7USVThRIJxotR16YwTlWjbjIWC7EBNRETLQqb3/LwFUQtdLoIoYOGPWE5ERLTcMIjKslwFUURERLSwZHrPz0ufKCIiIqLFjkEUERERUQYYRBERERFlgD2RE1C7imVz+hciIiJaeNR7/Wy7iTOISmB4eBgAsjZqORERES1sw8PDqKioSHt7Pp2XQCgUQm9vL1avXg3dHCbPVaePOX78OJ/ym0cs9/nHMs8Plvv8Y5nnRy7LXVEUDA8Po7q6Gnp9+j2dWBOVgF6vx0UXXZS19LI9lQylh+U+/1jm+cFyn38s8/zIVbnPpgZKxY7lRERERBlgEEVERESUAQZROVZSUoL77rsPJSUl+c7KssJyn38s8/xguc8/lnl+LMRyZ8dyIiIiogywJoqIiIgoAwyiiIiIiDLAIQ5ySJIkuFwuiKIISZJgsVggCEK+s7Xo+Xw+eDweAEBXVxf27t2rlWuyMuf7kT02mw179uxhuc8Dj8cDSZIgiiIAwGQyAWCZ55IkSfB4PDAYDJAkCWazWSt/lnv2+Hw+7N69G16vN2p5pmWcl/JXKGeMRqP2t9/vV8xmcx5zs3TY7faovyPLOVmZ8/3IDq/XqwBQBgYGtGUs99xwu92KxWJRFCVcdqIoautY5rkT+R2jKIr2HigKyz1bOjs7te+SWJmWcT7Kn0FUjvj9/qg3VFEURRCEPOVm6fB6vVHl6Pf7FQCK3+9PWuZ8P7Kns7NTEUVRC6JY7rkTWc6KEi5P9X+Wee7Ell9kIMtyz67YICrTMs5X+bNPVI6oVcGRDAYDfD5fnnK0NBiNRuzdu1d7LcsygHDZJitzvh/Z4XK5YDabo5ax3HNDkiQEAgEIggCfzwdZlrUmJZZ5bhkMBtTW1mrNeg0NDQBY7vMh0zLOV/kziMoR9eYeKxAIzG9GlqDIm3h7eztMJhMEQUha5nw/5k6W5bj9C1juueHz+WAwGLQ+Hk6nEy6XCwDLPNc6OzsBADU1Nejs7NS+c1juuZdpGeer/NmxfJ4leqNp9mRZhsvlmtEpMd52mayjaB0dHbBYLGlvz3Kfm0AgAEmStB8JFosFlZWVUJIM7ccyzw6PxwO73Q5JkmC1WgEADocj4fYs99zLtIxzXf6sicoRQRBmRMBq1Txlh81mg9vt1so0WZnz/Zgbj8eDpqamuOtY7rkhiqJWhgC0/30+H8s8hyRJQldXF0wmEywWC/x+Pzo6OiBJEst9HmRaxvkqfwZROaI+hhyrrq5unnOyNLW1tcFms0EURciyDFmWk5Y534+56+jogNPphNPphCRJaG1thc/nY7nniNr/KR6Wee74fD7U19drr0VRxJ49e/gdM08yLeN8lT+b83Ik9gtQkiTU1dXxV0kWuFwuGI1GLYBSm5liyzayzJOto9Riv6CsViusVmvcGz3LPTtEUURdXZ3WF00dK8poNM7YlmWePUajEQ6HI6rvZX9/P8s9hyL7Wya7dy7E73jOnZdDkiTB4XCgvr4eXV1dUYMTUmYkSUJNTU3UMkEQMDAwoK1PVOZ8P+ZOlmU4nU7YbDZYLBZYrVYYjUaWe47IsgybzYba2lp4vV6t9hXgtZ5LHo9HazYFwj8iWO7Z5fF44Ha70dbWhpaWFtTX12uBa6ZlnI/yZxBFRERElAH2iSIiIiLKAIMoIiIiogwwiCIiIiLKAIMoIiIiogwwiCIiIiLKAIMoIiIiogwwiCIiIiLKAIMoIsorj8eDmpoatLW1wel0ora2FrW1tdqgnjU1NfD5fHM+hpomEVG2cNoXIsorWZbhdru1EaHdbjcMBgMsFgsAoLm5GZIkxZ12I10mkwnNzc1Zye98iJwGg4gWLtZEEVFeBQKBpJPtGo3GGbOzL2WSJKGjoyPf2SCiNDCIIqK8ampqyso2S4Xdbs93FogoTQyiiCiv0mm26u7uRm1tLdra2gAALpcLNTU18Hg8AKb7VVmtVrhcLjidTlitVsiynDBNj8eDtrY2uFwu2Gy2hNtJkgSbzaalq6bp8/m0/dva2iBJkpZuqryq/bM8Hg+cTicaGxu1dd3d3XC73XA6nVqaRLQwsU8UES14sX2azGYz2tvbo9abzWZUVVVpM8G7XC40NjbC7XbPSE8NjLxeL4Bwk6I6m3wkWZbR0NAAr9cLQRBgs9ngdDphNpths9mi0q6trcX+/fvTyqvJZILb7UZnZycAoLOzEz6fT1tXU1Oj9QkjooWLQRQRLRmRtVpmsxmNjY1xO2k7HA4YDAatdggAurq6ZqTX0dEBURS1/ffs2QMAaG1tndHRXRRFdHR0pBX8VFVVoaqqKirfy6nfF9FSwSCKiJYlo9EIk8mkvY4X/MQGYPP9xByf0iNa2NgniogWBUEQ0N/fr732eDwz+jxFvna5XDCZTFFBiLq+ubk5qhZKTS+W2WyeMUaVx+OJu7/P59M6wKeT13TEyxMRLRw6RVGUfGeCiMjj8UCSJO3pNJvNhrq6Oq3ZTJZl2Gw2rRO2w+GALMtwOBwQRRE2mw2yLGtNeF1dXdizZw8EQYDP58Pu3bsBAHv37oXRaITH44Hb7UZ9fT0AzAi4IvMVbzuPxwOfzwdRFNHV1YXm5ua08irLclRe1P5ZRqNRO3e73Y7a2lqYTKakwz8QUX4xiCKiJUEd3ZwdsolovrA5j4iIiCgDDKKIaNHzeDzweDzaUAFERPOBzXlEREREGWBNFBEREVEGGEQRERERZYBBFBEREVEGGEQRERERZYBBFBEREVEGGEQRERERZYBBFBEREVEGGEQRERERZYBBFBEREVEG/j9aZH4Q88VLTgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAFoCAYAAAB+Cg5cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxyklEQVR4nO3de3wb1Z03/o9sJ06c2B7LuV8IGUMIgQCR7dDS8rQQuUAptAXZbrf0TqS2u88++2O7Fu52y6a7WyPT7V5+v2eLHNrSLtvWlqAttFxqpaXbLi2xpQAJgQQ0TkjIPfLYThw7tjS/PyYzlmTdLVmy/Xm/Xn7Zmjkzc+ZorPnqnDPnGBRFUUBEREREU1KU7wwQERERzQYMqoiIiIiygEEVERERURYwqCIiIiLKAgZVRERERFnAoIqIiIgoCxhUEREREWUBgyoiIiKiLGBQFYckSbDb7aiqqkJNTU3CtDU1NaiqqoLdbocsy9OTQSoYPp8PDQ0NSa+TXHK73Xk7dqGSZRl2ux1utxtutxsdHR3o6OjI+nG0zwqDwYCamhq0t7ejvb0dNpsNjY2NfG9SYLPZUFVVBY/Hk5d9J0rD62hqOjo6UFtbm+9sTB+FEnI4HIogCIrX6425vru7W7FYLIrVap3mnMXmdDonLWtpaVEsFksecqOKlafZpru7WxFFMa1tslUuLpdr0rL+/v6E120s+b5Ossnr9Spms1np7++PWO5yuRSz2ZyTY5rN5pifA6IoKg6HIyfHzJZC+B81mUxKd3d33vYdKw2vo/TEuo78fr/S0tKS1mfRTMaaqiQEQUBTUxOcTmfM9YVWM9Xd3T1pWUNDA5qbm/OQG1WsPM02RqMx7W2yVS6CIMRcZrVaIYpiyvvJ93WSTdu2bYPdbp9UNhaLBaIowmazTVtebDYb7Hb7tB0vE3PhfzQTvI7SE+s60sop1ufUbMSgKgU2mw1dXV2TlsuynNZNK9c6OjogSdKk5WazGRaLJQ85ip+nuS6b5eLz+dDe3j5pucPhSOuDLJ/XSTbZ7XaIogiz2Rx3/XRel9p7UGhfwDT8H42N11F6EpWFz+crqHtlLpXkOwMzgclkgtFohNvtjrjp9Pb2xv2HA4D29naIoghJkiCKor6tLMvo6OiAKIro7u6GzWaDyWQCAHg8Hv3byM6dOyFJEiRJwtmzZ+FwOOIey+PxoLu7G5Ik6TfYlpYW+Hw+2O12SJIEv98f9xiBQABerxdOpxMdHR0wGo3o7OxEa2urnrdk55VqnqL3A6j9CcLXJRLdn8FqtSbdZ6bnrG1nNBrR2NgIQH3/kr0f0fkJL6tUyyVZ+WoEQYDD4YjYh/ZFYOfOnRHbxyufVK+TVK7FROfhdrvR1tYGSZLgcrlgNpshSRIaGhogiiKcTidEUYxbbqnkx+12T7pmw2nn73a70dLSktZ5pvveAIDX64XJZIoIcBOdn/bNXvvWr+Uhles+3fJKdi3Gkq3Pr/b2dgiCkFEtb7LPjlT2nSwNr6PsXEeyLKf15U7bXntvRFFEIBCA2WyO+TmlBbcOhyPlc4kum/r6+pQ+l1KS7/bHQqe1Ecfqb6L1ZYnVp8pisUT0dTGbzXqbcktLi+L3+/V1oihGtNlr/XPC2/dFUUzaJt3d3a2YTKZJy71e76T+PvGO0dLSEnF+0ftLdF7p5MlisUQc2+/3p9RHweFwTMpj+PuQaJ+ZnrPL5VIARLxnLS0tEe95rDJOVFaJyiWd8k3EbDZH7CtZ+aRznSTLU7Jzjz5OeF+RVLZNlB8ASfueiKIY8f+cyn6TvTfRfWH6+/sVh8OhmEymiP/vRPvRrr/u7m7F6/Xq12ay634q5RXvWownG59fLS0tEf1v+vv7FQAp9alKdh2nsu9U0vA6yu11FIvVao04d7/fP6mvW6zPD7PZHPF+ZlI2yT6XUsWgKgntjfL7/QoA/aL2+/36B0t0UKWljd6PlsZisURcANE3P6/XO2n76DSxpBNUxTtG+D+c3+9XBEFI+bxSzZPX643YryZZZ1Ltgy/6g8XhcKS0z0zOOd45aHnRroHoMk5WVrH2mUn5JhL+wZJq+aR6nSS6FlM5j+hO9NH/Z/G2TSU/ACLe01iib4bJ9pvKOZnNZsVkMilOp1P/iQ4+U7kuotcnuu6zUV7p3gyn+vmlnU+0VDqTJ7uOU9l3qsfndZTb6yharPwpijIpmIv3BTbVz5BYZaOJ/lxKds+Nhc1/KRJFESaTCV1dXbBarfD5fAmbvQRBiHg81+/36+3NLpcLgFotqjVDBQKBSccLJwjCpDRTFesYiYYFSHZeqert7Y1Zlao1J8RrUu3t7YUgCBFVyVpZas0RyfaZ7jnHo+UjXl+BTMoqW+UbS6ZlrqUJl+xaTOU8rFYrnE4nnE4nPB4PmpqaUt42WX60Kv9EJEma1Mk40X5TfW/q6uoimiCiZXJ+ya77qZZXuqb6+aWVQSaSXcepNDWlenxeR7m9jqJp5xT93qR7rWRSNhqr1YrOzk6YTCZ4PJ6En4vxMKhKg81mg9PphNVqTfhGax3Yw9+Q8L99Ph/a2trQ0NCApqamnHXg09qSsyXZeaWap0w7WibartA6b6ZbVlq5TLV8E+VnuqRyHjabDbW1tXA6nZAkSV+fjTIwm80JxyTy+Xxp7zdb700q+4n+bEl23Wf7mkn2uZGNz69M+lEBqV3Hqew7lTS8jnJ7HWVT+LllUjaa5uZmbNu2DQ6HI+JzKR18+i8NTU1N8Pl8cLvdqKuri5vOZDLF/IYjyzJkWca2bdvQ2tqqB2faBZHtp0i0f/psSXReqfL5fHonwGiSJKG+vj7h8WMdS5bljPeZKe29jNeRNd2y8vl8WSnfeKazfFI5D1EU9Yc/wm9w2SgDh8OBQCAQd7BEu90Oq9WasBNytGy9N5nsJ9F1n4trJtHnRjY+v+LlORXJruNU9p3q8Xkd5e46ikXLXybHDK8xm8q5hD+Ulmngz6AqCe0JA0CNbs1mMzo7OxPWVJnNZtTV1U36Z+zq6tJrJML/EbULItmHWTLh1dWSJKX1z57KMRKdVzp5MplMk74Fauee6CkY7QmO8OEDZFlGV1dXxvtM9R/Y5/NFpG1ra0s4DlSysopVLpmUb6oyLZ9YsnWd2Gw2bN++fdI3ynTLIDo/giDA5XLpT/OE0558SuXpxfD9Zuu9yfR/KN51n43ySudzIxufX6Iowmq1RjyFJsvypP+xWJJdx6nsO9Xj8zrK3XUUL3/R74v2pGG842j5CG8BmWoZa59LGQ8vk3YvrDnC7/crVqtVAaBYrVa9Q3L40xLaUxmCIOij3YZ3stOeMAnfRlve0tKidHd3K93d3Yrf79c7FXu9XsVisUQ8eaIdw2QyJe04p+1b67QXa3+JjmE2m/WnIrQ0LS0tKZ1XqnmK3o/T6UzaITR6O4fDobhcrpT3OZVz1jpgulwupbu7W3E4HBFPhURvFys/scoqWbmkWr7xRD8Bk275ZONaTHQe/f39cTvhx9o23fz09/dHnK/2Ey2d/cbKl9/vT/g5kOr5dXd3K2azWREEQe88HL1Nsus+0/KKdy3Gy3s2Pr+0c9H2YzKZUh5VPdlnRyr7TvX4vI5ycx0lO6fw9yX6PdE+g7V8WiwWRRTFpGWcrGwURdGv50wZFEVRMgvHiOYGbWwTr9eb76ykpbGxEc3NzbNiQE8imptqa2vhcDiy1r80GVmWk45BmQib/4hmEa0qXPs706esiIjmivCmTK05NFMMqohmkba2Nv0Rb0mSEj5QQUREE6OyA5k/maphUEWUgMfjgcPhiDu/XqGx2WxoaGjQp21gTRURzVTt7e3w+XxwOBwJh7eYKu2LaEdHx5S7S7BPFREREVEWsKaKiKaFzWZDVVVVTr9xziY+nw8NDQ0ZjfhPRPnBoIqIpkWsmd7tdjsaGxunNR/h4+AU4v40JpMJdrs9J/vOh1yVE1EhYVBFRHnT0NCA5ubmaT1md3d3Qe8v3FQ7zRaSXJYTUaHg3H9ElDfTNfaMpqOjI6vTQWV7f7MVy4nmCgZVRLOELMvo6OiAKIro7u6GzWabNFVEdBOM1WpNaV17e7vedCdJElpaWgBMDIwqiiJsNpteG6FN39He3g5BEGLWuPh8PtjtdkiSpE8Hpe0PAHbu3KlPU3H27NmIKUFkWYbdbkdtbS28Xi9qampgMpngdDrhcrlilo/H40F3dzckSdKf5NTOI9E5xhNvf7HOS3tk2+FwwGq16udpNBr15k9ZliedZzxaXrVJa5M9sZTJe5vOeQDx369k5U40q2Q8FjsRFZSWlpaIaRdEUYyY5sLhcERM6RE+fUOidRaLJWKaCL/fr5jN5oi02lQSXq9X30/0dBX9/f0KgIh9eb1eRRTFiPPo7u5WRFGMSCeKouL1evXX4VPw9Pf3T9pHPNq0F9GSnWO6+9POIZzZbI4oD5fLpQCIeM9aWloipu6JVT7R0w+ZzeaIsok2lfc2lfNI5f2KV05Esw37VBHNEpIkRTxZJ4qi/lqr2WltbdXXd3Z26hORxlvn8/ng8XgimulEUUQgEND3LQgCfD4fzGYzTCYTHA4HZFlGe3t7RI2IIAgpTbJqNBohSdKkY4Y3H7ndbn1fgiDEnHg1VamcY7pi1cxFjxmmlUd45/3W1taETWWSJMHtdkfUTDU2NsLpdMZMP9X3NpXzSOX9Ipor2PxHNEtozV7aVDWBQACBQAAA0NvbC0EQIm6IWnqPxxN3ndacGE1rYtRupNFptH1mKnp/giDo5wKoT8aFTy0Ra5tU9fb2pnSO00F7H3w+X8w8aeUaHuz5/f64AUyi9z3V9zYVyd4vormCQRXRLOHz+dDW1oaGhgY0NTVF3OiiA5Bwma4LFyuAyuWTazabDW1tbdi5cyc6Ojri1tQko9XUZYvWxymWbBxHlmWIohgR8CQKfrLx3mZru3CJyoloJmPzH9EsIMsytm3bhtbWVlitVgiCoN/8JEmKWbOjbZdondlsjlkLIkkS6uvr4+bHZDLlvPln586d8Hg8sFgsEc2M6dCaLTM5x3j7iyeVmhtZlvX3JJZ45Rov0MnFe5uNGqhE5UQ0kzGoIpoFtBqX8JuxdvPTmpIsFkvE/IWyLKOrqyvhOpPJBLPZHNHcpN0QEz1xJooirFZrxFNnsizD5/NlVNMRvY3X64UgCLBYLGnVeIT39dGCzUzPMd7+opdr+Y9VKxZdHm1tbbBarXHPyWw2o66uDm63O2J5V1dX3PxN5b1N9TyixWqajVVORLMN5/4jmiW0R9sbGhoAqDcyu92O5uZm/SZpt9tRXV2td0gOr+FJtk6bLsXv90c8Lu9wONDb24vW1tZJQY72uL7WPKjl0eFwwGg0oq2tDW63Gw6HQx+OIHpZe3s72traIIqifgy3243GxkZ9uAZBEGCz2VKqsdLyUFNTk9I5Zro/LZDRyqOzs1OfHNZisejDEbS2tur9qABEDGmglUVLS0tEfrS8ak2syYK/TN7bVM5DFMWU3q9E5UQ0mzCoIqIZRZZlbN++HTt37tSbOSVJ0qe8mSk3bC2o8nq9+c4KEWUJm/+IaEbp6OiAzWbTa7+0oQkcDgcDFCLKKwZVRDSjmEymmKOmezwevemTiCgf2PxHRDOOx+OJGMsp1elaCoXWF037zWlbiGYHBlVEREREWcDmPyIiIqIsYFBFRERElAUMqoiIiIiygHP/ZSAUCuHYsWMoLy+HwWDId3aIiIhoChRFwdDQEFatWoWioszrmxhUZeDYsWNYu3ZtvrNBREREWXTkyBGsWbMm4+0ZVGWgvLwcgFr4FRUVec4NERERTcXg4CDWrl2r398zxaAqA1qTX0VFBYMqIiKiWWKqXXrYUZ2IiIgoCxhUEREREWUBgyoiIiKiLGCfqhwJBoMYGxvLdzaI8mLevHkoLi7OdzaIiKYVg6osUxQFJ06cgCzL+c4KUV4JgoAVK1ZwLDcimrJgSMHuvgBODY1gWfkCbF1vRHFR4X22MKjKMi2gWrZsGcrKynhDoTlHURQMDw/j1KlTAICVK1fmOUdENJM9v+84djyzH8cHRvRlKysX4KG7NuH2awvr84VBVRYFg0E9oKqurs53dojyZuHChQCAU6dOYdmyZWwKJKKMPL/vOL78hA9K1PITAyP48hM+fPc+U0EFVuyonkVaH6qysrI854Qo/7T/A/YtJKJMBEMKdjyzf1JABUBftuOZ/QiGYqXIDwZVOcAmPyL+HxDR1OzuC0Q0+UVTABwfGMHuvsD0ZSoJBlUFKhhS8Ef/WfzilXfxR//ZnEbiPp8PNpsNBoMBdrsdHR0dsNvtaGxshMfjydpxOjo6UFVVBZ/Pl7V9Trfa2lq43W79dUdHBxoaGjLaloiI4js1FD+gyiTddGCfqgI03Z3yTCYTHA4HOjo60NraCkEQAACyLKOqqgperxcmk2nKx7FarXC5XFPej0aWZT2v08XhcKCurk5/bTabIYpiRtsSEVF8y8oXZDXddGBNVYHROuVFV3lqnfKe33d82vIiCAJEUURnZ+e0HTNVkiShq6tr2o9rNpsjAjlRFGE2mzPaloiIElAUJOpEYIBa4bB1vXG6cpQUa6pyTFEUXBgLppQ2GFLw0NOvx+2UZwDw90/vx/uuWJLS+BwL5xVPuV9LIBBATU3NlPaRCw6HA7W1tfnOBhER5cCuN07iK/818dSfAYi4N2p3tofu2lRQ41UxqMqxC2NBbPrGC1nZlwLgxOAINv/9r1NKv/+bt6FsfmZvsSzLaGtrg9lshtVqhcfjgc1mg91uBwA4nU54vV74fD54PB6IoghJkmCxWCKaw3w+Hzo7O1FfXw9ADdI0Ho8Hdrsdzc3NaGlpgdvtht1uh9Pp1Gt/JEmC0+lEfX09AoEAmpqa0Nvbi97eXn1f8ZrgPB4PfD4fRFFET08PHA6Hnien0xnRF0oURQQCgYT58fl82L59O2w2G6xWK2RZht1uh8fjgd/v1/cdqzyit9XO3Waz6Wm7u7uz2jxKRDQT/XzPu/hr16sIhhSYr16Ou69fibbn3oxowVnBcapoJujo6NADFO2GD6iBi9lshtfrhdPphNFohCRJsNvt6O7u1revra3Frl27IAgCZFlGY2OjHnAAQFtbm/632WxGc3Oz/tpisUQ0NcqyjIaGBni9XgiCoHeib2lpgdlsRk1NDaxWa8zz0PLm9XoBqMFce3s7rFYrtm3bhr6+Pr0prqqqCrt27UqaH5PJFLFeEAQ4nU5UVVVFHDNWeURvq5VneCDlcrng8/my0n+NiGgmevx/+vD3z+wHANxjWo32e69DSXER7rxuFUdUJ7UJbv83b0sp7e6+AD73g56k6R7/fH1KbcgL56U/4KLVao3b70cQBH1QU4vFArvdPikAEEURXV1dsFqt6OrqmrTeaEy97burqwuiKOr5aW1tTXlbLfALf3qxp6cHgiBM6tuUrc7jTqczYXlEq66ujhgkVhCEiJo8IqK5QlEU/KvnLfzbrrcAAJ9/3+X4uzs3oehS4FRcZMB7awp/UG0GVTlmMBhSboK7+cqlWFm5ACcGRmL2qzJArfK8+cqleYvQU33SLRuin+6LF+zFewrQZDJFdCK3Wq3o6OjIci6JiGgqQiEF3/zlfjz+0iEAwAMNG/C/b71iRo51x6f/CkhxkQEP3bUJACY98TBdnfKS1ZSEr29ubp40jpXP50NTUxMA6P2QwkmSFPFaEAScPXtWf+3xePTJqC0Wy6TtY42bFWtZrLx5PB40NTUlzFOi/GjiTZadrDwSbUtENBeNBUP4a9erekD1zY9eg7/cduWMDKgA1lQVnNuvXYnv3meaNE5VLjvlaZ3JAfWpOpvNNqkZy+PxRHT8NpvN+vhW7e3temdwl8ul1xqJogiXywW73Y6Ghga9RqmtrQ0OhwOiKKKpqUnv7A2ogZjWjCaKIpxOJ+x2u97RXat5stls+thasYY00PIWva0gCDHzpEmUH1mW0dnZCaPROKlDfvgxY5WHVsbattq+tGNIkqR3oBdFcVprBImI8mFkLIg//y8fdr15CiVFBvxz0/X46A2r852tKTEoilI4k+bMEIODg6isrMTAwAAqKir05SMjI+jr68P69euxYMHUBiMLhpQZ0SlvNmhoaIDD4ci4g3hVVRX6+/uznKuZL5v/D0Q0uwyOjOH+H/Zid18ApSVF+O59Jty6cXn+8hPnvp4u1lQVqJnSKW82yKRzeEdHB/x+P2w2G0dJJyJKw5lzo/js93fj9WODKC8twfc+l9rDVzMB+1TRnNbR0aGPhZVOfyez2Yzq6mq43W44nc7cZZCIaBY52j+Mpkf/iNePDWLJ4vn4ifU9syagAtj8l5HpaP4jmun4/0BE4d4+NYRPf283jg+MYLWwEE/cfyPWL1mU72wByF7zX95qqiRJQnt7O9xuN9rb2xPWEiRL6/P5Yk5Z4na7IctyzH37fD79KTCtkzARERFl32tHZTQ++kccHxjBFcsWw/3l9xZMQJVNeetT1djYqI92LUkStm/fHneKjkRp3W63Pg1IrO2iORwOtLS0wOl06mMWmc1mTg9CRESUAy/5z2D7D3tx/mIQ16+pxA8+vxXGRfPzna2cyEtQFT1WkSiKMccaSiWtxWKJuZ0sy3C5XBHr29vb0dLSAkCdPkR7YiveoJJERESUuRdeP4H//ZM9uDgewk011ej4TB0Wl87eZ+Ty0vzn8XgmTVdiNBpj1jalkzZaeEDldrsnBWCCIDCgIiIiygFX7xF8+QkvLo6HcNs1y/H9z9XP6oAKyFNNVbz+U7EebU8nbbjwYEmWZQQCgYgBFWVZhtvtBqDOCRc+eXC00dFRjI6O6q8HBwcTHpuIiGgue+z3Ev7xV28AABpr16Dtns0oKZ79Aw4U1Bmm80h7OmntdnvEVCGAOg+cxWKBxWJBc3MzGhoa4m7f1taGyspK/Wft2rUpH3um6ejogN1uR0dHB9xuNzwejz7sQKHyeDyora2dtnn9amtr9YC80EXntaOjI+G1nmhbIqJkFEXBt184oAdU229ej3bLdXMioALyVFMlCMKkmqZAIBCzKS6dtLHIsgyPxzMpvSRJ+gjaoihCkiRIkhSztqq1tRUPPPCA/npwcDD3gVUoCBx+CTh3Eli8HFh3E1BUnNNDNjQ0oLGxEQ6HQ1/m8/nQ0NAAv9+f02NPhdlsjjlVTa44HI4ZM+BndF7NZnPKU+DMpPMkovwLhRR84+l9eOJP7wAAWm6/Cl/+QM2MnccvE3kJqrT51KLF+gBPJ20svb29kwIqn8+Hbdu2TZpaJLrvlqa0tBSlpaUpHS8r9j8NPG8HBo9NLKtYBdzuADbdnZNDtre3A1Br8MKZTKZJywpRdfX0jT4/nQHcVEXnNZ15BWfSeRJRfl0cVydGfubVYzAYgH/82LX41I3r8p2taZeX+rjoD3VJklBXV6cHPz6fT29uSpY2XLzxqKKDJVEUI2pjPB4PLBZLYXRa3/800PWZyIAKAAaPq8v3P52Tw7a1tcFms8VcF2toCiIiIgC4cDGI7T/qxTOvHsO8YgP+/RNb5mRABeRxnCqXywW73Y76+nr09PREjBPV1taG+vp6ffiDRGk9Hg+6u7sjtot+yi86MBMEAXV1dWhvb4cgCPD7/bkbp0pRgLHh1NKGgsBzLQBiDXKvADCoNVjiB1NrCpxXBqRQ7SpJEmRZjluDEV5j4fP54PF49CZTi8WiD3Nht9v1Dv+SJKG7uxsOh0NvgvX7/Xqto8fjgc1mg9lsRkNDAwKBALxeLxwOBwRB0Nfb7XYAgNPphNfrhcfjgc/ngyiK6OnpiQiOteNox46+TqK3i5dnbTtZltHV1QVRFCHLMnp6etDc3Izt27fDZrPpNXjplkm8ay3eufl8Pjidzoi+UKIoIhAIwG63o7m5GS0tLXC73bDb7XA6nTCbzfD5fBF5lWUZdrtdfy8S5T1623TPhYjmhoHhMXzhhz3wHu7HwnnFePTTtfjAhqX5zlb+KJS2gYEBBYAyMDAQsfzChQvK/v37lQsXLkwsHD2nKA9V5Odn9FxK5+P3+xUAitfrTZrObDZHLDOZTEp/f7+iKIrS0tKiWCwWfZ3ZbFYcDof+WhRFPa2WPny9y+WK2L/ValWsVqu+zu/3KyaTSV/vdDr17R0Ox6Rja+eTaLtYeda2czgcSnd3d8R22nLt70zKJFY5x8tjf3+/IghCRLkJghCRx/AytFgsEXkOz2v49qnkPXrbVM9FE/P/gYhmjZODF5Tb/uV3yjr7L5XNDz2v9B46m+8sZSzefT1ds3vACEqJVkMV3nk/nCRJMBqNcDqdk9aLooiuri5YrVZUV1dH9G0SBCGi9kt76CC8mTX8b4vFgsbGRsiyrI8hpu3PYrHAbrfDaDRGDP7a09Oj/11fXz/pWIBayxVvu1h51razWCyora2FKIpobm6O2bcskzKJNRxIvDwKggCz2RxRTtnqPJ4s79FSPRcimv2OBIZx3/dexuGzw1haXooffWErrl6Z+Zx5swWDqlybVwZ87VjydID6tN9/xR4hPsKn3OrTgKkcO0Xa1D2xRqj3+XxxR65PZqr91KKbJE0mU0RzZKqd6DPZzmg0or+/Hz6fD52dnWhsbNSbmnMhVh6na5gIIqJUHTgxhE9/72WcGhrFWuNCPPHFG7GuevbN45eJuTFwRD4ZDMD8Ran91NyqPuWHeP2gDEDFajVdKvtL4zFWrf9O9E08vPN/c3PzpOmEfD7fpDHA4m2fbL3b7Z5UKxNeExLr+PGmNwqX6XZtbW167Z3W1ys635mUSTp5bGpqmjR7QPiYYYIg4OzZsxHbRJd5vPcglbynMx4cEc1+vnf60eT8I04NjeKq5eVwf+kmBlRhWFNVSIqK1WETuj4DNbAK77B+KUC6/eGcjVfV3d2N9vZ22O121NTU6E9NarVUWnDR3t6ud6Z2uVwQBEGvzQHUju2SJOnBgMlk0juQOxyOiADF7/frgUD4Qwgejyei47bZbNaPrz20oB0r3rGdTidEUcx4u+rqan2apEAggObmZn0bo9EIi8WSUZlo+w+vhYuXR0EQ9Ac1Ghoa9KZRTVNTk975XNtGa9aTZTkir7Fq/ZLlXdtW21cq50JEs9Pv3zoN2396MXwxiC2XCfjB5+ohlM3OiZEzZVAUJdajZpTA4OAgKisrMTAwgIqKiTbkkZER9PX1Yf369ViwYEHmB4g5TtVqNaDK0ThV+aAFbzNhHKxC0tDQAIfDEbP/WyqqqqomjdGWC1n7fyCivHt273H8n5/uwVhQwc1XLoHz07Uomz976mXi3dfTNXtKZDbZdDew8c5pH1GdZoZMOod3dHTA7/fDZrNxlHQiSstPd7+Dr/1sL0IKcOfmlfhO8/UoLeH9KBb2qSpURcXA+puBzRb19ywLqLTmPZfLNanPEMWnzcPodDrT6u9kNptRXV0Nt9sdc4YCIqJYHv2dHw8+pQZUn9y6Fv/+yS0MqBJg818Gct78RzQL8P+BaOZSFAWO5w/g0d+pAwV/+YM1aLntqlk7jx+b/4iIiCjrgiEFX//5Xvxk9xEAQOsdG2H7QE2eczUzMKgiIiIiAMDoeBAPdL6KX+09jiID8K2Pb8Yntl6W72zNGAyqiIiICOdHx/GlJ7z4/VtnML+4CP/2iRtwx+aV+c7WjMKgioiIaI6Thy/i84/3YM87MsrmF6Pj03V4/5VL8p2tGYdBFRER0Rx2cnAEn/7eyzh48hwqF87D45+vx5bLqvKdrRmJQRUREdEcdejMedz3vZdxtP8ClleU4j+/eCM2LC/Pd7ZmLI5TVaCCoSB6TvTgWelZ9JzoQTAUzNmxPB4PbDYbDAZDxJQn6ejo6EBVVdW0jDk1nccKV1tbC7fbHZGPhoaGjLYlIsq3N44PwvLoH3G0/wIury6D+0s3MaCaItZUFSDPYQ8e3v0wTg6f1JctL1uOB7c+CPM6c9aPZzabIYoiOjo60NraGjG3XKqsVqs+b1+uTeexwjkcjojRyLVyy2RbIqJ86j0UwOcf78HQyDiuXlmBH31hK5aWl+Y7WzMea6oKjOewBw+8+EBEQAUAp4ZP4YEXH4DncPq1SKnQJk+m+LQJjjXaRM+ZbEtElC8vHjiF+773MoZGxlG3rgo/tb6HAVWWsKYqxxRFwYXxCymlDYaCaNvdBgWTB7nXlj28+2HcuOJGFKcwbc3CkoWzdvRbIiJK39OvHsMDna9gPKTgg1ctxXc/VYuF8zntTLYwqMqxC+MXcOOPb8za/k4On8RNP70ppbQv/9nLKJtXltFxPB4P7HY7bDYbRFGEJEno7u6OaHbz+Xzo7OxEfX09gMkT/Xo8Hvh8PoiiiJ6eHjgcDrjdbrS1tUGWZfj9frS3t8PpdMJms6GlpSXmNqkcK1b+4+3H6XRG9IUSRRGBQAB2ux3Nzc1oaWmB2+2G3W6H0+mE2WyGz+fD9u3bYbPZYLVaIcuy3v/M7/fr+/Z4PHp5WSwWiKI4adtUypaIKNue+NNh/N0v9kFRgLuvX4VvN16P+SVssMomBlUUk9lshtlsjrjZa5Mfm0wmyLKMxsZGPaAAgLa2Nv1vSZJgt9vh9XoBqEFQe3s7WlpaYDabsW3bNsiyDEEQ4PV6IQhC3G2sVmvCY0VLtJ9t27ahr69Pb4qrqqrCrl27YDab0dzcrO/DYrGgs7NTf20ymSLWC4IAp9OJqqqqiGN2d3fraWpra7Fr165J2yYrWyKibFIUBf/xoh+PvHAAAPDp96zDjruvQVERWzKyLW9BlSRJcLvd+jd1q9Uat89JsrRaTYB2Ew1fDqg3REmSIMuyftNK5/hTsbBkIV7+s5dTSus96cVXdn0labr/2PYfqF1em9Kxp6K6uhrV1dX6a0EQ9Bqirq6uSQFAeL8sp9MJo9EY8SRhT0+Pvp+dO3eitrYWLpdLL/d42wiCkPBY0RLtJ7pvU7Y6jzudzkl5FEURXV1dsFqtk9InKlsiomxRFAX/9Ks38Ngf+gAA//vWK/BAwwZ2DcmRvAVVjY2NehAkSRK2b98et/kjUVotMIr1eL3T6URHRwcAtXYgfP/pHH8qDAZDyk1wN626CcvLluPU8KmY/aoMMGB52XLctOqmlPpU5ZvJZIroyB0eXGiBUmdnZ0QwEmsb7T2c6rEz2Q8R0Uw1Hgyh9am9cHmPAgD+7iOb8MX3r89zrma3vDSmSpIU8VoUxbhjIyVLa7FY4jaZ1NbWor+/H/39/eju7tZrKNI5/nQqLirGg1sfBKAGUOG01/at9pwEVOnWkmj9jMKFl2tzc/OkMtVey7IMj8cDl8ul1xgm2ibZsaLF209TU1PC/QiCgLNnz0ZsI8tyRPro14mO6fP50NTUlHRbIqJsGxkL4iv/5YPLexTFRQZ8u/F6BlTTIC81VR6PZ1LzjdFojNmnJJ20scRq0pvqPnPJvM6M73zwOzHHqbJvtedknCotwAHUvkpa/x+tT5HZbIYkSXonb1EUIYoiXC4X7HY7Ghoa9P5RbW1tcDgcMJlMcDgcsNvteudys9mMjo4OOBwO2Gw2AEB9fT22b98OSZLQ0tIScxtBEBIeK3qsqHjHjrcfTVNTU8Tgp2azWW/Wk2UZnZ2dMBqNegf0WMdsb2/XO8drTZtaJ3ttW21ficqWiChT50bHYf1RL17yn8X8kiL8f5/cgg9dsyLf2ZoTDIqiTG5nyrH29nZ0d3dHdOqtqanRn7TKJK3BYED0qWg3OEDtU6M9bZXO8QFgdHQUo6Oj+uvBwUGsXbsWAwMDqKio0JePjIygr68P69evx4IFC9ItlgjBUBC+Uz6cHj6NpWVLYVpmmhFNfjNNQ0ODHgRmoqqqCv39/VnO1eyQzf8HIkpN4PxFfP4Hu/Hq0QEsml+MnZ+tw001nBg5mcHBQVRWVk66r6eroJ7+S6d5JJW04Z3PRVFEQ0NDxBNkqe6zra0NO3bsSDlv2VBcVIz6FfXTesy5KJPO4R0dHfD7/bDZbBwlnYgKxvGBC/j093bj7VPnUFU2Dz/8wlZct0bId7bmlLz0qYr1pFMgEIjZVJdO2mjh/WW0p/wkSUp7n62trRgYGNB/jhw5kvTYVPg6OjogSRKcTmdaAb3ZbEZ1dTXcbjecTmfuMkhElCLp9DlYvvtHvH3qHFZWLoDrS+9lQJUHeQmq4k3tEetbfzppw/l8Pmzbtm3ScqPRmPY+S0tLUVFREfFDM5/VakV/fz+cTmdaw2mIooiWlha0tLSw/xMR5d2+dwfQ+Ogf8a58AeKSRXB/+SZcsYwTI+dDXoKq6BuRJEmoq6vTb2w+n0+vZUqWNlx4bYMoivoo2oDaGdtisUAQhLT2SUREVKhels7ikx1/wtnzF3HNqgp0fem9WC1MbYxCylze+lRpT2HV19frT0pp2traUF9fj5aWlqRpPR6P3uFc204Lnurq6tDe3g5BEOD3+yO2S7TPqcpD33+igsP/A6Lc2vXGSXzlv3wYHQ9h63ojHvtsHSoWzMt3tua0vDz9N9PFe0ogGAzi4MGDWLZsWcRo2URz0dmzZ3Hq1Cls2LABxcV8cpUom36+5138tetVBEMKtm1chv/7KRMWzOP/WaZm5dN/M11xcTEEQcCpU6cAAGVlZZwKgOYcRVEwPDyMU6dOQRAEBlREWfb4//Th75/ZDwD4+JbVaLdch3nFnBi5EDCoyrIVK9QB1rTAimiuEgRB/38goqlTFAX/tust/KvnLQDA5266HN/4yCZOjFxAGFRlmcFgwMqVK7Fs2TKMjY3lOztEeTFv3jzWUBFlUSik4Ju/3I/HXzoEAPh/zBvwl9uuYGtIgWFQlSPFxcW8qRAR0ZSNBUNocb+Gn+15FwCw4+5r8NmbLs9vpigmBlVEREQFamQsiL/4sQ+eN06huMiAf268Hh/bsjrf2aI4GFQREREVoMGRMdz/w17s7gugtKQI//EpE7ZdvTzf2aIEGFQREREVmDPnRvHZ7+/G68cGUV5agsc+W4cbRQ7VU+gYVBERERWQd+UL+PRjL0M6cx7Vi+bjh1/YimtXV+Y7W5QCBlVEREQF4u1T5/Dp772M4wMjWC0sxH9+cSvEpYvznS1KEYMqIiKiAvDaURmf+0EPAucvombpIjxx/41YWcl5/GYSBlVERER59pL/DLb/sBfnLwZx3ZpKPP75rTAump/vbFGaGFQRERHl0a9fP4G/+MkeXBwP4aaaanR8pg6LS3l7non4rhEREeWJ23sU9idfQzCk4EObluPfP7mFEyPPYAyqiIiI8uCx30v4x1+9AQCw1K7Bw/dsRgknRp7RGFQRERFNI0VR8M+/Poj/77dvAwDuf/96fO3DV3Ni5FmAQRUREdE0CYUUfOPpfXjiT+8AAP7mtqvwlQ/WcGLkWYJBFRER0TS4OB7CX7texTOvHoPBAHzzo9fi0+9Zl+9sURYxqCIiIsqxCxeD+PJ/efHigdMoKTLgO8034O7rV+U7W5RlDKqIiIhyaODCGL74eA96D/djwbwifPe+Wtxy1bJ8Z4tygEEVERFRjpwaGsFnv9+DN44PonxBCX7wuXrUXW7Md7YoRxhUERER5cCRwDDu+97LOHx2GEsWl+JHX9iKTasq8p0tyqG8BVWSJMHtdkMURUiSBKvVCkEQMkrr8/mwfft2eL3eiO18Ph88Hg8AoKenBzt37tS38/l8AACTyQRJkiDLMkwmU9bPk4iI5p6DJ4fw6e+9jJODo1hTtRBPfPFGXL5kUb6zRTmWt6CqsbFRD4IkScL27dvhcrnSTqsFW1qQFM7j8aClpQUA0N7ejm3btun7cTqd6OjoAACYzea4xyYiIkrHnnf68fnHeyAPj2HD8sX4zy/eiOUVC/KdLZoGaQdVhw4dgsvlQnd3N/r7+/XlRqMRDQ0NsFgsuPzyyxPuQ5KkiNeiKOo1SummtVgsMbfz+Xxoa2vTgyqLxQK73Q5JkiCKImpra/X8x6shIyIiSscf3joD63/2YvhiEFsuE/CDz9VDKOPEyHNFWkHVgw8+CIPBgKamJvzN3/zNpPV79uzBo48+CoPBgLa2trj78Xg8MBojO+oZjUb4fL5JTXDppA1nMpmwc+dO/bUsy/q2GgZTRESULc/tPY7/89NXcDEYws1XLsGj99ViESdGnlNSfrcfeeQRtLa2orKyMm6aLVu2YMuWLRgYGEBra2vcwEoLcKIFAoEppY0WXovV2dkJs9msB1KyLMPtdgNQ+1vZbDaIohhzP6OjoxgdHdVfDw4OJj02ERHNHZ0976D1qb0IKcCHN6/AvzTfgNISTow816QcVMWqmYqnsrIyYU1VPPECqGykdbvdER3Zwzu7i6KIhoYG+P3+mNu3tbVhx44dKR+PiIjmDufv/Gh77k0AwCfq1+KfPr4ZxZzHb07KeDrsBx98EI899hgGBgbwoQ99CM3NzXjqqadS2lYQhEk1TYFAIGZzXDpp47Hb7eju7o7YJryvlvZUYXT/LU1raysGBgb0nyNHjqR8bCIimp0URYHj+Tf1gOpLH6hB2z0MqOayjIOq+vp63H///ejo6EBtbS06Oztx9uzZlLY1m80xl9fV1U0pbSzt7e2w2+0QRRGyLEOWZfh8Pmzbtm1S2ui+W5rS0lJUVFRE/BAR0dwVDCn42s/24rsvqi0cD96xEQ/esZETI89xGQdVVVVVAICuri40NzcDiB+URIvuuyRJEurq6iLGkNJqjZKlDRfdJOh2u2EymfSAqqurC4IgQBRFOBwOPZ3H44HFYmHHdSIiSmp0PIi//Mke/GT3ERQZgIfv2YwvfaAm39miApDxYwl+vx+KosDv9+OGG25AX19fxBALybhcLtjtdtTX16OnpydinKi2tjbU19frwyEkSuvxeNDd3R2xncVigSRJaGxsjDimIAh6X6q6ujq0t7dDEAT4/X6OU0VEREmdHx3Hl57w4vdvncG8YgP+7RNb8OHNK/OdLSoQBkVRlEw2HBgYQEdHBywWC4xGI9ra2rBkyRJ89atfzXYeC87g4CAqKysxMDDApkAiojlCHr6Izz/egz3vyCibXwznp2tx85VL850tyoJs3ddTCqoGBgbQ39+fdFDP6AwCmJVBB4MqIqK55eTgCD7zvd04cHIIlQvn4Qefr4fpsqp8Z4uyJFv39ZT6VFVWVqK7uzvlp/uefPJJdHV1MeAgIqIZ7/DZ87A8+hIOnBzCsvJSdNney4CKYkq5T9X27duxZ88eNDU1oaamBvX19RBFEYIgQJZlSJKE3bt3o6+vDzabDffee28u801ERJRzbxwfxGe+vxunh0axrroMT3zxRqw1luU7W1SgMupTNTAwgK6uLvj9fsiyDEEQUFNTA7PZjPXr1+cinwWFzX9ERLOf93AAn/9BDwZHxrFxRTl+9MWtWFbOiZFno2zd1zN6+q+yshLbt2/P+KBERESF7MUDp/ClJ7wYGQuhdl0Vvv/ZelSWzct3tqjAcaZHIiKiMM+8egwPdL2CsaCCD2xYiu/eZ0LZfN4uKTleJURERJf818uH8fWf74OiAB+5biW+03QD5pdkPE42zTEMqoiIaM5TFAX/8aIfj7xwAADwqRsvwzc/ei3n8aO0MKgiIqI5TVEUfOvZN7Dz930AgL+45Qr89Yc2cB4/StuU6jQfeeQRfd6/Xbt26QN+EhERzQTjwRDsT76mB1Rfv/NqfPW2qxhQUUYyDqoefPBBCIIAs9kMANi2bRs8Hk/WMkZERJRLI2NB/PmPfejqPYoiA/CI5Trcf7OY72zRDJZx8199fT3uvfde7Nq1K5v5ISIiyrlzo+Ow/qgXL/nPYn5xEf7fP9uC265Zke9s0QyXcU1VX59aVRpeRdrT0zP1HBEREeVQ4PxFfGrnn/CS/ywWzS/G45+vZ0BFWZFxTdWWLVtQV1eH6upqdHd3w+PxwOFwZDNvREREWXV84AI+/b3dePvUOVSVzcPjn9+K69cK+c4WzRIZTVOj6evrg9PpBAA0Nzdjy5YtWctYIeM0NUREhS8YUrC7L4BTQyNYVr4ASxbPx+d+0IN35QtYUbEAT9y/FVcsK893NqkAZOu+PqWgKlam5kKQwaCKiKiwPb/vOHY8sx/HB0b0ZUUGIKQA65cswn9+cSvWVHFiZFJl674+pSEVBgcHcejQIf3HbrdPZXdERERT9vy+4/jyE76IgApQAyoA+PIHaxhQUU5k3KfqS1/6EjweDwRB0Jf19fXhu9/9bjbyRURElLZgSMGOZ/YjXhOMAcC/dB/EvaY1HC2dsi7joKqmpgaPPvpoxLKdO3dOOUNERESZ2t0XmFRDFU4BcHxgBLv7AnhvTfX0ZYzmhIyb/7RBP8M1NDRMKTNERERTcWoofkCVSTqidGRcU1VVVYVvf/vbEEURgiBAlmV0dnais7Mzpe0lSYLb7YYoipAkCVarNaIpMZ20Pp8P27dvh9frTXm7dI5PRESFL3D+ItzeoymlXVa+IMe5obko46CqpaUFsixHBCJ79uxJefvGxkY9CJIkCdu3b4fL5Uo7rRYY+Xy+tLZL5/hERFS4FEXBL145hm/+cj8C5y8mTGsAsKJyAbauN05P5mhOyTioamhowPbt2yOWPfnkkyltK0lSxGtRFOPOG5gsrcViSXu7dI5PRESF60hgGF//+T787uBpAMBVy8vx0RtW4ZEXDgBARId1rVv6Q3dtYid1yomM+1TV1NSktCwWj8cDozHyW4LRaIxZ25RO2lS3y3SfRERUGMaDITz2ewkf+pf/xu8Onsb84iL8dcMGPPO/34+v3HIFvnufCSsqI5v4VlQuwHfvM+H2a1fmKdc022VcU+X3++F0OlFfXw9ArX7t6upKaf4/WZZjLg8EAlNKm+p26e5zdHQUo6Oj+uvBwcGExyYiotzZf2wQDz71Gl47OgAA2LreiLZ7NqNm6WI9ze3XrkTDphURI6pvXW9kDRXlVMZBldPphNlsRviA7FMdnD1esDPVtKluF29dW1sbduzYkdHxiIgoO0bGgvhXz1vY+XsJwZCC8gUl+NqHr0Zz3VoUxQiWiosMHDaBplXGQZXD4cC2bdsilsUaZiEWQRAm1QoFAoGYT9+lkzbV7dLdZ2trKx544AH99eDgINauXZvw+ERElD3/8/YZfO1ne3H47DAA4MObV+Dv77oGyyr4FB8Vjoz7VEUHVIA6zEIq4gVfdXV1U0qb6nbp7rO0tBQVFRURP0RElHvy8EX8jetVfOqxl3H47DBWVCxAx6dr8R+fqmVARQUn5Zqqp556CmazWQ8oHnvssYj1siyju7sbL7zwQtJ9iaIY8VqSJNTV1ek1RT6fD4IgQBTFpGmj86AtT7Rd9LaJ9klERNNPURQ889pxfPOZ13Hm3EUYDMB9N65Dy+1XoXzBvHxnjyimlIOqb33rWxAEAbfeeisA4NFHH0Vzc3NEmrNnz6Z8YJfLBbvdjvr6evT09ESMEdXW1ob6+nq0tLQkTevxeNDd3R2xnTbMQqLtEq0jIqL8eVe+gK//bC9+e0AdJuHKZYvx8L2bUbuOY0tRYTMoGfYu37NnD7Zs2ZJ02Ww0ODiIyspKDAwMsCmQiChLgiEFP3zpEL796wMYvhjE/OIi/PktV+BLHxRRWlKc7+zRLJat+/qUpqnRDAwMwOPxoLa2NuOMEBHR3PXmiUHYn9yLV4/IAIC6dVV4+N7NuGJZeX4zRpSGjDuqh49AXllZiXvvvZejkhMRUVpGxoJ45IU38ZF//wNePSKjvLQE//ixa9Fley8DKppx0qqpGhgYQFdXFwwGg96PKZzX68X999+ftcwREdHs9Uf/WXztZ3vRd+Y8AOC2a5Zjx93XThoJnWimSCuoqqyshNlshsPhgN/vx/r16yPWax3LiYiI4hkYHkPbc2/gpz1HAADLykvxzY9ew+ljaMbLuKP6rl27Yo5VNRewozoRUfoURcGze0/goadfx5lz6tRff3bjZbDfvhGVCzlMAuVP3juqz9WAioiI0ndMvoBv/GIfPG+cAgDULF2Etnuuw9b1HCaBZo+MgyoiIqJkQiEFT7x8GI7n3sT5i0HMKzbgyx+8An9+Sw2HSaBZh0EVERHlxMGTQ3jwydfge0cGAJguE/Dwvddhw3I+1UezE4MqIiLKqpGxIP7jt2/ju7/zYyyoYHFpCVpuvwr33bgORUWGfGePKGeyGlQdOnQIl19+eTZ3SUREM8juvgAefOo1SKfVYRLMVy/DP3zsWqysXJjnnBHl3pSCqldeeQWBQEB/7XQ60dnZOeVMERHRzDJwYQwPP/cmfrL7HQDAksWl2HH3Nfjw5hUwGFg7RXNDxkFVU1MTZFmGIAj6sj179mQjT0RENIM8v+84vvGL13FqSB0m4RP1a9F6x9WoLOMwCTS3ZBxUNTQ0YPv27RHLnnzyySlniIiIZoYTAyP4xi/24df7TwIA1i9ZhLZ7NuM9YnWec0aUHxkHVTU1NSktIyKi2SUUUvBfu99B+3NvYmh0HCVFBnzpAzX4i1uvwIJ5HCaBciAUBA6/BJw7CSxeDqy7CSgqvGst46DK7/fD6XSivr4egDpSbldXF3p6erKWOSIiKixvnxrCg0/uRe/hfgDA9WsFOO7djI0rOLsE5cj+p4Hn7cDgsYllFauA2x3Aprvzl68YMg6qnE4nzGYzwme5yXDGGyIiKnCj40F890U//uO3flwMhlA2vxh/c9tV+Mx7L0cxh0mgXNn/NND1GQBR8cXgcXV5048KKrDKOKhyOByTpqoxm81TzhARERUW7+EA7E/uxdunzgEAbt2oDpOwWuAwCZRDoaBaQxUdUAGXlhmA5x8ENt5ZME2BWZv77ze/+Q1kWcaWLVumnCkiIsq/oZExtD9/AE+8fBiKAixZPB8P3XUNPnLdSg6TQLl3+KXIJr9JFGDwXTXd+punLVuJTGmcqqeeegqSJAFQm/56e3txzz33ZCVjRESUP79+/QS+8YvXcWJwBADQWLsGf3vn1RDK5uc5ZzQnjA4B+1IcUeDcydzmJQ0ZB1UPPvggZFlGIBCAKIqQZRk2my2beSMioml2anAEDz39Op7bdwIAsK66DG0f34ybrliS55zRrBcKAtKLwKs/Bd54Bhi/kNp2i5fnNFvpmNKQCtu3b0dfXx8MBgMuv/xy/OY3v8lm3oiIaJqEQgp+2nMEbc+9gaGRcRQXGbD9ZhF/Zb6SwyRQbp3cD7z6E+C1LuDciYnlxhrg/Clg9Bxi96syqE8BrrtpunKaVMZBlSiKOHz4MNavX49vf/vb+OpXv5rW9pIkwe12QxRFSJIEq9UaMTp7qmkTrXO73Xrn+eh9+3w+AIDJZIIkSZBlGSaTKa1zICKaDfynz6H1qb3Y3adOO3bdmkq03bMZ16yqzHPOaNY6dwrY61aDqROvTSxfWAVcawGu/ySw2qTWWHV9BoABkYHVpT59tz9cMJ3UgSkEVbIsQxRF9Pf348yZM7jtttsgCAJuvfXWlLZvbGyE1+sFoAZG27dvh8vlSjttsnXRHA4HWlpa4HQ60dHRAUB9ajHesYmIZquL4yE4f+fH//ubt3ExGMLCecX46w9twOfft57DJFD2jY0AB55Vm/fe9gBKUF1eNA/YcJsaSF35IaAkrN/eprvVYRNijlP1cEENpwBMIai69957EQyqBfLwww9j165dqKurS2lbrXO7RhRFeDyetNMmWifLMlwuFywWi76+vb0dLS0tAIDa2lr096uD18WrISMimq187/Sj9cm9OHByCADwgQ1L8Y8fuxZrjWV5zhnNKooCvPMntUbq9Z8DowMT61bXAdd/Arj2XqDMGH8fm+5Wh02YzSOqA8AjjzyC3t5edHZ2AkDKj9h6PB4YjZEFaDQa4fP5JjXBJUrb29sbd50oihEBldvtjngNMJgiornn3Og4vv3CAfzwj4egKIBx0Xw8dNcm3H39Kg6TQNkTkIBXO4HXfgr0H5pYXrkWuK5ZDaaWXJn6/oqKC2bYhESm9PRfTU2N3mdp27ZteOqpp1IaUkGW5ZjLA4FAWmkTrQsPzsKfUgxf5na7AQA9PT2w2WwR68ONjo5idHRUfz04OBgzHRFRIdv1xkn83c/34diAOkzCPabV+Pqdm2BcxGESKAsuyMDrP1Ob9478aWL5/MXApo+qgdS69wNFRXnLYq5lHFTV19fj3nvvxa5du7KWmXhBUrppo9fZ7XY4HI6IZeEd2kVRRENDA/x+f8z9tbW1YceOHSnnjYiokJwaGsGOZ/bjV68dBwCsNS7Etz6+GTdfuTTPOaMZLzgGvL1Lbd478BwQvFQBYSgCxFvUQGrjncD8RfnN5zTJOKjq6+sDENnk19PTk1JNlSAIk2qlAoFAzOa4RGlT2Y8sy/B4PJP2LUmSXpulPTkoSVLM2qrW1lY88MAD+uvBwUGsXbs26XkSEeWToihw9R7FP/5qPwZHxlFkwKVhEjZg4fzC649CM4SiAMdfVWuk9rqA4TMT65ZtUjucb24EKlbmL495knFQtWXLFtTV1aG6uhrd3d3weDyTaoPiMZvNcDqdk5bH6uieKK0oikn309vbG3M4hW3btukd1TXR/bM0paWlKC0tjbmOiKgQ9Z05j689tRd/lM4CAK5ZVQHHvdfh2tUcJoEyNHhMHUvq1Z8Cp9+YWL5oKbC5Sa2VWrEZmMN986Y095/L5YLT6YSiKOjo6Eh53r/o2iBJklBXV6cHPz6fD4IgQBTFhGlj1T6F70fbV3SwJIpiRADo8XhgsVjYcZ2IZryxYAgd/y3h33a9hYvjISyYV4QHGjbgC+9bj5Li2duXhXLk4nngjV+qzXvSi9DHiiouVZv1rv8kUHMLUDwvn7ksGFN6+m/9+vV4+OGHM9rW5XLBbrejvr4ePT09EeNEtbW1ob6+Xh/+IFHaROs00YGZIAioq6tDe3s7BEGA3+/nOFVENOO9ckTGg0++hjdPqMMkvP+KJfjWxzfjsmoOk0BpCIWAQ79Xa6T2/wIYOz+x7rL3qjVSmz4GLBTylcOCZVAUJdbY75OkMmr6Y489hvvvvz8rGStkg4ODqKysxMDAACoqKvKdHSKa486PjuPbvz6AH750CCEFqCqbh6/fuQn3mFZzmARK3emDE9PFDB6dWF51uVojdV0TYIz9lPxMl637espBldFoRH19fcI0vb29OHv2bMaZmSkYVBFRofjtgVP4+s/24V1ZnXz2Yzeswt99ZBOqF7MfKKXg/Flg35NqMHXMN7G8tBK49uNqMLX2xlnfTypb9/WUm/+2bduG6upq1NbWxk2TYnxGRERTdObcKL75zH48/ao6dcdqYSH+6ePX4oNXLctzzqjgjY8CB19Qm/feegEIjavLDcXAlQ1q896GO4B5C/Kbzxko5aDK5XJhYGAAvb29ANRxqqKjuXhPzxERUXYoigK39yj+6dk3IA+PocgAfP596/FAwwYsKp1SN1mazRQFONqr1kjtexIYkSfWrbxBrZG69l5gMccum4qUm/+i7dmzB4FAAAaDIeVJlGcLNv8RUT4cPnseX/vZXvzP22o3i6tXVuDhezbj+rVCfjNGhav/8KVhEH4CBMIGuC5fqfaRuv6TwLKr85e/AjHtzX/RwodP+M1vfoPu7m40NDTMuQCLiCjXxoMhPPaHPvyr5yBGxkIoLSnCX5k34P6b12Meh0mgaCOD6lN7r/4UOPyHieXzyoCr71Kb99Z/oCAnJJ7pplRX/Morr8DpdKKzsxOiKKKmpoZBFRFRFu09OgD7k69h/3F1ztGbaqrxrY9vxuVL5sa0H5Si4Lg6jtSrPwHe/CUwPnJphUGdiPj6T6oBVWl5PnM566UdVB06dEgf9NNgMODee++F1+vF+vXrc5E/IqI5afjiOP6l+yC+94c+hBSgcuE8/O2dV6Oxdg2HSaAJJ/apgdReF3Du5MTyJRvUGqnNTYDAadWmS8pB1WOPPQan0wlJktDU1ASXyzVpBPWnnnoqpbn/iIgovv8+eBpf+9leHO1Xh0m46/pV+MZHNmFpOYdJIABDJ9Ug6tWfAif3TixfaAQ2W9RgapVp1g+DUIhS7qheVFQEi8WC5uZmCIIw6ZtSf38/Hn74YfT09OQko4WEHdWJKBcC5y/iH365Hz/b8y4AYFXlAvzjx6/FrRuX5zlnlHdjF4A3f6UGUv7fAEpQXV40D7jqduD6PwOuMAMl8/Obzxlq2juqW61WtLe3JxyLqrOzM+OMEBHNVYqi4Gd73sU//HI/+ofHYDAAn33v5fjqbVdhMYdJmLtCIeDIn4BXfqx2PB8dnFi3pl6tkbrmHqCMwxkVipT/W202W9LorbW1dcoZIiKaS44EhvG1n+3F7986AwDYuKIcbfdsxpbLqvKcM8qbs361Ruq1nwLyOxPLKy8Drm8GrvsEsOSK/OWP4ko5qIruP5VpGiIiUodJ+MH/HMJ3ug/iwlgQ80uK8H+2XQnr/xI5TMJcNBwAXv+ZGkwd3T2xfH45cM1H1af3LrsJKOK1UchYr0xENM32vTuA1qf2Yu+7AwCA94hGfOvjmyEuXZznnNG0Co4Bb3WrT+8dfB4IXlSXG4qAmlvVQOqqDwPzy/KbT0oZgyoiomly4WIQ/7rrIB77fR+CIQUVC0rwt3dejaa6tRwmYa5QFODYHrVGap8bGD47sW7ZNcANnwQ2NwLlK/KXR8oYgyoiomnwh7fO4Gs/24t3AsMAgDs3r8RDd2/CsnJOWjsnDLwLvNapBlNnDkwsX7Ts0nQxnwBWbM5f/igrGFQREeVQ//mL+MdfvYEnfUcBACsrF+AfPnotzJs4TMKsN3pOHd381Z8A0u8AXHp6vmQBsPFOtXlPvAUo5q14tuA7SUSUA4qi4OlXj+Gbz+zH2fMXYTAAn37POvzNbVehfMG8fGePciUUBA79Xq2R2v80MHZ+Yt2696k1Ups+CiyozF8eKWcYVBERZdnR/mF8/ef78OKB0wCADcsXo+2e61C7jsMkzFqn3lSHQHitCxh8d2K5UVRrpK5rAqouz1v2aHowqCIiypJgSMHjLx3CP//6AIYvBjG/uAh/cesV+NIHajC/hI/CzzrnzwD7nlSb947tmVi+oBK49l41mFpTz+li5hAGVUREWbD/2CBan3oNrx5Vh0nYerkR37pnM65YxmESZpXxUXX4g1d/Crz1ayA0ri4vKgGu/JDavLfhdqCE8zTORXkLqiRJgtvthiiKkCQJVqsVgiCknTbROp/PBwAwmUyQJAmyLMNkMqV9fCKieEbGgvi3XW9h539LGA8pKC8twYMf3ohP1l+GoiLWUMwKigIc7VFrpPY9CYwMTKxbtUWtkbr2XmDRkvzlkQpC3oKqxsZGeL1eAGqAs337drhcrrTTJlrndDrR0dEBADCbzRH7T+f4RESxvOQ/g689tReHzqrDJNx+zQrs+Og1WF7BYRJmhf5Dah+pV38CBKSJ5RWr1T5S130CWLYxb9mjwpOXoEqSpIjXoijC4/GknTbZfmpra9Hf3w8AEbVQ6RyfiCiaPHwR33r2DXT1qsMkLK8oxTc/ei1uu4YDNs54IwPq5MWv/hQ4/D8Ty+ctAjbdrTbvXX4zUFScvzxSwcpLUOXxeGA0Rs6qbTQa4fP59Oa5VNL29vYm3U+sJr10jk9EpFEUBb987Th2PPM6zpxTpxS57z2XoeX2jajgMAmFJxQEDr8EnDsJLF4OrLspdjAUHAek36o1Um/+ChgfubTCAIgfUJv3Nn4EKGX/OEosL0GVLMsxlwcCgbTSJtuPLMtwu90AgJ6eHthsNoiimNbxAWB0dBSjo6P668HBwZjpiGhmC4YU7O4L4NTQCJaVL8DW9UYUX+oX9a58AX/38334zZunAAA1Sxfh4XuvQ/3lxkS7pHzZ/zTwvB0YPDaxrGIVcLtDrXECgBN71Rqp17qA86cm0i256tJ0MU1A5erpzTfNaAX19F+8YCfdtNq68M7noiiioaEBfr8/7X22tbVhx44dKeeNiGae5/cdx45n9uP4wIi+bGXlAvzdnZtwamgEj7xwAOcvBjGv2ICvfPAKfOWWGpSWsAmoIO1/Guj6DPQRzDWDx9Xl139CDahO7ptYV1atzrl3/SeAlTdwGATKSF6CKkEQJtUKBQKBmE11idIm248kSXpznvaUnyRJaR0fAFpbW/HAAw/orwcHB7F27dpUTpWIZoDn9x3Hl5/wRd+CcXxgBF/5sU9/XbuuCm33bMaG5eXTm0FKXSio1lBNejcxsezVn6i/i+cDV92hNu9dYQaK2YRLU5OX0ejMZnPM5XV1dWmlTbTO5/Nh27Ztk9YZjca0jg8ApaWlqKioiPghotkhGFKw45n9MW/BGgOAHXdvgsv2XgZUhe7wS5FNfvG858+Brx4Emn6kBlYMqCgL8lJTJYpixGtJklBXVxcxvpQgCBBFMWHa6Jql8HWiKMLhcOjrPB4PLBZL0u2IaG7Z3ReIaPKLRQGwYXkFx50qdAPvqn2kUrHaBCzktEGUXXnrU+VyuWC321FfX4+enp6IMaLa2tpQX1+PlpaWpGnjrRMEAXV1dWhvb4cgCPD7/SltR0Rzy6nBxAGVnm4otXQ0jRQFOP4qcOA54OBz6t+pWrw8d/miOcugKEqiWm+KYXBwEJWVlRgYGGBTINEMdXpoFD/bcxSPv3QIx+TkAdNPtr8H762pnoacUUJjI0DffwMHngUOvgAMhTf1GYDVdcCZA8BovKe0DepTgH+1l2NNkS5b9/WCevqPiCiXxoIh/PbNU3B5j+I3b55CMJT8O6UBwIpKdXgFypNzp9QA6sBz6nhSY8MT6+YtAmpuUftFXXkbsHhp2NN/QGSH9UvNt7c/zICKcoJBFRHNem+dHILLexRP+Y7qg3YCwJbLBDTWrsWCeUX46y616SjGLRgP3bVJH6+KpoGiAKf2X2rWex442ouId6ZitTpp8VV3qKObz4uaFmjT3WoH9JjjVD08MU4VUZYxqCKiWWloZAy/fO04unqPYM87sr58yeL5uMe0Bo21a3Bl2JN8ZfOLJ41TtaJyAR66axNuv3bldGZ9bhq/CBz+A3DgebV/lPxO5PqVNwBXfRi46nZgxXXJx5HadDew8c7URlQnyhL2qcoA+1QRFaZQSMHLfQG4eo/g2X3HMTIWAgAUFxlwy1XL0FS3BrdsXIZ5xbFHk0k0ojrlwHAAeOvXao3U27uAi0MT60oWAOs/oNZGbbgdqGBgS7nDPlVERJccky/gSe9RuLxH8U5gor/NFcsWo6luDT62ZTWWlS9IsAdVcZGBndFz7cxbaifzA88DR/4EKKGJdYuWARtuU2ukxA8A8xflL59EGWBQRUQz0shYEN37T6Kr9wj+8PYZaHXui0tLcNf1K9FYtxZb1gowcLqR/AqOq8HTgefUn0DUVGHLr53oH7XKBBTlZUxqoqxgUEVEM8q+dwfg6j2Cn79yDAMXxvTl7xGNaKpbi9uvXYGy+fxoy6uRAeBtjxpEvdUNjMgT64rmAetvBjbcofaPEi7LWzaJso2fPERU8PrPX8TPX3kXXb1H8cbxifGHVlYugKV2DSy1a7Cumk1FeRXoU5/UO/Cs2jk8ND6xbqFRbdbbcDtQcyuwgH1RKT3BUBC+Uz6cHj6NpWVLYVpmQnEBPnTAoIqIClIwpOD3b52Gq/couvefxMWg2vdmfnERPnTNcjTVrcX7rljCjuT5EgqqQx0cfE7tH3X6jcj1SzZc6mR+B7B2a16eupspN2JKzHPYg4d3P4yTwyf1ZcvLluPBrQ/CvC72XL75wqCKiArKoTPn4fIewZPed3EibAqZa1ZVoKluLT56wyoIZfPzmMM5bPQc4P+NWiN18AVg+MzEOkOxOmSB9rRedU3+8omZdSOm+DyHPXjgxQegRE15fmr4FB548QF854PfKaj3k0MqZGAuD6nAb36UC8MXx/Hs3hPo6j2C3X0BfblQNg8fu2E1GuvW4JpVlTnPB6/vGAaOTgzC2fffQHBi8FSUVgJXmtXaqCvNBTNBcbwbseHScK6FdiOm2IKhIG578raIwDicAQYsL1uO5+99fsr/pxxSYZaZCR/m/OYX20x47wqRoijwvdMPV+9RPPPqMZy/GAQAFBmAm69ciqa6tTBvWobSkukpS17fl4RCwPFXJiYpPrE3cn3VerU26qo7gMveCxTPy0s24wmGgnh498OTAioAUKDAAAMcux34wJoPwGAwQFEUhBBCSAmpfysh9XUoNGm5gkvrtWUxtov5d9S2U91HrPVBJRg7n+nkOUH6RPuYyjESHXd4bDhuQKW9nyeGT8B3yof6FfW5vKxSxpqqDGS7pirZh3m6N+1c3OT5zS823ojTd2pwBE/teRddvUcgnT6vL19XXYamurW4x7QaKysXTmueZvL1HX5TDSpBhJQQxkPjE8tCwYh14a+DShChUAjBsWEE3/UieORPCB7ZjeBIP0IAggYDgjAguORKBFdeh+CK6xAqX4Zg9L5DwYg8TFoWlYeI/F3Kw7gSmeeQErYslGDb8GWhIEbGRzA4Fm8yZZqNHDc78GHxw1PaR7bu6wyqMpDNoCrZh/nnrvkcnu17NuWbdi5u8smqYAFg6cKl6PpIF+aXzEexoRhFhqKI37NxrKCZfCOebmPBEHa9cRIu72G8eOAUgkoIgIKF8wxouGYZPnrDCtxwWeWkb7Dat+/w3/r6qNqEZNvp20dtNx4axz/3/jMGL8a/ES+etxj3bboPACICiYhgJXpZKHaQkXagkGTboBKcpndx7ioyFKEIRTAYDOrfhiIYoP6tL0Ocv8N+tG307RDn73hpi4oSbhMvj+HptfXa53JKx01wjFSPm2o+w5cdCBzAwz0PJ31/vn/b96dcU8WgKo+yVfipBCuxxLtpp3uTDykhDI4OIjAagDwio3+kH/2j/ZBHZQRG1GWB0QDeHXoXhwYPZXiWE3koNhSjuGhywKX/LlJ/x1oWnTbRfhIew1CEkqKSiNdFhqKIbSLyEGNfWq1f++52DFwciHvOlaWVsNfb9bKOecOHgmDo0u/wgCHBT6ztJgUc8X6QOODIRuASnla9+YegIBS3nCi3Sgwl+rVcDKA4FERxcAxFwXEUQ0GxAvV3UQmK5y9GUWkFikvLUVw0b9L/k/Y/qe8zbH3EcWL8r0UvS7Qu5n6jlxXF3vaNs2/g7//490nL5d9u+TfULq+NfdM3RAYvlB/aPfLU8KmYzbmF2KeKQVUGslX4PSd68IUXvpDx9svKluHHH/4xxkJjuDB+Adt/vR1nR87GTV9aXIpNxk0YuDgAeVSGPCojpPBmR4VDC74Nhti/I254Yd/aY/3E3A8M6o05bLszF87gQP+BpHm7ccWNWF+5Xg8awgNvPRiPDs6LiicF5HG3jfpiMSlt+LLo/UYv0/4OjgGHfn9pkuLngYEjkSe1yjTRP2r5tcknKZ4BpvNGTLmnVRYAiHg/s90iwI7qs8Dp4dNT2v7U8CmY3alfTKPBUew5vWfS8vJ55RAWCKhaUIWq0qqI30KpgDMXzuDf9/x70v3vbNiJ2uW1k/trhDVTRP8O73cR8Tuqj0b0slj7iV4evb/oppp4eUt0HO33yfMn8bb8dtIyuUK4AsvKlk2qKi8uKo4bQMQLEmIFEiltnyAAyTRw0ZsOLr2GYsC+o0N4ft8J/O6tAC6OK4BShOIiA95fswwfvWEN3nfFUpSWlMQ/tzzVCqT65cZ2va1gOsMmdP4s8NYLakdz/2+Ai+cm1pUsBMQPXhr24DagfEXespkrxUXFeHDrg3jgxQdggCHmjdi+1c6AaoYwrzPjOx/8TsxuLfat9oLrYsGgKo+Wli3Nyn4WFC+AwWDAhfELSdP+2dV/hlvX3qoHTkKpgHlJnt4JhoLoPNCZ9Jtf/Yp6FBcVYx4K62mgXEj1Rvy1G782M27EGTraP4wnve/C5T2Co/3a9VeFK5ctRnP9Wnxsy2osWVya1zwmY1pmwvKy5Umvb9MyUx5ylwJFAc4cnJhb7+juyEmKF6+4NEnxHcD6DwDzy/KX12ky027ElJh5nRm3rL1lRjxlzaAqj5J9mKfiex/6Hrau3JryTd58mTntmzy/+U0242/EUzAyFsQLr5+Aq/co/sc/MZFxeWkJ7rphFZrq1uL6NZUzpi/KjLy+g2PAO39Um/UOPAv090WuX7F5Ym69lVvm5CTFM+lGTMkVFxXPiC+o7FOVgVw8/QcgrcAqul/AdPQjiPVk4YqyFXP2m990tfUXAkVRsO/dQXT1HsEvXnkXgyMT87rdVFONprq1uO2aFVg4f+besAr++r7QD7y9S62NertbnbRYUzwfuPzmidHMhbX5yyfRDMSO6nk0HeNUrShbgTvW34HHX38cQGo37em4yXOgy0gFfyOeorPnRvHzV47B1XsEb54Y0pevFhbi3to1aKxdg7XG2dOcVHDX91n/pUmKn1MnKQ4fPqGsGrjyUrNezS1AaXn+8kk0w834oEqSJLjdboiiCEmSYLVaIQhC2mkTrfP5fPB4PACAnp4e7Ny5M2IdAJhMJkiSBFmWYTKl1lSTi2lq4n2Yp3vTnu03+UJUcDfiKRoPhvD7t86gq/cIPG+cxFhQ/YiYX1KE269Zgaa6tbipphpFnMg4+0JB4GiP2qR34HngTNRTiUs3qjVRV30YWFOXl0mKiWajGR9U1dbWwuv1AlADI7vdDpfLlXbaROva29vR0tKi/93Z2amntdls6OjoAACYzWa4XK64QV206Z77rxBGVKfZr+/Mebh6j+BJ31GcHBzVl29eXYmmujW4+/rVqCyb/Q8hTLvRIfUpvQPPAW/9GhgOGxalqESdpFjrH2UU85dPollsRg+pIElSxGtRFPUapXTSJlrn8/nQ1tamB1UWiwV2ux2SJEEURdTW1qK/vx8AUg6m8iXdDnozpUMf5d/50XH8au9xuHqPoOdQv768qmwePr5lDRrr1uDqlXNr0vBpIR+51Kz3LHDoD5GTFC+oBK78kFojdYUZWCjkLZtElJ68BFUejwdGozFimdFohM/nm9QElyhtb29vwv3s3LlTXy7Lsr5eU+jBFFEuKIoC7+F+dPUewS9fO47hsImMP7BBnch429XLMb9k7j0xljOhEHBsjzpB8YHngJP7ItcbRbVJb8PtwGXvKbhJiokoNXkJqrQAJ1ogEEgrbbL9WCwWfVlnZyfMZrMeSMmyDLfbDUDtb2Wz2SCKsavWR0dHMTo60RwyOMjJOmnmOTk4gid9R+HuPQrpzMRExuuXLEJj3Rrcs2UNVlQuyGMOZ5mLw4D0ohpIHXwBOBc2HZWhCFh746Wn9e4Allw5K0YzJ5rrCmqcqnhBUrppo9dpAZTWnwpARId2URTR0NAAv98fc39tbW3YsWNHynkjKhQXx0P4zZsn0dV7FC8eOIXQpR6UZfOLcefmlWiqX4u6dVUzZkypgjd4XG3WO/i8GlCNj0ysm18OXHGrWiN1RQOwqDpv2SSi3MhLUCUIwqRaqUAgELM5LlHaVPdjt9vR3d0dsVySJL2pUXtyUOtvFa21tRUPPPCA/npwcBBr13IcGCpcb54YRFfPUfz8lXcROD/RX6f+8io01q3FnZtXYlFpQX2nKgyhoDp0wbmTwOLlaifxRA95KApwYq/apHfwObWJL1zlZWoH86vuANa9HyiZn9v8E1Fe5eVT1Ww2w+l0TlpeV1eXVlpRFJPup729HXa7HaIo6jVYkiRh27Ztekd1TXT/LE1paSlKSwt7qg2igQtjePpVdUyp145ODAy5rLxUH1NKXLo4jzkscPufBp63A4PHJpZVrAJudwCb7p5YNjaidi4/8KzarDd4NHI/q+suBVIfBpZtYrMe0RySl6AqujZIkiTU1dVFjCElCAJEUUyYNrpGKno/brcbJpNJD6i6urpgtVohiiIcDoe+ncfjgcViYcd1mnFCIQUv+c+iq/cIXnj9BEbH1Tnf5hUbYL56OZrq1uLmK5egpJidzhPa/zTQ9RkgejaCwePq8o/+X/X1gWcB/2+BsYk+aShZCNTcqgZSV94GlC+ftmwTUWHJ6+CfTqcT9fX16OnpQWtrqx7UNDY2or6+Xh8OIVHaeOskSUJNTU3EMQVB0GuntIFBBUGA3++PCLKSme5xqoiiHQkMw+09Crf3KN6VJybS3riiHI11a/GxG1ahusAnMi4YoSDwr9dG1lAlU77y0iCcdwDr/xcwb2Hu8kdEOTfjB/+cyRhUUT6MjAXx/L4T6Oo9gpf8EwNEli8owcduWI3GujXYvHrmTGRcMN7eBTxxT/J0VSJwXdOlSYpvYLMe0Swyowf/JKLUKIqC144OoKv3CJ5+9RiGLk1kbDAA76tZgsa6NbjtmhVYMI8j5ic1OgScOQicPjDxc+YAEOhLbftb/xbYbEmejojmLAZVRAXozLlR/HzPu+jqPYKDJ8/py9dULURj7VrcW7saa6pmz0TGWTUcuBQ0vXkpiHoTOH1wcofydC1mXykiSoxBFVGBGA+G8LuDp9HVewS73jiF8UuDSpWWFOGOa9WJjN8jciJjAOpQBkMnwgKnsJqn86fjb7doGbD0KvVnyaXf1VcA3zOrndKjO6oDAAzqU4DrbsrV2RDRLMGgiijP/KfPwdV7FE/6juL00MTI/devFdBYuwZ3Xb8KlQvn6LQloRAw8M7kJrvTB4HRgfjbVa6NDJyWXgUs2QCUxR42Bbc7Lj39Z0BkYHUpgL394cTjVRERgUEVUV6cGx3Hr147hq7eo/AenhgvrXrRfHx8y2o01q3FVSvK85jDaRYcU/s2nX7zUtCkBVBvAeMXYm9jKAKq1gNLNwJLN6i/l2xQf0rTHI9r091A04/ijFP1cOQ4VUREcTCoIpqiYEjB7r4ATg2NYFn5Amxdb0RxjCY6RVHQc0idyPhXrx3HhTF1IuPiIgNuuWopLLVrcevGZbN7IuOxC2qgpDfZXWq+O+sHQmOxtymeD1RfqQZO4TVP1VcAJVkcNmLT3cDGO9MbUZ2IKAyDKqIpeH7fcex4Zj+OD0zM8baycgEeumsTbr92JQDgxIA6kbGr9wgOnR3W04lLF6Gpbi3u2bIayypm2UTGI4OTA6fTbwL9hxG73xKAeYsmB05LNwLCOqB4mj6qioqB9TdPz7GIaNZhUEWUoef3HceXn/BNChFODIzgy0/4cP/N6/HWqXP474On9YmMF80vxl3Xr0Jj3RqYLpsFExmfPzu5ye70AWAowUCaC4SoJrtLAVTFaqBoFtfSEdGsx6CKKAPBkIIdz+yPWeeiLdv5+4nxj7auN6Kpbi0+vHkFyubPsH87RQGGjk8MTRBe8zR8Nv52i1dE9nVaulENnhYt5cCZRDQrzbBPd6LCsLsvENHkF8/HbliF/2PegPVLFk1DrqYoFATkw5MDp9MHgYtD8bcTLpvcZLdkA7BQmLasExEVAgZVRCkYuDCGAyeG8OaJQbxxfAh/9J9JabtbNi4rvIBq/CIQkCY32Z19CxiPEygaigGjOHmMpyVXAvML7PyIiPKEQRVRmLFgCH1nzuON44N488SQGkgdH8SxFGqlYllWnscO6BeH1UApYnynA2pAFRqPvU1xqRooRY/xZKwBSuZPb/6JiGYYBlU0JymKgtNDo3jjUtB04MQQ3jgxBP+pc7gYDMXcZrWwEFevLMdVK8qxYVk5/uFX+3H23MV4Y3BjRaU6vELOjQyENdmF1TzJ7yDuk3bzF4f1cwrr91R1OYcQICLKEIMqmvUuXAzi4Em16e7NE0N487j6d/9w7HGRFpeWYOMKNXjauLICV68ox4YV5ahYEDmqeem8Inz5CV+8Mbjx0F2bYo5XlRFFAc6fuRQ0RXUYHzoef7uFxsmB09KN6qCW7CxORJRVDKpo1giFFBzpH8Ybx4f0/k9vnhjCobPnocSosCkyAOLSxbhqRTmuXlGOjSsqcNWKcqypWpjSUAe3X7sS373PhH94ei/WnnsVyyDjFAQcWXw9/u7uzfo4VWlRFGDw3dhP2l3oj79d+crJTXZLNwKLlqSfByIiygiDKpqR5OGLE32eLnUeP3hyCMMXgzHTL1lcio0rytWflRXYuKIcVyxbjAXzptbUdXtRD25bYIfh4sS4TMqCVTAUOQAkmNokFAT6D0X2dTp9QA2gLp6Ls5EBqFp3KXAKH+NpA7CgckrnQUREU8egigraxfEQpDPn1D5Pl5rtDpwYijucwfySImxYvhgbV1RcCqLU2qel5VmczkSz/2mg6zMwRPVbMgweVyfnbfoRsOF2IOCfXPN05i0gOBp7v0Ulasfw6MExq68A5pdl/zyIiCgrGFRRQVAUBScHR8P6Pam//afPYSwYu7P1mqqFE8HTSjWAury6DCXF0zAqdyioTr6baPhP9+eBUAhA7I7vKFmgPmm35KrIfk9GESieF3sbIiIqWAyqKC2pTh6cyPDFcRw8eU4PnLRASo7Tcby8tAQbLz11t3FFBa5eWY4Ny8tRviAHgUdwDBgOqCOFXwjE+Dug/h3oAwYTTMUCTAxbUFoR+0k74TI+aUdENIswqKKUPb/veFqdskMhBe8EhvU+T1r/p8OB4Zgdx4uLDBCXLFI7jl/q93TVinKsFlLrOD7J2IU4AVK/+lsLkPS/+4HRwQxKJoEPfxuov59P2hERzQF5C6okSYLb7YYoipAkCVarFYIgpJ02F+vyITg+jjdffgEX+t/FwqrV2HjjbSguKUm6Lt19Zer5fcfx8x8/Cte8H2HV/IC+/NioEd/88Wdw7p77sbqqTO/z9MaJIRw8MYQLY7E7ji8tD+s4fqnfU9yO44oCjA5FBUj9YX9HB0iX1o1fyPBsDcDCKqCsGigzqsMSlFUDZVUTf587Afz2W8l3tXQjAyoiojnCoCix6gxyr7a2Fl6vF4Aa4NjtdrhcrrTT5mJdMoODg6isrMTAwAAqKioyOf0Ie174IVb9cQeWY2Jy2pOoxrH3PgQAcddtue2zae0rVvpUBEMK/vZb38K3xtoBqEMRaEKXrp4vj/0VXghtnbRtaUkRNiwPe+pu+SJsrFJQbTgXo6YoqtYofHnwYkZ5R1FJWFBkjBMsXfq90Kj+vaAyebNcKAj867XA4HHE7ldlUMeC+qu9bOIjIipw2bqv56WmSpKkiNeiKMLj8aSdNhfrptueF36I61/6S/VFWLCyVDmLpS/95cTAkjHW7QEiAqVk+9LSK4qCc6Pj6D8/hsDwRfQPX0T/+YsInL8IefjSsvPa8jGcGjiPXymPAYgMqLTXIQX4p3nfR3lxCTYbFaxfNIrVpSNYWnwO5aFBGC70AyfPAn2XAiQlTsftZIpLLwVBUbVGkwIk40SAVFqRm5qiomLgdof6lF+84T9vf5gBFRHRHJKXoMrj8cBojJy+w2g0wufzwWQypZy2t7c36+uij59LwfFxrPrjDgCxgxWtDjFeILPyjzvQs34bxkMhjFwYxjV/fChh+ste+lv8zZ8OY3xsFCXKRZRiDKW4iAUYQ6lBfb0UF7EGYyg1jGEBtGUyVhUHEE+RAViCQXw79G3gDNSfZOYvvhT4VIXVElVHBkTRNUjzygqrKW3T3eqwCc/bIzutV6xSA6pNCcapIiKiWScvQZUsyzGXBwKTb9yJ0uZiXSyjo6MYHZ0YU2hwMDudmd98+QVcg7MRtUrhEsUPRQZgBc5ixY+vidoofvpqDOER5Z9z9q5fWHwZFq7cGLsPUnSAVJKDcaPyYdPdwMY7gcMvAedOAouXA+tuYg0VEdEcVFBP/8ULdtJNm+11bW1t2LFjR2oZS8OF/nezvs9k+heuRdmSdSiZvxDF8xcAJQvVAKdkATBvgfpb/ykF5i1EKNCHot9/O+m+59/zfwHxf03DWRSYomJg/c35zgUREeVZXoIqQRAm1QoFAoGYT98lSpuLdbG0trbigQce0F8PDg5i7dq1yU4zqYVVq6e8jzdu2Ymr33sn9r/cjU27kndEP/Z+B655351pHaMoFMSF3idQOnxiUtMioDYtjpatwMLL35fWfomIiGaTaRh6ejKz2RxzeV1dXVppc7EultLSUlRUVET8ZMPGG2/DSVTrT9BFUxTEHM8JUAOZE6jGhvfdA8xfhKve+5GE+9LSb7zxtvQzWlSMhXc9AoPBMGls8BAAg8GAhXc9wiYvIiKa0/ISVImiGPFakiTU1dXpNUU+n09/Qi9R2lysm07FJSX6sAnRwVBImXieLNY6ADj+3of08aeS7Ss6fdo23Q1D049gqFgVsdhQsRqGph+xUzYREc15eRunSpIkOJ1O1NfXo6enB62trXpQ09jYiPr6erS0tCRNm4t1yUzHOFUnUI3jccap0talOk5VovRpCwXZKZuIiGaVbN3X8xZUzWTZDqqAwh9RnYiIaLZiUJVHuQiqiIiIKD+ydV/PS58qIiIiotmGQRURERFRFjCoIiIiIsoCBlVEREREWcBHwjKg9e3P1hyARERElD/a/Xyqz+4xqMrA0NAQAGRlqhoiIiIqDENDQ6isrMx4ew6pkIFQKIRjx46hvLwcBkOMyfBSpM0heOTIEQ7NMA1Y3tOL5T39WObTi+U9vXJZ3oqiYGhoCKtWrUJRUeY9o1hTlYGioiKsWbMma/vL5nyClBzLe3qxvKcfy3x6sbynV67Keyo1VBp2VCciIiLKAgZVRERERFnAoCqPSktL8dBDD6G0tDTfWZkTWN7Ti+U9/Vjm04vlPb1mQnmzozoRERFRFrCmioiIiCgLGFQRERERZQGHVMgDSZLgdrshiiIkSYLVaoUgCPnO1ozn8/ng8XgAAD09Pdi5c6deronKnO/H1NntdrS2trK8c8zj8UCSJIiiCAAwm80AWN65IkkSPB4PjEYjJEmCxWLRy55lPnU+nw/bt2+H1+uNWJ5p2RZEuSs07Uwmk/633+9XLBZLHnMzezgcjoi/w8s5UZnz/Zgar9erAFD6+/v1ZSzv7Ovu7lasVquiKGq5iaKor2N550b4Z4qiKHr5KwrLfKpcLpf+2REt07IthHJnUDXN/H5/xBuvKIoiCEKecjN7eL3eiHL0+/0KAMXv9ycsc74fU+dyuRRRFPWgiuWdG+FlrChqWWq/Wd65EV124UEtyzw7ooOqTMu2UMqdfaqmmVaVHM5oNMLn8+UpR7ODyWTCzp079deyLANQyzZRmfP9mBq32w2LxRKxjOWdfZIkIRAIQBAE+Hw+yLKsN0OxvHPHaDSitrZWbwZsaGgAwDLPpUzLtlDKnUHVNNNu9tECgcD0ZmQWCr+5d3Z2wmw2QxCEhGXO9yNzsizH7K/A8s4+n88Ho9Go9xfp6OiA2+0GwPLOJZfLBQCoqamBy+XSP2NY5rmTadkWSrmzo3qBiHdBUPpkWYbb7Z7U+TFWukzWkaqrqwtWqzXl9CzvzAUCAUiSpH9RsFqtqKqqgpJgmEGW99R5PB44HA5IkgSbzQYAcDqdcdOzzHMn07Kd7nJnTdU0EwRhUuSsVetTdtjtdnR3d+tlmqjM+X5kxuPxoKmpKeY6lnf2iaKolx8A/bfP52N554gkSejp6YHZbIbVaoXf70dXVxckSWKZ51CmZVso5c6gapppj0BHq6urm+aczE7t7e2w2+0QRRGyLEOW5YRlzvcjc11dXejo6EBHRwckSUJbWxt8Ph/LOwe0/lOxsLxzw+fzob6+Xn8tiiJaW1v5mZJjmZZtoZQ7m/+mWfSHoyRJqKur47eYLHC73TCZTHpApTVPRZdteJknWkfxRX+A2Ww22Gy2mDd/lvfUiaKIuro6vR+bNlaVyWSalJblnR0mkwlOpzOir+bZs2dZ5jkQ3j8z0T1yJnyWc+6/PJAkCU6nE/X19ejp6YkYNJEyI0kSampqIpYJgoD+/n59fbwy5/uROVmW0dHRAbvdDqvVCpvNBpPJxPLOAVmWYbfbUVtbC6/Xq9fIAry+c8Xj8ehNrID6ZYJlnh0ejwfd3d1ob29HS0sL6uvr9QA207IthHJnUEVERESUBexTRURERJQFDKqIiIiIsoBBFREREVEWMKgiIiIiygIGVURERERZwKCKiIiIKAsYVBERERFlAYMqIiooHo8HNTU1aG9vR0dHB2pra1FbW6sPMlpTUwOfzzflY2j7JCLKFk5TQ0QFRZZldHd36yNXd3d3w2g0wmq1AgCam5shSVLM6UJSZTab0dzcnJX8TofwaTyIqHCxpoqICkogEEg4gbDJZJo0G/1sJkkSurq68p0NIkoBgyoiKihNTU1ZSTNbOByOfGeBiFLEoIqICkoqzVy9vb2ora1Fe3s7AMDtdqOmpgYejwfARL8sm80Gt9uNjo4O2Gw2yLIcd58ejwft7e1wu92w2+1x00mSBLvdru9X26fP59O3b29vhyRJ+n6T5VXr3+XxeNDR0YHGxkZ9XW9vL7q7u9HR0aHvk4gKE/tUEdGME90nymKxoLOzM2K9xWJBdXU1LBYLADWYaWxsRHd396T9aYGS1+sFoDZBtre3o6WlJSKdLMtoaGiA1+uFIAiw2+3o6OiAxWKB3W6P2HdtbS127dqVUl7NZjO6u7vhcrkAAC6XCz6fT19XU1Oj9ykjosLFoIqIZq3wWi+LxYLGxsaYnb6dTieMRqNeewQAPT09k/bX1dUFURT17VtbWwEAbW1tkzrOi6KIrq6ulIKh6upqVFdXR+R7LvUbI5otGFQREUHtAG82m/XXsYKh6IBsup/I41OARIWNfaqIaEYSBAFnz57VX3s8nkl9psJfu91umM3miKBEW9/c3BxRS6XtL5rFYpk0RpbH44m5vc/n0zvUp5LXVMTKExEVDoOiKEq+M0FEFM3j8UCSJP3pN7vdjrq6Or2ZTZZl2O12vVO30+mELMtwOp0QRRF2ux2yLOtNfj09PWhtbYUgCPD5fNi+fTsAYOfOnTCZTPB4POju7kZ9fT0ATArAwvMVK53H44HP54Moiujp6UFzc3NKeZVlOSIvWv8uk8mkn7vD4UBtbS3MZnPC4SaIKL8YVBHRrKSNvs4O3kQ0Xdj8R0RERJQFDKqIaNbxeDzweDz60ARERNOBzX9EREREWcCaKiIiIqIsYFBFRERElAUMqoiIiIiygEEVERERURYwqCIiIiLKAgZVRERERFnAoIqIiIgoCxhUEREREWUBgyoiIiKiLPj/AexFlU3TcsjYAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -696,9 +696,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAButElEQVR4nO3deXhb1Z038K+8xImz+FomOyHkmoSQQElkG6Z0pZELLWVpke3pRiltpHY6K9PXwu9Mh6Z9p0butO903pkBKbSl69S2YNjahkphukKLbSVACEuiGyBkM7F8bSeON+m+f1zfa0nWbtmS7O/nefzEusu5R0eS9cs55/6OQVEUBURERESUVFGuK0BERERUKBg4EREREaWIgRMRERFRihg4EREREaWIgRMRERFRihg4EREREaWIgRMRERFRihg4EREREaWIgVOekyQJdrsdlZWVqK6uTnhsdXU1KisrYbfbIcvy3FSQ8obP50N9fX3S98lscrvdObv2XNM+mwaDAdXV1Whra0NbWxtsNhsaGhoWVFtkymazobKyEl6vN6f1mK+vpcvlQk1NTa6rMf8oVBAcDociCILS09MTc7/H41EsFotitVrnuGaxOZ3Oaduam5sVi8WSg9qoYtVpvvF4PIooimmdk6126ezsnLatv78/4fs2lly/T9JlNptjfu5EUVQcDkcOapS6fPhMmEwmxePx5LoaiqLMv9fS7/crzc3NaX3+KDn2OBUIQRDQ2NgIp9MZc3++9TB5PJ5p2+rr69HU1JSD2qhi1Wm+MRqNaZ+TrXYRBCHmNqvVClEUUy4n1++TbLHZbLDb7bmuRkIL4TORDYX6WoqiCJvNFvOzSZlj4FRAbDYbOjo6pm2XZTmtL6bZ5nK5IEnStO1msxkWiyUHNYpfp4Uum+3i8/nQ1tY2bbvD4UjrD3cu3yfZpD3nfPtPjYafidQV8mvp8/ny6vthPijJdQUodSaTCUajEW63O+KLpbu7G2azOe55bW1tEEURkiRBFEX9XFmW4XK5IIoiPB4PbDYbTCYTAMDr9er/w9q7dy8kSYIkSejr64PD4Yh7La/XC4/HA0mS9C/R5uZm+Hw+2O12SJIEv98f9xqBQAA9PT1wOp1wuVwwGo1ob29HS0uLXrdkzyvVOkWXA6hzHcL3JeJyuSIeW63WpGVm+py184xGIxoaGgCor1+y1yO6PuFtlWq7JGtfjSAIcDgcEWVowf7evXsjzo/XPqm+T1J5Lya7VjrlptsWANDT0wOTyRQRNMZ7Hex2u947oPUcaHVI5X0Wq7xEzyvZax9Ltv5etLW1QRCEjHpH+Vqm91rKspzyf1q0c7XXRhRFBAIBmM3mmJ9Lu90Ol8sFh8OR8vOIbpe6ujq0trZCkiR0dnbCbDZDkiTU19dDFEU4nc78DPpyPVZIqdHGr2PN/9DmlsSa42SxWCLmnpjNZn28u7m5WfH7/fo+URSV/v5+/bE2XyZ8/oEoiknHyz0ej2IymaZt7+npmTb/Jt41mpubI55fdHmJnlc6dbJYLBHX9vv9itlsTvDsVA6HY1odw1+HRGVm+pw7OzsVABGvWXNzc8RrHquNE7VVonZJp30TMZvNEWUla5903ifJ6pTpaxFebrK2iJ4X09/frzgcDsVkMkV8nhKVo73eHo9H6enp0d8Lyd5niV7XZM8r3msfTzb+XjQ3N0fMxenv71cApDTHia9l9l7LaFarNeJ5+/3+aXPPYs2fNJvNEa9nJu0Sq9x8n0/GwKlAaG9Ov9+vANA/xH6/X/9jFh04acdGl6MdY7FYIt700V9wPT09086PPiaWdAKneNcI/wPj9/sVQRBSfl6p1qmnpyeiXE2yyaraH/voP6QOhyOlMjN5zvGeg1YX7T0Q3cbJ2ipWmZm0byLhf0xTbZ9U3yeJ3oszeS20clNpC7PZrJhMJsXpdOo/0QFdKq9D9P5E77Nk5aXSXul+2c7074X2fKKlMjmcr2V2X8tkdVMUZVqwFu8/ZdHfTfGeR6x20UTfQJLsOybXOFRXYERRhMlkQkdHB6xWK3w+X8IhKkEQIm719fv9+lh4Z2cnALU7VxsyCgQC064XThCEacfMVKxrJLqlPtnzSlV3d3fMbmBtKCLe8Gd3dzcEQYjoAtfaUhvKSFZmus85Hq0e8eYxZNJW2WrfWDJtc+2YcMnei6leK1G5qbZFbW1txHBFtFTKia5HsvdZuuXN9LM7078XWhtkgq/l7P0d1p5P9GuT7muVSbtorFYr2tvbYTKZ4PV6E/4dyAcMnAqQzWaD0+mE1WpN+ObWJo2HvwnDf/f5fGhtbUV9fT0aGxtnbSxZG+vOlmTPK9U6ZTrRM9F5+TZ5NN220tplpu2bqD5zJRvXylZbpFJO9Gc52fss269Rss9pNv5eZDKvCeBrma5s/82NJ/x5ZdIumqamJuzatQsOhwOSJOV94MS76gpQY2MjfD4f3G43amtr4x5nMpli9hLIsgxZlrFr1y60tLToAZj2Icj2nTY+ny+r5SV6Xqny+Xz6RMRokiShrq4u4fVjXUuW5YzLzJT2WkZPnNek21Y+ny8r7RvPXLZPNq6VrbbIpJxE77PZeI0SfU6z8fciXp1TwdcyPen8zdXqlsn1wnu9ZvI8wm98yjS4nksMnAqEdicDoEbtZrMZ7e3tCXuczGYzamtrp2W97ejo0HsWwr9wtQ9Bsj+gyWh3VADqH7Z4X+qZXiPR80qnTiaTCWazOaJrWXvuie600e4UCb/1XpZldHR0ZFxmqn+0fD5fxLGtra0J8yQla6tY7ZJJ+6Yq0/aJJVmbZeO1yFZbZPqejfc+y6S86PZK53Oajb8XoijCarVG3Fkmy/K093QsfC0jzeS1jFW36NdFu3sv3jW0OoT33M+0fW02G3bv3l0YqUhyPcmKEvP7/YrValUAKFarVZ8EHH5HhnbnhyAIeobb8Il+2p0s4edo25ubmxWPx6N4PB7F7/frE3l7enoUi8WiANDvcNCuYTKZkk7e08rWJg7GKi/RNcxms373hXZMc3NzSs8r1TpFl+N0OiMmaKdSnsPhUDo7O1MucybPWZsA2tnZqXg8HsXhcETcfRJ9Xqz6xGqrZO2SavvGE32nTbrtk433YrqvRXS5sdrC7/cn/Nwlqkt4OR6PRzGbzYogCPpk4ehzkr3PwstL93nFeu3j1T0bfy+056KVYzKZUs4eztcyO69loucT/rpEvyba3xytjhaLRRFFMWn7JmsXRVH091MhMCiKouQgXiOiNGm5UHp6enJdlbQ0NDSgqampMP4nSUQAgJqaGjgcjjmbbyTLctKchPmCQ3VElHVaN772O5d8IKJo4UOO2rBlIWDgRERZ19raCpvNBkCdL5HoJgYiWpi07ONA5ndc5gIDJ6IC4PV64XA44q4Hl29sNhvq6+v1JRnY40RUONra2uDz+eBwOCIm5Geb9p8rl8tVUEP5nONERERElCL2OBHRnLDZbKisrJzV/8HOJz6fD/X19RlllCei2cPAiYjmRKyVzu12OxoaGua0HtEr1OdbeRqTyQS73T4rZefCbLUT0Vxj4EREOVNfX4+mpqY5vabH48nr8sIV0oTZZGaznYjmEteqI6Kcmevbj10uV1aXFMp2efMV24nmEwZORPOELMtwuVz6ivE2m23a0gvRwyXhq8An2tfW1qYPs0mShObmZgBTSTlFUYTNZtN7FRwOh36eIAgxe058Ph/sdjskSdKXFNLKA4C9e/fqSz/09fXpZWrP1W63o6amBj09PaiurobJZILT6dRXnY/m9Xrh8XggSZJ+Z6L2PBI9x3jilRfreWm3XTscDlitVv15Go1GfahSluVpzzMera7aYq7J7kjK5LVN53kA8V+vZO1OVHBym7iciLKlubk5YikDURQjlo1wOBwRy1SEL4mQaJ/FYolYesHv9ytmszniWG15hp6eHr2c6OUf+vv7FQARZfX09CiiKEY8D4/Ho4iiGHGcKIpKT0+P/jh8GZf+/v5pZcSjLSURLdlzTLc87TmEM5vNEe3R2dmpAIh4zZqbmxWr1ao/jtU+0UvYmM3miLaJNpPXNpXnkcrrFa+diAoR5zgRzROSJEXcsSaKov5Y66FpaWnR97e3t+uLdMbb5/P54PV6I4bURFFEIBDQyxYEAT6fD2azGSaTCQ6HA7Iso62tLaJnQxCElBYfNRqNkCRp2jXDh3rcbrdeliAIMRclTVUqzzFdsXrYonNZae0RPmG+paUl4bCWJElwu90RPUwNDQ1wOp0xj5/pa5vK80jl9SKaTzhURzRPaENU2nIngUBAX8G+u7sbgiBEfOlpx3u93rj7tKG/aNpwoPZlGX2MVmamossTBEF/LoB6x1msFeIz0d3dndJznAva6+Dz+WLWSWvX8IDO7/fHDVISve6pvrapSPZ6Ec0nDJyI5gmfz4fW1lbU19ejsbEx4sssOsgIl+m+cLGCpNm8I8xms6G1tRV79+6Fy+WK2+OSjNbjli3anKNYsnEdWZYhimJEUJMowMnGa5ut88IlaieifMehOqJ5QJZl7Nq1Cy0tLbBarRAEQf+CkyQpZg+Ndl6ifWazOWZvhiRJqKuri1sfk8k060M1e/fuhdfrhcViiRgSTIc2xJjJc4xXXjyp9MDIsqy/JrHEa9d4wcxsvLbZ6ElK1E5E+Y6BE9E8oPWchH/hal9w2rCPxWKJWOdOlmV0dHQk3GcymWA2myOGhrQvvUR3comiCKvVGnE3lyzL8Pl8GfVYRJ/T09MDQRBgsVjS6rkIn3ujBZSZPsd45UVv1+ofq3cruj1aW1thtVrjPiez2Yza2lq43e6I7R0dHXHrN5PXNtXnES3WMGqsdiIqRFyrjmie0G4Lr6+vB6B+WdntdjQ1NelfhHa7HVVVVfok4PCemmT7tKU//H5/xK3mDocD3d3daGlpmRbIaLe6a0N5Wh0dDgeMRiNaW1vhdrvhcDj0W/mjt7W1taG1tRWiKOrXcLvdaGho0FMdCIIAm82WUs+TVofq6uqUnmOm5WnBitYe7e3t+sKpFotFv5W/paVFn9cEICIdgNYWzc3NEfXR6qoNhyYL8DJ5bVN5HqIopvR6JWonokLDwImICoosy9i9ezf27t2rD0lKkqQv31IoX8pa4NTT05PrqhBRGjhUR0QFxeVywWaz6b1Y2m39DoeDQQgRzToGTkRUUEwmU8zs4F6vVx+mJCKaLRyqI6KC4/V6I3Idpbr0SL7Q5oZp/3IJEqLCwcCJiIiIKEUcqiMiIiJKEQMnIiIiohQxcCIiIiJKEdeqy0AoFMLJkyexfPlyGAyGXFeHiIiIZkBRFAwNDWHdunUoKkrcp8TAKQMnT57Ehg0bcl0NIiIiyqLjx4/j4osvTngMA6cMLF++HIDawCtWrMhxbYiIiGgmBgcHsWHDBv37PREGThnQhudWrFjBwImIiGieSGX6DSeHExEREaWIgRMRERFRinIWOEmShLa2NrjdbrS1tUGW5YyP9fl8qKmpmXae2+2GLMsxy/b5fPD5fHr52u9ERERE8eRsjlNDQ4O+krkkSdi9e3fMhTuTHet2uyGKYszAp6GhYdo2bV0op9MJl8sFADCbzXGvnalgMIjx8fGslklUKEpLS1FcXJzrahDRPBEMKXjuWAC9QyNYtXwxrtlkRHFRbtIB5SRwkiQp4rEoivB6vRkdG29RT1mW0dnZGbG/ra1NX0yzpqYG/f39AABBENJ+DvEoioLTp08n7EEjWggEQcCaNWuY64yIZmTfoVPY88RhnBoY0betrViMe2/ehhuvXDvn9clJ4OT1emE0GiO2GY1G+Hw+mEymjI+NFh40ud3uaUFWNgMmjRY0rVq1CuXl5fzSoAVHURQMDw+jt7cXALB27dz/YSOi+WHfoVP44o99UKK2nx4YwRd/7MP9nzLNefCUk8ApXm9MIBCY0bHhwoMiWZYRCAQgimLENrfbDQDo6uqCzWaL2B9udHQUo6Oj+uPBwcGYxwWDQT1oqqqqSlg/ovlsyZIlAIDe3l6sWrWKw3ZElLZgSMGeJw5PC5oAQAFgALDnicOo37ZmToft8iqPUzrDW+kca7fb4XA4IrZZrVY9uBJFEfX19fD7/THPb21txZ49e5JeR5vTVF5ennLdiOYr7XMwPj7OwImI0vbcsUDE8Fw0BcCpgRE8dyyAd1bPXWdFTu6qEwRhWo9RIBCIOXSWzrGxyLIMr9c77fjwuVOiKEKSpGnzqTQtLS0YGBjQf44fP57wmhyeI+LngIhmpncoftCUyXHZkpPAyWw2x9xeW1s7o2Nj6e7unhY0+Xw+7Nq1a9qx0XOpNGVlZXqW8LnKFh4MKXjW34fHDp7As/4+BEOxOiuzw+fzwWazwWAwwG63w+VywW63o6GhIe6k/Uy4XC5UVlYWdOqHmpoafYgXUJ9TfX19RucSEVF8q5Yvzupx2ZKTobrouUSSJKG2tlYPcHw+HwRBgCiKSY8NJ8tyzCApOiASRTFi6M7r9cJisczKZPFMzPUdBCaTCQ6HAy6XCy0tLXo7yLKMyspK9PT0JJ2Inwqr1ZrVtA+xXu/Z5nA4IoJ2s9kcd25csnOJiCi+I71DCfcbAKypUFMTzKWczXHq7OyE3W5HXV0durq6Ir5QW1tbUVdXp6cOSHSs1+uFx+OJOC/67rnoLzZBEFBbW4u2tjYIggC/35/1PE6Zyqc7CLTgtb29PSuBUzZJkgSv1wur1Tqn143uAY0V3Kd6LhERTRcMKWj9xct48PfH9G0GIOJ7UZsIcO/N2+Y8n5NBUZTZGwOapwYHB1FRUYGBgYGIYbuRkREcO3YMmzZtwuLFatehoii4MB5MqdxgSIH527/BmcHRmPsNAFavWAzP3e9N6Y2ypLQ45XkmWu9Sf39/RC9OZWUlHA5H1gKU+vp6OByOGQdiNpsNNTU1cx44UepifR6IiBIZHpvA3/zsIDyHzwAAvvzBLaheuQxfe3J2R2Hifa/Hkld31c1HF8aD2PZPT2WlLAXA6cERXPXVX6V0/OGv3YDyRZm9xLIso7W1FWazGVarFV6vFzabDXa7HQDgdDrR09MDn88Hr9erT7C3WCwRPTA+nw/t7e2oq6sDEJlGwuv1wm63o6mpCc3NzXC73bDb7XA6nXrvjCRJcDqdqKurQyAQQGNjI7q7u9Hd3a2XFW+4zOv1wufzQRRFdHV16cOzPp8PTqczYm6SKIoIBAIJ6+Pz+bB7927YbDZYrVbIsgy73Q6v16vfkRmvPaLP1Z67lgZDkiR4PJ686fkkIpprZwZH8LkfdOHQiUEsKinCtxquxs1XrwMAfHD7moWdOZzyl8vl0oOQ8NxWZrMZZrMZPT09cDqdMBqNkCQJdrtdHyoF1AnQ+/fvhyAIkGUZDQ0NEWkeWltb9d/NZjOampr0xxaLBe3t7fpjWZZRX1+Pnp4eCIKgT1xvbm6G2WxGdXV13B4nrW7aUj2BQABtbW2wWq3YtWsXjh07pvesVVZWYv/+/UnrYzKZIvYLggCn04nKysqIa8Zqj+hztfYMD5Y6OztTSuxKRDTfHD45iM/9oAunBkZQtXQRXHfUomZjpb6/uMgwpykHEmHgNMuWlBbj8NduSOnY544FcOf3u5Ie99Bn61KaDLekNP3cOeH5raIJgqAn9rRYLLDb7dO+5EVRREdHB6xWKzo6Oqbtj3fnYiwdHR0QRVGvT0tLS8rnasFd+F2BXV1dEAQBZrM54jlma8K20+lM2B7RqqqqIhKlxkq9QUQ03z39yhn81U8P4PxYEJetWobvfaYOl1Tlbz5EBk6zzGAwpDxc9p7NK7G2YjFOD4zEzJSq3UHwns0rc9ZFmepE6GyIvmsuXkAX7+46k8kUMSHbarXqCzsTEVHuPfSHY/jak4cRUoB3XVaF//xkDSqWlOa6WgnlJI8TxVZcZMC9N28DMHXHgGau7iBI1uMRvr+pqWlaniefz4fGxkYA0OcFhYtOMioIAvr6+vTHXq9XzwpvsVimnR8rr1SsbbHq5vV60djYmLBOieqjiZe1Pll7JDqXiGghCYYUfPXxl/DVJ9Sgqal2Ax767DV5HzQB7HHKOzdeuRb3f8o0LY/TmlnM46RN4AbUXEM2my3mYsvhk63NZrOe/6mtrU2fgN3Z2RmxlI2WSqK+vl7vGWptbYXD4YAoimhsbNQnWANqsKUNeYmiCKfTqaei0PYD6vwrLfdUrNv8tbpFnysIQsw6aRLVR5ZltLe3w2g0TpsEH37NWO2htbF2rlaWdg1JkvRJ6+mkOCAiKjTnRifw1/91AE+/oi4Efs+HtsL2XrFgVhtgOoIMpJOOIFPBkJI3dxDMdzNNkaClcaBITEdARNFODVzAXQ914+VTgygrKcK/Nu3Ah66am9yEiTAdwTyQT3cQzHeZTMh2uVzw+/2w2WzMBk5ElIIX3xrA537Qhd6hUVy0rAwPfqYWOzYIua5W2jjHiRY0l8ul54pKZ/6R2WxGVVUV3G43nE7n7FWQiGge+NVLp9HofBa9Q6PYsnoZHv3SdQUZNAEcqsvIXAzVERU6fh6ISFEUfPf3x/DPv3gZigK8d8tK/PsndmLF4vyaBM6hOiIiIsqpiWAI9z7+En7ypzcBAJ+89hLsuWU7SooLe7CLgRMRERFl1dDIOL700wP47Wtvw2AA/uHDV+Bz795UMHfOJcLAiYiIiLLmrf5hfO6hbrx6ZghLSovxnT/fgQ9uX5PramUNAyciIiLKioPHZXz+B904e24Uq5aX4bufqcNVF1fkulpZxcCJiIiIZuyXL57C33UcxMh4CFvXLMf37qzDOmFJrquVdYU9Q4uyzuVywW63w+Vywe12w+v16rfs5yuv14uampo5W4eupqYGbrd7Tq41U9F1dblcqK+vz+hcIqJYFEXBA7/x44s/8WFkPITrL18J9xevm5dBE8Aep/wVCgJvPAOcOwMsWw1svA4oKp7VS9bX16OhoQEOh0Pf5vP5UF9fD7/fP6vXngmz2Rxz2ZXZ4nA4CibpZXRdzWZzysu5FNLzJKLcGA+G8JVHD+FnXccBAHdedyn+8aYrCv7OuUQYOOWjw48D++zA4MmpbSvWATc6gG23zMol29raAABWqzViu8lkmrYtH1VVzV2W9bkM0mYquq7prINXSM+TiObewIVx/MVPevCHo30oMgD/9JFtuPNdm3JdrVk3f0PCQnX4caDjjsigCQAGT6nbDz8+K5dtbW2FzWaLua+hoWFWrklERIXpeGAYt9//DP5wtA9LFxXjwc/ULoigCWDgNPsUBRg7n9rPyCDwy2YAsZK5T27bZ1ePS6W8FJPCS5IEWZbj9kSED+/4fD60tbXB7Xajra1Nn/sUPs9ImxfV0NAASZL0c8IDM6/Xi+rqathsNrjdbrhcLthsNn3ZE22/y+WCy+VCTU2Nvl27vt1uj6inLMsR1w4X67x4dQ4vT9unnefz+abNp0q3TeKJ99x8Pp/eTtqPz+fTy9d6C91uN6qrq+H1evXzwusqyzJsNhuqq6uT1j363HSfCxHNXz1v9OO2//gDjvaew5oVi9H5hevwga2rc12tOZOzoTpJkuB2uyGKIiRJgtVqhSAIGR3r8/mwe/du9PT0RJzn8/kAqMNNWnBgMpnSvv6MjA8D31iXpcIUtSfqvg2pHf6/TwKLlmbp2mqb2e12eDwefVtNTQ3279+vzzPyeDzo7OwEAHR2dsLtdqO5uRkmkwnV1dWQZRmCIMBsNsNisaCqqgoWiwWA+sXf0NAAj8ejl9fT0wOn0wmj0ahfX3udA4EA2tra0NzcDADo6urSf+/s7ITP59Nf+3jnxaqzdp7L5YLJZNKHrAKBAEwmE5qammbUJlr5sdo2uo5WqxW7du3CsWPH9PdnZWWlXn54XSwWC9rb2/XH0XUVBAFOpxOVlZVJ6x59bjrPhYjmryeeP4m/73weYxMhXLl+Bb77mTqsXrGwllTKWeDU0NCgf0lIkoTdu3frf5DTOVYLfrQgKZzT6dT/x2w2myPKT+f6853WmyRJUswvQUmSYDQa4XQ6p+0XRREdHR2wWq2oqqqKmGskCEJEL5YgCAgEAhEBavjvFosFDQ0NenAlCIJensVigd1uh9Fo1HtUADVY0tTV1U27FgA98Ip1Xqw6a+dZLBbU1NRAFEU0NTXFnOuVSZto5UeXE6uOWpAZ3k7ZmrCdrO7RUn0uRDT/KIqC//ifo/iXX70GADBfsRr/9vEdKF+08KZK5+QZR9/aLopixBdGOsdqvRWx1NTUoL+/H0DkF3Q615+x0nK15ycVbzwD/CT+89F90q3eZZfKtVPU3NwMp9MZsz19Pl/Cdk5kpr140cOH4T1AwPTJ7PFkcp7RaER/fz98Ph/a29v13rDZEquOc5VigYgonrGJEFoeeREP+94CAHz+3ZvQ8uErUFxU+MunZCInc5y8Xi+MRmPENqPRGLPXKJ1jY9F6LrJZZloMBnW4LJWf6g+od88h3pvRAKxYrx6XSnlprAmkpSCI/qLW5hwBQFNT07QA0+fzobGxMW654ecn2+92u6f1roT3aMS6fioBb6bntba26r1wDocjol5avTNpk3Tq2NjYOO19GR74C4KAvr6+iHOi2zzea5BK3ZO9fkQ0v8nDY/j0d/+Eh31vobjIgK/fdiX+8SPbFmzQBOSoxyneH+NY3f7pHBvrXC2BX1dXF2w2G0RRnFGZs6qoWE050HEH1OApfHL35Jv0xvtmLZ+Tx+NBW1sb7HY7qqur9eBS623SAoi2tjaIooiuri50dnZCEAS9VwZQh0W1SeHaeV6vF5IkweFwRAQhfr9f/7LXygPUAMDr9cLn80EURZjNZv36drtdH5Yzm81xr+10OiGKYsbnVVVV6UF2IBBAU1OTfo7RaITFYsmoTbTyw3vT4tVREAR0dnbCbrejvr5eH8bUNDY2wm636wGQ2WzWh+BkWY6oa6zeu2R1187VykrluRDR/PD62fO466EuSGfPY1lZCf79Ezvx/stX5bpauafkgMPhUMxmc8Q2URSVzs7OjI+N9VT6+/v133t6ehRRFNO+vqIoysjIiDIwMKD/HD9+XAGgDAwMRBx34cIF5fDhw8qFCxdilpOylx5TlG9tVZR7V0z9fOsKdfs80tzcrDidzlxXo+CYzWalp6cn4/MFQchibeLL2ueBiObcc8f6lB17nlI22p9Urmvdr7x8aiD5SQVsYGAg5vd6LDnpcYo1qTR60nAmx0YLn+ys3T0nSVLaZba2tmLPnj1Jr5c1224Btt4055nDqTBk0jPqcrng9/ths9mYDZyIEnr0wAk0u1/AWDCEqy+uwN7P1GLV8oV151wiOZnjFC8jcaw/6OkcG87n82HXrl3TthuNxrTLbGlpwcDAgP5z/PjxhNfOiqJiYNN7gKss6r/zLGjShuK0W9opNdq6gU6nM635R2azGVVVVXC73XA6nbNXQSIqWIqi4P96XsPfth/EWDCED125Bj+zvpNBU5Sc9DhFz4eQJAm1tbV6j4/P59NvZU92bLjw+R+iKEasueb1emGxWGJOFk9UJgCUlZWhrKwsredIiWk5mig9Vqs1oyVwRFHUc1wREUUbnQjC7n4Bjx5U7wK3vU+E/YatKFrAk8DjyVkCBm3Ca11dXcSkYEAdGqurq4tIZhjvWK/Xq98irp2nBUi1tbVoa2uDIAjw+/0R5yUqk4iIaKEInB+D7Ufd6Hq9HyWTd859/JpLcl2tvGVQlBTX5SDd4OAgKioqMDAwgBUrVujbR0ZGcOzYMWzatAmLF7NrkxY2fh6I8p//7XO466EuvNE3jOWLS3D/J2vw7s0X5bpacy7e93osCy/lJxEREeFZfx++8OMeDFwYx8WVS/D9O+uwefXyXFcr7zFwIiIiWmDcPW+h5ZEXMB5UsPMSAXvvqMVFyziXNxUMnIiIiBaIUEjBtz2v4d//5ygA4KZ3rMW3Gq7G4tL5def2bGLgREREtACMjAfx5c7n8eQLpwAAf3n9Zbi7fgvvnEtTTvI4UXLBUBBdp7vwC+kX6DrdhWAoOGvX8nq9sNlsMBgMEct3pMPlcqGysnJOcjLN5bXC1dTU6Ev4aPWor6/P6Fwiorl09twoPrH3j3jyhVMoLTbgm5Z34Ms3XM6gKQPsccpD3je8uO+5+3Bm+Iy+bXX5atxzzT0wb4ydvHMmzGYzRFGEy+VCS0tLSlnZo1mt1jlL6TCX1wrncDgikqRq7ZbJuUREc+Vo7xA++1AXjgcuoGJJKR74VA3eWV2V62oVLAZOecb7hhd3//puKIjMEtE73Iu7f303vv3+b89K8KQt6EvxRWecT2dx23jZ6omIZtMfjp7FF37cg6GRCWysKsf37qxD9cplua5WQWPgNMsURcGFiQspHRsMBdH6XOu0oAmAvu2+5+7DtWuuRXEKS7AsKVkCg4HdsEREC9HPnnsT//joIUyEFNRurITrjloYly7KdbUKHgOnWXZh4gKu/em1WSvvzPAZXPez61I69k+f+BPKS8szuo7X64XdbofNZtMXSPZ4PBFDZD6fD+3t7airqwMwffFZr9cLn88HURTR1dUFh8MBt9uN1tZWyLIMv9+PtrY2OJ1O2Gw2NDc3xzwnlWvFqn+8cpxOZ8TcJFEUEQgEYLfb0dTUhObmZrjdbtjtdjidTpjNZvh8PuzevRs2mw1WqxWyLOvzwfx+v1621+vV28tisUAUxWnnptK2RESZCoUUtD31Kh74jfq36dYd69BmeQfKSnjnXDYwcKKYzGYzzGZzxBe6tiCvyWSCLMtoaGjQgwZAXfJGI0kS7Ha7vh5dIBBAW1sbmpubYTabsWvXLn1twZ6eHgiCEPccq9Wa8FrREpWza9cuHDt2TJ/HVVlZif3798NsNqOpqUkvw2KxoL29XX9sMpki9guCAKfTicrKyohrasv/AOqE8P379087N1nbEhFl6sJYEHd3HMQvD50GAPzNrs34W/Nmjj5kEQOnWbakZAn+9Ik/pXRsz5ke/MX+v0h63H/u+k/UrK5J6dozUVVVhaqqqQmEgiDoPT0dHR3TvuTD50k5nU4YjcaIO/S6urr0cvbu3Yuamhp0dnbqQUy8cwRBSHitaInKMZvNEZPfszVh2+l0TqujKIro6OiIuShvorYlIspE79AIdv+gG8+/NYBFxUVwWK7CR3denOtqzTsMnGaZwWBIebjsunXXYXX5avQO98ac52SAAavLV+O6ddelNMcp10wmU8Sk6PAAQguG2tvbIwKOWOe4XK6sXDuTcoiICsGrp4dw10NdOCFfQGV5KZyfrsU1m3jTz2xgHqc8UlxUjHuuuQeAGiSF0x7br7HPStCUbm+HNu8nnCRJ+u9NTU3T8kFpj2VZhtfrRWdnJyRJ0vMbxTsn2bWixSunsbExYTmCIKCvry/iHFmWI46Pfpzomj6fD42NjUnPJSKaid+89jZuv/8ZnJAvQLxoKf77L97FoGkWsccpz5g3mvHt9387Zh4n+zX2WUlFoAUxgDp3SJuPo83xMZvNkCRJn1it3Ybf2dkJu92O+vp6fb5Sa2srHA4HTCYTHA4H7Ha7PqHbbDbD5XLB4XDAZrMBAOrq6rB7925IkoTm5uaY5wiCkPBa0SkB4l07XjmaxsbGiASgZrNZH4KTZRnt7e0wGo36pO9Y12xra9MnpGvDkNrEdu1craxEbUtElIof//EN3Pv4SwiGFFy7yQjnp2sglPPOudlkUBRl+pgQJTQ4OIiKigoMDAxgxYoV+vaRkREcO3YMmzZtwuLFi2d0jWAoCF+vD28Pv42V5SthWmUqiOG5QlNfX68HepmorKxEf39/lms1P2Tz80BEkYIhBa2/eBkP/v4YAOB208Vo/dhVWFTCgaRMxPtej4U9TnmquKgYdWvqcl2NeS+TCdkulwt+vx82m43ZwIlozg2PTeBvfnYQnsPqqMSXP7gFX7r+Mt45N0cYmtKC5XK5IEkSnE5nWvOPzGYzqqqq4Ha74XQ6Z6+CRERRzgyOoNH5LDyHz2BRSRH+7eM78ZcfYLqBucShugzMxVAdUaHj54Eouw6fHMTnftCFUwMjMC5dhL131KBmIyeBZwOH6oiIiOaRp185g7/66QGcHwuieuVSfP/Oa3BJVWYrQ9DMMHCaBezEI+LngChbHvrDMXztycMIKcB11VW4/1M1qFhSmutqLVgMnLKotFR9Iw8PD2PJkpll7SYqdMPDwwCmPhdElJ5gSMHXnzyMh555HQDQVLsB/+ejV6K0mNOTcylngZOW+FBb5NRqtUbk1EnnWG0RVW1tsvDtWk6erq4u7N27Vz9PS4RoMpkgSRJkWZ7xOmHFxcUQBAG9vb0AgPLyck7YowVHURQMDw+jt7cXgiCguJhpNIjSdW50An/9Xwfw9Cvq98k9H9oK23tFfqfkgZwFTg0NDXqgI0kSdu/eHXd1+ETHagFVdEZoQE3s2NzcDABoa2vDrl279HKcTqe+BIfZbM7ayvRr1qwBAD14IlqoBEHQPw9ElLpTAxdw10PdePnUIMpKivCvTTvwoavW5rpaNCknd9VJkhQRDAHxEwmmeqzBYIiYU+Hz+bBr1y79OEmSUF1dDb/fD1EU4XK59OUw4vV0xZPK7PtgMIjx8fG0yiWaL0pLS9nTRJSBF98awOd+0IXeoVFctKwMD36mFjs2CLmu1ryX93fVeb3eaavbG41G+Hy+acNl6RwbzmQyYe/evfpjLU9PeFnpBkzpKC4u5hcHERGl7Fcvncbf/OwgLowHsWX1MnzvzjpcXMk75/JNTgKneMkGY2VxTufYaBaLRf+9vb1dX69MK1dbXLarqws2my3uGmGjo6MYHR3VHw8ODia9NhERUSoURcF3f38M//yLl6EowHs2X4T/+KQJKxbzxop8lFd31aWTvTndY91ud8RwX/gEc1EUUV9fD7/fH/P81tZW7NmzJ+XrERERpWIiGMK9j7+En/zpTQDAJ669BF+7ZTtKeOdc3srJKyMIwrQeo0AgEHPoLJ1j47Hb7fB4PBHnSJKk/67drRe+LVxLSwsGBgb0n+PHj6d8bSIioliGRsZx1w+68ZM/vQmDAfjHm67AP992JYOmPJeTV8dsNsfcHmvB1HSOjaWtrQ12ux2iKEKWZciyrE8cjxY9l0pTVlaGFStWRPwQERFl6q3+YVjufxa/fe1tLCktxgOfqsHn38N0A4UgJ4FT9FwiSZJQW1sbkWNJ6/1Jdmy46OE7t9sNk8mkB00dHR0QBAGiKMLhcOjHeb1eWCyWWZ0sTkREBADPH5dx2388g1fPDGHV8jJ02N6JG7YzdUehyNkiv9qq9HV1dejq6kJLS4seuDQ0NKCurk7PwZToWK/XC4/Hg7a2NjQ3N6Ourg4Wi0VPPxBOEAQ9PYGWHFMQBPj9/ohAKpl0blskIiLS/PLFU/i7joMYGQ9h65rl+N6ddVgncKWJXEvnez1ngVMhY+BERETpUBQFzt9KuO+XrwAArr98Jf7fJ0xYVpZX92gtWHmfx4mIiGihGA+G8JVHD+FnXeqNRZ9550Z85SPbOAm8QDFwIiIimiUDF8bxFz/pwR+O9qHIAHzlI9vw2XdtynW1aAbSDpxef/11dHZ2wuPxRCx7YjQaUV9fD4vFgksvvTSbdSQiIio4xwPD+OxDXTjaew7li4rx/z6+E7uuWJ3ratEMpRU43XPPPTAYDGhsbMT/+l//a9r+AwcO4IEHHoDBYEBra2vWKklERFRIet7oh/WH3eg7P4Y1Kxbju3fWYvu6ilxXi7Ig5cnh3/zmN2G1WlFRkfyFHxgYwH333TdvgydODicionieeP4k/r7zeYxNhLB93Qp89zN1WFOxONfVogR4V90sY+BERETRFEXBf/zPUfzLr14DAJivWIXv/PlOLOWdc3kvne/1jKf033PPPXjwwQcxMDCAD37wg2hqasIjjzySaXFEREQFa2wihC93vqAHTZ979yY4P13LoGkeyjhwqqurw+c//3m4XC7U1NSgvb0dfX192awbERFR3pOHx/Dp7/4JD/veQnGRAV+/7Up85SPbUFzE5VPmo4xD4crKSgBAR0cH9u7dCyD+Wm9ERETz0etnz+Ouh7ognT2PZWUl+PdP7MT7L1+V62rRLMo4cPL7/VAUBX6/Hzt27MCxY8ci0hMQERHNZ12vB2D9YTf6h8exXliC795Zi61rOO91vst4qK6xsRE+nw89PT0YGBiA0+mctsguERHRfPTogRP45N4/oX94HO+4uAL//aXrGDQtECndVTcwMID+/v60ElsODg4CwLy864x31RERLUyKouBfvUfwnf1HAAA3bl+D/9u0A0sWFee4ZjQTWb+rrqKiAh6PJ+W75h5++GF0dHQwqCAionljdCKIv2s/qAdNtveK+M9Pmhg0LTApz3HavXs3Dhw4gMbGRlRXV6Ourg6iKEIQBMiyDEmS8Nxzz+HYsWOw2Wy4/fbbZ7PeREREcyZwfgy2H3Wj6/V+FBcZ8H9uuxIfv+aSXFeLciCjBJgDAwPo6OiA3++HLMsQBAHV1dUwm83YtGn+L17IoToiooXD//Y53PVQF97oG8byshLc/6kavHvzRbmuFmVROt/rGd1VV1FRgd27d2dUOSIiokLxrL8PX/hxDwYujOPiyiX4/p112Lx6ea6rRTnElKZEREQxuHveQssjL2A8qGDnJQJcn67FyuVlua4W5RgDJyIiojChkIJve17Dv//PUQDATe9Yi281XI3FpZwETgyciIiIdCPjQXy583k8+cIpAMCXrq/G39dfjiIun0KTGDgREREBOHtuFNYfdsP3poySIgO+8bGr0Fi7IdfVojyTceZwAPjmN7+JpqYmAMD+/fv1pJdERESF5GjvED76n3+A700ZKxaX4Iefu4ZBE8WUcY/TPffco6cgAIBdu3bhkUcewcc+9rGUzpckCW63G6IoQpIkWK1WCIKQ0bE+nw+7d+9GT09Pyuelc30iIpq//nD0LL7w4x4MjUzgEmM5vv/ZOlSvXJbralGeyjhwqqurw+233479+/dndH5DQ4Me6EiShN27d6OzszPtY7Xgx+fzpXVeOtcnIqL56WfPvYl/fPQQJkIKajdWwnVHLYxLF+W6WpTHMh6qO3bsGADAYJiaMNfV1ZXSuZIkRTwWRRFerzejYy0WC0wmU1rnpXN9IiKaf0IhBff98hXc88iLmAgpuHXHOvz489cyaKKkMg6cdu7cidraWjgcDrS0tKCurg719fUpnev1emE0GiO2GY3GmL1G6Ryb6nmZlklERIXvwlgQX/qpDw/8xg8A+Otdm/GvTTuYboBSkvFQ3a5du9DZ2Qmn0wlFUeByubBz586UzpVlOeb2QCAwo2NTPS/dMkdHRzE6Oqo/5iR4IqLC1Ds0gt0/6Mbzbw1gUXERHJar8NGdF+e6WlRAZpSOYNOmTbjvvvv0x4ODgzNauy1eQDPTY1M9L96+1tZW7NmzJ6PrERFRbgRDCp47FkDv0AhWLV+MiiWl2P3DbpyQL0AoL4Xr07W4ZpMxeUFEYWYUOA0ODkb00jgcDtx///1JzxMEYVrvTiAQiHlXWzrHpnpeumW2tLTg7rvv1h8PDg5iwwbepkpElK/2HTqFPU8cxqmBEX2bAYACYNNFS/G9O+uw6aKlOasfFa6M5zh94QtfgMlkgsVi0X86OjpSOldLYRCttrZ2Rsemel66ZZaVlWHFihURP0RElJ/2HTqFL/7YFxE0AWrQBABfen81gybKWMY9TtXV1XjggQcitu3duzelc0VRjHgsSRJqa2v1Hh+fzwdBECCKYtJjw8myrG9PdF70uYnKJCKiwhEMKdjzxGE9SIpmAPAtz2v4qOliFHMZFcpAxoFTrF6bVO+qA4DOzk7Y7XbU1dWhq6srIodSa2sr6urq0NzcnPRYr9cLj8cTcZ7FYkl6XqJ9RERUmJ47FpjW0xROAXBqYATPHQvgndVVc1cxmjcMiqLEC8wTev311/Xkk4IgQJZltLe3o729Pdt1zDuDg4OoqKjAwMAAh+2IiPLI3t9K+OdfvJz0uO/8+Q7cumP9HNSICkE63+sZ9zg1NzdHDI0BwIEDBzItjoiIKGPnRifw/54+ggd/JyU/GMCq5YtnuUY0X2UcONXX12P37t0R2x5++OEZV4iIiChViqLg0YMn0PqLV9A7pObbKyspwuhEKObxBgBrKhYzDQFlbEaTw1PZRkRENBsOnRjAvY+/hJ43+gEAG6vK8U8f2YaxiRD+4ifqShDhc1G0qeD33ryNE8MpYxkHTn6/H06nE3V1dQDUqL+joyPl9eqIiIgyETg/hn/51av4r+fehKIAS0qL8ZcfuAyfe/cmfdmU+z9lmpbHaU3FYtx78zbceOXaXFWd5oGMAyen0wmz2YzwueUZzjMnIiJKaiIYwk+fexPf+tVrGLgwDgC45ep1aPnwVqytWBJx7I1XrkX9tjURmcOv2WRkTxPNWMaBk8PhwK5duyK2xUssSURENBN/lPrw1cdfwiunhwAAW9csx55btuNaMX5KgeIiA1MOUNbNaJHfaJWVlTOqDBERUbiT8gW0/vIVPPH8SQBAxZJSfPmDW/Dxay5BSXHGi18QZSzlwOmRRx6B2WzW8xs8+OCDEftlWYbH48FTTz2V3RoSEdGCMzIexIO/k/Af/+PHhfEgDAbgE9dcgi9/8HJULl2U6+rRApZy4PSNb3wDgiDgAx/4AADggQceQFNTU8QxfX192a0dEREtKIqiwPtyL77+5GG8GRgGANRdWol7b96OK9dX5Lh2lDOhIPDGM8C5M8Cy1cDG64Ci4pxUJeXAqbu7O+Lx3r17sXPnzohtnONERESZ8r99Dl974jB+89rbAIDVK8rwvz98BW65eh0MBk7qXrAOPw7sswODJ6e2rVgH3OgAtt0y59XJeI5T+HymgYEBeL1e1NTUZKVSRES0cAyNjOPfnz6K7/3hGMaDCkqLDfj8e0R86frLsKws468pmg8OPw503AFEL9s8eErd3vjDOQ+eMp5Z5/V69d8rKipw++23R2wjIiJKJBRS8IjvLXzgW7+B87cSxoMKrr98JX71d++D/catDJoWulBQ7WmKDpqAqW377lGPm0NpvSsHBgbQ0dEBg8EAj8czbX9PTw8+//nPZ61yREQ0Px06MYB/euwQfG/KAIBLq8rxTzdvwwe2rs5txSh/vPFM5PDcNAoweEI9btN75qxaaQVOFRUVMJvNcDgc8Pv92LRpU8T+5ubmrFaOiIjml75zo/iXX72Gn3WpWb/LF01l/S4ryc1kX8pTQ6dSO+7cmdmtR5S0+0E3bdqEBx54APv374+Zy4mIiCjaRDCEH//xDXzb8xoGRyYAALfuWIeWD12BNRWLc1w7yivn+4Dnfwo8+5+pHb9sbnsps5oAk4iIKNqz/j7seWIq6/cVa1dgzy3bcc0mY45rRnlDUYA3/wh0fw84/CgQHJvcYUDsOU6T+1asU1MTzCHOvCMiollxUr6Af/7Fy/j5C+qQi1Beir//4OX4xDWXcM04Uo0MAM+3qwHT2y9PbV97NVB7F1BaDjxindwYHkBNvn9uvG/O8zkxcCIioqwaGQ9i728l/Mevj2JkPIQiA/DJazfi7votzPpNqhM+NVg69DAwriY6RckS4CqLGjCtN00dW7I4Th6n+worjxMREVE4RVHgOXwGX//5YRwPXAAAXHOpEffesg3b1zHr94I3eg445FYDplPPT21feYUaLL2jEVgiTD9v2y3A1psKL3N4Kl5//XVceuml2SySiIgKwNHec/jak4fx28ms32tWLEbLh7cy6zcBpw8BPd9Xh+TG1HluKF4EbP8oUPNZ4JI/A5K9R4qK5zTlQCIzCpwOHjyIQCCgP3Y6nWhvb59xpYiIqDAMjYzj3/Yfwff/8DomQgoWFRfh8+/ZhC9dfxmWMoHlwjV+ATj8mNq7dPxPU9uNotq7dPUngKVVuavfDGT8rm5sbIQsyxAEQd924MCBlM+XJAlutxuiKEKSJFit1oiyUj020T63262vnxddts/nAwCYTCZIkgRZlmEymUBERMmFQgr++8AJ3LfvFbw9NAoA2LV1Fb7ykW249KKlOa4d5czZI0D394GDPwFGZHVbUYk61FZ7F3Dpe4GijBctyQsZB0719fXYvXt3xLaHH3445fMbGhrQ09MDQA1+du/ejc7OzrSPTbYvmsPhQHNzM5xOJ1wuFwB1ceJ41yYiokgvvCXjq4+/pGf93nTRUvzTR7bh+q2rclsxyo2JMeCVJ9Xepdd/N7W94hKg5jPAzk8Dy+dPRviMA6fq6uqUtsUiSVLEY1EU465zl+jYRPtkWUZnZycsFou+v62tTc9uXlNTg/7+fgDTe6OIiGi6vnOj+OZTr6K9+7ie9fuvPrAZd737Umb9Xoj6Xwd6fgAc+BFwXp3bBkMRsPkGtXfpsl05m8A9mzIOnPx+P5xOJ+rq6gCod1N0dHSgq6sr6blerxdGY2TiM6PRCJ/PN224LNGx3d3dcfeJohgRNLnd7ojHAAMmIqJUTARD+NFk1u+hyazfH925Hvd8aCtWr2DW7wUlOAEceUrtXTq6H3pupWVrANMd6o+wIadVnG0ZB05OpxNmsxmKMpWQKvz3RGRZjrk9fKJ5Kscm2hcegMmyjEAgAFEUI7a53W4AQFdXF2w2W8T+cKOjoxgdHdUfDw4OxjyOiGi+ecZ/Fl99/CW8duYcAGDb2hX42q3bUXsps34vKIMnAd8P1R6mobB8StUfUO+Mu/xDQHFp7uo3hzIOnBwOx7RlV7SJ2JmKFwile2z0PrvdDofDEbEtfBK5KIqor6+H3++PWV5rayv27NmTct2IiArdCfkCvvHzl/HzF9Ws35XlpfjyDZfjz+uY9XvBCIUA/9NqKoFXfwkoQXV7eRWw81OA6TNAVWpTdOaTrK1V9/TTT0OWZezcuTPpuYIgTOtdCgQCMYfOEh2bSjmyLMPr9U4rW5IkvVdKuyNPkqSYvU4tLS24++679ceDg4PYsGF+d0US0cI0Mh6E8zcS7v/NVNbvT/2ZmvVbKGfW7wXhXC9w4MdAz0OA/MbU9o3vUucuXXEzUFKWs+rl2oySbDzyyCP6BG1FUdDd3Y2PfexjSc8zm81wOp3TttfW1qZ1rCiKScvp7u6OmYpg165d+uRwTfR8KU1ZWRnKyhbum4SI5j9FUfDUS2fwf35+GG/1T2b93mTEV2/ejm3rVuS4djTrFAV4/ffq3KWXnwBC4+r2xRVqzqWaO4FVW3NaxXyRceB0zz33RMwdkmUZNpstpXOje3UkSUJtba0e4Ph8PgiCAFEUEx4bqxcpvBytrOiASBTFiKE7r9cLi8XCyeJEtCAd7R3CnicO43dHzgJQs37/75uuwM3vWMus3/PdcAB4/r/U3Et9R6a2r69Ve5e2fxRYVJ67+uWhGaUj2L17N44dOwaDwYBLL70UTz/9dMrnd3Z2wm63o66uDl1dXRF5lFpbW1FXV6enDkh0bKJ9mujgSxAE1NbWoq2tDYIgwO/3M48TES04QyPj+I73CB56Zirrt/W9Iv7i+mqUL2LW73lLUYC3utTepZf+G5gYUbcvWgZc1QDUfhZYe3Vu65jHDEqqt8JF2b9/Py677DJs3LgR//Iv/4Ivf/nLePrpp/GBD3wg23XMO4ODg6ioqMDAwABWrGAXNhEVllBIwcO+t+DY9yrOnlPvGDZfoWb93ljFrN/z1sgg8GKH2rt05tDU9tVXAXV3qUFT2fLc1S+H0vlez/i/FLIsQxRF9Pf34+zZs7jhhhsgCMKCCJyIiArV88dl3Pv4Szh4XAYAiBctxVdu3obrL2fW73nr5EG1d+lFNzB+Xt1Wshi48nZ1OG59TfJFdkmXcY9TtP3796O2thYVFRXZKC6vsceJiArN2XOj+Oa+V9HRo2b9XrqoGH+9azM++65NWFRS2GuHUQxj54FDj6gB00nf1PaLtkwusvvnwJLK3NUvz8xJjxMAfPOb30R3dzfa29sBgJMIiYjyzHgwhB89+wb+r3cq6/fHdq6HnVm/56fel9WhuOd/BowOqNuKSoFtt6oB08br2Ls0QzO6q666ulpPerlr1y488sgjKaUjICKi2feHo2ex54mprN9Xrl+Br97MrN/zzvgI8PLjasD05jNT2ysvVbN67/gksGxlzqo332QcONXV1eH222/H/v37s1kfIiKaobf6h/HPP38Zvzx0GoCa9ft/3bAVTXUbmPV7Punzq1m9D/wEuDCZDNpQrC5/UnsXIF4PFHEYNtsyDpyOHTsGIHJ4rquriz1OREQ5MjIexAO/8eP+X/sxOqFm/b7jnZfi78xbUFG+MNYRm/eC48Crv1DnLkm/ntq+Yr2apHLnp4EVa3NVuwUh48Bp586dqK2tRVVVFTweD7xe77T14IiIaPapWb9P4+tPvowTspr1+9pNRuy5dTu2ruENLPOC/Ka6wO6BHwHnzkxuNACb69XepcvqgWLm3poLM7qr7tixY/qSJ01NTSmtUzcf8K46IsoXR86oWb9/f1TN+r22YjH+4aYrcNNVzPpd8EJB4IhH7V068isAk1/XS1cBpk+ri+xWbsxpFeeLdL7Xs5aOYCFh4EREuTY4mfX7B1rW75Ii2N4r4ovvZ9bvgjd0GvD9SF1kd/Ctqe2b3qf2Ll3+YaCECy5n06ykI9Cygyfy4IMP4vOf/3yqRRIRUZpCIQVu31to2/cKzp4bAwDUb1uNr9y0DZdUcU2xghUKAcd+rfYuvfILQAmq25dUqnfF1XwWuOiynFaRVCn3OBmNRtTV1SU8pru7G319fVmpWD5jjxMR5cLByazfz2tZv1cuxb03b8f7tvBW84J1/ixw8CdqKoH+Y1PbL3mnGixtuxUoZb6t2TYrPU67du1CVVUVampq4h7DUT8ioux7e2gUbfteQWePOmyzdFEx/sa8GXdex6zfBUlRgDefVXuXDj8GBNWeQ5StUDN613wWWL0tt3WkuFIOnDo7OzEwMIDu7m4Aah6n6KjMaGRSNSKibBkPhvCDZ17Hd7xHMDQ6mfXbtB733LgVq5j1u/BckNWM3t3fA86+OrV9nQmo/ay6dtwiLrKc7zKeHH7gwAEEAgEYDIYFt7Avh+qIaLb9/shZfPWJl3C0V836fdX6Cnz1lu2o2cj1xQqKogAnfGqwdOhhYEJNF4HScuCqBjVgWrcw7kjPZ3OyVl146oGnn34aHo8H9fX1Cy6IIiLKpuMBNev3vpfUrN/GpYvQfMPlaKhl1u+CMjoEvOhWA6bTL0xtX7VdDZbe0Qgsrshd/ShjM7pn9eDBg3A6nWhvb4coiqiurmbgRESUgQtjQdz/Gz+cv1GzfhcXGfDpP9vIrN+F5vSLarD0QgcwpvYWorgMuPJj6tylDddwkd0Cl3bg9Prrr6OzsxNOpxMGgwG33347enp6sGnTptmoHxHRvKYoCvYdOo3/8/OprN/vFKtw7y3bmPW7UIxfAF76bzVgeqtranvVZWrepas/DpRzDvB8kXLg9OCDD8LpdEKSJDQ2NqKzs3NapvBHHnmEa9UREaXotTND2PPES/jDUTWNy7qKxfiHm7bhw1etYdbvQvD2q2oaged/CowMqNuKSoArblYDpkvfw96leSjlyeFFRUWwWCxoamqCIAjTPtT9/f2477770NXVFaeE+YOTw4loJgYujONfva/hh8++geBk1u8vvK8aX3xfNZYsKs519SiRiVHg5SfUgOmN309tFy5Rh+J2fgpYtip39aOMzMrkcKvVira2toS5mtrb21OvJRHRAhMKKejsOY62fa+i77yau+eD21bjKx/Zhg1GZv3Oa4Fj6hIoB34MDKvrAsJQBGz5kNq7VP0BoIg5tRaClAMnm82WNApraWlJ+cKSJMHtdkMURUiSBKvVCkEQ0j420T6fzwcAMJlMkCQJsizDZDKlfX0iopk68GY/7n38JbzwljqkUz2Z9fu9zPqdv4ITwGu/VOcu+Z+e2r58rbrArukOoGJ97upHOZGzRX5ramrQ09MDQA1i7HY7Ojs70z420T6bzQaXywUAMJvN6Ozs1IOjdK4fjUN1RJSq3qERtO17Fe7JrN/Lykrwt+bN+Mx1l6K0mD0UeWngLcD3Q/Vn6NTkRgNw2S61d2nzDUAxF1KeT+Ykj9NMSJIU8VgURXi93rSPTVZOTU0N+vv7ASCiNymd6xMRZULL+v2v3iM4N5n121JzMZpvvByrljPrd94JBYGj+4Ge7wOv7QOUkLq9/CLA9Gm1h8nIu8cpR4GT1+udtjyL0WiEz+fTh9JSOba7uztpObGG39K5PhFRun535G189fGX4H/7PADgHRerWb9NlzDr95wKBYE3ngHOnQGWrQY2XgcURU2+HzoDHPgR0PMDYODNqe2XvkdNVLn1ZqBk0dzWm/JaTgInWZZjbg8EAmkdm6wcWZbhdrsBAF1dXbDZbBBFMa3rExGl6nhgGF9/8jB+dfgMAKBq6SI033g5Gmo2oIhZv+fW4ceBfXZg8OTUthXrgBsdarqAY79V5y698iQQUnsEsVgAdnwSqLkTWLklF7WmApBXg7TxApp0j9X2hU/4FkUR9fX18Pv9aZc5OjqK0dFR/fHg4GDK9SSi+e/CWBD3//ooHvithLHJrN93vHMj/ta8BRVLmPV7zh1+HOi4A0DUFN7BU0DHp4Fla4Bzp6e2X3yNOndp+21A6ZK5rCkVoJwEToIgTOvdCQQCMYfVEh2brBxJkvShN+3uOUmS0ro+ALS2tmLPnj1pPEMiWggURcEvXjyNf/75YZwcGAEAXFddha/esh1bVi/Pce0WqFBQ7WmKDpqAqW3nTgOly4Crm9ThuDVXzWUNKQPBUBC+Xh/eHn4bK8tXwrTKhOLoYdc5kpNbOsxmc8zttbW1aR2baJ/P58OuXbum7TMajWldH1DTLAwMDOg/x48fj3kcES0cr54ewif2/glf+qkPJwdGsF5Ygvs/acJPPn8tg6ZceuOZyOG5eBq+D3zk2wyaCoD3DS9uePgG3PXUXbD/zo67nroLNzx8A7xv5Oamrpz0OImiGPFYkiTU1tZG5F8SBAGiKCY8NrqHKHyfKIpwOBz6Pq/XC4vFkvS8WMrKylBWVpbRcyWi+WVgeBz/1/safvRHNet32WTW7y8w63dujQyod8X9yZXa8aOcclEIvG94cfev74YS1YPYO9yLu399N779/m/DvDF2Z8hsydkcp87OTtjtdtTV1aGrqysih1Jrayvq6urQ3Nyc9Nh4+wRBQG1tLdra2iAIAvx+f0rnEdHCFQwpeO5YAL1DI1i1fDGu2WRE8eSk7mBIQWf3cbQ99SoCk1m/b9y+Bv9w0xXM+p0rfX41dcBr+9SeJm2SdyqWrZ69elFWBENB3PfcfdOCJgBQoMAAAxzPOXD9huvndNguZwkwCxkTYBLNP/sOncKeJw7j1ORcJQBYW7EY9968DSuXL8ZXH38JL55Qs35ftmoZvnrzdrx780W5qu7CFBwH3nwWeO0pNVjqOxq5v2ozsLkeeKEDGO5D7HlOBvXuur99cXpqAppTiqJgcGwQ/SP9kEdlBEYC6B/pR/9oPwIjARztP4pnTz2btJzv3fA91K2pm1Fd8j4BJhFRPtl36BS++GPftK/ZUwMj+MKPffrj5WUl+Btm/Z5b5/uAo1516ZOjTwOjA1P7ikqAje8CttwIbLkBqKpWt1/yzsm76gyIDJ4mU0LceB+DplkwEZqAPCqrwc9IPwKjaiAkj0wGRaOT20cCkEdlyCMyJpQ0egnjeHv47SzUPnUMnIhoQQuGFOx54nDMvolwFtN62D90BVYu53zHWaUoQO/Lk0NwTwFvPTeVxRsAyqvUJU+23ABUXw8srphexrZbgMYfxsnjdJ+6n5IamRiJCID0n6gASPt9cCyzeWNLS5dCKBNgXGxE5eJKVJZVonJxJc6Nn4P7NXfS81eWz+16jwyciGhBe+5YIGJ4Lp7bazYwaJot4yPA67+fCpbCM3gDwOor1UBpy43A+prUeou23QJsvSl55vAFQlEUDI0PTfUGTQY9+vBYWECk/X5h4kLa1zHAgIqyCj0AMi42Qlgs6L+HB0baT1lx7M9VMBTE7976HXqHe2POczLAgNXlq2FaNbcrfjBwIqIF7YQ8nNJxvUPJgytKw9Bp4Miv1EDJ/z/A+PmpfcVlgPg+NVjafAMgbMjsGkXFwKb3ZKe+eSZ6WCw86InoCQobLstkWKykqATGMuNUoBMW9GiBUHhvUcWiiqxN1C4uKsY919yDu399NwwwRARPhslhV/s19jnP58TAiYgWnGBIwbP+Pjx68AR+/kIKOX8ALsw7U6EQcPr5qYndJw9E7l++dqpXadN7gUVLZ3zJfEqamIw2LBY+DBarF0j7dyB8rlcaykvK4wY9EUHRZLC0tHQpDIbcLRdk3mjGt9//bdz33H04M3xG3766fDXs19jnPBUBwMCJiBYIRVHw0slBPHrgBB5//iR6h6aWUSoyAKE4k5wMANZUqKkJKE1j5wHpN+rE7td+FbnMCQCsM01N7F57NZDFL2jvG96YX7b3XHPPrH/ZasNi+qTosDvF5BFZ/z38brJsDIuF9wppQ2QRvUUJhsXymXmjGddvuD5vgmAGTkQ0r73ZN4zHDp7AowdPwP/21HBQxZJS3PSOtbhtx3qcHRrFl36q3j0X4x4s3HvzNj2fEyUhvznZq/SUupBucCpARelSdUL3lhuBzR8Els9OLqVsJ02cCE1gYHRgWgAUb9J0/2g/JtLJKTUpfFgsOugxLjZCKBMieouyOSyW74qLimecciBbGDgR0bzTd24UP3/xFB49cAK+N2V9e1lJEczbVuO2Hevxvi0rsahkKqXA/UUmfPWJQ3h7/GUYSoagTCzHytIr8NWbr8SNV67NwbMoEKEg8Fb31MTu3pci9wuXAFs+pPYqXfpuoGR2ezxSSZp433P34YqqKyKCofD5QRF5hUb7MTg6GLO8ZMKHxaKDnuhhMWGxgGWly3I6LEapYeBERPPC8NgEPIfP4NEDJ/C7I2cxMTn2VmQArqu+CLfuWIcbr1yD5YtLY55fsvwlLLvMgfNhQzvLylejZPk9ABg4RRgZAPxPq4HSkV9NJpucZCgCNlw7NV9p5daYQ3CKomBCmcB4cBzjIfVnLDim/h4cx1go8veJ0ETM7dHb3hx6M2J4btp1oeDM8Bnc+PCNaT3lhTIsRskxc3gGmDmcKD9MBEP4/dGzeOzgSTz10mkMjwX1fVetr8CtO9bhlqvXYdWKxBO74w3taHfu5GI9rJlSFGV6QBL1ux60hAUf0cdOhCbU34dOY7zvNYwH/BgbPIlxKBg3GDBmMGCieBHGl63EWLkR44tXYAxKwmto2zLpxcmWIkMRLlp8Ucxhseg7x4QyARVlFSgpYl/DfMXM4URzqJDu3JkPFEXBweMyHjt4Ek++cBJnz43p+y4xluO2Hetwy471uGzVspTKy3Q9rJASSh6QhG1Ptj+6xyXloCfOMZnMsUnZihhtG5SBIRkYyqxIAwxYVLwIi4oWobS4FCVFJfrvi4oWobSoVP+9pLgEpUWl+v7w3/su9GHf6/uSXm9v/V5cs/aazCpLCxoDJ6IZyOWdOwtFSAlhPDSO18704/EXjmPfS8fxljwEgyEIGCYgVBpw3WUVuFaswCVVwHjoDbxy7gheHFCDiPCelPAgZiykPj597nTSoZ3Tw6fxnp+9BzBAD1iCSjDuOfmoxFAyLSCJDj5KYUDpyCAWDfej9PxZlAbHsEgBSqGo+5avRWmliNKLNmPR0tWxy4ixLe71wrZl6z8bwVAQB3oPJE2aWLO6JivXo4WHQ3UZmOuhunR7NGazB4S9K1Pm4/COFqRMCzLCAo3wYRc9MAlGBiPh28ZDU8cmO29a2cGxrKxlNRdKiiZ7QYoXTQ8QUggowntUEu0P357SNYoXocRQEvtzmo3lTfKQ9tkEEDNpYiF+Nml2pfO9zsApA7MROMULSNLt0ZjNHhD2rkwJhoK44eEb4vZUaP+r3Xf7vriBZfhQT6IgJXybHljECVKizwvvXYl3TPjjWR3eyZJiQwnKihdFDOtov2tBixZUJDpm0WQZp86dws9e/VnS6+65bg9Mq0xxg5qCuRtqNpY3yUOx/l6tKV+Ts6SJlN8YOM2ybAdO8QKSD2/6MB566aGUezRmswckH3pXtLtwJkITCIaCCCpBdchk8veJ0AQmFHXfRGhC36b/GwpOna8EEQwF9SGXdMqbCE3g1PlT+M1bv0la54uXXYySopLpQUpwvCB6UrRhnWwFKdpclUXFiyLOM6AEL58YxjNHZTx3bBBj40VQlBJAKcGV6ypx81WX4CPv2IA1K5ahyFCUvOJp0ILgZEM7iYLgvDcXy5vkIfaQU6oYOM2ybAZO8QKSZKL/mCfrAQGAVeWr8NMP/xQKlJh3uMSbdDoaHMW/Hfg3DI3Fn/W5pGQJPnTphxBCSA809KBDiQpaYgQm4UFJvEAnFD6EMA/NVZAS67zwbeHDTdkOUsKFQgp63uzHowdO4OcvnoI8PK7vEy9ailt3rMetO9bh0otmvvRGMvNuaCcHy5sQFTIGTrMsW4FTKsFOMhuWbUBpcSmGxobw9oW3My6nkBUbilFSVIJiQzGKi4pRWlSq/15iKNH3lRSV6NuKi6LOMZSiuKhYPy7inOh/i4px5vwZPOZ/LGnd7jbdjStXXpnzICWfvHZmCI8eOIHHDp7ECXlqmYmVy8tw8zvW4bad63DV+oo5H/oq+KGdHC5vQlTomI6gQPh6fTMKmgDg+LnjaZ8TPZE0/Mtb+ykpKtH3By4EcDhwOGm59Rvrsa1q27TAJFbgEjfQKSpRz49+HFWefr6hOCdzS4KhIP546o9Jh3fu2H4HhwYAnBq4gMcPnsSjB0/i5VOD+vZlZSW4Yfsa3LZzHa6rviiny5rk23pYKcmD5U2IFhoGTjn09vDMe4i0Ho0j/UfQ+lxr0uO/+8Hvpp27pOt0F+566q6kx31868fzZi2h2VZcVIx7rrkHd//6bhhgiDm8Y7/Gnt9furNs4MI49h06hUcPnMQfj/VB69suLTbgfVtW4bad62C+YjUWl+ZPG+XTelgx5dnyJkQLEQOnHFpZvjLjc6N7NEyrTPjeoe/NSu4S0yoTVpevTlq2aZUpo+dSqMwbzfj2+78dc2J/wQzvZNnIeBC/frUXjx44iadf7cXYxNS8tLpLK3HrjvW46aq1qFy6KIe1LDBZWN6EiLKHgVMOJQtINKn0aMxmDwh7V+IryOGdLAuFFPzxWB8eO3ASvzh0CkMjU3cLblm9DLfuWI9brl6HDcbyHNaywPT5J3uV9gFvPAOEp4koqwA2m9VA6TIzUG7MXT2JFqCcTQ6XJAlutxuiKEKSJFitVgiCkPaxifb5fD54vV4AQFdXF/bu3RuxDwBMJhMkSYIsyzCZUusxmY276oDYd/Pcuf1O/OLYL1KesDqbE1wLfvIsZY2iKDh8ahCPHTyJxw+exOnBEX3fmhWLceuOdbh1x3pcsXZ54eQ3yqXgOPDmH6eCpb6jkfurNqu9Spd/SO1hKo69UDERZaYg7qqrqalBT08PADX4sdvt6OzsTPvYRPva2trQ3Nys/97e3q4fa7PZ4HK5AABmsxmdnZ1xA7doc5HHKTwgYeZwyhdv9Q/jsYMn8djBE3jtzDl9+/LFJbjpqrW4dcd6XLvJiKIcTvIuGMMB4IhHDZSO7gdGB6b2FZUAG981dRdcVXXu6km0AOR94CRJEhoaGvQgBgAqKyvR39+f1rGJ9vl8PuzatUsvU5IkVFdXw+/3QxRFuFwuNDY2AkDKAZNmLjOHE+Va//kx/PzFU3js4Al0vT71GV1UXIQPbF2F23aux/VbV6KshO/XhObp8iZE80HepyPwer0wGiPH5Y1GI3w+37ThskTHdnd3Jyxn7969+nZZlvX9mnQDptmU93fz0IJyYSwI78tn8NjBE/jNa29jPKj+/8pgAP5sUxVu27kON165FhVLOGSU0PgI8MbvpxJRyvNzeROihSQngZMWxEQLBAJpHZusHIvFom9rb2+H2WzWgyVZluF2uwGo859sNhtEUYxZ3ujoKEZHp/KjDA4OxjyOqJBNBEN4xt+HRw+ewFOHTuP8WFDft23tCty2cx1uvnod1lYsyWEtC8ACXd6EaKHIq7vq4gVC6R4bvU8LksKH9MInkYuiiPr6evj9/pjltba2Ys+ePSnXjahQKIqCF08M4NEDJ/HECyfx9tDUfxAurlyCW3esw2071mPz6uU5rOUcCgXVu9jOnQGWrQY2Xpe8F0hRgFMH4y9vsmzN1MRuLm9CVPByEjgJgjCtdykQCMQcOkt0bKrl2O12eDyeiO2SJOnDgtodeZIkxex1amlpwd13360/HhwcxIYN/J8iFa43+s7j0QPqJG/p7FSPiFBeipuuWouP7lyPmo2VC+uOuMOPA/vswODJqW0r1gE3OoBtt0Qeqy9vsk/tXRo6Fbmfy5sQzVs5CZzMZjOcTue07bW1tWkdK4pi0nLa2tpgt9shiqLeEyVJUsTEcU30fClNWVkZysqYgZcK29lzo3jyeXXZk4PHZX17WUkR6retxm071uO9W1ZiUcnCWDMvwuHHgY47gOh8aoOn1O2NPwTW7eDyJkSUm8ApuldHkiTU1tZG5FgSBAGiKCY8NrpnKboct9sNk8mkB00dHR2wWq0QRREOh0M/z+v1wmKx5NVkcaJsOD86gV8dPo1HD5zE74+eRTCkBgZFBuBdl12E23asxw1XrsGysrwatZ9boaDa0xQzCe3kNvdnI5NQAlzehGiBymkCTKfTibq6OnR1daGlpUUPXBoaGlBXV6fnYEp0bLx9WvqBcIIg6L1MWnJMQRDg9/sjAqlkZiMdAVG2jAdD+N2Rt/HogZPwHD6DC+NTk7zfcXEFbtuxHh+5ei1WLV+cw1rmkWO/A37wkRQONACX/BmXNyGah/I+j1OhY+BE+UZRFPjelPHYwRN48oVTCJwf0/dtrCrHrTvW47Yd6yCuXJbDWuaJ0XPA268AvYfVvErS/6j/JvOR7wC1d8569Yho7uV9Hiciyo6jvefw2METeOzgSbwZGNa3Vy1dhJuvXodbd6zDjg3CwprkrZkYA/qOqEFR72HgzGH1X/mNzMpj9m4iAgMnooJzZnAETzx/Eo8ePIFDJ6ZyipUvKsYN29fg1h3r8O7LLkJJ8QKZ5B0KAfLrk4HRy1M9SX1Hps9L0ixbDay6Ali1TR1ye/rrwPmziD3PyaDeXbfxull8EkRUKBg4ERWAwZFx7Dt0Go8dPIFn/X2YnOON4iID3rdlJW7dsQ7121ajfNE8/kgrippcsjc8QDoMvP0qMD4c+5yyFWpwpAVJ2r9LqyKPW1I5eVedAZHB02RP3Y33Mas3EQFg4ESUt8YmQvj1q7147OBJeF4+g7GJqXXNTJcIuG3netx01VpULZuHd3Nd6Ad6XwF6X5oMkiYDpQvT17MEoGbkXnm5GhSt3jYVJK1Yn9oE7m23qCkHYuZxum96HiciWrAYOBHlkVBIQdfrATx68CR+8eIpDFwY1/dVr1yK23asx6071uOSqvIc1jKLxoaBs69GzUN6GRg6Gft4QxFQdVlUD9J2wLhp5j1C224Btt6UfuZwIlpQGDgR5YFXTg+qy548fxIn5Av69lXLy3DL1etw28712L5uReFO8g5OAAF/5CTt3peBgITY84oAVGwIC5Amg6SLtgCls5hGoagY2PSe2SufiAoeAyeiHDkpX8BjB9VlT145PaRvX1ZWghuvXIPbdqzHO6urUFxUQMGSogDym5GTtHsPA2dfA4Jjsc8pr4oMjlZtA1ZtBRZXzG3diYhSwMCJaIaCIQXPHQugd2gEq5YvxjWbjHGDnYHhcfzi0Ck8euAE/nRsap3F0mID3n/5Kty2Yz12XbEKi0sLYHjo3NtTE7T1IOllYOxc7ONLl04GRlcAq7eHTdReyUSSRFQwGDgRzcC+Q6ew54nDODUwom9bW7EY9968DTdeuRYAMDIexNOv9OLRAyfw61ffxlhwapL3NZuMuG3Henz4qjUQyhfNef1TMjIYmTDyzOSE7eGzsY8vKp2cqH1F5FBbxQagaIGkSCCieYuBE1GG9h06hS/+2Ddths7pgRF88cc+/M2uzTghX8C+Q6cxNDqVT2jrmuW4dcd63LJjHdYLS+a20olMjKpDauHBUe/LwMCbcU4wqJOyo4fZqqqB4tI5rToR0Vxh4ESUgWBIwZ4nDidaFhb/uv+Ivm1dxWLcvGMdbtuxHleszfEyPaEgEDg2PR9Snx9QgrHPWb4usgdp9TbgosuBRfPk7j4iohQxcCLKwHPHAhHDc/F8YOtKWN9bjWsuNaJorid5K4qak6j35bB8SJMJIyfi1H1xhXp7/+qwHqSVW4Fy49zWnYgoTzFwIkpi4MI4jvaew5EzQzjSew5Hes/hheNySufeumM9/kysSn7gTA0HonqQJv8dGYh9fMkS9c61iDvZtgHL13CiNhFRAgyciCYNDI/jSK8aHL12ZghHJ/89MziacZmrlmc559DY+cmJ2i9H5kM6dzr28YZi4KLNU4kiteG2ykuZ2JGIKAMMnGjBkYfH9ODoyJlzarB05hx6h+IHSKtXlGHL6uW4bNUybFm9HOJFS/HXPzuA3sFRGBDCNUWvYBVk9ELAc6GtUFCENRVqaoKMBMeBvqORk7R7DwP9ryNuwkhhY2QP0uptapbtknm4JAsRUY4wcKJ5K3B+bGp47YzWk3QOZ8/FD5DWVizWg6PNq5Zh82SwVLFk+l1ie27Zjkd/+gD+qfSHWGeYysl0UjHia+N34Labv5A8eWUoBMhvRE7S7n0ZOHsECI3HPmfpqum5kFZeDpQtT6ldiIgocwycqOD1nRvFa2fO4WjUMNvZc3EyVQNYLyzBZauWYfNkkHTZ6mW4bNUyrFic+m30NxZ14YZF34ES1QO0xhDA/Yu+A0NRDYDJxWEVBTjXGzlJu/dldSHb8fOxL1C2IioXkpYw8qKU60hERNnFwIkKgqIoOHtuDEd6p+YeqcNs5xA4nzhA2rJ6qudIG25bVjbDt34oCOyzwwAF0X1KaopHBXj8rwDp1+pdbL2HgQuBacUAAIrLgJVbwvIhTQZJFRdzojYRUZ5h4ER5RVEUvH1uVA2K9GE2dR5S/3CcoSsAG4xLsHnV1PDa5lVqD9LSmQZI4SbGgOE+NWO29Gv1Vv9ERmSg+7tTjw1FgLE6sgdp9XagchNQzI8iEVEh4F9rSks667IloigKeofUAOm1yQDpaO8QXjtzDgMXYgdIBgOwobIcW1Yvw2WTQdKW1ctRvWopyhel+VZWFGB0SA2ChgPA+bOTv/dN/h5QH5+f3DbcB4wOpv08seVGYPtH1SDpoi1AaR5lCiciorQxcKKU7Tt0Cl9//EVsOPe8fgfZ8WVX4yu3XKWvyxZNURScGRydFhwdOTOEwZGJmOcYDMBGYzkuW7V8cphtGTavWo7qlcuwZFGcW+iDE+pQmB74aEFQ31QvUXhANNwHBOMP8cVlKAbKq4CSxQmWIgnzzr8ENr0n/esQEVFeylngJEkS3G43RFGEJEmwWq0QBCHtY2djXy4EJybwyp+ewoX+E1hSuR5br70BxSUlSfelW1am9h06hUd/+gA6S3+IdYvC7iAbNeJrP70Dyse/gKs3CFN3sGm3+feew1CcAKnIAGysWjo5vKYGR5tXL0P1ymVYrIyEBUHHgbN9wBtnw4KgqIBoRM7siZUuVQOhpVXqv+UXqZOvy41hv09uLzcCiwV1odpQEPjXK4HBU4idHsAArFgHbLwus3oREVFeMiiKEicpzOyqqalBT08PADWIsdvt6OzsTPvY2diXzODgICoqKjAwMIAVK2a+7tiBp36Adc/uwWr06dvOoAon33kvAMTdt/OGz6RVVqzjUxEMKfiHb3wD3xhvA6AGPJrQ5LvnL8b/FvtC18Q8v6RIwZXGEN5ROYFtFWMQy0dxcdkwVhYNoXS0P2w4LCwgmriQQU0NwJLKyWBnMtAJD3zCA6LyKvXxTIbODj8OdNwx+SD8YzTZQI0/BLbdknn5REQ0J9L5Xs9Jj5MkSRGPRVGE1+tN+9jZ2DfXDjz1A1z9zF+rD8ICkpVKH1Y+89cwYPIrOca+A0BEMJSsLO34YEjB0Mg4+ofHIQ+PQb4w+e/w+OSPtk39vXfgPB4efxBAZNCkPVYUwFHqwpXBY9i4ZATrF13AquIhVCiDWDIuo3i0H4ZzIeAcgONpNE5xWVjgUxUVBIX1EGn7llTObTbsbbeowdE+e+RE8RXrgBvvY9BERDQP5SRw8nq9MBojMyobjUb4fD6YTKaUj+3u7s76vujrz6bgxATWPbsHQPyAJN6+kAKsf/Ze/EG4HBPBEEZHhmF69iswYPod7FpZm55pwbeefQ7KxBjKMIbF4T+GMVyMcVyGUSw2aNvHsRhjWG4YhmCIk2to8noVGMZfljwGjEP9iWVxRWSgE2s4LDwgWrQ0/2/H33YLsPUm4I1ngHNngGWr1eE5LmdCRDQv5SRwkmU55vZAYHqem0THzsa+WEZHRzE6OpVtenAwg7urYnjlT09hO/owLRHQpEQxQ5EBWIV+rPrlDVEnxS9LwHn8PX48a6+6vPbdEC5/T+weonIjUJx6csmCUlTMCeBERAtEXt1VFy+gSffYbO9rbW3Fnj17UqtYGi70n5hxGaMoxYRhEaCEsBTJ5wWdWnE1hEu2Y9HipShetAQoLQdKFwMlS+L+GzxzGMVP/nXSspfX2wHxvTN+TkRERPkqJ4GTIAjTencCgUDMu9oSHTsb+2JpaWnB3XffrT8eHBzEhg0bkj3NpJZUrp9xGUfrf4Dt77oJL/3h59ju+UTS4wPX2rH2XTeldY3i9SZc2P8NlA2fnjZsCKjDhqPla7Dk0nelVS4REVGhKcrFRc1mc8zttbW1aR07G/tiKSsrw4oVKyJ+smHrtTfgDKr0O9OiKcrUPKdoIQU4jSpsvfaGlMqKPj4tRcVYcvM3YTAYEIouF4DBYMCSm7/JeT1ERDTv5SRwEkUx4rEkSaitrdV7fHw+n37nW6JjZ2PfXCouKdFTDkQHPCFl6gb3WPsA4NQ779XzMyUrK/r4tG27BYbGH8KwYl3EZsOK9TDwtnsiIlogcpbHSZIkOJ1O1NXVoaurCy0tLXrg0tDQgLq6OjQ3Nyc9djb2JTMXeZxOowqn4uRx0valmscp0fFpCwV5BxkREc0r6Xyv5yxwKmTZDpyA/M8cTkRENF8xcJplsxE4ERERUW6k872ekzlORERERIWIgRMRERFRihg4EREREaWIM4YzoE0Ly9bSK0RERJQ72vd5KtO+GThlYGhoCACykj2ciIiI8sPQ0BAqKioSHsO76jIQCoVw8uRJLF++HIZEK/EmoS3dcvz4cd6dNwfY3nOL7T332OZzi+09t2azvRVFwdDQENatW4eiosSzmNjjlIGioiJcfPHFWSsvm8u4UHJs77nF9p57bPO5xfaeW7PV3sl6mjScHE5ERESUIgZORERERCli4JRDZWVluPfee1FWVpbrqiwIbO+5xfaee2zzucX2nlv50t6cHE5ERESUIvY4EREREaWIgRMRERFRipiOIAckSYLb7YYoipAkCVarFYIg5LpaBc/n88Hr9QIAurq6sHfvXr1dE7U5X4+Zs9vtaGlpYXvPMq/XC0mSIIoiAMBsNgNge88WSZLg9XphNBohSRIsFove9mzzmfP5fNi9ezd6enoitmfatnPW7grNOZPJpP/u9/sVi8WSw9rMHw6HI+L38HZO1OZ8PWamp6dHAaD09/fr29je2efxeBSr1aooitpuoijq+9jesyP8b4qiKHr7KwrbfKY6Ozv1vx3RMm3buWp3Bk5zzO/3R7y4iqIogiDkqDbzR09PT0Q7+v1+BYDi9/sTtjlfj5nr7OxURFHUAye29+wIb2NFUdtS+5ftPTui2y48cGWbZ0d04JRp285lu3OO0xzTun3DGY1G+Hy+HNVofjCZTNi7d6/+WJZlAGrbJmpzvh4z43a7YbFYIraxvbNPkiQEAgEIggCfzwdZlvUhI7b37DEajaipqdGH7Orr6wGwzWdTpm07l+3OwGmOaV/o0QKBwNxWZB4K/wJvb2+H2WyGIAgJ25yvR+ZkWY45f4DtnX0+nw9Go1Gfv+FyueB2uwGwvWdTZ2cnAKC6uhqdnZ363xi2+ezJtG3nst05OTxPxHvRKX2yLMPtdk+bcBjruEz2kaqjowNWqzXl49nemQsEApAkSf/PgNVqRWVlJZQEafjY3jPn9XrhcDggSRJsNhsAwOl0xj2ebT57Mm3b2Wh39jjNMUEQpkXAWhc8ZYfdbofH49HbNFGb8/XIjNfrRWNjY8x9bO/sE0VRbz8A+r8+n4/tPUskSUJXVxfMZjOsViv8fj86OjogSRLbfBZl2rZz2e4MnOaYdvtwtNra2jmuyfzU1tYGu90OURQhyzJkWU7Y5nw9MtfR0QGXywWXywVJktDa2gqfz8f2ngXafKZY2N6zw+fzoa6uTn8siiJaWlr4N2WWZdq2c9nuHKqbY9F/ACVJQm1tLf83kgVutxsmk0kPmrShpOi2DW/zRPsovug/UjabDTabLeYXPNt75kRRRG1trT6vTMvlZDKZph3L9s4Ok8kEp9MZMXeyr6+PbT4LwudLJvqOzJe/5VyrLgckSYLT6URdXR26uroiEgdSZiRJQnV1dcQ2QRDQ39+v74/X5nw9MifLMlwuF+x2O6xWK2w2G0wmE9t7FsiyDLvdjpqaGvT09Og9qwDf37PF6/Xqw6GA+h8Gtnl2eL1eeDwetLW1obm5GXV1dXqQmmnbzlW7M3AiIiIiShHnOBERERGliIETERERUYoYOBERERGliIETERERUYoYOBERERGliIETERERUYoYOBERERGliIETEeUVr9eL6upqtLW1weVyoaamBjU1NXqizerqavh8vhlfQyuTiCgdXHKFiPKKLMvweDx6hmaPxwOj0Qir1QoAaGpqgiRJMZe+SJXZbEZTU1NW6jsXwpekIKLcYo8TEeWVQCCQcFFbk8k0bRX0+UySJHR0dOS6GkQ0iYETEeWVxsbGrBwzXzgcjlxXgYjCMHAiorySypBUd3c3ampq0NbWBgBwu92orq6G1+sFMDVPymazwe12w+VywWazQZbluGV6vV60tbXB7XbDbrfHPU6SJNjtdr1crUyfz6ef39bWBkmS9HKT1VWbb+X1euFyudDQ0KDv6+7uhsfjgcvl0sskotzhHCciKjjRc5QsFgva29sj9lssFlRVVekrrrvdbjQ0NMDj8UwrTwuGenp6AKjDhdqq7eFkWUZ9fT16enogCALsdjtcLhcsFgvsdntE2TU1Ndi/f39KdTWbzfB4POjs7AQAdHZ2wufz6fuqq6v1OV5ElFsMnIho3grvvbJYLGhoaIg50drpdMJoNOq9QADQ1dU1rbyOjg6Ioqif39LSAgBobW2dNlldFEV0dHSkFPBUVVWhqqoqot4LaR4XUSFh4EREBHXSudls1h/HCniig665vtONd9cR5R7nOBFRQRIEAX19ffpjr9c7bQ5T+GO32w2z2RwReGj7m5qaInqbtPKiWSyWaTmkvF5vzPN9Pp8+iT2VuqYiVp2IaG4ZFEVRcl0JIqJoXq8XkiTpd5XZ7XbU1tbqQ2KyLMNut+sTqZ1OJ2RZhtPphCiKsNvtkGVZH57r6upCS0sLBEGAz+fD7t27AQB79+6FyWSC1+uFx+NBXV0dAEwLssLrFes4r9cLn88HURTR1dWFpqamlOoqy3JEXbT5ViaTSX/uDocDNTU1MJvNCVM1ENHsY+BERPOSlmWck6qJKJs4VEdERESUIgZORDTveL1eeL1e/bZ+IqJs4VAdERERUYrY40RERESUIgZORERERCli4ERERESUIgZORERERCli4ERERESUIgZORERERCli4ERERESUIgZORERERCli4ERERESUov8Pb125w/J9KL4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFnCAYAAABQEsaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABu20lEQVR4nO3deVxb550v/o/AGBsvHES8m8Q+NJuzC3CWrolFk2mTTJMImOm0aZsE1M787sxczwwKc9vJeO5tiWinvzv3/tpGcpK2aaZTQEk7STtNBjldJ4tBx1lcx1l0bMeJF2yLA9iYTTq/Pw7nIAntCEnA5/16+WV0znOOHj0C9OVZvo9JVVUVRERERJRUUb4rQERERDRfMHAiIiIiShEDJyIiIqIUMXAiIiIiShEDJyIiIqIUMXAiIiIiShEDJyIiIqIUMXAiIiIiShEDpwInyzIcDgcqKipQXV2dsGx1dTUqKirgcDigKEpuKkgFQ5Ik1NfXJ/0+mUsejydvz51r+s+myWRCdXU1Ojo60NHRAbvdjoaGhkXVFpmy2+2oqKiA1+vNaz0W6nvpdrtRU1OT72osPCrNC06nUxUEQfX5fDHP9/T0qDabTW1paclxzWJzuVwzjrW2tqo2my0PtdHEqtNC09PTo4qimNY12WqX7u7uGccGBgYSft/Gku/vk3RZrdaYP3eiKKpOpzMPNUpdIfxMWCwWtaenJ9/VUFV14b2Xfr9fbW1tTevnj5Jjj9M8IQgCGhsb4XK5Yp4vtB6mnp6eGcfq6+vR1NSUh9poYtVpoTGbzWlfk612EQQh5rGWlhaIopjyffL9fZItdrsdDocj39VIaDH8TGTDfH0vRVGE3W6P+bNJmWPgNI/Y7XZ0dXXNOK4oSlofTHPN7XZDluUZx61WK2w2Wx5qFL9Oi10220WSJHR0dMw47nQ60/rFnc/vk2zSX3Oh/VGj489E6ubzeylJUkF9PiwES/JdAUqdxWKB2WyGx+OJ+GDp6+uD1WqNe11HRwdEUYQsyxBF0bhWURS43W6Iooienh7Y7XZYLBYAgNfrNf7C2r17N2RZhizLOHPmDJxOZ9zn8nq96OnpgSzLxodoa2srJEmCw+GALMvw+/1xnyMQCMDn88HlcsHtdsNsNqOzsxNtbW1G3ZK9rlTrFH0fQJvrEH4uEbfbHfG4paUl6T0zfc36dWazGQ0NDQC09y/Z+xFdn/C2SrVdkrWvThAEOJ3OiHvowf7u3bsjro/XPql+n6TyvZjsudK5b7ptAQA+nw8WiyUiaIz3PjgcDqN3QO850OuQyvdZrPslel3J3vtYsvX7oqOjA4IgZNQ7yvcyvfdSUZSU/2jRr9XfG1EUEQgEYLVaY/5cOhwOuN1uOJ3OlF9HdLvU1dWhvb0dsiyju7sbVqsVsiyjvr4eoijC5XIVZtCX77FCSo0+fh1r/oc+tyTWHCebzRYx98RqtRrj3a2trarf7zfOiaKoDgwMGI/1+TLh8w9EUUw6Xt7T06NaLJYZx30+34z5N/Geo7W1NeL1Rd8v0etKp042my3iuf1+v2q1WhO8Oo3T6ZxRx/D3IdE9M33N3d3dKoCI96y1tTXiPY/VxonaKlG7pNO+iVit1oh7JWufdL5PktUp0/ci/L7J2iJ6XszAwIDqdDpVi8US8fOU6D76+93T06P6fD7jeyHZ91mi9zXZ64r33seTjd8Xra2tEXNxBgYGVAApzXHie5m99zJaS0tLxOv2+/0z5p7Fmj9ptVoj3s9M2iXWfQt9PhkDp3lC/+b0+/0qAOOH2O/3G7/MogMnvWz0ffQyNpst4ps++gPO5/PNuD66TCzpBE7xniP8F4zf71cFQUj5daVaJ5/PF3FfXbLJqvov++hfpE6nM6V7ZvKa470GvS7690B0Gydrq1j3zKR9Ewn/ZZpq+6T6fZLoe3E274V+31Tawmq1qhaLRXW5XMa/6IAulfch+nyi77Nk90ulvdL9sJ3t7wv99URLZXI438vsvpfJ6qaq6oxgLd4fZdGfTfFeR6x20UUvIEn2GZNvHKqbZ0RRhMViQVdXF1paWiBJUsIhKkEQIpb6+v1+Yyy8u7sbgNadqw8ZBQKBGc8XThCEGWVmK9ZzJFpSn+x1paqvry9mN7A+FBFv+LOvrw+CIER0gettqQ9lJLtnuq85Hr0e8eYxZNJW2WrfWDJtc71MuGTfi6k+V6L7ptoWtbW1EcMV0VK5T3Q9kn2fpXu/2f7szvb3hd4GmeB7OXe/h/XXE/3epPteZdIuupaWFnR2dsJiscDr9Sb8PVAIGDjNQ3a7HS6XCy0tLQm/ufVJ4+HfhOFfS5KE9vZ21NfXo7Gxcc7GkvWx7mxJ9rpSrVOmEz0TXVdok0fTbSu9XWbbvonqkyvZeK5stUUq94n+WU72fZbt9yjZz2k2fl9kMq8J4HuZrmz/zo0n/HVl0i66pqYm7NixA06nE7IsF3zgxFV181BjYyMkSYLH40FtbW3cchaLJWYvgaIoUBQFO3bsQFtbmxGA6T8E2V5pI0lSVu+X6HWlSpIkYyJiNFmWUVdXl/D5Yz2XoigZ3zNT+nsZPXFel25bSZKUlfaNJ5ftk43nylZbZHKfRN9nc/EeJfo5zcbvi3h1TgXfy/Sk8ztXr1smzxfe6zWb1xG+8CnT4DqXGDjNE/pKBkCL2q1WKzo7OxP2OFmtVtTW1s7IetvV1WX0LIR/4Oo/BMl+gSajr6gAtF9s8T7UM32ORK8rnTpZLBZYrdaIrmX9tSdaaaOvFAlfeq8oCrq6ujK+Z6q/tCRJiijb3t6eME9SsraK1S6ZtG+qMm2fWJK1WTbei2y1Rabfs/G+zzK5X3R7pfNzmo3fF6IooqWlJWJlmaIoM76nY+F7GWk272WsukW/L/rqvXjPodchvOd+tu1rt9vR3Nw8P1KR5HuSFSXm9/vVlpYWFYDa0tJiTAIOX5Ghr/wQBMHIcBs+0U9fyRJ+jX68tbVV7enpUXt6elS/329M5PX5fKrNZlMBGCsc9OewWCxJJ+/p99YnDsa6X6LnsFqtxuoLvUxra2tKryvVOkXfx+VyRUzQTuV+TqdT7e7uTvmes3nN+gTQ7u5utaenR3U6nRGrT6Kvi1WfWG2VrF1Sbd94olfapNs+2fheTPe9iL5vrLbw+/0Jf+4S1SX8Pj09ParValUFQTAmC0dfk+z7LPx+6b6uWO99vLpn4/eF/lr0+1gslpSzh/O9zM57mej1hL8v0e+J/jtHr6PNZlNFUUzavsnaRVVV4/tpPjCpqqrmIV4jojTpuVB8Pl++q5KWhoYGNDU1zY+/JIkIAFBTUwOn05mz+UaKoiTNSVgoOFRHRFmnd+PrX3PLByKKFj7kqA9bzgcMnIgo69rb22G32wFo8yUSLWIgosVJzz4OZL7iMh8YOBHNA16vF06nM+5+cIXGbrejvr7e2JKBPU5E80dHRwckSYLT6YyYkJ9t+h9Xbrd7Xg3lc44TERERUYrY40REOWG321FRUTGnf8EuJJIkob6+PqOM8kQ0dxg4EVFOxNrp3OFwoKGhIaf1iN6hvtDup7NYLHA4HHNy73yYq3YiyjUGTkSUN/X19Whqasrpc/b09BT0/cLNpwmzycxlOxHlEveqI6K8yfXyY7fbndUthbJ9v4WK7UQLCQMnogVCURS43W5jx3i73T5j64Xo4ZLwXeATnevo6DCG2WRZRmtrK4DppJyiKMJutxu9Ck6n07hOEISYPSeSJMHhcECWZWNLIf1+ALB7925j64czZ84Y99Rfq8PhQE1NDXw+H6qrq2GxWOByuYxd56N5vV709PRAlmVjZaL+OhK9xnji3S/W69KXXTudTrS0tBiv02w2G0OViqLMeJ3x6HXVN3NNtiIpk/c2ndcBxH+/krU70byT38TlRJQtra2tEVsZiKIYsW2E0+mM2KYifEuEROdsNlvE1gt+v1+1Wq0RZfXtGXw+n3Gf6O0fBgYGVAAR9/L5fKooihGvo6enRxVFMaKcKIqqz+czHodv4zIwMDDjHvHoW0lES/Ya072f/hrCWa3WiPbo7u5WAUS8Z62trWpLS4vxOFb7RG9hY7VaI9om2mze21ReRyrvV7x2IpqPOMeJaIGQZTlixZooisZjvYemra3NON/Z2Wls0hnvnCRJ8Hq9EUNqoigiEAgY9xYEAZIkwWq1wmKxwOl0QlEUdHR0RPRsCIKQ0uajZrMZsizPeM7woR6Px2PcSxCEmJuSpiqV15iuWD1s0bms9PYInzDf1taWcFhLlmV4PJ6IHqaGhga4XK6Y5Wf73qbyOlJ5v4gWEg7VES0Q+hCVvt1JIBAwdrDv6+uDIAgRH3p6ea/XG/ecPvQXTR8O1D8so8vo98xU9P0EQTBeC6CtOIu1Q3wm+vr6UnqNuaC/D5IkxayT3q7hAZ3f748bpCR631N9b1OR7P0iWkgYOBEtEJIkob29HfX19WhsbIz4MIsOMsJlei5crCBpLleE2e12tLe3Y/fu3XC73XF7XJLRe9yyRZ9zFEs2nkdRFIiiGBHUJApwsvHeZuu6cInaiajQcaiOaAFQFAU7duxAW1sbWlpaIAiC8QEny3LMHhr9ukTnrFZrzN4MWZZRV1cXtz4Wi2XOh2p2794Nr9cLm80WMSSYDn2IMZPXGO9+8aTSA6MoivGexBKvXeMFM3Px3majJylROxEVOgZORAuA3nMS/oGrf8Dpwz42my1inztFUdDV1ZXwnMVigdVqjRga0j/0Eq3kEkURLS0tEau5FEWBJEkZ9VhEX+Pz+SAIAmw2W1o9F+Fzb/SAMtPXGO9+0cf1+sfq3Ypuj/b2drS0tMR9TVarFbW1tfB4PBHHu7q64tZvNu9tqq8jWqxh1FjtRDQfca86ogVCXxZeX18PQPuwcjgcaGpqMj4IHQ4HKisrjUnA4T01yc7pW3/4/f6IpeZOpxN9fX1oa2ubEcjoS931oTy9jk6nE2azGe3t7fB4PHA6ncZS/uhjHR0daG9vhyiKxnN4PB40NDQYqQ4EQYDdbk+p50mvQ3V1dUqvMdP76cGK3h6dnZ3Gxqk2m81Yyt/W1mbMawIQkQ5Ab4vW1taI+uh11YdDkwV4mby3qbwOURRTer8StRPRfMPAiYjmFUVR0NzcjN27dxtDkrIsG9u3zJcPZT1w8vl8+a4KEaWBQ3VENK+43W7Y7XajF0tf1u90OhmEENGcY+BERPOKxWKJmR3c6/Uaw5RERHOFQ3VENO94vd6IXEepbj1SKPS5Yfr/3IKEaP5g4ERERESUIg7VEREREaWIgRMRERFRirjlSgZCoRCOHTuGVatWwWQy5bs6RERENAuqqmJ4eBgbN25EUVHiPiUGThk4duwYqqqq8l0NIiIiyqKjR49i8+bNCcswcMrAqlWrAGgNvHr16jzXhoiIiGZjaGgIVVVVxud7IgycMqAPz61evZqBExER0QKRyvQbTg4nIiIiShEDJyIiIqIUMXAiIiIiSlHe5jjJsgyPxwNRFCHLMlpaWoxNO9MtK0kSmpubZ2zw6fF4YLVaAWDGvSVJAqDteyXLMhRFgcViydrrCwaDmJiYyNr9iOaTkpISFBcX57saRERZl7fAqaGhwQh0ZFlGc3NzzI07k5XVAyo9EIq+Lpq+L5TL5YLb7QYAWK3WuM+dLlVVceLECSiKkpX7Ec1XgiBg/fr1zHVGRLMWDKnYeyiA/uFRrF21DNu3mlFclJ/fLXkJnGRZjngsiiK8Xm9GZeNt6qkoCrq7uyPOd3R0GJtp1tTUYGBgAMDM3qjZ0IOmtWvXoqysjB8atOioqoqRkRH09/cDADZs2JDnGhHRfPbc/uPY9ewBHB8cNY5tKF+Gh+7YhtuuzP3vl7wETl6vF2azOeKY2WyGJEkzhsvSKRstPGjyeDwzgqxsBkyANjynB02VlZVZvTfRfLJ8+XIAQH9/P9auXcthOyLKyHP7j+MrT0pQo46fGBzFV56U8L3PWXIePOUlcIo3jBUIBGZVNlx4UKQoCgKBAERRjDjm8XgAAL29vbDb7RHnw42NjWFsbMx4PDQ0FLOcPqeprKwsYd2IFgP952BiYoKBExGlLRhSsevZAzOCJgBQAZgA7Hr2AOq3rc/psF1BJcBMZ15QOmUdDgecTmfEsfAJ5qIoor6+Hn6/P+b17e3t2LVrV8rPx+E5Iv4cENHs7D0UiBiei6YCOD44ir2HArixOnejPHlJRyAIwoweo0AgEHPoLJ2ysSiKAq/XO6N8+NwpfbVe9HwqXVtbGwYHB41/R48eTem5ZyMYUvGS/wz+/dUP8JL/DIKhWDE3ERHRwtQ/HD9oyqRctuQlcNJTBESrra2dVdlY+vr6YqYi2LFjx4yy0XOpdKWlpcb2KrnYZuW5/cfxEecL+NPdL+OvfvIq/nT3y/iI8wU8t//4nDyfJEmw2+0wmUxwOBxwu91wOBxoaGiIO2k/E263GxUVFTFXQM4XNTU1xhAvoL2m+vr6jK4lIqL41q5altVy2ZKXobrouUSyLKO2ttYIcCRJgiAIEEUxadlwiqLEDJKiAyJRFCOG7rxeL2w2W9Yni2ciHxPhLBYLnE4n3G432trajHZQFAUVFRXw+XxZyXHV0tKStbQPQOz3e645nc6IoN1qtcadG5fsWiIiii8UUmECYs5xArQ5TuvLtdQEuZS3OU7d3d1wOByoq6tDb29vxAdqe3s76urqjNQBicp6vV709PREXBe9ei76g00QBNTW1qKjowOCIMDv92f1Az2cqqo4PxFMqWwwpOKhZ/6QcCLcPz5zAB/+0AUpTYRbXlI8q3kmevDa2dmZ1eSg2SDLMrxeL1paWnL6vNE9oLGC+1SvJSKi2J7/wwn8t3/bZ3weRgdQ+ifbQ3dsy3k+J5Oqqpw8k6ahoSGUl5djcHAwYthudHQUhw4dwtatW7FsmdZ1ODI+iW3/8Hxe6nngn25F2dLUYmO9d2lgYCCiF6eiogJOpzNrAUp9fT2cTuesAzG73Y6ampqcB06Uulg/D0REyXT3HYXjqdcRUoFPbluH26/egPZfHpzTPE7xPtdj4V51FJOiKHA4HLBarWhpaYHX60V1dTXcbjfcbjdqamoAaEOhHR0d8Hg86OjomDHBXpIkOBwOeDweeDyeiIn+Xq8XNTU16OjoAKDl2qquro6YVyXLsnG92+02Jvv39fWhp6cHbrc77qR+r9dr1M3hcETUyW63G3XyeDyQJClpfSRJQk1NjZFxXlEU2O12VFdXR9w7VntEX6s/l9vthtfrhdvtjpnpnohoMXn0dzL+zqMFTQ01m/HdP7Pgzms34feOW/BvzTfgX/7kWvxb8w34veOWvCS/BAosHcFCtLykGAf+6daUyu49FMAXv9+btNwPvlSX0pju8pL0c+e43W5j6Ck8t5XVaoXVaoXP54PL5YLZbDaCGn2oFNAmQO/ZsweCIEBRFDQ0NESkeWhvbze+tlqtaGpqMh7bbDZ0dnYajxVFQX19PXw+HwRBMCaut7a2wmq1orq6Om6Pk143faueQCCAjo4OtLS0YMeOHTh06JDRs1ZRUYE9e/YkrY/FYok4LwgCXC4XKioqIp4zVntEX6u3Z09PjzFM3N3dnVJiVyKihUZVVXzrP9/Cd36lfV40f3Qr/v5TlxvTTYqLTDlNOZAIA6c5ZjKZUh4u++jFa7ChfBlODI7GnOekT4T76MVr5mxMN9Fmy4IgGBnRbTYbHA7HjA95URTR1dWFlpYWdHV1zTgfb+ViLF1dXRBF0ahPW1tbytfqwV1471Vvby8EQYDVao14jdmasO1yuRK2R7TKysqIDPOxUm8QES10wZCKr/37fvz4lfcAAK23XYqvfLy6YHPBcaiugBQXmfDQHdsATE980+VzIly4VCdCZ0P0qjlBEOKupozFYrEYPTvZXtFHRESzNz4Zwl/+ZB9+/Mp7MJmAb9x1Ff78Ex8q2KAJYOBUcG67cgO+9zkL1pdHTqZdX74sJ3vyJOvxCD/f1NQ0I8+TJElobGwEoA1HRedsip6PJAgCzpw5Yzz2er1GIGSz2WZcHyuvVKxjserm9XrR2NiYsE6J6qOLF6gla49E1xIRLTYj45O4/4e9+MXrx1FSbML/96cWfPb6C/NdraQ4VFeAbrtyA+q3rcfeQwH0D49i7SotT8Vc9TRJkmTM5XE6nbDb7TE3W/Z6vZAkCaIowmq1GvmfOjo6IIqikSoifCsbPZVEfX290YPU3t4Op9MJURTR2NgIh8NhBBxWq9UY8hJFES6Xy0hFoZ8HtPlXeu6pWMv89bpFXysIQsw66RLVR1EUdHZ2wmw2w2azzeh9S9Qeehvr1+r30p9DlmVIkgSXy5VWigMiovlIGRnHl37Qi33vKVheUgzX52vwsUvW5LtaKWE6ggykk46ACt9sUyToaRwoEn8eiCiWk0OjuPexvXjr5DDKl5fg+1+qg+XCirzWKZ10BOxxokUvkwnZbrcbfr8fdrud2cCJiFJ0+PQ5fO6xV/D+wHmsW12KH91/PS5Ztyrf1UoL5zjRoqbngXK5XGnNP7JaraisrITH44HL5Zq7ChIRLRAHjg3B9shLeH/gPLZUlsHz5ZvmXdAEcKguIxyqI0qOPw9EpOs9HMB9P+jF8Ogktm1YjR/etx1rVpXmu1oGDtURERFRQfjVwX585V99GJ0IoW5LBR79Qh3Kl5fku1oZY+BEREREc+Jn+z7A33a/hsmQilsuW4vvfNaC5UvT39WikDBwIiIioqz74YuH8dAzfwAA3HXdJnTYrkZJ8fyfWs3AiYiIiLJGVVX8y5538L+97wAAvnjTFvzD7dtQlMddL7KJgRMRERFlRSik4p9+fgA/ePEwAOC/Wy/BX+4o7C1U0jX/+8wWqlAQOPQ74A2P9n8omJOndbvdcDgccLvd8Hg88Hq9xpL9QuX1elFTUwO3252T56upqYHH48nJc81WdF3dbjfq6+szupaIKJGJYAg7u141gqZdd16Bv7JevKCCJoA9ToXpwDPAcw5g6Nj0sdUbgducwLY75+xp6+vr0dDQAKfTaRyTJAn19fXw+/1z9ryzpW/kmytOp3PeJL2MrqvVak15O5f59DqJKL/OjwfxFz+W8MLBfiwpMuGfG6/BH1+7Kd/VmhMMnArNgWeArnsBRKXXGjquHW98Yk6Cp46ODgBAS0tLxHGLxTLjWCGqrKzM2XPlMkibrei6prMP3nx6nUSUP4PnJ/DAD3vRe3gAy0qK8L0/q8HNl63Nd7XmDAOnuaaqwMRIamVDQeCXrZgRNGk3AmDSeqLETwBFKSznLCkDUuwibW9vx+7du2Oea2hoSOkeRES0uPQPj+ILj/fizeNDWLVsCR7/Yh3qtpjzXa05xcBprk2MAN/YmKWbqdrw3cNVqRX/+2PA0hVJi8myDEVR4vZEhPc8SJIEr9cLURQhyzJsNhtEUYTX64XD4YDdbjfO9fT0wOl0QlEUeL1e+P1+Y3sSr9cLu90Oq9WK+vp6BAIB+Hw+OJ1OCIJgnHc4HAAAl8sFn88Hr9cLSZIgiiJ6e3sjhhX159Gfu7u72zgX67p4ddavUxQFXV1dEEURiqKgt7cXTU1NaG5uht1uN3ri0m2T8HqFi/faJEmCy+WKmJskiiICgQAcDgeamprQ2toKj8cDh8MBl8sFq9UKSZIi6qooChwOh/FeJKp79LXpvhYiWviOBkbwucdewZEzI7hgZSmeuG87tm1MnHV7IWDgRCmTZRkOhwM9PT3GsZqaGuzZs8eYZxT+Ydrd3Q2Px4PW1lZYLBZUV1dDURQIggCr1QqbzYbKykrYbDYAgMfjQUNDA3p6eoz7+Xw+uFwumM1m4/l9Ph8AbXPejo4OtLa2AgB6e3uNr7u7uyFJEiwWS8LrYtVZv87tdsNisRiBYyAQgMViQVNT06zaRL9/rLaNrmNLSwt27NiBQ4cOQRAEAEBFRYVx//C62Gw2dHZ2Go+j6yoIAlwuFyoqKpLWPfradF4LES18b50YxucfewX9w2PYXLEcT95/PbZckPwP9YWAgdNcKynTen5SceRF4F9tycv9mQe46KbUnjsFek+TLMsxPwRlWYbZbIbL5ZpxXhRFdHV1oaWlBZWVlRFzjQRBiOjFEgQBgUDACAD0YzqbzYaGhgYjuBIEwbifzWaDw+GA2WyG1+s1runt7TW+rqurm/FcAIzAK9Z1seqsX2ez2VBTUwNRFNHU1BRzrlcmbaLfP/o+seqoB5nh7ZStCdvJ6h4t1ddCRAub9N4AvvT9Xgyen8Cl61bhifu3Y93qxbMfJQOnuWYypTRcBgCovkVbPTd0HLHnOZm089W3pDbHKQ2tra1wuVxG7084SZJiHk9F+Ad+JqKHD8N7gICZk9njyeQ6s9mMgYEBSJKEzs5OozdsrsSqY65SLBARpeK3b5+C/Uc+nJ8IwnKhgMe/WAehbGm+q5VTzONUSIqKtZQDAIDoSd1Tj297OOtBEwBjPk30B7WiKMbXTU1NET0igBZUNTY2xr1v+PXJzns8nhm9K+E9GrGeP/pxLJle197ebvTC6XOvouudSZukU8fGxkZIkhRxPDynliAIOHPmTMQ10W0e7z1Ipe7J3j8iWjx+/vox3P/DXpyfCOJjl6zBkw9cv+iCJiCPPU6yLMPj8RgTTVtaWuL2TiQrq09k1eeHhB8HYMxzURTFGJpI5/lzatudWsqBmHmcHp7TPE49PT3o6OiAw+FAdXU1zGZtZYTe26QHEB0dHcYE5u7ubgiCYPTKANp8GFmWI9pfn7TtdDojghC/32982Ov3A7QAIHyytNVqNZ7f4XAYw3L6JOhYz+1yuSCKYsbXVVZWwuv1wmw2IxAIoKmpybjGbDbDZrNl1Cb6/cN70+LVURAEdHd3w+FwoL6+3hjG1DU2NhoTvvVr9CE4RVEi6hqr9y5Z3fVr9Xul8lqIaOH511eO4Ks/2w9VBW6/egO+3Xgtli5ZpH0vap5YLBbja7/fr9pstozKdnd3qz6fT431UlpaWlRoY16q1WpVBwYGMnr+aIODgyoAdXBwMOL4+fPn1QMHDqjnz59P+V5xBSdVVf6tqr7erf0fnJz9PQtMa2ur6nK58l2Necdqtao+ny/j6wVByGJt4svqzwMR5UUoFFL/vxfeUS9y/Fy9yPFzte3p19XJYCjf1cq6eJ/rseSlxyl6+w596XYmZRPNvampqcHAwACAyLk26Tx/3hQVA1s/mu9aUAHKZEK22+2G3++H3W5nNnAiSomqqvjGf7yJ3b87BAD4f27+EP7mk5csuC1U0pWXfjZ9+COc2WyeMZcj3bKx6KuzZnPPsbExDA0NRfyj2dGH4vQl7ZQafd9Al8uV1vwjq9WKyspKeDweI5cWEVE8k8EQ/s7zuhE0ffXTl+Nvb7100QdNQJ7mOMX7hR/rL+l0ysa6Vt+ktLe310jel+4929vbsWvXrqTPR6nTczRRelpaWjLaAkcURSPHFRFRIqMTQfy3f9uHngMnUVxkgvOeq2Gr2ZzvahWMgkpHkM5f0KmUDZ/wLYpi0s1q492zra0NO3fuNB4PDQ2hqirF7N1ERETzxPDoBJqf6MPLcgBLlxThO5+1oH7bunxXq6DkJXCKlTgvOjFiJmWjhSd01FfPybKc9j1LS0tRWlqa9PmIiIjmqzNnx/DF7/fijQ8GsbJ0CXbfW4sbq3O3gfp8kZc5TvF2XY81aTWdsuEkScKOHTtmHDebzRnfk4iIaCH6QDmPBtdLeOODQZhXLMW/Nd/AoCmOvARO0TlfZFlGbW2t0eMjSZKx8i1Z2XDhQ22iKEZsAOv1emGz2WZsA5LsnkRERAvZu/1nYfvei5BPncMmYTm6v3wjrtpcnu9qFay8zXHSk/rV1dVFJD4EtMnYdXV1ERu2xivr9XqNbTD06/QAqba2Fh0dHRAEAX6/P+K6RPckIiJaDF5/X8EXHt+LgZEJVK9ZgR/dfz02CsvzXa2CZlJVNdamaJTA0NAQysvLMTg4iNWrVxvHR0dHcejQIWzduhXLls1uw8NgKAipX8KpkVNYU7YGlrUWFM/BVitEcyWbPw9ElH0vvnsazU/04dx4EFdvLscPvrQd5hWLbwsVIP7neiyLNF96YfMe8eLWp27Ffc/fB8fvHLjv+ftw61O3wntkbpJ0er1e2O12mEymiO070uF2u1FRUZGTnEy5fK5wNTU1RnoLvR719fUZXUtElE/P/+EEvvj9XpwbD+Km6kr8uPmGRRs0pYs9ThmYyx4n7xEvdv56J1REvi2mqU1+v/2Jb8N6UezJ7bMhyzKqq6sxMDCQ8Vyv+vp6OJ1OYyXjXMrlc+m8Xm/EXDh9lWa8xQaJrl0M2ONEVJi6+o7iwadeR0gFbr1iHf7lT67DspLFPaKRTo9TQeVxWohUVcX5yfMplQ2Ggmjf2z4jaAJgHHt478O4fv31KQ3bLV+yPOUsr9GZ1Gmm6AApnc1tUwmuiIjm2u7fyvj6f7wJAGiqrcLX77oSS4o5+JQOBk5z7PzkeVz/4+uzdr+TIydx009uSqnsK599BWUlZVl7biIimp9UVUXH82/he7/WkkDbPybiwT+6jFuoZIBhJsXk9XpRU1MDt9sNr9cLt9uNhoaGiDKSJMHhcMDj8cDj8cxIKur1etHR0QGPxwOHwwEA8Hg8qKmpQXV1NQCgo6MD1dXV6OjoiHtNKs8Vq/7x7mO32437eDweSJJkvF69Hh6PB9XV1cZ8L0mSjPYAtNQXdrvdeB16Gf05Ozo6jJQa0dem0rZERNkSDKn4+5++YQRNjtsuQ9unLmfQlCH2OM2x5UuW45XPvpJSWd9JH/58z58nLffdHd9FzbqalJ47U1arFVarFT09PUaqBn1DXovFAkVR0NDQELGFTXt7u/G1LMtwOBzGfnSBQAAdHR1obW2F1WrFjh07oCgKBEGAz+eDIAhxr2lpaUn4XNES3WfHjh04dOiQMdeooqICe/bsgdVqRVNTk3EPm82Gzs5O47HFYok4LwgCXC4XKioqIp5TT40BaBPC9+zZM+PaZG1LRJQtY5NB7Ox8Db944ziKTMDX77oKf7r9wnxXa15j4DTHTCZTysNlN228CevK1qF/pD/mPCcTTFhXtg43bbwpJ6kJKisrUVk5nTk2fKuarq6uGR/y4fOkXC4XzGZzxAq93t5e4z67d+9GTU0Nuru7jSAm3jWCICR8rmiJ7mO1WiMmaGcrW7zL5ZpRR1EU0dXVFXNT3kRtS0SUDefGJvHlJ3343TunsbS4CP/7T67Fp67akO9qzXsMnApIcVExHtz+IHb+eidMMEUET/qqOsd2x7zJ52SxWCImRYcHEHow1NnZGRFwxLpGH+Ka7XNnch8iovlo4Nw4vvSDXrx6VEHZ0mK4P1+Lj1x8Qb6rtSBwjlOBsV5kxbc/8W2sLVsbcXxd2bo5S0UAIO3eDqvVOiOPkj6nBwCamppm5IPSHyuKAq/Xi+7ubsiybOQ3indNsueKFu8+jY2NCe8jCALOnDkTcU34Nj563VN9TkmS0NjYmPRaIqJsOjE4ikbXS3j1qAKhrAT/+sD1DJqyiD1OBch6kRU3V92cs8zhehADaHOH9Pk4+hwfq9UKWZYhSRJcLpexDF/ftqa+vt6Yr9Te3m7kV3I6nca2Nvp93G43nE4n7HY7AKCurg7Nzc2QZRmtra0xrxEEIeFzRacEiPfc8e6ja2xsjEgAarVajSE4RVHQ2dkJs9kMm80W9zk7OjogiqKxjY8gCJAkKeJa/V6J2paIKBOHTp/D5x59BR8o57FudSl+dP/1uGTdqnxXa0FhAswM5GLLFcqN2SbSrKiowMDAQJZrtTDw54Eot/5wbBBfeHwvTp8dx9YLVuCJ+7ajysyUNKlgAkyiFGUyIdvtdsPv98Nut2dtcjkR0WzsPRTA/T/oxfDYJLZtWI0f3rcda1aV5rtaCxLnONGi5Xa7IcsyXC5XWvOPrFYrKisr4fF44HK55q6CREQp2PPmSXz+sVcwPDaJ7VvN+In9BgZNc4hDdRngUB1Rcvx5IJp7P933Pv62+3UEQyp2XLYW3/kzy6Lfdy4THKrLM8aiRPw5IJpr3/+vQ9j17AEAwF3XbUKH7WqUcN+5OcfAKYtKSkoAACMjI1i+PPOs3UQLwcjICIDpnwsiyg5VVfH/et/B/9nzDgDgSx/egq99ehuKiriFSi4wcMqi4uJiCIKA/v5+AEBZWRn3AqJFR1VVjIyMoL+/H4IgoLiYwwZE2RIKqfjHZ/+AJ146AgDYWX8J/tstH+JnTQ4xcMqy9evXA4ARPBEtVoIgGD8PRDR7E8EQ/qbrNTzz2jGYTMA/3XkFPn/jlnxXa9Fh4JRlJpMJGzZswNq1azExMZHv6hDlRUlJCXuaiLLo/HgQX/lXH3791iksKTLhnxuvwR9fuynf1VqUGDjNkeLiYn5wEBHRrA2en8D9P+hF35EBLCspwvc+V4ObL12b/EKaEwyciIiIClT/0CjufXwvDp4YxuplS/D4F+tQu8Wc72otagyciIiICtB7Z0bwucdewXuBEaxZVYon7tuOyzckzjFEc4+BExERUYE5eGII9z62F/3DY7jQXIYf3b8dF1WuyHe1CHkMnGRZhsfjgSiKkGUZLS0tETvVp1NWkiQ0NzfD5/NFXCdJkrHTfW9vL3bv3m1cJ0kSAG1Xe1mWoShKxhu9EhERZYvvyAC+9P29GBqdxKXrVuFH92/H2tXMvl8o8hY4NTQ0GIGOLMtobm5Gd3d32mX1gEoPhMJ5vV60trYCADo6OrBjxw7jPi6XC263G4C291i85yYiIsqV37x9Cl/+kQ/nJ4KwXCjg+1/cjvIyJpEtJHnJzS7LcsRjURSNnqF0y9pstpg9RZIkob29PaKcJEnG/WpqajAwMICBgQH09PTE7e0iIiLKhWdfO4YHftiL8xNBfPySNXjygesZNBWgvAROXq8XZnPkqgCz2Ry31yjVsuEsFgt2795tPFYUxbhWJwhCSgHT2NgYhoaGIv4RERFly5MvH8Ff/mQfJoIq7rhmI3bfW4uypZyGXIjy8q7oQUy0QCAwq7LRbDab8XVnZyesVqsRKCmKAo/HA0Cb/2S32yGKYsz7tLe3Y9euXUmfj4iIKB2qquI7v3oX3/rPtwEAn7vhQuy680oUc9+5glVQ4Wy8ICkbZT0eT8Tk8fAJ5qIoor6+Hn6/P+b1bW1t2Llzp/F4aGgIVVVVKT8/ERFRtFBIxdf/40089vtDAID/dsuHsLP+Eu47V+DyMlQnCMKMHqNAIBBz2CydsvE4HI4Z85jC507pq/Wi51PpSktLsXr16oh/REREmZoMhvB3nteNoOlrt2/D33zyUgZN80BeAier1RrzeG1t7azKxtLR0QGHwwFRFKEoChRFgSRJ2LFjx4yy0XOpiIiIsm10IogvPynhKel9FBeZ8M8N1+D+j2zNd7UoRXkJnKLnEsmyjNra2ogcS3rvT7Ky4aKH7zweDywWixE0dXV1QRAEiKIIp9NplPN6vbDZbFxZR0REc2p4dAJfeHwvvG+exNIlRXjkczW4p2ZzvqtFaTCpqqrm44llWYbL5UJdXR16e3vR1tZmBC4NDQ2oq6szcjAlKuv1etHT04OOjg60trairq4ONpsNsiyjuro64jkFQcDAwACA6eSYgiDA7/dHBFLJDA0Noby8HIODgxy2IyKilJw+O4Yvfn8v9n8whFWlS7D7C7W4QazMd7UI6X2u5y1wms8YOBERUTreHxjBvY/thXz6HCpXLMUP79uOKzeV57taNCWdz/WCWlVHRES00LzbP4zPP7YXxwdHsUlYjh/dvx3impX5rhZliIETERHRHHn1qIIvfX8vBkYm8KG1K/Gj+7djQ/nyfFeLZoGBExER0Rz4r3dPo/mJPoyMB3HN5nJ8/0vbYV6xNN/Volli4ERERJRlz+0/jr/8t1cxHgzhwx+qhOvztVhZyo/chYDvIhERURZ19r6HtqffQEgFbrtiPf7lT69F6ZLifFeLsoSBExERUZa4fuNH+y8PAgCaaqvwjbuv4r5zC0zagdPhw4fR3d2Nnp4eIycSoGXdrq+vh81mw5YtW7JZRyIiooKmqioefu4gXL/RkjfbPy7iwdsu4xYqC1BagdODDz4Ik8mExsZG/N3f/d2M8/v27cMjjzwCk8mE9vb2rFWSiIioUAVDKv7HT9/AT3qPAgAe/KPL8OWPVye5iuarlBNgfvOb30RLSwvKy5Mn7BocHMTDDz+8YIMnJsAkIiIAGJsM4q9/8ip+uf8EikzAN+66Cn+y/cJ8V4vSxMzhc4yBExERnRubhP1HPvz+3dNYWlyEf/mTa/FHV23Id7UoA+l8rme8ye+DDz6IRx99FIODg/jkJz+JpqYmPP3005nejoiIaN4YODeOzz76Cn7/7mmULS3G41+sY9C0SGQcONXV1eGBBx6A2+1GTU0NOjs7cebMmWzWjYiIqOAcHzyPBtdLeO2ogoqyEvy4+QZ85OIL8l0typGMA6eKigoAQFdXF5qamgBoK+uIiIgWKvnUWdi+9xLe7T+L9auXofvLN+LaKiHf1aIcyjiPk9/vh6qq8Pv9uPbaa3Ho0KGI9AREREQLyf4PBvGFx/fizLlxbL1gBX50/3ZsrijLd7UoxzLucWpsbIQkSfD5fBgcHITL5YKiKFmsGhERUWF4RT6DP3W/jDPnxnHFxtXo/vKNDJoWqZRW1Q0ODmJgYCCtxJZDQ0MAsCBXnXFVHRHR4uE9cBJ/8WMJY5MhbN9qxqNfqMXqZSX5rhZlUdZX1ZWXl6OnpyflVXNPPfUUurq6GFQQEdG89pTvfdif9GFsMgTr5evwxH3bGTQtcinPcWpubsa+ffvQ2NiI6upq1NXVQRRFCIIARVEgyzL27t2LQ4cOwW6345577pnLehMREc2px35/CP/z5wcAAHdbNqHjnquxpDjjGS60QGSUAHNwcBBdXV3w+/1QFAWCIKC6uhpWqxVbt26di3oWFA7VEREtXKqq4ts9b+P/vvAuAOC+D2/FVz99OYq4We+Clc7nekar6srLy9Hc3JxR5YiIiApVKKTioWf+gB+9fAQA8Df1l+D/ueVD3KyXDBmnIyAiIlpIxidD+Jvu1/Dsa8dgMgH/9MdX4vM3XJTvalGBYeBERESL3sj4JL7ypITfvH0KS4pM+HbTtbjzmo35rhYVIAZORES0qA2OTOC+H/bCd2QAy0uK8b3PWfCJS9fmu1pUoBg4ERHRotU/NIp7H9+LgyeGsXrZEnz/S3WouYjbh1F8swqcvvnNb6Kvrw+dnZ3Ys2cP6urqUl5lJssyPB4PRFGELMtoaWmBIAgZlZUkCc3NzfD5fClfl87zExHRwvPemRF87rFX8F5gBGtWleKJ+7bj8g1cKU2JZRw4Pfjgg0YKAgDYsWMHnn76adx9990pXd/Q0GAEOrIso7m5Gd3d3WmX1YMfSZLSui6d5yciooXlzeNDuPfxvTg1PIYLzWV48v7rcWElt1Ch5DIOnOrq6nDPPfdgz549aV8ry3LEY1EU4fV6Myprs9nSvi6d5yciooWl73AA9/2gF0Ojk7hs/So8cd92rF29LN/Vonki4xSohw4dAoCI3Ba9vb0pXev1emE2R44hm83mmL1G6ZRN9bp07zk2NoahoaGIf0RENP/86q1+fO6xVzA0OonaiyrQ2XIjgyZKS8Y9Ttdddx1qa2tRWVmJnp4eeL1eOJ3OlK5VFCXm8UAgMKuyqV6X7j3b29uxa9euhM9HRESFJRhSsfdQAP3Do1i7ahlODJ7H33lex2RIxScuXYPv/VkNli8tznc1aZ7JOHDasWMHuru74XK5oKoq3G43rrvuullVJl5AM9uyqV4X71xbWxt27txpPB4aGkJVVVVGz09ERHPvuf3HsevZAzg+ODrj3J3XbMS3Gq7B0iXcd47SN6tVdVu3bsXDDz9sPB4aGkppVZ0gCDN6dwKBQMxVbemUTfW6dO9ZWlqK0tLShM9HRESF4bn9x/GVJyXE24j1tivWM2iijM3qO2doaAiHDx82/jkcjpSu01fiRautrZ1V2VSvy/SeRERU2IIhFbuePRA3aDIB+J+/OIBgKO397YkAzKLH6ctf/jK8Xm9EL82hQ4fwve99L+m1oihGPJZlGbW1tca9JEmCIAgQRTFp2XCKohjHE10XfW2iexIR0fyx91Ag5vCcTgVwfHAUew8FcGN1Ze4qRgtGxoFTdXU1HnnkkYhju3fvTvn67u5uOBwO1NXVobe3NyKHUnt7O+rq6tDa2pq0rNfrRU9PT8R1eoqCRNclOkdERPPT0YGRlMr1D8cProgSMamqmlF/5b59+2ZMBj98+DC2bNmSjXoVtKGhIZSXl2NwcDDlTOlERDS3fnWwH3/X/RpOnxtPWvbfmm9gjxMZ0vlcz7jHqaKiAt/61rcgiiIEQYCiKOjs7ERnZ2emtyQiIkrbqeEx/NPPD+DZ144BAIpNQDBOl4AJwPryZdi+lfvRUWYyDpxaW1sj5hQBWi8UERFRLqiqim7f+/j6L97E4PkJFJmA+z68FVdtLsdf/+RVrUxYeT1d80N3bENxkSn6dkQpyThwqq+vR3Nzc8Sxp556atYVIiIiSubw6XP4+5++gRf9ZwAAV2xcjYfvvhpXbS4HAJQuKZqRx2l9+TI8dMc23HblhrzUmRaGWU0OT+UYERFRtkwEQ9j9Oxn/4n0HY5MhLCspwn+3XoL7P7IVS4qnM+zcduUG1G9bH5E5fPtWM3uaaNYyDpz8fj9cLhfq6uoAaF2mXV1dKe9XR0RElI5Xjyp48KnXcfDEMADgIx+6AF+/60pcVLkiZvniIhMngFPWZRw4uVwuWK1WhC/Ky3CBHhERUVznxibxrf98Cz988TBCKlBRVoKvfnob7rZsithonigXMg6cnE4nduzYEXEsXkZuIiKiTPzqYD+++rP9+EA5DwD4zLUb8bXbt6FyJbfBovyY1Sa/0SoqKmZVGSIiImBmioHNFcvx9buuwscvWZPnmtFil3Lg9PTTT8NqtRqJoR599NGI84qioKenB88//3x2a0hERItGrBQD939kK/57/SUoWzqrfemJsiLl78JvfOMbEAQBt9xyCwDgkUceQVNTU0SZM2fOZLd2RES0aBw6fQ5///QbeEmOnWKAFrFQEDjyInD2JLByHXDRTUBRcV6qknLg1NfXF/F49+7dM7Zc4RwnIiJK10QwBPdvZfyfPYlTDNAideAZ4DkHMHRs+tjqjcBtTmDbnTmvzqy2XNENDg7C6/WipqYmK5UiIqLFId0UA7TIHHgG6LoXkTngAQwd1443PpHz4CnjUN7r9Rpfl5eX45577ok4RkREFM+5sUnsevYPuOu7/4WDJ4ZRUVaCf264Bj+6fzuDJtKEglpPU3TQBEwfe+5BrVwOpdXjNDg4iK6uLphMJvT09Mw47/P58MADD2StckREtPAwxQCl5MiLkcNzM6jA0Adaua0fzVm10gqcysvLYbVa4XQ64ff7sXXr1ojzra2tWa0cEREtHEwxQCk7dwbofTR5OUCbMJ5Dac9x2rp1Kx555BHs2bMnZi4nIiKicKqqorvvfXz9P5higJLofxN4+XvA653A5Gjy8oC2yi6HspoAk4iIKBxTDFBSoRDg3wO8/F3A/8L08fXXAIPvAecVxJ7nZNJW1110U44qqmGoT0REWaenGPiXPe9gnCkGKJbxc8BrPwFeeQQ4/bZ2zFQEXPZp4Ia/AC68AXjz2alVdSZEBk9TexTe9nDO8zkxcCIioqyKlWLgG3ddhQsry/JcMyoIgx8Ae92A7wfAqKIdW7oKsNwLXN8CVGyZLrvtTi3lQMw8Tg/PrzxORERE4c6OTeKf//Mt/ODFw1BVoKKsBF+7fRvuum4TTCZTvqtH+fa+D3j5O8AffgaoUykEKrYA138FuPazwLLVsa/bdqfWCzXfMoen4vDhw9iyZUs2b0lERPPACwdP4qs/3Y9jg9qE3ruu24SvfvpyphhY7IKTwMFngZe+C7y/d/r4RR8Bbvxz4JLbUguAiopzmnIgkVkFTq+++ioCgYDx2OVyobOzc9aVIiKi+eHU8Bh2PfsH/Pz14wCYYoCmnFcA6YfAK25g6H3tWFEJcFUDcMOXgQ3X5LV6s5Fx4NTY2AhFUSAIgnFs37592agTEREVOKYYoJjO+LV0Aq/+GJg4px0ruwCoux+ovR9YldvUAXMh4+/u+vp6NDc3Rxx76qmnUr5elmV4PB6IoghZltHS0hIRhKVaNtE5j8djbDwcfW9JkgAAFosFsixDURRYLJaU609EtFgxxQBFUFXg0G+0gOnt52Gsflt7BXDDV7ReppJlea1iNmUcOFVXV6d0LJ6Ghgb4fD4AWvDT3NyM7u7utMsmOxfN6XSitbUVLpcLbrcbAGC1WuM+NxERaZhigCJMjAJvdGsBU/8fpo9fcpsWMG39OLAAFwVkHDj5/X64XC7U1dUB0Lptu7q60Nvbm/RaWZYjHouiGHeD4ERlE51TFAXd3d2w2WzG+Y6ODmNbmJqaGgwMDACY2RtFRESR9r03gLan3zBSDHz04gvw9c8wxcCiNHwS6HsM6H0MGDmtHSspA679M+D6LwMXfCi/9ZtjGQdOLpcLVqsVqjqdkCr860S8Xi/MZnPEMbPZDEmSZgyXJSrb19cX95woihFBk8fjiXgMpB4wjY2NYWxszHg8NDSU0nVERPPd2bFJfOv5t/DDl5hiYNE7/rrWu7TfAwTHtWOrN2u5lyz3Assr8lu/HMk4cHI6nTO2XdHnEyWjKErM4+Er9FIpm+hceACmKAoCgQBEUYw45vF4AAC9vb2w2+0R58O1t7dj165dMc8RES1UTDFACAWBt5/TAqbDv5s+vnm7Nhx3+Z1A8eJaDJC1vepeeOEFKIqC6667LuPKxAuE0i0bfc7hcMDpdEYcC59ELooi6uvr4ff7Y96vra0NO3fuNB4PDQ2hqqoq5boSEc0nTDFAGBsG9v2rth3KwCHtmKkYuOIzwA1/DmyuzWv18mlWYeLTTz9tzDNSVRV9fX24++67k14nCMKM3qVAIBBz6CxR2VTuoygKvF7vjHvLsmz0Sukr8mRZjtnrVFpaitJS/oVFRAtbrBQDD3xUxF9bL2aKgcVi4Ii2HYr0BDA2NS1lmQDUfBHY3gyUb85n7QpCxj8JDz74YMQQmKIosNvtKV1rtVrhcrlmHK+tnRnBJiorimLS+/T19cVMRbBjxw5jcrguer4UEdFicej0ObQ9/TpelrU/RpliYBFRVeC9l4GXvwsc/DmghrTjlRdrySqv+VNg6Yr81rGAzCodQXNzMw4dOgSTyYQtW7bghRdeSOna6F4dWZZRW1trBDiSJEEQBIiimLBsrF6k8Pvo94oOiERRjBi683q9sNlsXF1HRItOrBQDO+svwX0fZoqBBW9yHDjwMy1gOhaWwFq8GbjxL4DqHUARvweiZRw4iaKII0eOYOvWrfjWt76Fv/3bv03r+u7ubjgcDtTV1aG3tzcij1J7ezvq6uqM1AGJyiY6F17XcIIgoLa2Fh0dHRAEAX6/n3mciGjRYYqBRercGcD3faD3UWBYm8eG4lLgmiZtw9112/JbvwJnUlPNIRDlqaeeQmNjIwYGBvCNb3wD+/btgyAIi2KvuqGhIZSXl2NwcBCrV8fZzZmIqEAxxcAi1X9Q6116vROY1FZKYuU6oK4ZqP0SsOKC/NYvj9L5XM84cIq2Z88e1NbWorx84Y+HM3Aiovlqz5sn8bWfTacYuPu6TfgfTDGwcIVCgP8F4OXvaP/rNlwD3PAXwBV3AUuW5q9+BSKdz/VZLZP45je/ib6+PqOXiX+pEBEVpv7hUex69gB+MZVioMq8HF//zFX4GFMMLEzjI8DrP9HyL51+WztmKgIu+7SWTuDCGxfkdii5MKtVddXV1UbSyx07duDpp59OKR0BERHlhqqq6Oo7iq//4k0MjU4yxcBCN3RMSyfg+wFwfmrl+NJVWmbv61uAii35rN2CkPFPTV1dHe655x7s2bMnm/UhIqIsiZViwHnP1bhy08KfUrHofOADXvqutkouNKkdq9ii7R137Z8ByzitJFsyDpwOHdIyiYYPz/X29rLHiYgoz8YnQ9j9O6YYWPCCk8DBZ7XhuKOvTB+/6CPadiiX/hFQVJy/+i1QGQdO1113HWpra1FZWYmenh54vd4Z25oQEVFu7XtvAA8+9QbeOskUAwvWeUXL7L3XDQwe1Y4VlQBX2bSAacM1ea3eQjerVXWHDh0yMnc3NTXNap+6+YSr6oio0MRKMfAPd2zDZ65lioEF44xf2ztu378CE+e0Y2WVQO39QN0DwKp1+a3fPJaXdASLCQMnIioksVIMfPX2bTCv4DLzeU9VgUO/1Ybj3n4OwNRH9tptWu/SVY1AybK8VnEhmJN0BKlkB3/00UfxwAMPpHpLIiKaBaYYWMAmRoH9Hi1gOrl/+vjFtwI3/jmw9eNMJ5AnKfc4mc1m1NXVJSzT19eHM2fOZKVihYw9TkSUT0wxsICd7Qd6HwP6HgPOndKOlZQB135W2w7lgg/lt34L1Jz0OO3YsQOVlZWoqamJW4ajfkREc0s+dRZtT7+BVw4xxcCCcvx1rXdpvwcIjmvHVm/Wci9Z7gWWV+S3fmRIOXDq7u7G4OAg+vr6AGh5nKKjMrPZnN3aERERAC3FgPu3fvyfF941Ugz8Tf2l+NKHtzDFwHwVCgJvP6/tH3f4d9PHN9dp2b0vvwMoLslf/SimjCeH79u3D4FAACaTCbfccku261XQOFRHRLkUK8XAN+66ClVmphiYl8aGtZVxrzwCDGg5EWEqBq74jDYcV5V4WgxlX072qgtPPfDCCy+gp6cH9fX1iy6IIiKaK0wxsMAMHNFyL0lPAGND2rFlAlDzRWB7M1C+OZ+1oxTNahbhq6++CpfLhc7OToiiiOrqagZORERZwBQDC4SqAu+9rA3HHfw5oIa045Uf0tIJXPOnwNIV+a0jpSXtwOnw4cPo7u6Gy+WCyWTCPffcA5/Ph61bt85F/YiIFhWmGFggJse1feNe/i5wbN/0cfFmbf7Sh6xAEeemzUcpB06PPvooXC4XZFlGY2Mjuru7Z2QKf/rpp7lXHRFRBlRVRWfvUXzjP7QUA8VFJjzwka34K6YYmF9GAkDf40Dvo8CwFvyiuBS4pkmbv7RuW37rR7OW8uTwoqIi2Gw2NDU1QRCEGePrAwMDePjhh9Hb2zsnFS0knBxORNkUnWLgyk2r8fDdTDEwr/QfBF75HvDaT4BJbXgVK9cBdc1A7ZeAFRfkt36U0JxMDm9paUFHR0fCXE2dnZ2p15KIaJFjioF5TlWBd/dow3H+PdPH118N3PgXwBV3A0s4J22hSTlwstvtSaOwtra2WVeIiGgxYIqBeWx8BHj9J8DLjwCn35o6aAIu+7Q2f+mim7gdygKWcuAUPZ8p0zJERItZdIoB84ql+NrtlzPFwHwwdAzYuxvwfR84P6AdW7oKsHwe2N4CmLlIajHgjEMiohzxHjiJr/37fhxnioH55QOfth3KH34KhCa1Y8JFwPVfBq77HLCMc10XEwZORERzrH94FLueOYBfvDGdYuAbd12Fj17MFAMFKzip5V16+bvA0Vemj1/0YS3/0qWfAoqK81c/ypu8BU6yLMPj8UAURciyjJaWFgiCkHbZROckSQIAWCwWyLIMRVFgsVjSfn4iokzESzHw19ZLsHwpP3QL0nkF2Pcj4BU3MPiedqyoBLjyHi1g2nhtPmtHBSBvgVNDQwN8Ph8ALYhpbm5Gd3d32mUTnXO5XHC73QAAq9Uacf90np+IKF1MMTDPnPEDr7iAfU8CE+e0Y2WVQO19QN0DwKr1+a0fFYy8BE6yLEc8FkURXq837bLJ7lNTU4OBAW0CX3hvUjrPT0SUjugUA8tLirGz/hKmGMiHUBA48iJw9qSWU+mimyKH11QVOPw74KXvAm8/B2Aq3c6ay4Eb/xy4qgEoWZ6XqlPhykvg5PV6YTabI46ZzWZIkmQMpaVStq+vL+l9Yg2/pfP8ADA2NoaxsTHj8dDQUPIXSUSLjvTeANqYYqAwHHgGeM6hrYTTrd4I3OYELv4ksP8pbcL3yTemz1/8SS2dgPgJphOguPISOCmKEvN4IBBIq2yy+yiKAo/HAwDo7e2F3W6HKIppPT8AtLe3Y9euXTHPERGdHZvEN587iCdePsIUA4XgwDNA170wepB0Q8eBrs8DpauBsak/gEvKgGs/q62Qu+DinFeV5p+CWlUXL6BJt6x+LnzCtyiKqK+vh9/vT/uebW1t2Llzp/F4aGgIVVVVKdeViBauGSkGLJvw1U8zxUDehIJaT1N00ARMHxsbAlZtBK63A5Z7gTJzjLJUSIKhIKR+CadGTmFN2RpY1lpQnKdVjXkJnARBmNG7EwgEYg6rJSqb7D6yLBtDb/rqOVmW03p+ACgtLUVpaWkar5CIFjqmGChQR16MHJ6L5zPfBapvnvv60Kx5j3jx8N6HcXLkpHFsXdk6PLj9QVgvsua8PnmZqWi1xn6htbW1aZVNdE6SJOzYsWPGObPZnNbzExGFU1UVP9n7Hqz//Bv84o3jKC4ywf4xEf/51x9n0JRvA4cB6YeplR05M6dVoezwHvFi5693RgRNANA/0o+dv94J75HcL+zKS4+TKIoRj2VZRm1tbUT+JUEQIIpiwrLRPUTh50RRhNPpNM55vV7YbLak1xERxeM/dRZ/zxQDheXUW9qcpjefAU68nvp1K9fNXZ0oK4KhIB7e+zDUGMOuKlSYYIJzrxM3V92c02G7vM1x6u7uhsPhQF1dHXp7eyNyKLW3t6Ourg6tra1Jy8Y7JwgCamtr0dHRAUEQ4Pf7U7qOiBavYEjF3kMB9A+PYu2qZdi+1YziIhPGJ0Nw/caP//srphjIO1UFjr+mBUpvPgucfnv6nKlYSzlw4nVgdAix5zmZtNV1F92UqxpTGiaCEzgzegaB0QBeOvbSjJ6mcCpUnBg5AalfQt36upzV0aSqaqzvLEpgaGgI5eXlGBwcxOrV3KOIaCF4bv9x7Hr2gDHJGwA2lC/D52+4CP/+6jEjxcDHLlmDr3/mSqYYyKVQCHh/71TP0rPTGb0BoHgpIN4MXH6Htg3KisqwVXVAZPA0tcKx8Qlg2525qv2ipqoqzk2cM4KhM+en/h89M/112LHh8eG0n8P5USc+JX5qVvVM53O9oFbVERHlw3P7j+MrT0oz+ieOD46i4/m3AGgpBv7h9m3442s3MsVALgQngMO/1wKlgz/XkljqSsqAi+uBy+/U/l8WNVS67U4tOIqZx+lhBk2zFAwFMTA2EBn0hAU/4Y8DowGMBceS3zTMEtMSmJeZUbqkFEeHjyYtv6Yst3MLGTgR0aIWDKnY9eyBmIM6uuUlxXj+rz+GNau4unZOTYwC8q+0YOmt/wDOD0yfKy0HLr1NC5aqbwGWJunx23YncNmnE2cOJ8Po5KgW9JyfGfxEHx8YHYg57yiRsiVlMC8zo3J5ZeT/yyphXq79X7msEpXLK7Fq6SoUmYoQDAVx61O3on+kP+bzmWDCurJ1sKydmbh6LjFwIqJFbe+hQMTwXCznJ4J4t/8sA6e5MDYMvNOjBUvv/Ccwfnb6XNkFWvCz7U5gy8eAJWnmxioqBrZ+NLv1nSdUVcXQ+FDcIbHoAGlkciSt+5tgQsWyiungJ0ZQFP718iXpb11TXFSMB7c/iJ2/3gkTTBHBk2lq2NWx3ZHzfE4MnIho0VJVFf/17umUyvYPJw6uKA3nB4C3fqkFS+/uAcKHclZv0uYrXX4HcOGN7CEKMxGaQOB8IOaQWHRQFBgNYFKdTOv+JUUlqFxeOTMQCusV0o8LpQKWFM19CGG9yIpvf+LbMfM4ObY78pLHiYETES06JwZH4fEdRbfvfRw5k9pf2mtXLZvjWi1wwye1uUpvPqttrBsK+1A3i9oQ3OV3ApssWdsnrpCyTceiqipGJkeSTpjWHw+Np79P6qqlq2IHQjF6iFaWrCzI+XvWi6y4uermgnkvGTgR0aIwPhnCnjdPoqvvKH7z9imEpnr9VywtRgjA+fFgzOtMANaXa6kJKE3Ke8CbP9dSB7z3MiJWuK29QhuCu/wOYO22rG+qm69s08FQEMqYEndILHri9GgwvZ7MYlMxKpZVxA1+onuHlhYvjK1/iouKc5pyIBEGTkS0oL19chidvUfx030fIHBu3Di+fasZjbVV+NRV6/Hbt0/hK09KAGIuXsdDd2xDcVHh/SVekE6/owVKB54Bjr8aeW5TzVTP0h1AZfWcVUHPNh09oVjPNv3tT3w7reBpLDgWsycoVq+QMqYgpIbSqu/yJcvj9ghFB0jlpeUoMjF3WD4xj1MGmMeJqLANj07g2deOo7PvKF47qhjH164qxT01m9FYW4WtF6yIuCZeHqeH7tiG267ckKuqzz+qCpx4QxuCe/MZ4NTB6XOmIuDCm6bmLN0OlG+e8+roK7HiJU7UV2J13t6JwfHBuMvow4+fmziXdj2EUiHm3KBYvUJlJcwJlm/pfK4zcMoAAyeiwqOqWtbvzr6j+I83jmN0Qvurf0mRCbdcthZNdVX4+CVrEmb6Hp+cxI9f+zXeGzqBC1evx2ev+QSWLmHH/AyhEPBB33T27oHD0+eKSgDx41MJKT8NrEw9x46qqgiqQYwHxzERmsB4cBzjoXHt/7Bj4ecmghMRZfyKH11vd2X9JS8pWhJzeMw4NrWU3rzMjIplFTmZOE3ZwwSYRLRonBwahcf3Prr7juJw2ETv6jUr0FRXhbuu25xSGoFYc2KelPO3A/tcU1UVk6FJI+iYEYyEBS0ToQlMTIxi/OQbGP+gD+PHX8X4+BAmYMK4yYRxcyXGzVswYd6KidUbtWMjBzHe93pkYDN17+igKLxMuvmBZmNlycqkE6b13qFVJasKcuI05R57nDLAHiei/BqfDOGFg/3o6juKX7/VHzHR+45rNqKhtgqWC4WUP+jizYnRc8WkOycmmqqqMYOFiVBkb0l0D8qMHpYslpkITeQ0SMmECSYsLV6KpUVLUVJcYny9tHgpSopKIv7XywyPD+Pl4y8nvfcj1kfw4U0fzsGroPmAPU5EOVToS54XkndODqOr7yielj7AmbCJ3nVbKqYmem/AitIlEb0pY8Gx6YAiOI6x0BgmghPG8dHJUex6aVfcHdgB4H/8/n/g9x/8Xut5iRHwJAuKJkITOWujTBWbiqcDETWEkslxLJ04j5JQEEtVFUtVYKmpGCUr1mDpqo0oWbUBS5csmxG8LC2eDmyM4+HBT5Iy4ffLZLgr1WzTN2y4IRvNRosQe5wysJh7nBgkRMrXkudCpaqqESyMBcMClKkeEP1rI4gJD2pCM68ZD47j3PgoDp0ZxOHAIAbPnwdMk0DRJEqWhFC+HChbBqiYmHGfQrbEtCTlHpSMgpHwY/r9w47NeK6xERS/69XmLL3rBSbDlsiv2gBcdruWOuDCm4Diwv97W+9BBBAz2/RsexBp4eHk8Dk2F4FTooAk3WBlroIbBgmR5np4Jx0hNTQdrIQmZvayxAhY9F6SVK8JD0rCH0ffsxAtKVqC0uLSiACjtLgUJUUlGJkYwZHhI0nvUX9RPa6ovCJuMKIHMfF6X8L/L4jl5GdPAW/9QksbcOg3kQkpK7ZMrYT7Yy2FQFEB1DdNsX5frS9bn7ds01TYGDjNsWwHTokCEgBpBStzFdwUUpBQCCaDk7j1aW04IB7zMjM6PtahDRnFGCKK7mVJZVgpXs/MZCi9rRVyZWnRVIBSXKIFLlFDMvrXehk1uATvBcYh949hcEQF1CWAugTmsjLUXrgGdVvWoXJFWdwgKOI5wo4nClR6T/TivufvS/paHr/18YJJwJexwfenElI+C7z3IhCeb2jN5VqwtO1OYN2VWU9ImQ/sIadUMXCaY9kMnBIFJPEmbsYLVuYquEk1L8pz9zwX8UsppIYQDAUxEZrApDqJYCiIydAkgurUsdDUMXUSk6Gwf2Fl9cf610FVOz4Rmoi4Vn8e/fyMsuHHQ0FMqGHPH1beqJc687hRVp1MO8FdLplgigxW0ggw9K9TvSZRuZKikpQmZ08EtYne3X1H8au3TiE4NdO7bGkxbr96A5rqqmC5sGLOVjSlOicm+vt73jjjn04b8IEv8tzG66Z6lu4ELrg4P/UjKgCcHD5PBENBPLz34YSTUmPRz7Xvbce1a65FCCGcnzyP//Xy/0p4r3986R8xODYYM0+KPunVOB62Kuf0yOm4QZN+/xMjJ3Djv91ovK5CDy5yZc3yNahcXhnZwxLWyxKrByZZz0ysnprw40tMS+bFsul3+89OTfR+H6fPTk/0rr1Im+j96au1id5zrVB3YM+YqgL9B7QhuDefBfr/EHbSBFx4w1T27tsB4cK8VZNovmKPUway1eOU6hDBQmKCCUuKlmj/TNr/xUXFEY/1f8Wm4hllZxwPO2/cJ1H58ONT5UtMJRHXFpuKUVJUkvDa10+/jr/+1V8nfb0LYngni86OTeIXrx9DV9/78B0ZMI5fsHIp7rFsRkNtFT60dmVe6jav58SoKvCBBLz571qwFJCnzxUtAbZ8VBuCu/TTwKp1+asnUYFij9M8cWrkVFbuo/cwpDIx99KKS7F51eaIyaozVtiEHS8pLsH7w+/j8f2PJ733//rw/zLmEMQLQubNX+1JfGLzJ7CubF3S4R3LWksealdYVFWF78gAOnuP4hdvHMfI1Ga6xUUm3HzpGjTWVuHmy9aiJEFG71wotB3YkwoFgfde0nqWDv4cGPpg+lxxKfChHVrP0iW3AmXcoJgoWxg45dGastS3Iojn0U8+ius3XJ9y75VjuyPtHpBgKIhfyL9IGiTcLt5euB8yWbbghnfmQP/wKJ6WPkBX31HIp6b3+hIvWIGG2ircY9mEtauX5bGGMxXSDuwxTY4Dh36rzVk6+Atg5PT0uaUrgYs/qc1ZuviTQGl+eu6IFjoGTnlkWWtJ2GuRiB6s1K6rTeles+kBYZAQm/UiK779iW/HXMU4L4Z35sBEMIRfv3UKnb1H8au3+o2J3stLtInejXVVqL1o7iZ6L0jjI4B/jzYE99ZzwNjg9LllAnDZp7VgSbwZKCmsQJRoIeIcpwzMxao6YGaiNv1xvGAl3qq6WPeKVT6Tus7bOSBziEueAf+ps0ZG71PD08knLRcKaKqrwqev3oiVOZjovWCMDgFvPz+dkHJieg8+rFynJaS8/A5gy0eA4pL81ZNogWA6gjmWizxOekACzMzjlChYmevghkEC6c6NTeIXbxxHV+9R9EVN9L7bshkNNZtx8bpVeazhPHPujJaQ8s1nAfnXQHB6pSHKL9Qmd19+B7B5+7xMSElUyBg4zbHFmjmcSFVVSO8NoKv3ffz89WM4NzXRu8gE3HzpWjTUVmHH5fmf6D1vDB2bSkj5DHDkvyITUl5wyVTagDuADdcsiISURIVqXgROsizD4/FAFEXIsoyWlhYIgpB22UTnJEmC1+sFAPT29mL37t0R5wDAYrFAlmUoigKLJbX5P4t5rzpanE4Nj+Fp6X109R2FP2yi99YLVqChdjPusWzGugKb6F2wAoemE1K+3xt5bv3VUz1LdwJrLs1P/YgWoXmRjqChoQE+n5bFVpZlNDc3o7u7O+2yic55vV60trYCADo6OrBjxw6jrMvlgtvtBgBYrda4z020WE1OTfTu6juKFw72YzJsovenrtIyetdt4UTvpFQVOHVQC5QOPAOcfCPyfNX1U9m779D2iCOigpaXwEmW5YjHoigaPUPplE10TpIktLe3G4GTzWaDw+GALMsQRRE1NTUYGNDmZcTr6SJajORTZ9HV9z6ekt6PmOh9bZU20fv2qzdg1TJOSE5IVYFj+7Rg6c1ngDPvTp8zFWuTui+/Q5vkvXpD/upJRGnLS+Dk9XphNkcmZDObzZAkacZwWaKyfX19Ce+ze/du47iiKMZ5XaoB09jYGMbGpj9AhoaGUrqOaL4YGZ/EL14/ju6+97H3cMA4bl6xFHdftwmNdVW4hBO9EwsFgaOvTAVLzwKDR6fPFS8Fqm/RgqVL/ghYUZm/ehLRrOQlcNKDmGiBQGDGsURlk93HZrMZxzo7O2G1Wo1gSVEUeDweANr8J7vdDlEUY96vvb0du3btinmOaL5SVRX7jiro6j2KZ1+LnOj98UvWoKmuCrdctg5Llyyiid6hIHDkReDsSW3Z/0U3AYkWVgQnphJSPqslpDzXP32uZAVwcf10QsplnA9JtBAUVGKVeIFQumWjz+lBkj6/CUDEJHJRFFFfXw+/3x/zfm1tbdi5c6fxeGhoCFVVVSnXlaiQnD47hp9OZfR+p/+scfyiyjI01lbhHstmrC9fhBO9DzwDPOfQVrrpVm8EbnNqE7Z1E+cB/wtTCSn/AxgNS0hZWg5c+kda+epbgJLluas/EeVEXgInQRBm9C4FAoGYQ2eJyqZ6H4fDgZ6enojjsiwbw4L6ijx9/lO00tJSlJaWpvEKiQrLZDCE376jZfTe8+b0RO9lJUX41FUb0Fhbheu3mhfvRO8DzwBd9wLRWfeHjmvH73Zpm+UeeAZ4pweYmF5ZiBVrprJ336ltprtkaU6rTkS5lZfAyWq1wuVyzTheW1ubVllRFJPep6OjAw6HA6IoGj1Rsixjx44dxuRwXfR8KaL57vDpc+jqO4qnpPdxcmh6nt41VQIaazfjjms2YvVin+gdCmo9TTG3PZo69nRL5OHVm6dXwl14Q+LhPCJaUPISOEX36siyjNra2ogcS4IgQBTFhGWje5ai7+PxeGCxWIygqaurCy0tLRBFEU6n07jO6/XCZrNxdR0tCCPjk/jlGyfQ2XcUew9N98hWlJXgrus2o6muCpeu50Rvw5EXI4fn4lm1EbimSQuWNlqYkJJokcprAkyXy4W6ujr09vaira3NCFwaGhpQV1dnpBJIVDbeOVmWUV1dHfGcgiAYvUx6ckxBEOD3+yMCqWSYAJMKjaqqePWogq6+9/Hsa8dwdmwSgDbR+2OXrEFjbRWsly+yid7xTIxqeZVOvKH9878AnHkn+XV3Pwpc3TD39SOinJsXmcPnMwZOVCjOnB3DT/dpE73fPjk90ftCcxkaazfjnprN2FC+iCcojwSAE69PB0kn3gBOvw2EJtO/1xd+Dmz9aPbrSER5Ny8yhxNRZoIhFb99W8vo7X3zJCaC2t8+pUsiJ3oXFS2ioaRQCBg4BJzcHxkkDX0Qu/zyCm17k/VXAeuuAHoeAs6dQux5TiZtdd1FN83lKyCieYKBE9E8ceTMOXT3vQ+P732cGBo1jl+9uRyNtVW445qNKF++CCZ6T5wH+t+MDJBO7gfGz8YuX7FVC5D0QGn9VVogFD5HaenKqVV1JkQGT1NlbnuYE8CJCAADJ6KCdn48iF/uP46uvqN4WZ6e6C2UleCu6zahsbYKl29YwMPF505HBkj6UJsanFm2uBRYt22qF+mq6d6kVBJPbrsTaHwiTh6nhyPzOBHRosbAiajAqKqK198fRGffUTz76jEMT030NpmAj168Bk21VbBuW4vSJQuoB0QfaouejzR8PHb5ssrp3iO9J6nyYqB4Fr/Stt2p5WNKJ3M4ES06DJyICkTg3Dh+uu8DdPcdxcETw8bxzRXL0VhbBVvNZmwUFsBE7/GRqaG216eH2U7sj0wqGc5cHRYkTf1btWFu0gEUFXMCOBElxMCJKI+CIRW/e0eb6N1zYHqi99IlRfijK9ejqbYKN4iV83ei99lTM3uRzrwDqKGZZZcsA9Zui+xJWrcNKGXOKSIqHAyciPLgvTMj6PYdhcf3Po4PTk/0vmpTORprN+POazahvGweTfQOBYGAHBUk7QfOnohdvuwCYMPVkUNt5urZDbUREeUAf0sRzVIwpGLvoQD6h0exdtUybN9qRnGMHqLRiSCe238Cnb1H8ZJ8xjhevnx6ove2jfNgovf4CNB/IDJIOvkHYGIkRmETUFk9cz7SynXMvE1E8xIDJ6JZeG7/cex69kBEr9GG8mV46I5tuO3KDVBVFW98MIiuvqP491ePYXh0eqL3Rz50ARprq1C/bR2WlRToBOThk1PBUViQFPDHGWpbrq1iix5qW7oi9/UmIpojDJyIMvTc/uP4ypPSjJSJJwZH8ZUnJTTUbsbr7w9GTPTeJGgTve+p2YTNFWW5rXAioSBw5t2ZS//P9ccuv3IdsO7KyCCpspor0IhowWPgRJSBYEjFrmcPxMwzrR/r6nsfgDbR+7Yr1qOxtgo3VRfARO+xszGG2g4Ak+djFDYBF1wcuaJt3VXAqnU5rzYRUSFg4ESUgb2HAhHDc/F86cNb8Fc7LoZQtjQHtYqiqsDwianAKHxVmx8xtxYpKZvqRbpyuhdp7eUcaiMiCsPAiSiJUEjFe4ERHDwxhDePD+PgiSH4jgykdO21VUJugqbgZNhQW1hP0sjp2OVXro/KjXQ1YN7KoTYioiQYOBGFGRyZwMETQzh4YtgIlN4+OYyR8RhbfKRg7aplWa4hgLFhbRVb+Fyk/gPAZIweMFMRcMElU0NsYXOSVq7Nfr2IiBYBBk60KE0EQzh0+hzePD4VJB0fwlsnhnEszvDb0iVFuGTdSly2fjUuW78Kl65bhb/pfg2nhsdiznMyAVhfrqUmyJiqaluOzFjVJscuX7IibJht6t/abUDJAsg2TkRUIBg40YJ3anhM60U6Pow3p/5/t/8sxoMxltRDW/l2+YZVWpA09f+WyjIsKS6KKPdPf3wFvvKkhGKEUFd0EGuhoB8CekOXIYQiPHTHtpj5nGIKTgCn35kOkk7unxpqOxO7/KqNYQHSldpQW8VWoKgodnkiIsoKBk60YIxOBPFu/9npXqSpIOnMufGY5VcsLcZlG1bj0vWrcPn6Vbhsw2pcsm4VypenlrH7tis34OmbT2PjS7uwDtMBzklU4tiND+G6KzfEqehQ2FDbVE9S/5tAcGxmWVPx9FBb+L8VF6RURyIiyi4GTjTvqKqKY4OjODgVIOmB0qHT5xAMzRw4M5mArZUrjN6jy9avwuUbVmOTsHx2qQEOPIPrXvorqFGDdWsRwLqX/gqoEoBNNWFzkaaCpIHDse+3dFXkUNu6K7VVbRxqIyIqGAycqKCdHZvEW2G9R/rEbT0DdzShrASXG0NsWqB0ybpVWL40y6vFQkHgOQcAFdGhl0kPpLq+gJjL/gFg9aaZvUjCFg61EREVOAZOVBCCIRVHzpybGmIbNnqT3gvE2v8MWFJkwofWrtSCow3TvUhrV5XClI090EIh4HwAOHdK+3e2Hzh3evrxqYPA0LEkN1EBFGm9RtFBUtksJo0TEVHeMHCitKS6oW0iA+fGI+YgHTwxhLdODmN0IvZk7XWrS42J2npvknjBSixdkmbvzMT5qSDo1HQAFP1PPzdyOvZ+bOn6zHeAaz87+/sQEVFBYOBEKXtu/3H8z2feQNXZ14wVZEdXXoOv3XkVbosxEXp8MgT59Nmp4Gg6UDoxFHvJ/7KSIly6bhUuXR+5os28Ik4CyVAIOD8QFvhE9QpFB0jjZ9N/0csrgBVrgRVrtAnZK6e+Pq8AL38n+fXlVek/JxERFSwGTgUiODmJg688j/MDH2B5xSZcdv2tKF6yJOm5dO+Vqef2H8fPfvwIukuewMalAeP4sTEz/unH92LwM/djvbA8YsK2/9RZTARjz/GpMi/HZetXG6vZLlu/ChdVrkBxcCwsCHobeDvGMJnx7zSgppmYsnjpVCAUFgStuGDq/7XTX69cC5RVAsVxVtiFgsCBnwJDxxF7HpMJWL0RuOim9OpHREQFLW+BkyzL8Hg8EEURsiyjpaUFgiCkXXYuzuXavud/iI0v7cIV4Uvae7Ql7QDinrvu1i+kda9Y5VMRDKn49c8ex3dL/veMc+sRwHdL/je+8jPg+dD2GedXlxahZp0J15kncfnqMVSXjWBTyVmUjk3NHwqcAo6G9RCND6dfwWXCdLATLwjSA6TS1doyu9kqKgZucwJd90JLdxkePE3d/7aHuYUJEdECY1JVNc6yn7lVU1MDn88HQAtiHA4Huru70y47F+eSGRoaQnl5OQYHB7F69epMXr5h3/M/xDUv/iUAIHyqkL6qXv9IjnXutZv+T0QwlOxeevlQSMXQ6AQGRiYQODeOgXPjCIxM/6+cm4h4fHpoBM/hL7AeAcSazqSqwBDK8MviWyCuGMP6JcOoUBWUTQyg6PwZmEKxV8DFVVQSPwhasQZYuWb667ILgCV52EBXd+AZbXVd+ETx1Zu0oGnbnfmrFxERpSydz/W89DjJcuSWEaIowuv1pl12Ls7lUnByEhtf2gUAMwKSIpMWkMQ7F1KBjS/9I/ou/AgmgyGcP38OV770DwnvteXFv8f/fGk/QpOjWKaOY5lpDMsxjmUYx3KMYZNpHNXQji03jWEZJrAMYyg3nUOlKX5PkMkElGMEfxL6ORCv2LLy6WAn/F94EKQHSMvKs9MrlAvb7gQu+zRw5EXg7Elg5TpteI49TUREC1JeAiev1wuzOXI5ttlshiRJsFgsKZft6+vL+rno5weAsbExjI1NZ3UeGhpK/cUmcPCV57UhtTgxQqLYocgErEMA6zqj6pvgXhU4i6/BPWfv+sCmm1Gx7eYYvUQXAEtK5+ZJC0FRMbD1o/muBRER5UBeAidFUWIeDwQCM44lKjsX52Jpb2/Hrl27Yp6bjfMDH2T9nsmcWnkZVm26FCXLVqJ4aZmWldr4N/V4SeSxYP+bKP7Ff09679U7dgLix3LwKoiIiPKjoFbVxQto0i2b7XNtbW3YuXOn8XhoaAhVVbNfZr68YtOs73Fgxw+x7cN34A8v/hJXeP8safn+G/8Baz786bSeo7hqO86/4ETpyImYc5xCKjBWth7Lt3w4rfsSERHNN3nZ30EQhBm9O4FAIOaqtkRl5+JcLKWlpVi9enXEv2y47PpbcRKViLG9GgBtXlK8qfshFTiBSlx64+1AUTEuu+G2hPfSy192/a3pV7SoGMvv+CZMJhOiU0KGAJhMJiy/45uc10NERAteXgInq9Ua83htbW1aZefiXC4VL1lipByIDnhC6vQC91jnAOD4jQ8Z+ZmS3Su6fNq23QlT4xMwrd4Ycdi0ehNMjU9wBRkRES0KeRmqE0Ux4rEsy6itrTV6fCRJgiAIEEUxYdnoHqJsnMu16279AvZBy9W0Liz3Ur+pEsfD8jjFOhedlynZvTLN42TYdidMUSvITFxBRkREi0je8jjJsgyXy4W6ujr09vaira3NCFwaGhpQV1eH1tbWpGXn4lwy2czjpCv0zOFEREQLVTqf63kLnOazuQiciIiIKD/S+VzPyxwnIiIiovmIgRMRERFRihg4EREREaWIgRMRERFRirjUKgP6fPps7VlHRERE+aN/nqeyXo6BUwaGh4cBICvbrhAREVFhGB4eRnl5ecIyTEeQgVAohGPHjmHVqlUwmWJs3pYifc+7o0ePMq1BDrC9c4vtnXts89xie+fWXLa3qqoYHh7Gxo0bUVSUeBYTe5wyUFRUhM2bN2ftftnc/46SY3vnFts799jmucX2zq25au9kPU06Tg4nIiIiShEDJyIiIqIUMXDKo9LSUjz00EMoLS3Nd1UWBbZ3brG9c49tnlts79wqlPbm5HAiIiKiFLHHiYiIiChFDJyIiIiIUsTAiYiIiChFzOOUB7Isw+PxQBRFyLKMlpYWCIKQ72rNe5Ikwev1AgB6e3uxe/duo10TtTnfj9lzOBxoa2tje88xr9cLWZYhiiIAwGq1AmB7zxVZluH1emE2myHLMmw2m9H2bPPZkyQJzc3N8Pl8EcczbductbtKOWexWIyv/X6/arPZ8libhcPpdEZ8Hd7Oidqc78fs+Hw+FYA6MDBgHGN7Z19PT4/a0tKiqqrWbqIoGufY3nMj/HeKqqpG+6sq23y2uru7jd8d0TJt21y1OwOnHPP7/RFvrqqqqiAIearNwuHz+SLa0e/3qwBUv9+fsM35fsxed3e3KoqiETixvedGeBurqtaW+v9s77kR3XbhgSvbPDuiA6dM2zaX7c45Tjmmd/uGM5vNkCQpTzVaGCwWC3bv3m08VhQFgNa2idqc78fseDwe2Gy2iGNs7+yTZRmBQACCIECSJCiKYgwZsb3njtlsRk1NjTFkV19fD4BtPpcybdtctjsDpxzTP9CjBQKB3FZkAQr/AO/s7ITVaoUgCAnbnO9H5hRFiTl/gO2dfZIkwWw2G/M33G43PB4PALb3XOru7gYAVFdXo7u72/gdwzafO5m2bS7bnZPDC0S8N53SpygKPB7PjAmHscplco40XV1daGlpSbk82ztzgUAAsiwbfwy0tLSgoqICaoL8xWzv2fN6vXA6nZBlGXa7HQDgcrnilmebz51M23Yu2p09TjkmCMKMCFjvgqfscDgc6OnpMdo0UZvz/ciM1+tFY2NjzHNs7+wTRdFoPwDG/5Iksb3niCzL6O3thdVqRUtLC/x+P7q6uiDLMtt8DmXatrlsdwZOOaYvH45WW1ub45osTB0dHXA4HBBFEYqiQFGUhG3O9yNzXV1dcLvdcLvdkGUZ7e3tkCSJ7T0H9PlMsbC954YkSairqzMei6KItrY2/k6ZY5m2bS7bnUN1ORb9C1CWZdTW1vKvkSzweDywWCxG0KQPJUW3bXibJzpH8UX/krLb7bDb7TE/4NnesyeKImpra415ZXouJ4vFMqMs2zs7LBYLXC5XxNzJM2fOsM3nQPh8yUSfkYXyu5yb/OaBLMtwuVyoq6tDb29vROJAyowsy6iuro44JggCBgYGjPPx2pzvR+YURYHb7YbD4UBLSwvsdjssFgvbew4oigKHw4Gamhr4fD6jZxXg9/dc8Xq9xnAooP3BwDbPDq/Xi56eHnR0dKC1tRV1dXVGkJpp2+aq3Rk4EREREaWIc5yIiIiIUsTAiYiIiChFDJyIiIiIUsTAiYiIiChFDJyIiIiIUsTAiYiIiChFDJyIiIiIUsTAiYgKitfrRXV1NTo6OuB2u1FTU4Oamhoj0WZ1dTUkSZr1c+j3JCJKB7dcIaKCoigKenp6jAzNPT09MJvNaGlpAQA0NTVBluWYW1+kymq1oqmpKSv1zYXwLSmIKL/Y40REBSUQCCTc1NZisczYBX0hk2UZXV1d+a4GEU1h4EREBaWxsTErZRYKp9OZ7yoQURgGTkRUUFIZkurr60NNTQ06OjoAAB6PB9XV1fB6vQCm50nZ7XZ4PB643W7Y7XYoihL3nl6vFx0dHfB4PHA4HHHLybIMh8Nh3Fe/pyRJxvUdHR2QZdm4b7K66vOtvF4v3G43GhoajHN9fX3o6emB2+027klE+cM5TkQ070TPUbLZbOjs7Iw4b7PZUFlZaey47vF40NDQgJ6enhn304Mhn88HQBsu1HdtD6coCurr6+Hz+SAIAhwOB9xuN2w2GxwOR8S9a2pqsGfPnpTqarVa0dPTg+7ubgBAd3c3JEkyzlVXVxtzvIgovxg4EdGCFd57ZbPZ0NDQEHOitcvlgtlsNnqBAKC3t3fG/bq6uiCKonF9W1sbAKC9vX3GZHVRFNHV1ZVSwFNZWYnKysqIei+meVxE8wkDJyIiaJPOrVar8ThWwBMddOV6pRtX1xHlH+c4EdG8JAgCzpw5Yzz2er0z5jCFP/Z4PLBarRGBh36+qakpordJv180m802I4eU1+uNeb0kScYk9lTqmopYdSKi3DKpqqrmuxJERNG8Xi9kWTZWlTkcDtTW1hpDYoqiwOFwGBOpXS4XFEWBy+WCKIpwOBxQFMUYnuvt7UVbWxsEQYAkSWhubgYA7N69GxaLBV6vFz09PairqwOAGUFWeL1ilfN6vZAkCaIoore3F01NTSnVVVGUiLro860sFovx2p1OJ2pqamC1WhOmaiCiucfAiYgWJD3LOCdVE1E2caiOiIiIKEUMnIhowfF6vfB6vcayfiKibOFQHREREVGK2ONERERElCIGTkREREQpYuBERERElCIGTkREREQpYuBERERElCIGTkREREQpYuBERERElCIGTkREREQp+v8BUZwqTWOemJgAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -706,9 +706,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABs6UlEQVR4nO3deVxb550v/o/Yd4SwDcb1drCz2E7sCHAmW9vUokmTxplpBLSd6TJtjLr8btvJnUH2dDqZtDMlor2dmd47bSWn+zIBlEzrtGlS5DRtmqQxINuJ4yR1dPBSY4ONEIsxm3R+f4hzkIQ2hIQEfN6vFy8jne05jyT09bN8H5UkSRKIiIiIKKK0ZBeAiIiIaKlg4EREREQUJQZORERERFFi4EREREQUJQZORERERFFi4EREREQUJQZORERERFFi4EREREQUJQZOi0AURRiNRpSUlKCysjLsvpWVlSgpKYHRaITL5VqcAlLKsNvtqK2tjfg+SSSr1Zq0ay8n8udepVKhsrISLS0taGlpgcFgQF1dHes5CgaDASUlJbDZbEktx3J9LS0WC6qqqpJdjKVHokVjMpkktVotdXd3B93e0dEh6fV6qbGxcZFLFpzZbJ7zXFNTk6TX65NQGq9gZVpuOjo6JEEQ5nVMvOqlvb19znODg4Nh37fBxPt9kgqve6xl0Ol0QT/TgiBIJpNpocVKqFSod61WK3V0dCS7GJIkLb/X0uFwSE1NTfP6bJMkscVpEanVatTX18NsNgfdnmotTB0dHXOeq62tRUNDQxJK4xWsTMuNRqOZ9zHxqhe1Wh30ucbGRgiCEPV54v0+SYXXPd5lMBgMMBqNcT1nvKVCvS8FS/W1FAQBBoMh6OeeQmPgtMgMBgPa2trmPO9yueb1xZRoFosFoijOeV6n00Gv1yehRKHLtNLFs17sdjtaWlrmPG8ymeb1xzWe75NUeN0TUQa5PlPtP0yyVKj3pWIpv5Z2uz2lvnuWgoxkF2Cl0Wq10Gg0sFqtfl8sXV1d0Ol0IY9raWmBIAgQRRGCICjHulwuWCwWCIKAjo4OGAwGaLVaAIDNZlP+F3Tw4EGIoghRFDEwMACTyRTyWjabDR0dHRBFUfkSbWpqgt1uh9FohCiKcDgcIa/hdDrR3d0Ns9kMi8UCjUaD1tZWHDhwQClbpPuKtkyB5wG84xF8t4VjsVj8Hjc2NkY8Z6z3LB+n0WhQV1cHwPv6RXo9AsvjW1fR1kuk+pWp1WqYTCa/c8jB/sGDB/2OD1U/0b5PYn0vCoKgnMtsNkMURSWwa29vh0ajwZ49e+ByudDe3q7Uf6j6i1SuUGVobm6GKIpob2+HTqeDKIqora2FIAgwm80Rv4y6u7uh1Wr9AtJwZZRbB+SWA7l80byH43HPkT5T8fpb1NLSArVaHVPL63w+s+GuP5/PDLB0X0uXyxX1f4jkY+XXRhAEOJ1O6HS6oJ95o9EIi8UCk8kU9X0E1ktNTc2CP2cJkey+wpVE7mMONv5DHlsSbIyTXq/3G3ui0+mUPummpibJ4XAo2wRBkAYHB5XH8ngZ3zECgiBE7NPu6OiQtFrtnOe7u7vnjL8JdY2mpia/+ws8X7j7mk+Z9Hq937UdDoek0+nC3J2XyWSaU0bf1yHcOWO95/b2dgmA32vW1NTk95oHq+NwdRWuXuZTv+HodDq/c0Wqn/m8T2J5L5rNZr/rBXstfes4Uv1FKlewMgQbixZsnEvguJjBwUHJZDJJWq3W77Marozye6mjo0Pq7u5W7jXSezje9xxOPP4WNTU1+Y3FGRwclABENcYp1s+s7/UjfWZWymsZqLGx0e++HQ7HnLFnwT4POp3O7/WMpV6i/ZwtJgZOi0h+AzkcDgmA8kFzOBzKH5zAwEneN/A88j56vd7vjRn4Bdfd3T3n+MB9gplP4BTqGr5/BBwOh6RWq6O+r2jL1N3d7XdeWaQBpfIf5MA/diaTKapzxnLPoe5BLov8Hgis40h1FeycsdRvOL5/8KKtn2jfJ7G8F+U6k5lMJr/r+X4mItVFNOUK9XkIHDQf7F50Op2k1Wols9ms/AQGi9G8xoHbw72HE3nPoSz0b1HgayqLZnD4Qj6z8vWj+cyslNcyUtkkSZoTrIX6D1/g916o+whWL7JoPmeLiV11SSAIArRaLdra2tDY2Ai73R62i0qtVvtNx3U4HEp/dXt7OwBvk6vcZeR0Oudcz5darZ6zz0IFu0a4KfWR7itaXV1dQZtq5e6CUN2fXV1dUKvVfs3Ucl3K3Q2Rzjnfew5FLkeosQax1FW86jeYWOtc3sdXrO9FtVoNrVardHnLr6Pc/O8rmrqItVyNjY1obW2FVquFzWYLee/V1dV+3RWBYiljpPdwou45lIX+LZLrIBbRviejuX6kz8xKeC2D3U/gazPf1yqWepFF+zlbLAycksRgMMBsNqOxsTHsG1AeNO77RvH93W63o7m5GbW1taivr09Yf2+wL6SFiHRf0ZYp1sGY4Y5LtQGe860ruV4WWr/hypNM8nuxoaFB+WNaXV0Ng8EAq9UKnU7nd6+JqAvfMuzZswcmkwmiKMZ83mjKGPh3ItJ7OFH3HEo8/hbFMq4JiM97Ml51thxey3jxva9Y6kUWr89ZvHBWXZLU19fDbrfDarWiuro65H5arTZoK4HL5YLL5cKePXtw4MABJQCT36jxng1jt9vjer5w9xUtu92uDBYMJIoiampqwl4/2LVcLlfM54yV/FoGDpyXzbeu7HZ7XOo3lMWun0Dye1Gv18NqtcJms0Gr1UKv18NsNs9pfUhEXchl8J3sEeuXvnye+ZYx3Hs4kfccTDz+FoUqczTi8Z6MV50t9dcyVNliuZ5vq9dC7iNen7N4YeC0iOTZBoA3stbpdGhtbQ3b4qTT6VBdXT0nM21bW5vSsuD7hSu/USP9kYtEnvUAeP/4hPpSj/Ua4e5rPmXSarXQ6XR+zb++X6zhzqXX6/2m3rtcLrS1tcV8zmj/sNjtdr99m5ubw+ZJilRXweollvqNVqz1E8xC3otyl7f8uZLrL/CcsdRF4DnCfR4MBgP27du3oPQLsX4eQr2HE33PgeLxt0gQBDQ2NvrNLHO5XHM+L8HE4zMbr8/MUn8tg5Ut8HWRZ++FuoZcBt9egYXWbzw+Z3GT1BFWK4TD4ZAaGxslAFJjY6MyCNh31oQ8O0OtVitZaH0H48mzTXyPkZ9vamqSOjo6pI6ODsnhcCgDebu7uyW9Xi8BUGYhyNfQarURB9jJ55YH9wU7X7hr6HQ6ZYaEvE9TU1NU9xVtmQLPYzab/QZoR3M+k8kktbe3R33OhdyzPEizvb1d6ujokEwmk98MkcDjgpUnWF1Fqpdo6zeUwNkw862feL8XZfJgft/HvjO7gpXXty7mU65QZZA/c4EcDkfYz3S0Zezo6JB0Op2kVquD3l807+F433Oossfjb5F8L/J5tFpt1NnDY/nMBrvnwDpbaa9luPvxfV0CXxP575lcRr1eLwmCELF+I9WLJIX+nCWDSpIkKQnxGtGKJOcr6e7uTnZR5qWurg4NDQ2p8b+9FONyuSLmYSNabqqqqmAymRbtfZ9KnzN21RFRUHJTu/x7rDOeliPfrhC5O4WI4itVP2cMnIgoqObmZhgMBgDeMQ3hJjGsNHJWZCD2mWBEFF6qfs7YVUe0SGw2G0wmk/JvtMvCJIsoirBarcoSC+ymm2W329HV1QUAYXP6EC1HLS0tMBqN0Ol0yr+JkKqfMwZORERERFFiVx0RJYTBYEBJSYnfFHEKzW63o7a2Nqbs80S0eBg4EVFCBFu53Gg0oq6ublHLEbjifKqdT6bVapWV7peDRNUTUbIxcCKiRVNbW4uGhoZFvWZHR0dKn89XKg2AXahE1hNRMnGtOiJaNIs9ndhiscR1+aF4n2+5Yj3RcsbAiWiJcrlcsFgsygrwBoNhzlIKgd0lvjNTwm1raWlRutlEUVRmAMoJPAVBgMFgUFoVTCaTcpw8Cy+Q3W6H0WiEKIrKMiny+QDg4MGDylIOAwMDyjnlezUajaiqqkJ3dzcqKyuh1WphNpuVVeQD2Ww2dHR0QBRFZSkL35mMoe4xlFDnC3Zf8jRqk8mExsZG5T41Go3SVelyuebcZyhyWeXFWSPNcIzltZ3PfQChX69I9U605CUzbTkRxa6pqclvaQJBEPyWgTCZTH7LTvgucRBum16v91tKweFwSDqdzm9febmF7u5u5TyByzkMDg5KAPzO1d3dLQmC4HcfHR0dkiAIfvsJguC3lIrvki+Dg4NzzhGKvDREoEj3ON/zyffgS6fT+dVHe3u7BMDvNWtqapIaGxuVx8HqJ3C5G51O51c3gRby2kZzH9G8XqHqiWg54BgnoiVKFEW/GWuCICiP5RaaAwcOKNtbW1uVRTdDbbPb7bDZbH5daoIgwOl0KudWq9Ww2+3Q6XTQarUwmUxwuVxoaWnxa9lQq9VRLSaq0WggiuKca/p29VitVuVcarU66CKj0YrmHucrWAtbYKZ1uT58B8wfOHAgbLeWnEvLt4Wprq4OZrM56P4LfW2juY9oXi+i5YxddURLlNxFJS+N4nQ6lRXpu7q6oFar/b705P1tNlvIbXLXXyC5O1D+sgzcRz5nrALPp1arlXsBvDPOgq34Houurq6o7nExyK+D3W4PWia5Xn0DOofDETJICfe6R/vaRiPS60W0nDFwIlqi7HY7mpubUVtbi/r6er8vs8Agw1es23wFC5ISOSPMYDCgubkZBw8ehMViCdniEonc4hYv8pijYOJxHZfLBUEQ/IKacAFOPF7beB3nK1w9ES017KojWoJcLhf27NmDAwcOoLGxEWq1WvmCE0UxaAuNfFy4bTqdLmhrhiiKqKmpCVkerVab8K6agwcPwmazQa/Xx7z8gtzFGMs9hjpfKNG0wLhcLuU1CSZUvYYKZhLx2sajJSlcPREtNQyciJYgueXE9wtX/oKTu330er0yqwnwfnm2tbWF3abVaqHT6fy6huQvvXAzuQRBQGNjo99sLpfLBbvdHlOLReAx3d3dUKvV0Ov182q58B17IweUsd5jqPMFPi+XP1jrVmB9NDc3o7GxMeQ96XQ6VFdXw2q1+j3f1tYWsnwLeW2jvY9AwbpRg9UT0XLAteqIlih5WnhtbS0A75eV0WhEQ0OD8kVoNBpRWlqqDAL2bamJtE1e+sPhcPhNNTeZTOjq6sKBAwfmBDLyVHe5K08uo8lkgkajQXNzM6xWq7LIsdzd6PtcS0sLmpubIQiCcg2r1Yq6ujol1YFarYbBYIiq5UkuQ2VlZVT3GOv55GBFro/W1lbY7XaYTCbo9XplKv+BAweUcU0A/NIByHXR1NTkVx65rHJ3aKQAL5bXNpr7EAQhqtcrXD0RLXUMnIgopblcLuzbtw8HDx5UuiRFUVSWb1kqX8py4NTd3Z3sohDRArCrjohSmsVigcFgUFqx5Gn9JpOJQQgRLToGTkSU0rRabdDs4DabTemmJCJaLOyqI6KUZ7PZ/HIdRbv0SKqQx4bJ/3IJEqKli4ETERERUZTYVUdEREQUJQZORERERFFK2pIr8uKVcqI0OfvxfPeVF64EgM7OTmXK8nyvQURERBRJ0gKnuro6ZSqxKIrYt29f0Jkzkfa12WzKQMuWlhbs2bNH2Xc+1wjk8XjQ29uLwsJCqFSq2G+UiIiIUpokSRgZGUFFRQXS0iJ0xklJ4HA4JK1W6/ecWq2e977d3d1+xzkcDgmA5HA45nWNYM6dOycB4A9/+MMf/vCHPyvk59y5cxHjg6S0ONlstjkrqWs0Gtjt9jlrGkXa9+DBg8rz8npJGo0GbW1tUV8jmMLCQgDAuXPnUFRUFPW9ERER0dIyPDyM9evXK9/94SQlcAq1YGSwVbgj7eubx6W1tRU6nc5vpfhorgEAExMTmJiYUB6PjIwAAIqKihg4ERERrQDRDM1JqVl181lFPXBfl8sFq9UacQxTqGs0NzejuLhY+Vm/fn3UZSEiIqKVISmBk1qtntPy43Q6g854i3Zfo9GIjo4Ov/Wsor0GABw4cABDQ0PKz7lz5+Z1T0RERLT8JSVw0ul0QZ+vrq6Oad+WlhYYjUYIggCXywWXyzWvawBAdna20i3H7jkiIiIKJiljnOT1pmSiKKK6utovN5NarYYgCBH3tVqt0Gq1StDU1tYWNF9T4HHx4PF4MDk5GbfzES0lmZmZSE9PT3YxiGgFcHskHOlxon9kHGsKc7B7swbpaclJFZS0tepEUYTZbEZNTQ06Oztx4MABJaipq6tDTU2Nkp8p1L6iKKKystLvvGq1GoODgxGvEcnw8DCKi4sxNDQUtPVpcnISPT098Hg8sVcC0RKnVqtRXl7OXGdElDDPnLiAR546iQtD48pza4tz8PB923D3jrVxuUak73xfXOQ3hHCVKEkSzp49i6mpqeiSZREtM5IkYWxsDP39/VCr1Vi7Nj5/vIiIfD1z4gI+/RM7AgMV+b9q3/4bbVyCp/kETknLHL6UTU9PY2xsDBUVFcjLy0t2cYiSIjc3FwDQ39+PNWvWsNuOiOLK7ZHwyFMn5wRNgDdbpQrAI0+dRO228kXttmNTSQzcbjcAICsrK8klIUou+T8OU1NTSS4JES03R3qcft1zgSQAF4bGcaQneH7GRGHgtAAc10ErHT8DRJQo/SOhg6ZY9osXBk5J5PZIeNkxgF8cO4+XHQNwexI33Mxut8NgMEClUsFoNMJiscBoNKKurg42my1u17FYLCgpKYHdbo/bORdbVVUVrFar8thisaC2tjamY4mIKDarCrKj2m9NYU6CS+KPY5ySZDFmCfjSarUwmUywWCx+swtdLhdKSkrQ3d0d1Rp+kTQ2NkbM3j4fLpcrrikkomEymfzyfel0ujlpMaI9loiI5m9schrff7En7D4qAOXF3tQEi4ktTkkgzxII7Lu9ODSOT//EjmdOXFi0ssj5slpbWxftmtESRRFtbW2Lfl15vUOZIAghE6pGOpaIiObn4tA46s0vw/ZGPzJmBn0HDgqQHz9837ZFz+fEFqc4kCQJV6fcUe3r9kh4+NDrYWcJ/Muhk7hty6qo3gy5mekLHmfidDrn5MNKBSaTCVVVVckuBhERLZIT54fw4A+7cHF4HKX5WbB8tAqXRibm9NCUJ7CHJhIGTnFwdcqNbf/8bFzOJQG4ODyOG/7lN1Htf/LLdyEvK7aX0eVyobm5GTqdDo2NjbDZbDAYDDAajQAAs9mM7u5u2O122Gw2CIIAURSh1+v9uq7sdjtaW1tRU1MDAH5rBNpsNhiNRjQ0NKCpqQlWqxVGoxFms1lpxfFNVOp0OlFfX4+uri50dXUp5wrVXWaz2WC32yEIAjo7O2EymZQymc1mv7FJgiDA6XSGLY/dbse+fftgMBjQ2NgIl8sFo9EIm80Gh8OhnDtYfQQeK9+7wWBQ9u3o6IhrVyYR0XJhO9mHzz1+FGOTbmxZU4Dvf7wG6zXembu128pTJnM4A6cVyGKxKEGI/KUOeIMTnU6H7u5umM1maDQaiKKoLKAsq6qqwuHDh6FWq+FyuVBXV6cEFQDQ3Nys/K7T6dDQ0KA81uv1ft2CLpcLtbW16O7uhlqtVgauNzU1QafTobKyEo2NjUHvQy5bd3c3AG/A1tLSgsbGRuzZswc9PT1Kt1lJSQkOHz4csTxardZvu1qthtlsRklJid81g9VH4LFyffoGS+3t7bDb7XEZT0ZEtBxIkoTv/qEH//b0G5Ak4I6tq/D/PqxFcW6msk96mgq3VJYmsZSzGDjFQW5mOk5++a6o9j3S48THv98Zcb8f/G1NVAPecjPnn3Qw2Fp+MrVajdJS75tTr9fDaDTO+ZIXBEFZE7CtrW3Odo0m+oF6bW1tEARBKc+BAweiPlYO7nxnBXZ2dkKtVs8ZaxSvAdtmszlsfQQqLS1V6hPw1q9vixwR0Uo25fbg4UOv42evnAUAfPjmDXhk73ZkpqfuEGwGTnGgUqmi7i67Y+tqrC3OwcWh8aDjnORZAndsXZ20ZshoZ5DFQ+CsuVABXajZdVqt1m/gdmNjIywWS5xLSURE8TZ0dQr/38/seOHUZahUwBfvuR6fvH1zyueHS92QbplKT1Ph4fu2AUjeLIFILR6+2xsaGubkebLb7aivrwcAZVyQL1EU/R6r1WoMDAwoj202G1wuFwBvq1bg8cHySgV7LljZbDYb6uvrw5YpXHlkgY/DXdO3PsIdS0REXuecY3jg2y/hhVOXkZuZDstHqvHgHULKB00AW5yS4u4da/Htv9Eu6iwBeQA34J2tZjAY5nQ52Ww2v8HWOp1Oyf/U0tKiDMBub29XWn8EQUB7ezuMRiNqa2uVlqHm5maYTCYIgoD6+nplgDXgDbbkLi9BEGA2m2E0GpXB5XILksFgUHJPBUsHIJct8Fi1Wh20TLJw5XG5XGhtbYVGo5kzCN73msHqQ65j+Vj5XPI1RFFUBq0LgrCoLXtERKmi+4wTjT/qxsCVSZQX5eCxj1Vjx7riZBcraipJkhKXrnoJC7dS8vj4OHp6erB582bk5MSesdTtkVJmlsByV1tbC5PJFPOg7JKSEgwODsa5VEtfvD4LRLQy/OLYefyD9VVMTnuwvaII3/1YDcqLk/+3I9x3fiC2OCVRKs0SWO5iGZBtsVjgcDhgMBiYDZyIaAEkScI3D7+Nf7f9CQBQu60M//nBXTGn00kmjnGiZc9isSi5ouYz/kin06G0tBRWqxVmszlxBSQiWsbGp9z4u9ZjStDU+E4B3/mbqiUZNAHsqgtpMbrqiJY6fhaIKJyB0QkYftyNrjODSE9T4Sv378CHb96Q7GLNwa46IiIiSqq3+0fxiR904qxzDIU5Gfj2X1fh9q2rkl2sBWPgRERERHH14tuX8amfdGNkfBrrNbn4/sdrsGVNYbKLFRcMnIiIiChu/vvIWXzp5ycw7ZFQvbEE5o9UobQgO9nFihsGTkRERLRgHo8E0zNvwvx7b8Lh+3dVwPTAjciJYWmwVMbAiYiIiBZkbHIaX3j8GH5zsg8A8He6a/C5PVuWRCbw+WI6ghXIYrHAaDTCYrHAarXCZrMpU/ZTlc1mQ1VV1aKtQ1dVVQWr1boo11qowLJaLBbU1tbGdCwR0XxdHBpHvfll/OZkH7LS0/CfH9yFz+u2LsugCWCLU3J53MCZl4DRPqCgDNh4K5CW2CbN2tpa1NXVwWQyKc/Z7XbU1tbC4XAk9NoLodPpgi67kigmk2nJJL0MLKtOp4t6OZeldJ9ElHpOnB/Cgz/swsXhcWjys2D5SBWqN2mSXayEYuCULCcPAc8YgeHe2eeKKoC7TcC2vQm5ZEtLCwCgsbHR73mtVjvnuVRUWrp4WdYXM0hbqMCyzmcdvKV0n0SUWmwn+/C5x49ibNKNLWsK8L2P1WBDaV6yi5Vw7KpLhpOHgLaP+gdNADB8wfv8yUMJuWxzczMMBkPQbXV1dQm5JhERLS+SJOGxF0Ts+3EXxibduH3LKjzx6VtXRNAEMHCKD0kCJq9E9zM+DPy6CUCwhO0zzz1j9O4XzfmiTPwuiiJcLlfIlgjf7h273Y6WlhZYrVa0tLQoY598xxnJ46Lq6uogiqJyjG9gZrPZUFlZCYPBAKvVCovFAoPBoCx7Im+3WCywWCyoqqpSnpevbzQa/crpcrn8ru0r2HGhyux7PnmbfJzdbp8znmq+dRJKqHuz2+1KPck/drtdOb/cWmi1WlFZWQmbzaYc51tWl8sFg8GAysrKiGUPPHa+90JEK8+U24N/+vkJ/Ouv3oAkAR++eQO+/7c1KM7NTHbRFg276uJhagz4akWcTiZ5W6IeXR/d7v/YC2Tlx+na3gDLaDSio6NDea6qqgqHDx9Wxhl1dHSgvb0dANDe3g6r1YqmpiZotVpUVlbC5XJBrVZDp9NBr9ejtLQUer0egPeLv66uDh0dHcr5uru7YTabodFolOt3d3cD8C7O29LSgqamJgBAZ2en8nt7ezvsdju0Wm3Y44KVWT7OYrFAq9UqXVZOpxNarRYNDQ0LqhP5/MHqNrCMjY2N2LNnD3p6eqBWqwEAJSUlyvl9y6LX69Ha2qo8DiyrWq2G2WxGSUlJxLIHHjufeyGilWfo6hT+v5/Z8cKpy1CpgC/ecz0+efvmZTsIPBQGTiuE3JokimLQL0FRFKHRaGA2m+dsFwQBbW1taGxsRGlpqd9YI7Va7deKpVar4XQ6lQBAfk6m1+tRV1enBFdqtVo5n16vh9FohEajUVpUAG+wJKupqZlzLQBK4BXsuGBllo/T6/WoqqqCIAhoaGgIOtYrljqRzx94nmBllINM33qK14DtSGUPFO29ENHKcs45hr/9QSfe7h9FbmY6vvmhm1C7rSzZxUoKBk7xkJnnbfmJxpmXgJ/qI+/311bvLLtorh2lpqYmmM1mpfXHl91uD/p8NHy/8GMR2H3o2wIEzB3MHkosx2k0GgwODsJut6O1tVVpDUuUYGVcrBQLRESx6D7jROOPujFwZRJlRdn47sdqsGNdcbKLlTQc4xQPKpW3uyyan8r3eGfPIVTTpgooWufdL5rzzaOJVE5BEPhFLY85AoCGhga/FhHAG1TV19eHPK/v8ZG2W63WOa0rvi0awa4f+DiYWI9rbm5WWuFMJpNfueRyx1In8yljfX097Ha73/O+ObXUajUGBgb8jgms81CvQTRlj/T6EdHK9Ytj5/Ghg69g4MoktlcU4RefvX1FB00AW5wWX1q6N+VA20fhDZ58B3fPBEF3P5qwfE4dHR1oaWmB0WhEZWUlNBpvvg25tUkOIFpaWiAIAjo7O9He3g61Wq20ygDe8TDyoHD5OJvNBlEUYTKZ/IIQh8OhfNnL5wO8AYDNZoPdbocgCNDpdMr1jUaj0i2n0+lCXttsNkMQhJiPKy0thc1mg0ajgdPpRENDg3KMRqOBXq+PqU7k8/u2poUqo1qtRnt7O4xGI2pra5VuTFl9fT2MRqMSAOl0OqULzuVy+ZU1WOtdpLLLx8rniuZeiGh5kyQJ3zz8Nv7d9icAQO22MvxHwy7kZzNsUElSlNOyVpjh4WEUFxdjaGgIRUVFftvGx8fR09ODzZs3IycnJ7YLBM3jtM4bNCUoj1MyyAHaUsgTlUpqa2thMpliHpRdUlKCwcHBOJdqrrh8FogopUxMu7H/idfwP0fPAwAa3ynAePd1SE9bvoPAw33nB2LomCzb9gLX3bvomcNpaYhlQLbFYoHD4YDBYGA2cCKKifPKJAw/7kLn6UGkp6nwlft34MM3b0h2sVIKxzglU1o6sPkO4Aa9999lFjTJXXHylHaKjrxuoNlsntf4I51Oh9LSUlitVpjN5sQVkIiWpbf7R/GX//UiOk8PojAnAz/8290MmoJgV10ICe+qI1oG+FkgWh5efPsyPvWTboyMT2O9Jhff/3gNtqwpTHaxFg276oiIiCgq/33kLL708xOY9kio2lgCy0eqUFqQnexipSwGTkRERCuQxyPB9MybMP/em/7k/l0VMD1wI3Iyl9ewkXhj4ERERLTCjE1O4wuPH8NvTvYBAL6g24rP79m64pZPiQUDJyIiohWkb3gcn/xhJ06cH0ZWehq+Vncj7t+1LtnFWjIYOBEREa0Qr/cO4ZM/6MLF4XFo8rNg+UgVqjdpkl2sJYWBExER0QpgO9mHzz1+FGOTbmxZU4DvfawGG0qjX++UvJjHKYncHjc6L3biafFpdF7shNvjTti1bDYbDAYDVCqV3/Id82GxWFBSUrIoOZkW81q+qqqqYLVa/cpRW1sb07FERKlAkiQ89oKIfT/uwtikG7dvWYUnPn0rg6YYscUpSWxnbHj0yKPoG+tTnivLK8P+3fuh26iL+/V0Oh0EQYDFYsGBAwf81kKLVmNjo7LOXKIt5rV8mUwmv6zbcr3FciwRUbJNuT34l0Ov46evnAUAfGj3Bnz5/u3ITGe7SawYOCWB7YwNDz3/ECT45x7tH+vHQ88/hG+8+xsJCZ7kBX0pNJ3Ov97ns7ht4LFERMk0PD6Fz/7UjhdOXYZKBXzxnuvxyds3c+bcAjFwigNJknB1+mpU+7o9bjQfaZ4TNAFQnnv0yKO4ufxmpEexBEtuRi4/BERE5Oeccwyf+EEnTvWPIjczHd/80E2o3VaW7GItC0kLnERRhNVqhSAIEEURjY2NIbuPIu1rt9uxb98+dHd3+x0nj4/RarUQRREulyvm1ebDuTp9FTf/7Oa4na9vrA+3Pn5rVPu+8uFXkJcZWz+1zWaD0WiEwWBQ6rajo8Ovi8xut6O1tRU1NTUA5i4+a7PZYLfbIQgCOjs7YTKZYLVa0dzcDJfLBYfDgZaWFpjNZhgMBjQ1NQU9JpprBSt/qPOYzWa/sUmCIMDpdMJoNKKhoQFNTU2wWq0wGo0wm83Q6XTK+8hgMKCxsREul0sZD+ZwOJRz22w2pb70ej0EQZhzbDR1S0SUCN1nBtH4oy4MXJlEWVE2vvuxGuxYV5zsYi0bSQuc6urqlEBHFEXs27cv5JdKuH3lgCrYIGKz2QyLxQLA243CLy1/Op0OOp3O7wtdXpBXq9XC5XKhrq5OCRoAoLm5WfldFEUYjUbltXE6nWhpaUFTUxN0Oh327NkDl8sFtVqN7u5uqNXqkMc0NjaGvVagcOfZs2cPenp6lOC6pKQEhw8fhk6nQ0NDg3IOvV6P1tZW5bFWq/XbrlarYTabUVJS4nfNjo4OZZ+qqiocPnx4zrGR6paIKBEOHe/F37cfx+S0B9srivDdj9WgvJjrSMZTUgInURT9HguCEHKWV6R99Xp9yOtUVVVhcHAQAGIaDB2t3IxcvPLhV6Lat7uvG585/JmI+31rz7dQVVYV1bUXorS0FKWlpcpjtVqttPS0tbXN+ZL3HSdlNpuh0Wj8Xo/Ozk7lPAcPHkRVVRXa29uV+g91jFqtDnutQOHOo9Pp/F7veA3YNpvNc8ooCALa2trQ2Ng4Z/9wdUtEFE+SJOGbh9/Gv9v+BADQXV+G//zgLuRnc0ROvCWlRm0225wvRY1GE/R/4/PZN5hEBkwylUoVdXfZrRW3oiyvDP1j/UHHOamgQlleGW6tuDWqMU7JptVq/QZF+wYQcjDU2trq91oFO0ZuGVzotWM5DxHRUjYx7cb+J17D/xw9DwDYd8dm7H/f9UhP4/jXREjKfESXyxX0+WD/G5/PvsGOtVqtyliWwNYrXxMTExgeHvb7SYT0tHTs370fgDdI8iU/Nu42JiRomm9rhzzux5dvHTY0NMxpKZQfu1wu2Gw2tLe3K2PUwh0T6VqBQp2nvr4+7HnUajUGBgb8jgl8j4V6zwW7pt1uR319fcRjiYgSwXllEn/z2Cv4n6PnkZ6mwlf/6gZ88d5tDJoSKKXa8ObzpRPNvr6DyAVBQG1trd8YGl/Nzc145JFHor7+Qug26vCNd38jaB4n425jQlIRyEEM4L1XeTyOPMZHp9NBFEVlYLU8Db+9vR1GoxG1tbXKeKXm5maYTCZotVqYTCYYjUZlQLdOp4PFYoHJZILBYAAA1NTUYN++fRBFEU1NTUGPUavVYa8VmBIg1LVDnUdWX1/vlwBUp9MpXXAulwutra3QaDTKoO9g12xpaVEGpMvdkPLAdvlY+Vzh6paIaCHe7h/FJ37QibPOMRTmZOBbf63FHVtXJ7tYy55KkqS5/UUJZrFYYDab/WbBlZSUoL29fU4unGj3ValUCLwV3+48l8uFkpISOByOoF9aExMTmJiYUB4PDw9j/fr1GBoaQlFRkd++4+Pj6OnpwebNm5GTE/ugO7fHDXu/HZfGLmF13mpo12iXRPfcUlNbW6sEerEoKSlRxsqRv3h9Fohofl58+zI+/ZNuDI9PY70mF9//eA22rClMdrGWrOHhYRQXFwf9zg+UlK66UIkCgw3inc++vux2O/bs2TPn+VADjrOzs1FUVOT3k2jpaemoKa/BPcI9qCmvYdCUILEMyLZYLEr3LrOBE1EqefzIWXzse0cwPD6Nqo0l+PlnbmPQtIiSEjgFtvjIX05yl4rdblfGpUTa15dv950gCEpeH8DbVaXX6xdlsDilDovFAlEUYTab59UVrNPpUFpaCqvVCrPZnLgCEhFFyeOR0Pz0G9j/5GuY9ki4f1cFfvrgzSgtyE520VaUpHTVAVC+zGpqatDZ2em3flpdXR1qamrQ1NQUcV+bzYaOjg4lf1BNTY2SokBOVqhWq+FwOPwCqUjCNduxe4LIi58FosUxNjmNLzx+DL856R0X+wXdVnx+z1auHBEn8+mqS1rglOoYOBFFxs8CUeL1DY/jkz/sxInzw8hKT0OL/kb85U3rkl2sZWU+gVNKzapbahhz0krHzwBRYr3eO4RP/qALF4fHocnPguUjVajexAXbk4mBUwzS072DuCcnJ5Gbu7DM3URL2djYGAAgMzMzySUhWn5sJ/vwucePYmzSjS1rCvC9j9VgQ2lsa5NS/DBwikFGRgby8vJw6dIlZGZmIi0tKWPsiZJGkiSMjY2hv78farVa+c8EES2cJEn43oun8a+/OglJAm7fsgr/9ddaFOfyPyipgIFTDFQqFdauXYuenh6cOXMm2cUhShq1Wo3y8vJkF4No2Zhye/Avh17HT185CwD40O4N+PL925GZzv+gpwoGTjHKysrC1q1bMTk5meyiECVFZmYmW5qI4mh4fAqf/akdL5y6DJUK+OI91+OTt2/mzLkUw8BpAdLS0jiTiIiIFuyccwyf+EEnTvWPIjczHf/5wV1473a25qYiBk5ERERJ1H1mEI0/6sLAlUmUFWXjux+rwY51xckuFoXAwImIiChJDh3vxd+3H8fktAfbK4rw3Y/VoLyYPRmpjIETERHRIpMkCf/3ubfxjY4/AQB015fhPz+4C/nZ/FpOdXyFiIiIFtHEtBv7n3gN/3P0PABg3x2bsf991yM9jYPAlwIGTkRERIvEeWUShh93ofP0INLTVPjK/Tvw4Zs3JLtYNA8MnIiIiBbB2/2j+MQPOnHWOYbCnAx866+1uGPr6mQXi+aJgRMREVGCvfj2ZXz6J90YHp/Gek0uvvexGmwtK0x2sSgGDJyIiIgS6PEjZ/FPPz+BaY+Eqo0lsHykCqUF2ckuFsWIgRMREVECeDwSTM+8CfPvRQDA/bsqYHrgRuRkMuP+UjbvwOn06dNob29HR0cHBgcHlec1Gg1qa2uh1+uxadOmeJaRiIhoSRmbnMbftR7Ds6/3AQC+oNuKz+/ZyuVTloF5BU779++HSqVCfX09/uEf/mHO9qNHj+I73/kOVCoVmpub41ZIIiKipaJveBwP/rALr50fQlZ6Glr0N+Ivb1qX7GJRnKgkSZKi2fFrX/saGhsbUVwcOQ380NAQHn300SUdPA0PD6O4uBhDQ0MoKipKdnGIiGgJeL13CJ/8QRcuDo9Dk58Fy0eqUL1Jk+xiUQTz+c6POnBaaRg4ERHRfNhO9uFzjx/F2KQblavz8f2P78aG0rxkF4uiMJ/v/LRYL7J//3489thjGBoawnvf+140NDTgySefjPV0RERES5IkSfjuH3qw78ddGJt047YtpXjyM7cxaFqmYg6campq8OCDD8JisaCqqgqtra0YGBiIZ9mIiIhS2rTbgy/94gS+8suTkCTgQ7s34Ad/uxvFuZnJLholSMzpCEpKSgAAbW1tOHjwIADvzDoiIqKVYHh8Cp/9qR0vnLoMlQr44j3X45O3b+bMuWUu5sDJ4XBAkiQ4HA7s2rULPT09fukJiIiIlqtzzjF84gedONU/itzMdPznB3fhvdvLk10sWgQxd9XV19fDbreju7sbQ0NDMJvNcLlccSwaERFR6uk+M4i/+taLONU/irKibLR/6hYGTStIVLPqhoaGMDg4OK/ElsPDwwCwZGekcVYdEREFOnS8F3/ffhyT0x5sryjCdz9Wg/LinGQXixYo7rPqiouL0dHREfWsuSeeeAJtbW0MOIiIaFmQJAnfPHwKn/vvo5ic9kB3fRnaDLcwaFqBoh7jtG/fPhw9ehT19fWorKxETU0NBEGAWq2Gy+WCKIo4cuQIenp6YDAY8MADDySy3ERERItiYtqN/U+8hv85eh4A8ODtm3HgnuuRnsZB4CtRTAkwh4aG0NbWBofDAZfLBbVajcrKSuh0OmzevDkR5Vx07KojIiLnlUkYftyFztODSE9T4Sv378CHb96Q7GJRnM3nOz+mWXXFxcXYt29fTIUjIiJaCt7uH8Unf9iJMwNjKMzJwLf+Wos7tq5OdrEoyWJOR0BERLRcvfT2ZXzqJ90YHp/Gek0uvvexGmwtK0x2sSgFMHAiIiLy8fiRs/inn5/AtEeCdoMalo9WY1VBdrKLRSmCgRMREREAj0eC6Zk3Yf69CADYu7MCLfobkZOZnuSSUSph4ERERCve2OQ0/q71GJ59vQ8A8Pk9W/EF3VYun0JzxJw5HAC+9rWvoaGhAQBw+PBhJeklERHRUtE3PI4G8x/x7Ot9yEpPw3807MLf1V7DoImCijlw2r9/P9RqNXQ6HQBgz549sNlscSsYERFRop3sHcZf/teLeO38EDT5WfjZvpvxlzetS3axKIXF3FVXU1ODBx54AIcPH45neYiIiBbF4Tf68L/++yjGJt2oXJ2P7398NzaU5iW7WJTiYm5x6unpAQC/pszOzs6Fl4iIiCiBJEnCd//Qg30/6sLYpBu3bSnFk5+5jUETRSXmFqebbroJ1dXVKC0tRUdHB2w2G0wmUzzLRkREFFfTbg/+5anX8ZM/ngUAfGj3enz5/h3ITF/QkF9aQWJackXW09MDs9kMAGhoaMBNN90Ut4IlG5dcISJaXobHp/DZn9rxwqnLUKmAf3zf9Xjwjs0cBE7z+s5fUOAU7MLLJchg4EREtDS5PRKO9DjRPzKONYU52L1Zg17XVXziB5041T+K3Mx0/McHd+Gu7eXJLiqliISvVed7IafTqTw2mUz49re/vZBTEhERxeyZExfwyFMncWFoXHmuND8Lk24PRsanUVaUje9+rAY71hUnsZS0lMUcOH3qU5+CzWaDWq1Wnuvp6WHgRERESfHMiQv49E/sCOxGGbgyCQBYX5KL9k/divLinMUvHC0bMQdOlZWV+M53vuP33MGDBxdcICIiovlyeyQ88tTJOUGTrym3hNWFXHOOFibmaQRy4ktftbW1CyoMERFRLI70OP2654K5ODyOIz3OsPsQRRJzi1NJSQm+/vWvQxAEqNVquFwutLa2orW1NZ7lIyIiiqh/JHzQNN/9iEKJOXBqamqCy+XyG+N09OjReJSJiIhoXiK1NsnWFHJ8Ey1MzIFTbW0t9u3b5/fcE088EfXxoijCarVCEASIoojGxka/IGw++9rtduzbtw/d3d0xX4OIiJYe8dIo/vVXb+C5N/vD7qcCUF7sTU1AtBALGhwezXOh1NXVKYGOKIrYt28f2tvb572vHBjZ7fYFXYOIiJaOoatT+L+HT+EHL53GtEdCRpoK77pmtRJA+Q4Sl9NbPnzfNqSnMdklLUzMgZPD4YDZbEZNTQ0A79o/bW1tUa1XJ4qi32NBEGCz2WLaV6/XL/gaRES0NLg9Elo7z+H//OYtJc3Andeuxj+9fxsqVxcEzeNUXpyDh+/bhrt3rE1WsWkZiTlwMpvN0Ol08E08Hm0ScpvNBo3Gv7lUo9HAbrdDq9XGvG88jiMiotT0R3EAjzx1Em9cGAYAVK7Oxz+9fxvuvHaNss/dO9aidlv5nMzhbGmieIk5cDKZTNizZ4/fc8FSFATjcrmCPu+bhTyWfRdy3MTEBCYmJpTHw8PDYc9PRESL45xzDM2/fgNPv3YRAFCUk4Ev6K7BR27ZGHRx3vQ0FW6pLF3sYtIKEXPgFBg0Ad4UBQsRKthZ6L7RHNfc3IxHHnkkpnMSEVH8XZmYxrefd8DygojJaQ/SVMCHb96Ah2qvhSY/K9nFoxUq6sDpySefhE6nUxa/e+yxx/y2u1wudHR04Nlnn414LrVaPaflx+l0Bp3xNp99F3LcgQMH8NBDDymPh4eHsX79+rDXICKi+PN4JPz82HmYnnkTfcPenoBbK0vxpfdvw/Vrueg6JVfUmcO/+tWvoqurS3n8ne98B4ODg8qPJEkYGBiI6lyhuvSqq6sXtO9CjsvOzkZRUZHfDxERLS772UH81bdfwkNtx9E3PIENmjyYP1KFnz54M4MmSglRtzj5Bk2Ad126m266ye+5aMc4CYLg91gURVRXVyutQXa7HWq1GoIgRNzXl29CzvkcR0REyXVxaBymZ97E/xw9DwDIz0rHZ9+zBZ+4bTNyMtOTXDqiWQtackU2NDQEm82GqqqqqI9vb2+H0WhETU0NOjs7/fIrNTc3o6amBk1NTRH3tdls6Ojo8DtOTlEQ7jgiIkq+8Sk3Dv5exLeed+DqlBsAUFf1DvzDXddiTRGzfFPqUUnR5hAI8Nhjj+HBBx+M+NxSNTw8jOLiYgwNDbHbjogoziRJwtOvXcRXn34D511XAQBVG0vw8H3bcOM71MktHK048/nOn1eL09DQENra2qBSqZRWHl/d3d3LJnAiIqLEeL13CI88dRJHerwTeNYW52D/+67D3p0VUKmYb4lS27wCp+LiYuh0OphMJjgcDmzevNlvu9y1RkREFOjy6AT+z2/ewuOd5yBJQE5mGgzvrMSn3lWJ3CyOY6KlIeauusOHDwfN5bRcsKuOiCg+Jqc9+OFLp/HNw6cwMjENALhvZwX2v+86rFPnJrl0RAnsqvO1nIMmIiJaOEmS8Nyb/fjXX72BnstXAAA3rCvGP9+3DTWbNBGOJkpNMQdOREREoZzqG8GXf3kSL5y6DABYVZCNpruvhV77DqRx3Thawhg4ERFR3LjGJvEftlP48R/PwO2RkJWehk/cvhmfvbMShTmZyS4e0YIxcCIiogWbdnvwsyNn8Y2OP8E1NgUAeO+2Mnzx3uuxsTQ/yaUjip+4Bk6nT5/Gpk2b4nlKIiJKcX84dRlf/uXr+FPfKADg2rJC/PN923DbllVJLhktGx43cOYlYLQPKCgDNt4KpCVnJuaCAqdjx475LaRrNpvR2tq64EIREVHqO335Cv7t6TfQcbIPAKDOy8T/rr0GH9q9ARnpUS+FShTeyUPAM0ZguHf2uaIK4G4TsG3vohcn5sCpvr7eb204ADh69Gg8ykRERClsZHwK/++3b+N7f+jBlFtCepoKH/mLjfiCbivUeVnJLh4tJycPAW0fBRCQOWn4gvf5+h8tevAUc+BUW1uLffv2+T33xBNPLLhARESUmjweCdbuP6Pl2bdweXQCAPDOa1bjS/dej61lhUkuHS07Hre3pSkwaAJmnlMBz+wHrrt3UbvtYg6cKisro3qOiIiWvs7TTjzy1Os4cX4YALB5VT6+9P7rcee1a7hMCiXG6Rf9u+fmkIDh896xT5vvWLRixRw4ORwOmM1m1NTUAPAmOmtra0NnZ2fcCkdERMl13nUVzU+/gV++egEAUJidgc/rtuKjt2xCVgbHMVECXHoLeLUN6P5+dPuP9iW2PAFiDpzMZjN0Oh18V2yJcfUWIiJKMWOT0/jO70SYf+fAxLQHKhXwwZoN+N/vvQarCrKTXTxabkb6gBNPAK+2AheOze/YgrKEFCmUmAMnk8k0Z9kVnU634AIREVHySJKEQ8d78eiv38SFoXEAwM2bNfjn+7Zhe0VxkktHy8rEKPDmr7zBkvhbQPJ4n0/LALbogBv0wG++BIxcRPBxTirv7LqNty5mqeO3Vt1zzz0Hl8uFm266acGFIiKixXf8nAtf/uVJdJ8ZBAC8oyQX/3jP9XjfjnKOY6L4cE8DPc97u+Le+CUwdWV22ztqgBsbgO1/BeTP5ABLz56ZVaeCf/A08368+9FFz+e0oDxOTz75JERRBOD9X0pXVxc+8IEPxKVgRES0OPqHx9Hy7Fuwdv8ZAJCXlY7PvLsSD94hICczOUkGaRmRJG/326ttwGtW4Er/7LaSzcDODwI31AGlQSaYbdvrTTkQNI/To0srj9P+/fvhcrngdDohCAJcLhcMBkM8y0ZERAk0PuXG917swX899zauTLoBAB+4aR2a7r4O5cU5SS4dLXmDZ4DX2rwB0+U/zT6fqwF2POBtXXpHNRCpNXPbXm/KgaWeObyyshL79u1DT08PVCoVNm3ahOeeey6eZSMiogSQJAnPvt6Hf3v6JM45rwIAdq1X4+H7tuGmDSVJLh0taVcHgdd/7g2Wzr40+3xGDnDtPd5gacseIH2eCz6npS9qyoFwYg6cBEHAmTNnsHnzZnz961/H3//938ezXERElABvXBjGl586iZfFAQBAWVE29r/vOty/cx3S0jiOiWIwPQH86VnvIO9TvwHckzMbVN5g58YPAtffB+QUJbWY8RJz4ORyuSAIAgYHB3H58mXcddddUKvVeM973hPP8hERURw4r0zi//zmLfz3kbPwSEBWRhoM7xTwqXdVIj87ruu900rg8QDn/ggcfxw4+XNgfGh2W9kO4MZ6YIceKF6XtCImikqKU/Klw4cPo7q6GsXFy2O66vDwMIqLizE0NISiouURJRPRyjPl9uBHL5/Bf9r+hOHxaQDAvTesxf73XYf1mrwkl46WnEtveVuWXm0Hhs7OPl9YAdxYB9xQD5TvSF75YjSf7/wF/Tfja1/7Grq6utDa2goAnK5KRJRCfvtWP/71lyfhuOSd8r1tbREevm8bbhZKk1wyWlJGLvokpzw++3xWIbDtfmBnA7DxtqQN1l5sC5pVV1lZqSS93LNnD5588kmmIyAiSjLHpVH86y9P4rdvXQIAlOZn4e/vuhb11euRznFMFA0lOeXjgPh8QHLKWm9X3LXvAzJzk1rMZIg5cKqpqcEDDzyAw4cPx7M8REQUo6GrU/jm4VP44UunMe2RkJmuwsdv3YT/tWcrinLmOYuJVh73tDdIerUVePOXwNTY7LZ37PYGS9s/AOSv7BbLmAOnnp4eAP7dc52dnWxxIiJaZG6PhMc7z+L//OZPcF7xzmjSXb8GX7x3Gzavyk9y6SilSRLQe9SbPuCEFbhyaXabRvCmDwiVnHKFijlwuummm1BdXY3S0lJ0dHTAZrPBZDLFs2xERBTBS47L+PJTJ/HmxREAwNY1BfjS+7fhndesTnLJKKUNngZea5+bnDKvdDY55bqqyMkpV6AFzarr6emB2WwGADQ0NCyrdeo4q46IUtk55xj+7Vdv4JnXLwIAinMz8Xe6rfjrv9iIzPS0JJeOUtKY05s64NU24OzLs89n5Hgzc9/YAFS+Z/7JKReB2+OGvd+OS2OXsDpvNbRrtEiP42D0+Xznxy0dwXLDwImIUtHoxDS+9du38dgfejA57UF6mgp/ffMG/J3uGpTkZyW7eJRqpsa9SSlfbfUmqfRMzWxQAZvf6Q2WUjw5pe2MDY8eeRR9Y33Kc2V5Zdi/ez90G3VxuUZC0hFEkx38sccew4MPPhjtKYmIKEoej4Qnj55HyzNvon9kAgBw+5ZV+NL7t+Ha8sIkl45SisfjbVF6tTVIcsobvIO8b9B7F8pNcbYzNjz0/EOQ4N/G0z/Wj4eefwjfePc34hY8RSvqFieNRoOampqw+3R1dWFgYCAuBUs2tjgRUaroPjOILz/1Oo7/2fsFuLE0D/907zborl/D/Hk0q/9Nb7D0WjswdG72+aJ13gHeN9YDZduTV755cnvcuOuJu/xamnypoEJZXhmeeeCZBXfbJaTFac+ePSgtLUVVVVXIfdjrR0QUPxeGrsL06zfx82O9AICC7Az8r/dswcdv24TsjJWRbJAiCJWcMrsI2LbX2xW38XYgbWmMe/NIHvRd6UPPcA9+d+53IYMmAJAg4eLYRdj77agpD9+wE09RB07t7e0YGhpCV1cXAG8ep8CoTKPRxLd0REQr0PiUG5bfi/j28w5cnXJDpQLqq9bjf991DdYU5iS7eJRsE6PePEuvts5NTrn1vd6WpWvuTunklKOTozgzfAY9wz04PXQap4dP4/TQaZwZPoNx9/i8znVp7FLkneJoXukIiouLsWfPHgDA0aNH4XQ6oVKplIV9H3jggfiXkIhohZAkCb967QKan34T511XAQA1m0rw8H3bsWPd8lgHlGLkngbE384kp/zV3OSUOxuAbX+VUskppz3T6B3txenh0+gZ6lGCo9PDp3H56uWQx2WoMrC+aD2Ks4px7NKxiNdZnbe4qTcWlMdJ9txzz6GjowO1tbVKEEVERNE7cX4IX37qJI6cdgIAKopzcOCe6/H+G9dyHNNKFTY5ZaW3G+7GOm+iyiRyjbuCBkdnR85i2jMd8rjSnFJsKt6ETUWbsLl4MzYVbcKm4k1YV7AOGWkZyhin/rH+OYPDgdkxTto12kTe3hwLWuT32LFjMJvNaG1thSAIqKysZOBERDQPl0Ym8PVn30Jb9zlIEpCTmYZPv2sLGt8pIDeL45hWpMHTwKvt3talgVOzz+et8klOqV3U5JST7kmcGzmH00Onle61M8NncHr4NFwTrpDHZadnY2PRRmwq2oSNRRv9AqTCrPCzQdPT0rF/93489PxDUEHlFzyp4L13425jXPM5RWPegdPp06fR3t4Os9kMlUqFBx54AN3d3di8eXMiykdEtCxNTLvxgxdP4/8+9zZGJ7z/K79/VwWMd1+HCnXqjk2hBBlzAq//j7d16dwfZ59XklN+EKi8M6HJKSVJwuWrl4O2Hp0fPQ+PPJYqiPL8cm9ANBMUbS7ajE3Fm1CeX440VewD03UbdfjGu78RNI+Tcbdx0VMRAPMInB577DGYzWaIooj6+nq0t7fPyRT+5JNPcq06IqIwJEmC7Y1+/NuvTuL0gHecyo3vKMbD921D1UZOsFlRpsaBU896g6XA5JTCu7wtS9e9P+7JKa9OX/W2FsmDsn0CpCtTV0Iel5+Zr7Qc+QZHGwo3IC8zL65l9KXbqMOd6+9MaObw+Yg6j1NaWhr0ej0aGhqgVqvn9LkPDg7i0UcfRWdnZ0IKutiYx4mI4u1PfSP4yi9P4oVT3oGxqwuzYbz7OnzgpnVIS+M4phXB4wHOvuTthnv9F8CET3LK8hu8wdKOBxacnNIjeXDxykW/rjU5SLp45WLI49JUaVhXsE5pOfIdf7Qqd9WyHW+XkDxOjY2NaGlpCZurqbW1NfpSEhGtEK6xSfx7x5/wk1fOwu2RkJWehgfv2IzP3LkFBdkLGmpKS0X/m8Crj3vHLg3/efZ5JTllA1C2bd6nHZkc8U7rDxyYPXw27LT+4uzioF1r6wvXIyudS/eEE/Un1mAwRIzCDhw4sOACEREtF9NuD376yll8o+NPGLrq7Ya5e3s5/vGe67GhNHFdG5QiRi4Cr1m9rUsXX519PrsI2Hb/THLK2yImp5z2TOP86HklKPINkgbGQ6/WkZGWgQ2FG4K2Hqlz1HG6yZUn6sApcDxTrPsQEa0EL5y6hC8/dRKn+kcBANeVF+Kf79uGWytXJblklFATI8AbM8kpe37nk5wy0yc55V1Bk1MOjg8qAZFv99q5kXNhp/Wvyl0VNDiqKKhARhpbNOONNUpEFEc9l6/g3351ErY3+gEAJXmZ+Pu7rsUHazYgneOYliff5JRv/BKYvjq7bf3N3mBp+weAPA0m3ZM4O3xWGW8ktx6dGT6DId/xTgFy0nOUQdm+3WsbizaiIKtgEW6SZAyciIjiYGR8Cv/vubfxvRd7MOWWkJGmwkdv2YTP79mK4rzETSGnJJEkoNc+k5zyCb/klJJGwKXt9+P0+l04LU16g6OXvojTQ6fRe6U37LT+tflr/VqP5ACpLL9sQdP6KX4YOBERLYDbI6G96xy+/pu3cHl0EgDw7mtX45/u3YYta9gSsOw4e4DXvMkpx5wOnMnMwOnMTJxeXY7TpRtxOisbZ8Yv4cqfnwD+/ETQUxRkFswJjjYVbcKGog3IzWAOr1THwImIKEZHepx45KnX8XrvMABAWJ2PL927DXdetybJJVvZ3B533HL+eCQPLlx+A6dPPI7TPc+h58p5b6CUl4G+ovX+O09cACa8v6ar0r3T+gOCo83Fm1GaU7psp/WvBAyciIjm6c+DY2j+9Zv41asXAACFORn4gu4afPSWjchMZ3dKMtnO2IJmmd6/e3/YLNPDk8PKMiI9Qz047RJx+vIJnL3ajwl5qY90AEX+y4SUZJfMCY42FXmn9WcmMMs3JU/SAidRFGG1WiEIAkRRRGNjI9Rq9bz3DbfNbrcDALRaLURRhMvlgla7uIsBEtHyMTY5je8874D59yImpj1IUwEf2r0BD9Veg9KC7GQXb8WznbHhoecfmrMgbP9YPx56/iG0vKsF15Vc55fvSB6c7Rx3hjxvpiRhg5SOTYUbsGndzdi0eofSelScXZzo26IUE3Xm8HirqqpCd3c3AG/wYzQa0d7ePu99w20zGAywWCwAAJ1Oh/b29pDBWSBmDicimSRJ+MWxXjz66zdxcdibVPAWoRT/fN82XL+Wfx9Sgdvjxl1P3OXX0jRfazwSNk1MYNPUFDZNTWNjZjE2b30fKnZ9HOnlO+JYWko1CckcHk+iKPo9FgQBNptt3vtGOk9VVRUGBwcBIOqAiYjI17FzLjzy1Os4etYFAFivycUX77ked20v5ziVReaRPBi4OoCLVy7iwpULuHjlIi6OXcTFKxfx9uDbUQVNWWlZENQCNuWWYdPVEWy6+AY2XRKxaWoa+ZIEZBcD22eSU264NWJySlp5khI42Ww2aDT+i1lqNBrY7fY5XWnh9u3q6op4HgZMRBSO2yPhSI8T/SPjWFOYg92bNUhPU6FveBymZ97Ek/bzAIC8rHR89s4t+OTtm5GTmZzFRZczSZIwMjWCC6MX0DfWhwujF5SgSA6S+sb6wiaCjMaX192Ne/98Auj+CSB36aVlAtfcM5Oc8m4gM2fhN0TLVlICJ5fLFfR5p3NuH3O4fSOdx+VywWq1AgA6OzthMBggCELQYyYmJjAxMaE8Hh4eDlF6IlounjlxAY88dRIXhmbX9CovysbNQik6TvZhbNINANBXvQNNd12LNUX8Qo3V+PS4NyCSW4p8fuTnxqbHIp4nTZWG1bmrsTZ/Lcrzy7E2fy3K8sswMjmC/zr2XxGPX3PkIDA+87d+/V/MJKf8KyBPE/5AohkpNasuVCA0333lbb4DxQVBQG1tLRwOR9Bjmpub8cgjj0R9fSJa2p45cQGf/okdgYM8Lw5P4BfHegEA2g1qPHzfduxcr1708i0l055pXL562b8LLeD3wYnBqM5Vkl2C8vxyvx/fIGlV7qqgy4i4pydh7f5/6E8DpCBdqCpJQpnbDW3eOuCWD3kX1tVsXvC908qTlMBJrVbPaV1yOp1Bu9XC7RvpPKIoKl128qw7URSDtjodOHAADz30kPJ4eHgY69evn7MfES19bo+ER546OSdo8qXOy0Sb4RZkrPD0ApIkwTXhCt1SNHYRl8YuwS25I54rNyN3TktReV451hasRXleOcryy2JOAJn+xi+w//JlPLRmFVSS5Bc8qWbmQBkHBpFe1wZsfmdM1yACkhQ46XQ6mM3mOc9XV1fPa19BEEJus9vt2LNnjzI4XBY4JkqWnZ2N7GxOJyZaCY70OP2654JxjU2h8/QgbqksXaRSJcfY1Nicwda+44v6rvRh3B2+rgAgQ5XhDYTklqK82ZYi+acoqyh+A+rHh4CeFwDHc96fwR7oAHyj/zIeLS1BX8bs11uZ2w3jwCB0Y1eB0f74XJ9WrKQEToEtPqIoorq62i//klqthiAIYfcNbKHy3SYIAkwmk7LNZrNBr9dzsDjRCtY3PI6njvfiRy+fjmr//pHIAUMqm3JPoW+sz2/2WWAX2vBkdOM5V+WuQnle8C608vxylOaUxpydOyruaeB8t3cxXcdzwJ+7AN9WLlUaIHmgG7uKO8euwp6TjUvp6VjtdkM7PgGlZAVliSsjrQhJG+PU3t4Oo9GImpoadHZ2+uVwam5uRk1NDZqamiLuG2qbWq1GdXU1WlpaoFar4XA4QuaJIqLlyzU2iV+fuIhDx3rxx54BzCdz3ZrC1B0M7pE8cI47g84+k38uX708JxlkMIWZhSjLL/PrRvMNkMryypCVnrUIdxXAKc60KP3W27o0MeS/vXQLUPke78+GW4Bv3wIMX0A6JNSMTwScTAUUVQAbb1204tPylLQEmKmOCTCJlq4rE9OwvdGHQ8d68ftTlzDlnv0zV7WxBO+/cS2+/bwDl0YmgoYVKgDlxTn4g/E9SE9b/FxN8tT8ULPP5Kn5U56piOfKSsuaM9haCY5mWpAKslJkMeKrLqDn995gSfwtMHjaf3tuCbD5XTPB0p2AeoP/9pOHgLaPzjzwfWVnXsP6HwHb9iam7LSkpXwCTCKieJuYduN3b13CoeO9OPxGP65OzXbjXL+2CHt3VuC+nWvxjpI8AMDa4hx8+id2qOBBWl4PVBkjkKYL4RnbDCAND9+3LWFB04R7ImRAJHerXZm6EvE8aao0rMpdNdtC5DPQurzA+1iTo0ndRJ3uKW/3mzxO6Xw3IHlmt6dleFMGVL7bGyyt3QWE6w7cttcbHD1jBIZ7Z58vqgDufpRBE8UFAyciWrLcHgl/FAdw6Fgvfn3iAobHZ5MjbirNw96dFdi7qwJb1hTOOfbuHWvxmXvH8ONT34SU7lKeV7nV+MjWz+HuHWtjLJMbl65eCh4YzXSphVsXzZc6W60ERMHGFa3OW43MtCW0kKwkBXS//R6YHPHfZ9U13iBJuBPYdBuQPfe1C2vbXuC6e4EzLwGjfd4xTRtvDR9wEc0DAyciWlIkScLRcy4cOtaLX712AZdGZseylBVl4/03VmDvzgrc+I7isC0ttjM2/Fj8CqT0gM669CH8WPwKbtpQAt1G3ZxruyZcc6bjXxydDYr6x/qjnprvGxQFG1eUl5k3v8pJRVcHAfF3s4O6XWf9t+dqAOHds91vxe9Y+DXT0oHNdyz8PERBMHAioiXhrYsjOHT8PJ46fgFnnbMZptV5mXjfjrXYu7NCWS4lErfHjUePPBp04LT83MMvPYw3nG+gf6zfr/Uomqn56ap0lOWVhZyBtjZ/bXyn5qcS9xTw587ZVqVee0D3Wyaw4S+8QVLle4DynVwPjpYUBk5ElLLODozhqVd7cehYL97qm+3SyctKR+22Mty/qwK3b1mNzHQVJj2TGJocxJXJKxidGsXo1CiuTF1RfkanRjE6OYqx6TGcHjodcUHY4clhWF61BN2mydHMmYGmzErLK8eq3FWJnZqfSiQJGHDMjlM6/Ye53W+rr/N2vVW+x9ttlp0ig9GJYsBZdSFwVh1R4rk9blyZvoIrk7PBzfmhQbzg+DOOnLmAc65BqNLHoUqbQHr6JNaogVVFEnKyp3B12j8oWujir8HsLt+N3eW7lQHXa/PXYk3+GmSnr/BkuWNOoOd3s61KQ+f8t+eVzgRKd3r/LV6XnHISRYmz6ogSxO1xw95vx6WxS1idtxraNdqV07IwQ5IkjLvHvQHL5KgS+Pi28Mi/j07ObfXx/f3q9NXQF8oBcsr9nxoAMBAhX2NeRh7yM/ORn5mPgswC5GflIz8jHwVZBcpzznEnnjj1RMR7/dTOT6GmvCZypSx305M+3W/PAb1H4TfdPz1rpvttZlB3+Y3sfqNli4ETUZRsZ2x49Mijfl08ZXll2L97/5xBxKloyjOFsakxvy4rObAJGfQECYquTF2JavDzfEhSOiR3DuDJhuTJRn5mPtYWqrFZUwpNXqE3AJIDoYCgyPe5vIy8qAJZt8eNP5z/A/rH+oOOc1JBhbK8MmjXaON6n0uGJAGXT80O6O55AQhMj7D6+tnkkxtvAbLyk1NWokXGwImCYsuKP9sZGx56/qE5X7L9Y/146PmH8I13fyMhwZMkSbg6fXV2zM7kFb9gJtg4HnmfwKBowh2YSXlhVFD5BzHy71mzv/tuK8gsQFZaLsS+afzRcQV/fPsKrk5kQPLkAFIGrisvxH07vTPi1msSO5ssPS0d+3fvx0PPPwQVVH6vq2omWaJxt3FlveevDAA9z8+0Kj0PDP/Zf3veqtkB3cK7vbmRiFYgjnEKIVFjnMIFJPMJVhIZ2Cz1lpV4c3vcuOuJu0IOJpZbJ5554BnlNZh0T4bsslKemxpVWoBC7XNl6kpUS2bMR3Z6dlStN/LzBZkFyMvMm7NPbkYu0lSRu2PcHgmv9AzgqeO9ePq1ixi6Opvter0m15traec6XFs+z3w9cRDsvV6eVw7jbuPyf69PTwLnXpntfrtwHP7db9neliR5UHfZDna/0bI1n+98Bk4hJCJwCheQAIg6WElkYBOqZUX+X3iiWlYSSZIkTHumMemZxKR7EhPuCUy5p5THyr9u/8dTnilMuidxavAU2v7UFvE6q3JWwS25MTo1GtVSGPORrkqfDV7CjN2Z08qTVYC8jDwUZM0GQIuRMFGSJBz/8xAOHevFL1/tRb9PrqXVhdl4/43e9AG71quTPiV/xbSuShJw+U8+s99enNv9tmb7TKvSncCGW4GsZZBHiigKDJziIN6BU7iAJFSLQrBgJZGBTSwtK6FMe6b9go8J9wQmPZPegCUwWPH5fcoz5d135vmw+89sl/eXrxUsEEqW3IzcoAFNYLdWsNYf36AoJz0n6QFGNE71jeDQ8V4cOt6LMwOzuZaKcjLwvh1rcf+uCtwslCZl/bcV6cplQHzeO/PN8Rww0uu/PX+Nf/dbYXmwsxAtewyc4iCegVOkgCQc32AFQMTzrMlbg5/d8zN4JA8mPUFaV4IEH5NubwDicDnwc8fPI5Zpq3orstKzwgY2Ht+EdykmQ5WBzPRMZKdnIystC5npmchKz0JWWpb334DfhyeG8crFVyKe9x93/yNqymu8rTyZecjLyENG2vIfRnjOOZtr6c2Ls/l7cjPTodtWhr07K/DOa1YhO2MZtuKkmukJ4OwfZwd1Xzjuvz0jB9hwy+yg7rLtwBIIyIkSjekIUoy93x5T0AR4sxhfHLuIvT/fi2nPdMTz9I/1Q2dNbFfaKdepee2fpkpTAhQ5WMlKnwlY0rKQnZ6t/C4HLcq+Po/9Ahvf4Gae+0czLseXHPhGmoFVf2398uziCeLSyAR+9aq3Zcl+1qU8n5muwruuWY37dlagdlsZ8rL4JyahJAm49OZsPqUzLwJTY/77lN0wu0juhluAzNykFJVoueBftUVwaezSgs9xduRs5J18hAoaMtMyQwYfQxND+P3530c892d2fgbbSreFDISy0meCoZlrLfVWF87A8hq6OoVnX7+Ip4734sW3L8MzUw0qFfAXm0uxd1cF3rejHOq8rOQWdLkbvTTT/fact2Vp5IL/9oKy2XxKwruBwrJklJJo2Vra32hLxOq81Qs+xxe0X0BGWga+3vX1iPt+973fxe61u+d9jWhbVhpvbFz2QUIg3UYdvvHubwQdlL+cZ2BdnXTj8Jt9OHSsF8+/dQmT7tku2J3r1di7swLvv3EtyopykljKZW5qHDj3x9lB3Rdf89+ekQNsvG12kdw129j9RpRADJwWgXaNFmV5ZSEDknDkYOXj2z8OAPjxyR9HDGyqyqpiKidbVsLTbdThzvV3LvsZWFNuD/5w6jIOHe/Fb16/iCuTs8kut64pwN6dFbhvZwU2rWLCw4SQJKD/5OyA7jMvAYEZ1stvmB2ntP4vgEwGrkSLhYPDQ0jUrDoAcwIS+XGoYCXYrLpg5wncdyFlXbG5bVYoj0fCkdNOHDrei1+/dgGDY7PpFNapc7F3lzcx5XXlhUtidt+SM9rvDZTE33r/Hb3ov71w7Ww+JeHdQMHCW7GJaBZn1cXBYuVxkgMSYG4ep1DBymIENismt80KJkkSTpwfxi+OnccvX72Ai8PjyrZVBVm494a12LtrHbQbkp9radmZugqcfXk2S3dfYPdbLrDp9tlUAauvY/cbUQIxcIqDlZw5nJa3t/tHceh4L5463ouey7MJEAtzMnD39nLs3VWBW4RSZKQzS3TcSBLQ9/rsOKWzLwPT4/77rN05O6h7w18AGdnJKSvRCsTAKQ4SFTgRJcN511U8ddyba+nkhWHl+ZzMNOy53ptr6d3XrmaupXgauTg7+83xW+BKv//2worZAd3Cu4H8VckoJRGBeZyICMDA6ASefu0CfnGsF11nBpXnM9JUuGPrKuzdVYHabeUoyOafgbiYHAPOvjQzqPu3QP/r/tsz82a632YGda+6ht1vREsQ/2ISLSMj41N49vU+HJrJteSeSbakUgG7N2lmci2thSafuZYWzOMB+k7M5lM68zLgnvDZQQVU7Jod1L1+N7vfiJYBBk5ES9z4lBu/fbMfvzjWi+fe6sfk9GyupRvWFXtzLe1ci7XFzBgdlMftnfI/2udNHrnxViDUeMHhC7PLmYjPA1cCktsWvWN2QPfmdwH5pQkvPhEtLgZOREvQlNuDF9+Wcy31YXRiWtlWuTofe3euw30710JYXZDEUi4BJw8BzxiBYZ/Fb4sqgLtNwLa93u63My/NDuq+9Ib/8Zn5wOY7ZrvfSrew+41omWPgRLREeDwSus4M4tDx83j6tYtwXplUtq1T5+L9O9di784KbFtbxPQB0Th5CGj7KBCYTHa4F2j7iDcD98DbgHvSZ6MKqLhpNlB6Rw2QwW5PopWEgRNRCpMkCa/3DuOpmfQBvUOzU9hL87Nwzw1rcf+uCmg3lCAtjcFS1Dxub0tTuEz+/Se9/xavn539tvldQJ5mUYpIRKmJgRNRChIveXMtHTreC/HSbK6lguwM3DWTa+m2SuZaisr4kLfl6PLb3n8HTgG9x/y750L5SzOws4Hdb0SkYOBElCJ6XVfxy1e9wdKJ87O5lrIy0rDnujW4f1cF3n3tGuRkMtfSHNOTwODp2cDIN1AKzJ80H+kZDJqIyA8DJ6Ikcl6ZxNOvXcChY704ctqpPJ+epsLtW1Zh784KvHd7GQpzMpNYyhQhScDIhZmg6BQw4JgNkgbPAJI79LEFZUDpVqC0Eli1FZieAJ77SuRrFpTFr/xEtCwwcCJaZKMT0/jN6xdx6Hgv/nDqMqY9s+NsajaVYO+udbhnRzlKC1Zozp/x4ZmWo7d9gqS3vYHS1JXQx2UVeAOj0i0zQdKW2cc5AZmAPW6g67ve9AJBxzmpvLPrNt4azzsjomWAgRPRIhifcuP5t/px6HgvDr/RjwmfXEvbK4pmci1VYJ16heRack/Ndq0pgdHMz2hf6ONU6UDJppmgaAuwastsoFRYHn23Wlq6N+VA20cBqOAfPM2c4+5HQ+dzIqIVi4ET0Ty4PRKO9DjRPzKONYU52L1Zg/QQs9mm3R685BjAoeO9ePbERYz45FoSVuXjvp0V2LurApXLNdeSJHnXa1PGHTlmg6TB0+G71vLXeLvUSitnW49WbQXUG+M3/X/bXqD+RyHyOD3q3U5EFICBE1GUnjlxAY88dRIXfFICrC3OwcP3bcPdO9YC8OZasp8dxKHjvXj6tQu4PDqbA6i8KAf37VyL+3etw/aKZZRraWJk7qw1uWttcjT0cZn5s11pqwK71ooXp+zb9gLX3Rt95nAiWvFUkiSFSWSycs1npWRa/p45cQGf/ol9zmgYOfT5x3uux8CVSTx1vBfnXVeV7SV5mbjnBm9iyppNmqWba8k95R2APeDTrSYHSqMXQx+nSvO2EimB0ZbZQKlwLWesEVFKmM93PluciCJweyQ88tTJoEOI5ef+7enZpTjys9Lx3plcS7dvWYXMpZJrSZK8rS7Bxh0NngY806GPzV/tP2tNHndUsomZtYloWWHgRBTBkR6nX/dcKDWbSvDxWzfjPdetQW5WCnf1TIzMTOUPMmttciT0cZl5QWatzXSv5aoXrfhERMnEwInIx9VJNxyXRuG4NIpTfaM41T+Co2ddUR37N3+xEffeuDaxBYyWewpwnZ3bcjTwtjcXUiiqNEC9wWdAtu+stbVA2hJpPSMiShAGTrQijU5M4+3+UZzqG8Hb/aPe3/tHcW5wDLGO+ltTmBPfQkYiScBof/Bs2YM94bvW8lYFn7VWsgnIWKH5o4iIosDAiZY119ikEhTJLUiO/lG/xXIDqfMysXVNAbasKcTWNQWoXJ2Pf7C+iksjE6FSJaK82JuaICEmRgGnY2627AEHMDEc+riMXP+Zar4z13JLElNWIqJljoETLXmSJOHy6CRO9fu0HvV5g6XLoxMhj1tdmI2tawpmgqSZQKmsAKX5WXNSBXz5/u349E/sSIcHNWlvYg1c6IcanZ7r4EEaHr5vW8h8TlFxTwOuM0EyZjuAkXCL0aq8XWtBZ61VsGuNiCjOGDjRkiFJEi4OjytB0dszgdKp/lG4xqZCHrdOnYvKmQBp65oCbC0rwJbVhSjOi379t7t3rMWTd15GxcuPoAwDyvN9KEXvLQ/jph1RjG2SJODKpeCz1pw9gCf0PSCvNMi4oy1AyWYgc5G7CImIVjAGTpRyPB4Jfx68qrQgnZr5cfSPYnQi+LgdlQrYoMnzdq2tKcBWuZttTQEKsuPwNj95CDe9/HlIAZ11a+BE2cufB9aXzGaanrzi06Xm8J+1NjEU+hoZOf5da77rreUlqBuQiIjmhYETJc2024MzzjGc6vNvPXJcGsX4lCfoMRlpKmwszfMGRmVyF1sBKlcXICczQSkAPG7vshyQENgZp5IDqf/5FHDEAjhFYPh8mJOpAPV6/wHZ8gDtonXsWiMiSnEMnCio+azJFsnEtBs9l68oY4+8AdIIei5fwZQ7+BS2rPQ0CKvzsbWsEFtWe7vXtq4pwMbSfGRlxDm4cE8BV13A1cGZH6fP74PAxdf91zILZuoKcPqF2ce5mrnjjkq3ABqBXWtEREsYAyea45kTF/CVQ69h/ehxZRD0uYKd+NLeG5Q12YKRcyApXWwzQdIZ5xjcnuABUm5mOrbIA7TLvF1sW9YUYH1JLjLmm3HbLwAKCH7GAh4r213hZ6bNR/UngJ0f8gZI7FojIlqWkhY4iaIIq9UKQRAgiiIaGxuhVqvnvW+s25LFPT2NN195FlcHzyO3ZB2uu/kupGdkRNw2n/MsxDMnLuDnP/sO2jN/hIosp/J874QGX/7ZR4EPfwq3bVmldKvN5kAawZ8Hr4bMgVSYk6HMXtu6pnAmSCpARXHu3PXb3FPA1YG5AVDI4CdOAVBOsXeafm6Jt8VI/n1iBHj18cjHb/8AsH73wspAREQpLWmL/FZVVaG7uxuAN8AxGo1ob2+f976xboskEYv8Hn32hyFnZQEIPWPrro9FfZ7AfefD7ZHwxa9+FV+dagEA+MYzcoPRZ6e/gF+7QwcHmvwspQXpmlXZuE7tQWXBJErTrkA17oocAI0Nhl/2IxqhAqA8n98Dt+UUA+khAk+PG/iPHcDwBSBUJqeiCuALrwFpKbzUChERBZXyi/yKouj3WBAE2Gy2ee8b67ZkOPrsD7Hzpc95H/gEJKulAax+6XNQYeYrOci2o4ASEEU6j+++Ho+EkfFpDF2dguvqJFxjUzO/T2H46hRcY/7P9Q2O4r+nHgPgHzTJjz0S8JWM72FKUmFD7iQqC6awPncCZZlXsSrtCgoxgqzJIW/w80Y8A6CAgMcvAAoMhtTxD17S0oG7TUDbR4HZV2rGTEXd/SiDJiKiFSApgZPNZoNG4z8GRKPRwG63Q6vVRr1vV1dXTNsCr5Fo7ulpVLz8CIDgAYnc5hcqWFn38sP4nXobJicncdPL/wwVvNPvg+276aV/xL92ncL09BQ8k+PIxBSyMYVs1TSyMYWsmcdrMIX1qim/50pVw6hIcyKUNBWwCsN4LOvfATeAoZmfSHKK5xf85Gm8x6RSILJtL1D/I+/sOt+B4kUV3qBJTkVARETLWlICJ5fLFfR5p3Pul3a4fWPdFszExAQmJmazTA8Px2nAMIA3X3kW2zGAOXPZZwQGQb7SVMAaDGLNr3U+B4TetwSj+Kep/+t9Ivr8jvMyXrAeOWXXhO/6krelWgC0ENv2AtfdC5x5CRjtAwrKgI23Lp/7IyKiiFJqVl2oYGe++8ayrbm5GY888kjU15+Pq4Ph8vpEZwrpkJCGLITJLj3jUl4l8lZvRkZ2LjKycpCemeNduDUjB0jP8v6bkRXwOBvuAQfSn/9qxPNnfuBbgPDOBd/TkpSWDmy+I9mlICKiJElK4KRWq+e0/DidzqAz3sLtG+u2YA4cOICHHnpIeTw8PIz169fP465Cyy1Zt+Bz/Kn2xwCA7R0fjrhv/21fwfbb7p33NdI9blx95XvIHrs4p9sQ8HYFTuSVI3fTbfM+NxER0XKQlDTFOp0u6PPV1dXz2jfWbcFkZ2ejqKjI7yderrv5LvShFCFSGUGSEHIav0cCLqIU1918V8Tz+O4bk7R05N73NahUKgTm7fYAUKlUyL3va+yaIiKiFSspgZMgCH6PRVFEdXW10hpkt9uVWXHh9o1122JLz8hQUg4EBj0eaXaOVrBtAHDhloeRnpER8Ty++8Zs216o6n8EVVGF39OqonVQ1f+Ig6CJiGhFS1oeJ1EUYTabUVNTg87OThw4cEAJaurq6lBTU4OmpqaI+8a6LZLFyuN0EaW4ECKPk7wtmjxOofaNmcfNQdBERLQizOc7P2mBU6pLROAEpH7mcCIiopWGgVMcJCpwIiIiotQyn+/8pIxxIiIiIlqKGDgRERERRYmBExEREVGUOJo4BHnoVzyXXiEiIqLUI3/XRzPsm4FTCCMjIwAQt+zhRERElNpGRkZQXFwcdh/OqgvB4/Ggt7cXhYWFUIVbhTcCeemWc+fOcXbeImK9Lz7WeXKw3hcf6zw5ElnvkiRhZGQEFRUVSEsLP4qJLU4hpKWl4R3veEfczhfvZVwoOqz3xcc6Tw7W++JjnSdHouo9UkuTjIPDiYiIiKLEwImIiIgoSgycEiw7OxsPP/wwsrOzk12UFYX1vvhY58nBel98rPPkSJV65+BwIiIioiixxYmIiIgoSgyciIiIiKLEdAQJJIoirFYrBEGAKIpobGyEWq1OdrGWPLvdDpvNBgDo7OzEwYMHlXoNV+d8PeLHaDTiwIEDrPdFYLPZIIoiBEEAAOh0OgCs80QSRRE2mw0ajQaiKEKv1yv1z3qPH7vdjn379qG7u9vv+VjreNHqX6KE0Wq1yu8Oh0PS6/VJLM3yYTKZ/H73redwdc7XIz66u7slANLg4KDyHOs9MTo6OqTGxkZJkrx1JwiCso11nji+f2MkSVJeA0livcdLe3u78rckUKx1vFj1z8ApQRwOh9+LKEmSpFark1Sa5aO7u9uvHh0OhwRAcjgcYeucr0f8tLe3S4IgKIET6z1xfOtZkrz1Kf/LOk+cwPrzDV5Z7/EVGDjFWseLWf8c45QgcjOvL41GA7vdnqQSLQ9arRYHDx5UHrtcLgDeug1X53w94sNqtUKv1/s9x3pPDFEU4XQ6oVarYbfb4XK5lO4i1nliaTQaVFVVKV12tbW1AFjviyHWOl7M+mfglCDyF3ogp9O5uAVZhny/uFtbW6HT6aBWq8PWOV+PhXO5XEHHC7DeE8Nut0Oj0ShjNiwWC6xWKwDWeaK1t7cDACorK9He3q78zWG9J16sdbyY9c/B4Yss1ItL8+dyuWC1WucMLAy2XyzbyF9bWxsaGxuj3p/1vjBOpxOiKCr/MWhsbERJSQmkMKn3WOfxYbPZYDKZIIoiDAYDAMBsNofcn/WeeLHWcSLqny1OCaJWq+dEunKzO8WH0WhER0eHUqfh6pyvx8LYbDbU19cH3cZ6TwxBEJQ6BKD8a7fbWecJJIoiOjs7odPp0NjYCIfDgba2NoiiyHpfBLHW8WLWPwOnBJGnDAeqrq5e5JIsTy0tLTAajRAEAS6XCy6XK2yd8/VYuLa2NlgsFlgsFoiiiObmZtjtdtZ7gsjjmYJhnSeO3W5HTU2N8lgQBBw4cIB/YxZJrHW8mPXPrroECfyjJ4oiqqur+b+POLBardBqtUrQJHchBdatb52H20aRBf5RMhgMMBgMQb/cWe/xIQgCqqurlbFlci4nrVY7Z1/WefxotVqYzWa/sZQDAwOs9wTyHT8Z7rszVf7Gc626BBJFEWazGTU1Nejs7PRLGEixEUURlZWVfs+p1WoMDg4q20PVOV+PhXO5XLBYLDAajWhsbITBYIBWq2W9J4jL5YLRaERVVRW6u7uVVlaA7/VEstlsSpco4P2PA+s9vmw2Gzo6OtDS0oKmpibU1NQowWqsdbxY9c/AiYiIiChKHONEREREFCUGTkRERERRYuBEREREFCUGTkRERERRYuBEREREFCUGTkRERERRYuBEREREFCUGTkSUVDabDZWVlWhpaYHFYkFVVRWqqqqURJuVlZWw2+0LvoZ8TiKiheCSK0SUVC6XCx0dHUpm5o6ODmg0GjQ2NgIAGhoaIIpi0CUvoqXT6dDQ0BCX8i4G3yUoiCi1sMWJiJLK6XSGXdBWq9XOWfV8ORNFEW1tbckuBhGFwMCJiJKqvr4+LvssFyaTKdlFIKIwGDgRUVJF0yXV1dWFqqoqtLS0AACsVisqKyths9kAzI6TMhgMsFqtsFgsMBgMcLlcIc9ps9nQ0tICq9UKo9EYcj9RFGE0GpXzyue02+3K8S0tLRBFUTlvpLLK461sNhssFgvq6uqUbV1dXejo6IDFYlHOSUSpg2OciCjlBY5R0uv1aG1t9duu1+tRWlqqrLButVpRV1eHjo6OOeeTg6Hu7m4A3u5CeZV2Xy6XC7W1teju7oZarYbRaITFYoFer4fRaPQ7d1VVFQ4fPhxVWXU6HTo6OtDe3g4AaG9vh91uV7ZVVlYqY7yIKLUwcCKiZcO39Uqv16Ouri7oQGuz2QyNRqO0AgFAZ2fnnPO1tbVBEATl+AMHDgAAmpub5wxWFwQBbW1tUQU8paWlKC0t9Sv3ShrHRbSUMXAiohVJq9VCp9Mpj4MFPIFB12LPdOPsOqLUwzFORLQkqNVqDAwMKI9tNtucMUy+j61WK3Q6nV/gIW9vaGjwa22SzxdIr9fPySFls9mCHm+325VB7NGUNRrBykREyaWSJElKdiGIiGw2G0RRVGaVGY1GVFdXK11iLpcLRqNRGUhtNpvhcrlgNpshCAKMRiNcLpfSPdfZ2YkDBw5ArVbDbrdj3759AICDBw9Cq9XCZrOho6MDNTU1ADAnyPItV7D9bDYb7HY7BEFAZ2cnGhoaoiqry+XyK4s83kqr1Sr3bjKZUFVVBZ1OFzZVAxEtPgZORLQsyFnGOaiaiBKJXXVEREREUWLgRERLns1mg81mU6b1ExElCrvqiIiIiKLEFiciIiKiKDFwIiIiIooSAyciIiKiKDFwIiIiIooSAyciIiKiKDFwIiIiIooSAyciIiKiKDFwIiIiIooSAyciIiKiKP3/1aNMLFv+SYAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFnCAYAAABQEsaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB27UlEQVR4nO3deXwb9Z0//pd824ntsZw4pwkZBxJCAkSWA6XtFrBc0lJoAdneboEeYKvd/e6V3bVw2y2b7hZHpst3d7+/3SIFtqVl29oSlEKPUE0o3R6U2JpwhJCEaJyQw4mTyGM58S3N7w9lxpKsYyRLlmy/n4+HH7FmPjPzmY8kzzufUyNJkgRCCCGEEBJXTqYzQAghhBAyX1DgRAghhBCiEgVOhBBCCCEqUeBECCGEEKISBU6EEEIIISpR4EQIIYQQohIFToQQQgghKlHgRAghhBCiEgVOGSAIAsxmMyoqKlBTUxMzbU1NDSoqKmA2myGK4txkkGQNnufR0NAQ93OSTg6HI2PXXkjk771Go0FNTQ06OzvR2dkJk8mExsZGKmcVTCYTKioqwHFcRvOxUN9Lm82G2traTGcj+0kkYywWi8QwjORyuSLudzqdktFolFpbW+c4Z5FZrdYZ29ra2iSj0ZiB3AREytNC43Q6JZZlEzomVeVit9tnbBscHIz5uY0k1Z+TbHjfk82DwWCI+J1mWVayWCyzzVZaZUO563Q6yel0ZjobkiQtvPfS7XZLbW1tCX23FyOqccoghmHQ1NQEq9UacX+21TA5nc4Z2xoaGtDc3JyB3AREytNCo9VqEz4mVeXCMEzEba2trWBZVvV5Uv05yYb3PdV5MJlMMJvNKT1nqmVDuc8H8/W9ZFkWJpMp4veeTKPAKcNMJhO6u7tnbBdFMaEHU7rZbDYIgjBju8FggNFozECOoudpsUtlufA8j87OzhnbLRZLQn9cU/k5yYb3PR15kMsz2/7DJMuGcp8v5vN7yfN8Vj17slFepjOw2Ol0Omi1WjgcjpAHS29vLwwGQ9TjOjs7wbIsBEEAy7LKsaIowmazgWVZOJ1OmEwm6HQ6AADHccr/gvbs2QNBECAIAi5evAiLxRL1WhzHwel0QhAE5SHa1tYGnudhNpshCALcbnfUa3g8HrhcLlitVthsNmi1WnR1daG9vV3JW7z7Upun8PMAgf4IwftisdlsIa9bW1vjnjPZe5aP02q1aGxsBBB4/+K9H+H5CS4rteUSr3xlDMPAYrGEnEMO9vfs2RNyfLTyUfs5SfazyLKsci6r1QpBEJTAzm63Q6vVor6+HqIowm63K+Ufrfzi5StaHjo6OiAIAux2OwwGAwRBQENDA1iWhdVqjfswcrlc0Ol0IQFprDzKtQNyzYGcPzWf4VTcc7zvVKr+FnV2doJhmKRqXhP5zsa6fiLfGWD+vpeiKKr+D5F8rPzesCwLj8cDg8EQ8TtvNpths9lgsVhU30d4udTV1c36e5YSmW4rXMzkNuZI/T/kviWR+jgZjcaQvicGg0Fpk25ra5Pcbreyj2VZaXBwUHkt95cJ7iPAsmzcNm2n0ynpdLoZ210u14z+N9Gu0dbWFnJ/4eeLdV+J5MloNIZc2+12SwaDIcbdBVgslhl5DH4fYp0z2Xu22+0SgJD3rK2tLeQ9j1TGscoqVrkkUr6xGAyGkHPFK59EPifJfBatVmvI9SK9l8FlHK/84uUrUh4i9UWL1M8lvF/M4OCgZLFYJJ1OF/JdjZVH+bPkdDoll8ul3Gu8z3Cq7zmWVPwtamtrC+mLMzg4KAFQ1ccp2e9s8PXjfWcWy3sZrrW1NeS+3W73jL5nkb4PBoMh5P1MplzUfs/SiQKnDJI/QG63WwKgfNHcbrfyByc8cJLThp9HTmM0GkM+mOEPOJfLNeP48DSRJBI4RbtG8B8Bt9stMQyj+r7U5snlcoWcVxavQ6n8Bzn8j53FYlF1zmTuOdo9yHmRPwPhZRyvrCKdM5nyjSX4D57a8lH7OUnmsyiXmcxisYRcL/g7Ea8s1OQr2vchvNN8pHsxGAySTqeTrFar8hMeLKp5j8P3x/oMp/Oeo5nt36Lw91SmpnP4bL6z8vXVfGcWy3sZL2+SJM0I1qL9hy/8uRftPiKVi0zN9yydqKkuC7AsC51Oh+7ubrS2toLn+ZhNVAzDhAzHdbvdSnu13W4HEKhylZuMPB7PjOsFYxhmRprZinSNWEPq492XWr29vRGrauXmgmjNn729vWAYJqSaWi5Lubkh3jkTvedo5HxE62uQTFmlqnwjSbbM5TTBkv0sMgwDnU6nNHnL76Nc/R9MTVkkm6/W1lZ0dXVBp9OB47io967X60OaK8Ilk8d4n+F03XM0s/1bJJdBMtR+JtVcP953ZjG8l5HuJ/y9SfS9SqZcZGq/Z+lCgVOWMJlMsFqtaG1tjfkBlDuNB39Qgn/neR4dHR1oaGhAU1NT2tp7Iz2QZiPefanNU7KdMWMdl20dPBMtK7lcZlu+sfKTSfJnsbm5WfljqtfrYTKZ4HA4YDAYQu41HWURnIf6+npYLBYIgpD0edXkMfzvRLzPcLruOZpU/C1Kpl8TkJrPZKrKbCG8l6kSfF/JlIssVd+zZNGouizR1NQEnufhcDig1+ujptPpdBFrCURRhCiKqK+vR3t7uxKAyR/UVI+G4Xk+peeLdV9q8TyvdBYMJwgC6urqYl4/0rVEUUz6nMmS38vwjvOyRMuK5/mUlG80c10+4eTPotFohMPhAMdx0Ol0MBqNsFqtM2of0lEWch6CB3sk+9CXz5NoHmN9htN5z5Gk4m9RtDyrkYrPZKrKbL6/l9Hylsz1gmu9ZnMfqfqeJYsCpwySRxsAgcjaYDCgq6srZo2TwWCAXq+fMTNtd3e3UrMQ/MCVP6jx/sjFI496AAJ/fKI91JO9Rqz7SiRPOp0OBoMhpPo3+MEa61xGozFk6L0oiuju7k76nGr/sPA8H5K2o6Mj5jxJ8coqUrkkU75qJVs+kczmsyg3ecvfK7n8ws+ZTFmEnyPW98FkMqGlpWVW0y8k+32I9hlO9z2HS8XfIpZl0draGjKyTBTFGd+XSFLxnU3Vd2a+v5eR8hb+vsij96JdQ85DcKvAbMs3Fd+zpM1pjyoiSVKgU1xra6sEQGptbVU6AQePmpBHZzAMo8xCG9wZTx5tEnyMvL2trU1yOp2S0+mU3G630pHX5XJJRqNRAqCMQpCvodPp4nawk88td+6LdL5Y1zAYDMoICTlNW1ubqvtSm6fw81it1pAO2mrOZ7FYJLvdrvqcs7lnuZOm3W6XnE6nZLFYQkaIhB8XKT+Ryipeuagt32jCR8MkWj6p/izK5M78wa+DR3ZFym9wWSSSr2h5kL9z4dxud8zvtNo8Op1OyWAwSAzDRLw/NZ/hVN9ztLyn4m+RfC/yeXQ6nerZw5P5zka65/AyW2zvZaz7CX5fwt8T+e+ZnEej0SixLBu3fOOViyRF/57NBY0kSdLch2uEEGB6PhmXy5XprCSksbERzc3NGZv8NJuJohh3HjZCFpra2lpYLJY5+9xn8ntGTXWEEFXkqnb592RHPC1EwU0hcnMKISS1suV7RoETIUSVjo4OmEwmAIE+DbEGMSw28qzIQPIjwQghsWXL94ya6gjJEI7jYLFYlH/VLguTKYIgwOFwKEssUDPdNJ7n0dvbCwAx5/QhZCHq7OyE2WyGwWBQ/k2HbPmeUeBECCGEEKISNdURQuaEyWRCRUVFyBBxEh3P82hoaEhq9nlCSPpQ4EQImRORVi43m81obGyc03yErzifbeeT6XQ6ZaX7hSBd5UTIXKPAiRCSMQ0NDWhubp7Tazqdzqw+X7CF1NE8neVEyFyiteoIIRkz18OJbTZbSpcfSvX5FioqJ7KQUOBEyAIhiiJsNpuyArzJZJqxlEJ4c0nwyJRY+zo7O5VmNkEQlBGA8gSeLMvCZDIptQoWi0U5Th6FF47neZjNZgiCoCyTIp8PAPbs2aMs5XDx4kXlnPK9ms1m1NbWwuVyoaamBjqdDlarVVlFPhzHcXA6nRAEQVnKIngkY7R7jCba+SLdlzyM2mKxoLW1VblPrVarNFWKojjjPqOR8yovzhpvhGMy720i9wFEf7/ilTsh805G5isnhKRcW1tbyNIELMuGLANhsVhClp0IXuIg1j6j0RiylILb7ZYMBkNIWnm5BZfLpZwnfDmHwcFBCUDIuVwul8SybMh9OJ1OiWXZkHQsy4YspRK85Mvg4OCMc0QjLw0RLt49Jno++R6CGQyGkPKw2+0SgJD3rK2tTWptbVVeRyqf8OVuDAZDSNmEm817q+Y+1Lxf0cqJkPmI+jgRskAIghAyYo1lWeW1XEPT3t6u7O/q6lIW3Yy2j+d5cBwX0qTGsiw8Ho9yboZhwPM8DAYDdDodLBYLRFFEZ2dnSM0GwzCqFhPVarUQBGHGNYObehwOh3IuhmEiLjKqlpp7TFSkGrbwmdbl8gjuMN/e3h6zWUueSyu4hqmxsRFWqzVi+tm+t2ruQ837RchCQk11hCwQchOVvDSKx+NRVqTv7e0FwzAhDz05PcdxUffJTX/h5OZA+WEZnkY+Z7LCz8cwjHIvQGDEWaQV35PR29ur6h7ngvw+8DwfMU9yuQYHdG63O2qQEut9V/veqhHv/SJkIaHAiZAFgud5dHR0oKGhAU1NTSEPs/AgI1iy+4JFCpLSOSLMZDKho6MDe/bsgc1mi1rjEo9c45Yqcp+jSFJxHVEUwbJsSFATK8BJxXubquOCxSonQrIdNdURsgCIooj6+nq0t7ejtbUVDMMoDzhBECLW0MjHxdpnMBgi1mYIgoC6urqo+dHpdGlvqtmzZw84joPRaEx6+QW5iTGZe4x2vmjU1MCIoqi8J5FEK9dowUw63ttU1CTFKidCsh0FToQsAHLNSfADV37Ayc0+RqNRGdUEBB6e3d3dMffpdDoYDIaQpiH5oRdrJBfLsmhtbQ0ZzSWKInieT6rGIvwYl8sFhmFgNBoTqrkI7nsjB5TJ3mO084Vvl/MfqXYrvDw6OjrQ2toa9Z4MBgP0ej0cDkfI9u7u7qj5m817q/Y+wkVqRo1UToTMR7RWHSELhDwsvKGhAUDgYWU2m9Hc3Kw8CM1mMyorK5VOwME1NfH2yUt/uN3ukKHmFosFvb29aG9vnxHIyEPd5aY8OY8WiwVarRYdHR1wOBzKIsdyc2Pwts7OTnR0dIBlWeUaDocDjY2NylQHDMPAZDKpqnmS81BTU6PqHpM9nxysyOXR1dUFnudhsVhgNBqVofzt7e1KvyYAIdMByGXR1tYWkh85r3JzaLwAL5n3Vs19sCyr6v2KVU6EzDcUOBFC5hVRFNHS0oI9e/YoTZKCICjLt8yXh7IcOLlcrkxnhRCSAGqqI4TMKzabDSaTSanFkof1WywWCkIIIWlHgRMhZF7R6XQRZwfnOE5ppiSEkHShpjpCyLzDcVzIXEdqlx7JFnLfMPlfWoKEkPmDAidCCCGEEJWoqY4QQgghRCUKnAghhBBCVMrYkivyYpXyxGjybMeJppUXqgSAnp4eZYhyvOMSuX44v9+PM2fOoLS0FBqNZhalQAghhJBMkyQJw8PDWL16NXJy4tQpSRmi0+mU391ut2Q0GpNKa7FYQn4PThvruESuH+7kyZMSAPqhH/qhH/qhH/pZQD8nT56MGwNkpMYpfH0klmVDpv1Xm1aeWVcekWI0GmE2myOuvxR8XCLXj6S0tBQAcPLkSZSVlak+jhBCCCHZx+v1orq6Wnm+x5KRwInjuBkrp2u1WvA8P2MNo3hp9+zZo2yX10fSarXo7u6Oelxvb6/q6wPA+Pg4xsfHldfDw8MAgLKyMgqcCCGEkAVCTfebjHQOj7ZAZKRVt+OlDZ63paurCwaDIWRl+EjHJXJ9ILDwZnl5ufJTXV0dMR0hhBBCFrasGlWXyKrp4WlFUYTD4Yg4o7Daa0Tb197ejqGhIeXn5MmTqvNJCCGEkIUjI011DMPMqN3xeDwRR7WpTWs2m+F0OkPWr4p2XCLXB4DCwkIUFhbGvzFCCCGELGgZCZwMBgOsVuuM7Xq9Pqm0nZ2dMJvNYFlWqTWKdRzLsqqvnyyfz4fJycmUnY+Q+SQ/Px+5ubmZzgYhhKRcRgIneX0pmSAI0Ov1IXMzMQwDlmXjpnU4HNDpdErQ1N3dHXFOpuDjYu2bLUmScPbs2YSaHQlZiBiGwcqVK2muM0LIrPn8Evb3eTAwPIaq0iJsX69Fbk5m/rZkbK06QRBgtVpRV1eHnp4etLe3K4FLY2Mj6urqlGkGoqUVBAE1NTUh52UYBoODg3GvEWtfPF6vF+Xl5RgaGpoxqq6/vx+iKKKqqgolJSX00CCLjiRJGBkZwcDAABiGwapVqzKdJULIPLb3YD92vXwI/UNjyrZV5UV47O7N2LElNX9fYj3Xw9Eiv0mIVsA+nw9Hjx5FVVUVKisrM5hDQjLv4sWLGBgYwLXXXkvNdoSQpOw92I+vPMcjPFCRqyS+84AuJcFTIoFTVo2qm+/kPk0lJSUZzgkhmSd/D6ivHyEkGT6/hF0vH5oRNAFQtu16+RB8/rmt/6HAKQ2oeY4Q+h4QQmZnf58npHkunASgf2gM+/siz8GYLhlb5JfElk0d4QghhJC5NjAcPWhKJl2qUI1TFtp7sB8fsbyKz+75I/76x2/is3v+iI9YXsXeg/1puR7P8zCZTNBoNDCbzbDZbDCbzWhsbExoDb94bDYbKioqwPN8ys4512pra+FwOJTXNpsNDQ0NSR1LCCEkuqrSopSmSxWqccoy0TrCnR0aw1ee41PWES6YTqeDxWKBzWYLGV0oiiIqKirgcrkiruGXqNbW1rgzuydCFMWUTCGRCIvFEjLfl8FgmDFlhtpjCSGERJejCXQCj9aDSQNgZXmgRWYuUeCUZpIkYXTSpyqtzy/hsZfejdoRTgPgn146hA9vWKaq2a44P3dW/UzkubS6urpSEjilkiAI4DgOra2tc3pdg8EQ8jrSXGNqjyWEEBLZa0cG8OXnXMrzMDyAkp9sj929ec67sVDglGajkz5s/sYrKTmXBOCsdwxb/+lXqtIf+uadKCmY3Vvs8XhmzJWVDSwWC2prazOdDUIIISn2s7fP4G+73sSkT8JtG5fj3m1rsPuXh0M6iq9M8TxOiaA+TiQiURRhNpthMBjQ2toKjuNQU1MDm80Gm82mBC08z6OzsxMOhwOdnZ0QBCHkPDzPw2w2w+FwwOFwhKwRyHEcamtr0dnZCSAwC3xNTU1IvypBEJTjbTYbRFEEx3Ho7e2F0+mEzWabcc3g88t5M5vNIXkymUxKnhwOB3iej5sfnudRW1sLm82mlJHJZAoJLKOVR/ix8rVsNhs4joPNZkNjY2MS7xQhhCwcP9r/Af7yRwcw6ZPwqRtWwfagHp++aQ1+Z74DP2q5Bf/+pzfhRy234HfmOzISNAFU45R2xfm5OPTNO1Wl3d/nwRe+2xM33fe+WKeqTbc4P/FJB202m9L0ZDKZlN8NBgMMBgNcLhesViu0Wq0S1DidTuX42tpa7Nu3DwzDQBRFNDY2wu12K/s7OjqU3w0GA5qbm5XXRqMRXV1dymtRFNHQ0ACXywWGYZSO621tbTAYDKipqYnaVCfnzeVyAQjUnHV2dqK1tRX19fXo6+tT+kdVVFRg3759cfOj0+lC9jMMA6vVioqKipBrRiqP8GPl8nQ6nUq/L7vdDp7ns65ZlBBC5sJTv3Fj9y8PAwD+7Oar8M+f3qI0w+XmaPChmuyYWJoCpzTTaDSqm8s+es1yrCovwtmhsYj9nOSOcB+9Znna2nQjrfMnYxhGmRHdaDTCbDbPeMizLKusF9jd3T1jv1arvhNfd3c3WJZV8tPe3q76WDm4C6696unpAcMwMBgMIfeYqg7bVqs1ZnmEq6ysDJlhnmGYkBo5QghZDCRJQucrR/Cd1wL/yf7KbTVou3Nj1s4FR011WSQ3R4PH7t4MYLrjmyyTHeGCqe0InQrho+YiLdAsp4tEp9MpNTupHtFHCCFk9nx+CV9/8aASNJl3bIJ5x6asDZoACpyyzo4tq/CdB3RYWR46L8XK8qK0TEUQLl6NR/D+5ubmGfM88TyPpqYmAIHmqPA5m8L7IzEMg4sXLyqvOY5TAiGj0Tjj+EjzSkXaFilvHMehqakpZp5i5UcWLVCLVx6xjiWEkMVmYsqPv+l6E//zxgfQaIDH792Kr9yWfYORwlFTXRbasWUVGjavnLOZw3meV/ryWCwWmEymGU1OHMeB4zjwPA+WZWEwGJT5nzo7O8GyLHp6emC325VaIZZlYbfbYTab0dDQoNQgdXR0wGKxgGVZNDU1wWw2KwGHwWBQmrxYloXVaoXZbEZdXZ2yHwj0v5Lnnoo0zF/OW/ixDMNEzJMsVn5EUURXVxe0Wi2MRuOM2rdY5SGXsXysfC75GoIggOd5WK3WhKY4IISQ+Wh0woev/I8Lrx05j/xcDZ5sugl337g609lSRSNJ0tyujrcARFtFeWxsDH19fVi/fj2KiuZ2JlOSvIaGBlgslqQ7ZVdUVGBwcDDFuZr/6PtACInEOzaJR77Xi/3HPSjKz8FTD9Tito1Vmc1TlOd6JFTjRBa9ZDpk22w2uN1umEwmmg2cEEJUunBpHJ//7/1494wXpUV5+O8v1KHu6rmd+Xu2qI8TWdTkeaCsVmtC/Y8MBgMqKyvhcDhgtVrTl0FCCFkgToujaHrqdbx7xovKJQX4cest8y5oAqipLinUVEdIfPR9IITI3Ocv4cGn38CZoTGsYYrxg4e3g12+NNPZUlBTHSGEEEKywsHTQ/j8f+/HxcsTYJcvwXMP34zVTHGms5U0CpwIIYQQkhb7+zx4+Hs9GB6fwpY1ZXj2i9tRubQw09maFQqcCCGEEJJyvz48gC8/58L4lB/b12vx9Of1KCvKz3S2Zi1jncMFQQhZDDVWx9x4aeUFVMM5HA6Iohjx3DzPKxMhynPoEEIIIWT2XnrrDFq+34vxKT/u2FSF739p+4IImoAM1jg1NjYqC7AKgoCWlpaoS2LESutwOMCybMTAJ9Jq8xaLBW1tbbBarcpK9QaDgZbjIIQQQlLgf944ga+/eBCSBHz6ptX4duONyM9dOIP4M3In4ctusCwbcdkMNWmNRmPEiQtFUYTdbockScqPHDQBgVXrBwcHMTg4CKfTGXVh24zx+4C+3wLvOAL/+n1zclmbzQaz2QybzQaHwwGO45Qh+9mK4zjU1tYqgXC61dbWwuFwzMm1Zis8rzabDQ0NDUkdSwgh8fzXa8fwtZ8EgqYHbrkK/7fppgUVNAEZqnHiOA5abejcDVqtFjzPR1zqQ23acEajUfnd4XCEvAagOlgaHx/H+Pi48trr9ao6LmmHXgL2mgHvmeltZauBHRZg8z1pu2xDQwMaGxthsViUbTzPo6GhAW63O23XnS15Id+5YrFY5s2kl+F5NRgMqpdzmU/3SQjJLEmSsHvvYVh/E/hP9l/cXoO///jGrF6sN1kZCZyi9WeKNINzImmDBQdFoijC4/GEPDBEUVT+N93T0wOTyRT1gdLR0YFdu3bFvF7KHHoJ6H4IQNj0Wt7+wPam76cleOrs7AQAtLa2hmzX6XQztmWjysrKObvWXAZpsxWe10TWwZtP90kIyRyfX8LXX3wHP9p/EgDw1U9uQuufZP9ivcnKqlF1iczcnEhas9kcUosCBAKE4MVoY9WqtLe3Y+fOncprr9eL6upqdReXJGByRF1avw/4ZRtmBE2BEwHQBGqi2NuAnNz458svAVRG+x0dHdizZ0/EfZH6ihFCCCETU378bfeb+Pnb/cjRAB33bUVz3VWZzlZaZSRwYhhmRo2Rx+OJ2HSWSNpIRFEEx3Ez0guCoDT1sSwLQRAgCELE/40XFhaisDDJeScmR4DHU7XisxRovtutMmj76hmgYEncZIIgQBTFqDURwTUPPM+D4zilzIxGo9LvzGw2KzV3giDA6XTCYrEo74Hb7VaWJ+E4DiaTCQaDAQ0NDfB4PHC5XLBYLGAYRtlvNpsBAFarFS6XCxzHged5sCyLnp6ekIBYvo587eAO/5GOi5Zn+ThRFNHd3Q2WZSGKInp6etDc3IyWlhaYTCalJi7RMok2ECHavfE8D6vVGtI3iWVZeDwemM1mNDc3o62tDQ6HA2azGVarFQaDATzPh+RVFEWYzWblvYiV9/BjE70XQsjCNzrhw5efc+E3R88jP1eDf//Tbfjk1lWZzlbaZSRwMhgMEdf3itSfIpG0kfT29s4ImnieR319/YwV7cP7UpFQgiDAbDbD6XQq22pra7Fv3z6ln1Hww9Rut8PhcKCtrQ06nQ41NTUQRREMw8BgMMBoNKKyslLpe+ZwONDY2Ain06mcz+VywWq1QqvVKteXR1h6PB50dnYqHf57enqU3+12u9IPLtZxkfIsH2ez2aDT6ZTA0ePxQKfTobm5eVZlEql/XrQ8tra2or6+Hn19fcrnuKKiQjl/cF6MRiO6urqU1+F5ZRgGVqsVFRUVcfMefmwi90IIWfiGRifx8Pd60HtiEMX5uXjqwVp87Nrlmc7WnMhI4BResyEIAvR6vfJg4HkeDMNE7I8RnjaY/FAOxvP8jICIZdmQmgqO42A0GtMzsi6/JFDzo8aJPwD/Y4yf7nMOYN2t6q6tglzGwbVwwQRBgFarhdVqnbGfZVl0d3ejtbUVlZWVIX2N5Pcw+HV4bWHw70ajEY2Njcr7yDCMcj6j0Qiz2QytVhsyqrKnp0f5va6ubsa1ACiBV6TjIuVZPs5oNKK2thYsy6K5uTliX69kyiRS/7xoeZSDzOBySlWH7Xh5D6f2XgghC9v54XE89N/78V6/F2VFefjuF+tQu27xVDxkrI+T3W6H2WxGXV0denp6Qqr8Ozo6UFdXF1J7EC0tx3HK/5jl48JHz4UHXwzDQK/Xo7OzEwzDwO12p6/JQaNR1VwGAKi5IzB6ztuPyP2cNIH9NXeo6+OUAHluq/CyAwLBZ6Ttasw2GA1/74JrgICZndmjSeY4rVaLwcFB8DyPrq4upTYsXSLlca6mWCCEEDVODY7gwWf2o+/CZSxbWogfPLwd162KvSjuQpOxwCm41if8oRwexMRKKzchhHf+lsnBVzidTpd9TQw5uYEpB7ofAqBBaPB0pZP3jt0pD5qAwNDzhoYG2Gy2kKAiuBO+3L8nGM/zUTuVhx8fb7/D4ZhRuxJcoxHp+hzHxR39lexxHR0dMJlMymcluJO8nO9kyiSRPDY1Nc34bAfPqSUH/sHHBDexBedVzTXD857IIAxCyMJ2bOASHnzmDfQPjWENU4znHrkZ65eprBhYQLJqVB1BYKqBpu9Hmcdpd1rncXI6nejs7ITZbEZNTY3SxCkHqzqdDhaLBZ2dnUoHZrvdDoZhlFoZIBDMBi9jo9PplE7bFotF6QAOAG63GxzHKZ2v5aCZ47iQztIGg0G5vlz7KF8r2rWtVitYlk36uMrKSmUeMY/Hg+bmZuUYrVarTL6aaJnI5w+uTYuWR4ZhlBrXhoaGGc3RTU1NSodv+Ri5CU4UxZC8Rqq9i5d3+Vj5XGruhRCy8Lxzagif/+5+eC5PYEPVUjz38M1YWV6U6WxlhEaSpEhtQiQGr9eL8vJyDA0NoaxsuopybGwMfX19WL9+PYqKZvmB8vsCfZ4unQOWrgj0aUpDTVMmyQHafJgnKps0NDTAYrEkXWNaUVExY2BEOqT0+0AIyZg/ChfxyLO9uDQ+hRvWluN7X9wO7ZKCTGcrpaI91yOhGqdslZMLrP9opnNBslAyHbJtNhvcbjdMJhPNBk4IUW3fe+fw5//DY3zKj1tYLfY8pEfpAlmsN1kLawEZMm/ITXHykHaijrxuoNVqTaj/kcFgQGVlJRwOR8TpPQghJNxP3zwN0w9cGJ/yw3BdFb73xe2LPmgCqKkuKXPSVEfIPEffB0Lmrx+8fhzfeOldSBJw77Y16DTesOAW6w1GTXWEEEIISZgkSfjPXx/Dt391FADw+Q+tw2N3X4+cnIW3WG+yKHAihBBCCCRJwuO/eA97ftsHAPirOzbgbxuuhUblmqeLBQVOhBBCyCLn80v46gvvoKv3JADg63ddh0c+StOMREKBEyGEELKIjU/58Dc/fhO/PHgWORpg9/03oEmvcjH5RYgCJ0IIIWSRGpmYgukHLvz2/QsoyM3Bf3z2JuzYsirT2cpqFDhlKZ/fB36Ax/mR81heshy6Kh1yF9gEmIQQQjJnaGQSX/zefvAfiCgpyIXtQT0+cs2yTGcr6y3csYXzGHeCw53P34kvvfIlmH9rxpde+RLufP5OcCe49FyP42AymaDRaEKW70iEzWZDRUXFnMzJNJfXClZbWwuHwxGSj4aGhqSOJYSQTBoYHkOz7XXwH4goL87Hc4/cTEGTSjSPUxLSOY8Td4LDztd2QkLo26K5ssjvk7c9CcO62IvTJkMQBNTU1GBwcDBkLbREzHYpkGy9lozjOOj1eqV8BEGAIAhxFwuOdOxiQPM4EZKdTnpG8MAzb+DExREsLy3EDx7ejk0rY89dtNDRPE5ZRJIkjE6Nqkrr8/vQsb9jRtAEQNm2e/9u3LzyZlXNdsV5xaqHkcoL+pLowgOkRBa3VRNcEUJIur1/bhgPPPMGznnHUa0txnMP34x1lUsyna15hQKnNBudGsXNP7w5Zec7N3IOt/74VlVp3/izN1CSX5KyaxNCCJm/3jop4gvf3Y/BkUlcU7UUzz1yM1aUUW1woqiPE4mI4zjU1tbCZrOB4zjYbDY0NjaGpOF5HmazGQ6HAw6HY8bisxzHobOzEw6HA2azGQDgcDhQW1uLmpoaAEBnZydqamrQ2dkZ9Rg114qU/2jnMZlMynkcDgd4nlfuV86Hw+FATU2N0t+L53mlPABAFEWYTCblPuQ08jU7OzshCELEY9WULSGEpNIf3BfwZ3v+iMGRSdy4thzdpg9R0JQkqnFKs+K8YrzxZ2+oSus658Kf7/vzuOn+q/6/ULuiVtW1k2UwGGAwGOB0OmG32wFAWZBXp9NBFEU0NjbC7XYrx3R0dCi/C4IAs9kMl8sFAPB4POjs7ERbWxsMBgPq6+shiiIYhoHL5QLDMFGPaW1tjXmtcLHOU19fj76+PqWvUUVFBfbt2weDwYDm5mblHEajEV1dXcprnU4Xsp9hGFitVlRUVIRc0+l0Kmlqa2uxb9++GcfGK1tCCEkl56Fz+Isf8piY8uPWmkrYHtJjaSE9/pNFJZdmGo1GdXPZratvxYqSFRgYGYjYz0kDDVaUrMCtq2+dk6kJKisrUVlZqbxmGEap6enu7p7xkA/uJ2W1WqHVakNG6PX09Cjn2bNnD2pra2G325UgJtoxDMPEvFa4WOcxGAwhHbT1en28YlDFarXOyCPLsuju7kZra+uM9LHKlhBCUuUF/hT+wfE2fH4JDZtX4P99dhuK8mlqm9mgwCmL5Obk4tHtj2LnazuhgSYkeJJH1Zm3m+fNfE46nS6kU3RwACEHQ11dXSEBR6Rj5Cau2V47mfMQQsh89b3f9+GfXj4EALhPtwad99+AvFzqoTNbVIJZxrDOgCdvexJVJVUh21eUrEjbVAQAEq7tMBgMM+ZRkvv0AEBzc/OM+aDk16IoguM42O12CIKgzG8U7Zh41woX7TxNTU0xz8MwDC5evBhyjCiKIenDX8e6Js/zaGpqinssIYSkkiRJ+I997ytB0xduvRrfNt5IQVOKZKzGSX5gsiwLQRDQ2toadY6beGl5nkdLS4vSpyV4OxCofRAEAaIoKrUbiVx/rhnWGXB79e1zNnO4HMQAgb5Dcn8cuY+PwWCAIAjgeR5Wq1UZhm+322E2m9HQ0KD0V+ro6FDmV7JYLDCbzairq1POY7PZYLFYYDKZAAB1dXVoaWmBIAhoa2uLeAzDMDGvFT4lQLRrRzuPrKmpKWQCUIPBoDTBiaKIrq4uaLVaGI3GqNfs7OwEy7Lo6elRmiF5ng85Vj5XrLIlhJBk+P0S/uXn7+G/f98HAPgbwzX46/prVE9NQ1SQMkSn0ym/u91uyWg0JpXWbrdLLpdLinQrra2tEgAJgGQwGKTBwcGkrh9uaGhIAiANDQ2FbB8dHZUOHTokjY6Oqj4XySyDwSC5XK6kj2cYJoW5WVjo+0DI3Jqc8kl/1/2mtM78M2md+WfSM78VMp2leSPacz2SjNQ4hTezsCwbdZmPeGmNRmPU69TW1mJwcBAAQmoWErk+WdiS6ZBts9ngdrthMplS1rmcEEJmY3zKh7/60QG88u455OZoYLn/Bhhr12Y6WwtSRho8OY6bMSpKq9VGXHsskbSRMAwzowku0XOOj4/D6/WG/JD5z2azQRAEWK3WhPofGQwGVFZWwuFwwGq1pi+DhBCiwuXxKXzpez145d1zKMjNwX99TkdBUxplpMYp2kMq0v/+E0kb6Vi543FPTw9MJhNYlk34nB0dHdi1a1fc65H5pbW1NeJUAfGwLIu2trY05IgQQhIjjkzgC9/twZsnRZQU5GLPQ3p8eAMt1ptOWTUdQSL/61eTNrjDN8uyaGhoCJlEUe0529vbsXPnTuW11+tFdXV11PNItG4yIfQ9ICTNBrxjePCZ/ThybhhMST6+98XtuKmayXS2FryMBE6RJvvzeDwRR7UlkjacIAjKKDp59JwgCAmfs7CwEIWFhXGvl5+fDwAYGRlBcXHys3YTshCMjIwAmP5eEEJS54OLI3jgmTfwgWcEVaWF+MHDN2PjytJMZ2tRyEjgJA/zDhepo20iaYPxPI/6+nqlc7hMq9Umfc54cnNzwTAMBgYGAAAlJSU0BJQsOpIkYWRkBAMDA2AYBrm582PCVkLmiyNnh/HgM29gYHgcV2lL8NzDN+OqSlrQfa5kJHAKn6dGEATo9XqlxofneTAME3FOm/C0wYLn5WFZFhaLRdnHcRyMRmPEzuKxzpmolStXAoASPBGyWDEMo3wfCCGpceCDQXzhuz0YGp3ExhWl+MHD21FFi/XOqYz1cZInIqyrq1MmC5R1dHSgrq5O6YAbKy3HccrCqvJxcoCk1+vR2dkJhmHgdrtDjot1ztnQaDRYtWoVqqqqMDk5mZJzEjLf5OfnU00TISn2+2MX0PL9XoxM+HBTNYPvfbEOTElBprO16Ggk6sGZMK/Xi/LycgwNDaGsrCzT2SGEELLA7T14Fn/1owOY8PnxkQ3LYH2wFksKs2p817yWyHOdSp0QQgjJYg7XKbQ53oJfAnZcvxL//tmbUJhHNbqZQoETIYQQkqX++3d9+ObPAov1GmvXYvd9W2mx3gyjwIkQQgjJMpIk4d+49/Hv+94HADz8kfX42ievQ04OjdTONAqcCCGEkCzi90v45s8O4Xt/OA4A+LuGa/F/7thA09tkCQqcCCGEkCwx5fOj7fm38QJ/GgCw657r8flbr85spkgICpwIIYSQLDA26cNf/ugAnIfOITdHg2833oB7t9FivdmGAidCCCEkwy6NT6Hl2V68LlxEQV4O/vPPdGjYvCLT2SIRUOBECCGEZNDg5Ql84bv78dapISwpyMWez+txa82yTGeLREGBEyGEEJIhZ4fG8OAzb+D9gUuoKMnHs1/ajhvWMpnOFomBAidCCCEkA05cvIzPPf0GTg2OYmVZEX7w8HZcs6I009kicVDgRAghhMyxw2e9ePCZ/Tg/PI51lSV47uGbUa0tyXS2iAoUOBFCCCFziP9gEF/8bg+GRiexaWUpvv/wdlSVFmU6W0QlCpwIIYSQOfLb98+j9fsujE76oLuKwXe/sB3lJfmZzhZJAAVOhBBCyBzYe7Aff/WjNzHh8+Oj1yyD9cFalBTQY3i+oXeMEEIISbPu3pN49Pm34ZeAT25dif/bfBMK83IznS2SBAqcCCGEkDR6+rcC/uXn7wEAmvXVePy+rcilxXrnLQqcCCGEkDSQJAlPOo/i/716DADQ+ics2j+xiRbrnecocCKEEEJSzO+XsOvld/Hs6ycAAP9w50b8+W01FDQtABQ4EUIIISk06fOjzfE2fnLgNDQa4Juf3oIHb1mX6WyRFKHAiRBCCEmRsUkf/s8PeXDvDSAvR4N/bboRn75pTaazRVIo4cDp+PHjsNvtcDqdGBwcVLZrtVo0NDTAaDTi6quvjnseQRDgcDjAsiwEQUBraysYhkkqLc/zaGlpgcvlCjmO53lwHAcA6OnpwZ49e5TjeJ4HAOh0OgiCAFEUodPp1BcEIYQQEmR4bBKPPNuLN/o8KMzLwXce0OGOTSsynS2SYgkFTo8++ig0Gg2amprwD//wDzP2HzhwAE899RQ0Gg06OjpinquxsVEJdARBQEtLC+x2e8Jp5YBKDoSCcRyHtrY2AEBnZyfq6+uV81itVthsNgCAwWCIem1CCCEkHs/lCXzhu/vx9qkhLC3Mw9Of1+MWtjLT2SJpoJEkSVKT8IknnkBrayvKy8vjph0aGsLu3bujBk+CIIQEQwBQUVERUoOVaFqNRoPgW+F5HvX19Uo6QRBQU1MDt9sNlmVhs9nQ1NQEAFFruqLxer0oLy/H0NAQysrKEjqWEELIwtI/NIoHn9mPYwOXoF1SgGe/uB1b18Z/VpLskchzPUftSf/hH/5BVdAEAOXl5TFrnDiOg1arDdmm1Wqj1hqpTRtMp9Nhz549ymtRFJVjZQzDqAqaxsfH4fV6Q34IIYSQvguXYfzO6zg2cAmryovQbfoQBU0LnOrAKdyjjz6Kp59+GkNDQ/j4xz+O5uZmvPDCC6qOlYOYcB6PZ1ZpwxmNRuX3rq4uGAwGJVASRREOhwMOhwNmsxmCIEQ9T0dHB8rLy5Wf6urquNcmhBCysB0640XjU6/jtDiK9cuWwP7lD2FD1dJMZ4ukWdKj6urq6nD//ffjiSeeQG1tLTo6OkJqeJIRLUhKRVqHwxHS3BfcwZxlWTQ0NMDtdkc8vr29HTt37lRee71eCp4IIWQRc53w4Ivf7YF3bArXrSrD97+0HctLCzOdLTIHkq5xqqioAAB0d3ejubkZAGY0qUXDMMyMGiOPxxOx2SyRtNGYzWY4nc6QY4JrmOTRetFqnQoLC1FWVhbyQwghZHH6zdHz+NzTb8A7NgX9ugr8uPUWCpoWkaQDJ7fbjX379sHtduOmm25CX19fxM7dkRgMhojb9Xr9rNJG0tnZCbPZDJZlIYoiRFFUOo6HUxv4EUIIWZx+/nY/Hnm2B2OTfnzs2uX4wcM3o7w4P9PZInMo6cCpqakJPM/D5XJhaGgIVqtVdfMZy7IhrwVBgF6vD5ljSa79iZc2WPj1HQ4HdDqdEjR1d3eDYRiwLAuLxaKk4zgORqMx4dF1hBBCFo8f7/8Af/kjHpM+CXfdsAp7HtKjuCA309kic0zVdARDQ0MYHBxUNbGlTB55Fq1ZSxAEWK1W1NXVoaenB+3t7Urg0tjYiLq6OmUOplhpOY6D0+lEZ2cn2traUFdXB6PRqEw/EIxhGKVWTJ4ck2EYuN3ukEBKzb3RdASEELJ42P7Xjcd/cRgA8Nnt1fiXz2xFbg6tO7dQJPJcVz2P0549e1BZWYn77rsvbtrnn38eg4ODeOSRR9TleJ6hwIkQQhYHSZLwxCtH8F+vBQYPmT7G4tEdm2ix3gUmkee66lF1LS0tOHDgAJqamlBTU4O6ujqwLAuGYSCKIgRBwP79+9HX1weTyYT7779/1jdCCCGEZIrfL+EbLx3Ec3/8AADQtmMj/vy2DRnOFck01TVOwYaGhtDd3Q232w1RFMEwDGpqamAwGLB+/fp05DOrUI0TIYQsbJM+P/6u+y289NYZaDTAv3xmCz5387pMZ4ukSVpqnIKVl5ejpaUlqcwRQggh2Wx0woe/+CGPVw8PIC9Hgyebb8I9N67OdLZIlkh6AkxCCCFkofGOTeKR7/Vi/3EPCvNy8NQDtbh9U1Wms0WyCAVOhBBCCICLl8bx+e/ux8HTXpQW5uGZL9Rh+3qa34+EosCJEELIondGHMUDz7wB4fxlVC4pwLNf2o4ta2ixXjITBU6EEEIWNeH8JTzw9Bs4MzSG1eVF+MEjN6NmOS3WSyJLeuZwAHjiiSeUder27dunTHpJCCGEzAcHTw+h8anXcWZoDOyyJbB/5VYKmkhMSQdOjz76KBiGUdaSq6+vB8dxKcsYIYQQkk49xz34rO2PuHh5AtevLkP3lz+ENUxxprNFslzSgVNdXR1aWlpmrCVHCCGEZLtfHxnAg8+8geHxKWy/Wosftd6CZUsLM50tMg8kHTj19fUBQMi08z09PbPPESGEEJJGL791Bi3P9mJs0o/bNy7Hs1/ajrKi/Exni8wTSXcO37ZtG/R6PSorK+F0OsFxXEIL5RJCCCHp5PNL2N/nwcDwGKpKi7B9vRZdPSfxtRffgSQBd9+4Gv/aeCMK8mbV3ZcsMkktuSLr6+uD1WoFADQ3N2Pbtm0py1g2oyVXCCEku+092I9dLx9C/9CYsq20MA/D41MAgM/dfBW++ektyM2hxXpJYs/1WQVOkS68GAIJCpwIISR77T3Yj688xyPaw+3O61fgqQdqQ7qakMUtkef6rOonvV4vjh8/rvyYzebZnI4QQgiZFZ9fwq6XD0UNmgDg7VND8KesyoAsNkn3cfryl78MjuPAMIyyra+vD9/5zndSkS9CCCEkYfv7PCHNc5H0D41hf58HH6qpnKNckYUk6cCppqYGTz31VMi2PXv2zDpDhBBCSLIGhmMHTYmmIyRc0k118sSXwRoaGmaVGUIIIWQ28nPVPdaqSovSnBOyUCVd41RRUYFvf/vbYFkWDMNAFEV0dXWhq6srlfkjhBBC4vL7Jfxw/wfY/Yv3YqbTAFhZHpiagJBkJB04tbW1QRTFkD5OBw4cSEWeCCGEENWOnhtG+wvvwHViEACwrrIEJy6OQAOEdBKXx9A9dvdmmoaAJC3pwKmhoQEtLS0h255//nnVxwuCAIfDAZZlIQgCWltbQ4KwRNLyPI+Wlha4XC7VxyVyfUIIIdlnbNKH//z1MTz1GzcmfRKWFOSibccmPHDLOjgPnZ0xj9PK8iI8dvdm7NiyKoO5JvPdrDqHq9kWTWNjoxLoCIKAlpYW2O32hNPKwQ/P8wkdl8j1CSGEZJfX3Rfx1Z+8g74LlwEAhutW4Jufvh6rryzSu2PLKjRsXjlj5nCqaSKzlXTg5Ha7YbVaUVdXBwCQJAnd3d2q1qsTBCHkNcuy4DguqbRGozHh4xK5PiGEkOwhjkzg8V+8h+7eUwCAqtJCfPPT1+PO61fOmNAyN0dDUw6QlEt6VJ3VasX69eshSRLkycfVTkLOcRy02tCOeVqtNmKtUSJp1R6X6DnHx8fh9XpDfgghhMwdSZLw0zdPo/5ff4Pu3lPQaIAHb1kH7u8+hh1bVtEs4GTOJF3jZLFYUF9fH7It0hQFkYiiGHG7x+OZVVq1xyV6zo6ODuzatSvm9QghhKTHSc8IvvbiQfzv0fMAgGtXLEXHfVtRu45GxpG5l3TgFB40AYEpCmYjWkAz27Rqj4u2r729HTt37lRee71eVFdXJ3V9Qggh6kz5/Pjv3/fhSedRjE36UZCXg7+6YwNa/6QGBXmzWjGMkKSpDpxeeOEFGAwGZfG7p59+OmS/KIpwOp145ZVX4p6LYZgZtTsejyfiqLZE0qo9LtFzFhYWorCwMOb1CCGEpM7bp0Q8+vw7ONQf6BrxIbYS37p3C9jlSzOcM7LYqQ7ZH3/8cfT29iqvn3rqKQwODio/kiTh4sWLqs4VrUlPr9fPKq3a45I9JyGEkPS6PD6Fb758CJ/5z9/jUL8XTEk+njDegB+23ExBE8kKqmucgoMmILAu3bZt20K2qe3jxLJsyGtBEKDX65UaH57nwTAMWJaNmzZY8IScsY4LPzbWOQkhhMyNVw+fwz+++C5Oi6MAgM/ctBpf/9RmLFtKNf4ke8xqyRXZ0NAQOI5DbW2t6uPtdjvMZjPq6urQ09MTModSR0cH6urq0NbWFjctx3FwOp0hx8lTFMQ6LtY+Qgghc2dgeAy7Xj6En7/dDwBYW1GMb927FR+7dnmGc0bITBpJ7RwCYZ5++mk88sgjcbctRF6vF+Xl5RgaGlL6fBFCCEmM3y/hxz0n0fHL9zA8NoXcHA0e+ch6/LXhGpQUJP3/ekISlshzPaFP5tDQELq7u6HRaJRanmAul2tRBE6EEEJm59hAYH25nuOB9eW2rilHx31bsWVNeYZzRkhsCQVO5eXlMBgMsFgscLvdWL9+fch+uWmNEEIIiWR8yof/+rUb//XaMUz6JJQU5OLvP74Rn7/1aloOhcwLSTfV7du3L+JcTosBNdURQkji3hAuov0n70A4H1hf7o5NVfjnz2zBmivryxGSKWlrqgu2WIMmQgghiRkamUTHL9/Dj3tOAgCWLS3Ernuuxye3zlxfjpBsR73vCCGEpIUkSfjZ2/3Y9fIhXLg0DgD47Par8OiOTSgvyc9w7ghJDgVOhBBCUu7U4Aj+8cWD+PWRwPpyG6oC68vVXU3ry5H5jQInQgghKTPl8+N7fziOf/3VUYxO+lCQm4O/uH0Dvnwbi8K83Exnj5BZS2ngdPz4cVx99dWpPCUhhJB54uDpITz6wts4eDqwvtz29Vo8fu9WbKiipVLILPl9wIk/AJfOAUtXAOtuBXIyE4jPKnB68803QxbLtVqt6OrqmnWmCCGEzB8jE1P4v86jeOZ3ffBLQFlRHr5213VorK1GDk0xQGbr0EvAXjPgPTO9rWw1sMMCbL5nzrOTdODU1NQUsjYcABw4cCAVeSKEEDJP/PrIAL7+k4PK+nJ337ga//ip61BVWpThnJEF4dBLQPdDAMJmTvL2B7Y3fX/Og6ekA6eGhga0tLSEbHv++ednnSFCCCHZ7/zwOL75s0N4+a1ALcAaphj/8pktuH1TVYZzRhYMvy9Q0xQeNAFXtmmAvY8Cm+6a02a7pAOnmpoaVdsIIYQsHJIkobv3JL718/fgHZtCjgb40ofX428brsWSQhpvRFLoxB9Cm+dmkADv6UC69R+ds2wl/Sl3u92wWq2oq6sDcOXL1N2Nnp6elGWOEEJI9nCfv4SvvvAO3ugL9G3dsqYMHffegK1raX05kmIX3cDr/5+6tJfOpTcvYZIOnKxWKwwGA4JXbEly9RZCCCFZbHzKh6deE/Cfvz6GCZ8fxfm5+LuPX4sv3Ho18nJzMp09slBMjgHvvQzwzwLHf6v+uKUr0penCJIOnCwWy4xlVwwGw6wzRAghJHv0HPeg/YV3cGzgEgDgto3L8c+f3oJqbUmGc0YWjIH3ANezwNs/BkYHr2zUADX1wBn+yrZIFTOawOi6dbfOYWZTuFbdq6++ClEUsW3btllnihBCSGYNjU7CsvcwfvjGBwCAZUsL8Njd1+NTN6yi9eXI7E2MAO/+JFC7dPKN6e1la4BtDwR+mKuCRtVpEBo8XfkM7tg95/M5zaon3wsvvABBEAAEmul6e3tx3333pSRjhBBC5p4kSfjFO2fxTy+/i/PDgfXl/rSuGo9+YhOYkoIM547Me/1vBWqX3rED44GJUqHJBa7dAdR+HthgCA2ENt8TmHIg4jxOu+fXPE6PPvooRFGEx+MBy7IQRREmkymVeSOEEDKHTouj+MaLB7Hv8AAAgF2+BI/fuxW3sJUZzhmZ18a8wEFHIGDqf3N6O7MO0D0E3PQ5oGxV9OM33xOYcmC+zxxeU1ODlpYW9PX1QaPR4Oqrr8arr76ayrwRQgiZAz6/hGf/cBzf/tURjEz4kJ+rwVdu24A/v60GRfm0vhxJgiQBp12A67vAwZ8Ak5cD23Pyges+Beg+D6z/GJCjcnBBTu6cTjkQS9KBE8uyOHHiBNavX49vf/vb+Pu///tU5osQQsgcePfMENpfeAdvnxoCANRdXYHH792Ka1aUZjhnZF4aHQTe7g7ULg28O7298ppAU9yNnwWWLMtc/lIg6cBJFEWwLIvBwUFcuHABd955JxiGwR133KHqeEEQ4HA4wLIsBEFAa2tryPItatPG2udwOJSRfuHn5nkeAKDT6SAIAkRRhE6nS7gcCCFkPhqd8OHfuKN4+nd98PkllBblof0T1+FP62h9OZIgSQo0o/HPAod+CkyNBbbnFQGbPxMImK76ELBABhVopBRNvrRv3z7o9XqUl6ubCK22thYulwtAIPgxm82w2+0Jp421L9LID4vFgra2NphMJthsNgCBaRTsdnvUwC2c1+tFeXk5hoaGUFZWpuoYQgjJFr85eh5ff/EdnPQE1pe7a+sqPHb3ZlSV0fpyJAGXLwBv/hDgvw9cfH96e9X1gWDphiaguCJz+UtAIs/1WY2qe+KJJ9Db24uuri4AkQOVSOSReDKWZcFxXMJpY+0TRRF2ux1Go1HZ39nZiba2NgCBgGtwMDBfhNqAiRBC5rMLl8bxLz87hBffDIxOWl1ehH/+zBbUXze3EwiSeczvB/peCzTFHf454J8MbM9fAmy5D6j9ArCmdsHULkUyq1F1NTU1SlNYfX09XnjhBVXTEXAcB61WG7JNq9WC5/kZzWWx0vb29kbdx7JsSNDkcDhCXgPqA6bx8XGMj48rr71er6rjCCEkG0iSBLvrFB7/xXsQRyaRowG+cOt6/N3HaX05opK3H3jzOYD/ASCemN6+elugo/dWI1C4OPrFJf2Nqaurw/333499+/YlfKwoihG3ezyehNLG2hccgAVPmxC8zeFwAAB6enpgMplC9gfr6OjArl27Iu4jhJBsJpy/hK/95CBeFy4CAK5bVYbd923FjdVMZjNGsp/fBxzjArVLR/cCki+wvbAs0Ayn+zyw6obM5jEDkg6c+vr6AIQ2z/X09MxqAsxogVCiacP3mc1mWCyWkG3BnchZlkVDQwPcbnfE87W3t2Pnzp3Ka6/Xi+rqatV5JYSQuTYx5Yftf934j1ePYWLKj6L8HPyt4Vp86SPrkU/ry5FYxA+AA88Ffrynp7dX3xLou7T5M0DB4l1yJ+nAadu2bdDr9aisrITT6QTHcTOCk2gYhplRu+TxeCI2ncVKq+Y8oiiC47gZ5xYEQamVkkfkCYIQsdapsLAQhYWFqu6NEEIyzXUisL7c0XOB9eX+5Nrl+NZnaH05EoNvEjjyy8DIuGP7oCxvUqwNTCGgewio2pTRLGaLpP/bUV9fD7vdjm3btkGSJNhsNtVTEURbDFiv1yeUVs15ent7I05FEL7WHoAZ/aUIIWQ+8Y5N4usvvgPjU6/j6LlLqFxSgH//05vw7BfrKGgikV10A87HgCc3A90PBprmIAFXfxS4/xng7w4DOx6noCnIrHoFrl+/Hrt37074uPBaHUEQoNfrlQCH53kwDAOWZWOmjVSLFHwe+VzhARHLsiG1YxzHwWg00ug6Qsi8tfdgP77x03cxcGV9ucbatfjqJ69DxRJaX46EmRoH3nsZcH0POP7b6e1LqoCb/ixQu1RZk7HsZTvVgZOa2cGffvppPPLII6rOZ7fbYTabUVdXh56enpA5nDo6OlBXV6dMHRArbax9svDgi2EY6PV6dHZ2gmEYuN3uqHNIEUJINusfGsU3fvounIfOAQDWL1uCb927BbfWzO/ZmUkanD8S6Oj91o+AUbmbiwbYUB/o6L3xE0BufkazGI3P7wM/wOP8yHksL1kOXZUOuRlaq071BJharRZ1dXUx0/T29uLixYspyVg2owkwCSGZ5vNLeO6PJ/DEK0dwaXwKeTkafOW2GvzF7RtofTkybWIEOPRiIGA6+cfp7WVrgG0PBH6YqzKWPTW4Exx279+NcyPnlG0rSlbg0e2PwrAucpedRKVlAsz6+npUVlaitrY2apoUTUJOCCEkhvf6vWh/4R28eVIEAOiuYtBx3w3YuHJxzKNDVOh/O9DR+207MB5YhxCaXODaHYGRcRsMgYVzsxx3gsPO13ZCQmh8MTAygJ2v7cSTtz2ZsuBJLdWBk91ux9DQEHp7ewEE5nEKj8qoczUhhKTP2KQP/77vfez5XwFTfgmlhXlo+8QmfG77VbS+HAHGh4F3HIGA6cyB6e3MukC/pZs+B5Stylz+EuTz+7B7/+4ZQRMASJCggQaW/RbcXn37nDbbJdQ5vLy8XBmNduDAAXg8Hmg0GmU03f3335/6HBJCCMHv3r+Ar734Dk5cHAEAfGLLSvzTPddjBa0vt7hJEnDaFejoffAFYPJyYHtOPrDprkDt0vrbgJz5MXfX8MQw3KIbbtGN35/5fUjzXDgJEs6OnAU/wKNuZeyuRKk0q3mcZK+++iqcTicaGhpUT0lACCEkPs/lCfzLzw/hBT4wEeHKsiJ889PX4+PXr8xwzkhGjQ4GmuFc3wMG3p3eXrkh0NH7xs8CS5dnLHvxyAGSMCTgmHhMCZZiBUrRnB85n4YcRjer6QjefPNNWK1WdHV1gWVZ1NTUUOBECCEpIEkSXuBP419+fgiDI5PQaIDPf+hq/N3Hr0VpUXaOfCJpJknAB68HOnofehGYGgtszy0Erv9MIGBad2tWLbB7aeIS3EOBoOiYeAyCGAiUYgVIVSVVqCmvwZL8JeA+4OJeY3nJ3AaICQdOx48fh91uh9VqhUajwf333w+Xy4X169enI3+EELLoHL9wGV978R38/lhglPKmlaXouG8rtl1VkeGckYy4fCEwhQD/feDC0entVdcHmuJuaAKKM/vZCA6Q5J+4AVJxFWqYGuVnA7MBLMOirCDQf9rn9+HO5+/EwMhAxH5OGmiwomQFdFW6GfvSSXXg9PTTT8NqtUIQBDQ1NSmzhgd74YUXZrVWHSGELGaTPj/2/FbAv3PvY3zKj8K8HPyN4Vo88lFaX27R8fuBvt8EOnq/9zPAPxnYnl8CbLkfqP0CsKZ2zmuX5ABJrjlKRYAUTW5OLh7d/ih2vrYTGmhCgicNAvdt3m6e8/mcVM/jlJOTA6PRiObmZjAME7K4LwAMDg5i9+7d6OnpSUtGswnN40QISbUDHwyi/YV3cPjsMADgIxuW4Vv3bsG6yiUZzhmZU8NngTf/J1C7NHh8evuqmwK1S1uMQFH6nzuXJi5BGBKUwMgtuuEecuPs5bNRj4kUIK0vX4/ywvJZ5SXSPE4rS1bCvN2c3fM4tba2orOzM+ZcTV1dXepzSQghBMNjk/j2K0fw/T+egCQB2iUF+Ppd1+HebWtm/AeVLFB+X2BhXf7ZwEK7ki+wvbAM2NoYCJhW3ZiWS1+evBzStCY3t8ULkFiGxQZmgxIkseXsrAOkaAzrDLi9+vasmTlcdeBkMpniRmHt7e2zzhAhhCwWv3r3LL7x03dx1hvo5Hu/bi2+dtd10NL6couDeBI48Fzgx3tqenv1zYGO3td/BihITY1jcIDkFt04NnQsboC0vHh5SNPaBmZDWgOkWHJzcud0yoFYVAdO4f2Zkk1DCCGL3dmhMfzTS+9i77uBh9a6yhI8fu9WfHgDrS+34PkmgaN7AyPjjnGA3G+nuCIwhYDuIaDquqRPHylAEkQB/Zf7ox4jB0ghfZAyFCDNB7OajoAQQoh6fr+E/3njBDr3HsHwlfXlWv+ExV/VX0Pryy10HiHQb+nNHwKXgjpSX/3RQEfvTZ8C8tVPZnp58nJIB225iY0CpPSjwIkQQubAkbPDaH/hbfAfiACAm6oZ7L5/KzatpAEmC9bUOHD4Z4FJKvv+d3r7kuWB5U90DwGVNTFPMTI5Mj0HUtBkkfECpJA+SOWBQIkCpNSgwIkQQtJobNKH/+/VY3jqN25M+SUsLcxD246N+NzN65BL68stTOePTNcujXqubNQANXcEOnpf+wkgL7QfmxwghU8WeebymaiXWVa8LKTmSA6UKEBKLwqcCCEkTf7gvoCv/eQg+i4E1g/7+OYV2PXp67GqvDjDOSMpNzECHPppYGTcB69Pby9dDWx7IPBTsQ4jkyMQxKMhcyCpDZDkmiMKkDKLAidCCEmxwcsT+NYv3oPDFRgptaKsELvu2YIdW2h9uQXn7DuBjt5vdwPjQ4FtmlyMXGOAsLEBx0or4fb2we2ywC26KUBaAChwIoSQFJEkCT998wy++bND8FyegEYDPHjLOvz9nRtRRuvLLRzjw8DB5wHXsxjpPwAhPx/ugny4tVfhWMUauDVTODPyHnDwvYiHLytepgRHwR21KUCaHyhwIoSQFPjg4gi+9uI7+O37FwAAG1eU4vH7tqJ2Ha0vlyk+vy9lkyaOTFyGcOwXcL/bDfe5AziWCwj5+Th9dXVowtHTyq+VRZUhk0TKtUlMETOLuyKZRoETIYTMwqTPj2d+14d/445ibNKPgrwc/HX9NWj5KIuCPFpfLlMiLdOxomQFHt3+aMxlOkYmR9A31Dc9zN9zGO4L7+L0pHc6UWloHzU5QAofyUYB0sJEgRMhhCTprZMiHn3hHbzXH3io3lpTiW/duxXrl9H6cpnEneCw87WdIYvCAsDAyAB2vrYTT972JG5dfet0gDQ0PWHk6Uuno5wVqPT5sKGgAuwKHTZUfwQ1FRsoQFqEMhY4CYIAh8MBlmUhCAJaW1vBMEzCaWPt43keAKDT6SAIAkRRhE6nS/j6hBAS7NL4FP71V0fw7B+Owy8BTEk+vn7XZtyvo/XlMs3n92H3/t0zgiYAyra//83fwyevBxdBpR+oGR9DzcQkNkxOgl2yBhu2/hmYbQ8BJdq05Z3MDxkLnBobG+FyuQAEgpiWlhbY7faE08baZ7VaYbPZAAAGgyHk/IlcnxBCZNyhc/jGTw/izFBgfbl7t63B1++6DpVLCzOcs8VpbGoMZy6dwelLp3Hm0hn0nusNaZ6LRA6atEVabCivQU1OMWouHEfNqQOoGRtFhd8P5JcAW+4DdF8A1uoBCojJFRkJnARBCHnNsiw4jks4bbzz1NbWYnBwEABCapMSuT4hZPHw+SXs7/NgYHgMVaVF2L5eq0xSOeAdwz+9/C5+8U5gfbmrtCX41r1b8NFrlmcyywveuG8cZy6dCQmOgv+9OHYxqfN+46a/QaNXBPgfAIN90ztW3RSYpHKLESiiWd3JTBkJnDiOg1YbWt2p1WrB87zSlKYmbW9vb9zzRGp+S+T6ADA+Po7x8XHltdfrnZGGEDK/7T3Yj10vH0L/lZokAFhVXoR/vGszBkcnsPuXhzE8NoXcHA1aPsrir+uvQXEBrS83WxO+CfRf7leCoTOXzuDUpVPK7+dHz8c9x9L8pVizdA1WL12NXE0uuA/i/0f46r1fB0ZHAi8KSoEbmgIB06obZ3tLZIHLSOAkimLE7R6PZ8a2WGnjnUcURTgcDgBAT08PTCYTWJZN6PoA0NHRgV27dkXcRwiZ//Ye7MdXnuNn9IrpHxrDn/+QV17fuLYcHffdgM2rqSZCrUnfJM5ePovTl6driYJrjM6PnI/YHylYSV4J1pSuwZolgeBozdI1SqC0eunqkPmPfFMTuPP7OgzkAFKE5jWNJGGFzwfd6AiwdnsgWLr+XqCAOvQTdbJqVF20gCbRtPK+4A7fLMuioaEBbrc74XO2t7dj586dymuv14vq6uqIaQkh84vPL2HXy4diPro1AL7+qevwhVvX0/pyYab8Uzh7+WzEoOjM5TMYGBmAX/LHPEdxXvF0ILRkNdaWrlWCojVL1qC8sFx1p/vck2/g0QsXsLNqGTSSFBI8aaTAu2y+OIjcT/9nYBkUQhKUkcCJYZgZtTsejydis1qstPHOIwiC0vQmj54TBCGh6wNAYWEhCgup4ychC9H+Pk9I81wkEoDNq8oXZdA05Z/CwMhA1Ka0cyPnYo5QA4Ci3KLpQCiotkj+t6KwYvajEf1+4MwB4I2nYBgZxZMDF7C7sgLn8qYfcyt8PpgvDsIwMgrkFc3uemTRykjgZDAYYLVaZ2zX6/UJpWVZNuo+nudRX1+vdA6XabXahK5PCFnYBryxgyYl3bC6dPONz+/D+dHzITVFwb+fu3wOU9JUzHMU5BSEBELhTWmVRZXpmaZh/BIgvAYc/SVw9FfA5QFll2FkFLePjIIvKsT53Fws9/mgGxuH0itt6YrU54csChkJnFiWDXktCAL0en3I/EsMw4Bl2Zhpw2uIgvexLAuLxaLs4zgORqMx7nGEkMVhYHgMP+FP49k/HFeVvqp0ftZQ+CU/zo+cx5nLZyIGR/2X+zHljx0Y5efkK81oq5deaUpbMl2DVFlciRzNHM2SLn4AHH0FOPJL4PhvAd/E9L6CUqDmdqDvf4GxIeRCQt3YeNgJNEDZamDdrXOTX7LgZKyPk91uh9lsRl1dHXp6ekLmUOro6EBdXR3a2tripo22j2EY6PV6dHZ2gmEYuN1uVccRQhauSZ8fvz48gO7eU/j1kQH4/LE7JQOB/k0rywNTE2Qjv+THxdGLEYOiM5cDzWmT/smY58jT5GHV0lWRm9KWrMbykuVzFxiF8/uA065AoHT0FWDg3dD9FVcD134C2LgDuOpWIK8AOPQS0P0QAu9e8Ht8pdZrx24gyTXrCNFIkhT/LwcJ4fV6UV5ejqGhIZSV0egaQrLd++eG0d17Ej85cBoXLk3XUOiuYtCkr0ZhXg52dr8FIOJjFt95QIcdW1bNXYaDSJKEi2MXI/YvOn3pNPov92PcF16rEipXk4uVS1ZGbEpbs3QNlhcvT3rx27QY8wLuV4Gje4H3fwWMBM3VpMkBqm8JBErX7gCWXRt5cspDLwF7zYD3zPS2sjWBoGnzPem/BzKvJPJcz6pRdYQQkiresUn87K1+dPeexJsnRWX7sqWFuF+3Bo36tdhQVapsLy7InTGP08ryIjx29+a0Bk2SJGFwfDDyqLQrAdKYL3b/qhxNDlaWrIzaAbuqpAp5OVn+597TFwiUju4Fjv8eCK4lKywHrjEEapY21Ktb9mTzPcCmu4ATfwAunQv0aVp3K9U0kVmjGqckUI0TIdnJ75fwx76LsPeewi8P9mNsMjAMPi9Hgzs2VaFRX43bNi5Hfm7kZqeJqSn88K3X8IH3LK4qW4k/u/E2FOTNLuCQJAlD40PT8xgNn1aG6ssB0ujUaMxzaKDBiiUrsHpJ5A7YK5asQH5O/qzyOed8U8Cp/dNNcBeOhO6v3BCoUbp2B3DVLUDuPLs/Mq9QjRMhZFE5LY7C0XsKDv4kTnqmg5BrqpaiSV+Nz2xbg+WlsacU4U5w2L1/d8g6Z88JK/Do9kdhWGeIepwkSfBOeCM3pV0Jli5PXo55bQ00WF6yPOJcRmuWrMHKJSuRvxACh1EROMYFAqVjTmA0aNRzTh5w1Yemg6VlGzKWTUJiocCJEDIvjU368KtD52DvPYnfHbsAue68tDAPd9+0Go21a3FTNaNqGDx3gsPO13bOmMF6YGQAO1/biW995Fu4tuLaiE1ppy+dxqXJS3Gvsbx4edSmtFVLVqEgtyCpcsh6F45dmS7glUCzWfCcT8UVwDUfB669E6ipB4qZjGWTELUocCKEzBuSJOHgaS/srpN48cBpeMemh9F/iK1EU91a7Lh+Vcw15Kb8U7g0cQnDk8O4NHEJ3gkvdr2+K+KyH/K2r/7uq3HzVllUGTJ3UXBwtGrJKhQtlgkXfZPAB69PTxngCVutYfmmQKB07SeAtXVALj2GyPxCn1hCSNbzXJ7AiwdOo6v3OI4MXIAmdwyanDFULffhQ9cswU3rilFQ4MbAxFv4r7cvYXhiGJcmLwUCpIlhJUi6NHkpbn+iaErzS7GubF3kGqOlq1CcV5ziu55HRjzA+85Ax+5j+4Dxoel9OfnA1R+50gR3J6Bdn7l8EpICFDgRQuaEz+8LBDOTV4KZielgJiTQkWuCxr04MzyIc5eGMDJ1CcgZg6ZiAqUV0+ccBfDqYOAnUcV5xViavxQAcH70fNz0X7/l6/gk+8nEL7QQSRJw/sj0KLiTbwDB69GVVALX3BmYMoC9HSiiQTRk4aDAiZBZ8vl94Ad4nB85j+Uly6Gr0mXXnDgpEBz0yLU40QKekBqeoO0jUyNJX18T9peqKLcISwuWorSgFKX5pVhasBRL8wOvl+YvVfbJ20K255diScESZRRaz9kefOmVL8XNw/KS5Unnf0GYmgBO/C7QBHd0LzB4PHT/ii3TTXBrdDTsnyxYFDgRMguRRmKtKIk/Emsu+SX/jIAnOKC5NBno5xMe6AQHRvFGhSWiMLcwJKhZmr8UxXlLMDicgxPnJfSLEiRfESR/MZbkLcFHaqrxic3rcePqlYEAqWBpSofe66p0WFGyAgMjAxH7OWmgwYqSFdBV6VJ2zXnj8oXABJRHfgm4fw1MDE/vyy0A1v/JdBMcc1Xm8knIHKLAiSRkMdSuqBVvJNaTtz056+DJL/lxefJy5IDmyrbg3yM1fakZ8aVWYW5h1JoduTantKBU+V0OdOTfS/NLlWH1kiTBdWIQ3b0n8bO3+zEyERhtlaMBPnbtcjTpq3HHdVUozEvv5ys3JxePbn8UO1/bCQ00Ie+n5src4ebt5sXxOZckYODQ9NxKp3oQMpf6kqpAkLTxE8D6jwGFSzOWVUIyhSbATEI6JsCMFZAkGqykK7iZD7Urc8Xn9+HO5+8MKYtgGmhQVVKF5+9+HqO+0dCmrQgdlqM1eV2evByxFiQZBTkFEQMduZmrrKAstMkrbH9pQWlKhsyf847hBf407L0nIVyYrsm6urIEjfpq3K9bi5Xlcz8CLdLne2XJSpi3mxf253tyDDj+u+kpA4ZOhu5feUMgULr2TmDVNiAnQ2vWEZJGiTzXKXBKQqoDp1gBCYCEgpV0BTfRalfk/5GnonYl3Xx+Hyb8E5jwTWDcN45x3zgmfNOvw/8d941j0j8Zklb+9+TwSfzm1G/mLO/5OflRA57gPjxywBOpVqgwN/YEkOk0MeXHq4fPobv3FF47MgB5bd2SglzctXUVmuqqoV9XoWrOpXRaNDWqw+eA918JBEruXwPBTbF5RQB723QTXNnqjGWTkLlCgVOapTJwihWQRKtpiBaspCu4UVO7sqJkBfbevzfqQ0aSJCUICQ5WwgOSCf/M4CVkv/y7f2awE+0YOf2Ufypi3tItLycvagfmGbU8YYGRHBRlMuiZjcNnvbD3nsJPDpyG5/L04rr6dRVo0lfjkzeswtJC6jGQdpIEnH0bOHJlFNwZPnR/6eorHbt3BPotFZRkJp+EZAgFTmmWqsApXkASS3iworbpqOuuLkxJU9NBhn8ck77ItSry78KQgOfffz5untgyFvm5+RFrdeKt3j7XcjQ5KMwtRGFuIQpyC1CQU6D8Hry9MLcQ+bn5M7adHzmPn7p/Gvc6Txmewq2rb814TcpcGhqdxEtvnYG99yTePjU9n09VaSHur10LY+1a1CynvjFpNzkKCL+5MmXAK8DwmdD9q3WBQGnjjkBz3CL6jBISjtaqmyf4AT6poAkIzGh8duQsPvvzz6I4rxiDY4MxzyVBwrmRc7jNfluSuY1P8Aqq0xbmFqIgp0AJRMIDFvknPGCJF+QEH1eQW4DCnMKI22e7UrzP78Mf+/8YdyTWLatuWRRBk98v4XXhIrp7T2LvwbMYnwrM6ZOfq0H9phVoqluLP7lmOfKiLK5LUsR7ZjpQEn4DBE/2mV8C1NwRqFm65k6gdEXm8knIPEaBUwadH4k/6V4873neS/iYPE1ezNqU4IAkPycf3nEvfnfmd3HP+5c3/SW2LNsSPYgJOud8DyZoJFbASc8IHK5TcLhO4bQ4/ZDeuKIUTXXV+MxNq1G5dH42M84Lfj/Qf2B6eZOzb4fuL6+enlvp6o8A+Ytk2RdC0ogCpwxKxYR6j2x5BJsqN+HE0An8vzf/X9z0exr24JbVtyR0DbkZMF7tysNbH17wgUIwwzoDnrztyYid8RfySKyxSR9eefcsuntP4vfHLirbS4vy8OmbVqNJX42ta8rnfXCctSYuA8JrgUDp/V8Bl4JrmjWB9d/kKQOqNlMTHCEpRoFTBsWbeC8WOVj5P9v+j9LHqftod9zgpm5lXcL5pNqV6AzrDLi9+vYFPxJLkiS8fWoI3b0n8dJbZzActLjuRzYsQ6N+Le68fiWK8hfWfWcN8eT08iZ9vwWC+wwWLA00wW38BLChAVi6yGc4JyTNqHN4EtIxqg7AjIBEfh0tWIk2qi7SuSKlTyavi3Kem0XswqVxvHjgNOy9p3Dk3PSs0WsrimGsXYv7dWtRraURWCnn9wGn+em5lc4dDN3PrJueW2ndh4E8ag4lZDZoVF2azcU8TnJAAsycxylWsJLu4GbRzHOziE35/PjN0fPo7j2Jfe8NYOrKpEuFeTn4xJaVaNJX4xa2Ejk51ASUUmNeQPh1YMqA938FjFyY3qfJAapvvjK30g5g+UZqgiMkheZF4CQIAhwOB1iWhSAIaG1tBcMwCaeNtY/neXAcBwDo6enBnj17QvYBgE6ngyAIEEUROp26tagW68zhZGE7NnAJdtdJvMCfxvnh6aagG6sZNNauxd03rkZ5cerWiCMAPH3Ti+Ye/x3gn5zeV1gObKgPBErXNAAl2szlk5AFbl5MR9DY2AiXywUgEPy0tLTAbrcnnDbWPo7j0NbWBgDo7OxEfX29ktZqtcJmswEADAZD1GvPldyc3Kj9j2LtS0V6snhdGp/Cz98+g+7eU3CdGFS2Vy4pwL3b1qBRX42NK0szmMMFxjcVWP9NboI7fzh0v7Zmugnuqg8BuRSoEpJtMhI4CULofD8syyo1Q4mkjbWP53l0dHQogZPRaITZbIYgCGBZFrW1tRgcDDwootV0EbIQSZKE/X0edPeewi/e6cfoZGBx3dwcDW7fuBzG2mrcsakKBXk051JKjA0Bx7hAoPT+r4DR6QAVmlxg3a3TUwYs25C5fBJCVMlI4MRxHLTa0GpnrVYLnudnNJfFStvb2xvzPHv27FG2i6Ko7JepDZjGx8cxPj7ddOH1elUdR0g26R8aVRbXPX5xRNnOLl+CJn017tu2BlVlNM9PSlx0B5rfjvwS+OB1IHi5nyIGuObjgWBpQz1QXJGxbBJCEpeRwEkOYsJ5PJ6E0sY7j9FoVLZ1dXXBYDAowZIoinA4HAAC/Z9MJhNYlo14vo6ODuzatSviPkKy2fiUD9yhAdhdJ/G/R88ri+suKcjF3TeuRqN+LXRXZX5x3XnPNwl88MfpKQMuHgvdv2zj9NxKa7cDuTQTDCHzVVZ9e6MFQommDd8nB0ly/yYAIZ3IWZZFQ0MD3G53xPO1t7dj586dymuv14vq6mrVeSVkrh0640V370m8+OZpiCPTHY63r9cGFtfduhIlBVn19c8Ofh9w4g+BSSWXrgg0o0UbWDHiAY7tC/RXOsYFmuRkOfnA1R++MgruTkAb+T9lhJD5JyN/ORmGmVG75PF4IjadxUqr9jxmsxlOpzNkuyAISrOgPCJP7v8UrrCwEIWFNE8KyW7iyAR++uYZ2F0ncfD0dHPyyrIi3F+7BsbaaqxftiSDOcxyh14C9poD673JylYDOyzA5nsASQIuHL3SBLcXOPlHQPJPpy2pvNIEtyMwIWVRakbcEkKyS0YCJ4PBAKvVOmO7Xq9PKC3LsnHP09nZCbPZDJZllZooQRBQX1+vdA6XhfeXIiTb+fwSfn/sArp7T+JX757DhG96cd2Pb16JRv1afPSa5cilOZdiO/QS0P0QED7rvrcf6H4wsCjuhaPAYF/o/qrN03MrrdVHr50ihCwYGQmcwmt1BEGAXq8PmWOJYRiwLBszbXjNUvh5HA4HdDqdEjR1d3ejtbUVLMvCYrEox3EcB6PRSKPryLzxwcUR2F0n8bzrFM4MjSnbr1tVhib9Wnz6pjXQLinIYA7nEb8vUNMUcdmjK9vefyXwb24BcPVHA32Vrvk4ULFurnJJCMkSGZ0A02q1oq6uDj09PWhvb1cCl8bGRtTV1SlTCcRKG22fIAioqakJuSbDMEotkzw5JsMwcLvdIYFUPOmYAJOQeEYnfPjlwX50957EH4XpJury4nx85qbVaNRXY8ua8gzmcB6ZGgcuvB+YR+l9J/D2j+Mfc/tXgVv+Aihcmv78EULm1LyYOXw+o8CJzBVJknDgpAh77ym8/NYZXBoPDGvXaICPXrMcTfq1MFy3ghbXjWZydDpAOn8YOH8k8K9HCO2fpMb9zwBbjfHTEULmnXkxczghJLrzw+P4yYFT6O49hWMDl5TtV2lL0Fi7FvfXrsVqpjiDOcwyE5cDfZDOHwEG3psOkAaPI3ITHAJLmlRtAorKAxNTxrN0RSpzTAiZpyhwIiRLTPr8+PXhAdhdp/Dq4QH4rky6VJSfg09uXYUmfTW2X61d3Ivrjg8D548G1SBd+RE/iH5McQWw/LrAwrjLN03/W7oyUHXn9wH/tiXQETxikKUJjK5bd2u67ooQMo9Q4ERIhr1/bhh21ym8wJ/ChUsTyvZtVzFo0lfjUzesQmnRIluzbFS8UoN0OLQWyXsq+jElywIBUdWm0ABpyfJAgBRNTm5gyoHuhwBoEBo8XTlux24aMUcIAUCBEyEZMTw2iZ+9HejofeADUdm+bGkh7tetQaN+LTZULYLFdUc8081qyr+HgeH+6McsXRFUexQUJC1Zlnw+Nt8DNH0/yjxOuwP7CSEEFDgRMms+f2DR3IHhMVSVFmH7em3EeZP8fglv9Hlg7z2JXxzsx9hkoHNybo4Gd2yqQpO+GrdtXI783AW4uO7lCzM7aJ8/EpihO5rS1aHNa1XXAcuuBUrSNN/a5nuATXepnzmcELIoUeBEyCzsPdiPXS8fQn/QXEqryovw2N2bsWPLKgDAaXEUz7tOwe46iZOeUSXdhqqlaNZX4zPb1mB56QKYmV6SgMvnQztny/+OXIh+XHl1WP+j64Dl1wY6bc+1nFxg/Ufn/rqEkHmDAidCkrT3YD++8hw/ozvx2aExfOU5Hl/6yHocPTeM3x27AHnSj6WFebj7xtVo0q/FTdXM/FxcV5KA4bNhHbSvBEijg9GPY9aF9j1avikQIBUugiZJQsiCQYETIUnw+SXsevlQrLmm8czvppfn+BBbiaa6tdhx/SoUF8yTph9JArynZ3bQPn8EGB+KcpAG0K4PC5A2BprYCmidPELI/EeBEyFJ2N/nCWmei+a+bavxN4aNuKqyZA5ylSS/Hxg6Gdo5+/zhwLD/ieHIx2hyAC07s4P2smuAfJpfihCycFHgRIgK4sgEDp8dxuF+Lw6fHcYf3BdVHfexjVXZEzT5fYB4IrT/0cB7gWH/kyORj8nJA7Q1052z5Vqkyg1A3gLol0UIIQmiwImQIJM+P4Tzl3H4rBfv9Q/j8FkvDvcP46w3fu1SJFWlRSnOoQq+qcCM2eH9jy68D0yNRj4mJz9QW6R0zr4SIGlZII8WCyaEEBkFTmRRkiQJ54fH8V5QLdJ7/V64z1/CpC/yEh3V2mJsWlmG61aW4pqqUnzzZ+/iwqWJaHNNY2V5YGqCtPFNAp4+4HzYKLYL7wO+8cjH5BYG+hvJgZE8WWTFeiCX/hwQQkg89JeSLHijEz68PzCMw/3DeO9KDdLhs14MjkxGTF9amIdNq0qxaWUZNq4sxXWrSnHtitIZs3fn52nwlef4aHNN47G7N0eczylhUxOAxx0IjAaCapEuHgP8ke8BecWBEWshQ/w3AhVX07xEhBAyCxQ4kQXD75dwanA00Lx2drqZre/iZWU6gGA5GoBdvhSbVpZe+SnDplWlWMMUq5omYMeWVfjOAzr880vvoPrSW6iCiAEwOLn0RvzjPVuVeZxUmxwLBEPhw/wvugHJF/mY/CUz12Cr2gSUXwXkLMCJNAkhJMMocCLz0tDoJI6cHcaRs16lue3I2WFcnogcYFQuKcB1q8qwaWXplVqkMmyoWoqi/NnVvuzI6cGdRWZoJqaX6ZCKVkOTYwEQZZmOiRHg4vvTzWtyLdJgHyD5Ix9TWHYlMNoYOoqtbC0FSIQQMococCJZbcrnR9+FyyE1SIfPDuO0GLmTc0FuDq5ZsTRQe7SyVGlyS8vM3IdeArofgiasl5PG2x9YMPY+W2D0Wcgs2u8BgyeAiD2jEJgtO7hztvxv2erYC9USQgiZExQ4kaxxfngch88Gao7kEW3vD1zCxFTkWpg1TLESHG280mn76mVL5matN78P+KUZkQOgK9teaIl+fHFFIECq2hQaIC1dQQESIYRkMQqcSELULmgby9ikD8cGLoXMi3T4rBcXLk1ETL+kIBcbV5Zi06pAcLTxSqft8uL8iOmT4vcFlgsZuRjhxzNz26WB6HMfBSsqB1beENbEtglYsowCJEIImYcocCKq7T3Yn1BHaEmScFocxZGzw8pw/8Nnh9F34TJ8/pk1NRoNsL5ySeiItpVlWFtRjJxEgjNJAsaGwoKeC7GDoVERUZvPZuOuJ4GtxtSflxBCSEZQ4JQlfFNTOPzGKxgdPI3iijXYdPOdyM3Li7sv0XMla+/Bfrz4w6dgz/8+Vhd4lO1nxrX45g8fwqixBVdVllypRRpWRrYNj01FPB9Tko/rroxik0e0XbuidOY6bpIETFyOXfsTaXu0UWjxFDFASWXYj3bmNk8f8KIp/vmWrkguH4QQQrKSRpIiDdROP0EQ4HA4wLIsBEFAa2srGIZJOG069sXj9XpRXl6OoaEhlJWVza4gABx45Vmsfn0XVmB6GY9zqMSZDz0GAFH3bbvz8wmdK1J6NXx+CV97/HE8PtkJIDCMXyZXHH1l8m/win/7jGPzczWoWb5UGdF23fICXFc+hWU5w9CMeiIHPZcvhG6LNpljPAVLIwc9JVqgZNnM7cUV6ieB9PuAf9sCePsRuaZKE+jQ/Tfv0LxJhBCS5RJ5rmcscKqtrYXL5QIQCGLMZjPsdnvCadOxL55UBk4HXnkWN/7hrwBEDkjkyRUj7Xvr1v8ICYbinUtOL0kSRiZ88FyegDgyicGRicDP5QkMKq8nIY5MwHN5AufFy3jR9xWshAeRWsz8EuBBGSyah3G91o/1JeNYUzCC5bmXUOofQk5wgDRxKbmCyi0M9AuKGAhFqBUq1gL5aV7u5MqouoAIU2A2fR/YHGVKAkIIIVkjked6RprqBEEIec2yLDiOSzhtOvbNJd/UFFa/vgsAZgQkORookzZG2ueXgFWv70LP+nr4fFMYHR3B9a8/FjP9VX/4GsxvHMfUxARypXEUYhKFmEQRJlCoCfyuxQRWYxKFmgllfxUGsTrXg2hyNMAyePEE/i/gQeAnFk1u/Kaw8O0FS7KvM/XmewLB0V4z4J2exwllq4EduyloIoSQBSgjgRPHcdBqQ9fw0mq14HkeOp1Oddre3t6U7wu/PgCMj49jfHy6ucjr9aq/2RgOv/EKrsfF6TU6wsSKE3I0wEpcxMofXh92UPT0lRiGxf9k2t71kdL1KFl9XfSmMDkQKirPviAoWZvvATbdBZz4A3DpXKBP07pbqXmOEEIWqIwETqIoRtzu8cysqoiVNh37Iuno6MCuXbsi7puN0cHTKT9nPIPF61C8fB3yC4qRU1AETV4xkFcI5BVN/5tfFPLa7zmOnN8+Effchff+B8D+yRzcRZbJyQXWfzTTuSCEEDIHsmpUXbSAJtG0qd7X3t6OnTt3Kq+9Xi+qq6vj5DC+4oo1sz7He7c/jetu/RQOvfErbOYeipv+zEc6cP2H70roGjl+H0Z7f4DCkbNR+ziNl6xE8dUfTui8hBBCyHyTkUWuGIaZUbvj8XgijmqLlTYd+yIpLCxEWVlZyE8qbLr5TpxDJSJMaQQg0McpWtd9vwScRSWu/fC9QH4xNt5yV8xzyek33Xxn4hnNyUXx3U9Ao9EgfA5vPwCNRoPiu5+g5ilCCCELXkYCJ4PBEHG7Xq9PKG069s2l3Lw8ZcqB8IDHL02P04q0DwD6P/SYMj9TvHOFp0/Y5nugafo+NGWrQzZrytZAQ6PHCCGELBIZaapjWTbktSAI0Ov1So0Pz/NgGAYsy8ZMG15DlIp9c23bnZ/HAcycq2lAU4n+KPM4yfvC52WKd65k53FSbL4HmrCO0BrqCE0IIWQRyegEmFarFXV1dejp6UF7e7sSuDQ2NqKurg5tbW1x06ZjXzypngATyP6ZwwkhhJCFal5MgDmfpSNwIoQQQkhmJPJcz0gfJ0IIIYSQ+YgCJ0IIIYQQlShwIoQQQghRiQInQgghhBCVaKhVEuT+9Klas44QQgghmSM/z9WMl6PAKQnDw8MAkJJlVwghhBCSHYaHh1FeXh4zDU1HkAS/348zZ86gtLQUGk2ExdtUkte8O3nyJE1rMAeovOcWlffcozKfW1Tecyud5S1JEoaHh7F69Wrk5MTuxUQ1TknIycnB2rVrU3a+VK5/R+Kj8p5bVN5zj8p8blF5z610lXe8miYZdQ4nhBBCCFGJAidCCCGEEJUocMqgwsJCPPbYYygsLMx0VhYFKu+5ReU996jM5xaV99zKlvKmzuGEEEIIISpRjRMhhBBCiEoUOBFCCCGEqESBEyGEEEKISjSPUwYIggCHwwGWZSEIAlpbW8EwTKazNe/xPA+O4wAAPT092LNnj1Kuscqc3o/ZM5vNaG9vp/JOM47jIAgCWJYFABgMBgBU3ukiCAI4joNWq4UgCDAajUrZU5nPHs/zaGlpgcvlCtmebNnOWblLZM7pdDrld7fbLRmNxgzmZuGwWCwhvweXc6wyp/djdlwulwRAGhwcVLZReaee0+mUWltbJUkKlBvLsso+Ku/0CP6bIkmSUv6SRGU+W3a7XfnbES7Zsp2rcqfAaY653e6QN1eSJIlhmAzlZuFwuVwh5eh2uyUAktvtjlnm9H7Mnt1ul1iWVQInKu/0CC5jSQqUpfwvlXd6hJddcOBKZZ4a4YFTsmU7l+VOfZzmmFztG0yr1YLn+QzlaGHQ6XTYs2eP8loURQCBso1V5vR+zI7D4YDRaAzZRuWdeoIgwOPxgGEY8DwPURSVJiMq7/TRarWora1VmuwaGhoAUJmnU7JlO5flToHTHJMf6OE8Hs/cZmQBCn6Ad3V1wWAwgGGYmGVO70fyRFGM2H+Ayjv1eJ6HVqtV+m/YbDY4HA4AVN7pZLfbAQA1NTWw2+3K3xgq8/RJtmznstypc3iWiPamk8SJogiHwzGjw2GkdMnsIwHd3d1obW1VnZ7KO3kejweCICj/GWhtbUVFRQWkGPMXU3nPHsdxsFgsEAQBJpMJAGC1WqOmpzJPn2TLNh3lTjVOc4xhmBkRsFwFT1LDbDbD6XQqZRqrzOn9SA7HcWhqaoq4j8o79ViWVcoPgPIvz/NU3mkiCAJ6enpgMBjQ2toKt9uN7u5uCIJAZZ5GyZbtXJY7BU5zTB4+HE6v189xThamzs5OmM1msCwLURQhimLMMqf3I3nd3d2w2Wyw2WwQBAEdHR3geZ7KOw3k/kyRUHmnB8/zqKurU16zLIv29nb6m5JmyZbtXJY7NdXNsfA/gIIgQK/X0/9GUsDhcECn0ylBk9yUFF62wWUeax+JLvyPlMlkgslkiviAp/KePZZlodfrlX5l8lxOOp1uRloq79TQ6XSwWq0hfScvXrxIZZ4Gwf0lYz0js+VvOS3ymwGCIMBqtaKurg49PT0hEweS5AiCgJqampBtDMNgcHBQ2R+tzOn9SJ4oirDZbDCbzWhtbYXJZIJOp6PyTgNRFGE2m1FbWwuXy6XUrAL0+U4XjuOU5lAg8B8GKvPU4DgOTqcTnZ2daGtrQ11dnRKkJlu2c1XuFDgRQgghhKhEfZwIIYQQQlSiwIkQQgghRCUKnAghhBBCVKLAiRBCCCFEJQqcCCGEEEJUosCJEEIIIUQlCpwIIYQQQlSiwIkQklU4jkNNTQ06Ozths9lQW1uL2tpaZaLNmpoa8Dw/62vI5ySEkETQkiuEkKwiiiKcTqcyQ7PT6YRWq0VraysAoLm5GYIgRFz6Qi2DwYDm5uaU5HcuBC9JQQjJLKpxIoRkFY/HE3NRW51ON2MV9IVMEAR0d3dnOhuEkCsocCKEZJWmpqaUpFkoLBZLprNACAlCgRMhJKuoaZLq7e1FbW0tOjs7AQAOhwM1NTXgOA7AdD8pk8kEh8MBm80Gk8kEURSjnpPjOHR2dsLhcMBsNkdNJwgCzGazcl75nDzPK8d3dnZCEATlvPHyKve34jgONpsNjY2Nyr7e3l44nU7YbDblnISQzKE+ToSQeSe8j5LRaERXV1fIfqPRiMrKSmXFdYfDgcbGRjidzhnnk4Mhl8sFINBcKK/aHkwURTQ0NMDlcoFhGJjNZthsNhiNRpjN5pBz19bWYt++faryajAY4HQ6YbfbAQB2ux08zyv7ampqlD5ehJDMosCJELJgBddeGY1GNDY2RuxobbVaodVqlVogAOjp6Zlxvu7ubrAsqxzf3t4OAOjo6JjRWZ1lWXR3d6sKeCorK1FZWRmS78XUj4uQ+YQCJ0IIQaDTucFgUF5HCnjCg665HulGo+sIyTzq40QImZcYhsHFixeV1xzHzejDFPza4XDAYDCEBB7y/ubm5pDaJvl84YxG44w5pDiOi3g8z/NKJ3Y1eVUjUp4IIXNLI0mSlOlMEEJIOI7jIAiCMqrMbDZDr9crTWKiKMJsNisdqa1WK0RRhNVqBcuyMJvNEEVRaZ7r6elBe3s7GIYBz/NoaWkBAOzZswc6nQ4cx8HpdKKurg4AZgRZwfmKlI7jOPA8D5Zl0dPTg+bmZlV5FUUxJC9yfyudTqfcu8ViQW1tLQwGQ8ypGggh6UeBEyFkQZJnGadO1YSQVKKmOkIIIYQQlShwIoQsOBzHgeM4ZVg/IYSkCjXVEUIIIYSoRDVOhBBCCCEqUeBECCGEEKISBU6EEEIIISpR4EQIIYQQohIFToQQQgghKlHgRAghhBCiEgVOhBBCCCEqUeBECCGEEKLS/w+mAKnDH52tKwAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -716,9 +716,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABtSklEQVR4nO3deVwb550/8I+4wRyD8AW+B+dyErsW4DTpkTQWTdLU2d1GQLfbIz0std3bv11k9mjqblss0l+2vz3aSE67bbbbliPZ3ThJkyKn6ZXDgBw7jnPYGuITX4A4zC3N7w8xgyQkIQkJcXzerxcv0BzPPPOMQF+eUyPLsgwiIiIimlFKsjNAREREtFAwcCIiIiKKEAMnIiIioggxcCIiIiKKEAMnIiIioggxcCIiIiKKEAMnIiIioggxcCIiIiKKEAOneUSSJJjNZhQWFqK0tDTssaWlpSgsLITZbIbL5ZqbDNK84XA4UFlZOeP7JJFaWlqSdu25pvxuajQalJaWoqGhAQ0NDTCZTKiqqlpSZRErk8mEwsJC2O32iI53uVwwm82w2WxoaWmBzWabdozdbofJZILJZIr5GSzWZ2uz2VBWVpbsbCxOMs07FotFFgRB7ujoCLq/tbVVNhgMstFonOOcBWe1Wqdtq62tlQ0GQxJy4xUsT4tNa2urLIpiVOfEq1yam5unbevt7Q37vg0m2e+TaOn1+qC/d6IoyhaLJQk5itx8+J3Q6XRya2trRMeKoig7nU71tSAIfq9lWZYByL29vXJra6uabqz3udierdPplGtra6P6faTIsMZpHhIEAdXV1bBarUH3z7captbW1mnbKisrUVNTk4TceAXL02Kj1WqjPide5SIIQtBtRqMRoihGnE6y3yfxYjKZYDabk52NsBbS74TD4YAgCH7vpebmZr/XDocDoihCEATo9Xro9XoA8b/PhfpsRVGEyWQK+rtKs8PAaZ4ymUxoamqatt3lckX1wZRoNpsNkiRN267X62EwGJKQo9B5WuriWS4OhwMNDQ3Ttlsslqj+UCfzfRJPyj3Pt39qFAvtd6Knp2faPwZKYOQr8L2WiPtcyM9WCS4pvtKSnQEKTqfTQavVoqWlxe+Dpb29PegfEEVDQwNEUYQkSRBFUT3X5XLBZrNBFEW0trbCZDJBp9MB8PYTUP6jOnDgACRJgiRJ6O7uhsViCXktu92O1tZWSJKkfojW1tbC4XDAbDZDkiQ4nc6Q1+jp6UFHRwesVitsNhu0Wi0aGxtRV1en5m2m+4o0T4HpAN6+Db77wgnsX2E0GmdMM9Z7Vs7TarWoqqoC4H1+Mz2PwPz4llWk5TJT+SoEQYDFYvFLQwn2Dxw44Hd+qPKJ9H0SyXtxpmtFk260ZQEAHR0d0Ol0fh/koZ6D2WxWawOUmgIlD5G8z4KlF+6+Znr2wcTr70VDQwMEQYiqdtRut8Nqtfrl1+l0oqmpCc3NzdDr9XA4HH7HKDVPgfcpiiLq6+shSZJ6riRJqKyshCiKsFqtMwYWC/XZulyuiP+JUc5VnpUoiujp6VHLOvD3VOl7ZrFYIr6PwHKpqKiY9bNJmmS3FdJ0Snt1sP4fSt+SYH2cDAaDX98TvV6vtm/X1tb69Q8QRVHu7e1VXyv9ZXz7H4iiOGP7eGtrq6zT6aZt7+jomNb/JtQ1amtr/e4vML1w9xVNngwGg9+1nU6nrNfrw9ydl8VimZZH3+cQLs1Y77m5uVkG4PfMamtr/Z55sDIOV1bhyiWa8g1Hr9f7pTVT+UTzPpkpT7E+C990ZyqLwH4wvb29ssVikXU6nd/vU7h0lOfd2toqd3R0qO+Fmd5n4Z7rTPcV6tmHEo+/F7W1tX59b3p7e2UAEfVxCpbfwP5Rod47gecF6wsYrM/SUnm2gYxGo999O53OaWUdrAz1er3f842lXCJ9NvMNA6d5SHkzOp1OtfOj8lr5YxYYOCnHBqajHGMwGPze5IEfcB0dHdPODzwmmGgCp1DX8P2D4nQ6ZUEQIr6vSPPU0dHhl65ips6qyh/7wD+cFoslojRjuedQ96DkRXkPBJbxTGUVLM1Yyjcc3z+ekZZPpO+TcO/F2TwLJd1IykKv18s6nU62Wq3qV2BAF8lzCNwf7n02U3qRlFe0H66z/Xuh3E+gSDuHxzNwkmV52qCFYO+lpfJsZ8qbLMvTgrVQ/6QFflaFuo9g5aKI5NnMN2yqm8dEUYROp0NTUxOMRiMcDkfYJipBEPyG+jqdTrXtu7m5GYC3+lZpMurp6Zl2PV+CIEw7ZraCXSPckPqZ7itS7e3tQat9laaIUM2f7e3tEATBr8pbKUulKWOmNKO951CUfITqtxBLWcWrfIOJtcyVY3zN9F6M9Frh0o20LMrLy/2aJwJFkk5gPmZ6n0Wb3mx/d2f790Ipg/nCaDSisbEROp0Odrs95HtvKTzbYPcT+KyifXaxlIsi0mcznzBwmudMJhOsViuMRmPYN7PSadz3Tef7s8PhQH19PSorK1FdXZ2wtmOlbTteZrqvSPMUa8fOcOfNt86i0ZaVUi6zLd9w+Zkr8bhWvMoiknQCf5dnep/F+xnN9Hsaj78XsYz6jDflPmtqarBz505YLBZIkhRz+S2GZxsvvvcVS7ko4vVs5hJH1c1z1dXVcDgcaGlpQXl5ecjjdDpd0FoCl8sFl8uFnTt3oq6uTg3AlDd9vEegOByOuKYX7r4i5XA41I6HgSRJQkVFRdjrB7uWy+WKOc1YKc8ysOO8ItqycjgccSnfUOayfOJxrXiVRSzphHufJeIZhfs9jcffi1B5nmvKffoOtplNQLfQn22ovMVyPd9ar9ncR7yezVxi4DQPKSMXAKhzlDQ2NoatcdLr9SgvL582y21TU5Nas+D7gau86Wf6AzoTZQQF4P2jGupDPdZrhLuvaPKk0+mg1+v9qpKVew83akoZGeI79N7lcqGpqSnmNCP9I+VwOPyOra+vDztP0kxlFaxcYinfSMVaPsHMVGbxeBbxKotY37Oh3mexpBdYXtH8nsbj74UoijAajX4jyVwu17T3dLyFu0+TyYTdu3fPavqLhf5sg+Ut8Dkpo/dCXUPJg29N/mx/d+LxbOZUsjtZ0RSn0ykbjUYZgGw0GtVOwL4jMJSRHoIgqDPa+nbsU0ay+J6jbK+trVVn2HU6nWpH3o6ODtlgMMgA1BENyjV0Ot2MnfWUtJWOgsHSC3cNvV6vjrZQjqmtrY3oviLNU2A6VqvVr4N2JOlZLBa5ubk54jRnc89Kh8/m5ma5tbVVtlgsfqNNAs8Llp9gZTVTuURavqEEjqyJtnzi8V6M9lkEphusLJxOZ9jfu3B58U2ntbVV1uv1siAIaufgwHNmep/5phftfQV79qHyHo+/F8q9KOnodLoZO4gHlpFv+qF+bwJH8wW7T+UeAi21ZxvufnyfU+AzUv4GKXk0GAyyKIoz/u7MVC6yHPrZzFcaWZblJMRrRBSGMvdJR0dHsrMSlaqqKtTU1Cyc/xxpyXC5XDPOg0deZWVlsFgsc1ZWC+3ZsKmOiGZFqbZXfp5Po6loafNt1lKaxmh+WMjPhoETEc1KfX09TCYTAG//iHCDGIjmkjLDNTA/RvnRlIX8bNhURzTP2O12WCwW9Xuky8IkiyRJaGlpUZdrYDMdzRcOhwPt7e0AEHZ+JprS0NAAs9kMvV6vfk+EhfxsGDgRERERRYhNdUSUECaTCYWFhX5TBFBoDocDlZWVMc0qT0Rzh4ETESVEsNXNzWYzqqqq5jQfgavSz7f0FDqdDmazOSFpJ0Oiyoko2Rg4EdGcqaysRE1NzZxes7W1dV6n52uhdZINJ5HlRJRMXKuOiObMXA85ttlscV36I97pLVYsJ1rMGDgRLVAulws2mw2iKKK1tRUmk2nacguBzSW+o1fC7WtoaFCb2SRJUkf2KRNziqIIk8mk1ipYLBb1PGV0XSCHwwGz2QxJktRlhZT0AODAgQPqcg/d3d1qmsq9ms1mlJWVoaOjA6WlpdDpdLBarepK84HsdjtaW1shSZK63IXvCMVQ9xhKqPSC3Zcy1NpiscBoNKr3qdVq1aZKl8s17T5DUfKqLOA608jFWJ5tNPcBhH5eM5U70YKXzGnLiSh2tbW1fssXiKLot1SExWLxW3bEdxmEcPsMBoPfcgtOp1PW6/V+xypLMnR0dKjpBC750NvbKwPwS6ujo0MWRdHvPlpbW2VRFP2OE0XRbxkN36Vcent7p6URirJ8RKCZ7jHa9JR78KXX6/3Ko7m5WQbg98xqa2tlo9Govg5WPoHL2Oj1er+yCTSbZxvJfUTyvEKVE9FiwD5ORAuUJEl+I9ZEUVRfKzU0dXV16v7GxkZ1Yc5Q+xwOB+x2u1+TmiiK6OnpUdMWBAEOhwN6vR46nQ4WiwUulwsNDQ1+NRuCIES04KhWq4UkSdOu6dvU09LSoqYlCELQhUgjFck9RitYDVvgDOpKefh2mK+rqwvbrKXMkeVbw1RVVQWr1Rr0+Nk+20juI5LnRbSYsamOaIFSmqiUJU96enrUVezb29shCILfh55yvN1uD7lPafoLpDQHKh+WgccoacYqMD1BENR7AbwjzoKtCh+L9vb2iO5xLijPweFwBM2TUq6+AZ3T6QwZpIR77pE+20jM9LyIFjMGTkQLlMPhQH19PSorK1FdXe33YRYYZPiKdZ+vYEFSIkeEmUwm1NfX48CBA7DZbCFrXGai1LjFi9LnKJh4XMflckEURb+gJlyAE49nG6/zfIUrJ6KFhk11RAuQy+XCzp07UVdXB6PRCEEQ1A84SZKC1tAo54Xbp9frg9ZmSJKEioqKkPnR6XQJb6o5cOAA7HY7DAZDzEs0KE2MsdxjqPRCiaQGxuVyqc8kmFDlGiqYScSzjUdNUrhyIlpoGDgRLUBKzYnvB67yAac0+xgMBnVUE+D98Gxqagq7T6fTQa/X+zUNKR964UZyiaIIo9HoN5rL5XLB4XDEVGMReE5HRwcEQYDBYIiq5sK3740SUMZ6j6HSC9yu5D9Y7VZgedTX18NoNIa8J71ej/LycrS0tPhtb2pqCpm/2TzbSO8jULBm1GDlRLQYcK06ogVKGRZeWVkJwPthZTabUVNTo34Qms1mFBUVqZ2AfWtqZtqnLP3hdDr9hppbLBa0t7ejrq5uWiCjDHVXmvKUPFosFmi1WtTX16OlpUVdvFhpbvTd1tDQgPr6eoiiqF6jpaUFVVVV6lQHgiDAZDJFVPOk5KG0tDSie4w1PSVYUcqjsbERDocDFosFBoNBHcpfV1en9msC4DcdgFIWtbW1fvlR8qo0h84U4MXybCO5D1EUI3pe4cqJaKFj4ERE85rL5cLu3btx4MABtUlSkiR1+ZaF8qGsBE4dHR3JzgoRzQKb6ohoXrPZbDCZTGotljKs32KxMAghojnHwImI5jWdThd0dnC73a42UxIRzRU21RHRvGe32/3mOop06ZH5QukbpnznEiRECxcDJyIiIqIIsamOiIiIKEIMnIiIiIgixMCJiIiIKEJcqy4Ej8eDCxcuIC8vDxqNJtnZISIiogSRZRkDAwMoKSlBSkr4OiUGTiFcuHAB69atS3Y2iIiIaI6cPXsWa9euDXsMA6cQ8vLyAHgLMT8/P8m5ISIiokTp7+/HunXr1M/+cJIWOEmShJaWFnUxSGWF92iPdTgc6qKVbW1t6rIM0V4jkNI8l5+fz8CJiIhoCYika07SAqeqqip1uQRJkrB79+6gswPPdKzdblcnk2toaMDOnTvVY6O5BhEREdFMkjKqTpIkv9eiKKq1RtEcq6wmrjAYDHA4HJAkKaprEBEREUUiKYGT3W6HVqv126bVauFwOKI6VqfT4cCBA+p2l8ul7o/mGkRERESRSEpTnRLgBOrp6Yn6WN+1qhobG6HX6yEIQlTXAIDR0VGMjo6qr/v7+4Me58vj8WBsbGzG44gWo/T0dKSmpiY7G0S0BLg9Mg539uDywAhW5mVhxyYtUlOSM1XQvBpVFyrYieRYl8uFlpYWtU9TtNeor6/Hvn37Ir7+2NgYOjs74fF4Ij6HaLERBAGrV6/mXGdElDDPH+/CvoMn0NU3om4rLsjCw7u24N5biuc8P0kJnARBmFbz09PTE3TEW6THms1mtLa2qtujuQYA1NXVYc+ePeprZWhiMLIso6urC6mpqVi3bt2Mk2URLTayLGNoaAiXL18GABQXz/0fLyJa/J4/3oWv/MQBOWD7xb4RfOUnDnz/07o5D56SEjjp9XpYrdZp28vLy2M6tqGhAWazGaIoqjVK0VwDADIzM5GZmRlR/icmJjA0NISSkhLk5OREdA7RYpOdnQ0AuHz5MlauXMlmOyKKK7dHxr6DJ6YFTQAgA9AA2HfwBCq3rJ7TZrukVJWIouj3WpIklJeX+83NpIyKm+nYlpYW6HQ6NWhqamqCIAgznjcbbrcbAJCRkTHrtIgWMuUfh/Hx8STnhIgWm8OdPX7Nc4FkAF19IzjcGbzvcqIkrY9Tc3MzzGYzKioq0NbW5je/Un19PSoqKtT5mUIdK0kSqqqq/NIVBAFGo3HGa8QD+3XQUsffASJKlMsDoYOmWI6LF40sy8FqwZa8/v5+FBQUoK+vb9rM4SMjI+js7MSmTZuQlZUV8zXmcpSAw+GA1WqFzWZDbW0tSktL4XQ6IUkSTCYT9Hp9XK5js9lgNptx6NAh6HS6uKQ518rKylBXV6eO2LTZbGhubkZra2vU5y528fpdICIK9PKpq/jU46/NeNzPdr8ft5cWzepa4T7zA82rUXVLyVyPEtDpdLBYLLDZbKirq1ObLF0uFwoLC9HR0RGXQMdoNMa1Zs/lcsWleTUaFovFry+cXq+f1vQb6blERBS94TE3nnjlvbDHaACsLvBWOswlDgdLAmWUQGDbrTJK4PnjXXOWF6U/WGNj45xdM1KSJKGpqWnOr6vMBaYQRTHiGrnAc4mIKDqXB0bwSdsreP7NS0idjFIC22KU1w/v2jLn8zmxxikOZFnG8Lg7omPdHhkPP/1m2FECX3/6BD6weXlEb4bs9NRZ9zPp6elBaWnprNJIBIvFgrKysmRng4iI5sjbF/vxxR+147xrGEJOOqyfLkPv0Ni0FprVS20ep8VmeNyNLV97IS5pyQAu9o/g1q//MqLjT3zjHuRkxPYYXS4X6uvrodfrYTQaYbfbYTKZYDabAQBWqxUdHR1wOByw2+0QRRGSJMFgMPg1XTkcDjQ2NqKiogKA/+zsdrsdZrMZNTU1qK2tRUtLC8xmM6xWq1qLI0kSrFYrKioq0NPTg+rqarS3t6O9vV1NK1Rzmd1uh8PhgCiKaGtrg8ViUfNktVpRWVmpHiuKInp6esLmx+FwYPfu3TCZTDAajXC5XDCbzbDb7XA6nWrawcoj8Fzl3k0mk3psa2srF5omIgripXcu489+egSDoxPYtHwZfvhQBTYtXwYAqNyymjOHU/LYbDY1CFE+1AFvcKLX69HR0QGr1QqtVgtJktTJRRVlZWU4dOiQurRNVVWVGlQA8Ft4Wa/Xo6amRn1tMBj8mgVdLhcqKyvR0dEBQRBgNpvVDux6vR6lpaXqKMlASt6U2eJ7enrQ0NAAo9GInTt3orOzU202KywsxKFDh2bMj06n89svCAKsVisKCwv9rhmsPALPVcrTN1hqbm5W11kkIiKv/3z1NL7+9Jtwe2TctkkL62fKIORMTfmTmqKZdQfweGHgFAfZ6ak48Y17Ijr2cGcPHvqPthmP+9HnKyLq8JadHv2kg0ajMWQ/HEEQUFTkfXMaDAaYzeZpH/KiKKKpqQlGoxFNTU3T9gcurhxOU1MTRFFU81NXVxfxuUpwZ7fb1W1tbW0QBGFaX6N4ddi2Wq1hyyNQUVGRWp5A8BntiYiWKrdHxrefews/+F0nAOBB3VrUf+JWZKTN3y7YDJziQKPRRNxc9qHrVqC4IAsX+0aC9nNSRgl86LoVSauGjHQEWTwEjpoLFdCFGl2n0+n8Om4bjUbYbLY455KIiOLt2ugE/vLnr8P+1iUAwN989Hr86Uc2z/v54eZvSLdIpaZo8PCuLQCSN0pgphoP3/01NTV+NTqAt49PdXU1AKj9gnwps74rBEFAd3e3+tput6tL4xgMhmnnB14v1LZgebPb7aiurg6bp3D5UYRaDHqm8gh3LhEReV3sG0G19RXY37qEjLQU/Osfb8ef3X3dvA+aANY4JcW9txTj+5/WzekoAaUDN+AdrWYymaY1Odntdr/O1nq9Xp3/qaGhQe2A3dzcrNb+iKKoztBeWVmp1gzV19fDYrFAFEVUV1erHayBqXUElaVyrFarOsO7sh/w9r9S5p4KNh2AkrfAcwVBCJonRbj8uFwuNDY2QqvVTusE73vNYOWhlLFyrpKWcg1JktRO66IozmnNHhHRfHH8fB+++OM2XOofRdGyDNg+W46yDYXJzlbEOHN4CItt5vClrrKyEhaLJeZO2YWFhejt7Y1zrhY+zhxORNGwn7iEv/j5EQyNubF5ZS5++LkKrC/KSXa2OHP4QjGfRgksdrF0yLbZbHA6nTCZTJwNnIhoFmRZxn/8/j1889kT8MjABzYX4Xt/UoaC7PRkZy1q7ONEi57NZlPnioqm/5Fer0dRURFaWlpgtVoTl0EiokVswu3Bw0+/iW884w2aPlmxDj/6/I4FGTQBbKoLaS6a6ogWOv4uEFE4AyPj+POfHcFL71yBRgPsvfdGGD8szrtO4GyqIyIioqQ67xrGF3/UhrcvDiArPQXfrXlfUpZIiTcGTkRERBRXx8658MUft+PKwChW5GXi8c+WY9s6IdnZigsGTkRERBQ3zx+/iL9qPIKRcQ9uXJ2HHzxUgTVCdrKzFTcMnIiIiGjWZFmG7TcS9j//NmQZuPP6Ffi3T21HXtbC7AQeCgMnIiIimpVxtwdf+9/j+NnhswCAz7x/Ax7etQVpqYtv8P7iuyOakc1mg9lshs1mQ0tLC+x2uzpkf76y2+0oKyubs3XoysrK0NLSMifXmq3AvNpsNlRWVsZ0LhFRtPqGx/H5/2jDzw6fhUYDfO3jW/CNP7h5UQZNAGucksvjBk6/DAxeAnJXARvuAFJSE3rJyspKVFVVwWKxqNscDgcqKyvhdDoTeu3Z0Ov1QZddSRSLxbJgJr0MzKter494OZeFdJ9ENP+c7RnC53/UhlOXB5GTkYp/+eR26LesSna2EoqBU7KceBp43gz0X5jall8C3GsBtjyQkEs2NDQAAIxGo992nU43bdt8VFQ0d7Osz2WQNluBeY1mHbyFdJ9ENL90nO6F8Yl2dF8bw6r8TPzgcxW4ZU1BsrOVcIuzHm2+O/E00PRZ/6AJAPq7vNtPPJ2Qy9bX18NkMgXdV1VVlZBrEhHR4nPw6AX88YFX0X1tDDeX5ON///SDSyJoAhg4xYcsA2PXIvsa6Qd+UQsg2ITtk9ueN3uPiyS9CCd+lyQJLpcrZE2Eb/OOw+FAQ0MDWlpa0NDQoPZ98u1npPSLqqqqgiRJ6jm+gZndbkdpaSlMJhNaWlpgs9lgMpnUZU+U/TabDTabDWVlZep25fpms9kvny6Xy+/avoKdFyrPvukp+5TzHA7HtP5U0ZZJKKHuzeFwqOWkfDkcDjV9pbawpaUFpaWlsNvt6nm+eXW5XDCZTCgtLZ0x74HnRnsvRLT0yLKMf3vxJP78Z0cwNuGB/qaVaDLdjtUFS2flADbVxcP4EPDtkjglJntrovavi+zwv7sAZCyL07W9AZbZbEZra6u6raysDIcOHVL7GbW2tqK5uRkA0NzcjJaWFtTW1kKn06G0tBQulwuCIECv18NgMKCoqAgGgwGA94O/qqoKra2tanodHR2wWq3QarXq9Ts6OgB4F+dtaGhAbW0tAKCtrU39ubm5GQ6HAzqdLux5wfKsnGez2aDT6dQmq56eHuh0OtTU1MyqTJT0g5VtYB6NRiN27tyJzs5OCIIAACgsLFTT982LwWBAY2Oj+jowr4IgwGq1orCwcMa8B54bzb0Q0dIzNuFB3VNv4EnHOQDAFz+4CX/3sZuQmjK/lk9JNAZOS4RSmyRJUtAPQUmSoNVqYbVap+0XRRFNTU0wGo0oKiry62skCIJfLZYgCOjp6VEDAGWbwmAwoKqqSg2uBEFQ0zMYDDCbzdBqtWqNCuANlhQVFRXTrgVADbyCnRcsz8p5BoMBZWVlEEURNTU1Qft6xVImSvqB6QTLoxJk+pZTvDpsz5T3QJHeCxEtLa6hMZj+swOvdfYgNUWDrz9wMz7z/g3JzlZSMHCKh/Qcb81PJE6/DPyXYebj/qTFO8oukmtHqLa2FlarVa398eVwOIJuj4TvB34sApsPfWuAgOmd2UOJ5TytVove3l44HA40NjaqtWGJEiyPczXFAhFRLN67eg2f/1EbOq9eQ25mGv7tU9tx1w0rk52tpGEfp3jQaLzNZZF8ld7tHT2HUFWbGiB/jfe4SNKLYoVpZQqCwA9qpc8RANTU1PjViADeoKq6ujpkur7nz7S/paVlWu2Kb41GsOsHvg4m1vPq6+vVWjiLxeKXLyXfsZRJNHmsrq6Gw+Hw2+47p5YgCOju7vY7J7DMQz2DSPI+0/MjoqXrcGcP/vB7v0fn1WtYI2Sj5Su3L+mgCWCN09xLSfVOOdD0WXiDJ9/O3ZNB0L37EzafU2trKxoaGmA2m1FaWgqtVgsAam2TEkA0NDRAFEW0tbWhubkZgiCotTKAtz+M0ilcOc9ut0OSJFgsFr8gxOl0qh/2SnqANwCw2+1wOBwQRRF6vV69vtlsVpvl9Hp9yGtbrVaIohjzeUVFRbDb7dBqtejp6UFNTY16jlarhcFgiKlMlPR9a9NC5VEQBDQ3N8NsNqOyslJtxlRUV1fDbDarAZBer1eb4Fwul19eg9XezZR35VwlrUjuhYgWv/8+cg7mljcw5vZg29oCHPhcOVbmLZ1O4KFoZDnCYVlLTH9/PwoKCtDX14f8/Hy/fSMjI+js7MSmTZuQlRXjmyjoPE5rvEFTguZxSgYlQFsI80TNJ5WVlbBYLDF3yi4sLERvb2+cczVdXH4XiGhekWUZ/2w/iX85dBIAcN8tq/Fo9fuQnZHYCZqTKdxnfiDWOCXLlgeAG++f85nDaWGIpUO2zWaD0+mEyWTibOBEFJORcTdqW47h6aPef+q/fGcpau+5ASlLbORcOOzjlEwpqcCmDwG3GrzfF1nQpDTFKUPaKTLKuoFWqzWq/kd6vR5FRUVoaWmB1WpNXAaJaFHqHhzFpx9/DU8fvYC0FA32f+JW7L3vRgZNAdhUF0LCm+qIFgH+LhAtDqcuD+ILP2rDmZ4h5GWl4bFPl+EDm5cnO1tzhk11REREFJGXT13Fl3/Sgf6RCazTZuM/HqrA5pV5yc7WvMXAiYiIaIlqaj+Lv3vqDUx4ZOjWC7B9thzLczOTna15jYETERHREuPxyHjkl+/g+y85AQC7tpXgEcNWZKUvrr62icDAiYiIaAkZGXdjT9PreO6NiwCAv7h7M/5Kfz07gUeIgRMREdEScWVgFF96oh1Hz7qQnqrB/k9sxYNla5OdrQWFgRMREdES8O6lAXz+P9pw3jWMgux0WD9ThveLRTOfSH44j1MSuT1utF1sw3PSc2i72Aa3x52wa9ntdphMJmg0Gr/lO6Jhs9lQWFg4J3MyzeW1fJWVlaGlpcUvH5WVlTGdS0Q0X/zm3St48Hsv47xrGBuLcvDfX72DQVOMWOOUJPbTduw/vB+Xhi6p21blrMLeHXuh36CP+/X0ej1EUYTNZkNdXZ3fWmiRMhqN6jpziTaX1/JlsVj8Zt1Wyi2Wc4mI5oP/eu00vva/b8LtkbFjoxbWz5ShcFlGsrO1YDFwSgL7aTv2vLQHMvznHr08dBl7XtqDR+96NCHBk7KgL4Wm1/uXezSL2waeS0SUTG6PjPrn3sLjv+sEAHxi+xrUP3grMtM4cm42GDjFgSzLGJ4YjuhYt8eN+sP104ImAOq2/Yf347bVtyE1giVYstOyodFwJAQREU0ZGpvAX/78dbSe8LZq/J/K6/Fnd2/m50UcMHCKg+GJYdz209vilt6loUu44+d3RHTsa596DTnpOTFdx263w2w2w2QyQRRFSJKE1tZWvyYyh8OBxsZGVFRUAJi++KzdbofD4YAoimhra4PFYkFLSwvq6+vhcrngdDrR0NAAq9UKk8mE2traoOdEcq1g+Q+VjtVq9eubJIoienp6YDabUVNTg9raWrS0tMBsNsNqtUKv18PhcGD37t0wmUwwGo1wuVxqfzCn06mmbbfb1fIyGAwQRXHauZGULRFRIlzqH8EXf9yG4+f7kZGWgkcMW/EH71uT7GwtGgycljC9Xg+9Xu/3ga4syKvT6eByuVBVVaUGDQBQX1+v/ixJEsxmMzo6OgB4A52GhgbU1tZCr9dj586dcLlcEAQBHR0dEAQh5DlGozHstQKFS2fnzp3o7OxU+3EVFhbi0KFD0Ov1qKmpUdMwGAxobGxUX+t0Or/9giDAarWisLDQ75qtra3qMWVlZTh06NC0c2cqWyKiRDhxoR9f/HEbuvpGoF2WgQOfLUPZBnbTiCcGTnGQnZaN1z71WkTHdlzqwFcPfXXG476383soW1UW0bVno6ioCEVFUyMrBEFQa3qampqmfcj79pOyWq3QarV+I/Ta2trUdA4cOICysjI0NzerQUyocwRBCHutQOHS0ev1fp3f49Vh22q1TsujKIpoamqC0Wicdny4siUiircX376EP//pEVwbc6N0xTL88KEKbChaluxsLTpJC5wkSUJLS4vajGE0GkOO9JrpWKWZRKl98N0OeGsSJEmCy+VKyH/7Go0m4uayO0ruwKqcVbg8dDloPycNNFiVswp3lNwRUR+nZNPpdH6don0DCCUYamxs9Cv3YOfYbLa4XDuWdIiIFrof/b4T33jmBDwycEdpEb7/J2UoyElPdrYWpaTN41RVVYXa2loYDAYYDAbs3r07pmOVeXOCzfdjtVpRVlYGjUaj9jVJttSUVOzdsReAN0jypbw27zAnJGiKtrZD6ffjS5Ik9eeamppp80Epr10uF+x2O5qbm9XAN9w5M10rUKh0qqurw6YjCAK6u7v9znG5XH7HB74Od02Hw4Hq6uoZzyUiSoQJtwcP/+9xfP2gN2iqKV+HH39hB4OmBEpKjVPgB6IoiiEnZJzpWIPBEPI6ZWVl6O3tBYCY5i1KFP0GPR6969Gg8ziZd5gTMhWBEsQA3r5DSn8cpY+PXq+HJElqx2plGH5zczPMZjMqKyvV/kr19fWwWCzQ6XSwWCwwm81qh269Xg+bzQaLxQKTyQQAqKiowO7duyFJEmpra4OeIwhC2GsFBr2hrh0qHUV1dbXfBKB6vV5tgnO5XGhsbIRWq1U7fQe7ZkNDg9ohXWmGVDq2K+cqaYUrWyKi2RgcncCf/9SBX71zBQCw974bYfqwyJFzCaaRZXl6e1GC2Ww2NDc3+3WyLS0tRXNz87SmtEiP1Wg0CLwVm80WtO9JJPr7+1FQUIC+vj7k5+f77RsZGUFnZyc2bdqErKysmNIHvFMTOC47cGXoClbkrIBupW5BNM8tNJWVlWqgF4vCwkI1ACd/8fpdIKLoXHAN4ws/asPbFweQmZaC79a8D/fdWpzsbC1Y4T7zAyWlxilUc0awpqRojg12rtJE1NbWFra5bnR0FKOjo+rr/v7+GdOfrdSUVFSsrkj4dZa6WDpk22w2OJ1OmEwmzgZORPPKG+f68MUft+HywCiW52bi8c+V433rhGRna8mYV6PqoukfEsmxvp3IRVFEZWWl33B3X/X19di3b1/E16eFwWazQZIkWK1WWCyWiJts9Xq9GnhbrdbEZpKIKEIvvHkRf/Xz1zE87sb1q3Lxw4cqsLYwtrn8KDZJCZyCDcvu6ekJ+qEWzbGBJElSm2eUEXmSJAWtdaqrq8OePXvU1/39/Vi3bl0Ed0PzmdFojKm5VhRF1NbWJiBHRETRk2UZj/+2E9/+xVuQZeDD16/Av31qO/Kz2Al8riVlVF2oNb2CNYlEc6wvh8OBnTt3Ttseam6gzMxM5Ofn+30REREl27jbg7//n+P41nPeoOnT71+PH36unEFTkiSlximwxkeSJJSXl6u1SA6HA4IgBB19FHisL98RVKIoqktwAN5RZQaDIa6j65LQr55oXuHvAFFi9Y+M40//y4HfnrwKjQb4h/u34Asf2MiRc0mUtD5OypDxiooKdVi3or6+HhUVFWpTSbhj7Xa7OuJOOU8JkMrLy9HQ0ABBEOB0OuO2Tlhqqnfk29jYGLKzZzdzN9FCNjQ0BABIT+d/vkTxdrZnCF/8cRvevTSI7PRU/Msfb0flllXJztaSl5TpCBaCcEMTZVnGmTNnMD4+jpKSEqSkJG0eUaKkkGUZQ0NDuHz5MgRBQHExh0ETxdORM73Y/UQ7rg6OYVV+Jn7wuQrcsqYg2dlatOb9dAQLnUajQXFxMTo7O3H69OlkZ4coaQRBwOrVq5OdDaJF5dljXdjT9DpGJzy4qTgfP3yoHMUFbN2YLxg4xSgjIwPXXXcdxsbGkp0VoqRIT09Xm62JaPZkWcb3XnLikRfeAQDsvHEl/uWPt2NZJj+q5xM+jVlISUnhbMlERDRrYxMe/P1/v4HmjnMAgM9/YCP+4f4tSE1hJ/D5hoETERFREvUNjePLP+nAK1I3UjTA1x+4GZ+9fWOys0UhMHAiIiJKktPd1/D5H7VBunINyzJS8W9/osNHbliZ7GxRGAyciIiIkqDtvR4Yn2hH79A4Sgqy8IOHKnBTMSdfnu8YOBEREc2x/339PP62+RjG3B7cuqYAP/hcOVbms8/sQsDAiYiIaI7Isoz/d+gkvms/CQC45+ZV+Oea9yEngx/HCwWfFBER0RwYnXBj75Nv4L+PnAcAmD4swnzvjUjhyLkFhYETERFRgvVcG4PpP9vR9l4vUlM0+OYf3oI/3rE+2dmiGDBwIiIiSiDnlUF84UdtON09hLysNHz/T8rwweuWJztbFCMGTkRERAnyirMbX/5JB/qGx7G2MBv/8VAFrluVl+xs0SxEHTi99957aG5uRmtrK3p7e9XtWq0WlZWVMBgM2LhxYzzzSEREtOA0t5/F3/33Gxh3y9i+XoDtM+VYkZeZ7GzRLEUVOO3duxcajQbV1dX427/922n7jxw5gsceewwajQb19fVxyyQREdFC4fHI+L+t7+Dff+UEANy/tRj/t2obstK5tuNioJFlWY7kwEceeQRGoxEFBQUzHtvX14f9+/cv6OCpv78fBQUF6OvrQ34+JyQjIqKZjYy78X+aj+LZY10AgD/7yGbsqbyeI+fmuWg+8yMOnJYaBk5ERBSNq4Oj2P1EO46ccSE9VYP6T2yFoWxtsrNFEYjmMz8l1ovs3bsXjz/+OPr6+vDRj34UNTU1eOqpp2JNjoiIaME6eWkAf/jvv8eRMy4UZKfjiS/cxqBpkYo5cKqoqMCXvvQl2Gw2lJWVobGxEd3d3fHMGxER0bz325NX8InvvYxzvcPYUJSDp756B24vLUp2tihBYp6OoLCwEADQ1NSEAwcOAPCOrCMiIloqfnb4DP7hf47D7ZFRsbEQ1s+UQ7ssI9nZogSKOXByOp2QZRlOpxPve9/70NnZ6Tc9ARER0WLl8cjY//zbsP1GAgD80fY12P/grchM48i5xS7mprrq6mo4HA50dHSgr68PVqsVLpcrjlkjIiKaf4bH3PjKf3WoQdNf66/Ho9XbGDQtERGNquvr60Nvb29UE1v29/cDwIIdkcZRdUREFOhy/wi+9EQ7jp3rQ0ZqCh6p2oo/eN+aZGeLZinuo+oKCgrQ2toa8ai5J598Ek1NTQw4iIho0Xirqx9/+O+/x7FzfdAuy8BPd9/GoGkJiriP0+7du3HkyBFUV1ejtLQUFRUVEEURgiDA5XJBkiQcPnwYnZ2dMJlMePDBBxOZbyIiojnzq7cv489+6sC1MTfEFcvwHw9VYEPRsmRni5Igpgkw+/r60NTUBKfTCZfLBUEQUFpaCr1ej02bNiUin3OOTXVERAQAT7zyHr7+9JvwyMDtYhEe+3QZCnLSk50tiqNoPvNjGlVXUFCA3bt3x5Q5IiKihcDtkfFPz5zAj15+DwBQVbYW3/qjW5GRFvO4KloEYp6OgIiIaLG6NjqBv/jZERx6+zIAoPbeG/CVO0uh0XDNuaWOgRMREZGPrr5hfPFH7TjR1Y/MtBQ8Wv0+3L+1ONnZonmCgRMREdGk4+f78MUft+FS/yiW52bgwGfLsX19YbKzRfMIAyciIiIAv3zzIv7y569jeNyN61bm4ocPVWCdNifZ2aJ5ZlY93B555BHU1NQAAA4dOqROeklERLRQyLKMx38rwfSTDgyPu/Gh65bjya/ewaCJgoo5cNq7dy8EQYBerwcA7Ny5E3a7PW4ZIyIiSrQJtwf/8D/H8c1n34IsA5+6bT1++FAF8rM43QAFF3NTXUVFBR588EEcOnQonvkhIiKaEwMj4/jTnx7Bb969Ao0G+PuP3YQvfnATR85RWDHXOHV2dgKA3xusra1t9jkiIiJKsHO9QzB8/xX85t0ryE5PxWOfLsOXPiQyaKIZxVzjtH37dpSXl6OoqAitra2w2+2wWCzxzBsREVHcvX7WhS/9uB1XB0exMi8TP/hcBW5dW5DsbNECEdOSK4rOzk5YrVYAQE1NDbZv3x63jCUbl1whIlp8nnujC3/d+DpGJzy4cXUefvhQBUqE7GRni5Isms/8WQVOwS68WIIMBk5ERIuHLMt47NcSLM+/DQD4yA0r8K+f0iE3k7Py0BysVed7oZ6eHvW1xWLB97///dkkSURENCtuj4zDnT24PDCClXlZ2L5ewMP/+yYa288CAB66YyP+4f6bkJbKNecoejEHTl/+8pdht9shCIK6rbOzk4ETERElzfPHu7Dv4Al09Y2o2zJSUzDm9iBFA3zt41vw0Ac2JTGHtNDFHDiVlpbiscce89t24MCBWWeIiIgoFs8f78JXfuJAYP+TMbcHAPCVu0oZNNGsxVxPqUx86auysnJWmSEiIoqF2yNj38ET04ImX085zsPtiVu3XlqiYq5xKiwsxHe+8x2IoghBEOByudDY2IjGxsZ45o+IiGhGhzt7/JrngunqG8Hhzh7cXlo0R7mixSjmwKm2thYul8uvj9ORI0fikSciIqKoXOwPHzQpLg9EdhxRKDEHTpWVldi9e7fftieffHLWGSIiIorGq1I3/rn13YiOXZmXleDc0GI3q87hkWwjIiJKhHO9Q6h/7m08+0YXAEADhOzjpAGwuiALOzZp5yp7tEjFHDg5nU5YrVZUVFQA8E4u1tTUFPF6dZIkoaWlBaIoQpIkGI1Gv2a/aI51OBzYvXs3Ojo6Yr4GEREtDENjE3jsJSesv5EwOuGdZuBPbtuArWsLUNtyDIB/AKWsPvfwri1ITeFadDQ7MQdOVqsVer0evhOPRzMJeVVVlRroSJKE3bt3o7m5OepjlcDI4XDM6hpERDS/ybKMp49ewP5fvK12BL9dLMLDD2zBjau9sz3nZaVNm8dpdUEWHt61BffeUpyUfNPiEnPgZLFYsHPnTr9twaYoCEaSJL/XoijCbrfHdKzBYJj1NYiIaH5741wf9h18E+2newEAawuz8Q/334R7bl4NjWaqFuneW4pRuWW138zhOzZpWdNEcRNz4BQYNAHeKQoiYbfbodX6tzNrtVo4HA7odLqYj43HeURENH9cGRjFd154B00dZyHLQHZ6Kv70I6X40odEZKWnBj0nNUXDKQcoYSIOnJ566ino9Xp18bvHH3/cb7/L5UJrayteeOGFGdNyuVxBt/uuexfLsfE4j4iIkm9swoMfv/we/uXQSQyMTgAA/vB9Jdh7301YXcCRcZQ8EQdO3/72tyEIAu6++24AwGOPPYaamhq/Y7q7u2eVmVDBzmyPjeS80dFRjI6Oqq/7+/tjSp+IiGbnxbcv4Z+eeQudV68BALauLcDDu7agbANHxFHyRRw4tbe3+70+cOAAtm/f7rct0j5OgiBMq/np6ekJOuItmmNnc159fT327ds3Y96JiCgxTl0exDefPYGX3rkCAFiemwnzvTfgQd1apLCPEs0TMa9V59ufqa+vD08++WTEfZxCBVjl5eWzOnY259XV1aGvr0/9Onv2bNj0iYgoPvqGx/FPz5zAvd/9DV565wrSUzUw3SniV39zJ6rK1zFoonkl5sDJd4RaQUEBHnzwwYhHrYmi6PdakiSUl5ertUEOh0MdFTfTsb58m+GiOQ8AMjMzkZ+f7/dFRESJ4/bI+NnhM7j7Oy/hB7/rxIRHhv6mlfjlX9+JuvtuQl5WerKzSDRNVKPq+vr60NTUBI1Gg9bW1mn7Ozo68KUvfSmitJqbm2E2m1FRUYG2tja/+ZXq6+tRUVGB2traGY+12+1qXpTzlCkKwp1HRETJc7izB19/+k2c6PL2J928Mhf/+PEtuPP6FUnOGVF4GjmaWSsBdHZ2wmKxoL29fVpzmMlkwqZNm+KawWTp7+9HQUEB+vr6WPtERBQn513DqH/uLTxzzLtMSl5WGv5afz0+c/sGpKfG3AhCNCvRfOZHHTgpDh06FHQup8WCgRMRUfwMj7lh/Y0Tj/3aiZFx7zIpf7xjPfZUXo+i3MxkZ4+WuGg+8+M6ASYREZEvWZbxzLEu1D/3Fi5MLoNy2yYtvrZrC24uKUhy7oiiF3PgREREFM7x8334xsETOPyed2qYNUI2/u5jN+Fjt/ovk0K0kDBwIiKiuLo6OIr/+8t38PM27zIpWekp+Opdm2H8cOhlUogWCgZOREQUF2MTHjzxynv4f/apZVIe2FaCvffdiBIhO8m5I4qPuAZO7733HjZu3BjPJImIaAH41TuX8U/PnIB0xbtMyi1r8vHwrptRsZHLpNDiMqvA6fXXX/db1sRqtaKxsXHWmSIiooVBujKIbz77Fl58+zIAYHluBv72nhtgKFuHVM74TfHicQOnXwYGLwG5q4ANdwApyWn2jTlwqq6uhsvl8puJ+8iRI/HIExERzXP9I+P410Mn8aOX38O4W0Z6qgaf/8Am/Nndm5HPGb8pnk48DTxvBvovTG3LLwHutQBbHpjz7MQcOFVWVmL37t1+25588slZZ4iIiOYvt0dGS8dZPPLCO7g6OAYAuPvGlfiH+2+CuCI3ybmjRefE00DTZwEETDnZ3+XdXv3EnAdPMQdOpaWlEW0jIqLFoe29Huw7+CaOn/cukyKuWIZ//PgWfOSGlUnOGS1KHre3pikwaAImt2mA5/cCN94/p812MQdOTqcTVqsVFRUVALyTnDU1NaGtrS1umSMiouS74BrG/l+8jaePeptK8jLT8Jf66/DZ2zciI43LpFCCnH7Zv3luGhnoP+89btOH5ixbMQdOVqsVer0eviu2xLh6CxERzUMj425Yfy3h+78+hZFxDzQa4JMV6/B/PnoDlnOZFEqkiVHgneciO3bwUmLzEiDmwMlisUxbdiVw0V8iIlp4ZFnGc29cxLefewvnXcMAgB0bvcuk3LKGy6RQgng8wNlXgWONwJv/DYz0RXZe7qrE5itA3Naqe/HFF+FyubB9+/ZZZ4qIiJLjxIV+7Dv4Jl7r9E41U1KQhbqP3YSPby3mMimUGFfe9QZLbzQBrjNT23NXA2OD3q+gNN7RdRvumJNsKmY1j9NTTz0FSZIAeP9DaW9vxyc+8Ym4ZIyIiOZO9+Ao/m/ru/j54TPwyEBmWgq+fGcpvnxnKbIzuEwKxdnAJeD4k96Aqev1qe0ZecCWPwC2VgMbPwi8/ezkqDrAv5P4ZBB/7/45n88p5sBp7969cLlc6OnpgSiKcLlcMJlM8cwbEREl2Ljbg/985TS+a38X/SPeZVI+vrUYdR+7CWu4TArF09g1byB0rBFwvgjIHu/2lDRgs94bLF1/H5CRM3XOlgeA6ifgft4Mx1g3rqSmYoXbDV3GcqTeu39hzeNUWlqK3bt3o7OzExqNBhs3bsSLL74Yz7wREVEC/frdK/jGwTfhnFwmZUtxPr7+wM3YsYnLpFCcuCeAzpeAY03AW88A49em9q2tALbWADf/EbBsecgk7MtysH/dGlwamgpZVuWswt5lOUhGz+qYAydRFHH69Gls2rQJ3/nOd/A3f/M38cwXERElSOfVa/jWsydgf8u7TIp2mXeZlOpyLpNCcSDLQNdRb7B0vMV/1FvhJm+wtLUaKJp57kf7aTv2vLQHcsBcTpeHLmPPS3vw6F2PQr9hbsOnmAMnl8sFURTR29uLq1ev4p577oEgCLj77rvjmT8iIoqTgZFx/NuLp/DD33di3C0jLUWDz92xEX+x8zoUZHOZFJol1xlvsHSsCbj6ztT2bC1wy4PegGltORDhIAO3x439h/dPC5oAQIYMDTSwHLbgI+s+gtSFMAHmgw8+CLfbDQDYv38/Dh06hPLy8rhljIiI4sPjkdHiOIeG59/B1cFRAMCd16/AP358Czav5DIpNAvDvcCJ//UGS6d/P7U9LQu44T5vsFS6E0jLiDhJWZbRP9aPl86+hEtDoedokiHj4tBFOC47ULG6YhY3EZ1Zjap75JFH0N7ejsbGRgDgUFUionmm43Qv9h18E8fOeefE2bR8Gf7x4zfhIzes5N9sis3EKHDyl95O3u++ALjHJndovCPhtn0SuGkXkOU/59fQ+BCuDl9F90g3rg5fVb+6h7vRPTy5bcT7etwzHnF2rgxdiePNzWxWo+pKS0vVSS937tyJp556itMREBHNA119w7D84m38z+veJStyM9Pwlzuvw+fu4DIpFAOPBzj7ms/klC4AwBiA7lU34up1elxdux1XU2RvEPT6v6rBkBIoDU8MR3XJ7LTsiM5ZkbMihhuKXcyBU0VFBR588EEcOnQonvkhIqJZGBl34/HfSvj3XzkxPO6GRgNUl63D39xzA1bkcZkUmtmEZwK9I73eoOfSMVw99QKunm9D93g/ulNTcVXIwNX0dbianoEBeRzAEHD+ae/XDLLTsrE8ezmKsoq837N9vmctx/Js75c2W4s0TRruefIeXB66HLSfkwYarMpZBd1KXQJKIbSYA6fOzk4A/s1zbW1trHEiIkoCWZbx/PGL+NZzb+Fcr/e/9PINhXh41824dS2XSVnqPLIHfaN93lqgkSBNZD7NZL0jvdMDlRwAyPffJnub09JT0v0Cn6LsIjUgUr6UQCknPQfR2LtjL/a8tAcaaPzypJmcANO8wzynHcOBWQRO27dvR3l5OYqKitDa2gq73Q6LxRLPvBERUQTe6urHNw6ewCtSNwBgdX4W6j52Ix7YVsJ+TIuYLMu4Nn5tqq/QZJOYbzCkbOsZ7sGEPBFx2imyDK3bg+VuN4qyClGk3YzlK7dhee5qNQhSgqT8jPyEvc/0G/R49K5Hsf/wfr+O4qtyVsG8wzznUxEAgEaW5en1XxHq7OyE1WoFANTU1Cyqder6+/tRUFCAvr4+5Ofnz3wCEdEc6702hkdb38V/vXZaXSbF9GERX76rFDkZsxr7Q0k0MjESNBAK7EDdPdyNEfdIVGkLmcJUM1mWFsvHhlF0tRPLLx73/jzhRpHbjcLi7Ujd+knglk+EnZxyrrg9bjguO3Bl6ApW5KyAbqUurjVN0XzmzypwWswYOBHRfDXu9uC/Xj2Nf7afRN+wt7nk/luLsfe+G7FOG11TyGKU6A/ZWIx7xtEz3OMX9PiOLLs6fBU9Iz24OnwVg+OhFrUNbln6MrU5LFQTWVF2EYqyipCekgZcPOadPuCN5llNTrmYRPOZH/G/JJHMDv7444/jS1/6UqRJEhFRlH538ir2HXwTJy97P1xvXJ2Hh3fdjNtLi5Kcs/nBftoetFln7469cW/W8cieqU7UI91Bm8iUba5RV1RpZ6RkYEXOimnBULBO1dlpEawp6DoDOP7FGzBdeXtqe7bWW6u0tca7BAqbdmcUcY2TVqtFRUX4Caba29vR3d0dl4wlG2uciGg+Od19Dd989i20nvAGBIU56fibe27AJyvWc5mUSaGW51A6EkeyPIcsyxgYH5jeVyhIM1nPSA/csjvi/KVqUv0CIb+AaLJztbItNz139v2Ghl0+k1P+zicjmd7JKbd9MurJKRerhNQ47dy5E0VFRSgrKwt5DFv9iIjia3B0wrtMyu86Meb2IDVFg8/evgF/tfN6FORwmRTFTMtzAMC3XvsWCrMK1Voi39oh3yApmskXNdCgMKtQbQrzbSbTZmn9XhdkFiBFk+A5tCbGfCanfH765JRba4AtD0ybnJIiF3Hg1NzcjL6+PrS3twPwzuMUGJVptVxRm4goHjweGU8dOQ/L82/jyoB3mZQPXbccX/v4Fly3Ki/JuZt/2i+1h12eAwCuDl/FQ88/FFF6eRl50wKhwOCoKLsIhVmFSE9JcgAry/6TUw73Tu1bucUbLN1qAArWJi+Pi0jMncOPHDmCnp4eaDSaRbmwL5vqiChZjpzpxdcPnsDRsy4AwIaiHPzj/Vuw8yYukyLLMq4MX8Gp3lM46TqJU65TONV7Cu/0vhNRTZE2U4v1+eunNZcFBkSZqQtgstCrJ73B0rEmwHV6antesTdQ2loDrLqF/ZYikJCmukC+Uw+8+OKLaG1tRWVl5aIMooiI5sKl/hFYfvE2njpyHgCwLCMVf77zOnz+AxuRmZbcUWHJ0Dfah5O9k8GR65T6c/9Yf8xpfueu78zpgrBxN3gFOP6kN2C64JjanpEL3PSAd0Tcpg8DSR5FuJjNaqKP119/HVarFY2NjRBFEaWlpQyciIiiNDLuxg9+14l//9UpDI15OxtXla3F3957A1bmZSU5d4k3ND4EqU+aFiRdGQ6+eGuKJgUb8jdgs7AZ1wnXYXPhZmwq2IQvt3553i3PERdjQ8Dbz3qDJeeLgNIhXZMKbNZ7g6UbPgZkcCqKuRB14PTee++hubkZVqsVGo0GDz74IDo6OrBp06ZE5I+IaNGSZRkvvHkJ33ruBM72eJdJ2b5ewNd33Yxt64TkZi4Bxt3j6OzvxKneyeDIdRKnek/h3OC5kOeULCvBdYXXYbOwGZsLvYHSxoKNQZvS5uPyHDHzuIHOX3ub4d46CIz5zO20pszbDHfzJ4DcuV3glqIInB5//HFYrVZIkoTq6mo0NzdPmyn8qaee4lp1REQReOfiAL7xzJv4/SnvFC6r8jOx974b8YfvW7Pg+zG5PW6cGzw3rR/S6f7TIZf9KMoqUgMjJUgqLShFbkZuxNedj8tzREWWgYtveGuW3mgBBi9O7SvcONnJuxpYvjlpWaQoOoenpKTAYDCgpqYGgiBM+8Xu7e3F/v370dbWlpCMzjV2DieiRHANeZdJ+cmr3mVSMtJSYPyQiK/cVYplmQtrmRRZlnFp6JIaGJ10ncTJ3pOQ+iSMukeDnpOXnofNhZu9wZGwGdcVXodSoRTarPiNyp6PM4eH5TrrncX7WBNw5a2p7dmF3lqlrTXAuh3s5J1ACekcbjQa0dDQEHaupsbGxshzSUS0hEy4Pfjp4TN4tPVduIa8o7/uvXk1/u5jN2F90fzvm9I70uvXQVsJlgbGB4Ien5maiVKh1K8f0mZhM1blrEp4jVpqSur87wA+7ALeetobLL3326ntyuSUW2u8/Zc4OeW8E3HgZDKZZozC6urqZp0hIqLF5uVTV7Hv4Am8c8kbZNywKg8P79qCOzYnf/HUQNfGr6lBkW8/pO6R4KtCpGpSsTF/oxoYKUHS2ty187uWJxkmxoBTrd6muHeeB3xr5TZ+yNvJe8sfcHLKeS7iwCmwP1OsxxARLRVnuofwredO4IU3vf1thJx0/J/K6/HHO9YjLTXBM0jPYNQ9is6+zmk1SBeuXQh5ztrctdP6IW3M34iMVNaKhCTLwNnDk5NTPuU/OeWKm4BtNcAtBkBYl7w8UlQWVoM6EdECcG10At976RQO/LYTYxPeZVI+8/4N+Cv9dRBy5jbImPBM4OzAWb9+SKdcp3Cm/0zIddZWZK+YGsk22Q9JLBCRkz7/mxTnjaunJjt5NwG9701tz13tnZxy2yc5OeUCxcCJiChOPB4Z//P6eez/xdu4PLlMygc2F+FrH78ZN6xO7DIpsiyj61rXtH5IkkvCmGcs6Dn5GflqYKQESZuFzRCyhITmddEavOKtVTrWCJzvmNrOySkXFQZORERx8PpZF/YdfBNHzrgAAOu1Ofj7+2/CR7fEvzP01eGr0/ohOV1OXBu/FvT47LRslBaUTuuHtCJ7xYKf+iDpxoaAd57zBkunDgVMTrnT28mbk1MuKgyciIhm4XL/CCzPv4MnHd5JHHMyUvFnd2/GFz6wCVnps6tZGBgbgNPlVDtoK7VIPSM9QY9PS0nDpoJNU8HRZD+kNblrkKJJbp+qRcXjBjp/Mzk55dP+k1OW6LzNcJycctFi4EREFIPRCTd++Lv38G8vnsS1yWVSPqFbA/O9N2JVfnTLpIxMjEDqk6b1Q7p47WLQ4zXQYF3eOr/ZtDcLm7GhYAPSU9JnfW8UhCwDl44DR38+fXJKYYO3ZmlrNbD8uuTlkeYEAycioijIsgz7W5fxzWdP4HT3EABg2zoBX9+1BdvXF4Y9d9wzjjP9Z6bVIJ0dOAuP7Al6zqqcVdNGsokFIrLTsuN+bxRE37mpySkvn5jazskpl6ykBU6SJKGlpQWiKEKSJBiNRgiCEPWx4fY5HN6Vo3U6HSRJgsvlgk63ABd4JKKEiWaW6ZOXBvCNZ07gtyevAgBW5GVi77034o+2r0FKytQHp0f24MLgBTUwerf3XZxynUJnXycmPMGXHBEyhWkj2UqFUuRncOWCOTfSB5z438nJKX8HKOvepWYCN9w7OTllJSenXKKSFjhVVVWho8M76kCSJOzevRvNzc1RHxtun9Vqhc1mAwDo9fqQ6RPR0mQ/bQ+6rtneHXv91jXrGxrHP9vfxX++ehpuj4yM1BR88UOb8NW7SjHiceHVi6/41SCdcp3C8MRw0GvmpOWoNUe+QVJRVhE7aifTxBhwyj45OeUvgk9OedMDQLaQtCzS/JCUwEmSJL/XoijCbrdHfexM6ZSVlaG31zvZWKjaLCJamuyn7djz0h7I8F9G6vLQZex5aQ8evetR3LX2bvys7Swe/eU76B3pQ2rmJWzdOIQtG4bw1kgj7vufU+gb7QuafnpKOsQCcdpItuJlxeyonWgeN3D6ZWDwEpC7CthwR/ApAGQZONfm7bc0bXLKGycX1a3i5JTkJymBk91uh1brv6CjVquFw+GY1pQW7tj29vYZ02HARESB3B439h/ePy1oAqBu+/vffQ2awafRN3EOKSWXkJfeDwDoBNB5eur4FE0K1uet958LqXAz1uetR1oKu5HOuRNPA8+bgX6fGdDzS4B7LcCWB7yvu53emqVjjcEnp9xaA6y+lf2WKKik/Fa7XK6g23t6pg+xDXfsTOm4XC60tLQAANra2mAymSCKYtBzRkdHMTo6VTXb398fIvdEtNC92vWqX/NcMEMTA0DWr/z+SBYvK542km1TwSZkpUU3io4S5MTTQNNngcCAuL/Lu337Z7wdvM+3T+1LX+YNqLZWA5vu5OSUNKN59e9QqEAo2mOVfb4dxUVRRGVlJZxOZ9Bz6uvrsW/fvoivT0Tz17h7HF3XunB+8DzOD57HhcELfj9fGb4SUTorU7fic9t2YeuqG1EqlCIvI7Gzf9MseNzemqYgtYjqtiNPeL/7TU55H5CxbK5ySYtAUgInQRCm1S719PQEbVYLd+xM6UiSpDbZKaPuJEkKWutUV1eHPXv2qK/7+/uxbh3btYnmownPBC5euzgtIFJ+vjx0OWgzXLS+dfdf4v0lO+KQY0q40y/7N8+FUmEE7vxbIHdl4vNEi1JSAie9Xg+r1Tpte3l5eVTHiqIYcp/D4cDOnTvVzuGKwD5RiszMTGRmZkZ6C0SUQG6PG1eGr+DcwDlcuHYB5wcmg6PJny8NXQq5QK0iKzULJbklKMktwZrcNX5fUlcq9r72JWjS+oJ2Y5FlQJ4ogHtoY2JukOJnuNc7ZUDbDyI7fv1tDJpoVpISOAXW+EiShPLycr/5lwRBgCiKYY8NrKHy3SeKIiwWi7rPbrfDYDCwszjRPOCRPbg6fDVobdH5gfO4eO0iJuTg8x0p0lPSsSZ3jRoY+QZIJbkl04b3j0148NuTV3Dg1Qv4xRtdcOfsQtaan0CW/fsAy5MVVaOXduHq4Hgibp9mY3wEOPsqIP0akF4Cul4HQkweGlTuqkTljJaIpPVxam5uhtlsRkVFBdra2vzmWKqvr0dFRQVqa2tnPDbUPkEQUF5ejoaGBgiCAKfTyXmciOaILMvoHun2D4gmAyTla8wzFjaNNE0ainOLpwVEa3PXoiS3BMuzl884rH/C7cGrUg8OHr2AXxzvQv+ITzA2cAtGzn8amasOQpM+NaWAPFGA0Uu7MDFwC1bmsdN30nncQNdRb5AkvQScfQ2YGPE/Zvn1wKYPA8eVKQWCNdNqvKPrNtyR+DzToqaRZXn2HQEWof7+fhQUFKCvrw/5+Zy5l8iXLMtwjbpwYfACzg2em9bX6MLgBYy4R8KmkaJJweqc1ViTtwYly0qwJm8yOFpWgrV5a7Eie0XIGbzD8XhkOM704uDRC3j2jS5cHZwK0FbmZeL+rcX42K3F+POfHcGlvhHI8CA1pxOatAHIE3lwD22CBilYXZCF35nvRmoKh6TPKVn2Thcg/Qro/LV3Md2RgLmy8ooB8S7vKDjxTm9ABPiMqgP8g6fJZ1j9xNSUBEQ+ovnMn1ej6oho/ugb7VODICU48v15aGIo7PkaaLAyZ6VfbZHazyhvDVbmrIzbgrSyLOP4+X4cPHYBzxy9gAt9U0FbYU467ru1GLu2lmDHJq0aCH191xZ85ScOaJAC91CpT769Ht61hUHTXBm46G1665xsfus/778/swDY9KHJQOku70K6wTqnbXnAGxwFncdpP4MmigvWOIXAGida7K6NX/N2vg4yMu3C4AUMjA/MmMaK7BVB+xetyV2D4mXFSE+NT2AUyruXBnDw6AUcPHoB73VPBXK5mWn46M2rsGtbCT64eTnSU4M36T1/vAv7Dp5Al0+gVVyQhYd3bcG9txQnNO9L2kgf8N7vpwKlK2/770/NANa/fzJQ+ghQvA1IjeL//EhnDieaFM1nPgOnEBg40UI3ND7kN5fR+QHvqDRlpFqopUJ8abO0QWuMlNFqmalzPxL1dPc1PHOsCwePXsDbF6eCu6z0FOy8aRV2bS3BXTesQFZ6ZB+Ubo+Mw509uDwwgpV5WX61UhQnE6PA2cPeIKnz18B5B+A3KlIDlLxvqkZp/fuB9Ozk5JWWJDbVES0Bo+5RvxqiwFqjnpHpM/EHEjKFoLVFSo1RTnrOHNzJzLr6hvHsZLB09NxUwJeeqsGd16/Erm3F0N+0Cssyo/+Tlpqiwe2lRfHMLnk8wMVjU4HS6VeAwEWPizZPBUobPwjkBJ8qhmi+YeBEFAW3xw3HZQeuDF3BipwV0K3UxdSBORLBZr/27WsUyezXeRl5oWuMlpUgNyM3IXmPh6uDo/jFG104eLQLh9+bCgJTNMAHNi/Hrq0luOfm1SjISWxzIEVAloEeaSpQ6vyN/4K5gLfJTAmUxDuBgrXJyCnRrDFwIoqQ/bQd+w/v91vjbFXOKuzdsRf6Dfqo04vH7Nc5aTne0WjL1kwfnZZbgvyMhdXM3Dc8jhfevIiDRy/gZWc33J6p+9+xUYtd24px7y3FWJHHyWqTbvDyZIful7zf+87678/I89YkKYHSihu5aC4tCgyciCJgP23Hnpf2TAtkLg9dxp6X9uDRux6dFjy5PW5cHrrsN+O1b4AU6ezXQTtfTwZLBZkFfpM8LkTXRidgf+sSDh7twm/evYIx99RkhlvXFuCBbSX42K3FKBHY5yWpRgf8O3RfPuG/PyUdWHfbVKBUoouuQzfRAsF3NdEM3B439h/eH7T2R9n29Ve+jpO9J3Fx6GJUs19npGQEnflaea3N0i74wCiYkXE3XnrnCg4eu4BDb13CyPhUsHTDqjzs2laMj28twcblXHw1aSbGgHNtU4HS+Q7A4/t+1gCrb50KlNbfzsVyaUlg4ERBzWVfnmSa8Ezg2vg1DIwNqN8Hxwe9X2Pe7yd7Tvo1zwXTN9qH7x393rTtaSlpKF5WPC0gUn4uyi6acfbrxWLc7cHvT13FwaNd+OWbFzEwOvUhvKEoBw9sK8HHt5bghtV5SczlEubxAJeOTwVKp18GxgPm6ircNBUobfwwsIyd6mnpYeA0x8IFJNEEK4kMbOLdlycRZFnG8MTwVMAzPoBrY5PffQOgyeAnWHB0bfwahgNH+sxC+apy3FZ8m19wFOvs14uFMtT/4DHv+nC9Q1NrvxUXZOHjW4uxa1sJbl2z8JscF6SezqlAqfM3wFC3//5lK6Zm5950J1C4ISnZJJpPGDjNoXABCYCIg5VEBjax9OWJ1rh73C+o8f05VCA0ODY4bZsnmoU9Z5Cdlo1l6cuQm57r/cqY+j44Ngj7GfuMaXz1fV9FxeqKuOVpoZJlGa+fdeHpoxfw7LEuXB4YVfctz83Ax271Bktl6wuRwvmS5ta1q1OBkvRrwHXaf3/6sskO3ZOj31ZuYYduogCcADOEeE+AGSog0UATcuSUZnLxB99gJVw6gcdGy+1x454n7wnZLKWBBityVuCJ+57A8PjwtKAnWCAUbNuoezRo+rFI1aROBTnpuViWvgx5GXl+25Sf1X2+gVF6LpZlLAu79IdSLqFGuWmgwaqcVXj+weeXbO2SLMt4q2sAB495Z/E+1ztVk5eflYb7bvEGS+8XtUgLMYs3JcDoIHDmlalA6dIb/vtT0oC1O6YCpTVlQIJneyeajzgB5jwTSefiYJR933z1mxAyBYx5xrDvlX1h0/nH3/8jTvaehAwZE54JTMgTcHvccMtu72vPBNyyG26PGxPy5OvJ/d0j3WH78siQcXnoMu598t5oiyCo7LRs5KXnYVnGMu/39GXIzchFXob3Z2WbEgip23yOz07LTngTT2pKKvbu2Is9L+2ZFugqAat5h3lJBk3OK4PqkifOK9fU7TkZqajc4p3F+0PXL0dm2tIrm6Rwj3s7cSuB0rk2wDPuf8yqW6cCpfW3A5nzdy4vovmINU4hxLPGqe1iG77wwhfilLPkS0EK8jPzp9Xc+DZv+W5TAqHA2p+0lIUVtwdrIl2dsxrmHeZ50/drLpzrHcIzx7rw9OsXcKKrX92ekZaCu29YiV3bSnD3jSuRncFgKeFk2TstgBIonf49MDbof4ywfrJD913eDt25K5KQUaL5jTVO88yVoZlneJ7J8uzlSNWkzji6CwB2rN6BTQWbkJaShlRNKlJTUpGmSfN7nZ6Srv6cqklFWkoazvSfwQ+O/2DG9A989AB2FO+Y9T0tNPoNenxk3UeWxGjDQJf7R/DsG94lTxxnXOr2tBQNPnjdcjywrQSVW1YhL4vNPAnnOjMVKHX+GrgW8PclpwjY9GFvoLTpTkC7KRm5JFq0GDjNgRU5s/8Pr+HDDQAQUc3Vl7d9OaZOym6PG89Iz8zYl6dsVVnUaS8WqSmpS6YDeO+1MfziuHcW71c7u6HUTWs0wPs3FWHXthLce8tqaJdlJDeji91Qz2SH7slO3b2d/vvTc4ANd0wFSqtuAVLYj4woURg4zQHdSh1W5ayKaAmNQEqwolupA4Cw6QQeGy325aGBkXG0nriEg0cv4Lcnr2LCZ8kT3XoBu7aV4P5bi7EyPyuJuVzkxoaAMy9PBUoX3wB8f981qcDa8qlAaW0FkMbglWiuMHCaAzMFJMrrSIKVRAc2+g16PHrXo0GnO1hqfXmWiuExN158+zIOHr2AF9+5jLGJqWkethTnY9e2Enx8azHWaXOSmMtFzD0BXHBMBUrnDgPuMf9jVm6ZCpQ23AFkLaw1CIkWE3YODyHe0xEA4TsXA9PncQrV8XguOikvlZnDl6qxCQ9+8653yZPWE5cwNDa1Zp64Ypk6i/fmlRxxFXeyDFx5eypQOv17YLTf/5iCdZOTTt7l7a+UtyoJGSVaOqL5zGfgFEIiAidgYcwcTovThNuDV6UeHDx6Ab843oX+kaklT9YWZmPXthLs2lqCm4rzOIt3vPWdmwqUOn8NDAYM8sgu9AZImyanCdCKnHiSaA4xcIqDRAVORHPJ45HRcaYXB49ewHNvdOHq4FQT0Mq8TNw/ueTJ9nUCg6V4Gu4FOn87FSh1n/Lfn5YNbLh9KlBavZUduomSiNMREC1hsizj+Pl+PH30PJ451oWuvhF1X2FOOu67tRi7tpZgxyYtUrnkSXyMDwNnXp0KlC68Dv8O3SneWbmVQGndDiAtMzl5JaJZYeBEtEi8e2lAncX7ve6pVe1zM9Pw0ZtX4YFtJfjA5uVI55In/jxu4PTL3uaz3FXeztczNXt73N7gSPqVN1A68xoQuJTQihunAqWNHwCyChJ1B0Q0hxg4ES1g7129hmeOXcDBo11459KAuj0rPQU7b/IueXLXDSuQlc7+b0GdeBp43gz0X5jall8C3GsBtjwwtU2Wgasnp2qUOn8LjPb5p5W/ZipQ2vRhIL94Lu6AiOYYAyeiBaarbxjPHuvC00cv4Ni5qQ/v9FQN7rx+JXZtK4b+plVYlslf77BOPA00fRYInBOtv8u7fdd3gdTMycknXwIGuvyPyyoANn5oajmTos3s0E20BPAvK9ECcHVwFL94owsHj3bh8Hs96vYUDfCBzcuxa1sJ7tmyGgU5XPIkIh63t6Yp6IS0k9sO/qX/5tRMYP37JwOlO4Hi983cpEdEiw4DJ6J5qm94HC8cv4iDxy7g96euwmcSb+zYqMWubcW479ZiLM9lJ+OIybJ3CZPjT/o3z4VSdB1w0y5voLTuNiA9O/F5JKJ5jYET0TxybXQC9rcu4eDRLvz63csYd09FS1vXFuCBbSX42K3FKBH4AR7W6ADQ7fROA9Ajeb8rXyN9M5+vuGsvcKshcfkkogWHgRNRko2Mu/HSO95ZvA+9dQkj41NLntywKg+7thXj41tLsHH5siTmch4aHwF635sKiHqcU8FS4ASTgZatAK5dmfkauZyxm4j8MXAiSoJxtwe/P3UVTx+9gNY3L2FgdGoW741FOZPrw5XghtV5SczlPOCeAPrOAN1SQIB0CnCdRfA+SpOWrfB22C4qBbSlkz9vBrSbgNQM4Lu3eDuCB01D4x1dt+GOBN0YES1UDJyI5ojbI+NwZw8OHruAX7zRhd6hcXVfcUGWuuTJLWvyl9Ys3rLsHbHWfWqqxqjb6Q2QejoBz3joczPzvYGRGhSVTr4unXnepHstk6PqNPAPnibL/t797PxNRNMwcCJKIFmWceSsCwePXsCzx7pweWBqksTluRn42K3eJU/K1hciZbHP4j3U49PXyDdAkoDxa6HPS8uaDIjEgABpM7BseexTAGx5AKh+IsQ8Tvv953EiIprEwIkoCkqt0eWBEazMywq6bIksy3irawAHj3ln8T7XO6zuy89Kw323eIOl94tapC22WbxHB6ea0rp9+hx1nwJGXKHP06QChRunmtaUWiRtqXdiyUSt47blAeDG+6OfOZyIliwGTkQRev54F/YdPOG39ltxQRYe3rUF995SDOeVQXXJE+eVqRqUnIxUVG7xLnnyoetWICNtgQdLE6P+nbJ9A6TBi+HPzV/rHxgpX8J6IDVJc1ClpAKbPpScaxPRgsPAiSgCzx/vwld+4pjWjbirbwRf/okDa4VsnHNN1SxlpKXg7htWYte2Etx940pkZyywGgyPG3Cd8R+ppnzvOwvIntDn5iz3CYp8mtcKNwEZOXN3D0RECcDAiWgGbo+MfQdPhBu/hXOuYaRqgA9fvwK7tpWgcssq5GXN81m8ZRkYuOg/Uk2pPertBNxjoc/NyAuoNSqdGr2WLczZLRARzTUGTkRBDI+54bwyCOeVQfz6nct+zXOhPPbpMlTevHoOcheloR6fySB9+hx1z9ApOzVzMhgSAwKkzd6h/ktp5B8R0SQGTrSk9Vwbw6nLgzh12RskKd/Pu4Yhh6tiCmJo3J2YTEZidNBnhmynf4A03Bv6PE0qULghYCj/ZICUvzZxnbKJiBYoBk606Hk8Ms67hqcFR6cuD/rNpRSoMCcdm1fmIjczDb96Z+ZZplfmZcUz29OpnbJ9giIlWBroCn9u/prpE0EWlQLCBiAtI7H5JiJaRBg40aIxMu7Ge93XfGqQvD9LVwYxOhG6M/MaIRubV+Zi88pclK5Qvi9D0eTiuW6PjA9aXsTFvhFo4MGOlLexEi5choDDnhshIwWrC7xTE8yax+3tfO07Uk2dKfvMDJ2yi3zmORL9f2anbCKiuGDgRAtO39A4Tl0Z8AuOnFcGcbZnCJ4QzWsZqSnYtHwZSlcuw+YVuSidDJJKV+TOOOItNUWDh3dtwf/89DF8Lf0JlGh61H0XZC2+Mf5Z/OGuL0+bzykkWfbOGRR0pmwpgk7ZQSaCLBKB7MLIrk9ERDFj4ETzkizLuNA3Audk7dGpK4NwTgZIVwdDBxZ5WWne2qMV/jVIawuzZzXZ5L0pbbgn4/9BDhhbt1rTg+9n/D9oUsoABMw0Pdw7fSi/0rw2Nhj6YqmZkzVGARNBFm0GcleyUzYRURIxcKKkGpvw4HT3Nb9+R6euDEK6cg1DY6E7WxcXZKmBUelkoFS6chlW5GbGf503jxt43gwNZASm7A3FZODgXwJX3gJ63vPplN0zLSmVJsXbv8h3pJrSB6lgLWeuJiKapxg4UVCRLC0Sjf6R8ckao6k+SNKVQZzuGYI7RPtaWooGG5cvQ+mKZX61R+IKb4fthHCPA8Mu7/Igw73en8+86r+WWTDDPcCvvj19e16Jf2CkzpTNTtlERAsRAyea5vnjXfinp9/AusGjaifos7nb8I8P3Ip7bykOeZ4sy7jUPzpVc+RTi+S7uG2g3Mw0lK5YpvY7UoKkDUU5SI+lec3jAUb7/YOf4d4Qr13+gVK4JrSZrL8D2LzTp3lNBDKWxZ4eERHNO0kLnCRJQktLC0RRhCRJMBqNEAQh6mNj3Zcs7okJvP3aCxjuPY/swjW48bZ7kJqWNuO+aNKZjeePd+F/fvoYmtOfQEmGTyfoUS2+8dPPAp/6MnbetApneob8h/dP1iYNjk6ETHtlXqYaGPnWIK3KD9K8JsvA+DAwGC7gCbFvpC/86LNIZBUAWcJkh2sZ6Do68zkf+TuueUZEtMhpZDnaaf7io6ysDB0dHQC8AY7ZbEZzc3PUx8a6byb9/f0oKChAX18f8vPzY79RH0de+DFKXtmHVehWt11CES7c/jAAhNy3/Z7PRZxO4LHRcHtk/P23v41vjzcAAHxb5pTWtD+b+Gv8Uq5AqNH9KRpgQ9GyqQCpKAM3FLixcdk48uTBGWp/ev1rf8KNLotEeo438MkSvMuA+P3s+7rQ+1r5OavAv4+Rxw189xagvwsIuvCKBsgvAf7qDfZNIiJagKL5zE9KjZMkSX6vRVGE3W6P+thY9yXDkRd+jG0v/4X3hU9AskLuxoqX/wIaTH4kB9l3BFADopnS8T1WlmUMjbnRNzwO19A4+obH0Tc8FvB6HK7hcfQPj+NCzyD+c/xxAP5Bk/LaIwP70n6IgfEMLM8Yxea8MazPGUdJ5ghWpg1D0FzDMs8AUkb6gO5e4Lxrdk1fAJCSNj3ACRXwBAZHaZmzu7aah1TgXgvQ9Flg6klNmiyoe/czaCIiWgKSEjjZ7XZotf6TBWq1WjgcDuh0uoiPbW9vj2lf4DUSzT0xgZJX9gEIHpAodX6hgpU1rzyM3xZuwejYBLa98jVoMH1EunLshpf/Dt/skOCeGMPE2AjS5XFkYBwZmECmZsz7HeMowDhWarz7Mif3L9e4UJISeiRYigZYgT78Z4bFu+Ha5NeMNEBWfojanxDBkPI6Y9n8GH6/5QGg+gngebN/R/H8Em/QtOWB0OcSEdGikZTAyeVyBd3e0zP9QzvcsbHuC2Z0dBSjo1MdmPv7+4MeF4u3X3sBN6Mb08ayTwoXF6RogJXoxcrn9D4nhD5Wi0H8w9h3vRsS9HRHcoqRtaJ0qslrptqfwKavhWrLA8CN9wOnX/ZOYJm7Cthwx+K4NyIiisi8GlUXKtiJ9thY9tXX12Pfvn0RXz8aw73nZ53GOFIhIwUZCL22muJK9iZkr9iEtIwspGVkIzUjE5q0LO/Eimk+X36vs+C+6kTqb/bPmH66wQaIH571PS1IKansAE5EtIQlJXASBGFazU9PT0/QEW/hjo11XzB1dXXYs2eP+rq/vx/r1q2L4q5Cyy5cM+s03q38TwDAza2fmvHYyx/8Fm7+wP1RXyPV48Zw24+QOXRxWrMh4G0KHM1ZjeyNH4g6bSIiosUg9jUoZkGv1wfdXl5eHtWxse4LJjMzE/n5+X5f8XLjbffgEopCrqMmy1P9nAJ5ZOAiinDjbffMmI7vsTFJSUX2rkeg0WgQOGjOA0Cj0SB71yNsmiIioiUrKYGTKIp+ryVJQnl5uVob5HA41FFx4Y6Ndd9cS01LU6ccCAx6PPLUGK1g+wCg6/aHkZqWNmM6vsfGbMsD0FQ/AU1+id9mTf4aaKqfYCdoIiJa0pI2j5MkSbBaraioqEBbWxvq6urUoKaqqgoVFRWora2d8dhY981kruZxuogidIWYx0nZF8k8TqGOjZnHzU7QRES0JETzmZ+0wGm+S0TgBMz/mcOJiIiWGgZOcZCowImIiIjml2g+85PSx4mIiIhoIWLgRERERBQhBk5EREREEWJv4hCUrl/xXHqFiIiI5h/lsz6Sbt8MnEIYGBgAgLjNHk5ERETz28DAAAoKCsIew1F1IXg8Hly4cAF5eXnQhFuFdwbK0i1nz57l6Lw5xHKfeyzz5GC5zz2WeXIkstxlWcbAwABKSkqQkhK+FxNrnEJISUnB2rVr45ZevJdxociw3Oceyzw5WO5zj2WeHIkq95lqmhTsHE5EREQUIQZORERERBFi4JRgmZmZePjhh5GZmZnsrCwpLPe5xzJPDpb73GOZJ8d8KXd2DiciIiKKEGuciIiIiCLEwImIiIgoQpyOIIEkSUJLSwtEUYQkSTAajRAEIdnZWvAcDgfsdjsAoK2tDQcOHFDLNVyZ83nEj9lsRl1dHct9DtjtdkiSBFEUAQB6vR4AyzyRJEmC3W6HVquFJEkwGAxq+bPc48fhcGD37t3o6Ojw2x5rGc9Z+cuUMDqdTv3Z6XTKBoMhiblZPCwWi9/PvuUcrsz5POKjo6NDBiD39vaq21juidHa2iobjUZZlr1lJ4qiuo9lnji+f2NkWVafgSyz3OOlublZ/VsSKNYynqvyZ+CUIE6n0+8hyrIsC4KQpNwsHh0dHX7l6HQ6ZQCy0+kMW+Z8HvHT3Nwsi6KoBk4s98TxLWdZ9pan8p1lnjiB5ecbvLLc4yswcIq1jOey/NnHKUGUal5fWq0WDocjSTlaHHQ6HQ4cOKC+drlcALxlG67M+Tzio6WlBQaDwW8byz0xJElCT08PBEGAw+GAy+VSm4tY5oml1WpRVlamNtlVVlYCYLnPhVjLeC7Ln4FTgigf6IF6enrmNiOLkO8Hd2NjI/R6PQRBCFvmfB6z53K5gvYXYLknhsPhgFarVfts2Gw2tLS0AGCZJ1pzczMAoLS0FM3NzerfHJZ74sVaxnNZ/uwcPsdCPVyKnsvlQktLy7SOhcGOi2Uf+WtqaoLRaIz4eJb77PT09ECSJPUfA6PRiMLCQshhpt5jmceH3W6HxWKBJEkwmUwAAKvVGvJ4lnvixVrGiSh/1jgliCAI0yJdpdqd4sNsNqO1tVUt03BlzucxO3a7HdXV1UH3sdwTQxRFtQwBqN8dDgfLPIEkSUJbWxv0ej2MRiOcTieampogSRLLfQ7EWsZzWf4MnBJEGTIcqLy8fI5zsjg1NDTAbDZDFEW4XC64XK6wZc7nMXtNTU2w2Wyw2WyQJAn19fVwOBws9wRR+jMFwzJPHIfDgYqKCvW1KIqoq6vj35g5EmsZz2X5s6kuQQL/6EmShPLycv73EQctLS3Q6XRq0KQ0IQWWrW+Zh9tHMwv8o2QymWAymYJ+uLPc40MURZSXl6t9y5S5nHQ63bRjWebxo9PpYLVa/fpSdnd3s9wTyLf/ZLjPzvnyN55r1SWQJEmwWq2oqKhAW1ub34SBFBtJklBaWuq3TRAE9Pb2qvtDlTmfx+y5XC7YbDaYzWYYjUaYTCbodDqWe4K4XC6YzWaUlZWho6NDrWUF+F5PJLvdrjaJAt5/HFju8WW329Ha2oqGhgbU1taioqJCDVZjLeO5Kn8GTkREREQRYh8nIiIioggxcCIiIiKKEAMnIiIioggxcCIiIiKKEAMnIiIioggxcCIiIiKKEAMnIiIioggxcCKipLLb7SgtLUVDQwNsNhvKyspQVlamTrRZWloKh8Mx62soaRIRzQaXXCGipHK5XGhtbVVnZm5tbYVWq4XRaAQA1NTUQJKkoEteREqv16OmpiYu+Z0LvktQENH8whonIkqqnp6esAva6nS6aaueL2aSJKGpqSnZ2SCiEBg4EVFSVVdXx+WYxcJisSQ7C0QUBgMnIkqqSJqk2tvbUVZWhoaGBgBAS0sLSktLYbfbAUz1kzKZTGhpaYHNZoPJZILL5QqZpt1uR0NDA1paWmA2m0MeJ0kSzGazmq6SpsPhUM9vaGiAJElqujPlVelvZbfbYbPZUFVVpe5rb29Ha2srbDabmiYRzR/s40RE815gHyWDwYDGxka//QaDAUVFReoK6y0tLaiqqkJra+u09JRgqKOjA4C3uVBZpd2Xy+VCZWUlOjo6IAgCzGYzbDYbDAYDzGazX9plZWU4dOhQRHnV6/VobW1Fc3MzAKC5uRkOh0PdV1paqvbxIqL5hYETES0avrVXBoMBVVVVQTtaW61WaLVatRYIANra2qal19TUBFEU1fPr6uoAAPX19dM6q4uiiKampogCnqKiIhQVFfnleyn14yJayBg4EdGSpNPpoNfr1dfBAp7AoGuuR7pxdB3R/MM+TkS0IAiCgO7ubvW13W6f1ofJ93VLSwv0er1f4KHsr6mp8attUtILZDAYps0hZbfbg57vcDjUTuyR5DUSwfJERMmlkWVZTnYmiIjsdjskSVJHlZnNZpSXl6tNYi6XC2azWe1IbbVa4XK5YLVaIYoizGYzXC6X2jzX1taGuro6CIIAh8OB3bt3AwAOHDgAnU4Hu92O1tZWVFRUAMC0IMs3X8GOs9vtcDgcEEURbW1tqKmpiSivLpfLLy9KfyudTqfeu8ViQVlZGfR6fdipGoho7jFwIqJFQZllnJ2qiSiR2FRHREREFCEGTkS04NntdtjtdnVYPxFRorCpjoiIiChCrHEiIiIiihADJyIiIqIIMXAiIiIiihADJyIiIqIIMXAiIiIiihADJyIiIqIIMXAiIiIiihADJyIiIqIIMXAiIiIiitD/B0vl4RpR2tiLAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFoCAYAAAChRHRDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2sklEQVR4nO3deXwbZ70v/o+8xEtieyzHWZ3F42xN0yWSnUKh0NYyLdAWaGWbpVCgtXQ453fP4eaCFXM49ATOrSOX23vOvecCUspWymJLDdCytEgpBQ4tja1J26RplmqcfbFjeSwn3qX5/SHPWLslWZvt7/v1yivRzDPPPHpGtr55VoUoiiIIIYQQQsiscjJdAEIIIYSQ+YICJ0IIIYSQGFHgRAghhBASIwqcCCGEEEJiRIETIYQQQkiMKHAihBBCCIkRBU6EEEIIITGiwIkQQgghJEYUOGUpnudhMBhQXl6OmpqaqGlrampQXl4Og8EAQRDSU0CSNTiOQ0NDw6yfk1SyWq0Zu3e6ST+bCoUCNTU16OjoQEdHB/R6PRobGxdVXSRKr9ejvLwcdrs9pvSCIMBgMMBsNsNqtcJsNoeksdvt0Ov10Ov1CT+DhfpszWYz1Gp1pouxcIgkqxmNRpFhGNHhcIQ9b7PZRK1WK+p0ujSXLDyTyRRyrLW1VdRqtRkojU+4Mi00NptNZFk2rmuSVS8WiyXk2ODgYNTPbTiZ/pzES6PRhP25Y1lWNBqNGShR7LLhZ0KlUok2my2mtCzLik6nU37NMEzAa1EURQDi4OCgaLPZ5HwTfZ8L7dk6nU6xtbU1rp9HEhm1OGU5hmHQ1NQEk8kU9ny2tTDZbLaQYw0NDWhubs5AaXzClWmhUSqVcV+TrHphGCbsMZ1OB5ZlY84n05+TZNHr9TAYDJkuRlTz6WeC4zgwDBPwWbJYLAGvOY4Dy7JgGAYajQYajQZA8t/nfH22LMtCr9eH/Vkl8aPAaR7Q6/Xo6uoKOS4IQlxfTKlmNpvB83zIcY1GA61Wm4ESRS7TYpfMeuE4Dh0dHSHHjUZjXL+oM/k5SSbpPWfbf2ok8+1nwuVyhfzHQAqM/AV/1lLxPufzs5WCSzJ3eZkuAJmdSqWCUqmE1WoN+GLp6ekJ+wtE0tHRAZZlwfM8WJaVrxUEAWazGSzLwmazQa/XQ6VSAfCNE5D+R7V//37wPA+e5zEwMACj0RjxXna7HTabDTzPy1+ira2t4DgOBoMBPM/D6XRGvIfL5YLD4YDJZILZbIZSqURnZyfa2trkss32vmItU3A+gG9sg/+5aILHV+h0ulnzTPQ9S9cplUo0NjYC8D2/2Z5HcHn86yrWepmtfiUMw8BoNAbkIQX7+/fvD7g+Uv3E+jmJ5bM4273iyTfeugAAh8MBlUoV8EUe6TkYDAa5NUBqKZDKEMvnLFx+0d7XbM8+nGT9vujo6ADDMHG1jtrtdphMpoDyOp1OdHV1wWKxQKPRgOO4gDRSy1Pw+2RZFu3t7eB5Xr6W53k0NDSAZVmYTKZZA4v5+mwFQYj5PzHStdKzYlkWLpdLruvgn1Np7JnRaIz5fQTXS11d3ZyfTVpluq+QRCf1V4cb/yGNLQk3xkmr1QaMPdFoNHL/dmtra8D4AJZlxcHBQfm1NF7Gf/wBy7Kz9o/bbDZRpVKFHHc4HCHjbyLdo7W1NeD9BecX7X3FUyatVhtwb6fTKWo0mijvzsdoNIaU0f85RMsz0fdssVhEAAHPrLW1NeCZh6vjaHUVrV7iqd9oNBpNQF6z1U88n5PZypTos/DPd7a6CB4HMzg4KBqNRlGlUgX8PEXLR3reNptNdDgc8mdhts9ZtOc62/uK9OwjScbvi9bW1oCxN4ODgyKAmMY4hStv8PioSJ+d4OvCjQUMN2ZpsTzbYDqdLuB9O53OkLoOV4cajSbg+SZSL7E+m2xAgVOWkz6MTqdTHvwovZZ+mQUHTlLa4HykNFqtNuBDHvwF53A4Qq4PThNOPIFTpHv4/0JxOp0iwzAxv69Yy+RwOALylcw2WFX6ZR/8i9NoNMaUZyLvOdJ7kMoifQaC63i2ugqXZyL1G43/L89Y6yfWz0m0z+JcnoWUbyx1odFoRJVKJZpMJvlPcEAXy3MIPh/tczZbfrHUV7xfrnP9fSG9n2CxDg5PZuAkimLIpIVwn6XF8mxnK5soiiHBWqT/pAV/V0V6H+HqRRLLs8kG1FU3T7AsC5VKha6uLuh0OnAcF7WLimGYgKm+TqdT7vu2WCwAfM23UpeRy+UKuZ8/hmFC0sxVuHtEm1I/2/uKVU9PT9hmX6krIlL3Z09PDxiGCWjylupS6sqYLc9433MkUjkijVtIpK6SVb/hJFrnUhp/s30WY71XtHxjrYva2tqA7olgseQTXI7ZPmfx5jfXn925/r6Q6iBb6HQ6dHZ2QqVSwW63R/zsLYZnG+79BD+reJ9dIvUiifXZZBoFTvOIXq+HyWSCTqeL+mGWBo37f+j8/81xHNrb29HQ0ICmpqaU9R1LfdvJMtv7irVMiQ7sjHZdtg0WjbeupHqZa/1GK0+6JONeyaqLWPIJ/lme7XOW7Gc0289pMn5fJDLrM9mk99nc3Iz6+noYjUbwPJ9w/S2EZ5ss/u8rkXqRJOvZpBrNqptHmpqawHEcrFYramtrI6ZTqVRhWwkEQYAgCKivr0dbW5scgEkf+mTPQOE4Lqn5RXtfseI4Th54GIznedTV1UW9f7h7CYKQcJ6Jkp5l8MB5Sbx1xXFcUuo3knTWTzLulay6SCSfaJ+zVDyjaD+nyfh9EanM6Sa9T//JNnMJ6Ob7s41UtkTu59/qNZf3kaxnk2oUOGU5aeYCAHmNks7OzqgtThqNBrW1tSGr3HZ1dcktC/5fuNKHfrZfoLORZlAAvl+qkb7UE71HtPcVT5lUKhU0Gk1AU7L03qPNmpJmhvhPvRcEAV1dXQnnGesvKY7jAtK2t7dHXSdptroKVy+J1G+sEq2fcGars2Q8i2TVRaKf2Uifs0TyC66veH5Ok/H7gmVZ6HS6gJlkgiCEfKaTLdr71Ov1aGlpmdPyF/P92YYrW/BzkmbvRbqHVAb/lvy5/uwk49mkXKYHWZHwnE6nqNPpRACiTqeTBwH7z8CQZnowDCOvaOs/sE+ayeJ/jXS8tbVVXmHX6XTKA3kdDoeo1WpFAPKMBukeKpVq1sF6Ut7SQMFw+UW7h0ajkWdbSGlaW1tjel+xlik4H5PJFDBAO5b8jEajaLFYYs5zLu9ZGvBpsVhEm80mGo3GgNkmwdeFK0+4upqtXmKt30iCZ9bEWz/J+CzG+yyC8w1XF06nM+rPXbSy+Odjs9lEjUYjMgwjDw4Ovma2z5l/fvG+r3DPPlLZk/H7QnovUj4qlWrWAeLBdeSff6Sfm+DZfOHep/Qegi22Zxvt/fg/p+BnJP0Oksqo1WpFlmVn/dmZrV5EMfKzySYKURTFDMRrhJAYSWufOByOTBclLo2NjWhubs7u/zmSRUkQhFnXwSM+arUaRqMxbXU1H54NddURQpJGaraX/p1Ns6nI4ubfrSV1jZHsMN+eDQVOhJCkaW9vh16vB+AbHxFtEgMh6SStcA1kxyw/MmO+PRvqqiMki9ntdhiNRvnvWLeFyRSe52G1WuXtGqibjmQLjuPQ09MDAFHXZyIzOjo6YDAYoNFo5L9TYb49GwqcCCGEEEJiRF11hJC00Ov1KC8vD1gmgETGcRwaGhoSWlmeEJI6FDgRQtIi3A7nBoMBjY2NaS1H8M702ZafRKVSwWAwpCTvTEhVPRGSbhQ4EUIypqGhAc3NzWm9p81my+r8/M2HgbKxSmU9EZJOtFcdISRj0j3t2Gw2J3X7j2Tnt1BRPZGFhAInQhYIQRBgNpvBsixsNhv0en3IlgvB3SX+M1iinevo6JC72Xiel2f3SYtzsiwLvV4vtyoYjUb5OmmGXTCO42AwGMDzvLy1kJQfAOzfv1/e8mFgYEDOU3qvBoMBarUaDocDNTU1UKlUMJlM8m7zwex2O2w2G3iel7e88J+lGOk9RhIpv3DvS5pubTQaodPp5PepVCrlrkpBEELeZyRSWaVNXGebvZjIs43nfQCRn9ds9U7IvJPJZcsJIcnT2toasIUBy7IB20UYjcaArUf8t0KIdk6r1QZsueB0OkWNRhOQVtqWweFwyPkEb/swODgoAgjIy+FwiCzLBrwPm80msiwbkI5l2YCtNPy3cxkcHAzJIxJpC4lgs73HePOT3oM/jUYTUB8Wi0UEEPDMWltbRZ1OJ78OVz/BW9loNJqAugk2l2cby/uI5XlFqidC5iMa40TIAsHzfMCMNZZl5ddSC01bW5t8vrOzU96cM9I5juNgt9sDutRYloXL5ZLzZhgGHMdBo9FApVLBaDRCEAR0dHQEtGwwDBPTpqNKpRI8z4fc07+rx2q1ynkxDBN2M9JYxfIe4xWuhS14FXWpPvwHzLe1tUXt1pLWyfJvYWpsbITJZAqbfq7PNpb3EcvzImQhoa46QhYIqYtK2vbE5XLJO9n39PSAYZiALz0pvd1uj3hO6voLJnUHSl+WwWmkPBMVnB/DMPJ7AXwzzsLtDJ+Inp6emN5jOkjPgeO4sGWS6tU/oHM6nRGDlGjPPdZnG4vZnhchCwkFToQsEBzHob29HQ0NDWhqagr4MgsOMvwles5fuCAplTPC9Ho92tvbsX//fpjN5ogtLrORWtySRRpzFE4y7iMIAliWDQhqogU4yXi2ybrOX7R6IiTbUVcdIQuAIAior69HW1sbdDodGIaRv+B4ng/bQiNdF+2cRqMJ25rB8zzq6uoilkelUqW8q2b//v2w2+3QarUJb9MgdTEm8h4j5RdJLC0wgiDIzyScSPUaKZhJxbNNRktStHoiJNtR4ETIAiC1nPh/4UpfcFK3j1arlWc1Ab4vz66urqjnVCoVNBpNQNeQ9KUXbSYXy7LQ6XQBs7kEQQDHcQm1WARf43A4wDAMtFptXC0X/mNvpIAy0fcYKb/g41L5w7VuBddHe3s7dDpdxPek0WhQW1sLq9UacLyrqyti+ebybGN9H8HCdaOGqydC5iPaq46QBUKaFt7Q0ADA92VlMBjQ3NwsfxEaDAZUVFTIg4D9W2pmOydt/eF0OgOmmhuNRvT09KCtrS0kkJGmuktdeVIZjUYjlEol2tvbYbVa5Q2Mpe5G/2MdHR1ob28Hy7LyPaxWKxobG+WlDhiGgV6vj6nlSSpDTU1NTO8x0fykYEWqj87OTnAcB6PRCK1WK0/lb2trk8c1AQhYDkCqi9bW1oDySGWVukNnC/ASebaxvA+WZWN6XtHqiZD5hgInQsi8IggCWlpasH//frlLkud5efuW+fKlLAVODocj00UhhMSBuuoIIfOK2WyGXq+XW7Gkaf1Go5GCEEJIylHgRAiZV1QqVdjVwe12u9xNSQghqUJddYSQecdutwesdRTr1iPZQhobJv1NW5AQMn9Q4EQIIYQQEiPqqiOEEEIIiREFToQQQgghMaLAiRBCCCEkRrRXXQK8Xi8uXryIkpISKBSKTBeHEEIIIXMgiiKGh4exZs0a5OREb1OiwCkBFy9exLp16zJdDEIIIYQk0blz51BVVRU1DQVOCSgpKQHgq+DS0tIMl4YQQgghc+F2u7Fu3Tr5+z0aCpwSIHXPlZaWUuBECCGELBCxDL/JWODE8zysVqu8a7ZOp5O3UIgnLcdx8u7e3d3d8v5Vs10Xz/0JIYQQQgAAYoaoVCr5306nU9RqtQmlNRqNAf/2TxvtunjuH2xoaEgEIA4NDcV8DSGEEEKyUzzf6xlZjoDn+YDXLMvKrUbxpOU4Du3t7fI5rVYLjuPA83zU6+K5PyGEEEKIJCNddXa7HUqlMuCYUqkEx3FQqVRxpd2/f798XBAE+XxXV1fE63p6emK+f6I8Hg8mJyeTkhch801+fj5yc3MzXQxCCEm6jAROUoATzOVyxZ3Wf1PPzs5OaDQaMAwT9bp47g8A4+PjGB8fl1+73e6w6QDfWhCXL1+OeA9CFguGYbBq1Spa64wQMmcer4hDvS70DY9hRUkhdlUrkZuTmd8tWTWrLp5gIzitIAiwWq1wOBwJ3yPSufb2duzduzemcklB04oVK1BcXExfGmTREUURIyMj6OvrAwCsXr06wyUihMxnLx69hL0vHMOloTH52OqyQjx+/3bcuyP9v18yEjgxDBPSuuNyucLOaos1rcFggM1mk49Huy6e+wNAW1sbdu/eLb+W1nsI5vF45KCpoqIibF6ELAZFRUUAgL6+PqxYsYK67QghCXnx6CV86VkOYtDxy0Nj+NKzHL77sCrtwVNGBodrNJqwx2traxNK29HRAYPBAJZlIQgCBEGIel089weAgoICec2maGs3SWOaiouLw54nZDGRfg5orB8hJBEer4i9LxwLCZoAyMf2vnAMHm+4FKmTkcCJZdmA1zzPo7a2NmBtJmnm22xprVYrVCqVHDR1dXWBYZio182W51xR9xwh9HNACJmbQ72ugO65YCKAS0NjONQbfnxyqmQkcAIAi8UCg8EAq9UKk8kEi8Uin2tvb4fVap01Lc/zaGxsRENDAxQKBcrLy2EwGGK6R7Rz2cDjFfGacwC/fuMCXnMOpDSi5jgOer0eCoUCBoMBZrMZBoMBjY2NSV2mwWw2o7y8HBzHJS3PdFOr1QGfTbPZjIaGhoSuJYQQElnfcOSgKZF0yaIQRTG9bVwLgNvtRllZGYaGhgK67cbGxtDb24vq6moUFhYmnH8mBsIJgoDy8nIMDg7KLW/SMYfDkbRlGhoaGmA0GpOSnyAIaV/t3W63B7ROSmuGRer+jXbtQpesnwdCyOL0mnMAn9r/t1nT/bzlPXhvzdzGFUf6Xg8nYy1OJDxpIFxw86Q0EO7Fo5fSVhapW7OzszNt94wVz/Po6upK+32l5S4kLMvGFDSFu5YQQkhkebkKROvwV8DXqLCrWhklVfJl1XIEC5Eoihid9MSU1uMV8fjzb0ccCKcA8K/PH8P7Ni2Paf2KovzcOY8zcblcqKmpmVMeqWA0GqFWqzNdDEIIISnwX6euQveTHvn7UAEEfDdK32yP37897es5UeCUYqOTHmz/xktJyUsEcNk9hpv+9Q8xpT/2zXtQvCSxRywIAtrb26HRaKDT6WC326HX6+UxZCaTCQ6HQ95kWdosWavVBgy+5zgOnZ2dqKurAxC4yKjdbofBYEBzczNaW1thtVphMBhgMpnkVhye52EymVBXVweXy4Wmpib09PSgp6dHzkuj0YQM+Jfy5zgOLMuiu7sbRqNRLpPJZAoYm8SyLFwuV9TycByHlpYW6PV66HQ6CIIAg8EAu90Op9Mp5x2uPoKvld67Xq+X09pstqwba0cIIen20tuX8d9+dhgTHi/u2LwcWnUV9v3+eEBPzKrFto4TyV5ms1kOQqQvdcAXnGg0GjgcDphMJiiVSvA8L6+fJVGr1Th48KC8entjY6McVAAI2FtQo9GgublZfq3VagO6BQVBQENDAxwOBxiGkQeut7a2QqPRoKamBjqdLuz7kMomLYjqcrnQ0dEBnU6H+vp69Pb2yt1m5eXlOHjw4KzlUalUAecZhoHJZEJ5eXnAPcPVR/C1Un36B0sWiyWp2/4QQsh885zjPFqfewser4gP71iFf//krSjIy8V9N6+hlcMXi6L8XBz75j0xpT3U68Lnf9g9a7offaEupj7dovz4Fx3U6XQRx+EwDCMv7KnVamEwGEK+5FmWRVdXF3Q6Hbq6ukLOB+8RGE1XVxdYlpXL09bWFvO1UnDnPyuwu7sbDMOEjDWKtH5XvEwmU9T6CFZRURGwUGq4hVkJIWSx+NFfe/GvLxwDAF8r04M3IS/XNxQ7N0cx5wHgyUKBU4opFIqYu8vu2FyJ1WWFuDw0FnackwK+5sk7NldmLNIO1yWWKsGz5iIFdJFm16lUqoCB2zqdDmazOcmlJIQQMheiKOI/X34X/8t2EgDwxfdV4+sfvQE5Gfqemw3NqssiuTkKPH7/dgAImUmQroFws7V4+J9vbm4OWeeJ4zg0NTUBgDwuyJ+0sKmEYRgMDAzIr+12u7xnoFarDbk+3LpS4Y6FK5vdbkdTU1PUMkUrjyTSnoaz1Ue0awkhZDESRRFP/O4dOWj675ot+Jf7sjdoAqjFKevcu2M1vvuwKmQdp1QOhJMGcAO+2Wp6vT6ky8lutwcMttZoNFCpVDAajejo6JAHYFssFrn1h2VZeaHRhoYGuWWovb0dRqMRLMuiqalJHmAN+IItqcuLZVmYTCYYDAZ5cLnUgqTX62E0GmE2m8MuByCVLfhahmHClkkSrTyCIKCzsxNKpTJkELz/PcPVh1TH0rVSXtI9eJ6XB62zLJvWlj1CCMkEj1fE1w4cQWfPOQDAN+7bji++vzrDpZodLYCZgFQvgAn4PlDZMhBuoZvropzSwqEkEC2ASQiJZGLKi//e+QZ+e+QSchSA8aGb0Vi7LmPliWcBTGpxylLZNBBuoUtkQLbZbIbT6YRer0/a4HJCCFkMRic8+LtnHfjTyX4syc3B//nUrRlZViBRNMaJLGpms1leKyqe8UcajQYVFRXyXoeEEEJmNzQ6ic9+/3X86WQ/ivJz8f3P186roAmgrrqEpKOrjpD5jn4eCCH+rl4bx+e+fwjHLrlRWpiHH36hDuoN6d0uJRLqqiOEEEJI1rgojOLhp18Hf/U6li9bgme+eBu2r4keoGQrCpwIIYQQkjJ8/zV89vuHcEEYxVqmCM8+dhuqly/NdLESRoETIYQQQlLi2EU3PveD13H12gTYyqV49tHbsIYpynSx5oQCJ0IIIYQkneOMbxux4bEpbF9dimce3YXlywoyXaw5o8CJEEIIIUn1l1P90D3jwOikB3Uby/H0I3UoK8rPdLGSgpYjIAHMZjMMBgPMZjOsVivsdrs8ZT9b2e12qNXqtO1Dp1arYbVa03KvuQouq9lsRkNDQ0LXEkJILH5/5BK++KNujE568MEtlXjmi7ctmKAJoBan7OX1AGdeBa5dAZatBDbcDuTkpvSWDQ0NaGxshNFolI9xHIeGhgY4nc6U3nsuNBpN2G1XUsVoNM6bRS+Dy6rRaGLezmU+vU9CSHbo6jmHPc+9Ba8IfPSm1fjfzbdiSd7CaqPJWODE8zysVitYlgXP89DpdGF3uI8lLcdxaGlpgcPhCLjOarXKX6jBeUsbvapUKvA8D0EQEt5yI+mOPQ+8aADcF2eOla4B7jUC2x9IyS07OjoAADqdLuC4SqUKOZaNKirSt8p6OoO0uQouazz74M2n90kIybwf/FcvvvmbYwCA5tp1eOLBmxbkVmEZC5waGxvlQIfnebS0tMBiscSdVgqogne8l64LZjQa0draCpPJJHftaDSaiPdOu2PPA12fAxC0Lqn7ku940zMpCZ7a29uxf//+sOfC1SMhhBACAKIo4j8OnsK/208BAFruqMbXPnIDFIqFFzQBGQqcgsfLsCwr70Yfb1qtVhv2OkEQYLFYAs53dHSgtbUVgG/8hrQxa6SWrqQQRWByJLa0Xg/w+1aEBE2+jAAofC1R7J2xddvlFwMxfHClFrdILRH+LQ8cx8Fut8utf1qtVn4mBoMBer1ePmez2WA0GiEIAux2O5xOp7w9id1uh16vh0ajQUNDA1wuFxwOB4xGIxiGkc8bDAYAgMlkgsPhgN1uB8dxYFkW3d3dAd2K0n2ke/sHw+Gui1Rm6TpBENDV1QWWZSEIArq7u9Hc3IyWlhbo9Xq5JS7eOokUpEd6bxzHwWQyBYxNYlkWLpcLBoMBzc3NaG1thdVqhcFggMlkgkajkVtipbIKggCDwSA/i2hlD7423vdCCFkcvF4R3/rtMfzwr6cBAF/50Bb8w12bFmzQBGQocLLb7VAqA5dZVyqV4DgupLssnrTB/IMmq9UaEmSlNGCSTI4AT6xJUmair/tuX4w7SH/tIrAkeYuM8TwPg8EAm80mH1Or1Th48KA8zsj/y9RiscBqtaK1tRUqlQo1NTUQBAEMw0Cj0UCr1aKiokJ+LlarFY2NjbDZbHJ+DocDJpMJSqVSvr/U+uhyuQKC4e7ubvnfFotF/oxEuy5cmaXrzGYzVCqVHDi6XC6oVCo0NzfPqU7CfXYjlVGn06G+vh69vb3y57W8vFzO378sWq0WnZ2d8uvgsjIMA5PJhPLy8lnLHnxtPO+FELI4THm82HPgCKyO8wCAvQ/ciEdu35jZQqVBRgKnSJuphtulPp60/vyDIkEQ4HK5AlpUBEGQZwx1d3fL/5MOZ3x8HOPj4/Jrt9sd9d7zjfS+eZ4P+yXI8zyUSiVMJlPIeZZl0dXVBZ1Oh4qKioCxRgzDBNQpwzBwuVwBz8b/31qtFo2NjXJwxTCMnJ9Wq4XBYIBSqQxocezu7pb/XVdXF3IvAHLgFe66cGWWrtNqtVCr1WBZFs3NzWHHeiVSJ+E+u5HKKAWZ/vWUrAHbs5U9WKzvhRCy8I1PefBPP38DL759Gbk5CnQ8dDMeUldlulhpkVWz6uLZnT6etAaDIaBLB0DAAHOWZaPOHGtvb8fevXtjvl+A/GJfy08szrwK/DR812OAz1h9s+xiuXeMpHFf4bo+OY6L2CU6m7m26gUHs/4tQEDoYPZIErlOqVRicHAQHMehs7NTbg1LlXBlTNcSC4QQEquRiSnof+LAX05dxZLcHPzfT+/EPTeuynSx0iYjcwTD/U81uCUikbThSONegtP7j52SxmxEWquora0NQ0ND8p9z587FdG8AvjFGS5bG9qfmbt/sOUTqG1YApWt96WLJL44+ZimwDP6i9g9Qm5ubQ8aicRyHpqamiPnOFuD6n5dmQfo/K/9nH+7+kcbG+Uv0uvb2drkVThp7FVzuROoknjI2NTWFTHzw/5wyDIOBgYGAa4LrPNIziKXs8fwHhRCy8A2NTOLhp1/HX05dRfGSXPzwC3WLKmgCMtTipNFo5EHC/sJ1QcSTNpyenp6wSxHU19fLg8MlwWOpJAUFBSgoSMMy8Tm5viUHuj4HX/DkP0h8Ogi6d1/K1nOy2Wzo6OiAwWBATU2NXB9Sa5MUQHR0dMgDmC0WCxiGkVtlAN8z43k+YMkHadC20WgMCEKcTqf8ZS/lB/gCAP/B0hqNRr6/wWCQu+WkQdDh7m0ymcCybMLXVVRUyGPsXC4Xmpub5WuUSiW0Wm1CdSLl79+aFqmMDMPAYrHAYDCgoaFB7saUNDU1yQO+pWukLjhBEALKGq71brayS9dKecXyXgghC1P/8Dg++/3XcfzyMMqK8vHDL9RBtb4808VKO4UoiuGmcKWcWq0OWGJAr9fL3SAcxwWMj4mWVqJQKDA4OBgSJHV0dMBmswWkl2ZLSd01VqsVnZ2dMc8QcrvdKCsrw9DQEEpLS+XjY2Nj6O3tRXV1NQoLC+OojSBh13Fa6wuaUrSOUyZIAdp8WCcqmzQ0NMBoNCY8KLu8vDzkPw2pkLSfB0JIxp0fHMFnv38IvVevo7KkAD95dBe2rSqd/cJ5ItL3ejgZG+Mk/S+6rq4uoKUB8HWR1NXVBcyQipTWbrfLQZF0XfB4nOD/DTMMg9raWnR0dIBhGDidzuyaVr39AWDbR9O+cjiZHxIZkG02m+F0OqHX62k1cEJIXN7tu4bPfv91XBoaw1qmCD997DZsXJ68GdvzTcZanOazlLc4LQLSukBKpXJOrSeLjbSXYFNTU8i4q2ik1fcBhO22SwX6eSBk/jt6YQiP/OAQBq5PoKZyKZ597DasLivKdLGSLp4WJwqcEkCBEyGzo58HQua37tMufPGH3Rgen8JNa8vwoy/UoWJZGsb7ZsC86KojhBBCSHZ65UQf/u5ZB8YmvdhVrcT3H6lFSWF+pouVFShwIoQQQojst29dwpc7D2PSI+KurZX47sNqFObTGFsJBU6EEEIIAQB0dp9F24Ej8IrAfTevxlNNt2JJXkaWfMxaFDgRQgghBE//hce//fYdAMCndq3Hv318B3JzFu5mvYmiwIkQQghZxERRxFO2k/i/L78LANB/kMWee7dBEcfuE4sJBU6EEELIIuX1itj7wtv48WtnAACt927F39+5KcOlym7UcZmlPF4Pui9343f879B9uRserydl97Lb7dDr9VAoFAHbd8TDbDajvLw8ZF+1VEjnvfyp1Wp5LSSpHA0NDQldSwghmTbl8eIrljfx49fOQKEAvvXxHRQ0xYBanLKQ/Ywd+w7tw5WRK/KxlcUrsWfXHmg2aJJ+P41GA5ZlYTab0dbWFvOiiv50Ol3aVl9P5738GY3GgFW3pXpL5FpCCMmksUkP/vHnh/GHY1eQm6PA/2q8BR/fuTbTxZoXKHDKMvYzdux+ZTdEBK5L2jfSh92v7MZTdz6VkuAp0gbHZIZGE1jv8WxuG3wtIYRkyvXxKbQ804NXnQNYkpeD73xaBc32lZku1rxBgVOKiaKI0anRmNJ6vB60H2oPCZoAyMf2HdqH21bdhtwY9q0ryiuiwX2EEEJkwsgEPv/DbrxxTsDSJbnY/0gtbq9ZnulizSsUOKXY6NQobvvZbUnL78rIFdz+i9tjSvv6p19HcX5xQveR9pLT6/VgWRY8z8NmswV0kXEch87OTtTV1QEI3XzWbreD4ziwLIvu7m4YjUZYrVa0t7dDEAQ4nU50dHTAZDJBr9ejtbU17DWx3Ctc+SPlYzKZAsYmsSwLl8sFg8GA5uZmtLa2wmq1wmAwwGQyQaPRgOM4tLS0QK/XQ6fTQRAEeTyY0+mU87bb7XJ9SXvCBV8bS90SQkiy9Q2P4XPfP4Tjl4fBFOfjR1/YhVvXMZku1rxDgRMJS6PRQKPRBHyhWywWcBwHlUoFQRDQ2NgoBw0A0N7eLv+b53kYDAY4HA4AvkCno6MDra2t0Gg0qK+vhyAIYBgGDocDDMNEvEan00W9V7Bo+dTX16O3t1cex1VeXo6DBw9Co9GgublZzkOr1aKzs1N+rVKpAs4zDAOTyYTy8vKAe9psNjmNWq3GwYMHQ66drW4JISTZzrlG8PD3X8eZgRGsKCnAs4/dhi0rSzJdrHmJAqcUK8orwuuffj2mtI4rDvz9wb+fNd136r8D9Up1TPeei4qKClRUVMivGYaRW3q6urpCvuT9x0mZTCYolcqAGXrd3d1yPvv374darYbFYpGDmEjXMAwT9V7BouWj0WgCBr8na8C2yWQKKSPLsujq6oJOpwtJH61uCSEkmd7tG8bDTx/CZfcY1imL8NNH34P1FYn1RhAKnFJOoVDE3F12+5rbsbJ4JfpG+sKOc1JAgZXFK3H7mttjGuOUaSqVKmBQtH8AIQVDnZ2dAQFHuGvMZnNS7p1IPoQQMp8dOT+Ez/3gdQyOTGLzimV49rHbsLK0MNPFmtdoHacskpuTiz279gDwBUn+pNeGXYaUBE3xtnZI43788Twv/7u5uTlkPSjptSAIsNvtsFgs4HleXt8o0jWz3StYpHyampqi5sMwDAYGBgKuEQQhIH3w62j35DgOTU1Ns15LCCGp8Do/gE/t/xsGRyZxS1UZuvTvpaApCajFKctoNmjw1J1PhV3HybDLkJKlCKQgBvCNHZLG40hjfDQaDXielwdWS9PwLRYLDAYDGhoa5PFK7e3tMBqNUKlUMBqNMBgM8oBujUYDs9kMo9EIvV4PAKirq0NLSwt4nkdra2vYaxiGiXqv4CUBIt07Uj6SpqamgAVANRqN3AUnCAI6OzuhVCrlQd/h7tnR0SEPSJe6IaWB7dK1Ul7R6pYQQubi5eNX8KVnOYxPefEeVomnH6nDsgL6yk8GhSiKoX1CJCq3242ysjIMDQ2htLRUPj42Nobe3l5UV1ejsHBuUb3H6wHXx6F/pB+VxZVQrVDNi+65+aahoUEO9BJRXl6OwcHBJJdqYUjmzwMhJHbPv3kRuzvfwJRXhOaGFfjPT6tQmE/fH9FE+l4Ph8LPLJWbk4u6VXWZLsaCl8iAbLPZDKfTCb1eT6uBE0Kyys9eP4t//tURiCLwsVvX4NuNtyA/l0blJBPVJlm0zGYzeJ6HyWSKa/yRRqNBRUUFrFYrTCZT6gpICCFx+N6fnPjaL31B08PvWY//3XQrBU0pkLGuOmlQsLQAoE6ni7hH2mxppQUGpXV7/I8DvvEnPM9DEAS5Syae+wdLR1cdIfMd/TwQkh6iKOLJl07gO6/41rr7+ztr8NV7ttLOEXGYF111jY2NcqDD8zxaWloirpwcLa0U/ATPlgJ8a+tIU9A1Gk1A/vHcnxBCCMlGXq+Ibzx/FM/+7SwAwHDvNnzpzpoMl2phy0jgFDyVnGXZkKncsabVarUR76NWq+WBu/6tSfHcPxE03p4Q+jkgJNUmPV581fImfvXGRSgUwL99fAc+c9uGTBdrwctI56fdbg9Z+VmpVIZtNYonbTgMw4R0wc01z0jy8/MBACMjI3PKh5CFQPo5kH4uCCHJMzbpwZeedeBXb1xEXo4C//HJnRQ0pUlGWpwiDcQNN8MpnrThrpUWV+zu7pY3VY03z/HxcYyPj8uv3W532HS5ublgGAZ9fX0AgOLiYupjJouOKIoYGRlBX18fGIZBbi5NgyYkma6NT6Hlxz14jR9AQV4OvvuwCndvW5npYi0aWbUcQTwzm2JJ6z/gm2VZNDQ0BGwUG2ue7e3t2Lt3b0zlWrVqFQDIwRMhixXDMPLPAyEkOQavT+DzPzyEN88PYVlBHp5+pBbvYStmv5AkTUYCp3AbmrpcrrCz2uJJG4zneXkWnTR7juf5uPNsa2vD7t275ddutxvr1q0Lm1ahUGD16tVYsWIFJicnZy0jIQtRfn4+tTQRkmRX3GP47Pdfx8kr11BenI9nvngbbqoqy3SxFp2MBE7SVhbBwi0mGE9afxzHob6+PmRVZ6VSGXeeBQUFKCgoiHq/YLm5ufTFQQghJCnODozgM9//G865RrGytADPPnobNq8syXSxFqWMDA4P3ouL53nU1tbKLT4cx8kz32ZL68+/q41lWRiNRvm13W6HVqsFwzBx5UkIIYRk0skrw9B+71Wcc41iQ0UxrH93OwVNGZSxMU7SZqt1dXXyhqiS9vZ21NXVobW1dda0drsdNpst4DopQKqtrUVHRwcYhoHT6Qy4LlqehBBCSDZ485yAR354CMLIJLauLMFPHt2FFaW0oGwm0Sa/CYhnhVFCCCEkEa86r6Llxz24PuHBresY/OgLdWCKl2S6WAvSvFg5nBBCCCHh2Y9dwd//jMPElBe311Rg/+dqsbSAvrKzAT0FQgghJIv8+o0L2N31JjxeEQ3bV+L/fmonCvNpslG2oMCJEEIIyRI/+dsZfOPXRyGKwIM716JDezPycjMyj4tEQIETIYQQkgX+3x/fxZMvnQAAPPLeDXj8/huRk0O7T2QbCpwIIYSQDBJFEcYXT+B7f/LtbPHf7t6E3Q1baMuuLEWBEyGEEJIhHq+If/n1Ufzs9bMAgH/+yA1o+QA7y1UkkyhwIoQQQjJg0uPF7q438cKbF6FQAO2fuAmf3LU+08Uis6DAiRBCCEmzsUkP/v6nHF4+3of8XAX+d/OtuO/mNZkuFokBBU6EEEJIGg2PTeLRH/fgUK8Lhfk5+O7Daty1dUWmi0ViRIETIYQQkiau6xN45AeHcOTCEEoK8vD9z9dhV7Uy08UicaDAiRBCCEmDy0NjePj7r+PdvmtQLl2CZ764CzvWlmW6WCROFDgRQgghKXb66nU8/P3XcX5wFKvLCvGTR2/DphXLMl0skgAKnAghhJAUOn7Zjc9+/xD6h8exsaIYzz52G6rKizNdLJIgCpwIIYSQFOHODuILP+zG0Ogktq0qwTOP7sKKksJMF4vMAQVOhBBCSAr89d2raHmmByMTHqjWM/jh53ehrDg/08Uic0SBEyGEEJJkf3j7Mv6/nx3GhMeL929aDtNn1VhaQF+5C0HcT/H06dOwWCyw2WwYHByUjyuVSjQ0NECr1WLjxo3JLCMhhBAybxzgzuOr1rfg8Yq498ZV+I9P3YqCvNxMF4skSVyB0549e6BQKNDU1ISvfvWrIecPHz6M733ve1AoFGhvb09aIQkhhJD54Mevnsbjz78NANCqq7DvwZuQl5uT4VKRZFKIoijGkvDJJ5+ETqdDWdnsa04MDQ1h3759CzZ4crvdKCsrw9DQEEpLSzNdHEIIIRkmiiL+3x/fxbf/cBIA8PnbN+Ib921HTo4iwyUjsYjnez3mwCnZeJ6H1WoFy7LgeR46nQ4MwySUluM4tLS0wOFwBFzHcRzsdjsAoLu7G/v375ev4zgOAKBSqcDzPARBgEqliqnsFDgRQgiRiKKIJ373Dvb/pRcA8E/1m/FlzWYoFBQ0zRfxfK8nPFJtz5492LRpExobG9HY2Ijy8nI0NzfjwQcfjOn6xsZGOdDheR4tLS2wWCxxp5UCKikQ8me329Ha2goA6OjoQH19vZyPyWSC2WwGAGg0moj3JoQQQiLxeEV87cARdPacAwD8y33b8ej7qzNcKpJKCXe81tXV4bHHHoPZbIZarUZnZycGBgZiupbn+YDXLMvKLUPxptVqtWFbijiOC+gq1Gq14DhOzk+tVmNwcBCDg4Ow2WwRW7sIIYSQcCamvPjHnx9GZ8855CiADu3NFDQtAgkHTuXl5QCArq4uNDc3A/DNrIuF3W4PSatUKiO2GsWa1p9KpcL+/fvl14IghJSRYRgKmAghhMRtdMKDlmd68Nsjl5Cfq8D/+7QKTbXrMl0skgYJd9U5nU6Iogin04lbb70Vvb29AcsTRCMFMcFcLtec0gbTarXyvzs7O6HRaORASRAEWK1WAL7xT3q9HizLhs1nfHwc4+Pj8mu32z3rvQkhhCxM7rFJPPqjbnSfHkRhfg5Mn63FB7dUZrpYJE0SDpyamppgNpvhcDgwNDQEk8mE5cuXz6kwkYKkZKS1Wq0Bg8f9B5izLIuGhgY4nc6w17e3t2Pv3r0x348QQsjCdPXaOB75wSG8fdGNksI8/PDzdajdGFtvC1kYYuqqGxoawunTpwOOlZWV4atf/Sqqq6tRVlaGffv24Stf+Yp83u12R2yZYRgmpMXI5XKF7TaLJ20kBoMhZByT/9gpabZe8HgqSVtbG4aGhuQ/586di/nehBBCFoaLwiiaTK/h7YtuLF+2BL/QvYeCpkUopsCprKwMNpsNBw4ciCnT5557Dl1dXRGn9Gk0mrDHa2tr55Q2nI6ODhgMBrAsC0EQIAgCOI5DfX19SNpIY7QKCgpQWloa8IcQQsji0Xv1Ohq/9xr4/utYU1aILv17ceOa2dc1JAtPzF11LS0tOHz4MJqamlBTU4O6ujqwLAuGYSAIAniex6FDh9Db2wu9Xo+HHnooYl7BY4l4nkdtbW3AGksMw4Bl2VnT+hMEIeC41WqFSqWSg6auri7odDqwLAuj0Sins9vt0Gq1NFCcEEJIiGMX3fjcD17H1WsTYJcvxU8euw1rmaJMF4tkSEILYA4NDaGrqwtOp1MOVmpqaqDRaFBdHdtUTJ7nYTKZUFdXh+7ubrS1tcmBS2NjI+rq6uQ1mKKltdvtsNls6OjoQGtrK+rq6qDVasHzPGpqagLuyTCMPIBdWhyTYRg4nc6AQGo2tAAmIYQsDo4zLnzhh91wj01h++pSPPPoLixfVpDpYpEkmxcrh89nFDgRQsjC95dT/dA948DopAe1G8rx/c/XoawoP9PFIimQlpXDCSGEkIXqxaOX8I8/fwMTHi/u2Lwcps+qUbyEvjIJBU6EEEJIAEvPORieewteEfjITavwv5tvRUFebqaLRbIEBU6EEELItB/8Vy+++ZtjAICm2iq0P3gzcnNos14ygwInQgghi54oiviPg6fw7/ZTAIBH31+Nr3/0BigUFDSRQAnvVQcATz75pLxP3cGDB2krEkIIIfOO1yviW795Rw6adjdsoaCJRJRw4LRnzx4wDCMvUFlfXw+73Z60ghFCCCGpNuXxwvDcW/jBX3sBAP96/3b8Y/1mCppIRAl31dXV1eGhhx7CwYMHk1keQgghJC3Gpzz48i/ewO+PXkaOAnhSewseUldlulgkyyXc4tTb64vO/aPy7u7uuZeIEEIISbGRiSk89uMe/P7oZSzJzcF3PqOmoInEJOEWp507d6K2thYVFRWw2Wyw2+1xrb5NCCGEZMLQ6CS++KNuOM4MonhJLsyfrcX7Ny/PdLHIPJFwi1N9fT0sFgt27twJURRhNptx9913J7NshBBCSFL1D4/jk+a/wXFmEKWFefjJo7dR0ETiktQtV9xu96LYgoS2XCGEkOzn8Yo41OtC3/AYVpQUYm15ER75wSH0Xr2O5csK8JNHd+GG1fQ7nKRxyxW32w2XyyW/NhqN+O53vzuXLAkhhJA5e/HoJex94RguDY3Jx3IUgFcE1jJFePax21C9fGkGS0jmq4QDp7/7u7+D3W4HwzDysd7eXgqcCCGEZNSLRy/hS89yCO5O8U4f+P/urqGgiSQs4cCppqYG3/ve9wKO7d+/f84FIoQQQhLl8YrY+8KxkKDJ3/85+C6aatfTViokIQkPDpcWvvTX0NAwp8IQQgghc3Go1xXQPRfOpaExHOp1RU1DSCQJtziVl5fj29/+NliWBcMwEAQBnZ2d6OzsTGb5CCGEkJj1DUcPmuJNR0iwhAOn1tZWCIIQMMbp8OHDySgTIYQQEreRiSm8dPRyTGlXlBSmuDRkoUo4cGpoaEBLS0vAseeee27OBSKEEELi9aeT/fjnXx7B+cHRqOkUAFaVFWJXtTI9BSMLTsJjnGpqamI6RgghhKTK1Wvj+KdfHMYjPziE84OjWMsU4R/uqoECviDJn/T68fu308BwkrCEW5ycTidMJhPq6uoAAKIooqurK+b96nieh9VqBcuy4HkeOp0uoNsvnrQcx6GlpQUOhyPm6+K5PyGEkOwiiiKe4y7g3357DMLIJHIUwOdvr8b/+NAWLC3Iw01ry0LWcVpVVojH79+Oe3eszmDJyXyXcOBkMpmg0Wjgv/B4PIuQNzY2yoEOz/NoaWmBxWKJO60U/HAcF9d18dyfEEJI9jgzcB1f++UR/PXdAQDADatLse/Bm3DLOkZOc++O1WjYvipg5fBd1UpqaSJzlnDgZDQaUV9fH3As3BIF4fA8H/CaZVnY7faE0mq12rivi+f+hBBCssOkx4un/9KLf7efxPiUFwV5OfiyZgseu6Ma+bmhI09ycxR4b01FBkpKFrI5bfIbrLy8PKZr7XY7lMrAgXlKpTJsq1E8aWO9LtE8CSGEZMab5wQ88J9/hfHF4xif8uJ9myrwh//+AXzpzpqwQRMhqRJzi9OBAweg0Wjkze+efvrpgPOCIMBms+Gll16aNS9BEMIe99/3LpG0sV6XaJ6EEELS6/r4FP7XH07iR6/2wisCTHE+vv7R7XhItRYKBXW7kfSLOXB64oknwDAM7r77bgDA9773PTQ3NwekGRgYmFNhIgU0c00b63WRzo2Pj2N8fFx+7Xa7E7o3IYSQ2P3xRB++/sujuCD4lhj4+K1r8PX7tmP5soIMl4wsZjEHTj09PQGv9+/fj507dwYci3WME8MwIa07Lpcr7Ky2eNLGel28eba3t2Pv3r1R70cIISQ5+ofH8c3fHMMLb14EAKxlivA/P7EDd25dkeGSETKHMU7+45mGhobw3HPPxTzGKVKAVVtbO6e0sV4Xb55tbW0YGhqS/5w7dy7qvQkhhMRPFEV09ZyD5qk/4YU3LyJHATz2/mrYdn+AgiaSNRIOnPxnoZWVleGhhx6KeWYay7IBr3meR21trdziw3GcPPNttrT+/Lvaol0XT54AUFBQgNLS0oA/hBBCkqf36nV8ev/raLW+haHRSdy4phS//of34+v3bUfxkoQngBOSdHF9GoeGhtDV1QWFQgGbzRZy3uFw4LHHHospL4vFAoPBgLq6OnR3dwesodTe3o66ujq0trbOmtZut8tlka6TliiIdl20c4QQQtJj0uOF+c88/s/BUxif8qIwPwf/XbMFj76/Gnk0W45kIYUYz6qVAHp7e2E0GtHT0xPS5aXX61FdXZ3UAmYjt9uNsrIyDA0NUesTIYQk6PDZQbQdOILjl4cBAO/ftBxPfOImrK8oznDJyGITz/d63IGT5ODBg2HXcloMKHAihJDEXRufwrdfOoEfv3YaogiUF+fjX+7bjk/spCUGSGbE872ecMfxYg2aCCGEJO7gO1fwL786iovTe8g9uHMt/vmjN6CClhgg8wSNuCOEEJJyfcNj2PvCMfz2rUsAgHXKIvzPj9+ED2ypzHDJCIkPBU6EEEJSRlpi4H/+9h24x6Z8SwzcweLLms00W47MS/SpJYQQkhJ8/zW0HTiC13t9Cw7vWFuKfQ/ejB1ryzJcMkISl9TA6fTp09i4cWMysySEEDLPTEx5Yf6zE//n5XcxMeVFUX4udjdswRfet5GWGCDz3pwCpzfeeCNg6xKTyYTOzs45F4oQQsj8xJ0dRNtzR3Diim+JgTs2+5YYWKekJQbIwpBw4NTU1ARBEAJW2z58+HAyykQIIWSeuTY+hSdfPI5n/nYGoggoly7BN+7bjo/duoaWGCBz5/UAZ14Frl0Blq0ENtwO5ORmpCgJB04NDQ1oaWkJOPbcc8/NuUCEEELmF/uxK/iXXx/FJWmJAdVafP2j26FcuiTDJSMLwrHngRcNgPvizLHSNcC9RmD7A2kvTsKBU01NTUzHCCGELEx97uklBo74lhhYryzGE5+4Ce/fvDzDJSMLxrHnga7PAQhaq9t9yXe86Zm0B08JB05OpxMmkwl1dXUApqecdnWhu7s7aYUjhBCSfbxeEZ095/DE797B8NgUcnMUeOyOany5fguKlmSm+4QsQF6Pr6UpOGgCpo8pgBf3ANs+mtZuu4QDJ5PJBI1GA/8dWxLcvYUQQsg84ZxeYuDQ9BIDN60tQ/uDN9ESAyT5zrwa2D0XQgTcF3zpqu9IW7ESDpyMRmPItivBm/4SQghZGCamvPjen5z4z5ffxYTHt8TA//jQFnz+dlpigKTI8OXY0l27ktpyBEnaXnUvv/wyBEHAzp0751woQggh2cNxZhBtB97CySvXAAAf3FKJf/v4DlpigKTG9avAmz8H/vbd2NIvW5na8gSZ0zpOBw4cAM/zAHzddD09PXjwwQeTUjBCCCGZNTw2iY4XT+DZ131LDFQsXYJv3L8dD9xCSwyQJPN6gd4/AdyPgXd+A3gnp08oEH6M0/S50jW+pQnSKOHAac+ePRAEAS6XCyzLQhAE6PX6ZJaNEEJIhvzh7cv4xq/fxmW3b4kBrboK//yRG1BOSwyQZBq+DBx+Fjj8E2Dw9MzxNTsB1SPAkmLggBRb+AdQ04H7vfvSvp7TnJYjaGlpQW9vLxQKBTZu3IiXX345mWUjhBCSZlfcY/jX59/G74/6xpdsqChG+yduwu2baIkBkiReD/DuQV/r0onfA6LHd7ygFLi5yRcwrb55Jn1eUYR1nPbNr3WcWJbFmTNnUF1djW9/+9v4yle+ksxyEUIISSOvV8TPu89i3++Py0sM6D7A4p/qN6Mwn5YYIEkgnJtuXXoWcJ+fOb7uNl+wdOPHgSVLQ6/b/gA8W+4Fd+Qn6HefRWXpeqhu+ixy8zLT+plw4CQIAliWxeDgIK5evYp77rkHDMPg7rvvTmb5CCGEpNi7fdfQduAtdJ8eBADcUlWG9gdvxvY1pRkuGZn3PJPAyZd8rUunbJC724rKgVs+Bag+B6y4IWoW9jN27Du0D1dGZmbPrXz359izaw80G9I/m18hJmnxpYMHD6K2thZlZQt/LQ+3242ysjIMDQ2htJR+sRBC5qfxKQ+++4oT3/mjExMeL4qX5OIrH9qKR27fiNwcGvxN5sDVC3DPAG/8NHC5gI13AOrPA9vuA/ILZ83GfsaO3a/shhg0QFwxPcbpqTufSkrwFM/3+pxm1T355JPo6elBZ2cnAMQ1y4LneVitVrAsC57nodPpAjYMjjVttHNWq1VeWyo4b47jAAAqlQo8z0MQBKhUqtjfPCGEzGM9p13Yc+AI3u3zLTFw19ZKfOvjO1BVTksMkARNjQPHfwM4fuybISdZWgnc+mlfd1xF7Fuzebwe7Du0LyRoAgARIhRQwHjIiLvW3YXc+bBy+J49e1BTUyMHJvX19Thw4EDMyxE0NjbC4XAA8AU/LS0tsFgscaed7Vwwo9GI1tZWmEwmmM1mAL6FOyPdmxBCFhL32CSMvz+On75+FgCwfNkSPH7/jbjv5tW0xABJTP9JX1fcmz8HRgamDyqAmrsB9SPAlg8DcY5HmvRMwn7WHtA9F0yEiMsjl8H1cahbVTeHNxCfhAOnuro6PPTQQzh48GDc10prP0lYloXdbo87bbRzgiDAYrFAq9XK5zs6OtDa2goAUKvVGBz09edHaukihJCF5MWjl/H480dxxT0OAGiqrcLXPnIDmGJaYoDEaXIUOPZrX+vS2VdnjpesBnZ+Ftj5MFC+IeSyKe8UXGMu9I/0o2+kD/2jM39fGbmC/pF+9I/0Y3B8MOai9I/0J+MdxSzhwKm3txdAYPdcd3d3TC1OdrsdSqUy4JhSqQTHcSHdZdHS9vT0RDzHsmxA0GS1WgNeAxQwEUIWh8tDY3j8+aN46W3f/96rly/F//zEDtxeQ0sMkDhdPuprXXqrExgb8h1T5MC76UMQbtGif9V2XBkbQH9/D/rO/k4OhPpG+9A/0o+BsQF4RW9Mt8pR5MSUtrK4ci7vKG4JB047d+5EbW0tKioqYLPZYLfbYTQaY7pWEISwx10uV1xpo53zD8D8F+r0P2a1WgH4Aj69Xh9w3t/4+DjGx8fl1263O2w6QgjJJl6viJ8eOouO3x/H8PgU8nIU0H+QxX+7m5YYILERRRHua5fQf+QX6Dv2S/QLTvTn5qKvOBf9FevRV7Ic/Tk56B8/iSnHN2PKM1eRi4qiCqwoWoHK4kqsKF6ByqLpv4sr5X+X5Jfg3gP3om+kL+w4JwUUWFm8EqoV6R2fPKe96iwWC0wmE0RRhNlsnvM+dZECoXjTBp8zGAwhQZ3/IHKWZdHQ0ACn0xk2v/b2duzduzfmshFCSKadujKMtgNH0HNmeomBdQz2PXgTblhNM4GJz8jkSGB3mV/LUN/IFfQNn0f/6ADGMd3qkw+gsiIwk/GrAS+VhcqIgVBlcSVWFK2AslAZ82DuPbv2YPcru6GAIiB4kmbVGXYZ0jowHJjjrLrq6mrs27cv7usYhglpXXK5XGG7zqKljSUfQRBgt9tD8uZ5Xm6Vkmbk8TwfttWpra0Nu3fvll+73W6sW7culrdKCCFpNT7lwXf+6MR3XnkXkx4RS5fk4qv3bMVn30tLDCwW457xkEAoMCjyBUvXJ6/HnGepF1hRwKCyvAaVJWuxoniF749fq1FFYQXyc/OT+l40GzR46s6nQtdxKl4Jwy5DRtZxijlwimV18KeffhqPPfbYrHlpNBqYTKaQ47W1tXGlZVl21nx6enrCLkVQX18vDw6XBI+XkhQUFKCgoCDsOUIIyRaHel1oO/AWnP2+L8T6bSvwrY/vwBqmKMMlI8kw6Z3EwOhAmNahwEHWQ+NDMedZnFfsC4ByClF5fQArBs6gcnIclR4PVogKVFbfjcqdX0Bhzd1AhmZdajZocNe6u8D1cegf6UdlcSVUK1Rpb2mSxBw4PfHEE7DZbFHT9PT0xBQ4Bbfq8DyP2tpaOcDhOA4Mw4Bl2ahpw7Ui+ecj5RUcELEsG9B1Z7fbodVqabA4IWReGhqdxL7fH8fPD0lLDBTgXx/Yjo/eREsMzAcerweD44NhAyL/oGhwbDDsWJ9wluQskVuFwnWXVRZXYgXysfTY877B3v3HZy6u3OZbc+mWTwLF4RsU0i03JzetSw5EE3PgVF9fj4qKCqjV6ohp4lmE3GKxwGAwoK6uDt3d3QHrKLW3t6Ourk5eOiBa2mjnJMHBF8MwqK2tRUdHBxiGgdPppHWcCCHzjiiK00sMvI2+Yd8Elk/WrUPbh29AWXFyu0zmI4/Xk9FWClEUMTQ+5JtmP9of2jo0HSQNjA7AI210O4s8RR6WFy+Xg5+AgMiv66x0SWn4oFkUgdN/Af76b8A7LwCe6YlPeUXAjgd9AdO6XRlrXZoP4tpyZWhoCD09PQB86zgFL0v+3HPP4aGHHkpuCbMQbblCCMm0S0Oj+Mav34btmG/cB7t8KZ548Ca8h62Y5crFIez+ZsUrk7K/mSiKuDZ5LXJ32Ui//O9J72RMeSqgQEVRBSqLKrGyeKUvKPJvHZoecF1eWI4cRU78hb7WB7zxM982KC6/iVCrbvJtgXJTI1C48LdMiySe7/WE96o7fPgwXC4XFArFotvYlwInQkimeL0inn39DDpePIFr00sMfOnOGvzDXZtoiYFpc9nfbHRqNHzL0EjfzEDr0X6MTo3GXJ7ygvLQQCgoIKooqkBezpzma4XyegH+Zd8ilSd+B3infMeXLANu0vpal9bspNYlpGmvOv+lB15++WXYbDY0NDQsuiCKEELS5cTlYbQdeAvcWQEAsHM9g30P3oytq0oyW7AsMtv+ZgCw97W9uHT9Eq6OXg2ZeTY8ORzzvUrySyK2DEnji5YXLceS3DSvzO6+CBx+FuB+AgydnTm+tta3BcqNDwIFy9JbpgVkTuHtG2+8AZPJhM7OTrAsi5qaGgqcCCEkycYmPfh/f3wX3/uTE5MeEcsK8tB671Z85rYNtMRAkL9e+GvU/c0AQBgX0NHdEfF8YW5hwEBq/zFEUlC0vGg5ivOzaENkzxTwrs3XunTqJUBacbuwDLi52de6tGpHZsu4QMQdOJ0+fVpe+FKhUOChhx6Cw+FAdXV1KspHCCGL2uv8ANp+eQT89BIDmhtW4lsfvxGryxb3EgOiKKJvpA8nBk/gnYF3cGLwBI67juPc8LmYrt+xfAduqbwl7GyzZfnL5s9sxMEzwOGf+FqYhi/NHF9/u691afvHgPzF/VlJtpgDp6effhomkwk8z6OpqQkWiyVkpfADBw7EtFcdIYSQ6IZGJtH++3fwi25fIFBZUoC9D9yID+9YNX++1JPE4/XgjPsMjruOy39ODJ6Aayx0m65Y7Vbvzprp7XHzTPrGLDl+DDhfBqRuySIlcOunAdXngMqtGS3iQhbz4PCcnBxotVo0NzeDYZiQH9zBwUHs27cP3d3dKSloNqHB4YSQVBFFEb874lti4Oo131TxT+1ajz0f3oayooW/xMDo1ChODZ6aCZBcJ3By8CTGPGMhaXMUOagurca2im3YVr4NW5VbsZnZjE/+9pOz7m/24kMvZmwBxYQNOH1rLr3xM+B6/8zx6g/6Wpe23Qfk0WLNiUjJ4HCdToeOjo6oazV1dnbGXkpCCCEBLgqj+Mavj8L+Th8AgK1civZP3ITbFugSA64xF44PHMfxwZmWpDPuM/BK43P8FOUVYUv5FmxT+gKkG5Q3YBOzCYV5hSFps3F/s4RNjgHHfwM4fuRbf0mybCVw62cA1WcBZfgN6klqxNzidPjw4Vk38Y0lzUJALU6EkGTyeEX85LXTePKlE7g+4UF+rgJfunMT/uGuGhTkzZMv+Ci8ohfnh88HdrW5TqBvtC9semWhEjcob5ADpK3KrVhfsj6uYCfcOk6rildlbH+zuPUd97UuvflzYFTaHkwBbNL4Wpe23AskeV+4xSwt6zgtZhQ4EUKS5fhlN/Y8dwRvnBMAAOoN5Wh/8CZsWTk/lxiY8EzgXeFdnHCdwDuud3DCdQInBk9E3FB2Q+kGbFNu87UklW/FNuU2VBZXJqUsmV45PG4TI8Dbv/QFTOdenzleuhbY+Vlg58MAQxvMp0Ja1nEihBCSuLFJD/7vy6dg+hOPKa9viQHDh7fhM7vWI2eeLDEwND6Ek4MnA2a18QKPKXEqJO2SnCXYXL45oKttc/lmLM1fmrLyZdP+ZlFdessXLL3VBYy7fccUucDWD/uWEdhUD2RzwLfIUOBECCFp9ppzAF/75RH0XvW1wnxo+0p882M7sKosdLxONhBFEZevX5ZbkKTutovXL4ZNX7qkVO5ik1qTNpZtRH4OdS3JxoeBI1ZfwHTx8MxxZoNvVtzOh4GSVZkrH4mIAidCCEkTYWQC7b87js4e3xIDK0oK8M2P3Yh7d6zOcMlmTHon0TvUG9DVdtx1HO4Jd9j0a5et9XWxTc9s26bchlVLF9+SCTERReCCwzfQ++gBQOq+zMkHbrjP17pU/UEgJ4G96EjaUOBECCEpJooifvPWJex94W1cvTYBAPjMbeth+PA2lBZmrhXm+uT1kK62dwffxYR3IiRtniIPNUxNQCvSlvItKCtYvBvDxmx0EHjL4guY+t6eOV6x2TfQ+5ZPAUuXZ6x4JD4UOBFCSApdEEbxL786ipeP+2aQbVqxDO0P3oS6jcq0lUEURVwdvRowq+246zjODp8Nm35p/lJ5oLb0p4apSf+ea/OZKAJnX/MtUnnsV8DU9DpUuQXAjR/3tS5tuJ022J2HKHAihJAU8HhF/PjV0/j2H05gZHqJgX+4axO+dGdqlxjweD04O3w2YNr/O653Iq6yvaJ4RUCAtK18G9aWrEWOgrqLEnJ9AHjzZwD3DHD15MzxFdsB9eeBm5uAovKMFY/MHQVOhBCSZO9ccmPPgSN4c3qJgdoN5dj30E3YtCK5SwyMTY35VtkenAmQTg2ewujUaEjaHEUONpZunJn6P93lpixMX8vXguX1Aqf/7GtdeucFwDvpO55fDOx4EFB9HqiqpdalBYICJ0IISZKxSQ/+4+Ap7P+zb4mBkoI87PnINnyqbu5LDAyODQa0IJ1wnUCvuzfsKtuFuYXYotwib0Nyg/IGbCrfhKI82uw1qYYvA2/81Ne6NHh65vjqW31jl3ZogUJa62+hocCJEEKS4NV3r+JrvzyC0wMjAIB7b1yFvR+7EStL41tiQBRFnL92PmRWm/8K2P6UhcqAtZG2KrdiQ8mG7F7ocT7zeoB3D/qWETjxe0D0+I4vKfF1w6kfAVbfktkykpSiwIkQQuZg8PoEnvjdO7A4zgMAVpYW4Jsf24F7bpx9DZ5JzyScQ86AWW0nXCdwbfJa2PTrS9YHBEjblNtQWVRJU//TYeg8cPhZgPsJ4D4/c7xqly9YuvETwJLULeZJskfGAiee52G1WsGyLHieh06nA8MwcaeNdo7jOACASqUCz/MQBAEqlSru+xNCSDBRFPH8mxfxzReOYeD6BBQK4OHbNuCr924Nu8TA8MSwHBhJA7edQ05MeUNX2c7PyccmZhNuqLhBnt22Vbk1patskzA8k8DJl3ytS+/aAalbtJDxLSGg+hywcntGi0jSL2OBU2NjIxwOBwBfENPS0gKLxRJ32mjnTCYTzGYzAECj0QTkH8/9CSGLQ6x7m50fHMHXf3UUr5zoBwBsXrEM+x66CeoNSnmV7eCp/xeuXQh7z5IlJSEb2laXVdMq25nk6vWNW3rjp8A1vy7SDe/3zYy74X4gPztXeSepl5HAief5gNcsy8Jut8eddrZ81Go1Bgd9u0r7tybFc39CyOJgP2PHvkP7AsYSrSxeiT279kCzQQPAt8TAD//ai//1h5MYnfRgSa6IT99RhFtr3Phj3w/w3RO+FiVhXAh7jzVL14R0ta1eupq62rLB1Dhw/Le+1iX+lZnjxcuBWz/tW3dp+aaMFY9kj4wETna7HUpl4BRYpVIJjuPkrrRY0vb09MyaT7jut3juTwhZ+Oxn7Nj9ym6IEAOO9430Yfcru/HUnU+hXHEj2n5jQ+/wSeRUXEJlWR+8eRfx3JUJPBc0bjtXkQuWYX0Bkl9XG62ynWZeD3DmVV+r0bKVvgUng1sQr57yrej95s+BkYHpgwqg5i5fsLT1I0AeLfxJZmQkcBIEIexxlyt0gbZoaWfLRxAEWK1WAEB3dzf0ej1Ylo3r/gAwPj6O8fFx+bXbHX7PJkLI/OPxerDv0L6QoAmAfGz3K/8DXtELxVKgcHqY0RgAeIHivOKAdZGkVbYLcgvS9yZIqGPPAy8aALffRsSla4B7jcDmBt957sfAmb/OnC9Z7dtcd+fDQPnGtBeZzA9ZNasuUkATb1rpnP+Ab5Zl0dDQAKfTGXee7e3t2Lt3b8xlI4RkN6/oRd9IH84Nn8Ofz/854lR/iQgvFApgCRjsXHkjbl6xXQ6SqkqqaJXtbHPseaDrc0BwMOy+CHR91rcw5aRv2QgocoDNH/K1Lm3+EJCbVV+LJAtl5BPCMExI647L5QrbrRYt7Wz58Dwvd71Js+d4no/r/gDQ1taG3bt3y6/dbjfWrVsXy1slhGTIlHcKl65dwtnhszg3fE7++5z7HM5fO49xz/jsmfh5cN0/Yu/dLSkqLUkar8fX0hSmBVE2OQKUVvlmxe18GChbm7bikfkvI4GTRqOByWQKOV5bWxtXWpZlI57jOA719fXy4HCJUqmM6/4AUFBQgIICanYnJNuMTY3hwrULOOsOCo6Gz+HitYvwSIsThpGnyMOaZWuQIxbj9LXjs96ruqw6mUUnqXLm1cDuuUg+/h2A/WDqy0MWnIwETizLBrzmeR61tbUB6y8xDAOWZaOmDW4h8j/HsiyMRqN8zm63Q6vVznodISS7XJu4FhAQnRs+JwdKs3WxFeQWYF3JOvnP+pL1WFfq+/fqpauRl5OHrp7T2PvGw1DkDYXdSkwUAXGqDGU5W1L0DsmceSaBs38DTv0BOGKN7Zrr/aktE1mwMtaZa7FYYDAYUFdXh+7u7oA1lNrb21FXV4fW1tZZ00Y6xzAMamtr0dHRAYZh4HQ6Y7qOEJJeoihicHxQDobk4Gj4LM4Pn4drLPykDUlJfgmqSqqwvnS9LzDyC5QqiyvDjj8SRRGHzwmwOs7jl9x5TBbej8K1z0IUA/dhFad7e8av3I9VpbT4ZFYZvgycsvmCJf4VYDzOSTvLVqakWGThU4iiGKUjmITjdrtRVlaGoaEhlJbSBo6EzMZ/MLbUYiQFRmeHz+L65PWo1ysLlTNBUalf61HJOjAFTMzrIF1xj+GXhy/A6jiPd/tmtjXJUQA5y46iYOULyMkfmin3ZBnGr9yPypxa/JfhbuTOcaNeMgdeD3C+xxconfoDcPmtwPPFFcCmBmCzBvjD14HhKwg/zknhm1335SOhSxOQRSue73WaPkAISYpJ7yQuX7uMs8NnAwZinxuefTC2AgqsXLoypMVofanv9Vy2Ghmf8uDgO32w9JzDn072wzv9XVqYn4MP71gNrboKQyOT+IefASPD25FT3AtF3jDEqRJ4R6oB5ODxh7dT0JQJ16/6NtQ99QfAeRAYDRyzijUq30y4zR8C1uwEcqZbF3MLpmfVKRAYPE0/w3v3UdBEEkaBEyEkZmNTYzg/fD5kIHY8g7HXla7DumUzQdH6kvVYW7I2qeseiaKIty+6Yek5h1+/eRHCyKR8Tr2hHFp1FT568+qAPeW+m6PC3heO4dJQjXxsdVkhHr9/O+7dsTppZSNReL3A5Td9XXAnXwIuOBAQ+BSWATX1vkBpUz2wbEX4fLY/ADQ9E2Edp32+84QkiLrqEkBddWQhG54YDgiI/LvW+kb6ol5bmFuIqpKqgK604MHYqTRwbVzuijt+eVg+vrK0AA+qqqBVV6GmclnE6z1eEYd6XegbHsOKkkLsqlZSS1OqjQoA/8fp8Uo24HrQZ2zlTb4FKzd/CKiqi2+dpVhWDicE1FVHCIki3GBs/661wfHBqNeX5JeEjDOabTB2Kk16vPjj8T5YHefx8vE+TE33xS3JzUHDjSvRqK7CHZsrYwqAcnMUeG9NRaqLvLiJItB3bHqsks03G86/pXLJMoC9c7pVSTO3NZZycoHqO+ZcZEL8UeBEyALkPxjbf42juQ7GXl+yHmUFZVmxKe3xy25Ye87jV29cwNVrE/Lxm6vK0Kiuwv23rAFTTHuMZYXxa0Dvn2aCJfeFwPPLt860Kq1/L+0NR7IaBU6EzFOT3klcunYppMVICpAmvBMRrw03GFsaczTXwdipJIxM4Pk3L8LScx5HLszMflu+bAk+sXMttOp12LqqJIMlJAB8rUoDzulA6SVfd5nH7/OYVwhUf2CmVUlJi4uS+YMCJ0LmyOP1gOvj0D/Sj8riSqhWqJCbpHEUkQZjn3WfxaXrl2IejC0FSNLfyR6MnUoer4g/n+qHtec8bMeuYMLjBQDk5ShQf8MKNKrX4YNbK5GfS/vFZdTkKHD6rzPLBQz2Bp5nNgBb7vEFSxvfD+QXZaachMwRBU6EzIH9jB37Du0LWMF6ZfFK7Nm1B5oNmpjykAZjy11pfl1r2T4YO5Wc/ddg6TmPXx4+jyvumaUMtq0qQWPtOnz81jWoWDY/gr8Fa/DMTPdb75+BqdGZczn5wMb3zSwXULEJYZdmJ2Semb+/VQnJMPsZO3a/shti0CJ7fSN92P3Kbjx151PQbNBAFEW4xlwhq2LP18HYqeQem8Rv3rwEq+McuLOCfJwpzsfHb10LrboKO9aWZa6Ai93UBHD2tZlg6eqJwPOla2fGKlV/ACigblOy8FDgREgCPF4P9h3aFxI0AZCP7fnLHmx8cyPOXzsf92Bs/661bBmMnSper4hXnQOwOs7hxbcvY2zS1xWXm6PAB7dUolFdhbtvWIGCPJpGnhHui4Fbm0zMrLgORS6w/j0zwdKK7dSqRBY8CpxIXFI5nieTprxTuDZxDcMTw3BPujE8MRzwxz0ReOzitYuzbjA77hnHiUHf/8jn62DsVDo7MAKr4xye4y7ggjDTxbNpxTI0qqvwiZ1rsaK0MIMlXKQ8U8D57plWpStHAs8vrZzufmsA2LuAIiYjxSQkUyhwyhLRApJ4g5VUBTfJGM+TKvEGPsHHRqZGUlKuz2//PD6x+RPzajB2Kl0fn8LvjlyCxXEeh3pnNu8tKczDA7esQWPtOtxStbBb2LLStX7flian/uDb4mRM8DupANaqZ4Kl1bfObG1CyCJEgVMWiBaQAIgrWElVcBPreJ5EZUvgU5xXjJIlJShZUoLSJaXyv4OPXbl+Bd958zuz5veBdR8Ay7BJKdt8JYq+1bgtjvP43ZFLGJnwzQRUKID3b1qOxtp1+ND2lSjMn/8tl/OG1wtcOjzTBXeBQ+DWJoxvmQBpa5OlyzNVUkKyDm25koBkbrkSKSBRQBF2/Ix0DkBIsBItr3DpY+XxenDPc/dE7JpSQIEVxSvwi4/+AiNTI2EDHfn1ZPjgZ9R/Ns4cxBr4BBzL9x1btmRZzLPQpDrpG+kL+5wUUGBl8Uq8+NCLC6IrMxEXhFE85zgPq+M8zrpmAtuNFcXQqqvwoKoKaxiakp42o4OA8+WZrU1GrgaeX3XzzAy4ter4tjYhZJ6jLVfmiVgGGIcjnWt/vR03VNwAj9eDkakRfOtv34qa1+OvPo7+kX544cWUd0r+4xE9M6/F0OOXr1+OOp5HhIgrI1dwl+WueKsgRLoCn7nKzcnFnl17sPuV3SFBrhSoGnYZFl3QNDrhwUtvX4bVcR5/dV6F9N+ypUty8dGbV6Oxdh1qN5RTV1w6iCJw5ejMWKVzrwOid+b8khKg5q6ZRShLaSNjQmJBLU4JSFaLU/flbnzxpS8msWSZN18Cn2QJ1zW6qngVDLsMGR/3lS6iKOLwOQGWnvP4zZsXMTw+JZ97D6tEo3odPnzTKhQvmV/Pdl4aH/bNfDv1B+CUHRi+GHi+8oaZGXDrbqOtTQiZRi1O80T/SP+c88hV5KIorwgixFmnvAPAjoodqCqpQl5OHnIVucjLyZv5o8hDbk5uwOu8nDxcvHYRvzjxi1nz3t+wH+9Z8545v6f5RLNBg7vW3bUgZxrO5op7DAe4C7A6zsHZP/PZW8sUQauuglZdhXXK4gyWcBEQReDqKb+tTV4DvJMz5/OKAPaDM8ESsz5zZSVkgaDAKYMqiyvnnMf+D+1H3aq6mFuvdtfuRt2qurju4fF68Mdzf5x1PE+8+S4UuTm5i+a9j095YD/WB4vjHP58sh/e6Y9DYX4OPrJjNbS1VXhPdQVycqgrLmUmRoDT/zWztYlwJvB8efX01iYNwIb3A/m0pAMhyUSBUwapVqiwsnhlxIAkGilYUa1QxZRXcPp40HiexU0URRy94IbFcQ6/fuMihkZnWjRqN5SjsbYKH7lpNUoK8zNYygXO1TszA+70X4CpsZlzuUt8e7/JW5vUZK6chCwCFDhl0GwBifQ6lmAl1cGNZoMGT935VNilDhbTeJ7F5Oq1cfzq8AVYHedx/PKwfHxVaSEeUq/FQ6oqsJXLMljCBWxqHDjz6kywNHAq8HxpFbDlQzNbmyxZfAuoEpIpGRsczvM8rFYrWJYFz/PQ6XRgGCbutNHOcRwHu90OAOju7sb+/fsDzgGASqUCz/MQBAEqVWytMclcjgCIPsAYCF3HKdrg41QPVl6oK4cTn0mPFy8f74PVcR5/PN6Hqem+uCV5ObjnxlXQqqvw/k3LkUtdcck3dH5mqQD+FcB/zKIiF1j/Xl/325Z7gMpttLUJIUkUz/d6xgIntVoNh8MBwBf8GAwGWCyWuNNGO9fR0YHW1lb5352dnXJavV4Ps9kMANBoNLBYLBEDt2DJDpyA+bFyOFm4jl92w9JzHr86fAED1yfk47esY6BVV+GBm9egrJi64pLKMwmcOzSzXEDf24Hnl60ENjX4gqWau4BC2tyYkFTJ+ll1PM8HvGZZVm4ZiidttHMcx6G9vV0OnLRaLQwGA3ieB8uyUKvVGBz07Uofa8CUStEGGMc7+HgxDVYmiRNGJvDrNy7C4jiHoxfc8vHlywrwoGottOoqbFlJu9sn1bU+4F379NYmLwPjQ34nFUBV3czWJqtupq1NCMlCGQmc7HY7lEplwDGlUgmO40K6y6Kl7enpiZrP/v375eOCIMjnJdkQMBGSTlMeL/5y6iosjnOwH+vDhMe3IGJ+rgL121aisbYKH9xSibxc+sJOCq8HuHh4ZgbcxcOB54uUM1ub1NwNLK3ITDkJITHLSOAkBTHBXC5XyLFoaWfLR6vVysc6Ozuh0WjkYEkQBFitVgC+8U96vR4sG35PsfHxcYyPj8uv3W532HSEZKt3+67B4jiHX3IX0Dc881nevroUjbVV+Nita6FcSoshJsWIa3prkz/4WpdGBgLPr77Vb2sTFUDd6ITMK1k1qy5SIBRv2uBzUpAkjW8CEDCInGVZNDQ0wOl0hs2vvb0de/fujblshGQD99gkXnjzIqyO8zh8VpCPK5cuwcduXQOtugo3rqFxMwG8Ht9stmtXfGOMNtw+e2AjisDlt2bGKp3vDtzapKDU15okbW1SsjK174EQklIZCZwYhglpXXK5XGG7zqKljTUfg8EAm80WcJzneblbUJqRJ41/CtbW1obdu3fLr91uN9atWxfLWyUkrbxeEa86B2BxnMOLRy9jfMr3BZ6bo8BdWyuhVVfh7m0rsSSPuuJCHHseeNEAuP22KSldA9xrBLY/EJh2bChwa5NrlwPPr9geuLVJLg2sJ2ShyEjgpNFoYDKZQo7X1tbGlZZl2Vnz6ejogMFgAMuycksUz/Oor6+XB4dLgsdLSQoKClBQUBD1PRGSSWcGrsPqOI/nHOdxcWhmccTNK5ahsbYKH9+5FitKaAXpiI49D3R9DghePNZ9yXe86cfA8q2+bU1O2YCzrwHemT35kF8MsHf6gqVNDQBD/7EiZKHKSOAU3KrD8zxqa2sD1lhiGAYsy0ZNG9yyFJyP1WqFSqWSg6auri7odDqwLAuj0ShfZ7fbodVqabA4mVeuj0/ht0cuwdpzHodOz7S8lhbm4YFb16BRvQ43V5VBQev9ROf1+Fqawq7eP33M8gVA9ASeqtg0MwNuw/uAPPrPFSGLQUYXwDSZTKirq0N3dzfa2trkwKWxsRF1dXXyUgLR0kY6x/M8amoCtx5gGEZuZZIWx2QYBk6nMyCQmk0q1nEiJBZer4hDp12w9JzH749ewsiE78tcoQDu2FyJRnUVGravRGE+DTiOWe9fgB/fN3u6nPzpDXOnxyrR1iaELBjzYgHM+YwCJ5Ju5wdH8JzjAp7jzuOsa0Q+Xr18KbTqKjyoWovVZUUZLOE8MeIC+k8AV08A/SeB/uO+JQJGQ2f0hvjYd4Cdn0l9GQkhaZf1C2ASQmY3OuHBS29fhsVxDq86ByD9F2dZQR7uu3k1GmuroFpfTl1xwUQRGL7sC4qunvQFSlKwdL0/8XyZ9ckrIyFk3qLAiZAsIooiuLMCrI5z+M2blzA8PjMA+faaCjTWVuGeG1eheAn96MLrAYSzoS1IV08C41HWWitbByzfAlRu9f1RbgIOPAoMX0H4cU4K3+y6Dben6p0QQuYR+u1LSBa4PDSGA4fPw+o4D75/ZnPXqvIiaNVVeEhVhXXK4gyWMIOmJgAXH9qCNHAKmBoLf40iB1CyvplwlVt8m+Iu3+L7U7AsNP2Hn5yeVadAYPA03Zp37z5aqJIQAoACJ0IyZmzSA/s7V2DpOY+/nOqHd/r7uig/Fx++aRUa1etwW7USOTmLpCtu4jpw9ZRfC9L0HxcfOqNNklsALN8c2IK0fKtv4HY8s9y2PwA0PRNhHad9oes4EUIWLQqcCEkjURRx5MIQLD3n8fybFzE0Oimfq9tYjkb1Onzk5tVYVrCAfzRHBwO71aQAaehs5GuWLJsJivxbkMo3Jq8laPsDwLaPxr9yOCFkUVnAv50JSQ+PV8ShXhf6hsewoqQQu6qVyA1qJeofHsev37gAS895nLgyLB9fXVaIh1RV0KqrsHH50nQXPXVE0Rd89B/3BUn+LUjX+yJfV1wxExT5tyCVrvGtuZBqOblA9R2pvw8hZN6iwImQOXjx6CXsfeEYLvmt1r26rBCP378dd29biT+e6IOl5zxeOdGHqem+uIK8HNxz4yo01lbh9prlIUHWvOL1+lqK5BYkKUA6CYwPRb6udG2YFqStwNKK9JWdEEISQIETIQl68eglfOlZLmQe1qWhMfzdsxyWFeThmt+suFvXMWisrcJ9N69BWdE827vMMzkzQNu/BenqKWBqNPw1ihxfV1pIC9IWoKAkrcUnhJBkocCJkAR4vCL2vnAs7OR1ybXxKSxftgQPqaugVVVh88p5ECxMjPhmqwW3ILn4wL3Z/OUu8W0/sny65ahyy/QA7U1APu2PRwhZWChwIiQOg9cncPzyMF56+3JA91wk/958K96/uTINJYvTqOA3MNtvkLZwFuHXMgKQv3QmKPIff1S+EcilXyWEkMWBftsREsbohAcnrwzjxJVhnLg8jJNXhnH88jD6h8fjymfg+kSKShgDUQSu9QUOzJb+fe1K5OuKyv261/xakMqq0jNAmxBCshgFTmRRm/J4cXrgOo5fHsbJy77g6MSVYZx1jSDSLo7rlEWoXFYA7qwwa/4rStLQVeX1AkPnpluNjk8HSNP/HosyQLtkTfgWpKXLKUAihJAIKHAii4Ioirg4NIYTl904cfma7+8r1+Dsu4YJjzfsNcuXLcGWlSXYuqoEW6f/3ryyBMsK8uDxini/8WVcHhqLtEkHVpX5liZIGs8k4OqdbjXyG6R99RQwORLhIsX0AO2tfi1IW32LRhaWJa9shBCySFDgRBYcaRyS1L128oqvNcl/3zd/xUtysWVlCbatKpn5e1UJli+LvPJ0bo4Cj9+/HV96lkMuvKjLOY4VENAHBt3ebfAiB4/fvz2xpQYmR33BUHAL0oAT8E6GvyYn3zcYO7gFqWITkF8UfxkIIYSERYETmbfiHYeUl6NATeUybFkVGCStZYoS2tbk3h2rceCuq1jz2l6sxIB8/AoqcPG9j2PnjtXRMxgb8pva79eCNHgGkQdoF89M7fdvQSrfCOTOsyUOCCFkHqLAiWS9RMchSd1rvgCpFNXLl2JJXk7yCnbseex87Z8gBgU5K+DCytf+CVhXDtxwP3C9P3T/tasngeFLkfMuZAIHZkv/Lq0CcpL4HgghhMSFAieSNRIZh1SxdIlvDFKYcUgp5fX4NoSFiOC2KoUUSD33qK+FaEyInM+yVYELQ0otSEsraYA2IYRkIQqcSFxi2ZctFomOQ5KCI+lPtHFICZscA0ZdwIgrzN+DwMgAcPVdwH0xej6eCd8fKABmfeDMNSlQKmKSX35CCCEpQ4ETidmLRy/hW88fwbprb8oDoc8tuwX/8sBNuDfCeJ7RCQ9O9Q3L3WzSeKS+dIxDEkVg3O0X+AwGBUIDYYIiFzB5Pd6qiaz+G8BtXwKWFCcvT0IIIRmTscCJ53lYrVawLAue56HT6cAwTNxpU3EuEzxTUzj++ksYHbyAovK12HbbPcjNy5v1XLx5JerFo5fwq599D5b8Z7BmiUs+fnFciW/+7HPwfFKPratKAsYhnbwyjDNRxiFVlRfJwdHWVbOMQ/JMAdeCAx+/v0cGZgIf/3ORtgmZjSLHtxBkkRIorgCKldP/nj42MgC89p+z51O1i4ImQghZQBSiGOlrLbXUajUcDgcAXxBjMBhgsVjiTpuKc7Nxu90oKyvD0NAQSktLE3n7AQ6/9OOIM7MARJ61dc8jceUVLn0sPF4R//zEE3hisgMA4N/w453+9Hxp8st4ybsr7PXSOCSp9Wjr8nxsKZnA0qmhoABouhssXHAUbSHH2eQV+gVAUjCkDPpbCo7KfX8XlEUfhO31AP++A3BfQvgZcAqgdA3w5SNATm7iZSeEEJJy8XyvZ6TFief5gNcsy8Jut8edNhXn0u3wSz/GLa/+o++FX0BSKQ6g8tV/hALTX8thzh0GAoKh2fLyTz8+5YEwMonBkQkMXp/+e2TCd+z6BAZHJiFMH7syeB2WyacBBAZN0muvCPxb/g8gevOxnfGiZukE1hWNYWXedSgV11AwKfiConddwFsuYGo08QorLIsQ+EhBT0XouVS0+OTkAvcaga7PATNPadp0Jd27j4ImQghZYDISONntdiiVgSsqK5VKcBwHlUoVc9qenp6knwu+fyp5pqaw5rW9AMIHJFJbYKRgZfVre9FTXY8pjwdjYyPY/trjUdOvf/Wf0XboHCYmx6HwjKMAkyjEBAowiQLFJAowiWJMoByTKFBMH8ckVmAQa3JdiCRHAVTCDXPuk8AwfH9mk5MXIfCZbv0JFxwVlWfXZrLbHwCanvHNrvMfKF66xhc0bX8gc2UjhBCSEhn5FhIEIexxlyv0yzla2lScC2d8fBzj4zODmd1ud9h08Tr++ku4EQMImc8+Ldps9BwFsAoDWPWzG4Muipy+AsNo9zwJ5MD3J8nGllahcOWmmWAnJADy6yYrKF0Y0+23PwBs+yhw5lXfxrnLVgIbbqeWJkIIWaCy6L/vkYOkeNMm+1x7ezv27t0bW8HiMDp4Iel5zmawcB2Klq9H7pIi5C0pgiK/EMgr8I0DypP+XeR3rABe12nk/PWpWfPOf+i7APuBNLyLLJOTC1TfkelSEEIISYOMBE4Mw4S07rhcrrCz2qKlTcW5cNra2rB79275tdvtxrp162Z7m7MqKl875zzeuetp3PDej+LY63/A9oOzD/6+eIcRN77vo3HdI8frwSj3MxSMXA7pBgR83YDjxatQtPF9ceVLCCGEzDcZ2btBo9GEPV5bWxtX2lScC6egoAClpaUBf5Jh22334Aoq5JlpwUQREafye0XgMiqw5X2fAJYUY+t774ual5R+2233xF/QnFwU3f8kFAoFgtfv9gJQKBQouv9J6p4ihBCy4GUkcGJZNuA1z/Oora2VW3w4jpNnvkVLm4pz6ZSblycvORAc8HjFmXla4c4BwKX3Pi6vzzRbXsHp47b9ASianoGidE3AYUXpWiianqGB0IQQQhaFjK3jxPM8TCYT6urq0N3djba2NjlwaWxsRF1dHVpbW2dNm4pzs0nHOk6XUYFLEdZxks7Fuo5TtPRx83poIDQhhJAFJZ7v9YwFTvNZsgMnIPtXDieEEEIWKgqcUiwVgRMhhBBCMiOe7/WMjHEihBBCCJmPKHAihBBCCIkRBU6EEEIIITGiwIkQQgghJEY01SoB0nj6ZO1ZRwghhJDMkb7PY5kvR4FTAoaHhwEgKduuEEIIISQ7DA8Po6ysLGoaWo4gAV6vFxcvXkRJSQkUijCbt8VI2vPu3LlztKxBGlB9pxfVd/pRnacX1Xd6pbK+RVHE8PAw1qxZg5yc6KOYqMUpATk5Oaiqqkpafsnc/47Mjuo7vai+04/qPL2ovtMrVfU9W0uThAaHE0IIIYTEiAInQgghhJAYUeCUQQUFBXj88cdRUFCQ6aIsClTf6UX1nX5U5+lF9Z1e2VLfNDicEEIIISRG1OJECCGEEBIjCpwIIYQQQmJEyxFkAM/zsFqtYFkWPM9Dp9OBYZhMF2ve4zgOdrsdANDd3Y39+/fL9Rqtzul5zJ3BYEBbWxvVd4rZ7XbwPA+WZQEAGo0GANV3qvA8D7vdDqVSCZ7nodVq5bqnOp87juPQ0tICh8MRcDzRuk1bvYsk7VQqlfxvp9MparXaDJZm4TAajQH/9q/naHVOz2NuHA6HCEAcHByUj1F9J5/NZhN1Op0oir56Y1lWPkf1nRr+v1NEUZTrXxSpzufKYrHIvzuCJVq36ap3CpzSzOl0BjxcURRFhmEyVJqFw+FwBNSj0+kUAYhOpzNqndPzmDuLxSKyLCsHTlTfqeFfx6Loq0vpb6rv1AiuO//Aleo8OYIDp0TrNp31TmOc0kxq9vWnVCrBcVyGSrQwqFQq7N+/X34tCAIAX91Gq3N6HnNjtVqh1WoDjlF9Jx/P83C5XGAYBhzHQRAEucuI6jt1lEol1Gq13GXX0NAAgOo8lRKt23TWOwVOaSZ9oQdzuVzpLcgC5P8F3tnZCY1GA4ZhotY5PY/ECYIQdvwA1XfycRwHpVIpj98wm82wWq0AqL5TyWKxAABqampgsVjk3zFU56mTaN2ms95pcHiWiPTQSfwEQYDVag0ZcBguXSLniE9XVxd0Ol3M6am+E+dyucDzvPyfAZ1Oh/LycohRluGj+p47u90Oo9EInueh1+sBACaTKWJ6qvPUSbRuU1Hv1OKUZgzDhETAUhM8SQ6DwQCbzSbXabQ6p+eRGLvdjqamprDnqL6Tj2VZuf4AyH9zHEf1nSI8z6O7uxsajQY6nQ5OpxNdXV3geZ7qPIUSrdt01jsFTmkmTR8OVltbm+aSLEwdHR0wGAxgWRaCIEAQhKh1Ts8jcV1dXTCbzTCbzeB5Hu3t7eA4juo7BaTxTOFQfacGx3Goq6uTX7Msi7a2NvqdkmKJ1m0665266tIs+Bcgz/Oora2l/40kgdVqhUqlkoMmqSspuG796zzaORJZ8C8pvV4PvV4f9gue6nvuWJZFbW2tPK5MWstJpVKFpKX6Tg6VSgWTyRQwdnJgYIDqPAX8x0tG+47Mlt/ltFddBvA8D5PJhLq6OnR3dwcsHEgSw/M8ampqAo4xDIPBwUH5fKQ6p+eROEEQYDabYTAYoNPpoNfroVKpqL5TQBAEGAwGqNVqOBwOuWUVoM93qtjtdrk7FPD9h4HqPDnsdjtsNhs6OjrQ2tqKuro6OUhNtG7TVe8UOBFCCCGExIjGOBFCCCGExIgCJ0IIIYSQGFHgRAghhBASIwqcCCGEEEJiRIETIYQQQkiMKHAihBBCCIkRBU6EEEIIITGiwIkQklXsdjtqamrQ0dEBs9kMtVoNtVotL7RZU1MDjuPmfA8pT0IIiQdtuUIIySqCIMBms8krNNtsNiiVSuh0OgBAc3MzeJ4Pu/VFrDQaDZqbm5NS3nTw35KCEJJZ1OJECMkqLpcr6qa2KpUqZBf0hYzneXR1dWW6GISQaRQ4EUKySlNTU1LSLBRGozHTRSCE+KHAiRCSVWLpkurp6YFarUZHRwcAwGq1oqamBna7HcDMOCm9Xg+r1Qqz2Qy9Xg9BECLmabfb0dHRAavVCoPBEDEdz/MwGAxyvlKeHMfJ13d0dIDneTnf2coqjbey2+0wm81obGyUz/X09MBms8FsNst5EkIyh8Y4EULmneAxSlqtFp2dnQHntVotKioq5B3XrVYrGhsbYbPZQvKTgiGHwwHA110o7druTxAENDQ0wOFwgGEYGAwGmM1maLVaGAyGgLzVajUOHjwYU1k1Gg1sNhssFgsAwGKxgOM4+VxNTY08xosQklkUOBFCFiz/1iutVovGxsawA61NJhOUSqXcCgQA3d3dIfl1dXWBZVn5+ra2NgBAe3t7yGB1lmXR1dUVU8BTUVGBioqKgHIvpnFchMwnFDgRQgh8g841Go38OlzAExx0pXumG82uIyTzaIwTIWReYhgGAwMD8mu73R4yhsn/tdVqhUajCQg8pPPNzc0BrU1SfsG0Wm3IGlJ2uz3s9RzHyYPYYylrLMKViRCSXgpRFMVMF4IQQoLZ7XbwPC/PKjMYDKitrZW7xARBgMFgkAdSm0wmCIIAk8kElmVhMBggCILcPdfd3Y22tjYwDAOO49DS0gIA2L9/P1QqFex2O2w2G+rq6gAgJMjyL1e4dHa7HRzHgWVZdHd3o7m5OaayCoIQUBZpvJVKpZLfu9FohFqthkajibpUAyEk9ShwIoQsSNIq4zSomhCSTNRVRwghhBASIwqcCCELjt1uh91ul6f1E0JIslBXHSGEEEJIjKjFiRBCCCEkRhQ4EUIIIYTEiAInQgghhJAYUeBECCGEEBIjCpwIIYQQQmJEgRMhhBBCSIwocCKEEEIIiREFToQQQgghMaLAiRBCCCEkRv8/weoRRzVGnHYAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -750,9 +750,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACPB0lEQVR4nO3deVhb15k/8K8kdgwIgVm8AcJ2HO8WYMdO0ywWibM4zcSA0zRNO50ams5ad4rCTKcZt78phrRpOtNpIpx2mjRdACVtttYJcpo0G2aR1xBvEpttDDYgxCqQdH9/XO5Fu4SQkATv53l4QFd3OToS0quzvEfAMAwDQgghhBDikTDYBSCEEEIICRcUOBFCCCGEeIkCJ0IIIYQQL1HgRAghhBDiJQqcCCGEEEK8RIETIYQQQoiXKHAihBBCCPESBU6EEEIIIV6iwMlPdDodFAoFkpOTkZub63bf3NxcJCcnQ6FQQK/Xz08BScjQaDQoLCz0+DoJJJVKFbRrzzfuf1MgECA3NxfV1dWorq5GWVkZiouLF1Vd+KqsrAzJyclQq9XBLkrALNTXSU1NDfLy8oJdjIWFIX5VVVXFiMViprW11en9DQ0NTFFREVNaWjrPJXNOqVQ6bCsvL2eKioqCUBqWszItNA0NDYxUKp3VMf6ql/r6eodtg4ODbl+3zgT7dTJbcrnc6f+dVCplqqqqglAi74XC/4RMJmMaGhq82jfY5Z3L9Rfa60Sr1TLl5eWz+t8m7lGLk5+JxWKUlJRAqVQ6vT/UWpgaGhocthUWFmL//v1BKA3LWZkWGolEMutj/FUvYrHY6bbS0lJIpVKvzxPs14m/lJWVQaFQBLsYboXb/0SwyxuI64fr60QqlaKsrMzp/z3xDQVOAVBWVoa6ujqH7Xq9flYfTIFWU1MDnU7nsF0ul6OoqCgIJXJdpsXOn/Wi0WhQXV3tsL2qqmpWb67BfJ34E/eYQ+1LDSfc/ieCXd5AXT+cXycajSakPnvCXUSwC7AQyWQySCQSqFQqmw+WlpYWyOVyl8dVV1dDKpVCp9NBKpXyx+r1etTU1EAqlaKhoQFlZWWQyWQAALVazX8LOnLkCHQ6HXQ6Hfr7+1FVVeXyWmq1Gg0NDdDpdPyHaHl5OTQaDRQKBXQ6HbRarctrDAwMoLW1FUqlEjU1NZBIJKitrUVFRQVfNk+Py9sy2Z8HYMcjWN/nTk1Njc3t0tJSj+f09TFzx0kkEhQXFwNgnz9Pz4d9eazrytt68VS/HLFYjKqqKptzcMH+kSNHbI53VT/evk68eS16utZszjvbugCA1tZWyGQym6DR1fOgUCj4b/Dct3uuDN68zpydz93j8vTcO+Ov94vq6mqIxeJZtY46K69UKuWvqVQqodPp+CC9vr4eEokEu3fvhl6vR319PV9WX+rMVX2pVCpUVlZCp9Ohvr4ecrkcOp0OhYWFkEqlUCqVHgOLcH2d6PV6r78Qccdyz7tUKsXAwADkcrnT/3mFQoGamhpUVVV5/Tjs66WgoGDOz828C3Zf4ULD9TE7G//BjS1xNsapqKjIZuyJXC7n+6TLy8sZrVbL3yeVSpnBwUH+Njdexnr8gVQq9din3dDQwMhkMoftra2tDuNvXF2jvLzc5vHZn8/d45pNmYqKimyurdVqGblc7ubRsaqqqhzKaP08uDunr4+5vr6eAWDznJWXl9s8587q2F1duauX2dSvO3K53OZcnupnNq8TT2Xy9bmwPq+nurAfuzI4OMhUVVUxMpnM5v/J3Xm457uhoYFpbW3lXwueXmfunldPj8vVc++KP94vysvLbcbLDA4OMgC8GuPkrLxKpdLm+XRWX9ZlnkuduaovZ+MKnY1ZWiyvE3ulpaU2j1ur1TqMa3NWh3K53Oa14ku9ePvchAoKnPyMewFptVoGAP+PptVq+TcG+8CJ29f+PNw+RUVFNi9M+w+41tZWh+Pt93FmNoGTq2tYvwlotVpGLBZ7/bi8LVNra6vNeTmeBqtyb/b2b3ZVVVVendOXx+zqMXBl4V4D9nXsqa6cndOX+nXH+g3P2/rx9nXi7rU4l+eCO683dSGXyxmZTMYolUr+xz6g8+Z5sL/f3evM0/m8qa/ZfiDO9f2Cezz2vB0c7u71z6mqqrJ57ViXd6515q6+7CdAOHtdLpbXiaeyMQzjEKy5+sJn/7nn6nE4qxeON89NqKCuugCRSqWQyWSoq6tDaWkpNBqN2y4qsVhsM9VXq9Xy/dX19fUA2CZXrstoYGDA4XrWxGKxwz5z5ewa7qbUe3pc3mppaXHaVMt1Rbjq/mxpaYFYLLZppubqkuvK8HTO2T5mV7hyuBpr4Etd+at+nfG1zrl9rHl6LXp7LXfn9bYu8vPzbboU7HlzHvtyeHqdzfZ8c/3fnev7BVcH/iQWiyGTyfjhC9z5ua4ca748B97WWWlpKWprayGTyaBWq12+jhfD68TZ47F/3mf7OvClXjjePjehgAKnACorK4NSqURpaanbFyA3aNz6hWL9t0ajQWVlJQoLC1FSUhKw/l5nb2Jz4elxeVsmXwdjujsu1AZ4zrauuHqZa/26K8988ce1/FUX3pzH/n/Z0+vM38+Rp/9Tf7xf+DLr0xWuvPv37+c/GPPz81FWVgaVSgW5XG5TJ/6uM+v62r9/P3bv3o2qqirodDqfz7sQXif+Yv24fKkXjr+em/lAs+oCqKSkBBqNBiqVCvn5+S73k8lkTlsJ9Ho99Ho9du/ejYqKCj4A416o/p45otFo/Ho+d4/LWxqNhh8saE+n06GgoMDt9Z1dS6/X+3xOX3HPpf3Aec5s60qj0filfl2Zz/rxx7X8VRe+nMfd6ywQz5G7/1N/vF+4KrOvuPIWFRVBpVJBrVZDJpOhqKgISqXSocXR33VmXV/WE3fmEhyG++vEVdl8uZ51q9dcHoe/npv5QIGTn3GzDQA2spbL5aitrXXb4iSXy5Gfn++Qmbauro5vWbD+wOVeqJ7eQD3hZj0A7Juqqw91X6/h7nHNpkwymQxyudym+df6zdjduYqKimym3uv1etTV1fl8Tm/fWDQajc2+lZWVbvMkeaorZ/XiS/16y9f6ccZTnfnjufBXXfj6mnX1OvPlfPb1NZv/U3+8X0ilUpSWltrM/tLr9Q6vaVdclZcbvsC9R3L/C/bnnGudeaqvsrIyHDhwYE6pNML9deKsbPbPOTd7z9U1uDJY9wrM9f/QH8/NvAj2IKuFQqvVMqWlpQwAprS0lB8EbD1rgpudIRaL+Sy01oPxuJks1sdw28vLy5mGhgamoaGB0Wq1/EDe1tZWpqioiAHAz0LgriGTyTwOsOPOzQ3uc3Y+d9eQy+X8DAlun/Lycq8el7dlsj+PUqm0GaDtzfmqqqqY+vp6r885l8fMDdKsr69nGhoamKqqKpsZIvbHOSuPs7ryVC/e1q8r9rNhZls//ngtzva5sD+vs7rQarVu/+/clcX6PA0NDYxcLmfEYjE/oNf+GE+vM+vzzfZxOXvuXZXdH+8X3GPhziOTybweIO6qvNzEDOvb9vXojzpzV19cfTjbvpheJ+4ej/Vzbv98c+9nXBmLiooYqVTq8f/QU70wjOvnJtQIGIZhghCvEbJgcflKWltbg12UWSkuLsb+/ftD/9seIXOg1+s95tQjrLy8PFRVVc1bXYXLc0NddYQsYlxTO/e3v2dTERIKrLu1uK4xEhrC8bmhwImQRayyshJlZWUA2DEN7iYxEBKuuAzXgH9nDJK5C8fnhrrqCPEjtVrNL/1gv6xJKNLpdFCpVPwSC9RNRxYijUaDlpYWAHCbn4nMqK6uhkKhgFwu538HQjg+NxQ4EUIIIYR4ibrqCCE+KysrQ3Jysk0qAeKaRqNBYWGhT9nnCSGhgQInQojPnK1crlAoUFxcPK/lsF9xPtTOx5HJZPxK9wtBoOqJkFBGgRMhxK8KCwuxf//+eb1mQ0NDSJ/PWrgMgPVGIOuJkFBFa9URQvxqvqcT19TU+HWJEH+fb6GieiKLFQVOhIQwvV6PmpoaSKVSNDQ0oKyszGEpBfvuEuuZKe7uq66u5rvZdDodPwOQS+AplUpRVlbGtypUVVXxx3Gz8OxpNBooFArodDp+aQ3ufABw5MgRfimH/v5+/pzcY1UoFMjLy0Nraytyc3Mhk8mgVCr5VeTtqdVqNDQ0QKfT8UtZWM9kdPUYXXF1PmePi5tGXVVVhdLSUv5xSiQSvqtSr9c7PE5XuLJyi7N6muHoy3M7m8cBuH6+PNU7IQtaMNOWE0LcKy8vt1maQCqV2iwDUVVVZbM8ifUSB+7uKyoqsllKQavVMnK53GZfbrmF1tZW/jz2yzkMDg4yAGzO1draykilUpvH0dDQwEilUpv9pFKpzfIb1ku+DA4OOpzDFW5pCHueHuNsz8c9BmtyudymPurr6xkANs9ZeXk5U1payt92Vj/2y93I5XKburE3l+fWm8fhzfPlqp4IWehojBMhIUyn09nMWJNKpfxtroWmoqKCv7+2tpZfdNPVfRqNBmq12qZLTSqVYmBggD+3WCyGRqOBXC6HTCZDVVUV9Ho9qqurbVo2xGKxV4uJSiQS6HQ6h2tad/WoVCr+XGKx2Okio97y5jHOlrMWNvtM61x9WA+Yr6iocNutxeXSsm5hKi4uhlKpdLr/XJ9bbx6HN88XIYsVddUREsK4LipuaZSBgQF+tfuWlhaIxWKbDz1uf7Va7fI+ruvPHtcdyH1Y2u/DndNX9ucTi8X8YwHYGWfOVnz3RUtLi1ePcT5wz4NGo3FaJq5erQM6rVbrMkhx97x7+9x6w9PzRchiRYETISFMo9GgsrIShYWFKCkpsfkwsw8yrPl6nzVnQVIgZ4SVlZWhsrISR44cQU1NjcsWF0+4Fjd/4cYcOeOP6+j1ekilUpugxl2A44/n1l/HWXNXT4QsJNRVR0iI0uv12L17NyoqKlBaWgqxWMx/wOl0OqctNNxx7u6Ty+VOWzN0Oh0KCgpclkcmkwW8q+bIkSNQq9UoKiryefkFrovRl8fo6nyueNMCo9fr+efEGVf16iqYCcRz64+WJHf1RMhCQoETISGKazmx/sDlPuC4bp+ioiJ+VhPAfnjW1dW5vU8mk0Eul9t0DXEfeu5mckmlUpSWltrM5tLr9dBoND61WNgf09raCrFYjKKiolm1XFiPveECSl8fo6vz2W/nyu+sdcu+PiorK1FaWuryMcnlcuTn50OlUtlsr6urc1m+uTy33j4Oe866UZ3VEyELHa1VR0gI46aFFxYWAmA/rBQKBfbv389/ECoUCqSkpPCDgK1bajzdxy39odVqbaaaV1VVoaWlBRUVFQ6BDDfVnevK48pYVVUFiUSCyspKqFQqfpFjrrvRelt1dTUqKyshlUr5a6hUKhQXF/OpDsRiMcrKyrxqeeLKkJub69Vj9PV8XLDC1UdtbS00Gg2qqqpQVFTET+WvqKjgxzUBsEkHwNVFeXm5TXm4snLdoZ4CPF+eW28eh1Qq9er5cldPhCxkFDgRQoJOr9fjwIEDOHLkCN8lqdPp+OVbwuVDmQucWltbg10UQkiAUFcdISToampqUFZWxrdicdP6q6qqKAghhIQUCpwIIUEnk8mcZgdXq9V8NyUhhIQC6qojhIQEtVptk+vI26VHQgU3Noz7TUuQELIwUeBECCGEEOIl6qojhBBCCPESBU6EEEIIIV4K2pIr3GKUANDc3MxPQ3aGWwSTS7jGZVEmhBBCCJlPQQuc1Go1P3iyuroau3fvdjntuLi4mL9Pp9PhwIEDTmfgOGOxWHD16lUkJCRAIBD4p/CEEEIIWTAYhsHw8DCWLVsGodBDZxwTBK2trYxYLOZva7VaBgCj1Wod9tVqtYxMJrPZZn2sJ93d3QwA+qEf+qEf+qEf+qEftz/d3d0e44qgtDjJZDIcOXKEv82tgeRs5XW1Wu2wXSKRQKPReLU2UkJCAgCgu7sbiYmJcyg1IYQQQhYig8GAlStX8jGDO0HrqrPOzVJbWwu5XO503JKrhSddreZtNBphNBr528PDwwCAxMRECpwIIYQQ4pI3Q3qCPqtOr9dDpVJ5PWbJ+jhnKisrkZSUxP+sXLnSD6UkhBBCCAmBwEmhUKChocHlLDmxWOzQujQwMOBy/4qKCgwNDfE/3d3dfi4xIYQQQharoAZO1dXVUCgUkEql0Ov1TluR5HK502Pz8/Odbo+Ojua75ah7jhBCCCH+FLQxTiqVCjKZjA+a6urqUFpaCoDN8SQWiyGVSvl1qzg6nQ75+fl+z+NkNpsxNTXl13MSEg4iIyMhEomCXQxCCHHKbGHQ1D6AvuEJpCXEYHuOBCJh8NILBWWtOp1Oh9zcXJttYrEYg4ODANi8TQUFBXyeJ51OB6VSiYKCAjQ3N6OiosLrwMlgMCApKQlDQ0NOW58YhsG1a9dcjpkiZDEQi8XIyMigXGeEkJBy9GwPDr3Rhp6hCX5bZlIMntq7Hns2ZvrtOp5iBWsLfpFfT5XR09MDvV6PtLQ0xMXF0QcHWVQYhsHY2Bj6+vogFouRmem/NyJCCJmLo2d78MTLGtgHKdyn9HOPyfwWPM0mcApaV10oMJvNfNCUkpIS7OIQEhSxsbEAgL6+PqSlpVG3HSEk6MwWBofeaHMImgA2U6UAwKE32lC4PmPeu+2CPqsumLgxTXFxcUEuCSHBxf0P0Dg/QkgoaGofsOmes8cA6BmaQFO785yOgbSoAycOdc+RxY7+BwghoaRv2HXQ5Mt+/kSBkx+YLQw+0fbjtZNX8Im2H2ZL4IaNaTQalJWVQSAQQKFQoKamBgqFAsXFxVCr1X67Tk1NDZKTk6HRaPx2zvmWl5cHlUrF366pqUFhYaFPxxJCCJk/aQkxft3Pnxb1GCd/mK8R/xyZTIaqqirU1NTYzC7U6/VITk5Ga2urV2v4eVJaWjrrbO7u6PV6v6eQ8KSqqsom35dcLndIb+HtsYQQQuaPSCiAQAC4mr4mAJCRxKYmmG/U4jQH3Ih/+37Ya0MTeOJlDY6e7Zm3snB5r2pra+ftmt7S6XSoq6ub9+var38olUpdJlT1dCwhhJD5oW7rxeO/PM4HTfYDCbjbT+1dH5R8ThQ4WWEYBmOTJq9+hiem8NTrn7oc8Q8A//l6G4Ynprw6nz+yQgwMDDjkxwoFVVVVwS4CIYSQMPD7pi6U/roFE1MW3HnTUvz0ka3ISLLtjstIivFrKoLZoq46K+NTZqz/3tt+ORcD4JphApv+8x2v9m/7/j2Ii/Lt6dDr9aisrIRcLkdpaSnUajXKysqgUCgAAEqlEq2trdBoNFCr1ZBKpdDpdCgqKrLputJoNKitrUVBQQEA2KwRqFaroVAosH//fpSXl0OlUkGhUECpVPKtONaJSgcGBlBSUoKWlha0tLTw53LVXaZWq6HRaCCVStHc3MwHWxqNBkql0mZsklQqxcDAgNvyaDQaHDhwAGVlZSgtLYVer4dCoYBarYZWq+XP7aw+7I/lHntZWRm/b0NDg1+7MgkhZDFjGAb/8+4lPNNwAQBQnLcCP3x4EyJFQjyweVlIZQ6nwCmM1dTU8EEI96EOsMGJXC5Ha2srlEolJBIJdDodv6AyJy8vD8eOHYNYLIZer0dxcTEfVABAZWUl/7dcLsf+/fv520VFRTbdgnq9HoWFhWhtbYVYLOYHrpeXl0MulyM3N5dfUsceV7bW1lYAbMBWXV2N0tJS7N69G+3t7Xy3WXJyMo4dO+axPDKZzOZ+sVgMpVKJ5ORkm2s6qw/7Y7n6tA6W6uvrodFo/DKejBBCFjOzhcH3XjuL3xzvAgD8w52r8e271/KzfUVCAXbmhk6uRQqcrMRGitD2/Xu82repfQBf/b9mj/v96m8LvBq8Fhs5+6SDpaWlLsfhiMViPqlnUVERFAqFw4e8VCrl1wisq6tzuF8i8X7QXV1dHaRSKV+eiooKr4/lgjvrWYHNzc0Qi8UOY438NWBbqVS6rQ97KSkpNklSxWKxTYscIYSQ2ZuYMuOffncC77T1QiAAvv/gBnx5Z3awi+UWBU5WBAKB191lt61ZisykGFwbmnA6zokb8X/bmqVBa1L0dgaZP9jPmnMV0LmaXSeTyWwGbpeWlqKmpsbPpSSEEBIq9GOT+PqLLWjpHERUhBA/3b8V924K/WWfaHC4j0RCAZ7aux5A8Eb8e2rxsL5///79DnmeNBoNSkpKAIAfF2RNp9PZ3BaLxejv7+dvq9VqfnHkoqIih+Od5ZVyts1Z2dRqNUpKStyWyV15OK4Wb/ZUH+6OJYQQMjdX9eMofv4TtHQOIiEmAr/+2vawCJoAanGakz0bM/HcYzKHPE4ZAczjxA3gBtjZamVlZQ5dTmq12mawtVwu5/M/VVdX8wOw6+vr+dYfqVSK+vp6KBQKFBYW8i1DlZWVqKqqglQqRUlJCT/AGmCDLa7LSyqVQqlUQqFQ8IPLuRaksrIyPveUs3QAXNnsjxWLxU7LxHFXHr1ej9raWkgkEodB8NbXdFYfXB1zx3Ln4q6h0+n4QetSqXReW/YIISTcXegdxuO/aMI1wwQyEmPwq68VYF2G+4V1Q4mA8cc8+BDmbsXjiYkJtLe3IycnBzExvmcfNVuYkBrxv5AVFhaiqqrK50HZycnJGBwc9HOpwp+//hcIIcSdpvYBfP3FZhgmTFidtgQvfm07lotjg10st7GCPWpx8oNQG/G/kPkyILumpgZarRZlZWWUDZwQQoLk6Nlr+Kffn8CkyYK8rGT84iv5EMdFBbtYs0ZjnEjYqKmp4XNFzWb8kVwuR0pKClQqFZRKZeAKSAghxKmXGzvxzd+0YtJkgfzmdPzm6zvCMmgCqKuOuicIAf0vEEICg2EY/KThAv773UsAgC9uX4UffGEDIkSh1W5DXXWEEEIICSqT2YJ//8NZ1LZ0AwD+Rb4G/7x7DZ/YMlxR4EQIIYQQvxqfNOMffqvBsXN9EAqA//qbTfji9lXBLpZfUOBECCGEEL8ZHJ3E115sxokuPaIjhPjZozIUrk8PdrH8hgInQgghhPjF5cExPP7LJuiujyIpNhK//Go+8rK8X74rHFDgRAghhJA5+6zHgK/8sgl9w0YsS4rBS3+3HavTEoJdLL8LrWHtZFZqamqgUChQU1MDlUoFtVrNT9kPVWq1Gnl5efO2Dl1eXh5UKtW8XGuu7MtaU1ODwsJCn44lhJD59Im2HyXPf4K+YSNuSk/Aq9+8dUEGTQC1OPmHxQx0fgyM9AJL0oGsXYBQFNBLFhYWori4GFVVVfw2jUaDwsJCaLXagF57LuRyudNlVwKlqqoqbJJe2pdVLpd7vZxLOD1OQsjC8ubpqzhYewqTZgu250hw5PF8JMVGBrtYAUOB01y1vQ4cVQCGqzPbEpcBe6qA9Q8G5JLV1dUAgNLSUpvtMpnMYVsoSkmZvyzr8xmkzZV9WWezDl44PU5CyMLxq4/acejNNjAMcO/GDPxk/1bERAa24SDYqKtuLtpeB+oetw2aAMDQw25vez0gl62srERZWZnT+4qLiwNyTUIIIYTDMAyqjp7Df77BBk2P78zCzx6VLfigCaDAyRbDAJOj3v1MGIA/lwNwlnh9ettRBbufN+fzMoG7TqeDXq932RJh3b2j0WhQXV0NlUqF6upqfuyT9TgjblxUcXExdDodf4x1YKZWq5Gbm4uysjKoVCrU1NSgrKyMX/aEu7+mpgY1NTXIy8vjt3PXVygUNuXU6/U217bm7DhXZbY+H3cfd5xGo3EYTzXbOnHF1WPTaDR8PXE/Go2GPz/XWqhSqZCbmwu1Ws0fZ11WvV6PsrIy5Obmeiy7/bGzfSyEEDIbU2YLvl1/Cs+9xw4L+c49N+HQgxsWzeL21FVnbWoM+OEyP52MYVuiDq/0bvd/uwpExfvp2myApVAo0NDQwG/Ly8vDsWPH+HFGDQ0NqK+vBwDU19dDpVKhvLwcMpkMubm50Ov1EIvFkMvlKCoqQkpKCoqKigCwH/zFxcVoaGjgz9fa2gqlUgmJRMJfv7W1FQC7OG91dTXKy8sBAM3Nzfzf9fX10Gg0kMlkbo9zVmbuuJqaGshkMr7LamBgADKZDPv3759TnXDnd1a39mUsLS3F7t270d7eDrFYDABITk7mz29dlqKiItTW1vK37csqFouhVCqRnJzssez2x87msRBCyGyMGk345m80eP/CdYiEAlQ+vAkl+V5+zi0QFDiFGa41SafTOf0Q1Ol0kEgkUCqVDvdLpVLU1dWhtLQUKSkpNmONxGKxTSuWWCzGwMAAHwBw2zhFRUUoLi7mgyuxWMyfr6ioCAqFAhKJhG9RAdhgiVNQUOBwLQB84OXsOGdl5o4rKipCXl4epFIp9u/f73Ssly91wp3f/jzOysgFmdb15K8B257Kbs/bx0IIId7qHzHia79qxqnLQ4iJFOLnX5LhrnULJ7GltyhwshYZx7b8eKPzY+A3RZ73+5KKnWXnzbW9VF5eDqVSybf+WNNoNE63e8P6A98X9t2H1i1AgONgdld8OU4ikWBwcBAajQa1tbV8a1igOCvjfKVYIISQ+dbVP4bHf3kcHf1jSI6LxC+/WoBtq5KDXaygoDFO1gQCtrvMm5/cu9jZc3DVpysAEpez+3lzvlksesilILD/oObGHAHA/v37bVpEADaoKikpcXle6+M93a9SqRxaV6xbNJxd3/62M74eV1lZybfCVVVV2ZSLK7cvdTKbMpaUlECj0dhst86pJRaL0d/fb3OMfZ27eg68Kbun548QQnxx9soQHn7uY3T0j2FFcixUT+xatEETQC1OvhOK2JQDdY+DDZ6sB3dPB0F7Dgcsn1NDQwOqq6uhUCiQm5sLiYRNac+1NnEBRHV1NaRSKZqbm1FfXw+xWMy3ygDseBhuUDh3nFqthk6nQ1VVlU0QotVq+Q977nwAGwCo1WpoNBpIpVLI5XL++gqFgu+Wk8vlLq+tVCohlUp9Pi4lJQVqtRoSiQQDAwPYv38/f4xEIkFRUZFPdcKd37o1zVUZxWIx6uvroVAoUFhYyHdjckpKSqBQKPgASC6X811wer3epqzOWu88lZ07ljuXN4+FEELc+fDiDZT9ugWjk2bcnJmIF/+2AGmJMcEuVlAJGMbL6VxhymAwICkpCUNDQ0hMTLS5b2JiAu3t7cjJyUFMjI8vBKd5nJazQVOA8jgFAxeghUOeqFBSWFiIqqoqnwdlJycnY3Bw0M+lcuSX/wVCyILy2skr+Nf6U5gyM9iVm4Lnv5yHxJiFmdjSXaxgj1qc5mr9g8C6++c9czgJD74MyK6pqYFWq0VZWRllAyeEBMULH+jw/976DADwwOZM/LhkC6Ij6HMNoDFO/iEUATm3AZuK2N8LLGjiuuK4Ke3EO9y6gUqlclbjj+RyOVJSUqBSqaBUKgNXQEIIsWOxMPivt9r4oOlvb83Gfz+yjYImK9RVR90ThND/AiEEkyYLvqM6hddOskNPKu5dh9LPSyGYxeSlcEVddYQQQgjx2ojRhG/8uhUfXrqBCKEA1UWb8bBsRbCLFZIocCKEEEIWsevDRvztr5pw9ooBcVEiPP9YHj6/dmmwixWyKHAihBBCFqn2G6P4yi+b0DUwhpT4KPzf3xZg8wpxsIsV0ihwIoQQQhahU916fO1XzegfnURWShxe/NvtyE7135qpCxUFToQQQsgCZ7YwaGofQN/wBNISYjA+acI//O4ExibN2LQ8Cb/8agGWJkQHu5hhgQInQgghZAE7erYHh95oQ8/QhMN9t61JxXOP5WFJNIUD3qI8Tn5gtpjRfK0Zf9L9Cc3XmmG2mAN2LbVajbKyMggEApvlO2ajpqYGycnJ85KTaT6vZS0vLw8qlcqmHIWFhT4dSwgh4ero2R488bLGadAEACX5KylomiWqrTlSd6pxuOkwesd6+W3pcel4cvuTkGfJ/X49uVwOqVSKmpoaVFRU2KyF5q3S0lJ+nblAm89rWauqqrLJus3Vmy/HEkJIODJbGBx6ow2ukjUKAPzwT5/hvk2ZEAkXfq4mf6EWpzlQd6px8L2DNkETAPSN9eHgeweh7px9a5A3uAV9iWvcorscbvFhX44lhJBw1NQ+4LKlCWCXpu8ZmkBT++yXhlrMqMXJCsMwGDeNe7Wv2WJGZVMlGCexPLftcNNh7MjYAZEXS7DERsQuiuyshBBC5kffsOugyZf9CCtogZNGo8GBAwfQ2trqcT8AkMlk0Ol00Ov1Pq8078m4aRw7frvDb+frHevFrt/v8mrf448eR1xknE/XUavVUCgUKCsrg1QqhU6nQ0NDg00XmUajQW1tLQoKCgA4Lj6rVquh0WgglUrR3NyMqqoqqFQqVFZWQq/XQ6vVorq6GkqlEmVlZSgvL3d6jDfXclZ+V+dRKpU2Y5OkUikGBgagUCiwf/9+lJeXQ6VSQaFQQKlUQi6X86+tsrIylJaWQq/X8+PBtFotf261Ws3XV1FREaRSqcOx3tQtIYSEGoZhcObykFf7piXQMkuzEZTASaVS8R9SniiVStTU1ABgu1DoA8uRXC6HXC63+UDnFuSVyWTQ6/UoLi7mgwYAqKys5P/W6XRQKBR8EDswMIDq6mqUl5dDLpdj9+7d0Ov1EIvFaG1thVgsdnlMaWmp22vZc3ee3bt3o729ne82S05OxrFjxyCXy7F//37+HEVFRaitreVvy2Qym/vFYjGUSiWSk5NtrtnQ0MDvk5eXh2PHjjkc66luCSEk1IxPmvHdP57FK5rLbvcTAMhIisH2HBr+MRtBCZyKioq83jcvLw+Dg4MAEPBxJ7ERsTj+6HGv9m3tbcU3j33T434/3/1z5KXneXXtuUhJSUFKSgp/WywW8y09dXV1Dh/y1uOklEolJBKJzQy95uZm/jxHjhxBXl4e6uvr+efA1TFisdjttey5O4/9WCN/DdhWKpUOZZRKpairq0NpaanD/u7qlhBCQkln/yi+8bIGn/UYIBQAX9i6HH88cQUAbAaWcANDntq7ngaGz1JYjHGar4G6AoHA6+6yXct2IT0uHX1jfU7HOQkgQHpcOnYt2+XVGKdgk8lkNoOnrQMILhiqra21CTicHcO1Ds712r6chxBCFjN1Wy++VXcSwxMmpC6Jwn9/cRt25abing3pDnmcMpJi8NTe9dizMTOIJQ5PIT+rTq/XQ6VS8eNYdDpdsIsEABAJRXhy+5MA2CDJGndbsV0RkKBptq0d3Lgfa9b1uH//fod8UNxtvV4PtVqN+vp66HQ6Pr+Rq2M8Xcueq/OUlJS4PY9YLEZ/f7/NMXq93mZ/+9vurqnRaFBSUuLxWEIICTVmC4On3z6Hr7/UguEJE2SrxHjzH2/DrtxUAMCejZn4UHEXfnfgFvz0ka343YFb8KHiLgqafBTyLU6lpaV8i5NUKkVhYaHN+Bl7RqMRRqORv20wGAJWNnmWHM/c8YzTPE6K7YqA5HHighiAHTvEjcfhxvjI5XLodDp+YLVUKoVUKkV9fT0UCgUKCwv58UqVlZWoqqqCTCZDVVUVFAoFP6BbLpejpqYGVVVVKCsrAwAUFBTgwIED0Ol0KC8vd3qMWCx2ey37XEquru3qPJySkhKbBKByuZzvgtPr9aitrYVEIuEHfTu7ZnV1NT8gneuG5Aa2c8dy53JXt4QQEiz9I0b80+9P4KNL7BfJr+7Kxr/ddzOiImzbRURCAXbmpjg7BZklAcMwrnJjBf7iAgE8Xd56EK5er0dycjK0Wq3LD6z//M//xKFDhxy2Dw0NITEx0WbbxMQE2tvbkZOTg5gY32cVmC1maPo0uD52HUvjlkKWJguL7rlwU1hYyAd6vkhOTubHyxFb/vpfIITMH03XIP7+N2xW8LgoEQ7v24wHtywLdrHCksFgQFJSktNYwV5ItzhpNBrs3r3b4cPO3WDjiooKHDx4kL9tMBiwcuXKgJURYLvtCjIKAnoNMvsuSoBdakWr1aKsrIyygRNCFgSGYfDrxk784M02TJkZSJfG4/nH8rA2PSHYRVsUgj7GyX4siUaj4ceySKVSPqcPwHZTFRUVuR0sHh0djcTERJsfEv5qamqg0+mgVCpnNf5ILpcjJSUFKpUKSqUycAUkhJB5MDZpwrdqT+J7r32KKTOD+zZl4LW/v5WCpnkUlK46tVqNhoYGPldQQUEBn6KguLgYBQUFKC8vBzCTqFAsFkOr1doEUt5w1/xG3ROEsOh/gZDQp7s+gide1uB87zBEQgEq7l2Hv/tcDq064Qez6aoL6hin+UCBEyGe0f8CIaHt6Nke/Gv9aYwYTViaEI3/fVRGiSv9aMGMcZovCzx2JMQj+h8gJDSZzBY8/fZ5KP/KDmHZni3Bzx7dhrRE+oITLIs6cIqMjAQAjI2NITZ2bpm7CQlnY2NjAGb+Jwghwdc3PIF//O0JHG9nJ8YcuC0H5XvWIVIU9OHJi9qiDpxEIhHEYjH6+voAAHFxcdRXTBYVhmEwNjaGvr4+iMViiESURoOQUNDSMYBv/kaDvmEj4qNEeLp4C+7bRAkrQ8GiDpwAICMjAwD44ImQxUgsFvP/C4SQ4GEYBr/8qAOVf/oMJguDNWlL8PyX85C7dEmwi0amLfrASSAQIDMzE2lpaZiamgp2cQiZd5GRkdTSREgIGDGaoHjlNN463QMA2LtlGQ4/vAnx0Yv+ozqk0LMxTSQS0YcHIYSQoLjUN4xvvKzBpb4RRAgF+O79N+Mru7Jp+EgIosBpgZqcnMQf/vAHbN26FRkZGfTPRxYUhmEwPDyMZcuWQSikgbIkvL15+ioUqtMYnTQjPTEaP/+SDHlZlGogVFHgtEB1dnbi+PHjeOSRR4JdFEICpru7GytWrAh2MQjxyZTZgso/ncMvP2oHAOyUpuB/Ht2G1CXRQS4ZcYcCpwDR6XRQqVSQSqXQ6XQoLS11uVSMu325zOkA0NzcjCNHjrhdcobT0dHBr+nX3d1NS8+QBYVbgzIhgZaZIOGp1zCBv/+NBi2d7Fqs37g9F/9691pEUKqBkEeBU4AUFxejtbUVABsYHThwAPX19bPeV61W88vPVFdXY/fu3fy+7nR0dCArKwsAaM0+smBRFzQJR426fvzDb0/gxogRCdER+FHJFtyzgWa1hgsKbQOAW6SYI5VK+Vaj2eyr0WhQWVnJ31dUVGSzCLIrRqMRV69exapVq3wpPiEBY7Yw+ETbj9dOXsEn2n6YLZSxnCweDMOg5q9afOmF47gxYsS6jAS8/o+fo6ApzFCLUwCo1Wq+m4wjkUig0Wggk8lmte+RI0f47Xq9nr/fna6uLjAMw7c4ERIKjp7twaE32tAzNMFvy0yKwVN712PPRkrsRxa24YkpfKf+NI5+eg0A8PC25fivv9mE2CiazR1uqMUpALgAx97AwMCs9y0qKuK31dbWQi6XuxzjZDQaYTAY8Omnn1JuHhJSjp7twRMva2yCJgC4NjSBJ17W4OjZniCVjJDAO39tGA/+7CMc/fQaIkUC/OChjfhxyRYKmsIUtTjNI1dBkjf76vV6qFQqt+ObKisrcejQIf72d7/73dkWkRC/M1sYHHqjDc465RgAAgCH3mhD4foMiIQ0ZoksLK+dvIInXzmD8SkzliXF4OeP5WHrSnGwi0XmgFqcAkAsFju0Lg0MDDhtKfJ2X4VCgYaGBrcz6ioqKtDX14eKigq899576O7u9vUhEOI3Te0DDi1N1hgAPUMTaGp3bJElJFxNmix46rWz+Offn8T4lBm3rUnFm/90GwVNC8CsW5w6OjpQX1+PhoYGDA4O8tslEgkKCwtRVFSE7Oxsf5Yx7MjlciiVSoft+fn5Pu1bXV0NhUIBqVTKt0Q5C6Cio6MxNDSEqKgobNiwAVFRUb4/CEL8pG/YddDky36EhLqeoXF88zcanOjSAwD+8a7V+Bf5WmpRXSBmFTg9+eSTEAgEKCkpwXe+8x2H+0+cOIHnn38eAoHAZjbYYiOVSm1u63Q65Ofn2+RmEovFkEqlHvdVqVSQyWR80FRXV4fS0lKX1+7o6MCSJUuQkpKC4eFhvz4uQnwR5+U4jrSEmACXhJDA++jSDfzj705gYHQSiTERePaRrbhrXXqwi0X8yOvA6emnn0ZFRQWSkpJc7rNt2zZs27YNQ0NDqKioWNTBU319PRQKBQoKCtDc3GyTw6myshIFBQV8fiZX++p0OhQXF9ucVywWewycsrNpfSMSGrTXR/D/3mxzu48AQEZSDLbn0BITJHxZLAyee1+LH79zHhYGWJ+ZiOcfy8OqlLhgF434mYBhmAWdSMVgMCApKQlDQ0MLPgnk5OQkDh8+jPvuuw/5+fmL6rGT0PPhxRv45m9aYZgwQRIXhYGxSQgAm0HiXHj/3GOyWaUkoNc2CSVD41P4dt0pqD/rBQAU563ADx7aiJhImjUXLmbznuLz4PAnn3wSL7zwAoaGhnD33Xdj//79ePXVV309HfGDrq4uWCyWRT/GjATfrxs78ZX/a4JhwoS8rGS8c/DzeP4xGTKSbLvjMpJiZh00ERJK2q4a8ODPPoT6s15ERQhx+OFNeLp4CwVNC5jP6QgKCgqwb98+PP3008jLy0NlZaVNskYy/6zHNxESDCazBT94sw0vftIJgE3yV7lvE6IjRNizMROF6zPQ1D6AvuEJpCWw3XM0YJaEA7OFcXjt/uHEFfz7H87AaLJgRXIsnvtSHjatcD2chSwMPgdOycnJAIC6ujo+YPKU0ZoEVmdnJ41vIkEzND6Ff/itBh9cvAEAKN9zE564Pdfm9SgSCrAzlwJ7El6cZb2PixJhbNIMALjjpqV4dv9WiONoJvNi4HPgpNVqwTAMtFottm7divb2dpv0BGR+TU5O4sqVK9i8eXOwi0IWoY4bo/i7F5uhvT6K2EgRfrJ/K/ZspPW3SPjjst7bDwbmgqYHNmfivx/ZBiG1nC4aPo9xKikpgUajQWtrK4aGhqBUKmeVGZv4V3d3N41vIkHRqOvHQz//CNrro8hMikH9N3ZS0EQWBHdZ7zmtnYNu7ycLj1ctTkNDQxgcHLT5UE5KSrLJ5XT48GGbYwwGAwDQjJd50tHRgfj4eKSmpga7KGQRqW3uwr//4SxMFgZbVopx5Mt5SEukfExkYfCU9R6YyXpPXdCLh1ctTklJSWhoaPB61twrr7yCuro6CprmEeVvIvPJbGHw/95sg+KVMzBZGOzdsgy1pbdQ0EQWFMp6T5zxeozTgQMHcOLECZSUlCA3NxcFBQWQSqUQi8XQ6/XQ6XRoampCe3s7ysrKsG/fvkCWm1ih8U1kPg1PTOGffncCfzl/HQDwLfla/NPu1RS0kwXFZLbgo+mJDp5Q1vvFZVaDw7dt24a6ujoMDQ2hrq4OTU1N0Ov1EIvFyM3NRVlZGXJycgJVVuICjW8i86V7YAxff7EF53uHER0hxI9LtuCBzcuCXSxC/Krjxii+VXeSX2vOFcp6vzj5NKsuKSkJBw4c8HdZiI86OztpfBMJuJaOAZT9uhX9o5NIS4jGkcfzsYVWeicLCMMw+F1TN37wZhvGp8xIiI5AUf5y/OojNi+Zs6z3T+1dT7nIFhmf0xGQ0NHR0YGsrCzqKiEB80rrZVS8egaTZgs2Lk/EC48XOGQBJySc9Q1P4MlXzuDdc30AgJ3SFPyoZAuWi2OxIyfFIY9TRlIMntq7nrLeL0IUOIU5bnzTPffcE+yikAXIYmHw9Dvn8dx7WgDAng0ZeGb/FsRF0VsHWTiOnr2Gf/vDGQyMTiJKJET5npvwtVtz+NxMlPWeWKN3vzB3+fJlmM1mGt9E/G7UaMK3ak/inTZ24dJ/uHM1DhaupUR/ZMEYnpjC999oQ33rZQDAzZmJeHb/VtyUkeCwL2W9JxwKnMJcR0cH4uLisHTp0mAXhSwgV/Xj+LsXW/BZjwFREUJU79uMh7YtD3axCPGbpvYBHKw7icuD4xAIgLLP5+JbhWsQHUGL8xL35hQ4Pf3002hpaUFtbS2OHTuGgoICyt00zyh/E/G3E12DOPBSK26MGJG6JArKL+cjLys52MUixC+MJjOeabiAmr/qwDDAiuRYPFOylWbGEa/5vOTKk08+CbFYDLlcDgDYvXs31Gq13wpGPJuamsKVK1eom474zWsnr2B/TSNujBixLiMBf/z7WyloIgvGuWsGfOFnH0H5Phs0leSvwJ//+TYKmsis+NziVFBQgH379uHYsWP+LA+ZBRrfRPzFYmHw7LGL+O9jFwEA8pvT8Owj27AkmnrzSfizWBj84sN2PP32eUyaLZDER6Hy4U24ZwOtqUhmz+d3xfb2dgCw6SJqbm7Gww8/PPdSEa/Q+CbiD+OTZvxr/Sm8daYHAFD2eSnK96yjGUNkQbiiH8e3606iUTcAANi9Lg2H923G0oToIJeMhCufA6dt27YhPz8fKSkpaGhogFqtRlVVlT/LRjyg/E1krnoNEzjwUgtOXx5CpEiA//qbTSjJXxnsYhEyZwzD4A8nruCp1z7FsNGEuCgR/uOB9XikYCW9Z5I58Tlw2r17N+rr66FUKsEwDGpqarBt2zZ/lo24MTU1hcuXL+Puu+8OdlFImDpzeQhff6kZvQYjkuMiofxyPo31IAvC4Ogk/v2PZ/CnM9cAANtWifGTkq3ITo0PcsnIQjCnAQw5OTk4fPgwf9tgMNCsunlC45vIXPzpTA8O1p3ExJQFa9KW4BdfKcCqlLhgF4uQOXvvfB/KVafRN2xEhFCAf5GvwTduz0WEyOe5UITYmFPgZDAYMDAwwN+uqqrCc889N+dCEc86OjoQGxuLtLS0YBeFhBGGYfCzdy/hxw0XAAC3r12K/3l0GxJjIoNcMkLmZmzShMo/ncOvG9l15XKXxuPZ/duwaUVSkEtGFhqfA6dvfOMbUKvVEIvF/Lb29nYKnOYJ5W8iszUxZYbildN47eRVAMDXbs3Bv923jr6Jk7B3sluPg7UnobsxCgD46q5sPHnvOsREUjJL4n8+B065ubl4/vnnbbYdOXJkzgUinplMJly5coXPoUWIJ9eHjSj9dQtOdOkRIRTg0Bc24Es7soJdLELmZMpswf/+5RL+591LMFsYZCTG4OnizbhtDc00JoHjc+Dk7EO7sLBwToUh3rl8+TJMJhONbyJeabtqwNdfbMbVoQkkxUbiuS/JsGt1arCLRcic6K6P4Ft1p3CqWw8A2LtlGf7fFzYiKY66nUlg+Rw4JScn40c/+hGkUinEYjH0ej1qa2tRW1vrz/IRJ7jxTenp6cEuCgkRZgvjdOX2hrZe/PPvT2Bs0gxpajx+8dUC5NDMIhLGGIbBy8e78F9vtWFiyoLEmAj84KGN+MJWWkuRzA+fA6fy8nLo9XqbMU4nTpzwR5mIB5S/iVg7erYHh95oQ8/QBL8tIykGO6Up+OPJK2AY4NbVKfj5o3n0bZyEtT7DBL6jOo33L1wHwL6uny7agmXi2CCXjCwmPgdOhYWFOHDggM22V155Zc4FIu6ZTCZcvnyZxjcRAGzQ9MTLGjB2268NTeAPJ64AAB67ZRWe2rsBkTQInISxP5/pQcUfzkA/NoXoCCEUe9bhq7uyIaQM92SezWlwuDfbXNFoNDhw4ABaW1vd7qfT6aBSqSCVSqHT6VBaWmrTyhWqZlNuT/ta1xWNbyIcs4XBoTfaHIIma4kxETj04EZaPoWELcPEFP7ztU/x6vQXgQ3LEvHs/q1Yk54Q5JKRxcrnwEmr1UKpVKKgoAAA2+9cV1eH5uZmj8dyQYJGo/G4b3FxMR9c6XQ6HDhwAPX19b4We97Mptzu9rWvKxrfRDhN7QM23XPOGCZMaGofwM7clHkqFSH+84m2H/9afwpX9OMQCoBv3rEa/7R7DaIiqPWUBI/PgZNSqYRcLgfDzHzftf7bnaKiIq/20+l0NrelUinUarX3hQyS2ZTb0772ddXZ2YlVq1bR+CaCvmH3QdNs9yMkVExMmfHjd87jhQ/bwTDAKkkcfrJ/C/KyaEkgEnw+B05VVVXYvXu3zTZ/j7tRq9WQSGz/USQSCTQaDWQymV+v5U+zKfds9jWZTOju7naod7I4iWO9G+idlhAT4JIQ4j+f9RjwrdqTOHdtGADwxe0r8d371yM+ek4LXRDiN3Na5NdecnLynApjT6/XO91uvcyLPaPRCKPRyN82GAx+LZM3ZlPu2ex75coVt+ObQuGxk8BjGAavn7qKyj995nY/AdjZdbRwLwkHZguDIx/o8ON3zmPKzCB1SRQOP7wZ8vU0LIGEFq8Dp1dffRVyuZxfxPeFF16wuV+v16OhoQFvv/22f0vohKtgAwAqKytx6NChgJfBF+7K7c2+HR0diImJcTm+KZQfO/EPTdcgfvBmG0506QEAkrgoDIxNQgDYDBLnOnKf2rueBoaTkNc9MIZv151CUwf7hbFwfToqH96E1CXRQS4ZIY68HmH3wx/+EC0tLfzt559/HoODg/wPwzDo7+/3a+HEYrFDy8vAwIDbWXUVFRUYGhrif7q7u/1aJm/Mptyz2ZfL3yQUOn/aQuGxk8C4qh/Hv/z+BB7++cc40aVHXJQI37nnJnxccReef0yGjCTb7riMpBg895gMezZmBqnELljMQPsHwBkV+9tiDnaJyDwyWxh8ou3Hayev4BNtP0xmC+pbunHvTz9AU8cA4qNEqN63GTVfzqOgiYQsr1ucrIMmgF2Xbtu2bTbb/D3GSS6XQ6lUOmzPz893eUx0dDSio4P7Dzebcs9mX0/jm0LhsRP/Gps0Qfm+Dsq/ajExZYFAABTJVuA799yEtEQ2WNqzMROF6zOcZg4PKW2vA0cVgOHqzLbEZcCeKmD9g8ErF5kXzhK1RkcIYTRZAAD5Wcl4pmQrVqXEBauIhHhlTkuucIaGhqBWq5GXlzfr89hnH9doNBCLxZBKpZBKpTb76nQ65Ofnh3weJ0/l9vUxjoyMUP6mRcJiYfDaqSuo+vN5XDOwHzTbsyX43t712Lg8yWF/kVAQ2ikH2l4H6h4H7LNOGXrY7SUvUfC0gLlK1MoFTQ9tXYYfl2wNvWCfECd8ToZhPWU+KSkJ+/bt8zpVgFqthkKhAMCOy1GpVPx99rfr6+uhUCigUqmgVCrDIocT4L7cs3mM1nX1ySef4IMPPpi/B0GCorVzEH/z3Mf4Vu0pXDNMYEVyLJ77kgy1Zbc4DZpCnsXMtjQ5TdU5ve3ok9Rtt0B5k6j1eLvrCT+EhBoB423yJbAtS3V1dRAIBGhoaEBhYaHN/a2trXjuuef8Xsi5MBgMSEpKwtDQED+wPRy99NJLiIiIwKOPPur1MQvlsS8WlwfHUHX0PN44xXZlxUeJ8A93rcHf3pqNmEhRkEs3B+0fAC8+4Hm/r7wJ5Nzm1SnptR0+PtH244tHGj3u97sDt4R2qylZ0GbznjKrrrqkpCTI5XJUVVVBq9UiJyfH5v7y8vLZl5Z4ZDab0d3djTvvvDPYRSEBMGo04fn3taj5qw5GEzuOaX/+Shy8e+3CyMF01cvFv0d6A1sOEhRNHd5NGqJErcQlixno/Jh9j1iSDmTtAoTB+zI56zFOOTk5eP7553Hs2DFKxDhPrly5gqmpKRrftMBYLAxePXEF1UfPoW+Yzb+1I4cdx7RhWRh2yVkbugKcfQU4UwdcO+PdMUsoX89C0muYQNWfz/FrzHmyIL4kEP8LwUklfk2ASQKjo6MD0dHRyMjICHZRiJ80dwzg+2+04cyVIQDskhL/dt/NuGdDevgupzM+yL7JnakHOj4EP35JIAJEEYDJCDMATUw0rotEWGo2QzZhhAgC9o0wa1cwS0/8ZGLKjF982I7//csljE2y49ZiI0UYn3I+ho0StRKXQnRSCeWwDwOe8jeR8NE9MIbDR8/hrdM9AIAl0RH4x7tW46u3ZiM6IgzHMU2NAxeOsnmZLr4DmCdn7lu1C9hUBGz4G6DjQ6jfLMPhFDF6I2bedtJNJjzZr4d8z+GgNr2TuWMYBu+09eK/3voMXQNjAADZKjGe2rsBPUPjeOJldqFyStRKvOJxUomAnVSy7v55f++gwCnE0fimhWHEaMLP/3IJL3zYjkmTBUIB8Mj2VThYuDb8Ev1ZzED7+8DpeuCzN4DJ4Zn70jawwdKmIkC8it+sjo/DwfRUh4XA+0QiHExPxTPxcfBvFjgyny70DuP7b7Thw0s3AADpidF48t51eGjrcggEAmxZKcZzj8kc8jhlJMXgqb3rQy9RKwm+zo9tu+ccMIDhCrufl5NK/IUCpxB39epVTE1NISsrK9hFIT4wWxi80noZ1W+fx40RdhzTrtwU/McD63FzZhjNBmMY4KqGDZbOvgKM9s3cl7RyOlgqBtI3OBxqtphxuOkw+73RrhuSEQgggABVTVW4c+WdEFGrU1jRj03iJw0X8PLxLpgtDKIihDhwWw6+ecdqh0V5wyZRKwkN3k4WCcKkEr8GTh0dHTSA2c+48U2ZmfSNLNw06vrxgzfb8OlVdrHl7JQ4/Pv96yG/OS18xjHduMSOWTpTDwxoZ7bHJrNdcJtKgJU7ALtu5NGpUXQYOtAx1IGPrnyE3jHXb24MGFwbuwZNnwYFGQWBeiTEj0xmC37X3I1n3jmPwbEpAMCeDRn4t/tudpv5O+QTtZLgYxiguwlo/T/v9g/CpJI5BU4nT560WWdNqVSitrZ2zoUiMzo6OrBq1Soa3xRGuvrHUPnnz/Dns9cAAAkxEfjn3Wvw+M5sREWEwfM4fA04+yo7I846lUBELDueYFMxkHsXLKII9Iz2oKPnE7QPtfOBUvtQO/rG+1yf34XrY9f9+CBIoHysvYHvv9GGc9fYLtqb0hPwvb3rcevq1CCXjIQ1kxH49A9A43NAz0kvDgjepBKfA6eSkhKH5VJOnPAyXwvxitlsRldXF+64445gF4V4YXhiCv/7Fy1++WE7Js3sOKZHd6zCt+RrkRLgcUxmixmaPg2uj13H0rilkKXJZtftNTHEjlc6Uw+0/xVg2KUwIBBhVHoHOlbfBp1kJTrGetDR04CO80fQaeiE0Wx0eUpJjATZidlYErkEf73yV49FWBq31PvyknnXPTCGH/5p5gtBUmwkvn33Wjy6fRUiRGHwhYCEpuFeoOWX7A83BEAUDWwuBpbeDLzz3ekdnUwrCNKkEp8Dp8LCQhw4cMBm2yuvvDLnApEZ3Pgm6v4MbWYLg/qWbvzonfO4McLOKrttTSq+e/963JSREPDrqzvVONx02KY7LD0uHU9ufxLyLDdDrk1Gdibc6TqYL7yNHoEJ7ZGR6EiIR4d4GToSUtBuGcf1iYvAhYtOTxEhjMCqhFXIScpBdmI2spOy+b+TotlcVGaLGfe8cg/6xvrAOJkhI4AA6XHpkKXJ5lYRJCDGJk147j0tlH/V8RMbHrslC9+Sr0VyfFSwi0fC1ZVWoPF5tpXJwnb3ImEZUPB3QN7fAvHTXbriVS7yOB0OvzxOubm5Xm0jvuvo6EBUVBSNbwoys4VxOaD1Y+0N/ODNz/BZDzuOSZoaj+8+cDPuvGl+xjGpO9U4+N5Bh4Ckb6wPB987iGfueMYmeBqZGELHhdfRfv51tPeeRIfQgvbICHStSMOkzSDdcWDsMn9LEiPhA6KcpBz+72VLliFC6P5tRCQU4cntT+LgewchgMCmrILpb46K7QoaGB5iGIbB66euovJP5/iFpnflpuB7e9djXUYYTWwgocM8BbS9BhxXApebZrav3AHsKANufhAQRdoes/5BdohAOGcO52i1WiiVShQUsIM5GYZBXV0dmpub/Va4xY7yNwXf0bM9DlOoM5Ni8MTtufjw0g2808a28iTGROBf5Gvx2C1Z8zaOaWa2mmMrDrftex99Dx9d+QidNz5F+5AONyxWXWt2mZojhZHISsxyaDnKTspGYtTcPijlWXI8c8czTlvGFNsV7lvGyLw7c3kIh974FC2dgwCAFcmx+O79N+OeDRnhM7GBhI7RG+xg7+ZfAMNsDjsII4GN+9iAabmH1mahaN5TDrjjc+CkVCohl8tt8rLMYr1g4gGXv+nzn/98sIuyaB0924MnXtY4hCU9QxP43uufAmBnCT22YxX+ZR67LUanRtE72ov3L7/vdrYaAAxPDUN1UWWzLdVsQXa0BDlLNyF72Q5ki3OQk5iDZUuWBbTVR54lx50r75zbWCwSUNeHjfjR2+dR19oNhmEzfv/DXavxd5/LCe+Fpklw9JxmW5fO1APceMj4tJnuuITwXGbJ58CpqqrKYdkVuZy+NfpLT08PJicnaXxTkJgtDA690TYdNFkgimuHIGIYjCkB5rEcAEJERwjx2t/finV+ysfEMAyGp4bRO9qL3rHemd/Tf18bvYbesV6MTI3M6rx3jo6hcMKE7GUFyN74RSSsewCICE7STZFQRCkHQtCkyYIXP+7Afx+7iGGjCQDw0NZlePLem5GRRGvIkVkwm4Dzb7EBU+dHM9uXbQN2PAFseCho7z/+4re16t59913o9Xps27ZtzoUiNL4p2JraB9AzNIGIhLOITn8Dwsgh/j7LVBKMvXthHN7I57DxhGEYDBmH0Ds2EwBxv62DpHHTuFfnS4hMQIIwEleNAx73/fKqPSiQVwIxNC6FOPrLuT784M026G6MAgA2r0jCU3vXIy+L1o4jszA2AGheAppfAIa62W3CCGD9F4Ad3wBWFDgkwA1Xc8rj9Oqrr0Kn0wFgPxhaWlrw8MMP+6Vgix2Xv0kkWrjN43OeQh8gV/Tj+H1zFyISziJm+csO9wsihhCz/GVMXHkMfcNbYWEsGJgYsG0lsmst6h3rdTt131pSdBLS49KRHpeOjPgM9u949nZ6TCrSh3oQ330c5jP1uCfGhD6RCIyTNyQBwyDdbIZs1e0UNBEH2usj+H9vtuEv59n8WalLolG+5yYUyVZASNm8ibf6PgOOPw+cqgW4L35xKWxXXMHfsTPgFhifA6cnn3wSer0eAwMDkEql0Ov1KCsr82fZFi0uf5O/xje90/4OVqatBMMwGJgYwNK4pdiSugWnbpxyGbQEOqjxeQp9gPQaJvDW6R68efoqNF16AGbEr34dgOOXJIGATW4bs+x3eOazBvznmX6YLCavriOJkdgEQnxgNL0tLS4NsRGxMwdYLEDfp2xupfbfAR0f8WvDiQA8GReLg2mpEDCMTfAkmB5vqOgfhCiBWi3JDMPEFP5bfRG/+rgDJguDSJEAX7s1B/9w12okxER6PgEhFjNw4W02YGp/f2Z7+ibglm+wg74jY10fH+bmlI7gwIEDaG9vh0AgQHZ2Nt59911/lm3R8vf4pu998j2IYm2DHqFACAuX5BC2QUugg5rZTqGfLYZhMG4ax/DkMEamRvjfI5MjGJ4aZn9PDuP66BAuXr+OTn0/hozDgHACgsgJLFk7AYFwAhC4nuwgEAAQmDEwydaRAAKkxqbatg5xv63+jhJ5GEDOMEC/ln0z0r0PdHwAjPXb7hObDGTfBmR/DvIPfoRn+vpxOEWM3oiZf+d0sxmKfj3kEZKgZNYlocdsYaBq7cbTb8/kG9u9Lg3/fv/NkC5dEuTSkbAwMQSceBloqgEGO9htAiGbLmDHE+x7zQLpjnPH58BJKpWis7MTOTk5+NGPfoR//dd/9We5FrX5GN9kHTQBM0HLVzd8Fb/69FcBC2o8TaEXQIDDTYexIXUDxqfGZwKd6d8jkyMwTBocAiH7AMnMmL0vlAgQuV5ey61vbvkmHlr9EFLjUhEp9PHbuuEq26Kke5/9bbhse39kPPuGlPN5QHo7+62OS1GRkAl53eO4c2wcmpgoXBeJsNRshmxiEiIAKFEGNd8JCQ3NHQM49ManOHtlOt/Y0nh874H1uOOmtCCXjISFGxfZwd4nfwtMsWPhEJMEyL4CbD/AJqlcRHwOnPR6PaRSKQYHB3Hjxg3cc889EIvFuOuuu/xZvkWps7MTK1eunNfxTVwg82Lbi27zAlUer8RNkptgsphgNBsxYZrApHkSE+YJGM1G9sdkxITZarvJyN93ZeSKxwVfe8d6cbfq7jk/JqFAiCWRSxAfsQQWSwxGxyOgH4kAY44GY4kBY4lB5hIxti7PxI6c5VgllmBJ5BIkRCVAq9fi2+9/2+M18jPykblklgHu2MB019v0T79dVm5RFLBi+0ygtEwGRLhoqVr/IFDyEkRHFSiwyay7PKiZdUlouKofx+E/n8Prp9jXBrdu4ld2ZSOSlkkh7lgsgPZd4PhzwCX1zPal69jcS5v3A1HxwStfEPkcOO3btw9mM/ut/vDhwzh27Bjy8/P9VrDFymKxoLOzE7fdFpxkX/YtUfb6xvtw36v3BbwcAgiQEJWAhKgELIlcgiVRS5AQmYAlUUv44Mb6b24/7jcsMfjwggFvnbmGD85ex5R5JhjcsCwR92/LxAOblrlcyT07MRvpcen+WSbEOAx0fsJ2v7W/D1w7C5t1lwRCIHPrTKC08hYgahZNYCGYWZcE18SUGTV/1eG597QYnzJDIAAeKViJb999E1IDvG4iCXPGYeDU79kWJv5LnQBYu4cNmKR3LIruOHfmNKvu6aefRktLC2prawGAMsr6QTjkbxIJRIiLiEN0RDSiRTM/MRExDrejRFGIEc1s7xvvg+qCyuM1Xrj7BWzP3D6rco0aTTh2rg9vnurGexeuY9I0EwTelJ6ABzZn4v7NmV6N55jTMiFTE8Dl5ulA6a/smkz2g8eX3swGSTmfB7JuBWLFs3qsDkIssy4JDoZh8Oez1/Bfb32GK3p2hlNBdjKe2rsBG5cnBbl0JKgsZvdfrgbagaYjwIlfA0a2SxfRicC2x4CCrwMptKQaZ06z6nJzc/mkl7t378arr75K6QjmqKOjA5GRkVi2LHSncB65+4jPSQzNFjM+uPyBx5acvPQ8r843PmnGX8734a3TPTh2rhcTUzPBknRpPB7YvAx7N2diTfrsF9uVZ8nxTO4XcfjCb9ArmvlSkG62QLH2SzNjvcwmoOcU0P4eGyh1NQKmCduTibOmA6Xb2YHdYZoxlwSXu3UTP+sx4NAbn6JRx+b2WpYUg4r7bsYDmzPpS+1i1/a664VyY5LY1qXzfwbfEi7JZXMvbf0iEB34hcrDjc+BU0FBAfbt24djx475szyLXrDzNwkFQjAME7BV7P2x4KvRZMb756/jzdM9UH/Wi7HJmYHgWSlxeGBzJh7YvAzrMhLm9oHR9jrk6ircCQaamGjbgdddh4Ebl4HxAaDjw5lvaJwl6WxrEveTnO17OQiB63UTDxauxcluPX7X1AULA0RHCPGN23PxjdtzERtF3bWLXtvrQN3jgP17uuHq9HYrq+VswJS7e2YCCnHgc+DU3t4OwLZ7rrm5mVqc5sBisaCrqwuf+9zn5v3aXNDylfVfwa8+/VVAV7F3teBrWlw6nnSx4OukyYKPLt3AG6evouHTXn5ZCABYLo7lg6WNyxP98+3aYma/oYGBCEDBhJPklSetkmPGJLEtSTmfZ1uVlt606McBEP9xt27id1Sn+dv3b85Exb3rsCLZx2miZGGxeh9zTQDkf40NmJauna+ShTWfA6dt27YhPz8fKSkpaGhogFqtRlVVlT/Ltuj09PTAaDQiKysr4NdylseJW6V+89LNAV/F3jS8ASOXFBib+oxfA24k8maYbt4ws4/Zgo+1/Xjz9FW8/WkvhsZnljfJSIzBfZsy8cCWTGxbKZ57sGSxsGkA+i9N51H6q22ztiuyrwJ5XwEyt9BgbBIQtusmOhchFOClr23HrtWp81YuEgY6P/bifYwBNvwNBU2zMKe16urr66FUKsEwDGpqamidujnq7OxEZGQkli9f7tfzfn/n92eVOTzQq9jbfnueGXDYi0k88bIG/yxfg75hI46evYaB0Un+/tQl0bh/UwYe2LIMeauSZ78sBMMAI33TwdElYEDLBkn9WmBAN7N692zk3AYs973rkhBPuHUT3TFZGBrHRGYYh4FzfwI++Zl3+4+4ThFDHM1pVl1OTg4OHz7sr7Iseh0dHQHJ33R3zt1ITHRcq8zdAO9ArWJv/e1ZCAu2C88hDXr0QYwmyzpYIMSz6pm8RpL4KOzZmIEHNmdiR04KPxDWrbEBNhDiWo+sg6TJEdfHCSMBSQ47MDIiGmj7o+drLaFB3iSw+obdB02z3Y8sUFPjwMV3gLOvsMuh2E9QcYfex2bF68DJm+zgL7zwAr7+9a/PuVCLEZe/6dZbbw12UQC4n70zFx9fuoGeoQncI2zCU5EvYZlggL/vKiPBoanH8bZlO+5cuxRfuy0HO6UpiHCWqM84YtdipJ0JlMYHHPfnCdgstymr2em1KavZQCklF0haCYim/yUsZuDZJsDQA+fjAwTsrBRazoQE0FX9OP544opX+6YlxAS4NCTkmKcA7V/YYOncW/w6lgDY97WNDwOtLwKj10HvY/7jdeD0wx/+EA0NDW73aWlpocBpmk6ng0qlglQqhU6nQ2lpKcRisct9f/nLX+LChQsYHh7G5s2b+X1ncx5XNEf/DymZOQAA49A1xCYvx5q83bjYegzjg1cQm7wc63bcA9H0WmdHz/bgB6+fwcqRU3xrUPeSLfiPBzdhz0bvsmQbJqag7RvBpb4RaK+P4lLfCHTXR9DeP4p7hE14LvJZh2MyMIDnIp/FE1P/gvtkpbgtJxHov2AVFF0C+qdbkkauuS9AQuZ0UCS1DZKSs9nWJE+EImBP1fSsEwFs33SmA8g9h2lcEwmI68NG/O9fLuG3x7swaXaflFYAICOJ/XJDFgGLGej8CDijAj57HRgfnLkvaSUbLG3cB2RsZieoZGym9zE/8zpw2r17N1JSUpCX5zq/DsO4G764uBQXF6O1tRUAG/wcOHAA9fX1Lvf9n//5H8TGxqK4uNhm39mcxxXZif9AYptta5H5HQE2WC1i29uQgqs7n0Lv8rvxx98+j/rIl7Asyqo1yCjB93/7OPDoN/jgiWEYXDNMQNs3ikt9w3yApL0+gr5h5+OFhLDgqaiX2L/tGrCEAnYY0k8j/xd4px54rQdwl8k8LmW6tWg1kCKdaT2SSIFoPyxaOr2cicv8J7ScCfEz/dgklH/V4VcfdWB8ik2zcYtUgtvWpOJHb18A4PSjD0/tXe+XFmESohgGuNwCnFUBn/7BdkxSfBo7uHvjPmBFgWMaAXof8zuvA6f6+noMDQ2hpaUFAJvHyX7cjERC33gANsCxJpVKoVar3e7LjW9au3Ytv+9szjNbQrtm26VMP5Z+/E94UfAgfh75usP+GRjAzyOfxUGVCG+f3QvtjVFo+0YwOmmGEBYkYAxiwQiSMIp1ghHcIhzF8hgjcuInsTxmAumR40gWjiFh/Aqi+l13pQkEQAymgLHp7omohOnWIututelAKTbZL3XhFi1nQubBiNGEX37YjiMf6DA8waba2LJSjO/cfRNuXZ0CgUCA3KVLHPI4ZSTF4Km9671uCSZhhGGAa2fYbrizrwJDXTP3xYjZ96aN+4Csz80MMXCF3sf8alaDw5OSkrB7924AwIkTJzAwMACBQMAv7Ltv3z7/lzAMqdVqhyBSIpFAo9FAJpM57JucnIzOzk7s2rXLZt+WlhavzzNb9hNwhALAwgCPM29A4OJ+hgF+yPwPWj59G0mCMYgxAnH0KBIEYw6BGADAAmB4+me2blewaf7jlwY/HxItZ0ICZGLKjJcbO/Hz97T8DNJ1GQn49t03QX5zms1MuT0bM1G4PiMgYw9JCLlxcTpYegW4cWFme2Q8G/xs3Afk3uV64W9X6H3Mb+aUx4nz7rvvoqGhAYWFhXwQtZjp9Xqn2wcGHFta9Ho9JicnYTQabdanGxgYmNV5AMBoNMJonOkiGxoaAgAYjLPpQvW0rxFbccZmCz9PLTKeTQQZIwZiud9i9je3faQX+OgnnouRIgMsMcCwL1EXWegMBjZTe7gOD5g0WVDX0o3/efcieg3s/2xOajy+VbgWD2zKdJlqQyQUYGduynwWlcwHfRfbqnT2FeDaTEJTiKKBtXezwdKae2a3+DcJmDmlIzh58iSUSiVqa2shlUqRm5tLgZMbrgKhiYkJRERE2ORvcrWvu/sqKytx6NAhh+0rf+JmCr5fDQPwMGjbW4fv9c95yII2PDyMpKTwWbzWbGHwxxNX8OyxC+geYBfhXS6OxT/vXoOHZcudzyAlC9NwL5vy5OwrQPfxme0CEduitHEfsO4+9ksnCSmzDpw6Ojr4xJcCgQD79u1Da2srcnJyAlG+sCQWix1ahQYGBpzOhhOLxbh+/TpWrlyJiOlZbdy+szkPAFRUVODgwYP8bb1ej6ysLHR1dYXVh0soMhgMWLlyJbq7u53mxCLem01djo6O4sSJE9BoNBgdHUVOTg4KCgqQk5ODkZGRkF4M25rFwuDop9fwTMMFXOpjv8ikLonGP9yZiy/uWIXoCBprsiiMDQCfvcEGSx0fWE1+EQDZn2NnxN38BSCeWhVDmdeB0wsvvAClUgmdToeSkhLU19c7ZAp/9dVXaa06AHK5HEql0mF7fn6+w7a77roLhw4dsumm4/aVSqVenwcAoqOjER3tONU+KSmJPuz9JDExkerST9zV5bVr13D8+HGcOXMGAoEAW7duxY4dO7B06VJ+n9mm5QgGhmHw3vnr+NE75/HpVbZ7MSk2Et+4PRdf2ZWFuKg5NfqTcGAcBs7/mU0foD0GWGbW2cTyfGBTEbD+ISCRBviHC6//a0tLS1FUVIQnn3wSYrEYg4ODePfdd/n7BwcHcfjwYQqcwM5+s6bT6ZCfn8+/0Ws0GojFYkilUsTHx4NhGD5wst7X/oPB/jyELCQWiwUXLlzA8ePH0d7ejsTERNxxxx3Iy8tDbGxssIs3a426fvzo7fNo6WTz7MRHifB3t0nx9dtykBgTGeTSkVmzmL2flTY1DlxsYNMH2GfxTt/IdsNtfJjNK0fCzqwCp+rqareDMWtra/1SqIWgvr4eCoUCBQUFaG5utsm9VFlZiYKCApSXl6OjowOPPPIIfvazn2HHjh0O+7o7DyELgdFoxIkTJ3D8+HEMDg5i5cqVKC4uxrp16/y+/NB8ONWtx4/eOY8PLt4AAERHCPGVXdn4xu25kMTPciYUCQ1tr7vIg1Q1kwfJPAXo3mNblpxl8d5UBGx4GEhbN69FJ/4nYLyclnLixAmPi/h6s898MxgMSEpKwtDQUEh2sfz+97/HxMQEvvrVr/r93EajEZWVlaioqHDahUe8R3XpP1xdlpWV4dSpUzhx4gSmpqawYcMG3HLLLX5f5Hq+nLtmwI/fuYCGNjY5YaRIgP0FK/GPd61BeiIthxK22l6fzrxt/1E5PfPxjgpg+CrQ9pptFu/EFTNZvDO3BD+tCnFrNrGC14FTuArlwIlhGFRXV2PHjh244447gl0cQgKOYRh0dHTg+PHjOH/+PGJjY5GXl+c0oW64aL8xip80XMAbp6+CYdicZ3+zbQX+Rb4GKyU0fTysWczAsxttW5rciV9qlcV7u2MWbxKyZhMr0MjEIOrt7cX4+LjDwHBCFhqTyYQzZ86gsbERvb29SEtLw969e7Fp0yZERobneJ8r+nH8t/oiVJrLMFvY75/3b8rEtwrXYHVaQpBLR/yi82PvgqbVhcDOvweyb/OcxZuEPXqGg6ijowMRERFYsWJFsItCSEAMDw+jpaUFLS0tGB0dxdq1a3HPPfcgJyfHJit2OOkbnsDP/6K1WYD3rnVpOFi4FhuXU9qPBcNiYRfT9caWR4DcOwNbHhIyKHAKoo6ODqxYsYLP3+QvOp0OKpUKUqkUOp0OpaWlNBPPDY1GAwCQyWTQ6XTQ6/X8kjbu6pLqmaXRaHDgwAF+MWoAuHr1Kv74xz/ij3/8I1JTUxETE4Pvfve7/IzTcKxXVwvwfueem5CXRet0LggWM5uMsu01dmzTsJdddEvSA1suElIocAoShmHQ2dmJHTt2+P3cxcXF/IeYTqfDgQMHaDaeG0qlEjU1NQDYHFzWdeWuLqmewQc4Go0GFosF586dQ2NjI7q6uvCLX/wCdXV12LZtG65evQqFQuFV3YVavfIL8P5Vh2Gj8wV4SRgzm9iWpbbX2OSUo30z90UuAWBm0ws4JWBn12Xtmo+SkhBBgVOQBGp8k06ns7ktlUqhVqv9eo2FJi8vD4OD7GwY65YNd3VJ9cwqKirC+Dj7ofLTn/4UQ0NDyMrKwq5du/DGG29g586dALyvu1Cq14kpM379SSeee9/zArwkzJingPb32Valc28CY/0z98UkATfdz6YZkN4JXHxnelYdYDuzbvr533PYdT4nsiAFLXCaTXO8u66UcNXZ2QmRSOT3qddqtRoSiW23gUQigUajCfs6CyRnrz13ddnS0rLo6/nGjRs4fvw4Tp48CQDIycnBjh07kJmZiZqaGp/qLhTqddJkQW1LN342ywV4SYgzGQHtX4DPXmfzLE3oZ+6LlQDr7mczeOd8Hoiwyre1/kGg5CUXeZwOz+RxIotG0AKn2TTHu+tKCVfc+CZ/zyhytQCw/Zp3ZIZer4dKpQIANDc3o6ysDFKp1G1dLtZ6ZhgGOp0OjY2NuHjxIuLj43HrrbcCAB566CF+P1/rLtD1arYwaGofQN/wBNISYrA9RwLRdCBktjD4w4kr+CktwLtwTI0Dl46x3XAXjgJGw8x98UuBm/cC678AZH3O/Wy49Q+ygZW3mcPJghaUwGm2zfGuulLCFZfLZvv27fN2TVcfSAQ2rZ1SqRSFhYXQarUu93dXlwu1nqempnDq1CkcP34c169fR0ZGBh566CFs3LhxVpMbfK07f9Tr0bM9OPRGG3qGZpa/yEyKwX/cvx4QwGEB3n+8azUe2b6SFuANN5OjbPda22vAhXeAqdGZ+xIyZ4KlVTtnF/gIRUDObf4vLwk7QQmcfOlOWggBE6evry9g+ZvEYrHDt/OBgYEFVX/+ptPp+Ncd13Ws0+nc1uViqeehoSE0NzejtbUVExMTWLduHR544AGsWrXK7RgfX+suUPV69GwPnnhZ45D7uWdoAt/8rYa/TQvwhqkJw3Sw9EfgohowWQ3mTlzBBkrrvwCsKKCklGTOgvLOMNvmeFddKc4YjUYYjUb+tsFgcLpfMHV0dEAkEgUkf5NcLodSqXTYnp+f7/drLQQajQa7d+/mWzQ5EonEbV1KpdIFXc+XL19GY2Mj2traEBkZCZlMhu3btyM5Odmr432tu0DUq9nC4NAbbQ5BkzUBgL+/azVKPy+lBXjDxbgeOP9ntmVJewwwT87cl5w9Eywtk9FyJ8SvQuorlauAajZdKZWVlTh06FCASugfgRrfBMAhoNTpdMjPz19wLSH+IpVKUVVVxd9Wq9UoKiriWz+sWdelu/vCldlsRltbGxobG3HlyhVIJBLs2bMHW7Zs8Wp9Pr1eb/N/as3bugtEvTa1D9h0zznDALg1N5WCplA3NsAO7G57jV1Q1zI1c1/K6plgKWMzBUskYIISOM22Od5VV4qzVqeKigocPHiQv20wGLBy5Ur/FX6OuPxNBQUFAbtGfX09FAoFCgoK0NzcvCAG0weKWCxGfn4+qqurIRaLodVqberLXV0ulHoeGxtDa2srmpqaMDw8DKlUikcffRRr1qzxOOVerVajoaEBAPulpaCgAEVFRQB8rzt/1+ulvmHPO4HNCE5C0EgfmzKg7TWg/QOAMc/ct/TmmWAp7WYKlsi8CMoivzqdzmZWHQAkJyejvb3dIXiy70rR6/VITk7G4OCgV99CQ22R376+Pvz85z/H448/7rK7kZD50NfXh8bGRpw+fRoAsGXLFuzYsQNpaWlBLtncMQwDTdcgfvVxJ946fRUWL97lfnfgFuzMTQl84RYzi9m7mWmGHjYZ5Wevs8kpGcvMfRmb2EDp5i8AS9fOX9nJghbyi/x66k7SaDQQi8WQSqVuu1LCETe+KZRawcjiwTAMLl68iMbGRuh0OiQkJOD2229HXl4e4uLigl28OZuYMuP1U1fx4scd+PTqzPjGSJEAU2bn0ZMAQEYSm5qABFDb6y5yIVWx0/313Wyw1PYau+yJ9ai0ZTJ2n5sfBFJy573ohFgL2hgnd83xXJN/eXm5x66UcNPR0YHly5eH7YrwJDwZjUY+nUB/fz+WL1+Offv2Yf369RCJwn+6/eXBMbzc2IXa5i4MjrHjXqIjhPjC1mV4fGc2Lg+O4YmX2dlzTnI/46m96/l8TiQA2l6fzr5tF7waeoC6LwMSKTBgm6YGK7ZPtyztBZKz5q2ohHgSlK66+RRKXXUMw+Dpp59Gfn4+7rrrrqCWhSwOg4ODaGpqgkajwdTUFNavX49bbrklIDM65xvDMPhY248XP+6A+rNevjtuuTgWX96Zhf35K5EcP5MB2lUep6f2rseejZnzXfzFw2IGnt1o29LkStatbLC07gEgyb+rKhDiTsh31S1W169fx9jYWEDyNxHCYRgGXV1daGxsxLlz5xATE4OCggIUFBQgKSkp2MWbs1GjCa+euIKXPu7AxemElQBw6+oUfGVnNnbfnO609WjPxkwUrs9wmTmcBMjFd7wLmkp+TcuXkLBAgdM8CmT+JkJMJhPOnj2LxsZGXLt2DUuXLsX999+PzZs3IyoqyvMJQpzu+gh+3dgJVctlDBtNAIC4KBH2yVbg8Z1ZWJOe4PEcIqGABoAHmnkKuNLKrgunfRe43OzlcZOe9yEkBFDgNI+48U0L4UOMhI6RkRG0tLSgubkZo6OjWLNmDQoLCyGVSj2mEwh1FguD9y704cWPO/H+hev89pzUeDy+Mwv78lZQ7qVgYxh2fJL2XTZY6vjAdk04by1J93/ZCAkACpzmCZe/ab5WeCcLX09PD44fP44zZ85AKBRi69at2LFjB1JTU4NdtDkbGp9CfUs3ft3Yic7+MQBsip67bkrD47uycdvqVAipiy14xgaA9r8CuulWJX2X7f2xyYD0TiD3TiD788Cv7mUHgjvN3y5gZ9dl7ZqPkhMyZxQ4zZMbN25gdHSUxjeRObFYLDh//jwaGxvR2dmJpKQk3HXXXZDJZIiNjQ128ebs3DUDXvqkE3/QXMH4FJvoMDEmAiX5K/HlnVnISokPcgkXKdMk2+XGBUpXT9jmVhJGAqtuYQMl6Z1A5hbb/Ex7qqZn1QngdF7jnsOzW3CXkCCiwGmedHR0QCgUUv4m4pOJiQmcOHECx48fh16vx6pVq1BSUoJ169ZBGOaLlprMFjS09eLFTzrQqJtZUeCm9AR8ZVc2Htq2jBbcnW8MA/Rfsu1+mxyx3WfpOiD3LjZQytoFRC9xfb71DwIlL7nI43SYBoWTsELvRvOExjcRX/T396OpqQknTpyA2WzGhg0bUFJSgmXLlgW7aHPWP2LE75u78XJjJ58iQCQU4J4N6Xh8ZzZ25EjCfoxWWBntB9rfmx7U/RfAcNn2/rhUQHrHdLB0x+zTBax/EFh3v3eZwwkJYRQ4zQOGYdDR0UHjm4hXGIZBe3s7GhsbcfHiRcTGxmLnzp3Iz89HQoLnmWOh7vRlPX71cQfePNWDSTPb3ZMSH4Uvbl+FR3eswjJx+Hc5hgWTEehuYluVdH8Brp6ETTeaKApYtZMNlHLvBNI3AXNt3RSKgJzb5nYOQoKMAqd5QOObiDempqZw5swZNDY2oq+vD+np6XjwwQexadMmRESE97+q0WTGn89cw68+7sDJbj2/fcuKJHxlVzbu25SJmEhqeQgohgGun58JlDo+BKbGbPdJ28AGSbl3Aqt2AVHhvwwPIf4W3u/GYYLGNxF3DAYDmpub0draivHxcdx000249957kZ2dHfZdVb2GCfymsRO/berGjREjAHbduAc2L8PjO7OwbVVykEsYZrxdJJczegPQvTczVmnYLhFlfNp0oDTd/ZaQEcjSE7IgUOA0Dzo7O7Fs2TIa30RsXLlyBY2Njfj0008RGRmJbdu2Yfv27ZBIQnuxWbOFcZt9m2EYtHQO4lcfd+Dts9dgml4LJT0xGo/tyMIj21dhaUJ0sIofvjwtkgsAUxNAd+NMoHTttO05ImLYYEs6HSylb2DzPBBCvEaBU4Bx45u2bt0a7KKQEGA2m3Hu3Dk0Njaiu7sbycnJuPvuu7Ft2zZER4d+MOFuvbfb16bh9VNX8OLHnWjrmUmAuD1bgq/sysbdG9IRKQrvGYBB42mR3C2Psq1QnR8DpnHbfdI3zbQqrboFiKQxZITMBQVOAdbf34+RkREa37TIjY+Po7W1FU1NTTAYDMjJycEjjzyCtWvXhk06gaNne/DEyxqHFIY9QxP4xssaxEWJMDbJ5l6KiRTioa3L8fjObKxfFtzFtcOexcy2NDlNHjm97dRvZzYtyZgZ0C29A1iSNg+FJGTxoMApwLjxTatWrQp2UUgQXL9+HcePH8epU6fAMAw2bdqEHTt2ICMjvMaSmC0MDr3R5vSjmzM2acZycQy+sisbJfkrIY6jruk5YxjgdJ13i+QWfJ39WbqOut8ICSAKnAKso6ODxjctMgzD4NKlSzh+/DguXbqEJUuW4HOf+xzy8/MRHx+ema+b2gdsuudcqS7agltXh/+SL0FjnmLHJXV+AnR9AnQ1AmM3vDt21U4g7ebAlo8QQoFTINH4psVlcnISp06dwvHjx3Hjxg1kZmbi4YcfxoYNGyAShe9U+wu9w/jVxx1e7cvNnCNeMo6wS5l0TQdKl1scUwQIIwHLlOdz0SK5hMwLCpwCiMY3LQ5DQ0NoampCa2srjEYjbr75Zjz44INYuXJl2KYTuNA7jLdO9+CtMz241Dfi+YBpaQkxASzVAjDSN9OS1PkxcO0MwJht94kRs61Hq25hf2dsAn6WR4vkEhIiKHAKoM7OTsrftEAxDIPu7m40Njbi3LlziIqKQl5eHgoKCiAWi4NdPJ9c7B3Gm6d78KczPbhoFSxFiYS4bU0KWjr1MIxPufroRkYSm5qATGMYYEDHBkhdjWzANKB13C9pFRskZe1kA6XUmxwzdNMiuYSEDAqcAqijowOZmZlhMc2ceMdsNuPTTz9FY2Mjrl69itTUVNx7773YsmVLWI5ju9g7jLfO9OCt086CpVTcvzkT8vXpSIyJ5GfVufjoxlN719vkc1p0zCZ2fFJXI9A1HSyNXrfbScDmTuJak1bdAiSt8HxuWiSXkJBBgVOAcOObNm/eHOyiED8YHR1FS0sLmpubMTIygtzcXHzpS1/C6tWrw6477lLfMN46fQ1vnbmKC70zwVKkSIDPr1mK+zaxwVJSbKTNcXs2ZuK5x2QOeZwypvM47dmYOW+PISRMjrJjkrjxSd3NwNSo7T6iKGB53nSQtBNYWQDE+pgtnRbJJSQkUOAUIAMDAxgeHqbxTWGut7cXjY2NOHPmDAQCAbZs2YIdO3Zg6dKlwS7arFzqG8Fb091w53uH+e2RIgFuW7MU97sIluzt2ZiJwvUZbjOHh7TZLllibeQ6m5WbG5/Uc8rJ+KQkYOUt011vu4DMrUCkH8d90SK5hAQdBU4B0tHRAYFAQPmbwpDFYsHFixfR2NiI9vZ2JCYm4o477kBeXh5iY8Mn6/KlvhH8abobzj5Y+tzqVNy/eRkKvQiW7ImEAuzMTfF3cQPPmyVLOAwDDLbbpgXov+h4zsQV02OTprvelt7sOD6JELKgUOAUIFz+JhrfFD6MRiNOnDiB48ePY3BwECtWrEBRURFuvvnmsEknoL0+07J07ppjsHTfpkzcvT4DSXGzC5bCntslSx4Hiv4PkOTYjk8a6XU8T9r66SBpF/tbTBM/CAk0s8UMTZ8G18euY2ncUsjSZBAFsYuaAqcAoPFN4WVgYABNTU04ceIEpqamsGHDBuzbtw8rVngxaDcEaK+P4E/TqQOsg6UIoQCfW5OK+xdrsMTxZskS1d863i+MBJbLrMYnbQfiaNYgIfNJ3anG4abD6B2b+SKTHpeOJ7c/CXmWPChlosApAAYHB2l8U4hjGAadnZ1obGzE+fPnERsbi+3bt6OgoACJiaG/tpruOtsN9+Zp58ES27KUTsueAIDur14sWcIAkXFA1q0z45OWbaMFcQkJInWnGgffOwjG7ktN31gfDr53EM/c8UxQgicKnAKAxjeFLpPJhDNnzqCxsRG9vb1IS0vD3r17sWnTJkRGhnaLDBcsvXXmGj7rMfDbI4QC3LqaTR2w6IMl8xTQ9xnQcxK4eoL96Tnt3bF7fwpsLglo8Qgh3jFbzDjcdNghaAIABgwEEKCqqQp3rrxz3rvtKHAKAMrfFHqGh4fR0tKClpYWjI6OYu3atbjnnnuQk5Mz7+kEzBbG61lp7TdG+ZYl+2Bp1+pUPLApE3dvWKTBktkE3Dg/EyBdPclm4jb7uOxLwiJLp0BICDFZTOgZ6UHncCe6DF1ovtZs0z1njwGDa2PXoOnToCCjYB5LSoGT33HjmzZu3BjsohAAV69exfHjx3H27FmIRCJs3boVO3bsQEpKcGaFHT3b45AHKdMuDxIXLL11ugdtVsGSiGtZ2pSBu9dnIDl+EQVLFjNw46JVkHSCDZJM4477RicBy7awXW3LtgHpm4CX9tKSJYQE2ZRlCldHrqLL0IWu4S7+d/dwN64MX4GJMc36nNfH7JPMBh4FTn42ODgIg8FA45uCyGKx4Ny5c2hsbERXVxfEYjHkcjm2bduGmJjgraXGZd62/+i+NjSBb7yswRe2LsPF3hGHYGlXbgoe2Jy5eIIliwXov+TY3WafXBIAohKAzC3Asq0zgVJyDi1ZQkiQTJmncGXkik1gxP2+OnIVZvvcZ1aiRdFYmbASqxJWIVIUibc73vZ4vaVx859TjwInP6PxTcEzPj7OpxMYGhpCVlYW9u/fj5tuugnCIOfWMVsYHHqjzd28Lrx2kh3AzAVL92/KxN0bMiBZyMGSxcLmS7Lubus5BUwOO+4bGe8YJElyvcubREuWkEXOn1P6J82TuDxyGd2GbnQaOvlWo05DJ3pGe2BhLC6PjRHFYGUiGxytSlzF/p7+Oy0uDUKBkC/vyb6T6BvrczrOSQAB0uPSIUuT+fQY5oICJz/jxjcFs2Vjsblx4waOHz+OkydPwmKxYNOmTdixYwcyM0NnzEpTe79N95wrB27LwRN3rA7tYMnX7NsMAwx2WLUinQSungKMQ477RsQCmZvZ4ChzK/s7dc3cWoVoyRKySPkypd9oNuLy8GWn3WqegqPYiFg+GFqZsBJZiVl8S1JaXJpX40pFQhGe3P4kDr53EAIIbIInwXRLsWK7Iij5nChw8iNuivuGDRuCXZQFj2EY6HQ6NDY24uLFi4iPj8ett96K/Px8LFmyJNjFg9FkxpnLQ2jpHERLxyA+0d7w6riNy5NCO2jyNvs2wwD6LtvutqsngQm94zlF0UDGpplWpGVbgdSbAFEA3p5oyRLio1BLwugtd1P6v/Xet1CeX45lCcvQbei2CZCujV5z2tLDiYuIm2kxsvudGpvql0k38iw5nrnjGadBn2K7gvI4LQR6vZ7vIiKBMTU1hVOnTuH48eO4fv06MjIy8NBDD2Hjxo2IiAjey3lwdBKtnYPTgdIATl8ZwqTJ9TcyV9ISQril0lP27Vv/GRBGzARK4wOO5xBFAekbZoKkzK1A2s2AKLRTQZDFLRSTMNozWUwYnRrF2NQY+9s0huHJYRz65JDLKf0AUN1S7fKc8ZHxTgOjVYmrkBKTMi8zkuVZcty58s6QClopcPIjbnwTBU7+ZzAY0NTUhNbWVkxMTGDdunV44IEHsGrVqnlPJ8AwDDr7x9DcMcAHS5f6Rhz2S4mPQn52MvKzJNi6Sox//O0J9BomXM3rQkYSm5ogJHmTffujZ203CyPYJUr4lqRt7O2IEG5RI8ROoJIwTlmmMDY1xgc6o6ZRjE6NYnxqnP+bC4TGTGNub49OjWLSMunzY8xOzMbNkpuxMpHtVluVwHaxSWIk8/7+6oxIKJr3lAPuUODkRx0dHcjIyKDxTX50+fJlNDY2oq2tDZGRkZDJZNi+fTuSk5PnrQyTJgs+vTqE1s5BPli6MeL4JpW7NB75WRLkZSejIFuC7JQ4mzed/3xwPZ54WeNqXhee2rveZT6necUwwEgfu6jtjYvsDLeu415k3wawWg7cdO90kLQBiKT/BTIj3Lq7PCVhBIBDnxzC8OQwxk3jGDNZBULTrT7WgZF1oDSXQMedSGEk4iPjER8ZD5PF5DYXEueJLU/gPul9ASnPQkSBk59w+ZvWr18f7KKEPbPZjLa2Nhw/fhyXL1+GRCLBPffcg61bt85LUtGh8Sloutgut5aOQZy6rMfElG23W5RIiE0rkvgWpbysZI9jk/ZszMRzj8kc8jhl2OVxmjdT40C/djpAumQbKBkNno93ZssXgU1F/i0nWRCC3d01ZZ7C8NQwhidd/FjdNzI5AsOkAb1jvR4DD71Rj+99/D2fy2Ud6MRFxiEuIm7m9vTfcZFxNre5v7nt1vdFWnV7N19rxtfe/prHMgRjSn84o8DJT7jxTZS/yXdjY2NobW1Fc3MzDAYDpFIpHn30UaxZsyZgzcUMw+Dy4DhaOtkgqaVjEBf6hsHYfcEUx0UiPysZeVkSFGQnY+PyJMREzv6b8p6NmShcn+F15vA5s1iA4aszAdGNizOB0lA3nHe9AYAAEK9iZ7KlrGGbxRqf83y9Jel+LDxZKOba3cUwDMZN42xQMzWC4clhGCYNGJkccQh6nAVBw5PDmDB7ntXqq7XitchKyrINbOyDILvbXLATGcDxfbI0GdLj0kNySn84o8DJTyh/k+/6+vpw/PhxnDp1CgCwefNm7NixA+nprj+EZ7NsiTWT2YLPeoZnAqXOAfQaHJfoyE6J44Ok/OxkSFOXQOin4EYEC3YK2wBRLyBMB7ALwBy7K4zD04GRdcvRRbZFaWrM9XExSWxglLoGSFk9EyhJpLbdbBYz0PYaZd8OsnDr6gK86+76j4/+A629rRidGnUZ+PiSVdqZ+Mh4JEQlsD+RCfzfSyKXICEqAYlRiVgSxf59deQqnml9xuM5n9zxZEiNweGE8pT+cEaBk590dnYiIyMDsbG0mro3GIbBxYsX0djYCJ1Oh4SEBNx+++3Iy8tDXFyc22O9WbaEMzwxhRNderR0DqK1cwAnuvQYm7TNXBshFGDj8iTkZ7FBUl6WBEsTAtQl6O10fmcsZnaKv03L0XRL0nCP6+OEEUBy9nSAtNoqUFoDxKcC3rTmCUWUfTvIgt3VxbX6GCYNGDIOwTBpYH+MBsdtVtv7x/sxMuU4ecLayNQIXv7sZY9lEAlELoMch0AoagkSoxJt9l8SuWRWQYLZYsZvPvtNWLfYhOqU/nAmYBj7TomFxWAwICkpCUNDQ0hMTAzYdZ599lmsW7cOe/bsCdg1FoLJyUmcPHkSx48fR39/P5YvX45bbrkF69evh0jk+Q3N1bIl3Ef/f/3NRiyJieTHJ527ZoDFbueEmAjkZbEDuPOykrFlhRixUfPwge9qOj9X+pKX2OBpfNCx5ejGJWBA534B2/iltsER14KUnO2/6f5OA7/lYZN9OxxbbADXXV1cq4G3M7sYhsGEeYIPamwCHmfb7LabLP5p9XHm9hW3Y2vaVj7IcRYMxUbEzvssL67uAThtsfF1Vt18C9fX/nyZTaxAgZMf6PV6PPvss3jkkUewbt26gFwj3A0ODqKpqQknTpzA5OQk1q9fjx07dmDFihVevxGaLQw+V/WuVxm4ra1IjuWDpPzsZKxNS/Bbt5vXLGbg2Y3uZ6aJoti118b73ewTDaTk2narpa5ht8XO00xDXzOHB1mwW2x8ZbaYcc8r97gdpCyOFuPb+d/GyOQIhiaHbIId+xahKcvUnMoTIYhAYnQiEqMSZ35HJSIpOon/m9ueFJ2ELkOXV4Onf3nPL0Oyuwtw/trJiMugFpsFhAInK/MROJ08eRKvvfYaysvLqavOCsMw6OrqQmNjI86dO4eYmBjk5eWhoKAASUlJXp+jb9iIjhujOHauFzV/bfd4TE5qPG5fuxQF2RLkZycjPXGep8RPGNgAyXCF7UIzXAWutAAXPC9YyUtY5titlroaSFoZFkFKqPFXi42vuG4ubpo6NzV9ZHKE/5u/z/rHNIre0V5c0l/ya3lEApFD4GMf8LjaNttWHy7w89TddXTf0ZBuAaEWm4VtNrECjXHyg46ODqSnp1PQNM1kMuHTTz9FY2Mjenp6kJqaivvvvx+bN29GVJTjlH2GYdBrMKKjfxQdN0bR0T82/XsUnf1jGJ9yXE1bCAu2C88hDXr0QYwmyzpYwC4O+S/yNfjC1uX+f2AWCzDWz85S4wIjQ49jkDTpfjyHW3f9B7DjG0B08JeNcSXcPkA8DU4WQICqpircufJOm8fBJSi0DmTGpsYwahrFyOSITRJC7r6RqRGHhIbcbXfLV/jDGvEaSMVSJEUl2QZE0YkO2+Ij4+ety2uhDFAOtSSMJHgocPKDjo4O6qIDMDIygpaWFrS0tGBkZARr1qzBY489htzcXDAM0Ds8gfbuG+jsH+ODJO5v+zxJ1oQCYEVyHJJiI3DmigH3CJvwVORLWCaYWdLjKiPBoanH8bZlu2/LlphNwMi16SDoqmMwZLgCDF8DzF4mrYtJYsf+JC4DEjIBiwk49Tv2UgA0MdG4LhJhqdkM2YRxZk7dyh0hHTSFaneXhbFgwjTBJxwcM42xCQmnxnD6+mm33VwMGFwbu4a9f9gLBgwfEBndjSfzkQACm7w88RHxiI+a/m293eqnZ6QHPz/1c4/nrthREbIf7DRAmSwkFDjNkV6vh16vD7v8Tb5O53fm2rVraGxsxOnTpzE6acHSrLXI3LQeneZovP+xHp1vfIDOAffBkUgowIrkWGSnxCM7JQ5ZKfHISY1HVkocViTHISpCCLOFwb//8If44dSzDsdnYADPRT6Lf4ssx/Ycuwy4U+O2AdHwVbsA6Sow2ge4We17hgBYksYGQ4nLgcRMNjhKXG67LSre9jCLGWh/H2qTHodTxOi1Wlcv3WTCk/16yCOSQ3o6vz+WnuAGJ9sHN2OmMYxPjTtus/p7bGpsJjuz3f7jpvE5P77ukW6n26OEUQ7BjH3iwSVRSxAf4Rj4xEXGIT4iHkuiliAuIs6nwc1mixmvXHwlrGd2AaG55hghvqDAaY46OztDYn26SZMJvz31HroM17AqMQOPbrkDUS4WvT16tgfff/0UUswNiIu4gTFTKvpFhfjeg1s8Zq+2WBj0GCag6xtG44kzaGxsRHtHJ0aZKIwnZQOpUgi10YD2isOxIqEAK5NjkZ0aj+wUNiji/l6RHItIkdDttUWw4KnIl4ApgBEAzXatNkIG+AF+DtEbPWzrEBckjQ96V4nCCHZskUMwtGwmIFqS4dtaa0IR1Nsfx8FLv3H46OsTiXAwLQXPrP4S5CHwIWKymGA0GzFuGofRbGRbcqbG8P1Pvu82F8+/ffhveLfrXZvAyCbYmf47kF1WAgj4RINxkWygYraYcVF/0eOx35J9C7J0mUPgEykM7gLEC6WrC6DuLrIwBG1wuE6ng0qlglQqhU6nQ2lpKcRi8Zz3tRfIweGTk0ZU/PAJnL7UhOzbEiGOSMKSiGQkx6UjQ5yDh24vQ1RUNL/vH99Xos/QhbTEVTb3uTq3t/s//UE9fn3hp2AihvhtAlMSvrz2n/Gd24pt9j16tge/eP0/cCP9E9yImAlUUk0WpPbuxN89+AMUrs/AVf24TZdaB/d3nx6jVy7C2HMBlokRRCQuRdSydYhMWQGBQIgIoQCrJHHIsms1yk6Jx3JnwZHFDEwMTf/orf4eAsbtbg/ogCstUMfF4nBKspNWm0HIx1y0PETGTQdAy6aDI7ufhGXsdH6h++DNV55mRgkApMdluBwgyzAMTBYTxs3jmDBNwGgyzvw9HeRMmCYwYZ5gf1v/7WabdXDEbZ/rrCtvxUbEIjYilg9yuBYZ+8DH+m9398dFxCFaFO3QorNQBifTzC5CAicsZtXl5eWhtbUVABsYKRQK1NfXz3lfe4EKnGpe+3e82P8H6I4NIjojGgmbExz2STVZ8MXUhwAAv7vxR4dA5YupD6H0C//l9Nze7v/0B/V4Sft9AIxtIkOGASDA47nf44Mns4XB137yBE6kfMh+fFjtL5h+GdzUsxMnh/8GU3bJj8zjBkxevYDJPh2EsGBZzhps2JKP9blZWJPMIGeJGVlxU1gaOY6ISYPr4Mc6OBrXA5PDnqrahjouFgfTUl2W/5m+G5BnFQJrCm0DpJgk7xI9TrMwFpgsJkxZpvjfU2arv6d/rO+zuW33t06vQ92FOo/XXSNeg0hRJIwmIybME3xAZDQbYWYcB8kHWowoBjERMWDAYMg45HH/e3PuhSxN5jwQiohDbCQb6MRExEAoCEyQ6gzl4iGEuBPygZNOp0NxcTEfDAFAcnIyBgcdu1Rms68zgQical77d/zP4GtgTAz63ryOhK0JiEx20pxvX7VOPui/lrQHj+15kt/+8tHD+OXQUZeBgfX+kyYTHqzbC6No3GlQIGAYRJlisS3mMAwTJlwdMECY8p8YEAlc7i8xM8i+sg8ZcUKsijMicqwf1692of9GP5KjLNiZFYtdK0VIFIyCmRiCZWIIZsYCk0AAMwCzQADT9G+zADBDANP0b7MAM/cBMAkEsHDHRETDHBUPc2Q8TFFxMEfGwhwVB3NEDEyRMTBHRGNqYgg/15/GiNB5+cEwiGUYyDN2whQvcQxizC4CG/MUTIzJJvjx1/IOgSAUCPmAJjYiFtGiaMRExCBGZHs7NiIWMRExM7dFM7et7+P+5s7J/bZuvfF2sVDKxUMICUchn45ArVZDIpHYbJNIJNBoNJDJZD7vOx8mJ4347Y0/AiIBBJFCiHeJoW/UA96MK3bip8zv8OdjbWAAmM0m6MbOYtJNy8hPmd/ixfoGMAyDSYERQ1Gepr4PYnLqq4higCmhGTci3Le69APoYY5g6dpYGNqnMDFsQmRiJOK3xSJmRQyORozMBEjiBACOLW1zY2R/LIOAszyX7sZBCQQYFwjwRt9xP5eJbZmIFEYiUhSJSGEkIoQR7G27vyNFzu8bMg7hk55PPF7niS1PYGPqxpkgZjrgiY6YCX4ihBHznj15ISwWSoOTCSH+EJTASa/XO90+MDDgsG02+wKA0WiE0TgzjdhgMMy6fO788X0l+q260ITRQsACxN8UD1Gcb2/AXZhJ6hiDJHiaTD8Bbkq8EInw3Io2Nf0DwOPe4x3j6GsagmESiM2ORdy2JESmRsIkEGA22YkiBBEQCUUQCUQQCUU2tyOEEfx2+9tOj5v+u2+0D6dunPJ47Xtz7sWm1E2OgY0oEhGCCD74cRoAubhvrh+u3o6zKdtcFpIf5AtlgDINTiaEzFVIzapzFSTNZt/KykocOnTIPwVyos/QZXNbGCWEQCTA6PlRn8+51GTGEobBiECA6xGeP3gyzUCyMBqjlil0ijw3da0TLEFaYib0E3qcNl53u+/UwBS2rsxFxQ9+iFVZq1wGN0KB0GVAJBQIA9Ii4m13UfHa4pD7cFwIgQfl4iGEkCAFTmKx2KHFaGBgwOlMudnsCwAVFRU4ePAgf9tgMGDlypVzLjMnLXEVrJteRHEipMhTYJn0sa8OwD+lfwkP3v51vP7+C/hJ72887v/N6f0nOz7GYx8/iRsiIRgXY5aWmi349a7DiMreBbNpEo/U341+IVzun2oBXvuKGpKUpT4/nkAJ9+6ihRB4UHcXIWSxC6nB4e3t7Q4B0Wz2dcbfg8MnJ424+9cy9LsYYO2Aq15XgYqZwdEvaxAVFY3JSSPumT63y8DGan9YzPjTf2/Ak2I2/mWcDCY/rDfhvn/6lF/fTP1hJQ5e+o3L/Z9Z/SXIP1fhRU0Ex0KYHUUzowghJLTMJlaYv/nAVqRSqc1tnU6H/Px8PhDSaDTQ6XRe7TvfoqKi8eh0igGHWXP2rO4X2O3L3X4k9SE+P1NUVDSfvsCb/SEU4b67q/Hjvn6kmW2nqqeZzfhxXz/uu7vaZlFY+ecq8MzqLyHNroEs3RL6QRMw02qTFpdmsz09Lj0sgiZgZpzNfdL7UJBRQEETIYSEkaAmwFQqlSgoKEBzczMqKir4YKi4uBgFBQUoLy/3uK8ngc7jZBC5/tBbarLgERd5nLj7vM3j5G5/tL0O01EFTkz285m0t0WlImLPYWD9g07LZjZNQnPm17hu6MLSxFWQbfoyRL5kxA4SarUhhBDiLyGfx2k+BTpz+Ct/+V+c6D6GQfNg0DKHA2AzcHd+DIz0AkvS2TXPKJAghBBCPKLAyUogAydCCCGEhL+QH+NECCGEEBKOKHAihBBCCPESBU6EEEIIIV4KqczhgcAN4fL30iuEEEIIWRi4GMGbYd8LPnAaHh4GAL9mDyeEEELIwjM8PIykpCS3+yz4WXUWiwVXr15FQkJCQNZP45Z06e7upll784zqPnio7oOH6j54qO6DJ9B1zzAMhoeHsWzZMgiF7kcxLfgWJ6FQiBUrVgT8OomJifSPFCRU98FDdR88VPfBQ3UfPIGse08tTRwaHE4IIYQQ4iUKnAghhBBCvESB0xxFR0fjqaeeQnS0m+VQSEBQ3QcP1X3wUN0HD9V98IRS3S/4weGEEEIIIf5CLU6EEEIIIV6iwIkQQgghxEsLPh1BoOh0OqhUKkilUuh0OpSWlkIsFge7WGFNo9FArVYDAJqbm3HkyBG+Tt3Vt6/3EecUCgUqKiqo7ueRWq2GTqeDVCoFAMjlcgBU94Gm0+mgVqshkUig0+lQVFTEPwdU9/6n0Whw4MABtLa22mwPRF0H9HlgiE9kMhn/t1arZYqKioJYmoWhqqrK5m/rOnZX377eRxy1trYyAJjBwUF+G9V9YDU0NDClpaUMw7D1JJVK+fuo7gPL+j2HYRj+eWAYqnt/q6+v599f7AWirgP5PFDg5AOtVmvzpDAMw4jF4iCVZmFobW21qUOtVssAYLRardv69vU+4lx9fT0jlUr5wInqPvCs65th2LrjflPdB5Z9PVkHsFT3gWEfOAWirgP9PNAYJx9wTbvWJBIJNBpNkEoU/mQyGY4cOcLf1uv1ANh6dVffvt5HHKlUKhQVFdlso7oPLJ1Oh4GBAYjFYmg0Guj1er6riOo+8CQSCfLy8vguu8LCQgBU9/MpEHUd6OeBAicfcB/q9gYGBua3IAuM9Yd2bW0t5HI5xGKx2/r29T5iS6/XO+3/p7oPLI1GA4lEwo/FqKmpgUqlAkB1Px/q6+sBALm5uaivr+ffg6ju508g6jrQzwMNDvcjV08WmR29Xg+VSuUwgNDZfv6+b7Gqq6tDaWmp1/tT3fvHwMAAdDod/yWhtLQUycnJYNyk16O69x+1Wo2qqirodDqUlZUBAJRKpcv9qe7nTyDq2l/PA7U4+UAsFjtErlxzO5k7hUKBhoYGvj7d1bev95EZarUaJSUlTu+jug8sqVTK1xcA/rdGo6G6DzCdTofm5mbI5XKUlpZCq9Wirq4OOp2O6n4eBaKuA/08UODkA26qsL38/Px5LsnCU11dDYVCAalUCr1eD71e77a+fb2P2Kqrq0NNTQ1qamqg0+lQWVkJjUZDdR9g3HgmZ6juA0uj0aCgoIC/LZVKUVFRQe858ywQdR3o54G66nxg/2an0+mQn59P3yrmSKVSQSaT8UET131kX6/W9e3rfWSG/ZtMWVkZysrKnH6oU937l1QqRX5+Pj/GjMvlJJPJHPaluvcvmUwGpVJpM7ayv7+f6n4eWI+pdPd5Gqrv/bRWnY90Oh2USiUKCgrQ3NxskzCQzJ5Op0Nubq7NNrFYjMHBQf5+V/Xt633Ell6vR01NDRQKBUpLS1FWVgaZTEZ1H2B6vR4KhQJ5eXlobW3lW1wBet0Hmlqt5rtFAfZLBNV9YKjVajQ0NKC6uhrl5eUoKCjgg9ZA1HUgnwcKnAghhBBCvERjnAghhBBCvESBEyGEEEKIlyhwIoQQQgjxEgVOhBBCCCFeosCJEEIIIcRLFDgRQgghhHiJAidCCCGEEC9R4EQICTi1Wo3c3FxUV1ejpqYGeXl5yMvL4xNu5ubmQqPRzPka3DkJISRQaMkVQkjA6fV6NDQ08FmZGxoaIJFIUFpaCgDYv38/dDqd0+UuvCWXy7F//36/lHc+WC87QQgJH9TiRAgJuIGBAbcL2spkMofVzBcynU6Hurq6YBeDEOIDCpwIIQFXUlLil30WiqqqqmAXgRDiIwqcCCEB502XVEtLC/Ly8lBdXQ0AUKlUyM3NhVqtBjAzTqqsrAwqlQo1NTUoKyuDXq93eU61Wo3q6mqoVCooFAqX++l0OigUCv683Dk1Gg1/fHV1NXQ6HX9eT2Xlxlup1WrU1NSguLiYv6+lpQUNDQ2oqanhz0kICQ80xokQEhLsxygVFRWhtrbW5v6ioiKkpKTwq6qrVCoUFxejoaHB4XxcMNTa2gqA7S7kVma3ptfrUVhYiNbWVojFYigUCtTU1KCoqAgKhcLm3Hl5eTh27JhXZZXL5WhoaEB9fT0AoL6+HhqNhr8vNzeXH+NFCAkfFDgRQsKKdetVUVERiouLnQ60ViqVkEgkfCsQADQ3Nzucr66uDlKplD++oqICAFBZWekwWF0qlaKurs6rgCclJQUpKSk25V5M47gIWagocCKELFgymQxyuZy/7SzgsQ+65numG82uIyS80BgnQkjIEIvF6O/v52+r1WqHMUzWt1UqFeRyuU3gwd2/f/9+m9Ym7nz2ioqKHHJIqdVqp8drNBp+ELs3ZfWGszIRQkKXgGEYJtiFIIQsDmq1Gjqdjp9VplAokJ+fz3eJ6fV6KBQKfiC1UqmEXq+HUqmEVCqFQqGAXq/nu+eam5tRUVEBsVgMjUaDAwcOAACOHDkCmUwGtVqNhoYGFBQUAIBDkGVdLmf7qdVqaDQaSKVSNDc3Y//+/V6VVa/X25SFG28lk8n4x15VVYW8vDzI5XK3qRoIIaGFAidCSNjgsozToGpCSLBQVx0hhBBCiJcocCKEhAW1Wg21Ws1P6yeEkGCgrjpCCCGEEC9RixMhhBBCiJcocCKEEEII8RIFToQQQgghXqLAiRBCCCHESxQ4EUIIIYR4iQInQgghhBAvUeBECCGEEOIlCpwIIYQQQrxEgRMhhBBCiJf+PwnjhMOkTklaAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFnCAYAAABQEsaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACW0ElEQVR4nOyde1gb55X/v5K4Y2AQxhgbXxB24jh2YguwY8dpk1g0TtskbSJwm7TpLYZetrutd4tCf91m3e4Wi7bZttttKpx22zRNY1DSNunFKXLaxE7iGJDtxHEcxxpsCxsDRghxv0jz+2OYQRK6oyucz/PwgGbeeefMO2L01XnPe46E4zgOBEEQBEEQhF+ksTaAIAiCIAgiUSDhRBAEQRAEESAknAiCIAiCIAKEhBNBEARBEESAkHAiCIIgCIIIEBJOBEEQBEEQAULCiSAIgiAIIkBIOBEEQRAEQQQICacIwbIsNBoNcnNzUVJS4rNtSUkJcnNzodFoYLVao2MgETcYjUZUVFT4fZ9EEr1eH7NzRxvhf1MikaCkpAQNDQ1oaGhATU0NKisrF9RYhEpNTQ1yc3NhMBhibUrEmK/vk8bGRpSWlsbajMSGIyKKVqvlGIbh2tvbPe5vaWnh1Go1V11dHWXLPKPT6WZtq62t5dRqdQys4fFk03yjpaWFUygUQR0TrnFpbm6eta2/v9/n+9YTsX6fBItKpfL4f6dQKDitVhsDiwInHv4nlEol19LSElDbWNs7l/PPt/eJyWTiamtrg/rfJlwhj1OEYRgGVVVV0Ol0HvfHm4eppaVl1raKigrs3r07BtbweLJpviGXy4M+JlzjwjCMx23V1dVQKBQB9xPr90m4qKmpgUajibUZPkm0/4lY2xuJ8yfq+0ShUKCmpsbj/z0RGCScokBNTQ2amppmbbdarUF9MEWaxsZGsCw7a7tKpYJarY6BRd5tWuiEc1yMRiMaGhpmbddqtUE9XGP5PgknwjXH25cagUT7n4i1vZE6fyK/T4xGY1x99iQaSbE2YCGgVCohl8uh1+tdPlja2tqgUqm8HtfQ0ACFQgGWZaFQKMRjrVYrGhsboVAo0NLSgpqaGiiVSgCAwWAQvwUdOHAALMuCZVn09fVBq9V6PZfBYEBLSwtYlhU/RGtra2E0GqHRaMCyLEwmk9dzWCwWtLe3Q6fTobGxEXK5HAcPHkRdXZ1om7/rCtQm934APh7BeZ8vGhsbXV5XV1f77TPUaxaOk8vlqKysBMDfP3/3w90e57EKdFz8ja8AwzDQarUufQhi/8CBAy7HexufQN8ngbwX/Z0rmH6DHQsAaG9vh1KpdBGN3u6DRqMRv8EL3+4FGwJ5n3nqz9d1+bv3ngjX86KhoQEMwwTlHfVkr0KhEM+p0+nAsqwo0pubmyGXy7Fz505YrVY0NzeLtoYyZt7GS6/Xo76+HizLorm5GSqVCizLoqKiAgqFAjqdzq+wSNT3idVqDfgLkXCscN8VCgUsFgtUKpXH/3mNRoPGxkZotdqAr8N9XMrLy+d8byJOrOcK5zvCHLOn+A8htsRTjJNarXaJPVGpVOKcdG1tLWcymcR9CoWC6+/vF18L8TLO8QcKhcLvnHZLSwunVCpnbW9vb58Vf+PtHLW1tS7X596fr+sKxia1Wu1ybpPJxKlUKh9Xx6PVamfZ6HwffPUZ6jU3NzdzAFzuWW1trcs99zTGvsbK17gEM76+UKlULn35G59g3if+bAr1Xjj3628s3GNX+vv7Oa1WyymVSpf/J1/9CPe7paWFa29vF98L/t5nvu6rv+vydu+9EY7nRW1trUu8TH9/PwcgoBgnT/bqdDqX++lpvJxtnsuYeRsvT3GFnmKWFsr7xJ3q6mqX6zaZTLPi2jyNoUqlcnmvhDIugd6bWEHCKcIIbyCTycQBEP/RTCaT+GBwF05CW/d+hDZqtdrljen+Adfe3j7rePc2nghGOHk7h/NDwGQycQzDBHxdgdrU3t7u0q+Av2BV4WHv/rDTarUB9RnKNXu7BsEW4T3gPsb+xspTn6GMry+cH3iBjk+g7xNf78W53Auh30DGQqVScUqlktPpdOKPu6AL5D647/f1PvPXXyDjFewH4lyfF8L1uBNocLiv97+AVqt1ee842zvXMfM1Xu4LIDy9LxfK+8SfbRzHzRJr3r7wuX/uebsOT+MiEMi9iRU0VRclFAoFlEolmpqaUF1dDaPR6HOKimEYl6W+JpNJnK9ubm4GwLtchSkji8Uy63zOMAwzq81c8XQOX0vq/V1XoLS1tXl01QpTEd6mP9va2sAwjIubWhhLYSrDX5/BXrM3BDu8xRqEMlbhGl9PhDrmQhtn/L0XAz2Xr34DHYuysjKXKQV3AunH3Q5/77Ng+5vr/+5cnxfCGIQThmGgVCrF8AWhf2Eqx5lQ7kGgY1ZdXY2DBw9CqVTCYDB4fR8vhPeJp+txv+/Bvg9CGReBQO9NLCDhFEVqamqg0+lQXV3t8w0oBI07v1Gc/zYajaivr0dFRQWqqqoiNt/r6SE2F/xdV6A2hRqM6eu4eAvwDHashHGZ6/j6sidahONc4RqLQPpx/1/29z4L9z3y938ajudFKKs+vSHYu3v3bvGDsaysDDU1NdDr9VCpVC5jEu4xcx6v3bt3Y+fOndBqtWBZNuR+58P7JFw4X1co4yIQrnsTCWhVXRSpqqqC0WiEXq9HWVmZ13ZKpdKjl8BqtcJqtWLnzp2oq6sTBZjwRg33yhGj0RjW/nxdV6AYjUYxWNAdlmVRXl7u8/yezmW1WkPuM1SEe+keOC8Q7FgZjcawjK83ojk+4ThXuMYilH58vc8icY98/Z+G43nhzeZQEexVq9XQ6/UwGAxQKpVQq9XQ6XSzPI7hHjPn8XJeuDMXcZjo7xNvtoVyPmev11yuI1z3JhKQcIowwmoDgFfWKpUKBw8e9OlxUqlUKCsrm5WZtqmpSfQsOH/gCm9Ufw9QfwirHgD+oertQz3Uc/i6rmBsUiqVUKlULu5f54exr77UarXL0nur1YqmpqaQ+wz0wWI0Gl3a1tfX+8yT5G+sPI1LKOMbKKGOjyf8jVk47kW4xiLU96y391ko/bmPVzD/p+F4XigUClRXV7us/rJarbPe097wZq8QviA8I4X/Bfc+5zpm/sarpqYGe/bsmVMqjUR/n3iyzf2eC6v3vJ1DsMF5VmCu/4fhuDcRIdZBVvMVk8nEVVdXcwC46upqMQjYedWEsDqDYRgxC61zMJ6wksX5GGF7bW0t19LSwrW0tHAmk0kM5G1vb+fUajUHQFyFIJxDqVT6DbAT+haC+zz15+scKpVKXCEhtKmtrQ3ougK1yb0fnU7nEqAdSH9arZZrbm4OuM+5XLMQpNnc3My1tLRwWq3WZYWI+3Ge7PE0Vv7GJdDx9Yb7aphgxycc78Vg74V7v57GwmQy+fy/82WLcz8tLS2cSqXiGIYRA3rdj/H3PnPuL9jr8nTvvdkejueFcC1CP0qlMuAAcW/2CgsznF+7j2M4xszXeAnj4Wn7Qnqf+Loe53vufr+F55lgo1qt5hQKhd//Q3/jwnHe702skXAcx8VArxHEgkHIV9Le3h5rU4KisrISu3fvjr9vewQRRqxWq9+cegRPaWkptFpt1MYqXu8NTdURBCEiuNqFv8O9moog4gHnaS1haoyIDxLh3pBwIghCpL6+HjU1NQD4mAZfixgIIlERMlwD4V0xSMydRLg3NFVHEBHEYDCIpR/cy5rEIyzLQq/XiyUWaJqOmI8YjUa0tbUBgM/8TMQMDQ0N0Gg0UKlU4u9IkAj3hoQTQRAEQRBEgNBUHUEQYaOmpga5ubkuqQQI7xiNRlRUVISUfZ4giNhAwokgiLDhqXK5RqNBZWVlVO1wrzgfb/0JKJVKsdL9fCBS40QQ8QQJJ4IgIkpFRQV2794d1XO2tLTEdX/OxGsAbChEcpwIIl6gWnUEQUSUaC8nbmxsDGuJkHD3N1+hcSIWCiScCCKBsFqtaGxshEKhQEtLC2pqamaVUnCfLnFemeJrX0NDgzjNxrKsuAJQSOCpUChQU1MjehW0Wq14nLAKzx2j0QiNRgOWZcXSGkJ/AHDgwAGxlENfX5/Yp3CtGo0GpaWlaG9vR0lJCZRKJXQ6nVhF3h2DwYCWlhawLCuWsnBeyejtGr3hrT9P1yUso9ZqtaiurhavUy6Xi1OVVqt11nV6Q7BVKM7qb4VjKPc2mOsAvN8vf+NOEPOKWKYtJwgiOGpra11KEygUCpcyEFqt1qU8iXOJA1/71Gq1SykFk8nEqVQql7ZCuYX29naxH/dyDv39/RwAl77a29s5hULhch0tLS2cQqFwaadQKFzKbziXfOnv75/VhzeE0hDu+LvGYPsTrsEZlUrlMh7Nzc0cAJd7Vltby1VXV4uvPY2Pe7kblUrlMjbuzOXeBnIdgdwvb+NEEPMNinEiiASCZVmXFWsKhUJ8LXho6urqxP0HDx4Ui25622c0GmEwGFym1BQKBSwWi9g3wzAwGo1QqVRQKpXQarWwWq1oaGhw8WwwDBNQMVG5XA6WZWed03mqR6/Xi30xDOOxyGigBHKNweLJw+aeaV0YD+eA+bq6Op/TWkIuLWcPU2VlJXQ6ncf2c723gVxHIPeLIBYKNFVHEAmEMEUllEaxWCxitfu2tjYwDOPyoSe0NxgMXvcJU3/uCNOBwoelexuhz1Bx749hGPFaAH7FmaeK76HQ1tYW0DVGA+E+GI1GjzYJ4+os6Ewmk1eR4uu+B3pvA8Hf/SKIhQIJJ4JIIIxGI+rr61FRUYGqqiqXDzN3keFMqPuc8SSSIrkirKamBvX19Thw4AAaGxu9elz8IXjcwoUQc+SJcJzHarVCoVC4iBpfAicc9zZcxznja5wIIpGhqTqCSBCsVit27tyJuro6VFdXg2EY8QOOZVmPHhrhOF/7VCqVR28Gy7IoLy/3ao9SqYz4VM2BAwdgMBigVqtDLr8gTDGGco3e+vNGIB4Yq9Uq3hNPeBtXb2ImEvc2HJ4kX+NEEIkMCSeCSBAEz4nzB67wASdM+6jVanFVE8B/eDY1Nfncp1QqoVKpXKaGhA89Xyu5FAoFqqurXVZzWa1WGI3GkDwW7se0t7eDYRio1eqgPBfOsTeCoAz1Gr31575dsN+Td8t9POrr61FdXe31mlQqFcrKyqDX6122NzU1ebVvLvc20Otwx9M0qqdxIoj5BtWqI4gEQlgWXlFRAYD/sNJoNNi9e7f4QajRaJCXlycGATt7avztE0p/mEwml6XmWq0WbW1tqKurmyVkhKXuwlSeYKNWq4VcLkd9fT30er1Y5FiYbnTe1tDQgPr6eigUCvEcer0elZWVYqoDhmFQU1MTkOdJsKGkpCSgawy1P0GsCONx8OBBGI1GaLVaqNVqcSl/XV2dGNcEwCUdgDAWtbW1LvYItgrTof4EXij3NpDrUCgUAd0vX+NEEPMJEk4EQcQdVqsVe/bswYEDB8QpSZZlxfItifKhLAin9vb2WJtCEESYoKk6giDijsbGRtTU1IheLGFZv1arJRFCEERMIeFEEETcoVQqPWYHNxgM4jQlQRBELKCpOoIg4hKDweCS6yjQ0iPxghAbJvymEiQEMT8g4UQQBEEQBBEgNFVHEARBEAQRICScCIIgCIIgAmRBl1xxOBy4cuUKsrKyIJFIYm0OQRAEQRAxgOM4DA4OYtmyZZBKffuUYiachKrdANDa2irma/GEUC1cyEwrlJvwt88fV65cwYoVK8JwNQRBEARBJDpmsxlFRUU+28RMOBkMBnGVSUNDA3bu3Ok1P0tlZaW4j2VZ7NmzR1yq7GufP7KysgDwA5WdnT2n6yEIgiAIIjGx2WxYsWKFqAt8EZNVdUajETt37kR/fz8AXvCUlJTAZDLNqt/EsqyLOAKA3Nxc9Pf3+9wXCDabDTk5ORgYGCDhRBAEQRALlGD0QEw8TkqlEgcOHBBfC8UihZpMzhgMhlnb5XI5jEYj2travO7zVGByfHwc4+Pj4mubzTaXyyAIgiAIYoERs1V1zknsDh48CJVK5TE2yVuFbovF4nOfJ+rr65GTkyP+UHwTQRAEQRDBEPN0BFarFXq9PuC4JOfjgt1XV1eHgYEB8cdsNgd1ToIgCIIgFjYxT0eg0WjQ0tLidSUcwzCzPEgWiwUMw/jc54nU1FSkpqYGZZ/D4cDExERQxxDEfCE5ORkymSzWZhAEQcQNMRVODQ0N0Gg0UCgUopfIXfSoVCrodLpZx5aVlUGhUHjdFw4mJibQ0dEBh8MRlv4IIhFhGAZLly6lXGcEQcQMu4PD8Q4LegbHsCQrDVuK5ZBJY/NMiplw0uv1UCqVomhqampCdXU1AH7VHcMwUCgUHlfZlZWViR4nb/vmCsdx6Orqgkwmw4oVK/wmxCKI+QbHcRgZGUFPTw8AoLCwMMYWEQSxEDl0ugv7XjyDroExcVthThoeu2c9dm2I/nMpJukIhPQDzjAMI6YRqKysRHl5uZjniWVZ6HQ6lJeXo7W1FXV1dS4JML3t84ev5YeTk5M4f/48li1bhpycnLldMEEkMH19fejp6cF1111H03YEQUSVQ6e78KWnjXAXKoKv6YlPKcMinoJJRxAT4RQv+BqosbExdHR0YPXq1UhPT4+RhQQRe0ZHR3HhwgUUFxcjLS0t1uYQBLFAsDs47NC+7OJpckYCYGlOGo5q7pzztF0wwonmn/xAcR3EQof+BwiCiAXHOyxeRRMAcAC6BsZwvMNzCqJIEfNVdfOdeApoIwiCIIhEoWfQu2gKpV24II9TBDl0ugs7tC/jkweO4V+ePYlPHjiGHdqXceh0V0TOZzQaUVNTA4lEAo1Gg8bGRmg0GlRWVooFlcNBY2MjcnNzYTQaw9ZntCktLYVerxdfNzY2oqKiIqRjCYIgiPCTvyiw9EFLsqIbQkAxTn5inEKN64hWQJs7VqtVrNcnBMkL29rb2z2WogmFiooKaLXasPRntVrDshIyGAwGg8sKTJZlwbIsVCpV0MfOd+b6v0AQBBEsDgeHb/7hbTx73Hui6ljFONFUXYBwHIfRSXtAbe0ODo+98M4s0QTwc7ISAP/xwhncumZxQDc7PVk2pzgTIbXDwYMHwyacwgXLsjAYDGIqimjhLpA8pb4I9FiCIAgifDgcHOqefxsH28yQYOZz0/kzVfhEfOye9VEPfyHhFCCjk3as//ZLYemLA3DVNoaN//G3gNqf+c5dyEiZ262yWCyzUkDEA1qtFqWlpbE2gyAIgogD7A4Omufegr69E1IJ8N+7NyE1STorj9PSGOZxohineY7VaoVGo4FKpUJ1dTUMBgNKSkrQ2NiIxsZGUbQYjUY0NDRAr9ejoaEBLMu69GM0GqHRaKDX66HX611K3RgMBpSWlqKhoQEAn9y0pKTEJa6KZVnx+MbGRlitVhgMBrS1taGlpQWNjY2zzuncv2CbRqNxsammpka0Sa/Xw2g0+rXHaDSitLQUjY2N4hjV1NS4CEtv4+F+rHCuxsZGGAwGNDY2orKyMoQ7RRAEsbCxOzj8W/Mp6Ns7IZNK8ONPbMZ9m5Zj14ZCHNXcid/tuQU//sQm/G7PLTiquTMmogkgj1PApCfLcOY7dwXU9niHBZ/9v1a/7X71uXJsKZYHdO5gaWxsFKeeampqxL9VKhVUKhXa29uh0+kgl8tFUdPS0iIeX1paisOHD4NhGFitVlRWVsJkMon76+vrxb9VKhV2794tvlar1Th48KD42mq1oqKiAu3t7WAYRgxcr62thUqlQklJidepOsG29vZ2ALznrKGhAdXV1di5cyc6OjrEWKPc3FwcPnzYrz1KpdJlP8Mw0Ol0yM3NdTmnp/FwP1YYz5aWFrFQdXNzM4xGY9xNixIEQcQrU3YH9jadwgunriBJKsH/fHIz7t44I4xkUgm2leTF0MIZSDgFiEQiCXi67La1+SjMScPVgTGPcU5CQNtta/MjNjdbXV3ts3ByXh7/BlSr1dBoNLM+5BUKhVgGp6mpadZ+udy/4BNoamqCQqEQ7amrqwv4WEHcOXuvWltbwTAMVCqVyzWGq0ahTqfzOR7u5OXlieMJeC5MTRAEQXhm0u7A1549iT+/3YVkmQQ/fVCJu25cGmuzvEJTdRFAJpXgsXvWA5gJYBOIZUCbM4EGQocD91VznuoMCu08oVQqRc9OdXW16NkhCIIgEpuJKQe++swJ/PntLqTIpHjiodK4Fk0ACaeIsWtDIZ74lBJLc1yXby/NSYtYKgJn/Hk8nPfv3r17Vp4no9GIqqoqAPx0lHvOJvd4JIZh0NfXJ742GAyiEFKr1bOO95RXytM2T7YZDAZUVVX5tMmXPQLehJq/8fB1LEEQBBEYE1MOfOUZIw69cxUpSVLoPl0K1fqCWJvlF5qqiyC7NhSiYv3SqGUONxqNYiyPVqtFTU3NrCkng8EAg8EAo9EIhUIBlUoFpVIJrVaLhoYGKBQKtLa2orm5WfQKKRQKNDc3Q6PRoKKiQvQg1dfXQ6vVQqFQoKqqChqNRhQcKpVKnPJSKBTQ6XTQaDQoLy8X9wN8/JVWq0VjY6PHZf6Cbe7HMgzj0SYBX/ZYrVYcPHgQcrkcarV6lvfN13gIYywcK/QlnINlWRiNRuh0uqBSHBAEQSwkxqfs+PLTRhw+24OUJCkOPFyGD16XH2uzAoISYEYoASYRfeaalFNIHEq4Qv8LBEGEk7FJO774dDv+8V4vUpOkePIzZbhtbWxFEyXAJBYkoQRkNzY2wmQyoaamJmzB5QRBEIRnxibtqP5NO14914u0ZCl++ZlybF+zONZmBQXFOBHzAiEPlE6nCyr+SKVSIS8vD3q9HjqdLnIGEgRBLHBGJ+x45NdtePVcLzJSZPjV57YknGgCaKqOpuoIwg/0v0AQxFwZmZjCF37VhjfYPmSmyPB/n9sSUB7DaEFTdQRBEARBxAXD41P43K9acbzDgkWpSfj158tRuip+RFOwkHAiCIIgCCIiDI1P4bO/PI62i/3ISk3CU1/Ygs0rc2Nt1pwg4UQQBEEQRNixjU3is788DuMlK7LTkvCbL2zFzSuYWJs1Z2IWHC4US/WHXq+H1Wr1GPBrNBrFJIhC/hyCIAiCIGLLwOgkPv0LXjTlpCfjmT23zAvRBMRIOOn1egAISOhUVlYiNzcXubm5kEgkkEgkYtV7nU6H0tJSSCQSl0K2BEEQBEHEBuvIBD715Js4ZbYiNyMZz+zZig3Lc2JtVtiIiXBSq9UBJSm0Wq1obm4Gx3Hij1arRW1tLQC+Yn1/fz/6+/vR0tLitahtTHHYgY4jwNt6/rfDHpXTNjY2QqPRoLGxEXq9HgaDQVyyH68YDAaUlpaisbExKucrLS0VRXy8425rY2MjKioqQjqWIAgiUvQPT+ChJ9/E25cHIM9MwTN7bsGNy+aPaAISIMZJrVaLf+v1epfXAOJTLAmceQE4pAFsV2a2ZS8DdmmB9fdG7LQVFRWorKyEVqsVtxmNRlRUVMBkMkXsvHNFKOQbLbRabcIkvXS3VaVSBexhTaTrJAgicbFMi6Z3u2xYvCgFv33kFly/NCvWZoWduBZOzqLIarXCYrG4fFhYrVbxm3Rra6vf6brx8XGMj4+Lr202W/iNFjjzAtD0MAC3NFm2Ln571VMREU/CNGZ1dbXLdqVSOWtbPJKXlxe1c0VTpM0Vd1uDqYOXSNdJEERicm1oHJ968k2cvTqI/KxU/G7PVqxZMv9EExDnwskZjUbj4kEBeHHgXIjWn0elvr4e+/btC80AjgMmRwJr67ADf63FLNHEdwRAwnuiFLcDUpn//pIzAElghYHr6+tx4MABj/sqKysD6oMgCIIgAqV3cBwPHjiG93uGsCQrFb+rvgUl+YtibVbESAjhZLVaYTAYZk3LsSwrxkopFAqwLAuWZb1+E6+rq8PevXvF1zabDStWrAjMiMkR4HvLQrJ/Nhw/fbc/wHN/8wqQkum3GcuysFqtXq/f2fNgNBphMBjEcVOr1VAoFDAYDNBoNKL3jmVZtLS0QKvVivfBZDKJ5UkMBgNqamqgUqlQUVEBi8WC9vZ2aLVaMAwj7tdoNAD4gP729nYYDAYYjUYoFAq0tra6iGLhPMK5m5ubxX2ejvNms3Cc1WpFU1MTFAoFrFYrWltbsXv3buzZswc1NTWiJy7YMXG2yxlv12Y0GqHT6VxikxQKBSwWCzQaDXbv3o3a2lro9XpoNBrodDqoVCoYjUYXW61WKzQajXgvfNnufmyw10IQBOGLHtsYPnngGEy9w1ianYbfVd+C4sX+P68SmYQQTm1tbbNEk9FoxM6dO2dVs5fLvWcjTU1NRWpqaiRMTChYloVGo0FLS4u4rbS0FIcPHxbjjJw/TJubm6HX61FbWwulUomSkhJYrVYwDAOVSgW1Wo28vDwx/kyv16OyshItLS1if+3t7dDpdJDL5eL529vbAfDFeRsaGsSg/9bWVvHv5uZmGI1GKJVKn8d5slk4rrGxEUqlUhSOFosFSqUSu3fvntOYCP17Glt3G6urq7Fz5050dHSI7+Xc3Fyxf2db1Go1Dh48KL52t5VhGOh0OuTm5vq13f3YYK6FIAjCF1cHxvDggWNgrw1jWQ4vmlblzW/RBMSBcBI+gAWMRiMYhnHxmhiNxlmCSKFQuHgpDAYD1Gp15ILFkzN4z08gXHwd+K3af7uH9MCq7YGdOwCEMXP2xDnDsizkcjl0Ot2s/QqFAk1NTaiurkZeXp5LrJH7/WAYBhaLxWWsnf9Wq9WorKwU7y3DMGJ/arUaGo0GcrkcBoNBPKa1tVX8u7y8fNa5AIjCy9NxnmwWjlOr1SgtLYVCocDu3bs9xnqFMiZC/+79eLJREJnO4xSugG1/trsT6LUQBEF444p1FJ88cAwX+0awnEnHs9W3YIU8sM+qRCcmwslgMIjfjuvr61FeXi56K4TXgsdBwH36iWEYlJWVoaGhAQzDwGQyRXa6QSIJaLoMAFByJ796ztYFz3FOEn5/yZ2BxTgFQW1tLXQ63azVhwAvQD1tD4S5ClL3++fsAQJmB7N7I5Tj5HI5+vv7YTQacfDgQdEbFik82RitFAsEQRCRprN/BJ88cAxmyyhWyNPxzCMLRzQBMcrjpFKpoNVqxbxMzh/mzc3Ns0STIAbcUSqVqK2tRXV19azA8ZgilfEpBwAA7kHd06937Q+7aAIgjoP7B7Vz5vXdu3e7eEQAXlRVVVV57ddT5nZv+/V6/SzvirNHw9P53V97ItTj6uvrRS+cEHvlbncoYxKMjVVVVbMSvjrn1GIYBn19fS7HuI+5t3sQiO3+7h9BEEQgmC0j2K3jRdOqvAw8W71tQYkmIA6m6uYt6+/lUw54zOO0P6J5nFpaWtDQ0ACNRoOSkhJxmlMQqIKAaGhoEAOYm5ubwTCM6JUBeIHrXMpGqVSKQdtardZFhJhMJvHDXugP4AWAc7C0SqUSz6/RaMRpOSEI2tO5dTodFApFyMfl5eXBYDBALpfDYrFg9+7d4jFyuVxMyBrsmAj9O3vTvNnIMAyam5uh0WhQUVExa4q6qqpKDPgWjhGm4KxWq4utnrx3/mwXjhX6CuRaCIIgnLnYN4wHD7yJy9ZRFC/OxDN7tqIwJz3WZkUdCcdxnuaSFgQ2mw05OTkYGBhAdna2y76xsTF0dHSguLgYaWlpoZ/EYedjnoa6gUUFfExTBDxNsUQQaImQJyqeqKiogFarDTkoOzc3d9biiEgQtv8FgiASlo5rw3jwwDF0DYxBkZ+J3+25BQXZ8+d54EsPuEMep0gjlQHFt8XaCiIOCSUgu7GxESaTCTU1NZQNnCCIqGDqHcKDB46h2zaONUsW4Zk9W7Eka/6IpmCJSYwTMX8QpuKEJe1EYAh1A3U6XVDxRyqVCnl5edDr9R7j/giCIMLJ+Z4hfKKRF03XF2Th2epbFrRoAmiqLvJTdQSR4ND/AkEsTM51D+LBA2/i2tA41i3Nwm8f2Yq8RfMzFyJN1REEQRAEETJnr9rw0IE30Tc8gfWF2fjtI1uRm5kSa7PiAhJOBEEQBEGInLliw0NPHkP/yCQ2LM/G01/YCiaDRJMACSeCIAiCIAAApy8P4FO/eBPWkUncXJSDpz6/FTkZybE2K64g4UQQBEEQBN7qtOJTT74J29gUNq9k8OvPb0F2Gokmd0g4EQRBEMQC58Slfjz8y+MYHJtC6apc/Opz5cgi0eQREk4Rxu6ww9hjRO9IL/Iz8qFcooRsniXAJAiCIBKX9osWfOaXrRgan8KW1XL88nPlWJRK8sAblMcpghguGnDXc3fh8y99HpojGnz+pc/jrufuguGi//pqIZ3PYEBNTQ0kEolL+Y5gaGxsRG5ublRyMkXzXM6UlpZCr9e72FFRURHSsQRBEIlM6wULHv7FcQyNT+EWhRy/+jyJJn9QHqcI5XEyXDRg7z/2goPr8Eqmi/w+fvvjUK1ShW68F1iWRUlJCfr7+11qoQXDXEuBxOu5BAwGA8rKysTxYVkWLMtCpfJ/P9yPXQhQHieCmB/YHRyOd1jQMzjGJ7HkOHzhqTaMTNhx65o8PPlwOdJTFuaMCOVxigAcx2F0ajSgtnaHHfXH62eJJgDitv3H92Pr0q0BTdulJ6VDIpEEdG6hoC/hHXeBFExx20DEFUEQRLxx6HQX9r14Bl0DY7P23bZ2MQ48XIa05IUpmoKFhFOAjE6NYuszW8PWX/dIN7Y/uz2gtm8++CYykjPCdm6CIAhi4XDodBe+9LTRw1d5nsrSIhJNQUAxTvMcg8GA0tJSNDY2wmAwoLGxEZWVlS5tjEYjNBoN9Ho99Hr9rOKzBoMBDQ0N0Ov10Gg0AAC9Xo/S0lKUlJQAABoaGlBSUoKGhgavxwRyLk/2e+unpqZG7Eev18NoNIrXK9ih1+tRUlIixnsZjUZxPADAarWipqZGvA6hjXDOhoYGsCzr8dhAxpYgCCKW2B0c9r14xqtokgCo/+tZ2B0LNmonaMjjFCDpSel488E3A2rb3t2OLx/+st92P9v5M5QWlAZ07lBRqVRQqVRoaWlBc3MzAIgFeZVKJaxWKyorK2EymcRj6uvrxb9ZloVGo0F7ezsAwGKxoKGhAbW1tVCpVNi5cyesVisYhkF7ezsYhvF6THV1tc9zueOrn507d6Kjo0OMNcrNzcXhw4ehUqmwe/dusQ+1Wo2DBw+Kr5VKpct+hmGg0+mQm5vrcs6WlhaxTWlpKQ4fPjzrWH9jSxAEEWuOd1g8Ts8JcAC6BsZwvMOCbSV50TMsgSHhFCASiSTg6bLty7ajIKMAPSM9HuOcJJCgIKMA25dtj0pqgry8POTlzfxDMAwjenqamppmfcg7x0npdDrI5XKXFXqtra1iPwcOHEBpaSmam5tFEePtGIZhfJ7LHV/9qFQqlwDtsrIyf8MQEDqdbpaNCoUCTU1NqK6untXe19gSBEHEmp5B76IplHYECaeIIJPK8OiWR7H3H3shgcRFPAmr6jRbNAmTz0mpVLoERTsLCEEMHTx40EVweDpGmOKa67lD6YcgCGIhIg+wxtySLFoxGygU4xQhVKtUePz2x7EkY4nL9oKMgoilIgAQtLdDpVLNyqMkxPQAwO7du2flgxJeW61WGAwGNDc3g2VZMb+Rt2P8ncsdb/1UVVX57IdhGPT19bkcY7VaXdq7v/Z1TqPRiKqqKr/HEgRBxBMDI5P437+f99lGAqAwJw1bimlFdqDEzONkNBqxZ88eMX7FVzuA9zywLAur1Sp6NoQPa4VCAZZlUV1dHVf5dVSrVLhjxR1RyxwuiBiAjx0S4nGEGB+VSgWWZWE0GqHT6cRl+M3NzdBoNKioqBDjlerr68X8SlqtFhqNBuXl5WI/jY2N0Gq1qKmpAQCUl5djz549YFkWtbW1Ho9hGMbnudxTAng7t7d+BKqqqlwSgKpUKnEKzmq14uDBg5DL5VCr1V7P2dDQAIVCgdbWVnEa0mg0uhwr9OVrbAmCIGLBhWvD+PyvW8H2DiM1SYrxKQckgEvwiJDk5rF71kMmDSzlDRGjBJiC2CktLYW/09fU1IhTMyqVyiWWprS0VBReQlCvIBwCIZIJMInoMtdEmrm5uejv7w+zVfMD+l8giMTieIcFNb9pQ//IJJblpOEXny3Hxb7hWXmcCnPS8Ng967FrQ2EMrY0P4j4BplqtDrhtaWmp+IHm7FVwn+JRKBQhlRgh5gehBGQ3NjbCZDKhpqYmbMHlBEEQseT3Jzqh0b+NCbsDNxfl4MDDZViSnYYbCrNRsX6pS+bwLcVy8jSFQELEODEMM2sKzmAwzFqRJZfLo173jIg9jY2NYFkWOp0uqPgjlUqFvLw86PV66HS6yBlIEAQRYTiOw+N/ew9fP3gKE3YH7t6wFM9Wb8OS7BkvsUwqwbaSPNy3aTm2leSRaAqRuF9VZ7VaxaDj1tZW1NTUQKFQeP2A9OV5GB8fx/j4uPjaZrOF1VYiNlRXV3tMFeAPhUKB2traCFhEEAQRPcYm7fiG/i28eOoKAOBLt5fgGx+6HlISRhEh7oWTc8C3QqFARUWFSwJFd3x5HOrr67Fv376gzr+AayATBAD6HyCIeOba0Diqn2qD8ZIVSVIJvvfxjagqXxFrs+Y1cT9V5xzLJKyeY1nWY6JBi8Xic1VdXV0dBgYGxB+z2ey1rUzGr3ybmJiY2wUQRIIzMjICAEhOTo6xJQRBOHOuexAf+9/XYLxkRXZaEp76whYSTVEgrj1ORqMRO3funLXaSS6Xi0vM3fEV5JuamorU1NSAzp2UlISMjAz09vYiOTkZUmnca0yCCCscx2FkZAQ9PT1gGEb8MkEQROx59VwvvvJbIwbHp7AqLwO//Gw5SvIXxdqsBUHMhZN7Dh6j0QiGYcQ8OFqtVtxnMBigVqs9BouzLIuysrKw5XGSSCQoLCxER0cHLl68GJY+CSIRYRgGS5cujbUZBEFM8/Sxi3jshXdgd3DYslqOn3+6FPLMwDKEE3MnJsLJYDCIRVTr6+tRXl4upigQXtfW1oJhGJSVlaGhoQEMw8BkMrnkaRKSIJaXl4uJCsNJSkoK1q5dS9N1xIIlOTmZPE0EESfYHRy+95d38YujHQCA+zcvR/0DG5GaRP+j0SQmCTDjhWASXhEEQRBErBgen8K/PHsShne7AQD/WnEd/unONZBIaOVcOIj7BJgEQRAEQQRG18AovvCrNpzpsiElSYofVt6Me25eFmuzFiwknAiCIAgiTjl9eQBf+HUrum3jyMtMQePDZShdlRtrsxY0JJwIgiAIIg752ztX8S/PnsTopB1rlyzCLz9bjhXyjFibteAh4UQQBEEQcQTHcXjySAe+99d3wXHAbWsX438fUiI7jXKpxQMknAiCIAgiTpi0O/DtP76D3x2/BAB4aOtK7Lv3RiTJKJdgvEDCiSAIgiDigIHRSXzlt0YcPX8NEgnwrY+sx+dvXU0r5+IMEk4LDIfDgd///ve47rrrsHLlSvqHJBIejuMwODiIZcuWUYZ/ImG51DeCz/+6Fed7hpCRIsOPP7EZFesLYm0W4QESTguMnp4evPbaa2LCUYKYL5jNZhQVFcXaDIIImvaLFux5qh2W4QkszU7Dk58pw4blObE2i/ACCacFhtlsFuv1mc1mSvxJJDw2mw0rVqxAVlZWrE0hiKD548nL+Ib+LUxMOXDjsmz84jPlWJqTFmuzCB+QcIoyLMtCr9dDoVCAZVlUV1d7ra/nq63RaITBYAAAtLa24sCBAwHV6TObzSgsLAQAZGdnk3Ai5g007UwkEhzH4ceH38ePDO8DACrWF+DHn9iEjBT6WI536A5FmcrKSrS3twPghdGePXu81tjz1dZgMKC2thYA0NDQgJ07d4ptfUHTGUQ8YXdwON5hQc/gGJZkpWFLsRwyKQkgYn4zNmnHo8+9hT+cvAIAqP6AAppd6+i9nyCQcIoiLMu6vFYoFKLXKJi2RqMR9fX1onBSq9XQaDRgWRYKhcLr+YeGhtDf349bbrllLpdBEGHh0Oku7HvxDLoGxsRthTlpeOye9di1oTCGlhFE5OgbGkfNb9rRdrEfMqkE371vAx7cujLWZhFBQEtQoojBYIBcLnfZJpfLYTQag2qrVCpx4MABcbvVahX3e2J8fBw2mw3vvvsuxsfHaXqOiDmHTnfhS08bXUQTAFwdGMOXnjbi0OmuGFlGEJHjfM8QPv6z19F2sR9ZaUn49ee2kGhKQEg4RRFB4LhjsViCbuu8Ku7gwYNQqVReY5zq6+uRk5ODLVu2YP/+/Vi/fn1QdhNEOLE7OOx78Qw4D/uEbftePAO7w1MLgkhMXjt/Dff/7DVcsoxghTwdv//yduxYuzjWZhEhQMIpDvAmkgJpa7VaodfrvcZJAUBdXR0GBgbwP//zP3jqqadgNptDtJQg5s7xDsssT5MzHICugTEc75j9hYIgEpFnj1/CZ355HLaxKZSuysUfvnwr1iyhVaCJCsU4RRGGYWZ5lywWi0dPUaBtNRoNWlpafK6oS01NhUwmQ39/P7Zs2UJTdURM6Rn0LppCaUcQ8YrDwUF76Cx0r/Ixq/dtWgbtAzchLVkWY8uIuUAepyiiUqk8bi8rKwupbUNDAzQaDRQKBaxWq0/PVVdXF+x2O1asWBGc0QQRZpZkBZajJtB2BBGPjExM4Uu/bRdF07/sXIsf7d5EomkeQMIpiriveGNZFmVlZS65mYTVdP7a6vV6KJVKUTQ1NTX59DqZzWYkJyejoIBS+BOxRZ6ZDF+rriXgV9dtKfa82IEg4p1u2xh2647hpXe6kSKT4ke7N+HrFddRrrF5Ak3VRZnm5mZoNBqUl5ejtbXVJTapvr4e5eXlYpoBb21ZlkVlZaVLvwzDoLq62ut5hfxNVMuLiCUnzVZ87v+Ow1vct/Cx8tg96ymnDZGQnLliwxd+3YqugTHIM1Og+3QpylfTl4D5hITjuAW7dMVmsyEnJwcDAwPzOu6H4zj88Ic/hFKpxJ133rlgrpuIL46834ua37RjZMKOm4ty8KlbVuHxlnNzzuNE72ciXjj8bje++rsTGJmwoyQ/E7/8bDlW5WXG2iwiAIJ5jgTtcbpw4QKam5vR0tKC/v5+cbtcLkdFRQXUajVWr17ttx+j0Yg9e/b4zXbtq7SIkP9IqVSCZVlYrVYolcpgL2neY7VaMTQ0RPFNRMz401tX8PWDJzFp57BjzWL8/NOlWJSahPuVRZQ5nEh4OI7D/712Af/55zNwcMD2kjw88VApcjKSY20aEQGCEk6PPvooJBIJqqqq8I1vfGPW/hMnTuDnP/85JBIJ6uvrvfYj1F/zlPjRHV+lRXQ6HRobGwHwwdS+luQvZIT0A1RqhYgFvzl2Ed/+42lwHPCRjYV4fPfNSE3iA2RlUgm2leTF2EKCCBz3MkHKlQz+88/v4jfHLgIAPlG+At/92AYkyygsYr4SsHD6/ve/j7q6OuTk5Hhts3nzZmzevBkDAwOoq6vzKp6ckzf6wl9pkdLSUtHrFUiB24WK2WxGfn4+0tPTY20KsYDgOA4/OXwe/204BwB4aOtKfOe+DeRRIhIWT2WCUpKkmJhyQCIB6u5ehz23KSgIfJ4TsHDy5GHyRk5Ojk+PU6AEUlqEBJN/zGYzTdMRUcXh4PCdP53Br16/AAD4551r8XXVWvpAIRIWoUyQe1DwxJQDAFB9mwLVHyiJvmFE1AnZl/joo4/iySefxMDAAD70oQ9h9+7deP7558NpGwDfpUWErNl6vV70RPlCqNnm/DPfGR8fR3d3NwknImpMTDnw9aaTomj6j3vWYy8txSYSGF9lggReOHWFygQtEEJOR1BeXo4HHngA3//+91FaWor6+noX71C4EUSSczB5dXW1KKIUCgUqKipgMpm89lFfX499+/ZFzMZ4pLOzExzHkXAiosLIxBS+9LQRr5zrRZJUgh9W3Yz7Ni2PtVkEMSf8lQkCZsoEUcze/Cdkj1Nubi4AoKmpCbt37wbgOoUWbjyVFnH2MCkUCrAs69PrJNRsE34WQs02s9mM9PR05OXRPzMRWawjE/jUk2/ilXO9SEuW4sBnykg0EfMCKhNEOBOyx8lkMoHjOJhMJmzatAkdHR0u6QnCiXtpEYAXTTt37px1Tl/iLTU1FampqRGxMV4R4ptomoSIJFcHxvDwL9/Eue4h5KQn45efLUfpqtxYm0UQYcER4BQclQlaGITscaqqqoLRaER7ezsGBgag0+l81krzhvsxzmVHAO+lRRQKBbRardjOYDBArVZTsLgTDocDnZ2dNE1HRBS2dwgPPPE6znUPoSA7Fc1f3EaiiZg3/OXtLnzrD6d9tqEyQQuLgDxOAwMD6O/vd0lsmZOT47LSbv/+/S7HCIHXnjJwGgwGtLS0AJgpMyIEgTuXHfFVWoRhGJSVlaGhoQEMw8BkMlEeJzd6e3sxPj5OwomIGG93DuCz/3ccfcMTKF6ciac+vwUr5BmxNosg5szElAP1f30X//faBQDAmvxFON87BAngEiROZYIWHgGXXDlw4ADy8vJw//33+2373HPPob+/H4888sicDYwk871UQ1tbG/7yl7+grq4OyckzGWzn+3UT0eF10zVUP9WOofEpbFiejV99bgsWL4r+VDi9n4lwc9k6in96xogTl6wAgJoPKvCND10Pw7vds/I4hVImiIg/IlJyZc+ePThx4gSqqqpQUlKC8vJyKBQKMAwDq9UKlmVx/PhxdHR0oKamBg888MCcL4SYG2azGUuXLnURTQQRDg6d7sI//+4kJuwObFPkofHhUmSl0fuMSHz+/l4Pvn7wJKwjk8hOS8IPqzahYn0BAGDXhkJUrF9KZYIWOEEFh2/evBlNTU0YGBhAU1MTjh8/DqvVCoZhUFJSgpqaGhQXF0fKViJIzGYz1q5dG2sziHnG745fwv/7/dtwcMCuG5fiR5/YhLRkWazNIog5YXdw+O+Wc/jp388DADYuz8HPHlLOmnqmMkFESKvqcnJysGfPnnDbQoSR4eFhWCwWim8iwgbHcfjZP0z4/kvvAeBrcv3XxzfSt20i4ekdHMe/PHsCr5v6AACfumUlvvWR9fSFgPBIyOkIiPhGyFFFwokIBw4Hh//6y7v4xdEOAMCXby/BN+66ntJcEAnPm2wfvvq7E+gZHEdGigz192+k/GOET0g4zVPMZjOys7N9FmUmiECYtDugee4tPG+8DAD41kduwCO3KWJsFUHMDYeDg+5VFj/423uwOzisXbIIT3xKiTVLsmJtGhHnkHCap1BhXyIcjE7Y8U/PGHH4bA9kUgkaHrgJD5QWxdosgpgT1pEJ/GvTKRw+2wMA+Pjm5fivj29ARgp9JBL+oXfJPGRqagpXrlxBRUVFrE0hEpiB0Uk88utWtF7oR2qSFP/7oBKq6dVFBJGonDJb8eXfGnHZOoqUJCn+454b8cktVF2BCJyQM4cDwPe//32xTt3hw4fFpJdEbLl69SqmpqbI40SETI9tDLt1b6D1Qj+y0pLw9CNbSTQRCQ3HcfjNGxdQ+fM3cNk6ipXyDDz/pe14cOtKEk1EUIQsnB599FEwDAOVSgUA2LlzJwwGQ9gMI0LHbDYjOTkZBQX0QUcEz4Vrw3jg56/j7NVB5GeloqlmG8pXUykJInEZGp/CPz97Ev/+x3cwYXfgQ+sL8OJXd2DDcooBJYIn5Km68vJyPPDAAzh8+HA47SHCgNlsxvLlyyGT0VJaIjjeuTKAz/yyFdeGxrEqLwO/+fxWrMyjEipE4vLe1UF86bftYHuHIZNKUHf3OnxhRzF5mYiQCdnj1NHBL0t2fvO1trbO3SJiTnAch0uXLtE0HRE0b7J9+ITuGK4NjeOGwmw0f3EbiSYioXmuvRP3/e9RsL3DWJqdhoPVt+CR2xQkmog5EbLHafPmzSgrK0NeXh5aWlpgMBig1WrDaRsRAgMDAxgaGiLhRARFy5lu/NMzRoxPObClWI4nP1OGbCqhQiQoY5N2/McL7+DZVj6f3W1rF+NHuzchLwa1FIn5R8jCaefOnWhuboZOpwPHcWhsbMTmzZvDaRsRAkLiy6IiWjJOBEZzmxmPPv827A4OqhsK8NMHN1PGZCJhudg3jC89bcSZLhskEuBfdq7FV+9cSxnuibAxp3QExcXF2L9/v/jaZrNRdfIYYzabsXjxYmRk0BQL4R/dKybU//UsAEBdWoT9929EkmxOi20JImYcOt2FbzS/hcHxKcgzU/DjT2zCbWvzY20WMc+Yk3Cy2WywWCzia61WiyeeeGLORhGhQ/FNRCBwHIf9h85C9woLAKj+gAJ1d6+j2A8iIZm0O7D/r2fFkkClq3Lx0wc3ozAnPcaWEfORkIXTF7/4RRgMBjAMI27r6Ogg4RRDxsfH0d3djS1btsTaFCKOmbI78M3fv42mtk4AQN3d61DzwZIYW0UQoXHFOop/esYI4yUrAGDPbcWo3bUOyeQ5JSJEyMKppKQEP//5z122HThwYM4GEaFz+fJlcBxHHifCK2OTdvzz707gb2e6IZUA+x+4CVVl9H4hEpNXzvXia8+eQP/IJLLSkvCDyptx141LY20WMc8JWTgJiS+doRIfscVsNiMtLQ2LFy+OtSlEHGB3cDjeYUHP4BiWZKVhXWEWvvibdrzZYUFKkhT/88nN9CFDJCR2B4cfH34f//Py++A44MZl2fjZQ0qsysuMtWnEAiBk4ZSbm4sf/OAHUCgUYBgGVqsVBw8exMGDB8NpHxEEQmFfilMhDp3uwr4Xz6BrYEzcliSVYMrBYVFqEg48XIZtJXkxtJAgQuPa0Di+9uxJHD1/DQDw4NaV+PZH19NKUCJqhCycamtrYbVaXWKcTpw4EQ6biBDgOA6dnZ3Yvn17rE0hYsyh01340tNGcG7bpxz8ln++cw2JJiIhab1gwT89Y0S3bRzpyTJ87/4N+PhmSr1CRJeQhVNFRQX27Nnjsu25554L+Hij0Yg9e/agvb3dZzuWZaHX66FQKMCyLKqrq0Wx5mvfQqO3txdjY2MU37TAsTs47HvxzCzR5Mz/vX4BX7hNQXltiISB4zg0vsqi4aX3YHdwKMnPxBOfKsV1BVmxNo1YgMwpODyQbZ4QxI7RaPTbtrKyUhRXLMtiz549aG5u9rsvXglG7Plr6yw+zWYzpFIpli9fHp0LIeKS4x0Wl+k5T3QNjOF4h4W8TkRCMDAyiX9tPgXDu90AgPs2LcP3Pr4RmalzyqZDECET8jvPZDJBp9OhvLwcAP+NoKmpKaB6dWq1OqBzsCzr8lqhUMBgMPjdF88EI/Z8tXUXn2azGQUFBUhJSYnCVRDxSs+gb9EUbDuCiCVvdw7gy8+0w2wZRYpMim/fsx4PbV1JcZxETAlZOOl0OqhUKnDczKSA89/hwGAwQC6Xu2yTy+UwGo1oa2vzuk+pVHrsb3x8HOPj4+Jrm80WVnv9EYzY89fWXXyazeaAPX7E/GR0wo7D7/YE1HZJVlqErSGI0OE4Dr998xK+8+IZTNgdWCFPx88eLMXGopxYm0YQoQsnrVaLnTt3umzzlKJgLlitVo/bLRaLz33eqK+vx759+8JgWWj4EoLuYi+YtiMjI+jr68Ptt9/u8byxFoxE5PnHez349z+ehtky6rOdBMDSnDRsKZb7bEcQsWJ4fArf/P3b+OPJKwAA1Q0F+GHlzcjJoKLTRHwQcmpVd9EE8CkKooE30eRvX11dHQYGBsQfoSButAhG7AXTVrgOb4Hh9fX1yMnJEX8ogHz+0DM4hq/+7gQ++3+tMFtGsSwnDV/6YAkk4EWSM8Lrx+5ZT4HhRFzyfvcg7vvf1/DHk1cgk0pQd/c6HHi4lEQTEVcE7HF6/vnnoVKpxCK+Tz75pMt+q9WKlpYWvPTSS2EzjmGYWULBYrGAYRif+7yRmpqK1NTUsNkXLnyJvUDams1mZGVlISfHsxu7rq4Oe/fuFV/bbDYSTwmOw8Hhd62XsP+vZzE4NgWpBPjcrcXYW3EdMlOTcPOKnFl5nJbmpOGxe9Zj14bCGFpOELOTs24pluOFU5fxzedPY3TSjiVZqfjpg0ryjBJxScDC6Xvf+x4YhsGdd94JAPj5z3+O3bt3u7Tp6+sLq3EqlQo6nW7W9rKyMigUCq/74pVgxF4wbf0lvoxXwUiExtmrNnzz+bfF2lwbl+eg/v6N2LB8Rjjv2lCIivVLZ304xZ2nyWEHLr4ODHUDiwqAVdsBKSUynM94Ss6akSLDyIQdAHDrmjz8+BObsXgRPbOI+CRg4dTW1uby+sCBA9i8ebPLtlBinNyTaBqNRjAMA4VCAYVC4dKWZVmUlZWJHidv++IVX0JwLm0vX77sceqUmF+MTtjxk5ffx4FXWUw5OGSmyPBvd12Ph7et9iiIZFJJfKccOPMCcEgD2K7MbMteBuzSAuvvjZ1dRMTwlpxVEE0f3rAU//OgMv4EPkE4MaeSKwIDAwMwGAwoLS0N6FiDwYCWlhYAfPxNeXm5uEpMeF1bWwsAaG5uhkajQXl5OVpbW12W7vvaF4/4EoJA4KLRnaGhIaxcuTJSZhNxgHvw9103FuA/7r0RhTnpMbYsRM68ADQ9DLh/hNq6+O1VT5F4mmcEkpz1hNkaLXMIImQkXIg5BJ588kk88sgjfrfFMzabDTk5ORgYGBBjtyINy7Ji/qvW1lbU1dWJYqiystJFNPpqK4jPhoYG7NixA1/96ldRVVUVkA2xuG4iNHoGx/DdP72LF0/xXpnCnDTsu/dGfCiRi/M67MCPNrh6mlyQ8J6nr70d0LQdvZ8TgzdMffjkgWN+2/1uzy3x7Skl5iXBPEeCEk4DAwNoamqCRCJBS0sLKioqXPa3t7fjiSeeCM3qGDAfHrjNzc0YGhrC5z73uYCPmQ/XPd/xFvz99YrrsCjRMyZ3vAr8+h7/7T7zJ6D4Nr/N6P2cGPzxxGX8y8GTftv9+BObcN8mqoBARJdgniNBPYFzcnKgUqmg1WphMplQXFzssl/wlBDRgeM4XLp0CTfffHOsTSHCyHtXB1H3/Fs+g78TkuFrwKlngTf+N7D2Q92RtYeIGmbLCH75WkdAbSk5K+GROFpIEvRX1+LiYvz85z/H4cOHKSA5xthsNgwODlJqgXlCsMHfCYHDDrB/B4xPAWf/AjgmAz92UUHk7CKiwpTdgV+9fgE//Ns5jE7afbal5KyEV+JsIUnIPn8STbFHSHxZVFQUY0uIufLKuV586w9vz5/g7/6LwMnfAid+C9g6Z7YXbgI2PwQceRwYvAo7OBjTUtErkyHfbodybBwyIcZp1faYmU/MnXeuDODR597G25cHAABbVstx98al+M6LZwC4Lgug5KyEV+JwIUmCB0ssbMxmM/Ly8pCZmRlrU4gQmVfB31PjwNk/AcbfAOw/ID7o0hjgpt2A8tPA0o38tkVLYfhTDfbnMehOmnkMFUxN4dE+K1S79lM+pwRldMKOHx0+hyePdMDu4JCVloRvfvgG7C5bAalUwr/HKTkrEQgOO+9p8rgWkwMgAQ49Cqz7SFSfFyScEphLly7RNF2CMq+Cv7vf4cXSW88Co/0z24s/CCgfBtZ9FEh2jVsxZGZgb8HiWYXBe2Qy7C1YjMczMxDeypdENDj6/jV88/dv45JlBADw4Y1L8R/33Igl2TP3P2GSsxKx5+LrPlbfAgAH2C7z7QJYSBIuEuwJTQhMTEygu7s7rjOlE5557+ogvvn7t9F+kRcZCRn8PWYDTj/Hxy5dMc5sz1rGT8VtegiQF3s81O6wY//x/fx3SLds95xEAgkk0B7X4o4Vd0BGXqeEoH94Av/553fxnJGfll2anYbvfmwDKtZ7jlOL++SsRHxw5URg7aK8kCSswunChQtYvXp1OLskvHD58mU4HA7yOCUQCR/8zXHApWO8WDrzB2CS9ypAmgRcfzew+WFgzc5ZLvNx+zg6Bjpw3noeJqsJrVdb0T3i/UHHgcPVkasw9hhRvrQ8ghdEzBWO4/DCqSv4zotn0Dc8AYkE+PQtq/CNu65HVhoV5iVC5HI7Hwd59k+BtY/yQpI5CaeTJ0+61FPT6XQ4ePDgnI0i/GM2m5Gamor8/PxYm0IEwCvnevHvfzgtTmEkVPD3UA9w8hngxNNA3/sz2xdfB2z+NHDzJ4FF+ZiwT+DCgAkmqwnnredxvv88TAMmmAfNcHCOoE/bO9Ibxosgwo3ZMoJv/eE0XjnH36frChah/v6bULoq18+RBOEBjuNzvB19fDpGcpqkNGBqzMtBsVlIErJwqqqqmlVn7sSJAN1qxJzxV9iXiA96Bsfwn396Fy8kWvC3fQo4bwBO/AY4dwhwTPHbkzMwuf5juLiuAufTMmAaMMHUVo/z1vO4ZLsEO+d5yXl2SjbWMGtQwpQgSZqE3539nV8T8jPoS0E84p5iIEUmxVfvXIOaD5YgJUkaa/OIRMPhAN77Cy+YLrfz2yQy4KYq4NavAdfOTa+qAzyuxYzBQpKQhVNFRQX27Nnjsu25556bs0GEfziOQ2dnJ2655ZZYm0J4weHg8GyrGfv/+i5s08Hfn91ejL0fil7wt91hh7HHiN6RXuRn5EO5ROk/ZsjC8p6lk89garALl5KTcD4tGaa8tTgvXw4TJnFx8Bimjh/1eHhWchZKmBKUMCWiUFrDrMHi9MWiyLc77Hj50svoGekB52G1jAQSFGQUQLlEOecxIMLLrBQDxXLU378RJfmLYmwZkXDYJ4G39cBrPwJ6z/LbktJ4L/b2rwK5q/htS9bxKQc85nHan1h5nEpKSgLaRoSfa9euYXR0lOKb4hT34O8Ny7NR//GbsLEoesHfhosG7D++3yWWqCCjAI9ueRSqVa7r1ezjQzCf+g1MZ5px3vo+TMnJOJ+djAt5KzApejSHAds58ZjM5EyU5JTMEkkFGQV+vaAyqQyPbnkUe/+xFxJIXMSTZPpbpGaLhgLD4wh/KQYIImAmR/kvZ6/9BBi4xG9LzQbKHwFu+RKwaMnsY9bfy6ccSNTM4QImk0ksQAvwXpCmpia0traGzTjCM2azGRKJBMuXUz2nWGF3cLOWU09MOfA/L7+PRqfg73/90PV4eNsqJMmiN4VhuGjA3n/sneXN6Rnpxtf/8XV8fsPnsSh5Ec53tcHU+zY6pmyYkEh4z3cu43JMelK6KJCcPUhLM5fOaZpYtUqFx29/3KO402zRzBJ3ROwIJMUAQfhlbABofRI49gQwPB2/mJkP3PJloPwLQJqfL5ZSWVRTDvgiZOGk0+mgUqlc8rAEUS+YmANmsxkFBQVITU2NtSkLkkOnu2Yl8MvNSIFMClwbmgAAfGg9H/y9jIlu8Pf41Dj+683/8jgFJmz55elfuu6QSJDGAcWpcqxZsgklS27C2ty1KGFKUJhZCKkkMqJPtUqFO1bcEfx0IhEV3FMMFOak4Tv3eU8xQBAeGeoBjv0MaP0FMG7jt+WsBG79Z2Dzp4DkBFgg40bIwkmr1c4qu6JS0bfEaGA2m2cVWCaiw6HTXfjS00ZwcECW0QFJ0iC4qSz0jxQDkILJSIb2gZtwV4SCv8emxtA13IWuoS5cGb6CK0NX+NfT264OX4UD/lew3TI6iq3jUyhZsglrNj6IZes+DllS9JePy6QySjkQZ3Achz+evILv/OkMLNMpBh6+ZRX+jVIMEMHQfxF4/Sf8tJywKi5/HbDj68CGBwBZ4r6Xwlar7uWXX4bVasXmzZvnbBThnZGREVy7dg0f+MAHYm3KgsPu4LDvxTOQZZ1GasGLkCYPiPsckzkY774HaZIyqG4I7Rs5x3GwTdhwZegKrgxfQddQlyiKBIFkGbP47ygAPl78UXz4tm8DGVRQlZiBUgwQc6bnXeDoj4C3mwFhle3yMuC2vcB1dwPSxF95OaflPc8//zxYlgXAP/Tb2tpw//33h8UwwjOdnbzbnALDo8+bbB96HW1IW/70rH2SpAGkLX8a1y4Dxzs2ecyKbHfY0Tva6+Ixcv7dNdyFkakRv3ZkJGVg2aJlKMwsFH8XZhZiWdIidJ96Gv9mecNvH/lLNpJoIkQoxQAxZzrb+KSV7/15ZpviDl4wrb5tVpWARCZk4fToo4/CarXCYrFAoVDAarWipqYmnLYRHjCbzVi0aJFL/qz5RkjL6CPIpb4RPGfsxFPHWKQWvghg9jNAIuHzt6UW/BFHL69Dl8PuMo12ZegKuoe7McVN+T2fPE2OZZnLULio0EUcCb+zU7L5wGyHA+g6yedbevNZ4HIb7JwDBSuWoUcmA+fhQSXhOBTY7VDKssIxNMQ8gFIMECHDcQD7d14wXTgyvVEC3HAPPyW3fH6mFJlTOoI9e/ago6MDEokEq1evxssvvxxO2wgPhDPx5d86/oYVS1aA4zhYxizIz8jHzYtvxqlrp7yKlkiLmmCW0UeSwbFJvHDqAvQnz+PU5S5IZKOQZnQgzWl6zh2JBJAkD+Kpjm8BHZ7bJEmSUJBZIHqJChcViiJpWeYyLM1cirQkH6uVRix8jbj3WwDT4ZnVKdPIclbi0b5e7F2yGBKOcxFPkunFG5q+fsiyqAr9Qsc9xUD2dIqBKkoxQPjD4eDLoRx9fKaenDQJuOkTwK3/AuRfF1v7IkzIwkmhUODixYsoLi7GD37wA/zbv/1bOO0iPGC323H58mXccccdYenv2298G7J0V9EjlUhdymM4i5ZIixrvy+h7sPcfe/H47Y8HdR67w46hySHYJmwYnBic+T1uc9km/AyOD6J7uB/9owMY54YhkdiBNCAzyPRkS9KXYK18LZZlLnOdSlu0DPnp+cEJTYeDfzCdb+E9S5fbAefyJSmLAMXtwBoV/5O9DKofbcDjPX3Yn8egO2nmX7zAboemzwpVkjzqJQqI+MI9xcBHNhbisXvXY0kWpRggfGCfBN5q4pNWXpvO65aUDpR+Btj2TwCzMEJIQhZOVqsVCoUC/f39uHbtGu666y4wDIM777wzoONZloVer4dCoQDLsqiurvY6/aTX68UVe+5tjEa+MrtSqQTLsrBarVAq56d7sLu7G5OTkxGNb3KvKSaIls/e+Fn86p1fhU3UuGN32LH/+H4vy+j5bd899l0kSZMwNDnkUQC5i6OhySGP/QWC4KiRQIqslCwwqTmQSqS4YLvg99j9H9g/t5Viw328N0nwKo30ue5fciOwdloorbgFSEpx3b9LC1XTw7hjZBTGtBT0ymTIt9uhHJuADACqdDFLHEfElv7hCXz3z2fwvPEyAD7FwHfv2wAVpRggfDExwhf3fv1/ABsfZ4u0HGBLNbD1i0Dm4tjaF2UkXJiSLx0+fBhlZWXIyQksO3JpaSna2/m6NCzLQqPRoLm52bORHqaltFotamtrUVNTg8bGRgB8OoTm5uaA439sNhtycnIwMDCA7OzsgI6JJW+++SZaWlrw6KOPIikp9Lh+4bpveOKGWR4nb7h7otxZnL4YP7nzJ5iwT2B8ahyj9lGMT41jzD6GsakxjNnHPG+fGsO4fRw9Iz143/q+1/7nQnpSOrKSs5Cdmo2slCxkp2QjTbYI1wakYHsc6OoHOHs6YE9HRlIWPrh2Je7dWIJtq4uQmZzpUirkrufucvG4ubM0YykOPXAoSK+Snfcqvd/Ce5YuG+FSkyklCyi5HVhTwYulnAASn555wUOJguUxK1EQSRLt/zgWeEox8Jltq/Fvd10ftRJARAIyagVaD/BJK4UvcIsKgG1fAUo/B6TNn/+3YJ4jc/qP+f73v4+2tjYcPHgQgGeB4wlhJZ6AQqGAwWDw2NZqtaK5uRlqtVrc1tDQgNraWgC8AOvv50tbzOeAaYCPb1q2bNmcRFOo+Ktuf230Gh7884MRt2NZ5jKsyF6B7JRsZKfMCCHht7M4En6nyHiPzJTdgSPvX4Pe2IkXznRjYoq/JplUgg9elw91aRF23rAEqUmeRY9zqRAAcysVMtTr5FV6GRh1SzNQsBFYsxNYWwGs2Bp8zpM4K1FAxA6zZQT/7w+n8apTioH9D9wE5UpKMUB4YbAbOPa/QOsvgYlBfhuzio9f2vQQkLywp3TntKqupKREnELbuXMnnn/++YDSERgMBsjlrkuh5XI5jEajx2k2Z9Gk1+tdXgOBC6bx8XGMj4+Lr202W0DHxQtmsxkbNmyItRleyU7JhjxNjlRZKtKS0pAmS0NaUprH1+lJ6TPbk9LQOdiJJ0494fcc/7njP4OeBjt71Ybn2jvxh5NX0Ds4c//XLc2CurQI925aFnBsh/dSIUug8RXr5bDz8UmCV+nKSbh4lVJzXL1K2WEI3o6jEgVE9JmVYiBJin++cw2qP0ApBhYsDrvvL1OWjumklb8F7NPPyiU38ivkbvw4ICPvJDAH4VReXo4HHngAhw8fDvpYq9XqcbvFMju5n7Mock5/4LxNr9cDAFpbW1FTU+Oy35n6+nrs27cvaHvjgYGBAQwMDMR1/qYf3fGjkGN77A47nn//efSM9HiMS5JAgoKMAiiXBBa/ZhmewB9PXsZzxk6cvjwjkOWZKbhv0zI8oCzCjcuyQ1qdqBoewR3myzBO9M3ED6VMQXajWw6moR7g/GFeKJleBkb7Xfcv3cgLpbUVQFF5QmfSJeKL05cHUPf8TIqBrdMpBhSUYmDh4nH6fhmwSwvkrQGO/je/YldIWrliK7BjL3DdXfMqB1M4CFk4dXTw662dP3haW1vnlADTm6AS0Gg00Gq1Ltucg8oVCgUqKipgMpk8Hl9XV4e9e/eKr202W1wLEWeExJdFRUUxOb9UIgXHcWERNZ5wngaTQBLSNNjElAN/f68Hz7V34uWzPZhy8H0kyyS4c90SqEtX4Pbr85E8l4K7Z14Amh6GDBxcJOJYF9D0MHDnt/jq3+dbgK5Trsem5QAld057lXYCWZEpy0IsDLwVmv6R4RyePEopBggnpp9bcH9+264ATZ923VayE7jtX3lvFAkmj4QsnDZv3oyysjLk5eWhpaUFBoNhlqjxBsMws7xLFovF55Sb1WqFwWCY1YZlWXF6T1ihx7KsR69TampqwhbGNZvNkMvlWLQout8YBdHymfWfwa/e+VXIoiYQvE+DFUCzReNxGozjOLxzxQZ9eydeOHUFluEJcd9NRTl4QFmEe25eBnlmyqxjg8Zh57+xeVypN73t5e+6bi68ecartLyMXN1EWPBUaFqemQKpZKbQ9EduKsRj91CKgQWPz+eWEzfcx2f5XrYpGlYlNHOqVdfc3AydTgeO49DY2BhwnTqVSgWdTjdre1lZmddj2traPKYi2LlzpxgcLuAePzUfuHTpUlS8Y57yOAmi5ab8m4ISNaGgWqXCB5bfjmdO/QOXbFexMnspHrz5dqS4BcT32Mbwh5OX8Vz7ZbzXPShuX5KVio9vXo4HSotwXUEYs2NPjQNvNbu6ub2x+gPApk/y39yyaJk3EV5mCk27InxpYDKS8QP1zZRigOC5+Hpgz60te0g0Bcicvv4WFxdj//79QR/n7g1iWRZlZWWiMDIajWAYxqWd0WicJYgUCoWLl8tgMECtVs+71XUTExO4evVq2PNTfWfbd4LKHK5apcIdK+6IaObwmW/S4wByAYxD97dX8Ng963H79UtgeLcbz7V34pVzvZieiUNKkhQfWl8AdWkRdqxZjKS5TMWND/KJ3Xrf43+Ev/svzMz9+6P0M8BGtf92BBEkQqFpX76DtCQZ7li3JGo2EXGMw8GXRAmEIe9pVghXAhZOgWQHf/LJJ/HII48E1F9zczM0Gg3Ky8vR2trqksOpvr4e5eXlYsoBAXfBxTAMysrK0NDQAIZhYDKZvOaCSmSuXLkCh8MRdo/Th4o/5DFfha8Ab5lUNrfkjj7w9k26a2AMX3zaiPRkKUYnZ7xhypUM1KUr8JGbCpGTHmRg9fA1oPesqzi6dg6wXfZ+THIGMOm/CC8W0Td9IjIc77C4TM954qptDMc7LB4LTRMLhP4LwMlngJO/AwYuBXYMPbcCJuAEmHK5HOXlvj8w29ra0NfX57NNPJEoifOOHDmCo0ePQqPRQCqd+zLieLxuu4PDDu3L6BoYgxQObJGexRJY0QMGxx3r4AB/3YXZqXigdAXuVy73v0LI4eCz3PaeA665eZDc8yY5k7kEyL+e/1l8PV93afH1QGY+8OONgK0LnuMFJPwqla+9TfmSokg8vp8jxVOvX8C3X3jHb7sff2IT7tsUQKJUYv4wMcwHgZ/8rVPBXQAp2QA35eNLHz23gAglwNy5cyfy8vJQWlrqtU2YkpATbpjNZhQVFYVFNM0VTyt5ZHNYrWMbm8T73YP4y9td6BoYw13S43gs+Sksk8wImyucHPsmH8ZLji34YdUmbF/jlt7fPsnnH3ERR2eBa+/7flgwK6fF0XWuIindR2LAXdrp1SkSuIqn6THYtX9BP3yIyDA6YceBIyx++vL5gNpTQPgCgeOAS8eAk08D7/wBmBia3iHha1hu/hSfCPf9lunnFkDPrbkTsHBqbm7GwMAA2traAPB5nNxV2XwMyo41HMfBbDZj69atYe/beOj/kFdYDAAYH7iK9NzlWFu6E++3H8Zo/2Wk5y7Huq13QTYdmH3odBe++8LbWDF0SvQGmRfdjH+/dyN2bfCdsHF8yo7zPUM41z2Is1cHce7qIM51D+GydVRsc5f0OJ5I/tGsY5fCgieSf4R/mfwKJjpTgBHrtEg6y3uTLCzgmPR8YmkykFcyWxzlrQVSMoIftPX3AlVPecmHMv/KmRCxheM4vHDqCrR/PYsr01N0yTIJJu2ev6RKACzN4b/QEPOYgcvAqd/x03EWp/Q7ucXA5oeAmz8J5DilrqHnVlgJuVbdiRMnYLFYIJFIAi7sG2/EwsUfTHFjlmXx61//Gu+++y6Ki4tRV1cntg2mH3fE6340C9mprt4iOyeBTDLzluhGHq5sewzdyz+EPzzzc3zbgzfoO5MP42MPfhG7NhTC7uBwyTKC967a8N5VQSjZcKFvBHaH57daYU4ali5Kws+ufRYFsMCTA0t4l3pNK5KcCSxe6+RBWsf/nbs6Mokl/WXgJaLGfJ2qO3GpH9/90xkYL1kBAMuZdDx69zokSSX48m/54uYefAd44lNKv19kiARkcgw4+yd+Ks70d4h3PzmTz+q9+SFg5TbfuZfoueWVYJ4jYSny+/LLL6OlpQUVFRUJJaJi8cANprhxaWkpnnzySbzwwguoqqrCt7/9bbFtMP2440s4cZzr/52gdX4tuRef4V4AABdhI+z/mmMv2Pw7cb53CGOTDqRgEgyGkCsZhFwyCAZDWJ4ygpJFE1iZPobC5GHIpcNYZLchacwCbqgHkslhv7ZzKVmQLN3gJI6m44+ylwNxMJVJRJ/5Jpy6BkbRcOg9/P4Ev1AhI0WGL99egkduUyAtmf+Q85THqTAnDY/ds55E03yC44ArRr4Eymk9MDYws2/VDmDTg8D6+4BUygg/V6JW5PfkyZPQ6XQ4ePAgFAoFSkpKEko4RZtgihsLbc1mM5YsWYIbbrhBbBtMP8Hi/mVFKuHF0cPci5B42c9xQIP0f/D+teeQKx1GbuoQMiVeVv4MTf+4nzdQ++75ES31J+YloxN26F414eevmDA2vXpUXVqEb9x1PQqyXWOWdm0oRMX6pWGNNyTiiKEe4K2DvGDqfXdme84Kfhpu0ycBuefSYkTkCVo4XbhwQUx8KZFI8MADD6C9vR3FxcWRsG9eEUxxY6Gt2WzGqlWrXNq2tbUFVSTZvbjxwAD/rcU2Hoyz0V/bCazCBQCAHQBfHU7KB1qn5wIZciAtF8hggHT59HY5kJHLb7deBP789QDMWAQkWHFmIrIIxbodDoeflvGJwzEdx3TorOhBKl+di3//6HrcVMR4PU4mlVDKgfnE1ATw/ku8WHr/bzN545LSgBvuATY9BBR/kDzrcUDAwunJJ5+ETqcDy7KoqqpCc3PzrEzhzz///Jxq1c13gilubLVa4XA40Nvbix07dri0DaYfwHtx4xX/7cH1E3YGgGlBFRb23x2+voh5xeDgYMIlvzVe6sd3XjyDk2YrAD6O6ZsfvgEf3rg0pALURAJy9TQft/TWQWDEKZ1PUTkvlm78OJDOxMw8YjYBC6fq6mqo1Wo8+uijYBgG/f39ePnll8X9/f392L9/PwmnEPAmhMbG+G+fzokvfRVC9rbPvbix1WrFqlWrcOnSJeTk5ARtL8EjFIk2m83zIrYmVgQzjhMTEzh16hTefPNNDA4O4vrrr8e2bduQmZmJZcuWRcniuXPFOgrtobP440l+hVNmigxfvmMNvrCjWIxjIuYxIxbg7WZeMDkXA19UANz8CV4w5V8fO/sInwQlnBoaGnzmajp48GBYjJqvBFPcmGEY9Pb2IjMzE7m5uS5tgy2S7K24cU5ODn3gh4Hs7GwaxzDgaxzHxsZw/PhxHDt2DGNjY7jppptw6623Ij8/P8pWzo2RiSn8/BUWja/ycUwSCVBZWoR/+9D1WJJNuZfmNfYpwPQyn3Ppvb8C9umC5NJk4Pq7+ZxLJTupEHgCEPAdqqmp8fvhUFdXN2eD5jPBFDdWqVT43ve+hxUrVri47MvKyqBQKIIukkwQicjw8DCOHTuG48ePw263Y/Pmzbj11lsTbkrO4eDwh5OXoT10Ft02Pt5wS7Ec3/7oemxYTl7feU3vOV4snToIDF2d2b70Jl4sbazkY0CJhCFg4eQezxRqm4VMMMWNV69ejcnJSXGazrmt+4eGez8EkegMDAzg9ddfR3t7O6RSKcrLy7Ft2zYsWpR4y67bL1rwnRfP4FQnvyhjhTwd37z7BuzaQHFMCUkguZDGBoDTz/NTcZ2tM9sz8oCNVXzOpaUbo2s3ETbIJxhlAi1u3N3dDbVajaeffhpdXV2z2vrqxx+pqal47LHHPE7fEYFD4xgenMexr68PR48exVtvvYWUlBTs2LEDW7duRXp6eqzNDJrO/hHs/+tZ/OmtLgDAotQkfOWONfjcraspjilROfOCl+zbWmDdR4ELr/Kr4t59EZiaroogkQFrP8SLpbV3AUkpsbGdCBthSYCZqMRz4rzjx4/jpZdeQl1dHZKSSN8S85vu7m4cOXIE77zzDjIzM7F9+3aUlpYmpCgdHp/CE/8w4cARFuNTfBzT7rIV2Puh66iGXCJz5oXpem/uH5nTdSsz8lxXxeWv44O8b9oNZBVE0VAiFKKWAJOIHGazGYWFhSSaiHlNZ2cnXn31VZw7dw4Mw+DDH/4wNm/enJDve4eDw3PGTnz/pffQM8jHMd2ikOPfP7oeNy6jOKaExmHnPU0e89lNbxvpA1Kz+ZilTQ8By5W+y58QCUviPZ0WCGazGevXr4+1GQQRdjiOQ0dHB44cOYKOjg7k5+fj4x//ODZs2ACZLDGnsI53WPDdP53B25f5OKZVeRn45odvwIfWF1Ac03zg4uuu03PeqPwVsGZnxM0hYgsJpzjEZrPBarW65G8iiESH4zi89957OHLkCC5fvozCwkLs3r0b69atS1hxYbbwcUx/fpuPY8pKTcJXd67BZ7avRmpSYopAwgmOA66+Bbz+k8Daj/ZH1h4iLiDhFId0dnYCAIqKisLaL8uy0Ov1UCgUYFkW1dXVtBLPC0YjX31eqVSCZVlYrVaxnI2vcaQx5sduz549YhFqh8OBd955B7///e9x5MgRXHfddcjMzERVVZWYoyzRxnRofAo/+/t5PHm0AxNTDkglwO7ylfjXD12HxYsSLy6LcKP/Ip+g8q0m4Np7gR+3iGKZFgIknOKQS5cuITc3F1lZWWHtt7KyUvwwY1kWe/bsCWo13kJCp9OhsbERAJ9Ty3mcfI3jQh9jQeAYjUZMTU3h1KlTeO2112CxWPDrX/8a//jHP7Bq1SpRAAUybvE0pnYHh+faO9Hw0nu4NsTHMW1T5OHfP7oe65fF1wITIkhG+4F3/sCLpUuvz2xPSgOu2wV0vDrtUfIU5yThV9et2h4lY4lYQsIpDjGbzWGfpmNZ1uW1QqGAwWAI6znmE6Wlpejv593uzt4NX+NIYwyo1WpMTPAZkX/yk59gcHAQN9xwA7Zs2YIXX3xRLFgd6LjF05geY/vw3T+dwTtX+KLCq/Iy8P8+fAMqKI4pcZkc4wvqvnWQ/y1k84YEKL6NXxF3wz1AWo7TqrrpVXQi0/d+1/7Z+ZyIeQkJpzhjcnISXV1d2LRpU1j7NRgMkMtds9PK5XIYjUZxCopwxdN0kK9xbGtrW9Bj7FwWBeBFjlAWpbGxMaRxi4cxvdQ3gvq/vou/nuazPmelJuGfd67Fw9tXURxTIuJw8B6ltw4CZ/7IJ6sUKNgA3FQFbFADOctdj1t/L1D1lJc8Tvv5/cSCIGbCKZi4hVDjTRKRK1euwOFwhN3j5K0AsHvNO4LHarVCr9cDAFpbW1FTUwOFQuFzHBfqGHsqiwIAH/vYx8Q2oY5bpMfU7uBwvMOCnsExLMlKw5ZiOWRS3oMwODaJ//27Cb882oEJOx/H9MktK7G34jrkURxT4tHzLi+W3moGbJ0z27OX8ykEbqoCCm703cf6e4F1H/GfOZyY18RMOAUTtxBqvEkiYjabkZKSgiVLlkTlfN4+mBY6zgJcoVCgoqICJpPJa3tf4zhfx1goi2I0GiGRSFBeXo5bbrklqNi8UMctHGN66HQX9r14Bl0DY+K2wpw0/PtH1sM2Nokf/O09XBvip252rFmMb330BqxbSnFMCYWtCzit5wXT1bdntqdmA+vv46fiVt0KSKWB9ymV8dN4xIIlJsIp2LiFUOJNEhWz2YyioiJIg/lHDgCGYWZ9S7dYLAntnYskLMuKXk3Bm8myrM9xXChj3NfXh9deew2nTp1CSkoKbr31Vr9lUUIdt0iN6aHTXfjS08ZZYb5dA2P48jNG8XXx4kx86yM34M51SyiOKVEYswFn/8SLJfYViPFI0mS+9MlNVXywdzJlcSdCI7yfzgHiK07EG56K2wbbz/j4OGw2m8tPPMFxXEQCwwHeU+eJsrKysJ8r0TEajdi5c3YSO7lc7nMc5/sYd3d3Q6/X46c//SnOnTuHnTt34mtf+xpuv/12v7XkQh23SIyp3cFh34tnPK6NEpAA+H8fuQEvfe0D2HkDBX/HPfZJ4L1DgP7zwA+uA/7wJYD9BwAOWHEL8JHHgX87B3zyGeDGj5FoIuZETDxOwcYthBJv4on6+nrs27cvaHujhcViwcjISESEk0KhcHnNsizKysrmnTckHCgUCmi1WvG1wWCAWq32KN6dx9HXvkSms7MTR44cwXvvvRdUWRSr1eoy3elMoOMWiTE93mFxmZ7zBAdgw7IcpCTF5LslEQgcB3S28Z6ld553rROXtxa4eTcfu5S7OmYmEvOTuFpV500IhSvepK6uDnv37hVf22y2uMrObTabIZFIwp74UqC5uRkajQbl5eVobW1N6FiwSMIwDMrKytDQ0ACGYWAymVzGytc4zpcxdi+Lsnjx4oDKohgMBrS0tADgv6iUl5dDrVYDCH3cwj2mPYO+RVOw7Ygo02ficy29dRDo75jZnrkE2Kjmp+IKN1GdOCJiSDiO8+WxjgiNjY3Q6XRiUDcA5Obmorm52aNr3nnpsdVqRW5uLkwmEwwGQ1D9uBNMNeRo8OKLL8JsNuPLX/5yrE0hFigcx+HcuXN49dVXxbIot912G2644YZ5MV31VqcV//XnM3izw39pjN/tuQXbSvKiYBXhl6Fe3qv01kHg8szzHsmZwA0f5cVS8e2ALK58AUQCEYweiMm7TKVSQafTzdruKW5BiDcRgsMFhHiTQPtJBCIV30QQ/hDKohw5cgQ9PT1YtWoVPvWpT6GkpCThBRPHcTjy/jX8/BUTXjf1+W0vAbA0h09NQEQIh93/kv6JEeC9v/Bi6fxhgLPz2yUyoOROfkXcug8DKZnRt59Y0MREOPmLtzEajWAYBgqFIuR4k0RjbGwMvb292L6dUvYT0WNqagpvvfUWjh49CovFgjVr1uAjH/mImOE7kZmyO/CX01ehe8UkZvuWSSW47+ZlWL88G//1p3cBeMwBjcfuWS/mcyLCzJkXvCSR1PI5kjpe4afi3n0RmBiaabNMyYulDfcDi6KTroUgPBEzv6avuAUhNqK2tnZO8SaJRGdnJziOI48TERUmJiZgNBrx+uuvi2VR1Go1li1bFmvT5szYpB3NbWYcONKBS5YRAEB6sgyf2LICX9hRjKLcDABAEZM+K4/T0pw0PHbPeuzaUBgT2+c9YtkStwgR2xWg6dNAGgOMWWe2M6t4sXRTFbB4bRQNJQjvxCTGKV6Ipxinv//972htbcU3vvGNhJ8aIeKXsbExtLa24o033sDY2Bg2btyIHTt2ID8/P9amzZmBkUk89cYF/Or1C+gb5hNX5mYk4zPbV+Mz21YjNzNl1jG+MocTYcZhB360wdXT5Ik0BtjwAC+YVmyhIG8iKsR9jBMxGyG+iUQTEQk8lUW59dZbE3Ja252ugVH84kgHnjl+CSMTfBzMciYde24rRlX5CmSkeH/MyaQSCgCPFhde8y+aAED9K2DNHRE3hyBChYRTHOBwONDZ2YkPfOADsTaFmGe4l0UpKyvDtm3bgiqLEq+83z0I3ass/njyMibtvON83dIsfPGDJfjITYVIllEOppgzPgiY/g6cOwS8+0Jgx4z6D+AniFhCwikO6OnpwcTEBMU3EWHDYrHg6NGjQZVFSRTaL1rwxD9YGN7tFrdtLZbji7eX4Pbr8slrG2v6LwDnXgLe+ytw4SjgmAzu+EUFETGLIMIFCac4wGw2QyqVzovAXCK2dHd348iRI3jnnXeQmZmJO++8E2VlZUhNTY21aXPC4eDw9/d68PNXTGi9wKcmkUiAD60vwBc/WILNK3NjbOECxj4FdLYC5/7KC6bes6775QrguruBNSrgj18BBrswKzgcACDhV9etopXFRHxDwikOMJvNKCwsRHJycqxNIRKUUMuixDuTdgdeOHkFuldNONfNL01Plklw/+YiVH9QgZL8RTG2cIEyagVMh/n6cOdbgFGnPHsSGS9+rruLF0yL18zsu1s7vapOAo+JIHbtn53PiSDijMR+qs4TzGYzrr/++libQSQYoZZFSQSGx6fwbKsZvzjC4sp0uoBFqUl4aOtKfH5HMQqyqUhr1Ll2no9VOneIT14pJKQE+JVwaz/Ei6U1KiCd8dzH+nuBqqe85HHaz+8niDiHhFOMGRwcRH9/P1auXBlrU4gEQSiLcuTIEXR2dqKwsBBVVVXzoixK39A4fv36BTx17CKsI3xszOJFqfj8jtV4aOsq5KSTVzZq2CeBS2/wXqVzhwCLW33Q/HUzXqWi8sDLnay/l0906S9zOEHEKSScYkxnZycAUGA44RehLMrRo0fR3d2NlStXzpuyKGbLCA4cYdHUZsbYpAMAsDovA9UfKMH9yuVIS6YP1agwYgHeb+Hjlc4fBsZtM/ukycDqHcB1u3jBJC8O/TxSGVB829ztJYgYQMIpxpjNZjAMMy+WhxORwW6349SpUy5lUT784Q/Pi7IoZ67YoHvVhD+91QW7g4952bg8B1/8YAl2bVhKySgjDcfxwdznDvGepc7jAOeY2Z+xeNqrtAsouQNIpecUQZBwijGXLl0ibxPhkcnJSbS3t8+7sigcx+EYa8HPXzHhlXO94vbb1i7Glz5Ygm0leQnvQYtrpsb5NAHnXuIFk/Wi6/6CjbxYuv5uvj6clPJhEYQzJJxiyNTUFLq6unDTTTfF2hQijpivZVEcDg5/O3MVT7zC4pTZCgCQSoAPbyzEFz9Ygg3Lc2JrYKLhsAceJzTUA7z/N14omf7uWjxXlgooPjjjWcopio79BJGgkHCKIVeuXIHdbiePEwHAc1mU7du3Izc3vnMU+av3Nj5lx++Nl9H4Kgv22jAAIDVJisqyIuy5TYFVeZmxMj1xOfOCl5VpWj74muOAq29Pe5X+Clxudz1+0dIZr1LxB4AUugcEESgknGKI2WxGcnIyCgooU+5Cxmaz4fXXX0d7e3vClUU5dLoL+148g67plAEAUJiThsfuWY9b1yzGb9+8hF8e7UDP4DgAIDstCQ9vW43P3roaixcldlLOmHHmhelcSG5JJG1dQNOngZI7gd73ANtl1/3LNk8Hdu8CCm+m4rkEESIknGKI2WxGUVERpBRDsCDxVBZly5YtyMjIiLVpAXHodBe+9LRxVg7oroExfPFpI9KSpBib4gONl2an4ZHbivGJLSuxKJUeOyHjsPOeJo+Zt6e3mV7mfydnAIo7gOt38TmWspZGy0qCmNfQEyxGcBwHs9mM0tLSWJtCRJnu7m4cPXoUp0+fTtiyKHYHh30vnvH48S0wNuVASX4mvvjBEty3aTlSkugLwpw595Lr9Jw3VPuArV8EkilRKEGEGxJOMaK/vx/Dw8MU37SAmE9lUY53WFym57zx3fs2YPuaxVGwaJ4yZuOTUHa8CnS8wsctBUJOEYkmgogQiffEnieYzWYAQFERrWCZz3AchwsXLuDIkSNgWRaLFy/Gxz72MWzcuDFhy6JwHIe2i5aA2vYOjUfYmnnG5ChgPj4tlF7lg7qdS5sEyiKKmySISEHCKUaYzWbk5+cjPT091qYQEcBbWZR169YlbEzbFesofn/iMp43dsLUOxzQMUuyyOvhE/skcOUEwL7Ce5TMxwG7m9jMLebTBRR/AFi5HXjyTj4Q3ONEqYRfXbdqezSsJ4gFCQmnGGE2m2mabh7icDhw5swZHDlyZF6URRkan8Kh01fxvLETb7B94KY/q1NkEkilErE8ijsSAEtz+NQEhBMOB9D99oxH6eLrrjmVACCrECieFkrFtwGMWx3LXdrpVXUSuIqn6ffXrv1U940gIggJpxgwPj6Onp4e3HLLLbE2hQgT86ksit3B4bXz1/C8sROH3rnqIo5uUchxv7IId29YitfOX8OXnjYC8PjxjcfuWU8lUzgOuPY+703qeIXP2D3a79omXc4LpOIP8IIpb43vVAHr7wWqnvKSx2k/v58giIgRM+HEsiz0ej0UCgVYlkV1dTUYhvHY1mg0wmAwAABaW1tx4MABsa3RyD+4lUolWJaF1WqFUqmMxiWETGdnJziOI4/TPGBychJGoxGvvfYabDZbQpdFOXvVht8bL+MPJy+j2zYzXaRYnIn7lcvxsc3LUZQ7kyph14ZCPPEp5aw8Tkun8zjt2lAYVfvjhv6LMx6ljleBoauu+1MWAatunZl+W3Jj8GVN1t8LrPtI4JnDCYIIGzETTpWVlWhv57PZsiyLPXv2oLm52WNbg8GA2tpaAEBDQwN27twpHqvT6dDY2AgAUKlUXvuIJ8xmM9LT05GXlxdrU4gQEcqiHDt2DKOjowlbFqVncAwvnLyC542XcabLJm5nMpJx783L8PHNy7FpBeN1mnHXhkJUrF/qM3P4vGewG7hwZNqr9CrQf8F1f1IasGLrjEdp2SZAljz380plvKeKIIioEhPhxLKsy2uFQiF6lNwxGo2or68XhZNarYZGowHLslAoFCgtLUV/P+/69uaxijeE+KZEjHlZ6AwPD+PNN9/E8ePHMTU1lTBlUZwZm7Sj5Uw3njd24tX3r8Hu4CfakmUS3LluCe5XFuGO65cEnHdJJpVgW0mCfgkIpt6bwGg/cOG1GaHUe9Z1v0QGFJVNC6UPAEVbKDUAQcwjYiKcDAYD5HLXoFG5XA6j0Thrmk2pVOLAgQPia6vVKrYXCFQwjY+PY3x8ZgrCZrP5aB0ZHA4HOjs7sWPHjqifmwidRC6LAvAFdlsvWPC88TL+8nYXBsenxH2bVzK4X1mEj24sRG5mSgytjDL+6r0JjA8Bl47NCKWuU5gV1bV044xHadU2IDUx3hcEQQRPTISTIH7csVg854ZRq9Xi3wcPHoRKpRLFktVqhV6vB8DHP9XU1EChUHjsp76+Hvv27Qvd8DDQ29uL8fFxim9KECwWC1577TWcPHkyIcuisL1D+P2Jy/j9icvo7B8Vty9n0nG/cjk+vnk5FPmLYmhhjPBZ7+1h4I463hvV8SrQ2Qo4plzbLb5uRiit3gFk0OpBgogkdocdxh4jekd6kZ+RD+USJWQxiumLq1V13gSV8369Xi/GNwFwCSpXKBSoqKiAyWTyeHxdXR327t0rvrbZbFEXMGazGVKpFMuXL4/qeYng6OnpwZEjRxKyLIp1ZAIvvtWF542dOHHJKm5flJqEj2wsxP3K5ShfLYd0IcUhORNIvbe/f891c85KQCEIpduA7AUa+E4QMcBw0YD9x/eje6Rb3FaQUYBHtzwK1SpV1O2JiXBiGGaWd8lisfidctNoNGhpaXFpx7KsOL0nrNAT4p/cSU1NjfkHn9lsxtKlS5GcHIbgUCLsXL58GUeOHMHZs2eRk5ODD3/4w9i0aVPc36+JKQf+/l4Pfm+8jMNnuzFp5wWATCrBbWsX435lESpuKEB6Cq26Crje2+oPABvVvGcpd7XvFAEEQUQEw0UD9v5jLzi3Lzo9Iz3Y+4+9ePz2x6MunmIinFQqFXQ63aztZWVlXo9paGiARqOBQqEQPVMsy2Lnzp1icLiAe/xUPGE2m7F27dpYm0E4kahlUTiOw6nOATxv7MSLp66gf2RS3Le+MBv3K5fj3k3LFnb2bvsU0Psun5G7s5X/bfHskZ5F6Wd44UQQREywO+zYf3z/LNEEABw4SCCB9rgWd6y4I6rTdjERTu7eIJZlUVZW5pKbiWEYsZ1er4dSqRRFU1NTE6qrq6FQKKDVasV+DAYD1Gp13K6uGxoagsViofimOIHjOLz//vt49dVXY14Wxe7gAl7S39k/gj+cuIznjZfBXpspfbIkKxUf28zHLd1QmB0t0+OL4T5eIHUe50XSZSMwGVh5mFlQvTeCiDojkyPosHWgY6ADr19+3WV6zh0OHK6OXIWxx4jypeVRszFmMU7Nzc3QaDQoLy9Ha2urS/6l+vp6lJeXo7a2FizLorKy0uVYhmHE2KaysjI0NDSAYRiYTKa4zuPU2dkJAFi5cqWflkQk8VQW5aGHHsKaNWtikiLi0OmuWUkkC92SSA6OTeKv06VPjrEz09xpyVLsunEp7lcW4dY1ixdW/iT7FNDzzrQnaVosWdjZ7VKygKJSoKicTw2wbDPQ+AGq90YQMYLjOHSPdKNjoAMXbBfQMdAh/vgSSt7oHemNgJXekXAc5+nJsSCw2WzIycnBwMAAsrMj/w29paUFp0+fxte//vWIn4uYjd1ux1tvvYWjR4+ir68Pa9aswW233RbTsiiHTnfhS08bZ318C/LnK3eU4JJlFH87M1P6RCIBbinOw/3K5bh7YyEWpcbVGo/IMXxtZrqts9W7N2nxdbxAKioDVmwB8tfNzs0krqoDPBaMqXqKSpcQxBwZt4/jou0iL5AGLoiepAsDFzAyNeL1OHmaHMU5xchMysSrl1/1e55f3vXLOXucgtEDC+SJGx9cunSJpuligFAW5fXXX8fAwABuuOEGPPDAAzEvi2J3cNj34hlfa7vw07/PxOOU5GfifmURPrZ5OZYz6VGxMWYI3iTn2KT+jtntUrOB5aW8QCoq5/8OJDUA1XsjFiCRWNLPcRwsYxaP3qPLQ5c9xicBgEwiw4qsFVidsxrFOcUozi7mf+cUIyc1R7T3rufuQs9Ij8d+JJCgIKMAyiXRLbNGwilKTE1N4cqVK9iwYUOsTVkwjI2Noa2tDW+88UZclkU53mFxmZ7zxl3rC/DlO9bgpqKc+Mw2H0r2bXeGep1ik1qBK0Zg0sM30sXXAyump9yKyoH860Ovz0b13ogFxFyX9E86JtE52OlRINkmvCeTzkrOQjFTjNXZq0VhVJxTjBWLViDZT+khmVSGR7c8ir3/2AsJJC7iSTLtHdZs0UQ9nxMJpyjR1dUFu91OHqcoMDIygmPHjuH48eOYnJzE5s2bceutt8ZNWRS7g8OZKzY823opoPYfvqkQN69gImtUqASafdsZ+yTQfRrobJv2KB2fXd8NAFJzpmOTpkVSUSmQHuZ7SPXeiAVAMEv6bRM2URBdGJgWSLYOmG1mTHFTnrqHBBIsW7QMxTmzBVJeWt6cvvCpVqnw+O2PexR9mi2ahZPHaSFiNpuRnJyMggJaqRMpbDYb3njjDbS1tcVVWRSHg8N73YN4w9SH1019ON7RB9uY5weQJ+I2nYC/7NtCnNBQz8yUmxCbNDU6u7/8dbxAEqbdFl8PRHl1I0H4I54yWAeCvyX9APDNo9/E02eexgXbBfSN9XntKz0pXRRGzlNsq7JXIS0pcs8p1SoV7lhxR9yMOwmnKGE2m7F8+fK4zguUqDiXRUlOTsb27duxdevWmJVF4TgO53uG8AbbhzdMfTjG9rnkWAL4LN7lq3PRdrEfg15ElATA0hw+NUHcEUj27d9XAy/9P2DAg2ctNWcmeFuITUpnImgwQcydeMlg7eAcGJ0axdDEEIYnhzE0OYShyem/nbYNTw6DHWD9rlQbnRpFe89MRY4lGUtmeY8UOQosyVgCqSQ2X2ZkUllUUw74goRTFOA4DmazGZs3b461KfOKnp4eHD16FG+//XZMy6JwHIcLfSPTHqVrOMZacG1o3KVNRooMZavl2KbIw7aSPGxYlo0kmVRcVQd4XNuFx+5ZH58pBi6+7j/79uTotGiS8N4k59ikxdeRN4lIKMKRwdrusGN4ahjDEzPCRhQ9bts8iaDBiUEMTw5jeHLYa9B1qOy+fjc+vubjWJ2zGpnJmWHte75BwikKWK1WDA0NUXxTmHAvi3L33Xdj8+bNUS2LYrbwQknwKl21uQZ5pyZJUbY6VxRKNxUxSJbNFgq7NhTiiU8pZ+VxWuqWxymmjA8Cvef4DNw97wK9Z/nptkDYsRfY8TUgLSeiJhKJRaJNd03Zp1B/vN7ndNe3XvsW3ux6EyNTIzNix00MjXqaop4DMokMmcmZWJS8CJkp07+TXX9bx634o+mPfvu6a/VduHHxjWG1b75CwikKmM1mAEBRUVGMLUlcOI7DxYsX8eqrr4JlWeTl5UW1LErXwKgYo/SGqQ+Xra4PwBSZFJtWMqJQ2rySQWpSYHbt2lCIivVLA84cHjHGh4De93iB1HsW6DnL/x4wh95nyZ0kmggXYjndNTY1BtuEDbZxG2wTNgyMD/CvhZ9xGwYmBsT9wrb+8X44OIfPvocnh/Hse88GZEeKNAWLUmaLHI/ix6md+7Y0WZrfwGu7w45jXcfibkl/IkPCKQqYzWYsXrw4ZjE3iYxQFuXIkSNigeTKykrccMMNES2L0jM4JsYnvWHqw4U+16XxSVIJbl4xI5SUK3PnVEBXJpVgW0neXM0OjPEh4Np708Lo3enf73mORRJYVMBPt+WvA5asA/KuA57/AjDYDcq+TQRKOKa7JuwTPkWOp22CSJpwTETy8nDHijtwc/7NyErJ8ip+MpMzkSJLiagdzsTrkv5EhoRTFDCbzTRNFyQOhwPvvvsujhw5gqtXr2LFihV+y6IEU+/NHcvwBI6xfIzSG6Y+mHpdM1JLJcDG5Tm4pSQP2xR5KF8tR2Y4M3aHIxeSO+4CqXf6b18CKXMJL4zyb5j+Pf3jKank3d+fXlUngccIrV37KSdSBEm06a5AVnd9+/Vv41z/OQxODM4SPsLvMbv/3Ge+kEqkyErJQk5KDrJTspGdms3/nv47JyVn1raOgQ7Uvlrrt+9Pr/903AQwOxOPS/oTGRJOEWZ8fBzd3d3YsmVLrE1JCNzLopSUlOCzn/0sVq1a5dMlHUi9N2cGRiZxrGNm1dvZq4Mu+yUSYH1htuhRKi+WIzstQjFUoeRCckYQSL3vzcQgBSyQBC/SDd4Fkjco+3bMiJfVXRzHYXhyGNZxKwbGB2Adt4p/u7++PHTZ7+quwYlBPHHqCb/nlUCCrJSsWcInJ3W2GHLflpmcGfTKsLXMWvww44cJPd0Vb0v6ExmqVRfhWnUsy+Kpp57CV77ylbjJWB2PTE5O4sSJE3jttdfEsig7duzA8uXL/R7rr97bE59S4tY1i9F6wYLXz/MB3We6bHB/519fkIVtJXm4RZGHWxRyMBlRcKd7y4XkqWbaxPB0DNLZaYE0HY9k9SOQ8q+fEUahCCR/RMJbRnjF23SXMO0SyHSXJybtk6LQcRc/7iJI3D8xgClH4DnJAmHL0i24cfGNrqLHTQxlpWRFfVm8MO4APE53hTruRHwQjB4g4RRh4fTKK6/g2LFjqK2tjc9yGTFmfHwcra2tYlmUDRs2YMeOHViyZElAx9sdHHZoX/ZZuiRZJoHdwcHh9k4vyc/EtpI8bFMsxi0KOfIWRTeNARx24EcbfC/rT1kErNwOXDvrRyDlOwmj66en2m4Ir0CahyTidNddz93l1XMjgQRLMpag6aNNGJocmiV0PIqf6b99FV31R6osFTmpOWBSGTCpjPi38+/ekV785MRP/PYVjoKtkcKTp29pxlKa7poHUJHfOMJsNqOoqIhEkxsjIyN488038eabb86pLEog9d4m7bxiWpWXIU69bVPkYUl2jDJy2yd5sXT2L/5zIU0MAef/NvNaEEhCkHb+tAcpM0qB5fOIeJnuckfI9TM0wef3EX4PTw7j7d63fU53ceDQPdKNDzZ9MKRzSyVSZKdkexU/zr+Fv3NSc5Ce5L/otN1hx8H3DtJ0F5HwkHCKIELiy1tvvTXWpsQNg4ODeP3119HW1gYAKCsrw/bt2/2WRZmyO2DuH4WpZwim3iGwvcMw9Q7h3S7vxSWd+Y971+Oz24vnbH9AjA0AA538j/XSzN8DZv73YBfgZ2mzC5seAjY9yIukOBRIiea1AcKzussdjuMwMjUiJi0cnBzE8MT0b6fkhc5iyL3t0OTQnDw/zqQnpXv0AHnyDAl/R3IKbL6s7oqnDNZEbCDhFEF6e3sxPj5OK+oA9Pf347XXXsOJEyd8lkUZHJsURZGpdwimHv7vC33DoufIG1I4sEV6FktgRQ8YHHesgwP8h8D1BWGainXYgcGrTkJoWgxZzTMCaXzAfz+yFCAjjxdR/rj5k8DqHXO3PQLEq9fGF4Gs7vrOG9+ZEULOQsfNAySKoYkhDE8N+831EwxCrp9FyYvE3xP2CZzsPen3WJ1Kh+3L4y8VBK3uIuYDJJwiiNlshlQqDSjAeb4ilEU5ffo00tPTcccdd6C0tAyWcQ5tnUMw9XaLAom9NoRu27jXvtKSpVAsXoSSJYtQkp+JkvxFWJWXgeqn2rBp6Ai+nfwUlkksYvsrnBzfmXwYp7I+EHi9t/EhNw+R2fW17QoQSDBsuhzIKQKYlfzvnCIgZ8X0TxE/5QZuOsapC3ZwMKalolcmQ77dDuXYOGRxngspEl6bQJmwT2BkcoQvXzE5zP89XYpieHIYI1MjLtuEbM7Dk8PoGe7xu7qrf7wfe1/ZG5JtMolsRvBM5+0R8vq4/xbauLSfToLoKdePEOPkb7pra+HWkGyPBjTdRSQ6JJwiiNlsRkFBAVJSopfsbK7MJReSM5cvX8bhv7+CN0+8jXFpKrJXbUB3zkr8wzgO9qV/YHTS7vXY/KxUURiV5M8IpWU56ZB6sOWJ0su4+fUfzdq+FBb8LPlHOKVU8NfgcADDPTMiyNlLNDA9pTba7//ipEm8oMlxEkXMCidxVASkBFjraZcWhj/VYH8eg+6kmX/HgqkpPNpnhSpOcyH589pIIIH2uBZ3rLgDMqkMk47JoMTN8OQwRqdGXds7CaVwr+TyxKqsVSjKLkJWsgex4+YJct4fSDbnUKHpLoKIPSScIojZbEZJSUlMbQhGCB063YXvvHAKefYWZCRdw8jUYvTJKvDte2/2WjON4zhcG5qAqXcI53sG0X76fbQeew2XLnRgWJKO1KL1SM5fDUmnDOjsFY9LkkqwenGmi0BS5GdCkb8IOelB5Ety2LH5nf3gJIADQKub10YKYPPxbwDvPg4MXgHsAWQOTs1xEkJOYihnBb99UUHYxIwhMwN7CxbDfXFrj0yGvQWL8XhmBqI1ecFxHMbt4xidGsXo1CjGpsYwOjWKkakR8W9h+7n+c36DlK+OXMWOZ3dgwj4RsYzNabI0ZCRnIDM5E5nJmchIypj1Wvg7MzkT6UnpuDJ0BT89+VO/fT+2/bG4/HCn6S6CiC2UjiBC6Qi6e7rwiZq7sPSmVCxevgjFWesxPDmAnPR8LGWK8bEP1iAlhV/+PjExjj+8okOP7RKWZK902eeJQNsHI4QOne7CL174d1wreAPXkmaCQxdPObC4exs+89HvYN3SbLC9QzC5xCANYWB0ElP9VzBmfgf2wV7IMnORWnQjkhevQE56CtYscfYc8d6jFfKM2UVvOY4vKDva7/ozZnXbZp35PXgVGO2DISMd+/NyPXht+qEacaorJ5ECWcu8eIpWADnLo1ZbLZCl5QUZBTj0wCHIpDIXYeMsZNx/XPbZRzE6Ob3dPua5jdO2cFdcdydVlioKGFHcJGcgM8lV3DiLHVEIJc28zkjOQEZSBpKkwX/3C3S6Sxj3eCURg/IJIl5JiDxOLMtCr9dDoVCAZVlUV1eDYZig2wbTjzuREk7/+uQu/KnXBMtRK5jbGMjSZz/M5FMOfFx+NwDg95a/wuIkVoR9n9r16Kzjnj60P6D2fz/bjWdeaoAlv21WW3lvGR68qxZ3rCsAwHulvt6owenc4/zHiNM0g2T67aG4Woq3xz8GaerMFBTHOTB5zYzxy+9gkX0IRUUrsGXbrSjfcB2uZ+xQLJoEIxmGRBQ6vsTQtBDivE/hecOQkY69SxZ7tf3xnmtQlf8zsPlTQFYhIAvco+XgHJh0TGLSPolJxyQm7BP8a+HHPvO3yz77JCYcE7PaOP9ttplx2HzYrw1ZyVmY4qaiImwEUmWpSE9KR1pSGtKT0vm/ZWlIT05HRlIGhiaG8EbXG377+e7272Jr4VZR7CRLI5R9PUgomSFBEM4khHAqLS1Fe3s7AF78aDQaNDc3B902mH7ciYRw+tcnd+FvSZ0YOjOEa3/rQ9qq4OMdhNZb0q5H6bqd4vb2s4dxfOw9rxmyhfYOjsMf3/gzrmZc8to2f2gFkhcpMTJhx+DoOFKy/oYRL1N4EgAZDg5LbBvw8TvLsDYXGLt2BSb2AkaHbFiXn4QPrkrGqowRSMYGwI3b4ABgBzAlkWBKAtjh+nsKEtinf09JALtEMtNeloKp1CzYUxfBnpKJyZRM2FMyYE9Ox1RyOqaS02BPSsNUUiomh6/hQNcrGJJKXESTCMchjeNwW34ppjIY32LH6fWUYwqT9klMcZGPpQmFFGkK0pOdBM20uHH+cRY9wuuMpIzZgsi9nSzNr+diPnhtKJkhQRACcZ8Ak2VZl9cKhQIGgyHotsH0Ew2Ghm0wJHUCAFIKU5G2Ig1MOQNZlpcPDkGzevnAv+rogaQ4GxyAsbExdGV3I1ea67X9FUc3JCNvYdI+Cdkum8+2Sdwg1g4fhxQOjCRN4Fx6Hnylg7QP2tF77C083/s+Bt+ZwMSoA+mFqVi0KQNHcpPxhGRiWvjkYErC+OgpGMb4n6k+wJd+cZ/yc0YiwZhEgpa+E0Df3C1KkiQhWZaMZOn0z/TfKdIUj9uFnxRZyqy/e0Z68OeOP/s9577t+1BeUO4ilGItRuZDkDKt7iIIIhRiIpwMBgPkctfl4XK5HEajEUqlMuC2bW1tAfcD8OU9xsdnlrvbbIElTwyU/37uy3BMCxWJVAKJzI+nyZcnSiLBoAz43aXGmW1+BMKwTIJzWWemN/gXE29lCWPh3yM23jUOy4Vx2OwSZKzJQOZ1mZBkJ2HY75EzSCVSJEmSIJPKkCRJQpKU/1smkSFJOv16+m/3bTLp9GuJUxupDN3D3TD2GP2e+96Se7F5yWYXYZMiTXEVOTLPQkd4nSRNCmtyQLvDjrbuNr9em/tK7ovLD/P5EKRMq7sIggiWmAgnq9XqcbvFYpm1zVfbYPoBgPr6euzbty8QE0Oid7wLmM48IE2RQiKTYKAtgGSIPpDb7cjkOIxIJOiT+f/wLLDzkqkrgM/ZYqSjMKsQtvEBnJ7w7Y6Z6J7ATcsVeHTff2Ll6pWeBc20IHIXRkLbSGQkbr3ais+/9Hm/7T625mNx9wFJXhuCIIjEI67SEXgTQsG29bavrq4Oe/fOJLWz2Wxhzeqdn1oIcD0AAFmGDHmqPDgm5pZJeG9+Fe657fN44bWn8N/dz/ht/08FD2F5bjr+7eyTftv++7pHUHrTQ7BPTeATzR9CnxTgPHjBJByHxQ7gj585DHlefkjXESmUS5QoyChI2PpX5LUhCIJILGIinBiGmeUVslgsHlfD+WobTD8AkJqaitRU78v858rXH/gZ9M3b4QAAiQSyDBlkGT6+efuIcZJwHBbbOXxW/f+QkpKKz92vwbO/OYg+mcS7uLFz+Nz9tZBJJfjvy79Crw8htMQB3L3znyFL4l1k/7Hls9h7/re8WR5Wpj225qG4E00AeW0IgiCI6BKZao5+UKk8f4suKysLqm0w/USDRZnZUE0V8S/8LVZ02i9xayu8/sTij4n5mVJSUvHJxR8LqL0sKQV11z3ks+2j1z0kiiYAUO2ow+NrHsISNwdZgQN4fM1DUO2o8309MUTw2izJWOKyvSCjIGGWlQtemw8rPozypeUkmgiCIOKUmHicFAqFy2uWZVFWViZ6ioxGIxiGgUKh8NnW3bPk3k8s+OEjh/CvT+6CIakTvibp8u0cPjEthH537Q+4ljTj5Vk8va/6vv9yOab6vv8C/hhYe9WOOjwOYP+536Lb6TO4wAForvMshFQ76nDHLf8K49u/Qa/tEvKzV0K58dMuAiteIa8NQRAEEQ1imgBTp9OhvLwcra2tqKurEwVPZWUlysvLUVtb67etr33+iGTm8KFhG/77uS+jZ+wyAMQkczgA2KcmElIIEQRBEES0SIgEmPFAJIUTQRAEQRCJQTB6ICYxTgRBEARBEIkICSeCIAiCIIgAIeFEEARBEAQRICScCIIgCIIgAiSuModHGyEuPtw16wiCIAiCSBwEHRDIerkFLZwGBwcBIKxlVwiCIAiCSEwGBweRk5Pjs82CTkfgcDhw5coVZGVlQeKhNMlcEOrgmc1mSnUQRWjcYwONe2ygcY8NNO6xIZLjznEcBgcHsWzZMkilvqOYFrTHSSqVoqioKKLnyM7Opn+sGEDjHhto3GMDjXtsoHGPDZEad3+eJgEKDicIgiAIgggQEk4EQRAEQRABQsIpQqSmpuKxxx5Daqr3mnNE+KFxjw007rGBxj020LjHhngZ9wUdHE4QBEEQBBEM5HEiCIIgCIIIEBJOBEEQBEEQAULCiSAIgiAIIkAWdB6nSMGyLPR6PRQKBViWRXV1NRiGibVZCYnRaITBYAAAtLa24sCBA+JY+hrnUPcRs9FoNKirq6NxjxIGgwEsy0KhUAAAVCoVABr3SMKyLAwGA+RyOViWhVqtFsefxj18GI1G7NmzB+3t7S7bIzHGER1/jgg7SqVS/NtkMnFqtTqG1iQ2Wq3W5W/nsfU1zqHuI1xpb2/nAHD9/f3iNhr3yNHS0sJVV1dzHMePkUKhEPfRuEcO5+cMx3HiPeA4Gvdw0dzcLD5P3InEGEdy/Ek4hRmTyeRywziO4xiGiZE1iU17e7vL2JlMJg4AZzKZfI5zqPuI2TQ3N3MKhUIUTjTukcV5rDmOHzfhN4175HAfI2fxSuMeXtyFUyTGONLjTzFOYUZw9zojl8thNBpjZFHiolQqceDAAfG11WoFwI+nr3EOdR/hil6vh1qtdtlG4x45WJaFxWIBwzAwGo2wWq3idBGNe2SRy+UoLS0Vp+wqKioA0LhHg0iMcaTHn4RTmBE+3N2xWCzRNWSe4PzBffDgQahUKjAM43OcQ91HzGC1Wj3GA9C4Rw6j0Qi5XC7GZTQ2NkKv1wOgcY80zc3NAICSkhI0NzeLzx0a98gTiTGO9PhTcHiU8HYjicCwWq3Q6/Wzggo9tQv3voVIU1MTqqurA25P4z53LBYLWJYVvxxUV1cjNzcXnI8cxTTu4cFgMECr1YJlWdTU1AAAdDqd1/Y07pEnEmMcrvEnj1OYYRhmlqoV3O9E6Gg0GrS0tIjj6GucQ91H8BgMBlRVVXncR+MeORQKhThWAMTfRqORxj2CsCyL1tZWqFQqVFdXw2QyoampCSzL0rhHgUiMcaTHn4RTmBGWDrtTVlYWZUvmDw0NDdBoNFAoFLBarbBarT7HOdR9xAxNTU1obGxEY2MjWJZFfX09jEYjjXsEEeKZPEHjHjmMRiPKy8vF1wqFAnV1dfSciRKRGONIjz9N1YUZ94cfy7IoKyujbxohotfroVQqRdEkTCG5j6fzOIe6j+Bxf+jU1NSgpqbG4wc7jXv4UCgUKCsrE+PLhFxOSqVyVlsa9/ChVCqh0+lc4in7+vpo3COIcwylr8/MeH3OU5HfCMCyLHQ6HcrLy9Ha2uqSPJAIHJZlUVJS4rKNYRj09/eL+72Nc6j7iBmsVisaGxuh0WhQXV2NmpoaKJVKGvcIYrVaodFoUFpaivb2dtHTCtD7PZIYDAZxShTgvzzQuIcXg8GAlpYWNDQ0oLa2FuXl5aJYjcQYR3L8STgRBEEQBEEECMU4EQRBEARBBAgJJ4IgCIIgiAAh4UQQBEEQBBEgJJwIgiAIgiAChIQTQRAEQRBEgJBwIgiCIAiCCBASTgRBEARBEAFCwokgiKhjMBhQUlKChoYGNDY2orS0FKWlpWLCzZKSEhiNxjmfQ+iTIAgiXFDJFYIgoo7VakVLS4uYnbmlpQVyuRzV1dUAgN27d4NlWY9lLwJFpVJh9+7dYbE3GjiXoSAIIn4hjxNBEFHHYrH4LGqrVCpnVTefz7Asi6amplibQRBEAJBwIggi6lRVVYWlzXxBq9XG2gSCIAKEhBNBEFEnkCmptrY2lJaWoqGhAQCg1+tRUlICg8EAYCZOqqamBnq9Ho2NjaipqYHVavXap8FgQENDA/R6PTQajdd2LMtCo9GI/Qp9Go1G8fiGhgawLCv2689WId7KYDCgsbERlZWV4r62tja0tLSgsbFR7JMgiPiEYpwIgohL3GOU1Go1Dh486LJfrVYjLy9PrLKu1+tRWVmJlpaWWf0JYqi9vR0AP10oVGp3xmq1oqKiAu3t7WAYBhqNBo2NjVCr1dBoNC59l5aW4vDhwwHZqlKp0NLSgubmZgBAc3MzjEajuK+kpESM8SIIIn4h4UQQRELj7L1Sq9WorKz0GGit0+kgl8tFLxAAtLa2zuqvqakJCoVCPL6urg4AUF9fPytYXaFQoKmpKSDBk5eXh7y8PBe7F1IcF0HMF0g4EQSxYFAqlVCpVOJrT4LHXXRFe6Ubra4jiPiGYpwIgohbGIZBX1+f+NpgMMyKYXJ+rdfroVKpXISHsH/37t0u3iahP3fUavWsHFIGg8Hj8UajUQxiD8TWQPBkE0EQ8YOE4zgu1kYQBLEwMRgMYFlWXFWm0WhQVlYmTolZrVZoNBoxkFqn08FqtUKn00GhUECj0cBqtYrTc62trairqwPDMDAajdizZw8A4MCBA1AqlTAY/n87d2zDIAwEUPRmYQQQG7ADM3kmbgMkZmGEVCCiRNFVREjv1S6O7ss2zliWJcZxjIj4iKzrXN/WZWZs2xZd18W6rjHPc2nWfd/fZjnuW/V9f357ay2GYYhpmn4+1QD8l3ACHut4ZdylauAujuoAAIqEE/BImRmZef7WD3AHR3UAAEV2nAAAioQTAECRcAIAKBJOAABFwgkAoEg4AQAUCScAgCLhBABQ9AIavlIAOplpRgAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -760,9 +760,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACGAUlEQVR4nO3deVwb550/8I8kMIcNCDCXbYwZYsfxbQF2nDTNYZE4mzhNa440TZttfzUk3W53622R6W6bdbdbLLKbbbdNU+E02xzdFlCTNElbJ8hJum0TLsl27DhObAbwhcFGiPuU5vfHMIPuCwlJ8H2/zAszGs189UhIX57nme8j4TiOAyGEEEII8Uga6gAIIYQQQiIFJU6EEEIIIV6ixIkQQgghxEuUOBFCCCGEeIkSJ0IIIYQQL1HiRAghhBDiJUqcCCGEEEK8RIkTIYQQQoiXFl3ixLIsVCoVkpOTkZeX53bfvLw8JCcnQ6VSwWQyzU+AJGwYDAYUFRV5fJ0Ek1arDdm5w5XJZIJKpYJWq4VWq0VtbS1qa2sDfh7hvUIikSAvLw81NTWoqalBRUUFSkpK6LnxQkVFBZKTk6HT6UJybHf70Otobmpra5Gfnx/qMEKDW6TUajUnl8s5vV7v9PbGxkauuLiYKy8vn+fInNNoNA7bKisrueLi4hBEw3MW00LT2NjIMQzj030C1S4NDQ0O2/r7+92+bp0J9eskkPR6PadUKrn+/n6b7Q0NDZxSqQzKOZVKpdP3AYZhOLVaHZRzBko4/I4qFAqusbExZMd2tg+9jnzj7HXU3t7OVVZW+vRetFAsuh4ngVwuR2lpKTQajdPbw62HqbGx0WFbUVERysrKQhANz1lMC01KSorP9wlUu8jlcqfbysvLwTCM18cJ9eskkHbv3g2VSuXQNsXFxWAYBhUVFfMWS0VFBVQq1bydzx+L4XfUH/Q68o2z15HQTs7epxa6RZs4AfwLtr6+3mG7yWTy6YMp2Gpra8GyrMN2pVKJ4uLiEETkOqbFLpDtYjAYUFNT47BdrVb79GYVytdJIKlUKjAMA6VS6fL2+XxdCs9BuP2RJaDfUefodeQbd21hMBjC6rNyvkSFOoBQUigUSElJgVartflgaWtrc/lLBQA1NTVgGAYsy4JhGPG+JpMJtbW1YBgGjY2NqKiogEKhAADodDrxr4ojR46AZVmwLIu+vj6o1WqX59LpdGhsbATLsuKHaGVlJQwGA1QqFViWRXt7u8tzGI1G6PV6aDQa1NbWIiUlBXV1daiqqhJj8/S4vI3J/jgAP75vfZs79vMLysvLPR7T38cs3C8lJQUlJSUA+OfP0/NhH491W3nbLp7aVyCXy6FWq22OIST7R44csbm/q/bx9nXizWvR3ePQarWorq4Gy7JoaGiAUqkEy7IoKioCwzDQaDRgGMZlu3kTj1ardXjNWhMev1arRWVlpU+P09fnBgD0ej0UCoVNEuvu8Ql/oQt/vQsxePO697W9PL0WnQnU+1dNTQ3kcrlfvbWe3ju8Obanfeh1FJjXkclk8ukPOOH+wnPDMAyMRiOUSqXT9ykhgVWr1V4/Fvu2KSws9Op9yWehHisMFWHM1tn8D2FuibM5TsXFxTZzT5RKpTjGW1lZybW3t4u3MQxjM4YuzJexHm9nGMbjGHFjYyOnUCgctuv1eof5N67OUVlZafP47I/n7nH5ElNxcbHNudvb272aM6BWqx1itH4e3B3T38fc0NDAAbB5ziorK22ec2dt7K6t3LWLL+3rjlKptDmWp/bx5XXiKSZPj93+PNZzN7y5r7t4AHicC8IwjM3vszfH9fTc2M9N6e/v59RqNadQKGx+v90dR3j9NTY2cnq9Xnxtenrdz6W9XL0WXQnE+1dlZaXNfJj+/n4OgFdznDy9jr05tjf70OsouK8jZ8rLy20ee3t7u8PcM2fvH0ql0ub59KdtPL0v+WPRJ07t7e0cAPGF297eLr552CdOwr72xxH2KS4utnmS7T/g9Hq9w/3t93HGl8TJ1Tmsf6na29s5uVzu9ePyNia9Xm9zXIGnCZzCm5v9m4darfbqmP48ZlePQYhFeA3Yt7GntnJ2TH/a1x3rNw9v28fb14m716I3j8N+4rr975mr+3oTDwCb59QZ+w88T8f15jEplUpOoVBwGo1G/LJPML15Xdjf7u51H4j28vUDb67vX8LjsefNBG5Pr2Nvju3t+el1FNzXkT1n8XEc55Cwufoj1dv3EGdtI7B/X/L0mevJoh6qA/huWYVCgfr6epSXl8NgMLgdopLL5TaXtra3t4vjvw0NDQD4LkxhyMhoNDqcz5pcLnfYZ66cncPdJfWeHpe32tranHZ7Cl3/roY/29raIJfLbbp9hbYUhg48HdPXx+yKEIersXt/2ipQ7euMv20u7GPN02vRm8dRXl4OjUYDjUYDnU6H0tJSr+/rKR6he94dlmUdJva6O663z01BQYHNcIE9fx6fp9f9XNvLV3N9/xLawB+eXsfeDAt5e356HQX3dWRPeEz2z42vrxV/2kZQXl6Ouro6KBQK6HQ6t++L3lj0iRPAzxvRaDQoLy93+2QKk8atG936/waDAdXV1SgqKkJpaWnQJs0JY7uB4ulxeRuTv5Mb3d0v3CZM+tpWQrvMtX3dxTNfvHkcFRUVyM/Ph0ajAcuy4u2BaAOlUum2Zo/BYPD5uIF6brw5jv17i6fXfaBfM57eNwLx/uXPvCbAu9exN8f2Zh96HQX3dRRI1o/Nn7YRlJWVYffu3VCr1TbvS/5a1FfVCUpLS2EwGKDValFQUOByP4VC4fQvFZPJBJPJhN27d6OqqkpMwIQnPdBXZwi/2IHi7nF5y2AwiBPv7LEsi8LCQrfnd3Yuk8nk9zH9JTyXriaP+tpWBoMhIO3ryny2jzePg2EY8YIL6w+xQLSBWq2G0Wh0WTBQpVKhvLzc7cRfe4F6bvw5jrvXfTBeM+7eNwLx/uUqZm94eh17c2xvz0+vo+C9jpwR4vPnnNY9X3N5LNYXgvmb3FtbtImTMHMf4LNUpVKJuro6tz1OSqUSBQUFDr9w9fX1Ys+C9S+b8KR7esPyxLprmWVZn36hvTmHu8flS0wKhcLhrznhsbu7ukS4MsL60nuTyYT6+nq/j+ntL6nBYLDZt7q62m2dJE9t5axd/Glfb/nbPs4E6nVSUVGB/fv3O/xl6Gsb2Mcjl8vR0NAgXiVjTbiiyJurAq2PG6jnxt/fIVev+0C0ly/vG4F4/2IYBuXl5TZXd5lMJoffMWc8vY69Oba356fXUfBeR67is39ehCv4XJ1HiMN6JGOubSy8LwWkNMucZkhFoPb2dq68vJwDwJWXl4uTgK2vQhCudpDL5WJVV+uJbcKVG9b3EbZXVlZyjY2NXGNjI9fe3i5O5NXr9VxxcbHNFR3CORQKhcfJasKxhYlyzo7n7hxKpVK82kDYp7Ky0qvH5W1M9sfRaDQeJ2Ha30+tVnMNDQ1eH3Muj1mY9NjQ0MA1NjZyarXa5moL+/s5i8dZW3lqF2/b1xX7K0t8bZ9AvBbdPY7+/n6XE9+d3dfXePr7+20er/Blz5fjOourvb3d7fuAt4+vsbGRUyqVnFwuFyfs2t/H0+ve3/Zy9Vp0FXsg3r+ExyIcR6FQeF093NN7hzfH9vb89DoKzuvI02Oyfl7snxPhPViIs7i4mGMYxmMbe2objuPE13MgSDiO4+aefhESeYTaH3q9PtSh+KSkpARlZWULoqglIWRxys/Ph1qtDth8T09MJpPHGo3eWrRDdYREEqHbWvi/v1cvEULIYmE97CgMXQYCJU6ERIDq6mrx8miWZd1exEAIIWS2+jjg/xWfzlDiRBYlnU4HtVrtcj24cFNRUYGioiJxCQLqcSKERKqamhoYDAao1Wq3pSHmSvhjs7a2NqBTG2iOEyGEEEKIl6jHiRDit4qKCiQnJwf1r8aFxGAwoKioyK+q9oSQ8ECJEyHEb85WF1epVCgpKZnXOOxXhg+34wkUCoW4Iv1CEKx2IiScUeJECAmooqIilJWVzes5Gxsbw/p41gI5STXUgtlOhIQrWquOEBJQ81WXRVBbWxvQZY0CfbyFitqJLFaUOBESxkwmE2pra8VV4isqKhyWPLAfLrFefd3dbTU1NeIwG8uyqKysBDBbGJRhGFRUVIi9CsIyFDU1NZDL5U57TgwGA1QqFViWFZc1Eo4HAEeOHBGXW+jr67NZ2sJkMkGlUiE/Px96vR55eXlQKBTQaDTiau/2dDodGhsbwbKseHWk8DjcPUZXXB3P2eMSLnVWq9UoLy8XH2dKSoo4VGkymRwepytCrMIiqp6uAvLnufXlcQCuny9P7U7IghaQ+uOEkKCorKy0WT6AYRib5RrUarXN0hTWyxC4u624uNhmuYP29nZOqVTa7CssiaDX68Xj2C+70N/fzwGwOZZer+cYhrF5HI2NjRzDMDb7MQzD6fV68WfrpWT6+/sdjuGKsHyDPU+P0dfjCY/BmlKptGmPhoYGDoDNc1ZZWWmzBI2z9rFfRkepVNq0jb25PLfePA5vni9X7UTIQkdznAgJYyzL2lyxxjCM+LPQQ1NVVSXeXldXJy6M6eo2g8EAnU5nM6TGMAyMRqN4bLlcDoPBAKVSCYVCAbVaDZPJhJqaGpueDblc7tWinykpKWBZ1uGc1kM9Wq1WPJZcLne6EKi3vHmMvnLWw2ZfT0toD+sJ81VVVW6HtViWhVartelhKikpgUajcbr/XJ9bbx6HN88XIYsVDdUREsaEISphyRWj0SiuWt/W1ga5XG7zoSfsr9PpXN4mDP3ZE4YDhQ9L+32EY/rL/nhyuVx8LAB/xZmzldn90dbW5tVjnA/C82AwGJzGJLSrdULX3t7uMklx97x7+9x6w9PzRchiRYkTIWHMYDCguroaRUVFKC0ttfkws08yrPl7mzVnSVIwrwirqKhAdXU1jhw5gtraWpc9Lp4IPW6BIsw5ciYQ5zGZTGAYxiapcZfgBOK5DdT9rLlrJ0IWEhqqIyRMmUwm7N69G1VVVSgvL4dcLhc/4FiWddpDI9zP3W1KpdJpbwbLsigsLHQZj0KhCPpQzZEjR6DT6VBcXGwzJOgLYYjRn8fo6niueNMDYzKZxOfEGVft6iqZCcZzG4ieJHftRMhCQokTIWFK6Dmx/sAVPuCEYZ/i4mKbtfZMJhPq6+vd3qZQKKBUKm2GhoQPPXdXcjEMg/LycpuruUwmEwwGg189Fvb30ev1kMvlKC4u9qnnwnrujZBQ+vsYXR3PfrsQv7PeLfv2qK6uRnl5ucvHpFQqUVBQAK1Wa7O9vr7eZXxzeW69fRz2nA2jOmsnQhY6WquOkDAmXBZeVFQEgP+wUqlUKCsrEz8IVSoVUlNTxUnA1j01nm4Tlv5ob2+3udRcrVajra0NVVVVDomMcKm7MJQnxKhWq5GSkoLq6mpotVqo1WrxUn77bTU1NaiurgbDMOI5tFotSkpKxFIHcrkcFRUVXvU8CTHk5eV59Rj9PZ6QrAjtUVdXJy5WWlxcLF7KX1VVJc5rAmBTDkBoi8rKSpt4hFiF4VBPCZ4/z603j4NhGK+eL3ftRMhCRokTISTkTCYT9u/fjyNHjohDkizLisu3RMqHspA46fX6UIdCCAkSGqojhIRcbW0tKioqxF4s4bJ+tVpNSQghJKxQ4kQICTmFQuG0OrhOpxOHKQkhJBzQUB0hJCzodDqbWkfeLj0SLoS5YcJ3WoKEkIWJEidCCCGEEC/RUB0hhBBCiJcocSKEEEII8RIlToQQQgghXlrwa9VZLBZcuXIFCQkJkEgkoQ6HEEIIIWGG4zgMDQ1hxYoVkErd9ykt+MTpypUryM7ODnUYhBBCCAlzFy9exKpVq9zus+ATp4SEBAB8YyQmJoY4GkIIIYSEm8HBQWRnZ4s5gzsLPnEShucSExMpcSKEEEKIS95M6aHJ4YQQQgghXqLEiRBCCCHES5Q4EUIIIYR4acHPcfKW2WzG1NRUqMMgZN5FR0dDJpOFOgxCCHHKbOHQ0mFE79A40hNisSM3BTJp6MoLLfrEieM4XL16FSaTKdShEBIycrkcmZmZVOuMEBJWjp7uxqHXz6B7YFzclpUUiyf2bsCeTVkhiWnRJ05C0pSeno74+Hj64CCLCsdxGB0dRW9vLwAgKys0b0SEEGLv6OluPP6SAZzd9qsD43j8JQOeeUQRkuRpUSdOZrNZTJpSU1NDHQ4hIREXFwcA6O3tRXp6Og3bEUJCzmzhcOj1Mw5JEwBwACQADr1+BkUbMud92G5RTw4X5jTFx8eHOBJCQkv4HaB5foSQcNDSYbQZnrPHAegeGEdLh3H+gpqxqBMnAQ3PkcWOfgcIIeGkd8h10uTPfoFEiVMAmC0c3m/vw+9OXMb77X0wW5x1LgaGwWBARUUFJBIJVCoVamtroVKpUFJSAp1OF7Dz1NbWIjk5GQaDIWDHnG/5+fnQarXiz7W1tSgqKvLrvoQQQuZPekJsQPcLpEU9xykQ5nvGv0KhgFqtRm1tLaqqqiCXywEAJpMJycnJ0Ov1UCgUcz5PeXk5Ghoa5nwcgclkEmOdL2q1GgUFBeLPSqUSDMP4dV9CCCHzh+M4SACnc5wAfo5TZhJfmmC+UY/THAgz/u3HYYUZ/0dPd89bLHK5HAzDoK6ubt7O6S2WZVFfXz/v51UqlTbJGsMwUCqVft2XEELI/Hjjgyv42/9pFZMm+4kEws9P7N0QknpO1ONkheM4jE2ZvdrXbOHwxGsfup3x/6+vncGtNyz36omNi5bNeZ6J0WhEXl7enI4RDGq1Gvn5+aEOgxBCSJj7xV868IPfnwHHAXs2ZuJvNmei+o9nbTooMqmOU/gYmzJjw/feDMixOABXB8ex+V/f8mr/M9+/B/FL/Hs6TCYTqquroVQqUV5eDp1Oh4qKCqhUKgCARqOBXq+HwWCATqcDwzBgWRbFxcU2Q1cGgwF1dXUoLCwEwCdiAp1OB5VKhbKyMlRWVkKr1UKlUkGj0Yi9OCzLQqPRoLCwEEajEaWlpWhra0NbW5t4LFfDZTqdDgaDAQzDoLW1FWq1WoxJo9HYzE1iGAZGo9FtPAaDAfv370dFRQXKy8thMpmgUqmg0+nQ3t4uHttZe9jfV3jsFRUV4r6NjY0BHcokhJDFzGLhUP3Hj3Dkzx0AgC/tysETezdCJpXgvi0rqHI4CYza2loxCRE+1AE+OVEqldDr9dBoNEhJSQHLslCpVGhsbBTvn5+fj2PHjkEul8NkMqGkpERMKgCgurpa/L9SqURZWZn4c3Fxsc2woMlkQlFREfR6PeRyuThxvbKyEkqlEnl5eSgvL3f6OITY9Ho9AD5hq6mpQXl5OXbv3o2Ojg5x2Cw5ORnHjh3zGI9CobC5XS6XQ6PRIDk52eacztrD/r5Ce1onSw0NDTAYDAGZT0YIIYvZxLQZ32r4AK+fvAIAUO1Zj8duZ8RRGJlUgl154VNrkRInK3HRMpz5/j1e7dvSYcTf/k+rx/1++eVCryavxUX7XnSwvLzc5TwcuVwuFvUsLi6GSqVy+JBnGAb19fUoLy9HfX29w+0pKd5PuquvrwfDMGI8VVVVXt9XSO6srwpsbW2FXC53mGsUqAnbGo3GbXvYS01NtSmSKpfLbXrkCCGE+G5wfArlL7ShiTUiSirBkyVb8Nntq0IdlluUOFmRSCReD5fdtjYNWUmxuDow7nSekzDj/7a1aSHrUvT2CrJAsL9qzlVC5+rqOoVCYTNxu7y8HLW1tQGOkhBCSLi4OjCOv/2fFpy9OoRlMVF45hEFblubFuqwPKKr6vwkk0rwxN4NAEI3499Tj4f17WVlZQ51ngwGA0pLSwFAnBdkjWVZm5/lcjn6+vrEn3U6nbg4cnFxscP9ndWVcrbNWWw6nQ6lpaVuY3IXj8DV4s2e2sPdfQkhhMzNJz1D+NzP/oqzV4eQlhCDuoqbIyJpAqjHaU72bMrCM48oHOo4BXPGvzCBG+CvVquoqHAYctLpdDaTrZVKpVj/qaamRpyA3dDQIPb+MAyDhoYGqFQqFBUViT1D1dXVUKvVYBgGpaWl4gRrgE+2hCEvhmGg0WigUqnEyeVCD1JFRYVYe8pZOQAhNvv7yuVypzEJ3MVjMplQV1eHlJQUh0nw1ud01h5CGwv3FY4lnINlWXHSOsMw89qzRwghka6lw4ivPt+KwfFpMGlL8fyXdyA7JXKWPpNwHBe8MtdhYHBwEElJSRgYGEBiYqLNbePj4+jo6EBubi5iY/2vPmq2cGE1438hKyoqglqt9ntSdnJyMvr7+wMcVeQL1O8CIYS484dT3fjHuhOYnLYgPycZz36pAMlLl4Q6LLe5gj3qcQqAcJvxv5D5MyG7trYW7e3tqKiooGrghBASIv/z1w58/w2+RtPdGzLw35/fjlg/LowKNZrjRCJGbW2tWCvKl/lHSqUSqamp0Gq10Gg0wQuQEEKIA4uFQ/UfPsKh1/mk6Ys35+CZR/IjMmkCaKiOhicIAf0uEEKCY3Lagm9rT+J3J/gaTd++50Z87Y68Oa+UEWg0VEcIIYSQkBocn8LjL+nx1/N9iJJKoN63Bfvyw7tGkzcocSKEEEJIQPUMjuPR5/gaTUuXyPDMI/n49LrIKDfgCSVOhBBCCAmY871DePS5Vlw2jWH5shj88suF2LQyKdRhBQwlToQQQggJiNZOI776fBsGxqbALF+K578SWTWavEGJEyGEEELm7OjpbnzjN3yNpu2r5fjFo4VICYMaTYFG5QgiWG1tLVQqFWpra6HVaqHT6cRL9sOVTqdDfn7+vK1Dl5+fD61WOy/nmiv7WGtra1FUVOTXfQkhZD49/14nHv+VAZPTFihvysD/fvXmBZk0AdTjFBgWM9D1HjDcAyzLAHJuAaTBrU9RVFSEkpISqNVqcZvBYEBRURHa29uDeu65UCqVTpddCRa1Wh0xRS/tY1UqlV4v5xJJj5MQsnBYLBxq3vwYP/8T/7nzhZ2rceiBjYiSLdx+GUqc5urMa8BRFTB4ZXZb4gpgjxrY8EBQTllTUwMAKC8vt9muUCgctoWj1NT5q7I+n0naXNnH6ss6eJH0OAkhC8PktAWq336AV45fBgB86+51+Ls7bwi7Gk2BtnBTwvlw5jWg/ku2SRMADHbz28+8FpTTVldXo6KiwultJSUlQTknIYQQIhgan8JXftmKV45fhkwqwZPFW/D1u9Yu+KQJoMTJFscBkyPefY0PAn+sBOCs8PrMtqMqfj9vjudlAXeWZWEymVz2RFgP7xgMBtTU1ECr1aKmpkac+2Q9z0iYF1VSUgKWZcX7WCdmOp0OeXl5qKiogFarRW1tLSoqKsRlT4Tba2trUVtbi/z8fHG7cH6VSmUTp8lksjm3NWf3cxWz9fGE24T7GQwGh/lUvraJK64em8FgENtJ+DIYDOLxhd5CrVaLvLw86HQ68X7WsZpMJlRUVCAvL89j7Pb39fWxEEKIL3oHx1GmacJfzl9H/BIZfvFoAUoKskMd1ryhoTprU6PAD1cE6GAc3xN12MsX03euAEuWBujcfIKlUqnQ2NgobsvPz8exY8fEeUaNjY1oaGgAADQ0NECr1aKyshIKhQJ5eXkwmUyQy+VQKpUoLi5GamoqiouLAfAf/CUlJWhsbBSPp9frodFokJKSIp5fr9cD4BfnrampQWVlJQCgtbVV/H9DQwMMBgMUCoXb+zmLWbhfbW0tFAqFOGRlNBqhUChQVlY2pzYRju+sbe1jLC8vx+7du9HR0QG5XA4ASE5OFo9vHUtxcTHq6urEn+1jlcvl0Gg0SE5O9hi7/X19eSyEEOKL873DePS5lpkaTUvwP3+7A5tXLZwaTd6gxCnCCL1JLMs6/RBkWRYpKSnQaDQOtzMMg/r6epSXlyM1NdVmrpFcLrfpxZLL5TAajWICIGwTFBcXo6SkREyu5HK5eLzi4mKoVCqkpKSIPSoAnywJCgsLHc4FQEy8nN3PWczC/YqLi5Gfnw+GYVBWVuZ0rpc/bSIc3/44zmIUkkzrdgrUhG1Psdvz9rEQQoi32jqN+OoLbTCNTiF3+VI8/+UdWJ26sGo0eYMSJ2vR8XzPjze63gN+Vex5vy9o+avsvDm3lyorK6HRaMTeH2sGg8Hpdm9Yf+D7w3740LoHCHCczO6KP/dLSUlBf38/DAYD6urqxN6wYHEW43yVWCCEkPn25odX8Y1fH8fEtAXbsuX4xaMFSF0WE+qwQoLmOFmTSPjhMm++8u7ir56Dq4lwEiBxJb+fN8fzYUKdUILA/oNamHMEAGVlZTY9IgCfVJWWlro8rvX9Pd2u1WodelesezScnd/+Z2f8vV91dbXYC6dWq23iEuL2p018ibG0tBQGg8Fmu3VNLblcjr6+Ppv72Le5q+fAm9g9PX+EEOKPF9/vxOMv6TExbcHu9en49f6bF23SBFCPk/+kMr7kQP2XwCdP1pO7Z5KgPYeDVs+psbERNTU1UKlUyMvLQ0pKCgCIvU1CAlFTUwOGYdDa2oqGhgbI5XKxVwbg58MIk8KF++l0OrAsC7VabZOEtLe3ix/2wvEAPgHQ6XQwGAxgGAZKpVI8v0qlEofllEqly3NrNBowDOP3/VJTU6HT6ZCSkgKj0YiysjLxPikpKSguLvarTYTjW/emuYpRLpejoaEBKpUKRUVF4jCmoLS0FCqVSkyAlEqlOARnMplsYnXWe+cpduG+wrG8eSyEEOIKx3F48s2P8bN3+RpNn9+RjX/7zKYFXaPJGxKO8/Jyrgg1ODiIpKQkDAwMIDEx0ea28fFxdHR0IDc3F7Gxsf6dwGkdp5V80hSkOk6hICRokVAnKpwUFRVBrVb7PSk7OTkZ/f39AY7KUUB+FwghC8aUma/R9LKBr9F0oGgd/v6uhVujyV2uYI96nOZqwwPA+vvmvXI4iQz+TMiura1Fe3s7KioqqBo4IWTeDU9M4/GX9PjzueuQSSWo/uxmlBYunnIDnizu/rZAkcqA3NuAzcX89wWWNAlDccIl7cQ7wrqBGo3Gp/lHSqUSqamp0Gq10Gg0wQuQEELs9A6No0zzPv587jriomV49tECSprs0FAdDU8QQr8LhBC0X+NrNF3qH0Pq0iV47m8LsTVbHuqw5gUN1RFCCCHEa/qufnz1+Vb0j05hTWo8nv/KDuSkBq4o80JCiRMhhBCyiL314VX8/UyNpq2rkvCLvy3E8kVcbsATSpwIIYSQReqlpi5873enYeGAO29Mw9NfUCB+CaUG7lDrEEIIIQuc2cKhpcOI3qFxpCfEonBNMn6kO4efvnMeAPBQYTZ+8CDVaPIGJU6EEELIAnb0dDcOvX4G3QPj4ra4aBnGpswAgH9UrsU/7F67YGs0BVrIUkuDwYD8/Hyv9hMugbeucE0IIYQQ946e7sbjLxlskiYAYtL0yM7V+EflOkqafBCSxEmr1QKAV0mQRqNBfn4+JBIJKioqwnK5CLPFjNarrfgD+we0Xm2F2WIO2rl0Oh0qKiogkUhslu/wRW1tLZKTk+clCZ3Pc1nLz88XX2dCHEVFRX7dlxBCIpHZwuHQ62fgrubQsbO9MFsWdFWigAvJUJ2wnpo38vPzxSUnrNf9Che6Lh0OtxxGz2iPuC0jPgMHdxyEMkcZ8PMplUowDIPa2lpUVVX51Sbl5eXiOnPBNp/nsqZWq22qbgvt5s99CSEkErV0GB16mux1D4yjpcOIXXmp8xRV5IuIOU7hmDABfNJ04N0D4Ozy+d7RXhx49wCeuuOpoCRPwoK+xDWl0rbdfVnc1v6+hBASiXqH3CdNvu5HeGGfOJlMJnHYpLW11eNw3cTEBCYmJsSfBwcHvT4Xx3EYmx7zal+zxYzqlmqHpAmAuO1wy2HszNwJmRdLsMRFxdEYMyGEkIDxthZTegKtFuCLsE+cysvLxR4nhmFQVFSE9vZ2l/tXV1fj0KFDfp1rbHoMO/93p1/3daZntAe3/OYWr/ZtfrgZ8dHxfp1Hp9NBpVKJSSXLsmhsbLQZIjMYDKirq0NhYSEAx8VndTodDAYDGIZBa2sr1Go1tFotqqurYTKZ0N7ejpqaGmg0GlRUVKCystLpfbw5l7P4XR1Ho9HYzE1iGAZGoxEqlQplZWWorKyEVquFSqWCRqOBUqmEwWDA/v37UVFRgfLycphMJnE+mPDaMRgM0Ol0YnsVFxeDYRiH+3rTtoQQEm76Rybxs5lSA65IAGQmxWJHLo1i+CLsEyeWZaFQKABA/OBiWdZlr1NVVRUOHDgg/jw4OIjs7IW9QKFSqYRSqbT5QBcW5FUoFDCZTCgpKbFJOKurq8X/sywLlUoFvV4PgE90ampqUFlZCaVSid27d8NkMkEul0Ov10Mul7u8T3l5udtz2XN3nN27d6Ojo0NMnJOTk3Hs2DEolUqUlZWJxyguLkZdXZ34s0KhsLldLpdDo9EgOTnZ5pyNjY3iPvn5+Th27JjDfT21LSGEhJvTlwdQ8aIel01jWCKTYtJsgQSwGR8Rxjee2LsBMimNdvgirBMng8GA3bt3i5PDBe7m+MTExCAmxr9S8XFRcWh+uNmrffU9enzt2Nc87vez3T9DfobnsgtxUXFendeV1NRUpKbOTu6Ty+ViT099fb3Dh7x1G2o0GqSkpNhcodfa2ioe58iRI8jPz0dDQ4OYxLi6j1wud3sue+6Oo1Qqbea3BWrCtkajcYiRYRjU19ejvLzcYX93bUsIIeHkt/pL+M4rpzAxbUFOajw0X8xH5/URhzpOmUmxeGLvBuzZlBXCaCNTyBMnoSdDYDAYIJfLxcm8wrANwA/pFBcXB22yuEQi8Xq47JYVtyAjPgO9o71O5zlJIEFGfAZuWXGLV3OcQk2hUNhMirZOIIRkqK6uzibhcHaf2tragJzbn+MQQshiNTltwb///gyef78LAL98yo/KtiMpPhrrMxNRtCHTpnL4jtwU6mnyU0jqOAnzRgB+GMe6Zo71z3K5HAUFBaipqUFtbS1aW1vDZm6JTCrDwR0HAfBJkjXhZ9UOVVCSJl97O4R5P9ZYlhX/X1ZW5lAPSvjZZDJBp9OhoaEBLMuKz42r+3g6lz1XxyktLXV7HLlcjr6+Ppv7mEwmm/3tf3Z3ToPBgNLSUo/3JYSQcNM7NI4vPNskJk3f2L0Wv3i0EEnx0eI+MqkEu/JS8ZltK7ErL5WSpjkISY+TMG/EujdJYJ8YKRSKsJ1LosxR4qk7nnJax0m1QxWUUgRCEgPwSaYwH0eY46NUKsUK6xqNRuy5a2hogEqlQlFRkdjLV11dDbVaDYVCAbVaDZVKJU7oViqVqK2thVqtRkVFBQCgsLAQ+/fvB8uyqKysdHofuVzu9lz2c9NcndvVcQSlpaU2BUCVSqU4BGcymVBXV4eUlBRx0rezc9bU1IgT0oVhSGFiu3Bf4Vju2pYQQkJF39WPx1/So3doAgkxUfivsm1QbsgIdVgLmoTjuAVdMnRwcBBJSUkYGBhAYmKizW3j4+Po6OhAbm4uYmP9vxzTbDHD0GvAtdFrSItPgyJdERHDc5GmqKhITPT8kZyc7DBfjvAC9btACJkfHMfhV80XcOj1DzFl5rA2fRk0X8wHk7Ys1KFFJHe5gr2Qz3FaCGRSGQozC0MdxoLnz4Ts2tpatLe3o6KigqqBE0IWhPEpM7776mk06C8BAP5mcyZqirdiWQx9pM+HkC3yS4gvamtrwbIsNBqNT/OPlEolUlNTodVqodFoghcgIYTMg8umMZRq3keD/hKkEuDgvevx9MMKSprmEQ3V0fAEIfS7QEgEeO/8dXz918dhHJlEcnw0fvJ5BT61dnmow1oQaKiOEEIIWSA4jsOzf+5A9R8/goUDNq5IxM8fyUd2in+rTZC5ocQJ/IuSkMWMfgcICU+jk9Oo1H6ANz7oBgB8TrESP/zsZsRG0wVIobKoE6foaL7GxejoKOLi5la5m5BINjo6CmD2d4IQEnqd10dQ8aIeH/cMIUoqwff2bsAXb86hBeFDbFEnTjKZDHK5HL29vQCA+Ph4ekGSRYXjOIyOjqK3txdyuRwyGf0VS0g4ePtsD/7hNycwND6NtIQYPPMFBQrW0GK84WBRJ04AkJmZCQBi8kTIYiSXy8XfBUJI6FgsHH7y9nn86Ngn4DggPycZP/uCAhmJdNFGuFj0iZNEIkFWVhbS09MxNTUV6nAImXfR0dHU00RIGBgcn8KBuhPQfcT/If/Fm3Pw3fs3YEkUVQ4KJ4s+cRLIZLKAfngI67oxDAOWZVFeXu5ycWJ3+xoMBnFZkdbWVhw5ciRoixwTQggJjU96hlDxoh4d10ewJEqKf39wE0oKskMdFnGCEqcgKSkpgV6vB8AnRvv373e5QLG7fXU6HSorKwEANTU12L17t7ivO5OTk3jllVewbds2ZGZm0twtsqBwHIehoSGsWLECUin9NU4i2+8/6Ma3tScxOmnGSnkcfv5IPjavSgp1WMQFSpyCgGVZm58ZhhF7jXzZ12AwoLq6WkyciouLoVKpwLKsx8Vlu7q60NzcjIceesjfh0FI2Lt48SJWrVoV6jAI8cu02YIn3/oYmj/xnwO35KXiJ5/fjtRlMSGOjLhDiVMQ6HQ6pKTYXv2QkpICg8HgsECtp32PHDkibheWGrHf35nOzk5xv4sXL3qshEpIJBkcHER2djYSEhJCHQohfjGOTOLvf23AX8/3AQAqPs3g2/fciCgZ9aCGO0qcgsDVWmrOFqn1tG9xcbG4ra6uDkql0qs5Tp2dncjJyQEAJCYmUuJEFiQagiaR6NSlATz2kh6XTWOIXyJDTfEW3L9lRajDIl6ixGke+bI4rf2+JpMJWq3W7fymiYkJ8YtlWdx2221+RkpIcJgtHFo6jOgdGkd6Qix25KZAJqXkhyweWv0lfOeVU5ictmBNajw0XyzAjZnUcxpJKHEKArlc7tC7ZDQanfYUebuvSqVCY2Oj296m6upqHDp0SPz58OHDPsdOSLAcPd2NQ6+fQffAuLgtKykWT+zdgD2bskIYGSHBNzltwQ9+fwYvvN8FANi9Ph1PlW1DUhxV6480NJgaBEql0un2goICv/atqamBSqUCwzAwmUwue66qqqowMDCAV155BT/4wQ9w4cIF34MnJAiOnu7G4y8ZbJImALg6MI7HXzLg6OnuEEVGSPD1Do7j4SNNYtL0D7vX4siXCihpilCUOAWB/RVvLMuioKDApjaTcDWdp321Wi0UCoWYNNXX17vsdYqJiUFiYiKuXbuG9evXIymJLmcloWe2cDj0+hk4W0ZY2Hbo9TMwW2ihYbLw6LuMuP8nf0FbVz8SYqPwi0cL8M2idZDSEHXEoqG6IGloaIBKpUJhYSFaW1ttajhVV1ejsLBQLDPgal+WZVFSUmJzXLlcjvLycpfnnZiYQHd3t8PVe4SESkuH0aGnyRoHoHtgHC0dRuzKS52/wAgJIo7j8FJTF77/xhlMmTmsy1gGzRcLkLt8aahDI3Pkc+LU2dmJhoYGNDY2or+/X9yekpKCoqIiFBcXY82aNYGMMSIxDAO1Wg3A9so4AA6FMF3tyzAMOM63v8IvXrwIi8UiXlFHSKj1DrlOmvzZj5BwNz5lxr+8ehpa/SUAwH1bslCzbwuWxlBfxULg07N48OBBSCQSlJaW4tvf/rbD7cePH8fPf/5zSCQSVFdXByxI4r3Ozk4sW7YMqampGBoaCnU4hCDWy3W20hNoEVMS+S71j+Lxlww4dXkAUglw8N712H8bQ6UzFhCvE6cnn3wSVVVVbufNbN++Hdu3b8fAwACqqqooeQqBzs5OrFmzhn5JSVj4+OoQvv/GGbf7SABkJvGlCQiJZH89fx1f/18D+kenkBwfjZ8+rMCtNywPdVgkwLxOnJz1MLmSlJRESVMITE5O4sqVK9i2bVuoQyEExz7qwTd+fRwjk2akLVuCa8OTkAA2k8SF9P6JvRuonhOJWBzHofb/WKiPnoWFAzavTMIzjyiwKjk+1KGRIPD7qrqDBw/i2WefxcDAAO6++26UlZXh5ZdfDmRsxEcXLlyAxWKhOWYkpPgPkXZ89YU2jEyacTOTgre+eTt+/ogCmUm2w3GZSbF45hEF1XEiEWtkYhpf/9/jqP4jnzQV569Cw2O7KGlawPyeqVZYWIh9+/bhySefRH5+Pqqrq23WVSPzz3p+EyGhMDFtxj+/Mjsp9uGdq3HogY2IlkmxZ1MWijZkUuVwEpGcVb2/YBxFxYtt+KRnGNEyCb63dyMe2bmapkoscH4nTsnJyQCA+vp6MWHyZvFZEjxdXV00v4mEzPXhCTz2oh5tXf2QSoDv3b8Bj95i+3qUSSVUcoBEHGdV75PjozE2acb4tAXpCTF45hEF8nPoM3Ax8Dtxam9vB8dxaG9vx7Zt29DR0WFTnoDMr8nJSVy+fBlbtmwJdShkEfqoexBffb4Nl01jSIiNwtMPK/DpdWmhDouQOROq3tsXhukfnQIA5KUtxa/334z0RLoqdLHwe45TaWkpDAYD9Ho9BgYGoNFofFrElgSWUL+J5jeR+fbWh1ex75n3cNk0htzlS/Hq391KSRNZENxVvReMTpqRuixm3mIioedVj9PAwAD6+/ttPpSTkpJsrrSzX1B2cHAQAJCYmBiAMIknnZ2dWLp0KZYvp0tfyfzgOA7P/KkdT775MTgOuPWGVDz9sALy+CWhDo2QgPBU9R6gqveLkVc9TklJSWhsbPT6qrnf/va3qK+vp6RpHlH9JjKfxqfM+Kf6k6g5yidNX7w5B7/88g5KmsiCQlXviTNez3Hav38/jh8/jtLSUuTl5aGwsBAMw0Aul8NkMoFlWbS0tKCjowMVFRXYt29fMOMmVmh+E5lPvUPjqHhRj+MXTJBJJfjXvRvwxV1rQh0WIQE3Ojnt1X5U9X5x8Wly+Pbt21FfX4+BgQHU19ejpaUFJpMJcrkceXl5qKioQG5ubrBiJS7Q/CYyXz68MoD9z7fhysA4kuKi8bMvUGVksvBMmy34+Z/a8V+Nn7jdj6reL05+XVWXlJSE/fv3BzoW4iea30Tmw9HT3fhm3UmMTZnBpC3FLx4tpJXeyYLDXhvGgfqTOHHRBADYli3HiYsmqnpPRLRU8wLQ1dWFnJwcmt9EgoLjODz9znn8x1v8X9+3rV2Onz6sQFJcdIgjIyRwLBYOLzZ1ofqPH2F8yoKE2Ch8/zMb8eC2lXjzw6sOdZwyk2LxxN4NVPV+EaLEKcIJ85vuueeeUIdCFqDxKTMqtR/gtZNXAAB/e8sa/Mt9NyFK5nclE0LCzhXTGCq1H+Av568D4K8QfbJ4K1bI4wCAqt4TG5Q4RbhLly7BbDbT/CYScL2D49j/oh4nL5oQJZXg+5/ZhId3rg51WIQEDMdxeOX4ZTzx2ocYGp9GbLQUVffehC/enAOpXVJEVe+JgBKnCNfZ2Yn4+HikpVHBQRI4py8P4KvPt+Hq4Djk8fwk8FvyaA4dWTj6hifwz6+cxtEPrwLg5zI9VboVTNqyEEdGwt2c+tuffPJJlJWVAQCOHTsmFr0k84fqN5FA+8OpbhT//D1cHRzHDenL8OrXbqWkiSwojWd6cM+P/g9HP7yKKKkE37p7HbSP7aKkiXjF78Tp4MGDkMvlUCqVAIDdu3dDp9MFLDDi2dTUFC5fvkzDdCQgOI7Dj3Xn8LVfGTA+ZcEdN6bh5a/dgjV05RxZIIbGp1CpPYn9L7Th+vAk1mUsw6t/dyu+ftdamrdHvOb3UF1hYSH27duHY8eOBTIe4oOLFy/S/CYSEGOTZnxLexK//6AbAPD/PpWL7/zNTTT5lSwY77f34VsNJ3HZNAaJBCi/jcE3i9YhNloW6tBIhPE7cero6AAAmyGi1tZWfO5zn5t7VMQrXV1dNL+JzNnVgXGUv9iGDy4NIFomwQ8e3ISyQpoEThaG8SkznnzzY/ziL/xnVnZKHP6zZBsVrSR+8ztx2r59OwoKCpCamorGxkbodDqo1epAxkY86OzspPpNZE5OXjRh/wtt6B2aQHJ8NH7+SD52MnTlEFkYPrhkwoH6kzjfOwwA+PyObPzzfRuwLIauiyL+8/vVs3v3bjQ0NECj0YDjONTW1mL79u2BjI24MTU1hUuXLuHuu+8OdSgkQr1+8gq+1XASE9MWrMtYhl88WojslPhQh0XInE2ZLXj6nfP4ydvnYbZwSEuIgXrfZty1PiPUoZEFYE5pd25uLg4fPiz+PDg4iMTExDkHRTyj+k3EXxYLhx/pPsF/v30eAHDX+nT8+KFtSIilSuAk8p3vHcaB+hP44NIAAOC+zVn4wYObkLx0SYgjIwvFnBKnwcFBGI1G8We1Wo1nnnlmzkERzzo7OxEXF4f09PRQh0IiyOjkNP6p/iT+eJqvXVP+aQaqPetpEjiJeBYLh1++1wn10bOYmLYgMTYK//bgJjywdQVNZyAB5Xfi9Nhjj0Gn00Eul4vbOjo6KHGaJ1S/ifiqe2AMX32+DR9eGUS0TIIffnYzSgqyQx0WIXN2qX8U3274AO+zfQCAT69LQ82+LchMig1xZGQh8jtxysvLw89//nObbUeOHJlzQMQzmt9EfHX8Qj/KX9Tj2tAEUpcugeaL+ShYQ1cVkcjGcRy0+ks49PoZDE9MIy5ahn++7yZ8Yedq+qOSBI3fiZNQ+NJaUVGR1/c3GAzYv38/9Hq92/1YloVWqwXDMGBZFuXl5Ta9XIvR5cuXYTabkZOTE+pQSAT43YnL+Lb2A0xOW7A+MwFHvlRAk8BJxLs+PIGql0+h8UwPAECxWo6nSrdRwVYSdH4nTsnJyfiP//gPMAwDuVwOk8mEuro61NXVebyvkAgZDAaP+5aUlIjJFcuy2L9/PxoaGvwNe0EQ5jdlZNAVIoRntnAOK7dLAPxn48d4+p12AIDypgz86KFtdCk2iXhHT1/Fd145BePIJKJlEnyzaB0qPp1Hc/XIvPD7HbSyshImk8mm9+f48eNe3be4uNir/ViWtfmZYRha1gVUv4nYOnq6G4deP4PugXFxW0ZiDLKSYnHiIn9l0eN35OHbd9/osOI7IZFkYGwKh17/EC8bLgMA1mcm4KnSbdiwgq7mJvPH78SpqKgI+/fvt9n229/+ds4BWdPpdEhJsZ2HkZKSAoPBAIVCEdBzBZovQ4ye9rUe1pyensalS5ecDpWSxefo6W48/pIBnN32nsEJ9AxOIEoqQU3xFnxOsSok8RESKH89fx3fbjiJKwPjkEqAitvz8I/KtYiJoiVTyPya0+Rwb7bNhclkcrrdugSCvYmJCUxMTIg/Dw4OBjQmb/kyxOhuX/thzUuXLmF6eprqNxGYLRwOvX7GIWmylhQfjc9sWzlvMRESaGOTZqiPnsUv3+sEAOSkxuOp0q3Iz6GLG0ho+J04tbe3Q6PRoLCwEAB/dUN9fT1aW1sDFpwrrhIqAKiursahQ4eCHoM7vgwxetrXfliT5jcRQUuH0WZ4zpm+4Um0dBixK4+WUSGR58RFEw7UnQB7fQQA8MjNq1F1701YSvP0SAhJ/b2jRqNBbm4uOI4Dx/F/8wrfA0Uulzv0LhmNRrdX1VVVVWFgYED8unjxYkBj8oa7Ica57AvQ/CYyq3fIfdLk636EhIvJaQueeutj7HvmPbDXR5CRGIPnv7IDP3hwMyVNJOT8fgWq1Wrs3r3bZlug590olUpoNBqH7QUFBS7vExMTg5iYmIDG4Stfhhh92VeY32Tf7oJwGaYk82N8yuzVfukJVASQRI5PeobwzboT+PAK//71mW0r8P0HNiEpnpYEIuFhTov82ktOTvb5OPZX5hkMBsjlcjAMA4ZhbPZlWRYFBQURW8fJ3RCjN/tevnzZ7fymcBimJMF3fXgCTzV+gl83X3C7nwRAZhJfmoCQcGe2cHjuLx148q2PMTltgTw+Gj94cBPu37Ii1KERYsPrxOnll1+GUqkUF/F99tlnbW43mUxobGzEm2++6fFYOp0OjY2NAPgP+8LCQnEuj/BzZWUlAKChoQEqlQqFhYVobW2NiBpOvgwx+rJvZ2cnYmNjXc5vqqqqwoEDB8SfBwcHkZ1NS2osFJPTFjz/Xif++9g5DE1MAwAUOXIYukyQADaTxIWB3Cf2bqDaNiTsXTSO4p/qT6Klk38vvPPGNKj3bUF6IvWWkvAj4bycmFRQUICamhrcdddd4s9lZWU2+9TV1aGtrS3wUc7B4OAgkpKSMDAwICZ9wcayrM2VcgDfG9fR0eGQEHm7r0QiwS9/+UssWbIEn//8572KIxSPnQQex3FoPNODH/7hI3T2jQIANq1MxPfu34gduSlO6zhlJcXiib0bsGdTVqjCDip6bUcm+0KthWuSodVfwr+9cQYjk2YsXSLDv9y/AQ8VZtM8TjKvfHlP8brHyT4hOnLkCLZv326zjWoL8TwNMfo7HPnJJ5/g/vvvD1bYJAx91D2IH/z+DP56nl+8NC0hBpX33Ih9ilViMcs9m7JQtCHToXJ4WPY0WcxA13vAcA+wLAPIuQWQUh2excBZgh8TJcXEtAUAsGNNCv6jZCtWp9JyQCS8zWnJFcHAwAB0Oh3y8/MDEtRC4G6I0ZfhSOthzXfffRdr1qzBrl275vfBkHknzGP6TcsFWDhgSZQU+2/LxeN33OB0yRSZVBL+JQfOvAYcVQGDV2a3Ja4A9qiBDQ+ELi4SdK4KtQpJ0+cUK/Fk8dbwTPYJseP1UJ29Z599Fl/96lc9bgu1hdKl/6c//Qnvv/8+KisrIZV6V0VioTz2xcTZPKb7tmTh4J71kb0w75nXgPovAQ4fnTMflKUv+JQ80Ws7cpgtHD6lftttzbGspFj8RXUXJU4kZIIyVAfwPUv19fWQSCRiL4g1vV4fdonTQtHV1YXVq1d7nTSRyOJpHlNEs5j5nianNc45ABLg6EFg/X00bLcAeVOotXtgnAq1kojhU+KUlJQEpVIJtVqN9vZ25Obm2twuDD2RwJqensbFixdx5513hjoUEgTezGOKaF3v2Q7POeCAwcv8frm3zVtYZH6cuNjv1X5UqJVECp/nOOXm5uLnP/85jh075rIQIwmsK1euYGpqitanW2B8nccUcaYngPa3gb/+2Lv9h3uCGw+ZV8MT0/ix7hP84i8dXu1PhVpJpAhoAUwSHJ2dnYiJiUFmZmaoQyEBsGDnMQHA1Bhw/hhw5nfAx38EJoe8v+8yWn9xIeA4DkdPX8Wh18/g6iDfi2R99Zw9KtRKIs0C+LN24RPWp6P5TZHN2TymzSuT8L29G1C4JoI/NCZHgfONfLL0yZvA5PDsbQkrgJvuB06/DIz2wfk8Jwl/dV3OLfMVMQmSrr4RfO93H+JPn1wDAKxOicehBzZiYtqMx1/i19+kQq0k0lHiFObMZjPNb1oAPuoexL+9cQbvtS+QeUwTw8C5t4AzrwLnGoGp0dnbElcBGz7Df60qBKRSYM1tM1fVuahxvucwTQyPYONTZmj+xOLpd89jctqCJTIpHrudwdfuvAGx0fzz+swjCoc6TpkLvFArWZgocQpzly9fpvlNEez68AT+861PUNc6O4+p/DYGj9+RF3mrvI8P8j1KZ14FzuuAaavJvPLVwIYH+a+VCsC+6vOGB/iSA07rOB2mOk4R7M/nruF7v/sQHddHAACfumE5vv+ZjWDSltnsF1GFWglxI6Dv3J2dnfQBH2BdXV00vykCTUyb8fx7nfjJsfORPY9pzAR8cpQfhjt/DDBPzN6WnAtsfJDvWcra5pgs2dvwAF9ygCqHLwg9g+P4tzfO4I0PugEA6Qkx+O79G3D/liyXy6VERKFWQjyYU+J04sQJmwVqNRoN6urq5hwUmdXZ2Un1myKIMI/p3//wEboidR7TqJGf2H3md/xVcZap2dtSb5jpWfoMkLnZc7JkTyqjkgMRbtpswQvvd+Gpxk8wPDENqQR49JY1OFC0Dgmx0aEOj5Cg8ztxKi0thclksllT7fjx44GIicwwm824cOEC7rjjjlCHQrwQ0fOYRvqAj38PfPgq0PEnwDI9e1va+pk5Sw8C6Tf5niyRBcNwoR//8sppnOkeBABsy5bjBw9uwqaVSSGOjJD543fiVFRUhP3799ts++1vfzvngMgsqt8UGSJ2HtPwNeDs63zPUsefAc48e1v6xtkJ3unrQxcjCQv9I5OoefMsft1yEQCQFBcN1Z71eKgwO/z/KCAkwPx+V8/Ly/NqG/GfUL8pK4uuOAkls4VzOqE1rOYxWczezR0a6gE+eo1Plrr+CnBWtXUyN88Owy1fO2+hk/BlsXDQGi7h8B/PwjgyCQAozl+FqnvXI3VZTIijI4uGt+9v88TvxKm9vR0ajQaFhYUA+Lkd9fX1aG1tDVhwix3Nbwq9o6e7nV5C/eC2Ffjj6avhMY/pzGsurlZT8xOyB68AH830LHW9B5tyACu284nSTQ8AqfSHD5l19uog/uWV02jr4pdMuTEjAf/24CYqVEnml6f3txDwO3HSaDRQKpXguNk3Yev/k7kR6jfdfvvtoQ5l0Tp6uhuPv2RwKNl4dWAcP/8TC4C/kqhyz3p8bvvK0AxZnHltpj6SXZSD3UD9F4HUdUDfJ7a3rSyYGYZ7AEheM1+RkggxMjGNH+k+wXN/7YTZwiF+iQz/qFyLL9+ai2gZ/RFH5pHb97cv8SVOQpA8+Z04qdVqh2VXlErlnAMivO7ubkxOTiInJyfUoSxKZguHQ6+fcVrnWrAsJgq6A7cjMS5EVxJZzPxfYk6jnNkmJE3ZO/lhuJv2AvLseQqQRBJhqZTvvzHbw7pnYya+t3cDVsjjQhwdWXQ8vr9JgKMH+RIn8zxsF7C16t5++22YTCZs3759zkERfphuyZIlNL8pRFo6jDbDc84MT0zjwyuDoatL8/EfbbuvXSl5nq+3FAbMFjMMvQZcG72GtPg0KNIVkFEdp5Dr6hvBE699iHc/tl0q5c716SGOjCxaXe95eH/jgMHL/H7zXOJkTpf8vPzyy2BZfsiC4zi0tbXhc5/7XEACW+yE+U0yWWg+VBbrB9yU2YK/nLuOn7173mqrBbL4DkiihsBNJ8A8mguAH7LoHXKfXAU2uHHgYhNfW6n9HeDqB+JNZgCG2Bhck8mQZjZDMT4B8dmyLi0QQrouHQ63HEbPaI+4LSM+Awd3HIQyh3qrQ2FiemaplHfOY8LFUimEzKvha/wFLM0aL/fv8bxPgPmdOB08eBAmkwlGoxEMw8BkMqGioiKQsS1aQv2mT3/60wE53lsdbyE7PRscx8E4bkRafBq2Lt+Kk9dPOk2M5usDLlySM7OFQzPbh9c/uII/nr4K0+hswceohNOIyXgd0ugBcZtlKgkTPXsxPbQJ6QmxwQuM44CeDwH2HT5Z6nrPdpmTGbr4OBxOTUZP1Oyvc8b0NA729UM5OsZfhRJiui4dDrx7AJxdt3vvaC8OvHsAT93xFCVP88zbpVIICbqRPr40yumXgc4/217t60kI3t/mVI5g//796OjogEQiwZo1a/D2228HMrZFS5jfFKj6Td97/3uQxdkmJFKJFBarF6eQGAGYlw+4UPc+WCwc9Bf68cbJK/j9qau4Pjy7lMjyZTG4d1MG3jj/FqaWv+RwX0nUAGJXvoS4/i9jR+7fBDawoat8bxL7Dv99pNf29mWZQN5dQN6dwJrboHthNw4skzrMAuiVyXAgfTmeGrZAmXNLYGP0kdlixuGWww6vKQDgwEECCdQtatyZfeei6NUMNX+WSiEk4EaNwNk3gA9fAdg/2daRE672bXoGGO6F83lOEv7quhC8v/mdODEMg66uLuTm5uI//uM/8K1vfSuQcS1q8zG/yWKX0feO9uKb734TSTFJQf+AC1XvA8dxOHV5AK+fvII3Pui2mcMkj4/GvZsysXfLCuxkUgFY8M5vvgHTpGOhbImE7wyKzXgDwD8A8K4tOI6DhbPAwllg5sz894khWC68D3Pnn2Hp+gvM18/BAsAsAcyQwByXAMuK7TBn74BlZT4s8tUwgz/G1OglfD85EdzUsEOQ3EyQh+QJmOp6CxJI+HPDAo7jwIGPRYxJ2M5xsMwcX7iNg/Ptno4l3Ld7uNsmQXZoF3C4OnoVhl4DCjMLvXsyic9oqRQScmP9wNk/zCRL79hOI8jaCmz8LH8RS0ouvy0lb+aqOglsk6eZ97s9h0NSz8nvxMlkMoFhGPT39+P69eu45557IJfLcddddwUyvkUpFPObhCRmYGLA7T5XR6+i/K1ypC1Ng0wigwQSyKQySCVSyCT8d+FL+FkmkUEikUAm4R/Pi2dedJmcAcB3//pdnDedn/3Ankk27D+Urb84cDBzZpvbOHAwW8wwjU3ismkEl02jGJ2cAiQckMAhIQlITYhGWkIM5PEyXAOHZ9stqD1vweDEIAamrrtcXUQiAUxT16BsUCJaFg0zZ4bZYrZNiuy+2yerDuIBrF7puN3SCXR1Al31roNxsd1kHkXl/1W6P2+YuDZ6LdQhLFj2S6VsX80vlbJxBS2VQoJsfIC/kOXDV/iFwq3XvszYzF+4svGzzuvIbXiALzngtI7T4cir47Rv3z6YzXzX2uHDh3Hs2DEUFBQELLDFymKx4MKFC7jttvBdCLWlpyWoxx+eGsbTJ54O/IFjgWi7KUl9FqBvAIDrfNGt6+PX5xyWQAIJZBIppBIZZFKZTeIpfpfO/jw2PYbrY57Pn5uYi+XxyyGFFBKJBFLJzHfYfZ9JeCWQuN8+83+P2yUSSCDB1ZGr+EPHHzzGmRafFohmJFZMo5NQH/0Yv2m9AI7jl0o5eO96lBXQUikkiCaGgI+PziRLjYB5cva29A18orTxs96tULDhAb7kwEKoHA4ATz75JNra2lBXVwcAND4eAIGe3xQMn7/x81iZsFLsTeE4zmnvirOfOwY60HLVc+K1I3MHchJzbHqw+MRCNvvBb3WbFFIMjk/jXM8IznYPo3dwEhwkACSIkspwQ1oCNq+U46asRMRGR0OK2Q93oUfMeluHqQNPn/ScvH1n53eweflmMbGRSWSQTo1BduU4pBebIetqgrS/AzJwkHL8oJ40ehlkObdAytwOGXMXpKl5kEmjfP79ab3aiq+8+RWP+31313dDOgRmtpih79Gjd7TXaU+jBBJkxGdAka4IQXQLEy2VQubdxDDwyUyydK4RMM/OG8XydcDGz/HJkj9rX0pl815ywJ05XVWXl5cnFr3cvXs3Xn75ZSpHMEednZ2Ijo7GihUrQh2KA+EDTrVD5fccp9arrV4lTo9tfcyrD/urA+P4/aluvH7yCk5cNInbo6QSfGrtcuzdsgJFGzOQ6OMcDrPFDO05LXpHe1xNS0RGfCZK15VCxnHAleP8lW/sO8ClVtuxe4kMWFUIMHfyk7pX5gOyuc8pUaQrkBGfEfYJiUwqw8EdB3Hg3QOQQGITq2RmrsJcXlPE1tmrg/juq6fR2klLpZAgmxwBzr3FJ0ufvAVMj83elnqDVbJ0k+spBRHI78SpsLAQ+/btw7FjxwIZz6IXyvpNEkiQtCQJA5P8uFUwPuAC8WF/fXgCfzx9Fa+fvILWTiOElX6kEuBmJhV7t67Ano2ZSF66xO84ZVIZDmbtxoHzv+KnJVr90ktmTqiSLIes/ktAx58B+7lhKQx/9RtzJ/+XUmzg55JEUkKizFHiqTuecnolpWqHikoRBMDIxDR+fOwcfvGXDloqhQTP1Bjfo/ThK3wP09To7G3JucCmmWQpY9OCSpas+Z04dXR0ALAdnmttbaUepzkQ5jd96lOfmvdzCx+0T9zyBAAE7QPO3w/7gdEpvPnhVbz+wRW8194Hs2X2fgU5ydi7dQXu3ZwZuLpKFjOULS/gqel+xxpJZjNUff1QdlrN24mVA8zts8lS8vwslRNJCYkyR4k7s+8Mi9pdkcps4dDSYUTv0DjSE2KxIzcFUgloqRQSXFPjQPsxPln6+I/A5PDsbfKc2TlLWVsXbLJkze/Eafv27SgoKEBqaioaGxuh0+mgVqsDGdui093djYmJiXmZ3+SsjpP1B20wP+CUOUp8kfkuXjz334DMNHvDdBK+uO4bYgzDE9PQnenB6yev4P/OXcOUeTZZ2rIqCXu3rMB9W7IC9+EwMQT0tQPGduD828DgFSgB3Dk65roq9/ZHgIKvAFnbQjZZMZISEplURiUH/HT0dDcOvX7GpoxG2rIYpCfG4MMr/NVytFQKCZjpCb6W3Icv8yUEJodmb0vKnr0aboViUSRL1ua0Vl1DQwM0Gg04jkNtbS2tUzdHwZrf9P1d3/epcjgQ3A+4o6e78bPfx4NDpc1SJpbRXPzsnBSTg2dwqX8Mb5/txcT0bHK3PjMBe7euwH2bs7Bm+VL/Tj45ChhZPjkSkqS+mS/7YpMzZAAKxyec3gZmZs5SiFFCsrAdPd2Nx18yOAxuXxuewLXhCURJJfjaHXm0VApxzWL2fGXa9CTAvsv3LJ39ve0UhMSVsz1LK/MXXbJkbU5X1eXm5uLw4cOBimXR6+rqQnZ2dsDnN92dezcSExMdtofig9Zs4XDo9TPgwK/2Vjg+gXSMohdL0ALAAuDInzvE/ZnlS3H/1hXYuyULazMSvDvJ9ARg7HCeHA15WBR3aRpfdG3JMqBd5/lcYbCcCVnYrH9nXEleugT/oFwHGZUYIM6cec1FLSQ1cOO9QMef+GTpozeAcdPsPglZfEHKjZ/lL3CR0lw5wIfEyZvq4M8++yy++tWvzjmoxchisaCrqwu33nprqEMB4HwuRSDelN/9uBfdA+O4R9qCJ6JfwAqJUbztCpeCQ1NfwpuWHdi7dQUqPs1g44pE55fpm6eA/i7H5MjYDpguwnmJ/hlxyXxylJo3+z01j5/QLUzitpiBH20CBrtdHCt05f7J4tLSYbQZnnPm2tAEWjqM2JWXOk9RkYhx5rWZ6tt272ODV4D6L/J/JFrPWVqWwS93svGzQPbNlCw54XXi9MMf/hCNjY1u92lra6PEaQbLstBqtWAYBizLory8HHK53OW+zz33HD755BMMDQ1hy5Yt4r6+HMcVw9H/QWoWX8J+YuAq4pJXYm3+bpzTH8NY/2XEJa/E+p33QDYzAfro6W7822unkD18EukwoRdyXFy2Fd99YDP2bPK8DAzHcegdmsD53mGc7x1G+7Vh8f+9QxO4R9qCZ6J/5HC/TBjxTPSP8PjUP0J5Uzk2ZS0DTF1A33mgz254rb/Ldm0jezGJfCJknRwJ3+O9uCxbKuP/GgvDcv9k8bBYOOjOXPVq394h98kVWYQsZr6nyd0fkpPDQFzq7JylEBeXjAReJ067d+9Gamoq8vNdz+fgOHedyYtLSUkJ9Ho9AD752b9/PxoaGlzu+5Of/ARxcXEoLS212deX47iiOP5dJJ6x7bUxvyXBRsns89XTmIoru55Az8q78er//hwN0S9gxRKr3qCJFHz/f78EPPyYmDyZLRwuGkf5pMgqOWq/Noyh8Wk4I4UFT0S/wP/friNJOrMG3I+inwZ37DXg9Uu2FWftRcfPJEOMY3K0NG3uY/BhWu6fLHxmC4c3PriCp985j096hj3fAQjcFaVk4eh6z/a9y5Xi54C8O4IezkLhdeLU0NCAgYEBtLW1AeDrONnPm0lJoQJrAJ/gWGMYBjqd8/kywr6dnZ3Izs7G2rVrxX19OY6vpHZ/gaRxfUh77xt4XvIAfhb9msP+mTDiZ9E/woEGGV47cR/Y6yNgr49gctoCCSxIwCiSJCOQYwRbJSOQy0bALJ1EztJJrIydQHrUGFKko1g2dglRvUaH4wskEiAOU8DQzGOXxVj1HNn1ICVkBX+CYhiW+ycL15TZglePX8bP3m1Hx/URAMCyJTJAAoxMmF0WY81MiqUCl2TWSB9w+rfA+14uXTUauKWjFgOfJocnJSVh9+7dAIDjx4/DaDRCIpGIC/vu27cv8BFGIJ1O55BEpqSkwGAwQKFQOOybnJxsM79J2Letrc3r4/jKPt+QSgALB3yJe51fqMRFb1A1foLWj9+EXDKCJOkIkmJGkCgZdUjEAACTM1/++NQBoODLQOKq0I+xh1m5f7LwTEyb0dB2Cc+8247LJr76sjw+Gv/v1lx86ZY1eL/9Oh5/yeBq0BhP7N1AE8MXu+lJ4NybwMnfAJ+8abuYrid0kYtP5lTHSfD222+jsbERRUVFYhK1mJlMJqfbjUbHnhaTyYTJyUmH+k1Go9Gn4wDAxMQEJiZmL5sfGOAvJR2c8GUI1dO+E9iGUzZbxIGEqDh+cnWsHIhLAmKTZ35O4n+OSeIv+X/vvz2Hkb4TkMqBYe+GKcjiMjjI1y2K9OkBY5Nm/LrlAjT/146eQf53d/myJdh/G4NHbs7B0hj+LXrPpiw884jCoY5TZlIsnti7wau5h2QB4jjgsgE4+WvgtBYY65+9LWsrsKUM+Ot/873ldJFLwMypHMGJEyeg0WhQV1cHhmGQl5dHiZMbrhKh8fFxREVF2dRvcrWvu9uqq6tx6NAhh+3Z/zVfyccQAOe1kHx2+N7AHIcsaENDQ0hKCvxyNsE2PDGNl5q68OyfWVwf5rtlMxNj8djtDB7asdppLaY9m7JQtCEzKFe7kghjugh8UMf3LvWdm92ekAVsKQW2PARkbOC3JWXTRS4B5nPi1NnZKRa+lEgk2LdvH/R6PXJzc4MRX0SSy+UOvUJGo9Hp1XByuRzXrl1DdnY2omauahP29eU4AFBVVYUDBw6IP5tMJuTk5ODChQsR+eESTgYHB5GdnY2LFy86rYlFvOdLW46MjOD48eMwGAwYGRlBbm4uCgsLkZubi+Hh4bBcDNudgdEp/PK9Tjz31w4MjPFDKauS4/C1O27AvvyViIly/wEmk0qo5MBiNTEMfPQa37vU8WeISVBUHHDTXmDrQwBzh2MSRBe5BJzXidOzzz4LjUYDlmVRWlqKhoYGh0rhL7/8Mq1VB0CpVEKj0ThsLygocNh211134dChQw7LrBQUFIBhGK+PAwAxMTGIiYlx2J6UlEQf9gGSmJhIbRkg7try6tWraG5uxqlTpyCRSLBt2zbs3LkTaWlp4j6+luUIpb7hCTz31w688F4Xhib4K06Z5Uvxd3fegAe2raBFeIlzFjPQ8X98z9JHr9kuqLvmNj5Z2vAZIMZDcWC6yCWgvE6cysvLUVxcjIMHD0Iul6O/vx9vv/22eHt/fz8OHz5MiRP4q9+ssSyLgoIC8Y3eYDBALpeDYRgsXboUHMeJiZP1vvYfDPbHIWQhsVgs+OSTT9Dc3IyOjg4kJibijjvuQH5+PuLiInOx2t7BcdT+H4tfNV/A2BRfd+zGjAR8/a4b8Debs2iYjTjXe5bvWfqg3na1g5Q8YNvn+blL8tW+HZMucgkYnxKnmpoat5Mx6+rqAhLUQtDQ0ACVSoXCwkK0trba1F6qrq5GYWEhKisr0dnZiYceegg//elPsXPnTod93R2HkIVgYmICx48fR3NzM/r7+5GdnY2SkhKsX78+4MsPzZfLpjFo/tSO37RexOTMeoubVybh63fdgKKbMiClhInYG7nOlxA4+WvgyvHZ7bFyYNM+YOvngVUFi3qNuHAh4by8LOX48eMeF/H1Zp/5Njg4iKSkJAwMDITlEMuvf/1rTE5O4tFHHw34sScmJlBdXY2qqiqnQ3jEe9SWgSO0ZUVFBU6ePInjx49jamoKGzduxM0334yVK1eGOkS/dfWN4GfvtOO3hkuYtvBvrfk5yfj7u27A7evSnC8fRBav6Qm+dMDJ3/ClBCwzhYOlUcDau/mhuHV7gCh6zwk2X3IFrxOnSBXOiZPFYkFNTQ127dqF22+/PdThEBJ0HMehs7MTzc3N+PjjjxEXF4f8/HynBXUjyfneITz9Tjt+d+IyZvIl3JKXiq/fdQN2MamUMJFZHAdcapspIfBb20V1s7YB2x7me5iWLg9VhIuSL7nCnMoRkLnp7e3F+Pg4cnJyQh0KIUE1PT2NU6dOoampCT09PUhPT8fevXuxefNmREdHhzo8v525Moin3zmPP5zuhvAn6B03puHv77oB+TlUyZtYMV2wKiFwfnZ7QhY/Z2nrQ0D6TaGLj3iNEqcQ6uzsRFRUFFatWhXqUAgJiqGhIbS1taGtrQ0jIyNYt24d7rnnHuTm5kZ0L8yJiyb89O3z0H3UI267e0MG/v6utdi8ikp/kBkTQ8CZmRICnX+e3R4dP1tCIPd2urotwlDiFEKdnZ1YtWqVWL8pUFiWhVarBcMwYFkW5eXldCWeGwaDAQCgUCjAsixMJpO4pI27tqR25hkMBuzfv19cjBoArly5gldffRWvvvoqli9fjtjYWPzLv/yLeMVppLZrS4cRP3n7HP58jl/bSyIB7t+yAn93Zx7WZ0buUCPxgsXs3eX8FjPAvjtTQuB1YHps9rY1t/FDcTft9VxCgIStkCVOvrw5uvtgi1Qcx6Grqws7d+4M+LFLSkrEDzGWZbF//366Gs8NjUaD2tpaAHwNLuu2cteW1M4Qf4cNBgMsFgvOnj2LpqYmXLhwAb/4xS9QX1+P7du348qVK1CpVF61Xbi1K8dx+Ov5Pvz32+fQ0sEXpJVJJfjs9pV4/I485KUtC1lsZJ6cec1FAUn1bAHJ3o+sSgh0z+6XegN/RdyWUt9LCJCwFLLEyZc3R3cfbJGqp6cHY2NjDoUv54plWZufGYaBTqcL6DkWmvz8fPT382s8WSfv7tqS2plXXFyMsTH+L+of//jHGBgYQE5ODm655Ra8/vrr2LVrFwDv2y6c2pXjOLzzcS/++9h5nLhoAgBEyyQoKcjG47fnITslPiRxkXl25rWZJUvsrqMa7Oa3b3sE6DkFdJ+YvS1WDmwu5hOmlflUQmCBCUni5Oubo6sPtkgWrPlNOp0OKSm2k1JTUlJgMBgivpcumJy9rty1ZVtb26Jv5+vXr6O5uRknTpwAAOTm5mLnzp3IyspCbW2tX20XDu1qsXB488Or+Mnb53Gmm19MOCZKis/vWI2K2xlkJUVmMU7iB4uZ72lyukDuzLYTL/LfpVHA2ntmSgjcQyUEFrCQJE7+fLgvlIRJEKz5Ta4WALZf847MMplM0Gq1AIDW1lZUVFSAYRi3bblY25njOLAsi6amJpw7dw5Lly7FrbfeCgB48MEHxf38bbtgt6vZwrlcJHfabMHvT3Xjp2+fx7lefmHs+CUyfHFXDr76KQZpCfRBuOh0vWc7POfKjseA2yuBpbSO4GIQksTJ1zdHVx9szkxMTGBiYkL8eXBwcG7BBoEwv2nHjh3zdk5XbU5gM7+OYRgUFRWhvb3d5f7u2nKhtvPU1BROnjyJ5uZmXLt2DZmZmXjwwQexadMmn5J/f9suEO169HQ3Dr1+Bt0D4+K2rKRY/PN9N2F0woyfvXsenX38WmAJsVH48i1r8OVbc5G8dMmcz00izPQkcLEZaPqZd/tnF1LStIiE1VV1rt4cfflgq66uxqFDh4IUYWD09vYGZX4TwPfM2SegRqNxwfXYBRLLsmJPp3CxAsuybttysbTzwMAAWltbodfrMT4+jvXr1+P+++/H6tWr3ZYT8LftgtWuR0934/GXDA4DLt0D4/j6/84ub5EcH43/96lcfOmWNUiMjdz6UsRHHAdcPwe0v81/df4FmBrx/v7LMoIXGwk7IVmS29c3R+s5UdYfbM5UVVVhYGBA/Lp48WLA4g6Uzs5OyGSyoNRvUiqVTrcXFBQE/FwLgcFgwO7dux22p6SkuG3Lhd7Oly5dglarxY9//GO0trZi27Zt+MY3voGysjLk5OR4rMHkb9sFo13NFg6HXj/jdJaKQCoBqu5dj7+o7sLX71pLSdNiMGoETr8M/O7rwH9tAp4u5OcznXuTT5qWpgGbivmJ3nD1epcAiSv50gRk0QhJj5NSqYRGo3HY7uzNUfhgEyaHC+znSAliYmLCfi0xYX5TMCom2w9hsiyLgoKCBdcTEigMw0CtVos/63Q6FBcXi70f1qzb0t1tkcpsNuPMmTNoamrC5cuXkZKSgj179mDr1q1e/U6ZTCabnmFr3rZdMNq1pcNoMzznjIUDtqySY2lMWHXCk0CangQutQDt7/C9SleOw2bStywGyNkFMHcCeXcBGZsAqdTqqjqJ7f5CMrXnMBWwXGRC8i7h6cPdYDBALpeDYRi3H2yRSJjfVFhYGLRzNDQ0QKVSobCwEK2trQuifEOwyOVyFBQUoKamBnK5HO3t7Tbt5a4tF0o7j46OQq/Xo6WlBUNDQ2AYBg8//DDWrl3rsWdJp9OhsbERAD9MXlhYiOLiYgD+t10g25XjOPz53DWv9u0dcp9ckQjDcfzSJsLwW8efHYff0jfwSVLencDqW4AlTkpMbHgAKH3BRR2nw7N1nMiiEbJFflmWhUajEd8cq6qqxGSopKQEhYWFqKysBMAnUjqdTvxgs06kPAm3RX57enrwzDPP4NFHH0Vubm6owyGLWG9vL5qamvDBBx8AALZu3YqdO3ciPT09xJHN3ejkNF42XMbz73WKV8h58uv9N2NXHk3wjWijRqDjTzPJ0jvAgN1UjfjlfJKUdxfA3MEnP97ytnI4iUi+5AohS5zmS7glTs3NzXjrrbdw8ODBiF7clEQmjuNw7tw5NDU1gWVZJCQkYMeOHcjPz0d8fOQXdLxoHMUL73eirvUiBsenAQDx0VJAIsHopNnpfSQAMpNi8RfVXWJpAhIhzFPApdbZXqXLBtgOvy0BVt8806t0F5CxmR9+I8SOL7kCDejPs66uLqxcuZKSJjKvJiYmxHICfX19WLlyJfbt24cNGzZAJovsv5o5jsN77X34n7924tjZHgh/Cq5JjceXdq1BccEqvHf+Oh5/iV+6ycksFTyxdwMlTZGA4wAjazv8Njlku0/a+tlEKecWYMnS0MRKFixKnOYRx3Ho7OxcMFdekfDX39+PlpYWGAwGTE1NYcOGDfjsZz8blCs659vo5DReOc4Px33SMzsc9+l1afjyLWtw+7o0SGeSoT2bsvDMIwqHOk6ZSbF4Yu8G7NmUNe/xL0r+DHeN9QMd/zebLJku2N4enzozoftO/nvSyuDFTwgocZpX165dw+joaFDqNxEi4DgOFy5cQFNTE86ePYvY2FgUFhaisLAQSUlJoQ5vzpwOxy2RoTh/Fb60aw1uSHe+6O6eTVko2pDpsnI4CTJvFsoFZobf2gB25uq3y3qAs8zeLo22HX7L3ELDb2ReUeI0j4T6TdnZ2aEOhSxA09PTOH36NJqamnD16lWkpaXhvvvuw5YtW7BkSWRXv+Y4Du+39+F/3uuE7qPZ4bicmeG4koJVXtVekkklNAE8FDwtlHtvDb8Qbvs7fO+S/fDb8htth99inCfHhMwHSpzmUWdnJ81vIgE3PDyMtrY2tLa2YmRkBGvXrkVRUREYhvFYTiDcuRqOu23tcnz51jW4Y126OBxHwpQ3C+X+8du2m+OSZ+sp5d0JJEX+0DJZOChxmic0v4kEWnd3N5qbm3Hq1ClIpVJs27YNO3fuxPLly0Md2pxdNI7ixaYu/Kblgk/DcSQMebtQbsYmYONn+WQpaytd6k/CFiVO84TmN5FAsFgs+Pjjj9HU1ISuri4kJSXhrrvugkKhQFxcXKjDmxOO4/A+24df/pUfjrPMdEasTonHo7d4PxxHwoD11W8nfuXdfT71TWBzcXDjIiQAKHGaJ11dXZBKpQviaiYy/8bHx3H8+HE0NzfDZDJh9erVKC0txfr16yGN8ImxY5NmcTju457ZuS23rV2Ov71lDe64MZ0mcEcCm6vf3gFMXb7dnxbKJRGCEqd5IsxvivRJumR+9fX1oaWlBcePH4fZbMbGjRtRWlqKFSt8qHgcpi4aR/FSUxd+03oRA2NTAPjhuH2KVXj0lhzckJ4Q4giJW8LVb0KZgCsGx6vfsncCzO1ASy0wch3O5zlJ+KvraKFcEiEocZoHwvwmhUIR6lBIBOA4Dh0dHWhqasK5c+cQFxeHXbt2oaCgAAkJkZ1MuBuO+9KuHJQUZCMpjobjwhLHAX3ts2UCnBWfXL7O6uq3W2evfktbTwvlkgWDEqd5cP36dYyMjND8JuLW1NQUTp06haamJvT29iIjIwMPPPAANm/ejKioyP5VHZs049UTl/HLv9JwXEQR1357Z2btN7vik3Ep/Jpvnq5+o4VyyQIS2e/GEaKzsxNSqZTqNxGnBgcH0draCr1ej7GxMdx444249957sWbNmogvJ3CpfxQvvu84HPc5xUo8umsN1mZEdg/agjM9Obv2G/uO49pvYvHJmVIBmVu9Lz654QFg/X20UC6JeJQ4zQOa30ScuXz5MpqamvDhhx8iOjoa27dvx44dO5CSkhLq0NwyWzi31bc5jkMTa8Qv3+tA4xkajgtrHAf0nZ+d0N35Z2By2HYfYe035k5gza1zW/tNKgNyb5tbzISEGCVOQUbzm4g1s9mMjz76CM3Nzbh48SKSk5Nx9913Y/v27YiJiQl1eB4dPd3tsN5b1sx6b7evS8erJ/ir485enR2O+9QN/HDcnetpOC4sjBoB9t2ZXqV3gYGLtreLa7/dxQ/D0dpvhNigxCnI+vr6MDIygpycnFCHQkJobGwMer0eLS0tGBwcxJo1a/DQQw9h3bp1EVNO4Ojpbjz+ksHhuqjugXE89pIB8UtkGJ00AwDiomXYl0/DcQHnzyK505PApRarq99OwGb4TbbEdu23jM209hshblDiFGTC/KbVq1eHOhQSAteuXUNzczNOnjwJjuOwefNm7Ny5E5mZmaEOzSdmC4dDr59xejG5YHTSjFXJsfjbW3JRkp+NpHgajgsobxfJ5Tjg+iczE7rfBjr/AkyN2B4rfcNsr1LOLcCS+Pl5DIQsAJQ4BVlnZydWrFhB85sWEY7jcP78eTQ1NaG9vR3Lli3Dpz71KRQUFGDp0jnMDwmhlg6jzfCcK+p9W3HrDZG/5EvY8bRI7meeBqJiZkoFvAMMXrbdb2naTKJ0J/89MWveQidkoaHEKYiE+U3btm0LdShkHkxOTuLkyZNobm7G9evXsWLFCnzuc5/Dxo0bIZNF7pVD7LVhvNTU6dW+14cnghvMYuTNIrm/+5rtZlkMkLNrdlJ3xiYafiMkQChxCqK+vj4MDw9T/aYFbmBgAC0tLdDr9ZiYmMBNN92EBx54ANnZ2RFbToC9Now/nOrGGx9020z09iQ9ITaIUS1S3i6SK18D3HQ/nyyt3kXDb4QECSVOQUT1mxYujuNw8eJFNDU14ezZs1iyZAny8/NRWFgIuVwe6vD84ipZipJKcEteKk5eGsDg2JSrRTOQmcSXJiBzND4IXDnOL2FyWc/PUfLG7u/SIrmEzANKnIJImN8UCZeZE++YzWZ8+OGHaGpqwpUrV7B8+XLce++92Lp1a0TOY3OXLN16w3LctzkLd2/MgDx+iXhVnYtFM/DE3g1UbsBX0xPA1dOzSdJlPXD9HJwPy3lAi+QSMi8ocQoSjuPQ1dWFLVu2hDoUEgAjIyNoa2tDa2srhoeHkZeXhy984Qu44YYbIm44zpdkydqeTVl45hGFQx2nzJk6Tns20YRjtyxmPim6rJ9NlK6eBixTjvsmrQZWKvivrG3AKxXA0FXQIrmEhB4lTkFiNBoxNDRE85siXE9PD5qamnDq1ClIJBJs3boVO3fuRFpaWqhD84m/yZK9PZuyULQh023lcAK+JMDAJaueJANfP8l+UVyAX+9tZf5MopQPrFAAy+xeX/fW0CK5hIQJSpyChOo3RS6LxYJz586hqakJHR0dSExMxB133IH8/HzExcWFOjyvBSpZsieTSrArLzXQ4Ua2UeNMkmSVKI30Ou4XHc/3IAm9SSvzAXkO4KnXkhbJJSRsUOIUJJ2dncjKyqL5TRFkYmICx48fR3NzM/r7+7Fq1SoUFxfjpptuiphyAsFKlhYMfypv25scBbpP2vYm9Xc47ieRARkbZxOklfnA8hsBmZ9vu7RILiFhgRKnIBDqN9H8pshgNBrR0tKC48ePY2pqChs3bsS+ffuwatWqUIfmFUqWvORt5W1r5mmg94xVknSc/5kzO+6bkmebJGVuBqID3ENJi+QSEnKUOAUBzW8Kf0Jy29zcjI8//hhxcXHYsWMHCgsLkZiYGOrwPKJkyUeeKm+XvgDctJfvObIebus+CUyPOR5vWYbdvKTtQFzyvDwUQkhoUeIUBJ2dnZBIJDS/KQxNT0/j1KlTaGpqQk9PD9LT07F3715s3rwZ0dHhvbYaJUt+8qby9m+/yvcOjZscd4lJBFZsm+1JWqHge6oi7GpKQkhgUOIUBF1dXTS/KcwMDQ2hra0NbW1tGBkZwbp163DPPfcgNzd33ssJmC2c11elUbIUAJ1/8Vx52zzBf8mW8ENs1klS6g20XAkhRESJU4AJQ0CbNm0KdSgEwJUrV9Dc3IzTp09DJpNh27Zt2LlzJ1JTQ3NV2NHT3Q51kLLs6iBRsjQHo0ag5zTQ8+Hs96unvbvvnf8C3PoPQBS1KyHENUqcAqy/vx+Dg4M0vymELBYLzp49i6amJly4cAFyuRxKpRLbt29HbGzo1lITKm/bDxhdHRjHYy8Z8MDWLHzSM0zJkjfMU3wxSTFBmkmShrr9P+bqmylpIoR4RIlTgNH8ptAZGxsTywkMDAwgJycHZWVluPHGGyEN8VCL2cLh0Otn3M2ywWsn+Q99SpascBww3GvVizTzde2s84rbAJC8BsjYxJcCyNgIpN0EvPgZfiI4Vd4mhMwRJU4BJtRvCmXPxmJz/fp1NDc348SJE7BYLNi8eTN27tyJrKzwWQKkme2zGZ5zpeLTDB6/I29xJktT43xCJCZIM8nS6HXn+y9JmE2OMjbyc5PSbwJiEhz33aOmytuEkICgxCmAaH7T/OE4DizLoqmpCefOncPSpUtx6623oqCgAMuWLQt1eJiYNuPUpQG0dvajrdOI99k+r+63YUVi+CdNcy0iyXHA4GXb5KjnQ37ozVl9JImUr5GUsdG2J0m+2vsr26jyNiEkQChxCiCTyUTzm4JsamoKJ0+eRHNzM65du4bMzEw8+OCD2LRpE6KiQvdyNo1OQt/VLyZKH1wewOS0xefjpCeEeU+lr0UkJ0eA3o/shtpOA+MDzo8flzyTHFkPta0HlsTPPXaqvE0ICQBKnAKI5jcFz+DgIFpaWqDX6zE+Po7169fj/vvvx+rVq+e9nADHcbhoHENrpxFtXXyidK532GG/5cuWoCAnBQVrkrF9dTL+7lcG9AyOu5plg8wkvjRB2PJURPJv/gNIyLSdsG3scNwfAKRRwPJ1VgnSzPeEzODWR6LK24SQOaLEKYA6OzuRmZlJ85sC6NKlS2hqasKZM2cQHR0NhUKBHTt2IDl5/qo0T5st+Kh7aCZRMqKtsx+9QxMO++WlLRUTpcI1KchJjbdJ6v71gQ14/CWDq1k2eGLvBpf1nELOmyKSf/gn5/ddlmE1F2kmQVq+DoiiOmeEkMhDiVOACPObNmzYEOpQIp7ZbMaZM2fQ1NSEy5cvIyUlBffccw+2bds2L0VFhyemcfxCP9o6+9HWZcTxCyaMTtrOvYmWSbB5ZRIK16QgPycZ+TnJSF3mPrY9m7LwzCMKhzpOmXZ1nELOYuEv6zeys18Xmz0XkQT4uUirb55NlNI3AsvSgh8zIYTME0qcAsRkMmFgYIDmN83B6Ogo9Ho9WltbMTg4CIZh8PDDD2Pt2rVBHY7rGRzne5NmEqUzVwZhsetYSYiNQkFOMgrWpKBwTQq2rEpCbLTvc2P2bMpC0YZMryuHB43Fwk/QNrKAsX3me8fsd2frs3njzu8Am4sDGyshhIQRSpwCRJjflJOTE+pQIk5vby+am5tx8uRJAMCWLVuwc+dOZGRkuLyPL8uWWLNYOJy/NmyTKF00OiYJq5LjxN6kwjUpWJu+DNIAJTcyWLBLegaQ9QDSDAC3AAjCBGWLGRi45JgY9bUD/Z38EiOuSGRAcg7fg5TC8FfCtdZ6Pucy188ZIYQsBJQ4BQjNb/INx3E4d+4cmpqawLIsEhIScPvttyM/Px/x8e6voPJm2RLB+JQZH1waEOcm6bv6MTBmWzhRKgFuykpE4Rp+flJBTgoyk4L0PPp6VZon5mlg4IJjYmRk+eTIVZFIAJBG88UiU5jZr9SZ70nZgMxq0WOLGfj4DSoiSQhZ9ChxCpCuri7cdNNNoQ4j7E1OTuLEiRNobm5GX18fVq5ciX379mHDhg2QyTz3urhbtuTxlwyoKd4CefwStM1c8Xbq0gAmzbZlAeKiZdi+Wj4z7MZf8bYsZh5+FTxdlVb6gvPkyTwFmC7YJkXCl6kLsEy7PqdsCZCc65gYpTBA4ipA5uXjlsqoiCQhhIASp4AwmUwwmUw0TOdGf38/WlpacPz4cUxOTmLDhg148MEHsWrVKq/nL3mzbMm3tR843JaWEIPCNcnIz+ETpZuyEhEtm+clWDxelSYB/vAtQBIFmDqtkqN2wHTReWFIQVTsbHJknRilMEDiysAlM1REkhBCKHEKBJrf5BzHcbhw4QKamppw9uxZxMbGoqCgAIWFhUhKSvL6OANjU7jQN4q3zlz1atmSFfJY3L4uTSwNsDolft5rPdngOOCTNz1clcbxRRnrPu/85qg454lRSh6QkAXM11p8VESSELLIUeIUAJ2dncjIyEBcXFyoQwkL09PT+PDDD9HU1ITu7m4sX74c9913H7Zs2YIlS5wvJ9I/MonOvhF09Y06fDeOTDrsL4UFO6RnkQ4TeiFHi2U9LOCTB9We9fjMtpVBfYwA+IRorJ+/dH/oKv81PPN9qBsY6pndZnZ8DE4lZQMrFbaJUQoT/MKQvqAikoSQRYwSpwDo7OzE+vXrQx1GyA0PD6OtrQ1tbW0YHh7G2rVr8cgjjyAvLw8A0Dcyia5uIzqvj6KrbwSdfbPf7Sds20tLiEFKfDQ+7hnGPdIWPBH9AlZIjOLtV7gUHJr6Et607Jj7siXOEqKhbr6Hxd+EyFsPPkNJCSGEhDFKnOZImN8UafWb/L2c35nu7m40Nzfjgw8+wNgUh7Q1N2LVtptwxRyD/2oeROcf/oKuvlEMT7iZxAwgMzEWa5bHY03qUuSkLsWa1HjkpC5FTmo8lsZEwWzh8M8//CF+OPUjx/vCiGeif4TvRFdiR+7fOD9BsBKiuBR+uCwhg/++bOZ7QubsV/xy4Kf5dFUaISQkzBYzDL0GXBu9hrT4NCjSFZBFyBB7uMVOidMchcv8Jl8SoaOnu/Fvr51C9vBJcajr4rKt+O4Dmz1Wr7ZYOPQMjYPtHcb7hg/Q1NyMzo5ODHNLMCbPBZeaC+m5GODcJYf7SiTAiqQ4rFkeb5MYrUlditUp8Yhb4v4XQQYLnoh+AZjiSwhYk0oACwcckh6B7MRqPhkSE6KrfFLkd0JklQAty7T7OcP7pUNmrkozQwJD7BJck8mQZjZDMT7JV3GKkKvSwu1NzBeRHDtA8YdSJMeu69LhcMth9Iz2iNsy4jNwcMdBKHOUIYzMs3CMXcJxnLM/f4OOZVlotVowDAOWZVFeXg65XD7nfe0NDg4iKSkJAwMDSExMDNwDADA5OYGqHz6OU+dbkHNbIuRRSVgWlYzk+AxkynPx4O0VWLIkRtz31T9p0Dt4AemJq21uc3Vsb/c/erob33/tJFLNjYiPuo7R6eXokxXhew9sdUiEjp7uxqv/+3P8c/QLuBo3In54Z44txb9PfQkPPvwYijZkontgDJ3XhXlGs8NqHT0mDF8+h4nuT2AZH0ZUYhqWrFiP6NRVkEikkEqAVcnxyEkVeo7472uWx2NVcrzratsWCzA5BIwPAOOD/PeJQav/DwA9Z4APXwYAmAEYYmOsko8J70tIxqdaJUDOeooyfEuIfKD7SzUOf/Ir9MhmM78MM4eD674A5aeqAn6+QAvHNzFvRXLsAMUfSpEe+4F3D4Cz6+mWzJQReeqOp8L2Mcxn7L7kCiFLnPLz86HX6wHwiZFKpUJDQ8Oc97UXrMSp9nf/jOf7XgF7rB8xmTFI2JLgsM/yaQs+v/xBAMCvr7+K61FSh9vKP/PvTo/t7f5HT3fjF699F9cz3nfYf3nPLvy/B/5NTJ6Eoa67on+CmuXJ6Ima7XDMmJ5G5fV+vDL4GHTcDkzZrTliHhvE5JVPMNnLQsJZsCJ3LTZszceGG9YgJyUOjFyG3AQzMmMmsGRqmE90XCZBg7O3Cf+fGILzISxHuvg4HE51jP9gXz+Uo2P8+mgrts8mRNY9RcsygCjnE9SDLZLfwIDIjj+SYwco/lCK5NjNFjPu+e09NgmfNQkkyIjPwNF9R8Ou92y+Yw/7xIllWZSUlIjJEAAkJyejv79/Tvs6E4zEqfZ3/4yf9P8O3DSH3jeuIWFbAqKTox13tG9aq6uiJDO3fSVpDx7Zc1Dc/tLRw3hu4Cj/K+phf7OFwzdrVTid3OJy/xuvFSIp64swjU2ip38YX5ZU4UdpMS73/6drYzg69hVkxEuweukkYkb70HflAvr7riM5hsOu3GW4NScWSdJR2yTIXRFGX8higNgkIDaR/x6TOPv/8UHoOt/EgfTlLuN/qvc6lCUNYTfBOpLfwIDIjj+SYwf8i194W+fAgeM48UOfAwf+n9W2mdutPwqc3c/mduE+Vtutj2d9n2luGo/84RFcH7vu8jEuj1uOZ+9+FlKJ1DZGu/PYb7Pfz8JZHOK3eRwcBwsss9us2sJ6PwvH72PmzDj0/iGYJkwuY0+KScK3C74NqUTK38/u3OL5rGK0P4/DvsLPwvHsHqP9fcDB6b7dw914++LbLmMX3LriVqTGpTp9bt21k9vnxMNz5XLfmdfP4OQgzpvOe4z9uXueQ2Fmocf9PAn7xKm2thYNDQ1obGwUt+Xl5aGhoQEKhcLvfZ0JdOI0OTmBu19UoE8mASQSTPRMwNRkAiwe7+pUDMdhfWI+OA4wW6ZxfuQkJtxcdh7DcVg+sQLgOFgs0zDGX/O4/w2j0YgCEIUpnI6Hx/1vHh/HxrwYXLw6jYFhM5ISZLghZwlWZ0ZBJpNAeMFYv3A4CQBI+GKM0XFAVCw4m//HzP4/OhaQxYKLjuH3F76iYwFplMMbsfB/i2Uav9D/N4YlcH5pPsdhGQc8uv1rkDo5jng8znGbqzd/6/M73W/ml9/TPldHrqKxqxGe3Jl9J9Lj051+MAnHcvWBIN7u5A3P/r7CfRzeAO3ezITb+if6cfr6aY/xr09ej8SYRJu4nT0Gh/PbtaP947F+jK72sf9gF24bnR7F1ZGrHmNfHrscMVbDs64SB4dYnTwe+xic7uPkubFuH2F/M2fGlLulcwhZxNS3qfE3jIsLgnzgS64QksnhJpPJ6Xaj0eiwzZd9AWBiYgITE7OLlw4ODvocnzuv/kmDPqshMWmMFLAAS29cClm8f3+tdmA2q45BEjzNrBnCiE/7X7T6f8zMlytjnWP4Y8sY3pECcWsSEH9LPKKXR6PF5xpC4/yX2cRPSHKznqxP3F35J5FgWAI8ffKZAJ1s/r1z8Z1QhzAnZ/vPhjoEv10fd90jQrwjgQQSiUQcxpJAAgssYk+QO7GyWETLom2OYfN/q238Pw/7Wccx83+pRGrzs7P9pJCK2/on+nFx6KLLmAVr5WuRFp9mcx77+KQSqU1sUkjFx2G/v/2+1rE7HNs6ZrvzXRm+gt93/N5j/PvW7kN2QrZDu9g/p063Cf9306Yut1lvF57TmW3t/e14+uTTHmNPi0/zuE+ghdVVda6SJF/2ra6uxqFDhwITkBO9gxdsfpYukUIik2Dk4xEX9/As1WxGvAUYlQJ9XqzXlmIGlkqjMcpNo0/qucMwFUuQEJuIkakRXDOPud13yjiF5Wly3PXFu5GUlQQATqtuW/8C2G+z+b/E8T7W93N6HxfnvDx0GfpevcN2ezsydyA7IdvpedzF7bCvkxhdHdNhX/Eb/5+rw1fxh84/eIz9gbwHsHLZSqdvJM7icvZG53Cbq+32t7l44wOAzsFOPHf6OY/xV2ypwA3yG8Q2cNVG1u3kch8Xz5HNc2nVzva3Cfc/azyLmtYaj7F/Z+d3sCF1g018Nu3gJlYxThcxOMTq5eMBgA+ufYDK/6v0GP9/3fFf2Ja+zW1bWJ/T2WNw9dqyfvwOH34e/qhqvdqKr7z5FY/x/0z5s4AMuQSSt7FX7awKu9gBfpi3racNvaO9Nj2ZAgn4Yd7v3vzdsBumviv7LmjPaT3Grkj3PPIUaCFJnORyuUOPkdFodHqlnC/7AkBVVRUOHDgg/jw4OIjs7Ow5xyxIT1wNDM/+LIuXIVWZCsukn2N1AP4x4wt44Pav4rU/PYv/6vmVx/2/ObO//oNf4Vtnn/W4/5Prv4r8LV/Aiat6fPP/vuVx/2fu+SnuXB9+kx29fRN7bOtjYfcmZraYoe/Ve3wT+P4t3w+7NzCAj//37O89xv/41sfDLn5FugLPf/i8x9hL15WGXewAkBmfif+M/0+P8d+ZfWdYxq9IVyAjPiMsPwA9ieTYAUAmleHgjoM48O4BSCCxeQxCAqzaoQrL1004xz7PK53ylErnH8oFBQVz2hcAYmJikJiYaPMVSA/eXoHUaYvNxG9ZvAzR8mjnX0lR/JeT25YkRWHFMhm+/LlKZGVl8d+XybDEy/3v3f0NrEyIcrv/qoQo3Lv7G8jKysLdW+/FqrRUt/tnpy/Hp9fdGdA2CxThTcy+B0gggQSZ8Zlh+SYmvAkATnqwwvwNDIjs+CM5doDiD6VIjl2gzFHiqTueQnp8us32jPiMsL4iEAjf2EOSODEMY/Mzy7IoKCgQe5EMBgNYlvVq3/m2ZEkMHp4pMeBw1Zw9q9sldvsKPz+0/EGxPtOSJTFi+QJv9pdFLUHVui+43f/gui9ANnP5vUwqw8FbDwESifP9JRKobvnXsH0TiPQ3sXB9E/BWJMcfybEDFH8oRXLsAmWOEm/uexPP3fMc1Lep8dw9z+HovqMUu59CWgBTo9GgsLAQra2tqKqqEpOhkpISFBYWorKy0uO+ngS7jtOgmzlJadMWPOSijpNwm7d1nNzt76yoYqaZg8pFUUVnxdwy4zOgioBiboCr+DOh2qGKiPgjuQIxENnxR3LsAMUfSpEcO/Es7MsRzKdgVw7/7TtP4/jFY+g394escjgAmKcnYTj1Iq4NXkBa4mooNn9R7Glyun+EvwlEevyEEELCByVOVoKZOBFCCCEk8vmSK4RkjhMhhBBCSCSixIkQQgghxEuUOBFCCCGEeCmsKocHg7hgYICXXiGEEELIwiDkCN5M+17widPQ0BAABLR6OCGEEEIWnqGhISQlJbndZ8FfVWexWHDlyhUkJCR4XFPJH8KSLhcvXqSr9uYZtX3oUNuHDrV96FDbh06w257jOAwNDWHFihWQSt3PYlrwPU5SqRSrVq0K+nmCsbwL8Q61fehQ24cOtX3oUNuHTjDb3lNPk4AmhxNCCCGEeIkSJ0IIIYQQL1HiNEcxMTF44oknEBPjejkUEhzU9qFDbR861PahQ20fOuHU9gt+cjghhBBCSKBQjxMhhBBCiJcocSKEEEII8dKCL0cQLCzLQqvVgmEYsCyL8vJyyOXyUIcV0QwGA3Q6HQCgtbUVR44cEdvUXXv7extxTqVSoaqqitp+Hul0OrAsC4ZhAABKpRIAtX2wsSwLnU6HlJQUsCyL4uJi8Tmgtg88g8GA/fv3Q6/X22wPRlsH9XngiF8UCoX4//b2dq64uDiE0SwMarXa5v/Wbeyuvf29jTjS6/UcAK6/v1/cRm0fXI2NjVx5eTnHcXw7MQwj3kZtH1zW7zkcx4nPA8dR2wdaQ0OD+P5iLxhtHczngRInP7S3t9s8KRzHcXK5PETRLAx6vd6mDdvb2zkAXHt7u9v29vc24lxDQwPHMIyYOFHbB591e3Mc33bCd2r74LJvJ+sElto+OOwTp2C0dbCfB5rj5Aeha9daSkoKDAZDiCKKfAqFAkeOHBF/NplMAPh2ddfe/t5GHGm1WhQXF9tso7YPLpZlYTQaIZfLYTAYYDKZxKEiavvgS0lJQX5+vjhkV1RUBIDafj4Fo62D/TxQ4uQH4UPdntFonN9AFhjrD+26ujoolUrI5XK37e3vbcSWyWRyOv5PbR9cBoMBKSkp4lyM2tpaaLVaANT286GhoQEAkJeXh4aGBvE9iNp+/gSjrYP9PNDk8ABy9WQR35hMJmi1WocJhM72C/Rti1V9fT3Ky8u93p/aPjCMRiNYlhX/SCgvL0dycjI4N+X1qO0DR6fTQa1Wg2VZVFRUAAA0Go3L/ant508w2jpQzwP1OPlBLpc7ZK5CdzuZO5VKhcbGRrE93bW3v7eRWTqdDqWlpU5vo7YPLoZhxPYCIH43GAzU9kHGsixaW1uhVCpRXl6O9vZ21NfXg2VZavt5FIy2DvbzQImTH4RLhe0VFBTMcyQLT01NDVQqFRiGgclkgslkctve/t5GbNXX16O2tha1tbVgWRbV1dUwGAzU9kEmzGdyhto+uAwGAwoLC8WfGYZBVVUVvefMs2C0dbCfBxqq84P9mx3LsigoKKC/KuZIq9VCoVCISZMwfGTfrtbt7e9tZJb9m0xFRQUqKiqcfqhT2wcWwzAoKCgQ55gJtZwUCoXDvtT2gaVQKKDRaGzmVvb19VHbzwPrOZXuPk/D9b2f1qrzE8uy0Gg0KCwsRGtrq03BQOI7lmWRl5dns00ul6O/v1+83VV7+3sbsWUymVBbWwuVSoXy8nJUVFRAoVBQ2weZyWSCSqVCfn4+9Hq92OMK0Os+2HQ6nTgsCvB/RFDbB4dOp0NjYyNqampQWVmJwsJCMWkNRlsH83mgxIkQQgghxEs0x4kQQgghxEuUOBFCCCGEeIkSJ0IIIYQQL1HiRAghhBDiJUqcCCGEEEK8RIkTIYQQQoiXKHEihBBCCPESJU6EkKDT6XTIy8tDTU0NamtrkZ+fj/z8fLHgZl5eHgwGw5zPIRyTEEKChZZcIYQEnclkQmNjo1iVubGxESkpKSgvLwcAlJWVgWVZp8tdeEupVKKsrCwg8c4H62UnCCGRg3qcCCFBZzQa3S5oq1AoHFYzX8hYlkV9fX2owyCE+IESJ0JI0JWWlgZkn4VCrVaHOgRCiJ8ocSKEBJ03Q1JtbW3Iz89HTU0NAECr1SIvLw86nQ7A7DypiooKaLVa1NbWoqKiAiaTyeUxdTodampqoNVqoVKpXO7HsixUKpV4XOGYBoNBvH9NTQ1YlhWP6ylWYb6VTqdDbW0tSkpKxNva2trQ2NiI2tpa8ZiEkMhAc5wIIWHBfo5ScXEx6urqbG4vLi5GamqquKq6VqtFSUkJGhsbHY4nJEN6vR4AP1worMxuzWQyoaioCHq9HnK5HCqVCrW1tSguLoZKpbI5dn5+Po4dO+ZVrEqlEo2NjWhoaAAANDQ0wGAwiLfl5eWJc7wIIZGDEidCSESx7r0qLi5GSUmJ04nWGo0GKSkpYi8QALS2tjocr76+HgzDiPevqqoCAFRXVztMVmcYBvX19V4lPKmpqUhNTbWJezHN4yJkoaLEiRCyYCkUCiiVSvFnZwmPfdI131e60dV1hEQWmuNECAkbcrkcfX194s86nc5hDpP1z1qtFkql0ibxEG4vKyuz6W0SjmevuLjYoYaUTqdzen+DwSBOYvcmVm84i4kQEr4kHMdxoQ6CELI46HQ6sCwrXlWmUqlQUFAgDomZTCaoVCpxIrVGo4HJZIJGowHDMFCpVDCZTOLwXGtrK6qqqiCXy2EwGLB//34AwJEjR6BQKKDT6dDY2IjCwkIAcEiyrONytp9Op4PBYADDMGhtbUVZWZlXsZpMJptYhPlWCoVCfOxqtRr5+flQKpVuSzUQQsILJU6EkIghVBmnSdWEkFChoTpCCCGEEC9R4kQIiQg6nQ46nU68rJ8QQkKBhuoIIYQQQrxEPU6EEEIIIV6ixIkQQgghxEuUOBFCCCGEeIkSJ0IIIYQQL1HiRAghhBDiJUqcCCGEEEK8RIkTIYQQQoiXKHEihBBCCPESJU6EEEIIIV76/w8JvZerN46qAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFoCAYAAAChRHRDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTmklEQVR4nO3de1yb9d0//lcSTqUtXEBLoaWni54P1gaoth6mNsy63Tq1gW7qDu62MLfv9rvX7SZl933Pdfe90aDz3nZvaqibm3NzQNSp26ySOmdr1QLp0Wpbc9E2bWlpCSFQyim5fn9cXBc5J4Qc4f3UPiDXKZ98EpJ3Pof3R8bzPA9CCCGEEBKQPNYFIIQQQghJFBQ4EUIIIYQEiQInQgghhJAgUeBECCGEEBIkCpwIIYQQQoJEgRMhhBBCSJAocCKEEEIICRIFToQQQgghQZr0gRPHcdBoNMjKykJhYaHfYwsLC5GVlQWNRgOr1RqdApK4YTQaUVpaGvB1Ekl6vT5m9x2vrFYrNBoN9Ho99Ho96urqUFdXF/b7Ed8rZDIZCgsLUVtbi9raWlRWVqKsrIyemyBUVlYiKysLBoMhJtf2dwy9jsanrq4ORUVFsS5GdPCE53me12q1PMMwfGtrq9f9TU1NvFqt5isqKqJcMu90Op3HtqqqKl6tVsegNAJvZZpompqaeJZlx3ROuOqlsbHRY1tXV5ff1603sX6dhFNrayuvUqn4rq4ul+2NjY28SqWKyH2qVCqv7wMsy/JarTYi9xku8fA3qlQq+aampphd29sx9DoaG2+vI5PJxFdVVY3pvShRTfoWJxHDMCgvL4dOp/O6P95amJqamjy2lZaWYsuWLTEojcBbmSaa7OzsMZ8TrnphGMbrtoqKCrAsG/R1Yv06CaeNGzdCo9F41I1arQbLsqisrIxaWSorK6HRaKJ2f6GYDH+joaDX0dh4ex2J9eTtfWqiocDJSWVlJRoaGjy2W63WMX0wRVpdXR04jvPYrlKpoFarY1Ai32Wa7MJZL0ajEbW1tR7btVrtmN6sYvk6CSeNRgOWZaFSqXzuj+brUnwO4u1Lloj+Rr2j19HY+KsLo9EYV5+VkZIU6wLEE6VSiezsbOj1epcPlpaWFp9/VABQW1sLlmXBcRxYlpXOtVqtqKurA8uyaGpqQmVlJZRKJQDAYDBI3yp27doFjuPAcRw6Ozuh1Wp93pfBYEBTUxM4jpM+RKuqqmA0GqHRaMBxHEwmk8/7sFgsaG1thU6nQ11dHbKzs1FfX4/q6mqpbIEeV7Blcr8OIPTvO+/zx318QUVFRcBrhvqYxfOys7NRVlYGQHj+Aj0f7uVxrqtg6yVQ/YoYhoFWq3W5hhjs79q1y+V8X/UT7OskmNeiv8eh1+tRU1MDjuPQ2NgIlUoFjuNQWloKlmWh0+nAsqzPegumPHq93uM160x8/Hq9HlVVVWN6nGN9bgCgtbUVSqXSJYj19/jEb+jit3exDMG87sdaX4Fei96E6/2rtrYWDMOE1Fob6L0jmGsHOoZeR+F5HVmt1jF9gRPPF58blmVhsVigUqm8vk+JAaxWqw36sbjXTUlJSVDvSwHFuq8wXoh9tt7Gf4hjS7yNcVKr1S5jT1QqldTHW1VVxZtMJmkfy7IufejieBnn/naWZQP2ETc1NfFKpdJje2trq8f4G1/3UVVV5fL43K/n73GNpUxqtdrlvk0mU1BjBrRarUcZnZ8Hf9cM9TE3NjbyAFyes6qqKpfn3Fsd+6srf/Uylvr1R6VSuVwrUP2M5XUSqEyBHrv7/TiP3QjmXH/lARBwLAjLsi5/z8FcN9Bz4z42pauri9dqtbxSqXT5+/Z3HfH119TUxLe2tkqvzUCv+/HUl6/Xoi/heP+qqqpyGQ/T1dXFAwhqjFOg13Ew1w7mGHodRfZ15E1FRYXLYzeZTB5jz7y9f6hUKpfnM5S6CfS+FAwKnEaIT4bJZOIBSC9ck8kkvXm4B07ise7XEY9Rq9UuT7L7B1xra6vH+e7HeDOWwMnXfTj/UZlMJp5hmKAfV7Blam1tdbmuKNAATvHNzf3NQ6vVBnXNUB6zr8cglkV8DbjXcaC68nbNUOrXH+c3j2DrJ9jXib/XYjCPw33guvvfma9zgykPAJfn1Bv3D7xA1w3mMalUKl6pVPI6nU765x5gBvO6cN/v73Ufjvoa6wfeeN+/xMfjLpgB3IFex8FcO9j7p9dRZF9H7ryVj+d5j4DN15fUYN9DvNWNyP19KdBnrjvqqnPDsiyUSiUaGhpQUVEBo9Hot4uKYRiXqa0mk0nq/21sbAQgNGGKXUYWi8Xj/pwxDONxzHh5uw9/U+oDPa5gtbS0eG32FJv+fXV/trS0gGEYl2ZfsS7FroNA1xzrY/ZFLIevvvtQ6ipc9etNqHUuHuMs0GsxmMdRUVEBnU4HnU4Hg8GA8vLyoM8NVB6xed4fjuM8Bvb6u26wz01xcbFLd4G7UB5foNf9eOtrrMb7/iXWQSgCvY6D6RYK9v7pdRTZ15E78TG5Pzdjfa2EUjeiiooK1NfXQ6lUwmAw+H1f9IYCJy8qKyuh0+lQUVHh98kUB407V7rz70ajETU1NSgtLUV5eXnEBs2JfbvhEuhxBVumUAc3+jsv3gZMjrWuxHoZb/36K0+0BPM4KisrUVRUBJ1OB47jpP3hqAOVSuU3Z4/RaBzzdcP13ARzHff3lkCv+3C/ZgK9b4Tj/SuUcU1AcK/jYK4dzDH0Oors6yicnB9bKHUj2rJlCzZu3AitVuvyvhQsmlXnRXl5OYxGI/R6PYqLi30ep1QqvX5TsVqtsFqt2LhxI6qrq6UATHzSwz07Q/zDDhd/jytYRqNRGnjnjuM4lJSU+L1/b/dltVpDvmaoxOfS1+DRsdaV0WgMS/36Es36CeZxsCwrTbhw/hALRx1otVpYLBafCQM1Gg0qKir8Dvx1F67nJpTr+HvdR+I14+99IxzvX77KHIxAr+Ngrh3s/dPrKHKvI2/E8oVyn84tX+N5LM4TwUIJ7ilwGiGO3AeEKFWlUqG+vt5vi5NKpUJxcbHHH1xDQ4PUsuD8xyY+6YHesAJxblrmOG5Mf9DB3Ie/xzWWMimVSo9vc+Jj9ze7RJwZ4Tz13mq1oqGhIeRrBvtHajQaXY6tqanxmycpUF15q5dQ6jdYodaPN+F6nVRWVmLr1q0e3wzHWgfu5WEYBo2NjdIsGWfijKJgZgU6Xzdcz02of0O+XvfhqK+xvG+E4/2LZVlUVFS4zO6yWq0ef2PeBHodB3PtYO+fXkeRex35Kp/78yLO4PN1P2I5nHsyxlvH4vtSSKlZxjQiagIymUx8RUUFD4CvqKiQBgE7z0IQZzswDCNldXUe2CbO3HA+R9xeVVXFNzU18U1NTbzJZJIG8ra2tvJqtdplRod4H0qlMuBgNfHa4kA5b9fzdx8qlUqabSAeU1VVFdTjCrZM7tfR6XQBB2G6n6fVavnGxsagrzmexywOemxsbOSbmpp4rVbrMtvC/Txv5fFWV4HqJdj69cV9ZslY6yccr0V/j6Orq8vnwHdv5461PF1dXS6PV/znbizX9VYuk8nk930g2MfX1NTEq1QqnmEYacCu+zmBXveh1pev16Kvsofj/Ut8LOJ1lEpl0NnDA713BHPtYO+fXkeReR0FekzOz4v7cyK+B4vlVKvVPMuyAes4UN3wPC+9nkMh43meH3u4RcjEI+b+aG1tjXVRxqSsrAxbtmyZEEktCSGTU1FREbRabdjGewZitVoD5mj0hbrqCElAYrO1+Huos5cIIWSycO52FLsuQ0GBEyEJqKamRpoezXGc30kMhBBCRrOPA6HP+AQocCIEgNBNp9Vqfa4HF28qKytRWloqLUFALU6EkERVW1sLo9EIrVbrNzXEeIlfNuvq6sY1tIHGOBFCCCGEBIlanAghYVNZWYmsrKyIfmucSIxGI0pLS0PKak8IiQ0KnAghYeNtdXGNRoOysrKolsN9Zfh4u55IqVRKK9JPBJGqJ0LiCQVOhJCIKi0txZYtW6J6n01NTXF9PWfjGaQabyJZT4TEC1qrjhASUdHKyyKqq6sL67JG4b7eREX1RCYLCpwISSBWqxV1dXXSKvGVlZUeSx64d5c4r77ub19tba3UzcZxHKqqqgCMJgZlWRaVlZVSq4K4DEVtbS0YhvHacmI0GqHRaMBxnLSskXg9ANi1a5e03EJnZ6fL0hZWqxUajQZFRUVobW1FYWEhlEoldDqdtNq7O4PBgKamJnAcJ82OFB+Hv8foi6/reXtc4lRnrVaLiooK6XFmZ2dLXZVWq9XjcfoillVcRDXQLKBQntuxPA7A9/MVqN4JmVBCyjdOCImJqqoql+UDWJZ1Wa5Bq9W6LE3hvAyBv31qtdpluQOTycSrVCqXY8UlEVpbW6XruC+70NXVxQNwuVZrayvPsqzL42hqauJZlnU5jmVZvrW1VbrtvJRMV1eXxzV8EZdvcBfoMY71euJjcKZSqVzqo7GxkQfg8pxVVVW5LEHjrX7cl9FRqVQudeNuPM9tMI8jmOfLVz0RMtHQGCdCEgjHcS4z1liWlW6LLTTV1dXS/vr6emlhTF/7jEYjDAaDS5cay7KwWCzStRmGgdFohEqlglKphFarhdVqRW1trUvLBsMwQS36mZ2dDY7jPO7TuatHr9dL12IYxutCoMEK5jGOlbcWNvd8WmJ9OA+Yr66u9tutxXEc9Hq9SwtTWVkZdDqd1+PH+9wG8ziCeb4ImSyoq46QBCJ2UYlLrlgsFmnV+paWFjAM4/KhJx5vMBh87hO7/tyJ3YHih6X7MeI1Q+V+PYZhpMcCCDPOvK3MHoqWlpagHmM0iM+D0Wj0WiaxXp0DOpPJ5DNI8fe8B/vcBiPQ80XIZEGBEyEJxGg0oqamBqWlpSgvL3f5MHMPMpyFus+ZtyApkjPCKisrUVNTg127dqGurs5ni0sgYotbuIhjjrwJx/1YrVawLOsS1PgLcMLx3IbrPGf+6omQREZddYQkCKvVio0bN6K6uhoVFRVgGEb6gOM4zmsLjXiev30qlcprawbHcSgpKfFZHqVSGfGuml27dsFgMECtVrt0CY6F2MUYymP0dT1fgmmBsVqt0nPija969RXMROK5DUdLkr96IiSRUeBESIIQW06cP3DFDzix20etVrustWe1WtHQ0OB3n1KphEqlcukaEj/0/M3kYlkWFRUVLrO5rFYrjEZjSC0W7ue0traCYRio1eoxtVw4j70RA8pQH6Ov67lvF8vvrXXLvT5qampQUVHh8zGpVCoUFxdDr9e7bG9oaPBZvvE8t8E+DnfeulG91RMhEw2tVUdIAhGnhZeWlgIQPqw0Gg22bNkifRBqNBrk5ORIg4CdW2oC7ROX/jCZTC5TzbVaLVpaWlBdXe0RyIhT3cWuPLGMWq0W2dnZqKmpgV6vh1arlabyu2+rra1FTU0NWJaV7kOv16OsrExKdcAwDCorK4NqeRLLUFhYGNRjDPV6YrAi1kd9fb20WKlarZam8ldXV0vjmgC4pAMQ66KqqsqlPGJZxe7QQAFeKM9tMI+DZdmgni9/9UTIREKBEyEk7litVmzduhW7du2SuiQ5jpOWb0mUD2UxcGptbY11UQghYUJddYSQuFNXV4fKykqpFUuc1q/VaikIIYTEFAVOhJC4o1QqvWYHNxgMUjclIYTEAnXVEULiksFgcMl1FOzSI/FCHBsm/qQlSAiZGChwIoQQQggJEnXVEUIIIYQEiQInQgghhJAgUeBECCGEEBKkSb1WncPhwIULFzB9+nTIZLJYF4cQQgghMcDzPHp6ejB79mzI5f7blCZ14HThwgXMnTs31sUghBBCSBwwm80oKCjwe8ykDpymT58OQKiojIyMGJeGEEIIIbFgs9kwd+5cKS7wZ1IHTmL3XEZGBgVOhBBCyCQXzLAdGhxOCCGEEBIkCpwIIYQQQoJEgRMhhBBCSJAm9RinYDgcDgwODsa6GITERHJyMhQKRayLQQghcYMCJz8GBwfR1tYGh8MR66IQEjMMwyAvL49ynRFCYsbu4HGgzYKOnn7kTk/DuoXZUMhj855EgZMPPM+jvb0dCoUCc+fODZgQi5CJhud59PX1oaOjAwCQn58f4xIRQiaj3cfaseP142jv7pe25Wem4bG7V2DTqui/L1Hg5MPw8DD6+vowe/ZspKenx7o4hMTElClTAAAdHR3Izc2lbjtCSFTtPtaOR18wgnfbfrG7H4++YMTTDymjHjxRM4oPdrsdAJCSkhLjkhASW+IXh6GhoRiXhBAymdgdPHa8ftwjaAIgbdvx+nHYHd6OiBwKnAKgcR1ksqO/AUJILBxos7h0z7njAbR39+NAmyV6hQIFThFnd/B439SJVw+dx/umzohGxkajEZWVlZDJZNBoNKirq4NGo0FZWRkMBkPY7qeurg5ZWVkwGo1hu2a0FRUVQa/XS7fr6upQWloa0rmEEELCr6PHd9AUynHhQmOcIijaA9qUSiW0Wi3q6upQXV0NhmEAAFarFVlZWWhtbYVSqRz3/VRUVKCxsXHc1xFZrVaprNGi1WpRXFws3VapVGBZNqRzCSGEhN/MaalBHZc7PS3CJXFFLU4RIg5oc29mFAe07T7WHrWyMAwDlmVRX18ftfsMFsdxaGhoiPr9qlQql2CNZVmoVKqQziWEEBJedgcPfes5v8fIIDRGrFuYHZ1CjaAWpyDxPI9rQ/agjrU7eDz22kc+B7TJAPzoteO4adGMoPJQTElWjHucicViQWFh4biuEQlarRZFRUWxLgYhhJA4MWx34HuNh/HqoQuQywAHL3xuOn+mip+Ij929Iur5nChwCtK1ITtW/PDNsFyLB3DR1o/VP3orqOOP//hOpKeE9lRZrVbU1NRApVKhoqICBoMBlZWV0Gg0AACdTofW1lYYjUYYDAawLAuO46BWq126roxGI+rr61FSUgJACMREBoMBGo0GW7ZsQVVVFfR6PTQaDXQ6ndSKw3EcdDodSkpKYLFYUF5ejpaWFrS0tEjX8tVdZjAYYDQawbIsmpubodVqpTLpdDqXsUksy8Jisfgtj9FoxNatW1FZWYmKigpYrVZoNBoYDAaYTCbp2t7qw/1c8bFXVlZKxzY1NYW1K5MQQiaLIbsD//bnQ/jb0XYkyWX4vy+thUwGj2EveZTHiYRbXV2dFISIH+qAEJyoVCq0trZCp9MhOzsbHMdBo9GgqalJOr+oqAh79uwBwzCwWq0oKyuTggoAqKmpkX5XqVTYsmWLdFutVrt0C1qtVpSWlqK1tRUMw0gD16uqqqBSqVBYWIiKigqvj0MsW2trKwAhYKutrUVFRQU2btyItrY2qdssKysLe/bsCVgepVLpsp9hGOh0OmRlZbncp7f6cD9XrE/nYKmxsRFGozEs48kIIWSyGBi249t/Ooi3jl9CikKOpx5UQrViFgCgdEUeZQ5PNFOSFTj+4zuDOvZAmwVfe6454HG/e7gkqL7ZKcljTzpYUVHhcxwOwzDIyckBIAQVGo3G40OeZVk0NDSgoqICDQ0NHvuzs4PvU25oaADLslJ5qqurgz5XDO6cZwU2NzeDYRiPsUbhGrCt0+n81oe7nJwcqT4BoX6dW+QIIYT41z9kxzf/aMTbn3QgJUkO3ZeLcPvSXGm/Qi7D+sIcP1eIHgqcgiSTyYLuLrtl8UzkZ6bhYne/13FOMgjNjLcsnhmziDnYGWTh4D5rzldA52t2nVKpdBm4XVFRgbq6ujCXkhBCSCz0D9mx9fkW7D11BWnJcjz7lRLcvHhGrIvlE82qiwCFXIbH7l4BYHQAmyhaA9oCtXg479+yZYtHniej0Yjy8nIAkMYFOeM4zuU2wzDo7OyUbhsMBlitVgBCq5b7+d7ySnnb5q1sBoMB5eXlfsvkrzwi99v+7tO5PvydSwghJHh9g8N4+Llm7D11BekpCjz3tXVxHTQB1OIUMZtW5ePph5RRHdAmDuAGhNlqlZWVHl1OBoPBZbC1SqWS8j/V1tZKA7AbGxul1h+WZdHY2AiNRoPS0lKpZaimpgZarRYsy6K8vFwaYA0IwZbY5cWyLHQ6HTQajTS4XGxBqqyslHJPeUsHIJbN/VyGYbyWSeSvPFarFfX19cjOzvYYBO98n97qQ6xj8VzxWuJ9cBwnDVpnWTaqLXuEEJJIegeG8fXnmnHgtAXTUpPwu4dLULwguqkFQiHjeT66i7zEEZvNhszMTHR3dyMjI8NlX39/P9ra2rBw4UKkpYWeXMvu4ONmQNtEV1paCq1WG/Kg7KysLHR1dYW5VIkvXH8LhBAisvUP4Wu/PQDjWSumpyXh919fB+W8rNiVx0884C5mXXVGozGo/D16vR5Wq9Vr14jRaJS6a8Rv+vFGHND2hevnYH1hDgVNERTKgGxxWRqO4ygbOCGEREF33xC+/OyHMJ61InNKMv70yI0xDZrGKiaBk7jOVzCBTllZGbKyspCVlQWZTAaZTIba2loAwuynoqIiyGQylyn3ZPKpq6uTckWNZfyRSqVCTk4O9Ho9dDpd5ApICCEElquD+NKuD3D4XDeyp6bgxa03YnVBZqyLNSYx7aqTyWTwd/dWqxUGgwFqtVraVltbi6qqKgDCh6U4YDeUJTCi0VVHSKKjvwVCSDhc6R3AQ89+iE8u9mDGtBT88ZEbsTRveqyLBWBsXXVxPzjcOWjS6/Uut4HQAiZCCCGERE+HrR8PPPshPu3oRe70VPxp641YlDst1sUKSVwHTs5BkdVqhcVicemOs1qtUrdfc3NzwO66gYEBDAwMSLdtNlv4C00IIYQQSXv3NTyw60O0XbmK/Mw0/GnrjVg4Y2qsixWyuA6cnGk0GmmNMpFzdmyWZVFaWuqyLIi7mpoa7NixI5LFJIQQQsiIc119eGDXhzhr6cMcZgr+XHEj5manx7pY45IQCTDFsU7u3XLOCQ/FBVbdEzM6q66uRnd3t/TPbDZHqsiEEELIpHa2sw9bdB/grKUP87LTUV+Z+EETkCAtTi0tLR5Bk9FoxMaNGz3y7vhbQy01NRWpqamRKCIhhBBCRrRduYoHdn2A9u5+sDOm4o9bb0B+5pRYFyssYt7i5D513Gg0erQaGY1Gj4CIZVmXrjtx9h0NFheI+Ynq6uqg1+thMBikKfvxymAwoKioKGrr0BUVFUlj5OKde1nr6upQWloa0rmEEBJJn3b0YovufbR392NR7jT8ueLGCRM0ATFqcTIYDGhqagIgjDsqKSmRZsuJt8WUAyL3Qd8Mw6C4uBi1tbVgGAYmkwmNjY3ReQBj4bADZ/YDvZeAabOA+RsAuSKid1laWoqysjKXwNJoNAYcAxZrKpXK67IrkaLVahMm6aV7WVUqVdB5yxLpcRJCEtuJiz148NkPcKV3EMvypuOFR27AjGkTq6eHllyJZB6n468BuzWA7cLotozZwCYtsOKecZTct9raWjQ1NUmBqbPKykpoNJq4ThQqBsIVFRWxLgoZQXmcCCHB+OhCNx569kN09Q1hRX4GXnjkBmRPTYl1sYKSEEuuTHjHXwMavuIaNAGArV3Yfvy1iNxtTU0NKisrve4rKyuLyH0SQgiZ3I6e68YDu4SgaU1BJl7cemPCBE1jRYFTsHgeGLwa3L9+G/BGFQBvjXkj23ZrhOOCuV6QjYIcx8FqtfpsUXLu3jEajaitrYVer0dtba009sl5nJE4LqqsrExaC7C2ttYlMDMYDCgsLERlZSX0ej3q6upQWVkpjV0T99fV1aGurk5an9BgMEj3r9FoXMopzqIU79uZt/N8ldn5euI+8TxxrUTn8VRjrRNffD02o9Eo1ZP4z2g0StcXlxLS6/UoLCyEwWCQznMuq9VqRWVlJQoLCwOW3f3csT4WQggJxHi2Cw88+wG6rw1BOY/BHx65AZnpybEuVsQkxKy6uDDUB/x0dpguxgstUTvnBnf4Dy4AKeFLFsZxHDQajUt3XlFREfbs2SONM2pqapLGjDU2NkKv16OqqgpKpRKFhYWwWq1gGAYqlQpqtRo5OTnSODW9Xo+ysjI0NTVJ12ttbYVOp0N2drZ0/62trQCExXmdl9Jpbm6Wfm9sbITRaIRSqfR7nrcyi+fV1dVBqVRK46csFguUSiW2bNkyrjoRr++tbt3LWFFRgY0bN6KtrU2awJCVlSVd37ksarUa9fX10m33sjIMA51Oh6ysrIBldz93LI+FEEICaT5twcPPNaN3YBglC7Lw3MPrMC11YocWE/vRTTJiaxLHcV4/BDmOQ3Z2NnQ6ncd+lmXR0NCAiooK5OTkICcnR9rHMIxLKxbDMLBYLC4zGJ1/V6vVKCsrk4IrhmGk66nVamg0GmRnZ0stKoAQLIlKSko87guAFHh5O89bmcXz1Go1ioqKwLIstmzZ4nX8VCh1Il7f/TreyigGmc71FK4B24HK7i7Yx0IIIf68b+rEv/6+GX2Ddqxnc/CbrxUjPWXihxUT/xGGS3K60PITjDP7gT+qAx/3oF6YZRfMfQepqqoKOp3OY00/QOi28bY9GONN8+DefejcAgQg6MHgoZyXnZ2Nrq4uGI1G1NfXS61hkeKtjNFKsUAIIdGw79QVPPJ8M/qHHLhl8QzUfbkYU1IiO2M8XtAYp2DJZEJ3WTD/Cu8QZs9B5utiQMYc4bhgrifzdR1PYgoC9w9q53xZW7ZscWkRAYSgqry83Od13fNt+duv1+s9WlecWzS83b/7bW9CPa+mpkZqhdNqtR5rIPq6dqA6GUsZy8vLYTQaXbY759RiGAadnZ0u57jXua/nIJiyB3r+CCEkWP840YGv/14Imm5fOhO7vjJ5giaAWpwiQ64QUg40fAVC8OQ8uHskCNq0M2L5nJqamlBbWwuNRoPCwkIpeajY2iQGELW1tWBZFs3NzWhsbATDMFKrDCCMhxEHhYvnGQwGcBwHrVbrEoSYTCbpw168HiAEAAaDAUajESzLQqVSSfev0WikbjmVSuXzvnU6HViWDfm8nJwcGAwGZGdnw2KxYMuWLdI52dnZUKvVIdWJeH3n1jRfZWQYBo2NjdBoNCgtLZW6MUXl5eXQaDRSAKRSqaQuOKvV6lJWb613gcouniteK5jHQggh7pqOX8K3/mjEoN2B0hWz8KsH1iI1afIETQDlcYpBHqc5QtAUoTxOsSAGaJR7aWxKS0uh1WpDHpSdlZXlseRQJFAeJ0IIALxxtB3ffvEghh08Pr86Hz//4vVIVkyMjqux5HGiFqdIWnEPsOzzUc8cThJDKAOy6+rqYDKZUFlZSdnACSFR89rhC/hu/SHYHTy+cP1s/KxsDZImSNA0VpPzUUeTXAEsvAVYrRZ+TrCgSeyKE6e0k+CI6wbqdLoxjT9SqVTIycmBXq+HTqeLXAEJIWTEy8Zz+Lc/H4TdweN+5Rw8WX79pA2aAOqqi2xXHSETAP0tEDJ5NTSboXn5CHge+GLJXPz0vtWQy4OfsJQoqKuOEEIIIePywgdn8J9/OQYA+PKN87HjnpUTMmgaKwqcCCGEEOLiuffasOP14wCAh29agB/+ywrIxpAaZyKjwIkQQgghkrp3Tfjp3z8BAFR+hsX2TcsoaHJCgRMhhBBCAAC//senePzNEwCAb9+xCNtKl1DQ5IYCJ0IIIWSS43kePzecwi/2nAIAbCtdgu9sXBzjUsUnCpwIIYSQSYzneTz+5gk89Y4JAKDZtAyP3lYY41LFr8mbiCFK7A47mi824+/c39F8sRl2hz1i92UwGFBZWQmZTOayfMdY1NXVISsrKyo5maJ5X86Kioqg1+tdylFaWhrSuYQQksh4nsdP//6xFDT95+eXU9AUALU4RZDhjAE7D+zEpb5L0rZZ6bOwfd12qOarwn5/KpUKLMuirq4O1dXVLmuhBauiokJaZy7SonlfzrRarUvWbbHeQjmXEEISFc/z2PH6cfxu/2kAwI+/sBJfWb8gpmVKBBQ4RYjhjAHb3tkGHq75RTv6OrDtnW148rYnIxI8iQv6Et9UKtd6H8vitu7nEkJIorA7eBxos6Cjpx8zp6XitSMX8OcDZgDAT+9bjQdumBfjEiaGmAVORqMRW7duRWtra8DjAGEFeI7jYLVapUVROY6DXq8Hy7LgOA4VFRUhtbIEg+d5XBu+FtSxdocdNQdqPIImANK2nQd24oa8G6AIYgmWKUlTaFYDIYSQkO0+1o4drx9He3e/x75a9XUoL54bg1IlppgETmKwE8zYFp1Oh7q6OgDCt33nrp2ysjIp8OI4Dlu3bo1Y18+14Wu44U83hO16l/ouYcOfNwR17IcPfIj05PSQ7sdgMECj0aCyslIKMJuamlzqyWg0or6+HiUlJQA8F581GAwwGo1gWRbNzc3QarXQ6/WoqamB1WqFyWRCbW0tdDodKisrUVVV5fWcYO7LW/l9XUen07mMTWJZFhaLBRqNBlu2bEFVVRX0ej00Gg10Oh1UKpUUsFdWVqKiogJWq1UaD2YymaRrGwwGqb7UarX0enU+N5i6JYSQWNt9rB2PvmD08lVekJFGnU9jEZPaUqvVQR9bVFSErq4uAHBpTeI4zuU4lmVDGgw90alUKqhUKpcPdHFBXqVSCavVirKyMiloAICamhrpd47joNFopADVYrGgtrYWVVVVUKlU2LhxI6xWKxiGQWtrKxiG8XlORUWF3/ty5+86GzduRFtbm/SayMrKwp49e6BSqbBlyxbpGmq1GvX19dJtpVLpsp9hGOh0OmRlZbncZ1NTk3RMUVER9uzZ43FuoLolhJBYszuEcUy+giYZgB2vH0fpijwoaDmVoCREmOmt+81gMHiM58nOzo7Yh9aUpCn48IEPgzq29VIrvrnnmwGPe2rjUyiaVRTUfY9HTk4OcnJypNsMw0gtPQ0NDR715VyvOp0O2dnZLkFpc3OzdJ1du3ahqKgIjY2N0vPk6xyGYfzelzt/11GpVC6vi3AN2NbpdB5lZFkWDQ0NqKio8DjeX90SQkisHWizeO2eE/EA2rv7caDNgvWFOT6PI6PiPnCyWq3S9O/m5mapW8RqtXo9PlIfWjKZLOjusg2zN2BW+ix09HV4Heckgwyz0mdhw+wNQY1xijWlUukyKNo5gBCDofr6epeAw9s5YpfreO87lOsQQshk1NHjO2gK5TiSAHmcKioqoFaroVarsWXLloD5dnwFVAAwMDAAm83m8i8SFHIFtq/bDkAIkpyJtzXrNBEJmsYaOIrjfpw5d4Nu2bLFowtUvG21WmEwGNDY2CgN1Pd3TqD7cufrOuXl5X6vwzAMOjs7Xc5xf134ep14u0+j0Yjy8vKA5xJCSLzpGxwO6rjc6WkRLsnEEfctThzHSS0Z4gBcjuO8dolYLBa/s+pqamqwY8eOSBZXopqvwpO3Pek1j5NmnSYiqQjEIAYQHqs4Hkcc46NSqcBxnDSwWpyG39jYCI1Gg9LSUmm8Uk1NDbRaLZRKJbRaLTQajTSgW6VSoa6uDlqtFpWVlQCAkpISbN26FRzHoaqqyus5DMP4vS/3lAC+7tvXdUTl5eUuCUBVKpXUBWe1WlFfX4/s7Gxp0Le3+6ytrZUGpIvdkOLAdvFc8Vr+6pYQQmLlnRMd+O/Xj/s9RgYgLzMN6xZSKptgyXie9zVmLPJ3LpPB390bjUZs3LhRGhxutVqRlZWFrq4uWCwWl1l1gDBA2HnAsLuBgQEMDAxIt202G+bOnYvu7m5kZGS4HNvf34+2tjYsXLgQaWmhR+J2hx3GDiMu913GzPSZUOYqE6J7LtGUlpZKgV4oxNcV8RSuvwVCSPT86cOz+K9Xj8Hu4LFk1jScutQLAC6DR8T+kKcfUmLTqvyolzGe2Gw2ZGZmeo0H3MW8xcm9tcBoNIJhGOkbuzj9HBBaVNRqNRiG8QiOOI5DcXGx3xan1NRUpKamhvkR+KeQK1CSVxLV+5yMQhnbVldXB5PJhMrKSsoGTgiZEBwOHo+/dQJPjyyhcv/aOdi5+Tq8/ckljzxOeZlpeOzuFZM+aBqrmAROBoNBmu5dU1ODkpISKUWBeLuqqgoMw6C4uBi1tbVgGAYmk8klR47YXVNSUiJ1qZDJp66uDhzHQafTQavVBp0EVaVSSZMPdDpdZAtJCCER1j9kx/cbD+OvR9oBAP/fxsX4N9ViyGQybFqVj9IVeVLm8NzpQvccpSAYu5h21cWav6Y56p4gREB/C4TEv66rg9j6fAtaznQhSS7Dzs3XQV1UEOtiJYyE6qojhBBCSOhOX7mKh3/XjLYrVzE9LQnPPFSEmxbNiHWxJiwKnAKYxA1yhACgvwFC4lnrmS5sfb4FlquDmMNMwXMPl2DJrOmxLtaERoGTDwqFMPNtcHAQU6aML3M3IYmsr68PAJCcnBzjkhBCnL1xtB3/Vn8IA8MOrJqTgd9+tQS5GdSdHmkUOPmQlJSE9PR0XL58GcnJyZDL4z5XKCFhxfM8+vr60NHRAYZhpC8ThJDY4nkez+5tw0/f+Bg8D2xclotffmktpqbSR3o0UC37IJPJkJ+fj7a2Npw5cybWxSEkZhiGQV5eXqyLQQgBMGx3YMfrx/GHD4TPpa+sn4/H7l5Js+OiiAInP1JSUrB48WIMDg7GuiiExERycjK1NBESJ64ODOPbLx7E2590QCYD/uNzy/GvNy+ETEZBUzRR4BSAXC6nKdiEEEJi6pKtH1//XTM+umBDapIcv/ji9ZS4MkYocCKEEELi2ImLPXj4uQO40N2PnKkp2PXVYijnZcW6WJMWBU6EEEJInNp36goefaEVPQPDYGdMxXMPl2B+ztRYF2tSo8CJEEIIiUMNLWb84OWjGHbwWLcgG3VfKQKTnhLrYk16FDgRQgghcYTnefxv00n88u1PAQD3rJmNx8uuQ2oSTdSIBxQ4EUIIIXFiYNiO7S8dxSsHzwMA/t/ti7CtdAnklG4gblDgRAghhMSB7r4hVL7Qgg84CxRyGX5y7yp8cd28WBeLuKHAKco4joNerwfLsuA4DhUVFWAYZszHGo1GGAwGAEBzczN27drl8zrOHA4HXnnlFSxZsgTz5s2j/B8k4fE8j56eHsyePZsy/JOEZbb04WvPHYDp8lVMS03CUw8qceuSmbEuFvGCAqcoKysrQ2trKwAhMNq6dSsaGxvHfKzBYEBVVRUAoLa2Fhs3bpSO9aejowPvvfce1Gp1OB4OIXHDbDajoKAg1sUgZMwOm634198340rvIPIz0/Dbr5VgeX5GrItFfKDAKYo4jnO5zbKs1Go0lmONRiNqamqkwEmtVkOj0YDjOLAs67cMZrMZqamp0u8ZGfTHSRKbzWbD3LlzMX06rQhPEs9bH13Ed/58EP1DDqzIz8Bvv1aCvExKuhzPKHCKIoPBgOzsbJdt2dnZMBqNUCqVYzp2165d0nar1SrtD8RsNiM/X8g2m5GRQYETmTCo25kkmufea8OP/3ocPA/ctnQmfvWAEtNood64R89QFIkBjjuLxTLmY5272urr66FSqXyOcRoYGMDAwAAA4NSpU5g9e3bwhSYkguwOHgfaLOjo6Ufu9DSsW5hNi5WSCc/u4PE/fzuO5947DQB44IZ5+PE9K5GkoDF6iYACpzjgK0gK5lir1Qq9Xu93fFNNTQ127NgRYukIiYzdx9qx4/XjaO/ul7blZ6bhsbtX0BpcZMK6NmjH//fng3jr+CUAwPa7lqHyVpZaTBMIhbdRxDCMR+uSxWLx2lIU7LEajQZNTU1+Z9RVV1eju7sbBw4cwPbt23H8+PFQHwIhYbH7WDsefcHoEjQBwMXufjz6ghG7j7XHqGSERM7lngF8se59vHX8ElKS5Pi/L63FNz5TSEFTgqHAKYpUKpXX7cXFxSEdW1tbC41GA5ZlYbVafbZcpaamIiMjA11dXcjNzcWcOXPGXnhCwsTu4LHj9ePgvewTt+14/TjsDm9HEJKYPu3owX1PvYfD57rBpCfjj4/cgLvX0LCJRBSzwMloNKKoqCio42pra1FbW4uysjKX4MBoNMJoNAIQZqGJv8cr9xlvHMehuLjYJTeTOJsu0LF6vR5KpVIKmhoaGgLmcTKbzZg3j5Kpkdg60GbxaGlyxgNo7+7HgTbPsX+EJKL3TZ24/6n9ONd1DfNz0vHKN29CyYLAk3lIfIrJGCcxqWMwgY6/fEU6nQ51dXUAhBYaX/mQ4kljYyM0Gg1KSkrQ3NzsUuaamhqUlJRIj9fXsRzHoayszOW6DMOgoqLC5/0ODw/jwoULWL16dQQeFSHB6+jxHTSFchwh8eyVg+dQpT+CITsP5TwGu75SjJxpqbEuFhkHGc/zMWsPl8lk8Hf3RqMRGzduRFdXFwAhYCgsLITJZALLsqirq0N5eTkABJU1253NZkNmZia6u7sn/LR8s9mM3/zmN6isrMTUqVMnzeMm8ed9Uye+tOuDgMe9uPVGrC/MCXjcZPo7JomD53n839uf4smmkwCAz6/Ox8/K1yAtmRbqjUdjeR+J61l1weQrCiVgmozMZjOSk5Mxa9Ys9Pb2xro4ZBLLmJIEuQzwNYRJBiAvU0hNQEgiGrI78IOXj6Kx9RwAoPJWFppNy2ih3gkirgMnwH++InEqPiCs11ZZWRkwc/ZkJS5HQWt5kVhqPm3Bv/6u2W/QBACP3b2C8jmRhGTrH8I3XzBi36dXIJcBO76wCl++cX6si0XCaMyB0+nTp9HY2IimpiapCw0QWoFKS0uhVquxYMGCcJYRgPd8Rc6L3rIsi9LSUphMJp/XcE4ECQhNc5MBz/Mwm80e2ckJiSbD8Uv41p+MGBh2oGh+Fh5YNxdPvHXSZaB4HuVxIgnsvPUaHn7uAE5e6kV6igK/fkCJ25flxrpYJMzGFDht374dMpkM5eXl+Pd//3eP/QcPHsQzzzwDmUyGmpqasBUS8J6viOM4KRhgWRYcx/ldr22yJoK0Wq3o7e3F3LlzY10UMkk1tpix/eWjsDt43LEsF79+QIkpKQrcu7aAMoeTCeHY+W48/LtmXO4ZQO70VPz2ayVYNScz1sUiERB04PT444+juroamZm+Xwhr167F2rVr0d3djerq6rAFT+75igAhaHIeOC7yt15bdXU1tm3bJt0WFwed6MxmMwDQyvEkJnT/NKHmjU8AAPcr50C7+TokjywtoZDLghoATki88LZM0D9PduD//ekg+gbtWDprOp57uASzmSmxLiqJkKADJ28tTL5kZmYGHTRZrVaXViSj0QiGYaRWI2/5iioqKsCyLLRarXSewWCAWq32O1g8NTUVqamTbxqo2WzGzJkzMWUK/SGT6HE4eNS88TF27W0DAFTcymI7DZAlCczbMkEZaUno6R8GD+CWxTPw6weVyEhLjl0hScSFPDh8+/btWLRoEcrKylBWVoasrCxs2bIF999/f8BzDQYDmpqaAIzmLhIHgTvnMvKXr4hhGBQXF6O2thYMw8BkMiVEHqdYOHv27KRoWSPxY8jugEZ/BC8fPA8AqL5rGSo/UxjjUhESOnGZIPd5Dbb+YQDAhsIc/PZrJVJrKpm4Qg6cSkpKsHnzZjz++OMoKipCTU2NS+oAf1QqFVQqlUuLkcg5+GFZ1m+eJ6VSSQOeAxgYGEBHRwduvPHGWBeFTBLXBu345h9b8Y8Tl6GQy6DdfB3URdRNTBKXv2WCRG1XrkJOa85NCiGHxllZWQCAhoYGbNmyBYD/8UUkNs6dOwee56nFiUSFtW8QDz77Af5x4jLSkuWo+3IRBU0k4QVaJgigZYImk5BbnEwmE3ieh8lkwvXXX4+2tjaPgdok9sxmM6ZMmYKcHBqASyKrvfsavvKbAzjV0YuMtCQ893AJiubTlymS+GiZIOIs5Ban8vJyGI1GtLa2oru7GzqdzmUBXhIfzGYz5s6dCxk1IZMI+rSjF5uf2o9THb2YlZGKxm9soKCJTBgzglxbLnd6WoRLQuJBUC1O3d3d6OrqcklsmZmZ6TLTbufOnS7niMklae2o2HE4HDh37hxuvvnmWBeFTGAHz3bh679rRlffENgZU/H8v65DQVZ6rItFSFhc6R3AU//41O8xtEzQ5BJUi1NmZiaamprw8ssvB3XRl156CQ0NDRQ0xdjly5cxMDBA45tIxPzz5GU8sOtDdPUNYU1BJhq/sZ6CJjJhfMB14nO/2Iv3TJ1IGZkt5952T8sETT5Bj3HaunUrDh48iPLychQWFqKkpAQsy4JhGFitVnAchwMHDqCtrQ2VlZXYvHlzJMtNgmA2myGXyzFnzpxYF4VMQK8eOo/vNRzGsIPHLYtn4JmHijA1Ne6XvyQkIIeDx1PvfIonm07CwQOLc6fhqQeVMF3u9cjjRMsETT5jepdbu3YtGhoa0N3djYaGBhw4cEBKYFlYWIjKykosXLgwUmUlY2Q2m5GXl4fkZErGRsLruffasOP14wCAu9fMxs/K1iAlifLXkMTX2TuA7zYcxrsnLwMANisL8N/3rkR6ShIWz5qO0hV5tEzQJBfS18PMzExs3bo13GUhYWY2m7F48eJYF4NMIDzP44m3TuDX/xAW0/7ahgX44b+soGzgZEI40GbBt1804pJtAGnJcvz3F1ahrNh1qAMtE0SoXX2C6u3thcViofFNJGyG7Q7851+O4c/NwtqH3//sEnzr9kU0Y5MkPIeDxzPvmvCzt07C7uBROHMqnnqwCEvzpse6aCQOUeA0QZ07dw4AKHAiYdE/ZMd3XjyIt45fglwG/OS+1fjSunmxLhYh42a5OojvNRzCP04IXXP3rZ2D/7l3FY3XIz7RK2OCMpvNyMjIQGZmZqyLQhKcrX8IW3/fgg/bLEhJkuOXX7yeBsKSCaHltAXffvEg2rv7kZokx4+/sBLlxZT3jvhHgdMEJSa+JGQ8Omz9+Opzzfi43YbpqUmo+0oxje8gCc/h4LFrL4faN0/A7uDBzpiKXz+oxPJ8SqFDAhvXNJjHH39cWqduz549UtJLElvDw8O4cOECBU5kXE5fuYrNz+zHx+02zJiWij9X3khBE0l41r5BbH2+BTVvfAK7g8c9a2bjtW/fTEETCVrIgdP27dvBMAxUKhUAYOPGjTAYDGErGAndxYsXMTw8jHnzaAwKCc2x891QP7MfZss1zM9Jx0uPrsfK2dTtSxKb8WwXPv/LfdjzSQdSkuT46X2r8YsvXo9pNJ6JjEHIr5aSkhJs3rwZe/bsCWd5SBiYzWYkJydj1qxZsS4KSUD7TVdQ8XwregeGsSI/A7//+jrMnB7cWl2ExCOe5/GbfW3Y+cYnGHbwWJCTjl8/qKQvAyQkIbc4tbW1AYDLILrm5ubxl4iMm9lsxpw5c6BQKGJdFJJg3jjajq/9thm9A8O4kc3GnytvpKCJJLTuviFU/KEV//O3jzHs4PH56/Lx+rdvpqCJhCzkFqe1a9eiuLgYOTk5aGpqgsFggFarDWfZSAh4nsfZs2exdu3aWBeFJJg/fngG//mXY+B5YNPKPPz8i9cjLZmCb5K4Dpmt+NYfjThvvYYUhRz/9S/L8dCN82nWHBmXkAOnjRs3orGxETqdDjzPo66ujj6s40B3dzd6e3tpYDgJGs/z+OWeT/G/hpMAgC+tm4f/uXcVLSNBEhbP83juvdOoeeNjDNl5zMtOx68fUGJ1AbUykfEb14i4hQsXYufOndJtm82GjAyamRBLZrOQ1bmgoCDGJSGJwOHg8aPXP8Lz758BAHznjkX4bukS+kZOElb3tSFo9Eew+6OLAIC7VuVBq74OGWm0ZicJj3EFTjabDRaLRbqt1Wrx9NNPj7tQJHRnz57FjBkzkJ6eHuuikDg3MGzH9xoO469H2iGTAT+6eyW+umFBrItFSMiOnLPiW38ywmy5hmSFDP/xueX46oYF9EWAhFXIgdM3vvENGAwGMAwjbWtra6PAKcYo8SUJRu/AML7xh1bs+/QKkhUyPFl+Pe5eMzvWxSIkJDzP4/n3z+Anf/sYg3YHCrKm4NcPKLFmLhPropEJKOTAqbCwEM8884zLtl27dgV9vtFoxNatW9Ha2ur3OI7joNfrwbIsOI5DRUWFFKz52zcZDQwM4NKlS1i3bl2si0LiWGfvAB7+XTOOnOtGeooCui8X4ZbFM2NdLEJCYusfQvVLR/G3o+0AgM+umIXH1WuQmU5dcyQyQg6cxMSXzkpLS4M6Vwx2jEZjwGPLysqk4IrjOGzduhWNjY0B901G58+fB8/z1OJEfDJb+vCV3x5A25WryJ6agt89XILrCphYF4uQkBw7341v/cmIM519SJLLUP255fj6TdQ1RyIr5MApKysLTzzxBFiWBcMwsFqtqK+vR319fcBz1Wp1UPfBcZzLbZZlpezk/vZNVmazGWlpaZgxY0asi0LigN3B40CbBR09/cidnoaMKUl4+LlmdPQMYA4zBX/413VgZ06LdTEJGTOe5/HCh2fx368fx6DdgTnMFPzqgbVYOy8r1kUjk0DIgVNVVRWsVqtL19jBgwfDUSaJwWBAdna2y7bs7GwYjUa0tLT43KdUKsNajkQhjm+ib1tk97F27Hj9ONq7+6VtMgA8gKWzpuP3X1+HvMy0mJWPkFD19A+h+uWj+OsRoWtOtTwXT5StAZOeEuOSkcki5MCptLQUW7duddn20ksvjbtAzqxWq9ftFovF7754NpZxWYGOdR4nxvM8zp07hw0bNkTngZC4tftYOx59wQjebbt4u+JWloImkpCOX7DhW38you3KVSTJZdBsWoZHbllIXxZJVI1rcHgw2yLBV9AUaN/AwAAGBgak2zabLYylCs5YxmX5O9Z9nNjly5fR399P45smObuDx47Xj3sETSIZgCfeOoF7186hBJckYfA8jxcPmPGj1z/C4LADszPT8H8PKFE0n7rmSPSFHDiZTCbodDqUlJQAEF7YDQ0NYV2vjmEYjxYki8UChmH87vOlpqYGO3bsCFv5xmos47ICHes+TsxsNkMul2POnDlhKi1JRAfaLC7dc+54AO3d/TjQZsH6wpzoFYyQEF0dGMYPXjmKVw9dAADcvnQmniy/HllTqWuOxEbIi/zqdDosXLgQPM+D54Xvt+LPcPE2cw8AiouL/e7zpbq6Gt3d3dI/Mct2tPgbszWeYwEhcJo1axZSUujNZDK7aPMdNDnr6AnuOEJi6ZOLNtz9q3149dAFKOQybL9rGX7z1RIKmkhMhdzipNVqsXHjRpdtvoIZf9wHmBuNRjAMA5ZlwbKsy7Ecx6G4uFhqcfK1z5fU1FSkpsZupfexjMsa6xgus9nss6s0HrooSeQdv2DDr94+FdSxudNpjBOJXzzPo6HFjB+++hEGhh3Iy0jD/z2wFiULsgOfTEiEjWuRX3dZWcH1NxsMBjQ1NQEQus9KSkqkrifxdlVVFQCgsbERGo0GJSUlaG5udhkP5G9fIvE3LiuYY69evYrOzk7cdtttXs+JdRcliay+wWH8wnAKz+5rg93BS7PnvJEByMtMw7qF9AFE4lPf4DD+85VjePngeQDAZ5bMxJPla5AzLXZfeglxFnTg9PLLL0OlUkmL+D777LMu+61WK5qamvDmm28GvJZKpYJKpYJWq/XY5x78sCwrHec+rsffvng0lnFZYzn23LlzAOBzYHh1dTW2bdsm3bbZbDSIfIL4x4kO/NdfjuFc1zUAwOdX5+OWxTNQ/fJRAK4BlDgU/LG7V9DAcBKXTl7qwTf/aMSnHb2Qy4DvfXYpHv1MIeT0eiVxJOgxTj/96U/R0tIi3X7mmWfQ1dUl/eN5Hp2dnREp5EQxlnFZYznWbDZj+vTpyMzM9HpOamoqMjIyXP6RxNZh68e3/mTEw88141zXNcxhpuA3Xy3Grx9U4ovr5uHph5QeKQfyMtPw9ENKbFqVH6NSEyKwO3i8b+rEq4fO431TJ+wOHo0tZtzzq334tKMXudNT8eLWG/Gt2xdR0ETiTtAtTs5BEyCsS7d27VqXbaGMcZpM/I3ZAoIf3+XuxIkTlPhyknA4ePzpwFlod3+Cnv5hKOQyfP2mBfhu6RKkp4z+OW9alY/SFXkumcPXLcyOv5Ymhx04sx/ovQRMmwXM3wDIFbEuFYkgb8lZpyQrcG3IDgC4ZfEM/O+W6zGDuuZInBrXkiui7u5uGAwGFBUVhaVQE5m/cVljGd/lPE7sz3/+MzZt2hTdB0Ki7pOLNvzg5aMwnrUCANYUZOIn963GqjneWxoVcll8pxw4/hqwWwPYLoxuy5gNbNICK+6JXblIxPhKzioGTfdcl4+ff3EttTKRuCbjQ8wh8Oyzz+KRRx4JuC2e2Ww2ZGZmoru7O2G7r86fP49du3bhkUceQUFBQVDnTITHPZlcG7Tjl2+fwq53OQw7eExNUeDf71yKL69fEH8tSME6/hrQ8BV4DmMfeTzlzwcdPNHrOTHYHTxu1r7tN89YfmYa9mnuSNzXNUlYY3kfGVOLU3d3NxoaGiCTyaTWDmetra0JFThNBGazGUlJScjPp3ErE9E/T17Gf/3lGM5a+gAAd66chR/dsxL5mVNiXLJxcNiFliavc/94ADJg93Zg2eep224CCZScFaDkrCQxjClwyszMlGbDmUwmLFy40GW/2MVEosdsNmP27NlQKOgDZiK53DOA//7rcbx2WOjGys9Mw457VuKzK/NiXLIwOLPftXvOAw/YzgvHLbwlasUikRVs0lVKzkri3ZjHOC1cuBDPPPMM9uzZ4zWXE4kenudx9uxZrFmzJtZFIWHicPCobzGj5u8fw9Y/DLkM+NqGhdj22SWYlhrykMT44XAA3DvBHdt7KaJFIdHTdXUQ9c3BrdRAyVlJvAtrAkwSXTabDT09PZSTaYI4dakHP3jlKJpPdwEAVs3JQM1912F1gffB3wml42Pg8J+Bo41Ca1Iwps2KbJlIVLz10UX84JVjuNI74Pc4Ss5KEsUE+Ao7eZ09exYAgh4UTuJT/5Adv3r7U+jeNWHIziM9RYHvfXYpvrp+PpIUIS8nGXs9F4VA6Ug9cPHo6PaUDIAfBob6fJwoE2bXzd8QlWKSyLD2DWLH68fxykgG8MW507BZWQDt7k8AUHJWkrgocEpgZrMZOTk5mDp1aqyLQkK079QV/OdfjuJ0pxBEqJbnYscXVmEOk6CDvwd6gY9fF4Kltn8CvEPYLk8GFn8WWLMFWHwncOqtkVl1gNeP0E07aWB4Atvz8SVUv3wUHT0DkMuAilsL8W+qxUhLVmDBjHSPPE55mWl47O4VlJyVJAQKnBKY2WymbroE1dk7gP/528fSt/FZGanYcc8q3LlyVuIlMrUPC+OWjvwZ+ORvri1Jc28ArisHVt4PpDt1way4R0g54DWP007K45Sguq8N4cevH8dLRmEZKHbmVDxRtgbKeaN5/xImOSshPoQ1cDp9+jQWLFgQzksSHwYHB3Hp0iWvS7CQ+MXzPBpbzuGnb3wMa98QZDLgq+sX4HufXYLpacmxLl7weB5oPwQcaQCO6oGrHaP7sguB67YA15UB2azPS2DFPULKAcocPiH845MObH/5CC7ZBiCTAVtvYbGtdAnSkj2fz7hPzkqIH+MKnA4dOuSyEK1Op0N9ff24C0UCO3/+PBwOB7U4JZBPO3rxg1eO4kCb8DezIj8DP71/Na6fy8S2YGNhPSsES0cagCsnRren5wCrNgsB05wiINhWM7mCUg4kOFv/EP779eNobBVamRbOmIonyq5D0Xwa5E0mppADp/LyclitVpe10w4ePBiOMpEgmM1mpKamYubMmbEuCgmgf8iOp94x4el3PsWQnceUZAW2lS7BwzctSIzB39e6gOOvCsHSmfdGtyelAUs/JwRLizYCigRqMSNh8c+Tl7H9pSNo7+6HTAZ8/aaF+P5nl2JKCrUakokr5MCptLQUW7duddn20ksvjbtAJDji+KaEGw8zyew3XcF/vnIM3JWrAIDbl87Ej7+wCnOz02NcsgCGB4UB3EfqgZO7AfvgyA4ZsOBmYM0XgeV3A2kTIFUCGbOe/iH85G8f488juZkW5KTj8bI1KFlArUxk4gs5cCosLAxqGwk/nudx7tw53HjjjbEuCvHBcnUQP/nbx9Ig2ZnTU/Gju1fic6vz4jfY5XnAfEAY5P3RK0JLk2jmcmFG3OoyIJPSX0xm+05dQZX+MC6MzIp7+KYFqLpzGbUykUkj5MDJZDJBp9OhpKQEgPBh3tDQgObm5rAVjnh35coVXLt2jcY3xZDdwXudFcTzPF4ynsdP/nYcXSODvx+6YT7+fdNSZER78LfDHtzA6yufCi1LRxuArtOj26flAavVQuvSrFXBj1siE1LvwDB++veP8acPhfxx87LTUau+DjeyNMibREGw72dREHLgpNPpoFKpwPOjOVicfyeRYzabIZPJMGfOnFgXZVLafazdIw9NfmYaKj/D4s1jl/A+1wkAWJY3HT+5bzWK5mf5ulTkHH/Nx1R/rTCb7eoV4NjLQuvS+dbRY5KnCvuv2wIsvJVmuBEAwP5Pr+Df9Udw3noNAPDV9fOhuWsZ0lMoow2JgkDvZ1EW8qteq9V6LLuiUqnGXSASmNlsxqxZs5Camhrrokw6u4+149EXjHD/itDe3Y8fvXYcAJCWLMf/t3EJHrllIZJjMfj7+GsjySXdSmlrBxq+DORfD1w6BjiGhe0yBVB4hxAsLfsckEIJVYng6sAwdr7xCf7wwRkAQEHWFNSqr8OGwhkxLhmZNPy+n31FyAcX5eApbGvVvf3227BarVi7du24C0X8M5vNWLhwYayLMenYHTx2vH7cI2hylpokxxvfuRULZ8Yo+HDYhW9mXks5sq39kPBz9lohWFq1GZiWG6UCkkTxAdeJf9cfhtkitDI9dOM8VN+1HFMnwmLTJDEEfD+TAbu3C/ngotg6Pq6/gJdffhkcxwEQuulaWlpw//33h6VgxLu+vj5cuXIFt956a6yLMukcaLO4dM95MzDswEVbf+wCpzP7XZuzfbn3aeD6ByJfHpJw+gaHUbv7BH63/zQAYA4jtDLdtIhamUiUBXw/44VFw8/sj2o+uJADp+3bt8NqtcJisYBlWVitVlRWVgZ9Psdx0Ov1YFkWHMehoqLCJSeUM71eL3UDuh9jNBoBAEqlEhzHwWq1QqlUhvSYEsG5c8IsLRoYHn2my71BHdfR4z+4igjrWeDkm0Dr74I7XpES0eIEy+6ww9hhxOW+y5iZPhPKXCUUNK4qZg60WfDv+sM4M7J24pfWzcMPPrcssbLak4mhtwM4+Icgj70U2bK4GVc6gq1bt6KtrQ0ymQwLFizA22+/HfT5ZWVlaG0VBqVyHIetW7eisbHR57HutFotqqqqoNPpUFdXB0AYY+XrGhOF2WzGtGnTfAaZkTbZPugGhx14+5MO6FvP4e1PnP84HVCkt0GW1AN+eDrsfQsBCOOZcqenRb5gDjtwrkXIsXTyTaDjI49D7ACMaam4rFBgpt0OZf8ApGdq2qzIlzEAwxkDdh7YiUt9o/U6K30Wtq/bDtV8Gi8ZTdcG7Xj8zRN4bn8beB6YnZmGnZuvw61LKMEuiaKhfuE97fCLwKkmgLcHd16U389CDpxYlsWZM2ewcOFCPPHEE/j+978f9Lli957ztQwGg9djrVYrGhsboVarpW21tbWoqqoCABQVFaGrS8g3E6tgIprCmfjyrba3MDd3Lnieh6XfgpnpM7FmxhocvnLYa2AUrQ+6eAjOjp3vhr71HF49dB5dfUPS9mSFDHz6UaTOeh3y5G5pu2MoEwOX7sZMeTHWLYxQEsD+bsD0thAonXoL6Osc3SeTCwvqLi4FPngGBr4XO3MYXEoa/ROfNTyM7Z1WqJKyhKm8MWQ4Y8C2d7aBdxu70NHXgW3vbMOTtz1JwVOUtJy24N/1R9A2kqT1iyVz8YPPL49++gwyOfE8cK5ZCJaOvSS8z4ny1wJdHNBvg/dxTjJhdl2U389CDpysVitYlkVXVxeuXLmCO++8EwzD4I477gh4rsFgQHa264dLdnY2jEaj124256BJr9e73AYmR8AEAHa7HefPn8ftt98eluv98P0fQjHFNSCRy+Rw8A7pthgYAYjKB10sWyGu9A7g1UMXoG89h4/bbdL23OmpuE85B2plAf5ycjd+b3rB41xZUjfS5ryA+wvZ8K7y3mkaaVXaLfTjizPhACFr9yIVsGST8DNd+JsyyAax7dM/erzNdCgU2JabgycXPQhVDFsJ7Q47dh7Y6fFaAgAePGSQQXtAi9vn3j6hWzNjrX/Ijp+9dQLP7hNamfIy0rBz82rctpQmCpAosJ4V8scd/jPQ+eno9umzhWS7a74EzFzqNKtOBtfgaeR9dtPOqKdNCTlw2rx5M+x2oRlt586d2LNnD4qLi4M612q1et3uvGCwyDkoch5T5bxNr9cDAJqbm1FZWemy39nAwAAGBgak2zabzetx8erSpUsYGhqK6Pgm56AJEAKj777zXWSmZkb8gy4WrRCDww7844TQFfePTzow7BDuO0UhR+nKWVAXFeCWRTOQpJDD7rDjzXd1XvNAitveuliHf7PfC8iEAMHBO2Dn7bA77LDzTrd5OxwOB4b5YZdjHPZB2NsPwX72fdjNH8JhO49hyOCQAY7UJAxnzocj/3rYZ6+BPYuFXSY8Z/bz78DO2zFsH8b/mV8H76WQ4rb/PPsqPjKmQwYZHLwDDjjA87zwO+8AD6ffeT6o/dLv7tdz+l08tnug2yUw9igneFzsuwhjhxEleSXjfo6JJ+PZLny/8TC4y0Irk7qoAP/1LyuQOYVamUgEDfQK614efhE4vXd0e3K6sITTmi955o9bcY+QcsBrHqediZXHCQAef/xxtLS0oL6+HgDG3X3kK6ASaTQaaLVal23Og8pZlkVpaSlMJpPX82tqarBjx45xlTGWzGYzFAoF8vPzo3afYhDTPdDt95iLfRex+bXNyEzNhEKugFwmh0Lm46dc4bFNBhn+1vY3n8EZAPxg3w/w3vn3XD64xQ9nh8MhfYCLgYjzh73zsXaHHVcHh3G55xq6+gYw7LADMh4p83lkJMuQMSUJU1NlOCMDao/ZoT3Gw87b0T/cD+uA1W99Xey7COULYZqcMBXAVPe++yHA2iz8C9HVoat49uiz4ypaNFzuuxzrIkw4/UN2/K/hJHa9y8HBC62pOzevxh3LYj/mjUxQDjvQ9q7QsvTxa8BQ3+i+BbcIwdKKe4DU6b6vseIeIeVAomcO3759OwoLC6XZbhs3bsTLL78cVDoChmE8WpcsFovfLjer1QqDweBxDMdxUveeOEOP4zivrU7V1dXYtm2bdNtmsyXU7DSz2YzZs2cjKSk+86iYur0HrOFybfga9Kf04b1oKuD8pzcEoHNQ+BcJcpkccpkcSZBDzjugcNihcAxDDkDB81AAUMjkkCenQ5EyDYqUaZArkpEkS/IIOsVtcvno75f7LuNY57GA5dgwewPYTBYymQxyCGWSyWRSECuW09t+OZx+D+J49/2clcPTh58OWMaZ6TQwOZwOma34fuNhfNohzA69XzkHj/3LSmSmUysTiYDLJ4HDfwKONAgpA0TZhUKwtGYLwMwL/npyRVRTDvgT8idwSUkJNm/ejD179oz5XJVKBZ1O57HdX1dfS0uL11QEGzdulAaHi9zHT4lSU1MTOtu22WzGypUrY10Mn7615ltgGdalO8q5u8r5p8s2hx0nLCfQdLYp4H2Uzi/Fsuxl0gex+CGukCmkn9I+mRw8L8OJ9l40n+7C8Qu9sDsAQI4kuRxrCrJx06IZWD2bQXJSkvCBL5dLH/zu/z7u/Bg//uDHAcv489t/juJZxaMBjjwJ8uFBKM7sh+zUm8Lg7m6z60l5q4WxSks2AbOVgDy0jOPNF5vx9Te/HvC4R1Y/ErNuMLvDjpdPvYyOvg6vLYwyyDArfRaUuRM3rUg0DQzb8XPDKej+aYKDFxacrrlvNVQrqJWJhFmfRRjgffhF16Wc0jKBlfcLueMKShJ+3cuQA6e2tjYArt1zzc3NQbU4ubcGcRyH4uJiKTAyGo1gGMblOKPR6BEQsSzr0nVnMBigVqsn5GDx7u5udHd3x2ULmfhBt/W6rSGPcWq+2BxU4PSlZV8K6gP/43Yb9K3n8JeD59F5NQWA8Nq5riAT6qIC3H3dbGRNHVsuo+XZy6E7okNH3yVf8zswKz0PtxXcJtSDrV2Y/XZyN8C949pEnZQGsLcBS+4EFn8WyCwYU1l8UeYqMSt9VlwHJQq5AtvXbce2d7ZBBplLOWUjAz416zQ0MDwMjpwTWplOXhJame69fjZ+dM9KMOnxkceLTADDg8CnTcChPwlfCh0js5BlCmGW75ovAkvuApKjkKYlSkIOnNauXYvi4mLk5OSgqakJBoPBY/yRP42NjdBoNCgpKUFzc7NL/qWamhqUlJRIKQdE7gEXwzAoLi5GbW0tGIaByWSasHmczGahhSIWgZMMMmSmZKJ7UBjnFIkPunB84FuuDuLVQ+ehbz2Hjy6MDvyfMS0V9yvnYLOyAEvz/PSjB6CQK7A9fyO2ffpHYX6H05cG2cgC15rpK6H4Z60QLIlLm4imzxYCpSWbhAGQKekhl8VvGRMgKFHNV+HJ2570OoNSs05DqQjGaWDYjv/b8yme/qcJdgePGdNS8JP7VuPOlXmxLhqZCHheeH879CJwTO+aGiVvNbDmAWC1esIu5STjed7f0lt+tbW1SV1uW7ZsSbh16mw2GzIzM9Hd3Y2MjIxYF8evN954A6dOncJ3vvOdcV9LfNzLn17ukY7Anfhh++RtTwKAxwddXnpe2D7oxFl1gPfgzNusuiG7A/88cRmNrWa8/UkHhuzCeckKGVTLhVlxn1kyE0nhWGzXYQd+vgqG4S7szMlyyZGUNzwMTWcXVH3XnE6QAXOKRrrg7hTeUKLURO0trUM4n6twCUfOrkT6Ow4nu4PHgTYLOnr6kTs9DesWZkMhl+HY+W58r+EwTlzqAQDcvWY2dtyzEtljbGElxIOtfTSFwOWPR7dPzQWuKxfGLuWtil35xmEs7yPjCpwSXSK94dbV1WHmzJm47777xn0tf4GTex4n9w/bSCen9J7HKQ/b3T7wP7log77lHP5y6Dyu9I6O5F49R+iKu2fN2Lvi/OJ54OPXgYYvAwiQlXveBmDtQ0IzdQy/ccVDItFoSKS/43DZfawdO14/7rJ2Yl5GGpTzs/DmRxdhd/DImZqC/7l3Fe5aHb1ZuGQCGuwDPvmbMNCbewcQPx8UqcJMt+sfANjbAUV8TloK1ljeR4J+pMFkB3/22WfxyCOPBHtJEqTBwUFcvHgx7Gvw/Xj9j8eUORwQuoIiOah4uGclej/VoG/oY2k5k97k5RhevhJdYlec8RyOnXfuikvBfWvnYHNRAZbljfOD02EHrGeEGSFXToz8HPndKaOtAkBJ/4D3a5T8q9BMHWORfq5IbOw+1o5HXzB6dGhftPXj70fbAQCfvy4fP75nJXKmJe5kGBJDDgdw9n0hWProVWCwZ3Tf3BuB678ErLgXmMLEqoQxFXTg9NOf/hRNTf4H77a0tFDgFAEXLlyAw+EI+/imzy78rNfIOlYftq4fCIXS9osYxDdeMEIhx8isOKErbuOyka64pTORPNauuKFrQrbayyeAK6dGg6TOTwG7j4DII3OtD3GwDhyZmOwOHjteP+73VZiVnoxffnFteDPYk4nBYfefC8nCCd1wh/8sfIEUMfOEbrjrtgA5hZ7XnWSCDpw2btyInJwcFBUV+TxmEvf6RZTZbEZqaipmzpy4eW2cPxDkcGCd/BPkwooOMDjgWAYH5LA7gJWzp6OsaC7uuX5OcGM2+ixOgdGJkdajk0DXGfgMghSpwIzFwIwlQsr/GUuEf1kLgV8XC/38cbRuEpk8DrRZXLrnvOnqG8KBNgvWF+ZEqVQkIRx/zXv27Tt+KHxZPPQiYP5gdF/KdGDlF4SB3vPWh5wiZSIKOnBqbGxEd3c3WlpaAAh5nNxbK3zlTyLjYzabUVBQAHkcvHB9DUgNBc/zuGjrxycXe/DWRxfR3t2PO+UH8Fjy85gtG02QeoHPxo6hr+BNxzr85+dXen4g8LyQYM05MBK72q76yT6dxrgGRuLvzDzfGWk3aeNu3SQyeXT0+A+axnocmSSk9d7cvvDZLgB/+cbobZlcGK+05kvC+KUIzPydCMY0miszMxMbN24EABw8eBAWiwUymUxa2Hfz5s3hL+EEw3Ec9Hq9lOXceckYb8c2Njbi6NGjmDp1Ku6++27p2LFcxxfj7ueQk78QADDQfRFTsuZgcdFGnGrdg2td5zElaw6W3XAnFCOzx3Yfa8d/v3YUc3sPS61B5mlr8F/3rMamVf4HoHZfG8LJSz345GIPTly04cTFHpy42ANb/+iitXfKD+Dp5J97nJsHC55O/jn+39C30XdhOjDYPRokiV1tQ1d933lGgdCCJAZGM5cCM5YCU2eMfZZbHK6bRCaHtitX8eKBs0Edmzt94uTMIePksAvvV/46eOVJwO3/IeRcypgdtaIlqrDMqnv77bfR1NSE0tJSKYhKBLGYjVNUVITWViGjKsdx0Gg0PnNPFRUV4c0338SvfvUrfOYzn8FTTz0lHTuW67iTHvf26chIdQ0c7LwMCtnoS+IScnBh/WO4NOez+MufnsEPvbQG/XjoK7j3gW9g06p8DA47YLrcixMXXYOkCz66FxRyGdgZUzFjqgI/u/Bl5MECbw1Y4qvUZ5wjTwKyWdfASOxuS50WVL2MSaCxAiRqJvqsuku2fvxizynUN5thd/h/u5YByMtMwz7NHTTGiQg+fRt4IYjZ2F/9a9wsaRILEZlV582hQ4eg0+lQX18PlmVRWFiYUIFTtHEc53KbZVkYDAa/x5rNZshkMqxfv17Kyj6W64yV3O1byUy+EzP3fwe/l92Dp5Jf8zg+DxY8lfxz/H/1cjzx5mdwurMPww4eyRgGgx5kyXoxF71YLe/BwvQBFE4bxNwp/chP7kO2rBdT7TbI+7vAWy5CJrN5XF8kBkx8UhpkuctHAyMxSMpeCCiiuOZWHK2bRCam7r4hPPOuCc+914b+IWFWxB3LcrGhMAc/+ZuQQ8dLZzEeu3sFBU0E6DQBrb8DWn4b3PG9lwIfQwCEEDidPn0ajY2N0Ol0kMlk2Lx5M1pbW7Fw4cJIlG9CMRgMHuPAsrOzYTQaPVINiMeazWbk5uYiLS1NOralpSXo64yVe4uOXAY4eOAr/OuQ+djP88Dj8v/Dye6XkZV0FVnyXkzDNXgYBmAd+ed+v8GW755fAdeVBXk0IYnn2qAdv9t/Gk+/86nUlV08PwtVm5Zh3ULh774ga4pnHqfMNDx294qA3eZkArMPCTmXWp8Tci6NBc0GDlrQgdOzzz4LnU4HjuNQXl6OxsZGj0zhL7/8clBr1U1WVqvV63aLxeKxTTzWbDZj/vz5LseO5ToAMDAwgIGB0Sn23d1CPiLbwFh6aQMdO4gFENYvdAAQ2o7kwuKOU7I8/6VnAWlOP61ngTf85wkTTAdsvlumyORjG3k9OByOAEfGtyG7A40t5/CLPSdxySb8vS6dNR1Vm5bijmW5LuuCblqVj9IVeWGbqEESXNcZwPh74OALTi1HMmCRClB+FXijCuih2cDhEnTgVFFRAbVaje3bt4NhGHR1deHtt9+W9nd1dWHnzp0UOIXAVyDkcDhw+fJl3HzzzQGP9bevpqYGO3bs8Ng+9397x1LMEHUDCG5Aa1B23hW+a5EJpaenJyEX+HY4eLxx7CJ+9tYJcFeESQ4FWVOwrXQJvnD9HJ/BkEIuo5QDk5l9GDj1JtDyHPCpAVJQNDUXUH5ZCJiyxC/dPM0GDqMxBU61tbV+czXV19eHpVATFcMwHq1CFovF65s9wzC4dEn45iAmvhSPHct1AKC6uhrbtm2TblutVsyfPx9nz55FZmbmOB7R5Gaz2TB37lyYzeYJOSg5WsZSj4ODgzh8+DA+/PBD9PT0YOnSpVi/fj2mTp2K2bMTbzbQ3lOXUbv7BI6eF1qBc6am4P/dsQgP3DAPqUn0QUa86D4PGJ8X/vU4zexlbwOKHhbSCLiP96TZwGEVdOBUWVkZ8E2turp63AWayFQqlbQosrPi4mKvxz7xxBOYOnUqsrKyXI5lWTbo6wBAamoqUlM9l17IzMykD/wwyMjIoHoMA3/12N/fjwMHDuCDDz5Af38/rrvuOtx0000JmxT2sNmK2jc/wXufCqvKT01RoOLWQvzrLQsxLTWx1/wiEeCwA5/uEcYundw9ul5ceg5w/YNA0dcCZ/RecY8QVNFs4HEL+i/UfTxTqMdMZizLutzmOA7FxcVSS5HRaATDMGBZFizLYnBwEHPnzoVMJnM51r1lyf06hEwUV69exQcffIADBw7Abrdj7dq1uOmmmxL2tW663Isn3jyBN45dBACkKOR46Mb5+NbthbSuHPHUcxE4+Aeg9Xmg22nIw/ybgeKHgeV3A0ljeN3QbOCwoK82UdbY2AiNRoOSkhI0Nze75F6qqalBSUkJqqqq4HA4sHnzZrz++utISkryONbfdQhJdN3d3di/fz9aW1shl8tRUlKC9evXY9q0COTkioL27mv4heEUGlvPwe7gIZMB968twHdLF6Mgi7IzEycOB9D2jjB26cTfAcdIkuA0Brj+AaF1aebSGBaQhCUBZqKK58R57e3t0Ol0+PrXv4558+aF9doDAwOoqalBdXW11y48Ehyqx/Bwrsfe3l7s27cPR44cQUpKCm644QbccMMNmDJlSqyLGRJr3yCefseE3+0/jYFhoXuldMUsfP+zS7E0b3qMS0fiSu9l4NAfhdxLXW2j2+feABR/HVjxBSA5Mf8OEsFY4gEKnOI0cDpw4ADefPNNVFdXIymJGgbJxHbp0iXs3bsXH330EaZOnYoNGzagqKgoYQPSvsFhPPfeaTzzTxN6RnIxrVuQDc1dS1E0n9b0JCN4Hji9T0hS+fHrgGNI2J6aAVy3ReiOm7UytmWcJKKWOZxEjtlsRn5+PgVNZEI7d+4c3n33XZw8eRIMw+Bzn/sc1q5dm7Cv+yG7A39uNuOXe07hco+Qi2l5fgaqNi3FbUtmuuRiIpNYnwU4/KLQHdd5anT7bKXQurTqfiBlauzKR/xKzHenSeDs2bNYsWJFrItBSNjxPI+2tjbs3bsXbW1tmDFjBu677z6sWrUKCkVizvBxOHj89Wg7fvbWCZzp7AMAzMtOx/c+uwR3XzcbckpMSXgeMH8otC599BfAPpKUOGUasLpMaF3KXxPTIpLgUOAUh2w2G7q7u8M+tonjOOj1erAsC47jUFFRkbCzkyLNaDQCAJRKJTiOg9VqlZaz8VePVMdC3W3dulVahFpkMpnwzDPPoKenByaTCZ/73OewZcsWLFu2DG1tbfjZz36WcHXK8zz+eVLIxXS8XchgPmNaKr6zcRG+WDIPKUnyGJeQxNw1K3CkXmhduvzx6Pa81ULr0uoyIJXGuyUUfhLr7u7mAfDd3d2xLoqLY8eO8Y899hhvs9nCel2lUin9bjKZeLVaHdbrTyQVFRU8hBS7vEql4ru6uqR9/upxstdxY2Mj39rayju/tdjtdv7IkSP83Llz+ccee4z/7W9/y+/ZsyfoeovXOm09Y+HLn9nPz9f8lZ+v+Su/6oe7+V8aTvK9/UOxLhqJJPswz3Pv8vyRRuGnfdjzGIeD583NPP/KN3n+v2fx/GMZwr//nsXzf/kmz5tbhGNI3BhLPBCzFqexfIsM9dt/ojKbzcjKysL06eH7FsJxnMttlmVhMBjCdv2JpqioCF1dXQDg8nryV49Ux4BarZZ+Hx4exuHDh/Hee+/BZDJBoVDg4YcfltZe3Lx5M4DEq9NTl3rw+Jsn8NZxIbN/SpIcX10/H4/etgjZU1NiWjYSYcdf85F9WyskmBzoAY40CIkqLx4dPSZ3hZDV+7pyYAoT9WKT8IpZ4FRWViY15XMch61bt/rMRaTT6VBXVwdAyKjtfNxYrpMozGaztMxKuBgMBmRnu87myc7OhtFolIJQ4spbAO6vHltaWqiOISyLAgC//OUv0dPTg+XLl2NgYACLFi1yWbA6mHqLpzo9b72GnzedxEvGc3DwgFwGqIsK8G+qJZjN0DTxCe/4ayPrvblNRLe1Aw1fBtjbgXPNwODIGqCKVGDlfUJ33Nx1AE0MmDBiEjiN9VtkKN/+E9XQ0BDa29tx/fXXh/W6vhYAdl/zjgisViv0ej0AoLm5GZWVlWBZ1m89TvY6dl4WBQAWLlyIm2++GTNnzkRtba3XcwLVWzzUqeXqIH79j0/xh/fPYNAu5GK6c+Us/PudS7Eol8amTAoOu9DS5B40AaPbuH8IP3MWC8HSmi8C6ZR6YiKKSeAUSuvHWL/9J+o3/AsXLsDhcIS9xckXXx9Mk51zly/LsigtLYXJZPJ5vL96nOh17G1ZFAC47777Ap4bar2Fq07tDh4H2izo6OlH7vQ0rFuYDcXIDLirA8P4zb421L3LoXdAyMV0I5sNzaZlWDsvy99lyURzZr9r95wvd9YANz5KrUsTXEwCp7F+iwzl2783AwMDGBgYkG7bbLbgCx0lZrMZKSkpyM3NDet1GYbxqBeLxZLw48EiheM4KfgWx89xHOe3HidbHYvLohiNRshkMpSUlODGG2/0OjYv1HqLZJ3uPtaOHa8fR3t3v7QtPzMNP/jccliuDuL/3j6FK71Ct+PK2RnQbFqGWxbPoFxMk02fRUgfEIxpuRQ0TQJxlY7AVyAUrm//NTU12LFjxzhLGVlmsxkFBQWQy8M7jVmlUkGn03lsLy4uDuv9TARGoxEbN26UuodF2dnZfuuRZdlJUcednZ147733cPjwYaSkpOCmm24KuCxKqPUWqTrdfawdj75g9Oh4ae/ux7dfPCjdXpCTju99dik+vzqfcjFNFjwPXDkJnHgDOLlbyL3EO4I7d9qsyJaNxIWYBE5j/RYZyrd/b6qrq7Ft2zbpts1mi1qXWDB4nofZbEZJSUnYr82yrMttjuNQXFw8YVtDxoNlWWi1Wum2wWCAWq2WWkCcOdejv30TgfuyKBs3bvS7LIrVanX5wuMs2HqLRJ3aHTx2vH7c62gVkVwG/OielfjSunlIVlAupglveBA4ux84sRs4+QbQddp1f+5KwHpmdOC3B5kwu27+hkiXlMSBmAROY2n9CPXbvzepqalxvfaVxWJBX19fxIK5xsZGaDQalJSUoLm5OeFnH0YKwzAoLi5GbW0tGIaByWRyqSt/9TgR6/jcuXPYu3cvTpw4EXBZFIPBgKamJgBCC29JSYmUoiDUegt3nR5os7h0z3nj4IHFudMpaJrI+izAqbeEliXT28CA09ANRQqw8FZgySZgyZ0AM89pVh3gOkh8pCVy005AnpiZ78nYxGyR36KiIpc0ApWVldIbrtFoBMMw0jimhoYGVFRUAAD0ej3q6+ulN09/1wkk3hb5PXToEF599VVoNBqkpaXFujhkEuO9LItyyy23JPSyKKJXjOfw3YbDAY/7xRevxxeunxOFEpGo4Hng8gmhRenEbuDcAdcuuKkzhSBpySYhtUDqNM9reM3jNEcImlbcE/nHQCImIRb59fctUvymWlVVNa5v/4nGbDZj5syZFDSRmOF5HidPnsTevXtx7tw55Ofno7y8HMuXL0/4QdH9Q3a8ZDyHX+45FfhgALnT6e8w4Q0PAmfeE8Yqndzt2QU3azWwdJMQLM1WAoHGlq64B1j2eWGWXe8lYUzT/A3U0jTJxKzFKR7EW4vTU089hblz5+Luu++OdVHIJONwOPDRRx9h79696OjowPz583HLLbegsLAw4QOmnv4h/PHDs/jNvjZc7hFm1cpkQgOENzIAeZlp2Ke5Q0pNQBLI1U6hC+7kG8CnbwODPaP7FKkjXXAjLUtM/IxxJbGVEC1OxFV/fz86OjqwYQMNLiTRMzw8jCNHjmDfvn2wWCxYtGgRPv/5z7tk+E5UV3oH8Nx7bXj+/TPo6RfyMM3OTMPWW1lkT03Bv/35EACvo1Xw2N0rKGhKFDwPXP5kZBbcm1664HKBJZ8FltwFsLd574IjZAwocIoT586dA4C4muVHJq7BwUEYjUbs379fWhZFrVZj9uzZsS7auJktfdi1l0N9sxkDw8IH6KLcafjGZwpxz5rZSEkSumNSk+QeeZzyMtPw2N0rsGlVfkzKToI0PAic2TcyC263MOPNmdQFdxcwe23gLjhCxoACpzhhNpuRnp7ukQmdkHDq7+9Hc3Mz3n//ffT392P16tXSsiiJ7sTFHjz9zqd4/Ug77A6hHWnNXAbfvK0QpctneeRh2rQqH6Ur8nxmDidx5uqVkS643b674MTxSpkFsSsnmfAocIoT4sK+iT6ehMQnb8ui3HTTTRMix1TrGQue+ocJez7pkLbdsngGHr2tEOvZHL9/Uwq5DOsLc6JRTOLMYQ88wJrngY6PRwd2mw/ApWN1aq4wVmnpSBdcytRoPgIyiVHgFAccDgfOnTuHW2+9NdZFIROM+7IoxcXFWL9+vddlURIJz/N45+RlPP0PEw6cFpLgymTA51bl4xufKcTqgswYl5D45HVK/2xgk1YIhE7vE8YqnXwDsJ51PTdvtdD9tnQTkE9dcCQ2KHCKAx0dHRgcHKTxTSRsLBYL9u3bN6ZlURLBsN2Bvx+7iKffMeHjdiFhYbJChs3KAlTcyoKdSQN/45qURNJtSqPtAtDwZSApDRh2Sk6qSAXYz4wkotwEZFJeLRJ7FDjFAbPZDLlcPiEG5pLYcl8W5Y477kBxcXFcZ8wPhpiDSfdPDmctfQCA9BQFHrxhHv71ZhZ5mZRzKe457EJLk7/Fbob7hS44cWA3+xnqgiNxhwKnOHD27Fnk5+cjOTk51kUhCWosy6Ikkp7+IbzwgZCD6UqvkIMpKz0ZD9+0EF9ZPx9MekqMS0iCMtQPfPiMa/ecL5t/A7A0bIHEr8R+V50gzGYzli9fHutikATD8zxOnz6Nd999V1oW5b777psQy6Jc7hFyMP3hA88cTFtK5iI9hd664l7PpdFZcKZ/AENXgzvvakfgYwiJIXr3ibGenh5YrVYa30SC5mtZlGXLlkGe4INlzZY+1L3LoaHFMwfTF66fTYvuxjOeBy4eGRnYvRs43+q6f0o2cM0S+DrTZkWmfISECQVOMWY2mwFQ4ksSmLgsyr59+3Dp0iXMmzcPDz300IRYFuWTizY8847JJQfT9SM5mFRecjCRODF0DWh7dzRrd49bV9zstcJYpSV3ArNWAb9YDdja4X2ck0yYXTefVk8g8Y0Cpxgzm81gGCbhp4eTyLHb7Th8+LDLsiif+9znJsSyKC2nLXj6Hc8cTN+8bRFuZLMTPiCckGwXRluVuH8Cw9dG9yWnA+ztI2vB3QlMz3M9d5N2ZFadDF4Xu9m0kxbMJXGPAqcYExNfEuJuaGgIra2tE25ZFJ7n8c6Jy3j6Hc8cTI/eVohVcygHU1xxOID2g6PBUvth1/0ZBaMZuxfcAiT7meG44h6g/HkfeZx2CvsJiXMUOMXQ8PAw2tvbcd1118W6KCSOTNRlUYbtDvztaDuefseETy4Ky2WIOZgqP1OIhTNo2nncGLwKcO8IXXCn3hIyfEtkQEHxSKvSXcCslULkG6wV9wDLPh84czghcYoCpxi6cOEC7HY7tTgRAN6XRdmwYQOysrJiXTS/7A7e73pv/UN26FvPoe7d0RxMU1MUeIByMMUXq3lkeZM3hXFL9oHRfSnTgMI7hFalxZ8Fpo0ziJcrgIW3jO8ahMQIBU4xZDabkZycjFmzaBbJZGaz2bB//360trYm3LIou4+1Y8frx9HePZrtOT8zDY/dvQIbFs3AH91yMGVPTcHDGxbgy5SDKfYcduC8UVja5OSbwKVjrvuZ+cI6cEvuBObfBCQldhJVQsKFAqcYMpvNKCgoSPgp5CQ03pZFWbduHdLT02NdtKDsPtaOR18wesyPau/uxzdeMCItSY7+kZQCc5gp2HrLQmwpmYcpKdQlEzP9NoD7B3Bit9AF13dldJ9MDsy9YbQLbubSsXXBETJJUOAUIzzPw2w2o6ioKNZFIVF26dIl7Nu3D8eOHUvYZVHsDh47Xj/ub/EM9A87sGjmVDx62yLcQzmYws9hD26ckKVtdGD36X2AY2h0X2omsGij0AW3SAVMzYle+QlJUBQ4xUhXVxeuXr1K45smEW/Lolx//fUJudTOgTaLS/ecLz/+wipsWDQjCiWaZI6/5mNmmhZY+jngXPNoF9zlT1zPzS4c7YKbtx5QJN7rj5BYosApRsTElwUFBTEuCYkkcVmUvXv3guM4zJgxA/feey9Wr16d0MuiHDzbFdRxl3sHAh9Exub4ayO5kNza+2wXgIYvC4viDjotbyJTCK1RYhfcjEVRLS4hEw0FTjFiNpsxc+ZMTJkyJdZFIREwEZdFuWTrx6uHzuNl43kpnUAgudNpxlxYOexCS5O/TtLBq0IXnJiEctFGYEp8z8wkJJHELHDiOA56vR4sy4LjOFRUVIBhGK/HGo1GGAwGAEBzczN27dolHWs0GgEASqUSHMfBarVCqVRG4yGMCyW+nJgcDgeOHz+OvXv3TohlUfoGh/HWR5fw8sHz2HfqMkZWQ0GyXAaFQob+IYfX82QA8jKF1AQkDPosgPkAcLTRtXvOl/LngcLbIl4sQiajmAVOZWVlaG0VFoHkOA5bt25FY2Oj12MNBgOqqqoAALW1tdi4caN0rk6nQ11dHQBApVL5vEY86e/vR0dHB2688cZYF4WEyURaFsXh4PEB14mXD57HG0fbcXXQLu0rnp+F+5UF+PzqfLzPXcGjLwhfXLwsnoHH7l7hks+JBInngc5PAfOHwNkPhJ9XTo7tGs6z5QghYRWTwInjOJfbLMtKLUrujEYjampqpMBJrVZDo9GA4ziwLIuioiJ0dQnjLXy1WMWb8+fPg+d5anGaAIaGhmA0GvHee+/BZrMl9LIopy714OWD5/HqwfO44DTwe152Ou5XzsF9a+dgfs5odu9Nq/Lx9ENKjzxOeSN5nDatyo9q+RPWUD/Qfmg0SDJ/CPR1eh43YwnAzAM+9f5e6WIa5YYjJFJiEjgZDAZkZ7s24WdnZ8NoNHp0symVSuzatUu6bbVapeNFiRIwicxmM6ZMmYKcHJr6m6jEZVE++OADXLt2LWGXRbnSO4DXD1/Ay8bzOHq+W9qekZaEf1kzG/evnYOi+Vk+uxk3rcpH6Yo8v5nDiZveyyMB0gfA2Q+FoMk+6HqMIhWYoxTyKs27EShYJ6QKcNiBn68CbO3wPs5JJsyum78hCg+EkMkpJoGTGPy4s1gsXrer1Wrp9/r6eqhUKilYslqt0Ov1AITxT5WVlWBZ1ut1BgYGMDAwOsvHZrOFUPrxE8c3JeKYl8nu6tWr+PDDD3HgwAEMDQ1h7dq1uOmmm+J+WRRn/UN27Pm4Ay8bz+GfJy9jeGTgUpJchtuW5mKzcg5uX5aLtOTgZv0p5DKsL6QvAV45HEI3mxgkmT8ALJzncVNnjgZJc28E8tcASV4yq8sVQsqBhq9A6BT10km6aSet+0ZIBMXVrDpfAZXzfr1eL41vAuAyqJxlWZSWlsJkMnk9v6amBjt27AhXcUPicDhw7tw53HzzzTEtBxmbRF4WBRBm+bWc6cLLxnP465F29PQPS/vWFGTifmUB/uW6fORMS5wknHFpsA+4YHTqdjsA9Fs9j5u5HJh3gxAkzbsByFoYfJbuFfcIg7+95nHaKewnhERMTAInhmE8WpcsFkvALjeNRoOmpiaX4ziOk7r3xBl64vgnd9XV1di2bZt022azRX2c0eXLlzEwMEDjmxKExWLBe++9h0OHDiE5ORkbNmzADTfckDDLopy+chUvHzyPVw6eg9lyTdo+h5mCe9fOxn1rC7Aod1oMSxhjwWbf9qXn4miQdPYD4OIRwDHsekzSFKCg2KnbrXj86QFW3AMs+/z4yk4ICUlMAieVSgWdTuexvbi42Oc5tbW10Gg0YFlWapniOA4bN26UBoeL3MdPiVJTU2O+rMXZs2chl8sxZ86cmJaD+NfR0YG9e/cm5LIo1r5B/PVIO142noPxrFXaPi01CXetysP9ygLcsDAb8sk+Dslf9m1vrTYOO9DxsWu3m/Ws53HT85263W4A8lZHJju3XAEsvCX81yWE+BWTwMm9NYjjOBQXF7vkZmIYRjpOr9dDqVRKQVNDQwMqKirAsiy0Wq10HYPBALVaHdeDxc1mM/Lz8xNymY3J4Pz589i7dy8++eQTZGZmJsyyKIPDDvzjRAdeMZ7H2590YNAu5FeSy4BbFs/E/co5+OyKPFpgV+Qz+3a7sL38eaDwDuB8y2iQdK4FGHAbFymTA7krR7vd5q4TZr7R+EVCJiwZz/P+1umMGI7joNPpUFJSgubmZlRXV0sBT1lZGUpKSlBVVQWO41BYWOhyLsMwUiuTmByTYRiYTCaXQCoQm82GzMxMdHd3IyMjI2yPzZ9f/OIXWLp0KTZt2hSV+yOBeVsW5eabb477ZVF4nschsxWvHDyP1w9fQFff6OKtK/IzcL9yDu5ZMxu5GZS924U0M81PIkl58kiXm9vbY8q0kW63kbFJc4qBtOi8dxBCImcs8UDMAqd4EO3Aqbe3F0888QTKysqwcuXKiN8f8Y/neZw6dQp79+6F2WxGXl4ebr311pgsi2J38EFP6Tdb+vCXg+fxysHz4K6MrkmWOz0V962dg/uUc7Asjz7MfWrbC/z+X4I7NnOuU7fbOqF1SRFXc2oIIWEwlniA3gGiSFzYlwaGx5a3ZVEefPBBLFq0KCYpInYfa/dIIpnvlkTS1j+EN46242XjeXzYNjqxYkqyAptW5eG+tXNw06IZlD/Jm6tXhFxJFw4B7YeBM+8Fd95djwM3VESyZISQBESBUxSZzWZkZmZGrVuQuLLb7Thy5Aj27duHzs5OaVmUefPmxSyn1u5j7Xj0BaNHKsOL3f149AUjvnl7Ic509qHp+CUMDAvjlmQyYENhDu5fW4A7V+VhWir9GUt6LglBUvvh0UDJdi60a+UuD2fJCCETBL3jRhEt7Bsb4rIo+/fvR3d3N5YvX47NmzfHfFkUu4PHjtePe83/LG779T9Gc5Itzp2G+5UFuHftbORnTolKGeMWzwtjlNoPuwZKvRe9H5+zSEgqmX89MGsV8Oo3hVQClH2bEDJGFDhFyfDwMC5cuIBVq1bFuiiTRn9/P1paWvD+++/H5bIoB9osLt1zvmxaNQvfum0xVs3JmJzZ5nke6DY7tSIdEn6/etnLwTJhTbfZ148GSnmrPQdw31VL2bcJISGhwClK2tvbYbfbqcUpCvr6+vDBBx/E7bIodgePjy5048UDXnIAeXHXqnysLsiMcKniBM8DXac9u9uueVmOSSYHZi4TgqP8NUKwNGsVkBpEQk/Kvk0ICREFTlFiNpuRnJyMWbNo1fJIsdlseP/999HS0hJXy6I4HDxOXOrBflMn3jd14sO2TpclTwLJnR7n6QRCzb7tcAjrtrUfGg2U2g8D/d2ex8qThDFHYitS/vXArJVAyjgyuFP2bUJICChwihKz2Yw5c+bEdV6gRBVvy6LwPA/T5at433QF73NCsOScYwkApqclYd2CbBw4bfEZRMkA5GUKqQniVrDZtx12oPPT0Rak9kNA+xFgsMfzmooUIHeFa3db7gogOQIBJGXfJoSMEQVOUcDzPMxmM9auXRvrokwoHR0d2LdvH44ePRrTZVF4nsdZSx/eN3Xifa4T+02duNwz4HJMeooCJQuysb4wBxsKc7BydiYUcpk0qw7wOtIGj929In5TDPjNvv1lYF0FAJkQKF08Cgxd9bxGUprQvSZ2teWvERbATUqJwgMghJCxo8ApCqxWK3p7e2l8U5i4L4ty1113Ye3atVFdFuWC9RreNwlB0gdcJ85br7nsT02So2h+FjYU5mB9YQ6uK2CQrPBMqrlpVT6efkjpkccpzy2PU9xx2IWWJn9zAg/UuW5OThcGajuPSZqxJDLruBFCSIRQ4BQFYuLLgoKCGJckcfE8jzNnzmDv3r0wmUzIycnBvffeG7VlUTp6+vEBZxG630ydON3Z57I/WSHD9XMZrC+cgfVsDtbOY5CWHFy5Nq3KR+mKvKAzh0edfUgYsH3l5Mi/T4V12/wtWSJa/gVhHFH+GmDGYho/RAhJeBQ4RYHZbMaMGTNiNuYmkXlbFqWsrAzLly+P6LIoXVcH8QE32vX2aUevy365DFhdwAgtSmwOihdkIT0l9D8nhVyG9YU54y32+FzrAq6cGvl3cvRnV9vIum0hWHEPsFod3nISQkgMUeAUBZT4cuwcDgc+/vhj7N27FxcvXsTcuXMDLosylvXe3Nn6h3CAs0iB0sftNpf9MpmwcO56NgcbFuWgZEE2pqclYBeTww5YzzoFRyeFQdtXTvrIizQiOV1IIjljifDPYQfeDWJB7Wk0i5QQMrFQ4BRhAwMDuHTpEtatWxfroiQE92VRCgsL8bWvfQ3z58/3m/wxmPXenPUNDqP5dBf2m67gA1Mnjp7vhsNtuM6SWdOwns3B+sIZuJHNBpMewQHLoU7p92WgRwiOxKBIbEHqNAH2Ad/nTZ8tdKnNWDLyc+T36bMB5xY+hx049AdhIDhl3yaETCIUOEXY+fPnwfM8tTgFMDQ0hIMHD+K9996TlkW5//77MWfOnIDnBlrv7emHlLhtaS6MZ7uEmW+mThwyWzHsFiktnDEV60e63m5kczBzepRm5wU7pd+dwwHYzgOd7t1rp4AeP+OPFKkjrUdOLUgzFgvbUoPMeSVXCOWj7NuEkEmGAqcIM5vNmDJlCmbMmBHrosSlgYEBNDc3S8uirFq1CjfffDNyc3ODOj+Y9d6+8+JB8ACG7K5HzWGmSLPe1hfmxGb9N79T+r8iZLdepAIsJtfASOxiG+rzelkAwNRc11ajnJHfmXnhCWgo+zYhZBKiwCnCzGYzCgoKJucaY3709fXhww8/xIcffjiuZVGCWe9tcCRgmpWRKoxRKpyB9YU5mJsd48H6wUzpb/wawNt9X0OeBGSzTq1GYjfbImBKFJaYoezbhJBJhgKnCBITX950002xLkrc6Onpwf79+9HS0gIAKC4uxoYNGwIui8LzPC7a+sFdvgrT5V7p59FzXpbn8OI/Prccj9yyMDYB7PAg0NMutMrYzo/8vCAkhgw0pV8MmtIYYObS0VYjsYsta37s8yBR9m1CyCRCgVMEdXR0YGBggMY3Aejq6sJ7772HgwcP+l0WpX/IjrYrrsERd/kquMu9uDrop+UFgBwOrJN/glxY0QEGBxzL4IAwoHnVnMzIBE1D/a7BkLffr3aM7z7+5X+BooeFqX2EEEJiigKnCDKbzZDL5UENcJ6oxGVRjh07hilTpuD2229HcXExbIPA4farMF2+7BIknbdeA++t5wpCrqP52elgZ05D4cypKJw5DQtmpOPbfzqItVf34ofJz2O2zCIdf4HPxo+HvoLD028Nbb23watuwZCXoKivM7hrKVKFsT8Zc0Z+zhaCrgPPBD43ZzEFTYQQEicocIogMWFjSkrirLs1nlxIzs6fP4+33/knDhw8igF5GjIXrEJn5jw8fngQXNM/0TPgO6FiRloSCnOnoXCm8I8dCZLmZacjJckz6eUzxeexZv/PPbbnwYKnkn+Ow0rW8zH027wERW6BUX9w3YBImgJkzvEMjDKctqXneAY/DjvwyWs0pZ8QEhV2hx3GDiMu913GzPSZUOYqoUiQ8YjxVHYKnCLIbDZj8eLFMS3DWAKh3cfa8d+vHcXc3sNSd5d52hr81z2rfa6ZxvM8Oq8Ogrt8FZ929KD12Ek0f7gfZ9o49GIKUgtWIHnmAsjOKgCMdlnJZcDc7HQhMJoxVQqU2JlTkTM1JfhuNYcdaz/aCV42ujCu833wANYa/wPo+8BpnNEFYLAnuOunTHcKityCIXFbGhNai9AEmdIfT29oY0Vljw0qe/QZzhiw88BOXOq7JG2blT4L29dth2q+KoYlCyzeyi7jeV8dI5HFcRz0ej1YlgXHcaioqADDMGM+dizXcWez2ZCZmYnu7m5kZGSE54GNuNTRji9W3on861KRM2caFk5fgatD3cicMhN5zELc+5lKpKQIeYIGBwfwl3/q0GE7i9yMeS77vAn2+N3H2vHj1w4jx96E9KQr6BuegU5FKX54zxqPQGj3sXb85U/P4D+Sn8fFKVdxWaHATLsdedem4idDX8G/fLESy/IyXLrVxN+tfYMY7rqAfvNHsPdchmJqFlILViJ5xlxkpKVILUaFuaNB0vycdKQm+XizcTiEwOaaFei3jv7s7/bcZmkDLhgBAHYAxrRUqezK/gH4fTtLY3y0EDn9nhbe14VXx1+DfbcGxsHO0bKnzIAiAab0x9sb2lhQ2WODyh59hjMGbHtnG3i3lm3ZyBe0J297Mm7LH62yjyUeiFngVFRUhNbWVgBC8KPRaNDY2DjmY8dyHXeRCpy+9+wm/PWyCZZ9VjC3MFBM8fz4zh524L7suwAAr1jegMWpC0rc99Cm7R7nvbB7Z1DH/+OTS/jTm7WwzGzxODb7cjEeuLMKty8TlsOwO3js/OUvcVPSb/BUNoPLTgHNzGE7vmmx4u89X8Y/FTdCnjpV2sfzDgxdMWPg/EeYOtyLgrlzUXzjBpRctwKFM6ZgcYYDM5KuQdZvdQp2ul0Dn2te9vV3A7wj+AoHYEifgp05WbiUNNqIOmt4GNs7u6DquwasuA9YcqdTUJQPpEz1c8XooTfj6KOyxwaVPfrsDjvufOlOl/cXZzLIMCt9FnZv3h13LWfRLHvcB04cx6GsrEwKeAAgKysLXV1dYzp2LNfxJhKB0/ee3YS3ks6h93gvrrzVibT5aWOezSUevS5tKYqWbZS2t36yBwf6T3iMhnE/3sHzePX9v+Fi+lmfx87snYukqUr0DdrR2z+AmxRv4N1pST6P/0zvEDh7Me6+4wYszZaj/8o5tHFtGLhqw/LcVHyGTcP8qQOQDdiAa93AQJDjg/xJShNahaYwQFqm0+9OP3s7YDj4DLblzhDK7lTXspGX9pMdV6Aqa4zLKfP0Zhx9k7XsPM+DBy/9BCD85IWfHvv40WOkc933OW13Pt79/gBgmB/GQ39/CFeuXfH5+GZMmYFdn90FuUwO8ICDd3iUzf0+PW47/XSMfAFzPsbBO1wes/sx4n2Kxzh4B+y8HT/54CfoHvT9vpaRkoHvFn0XMsjggEMqm/T7SLmkx+R2f+PZJ94WH4vzvo6+Duw9v9dnuUXFs4qRlZbl9bXiq/6lehx5nN5eS+Lz7/xcOp/n7/pXB6/iwtUAKVsA/PbO36IkryTgcf6MJR6IyRgng8GA7GzXWU7Z2dkwGo1QKpVBH9vS0hL0daKh96oNhqRzAICU/FSkzU0DU8JAMd3Hm68Ys3oLrHgeFx0dSGVzYQePgYFruJhxCVnyLD/HX8LHNhOG7YNI2WTze2y6owcbOw8iDXakow+NOTnIkst9Hn+qewhL3t0Pvq0FhgN29PU7MCc3CSuXpSCbUeAogKNXAR4yIBngk4XWHF6RCiRPAVLSwSenC4vFireT0oEU4TafPAVITnf6mSblJ/IW24vb7JkZ+NU5z6AJAHiZDOB5/HDmDFy4aoL8+BmPN3Vv13T+UHHf5u1Yb+eN/DJ6DDw/jBy8Ay9+8qLHtZ2v8Z/7/hMHOw5CBpnLG4zzfTv/dH5s3o51P8/b8S5vbD6OtVyz+PzwFu/jYt9FPPTGQ8hMyfR6X2Idude3t7ryd67L43K67fVxj7wZB1P2O1+6E6mKVK9lcy+fx+vAy+Nyfyz+zvW1z+6wY9AxGLDsa/+w1mVborhy7Qrue/W+WBcjJLZBG3a8vyPWxQhZy6WWWBchZJf7/CxQHgExCZysVqvX7RaLxWObv2PHch1AWN5jYGB0gVObzea3nGP1vy99E46RD2+ZXAaZIkBLk7+WKJkMPQrg92d+ObpN4TmjzPV4GQ5nNY9s8H+sTSHDK7m94gbA32ggmQydHcP42yUZ9qQokL5oOqYumYqjGUnY7fssNwPCP3uXMBjJf7LvsfE3608mQ48MeLz1Z2G8w+i5OnwVzx9/PtbFCNmxK8diXYSQ+Quu4l2sgyUZZJDJZBD/gwwuLSL+pCnSkKJIgVwml64jXlPcJvwv7JND7nnMyH0D8DxmZJ90LbdjnK8vHmPpt+C07XTAsi/LXoa89DzX+3C7P5lM5nF/zscFvc/tOJlMOFYOOSCDtO9C7wW8dOqlgGV/YNkDWJC5QHrOnOvLpW6c6tDjp9Pv0nPk7Xnzdq7b60UGGU52ncQTLU8ELPvM9JkBjwmnuJpV5ysQGuuxvvbV1NRgx47IfSO4PNAOjGQekKfIIVPI0N0yvi6rTLsDU3ge12QydPsLnMTjR96XugMfikwkYWrKVFwb7keXY8DvsYOXBpGVPR0bvnQrpudNH/0DcvpDEonbRn947nN+owvlPHHbxasXcawz8IfzdTOuw5xpc6TreyuHt/uQ9sm8P16XMrof43Set8dxxnYG+y/sD1j2WwtuRWFmodc3HfFaHtv8vEk5l83jTdLLNb0df8Z2Bn/4+A8By/71VV8Hm8m6lM35+l7rV+ZZh94el9f9vh6H02vrpOUkfhZEIK0p0WBFzoqgyu58fffX0njPdd5/9PJRaPZqApb9yc88ibWzRludfD3f7vfjq7zuH2rSNb28tnxpvtiMr7/59YBlf0r11Li7XcIt2LJXlVTFXdntDjv2nd+Hjr4OrwG1DEL3blVJVdx1Ta/LW4c/HP9DwLIrc6PbwxSTwIlhGI9WIYvF4nU2nL9jx3IdAKiursa2bduk2zabLaxZvWem5gO8MOVeka5AjioHjsGxDXJ2t21mOe6++WG8tv95/O+lFwMe/91ZD2JO1hR8/5NnAx77xLJHUHTdgzh0sRXffff7AY9/+s5f4fZl8TXeJtg3tH8r+re4e0NrvtgcVOD0tZVfi7uy2x12vHXmrYBvaN9Z+524ezO+Ie8GvPDxCwHL/qVlX4q7ss+eOhtPtj4ZsOx3zLsj7squzFViVvqsuPsQDEYil10hV2D7uu3Y9s42yCBzKb8YJGvWaeLu9QLEb9mDaJcIP5XK+4dvcXHxmI4dy3UAIDU1FRkZGS7/wum7m5+CnOelsUuKdAWSmWTf/zKThH9e9qVkJmH2NAW+pv4P5M9biIfv3478aQqkBDj+4furcNfG72DO9CS/xxZMT8JdG7+D/Px8fHbNXSiYmeP3+Lm5M3DrktvDWl/hIL6hOX9LdiaDDHnpeXH5hpbIZRff0AB4lD9R3owBKns0UdljRzVfhSdvexK56bku22elz4rbCSiieCx7TAInlmVdbnMch+LiYqmlyGg0guO4gMcGuk60TZuaAdVwgXAj0GRFp/0yt2PF21+cca+UnyklJRVfmnFvUMcrklJQveRBv8duX/IgFElCv6JCrsD2m3YAMpn342UyaDb8KC7fFBL5DS2Ryw7E5xtasKjssUFljx3VfBXe3Pwmfnvnb6G9RYvf3vlb7N68O+7LDcRf2WOaAFOn06GkpATNzc2orq6WAp6ysjKUlJSgqqoq4LH+9gUSyTxOhqRz0kBxb2YOO/DFkUDoxSt/wRWnXEvivoov/MTjvLpX/yPo4w37arDz5B9xyWmQep6dh2bJg1DdXO1xbW/5hPLSZ0ET5/mEAF9lz4NmnYbKHmGJmkkZoLLHCpWdxJu4z+MULyKZObz3qg3/+9I30dF/HgBikjkcAOzDgzAe/QMu285iZsY8KFd/WWpp8np8Ar8pUNkJIYSEggKnIEUycCKEEEJIYhhLPBCTMU6EEEIIIYmIAidCCCGEkCBR4EQIIYQQEiQKnAghhBBCghRXS65EmzguPtxr1hFCCCEkcYhxQDDz5SZ14NTT0wMAYV12hRBCCCGJqaenB5mZmX6PmdTpCBwOBy5cuIDp06cHXKByrMR18MxmM6U6iCKq99igeo8NqvfYoHqPjUjWO8/z6OnpwezZsyGX+x/FNKlbnORyOQoKCiJ6H5FYE48ERvUeG1TvsUH1HhtU77ERqXoP1NIkosHhhBBCCCFBosCJEEIIISRIFDhFSGpqKh577DGkpvpec46EH9V7bFC9xwbVe2xQvcdGvNT7pB4cTgghhBAyFtTiRAghhBASJAqcCCGEEEKCNKnTEUQKx3HQ6/VgWRYcx6GiogIMw8S6WAnJaDTCYDAAAJqbm7Fr1y6pLv3Vc6j7iCeNRoPq6mqq9ygxGAzgOA4sywIAVCoVAKr3SOI4DgaDAdnZ2eA4Dmq1Wqp/qvfwMRqN2Lp1K1pbW122R6KOI1r/PAk7pVIp/W4ymXi1Wh3D0iQ2rVbr8rtz3fqr51D3EVetra08AL6rq0vaRvUeOU1NTXxFRQXP80IdsSwr7aN6jxzn9xme56XngOep3sOlsbFRej9xF4k6jmT9U+AUZiaTyeUJ43meZxgmRqVJbK2trS51ZzKZeAC8yWTyW8+h7iOeGhsbeZZlpcCJ6j2ynOua54V6E39SvUeOex05B69U7+HlHjhFoo4jXf80xinMxOZeZ9nZ2TAajTEqUeJSKpXYtWuXdNtqtQIQ6tNfPYe6j7jS6/VQq9Uu26jeI4fjOFgsFjAMA6PRCKvVKnUXUb1HVnZ2NoqKiqQuu9LSUgBU79EQiTqOdP1T4BRm4oe7O4vFEt2CTBDOH9z19fVQqVRgGMZvPYe6j4yyWq1exwNQvUeO0WhEdna2NC6jrq4Oer0eANV7pDU2NgIACgsL0djYKL3vUL1HXiTqONL1T4PDo8TXE0mCY7VaodfrPQYVejsu3Psmo4aGBlRUVAR9PNX7+FksFnAcJ305qKioQFZWFng/qfao3sPDYDBAq9WC4zhUVlYCAHQ6nc/jqd4jLxJ1HK76pxanMGMYxiOqFZvfSeg0Gg2ampqkevRXz6HuIwKDwYDy8nKv+6jeI4dlWamuAEg/jUYj1XsEcRyH5uZmqFQqVFRUwGQyoaGhARzHUb1HQSTqONL1T4FTmIlTh90VFxdHuSQTR21tLTQaDViWhdVqhdVq9VvPoe4joxoaGlBXV4e6ujpwHIeamhoYjUaq9wgSxzN5Q/UeOUajESUlJdJtlmVRXV1N7zNREok6jnT9U1ddmLm/+XEch+LiYvqmESK9Xg+lUikFTWIXknt9OtdzqPuIwP1Np7KyEpWVlV4/2Knew4dlWRQXF0vjy8RcTkql0uNYqvfwUSqV0Ol0LuMpOzs7qd4jyHkMpb/PzHh9n6e16iKA4zjodDqUlJSgubnZJXkgCR7HcSgsLHTZxjAMurq6pP2+6jnUfWSU1WpFXV0dNBoNKioqUFlZCaVSSfUeQVarFRqNBkVFRWhtbZVaWgF6vUeSwWCQukQB4csD1Xt4GQwGNDU1oba2FlVVVSgpKZGC1UjUcSTrnwInQgghhJAg0RgnQgghhJAgUeBECCGEEBIkCpwIIYQQQoJEgRMhhBBCSJAocCKEEEIICRIFToQQQgghQaLAiRBCCCEkSBQ4EUKizmAwoLCwELW1tairq0NRURGKioqkhJuFhYUwGo3jvg/xmoQQEi605AohJOqsViuampqk7MxNTU3Izs5GRUUFAGDLli3gOM7rshfBUqlU2LJlS1jKGw3Oy1AQQuIXtTgRQqLOYrH4XdRWqVR6rG4+kXEch4aGhlgXgxASBAqcCCFRV15eHpZjJgqtVhvrIhBCgkSBEyEk6oLpkmppaUFRURFqa2sBAHq9HoWFhTAYDABGx0lVVlZCr9ejrq4OlZWVsFqtPq9pMBhQW1sLvV4PjUbj8ziO46DRaKTritc0Go3S+bW1teA4TrpuoLKK460MBgPq6upQVlYm7WtpaUFTUxPq6uqkaxJC4hONcSKExCX3MUpqtRr19fUu+9VqNXJycqRV1vV6PcrKytDU1ORxPTEYam1tBSB0F4ortTuzWq0oLS1Fa2srGIaBRqNBXV0d1Go1NBqNy7WLioqwZ8+eoMqqUqnQ1NSExsZGAEBjYyOMRqO0r7CwUBrjRQiJXxQ4EUISmnPrlVqtRllZmdeB1jqdDtnZ2VIrEAA0Nzd7XK+hoQEsy0rnV1dXAwBqamo8BquzLIuGhoagAp6cnBzk5OS4lHsyjeMiZKKgwIkQMmkolUqoVCrptreAxz3oivZMN5pdR0h8ozFOhJC4xTAMOjs7pdsGg8FjDJPzbb1eD5VK5RJ4iPu3bNni0tokXs+dWq32yCFlMBi8nm80GqVB7MGUNRjeykQIiR8ynuf5WBeCEDI5GQwGcBwnzSrTaDQoLi6WusSsVis0Go00kFqn08FqtUKn04FlWWg0GlitVql7rrm5GdXV1WAYBkajEVu3bgUA7Nq1C0qlEgaDAU1NTSgpKQEAjyDLuVzejjMYDDAajWBZFs3NzdiyZUtQZbVarS5lEcdbKZVK6bFrtVoUFRVBpVL5TdVACIktCpwIIQlLzDJOg6oJIdFCXXWEEEIIIUGiwIkQkpAMBgMMBoM0rZ8QQqKBuuoIIYQQQoJELU6EEEIIIUGiwIkQQgghJEgUOBFCCCGEBIkCJ0IIIYSQIFHgRAghhBASJAqcCCGEEEKCRIETIYQQQkiQKHAihBBCCAkSBU6EEEIIIUH6/wG/4VEOSxRjSgAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -770,9 +770,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRYUlEQVR4nO2deVgb57X/v5LYbUBsZrGxzeA9XgXYTpykSRC1m8RpEwNulqaroWn7u711W2Tfe9vUvb3BIr1pb7dUuPtN07IkbZI2dYqcmzaLF0Be410D8obBRoh9kzS/P4YZJCEJSUhIgvN5Hh6kmXfeOfOOlq/Oe95zJBzHcSAIgiAIgiAmRRpsAwiCIAiCIMIFEk4EQRAEQRAeQsKJIAiCIAjCQ0g4EQRBEARBeAgJJ4IgCIIgCA8h4UQQBEEQBOEhJJwIgiAIgiA8hIQTQRAEQRCEh5BwCgFYloVKpUJSUhJyc3Pdts3NzUVSUhJUKhVMJtP0GEiEDDqdDkVFRZO+TgJJfX190M493QjvTYlEgtzcXFRVVaGqqgrl5eUoKSmZVWPhK+Xl5UhKSoJWqw2qHTP1XlZXVyMvLy/YZswuOCJkUKvVnFwu55qbm53ub2ho4IqLi7mysrJptsw5Go1mwraKigquuLg4CNbwOLNpptHQ0MAxDOPVMf4al7q6ugnburq63L5unRHs14m3KJVKp+87hmE4tVodBIs8JxTeEwqFgmtoaAi2GRzHzbx7qdfruYqKCq/ef8TUII9TCCGXy1FaWgqNRuN0f6h5mBoaGiZsKyoqws6dO4NgDY8zm2YaycnJXh/jr3GRy+VOt5WVlYFhGI/7CfbrxF+Ul5dDpVIF2wy3zIb3hD8I13vJMAzKy8udvjeJwEDCKcQoLy9HbW3thO0mk8mrL6ZAU11dDZZlJ2xXKpUoLi4OgkWubZrt+HNcdDodqqqqJmxXq9VefXAH83XiT4RrDrUfNQL0nvCccL6XOp0upL4fZjoRwTaAsEehUCA5ORn19fV2XyxNTU1QKpUuj6uqqgLDMGBZFgzDiMeaTCZUV1eDYRg0NDSgvLwcCoUCAKDVasVfWAcOHADLsmBZFp2dnVCr1S7PpdVq0dDQAJZlxS/RiooK6HQ6qFQqsCwLvV7v8hxGoxHNzc3QaDSorq5GcnIyampqsHfvXtG2ya7LU5sc+wH4WAfbfe6orq62e15WVjZpn75es3BccnIySkpKAPD3b7L74WiP7Vh5Oi6Tja+AXC6HWq2260MQ+wcOHLA73tX4ePo68eS1ONm5vOnX27EAgObmZigUCjvR6Oo+qFQq0TsgeA4EGzx5nTnrz911TXbvneGvz4uqqirI5XKfvKN0L727lyaTyeMfLcKxwr1hGAZGoxFKpdLp+1KlUqG6uhpqtdrj63Acl4KCAlRWVoJlWdTV1UGpVIJlWRQVFYFhGGg0mvATfcGeKyTGEeavncV/CLElzmKciouL7WJPlEqlON9dUVHB6fV6cR/DMFxXV5f4XIiXsY0/YBhm0vnyhoYGTqFQTNje3Nw8If7G1TkqKirsrs+xP3fX5Y1NxcXFdufW6/WcUql0c3U8arV6go2298Fdn75ec11dHQfA7p5VVFTY3XNnY+xurNyNizfj6w6lUmnX12Tj483rZDKbfL0Xtv1ONhaOcTFdXV2cWq3mFAqF3fvJXT/C/W5oaOCam5vF18JkrzN393Wy63J1713hj8+LiooKu1icrq4uDoBHMU50L/13Lx0pKyuzu269Xj8h9sxZ/KRSqbS7n76Mi7N+Qz2ezB0knEII4cWp1+s5AOKbWK/Xix9mjsJJaOvYj9CmuLjY7kXv+AXX3Nw84XjHNs7wRji5OoftB4xer+fkcrnH1+WpTc3NzXb9CkwWrCp82Dt+kKrVao/69OWaXV2DYIvwGnAc48nGylmfvoyvO2w/TD0dH09fJ+5ei1O5F0K/noyFUqnkFAoFp9FoxD9HQefJfXDc7+51Nll/noyXt1+2U/28EK7HEU+Cw+le+vdeTmYbx3ETxJqrH2WO302ursPZuAg4LiCZ7DsmlKGpuhCEYRgoFArU1tairKwMOp3O7RSVXC63W+qr1+vFufC6ujoAvDtXmDIyGo0TzmeLXC6f0GaqODuHuyX1k12XpzQ1NTl1AwtTEa6mP5uamiCXy+1c4MJYClMZk/Xp7TW7QrDDVRyDL2Plr/F1hq9jLrSxZbLXoqfnctevp2ORn59vN13hiCf9ONox2evM2/6m+t6d6ueFMAa+QPcycJ/DwvU43htv75Uv4yJQVlaGmpoaKBQKaLVat58DoQ4JpxClvLwcGo0GZWVlbl/cQtC47YvQ9rFOp0NlZSWKiopQWloasLlkYa7bX0x2XZ7a5Gugp7vjQi141NuxEsZlquPrzp7pwh/n8tdYeNKP43t5steZv+/RZO9Tf3xe+BLXBNC99BZ/f+a6wva6fBkXgZ07d6KwsBBqtRosy4a1cKJVdSFKaWkpdDod6uvrkZ+f77KdQqFw6iUwmUwwmUwoLCzE3r17RQEmvAn8vdJGp9P5tT931+UpOp1ODER0hGVZFBQUuD2/s3OZTCaf+/QV4V46Bs4LeDtWOp3OL+PriukcH3+cy19j4Us/7l5ngbhH7t6n/vi8cGWzJ9C99A5vPnMF23w5n63XayrXYbvwyVdxHSqQcAohhJUMAK/alUolampq3HqclEol8vPzJ2S9ra2tFT0Ltl+4wptgsg/QyRBWVAD8B5urL3Vfz+HuuryxSaFQQKlU2rmWhWt3t9JGWCliu/TeZDKhtrbW5z49/dDS6XR2bSsrK93mSZpsrJyNiy/j6ym+jo8zJhszf9wLf42Fr69ZV68zX/pzHC9v3qf++LxgGAZlZWV2K8tMJtOE17Qz6F7aM5V76cw2x/sirN5zdQ7BBlvP/VTHt7y8HLt27Qr/VCTBDrIi+IC7srIyDgBXVlYmBgHbrsgQVn7I5XIxw61toJ+wksX2GGF7RUUF19DQwDU0NHB6vV4M5G1ubuaKi4s5AOIKB+EcCoVi0uA9oW8hcNBZf+7OoVQqxdUXQpuKigqPrstTmxz70Wg0dgHanvSnVqu5uro6j/ucyjULAaB1dXVcQ0MDp1ar7VafOB7nzB5nYzXZuHg6vq5wXGnj7fj447Xo7b1w7NfZWOj1erfvO3e22PbT0NDAKZVKTi6Xi8HCjsdM9jqz7c/b63J2713Z7o/PC+FahH4UCoXH2cPpXvrnXrq7Htv74nhPhM8cwcbi4mKOYZhJx3eyceE4Tnw9hTsSjuO4IOg1giCcIORCaW5uDrYpXlFSUoKdO3eG/y9JgphF5OXlQa1WT1u8kclkmjQnYThAU3UEQfiE4MYXHlPJB4IgHLGdchSmLcMdEk4EQfhEZWUlysvLAfDxEu4WMRAEMTsRso8Dvq+4DDVIOBFEiKDVaqFWq13Wgws1ysvLUVRUJJZkII8TQYQPVVVV0Ol0UKvVdgH5/kb4cVVdXT1jpvIpxokgCIIgCMJDyONEEITfKC8vR1JSUkB/wc4kdDodioqKfMooTxBEcCDhRBCE33BW6VylUqGkpGRa7XCsUB9q/QkoFAqoVKqA9B0MAjVOBBFKkHAiCCKgFBUVYefOndN6zoaGhpDuz5aZEjALBHacCCJUoFp1BEEElOleflxdXe3XkkL+7m+mQuNEzBZIOBFEGGEymVBdXS1WjC8vL59QesFxusS2Cry7fVVVVeI0G8uyqKioADCelJNhGJSXl4teBbVaLR4nl8udek50Oh1UKhVYlhVLCgn9AcCBAwfE0g+dnZ1in8K1qlQq5OXlobm5Gbm5uVAoFNBoNGLVeUe0Wi0aGhrAsqy4MlG4DnfX6ApX/Tm7LmHZtVqtRllZmXidycnJ4lSlyWSacJ2uEGwVirlOtiLJl3vrzXUAru/XZONOEDOK4CYuJwjCGyoqKuxKGTAMY1c2Qq1W25WpsC2J4G5fcXGxXekFvV7PKZVKu7ZCeYbm5maxH8fyD11dXRwAu76am5s5hmHsrqOhoYFjGMauHcMwXHNzs/jctoxLV1fXhD5cIZSScGSya/S2P+EabFEqlXbjUVdXxwGwu2cVFRVcWVmZ+NzZ+DiWsFEqlXZj48hU7q0n1+HJ/XI1TgQx06AYJ4III1iWtVuxxjCM+Fzw0Ozdu1fcX1NTIxbpdLVPp9NBq9XaTakxDAOj0Sj2LZfLodPpoFQqoVAooFarYTKZUFVVZefZkMvlHhUfTU5OBsuyE85pO9VTX18v9iWXy50WJfUUT67RW5x52BxzWQnjYRswv3fvXrfTWizLor6+3s7DVFJSAo1G47T9VO+tJ9fhyf0iiNkCTdURRBghTFEJ5U6MRqNYwb6pqQlyudzuS09or9VqXe4Tpv4cEaYDhS9LxzZCn77i2J9cLhevBeBXnDmrEO8LTU1NHl3jdCDcB51O59QmYVxtBZ1er3cpUtzdd0/vrSdMdr8IYrZAwokgwgidTofKykoUFRWhtLTU7svMUWTY4us+W5yJpECuCCsvL0dlZSUOHDiA6upqlx6XyRA8bv5CiDlyhj/OYzKZwDCMnahxJ3D8cW/9dZwt7saJIMIZmqojiDDBZDKhsLAQe/fuRVlZGeRyufgFx7KsUw+NcJy7fUql0qk3g2VZFBQUuLRHoVAEfKrmwIED0Gq1KC4utpsS9AZhitGXa3TVnys88cCYTCbxnjjD1bi6EjOBuLf+8CS5GyeCCGdIOBFEmCB4Tmy/cIUvOGHap7i42K7OnclkQm1trdt9CoUCSqXSbmpI+NJzt5KLYRiUlZXZreYymUzQ6XQ+eSwcj2luboZcLkdxcbFXngvb2BtBUPp6ja76c9wu2O/Mu+U4HpWVlSgrK3N5TUqlEvn5+aivr7fbXltb69K+qdxbT6/DEWfTqM7GiSBmGlSrjiDCCGFZeFFREQD+y0qlUmHnzp3iF6FKpUJKSooYBGzrqZlsn1D6Q6/X2y01V6vVaGpqwt69eycIGWGpuzCVJ9ioVquRnJyMyspK1NfXQ61Wi0v5HbdVVVWhsrISDMOI56ivr0dJSYmY6kAul6O8vNwjz5NgQ25urkfX6Gt/glgRxqOmpkYsnFpcXCwu5d+7d68Y1wTALh2AMBYVFRV29gi2CtOhkwk8X+6tJ9fBMIxH98vdOBHETIKEE0EQIYfJZMKuXbtw4MABcUqSZVmxfEu4fCkLwqm5uTnYphAE4Sdoqo4giJCjuroa5eXlohdLWNavVqtJhBAEEVRIOBEEEXIoFAqn2cG1Wq04TUkQBBEMaKqOIIiQRKvV2uU68rT0SKggxIYJ/6kECUHMDEg4EQRBEARBeAhN1REEQRAEQXgICSeCIAiCIAgPIeFEEARBEAThIbO6Vp3VasWNGzcQHx8PiUQSbHMIgiAIgggCHMeht7cXWVlZkErd+5RmtXC6ceMGsrOzg20GQRAEQRAhwNWrV7FgwQK3bYImnHQ6HXbt2jVpMrv6+nqxMrhjdXahfIFQFNNd4UxnxMfHA+AHKiEhwQvrCYIgCIKYKfT09CA7O1vUBe4IinCqr68HwzAeVc8uKSmZsE3IiaLRaMQCo0ql0mnCPHcI03MJCQkknAiCIAhiluNJ2E5QhJOnCexMJhPq6urs2ldVVYmJ5PLy8tDV1QVgojeKIAiCIAjC34R8jJOtaKqvr58gukgwEQRBEAQxXYS0cLIVRSaTCUajUSy/IGyrr68HADQ2NqK8vNxuP0EQBEEQhD8JaeFki0qlglqttttWVlYmiiuGYVBUVAS9Xu+yj+HhYQwPD4vPe3p6Jj2v1WrFyMiIb0YTRJgTGRkJmUwWbDMIgpjlWKwcjrUY0dE7hHnxMdiYkwyZNDhphMJCOJlMJmi12gnTcizLiqvoGIYBy7JiIVBnVFZWYt++fR6fd2RkBC0tLbBarT7bThDhjlwuR0ZGBuU6IwgiKBw804Z9b5xFW/eQuC0zMQbPbl+Fbaszp92esBBOTU1NTlMRFBYWisHhAsnJyS772bt3L3bv3i0+F5YfOoPjOLS1tUEmkyE7O3vShFgEMdPgOA4DAwPo6OgAAGRmTv8HFEEQs5uDZ9rwzEs6cA7bb3YP4ZmXdHjxKcW0i6egCyeTyWQninQ6HeRyuZ3XSKfTTRBEDMPYTd1ptVoUFxe7DRaPjo5GdHS0R3aZzWYMDAwgKysLcXFxnl0MQcwwYmNjAQAdHR2YN28eTdsRBDFtWKwc9r1xdoJoAgAOgATAvjfOomhVxrRO2wXFjaLVaqFSqQDw02dCgLez5wKO029yuRz5+fmoqqpCdXU1Ghsbvc7j5A6LxQIAiIqK8lufBBGOCD8cRkdHg2wJQRCziWMtRrvpOUc4AG3dQzjWYpw+owBIOI5zJuZmBT09PUhMTER3d/eEBJhDQ0NoaWlBTk4OYmJigmQhQQQfei8QBBEMXjtxHV/944lJ2/3PJ9fj4+vnT+lc7vSAIxS4E2AsVg6H9Z147cR1HNZ3wmINnE7V6XQoLy+HRCKBSqVCdXU1VCoVSkpKoNVq/Xae6upqJCUleZT5PVTJy8uz82xWV1ejqKjIp2MJgiAI/yOPi/So3bz46f1BF/QYp5nMdK8EUCgUUKvVqK6uxt69e8V4L5PJhKSkJDQ3N3tVy88VZWVlfp0WdYxzmw7UajXy8/PF50ql0uMcYI7HEgRBEP6le3AUPzl02W0bCYCMRD41wXRCHqcAIawEcJyfFVYCHDzTNm22CMH2NTU103ZOT2FZFrW1tdN+XqVSaSfWGIYRi0l7eyxBEAThP252D6H054fRaOhCTAQvUxxDv4Xnz25fNe35nMjj5CEcx2Fw1OJRW4uVw7Ovf+h2JcB3Xj+LLUtSPbrhsZGyKefQMRqNyM3NnVIfgUCtViMvLy/YZhAEQRAhwOWOXjz9y2O40T2EefHR+O3nNsLQ2T9h9iaD8jiFPoOjFqz69lt+6YsDcLNnCGu+83eP2p/97lbERfl2q0wmEyorK6FUKlFWVgatVovy8nJxVaNGo0FzczN0Oh20Wq2YSLS4uHhCSoiamhoUFBQA4IWYgLBKcufOnaioqEB9fT1UKhU0Go3oxWFZFhqNBgUFBTAajSgtLUVTUxOamprEvlxNl2m1Wuh0OjAMg8bGRjENhU6ng0ajsYtNYhgGRqPRrT06nQ67du1CeXk5ysrKYDKZoFKpoNVqxczzrsbD8Vjh2oVyPyzLoqGhwa9TmQRBELOBZkMXPv/bRpgGRsGkzsFvP7cR2clxWJmZgKJVGZQ5nAgs1dXVogixreGnVCqhVCrR3NwMjUaD5ORksCwLlUqFhoYG8fi8vDwcOnQIcrkcJpMJJSUlduVsKisrxcdKpRI7d+4UnxcXF9tNC5pMJhQVFaG5uRlyuVwMXK+oqIBSqURubi7KysqcXodgW3NzMwBesFVVVaGsrAyFhYVoaWkRp82SkpJw6NChSe1RKBR2++VyOTQaDZKSkuzO6Ww8HI8VxtNWLNXV1UGn0/klnowgCGI2cOhcO778sg5Do1asy5bj158pQPKc8XRAMqkEd+amBNHCcUg4eUhspAxnv7vVo7bHWoz4zK8bJ233m88WeBTUFhvpfdJB2zp+jsjlcqSk8C/A4uJiqFSqCV/yDMOgtrYWZWVlqK2tnbDfXYZ2R2pra8EwjGjP3r17PT5WEHe2qwIbGxshl8snxBr5K2Bbo9G4HQ9HUlJSxPEE+PG19cgRBEEQrqltvIq9fzoNi5XDfcvT8LMnFT7PskwHoWtZiCGRSDy+kfcsTUNmYgxudg85jXMSVgLcszQtaK5GT1eQ+QPHVXOuBJ2r1XUKhcIucLusrAzV1dV+tpIgCIKYTjiOw0//7zK+//eLAIAdigXYv2MNImWhvW4ttK0LU2RSCZ7dvgpA8FYCTObxsN2/c+fOCXmedDodSktLAUCMC7KFZVm753K5HJ2dneJzrVYLk8kEgPdqOR7vLK+Us23ObNNqtSgtLXVrkzt7BByfuzun7Xi4O5YgCIKYHIuVw3de/1AUTc/cl4vvl6wNedEEkMcpYGxbnYkXn1JM60oAIYAb4FerlZeXT5hy0mq1dsHWSqVSzP9UVVUlBmDX1dWJ3h+GYVBXVweVSoWioiLRM1RZWQm1Wg2GYVBaWioGWAO82BKmvBiGgUajgUqlEoPLBQ9SeXm5mHvKWToAwTbHY+VyuVObBNzZYzKZUFNTg+Tk5AlB8LbndDYewhgLxwp9CedgWVYMWmcYZlo9ewRBEOHAsNmC3TUn8dfTbZBIgG8/vAqf3ZITbLM8hkquBLjkisXKhcxKgJlOUVER1Gq1z0HZSUlJ6Orq8rNV4Q+VXCEIwl/0DI2i7HdNOMIaESmT4IXS9di+LivYZnlVcoU8TgEmlFYCzHR8Cciurq6GXq9HeXk5ZQMnCIIIIB09Q/j0rxtxrq0Hc6MjUP2pPNy1JDXYZnlN6E8mEoQHVFdXi7mivIk/UiqVSElJQX19PTQaTeAMJAiCmMWwt/rw2Isf4FxbD1LnRuOPZZvDUjQBNFUX8Kk6ggh36L1AEMRUOHHVhM/9phHG/hEsTonD7z63CQtT4oJtlh00VUcQBEEQRND5vwsd+NJLOgyOWrB2QSJ+9ZkCpM6NDrZZU4KEE0EQBEEQfueV5mtQvXIKZiuHe5el4cUnFZgTHf6yI/yvgCAIgiCIkIHjOGj+yWL/384DAB7dMB/qHWsRFTEzwqpJOBEEQRAE4ResVg7f++s5/Or9FgDArntysPdjKyGdQWl4SDgRBEEQBDFlhs0WfKPuFN44eQMA8O8PrsSue2deEuCZ4TcjJlBdXQ2VSoXq6mrU19dDq9WKS/ZDFa1Wi7y8vGmrQ5eXl4f6+vppOddUcbS1uroaRUVFPh1LEAThb3qHRvG53zTijZM3ECGV4Ic7189I0QSQxynwWC2A4QOgrx2Ymw4suguQygJ6yqKiIpSUlECtVovbdDodioqKoNfrA3ruqaBUKp2WXQkUarU6bJJeOtqqVCo9LucSTtdJEET4cat3GJ/59TF8eKMHcVEy/PypPNy7LC3YZgUMEk6B5OzrwEEV0HNjfFtCFrBNDax6JCCnrKqqAgCUlZXZbVcoFBO2hSIpKdOXZX06RdpUcbTVmzp44XSdBEGEF623+/H0r47hinEAKXOi8OvPFmDtAnmwzQooQZuq0+l0yMvL86idTqcDALGAqgDLsqiqqkJ9fT2qqqpCq2L92deB2qftRRMA9LTx28++HpDTVlZWory83Om+kpKSgJyTIAiCmH2cumbCjhc/wBXjABYmx+GVZ+6a8aIJCJJwEuItbEWQKzQaDfLy8iCRSFBeXm73K7ukpAQVFRUoLi5GcXExdu3aFTCbwXHASL9nf0M9wN8qADhLyj627aCKb+dJfx4md2dZFiaTyaUnwnZ6R6fT2YlOIfbJNs5IiIsqKSkRRWtVVZWdMNNqtcjNzUV5eTnq6+tRXV2N8vJyUcQK+6urq1FdXS2KZa1WK55fpVLZ2WkymezObYuz41zZbNufsE84ThDutvFU3o6JK1xdm06nE8dJ+NPpdGL/grewvr4eubm50Gq14nG2tppMJpSXlyM3N3dS2x2P9fZaCIIgnPHPi7fwyeoj6OwfwR1ZCah/5k4sTp0TbLOmhaBM1RUXF3vcNi8vT6xYL5fLxe2OQc4Mw4hfNAFhdAB4zl8VnDneE7U/27Pm/3YDiPLfC5JlWahUKjQ0NIjb8vLycOjQITHOqKGhAXV1dQCAuro61NfXo6KiAgqFArm5uTCZTJDL5VAqlSguLkZKSop4X+vr61FSUoKGhgaxv+bmZmg0GiQnJ4vnb25uBsAX562qqkJFRQUAoLGxUXxcV1cHnU4HhULh9jhnNgvHVVdXQ6FQiFNWRqMRCoUCO3funNKYCP07G1tHG8vKylBYWIiWlhbxdZyUlCT2b2tLcXExampqxOeOtsrlcmg0GiQlJU1qu+Ox3lwLQRCEM/58/Dq+UXcSZiuHLUtS8POn8hAfExlss6aNsIhxshVMAlqtFsnJyXbbkpOTZ/UXgOBNYlnW6RiwLIvk5GRoNJoJ+xmGQW1tLcrKypCSkmIXaySXy+28WHK5HEaj0e6+2D4uLi5GSUmJKK7kcrnYX3FxMVQqFZKTk+2EbmNjo/i4oKBgwrkAiMLL2XHObBaOKy4uRl5eHhiGwc6dO53GevkyJkL/jv04s1EQmbbj5K+A7clsd8TTayEIgnDkF++y+N5fzwEAtq/LwvdL1iI6IrALnkKNkBdOJpNJnNprbGwUp+tcxTO5+wIYHh7G8PCw+Lynp8dzQyLjeM+PJxg+AH7vgVftyXp+lZ0n5/aQiooKaDQap149nU7nlbfPFmfi1Rscpw9tPUDAxGB2V/hyXHJyMrq6uqDT6VBTUyN6wwKFMxunK8UCQRBEILBaOew/eB7V/+Rnez63JQf/8dDMSmzpKSGfx6msrEyMYdq5c+ekuWvcBYhXVlYiMTFR/MvO9nCqDAAkEn66zJO/3Af41XNw9YKSAAnz+Xae9Cfx/IUppCBw/KK2HZedO3dOmNbU6XQoLS112e9kgfe2++vr6yd4V2wFrbPzezLN6utxlZWVohdOrVbb2SXY7cuYeGNjaWnphJg+2+lmuVyOzs5Ou2Mcx9zVPfDE9pBaOEEQRFgxarHi63UnRdG052Mr8K2HZ6doAsLA42Q77cQwDFiWBcuyTqcXHKePHNm7dy92794tPu/p6fFOPHmKVManHKh9Grx4sg3uHnuhbdsfsHxODQ0NqKqqgkqlQm5urjilKXibBAFRVVUFhmHQ2NiIuro6yOVy0SsD8PEwtisZFQoFtFotWJaFWq22EyF6vV78shf6A3gBoNVqodPpwDAMlEqleH6VSiVOyymVSpfn1mg0YBjG5+NSUlLEqV2j0YidO3eKxyQnJ6O4uNinMRH6t/WmubJRLpejrq4OKpUKRUVF4jSmQGlpKVQqlSiAlEqlOAVnMpnsbHXmvZvMduFYoS9ProUgCKJ/2Ixnfq/DPy/egkwqQdWOtdiRtyDYZgUVCcd5uGQrECeXSODu9DqdDoWFhWJwuMlkQlJSErq6umA0GlFSUiIG4QJ8sK1t8O1k9PT0IDExEd3d3UhISLDbNzQ0hJaWFuTk5CAmJsb7iwNc5HGaz4umAOVxCgaCQAuHPFGhRFFREdRqtc8xecJ7IdD45b1AEETYcbtvGJ/7TSNOXetGbKQMP3tKgfuXzwu2WQHBnR5wJOgeJ8df3jqdTgxGZhjGLvu1VqtFcXGxGHBsC8uyyM/Pn3Isjl9Z9Qiw4qFpzxxOhAe+BGRXV1dDr9ejvLycsoETBBEwrnQO4OlfHUVr5wCS4iLxq88UYMPCpGCbFRIERThptVoxOLeyshIFBQXiNJLwvKKiAnK5HPn5+aiqqoJcLoderxengACIUx8FBQV200MhhVQG5NwTbCsChu1UXH5+/qxd0egtQt1AjUYzIe7KHUqlUlwwodFoAmskQRCzkjPXu/GZXzfidt8w5stj8bvPb0Ru2txgmxUyBHWqLtgEfKqOIGYA9F4giNnDB5dvo+x/m9E3bMaKjHj89nMbkZ4w89/3YTVVRxAEQRBE8Hnj5A3srj2BUQuHzUwyqp/OR8IsSmzpKSScCIIgCGKW8+v3W/Ddv5wFxwEPrsnAC6XrERNJ8bjOIOFEEARBELMUjuNQ9dYFvPiOHgDw9J2L8Oz2OyCbpTmaPIGEE0EQBEHMAixWDsdajOjoHcK8+BhsWCjHv//pDF7RXQMAfHPrcnzpvlxIvEi6PBsh4UQQBEEQM5yDZ9qw742zaOseErdFR0gxbLZCJpWg8tE1KC0IQELoGQgJJ4IgCIKYwRw804ZnXtLBcQn9sNkKACi/lyHR5AUhX6su3LFYLWi82Yg32TfReLMRFqslYOfSarUoLy+HRCKxK9/hDdXV1UhKSppQVy0QTOe5bMnLyxMLRwt2TFYD0dWxBEEQoYzFymHfG2cniCZb/nT8OizWWZuZyGvI4xRAtAYt9h/bj/aBdnFbelw69mzcA+Uipd/Pp1QqwTAMqqursXfvXp+yqJeVlU1bItHpPJctarXaLuu2MG6+HEsQBBHKHGsx2k3POaOtewjHWoy4MzdlmqwKb8jjFCC0Bi12v7PbTjQBQMdAB3a/sxtag/feIE8QCvoSrhGK7goIxYd9OZYgCCKU6eh1L5q8bUeQx8ljOI7DoHnQo7YWqwWVxyrBOXGOCtv2H9uPTRmbIPOgbl1sRCytciAIgiC8Jt7DBJbz4md+dnB/QcLJQwbNg9j08ia/9dc+0I67/niXR22PPnEUcZFxPp1Hq9VCpVKhvLwcDMOAZVk0NDTYTZHpdDrU1NSgoKAAwMTis0ItOoZh0NjYCLVajfr6elRWVsJkMkGv16OqqgoajQbl5eWoqKhweown53Jmv6t+NBqNXWwSwzAwGo1QqVTYuXMnKioqUF9fD5VKBY1GA6VSCZ1Oh127dqG8vBxlZWUwmUxiPJherxf71mq14ngVFxeDYZgJx3oytgRBEMHiXFsP/vOND922kQDISIzBxhyarfAUEk4zHKVSCaVSafeFXldXB51OB4VCAZPJhJKSElE0AHyhZQGWZaFSqdDc3AyAFzpVVVWoqKiAUqlEYWEhTCYT5HI5mpubIZfLXR5TVlbm9lyOuOunsLAQLS0t4rRZUlISDh06BKVSiZ07d4p9FBcXo6amRnyuUCjs9svlcmg0GiQlJdmdUyhCDfAB4YcOHZpw7GRjSxAEESxqm67iW38+g2GzFfK4SJgGRiEB7OZBhHmMZ7evooSXXkDCyUNiI2Jx9ImjHrVtbm/Glw59adJ2Pyv8GfLS8zw691RISUlBSsp40J9cLhc9PbW1tRO+5G3jpDQaDZKTk+1W6DU2Nor9HDhwAHl5eairqxNFjKtj5HK523M54q4fx1gjfwVsazSaCTYyDIPa2lqUlZVNaO9ubAmCIKabwRELvvXaGdQ380ktP7IsDT/YuR7HWjon5HHKSIzBs9tXYdvqzGCZG5aQcPIQiUTi8XTZXVl3IT0uHR0DHU7jnCSQID0uHXdl3eVRjFOwUSgUdsHTtgJCEEM1NTV2gsPZMdXV1X45ty/9EARBzHT0t/rwpZd0uNDeC6kE2F20DF+6bwmkUgm2rc5E0aoMu8zhG3OSydPkA7SqLgDIpDLs2bgHAC+SbBGeqzaqAiKavPV2CHE/trAsKz7euXPnhHxQwnOTyQStVou6ujqwLCvmN3J1zGTncsRVP6WlpW77kcvl6OzstDvGZDLZtXd87u6cOp0OpaWlkx5LEAQRLN44eQOP/Pg9XGjvRercaLz0hU34ygNLIbURRjKpBHfmpuDj6+fjztwUEk0+Qh6nAKFcpMQL973gNI+TaqMqIHmcBBED8LFDQjyOEOOjVCrBsqwYWM0wDBiGQV1dHVQqFYqKisR4pcrKSqjVaigUCqjVaqhUKjGgW6lUorq6Gmq1GuXl5QCAgoIC7Nq1CyzLoqKiwukxcrnc7bkccym5OrerfgRKS0vtEoAqlUpxCs5kMqGmpgbJycli0Lezc1ZVVYkB6cI0pBDYLhwr9OVubAmCIALJsNmC7/3lHP73iAEAsCknGT9+fAPmJdAquUAh4Thu1qYL7enpQWJiIrq7u5GQkGC3b2hoCC0tLcjJyUFMjO8vQIvVAl2HDrcGbiEtLg2KeYqwmJ4LN4qKikSh5wtJSUno6urys1UzA3+9FwiC8C9XjQP40u91OH29GwDw5ftz8TXlMkTIaDLJW9zpAUfI4xRgZFIZCjIKgm3GjMeXgOzq6mro9XqUl5dTNnCCIMKKhrPt+HrtCfQMmSGPi8QPdq7H/cvnBdusWQHJUiLsqa6uBsuy0Gg0XsUfKZVKpKSkoL6+HhqNJnAGEgRB+IlRixXPvXkOu37XhJ4hMzYslOOv/3IPiaZphKbqAjxVRxDhDr0XCCI0aOsexP97+TiaDHxYwee25GDPx1YgKoJ8IFOFpuoIgiAIYgbxz4u38K81J2DsH0F8dASeL1lL+ZeCRNCEk1C+QsgK7a6dsDqqsbERBw4cEFdQCUvSFQoFWJaFyWTye8bmWeyQIwgA9B4giGBisXL4n0OX8OO3L4HjgDuyEvCzJxVYlDIn2KbNWoLi3xPy/Tjm4nGGVqtFRUUFKioqUFBQgMLCQnGfRqNBXl4eJBKJWC/MX8hk/Mq3kZERv/VJEOHIwMAAACAy0rNioQRB+IdbvcN4+ldH8aNDvGh6YtNCvPLMXSSagkxQY5wkEonbX7M6nQ6FhYXiMnGWZZGbmwu9Xg+GYVBdXS0mJrTN4+Mp7uY0OY7DlStXMDo6iqysLEilNIdMzC44jsPAwAA6Ojogl8uRmUnTAgQxXRxlO/H//nAcHb3DiI2U4bnHVuPRDQuCbdaMZcbEOCkUChw4cEB8LqyYsq1v5otg8gSJRILMzEy0tLTAYDAE5BwEEQ7I5XJkZGQE2wyCmBVYrRw0/2Tx/b9fgMXKYem8ufjZkwosTY8PtmnEGCEtnAC+ur1ATU2NXXFXk8kkTvs1NjZOOl03PDyM4eFh8XlPT4/bc0dFRWHp0qU0XUfMWiIjI8Vpa4IgAktX/wi+XncSb5/vAAA8umE+/uvR1YiLCvmv6llF2NwNQSTZBpOXlZWJIophGBQVFUGv17vso7KyEvv27fPqvFKplJZgEwRBEAHl+JUufOXl47huGkRUhBT7HrkDnyzIhkRC9eRCjZCOcbKlvLwcKpXKzqOk0+nEVXQmkwlJSUli/JMznHmcsrOzPZrTnClYrVb86U9/wrJly7Bw4UJ6UxJhD8dx6O3tpVhEIizhOA6/+aAVz715DqMWDotS4vCzJxW4Iysx2KbNKmZMjJNAVVWVKJqEOCeWZe0CxwVs458ciY6ORnR0dCBNDXlu3ryJ999/324KlCBmAlevXsWCBRQ8S4QPPUOj2PPKKbx5+iYA4GOrM6AuXouEGFrBGsoEXTg5VrbX6XSQy+Wi16i+vh4KhUIUTbW1tSgrKwPDMFCr1eJxWq0WxcXFAQsWnym0trYiNjYWAP9FM1s8bcTMRfAcx8dT8CwRPnx4oxtf/r0OrZ0DiJBK8G8PrsRntyymWYAwICjCSavVoqGhAQAfd1RQUCB6QITnFRUVYFkWJSUldsfK5XIxtik/Px9VVVWQy+XQ6/Woq6ub9msJNwwGA7KzswEACQkJJJyIGQN94RDhAMdxqGm8im+//iFGzFZkJcbgJ08qoFiYFGzTCA+hWnUezmnOBDiOg1qtxpo1a/Dwww/PmusmQheLlcOxFiM6eocwLz4GG3OSIZN6J4Bm2/uYCF8GRsz4jz+dwavHrwMA7l+ehhdK1yNpTlSQLSNmXIwT4R/a29sxNDSEhQsXBtsUgsDBM23Y98ZZtHUPidsyE2Pw7PZVVIOLmHFc7ujFMy/pcKmjD1IJ8PWPLsczH8mF1MsfCkTwoSUoswiDwQCZTIasrKxgm0LMcg6eacMzL+nsRBMA3OwewjMv6XDwTFuQLCMI//Paiet45Cfv41JHH9Lio/Hyrs348v1LSDSFKeRxmkW0trZi/vz5VHOMCCoWK4d9b5yFsxgBDoAEwL43zqJoVYbX03YEEUoMjVrw3b+cxctHrwAA7spNwf98cgPS4mf36u5whzxOswSO42AwGLB48eJgm0LMco61GCd4mmzhALR1D+FYi3H6jCIIP2Po7MeOFz/Ay0evQCIB/uWBJfjfz28i0TQD8Nrj1Nrairq6OjQ0NNjlUEpOTkZRURGKi4vpyzkEuXXrFgYGBrBo0aJgm0LMcjp6XYsmX9oRRKhx8MxNfLP+JHqHzEiKi8QPdq7HfcvnBdsswk94JZz27NkDiUSC0tJSfPOb35yw//jx4/j5z38OiUSCyspKvxlJTB2DwQCpVIrs7GwMDdEXEhE8IjycfpsXT6WOiPBixGyF+uB5/PK9FgBA3qIk/PjxDciSxwbZMsKfeCycnn/+eezduxeJia7TwG/YsAEbNmxAd3c39u7dS+IphDAYDMjKykJUVBQJJyJonLxqwrOvf+i2jQRARiKfmoAgwoUbpkF85WUddFdMAIBd9+SgYtsKRMooImam4bFwcuZhckViYiKJphCC4zi0trZi/fr1wTaFmMX85dQNfL32JIbHkv7d6B6CBLALEhd8Uc9uX0WB4URI4iz32D8v3cLumhPoGhhFfEwEvl+yDlvvyAi2qUSA8HlV3Z49e7BkyRKUlJSgpKQESUlJ2LlzJx577DF/2kf4AaPRiL6+PopvIoICx3H48duX8ULDRQB80r8fPb4B71++PSGPUwblcSJCGGe5x+ZGy9A3bAEArJ6fgJ89kYeFKXHBMpGYBnwWTgUFBdixYweef/555OXlobKyEgcOHPCnbYSfaG1thUQiocSXxLQzNGqB6pVTeO3EDQDA57bk4N8fWgmZVIJtqzNRtCpjypnDCWI6EHKPOabREETTvctSUf2pfMREyqbfOGJa8Vk4JSXxdXVqa2tFwZScTDEJoYjBYEBmZiaio2kZLDF9dPQOoex3zThx1YQIqQTf/fhqPLHJXrzLpBLcmZsSJAsJwjPc5R4TuNTeR/FMswSfhZNerwfHcdDr9Vi/fj1aWlrs0hMQoYEQ33THHXcE2xRiFnGurQdf+G0TrpsGkRgbiRefVOCuJanBNosgfGKy3GPAeO4x+iEw8/FZHpeWlkKn06G5uRnd3d3QaDQwmUx+NI3wByaTCT09PZRbi5g2tGfbUfziB7huGkRO6hz86Ut3kWgiwhrKPUbY4pHHqbu7G11dXXZfvomJiXYr7fbv3293TE9PDwBQtfIgYzAYKL6JmBY4jsMv3m3Bc387B47jy0v87EkF5HFU+Z0Ib271DHvUjnKPzQ488jglJiaioaEBr776qkedvvLKK6itrSXRFAK0trYiPT0dsbGUgI0IHCNmK/a8chr/9SYvmh7fuBC//dxGEk1EWGOxcnih4SK+9+Y5t+0kADIp99isweMYp127duH48eMoLS1Fbm4uCgoKwDAM5HI5TCYTWJbFsWPH0NLSgvLycuzYsSOQdhMeYjAYsGzZsmCbQcxguvpH8MWXmnG0xQipBPj3h1bhc1sWQyKh1XFE+NLRM4R/+eNxHGH5mol35abgsL4TAOUem+14FRy+YcMG1NbWoru7G7W1tTh27BhMJhPkcjlyc3NRXl6OnJycQNlKeIkwxUr5m4hAcbmjD5//bSMMnQOYGx2BHz++AfevoJpcRHjz7qVb+FrNCdzuG0FclAz/9ehqPLphgdM8TpR7bPbh06q6xMRE7Nq1y9+2EH7GYDAAAAknIiC8d+k2nvl9M3qHzJgvj8WvPlOA5RnxwTaLIHzGbLHih9pL+Ok7l8FxwIqMePzkCQWWzJsLAJR7jAAwhXQEROjT2tqKtLQ0zJkzJ9imEDOM/z1iwHde/xAWK4e8RUnQfCoPqXMpTxgRvrR1D+KrfziBY6381NwTmxbi2w+vmpDQknKPESScZjAGgwEMwwTbDGIGYbZY8b2/nsNvPmgFADy6YT4qH1tD2ZKJsOb/LnSItebmRkfgucfW4JF1WcE2iwhRSDjNUHp7e9HZ2Yn7778/2KYQM4SeoVF85eXj+OfFWwCAb25dji/dl0tB4ETYMmqx4vt/vwDNP1gAwB1ZCfjJEwrkpJKXnnBN0ISTTqfDrl270Nzc7LYdy7Kor68HwzBgWRZlZWWQy+WT7pvtCPFNlPiS8AdXOgfw+d824lJHH2IipfhB6Xp8bA0FwxLhy3XTIP7lD8fRbOArXjx95yL824MryXtKTMqUhNPzzz+PpqYm1NTU4NChQygoKPAod5MgdnQ63aRtS0pKRHHFsix27dqFurq6SffNdgwGA1JSUjB37txgm0KEOcdajPjiS80w9o8gPSEav3i6AGsWJAbbLILwGe3Zdnyj/iRMA6OIj46AungtHqQfAoSH+Cyc9uzZg9zcXCiVSgBAYWEhXn31VTz22GOTHltcXOzROViWtXvOMAy0Wu2k+wg+MJy8TcRUqW++hr2vnsKohcOa+Yk48HQ+MhIpOzIRnoyYrag6eB6/eK8FALB2QSJ+8rgCC1PigmwZEU74LJwKCgqwY8cOHDp0yJ/22KHVapGcbJ+JNTk5GTqdDk1NTS73KRSKgNkUDvT39+PWrVu45557gm0KEaZYrRye//sFvPiOHgDwsdUZeKF0PWKjaBqDCE+uGgfwlT8cx8mrJgDAZ7csxp6PrUB0BL2mCe/wWTi1tPCK3TYwtLGx0SOPk6e4KhpsNBrd7nPF8PAwhofHaw4J9fRmGpS/iZgKAyNmfK3mBN76sB0A8JX7l2B30TJIKVcNEaa89eFNfLPuJHqGzEiIicDzJeuw9Y6MYJtFhCk+C6cNGzYgPz8fKSkpaGhogFarhVqt9qdtLnElmibbV1lZiX379vnfoBDDYDAgKSkJiYkUh0J4R1v3ID7/myacbetBlEwKdfEaPLphQbDNIgifGDZbUPnmeTF9xvpsOX78+AZkJ9PUHOE7HhX5dUZhYSHq6uqwYcMGcByH6upqPPDAA/60DXK5fIIHyWg0Qi6Xu93nir1796K7u1v8u3r1ql/tDRUMBgN5mwivOXnVhEd+8j7OtvUgZU4U/lC2iUQTEbYYOvtR/OJhUTTtuicHteV3kmgipsyUVtXl5ORg//794vOenh6PVtV5ilKphEajmbA9Pz8fDMO43OeK6OhoREfP7OzGg4ODaG9vx+bNm4NtChFG/OXUDXy99iSGzVYsT4/HLz6dT18wRNjy11Nt2PPKKfQOmyGPi8R/l6xD4cr0YJtFzBCmJJx6enrsvD5qtRovvviiV30IRYIFdDod5HI5GIaZkPWaZVnk5+eLHidX+2YzV65cAcdx5HEiPILjOPz47ct4oeEiAOD+5Wn40eMbEB8TGWTLCMJ7hkYt+K+/nsP/HuHjPPMXJeFHj29Aljw2yJYRMwmfhdMXv/hFaLVaO6HS0tLikXDSarVoaGgAwMcdFRQUiCkKhOcVFRUAgLq6OqhUKhQUFKCxsdEuT5O7fbOV1tZWJCYmznoBSUzO0KgFqldO4bUTNwAAn9uSg39/aCUVLCXCkpbb/fjy73U428Yv+nnmvlzsLlqGSJnPESkE4RQJx3GcLwc+//zz+OY3v2m37cCBA9i1a5dfDJsOenp6kJiYiO7ubr9OMbrDm2znk7V1ln29uroaqampblc3BuO6idCio3cIZb9rxomrJkRIJfjux1fjiU0Lg22WT9DrmXjtxHX826un0T9iQfKcKLxQug73LZ8XbLOIMMKbzxGfPU5C4ktbioqKfO1u1uBNtnN3bZ1lXx8aGkJbWxvy8vICfBVEOHOurQdf+G0TrpsGkRgbiRefVOCuJanBNosgvGZo1IJ9b3yIPxzjF/pszEnGjz65gZK0EgHFZ+GUlJSE73//+2AYBnK5HCaTCTU1NaipqfGnfTMKb7KdT9bWWfb1q1evguM4yhhOAAAsVg7HWozo6B3CvPgYbMxJxv+d78BX/3gc/SMW5KTOwS8/nQ8mjcryEOHH5Y4+fOVlHc7f7IVEwucb+2rhUkTQ1BwRYHwWThUVFRMCu48fP+4Pm2Ys7jKhO2Y796atgMFgwNy5cyccR8w+Dp5pw743zqKte0jcFh8Tgd4hMwDgrtwU/OxJBeRxUcEykSB85lXdNfzHn89gYMSC1LlR+OHODbh7KXlNienBZ+FUVFQ0IZ7plVdembJBMxlvsp37khldqE9nm82dmH0cPNOGZ17SwTF4URBNdy9Jxa8/W0BBs0TYMThiwbdfO4O65msAgDuZFPzPJ9djXgJNzRHTh8/CKTc316NtxOS4y3buaduRkRHcuHED69atm7BvtpSaIfjpuX1vnJ0gmmzR3+qDlMQ1EWZcbO/Fl3+vw6WOPkglwFcLl+ErDyyhVaDEtOOzcNLr9dBoNCgoKADA54Opra1FY2Oj34ybaXiT7dzbzOhXr16F1Wp1Gt80W0rNEMCxFqPd9Jwz2rqHcKzFiDtzU6bJKoLwHY7jUNd8Dd9+7QyGRq1Ii4/Gjz65gV6/RNDw2Vev0WiQk5MDjuMgZDTwMbPBrMHZSkTAebZzb9oCfHzTnDlzkJo6cZ5/tpSaIfg0A/5sF3CsFqDlXeB0Pf/fagm2RUQI0T9sxtdrT6Ki/hSGRq24Z2kq/vbVe0g0EUHFZ4+TWq1GYWGh3TZXX/YEj7tM6IDnWdMdMZlMaG1txaJFi5zGN82GUjME0D04ioNnbnrUdl58CMSEnH0dOKgCem6Mb0vIArapgVWPBM8uIiQ4f7MHX/69Dvpb/ZBKgK9/dDme+UgupDQ1RwQZn4WTo2gC+BQFhHvcZTv3Jmu6bfb1733ve7h27Rq+9rWvTe/FECGBxcrhj41X8N9/vwhj/4jbthIAGYl8aoKgcvZ1oPZpwDEaq6eN3176OxJPsxSO4/DHxqv4zusfYthsRUZCDH70+Ibgv2YJYgyPM4e/+uqrUCqVYkbNX/ziF3b7TSYTGhoa8NZbb/nfygAxUzIOt7a24je/+Q2++MUvIiMjY9L2M+W6CeCwvhPf/ctZnBsrM7Fk3lx8bHUGfvL2ZQD2skT4nf7iUwpsW505vYbaYrUAP1xt72myQ8J7nv71NCCVTdodvZ5nDr1Do/i3P53BGyf518Z9y9PwQul6JM+htBlEYAlI5vDnnnsOcrkcDzzwAADg5z//OXbu3GnXprOz0wdzianS2tqK2NhYpKdT9e/ZwlXjACr/dg5vnuan5hJiIrC7aBme3LwIkTIp7shKmJDHKSMxBs9uXxVc0QQAhg/ciCYA4ICe63y7nHumzSxi+nCWnPVcWw++8rIOrZ0DkEkl+ObW5Si7h6GpOYLHauE/E/ragbnpwKK7PPphFQg8Fk5NTU12zw8cOIANGzbYbaMYp+BgMBiwcOFCyt80CxgYMePFd/TQ/JPFiNkKqQR4ctMifK1omd2v8m2rM1G0KmPCl1NILN3u1HvWrq89sHYQQcFZctaEmAgMjFhgtnLISozBj5/YgLxFNDVHjBFi8ZBTKrki0N3dDa1WSzXSgoDZbMbVq1edxpwRMweO4/DaiRvY/7fzuNnDf+HcyaTg2UdWYUWGc7eyTCoJndVHHAcY3geafwN8+CfPjplLHtSZhqvkrD1jyVnXzk/Abz+3CUk0NUcIhGA8pM/pCGzrpiUmJmLHjh0u664RgePGjRswm81YtGhRsE0hAsTJqybsePED/GvNCdzsGUJ2cix+/lQeXt61yaVoChn6O4EPfgz8pAD4zUPA6TrAagakkW4OkgAJ83lXPDFj8CQ5662+ESTEunttELMKq4X3NDl91YxtO7hn2tOYeOVx6u7uRm1tLSQSibiiy5bm5mZ84Qtf8JtxxOS0trYiOjrao6BwIrzo6BlC1VsXUD9WXiIuSoYv378En787BzGRwZnb9wiOA1rf471L514HLGMr/SLnAGuKgbzPAN1XgdpPCwfYHDw2lbhtf9DiF4jAQMlZCa8J0XhIr4RTYmIilEol1Go19Ho9cnJy7PYLy+iJ6UOIb5JKqe7YTGHYbMGv3mvFT96+hP4R/pfUY4r5UG1bgfRQrsnVfxs48TIvmIw2cUyZ63mxtKYYiI7nt81X8C52p3EL+ykVwQykvSfMkrMSwae3zbN20xwP6XWMU05ODn7+85/j0KFDFFcTZCwWC65evYp777032KYQfoDjODScbcd/vXkOhs4BAMD6bDme3b4KGxaGaI40qxVofXfMu/QGYB3lt0fNBdaUAHmfBrI2OD921SPAiodCZqUMETh0V7rw40OXPGobEslZieBiHuGn9f/vOc/aT3M8pF8TYBLTS1tbG0ZGRpzWpyPCiws3e/GffzmL9y7fBgDMi4/Gno+twCfWzw/N5dh9t4ATvwd0vwWM7Pj2rA1A3meB1TuA6LmT9yOVUcqBGczN7iGoD57Hn45fB8BPxLqKcQqZ5KxE8BjpB3S/Az74CdBzbWzjJK+ahKxpj4f0WTgRwcdgMCAqKgqZmUHOy0P4jGlgBD9ouIiXjl6BxcohKkKKsnsYPHNfLuZEh9jb02oFWv7Be5fO/9XGuxQPrC0BFJ8GstYH00IiRBgateCX77Xgp/93GQMjFkgkQEneAuQtSsaeV04BcJ6c9dntq0IjZQYxvQwYgWPVwFENMDhW3H5uOrD5S0B8JvCn8rGGoREPGWKfzIQ3tLa2Ijs7GzIZTW2EG2aLFS8fu4IXGi7CNMALkI+tzsC/PbgS2clxQbbOgb4O3rvU/Fugq2V8+/w8Pnbpjsc88y4RMx6O4/DWh+34rzfP4qpxEACQtygJz25fhbUL5ACAxNiI0E3OSkwv3deBwz/lf4yN9vPbknKALV8F1j0ORI5N20bGhlQ8JAmnMMVqteLKlSvYsmVLsE0hvOS9S7fx3b98iIvtfQCAFRnx+Pb2VbgrNzXIltlgtQIt79h4l/g8O4hOANaW8t6lzLXBtJAIMS7c7MW+Nz7EB3q+gkRGQgz2PrgCj6zLskvOG9LJWYnp4fYl4P0fAidrxj3XGWuAu78GrPw4IHOQJiEWD+lX4dTa2upxvA3LsqivrwfDMGBZFmVlZZDL5U7b1tfXi1nJHdvodDoAgEKhAMuyMJlMUCgUvl5C2HDz5k0MDw9TfFMYYejsx/f+eg4NZ/kVIElxkfj6R5fjkwXZiJCFyKrI3nbgxEu8d8lkGN++oGDMu/QoEDUnaOYRoYdpYAQvNFzES0cMsHJAVIQU5ffy081xUc6/YkIqOSsxfVzXAe/9gF9IIky7LbqbF0xLCgF31S9CKB5ySsLpxIkTMBqN4nONRoOamhqPji0pKUFzczMAXkTt2rULdXV1Lts6olarUVFRAY1Gg+rqagB8yRdXfcw0DAYDIiIikJWVFWxTiEnoGzbjJ29fxq/ea8GIxQqZVIKn71yEfy1chsS4EEj2Z7UC7P/x3qULb9p4lxKBdTt571LG6qCaSIQeYTXdTAQPjuNjI999gf8vsPxBXjBlbwyebT7is3AqLS2FyWSy8wAdP37co2NZlrV7zjCMy6zjJpMJdXV1KC4uFrdVVVWJOaPy8vLQ1dUFYKI3aibT2tqKBQsWICKCZltDFauVwyu6a6h66wJu9Q4DAO5ZmopvP7wKS9Pjp8GASYpi9t4Ejr/Er4wzXRnfvmCjjXeJvgCJiXxw+Tb2vXEWF9p7AYTodDMRXKxW4PxfeA/TDX5mCBIZn6bk7n8F5q0MqnlTwedv3aKiIuzatctu2yuvvOLRsVqtFsnJ9ktOk5OTodPpnE6z2Yqm+vp6u+fA7BJMAB+AeeXKFWzatCnYphAuaDZ0Yd8bH+LUtW4AwOKUOHzr4VV4YMW86SnG7Koo5tZKPsdS86+BC38DuLFSBdGJwLpP8nmX0u8IvH1jWKwW6Dp0uDVwC2lxaVDMU0BGeZxCliudA/ivN8/irQ/56Wb52HTz46E03UwEF/MIcKoGeP9/gM6x3F0RsYDiaeCurwDyhcG1zw/4LJxyc3M92uYMk8nkdLvttJ+ArSgymUwwGo1gGMZuW319PQCgsbER5eXldvttGR4exvDwsPi8p6fHI3tDjY6ODgwODlJ9uiBisXJOg1vbugeh/tt5/PkEL1jmRkfgXwqX4DN35SAqYpq+WFwWxbwB1H3aflv2Zt67tOrj0+5d0hq02H9sP9oHxrP+pselY8/GPVAuUk6rLYR7+ofN+Nk7l3Hg3RaMmPnp5k9tXoR/VS6FPI4K8hIAhvt47/UHPwF6x36wxSQCG8uATV8E5swcb6TPwkmv10Oj0aCgoAAA7wWpra1FY2Ojz8a4ElQCKpUKarXabpttUDnDMCgqKoJer3dyNFBZWYl9+/b5bF+o0NraCplMhgULFgTblFnJwTNtE5dTJ0Rj4+JkNJzrwOAon7emNC8b39i6HGnx0dNnnNuimAIS/sMs/7NBc5drDVrsfmc3OAc7OwY6sPud3XjhvhdIPIUAViuH105ex/6/nUd7D/+j8+4lqfj29lVYNh3TzUToM2Dk8y8d0wCDfNgM5mYAd36Z/1EWE+KFyH3AZ+Gk0WigVCrBceMffLaP3SGXyyd4l4xGo9spN5PJBK1WO6ENy7Li9J6wQo9lWadep71792L37t3i856eHmRnZ3tkcyhhMBgwf/58REaGQGDxLOPgmTY885Jugiy52TOM10/xdZUKFifh2e13YPX8xOk38MM/i9NzFgC6mGjcksmQZrFAMTQMfhKMA1ZuD5poGjGP4Lmjz00QTQDAgYMEEqiPqXF/9v2zatqO47jpmcb1kJNXTfjOGx/i+BUTAGBhchz+46GVKFqVHlJ2EkGi+5pNDia+RBSSmfEcTBHT+INxmvFZOKnV6gllV4SUAZOhVCqh0WgmbM/Pz3d5TFNTk9NUBIWFhWJwuIBj/JRAdHQ0oqPD+2ZyHAeDwYC8vLxgmzLrsFg57Hvj7NjXvRWyuBZIInrBmeNhGcgBIIU8LhJ/2LV5+uI9LKPA1aPAxbeASw3ArXMAAG1cLPanJKHdZvFAutmMPZ1dUA4M+q0oJsdxGDQPomu4C6YhE4xDRpiGx/93DXWha6jLbptp2OS+T3C4OXATug4dCjIK/GIn4TkdvUOoOngB9c18yYu4KBm+8sASfP7uHERHzB4hS7jg1kU+fumUbQ6mtcA9u4GVj8yKWpN+q1X39ttvw2QyYcMGFwU9bXD0BrEsi/z8fFEY6XQ6yOVyu3Y6nW6CIGIYxm7qTqvVori4eEYHi9++fRv9/f1Bi2+ajmDeUA0YPtZiRFv3ECLizyA6/Q1II7vFfdbRRAy3b4epdzUaW7sCm6Om7xZwWQtcegu4/DYw3G2zUwptXDR2z0ud4M/pkMmwe14qXui4DaWLophmq5kXN0MmdA1PFD3OhNCwZdhpX1Pl1sCtgPQbqgTbizNstuDX77fix4cuoX+EXzTwmGI+VNtWID2BCu/Oeq438ykFzv8VYijA4nv4lAK5D7jPwTTDmNJa9ldffVVMLcBxHJqamvDYY495dGxdXR1UKhUKCgrQ2Nhol3+psrISBQUFYsoBAUfBJZfLkZ+fj6qqKsjlcuj1+hmfx6m1tRVSqdQvU4x/b/k7sudlg+M4GIeMSItLw7rUdTh5+6RT0TIdwbyhGDBsGhjB387cxC/fYxERfwYx81+a0EYS0Y2Y+S9h6PpT6Ohd718DrFbg5kng4t95sXRdB7sYprgUYEkRsLQIlpx7sL+2kN/r8EHGSSQAx+Hbaak4efsoetq0E4RQz4hvCyaiZdFIiklCUnQSkmKSII+W2z0Xt0UnobWnFV9752uT9pkWl+aTLYR3cByHQ+c68L2/nkVrJz/lsi5bju9sX4UNC5OCbB0RVDiOz/H23g+Aln+Ob1/xMLDlX4Hs2ekRlnCeBiY5sGfPHrtVbiaTCaWlpXjggQf8bWPA6OnpQWJiIrq7u5GQEB4BbPX19TCZTPjCF77gcx/Cda98cSVksfaeHKlECitnFZ8LogWA02BeyVihRX8E87oKGPbnOTxlYMSMhrPteOPkDfzj4i2MWjgAVsxZooYkotvpjyuOAzjLXOxR7MfKzDkYtY6O/1kmPh6xjthtH7GMYNQ6CrPVjNHRfoz0XMdozw2M9ndg1DqCEUgwKhn7i4yBOWoORiKiMCqRin0MmYdgEVIM+IgEEiRGJ04qhJKikyCP4cVQbESsxx4Ti9WCra9sRcdAh9M4JwkkSI9Lx8EdBz3yNIbj+zhUuNzRi31vnMW7l24DANLio7Fn2wo8umE+pFQCZfZitfDZvd/7AdB2gt8mjQDWlPIxTPNWBNW8QODN58iU0hHs2rULLS0tkEgkWLx4Md5++21fuyM8QIhvWrs2cDXCbEUTwK9y+to7X0NidGJAg3ktVgv2H9vv8hwA8NzR55Arz4XFasGIdUQUGqOWUfG5rRgRnjttJ2wT2llGMGIZxe3+fnQODKB3aAicxAxIzIhiLIiVWSCRjMIKs8trkEgASUQfqk59BTjl0zA4J1oGINZhoxUw98KNOW7ZkrUFeel5ovCxFUUJUQkBnRqVSWXYs3EPdr+zGxJI7O65IJJVG1UhMT07U+keGMUPD13E7w4bYLFyiJJJ8fl7cvDl+5dgbjQl1Z2xTJYU1zxsk4PpMr8tIpbP73bnVwB5+C2mCgQ+v0MYhoHBYEBOTg6+//3v4xvf+IY/7SKcYDQa0dvbO6316YQvtW67OJqJbW4O3MTn//55JEYlwsJZYLaaYebMsFgt48+tZlg4CyxWC8yc/fNB8yD6Rvvc2nJr8BYe+fP0VMKWRAO2v7c5uF/gb0tSdBISoxMRKYtElDQKkdJIRMoiESkdey6LRIQ0ApGQImrAiMjuG4g0XUHkkAlRHBDJcfxfXAoi592ByIw1iExbicjIWPH4SOlYf7Io8XGkNBJnO8/iG/+c/L34+TWfD2rgtXKREi/c94LTaVnVRlXYpyIItRVyAhYrhz82XsF///0ijP0jAICiVen4j4dWYlEK1SCc0bhKirtNDeTez9enPPxTmxxMcmBTObCxHJhDdQVt8Vk4mUwmMAyDrq4u3L59G1u3boVcLg+rqbpww2AwQCKRYOHC0My82tzeHPBzRMuiERcRNy5EZFGIkkaNC4gxsSJsd9XO2GfBhZuD+PD6AHoGOHBcBMDJEB8dg80583DP0kysTE/i24/1ec54DhX/rJjUxv++779di5Lu68Clv/N/7Dvjy3gBQBYFLNoCLNsKLP0okOJZQllbsuZmIT0ufdJpMMW84BfCVi5S4v7s+0NyIcBM5AjbiX1vnMW5Nj6Obem8ufj29lW4ZynFks14XCbFbQNqPwVExo1/FsVn8t6lvE8D0ZSryxk+C6cdO3bAYuFjKfbv349Dhw65TSdATJ3W1lZkZmaGbEqFJ1c+iVx5LiIkEZBJZZBJZIiQRkx8Lo2ATCKDTDq+/1znOXzrg29Neo4XlS/67CnR3+rD6ydu4M8nb4C93S9uj4+JwMdWZ+Dj6+djM5MCmYvYjuz4bPx33H97J0qsFuBa41i6gL8D7WfsD4rPBJYWAUu3Asx9QPRcn65NINymwWRS2YxMORBK3qZrXQOofPM8/nqazzOWEBOB3UXL8NTmRVQmZTbgNinu2LbRASA5l68ht3bnjM7B5A+mNJn9/PPPo6mpCTU1NQBC68NipiHEN61atSrYpkxAEAzfzP+mz1/IS+RL8JMTP/G7p6StexB/OdmG10/ewOnr49ON0RFSKFel45F1WbhveZpH+WnGRcnXIOE4fpWaYB/HAZIxUTLUPZYu4O/8fyGb7tiVYEEBsOyjvFjKWOP3ZbwzfRqM8IzBEQte/Icemn/oMWy2QioBnti0ELuLliN5DpVJmTUYPrCfnnPFwz8AmI8E3p4ZgM/Cac+ePcjNzRWTXhYWFuLVV1/1OB0B4R0mkwnd3d3TGt8kIIEEiVGJ6B7hhUcgvBj+9JR09fPpA147cR3HWo0Q1o3KpBLcszQVH1+fhaJVGT4FwSr7B/BC+23sT5HbJ5e0WKDq7ILy9T2AUQ/YBtnHyIElSn76bYlyWuIFaBps5uOqXiLHcXjjVBsq3zwnlgXazCTj2e13YGUmrTqcdVz3MISif3blTZsKPgungoIC7NixA4cOHfKnPYQLghXfJIiWZ+96FgAC6sWYiqekf9gM7bl2vH6CTx9gto4Lr4LFSXhk/Xw8uDoDKXOn4IIec3krBwZw/8CA83ImA2PVwOfdMe5VWlAAyKZ/pdJMnQYLBqEW7O2sXmJmYgw+e9diNJxrR2Mr7+WcL4/Ffzy0EttWZ4SU/USA6b4GnK4HTtdNDA9whYukuMREfP40b2lpAWA/PdfY2EgepwBhMBgwb948xMY6Lkv3L87yONmKlkB7MZSLlLh3/n14+eQ7uNJzEwsTMvDEuvsQFTHxpTpituKfF2/htZM3oD3bjsHR8fxFqzIT8Mj6LGxfl4X5ch/HzGoFuq8CHef4UibsP0SXtwxAwZCLjNk7fgWs2eHbOQliElzVS2zrHsJzfzsPAIiNlOFL9+Vi170MYiLJyzgrGDACZ1/jxZLh/fHtkgj+h5t5yMWBEn513aK7psXMmYDPwmnDhg3Iz89HSkoKGhoaoNVq7cqfEP6ltbUVy5Yt82uf373zu15lDgcC78UY/yU9DCAJwDA0f/8Hnt2+CttWZ4rTE6+fvI43T99E9+CoeOyilDh8fF0WHlmfhSXzvFgNwnFAbxvQcRboOD8ulDrOA6P9kx8/sUMfjiFCmVDx1tjXS3RObKQUDbvvxYKkuGmziwgSo4PAxYPAqTo+ptI6/nmIRXcDa0v4+nGt742tqgPsP5/GXtfb9s+KGnP+Ykq16urq6qDRaMBxHKqrqz2qU0d4T09PD7q6uvxen+6jOR91miE1WNM7rn5J3+wewhdf0qFwxTycudGN9p5xT8+8+Gg8vDYLH1+fhbULEif/guu7xQukW+fthZKrPFWyKCBlKTBvJRAZAxyfWG5lAuTyJgKEUC/RHYOjVlw1DpJwmqlYLUDLP3ixdO4NYKR3fF/6amBNCbCmGEhcML591SNA6e9c5HHaz+8nPGZKgRc5OTnYv3+/v2whXNDa2goAQSvsOx3Y/pKWwoqN0vOYBxM6IMcx6wpwkOLQ+Q4A/HLqB9dk4pF1WdjkKn3AgHFMHJ0b8yCNCaWBTucGSGRAyhK+lEDaSl4ozVsJJDOALJJvY7UA+rf53CdOf/OTy5sILB097kWT2K7Xs3ZEmMBxwI3j/DTcmVf4zN8Cidm8UFpTCqS7WXW96hFgxUPuM4cTHuGxcPIkO/gvfvGLKdVQI5xjMBiQlpaGOXOCn9nX1UqeqWC2WPH6yRto6x7CVukxPBv5O2RJjOL+G1wy9o0+jbesG/GNjy7DrnuZ8fQBw7281+jWuXGR1HEO6Lvp4mwSIDnHXhzNW8mLpslyl0hlfJbd2qf5fsjlHdbYlukMlak4dzQbuvDzf+g9ajsvPibA1hDTQqd+LMi7drwECgDEJgF3PMqLpexNgNTDfFxSGZBzT2BsnUV4LJyee+45NDQ0uG3T1NREwmkSWJZFfX09GIYBy7IoKyuDXC532/b8+fPgOA4mk0ls600/rtAd/DVSMnMAAMPdNxGbNB9L8wpxqfkQBruuIzZpPlZs2grZWGD2wTNt+M/XTyO776ToDbo6dx2+9cgabFudOen5hs0WtN4ewKWOXlzu6MOljj5cbu9Dy+1+jFis2Co9hhcjfzjhuAwY8WLkD1Fpfhx39a1F9Ntt496k7quuT5i4kPcgzVs5LpRSlwFRU5jCIJd32BNugun8zR58/60L0J7rmLStBEBGIv+DhghT+jqAM6/yYsk2lUBELLD8Y8DaUiC3EIigXFzBwmPhVFhYiJSUFOTl5blsY/uBRDinpKQEzc38m4FlWezatQt1dXUu2/7jH//A97//fWzatMmurTf9uEJx/FtIOGv/xWH5uwR3SMbvY3tDCm7c+Sza538Uf37556iL/B2yomy8QcPJ+O7LTwNPfFEUT4MjFuhv9Y0LpPY+XO7og8E4AIvV+WskSTaE70b8BhJMzAcplfCe6n+P/AOg+8PEg+MzgbQVwLxVY0JpFZC2PHDlAsjlHfaEg2AydPbjBw0X8drJG+A4Pg9ZSd4CrF2QiH//E7/E3InPE89uXzVlLzAxzQz3Auf/Cpyq5UsxcWMrhCVSgLmfF0srHqISKCGCx8Kprq4O3d3daGpqAsDncXIMLE5Opl857mBZ1u45wzDQarVu2xoMBgDA3XffjSeeeMLrfrxF6hC7k8Z1Iu2Df8FvJY/gZ5GvT2ifASN+FvlDfK1Oij8e2wb97X7c7OqFnOtDkqQXyZJeJKMHd0l68ZCkF+kx/ciOHkRmRB+SJX2Ya+1G1EgXpC6XyvII33Nc+mpIFt1lL5Rik/xy7V5BLu+wJdRFU3vPEH506BJqGq+K+cgeWpuJ3UXLkJvGl+RJnhM1IY9TRmKMuPqUCAPMI4D+EC+WLvwNMA+O75ufx0/DrX4MmDsveDYSTvEqODwxMRGFhYUAgOPHj8NoNEIikYiFfXfsoNw17tBqtRPEZXJyMnQ6HRQKhdO2ra2tSElJQXx8vNi2qanJ4368xZm3x8oBT3NvuPUGPY8f4XrrS0iW9CExegBuGR7788W+u7/GB0ISxAzDNDCCF/+hx28/aMXQKJ9L7b7lafjGR5dj9fxEu7bbVmeiaFWG3+MNiQBjtQJXj/LTcB/+yb4cU3Iu71laU+JTgW9i+phSHieBt99+Gw0NDSgqKhJFFDERk8nkdLvRaJywTWhrMBjsVtMZjUav+gGA4eFhDA+PK5Xubn7pfc+wN1Ork7UdRQr4lR587XUJ7wmKTQbikm3+J/H/41LGn8cm84GPdZ/2wIy5QE+PF3YTM52esdeD1WqdpGVo0j9sxq/ea0H1P1n0DpsBAPmLklCxbYXbWCWZVII7cwNfvofwA+1n+RVxp+uB7ivj2+emA6t38GIpa4Pf61YSgWFK6QhOnDgBjUaDmpoaMAyD3NxcEk4+4EoIWSwWdHR04O677560rbt9lZWV2Ldv34Tt2T/o88ZMH+gBYPBvl/s/5t/+iBlDb2+v1wskgsmw2YKXj17BT//vMm73jQAAVmYm4Jtbl+H+5fNCfkpx1mK1eBbf6KrsSVQ8sHI7n5xy8b1BKcdETA2v71hra6uY+FIikWDHjh1obm5GTk5OIOybUcjl8gleIaPR6PTDXi6Xo72d9+AIHiehrTf9AMDevXuxe/du8bnJZMKiRYtw5coVJCYmOj2GmJyenh5kZ2fj6tWrThOJEp7hzTjeunULjY2NOHPmDCQSCdasWYP8/HxERUUhKytrmiyeGmaLFa8ev47/0V7CdRMf17I4JQ67P7ocD6/JhJSm20KXs6+7WFGr5heNDHbxZU9OCWVPxjz10ki+yPeaYn5lXGRgS2cRgcVj4fSLX/wCGo0GLMuitLQUdXV1EzKFv/rqq1Srzg1KpRIajWbC9vz8fKdtn3/+eSQlJdmJm/z8fDAM43E/ABAdHY3o6Ik5ihITE+kL3w8kJCTQOPoBV+PIcRz0ej0OHz4MvV6P+Ph4bN26FXl5eYiLC5/s2BzH4eCZm/j+3y9Af4sv5ZOREIN/KVyKkvwFiJR5mIuHCA5nXx/L4eYQttDTBtR+CshSADdPO5Q92cJPw636OB+aQMwIPBZOZWVlKC4uxp49eyCXy9HV1YW3335b3N/V1YX9+/eTcHIDwzB2z1mWRX5+vugp0ul0kMvlYBgGDMNgeHhY9DbZtnX0LDn2QxAzgdHRUZw6dQpHjhzBrVu3kJmZicceewx33HEHZLLwSf3AcRzevXQbz791Aaev8/GFSXGR+NJ9S/CpOxdREd5wwGrhPU1OYz3Htt3Q8f/TV/OepdXFgDx7uiwkphGvhFNVVZXbXE01NTUen9ibBI46Hf+CVCgUYFkWJpNJXD3mj0SQ00ldXR1UKhUKCgrQ2Nhol3upsrISBQUFqKiowODgIB599FG89tprMJvNE9q664cgwpne3l40NjaiqakJg4ODWL58OR5++GEsXLgw7OJ+dFe6UHXwPI6w/NT6nCgZPn8Pg1335CA+JjLI1hEeY/jAfnrOFY/8FFA8FXh7iKAi4TzMWnn8+PFJi/h60kYgLy/PLoGjSqVy+eVfXl6O6upqAPwUVl1dnSiOvOnHkZ6eHiQmJqK7uzvkplouXLiAP/zhD/jqV7+KpCT/5ikaHh5GZWUl9u7d63QKj/AMGkf/IIzjZz/7Weh0Opw5cwYymQwbNmzApk2bwjI/HJ/t+yK05/g4xSiZFE9tXoQv35+LlLn0Wgkruq8DDd8GztRP3nbHLyldSpjijR7w2OPkiSDyVDR5m8AxLy8PXV18vgtbb1IgE0EGG4PBgISEhIB4z6Kjo/Gd73zH7/3ONmgcpw7HcWhtbcXixYvx61//WswVp1AoEBMTfvXWHLN9SyVASV42/kW5FPPlFBAcNgz38jFNp/4ItLyLydOxjDE3PaBmEaFBUNZBepMIUsCZgPCln3BB+DIJt6kJgvCEkZERnDhxAkePHkVnZycWLFiAkpISrFy5ElJPC5aGEE6zfa/JxO6Pjmf7JkIcixlg/w84+Ue+/IltJu/sO/lC4kPdcC6iJPzqukV3TZe1RBAJinDyNoGjyWRCfT3vJm1sbER5eTkYhvG6n3BheHgYbW1tbusCEkQ40tPTg6NHj6K5uRkjIyNYuXIlHn30USxYsCDYpvmEs2zfH1mWhm9unZjtmwhBOA5oOwGcrOGn4vpvje9LWQKs/SSfbylpsc2qOgmcVgnctp/qVc4SQirzlishZBvwzTAMioqKoNfrve7HMYN2T4hmoL5y5Qo4jsPixYv92m+4BdIHE18XJNAY82O3a9cuMfYQAK5fv47XXnsNf/7zn5Gamoq4uDh861vfsls1Gk5j6izbd96iJFRsXY5NDGXzDnlMV/myJydrgNsXxrfHpfCr4dbt5NML2Hr8Vz0ClP7ORR6n/fx+YlYQFOHkbQJHlmXFLy3hw5NlWa/7cZVBO9QwGAyYO3eu34NiS0pK7ALpd+3aRavxXKDRaCYsSBBwN46zfYwFgaPT6WC1WnH+/HkcOXIEV65cwS9/+UvU19dj/fr1uH79Or7xjW94NG6hNKbOsn2vyIjHN7cuxwMrKNt3SDPUzSenPFkDGN4b3x4RwyelXPtJYEkhIHOz2nHVI8CKhzzLHE7MWIIinLxJBKnT6VBYWCgGhwskJyd71Q8wMYO2kLE41AhEfNNMDqQPBL4sSKAxBoqLi0Wv7o9+9CMxS/2WLVvwxhtvYNOmTQA8H7dQGVOLlcOrumv4oU2270UpcdhdtAzb12ZRtu9QxTIKXD7EB3lf+BtgHhrft/geYO1OXgzFeDGtKpUBOff431YibAiKcPI2EaRarRbbarVaFBcX+5QI0lUG7VBiZGQEN27cwLp16/za70wOpA8U3i5IaGpqmtVjbDKZcPToUXGac+HChSgtLUVWVhaqq6t9Grdgj6mQ7fu/Gy7icgdf2zE9IRr/UrgUpfnZlO07FOE44LqOF0tnXgEGOsf3pS7np+HWlFJySsJnghbj5GkiSLlcjvz8fFRVVUEul0Ov18/oRJDXrl2D1Wr1e3zTTA2kDxS+LEiYjWPMcRyuXr2KI0eO4Ny5c4iJicHGjRsBwK6KgK/jFugxtVg5HGsxoqN3CPPiY7AxJxkyqQQcx+G9y3y271PX+Gzf8rhIfOm+XDx952LK9h2KdBmAU7W8YOq8PL59Thpf9mTtTiBznX3cEkH4QNCEk60nqbjYPmGYo/hRKBQuf1266yccaW1tRVxcHFJTU6flfK6+mGY7/lqQMNm+cMViseDcuXM4fPgwrl+/jtTUVDz00ENYt24dIiM9z4jt67j5Y0wPnmnDvjfOoq17fPomMzEGn9q8CP+8dEvM9h0XJcMX7s7BF+5lkEDZvkOLwS7gwz8Dp2qAK4fHt0fE8rFI6z4JMPcDspBaB0WEOfRqCjEMBgMWLVrk9yBTbwPpZzu+LEiYDWM8ODgInU6Ho0ePoqenBwzD4IknnsDSpUvdvmZ9HbdAjenBM2145iXdhIw8bd1DqHqLX2UVJZPiyc0L8eX7lyCVsn2HDuYR4HIDn2/p4kHAMjK2QwLk3MuLpZXbgej4oJpJzFxIOIUQo6OjuHbtGj760Y/6vW9vA+lnM74uSGAYZsaOcWdnJ44ePYoTJ07AYrFg7dq12Lx5M9LTPcuU7Ou4BWJMLVYO+9446zYXdGykDG997V4sTI7z+TyEH+E44FrTWNzSq8CgjZiet4qfhltTAiTOD56NxKyBhFMIcf36dVgsFjG3jT+ZLCCfGMfXBQneLlYIdYRyKEeOHMHFixcRFxeHO++8EwUFBZg7d/Js2CaTyW660xZPxy0QY3qsxWg3PeeMwVELrncNknAKFFaLZ0v6jexY3FIN/1hgbgZfE27dJ4H01RS3REwrJJxCiNbWVsTGxnr8K95bZlogfaCYyoKEmTDGFosFZ86cweHDh3Hz5k3MmzcP27dvx9q1axER4f4jQ6vVoqGhAcD4Ig8h9tDXcfPnmA6NWvD6yesete3odS+uCB85+7qLJJJqPjXAgBH48E+8WLp6dLxNZBw/Bbd2J8DcR7mTiKAh4TjOw+qFMw9vqiFPB7/97W8RFRWFxx9/PNimELOQgYEBNDU14dixY+jr68PSpUuxefNmMAwT9okdb3YP4aUjBrx87AqM/SOTHwDgD7s2485cygLuV8SyJY5fO2NlTObnAW2nAOvo2GYpL5LWfpIP9o6mun9EYPBGD5DHKUSwWCy4evUqCgsLg20KMcu4desWjhw5gpMnTwIA1q9fj02bNiEtLS3Ilk0NjuOgu2LCbz5oxd9Ot4nFdzMTotE3YkHfkNlVuVZkJPKpCQg/YrXwnianoz627fpYmZ70NXy+pdXFQELmdFlIEB5BwilEuH79Osxmc0DimwjCEY7jwLIsDh8+jMuXLyM+Ph733nsv8vPzERcX3nE9w2YL3jzdhl+/3yrmYAKAjTnJ+Oxdi1G0Kh3ac+145iWdq3KteHb7KsgoG7h/MXxgPz3nikd+Aig+FXh7CMJHSDiFCAaDAdHR0cjIyAi2KcQMZnR0FKdPn8aRI0fQ0dGBzMxMPProo1i9ejVksvCOGenoHcLvj1zB749ewe0+vuxLVIQUH1+XhU/ftRir54+X1di2OhMvPqWYkMcpIzEGz25fhW2rycvhF6xWoP0McFnLpw/whMjYwNpEEFOEhFOI0NraioULF0IqpRIOhP/p6+tDY2MjGhsbMTg4iGXLluHBBx8MSM6w6ebkVX467i+nbmDUwvuP0hOi8fSdi/HJgmykuMjBtG11JopWZTjNHE5Mgf7bgP5tvkac/m2gv8O74+cGZnEMQfgLEk4hgBDfdO+99wbbFGKG0d7ejsOHD+P06dOQyWRi/FJKSngHPY9arPjbmZv4zfst0F0xidvzFiXhM3ctxrbVGR7VkZNJJRQAPlUso8DVY4D+EC+W2k7Y74+cwyemzL0fePf7QN8tOI9zkvCr6xbdNQ1GE4TvkHAKAdra2jAyMuL3+nTE7ITjOFy6dAmHDx9GS0sLEhMT8cADD0ChUCA2NrynQTr7hvGHY1fwv0cMaO/hp+MiZRJsX8tPx63LlgfXwNlCV+u4R4n9BzDSa78/fQ2wpJD/y94ERIx5/eIzx1bVuYgu27af0gwQIQ8JpxDAYDAgKioKmZkUV0H4zsjICE6ePIkjR46gs7MT8+fPR3FxMVauXBn28UtnrnfjNx+04vWTNzBitgIAUudG46nNC/HEpoWYFx8TZAtnOCP9QOv7fKyS/pB9EV0AiEvha8ItUQK5DwDxLqbbVj0ClP7ORR6n/fx+gghxSDiFAK2trcjOzg77LzciOPT09ODYsWNobm7G0NAQVq5ciU984hNYsGBBWMcvmS1W/P1sO37zfiuOtY6X2Fi3IBGf3ZKDB9dkIiqCYgIDAscBHWd5r9JlLV9A12KT/0oiA7I3ArljXqXM9YCn8ZmrHuFzMnmSOZwgQhASTkHGarXiypUr2LJlS7BNIcKMGzdu4PDhw/jwww8RGRkJhUKBTZs2hW2JF4Gu/hH8sfEq/vdwK26MrXiLkErw4JpMfGbLYmzIloe1IAxZBowA+3/jU3C9bfb7ExcCSx7gvUo59wIxic778QSpDMi5Z2r2EkSQIOEUZNrb2zE8PEzxTYRHWK1WXLhwAYcPH8aVK1eQlJSEj370o9iwYQOio52vHgsXzt/swW/eb8Wfjl/H8Nh0XMqcKDyxaSGe3LQIGYk0HedXLGY+4aR+zKt0XQe7uKOIWGDx3WOxSkogZQnVhCMIkHAKOq2trYiIiEBWVlawTSFCmOHhYRw/fhxHjx5FV1cXFi5ciJ07d2L58uVhncLCYuWgPcdPxx1mO8XtqzIT8Nkti7F9XRZiImkKxymeFsq1pfva+PRbyz+AoW77/fNW8TFKSwqBhXcBkSRWCcIREk5BxmAwYMGCBZMWTyVmJyaTCUePHoVOp8Po6CjuuOMOlJSUhL3Q7h4YRW3TVfz2cCuudQ0C4FMDbL0jHZ/dkoP8RUk0HeeOyQrlCowOAob3gctv82Lp9gX7fmLkfJqA3EJeMCXOnxbzCSKcoW/rIMJxHAwGAzZt2hRsU4gQ4+rVqzhy5AjOnj2LmJgYFBQUYOPGjSFRjHoqXO7oxW8+aMUrzdcxOGoBAMjjIvH4xoV4avMizJeHd7qEacFVodyeNn771koAVt6zZHgfMI9nRodECszP5z1KuYXAfAUFZROEl5BwCiIdHR0YHByk+nQEAD5+6ezZszhy5AiuXbuGlJQUPPjgg1i3bh2ioqKCbZ5LLFbObfZtq5XDOxc78Ov3W/Hupdvi9uXp8fjslsX4+Pr5iI2iL2+P8KRQ7lt77DfHZ43nVMr5CBBHxYsJYiqQcAoira2tkMlkWLBgQbBNIYLI0NAQmpubcezYMXR3dyMnJwdPPPEEli5dGvLTVQfPtE2o95Y5Vu9ty5JU1Ddfw28/aEVr5wAAPra4aGU6PrNlMe5kUkL++kIOTwvlZq4H1pTwYiltBQV1E4QfIeEURAwGA+bPn4/IyMhgm0IEAaPRiKNHj+L48eOwWCxYs2YNNm/eHDaFng+eacMzL+km+D7auofwxZd0iImQYmhsdVx8TAQ+WZCNp+9cjOzkuOk3NpwZHQKuHQNa3gU+/JNnx9z1/4A1xYG1iyBmKSScgoQQ35SXlxdsU4hpRLjvR44cwYULFxAbG4s777wTBQUFmDt3brDN8xiLlcO+N846nTASGDJbkZs2B5/dkoNHN8zHnGj6uPEI8zBwrQlofZcXS9caAcuwd31QoVyCCBhB+yRjWRb19fVgGAYsy6KsrMxl4j6dTgetVgsAaGxsxIEDB8S2Op0OAKBQKMCyLEwmExQKxXRcwpS4ffs2+vv7Kb5plmCxWPDhhx/i8OHDaGtrQ1paGrZv3441a9aEpcfxWIvRbnrOFd/7xGrcmZs6DRaFMeYR4IaOF0mt/+QL5podxnZuOrD4HmDxFuCdSiqUSxBBJGjCqaSkBM3NzQB4EbVr1y7U1dU5bavValFRUQEAqKqqQmFhoXisRqNBdXU1AECpVLrsI9QwGAyQSqXIzs4OtilEABkYGBDjl3p7e7FkyRI89dRTyM3NDcv4Ho7jcLG9D795v8Wj9h29XnpKZgOWUeDGCV4ktbwLXD0KjA7Yt5mTNiaU7uazdNsmn4xLpUK5BBFEgiKcWJa1e84wjOhRckSn06GyslIUTsXFxVCpVGBZFgzDIC8vD11dXQAQVqUmWltbkZWVFdKrpQjfuX37No4cOYKTJ0+C4zisW7cOmzdvRlpaWrBN84lL7b34y6k2/PV0Gy539Hl8HBXfBZ+h++bJMY/Su8CVI8CIwxjGpfAiafE9/F/actcB3VQolyCCSlCEk1arRXKy/ZLY5ORk6HS6CdNsCoUCBw4cEJ+bTCaxvUA4CSZgPM5l7dq1wTaF8CMcx4FlWRw5cgSXLl3C3LlzcffddyM/Px9z5swJtnlec7mjF389dRN/PX0DF9vHv+ijZFLcszQVzYYudA+OupowQkYin5pg1mG1ADdPj8coXTkMDPfYt4lNAhZt4UVSzj1A2krPi+QCVCiXIIJIUISTIH4cMRqNTrcXF4+vDqmpqYFSqRTFkslkQn19PQA+/qm8vBwMwzjtZ3h4GMPD41MHPT09TtsFGqPRiN7eXqpPN0Mwm804ffo0jhw5gvb2dmRkZOATn/gEVq9eHXYZ4fW3+vDmmGfp/M1ecXukTIJ7l6bhobWZUK5KR0JMpLiqzsWEEZ7dvsoun9OMxWoFOj4c9ygZ3p9YyiQ6kY9PEqbf0ld7J5ScQYVyCSIohNSnuitBZbu/vr5ejG8CYBdUzjAMioqKoNfrnR5fWVmJffv2+ctcnzEYDJBIJFi4cGGwTSGmQF9fH5qamtDY2IiBgQEsW7YM27Ztw+LFi8Mqfqnldj/+euoG/nLKXixFSCW4Z2kqHlqbhaJV6UiMtQ9i37Y6Ey8+pZiQxyljLI/TttWZ03YNPuNLvTerFbh1fsyj9E9eKA122beJiuf7yhmbestYQ94ggpghBEU4yeXyCd4lo9E46ZSbSqVCQ0ODXTuWZcXpPWGFnhD/5MjevXuxe/du8XlPT09QgrNbW1uRmZkZ9tXsZyvt7e04cuQITp06BalUig0bNmDTpk1ISUkJtmke03q7H3893Ya/nmrD2bZxz2uEVIK7l6biwTWZ2LoqA4lx7lf8bVudiaJVGW4zh4csntZ74zjg1gVeKLW+C7S+Bwx02vcVOQdYdOf41FvGOkAWUr9LCYLwE0F5ZyuVSmg0mgnb8/PzXR5TVVUFlUoFhmFEzxTLsigsLBSDwwUc46cEoqOjQ0KsGAwGrFq1KthmEF7AcRwuX76Mw4cPg2VZJCQk4P7770deXh5iY8OjvtqVzgFeLJ2+gTPXx8WSTCrBliWpeHhNJj56Rzrkcd4tWJBJJbgzN3xEI4DJ6719TA3IIsem394D+jvs20XGAdmbxjxK9wJZ6/n2BEHMeIIinBy9QSzLIj8/3y43k1wuF9vV19dDoVCIoqm2thZlZWVgGAZqtVrsR6vVori4OKSDxU0mE7q7uym+KUwYHR3FyZMnceTIEdy+fRtZWVnYsWMHVq1aBZks9KderhoHRM/S6evjcTcyqQR35abgoTWZ+OgdGUieM4tWd3pS7+1vFfabI2KA7I28SMq5B8hSABGzaMwIghAJmi+5rq4OKpUKBQUFaGxstMu/VFlZiYKCAlRUVIBlWZSUlNgdK5fLxdim/Px8VFVVQS6XQ6/Xh3wep9bWVopvCgN6e3tx7NgxNDU1YWhoCCtWrMAjjzyC7OzskI9futY1gDfHxNLJa+NiSSoB7sxNwUNrsrD1jnSkzA2+9zUoXHrLs3pv6auBldv56bcF+UDELB0vgiDskHAc565qwoymp6cHiYmJ6O7uRkJCwrSc87XXXsONGzfwzDPPTMv5CO9oa2vD4cOH8eGHHyIiIkKMX0pKSgq2aW65bhrE30634S+n2nDiqkncLpUAm5kUPLgmE9tWZyB1tomlkX6g7RSfmfu6jv9vZCc/DgB2/JLqvRHELMEbPUDRi9NMa2srli1bFmwzCBusVisuXryIw4cPw2AwQC6XQ6lUQqFQhERMnCvaugfx5umb+OupG9BdMYnbJRJgU04yHlqbhW13ZCAtPnSvwa+YR/i0AIJAun4cuHUO4Ky+9Uf13giCcAIJp2mkp6cHXV1dVJ8uRBgZGcHx48dx9OhRGI1GZGdno7S0FCtWrIB0qjl2vMRi5TxamXazewhvnm7Dm6fb0GQYXxQhkQAFi5Px8FreszTjM3ZbrUDnJV4kXW/mhdLNM86L4c7NAOYr+Lik+QogYy1QfS8fCE713giC8BISTtNIa2srAJBwCjLd3d04evQodDodRkZGsGrVKuzYsQPz588Pij0Hz7RNyIWUaZMLqb1nCH87zSelbGx1EEuLkvHgmgx8bE0m0hNmqFjiOMB0xWa67Thf622kd2LbGDmQtcFeKCVkTWy3TU313giC8AkSTtOIwWBAWlpaWJbfmAlcu3YNhw8fxrlz5xAVFYW8vDxs3LgRiYmJQbNJyL7t6Pdo6x7CF1/SYcm8udDf6oNtJGL+oiQ8tDYTH1udiYzEGSiW+jpsptvG/jvmTQL4lACZ68YFUtYGIJlxXePNFqr3RhCEj5BwmkYMBgNycnKCbcaswmq14ty5czh8+DCuXbuG5ORkbNu2DevXrw96gWWLlcO+N846nSwSEArqKhbK8dDaLHxsdQay5CGWN8qX7NsCQ92890iYbrt+HOi5NrGdNAJIvwOYnzculFKXTy3JJNV7IwjCB0g4TRN9fX24ffs27rvvvmCbMisYGhqCTqfDsWPHYDKZsHjxYjz++ONYtmxZSKQT4DgOr5+4bjc954ofP74B29c5mW4KBTzNvg0Ao4N88Vtbb1LnJSedSoDUZfbTbemrgcgAeNeo3htBEF5CwmmaMBgMACi+KdB0dXXhyJEjOH78OCwWC1avXo2dO3ciMzO4ddMsVg4XbvaisdWIYy1GHGs14lavk0BmJ1hDNWPIZNm3i/4TiIkfF0od5wCreWI/8oU2020KfvotZnrSgxAEQXgLCadporW1FSkpKYiPjw+2KTMOjuNw5coVHDlyBOfPn0dsbCw2b96MgoKCoI33sNmC09e6cazViMYWI5oMXegdshcNEVIJzNbJRVFIrpDzJPt2w39M3DUnzX66LWsDMCc1kJYSBEH4FRJO04TBYCBvk5+xWCz48MMPceTIEdy4cQNpaWl4+OGHsXbtWkRGTm/dsL5hM3SGLtGjdOKqCcNm+/xBc6JkUCxKwqacZBQsTsbq+YlQvvAP3OwecrUoHhmJfGqCkGC4D7h9kf+7pPUs+3bGWiD3gXFvUuICz4K3CYIgQhQSTtPAwMAAOjo6cPfddwfblBnB4OAgmpqacOzYMfT29iI3NxdPPfUUcnNzpy1+qbNvGI2t40LpbFsPLA7eo5Q5UShYnIyCnGRsXJyMlZnxiJDZ54d6dvsqPPOSztWieDy7fZXTfE4Bpf82cOsCcPsCcOvi+H9nQduTseWrlH2bIIgZBQmnaYDim/zD7du3cfToUZw4cQIcx2Ht2rXYvHkz5s2bF/BzX+saGI9PajFCf6t/QpsFSbHYOCaUChYnIzdtzqRCbtvqTLz4lGJCHqcMmzxOAcFqBbqvArcvjQmjC7wn6dYFYNDo+ri4VCBtORAdD1w8OPl5KPs2QRB+wGK1QNehw62BW0iLS4NingKyIK2AJeE0DbS2tiIpKSmo+YLCFY7j0NLSgiNHjuDixYuYM2cO7r77buTn5wcsHxbHcbjc0YejLUY0jsUo3XCy+m1Z+lwULE7Gxhz+LzPRtzQB21ZnomhFGs4ffQuDXdcRmzQfKzZ9BLIIP7w9zSN8bTY779EFoPMyMDrg+jj5Qn65f9pyfoVb6jL+cdzYtKHVAvxwNWXfJggi4GgNWuw/th/tA+3itvS4dOzZuAfKRcppt4eE0zRA8U3eYzabcebMGRw+fBjt7e1IT0/HJz7xCaxevRoRLgSFp2VLHBm1WPHhjR40jq12a2o1omtg1K5NhFSC1fMTsXHMm5S/KAlJc/yUB+rs65AdVOEO25ihoy6W9LvCNv7I1nvU1eJ8JRsASCOBlNxxUZS6HEhbBqQsBaLi3J9PKqPs2wQRZoSS18ZTtAYtdr+zG5zDD7SOgQ7sfmc3XrjvhWkXTyScAszg4CDa29uxefPmYJsSFvT396OpqQmNjY3o6+vDsmXLsHXrVuTk5Lid9pqsbIktgyMWHL/ahcYWPkZJd6ULAyMWuzYxkVIoFiaJHqUNC+WIiwrA22WyJf2lv7MXT77EH0XNBVKXjgsjwZOUtBiQTSGInrJvE0TYEGpeG0+wWC3Yf2z/BNEEABw4SCCB+pga92ffP60CkIRTgLly5Qo4jiOP0yR0dHTgyJEjOHXqFCQSCdavX49NmzYhNXXypequypbc7B7CMy/p8P2SdZDHRYr5k85c78aoxb51YmwkChYnicHcq7MSERUR4EK/nizpf+0rwKW3gNuXeS+Su/ijOWm8KEpdOj7FlrYcSJgfuJVslH2bmGWQ18YzOI7DkGUIA6MDGDAP2P3vH+2fsM32f/9oPwZGB3B78Lad0JtwDnC4OXATug4dCjIK/Gq/O0g4BRiDwYCEhATI5fJgmxJycBwHvV6Pw4cPQ6/XIz4+Hh/5yEeQl5eHuLhJporGcFe2RNj29bqTE/ZlJMTwq93GVrwtnTcX0ulavcZxfO21c69PvqR/uBs4/pL9Nsf4I+F/XJDSFlD2bcJLwlF8ADPba3Nn5p0Ytg7bixjhsY2YcSV4+kf7MWgetDvGylmdWOR/bg3cmpbzCJBwCjCtra1YvHhxSJT5CBVGR0dx6tQpHDlyBLdu3UJWVhYee+wx3HHHHZDJPPvwHByxoLWzH3//8KZHZUsyE2PwkWVp4tTbgqTYwN2T4V6g+zo/fdZ9jX/cfW38ec8NwDy5zSIrHgZWfcLz+COCCGHCUXwAwfPaDFuGMWQewpBlSHw8bBm2ezxkGcKwmf/vuO1a7zWPvDab/xC4cJLYiFjERcRhTuQcxEXGIS4iDrGRsZgTMf48LpLfL7SNi4zD9d7r+IHuB5P2nxaXFjDbnUHCKYAMDw+jra0NeXl5wTYlJOjt7UVjYyOampowODiIFStW4OGHH8bChQudipihUQsMnQNoud2P1s5+tIr/B3CzZ6LwkMKKjdLzmAcTOiDHMesKWMFPt+352Ap8fP38qV+EeQTovTFRDHVfB3qu80v8h7o96ysmCRjqmrzdpi+SR4eYQDh6bUIx0NcTJvPaAMB/Hv5PREgjMGodHRc6Y2Jm2DJs91gUN5O0G7Z4VpbJn8RGxNqJlzmRc8THsRGxds+Fx7GRNsJobJ/wPCYiBlKJb2EPFqsFL59/GR0DHU7HXgIJ0uPSoZinmOplewUJpwAixDctXrw42KYElZs3b+Lw4cM4c+YMZDIZFAoFNm3ahKSkJAyNWnCpow8tt/th6OxHy+0BUSBN5klKjI1E6two6G/1Y6v0GJ6N/B2yJOMxQDe4ZOwbfRpvWTd6VrbEagX6bzkXQ4JQ6muH85gkB6IT+SzZifP5GKPEBeN/CfP5AGppBC3pDzLhKD6A8PTa+BLoy3EczJwZo5ZRjFhGMGwZxoh1BKOWUfHxiMXmz+r68bBl2G0/Th+PHTtkHsKodXSC3bYYh434f2//v4CMHQBESCIQHRGNaFk0YmQxiI7g/8dExNhtc9x/a+AW/qz/86T9//SBn2LL/C0h9fqXSWXYs3EPdr+zGxJI7F47krHVu6qNqmm3mYRTADEYDJg7dy6Sk0OkZIYH+Lqk3xGO43Dx4kUcPnwYl1kWXEQs0nI3IGpeLv7ZZ8b/vnIBrbcHcKN7EO5q2CbERCAndQ4Wp87BopQ5yEmNw+KUOchJnQN5XBQsVg7//txzeG70hxOOzYARL0b+EP8WWYGNOQ/yniBnYkh43nMDsIxMfnGy6ImCKGE+kJg9vt3TIrUzYEk/iY/pJVhTRqPWUXvviHl4wjSRu6mkqz1XPZoyurfmXnDgeJFjHZm2OBl/MH/ufKTHpSNaFi0Kl2hZNGIiYuzEjLDNWTu79jbbIqS+fV1brBYcbjs8qdcm1ESTgHKREi/c94LT96pqoyoo71UJx4Vq6fXA09PTg8TERHR3dyMhwf/V2H/5y18iMTERxcXBKzlhMZsdEitudZlY8eCZNnz39ZNIsTQgLuI2Bsyp6JQV4duPrJs0g/WI2YorxgFcutGF9442oanxKNo6bmMgUo7BJAYRKdmQuHDXxkdHYPGYOMpJibMRSXOQFBfpPhbJPIqh769C1GAHOAmgi4nGLZkMaRYLFEPDkHIAJ42ANDIWGOn1YMQkQHyma09RYjZflNaf8VFnX4floAq6kc5x26NSIQuDJf0zTXwIv2JDdcrIbDFj66tb0THQ4bJNUnQSvrvlu6JnxZMpI/HPjQBy9qU73URIIhApi0SULArR0ujxx7JoREmjECmLtHss7IuUum4XJbP5kzp/fM54Dqp/qia171dbfzWtq7s8RXi9A3DqtQnV17stgf6B5o0eCJpwYlkW9fX1YBgGLMuirKzM5cozd2296ceRQAonY9dtFH++EKkrIpC+OAE58avQP9qNxNg0ZMhz8ImPlCMqKhoAMDIyjD//Q4OOniuYl7DQbp8zPG1//K3fIv3wPlyP6RO/kOcPzUX7nc9iw9ZP27U9eKYNv3z9W7idfhi3bZbhp5qtSG2/E59/5D9RuDIdV40DaHWYUmvt7MfVttsYvHERI+2XwVnMiEzJRnTWCkQk8OkE5kZHYHFqHC+IUsZE0pj3KHlOFCTmYWDIBAx2jf3ZPJ5sOwBtXCz2pySh3UYUppvN2NPZBeXA4PiFxiYBCQscptHGPEWJC3jRNJXcRj5A4mN6MVvM2PbqNrfej5SYFPzP/f8DK6wYtYzCbDWLU0aj3Ki4bdTq/r8nbVy1ddUu2EggGfeWyKIRGxHr0nNi+7hzsBOv6V+btP/v3PkdKNIVToVMsDwiFqsFW1/ZOqnX5uCOgyHptQGcf85kxGUEzWsTaoSFcMrLy0NzczMAXvyoVCrU1dV53dabfhwJlHD6+i+24a9GFsYPTEgpTEFEwkQPT6rZisdTPwEA+MPtP08QK4+nfgJlH/+vCcdVv/bvHrU//tZvceuEClWpE8VExe0upK1Xi+LJYuXwuR88g+Mp7/EfCTbeFMnYy2N5251o7vkEHOrYwtx7G8PXz2O08yqioyKwfOlSbF67BKvTo7AobhgLYkYwL2IAc629kAyZxoWPoxgyD8JXtHGx2D0v1aXtL3TchnLLvwMFnwOiAlOmxVfCVXwIXyTuxEdqbCp+pvwZrJzVTmg4EwTiY8uoS/Fg99iJcHHblhvve7JYlZlA1pwspM9Jdxv74krgOLYRH4/9j5RO4gV2QbiLD/LazGxCXjixLIuSkhJR8ABAUlISuromrjBy19abfpwRCOH09V9sw98jrmFAP4C+s/2Q3yN3/iHjOOxOvvA/l7gNT23bI25/6eB+/Kr7oEuBILS3mM34m+ZevJAa5bLt126N4IPMn6Jr0IKbXb2QpXwHRpnE6RSUhOOQYrHi3ht3I3sOkBU9hCFTO1qutMNo6kF6rAV3ZXHYkDyAmKlEzUmkQIyc9wrFJgGxNo9dbLd0nMPWI3vRLpO5tH2exYI/3fs/kC7eAitnhZWzguM4WDgLOHATt3EcrBjfZuWsdm2dbXN3vKttZqsZVY1V6BnpcTkkcyPn4rOrPyuez2K1wMJZYOWsMFvNdo/FNjbtxP9OHls5K8yc2XVfro4ds32mI4+WIyEqAZHSSERIIxAhjRAfT/gvi0SEJMLptkhZJL9NYr/Ntq2zbY7njZRG4sztM/jaO1+b1HaaMgoM5LWZuYS8cKqurkZdXR0aGhrEbbm5uairq4NCofC4bVNTk8f9OMPfwqmvvwdb6u6CFYC514LbDbchmUJSxSgOWDLnDnAArBYLWobOYcTNL70ojkPqcAqiuCHciOmftO2SIQ6QSDAotaIlavJfHQtHzViaE4VbbaMYGrQiPjkCGTnRkKdHgZNKYAUf3myRRsAqiwQni4BFGgFOGgGrNAJWqWz8v0QKq1TK/5dI+P8ALyzAwWIdFyWi8BgTKIIAETwZI1YPArqJoDA3ci7mRM7hv/hthIGtOHAmRiaIDmfHuWhj29ZWxERK+GPCWXyEu9cGCH/xQV6bmYk3eiAoq+pMJpPT7UbjxHIS7tp60w/A51UaHh7Pi9HT4/qXvi/84JUvwTomVjgrB4lUgjnL50AW5/ub6hquio9jkIjJFtX3wQwgwqO2ttXNJpON/Zf7cb55AK1WKeKWzEHckjh0yyPt+piIhf/jhsWHoYYEEkglUkgkEkghhUwqs98mkUImsd8mk8j4x2PbbP+EfjzZZhw04pLp0qQ2FmQUYHHCYkglUkRII/j/Ev6/TCqzeyyTjP1JHf6P2RwhjbBrI/Yl5a/TWf8T+pTIcPr2aY/Ex48e+FHIiY+02DSkx6WHXG4YTwjV5dneoFykxP3Z94et+JBJZSH3miaml5BKR+BKCHnb1tW+yspK7Nu3zzujvODWcBsQxT+WRkkhkUnQf6F/Sn3OM1swlwP6JBJ0eFA7bZ5FAkik6JBOrlIypXORNjcNfcM9YIc73bYduT2CJQsW4KmvfwGpGal2AkAUEmOPnQkK8Q/SCcc6EyiOIsN2n+0xZ26fwZ5397i1HQB+VvgzFGQUTBAywczo3nizEZ9763OTtntm3TMh90GdGptK4iNIhOLybG8h8UGEM0ERTnK5fIJXyGg0Ol0N566tN/0AwN69e7F7927xeU9PD7Kzs327CCekRWcCHL9MWBYnQ4oyBdaRqeUg+X/pT+KRj3wBr//jF/hB++89aj9/2QZ8491vTNr2v+75PvIy82Axj+CTdR9FpxSwAhPEhITjkGoFXvv0u0hOmd7U9pOxYO4C/KD5B5N+gd+VdVfIfREq5ilIfASJcBcf4e61IYhwJqSCw1taWiaIHndtjUajx/04I5AxTh7l+RGG3kVQc6qFw8FP6RAVFY2RkWFs/V8FOmUScJO0l0VE4IHf340uS6/LtkmyBLz95LviB23Du8/h6/qXwXEcIJXatQWAF5Y8CeXdeye/piAQzgGn4Ww7QPEqBEHMDLzRA74VkJkiDMPYPWdZFvn5+aLY0el0YFl20raT9TPdzJ2TAKV5Af9kMj1qs1/i0FZ4/snUT4j5maKiosX0BZO1l0ll+Na9/8mLJkc7OA6cRIJv3ftdyKQycBwHjuOgvHsvXljyJNI5e6GVbg1t0QSMew/mxc2z254elx7ywiOcbQd4+9/a8RZ+tfVXUN+jxq+2/goHdxwMebsFhCmjB5kHUZBRQKKJIIhJCWoCTI1Gg4KCAjQ2NmLv3r2i4CkpKUFBQQEqKiombetu32QEMo+TNuKaGCjujDSzFZ90kcdJ2OdpHidX7V0lVlQVqFC0uAgAX0rBdmrOYh6B7vT/4lbPFaQlLIRizacgi4jybgCCRDh7D8LZdoIgiHAn5NMRhAqBzBze19+DH7zyJXQMXQeAoGQOB5x/IQc7KJogCIIgQgkSTh4S6Fp1BEEQBEGEPiEf40RMD7NYExMEQRBEQCDhNMMQgr0JgiAIgvA/IZUAk/AdW7EkxC9RHBNBEARB+JdZLZwEseHv0ivBwHF1HEEQBEEQniHoAE9mbGa1cOrt7QUAv2YPJwiCIAgiPOnt7UViYqLbNrN6VZ3VasWNGzcQHx/vd2+NUM7l6tWrtGJvGqFxDw407sGBxj040LgHh0COO8dx6O3tRVZWFqRS9+Hfs9rjJJVKsWDBgoCeIyEhYco3mKbhvMcf4054D417cKBxDw407sEhUOM+madJYFYLp1BnFjsDCYIgCCIkIeEUogiiiTxNBEEQBBE6kHAKENHR0Xj22WcRHe26dIo7SDD5xlTHnfANGvfgQOMeHGjcg0OojPusDg4nCIIgCILwBsocThAEQRAE4SEknKYRKodCEARBEOENxTgFAJZlUV9fD4ZhwLIsdu3aBblcDoBil7xFp9NBq9UCABobG3HgwAFxLB3HuaysbMr7iImoVCrs3buXxn2a0Gq1YFkWDMMAAJRKJQAa90DCsiy0Wi2Sk5PBsiyKi4vF8adx9x86nQ67du1Cc3Oz3fZAjHFAx58j/I5CoRAf6/V6bseOHUG0JrxRq9V2j23H1nGci4uLp7yPsKe5uZkDwHV1dYnbaNwDR0NDA1dWVsZxHD9GDMOI+2jcA4ft5wzHceI94Dgad39RV1cnfp44EogxDuT4k3DyM3q93u6GcRzHyeXyIFkT3jQ3N9uNnV6v5wBwer3e7Tj7uo+YSF1dHccwjCicaNwDi+1Ycxw/bsJ/GvfA4ThGtuKVxt2/OAqnQIxxoMefYpz8jODutSU5ORk6nS5IFoUvCoUCBw4cEJ+bTCYA/Hi6G2df9xH21NfXo7i42G4bjXvgYFkWRqMRcrkcOp0OJpNJnC6icQ8sycnJyMvLE6fsioqKANC4TweBGONAjz8JJz8jfLk7YjQap9eQGYLtF3dNTQ2USiXkcrnbcfZ1HzGOyWRyGg9A4x44dDodkpOTxbiM6upq1NfXA6BxDzR1dXUAgNzcXNTV1YmfOzTugScQYxzo8afgcB/hvMzs7epGEp5hMplQX18/IajQWTt/75uN1NbWoqyszOP2NO5Tx2g0gmVZ8cdBWVkZkpKS3K7EpXH3D1qtFmq1GizLory8HACg0WhctqdxDzyBGGN/jT95nLyEs0kp4Ew0yeXyCapWcL8TvqNSqdDQ0CCOo7tx9nUfwaPValFaWup0H4174GAYRhwrAOJ/nU5H4x5AWJZFY2MjlEolysrKoNfrUVtbC5ZladyngUCMcaDHn4STl0gkEvHPGcLSYUfy8/MDadaMpqqqCiqVCgzDwGQywWQyuR1nX/cR49TW1qK6uhrV1dVgWRaVlZXQ6XQ07gFEiGdyBo174NDpdCgoKBCfMwyDvXv30ufMNBGIMQ70+NNUnZ9x/PBjWRb5+fn0S8NH6uvroVAoRNEkTCE5jqftOPu6j+Bx/NApLy9HeXm50y92Gnf/wTAM8vPzxfgyIZeTQqGY0JbG3X8oFApoNBq7eMrOzk4a9wBiG0Pp7jszVD/nqVZdAGBZFhqNBgUFBWhsbLRLHkh4DsuyyM3Ntdsml8vR1dUl7nc1zr7uI8YxmUyorq6GSqVCWVkZysvLoVAoaNwDiMlkgkqlQl5eHpqbm0VPK0Cv90Ci1WrFKVGA//FA4+5ftFotGhoaUFVVhYqKChQUFIhiNRBjHMjxJ+FEEARBEAThIRTjRBAEQRAE4SEknAiCIAiCIDyEhBNBEARBEISHkHAiCIIgCILwEBJOBEEQBEEQHkLCiSAIgiAIwkNIOBEEQRAEQXgICSeCIKYdrVaL3NxcVFVVobq6Gnl5ecjLyxMTbubm5kKn0035HEKfBEEQ/oJKrhAEMe2YTCY0NDSI2ZkbGhqQnJyMsrIyAMDOnTvBsqzTsheeolQqsXPnTr/YOx3YlqEgCCJ0IY8TQRDTjtFodFvUVqFQTKhuPpNhWRa1tbXBNoMgCA8g4UQQxLRTWlrqlzYzBbVaHWwTCILwEBJOBEFMO55MSTU1NSEvLw9VVVUAgPr6euTm5kKr1QIYj5MqLy9HfX09qqurUV5eDpPJ5LJPrVaLqqoq1NfXQ6VSuWzHsixUKpXYr9CnTqcTj6+qqgLLsmK/k9kqxFtptVpUV1ejpKRE3NfU1ISGhgZUV1eLfRIEEZpQjBNBECGJY4xScXExampq7PYXFxcjJSVFrLJeX1+PkpISNDQ0TOhPEEPNzc0A+OlCoVK7LSaTCUVFRWhuboZcLodKpUJ1dTWKi4uhUqns+s7Ly8OhQ4c8slWpVKKhoQF1dXUAgLq6Ouh0OnFfbm6uGONFEEToQsKJIIiwxtZ7VVxcjJKSEqeB1hqNBsnJyaIXCAAaGxsn9FdbWwuGYcTj9+7dCwCorKycEKzOMAxqa2s9EjwpKSlISUmxs3s2xXERxEyBhBNBELMGhUIBpVIpPncmeBxF13SvdKPVdQQR2lCME0EQIYtcLkdnZ6f4XKvVTohhsn1eX18PpVJpJzyE/Tt37rTzNgn9OVJcXDwhh5RWq3V6vE6nE4PYPbHVE5zZRBBE6CDhOI4LthEEQcxOtFotWJYVV5WpVCrk5+eLU2ImkwkqlUoMpNZoNDCZTNBoNGAYBiqVCiaTSZyea2xsxN69eyGXy6HT6bBr1y4AwIEDB6BQKKDVatHQ0ICCggIAmCCybO1y1k6r1UKn04FhGDQ2NmLnzp0e2WoymexsEeKtFAqFeO1qtRp5eXlQKpVuUzUQBBFcSDgRBBG2CFnGKaiaIIjpgqbqCIIgCIIgPISEE0EQYYlWq4VWqxWX9RMEQUwHNFVHEARBEAThIeRxIgiCIAiC8BASTgRBEARBEB5CwokgCIIgCMJDSDgRBEEQBEF4CAkngiAIgiAIDyHhRBAEQRAE4SEknAiCIAiCIDyEhBNBEARBEISHkHAiCIIgCILwkP8PQMpAdT/4cLcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFnCAYAAABQEsaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACSHklEQVR4nO3deXhT15k/8K8k72B8LYPBYALIWYBAArJNgOyx3JC0SbPIpk2TNG1ju+nMb6ZDp1Zop01ppzFyO5lOp20ikXaapQu2sjRpG1KLbJAN2yKENRBdE4QxNliWF4xlW7q/P67vtfbNWu338zx+bN1NR0ey9Oos75FwHMeBEEIIIYQEJU10AQghhBBCUgUFToQQQgghIaLAiRBCCCEkRBQ4EUIIIYSEiAInQgghhJAQUeBECCGEEBIiCpwIIYQQQkJEgRMhhBBCSIgocEoCLMtCo9EgPz8fJSUlAY8tKSlBfn4+NBoNbDZbfApIkobJZEJlZWXQ10ksGQyGhN13vAn/mxKJBCUlJWhsbERjYyPq6upQVVU1o+oiUnV1dcjPz4fRaExoOabrc6nX61FaWproYswsHEkaWq2WYxiGa29v97m/paWFU6vVXG1tbZxL5ptOp/PaVl9fz6nV6gSUhuerTNNNS0sLp1AowjonWvXS3Nzsta2vry/g69aXRL9OwqVSqXz+3ykUCk6r1SagRKFLhv8JpVLJtbS0JLoYHMdNv+fSbDZz9fX1Yf3/kamhFqckwjAMqqurodPpfO5PthamlpYWr22VlZXYvHlzAkrD81Wm6UYul4d9TrTqhWEYn9tqa2uhUChCvk6iXyfRUldXB41Gk+hiBDQT/ieiIVWfS4VCgbq6Op//myQ2KHBKMnV1dWhqavLabrPZwvpgijW9Xg+WZb22q1QqqNXqBJTIf5lmumjWi8lkQmNjo9d2rVYb1ht3Il8n0SQ85mT7UiOg/4nQpfJzaTKZkurzYbpLS3QBiDulUgm5XA6DweD2wdLW1gaVSuX3vMbGRigUCrAsC4VCIZ5rs9mg1+uhUCjQ0tKCuro6KJVKAIDRaBS/Ye3YsQMsy4JlWfT29kKr1fq9L6PRiJaWFrAsK36I1tfXw2QyQaPRgGVZmM1mv/dhtVrR3t4OnU4HvV4PuVyOnTt3YuvWrWLZgj2uUMvkeR2AH+vgui8QvV7vdru2tjboNSN9zMJ5crkcVVVVAPjnL9jz4Vke17oKtV6C1a+AYRhotVq3awjB/o4dO9zO91c/ob5OQnktBruvcK4bbl0AQHt7O5RKpVvQ6O950Gg0YuuA0HIglCGU15mv6wV6XMGee1+i9X7R2NgIhmEiah2l5zK859Jms4X8pUU4V3huFAoFrFYrVCqVz/9LjUYDvV4PrVYb8uPwrJfy8nI0NDSAZVk0NzdDpVKBZVlUVlZCoVBAp9OlXtCX6L5CMknov/Y1/kMYW+JrjJNarXYbe6JSqcT+7vr6es5sNov7FAoF19fXJ94Wxsu4jj9QKBRB+8tbWlo4pVLptb29vd1r/I2/+6ivr3d7fJ7XC/S4wimTWq12u2+z2cypVKoAj46n1Wq9yuj6PAS6ZqSPubm5mQPg9pzV19e7Pee+6jhQXQWql3DqNxCVSuV2rWD1E87rJFiZIn0uXK8brC48x8X09fVxWq2WUyqVbv9Pga4jPN8tLS1ce3u7+FoI9joL9LwGe1z+nnt/ovF+UV9f7zYWp6+vjwMQ0hgnei6j91x6qq2tdXvcZrPZa+yZr/GTKpXK7fmMpF58XTfZx5MFQoFTEhFenGazmQMg/hObzWbxzcwzcBKO9byOcIxarXZ70Xt+wLW3t3ud73mML+EETv7uw/UNxmw2cwzDhPy4Qi1Te3u723UFwQarCm/2nm+kWq02pGtG8pj9PQahLMJrwLOOg9WVr2tGUr+BuL6Zhlo/ob5OAr0Wp/JcCNcNpS5UKhWnVCo5nU4n/ngGdKE8D577A73Ogl0vlPoK98N2qu8XwuPxFMrgcHouo/tcBisbx3FewZq/L2Wen03+HoevehF4TiAJ9hmTzKirLgkpFAoolUo0NTWhtrYWJpMpYBcVwzBuU33NZrPYF97c3AyAb84VuoysVqvX/bliGMbrmKnydR+BptQHe1yhamtr89kMLHRF+Ov+bGtrA8Mwbk3gQl0KXRnBrhnuY/ZHKIe/cQyR1FW06teXSOtcOMZVsNdiqPcV6Lqh1kVZWZlbd4WnUK7jWY5gr7NwrzfV/92pvl8IdRAJei5j9z4sPB7P5ybc5yqSehHU1tZi586dUCqVMBqNAd8Hkh0FTkmqrq4OOp0OtbW1AV/cwqBx1xeh698mkwkNDQ2orKxEdXV1zPqShb7uaAn2uEItU6QDPQOdl2yDR8OtK6Feplq/gcoTL9G4r2jVRSjX8fxfDvY6i/ZzFOz/NBrvF5GMawLouQxXtN9z/XF9XJHUi2Dz5s2oqKiAVqsFy7IpHTjRrLokVV1dDZPJBIPBgLKyMr/HKZVKn60ENpsNNpsNFRUV2Lp1qxiACf8E0Z5pYzKZonq9QI8rVCaTSRyI6IllWZSXlwe8f1/3ZbPZIr5mpITn0nPgvCDcujKZTFGpX3/iWT/RuK9o1UUk1wn0OovFcxTo/zQa7xf+yhwKei7DE857rlC2SO7PtdVrKo/DdeJTpMF1sqDAKYkIMxkAPmpXqVTYuXNnwBYnlUqFsrIyr6y3TU1NYsuC6weu8E8Q7A00GGFGBcC/sfn7UI/0PgI9rnDKpFQqoVKp3JqWhcceaKaNMFPEdeq9zWZDU1NTxNcM9U3LZDK5HdvQ0BAwT1KwuvJVL5HUb6girR9fgtVZNJ6LaNVFpK9Zf6+zSK7nWV/h/J9G4/1CoVCgtrbWbWaZzWbzek37Qs+lu6k8l77K5vm8CLP3/N2HUAbXlvup1m9dXR1qampSPxVJogdZEX7AXW1tLQeAq62tFQcBu87IEGZ+MAwjZrh1HegnzGRxPUfYXl9fz7W0tHAtLS2c2WwWB/K2t7dzarWaAyDOcBDuQ6lUBh28J1xbGDjo63qB7kOlUomzL4Rj6uvrQ3pcoZbJ8zo6nc5tgHYo19NqtVxzc3PI15zKYxYGgDY3N3MtLS2cVqt1m33ieZ6v8viqq2D1Emr9+uM50ybc+onGazHc58Lzur7qwmw2B/y/C1QW1+u0tLRwKpWKYxhGHCzseU6w15nr9cJ9XL6ee39lj8b7hfBYhOsolcqQs4fTcxmd5zLQ43F9XjyfE+E9RyijWq3mFApF0PoNVi8cx4mvp1Qn4TiOS0C8RgjxQciF0t7enuiihKWqqgqbN29O/W+ShMwgpaWl0Gq1cRtvZLPZguYkTAXUVUcIiYjQjC/8TUs+EEI8uXY5Ct2WqY4CJ0JIRBoaGlBXVweAHy8RaBIDIWRmErKPA5HPuEw2FDgRkiSMRiO0Wq3f9eCSTV1dHSorK8UlGajFiZDU0djYCJPJBK1W6zYgP9qEL1d6vX7adOXTGCdCCCGEkBBRixMhJGrq6uqQn58f02+w04nJZEJlZWVEGeUJIYlBgRMhJGp8rXSu0WhQVVUV13J4rlCfbNcTKJVKaDSamFw7EWJVT4QkEwqcCCExVVlZic2bN8f1PltaWpL6eq6my4BZILb1REiyoLXqCCExFe/px3q9PqpLCkX7etMV1ROZKShwIiSF2Gw26PV6ccX4uro6r6UXPLtLXFeBD7SvsbFR7GZjWRb19fUAJpNyKhQK1NXVia0KWq1WPI9hGJ8tJyaTCRqNBizLiksKCdcDgB07dohLP/T29orXFB6rRqNBaWkp2tvbUVJSAqVSCZ1OJ64678loNKKlpQUsy4ozE4XHEegx+uPver4elzDtWqvVora2Vnyccrlc7Kq02Wxej9MfoazCYq7BZiRF8tyG8zgA/89XsHonZFpJbOJyQkg46uvr3ZYyUCgUbstGaLVat2UqXJdECLRPrVa7Lb1gNps5lUrldqywPEN7e7t4Hc/lH/r6+jgAbtdqb2/nFAqF2+NoaWnhFAqF23EKhYJrb28Xb7su49LX1+d1DX+EpSQ8BXuM4V5PeAyuVCqVW300NzdzANyes/r6eq62tla87at+PJewUalUbnXjaSrPbSiPI5Tny189ETLd0BgnQlIIy7JuM9YUCoV4W2ih2bp1q7h/586d4iKd/vaZTCYYjUa3LjWFQgGr1Spem2EYmEwmqFQqKJVKaLVa2Gw2NDY2urVsMAwT0uKjcrkcLMt63adrV4/BYBCvxTCMz0VJQxXKYwyXrxY2z1xWQn24DpjfunVrwG4tlmVhMBjcWpiqqqqg0+l8Hj/V5zaUxxHK80XITEFddYSkEKGLSljuxGq1iivYt7W1gWEYtw894Xij0eh3n9D150noDhQ+LD2PEa4ZKc/rMQwjPhaAn3Hma4X4SLS1tYX0GONBeB5MJpPPMgn16hrQmc1mv0FKoOc91Oc2FMGeL0JmCgqcCEkhJpMJDQ0NqKysRHV1tduHmWeQ4SrSfa58BUmxnBFWV1eHhoYG7NixA3q93m+LSzBCi1u0CGOOfInG/dhsNigUCregJlCAE43nNlrnuQpUT4SkMuqqIyRF2Gw2VFRUYOvWraitrQXDMOIHHMuyPltohPMC7VOpVD5bM1iWRXl5ud/yKJXKmHfV7NixA0ajEWq12q1LMBxCF2Mkj9Hf9fwJpQXGZrOJz4kv/urVXzATi+c2Gi1JgeqJkFRGgRMhKUJoOXH9wBU+4IRuH7Va7bbOnc1mQ1NTU8B9SqUSKpXKrWtI+NALNJNLoVCgtrbWbTaXzWaDyWSKqMXC85z29nYwDAO1Wh1Wy4Xr2BshoIz0Mfq7nud2ofy+Wrc866OhoQG1tbV+H5NKpUJZWRkMBoPb9qamJr/lm8pzG+rj8OSrG9VXPREy3dBadYSkEGFaeGVlJQD+w0qj0WDz5s3iB6FGo0FBQYE4CNi1pSbYPmHpD7PZ7DbVXKvVoq2tDVu3bvUKZISp7kJXnlBGrVYLuVyOhoYGGAwGaLVacSq/57bGxkY0NDRAoVCI92EwGFBVVSWmOmAYBnV1dSG1PAllKCkpCekxRno9IVgR6mPnzp3iwqlqtVqcyr9161ZxXBMAt3QAQl3U19e7lUcoq9AdGizAi+S5DeVxKBSKkJ6vQPVEyHRCgRMhJOnYbDbU1NRgx44dYpcky7Li8i2p8qEsBE7t7e2JLgohJEqoq44QknT0ej3q6urEVixhWr9Wq6UghBCSUBQ4EUKSjlKp9Jkd3Gg0it2UhBCSCNRVRwhJSkaj0S3XUahLjyQLYWyY8JuWICFkeqDAiRBCCCEkRNRVRwghhBASIgqcCCGEEEJCNKOXXHE6nThz5gxyc3MhkUgSXRxCCCGEJADHcRgcHMTChQshlQZuU5rRgdOZM2ewePHiRBeDEEIIIUnAYrGguLg44DEzOnDKzc0FwFfUnDlzElwaQgghhCTCwMAAFi9eLMYFgczowEnonpszZw4FToQQQsgMF8qwnYQNDjeZTCgtLQ16nMFgEFcT93UNYe0nlmVpNW5CCCGExFRCAidh1e9QAp2qqirk5+cjPz8fEokEEolEXJBSp9OhtLQUEokEdXV1Ya2gTgghhBASroR01YWa+ddms6G5udnt+MbGRjEDb2lpKfr6+gBAXNOKEEIIISRWkn6Mk2vQZDAYvIKucAImu90Ou90u3h4YGAh6jtPpxOjoaMj3Qch0kp6eDplMluhiEEJI0kjqwMk1KLLZbLBarW7dcTabTez2a21tDdpd19DQgG3btoV8/6Ojo+jo6IDT6Qy/8IRMEwzDYMGCBZTrjBCSMA4nh30dVvQMjqAwNwvrlskhkybmPSmha9VJJBKEevd1dXXQarVewZRw22QyoaqqCmaz2e81fLU4LV68GP39/V6z6jiOw6lTpzA2NhZSQixCphuO4zA8PIyenh4wDIOioqJEF4kQMgPtOtSFba8eQVf/iLitKC8Lj92xEptWRed9aWBgAHl5eT7jAU9J3eIksNlsMBqNXt1yLMtCqVQCABQKBViWFVdQ9yUzMxOZmZkh3ef4+DiGh4excOFC5OTkTKn8hKSq7OxsAEBPTw8KCwup244QEle7DnXhkedN8GxiOds/gkeeN+HJ+5VRC55ClRLNKG1tbV5Bk8lkQkVFhdexcrk8KvfpcDgAABkZGVG5HiGpSvjiMDY2luCSEEJmEoeTw7ZXj3gFTQDEbdtePQKHM74dZwkPnDzzM5lMJrAs67XNMyBSKBTQarXibaPRCLVaHfXZdTSug8x09D9ACEmEfR1Wt+45TxyArv4R7Ouwxq9QSFBXndFoREtLCwB+wHZ5ebk4W064LaQcEHh2vzEMg7KyMjQ2NoJhGJjNZjQ3N8fnAYQhmQa0EUIIIamiZ9B/0BTJcdGS0MHhiRZoMNjIyAg6OjqwbNkyZGVlRXT9eAxoc2UymaDT6aDX61FfX4+SkhKYzWawLIu6ujqoVKqo3I9er4dGo8Hu3bvFMWapprS0FFu3bhUDdr1ej+bmZjGgD+fc6S4a/wuEEBKu9z49j/ue/jDocX+qWY8NJQVTuq9wBodT4BSjwMnfgDahrSlWA9psNhvy8/PR19cndlsK29rb26MW6FRWVkKr1Ubleq6zI+PFaDSirKxMvF9hYkEowaXnudMdBU6EkHhzODl8t/kAXtzf6fcYCYAFeVnYq7llyj05025WXTLgOA4XxxwhHetwcnjslcN+B7RJAPzolSO49tK5IT3Z2emyKY0zYRgGCoUCO3fuTLoWIpZlYTQaUVtbG9f79QyQFApFyEv2RKvljhBCiLdxhxPfaT6Av3x0BlIJ4OT4z03Xz1ThE/GxO1bGffgLBU4hujjmwMofvh6Va3EAzg6MYPWP/hHS8Ud+fCtyMqb2VFmtVpSUlEzpGrGg1WpDWuyZEELI9DfmcOLbf/4IfzvYhTSpBL+6by0AeA17WRDDYS/BJHxWHYktm80GjUYDlUqF2tpaGI1GlJSUQK/XQ6/Xi0GLyWRCY2MjDAYDGhsbfc5s1Gg0MBgMMBgMsFonZzEYjUaUlpaKiy8bDAaUlJTAaDSKx7AsK56v1+vF3FxtbW1oaWmBXq/3uk/X6wtl02g0bmWqq6sTy2QwGGAymYKWx2QyobS0FHq9Xqyjuro6t8DSX314nivcl16vh9FohF6vR1VVVQTPFCGEzGz2cQf+6Q8m/O1gFzJkUjx1fyk2rSrCplVF2Ku5BX+qWY//+dIa/KlmPfZqbklI0ARQi1PIstNlOPLjW0M6dl+HFQ/9X2vQ437/tXKsWxY871R2evhJB/V6vdj15LoUjUqlgkqlQnt7O3Q6HeRyuRjUuA6MLi0txe7du8EwDGw2m1dW9oaGBvFvlUqFzZs3i7fVajV27twp3rbZbKisrER7ezsYhoFGoxEHsKtUKpSUlPjtqhPK1t7eDoBvOWtsbERtbS0qKirQ0dEhjjXKz8/H7t27g5ZHqVS67WcYBjqdDvn5+W736as+PM8V6rOlpUWc1dnc3AyTyZR03aKEEJKsRsYc+NYfTHjjWA8y0qTQP1CKm64oFPfLpJIpDwCPFgqcQiSRSELuLrv+snkoysvC2f4Rn+OchAFt1182L2Z9s7W1tX4HLzMMg4IC/gWoVquh0Wi8PuQVCgWamppQW1uLpqYmr/3hJBptamqCQqEQy7N169aQzxWCO9fWq9bWVjAMA5VK5fYYy8rKQr5usPsMVB+eCgoKxPoE+Pp1bZEjhBDi38iYAzXPtmHPifPISpfi6QfLcd1lcxNdLL+oqy4GZFIJHrtjJYDJAWyCRA5ocxXqQOho8Jw1xzCMz6DOMxmqQKlUii07tbW1SZmvixBCSPiGR8fxtf9rxZ4T55GTIcPvv7YuqYMmgAKnmNm0qghP3q/Egjz36dsL8rLisrZOsBYP1/2bN292a9EB+LE81dXVAPjuKJPJ5LbfczwSwzDo7e0VbxuNRjEQUqvVXud73p+/bb7KZjQaUV1dHbBMgcoj8BeoBauPQOcSQggJzZB9HA/9rhXvs72YnZmGZ7++DusVydEdFwh11cXQplVFqFy5IG6Zw00mkziWR6vVoq6uzqvLyWg0wmg0wmQyQaFQQKVSQalUQqvVorGxEQqFAq2trWhubhZbhRQKBZqbm6HRaFBZWSm2IDU0NECr1UKhUKC6uhoajUYMOFQqldjlpVAooNPpoNFoUF5eLu4H+PFXWq0Wer3e5zR/oWye5zIM47NMgkDlsdls2LlzJ+RyOdRqtVfrW6D6EOpYOFe4lnAfLMuKiUjDSXFACCEzycDIGB763T6YTtmQm8UHTWsvyU90sUJCCTBjmDmcxNdUk3IKiUOJO/pfIIREU//wGB743Yf4+HQ/8rLT8fw3rsHq4ryElokSYJIZKZIB2Xq9HmazGXV1dVEbXE4IIcQ364VR3P/0hzjSNQD5rAw8/41rsHJh4EAl2dAYJzItCHmgdDpdWOOPVCoVCgoKYDAYoNPpYldAQgiZ4c4P2XHfjg9wpGsAc2dn4s+161MuaAKoq4666ggJgv4XCCFT1TMwgvue/hCf9gyhMDcTf6xZj0sLZye6WCLqqiOEEEJIUujqv4j7dnyIjvMXUJSXhT/WrMeyubMSXayIUeBECCGEkJg43TeM+3Z8iFPWYSxisvHn2vVYLM9JdLGmhAInQgghhETdqd5hfHnHB+i0XcSSghz8sWY9FjHZiS7WlFHgRAghhJCo6jh/Afft+ABd/SNQzJ2FP9as90oInaoocCKEEEJI1HzaM4j7dnyInkE7LiucjT/UXIPC3OkRNAGUjiD2nA6gYw9w0MD/djricrd6vR4ajQZ6vR4GgwFGo1Gcsp+sjEYjSktLodfr43J/paWlMBgMcbmvqfIsq16vR2VlZUTnEkJIrHxydhBf0n+AnkE7li/IxZ9q10+roAmgFqfYOvIKsEsDDJyZ3DZnIbBJC6y8M2Z3W1lZiaqqKmi1WnGbyWRCZWUlzGZzzO53qoSFfONFq9WmTNJLz7KqVKqQl3NJpcdJCEldh8/04/6nP0Tf8BiuXDgHz3/jGuTPykh0saKOAqdYOfIK0PQgAI80WQNd/PbqZ2MSPDU2NgIAamtr3bYrlUqvbcmooCB+CzzGM0ibKs+yhrMOXio9TkJIavr4tA0P/HYf+i+O4eriPDz79WuQl5Oe6GLFBAVOoeI4YGw4tGOdDuC1engFTfyFAEj4lijFTYBUFvx66TmAJLSFgRsaGrBjxw6f+6qqqkK6BiGEEBIq06k+fPW3+zBoH0fpknz839fKMSdregZNAAVOoRsbBh5fGKWLcXz33fbFoR3+vTNARvBkYSzLwmaz+W2JcG15MJlMMBqNUCgUYFkWarUaCoUCRqMRGo0GdXV14r6WlhZotVrYbDYYjUaYzWZxeRKj0Yi6ujqoVCpUVlbCarWivb0dWq0WDMOI+zUaDQBAp9Ohvb0dRqMRJpMJCoUCra2tbt2Kwv0I993c3Czu83WevzIL59lsNjQ1NUGhUMBms6G1tRWbN29GTU0N6urqxJa4cOvEtVyu/D02k8kEnU7nNjZJoVDAarVCo9Fg8+bNqK+vh8FggEajgU6ng0qlgslkciurzWaDRqMRn4tAZfc8N9zHQgghgbSetOKh3+3DhVEH1i2T43cPlWN25vQOLab3oyM+sSwLjUaDlpYWcVtpaSl2794tjjNy/TBtbm6GwWBAfX09lEolSkpKYLPZwDAMVCoV1Go1CgoKoFarAQAGgwFVVVVoaWkRr9fe3g6dTge5XC7ef3t7OwB+cd7GxkbU19cDAFpbW8W/m5ubYTKZoFQqA57nq8zCeXq9HkqlUgwcrVYrlEolNm/ePKU6Ea7vq249y1hbW4uKigp0dHSAYRgAQH5+vnh917Ko1Wrs3LlTvO1ZVoZhoNPpkJ+fH7TsnueG81gIISSQ9829+PrvW3FxzIGNJQV4+qtlyMmY/mFFwh6h8E1Y+IAJdBwA8YPTZrOJb/Asy8JgMIjfnGtra8UPpahLz+FbfkLx2XvAH9TBj/uKAViyMbT7DoHQ0sSyrM8PQZZlIZfLodPpvPYrFAo0NTWhtrYWBQUFbmONGIZxa8ViGAZWq9Wtrl3/VqvVqKqqEoMrhmHE66nVamg0GsjlchiNRvGc1tZW8e/y8nKv+wIgBl6+zvNVZuE8tVqN0tJSKBQKbN682edYr0jqRLi+53V8lVEIMl3rKVoDtoOV3VOoj4UQQvzZc+Icap5tw8iYEzdcPg/6B0qRlR7C0JNpICGBkxDsCEFRIDqdTpyerlKp3LoUqqqqxMCLZVnU1NTErstBIgmpuwwAUHILP3tuoAu+xzlJ+P0lt4Q2xikM9fX10Ol0YuuPK5PJ5HN7KKYakHp2H7q2AAHeg9n9ieQ8uVyOvr4+mEwm7Ny5U2wNixVfZYxXigVCCIm1N4/1oO75doyOO1GxvBC//opyxgRNQILyOKnV6pC7BUpLS9HX14e+vj60tLSIH+Ce+YiEsShJQSrjUw4AADwHdU/c3rQ96kETAHE8jecHtc1mE//evHmzV12ZTCZUV1f7va7r+cH2GwwGr9YV1xYNX/cfynMX6XkNDQ1iK5ww9sqz3JHUSThlrK6u9vqi4PoaZhgGvb29bud41rm/5yCUsgd7/gghJBT/OHwWtc+1YXTciVuvnI8n7585LU2ClOiM9NXaYTQaIZfL3bbJ5fKAYzXsdjvsdrt4e2BgIKrldLPyTj7lgM88TttjmseppaUFjY2N0Gg0KCkpEetJaG0SAojGxkZxAHNzczMYhhFbZQC+hY9lWbfuUmHQtlardQtCzGaz+GEvXA/gnyfXwdIqlUq8f41GI3bLCYOgfd23TqeDQqGI+LyCggLx9WK1WrF582bxHLlcLgby4daJcH3X1jR/ZWQYBs3NzdBoNKisrBS7MQXV1dXigG/hHKELzmazuZXVV+tdsLIL5wrXCuWxEEKIq78f7MK//Gk/xp0cPn9VEX6xeQ3SZTMvj7aE4zhffUnxuXOJBMHuXvgwAPixIsJsoMbGRrS0tLh1uZSUlIgzkXz50Y9+hG3btnlt7+/vx5w5c9y2jYyMoKOjA8uWLUNW1hSynjod/JinoW5g9nx+TFMMWpoSSQjQUiFPVDKprKyEVquNeFB2fn4++vr6olwqb1H7XyCEpKy/fNSJLU0H4HByuGvNQvy86mqkTaOgaWBgAHl5eT7jAU9J3+LkOuBboVAEzX4dqEti69at2LJli3h7YGAAixeHmBIgUlIZsOz62N4HSUmRDMjW6/Uwm82oq6ujbOCEkLh4of00vms4ACcHqEuLob33KsikoeUWnI6SPlx0HQcizJ5jWdbnTCDPmV6eMjMzMWfOHLcfMjVCV5wwpZ2ERlg3UKfThTX+SKVSoaCgAAaDQcylRQghsbKz9RT+fSJo+vK6S9A4w4MmIMm76kwmEyoqKsTuCJvNJnZPWK1Wt1l1AN914ZonJ5hATXPUPUEIj/4XCJmZnvvgM/zg5UMAgK9uWIIf3XklJCGuYpFqwumqS3iLk+e3bZPJJLYyKRQKt4zSRqMRarXaK68QwLdMlZWVxS6PEyGEEDJD/G5vhxg0PXzdsmkdNIUrIWOcjEajOKi7oaEB5eXl4owv4XZ9fT0YhkFZWRkaGxvBMAzMZrNbniZhllJ5ebnbTC5CCCGEREb3thkNrx0DADxyUwnqb72CgiYXCe2qSzTqqiMkOPpfIGTm+NUbJ/DzfxwHAPxLxWX4N9VlMyJomlaz6gghhBASWxzH4b+NJ/DL3ScAAP/+ucvxz7dcluBSJScKnAghhJAZjOM4NL7+CZ58i0/1s/W25ai7sSTBpUpeFDjFmMPpgKnHhHPD5zAvZx6UhUrIplkCTEIIIamJ4zj89G9H8fTeDgDAD7+wEl+/blmCS5XcEj6rbjozfmbErS/ciq+//nVo9mjw9de/jltfuBXGz2Kzpp7RaERdXR0kEonb8h3h0Ov1yM/Pj0tOpnjel6vS0lIYDAa3clRWVkZ0LiGEpCqnk8OPXjksBk0/uWsVBU0hoMHhMRocbvzMiC1vbQEH9+qVTCzy+8RNT0C1xPfSMFPBsixKSkrQ19cXcWqGqS4Fkqz3JTAajW6pK4Skqv6W6gl07kxAg8MJmR4cTg77OqzoGRzBvNmZ+MuBM9jZaoFEAmy/ZzU2l1+S6CImDA0OjwGO43Bx/GJIxzqcDjTsa/AKmgCI27bv245rFlwTUrdddlp2yLMaPBc+Jt48A6RwFrcNJbgihJBks+tQF7a9egRd/SNu2yUAfq6+GveWFiemYCmIAqcQXRy/iGv+eE3Urtc93I2Nf94Y0rEf3vchctJzonbfhBBCZo5dh7rwyPMmH1/lAQ7ArEwadxsOGuM0zRmNRpSWlkKv18NoNEKv16OqqsrtGJPJBI1GA4PBAIPB4LUGoNFoRGNjIwwGAzQaDQDAYDCgtLQUJSX8zIvGxkaUlJSgsbHR7zmh3Jev8vu7Tl1dnXgdg8EAk8kkPl6hHAaDASUlJeJ4L5PJJNYHwGeur6urEx+HcIxwn42NjWIme89zQ6lbQghJJIeTw7ZXj/gMmgC+xWnbq0fgcM7YUTthoxanEGWnZePD+z4M6dj27nZ8a/e3gh73m4rfoHR+aUj3HSmVSgWVSoWWlhYxs7qwIK9SqYTNZkNVVRXMZrN4TkNDg/g3y7LQaDTimoBWqxWNjY2or6+HSqVCRUUFbDYbGIZBe3s7GIbxe05tbW3A+/IU6DoVFRVu6xLm5+dj9+7dUKlU2Lx5s3gNtVqNnTt3ireVSqXbfoZhoNPpkJ+f73afQmZ7gB8Qvnv3bq9zg9UtIYQk2r4Oq1f3nCsOQFf/CPZ1WLGhpCB+BUthFDiFSCKRhNxdtnHhRszPmY+e4R6f45wkkGB+znxsXLgxLqkJCgoKUFAw+Q/BMIzY0tPU1OT1Ie86Tkqn00Eul7vN0GttbRWvs2PHDpSWlqK5uVkMYvydwzBMwPvyFOg6KpXKbYB2WVlZsGoIiU6n8yqjQqFAU1MTamtrvY4PVLeEEJJoPYP+g6ZIjiMUOMWETCrDo+sexZa3tkACiVvwJMyq06zTpEw+J6VS6TYo2jWAEIKhnTt3ugUcvs4Rurimet+RXIcQQmYii3U4pOMKc2nGbKhojFOMqJao8MRNT6Awp9Bt+/yc+TFLRQAg7NYOlUrllUdJGNMDAJs3b/bKByXcttlsMBqNaG5uBsuyYn4jf+cEuy9P/q5TXV0d8DoMw6C3t9ftHJvN5na85+1A92kymVBdXR30XEIISRYcx+E3b30qrjvnjwRAUV4W1i2jGdmhohanGFItUeHmxTfHLXO4EMQA/NghYTyOMMZHpVKBZVmYTCbodDpxGn5zczM0Gg0qKyvF8UoNDQ1ifiWtVguNRoPy8nLxOnq9HlqtFnV1dQCA8vJy1NTUgGVZ1NfX+zyHYZiA9+WZEsDfffu7jqC6utotAahKpRK74Gw2G3bu3Am5XA61Wu33PhsbG6FQKNDa2ip2Q5pMJrdzhWsFqltCCIm3kTEH6g0f45UDZwAAN14+D+8cPwcAboNHhCQ3j92xEjLp9F/IN1ooAWaMEmCS+JpqIs38/Hz09fVFuVTTA/0vEJI6zvaPoPa5Nnx8uh9pUgl+dOeVuH/9Ep95nIrysvDYHSuxaVVRAkucHCgBJplxIhmQrdfrYTabUVdXF7XB5YQQkij7T/Wh9rl2nBu0Iz8nHU/eX4r1Cn7yyqZVRahcuUDMHF6Yy3fPUUtT+ChwIilPr9eDZVnodDpotdqQl0NRqVSw2WwwGAzQ6XSxLSQhhMTQS/tPQ/PCQYyOO3HF/Fw8/dUyLJa7zwSXSSWUciAKqKuOuuoICYj+FwhJXg4nh8Zdx6B7h58gU7lyPv578xrMzqR2kXBQV10UzeC4khAA9D9ASLIaGBnDv/5pP978hB/4/c83X4otlZdDSt1vMUWBkx8yGT/zbXR0FNnZkWfuJiTVDQ/zeWDS09MTXBJCiKDj/AU8/EwrzOcuICtdip+pr8YdVy9MdLFmBAqc/EhLS0NOTg7OnTuH9PR0SKWU8orMLBzHYXh4GD09PWAYRvwyQQhJrL0nzuOf/mhC/8UxFOVlQf9AGVYX5yW6WDMGBU5+SCQSFBUVoaOjA5999lmii0NIwjAMgwULFiS6GITMeBzH4ffvncR//u0oHE4Oay9hoHuglLJ+xxkFTgFkZGTgsssuw+joaKKLQkhCpKenU0sTIUlgdNyJH/7lEP7cagEA3Kssxk/vXoWsdPr/jDcKnIKQSqU0k4gQQkjCnB+y45Hn29F6sg9SCfC921fgG9ctg0RCg8ATgQInQgghJEkdPtOP2mfb0Wm7iNysNPzvl9fipisKg59IYiZhgZPJZEJNTQ3a29uDHiesOdba2oodO3aICQ6FhV6VSiVYloXNZot4yQ1CCCEkmbx2sAtbmg7g4pgDy+bOwtNfLUPJvNmJLtaMl5CpYgaDAQC8Vrj3xWg0or6+HvX19SgvL0dFRYW4T6fTobS0FBKJBHV1dbSoKiGEkJTndHL4hfE4HvmDCRfHHLj+srl4+VvXUtCUJBKaOVwikQRMrmcymVBRUSEuvsqyLEpKSmA2m6FQKKDX61FdXQ0AIS+z4SqcTKGEEEJIrA2PjuPfmw/g7wfPAgC+cd0ybL1tOdJklBInlqZN5nClUokdO3aIt202GwBALpeL28IJmOx2O+x2u3h7YGBgymUkhBBCoqHTdhE1z7ThSNcA0mUS/PSu1aguX5zoYhEPSR04AYBarRb/3rlzJ1QqlRgsCQu0Avz4p2DddQ0NDdi2bVtMy0sIIYSEq/WkFd98rh29F0Yxd3YGnrq/FGVL5cFPJHGX1F11rmw2G0pLS9He3u4WOLkOFK+qqoLZbPZ7DV8tTosXL55RXXVOpxMvvfQSLr/8clxyySU0nZWkPI7jMDg4iIULF1KGf5KSdraewn+8fAhjDg4ri+Zgx1fLsIihpb7iadp01bnSaDRoaWlx65pjWVacRadQKMCyLFiW9dvqlJmZiczMzHgUN2n19PTg3XffdWvJI2Q6sFgsKC4uTnQxCAnZuMOJn/79KP7v3ZMAgM+vLsLPqq5CTkbKfDTPSCnx7DQ2NkKj0UChUIjjnFiWdRs4LnAd/0S8WSwWMXi0WCwzpqWNTF9Cy3Fubm6ii0JIyPqHx/DPfzJhz4nzAIAtlZfj/91yKfUCpICEB06u3W0A3+XGMIzYamQwGKBUKsWgqampCbW1tVAoFNBqteJ5RqMRarU6otl1M4nFYkFRUREAYM6cORQ4kWmDPnBIqvi0ZwgPP9OKk73DyE6X4b83X41Nq4oSXSwSooQETkajES0tLQD4Advl5eVi15Fwu76+HizLoqqqyu1chmFQW1sLhmFQVlaGxsZGMAwDs9mM5ubmuD+WVEPdGSSZOJwc9nVY0TM4gsLcLKxbJodMSgEQmb7e/KQH//LH/Ri0j2MRk40dD5Zh5UL6AptKEjo4PNFmWh6noaEh/PznP8dtt92G9evXz5jHTZLTrkNd2PbqEXT1j4jbivKy8NgdK8P69j3T/o9JauI4Djv2sGh47Rg4Dli3VI7f3K/E3Nkze9xtsgjnfYSmoMwgFgu/qvaiRYsSXBIy0+061IVHnje5BU0AcLZ/BI88b8KuQ10JKhkh0Tcy5sB3mg/g8b/zQdOX1y3G8w9fQ0FTikr4GCcSPxaLBQzD0LdyklAOJ4dtrx6Br6ZuDoAEwLZXj6By5QLqtiMpr2dgBLXPteMjiw0yqQQ//MJKPLhhCY3JS2EUOM0gFosFixdTFlqSWPs6rF4tTa44AF39I9jXYcWGkoL4FYyQKPv4tA21z7bj7MAI8rLT8ZuvKHHtpXMTXSwyRRQ4zRDj4+M4c+YMVq9eneiikBmuZ9B/0BTJcYQko1cOnMF3mw/APu7EpYWz8fSDZVg6d1aii0WigAKnGaKrqwsOh4NanEjCFeZmRfU4QpKJ08nhv1o+wa/f5FexuGV5IX7xpTWYk5We4JKRaKHAaYawWCxIT0/H/PnzMTQ0lOjikBksNysNUgng9DOfVwJgQR6fmoCQVDJkH8e3//wRjEe7AQB1NypQf+tyGqs3zVDgNEMI+ZtoLS+SSPs6rPjGM60BgyYAeOyOlfRhQ1LKqd5hPPxsK453DyEjTQrtvatx91rKmTcd0afoDMBxHA0MJwn3j8Nncf9vP8TgyDjKluTjv6quRlGee3fcgrwsPHm/krIok6TlcHJ439yLv3zUiffNveLtL/56L453D6EwNxNNdRsoaJrGwm5xOnnyJJqbm9HS0uK2TpxcLkdlZSXUajWWLl0azTKSKbLZbBgaGqLAiSTMn/edwvdeOggnB6hWzMev7luLrHQZ7lq7iDKHk5ThK2nrnKw0DNnH4eSAq4rzoH+gDAvyaHzedBZW4PToo49CIpGguroa3/3ud73279+/H0899RQkEgkaGhqiVkgyNULiS1pqhcQbx3H4zVtm/Oz1TwAA1WXFePzu1UiT8Y3dMqmEUg6QlCAkbfXsZR4YGQcAlC/Nx3PfuAZZ6bL4F47EVciB089+9jNs3boVeXl5fo9Zu3Yt1q5di/7+fmzdupWCpyRhsVgwb948ZGdnJ7ooZAZxOjn8+K9H8Pv3TgIAvnVTCb576xWU+I+knEBJWwWn+y4iXUajX2aCkAMnXy1M/uTl5VHQlEROnTpF3XQkrkbHnfhO8wG8euAMAOCHX1iJr1+3LMGlIiQywZK2ApS0dSaJODx+9NFH8fTTT6O/vx+f+9znsHnzZrz44ovRLBuJArvdjp6eHgqcSNwM2cfxjWda8eqBM0iTSvA/X1pDQRNJaZS0lbiKOHAqLy/Hww8/DL1ej9LSUuzcuRO9vb3RLBuJgtOnT4PjOAqcSFz0Dtlx344PsOfEeeRkyPC7h8rxxTW0qDRJbfNCXIyXkrbODBHnccrPzwcANDU1YceOHQD4mXUkuVgsFmRnZ6OggJqPSWxZrMN48Hf70HH+AvJz0vF/X1uHNYuZRBeLkCkZGBnD03vYgMdQ0taZJeLAyWw2g+M4mM1mrFmzBh0dHW7pCUhyEPI30YBcEktHuwbw1d/tQ8+gHYuYbDz7jXUomTc70cUiZErM54ZQ82wb2HMXkCaVYNzJQQK4DRKnpK0zT8RdddXV1TCZTGhvb0d/fz90Oh1sNlsUi0amyul04vTp09RNR2JqX4cV1br30TNoxxXzc/HCIxspaCIpb/fRbtz1q3fBnruAorwsvPSta/HU/UqvHE2UtHXmCanFqb+/H319fW6JLfPy8txm2m3fvt3tnIGBAQDAnDlzolBMEolz587BbrdT4ERi5h+Hz+Kf/7Qfo+NOlC/Nx9MPliMvhxYzJamL4zj8+s1P8V8tx8FxfH6m33ylFPNyM7G6OA+VKxdQ0tYZLqTAKS8vD01NTSgoKMA999wT9PgXXngBfX19ePjhh6dcQBI5i8UCqVSKRYtocC6JPn/ZwAlJVRfs4/iu4QD+fvAsAOD+9Zfgh1+4Ehlpk50zlLSVhDzGqaamBvv370d1dTVKSkpQXl4OhUIBhmFgs9nAsiz27duHjo4O1NXV4d57741luUkILBYLFixYgPR0agEg0RMsGzghqehU7zBqn2vDsbODSJdJ8OMvrsKX112S6GKRJBTW4PC1a9eiqakJ/f39aGpqwr59+2Cz2cAwDEpKSlBXV4dlyyhfS7KwWCy47LLLEl0MMo1QNnAyHe09cR7//CcTbMNjmJebiafuV6J0Cc2QI75FNKsuLy8PNTU10S4LiaILFy7AarXS+CYSNZQNnEw3HMfht3s78Pjfj8LJAVcvZqC7v5QW6SUBRZyOgCQ3YWFfCpxINAzZx/HI8+3Yc+I80qQS/Ff11ZTYkqS0kTEHtr54EC/t7wQAqEuL8Z93raJxeiSohAVOJpMJNTU1aG9vD3gcy7IwGAxQKBRgWRa1tbVgGCbovpnOYrEgLy8v4KLMhISid8iOr/2+FR+f7kdOhgxP3V+KGy6fl+hiERKxM7aLqHuuHQc7+yGTSvAfn1+BhzYupS5nEpKEBE5CsGMymYIeW1VVJQZXLMuipqYGzc3NQffNdELiS0KmgrKBk+lmX4cV3/pDO84PjSI/Jx2//ooSG0vmJrpYJIUkJHBSq9UhHcey7mnuFQoFjEZj0H0z3fj4OM6cOYMrr7wy0UUhKYyygZPphOM4/OHDU/jRK4cx7uSwomgO9A+UYrE8J9FFIylmSvOHf/azn2Hz5s0AgN27d4tJL6PFaDR6rX8nl8thMpkC7pvpzp49i/HxcWpxIhGjbOBkOrGPO/C9lw7iP14+hHEnhy9cVYQXH9lIQROJSMSB06OPPgqGYaBSqQAAFRUVUW/x8beEi9VqDbjPH7vdjoGBAbef6chisSA9PR3z589PdFFICvrH4bO4/7cfYnBkHOVL89FUt4FmGZGU1TMwgvt2fIg/7bNAIgE0m5bjf7+8FtkZNAicRCbiwKm8vBw1NTVQKBTRLE9IAq2JF2hfQ0ODOGA6Ly9v2rbIWCwWLFq0CDIZvTGQ8Px53yl88/l2jI47oVoxH8994xpaQoWkrI8sNtzxq71o/6wPuVlp+L+HyvHITSU0CJxMScSBU0dHBwC4vQBbW1unXiIXDMN4tSBZrVYwDBNwnz9bt25Ff3+/+CNM2Z9OOI7DqVOnpm1QSGJDWJ/r0Rf5JVSqy4rx1P1KmppNUpah/TSqde+je8COSwtn45V/vg43XVGY6GKRaSDiweFr165FWVkZCgoK0NLSAqPRCK1WG82yQaVSQafTeW0vKyuDQqHwu8+fzMxMZGZmRrWMyaa/vx9DQ0MUOJGQUTZwMp2MOZz46d+Oiq9n1Yr5+O/NVyM3i1pOSXREHDhVVFSgubkZOp0OHMdBr9dj7dq1YV9HWLJFYDKZwDAMFAqFVzcgy7IoKysTW5z87ZvJhFa04uLiBJeEpALKBk6mE+uFUfzTH0x4n+0FAPxrxWX414rLIJXSlwASPVNKR7Bs2TJs375dvD0wMIA5c+YEPc9oNKKlpQUAP+6ovLxcTFEg3K6vrwcANDc3Q6PRoLy8HK2trW55mgLtm6ksFgvmzp2LnByaLUICo2zgZDo5fKYftc+2o9N2EbMyZHhi8xrceuWCRBeLTEMSjuO4SE8eGBhwG2ek1Wrx5JNPRqVg8TAwMIC8vDz09/eHFPClgqeeegpFRUX44he/6PeY6fi4SXimUzZwej2TVw+cwXcNBzAy5sTSghzoHyzD5fNzE10skkLCeR+JuMXpm9/8JoxGo1vXWEdHR0oFTtON3W5Hd3c31q1bl+iikCRG2cDJdOFwcvjZ65/gqbfNAIAbLp+H//3SWpoJSmIq4sCppKQETz31lNu2HTt2TLlA01046+sFO9Zzvb/Ozk5wHEcDw4lflA2cTBf9F8fwr3/ej7c+OQcAqLtRgfpbl0NG45lIjEUcOAmJL11VVlZOqTAzQTjr6wU61td6fxaLBdnZ2Zg7l9ZdIvy38X0dVvQMjqAwNwsSADXPtWFwZBxXzM/FM19fR4ktSUo60T2I2ufa0XH+ArLSpdDeexWNzyNxE3HglJ+fj5///OdQKBRgGAY2mw07d+7Ezp07o1m+aSWc9fWCHetrvT+LxYLi4mKaRk6w61AXtr16BF39I177ypfm4+kHy6k7g6Skfxw+iy1NBzBkH8ciJhu6B0qxalFeootFZpCIA6f6+nqvVAL79++PRpmmrUDr6ymVyoiPBfgEhqdPn8bGjRu99tntdtjtdvH2dF1qhvB2HerCI8+b4G/WxwPrl1DQRFKO08nhl2+cwC+MJwAA6xVy/Po+JQpmT+/cfCT5RBw4VVZWoqamxm3bCy+8MOUCTWfhrK8X7lp8586dw8jIiM/xTQ0NDdi2bVvI5SSpy+HksO3VI36DJgmAhteO4fNXLaSxICRlDNnHsWXnR/jHkW4AwEMbl+L7n1+BdNmU1qknJCIRv+pKSkpC2kaCC7S+XqjHWiwWSKVSLFrk3c8/E5aaIbx9HVaf3XMCDkBX/wj2dfhfDJuQZHLy/AXc/et38Y8j3ciQSdGovgo/uvNKCppIwkTc4mQ2m6HT6VBeXg6A7ypqamqK+np100k46+uFuxafxWLB/PnzkZGR4bVvJiw1Q3idfcMhHdcz6D+4iiunA/jsPWCoG5g9H1iyEZDS+niE9/bxc/h/fzRhYGQchbmZeOqBUigvyU90scgMF3HIrtPpsGzZMnAcByGH5hRyac4IvmYiAr7X1wvnWIAPnCgNwcz29vFz0L5+LKRjC3OTYDbdkVeAX6wCnvkC8MI3+N+/WMVvJzMax3HQvW3G1/5vHwZGxrH2EgZ//X/XUdBEkkLELU5arRYVFRVu2/x92BNeoLX3gNDX6fPU2dmJ3t5e3HTTTTEqOUlmPYMj+M+/HsUrE+vNSSWA0893GAmABXlZWLdM7vuAeDnyCtD0IOA5Gmugi99e/Syw8s6EFI0k1sVRBzQvfCy+njeXLcaP77oSmWnUEkmSw5QW+fWUn0/fBoIJtL5eOOv0ua7396Mf/Qj9/f349re/HdfHQhLL6eTw51YLtr92FAMj45BKgIc2LsPq4jxs2fkRAPewRBgK/tgdKxM7MNzpAHZp4BU0ARPbJMCuR4Hln6duuxnmdN8wap9tx5GuAaRJJXjsjpW4f/0SSrFCkkrIa9W9+OKLUKlU4houTz/9tNt+m82GlpYWvP7669EvZYxMlzWujEYjPv74Y/zbv/1bSG8w0+Vxz2SfnB3E9146iPbP+gAAqxbNQcPdV2F1MZ/Pxlcep6K8LDx2x0psWlWUkDKLOvbw3XLBfPWvwLLrgx5Gr+fU45mcdd0yOfZ1WPFPfzTBemEUBbMy8OuvKLFeUZDoopIZIiZr1T3++ONgGAa33HILAH4x2c2bN7sd09vbG0FxyVQJ45voW9n0NzLmwC93n4D+HRbjTg6zMmT4zueuwIMbliDNZZbRplVFqFy5wOvDKSlSEPR1hHbcUHdsy0ESwldQPycrDUP2cTg5/kuA7oEyLGKyE1hKknSSaCJJyIFTW1ub2+0dO3Zg7dq1bttojFP8ORwOdHZ2Ut3PAG8fP4cfvHwIp6z8zLnKlfOx7c4rsdDPB4xMKsGGkiT6xn7+BPChDjA9F9rxs+fHtjwk7vwlZx0YGQfAZ7V/9uvXIDuDumiJiyOv8N37A2cmt81ZCGzSJmQs5JSWXBH09/fDaDSitLQ0KoUioTt79izGx8dpRt00dm7Qjp/89Yg4WLYoLws/uvNK3HrlggSXLAROJ2B+A/jwSeBTl+WFpGmAc9zPSRL+TXGJdxZ8krqCJWcFgNN9F5GRRvmZiIsknEgS8SvUdd20vLw83HvvvX7XXSOxY7FYkJaWhgULUuBDlITF6eTwp32nUPFfb+GVA2cglQBfu3YpWrbcmPxBk30Q+FAP/Loc+MO9E0GTBLjiduDBVwD17/jb8Ow6nLi9aTsNDJ9mgiVnBSg5K/EQdCIJ+IkkTkc8SxVei1N/fz+ampogkUjEGV2u2tvb8fDDD0etcCQ4i8WCRYsWQSajD5np5Hj3IL734kG0uQz+fvzu1biqmElswYKxssC+HcD+5wH7xJqImXOAtQ8A62oA+bLJY6uf9dP8vp1SEUxDoSZdTZrkrCTxPnvP/f3BCwcMdPLHhTCRJFrCCpzy8vKgUqmg1WphNpuxbNkyt/3CNHoSHxzH4dSpU7j66qsTXRQSJSNjDvzvGyege5sf/J0zMfj7qx6Dv5MKxwEdbwMfPAUc3wXxm2DBpcA13wSu/jKQOdv7vJV38ikHkmTAJ4kdh5ODaeJLQDBJkZyVJJ59CGj7XWjHxnkiSdhjnJYtW4annnoKu3fv9pnLicTPwMAABgcHaXzTNLHnxDl8/6XJwd+qFfPx4y/6H/ydcKPDwMc7+QHf545Obr+0kg+YSm4BpEGCPaksrt8USfwdOTOArS8dxAGLLeBxSZOclSTW6DDQ+jTw7i+A4RBn6sd5IklUE2CS+BIW6y0uLk5wSchUnB/iB3//5SO+SXrBnCxs+2ISD/62neLf2NqfAUZs/LaM2cCa+4B1tcDcyxJaPJIchkfH8T/GE3h6bwccTg65mWn4/FVF2NnKv28lZXJWkjhjI0D7/wF7ngAu9PDb8pcBF20T7zO+xjklZiJJxIETSbxTp06hoKAAs2bNSnRRSAScTg5NbRY0vHYM/RfHIJUAX924FN/53BWYnZlk/5ocx3epffgkcOxvAOfkt+cvBdbVAWu/AmTlJbSIJHm8+UkPfvDyIZzuuwgAuH31Ajx2x5WYPycLN10xzyuP04JkSc5K4m/cDpieBfb8FzDYxW9jLgFu1ABXfQn45O8Ts+ok8BluJ2AiSZK9O5Nw0MK+qetEN5/5u/UkP+7jyoVz0HBPEg7+HhsBDhmAD58Czh6c3L7sRmD9I8Bln6MxSUTUMziCH796BH/9mP8AXMRk48dfvBIVKya7UpI6OSuJn/FR4KM/AO/8HBg4zW+bUwzc+F3g6vuAtAx+28o7k24iCQVOKWp0dBTd3d0oKytLdFFIGEbGHPjVG59C944ZYw5+8PeWysvx0MalyTX4e+AM0PpbvulcGGeQlg1cvZkfv1S4IrHlI0nF6eTwp9ZT2P7aMQxOrJv49WuX4d8qL8csH62nSZeclcSPYxz4+M/A21q+2x8AcouA678DKB8E0jK9z0myiSRRDZxOnjyJpUuXRvOSxI/Ozk44nU5qcUohe06cw3+8fAif9QqDvwux7YurkmdpCY4DTrfyrUtH/jKZoDJvMVD+MP+mlkMDd4k7z3UTVy/KQ8M9q7FqEXXdEhdOB3CwmQ+YrCy/bVYhHzCVPgSkB5lNmUQTSaYUOH300UewWieTlel0OuzcuTOkc1mWhcFggEKhAMuyqK2tBcMwPo81GAzikiKex5hMJgCAUqkEy7Kw2WxQKpXhP5gUY7FYkJWVhXnz5iW6KCSI80N2/Odfj+Bll8HffObv+cmxvuD4KHD4JT5gOmOa3L7kWuCaOuCKzwMyapwm7jxTZwjrJn5141LqdiOTnA7+/eWt7UDvCX5bzlzgum8DZd8AMnISWrxIRPxuWF1dDZvN5hbI7N+/P+Tzq6qq0N7eDoAPompqatDc3Oz3WE9arRb19fXQ6XTQ6/UA+LXy/F1jurFYLCguLk6OD17ik+fgb4kE+OqGpfjO5y5HblZ6HAoQZFHMoR4+T0rb7ybzoMgygdVVwDW1QBHlByO+7T1xHt9/+aBL62mSp84g8ed0Akdf4QMmIV1Jdj5w7b8C5TW+c7uliIgDp8rKStTU1Lhte+GFF0I6l2VZt9sKhcLvci02mw3Nzc1Qq9XitsbGRjHZZmlpKfr6+CZify1W0w3HcTh9+jTWr1+f6KIQP050D+L7Lx3CvpN8i+yVC/nM31cvZuJTgECLYjKL+WSVh18EHKP8vtwioPwbQOnXgFlz41NGAA6nA6YeE84Nn8O8nHlQFioho8HmSev8kB0//dtRvLS/E8Bk6+mmVUmaOoPEH8fxM2/fagC6D/HbsvKADf+Pb8HOmpPY8kVBxIFTSUlJSNt8MRqNkMvdx0rI5XKYTCaf3WyuQZPBYHC7DcycgElw/vx5XLx4kcY3JZDDyfmcFTQy5sCv3/wUT72dwMHffhfFPAM0PeC+rXgd/2a28ouALA6tYC6Mnxmxfd92dA9PZv2dnzMfj657FKolqriWhQTGcRya207j8deOwjacgNZTkvw4DjjxD+DNnwJdB/htmXOA9d/iZ+BmMwktXjRFHDiZzWbodDqUl5cD4P+xmpqa0NraGvRcm83mc7vreCmBa1Bks9lgtVqhUCjcthkMBgBAa2sr6urq3Pa7stvtsNvt4u2BgYGgZU1GFosFEokEixYtSnRRZqRdh7q88tAU5WWhumwx/vJRJ04mcvB3wEUxXayu4t/MFpXGpViejJ8ZseWtLeA8ytkz3IMtb23BEzc9QcFTkvi0Zwjfe+mguPjuiiI+dcaaeLWekuTGcYD5DeDNx4HONn5b+ixg/TeBDf88LSeURBw46XQ6qFQqcNzkG5/r35HwF1AJNBoNtFqt2zbXQeUKhQKVlZUwm80+z29oaMC2bdumVMZkYLFYMH/+fGRm+pi2SWJq16EuPPK8ySss6eofwf/s5gc+zp+TiW138pm/4z4GLeiimBOUX01Y0ORwOrB933avoAkAOHCQQALtPi1uXnwzddsl0MiYA0++ZcaTb5kx6nAiO12Gf6u8DF+/dllypc4gicO+zQdMlg/422nZ/GLe1/5rXLv84y3iwEmr1XotuyLMfAuGYRiv1iWr1Rqwy81ms8FoNHodw7Ks2L0nzNBjWdZnq9PWrVuxZcsW8fbAwEBKdndZLBavBZZJ7DmcHLa9eiRgW05Ohgyvf/sGMDkZcSsXAOD8p8CxV/kMvBMcAExZmTgnk2GewwHliB1iGBLjRTGHx4ZhHbF6/fRe7MWJvhNu3XOeOHA4O3wWph4TyheUx7ScxLf3zb34/ksHwZ6/AAC46Yp5+MkXV2GxPPVmQJEY+Ow9PmA6uYe/nZbFz5C77tvA7MKEFi0eorZW3RtvvAGbzYa1a9cGPVelUkGn03ltD5TMsa2tzWcqgoqKCnFwuMBz/JQgMzMz5VtphoeHcf78edxwww2JLsqMs6/D6tI954QspwOStEFw47lwDC8DIMXwqANHuwZjn9yP44Cuj4CjfwWO/RU4d8xttzEnG9sL8tGdNvkvPn98HI/29kE1fDHsRTHHneOw2W3ovdjrMyCyXpwIjEb4/RfHL075IZ4bPjfla5Dw9F0YxeN/P4rmdj6T87zcTDx2x0p8fnURzeAlgGUfP4aJfYu/LcvgczBdtwWYM3OWy5lScpYXX3xRnCHHcRza2tpwzz33BD3PszWIZVmUlZWJgZHJZALDMG7HmUwmr4BIoVC4dd0ZjUao1eppPVj89Gn+DS1WLWXBZjnFYxZUMs604jgObRMz5NJyDyFz/quQpveL+51jebB334HxwVXoGRzxd5mpcYwDp97nA6VjfwP6LZP7pGnA0uuB5bfD+MET2DInzatlrEcmw5bCuXhiyImKSzbgwujQZLBzcTLo8RUQ2ew2n11rgWRIM1CQXQB5lnzyJ1uOC6MX0HS8Kej583IoR1m8cByHl/Z34j//dhTWC/xMy69ccwnqNy1HXjYN/p7xOtuBNxuAT1v429J0QPkAn7wyb+YtMh9x4PToo4+6Dda22Wyoq6sL+fzm5mZoNBqUl5ejtbXVLf9SQ0MDysvLxZQDAs+Ai2EYlJWVobGxEQzDwGw2T/s8ThaLBbm5uVEJDv/R8Q8sLlwMjuNgHbHi1OApGI4b/M5yiscsqGSbaXVu0I6X93eiud2C491DSMs9hKxFz3sdJ0nrR9ai5zHSeT8Kc6eeJoLjOIw7xzFqH8Ao+ybGju/CKPsmRu02jEkkGIMEo7PmYHSREqOL12GsaDXGZBkYcYzgZ/JccOMXAY8WAk4iATgO38lNg+wP6zDGjYVVJgkkyM/Kdw+EXAKigiw+SCrIKoA8W46ctByfrRQOpwNvn34bPcM9PoMxCSSYnzMfysLpn8g2GXScv4D/ePkg3v2UX1rn8vmz0XDPapQumX6DekmYug7wAdPx1/jbEhmw5j7ghu8C+UsSW7YEknARjujesWMHampq0NHRAYlEgqVLl+KNN97ALbfcEu0yxszAwADy8vLQ39+POXNSI7fE73//e+Tk5KC6ujriawiPe8WTKyDLDtySI5lYgfqhKx/C7w//3uuDTtgfjVlQ/mZaRfM+/Bl3jmPUMYpRxygujI7g7U+78LeDFnx4sgdObgwS6TjSZGNIL9oJSIc9YxIAfO+ZhMvEV1ZWwQkHRh2jGHOOuf0edY5izDHmdlvYP+YYc7sdDzlpOWLgIwY9fgIiJpOJWsuf8FwDcHu+I3muU/H/OBmMjjuhf8eMX77xKUbHnchMk+JfKi5DzfUKZKTR4O8Zrfswn4fp6Kv8bYkUuOpL/AK8ct+z1lNdOO8jEbc4KRQKfPbZZ1i2bBl+/vOf49///d8jvRQJkcPhQGdnZ1yDU+FD7Zkjz0xpFhTHcXBwDjg4B8ad424/Ds4Bu8OO//zgP/3eBwD86P0fod/ezwc5zlHYHXYx2LA77GLgIwQfvm7bHXYxaHH928E5fJY7e2nodSWRAJDY8Ydj3i1SUyWDBOnSNKSnZSFDmoEMWQbSpelev/vt/ThhOxH0eo+uexT3XHYPstMSk+lZtUSFJ256wmfromadhlIRxFjrSSu+9+JBnOgZAgBcf9lc/Oddq7CkYFaCS0YS6twnfMB0+KWJDRJgtRq4UQPMvSyhRUsmEQdONpsNCoUCfX19OH/+PG699VYwDJNSLU6ppru7G2NjYwmZCejknH73CbOgVM0qSKVSMRgad47D4ZwIlLjxKZeh396PH73/oylfJxiOk0DCpSNDlo5ZGVnISc9CujQdI44RnL1wNuj5NxTfgCvyr0CGjA9wMqQuwY0sffL2cC8yLG1IP/UB0rsPI4PjxJ90uQLpl92KjOWfR8aidZCFuFZc69lWfP31rwc97vL8yxMWNAlUS1S4efHNSTeebTrrHx7D9l3H8Kd9/Kr0BbMy8IMvrMQX1yykwd8zgb9lmM5/yi++e7AZYg64lXcBN20FCpcnssRJKeLA6d5774XDwX9L3759O3bv3h1wVhyZOovFgrS0NCxYkJzLG5wfOR/2OWmSNPGD0u6wBzkauCL/CizOXSwGIJmyTDEgyZRliq0xQsDi+nemLBPpsnSkSdJxqHMYbxyx4t1PbRgbl4HjZEiXZKDiioWoLl+CGy6b55WrJtSg5KErH/I9jZ7jgLMH+cHdR/8K9Bx2379QCaz4ArD8DmDe5UHvxxdloRLzc+anzPghmVRGKQfigOM4vPpxF3786hGcH+L/zzaXLcbW25fHP3UGSQxfyzDNng8UXA6cehcQvhwv/wIfMC1YlZhypoApzar72c9+hra2NuzcuRMA6BtLjFksFixcuBBpaVN62mLm+9d8H6vnrUaaJA3p0nTIpDKkSdMgk/C/06Xp4t8yqQxpkjTxNRNqUKJZp4n4g9Z8bgjNbafx0v7T6B6wA5AAyMfKojmoKivGF9csgnyW/w+RiIISpwOwfDiZNsD2mcsJMmDptXygtPzzQN7UM8HLpDI8uu5RbHlrCySQ+Bw/pFmnoVadGcRiHcZ/vHwIbx/n0zuUzJuFx+9ejWsUMU6ZQZKHv2WYhronc7pdvokPmBauiXfpUs6UZtWVlJSISS8rKirw4osvhpSOgETGYrFg1arEfAuQSqTgOC5gwFB1eVXEH8ixaikZHBnDXz/uQnObBaZTNnF7fk46vrhmEarKinHlwryQrjUZlPwbJBzHz1ITysdxgGQiKHGOA5/u5hNSfvIacMElH1FaNnBpBf+t7vJbY7IcAY0fIgAw5nDit3s78AvjcYyMOZEhk+Kfbr4U37xJgcw0CpxnjFCWYZo1D/jSH/luOxJUxIFTeXk57r33XuzevTua5SF+9Pf3o7+/P+7jm4RWiq+u/Cp+f/j3MWvFiGZLidPJ4QO2F83tp/HaoS6MjDkn7kOCmy6fh6qyYtyyfH5EM4dUF4bxRPd5bC9g3JNLOhzQ9PZBZWwEuh8CRgcnT8rKAy6/je+GK7kFyIj9AFwaPzSz7T/Vh60vHsSxs/zrcL1Cjp/evRol82YnuGQk7k4Ygy/DdOEcP/Zp2fXxKVOKizhw6ujoAODePdfa2kotTjEiJL4sLo5vsjHXVoqr5l0V01aMqbaUWKzDaG4/jRfaT6PTNpm5+tLC2agqLcbdaxehcE5W5AWc+OamGh7GzcPDvpczGf6QPza3iO9+W/4FYOl1gCz+SQRp/ND05nBy2NdhRc/gCApzs7BumRwXRsfx89c/wXMffAaOA5icdHz/9hVQlxbTUIqZhOP4QGj/88AhQ2jnxHgZpukk4sBp7dq1KCsrQ0FBAVpaWmA0Gr0W4CXRc+rUKcjlcsyeHdtvjPOz50N9uRqXzLnEq5UiHq0Y4d7H8Og4Xjt4Fs3tFnzATq5/mJuVhjuuXoiq0mKsWcxM7UPDMQ5YzfyMk4lvbjIA5SN+BrPf/l9A2dcBKeXCIbGx61AXtr16xGUJID5I4jgO/Rf5Gaz3KBfh+7evQMHs1F5mioRh4Axw4E98wGRlwzs3zGWYZrIprVXX3NwMnU4HjuOg1+tDWqeORMZisUS9m+7HG37sljk8lEAoPq0YUoxfUGBscCHGuSwA7gEIx3Fo/6wPzW2n8beDXRiy8x8UEglwbclcVJUV49YrFyArPYKA7qKNT/7WfYifAdd9COg5CoyHsYxKNkNBE4mZXYe68MjzJq8RK7ZhPmnqvNkZ+MWX1uLaS6fv6vTExfgocHwXsP854FPj5Oy4jNnAqnuAq+8DXvg6MNAF3+OcJMCchXxqAhKSKU3PWrZsGbZv3x6tshA/xsbGcPbsWSiV0Z1C/rlln0u6TMu+vkkX5WXhsTtWYs3ifLxg4rvihFXbAeASeQ7UpcW4t7QYi5gQcxM5nYDtJHDWJUA6ewjoP+X7+PRZQN5i4Pwx3/td0Tc3EiMOJ4dtrx4JuGqgTCbFepoxN/31HAVMzwEf/xkY7p3cfskGYO0DwMovApkTPRSbtBOz6iRwD54mWuI3baeB4WEIOXAKJTv4008/jYcffnjKhSLuOjs74XQ6E5L4Mp6Eb9ISOLFeegyFsKEHDPb1L8c3nze5/cvnZMhw++oiVJUWY90yeeCuuNELQPcRoPsgHxx1H+JblUaHfB+ftxiYv4rPYzJ/FbBgNZC/jL/3X6yib24kYfZ1WN2+VPhytn8E+zqs2FBCwdO0M9IPHHqB74rrbJ/cPnsBsObLwJr7gbmXep+38k6g+lnvPE5zFvJB08o7Y1/2aSTkwOnxxx9HS0tLwGPa2toocIoBi8WCzMxMzJs3fVeLF75Jf066D4+lP4uFksnxSmc4ObaNPYjXnetQviQfVeWL8fnVRZiV6fHy5ThgoJNvQTp7aDJQsrLwGejIMoHCFRMB0uqJ31cC2fn+C0rf3EgCfXzaFtJxPYNhdC2T5MZxwMm9fLB05C/A+MTEF2kan3tp7QPApSog2OoCK+/kJ6z4yhxOwhJy4FRRUYGCggKUlpb6PSbC9YJJEBaLBcXFxZAmwbgZXzN5ZNLIBl47nRwsfcM4dnYQxiPduGrwHTyZ/guv4xbAiifTf4FHxr6Nhz73L/w36bER4MyhyS42YUzSiM33nc2e79KKNBEkFVwW/M3GE31zIwlgvTCKXxiP4/kPPgt+MIDC3CnMHiXJob8TOPBHYP8fgL6Oye1zrwCUDwBXbQZmF4Z3TamMUg5EQcifGs3Nzejv70dbWxsAPo+T5/gYuTz6yfxmOo7jYLFYcM0110T92qZd/4eComUAAHv/WWTnL8JlpRU40b4bF/s6kZ2/CMuvuRWyiXxFuw514SevHMTioQNiN5pl9tX4wZ2rsWlVUcD76h2y45Ozgzh2dpD/3T2IE92DGB7ll+2Rwom9mc/yf3vEYVIJ4OSAxnQ9Bt44DuzqAM4fB3wtzCtN499YxG62iUBpdhRb6+ibG4mT0XEnnvvgM/yP8TgGRvhJEJlpUtjHfa8dKQGwII//QkNS0LidT5q7/3nAvNtloHcuP9B77QNAcdnEiuIkUcL6up2Xl4eKigoAwP79+2G1WiGRSMSFfe+9997ol3CaYVkWBoMBCoUCLMuitrYWDMP4PfaZZ57B0aNHYbVasWbNGvHYcK7jj3L/DzDniPs/oOMfElwpmWw57G4pwJkNj6F70efw8h+fQnP6s1iY4dKNZpfjx398ELjvm9i0qggjYw6c6B7CsbMD+OTsID7p5oOlc4O+p+7npo2jtGAcN0g+wkKb1ecxAB885WEYeZ1/n9yYnT85BkkIkuYtB9LiMP2avrmRGOI4Dm8c68FP/3ZUnAixomgOfvCFFRi4OIZHnjfxx7mcI/wnP3bHyohbgUmCdB/mg6UDfwYuurwPLrkWWHs/P9A7DolzSWgkXBT619544w20tLSgsrJSDKJSwcDAAPLy8tDf3x+32WWlpaVob+cH9bEsC41Gg+bmZr/HPv3003jllVdQXV2NH/7wh+Kx4VzHk/i4H83FnEz3N1iOc/8y45x4dTwjuRNf5V4B4N4iJOz/V+cWHJpzA05bB8FwgyiQDKBA0o8CDGDuxN9LModRnDmMQukA8rh+ZI9aIR2bnB0XCufKuyFd82U+UJqzkL55kYT8H8fSJ2cH8Z9/O4I9J/hFs+fOzsC/f+4KVJUtFgOiQLNPg7X+kiRx0TYx0Ps54Mz+ye25RcDVX+YDpoKShBVvpgnnfWRK6Qg++ugj6HQ67Ny5EwqFAiUlJSkVOMUby7onJFMoFDAajQGPtVgsKCwsxIoVK8Rjw7lOuDzjEKGb7EHuVUj87Oc44Anp/2BwSAd5ZoBAyAFg2Md2WQaQOQcYPh+0fNLyb1BLD5mWeofseKLlOP607xScHJAhk+Lr1y3DP91cgtws98zzm1YVoXLlgqiNNyRx4nQCn7kO9J4IfKVpwBW3AWsf5JdlCnfsJYmrsJ+dkydPiokvJRIJ7r33XrS3t2PZsmWxKN+0YjQavcaByeVymEwmrxxNwrEWiwVLlixxO7atrS3k6wCA3W6H3T7ZVdbf3w8AGLCH09gY7NhxpGEIAwA4SCDJlgM5BcCsAiBnLjBrLv87p2Dy71ly/ndmLt+X/5trwA12Q+LjvjhIIMldAOSvAgYGwig3me4GJl4PTqfvcT/JbnTciWfeO4lf7j6BwYlkrretWoCtt63AJQU5fs+TSSWUciBV9J8GPvoT8NHzQN/Jye3zVkwO9J5FCUtTRciB09NPPw2dTgeWZVFdXY3m5mavTOEvvvgirVUXgM1m87ndavUe22Oz2eB0OnHu3Dlcd911bseGcx0AaGhowLZt27y2L/5vP3mMomIAwMnoX/P7NOiV+DY4OBj2OL9E4jgOLUe68fjfj+JkL98Ue+XCOfjBF1ZSAsvpYNwOfPJ3Pkml+Q2IXz4z5wCr7uUHei9S0nCDFBRy4FRbWwu1Wo1HH30UDMOgr68Pb7zxhri/r68P27dvp8ApAv4CoZERvhnXNfGlv2MD7du6dSu2bNnidtySJUtw6tQp5OXlhV1ewhsYGMDixYthsVimxdiaRAmnHkdHR3HgwAF8+OGHGBwcxBVXXIENGzZg1qxZWLhwYZxKPHVHzgzgJ389gvdZPuPzvNxMfPfWK3Cvspi625Kd0xF4Ru3ZQ/y4pY93Ahf7JrcvvZ4ft7TiTiDDf0siSX5hBU6NjY0BczXt3LkzKoWarhiG8WoVslqtPr8lMwyDc+fOYfbs2cjPz3c7NpzrAEBmZiYyM71nmuXl5dEHfhTMmTOH6jEKAtXjyMgI9u3bhw8++AAjIyO46qqrcO2116ZcUthzg3Y80fIJ/txqAccBGWlS1Fy/DI/cdClmeyZ0JcnnyCu+c7jd8kN+JYL9zwNdH03uy10IrLmP/6GB3tNGyP+pdXV1QT8ctm7dOuUCTWcqlQo6nc5re1lZmc9jH3/8cSxevNhtOZGysjIoFIqQr0NIKrtw4QI++OAD7Nu3Dw6HA2vXrsW1116bUl1yAGAfd+D/3j2JX73xqbgo9eevKsKjm5ZjsZxaH1LCkVcmVg3waDwYOAO8/M3J29J0YPntfFdcyS2U320aCjlw8hzPFOkxM5lCoXC7zbIsysrKxA8Bk8kEhmGgUCiwdOlSjI2Nid10rsd6fmh4XoeQVNff34/33nsP7e3tkEqlKC8vx4YNGzB79uxEFy0sHMfh9cNn8fjfj+GUlR/HdFVxHn7whZUoX0rj9VKG08G3NAWaJCNNA1Tb+FQCs2iM2nRGbcNx1tzcDI1Gg/LycrS2trrlXmpoaEB5eTnq6+vR3d0NtVqN5557DmfOnPE6NtB1gsnMzMRjjz3ms/uOhI7qMTpc67G3txd79+7Fxx9/jIyMDFx33XW45pprkJ2dnehihu1QZz9+8tcj+LCD71YvzM2EZtNy3L12EaQ0jim1dLzj3j3ni3McKLqagqYZICoJMCMRTuZrk4nPkqtUKsGyLGw2mzjtfioZtJM5cd6+ffvw+uuvY+vWrUhLo/iWTG/d3d3Ys2cPDh8+jFmzZmHjxo0oLS1NyaC0Z3AEP3/9EzS3nwbH8Uuk1N2gQN2NJd4LU5Pk1msGTM8Cbb8D7CGkQbn3t8BqdezLRaIubgkwp6Kqqsot83VNTY3fVhOdTge9Xg+AH/vjelw410klFosFCxcupKCJTGunT5/GO++8g+PHj4NhGNx+++1Yu3ZtSr7uR8Yc+O3eDvzmzU9xYWINxi+uWYj6TcuxiEm9FrMZa2wEOPoKHzCd3BPeubPnx6ZMJKkk5N0p3MzXpaWl6Ovjp3W6tibFMoN2olksFqxcuTLRxSAk6jiOQ0dHB/bs2YOOjg7MmzcPd999N1atWgWZLPUG0nIch78fPIuG147idN9FAMDVixn88AsrUbokP8GlIyE7e4gPlj7eCYzY+G0SKXCpClhzP7DrUWCwC77HOUn42XVLNsaxwCRREhI4hZNBW+Cr+y3c63hm0B5I0gzUAwMDsNlsbvmbCEl1HMfhk08+wZ49e9DZ2YmioiJs3rwZy5cvd5s5mko+Pm3DT/56BK0n+S92C+Zk4dHbluPOqxfSOKZUYB/k14szPQt0tk9uz1vMz4pb+xUgr5jfJpFMzKqTwOfyypu20wy6GSIhgVO4ma9tNhsMBgMAoLW1FXV1dVAoFFHLoJ1sLBYLAKC4uDiq153KeLCZJtJxdVTHfN3V1NSIXehOpxOHDx/GSy+9hD179uDyyy/HrFmzUF1dLeYoS7U67R4YQeOuT/CC6TQAICtdim/eWILaGxTIyUi9bsYZheP4IKn998ChFwFhoXFpGrD884DyQUBxs3cQtPJOoPpZ33mcNm3n95MZIan+w/0FQq5vlAqFApWVlTCbzWFfxzODtpCxONlYLBbk5+cjNzc3qtedruPBYiHScXUzvY6FAMdkMmF8fBwHDhzAu+++C6vVimeeeQZvvfUWlixZIgZAodRbMtXpyJgDO95h8eTbZgxPjGO6e+0i1G+6AkV5NI4pqQ1bgY+bANMzQM+Rye0FlwLKr/JpBGYHSai68k4+uAqUOZxMewkJnMLNfM2yrPhtX/jWybJs1DJoJxuLxRL1gG46jweLhUjG1VEdA2q1GqOjowCAX/7ylxgcHMSKFSuwbt06vPrqq+KC1aHWW7LUKcdxePXjLmhfO4ZOGz+OSXkJgx/ecSXWLGbiXh4SIqcT+Gwv3xV35BXAMTFUIy0LWHkXUPpV4JIN4a0XJ5UBy66PSXFJakhI4BROBm2TyYSKigrxQ0wgl8vDuk6qGBsbQ1dXF9asWRPV60YyrmymC3dcXVtb24yuY9dlUQA+yBGWRdHr9RHVWzLU6UcWG3786mGYTtkAAAvzsvDo7Stwx1VFKTs2a9obPAt89Ec+YOrrmNw+fzUfLK2uArKZhBWPpLaEBE7hZNBWKBTQarXisUajEWq1etpm0D5z5gycTmfUW5zCHQ8200Uyrm6m1rGvZVEA4K677hKPibTeYl2nDieHfR1W9AyOoDA3C+uWycVFdrv6L+Jnuz7Bi/s7AQDZ6TJ866YS1NygQFY6dc0kHacD+NTIB0ufvAZwfFcqMnL53ErKB4GFa8NrXSLEh4SNcQo1gzbDMCgrK0NjYyMYhoHZbI5aBu1kZLFYkJGRgcLCwrjcn78PppkuWuPqgu1LZcKyKCaTCRKJBOXl5Vi/fn1YY/Mirbdo1OmuQ13Y9uoRdPWPiNuK8vhZcR3nL+Cpt80YGXMCAO5VFqN+0xWYPydryvdLoqzvM35x3f3PA4Mug7YXX8MHSyvvAjJTa6kektwSFji5tiSp1e6ZVj2DH6VS6bdZPtB1UpHFYkFxcTGkUmlUrxvueLCZLpJxdTOljnt7e/Huu+/iwIEDyMjIwLXXXht0WZRI6y1WdbrrUBceed7klZGnq38E//rnj8Tb5Uvz8YMvrMRVxVO7PxJl46PAJ3/jW5fMb0JMD5At5wd5Kx8AClcktIhk+orupzOZEo7jYjIwHODHlfmSyuPBYkUYV+dJGFfnS1lZ2bSv4+7ubhgMBvzqV7/C8ePHUVFRgW9/+9u46aabgq4lF2m9xaJOHU4O2149Emi5VsgkwP9+aS2a6jZQ0JRMzh0HXv8+8MRyoPkhwPwGAA5YdiOg/h3wnWPApscpaCIxlVTpCGY6q9WK4eHhmAROwcaVkUmRjqubjmPuAH5ZlD179uCTTz4Ja1kUm83m1t3pKtR6i0Wd7uuwunXP+eLggLm5mTT4OxmMDgNH/sKnETj1/uT22Qv4BJVrHwDkyxJXPjLjUOCURCwWCyQSSdQTXwqm23iwWJnKuLrpUseey6LMnTs3pGVRjEYjWlpaAEyOVRS60COtt2jXac9g4KAp3ONIBJyO4LmQug5MLIHSDNj7+W0SKXDZrfzYpcs+B8joI4zEn4TjuEAt1tNaOKshx8Orr74Ki8WCb33rW4kuCpmhOI7D8ePH8c4774jLolx//fVYsWJFyre+OJ0c3jjWg8bXj+F491DQ4/9Usx4bSgriULIZ5sgrfrJvawHFjcBBA9+61HVgcj+zhB+3tOYr/LGERFk48QCF60kkVuObCAlGWBZlz5496OnpwZIlS3D//fejpKQk5QOmMYcTf/noDHRvm3GiJ3jAJAGwII9PTUCi7MgrE+u9eXxfHzgDND0AyDIAB59AFbIMYPkX+NalZTcCUZ4wQ0ikKHBKEiMjI+jp6cHGjbS6Nomf8fFxfPzxx9i7dy+sVisuvfRSfP7znxczfKeyC/Zx/LnVgt/uYXFmYkxTbmYavrJ+CZYV5ODRFw8C8LlcKx67Y6WYz4lEidPBtzQFGpbvGAUKLgfKHgKu+hIwi1r8SPKhwClJnD7NLxZKLU4kHkZHR2EymfDee++Jy6Ko1WosXJj63SDWC6P4/Xsn8ez7J2EbHgMAzMvNxNevXYavrL8Ec7LSAQB5OeleeZwW5GXhsTtWYtOqooSUfVr77D337jl/vvBfwLIbYl8eQiJEgVOSsFgsmDVrltfyEoRE08jICFpbW/H+++9jZGQEq1evxnXXXYd584IsbpoCTvcN4+k9Hfhz6ykxceXSghzU3ViCu9cu8sr2vWlVESpXLvCbOZxEgdMBWPYBx1/jF9gNxVBPbMtEyBRR4JQkhPFNqT6ehCQnX8uiXHvttSmfKgEAjp0dgO5tFq8cOAOHk+8GWr0oD4/cVIJbr1wQMBCSSSU0ADzaRgb4/ErHdwHHXwcuhrk8zuz5sSkXIVFCgVMScDqdOH36NG688cZEF4VMM57LopSVlWHDhg1hLYuSjDiOQ+vJPjz1thlvHJtsobju0rl45KYSbCwpoC8h8dT3GR8offIacHIv4Byb3JeVx6cOuOxzQMsP+QV4fY5zkvAz5pbQOE+S3ChwSgI9PT0YHR2l8U0kaqxWK/bu3RvWsiipwOnksPtYD55861OYTtkAAFIJcNuqInzzxhKsLs5LbAFnCqcT6Gznu+A+2QX0HHbfLy8BrrgNuHwTcMl6QMaPK0Na1sSsOgl8DsvftN07nxMhSYYCpyRgsVggk8lQVEQDUsnUdHd3Y8+ePTh8+DBmzZqFW265BWVlZcjMzEx00aZkdNyJVw64pxTISJNCXVqM2usVWDp3VoJLOAPYhwD2TT5QOvE6cOHc5D6JFLhkAx8oXXEbMPcy39dYeSdQ/ayfPE7b+f2EJDkKnJKAxWJBUVER0tPTE10UkqIiXRYl2V2wj+NP+07ht3s7xNlvuZlpuH/DEnzt2qUozM1KcAmnuf7OyValjncAh31yX+Yc4NIK4PLbgMsqgZwQJ7asvBNY/vngmcMJSVKp/a46TZw6dQorVtCilCQ8kS6Lkgp6h+x45r2TeOb9z9B/cTKlwDeuW4b7rplMKUCizOkEuj7ixyodfw04e9B9P7OEb1G64jbgko1AWkZk9yOVAcuun3JxCUkECpwSbHBwEDabjcY3kZAJy6Ls2bMHp0+fRlFREaqrq6fFsigW6zCe3sNiZ5tFTCmwbO4s1N6g8JlSgETB6DDQ8fZEsPQ6MHTWZacEWLxusgtu3nIgxV9jhEwVBU4JZrFYAFDiSxKcsCzK3r170d3djUsuuWTaLItytGsAurfNePXjLjGlwFXFefjmjcFTCpAIDJ6dnAXHvg2MX5zclzEbKLkZuOJ2fibcrLmJKychSYgCpwSzWCxgGCblp4eT2HE4HDhw4IDbsii33357yi+LwnEc9nVY8dTbZrz5yeRA4+svm4tHbizBBkopEJjTEfo4IY4Dzn7Mj1U6/hpwZr/7/rzFE61Km4Cl1wNpqT2ZgJBYosApwWhhX+LP2NgY2tvbp92yKE4nB+PRbjz5thn7XVMKrC7CIzeWYNUiSikQ1JFX/MxM007OTBsbAU7umeyCGzjtfo1FpfzA7is2AfNXURccISGiwCmBxsfH0dXVhauuuirRRSFJZLouizI67sRfPuqE7h0Wn7qkFKgqLUYNpRQI3ZFXJnIheSSRHOjit5d9gx+nZH4TGLswuT89B1DczAdKl90K5FKGbkIiQYFTAp05cwYOh4NanAgA38uibNy4Efn5+YkuWkAOJxdwvbch+zj+7JlSICsND6xfgocopUB4nA6+pcln5u2JbW1PT27KLZoc2L3sBiA9tROgEpIMKHBKIIvFgoyMDMyfT9/8ZrKBgQG89957aG9vT7llUXYd6sK2V4+IAREAFOVl4bE7VqJ8qRy/f+8knnVJKVDoklIgl1IKhO+z99y75/y5+j7gmjqg6GrqgiMkyihwSiCLxYJFixZBKpUmuigkAXwti7Ju3Trk5OQkumgh2XWoC488b/Jq++jqH8E3nzchXSbBmIPfqxBSCigXITONUgqExTHGL29ifgM42BzaOZdWAAvXxLRYhMxUFDglCMdxsFgsKC0tTXRRSJx1d3dj7969OHToUMoui+Jwctj26hGfHUaCMQeHqxbNwSM3XYrPUUqB8FhZPlAyv8ln7LYPhHf+bGrFJiRWKHBKkL6+Ply4cIHGN80g02lZlH0dVrfuOX+23r4CG0ooD1BQI/18gGR+g//pO+m+PzufH9ituAl486fAUA98j3OS8LPrlmyMfZkJmaES9o7NsiwMBgMUCgVYlkVtbS0YhvF5rMlkgtFoBAC0trZix44d4rEmkwkAoFQqwbIsbDYblEplPB7ClAiJL4uLixNcEhJLHMfh5MmT2LNnD1iWxdy5c3HXXXdh9erVKbssisPJYe+n54IfCKBn0B78oJnIMQ6cMU0GSqfbAM4xuV+aBixezyeiLLmFH6sk5GjKzp+YVSeBe/A00aK3aTut+0ZIDCUscKqqqkJ7ezsAPoiqqalBc7Pv/nuj0Yj6+noAQGNjIyoqKsRzdTod9Ho9AEClUvm9RrKxWCyYN28esrNplst05G9ZlOXLl6fsmLZPzg7ixf2n8Zf9Z3B2IHhrEwCaMeeq7+RkoMS+A9j73fcXXMYHSSW3AEuvBTL9TA5YeSdQ/ayfPE7bJ/M4EUJiIiGBE8uybrcVCoXYouTJZDKhoaFBDJzUajU0Gg1YloVCoUBpaSn6+voAwG+LVTKixJfTk9PpxJEjR7Bnz55psSxKz+AIXvnoDF40deJI1+Q4m9xMGRwcMDzq8HmeBMCCPD41wYw1MgCc3DsZLFnN7vuz8viuNyFYYi4J/dor7wSWfz70zOGEkKhJSOBkNBohl7u/ocrlcphMJq9uNqVSiR07doi3bTabeLwg1IDJbrfDbp/sOhgYCHPAZZSMjIygp6cH69evT8j9k+ibTsuiDI+O4x+Hu/Hi/k7sPXEOE0vHIV0mwc1XFOIe5SLcvLwQbx7rwSPP813lPjqM8NgdK2fWgHCnAzjzkUv32z7AOT65XyLjF8wVAqWFa6cW6EhlwLLrp1xsQkh4EhI4CcGPJ6vV6nO7Wq0W/965cydUKpUYLNlsNhgMBgD8+Ke6ujooFAqf12loaMC2bdsiL3iUdHZ2guM4anGaBsbGxmAymfDuu+9iYGAgZZdFcTg5vG/uxYv7T+P1Q2dxwaUlSXkJg7uVxfjC6iLkz8oQt29aVYQn71d65XFaMJHHadOqorg+hoSwWVy6394CRmzu++UKl+6364GsOYkoJSEkipJqOo+/gMp1v8FgEMc3AXAbVK5QKFBZWQmz2ezz/K1bt2LLli3i7YGBgYQELxaLBTk5OSgoKIj7fZPoEJZF+eCDD3Dx4sWUXRbl2NkBvGTqxMsfdaJ7YLI1dklBDu5aswh3r10UcCmUTauKULlyQcDM4UktnIVyAcA+5N791nvCfX9mHqC4gQ+UFDcD8mWxLT8hJO4SEjgxDOPVumS1WoN2uWk0GrS0tLgdx7Ks2L0nzNATxj95yszMTIpcOcL4plQc8zLTXbhwAR9++CH27duH8fHxlFkWxVXPwAj+8tEZvLi/E0ddxi3lZafjC1cV4R7lIigvyQ/59SmTSrChJAW/BISyUK7TCXR9NJlTyfIh4BybPF4iBYrLXbrflIAsqb6PEkKiLCH/4SqVCjqdzmt7WVmZ33MaGxuh0WigUCjElimWZVFRUSEODhd4jp9KJk6nE6dPn8b119PYhFSSysuiAPy4pdcPn8WLpk68++l5t3FLtywvxN1ri3Hz8nkzJ6t3sIVyyx8Ghnv57reLHkMImEuAkgo+O/fS64FsJk6FJoQkg4QETp6tQSzLoqyszC03E8Mw4nEGgwFKpVIMmpqamlBbWwuFQgGtVitex2g0Qq1WJ/XsunPnzsFut9P4phRhtVrx7rvv4qOPPkq5ZVEcTg7vmc/jJVMndh0+6zYDrnRJPu5euwhfuKoITE5GgKtMQ6EslNs6OSEFGbn8ArlCTiW5gtZ/I2QGS1ibcnNzMzQaDcrLy9Ha2uqWf6mhoQHl5eWor68Hy7KoqqpyO5dhGHFsU1lZGRobG8EwDMxmc9LncbJYLJBKpSk3eHim6enpwZ49e1JyWZSjXQN4aX8n/uJj3NLda/lxS0sK/I9bmtY4Djj8cmgL5V71JaD0IaC4DJDRgsSEEJ6E47hAy01NawMDA8jLy0N/fz/mzInPbJcXX3wRvb29qKmpicv9kfB0dnZiz549OHbsGPLy8nDddddhzZo1SE9P7g/O7oER/OWjTrxo6sSxs4PidiaHH7d099piKC9hZt64unE70HWAH5tk2cf/DJ0N7dx7fwusVgc/jhCS8sKJB2gUY5xZLBZcccUViS4GcZGqy6JcsPPjll7a7z5uKUMmRcWKQty1dhFuvqIQGWmpmak8IgNdfJB0upUPkro+Ahyj7sdIpADnDH4tWiiXEOIDBU5xNDQ0hL6+PhrflCQ4jsOJEyfwzjvvJHxZFIeTC2lKv8PJ4d1Pz+Ol/Z3YdegsLo5NjlsqW5KPu5WL8IXVC5GXk9wtZFHhGAPOHuQDpNMTrUn9Fu/jcubyiScXrwOK1wELrgJ+s44PsmihXEJImChwiiNhYV8KnBLL17IoX/nKV3DppZcmpCtr16EurySSRR5JJI+cGcBL+0/jLx+dcVs4d2lBDu5eW4y71y7CJQXJP2B9SobOTQZIln3Amf3A+EX3YyRSoPDKyUBp8Togf5n3YO5NWloolxASEQqc4shisSAvLy9u46mIO4fDgY8//hh79+5Fb29vUiyLsutQFx553uTV7nG2fwTffN6Eu9cuwtGuAbdxS/k56bjj6oW4a+0irF08TcctOR1Az5GJsUmt/O++Du/jshg+j9Lia4DF5cCiUv+L47qihXIJIRGiwCmOaGHfxBCWRXnvvffQ39+PFStW4N577034zEaHk8O2V48EmhSPl/Z3AuDHLalW8vmWbrx83vQbtzRsBU63TbQofQh0moDRIe/j5i2f7HJbfA1QcCkQabcqLZRLCIkABU5xMj4+jjNnzmDVqlWJLsqMMTIygra2Nrz//vtJuSzKvg6rW/ecPzXXL8M/33IZ8rKTdNxSuMuWOJ3A+U/cxyadP+59XEYunwpA6HJbVBb9ZJO0UC4hJEwUOMVJV1cXHA4HtTjFwfDwMD744APs27cPY2NjWLt2La699tqkWRalq/8i3vu0FztbfQxk9mHVorzkDZpCWbZkZADobJvscutsA0b6va9VcOlES9JE19u85dT6QwhJOhQ4xYnFYkF6ejrmz6cpzrEyMDCA999/H21tbUm1LErvkB0fsFa8Zz6P9829YM9fCOv8wtysGJVsivwuW3IGaHqAX+R2qIcfq+R5THoOPx5JGJ9UXA7MSsH17gghMw4FTnFisViwaNGipM4LlKpcl0VJT0/Hxo0bcc011yRsWZTBkTHs67DiPXMv3v30vNvAbgCQSoDVxQzWK+RobjuNvguj/ibFY0Een5og6QRctmQC++bk38ySiS63iSBp/ipaDJcQkpLonSsOOI6DxWLB2rVrE12UaaWnpwd79+7FwYMHE7osysiYA+2f9eHdT8/jPXMvDnb2w+F0DyiWL8jFxpK52FhSgHUKOeZk8V1vaxczeOR5k79J8XjsjpU+8znFFcfx45e6DwM9R/kfywehLVty8/cA5UNALrW0EkKmBwqc4sBms2FoaIjGN0WJ57Iot912G9auXRu3ZVHGHE4csNjwnrkX75nPw/SZDaMO90zUy+bOwoaSAmwsKcB6RQHmzvYdzG1aVYQn71d65XFa4JHHKW4u2iaCoyMuv48AF/siu568hIImQsi0QoFTHAiJL4uLixNcktTFcRw+++wzvPPOO2BZFgUFBXFbFsXh5HC0awDvmfkWpX0dVgyPOtyOWTAnCxsvLcDGkrnYUFKARUx2yNfftKoIlSsXhJQ5PGrGLgLnPpkIjlxakgY6fR8vkfJB0PyVQOFKfttbDcHvh5YtIYREgcPpgKnHhHPD5zAvZx6UhUrIEjR5hAKnOLBYLJg7d27CxtykMmFZlD179sBisWDBggWoqqrCihUrYrYsCsdxMJ8b4luUPu3F+2wv+i+OuR0jn5WBDYoCbCgpwLWXzsXSgpwpJaKUSSXYUBKDwdGOccDKTrYcCS1JVtb/em1ziicCpBV8kFS4Eph7OZDuMkjd6QBMz9CyJYSQmDN+ZsT2fdvRPdwtbpufMx+PrnsUqiWquJeHAqc4oMSX4XM6nTh69Cj27NmDs2fPYvHixUGXRQl1vTdfLNZhvG/uxbsTrUrnXJY1AYDZmWm4ZpkcGy/lxyldMT8X0mi2CIWbC8kTxwH9pz1akI4A544DDrvvc7LlwPwrJwKkFfxSJYXLgay84PcnldGyJYSQmDN+ZsSWt7aA8/iC1jPcgy1vbcETNz0R9+CJAqcYs9vt6O7uxrp16xJdlJTguSxKSUkJHnroISxZsiRgi04o67256hkcwfsTLUrvsedhsbqveZaZJkX5Urk4Tmn1ojykyWKUrTuUXEiuLvS6B0dCN5t9wPf103NcgqOVkz+zC73XcAsHLVtCSEpJpu6uUDicDmzft90raAIADhwkkEC7T4ubF98c18dBgVOMdXZ2guM4anEKYmxsDPv378e7774rLotyzz33YNGiRUHPDbTe2yPPm/Dk/UqsVxTgA9aK9ydalE70uC/nkSaVYM1iBhtLCrChZC7WXsIgKz0O/4h+cyF18dsrHuPzG/UcnZzVdqHH97WkaXyXmlsL0go+FUCMujVp2RIy06Ra8CFIhu4ujuNgd9hxYeyC75/xCxgeG8bQ2BAujF3AZ/2fuZXX63rgcHb4LEw9JpQvKI/LYwAocIo5i8WC7OxszJ07N9FFSUp2ux2tra3isiirVq3Cddddh8LCwpDOD2W9t//3p/0Yc7gfIZEAVy6cIw7mLl8qx+zMOP87BMyFNLFt9498n5u/dKLlyKUVqeBSIC0jNmUNhJYtITNEMgQfkZhKd5eTc+Li+EX/wY6Pn+HxYVwYu4ChsSEMj7n/7eAcPu9nKs4Nn4v6NQOhwCnGhPFN03IF+ykYHh7Ghx9+iA8//HBKy6KEst6bEDRdWjgbG11SBDA5cQgyHOPAYBdgO+Xx8xk//uiC/29ToqKrgSXXTgZI864AMmfHvuyExEgqttok41gbVxzHYdQ5ipHxEf7Hwf++MHYBP37/x367uwBg656t+MunfxEDJDHgmWgB8nXuVOWk5WBW+izMSp+FnPQczE6fjZx0fpvwd9/FPrxsfjnoteblxHf9UQqcYkhIfHndddcluihJY3BwEO+99x7a2toAAGVlZdi4cWPQZVHGHU6c7rsI87khmM8NgT13AeZzQzjSNTmuRwon1kmPoRA29IDBPudyOMF3Uf3ki1figQ1Lo/+AHOPA4BkfgdFEcNTfCUz1G9bGfwFWq6NTXkISLBVbbaYy1sY1oLk4ftEtqBF/C/scI7CP23HRcdErAHL92/XYEcfkdSMNcEYcI3jr9FsBj5FKpJiVNguzMmbxvwMEPEJAJP74OE8qCT58wOF04P2u99Ez3OPzsUkgwfyc+VAWKiN63JGiwCmGzp07B7vdTuObAPT19eHdd9/F/v37Ay6LMjgyJgZFrgHSyfPDXkkmXd0q3YfH0p/FQolV3HaGk2Pb2IN43bkOlxZGuF6dY4zPbWSz+A6OBkIIjKTpQF4xwFwy8bOE/32xb6KrLgjKhUR8oFab8I07xzHqGMWoYxR2h138bXfavbe5/P1p36chjbW58+U7IZPKvAKdWLTYBCKTyJCdlo2stCw4nU5Y7dag59x96d24puga76Bn4idLlhX3nhOZVIZH1z2KLW9tgQQSt3qUTMze1azTxP11T4FTDJ06dQpSqRQLFy5MdFESRlgW5dChQ8jOzsbNN9+M0tIyWO0c2k4PwXyumw+Sei6APT+E7gE/U+cBZKVLoZg7G4p5s1AybzZKCmdjaUEO/vD7X6Fh7Bdexy+AFU+m/wLfS6/HumW3+76oY4yfxt8fKDDyH7ABAGQZHoGRS3DEXMIHPr7+sZ0O4L3/oVxICZSKwQcwPVttAODH7/8YUokUY84xt0DGVzAz6vQf6PjbFovxNa5ODZ4KuD9NmoZsGR/QZMoykZWWJQY4WbIs998Tf2enZYd0bHZaNrJkWchMy0S6dHIVhdazrfj6618PWvY7Su6I6wDrUKmWqPDETU/4fL1r1mkS8nqXcBwX31A4iQwMDCAvLw/9/f2YM2dO1K//0ksv4dy5c6itrY36tWNlKrmQXHV2dmL3m2/jg/0fY1SShdylq2DPuwQnrXaw54cwMuY/GCnMzZwMjiYCpJJ5s7AwL9s7d5LTgYs/W4nM4bPwVUwnB4xmz0OWWsdPmfcMjAbPhBYYMZcAeYsDBEYRzloTZ9UBPnMhVT+b9NP6KfiIL3+tNsI38EhabRxOB+wOe1jdRT63+drvMtZmzDkWvDBxkiZNQ6YsE5myTGTIMpAhzUCGLMNtm/B7cHQQH3R9EPSa31Z+G1fNu0oMYlwDIM+AJl4cTgdufeHWoN1du+7dldT/t7F+nwknHqDAKYaB0y9/+UtcdtlluO2226J+7VA5xsdx7MPXcbGvE9n5i7D8mlshS/Pd0LjrUBd+8spBLB46II4Tssy+Gj+4c7XfNdM4jsO5QTs+PTcEc88Q2g8fR9sH7+Gzkx24IMlGVvFKpM9bConHCzxdJsHSglleAZJi3ixxAVz/D2qM7+YatgLsW2J3lwOAKSsT52QyzHM4oByxI6R/K1nmRBDkJzCaVRi76fwAcOQVOHZpYBrtnSx7xlzIUiAXEgUf0eHknBhzjmHcOY4xxxjGnC4/LrdHHaPY8tYW9Nn9rx04K30W7rr0Low5xsTxL3aHfXIsjeMiPzZm4u+R8ZGkCmgW5y5GYU6hW/DiGciI21yCHZ/7/WzLkGaE9aGb6sGH8HoH4LO7K9ED25MBBU4himXg1N3ThS/V3YqiqzJRsGg2luWuxIWxfuRlz8MCZhnuurEOGRn8wq+jo3a8/LYOPQOnUDjnErd9voR6/P7Xn8H897ehM2tI/EBeNDIb3Rsew9pbv+p27K5DXXj5j0/h++nP4mz2BfH4BRdn4adjD+Lzm+uwfEHuxNijC+JvtmcIAyNjGO87gxHLYTgGz0E2Kx+ZxVcife5i5M/KxKXzZnsFSIvzs5EmlQBjw3wAdNHq/tvXtotWYLgPsPd7PVZjTja2F+Sj2yUonD8+jkd7+6AavgjkLgDmr/LdajRrXmwDoyAo+IgNIRgZdYy6BSAjjhE8/PrD6B3p9XtuXkYevl36bTicDjFoGXeO+wxm3Pb72C5scz3f89hYdyGFQ2gdEbqJ3LqV/HQzZcoy3bqKhONcu5M+6fsEmneCj+n73a2/S8ouo1QPPny9zyzIWZCw7q5kkxKBE8uyMBgMUCgUYFkWtbW1YBgm7GPDuY6nWAVO33l6E/56zgzrXhuY6xnIsr2/gcjHnbhbzrdEvWR9DdY0qde++zc96nXe87u2h3T8wTeb0Hv4P/EbOYNzaZP3P2/cgW9ZbSi48j+w+uZqAHz33PZf/hLXpv3W7/F/H3wAb8vWQ5o5S9zHcU6MnbdgtPMwZjsGUbKoENeXrcTGS+di6Sw7FmZcxGzHgI8AqA8Y7uX/9rccSCiyGCA9G0aHDVsK5/JvZS6DFyUTL+0nes5DVdWclLmGkj34EDg5JxxOB8a5cTicDow6RqF+VY1zF/3nT5FnyfHT637KBzA+WlFGnaO+gxCHn7/9tMCkQjASLplEhjRpGtKl6ZM/snTYHXacv3g+6Pk3Ft+IKwuu9ApehN+e42aEvzNlmSHNdopEqrfaAKkffKRqt3o8pETgVFpaivb2dgB88KPRaNDc3Bz2seFcx1MsAqfvPL0J/0g7jaEjQzj/j15kLQl/JoJw9LqsK1C6vELc3n5sN/aNfOL1luN5vNPpxLH3f4W3Z6X5PfaGoXGcyLkbw2NODF4cxXVpr+Gd2f6Pv3loFAOOS3HfTZdDMXsMfd1ncZjtwuDgEC5jHLihyI4leYhs1oU0HciRAzkF/PppOfkTv+Uevwsm/85mAKkMjvFR3PqsEt1S+Fw+RMJxKHQCL9/3LqSydD4A4BzgOI7/DQ5Ozin+CPu8tnkc5/UD39uF+3Fi8m/ht8PpwBPtT2Bg1M9SKQBmp8/Gl5d/GRw4t8DFwTnEazg4B8ad4+LtcW7cK9Bx3RfJ+fGeFRQLMokMGbIMcByHEUfg3F8AsEK+AotmL5oMYGTpboFMmjTNbZtboONxbDjHpUnS/H6YhTrQl1ptYoeCj+kpnHggIbPqWJZ1u61QKGA0GsM+NpzrxMPQhQEY004DADKKMpG1OAtMOQNZrp9/KiFm9RVscBy6nD1wXpIFjgPsoyM4M6cb+dL8AMd348jgAcyBFextBciXSv0e2+HkcNvAOwCkSMco/po3F/kSid/jDw+Mo+DdE/hH1yn09IxjZMQJ+fx0FK/JwtH8HBxGLpwAnNJ0ONMy4JSliz8OaTo4WTocUhmc0jQ4pTI4pVI4JTI4JVI4JRKPwGUIDkc/uEEWjn7HZGDidA9QHJyDH8ch8x+scRIJumXAhp2pmUtraGwIOw7uSHQxIrZg1gIUZBX4DhI8twUINtKl6ciQZbgHGB4BSIY0I6RgJNTg47vl30264ENZqMT8nPlJl9cmVMk4QypcMqks6V4XJL4SEjgZjUbI5XK3bXK5HCaTCUqlMuRj29raQr4OwC/vYbdPdg0NDPj/ph+J/37hW3BOBB4SqQSSAB/o/EEB9kskGJIBTZ2/n9wWaJFZiQRDMgk+Zo4KBwc99iUxSbf/8VTC8f3dY+jodOCQ1ImcS2dj1uWz0DsnDSf8njTG/zjA/yTP2FM3EkgglUi9fyCFVDrxe2KbRCKBTCJzO04CfpvrPuFv8ffEfbhtk0hw/uJ5HLMeC1rGDQs3oCSvBDKJDDKpTOzGcb0t/C0ECMIxUol0crvHMVKJ1O06rsf4u680CX/N/T37UdsSfLbo49c9nnQfMqkcfCRrXptwqJaocPPim6nVhqSshARONpvN53ar1TtJV6Bjw7kOADQ0NGDbtm2hFDEi5+xdwMQqHtIMKSQyCfrbvAcyh6PA4cAsJ4dhqQTnZcHfWAocgEQixXlpkCn2AAqlOSjIkWPAPoDOscBB5Gj3KBbPK8R9//w1zCue5xY8CMGBTCrzGUj4+vF5jI9gxdfxrr8Pnz+M7+39XtDH+uuKX6N8Qbn7fU0EOYkSastHzeqapAs+1i1YR8FHglCrDSGJlVQJMP0FQuEe62/f1q1bsWXLFvH2wMBAVLN6z8ssAjh+5XpZjgwFqgI4R4MHMIH8W+GXcccND+OVPb/Df3f/Iejx357/FSy6fC3+fc+/Bz12+/U/R2lRKT46245/eyf48b+59Ve4eXlyvSkvyV2C/zH9T9AP8GsXXpt0H4TU8pE4qR58UKsNIYmTkMCJYRivViGr1epzNlygY8O5DgBkZmYiMzNIt9QU/Nu9v4GheSOcACCRQJYjgywnwBtZgDFOEo7DXAeHh+59FBkZmfjaPfX483N/Rq9MAi7A8V+7px6ytDT87PBP0ecY9HtsvmwObltzG2RSGQrn34biow3oGe33e/z8TAY3XH5zqFURN6n8AZ7KZQco+Eg0arUhJDESkrxGpfL9hlpWVhbWseFcJx5mz5oD1XgxfyPYZEWX/RKPY4XbX5p7l5ifKSMjE1+ee1dIx8ukMvzghp/wQZBnOTgOnESCH9zwY/EDQiaV4dFrtwESie9rSyTQbPxR0n6gCB/ghTmFbtvn58xP+lk6qVx2gC//6/e+jt/d+jtor9fid7f+Drvu3ZX05RYIwcftittRvqA8aV/jhJDkkZAWJ4VC4XabZVmUlZWJLUUmkwkMw0ChUAQ81rNlyfM6ifBfD+/Cd57eBGPaaQTqpJvn4PCliUDoT+dfxvm0yZaeuRP7ar/4U7dzar/4U+AvoR2vWqLCf9/0396tAbMW+EysyH+A+z5ek+SJGIHUbj1I5bID1PJBCJlZEpoAU6fToby8HK2trdi6dasY8FRVVaG8vBz19fVBjw20L5hYZg4fujCA/37hW+gZ6QSAhGQOB8LPOUI5SgghhMw0KZEAMxnEeq06QgghhCS/cOKBxC3QRQghhBCSYihwIoQQQggJEQVOhBBCCCEhosCJEEIIISRESZU5PN6EcfHRXrOOEEIIIalDiANCmS83owOnwcFBAIjqsiuEEEIISU2Dg4PIy8sLeMyMTkfgdDpx5swZ5ObmRn2xV2EdPIvFQqkO4ojqPTGo3hOD6j0xqN4TI5b1znEcBgcHsXDhQkilgUcxzegWJ6lUiuLi4pjex5w5c+gfKwGo3hOD6j0xqN4Tg+o9MWJV78FamgQ0OJwQQgghJEQUOBFCCCGEhIgCpxjJzMzEY489hsxM/2vOkeijek8MqvfEoHpPDKr3xEiWep/Rg8MJIYQQQsJBLU6EEEIIISGiwIkQQgghJEQUOBFCCCGEhGhG53GKFZZlYTAYoFAowLIsamtrwTBMoouVkkwmE4xGIwCgtbUVO3bsEOsyUD1Huo9402g02Lp1K9V7nBiNRrAsC4VCAQBQqVQAqN5jiWVZGI1GyOVysCwLtVot1j/Ve/SYTCbU1NSgvb3dbXss6jim9c+RqFMqleLfZrOZU6vVCSxNatNqtW5/u9ZtoHqOdB9x197ezgHg+vr6xG1U77HT0tLC1dbWchzH15FCoRD3Ub3Hjuv7DMdx4nPAcVTv0dLc3Cy+n3iKRR3Hsv4pcIoys9ns9oRxHMcxDJOg0qS29vZ2t7ozm80cAM5sNges50j3EW/Nzc2cQqEQAyeq99hyrWuO4+tN+E31HjuedeQavFK9R5dn4BSLOo51/dMYpygTmntdyeVymEymBJUodSmVSuzYsUO8bbPZAPD1GaieI91H3BkMBqjVardtVO+xw7IsrFYrGIaByWSCzWYTu4uo3mNLLpejtLRU7LKrrKwEQPUeD7Go41jXPwVOUSZ8uHuyWq3xLcg04frBvXPnTqhUKjAME7CeI91HJtlsNp/jAajeY8dkMkEul4vjMvR6PQwGAwCq91hrbm4GAJSUlKC5uVl836F6j71Y1HGs658Gh8eJvyeShMZms8FgMHgNKvR1XLT3zURNTU2ora0N+Xiq96mzWq1gWVb8clBbW4v8/HxwAXIUU71Hh9FohFarBcuyqKurAwDodDq/x1O9x14s6jha9U8tTlHGMIxXVCs0v5PIaTQatLS0iPUYqJ4j3Ud4RqMR1dXVPvdRvceOQqEQ6wqA+NtkMlG9xxDLsmhtbYVKpUJtbS3MZjOamprAsizVexzEoo5jXf8UOEWZMHXYU1lZWZxLMn00NjZCo9FAoVDAZrPBZrMFrOdI95FJTU1N0Ov10Ov1YFkWDQ0NMJlMVO8xJIxn8oXqPXZMJhPKy8vF2wqFAlu3bqX3mTiJRR3Huv6pqy7KPN/8WJZFWVkZfdOIkMFggFKpFIMmoQvJsz5d6znSfYTn+aZTV1eHuro6nx/sVO/Ro1AoUFZWJo4vE3I5KZVKr2Op3qNHqVRCp9O5jafs7e2leo8h1zGUgT4zk/V9nhb5jQGWZaHT6VBeXo7W1la35IEkdCzLoqSkxG0bwzDo6+sT9/ur50j3kUk2mw16vR4ajQa1tbWoq6uDUqmkeo8hm80GjUaD0tJStLe3iy2tAL3eY8loNIpdogD/5YHqPbqMRiNaWlrQ2NiI+vp6lJeXi8FqLOo4lvVPgRMhhBBCSIhojBMhhBBCSIgocCKEEEIICREFToQQQgghIaLAiRBCCCEkRBQ4EUIIIYSEiAInQgghhJAQUeBECCGEEBIiCpwIIXFnNBpRUlKCxsZG6PV6lJaWorS0VEy4WVJSApPJNOX7EK5JCCHRQkuuEELizmazoaWlRczO3NLSArlcjtraWgDA5s2bwbKsz2UvQqVSqbB58+aolDceXJehIIQkL2pxIoTEndVqDbiorVKp9FrdfDpjWRZNTU2JLgYhJAQUOBFC4q66ujoqx0wXWq020UUghISIAidCSNyF0iXV1taG0tJSNDY2AgAMBgNKSkpgNBoBTI6Tqqurg8FggF6vR11dHWw2m99rGo1GNDY2wmAwQKPR+D2OZVloNBrxusI1TSaTeH5jYyNYlhWvG6yswngro9EIvV6PqqoqcV9bWxtaWlqg1+vFaxJCkhONcSKEJCXPMUpqtRo7d+50269Wq1FQUCCusm4wGFBVVYWWlhav6wnBUHt7OwC+u1BYqd2VzWZDZWUl2tvbwTAMNBoN9Ho91Go1NBqN27VLS0uxe/fukMqqUqnQ0tKC5uZmAEBzczNMJpO4r6SkRBzjRQhJXhQ4EUJSmmvrlVqtRlVVlc+B1jqdDnK5XGwFAoDW1lav6zU1NUGhUIjnb926FQDQ0NDgNVhdoVCgqakppICnoKAABQUFbuWeSeO4CJkuKHAihMwYSqUSKpVKvO0r4PEMuuI9041m1xGS3GiMEyEkaTEMg97eXvG20Wj0GsPkettgMEClUrkFHsL+zZs3u7U2CdfzpFarvXJIGY1Gn+ebTCZxEHsoZQ2FrzIRQpKHhOM4LtGFIITMTEajESzLirPKNBoNysrKxC4xm80GjUYjDqTW6XSw2WzQ6XRQKBTQaDSw2Wxi91xrayu2bt0KhmFgMplQU1MDANixYweUSiWMRiNaWlpQXl4OAF5Blmu5fB1nNBphMpmgUCjQ2tqKzZs3h1RWm83mVhZhvJVSqRQfu1arRWlpKVQqVcBUDYSQxKLAiRCSsoQs4zSomhASL9RVRwghhBASIgqcCCEpyWg0wmg0itP6CSEkHqirjhBCCCEkRNTiRAghhBASIgqcCCGEEEJCRIETIYQQQkiIKHAihBBCCAkRBU6EEEIIISGiwIkQQgghJEQUOBFCCCGEhIgCJ0IIIYSQEP1/1x0sVcvqRXkAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -780,9 +780,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACM3klEQVR4nO3deVxb15k//o8kdgxchFm9ACLe8C7Ajt2mWSxiZ3EmTVjSNk3aTg1tZ35tx/Mtsjudpm6nxaJt2s7SRDhdsjQtS9M0bhOnyGnaNAlmkePYJt64gDcMNkLsCJDu74/LvUggCSEktPC8Xy9eoKurq6Oj7eGc5z5HwnEcB0IIIYQQMiuprxtACCGEEBIoKHAihBBCCHERBU6EEEIIIS6iwIkQQgghxEUUOBFCCCGEuIgCJ0IIIYQQF1HgRAghhBDiIgqcCCGEEEJcRIGTh7AsC7Vajfj4eGRlZTndNysrC/Hx8VCr1TAajQvTQOI39Ho98vPzZ32deFNtba3P7juYCO97iUSCrKwsVFRUoKKiAqWlpSgsLKR+dkFpaSni4+Oh0+l82o5gfS4rKyuRk5Pj62YEF454lEaj4RiG4Zqbm+1eX1dXxxUUFHAlJSUL3DL7tFrtjG1lZWVcQUGBD1rDs9emYFNXV8cpFIo53cZT/VJTUzNjW29vr9PXrT2efp34w/PubhtUKpXd97RCoeA0Gs18m+VV/tDvSqWSq6ur83UzOI4LvueytbWVKysrm9N7mzhHI04exjAMioqKoNVq7V7vbyNMdXV1M7bl5+ejuLjYB63h2WtTsJHL5XO+jaf6hWEYu9tKSkqgUChcPo6nXyf+8Lx7ug2lpaVQq9UePaan+UO/B4JAfS4VCgVKS0vtvu+Jeyhw8oLS0lJUV1fP2G40Guf0xeRtlZWVYFl2xnaVSoWCggIftMhxmxY7T/aLXq9HRUXFjO0ajWZOH66efJ34w/PujTYI/elv/zAJ/KHfA0UgP5d6vd6vvnsCXYivGxCMlEol5HI5amtrbb5YmpqaoFKpHN6uoqICCoUCLMtCoVCItzUajaisrIRCoUBdXR1KS0uhVCoBADqdTvwv6MiRI2BZFizLoqenBxqNxuF96XQ61NXVgWVZ8Uu0rKwMer0earUaLMuitbXV4X0YDAY0NzdDq9WisrIScrkcVVVVOHjwoNi22R6Xq22afhyAz0ewvs6ZyspKm8slJSWzHtPdxyzcTi6Xo7CwEAD//M32fExvj3Vfudovs/WvgGEYaDQam2MIwf6RI0dsbu+of1x9nbj7WlQoFOKxtFotWJYVA7uamhrI5XLs2rULRqMRNTU1Yv876r/Z2uWoDeXl5WBZFjU1NVCpVGBZFvn5+VAoFNBqtbN+GTU3N0OpVNoEpM7aKIwOCCMHQvtceQ174jHP9p7y1GdRRUUFGIZxa+R1Lu9ZZ/c/l/cMELjPpdFodPkfIuG2wnOjUChgMBigUqnsvufVajUqKyuh0WhcfhzT+yUvL2/e77MF5+u5wmAjzDHby/8Qckvs5TgVFBTY5J6oVCpxTrqsrIxrbW0Vr1MoFFxvb694WciXsc4RUCgUs85p19XVcUqlcsb25ubmGfk3ju6jrKzM5vFNP56zxzWXNhUUFNjcd2trK6dSqZw8Op5Go5nRRuvnwdkx3X3MNTU1HACb56ysrMzmObfXx876ylm/zKV/nVGpVDbHmq1/5vI6cee1qNVqbe7P3nNp3cez9d9s7bLXBnu5aPbyXKbnxfT29nIajYZTKpU271VnbRReS3V1dVxzc7P4WGd7DXv6MTvjic+isrIym1yc3t5eDoBLOU7uvmet73+298xieS6nKykpsXncra2tM3LP7L0fVCqVzfPpTr+4+j7zFxQ4eZjwAmptbeUAiG+01tZW8QNneuAk7Dv9OMI+BQUFNi/M6V9wzc3NM24/fR975hI4OboP6w+B1tZWjmEYlx+Xq21qbm62Oa5gtoRS4QN5+oedRqNx6ZjuPGZHj0Foi/AamN7Hs/WVvWO607/OWH/gudo/rr5O3HktCn0m0Gg0Nvdn/Z6YrS9caZej98P0pHl7j0WlUnFKpZLTarXiz/Rg0ZXnePr1zl7D3nzMjsz3s2j6cypwJTl8Pu9Z4f5dec8sludytrZxHDcjWHP0D9/07z1Hj8NevwhceZ/5C5qq8xKFQgGlUonq6mqUlJRAr9c7naJiGMbmdNzW1lZxvrqmpgYAP+QqTBkZDIYZ92eNYZgZ+8yXvftwdkr9bI/LVU1NTXaHaoXpAkfTn01NTWAYxmaYWuhLYbphtmPO9TE7IrTDUa6BO33lqf61x90+F/ax5u5rkWEYKJVKccpbeB6F4X9rrvSFu+0qKSlBVVUVlEoldDqdw8eem5trM10xnTttnO017K3H7Mh8P4uEPnCHq69JV+5/tvfMYngu7T2e6c/NXJ8rd/pF4Or7zB9Q4ORFpaWl0Gq1KCkpcfoCFJLGrV8o1n/r9XqUl5cjPz8fRUVFXpvvtfeFNB+zPS5X2+RuMqaz2/lbgudc+0rol/n2r7P2+JLwWiwuLhY/THNzc1FaWora2lqoVCqbx+qNvrBuw65du6DRaMCyrNvHdaWN0z8nZnsNe+sxO+KJzyJ38poAz7wmPdVnwfBceor143KnXwSeep8tBDqrzouKioqg1+tRW1uL3Nxch/splUq7owRGoxFGoxG7du3CwYMHxQBMeKF6+mwYvV7v0eM5e1yu0uv1YrLgdCzLIi8vz+n927svo9Ho9jHdJTyX0xPnBXPtK71e75H+dWSh+2c64bVYUFCA2tpa6HQ6KJVKFBQUQKvVzhh98EZfCG2wPtnD3S994ThzbaOz17A3H7M9nvgsctRmV3jiNempPgv059JR29y5P+tRr/k8Dk+9zxYCBU4eJpxtAPCRtUqlQlVVldMRJ5VKhdzc3BmVaaurq8WRBesvXOGFOtuH3GyEsx4A/sPH0Ze6u/fh7HHNpU1KpRIqlcpm+Nf6i9XZsQoKCmxOvTcajaiurnb7mK5+sOj1ept9y8vLndZJmq2v7PWLO/3rKnf7x575vBaFKW/hfSX03/RjutMX04/h7P1QWlqKffv2zav8grvvB0evYW8/5uk88VmkUChQUlJic2aZ0Wic8X6xxxPvWU+9ZwL9ubTXtunPi3D2nqP7ENpgPSsw3/71xPtsQfg6ySpYtLa2ciUlJRwArqSkREwCtj5rQjg7g2EYsQqtdTKecLaJ9W2E7WVlZVxdXR1XV1fHtba2iom8zc3NXEFBAQdAPAtBuA+lUjlrgp1wbCG5z97xnN2HSqUSz5AQ9ikrK3PpcbnapunH0Wq1NgnarhxPo9FwNTU1Lh9zPo9ZSNKsqanh6urqOI1GY3OGyPTb2WuPvb6arV9c7V9Hpp8NM9f+8fRrUSAk81tftj6zy157rftiLu1y1AbhPTdda2ur0/e0q22sq6vjVCoVxzCM3cfnymvY04/ZUds98VkkPBbhOEql0uXq4e68Z+095ul9ttieS2ePx/p5mf6cCJ9nQhsLCgo4hUIxa//O1i8c5/h95m8kHMdxPojXCAlaQr2S5uZmXzdlTgoLC1FcXOz//+35gNFonLUOGyHBJicnBxqNZsFe94HyPqOpOkIWMWGoXfjb3TOegpH1VIgwnUII8axAfJ9R4ETIIlZeXo7S0lIAfE6Ds5MYFhuhKjLg/plghBDnAvF9RlN1hHiQTqeDRqMRf7u6LIyvsCyL2tpacYkFmqabotfr0dTUBABOa/oQEowqKiqgVquhUqnE394QiO8zCpwIIYQQQlxEU3WEELeVlpYiPj7e5hRx4pher0d+fr5b1ecJIf6BAidCiNvsrVyuVqtRWFi4oO2YvuK8vx1PoFQqxZXug4G3+okQf0aBEyHEo/Lz81FcXLyg91lXV+fXx7MWKAmwrvBmPxHir2itOkKIRy306cSVlZUeXX7I08cLVtRPZLGiwIkQP2Y0GlFZWSmuAF9aWjpjKYXp0yXWZ6Y4u66iokKcZmNZVjwDUCjgqVAoUFpaKo4qaDQa8XbCWXjT6fV6qNVqsCwrLpMiHA8Ajhw5Ii7l0NPTIx5TeKxqtRo5OTlobm5GVlYWlEoltFqtuIr8dDqdDnV1dWBZVlzKwvpMRkeP0RFHx7P3uITTqDUaDUpKSsTHKZfLxalKo9E443E6IrRVWJx1tjMc3Xlu5/I4AMfP12z9TkhQ82XZckKIc2VlZTZLEygUCptlIDQajc2yE9ZLHDi7rqCgwGYphdbWVk6lUtnsKyy30NzcLB5n+nIOvb29HACbYzU3N3MKhcLmcdTV1XEKhcJmP4VCYbOUivWSL729vTOO4YiwNMR0sz3GuR5PeAzWVCqVTX/U1NRwAGyes7KyMq6kpES8bK9/pi93o1KpbPpmuvk8t648DleeL0f9REiwoxwnQvwYy7I2Z6wpFArxsjBCc/DgQfH6qqoqcdFNR9fp9XrodDqbKTWFQgGDwSAem2EY6PV6qFQqKJVKaDQaGI1GVFRU2IxsMAzj0mKicrkcLMvOuE/rqZ7a2lrxWAzD2F1k1FWuPMa5sjfCNr3SutAf1gnzBw8edDqtJdTSsh5hKiwshFartbv/fJ9bVx6HK88XIYsVTdUR4seEKSphaRSDwSCuSN/U1ASGYWy+9IT9dTqdw+uEqb/phOlA4cty+j7CMd01/XgMw4iPBeDPOLO34rs7mpqaXHqMC0F4HvR6vd02Cf1qHdC1trY6DFKcPe+uPreumO35ImSxosCJED+m1+tRXl6O/Px8FBUV2XyZTQ8yrLl7nTV7QZI3zwgrLS1FeXk5jhw5gsrKSocjLrMRRtw8Rcg5sscT92M0GqFQKGyCGmcBjieeW0/dzpqzfiIkmNBUHSF+ymg0YteuXTh48CBKSkrAMIz4BceyrN0RGuF2zq5TqVR2RzNYlkVeXp7D9iiVSq9P1Rw5cgQ6nQ4FBQVuL78gTDG68xgdHc8RV0ZgjEaj+JzY46hfHQUz3nhuPTGS5KyfCAkmFDgR4qeEkRPrL1zhC06Y9ikoKBDPagL4L8/q6mqn1ymVSqhUKpupIeFLz9mZXAqFAiUlJTZncxmNRuj1erdGLKbfprm5GQzDoKCgYE4jF9a5N0JA6e5jdHS86duF9tsb3ZreH+Xl5SgpKXH4mFQqFXJzc1FbW2uzvbq62mH75vPcuvo4prM3jWqvnwgJdrRWHSF+TDgtPD8/HwD/ZaVWq1FcXCx+EarVaiQkJIhJwNYjNbNdJyz90draanOquUajQVNTEw4ePDgjkBFOdRem8oQ2ajQayOVylJeXo7a2VlzkWJhutN5WUVGB8vJyKBQK8T5qa2tRWFgoljpgGAalpaUujTwJbcjKynLpMbp7PCFYEfqjqqoKer0eGo0GBQUF4qn8Bw8eFPOaANiUAxD6oqyszKY9QluF6dDZAjx3nltXHodCoXDp+XLWT4QEMwqcCCE+ZzQasW/fPhw5ckSckmRZVly+JVC+lIXAqbm52ddNIYR4CU3VEUJ8rrKyEqWlpeIolnBav0ajoSCEEOJXKHAihPicUqm0Wx1cp9OJ05SEEOIPaKqOEOIXdDqdTa0jV5ce8RdCbpjwm5YgISQ4UeBECCGEEOIimqojhBBCCHERBU6EEEIIIS6iwIkQQgghxEVBv1adxWLB9evXERMTA4lE4uvmEEIIIcTPcByHgYEBpKWlQSp1PqYU9IHT9evXsWLFCl83gxBCCCF+7sqVK1i+fLnTfYI+cIqJiQHAd0ZsbKyPW0MIIYQQf9Pf348VK1aIMYMzQR84CdNzsbGxFDgRQgghxCFXUnooOZwQQgghxEUUOBFCCCGEuIgCJ0IIIYQQFwV9jpOrzGYzxsfHfd0MQhZcaGgoZDKZr5tBCCF2mS0cGtoM6B4YRVJMBLZlyiGT+q680KIPnDiOw40bN2A0Gn3dFEJ8hmEYpKSkUK0zQohfOXamE4eOtqCzb1TclhoXgaf2ZmPPhlSftGnRB05C0JSUlISoqCj64iCLCsdxGB4eRnd3NwAgNdU3H0SEEDLdsTOd+PJLenDTtt/oG8WXX9LjmceVPgmeFnXgZDabxaApISHB180hxCciIyMBAN3d3UhKSqJpO0KIz5ktHA4dbZkRNAEAB0AC4NDRFuRnpyz4tN2iTg4XcpqioqJ83BJCfEt4D1CeHyHEHzS0GWym56bjAHT2jaKhzbBwjZq0qAMnAU3PkcWO3gOEEH/SPeA4aHJnP0+iwMkDzBYO77f24I8fXMP7rT0wW+wNLnqGXq9HaWkpJBIJ1Go1KisroVarUVhYCJ1O57H7qaysRHx8PPR6vceOudBycnJQW1srXq6srER+fr5btyWEELJwkmIiPLqfJy3qHCdPWOiMf6VSCY1Gg8rKShw8eBAMwwAAjEYj4uPj0dzcDKVSOe/7KSkpQU1NzbyPIzAajWJbF4pGo0Fubq54WaVSQaFQuHVbQgghC0cy+eNoGEICICWOL02w0GjEaR6EjP/p87BCxv+xM50L1haGYaBQKFBVVbVg9+kqlmVRXV294PerUqlsgjWFQgGVSuXWbQkhhCyM10934olfNYhB0/REAuHyU3uzfVLPiQInKxzHYXhswqWfgdFxPPXaWYcZ/wDwnddaMDA67tLxOG7+03sGgwFZWVnzPo6naTQaXzeBEEJIAPj1u234l5f1GJuw4N7sZPz3Y1uQEmc7HZcSF+GzUgQATdXZGBk3I/vbb3rkWByAG/2j2Pidv7i0f8t3dyMqzL2nw2g0ory8HCqVCiUlJdDpdCgtLYVarQYAaLVaNDc3Q6/XQ6fTQaFQgGVZFBQU2Exd6fV6VFVVIS8vDwAfiAl0Oh3UajWKi4tRVlaG2tpaqNVqaLVacRSHZVlotVrk5eXBYDCgqKgITU1NaGpqEo/laLpMp9NBr9dDoVCgsbFRDLb0ej20Wq1NbpJCoYDBYHDaHr1ej3379qG0tBQlJSUwGo1Qq9XQ6XRobW0Vj22vP6bfVnjspaWl4r51dXUencokhJDFzGLhUPHmeTz7N/7z+fHbV+LQQxsgk0rwwKY0qhxOPKOyslIMQoQvdYAPTlQqFZqbm6HVaiGXy8GyLNRqNerq6sTb5+Tk4Pjx42AYBkajEYWFhWJQAQDl5eXi3yqVCsXFxeLlgoICm2lBo9GI/Px8NDc3g2EYMXG9rKwMKpUKWVlZKCkpsfs4hLY1NzcD4AO2iooKlJSUYNeuXWhraxOnzeLj43H8+PFZ26NUKm2uZxgGWq0W8fHxNvdprz+m31boT+tgqaamBnq93iP5ZIQQspiNTVig/v2H+MPJawCAb+xeg6/clSWe7SuTSrAjy39qLVLgZCUyVIaW7+52ad+GNgM+96vGWff79efzXEpeiwyde9HBkpISh3k4DMOIRT0LCgqgVqtnfMkrFApUV1ejpKQE1dXVM66Xy11PuquuroZCoRDbc/DgQZdvKwR31mcFNjY2gmGYGblGnkrY1mq1TvtjuoSEBJsiqQzD2IzIEUIImbtB0wS+/FIz3rl4CzKpBIcf2YjC3BW+bpZTFDhZkUgkLk+X3bEqEalxEbjRN2o3z0nI+L9jVaLPhhRdPYPME6afNecooHN0dp1SqbRJ3C4pKUFlZaWHW0kIIcRfdA+M4vO/asTZ6/2ICpPh559R4q41Sb5u1qwoOdxNMqkET+3NBuC7jP/ZRjysry8uLp5R50mv16OoqAgAxLwgayzL2lxmGAY9PT3iZZ1OJy6OXFBQMOP29upK2dtmr206nQ5FRUVO2+SsPQJHizfP1h/ObksIIWR+Wm8O4pGfv4ez1/uxdEkYfldye0AETQCNOM3Lng2peOZx5Yw6TilerOMkJHAD/NlqpaWlM6acdDqdTbK1SqUS6z9VVFSICdg1NTXi6I9CoUBNTQ3UajXy8/PFkaHy8nJoNBooFAoUFRWJCdYAH2wJU14KhQJarRZqtVpMLhdGkEpLS8XaU/bKAQhtm35bhmHstkngrD1GoxFVVVWQy+UzkuCt79Nefwh9LNxWOJZwHyzLiknrCoViQUf2CCEk0Okv9+Kff92I3uFxZCRE4fkvbEN6QrSvm+UyCeeJ8+D9WH9/P+Li4tDX14fY2Fib60ZHR9HW1obMzExERLhffdRs4fwq4z+Y5efnQ6PRuJ2UHR8fj97eXg+3KvB56r1ACCHO1LV04f/7rR6j4xZsXh6HX3wuD0uXhPu6WU5jheloxMkD/C3jP5i5k5BdWVmJ1tZWlJaWUjVwQgjxkZdPXMa3Xj0NCwfcvSYR//cZpdtleHyJcpxIwKisrBRrRc0l/0ilUiEhIQG1tbXQarXeayAhhJAZOI7D03UX8M0/8EFTUe5yHHkiNyCDJoCm6mh6ghDQe4EQ4h0TZgv+4w9nUNV0BQDw1V2r8G+qVWKNJn9BU3WEEEII8anhsQn8y2/0+Ov5m5BKgO89vAGf2Z7u62bNGwVOhBBCCPGonkETvvDrRpy62ofwECn+51Nbce/6FF83yyMocCKEEEKIx3T0DOHJXzagvWcYTFQofvFkHnLS433dLI+hwIkQQgghHvHhVSO+8OtG3BocwzImEi/88zZkJS7xdbM8igInQgghhMzb2+e78ZXf6DE8ZkZ2aix+/fk8JMUG38kmVI4ggFVWVkKtVqOyshK1tbXQ6XTiKfv+SqfTIScnZ8HWocvJyUFtbe2C3Nd8TW9rZWUl8vPz3botIYQspNrmq/ji800YHjPj47ctRVXp7UEZNAE04uQZFjPQ8R4w2AUsSQbSdwJSmVfvMj8/H4WFhdBoNOI2vV6P/Px8tLa2evW+50OlUtlddsVbNBpNwBS9nN5WlUrl8nIugfQ4CSHBg+M4/PztVvzwzfMAgIe3pKGiYDPCQoJ3XIYCp/lqeQ04pgb6r09ti00D9miA7Ie8cpcVFRUAgJKSEpvtSqVyxjZ/lJCwcFXWFzJIm6/pbZ3LOniB9DgJIcHBbOHwndfO4sX6DgBA6Z0KqHevhTTIlxwL3pBwIbS8BlQ/YRs0AUB/J7+95TWv3G15eTlKS0vtXldYWOiV+ySEEEIEo+NmfOU3zXixvgMSCfDU3mwcvG9d0AdNAAVOtjgOGBty7We0H3ijDIC9wuuT246p+f1cOZ6LBdxZloXRaHQ4EmE9vaPX61FRUYHa2lpUVFSIuU/WeUZCXlRhYSFYlhVvYx2Y6XQ6ZGVlobS0FLW1taisrERpaam47IlwfWVlJSorK5GTkyNuF+5frVbbtNNoNNrctzV7t3PUZuvjCdcJt9Pr9TPyqebaJ444emx6vV7sJ+FHr9eLxxdGC2tra5GVlQWdTifezrqtRqMRpaWlyMrKmrXt028718dCCCFzYRwew+PPncCbZ7sQJpPifz+lxOc/lunrZi0YmqqzNj4M/CDNQwfj+JGowytc2/2b14GwaA/dNx9gqdVq1NXVidtycnJw/PhxMc+orq4ONTU1AICamhrU1tairKwMSqUSWVlZMBqNYBgGKpUKBQUFSEhIQEFBAQD+i7+wsBB1dXXi8Zqbm6HVaiGXy8X7b25uBsAvzltRUYGysjIAQGNjo/h3TU0N9Ho9lEql09vZa7Nwu8rKSiiVSnHKymAwQKlUori4eF59IhzfXt9Ob2NJSQl27dqFtrY2MAwDAIiPjxePb92WgoICVFVViZent5VhGGi1WsTHx8/a9um3nctjIYSQubhmHMGTv2zApe5BxESE4MgTubhdsbgWuafAKcAIo0ksy9r9EmRZFnK5HFqtdsb1CoUC1dXVKCkpQUJCgk2uEcMwNqNYDMPAYDCIAYCwTVBQUIDCwkIxuGIYRjxeQUEB1Go15HK5OKIC8MGSIC8vb8Z9ARADL3u3s9dm4XYFBQXIycmBQqFAcXGx3Vwvd/pEOP7049hroxBkWveTpxK2Z2v7dK4+FkIIcdVHnf343K8a0NVvQmpcBH79+W1YkxLj62YtOAqcrIVG8SM/ruh4D/hNwez7faaWP8vOlft2UVlZGbRarTj6Y02v19vd7grrL3x3TJ8+tB4BAmYmszvizu3kcjl6e3uh1+tRVVUljoZ5i702LlSJBUIIWWjvXbqF0hebMWCawOrkJfj157chjYn0dbN8gnKcrEkk/HSZKz9Z9/Bnz8FRIpwEiF3G7+fK8eawUrRQgmD6F7WQcwQAxcXFNiMiAB9UFRUVOTyu9e1nu762tnbG6Ir1iIa9+59+2R53b1deXi6Owmk0Gpt2Ce12p0/m0saioiLo9Xqb7dY1tRiGQU9Pj81tpve5o+fAlbbP9vwRQog7Xjt1HU/+qgEDpglsy5Sj5ks7F23QBNCIk/ukMr7kQPUT4IMn6+TuySBoz2Gv1XOqq6tDRUUF1Go1srKyIJfLAUAcbRICiIqKCigUCjQ2NqKmpgYMw4ijMgCfDyMkhQu30+l0YFkWGo3GJghpbW0Vv+yF4wF8AKDT6aDX66FQKKBSqcT7V6vV4rScSqVyeN9arRYKhcLt2yUkJECn00Eul8NgMKC4uFi8jVwuR0FBgVt9IhzfejTNURsZhkFNTQ3UajXy8/PFaUxBUVER1Gq1GACpVCpxCs5oNNq01d7o3WxtF24rHMuVx0IIIc489w6L//rzRwCABzam4sdFmxER6t06hf5OwnEuns4VoPr7+xEXF4e+vj7ExsbaXDc6Ooq2tjZkZmYiIsLNCqd26zgt44MmL9Vx8gUhQAuEOlH+JD8/HxqNxu2k7Pj4ePT29nq4VTN55L1ACAkaFguH77/+EX7xjzYAwOd2ZuDbD2YHbbkBZ7HCdDTiNF/ZDwFrH1jwyuEkMLiTkF1ZWYnW1laUlpZSNXBCyIIzTZjx79Wn8KcPOwEAB+9bi5JPKCCZQ0pJMKMcJ0+QyoDMO4CNBfzvIAuahKk44ZR24hph3UCtVjun/COVSoWEhATU1tZCq9V6r4GEEDJN/+g4nvxlA/70YSdCpBL8tHgLSu/MoqDJCk3V0fQEIfReIITgRt8oPverBpy7MYDoMBme/WwO7liV6OtmLQiaqiOEEEKIyy52DeDJXzbget8oEmPC8avP5WHDsjhfN8svUeBECCGELGKN7Qb8868b0T86AcXSaDz/hW1YIXe9tuBiQ4ETIYQQskgdO9OJr/7uA4xNWLB1JYNfPJkHeXSYr5vl1yhwIoQQQoKc2cKhoc2A7oFRJMVEYFumHL850YGnXjsLjgNU65LxP5/aisiw4Dq5yRsocCKEEEKC2LEznTh0tAWdfaPituhwGYZMZgDAp7atxPf+aT1CZHSivSsocCKEEEKC1LEznfjyS3pMP31eCJr2bkrFDz65gcoNzAGFlx5gtpjReKMRr7Ovo/FGI8wWs9fuS6fTobS0FBKJxGb5jrmorKxEfHz8gtRkWsj7spaTk4Pa2lqbduTn57t1W0IICURmC4dDR1tmBE3Wmjp6YQnqokSe57MRJ71ej3379qG5uXnW/QB+rS6WZWE0Gt1evsIbdB06HG44jK7hLnFbclQyDmw7AFW6yuP3p1KpoFAoUFlZiYMHD9qsheaqkpIScZ05b1vI+7Km0Whsqm4L/ebObQkhJBA1tBlspufs6ewbRUObATuyEhaoVYHPJyNOwn/zroxCaLVa5OTkQCKRoLS01K8WKNV16LD/7f02QRMAdA93Y//b+6HrmPtokCuEBX2JY8KiuwJh8WF3bksIIYGoe8B50DTX/QjPJyNOBQUFLu+bk5MjLnLq7S8zjuMwMjHi0r5mixnlDeXg7AyCCtsONxzG9pTtkLmwBEtkSCTNMRNCCPGYpJhwF/ej1QLmIiCSwxfqv/+RiRFsf3m7x47XNdyFnb/b6dK+Jz59AlGh7hUc0+l0UKvV4ogcy7Koq6uzmSLT6/WoqqpCXl4egJmLz+p0Ouj1eigUCjQ2NkKj0aC2thbl5eUwGo1obW1FRUUFtFotSktLUVZWZvc2rtyXvfY7Oo5Wq7XJTVIoFDAYDFCr1SguLkZZWRlqa2uhVquh1WqhUqnEaeDS0lKUlJTAaDSK+WCtra3isXU6ndhfBQUFUCgUM27rSt8SQoi/GR6bwG8bLjvdRwIgJY4vTUBc5/eBk9FoFKf2GhsbZ52uM5lMMJlM4uX+/n6vt9HXVCoVVCqVzRe6sCCvUqmE0WhEYWGhGDQAQHl5ufg3y7JQq9VivpnBYEBFRQXKysqgUqmwa9cuGI1GMAyD5uZmMAzj8DYlJSVO72s6Z8fZtWsX2traxMA5Pj4ex48fh0qlQnFxsXiMgoICVFVViZeVSqXN9QzDQKvVIj4+3uY+6+rqxH1ycnJw/PjxGbedrW8JIcTfdPQMofTFZpy7MQCpBLBwfJBkPT8izG88tTcbMinNdsyF3wdOJSUl4henQqFAfn6+zZfydOXl5Th06JBb9xUZEokTnz7h0r7NXc34yvGvzLrfz3f9HDnJOS7d93wkJCQgIWEquY9hGHGkp7q6esaXvHWelFarhVwutzlDr7GxUTzOkSNHkJOTg5qaGvG5cHQbhmGc3td0zo4zPdfIUwnbWq12RhsVCgWqq6tRUlIyY39nfUsIIf7krXNd+PrvPkD/6ASWLgnH/316K3qHx2bUcUqJi8BTe7OxZ0OqD1sbmPw+cGJZVvySE6ZKWJZ1OOp08OBB7N+/X7zc39+PFStWuHRfEonE5emynWk7kRyVjO7hbrt5ThJIkByVjJ1pO13KcfI1pVJpkzxtHUAIwVBVVZVNwGHvNpWVlR65b3eOQwghi5XFwuG/37qIn+ouAgC2rmTwzGdykBLH5y/lZ6fMqBxOI03u8es6Tnq9Hrt27Zqx3dkIRnh4OGJjY21+vEEmleHAtgMA+CDJmnBZvU3tlaBprqMdQt6PNZZlxb+Li4tn1IMSLhuNRuh0OtTU1IBlWXHa1NFtZruv6Rwdp6ioyOlxGIZBT0+PzW2MRqPN/tMvO7tPvV6PoqKiWW9LCCH+pm94HF98oUkMmj57ezqqSnaIQRMAyKQS7MhKwD9tWYYdWQkUNM2Dz0echNwZgV6vB8MwUCgUUCgUYqIwwH85FhQU+M2p4qp0FZ6+62m7dZzU29ReqeMkBDEAPy0p5OMIOT4qlQosy4qJ1UI/1tTUQK1WIz8/X+zz8vJyaDQaKJVKaDQaqNVqMaFbpVKhsrISGo0GpaWlAIC8vDzs27cPLMuirKzM7m0YhnF6X9NHCh3dt6PjCIqKimwKgKpUKnEKzmg0oqqqCnK5XEz6tnefFRUVYkK6MA0pJLYLtxWO5axvCSHEVz7q7MeXXmpGR88wwkOk+P4nN6IgZ7mvmxXUJBzHLXjNUJ1Oh7q6OjEBOS8vTyxRUFhYiLy8PJSVlQGYOvuJYRi0trbaBFKu6O/vR1xcHPr6+maMPo2OjqKtrQ2ZmZmIiHD/dEyzxQx9tx43h28iMSoRyiRlQEzPBZr8/Hwx0HNHfHy8WNqC2PLUe4EQsnD++ME1qH//IUbHLVgeH4lnH8/BhmVxvm5WQHIWK0znkxEn4Uwle0HQ9NO8lUql35+9JJPKkJeS5+tmBD13ErIrKyvR2tqK0tJSqgZOCAkK42YLfvD6R/jVu+0AgDtWLcV/P7YV8dFhvm3YIuHXOU6ECCorK8GyLLRa7Zzyj1QqFRISElBbWwutVuu9BhJCyALoHhjFZ46cEIOmf7k7C7/+/DYKmhaQT6bqFtJCTNUREujovUCI/2vuMODLL+nRPWDCkvAQPF20GfeuT/F1s4KC30/VEUIIIcQ1HMfhpfoOfPdPLRg3c1iVtATPfjYHWYlLfN20RYkCJ/AvSkIWM3oPEOKfRsfN+OYfTuMV/TUAwAMbU1FRsAnR4fT17SuLuudDQ0MBAMPDw4iMnF/lbkIC2fDwMICp9wQhxPeuGIZR+mIzWjr7IZUAB+9bhy/ekUkLwvvYog6cZDIZGIZBd3c3ACAqKopekGRR4TgOw8PD6O7uBsMwkMmojAYh/uBvF27iq789ib6Rccijw/C/n9qKnbct9XWzCBZ54AQAKSl8Yp0QPBGyGDEMI74XCCG+Y7Fw+Pnbl/DjugvgOGDzCgbPfEaJNIZmRfzFog+cJBIJUlNTkZSUhPHxcV83h5AFFxoaSiNNhPiB/tFx7K86Bd1H/EoUn9q2Et95KBvhIfT+9CeLPnASyGQy+vIghBDiExe6BlD6YjPabg0hTCbFd/9pPR7bttLXzSJ2UOAUpMbGxvCHP/wBW7ZsQUpKCuVukaDCcRwGBgaQlpYGqZTq+JLA9qcPr6Os9kMMj5mRFheBZx7PweYVjK+bRRygwMlLWJZFbW0tFAoFWJZFSUmJw8WJne0rrNUHAI2NjThy5IhLixx3dHTgxIkTeOyxxzz0iAjxP1euXMHy5bSgKQlME2YLNMfO4cg7bQCAj92WgP9+bCsSloT7uGXEGQqcvKSwsBDNzc0A+MBo3759M9bhc2VfnU4nLnhcUVGBXbt2ifs6097eDrlcDoD/cpmtEiohgaS/vx8rVqxATEyMr5tCiFtuDZrwry/rUc/ya3CW3qnAN+5dgxAZjaD6OwqcvIBlWZvLCoVCHDWay756vR7l5eVi4FRQUAC1Wg2WZaFQKJy2ob29Henp6QCA2NhYCpxIUKIpaBKITl7uxVd+o0dn3yiiw2T4YeFm3L8x1dfNIi6i0NYLdDqdONojkMvl0Ov1c9pXqVTiyJEj4nZhcdvp+09nMplw/fp1rFxJiYXEv5gtHN5v7cEfP7iG91t7YLZQxXKyeHAch5dPXEaxth6dfaNQJEbjj//6MQqaAgyNOHmBEOBMZzAY5rxvQUGBuK2qqgoqlcphjpPJZILJZEJraytGR0dnDbAIWUjHznTi0NEWdPaNittS4yLw1N5s7NlAXxwkuI2Om/HtP55BddNVAMDu9cn4UeFmxERQtf5AQyNOC8hRkOTKvkajEbW1tQ7zpACgvLwccXFxUCqVOHz4MDZt2uRmSwnxrGNnOvHll/Q2QRMA3OgbxZdf0uPYmU4ftYwQ77tmHEGR9n1UN12FVAKU7VmDZx/PoaApQFHg5AUMw8wYXTIYDHZHilzdV61Wo66uzukZdQcPHkRfXx9+9rOf4YUXXsCVK1fcfQiEeIzZwuHQ0RbYm5QTth062kLTdiQo/ePiLTz43+/gw6t9iI8KxfNf2Iav3HUb5ecFMAqcvEClUtndnpub69a+FRUVUKvVUCgUMBqNDkeuwsPDER4eDqPRiOzsbEoIJ36hoc0wY6TJGgegs28UDW0zp7IJCVQcx+GZt1vxxC9PoHd4HBuWxeLo//dx3LEq0ddNI/M05xyn9vZ21NTUoK6uDr29veJ2uVyO/Px8FBQUICMjw5NtDDjTz3hjWRa5ubk2tZkYhoFCoZh139raWiiVSjFoqq6uRklJicP7vnLlCiwWi3hGHSG+1j3gOGhyZz9C/N2gaQLfqDmFN87cAAAU5CzHfz28ARGhtDpFMJhT4HTgwAFIJBIUFRXhG9/4xozrT548iWeffRYSiQTl5eUea2QgqqmpgVqtRl5eHhobG21yk8rLy5GXlyeWGXC0L8uyKCwstDkuwzBOA6f29nYsWbIECQkJGBgY8MIjI2Ruolz8skiKifBySwjxvkvdgyh9sQmtN4cQKpPgqb3r8ZntK2lqLohIOI5zKbHghz/8IUpKShAXFzfrvn19fTh8+LBfBE/9/f2Ii4tDX1/fopi6eu6558AwDAoKChbdYyf+51L3IL7w6wZcNow43EcCICUuAv9Q3wOZ1LUvF3ptE3907Ewn/r36FIbGzEiJjcDPH1dCuTLe180iLpjLZ4rLI072RpgciYuL84ugabEZGxvD9evXsWXLFl83hRD8/cJN/MvLegyMTiAhOgw9Q2OQADZJ4kKY9NTebJeDJkL8jdnC4Ud/OY9n3m4FAGzPlON/P61EYgwtnRKM3E4OP3DgAJ577jn09fXh3nvvRXFxMV555RVPto3M0eXLl2GxWBZ9jhnxveffa8fnf92IgdEJ5GXE4y//9gk8+7gSKXG203EpcRF45nEl1XEiAcswNIYnf9kgBk1f/HgmXvridgqagpjbBTDz8vLw6KOP4oc//CFycnJQXl5uU+WaLDzr/CZCfGHcbMGho2fxUv1lAMCjyuX4wSMbEB4iw54NqcjPTkFDmwHdA6NIionAtkw5jTSRgGC2cDNeu2ev9+HLL+lxzTiCyFAZKgo2Ye/mNF83lXiZ24FTfDw/b1tdXS0GTFSp2rc6OjqQkZFBSYjEJ/qGx/GVl5vx7qUeSCSAes9alH5CYfN6lEkl2JFFgT0JLPaq3sdFhmLINIEJC4eMhChoP5uLNSm06PRi4Hbg1NraCo7j0Nraii1btqCtrc2mPAFZWGNjY7h27Ro2b97s66aQRYi9OYgvPt8E9tYQosJk+NljW5GfnezrZhEyb0LV++lnUfWNjAMANi2LxYtfvB1xkVQFfLFwO8epqKgIer0ezc3N6Ovrg1arndOSIsSzqH4T8ZV3L93Cw//3LthbQ1jGROL3X95JQRMJCs6q3gtuDo5hSTgt+7qYuPRs9/X1obe31ybpOC4uzuZMu8OHD9vcpr+/HwDoVOEF0t7ejujoaCxdutTXTSGLyEv1HXjqtbMwWzgoVzLQfjaXkmJJ0Jit6j0wVfWepqAXD5dGnOLi4lBXV+fyWXO///3vUV1dTUHTAmpvb6f8JrJgJswWfOe1s/jWq2dgtnB4eEsaXt53OwVNJKhQ1Xtij8vji/v27cPJkydRVFSErKws5OXlQaFQgGEYGI1GsCyLhoYGtLW1obS0FI8++qg3202sCPlNmzZt8nVTyCLQNzKOf31Zj3cu3gIAfGP3GnzlriwK2knQuTVgcmk/qnq/uMxpYnbr1q2orq5GX18fqqur0dDQAKPRCIZhkJWVhdLSUmRmZnqrrcQBIb+J6jcRb2u/NYR/fr4RrTeHEBkqw0+KN1MNJhJ0RsfN+PFfzuPIO21O9xOq3m/LpDPKFxO3Mtri4uKwb98+T7eFuKmjo4Pym4jXvd/agy//phnG4XGkxkXgyBO52LBs9iWYCAkkZ6/3YX/VKZzv4tf6/PhtCXj3Ug8AqnpPeHQqQBCg/Cbibb9ruIxvvXoGExYOm1cwOPLZHCTF0vQECR5mC4fKv7N4uu48xs0cli4Jw+FHNkGVnWy3jlNKXASe2ptNI66LEAVOAW58fBzXrl3D7t27fd0UEoTMFg4/eP0j/OIf/JTFg5tS8aPCzYgIlfm4ZYR4zhXDMPZXf4DGdr4WYX52Mg4/shEJS/iTHajqPbFGgVOAu3LlCsxmM+U3EY8bGB3HV397En89fxMA8G+q1fjqrttoZJMEDY7jUNN0FYeOnsXQmBnRYTI8tXc9CnOXz3idU9V7IqDAKcC1t7cjKioKiYmJvm4KCSKXe4bxxRcacaFrEBGhUvy4cAse2ERTEiR43Bo04eArp1HX0gUAyMuIx9NFW7BCHuXjlhF/53blcAD44Q9/iOLiYgDA8ePHxaKXZOFQfhPxtIY2Ax7++bu40DWI5NhwVJfuoKCJBJW6li7s+enfUdfShVCZBAfuW4vfleygoIm4xO3A6cCBA2AYBiqVCgCwa9cu6HQ6jzWMzE7Ib6JpOuIpNU1X8Jnn6mEYGsOGZbH44798HJuWM75uFiEeMWiawIHff4h9LzTh1uAY1iTH4I//8nF86c4sylciLnN7qi4vLw+PPvoojh8/7sn2kDm4evUq5TcRjzBbOFQcOwft31kAwP0bU/Djwi2IDKMkcBIcmtoN2F99CpcNw5BIgH13KLA/fzWd6EDmzO3Aqa2NP8vGeoqosbERjzzyyPxbRVxC+U3EEwZNE/j6705C91E3AOCr99yGr6tWQ0r/gZMgMDZhwU91F/Ds31ph4YBlTCR+XLQZtyso0Zu4x+3AaevWrcjNzUVCQgLq6uqg0+mg0Wg82TYyi/b2dqSnp1N+E3Hb1d5hfPH5Jpy7MYCwECl+WLAJ/7Rlma+bRYhHXOgawNd/9wFaOvn820eVy/HUQ9mIjQj1cctIIHM7cNq1axdqamqg1WrBcRwqKyuxdetWT7aNODE+Po6rV6/i3nvv9XVTSIBq7jCg9MVm3Bocw9Il4TjyRA62roz3dbMImTeLhcMv321DxZvnMTZhQXxUKH7wyY24byOd5EDmb17lCDIzM3H48GHxcn9/P2JjY+fdKDI7ym8i8/GK/ioO/P40xswWrEuNxS+ezEUaE+nrZhEyb9eMI/h/1afwPssvk3L3mkRoHt1Ele6Jx8wrcOrv74fBYBAvazQaPPPMM/NuFJlde3s7IiMjkZSU5OumkABisXD40V/O4+dvtwIA7s1Oxk+KtyA6nEq6kcDGcRxe/eAavv3qWQyYJhAZKsO3HlyHT29bSekMxKPc/rT80pe+BJ1OB4ZhxG1tbW0UOC0Qqt9E5mrINIF/q/oAf5ks+Pcvd2fh3/PXUBI4CXi9Q2P41qtn8OfTnQCArSsZPF20BZlLo33cMhKM3A6csrKy8Oyzz9psO3LkyLwbRGY3MTGBa9euIT8/39dNIQHiunEEX3y+CS2d/QiTSXH40Y14RLnc180iZN7ePt+NstoP0T1gQohUgq/tWoUv35WFENm86jsT4pDbgZNQ+NIafZEvjKtXr2JiYoLym4hLTl7uxb4XmnFr0ISE6DBUPpGDnHS5r5tFyLwMj02g/PVzeLG+AwCQlRiNnxZvxcblcT5uGQl2bgdO8fHx+NGPfgSFQgGGYWA0GlFVVYWqqiqXbq/X67Fv3z40Nzc73Y9lWdTW1kKhUIBlWZSUlNhMDy5GlN9EpjNbOLsrt//xg2v4Ru2HGJuwYG1KDJ57MhfL42lZCRLYTl7uxf7qU2i7NQQA+NzODBy4by0VsyQLwu3AqaysDEaj0SaIOXnypEu3FQIhvV4/676FhYVicMWyLPbt24eamhq32hwsqH4TsXbsTCcOHW1BZ9+ouC0lNgLKlQxeP3MDAKBal4SfPrYVSygJnASwcbMF//vWJfzvXy/BbOGQEhuBHxZuwh2rqAgwWThuf4rm5+dj3759Ntt+//vfu3TbgoICl/ZjWdbmskKhWPTr4U1MTODq1at2p0rJ4nPsTCe+/JIe3LTtN/pHxaCp9BMKlO1ZS2txkYDWenMQ+6s+wKmrfQCAhzan4Xv/tAFxUVTMkiyseSWHu7JtPnQ6HeRy21wMuVwOvV4PpVLp0fvytLlMMc62r/W0JuU3EYHZwuHQ0ZYZQZO1uMhQCppIQOM4Di/Wd+AHr3+E0XELYiNC8F+f3IiHNqf5umlkkXI7cGptbYVWq0VeXh4A/sVdXV2NxsZGjzXOaDTa3W5dO8pfzWWK0dm+06c1hfym5OTkBXgUxJ81tBlspufs6RsZR0ObATuyaF0uEni6+kfxjdoP8fcLNwEAd6xaioqCTUiNo2KtxHfcDpy0Wi1UKhU4bur/Xeu/vclRQAUAJpMJJpNJvNzf378ALbI1lynG2fadPq3Z0dFB+U0EANA94Dxomut+hPiTP314Hf/xhzPoGxlHeIgUB+9biyd2ZFDdMeJzbgdOGo0Gu3btstnm6bwbhmFmjC4ZDAanZ9WVl5fj0KFDHm3HXM1linEu+05MTODKlSuU30QAANFhrr19k2JoqQkSOPpGxvHUH8/g1Q+uAwA2LovDT4q34LakJT5uGSE8tyuETQ+aAL5EgSc5ChByc3Md3ubgwYPo6+sTf65cueLRNrliLlOMc9n32rVrmJiYQHp6ut3bmEwm9Pf32/yQ4DNutuDX77bh32s+cLqfBEBqHF+agJBA8N6lW9jz07/j1Q+uQyoBvnrPbXjlKzspaCJ+xeURp1deeQUqlUpcxPe5556zud5oNKKurg5vvvnmnBowvaSBXq8HwzBQKBRQKBQ2+7Isi9zcXKcjTuHh4QgPD59TGxaKsylGV/Ztb29HRESEw/wmfxhtI97DcRz+er4b3//zR2i9ydevSY2LQGffKCSATZK4MJnx1N5sSgwnfm903IyKY+fxy3fbAAAZCVF4ungLlCs9+884IZ7gcuD0gx/8AAzD4J577gEAPPvssyguLrbZp6enx6Vj6XQ61NXVAeC/7PPy8sRcHuFyWVkZAKCmpgZqtRp5eXlobGwMiBpOc5linMu+Qv0mqdT+QOHBgwexf/9+8XJ/fz9WrFgx9wdA/M75GwP4rz+34J2LtwAA8ugw7M9fjcfyVkD3UdfMOk5xEXhqbzb2bEj1VZPts5iBjveAwS5gSTKQvhOQUtHCxcJeodaPOvvxb1Uf4GL3IADgM9tX4j8eWIcoF6eiCVloEs7NjO6TJ09i69ats27ztf7+fsTFxaGvr08cLfM2lmVtzpQD+GnMtra2GQGRq/tKJBJ873vfw65du7Bjxw6X2uGLx04869agCU/XXcDvGi7DwgFhMik+/7EM/Ms9tyE2Yqp+jaPK4X6l5TXgmBrovz61LTYN2KMBsh+a06HotR147BVqXRIeguGxCVg4IDEmHBWPbsLda2lFBLLw5vKZMq8lVwR9fX3Q6XTIyclx93BBZbYpRnenIwcHB6l+0yJhmjDjV++24//euoQB0wQA4L4NKThw31qkJ8xc8V0mlfh3yYGW14DqJ4DpVaf6O/ntRS/MOXgigcNRodbBydf21hUMfvG5PMijwxa+cYTMkdvJ4danzMfFxeHRRx9d9FW9rQlTjLW1tdBqtTZTjOXl5aitrXVpX51OB7VaDQB4//338c477yzcgyALjuM4vH66E6qn/4bDb5zDgGkCG5bFoqrkdjzzeI7doMnvWcz8SJPdUp2T244d4PcjQceVQq03+kcRF0kVwElgmNNUXV9fH6qrqyGRSFBXV4f8/Hyb65ubm/HMM894vJHzESxD+i+88AJCQ0PxqU99yuXbBMtjXyxOX+3D9/7UgoZ2PuctOTYc39i9Fo9sXRbYtWva3gGef3D2/Z78E5B5h0uHpNd24Hi/tQefOlI/636/3Xe7f4+akqDmtam6uLg4qFQqaDQatLa2IjMz0+Z6IaGbeJbZbMaVK1dw9913+7opxAu6+kdRcew8fq+/CgCICJWi5BNZ+NKdisBOkOU44MoJ4J0fu7b/YJd320N84krvsEv7UaFWEijm/KmcmZmJZ599FsePH7dby4l43rVr1zA+Pk75TUFmZMyMyr+zePZvrRgZ56epHt6ShrI9a5HGBPCSEt0fAadr+B/jZddvt4SWEQomHMfhTx92ovz1j1zanwq1kkDh9r+zFDQtnPb2doSHhyMlJcXXTSEeYLFw+OOpa6g4dl48wygnPR7/+WA2tqxgfNs4d/VdBU7X8j9dp6e2hy0B1j4AXNIBwwaYwUEfEY6bMhkSzWYoR02QQcKfXZe+03ftJx51qXsQT712Bu9e4kvUyCQSmB1khUjAl8+gQq0kUATwPMDiMVv9JhI4mtoN+N6fWnDqah8AYBkTiQP3rcWDm1IDb/3BYQPQ8kc+WOp4F2KitzQUWJUPbCwE1twHhEYCLa9B96dSHE5g0BUy9bGTPDGBAz1GqPYcpnpOQWDINIH/eesSfvEPFuNmDuEhUnzlrtuQuTQKX/vdBwCoUCsJfBQ4+TnKbwoOVwzDOHzsHP78YScAIDpMhq/cfRv++eOZiAgNoIBhbBi4cIyfhrtYB1jGp65L/ziwsQDI/icgynb0QBcdhf3JS2csBN4tk2F/8lI8HR0FWoExcPFng97Af/15qk6Tal0yntqbjRXyKABAWIg0cAq1EuIEBU5+7vr165TfFMAGRsfx87db8Yt/tGFswgKJBCjOXYH9964OnJwO8wTQ9jY/svTRUWBscOq65I3ApkJgw6NA3HL7N7eYcbjhMD/SMG1UjZNIIIEEmgYN7l5xN2Q06hRwLnUP4juvncU/LvFV7VfII/Gdveuxa51tztqeDanIz07x/0KthMzCo4FTe3s7fcF7GOU3BSazhUN10xX8+C/ncWtwDACwMysB33ogG9lpAXD6PMcB15r5kaUzrwBD3VPXMSv5abiNhUDSOoeHGBgbQEd/B966/Ba6hh2fMceBw43hG9B365GXkufJR0G8aHiMn5Z77h1+Wi4sRIqv3JWFL92Z5XAU1e8LtRLignkFTh988IHNOmtarRZVVVXzbhSZ0t7ejpUrV1J+UwB599ItfO9PLTh3YwAAkLk0Gt+8fx1U65L8P4/p1kXgw2o+YOptm9oelQCs/ySwsQhYsU0cORo3j+PKwBW097ejo78DHf0daOtrQ0d/B3pGXVu7UnBz+KYnHwnxEo7jcOzMDXzvTy24Pjntds/aJDy1NzswC7QS/+dna1y6HTgVFRXBaDTaLA1y8uRJT7SJTDKbzbh8+TLuuusuXzeFuIC9OYgfvP4RdB/xozOxESH4mmo1Pnt7OsJCvBv4mi1m6Lv1uDl8E4lRiVAmKV2f9urvBM78ng+WOj+Y2h4aBax9AJYNBehOXY/2oWvo6GtHe+PbYqB0bfAaLJzF4aGXRi6FPEKOC70XZm1GYlSia+0lPsPeHMRTr50VF5teHs9Py6myqZQE8RIPrnHpKW4HTvn5+di3b5/Ntt///vfzbhCZQvlNgcE4PIafHb+IF9/vwISFg0wqwWdvT8fXdq1C/AKsvaXr0OFww2Gb6bDkqGQc2HYAqnQHKdcjRj5f6XQ1X9kbHPqkEnSER6Bj+Wa0J96G9rAwdAxexeWmb2NkYsTh/UeFRCEjLgPpsenIiJ38HZeB9Jh0LAlbArPFjN2/343u4W5wdhbekECC5KhkKJOU8+wJ4i3DYxP4v79eQuXfp6blvnRnFr5yl+NpOULmzU/XuHQ7cMrKynJpG3GfkN+UmkpnnPiS2cLZTWgdN1vwUn0Hfnb8IozD/Nll96xNwjfvX4fbkpYsSNt0HTrsf3v/jICke7gb+9/ej6fvenoqeBofhen8n3Hl9G/Rce0E2mRAR2gIOlIT0REeBYNkcuTI0gl0ddocL0QSguUxy8XAKD2OD5IyYjOwNHKp0ylImVSGA9sOYP/b+yGBxKatkskT0tXb1JQY7oc4jsObZ2/gu0enpuXuWpOI7+xdj4ylNC1HvGjWNS4l/BqXax9Y8Gk7twOn1tZWaLVa5OXxyZwcx6G6uhqNjY0ea9xi19HRQflNPnbsTKfdU6gf2boMx87eAHtzCACwJjkG33pwHe5YtXDTTVNnq838YBG2PfXet3Hi/B9w5eZptI/24LpMAk4iARKZabfgg6akyCRx9Cg9Nh2ZcZlIj01H2pI0hErdX4RVla7C03c9bXdkTL1N7XhkjPhM260hPPXaWfz9Ap97toyJxFN7s5Gfnez/uXok8HW8Zzs9NwMH9F/j93NxjUtPcTtw0mq1UKlUNnVZ5rBeMJmFkN905513+ropi9axM5348kv6GWHJjb5R/PztVgBAQnQY9t+7GsW5KxAiW5gAd8w8hq6hLrx99W2nZ6sBQP/YAH7X+Xf+wmSe1RJJCDJiViI9YR3S49KRGZspBkpRoVFea7cqXYW7V9ztfi4WWRAjY2ZxWm7MbEGYTIrSOxX4yl23ITKMniuyQIwdru3ngzUu3Q6cNBrNjGVXVCr6r9FTOjs7MTY2RvlNPmK2cDh0tGUyaLJAFtUGScgAuIkYmIczAUgRHS6D7t/vRHyU5/KYxi3juDl8EzeGbvA/wzem/h66ga7hLhhGDbMfyMqdo+O4J2Ej0m+7H+mrHkRClPOpNW+SSWVUcsBPcRyHv7R04btHW3DNyOe03bk6Ed95aD0yaVqOLASO409QaX4eOPU7127jgzUuPbZW3VtvvQWj0YitW7fOu1GEz28KCwuj/CYfaWgzoLNvFCExZxCefBTS0D7xOst4HExdezE0sAHnOgdcrktjtphxa+SW3WBI+PvWyC27U2/TRcgiECcNQ9d4/6z7Ppn7b8jLKXWpjWRxar81hO8cPYu3z09Ny317bzbupWk5shBGevkCu/rngRtWa11KZABndnAj361xOa86Tq+88gpYlgXA/7fS1NSERx55xCMNW+wWQ/2meZ1C7yVjExa8e+kWfv7XSwiJOYOIZS/N2EcS0oeIZS9h9Nrj6B7YAgCwcBYYRg3oGuqyO1J0Y/gGbg7fhNnhh8CUUGkokqOSkRydjJToFKREpfC/Q2OQ0nsVKddPI679XVgMF7B7RRq6ZTI+b2l6OzkOyWYzlKHx8+4XEpxGxsx45u1LePZvU9NyJZ9Q4F/upmk54mUcx+cn6Z/n17ycmMwjlYXzZ8opnwCGe4GaJ4UbWN148vPOR2tcuh04HThwAEajEQaDAQqFAkajEaWl9F+tJwj5TZ/4xCc8cry/tP0FK5JWgOM4GEYNSIxKxOalm3Hq1imHQYu3gxq3TqH3kgmzBSfaDDh66jreOHMDfSPjACyIvu0ogBmrhEAi4d/zEWlV+DX7IZ5p7UH3cDfGrddtc0AmkSEpKgnJUZNBkfAzGRwlRydDHiGHVCIFJkzA1Uag9a+A/ihwXQ9Y1UySQYoDPb3Yn7QUEo6zCZ4kk/mG6p5eyGJo1JLY4jgOuo+6cejoWVzt5afl7li1FIceWg9F4sKcEUoWqcFu4IOXAf0LgKF1antSNqB8EthUZLvWpeQFB3WcDgdeHaesrCzs27cPbW1tkEgkyMjIwFtvveXJti1ans5v+vb734Ys0jbokUqkNoULrYMWbwc1czqF3g0cx2HMMoah8SEMjQ1haGIIg2OD/OXxIQyOD2JobAgXb91CS9dNtPX0wGQZgURqgiTJhNiQMYSGDWEMjqfBJBIAknFcGvhwahskWBq5VAyG7AVHSyOXOg5AOQ7obgFO/g5g3wY63gXGh233SVgFZN0NKO4CVu6A6tmP4enuHhxOYNAVMvV2Tjaboe4xQhUi98lQNvFfHT1DOHS0BW+d4wu1psVF4Nt7s7F7fQpNyxHvsJiBS8f50aULxwDLBL89bAm/zqXySWCZcuZ/qQAfHK19IDgqhysUCnR0dCAzMxM/+tGP8P/+3//zZLsWtY6ODq/nN02v9iwELZ9b/zn8+uyvvRbUuHIK/fdPfB9pS9IwMjEiBjvWP4PjgxgeH8bg+KDN38LvofEhTAhvTFcsAaxPtOcAjLl400+t+RT2ZO5BSnQKEqMS537Kft81PkgSfqzXhAOA6EQ+SBJ+pi+ku0cDVfUTuHt4BPqIMNyUyZBoNkM5OgYZABRpffoBQ/zH6LgZP3+7Fc/+rRVjExaEyiTYd4cC/3rPbYgKo/XeiRf0dgAf/AY4+RJfOkCwPI+filv/CBDuwginVLbgJQeccfvdYjQaoVAo0Nvbi1u3bmH37t1gGAb33HOPJ9u3KAn5TTLZwn3hCUHL82efdxrUHHr/EIbGh2DmzBgzj/E/ljGMm8cxZhkTt41bxjFmHoPJbLK53jBimPUU+lsjt1D8p2KPPK7IkEhESKNgNodhaDQUprEQcJYIwBKOUEQiI0GODalJyE5JQmzYEiwJXYKo0Chc7r+M/zrxX7MePz8jH8rkOVS8Hu0H2v8xGSj9Fbg1bSmSkEgg42OAYnJUKSkbcJbnlv0QUPQCZMfUyLMZyl7m06Fs4l90LV049KezuGKYmpb7zkPrkUXTcsTTJsaA83/mp+Ja/woxNykyHtj8KWDrZ4HkbJ82cb7cDpweffRRmM18ouvhw4dx/Phx5Obmeqxhi5XFYkFHR4fH8pvmfP9wvO4YABhNRnzr3W95vR1LQpcgITIB0aHRNj9CYLMkdMmM64Tro0Oj0WUEjrf04s8fdqF1skglAESGypCfnYwHN6XiztWJDpeL2JayDUdOH5n/MiHmceBaM/8Bwv4VuNpke5aIRAqkbZ0cUbqbX0A3JHxuneWHQ9nEP1zuGcaho2dxfHJaLjUuAv/5YDbu20DTcsTDbp7ng6VTvwWGrRb4zryTH11a+yAQGuG79nnQvMZnf/jDH6KpqQlVVVUAQG9EDxDym9LT033dFIduY25D2pI0hEnDECoLRbgsHGHSMITJ+MvC38L1wt9hsjB09HXg/07936z38d/3/Pec6/1cMQzj6AfXcfTURXzUOZWfFBYixd1rEvHgpjTsWpfk0rSE28uEcBw/itT6V35Uqf0fwNiA7T5yxVSglHkH/5/YfPnZUDbxrdFxM579Wyt+/vbUtNwX71DgX+++DdHhNC1HPGRsCDj7Kh8wXamf2h6TCmz5DLD1cUCe6bPmecu8zqrLysoSi17u2rULr7zyCpUjmKf29naEhoYiLS3N101x6Jvbv+l2EUOzxYzai7UeW/D1Rt8o/vThdRz9sBOnrhjF7SFSCe5YtRQPbkpD/vpkxEbMfbkQVboKT2d9Cocv/AZdsql/CpLNFqhXf2Yq12ugyzZPaWDaMgGRckBx59T0W7z/BsUk8L11rgvfea0Flw38iQUfv42flluo9RNJkBOKVOpf4GsvmSb/SZXIgNW7+dGl2/IBWfAG6G4/sry8PDz66KM4fvy4J9uz6Pkiv8maVCIFx3FeW8XeEwu+3ho04Y3TnTh6qhONHQYIK/1IJcCOrAQ8uCkNe9anID56nhW9W16DSqfB3eCgjwi3Tby+fBi4/AFgvMyfCWfzIMOB9B1TgVLKJud5SoS4yNGC0wA/4nroaAt0H/E5hCmx/LTc/RtpWo54wIgROF0zs0hlfAYfLG3+NBC7OEqfuB04tbW1AbCdnmtsbKQRp3mwWCy4fPkyPv7xjy/4fQtBy5PZT+LXZ3/t1VXsHS34mhSVjAMOFnw1Do/hzbM3cPRUJ95rvQWLVVyXlxGPBzel4b6NKUiK8dAcutXK3DIAeaOmmftcODb5hwRI3TQVKK28HQiN9Ew7CJlkb8Hp1LgIHLxvLdpuDePnb1+CacKCEKkE/3xHJr56zyqaliPzIxapfAFoedWqSGUYsO4hIOdJIP3ji+4fQ7ffVVu3bkVubi4SEhJQV1cHnU4HjUbjybYtOjdu3IDJZFqQ9ens1XESVqnflLjJ66vYTwysx+AlNYbHPxLXgBsMXYeJdevFfQZGx6H7qAtHT3XinYs3MW6eipY2L4/D3s1puH9jKtIYDwQppgGgpxXoucT/vvz+LCtzT/qEGtheCkS7tuwKIe5wtOB0Z98ovvq7D8TLO7MS8N1/Wo/bkmIWtH0kyAhFKk++yH8mChwVqVxk5rVWXU1NDbRaLTiOQ2VlJa1TN0/eym/67o7vzqlyuLdXsbf9EsgSt3dhDF9+SY8v3pGJK4YR/PV8N0wTU8Hd2pQY7N2chgc3pSI9wY1FRydMQG/7ZHB0aSpI6mkFBm+492ASV1PQRLzKdsFp+6QS4CdFW/DQljSaliP2WczOz7y1mIHWt4DmX9sWqQyNBjY+Cig/57hI5SIzr3HczMxMHD582FNtWfS8ld90b+a9iI2NnbHdWYK3t1axt/4SkMKCbdJzSIIR3WDQYFkLC6Q48k6buL8iMRp7N6Vh7+ZU1/6LtpiBvitTAZF1kNR3xWbJkhmiE4GE24CELD7RUf/87Pfng5W5yeIiLDjtjIUDkmIjKGgi9rW85mDZEg2QtoUvUOmwSOUngXAawbTmcuDkSnXw5557Dl/84hfn3ajFSKjf9LGPfczXTQHgPAl1Pt4+343OvlHsljbgqdAXkCYxiNdd5+Q4NP4E3rRsw0Ob01B6pwLZqbEzvww4jh9KFgIig1WQZGABs5O632ExfGCUcJvVTxb/ExE3tZ/FDFyqA/o7Abv/6/tuZW6yuHQPOA+a5rofWWRaXgOqn8CMz7H+60D1Z223RcYDmx7jA6YAL1LpTS4HTj/4wQ9QV1fndJ+mpiYKnCaxLIva2looFAqwLIuSkhIwDONw31/+8pe4cOECBgYGsGnTJnHfuRzHEf2xXyEhla+lYeq7gcj4ZViVswsXm49jpPcaIuOXYe323ZBNrnV27EwnvvfaaawYPCWOBl1Zshn/+dBG7Nkw+1kTHMfh5oAJl7oHcenmIP978qd7wITd0gY8E/rTGbdLgQHPhP4UXx7/OnatK8H6eI5f2NY690j4Pb02kjVZOF8rSQiIrIOk6ETXhpqlMv6/seonwK/E7T8rc5PFo29kHO9cuOXSvh47MYIED6uTXJzK+ASf6B1ERSq9yeXAadeuXUhISEBOTo7DfThulidnESksLERzczMAPvjZt28fampqHO77P//zP4iMjERRUZHNvnM5jiPKk/+J2BbbYMH8FwnWS6aer666BFzf8RS6lt2LV19+FjWhLyAtzGo0yCTHd19+Avj0l8TgyWzhcLV32CYwEgKlgVH7a8VJYcFToS/wf0+LX6QSfjDpv0P/F5I3XgBeNdg5wiSJFGBWTgVEcqsgKW65ZwKayeVM/G1lbhL8+kbG8at32/CLf7Q5fC8JJABS4vhRYUJsdLzn2kkud5ZRAd05cDlwqqmpQV9fH5qamgDwdZym583I5fTGBfgAx5pCoYBOp3O6b3t7O1asWIFVq1aJ+87lOHMlnfYfSCLXg8T3vornJQ/h56Gvzdg/BQb8PPSn2F8jw58+fBCXugfRdmsIpgkLQjGBOAwhTjIIBoPYJhlEvGwIGdFjSI8aQ1r4KBJlw2Akg4gevg5Zr+OASCIBwjEBmCb3WZJiNZ1mNbUWnzH3pUncQcuZkAXUNzyOX7zbhl+9OxUwrUpagk+sTsQv/8Hn/tkZ+8RTe7M9MpVOgsStS0DLH4AmF/I0Af6zjbhsTsnhcXFx2LVrFwDg5MmTMBgMkEgk4sK+jz76qOdbGIB0Ot2MIFIul0Ov10OpVM7YNz4+HpcvX8bOnTtt9m1qanL5OHM1fbZKKuETTJ/gjkLi4HqOA8rxP9B/9AYYyRDiZENgZINYInGQWzE2+eOOXd8GtpX4R1IiLWdCvMw4PIZf/qMNv3q3HQMmPmBanbwEX9u1GvdtSIFUKkFeRvyMOk4pcRF4am+2S1PoJMgJwdLZV4GuM3O7LZ3kMifzquMkeOutt1BXV4f8/HwxiFrMjEaj3e0Gw8yRFqPRiLGxMYyOjtrUbzIYDHM6DgCYTCaYTFOFGvv6+gAA/aa5TKHOtq8JG3FWvGQBwBfclwDhsUAkA0Qwjn8P3AD+7kK9r7j1gImbKudPiJX+fv51EejpAcbhMTz3Tht+/V47BicDprUpMfjqrlXYs54PmAR7NqQiPzvFKydtkAB16yIfKLW8ahssSUP4xXWzHwLeLueXhaKTXDxmXuUIPvjgA2i1WlRVVUGhUCArK4sCJyccBUKjo6Mz6jc52tfZdeXl5Th06NCM7St+MjiXZs5DP4CrnjnU4fs8cxwS1AYGBhAXFzf7jn6md2gMz/2DxfPvddgETF9XrcK92bYBkzWZVIIdWVQ3bFETgqWzfwC6p/6JhTSEX7kg+2E+vUAoUBkpp5NcPGzOgVN7e7tY+FIikeDRRx9Fc3MzMjODbwVkdzEMM2NUyGAw2D0bjmEY3Lx5E8uXL0fI5Fltwr5zOQ4AHDx4EPv37xcvG41GpKen4/LlywH55eJP+vv7sWLFCly5csVuTSziurn05dDQEE6ePAm9Xo+hoSFkZmYiLy8PmZmZGBwc9OvFsO0xDI3hyDssXnivHUNjZgDAutRYfG3XKtybnewwYCKL3M0L/KjS2VddC5as0UkuHudy4PTcc89Bq9WCZVkUFRWhpqZmRqXwV155hdaqA6BSqaDVamdsz83NnbHtnnvuwaFDh2Yss5KbmwuFQuHycQAgPDwc4eEzE6bj4uLoy95DYmNjqS89xFlf3rhxAydOnMDp06chkUiwZcsWbN++HYmJieI+cy3L4Us9gyYceacNL7zfjuHJgCk7NRZfU61C/joKmIgdswVL6z8JrLnftaVP6CQXj3I5cCopKUFBQQEOHDgAhmHQ29uLt956S7y+t7cXhw8fpsAJ/Nlv1liWRW5urvhBr9frwTAMFAoFoqOjwXGcGDhZ7zv9i2H6cQgJJhaLBRcuXMCJEyfQ1taG2NhY3HXXXcjJyUFkZGAumnxr0IQjf2fxYn2HGDCtT4vF11WroVqXRJW+ia2b56dylrpbprZLQ/hFxNc/7HqwNB2d5OIxcwqcKioqnCZjVlVVeaRRwaCmpgZqtRp5eXlobGy0qb1UXl6OvLw8lJWVob29HY899hj+93//F9u3b5+xr7PjEBIMTCYTTp48iRMnTqC3txcrVqxAYWEh1q5d6/HlhxbKrUETKv/O4sX3OzAyzgdMG5fF4Wu7VmEXBUzE2qzB0ieBtffzVb2JX5BwLp6WcvLkyVkX8XVln4XW39+PuLg49PX1+eUUy+9+9zuYTCY8+eSTHj+2yWRCeXk5Dh48aHcKj7iO+tJzhL4sLS3FqVOncPLkSYyPj2P9+vW4/fbbsWzZMl830W03B0yo/HsrXqq/LAZMm5bH4euqVbh7DQVMZJIQLJ39A3Dzo6nt0lAg6+7JnCUKlhbSXGIFlwOnQOXPgRPHcaioqMDtt9+OO++809fNIcTrOI5De3s7Tpw4gfPnzyMyMhI5OTl2C+oGku6BUWj/xuI3JzowOs4vJL15BYOv71qFu9YkUsBEgO5zUzlLFCz5nbnECvMqR0Dmp6urCyMjIzMSwwkJNhMTEzh9+jTq6+vR1dWFpKQk7N27Fxs3bkRoaKivm+e27v5RPDsZMJkm+IBpywoGX1Otwl2rKWBa9MRg6Q/AzXNT26WhQNY9kzlL91GwFGAocPKh9vZ2hISEBPTUBCHODAwMoKmpCU1NTRgaGsLq1auxe/duZGZmBnRQ0dU/imfebsVvGy6LAdPWlQy+rlqNT6xaGtCPjThgMbt2Vlr3R1M5Sw6Dpfv5osAkIFHg5EPt7e029Zs8hWVZ1NbWQqFQgGVZlJSU0Jl4Tuj1egCAUqkEy7IwGo3ikjbO+pL6mafX67Fv3z5xMWoAuH79Ol599VW8+uqrWLp0KSIiIvCtb31LPOM0UPv1Rt8onv1bK15uuIyxyYApJz0eX9u1CndQwBS8Wl5zUAdJw5/q7yxYum0XPw235j4KloIEBU4+wnEcOjo6sH37do8fu7CwUPwSY1kW+/bto7PxnNBqtaisrATA1+Cy7itnfUn9DDHA0ev1sFgsOHfuHOrr63H58mX84he/QHV1NbZu3Yrr169DrVa71Hf+2K+dfSN45u1W/K7xihgw5abH4+uq1fjYbQkUMAWzltcmK29PSwfuvw5UfxaISQMGrAIqWRg/skTBUtDyWeA0l/8qnY0IBCpv5TexLGtzWaFQQKfTefQ+gk1OTg56e3sB2BZVdNaX1M+8goICjIyMAAB+9rOfoa+vD+np6di5cyeOHj2KHTt2AHC97/ytX68b+YCpqvEKxsx8wLQtQ46vqVZhZxYFTEHPYuZHmpyt4TlwfWpkaf0n+WApglZqCGY+C5zm8l+lsxGBQCXkNy1fvtyjx9XpdJDLbYujyeVy6PX6gA82vcle0O6sL5uamhZ9P9+6dQsnTpzABx98AADIzMzE9u3bkZqaisrKSrf6zl/69ZpxBM+8fQnVjVenAqZMOb6uWoUdCgqYFg3277bTc44UvwSs2eP99hC/4JPAaa7/VToaEQhkHR0dXslvcrQA8PQ178gUo9GI2tpaAEBjYyNKS0uhUCic9uVi7WeO48CyLOrr63Hx4kVER0fjYx/7GADg4YcfFvdzt++83a9mC4eGNgO6B0aRFBOBbZlyyKyWO7naO4yfv92KmqYrGDfzowzbM+X4umo1La67WAwbgIt/Ac6/Dpx/07XbjC3UQurEH/gkcHJnVCRYAiZgqpaNN/KbHHH0hURgM02sUCiQn5+P1tZWh/s768tg7efx8XGcOnUKJ06cwM2bN5GSkoKHH34YGzZsmFPw727feaJfj53pxKGjLejsGxW3pcZF4Km92diwLA7/99dW1DZPBUw7FAn4mmoVbldQwBT0bl2cDJSOAVfqAc4yt9svSfZOu4hf8kngNNf/Kh2NCNhjMplgMpnEy/39/fNrrBd0d3d7rX4TwzAz+tFgMARV4OlpLMuKAbuQc8eyrNO+XCz93NfXh8bGRjQ3N2N0dBRr167Fgw8+iJUrVzqdrnK377zVr8fOdOLLL+lnZKp09o3iSy/pIZUAlskrd2Yl4Gu7VmE7BUzByzzBB0jn3+B/DNP+UUreyE+93XYvUPsk0N8J+3lOEv7suvSdC9Fq4if86qw6RwHVXEYEysvLcejQIS+10DPa29shk8m8Ur9JpVJBq9XO2J6bm+vx+woGer0eu3btEqeCBXK53GlfKhSKoO7nq1evor6+Hi0tLQgNDYVSqcS2bdsQH+9aoT53+84b/Wq2cDh0tMVZei8sHPCxrAR8PX818jLcWECV+L/RPuCSjh9VuvgXYNQ4dZ00lF8Ad839wOrdALNy6ro9msmz6iSwDZ4m/3HYc9h+PScStHwSOM31v0pHIwL2Rp0OHjyI/fv3i5f7+/uxYsUKzzXeA4T6Td6omDy9T1iWRW5ubtCNhHiKQqGARqMRL+t0OhQUFIijH9as+9LZdYHKbDajpaUF9fX1uHbtGuRyOfbs2YPNmze7tD6f0Wi0+QfHmqt9541+bWgz2EzPOfKv96yioCnYGNqAC8f4UaWOdwHLxNR1kXI+SFq9hy8fEOFgmY3sh4CiFxzUcTrMX08WFZ8ETnMZFXE2ImBPeHi4Xy/CKtRvysvL89p91NTUQK1WIy8vD42NjUFxFqK3MAyD3NxcVFRUgGEYtLa22vSXs74Mln4eHh5Gc3MzGhoaMDAwAIVCgU9/+tNYtWrVrGeP6XQ61NXVAeBHe/Py8lBQUADA/b7zdL9eMw67tF/3wOzBFfFzFjNwrXlqCs56TTgAWLqaLxew+j5gxTbXR4qyHwLWPuBa5XAS9Hy2yG9OTo5NOYLS0lLxA1iv14NhGPHMpurqapSUlADgC+5VVVW5/GHqb4v8dnV14ZlnnsGTTz6JzMxMXzeHLGLd3d2or6/Hhx9+CADYvHkztm/fjqSkJB+3zDOuGUfwUn0HXny/HYMm86z7/3bf7XTmXCAaGwJa/8oHShffBIZuTl0nkfEBzuo9fMCUkOW7dhK/FhCL/Dr7r1L4z7WsrGzWEYFA09HRAZlM5vH6TYS4guM4XLx4EfX19WBZFjExMbjzzjuRk5ODqKgoXzdv3jiOw/tsD55/rx11LV1iwrd18vd0EgApcXxpAhIg+q5NTcG1/R0wT50QhPA4YJWKH1VapaIFdInH+WzEaaH424hTdXU1hoaG8PnPf97XTSGLiMlkEssJ9PT0YNmyZbj99tuRnZ0NmSzwpxuGTBP4w8lreOH9dlzomqqpszMrAU/syIDZYsG/vnwSgN30XjzzuBJ7NqQuXIPJ3HAc0HmKD5QuvMH/bS0+gw+U1tzHjzDJPJ8/SoJbQIw4LUZC/SZv5jcRYq23txcNDQ3Q6/UYHx9HdnY2PvnJTwbNiGf7rSG88H4HapqvYGCUT/yNDJXhEeUyPLkzA6uTY8R9ZVLJjDpOKZN1nChoWiAWs+t5QuOj/GjShTf4M+Gs14ODhM9RWr2HPxMucQ1A1dzJAqHAaQHdvHkTw8PDSE9P93VTSBDjOA6XL19GfX09zp07h4iICOTl5SEvLw9xcYG/hpbFwuFvF2/ihffa8faFmxDGzDMSovDZHRkoyFmOuMiZIw57NqQiPzvFaeVw4kUtrzk4M00zdWbaYDdw4U1+Gq71LWDcKrE/NBrIupsPlFbdCyxJXNj2EzKJAqcFJNRv8rfyCCQ4TExM4MyZM6ivr8eNGzeQmJiIBx54AJs2bUJYWJivmzdv/aPjqGm6ihffb0d7z9QX6l1rEvHkzgzcuSoR0lmCIJlUQgngvtDy2mQtpGmZIf2dQPVngQ0FgLEDuNpku0/ssqnE7ow7gNCIhWw1IXZR4LSA2tvbsWzZMq/UbyKL1+DgIJqamtDY2IihoSGsWrUK+fn5UCgUQbEY7YWuAbzwfjte0V/D8Bh/dlxMRAgKc1bgiR3pyFga7eMWEqcsZn6kyW4J0sltZ2qnNqVu4UeV1uwBUjbRFBzxOxQ4LRChflNOTo6vm0KCRGdnJ06cOIHTp09DKpViy5Yt2L59O5YuXerrps3bhNkC3UfdeOH9drzX2iNuX528BE/syMAnty5DdDh9fAWE9n/YTs85cvu/ADv/lZ++I8SP0SfPArl16xaGhoa8sj4dWTwsFgvOnz+P+vp6dHR0IC4uDvfccw+USiUiIyN93bx5MwyNoarxCl6q78A14wgAvpRAfnYyntyZgR2KhKAYRQtqFjPQdQZoe4cPmti3XbvdMiUFTSQgUOC0QIT8pmA5m4ksrNHRUZw8eRInTpyA0WjEypUrUVRUhLVr10Iqlfq6efN25lofnn+vHa+dug7TBL8yfXxUKB7bthKP356OZUzgB4VBSwiU2v/B/3S8y68LN1dLkj3fNkK8gAKnBSLkNwVDki5ZOD09PWhoaMDJkydhNpuxfv16FBUVIS0t8P8zH5uw4NjZG3j+vXY0d0wtqbRhWSye3JGBvZvTEBEa+DWmgo7FYhUovWM/UAqL4UsNZHwcWLmDTwwf6IT9PCcJP9KUvnMhWk/IvFHgtACE+k3CQsWEOMNxHNra2lBfX4+LFy8iMjISO3bsQG5uLmJiYmY/gJ/r7h/Fyw2X8fKJy+ge4Cs+h0gluH9jKp7cmQHlSoam4/yJxQJ0n52aeut4Fxg12u4TFgOk7+ADpYw7+KRumdXXy32aybPqJLBbgnTPYVr3jQQMCpwWAOU3EVeMj4/j9OnTqK+vR3d3N5KTk/HQQw9h48aNCAkJ7Lcqx3HQXzbi+ffa8caZToyb+S/PxJhwfGb7Snx620okxdKp5n5BCJSEqbf2f9gJlJbwI0mZd/DBUspm20BpuuyHgKIXHNRxOjxVx4mQABDYn8YBor29HVKplOo3Ebv6+/vR2NiI5uZmjIyMYM2aNbjvvvuQkZER8CMvo+NmHD11Hc+/344z1/rF7Tnp8XhyZwb2rE9BWEjg52gFNIsF6G6xnXob6bXdRwiUhBGl1FkCJXuyHwLWPuB65XBC/BQFTguA8puIPdeuXUN9fT3Onj2L0NBQbN26Fdu2bYNc7t+LzZot3KzVt68ZR/BSfQd+13AZvcPjAICwECn+aXMantyZgQ3LAr+CecCyWICbH01OvTkIlEKjbafeUrfMPVCyRyrjR6kICWAUOHmZUL9p69atvm4K8QNmsxnnzp1DfX09rly5gvj4eNx7773YunUrwsPDfd28WR070zljvbfUyfXedq9PwftsD55/rx11LV2wTKayLGMi8fjt6SjOWwF5NP3zMC9zWetNvM1koCSMKLW/C4wYbPcJjQZW3j459SaMKFGhXkLsocDJy3p6ejA4OEj5TYvcyMgImpub0dDQgP7+fmRmZuKxxx7D6tWrA6acwLEznfjyS/oZ50Xd6BvFl17SIzUuwiag2pmVgCd2ZEC1LgkhssB4jH7NlbXegMlA6Zzt1Ntwj+2xhEBJGFFK20KBEiEuosDJyyi/aXG7efMmTpw4gVOnToHjOGzcuBHbt29HSkqKr5s2J2YLh0NHW5wtmoHOvlFEhkrxaM5yPLEjA6uTA/8MQL/hdK23J4DdP+ADn7a/OwiUoqYFSlspUCLETRQ4eVl7ezvS0tIov2kR4TgOly5dwokTJ3Dp0iUsWbIEH//4x5Gbm4vo6MBcV62hzWAzmuTI/3xaCdU6KmToUa6s9fbmQdvNoVHAiu22gVIIfQYR4gkUOHmRUL9py5Ytvm4KWQBjY2M4deoUTpw4gVu3biE1NRWPPPII1q9fD5kscM8cMgyN4bVT11zad8g04eXWLEKtb7m21lvqFmDdXgqUCPEyCpy8iPKbFoe+vj40NDSgubkZJpMJ69atw0MPPYQVK1YEbDmBW4MmvHn2Bt44fQPvsz0wW+yNdsyUFEO1mOaF4wDjZeBqI3DlBHClAeg85dptd/5/wMYC77aPEEKBkzdRflPw4jgOV65cQX19Pc6dO4ewsDDk5OQgLy8PDMP4unlu6R4YxZtnbuD10zdwoq0H1rFSdmoMLhtGMOhgREkCICWOL01A5mB8lA+MrjZMBkqNwOAN945Fa70RsiAocPKijo4OpKWlBcRp5sQ1ZrMZZ8+eRX19Pa5fv46lS5fivvvuw+bNmwMyj+1G3yiOnenE62duoLHdAM4qWNq0PA73bUjF/RtTkJ4QLZ5VB9hdNANP7c2eUc+JTNPfyQdIwohS5ynAPGa7jzSEX7JkxXZgRR6wLBf41R7+trTWGyE+R4GTlwj5TZs3b/Z1U4gHDA0NoampCY2NjRgcHERWVhY+85nP4Lbbbgu46bjrxhG8ceYGXj/dabO4LgBsWcHggY2p2LMhBSvkUTbX7dmQimceV86o45QyWcdpz4bUBWl/wDCPAzdO89NtVxv4331XZu4XnQgs3wasmPxJ2wqERtrus4fWeiPEX1Dg5CUGgwEDAwOU3xTgurq6UF9fj9OnT0MikWDz5s3Yvn07EhMTfd20ObliGMYbZzrx+ukb+OCK0ea63PR43DcZLC1jIu0fYNKeDanIz06ZtXL4ojR0iw+OhBGla3pgYsR2H4kUSF4/GShNjijFZwKzBd+01hshfoMCJy+h/KbAZbFYcPHiRdTX16OtrQ2xsbG46667kJOTg8hI54GFP+noGcLrp2/gjTOd+PBqn7hdIgHyMuS4f0MK9mxIRUrc3BK6ZVIJdmQleLq5gcVi5td3u9IwNaJkYGfuF8Hwo0jCiNIyJRDuZn0rWuuNEL9AgZOXtLe3IzU1lfKbAojJZMLJkydx4sQJ9Pb2Yvny5SgoKMC6desCppwAe3MQb5y5gT9/2ImWzqlFdaUSYHtmAu7fmILdG1IW79lv7ixZAvBruV1tmhpRuqYHxgZm7pe41ipQ2g4k3AZ4sjI8rfVGFiGzxQx9tx43h28iMSoRyiQlZD78h4ECJy8Q8ps2bdrk66YQFxgMBjQ0NODkyZMYHx/H+vXr8eijj2L58uW+bppLLnUP4M8f8iNL525MfZnLpBLsUCTg/o2puHd9MpYuWeRB/FyWLOm5OFUO4EoDcOv8zOOFxQDLc/gAafk2/u/IeO8/DkIWEV2HDocbDqNruEvclhyVjAPbDkCVrvJJmyhw8gLKb/J/wuLL9fX1OH/+PCIjI7Ft2zbk5eUhNjbW181ziuM4nO8a4KfhTnfiYvegeF2IVIKdty3FAxtTkJ+dQovqCmZbsuRONX82m5CfNGqceQx51lQC9/JtQNI6miYjxIt0HTrsf3s/uGnv2+7hbux/ez+evutpnwRPFDh5QXt7OyQSCVauXOnrppBpJiYmcPr0adTX16OrqwtJSUnYu3cvNm7ciNBQ/127i+M4tHT2443TN/D6mU6wN4fE60JlEtyxKhH3bUhBfnYymCgKlmy4smTJ3w7bbg6JBJbl8MnbK7YDy/OA6KXebikhZJLZYsbhhsMzgiYA4MBBAgk0DRrcveLuBZ+2o8DJC6h+k/8ZGBhAU1MTmpqaMDQ0hNWrV2P37t3IzMxc8HICZgvn0llpHMfhzLV+vH6mE2+c7kR7z7B4XViIFJ9YlYj7N6Zg17pkxEX6b9DnMyNGoOsMcPaPri1ZkvEJYN2D/IhS8gZaBJeQBTAwNoBrg9f4nwH+9/XB67jQe8Fmem46DhxuDN+AvluPvJS8BWwxBU4eJ+Q3bdy40ddNIQCuX7+OEydO4MyZM5DJZNiyZQu2b9+OhATfnBV27EznjDpIqVZ1kDiOw6mrfXjjdCdeP9OJK4ap09nDQ6S4a00i7t+YinvWJiEmgr7YAfA5Sb1tfJB04wxfO6nrjP2aSc7kPElLlhDiYcPjw+gc6sS1wWu4OnAV1wevTwVKg9fQP9Y/+0GcuDl800MtdR0FTh7W29uL/v5+pKen+7opi5bFYsG5c+dQX1+Py5cvg2EYqFQqbN26FRERvjubTKi8PX3g+UbfKL70kh671ibh3I0BXDNOBUuRoTLcszYJ921Mwd1rkhAdvsjfsqZBvgyAEBzdOMNfHhu0v3/cSiA2lc9dmg0tWUKCmLfOTBszj/GB0cA1XBuyHTW6OngVhlHDrMeID4/HsiXLsCxmGf97yTIMjg3iJ/qfzHrbxKiFr6m3yD+FPY/ym3xnZGRELCfQ19eH9PR0FBcXY82aNZB68pRwN5gtHA4dbXGWZYPj57oBAFFhMuxal4z7N6TgzjWJiApbhG9TjgP6rk4FR12n+d8GFnZzlWThQHI2P8WWspH/nbweiGT4HKefbqAlS8iiNZ8z0yYsE+ge7p4aMRq6LgZH1wavoXu4224ekrWY0Bgsi1mGtOg0m+BI+IkKjZpxG7PFjJfPvezw+BJIkByVDGWS0sVe8JxF+InsXUL9Jl+ObCw2t27dwokTJ/DBBx/AYrFg48aN2L59O1JT/WcJkH9cvGkzPefI/vzVKPmEAhGhfny2lru1kBwZHwVunrMKkian2+yd2QYAS1KAlA22QVLCbYDMwceZVEZLlpB587daQq6a7cy0H935I2xJ2mI3z+jq4FV0DXVhgrO/uLcgQhYhjhilRadhecxyLFuyDGlL0rBsyTLEhcfNud0yqQwHth3A/rf3QwKJTfslk+9b9Ta1T54DCpw8SMhv2rBhg6+bEvQ4jgPLsqivr8fFixcRHR2Nj33sY8jNzcWSJUt83Tz0DJrQ1NGLpnYDGtt78eFVo0u3S0+I8u+gydVaSI4MdltNs02OIt26AHDmmftKQ4Cla2yDpJSN7p3dRkuWkHnwx1pCjkxYJjAyMYLh8WEMjA/ge/Xfc3hmGgD8+9/+fdZjhkpDkbYkzeGIkTxC7pWTbFTpKjx919N2+169TU11nIKBkN9E9Zu8Z3x8HKdOncKJEydw8+ZNpKSk4OGHH8aGDRsQEuKblzPHcWjvGUZjuwFN7QY0dfTalAuYC7+u6D1bLaSiF6YCEPMEX0TyxmnbfKShbvvHjoyfDI42TQVKiWuAEA+emUpLlhA3eKuWEMdxMJlNGJ4YxvD4sM3vkfER28uTgdDwhPP9hseHMWYZm3NbJJAgNTrVZjpt+ZLl4ohRUlQSpBLfpDuo0lW4e8XdfjXaR4GTB3V0dFB+k5f09/ejoaEBzc3NGB0dxdq1a/Hggw9i5cqVC15OYNxsQcv1/slAqRdNHQbcGpz5YbUmOQa5GfHIy5Bj60oGxZX16OobdZRlg5Q4vjSBX3KlFtJr/wqcfwPoPgt0nwPMJjv7SoCErKkpNuF3bNrsC916Ai1Z4lOBNt01Wy0hADj0/iEYTUaMTozyAY6dQGh4fHjGdSMTI7BwFq+1XSaRIVQailHz7CkC3//497E3a6/X2jJfMqlswUsOOEOBkwdRfpPnXb16FfX19WhpaUFoaCiUSiW2bduG+PiFW9pi0DSBk5d70djOT72dvGzEyLjt1FKYTIrNK+KQmyFHXkY8lCvjZxSi/M7ebHz5Jb2jLBs8tTfbbj0nv9Dx7uy1kEb7gFMvT10Oi+ETtK2n2pLWAWHR3m0r8Uu+nO7iOA4jEyMYGBvA4PggBsYG0D/Wj4GxAZuf6dtujtx0WksIAIwmIw69f2he7YsMiURkSCSiQqIQFRo147dwXWTotH0c7BcVGoVQaSiauprwhTe/MOv9p0SnzKv9iw0FTh4i5DdlZ2f7uikBz2w2o6WlBSdOnMDVq1chl8uxe/dubNmyZUGKinb3j6KxvZcfUeowoOV6PyzT/uGMiwxFbnq8GChtWBY3a27Sng2peOZx5Yw6TilWdZx8iuOAoVv8mWuGVqCndervbjtrtdmzbi+wsYgPlpgMzy5wSwLWfKe7hMBnemAjXBaCIUcB0cDYwKwJzvOxTr4OGbEZU8HLZDBj/bej3xEhEV6bBlMmKZEcleyXZ6YFMgqcPMRoNKKvr4/ym+ZheHgYzc3NaGxsRH9/PxQKBT796U9j1apVXpuO4zgOrTcHpwKl9l5cNgzP2G95fCTyMuTi1NttiUsgdWN0aM+GVORnp7hUOdwrOA4YNlgFRpPBkRAkmeZXjA7bSmkqzIsCbaoLcG266z/f/U80dzVjaHyID3TGZwY+ZnsnEMyRTCJDTFiMzU9sWCz/d+jM7VcHruJw4+FZj/uNvG/41VSSwJ/PTAtkFDh5iFC/iQpfzl13dzdOnDiBU6dOAQA2bdqE7du3IznZcUFCV5ctmW5swoLT1/rEs92aOwzoHR632UciAdalxCIvgx9Rys2IR2pc5PwepBUZLNghbQFkXYA0GcBOAB7+4Bo22AmMJv8e7XNyQwkQtxyQK/ifhCx+cdv4DOClR4CBG6BaSL7hL2d2CaM/RpMRvaZe9I32Tf1t4v82jhr53yYjuoa7Zi2CODg+iJc+emnW+w6RhCA2fCrQWRK2xDb4mSUgigyJnNM/YWaLGb86+6uAHrHx1zPTAhkFTh7S3t6OlJQUym9yEcdxuHjxIurr68GyLGJiYnDnnXciJycHUVEzi6FZm23ZEmt9I+PQX54qC3DqihGmCduEzIhQKbasYCZHlPhE7lhvLWcy39P5rQ0bJqfSrAIjYeTIUQ0k8T6XA/LMqcAoIYsPlOIzgVAHr+H7KqgWko9468wuC2fBwNjAVMAj/FgFPtY/faN96DX1YtwyPvvB5+jO5Xdic+Jm+8HP5E+ELGJBTwYJlhEbfzwzLZBJOI5zXvIzwPX39yMuLg59fX2IjY312v385Cc/QXZ2Nnbv3u21+wgGY2Nj+OCDD3DixAn09PRg2bJluP3225GdnQ2ZbPY3saNlS4SP0u9/cgOiw0PQNDn1dr5rANNf4fLoMOSmx4tTb+vT4hAWsgC5OI5O5xdab306v2CkdzIwspN3NNLr/P5i0qYCIuG3PIsPmELdHEGzG/gto1pIXmS2mLH797sdJikLox5/+uSfMDg+KAZBjkaAxCDI1Ic+U5/bU2Bh0jAw4QziIuIQHx6PuPA4MOHM1E8E//v64HV8/8T3Zz3eL3f/0i+nuwD7o30pUSk0YhNE5hIr0IiTB1B+0+x6e3vR0NCAkydPYmxsDNnZ2Xj44YexfPlyl/+DdGXZkm/+4cyM6zISosQk7twMORRLoxe8hIFLp/Mf/RrQdRbobZ8KkkZmWecpJnUqGLIePYrPBMKcj9y5JcBrIQVKjtDoxKgY3NR31ru0Snzub3Ldvr+okCg+CAqPQ3zEVBA0IyCKmAqMXJ32MlvMeO70cwE/3UUjNkRAgZMH0Pp09nEch8uXL6O+vh7nzp1DREQEcnNzkZeXh7g410rwcxyHm4MmdPQM43hLl0vLliiWRuOuNUnIy4hHTka8b4tKmgb5vKCLb85+Ov+IAfibnUTUJSmTo0YK22k1ucI3p/YHaC0kX+QI2ZsK6zP1oXe0V/zb+rfwtyu1dxyJCYtBfHi83UDI3ogQE84gTBY2+4HdFCzTXf5WS4j4DgVOHtDe3o7k5GRERnougTiQTUxM4OzZs6ivr0dnZyeWLl2KBx54AJs2bUJY2MwPaI7j0D1gQvutIXT0DKOtZwgdPUNovzWMjp4hDI3NnEqQwoJt0nNIghHdYNBgWQsL+Om2r6lW4Z+2LPPugxwfBQZv8EHRQKeD3zfmfpZa+seA23ZZTaspgHDfLyFjLVBGbax5Ikdo3Dw+Y6prek7Q9ACob6zP7SKHQiJ0uCwcnUOds+7/07t/ijuX34kQqf99rFOCMgkm/vcOC0Dt7e1Yu3atr5vhc4ODg2hqakJTUxMGBwexatUqPP7448jKygLHAV0Do2i/0oP2niG09wyh49Yw/7tneEZBSWtSCZDGRCI+KhSnr/Vjt7QBT4W+gDTJ1DTWdU6OQ+NP4E3LtvmNMJnH+SkopwFR5+z5RdZCo4HIOHHEyQxAHxGOmzIZEs1mKEdNU+fU3XXQr0dz/OXMrrlw5XT477z/HXQOdWJgbAC9o70zAiCjyYjhiZllKlwVGRIpju7EhVvlBEVMbbO+nglnsCR0CSQSiZjjNNtU113L7/LrAJamu0iwoOTweTIajfjpT3+Kxx57LKCCJ3dP57fnxo0bqK+vx4cffoihMQuWpq9GzMp1MJgj0H5rSAyOpp/NZk0mlWB5fCTSE6KRkRCF9IRoZC7lfy+Pj0R4iAxmC4f/+MEP8IPxCgB8QCUQClR+M7QM3//mN2c+FouZL+7oLBgauAEM3YT9PCQ7QiKAmBQ+z8jZ7/AY/v5/ugG6CSMOJzDoslpXL3liAgd6jFCFxANfP+23+UKORm2E6RZ3z+yyZuEsMJlN4vIVoxOjGDGPYGR8BKPmUXG7eN3E7NsNo4ZZqz+7SiqRIjYs1ibAEQIhJsJ+AOSJqTCh7wHYneryRN8TsphRcvgC8pf6TWMTE3j51Nu43H8DK2NT8OnNdyHMwaK3x8504ruvnUKCuQ5RIbcwPLEUPbJ8fPuhzbNWrzZbOFw3joC9OYD6k2dwor4e7e0dGOTCMMJkQLJUAWlrONA6M58nRCrBCnkU0hOikJEQzf9eGo2MhGgsYyJnPbNNBgueCn0BGAc4CdA4bdRGwgHflWgh+3vIzFGjwS7A1bOHpCFWwY+TgCiCcX19NakMum1PYP+l38wIy7plMuxPSsDTt30GKj8Nmlxds2t4Yhhj5jHbQMY8FQQ52y5c9pUNSzdgnXzdjBwg6wAoJizGJ4ud0lQXIf7DZyNOLMuitrYWCoUCLMuipKQEDMPMe9/pvDniNDZmwoHvfwlnWhuRfkcsmJA4LAmJR3xUMlKYTDx8ZynCwsLFfV/9mxbd/ZeRFLvS5jpHx3Z1/x++U4MXL/wMXMhUYUPJRBw+u/pr+MYdhTb7HjvTiV+89p+4lfw+blkFKksnLFjatQP//ND3oFqXjOvGUZtcI3F6rduI4euXYOq8AMvoIEJiExGWthahCcshkUgRKuODIyEwylwaLY4ipTGRCJXZ+dIxjwOj/XztodE+Pi9otM/qZ/LyrQsA+1fooiJxOCHezqhNL1TDTr54JVIgOsl5MBSbBkTKPb5UyOynlAPJUSk49ugxp1MXHMdhzMIHJmPmMYya+d8ms0n8EQKXGdsm9xVua329vf1MZhNMEyZxBMgC7y1Iak+YNAyRoZGIkEWIa3lFhESIlyNCXNve3tcOTaNm1vvz59PhBYGYX0ZIIJhLrOCzwCknJwfNzc0A+MBIrVajpqZm3vtO563AqfKP/4Hne/4A9ngvwlPCEbMpZsY+Sycs+NTShwEAv7316oxA5VNLH0bJP82sb1L5x/9wef8fvlODF1q/C4CzHf3gOAASPJH1bTF4Mls4fOEnX8bJhH/wYwRW+0smXwZrOndA3/8wzNNeFeaRfoxdv4CxbhZSWLAsczXWb8lBdlY6suQhUMSYkR41jsTQUYSMDQCmPvvBj73AaNz13BFdVCT2Jy112P6nu29BlZjDnyI/PTCKTgRkrg2ychwHM2fGuGWc/zGPY8IyMXXZarvw94RlwuayeDtuAqyRRfWF6lnvd138OoSHhNsNakwTJoxZxlzuK1/IYrKwImYFImVTAUxESAQiQiL4dblkETbbxQDHantkSCTCZeEeCwhczRGaLWglhAQvvw+cWJZFYWGhGAwBQHx8PHp7ZybczmVfe7wROFX+8T/wP71/BDfB4eafb2HJ5iUIjbdTaXp619r5ov9C3B48vueAuP2lY4fxy75jDgMD6/3HJibwUPVemGQjdqeMJByHsIlIbA4vR9/oBDoNAwhZ+h0YZBKH+8vNHDKvPYLUaClWRI0jdLgH3dcuo6enB/FhHHZkRGLnihDESoaB0T5wo30wm8dglgBmSDAx+dsMwCyRiNv5y8AErLZZ/Z6ABJbQSJjDojERFgVzaBTMYZEwh0bCHBIBc2gExkYH8N+DLRiQSu1PkXEcojgO96XegYklS2cEORPmiakAx0HwY33Z3pesP5FKpAiXhSNcFo4wWRgiZBE2v8Nl4QgPCRf3mf4TJgtDRIid2wg/IeEIl/J/f2T4CP/+t3+ftU3+OmpDOUKEEGf8PsdJp9NBLpfbbJPL5dDr9VAqlW7vuxDGxkx4+dargEwCSagUcTvjYHzfCHdnMX7G/RZvHG8BxwFmyzjY4bMYc5I38zPuZTxfU8dP2UhM6AsbnOUeejE2/jmEc8C41IKbIc5zcnoA3OCeQ+LqSPSz4xgdmEBobAiWbIlC+PJw/CVkHGYAExIJzDERsEi8UYJhlP8xg/+x5qy6uESCYYkEv+96F/BMLrCNEGkIQqWh4o94WRZqs33GZWko+sb68N7192a9j5KNJchOyJ4R8NgLiEIkIQtWyDNtSVpAr7JOOUKEEE/xSeBkNBrtbjcYZlZJnsu+AGAymWAymcTL/f3zXO19mlf/pkWP1RSaNEwKWIDoNdGQRbk3zH8ZbeLfEYjDbCfTj0KYrpEiFrOPoo1P/gCYde+R9hF0NfShbwyIzIhE1NY4hC4NxZhEgrlOEoVIQiCTyiCVSMW/ZZLJn8m/Q6QhkElkkEon97G6zvp3iCQEN4dvosXQMuv95qfnY33CertBjMvBjp3bzSdIcXW66CtbvuKX00XBUMSQTocnhHiCX51V5yhImsu+5eXlOHTokGcaZEd3/2Wby9IwKSQyCYbOD7l9zMQJM5ZwHIYkEnSHzP4hnmqWIF4ajiHLGDpksw91rZXEICkuDcaRXnxo6na677hhHJtXZOHAd/8LKzNWOg14pBKpTfBjvZ9UIvX4aEjjjUZ84c0vzLrfp9Z+yu+mi4Il8Aj0URuq/kwImS+fBE4Mw8wYMTIYDHbPlJvLvgBw8OBB7N+/X7zc39+PFStWzLvNgqTYlYDV7JgsSoYEVQIsY+6fcfTV5M/goTu/iNf+9hx+0vWbWff/yuT+Y+3v4fH3DuCWTArOQc5SotmCF3ceRljGTpgnxvBYzb3okcLh/kstwB+f1EGekOj24/EWZZKSpot8jEZtCCGLnV8lh7e1tc0IiOayrz2eTg4fGzPh3heV6HGQYD2D0L2OAhUzh2Of1SMsLBxjYybsnjy2w8DGan9YzHj9v9fjAMPHv5ydZPLDxgnc/9WzYlFF3T/Ksf/Sbxzu//Rtn4Hq4wdd6AnfCIYkXzqlnBBC/MtcYoWFr+QGQKFQ2FxmWRa5ubliIKTX68GyrEv7LrSwsHB8erLEwIyz5qazul4ybV/h8mNLHxbrM4WFhYvlC1zZH1IZ7r+3Aj/u7kGS2TaLOslsxo+7e3D/vRU2lahVHz+Ip2/7DJKmDZAlW/w/aAKmRm2SopJstidHJQdE0ARMTRfdr7gfeSl5FDQRQkgA8WkBTK1Wi7y8PDQ2NuLgwYNiMFRYWIi8vDyUlZXNuu9svF3Hqd/JWV6JExY85qCOk3Cdq3WcnO2PltcwcUyNk2M9YiXtrWFLEbLnMJD9kN22mSfGoD/9Im72X0Zi7EooN34WshDvrZDuaTRqQwghxFP8vo7TQvJ25fDf//X/cPLKcfSae31WORwAvxZax3v80iJLkvkCkBRIEEIIIbOiwMmKtxf5JYQQQkhg8/scJ0IIIYSQQESBEyGEEEKIiyhwIoQQQghxkV9VDvcGIYXL00uvEEIIISQ4CDGCK2nfQR84DQwMAIBHq4cTQgghJPgMDAwgLi7O6T5Bf1adxWLB9evXERMT45WV5IUlXa5cuUJn7S0w6nvfob73Hep736G+9x1v9z3HcRgYGEBaWhqkUudZTEE/4iSVSrF8+XKv309sbCy9kXyE+t53qO99h/red6jvfcebfT/bSJOAksMJIYQQQlxEgRMhhBBCiIsocJqn8PBwPPXUUwgPd7IcCvEK6nvfob73Hep736G+9x1/6vugTw4nhBBCCPEUGnEihBBCCHERBU6EEEIIIS4K+nIE3sKyLGpra6FQKMCyLEpKSsAwjK+bFdD0ej10Oh0AoLGxEUeOHBH71Fl/u3sdsU+tVuPgwYPU9wtIp9OBZVkoFAoAgEqlAkB9720sy0Kn00Eul4NlWRQUFIjPAfW95+n1euzbtw/Nzc02273R1159HjjiFqVSKf7d2trKFRQU+LA1wUGj0dj8bd3Hzvrb3evITM3NzRwArre3V9xGfe9ddXV1XElJCcdxfD8pFArxOup777L+zOE4TnweOI763tNqamrEz5fpvNHX3nweKHByQ2trq82TwnEcxzCMj1oTHJqbm236sLW1lQPAtba2Ou1vd68j9tXU1HAKhUIMnKjvvc+6vzmO7zvhN/W9d03vJ+sAlvreO6YHTt7oa28/D5Tj5AZhaNeaXC6HXq/3UYsCn1KpxJEjR8TLRqMRAN+vzvrb3evITLW1tSgoKLDZRn3vXSzLwmAwgGEY6PV6GI1GcaqI+t775HI5cnJyxCm7/Px8ANT3C8kbfe3t54ECJzcIX+rTGQyGhW1IkLH+0q6qqoJKpQLDME77293riC2j0Wh3/p/63rv0ej3kcrmYi1FZWYna2loA1PcLoaamBgCQlZWFmpoa8TOI+n7heKOvvf08UHK4Bzl6ssjcGI1G1NbWzkggtLefp69brKqrq1FSUuLy/tT3nmEwGMCyrPhPQklJCeLj48E5Ka9Hfe85Op0OGo0GLMuitLQUAKDVah3uT32/cLzR1556HmjEyQ0Mw8yIXIXhdjJ/arUadXV1Yn866293ryNTdDodioqK7F5Hfe9dCoVC7C8A4m+9Xk9972Usy6KxsREqlQolJSVobW1FdXU1WJalvl9A3uhrbz8PFDi5QThVeLrc3NwFbknwqaiogFqthkKhgNFohNFodNrf7l5HbFVXV6OyshKVlZVgWRbl5eXQ6/XU914m5DPZQ33vXXq9Hnl5eeJlhUKBgwcP0mfOAvNGX3v7eaCpOjdM/7BjWRa5ubn0X8U81dbWQqlUikGTMH00vV+t+9vd68iU6R8ypaWlKC0ttfulTn3vWQqFArm5uWKOmVDLSalUztiX+t6zlEoltFqtTW5lT08P9f0CsM6pdPZ96q+f/bRWnZtYloVWq0VeXh4aGxttCgaSuWNZFllZWTbbGIZBb2+veL2j/nb3OmLLaDSisrISarUaJSUlKC0thVKppL73MqPRCLVajZycHDQ3N4sjrgC97r1Np9OJ06IA/08E9b136HQ61NXVoaKiAmVlZcjLyxODVm/0tTefBwqcCCGEEEJcRDlOhBBCCCEuosCJEEIIIcRFFDgRQgghhLiIAidCCCGEEBdR4EQIIYQQ4iIKnAghhBBCXESBEyGEEEKIiyhwIoR4nU6nQ1ZWFioqKlBZWYmcnBzk5OSIBTezsrKg1+vnfR/CMQkhxFtoyRVCiNcZjUbU1dWJVZnr6uogl8tRUlICACguLgbLsnaXu3CVSqVCcXGxR9q7EKyXnSCEBA4acSKEeJ3BYHC6oK1SqZyxmnkwY1kW1dXVvm4GIcQNFDgRQryuqKjII/sEC41G4+smEELcRIETIcTrXJmSampqQk5ODioqKgAAtbW1yMrKgk6nAzCVJ1VaWora2lpUVlaitLQURqPR4TF1Oh0qKipQW1sLtVrtcD+WZaFWq8XjCsfU6/Xi7SsqKsCyrHjc2doq5FvpdDpUVlaisLBQvK6pqQl1dXWorKwUj0kICQyU40QI8QvTc5QKCgpQVVVlc31BQQESEhLEVdVra2tRWFiIurq6GccTgqHm5mYA/HShsDK7NaPRiPz8fDQ3N4NhGKjValRWVqKgoABqtdrm2Dk5OTh+/LhLbVWpVKirq0NNTQ0AoKamBnq9XrwuKytLzPEihAQOCpwIIQHFevSqoKAAhYWFdhOttVot5HK5OAoEAI2NjTOOV11dDYVCId7+4MGDAIDy8vIZyeoKhQLV1dUuBTwJCQlISEiwafdiyuMiJFhR4EQICVpKpRIqlUq8bC/gmR50LfSZbnR2HSGBhXKcCCF+g2EY9PT0iJd1Ot2MHCbry7W1tVCpVDaBh3B9cXGxzWiTcLzpCgoKZtSQ0ul0dm+v1+vFJHZX2uoKe20ihPgvCcdxnK8bQQhZHHQ6HViWFc8qU6vVyM3NFafEjEYj1Gq1mEit1WphNBqh1WqhUCigVqthNBrF6bnGxkYcPHgQDMNAr9dj3759AIAjR45AqVRCp9Ohrq4OeXl5ADAjyLJul739dDod9Ho9FAoFGhsbUVxc7FJbjUajTVuEfCulUik+do1Gg5ycHKhUKqelGggh/oUCJ0JIwBCqjFNSNSHEV2iqjhBCCCHERRQ4EUICgk6ng06nE0/rJ4QQX6CpOkIIIYQQF9GIEyGEEEKIiyhwIoQQQghxEQVOhBBCCCEuosCJEEIIIcRFFDgRQgghhLiIAidCCCGEEBdR4EQIIYQQ4iIKnAghhBBCXESBEyGEEEKIi/5//TuuhH6bfxoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFnCAYAAABQEsaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACVaElEQVR4nOzdeXhb5Zk//K8k73ZsWY7jOI6zHCchCUkgsh1IgBawXKCUrchJWyjdiE07nXaaaS3ceTs005k6MjNM2/lNQQ4zbSldbAsoS6cBK5QSCCS2lQSSQAAdJ1ESx3YsH6+xbEvn/ePkHGu3JEuWZN+f68rl6Gx69Gi79Sz3I+N5ngchhBBCCJmWPNYFIIQQQghJFBQ4EUIIIYQEiQInQgghhJAgUeBECCGEEBIkCpwIIYQQQoJEgRMhhBBCSJAocCKEEEIICRIFToQQQgghQaLAKUpYloVOp0Nubi5KSkoCHltSUoLc3FzodDpwHDc7BSRxw2w2o7KyctrXSTQZjcaY3fdcIr7vZTIZSkpK0NDQgIaGBtTU1KCqqorqOQg1NTXIzc2FyWSKaTnm6nPZ2NiI0tLSWBcjsfEkqvR6Pa9UKvmOjg6f+1tbW3mtVstXV1fPcsl8MxgMXttqa2t5rVYbg9IIfJVprmltbeUZhgnpnEjVS0tLi9e2/v7+gK9bXyL9OomH5z3cMmg0Gp/vaYZheL1eP9NiRVU81LtareZbW1tjXQye5+fec2mxWPja2tqQ3tvEHbU4RZlSqcT27dthMBh87o+3FqbW1lavbZWVldixY0cMSiPwVaa5RqVShXxOpOpFqVT63FZdXQ2GYYK+TqRfJ/HwvEe6DDU1NdDpdBG9ZqTFQ70ngkR9LhmGQU1Njc/3PQkOBU6zoKamBs3NzV7bOY4L6Ysp2hobG8GyrNd2jUYDrVYbgxL5L9N8F8l6MZvNaGho8Nqu1+tD+nCN5OskHp73aJRBrM94+8Ekiod6TxSJ/Fyazea4+u5JNEmxLsB8oFaroVKpYDQa3b5Y2tvbodFo/J7X0NAAhmHAsiwYhpHO5TgOjY2NYBgGra2tqKmpgVqtBgCYTCbpV9DevXvBsixYlkVfXx/0er3f+zKZTGhtbQXLstKXaG1tLcxmM3Q6HViWhcVi8XsfNpsNHR0dMBgMaGxshEqlQlNTE+rq6qSyTfe4gi2T53UAYTyC675AGhsb3W5XV1dPe81wH7N4nkqlQlVVFQDh+Zvu+fAsj2tdBVsv09WvSKlUQq/Xu11DDPb37t3rdr6/+gn2dRLua5FhGOlaBoMBLMtKgV1LSwtUKhUqKirAcRxaWlqk+vdXf9OVy18Z6uvrwbIsWlpaoNFowLIsKisrwTAMDAbDtF9GHR0dUKvVbgFpoDKKrQNiy4FYvmBew5F4zNO9pyL1WdTQ0AClUhlWy2so79lA9x/KewZI3OeS47igfxCJ54rPDcMwsNls0Gg0Pt/zOp0OjY2N0Ov1QT8Oz3opLy+f8fss6mLdVzjXiX3MvsZ/iGNLfI1x0mq1bmNPNBqN1CddW1vLWywWaR/DMHx/f790Wxwv4zpGgGGYafu0W1tbebVa7bW9o6PDa/yNv/uora11e3ye1wv0uEIpk1ardbtvi8XCazSaAI9OoNfrvcro+jwEuma4j7mlpYUH4Pac1dbWuj3nvuo4UF0FqpdQ6jcQjUbjdq3p6ieU10k4r0WDweB2f76eS9c6nq7+piuXrzL4Govma5yL57iY/v5+Xq/X82q12u29GqiM4muptbWV7+jokB7rdK/hSD/mQCLxWVRbW+s2Fqe/v58HENQYp3Dfs673P917Zr48l56qq6vdHrfFYvEae+br/aDRaNyez3DqJdj3WaxQ4BRl4gvIYrHwAKQ3msVikT5wPAMn8VjP64jHaLVatxem5xdcR0eH1/mex/gSSuDk7z5cPwQsFguvVCqDflzBlqmjo8PtuqLpBpSKH8ieH3Z6vT6oa4bzmP09BrEs4mvAs46nqytf1wynfgNx/cALtn6CfZ2E81oU60yk1+vd7s/1PTFdXQRTLn/vB89B874ei0aj4dVqNW8wGKR/nsFiMM+x5/5Ar+FoPmZ/ZvpZ5PmcioIZHD6T96x4/8G8Z+bLczld2Xie9wrW/P3g8/ze8/c4fNWLKJj3WaxQV90sYRgGarUazc3NqK6uhtlsDthFpVQq3abjWiwWqb+6paUFgNDkKnYZ2Ww2r/tzpVQqvY6ZKV/3EWhK/XSPK1jt7e0+m2rF7gJ/3Z/t7e1QKpVuzdRiXYrdDdNdM9TH7I9YDn9jDcKpq0jVry/h1rl4jKtwX4tKpRJqtVrq8hafR7H531UwdRFuuaqrq9HU1AS1Wg2TyeT3sZeVlbl1V3gKp4zTvYaj9Zj9melnkVgH4Qj2NRnM/U/3npkPz6Wvx+P53IT6XIVTL6Jg32exQIHTLKqpqYHBYEB1dXXAF6A4aNz1heL6f7PZjPr6elRWVmL79u1R6+/19YU0E9M9rmDLFO5gzEDnxdsAz1DrSqyXmdZvoPLEkvha3LFjh/RhWlZWhpqaGhiNRmg0GrfHGo26cC1DRUUF9Ho9WJYN+7rBlNHzc2K613C0HrM/kfgsCmdcExCZ12Sk6mwuPJeR4vq4wqkXUaTeZ9FAs+pm0fbt22E2m2E0GlFWVub3OLVa7bOVgOM4cByHiooK1NXVSQGY+EKN9GwYs9kc0esFelzBMpvN0mBBTyzLory8POD9+7ovjuPCvma4xOfSc+C8KNS6MpvNEalff2a7fjyJr0WtVguj0QiTyQS1Wg2tVguDweDV+hCNuhDL4DrZI9wvffE6oZYx0Gs4mo/Zl0h8FvkrczAi8ZqMVJ0l+nPpr2zh3J9rq9dMHkek3mfRQIFTlImzDQAhstZoNGhqagrY4qTRaFBWVuaVmba5uVlqWXD9whVfqNN9yE1HnPUACB8+/r7Uw72PQI8rlDKp1WpoNBq35l/XL9ZA19JqtW5T7zmOQ3Nzc9jXDPaDxWw2ux1bX18fME/SdHXlq17Cqd9ghVs/vszktSh2eYvvK7H+PK8ZTl14XiPQ+6GmpgY7d+6cUfqFcN8P/l7D0X7MniLxWcQwDKqrq91mlnEc5/V+8SUS79lIvWcS/bn0VTbP50WcvefvPsQyuPYKzLR+I/E+i4pYD7KaqywWC19dXc0D4Kurq6VBwK6zJsTZGUqlUspC6zoYT5xt4nqOuL22tpZvbW3lW1tbeYvFIg3k7ejo4LVaLQ9AmoUg3odarZ52gJ14bXFwn6/rBboPjUYjzZAQj6mtrQ3qcQVbJs/rGAwGtwHawVxPr9fzLS0tQV9zJo9ZHKTZ0tLCt7a28nq93m2GiOd5vsrjq66mq5dg69cfz9kwodZPpF+LInEwv+tt15ldvsrrWhehlMtfGcT3nCeLxRLwPR1sGVtbW3mNRsMrlUqfjy+Y13CkH7O/skfis0h8LOJ11Gp10NnDw3nP+nrMnnU2357LQI/H9XnxfE7EzzOxjFqtlmcYZtr6na5eeN7/+yzWZDzP8zGI1wiZN8R8JR0dHbEuSkiqqqqwY8eO+Pu1Fwc4jps2Dxshc01paSn0ev2sve7j9X1GXXWEEInY1C7+P9wZT3ORa1eI2J1CCImsRHifUeBECJHU19ejpqYGgDCmIdAkhvlGzIoMhD8TjBASWCK8z6irjpAoMplM0Ov10t9gl4WJFZZlYTQapSUWqJtuitlsRnt7OwAEzOlDyFzU0NAAnU4HjUYj/Y2GRHifUeBECCGEEBIk6qojhERMTU0NcnNz3aaIE//MZjMqKyvDyj5PCIkNCpwIIRHja+VynU6HqqqqWS2H54rz8XY9kVqtlla6nwuiVU+ExBMKnAghUVVZWYkdO3bM6n22trbG9fVcxesA2HBEs54IiRe0Vh0hJKpmezpxY2NjRJcfivT15iqqJzJfUOBESALhOA6NjY3SCvA1NTVeSyl4dpe4zkwJtK+hoUHqZmNZVpoBKCbwZBgGNTU1UquCXq+XzhNn4Xkym83Q6XRgWVZaJkW8HgDs3btXWsqhr69Puqb4WHU6HUpLS9HR0YGSkhKo1WoYDAZpFXlPJpMJra2tYFlWWsrCdSajv8foj7/r+Xpc4jRqvV6P6upq6XGqVCqpq5LjOK/H6Y9YVnFx1ulmOIbz3IbyOAD/z9d09U7InBLLtOWEkNDU1ta6LU3AMIzbMhB6vd5t2QnXJQ4C7dNqtW5LKVgsFl6j0bgdKy630NHRIV3HczmH/v5+HoDbtTo6OniGYdweR2trK88wjNtxDMO4LaXiuuRLf3+/1zX8EZeG8DTdYwz1euJjcKXRaNzqo6WlhQfg9pzV1tby1dXV0m1f9eO53I1Go3GrG08zeW6DeRzBPF/+6omQuYbGOBGSQFiWdZuxxjCMdFtsoamrq5P2NzU1SYtu+ttnNpthMpncutQYhoHNZpOurVQqYTabodFooFarodfrwXEcGhoa3Fo2lEplUIuJqlQqsCzrdZ+uXT1Go1G6llKp9LnIaLCCeYyh8tXC5plpXawP1wHzdXV1Abu1xFxari1MVVVVMBgMPo+f6XMbzOMI5vkiZL6grjpCEojYRSUujWKz2aQV6dvb26FUKt2+9MTjTSaT331i158nsTtQ/LL0PEa8Zrg8r6dUKqXHAggzznyt+B6O9vb2oB7jbBCfB7PZ7LNMYr26BnQWi8VvkBLoeQ/2uQ3GdM8XIfMFBU6EJBCz2Yz6+npUVlZi+/btbl9mnkGGq3D3ufIVJEVzRlhNTQ3q6+uxd+9eNDY2+m1xmY7Y4hYp4pgjXyJxPxzHgWEYt6AmUIATiec2Uue5ClRPhCQy6qojJEFwHIeKigrU1dWhuroaSqVS+oJjWdZnC414XqB9Go3GZ2sGy7IoLy/3Wx61Wh31rpq9e/fCZDJBq9WGvfyC2MUYzmP0dz1/gmmB4ThOek588Vev/oKZaDy3kWhJClRPhCQyCpwISRBiy4nrF674BSd2+2i1WmlWEyB8eTY3Nwfcp1arodFo3LqGxC+9QDO5GIZBdXW122wujuNgNpvDarHwPKejowNKpRJarTaklgvXsTdiQBnuY/R3Pc/tYvl9tW551kd9fT2qq6v9PiaNRoOysjIYjUa37c3NzX7LN5PnNtjH4clXN6qveiJkrqG16ghJIOK08MrKSgDCl5VOp8OOHTukL0KdToe8vDxpELBrS810+8SlPywWi9tUc71ej/b2dtTV1XkFMuJUd7ErTyyjXq+HSqVCfX09jEajtMix2N3ouq2hoQH19fVgGEa6D6PRiKqqKinVgVKpRE1NTVAtT2IZSkpKgnqM4V5PDFbE+mhqaoLZbIZer4dWq5Wm8tfV1UnjmgC4pQMQ66K2ttatPGJZxe7Q6QK8cJ7bYB4HwzBBPV+B6omQuYQCJ0JI3OE4Djt37sTevXulLkmWZaXlWxLlS1kMnDo6OmJdFEJIhFBXHSEk7jQ2NqKmpkZqxRKn9ev1egpCCCExRYETISTuqNVqn9nBTSaT1E1JCCGxQF11hJC4ZDKZ3HIdBbv0SLwQx4aJf2kJEkLmBgqcCCGEEEKCRF11hBBCCCFBosCJEEIIISRI83rJFafTiQsXLmDBggWQyWSxLg4hhBBCYoDneQwNDWHJkiWQywO3Kc3rwOnChQsoLi6OdTEIIYQQEgesViuWLl0a8Jh5HTgtWLAAgFBR2dnZMS4NIYQQQmJhcHAQxcXFUlwQyLwOnMTuuezsbAqcCCGEkHkumGE7NDicEEIIISRIFDgRQgghhASJAidCCCGEkCDN6zFOwXA6nRgfH491MQiJieTkZCgUilgXgxBC4gYFTgGMj4+js7MTTqcz1kUhJGaUSiUWL15Muc4IITHjcPI43GlDz9AYFi1Iw5aVKijksflMosDJD57n0dXVBYVCgeLi4mkTYhEy1/A8j9HRUfT09AAACgsLY1wiQsh8tO94F3a/fBJdA2PStsKcNDx213rcvmH2P5cocPJjcnISo6OjWLJkCTIyMmJdHEJiIj09HQDQ09ODRYsWUbcdIWRW7TvehW8+awbvsf3iwBi++awZTz6onvXgiZpR/HA4HACAlJSUGJeEkNgSfzhMTEzEuCSEkPnE4eSx++WTXkETAGnb7pdPwuH0dUT0UOA0DRrXQeY7eg8QQmLhcKfNrXvOEw+ga2AMhztts1coUFdd1MXTgDZCCCEkUfQM+Q+awjkuUqjFKYr2He/CjfrX8cW97+K7fzyKL+59FzfqX8e+411RuT+z2YyamhrIZDLodDo0NjZCp9OhqqoKJpMpYvfT2NiI3NxcmM3miF1ztpWWlsJoNEq3GxsbUVlZGda5hBBCIi8/KzWo4xYtSItySdzJeJ6f3c7BODI4OIicnBwMDAx4rVU3NjaGzs5OrFy5EmlpoT8p/ga0iW1N0RrQxnEccnNz0d/fD6VS6bato6MDarU6IvdTWVkJvV4fketxHCeVdbaYTCaUlZVJ98uyLFiWhUajCfncuW6m7wVCCAmVw8lDZzwGo/m832NkABbnpOEt3a0z7skJFA94oq66IPE8j8sTjqCOdTh5PPbSCb8D2mQAfvzSSdywamFQT3Z6smJG40yUSiUYhkFTU1PEAqdIYVkWJpMJ1dXVs3q/ngESwzBgGCascwkhhETOpMOJHxjfwwtHzkMuA5y88L3p+p0qfiM+dtf6WR/+QoFTkC5POLD+n1+NyLV4ABcHx7Dxx68FdfzJf7kNGSkze6psNhtKSkpmdI1o0Ov1KC0tjXUxCCGExIEJhxO7mo/h5WMXkCSX4edf2AyFHF55nBbHMI8TjXGa4ziOg06ng0ajQXV1NUwmE0pKStDY2IjGxkYpaDGbzWhoaIDRaERDQwNYlnW7jtlshk6ng9FohNFohM02NYvBZDKhtLQUDQ0NAACj0YiSkhK3cVUsy0rnNzY2guM4mEwmtLe3o7W1FY2NjV736Xp9sWw6nc6tTDU1NVKZjEYjzGbztOUxm80oLS1FY2OjVEc1NTVugaW/+vA8V7yvxsZGmEwmNDY2oqqqKoxnihBC5rfxSSe+84cjePnYBSQrZPh/X1Ljzk2FuH1DId7S3Yo/7LweP//CtfjDzuvxlu7WmARNALU4BS09WYGT/3JbUMce7rThq79qm/a4X3+tHFtWqoK671A1NjZKXU81NTXS/zUaDTQaDTo6OmAwGKBSqaSgprW1VTq/tLQU+/fvh1KpBMdxqKqqgsVikfbX19dL/9doNNixY4d0W6vVoqmpSbrNcRwqKyvR0dEBpVIpDVyvra2FRqNBSUmJ3646sWwdHR0AhJazhoYGVFdXo6KiAp2dndJYo9zcXOzfv3/a8qjVarf9SqUSBoMBubm5bvfpqz48zxXrs7W1FS0tLQCAlpYWmM3muOsWJYSQeGWfdODbvz+C1pPdSFHI8eSDalSsK5D2K+QybC3Ji2EJp1DgFCSZTBZ0d9lNq/NRmJOGiwNjPsc5iQPablqdH7W+2erqar+Dl5VKJfLyhBegVquFTqfz+pJnGAbNzc2orq5Gc3Oz136VavqAT9Tc3AyGYaTy1NXVBX2uGNy5tl61tbVBqVRCo9G4PcaysrKgrzvdfQaqD095eXlSfQJC/bq2yBFCCPFvbMKBbz7bgb+e6kVKkhyNXy7FzVctinWx/KKuuihQyGV47K71AKYGsIliOaDNVbADoSPBc9acUqn0GdRxHOfzfLVaLbXsVFdXSy07hBBCEtvYhAM7n2nHX0/1Ii1Zjv/9SnlcB00ABU5Rc/uGQjz5oBqLc9ynby/OSZuVtXWma/Fw3b9jxw6vPE9msxnbt28HIHRHeeZs8hyPpFQq0dfXJ902mUxSIKTVar3O95VXytc2X2UzmUzYvn17wDIFKo/IX6A2XX0EOpcQQkhwRscn8fVft+HAx5eQkaLAr7+2BTeuXhjrYk2Luuqi6PYNhahcv3jWMoebzWZpLI9er0dNTY1Xl5PJZILJZILZbAbDMNBoNFCr1dDr9WhoaADDMGhra0NLS4vUKsQwDFpaWqDT6VBZWSm1INXX10Ov14NhGGzfvh06nU4KODQajdTlxTAMDAYDdDodysvLpf2AMP5Kr9ejsbHR5zR/sWye5yqVSp9lEgUqD8dxaGpqgkqlglar9Wp9C1QfYh2L54rXEu+DZVmYzWYYDIaQUhwQQsh8MmwXgqbDnTZkpijw669vQfmK4IeAxBIlwIxSAkwy+2aalFNMHErc0XuBEBJJQ2MT+Oqv2tBxph8LUpPwm29sgXpZbkzLRAkwybwUzoDsxsZGWCwW1NTURGxwOSGEEN8GLk/gof89jGNWDtlpSXj24euwaaky1sUKCY1xInOCmAfKYDCENP5Io9EgLy8PRqMRBoMhegUkhJB5jhsdxwNPv4tjVg65Gcn4/c7rEy5oAmLYVWc2m7Fz504pP48/RqNRGvviORNLHBysVqvBsiw4jgupm4a66giZHr0XCCEzZRsZxwNPH8IHXYPIy0zBsw9fh3WFgbvEZlMoXXUxaXESV5b3nBXlS1VVFXJzc5GbmwuZTAaZTCZlhDYYDCgtLYVMJnNL8kgIIYSQ+NA7ZMcXG9/FB12DWJiVij9WXx9XQVOoYjLGSavVBnUcx3FoaWlxO76hoQG1tbUAhGzO4mDe+bJSPSGEEJIoegbH8MW978LSO4KC7FT8fuf1KMnPinWxZiTuB4e7Bk1Go9Er6AolYLLb7bDb7dLtwcHBGZePEEIIId66Bi7jS3sPofPSCJbkpOH3O6/HioWZsS7WjMX14HDXoIjjONhsNrfuOI7jpMVddTqd30ViRfX19cjJyZH+FRcXR6vohBBCyLx1rn8UOwzvovPSCIqU6Wiq2TongiYgxnmcZDIZgr17MVGiZzAl3jabzV4L0Xry1eJUXFxMg8MJCYDeC4SQUFhto/hC47s4z13GMlUGfr/zOizNzYh1sQKK+8HhoeI4DiaTyatbzrWFiWEYsCwbsNUpNTUV2dnZbv+izukAOg8A7xuFv05H9O8TwvR8nU6HxsZGGI1GmEwmacp+vDKZTCgtLUVjY+Os3F9paak0USHeeZa1sbERlZWVYZ1LCCHRcvrSCHYY3sF57jJWLsxEU831cR80hSruxzgBQHt7u89UBBUVFV6ZnlWqOErZfvIlYJ8OGLwwtS17CXC7Hlh/d9TutrKyElVVVdDr9dI2s9mMysrKgC1ysSYu5Dtb9Hp9wiS99CyrRqMJehZpIj1OQkjisvQO40t730X3oB0l+Zn4w87rsSh77rVSxzxw8lxjzGw2Q6lUun0pmM1mr4CIYRi3wMBkMkGr1cbP7LqTLwHNDwHw6Ioc7BK2b38mKsGTmKqhurrabbtarfbaFo/y8vJm7b5mM0ibKc+yhrIOXiI9TkJIYvq4ewhfevoQeofsWFOQhd89fD3yF6TGulhREZPAyWQyobW1FYAwYLu8vFyaLSfeFlMOiDy/JJRKJcrKytDQ0AClUgmLxYKWlpboFZrngYnR4I51OoC/1MIraBIuBEAmtEQxNwNyxfTXS84AZMEtDFxfX4+9e/f63FdVVRXUNQghhJBgfXhxEA/sPYS+kXGsK8zGs9/YgrysuRk0AbTIb/CZw8dHgJ8uiU1Bf3gBSJl+NgLLsigpKUFHR8e0GdTNZjNMJpM0Nkyr1YJhGJhMJuh0OimhKMuyaG1thV6vl8aaWSwWaXkSk8mEmpoaaDQaVFZWwmazoaOjQxrIL+7X6XQAhKSlHR0dMJlMMJvNYBgGbW1tUuuh2GImZoNvbW11C4h9neevzOJ5HMehubkZDMOA4zi0tbVhx44d2LlzJ2pqaqSWuFDrxF+g7u+xmc1mGAwGt7FJDMPAZrNBp9Nhx44dqK2tlWaJGgwGaDQaKcu+WFaO46DT6aTnIlDZPc8N9bEANDicEOLfiQsDePDpQ+gfncCGomw8+43roMxIiXWxQkaL/JKAWJaFTqeTWv0AYQDx/v37pXFGrl+mLS0tMBqNqK2thVqtRklJidTFqtFooNVqkZeXJ7UaGo1GVFVVobW1VbpeR0cHDAYDVCqVdP/icjs2m80tsWlbW5v0/5aWFpjNZimQ8neerzKL5zU2NkKtVktdVjabDWq1Gjt27JhRnYjX91W3nmWsrq5GRUUFOjs7pe7k3Nxc6fquZdFqtWhqapJue5ZVqVTCYDAgNzd32rJ7nhvKYyGEkEDeO8fhy/9zGAOXJ3BNsRLPfH0LctKTY12sqKPAKVjJGULLTzDOHAR+F0R29AeMwPJtwd13EMTuTJZlfX4JsiwLlUoFg8HgtZ9hGDQ3N6O6uhp5eXluY408x5wplUrYbDa38WSu/9dqtaiqqpKCK6VSKV1Pq9VCp9NBpVLBZDJJ57S1tUn/Ly8v97ovAFLg5es8X2UWz9NqtSgtLQXDMNixY4fPsV7h1Il4fc/r+CqjGGS61lOkBmxPV3ZPwT4WQgjxx3y2H1/5n8MYsk+idHkufvW1cmSnzf2gCaDAKXgyWVDdZQCAkluF2XODXfA9zkkm7C+5NbgxTiGora2FwWDwuayN2WwOerkbTzMddO85Rs21BQjwHszuTzjnqVQq9Pf3w2w2o6mpSWoNixZfZZytFAuEEBJt7adt+Oqv2jBsn8SWFSr879fKkZU6f8KJhMjjlHDkCiHlAADAc1D3ldu374l40ARAGk/j+UXNcZz0/x07dri1iABCULV9+3a/13U9f7r9RqPRq3XFtUXD1/173vYl3PPq6+ulVjhfSVT9XXu6OgmljNu3b/da1No1p5ZSqURfX5/bOZ517u85CKbs0z1/hBASjHfZPjz0v4cxbJ/EViYPv/76/AqaAGpxip71dwspB3zmcdoT1TxOra2taGhogE6nQ0lJiZTKQWxtEgOIhoYGaQBzS0sLlEql1CoDCONhWJaVvvDVajVMJhNYloVer3cLQiwWi/RlL14PEAIA18HSGo1Gun+dTid1y4mDoH3dt8FgAMMwYZ+Xl5cHk8kElUoFm82GHTt2SOeoVCpotdqw6kS8vmtrmr8yKpVKtLS0QKfTobKy0isNx/bt26UB3+I5Yhccx3FuZfXVejdd2cVzxWsF81gIIcTV259cwjd+04axCSduWr0QjV8uQ3pK5BsA4h3Nqgt2Vl24nA5hzNNwN5BVIIxpikJLUyyJAVoi5ImKJ5WVldDr9WEPys7NzfVKABsNNKuOEPK3j3pR/Uw77JNO3HJVPp58sBRpyXPnu4xm1cUTuQJYeVOsS0HiUDgDshsbG2GxWFBTU0PZwAkhs2L/B9345rNmjDuc0KwrwH8/sBmpSXMnaAoVjXEiMyJ2xYlT2klwxHUDDQZDSOOPNBoN8vLyYDQapVxahBASLa+euIhHnu3AuMOJOzYsxi8fUM/roAmgrrrod9URkuDovUDI/PR/73fhO384gkknj89tKsR/7rgWyYq52d5CXXWEEEIICduLR89jV/MxOJw87ttchMe1m5A0R4OmUFHgRAghhBDJ8+Zz+H7LMTh5oKp0KfbcvwkKeXDrpc4HFDgRQgghBADQ3GaF7vn3wPPAF7csw7/duwFyCprcULsbIYQQQvC7Q2dQ+5wQND20dTkFTX5QixMhhBAyz/3m4Gk89tIJAMDXb1iJH31uHWQyCpp8ocApyhxOB8w9ZvSO9iI/Ix/qRWoo5lgCTEIIIYnr6QMs/vXPHwAAaj7N4NHb11LQFAB11UWR6YwJtz13G77+6tehO6DD11/9Om577jaYzky/vlpY92cyoaamBjKZzG35jlA0NjYiNzd3VnIyzeZ9uSotLYXRaHQrR2VlZVjnEkJIInvyDYsUNH37llUUNAWB8jhFKY+T6YwJu97YBR7u1Su7ssjvEzc/Ac1yTfiF94NlWZSUlKC/v99tLbRQzHQpkHi9L5HJZEJZWZlUPyzLgmVZaDTTPx+e584HlMeJkLnB4eRxuNOGnqExLFqQhkOdffiZ6WMAwPc0a/BdzeoYlzB2KI9TFPA8j8uTl4M61uF0oP5wvVfQBEDatufwHly3+Lqguu3Sk9KD/gUgLuhL/PMMkEJZ3DaY4IoQQuLNvuNd2P3ySXQNjHnt+8FtV+HvblkVg1IlJgqcgnR58jKu+/11Ebte92g3tv1xW1DHHvrSIWQkZ0TsvgkhhMwf+4534ZvPmn38lBeU5GfOankSHY1xmuNMJhNKS0vR2NgIk8mExsZGVFVVuR1jNpuh0+lgNBphNBq9Fp81mUxoaGiA0WiETqcDABiNRpSWlqKkpAQA0NDQgJKSEjQ0NPg9J5j78lV+f9epqamRrmM0GmE2m6XHK5bDaDSipKREGu9lNpul+gAAjuNQU1MjPQ7xGPE+GxoawLKsz3ODqVtCCIklh5PH7pdP+g2aZAB2v3wSDue8HbUTMmpxClJ6UjoOfelQUMd2dHfgW/u/Ne1xv6z4JUoLSoO673BpNBpoNBq0traipaUFAKQFedVqNTiOQ1VVFSwWi3ROfX299H+WZaHT6dDR0QEAsNlsaGhoQG1tLTQaDSoqKsBxHJRKJTo6OqBUKv2eU11dHfC+PAW6TkVFBTo7O6WxRrm5udi/fz80Gg127NghXUOr1aKpqUm6rVar3fYrlUoYDAbk5ua63Wdra6t0TGlpKfbv3+917nR1SwghsXa40+aze07EA+gaGMPhThu2luTNXsESWMwCJ7PZjJ07d0pfioGOA4QvPJZlwXGc9KXEsiyMRiMYhgHLsqiuro7aoF2ZTBZ0d9m2JdtQkFGAntEen+OcZJChIKMA25Zsm5XUBHl5ecjLm3pDKJVKqaWnubnZ60vedZyUwWCASqVym6HX1tYmXWfv3r0oLS1FS0uLVPf+zlEqlQHvy1Og62g0GrfnuqysbLpqCIrBYPAqI8MwaG5uRnV1tdfxgeqWEEJirWfIf9AUznEkRoGTGOwEMw3dYDBIXSMajUb6ZQ8AVVVVUuDFsix27tzptj9WFHIFHt3yKHa9sQsyyNyCJ3FWnW6LLmHyOanVardB0a4BhBgMNTU1uQUcvs4Rn8eZ3nc41yGEkPko2MwCixbQjNlgxWSMk1arDboro7S0FP39/ejv70dra6vbFHJXDMOElbcoWjTLNXji5iewKGOR2/aCjIKopSIAEHJrh0aj8QpgXet2x44dXvUq3uY4DiaTCS0tLVLrX6BzprsvT/6us3379oDXUSqV6OvrczuH4zi34z1vB7pPs9mM7du3T3suIYTEk2NWDrtfOhnwGBmAwpw0bFlJM7KDlRBjnHx1v5lMJq9uHpVKFXB8id1uh91ul24PDg5GtJyeNMs1uKX4llnLHC4GMYAwdkgcjyOO8dFoNGBZFmazGQaDQZqG39LSAp1Oh8rKSmm8Un19vZRfSa/XQ6fToby8XLpOY2Mj9Ho9ampqAADl5eXYuXMnWJZFbW2tz3OUSmXA+/JMCeDvvv1dR7R9+3a3BKAajUbqguM4Dk1NTVCpVNBqtX7vs6GhAQzDoK2tTeqGNJvNbueK1wpUt4QQEguvnbiI7/zxCMYmnChSpuM8dxkywG3wiNgY9dhd66GgNemCFtMEmDKZDNPdvfgFBgjjW2pqasAwDBoaGtDa2uo2iLekpAQGg8Fvrp0f//jH2L17t9f2aCTAJLNrpok0c3Nz0d/fH+FSzQ30XiAkcfA8j/99+zT+9c8nwfPAzVfl4/99SY23Pu71yuNUmJOGx+5aj9s3FMawxPFhTiXAdB3wzTAMKisr3WZleQrUjVJXV4ddu3ZJtwcHB1FcXBypopIYCmdAdmNjIywWC2pqaiI2uJwQQmJl0uHET145id+8cwYA8MB1y7D77quRpJDj9g2FqFy/2C1z+JaVKmppCkPcB04sy0qtCOLsOZZlfc5estlsAWfVpaamIjU1NZrFJTHQ2NgIlmVhMBig1+uDnlmp0WjAcRyMRiMMBkN0C0kIIVE0Yp/Ed/5wBPs/7IFMBvzwjnV4+KaVbqtOKOQySjkQAXHdVWc2m1FRUSF1oXAcJ3Wp2Gw2t1l1gNDd4prbZzrRXKuOkLmC3guExLfuwTF8/ddtOHFhEKlJcvxsx7W4YyN1v4UiobrqPAf2ms1mKJVKaXCtXq+X9plMJmi1WiiVSq/giGXZqCy+Oo/XQCYEAL0HCIlnH14cxNd+1YaugTHkZabg6a+UYfOy3FgXa06LSeBkMpmkQd319fUoLy+HVqt1u11bWwulUomysjI0NDRAqVTCYrG45WkSZ1aVl5dLs58iRaEQZr6Nj48jPT38zN2EJLrR0VEAQHJycoxLQghx9bePevF3vzNj2D6JkvxM/PprW1CsonVNoy2mXXWxFqhpjud5nD17FhMTE1iyZAnkclrWj8wvPM9jdHQUPT09UCqVKCykpn9C4sXvD53Fj148DoeTx/WMCoYHy5CTQT9uwpVQXXXxSiaTobCwEJ2dnThz5kysi0NIzCiVSixevDjWxSCEAHA6eehf/RCGvwlJfz+vLsKez29CShL9uJ8tFDgFkJKSgtWrV2N8fDzWRSEkJpKTk6Vua0JIbI1NOPCPzcfw5/e7AADf06zBdypWuc2cI9FHgdM05HI5zSQihBASU33Ddux8ph3msxySFTI0aDfhvs1LY12seYkCJ0IIISSOWXqH8bVfteGsbRQ56ckwfLkU1zOUjylWKHAihBBC4tS7bB9qftuBgcsTWKbKwK++Vo6S/KxYF2teo8CJEEIIiUMvHDmHWuN7mHDw2LxMiacfKkNeFq1+EWsUOBFCCCFxhOd5/GL/J/hP00cAgDs3FuI/tl+DtGSaqBEPKHAihBBC4sT4pBN1z7+P58znAACPfLoEtbddBTktxhs3KHAihBBC4sDA6AQeebYD77B9UMhl+Mk9G/Cl65bFuljEAwVO84zT6cQLL7yANWvWYNmyZZT/gyQ8nucxNDREGf5JQrPaRvHVXx2GpXcEWalJ+O8H1Pj0mvxYF4v4QIHTPNPT04O3335bWhuQkLnCarVi6VLKa0MSz5Gz/dj5TDsuDY+jMCcN//vVcqwrDLzsB4kdCpxmGcuyMBqNYBgGLMuiuroaSqUy5GPNZjNMJhMAoK2tDXv37vV7HVdWqxWpqanS/6dbk4eQeDc4OIji4mIsWLAg1kUhJGT7jnfhu388CvukE1cvycb/frUcBdmUdDmeUeA0y6qqqtDR0QFACIx27tyJlpaWkI81mUyora0FADQ0NKCiokI6NhCr1Sot1pqdnU2BE5kzqNuZJBKe5/H0gU789C8fgOeBW9cuwn99cTMyU+lrOd7RgIBZxLKs222GYaRWo1CONZvNqK+vl/ZptVqYzWavc3yxWq0oKioKteiERIXDyeMdSx9ePHoe71j64HDysS4SIVE36XDiRy8ex7/9nxA0PbR1ORq/XEpBU4KgZ2kWmUwmqFQqt20qlQpmsxlqtTqkY/fu3Stt5zhO2u+L3W6H3W7H8PAwLl68iI0bN0bg0RAyM/uOd2H3yyfRNTAmbSvMScNjd63H7RsKY1gyQqJn2D6Jb//ejDdO9UImA/6/O9fj6zesoBbTBEItTrNIDHA82Wy2kI91Hdzd1NQEjUbjd4xTfX09cnJyUFRUhD179qCioiKkchMSafuOd+Gbz5rdgiYAuDgwhm8+a8a+410xKhkh0XNxYAxVT72DN071Ii1ZjqceLMU3blxJQVOCocApDvgLkoI5luM4GI1Gv+OkAKCurg4DAwN4/vnnUV9fD6vVGmZJCZk5h5PH7pdPwlennLht98snqduOzCknLwzi3v9+Gx90DWJhVgqaqrfitqsXx7pYJAwUOM0ipVLp1bpks9l8thQFe6xOp0Nra2vAGXWpqanIzs6GzWbD6tWraUA4ianDnTavliZXPICugTEc7vRuiSUkEf31wx5UPXUQFwfHsHpRFl741g24plgZ62KRMFHgNIs0Go3P7WVlZWEd29DQAJ1OB4ZhwHFcwJaryclJXLhwAcXFxaEVmpAI6xnyHzSFcxwh8ey3757BN37ThpFxB25YlQfjN7ehWJUR62KRGaDAaRYxDON2m2VZlJWVueVmEmfGTXes0WiEWq2Wgqbm5uaArU5dXV1wOBwUOJGYW7QguBw1wR5HSDxyOnn8259P4kd/Og4nD1SVLsWvvroFOenJsS4amaGYzaozm83YuXPntLmHAiV6NJvNAAC1Wg2WZcFxnNfstHjT0tICnU6H8vJytLW1uY1Nqq+vR3l5uZSfyd+xLMuiqqrK7bpKpRLV1dV+79dqtSI5ORkFBQUYHh6OwiMjJDiqzGTIZYC/IUwyAItz0rBlpe9ZooTEu8vjDnyv6Sj2nbgIAPj+Z9bg725ZRYPA5wgZz/OzPgJTzIZdWlqK6e6+oaHBLdFjU1OTFGzV1NSgsbERgNC11dLSElT2bNHg4CBycnIwMDAw58f9NDU1YWxsDF/5ylfm1eMm8eXI2X587ddt4EYnfO4Xv1aefFAddEoCej2TeNI7ZMfOZ9px1MohRSHH41WbcM+1lDsv3oXyORKTrjqtVhtUy9B0iR5LS0vR39+P/v7+aQdIz2c8z8NqtVI3HYmpv33Uiy/tPQRudALXFCvx79pNKMxx745bnJMWUtBESDz5pGcI9/3ybRy1clBmJOPZh6+joGkOCrmr7vTp02hpaUFrayv6+/ul7SqVCpWVldBqtVixYkVEChdMosdQgiUxEaRocHBwxmVMBBzHYXh4mAInEjMvHbuAf2w+igkHj5tWL8RTDwpZku9TL8XhTht6hsawaIHQPaeQU3cGSTwHLZfwyG87MDg2iRV5Gfjfr5aDyc+KdbFIFIQUOD366KOQyWTYvn07fvCDH3jtP3LkCJ566inIZDK3lqKZCJToUcxhBAjjn2pqarwGVbuqr6/H7t27I1KuRCLmbaKV40ksPPPOaTz20gnwPPC5TYV4Yvu1SEkSGrsVchm2luTFuISEBM/h5L2C/ReOnEfd8+9hwsGjdHku9j5UBlVmSqyLSqIk6DFOjz/+OKqrq5GTkzPtsQMDA9izZ8+0wZNMJpt2jJOI4ziUlpaio6PDLXByHSheVVUFi8Xi9xq+WpyKi4vn/NiIV155BWfOnMHf/d3fAaAxIWR28DyPn5k+xs/3fwxAWI/rx3ddDXmEW5To9Uxmi69lgrJSkzBsnwQg/DD496prkJasiFURSZhC+RwJusXJVwuTPzk5ORFrcRL5SvTIsqw0VophGLAsC5Zl/bY6paamIjU1NaLlSgQ0vonMNoeTx49fOoHfvnsGAPAPmtX4bsVqmlVEEpa4TJDnT30xaLrt6gL84gubI/7DgMSfsAeHP/roo3j66acxMDCAz3zmM9ixYweef/75SJZN4ivRo9ls9rnmmr+Fbucru92Onp4eCpzIrLFPOvCdPx7Bb989A5kM+Mk9V+MfNGsoaCIJK9AyQaL3zg0E3E/mjrADp/Lycjz88MNobGxEaWkpmpqa0NfXF/J1PLNdu86aA/wnemQYBnq9XjrOZDJBq9XSzDoP586dA8/zFDiRWTFin8Q3ft2OP7/XhWSFDL/4wmZ8eeuKWBeLkBmZbpkggJYJmk/CToCZm5sLAGhubpZmvgXb2mMymdDa2gpgKumjOAjcNQlkoESPSqUSZWVlaGhogFKphMViCbjQ7XxltVqRnp6OvDwagEuiyzYyjq/96jCOnRtARooCTz1Yik+tyY91sQiZMVomiLgKO3CyWCzgeR4WiwXXXnstOjs73dITBKLRaKDRaNxajESuwQ/DMAEHj6vV6rjPFB5r4vgm6iYh0XSeu4yH/ucQLL0jyM1Ixq++tgXX0iKmZI7IzQhumRRaJmh+CLurbvv27TCbzejo6MDAwAAMBkPARWbJ7HM6nTh37hx105Go+qRnCNonD8LSO4LCnDS0PLKVgiYyZ1hto3j81VMBj5EBKKRlguaNoFqcBgYG0N/f75bYMicnx22m3Z49e9zOEZNL0vTg2Ont7YXdbqfAiUSN6xIqJfmZ+O03rsMSZXqsi0VIRJhOdmNX81EMjk0iI0WB0XEHZIDbIHCxLf+xu9ZT8tZ5IqgWp5ycHLS2tgY9a+65555Dc3MzBU0xZrVaIZfLUVREKf9J5L35US8eeHpqCZWWR7ZR0ETmhEmHE/V/+QAPP9OOwbFJXFusROuuT+OpB9VYTMsEzXtBj3HauXMnjhw5gu3bt6OkpATl5eVgGAZKpRIcx4FlWRw+fBidnZ2oqanB/fffH81ykyBYrVYsXrwYycnB9c8TEqyXj13ALh9LqBCS6LoHx/D3vz+Cw6eFGXJfu2EF6u5Yh5QkOYqU6ahcv5iWCZrnQvqk27x5M5qbmzEwMIDm5mYcPnxYyt5dUlKCmpoarFy5MlplJSGyWq1YvXp1rItB5phAS6gQksje+vgSvvvHI+gbGUdWahIatJvw2Y3uLUm0TBAJ6ydiTk4Odu7cGemykAgaHh6GzWaj8U0kYjyXUPny9cvx47uvpl/bJOE5nTz+6/VP8LP9H4HngXWF2XjyATVWLMyMddFIHKK29Tnq3LlzAECBE4kIWkKFzFV9w3b8Q9NRHPj4EgDgC+XF+PHdV9N6c8QvCpzmKKvViuzs7KAWZSYkkPFJJ3Y1H8Ur73VBJgP+5e6rKRs4mRM6ztjwd787gouDY0hLluNf790IbenSWBeLxDkKnOYoq9WKZcuWxboYJMGN2CfxyLMdOPDxJSQrZHhi+7W465olsS4WITPC8zz+561O7PnLh5h08mDyM/HkA6W4avGCWBeNJAAKnOagyclJXLhwAVdffXWsi0ISmG1kHF/7dRuOWTlaQoXMGQOXJ1BrPIZXT3QDAO66ZgnqP78RWTQrlARpRlNhHn/8cezYsQMAsH//finpJYmtixcvYnJyksY3kbCd5y6j6qmDOGbloMxIxu8evo6CJpLwjp8fwF3/9RZePdGNFIUcP7l3A37xhWspaCIhCTtwevTRR6FUKqHRaAAAFRUVMJlMESsYCZ/VakVycjIKCgpiXRSSgDyXUDE+shWbl+XGuliEhI3nefzu0Bl8/smDOGsbxdLcdBi/uRVfvn45TXAgIQs7zC4vL8f999+P/fv3R7I8JAKsViuKioqgUNCsEBKao1YOX/vVYfTTEipkjhixT+KfXngffzp6AQCgWVeA/6i6BjlBLtxLiKewW5w6OzsBwC1ab2trm3mJyIzwPI+zZ89SNx0J2Zsf9eJLe99FPy2hQuaIj7uHcM9/v40/Hb0AhVyGujvWYu9DpRQ0kRkJu8Vp8+bNKCsrQ15eHlpbW2EymaDX6yNZNhIGjuMwPDxMgRMJCS2hQuaaPx05j7rn38flCQcKslPxX19UY8tKVayLReaAsD8ZKyoq0NLSAoPBAJ7n0djYiM2bN0eybCQMVqsVALB0KeUiIcH57Tun8c8uS6j8x/ZrkJpE3bwkMY1NOLD75ZP4w+GzAIAbVuXh51/YjIVZqTEuGZkrZvSTcuXKldizZ490e3BwENnZ2TMuFAmf1WrFwoULkZGREeuikDhHS6iQueZM3wi+9TszTlwYhEwGfOfW1fhOxWp6TZOImlHgNDg4CJvNJt3W6/V48sknZ1woEj6r1UrddGRaTiePH798As+8Q0uokLlh3/GL+IHxGIbGJqHKTMHPdlxLKTRIVIQdOD3yyCMwmUxQKpXSts7OTgqcYshut6O7uxtbtmyJdVFIHPNcQmX33VfjIVpChSSoCYcT+r98iKffEiYslS7Pxf/70mYU5tDEBhIdYQdOJSUleOqpp9y27d27d8YFIuE7f/48eJ6nFifil+cSKv+x/VrcTUuokATVNXAZ3/79EXSc6QcA7LxpJWpvX4tkxYxyOxMSUNiBk5j40lVlZeWMCkNmxmq1Ij09HQsXLox1UUgccDh5HO60oWdoDIsWpGHVoiw8/Ew7LaFC5oQ3P+rFPzQdhW1kHAvSkvDvVdfgtqsXx7pYZB4IO3DKzc3Fv//7v4NhGCiVSnAch6amJjQ1NQV1vtlsxs6dO9HR0RHwOJZlYTQawTAMWJZFdXW11D0YaN98ZLVasXTpUhqnQrDveBd2v3wSXQNj0jaFXAaHk4cyIxm/+mo5ZQMnCcnh5PHz/R/jv17/GDwPXL0kG08+UIpleTQhhsyOsAOn2tpacBznFqgcOXIkqHPFYMdsNk97bFVVlRRcsSyLnTt3oqWlZdp98w3P8zh37hy2bdsW66KQGNt3vAvffNYM3mO7wyls+W7FagqaSEK6NGzHd/94BG9/0gcAeOC6ZfjR59YjLZnSZ5DZE3bgVFlZiZ07d7pte+6554I6V6vVBnUcy7JutxmGkdbDC7QvnoXSSjbdsa6tdr29vRgbG6PxTfOcw8lj98snvYImV41vsnho6wqaok0SyuFOG779ezN6huzISFGg/vMbcc+1RbEuFpmHZjQ4PJhtM2EymaBSuWd6ValUMJvNaG9v97tPrVb7vJ7dbofdbpduDw4ORrS8wQillSzQsZ6tdlarFXK5HEVF9EEynx3utLl1z/nSNTCGw502bC3Jm6VSERI+p5NH4wEWj796Cg4nj9WLsvDkg2qsWrQg1kUj81TYgZPFYoHBYEB5eTkAoauoubk5ouvVcRznc7vNZgu4z5/6+nrs3r07AiULTyitZNMd69lqZ7VaUVBQgJSUlAiVliSinqHAQVOoxxESSwOjE/jHlqMwfdADALhvcxH+7b4NyEih5YBI7IQ9Z9NgMGDlypXgeR48L3QMiH+jzV/QNN2+uro6DAwMSP/E5UlmS6AWtJkcC1DiSwJwo+N48ej5oI5dtCAtyqUhZGbeO8fhzv86ANMHPUhJkuOn923EE9uvoaCJxFzYr0C9Xo+Kigq3bb5SFMyEUqn0akGy2WxQKpUB9/mTmpqK1NTYrVcUSitZKMeOjIygr68PN998s89z4qGLkkQPz/P409Hz+NdXPkDfyHjAY2UAFuek0WKnJG7xPI9n3z2Dn7zyAcYdTizPy8B/f0mNDUU5sS4aIQBm0OLkGTQBQoqCSPIXiJWVlQXcl2gCtZIFc+y5c+cAwG+LU319PXJycqR/1DI1d7C9w3jwfw7he03H0DcyjlWLsvCPlWsggxAkuRJvP3bXehoYTuLSsH0S3/njUfzoxRMYdzhx29UFePnvb6SgicSVoFucnn/+eWg0GmkR36efftptP8dxaG1txauvvhpSATxTGpjNZiiVSjAMA4Zh3I5lWRZlZWVSi5O/ffEqlFayUI61Wq1YsGABcnJ8f7jU1dVh165d0u3BwUEKnhKcfdKBp95g8d9vfILxSSdSk+T4TsVq7LyJQUqSHKsLsrzyOC3OScNjd63H7RsKY1hyD04HcOYgMNwNZBUAy7cBcppaPtd5JmfdslKFT3qG8c3fdYDtHUGSXIZH71iLb9y4kvLSkbgTdOD005/+FEqlErfeeisA4KmnnsKOHTvcjunr6wvqWiaTCa2trQCE1pDy8nJpsLN4u7a2FgDQ0tICnU6H8vJytLW1uc1AC7QvHmk0GhgMBq/tvlrJQjlWHN/k7wMm1l2UJLIOWi7h//vTcbC9IwCAT63Jx0/uuRrL8zKlY27fUIjK9Yu9vpziqqXp5EvAPh0weGFqW/YS4HY9sP7u2JWLRJWv5Kw56ckYHZ/EhINHYU4a/t+XNqN0OXUnk/gk48Mc0X3kyBFs3rx52m3xbHBwEDk5ORgYGJBa0qKttLTULcVATU2NFES6trZNd6xIJpPhhz/8Ie666y5cf/31QZUhFo+bzFzfsB3/9n8f4HmzMAA8f0Eq/vlz6/G5TYWJ96v85EtA80OAV8apK49j+zNBB0/0ek4c/pKzitYXZuPZh6+DKpNmB5PZFcrnyIyWXBENDAzAZDKhtLQ03MvNG4FayUJpbXNttXvjjTewbNmyoAMnklicTh4tHVbU/+VDcKMTkMmAB69bju/fdhVy0pNjXbzQOR1CS5PPr08egAzY9yiw9k7qtptDgknO2j86npivaTKvhN3i9PTTT+Phhx+edls8mwu/VN955x3s378fdXV1UCiC+5KZC497vvioewj/9ML7aDstrP6+rjAbP71vQ2IvmdJ5APjN56Y/7iuvACtvmvYwej0nhncsffji3nenPe4PO6+n5Kxk1kWtxWlgYADNzc2QyWReXUYA0NHRkVCB01xgtVpRVFQUdNBEEsPlcQf+6/WP0fgmi0knj4wUBXZVrsFXt61AkiLsybCx53QAH3t/dvg03B3dspBZRclZyVwRUuCUk5MDjUYDvV4Pi8WClStXuu0Xu5jI7OB5HlarFddcc02si0Ii6I1TPfjRi8dhtV0GAFSuL8CP774aRcr0GJdsBvpPA0eeBY7+HhgMLkknsgqiWiQye5xOHsesXFDHUnJWEu9CHuO0cuVKPPXUU9i/f7/PXE5k9gwMDGBoaIhSC8wRPYNj2P3KSfz5vS4AQGFOGn5899W47erFMS5ZmCbGgA9fAczPAJ1/m9qepgScE8D4iJ8TZcLsuuXbZqOUJMrO9I1A99x7eJf1vxwWQMlZSeIIe3A4BU2xJy4Zs3Tp0hiXhMyEw8njd4fO4PF9pzBkn4RcBnzthpX4XuUaZKUm4PISF98HzL8F3msCxrgrG2VAyS3A5i8Lg74/ehVofggOAOa0FPQqFMh3OKAeG4cCAG7fQwPDE5zTyePXB0/j8VdP4fKEA+nJCtx1TSFa2oWEva6Dayk5K0kkCfipTERWqxV5eXnIzMyc/mASl05cGMAPXzgudWNcszQH/3bfxsTLlDw2ALxvBI78FrhwZGp79lJg84PA5gcA5bKp7evvhkmjw56PfoduxdQXZYGDx6NrHoCG8jglNLZ3GLXG99B+RpjUsJXJg/7+TViWl4Fb1y5KjOSshPhBgVMCo4V9E9eIfRL/2foRfnXwNBxOHgtSk/CD26/CA9ctT5xf3DwvZP0+8lvgxJ+ASWFMFuTJQquS+ssAc4vPliPTGRN2Wf4AXuH+WHsUcuyy/AFPFJdDszyya1+S6HM4eTx9gMUTrR/BPulEVmoS6j67Fl8sXwb5ldd1QiRnJSQACpwS1Pj4OLq7uxNybb757rUTF/Hjl07gwpVf3HduKsQ/f249CrITZFDsUDdw7PfCYO++T6a2568TgqVNO4DMhX5Pdzgd2HN4D3gfGX148JBBBv1hPW4pvgUK6q5LGB93D+H7xvek1tObVi/Envs3+ZzUoJDLKOUASVgRDZxOnz6NFStWRPKSxI/z58/D6XRSi1MCucBdxmMvnUDrSWGafbEqHT+5ZwNuvmpRjEsWBMck8EmrMND7o1cB3iFsT8kCNnwe2PwQsLQM8JPBfHRiFJ2DnWA5Fm+dewvdo/5TDfDgcXH0Isw9ZpQvLo/GoyERNOFwovFNFj83fYxxhxML0pLwozvXo6psaeJltCckCDMKnI4ePeq2EK3BYEBTU9OMC0WmZ7VakZaWhvz8/FgXhUxj0uHErw+exhOtH2F03IEkuQzVn2Lw97euRnpKnLeo9Fmm0ggMX5zaXnydMND76vuA1Cxp8/D4MNgBFhbO4vb3/HCQKQhc9I72RuIRkCg6eWEQtc8dw/HzgwCAW9cuwk/v24jFOQnSekpIGMIOnLZv3w6O46BUKqVtR44c8X8CiSir1YqlS+kXXbw7auXww+ffx8ku4YulbHku/u2+jbhq8YIYlyyAicvCWnLmZ4Azb01tz1gIXPMFQP0QBrIXw8JZYDnzF7AcKwVJgVqSVGkqlChLkJWchb9a/zptMfIz6EdBvBqfdOK///oJ/vuvn2DSySMnPRk/vns97r22iD6TSHQ4HcKYyuFuIcfb8m0xm3kbduBUWVmJnTt3um177rnnZlwgMj0x8eXWrVtjXRTix+DYBB7fdwrPHjoDnhdWf6+7Yy22lxVLg2SjzeF0wNxjRu9oL/Iz8qFepA48ZujCUSFYet8I2AfAA7ApksCuuA6W4mthSU0HO3galtdr0DfW5/cyi9IXgVEyKFGWgMmZ+publiuV67bnbkPPaI/PcU4yyFCQUQD1IvUMa4BEw/vnBvAD4zF8eHEIAHDb1QX4yb0bKHEliZ6TLwnrWw5emNqWvQS4XR/0YuCRFHbgVFJSEtQ2EnmXLl3C2NgYjW+KIYeT9zkriOd5vPJeF/7llZPoHbIDAD6/uQg/vHMdFmalzlr5TGdM2HN4j1sLUEFGAR7d8qj7bLXL/eCPNaP36G9g4T4Bm5IMS1YyLPnLwKamgnPaAacVOGP1uo/CzEIhQMopkYIjRskgOyXwOk8KuQKPbnkUu97YBRlkbsGT7EpGH90WHQ0MjzP2SQd+bvoYhjdZOJw8VJkp+Jd7rsadGwuplYlEz8mXgOaH4LUo+GCXsH37M7MePIUdOFksFhgMBpSXC4M3eZ5Hc3Mz2traIlY44pvVaoVMJkNRUVGsizIv7Tve5ZWHpjAnDd+6eRVMH3Tjbx8JY3OYhZn413s3YNsq/zPMosF0xoRdb3wPPM+7DdbuGbmI773xPVRv2Ins0T6wZw/AMnIebFIShtLlQLrHEidOO2SQoSirSAiMXIKklTkrkZkcfv4wzXINnrj5CZ/BnW6LjlIRxJkjZ/vxA+N7+KRnGADwuU2F2H331cibxR8DZB5yOoSWJh8t08I2GbDvUSH9ySz+0Ao7cDIYDNBoNMKH8xWu/yfRY7VaUVBQgNRU+tCabfuOd+Gbz5q93sZdA2P40YvHAQApCjm+dUsJHvl0CdKSZ7fVZMIxgZ++/c9eQRMA8FduNx7fO7UxNQUAoIAMxQuKUZK7Wmo5KskpwYqcFUhPis4aeZrlGtxSfEto3YlkVo1NOPAfr53C/7zVCScPLMxKxb/euwG3b0jQZYBIYuk84N4954UX1r48cxBYedOsFSvswEmv13stu6LR0K/E2WC1Wr0WWCbR53Dy2P3ySZ+/fUQpCjn+/J0bsbogOoO/HU4Hei/34sLwBVwYuSD8Ff+NXMC5oXNw8A6/aQFEZWMTKFeuAbP6DpSsqMDynBVIUaREpcyBKOQKSjkQp9pO21BrfA+dl4Q1BT+/uQg/+tx65GbO/uuEzDMjfYD5N8DB/wru+GH/k1KiIWJr1b3++uvgOA6bN2+ecaGIf6Ojo7h06RI+9alPxboo887hTptL95wTioxOyJKGwE8ugGN0JQA5xh1OXBoex+qCQFfyb9I5id7RXpwfPu8VGJ0fPo+Loxcx6Zyc8WOp2vh1fHZb7YyvQ+ae0fFJNOw7hd+8cxo8DxRkp+Kn921ExbowX9SEBOvi+8AhA/B+CzA5Nv3xoqzZfW3OKI/T888/D5ZlAQjddO3t7fj85z8fkYIR386dExbIpIHhs8/SK4zvSFpwHKkFL0OePCDtc07kwN59FyaHNqBnyP8bfsI5ge6RbrcWo/PD59E10oULwxdwceSi0GIUgEKmwOLMxSjKKkJhZiGKspZgiVOGJX2n0fvJa9BlTB9Y5UMe5KMm88lByyXonnsPVpuwfM72sqX4pzvXIyc9OcYlI3OWYxI49WchYDrz9tT2wmuALdXA6/8KDF2E73FOMmF23fJts1VaADMInB599FFwHAebzQaGYcBxHGpqaiJZNuLD2bNnkZWV5ZY/a64JeRp9FI1POvH6hz0wdpzD6x92I2nBcaQVPet1nCxpAGlFz2Ls/BeBpGK822X1ai3qGulC92g3nLwz4H0myZNQmFmIJVlLXIKjIizJWoIlmUuQn5GPJMeE0P//8atA25PAwFkAgAPAE8VL0KNQSGOa3MrJ8yhwOKCm7jHiYtg+ifr/+wC/OyS8jpbkpKH+/k349BrKpUWiZNQmdMcdfhoYFBoEIFMA6+8BrnsEKN4iDDlIzb4yq04G9+Dpyufb7XtmPZ/TjNIR7Ny5E52dnZDJZFixYgVef/31oM9nWRZGoxEMw4BlWVRXV/sNBoxGozR+yvMYs9kMAFCr1WBZFhzHQa2eu/lfxIV9IzH997XO11C8qBg8z8M2ZkN+Rj6uWXgNjl065jdoiXZQE/Q0+ig7fn4Axo5z+NNRK7ixYcjkdshSRpG2+AUA3kOIZDJhzdv0oj/g/+v4Q8Brp8hTUJhViCWZS6aCo6wrwVHmEixMX+i7Tjkr8MGfgY9eAzrfnFpUFwCS0oAVN0GxuhKPHvpP7MoWgiTX4El2ZfKG7rIMihU3hlcxZM5586Ne1D3/Ps5zwuvpS9ctQ90da7EgjVqZSBRcPA4cNgDvNU91x2XkAaVfA8q+DuR4zBZff7eQcsBnHqc9iZXHiWEYnDlzBitXrsS///u/4/vf/35I51dVVaGjowOAEETt3LkTLS0tfo/1pNfrUVtbC4PBgMbGRgDC4HR/15gLHA4Hzp8/j1tvvTUi1/vnd/4ZinT3L2i5TO7WIuIatEQ7qBGm0e/ySorYM9qDXW/swhM3PxHS/Uw6JzE8PoyhiSEMjw9jeGJY+js0PiTdHpoYwsj4CGyXB3B2wIbekQGMO0chk49BttyOYId5izFKsjwZSxcslQIjz5ajvPQ8yGVBdJU5JoFzbUKr0kevAT0n3PdnLwXWfAZYfRuw8lNASgYAQLOgEE+8UoM9eUp0J029xQscDuj6OGg+Z4hZxl0SPwYuT+Cnf/4ATe1Cjq5iVTr0n9806+kzyDzgmARO/d+V7jiX1QgWbxJalzbcDyQHSKC6/m4h5UCiZw7nOA4Mw6C/vx+XLl3CbbfdBqVSGdSXujguSsQwDEwmk9/7aWlpgVarlbY1NDSgtlYY2FpaWor+/n4A3q1Rc83FixcxOTmJZcuWRe0+PLuRxKDlq1d/Fb8+8euIBTWeHE4H9hze4zOTtLht9zu7MTg+iNGJUbdgaGhc+P/IxIjb9suuLTKhUHi/H5PlyUhRpGBkYmTa039yw09wJ3NnePc9agM+2Q98tA/4xASMcVP7ZHJg6RZgzW3Cv0Xrfc+eW383NABu2aeDebwbvQoF8h0OqFMWQvE5Q0x+oZH48vqH3fjh88dxcVD4xf/VbSvwg9uuQmZqRNd9J/PdqE1YjaDtaWDgShJdmUL4DLruEWHNy2B7T+SKWU05EEjY75L7778fDocwiHXPnj3Yv38/ysrKgjrXZDJBpVK5bVOpVDCbzT672VyDJqPR6HYbmPsBk8hqtSIpKQmLF89eDhUxaPnNid8EDGr++eA/4/TgaUw6JzHuGIfdYce4YxzjTpf/Ozz+77RL20bGhaAnEM7O4bGDj4X8GNIUachKyUJWchYWpCxAVnIWnI40dHM8zl7icdmeDN6RBt6ZhhW5ebh5dTEqrlqGwgW5yEoRzklVpKLtYhu+/urXp72/RRmLgi8czwPdJ6Zalc4dBlyD1/RcYJVGaFVaVQFkqPxfy9X6u6FYeyfK4+QXGokP3Og4/uXlk3j+iLDo8oq8DDRor8GWlUG+rggJRvcJoXXpveapIQXpKqDsa0DZN7y74xLMjH5ePP7442hvb0dTUxMABD3uhuM4n9ttNpvXNtegyHUwuus2o9EIAGhra0NNTY3bfld2ux12u126PTg4GFR544XVasWSJUuQlDT7vwqdCDygeWh8CD83/zzq5ViTuwZMDiMENMkLkJWShczkTCkgEv+K+zNTMpEsF8Zq9A3b8eLRCzB2nJMW3QWA/AWp+PzmItxfuhRrAuRfUi9SoyCjYOZrrI2PAp1/Az56Ffi4dWpgpGjR1VOtSkVlgCLM5zuOfqGR2Hv1xEX8f386jt4hO2Qy4OEbV2JX5VVIT6FgmkSA0zHVHXf6wNT2xRtduuOik0x3ts1oVl1JSYk0aLuiogLPP//8jNIR+AuoRDqdDnq93m2b66ByhmFQWVkJi8Xi8/z6+nrs3r077PLFmtVqxcaNG2NdDL/Ui9RglAxSFalIUaQIf+UpU/9XTP0/VZGKZHmy9P9T/aeCak16dMujISVMnHA48dqJi1dmxfVg0ikEPCkKOSrXF0BbuhQ3rV6IJMX0Y45mtMZa/xng49eEYKnzTcAxFcAjKR1gPg2s/ozwT0mpJkjk9A3b8dhLJ/DKe10AgJL8TDxedQ3Uy3JjXDIyJ4zagCO/FWbHXZndC5kCWHcXcF0NsGxr8N1xCSLswKm8vBz3338/9u/fH/K5SqXSq3XJZrMF7HLjOA4mk8nrGJZlpe49cYYey7I+W53q6uqwa9cu6fbg4GDC5EMaGBiI+/J+e/O3w84CvVa1Fr88+suZt+Zc8UHXIFraz+HFo+fRNzIubb9maQ60pUtx1zVLoMwIPQOyZrkGT5R8EXs++h26FVMfBgUOJ3RrHpga5+WYAKyHrrQqvQb0fuh+oZxlU61KK26cM7/ESPzgeR5/fr8Lj714An0j41DIZaj+FIPvVqye9aWAyBzUfVKYHXesyb07rvSrQPk3gJylMS1eNIUdOHV2dgJw755ra2sLqsVJo9HAYDB4bQ80Rqq9vd1nKoKKigppcLjIc/yUKDU1NWHXd7NahYF1S5fG5sUol8nB83xEghpfZtSac4VtZBwvHj0PY8c5nLgw1RW3MCsVn1cXQTtNV1xQTr4EjUmPW8DDnJY6NfB6bByKs3pgsB8Y6QUs+4GxqQSZkCmAZdcLLUprbgPy1865X2EkfvQO2fGjPx3HvhMXAQBXFSzA41WbsGmpMrYFI4nN6QBO/QU49JR7d1zBRuD6udUdF0jYgdPmzZtRVlaGvLw8tLa2wmQyeXWj+ePZGsSyLMrKyqTAyGw2Q6lUuh1nNpu9AiKGYdzu02QyQavVzsnB4larFSqVCllZWbN6v2LQ8pX1X8GvT/w67KAmGJrlGjxx8xM+Ux7otuh8ztqbcDjxxqleGDuseP3DHkw4prriNOsXQVu6FJ9anR9UV9y0XFbqVgAoH7N7H3PY5QdBRh6wqlJIGVByqzDQm5AIcTh5HO60oWdoDIsWpGHLShXkMuBPR89j98snwY1OIEkuw7duWYVv37IKKUmULZ6E6XI/YP4t0LYX4Fy74z4njF+ag91xgcxorbqWlhYYDAbwPI/GxsaQ1qlraWmBTqdDeXk52tra3PIv1dfXo7y8XEo5IPIMuJRKJcrKytDQ0AClUgmLxTJn8ziJiS+jzVceJzFo2ZS/KaSgJhya5Rp8quhm/P7YGzg7eBHLshfjS9fcjBSPAfEfdA0KCSqPuHfFbRK74jYtidxipDwvzEx73zjNSt1XbNwObNkJFJXSLDYSFfuOd2H3yydd1k4EFi1IRUF2Kt4/L7S2Xr0kGw3aTbh6SU6sikkSXc8HV2bHNQETo8K2dBVQ+hVhdtw8HY8p43k+0GLvc9rg4CBycnIwMDCA7OzsWBfHr/HxcezZswd33HEHystnvlSG+LhbjrbEXeZwX18IhTlpeOyu9diyMg8vHT0Po/kcjp9374q7b/MSaEuLcdXiGXTFOZ1CrpFLHwljknpPCf8unXLvdpvO/f8DbNROfxyJiER5H0fKvuNd+OazZp8rdwGAQg58T7MGNZ8uQXIkWlrJ/OJ0CHnkDj0lTGQRFWwQWpc2audkd1wonyNBtzgFkx386aefxsMPPxzsJUmQLly4AKfTGfHEl59Z+RmfL5BAA7wVckXYA8Cn4+8LoWtgDI88a4ZCDjiuNIYlK2TQrBNmxX1qTX5oXxCOSaC/80pg9OFUoHTp46lfVZ5kciBrMTAURIvTLK/UTeYPh5PH7pdP+g2aAECVkYpv3rwKCvn86TohQXI6/GffvtwPHHkWONzo0h0nB9Ze6Y5bvm1edccFEnTg9NOf/hStra0Bj2lvb6fAKQqsVitSU1ORnz93F9x0/UKQw4kt8g+xCBx6oMRh51o4IYfDCWxYko2qsmLcfU0QXXETY0DfJ+7BUe9HwjbnhO9z5MnAwtXAwjXCAO78K39VJYAiGfjZBmCwC/G0UjeZPw532txaY33pHbbjcKcNW0vyZqlUJCGcfMn3em9bvwP0fQQc+6NLd1wuoP4KUP7wvO2OCyTowKmiogJ5eXkoLS31e8w87vWLKqvViqVLl0Iuj32zu68BqeH+suV5Hl0DYzh1cQivnbiIroEx3CY/jMeSn8ES2VS6igu8CrsnHsKrzi34pzvXe38h2IeEgOjSKffutf7T7lm4XSVnCgGSa3C08Cogd0XghJO36+NupW4yf1wcCG4ZoZ6hwMEVmWdOvnTlc8vjO3rwAvDqo1O3CzYAW6qBjVXS2pfEW9CBU0tLCwYGBtDe3g5AyOPk2c3jLw0ACR/P87Barbjuuusifm3zvl8hr3AlAMA+cBHpuUVYXVqBjzv243L/eaTnFmHtdbdBcWVg9r7jXfjJS++jePiY1BpkzboGP7p7I27fUBjwvgbHJnDq4hA+vDiEUxcHceriEE5dHMLg2KR0zG3yw3gy+Wde5y6GDU8m/wzfn6jBZOck0G+bCo56TwGD5/3fcZoSyL9K+LfwqqlAKXspEE4gGocrdZO5j+d5mD7oweOvngrq+EULAiyYSuYXl9nAfiWlAV9qFhYLp+64aYU0qy4nJwcVFRUAgCNHjsBms0Emk0kL+95///2RL+Ecw7IsjEajlKzTNfO5r2N/85vf4IMPPoDNZsO1114rHRvKdfxRH/kRsk+6v0kcr8lwtWzqDdbdmocLWx9Dd9Fn8KffP4WW5GewJMWlNciuwr/8/iHgS4/g9g2FGJ90gr007BIkCf/Oc75/KSvkMjALM7EwQ44fd/0GAODZgCWXCRPbnkgxAG955/8CIPTXS8GRS6CUtSjyHwRxtlI3mdvMZ/tR/38foO20kK9OduX94IsMwOKcNFp7jkxh35h+NvDkmDCeiYKmoMwoj5Po9ddfR2trKyorK6UgivhWVVWFjo4OAELws3PnTr8pFKqqqvD0009DLpdj+/btbseGcp1QyD1+leTzfcg/+B38RnY3fpn8ktfxi2HDL5N/hu82yfHEazeDvTSCSacT6bAjF8PIlQ2BkQ2hVD6E5RljKMm0ozj1MgqSRqCUDSNjkoN81Aa+pxcymZ9xR5h6P/OZ+ZAVXuvRirRm9nMk0TpwJMo6L43g8Vc/xP+9LySxTE2S4xs3rsSqRVn4x+ZjAHx2FuOxu9bTwPD5zukErO8K45beaw7unOHu6Y8hAGa4yO/Ro0dhMBjQ1NQEhmFQUlJCgVMALMu63WYYBiaTKeCxVqsVixYtwrp166RjQ7lOqDx/cMhlgJMHHuJfhszPfp4HHpf/AhbOiNzkYagwhDRfQdAkAD+z+oP9mJfdvoem+pM57dKwHb/Y/zF+f+gsJp08ZDJAq16KXZ9Zg8IcYRp4RorCK23H4itpO6brNidzWJ/lSrD0x6mZccGi2cBBCzlwOn36tJT4UiaT4f7770dHRwdWrlwZjfLNKSaTyWscmEqlgtlsltbb8zzWarVi+fLlbse2t7cHfR0AsNvtsNunslwPDAjRy6A9lMH80x07gWKcAQCMX/kHeTKQoRISpmXkAmm57rfTVUJLUYYKsHUCL307iGJkAYOD0x9H5o3BK68Hp9PPRIAEMTo+iacPdMLwNwtGxh0AgFuuyofujrVYu9h9POntGwpRuX5xxCZqkAQ2agOOPyckqTzXNrU9ZQGw/h5hoPeL36TZwBEUdOD09NNPw2AwgGVZbN++HS0tLV6Zwp9//vmg1qqbrziO87ndc8Fj8Vin04ne3l7ceOONbseGch1AyMS+e/dur+3F/zk8faFnzHeZwrbnjshej8wZQ0NDCbnc0qTDieb2c/hP00foHRJ+4GwsykHdZ9diW8lCv+cp5DJKOTBfTdqFxcOP/VFYSFxMryJTCMs7XfMF4KrPTs2Mo9nAERV04FRdXQ2tVotHH30USqUS/f39eP3116X9/f392LNnDwVOYfAXCI2NCc3wrkut+Ds20L66ujrs2rXL7bjly5fj7NmzyMmh5RjCNTg4iOLiYlit1nmRsTpaQqnH8fFxHDt2DIcOHcLQ0BCuuuoqbN26FZmZmViyZMkslTgyeJ5H68lu6Pd9CEvvCACgWJWOH9y2Fp/bWAg5tR4RVzwvtCgd+6PQwjTGTe1bvEkIljZogQU+utxoNnBEhRQ4NTQ0BMzV1NTUFJFCzVVKpdKrVchms/n8laxUKtHb24vMzEzk5ua6HRvKdQAgNTUVqampXttzcnLoCz8CsrOzqR4jIFA9jo2N4fDhw3j33XcxNjaGTZs24YYbbkjYpLCeM+VyM5Lx97euxgPXL0NqEv3yJy5sncIA7/f+CNhcxrcuKAQ2bQc2fQEoWD/9dWg2cMQEHTjV1NRM++VQV1c34wLNZRqNBgaD93T6srIyn8f+9Kc/RXFxMWQuI7LLysrAMEzQ1yEkkY2MjODdd9/F4cOH4XA4sHnzZtxwww0J2SUHAGzvMB5/9RT+ctx9ptwjN5cgOy05xqUjceNyP3DiT8K4pbPvTG1PzgTW3SW0Lq38VOhBD80GjoigAyfP8UzhHjOfMQzjdptlWZSVlUlfAmazGUqlEgzDYPny5ZiYmJDWp3M91vNLw/M6hCS6gYEBHDx4EB0dHZDL5SgvL8fWrVuRlZUV66KFpXdImCn3h8NTM+WqSpfie5VTM+XIPOeYAD4xAcf+AJzaBzjECT0ygLlZCJbWfg5ITcz3wFwyo3QEJHQtLS3Q6XQoLy9HW1ubW+6l+vp6lJeXo7a2Ft3d3dBqtfjtb3+LCxcueB0b6DrTSU1NxWOPPeaz+44Ej+oxMlzrsa+vD2+99Rbee+89pKSk4MYbb8R1112H9PTEDC5G7MJMucY3p58pR+YhngcumKfGLY32Te1btF4IljZWCWORSNyQ8fN4gbnBwUHk5ORgYGAg7saoHDp0CK+99hrq6uqQlETxLZnburu7ceDAAZw4cQKZmZnYtm0bSktLEzYo9TVTbtPSHDx6R+CZcmSe4M4K45aO/RHo+3hqe+aiK+OWdgCLN1Im71kUSjxA38hxymq1YsmSJRQ0kTnt3LlzePPNN/HRRx9BqVTis5/9LDZv3pywr3uaKUf8GhsETr4ojFs6fWBqe1K6MGj7mi8KXXKBFhkncYGeoThltVpx9dVXx7oYhEQcz/Po7OzEgQMH0NnZifz8fNx3333YsGEDFIrEneFDM+WIF8ckYHldmBH34Z+FNeFEK24SuuLW3Q2kxVePBwmMAqc4NDg4iIGBAbf8TYQkOp7ncerUKRw4cADnz59HYWEhduzYgbVr17rNHE00NFNunnE6Ak/p53ng4ntCN9z7RmCkZ2rfwjVXxi1tB5T0+Z6oKHCKQ1arFQCwdOnSiF6XZVkYjUYwDAOWZVFdXU0z8fwwm80AALVaDZZlwXGctJxNoHqkOhbqbufOndIi1E6nEydOnMALL7yAAwcOYM2aNcjMzMT27dulHGWJWKc0U24eOvmSnySSemBp2dS4pd4PpvZn5AkDvDftAJZspnFLcwAFTnHIarUiNzcXCxYsiOh1q6qqpC8zlmWxc+fOkGbjzScGgwGNjY0AhJxarvUUqB7nex2LAY7ZbMbk5CSOHTuGt99+GzabDb/5zW/wxhtvYPny5VIAFEy9xVud0ky5eerkS1eWLfGYTzV4AWj+svs2RSpw1R3CuKVVFYCCWh7nEgqc4pDVao14Nx3Lsm63GYaByWSK6H3MJaWlpejvF8aquLZuBKpHqmNAq9VifHwcAPCLX/wCQ0NDWLduHbZs2YKXX35ZWrA62HqLpzqddDjR1G7Fz0wf00y5+cbpEFqaplvsvHgrcO0XgPX3AunKWSgYiYWYBU6hNL+H222SiCYmJtDV1YVrr702otc1mUxQqVRu21QqFcxms1SXxJ2v11Ggemxvb5/Xdey6LAogBDnisiiNjY1h1Vs81Km/mXK1t63FnTRTbn7ofNO9e86fW/+JMnPPAzELnEJpfg+32yQRXbhwAU6nM+ItTv4WAPZc844IOI6D0WgEALS1taGmpgYMwwSsx/lax76WRQGAe++9Vzom3HqLdZ36min3nYrVeOC65UhJks9KGUiMOCaAzr8JS58cfz64c4a7o1okEh9iEjiF2vweTrdJorJarUhJScGiRYtm5f78fTHNd64tlwzDoLKyEhaLxe/xgepxrtaxuCyK2WyGTCZDeXk5rr/++pDG5oVbb5GqU4eTx+FOG3qGxrBoQRq2rFRBIZfRTLn5yjEBsH8DTr4gpA+43B/a+VkF0SkXiSsxCZzC6TYKtdvE13Xsdjvsdrt0e3BwMIzSR5fVasXSpUshl0f216xSqfT6lW6z2RK6WzOaWJaVXkNiNzDLsgHrcb7UcV9fH95++20cO3YMKSkpuOGGG6ZdFiXceotmne473oXdL59E18BUbp1FC1KxrjAbb31yCQ4nD7kM0NJMubltcnyqZenDV4AxbmpfZr6wqO7au4AX/w4Y6oLvcU4yYXbd8m2zU2YSUzEJnEJtfg+n28SX+vp67N69O+Tyzhae52G1WlFeXh7xa2s0GhgMBq/tZWVlEb+vRGc2m1FRUSG1copUKlXAemQYZk7XseeyKBUVFUEvixJuvUWrTvcd78I3nzV7fQX2DNnRM9QLALh17SLobl+LqxZHdnYriQOT4wD7BnDyT1eCpYGpfZn5QlLKq+8Flt8wlaPpDv2VWXUyuAdPV8a43b7HPZ8TmbPialadv0AoUt0mdXV12LVrl3R7cHAwrpJM2mw2jI6ORqVMDMO43WZZFmVlZXOuNSQSGIaBXq+XbptMJmi1WqkFxJVrPQbal8jOnTuHAwcO4NSpUyEti8JxnNv71lWw9RaNOnU4eex++WTA+VF5mSnY+1AZFDTwe+6YtAOWvwrLnpz6s0ewtAhYf7cwG84zoaVo/d3A9mf85HHaI+wn80JMAqdQm9/D6TbxJTU1Na4XDbVarZDJZBFPfClqaWmBTqdDeXk52traEnoQfTQplUqUlZWhoaEBSqUSFovFra4C1eNcqWPPZVEWLlwY1LIoJpMJra2tAIQW3vLycmi1WgDh11uk6/Rwp82te86XvpFxHO60YWtJ3ozui8TYpF1Y8uTEn4BTfwHsLsFSVsFUy9KyrcG1Fq2/W1hXLlDmcDLnyXienyYxReSxLOs2Gw4AcnNz0dnZ6RX0eHabcByH3Nxc9Pf3w2azBX0dX0JZDXk2vPzyy7BarfjWt74V66KQeYrneXz00Ud48803pWVRbrrpJqxbty6hl0UR9QyOoe6F97H/g55pj/35F67FPdcWzUKpSERNjAnB0sk/XQmWXMayZi2ealladj0FPEQSSjwQkxan6bqNzGYzlEolGIYJu9skEUUj8SUhwRCXRTlw4AB6enqwfPlyPPjggygpKZkTAVPnpRE0vmnBcx3nMe5wBnXOogVpUS4ViZiJMcCyf6plaXxoat+CwqmWpeLrgQhPvCHzT8zGOAVqfheb+Gtra2fUbZJIxsbG0NPTg23baFYGmT2Tk5N477338NZbb8Fms2HVqlW48847pQzfie6YlcNTf7Ng34mLENvWNxfn4HTfKLjRCX/zo7A4R0hNQOLYxGXgk/1XWpb2eQRLS4D19wjB0tItFCyRiIpJV128iKeuuo8//hi/+93v8Pd///fIy6NxFSS6xsfHYTabcfDgQWlZlBtvvBFLliyJddFmjOd5HPj4Ep76mwUHLX3S9lvXLsIjny5B+YpcvHriIr75rLAigY/5UXjyQTVu31A4e4UmwZm4DHzcKgzw/mgfMD48tS+7SAiW1t8LLC2nYImEJO676og3q9WKzMxMr7xUhETS2NgY2tra8M4772BsbAwbN27EjTfeiPz8/FgXbcYmHU783/GLMPzNghMXhHEtSXIZ7r5mCao/zbgtwHv7hkI8+aDaK4/T4pw0PHbXegqaos3pCH6A9fgo8Emr0A330avAxMjUvuylUy1LRWUULJFZQYFTnBDHN82F8SQk/vhaFuWGG25I2PGArsYmHGhpt6LxAAur7TIAID1ZgS9sKcbDNzEoUvpOXHn7hkJUrl/sM3M4iaKTL/mZ0q+fmtI/Pgp8/JrQDffRa+7BUk7xVMtSUSkFS2TWUeAUB5xOJ86fP49Pf/rTsS4KmWM8l0UpKyvD1q1bQ1oWJV4NjE7gmXdO49cHT6NvZByAsJbcV7atwFe2rkBuZsq011DIZZRyYDadfOlKEkmPESKDXcL2rX8HDJwTgqaJ0an9OcuEoOrq+4RgiX5gkhiiwCkOdHd3Y3x8nGbUkYix2Wx46623QloWJVF0DVzG/xzoxO8Pn8XouAMAUKRMx86bVmJ7eTEyUuhjLS45HUJLk88h+Ve2vfP/pjYplwmtSlffCyxRU7BE4gZ9wsQBq9UKhUKBwkIaV0FmxnNZlFtvvRVlZWVxnfg1WJ/0DOGpv7F48eh5TDiEL9q1ixfgkU+X4M5NhUhWUJdNXDtz0L17zp8N9wNbvw0s2UzBEolLFDjFAavVisLCQiQn06rrJDzhLouSCDrO2PDkGyxMH3RL265bqcIjN5fg5jX5NC4w3tmHgTNvA4e81xz06arPAkW+F3snJB4k/qfqHGC1WrFu3bpYF4MkmHCXRUkETiePv57qwVN/s6DttLBqgEwGfGZ9AR75dAk2L8uNcQmJX04ncPE9IXu35XXg7LuAcyL487MKolc2QiKAAqcYGxoaAsdxNL6JBE1cFuXAgQM4d+4cCgsLsX379jmxLMqEw4mXjl6A4U0LPuoWcvQkK2S4b3MRqj9VglWLsmJcQuLT0EVhAV3LfuHv6CX3/cplAHML8MHLwOV++B7nJBNm1y2nJMAkvlHgFGNWqxUAKHAi0xKXRXnrrbfQ3d2NZcuWzZllUUbHJ/HHw1b8z1udOM8JKQWyUpPwpeuW4es3rMTiHFr+JK5MjAFnDwotSp+8DvSccN+fkgWsuAlYVQGU3AqoGKHJcJXmyqw6GXymHr19D60fR+IeBU4xZrVaoVQq58T0cBIdDocDx44dc1sW5bOf/eycWBbFNjKOXx88jWfeOQ1uVOjOWZiViq/dsAIPXr8cOek07i8u8DzQ+6GwxInldWHM0uSYywEyYMm1QpBUcquwzEmSj3QQ6+8Gtj/jJ4/Tnqk8ToTEMQqcYowW9iX+TExMoKOjw21ZFK1WOyeWRbHaRvH0ARZN7VaMTQiL7i7Py0D1pxjcr16KtGRqdYi5kT6A/evUWKWhLvf9CwqnAiXmZiBzYXDXXX83sPbO4DOHExJnKHCKoYmJCXR1dWHTpk2xLgqJI3N5WZQPugbx1N8seOW9LjicQlfNhqJsPPLpEtyxoZCydsfS5Dhw7vBUoHThKNy605LSgOU3CIHSqgogf2346QLkCmDlTZEoNSGzjgKnGOrq6oLD4aAWJwLA97Io27ZtQ25ufM8gczj5gMuW8DyPQ502PPU3C9441Sttv3HVQjzy6RLcsCov4cdoJSSeB2zslXFK+4HTB9wXzQWARVcDq660Ki3bBiTTWDNCKHCKIavVipSUFBQU0PTb+WxwcBAHDx5ER0dHwi2Lsu94l9dCuYVXFsr9zPrFeO1kN576mwVHrRwAQC4D7thYiEc+VYKNS3NiVOo5IpSFckWXOaDzzSutSvsB7qz7/oyFQMktQEmF8HfB4qgVn5BERYFTDFmtVhQVFUFOi1TOS76WRdmyZQsyMjJiXbSg7DvehW8+a/aaWH5xYAyPPGtGQXYqugftAICUJDmqSpdi500MVizMnP3CzjXBLJQLAI5J4MKRK2kCXgfOtQO8Y2q/PBlYdv1U91vBRlo0l5BpUOAUIzzPw2q1orS0NNZFIbOsu7sbb731Fo4fP56wy6I4nDx2v3wy0Kpj6B60IytVgYe2rsDXbliJ/AWJ8/ji2nQL5X7uCUAmFwIl9g1gbMD9uLzVU2kClt8ApFJuLEJCQYFTjPT392NkZITGN80jc2lZlMOdNrfuOX9+8YXNuHUddUVHTDAL5b7yPffNaTnCrDex+025LMqFJGRuS7xP7DlCTHy5dOnSGJeERBPP8zh9+jQOHDgAlmWxcOFC3Hvvvdi4cWNCL4vySc9QUMcN2SejXJJ5JtiFcvPXAVffJ7QqFalpqj8hEUSBU4xYrVbk5+cjPT091kUhUeBvWZS1a9cm7Ji2EfskXjt5Ec+bz+Otjy9NfwKARQtoFtaMjY8A1kPA6beBky8Gd86nvg9s1Ea3XITMUxQ4xQglvpybnE4nTp48iQMHDsyJZVEmHU68benDC+ZzePVENy5PTA0sTlbIMOHw1WUkLKCxOEdITUBCZB8Czh4CzrwFnH5LGNztDLHljhbKJSRqYhY4sSwLo9EIhmHAsiyqq6uhVCp9Hms2m2EymQAAbW1t2Lt3r3Ss2WwGAKjVarAsC47joFarZ+MhhG1sbAw9PT24/vrrY10UEiFzaVkUnudx4sIgXjhyHi8du4DeIbu0b3leBu7bXIR7ry3ChxcH8c1nhfefj1XH8Nhd6ymhZTAuc8DZd68ESm8DXcfcZ74BQE6xMJB7+Vbgr/8GDPeCFsolJDZiFjhVVVWho6MDgBBE7dy5Ey0tLT6PNZlMqK2tBQA0NDSgoqJCOtdgMKCxsREAoNFo/F4jnpw7dw48z1OL0xwwMTEBs9mMt99+G4ODgwm9LMq5/lG8ePQC/nTkPD7umUqEmJuRjLuuWYJ7Nxdhc7FSajlbsTATTz6o9srjtPhKHqfbNxTO+mNICKM2YazSmbeFFqWL78MrCMpdASy/EVhxgxAw5boE4OkqWiiXkBiKSeDEsqzbbYZhpBYlT2azGfX19VLgpNVqodPpwLIsGIZBaWkp+vv7AcBvi1W8sVqtyMjIQF5eXqyLQsIkLovy7rvv4vLlywm7LMrA5Qn85f0uvHDkPA512qTtKUlyVK4rwH2bi/CpNflISfI9Luv2DYWoXL84YObweW+4VwiSzrwttCj1nPA+RlVyJUi6EizlBJg0QgvlEhJTMQmcTCYTVCr3sQ8qlQpms9mrm02tVmPv3r3SbY7jpONFiRIwicTxTYk45mW+GxkZwaFDh3D48GFMTk4mzLIorsYnnfjbR7144cg5mD7owfikU9p3PaPCfZuLcMfGQmSnJQd1PYVchq0l9CNAMtQ9NT7p9NvApVPexyy8aqo1afkNQHaIrXO0UC4hMROTwEkMfjzZbDaf27XaqdkhTU1N0Gg0UrDEcRyMRiMAYfxTTU0NGIbxeR273Q67fWq8xuDgYBilnxmn04lz587hU5/61KzfNwlfIi+LAgjjlsxnObxw5Bxeea8L3OiEtG/1oizcpy7CPdcWoUhJszxDNnB+qtvtzNtA3yfexyy62j1QyopAyyQtlEtITMTVrDp/AZXrfqPRKI1vAuA2qJxhGFRWVsJisfg8v76+Hrt3745UccPS09OD8fFxGt+UIGw2G95++20cPXo0IZdF6bw0gheOnMefjpzHWduotD1/QSruuWYJ7lMXYX1h9vxt/Qxnvbf+M1PdbmfeAvpPexwgAxZvBFbceCVQ2gZk0OxCQmbC4XTA3GNG72gv8jPyoV6khiJGLawxCZyUSqVX65LNZpu2y02n06G1tdXtOJZlpe49cYaeOP7JU11dHXbt2iXdHhwcnPUAxmq1Qi6XJ+Tg4fmkp6cHBw4cSMhlUWwj43jlvQt43nxeWlwXADJSFLj96sW4d3MRbli1kMYhBbPeG88D/Z1T3W5n3gYGrO7XkcmBwmuEIGnFjcLab+mJ03VLSLwznTFhz+E96B7tlrYVZBTg0S2PQrNcM+vliUngpNFoYDAYvLaXlZX5PaehoQE6nQ4Mw0gtUyzLoqKiQhocLvIcPyVKTU2N+Ref1WpFYWEhkpODGz9CZtf58+dx4MABfPjhh8jJycFnP/tZXHvttXH/fI1NOGD6oBt/OnIeb5zqxaRTmG0llwE3rc7HfZuL8JmrC5CREleNzLETcL23LwOlXwPGh4VgacgjU7c8CViyeSpQKr4OSMuetaITMp+Yzpiw641d4D3eqz2jPdj1xi48cfMTsx48xeRT1LM1iGVZlJWVueVmUiqV0nFGoxFqtVoKmpqbm1FdXQ2GYaDX66XrmEwmaLXauB4sbrVacdVVV8W6GMRFoi6L4nTyeLezD386ch5/ef+i2/ImG4tycO/mItx1TSFl7/YUzHpvHb+a2iRPBpaWXQmUbgCWbqGFcQmZBQ6nA3sO7/EKmgCABw8ZZNAf1uOW4ltmtdsuZj8/W1paoNPpUF5ejra2Nrf8S/X19SgvL0dtbS1YlkVVVZXbuUqlUhrbVFZWhoaGBiiVSlgslrjO4zQ8PIz+/n4a3xQneJ7Hxx9/jDfffDPmy6I4nHzQU/o/6h7C8+bzePHoebf8SUXKdNy7eQnuvbYIqwsSY9D6rHI6gEsfA+81Bbfe2zVfBK79ErC0HEimQfOERAvP8+i39+Ps4FlYh6w4OyT8/eDSB27dc17ngcfF0Ysw95hRvrh81sobs8DJtbXIddYcALfgh2EY8LzvZR0AIV1BvGcKF4kL+1LgFFu+lkV54IEHsGrVqpgMkt53vMsriWShRxLJnsExvHRMGLd0smtqNuiCtCTcubEQ920uQvkKFeTzfdySyOkEbBZhuZILR4ALR4WM3BMjwV9jlQZYSbNfCYkEnufRe7nXKzgSbw9PDE9/ET96R3sjWNLp0YCHWWS1WpGTk4PsbBoPEQsOhwPvvfce3nrrLfT19cXFsij7jnfhm8+avRqiLw6M4ZvPmvGVbcth6R3B259cwpVhS0hWyHDzVYvw+c1FuGXtIqQlx2934qxwOoUB3J5B0viQ97HJmUIW7p6T01+X1nsjc0y0Z6Y5nA50j3bj7NDZqQBp8Cysw1acGzqHy5OXA55fkFGAZdnLsGzBMhQvKMa4Yxy/PPbLae83P2N2Ew9T4DSLaGHf2BCXRTl48CAGBgawbt063H///TGf2ehw8tj98slAI23w64NnpG2ly3Nx3+Yi3LmxELmZKbNSxrjD88L0fzFI6joKXDgG2Ae8j01KBwo3CQO5C68V/i5cLez72QZhIDit90bmiUjNTJtwTqBruMs9OLrSenRu6BwmnBN+z5XL5FiSuQTFC4qxLFsIjpYtWIZl2ctQlFWEtCT38ZgOpwPPffwcekZ7fI5zkkGGgowCqBfNbq8TBU6zZHJyEhcuXMCGDRtiXZR5Y2xsDO3t7XjnnXficlmUw502t+45f7Tqpfj7ilVYnpc5C6WKIzwPcGevBEcurUljnPexSWlAwQYhOBL/LVwDKPx8xN2up/XeyLwR6sw0u8OO80PnpeBIDIysQ1ZcGL4Ah+ci1C6S5ElYmrXUZ3C0JHMJkhXBz1BWyBV4dMuj2PXGLsggcyu/7Mp7VbdFN+v5nChwmiVdXV1wOBzU4jQLRkdH8e677+Lw4cOYmJjA5s2bccMNN8TNsihDYxNoO23Db985M/3BAG5aszC+g6Zwkkh64nlg8Lx7gHThCHDZx2oCihSXIOla4W/+WiCED2Ra742EK54SMQZjuplpAPCjt3+EA+cO4NzwOViHrLg4ctHn8aJURaoUELkFSNnLsDhjcUTrQ7NcgydufsJna5lui27+5HGaj6xWK5KTk1FQQOMmomVwcBDvvPMO2tvb42pZlMvjDnSc6cdByyUctPTh/fMDcDj9fyh5iut0AsEkkfTE88BQ11RwJP4bveR9rDwZKFg/1YpUeC2waD2QFIGuSlrvjYQoXhIx8jyPy5OXMTIxIvybHMHoxCiGx4el/4v7LJwl4Mw0ABieGMbznzzvti0zOVMKjDxbj/Iz8iGXzd7MY81yDW4pviVuAlYKnGaJ1WpFUVFRXOcFSlSuy6IkJydj27ZtuO6662K2LMr4pBNHrRwOWi7hHUsfjpzlMO5wuh2zPC8D1zMqvHq8G9xl32MCZAAW5wipCeJSwCSSDwktOuvvFha9dRuTdEQIVDzJk4BF66bGIy3ZDBRcDSRFMWktrfdGgjTTRIzjjvGpQGdiBKOTvgMd6f+THrfF/185PlCLUDgqllXg1mW3SsGSKk0VV0sxKeSKWU05EAgFTrOA53lYrVZs3rw51kWZU3p6evDWW2/h/fffj+myKJMOJ45fGJQCpfbT/bg84T4GoDAnDVtL8rCtZCG2luRJi+necpUwqw7wOdIGj921Pj6XRgkmieTzO4H/+wEwfNH7EJlC6F5z7W4ruJryJc0TidTdNeGYgG3Mhn99918Ddnf98MAP8Wf2zxid9A50RiZGMOmc9Dp3pmSQITM5ExnJGchMzkRmUqb77eRMDNgHsO/0vmmv9cC6B+ImMIl3FDjNAo7jMDw8TOObIsRzWZQ77rgDmzdvnrVlUZxOHh9eHMI7bB/esVzCIdbmlrUbAPIyU9wCpRV5GT5/vd2+oRBPPqj2yuO02COPU9z5+LXpk0hOjglBk0wOLLxqKkBaslkYo5SSGAslk8iKRXeXw+nA8MQwBu2DGBwfxIB9IOBf1/9PN4VedNlxGaazpmmPS09KR0bSVGDjGvS4BjzSPh/BUGZyJjKSMpCelD5tq5DD6cCRniNxNzMtkVHgNAvExJdLly6NcUkSF8/zOHPmDN58802wLIu8vLxZWxaF53mwl0Zw0CIESu9Y+tA/6t69lp2WhOuZPClYWlOQFXQz9+0bClG5fnHQmcNnjdMpDNi+9JHLv4+B3lPASE9w1/i0Dtj2HVqihACYWXeXOK4nqMDHPoiB8QHp7/D4cMS7tny5p+QebCnc4jcIykjKQJJ8dr9243VmWiKjwGkWWK1WLFy4MGZjbhKZuCzKgQMHYLVasXjxYlRVVWHdunVRXRbFahvFO5Y+aUB3z5DdbX9GigJbVqqwlRECpfVLsmcU6CjkMmwtyZtpscMzaQf6LMClU0Jg5BokTYzO7NorbqKgiQAIfnbXoa5DGJ4Y9tkKNNPurvSkdOSk5iA7JVv66/p/aVtqNnJScpCdKuz/0PYhHn7t4Wmvf8+qe+KyuyseZ6YlMgqcZgElvgyd0+nEBx98gAMHDuDixYsoLi6edlmUUNZ789Q9OOYWKJ3rd2+eT0mSo3RZLraV5GHbqjxsWqpEsmJ217ObsVHblcDolHvrEXcG4J2+z5EnAaoSIH+NkBdJ/KdigCe3UhLJGIqXcUIOpwMD4wPoH+uHbcwG25gN/WP97rft/Tg/dD6o2V1/PPXHgMckyZOkoMbfX88gKDtF2BdKDiFXZQVlKMgoSOjurnibmZbIKHCKMrvdju7ubmzZsiXWRUkInsuilJSU4Ktf/SqWL18esOsrmPXeXNlGxvEu2ycN6Lb0uq9hliSX4ZpiJbaVCN1v6mW50V3aJBK5kAChe23A6t691nvlr6/p/qLUHJfgaLUwJmnhGmF5En9fNpREMmaiOU5o0jkJzs5NBT92G2yXheBHDIZc/3J2LqLdYLcU3wL1IrV34HPldjDjeiJtrnR3xdPMtEQm4wOtoDvHDQ4OIicnBwMDA1FbP85iseC3v/0tvv3tb2PhwoVRuY+5YGJiAkeOHMHbb78tLYty4403oqioaNpz/a33Jn60PvmgGttWLcRh1iaMU2L78IHLQrkAIJMBG5bkSIFS+QoVMlNn6XdFOLmQJi57d6/1fgT0fQIEGsyaU3wlMPIIkLIWCZUQkbIXURLJKPI3Tkj8AvccJyQGQn2X+/wGP2KrUP9YPwbsA2EFQtkp2VClqaBKUyE3LVf4l5orbesZ7cF/dPzHtNf539v+N26/3H0FrIszFlN31xwQSjxAgVOUA6c33ngDhw4dQm1tbVzlxIgXdrsdbW1t0rIoGzZswI033ohFixYFdb7DyeNG/esBly5JVsgw6fD+KriqYAG2XgmUrl+Zh5yM2ZmV58ZfLiQx7LvnvwHVSveutUsfCUuR+PtyU6QAeatcAqSrhP/nrYrOeKNItZaRaTmcDnzmuc+gZ9T/4PxURSrWqdaBs3OwjdkwOD7o91h/ZJAhJzXHK/gRAyLx/+L2nNQcJMsDv38cTgdue+62abu79t2/L65bbuKli5REVijxAHXVRZk4vomCJnejo6M4dOgQDh06NKNlUYJZ723CIXxIr1yYieuZPGwrycP1TB7yF8xuvicvweRCevFb/s9PUwL5V7m3HC1cDeSumN3AJYGTSMbDl+DoxKjU2tM/1u/VKiR2l/WP9aN3tBdjjsCvd7vDjqO9R922ySCDMlXpN/jJTcuFKnVqnzJVGfHZX9TdReYKCpyiyOl04ty5c7jxxhtjXZS4MTQ0hIMHD6K9vR0AUFZWhm3btk27LIrDyeNc/ygsvcOw9IzA0jsMtncEJ7sGgrrfH9+9Hl/dtnLG5Q8JzwOjfcKU/oHzwl/p/xeAvo99Z9D2lLkIKNw01XIkDtDOXBhe9xoBEJ1xQjzPY2hiCNwYNxX42H0HQeK/6QKhcDyw7gFULKuQgqKclJy4CEhodheZCyhwiqLe3l7Y7XaaUQegv78fb7/9No4cORJwWZShsQmwvSNgL00FSJbeYZy+NOq1bIknOZzYIv8Qi8ChB0ocdq6FE8LMt6sKItwVy/PCLLVBz4DoSlA0cE7467BPf63p3F4PbNTO/DpREg+tNqEKNp+Qk3diwD7gNQ7IbyBk7w9rynyyPHmq9SfVvUXItTXo3NA5/NPb/zTt9SqWVcRtqwjN7iKJjgKnKLJarZDL5ViyZEmsixIz4rIox48fR3p6Om655RaUlpbBZufRfm4Ylt5uqfXI0juM7kH/gUZqkhwrF2aiZFEWSvKzUJKfiRV5maj+bTs2Dx/APyc/gyUym3T8BV6Ff5l4CMcWfCq09d54Hrjc76elyCU4mgyypSCrQBjsnV0k/Mu58nfk0pWuOsABwJyWil6FAvkOB9Rjdihcz49T8bLoqS88z2PMMYbLk5dxefIyRidGpYVRd7+zO2A+oe//7fvITsnGwPgAnP5SNQSQnpTuFgS5BUKpuV4DqDOTM4Pqzr8m/xr84sgvEnpaPEDdXSSxUeAURWLCxpSUCKzkPktmkgvJ1fnz57H/r3/Du0feg12WhuwVG3AxZxn+2mEH++pfMTbh/8sof0EqGI8AqSQ/C0uU6T7L8lTpeVxz8Gde2xfDhl8m/wzH1MzUeVJQdMF3QCR2owW5zAIyFwlBUc5S38HRgkIgyc/z73QAB38O0ySHPXlKdCdNvR0LJifxaB8HTVJu3OZCmumip6IJ54QU1FyevIzRyVFcnnD5v0fgE8px4U6Td/AO9Nv7pdsLUhb4bg1K9R4vpExVIi0pLaz7nc5cGSdESCKjWXVRnFX3i1/8AqtXr8Ydd9wR8WsHK5RAaN/xLvzLS8eQ52hFRtIljE4uRJ+iEv989zV+10zjeR69Q3Z80juMT3qGYT7+EdoOHcTZ050YkaUjbel6JOevgMzjgzxJLsOKhZkoyc8Ekz8VIDH5WchJD2F2m9MB/GwD+MELcMK71UYOQJacARSVAUMXhKAo2GzYmflXgqErQZEYDImB0YJCIGlmA8xNb9Vj1ye/E77+XFocZFfelk+segCaG+tmdB8z4eSdsDvssE/aMeYYg91hx9jkGEYnR/Hd17/rFlx4ykjKgGaZBpcdl30GNWKwE43FTz2lKdKENcKSMzDpnJw2ESMA/IP6H3DPqnuCmjE222haPCGRRekIghTNwKm7pwtfqLkNhZtSkVeUhZUL1mNkYgA56flYrFyJez9dg5QU4Ut3fNyOP/3NgJ7Bs1iUvcxtny/BHh9KILTveBf+56Uf4VLBO7iUNJURe+GkEwu7t+KhO3fjqsXZsPQMg700AkvP8JXxRyMYGpvAZP8FjFlPwDHUC0VmLlKXXo3khcXIzUx1azUqyc8Ck5+JYlWG78zbTgcwNiC0Cl3mgLErfy/3A2PclW1X/l7mgMFzQP9pmDLSsScv10erTT80oz5ajzIWTt9SlBydVgOROD3b35e4DEBBxmK36dk8z2PcOY6xyTEpoLnsuOwW2Ey3ze4Qto9Njgn7Pba5nReJMVpBSpIlIT05XVoENT0pXQp2xP+73nY7JikD6clT28Tb6UnpSFOkubXAtF1sw9df/fq05YnnfEJAYo4tIyReJUTgxLIsjEYjGIYBy7Korq6GUqkM+dhQruMpWoHTPz59O17ptcD2FgflTUoo0r0/zFSTTtynElqiXrD9BTaXYEXc9+Dtj3qd9+y+PUEd/9cPu/H7Vxtgy2/3OlbVW4Yv3VaLW9YKY2ccTh7fa9TheO5hvy0fzMVSvG+/F/LUTGkfzzsxccmK8fMnkOUYRnFxMcquvwFbNq3FVbkAkzUBpWzET+DT7x0EjXGAPfScM6aMdOxatNB/q03PJWjWfwm4+r6pICmEoGjSOYkJ5wTGHeOYcE5gwjHhdnvcOY4Jh/B30jk5td3jr3iueLx1yIrXra9Pe/+5qbngwUutPbOxWKkvSbIkpCWlIVWRCifvDNjaJLp9xe3YvGizW/DjGtS4BjrhLocRqrmST4gQEjkJETiVlpaio6MDgBD86HQ6tLS0hHxsKNfxFI3A6R+fvh2vJZ3D8AfDuPRqH9JXpId8DfGrf0vaVShdWyFt7/hwPw6PnfKbIVs83snzePGdP+Nixlm/x+YPFyMpczNGxx0YumxHanYrRv104ckAZDh5LB7agM/fWobVucBo7wV8wp7G5eEhrM1PwqdXpGB5xihkYwPAmJB52AHAIQMckGFSBkxC5nbbceX2pOdtmQyOpHQ4UhdgMiUTk6mZcCRnwJGSgcmUdGFfchomk9MwPtKHX/YcxJBc5ntqPs8jnedRUXAdJjJVU4GLrwDIV4DjnAhrcPBsUMgUSFWkSsFMWlIa0hTC/1OTUpGmSJvap0gLbpvLPs9trnl9Er3VRhyfBcDnOKFgx2cRQuaGuE+AybKs222GYWAymUI+NpTrzIbhkUGYks4BAFIKU5FWnIacshwoFvj51SrGrH6+8LucPZCtzIbDycNuv4yu7G7kynP9Hn/e2Q2MvAeH0w7F7YMBj03ih3DVyGHIZU6MKsZxKj0PgdpgHEMO9Lz7Hp7r+RiDx8cxftmJtMJUZF+TgbdVyTDALgRFOVmYlC2AI2L5hUaFf5MQ/vkanhRosV2ZDJdlMrzS2wb0RqZEyfJkpChSkCJPQbI8GcmKZGmb619puzwFyYpk6Xhxf+/lXrzCvjLt/f3o+h+htKDUK0iK5bgb9SJ1Qi96SvmECCHhikngZDKZoFK5Tw9XqVQwm81Qq9VBH9ve3h70dQBheQ+7fWrMxuBg6N1Cgfznc9+C80rAIJPJIFNMEzwECi5kMgwrgD+cbZzaNk2AMKqQ4ePsk1c2BD52TCbDsQXj0x97hb3LDttpOwYcMmSsykDmmkzIspMwNO2Z7uQyORQyBZLkSVDIFFDIFUiSJbn99dovT3LbJx0rU6D3ci/ev/T+tPf72ZWfxab8TUJA4yPICTbYSZInRSwLvMPpQNvFtmmDj/tX3x93XUZzYXYX5RMihIQjJoETx3E+t9tsNq9tgY4N5ToAUF9fj927dwdTxLD02ruAKzPP5SlyyBQyDLQHl9naH5XDgUyex6hMhj7F9B/oix1C11pXEJ/9K5GBwuxCDI1xeH+8L+Cx493j2LhkJR7d/a9YtmKZVwCTJJ8++FHIFJDLpg/SQhFsl5F2jTbuuowSPfiYC602lE+IEBKquMrj5C8QCvVYf/vq6uqwa9cu6fbg4GBEs3rnpxYCvLD4piJDgTxNHpzjMxsfsyt/O+666et46e1n8J/dv5/2+L8reABFuen4/odPT3vsj9Y+jNJND8AxOY4vtHwGfXKA99GaIuN5LHQCL37ldajy8sN6HNFCXUaxRa02hJD5JiaBk1Kp9GoVstlsPmfDBTo2lOsAQGpqKlJTo7ew6/fu/yWMLdvgBACZDIoMBRQZAb5AAoxxkvE8Fjp4fFX7T0hJScXXPq/DH3/bhD6FzH9w4+Dxtc/XQiGX4T/P/xq9AQKhRU7gjorvQHElOeOPt3wVuz75nVAsHzPTHlv1QNwFTUDit9oAiR98UKsNIWQ+iWy/SZA0Gt+/osvKykI6NpTrzIaszGxoJpcKN6abrOiyX+ZxrHj7CwvvlfIzpaSk4osL7w3qeEVSCurWPBDw2EfXPCAFTQCgubEOT6x6AIs8GsgKnLFPwjgdsdVmUcYit+0FGQUJMztKDD4+y3wW5YvLEyZoIoSQ+SYmLU4Mw7jdZlkWZWVlUkuR2WyGUqkEwzABj/VsWfK8Tiz8x8P78I9P3w5T0jkE6qTLd/D4wpVA6A+X/oRLSVOtPAuv7Ku+59/czqm+59+AF4M7XnNjHZ4AsOej36Hb5Tu4wAno1vgOhDQ31uGW6/8R5vd/i97Bs8jPXgb1xi+7BVjxKtFbbQghhCSGmCbANBgMKC8vR1tbG+rq6qSAp6qqCuXl5aitrZ322ED7phPNzOHDI4P4z+e+hZ6x8wAQk8zhAOCYHE/IQIgQQgiZLQmRADMeRHutOkIIIYTEv1DigZiMcSKEEEIISUQUOBFCCCGEBIkCJ0IIIYSQIFHgRAghhBASpLjKHD7bxHHxkV6zjhBCCCGJQ4wDgpkvN68Dp6EhYYnaSC67QgghhJDENDQ0hJycnIDHzOt0BE6nExcuXMCCBQsituK9SFwHz2q1UqqDWUT1HhtU77FB9R4bVO+xEc1653keQ0NDWLJkCeTywKOY5nWLk1wux9KlS6N6H9nZ2fTGigGq99igeo8NqvfYoHqPjWjV+3QtTSIaHE4IIYQQEiQKnAghhBBCgkSBU5SkpqbiscceQ2qq/zXnSORRvccG1XtsUL3HBtV7bMRLvc/rweGEEEIIIaGgFidCCCGEkCBR4EQIIYQQEiQKnAghhBBCgjSv8zhFC8uyMBqNYBgGLMuiuroaSqUy1sVKSGazGSaTCQDQ1taGvXv3SnUZqJ7D3Ue86XQ61NXVUb3PEpPJBJZlwTAMAECj0QCgeo8mlmVhMpmgUqnAsiy0Wq1U/1TvkWM2m7Fz5050dHS4bY9GHUe1/nkScWq1Wvq/xWLhtVptDEuT2PR6vdv/Xes2UD2Hu4+46+jo4AHw/f390jaq9+hpbW3lq6ureZ4X6ohhGGkf1Xv0uH7O8DwvPQc8T/UeKS0tLdLniado1HE0658CpwizWCxuTxjP87xSqYxRaRJbR0eHW91ZLBYeAG+xWALWc7j7iLeWlhaeYRgpcKJ6jy7XuuZ5od7Ev1Tv0eNZR67BK9V7ZHkGTtGo42jXP41xijCxudeVSqWC2WyOUYkSl1qtxt69e6XbHMcBEOozUD2Hu4+4MxqN0Gq1btuo3qOHZVnYbDYolUqYzWZwHCd1F1G9R5dKpUJpaanUZVdZWQmA6n02RKOOo13/FDhFmPjl7slms81uQeYI1y/upqYmaDQaKJXKgPUc7j4yheM4n+MBqN6jx2w2Q6VSSeMyGhsbYTQaAVC9R1tLSwsAoKSkBC0tLdLnDtV79EWjjqNd/zQ4fJb4eyJJcDiOg9Fo9BpU6Ou4SO+bj5qbm1FdXR308VTvM2ez2cCyrPTjoLq6Grm5ueAD5Cimeo8Mk8kEvV4PlmVRU1MDADAYDH6Pp3qPvmjUcaTqn1qcIkypVHpFtWLzOwmfTqdDa2urVI+B6jncfURgMpmwfft2n/uo3qOHYRiprgBIf81mM9V7FLEsi7a2Nmg0GlRXV8NisaC5uRksy1K9z4Jo1HG0658CpwgTpw57Kisrm+WSzB0NDQ3Q6XRgGAYcx4HjuID1HO4+MqW5uRmNjY1obGwEy7Kor6+H2Wymeo8icTyTL1Tv0WM2m1FeXi7dZhgGdXV19DkzS6JRx9Guf+qqizDPDz+WZVFWVka/NMJkNBqhVquloEnsQvKsT9d6DncfEXh+6NTU1KCmpsbnFzvVe+QwDIOysjJpfJmYy0mtVnsdS/UeOWq1GgaDwW08ZV9fH9V7FLmOoQz0nRmvn/O0yG8UsCwLg8GA8vJytLW1uSUPJMFjWRYlJSVu25RKJfr7+6X9/uo53H1kCsdxaGxshE6nQ3V1NWpqaqBWq6neo4jjOOh0OpSWlqKjo0NqaQXo9R5NJpNJ6hIFhB8PVO+RZTKZ0NraioaGBtTW1qK8vFwKVqNRx9GsfwqcCCGEEEKCRGOcCCGEEEKCRIETIYQQQkiQKHAihBBCCAkSBU6EEEIIIUGiwIkQQgghJEgUOBFCCCGEBIkCJ0IIIYSQIFHgRAiZdSaTCSUlJWhoaEBjYyNKS0tRWloqJdwsKSmB2Wye8X2I1ySEkEihJVcIIbOO4zi0trZK2ZlbW1uhUqlQXV0NANixYwdYlvW57EWwNBoNduzYEZHyzgbXZSgIIfGLWpwIIbPOZrMFXNRWrVZ7rW4+l7Esi+bm5lgXgxASBAqcCCGzbvv27RE5Zq7Q6/WxLgIhJEgUOBFCZl0wXVLt7e0oLS1FQ0MDAMBoNKKkpAQmkwnA1DipmpoaGI1GNDY2oqamBhzH+b2myWRCQ0MDjEYjdDqd3+NYloVOp5OuK17TbDZL5zc0NIBlWem605VVHG9lMpnQ2NiIqqoqaV97eztaW1vR2NgoXZMQEp9ojBMhJC55jlHSarVoampy26/VapGXlyetsm40GlFVVYXW1lav64nBUEdHBwChu1Bcqd0Vx3GorKxER0cHlEoldDodGhsbodVqodPp3K5dWlqK/fv3B1VWjUaD1tZWtLS0AABaWlpgNpulfSUlJdIYL0JI/KLAiRCS0Fxbr7RaLaqqqnwOtDYYDFCpVFIrEAC0tbV5Xa+5uRkMw0jn19XVAQDq6+u9BqszDIPm5uagAp68vDzk5eW5lXs+jeMiZK6gwIkQMm+o1WpoNBrptq+AxzPomu2ZbjS7jpD4RmOcCCFxS6lUoq+vT7ptMpm8xjC53jYajdBoNG6Bh7h/x44dbq1N4vU8abVarxxSJpPJ5/lms1kaxB5MWYPhq0yEkPgh43mej3UhCCHzk8lkAsuy0qwynU6HsrIyqUuM4zjodDppILXBYADHcTAYDGAYBjqdDhzHSd1zbW1tqKurg1KphNlsxs6dOwEAe/fuhVqthslkQmtrK8rLywHAK8hyLZev40wmE8xmMxiGQVtbG3bs2BFUWTmOcyuLON5KrVZLj12v16O0tBQajSZgqgZCSGxR4EQISVhilnEaVE0ImS3UVUcIIYQQEiQKnAghCclkMsFkMknT+gkhZDZQVx0hhBBCSJCoxYkQQgghJEgUOBFCCCGEBIkCJ0IIIYSQIFHgRAghhBASJAqcCCGEEEKCRIETIYQQQkiQKHAihBDy/7dbBwIAAAAAgvytVxigKAImcQIAmALe2034wqpCAAAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -790,9 +790,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRsElEQVR4nO3deVxb15k//o8kdgy6CMxiG2OE7XhfBNhx9sQidrM10wBO0zTptDU0nfm1M26LwkzbNN0wpJNmptOmwmm+bZpMaiBpmtUJcpo2acIq27HjOLYlwNjGZhFi3yTd3x+Xe9EuISQkwfN+vXiBpKuroyOBHs55znNELMuyIIQQQgghHomD3QBCCCGEkHBBgRMhhBBCiJcocCKEEEII8RIFToQQQgghXqLAiRBCCCHESxQ4EUIIIYR4iQInQgghhBAvUeBECCGEEOIlCpzmmV6vh0qlQlJSEnJyctwem5OTg6SkJKhUKhiNxvlpIAkZWq0WBQUFHt8ngVRXVxe0x55v/O+mSCRCTk4OqqqqUFVVhdLSUhQVFS2qvvBVaWkpkpKSoNFovDreaDRCpVKhuroadXV1qK6udjhGo9GgtLQUpaWlPr8GC/W1ra6uRm5ubrCbsfiwJCgqKytZhmHY1tZWp7fX19ezhYWFbElJyTy3zDm1Wu1wXVlZGVtYWBiE1nCctWmhqa+vZ+Vy+azu469+qa2tdbiuv7/f7fvWmWC/T2ZLqVQ6/b2Ty+VsZWVlEFrkvVD4nVAoFGx9fb1Xx8rlclan0wmXGYaxucyyLAuA7e/vZ+vr64Xz+vo8F9prq9Pp2LKysln9PpK5oxGnIGEYBsXFxVCr1U5vD7URpvr6eofrCgoKsG/fviC0huOsTQuNTCab9X381S8Mwzi9rqSkBHK53OvzBPt94i+lpaVQqVTBboZb4fQ7odVqwTCMzXuptrbW5rJWq4VcLgfDMFAqlVAqlQD8/zzD9bWVy+UoLS11+rtKAocCpyAqLS1FTU2Nw/VGo3FWH0yBVl1dDb1e73C9UqlEYWFhEFrkuk2LnT/7RavVoqqqyuH6ysrKWf2hDub7xJ/45xxq/9Twwu13wmAwOPxjwAdG1uzfa4F4nuH82vLBJZk/EcFuwGKmUCggk8lQV1dn88HS0tLi9A8Ir6qqCnK5HHq9HnK5XLiv0WhEdXU15HI56uvrUVpaCoVCAYDLE+D/ozp06BD0ej30ej36+vpQWVnp8rE0Gg3q6+uh1+uFD9GysjJotVqoVCro9XrodDqXj2EwGNDa2gq1Wo3q6mrIZDIcPnwY5eXlQts8PS9v22R/HoDLbbC+zR37/IqSkhKP5/T1OfP3k8lkKCoqAsC9fp5eD/v2WPeVt/3iqX95DMOgsrLS5hx8sH/o0CGb+7vqH2/fJ968Fz091mzOO9u+AIDW1lYoFAqbD3JXr4NKpRJGA/iRAr4N3rzPnJ3P3fPy9No746+/F1VVVWAYZlajoxqNBmq12qa9Op0ONTU1qK2thVKphFartTmGH3myf55yuRwVFRXQ6/XCffV6PQoKCiCXy6FWqz0GFuH62hqNRq//ieHvy79WcrkcBoNB6Gv731M+96yystLr52HfL/n5+XN+bUJSsOcKFyt+vtpZ/gefW+Isx6mwsNAm90SpVArz22VlZTb5AXK5nO3v7xcu8/ky1vkHcrnc4/x4fX09q1AoHK5vbW11yL9x9RhlZWU2z8/+fO6e12zaVFhYaPPYOp2OVSqVbp4dp7Ky0qGN1q+Du3P6+pxra2tZADavWVlZmc1r7qyP3fWVu36ZTf+6o1Qqbc7lqX9m8z7x1CZfXwvr83rqC/s8mP7+frayspJVKBQ2v0/uzsO/3vX19Wxra6vwXvD0PnP3unp6Xq5ee1f88feirKzMJvemv7+fBeBVjpOz9trnR7l679jfz1kuoLOcpcXy2torKSmxed46nc6hr531oVKptHl9fekXb1+bcEKBU5Dwb0adTickP/KX+T9m9oETf6z9efhjCgsLbd7k9h9wra2tDve3P8aZ2QROrh7D+g+KTqdjGYbx+nl526bW1lab8/I8Javyf+zt/3BWVlZ6dU5fnrOr58C3hX8P2Pexp75ydk5f+tcd6z+e3vaPt+8Td+/FubwW/Hm96QulUskqFApWrVYLX/YBnTevg/3t7t5nns7nTX/N9sN1rn8v+Odjz9vkcH8GTizLOixacPZeWiyvrae2sSzrEKy5+ifN/rPK1fNw1i88b16bcEJTdUEml8uhUChQU1ODkpISaLVat1NUDMPYLPXV6XTC3HdtbS0AbviWnzIyGAwOj2eNYRiHY+bK2WO4W1Lv6Xl5q6WlxemwLz8V4Wr6s6WlBQzD2Ax5833JT2V4Oudsn7MrfDtc5S340lf+6l9nfO1z/hhrnt6L3j6Wu/N62xd5eXk20xP2vDmPfTs8vc9me765/u7O9e8F3wehoqSkBIcPH4ZCoYBGo3H53lsMr62z52P/Ws32tfOlX3jevjbhggKnEFBaWgq1Wo2SkhK3b2Y+adz6TWf9s1arRUVFBQoKClBcXBywuWN+bttfPD0vb9vka2Knu/uFWrLobPuK75e59q+79swXfzyWv/rCm/PY/y57ep/5+zXy9Hvqj78Xvqz69Df+ee7btw+7d+9GZWUl9Hq9z/23EF5bf7F+Xr70C89fr02ooFV1IaC4uBharRZ1dXXIy8tzeZxCoXA6SmA0GmE0GrF7926Ul5cLARj/pvf3ChStVuvX87l7Xt7SarVC4qE9vV6P/Px8t4/v7LGMRqPP5/QV/1raJ87zZttXWq3WL/3rynz2jz8ey1994ct53L3PAvEaufs99cffC1dtnm/887RebDOXgC7cX1tXbfPl8axHvebyPPz12oQKCpyChF+5AECoUXL48GG3I05KpRJ5eXkOVW5ramqEkQXrD1z+Te/pD6gn/AoKgPuj6upD3dfHcPe8ZtMmhUIBpVJpM5TMP3d3q6b4lSHWS++NRiNqamp8Pqe3f6S0Wq3NsRUVFW7rJHnqK2f94kv/esvX/nHGU5/547XwV1/4+p519T7z5Xz2/TWb31N//L2Qy+UoKSmxWUlmNBod3tP+5u55lpaWYv/+/XMqfxHur62zttm/TvzqPVePwbfBeiR/rr87/nhtQkawk6wWG51Ox5aUlLAA2JKSEiEJ2HoFBr/Sg2EYoaKtdWIfv5LF+j789WVlZUKFXZ1OJyTytra2soWFhSwAYUUD/xgKhcJjsh5/bj5R0Nn53D2GUqkUVlvwx5SVlXn1vLxtk/151Gq1TYK2N+errKxka2trvT7nXJ4zn/BZW1vL1tfXs5WVlTarTezv56w9zvrKU79427+u2K+smW3/+OO9ONvXwv68zvpCp9O5/b1z1xbr89TX17NKpZJlGEZIDra/j6f3mfX5Zvu8nL32rtruj78X/HPhz6NQKDwmiNv3kfX5Xf3e2K/mc/Y8+edgb7G9tu6ej/XrZP8a8X+D+DYWFhaycrnc4++Op35hWdevTTgSsSzLBiFeI2TR42uftLa2Brsps1JUVIR9+/YtjP8cyYJiNBo91sEjnNzcXFRWVs5bXy2k14am6gghHvHD9vzPobSaiixu1tNa/NQYCQ0L9bWhwIkQ4lFFRQVKS0sBcPkR7hYxEDKf+ArXQGis8iMzFuprQ1N1hASBRqNBZWWl8N3bbWGCRa/Xo66uTtiugabpSKjQarVoaWkBALf1mciMqqoqqFQqKJVK4XsgLNTXhgInQgghhBAv0VQdIcRnpaWlSEpKsikRQFzTarUoKCjwqao8ISQ0UOBECPGZs93NVSoVioqK5rUd9rvSh9r5eAqFAiqVKiDnDoZA9RMhoYwCJ0KIXxUUFGDfvn3z+pj19fUhfT5rCylJNpD9REioor3qCCF+Nd9Ljqurq/269Ye/z7dQUT+RxYoCJ0JCmNFoRHV1NeRyOerr61FaWuqw3YL9dIn16hV3t1VVVQnTbHq9XljZxxfmlMvlKC0tFUYVKisrhfvxq+vsabVaqFQq6PV6YVsh/nwAcOjQIWG7h76+PuGc/HNVqVTIzc1Fa2srcnJyoFAooFarhZ3m7Wk0GtTX10Ov1wvbXVivUHT1HF1xdT5nz4tfal1ZWYmSkhLhecpkMmGq0mg0OjxPV/i28hu4elq56MtrO5vnAbh+vTz1OyELWjDLlhNC3CsrK7PZvkAul9tsFVFZWWmz7Yj1NgjubissLLTZbkGn07FKpdLmWH5LhtbWVuE89ls+9Pf3swBsztXa2srK5XKb51FfX8/K5XKb4+Ryuc02GtZbufT39zucwxV++wh7np7jbM/HPwdrSqXSpj9qa2tZADavWVlZGVtSUiJcdtY/9tvYKJVKm76xN5fX1pvn4c3r5aqfCFnoKMeJkBCm1+ttVqzJ5XLhMj9CU15eLtx++PBhYWNOV7dptVpoNBqbKTW5XA6DwSCcm2EYaLVaKJVKKBQKVFZWwmg0oqqqymZkg2EYrzYclclk0Ov1Do9pPdVTV1cnnIthGKcbkXrLm+c4W85G2OwrqPP9YZ0wX15e7nZai6+RZT3CVFRUBLVa7fT4ub623jwPb14vQhYrmqojJITxU1T8licGg0HYxb6lpQUMw9h86PHHazQal7fxU3/2+OlA/sPS/hj+nL6yPx/DMMJzAbgVZ852hfdFS0uLV89xPvCvg1arddomvl+tAzqdTucySHH3unv72nrD0+tFyGJFgRMhIUyr1aKiogIFBQUoLi62+TCzDzKs+XqbNWdBUiBXhJWWlqKiogKHDh1CdXW1yxEXT/gRN3/hc46c8cfjGI1GyOVym6DGXYDjj9fWX/ez5q6fCFlIaKqOkBBlNBqxe/dulJeXo6SkBAzDCB9wer3e6QgNfz93tymVSqejGXq9Hvn5+S7bo1AoAj5Vc+jQIWg0GhQWFvq8RQM/xejLc3R1Ple8GYExGo3Ca+KMq351FcwE4rX1x0iSu34iZCGhwImQEMWPnFh/4PIfcPy0T2FhobCqCeA+PGtqatzeplAooFQqbaaG+A89dyu55HI5SkpKbFZzGY1GaLVan0Ys7O/T2toKhmFQWFg4q5EL69wbPqD09Tm6Op/99Xz7nY1u2fdHRUUFSkpKXD4npVKJvLw81NXV2VxfU1Pjsn1zeW29fR72nE2jOusnQhY62quOkBDGLwsvKCgAwH1YqVQq7Nu3T/ggVKlUSE5OFpKArUdqPN3Gb/2h0+lslppXVlaipaUF5eXlDoEMv9Sdn8rj21hZWQmZTIaKigrU1dUJmxfz043W11VVVaGiogJyuVx4jLq6OhQVFQmlDhiGQWlpqVcjT3wbcnJyvHqOvp6PD1b4/jh8+DC0Wi0qKytRWFgoLOUvLy8X8poA2JQD4PuirKzMpj18W/npUE8Bni+vrTfPQy6Xe/V6uesnQhYyCpwIIUFnNBqxf/9+HDp0SJiS1Ov1wvYt4fKhzAdOra2twW4KISRAaKqOEBJ01dXVKC0tFUax+GX9lZWVFIQQQkIKBU6EkKBTKBROq4NrNBphmpIQQkIBTdURQkKCRqOxqXXk7dYjoYLPDeO/0xYkhCxMFDgRQgghhHiJpuoIIYQQQrxEgRMhhBBCiJcocCKEEEII8VLQ9qrjd/EGgObmZqF+izP87uF8pVp++wlvWCwWXL58GQkJCRCJRH5qPSGEEEIWCpZlMTQ0hGXLlkEs9jCmxAZJZWWlzc8KhcLlsda36XQ6trCw0OvH6ezsZAHQF33RF33RF33RF325/ers7PQYVwRlVZ1Wq8Xu3bvR398PgBtRysnJgU6nc9jPSa/Xo6ioyKYIXlJSknBfTwYGBsAwDDo7O5GYmOi/J0EIIYSQBWFwcBCZmZkwGo2QSqVujw3KVJ1CocChQ4eEy/zmkfweTdY0Go3D9TKZDFqt1qtNJfnpucTERAqcCCGEEOKSNyk9Qctxsi5qd/jwYSiVSqd5S6527OZ3ibc3MTGBiYkJ4fLg4OCc2kkIIYQQwgv6qjqj0Yi6ujqn2y14up8zFRUVkEqlwldmZqYfWkkIIYQQEgKBk0qlQn19vctVcgzDOIwuGQwGl8eXl5djYGBA+Ors7PRziwkhhBCyWAVtqg4AqqqqoFKpIJfLhREk+4BIqVRCrVY73DcvL8/pOaOjoxEdHT3rtpjNZkxNTc36foSEu8jISEgkkmA3gxBCnDJbWDS1GdA9NI7UhBjsyJZBIg5eeaGgBU51dXVQKBRC0FRTU4OSkhIA3Ko7hmEgl8udrrLLy8vzuo6TJyzL4sqVKy6n/ghZDBiGQXp6OtU6I4SElCOnuvD4a6fRNTAuXJchjcFjd2/A3k0ZQWlTUMoR8OUHrDEMI5QYKCoqQn5+vrC7uF6vh1qtRn5+Ppqbm1FeXu514DQ4OAipVIqBgQGnq+q6urpgNBqRmpqKuLg4+uAgiwrLshgdHUV3dzcYhkFGRnD+EBFCiL0jp7rwyPNa2Acp/Kf00w8q/BY8eYoVbB4/GIHTfHLXGWazGWfPnkVqaiqSk5OD1EJCgq+vrw/d3d1Yu3YtTdsRQoLObGFxQ+W7NiNN1kQA0qUx+EB1m1+m7WYTOAU9OTyY+JymuLi4ILeEkODifwcoz48QEgqa2gwugyaAK/PdNTCOpjbnpYkCaVEHTjyaniOLHf0OEEJCSfeQ66DJl+P8iQInPzBbWHyk68Nfjl/CR7o+mC2Bm/3UarUoLS2FSCSCSqVCdXU1VCoVioqKhE2T/aG6uhpJSUnQarV+O+d8y83NRV1dnXC5uroaBQUFPt2XEELI/ElNiPHrcf4U1HIEC8F8Z/wrFApUVlaiurraJkneaDQiKSkJra2tXm1F40lJScmsi5K6YzQa/bYS0luVlZU2ZSuUSqXDKk1v70sIIWT+xEdLIBYBrsYh+BynHdmOW7UFGo04zQGf8W8/D3tlYByPPK/FkVNd89YWvnzD4cOH5+0xvaXX61FTUzPvj2u/jY9cLodSqfTpvoQQQuZHg74PXzrU6DZoAoDH7t4QlHpOFDhZYVkWo5Mmr76Gxqfw2KufOCyTBCBc96NXT2NofMqr8/ljcaPBYHAo8xAKKisrg90EQgghYeDtT67goWebMDRhwo5sGf6reCsypLbTcenSGL+WIpgtmqqzMjZlxoYfvu2Xc7EArgyOY/OP3vHq+NM/3oO4KN9eDqPRiIqKCiiVSpSUlECj0aC0tBQqlQoAoFar0draCq1WC41GA7lcDr1ej8LCQpupK61Wi8OHDyM/Px+A7UbKGo0GKpUK+/btQ1lZGerq6qBSqaBWq4VRHOt6WwaDAcXFxWhpaUFLS4twLlfTZRqNBlqtFnK5HM3NzUKwpdVqoVarbXKT5HI5DAaD2/ZotVrs378fpaWlKCkpgdFohEqlgkajgU6nE87trD/s78s/99LSUuHY+vp6v05lEkLIYvenpgv4jz+fhIUFCjak4Vdf3I6YSAnu3bacKocT/6iurhaCEP5DHeCCE6VSidbWVqjVashkMuj1emFfQF5ubi6OHj0KhmFgNBpRVFQkBBUAt2EyT6lUYt++fcLlwsJCm2lBo9GIgoICtLa2gmEYIXG9rKwMSqUSOTk5QmV4e3zbWltbAXABW1VVFUpKSrB79260tbUJ02ZJSUk4evSox/YoFAqb2xmGgVqtRlJSks1jOusP+/vy/WkdLNXW1kKr1foln4wQQhYzlmXxm/d0eOLtzwAAxXkr8PN/2owICTcpJhGLsCsndGotUuBkJTZSgtM/3uPVsU1tBnzl/zV7PO73/5zvVfJabOTsiw6WlJS43RyZL+pZWFgIlUrl8CEvl8uFrW5qamocbpfJvE+6q6mpgVwuF9pTXl7u9X354M56VWBzczMYhnHINfJXwrZarXbbH/aSk5NtiqQ623yaEELI7FgsLH76xqd49h9tAIBv3pKD7+25JqRLpFDgZEUkEnk9XXbjmqXIkMbgysC40zwnPuP/xjVLgzak6O0KMn+wXzXnKqBztbpOoVDYJG6XlJSgurraz60khBASKiZNFpTVncArxy8DAH5w1wZ87YbsILfKM0oO95FELMJjd28AMJPhz5uvjH9PIx7Wt+/bt8+hzpNWq0VxcTEACHlB1vR6vc1lhmHQ19cnXNZoNMLmyIWFhQ73d1ZXytl1ztqm0WhQXFzstk3u2sNztXmzp/5wd19CCCFzMzppwv7nWvDK8cuIEIvw1L5tYRE0ATTiNCd7N2Xg6QcVDnWc0gNYx4lP4Aa41WqlpaUOU04ajcYm2VqpVAr1n6qqqoQE7NraWmH0Ry6Xo7a2FiqVCgUFBcLIUEVFBSorKyGXy1FcXCwkWANcsMVPecnlcqjVaqhUKiG5nB9BKi0tFWpPOSsHwLfN/r4MwzhtE89de4xGIw4fPgyZTOaQBG/9mM76g+9j/r78ufjH0Ov1QtK6XC6f15E9QggJd/0jk/jn3zfjeKcRsZES/OZBBW69JjXYzfLaot7kd3x8HG1tbcjOzkZMjO/VR80WNqQy/heygoICVFZW+pyUnZSUhP7+fj+3Kvz563eBEELcuWwcw0PPNuF89zCYuEg8+5V8KFYmBbtZs9rkl0ac/CDUMv4XMl8Ssqurq6HT6VBaWkrVwAkhJEjOdw/hy79rQtfAODKkMXjuqzuwJi0h2M2aNcpxImGjurpaqBU1m/wjpVKJ5ORk1NXVQa1WB66BhBBCnDp2oR+Fv/0IXQPjyFkaj7pHrgvLoAmgqTqaniAE9LtACAmc9z7rxiPPazE2Zca2TAbPfiUfsvioYDfLBk3VEUIIISTo/nL8Er5TcwImC4ub1i7F019SID46vEOP8G49IYQQQkLSsx+04cevnwYA3LN1GX5RtBVREeGfIUSBEyGEEEL8hmVZ/OKdz/Drv3JbeH3lulX44V0bIF4gq80pcCKEEEKIX5jMFnz/lVP4U3MnAOB7e67BN2/JCektVGaLAidCCCGEzNn4lBnfevEY3jl9FWIR8PN/2oz7d6wMdrP8LvwnGxex6upqqFQqVFdXo66uDhqNRliyH6o0Gg1yc3PnbR+63Nxc1NXVzctjzZV9W6urq1FQUODTfQkhZD4Njk/h4Web8M7pq4iKEOM3X8pdkEETQCNO/mExAx0fAsNXgSVpQNZ1gFgS0IcsKChAUVERKisrheu0Wi0KCgqg0+kC+thzoVQqnW67EiiVlZVhU/TSvq1KpdLr7VzC6XkSQhaW7qFxPPxsMz7tGkRCdASqH8pb0EWhKXCaq9OvAkdUwODlmesSlwF7K4EN9wTkIauqqgAAJSUlNtcrFAqH60JRcvL8/ULNZ5A2V/Ztnc0+eOH0PAkhC0dH3wi+/LsmXDCMImVJNP7w1XxsXCYNdrMCiqbq5uL0q0DNQ7ZBEwAMdnHXn341IA9bUVGB0tJSp7cVFRUF5DEJIYQQa6cuDeC+pz/CBcMoVsri8NIjuxZ80ARQ4GSLZYHJEe++xgeBt8oAOCu8Pn3dERV3nDfn87KAu16vh9FodDkSYT29o9VqUVVVhbq6OlRVVQm5T9Z5RnxeVFFREfR6vXAf68BMo9EgJycHpaWlqKurQ3V1NUpLS4VtT/jbq6urUV1djdzcXOF6/vFVKpVNO41Go81jW3N2P1dttj4ffxt/P61W65BPNds+ccXVc9NqtUI/8V9arVY4Pz9aWFdXh5ycHGg0GuF+1m01Go0oLS1FTk6Ox7bb33e2z4UQQmbrI10fvljdgN7hCazPSETdI7uQlRwf7GbNC5qqszY1Cvx8mZ9OxnIjUQczvTv8Py4DUf570+n1eqhUKtTX1wvX5ebm4ujRo0KeUX19PWprawEAtbW1qKurQ1lZGRQKBXJycmA0GsEwDJRKJQoLC5GcnIzCwkIA3Ad/UVER6uvrhfO1trZCrVZDJpMJj9/a2gqA25y3qqoKZWVlAIDm5mbh59raWmi1WigUCrf3c9Zm/n7V1dVQKBTClJXBYIBCocC+ffvm1Cf8+Z31rX0bS0pKsHv3brS1tYFhGABAUlKScH7rthQWFuLw4cPCZfu2MgwDtVqNpKQkj223v+9sngshhMzWkVNd+NafjmPSZMHObBkOPZyHxJjIYDdr3lDgFGb40SS9Xu/0Q1Cv10Mmk0GtVjvcLpfLUVNTg5KSEiQnJ9vkGjEMYzOKxTAMDAaDEADw1/EKCwtRVFQkBFcMwwjnKywshEqlgkwmE0ZUAC5Y4uXn5zs8FgAh8HJ2P2dt5u9XWFiI3NxcyOVy7Nu3z2muly99wp/f/jzO2sgHmdb95K+EbU9tt+ftcyGEkNl4sekC/vPPJ2Fhgds3pOF/vrgdMZGBXQwVaihwshYZx438eKPjQ+CFQs/HfamOW2XnzWN7qaysDGq1Whj9sabVap1e7w3rD3xf2E8fWo8AAY7J7K74cj+ZTIb+/n5otVocPnxYGA0LFGdtnK8SC4QQMt9YlsVv3tPhibc/AwDcn5+Jn967CRGSxZfxs/iesTsiETdd5s1Xzm3c6jm4qoYqAhKXc8d5c75ZVFXlSxDYf1DzOUcAsG/fPpsREYALqoqLi12e1/r+nm6vq6tzGF2xHtFw9vj2l53x9X4VFRXCKFxlZaVNu/h2+9Ins2ljcXExtFqtzfXWNbUYhkFfX5/Nfez73NVr4E3bPb1+hBDiC4uFxeOvnRaCpn+9dTUqvrB5UQZNAI04+U4s4UoO1DwELniyTu6eDoL2HgxYPaf6+npUVVVBpVIhJycHMpkMAITRJj6AqKqqglwuR3NzM2pra8EwjDAqA3D5MHxSOH8/jUYDvV6PyspKmyBEp9MJH/b8+QAuANBoNNBqtZDL5VAqlcLjq1QqYVpOqVS6fGy1Wg25XO7z/ZKTk6HRaCCTyWAwGLBv3z7hPjKZDIWFhT71CX9+69E0V21kGAa1tbVQqVQoKCgQpjF5xcXFUKlUQgCkVCqFKTij0WjTVmejd57azt+XP5c3z4UQQtyZNFnw3doTePUENxvz2N0b8M/XZwe5VcElYlkvl3OFqcHBQUilUgwMDCAxMdHmtvHxcbS1tSE7OxsxMTG+PYDTOk7LuaApQHWcgoEP0MKhTlQoKSgoQGVlpc9J2UlJSejv7/dzqxz55XeBELKgjEyY8MgLWvz9bA8ixCL8V/FWfH7b8mA3KyDcxQr2aMRprjbcA6y7c94rh5Pw4EtCdnV1NXQ6HUpLS6kaOCEkKAwjk/jn3zfjRKcRsZESPP2gArdckxrsZoWExTlB6W9iCZB9I7C5kPu+wIImfiqOX9JOvMPvG6hWq2eVf6RUKpGcnIy6ujqo1erANZAQQpy4ZBxD0W8/xIlOI5i4SPzf/p0UNFmhqTqaniCEfhcIIQCAc1eH8NCzTegaGMcyaQye+9oOrE5NCHazAo6m6gghhBAyK60d/fjaH5phHJ3C6tQleO6rO7CMiQ12s0IOBU6EEELIIvfXz7rxzee1GJsyY/tKBs8+nI+k+KhgNyskUeBECCGELGKvHLuE79aegMnC4ua1S/H0gwrERVF44Ar1DCGEELJI/e6DNvzk9dMAgHu3LcMTRVsRuUgLW3qLAidCCCFkgTNbWDS1GdA9NI7UhBjkr0rCk/Vn8Zv3dACAr16fje/fuR5isfe7WCxWFDgRQgghC9iRU114/LXT6BoYF66LjZRgbMoMACjbew0euTkHolls/bWY0XicH5gtZjRfacab+jfRfKUZZos5YI+l0WhQWloKkUhks33HbFRXVyMpKWleajLN52NZy83NRV1dnU07CgoKfLovIYSEqyOnuvDI81qboAmAEDR9+dqV+OYtqylomgUacZojTYcGB5sO4uroVeG6tLg0PLrjUSizlH5/PKVSCblcjurqapSXl9vsheatkpISYZ+5QJvPx7JWWVlpU3Wb7zdf7ksIIeHIPL05r7tijZpPu/Gje1hIaIrOazTiNAeaDg0OvHfAJmgCgO7Rbhx47wA0HbMfDfIGv6EvcY3fdJfHbz7sy30JISQcNbUZHEaa7HUNjKOpbfZbQy1mNOJkhWVZjJnGvDrWbDGjoqkCrJNYnr/uYNNB7EzfCYkXW7DERsTSUCkhhBC/6R5yHzTN9jjCocDJyphpDDv/b6ffznd19Cqu+9N1Xh3b+EAj4iLjfHocjUYDlUqF0tJSyOVy6PV61NfX20yRabVaHD58GPn5+QAcN5/VaDTQarWQy+Vobm5GZWUl6urqUFFRAaPRCJ1Oh6qqKqjVapSWlqKsrMzpfbx5LGftd3UetVptk5skl8thMBigUqmwb98+lJWVoa6uDiqVCmq1GkqlElqtFvv370dpaSlKSkpgNBqFfDCdTiecW6PRCP1VWFgIuVzucF9v+pYQQkLR0iXRXh2XmkDbLM1G0AIn/gOqtbXV43EAoFAooNfrYTQaoVAo5qOJYUOpVEKpVNp8oPMb8ioUChiNRhQVFQlBAwBUVFQIP+v1eqhUKuG1MBgMqKqqQllZGZRKJXbv3g2j0QiGYdDa2gqGYVzep6SkxO1j2XN3nt27d6OtrU2YNktKSsLRo0ehVCqxb98+4RyFhYU4fPiwcFmhUNjczjAM1Go1kpKSbB6zvr5eOCY3NxdHjx51uK+nviWEkFBkHJ3Eoff1bo8RAUiXxmBHNqV/zEZQAqe6ujrhv3tP1Go1qqurAXAfYoH8Tz82IhaNDzR6dWzr1VZ88+g3PR73m92/QW5arlePPRfJyclITk4WLjMMI4z01NTUOHzIW+dJqdVqyGQymxV6zc3NwnkOHTqE3Nxc1NbWCkGMq/swDOP2sey5O499rpG/ErbVarVDG+VyOWpqalBSUuJwvLu+JYSQUHPy4gAeeaEVF/vHECEWwWRhIQJsEkv4xJDH7t5AieGzFJTAqbCw0Otjc3Nz0d/fDwABT9gViUReT5ddt+w6pMWloXu022mekwgipMWl4bpl13mV4xRsCoXCJnnaOoDgg6HDhw/bBBzO7sMHuXN9bF/OQwghixnLsjjc3IkfvvoJJk0WZCXH4TdfUqDTMOpQxyldGoPH7t6AvZsygtji8BQWq+oYhgm5VU4SsQSP7ngUABckWeMvq3aoAhI0zXa0g8/7sabXzwzh7tu3z6EeFH/ZaDRCo9GgtrYWer1eqG/k6j6eHsueq/MUFxe7PQ/DMOjr67O5j9FotDne/rK7x9RqtSguLvZ4X0IICUVjk2Z8r+5jPPrySUyaLFCuT8Or/3oDNi6TYu+mDHygug0v7r8W/33/Nry4/1p8oLqNgiYfhXxyuNFoFD6sm5ubhSRdVyYmJjAxMSFcHhwcDFjblFlKPHnLk07rOKl2qAJSx4kPYgAud4jPx+FzfJRKJfR6vZBYLZfLIZfLUVtbC5VKhYKCAiFfqaKiApWVlVAoFKisrIRKpRISupVKJaqrq1FZWYnS0lIAQH5+Pvbv3w+9Xo+ysjKn92EYxu1j2b92rh7b1Xl4xcXFNgVAlUqlMAVnNBpx+PBhyGQyIenb2WNWVVUJCen8NCSf2M7flz+Xu74lhJBgau8dwSMvaPFp1yDEIuB7e9ah9Ca5zfYpErEIu3KS3ZyFeEvEsqy72liBfXCRCJ4e3voDU6vVOiQe2/vRj36Exx9/3OH6gYEBJCYm2lw3Pj6OtrY2ZGdnIybG91UFZosZ2m4tekZ7sDRuKRSpirCYngs3BQUFQqDni6SkJGHal9jy1+8CIWR+vfPJFXyn9gSGxk1IWRKF//nidlyXkxLsZoWdwcFBSKVSp7GCvZAfcdLr9cIHJb8cXK/Xu/xPv7y8HAcOHBAuDw4OIjMzM6BtlIglyE/PD+hjkNlPUQLcVis6nQ6lpaVUDZwQsmCYzBb84p2z+O3fuIGEvKwk/O8DCqRL6R+fQAvpHCetVovdu3c7XO9ulVZ0dDQSExNtvkj4q66uhl6vh1qtnlX+kVKpRHJyMurq6qBWqwPXQEIImSc9QxN48HeNQtD0tRuy8WLJtRQ0zZOgjzjZ565otVowDCPkj/DFEAEuv6ewsDDkEsVJ4JWUlDgtFeCJXC5HWVlZAFpECCHzr7ndgH95QYvuoQnER0lQVbgVd26hJO/5FJTASaPRCMUHKyoqkJ+fL5Qo4C+XlZWBYRjk5eWhqqoKDMNAp9NRxWZCCCGLDsuy+N0Hbah46wzMFhZrUpfg6QdzsTp1SbCbtugENTl8PrhL+OITYletWoXY2LkVoCQknI2NjaG9vZ2SwwkJQcMTJpTVncCbJ68AAO7ZugwVX9iM+OigTxotGAsqOTyQIiMjAQCjo6MUOJFFbXR0FMDM7wQhJDScvTqEbzzfCn3PCCIlIvzgrg348rVZtCl8EC3qwEkikYBhGHR3dwMA4uLi6M1IFhWWZTE6Ooru7m4wDAOJhMpoEBIq/nL8Eh596STGpszIkMbg119SQLEyKdjNWvQWdeAEAOnp6QAgBE+ELEYMwwi/C4SQ4Jo0WfCzN07jDx91AABuXJOCp/ZtQ/KS6CC3jAAUOEEkEiEjIwOpqamYmpoKdnMImXeRkZE00kRIiLhsHMM3X9DieKcRAPCt21bj28q1tBFvCFn0gRNPIpHQhwchhJCgef9cD7714jH0j05BGhuJX+7bitvWpQW7WcQOBU4L1OTkJP785z9j27ZtSE9Pp9wtsqCwLIuhoSEsW7YMYnFI1/ElxCOLhcWv/3oeT2rOgmWBzcul+M2XFMiUxQW7acQJCpwWqI6ODjQ2NuL+++8PdlMICZjOzk6sWLEi2M0gxGfG0Un8++Hj+OtnPQCAL+5Yicfu3oCYSJoBCVUUOAWIXq9HXV2dsL9eSUmJy4rn7o7VarXQaDQAgObmZhw6dMiryunt7e3C1jSdnZ209QxZUPg9KBMSEoLdFEJ8dvLiAL7xfCsuGccQHSHGT+/dhKK8wO6tSuaOAqcAKSoqQmtrKwAuMNq/f7/LqufujtVoNMKWIVVVVdi9e7dwrDvt7e3IysoCANqzjyxYNAVNwhHLsvhTcyce+8snmDRbkJUch6e/lIsNy+jvdDig5IAA0Ov1NpflcrkwajSbY7VaLSoqKoTbCgsLodVqHe5jb2JiApcvX8bKlSt9aT4hAWO2sPhI14e/HL+Ej3R9MFsW9MYFhDgYmzTju7Ufo/zlk5g0W6Bcn4ZX//UGCprCCI04BYBGoxGmyXgymQxarRYKhWJWxx46dEi43mg0Cre7c+HCBbAsK4w4ERIKjpzqwuOvnUbXwLhwXYY0Bo/dvQF7N9EmpWTha+8dwTeeb8WZK0MQi4Dv7VmH0pvkEFOpgbBCI04BwAc49gwGw6yP5Tc/BoDDhw9DqVS6zHGamJjA4OAgPvnkE6rNQ0LKkVNdeOR5rU3QBABXBsbxyPNaHDnVFaSWETI/3v7kCu7+1Qc4c2UIKUui8MLXr8Ujt+RQ0BSGaMRpHrkKkrw51mg0oq6uzm1+U0VFBR5//HHh8ve///3ZNpEQvzNbWDz+2mk4m5RjAYgAPP7aaRRsSKcif2TBMZkteOKdz6D+G5dikZeVhF9/SYG0RNpMO1zRiFMAMAzjMLpkMBicjhR5e6xKpUJ9fb3bFXXl5eXo7u5GeXk53nvvPXR2dvr6FAjxm6Y2g8NIkzUWQNfAOJraHEdkCQln3UPjePB3jULQ9LUbsvFiybUUNIW5WY84tbe3o7a2FvX19ejv7xeul8lkKCgoQGFhIVatWuXPNoYdpVIJtVrtcH1eXp5Px1ZVVUGlUkEulwsjUc4CqOjoaAwMDCAqKgobN25EVFSU70+CED/pHnIdNPlyHCHhoLndgH95QYvuoQnER0nwRNFW3LGZcvkWglkFTo8++ihEIhGKi4vxve99z+H2Y8eO4be//S1EIpHNarDFRi6X21zW6/XIy8uzqc3EMAzkcrnHY+vq6qBQKISgqaamBiUlJS4fu729HUuWLEFycjKGhob8+rwI8UV8lHd/ZlIT6L9wEv5YlsXvPmhDxVtnYLawWJO6BL/9ci5yli4JdtOIn3gdOD3xxBMoLy+HVCp1ecz27duxfft2DAwMoLy8fFEHT7W1tVCpVMjPz0dzc7NNDaeKigrk5+cL9ZlcHavX61FUVGRzXoZhPAZOq1atovo2JCS09Y7gZ2+cdnuMCEC6NAY7st2vFiUk1A2NT0H10sd48+QVAMDnty3Dz/9pM+KjKZ14IRGxLLugC6kMDg5CKpViYGBgwReBnJycxMGDB3HHHXcgLy9vUT13Eno+PN+LR17QYmBsCklxkegfnYIIsEkS58P7px9UzKokAb23Saj57MoQHnm+FfreEURKRPjhXRvw4LVZ9E9smJjN3xSfk8MfffRRPPPMMxgYGMDtt9+Offv24eWXX/b1dMQPLly4AIvFsuhzzEjw/V/jBTz0bBMGxqawfSWDt//9Jvz2QQXSpbbTcenSmFkHTYSEmleOXcK9v/4H9L0jyJDGoKZ0F768i0b+Fyqfxw/z8/Nx33334YknnkBubi4qKipsijWS+Wed30RIMJgtLH72xqd49h9tAIB7ti5DVeEWxERKsHdTBgo2pKOpzYDuoXGkJnDTc1SCgIQDs4V1eO+aLBb87I1P8dxHHQCAG9ek4Kl925C8JDrIrSWB5HPglJSUBACoqakRAiZPFa1JYHV0dFB+EwmaofEpfOvFY8Iu7wcK1uL/u221zftRIhZhVw4F9iS8OKt6vzQhGnFREnT0jQIAvrV7Db69ew39I7AI+Bw46XQ6sCwLnU6Hbdu2oa2tzaY8AZlfk5OTuHTpErZs2RLsppBFqNMwiq//oQWfXR1CdIQY/1W8FXdtWRbsZhEyZ3zVe/tk4J6hCQBAXJQEv35AgVvXpc5/40hQ+JzjVFxcDK1Wi9bWVgwMDECtVs+qMjbxr87OTspvIkHR0m7Avb/+Bz67OoTUhGjUlO6ioIksCO6q3vOWREfgprVL561NJPi8GnEaGBhAf3+/zYeyVCq1qeV08OBBm/sMDg4CAK14mSft7e2Ij49HSkpKsJtCFpE/H7sIVR23y/vGZYl45uE8ZEhjg90sQvzCU9V7AOgemkBTm4GmoBcRr0acpFIp6uvrvV4199JLL6GmpoaCpnlE9ZvIfLJYWDzx9hn8++ETmDRbsGdjGmq/sYuCJrKgUNV74ozXOU779+/HsWPHUFxcjJycHOTn50Mul4NhGBiNRuj1ejQ1NaGtrQ2lpaW47777AtluYoXym8h8Gp004Ts1J/DWKa7I3zdvycF3b7+GdnknC05clMSr46jq/eIyq+Tw7du3o6amBgMDA6ipqUFTUxOMRiMYhkFOTg5KS0uRnZ0dqLYSFyi/icyXKwPj+PpzzTh1aRCREhEOfmEL7stdEexmEeJ3fz/bg//880m3x1DV+8XJp1V1UqkU+/fv93dbiI8ov4nMh5MXB/D155pxdXACsvgoqL+ci/xV9IFBFpbRSRMq3jyDPzZwtZnSEqJxdWjCZdX7x+7eQCUIFhnaQGcB6OjoQFYWlfYngfPmyS4cqDmO8SkL1qQuwe8ezsfK5LhgN4sQv9Je6Md3ak6grXcEAPCV61ZBtXcd/na226GOU7o0Bo/dvYGq3i9CFDiFOT6/ac+ePcFuClmAWJbFr/96Hr945ywA4Oa1S/GrB7YjMSYyyC0jxH8mTRb8z9Fz+M1752FhgQxpDJ4o3Iob1nCj+FT1nlijwCnMXbx4EWazmfKbiN+NT5nx6Esf45XjlwEA/3z9KvznHesRIfG5/BshIefs1SH8++Hj+OQyV0Lnn7Yvx4/u2QhprO0/B1T1nvAocApz7e3tiIuLw9KlVICN+E/P0ARK/9gC7QUjJGIRfvz5jfjSzqxgN4sQv7FYWPzugzY88c5nmDRZkBQXiZ/902bcsZmm3oh7cwqcnnjiCbS0tODw4cM4evQo8vPzqXbTPKP6TcTfzlwZxNd+34JLxjEkxkTg6Qdzcf1qWnhAFo5Owyi+W3sCjW0GAMCt1yxF5X1bkJpIZQWIZz6PuT/66KNgGAZKpRIAsHv3bmg0Gr81jHg2NTWFS5cu0TQd8Zt3z1zFfb/5EJeMY8hOicef/+V6CprIgsGyLGpaOvG5/34fjW0GxEVJUPGFzXj2K/kUNBGv+TzilJ+fj/vuuw9Hjx71Z3vILHR2dlJ+E/ELluWmLX7+5qewsMAueTKeflABJi4q2E0jxC96hiZQ/vJJaD69CgDIy0rCk8XbaHUomTWfA6e2tjYAsJkiam5uxhe+8IW5t4p4paOjg/KbyJxNmix47NVTeLGpEwDwxR2Z+PHnNyGSksDJAvH2J1fwHy+fRN/IJKIkYhy4fS323yinVXHEJz4HTtu3b0deXh6Sk5NRX18PjUaDyspKf7aNeNDe3k71m8icGEcn8Y3nW9GgN0AsAv7zzg346vWUM0cWhsHxKTz+6mm8pL0IAFiXnoBf7tuG9RmUi0t853PgtHv3btTW1kKtVoNlWVRXV2P79u3+bBtxY2pqChcvXsTtt98e7KaQMKXrGcbXft+M9r5RxEdJ8KsHtuO2dWnBbhYhfvGhrhffq/0Yl4xjEIuA0ptz8G/KNYiO8G7/OUJcmdOquuzsbBw8eFC4PDg4SKvq5gnVbyJz8cG5XnzzhVYMjpuwnInF776Sh3Xp9LtLwt/4lBlVRz7Ds//g0klWyuLwZPFW5NH2QMRP5hQ4DQ4OwmAwCJcrKyvx9NNPz7lRxLP29nbExsYiNTU12E0hYeb5hg489uonMFtYKFYyqH4oDylLooPdLELm7OTFAfx7zXGc7x4GADywcyX+8471iI+mkoXEf3x+N33jG9+ARqMBwzDCdW1tbRQ4zROq30Rmy2S24KdvfIrff9gOALh32zIcvG8LYiJp6oKEN5PZgl//VYdfvXsOJguLpQnRqLpvC25dR/9YEv/zOXDKycnBb3/7W5vrDh06NOcGEc8ov4nM1uD4FL714jG891kPAOB7e67BN2/JocCbhD1dzzAO1JzAiU4jAODOzRn46b2bkBRPpTRIYPgcOPGFL60VFBTMqTHEO5cuXYLZbEZWFm2BQTzrNIziq79vxrnuYcREivHL4m34HG0rQcKcxcLijw0dqHjrU4xPWZAYE4Gf3LsJ92xdRv8QkIDyOXBKSkrCL37xC8jlcjAMA6PRiMOHD+Pw4cP+bB9xgs9vSkujFVDEveZ2A0r/2ArDyCTSEqPxzEP52LxCGuxmETInl41jKKv7GB+c7wUA3LgmBVWFW5AhjQ1yy8hi4HPgVFZWBqPRaJPjdOzYMX+0iXhA9ZuIPbOFRVObAd1D40hNiMGObBleOXYJ5S+fxKTZgs3LpTj0UB7SpbStBAlfLMviL8cv4wd/OYWhcRNiIsX4jzvW48vX0t9DMn98DpwKCgqwf/9+m+teeumlOTeIuGcymXDx4kWnU6VkcTpyqguPv3YaXQPjwnXx0RKMTJgBAJ/blI4ni7chNoqSwEn4MoxM4vuvnMSbJ68AALZlMniyeCvkS5cEuWVksZlTcrg317mi1Wqxf/9+tLa2uj1Or9ejrq4Ocrkcer0eJSUlNqNcoWo27fZ0rHVfXbx4ESaTieo3EQBc0PTI81qwdtdbB02/fkABMW0tQcLYu2euQvXSSfQMTSBCLMK3d6/BI7fkIIK2BSJB4HPgpNPpoFarkZ+fD2B61+maGjQ3N3u8Lx8kaLVaj8cWFRUJwZVer8f+/ftRW1vra7PnzWza7e5Y+76i/CbCM1tYPP7aaYegydrxTqPb2wkJZSMTJvz0jdPCPoprUpfgl/u2YdNyytMjweNz4KRWq6FUKsGyM3+WrX92p7Cw0Kvj9Hq9zWW5XA6NRuN9I4NkNu32dKx9X1F+E+E1tRlspuec6RoYR1ObAbtykuepVYT4R3O7Ad+pOYELhlGIRMDXrs/Gd/dcQ3XHSND5HDhVVlZi9+7dNtf5O+9Go9FAJrMtky+TyaDVaqFQKPz6WP40m3bP5lg+v8m+38nidGXQfdDE6x7y7jhCQsGEyYwn68+i+u96sCywnInFL4q2UvBPQsacNvm1l5SUNKfG2DMajU6vt97mxd7ExAQmJiaEy4ODg35tkzdm0+7ZHHvp0iXKbyIAuA1Mf1l/1qtjUxNoJR0JD6cvD+JAzXGcuTIEACjMXYHH7t6AhJjIILeMkBleB04vv/wylEqlsInvM888Y3O70WhEfX093n77bf+20AlXwQYAVFRU4PHHHw94G3zhrt3eHNve3o6YmBiX+U2hEDSSwOroG8HP3/wUb39yFQAgAlzmMIkApEu50gSEhDKzhYX67zr8sv4spswskuOj8PMvbMaejenBbhohDrxekvDzn/8cLS0twuXf/va36O/vF75YlkVfX59fG8cwjMPIi8FgcLuqrry8HAMDA8JXZ2enX9vkjdm0ezbH8vlNYrHzl62iogJSqVT4yszM9Pk5kNAyOD6Fijc/hfLJv+HtT65CIhbhoV1ZqCrcAhG4IMkaf/mxuzdAEkor6ixmoO194GQd991iDnaLyDwyW1h8pOvDX45fwke6PpgtLDr6RrBP/RGqjnyGKTOLgg1pePvfb6KgiYQsr0ecrIMmgNuXbvv27TbX+TvHSalUQq1WO1yfl5fn8j7R0dGIjg7uTu+zafdsju3s7HSb31ReXo4DBw4IlwcHByl4CnMmswWHWzrx5Dtn0TcyCQC4ae1S/ODO9ViTlgAASIiJcKjjlC6NwWN3b8DeTSG0tcrpV4EjKmDw8sx1icuAvZXAhnuC1y4yL5zVG0uMicS4yYxJkwVLoiPw2N0bUJi7gha/kJA2py1XeAMDA9BoNMjNzZ31eeyrj2u1WjAMA7lcDrlcbnOsXq9HXl5eyNdx8tRuX5/j8PCw2/ymUAgaif/843wvfvL6aSHfI2dpPL5/1wbceo3tju97N2WgYEO6Q+XwkBppOv0qUPMQHCYWB7u464ufo+BpAXNVb2xwfAoAsDZtCZ79Sj5WJMXNf+MImSWfq4dZL5mXSqW47777vC4VoNFooFKpAHDTS3V1dcJt9pdra2uhUqlQV1cHtVodFjWcAPftns1ztO6rjz76CO+///78PQkSFPqeYXz9D8340jONOHNlCNLYSPzo7g048m83OQRNPIlYhF05yfj8tuXYlZMcWkGTxcyNNDnNxpq+7sijNG23QHlTb2xo3ET7zJGwIWK9Lb4EbmSppqYGIpEI9fX1KCgosLm9tbUVTz/9tN8bOReDg4OQSqUYGBgQEtvD0XPPPYeIiAg88MADXt9noTz3xWJgdAr/8+45/OHDdpgsLCLEIjx4bRb+TbkGTFxUsJvnu7b3gT/cBQAwA9DGRKNHIsFSsxmK8QkIVXkefh3IvtGrU9J7O3x8pOvDFw81eDzuxf3XUskBEjSz+Zsyq6k6qVQKpVKJyspK6HQ6ZGdn29xeVlY2+9YSj0wmEzo7O3HrrbcGuykkAExmC15suoAn68+if5SburhtXSr+4471WJ26APbhMugAAJq4WBxMTsLViJk/O2kmEx7t64dydAwYvhqsFpIA6jKOeXUc1Rsj4WLWOU7Z2dn47W9/i6NHj1Ihxnly+fJlTE1NUf2mBehvZ3vw09dP41z3MABuS4nv37UBN69dGuSWzdHUGHD2beBkLXD2CDRxsTiQmuIwXdMtkeBAagqe7O6FcgltI7TQfHCuF0+885lXx1K9MRIu/FoAkwRGe3s7oqOjkZ5Oy3MXivPdw/jZG6fx1896AABJcZE4ULAWX9yx0qeNS80WM7TdWvSM9mBp3FIoUhWQiOd5awqLGWj7OxcsffoaMMHVETMDqEhO44Imu9VSrEgEEcuiMiUFt2buBG2msTBcGRjHT944jTc+7gIAiEWAxUVSCNUbIx5ZzEDHh9yo9JI0IOs6YL7/vlnxOXAi88dT/SYSPoyjk3hKcw7PN3QIeUwPX7cK37ptDaRxvlVH1nRocLDpIK6Ozkx1pcWl4dEdj0KZ5d8SIdYmzZMwjPWhr/Mf6D37Jvo6P0Tv1Aj6JBL0JUaiNzoTfbEJuGoxYcziehqGFYlwRQJoe08gPz0/YO0lgTdltuD3/2jHU5qzGJk0QywCHtq1CltWSPGdmhMAbJcIhGy9MRI6QrCMCQVOIc5sNlN+0wIwZbbghYYO/FJzDgNjXB6Tcn0a/uOOdZAv9T2PSdOhwYH3DoC1mwTrHu3GgfcO4MlbnpxV8DRlnkLfeB/3NTb9Nd6H3rFe9I1Nfx/vQ99oDwanhm3vnBAJgLG9zmR3jBs9oz1eH0tCT4O+Dz/8yymcvcq95oqVDH5y7yZsXCYFAMRFScKj3hgJHSFaxoQCpxB36dIlym8KYyzL4r3PevDTN05D1zMCALgmLQE/uGsDbliTMqdzmy1mHGw66BA0AQALFiKIUNlUiRuW34CBiQGbAMhpYDTeh4GJgVm1IYJlITNbkBKVgOTElUiWrUVKfCqSY5KREpuC5NhkXB6+jO//4/sez7U0Lszzuhap7qFxVLx5Bn8+dgkAIIuPwqOfW4dCxQqIrUaRwqLeGAkdHsuYiLgyJuvunPdpO78GTu3t7fQB72cdHR2U3xSmzl4dwk/f+BR/P8uNpMjio/Cd29diX16mT3lM9rTdWpvpOXssWFwZvYL8F2Y3/RUhioAsRobk2GQkR0uRPD6ClP5OJBvakWwyIcVsRrIFSFmxC4lb74do/V1AdILL85ktZvzq2K/QPdrtNMgTQYS0uDQoUhWzaicJLpPZgj82dODJd85iaMIEkQh4YMdKfG/PNS7LZ/D1xgjxqOND2+k5BywweIk7zssyJv4yp8Dp+PHjNvusqdVqHD58eM6NIjPa29uxcuVKym8KI4aRSTylOYsXGi/AbGERKRHhn6/Pxr/ethqJc9jlfXhyGLoBHXRGHc71n0NjV6PX95WIJJDFyJASmwJZrGxmRCgmGcmxMz+nxKYgURINse5d4OMa4MSrgMkqP2l5HrClGNj4T8AS58U4HR5bLMGjOx7FgfcOQASRTfAkms5yUe1QzX8yO/FZa4cB33/lE3zaxS0A2LJCip98fhO2ZjLBbRhZOLwtTxKEMiY+B07FxcUO26UcO3bMH20i08xmMy5cuIBbbrkl2E0hXpg0WfDcR+34n6PnMDhuAgDcviEN/3HHeqxKiff6PKNTo2gbaMM54znojDqcN57HeeN5XBm54lO7nrr1KdyaeSvEIjfBt8UCXPgQeP9/gNN/AcaNM7clr+GCpc2FgEzu8hTuKLOUePKWJ50msat2qAKaxE78p294AgffOoPa1osAAGlsJMr2XoP781fSlBvxD4sF0L0LNP7Wu+ODUMbE58CpoKAA+/fvt7nupZdemnODyAyq3xQeWJbF0U+78bM3P0VbL5fHtD4jET+4az2uy3GdxzRuGkfbQBvOG89DZ5weSTKew+Xhy06ntAAgNTYVOUyO8PWrY7+CYdzg9Fh+CuyWFbc4D5pYFrhykisfcOolbtibtySdC5Q2FwEZWx3KCPhCmaXErZm3Br9sApk1s4XFi00X8MTbnwmLG4rzVkC1dx2Sl9D+mMQPRg3A8ReA5t8B/W1e3EHEra7Lui7gTbPnc+CUk5Pj1XXEd+3t7YiKikJGBq04CaZJkwn/d+I9XBi8gpWJ6Xhg6y2Imq5+febKIH76+qf44HwvACBlSRS+e/s1KMrLFP4DnzJPoW2wbWb0qP88dAM6dA51wsJanD6mLEaG1cxq5DA5WM2sFn6WRkttjmOiGRx47wAAeD8F1t8OnKzjAqaeMzPXRydyK1Q2FwOrbghIwqVELKGSA2HmRKcRP/jLKXx8kVs4sCEjET+5dxNys5I83JMQL1zSAs3PcP+88WkB0VJg+5eApGzgLX5HEieFLPYeDEo9J58DJ51OB7Vajfx87o8gy7KoqalBc3Oz3xq32FH9puB74v1a/PHc/4CVGIXrnjzB4L5V/4KJgY34U9MFWFggSiLGV67PxN15kegaPQP1x68LI0kXBi/AxJqcnl8aLUWONAdrktYIQVIOkwNZjHfFAJVZSjyZ80UcPPsCrkpmRoXSzBao1n5pZgpspBf45M9csNRplRsliQLW7uGCpTW3A5FUvZlwjKOTqHr7M7zYdAEsCyRER+A7t6/Fg9dm+WVxA1nEpsa4v0dNh4DL2pnr0zcD+fu50e6o6fSGhHQXdZwOhl8dJ7VaDaVSCes9gmexXzDxgK/fdPPNNwe7KYvWE+/X4g+6HwPimUJ9AGARG1F74WeY7LsZEbIoLE8bxJIlfajta8eLbzkPkJZELnEYPVqTtAbJMckQzWUa7PSrUGoqcStYu81zJyG5UAkMDXB7xeneBSx820TcKpTNxcD6u4FYxvfHJwuOxcKitrUTB986I+yd+IXty/HoHetoWxQyN4Y2oOVZ4NgfgbF+7jpJFLfYJP/rwIp8x7SADfdwJQcWQuXwyspKh21XlEpK8PSXrq4uTE5OIisrK9hNWZTGpybxx3NPcUGT3e8xfzk65W8AgF4W6B3irouNiEWONAerk1bbTLWlxaXNLUByxqrOiQRA/viE4zGNT8/8nLGVC5Y2fYH7j40QO59cHsAPXjkF7QUjAGBt2hL85PObsFNOJQSIjyxm4LyGm447Vw9hyk26Esj7Z2D7l4ElHmq4iSXzXnLAHb/tVffuu+/CaDRi+/btc24UofymQLOwFvSM9uDyyGVcGr6Ey8OXZ75GLqNz8CJYiRmeQp310jzsyblBmGrLiM9wv3rNnzzWOZm25X7gxu8AS9cGvk0kLA2MTeGX9Wfx3EftsLBAfJQE/6Zci69cvwqRNC1HfDHSx40stTwLGDtmrl+t5EaX1twe1FGjuZhTHaeXX34Zer0eADdN19LSgi984Qt+adhix9dvkkjC843ljUBuTGu2mNEz1oPLw1aB0chMcNQ10oUpy9ScH2eTdDe+tvlBP7R4Foa7uc10W3/v3fFrCihoIk6xLIs/H7uEn795Br3D3IjlXVsy8P07NyBdStNyZJZYFrjUOp3s/TJgnh4Fj2GA7Q8CeV8FksN/EZnPgdOjjz4Ko9EIg8EAuVwOo9GI0tJSf7Zt0eLrN910001+Od87be8gMzUTLMvCMG7A0ril2JqyFSd6T7gMWgIZ1ABz35iWD4z4oMg+OOoa6YLJ4jzfiCcRSZAen45lS5YhNTYDo6MJ6LgagzMXI2AWDSB2+Z88tmNl4jxUdB8zAh3/4IKltr8D3adnd/8g1Dkhoe+zK0P4wV9OoamNK2chXxqPH9+zac5bAZFFaHKUWxXX/AzQdXzm+oxtwI79wMYvAFFxwWqd382pHMH+/fvR1tYGkUiEVatW4d133/Vn2xYtPr/JX/WbfvjRDyGJtQ16xCKxzVJ466BlrkGNJ95sTHtL5i3oGZ0OjJxMp10ZueJypRqPD4yWL1mOZUuWcV/x3PflS5YjISIZfz9rwOsfX8afz3RjwjTTH9kpMegxvQVIBpyWMGJZQGxm8MDWW+bcHw4mR4HOBkD/Ny5Q6joO2JctSNvMzfl/fJirf+K07lPw6pyQ0DU8YcJT9Wfx/z5sh9nCIjZSgv9v92p8/QY5oiJoWo7MQp9uOtn7+ZmiuZJoLo8yfz+wXOGXGnChxufASS6Xo6OjA9nZ2fjFL36B7373u/5s16I2H/lN9vWD+KDlKxu/gt9/8nu3QY2vwZPZYsbAxAB+1vgzlxvTAsB3//ZdgAXMMLs9X4QowiEwWr5kOTLiM7B8yXIsjVuKCLHtW3x8yoz3PuvBH969jKOffoyxqZnHWJUch7u2LMOdWzKwLj0Bv/jAgD/ofgyWtf3d5xePfnntt4R6TnNimuSGt/kRpYtNgHnS9pjk1UD2TdzXqpuA+Olk3ZW7pncPFyGU6pyQ0MOyLF7/uAs/feM0rg5yUyh7Nqbhh3dvxHImNsitI2HDYgbOvs2NLumOzlzPrATyvsYle8cv7MUEPv/VNxqNkMvl6O/vR29vL/bs2QOGYXDbbbf5s32LUjDym/ig5Q+n/+A2qPlZw88gi5FhzDSGoakhjEyOYHhqmPua5L6PTI0IPw9PDWNkcgRDU0MYM4151RYzywUzEeIIZMRnCAERP1rEX14au9Sr6cMJkxnvn+3F6x9fhubTbgxPzIxUrUiKxV1bluGuLRnYuCzRZuXb924sAgCHOk5iM4Mvr/2WcPusWcxcxe62vwNtfwM6PgKmRmyPSVwOZN88HSzdCEhXOD/XhnuA4udCrs4JCS3nu4fx2Kun8I/zfQCArOQ4/Oiejbj1Gu/2GyQEwz3AseeAlv8HDHROXynicijzv84lfS+Sf9JErJ+KLx09ehR5eXmQSqWeD55Hg4ODkEqlGBgYQGJiYrCb45HFYsHBgwdx44034sYb57b8kn/u659e7zBVF+rKd5Rj3zX7fM6rmjRZ8A9dL14/0YV3Tl/B0PhMsLRMGoM7t2Tgri3LsGWF1GOZAHeVw73CskDv2ZlAqe19273gACAuGVh1IyC/mQuYZPLZDXFbzCFV5yTQwu33OlhGJ0341bvn8cz7ekyZWURHiPHNW1aj9GY5YiIX7vuD+AnLAhebuUKVp1+ZGQmPTeJGlvL+2ef9K0PNbP6mzGme4YknnkBLSwsOHz4MAP6vU7MI+Tu/KRCSopOQFp+G+Mh4LIlcgiVRS7jv0z8L19vdFh8VjzN9Z1Cq8byIYE3SmlkHTSazBR/p+/D6iS4c+eSKsKcWAKQlRuOOzVywtD2TgXgWG5JGiUX4iiwaiIoBlkQD3tzXeIELlPg8pWG7DXqjEoBV189Mv6VuBOZSIT7E6pyQ4GJZFm9/cgU/fu00Lg9w21jcti4VP7p7I1YmL5wkXRIgkyPctkzNh7jRcd4yxXSy9z8BkYt3endOq+pycnKEope7d+/Gyy+/TOUI5qi9vR2RkZFYtix0CxT+1y3/5fN+YzszdiItLg3do91OpwT5jWkVqQqvzme2sGhs68PrH3fhyKkrMIzM5AalLInGHZvTcdeWZcjLSppVsCQ4/aqLabBK22kwvkQAP6rU3257Hkk0sHLn9PTbzcCy7YDED/lRhNhp7x3BY69+gr+d7QEALGdi8aN7NkK5PpX+uV3MvBmV7j3P5S4d/z9ggtubEBExwKZCIP+rwPLc+W93CPL5L3d+fj7uu+8+HD161PPBxGvBrt8kFonBsqxfghpnJGIJHt3xKA68dwAiiLzfmNaKxcKipaMfr398GW+evCLUnwEAWXwU9m5Kx12bM7BTnixstOuT069OJ17b9cVgF3f99d/mNqV0ViJAJOH+yGTfxE2/rdhB+8CRgBqfMuM37+nw27/pMGmyIEoiRslNcvzLrasRG0XTcouau38Ar7kDOHuEG13Svzdze9Kq6WTvB4E47/bOXCx8Dpza2toA2E7PNTc304jTHFgsFly4cAE33HDDvD82H7Q8vOFh/P6T3/sc1HhDmaXEk7c86VDyIDUuDY/uUDldtWexsDjWaZwOlrqEVUEAII2NxN6N6bhrawZ2yZP9swGp1XYmjqav+8dTtlenbZ7OUbqJW+0WQ7k3xL/MFhZNbQZ0D40jNSEGO7JlkIhFOPrpVfzotU/QaeAWYNy4JgWP37MR8qVLgtxiEnRu/wH8MhCbDIz1TV8p4jb9zt8P5Nw2t/SBBcznwGn79u3Iy8tDcnIy6uvrodFoUFlZ6c+2LTpdXV2YmJiYl/wmZ3WcVNNBy5alW5zWcVK5CGp8YRraiOHzKoxOfQpRxBBYUwKGI9fDtH6jcAzLsvj44gBe//gy3vi4S8jVAICEmAjcvoELlq7PSfFP/RnTJDfFZtBxeyp5s53J2s8BW+/nErsX+BJcElxHTnXh8ddOo8vq92BpQjQyEmPw8SVuWiU9MQY/vHsDPrcpnabliHf/AI71ATFJQO7DXGXvJNof1ZM57VVXW1sLtVoNlmVRXV1N+9TNUaDym36868ezqhyuzFLi1sxbA1Y5/MipLjzyvHb613am/P5VTOKR57Uo/9w6GEan8MbJy8J/0AC3f1bBhjTctWUZblybgugIH9pjNnH7Jhn0QN95roCbQcd9H+h0LDTpyeZCYOO9s28HIbNg+zszo2doAj1DExCLgP03yvGt3WsQH025c2Sat/tZFv4OWL3b83EEwBxX1WVnZ+PgwYP+asui19HRgczMTL/nN92efbvT5ZXuErwlYonPCeDumC0sHn/tNFgAYliwQ3wGqTCiGwyaLOtggRg/f+uMcHxspAS716firi3LcMs1S71bQm0xc0FQn246QLIKjowdgLutWCLjgWQ5EJ3IbXPiCW1nQgLM+nfGleT4aJTtXTe3nD6ysEwMA5/82btjx/oD25YFxuvAyZvq4M888wy+/vWvz7lRi5HFYkFHRweuv/76YDcFgOtcirlqautD18A49oib8Fjkc1gmMgi3XWZleHzqIbxt2YEdq5Lw0HWrcNu6VMRFOXmbWizA4KWZgMg6QOpvd6y8bS0ihqs9IpNzG07KcrjK3Mk5XCAkEnHB11ObuDwA2s6EBFFTm8Fmes6ZnuEJNLUZsCuHposXNbMJaHsPOHEYOPM6MDXq3f3oH8BZ8Tpw+vnPf476+nq3x7S0tFDgNE2v16Ourg5yuRx6vR4lJSVgGMblsc8++yzOnj2LoaEhbNmyRTh2NudxRXvk/yE5IxsAMDFwBbFJy7EmdzfOtR7FWP8lxCYtx7qdeyCZLup45FQXfvLqSWQOnxBGgzqXbMUP7tmMvZu82wZmfMqM9r4R6LpHoOsZFr7OXhnCHnETno58yuE+6TDg6cin8MjUv+GOa0tw1+YMYKgLuKRzDJD627gVba5IooCk7OnAyDpAygESlnlOehRLuBUntJ0JCSKWZfHXz656PhBA95D74IosUCwLdJ0APq4BTtVx5QZ4zCouh2liGPQPoP94HTjt3r0bycnJyM11XcfBT0XIF4SioiK0trYC4IKf/fv3o7a21uWxv/rVrxAbG4vi4mKbY2dzHlcUx36AxNO2o0Xmd0TYKJp5va7WJ+PyrsdwdfnteOX/fovayOewLMpqNGhChh//30PAA98QgieWZdE3Mgld9zD0vSPQdfMB0gg6+0fh7O0ghgWPRT/H/Ww3gCUWcX8Dnor8DSzvHQHeuOD+PyZxBLdklg+IrAMk6Yq5BzW0nQkJEpZlofm0G/9z9BxOTid+e5KaQOUuFhVjJ3CyhguYembSGxArAzbdB2zZB6zIAz59jf4B9DOvA6fa2loMDAygpaUFAFfHyT5vRiajWg8AF+BYk8vl0Gg0bo9tb29HZmYm1qxZIxw7m/PMltjuv4+lbB+Wfvgt/EF0D34T+arD8ekw4DeRT+FAnQSa0/dwgVLPyHR1bhbxGAeDYUhFI1guGsF60QjSoschXzKFzJgJpEeNQyYZBTN+CbE9Bofz80QiIBaTgHH6D4FIzG0embzaKkDK4fKQpCsDX0Rywz3AujsX1XYmJHgsFhbvnL6C/zl6Hqe7BgEAMRFiSMQijEw63/RaBCBdyk2nkwVuzAh8+io3Fdfxwcz1kmjgmukVvjm7gYiomdvoH0C/m9WnjlQqxe7dXOb9sWPHYDAYIBKJhI1977vvPv+3MAxpNBqHIFImk0Gr1UKhUDgcm5SUZJPfxB/b0tLi9Xlmy36lslgEWFjgIfY1iFzczrLAz9lfoelkPRjRCBIxAmn0CKSiUUTA+R91DE9/zdaubwG5DwFMlu0fgWCg7UxIgFksLN46dQW/evcczlwZAsCtIn3oulX4+g3ZaG434JHntQCcjhngsbs3UGL4QmWaBM5rgI8PA5+9BZhnathh1Y3AlmJgw+eBGDf7xNI/gH41pzpOvHfffRf19fUoKCgQgqjFzGg0Or3eYHAcaTEajZicnHSo32QwGGZ1HgCYmJjAxMTML9XAADfEPzgxmylUT8dOQIETNtcIk2niSCCG4X6BYxkgWgrESrnL/NdwL9D4a8/NyLgeiEoDRscBUO4GsTU4yI3GhHt6gNnC4o2TXfjV0XM41839h7EkOgJfuW4VvnZDNpLiuX8a9m7KwNMPKhzqOKVLY/DY3Ru8zj0kYYJlgYstwMd/Ak69DIxZ/c1fuo6bhttcBDCZ3p+T/gH0mznNcxw/fhxqtRqHDx+GXC5HTk4OBU5uuAqExsfHERERYVO/ydWx7m6rqKjA448/7nB95i99GfLxletpuFk5+Dn/nIcsaENDQ5BK3fynHaJMZgte/7gLv3r3HHQ9IwC4oq5fvT4bX70+G9K4SIf77N2UgYIN6QFZ7UpCRJ8OOFnLjS4ZrFI14lO5QGnrPiB9i+OUAJlXsw6c2tvbhcKXIpEI9913H1pbW5GdnR2I9oUlhmEcRoUMBoPT1XAMw6CnpweZmZmImF7Vxh87m/MAQHl5OQ4cOCBcNhqNyMrKwoULF8LywyWUDA4OIjMzE52dnU5rYhHvzaYvR0ZGcOzYMWi1WoyMjCA7Oxv5+fnIzs7G8PBwSG+G7YzJbMFfjl/G//71PNp6uYBJGhuJr92QjYevWwVprGPAZE0iFlHJgYVm1ACceokLli42z1wfGQesv5sbXcq+mTYFDyFevxLPPPMM1Go19Ho9iouLUVtb61Ap/OWXX6a96gAolUqo1WqH6/Py8hyuu+222/D44487bLOSl5cHuVzu9XkAIDo6GtHR0Q7XS6VS+rD3k8TEROpLP3HXl1euXEFjYyNOnjwJkUiEbdu2YefOnVi6dKlwzGzLcgTTlNmCP2sv4X//eh4XDNzkNhMXif03yvHQriwkxLgPmMgCMzXObaz78WHg3DszRXlFYkB+C7Dlfi4nKZr2GgxFXgdOJSUlKCwsxKOPPgqGYdDf3493331XuL2/vx8HDx6kwAnc6jdrer0eeXl5wh96rVYLhmEgl8sRHx8PlmWFwMn6WPsPBvvzELKQWCwWnD17Fo2NjWhra0NiYiJuueUW5ObmIjY2NtjN88mkyYKXtBfx67+ex8V+bvsgWXwU9t8ox5d3ZWEJbY+yeFgswIUPgRN/4jbenbAqM5G+hVsRt+k+ICE9eG0kXplV4FRVVeU2GfPw4cN+adRCUFtbC5VKhfz8fDQ3N9vUXqqoqEB+fj7KysrQ3t6O+++/H//7v/+LnTt3Ohzr7jyELAQTExM4duwYGhsb0d/fj8zMTBQVFWHdunV+335ovkyYzKhtuYin39PhkpELmFKWRKHkJjkevDbLeTV8sjB1n+FGlk7WcltB8RJXAFuKuKm41PXBax+ZNRHr5bKUY8eOedzE15tj5tvg4CCkUikGBgZCcorlxRdfxOTkJB5++GG/n3tiYgIVFRUoLy93OoVHvEd96T98X5aWluLEiRM4duwYpqamsHHjRlx77bVYvnx5sJvos/EpM2paOvH0ezph9dvShGh84+YcPLBjJWKjwjMQJOC2YfJ2Of/QVa6K98eHuarevOhErnTAln1A1vWedzAg82Y2sYLXgVO4CuXAyWKxoKqqCrt27cLNN98c7OYQEnAsy6K9vR2NjY347LPPEBsbi9zcXKcFdcPJ+JQZLzZdwG//psPVQa4kSFpiNB65OQf371jp3ebUJHSdftVFAcnKmQKSkyPAmTe4qTj9XwHWwl0vjgBWF3Ar4tbuBSLDc9p5oZtNrEDjxUHU3d2N8fFxZGVlBbsphASUyWTCyZMn0dDQgKtXryI1NRV33303Nm/ejMjI8E2MHps044XGDqj/rkfPEBcwZUhj8M1bclCUl0kB00Jw+tXpLUvsxhgGu7jrb/oeYLzAbW0yNTJz+4p8bmRp4xeAeFoJuZBQ4BRE7e3tiIiIwIoVK4LdFEICYmhoCC0tLWhpacHIyAjWrl2LPXv2IDs7G6IwrkUzMmHC8w0dOPS+Hr3DkwCA5UwsvnlrDgpzVyA6ggKmBcFi5kaanBYGnr7u71UzVyVlc8HSlmJueyiyIFHgFETt7e1YsWKFUL/JX/R6Perq6iCXy6HX61FSUkIr8dzQarmtLBQKBfR6PYxGo7Cljbu+pH7maLVa7N+/X9iMGgAuX76MV155Ba+88gpSUlIQExOD73//+8KK03Dt1+EJE577qB3PvN8GwwgXMGXKYvEvt6zGFxQrEBVBOSsLSseHttNzrlxzB3DDv3OjTGH8DwHxDgVOQcKyLDo6OrBz506/n7uoqEj4ENPr9di/fz+txnNDrVajuroaAFeDy7qv3PUl9TOEAEer1cJiseDMmTNoaGjAhQsX8Lvf/Q41NTXYvn07Ll++DJVK5VXfhWK/Do5P4bkP2/HMB20wjk4BALKS4/Cvt67GvduXI1JCAdOCMzkKnH3bu2M33Qdk7ghse0jIoMApSK5evYqxsTGHwpdzpdfrbS7L5XJoNBq/PsZCk5ubi/7+fgC2RRXd9SX1M6ewsBBjY9xy+//+7//GwMAAsrKycN111+G1117Drl27AHjfd6HWrwNjU/j9P9rxuw/0GBznihTKU+Lxr7etxj1blyGCAqaFxXiBC5bOvg20vw+YvNwnc0laYNtFQkrQAqfZDMe7m0oJV4HKb9JoNJDJZDbXyWQyaLXasO+zQHL23nPXly0tLYu+n3t7e9HY2Ijjx48DALKzs7Fz505kZGSgurrap74LlX41jk7i2X+04//9ow1D0wFTztJ4fGv3Gty1ZRntD7dQWMzcNidnj3DBUvdp29sTM7kNdq2Tvm2IuNV1WdcFvKkkdAQtcJrNcLy7qZRwFaj8JlcbANvveUdmGI1G1NXVAQCam5tRWloKuVzuti8Xaz+zLAu9Xo+GhgacO3cO8fHxuP766wEA9957r3Ccr30X6H41W1i3m+T2j0zidx+04fcftmN4gguY1qYtwf932xrcsTmDAqaFYKwfOH+UC5TO13OXeSIxkHktsPZ2rnTA0nXcarmah6YPsE4Sn34v7D3oup4TWZCCEjjNdjje1VRKuOLzm3bsmL85cVcfSAQ2o51yuRwFBQXQ6XQuj3fXlwu1n6empnDixAk0Njaip6cH6enpuPfee7Fp06ZZBf++9p0/+vXIqS48/tppoTAlwJUOeOzuDchfJcOh99vwx4/aMTJpBgCsS0/At3evwZ6N6RBTwBS+WBboPTszqnShAWDNM7fHMMBqJRcord4NxNmOeGLDPUDxcy7qOB2cqeNEFo2gBE6+TCcthICJ193dHZD8JoDrJ/v/zg0Gw4LqP3/T6/XC+46fOtbr9W77crH088DAAJqbm9Ha2orx8XGsW7cOd911F1auXOm2nICvfReofj1yqguPPK91WFTeNTCObzyvRZREjEkzV7Bw47JEfGv3GhSsT6OAKVyZJoD2D7hA6dzbQH+77e1L18+MKq3YAUg8fBRuuIfbdNfbyuFkQQtK4DTb4XhXUynOTExMYGJiQrg8ODg4t8YGQHt7OyQSSUDqNymVSqjVaofr8/Ly/P5YC4FWq8Xu3buFEU2eTCZz25dyuXxB9/PFixfR0NCA06dPIzIyEgqFAjt27EBSUpJX9/e17wLRr2YLi8dfO+20Eg9v0mzB5uWJ+Pbutdi9PjWsa0wtWkNXgHPvcMGS7q+2eUmSKCD7JmDNHi5gSlo1+/OLJUD2jX5rLglfIbWqzlVANZuplIqKCjz++OMBaqF/8PlNgaiYbB9Q6vV65OXlLbiREH+Ry+WorKwULms0GhQWFgqjH9as+9LdbeHKbDbj9OnTaGhowKVLlyCTybB3715s3brVq/35jEajze+pNW/7LhD92tRmsJmec+U/7liPXTkpPj8OmWcWC9B1fHoV3BHuZ2tL0oG1e7iv7JuB6CXBaCVZgIISOM12ON7VVIqzUafy8nIcOHBAuDw4OIjMzEz/NX6O+Pym/Pz8gD1GbW0tVCoV8vPz0dzcvCCS6QOFYRjk5eWhqqoKDMNAp9PZ9Je7vlwo/Tw6OorW1lY0NTVhaGgIcrkcDzzwANasWeNx5EWj0aC+vh4A909Lfn4+CgsLAfjed/7u166BMa+O6x6a8HwQCa6JIUD/3nS+0jvASLft7ctzuem3NbcDGVupGCUJiKBs8qvX621W1QFAUlIS2traHIIn+6kUo9GIpKQk9Pf3e/VfaKht8nv16lU8/fTTePjhh5GdnR3s5pBFrLu7Gw0NDfj4448BAFu3bsXOnTuRmpoa5Jb5R+/wBP7UdAG/+6AN/dNFK915cf+12JVDe4oFlMU8+zwhg54Lks4e4fKWLFavZdQSIOe26WCpAFiyMN67ZP6F/Ca/nqaTtFotGIaBXC53O5USjgKZ30SIJyzL4ty5c2hoaIBer0dCQgJuvvlm5ObmIi4uLtjN84vjnUY892E7Xv+4S0j4FosAi4t/EUUA0qVcaQISQKdfdbEyrdJ2ZZp5CuhsnFkF13vW9jwyORcord0DrLwOiIian/YTMi1oOU7uhuP5If+ysjKPUynhpqOjA8uXLw/rHeFJ+JmYmBDKCfT19WH58uW47777sGHDBkgk4b8yaMJkxhsfd+EPH3XgRKdRuH5bJoOHr8tChFiEb714HIDTSjx47O4NVKMpkE6/Ol0LyS56Hezirv/8rwFxBBcsnT8KTAzMHCOOAFbumg6W9gIpq+e16YTYC8pU3XwKpak6lmXxxBNPIC8vD7fddltQ20IWh/7+fjQ1NUGr1WJqagobNmzAtddeu2BGPLsGxvBCwwW82HQBfdOb7kZJxLhrawYe3rUKWzMZ4Vh3dZz2bsqY76YvHhYz8NQm7zbL5cUlc3lKa/dwU3Ex0sC1jxCEwVTdYtXT04PR0dGA1G8ihMeyLC5cuICGhgacOXMGMTExyM/PR35+PqTS8P8AYlkWjW0GPPdRO97+5CrM03NwGdIYPHhtFvblZyJlieMqwL2bMlCwId1t5XASAB0fehc0JWVzm+Wu3QssV1CNJBKyKHCaR3x+Uyit8iMLh8lkwqlTp9DQ0IArV65g6dKluPPOO7FlyxZERYV/HsjopAmvHLuM5z5qx5krQ8L1O7Nl+Mp1q1CwIc3jprsSsYgSwOfTYBfw8WHvjr3t+8DmwsC2hxA/oMBpHrW3t1N+E/G74eFhtLS0oLm5GSMjI1izZg0KCgogl8sXRCHHC32jeO6jdtS0dGJwesPd2EgJ/kmxHA/tysK69OCvliXTLBag65hVbaUT3t93SVrg2kWIH1HgNE9YlkV7e/uCqSxNgq+rqwuNjY04efIkxGIxtm3bhp07dyIlJfyLOFosLN4/34s/fNiOv37WDT4TMys5Dl++NgtFuZmQxtE/ICFhYnimttK5d7hSAwIRV1up9zOuBpNTIm51XdZ189BYQuaOAqd5QvlNxB8sFgs+++wzNDQ0oKOjA1KpFLfddhsUCgViY2OD3bw5GxyfQl3LRfyxoQNtvTNbZty8dim+ct0q3Lx2Ke0fFwqMF2ZGldreB8xWxUOjEoDV07WVVhcAS5ZaraoDnK5r3HuQcppI2KDAaZ50dHRALBYvmNVMZH6Nj4/j2LFjaGxshNFoxMqVK1FcXIx169ZBLHaf1xMOzl0dwh8+asfL2ksYneR2rk+IjkBh3go8tGsVslPig9zCRc5iBi62AGff4gKm7tO2tyetAtZ+jlsFl3W9Y22lDfcAxc+5qON00LaOEyF2zBYztN1a9Iz2YGncUihSFZAEMdCmwGme8PlNCyFJl8yfvr4+NDU14dixYzCbzdi4cSOKi4uxbNmyYDdtzswWFppPr+IPH7bjQ12fcP2a1CV46LpV+ML25YiPpj9RQTM+wNVUOvs2NwU3ZrVNlkgCrLx2ei+4zwEpazxvb7LhHmDdnbOvHE4WNU2HBgebDuLq6MwUcFpcGh7d8SiUWcqgtIn+Ks0DPr+J32+PEHdYlkVbWxsaGhpw7tw5xMbGYteuXcjLy0NCQkKwmzdnhpFJHG7uxPMNHbhk5PaRE4uAgg1pePi6VdglT14QSe1hqU83XbH7CBfgWEwzt8VIuam3tXuB1buBOB8qrYslQPaN/msvWdA0HRoceO8AWLvCqd2j3Tjw3gE8ecuTQQmeKHCaB729vRgZGaH8JuLW1NQUTp48iYaGBnR3dyMtLQ333HMPNm/ejIiI8P9VPXVpAH/4sB1/OXEZkyZuK5SkuEjcv2MlHrw2C8uZ8M/RCjvmKeBCw8z2Jn3nbG9PWTtTsTtzJyAJ//chCQ9mixkHmw46BE0AwIKFCCJUNlXi1sxb533ajn4L5kF7ezvEYjHVbyJODQ4Oorm5Ga2trRgbG8M111yDz33uc1i1alXYj7xMmix461QXnvuoA60d/cL1m5Yn4uFdq3D31mWIiaSpmnk1agDOa4DP3nKyvUkksOr66U1zbweSc4LXTrKoabu1NtNz9liwuDJ6BdpuLfLT8+exZRQ4zQvKbyLOXLp0CQ0NDfjkk08QGRmJ7du3Y8eOHZDJQnuzWbOF9Vh9u3twHC80XsD/NV1AzxC34ipSIsIdmzPw0K5VUKxkwj4oDBssC/ScmRlV6mwEWMvM7XHJwJo9VtubUF0sEhz94/043n0cx7qP4d0L73p1n57RngC3yhEFTgFG+U3EmtlsxqefforGxkZ0dnYiKSkJt99+O7Zv347oaMdtQkKNu/3e9mxMh/ZCP37/YQfeOtkF0/RWKKkJ0fjSzix8cUcmUhNjgtX0hcFi9i652jQBtH8wUzLA2GF7e9qmmcRu2t6EBAHLsugc6oS2W4vj3ceh7daibaBt1udZGrc0AK1zjwKnAOvr68PIyAiysrKC3RQSRGNjY2htbUVTUxMGBwexatUq3H///Vi7dm3YlBM4cqoLjzyvdcg4uDIwjm88r0VmUiw6+8eE6/OykvDwdauwZ2M6oiLC4zmGtNOvuljOX8mtWBvu5la/nT0C6P4KTA7PHCeJBuQ3c8HSmj0AQ2kDZH5NWaZwpu+MTaBkGDc4HCeXyrE9dTu2pW7Df7f+N/rG+5zmOYkgQlpcGhSp8z8oQYFTgPH5TStXrgx2U0gQ9PT0oLGxESdOnADLsti8eTN27tyJ9PT0YDdtVswWFo+/dtrJn6+Zcoad/WOIkohw7/bleGjXKmxaHv4bCocMoYCk3SsweBmo+TIgkwMGve1tS9KnR5X2ckFTFNXCIvNnaHIIJ3pO4Fj3MRzrPoaTPScxbh63OSZSHIlNKZuwPXU7Fywt3QYmhhFuXxK5BAfeOwARRDbBk2i6cKpqhyoo9ZwocAqw9vZ2LFu2jPKbFhGWZXH+/Hk0NDRAp9NhyZIluOGGG5CXl4f4+PD88GpqM9hMz7ny6wcUKNgYXkFhyLOYuZEmp2HrND5oWrZ9ehXcHiB9KxAmo5kk/HUNd+FY9zFou7U41n0M5/rPOYwUSaOl2L6UG01SpCmwIXkDoiWuUxSUWUo8ecuTTus4qXaoqI7TQsTnN23bti3YTSHzYHJyEidOnEBjYyN6e3uxbNkyfOELX8DGjRshkYRvDsng+BTePHnZ84EARqfMAW7NImI2AVdPASdetJ2ec6X4OWDD5wPfLrLomS1mnDee54Kkq8dwrOcYroxccTguMyFTGE1SpCqwSroKYtHsgnlllhK3Zt5KlcMXi76+PgwPD1P9pgVuYGAATU1NaG1txcTEBNavX4977rkHmZmZYbtybGBsCprTV/HWqS78/WwvJs0Wz3cCkJpAyd8+G+kFOpuAi01AZzNwWQtMjXp/f/NU4NpGwt5cti0ZnRrFqd5TQn7SiZ4TGJ4atjlGIpJgnWwdFySlKbA9dTtSYv2z4bhELJn3kgPuUOAUQFS/aeFiWRadnZ1oaGjAmTNnEBUVhdzcXOTn54NhmGA3zycDY1OoP30Vb57swvvnejBlnhlml6fEoXtoAsMTzkeURADSpVxpAuIFs4nb740Pki42OeYoAUC0lKuldFnr+ZxL0vzfTrIgzHbbkt6xXiE36djVYzhjOAMTa7I5Jj4yHluXbhVGlDanbEZcZFzAn0sooMApgPj8pnBYZk68Yzab8cknn6ChoQGXL19GSkoKPve5z2Hr1q1hmcdmHJ3EO9PB0j/O99oES2tSl+COzRm4c0sG1qYlCKvqAKf72+Oxuzc41HMi00b6gIvTAVJnE3BJC0yNOB63dB2wIh/I3AGs2MFV7gYLPLUJGOyC8zwnEbe6Luu6AD8JEo48bVvyXzf/F3KYHCE36Vj3MXQOdTqch1/BxucnrWHWBHW6LJgocAoQlmXR0dGBLVu2BLspxA9GRkbQ0tKC5uZmDA8PIycnB1/60pewevXqsJuO6x+ZxDunr+DNk1fwj/O9Qr0lALgmLQF3bM7AHZvTsSbNdl+8vZsy8PSDCoc6TunTdZz2bsqYt+cQ0ixmoPtTrtDkxWYuUDLoHI+LTgRW5HEBUmY+sDwPiGWcn3Nv5fSqOhGchq17D1ItJuLA07YlAPCdv33H4XYRRFiTtMYmPyljCf1+8yhwChCDwYChoSHKbwpzV69eRUNDA06ePAmRSIStW7di586dWLp0/ouuzYVhZBLvfHIFb5zswke6PptgaV06HyxlYHXqErfn2bspAwUb0j1WDl9URg3AxRbb0aTJIcfjUtbOBEkrdnCjS96uettwD5f87bSO00HudkKssCyL+o56t9uWAFwAFSmOFKbdFGkKbFm6BYlRVEHeFQqcAoTqN4Uvi8WCc+fOoaGhAW1tbUhMTMQtt9yC3NxcxMaGz0a0fcMTePsTbhruI30fzFbB0vqMRNy5OR2f25yBnKXugyV7ErEIu3KS/d3c+eFt5W2X97dw25dYjybZb4wLAFEJwIrc6UBpB7A8F4ibY/7XhnuAdXfOrf1kwZmyTKFzqBNtxjboB/TCV9tAG8ZMY55PAODxXY/j7tV3B7ilCwcFTgHS3t6OjIwMym8KIxMTEzh27BgaGxvR39+PFStWoLCwEOvXrw+bcgK9wxM4cuoK3jrVhQa9wSZY2rgsURhZyk4Jz3pSc+Kp8rYzY/3AxVar0aRWYGLQ8bjk1TOjSZk7p0eTAvCeEUuA7Bv9f14S8sZMY2gfaIduQAe9kQuM9AN6XBi6AJPF5PQ+YohhgecVselLqPbabFDgFAB8/SbKbwoPBoMBTU1NOHbsGKamprBx40bcd999WLFiRbCb5pWeoQkc+eQK3vy4C41tfbCKlbBp+XSwtCkDqxZjsMRzWXm7i7u++Dlg3V1A79np0aTp1W69nzmeK2oJt78bP5q0In/uo0mETBuYGOBGjYy2o0eXhy87zVUCgNiIWGRLsyGXyoWvbCYby+KX4a4/34Xu0e6Q27YknFHgFACU3xT6+OC2sbERn332GWJjY7Fjxw7k5+cjMTH05/a7h8Zx5NQVvPFxF5raDWCt/iZuWSEVgqWVyYtjebBbbitvT1/30teBiGjno0kyue1oUuoGmh5bhOZSB8key7LoHu22CYz0A3rojDqn+7fxmGiGC4r4IImRI0eag7T4NJeFJR/d8WhIblsSzihwCoD29naIRCLKbwpBJpMJJ0+eRENDA65evYrU1FTcfffd2Lx5MyIjI4PdPLeuDo7jrZNdePPUFTTbBUtbMxkuZ2lTBjJlFCzZ6PjQc+Vt8wT3FRnH5SMJJQHygXj/FPEj4Wu2dZB4ZosZF4cvOowetQ20ORSQtJYenz4zcmQVJMliZj+yGarbloQzCpwCoKOjg/KbQszQ0BBaWlrQ0tKCkZERrF27Fnv27EF2dva8lxMwW1ivV6VdGRjHW6e68ObJLrR09NsES9syGdy5OQOf25yOFUkULAEAWBYwXgCunJz5utDg3X13/xC47tuAhP4skhme6iA9ecuTuHHFjWgfaBdGjvivjoEOTFomnZ5XIpIgMyHTJjDiA6X4SP9Oq4fitiXhjP5C+Bk/BbRp06ZgN4UAuHz5MhobG3Hq1ClIJBJs27YNO3fuRHJycFaFHTnV5VAHKcOuDlLXwBjePHkFb57sQmtHv839FSsZ3LE5A5/bnIHlTPis8AsI0yS3ws06SLpyEpgY8O18K3ZQ0ERseFMH6bt/+y4srMVl/lG0JBrZ0myHHKSViSsRJZm/ormhtm1JOKO/En7W39+PwcFBym8KIovFgjNnzqChoQEXLlwAwzBQKpXYvn07YmKCt5caX3nb/s/rlYFxfON5LQoVy6HvHYH2gtHm9rysJNyxOQN7N6Vj2WINlsb6gSunbAOknjOAxcn+bOJIIHU9kL4FSN/M5ST9uQQYugKqvE3sTZon0TfWh56xHvSM9cz8PNqD8/3nPdZBMrPcNkQJUQk2gZGc4UaPlsUvo5GdBYYCJz+j/KbgGRsbE8oJDAwMICsrC/v27cM111wDsbeFBgPEbGHx+Gun3aUno057CQAgEs0ES5/blIF06SLaOJdlgYFOu1Gkj7npN2dipNMB0nSQlL6ZKzQZYfef/OeqqPJ2CPBngrU7LMtiZGoEPWM96B3rRe9YL3pGuZ9trhvrwYCvI5RWvn/t91G8tjjsdhEgvqHAyc/4+k3BHNlYbHp7e9HY2Ijjx4/DYrFg8+bN2LlzJzIyQmeLgKa2PpvpOVe+ct0qPHJLDtISQ/j9M9cikjzTJLfc3z5IGnfxQcastA2Q0jcD0kwu0vSEKm8Hna8J1tYsrAWGcYPNqJB1EMQHSH3jfV4XfwSACHEEUmJTsDR26cz3uBQMTw7judPPeby/XCqnoGkRocDJjyi/af6wLAu9Xo+GhgacO3cO8fHxuP7665GXl4clS2ZXCTsQpswWfHJ5EC3tBrS09+Mf53u9ut/2lUxoB02+FJEEgDEjcPWUbYDU7W6qbZ1tkJS2yfU+bt6iyttB4ynBuuqmKmxZuoULfkYdR4V6RrkptL7xPmFqzBvxkfFCMMR/LY1biqWxS5Ecm4ylsdzP0mip08DHbDHj7fa3qQ4SsUGBkx9RflPgTU1N4cSJE2hsbERPTw/S09Nx7733YtOmTYiICN7beWBsCtoL/Wht70dLhwHHO40Yn/JcsddeakKIB02eikiuvxsYuGgbIHk11WY1ipRyjeNUm79Q5e15ZbaYcXX0Kn7S8BO3Cdbf+/v3vD6nCCIkxSTZjhDFzQRHfDCUHJuMuMi5rTaViCVUB4k4oMDJjzo6Oii/KUAGBwfR1NSE1tZWjI+PY926dbjrrruwcuXKeR8iZ1kWF/vH0NrRj+Z2A1o7+vHZ1SGbUgEAwMRFIndlEvJWybB9JYN/+9MxXB2ccJWejHQpV5ogJHldRDLG9ao26UrbACl9Mzf9RlMcYWnKPIXusW5cHbmKq6NXZ76PzlzuHev1eoRIIpIgNS7VdoQobiYQ4q+TxcoQKZ6/mmtUB4nYo8DJj9rb25Genk75TX508eJFNDQ04PTp04iMjIRCocCOHTuQlJQ0b20wmS04c2UIze0GtHRwo0pXBh3zlbKS45CXJUPeqiTkr0qCPGUJxFb1mX50z0Y88rzWVXoyHrt7g8t6TkE1agBOveR9EUlxBLB0vV2QtAmInb/XbKGar+TqMdMYuke70T3ajSsjVxwDo5Gr6Bvv8+pc9iM1rvzshp/hTvmdc216QFAdJGKNAic/4fObNmzYEOymhD2z2YzTp0+joaEBly5dgkwmw549e7Bt27Z5KSo6PGHCsQv9aGnvR2tHP45d6MfIpO1/zRFiETYulyIviwuSFFlJHqfZ9m7KwNMPKhzqOKXb1XEKislRwKAH+s5Pf+lmfh5zvQWEg92PAbv+hdu+hPiVP5KrAWBkagRXR67iyugVh2CI/9nblWaR4kikxaUhLT7N9nvczGW9UY/99fs9nis1LtXr5xAMVAeJ8Chw8hOj0YiBgQHKb5qD0dFRtLa2orm5GYODg5DL5XjggQewZs2agE7HdQ2MoaW9n0vk7ujHp12DNhvlAkBCTAQUK7kgKTdLhm2ZDGKjZv/f5t5NGSjYkO515XC/Mk9xuUZCcGQVJA1ecn/fuBRg1IsE9xX5FDQFgDfVq3ev3I3BycGZESLrYGjkKrpHu3F19KrbrT6sxUbEugyG+O9J0UkefzeTY5KRFpdGCdZkwaDAyU/4+k1ZWVnBbkrY6e7uRmNjI06cOAEA2LJlC3bu3Im0tDSX95nNtiX29zt7dUgIklra+3HJ6LhseTkTywVJq2TIX5WEtakJNtNucyGBBbvEpwHJVUCcBuA6AH4a8mdZYKjL+chRfztgMbm+bwwDpKwBklcDyTnT31dzm9xGxABPbeISwamI5LwymU2oaKzwWL06QhSBCcuEV+dMiExwPkpkdV1CZIJf/mGhBGuy0FDg5CeU3zQ7LMvi3LlzaGhogF6vR0JCAm6++Wbk5uYiLs79Shhvti3hjU6acLzTiNb2fjR39ONYRz+GJmyDB7EI2LAsUchPysuSBa7opK/L+e2NGmyDIj5IMuiAqVHX94uItQuMrAKkOA+J6Xsrw76I5HzlCHkyZZ6CYdzg8NU33gfD2PT36et6R3thYt0EvOCqV/NJ2EnRSS6DIf66ua42my1KsCYLiYhl7dcCLSyDg4OQSqUYGBhAYmJiwB7nqaeewvr167Fnz56APcZCMDk5iePHj6OxsRF9fX1Yvnw5rr32WmzYsAESiecPMFfblvD/Fx+8bzMSYyLR3N6P1g4DPrk8CJPdvFt8lATbVyYJQdK2lQyWRM/D/xCulvPzrS9+zjZ48jXvSCQBklbNBETWwVFCBjCXKupOA7/lYVFE0l85Qs6wLIvByUHbQGjMKhiaLtrI3zY4OTjXp+OgLK8MxeuKES0J3anSUAlcCbE3m1iBRpz8wGg0wmg00jSdG/39/WhqasKxY8cwOTmJDRs24N5778WKFSu8ng7wZtsS1UsnHW5LT4yZDpK40gDr0hMQIZnnLVi8Wc7/6r8CuqPTwZIXeUeJy22DIv6LWQlIArRcO0yLSHqTI2QfPE2YJ9A/3u84CjTmZJRo3ACTu2lQJyQiCZJikiCLkSE5JhmyWBlkMbKZy9M/Xxy+iLK/l3k837rkdSEdNAGUYE0WBgqc/IDym5xjWRYXLlxAQ0MDzpw5g5iYGOTl5SE/Px9SqdTrc/SNTKKjbwSa091ebVuSmRSLm69ZivxVMuRmJWE5Exuc7RBMk1xwMXQF0L3reTn/+ADQ+nvb62JlzqfVZHIgKj5gTXfHDEAbG4MeNg5LY2OggN8ytALCmx3u/+OD/8BrutdsAiJvk6itJUQm2ARAQiAUm+wQFCVGJ0Is8hzAb0jegP+K+y9KriYkRFDg5Aft7e1IS0tDbOwi3bnejslkwieffIKGhgZ0dXUhJSUFd955J7Zs2YKoKMeK0CzLomd4Ah19o2jvHUF73wja+0bR0TeCjt5Rh5wkABDDgh3iM0iFEd1g0GRZBwu4D6Hv7rkGn9+2PHBP0GIGRnq4JOzBLu770BWr79M/e7MKzd41d3LVt/lAyVPe0TwL5HSXJ5PmSQxODmJwchBDk0MYnJj+Pn2Z/9n6mKHJIRjGDRiZGnF77jHTGN7tfNfh+ghxhM2IkPVIkPBldX2UxP8Vzym5mpDQQoGTH7S3t2PdunXBbkbQDQ8Po6WlBS0tLRgeHsaaNWvw4IMPIicnBwDQPTSBtot96LAKjNp6ue+jk66rC4tEwDJpLJi4SHxyeRB7xE14LPI5LBPN5PlcZmV4fOohvG3Z4fu2JSzLJV0PXbYLhOy+D18FWC+3UxFHcnlFUfFAz6cApkdsYqLRI5FgqdkMxfjEzIjNtY+E7JYgvkx3WTNbzBieGp4JfJwEQPZBkPX3CbN3K8Z89U+r/wk3rbjJJiDy18qyuaLkakJCBwVOc8TnN4Vb/SZfl/M709XVhcbGRnz88ccYmbRg6aq1yNiyARfM0fj7R0Z0vP4+OvpGMTblOjgSi4BlTCxWJcdjVUocViXHIys5HquS45Api0NMpARmC4v//PnP8fOpp2AG0GwVfGwbM+DpyKfwH5Fl2JF9h+3JWRaYGHQxOmQ1SjR8BTBPevekRWIuvychHUhYNv09w/F7nIyL/Cxm4KlN0JiMOJjM4KrVvnppJhMe7TNCGZEUssv5J02TqGhyvyT+B//4AVqutmB4ctjpSJAvU1/2RBAhISoBCVEJSIxK5L6iE7nrIhOEnxOjZr53DHbg+//4vsdz351zd0jn31D1akJCAwVOcxQq+U2TJhP+78R7uDB4BSsT0/HA1lsQ5WLT2yOnuvDjV08g2VyPuIhejJpS0CcpwA/v2eqxerXZwqJrYAxtPcP4SHsSjY0NaGvvwAgbhTHpKiBFDvH5aOC8Y2KzRCzCiqRYISDKSo5Hdgr3fUVSLKIj3H8ASGDBY5HPQRMZi6qUJIfgQ9Xbj5+YnobkneGZ3CI+MHK3RN9eXMpM8JOY4Twgil86u4RosQSaHQ/hwPkXHEKPbokEB1KT8eTqL0Hp44cgy7KYtExibGoMY6YxjJmnv/OX5/A1bhr3arRneGoYL3z6gsfjYiNibQIfm0AnOhEJkQnCz/a3x0fGe5UXZG1zymb86tivFkSOECVXExJ8QStHoNfrUVdXB7lcDr1ej5KSEjAMM+dj7QWyHMHk5ATKf/4ITp5vQtaNiWAipFgSkYSkuDSkM9m49+ZSREVFC8e+8jc1ugcvIDVxpc1trs7t7fFPvF+LP579b7ARM9skiExSfHntt/G9G4tsjj1yqgu/e/UH6E37CL0RMx9AKSYLUq7uwtfu+QmU69PQNTCOtt4Ru2m1EXR0D2Dk8jlMdJ2FZXwYEYlLEbVsHSKTV0AkEiNCLEKmLA5Zydyo0arkOGSlxGNVcjyWM7GIirD70LNYgMkhLjF6zMh9d/iavt6gh6bvYxxITeE+/qymUETTb+Mnu3uhHHUsaAkAiJFaBT8uRomWpAER/s1TYVkWY6Yx3P3nu9E91u3yOGm0FN/e/m1MmCccgpdR06gQxLgKcCzeTh8G0M0rbsb21O2OgZHVqFBkoFb8ucFPMwJwmiPkaZqRELKwzSZWCFrglJubi9bWVgBcYKRSqVBbWzvnY+0FKnCq/st/4g99f4b+aD+i06ORsCXB4ZgUkwVfTLkXAPBi7ysOgcoXU+5Fyed/5vTc3h7/xPu1eE73YwCs7S7zLAtAhIdyfigET2YLi6/+8hEcS/7AZeBxTdcuHBu6Fya7z2Dz2CAmL5/FZLceYliwLHsNNm3Nw/qcLKxOEiE7wYRVsVNYGjWGCD4QcgiGnP08COdL9B2ZAezJXIarEontc7V6DmlmM45Eb4JYfjNMS5ZiMn4pJuNkmIiVYkocgUnLJCbME5g0T3JflkmHnyfME5gyT3HHWSZtfhaONU9iwsIdJ9zHMiWc2/7n+RQpjkRsRKzjV2QsYiVOrnN2rN3XGcMZfPuv3/b42M/ueTZkR0ScJbanx6VTjhAhJPQDJ71ej6KiIiEYAoCkpCT09/fP6VhnAhE4Vf/lP/Gr/r+ANbHofr0HCdsSEJnk5L9o+651Eqh8VboXD+59VLj++SMH8ezAEZeBjfXxkyYT7qm5GxOSMZeBRJQpFttiKjAwZkZX/yAkyT+CQSJyebzMzCLr0n1IjxcjK24CEaO96Lp0AX29fUiItkCRFYvtmWLEisdgmhjC1OQwTLDAJBLBBBFMIkz/zH2fEokwNf2zSYTpY6x/BqZEIpjEETBFRHNfkiiYIiIxJY6ESRLB3SaWoHdyAKdMnjcfjRRJYGItXu3IHmrWy9ZjVeIqxETEOA98rC7HRcQhNiLW4dgIsf9n4M0WM/a8tMfjdNeR+46EdM4NFWAkhDgT8gUwNRoNZDLbZdYymQxarRYKhcLnY+fD5OQE/q/3FUAigihSDOY6BsYGI+DjLMl/sy/idc3HsICF2WxCx9hZTLnJ0f4l+yIO1b0JFiymRJMYjfBU16gfg+avIAKAGSyGPXxG9AHQ4xksWbcEI59OwDRoQoQ0AnF5cYhZEYO3JNbTYPHTX/5kBjAGsGPcj67zyV2aYh3vFCGOQJQ4ClGS6S9xFKIl0YiSRCFSEsn9LLb92fpY4WcJd79IcaRwf/vbHc4vjsQnvZ/gX979F49t/17+90JyxGahLImnHCFCyFwFJXAyGo1OrzcYHLeRmM2xADAxMYGJiZlE1sFB/25t8Mrf1OizmkITR4sBCxB/TTwkcb59aFxCp/BzLBLhqRqUZfpDKwJRSIR3+TgsADEAT2NuY+1jGGgawNQEi9hVsUjYkoDIlEhhSbYEIkSIJIgQR0x/RSJCEokIcSQixZEz14sirI7hvqxvF352cpxwu8j28oWhC3j21LMen2vVTVXIT8+3CWpmm1Dsb9cvvz7sd4inJfGEEBJiq+pcBUmzObaiogKPP/64fxrkRPfgBZvL4igxRBIRRj5zX2DPnXSTCVILMCQW4bKHlWUAkD0FpEpiMWSZwOkIz0Nd20VSLE/KQu9YDxrGutweO2WYws6s9Tj4xG8gl8sdAp5gBiBmixlv6N9A9+hVp5NwIgBpcem4Pev2kBv5WCgjNrQknhCy2AUlcGIYxmHEyGAwOF0pN5tjAaC8vBwHDhwQLg8ODiIzM3PObealJq4ErMrRSOIkSFYmwzLp+4qmf0n7Eu65+et49W/P4JdXPS/n/ur08ZPtH+LBDx9Fr0QM1kXO0lKzBdXXHUTUqutgNk3i/trb0SeGy+NTLEDtw29ClrzU5+cTKLbBh/PVUaEcfCyUERua7iKELGYhlRze1tbmEBDN5lhn/J0cPjk5gdv/qECfiwRrB3z3ugpUzCyOfFmLqKhoTE5OYM/0uV0GNlbHw2LGm/+zEY8yXPzLOkkmP2g04Y5vfSLUHNJ8UIED519wefyTq78E5Q3lXvRE8IT76ihKUCaEkNAS8snhcrnc5rJer0deXp4QCGm1WjAMA7lc7vHY+RYVFY0HUu7Fr/r/wgVF7oInq5hUxLJOA5X7U+4V6jNFRUXjiyn34n/7/+LV8RBLcMftVYh8vRSVdtWoU81mqPqMKLhLbVOoUXlDOZ4EcPDsC7hq9VmdZgFUa0M/aALCf7qIRmwIISR8BbUAplqtRn5+Ppqbm1FeXi4EQ0VFRcjPz0dZWZnHYz0JdB2nQYnrD+ulJgvud1HHib/N2zpO7o7H6VdhOqLCsck+YQuS7VEpiNh7ENhwj9O2mU2T0J78I3oGL2Bp4kooNn8ZEj8XfiSEEELCQcjXcZpPga4c/tJff41jnUfRb+4PWuVwANxeaB0fcluNLEnj9jwLkxEYQgghJJgocLISyMCJEEIIIeFvNrFCcIvbEEIIIYSEEQqcCCGEEEK8RIETIYQQQoiXQqpyeCDwKVz+3nqFEEIIIQsDHyN4k/a94AOnoaEhAPBr9XBCCCGELDxDQ0OQSqVuj1nwq+osFgsuX76MhIQEYaNaf+K3dOns7KRVe/OM+j54qO+Dh/o+eKjvgyfQfc+yLIaGhrBs2TKIxe6zmBb8iJNYLMaKFSsC/jiJiYn0ixQk1PfBQ30fPNT3wUN9HzyB7HtPI008Sg4nhBBCCPESBU6EEEIIIV6iwGmOoqOj8dhjjyE62s12KCQgqO+Dh/o+eKjvg4f6PnhCqe8XfHI4IYQQQoi/0IgTIYQQQoiXKHAihBBCCPHSgi9HECh6vR51dXWQy+XQ6/UoKSkBwzDBblZY02q10Gg0AIDm5mYcOnRI6FN3/e3rbcQ5lUqF8vJy6vt5pNFooNfrIZfLAQBKpRIA9X2g6fV6aDQayGQy6PV6FBYWCq8B9b3/abVa7N+/H62trTbXB6KvA/o6sMQnCoVC+Fmn07GFhYVBbM3CUFlZafOzdR+7629fbyOOWltbWQBsf3+/cB31fWDV19ezJSUlLMty/SSXy4XbqO8Dy/pvDsuywuvAstT3/lZbWyv8fbEXiL4O5OtAgZMPdDqdzYvCsizLMEyQWrMwtLa22vShTqdjAbA6nc5tf/t6G3GutraWlcvlQuBEfR941v3Nslzf8d+p7wPLvp+sA1jq+8CwD5wC0deBfh0ox8kH/NCuNZlMBq1WG6QWhT+FQoFDhw4Jl41GIwCuX931t6+3EUd1dXUoLCy0uY76PrD0ej0MBgMYhoFWq4XRaBSmiqjvA08mkyE3N1eYsisoKABAfT+fAtHXgX4dKHDyAf+hbs9gMMxvQxYY6w/tw4cPQ6lUgmEYt/3t623EltFodDr/T30fWFqtFjKZTMjFqK6uRl1dHQDq+/lQW1sLAMjJyUFtba3wN4j6fv4Eoq8D/TpQcrgfuXqxyOwYjUbU1dU5JBA6O87fty1WNTU1KCkp8fp46nv/MBgM0Ov1wj8JJSUlSEpKAuumvB71vf9oNBpUVlZCr9ejtLQUAKBWq10eT30/fwLR1/56HWjEyQcMwzhErvxwO5k7lUqF+vp6oT/d9bevt5EZGo0GxcXFTm+jvg8suVwu9BcA4btWq6W+DzC9Xo/m5mYolUqUlJRAp9OhpqYGer2e+n4eBaKvA/06UODkA36psL28vLx5bsnCU1VVBZVKBblcDqPRCKPR6La/fb2N2KqpqUF1dTWqq6uh1+tRUVEBrVZLfR9gfD6TM9T3gaXVapGfny9clsvlKC8vp7858ywQfR3o14Gm6nxg/8dOr9cjLy+P/quYo7q6OigUCiFo4qeP7PvVur99vY3MsP8jU1paitLSUqcf6tT3/iWXy5GXlyfkmPG1nBQKhcOx1Pf+pVAooFarbXIr+/r6qO/ngXVOpbvP01D920971flIr9dDrVYjPz8fzc3NNgUDyezp9Xrk5OTYXMcwDPr7+4XbXfW3r7cRW0ajEdXV1VCpVCgpKUFpaSkUCgX1fYAZjUaoVCrk5uaitbVVGHEF6H0faBqNRpgWBbh/IqjvA0Oj0aC+vh5VVVUoKytDfn6+ELQGoq8D+TpQ4EQIIYQQ4iXKcSKEEEII8RIFToQQQgghXqLAiRBCCCHESxQ4EUIIIYR4iQInQgghhBAvUeBECCGEEOIlCpwIIYQQQrxEgRMhJOA0Gg1ycnJQVVWF6upq5ObmIjc3Vyi4mZOTA61WO+fH4M9JCCGBQluuEEICzmg0or6+XqjKXF9fD5lMhpKSEgDAvn37oNfrnW534S2lUol9+/b5pb3zwXrbCUJI+KARJ0JIwBkMBrcb2ioUCofdzBcyvV6PmpqaYDeDEOIDCpwIIQFXXFzsl2MWisrKymA3gRDiIwqcCCEB582UVEtLC3Jzc1FVVQUAqKurQ05ODjQaDYCZPKnS0lLU1dWhuroapaWlMBqNLs+p0WhQVVWFuro6qFQql8fp9XqoVCrhvPw5tVqtcP+qqiro9XrhvJ7ayudbaTQaVFdXo6ioSLitpaUF9fX1qK6uFs5JCAkPlONECAkJ9jlKhYWFOHz4sM3thYWFSE5OFnZVr6urQ1FREerr6x3OxwdDra2tALjpQn5ndmtGoxEFBQVobW0FwzBQqVSorq5GYWEhVCqVzblzc3Nx9OhRr9qqVCpRX1+P2tpaAEBtbS20Wq1wW05OjpDjRQgJHxQ4EULCivXoVWFhIYqKipwmWqvVashkMmEUCACam5sdzldTUwO5XC7cv7y8HABQUVHhkKwul8tRU1PjVcCTnJyM5ORkm3YvpjwuQhYqCpwIIQuWQqGAUqkULjsLeOyDrvle6Uar6wgJL5TjRAgJGQzDoK+vT7is0WgccpisL9fV1UGpVNoEHvzt+/btsxlt4s9nr7Cw0KGGlEajcXp/rVYrJLF701ZvOGsTISR0iViWZYPdCELI4qDRaKDX64VVZSqVCnl5ecKUmNFohEqlEhKp1Wo1jEYj1Go15HI5VCoVjEajMD3X3NyM8vJyMAwDrVaL/fv3AwAOHToEhUIBjUaD+vp65OfnA4BDkGXdLmfHaTQaaLVayOVyNDc3Y9++fV611Wg02rSFz7dSKBTCc6+srERubi6USqXbUg2EkNBCgRMhJGzwVcYpqZoQEiw0VUcIIYQQ4iUKnAghYUGj0UCj0QjL+gkhJBhoqo4QQgghxEs04kQIIYQQ4iUKnAghhBBCvESBEyGEEEKIlyhwIoQQQgjxEgVOhBBCCCFeosCJEEIIIcRLFDgRQgghhHiJAidCCCGEEC9R4EQIIYQQ4qX/H6NEXWepivouAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFoCAYAAAChRHRDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXQUlEQVR4nOydeVwb95n/P+IGGxjEbWM7HmzHdpzEFuAkzh2Lxj1yGuweadqmNTTdbXfrdpHp7jbr7oFFs9n+ut0mwm03m6YHR9I26eEUOU3jXDYg2/ERXxpsC4y5hLgRIM3vj2EG3RcSkuB5v156gWa+851nvqPjo+f7fJ9HxvM8D4IgCIIgCMIrMeE2gCAIgiAIIlog4UQQBEEQBOEjJJwIgiAIgiB8hIQTQRAEQRCEj5BwIgiCIAiC8BESTgRBEARBED5CwokgCIIgCMJHSDgRBEEQBEH4CAmnMMJxHFQqFTIyMlBYWOixbWFhITIyMqBSqWAymebHQCJi0Ol0KC0t9fo6CSVNTU1hO/d8I743ZTIZCgsLUVtbi9raWlRWVqK8vHxRjUWgVFZWIiMjA1qt1qf2JpMJKpUKdXV1aGpqQl1dnVMbrVaLyspKVFZWBnwPFuq9raurQ1FRUbjNWBzwRNhRq9U8wzB8W1uby/3Nzc18WVkZX1FRMc+WuUaj0Thtq6qq4svKysJgjYArmxYazc3NPMuyfh0TrHFpbGx02jYwMODxdeuKcL9O/EWpVLp837Esy6vV6jBY5DuR8J5QKBR8c3OzT21ZluX1er30nGEYu+c8z/MA+IGBAb65uVnqN9DrXGj3Vq/X81VVVX69H4nAII9TBMAwDHbt2gWNRuNyf6R5mJqbm522lZaWYvfu3WGwRsCVTQsNuVzu9zHBGheGYVxuq6ioAMuyPvcT7tdJsKisrIRKpQq3GR6JpveETqcDwzB2r6XGxka75zqdDizLgmEYKJVKKJVKAMG/zmi9tyzLorKy0uV7lQguJJwihMrKSjQ0NDhtN5lMfn0xhZq6ujpwHOe0XalUoqysLAwWubdpsRPMcdHpdKitrXXarlar/fqgDufrJJiI1xxpP2pEou09YTQanX4YiMLIFsfXWiiuM5rvrSguidASF24DCAGFQgG5XI6mpia7L5bW1laXHyAitbW1YFkWHMeBZVnpWJPJhLq6OrAsi+bmZlRWVkKhUAAQ4gTEX1QHDx4Ex3HgOA79/f1Qq9Vuz6XVatHc3AyO46Qv0aqqKuh0OqhUKnAcB71e7/YcRqMRbW1t0Gg0qKurg1wuR319PaqrqyXbvF2XrzY59gMIsQ22+zzhGF9RUVHhtc9Ar1k8Ti6Xo7y8HIBw/7zdD0d7bMfK13HxNr4iDMNArVbb9SGK/YMHD9od7258fH2d+PJa9HYuf/r1dywAoK2tDQqFwu6L3N19UKlUkjdA9BSINvjyOnPVn6fr8nbvXRGsz4va2lowDOOXd1Sr1UKj0djZq9fr0dDQgMbGRiiVSuh0Ors2oufJ8TpZlkVNTQ04jpOO5TgOpaWlYFkWGo3Gq7CI1ntrMpl8/hEjHiveK5ZlYTQapbF2fJ+KsWdqtdrn63Acl5KSkjnfm4gh3HOFxOx8tav4DzG2xFWMU1lZmV3siVKplOa3q6qq7OIDWJblBwYGpOdivIxt/AHLsl7nx5ubm3mFQuG0va2tzSn+xt05qqqq7K7PsT9P1+WPTWVlZXbn1uv1vFKp9HB1Amq12slG2/vgqc9Ar7mxsZEHYHfPqqqq7O65qzH2NFaexsWf8fWEUqm068vb+PjzOvFmU6D3wrZfb2PhGAczMDDAq9VqXqFQ2L2fPPUj3u/m5ma+ra1Nei14e515uq/ersvdvXdHMD4vqqqq7GJvBgYGeAA+xTi5stcxPsrda8fxOFexgK5ilhbLvXWkoqLC7rr1er3TWLsaQ6VSaXd/AxkXX+9NpEPCKQIQX4x6vV4KfhSfix9mjsJJbOvYj9imrKzM7kXu+AXX1tbmdLxjG1f4I5zcncP2A0Wv1/MMw/h8Xb7a1NbWZteviLdgVfHD3vGDU61W+9RnINfs7hpEW8TXgOMYexsrV30GMr6esP3w9HV8fH2deHotzuVeiP36MhZKpZJXKBS8RqORHo6Czpf74Ljf0+vMW3++jJe/X65z/bwQr8cRX4PDgymceJ53WrTg6rW0WO6tN9t4nncSa+5+pDl+V7m7DlfjIuLLvYl0aKougmBZFgqFAg0NDaioqIBOp/M4RcUwjN1SX71eL819NzY2AhDct+KUkdFodDqfLQzDOLWZK67O4WlJvbfr8pXW1laXbl9xKsLd9GdraysYhrFzeYtjKU5leOvT32t2h2iHu7iFQMYqWOPrikDHXGxji7fXoq/n8tSvr2NRXFxsNz3hiC/9ONrh7XXmb39zfe/O9fNCHINIoaKiAvX19VAoFNBqtW5fe4vh3rq6Hsd75e+9C2RcRHy9N5EMCacIo7KyEhqNBhUVFR5fzGLQuO2LzvZ/nU6HmpoalJaWYteuXSGbOxbntoOFt+vy1aZAAzs9HRdpwaL+jpU4LnMdX0/2zBfBOFewxsKXfhzfy95eZ8G+R97ep8H4vAhk1WewEa9z9+7d2L59O9RqNTiOC3j8FsK9DRa21xXIuIgE696EE1pVF2Hs2rULOp0OTU1NKC4udttOoVC49BKYTCaYTCZs374d1dXVkgATX/TBXoGi0+mC2p+n6/IVnU4nBR46wnEcSkpKPJ7f1blMJlPAfQaKeC8dA+dF/B0rnU4XlPF1x3yOTzDOFayxCKQfT6+zUNwjT+/TYHxeuLN5vhGv03axzVwEXbTfW3e2BXI+W6/XXK4jWPcmnJBwigDElQsApBwl9fX1Hj1OSqUSxcXFTlluGxoaJM+C7Reu+KL39gHqDXEFBSB8qLr7Ug/0HJ6uyx+bFAoFlEqlnStZvHZPq6bElSG2S+9NJhMaGhoC7tPXDymdTmfXtqamxmOeJG9j5WpcAhlfXwl0fFzhbcyCcS+CNRaBvmbdvc4C6c9xvPx5nwbj84JlWVRUVNitJDOZTE6v6WDj6TorKyuxZ8+eOaW/iPZ768o2x/skrt5zdw7RBltP/lzfO8G4N2El3EFWixm9Xs9XVFTwAPiKigopCNh2BYa40oNhGCmjrW1gn7iSxfYYcXtVVZWUYVev10uBvG1tbXxZWRkPQFrRIJ5DoVB4DdYT+xYDBV315+kcSqVSWm0htqmqqvLpuny1ybEfjUZjF6DtS39qtZpvbGz0uc+5XLMY8NnY2Mg3NzfzarXabrWJ43Gu7HE1Vt7GxdfxdYfjyhp/xycYr0V/74Vjv67GQq/Xe3zfebLFtp/m5mZeqVTyDMNIwcGOx3h7ndn25+91ubr37mwPxueFeC1iPwqFwmuAuOMY2fbv7n3juJrP1XWK1+DIYru3nq7H9j453iPxM0i0saysjGdZ1ut7x9u48Lz7exMtyHie58Og1wiCsEHMfdLW1hZuU/yivLwcu3fvjt5fjsSCxWQyec2DRwgUFRVBrVbP21hF+72hqTqCIPxCdNuL/0fSaipicWM7rSVOjRGRwUK6NyScCILwi5qaGlRWVgIQ4iM8LWIgiPlEzHANRMYqP2KWhXRvaKqOIMKMVquFWq2W/vpaFiZccByHpqYmqVwDTdMRkYJOp0NraysAeMzPRMxSW1sLlUoFpVIp/Q0FC+nekHAiCIIgCILwEZqqIwgiaFRWViIjI8MuTQDhHp1Oh9LS0oAyyxMEER5IOBEEETRcVThXqVQoLy+fVzscK9NHWn8iCoUCKpUqJH2Hg1CNE0FEEiScCIIIKaWlpdi9e/e8nrO5uTmi+7Ml2gNlbQnlOBFEpEC16giCCCnzvey4rq4uqOU/gt3fQoXGiVgskHAiiCjCZDKhrq4OLMuiubkZlZWVTiUXHKdLbFeweNpXW1srTbNxHCet7hOTc7Isi8rKSsmroFarpePEFXaO6HQ6qFQqcBwnlRYS+wOAgwcPSiUf+vv7pT7Fa1WpVCgqKkJbWxsKCwuhUCig0WikavOOaLVaNDc3g+M4qeSF7SpFd9foDnf9uboucbm1Wq1GRUWFdJ1yuVyaqjSZTE7X6Q7RVrGIq7fVi4HcW3+uA3B/v7yNO0EsKMKZtpwgCP+oqqqyK2HAsqxduQi1Wm1XesS2FIKnfWVlZXYlF/R6Pa9UKu3aimUZ2trapH4cyz4MDAzwAOz6amtr41mWtbuO5uZmnmVZu3Ysy9qV0rAt5zIwMODUhzvEEhKOeLtGf/sTr8EWpVJpNx6NjY08ALt7VlVVxVdUVEjPXY2PYykbpVJpNzaOzOXe+nIdvtwvd+NEEAsNinEiiCiC4zi7FWssy0rPRQ9NdXW1tL++vl4qzulun06ng1artZtSY1kWRqNR6pthGOh0OiiVSigUCqjVaphMJtTW1tp5NhiG8anoqFwuB8dxTue0neppamqS+mIYxmUxUl/x5Rr9xZWHzTGLujgetgHz1dXVHqe1xDxZth6m8vJyaDQal+3nem99uQ5f7hdBLBZoqo4goghxikose2I0GqVK9q2trWAYxu5LT2yv1Wrd7hOn/hwRpwPFL0vHNmKfgeLYH8Mw0rUAwoozV5XhA6G1tdWna5wPxPug0+lc2iSOq62g0+v1bkWKp/vu6731BW/3iyAWCyScCCKK0Ol0qKmpQWlpKXbt2mX3ZeYoMmwJdJ8trkRSKFeEVVZWoqamBgcPHkRdXZ1bj4s3RI9bsBBjjlwRjPOYTCawLGsnajwJnGDc22AdZ4uncSKIaIam6ggiSjCZTNi+fTuqq6tRUVEBhmGkLziO41x6aMTjPO1TKpUuvRkcx6GkpMStPQqFIuRTNQcPHoRWq0VZWVnAZRrEKcZArtFdf+7wxQNjMpmke+IKd+PqTsyE4t4Gw5PkaZwIIpoh4UQQUYLoObH9whW/4MRpn7KyMmlVEyB8eTY0NHjcp1AooFQq7aaGxC89Tyu5WJZFRUWF3Wouk8kEnU4XkMfC8Zi2tjYwDIOysjK/PBe2sTeioAz0Gt3157hdtN+Vd8txPGpqalBRUeH2mpRKJYqLi9HU1GS3vaGhwa19c7m3vl6HI66mUV2NE0EsNKhWHUFEEeKy8NLSUgDCl5VKpcLu3bulL0KVSoXMzEwpCNjWU+Ntn1j6Q6/X2y01V6vVaG1tRXV1tZOQEZe6i1N5oo1qtRpyuRw1NTVoamqSChiL042222pra1FTUwOWZaVzNDU1oby8XEp1wDAMKisrffI8iTYUFhb6dI2B9ieKFXE86uvrodPpoFarUVZWJi3lr66uluKaANilAxDHoqqqys4e0VZxOtSbwAvk3vpyHSzL+nS/PI0TQSwkSDgRBBFxmEwm7NmzBwcPHpSmJDmOk8q3RMuXsiic2trawm0KQRBBgqbqCIKIOOrq6lBZWSl5scRl/Wq1mkQIQRBhhYQTQRARh0KhcJkdXKvVStOUBEEQ4YCm6giCiEi0Wq1driNfS49ECmJsmPiXSpAQxMKAhBNBEARBEISP0FQdQRAEQRCEj5BwIgiCIAiC8BESTgRBEARBED4Stlp1YtVuAGhpaZHytbhCrBYuZqYVy0142+cNq9WKa9euITU1FTKZLAhXRRAEQRBEtMHzPIaHh7Fs2TLExHjxKfFhQq1W2/2vUCjctrXdp9fr+bKyMp/2ecNgMPAA6EEPetCDHvSgBz14g8HgVTuEZVWdTqfD9u3bMTAwAEDwGhUWFkKv1zvVb+I4DuXl5XZJ7zIyMjAwMOBxny8MDg6CYRgYDAakpaUF4coIgiAIgog2hoaGsGLFCphMJqSnp3tsG5apOoVCgYMHD0rPxWKRYk0mW7RardN2uVwOnU6H1tZWt/t8KTApTs+lpaWRcCIIgiCIRY4vYTthi3GyTWJXX18PpVLpMjbJXYVuo9HocZ8rzGYzzGaz9HxoaMhnewmCIAiCIMK+qs5kMqGpqclleQVvx/m7r6amBunp6dJjxYoVfp2TIAiCIIjFTdiFk0qlQnNzs9uVcAzDOHmQjEYjGIbxuM8V1dXVGBwclB4GgyEYl0AQBEEQxCIhbFN1AFBbWwuVSgWWZSUvkaPoUSqV0Gg0TscWFxeDZVm3+1yRmJiIxMREv2y0Wq2YnJz06xiCWCjEx8cjNjY23GYQBEFEDGETTk1NTVAoFJJoamhoQEVFBQBh1R3DMGBZ1uUqu+LiYsnj5G5fMJicnER7ezusVmtQ+iOIaIRhGOTl5VGuM4IgwobFyuNYuxE9wxPISU3C1tVyxMaE5zMpLOkIxPQDtjAMI6URKC8vR0lJiVRNnOM4aDQalJSUoKWlBdXV1XYJMN3t88bQ0BDS09MxODjotKqO53lcvXoVU1NTviXEIogFBs/zGBsbQ09PDxiGQX5+frhNIghiEXLodBf2v34WXYMT0rb89CQ889BG7NgUnM8lT3rAkbAIp0jB00BNTU3h0qVLWLZsmdecDgSxkOnv70dPTw/WrVtH03YEQcwrh0534emXdXAUKqKv6fknFEERT/4IJ3KjuMFisQAAEhISwmwJQYSXlJQUAMKPCYIgiPnCYuWx//WzTqIJgLRt/+tnYbHOr/+HhJMXKK6DWOzQe4AgiHBwrN1oNz3nCA+ga3ACx9pd524MFSScQozFyuN9fT9+d6IT7+v7Q6qMdTodKisrIZPJoFKpUFdXB5VKhfLycqmgcjCoq6tDRkYGdDpd0Pqcb4qKitDU1CQ9r6urQ2lpaUDHEgRBEMGnZ9i9aAqkXbAIazqChc58BLTZolAooFarUVdXZxckbzKZkJGRgba2Np9K0XijoqLC74SlnjCZTEFbCekrarXaLm2FUql0WsHp67EEQRBE8MlJ9S19UE5qUogtsYc8TiFCDGhzdDNeH5zA0y/rcOh017zZIqZ2qK+vn7dz+grHcWhoaJj38zqW+GFZFkqlMqBjCYIgiODC8zy0H3V7bCOD4IzYutq5zm0oIY+Tj/A8j/Epi09tLVYez7x2xm1AmwzAv7x2FneuyfIpD0VyfOyc40yMRqNTCohIQK1Wo6ioKNxmEARBEBECz/P4jz9+hJ++c1naJgPsvlPFb8RnHto47/mcSDj5yPiUBRu/+0ZQ+uIBXB+awM3/8mef2p/93oNISQjsVplMJtTU1ECpVKKiogJarRaVlZVQqVQAAI1Gg7a2Nuh0Omi1WrAsC47jUFZWZjd1pdPpUF9fj5KSEgD2hZS1Wi1UKhV2796NqqoqNDU1QaVSQaPRSF4c23xbRqMRu3btQmtrK1pbW6W+3E2XabVa6HQ6sCyLlpYWqNVqySaNRmMXm8SyLIxGo0d7dDod9uzZg8rKSlRUVMBkMkGlUkGr1UKv10t9uxoPx2PFa6+srJTaNjc3B3UqkyAIYrEgiqaDR9oBAP/26CZkLU1wCnvJC2HYizdIOC1Q6urqJBEifqkDgjhRKpVoa2uDRqOBXC4Hx3FSzUCRoqIiHD58GAzDwGQyoby8XBIVgFAwWUSpVGL37t3S87KyMrtpQZPJhNLSUrS1tYFhGClwvaqqCkqlEoWFhVLWeEdE29ra2gAIgq22thYVFRXYvn072tvbpWmzjIwMHD582Ks9CoXCbj/DMNBoNMjIyLA7p6vxcDxWHE9bsdTY2AidTheUeDKCIIjFgivR9MTtqwAApRvzIiZzOAknH0mOj8XZ7z3oU9tj7UZ88X9bvLZ78UslPs3NJsf7n3SwoqLCY+HkzMxMAIKoUKlUTl/yLMtKZXAaGhqc9svlvs8pNzQ0gGVZyZ7q6mqfjxXFne2qwJaWFjAM4xRrFKyAbY1G43E8HMnMzJTGE3BdmJogCIJwD8/zqPnTOZeiCQBiY2S4ozDT3eHzCgknH5HJZD5Pl929Nhv56Um4PjjhMs5JBsHNePfa7LApZl9XkAUDx1Vz7gSdu9V1CoXCLnC7oqICdXV1QbaSIAiCCAeiaKp7mwMA/KuDaIo0aFVdCIiNkeGZhzYCmA1gE5mvgDZvHg/b/bt373bK86TT6bBr1y4AkOKCbOE4zu45wzDo7++Xnmu1WphMJgCCV8vxeFd5pVxtc2WbVqvFrl27PNrkyR4Rx+eezmk7Hp6OJQiCIHzHlWj6fASLJoA8TiFjx6Z8PP+EYl4D2sQAbkBYrVZZWek05aTVau2CrZVKpZT/qba2VgrAbmxslLw/LMuisbERKpUKpaWlkmeopqYGarUaLMti165dUoA1IIgtccqLZVloNBqoVCopuFz0IFVWVkq5p1ylAxBtczyWYRiXNol4ssdkMqG+vh5yudwpCN72nK7GQxxj8VixL/EcHMdJQessy86rZ48gCCKa4HkeB6JMNAFU5NdtUb+JiQm0t7dj9erVSEoKPLmWxcpHTEDbQqe0tBRqtTrgoOyMjAwMDAwE2aroJ1jvBYIgCBFRNGkiRDT5U+SXPE4hJpIC2hY6gQRk19XVQa/Xo7KykrKBEwRBzANOoumRm6LC0yRCMU7EgqCurk7KFeVP/JFSqURmZiaampqg0WhCZyBBEAThWjTdcUN4jfITmqoL8VQdQUQ79F4gCCIY8DyPA4fOQfPXyBNN/kzVkceJIAiCIIiQ4iiavhdBoslfSDgRBEEQBBEyXImmJ6NUNAEknAiCIAiCCBE8z0N96PyCEU0ACSeCIAiCIEKAKJpe+KtQ53QhiCYgjMJJp9OhqKjIa7umpiaYTCaXK6V0Op2UPVpMPEgQBEEQRHhZqKIJCJNwampqAgCfhE55eTkyMjKQkZEBmUwGmUyG2tpaAEIx1qKiIshkMlRWVlKWZhvq6uqgUqlQV1eHpqYmaLVaacl+pKLValFUVDRvdeiKioqk12Kk42hrXV0dSktLAzqWIAgilPA8j9o3FqZoAsKUALOsrMyndiaTCY2NjXbta2trUVVVBUD4QhAzPbsrHBt2rBbgynvASDewNBdYtQ2IiQ3pKUtLS1FeXg61Wi1t0+l0KC0thV6vD+m554JSqXRZdiVUqNXqqEl66WirUqn0+YdCNF0nQRDRjSiann9rYYomIAoyh9uKpqamJifRFbGCCQDOvgYcUgFD12a3pS0DdqiBjQ+H5JSiN66iosJuu0KhcNoWiWRmzl+W9fkUaXPF0VZ/6uBF03USBBG9OIqm/Q8vPNEERLhwshVFJpMJRqPR7svCZDJJUxAtLS1ep+vMZjPMZrP0fGhoKPhGi5x9DWh4EoBDftGhLmH7rpdCIp5qampw8OBBl/vKy8uDfj6CIAiCcCWavrDthvAaFSIiWjjZolKp7KaeAMGrIoorlmW9TkXV1NRg//79gRnA88DUmG9trRbgT1VwEk1CRwBkgieKvc+3abv4FEDmvTAwx3EwmUxuxaOt50Gn00Gr1YJlWXAch7KyMrAsC61WC5VKJYlQjuPQ3NwMtVoNk8kErVYLvV4vlSfRarWorKyEUqlEaWkpjEYj2traoFarwTCMtF+lUgEQ4tLa2tqg1Wqh0+nAsixaWlrs7q14HvHcjY2N0j5Xx7mzWTzOZDKhoaEBLMvCZDKhpaUFu3fvxp49e1BZWSl54vwdE1u7bHF3bTqdDhqNxi42iWVZGI1GqFQq7N69G1VVVWhqaoJKpYJGo4FSqYROp7Oz1WQyQaVSSffCk+2Ox/p7LQRBEN7geR7fXySiCYgS4SR+kTpOy3EcB4VCAQDSlwDHcW6FQ3V1Nfbu3Ss9HxoawooVK3wzYmoM+I9lAdnvDC9M3x3w8dzfuQYkLAnSuYVxU6lUaG5ulrYVFRXh8OHDUpyR7ZdpY2MjmpqaUFVVBYVCgcLCQphMJjAMA6VSibKyMmRmZkrTqE1NTSgvL0dzc7PUX1tbGzQaDeRyuXT+trY2AEJxXtvYtZaWFun/xsZG6HQ6KBQKj8e5slk8rq6uDgqFQhKORqMRCoUCu3fvntOYiP27GltHGysqKrB9+3a0t7dLr+OMjAypf1tbysrKUF9fLz13tJVhGGg0GmRkZHi13fFYf66FIAjCG6Jo+vGMaPqXhzYuaNEERIlwam1tdRJNOp0O27dvl4LDReRyudt+EhMTkZiYGAoTIwJRMNoKSls4joNcLodGo3Haz7IsGhoaUFFRgczMTLtYI4Zh7MQowzAwGo1298T2/7KyMpSXl0viimEYqb+ysjKoVCrI5XJotVrpmJaWFun/kpISp3MBkISXq+Nc2SweV1ZWhqKiIrAsi927d7uM9QpkTMT+HftxZaMoMm3HKVgB295sd8TXayEIgvCEK9H0xTtXh9mq0BN24SR+uYrodDqnL2qdTuckiFiWtZve0Wq1KCsrC12weHyK4PnxhSvvAb/wYeXg55qEVXa+nNtHqqqqoNFoXK5c1Ol0Pq9odGSu4+roBbT1AAHOwezuCOQ4uVyOgYEB6HQ61NfXS96wUOHKxvlKsUAQBDEf8DyPZ/+8+EQTEKY8TmKcBSDEHdnmmHF8LuL4xcswDIqLi1FbW4u6ujq0tLSENk5DJhOmy3x5FD4grJ6Du7gkGZC2XGjnS38+xDeJiGLS8YvaNoHo7t277TwigCCqdu3a5bZfVwlI3e1vampy8q7YejRcnd/xuSsCPa6mpkbywomxV452BzIm/ti4a9cup7xltjm1GIZBf3+/3TGOY+7uHvhiu7f7RxAE4SuiaPqfvyw+0QSEyeMkxlk4BnsDcCl+xHgXRxQKRWTGZcTECikHGp6EIJ5sg8RnRNCOAyHL59Tc3Iza2lqoVCoUFhZK3jrR2yQKiNraWimAubGxEQzDSF4ZQLhPthnZFQqFFLStVqvtRIher5e+7G1FrFartQuWViqV0vlVKpU0LScGQbs6t0ajAcuyAR+XmZkJrVYLuVwOo9GI3bt3S8fI5XKUlZUFNCZi/7ai3p2NDMOgsbERKpUKpaWlTp7WXbt2SQHf4jHiFJzJZLKz1ZX3zpvt4rFiX75cC0EQhCOOoumZRSaaAEDG87yrpV+LgqGhIaSnp2NwcBBpaWl2+yYmJtDe3o7Vq1cjKSkpsBO4zOO0XBBNIcrjFA5EgRYNeaIiidLSUqjV6oDFf0ZGhlOMXygIynuBIIiox5Vo+tICEU2e9IAjYY9xWtBsfBhY/8l5zxxORAeBBGTX1dVBr9ejsrKSsoETBDFv8DyP//zzhQUpmvwlbEV+Fw0xscDqu4Gby4S/C0w0iVNx4pJ2wjfEuoEajcav+COlUonMzEw0NTVJubQIgiBCiSiafvSXSwCA735q8YomgKbqQjtVRxALAHovEMTixZVoeuquhSea/JmqI48TQRAEQRBO8DyP55oXvmjyFxJOBEEQBEHYIYqm/36TRJMjJJwIgiAIgpBwFE3/TKLJDhJOBEEQBEEAEETTfzmIpi+TaLKDhBNBEARBEJJo+iGJJo+QcCIIgiCIRY6jaPqnT24g0eQGEk4hxmK1oOV6C/7I/REt11tgsVpCdi6tVovKykrIZDK78h3+UFdXh4yMjHnJyTSf57KlqKjIrh5iXV0dSktLAzqWIAgi2nElmr5yN5VfcgdlDg8h2itaHDh2AN1j3dK23JRc7Nu6D8pVyqCfT6lUgmVZ1NXVobq62q4Wmq9UVFSEtlhymM5li1qttsu6LY5bIMcSBEFEMzzP47+0F0k0+QF5nEKE9ooWe9/aayeaAKBnrAd739oL7RX/vUG+IBb0JdwjFt0VEYsPB3IsQRBEtCKJpsMXAZBo8hXyOPkIz/MYnx73qa3FakHNsRrwcE7KLm47cOwAbsu7DbE+lGBJjkuGTCbzz2CCIAiCsMFi5XGs3Yie4QnkpCbhXX0ffkSeJr8h4eQj49PjuO2XtwWtv+6xbmz79Taf2h797FGkxKcEdB6tVguVSoXKykqwLAuO49Dc3Gw3RabT6VBfX4+SkhIAzsVntVotdDodWJZFS0sL1Go1mpqaUFNTA5PJBL1ej9raWmg0GlRWVqKqqsrlMb6cy5X97vrRaDR2sUksy8JoNEKlUmH37t2oqqpCU1MTVCoVNBoNlEoldDod9uzZg8rKSlRUVMBkMknxYHq9Xupbq9VK41VWVgaWZZ2O9WVsCYIgIoFDp7uw//Wz6BqccNpHosk/SDgtcJRKJZRKpd0XuliQV6FQwGQyoby8XBINAFBTUyP9z3EcVCoV2traAAhCp7a2FlVVVVAqldi+fTtMJhMYhkFbWxsYhnF7TEVFhcdzOeKpn+3bt6O9vV2aNsvIyMDhw4ehVCqxe/duqY+ysjLU19dLzxUKhd1+hmGg0WiQkZFhd87m5mapTVFREQ4fPux0rLexJQiCiAQOne7C0y/rXMyBCBRkJM+rPdEOCScfSY5LxtHPHvWpbVt3G752+Gte2/14+49RlFvk07nnQmZmJjIzM6XnDMNInp6GhganL3nbOCmNRgO5XG63Qq+lpUXq5+DBgygqKkJjY6MkYtwdwzCMx3M54qkfx1ijYAVsazQaJxtZlkVDQwMqKiqc2nsaW4IgiHBjsfLY//pZt6JJBmD/62dRujEPsTEUEuILJJx8RCaT+Txdtm3ZNuSm5KJnrMdlnJMMMuSm5GLbsm0+xTiFG4VCYRc8bSsgRDFUX19vJzhcHVNXVxeUcwfSD0EQxGLkWLvR5fScCA+ga3ACx9qNuKMw0207YhZaVRcCYmNisW/rPgCCSLJFfK7aqgqJaPLX2yHG/djCcZz0/+7du53yQYnPTSYTtFotGhsbwXGclN/I3THezuWIu3527drlsR+GYdDf3293jMlksmvv+NzTOXU6HXbt2uX1WIIgiEijZ9i9aAqkHUEep5ChXKXEc/c95zKPk2qrKiR5nEQRAwixQ2I8jhjjo1QqwXGcFFjNsixYlkVjYyNUKhVKS0uleKWamhqo1WooFAqo1WqoVCopoFupVKKurg5qtRqVlZUAgJKSEuzZswccx6GqqsrlMQzDeDyXYy4ld+d214/Irl277BKAKpVKaQrOZDKhvr4ecrlcCvp2dc7a2lopIF2chhQD28Vjxb48jS1BEEQ4ifFxRXZOalKILVk4yHiedzf1GVLEFUpi4K+ndoDwhcZxHEwmkzQlJHo5xBVNFRUVfuXYGRoaQnp6OgYHB5GWlma3b2JiAu3t7Vi9ejWSkgJ/QVmsFuh6dOgd60V2SjYUOYqomJ6LNkpLSyWhFwgZGRkYGBgIslULg2C9FwiCmF9OGEz48ost6B+ddNtGBiAvPQnvqB5Y1DFOnvSAI2HxOIlix5dSGxqNRoppUSqVdku9y8vLJeHFcRz27NkTcUvBY2NiUZJXEm4zFjyBBGTX1dVBr9ejsrKSsoETBLGg+OOpLnyz/gTM01YsZ5LQaZqADLCLuhVl0jMPbVzUoslfwhLjVFZW5rNnoKioCAMDAxgYGEBzc7PkUXKMjWFZNqDabET0U1dXB47joNFo/Io/UiqVyMzMRFNTEzQaTegMJAiCmCd4nsf//OUSvvYLHczTVjywPgdvfPNevPCEAnnp9h7jvPQkPP+EAjs25YfJ2ugkKmKcXE2/abVap6XscrmccugsQioqKlymCvAGy7KoqqoKgUUEQRDzj3nagu+8ehqv6DoAAE/duRr/+MkNiI2RYcemfJRuzLPLHL51tZw8TQEQ8cLJZDJJq7VaWlqkLM3uPAuepmzMZjPMZrP0fGhoKKi2EgRBEEQ4MI5O4qs/b8Oxy0bExsiw/+Gb8MTtq+zaxMbIKOVAEIh44WQb8M2yLEpLS+0yTzviaaqmpqYG+/fv9+v8YYqdJ4iIgd4DBBHZ6HtH8NSLLbjSP4bUxDj8z+cUuGdddrjNWrBEfB4n21gmcfUcx3EuMzQbjUaPq+qqq6sxODgoPQwGg9u2sbHCyrfJSferEQhiMTA2NgYAiI+PD7MlBEE48t6lPjz2P+/iSv8YVsiT8erXtpFoCjER7XHS6XTYvn270zJxuVwu5eZxxNPqqMTERCQmJvp07ri4OKSkpKC3txfx8fGIiYl4jUkQQYXneYyNjaGnpwcMw0g/JgiCiAx+fewq/um3pzFt5VG0KgN1ny9C5lLfvuOIwAm7cHJMXqjT6cAwjJRAUK1WS/u0Wi3KysrAMIyTZ4njOBQXF/uVx8kTMpkM+fn5aG9vx5UrV4LSJ0FEIwzDIC8vL9xmEAQxg8XK48CfPsLBI+0AgEc2L4N65y1IiqcfN/NBWISTVquVqs/X1NSgpKQEZWVlds+rqqrAMAyKi4tRW1sLhmGg1+vt8jSJ2aNLSkqkDM/BJCEhAWvXrqXpOmLREh8fT54mgoggRs3T+Ltfn4D2I6EixTeV6/CN7Wsg8zFDODF3wpY5PBLwJ1MoQRAEQYSTrsFxfPnFVpztGkJCXAyeLb8VD9+6LNxmLQgiPnM4QRAEQRC+c6pjEF95qQXdQ2ZkLU1A3ZPFUKzMCLdZixISTgRBEAQRwRw6fR3frD+B8SkL1uUuxU+/UIIV8pRwm7VoIeFEEARBEBEIz/PQvM1BfegceB64d102fvTZLUhNotQg4YSEE0EQBEFEGJPTVvzTb0+hoVUon/KFO1bhnz+1EXGxlBon3JBwIgiCIIgIwjQ2ia++3IYPOCNiZMB3P7URX7xzdbjNImYg4UQQBEEQEUJ73yieerEF7X2jWJoYh//+zBbcvz4n3GYRNpBwWmRYrVb85je/wbp167By5UrK/UFEPTzPY3h4GMuWLaMM/0RU876+H199uQ2D41NYziTjp18sxvo8SpUTaZBwWmT09PTg3XfflRKOEsRCwWAwoKCgINxmEERANLQa8I+/OYUpC4/NKxgcfLIY2alUPiUSIeG0yDAYDFK9PoPBQIk/iahnaGgIK1asQGpqarhNIQi/sVp51L5xHi/8VQ8A+NQt+Xi2/FYqnxLBkHCaZziOQ1NTE1iWBcdxqKiocFtfz1NbnU4HrVYLAGhpacHBgwd9qtNnMBiQn58PAEhLSyPhRCwYaNqZiDbGJy34Zv0JHDpzHQDwjQfW4O+V6xATQ6/lSIaE0zxTXl6OtrY2AIIw2rNnj9sae57aarVaVFVVAQBqa2uxfft2qa0naDqDiCQsVh7H2o3oGZ5ATmoStq6WI5a+NIhFQPfQBL7yf6041TmIhNgYqMtuxmNb6LM5GqBIynmE4zi75yzLSl4jf9rqdDrU1NRI+8rKyqDT6ZyOcWRkZAQDAwMknIiI4NDpLtylfhOfOfgB/u7XJ/CZgx/gLvWbOHS6K9ymEURIOXNtEI/+z7s41TkI+ZIE/GLPbSSaoggSTvOIVquFXC632yaXy6HT6fxqq1AocPDgQWm7yWSS9nvCYDAAAJYvXx6I+QQRNA6d7sLTL+vQNThht/364ASefllH4olYsDSf7Ub5C++ja3AChdlL8Nuv3YmSGzx/dhORBQmneUQUOI4YjUa/29quiquvr4dSqXQb42Q2mzE0NIRz584hKSnJL5sJIthYrDz2v34WvIt94rb9r5+FxeqqBUFEJzzP4+DbHCp+3oqxSQvuWpOFV792J1ZmUs25aINinCIAdyLJl7YmkwlNTU0e45tqamqwf/9+6Xl1dbW/JhJE0DjWbnTyNNnCA+ganMCxdiPuKMycP8MIIkRMWaz47u/O4FfHrgIAPnvbSux/+CbEU/mUqITu2jzCMIyTd8loNLr0FPnaVqVSobm52eOKuurqavT39+M73/kODh8+LE3ZEUQ46Bl2L5oCaUcQkczg2BS++L/H8KtjVyGTAf/8qY3490c3kWiKYujOzSNKpdLl9uLi4oDa1tbWQqVSgWVZmEwmt56rxMREjI6OIj4+Hhs2bKAUBERYyUn1bbrY13YEEalc6R/F48+/i3cv9SMlIRY/ebIYX75rNaXOiHJIOM0jLMvaPec4DsXFxXa5mcSVcd7aNjU1QaFQSKKpoaHBo9fJYDAgPj4eubm5QbsegggE+ZIEeMo4IAOQny6kJiCIaOVYuxGP/s+70PeOIj89CU1f3YbtG+jzdyFAMU7zTGNjI1QqFUpKStDS0mKXw6mmpgYlJSVSfiZ3bTmOQ3l5uV2/DMOgoqLC7XnF/E1Uy4sIJx92mPDF/22Bu7hvUU8989BGyudERC2v6jqw75VTmLRYcUtBOn7yZDFy0siDulCQ8Tzv19KVy5cvo7GxEc3NzRgYGJC2y+VylJaWoqysDDfccEOw7QwJQ0NDSE9Px+Dg4IKevuJ5Hv/5n/8JhUKBBx54YNFcNxFZvHepD3teasXopAU3L0/Hk3eswnPNF+wCxfPTk/DMQxuxY1O+z/3S65mIFKxWHs81X8CP/nIJAPDxTXl4btdmJCdQ+ZRIx5/PEb88Tvv27YNMJsOuXbvwD//wD077jx8/jhdeeAEymcwuQaMrdDod9uzZ4zXbtafSImL+I4VCAY7jYDKZoFAo/LmkRYHJZMLIyAhWrFgRblOIRcqh0134xq9OYNJixbbCTNQ9WYyliXF4XFFAmcOJBcHElAXfajyJP3wo5CD72n2F+PbHbqTyKQsQn4XT97//fVRXVyM9Pd1tmy1btmDLli0YHBxEdXW1W/Ek1l9zlfjREU+lRTQaDerq6gAIwdTuSpcsdsRVdJQxnAgHvz52Fd/5zSlYeWDHTXn4wac3SwVMY2NklHKAiHp6hiew56U2nDSYEB8rQ83jt6CsiD5vFyp+T9UF9eQyGTydXqfTYfv27dKUIMdxKCwshF6vB8uyqKurw65duwDApwK3jiwWF/8f/vAHXL58GX/zN38DYPFcNxFeeJ7HC3/loD50DgDw6ZIV+PfHbg66R4lez8R84lhfMTUpDpU/b0OnaRxMSjw0TxThNpZ+DEQbIZuqs2Xfvn1Ys2YNysvLUV5ejoyMDOzevRuPP/54oF064UtpkUAE02Lj6tWrNE1HzCs8z+M//vgRDh5pBwA8fV8hqh68kZZhE1HNodNd2P/6Wbu4PBmEpK1s1hL87IsluCFrSdjsI+aHgJdYlZSU4Ctf+Qrq6upQVFSE+vp69Pf3B9M2AJ5Li4hZs5uamqBSqbwWuRVLj9g+Fjpmsxk9PT0knIh5Y9pixT80fSiJpn/8xAaodqwn0URENe7qK4pzJn9z/xoSTYuEgD1OGRkZAICGhgbJK+StyOxccFVapKKiQhJRLMuitLQUer3ebR+OpUcWAx0dHeB5noQTMS9MTFnwt788Du1H3YiNkeHA4zejvJhee0R046m+IiB4nZ7983k8umU5LW5YBATscdLr9Th8+DD0ej02b96M9vZ2u/QEwcZVaRFbDxPLsuA4zqPXqbq6GoODg9JjMZQeMRgMSE5ORmYmzbkToWVoYgpf+NkxaD/qRkJcDJ7/nIJEE7Eg8Ke+IrHwCdjjtGvXLtTV1aGtrQ2Dg4PQaDTIysoKpm0SjqVFAEE02QaOi3jyeiUmJiIxMTEkNkYqBoMBK1asoGkSIqT0DpvxhZ8dw9muISxNjMNPvlCM2ylAllggUH1FwhafhNPg4CAGBgbsElump6fb5XI6cOCA3TFi/JC36HSTyWTnRdLpdGAYRio54qq0SEVFBViWhVqtlo7TarUoKyujYHEbrFYrOjo6cNddd4XbFGIBYzCO4fM/PYrL/WPIWpqAF7+0FZuWu09bQhDRxLTFir+c6/GpLdVXXBz4JJzS09PR0NCAzMxMn1bNvfLKKxgYGMBXvvIVl/u1Wi2am5sBzJYZEYPAbcuOeCotwjAMiouLUVtbC4ZhoNfrKY+TA729vTCbzRTfRISM89eH8eTPjqJ7yIzlTDJe/sptWE0BssQCoWdoAt/49XF8wHmegpMByKP6iosGv/I4HT9+HDU1NSgsLERJSQlYlgXDMDCZTOA4DseOHUN7ezsqKyvxwAMPhNLuoLDQ87+0trbij3/8I6qrqxEfHy9tX+jXTcwPbVcG8NSLLRgcn8K63KV46anbkJc+/7+46fVMhIL3LvXhG78+gb4RM5YkxOLTW1fiZ+8IK0VtvzTFIIjnn1D4VSqIiCxClsdpy5YtaGhowODgIBoaGnDs2DFpqq2wsBCVlZVYvXr1nIwngofBYEBeXp6daCKIYPDW+R48/bIO41MWbFnJ4H+/WAImJSHcZhHEnLFYefzozUv4weEL4HlgfV4q/udzChRmL0XJDRlOeZzyAqivSEQ3AQWHp6enY8+ePcG2hQgyBoMBa9euDbcZxALjdyc68a2Gk5i28rh3XTaef0KBlISA15kQRMTQN2LG3//6BN651AdAyHb/Lw/fJJUI2rEpH6Ub86i+4iKHPu0WKCMjIzAajRTfRASVl96/jGdeOwOeBx66dRn+s/xWJMQFnNWEICKGo1w/vv6r4+gZNiM5Phb//tgmPK5wrjdH9RUJEk4LlI6ODgAg4UQEBZ7n8f8OX8QPtBcBAE/esQr/8tBNVPmdiHqsVh4vvK3Hs2+ch5UH1uYsxY8/p8Da3NRwm0ZEKCScFigGgwFpaWlIT6dl4cTcsFp57H/9DP7v/SsAgL/bvhZ/r1xLucGIqGdgdBJ7G07gL+d7AQCPb1mOf3tsE009Ex6hV8cCRUx8SRBzYXLaim83nsRrJ68BAPY/fBO+sO2G8BpFEEGg7YoRf/vL4+ganEBiXAy+98hN2FVMyYIJ78wpOOH73/8+du/eDQA4fPjwoiiaGw1MT0/j2rVrWLlyZbhNIaKYsclp7HmpFa+dvIa4GBn+36c3k2gioh6e53HwbQ67NR+ga3ACbNYS/PZv7sTukpUkmgifCFg47du3DwzDQKlUAgC2b98OrVYbNMOIwLl+/Tqmp6fJ40QEjGlsEk/85Cj+eqEXSfExOPiFYjyyeXm4zSKIOTE4NoU9L7Xh3//4EaatPB66dRle+/pd2JBP+b8I3wl4qq6kpAQ7d+7E4cOHg2kPEQQMBgPi4+ORm5sbblOIKKR7aAJP/vQYzncPIy0pDv/7pRIUraKMyER0c9Jgwt/8UoeOgXEkxMbguw9txOduIy8T4T8Be5za24UMqrYvupaWlrlbRMwZg8GA5cuXIzY2NtymEFHG5b5R7Hz+PZzvHkZOaiIavnoHiSYiquF5Hi++246yF95Dx8A4VspT8OrXtuGJ21eRaCICImCP05YtW1BcXIzMzEw0NzdDq9XaFd0lwgPP87h69Sq2bNkSblOIKON05yC++L/H0DcyiVWZKXj5y7dhhTwl3GYRRMAMTUxh3ysf4o+nrgMAdtyUh9ryW5CWRNUUiMAJWDht374djY2N0Gg04HkedXV19GUdAQwODmJkZITimwi/OMr14yv/14ph8zQ25Kfhpae2Ijs1MdxmEUTAnO4cxN/8Uocr/WOIj5XhO5/YgC9uu4G8TMScmVM6gtWrV+PAgQPS86GhISqyGWauXr0KACgocM54SxCuaD7bjb/9pQ7maSu2rpbjJ18opl/kRNTC8zx+cfQqvvf7s5ictmI5k4z/+ZwCm1cw4TaNWCDMSTgNDQ3BaDRKz9VqNZ5//vk5G0UEjsFgQFZWFlJSaIqF8E5TWwdUr3wIi5WHckMufvTZLVJdLoKINkbM0/jOq6ekvGPKDTl4tvxWKkBNBJWAhdNXv/pVaLVaMAwjbWtvbyfhFGYo8SXhKz85wuHf/vARAGCnogDqnTcjLpbqzhHRybnrQ/jayzpwfaOIjZFBteNG7Lmbpak5IugELJwKCwvxwgsv2G07ePDgnA0iAsdsNqO7uxtbt24NtylEBMPzPL7/xnn8+C09AGDP3atR/fENVHeOiFoaWg3459+ehnnairy0JPzos1tQfAOtBiVCQ8DCSUx8aUtpaemcjCHmRmdnJ3ieJ48T4RaLlcc//fYUfnXMAABQ7ViPr95Lv8qJ6GRschr//NszeEUnFDW/d102/mv3ZsiX0NQcEToCFk4ZGRl49tlnwbIsGIaByWRCfX096uvrg2kf4QcGgwFJSUnIysoKtylEBGCx8jjWbkTP8ARyUpNw64p0fKvhJP50+jpiZMC/P3YzPrOVyvIQ0cmlnmE8/bIOF3tGECMDvvWxG/H0vYXkOSVCTsDCqaqqCiaTyS7G6fjx48GwiQgQMb6JvAfEodNd2P/6WXQNTkjbEmJjMGmxIiE2Bv/v05vx8Zvzw2ghQQTOb4534Duvnsb4lAXZqYn44ae34I7CzHCbRSwSAhZOpaWl2LNnj922V155Zc4GEYHB8zw6Ojqwbdu2cJtChJlDp7vw9Ms68A7bJy1WAMDX7isk0UREJRNTFvzLa2fw6xZhqvnONZn4we4tlHOMmFfmFBzuyzZ36HQ67NmzB21tbR7bcRyHpqYmsCwLjuNQUVEhebk87YtU/LHZW1vbMezt7cXExATFNy1yLFYe+18/6ySabKlvNeDr29cilqY0iCiC6x3B136hw7nrw5DJgL/bvhZff4Bex8T8E7Bw0uv10Gg0KCkpASB4PBoaGnyqVyeKAZ1O57VteXm5JK44jsOePXvQ2NjodV+k4o/Nnto6jqHBYEBMTAyWL6cK9ouZY+1Gu+k5V3QNTuBYu5GmNoio4fcfXsO+V05hxDyNrKUJ+MHuLbhrLcVyEuEhYOGk0WigVCrB87O/bW3/90RZWZlP7TiOs3vOsiy0Wq3XfZGKPzZ7a+s4hgaDAbm5uUhIoNUki5meYc+iyd92BBFOzNMW/NvvP8LPP7gCANi6Wo7//swW5KYlhdkyYjETsHBSq9XYvn273TZXKQrmglarhVxun4tDLpdDp9OhtbXV7T6FQhFUO4KFp+txtNmftoAgnPyZKiUWHhYrj+NXTT61zUmlLx4isrnaP4av/bINpzuHAAixeXtL11GSViLszKnIryMZGRlzMsYRk8nkcrvRaPS4zx1msxlms1l6PjQ0NBfz/MYfm/1pOzo6iv7+ftx3330ujwn3dROh58y1QXzn1VM42THosZ0MQF56EraupuSARORy6PR1/EPTSQxPTCMjJR7P7d6M+2/MCbdZBAHAD+H06quvQqlUSkV8f/KTn9jtN5lMaG5uxhtvvBFcC13gTlR421dTU4P9+/cH36A54slmX9p2dAjJ39wFhkfqdRNzZ9Q8jR9oL+Bn716GxcojNTEOn7w1H/UzCS5tJ8/FENpnHtpIAbVERDI5bUXNnz7C/757GQBQtCoD//2ZLVjGJIfXMIKwwWef53/8x3+gtbVVev7CCy9gYGBAevA8j/7+/qAaxzCMk4fFaDSCYRiP+9xRXV2NwcFB6WEwGIJqrzf8sdmftgaDAampqUhPT3d53nBfNxEaDn/UjY/919s4eKQdFiuPT96Sj8PfuhcHHr8Fzz+hQF66/XRcXnoSnn9CgR2bKBUBEV4sVh7v6/vxuxOdeF/fD4uVR8fAGMo170uiqeIeFr+uuJ1EExFx+OxxshVNgFCXbsuWLXbbgh3jpFQqodFonLYXFxeDZVm3+9yRmJiIxMTw5fvwdD1zaest8WW4r5sILtcHJ7D/9TP40+nrAIDlTDL+7dFNuH/97FTGjk35KN2YZ5c5fOtqeeR5mqwW4Mp7wEg3sDQXWLUNiIkNt1VECHGVnDUjJR7maSvGJi1IS4rDf+7ajNKNuWG0kiDcM6eSKyKDg4PQarUoKiryux/H7OM6nQ4Mw4BlWbAsa9eW4zgUFxdLHid3+yIVT9cD+H7tjly6dAmf+tSnQmU2ESFYrDxe/uAKvv/GeYyYpxEbI8NX7l6Nv9u+FikJzm/l2BhZZKccOPsacEgFDF2b3Za2DNihBjY+HD67iJDhLjnrwNgUAGBVZgpe/vJtWCFPmX/jCMJHAl6eYLs0Pj09HTt37vQ5HYBWq4VKpQIgxN80NTVJ+xyfNzY2QqVSoampCRqNxi7nkad9kYonm/25dtsxfOutt/Dhhx/O30UQ886Za4N4/Mfv4pnXzmDEPI3NKxj8/ut3ofrjG1yKpojn7GtAw5P2ogkAhrqE7WdfC49dRMjwJTnr5LSVpuaIiEfG+5p8CYJnqaGhATKZDM3NzSgtLbXb39bWhueffz7oRoaKoaEhpKenY3BwUAp6jzY++OADaLVaVFdXIzbWtymOhXDdiwVXwd9VH1+Pz25dGXnTbr5itQA/2AQMXYMFgC4pEb2xsci2WKCYMCMWMsHz9PenfJq2o9dzdPC+vh+fOfiB13a/2nN7ZHtKiQWJP58jfv1UTU9Ph1KphFqthl6vx+rVq+32V1VV+W8tMScMBgOWL1/us2gioofDH3Xju787g07TOADgk7fk45lPbUROtCf/u/IeMHQN2pRkHMjMQHfc7MdQ7vQ09vUPQDnUKbRbfXcYDSWCCSVnJRYKfvv4V69ejRdeeAGHDx92mcuJmD94nsfVq1dx6623htsUIoj4EvwdlVimgIt/Bt5SQ5uSjL05WU7TNj2xsdibk4XnevqgHOkOi5lE8OF5HvqeEZ/aUnJWItIJagJMYn4ZHBzE8PAwFfZdIPgb/B019OsB3UvAyV8BI92wADiwYpkgmhxWgvIyGWQ8D3VmBu5fkg3yo0Y/vcNm/PNvT+PQmese21FyViJaiOJPY0LMx1RQUBBmS4i54pj5e/MKBjWP34wN+YHH7FisFuh6dOgd60V2SjYUOQrEztdS/8kx4OzvgOM/h+XKuzDGxqAnNhZ9Gbk4tmwDusc4t4fyMhmux8VBl5SIkvmxlggBPM/jtZPX8MxrZ2Aam0JcjAwP3pSHP57qEvbbtKXkrIRXIih1CQmnKMZgMCAzMxNLliwJtylEgLgL/v7c1pWImcMXiPaKFgeOHUD32Ox0V25KLvZt3QflquDkW7NYLTBOGNEz3oO+sT70jPWgr+dD9HS2oHfwMnplVvTGxqL/hhWw2nqWPIgmW3on3JdPIiKbnqEJ/ONvT6P5rPD625ifhu+X34KblqW7zOOUl56EZx7aSMlZCddEWOoSEk5RjJj4kohOQhX8rb2ixd639oJ3iCDqGevB3rf24rn7nvMonkRB1Dvei96x3llhZPO3d6wX/RP9sPJW150kxds9jZHFIDMpE9kp2YiXxeNk30mv15Gdku39YomIgud5/PZEJ/7ltbMYHJ9CfKwMX39gLZ6+rxDxM8V5oyY5KxEZiKlLHCMixdQlu16ad/EUVOF0+fJl3HDDDcHsknDD5OQkuru7PWZKJyITx+Dvgoxk/Oujm4JSxNRiteDAsQNOogmAtO3fPvg3xMpi0T/R71IY9U30uRdEDsQAyJy2INsyjWyLFdkWHjnytchadTdyVmxD1pIc5CTnQJ4kl6YJLVYLHnzlQfSM9bi0UwYZclNyochRBD4QxLzTPTSB77x6CofP9QAANi1Pw/fLbnU53RzxyVmJyMBqETxNLrN/8QBkwKF9wPpPzuu03ZyE04kTJ+zqqWk0GtTX18/ZKMI7nZ2dsFqt5HGKIixWHj9//zKe/fMFu+Dvv9++DskJwXnTt3W32U3PuaJ/oh/f+Ms3PLax9RBlJ2cjOyUbOck5yJLFIefaaWRdehM5pg7ILVYhgDv3ZkDxeeDmciDFc3BvbEws9m3dh71v7YUMMjvxJJuJdlFtVc1fPBYxJ3iexyu6Tnzv9TMYmphGfKwMf69ch4p7WMnLRBABMZO6xD08EIbUJQELp127djmVSzl+/HgwbCJ8wGAwIDExEdnZNJ0RDYQi+HvSMgm9SY9zxnO4MHAB54zncLrvtE/HLl+6HGuYNc7CKCXLyUMEyxRw4ZCwMu6SFhC9UYlpwJYyQPEkkL/ZaYWcJ5SrlHjuvudcxmGptqqCFodFhJauwXFUv3oKb53vBQDcUpCO75fdihvzUsNsGbEg6Nf71m6eU5cELJxKS0uxZ88eu22vvPLKnA0ifMNbYV8iMnAK/k6Kg2qHkPnbn+DvgYkBnB84j/NG4XFu4BzaTe2Y5qcDsutf7/xXlOR5WbPWewE4/hJw8tfAaO/s9lV3Als+D2x8BEgIvKaYcpUS96+4P3wr/4iA4Xkeja0d+Nffn8WweRoJsTH4+9K1qLibRRx5mYi5MnAZeP/HQNuLvrVfOr8FoQMWToWFhT5tI4IPz/Po6OjA7bffHm5TCA9oz3bju787jWszq4d8Cf62WC0wDBtwbuAcLhgFL9L5gfPoGetx2T4tIQ3r5etxo/xG3JhxI9ZmrMXX3/w6esd6A4sfmhwFzvxW8C4ZbMpjLMkBNn9WEExZa3weA2/ExsR6F3BERHHNNI59r57C2xcEMb15BYPvl92CtbnkZSLmyLXjwLs/BM7+dtazHRMPWKfcHDBTnmnVtvmyEMAchJNer4dGo0FJifChx/M8Ghoa0NLSEjTjCNf09fVhfHyc4pvCiKccSdcHJ/Avr52REv65C/4emxrDhYEL0jTb+YHzuDhwEePT4y7PuTJ1pSSQbpTfiPXy9chNyXXyOlZvrfYvfojngU6d4F069QowOTxzQAyw9kEhdmntx4BY+5VyxOKC53n8usWAf//DRxgxTyMhLgbf/tg6fPkullbEEYHD88DFZuC9HwKXj8xuZ+8H7vwGYB4GGr4gNrY5cOY1t+PAvOdzClg4aTQaKJVK2NYI9qNeMDEHDAYDZDIZli9fHm5TFiXuciRVlahwrXONXfD3nrtZfOOBNRia7sPbHW8LAsl4HucHzuPq0FWXXqGk2CSszVgriaT18vVYm7EWS+J9y9flPn4oByrbPE5jRuDDesG71HN2toOM1YJYuvWzQBrl1SGAjoExVL96Ckcu9gEAFCsZ1JbdijU5S8NsGRG1TE8CpxqB9/4b6P1I2BYTB2zaCWz7OpB382zbXS+5yeN0ILryOKnVaqeyK0olBXTOBwaDAbm5uUhMTAy3KYsO7RUtvvnWN6WVsCLdo9341lt7Md75GViRg0J2EFvXTeCS+VU8+JvzMJlNLvvLTs62E0jr5OuwKnXVnON8lKNjuN/QCd1kP3pjY5FtsUCRMI3YjaOA/k1A93Pg3O8By6RwQFySELO05fNCDFMMxakQgNXK45fHrqLmjx9hdNKCxLgY/MODN+JLd64mLxMRGOMmoO1/gaMaYFjIIo+EpUDRF4HbnwbSXVTC2PiwkHIg2jOHO4qmN998EyaTCVu2bJmzUYRnDAYDVq9eHW4zFh0WqwX/8u6/g+ddLCCTCR7npOW/gkwG9AD4/ZXZ3bGyWKxOX2031XZjxo3ITA5BLpuZhHGx4O1LlkxcAxqftG+bd4uwKu7mciCZCb4tRNRiMI5B9cqHeE/fDwAoXpWB2rJbwGaTl4kIgMEO4IPngbb/mw0HSM0HbvuqIJq8ff7ExM5rygFPzCmP06uvvgqOE8on8DyP1tZWPP7440ExjHDN2NgY+vr6cM8994TblAWPxWpBz1gPDMMGGIYNONp1DINTfW5X3Yvbk2KTcFPWTXZepDXMGiTGzoOH0GPCOMlSoPhLgOILwLLNobeJiCqsVh4vH72CA386h7FJC5LiY1D14Hp8YdsN5GUi/Of6KWE67vQrgHVmFXD2BmE67uZyIC4hvPYFQMDCad++fTCZTDAajWBZFiaTCZWVlcG0jXBBR0cHAFBgeJCYmJ5A50inJI7ER8dwBzpHOjHldjWHez5X+G38/R27Q2CtF6xWIV7JY8I4AOCBmx4n0UQ4caV/FFVNH+Jou5DYeOtqOWp33oIbsqgeJuEHPA9wfxFWyHF/md1+w93AnX8HrFH6lfct0phTOoI9e/agvb0dMpkMN9xwA958881g2ka4wGAwYOnSpXaJRxcanlasBcKgedBJGIkPd8v8ReJi4pCXsgzxfDY6+icxlXTK6/l4yzwuyx4zCh9MF7VCcspRz9cjMc8J44jIxmrl8dL7l6E+dB7jUxYkx8di38fX4/O3r5pTsWlikWGZAk6/KniYumc+K2UxwE2PCR6mZQsjlCdg4cSyLK5cuYLVq1fj2Wefxbe//e1g2kW4IZiJL//c/mesyFkBnudhnDAiOyUbt2bdipN9J92KlmCLGkfcrVjbZ7sazAErb0X3aLe9x2ikQ/p/WJxPd8PS+KVYkboCBakFKEgtwIrUFViWUoBr/Sn4y6kpaI/3YnLaCsCKJWuuQhY36PLHEs8D/HQ6tuaFsH6g1Qp0nRBE0sVmoLN1Nt8JAMQmAZYJt4dLzHPCOCJyudwneJmOXRa8TLezctTuvBUrMwNPbkosMiaGBG/3B88DQ8KsCOJThPjJ278GZKwKr31BJmDhZDKZwLIsBgYG0NfXhwcffBAMw+CBBx7w6XiO49DU1ASWZcFxHCoqKtx6UZqamqQVe45tdDodAEChUIDjOJhMJigUC7M4qMViQWdnJ+6///6g9Pfd97+L2GR70RMji7Er8GorWgIRNf6gvaLF3rf2Oi3R7xnrwTff+ib2lexDQWqBk9fIlym17ORsSRytSF1h92ASGUmIftQ1hFfaOqA+cQ19I7N1GNfnpeKxLctR1/o4zJn/6xQgLmbiSBl+HLezQS6DM9ovrIS71AxcOgyM9Tlc3AZgrRJYUwoUlAA/KhIqh7uMcwpPwjgi8rBYebz43mV8/41zmJiyIiUhFtWf2IDP+ZnVnljEDHUBR58HWl8EzEI5KSzJAW6rAIq/7LVuZbQi44OUfOnw4cMoLi5Genq6T+2LiorQ1tYGQBBRKpUKjY2Nro108fNerVajqqoKlZWVqKurAyCkQ2hsbPR5GmtoaAjp6ekYHBxEWlrgNcPmi2vXrqGurg5f/vKX5xTjJF73huc3OAknR8SkiV+86Yt48cyLTqJG3P/cfc/5JZ6svBWjU6MYmRzB0OQQBs2D+NZfv+V22b434mRxWLZ0mUtxVJBagOS4ZLfH9o2Y8bsT1/BKWwfOdg1J2+VLEvDI5mXYqSjATcvSIJPJcOh0F/72dy8hMfd1xMQPzl7PVDrM3Q/hR488iR2b5pj7yGoRMuhKXqU22ImghFSAvVeIE1ijBBiH18LMqjoBFwnjdr0UltwnoSLa3seRgL53BFVNH6LtygAAYFthJtQ7b8EKOXmZCB/o+UiYjvuwYTard+ZaYTrult1AvPvqCJGKP58jc1pV9/3vfx+tra2or68H4FrguEJciSfCsiy0Wq3LtiaTCY2NjSgrK5O21dbWoqqqCoAgwAYGhDf/Qo77AYRpuri4OOTnz19SQlEo/d/Z/3OZrFHc9r33vyeJoaHJIYxMjWB4ctj1Y2oYI5MjLvvzxorUFVgvX+8kjnJTchEX4/vL2TxtwV/O9aCprRNvne/BtFWwJT5WhgfW52CnogD33ZiDhDj7fEY7NuXjR3gS//K6Ar1TH0EWNwx+OhXZ8Rvwn49sClw0jfYJ3iTRqzRutN+fc9OsV2nFbZ5Xomx8OOISxhGRgcXK42fvtOPZP5+HedqKJQmx+MdPbsRntlLdS8ILPC9k9n73h8LnlMjKbUKG77UPLpr8b3NaVVdYWChNoW3fvh2vvvqqT+kItFot5HJ7F55cLodOp3M5zWYrmpqamuyeAwtfMIlcvXoVy5YtQ1zcnPRuQNhO37liwDyAb/31W373Gx8Tj9SEVMTIYtA33ue1/d9u/lt8gv2E3+cBhJQZH3YM4hVdB147eQ2msdnpvVsK0rFTUYCHb12GjCWel8fu2JSP0o15ONauQM/wBHJSk7B1tdy/pdpWi+BJutgsfAhdOwE771BiGsDeB6wtFbxKacv8utZISxhHhJ9LPSP4h6aTOH7VBAC4e20Wah6/GQUZ5GUiPGCZFmrHvfffQnwlAEAGbHhIWCFXEMKYzggl4G/gkpIS7Ny5E4cPH/b7WJPJ5HK70Wh02mYrimzTH9hua2pqAgC0tLSgsrLSbv9CwmAw4Oabb/beMEysSluFlakrkZqQ6voR77xNzG3Ucr0FT73xlNdzZKf4Hz90fXACvzneiVd0HbjUMyJtz01LxKNblqNMUeB3gdJYWHFHzFkgthuIyQWwDYAXUTLSMzv9pn8TmDDZ78+7WfAorZ2JVZprbbgIShhHhI9pixU/eacdzzVfwOS0FamJcfjHT27A7hLyMhEeMI8Ax18GPvgfwHRV2BaXDGz5nBDwnVkYXvvCSMDCqb29HYD99FxLS8ucEmC6E1QiKpUKarXabpttUDnLsigtLYVer3d5vNlshtlslp4PDQ25bBeJDA4OYmhoKKLzNz1zxzMBV7pX5CiQm5KLnrEel1N4MsiQm5ILRY5vgf/jkxb8+ex1NLV14N1LfZiZiUNiXAwevCkPO4sKcNearMAS+p19zc00mNp+GswyDXS0CGLpUjPQddK+n6R0oPCB2Vil1Dz/bSEID1zsHsa3mz7ESYMJAHDvumzUPH4zljHuY/6IRc5wN3CsDmj5yeyPu5RMYGsFULIHWBKCagdRRsDCacuWLSguLkZmZiaam5uh1WqdRI07GIZx8i4ZjUaPU24mkwlardapDcdx0vSeuEKP4ziXXqeamhrs37/fJxsjDYPBAAAoKHBRx2ceiJHFgOf5oIgaV8TGxGLf1n3Y+9ZeyCCzO48YgK7aqvKY+oDnebRcHsArbR34w6kujJinpX0lN2Rgp6IAn7glH2lJc/DkSIHXDuMw1CVsf/iHQt6Si81CfqWJQft2+ZsFkbS2FFheDMTO/7QrsfCZtliheZvD/9NexKTFitSkOHz3UxtRVlRAXqbFjNXifvq+9wLw/n8DJ+sBy4yDQc4Cd/wtcOtngASa0hWZU626xsZGaDQa8DyPuro6n+vUKZVKaDQap+3Fxe7nSltbW12mIti+fbsUHC7iGD8lUl1djb1790rPI92DY4vBYIBcLsfSpfNbJ0oULV/Y+AW8eObFgEWNLyhXKfHcfc+5THmg2qpyu2rPYBzDK7oOvKrrxFXjmLS9ICMZjysKsFOxHKsyg5D52GM5k5ltr33dfnNyxoxXqRRYsx1YmjN3OwgCQqD3sXajU5zd+evD+Iemk/iwQxDtD6zPwX88djPy0qNvpRMRRNx5youeEuItL/xpdntBCbDtG0KcJMVFOjGnn7urV6/GgQMH/D7O0RvEcRyKi4slYaTT6cAwjF07nU7nJIhYlrXzcmm1WpSVlbn1XCUmJiIxcR7qhYUAMfFlqHGVx0kULbdk3+K3qPEX5Sol7ll+H3558i1cHbqOlWl5+Oyt9yHBISB+xDyNP37YhSZdB461z3ovlyTE4hM352NnUQG23iAPbj6aS1ofyplAWJa76XFBLC1X0AcPEXQOne7C/tfPomtwNtlpXloStt6QgT+duY4pC4+0pDg889BNeFyxnLxMix23nvJrwF/+beaJDLjxE8IKuRW3RXVJlFDjs3DyJTv4T37yE3zlK1/xqb/GxkaoVCqUlJSgpaXFLodTTU0NSkpKpJQDIo6Ci2EYFBcXo7a2FgzDQK/Xu80FFc1MTk7i+vXrQU/s+b07vudX5nDlKiXuX3F/SDOHz34hmAFkADBD8+e/4pmHNqJ0Yx7e0/fhlbYOHDpzHRNTgsCTyYA7C7Ows2g5HrwpDykJc/g9wPNCEHffeaD3PNB3ceb/C8CwD6IJAO7bB9xc5r0dQQTAodNdePplnZPf8/rQBF77sAsAoNyQg39/7GbkppGXadHjS+Hv+BRgz1+AnPXzZlY043MCTLlcjpISz4G/ra2t6O/vD4ph80G0JM67fPkyXnzxRTz99NPIzZ17qYxIvW53XwgiTEq8XQoBNnsJdioK8NiW5f4Hu1qmAdMVoO/CjEC6MPP/hdkMuIHyhd/TarZ5JFJfz6HAYuVxl/pNO0+TI0xyPFr/SYm42MWRU4fwQvvbwP895L3dIv/cCkkCzO3btyMzMxNFRUVu2wQpCTnhgMFgQGJiIrKzg1zKI4KwWHnsf/0seAAxsGJrzDnkwIQeMDhmXQ8rYmAam0JaUhwensnmvXkF430KYnIM6L8oCKK+C4L3qO8i0H8JsEy6PkYWAzCrgOwbgax1wiP7RiFQUnM3lTMhwsaxdqNH0QQApvEptFwewB2FtPppUTMxCJxqBN75gW/tqfC3z/gsnBobGzE4OIjW1lYAQh4nR1XmLiibmBsGgwEFBQWIiYCsrO4CUgPFPG1Be98ofn/yGroGJ/BgzDE8E/8Slslm45au8XLsn3oSb1i34kef3YJ71rkIsB7tc+09Grzq/uRxyUDWmhlxdCOQtXZGIBW6LxmwQz0TKyCDy3ImOw5QTBMRMnqGfSjg7Ec7YoHB80IKlLb/A868CkyNeT9GhAp/+4xfwSDp6enYvn07AOD48eMwGo2QyWRSYd+dO3cG38IFhj/FjTmOQ2NjI06dOoUlS5bgoYcektr60487dIf+F5n5qwEA5sHrSM5YjrVF23Gx7TDGBzqRnLEc6297ELEzgdmHTnfhX187hRUjJyVvkGHprfjnh2/2Wmpk2mLFFeMYLlwfxoXuEVzoHsb57mG0943CMpNk6cGYY3g+/gdOx+bBiOfjf4CvTf0dzL1ZAE7Ye496zzuXKLElWT7jPVorCCTx//SV/pcIoHImRJgwGMfQ2NrhU9ucVIptWlSMGYW6cW0vAr0fzW7PXg9s+byQZmC4G+QpDw5BKfL75ptvorm5GaWlpZKIigbCERvhT3HjoqIivPHGG/jRj36Ee++9Fz/+8Y+ltv7044h03ftSkZZo7y2y8DLEymZfEt3IxLU7nkH38o/ht798Ad914Q363tSTePSzX8WOTfmwWnl0msYlYSQKpUu9I5icdl22JTUpDsvT4vGzwS8jD0a4cmCJr1KPM3PpK4FsB+9R1jpgSZZP4+IXnvKhEPPKQo9xGhidxP/85RJeev8KJi2eSx/JAOSlJ+Ed1QNz8gQTUQDPC59BbS8CZ383m3spLhm46TGg6IvAiq3Ch+YiK/wdCPNW5PfEiRPQaDSor68Hy7IoLCyMKuE03/hT3FhsazAYIJPJsG3bNikruz/9+EuMwy+SbL4f2e99A/8nexg/jn/NqX0ejPhx/A/w9/Ux+PFb26HvGcHopAWxsCAdo8iQDYPBCO6RjSAnYRRrlk5hVYoZyxLGkRU7gjR+GAmTJmC4GzKZe6+RKJj4mDjIMtfaCKR1wv+Za+c3QRuVMyFCzMSUBT97tx3Pv6XH8ISQzPUONhP3rsuG+tA5AC6/AvHMQxtJNC1kRvuAk78SpuP6L85uz70ZKPoCcHM5kMzYH0Oe8qDit3C6fPmylPhSJpNh586daGtrw+rVq0Nh34LCn+LGYluDwYCcnBwkJiZKbVtbW/0qkuwPjh6dGBlg5YEn+dchc7Of54HamP/GuZ7fIAOjYBJHkS4bdX2CsZlHoPY98mPg1t2Bd0AQEc60xYpXdB34r+aLuD4kxCqtz0vFvo+vx73rsiGTyXBDVopzHqf0JDzz0Eav0+ZEFGK1ApffFsTSR68D1pnVxfFLgJt3Ct6lZQrPLnkq/B00fBZOP/nJT6DRaMBxHHbt2oXGxkanTOGvvvrqnGrVLXT8KW4stjUYDFi1apVdW3/6AZxr9A0OCsvth8z+zNJ6azsJFrOeMKkKYEIakMIASRlASgaQxAjZtG0fSemAqQP4c7V3M2TpQBTVGCRCj1hz0mr1PI0V6fA8j8Mf9UB96BwuzhSjXs4k41sfW4dHNi+38yLt2JSP0o15QV2oQUQgw93AiV8AupeAgfbZ7cu2AIovCPniEv0oUE6e8qDgs3CqqKhAWVkZ9u3bB4ZhMDAwgDfffFPaPzAwgAMHDpBwCgB3QshqtaK3txd33XWX17ae9rmr0bfiv0b8MTNAhgF0Bq+7Ax8PXl/EgmJ4eNjvBRKRQtuVAaj/dA7HLgs/ftKT4/G396/B5+9YhaR41x6B2BgZpRxYiFgtgP4vgO5F4PyfAOtMzc3ENGEarugLQP6tYTVxseOXcKqtrfWYq6m+vj4oRi1U/CluzDAMuruFvBpiqRWxrb9Fkh1r9JlMJqxatQpXr15Fenr6HK5ocSPWOjQYDAsyKHm+8GccJycncfLkSRw9ehTDw8O48cYbcccdd2DJkiVYtmzZPFkcPPS9I/j+ofM4dOY6ACAxLgZfunM1nr6vEOnJcyhGTUQfQ9eA4y8Dup/bp1Ep2CqIpZseAxKCUHOTmDM+C6fKykqvH2rV1T5MtSxi/ClurFQq8eyzz2LJkiXIyMiwa8uyrF9Fkt3V6EtPT6cv/CCQlpZG4xgEPI3jxMQEjh07hg8++AATExO45ZZbcOedd0ZtUtieoQn84PBF1LcYYLHyiJEBZUUF+GbpOuSn+5kFn4heLNNCDcy2F4GLbwBindCkdODWzwjTcbkbw2oi4YzPwskxninQNosZf4obsyyLyclJrFixAjKZzK6to2fJsR+CWCiMjo7igw8+wLFjx2CxWLBlyxbceeedUftaH56YQt3bHH5ypB3jUxYAQl25qh3rsS7Xj1gVIroxXRU8S8dftq+BuXKbEOi98WEgngR0pDKndASE//ha3NhqtWLnzp14/fXXERcX59TWUz8EEe0MDg7ivffeQ1tbG2JiYlBSUoI77rgDS5cuDbdpATE5bcUvj17BD9+8BOOoUOpny0oG+3asx20sxSktCixTQsyS7v+AS4chLbhJlgObPyt4l7LXhdVEwjeCkgAzWonkxHldXV3QaDR46qmnsHLlyqD2bTabUVNTg+rqapdTeIRv0DgGB9txHBkZwTvvvIMPP/wQCQkJuO2223DbbbchOTk6f31brTx+f6oLz75xHleNQh4ONmsJqnbciAdvyvNea5GIfoycsCru+C+A0Z7Z7avvEbxL6z8FxNHnR7jxRw+QcIpQ4XTs2DG88cYbqK6uRlwcOQaJhU13dzeOHDmCM2fOYMmSJdi2bRuKioqiWpC+e6kPB/50Dqc6hfQf2amJ+HvlWuwqXoH42PDXnSQCxJeqAdNm4NwfhNil9r/Obl+SA2z5nFAGJbNwXs0mPDNvmcOJ0HH16lXk5+eTaCIWNB0dHXj77bdx4cIFMAyDT3ziE9iyZUtUv+7PXhvCgUPn8PaFXgDA0sQ4VN7D4st3r0ZKQvReFwGhdInL7NtqIS6p76IwFXfil8BY/0wDGVD4gOBduvHjQCytlox26F0coRgMBtx0003hNoMggg7P82hvb8eRI0fQ3t6OrKwsPPbYY9i0aRNiY6M3i7HBOIbnmi/gtyc6wfNAfKwMn7ttFb7+wBpkLo1ezxkxg1TvzWGSZqgLaPi8UFC399zs9tR8YMsTgncpYxWIhQMJpwhkaGgIg4ODUv6mYMFxHJqamsCyLDiOQ0VFRdSuTgo1Op0OAKBQKMBxHEwmk1TOxtM40hgLY7dnzx6pCLWIXq/HCy+8gOHhYej1enziE5/A7t27sX79erS3t+M///M/o3JMXRXhfejWZfj2x9ZhVSbl3VkQWC2Cp8llBYWZbb3nAMiAdQ8K3qU1pUAsfcUuROiuRiAGgwEAUFBQENR+y8vLpS8zjuOwZ88eWo3nBo1Gg7q6OgBCTi3bcfI0jot9jEWBIwpPQMiAf+bMGXzyk5/EU089hY0bN2LXrl14/vnn8c1vfhNAdI6pqyK82wozse/j63FLARNe44jgcuU9++k5d5T9L7DpsdDbQ4QVEk4RiMFgAMMwSE0NXl4XjuPsnrMsC61WG7T+FxpFRUUYGBgAADvvhqdxpDEGysrKpP+np6dx8uRJvPvuu9Dr9YiNjcWXvvQlqfbizp07AUTfmLoqwrshPw37Pr4e96zNopVyCw0jJwR5+wJvCakpRGRAwikCMRgMQU9BoNVqIZfL7bbJ5XLodDppCoqwx9V0kKdxbG1tpTGGUBYFAH74wx9ieHgYGzZsgNlsxpo1a+wKVvsybpE0pjzPQ/tRD2odivB++8F1eOTW5YihArsLh55zwEevCXFN3ad8P25pbuhsIiKGsAknf+IWAo03iUampqbQ1dWFzZs3B7VfdwWAHWveEQImkwlNTU0AgJaWFlRWVoJlWY/juNjH2LYsCgCsXr0ad911F7Kzs1FbW+vyGG/jFilj2nZlAAf+9BFaLs94IVNmi/AmxkVvQDsxA88D1z8UhNJHrwF9F2b3yWKBVXcC108CE0NwHeckE1bXrdo2XxYTYSRswsmfuIVA402ikWvXrsFqtQY9MNwd7r6YFju2ApxlWZSWlkKv17tt72kcF/oYuyqLAgCPPeY91iPQcZuvMXVVhPepu1bjq/dSEd6ox2oFOtuAj34HfPQ6MHB5dl9MPFB4P7DhYWD9J4EUuc2qOhnsxdOMp3HHAed8TsSCJCzCyd+4hUDiTaIVg8GAhIQE5OTkBLVfhmGcfqUbjcao9s6FEo7jJK+m6M3kOM7jOC62MRbLouh0OshkMpSUlOD22293GZsX6LiFekwtVh7H2o3oGZ5ATmoStq6WIzZG5rIIb3nRCnyzdB3y0pOCcm4iDFgtwNX3ZzxLr9vXiYtLBtZsBzY+IqyMS0q3P3bjw8Cul9zkcTog7CcWBWERToHE2/gbbxKtMSUGgwEFBQWIiQluZmGlUgmNRuO0vbi4OKjnWQjodDps375dEusicrnc4ziyLLsoxri/vx/vvvsuTp48iYSEBNx5551ey6IEOm6hHNNDp7uw//Wz6BqckLblpiVCsTIDb53vtSnCmwvVjhuxlorwRieWKaD9bWEK7twfgNHe2X0JSwWRtOFhYG0pkOAlfcTGGQ+Ut8zhxIImLMLJ37iFQOJNXGE2m2E2m6XnQ0NDvhs9D/A8D4PBgJKSkqD3zbKs3XOO41BcXLxgvSFzgWVZqNVq6blWq0VZWZnkAbHFdhw97VsIOJZF2b59u8eyKCaTyW660xZfxy1UY3rodBeeflnnFK3SPWTGn04L03KKlQyqP7EBJTfInTsgIpupCYD7i+BZOv9HYMI0uy+JAW78hCCC2PuBeD89iDGxwOq7g2ktEWVE1Ko6d0IoWPEmNTU12L9//xytDB1GoxFjY2Mhi29qbGyESqVCSUkJWlpaojoWLJQwDIPi4mLU1taCYRjo9Xq7sfI0jgtxjDs6OnDkyBGcP3/ea1kUrVaL5uZmAML7raSkREpREOi4BXtMLVYe+18/6zLEVyQjJR4NlXcgjmrKRQ+To8DFZsGzdOHPwOTw7L4l2YKnaMPDQnFdKntCzIGwFPmtq6uDRqOxyyyckZGBxsZGKJVKp/a2U28mkwkZGRnQ6/XQarV+9ePK47RixYqIKfJ74sQJ/O53v4NKpUJSEsVREOHDVVmUu+++O+rLogDA+/p+fObgB17b/WrP7bijMHMeLCICZmIQuPAGcPZ3wKXDwPT47L605cCGh4THyjtoOo3wSMQX+fUn3ibQeBNXJCYmRnS1dYPBgOzsbBJNRNjgeR4XLlzAkSNH0NHRgfz8fOzatQsbNmxYEIkdB8em8PIHl31q2zM84b0RMf+MGYVYpY9eA7i3AMvk7D5mlTAFt/FRYJkCCHKsKEEAYRJO3uJtdDodGIYBy7IBx5tEIwaDYd7SEBCELWJZlCNHjqCnpwerVq3CE088gcLCwgUhmLoGx/HTI+341bGrGJ30LbtzTir9gIkYhruBc68LMUuX37HP0J21TpiC2/gwkHcLsABer0RkE7YYJ09xC2JsRFVV1ZziTaKJiYkJ9PT0YNs2SqBGzB/T09P48MMP8c4778BoNGLNmjX45Cc/aZfhO5q51DOMF/7K4XcnOjFlEaISbsxdiu4hMwbHp9ylMkReupCagAgRVov3lWkmg5Ay4KPXgKsfwC53Uu7NglDa8DCQs35eTSeIsMQ4RQr+zGmGmkuXLuHll1/G17/+dWRmUlwFEVomJyeh0+nw3nvvSWVR7rrrLixbtizcpgWFtitGPP8WB+1H3dK221bL8dX7CnHfumy8ceY6nn5ZqEjgIpUhnn9CgR2b8ufP4MXE2dfc5EJSA7k3zZY6uaazP2550axnSW4/a0EQcyXiY5wIZwwGA1JSUpzyUhFEMJmYmEBLSwvef/99TExM4Oabb5bKokQ7ViuPv5zvwQt/1UulUWQy4GMbc/HVewuxZWWG1HbHpnw8/4TCKY9TXnoSnnloI4mmUCFl33b4vT50DWj4vENjmeCJ2vAwsOFTQHrBfFlJEB4h4RQhiPFNCyGehIg8XJVFufPOO6M2HtCWKYsVr524Bs3belzoForvJsTG4LEty1FxL4vC7KUuj9uxKR+lG/NcZg4nQoDVIniaPCaCALD6XuCmR4H1nwKWBreCAkEEAxJOEYDVakVHRwfuueeecJtCLDAcy6IUFxfjjjvucFkWJdoYNU/j1y0G/PQIh2szXqOliXH43O0r8dSdq5Gb5j24OzZGRikH5gOeB1pftJ+ec8c9/0AJJomIhoRTBNDT04PJyUlaUUcEDaPRiHfeecevsijRQv+IGS++dxkvvX8Fg+NTAIDs1EQ8dedqfO72lUhLouSGEYHVCnQcE3IsnX0NGOrw7biRbu9tCCKMkHCKAK5evYrY2NgFE5hLhA/HsigPPPAAiouLIzp/ma9c7R/DwSMcGloNME9bAQCrs5ag4h4Wj21ZjqR4SnAYdizTwNX3Zovojlyf3ReXBEz7kBtraW7o7COIIEDCKQIwGAzIz89HfDz9UiYCw5+yKNHGmWuDeOGvHP7w4TVYZ8Jjbi1Ix1fvLcTHbsqjmKRwIxbRPfs7ITHlWN/svsR04MaPCyvhVt8L/E8JMNQF13FOMmF13SpKyUJENtH/qboAMBgM2LBhQ7jNIKIMnudx+fJlvP3221JZlMcee2xBlEXheR7v6/vx/F/1OHJx9ov4nnXZ+Oq9LO5gM2khRTiZNgtZu0WxZFtENzljpi7cIwB7LxBn4+3coZ5ZVSeDy0QQOw5QaRQi4iHhFGaGh4dhMpkovonwGXdlUdavX4+YKC8xYbHyeOPMdbzwVz0+7BgEAMTIgE/dsgyV97K4aVl6mC1cxEyNC/Xgzv4OuHAIMA/N7luSLayC2/gIcMNd7ovobnwY2PWSmzxOB4T9BOECi9UCXY8OvWO9yE7JhiJHgdgwiWwSTmHGYDAAAAknwitiWZR33nkH3d3dWLly5YIpizIxZcGruk4cPMKhvW8UAJAYF4PdJSuw524WK+QpYbZwkWIeAS41z4ilPwNTo7P7UvOFArobH/GviO7GhwWPlLfM4QQxg/aKFgeOHUD32OzCgdyUXOzbug/KVcp5t4eEU5gxGAxgGGZBLA8nQoPFYsHJkyftyqJ84hOfWBBlUQbHp/CLo1fws3cuo2/EDABIT47HF+5YhS9suwGZS6M/qD3qmBgCLrwBnP0tcElrH9CdvkIQShseBgpKAi+iGxNLKQcIn9Be0WLvW3vBO8TF9Yz1YO9be/Hcfc/Nu3gi4RRmqLAv4Y6pqSm0tbXZlUUpKytbEKsvu4cm8LN32vGLo1cxYp4GACxLT8KX72bx6ZIVWJJIH03zypgROP8nodyJ/k3AMjm7L2O1IJY2PgwsU1ARXWLesFgtOHDsgJNoAgAePGSQQX1MjftX3D+v03b06RRGpqen0dXVhVtuuSXcphARxEIui3KpZwR1b+vxm+OzRXfX5S5F5T2FeHjzMsTHRneMVlQx2gec+70wDdf+NmCdnt2XtW5GLD0C5G4isUSEheYrzXbTc47w4HF97Dp0PTqU5JXMm10knMLItWvXYLFYyONEAHBdFmXbtm3IyMjwfnAYsVh5r2VLdFcH8MJbejR/1A2xrHjJDRn46r2FuP/GHMRQSoH5Yfi6kF/p7O+AK+8CvHV2X+6mmSK6jwA568NnI7Fo6R3rxbHrx4RH1zF0jPiWNLV3rDfEltlDwimMGAwGxMfHIzeXEr4tZoaGhvDee++hra0t6sqiHDrd5VQoN3+mUO6DN+XhrfO9eP6vehxrN0r7lRty8fR9LIpWUUHrOWG1+BZgPdgxK5aufgC7NAD5m4UpuA2PAFlr5styggAAGCeMaLnegpbrLTh2/RjaB9vt9scgBlZY3Rw9S3bK/HrjSTiFEYPBgIKCgqhfQk4EhquyKFu3bkVKSnSsIDt0ugtPv6xzij64PjiBr76sw3ImCZ0mQVDFx8rw6OblqLyXxZqcyBeEEc/Z19ws6VcLQmjgstDm7O+Azlb7YwtKZgK8HwIybphPq4lFzqB5EG3dbZJX6eLARbv9MsiwXr4eW/O2Ymv+VtyadSt2vr4TPWM9LuOcZJAhNyUXihzFfF0CABJOYYPneRgMBhQVFYXbFGKe6e7uxjvvvIPTp09HbVkUi5XH/tfPusz/LG7rNE0gJT4Gn7t9FZ66azXy06O/Tl5EcPa1mSSSDqM/dA1o+DzArAJMV2x2yIR0ARsfATZ8CkgvmE9riUXM6NQo2rrb0HK9BUe7juKc8ZyTAFrDrMFt+behJK8ExbnFSE+0z9W2b+s+7H1rL2SQ2R0rm0maqtqqmvd8TiScwsTAwABGR0cpvmkR4aosyubNm6Oy1M6xdqPd9Jw7fvgZBZQbaSo6aFgtgqfJpWSdwXQFgExY7r/xEWD9Q0Aq3QMi9IxPj+NEzwnJo3Sm7wwsvMWuzQ1pN0gepeLcYmQmZ3rsU7lKiefue85lHifVVhXlcVpMiIkvCwro199CRiyLcuTIEXAch6ysLDz66KO4+eabo7osSnvfiE/tRienvTcifMNqAY7/3H56zh27Xxa8SwQRQiYtkzjZe1LyKH3Y9yGmrfbv+YKlBdiavxUleSXYmrcVOSk5fp9HuUqJ+1fcT5nDFzsGgwHZ2dlITqbpi4XIQiyLYp624M2PevDq8U68ec79EmFbclKTQmzVAsYyBXR9CFx5B7j8rhDYbR707dhp795AgvCXKesUzvSdkTxKJ3pOwGwx27XJTcmVPEpb87Zi2dLg5J2LjYmd15QDniDhFCYo8eXCxGq14uzZszhy5MiCKIvC8zxarwzgVV0n/vDhNQxNzP6ajIuRYdrqespIBiAvXUhNQPjItBno1AlpAq68C1w9al/iBADikoHpce99LaWpOcIZf+u9WawWnDOew7Hrx3D0+lHounUYd3j9ZSZlYmveVpTkl+C2vNuwInVFVH7W+UPYhBPHcWhqagLLsuA4DhUVFWAYxmVbnU4HrVYLAGhpacHBgweltjqdDgCgUCjAcRxMJhMUivmNsPeXiYkJ9PT04Pbbbw+3KUSQWGhlUdr7RvEbXQd+c6ITBuPsB2VeWhIe2bIMj28pQHvfCJ5+WXj/uahzj2ce2uiUz4mwYXJMWPF2eUYodbQ4e4qSGGDVnUKqgRvuBLI3Av+9GRjqgus4J5mwum7VttDbT0QVvtR7s/JWXBy4KHmU2q63YXhq2K6f9MR0QSjNTL2x6eyCF0qOhE04lZeXo62tDYAgovbs2YPGxkaXbbVaLaqqqgAAtbW12L59u3SsRqNBXV0dAECpVLrtI5Lo7OwEz/PkcVoATE1NQafT4d1338XQ0FBUl0Uxjk7i9x9ew6u6TpwwmKTtSxJisWNTPh5XLMftbKYkhm7MS8XzTyic8jjlzeRx2rEpf74vIbIxDwOGo0LupcvvAp1tgHXKvs2SbEH0rLpL+Juz0bke3A71zKo6GVxK1h0HqGAuYYenem/ffOubeHzt4xieHEbL9RaYzCa7Nkvjl6I4t1iaelubsRYxsugMNwgWMp7nPSzPCA0cx9kJJwDIyMjAwMCAU1udToft27dL+ziOQ2FhIfR6PViWRV1dHXbt2gUAbj1W7hgaGkJ6ejoGBweRlpYW+AX5yVtvvYWjR4+iqqpq0Sn1hYJYFuWDDz7A+Ph41JZFmZiy4M1zPXhV14m3zvdIU28xMuDutdl4XLEcpRtzkZLg/jeWL5nDFyXjJiEuSYxR6joJOKwwQuoywZMkiqWstb6VN3GZx2m5IJo2PhzUyyCiG4vVggdfedBj6RJbkuOSochVYGveVtyWdxvWy9eHLQh7PvFHD4TF46TVaiGX28c+yOVy6HQ6p2k2hUKBgwcPSs9NJpPUXsRfwRRuxPgmEk3Rx+joKI4ePYpjx45hamoKW7ZswZ133hnxZVFssVqFuKXfHO/A7z/swrBN3NJNy9Lw2JbleHjzMp8Du2NjZLij0POS4kXBaP9MfNJ7gli6fhpO02nMSkEgiWIpY3VgdeA2Pgys/6RvmcOJRYlpwoSLpote672JPLbmMTy+9nHclHUT4mOiL0XKfBIW4SSKH0eMRqPL7WVlZdL/9fX1UCqVklgymUxoamoCIMQ/VVZWgmVZl/2YzWaYzbMrAIaGhgKwfm5YrVZ0dHTgrrvumvdzE4ETzWVRRLjeEfzmeCd+c7wTHQOzcUv56Ul4ZPNyPK5YjnW50XM9QcHXsiWuGL4uCCUxRqn3nHObzDUzMUozQokJ4vR8TKyQq4lY1JgtZuhNelwcuCg8TMLf3nH/6rfdnn87NudsDo2RC4yIWlXnTlDZ7m9qarKb4rMNKmdZFqWlpdDr9S6Pr6mpwf79+4NlbkD09vbCbDZj5cqVYbWD8A2j0Yh3330XJ06cQHx8PLZt24bbbrstasqiGEcn8frJa3j1eCdOOsQtffzmfDy+RYhbWpRFdr2VLXHEZJgRSu8IYsvo4nMme8OMN2lGKKXmhc5+YlFh5a3oHO7EBdMFXBy4iAsDwt+rw1dh5V3Xc1u+dDmykrNwsvek1/7nu95bNBMW4cQwjJN3yWg0ep1yU6lUaG5utmvHcZw0vSeu0OM4zqXXqbq6Gnv37pWeDw0NzXuA9tWrVxETExOVwcOLiZ6eHhw5ciQqy6JMTFlw+KMe/OZ4B9463yvFLcXGyHD32iw8tmU5PrYxD8kJi3hax23Zki5h+67/A3I3zUy7zXiVBq86dCID8m4GbpgJ5F65DVhCU5bE3DFOGJ08SJdMl5xSAYikJ6ZjLbMWazOEx7qMdVjDrMGS+CVSjFOk1XuLZsIinJRKJTQajdP24uJit8fU1tZCpVKBZVnJM8VxnF3guIhj/JRIYmJi2L/4DAYD8vPzo7LMxmKgs7MTR44cwblz55Cenh41ZVGsVh4tl434zfFO/OGUfdzSpuVpeGxLAR6+dRmyUyNf+IUcj2VLZrY1fhFw/BUviwWWbRa8STfcBay4DUhmQmoqEXn4mwvJE+PT4+BMnOA9mhFIFwcuon+i32X7hJgEFDKFgkCyEUrZydluY2ZjY2Ijst5bNBMW4eToDeI4DsXFxXa5mRiGkdo1NTVBoVBIoqmhoQEVFRVgWRZqtVrqR6vVoqysLKKDxQ0GA2688cZwm0HYEM1lUfS9I/iNTohb6jTN/hpdlp6ER7Ysx+NblmPtYotb8saV97yXLeGtQEwcUFAyO+224jYgcen82EhEJL7kQnKFxWpBx0iHnRfpwsAFGIYNLqfZZJChILXAThytzViLlakrERfj/9d2JNZ7i2bCko4AEMSSRqNBSUkJWlpaUF1dLQme8vJylJSUoKqqSko/YAvDMJKXSUyOyTAM9Hq9nZDyxnynIxgZGcGzzz6L8vJy3HTTTSE/H+EZnudx8eJFHDlyBAaDAXl5ebjnnnsivixK/4gZr5+8ht8c78TJjtkSHEsT4/DxTXl4TLEct69epHFLrpgcFUqXXNMJmbnb3wZGe7wf9+jzwObPht4+IipwlwtJ9No8d99zUK5Som+8z2maTW/SY8LiugxORmLGrDiaEUprmDVIiQ9+HGUwvWULDX/0QNiEUyQw38Lpo48+Qn19Pfbu3TuveaMIe1yVRbn77ruxZs2asKWI8JYLaWLKAu1H3fiNrhN/vWAft3Tvumw8tmU5lBtyF3fcEiCULek+DVw7DnQeF8RS7znnaTdf+MLvadUaAcC3XEgJMQlYEr8EA2bnfIQAkBibKEyzOcQiZSZlUmqaCCDi8zgtVgwGA9LT00k0hQmLxYIPP/wQ77zzDvr7+6WyKCtXrgzrB9eh011O2bfz05Pwz5/cCPnSBPxG14k/nurCsHk2bumWgnQ8tmU5Hrp1GbKWLtK4Jcs00Hde8CJdmxFJ3WcAy6Rz29R8YJkCWL4FyLsFeP0bwHA3qGwJ4Yop6xT6xvrQPdaNnrEetF5v9ZoLadI6iUnzJGSQYWXaSvtpNmYtVqSuIO/OAoGE0zxChX3Dg1gW5b333sPg4CA2bNiAnTt3RsTKxkOnu/D0yzqnr++uwQl87Zc6u23LmWQ8umUZHtuyHGtyFlncktUKGLlZgdSpA65/CEyNObdNlgPLtgDLFYJYWrYFSHMo//Lx71PZkjASzimjkckR9Iz1oHusWxJG4nPx//7xfpcr0Lzx9c1fx+dv+jyS45JDYDkRKZBwmiemp6dx7do1bNq0KdymLBomJibQ2tqK999/PyLLolisPPa/ftbjx7MMQFlRAR5XFOC21fLFEbfE88BghyCQrh2f8SidAMyDzm0TUoWVbss2z3iUFACzyns27o0PA7tecpPHicqWhJJAA6y9YbFa0D/R7ySCuke77baNTbsQ2y6Ii4lDTnIOclJyEBcTh9buVq/HbMndQqJpEUDCaZ7o6uqCxWIhj9M8MDY2hg8++CBiy6JYrTzOdw/jV0ev2k3PuYIH8LiiILJLmswl+zYAjPTOepFEj9Koi6zHsYlA/i2zXqTlCiBzrXMRXF+hsiXzjqdis3vf2isFWDsyNjXm0jNk6znqH++HxbEWoBtS41ORuyQXOSk50iM3Jdfu/4ykDKmYLeVCImwh4TRPGAwGxMfHIzc3N9ymLFiGhobw/vvvo7W1NaLKovA8D33vCN7X9+M9fT+OththHHURh+OGnmHP4iqs+Jt9e9wEdJ2YEUk6IYB7qMO5nSwWyN0460VapgByNgCxQc6nRWVL5g2L1YIDxw64FB7itmfeewZn+s+gb7zPThgNTw77dI4YWQyykrMkEeQohsT//V2xRrmQCFtIOM0TBoMBy5cvj/i8QNFIpJVF4Xkel/vH8L6+H+9z/fiA60fvsNmuTUpCLNbkLMWHHS6mnxzwtdjuvOMt+/bjB4H0AvspN1dlSiADstbZxyXlbQLiacoj2hmfHkfXaBeuj1zHe9fe8xpgPTQ5hJ+c+onLfclxychNybUTQKIgEr1HmUmZIRMvlAuJECHhNA/wPA+DwYAtW7aE25QFRU9PD9555x2cOnUq7GVRDMYxvM/1C2JJ34/rQ/ZeosS4GBTfkIE72EzcUZiJWwoYxMhkuEv9Jq4PTrhb24W8dCE1QcThS/btV7/i+lhmlX3gdv6tQBKtNI02eJ6HyWzCtdFruD5yHddGr+HayDVcHxX+7xrpcrs03xO359+OkrwSJ0/R0vilYV+2r1ylxP0r7qdcSIscEk7zgMlkwsjICMU3BQnHsigf//jHsWXLlnkti9I1OC6JpPe5fnQM2NeQSoiNweaVjCSUtqxkkBjn/OH6zEMb8fTLOndru/DMQxvt8jmFnclRoO+i4G3yln0bAJIygFV3zKYCyN9C9dyCRKhXpk1bp9Ez1oNrI9fQNdqFrtEuO2F0ffS629pptiyJX4L8JflIjkvGqb5TXttX3FKBkrySYFxCSIiNiY1o+4jQQ8JpHjAYDACAgoKCMFsSvfA8jytXruDIkSPQ6/XIzMyc17IoPcMT+IAz4n19H97X9+Nyv/3KnLgYGW5dMSuUFCszfEpGuWNTPp5/QuGUxykvPQnPPLQROzblezg6hIybgL4LQO95IYFk73khZ5LJsdCtFz75LHBzWUhMXMwEY2Xa2NSYJIZcCaOesR6X5UAcyUrOQv6SfOQvyceypcuQtyQPy5Ysk/5PS0iDTCajAGtiwUDCaR4wGAzIysoKW8xNNOOqLEp5eTk2bNgQ0rIoxtFJfMDNepQu9YzY7Y+RATcvT8fthZm4g81EyQ1yLEkM7O20Y1M+SjfmecwcHhJ4HhjtEwSRKI7Ex8h198elZAoJJbtPez/HUloMEWx8WZm2feV29E/0CyLIjTAadJXewYG4mDhJFInCKH9JPvKX5mPZkmXIXZKLxFjfpsYpwJpYKJBwmgco8aX/WK1WfPTRRzhy5AiuX7+OFStW4HOf+5zHsijeypZ4YnBsCh+0C0LpA64f567br+KRyYCN+WmSR6lktRxpScGbGoyNkYUu5QDPC9Nqtp4jUSCNG90fl7oMyF4HZK8Xgrez1wPZNwJLsoQYpx9sEgLBKfv2vOHLyrRv//XbiJXFYtLqfeVmanwq8pe6Fkb5S/KRlZwlLckPBhRgTSwESDiFGLPZjO7ubmzdujXcpkQFjmVRCgsL8cUvfhGrVq3yGBjqrmyJu+mu4YkptFw2Sh6lM9eG4Fi18cbcVNxRmInb2UzczsrBpCQE7TqdmGsuJLEP0xV7z1HfeaD3AuB2ObcMYFbOiCJRHK0HstYCSenuzxUTK6QciPLs25FU9HTSMon+8X70jfehd7wXfeN9ds/7x/vROdKJ/ol+j/1YeAssvAUyyJCdnD0rjGa8RLbCKDVh/lN1UIA1Ee2QcAoxnZ2d4HmePE5emJqawvHjx/Huu+9KZVEef/xxLF++3Oux7sqWXB+cwNMv6/D8Ewrcsy4bLZcHJKF0unMQFqv9EYXZS3BHYSbuYLNwGyufvxpw/uZCmp4Uyo/Yeo56zwP9F4FpNzmfZLFAZqGN52hGKGWuBRICnEKO8uzbocpgbQvP8xg0D6JvvA99E33oHet1EkPiPl+mznylqqQKn77x04gPdt6rIEEB1kQ0Q8IpxBgMBiQnJyMrKyvcpkQkZrMZLS0tUlmUTZs24a677kJOTo5Px3sqWyJu+/qvjsNq5WFxaLQqM0WaerudzURuWhjyJXnLhVT6r0Bqnn0ckpEDrNMuu0Ns4ow4cphik7NAXAg8ZlGafTvQDNYiZotZEDzjfegb65PEj6vn0+7ulQviYuKQlZyFrKQsZCVnITM5E9kp2dLznvEe/MfR//Daz3r5+ogVTQQR7ZBwCjEGgwEFBQVhzz8SaYyNjeHo0aM4evTonMqiHGs3ei1bMjWjmJYzyTMeJUEsLWPCnGDRagH+VAWPuZCa/8n1sQlLbbxHNiIp44b5Fy1Rln3blzih773/PYxMjcA4YZwVQ6IwGu/zOZO1SHpiur0YSs6W/s9KzpKepyWmeYwpslgt+Ompn9LKNIIIIyScQoiY+PKuu+4KtykRw/DwMN577z20tgoFM4uLi7Ft2zavZVEsVh7XTOO41DsCfc8I9L2j4HpHcPbakE/n/e6nNuJLd94wvwLWPAwMdgolRYauOf9vugr4kAcHORuBghJ7kZS23Hsh23kikuKERMwWMwbNg7OPyUEMmYcwaB7ER8aPvGawHjAP4J/f/WePbeJj4u0EkDsxlJmciYTY4Hj7aGUaQYQfEk4hpKenB2azmeKbAAwMDODdd9/F8ePHPZZFGTVPg+sdhb53BFyvIJD0vSPg+kYxOe05p0wMrNgacw45MKEHDI5Z18MK4df7hvy04Iom84gggNyJoqFOwOybqPPK3d+K2FxIoYwT4nke49PjkvCxFUGD5hkh5Gb7hGXu9f3WMGuwQb7BrRgS8xPNN7QyjSDCCwmnEGIwGBATE4Nly5aF25SwIZZFOX36NJKTk3H//fejuLgYxgkeus5R6Ht7oO8dmRFKox6n3RJiY7A6awkKc5agMHsp2OwluCFzCb76chu2jBzBd+NfwjLZ7PL6a7wc35t6EidT7/GvbMnk2KwoGux0/f+Ej4G8ielA+nLBQ5S2TKjdlrZMeD58HfjtVwEAFgC6pET0xsYi22KBYsIMyWcQobmQfI0TsvJWDE8OuxU6g+ZBDE0OOQugySG/4oMciZHFID0hHemJ6UhLTJP+n5iegPaq1uvx37ntOxEbwEwr0wgifJBwCiFiwsaEhBAuYw8yc8mFZEtnZycO/+WvOHr8FMwxiUhbtQnd6Svx1+NmcH9+C2OTFrfHZi1NAJu9FIXZgkASH8szkl3a8kJRJ2597wewAGixER+bx434cfwPcFLBzh43NT4jfjpdeIlmRNG4j/W1EtNmRZAkjpbbC6VED1OQVgvw5vegnTbhQCaD7rjZt2Pu9DT29ZugjMsIWy4kK2/FxPQExqbHMDY1Jv0dnx7HyNQIvvf+97zmE1oSvwTDk8Mu2/lKfEw80hPTXYogp+02z5fEL3EZL7RQMljTyjSCCA8knEKIwWDA2rVrw2rD5PQ0fnnyLVwduo6VaXn47K33ISHO9W0/dLoL33vtJDItzUiJ68PYdBb6Y0vx3YdvdVv6g+d59I6Yoe8ZxaWeYejOXETLB+/i6uV2jMqSkViwEfHZN0DWEQt09ErHxcXIsDIzxUYYLZHEkl/5kqwWbDlzAM1LkqHOzHASH6r+AZS2VAFcHTDcBYx5zoEjkbDUxku0HEgrsPl/5jHXwrQxsdBufRJ7L/3C6eu7JzYWe3My8dyaz0HpgxdhyjoliZqx6TGMT407CR5Xf8enxz3umwsW3oKhydnpyuS4ZHuhk5DmUQiJbZLjkoM6JUZxQgRBzAUZzzum/ZsfOI5DU1MTWJYFx3GoqKgAwzB+t/WnH0eGhoaQnp6OwcFBpKUFtzp7d08XPl35IPJvSUTm8qVYnboRo1ODSE/ORh6zGo/eW4mEBCFP0OSkGb/9qwY9Q1eRk7bSbp8rfG3//SON+PmF/wc+bnZaSTadjs+v+zv8w93ldm0Pne7CT1/7Z/Tlvo++uNlf6VnTVmR134EnP/k9rM9LnZlWG5X+cr0jGBqfwvTANUwYzsAy3IvYJRlILLgJ8VkrkJ6cgDU5S2em1ma8SDlLsVKegvhYB28AzwtFZCdMgtdHejg8t90/fB1afgR7c7KErz+bL1jZzEv7uZ4+KMdsREB8igcv0YxYSkoPWvC1xWrBpHUSk5ZJmC1mmC1mTFomMTY9hr89/LcwTrjP3p0Sl4KPr/64e0E08/+UdSootnqyIyU+Rfo7MT2By0OXvR63t2gvHip8CGkJaUELkA4WruKz8lLyKE6IIBYh/uiBsAmnoqIitLW1ARDEj0qlQmNjo99t/enHkVAJp2/9ZAd+36uH8R0TmLsZxCY7/3KVT1vxmPzjAIDfGP8Eo41YEfc9sWOf03EvHzrgU/sff/A6Gq88B4C3FwA8D0CG8lV78bXbHwIgTM99s06F0xnH3IoP9noRTpkfRUziEpuurJjqM2Cy8wyWWEZQULACW++4E1tvuRE3pvO4YekkMjAC2YTJs/ix3eenALAAeHDFMnTHxroUOjKeR67FgteWP4bpmx6FeWkmJuOSYJ4RMhOWCSdBY/vX8X93+2z/OvY5lzgdf4mTxQkCRxQ5NoInOT7ZSQDZ7Y9LtjtObJ8Ul+Q05dVyvQVPvfGUV3t+9uDPIno6KRJXBBIEMf9EvHDiOA7l5eWS4AGAjIwMDAw4x5Z4autPP64IhXD61k924M9xHRg5O4K+P/cjaVWS39MMYuutSTeiaP12aXvbucM4NnHeaVrHsb3FasVPT/wU0zGuRYgMQKw1Hjmyj2N8yoqh8QkkpjZjzE0skwxAipVHzvDNePyBYqzJ4DHW24EL3BWMjgyhMDsOW1fFI3/pOKbNI5ieGsGUDJiSyTANGaZkwLRMhinIMC1ulwFTkNn9Py0T2k7FxGI6LhlT8YmYikvEdGwCpuISMBUbh+mYOGF/TCymZDIYxwdwcbLPr/ENJ3GyOCTEJiAxNtFpKssdpatKsTl7s0+CZ76SHvoaJ3Ro5yESIgRBRDz+6IGwxDhptVrI5farnORyOXQ6HRQKhc9tW1tbfe5nPhgZHYI2rgMAkJCfiKQVSWBKGMSmuvniEDWrK2HF87hm7cFNKxNg5S0wT46jM60HGTEZbttf5XswNvE+xmQjSNvuvQZV6uT7yOaBKdk0ridkwlPebMuwBVeOfog64yWMfTQFy5gFifmJWFK0BPEZMrwACwSJlTrzCAYWAGMAPwZMQXgEgaTYJEm8iH9t/7fd5kubhNgEuz49tYuLmX3L+eq1+cz6z0Sc14bihAiCWKyERTiZTCaX241G51gPT2396QcQynuYzWbp+dBQkPLszPBfr3wN1hlRI4uRQRbrxdPkyRMlk2E0Fvht50uz2zz1J5PBLAM6U674bG9vgriyzbtHzNxlxkj7BKangZQ1KWDuYBCXNvvyiZPFIF4Wh7iYOMTHJiAuJn7mbxziY+IRHxMv/e/ub3xsPOJkcfZ/Hds4HHdl6AqeP/m8V/t/9MCPcMeyOxAfEx8xWdwVOQrkpuRG7eouyidEEMRiJKJW1bkTQv62dbevpqYG+/fv988oP+g1dwEz8a8xCTGQxcow2Dq3wp050xakWa0YiZHhupvVcLasnuKRIJPhvA93djNSkc+sgHHciKPm6x7bTnZPoqTgRqiffR4sy0oiRhQw4RIjFqsFr158FT1j3S4XvMsA5Kbk4a7ld0Wc92MheG0onxBBEIuNsAgnhmGcvEJGo9HlajhPbf3pBwCqq6uxd+9e6fnQ0FBQs3pnJ+YDfA8AIDYlFpnKTFgnPWe79sY3snfhobu+hNfeewn/1f0rr+2fyv0cdqzaiCfe24e+2BjwbgKmsy1WHNx2AAk3bINlehKfbvwY+mPgtn2WFXjlC4cgz8ye0/UEG3vxgagTHwvBa0P5hAiCWExEVHB4e3u7k+jx1NZoNPrcjyuCHRw+MjqEOxu3wQr4tpTdQ4yTjOeRZeFx6PM6JCQkYnLSjAd/rkB/rMy9uBHbx8Xhjz+8CfsYQRfzLlbJHTBN4xPfOCMVhNW+U4O9l37htv1zaz4H5V3V3q8pTET70nJa3UUQBBE+Ij44nGVZu+ccx6G4uFgSOzqdDgzDgGVZj21diSzbfuabpUvSoJwuwJ/jOgRR5Ek82ehVGc+7FCufznpUys+UkJCIz2Q9ih8N/M6n9p/4WC3if18JtUNG6hyLBap+E0o/pZFEEwAo76rGcwAOXPgFum2+r3OtgGpdZIsmIPqnjMhrQxAEER2ENQGmRqNBSUkJWlpaUF1dLQme8vJylJSUoKqqymtbT/u8Eco8Ttq4DilQ3BXZ01Z8OutRAMCv+n5rl3RS3FfxyL87HVf3u3/0vf3Z1zB9SIXjk/1SGZItCVmI23EA2PiwS7ss05PQnfo5eoeuIjttJRQ3fx6xcZGVuJAgCIIggknE53GKFEKZOXxkdAj/9crX0DPRCQBhyRwOQKiHduU9YKRbKBa7apudp4kgCIIgFjsknHwklMKJIAiCIIjowB894Fw6nCAIgiAIgnAJCSeCIAiCIAgfIeFEEARBEAThIyScCIIgCIIgfCSiSq7MN2JcfLBr1hEEQRAEET2IOsCX9XKLWjgNDw8DQFDLrhAEQRAEEZ0MDw8jPT3dY5tFnY7AarXi2rVrSE1NDXqRWrEOnsFgoFQH8wiNe3igcQ8PNO7hgcY9PIRy3Hmex/DwMJYtW4aYGM9RTIva4xQTE4OCgoKQniMtLY3eWGGAxj080LiHBxr38EDjHh5CNe7ePE0iFBxOEARBEAThIyScCIIgCIIgfISEU4hITEzEM888g8RE9zXniOBD4x4eaNzDA417eKBxDw+RMu6LOjicIAiCIAjCH8jjRBAEQRAE4SMknAiCIAiCIHxkUacjCBUcx6GpqQksy4LjOFRUVIBhmHCbFZXodDpotVoAQEtLCw4ePCiNpadxDnQf4YxKpUJ1dTWN+zyh1WrBcRxYlgUAKJVKADTuoYTjOGi1WsjlcnAch7KyMmn8adyDh06nw549e9DW1ma3PRRjHNLx54mgo1AopP/1ej1fVlYWRmuiG7Vabfe/7dh6GudA9xH2tLW18QD4gYEBaRuNe+hobm7mKyoqeJ4XxohlWWkfjXvosP2c4Xleugc8T+MeLBobG6XPE0dCMcahHH8STkFGr9fb3TCe53mGYcJkTXTT1tZmN3Z6vZ4HwOv1eo/jHOg+wpnGxkaeZVlJONG4hxbbseZ5YdzEvzTuocNxjGzFK417cHEUTqEY41CPP8U4BRnR3WuLXC6HTqcLk0XRi0KhwMGDB6XnJpMJgDCensY50H2EPU1NTSgrK7PbRuMeOjiOg9FoBMMw0Ol0MJlM0nQRjXtokcvlKCoqkqbsSktLAdC4zwehGONQjz8JpyAjfrk7YjQa59eQBYLtF3d9fT2USiUYhvE4zoHuI2YxmUwu4wFo3EOHTqeDXC6X4jLq6urQ1NQEgMY91DQ2NgIACgsL0djYKH3u0LiHnlCMcajHn4LD5wl3N5LwDZPJhKamJqegQlftgr1vMdLQ0ICKigqf29O4zx2j0QiO46QfBxUVFcjIyADvIdUejXtw0Gq1UKvV4DgOlZWVAACNRuO2PY176AnFGAdr/MnjFGQYhnFStaL7nQgclUqF5uZmaRw9jXOg+wgBrVaLXbt2udxH4x46WJaVxgqA9Fen09G4hxCO49DS0gKlUomKigro9Xo0NDSA4zga93kgFGMc6vEn4RRkxKXDjhQXF8+zJQuH2tpaqFQqsCwLk8kEk8nkcZwD3UfM0tDQgLq6OtTV1YHjONTU1ECn09G4hxAxnskVNO6hQ6fToaSkRHrOsiyqq6vpc2aeCMUYh3r8aaouyDh++HEch+LiYvqlESBNTU1QKBSSaBKnkBzH03acA91HCDh+6FRWVqKystLlFzuNe/BgWRbFxcVSfJmYy0mhUDi1pXEPHgqFAhqNxi6esr+/n8Y9hNjGUHr6zozUz3mqVRcCOI6DRqNBSUkJWlpa7JIHEr7DcRwKCwvttjEMg4GBAWm/u3EOdB8xi8lkQl1dHVQqFSoqKlBZWQmFQkHjHkJMJhNUKhWKiorQ1tYmeVoBer2HEq1WK02JAsKPBxr34KLVatHc3Iza2lpUVVWhpKREEquhGONQjj8JJ4IgCIIgCB+hGCeCIAiCIAgfIeFEEARBEAThIyScCIIgCIIgfISEE0EQBEEQhI+QcCIIgiAIgvAREk4EQRAEQRA+QsKJIAiCIAjCR0g4EQQx72i1WhQWFqK2thZ1dXUoKipCUVGRlHCzsLAQOp1uzucQ+yQIgggWVHKFIIh5x2Qyobm5WcrO3NzcDLlcjoqKCgDA7t27wXGcy7IXvqJUKrF79+6g2Dsf2JahIAgiciGPE0EQ847RaPRY1FahUDhVN1/IcByHhoaGcJtBEIQPkHAiCGLe2bVrV1DaLBTUanW4TSAIwkdIOBEEMe/4MiXV2tqKoqIi1NbWAgCamppQWFgIrVYLYDZOqrKyEk1NTairq0NlZSVMJpPbPrVaLWpra9HU1ASVSuW2HcdxUKlUUr9inzqdTjq+trYWHMdJ/XqzVYy30mq1qKurQ3l5ubSvtbUVzc3NqKurk/okCCIyoRgngiAiEscYpbKyMtTX19vtLysrQ2ZmplRlvampCeXl5WhubnbqTxRDbW1tAITpQrFSuy0mkwmlpaVoa2sDwzBQqVSoq6tDWVkZVCqVXd9FRUU4fPiwT7YqlUo0NzejsbERANDY2AidTiftKywslGK8CIKIXEg4EQQR1dh6r8rKylBeXu4y0Fqj0UAul0teIABoaWlx6q+hoQEsy0rHV1dXAwBqamqcgtVZlkVDQ4NPgiczMxOZmZl2di+mOC6CWCiQcCIIYtGgUCigVCql564Ej6Pomu+VbrS6jiAiG4pxIggiYmEYBv39/dJzrVbrFMNk+7ypqQlKpdJOeIj7d+/ebedtEvtzpKyszCmHlFardXm8Tvf/27mD2oaBKAigUwbBYAhOwiAcgiAYVoEQCFagZBlYMoRgWAbpqVarVtWe0lZ97+zD7G3k/3eXdYm9J2uPrzIBv8fL4/F4/HQI4H+qteZ+v6+3ykop2e1260istZZSyrpIPU1TWmuZpinDMKSUktbaOp6b5znn8zmbzSbLsuR0OiVJrtdrxnFMrTW32y37/T5JPpWs97m++q7WmmVZMgxD5nnO8Xjsytpa+5Dlbd9qHMf17JfLJdvtNofD4dunGoCfpTgBf9bbK+OWqoFnMaoDAOikOAF/Uq01tdb1Wj/AMxjVAQB08scJAKCT4gQA0ElxAgDopDgBAHRSnAAAOilOAACdFCcAgE6KEwBAJ8UJAKDTKzXclV0R5ZYiAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -857,9 +857,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4MUlEQVR4nO3dXWwr6X3n+Z/8djoGfFSibmKjj9OniATIhSc5pITJxQ7WsIrJYI3BAG5SWuxNAmyLtDHAYtbrkEcLLMa9F9Yh7d1gFhi4q04vxrnwAhLZnR3M+iLDOh0vei881mG1kwbWFwlL7WnHATo5VEk9m/Rpu7v2QqkKSfGlSFEiJX0/wEE3WVXP82fxofjnU089z1IYhqEAAAAw1kfmHQAAAMBVQeIEAACQEIkTAABAQiROAAAACZE4AQAAJETiBAAAkBCJEwAAQEIkTgAAAAmROOEM3/dVqVS0srKidDo9ct90Oq2VlRVVKhUFQXA5AWJheJ6nXC43tp0Ak4raVjabnXcoVwKfxctD4oQzTNNUtVrVzs6OOp2OPM8buJ/ruspkMtrc3FS1WpVhGJcbaB/Hcc48V6lUVCgU5hDNqUExXSeZTEaVSmXi4y7rvMz7/V8Ei3YOhsXT3yaitjXtD7IgCOQ4jnK53MDttVpNjuPIcRzVarWZbx/motr+tJ9FTI7ECUMZhqHNzU3Ztj1w+6L1MDWbzTPP5XI5bW1tzSGaU4Nium5SqdTEx1zWeZn3+78IFu0cDItnUJuYpm1Jp70v+/v7CoJAnU7nzPYo0SkWiyoWi8pkMiqVSjPbPspFtv1pzxcmFAJD2LYdtlqt0DCMM9uOjo7CVqsV5vP5sFgsziG6XrZth5lMZt5h9FjEmC5Cq9UKTdNMvP9NOS9IblibmLRt9avX6wPLNQwjPDo66nmu++vwvNuHuei2f97zhWQ+Nue8DQsuk8kolUqp0Wgon8/Hzz9+/FiWZQ09rlaryTRN+b4v0zTjY6Puc9M01Ww2VSqVlMlkJJ1e+ou6mh8+fCjf9+X7vp48eaJqtTq0Ltd11Ww25ft+/EuwXC7L8zxVKhX5vq92uz20jk6no1arJdu25TiOUqmU9vb2tLOzE8c27nUljam/HOl0TFn3tlH6u/mLxeLYMqd9zdFxqVQqvrQSBMHY96M/nu5zlfS8jDu/kSAIVKlUlM1m1Wq1lE6nlclkZNu2dnZ2zrz/jUZDu7u78n1f9XpdlmXJ933lcjmZpinbtmWa5tDYp2mf3a9NOu3JTaVSMk1TnU5HlmUNbKuVSkWO46harQ58nwfFZpqmSqVS3KuxtbV1ptxx5zr6fAZBIN/3ZRhGT/3dGo1GfE5s25bv+/Fl+3q9rlQqpY2NDQVBoHq9Hr+u/s/kqDYhnfYgTXq+h/F9X0EQDBxa4Lpu/Nqn3T7s7+Ikf6f63/uL+CxKk73X6DLvzA2Ly7btMAzDsFwuh/l8vmdbvV4PwzAc2OOUz+fj7WEYhpZlha1WKy6r3W7H20zT7Pnl1mw2Q9M0w2az2bNPdPwwzWYz8S/WYXWUy+We19df3qjXNUlM+Xy+p+52ux1aljXi1Z2qVqtnYux+H0aVOe1rrtfroaSe96xcLve854PO8ahzNeq8THJ++485Ojo6E8eo979btVpNHPs07bNYLPacs3a7HWYymZ5yBsVlWVb8ORwXW/T+NZvNsNVqxe/tJO9PvV7vqa/dbvc8HsS27Z62NqiddrefYe/JsM+vYRgTn+/uuvvLbTabA3uHDMMI6/X6ubePMux1JnnvZ/1ZnOa9xinGOGGsUqmkRqMRj2nyff9MT0zE9/0zvVOFQiEeJ+X7vlzXjbeZptnzOJVKyff9nl9t0S+lWRlWR7dMJtNT57jXlZTneWd+lUY9D93noV/Us7KzsxM/t7e3J9/3E5U5zWuWTntHMplMz747OztyHGfoezLNuZr2/DYajbgtGoYR90qMYlnWmZseot6DcXFM0z6jXtbunoHoV363QeNTuns1xsVmGIY8z5NlWcpkMkN7IsaVU6/X49hM09Ta2trQ1yZJm5ubZ9puo9GI/7/T6Zxpa5MIguBC/x5EUqnUwPFQs9o+ru5+/T1aF/FZnPS9xiku1WEs0zSVyWS0v7+vYrEoz/NGXqIyDKPnD2m73Y4/2FF3fdQ13Ol0zvyx6f8jaxjG1H+QhhlUx6jbeMe9rqQeP3488EskunQ5rJv/8ePHMgyj549pdC6j7vZxZU76moeJ4vA8b2C905yrac9vJpM5k4Ak+ZIuFouybVu2bct1XW1ubiaOY9L2GZU56ItwEtPENmk5+Xxetm1rZWVFmUxGW1tbYy8jR1/o0Rd0dxJ6noQpchl/DySNLfO82y/CeT6L07zXOEXihERKpZJs21axWBz5Bz8IApmm2ZMAdP+/53na3d1VLpfT5ubmTP6wDjKrP9qRca8raUznubV6mm3zMOm5is7LNOe3VCppd3dXDx8+lOM4iXsAS6WSstlsPC4nqmsW7/Msdb+3SWJLkoyNK6fZbMa9mNH5HPeFurW1pb29PWUyGa2trcW91JZlTXX+Zv357Tas3Oi8nHf7JEa9zll8ri/ivQbTESChzc1NeZ6nRqMxsjt30OUe6fQDHASBNjY2tLOzEydg3Zf/ZmnY3FPTGvW6koouowwqx/d9ra+vj6x/UF3RZYxpypxW9F4Ou1w76bnyPO9c5/fhw4dyXVf5fD7xwFbTNOObHrovk8zife4XvXfTlNHdizGr2EaVE918kMlkVC6X1Wq1tLe3N7bMfD6vRqMRz+0W9WYM62EdZ9af326macaXdftZlnXu7ZMY9TqT9GCd57M47XsNEieM0H0XjmEYsixLe3t7I3/VWpaltbW1njEOkrS/vx/3LHR/yKM/DqP+gCT5Yuge9zBqDNa0dYx6XZPElMlkZFlWT9d59NpH3UEW3QnTPdFeEATa39+fusykX7ie5/Xsu7u7q2KxOPQLcdy5GnRepjm/ktRqtWQYhvL5/MRf0KVSSdvb22d+jU8ax7jzaJqmisVizx2Rg8Zi9Y/diS5nR+VPe476jSqn+wu1O65xosv50d+M6JikbWySz+8kieKw5GNnZ6fn89JoNHqS7vNuH2bY6xz33kdm+Vmc9r2GuKsOZ7Xb7bBYLIaSwmKxGN/F0X0X19HRUVitVkPDMELTNMNqtdpzd1y5XA5t2+45Jnq+XC6HzWYzbDabYbvdju/6iOaFkhTf5RTVkclkxt6xEpUd3RkyqLxRdViWFd+RFO1TLpcTva6kMfWXY9t2zx1IScqrVqtn7ogZVeZ5XnN0F1B0N1G1Wu25A63/uEHxDDpX485L0vMb3WkUtcNMJjPy/e92dHQ0dA6yQXHMon3ath23/f676qLyove3Xq+H+Xw+NE3zzGeoP7ZmsxlalhUahhFWq9X4MzvqHAwqJ2o/0XP9n+tRqtVqz91u3XFExsUz7vOb9Hy32+2wWq2GmUwmbpv9+3ef50GfwfNuH2ZY2x/33s/6s3ie9/qmWwrDMLz8dA3AVRDNH9NqteYdyhlBEGh7e1sPHz6ML/tG6ywWCoWFn48mm82qWq3OdQwVro5F/izeNFyqA3AlOY6jUqkUXzqO7u6qVqt8uQC4MCROAK6kTCYTT8nQzXXdoQu7AsB5MR0BgIFc11W1WpXnearVagt3m3J0iat/qZkkS7XMW61Wk+d58SSVXK7DKIv+WbxpGOMEAACQEJfqAAAAEiJxAgAASIjECQAAICEGhw/x4Ycf6mc/+5k+9alPaWlpad7hAACACxKGod5991195jOf0Uc+MrpPicRpiJ/97Ge6c+fOvMMAAACX5O2339azzz47ch8SpyE+9alPSTo9ibdv355zNAAA4KKcnJzozp078Xf/KHNLnHzfV6PRiBc3LBaLQxePHbWv53nxYosHBwfx8guT1tEvujx3+/ZtEicAAG6AJENz5pY4FQqFeFkE3/e1vb09cBbgcfu6rhtPBlar1bSxsRHvO0kdAAAA48zlrjrf93sem6YZ9xpNsq/nedrd3Y235fN5eZ4n3/cnqgMAACCJuSROrusqlUr1PJdKpeR53kT7ZjIZPXz4MH4+CIJ4+yR1AAAAJDGXS3VRgtOv0+lMvG/3mlR7e3uyLEuGYUxUx7Q+/PBDvf/++zMrD7hKPv7xj+ujH/3ovMMAgEu1UHfVDUt2kuwbBIEajUY8pmnSOp4+faqnT5/Gj09OTkaW8/777+vw8FAffvhhoniB68gwDP3yL/8yc50BuDHmkjgZhnGm56fT6Qy84y3pvpVKRc1mM35+kjokaXd3Vy+++GKi+MMw1F/91V/pox/9qO7cuTN2sizgugnDUH/7t3+rd955R5L06U9/es4RAcDlWArDMLzsSn3f77njTZJWVlZ0eHh4JrFJsm+tVlM+n5dpmnGPUqfTSVyHNLjH6c6dOzo+Pj4zHcHPf/5z/cVf/IU+85nPaHl5ecqzAFx9T5480TvvvKNf+7Vf47IdgCvr5OREy8vLA7/z+82lq8Q0zZ7Hvu9rbW2tZ26m6K64cfs2Gg1lMpk4adrf35dhGGOP63fr1q14zqZxczd98MEHkqRPfOITSV8ycC198pOflHT6YwIAboK5jXGq1+uqVCpaX1/XwcFBz/xKu7u7Wl9fj+dnGrZv1BvVzTAMFYvFsXXMAuM6cNPxGQBw08zlUt1VMKrb7r333tPh4aHu3r2rZ555Jn7+ufvfu9QY33rwxcT7ep4n27blOI7K5bLS6bTa7bZ831epVJJlWTOJyXEcVSoVPXr0SJlMZiZlXrZsNqudnZ34jk3HcVSv19VsNic+9rob9lkALtpl/72d1iR/pzE/k1yqW6i76nBxMpmMqtWqHMfRzs5OfMkyCAKtrKyo1WrNJNEpFosz7dkLgiDxMjmzUq1Wtba2Fj+2LOvMpd+kx15Vf/bTINF+4S/e1ztHf6cXXv2+/vLdDy42qAH4UgJw2bgd7IaLxoPt7e3NO5QzfN/X/v7+pdcbzQUWMU0zcY9c/7EAgOuFxAnqdDpKp9PzDuOMarU67xAAAOhB4nSDBUGgSqUiy7JULBbluq7S6bQcx5HjOMpms5JOx0fVajU1Gg3VarUz6wB6nqdKpaJGo6FGo9Ezf5bruspms6rVapJO74JMp9M96wb6vh8f7ziOgiCQ67p6/Pixms2mHMc5U2d3+VFslUqlJ6ZSqRTH1Gg05Hne2Hg8z1M2m5XjOPE5KpVKPYnlsPPRf2xUl+M4cl1XjuOcuZkBAHC1MMbpBnIcJx6zUyqV4v+3LEuWZanVasm2baVSqTip6R4Ync1m9ejRo3hpm0KhoHa7HW/vXnjZsixtbW3Fj/P5fM9lwSAIlMvl1Gq1ZBiGKpVKPIDdsiyl0+n4Lsl+UWzRXF2dTke1Wk3FYlEbGxs9c3atrKzo0aNHY+PJZDI92w3DkG3bWllZ6alz0PnoPzY6n81mMx73Va/X43UWAQBXD4nTDVQsFoeOwzEMQ6urq5JOk4pKpXLmS940Te3v76tYLGp/f//M9v7FlUfZ39+XaZpxPDs7O4mPjZK77t6rg4MDGYZxZqzRrAZs27Y98nz0W11djc+nNHhGewDA1UHihDOS3kE2C/13zQ1L6IbdXZfJZHoGbheLxfhSGQAAs8YYpxtoXI9H9/atra2eHh3pdCzP5uampNPLUZ7n9WzvH49kGIaePHkSP3ZdN14aJ5/Pnzm+v75hzw2KzXVdbW5ujoxpVDyRYYtBjzsfo44FAFx99DjdEJ7nxWN5qtWqSqXSmUtOruvKdV15nhffgh/N/1Sr1WSaZjwDe9T7Y5pmPEN7LpeLe4Z2d3dVrVZlmqY2NzdVqVTihMOyrPiSl2masm07nuE92i6djr+K5p4aNB1AFFv/sYZhDIwpMiqeIAi0t7enVCoVr384qM5B5yM6x9GxUVlRHb7vxxORmqZ5qT17AIDZYObwIaaZORyLK5fLqVqtTj0oe2VlRUdHRzOOanFNNAHmz36qr//JO0yAiUvFzOGYJWYOB/pMMyDbcRy1222VSqVrMRs4AOD8GOOEay+aB8q27YnGH1mWpdXVVTUaDdm2fXEBAgCuDHqccO0Vi8Whc0GNYpqmyuXyBUQEALiq6HECAABIiMQJAAAgIRInAACAhEicAAAAEiJxAgAASIjE6QZyHEeVSkWO46jRaMh13fiW/UXluq6y2eylrUOXzWbVaDQupa7z6o/VcRzlcrmpjgUAjMZ0BLP09eVLru944kNyuZwKhYKq1Wr8nOd5yuVyarfbs4xupizLGrjsykWpVqtXZtLL/lgty0q8nMtVep0AsAhInG6QWq0mSWfmNMpkMlPNc3TZVldXL62uy0zSzqs/1knWwbtKrxMAFgGJ0w2yu7urhw8fDtxWKBQuORoAAK4exjjdEL7vKwiCoT0R3Zd3PM9TrVZTo9FQrVaLxz51jzOKxkUVCgX5vh8fUyqV4jJd11U6nVapVFKj0ZDjOCqVSvGyJ9F2x3HkOI6y2Wz8fFR/pVLpiTMIgp66uw06bljM3eVF26LjPM87M55q0nMyzLDX5nlefJ6if57nxeVHvYWNRkPpdFqu68bHdccaBIFKpZLS6fTY2PuP7X4tP3j9+2p89zv62pd/b+hrAYCbiB4n9PB9X5VKRc1mM34um83q0aNH8TijZrOper0uSarX62o0GiqXy8pkMkqn0wqCQIZhyLIs5fN5ra6uKp/PSzr94i8UCmo2m3F5rVZLtm0rlUrF9bdaLUmni/PWarV46ZODg4P4/+v1ujzPUyaTGXncoJij4xzHUSaTiS9ZdTodZTIZbW1tneucROUPOrf9MRaLRW1sbOjw8FCGYUiSVlZW4vK7Y8nn89rb24sf98dqGIZs29bKysrY2PuP7X4t/9MfnPZMNr/37/TjN/9Uv/653xjSYgDgZiFxuiGi3iTf9898oUfPp1Ip2bZ9Zrtpmtrf31exWNTq6mrPWCPDMHp6sQzDUKfTiROA6LlIPp9XoVCIkyvDMOLy8vm8KpWKUqlU3KMinSZLkfX19TN1SYoTr0HHDYo5Oi6fzyubzco0TW1tbQ0c6zXNOYnK7y9nUIxRktl9nmY1YHtc7P36X8unbi/rODiaSSwAcB2QOF1hf/bTYKL9f+8r/53+l//t3+jXfuvsgOBm83XlvvjP9c677/WU/Y+eNcaW2/2FP43+y4fdPUDS2cHsw0xzXCqV0tHRkTzP097eXtwbdlEGxXhZUywAAM6PMU43yH//P74oSWp89zs9z58c/8O0Bv/0n31J//H/+b97tnuep83NzaHlRmOWkmxvNBpnele6e2e2trZ6emQknXk8yLTH7e7uxr1w1Wq1J64o7kFljzsnk8S4ubkpz/N6nu+eU8swDD158qTnmP5zPuw9SBL7uPcPAPAP6HG6Yez/44/0b7/9r/UH3/hXuvMrd7VsnI6FyX3xn0uSfv1zv6F/ufN1/dtv/2s9+9nn9F3//1W9XpdhGHGvjHQ6HiYaFC6d9qS4rivf91WtVnuSkHa7HX/ZHxwcxGOBXNeV67ryPE+macqyrDiBqVQq8WU5y7KG1m3btkzTnPq41dVVua6rVCqlTqejra2t+JhUKqV8Ph+XXavVZJpm/BpGnZOo/O7etGExGoaher2uSqWiXC4XX8aMbG5uqlKpxAmQZVnxJbggCHpiHdR7Ny726NioLEn6lc/9Y/30P72lH7/5p2p89zt69rPP6dlfee48TQ8AroWlMAzDeQexiE5OTrS8vKzj42Pdvn27Z9t7772nw8ND3b17V88888xU5U96mW1eklyqG6VSqSidTl+JeaIWSS6XU7VaHTgeLYmVlRUdHU0/Nilp+wx/8b7e+dlP9fU/eUd/+e4HU9c3rbcefPHS68RieO7+9+YdQiK00ath1Hd+P3qcgAU0aHD5OI7jqN1uq1QqMRs4AFwQxjjhwkSX4qLb85FMtG6gbdsTjT+yLEurq6tqNBqybfviAgSAG4weJ1yYaI4mTKZYLE51adM0zXiOKwDAxaDHCQAAICESJwAAgIRInAAAABIicQIAAEiIxAkAACAhEqcb4gevf1//8/1/qd+4s6I/+Ma/0g9e//7EZTiOo5WVlUuZWuAy6+qWzWbVaDR64sjlclMdCwC4fpiOYIY+94efu9T6vrvxeuJ9f+uffF7PfvY5vfLdP9R/+y++qtvLyxPXVywW4+VSLtpl1tWtWq32TB5pWdaZZUySHgsAuH5InG6Q23+/Lh2Gsyyr53H/enOTHAsAuH64VAcAAJAQidMN9oPXv6//+r/6vBrf/Y5+8Pr31fjud/S1L/9ezz6e56lSqajRaKjRaJxZQ811XdVqNTUaDVUqFUlSo9FQNptVOp2WJNVqNaXTadVqtaHHJKmr36hySqVSXE6j0ZDneXJdV9lsNo6j0WgonU7Ldd34uGw2K8dxJElBEKhUKsWvI9onqrNWq8n3/YHHRnU5jiPXdeU4jgqFwtj3BACw2LhUd4P91j/5vP7x6/+lfvD69/Wtl74jSWp+79/px2/+qX79c7+hk+Nj/W6hoHa7HR+zu7sb/7/v+6pUKvGyKp1OR7VaTeVyWZZlaWNjQ0EQyDAMtVotGYYx9JhisajCiLr6jSpnY2NDh4eHMgxDkrSysqJHjx7JsixtbW3FZeTzee3t7cWPM5lMz3bDMGTbtlZWVnrqbDab8T7ZbFaPHj06c6xlWbIsS81mMx6rFa3Zl8lkRrwrAIBFRuJ0wxkrKRkrqfjxp24v6zg4kiT9h//rj858yadS/7CvbdtKpVJxj40kHRwcnJZrGHr48KGy2azq9XqcxAw7xjCMkXX1G1WOZVlxfZJmNmDbtu0zMZqmqf39/YFry62urmp1dTV+bBjG2F40AMBiI3HCuWQymZ5B0d0JRJQM7e3t9SQcg46JLnGdt+5pygEAICnGON0gJ3/fk5TUb/0Xnz8zj1I0pkeStra2enp8JMWPgyCQ67qq1+vyfT+e32jYMZZljayr37ByNjc3R5ZjGIaePHnSc0wQBD379z8eVafnedrc3Bx7LADgeqDH6Yb4wevf13/43v8pSfrf/83/qn/6z74kSfrjf/9Hkk6TpJ/+p7f04zf/VI3vfkfPfvY5Pfsrz6ler6tSqSiXy8XjlXZ3d1WtVpXJZFStVlWpVLS+vi7pdGyP4ziqVqsqlUqSpPX1dW1vb8v3fZXL5YHHGIYxsq7+KQGG1T2snMjm5qYqlUqcAFmWFV+CC4JAe3t7SqVSyufzQ+us1WoyTVMHBwfxZUjP83qOjcqK6vB9X57nybbtiaY4AAAslqUwDMN5B7GITk5OtLy8rOPjY92+fbtn23vvvafDw0PdvXtXzzzzTPz8Ik+AOa1/9Kxx4XVctFwuFyd601hZWdHR0WS9dVfdn/00SLRf+Iv39c7Pfqqv/8k7+st3P7jYoAZ468EXL71OLIbn7n9v3iEkQhu9GkZ95/ejx2mG3vzdNxPvm/SLCec3zYBsx3HUbrdVKpWYDRwAEJvbGCff93vmwxk1NmTcvtEcOv08z4vHu0SXSnCzOI4j3/dl2/ZE448sy9Lq6qoajYZs2764AAEAV8rcepwKhUI8B4/v+9re3h66NtmofRuNhkzTHJgU2bYd32VlWdZc1j7DfBWLxYFTBYxjmqbK5fIFRAQAuMrmkjj13y1lmuaZu5WS7pvP54fWk81m47Ep3QOEAQAApjGXS3Wu656Z3DCVSg3sNZpk30EMwyBpAgAAMzGXHqdhY00GDeKdZN9Bx0bzBx0cHKhUKg29Dfzp06d6+vRp/Pjk5GRs+dyQiBsvDCWF+pCPAoAbYqHuqptk8G6SfYvFYtzbZJqmcrlcz1po3XZ3d/Xiiy8mqvujH/2oJOn999/XL/3SLyU6BriOwl+8r59/EOrovQ/nHQoAXIq5JE6D1uzqdDoDL6lNsm8/3/fjuXtM05Tv+/J9f2Cv087Ojr761a/Gj09OTnTnzp2B5X7sYx/TJz/5Sf31X/+1Pv7xj+sjH5n8imf4i/cnPmYe3nvvvXmHgDkY2z7DUOEv3tdR52/0yP/Peu8XdDkBuBnmkjhFszX3GzRfziT7dvM8TxsbG2cmLhy2cOytW7d069atkWVGlpaW9OlPf1qHh4f6yU9+kuiYfu8c/d1Ux122T/wdPWo30fj2GernH4R65P9nvfrj/+9SYgKARTCXxKm/x8f3fa2trcW9SJ7nyTCMgUtT9O/brXt5DdM0Va1W422u6yqfz89soPgnPvEJ/eqv/qref3+6nqMXXv3+TOK4aI/+h8/POwTMwbj2+WEoHb33IT1NAG6cuY1xitYTW19fj9f8iuzu7mp9fT2eR2fUvq7rqtls9hwXJUhra2uq1WoyDEPtdnvm8zh95CMf6VlyZRLzWJ5iGtO+PlxtV6V9AsBlY626ISZZt2YarLOERUb7xKKjjWKWJvnOn9uSKwAAAFcNiRMAAEBCJE4AAAAJkTgBAAAkROIEAACQEIkTAABAQiROAAAACZE4AQAAJETiBAAAkBCJEwAAQEITr1X31ltvqV6vq9ls6ujoKH4+lUopl8spn8/rueeem2WMAAAAC2GixOn+/ftaWlrS5uamfv/3f//M9jfeeEMvvfSSlpaWtLu7O7MgAQAAFkHixOmb3/ymdnZ2tLy8PHSfe/fu6d69ezo+PtbOzg7JEwAAuFYSJ06DepiGWV5eJmkCAADXztSDw+/fv6+XX35Zx8fH+u3f/m1tbW3p1VdfnWVsAAAAC2XqxGl9fV0vvPCCHMdRNpvV3t6enjx5MsvYAAAAFsrUidPKyookaX9/X1tbW5JO76wDAAC4riaejiDSbrcVhqHa7bZ+8zd/U4eHhz3TEwAAAFw3U/c4bW5uyvM8tVotHR8fy7ZtBUEww9AAAAAWS6Iep+PjYx0dHfVMbLm8vNxzp92DBw96jjk5OZEk3b59ewZhAgAAzF+iHqfl5WU1m83Ed8298sor2t/fJ2kCAADXSuIxTtvb23rjjTe0ubmpdDqt9fV1maYpwzAUBIF839cPf/hDHR4eqlQq6fnnn7/IuAEAAC7dRIPD7927p/39fR0fH2t/f18//OEPFQSBDMNQOp1WqVTS3bt3LypWAACAuZrqrrrl5WVtb2/POhYAAICFNvVddQAAADcNiRMAAEBCJE4AAAAJkTgBAAAkdK7E6Zvf/Ga8Tt2jR4/iSS8BAACuo6kTp/v378swDFmWJUna2NiQ67ozCwwAAGDRTJ04ra+va3t7W6ZpzjIeAACAhTV14nR4eChJWlpaip87ODg4f0QAAAALaqoJMKXTWcTX1ta0urqqZrMp13VVrVZnGRsAAMBCmbrHaWNjQ/V6Xffu3VMYhnIcR1/4whdmGRsAAMBCmbrHSZLu3r2rBw8exI9PTk50+/btcwcFAACwiM41HcHJyYneeuut+F+lUplVXAAAAAtn6h6nL3/5y3JdV4ZhxM8dHh7q29/+9iziAgAAWDhTJ07pdFovvfRSz3MPHz48d0AAAACLaupLddHEl91yudy5ggEAAFhkU/c4rays6Fvf+pZM05RhGAqCQHt7e9rb25tlfAAAAAtj6sSpXC4rCIKeMU5vvPHGLGICAABYSFMnTrlcTtvb2z3PvfLKK+cOCAAAYFFNPcYpnU4neg4AAOC6mLrHqd1uy7Ztra+vS5LCMNT+/j7r1QEAgGtr6h4n27Z19+5dhWGoMAwlKf4vAADAdTR1j1O1WtXGxkbPc4OmKAAAALguzrXIb7+VlZVzBQMAALDIEvc4vfrqq7IsK17E9+WXX+7ZHgSBms2m/viP/3i2EQIAACyIxD1O3/jGN/T48eP48UsvvaSjo6P4XxiGevLkyYUECQAAsAgS9zh1J03S6bp09+7d63lukjFOvu+r0WjINE35vq9isdgzmeYk+3qep+3tbbVaranrAAAAGOdcS65Ejo+P5bqustls4uMLhUKc6Pi+r+3tbdXr9Yn3jRIjz/POVQcAAMA4Uw8Od103/v/l5WU9//zzPc+N4vt+z2PTNIceO27ffD6vTCZzrjoAAACSmKjH6fj4WPv7+1paWlKz2TyzvdVq6YUXXhhbjuu6SqVSPc+lUil5nncmCZpk31kcBwAAMMxEidPy8rIsy1K1WlW73dbdu3d7tpfL5UTlBEEw8PlOp3Oufc9z3NOnT/X06dP48cnJycjyAQDAzTPxGKe7d+/qpZde0qNHjwbO5XQew5Kd8+6b5Ljd3V29+OKLU5UJAABuhplOgJmUYRhnen46nc7AO94m2fc8x+3s7Oj4+Dj+9/bbb499HQAA4GaZOnE6j2HTFqytrZ1r3/Mcd+vWLd2+fbvnHwAAQLe5JE6mafY89n1fa2trcW+Q53nxXXHj9u3WfRlukuMAAACSmHoep/Oq1+uqVCpaX1/XwcFBz/xKu7u7Wl9fjwebj9rXdd34Dr/ouHw+P/Y4AACASS2FYRjOqrC33npLzz333KyKm6uTkxMtLy/r+Pj4Qi7bPXf/ezMv8yK89eCL8w4Bc0D7xKKjjWKWJvnOP1eP049+9KOeAdi2bWtvb+88RQIAACysqROnzc1NBUHQM2bojTfemEVMAAAAC2nqxCmXy2l7e7vnuVdeeeXcAQEAACyqqe+qS6fTiZ4DAAC4LqbucWq327JtW+vr65KkMAy1v7+vg4ODmQUHAACwSKbucbJtW3fv3lUYhopuzJvhDXoAAAALZ+oep2q1embZlWGzdQMAAFwHM1ur7rXXXtPh4eG5AwIAAFhU55rH6dVXX42XRgnDUI8fP9aXvvSlmQQGAACwaKZOnO7fv68gCNTpdGSapoIgUKlUmmVsAAAAC2XqxCmdTmt7e1uHh4daWlrSc889p9dee22WsQEAACyUqRMn0zT1k5/8RHfv3tW3vvUtfe1rX5tlXAAAXH1fX553BMl8/XjeEVwZUydOQRDINE0dHR3pb/7mb/Q7v/M7MgxDX/jCF2YZH+aNDz0WGe0TwCWbOnF6/vnn9cEHH0iSHjx4oEePHmltbW1mgQEAACyaqacjkKRvfvOb2traih8vLS2dOyAAAIBFNXXidP/+fRmGEU96ubGxIdd1ZxYYAADAopk6cVpfX9f29rZM05xlPAAAAAtr6sQpmiW8+/IcC/wCAIDrbOrB4ffu3dPa2ppWV1fVbDbluq6q1eosYwMAAFgo51qrrl6v6969ewrDUI7jMBUBAAC41s61Vt3du3f14MGDWcUCAACw0BInTklmB3/55Zf1wgsvnDsoAABweT73h5+bdwiJvPm7b847hOSJ0ze+8Q01m82R+zx+/JjECQAAXFuJE6eNjQ2trq4qm80O3ScMw5kEBQAAsIgSJ071el3Hx8d6/PixpNN5nG7fvt2zTyqVmm10AAAAC2SiweHLy8va2NiQJL3xxhvqdDpaWlqK76Z7/vnnZx8hAADAgjjXPE6R1157Tc1mU7lcjikJAADAtXWuRX5/9KMf6Stf+Yry+byazaZ8359VXAAAAAtn4h6nt956S/V6XbZta2lpSc8//7xarZbu3r17EfEBAAAsjMQ9Ti+//LLW19eVzWbl+77q9br+/M//XA8ePIiTpldfffXCAgUAAJi3xD1OxWJR+Xxe9+/fl2EYOjo60muvvRZvPzo60oMHD/SlL33pQgIFAACYt4kSp1qtNnKupr29vZkEBQDXCbMyA9dH4sSpVCqdmbep387OzrkDAgAAWFSJxzh1Tz9wnn0AAACuqnNNRwAAAHCTkDgBAAAkROIEAACQEIkTAABAQiROAAAACZE4AQAAJETiBAAAkBCJEwAAQEIkTgAAAAmROAEAACRE4gQAAJAQiRMAAEBCJE4AAAAJkTgBAAAk9LF5Vez7vhqNhkzTlO/7KhaLMgxj4n1HbfM8T5KUyWTk+76CIFAmk7mEVwcAAK6juSVOhUJBrVZL0mnys729rXq9PvG+o7bZti3HcSRJlmUNLR8AACCJuSROvu/3PDZNU67rTrzvuHKy2ayOjo4kaWhvFgAAQFJzGePkuq5SqVTPc6lUKr60lnTfJOUYhkHSBAAAZmIuPU5BEAx8vtPpTLTvuHKCIFCj0ZAkHRwcqFQqyTTNgcc8ffpUT58+jR+fnJwMiR4AANxUcxvjNMiwRGjSfaNt3QPFTdNULpdTu90eeMzu7q5efPHFxPUDAICbZy6X6gzDONO71Ol0Bl5SG7XvuHK6x0BFd931j4uK7Ozs6Pj4OP739ttvT/HKAADAdTaXxMmyrIHPr62tTbTvqG2e52ljY+PMtv4xUZFbt27p9u3bPf8AAAC6zeVSXf84I9/3tba21jP/kmEYMk1z5L79PVTd20zTVLVajbe5rqt8Ps9AcQAAMLW5jXGq1+uqVCpaX1/XwcFBzxxLu7u7Wl9fV7lcHrvvsG2GYWhtbU21Wk2GYajdbjOPEwAAOJelMAzDeQexiE5OTrS8vKzj4+MLuWz33P3vzbzMi/DWM//NvENI5HN3PzvvEBJ583ffnHcIidA+Z4v2OXu00dm66W10ku981qoDAABIiMQJAAAgIRInAACAhEicAAAAEiJxAgAASIjECQAAICESJwAAgIRInAAAABIicQIAAEiIxAkAACAhEicAAICESJwAAAASInECAABIiMQJAAAgIRInAACAhEicAAAAEiJxAgAASIjECQAAICESJwAAgIRInAAAABIicQIAAEiIxAkAACAhEicAAICESJwAAAASInECAABIiMQJAAAgIRInAACAhEicAAAAEiJxAgAASIjECQAAICESJwAAgIRInAAAABIicQIAAEiIxAkAACAhEicAAICESJwAAAASInECAABIiMQJAAAgIRInAACAhEicAAAAEiJxAgAASIjECQAAICESJwAAgIRInAAAABIicQIAAEiIxAkAACAhEicAAICESJwAAAASInECAABI6GPzqtj3fTUaDZmmKd/3VSwWZRjGxPtOuw0AAGBSc0ucCoWCWq2WpNMEZ3t7W/V6feJ9p90GAAAwqblcqvN9v+exaZpyXXfifafdBgAAMI25JE6u6yqVSvU8l0ql5HneRPtOuw0AAGAac7lUFwTBwOc7nc5E+067bZCnT5/q6dOn8ePj42NJ0snJycD9z+vDp397IeXO2slSOO8QEvng7z6YdwiJXFR7mjXa52zRPmePNjpbN72NRuWG4fj3a25jnAYZluxMuu8023Z3d/Xiiy+eef7OnTuJY7qOlucdQGI/nncAiSx/5eqc0avg6pxN2udNdXXOKG1Ukt59910tL4+uYy6Jk2EYZ3p+Op3OwDveRu077bZBdnZ29NWvfjV+/OGHH6rT6Wh1dVVLS0sTvDqMcnJyojt37ujtt9/W7du35x0O0IP2iUVHG70YYRjq3Xff1Wc+85mx+84lcbIsS7Ztn3l+bW1ton1N05xq2yC3bt3SrVu3ep5j6oKLc/v2bT70WFi0Tyw62ujsjetpiswlcTJNs+ex7/taW1uLExXP82QYhkzTHLlvf2KTdBsAAMA05jbGqV6vq1KpaH19XQcHBz3zK+3u7mp9fV3lcnnsvtNuAwAAmNRSmGQIOTAjT58+1e7urnZ2ds5cGgXmjfaJRUcbnT8SJwAAgIRY5BcAACAhEicAAICESJyuOMdxlMvlEu2bzWbVaDQuOKLkPM9TqVTS0tKSKpWKHMdRpVJRoVBgXcFrhDaKRUb7xKQY43TF+b4v3/dlWdbYfV3XXbgpGYIg0MrKio6OjuK4oudarZYymcx8A/z7eBbpnF01tNGLRxudHu3z4l239kmP0xVnmmaiD7x0OpnoVWi80Rxee3t78w5Fvu9rf39/3mFcabTRi0UbPR/a58W6ju2TxAkLqdPpKJ1OzzsMVavVeYeABUUbxSKjfV6chVrkF5MJgkCVSkWu66rdbks6vebtuq5M05Tv+8rn8zJNU57naXt7W6VSScViUa7rqlKpqFQqxfs2m82Rk4QOKztJWa7ryvM8maapg4ODoR+mIAi0u7sry7JULBaHHuu6rkqlkiqViiTJtm21Wi35vi/btrW+vq5Op6PNzU0ZhjG0jFFxu66rx48fx2seWpZ1ZiZ7jEYbpY0uMton7XMqIa48wzDCMAzDdrsdWpbVsy2TyYRHR0dhGIZhtVoNbduOt5XL5TCfz8ePLcsKW63WwDrGlT2qrHa7HWYymXibbdthtVoNwzAMj46OQklhtVoN6/V6WK/Xw3a73VPvsGOLxWJYLBbDMAzDer0eHh0dhaZp9sRUrVZHljHuHJTL5Z5zhunQRmmji4z2SfucBD1O14ht22cGApqmqf39/fiXR7fV1VWtrq7Gjw3DiH8ZTFr2qLJs21Yqleq5y+Pg4KCnrGKxOHDswKhjDcOI68zn83IcR6ZpxuXs7OxIOl3CZ1gZk5wDnB9tlDa6yGiftM8kSJxwKTKZTM8AzEF/hKY5trvbt//Oje7/P0/9w8rH9UIbxSKjfS4OBodfI1tbW2fm7vA8T5ubm/HjIAgurOxJju1/POwXyrhju4/L5/PyPO/MvknqT4J5Uc6PNkobXWS0T9pnIvO+Vojzi67Ph2EYNpvN+Fp3uVyOrzW3Wq0wk8mElmWF7XY7fpzJZMJWqxXW6/XQNM0wn8/3XB/vNq7sUWU1m82wXC7H1+CPjo7CVqsVlsvlUFJYLBaHjg0YdGyz2YxfT7PZHLnvqPrHxd1ut8NisRjatj30vGA82ihtdJHRPmmfk2ACzGsgmvwMWFS0USwy2icmwRinK8pxHLXbbZVKJa2trc07HOAM2igWGe0T06LH6YryfT9eMymaCwRYJLRRLDLaJ6ZF4oR4YchHjx5d2rpGnufJtm05jqNyuax0Oq12uy3f91UqlRIvgQAAV10QBHr8+PHCrYOHwUicIEnK5XKqVquXuiAki1NiHkn7LPED4GZL2n4bjYY6nY5M01QQBMrn8/G2IAi0vb2tarWqQqGgVquVuH7a35zMb1w6FsmoGW8vSjTjbXTXRsQ0zbBcLl9qLIO02+1rN+PtIkrS9vrbyEWbpL5B7Th67rI/U8Nc9vm7Sca132azGc/OHYbhmbZSr9d7ZgHv/m8StL/LxzxOWDgsTolul726+izqY3V6RJrNpnK5XPy43W739GL7vh8/NgyD9ncFcFfdFdZoNOIPWrvdjr/okywY6Xme9vb2tL6+Lmn45Gnd+1/24pTzWpgyivlaLk55BVWrVWWz2StX3yL9ALjM84fRxv0dof0tPhKnK6xQKKjdbsuyLJVKJTUaDeXzeVmWJcuyepKBer0uz/OUyWQUBEF8bGR3d3doPb7vq1KpqNlsxs9ls1k9evRobF3RsdF1+06no1qtpnK5HJcVrY8kqSeZGXacZVlqtVrxGkxBECiXy6nVaskwDFUqFTmOo3w+P7KMYTFLil9XOp2eammB6+6ykvZBCWy0Sv3m5mZPEl2v1/X48WMVCgU9fPhQhmHMZDV3z/NUqVSUyWRUr9cVBIGy2azy+fzAHwGsTr/4LrP9ep4n3/fjtd0cx4nHRHme1/N31TRN2t8VQOJ0hUWDqn3fV6fTke/78bZRCy/u7++fGciYSqWG1jOPxSlZmHKxXVbSPiiBjf5wr66uKpPJqFKpyLZtGYYhy7Limxy6B9omTZqH1dfpdOKyouS8P6Ee9ANA0lx/BPADYLDLbL/NZlPr6+vxgPDuJU0ymUx8GS96f2h/i4/E6Qrb3d3V6urqws9BMu3ikIuyMOWgOm66y0rahymVSioUCiqXywqCQL7vx7d0b25uzjxpLhaLWllZkW3b8n1/4ISJrE5/dcy7/U6K9rdYSJyuqKjbNOrmDYJAq6urcl137C2o0a/ybt1/OPptbW1pe3u75znP8/Tw4cOxcQ46tj/GTqdz5gM/7rj+hSlt2z6zb5K6k3Jdt+cW4ptuXkl7lMBGdUa/3re2trS/v69UKhW3pVmv5l4sFuU4jlKp1MRtYVF+BPAD4NRV+dFJ+1tM3FV3RUUTpbmuK9d1VSgUdHBwoCAI4mvwe3t78jxPjUYjnu/D932Zpql6va5KpSLXdePr/bu7uwMTqEwmo2q1qlqtpkajoUqlonq9Ho8hGVVXdGylUlGj0VCj0dDa2po8z4u7uKvV6pkVuYcdF73eer0e//oxTVO2bZ/Zd1Tdo2KOlEoltVotOY5zJecYuihR0l4ul+N5aaLnx4nGbHQblbQPqjtSKpW0vb2tfD6vYrHYkzxfxGrupVJp5J2WrE5/Ncyj/U7bA0P7W1Dzng8BwNVydHQU5vP5sNlsxv/y+XxYr9cTrZYerejebDbDer0eZjKZkSvKD1td/ejoqGd+nHw+33PcRazm3l8Hq9NfPZfZfrvf46g8wzDCYrHY8/5ZlhXW6/UwDGl/VwEzhwNAQtEgYmAeaH+LgTFOADBCNBA9lUpxyRaXjva3eEicAGCEQqEQj4PhiwuXjfa3eLhUBwAAkBB31QEAACRE4gQAAJAQiRMAAEBCJE4AAAAJcVcdgGunVqvJMAylUql4tnzmvwEwC9xVB+BayWazqlarPetqVSoVSRq5ZAUAJEHiBODaqFQq8n1f9Xr9zLaVlRU9evSIuXAAnAtjnABcG7VaTblcbuA2y7LihaUBYFokTgCuhWiV+rW1tYHbTdOMV353XVfZbFa1Wk3S6Rpg6XS6Z/V213VVq9XUaDTiS32u6yqdTstxHDmOo2w2Gx9bKBQkSUEQKJ1Ox8cAuF4YHA7gRlhdXVWn05F02vu0tbUVb8vn89rb24sf+76vSqWiVqslSep0OqrVaiqXy7IsS61WS7ZtK5VKKZ/Pq9PpxPsahqFKpaJisXiJrw7AZaHHCcC1YJqmpH/oeerXbreH9kb1i5Ii13XjXqiDgwNJp4lROp2WpPhOvWKxqP39/bj+pPUAuHrocQJwbRSLRTWbzTihiaYikE4vs01yV10mk+m5M6+7Bykqs79ux3HiXigA1xM9TgCuDdu29fjxY3mep0ajoVQqpUajoVqtJsuyehIawzD05MmT+LHruvEq9FtbWz3jnaLtkeiSX7dSqcR0B8ANwHQEAK6dWq2mdrutbDarZrOp9fV1lctlBUEgwzAknQ7irlQq8aBu27YVBIFs25ZpmnJdNz5WOh0X9fjxY1UqFaVSKVUqlZ4eKUkqFAoDp0IAcH2QOAG41jzPk+u6KpfL8QDvi9JoNLhMB1xzJE4Arr2VlRUVi0V5nqdmsznTskulkgqFglKplAzDGDj+CcD1weBwANdeNHD7Ii6jFQqFeGwUs5ID1x89TgAAAAlxVx0AAEBCJE4AAAAJkTgBAAAkROIEAACQEIkTAABAQiROAAAACZE4AQAAJETiBAAAkBCJEwAAQEL/P4ZoO+0AGSyuAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFnCAYAAABQEsaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABAh0lEQVR4nO3dT4wj2X0n+G+6pc22ACUjmYYgCSptVdCXOWjGFSQxWuwIo1UG7YWFvaiDmQNfbGCbpIQF9lAzZlSerL6IRbawt4U7InsB+aBDMqJ7djDog5aRbQG6CMpktGwdhIXNqPK0LBgNFxnJnpE71eqOPeTGM4N/I5jM5J/8foBEFRnvH4OPyV++ePHeVhAEAYiIiIhopt9adgOIiIiI1gUDJyIiIqKYGDgRERERxcTAiYiIiCgmBk5EREREMTFwIiIiIoqJgRMRERFRTAyciIiIiGJi4ERTeZ4HXdexu7uLTCYzNW0mk8Hu7i50XYfv+7fTQFoZruuiUCjM7CdESYV9K5vNLrspa4GfxZvFwImmkmUZ9XodR0dH6Ha7cF13bDrHcaAoCg4ODlCv1yFJ0u02dIhpmiPP6bqOYrG4hNZcGdemTaIoCnRdT5zvts7Lst//VbBq52BSe4b7RNi35v2DzPd9mKaJQqEw9nij0YBpmjBNE41GY+HHJ7mpvj/vZ5HiYeBEsUiShIODAxiGMfb4qo0wtVqtkecKhQIODw+X0Jor49q0adLpdOI8t3Velv3+r4JVOweT2jOuT8zTt4Cr0Zdmswnf99HtdkeOh4FOuVxGuVyGoiioVCoLOz7NTfb9ec8XxRAQxWAYRtButwNJkkaO9Xq9oN1uB5qmBeVyeQmtizIMI1AUZdnNiFjFNt2EdrsdyLIcO/1dOS8U36Q+kbRvDbMsa2y5kiQFvV4v8tzgV+N1j09y033/uueLJvvEkuM2WiOKoiCdTsO2bWiaJp4/Pz+HqqoT8zUaDciyDM/zIMuyyBsOn8uyjFarhUqlAkVRAFxd+guHmo+Pj+F5HjzPw/Pnz1Gv1yfW5TgOWq0WPM8TfwlWq1W4rgtd1+F5HjqdzsQ6ut0u2u02DMOAaZpIp9M4OTnB0dGRaNus1xW3TcPlAFdzygaPTTM8zF8ul2eWOe9rDvOl02lxacX3/Znvx3B7Bs9V3PMy6/yGfN+HruvIZrNot9vIZDJQFAWGYeDo6Gjk/bdtG7VaDZ7nwbIsqKoKz/NQKBQgyzIMw4AsyxPbPk//HHxtwNVIbjqdhizL6Ha7UFV1bF/VdR2maaJer499n8e1TZZlVCoVMapxeHg4Uu6scx1+Pn3fh+d5kCQpUv8g27bFOTEMA57nicv2lmUhnU5jf38fvu/DsizxuoY/k9P6BHA1gpT0fE/ieR583x87tcBxHPHa5z0+6fdikt9Tw+/9TXwWgWTv9Z237MiN1oNhGEEQBEG1Wg00TYscsywrCIJg7IiTpmnieBAEgaqqQbvdFmV1Oh1xTJblyF9urVYrkGU5aLVakTRh/klarVbsv1gn1VGtViOvb7i8aa8rSZs0TYvU3el0AlVVp7y6K/V6faSNg+/DtDLnfc2WZQUAIu9ZtVqNvOfjzvG0czXtvCQ5v8N5er3eSDumvf+D6vV67LbP0z/L5XLknHU6nUBRlEg549qlqqr4HM5qW/j+tVqtoN1ui/c2yftjWVakvk6nE3k8jmEYkb42rp8O9p9J78mkz68kSYnP92Ddw+W2Wq2xo0OSJAWWZV37+DSTXmec937Rn8V53uu7jHOcKJFKpQLbtsWcJs/zRkZiQp7njYxOFYtFMU/K8zw4jiOOybIceZxOp+F5XuSvtvAvpUWZVMcgRVEidc56XXG5rjvyV2k48jB4HoaFIytHR0fiuZOTE3ieF6vMeV4zcDU6oihKJO3R0RFM05z4nsxzruY9v7Zti74oSZIYlZhGVdWRmx7C0YNZ7Zinf4ajrIMjA+Ff+YPGzU8ZHNWY1TZJkuC6LlRVhaIoE0ciZpVjWZZomyzLyOVyE18bABwcHIz0Xdu2xf+73e5IX0vC9/0b/X0QSqfTY+dDLer4rLqHDY9o3cRnMel7fZfxUh0lIssyFEVBs9lEuVyG67pTL1FJkhT5RdrpdMQHOxyuD4eGu93uyC+b4V+ykiTN/QtpknF1TLuNd9briuv8/Hzsl0h46XLSMP/5+TkkSYr8Mg3PZTjcPqvMpK95krAdruuOrXeeczXv+VUUZSQAifMlXS6XYRgGDMOA4zg4ODiI3Y6k/TMsc9wXYRLztC1pOZqmwTAM7O7uQlEUHB4ezryMHH6hh1/Qg0HodQKm0G38PgAws8zrHr8J1/kszvNe32UMnCixSqUCwzBQLpen/sL3fR+yLEcCgMH/u66LWq2GQqGAg4ODhfxiHWdRv7RDs15X3DZd59bqeY4tQ9JzFZ6Xec5vpVJBrVbD8fExTNOMPQJYqVSQzWbFvJywrkW8z4s0+N7GaVucYGxWOa1WS4xihudz1hfq4eEhTk5OoCgKcrmcGKVWVXWu87foz++gSeWG5+W6x5OY9joX8bm+iff6ruKlOkrs4OAAruvCtu2pw7njLvcAVx9g3/exv7+Po6MjEYANXv5bpElrT81r2uuKK7yMMq4cz/OQz+en1j+urvAyxjxlzit8Lyddrk16rlzXvdb5PT4+huM40DQt9sRWWZbFTQ+Dl0kW8T4PC9+7ecoYHMVYVNumlRPefKAoCqrVKtrtNk5OTmaWqWkabNsWa7uFoxmTRlhnWfTnd5Asy+Ky7jBVVa99PIlprzPOCNZ1Povzvtd3FQMnimXwLhxJkqCqKk5OTqb+VauqKnK5XGSOAwA0m00xsjD4IQ9/OUz7BRLni2Fw3sO0OVjz1jHtdSVpk6IoUFU1MnQevvZpd5CFd8IMLrTn+z6azebcZcb9wnVdN5K2VquhXC5P/EKcda7GnZd5zi8AtNttSJIETdMSf0FXKhWUSqWRv8aTtmPWeZRlGeVyOXJH5Li5WMNzd8LL2WH5856jYdPKGfxCHWzXLOHl/PB3Rpgnbh9L8vlNEihOCj6Ojo4inxfbtiNB93WPTzLpdc5670OL/CzO+17fWcuenU6rrdPpBOVyOQAQlMtlcRfH4F1cvV4vqNfrgSRJgSzLQb1ej9wdV61WA8MwInnC56vVatBqtYJWqxV0Oh1x10e4LhQAcZdTWIeiKDPvWAnLDu8MGVfetDpUVRV3JIVpqtVqrNcVt03D5RiGEbkDKU559Xp95I6YaWVe5zWHdwGFdxPV6/XIHWjD+ca1Z9y5mnVe4p7f8E6jsB8qijL1/R/U6/UmrkE2rh2L6J+GYYi+P3xXXVhe+P5alhVomhbIsjzyGRpuW6vVClRVDSRJCur1uvjMTjsH48oJ+0/43PDnepp6vR65222wHaFZ7Zn1+Y17vjudTlCv1wNFUUTfHE4/eJ7HfQave3ySSX1/1nu/6M/idd7ru2grCILg9sM1Ilo34fox7XZ72U0Z4fs+SqUSjo+PxWXfcJ/FYrG48uvRZLNZ1Ov1pc6hovWxyp/Fu4CX6oho7ZmmiUqlIi4dh3d31et1frkQ0UIxcCKitacoiliSYZDjOBM3diUimgeXIyCimRzHQb1eh+u6aDQaK3ebcniJa3irmThbtSxbo9GA67pikUperqNpVv2zeBdwjhMRERFRTLxUR0RERBQTAyciIiKimDjHaQ4ff/wxfvnLX+LTn/40tra2lt0cIiIiuoYgCPD+++/j85//PH7rt6aPKTFwmsMvf/lL3Lt3b9nNICIiogV699138YUvfGFqGgZOc/j0pz8N4OoE7+zsLLk1REREdB39fh/37t0T3+/TMHCaQ3h5bmdnh4ETERHRhogz/YaTw4mIiIhiWtqIk+d5sG1b7ARdLpfFdglJ0rquK3amPjs7E3tVzcqXpH4iIiIiAMCydhdWFEX8v9PpBJqmzZV2cEfocAfsOPmS1D/s4uIiABBcXFzEzkNERESrKcn3+lJGnDzPizyWZVmMGiVJ67ouarWaWHJe0zTouj6SZzhfkvrn9dFHH+HDDz9caJlE6+KTn/wkXnjhhWU3g4ho4ZYSODmOg3Q6HXkunU7DdV0oipIo7fHxsXje931xvNlsTsx3fn4eu34AuLy8xOXlpXjc7/cnvrYgCPAP//APoi1Ed5UkSfjsZz/Ltc6IaKMsJXCaFFR0u93EaQc38Dw5OYGqqpAkaWq+JPUDQK1WwyuvvDL22LAwaPrMZz6DT33qU/zSoDsnCAL86le/wnvvvQcA+NznPrfkFhERLc5KLUeQZJRmOK3v+7BtG+12e+46Jh07OjrCo0ePxONwvYdhH330kQia9vb2praDaJP99m//NgDgvffew2c+8xletiOijbGUwEmSpJHRnW63O/autrhpdV1Hq9USz0/Ll6R+ANje3sb29vbM1xXOafrUpz41My3Rpgs/Bx9++CEDJyLaGEtZx0lV1bHP53K5udI2Gg3oug5ZluH7Pnzfn5ovSf3z4OU5In4OiGgzLWXESZblyGPP85DL5SJrM0mSBFmWZ6a1bRuKooigqdlsjl2TaTDftGM35f7jt26s7HGePfn6rdZHRER0FyxtjpNlWdB1Hfl8HmdnZ7AsSxyr1WrI5/NimYFJaT3PQ7FYjJQrSRLK5fLMOqYdu2tc14VhGDBNE9VqFZlMBp1OB57noVKpTByhS8o0Tei6jtPT07F3L66DbDaLo6MjcVOCaZqwLAutVitxXiK6vtv+o3Qe/EN2s2wFQRAsuxHrpt/vI5VK4eLiIrJX3QcffICnT5/iwYMHePHFFyN5Vn3Eyfd97O7uotfriZG38Ll2u72wQKdQKKBery+kPN/3b321d8dxIqOTnufB87xYweVw3nXy17/wE+cJfvNrvPfLX+Dbf/ke/v79jxbfqDH4BXX3MHCiRZj0vT4O96qjicLLpScnJ8tuygjP89BsNm+93nC5i5Asy7FH5IbzEhHR+mHgRFN1u11kMpllN2NEvV5fdhOIiOgOYuBEY/m+D13XoaoqyuUyHMdBJpOBaZowTRPZbBbA1fyoRqMB27bRaDRGtrNxXRe6rsO2bdi2HVkGwnEcZLNZNBoNAFcT/TOZTGT7G8/zRH7TNOH7PhzHwfn5OVqtFkzTHLvFTlh+2DZd1yNtqlQqok22bYvNoqe1x3VdZLNZmKYpzlGlUokElpPOx3DesC7TNOE4DkzTHJmvR0REq2elFsCk5TNNU9zJWKlUxP9VVYWqqmi32zAMA+l0WgQ1gxOjs9ksTk9PxertxWIRnU5HHK/VauL/qqri8PBQPNY0LXJZ0Pd9FAoFtNttSJIEXdfFBHZVVZHJZMSNAMPCtoULona7XTQaDZTLZezv7+Pp06fistnu7i5OT09ntkdRlMhxSZJgGAZ2d3cjdY47H8N5w/PZarXEjQmWZU3c9oeIiFYDAyeKGLeUQ0iSJLEierih8vCXvCzLYkmIZrM5cnx4j8Bpms0mZFkW7Tk6OoqdNwzuBkevzs7OIEnSyFyjRa3fZRjG1PMxbG9vL7LC/LiFWYmIaLUwcKJEhtfVuknDd81NCugm3V2nKEpk4na5XBaXyoiIiObBOU4UMWvEY/D44eFhZEQHuJrLc3BwAODqcpTrupHjw/ORJEnC8+fPxWPHccSegZqmjeQfrm/Sc+Pa5jgODg4OprZpWntCk/Y0nHU+puUlIqL1wBGnW7LK63i4rivm8tTrdVQqlZFLTo7jwHEcuK4rbsFXFAX1eh2NRgOyLIuFRMPRH1mWxUKjhUJBjAzVajXU63XIsoyDgwPoui4CDlVVxSUvWZZhGIZYqDQ8DlzNv6rX6zBNc+xyAGHbhvNKkjS2TaFp7fF9HycnJ0in09A0bWT0bdr5CM9xmDcsK6zD8zyxEOm4FfOJiGg1cAHMOcyzACatrusuyhkuHLrJuAAmrSougEmLkGQBTI440Z03z4Rs0zTR6XRQqVQWNrmciIhWH+c40Z0WrgNlGEai+UeqqmJvbw+2bcMwjJtrIBERrRSOONGdVi6XJ64FNY0sy2ITaiIiujs44kREREQUEwMnIiIiopgYOBERERHFxMCJiIiIKCYGTkREREQx8a662/Lt1C3XdzFXtnB9okwmg3Q6DUmS4HkeVFVd2dWsHceBruuoVCpz3SGXVDabxdHRETRNu/G6rmu4raZpwrIstFqtxHmJiIiBEw0oFAooFouo1+viOdd1USgU0Ol0ltiy6VRVHbvtyk2p1+trs+jlcFuTBMDr9DqJiG4LAycCADQaDQAYGbFRFOVWRnGua29v79bqus0g7bqG25pkH7x1ep1ERLeFgRMBAGq1Go6Pj8ceKxaLt9waIiKi1bS0yeGe56HRaMC2bTQajanbXcxK67oustnsSD7btuH7/tiyXdeF67qi/PD/d5HnefB9f+JIxODlHdd1I++F53kAruYZZbNZmKYJx3FgmiaKxaI4t41GA5VKRZTpOA4ymQwqlQps24ZpmqhUKuK9Co+bpgnTNMX76ziOqF/X9Ug7fd+P1D1oXL5JbR4sLzwW5gv7mmmaIl3SczLJpNfmuq44T+GP67qi/HC00LZtZDIZOI4j8g221fd9VCoVZDKZmW0fzvvjH/0Q/+4Pvwr7+9/Dj3/0Q9jf/x7+wzf/ZOJrISLaVEsbcSoWi2i32wCuvrhLpRIsy0qc1rZtyLI8NvAZ9yVVr9dRrVZhGIb4UlBVdWLd9M88z4Ou65GJxdlsFqenp2KeUavVEufSsizYto1qtQpFUZDJZOD7PiRJgqqq0DQNe3t7YvKxbdsoFototVqivHa7DcMwkE6nRf1hX+h2u2g0GmLrk7OzM/F/y7Lgui4URZmab1ybw3ymaUJRFHHJqtvtQlEUHB4eXuuchOWPO7fDbSyXy9jf38fTp08hSRIAYHd3V5Q/2BZN03ByciIeD7dVkiQYhoHd3d2ZbR/O++WvfBX/+kf/Fj/+0Q/x3de+BwBovfWf8POf/RX+xZf+1dj+QkS0iZYSOIV/1YZkWRZ/JSdNO+mOH9/3YVlW5Pjgl2w2m0Wv1wMA8YV0V4WjSZ7njXyhh8+n02kYhjFyXJZlNJtNlMtl7O3tReYaSZIUGcWSJAndbjdyvgf/r2kaisWiCK4kSRLlaZoGXdeRTqcj7//Z2Zn4fz6fH6kLgAi8xuUb1+Ywn6ZpyGazkGUZh4eHY+d6zXNOwvKHyxnXxjDIHDxPi5qwPavtw6TdNKTdtHj86Z0ULvzeQtpCRLQulhI4OY6DdDodeS6dTo/9SzxJ2mGDQZNt2yNBVtyA6fLyEpeXl+Jxv9+PlW+dhKNw4wJR13XnviX9ukHp8OXDwREgYHQy+yTz5Eun0+j1enBdFycnJ2I07KaMa+PgJUEiIlq+pcxxmjSfadxf4knSDhr8wvZ9H91uN/Il7Pu+mC+i6/rIyNagWq2GVColfu7duze17nUULkEw/EU9eP4PDw9HRgZd18XBwcHEcqfNXRs+btv2yOjK4Ps8rv5JI5WD5s1Xq9XEKFy9Xh/pU5PKnnVOkrTx4OBg5DL0YF+VJAnPnz+P5Bk+55Pegzhtn/X+ERHdNSt1V12SX9JJ0uq6HlmbCLj6az78IpRleepaRUdHR3j06JF43O/3kwdPcy5IeZtarRYajQZ0XRcLYAL/PHIXBhCNRgOyLOPs7AyWZUGSJDEqA1zNGRuccK8oChzHged5qNfrkSCk0+mIL/uwPOAqAHAcB67rQpZlqKoq6td1XVyWU1V1Yt2GYUCW5bnz7e3tiRHPbreLw8NDkSedTkPTtLnOSVj+YCA/qY2SJMGyLOi6jkKhIC5jhg4ODqDrugiAVFUVl+B834+0ddzo3ay2h3l//v++ix/85/8IAPjyv/kqfvFfnuHnP/sr2N//Hr7wxfv4wn9//zpdj4hobWwFQRDcdqWmacIwDDERFria8GpZ1sjaMXHTbm1tYdxL8X0f2Wx2JCgavNTn+z52d3fR6XRirXHT7/eRSqVwcXGBnZ0d8fwHH3yAp0+f4sGDB3jxxRdnljPOX//CnyvfbfuXX5CuXUYYoK3DOlGrpFAooF6vz7xUPcnu7q6Y3xfXPP0y+M2v8d4vf4Fv/+V7+Pv3P0qcfx7Pnnz9Vuqh1XH/8VvLbsJM7Jerb9L3+jhLuVQ3aWG9cZNek6Qd5/z8fGSejeu62N/fH0k7PJeKaBXNukw9jmma4pI0VwMnIprfUgKn4VGd8Jd5GOC4rivmccxKO2jSek3DAZEsy5FLd47jQNO0O3933W0KL8WFt+dTPKZpwvM8GIaR6HK1qqrY29uDbdswDOPmGkhEtOGWNscpnLeRz+cjc1uAq0m5+Xw+sibPpLSO44g7ncJ8w3eADQdfkiQhl8uh0WhAkiR0Oh2u43TLwjWaKJlyuTzXpU1ZlsXniYiI5reUOU7rjnOcFjPHidYH5zjRquIcJ1qElZ/jRERERLSOGDgRERERxcTAiYiIiCgmBk5EREREMa3UyuGb7Et/8aVbre/7+z+KnfbHP/oh/p+3/m+88f2/wJ9863/H//CV/wlf/spXE9UXrhN0eno698KMq1jXoGw2i6OjI3HXpmmasCwr1v51w3mJiGg9MXAifPkrX8UXvngfb3z/L/C//m+PsJNKJS6jXC7f2pIOt1nXoHq9Hlk8UlXVWCvNj8tLRETriYETAQB2pN1lN2HlDa9iP7zfXJK8RES0njjHiYiIiCgmBk401o9/9EP8uz/8Kuzvfw8//tEPYX//e/gP3/yTSBrXdaHrOmzbhm3bI3uoOY6DRqMB27ah6zoAwLZtZLNZZDIZAECj0UAmk0Gj0ZiYJ05dw6aVU6lURDm2bcN1XTiOg2w2K9ph2zYymQwcxxH5stksTNMEcLW9T6VSEa8jTBPW2Wg0xLZBw3nDukzThOM4ME0TxWJx5ntCRETLx0t1NNaXv/JV/Osf/Vv8+Ec/xHdf+x4AoPXWf8LPf/ZX+Bdf+lfwfR/FYhGdTkfkqdVq4v+e50HXdbGtSrfbRaPRQLVahaqq2N/fh+/7kCQJ7XYbkiRNzFMul6fWNWxaOfv7+3j69KnYl3B3dxenp6dQVRWHh4eiDE3TcHJyIh4rihI5LkkSDMPA7u5upM7BieLZbFZMYB/Mq6oqVFVFq9USc7XCPftuc7I7ERElx8CJJpJ205B2/3mD5E/vpHDh9wAAzWZz5Et+cDNlwzCQTqfFiA0AnJ2dXZUrSTg+PkY2m4VlWSKImZRHkqSpdQ2bVo6qqpHNnBc1YdswjJE2yrKMZrM5dm+5vb097O3ticeSJM0cRSMiouVj4EQ3RlGUyKTowQAiDIZOTk4iAce4POElruvWPU85REREgzjHiQAA/f9/JCkuVVXhum7kuXBODwAcHh5GRnwAiMe+78NxHFiWBc/zYNv21Dyz6ho2qZyDg4Op5UiShOfPn0fy+L4fST/8eFqdruvi4OBgZl4iIlofHHEisQAmAPxf/+f/gf/5f/kGAOAH//k/AgC+/G++il/8l2f4+c/+Cvb3v4cvfPE+/vB//D1YlgVd11EoFMR8pVqthnq9DkVRUK/Xoes68vk8gKtgyzRN1Ot1VCoVAEA+n0epVILneahWq2PzSJI0ta7hJQEm1T2pnNDBwQF0XRcBkKqq4hKc7/s4OTlBOp2GpmkT62w0GpBlGWdnZ+IypOu6kbxhWWEdnufBdV0YhpFoiQMiIrp9W0EQBMtuxLrp9/tIpVK4uLjAzs6OeP6DDz7A06dP8eDBA7z44otzlf3Xv/AX1Mqb9S+/IC27CQtRKBREoDeP3d1d9HrJRuvW0Tz9MvjNr/HeL3+Bb//le/j79z9afKPGePbk67dSD62O+4/fWnYTZmK/XH2TvtfH4YgT3WnzTMg2TROdTgeVSoWrgRMR3TGc40R3lmma8DwPhmEkmn+kqir29vZg2zYMw7i5BhIR0crhiBPdWeVyeexSAbPIsoxqtXoDLSIiolXHESciIiKimBg43QDOtycCEAQAAnzMjwMRbRAGTgv0yU9+EgDwq1/9asktIVq+4De/xocfBeh98PGym0JEtDBLm+MULnwoyzI8z0O5XI6sqZMkreu6KJVKYm+yweeBqzV2PM+D7/vitvMk9cf1wgsvQJIkvPfeewCAT33qU9ja2kpURvCbX1+rDbflgw8+WHYT6BYl6pdBgOA3v0av+4849f4rPvgNh5yIaHMsLXAqFosi0PE8D6VSSWx4miRtGPwMrwgNXO0fFm6zoapqpPwk9Sfx2c9+FgBE8JTUe71/unYbbsN/90+/vewm0C1K1i8DfPhRgFPvv+LNn/+3G2sTEdEyLCVwGt4uQ5blke0q4qbVNG1iPdlsVixOODialKT+pLa2tvC5z30On/nMZ/Dhhx8mzv/ymz9cSDtu2um//+qym0C3KEm//DgAeh98zJEmItpISwmcHMcZ2d0+nU7Ddd2RFZyTpB1n3OW365YZxwsvvIAXXnghcb7bWmH5uuZdGZ3W07r0SyKim7aUwGnSYoPjVnFOknZc3nAD2bOzM1QqFciynLjMy8tLXF5eisf9fn9m3URERLR5VmoBzCSrN8dJOzjhW5ZlFAoFdDqdxGXWajW88sorsdtGREREm2kpyxFIkjQyutPtdsdeVkuSdtjgXKbw7jnP8xKXeXR0hIuLC/Hz7rvvzqybiIiINs9SAidVVcc+P27D1CRpB7mui/39/ZHn0+l04jK3t7exs7MT+SEiIqK7ZymBkyzLkcee5yGXy4kRH9d1xWjRrLSDBi+1ybKMer0uHjuOA03TIElSojKJiIiIQkub42RZFnRdRz6fx9nZWWQNpVqthnw+LzZSnZbWcRy0Wq1IvjBAyuVyaDQakCQJnU4nkm9amURERETjbAXcWC2xfr+PVCqFi4uLhV+2u//4rYWWd1OePfn6sptAt4j9klbVOvRN9svVl+R7nXvVEREREcXEwImIiIgoJgZORERERDExcCIiIiKKiYETERERUUwMnIiIiIhiYuBEREREFBMDJyIiIqKYGDgRERERxcTAiYiIiCgmBk5EREREMTFwIiIiIoqJgRMRERFRTAyciIiIiGJi4EREREQU0yeSZnj27Bksy0Kr1UKv1xPPp9NpFAoFaJqG+/fvL7KNRERERCshUeD0+PFjbG1t4eDgAH/6p386cvydd97Ba6+9hq2tLdRqtYU1koiIiGgVxA6cXn31VRwdHSGVSk1M8/DhQzx8+BAXFxc4Ojpi8EREREQbJXbgNG6EaZJUKsWgiYiIiDbO3JPDHz9+jNdffx0XFxf4/d//fRweHuLNN99cZNuIiIiIVsrcgVM+n8fLL78M0zSRzWZxcnKC58+fL7JtRERERCtl7sBpd3cXANBsNnF4eAjg6s46IiIiok2VeDmCUKfTQRAE6HQ6+L3f+z08ffo0sjzBLJ7nwbZtyLIMz/NQLpchSdJcaV3XRalUQrvdjuRzXReO4wAAzs7OcHx8LPK5rgsAUBQFnufB930oihL/BBAREdGdM3fgdHBwANM00W63cXFxAcMw8Du/8zux8xeLRRHoeJ6HUqkEy7ISpw0DqjAQGuQ4DqrVKgCg0Whgf39flGMYBkzTBACoqjqxbiIiIqJQrMDp4uICvV4vsrBlKpWK3Gn35MmTSJ5+vw8A2NnZGSnP87zIY1mWxchQ0rSapo3N57ouarWaCJw0TYOu6/A8D7IsI5vNihGySSNdRERERINizXFKpVJotVqx75p744030Gw2xwZNwNVI0PB8qHQ6PXHUKG7aQYqi4Pj4WDz2fV/kDUmSFCtoury8RL/fj/wQERHR3RP7Ul2pVMI777yDg4MDZDIZ5PN5yLIMSZLg+z48z8NPfvITPH36FJVKBS+99NLEssIgZli3271W2mGDo1EnJydQVVUESr7vw7ZtAFfznyqVCmRZHltOrVbDK6+8MrM+IiIi2myJ5jg9fPgQzWYTFxcXaDab+MlPfgLf9yFJEjKZDCqVCh48eDB3YyYFSYtIa9t2ZPL44ARzWZZRKBTQ6XTG5j86OsKjR4/E436/j3v37sWun4iIiDbDXJPDU6kUSqXS3JVKkjQyYtTtdsdeNkuSdhJd19FqtSJ5PM8Td9GFd+uF85+GbW9vY3t7O3Z9REREtJnmXsfpOlRVHft8Lpe7VtpxGo0GdF2HLMvwfR++78N1Xezv74+k5TpURERENM1SAqfhUR3P85DL5SJrLIV3081KO2j48p1t21AURQRNzWYTkiRBlmXU63WRznEcaJrGu+uIiIhoqrnXcbouy7Kg6zry+TzOzs4i6yjVajXk83mxlMC0tI7joNVqRfJpmgbP81AsFiN1SpIk5jblcjk0Gg1IkoROp8N1nIiIiGimrSAIgmU3Yt30+32kUilcXFxMXHJhXvcfv7XQ8m7KsydfX3YT6BaxX9KqWoe+yX65+pJ8r1/rUt2rr74q9qk7PT3l+kZERES00eYOnB4/fgxJksTk7f39/YmrfxMRERFtgrkDp3w+j1KpNHHRSCIiIqJNM3fg9PTpUwDA1taWeO7s7Oz6LSIiIiJaUXPfVffw4UPkcjns7e2h1WrBcZzILf5EREREm2buEaf9/X1YloWHDx8iCAKYpomvfe1ri2wbERER0Uq51jpODx48wJMnT8Tjfr+/8NvziYiIiFbFtZYj6Pf7ePbsmfjRdX1R7SIiIiJaOXOPOH3zm9+E4ziRbUqePn2KP//zP19Eu4iIiIhWztyBUyaTwWuvvRZ57vj4+NoNIiIiIlpVc1+qCxe+HFQoFK7VGCIiIqJVNveI0+7uLr773e9ClmVIkgTf93FycoKTk5NFto+IiIhoZcwdOFWrVfi+H5nj9M477yyiTUREREQrae7AqVAooFQqRZ574403rt0gIiIiolU19xynTCYT6zkiIiKiTTH3iFOn04FhGMjn8wCAIAjQbDa5Xx0RERFtrLlHnAzDwIMHDxAEAYIgAADxLxEREdEmmnvEqV6vY39/P/LcuCUKiIiIiDbFtTb5Hba7u3utxhARERGtstgjTm+++SZUVRWb+L7++uuR477vo9Vq4Qc/+MFiW0hERES0ImKPOH3nO9/B+fm5ePzaa6+h1+uJnyAI8Pz58xtpJBEREdEqiD3iNBg0AVf70j18+DDyXJI5Tp7nwbZtyLIMz/NQLpcji2kmSeu6LkqlEtrtdux8SeonIiIiAq655Uro4uICjuMgm83Gzl8sFkWg43keSqUSLMtKnDYMflzXTZQvSf1EREREwDUmhzuOI/6fSqXw0ksvRZ6bxvO8yGNZlifmnZVW0zQoipIoX5L6iYiIiEKJRpwuLi7QbDaxtbWFVqs1crzdbuPll1+eWY7jOEin05Hn0uk0XNcdCYKSpI2b7/z8PFGZl5eXuLy8FI/7/f70F0hEREQbKdGIUyqVgqqqOD8/R6fTwd/+7d9GfqrVaqxyfN8f+3y3271W2rj5kpZZq9WQSqXEz71796bWTURERJsp8RynBw8e4LXXXsPp6enYtZyuY1JAc920cfNNOnZ0dIRHjx6Jx/1+n8ETERHRHTT35PDrBE2SJI2M7nS73bF3tSVJGzdf0jK3t7exvb09tT4iIiLafHNPDr+OScsW5HK5a6WNm2/eMomIiOhuW0rgJMty5LHnecjlcmLEx3VdcefbrLSDBi+1TcuXpEwiIiKi0NyX6q7Lsizouo58Po+zs7PIGkq1Wg35fF5MNp+W1nEccYdfmE/TtJn5ph0jIiIiGmcrCIJgUYU9e/YM9+/fX1RxK6vf7yOVSuHi4kLs3bco9x+/tdDybsqzJ19fdhPoFrFf0qpah77Jfrn6knyvX2vE6ac//WlkkrVhGDg5OblOkUREREQra+7A6eDgAL7vR+YFvfPOO4toExEREdFKmjtwKhQKKJVKkefeeOONazeIiIiIaFXNfVddJpOJ9RwRERHRpph7xKnT6cAwDOTzeQBAEARoNps4OztbWOOIiIiIVsncI06GYeDBgwcIggDhjXkLvEGPiIiIaOXMPeJUr9dHtl2ZtCI3ERER0SaYe8RpOGh6++238fTp02s3iIiIiGhVXWsdpzfffFNsjRIEAc7Pz/GNb3xjIQ0jIiIiWjVzB06PHz+G7/vodruQZRm+76NSqSyybUREREQrZe7AKZPJoFQq4enTp9ja2sL9+/fx9ttvL7JtRERERCtl7jlOsizj7/7u7/DgwQPYtr3INhERERGtpLlHnHzfhyzL6PV6+Md//Ef8wR/8ASRJwte+9rVFto+IKL5vp5bdgni+fbHsFtBtYr/cKHMHTi+99BI++ugjAMCTJ09wenqKXC63sIbRiluHXwT8JUBERAs296U6AHj11VdxeHgoHm9tbV27QURERESrau7A6fHjx5AkSSx6ub+/D8dxFtYwIiIiolUzd+CUz+dRKpUgy/Ii20NERES0suYOnMJVwgcvz3GDXyIiItpkc08Of/jwIXK5HPb29tBqteA4Dur1+iLbRkRERLRSrrVXnWVZePjwIYIggGmaXIqAiIiINtq19qp78OABnjx5sqi2EBEREa202CNO3/3ud2emef3112NX7HkeGo0GbNtGo9GA7/tzpZ12zLZt+L4/tmzXdeG6rigj/D8RERHRJLFHnL7zne+g1WpNTXN+fo6XX345VnnFYhHtdhvAVeBSKpVgWVbitLOODavX66hWqzAMA6ZpAgBUVZ1YNxEREVEoduC0v7+Pvb09ZLPZiWmCIIhVlud5kceyLE9cA2pa2mnHfN+HZVnQNE0cbzQaqFarAIBsNoterwcAkCQpVruJiIg21Zf+4kvLbsJMP/vjny27CfEDJ8uycHFxgfPzcwBX6zjt7OxE0qTT6VhlOY4zkjadTsN1XSiKEjvt+fn5xGOyLEeCJtu2I4+B+AHT5eUlLi8vxeN+vx8rHxEREW2WRJPDU6kU9vf3AQDvvPMOut0utra2xN10L730UqxyJs1n6na7idJOOzYYgPm+j263G1ms0/d92LYN4Gr9qUqlMnExz1qthldeeWXsMSIiIro7rrWOU+jtt99Gq9VCoVC41pIE0yaIJ0k7fEzX9ZE1psrlshhxkmUZhUIBnU5nbHlHR0d49OiReNzv93Hv3r3YbSUiIqLNcK1Nfn/605/iW9/6FjRNQ6vVGplzNIkkSSOjS91ud+yls2lp45Tj+z4cxxkpe7CtsizD87yJ7d/e3sbOzk7kh4iIiO6exIHTs2fP8Oqrr+J3f/d3USwWkUql0G63E91RF24MPCyXyyVKG6ec8/PzkaDJdV1xyXFQ3DlaREREdDfFDpxef/115PN5ZLNZeJ4Hy7LwN3/zN3jy5AkePHgAAHjzzTdjlTU8l8jzPORyORHguK4rRn+mpZ1VTljWcEAky3Lk0p3jONA0jXfXERER0VSx5ziVy2VomobHjx9DkiT0ej28/fbb4niv18OTJ0/wjW98I1Z5lmVB13Xk83mcnZ1F1lGq1WrI5/Ni6YBpaacdCw0HWJIkIZfLodFoQJIkdDodruNEREREM20FMRdf+uY3v4lGozF1raZSqYRms7mwxq2qfr+PVCqFi4uLhc93uv/4rYWWd1OevfhHy27CbN++WHYLNgb75YKxby7MOvTNdemXX3rwxWU3YaabWscpyfd67BGnSqUys7Cjo6O4xRERERGtndhznAaXH7hOGiIiIqJ1Nfc6TkRENB9ubUG0vq61jhMRERHRXcLAiYiIiCgmBk5EREREMTFwIiIiIoqJgRMRERFRTAyciIiIiGJi4EREREQUEwMnIiIiopgYOBERERHFxMCJiIiIKCYGTkREREQxMXAiIiIiiomBExEREVFMDJyIiIiIYmLgRERERBQTAyciIiKimBg4EREREcXEwImIiIgopk8sq2LP82DbNmRZhud5KJfLkCQpcdppx1zXBQAoigLP8+D7PhRFSVw/EREREbDEwKlYLKLdbgO4CmJKpRIsy0qcdtoxwzBgmiYAQFXVSPlJ6iciIiIClhQ4eZ4XeSzLMhzHSZx2VjnZbBa9Xg8AIqNJSeonIiIiCi1ljpPjOEin05Hn0um0uLQWN22cciRJGrkEl6R+ALi8vES/34/8EBER0d2zlMDJ9/2xz3e73URpZ5Xj+z5s24Zt29B1XYw0JakfAGq1GlKplPi5d+/e2HRERES02ZY2x2mcSQFN0rThscEJ37Iso1AooNPpJC7z6OgIjx49Eo/7/T6DJyIiojtoKSNOkiSNjO50u92xd7VNSzurnMG5TOHdc57nJaofALa3t7GzsxP5ISIiortnKYGTqqpjn8/lconSTjvmui729/dHjqXT6UT1ExEREYWWcqlOluXIY8/zkMvlIusvSZIEWZanph0eIRo8Jssy6vW6OOY4DjRNm5mPiIiIaJKlzXGyLAu6riOfz+Ps7CyyhlKtVkM+n0e1Wp2ZdtIxSZKQy+XQaDQgSRI6nU6sfERERESTbAVBECy7Eeum3+8jlUrh4uJi4fOd7j9+a6Hl3ZRnL/7Rspsw05cefHHZTYjlZ3/8s2U3YSb2y8Vah765Dv0SWI++yX65ODfVL5N8r3OvOiIiIqKYGDgRERERxcTAiYiIiCgmBk5EREREMTFwIiIiIoqJgRMRERFRTAyciIiIiGJi4EREREQUEwMnIiIiopgYOBERERHFxMCJiIiIKCYGTkREREQxMXAiIiIiiomBExEREVFMDJyIiIiIYmLgRERERBQTAyciIiKimBg4EREREcXEwImIiIgoJgZORERERDExcCIiIiKKiYETERERUUyfWFbFnufBtm3IsgzP81AulyFJUuK00465rgvHcQAAZ2dnOD4+jhwDAEVR4HkefN+Hoig3+ZKJiIhozS0tcCoWi2i32wCugp9SqQTLshKnnXbMcRxUq1UAQKPRwP7+vkhrGAZM0wQAqKo6sW4iIiKi0FIu1XmeF3ksy7IYGUqSdtox13VRq9XEMU3T4LquyJPNZtHr9dDr9dBqtSaOdhERERGFljLi5DgO0ul05Ll0Og3XdUcul01Le35+PrWc4+Nj8bzv++J4KG6wdHl5icvLS/G43+/HykdERESbZSkjTmEQM6zb7SZKO6scTdPEcycnJ1BVVQRLvu/Dtm3Ytg1d10dGrwbVajWkUinxc+/evYlpiYiIaHMtbY7TOJMCoaRph4+FQVI4vwlAZBK5LMsoFArodDpjyzs6OsKjR4/E436/z+CJiIjoDlrKiJMkSSOjS91ud+yls2lp45aj6/rIPKbBEabwjrxJo07b29vY2dmJ/BAREdHds5TASVXVsc/ncrlEaeOU02g0oOs6ZFmG7/vwfR+u62J/f38k3/B8KSIiIqJBSwmcZFmOPPY8D7lcLrLGUjj6My3trHJs24aiKCJoajabIl+9Xhf5HMeBpmm8s46IiIimWtocJ8uyoOs68vk8zs7OIuso1Wo15PN5sQbTtLSTjnmeh2KxGKlTkiQxtymXy6HRaECSJHQ6Ha7jRERERDNtBUEQLLsR66bf7yOVSuHi4mLh853uP35roeXdlGcv/tGymzDTlx58cdlNiOVnf/yzZTdhJvbLxVqHvrkO/RJYj77Jfrk4N9Uvk3yvc686IiIiopgYOBERERHFxMCJiIiIKCYGTkREREQxMXAiIiIiiomBExEREVFMDJyIiIiIYmLgRERERBQTAyciIiKimBg4EREREcXEwImIiIgoJgZORERERDExcCIiIiKKiYETERERUUwMnIiIiIhiYuBEREREFBMDJyIiIqKYGDgRERERxcTAiYiIiCgmBk5EREREMTFwIiIiIorpE8uq2PM82LYNWZbheR7K5TIkSUqc9iaOEREREY2ztMCpWCyi3W4DuApiSqUSLMtKnPYmjhERERGNs5RLdZ7nRR7LsgzHcRKnvYljRERERJMsZcTJcRyk0+nIc+l0Gq7rQlGU2GnPz88Xfmy4fgC4vLzE5eWleHxxcQEA6Pf7MV9xfB9f/mrhZd6E/law7CbM9NE/fbTsJsRyE/1o0dgvF2sd+uY69EtgPfom++Xi3FS/DMsNgtnv1VICJ9/3xz7f7XYTpb2JY+PUajW88sorI8/fu3dvbPq7ILXsBsTy82U3IJbUt9bjbK6D9TmTq9832S8XZ33OJPvl+++/j1Rqeh1Lm+M0zqSAJmnaRR87OjrCo0ePxOOPP/4Y3W4Xe3t72NramtFSiqPf7+PevXt49913sbOzs+zmEAFgv6TVxH65eEEQ4P3338fnP//5mWmXEjhJkjQyutPtdsfe1TYt7U0cG2d7exvb29sj7aLF29nZ4S8CWjnsl7SK2C8Xa9ZIU2gpk8NVVR37fC6XS5T2Jo4RERERTbKUESdZliOPPc9DLpcToziu60KSJMiyPDXt8KjPIo4RERERTbK0OU6WZUHXdeTzeZydnUXWUKrVasjn86hWqzPT3sQxun3b29v4sz/7s5FLokTLxH5Jq4j9crm2gjj33hERERER96ojIiIiiouBExEREVFMDJyIiIiIYmLgtKFM00ShUIiVNpvNwrbtG25RfK7rolKpYGtrC7quwzRN6LqOYrHIPQXXHPslrSL2S0qCk8M3lOd58Dxv4ppVgxzHWbnlGHzfx+7uLnq9nmhX+Fy73R67p+Bt831/pc7ZOmC/vHnsl8mxX968TeqXHHHaULIsx/olAFwtMroOHTpc2+vk5GTZTYHneWg2m8tuxtphv7xZ7JfzYb+8WZvWLxk40VrpdrvIZDLLbgbq9fqym0ArhP2SVhH75c1YqU1+aTF834eu63AcB51OB8DVdXDHcSDLMjzPg6ZpkGUZruuiVCqhUqmgXC7DcRzouo5KpSLStlqtqQuETio7TlmO48B1XciyjLOzs4kfMN/3UavVoKoqyuXyxLyO46BSqUDXdQCAYRhot9vwPA+GYSCfz6Pb7eLg4ACSJE0sY1q7HcfB+fm52O9QVdWRFe5pFPsl++UqYr9kv0wsoI0lSVIQBEHQ6XQCVVUjxxRFCXq9XhAEQVCv1wPDMMSxarUaaJomHquqGrTb7bF1zCp7WlmdTidQFEUcMwwjqNfrQRAEQa/XCwAE9Xo9sCwrsCwr6HQ6kXon5S2Xy0G5XA6CIAgsywp6vV4gy3KkTfV6fWoZs85BtVqNnDOKj/2S/XIVsV+yX8bFEac7wDCMkcmBsiyj2WyKv0YG7e3tYW9vTzyWJEn8tZC07GllGYaBdDodufPj7OwsUla5XB47n2BaXkmSRJ2apsE0TciyLMo5OjoCcLW1z6QykpwDmg/7JfvlKmK/ZL+chYETLZWiKJFJmeN+Mc2Td3AoePhujsH/X6f+SeXT+mO/pFXEfrkaODn8Djg8PBxZz8N1XRwcHIjHvu/fWNlJ8g4/nvRXy6y8g/k0TYPruiNp49QfB9dKmQ/7JfvlKmK/ZL+cadnXCunmhNfsgyAIWq2WuP5drVbF9ed2ux0oihKoqhp0Oh3xWFGUoN1uB5ZlBbIsB5qmRa6ZD5pV9rSyWq1WUK1WxXX5Xq8XtNvtoFqtBgCCcrk8cb7AuLytVku8nlarNTXttPpntbvT6QTlcjkwDGPieaHx2C/ZL1cR+yX7ZVxcAHODhQuiEa0S9ktaReyXFBfnOG0Y0zTR6XRQqVSQy+WW3RwiAOyXtJrYL2keHHHaMJ7niX2UwvVBiJaN/ZJWEfslzYOBE00UbhZ5enp6a3sdua4LwzBgmiaq1SoymQw6nQ48z0OlUom9LQIR0brxfR/n5+crtxceRTFwoqkKhQLq9fqtbhLJDSvvpmUE6ovEoP/uitt3bdtGt9uFLMvwfR+apoljvu+jVCqhXq+jWCyi3W7Hrp9975Ytb146rYNpq+DelHAV3PBOjpAsy0G1Wr3VtozT6XQ2ahXcVRKnvw33i5uWpL5xfTd87rY/R5Pc9vm7K2b13VarJVboDoJgpJ9YlhVZCXzw3zjY924P13GitcENK+m2d1lfRH3cpZ4AoNVqoVAoiMedTicyau15nngsSRL73grjXXUbyLZt8cHrdDriiz7OJpKu6+Lk5AT5fB7A5AXVBtPf9oaVy9qsMmzzxm1YuUbq9Tqy2eza1bdKQf9tnj+abNbvDfa91cXAaQMVi0V0Oh2oqopKpQLbtqFpGlRVhaqqkWDAsiy4rgtFUeD7vsgbqtVqE+vxPA+6rqPVaonnstksTk9PZ9YV5g2v43e7XTQaDVSrVVFWuGcSgEgwMymfqqpot9tiXybf91EoFNButyFJEnRdh2ma0DRtahmT2gxAvK5MJjPXdgOb6LYC9XFBa7hb/cHBQSRwtiwL5+fnKBaLOD4+hiRJC9nV3XVd6LoORVFgWRZ830c2m4WmaWMDf+5Sv9pus++6rgvP88T+bqZpijlRrutGfo/Kssy+t8IYOG2gcFK153nodrvwPE8cm7YZY7PZHJnYmE6nJ9azjA0ruVnl6rmtQH1c0Br+8t7b24OiKNB1HYZhQJIkqKoqbmwYnGwbN1CeVF+32xVlhQH5cBA9LugHsNTAn0H/qNvsu61WC/l8XkwIH9zWRFEUcRkvfG/Y91YXA6cNVKvVsLe3t/Lrksy7YeSqbFY5ro676LYC9UkqlQqKxSKq1Sp834fneeK27oODg4UHyuVyGbu7uzAMA57njV04kbvUr4dl992k2PdWAwOnDRMOo4bDvr7vY29vD47jzLwlNfwLfdDgL5Jhh4eHKJVKkedc18Xx8fHMdo7LO9zGbrc78gtgVr7hzSoNwxhJG6fuuBzHidxSfBctK1APg9awzvAv+MPDQzSbTaTTadF/Fr2re7lchmmaSKfTid//VQn8GfSvzx+Z7HurhXfVbZhw4TTHceA4DorFIs7OzuD7vrgmf3JyAtd1Ydu2WP/D8zzIsgzLsqDrOhzHEdf/a7Xa2ABKURTU63U0Gg3Ytg1d12FZlphPMq2uMK+u67BtG7ZtI5fLwXVdMeRdr9dHdumelC98vZZlib+GZFmGYRgjaafVPa3NoUqlgna7DdM013K9oUUKA/VqtSrWpgmfnyWctzFoWqA+ru5QpVJBqVSCpmkol8uRgPkmdnWvVCpT767kLvWrbxl9d94RGPa9FbPs9RCIaH31er1A07Sg1WqJH03TAsuyYu2aHu7s3mq1AsuyAkVRpu4sP2mX9V6vF1kjR9O0SL6b2NV9uA7uUr9ebrPvDr6/YXmSJAXlcjny3qmqGliWFQQB+94q48rhRERzCCcSE9029r3l4hwnIqKYwono6XT6zl+mpdvFvrc6GDgREcVULBbFXBh+edFtYt9bHbxUR0RERBQT76ojIiIiiomBExEREVFMDJyIiIiIYmLgRERERBQT76ojoo3WaDQgSRLS6bRYIZ9r4BDRvHhXHRFtrGw2i3q9HtlbS9d1AJi6bQUR0SQMnIhoI+m6Ds/zYFnWyLHd3V2cnp5yPRwiSoxznIhoIzUaDRQKhbHHVFUVm0kTESXBwImINk64U30ulxt7XJZlsfu74zjIZrNoNBoArvYBy2QykR3cHcdBo9GAbdviUp/jOMhkMjBNE6ZpIpvNirzFYhEA4Ps+MpmMyENE64+Tw4noztnb20O32wVwNfp0eHgojmmahpOTE/HY8zzouo52uw0A6Ha7aDQaqFarUFUV7XYbhmEgnU5D0zR0u12RVpIk6LqOcrl8i6+OiG4SR5yIaOPIsgzgn0eehnU6nYmjUcPCoMhxHDEKdXZ2BuAqMMpkMgAg7tQrl8toNpui/rj1ENF64IgTEW2kcrmMVqslAppwKQLg6jJbkrvqFEWJ3Jk3OIIUljlct2maYhSKiDYHR5yIaCMZhoHz83O4rgvbtpFOp2HbNhqNBlRVjQQ0kiTh+fPn4rHjOGIn+sPDw8h8p/B4KLzkN6hSqXC5A6INxeUIiGijNRoNdDodZLNZtFot5PN5VKtV+L4PSZIAXE3i1nVdTOo2DAO+78MwDMiyDMdxRF7gal7U+fk5dF1HOp2GruuRESkAKBaLY5dCIKL1xsCJiO4M13XhOA6q1aqY4H1TbNvmZTqiDcTAiYjulN3dXZTLZbiui1artdCyK5UKisUi0uk0JEkaO/+JiNYbJ4cT0Z0STty+ictoxWJRzI3iquREm4kjTkREREQx8a46IiIiopgYOBERERHFxMCJiIiIKCYGTkREREQxMXAiIiIiiomBExEREVFMDJyIiIiIYmLgRERERBTT/wewOTu3krrtGwAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -867,9 +867,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4PUlEQVR4nO3dXYwj6X3v9197rYwsQNPVbECQBI3PThEI4Asde8huxBc5iOAu2gcRjANoye4AubCBqEkJAYKTzTFrOjeWciEuKSXGCXDgLc4GR75QgG7WrhMkuvBh9VqBEkBRD2slbwBdGKxZZ2XBWHjZ1b0n8o6k3cpFu0okm2QX2S8ke74foDHDennqz+JD8s+nnnqelSiKIgEAAOBCvzLvAAAAAJYFiRMAAEBKJE4AAAApkTgBAACkROIEAACQEokTAABASiROAAAAKZE4AQAApETi9IwKgkC2bWttbU3ZbHbittlsVmtra7JtW2EY3kyAWBi+76tQKFxYT4BpxXUrn8/PO5SlwHtxMZA4PaNM01S9Xtfe3p56vZ583x+5ned5yuVy2t7eVr1el2EYNxvokGazeW6ZbdsqlUpziObMqJhuk1wuJ9u2p97vps7LvF//RbBo52BcPMN1Iq5bs/wg8zxPpVJJzWZTnufJtm25rjuwTaPRULPZVLPZVKPROFfGZdePc111f9b3Iq4WidMzzjAMbW9vy3GckesXrYWp3W6fW1YoFLSzszOHaM6Mium2yWQyU+9zU+dl3q//Ili0czAunlF1Ypa6JZ19Nnmep0qlokqlomw2q2KxmKyPE51yuaxyuaxcLqdKpXJl6ye5zro/6/nCFYrwTHMcJ+p0OpFhGOfWHR8fR51OJyoWi1G5XJ5DdIMcx4lyudy8wxiwiDFdh06nE5mmmXr7Z+W8IL1xdWLauhVrtVrR8fHx2PWGYZxb3/+Vd9n141x33Z/1fOHq/Oqc8zYsgFwup0wmI9d1B36xPX78WJZljd2v0WjINE0FQSDTNJN9wzBUs9mUaZpqt9uqVCrK5XKSlDSpS9KjR48UBIGCINC7776rer0+9lie56ndbisIguSXYLVale/7sm1bQRCo2+2OPUav11On05HjOGo2m8pkMtrf39fe3l4S20XPK21Mw+VIZ33K+tdNMtzMXy6XLyxz1ucc75fJZJJLK2EYXvh6DMfTf67SnpeLzm8sDEPZtq18Pq9Op6NsNqtcLifHcbS3t3fu9XddV7VaTUEQqNVqybIsBUGgQqEg0zTlOI5M0xwb+yz1s/+5SWctuZlMRqZpqtfrybKskXXVtm01m03V6/WRr/Oo2EzTVKVSSVo1dnZ2zpV70bmO359hGCoIAhmGMXD8fq7rJufEcRwFQZBctm+1WspkMtra2lIYhmq1WsnzGn5PTqoT0ln/nWnP9zhBECgMw5FdCzzPS577rOvHfS5O8zk1/Npfx3tRmu61RkrzztwwX47jRFEURdVqNSoWiwPrWq1WFEXRyBanYrGYrI+iKLIsK+p0OklZ3W43WWea5sAvt3a7HZmmGbXb7YFt4v3HabfbqX+xjjtGtVodeH7D5U16XtPEVCwWB47d7XYjy7ImPLsz9Xr9XIz9r8OkMmd9zq1WK5I08JpVq9WB13zUOZ50riadl2nO7/A+x8fH5+KY9Pr3q9frqWOfpX6Wy+WBc9btdqNcLjdQzqi4LMtK3ocXxRa/fu12O+p0OslrO83r02q1Bo7X7XYHHo/iOM5AXRtVT/vrz7jXZNz71zCMqc93/Dzif/vjabfbI1uHDMOIWq3WpddPMu55pnntr/q9OMtrjYvRxwmSpEqlItd1kz5NQRCca4mJBUFwrnWqVCol/aSCIJDneck60zQHHmcyGQVBMPCrLf6ldFXGHaNfLpcbOOZFzyst3/fP/SqNWx76z8OwuGVlb28vWba/v68gCFKVOctzls5aR3K53MC2e3t7ajabY1+TWc7VrOfXdd2kLhqGkbRKTGJZ1rmbHuLWg4vimKV+xq2s/S0D8a/8fqP6p/S3alwUm2EY8n1flmUpl8uNbYm4qJxWq5XEZpqmNjY2xj43Sdre3j5Xd/s7Yvd6vXN1bRphGE79eZDL5WRZlorFosrlsrLZ7IUd5DOZjHq93rWtv+jYw4ZbtK7jvTjta42LcakOks7eULlcTgcHByqXy/J9f+IlKsMwBj5Iu91u8saOm+vjpuFer3fuw2b4Q9YwjJk/kMYZdYxJt/Fe9LzSevz48cgvkfjS5bhm/sePH8swjIEP0/hcxs3tF5U57XMeJ47D9/2Rx53lXM16fnO53LkEJM2XdLlcluM4chxHnudpe3s7dRzT1s+4zFFfhNOYJbZpyykWi3IcR2tra8rlctrZ2bnwMnL8hR5/QfcnoZdJmGKzfB4M77O9va1KpTLxhpaLyrzs+utwmffiLK81LkbihESlUpHjOCqXyxM/8MMwlGmaAwlA//9931etVlOhUND29vaVfLCOclUf2rGLnlfamGa9E3HSfot2d+O05yo+L7Oc30qlolqtpkePHqnZbKZuAaxUKsrn80m/nPhYV/E6X6X+1zZNbGmSsYvKabfbSStmfD4v+kLd2dnR/v6+crmcNjY2klZqy7JmOn+Xff8Ot7KkSebi83LZ9dO4KJ7Luo7XGpNxqQ6J7e1t+b4v13UnNueOutwjnb2BwzDU1taW9vb2kgSs//LfVRo39tSsJj2vtOLLKKPKCYJAm5ubE48/6ljxZYxZypxV/FqOu1w77bnyff9S5/fRo0fyPC+5LJOGaZrJTQ/9l0mu4nUeFr92s5TR34pxVbFNKie++SCXy6lararT6Wh/f//CMovFolzXTcZ2i1szxrWwXuQy798wDFUqlQaeY//lKNM0k8u6wyzLuvT6aUx6nmlasC7zXpz1tcZkJE7PuP67cAzDkGVZ2t/fn/ir1rIsbWxsnBts7uDgIGlZ6H+Txx8Okz5A0nwx9Pd7mNQHa9ZjTHpe08QU973obzqPn/ukO8jiO2H6B9oLw1AHBwczl5n2C9f3/YFta7WayuXy2C/Ei87VqPMyy/mVpE6nI8MwVCwWp/6CrlQq2t3dPfdrfNo4LjqPpmmqXC4P3BE5qi/WcN+d+HJ2XP6s52jYpHL6v1D747pIfDk//syI90lbx6Z5/15UpmEYqlarA3E3m82By4h7e3sD7xfXdQeS7suuH2fc87zotY9d5Xtx1tcaF5h373TMR7fbjcrlciQpKpfLyV0c/XdxHR8fR/V6PTIMIzJNM6rX6wN3x1Wr1eSulv47OqrValStVqN2ux212+2o2+0md33E40JJSu5yio+Ry+UuvGMlLju+M2RUeZOOYVlWckdSvE21Wk31vNLGNFzO8B0/acqr1+vn7oiZVOZlnnN8F1B8N1G9Xh+4A214v1HxjDpXF52XtOc3vtMoroe5XG7i69/v+Ph47Bhko+K4ivrpOE5S94fvqovLi1/fVqsVFYvFyDTNc++h4dja7XZkWVZkGEZUr9eT9+ykczCqnLj+xMuG39eT1Ov1gbvd+uOIXRTPRe/ftOc7/nyK/0a9x/rP83WsH2dc3b/otb/q9+JlXmuMtxJFUTSHfA3AgojHj+l0OvMO5ZwwDLW7u6tHjx4ll33jeRZLpdLCj0eTz+dVr9fn2ocKy2OR34v4JS7VAVhYzWZTlUolufwS391Vr9f5cgEwFyROABZWLpdLhmTo53meCoXCHCIC8KxjOALgGeZ5nur1unzfV6PRWLjblONLXMNTzaSZqmXeGo2GfN9PBqnkch0mWfT3In6JPk4AAAApcakOAAAgJRInAACAlEicAAAAUrr1ncM//PBD/eQnP9HHP/5xrayszDscAACwYKIo0nvvvadPf/rT+pVfmdymdOsTp5/85Ce6d+/evMMAAAAL7u2339ZnPvOZidvc+sTp4x//uKSzk3H37t05RwMAABbN6emp7t27l+QMk8wtcQqCQK7rJhMflsvlsRPLxpOZxrNAT5opelh8ee7u3bskTgAAYKw0XXrmljiVSqVkyoQgCLS7uztyhGBJchwnmeHZsqyx2wEAAFynuSROQRAMPDZNU57njd0+n8/r+PhYksa2SgEAAFy3uQxH4HmeMpnMwLJMJpNckhvFMAySJgAAMFdzaXEKw3Dk8l6vN3Z713UlSUdHR6pUKsm8VcOePn2qp0+fJo9PT09TxfTBBx/o5z//eaptgdvkIx/5iJ577rl5hwEAS2Gh7qobl1D1dxw3TVOFQkHdbnfktrVaTV/96ldTHzOKIv3d3/3d2GMDzwLDMPTJT36Ssc4A4AJzSZwMwzjXutTr9cZeiguCILmLLr4LL54hfdje3p5efPHF5HF8i+E4cdL0iU98Qh/72Mf44sAzJYoi/fSnP9U777wjSfrUpz4154gAYLHNJXGyLEuO45xbvrGxcW6Z7/va2tpKOofHhvtIxe7cuaM7d+6kiuODDz5Ikqb19fVU+wC3za/92q9Jkt555x194hOf4LIdAEwwl87hwy1FQRBoY2MjaXHyfT+58840TdXr9WRbz/NULBavpKN43KfpYx/72KXLApZZ/B6gnx8ATDa3Pk6tVku2bWtzc1NHR0cDYzPVajVtbm6qWq3KMAxtbGyo0WjIMAx1u90rH8eJy3N41vEeAIB0VqIoiuYdxHU6PT3V6uqqTk5Ozo0c/v777+vJkye6f/++PvrRjybLn3/47RuN8a2XPp96W9/3kwFBq9Wqstmsut2ugiBQpVKRZVlXElOz2ZRt2zo8PEw9Svuiyefz2tvbU7FYlHT2nFqtltrt9tT73jZ/9eNw4HH0i5/pnZ/8WF/5y3f0t+99MJ+gxpjm/YHb6aY/ky+LOrt8JuUKwxbqrjpcLJfLqV6vq9lsam9vL7lkGYah1tbW1Ol0riTRKZfLV9qyF4bhjY/DVa/XB/rNWZY1dhiLi/YFAECaUx8nXD3DMGSapvb39+cdyjlBEOjg4ODGj2tZ1kCyZppm6ha54X0BAJBInG6VXq+nbDY77zDO6e/cDwDAMiNxugXCMJRt27IsS+VyWZ7nKZvNqtlsqtlsKp/PSzrrH9VoNOS6rhqNxrk5A33fl23bcl1XrusOjLXleZ7y+bwajYYkyXVdZbPZgTkGgyBI9m82mwrDUJ7n6fHjx2q322o2m+eO2V9+HJtt2wMxVSqVJCbXdeX7/oXx+L6vfD6fTA4dhqEqlcpAYjnufAzvGx+r2WzK8zw1m02VSqUZXikAwLKjj9MSazabSZ+d/mloLMuSZVnqdDpyHEeZTCZJavo7RufzeR0eHsowDIVhqFKpNDAie61WS/5vWZZ2dnaSx8ViceCyYBiGKhQK6nQ6MgxDtm0nHdgty1I2m1W5XB75POLYOp2OpLOWs0ajoXK5rK2tLT158iS5bLa2tqbDw8ML48nlcgPrDcOQ4zhaW1sbOOao8zG8b3w+2+120u+r1WrJ9/2l7TgPAJgNidMS65+KZphhGMmgnsViUbZtn/uSN01TBwcHKpfLOjg4OLd+3CCjoxwcHMg0zSSevb291PvGyV1/69XR0ZEMwzjX1+iqOmw7jjPxfAxbX18fGCR11Oj3AIDbj8TpFkt7B9lVGL5rblxCN+7uulwuN9Bxu1wuJ5fKAABYFPRxWmIXtXj0r9/Z2Rlo0ZHO+vJsb29LOrsc5fv+wPrh/kiGYejdd99NHnuel0yOXCwWz+0/fLxxy0bF5nmetre3J8Y0KZ7YuMmbLzofk/YFADy7aHFaMr7vJ3156vW6KpXKuUtOnufJ8zz5vp/cgh+P/9RoNGSaZjJae9z6Y5pmMpp7oVBIWoZqtZrq9bpM09T29rZs204SjnjOwVwuJ9M05ThOMhp8vF46638Vjz01ajiAOLbhfQ3DGBlTbFI8YRhqf39fmUxGxWLxXOvbpPMRn+N437is+BhBECQDkZqmeaMtewCA+WLk8BEjh2NxFQoF1ev1mTtlr62tnZsw+lnEyOFYJowcjuvGyOG4tWbpkN1sNtXtdlWpVBgNHABwKfRxwtKIx4FyHGeq/keWZWl9fV2u68pxnOsLEABw69HihKVRLpfHjgU1iWmaqlar1xARAOBZQ4sTAABASiROAAAAKZE4AQAApETiBAAAkBKJEwAAQEokTkus2WzKtm01m025rivP85Jb9heV53nK5/M3Ng9dPp+X67o3cqzLGo612WyqUCjMtC8A4HowHMEoX1m94eOdTL1LoVBQqVRSvV5Plvm+r0KhoG63e5XRXSnLskZOu3Jd6vX60gx6ORyrZVmpp3NZpucJAMuMxGkJNRoNSTo3plEul5tpnKObtr6+fmPHuskk7bKGY51mHrxlep4AsMxInJZQrVbTo0ePRq4rlUo3HA0AAM8O+jgtmSAIFIbh2JaI/ss7vu+r0WjIdV01Go2k71N/P6O4X1SpVFIQBMk+lUolKdPzPGWzWVUqFbmuq2azqUqlkkx7Eq9vNptqNpvK5/PJ8vj4tm0PxBmG4cCx+43ab1zM/eXF6+L9fN8/159q2nMyzrjn5vt+cp7iP9/3k/Lj1kLXdZXNZuV5XrJff6xhGKpSqSibzV4Y+/C+0z4XAEB6tDjdUkEQyLZttdvtZFk+n9fh4WHSz6jdbqvVakmSWq2WXNdVtVpVLpdTNptVGIYyDEOWZalYLGp9fV3FYlHS2Rd/qVRSu91Oyut0OnIcR5lMJjl+p9ORdDY5b6PRSKY+OTo6Sv7farXk+75yudzE/UbFHO/XbDaVy+WSS1a9Xk+5XE47OzuXOidx+aPO7XCM5XJZW1tbevLkiQzDkCStra0l5ffHUiwWtb+/nzwejtUwDDmOo7W1tQtjH953mucCAJgOidOSiVuTgiAY+SUYBIEymYwcxzm33jRNHRwcqFwua319faCvkWEYA61YhmGo1+slCUC8LFYsFlUqlZLkyjCMpLxisSjbtpXJZJIWFeksWYptbm6eO5akJPEatd+omOP9isWi8vm8TNPUzs7OyL5es5yTuPzhckbFGCeZ/efpqjpsXxT7sLTPBQAwHRKnBfBXPw6n2v4Pv/xf6b//H/+N/sPfPt8huN3+rgqf/xd65733z5V98g8/n1hu/xf+LIYvH/a3AEnnO7OPM8t+mUxGx8fH8n1f+/v7SWvYdRkV400NsQAAmB/6OC2h//q//aokyf3WNweWn578cliDf/77X9D//X/+HwPrf/TmD7W9vT223LjPUpr1ruuea13pb9HY2dkZaJGRdO7xKLPuV6vVkla4er0+EFcc96iyfd+feE6miXF7e1u+7w8s7x9TyzAMvfvuuwP7DJ/zca9Bmtgvev0AAJdHi9OScv7nP9e//dN/rT/52h/r3j+5r1XjrC9M4fP/QpL0G5/9Tf3Lva/o3/7pv9Znfv15/T8/9PWNl78pwzCSVhnprD9M3ClcOmtJ8TxPQRCoXq8PJCHdbjf5sj86Okr6z3ieJ8/z5Pu+TNOUZVlJAmPbdnJZzrKsscd2HEemac683/r6ujzPUyaTUa/X087OTrJPJpNRsVhMym40GjJNM3kOk85JXH5/a9q4GA3DUKvVkm3bKhQKyWXM2Pb2tmzbThIgy7KSS3BhGA7EOqr17qLY433jstI8FwDAdFaiKIrmHcR1Oj091erqqk5OTnT37t2Bde+//76ePHmi+/fv66Mf/ejMx5j2Uts8/dPPGDPtZ9u2stnsUowTtUgKhYLq9frMnbLX1tZ0fHx8xVGdr7PRL36md37yY33lL9/R3773wZUf7zLeeunz8w4Bc/b8w2/PO4SpUGeXz6RcYRgtTsA1mqVDdrPZVLfbVaVSYTRwAFgw9HHCheJLcfEt7UgnnjfQcZyp+h9ZlqX19XW5rivHca4vQADA1GhxwoXiMZownXK5PNOlTdM0kzGuAACLhRYnAACAlEicAAAAUiJxAgAASInECQAAICUSJwAAgJTmljgFQaBGoyHXddVoNFLfrm3b9jM9tcT3vvsd/XcP/6V+896a/uRrf6zvffc7U5fRbDa1trZ2I0ML3OSx+uXzebmuOxBHoVCYaV8AAGJzG46gVColt7gHQaDd3d1kCo9xfN9Xo9HQ3t7etcb22T/77LWWP+xbW99Nve1v/7PP6TO//rxe/daf6b/4L1/U3dXVqY9XLpcvPNdX5SaP1a9erw8MHmlZVuqpRob3BQAgNpfEqX/iU+ls3Jo0E7kGQcA8W5Lu/uO8dBjPsqyBx9PM0Ta8LwAAsblcqosnY+2XyWQmXs5xXVfFYvG6QwMAABhrLonTuD5K4+b1Gp5lfpKnT5/q9PR04O+2+953v6P/7D/9nNxvfVPf++535H7rm/pXX/rDgW1+9OYP9Sdf+2O5rivXdc+da8/zkj5ntm1LOktW8/m8stmsJKnRaCibzarRaIzdRzq7pGrb9thjDZtUTqVSScpxXVe+78vzPOXz+SQO13WVzWaTVkvf95XP59VsNiWd1Z9KpZI8j3ib/j52cSvo8L7xsZrNpjzPU7PZVKlUuvA1AQDcTgs15cq4hOrg4CD11BW1Wk1f/epXrzCqxffb/+xz+o+++5/oe9/9jr7x8jclSe1v/6/60Zs/1G989jd1enKif/WlP9S3/6839E8/Y0g6O0+xIAhk23bS56zX66nRaKharcqyLG1tbSXJa6fTkWEYY/cpl8sqlUrqdrtJ+f3HGjapnK2tLT158iRJmtfW1nR4eCjLsrSzs5OUUSwWtb+/nzzO5XID6w3DkOM4WltbGzhmu91Otsnn8zo8PDy3r2VZsixL7XY76asVz9mXy+UmvzAAgFtnLomTYRjnWiF6vd7IViXP87S9vZ267L29Pb344ovJ49PTU927d2/mWJeFsZaRsfbLy58fv7uqk/BYkvTv/vc/12989jcHtu+/VOo4jjKZzEA/s6Ojo7NyDUOPHj1SPp9Xq9VKXqNx+xiGcS6hGL4s229SOZZlDdSJq+qw7TjOuRhN0xyboK+vr2t9fT15PKr+AgCeDXNJnCzLGjnr+7gvxoODg+T/QRCoVqtpZ2dn5C/+O3fu6M6dO1cX7DMil8sNdIruTyDiZGh/f3/gnI/aJ77Eddljz1IOAADXbS59nIbvbgqCQBsbG0nrgu/7SZ8Ty7KSWebjL/NKpfJMXyY5/ceWpLR++z/+nH705g8HlvXf2bizs3Pursb4cRiG8jxPrVZLQRAk4xuN28eyrHOd/Ifvouw3rpzt7e2J5RiGoXfffXdgn+FLveMu/Y46pu/7Ay2bz/JYYQCA8ebWx6nVasm2bW1uburo6GhgrJ9arabNzU1Vq9VkWRiGSStEvV5/ZpOn7333O/p33/5fJEn/07/5H/TPf/8LkqS/+N/+XNJZkvTj//ct/ejNH8r91jf1mV9/Xp/5J8/rGy9/U3/ytT/Wf/6F30/6K9VqNdXrdeVyOdXr9eT1kM4S1mazmZxrSdrc3NTu7q6CIFC1Wh25j2EYyWtbKBTOHWs4aR537HHlxLa3t2XbdpIAxa2YuVxOYRhqf39fmUxGxWJx7DEbjYZM00zqn2EY8n1/YN+4rPgYQRDI9305jjPVEAcAgNthJYqiaN5BXKfT01Otrq7q5OREd+/eHVj3/vvv68mTJ7p//74++tGPJssXeQDMy4o7hy+jQqGQJHqzWFtb0/HxdK11t9Vf/TgceBz94md65yc/1lf+8h397XsfzCeoMd566fPzDgFz9vzDb887hKlQZ5fPpFxh2ELdVbco3vyDN6fafvhLCNdjlg7ZzWZT3W5XlUqF0cABAJfGJL9YCs1mU0EQyHGcqfofWZal9fV1ua478oYEAACmQYsTlkL/zQHTME1zoK8cAACXQYsTAABASiROAAAAKZE4SbrlNxYCF4siSZE+5K0AABM904nTRz7yEUnST3/60zlHAsxX9Iuf6ecfRDp+/8N5hwIAC+2Z7hz+3HPPyTAMvfPOO5Kkj33sY1pZWZm6nOgXP7vq0K7N+++/P+8QsACSOhtFin7xMx33/l6Hwb/X+7+gyQkAJnmmEydJ+uQnPylJSfI0i3eO/+Gqwrl2/8E//Nq8Q8AC+GWdjfTzDyIdBv9er/3o/5trTACwDJ75xGllZUWf+tSn9IlPfEI///nPZyrji69952qDukaH/83n5h0CFkBcZz+MpOP3P6SlCQBSeuYTp9hzzz2n5557bqZ9F22Kikn6p5bBs2uZ6iwALJJnunM4AADANEicAAAAUiJxAgAASInECQAAICUSJwAAgJRInAAAAFIicQIAAEiJxAkAACAlEicAAICUSJwAAABSInECAABIaeq56t566y21Wi21220dHx8nyzOZjAqFgorFop5//vmrjBEAAGAhTJU4PXz4UCsrK9re3tYf/dEfnVv/xhtv6OWXX9bKyopqtdqVBQkAALAIUidOX//617W3t6fV1dWx2zx48EAPHjzQycmJ9vb2SJ4AAMCtkjpxGtXCNM7q6ipJEwAAuHVm7hz+8OFDvfLKKzo5OdHv/u7vamdnR6+99tpVxgYAALBQZk6cNjc39cUvflHNZlP5fF77+/t69913rzI2AACAhTJz4rS2tiZJOjg40M7OjqSzO+sAAABuq6mHI4h1u11FUaRut6vf+q3f0pMnTwaGJwAAALhtZm5x2t7elu/76nQ6Ojk5keM4CsPwCkMDAABYLKlanE5OTnR8fDwwsOXq6urAnXYvvfTSwD6np6eSpLt3715BmAAAAPOXqsVpdXVV7XY79V1zr776qg4ODkiaAADArZK6j9Pu7q7eeOMNbW9vK5vNanNzU6ZpyjAMhWGoIAj0/e9/X0+ePFGlUtELL7xwnXEDAADcuKk6hz948EAHBwc6OTnRwcGBvv/97ysMQxmGoWw2q0qlovv3719XrAAAAHM10111q6ur2t3dvepYAAAAFtrMwxFcVhAEcl1XpmkqCAKVy2UZhjFyW8/zJElhGOro6Eg7OzvK5XI3GC0AAMAcE6dSqaROpyPpLIna3d1Vq9Uau+3h4aEsy1Kv11OpVFK3273JcAEAAGYfx+kygiAYeGyaZtKqNEqr1RpoYRrXMgUAAHCd5pI4eZ53bnqWTCYj3/dHbm9ZVvL/VqulSqVyrfEBAACMcqnE6etf/3oyT93h4WEy6OVFxo0w3uv1xu7j+75s21ahUFC5XJ46VgAAgMuaOXF6+PChDMNIWoO2trYmXm5LY9KULblcTnt7e+p2u3Jdd+x2T58+1enp6cAfAADAVZg5cdrc3NTu7q5M05x6X8MwzrUu9Xq9C/suGYahUqmkUqk0Nsmq1WpaXV1N/u7duzd1fAAAAKPMnDg9efJEkrSyspIsOzo6SrVvf5+lfhsbG+eWeZ6ntbW15HGcqA13MI/t7e3p5OQk+Xv77bdTxQQAAHCRmYcjePDggTY2NrS+vq52uy3P81Sv11PtO9xKFQSBNjY2khYn3/dlGIZM01QmkxlItOJ148ZxunPnju7cuTPbkwIAAJhg5sRpa2tLrVZLjuMoiiI1m009ePAg9f6tVku2bWtzc1NHR0cDYzjVajVtbm6qWq0ql8tpZ2dHzWZTktRut5PxnwAAAG7SShRF0VUVdnp6qrt3715VcVfi9PRUq6urOjk5ubbYnn/47Wsp9zq89dLn5x0CFgB1FstkmeqrRJ1dRtPkCpcajuD09FRvvfVW8mfb9mWKAwAAWGgzX6r70pe+JM/zBu6Ee/Lkif70T//0KuICAABYODMnTtlsVi+//PLAskePHl06IAAAgEU186W6UUMKFAqFSwUDAACwyGZucVpbW9M3vvENmaYpwzAUhqH29/e1v79/lfEBAAAsjJkTp2q1qjAMB/o4vfHGG1cREwAAwEKaOXEqFAra3d0dWPbqq69eOiAAAIBFNXMfp2w2m2oZAADAbTFzi1O325XjONrc3JQkRVGkg4OD1PPVAQAALJuZW5wcx9H9+/cVRZHiwcevcBByAACAhTNzi1O9XtfW1tbAslFDFAAAANwWM7c4DSdN0tkQBQAAALdV6han1157TZZlJZPfvfLKKwPrwzBUu93WX/zFX1xthAAAAAsidYvT1772NT1+/Dh5/PLLL+v4+Dj5i6JI77777rUECQAAsAhStzj1J03S2bx0Dx48GFhGHycAAHCbzdzHqb8/08nJiV599VX6OAEAgFtt5sTJ87zk/6urq3rhhRcGlgEAANw2Uw1HcHJyooODA62srKjdbp9b3+l09MUvfvHKggMAAFgkUyVOq6ursixL9Xpd3W5X9+/fH1hfrVavNDgAAIBFMvUAmPfv39fLL7+sw8PDkWM5AQAA3FZXOgAmAADAbTZz4gQAAPCsIXECAABIicQJAAAgpStNnN56662rLA4AAGChTH1XXb8f/OAH6vV6yWPHcbS/v3/poAAAABbRzInT9va2wjCUYRjJsjfeeOMqYgIAAFhIMydOhUJBu7u7A8teffXVSwcEAACwqGbu45TNZlMtAwAAuC1mbnHqdrtyHEebm5uSpCiKdHBwoKOjoysLDgD0ldV5R5DeV07mHQGAazZzi5PjOLp//76iKFIURZKU/AsAAHAbzdziVK/Xz027YlnWpQMCAABYVFc2V93rr7+uJ0+eXDogAACARXWpcZxee+01BUEg6ewy3ePHj/WFL3zhSgIDAABYNDMnTg8fPlQYhur1ejJNU2EYqlKpXGVsAAAsH25ouNVmTpyy2ax2d3f15MkTrays6Pnnn9frr79+lbEBAAAslJn7OJmmqb/5m7/R/fv35bruVcYEAACwkGZucQrDUKZp6vj4WH//93+v3/u935NhGPqd3/mdVPsHQSDXdWWapoIgULlcHpi+pZ/v+/I8T5J0dHSkR48ejd0WAADgusycOL3wwgv64IMPJEkvvfSSDg8PtbGxkXr/UqmkTqcj6SyJ2t3dVavVGrmt53mqVquSpEajoa2trWRfTIlr7wAAzGzmS3WS9PWvf107OzvJ45WVlVT7xXfixUzTTFqUhvm+r1qtljwuFovyff9cGQAAANdt5sTp4cOHMgwjGfRya2trbPIzzPM8ZTKZgWWZTEa+75/bNpfL6dGjR8njMAyT7QEAAG7SzJfqNjc39cILL+jw8HDqfePkZ1iv1xu5vFgsJv/f39+XZVlj+zg9ffpUT58+TR6fnp5OHR8AAMAoM7c4xaOE91+eu+wEv+MSqv71ruuO7QslSbVaTaurq8nfvXv3LhUTAABAbOYWpwcPHmhjY0Pr6+tqt9vyPE/1ej3VvoZhnGtd6vV6F94pZ9u22u32xO329vb04osvJo9PT09JngAAwJW41Fx1rVZLDx48UBRFajabqYciGDcZ8KS78hqNhmzbTkYpH9c6defOHd29e3fgDwAA4Cpcaq66+/fv66WXXpp6P9M0Bx4HQaCNjY2kJcn3fRmGkWznuq5yuVySNB0cHKhcLl8mdAAAgKmlbnH6xje+ceE2r7zySuoDt1ot2bYt13XlOM5Av6VarZaMRh4EgUqlkgqFglZWVrS2tibbtlMfBwAA4KqkbnH62te+pna7PXGbx48f64tf/GKq8kzTTPpE9d81J2kgiTJNU1EUpQ0TAADg2qROnLa2trS+vq58Pj92GxIcAABwm6VOnFqtlk5OTvT48WNJZ+M4DXe8ZlBKAABwm03VOXx1dVVbW1uSpDfeeEO9Xk8rKyvJ3XQvvPDC1UcIAACwIC41jlPs9ddfV7vdVqFQSD0kAQAAwLK51CS/P/jBD/TlL39ZxWJR7XabiXcBAMCtNnWL01tvvaVWqyXHcbSysqIXXnhBnU5H9+/fv474AAAAFkbqFqdXXnlFm5ubyufzCoJArVZLf/3Xf62XXnopSZpee+21awsUAABg3lK3OJXLZRWLRT18+FCGYej4+Fivv/56sv74+FgvvfSSvvCFL1xLoAAAAPM2VeLUaDQmjtW0v79/JUEBAAAsotSJU6VSuXDC3L29vUsHBAAAsKhS93HqH37gMtsAAAAsq0sNRwAAAPAsIXECAABIicQJAAAgJRInAACAlEicAAAAUiJxAgAASInECQAAICUSJwAAgJRInAAAAFIicQIAAEiJxAkAACAlEicAAICUSJwAAABSInECAABIicQJAAAgJRInAACAlEicAAAAUiJxAgAASInECQAAICUSJwAAgJRInAAAAFIicQIAAEiJxAkAACAlEicAAICUSJwAAABSInECAABIaW6JUxAEajQacl1XjUZDYRhO3N73feXz+ZsJDgAAYIRfndeBS6WSOp2OpLMkand3V61Wa+S2ruvKNE35vn+TIQIAAAyYS+IUBMHAY9M05Xne2O2LxeJ1hwQAAHChuVyq8zxPmUxmYFkmk6FFCQAALLS5tDiN68/U6/UuXfbTp0/19OnT5PHp6emlywQAAJAW7K66izqIp1Gr1bS6upr83bt37/KBAQAAaE6Jk2EY51qXer2eDMO4dNl7e3s6OTlJ/t5+++1LlwkAACDNKXGyLGvk8o2NjUuXfefOHd29e3fgDwAA4CrMJXEyTXPgcRAE2tjYSFqcfN8/d+dd7Cou5wEAAMxibn2cWq2WbNuW67pyHGdgDKdarSbXdZPHnufJtu2R6wAAAG7K3AbANE1T9Xpd0vlxmoYHwrQsS5ZlJdsDAADMw0LdVQcAALDISJwAAABSInECAABIicQJAAAgJRInAACAlEicAAAAUiJxAgAASGlu4zgBAID5+uyffXbeIaT25h+8Oe8QJNHiBAAAkBqJEwAAQEokTgAAACmROAEAAKRE4gQAAJASiRMAAEBKDEcAAFeEW7uB248WJwAAgJRInAAAAFIicQIAAEiJxAkAACAlEicAAICUSJwAAABSInECAABIicQJAAAgJRInAACAlEicAAAAUiJxAgAASInECQAAICUSJwAAgJRInAAAAFIicQIAAEjpV+cdADDOZ//ss/MOIbU3/+DNeYcAALgBtDgBAACkROIEAACQEokTAABASiROAAAAKZE4AQAApETiBAAAkNLchiMIgkCu68o0TQVBoHK5LMMwLr0tAADAdZlb4lQqldTpdCSdJUa7u7tqtVqX3hYAAOC6zOVSXRAEA49N05TneZfeFgAA4DrNJXHyPE+ZTGZgWSaTke/7l9oWAADgOs3lUl0YhiOX93q9S20rSU+fPtXTp0+TxycnJ5Kk09PT6YKcwodPf3ptZV+105Vo3iGk9sE/fDDvEFK7zvp1Haiz14M6ez2Wqb5K1Nnrcp11Ni47ii5+7RZqrrpxSdI029ZqNX31q189t/zevXszRnW7rM47gKn8aN4BpLb65eU6s8tkuc4sdRbU2etyE3X2vffe0+rq5OPMJXEyDONci1Gv1xt5p9w020rS3t6eXnzxxeTxhx9+qF6vp/X1da2srFw6dgw6PT3VvXv39Pbbb+vu3bvzDge4EHUWy4Y6e/2iKNJ7772nT3/60xduO5fEybIsOY5zbvnGxsaltpWkO3fu6M6dOwPLGLrg+t29e5c3NJYKdRbLhjp7vS5qaYrNpXO4aZoDj4Mg0MbGRpLg+L6f3E130bYAAAA3ZW59nFqtlmzb1ubmpo6OjgbGZarVatrc3FS1Wr1wWwAAgJuyEqXpQg6M8fTpU9VqNe3t7Z27RAosIuoslg11drGQOAEAAKTEJL8AAAApkTgBAACkROK0gJrNpgqFQqpt8/m8XNe95ojS831flUpFKysrsm1bzWZTtm2rVCoxx+AtRp3FsqHOYlb0cVpAQRAoCAJZlnXhtp7nLdzwDGEYam1tTcfHx0lc8bJOp6NcLjffAP8xnkU6Z8uOOnv9qLNXizp7/W5rnaXFaQGZppnqzSydDRC6DBXTMAyZpqn9/f15h6IgCHRwcDDvMG4V6uz1os5ePers9brNdZbECTem1+spm83OOwzV6/V5h4AlQZ3FsqHOXr+FmuQXZ02btm3L8zx1u11JZ9ezPc+TaZoKgkDFYlGmacr3fe3u7qpSqahcLsvzPNm2rUqlkmzbbrcnDhg6ruw0ZXmeJ9/3ZZqmjo6Oxr5RwjBUrVaTZVkql8tj9/U8T5VKRbZtS5Icx1Gn01EQBHIcR5ubm+r1etre3pZhGGPLmBS353l6/PhxMv+hZVnnRqfHdKiz1NllQ52lzl5KhIVkGEYURVHU7XYjy7IG1uVyuej4+DiKoiiq1+uR4zjJumq1GhWLxeSxZVlRp9MZeYyLyp5UVrfbjXK5XLLOcZyoXq9HURRFx8fHkaSoXq9HrVYrarVaUbfbHTjuuH3L5XJULpejKIqiVqsVHR8fR6ZpDsRUr9cnlnHROahWqwPnDFeDOkudXTbUWersLGhxWnCO45zr5Geapg4ODpJfFf3W19e1vr6ePDYMI8n6py17UlmO4yiTyQzcwXF0dDRQVrlcHtkvYNK+hmEkxywWi2o2mzJNMylnb29P0tm0POPKmOYc4OpRZ6mzy4Y6S52dBokTZpbL5QY6V476gJll3/4m3eG7Mvr/f5njjysftxt1FsuGOrt46By+4HZ2ds6Ny+H7vra3t5PHYRheW9nT7Dv8eNyvj4v27d+vWCzK9/1z26Y5fhqMeXL1qLPU2WVDnaXOTmXe1woxWnztPYqiqN1uJ9exq9Vqch250+lEuVwusiwr6na7yeNcLhd1Op2o1WpFpmlGxWJx4Np3v4vKnlRWu92OqtVqcn39+Pg46nQ6UbVajSRF5XJ57HX/Ufu22+3k+bTb7YnbTjr+RXF3u92oXC5HjuOMPS+YHnWWOrtsqLPU2VkwAOaCigc2A5YFdRbLhjqLWdDHaYE0m011u11VKhVtbGzMOxzgQtRZLBvqLC6LFqcFEgRBMh9SPM4HsMios1g21FlcFonTLRVP+nh4eHhjcxb5vi/HcdRsNlWtVpXNZtXtdhUEgSqVSurpDQDgWRCGoR4/frxw8+BhMhKnW6xQKKher9/oZI9MPIlh80jirxI/CDAsbZ12XVe9Xk+maSoMQxWLxWRdGIba3d1VvV5XqVRSp9NJfXzq5JzNr186rtuk0WyvSzyabXxHRsw0zahard5oLKN0u91bO5rtIktTF4frzHWb5nij6nW87KbfY+Pc9Pl71l1Up9vtdjI6dxRF5+pPq9UaGAW8/980qJPzwzhOuBFMPIlJbnom9as4HjPRY5J2u61CoZA87na7Ay3dQRAkjw3DoE4uEe6qWzCu6yZvom63m3zRp5kM0vd97e/va3NzU9L4gdH6t7/piSfnNelkHPOtnnhyidXrdeXz+aU73iL9ILjJ84fpXfRZQ51cHiROC6ZUKqnb7cqyLFUqFbmuq2KxKMuyZFnWQDLQarXk+75yuZzCMEz2jdVqtbHHCYJAtm2r3W4ny/L5vA4PDy88VrxvfE2+1+up0WioWq0mZcVzH0kaSGbG7WdZljqdTjK/UhiGKhQK6nQ6MgxDtm2r2WyqWCxOLGNczJKS55XNZmeaNuBZc1NJ/KiENp6Rfnt7eyCpbrVaevz4sUqlkh49eiTDMK5k5nbf92XbtnK5nFqtlsIwVD6fV7FYHPmjgJnol9NN1mnf9xUEQTK3W7PZTPpE+b4/8NlrmiZ1comQOC2YuFN1EATq9XoKgiBZN2lSxYODg3OdFDOZzNjjzGPiSSadXC43lcSPSmjjD+n19XXlcjnZti3HcWQYhizLSm566O9UmzaJHne8Xq+XlBUn68MJ9qgfBJLm+qOAHwTp3WSdbrfb2tzcTDqE909pksvlkst48WtGnVweJE4LplaraX19feHHF5l14sdFmXRy1DEw6KaS+HEqlYpKpZKq1arCMFQQBMnt29vb21eeRJfLZa2trclxHAVBMHJwRGaiX27zrtPTok4uJhKnBRI3icZNuGEYan19XZ7nXXh7afwrvF//h8KwnZ0d7e7uDizzfV+PHj26MM5R+w7H2Ov1zr2ZL9pveNJJx3HObZvm2Gl5njdwezAGzSuJjxPa+JjxL/WdnR0dHBwok8kkdeuqZ24vl8tqNpvKZDJT141F+VHAD4LxluWHKXVysXFX3QKJB0HzPE+e56lUKuno6EhhGCbX1/f39+X7vlzXTcbyCIJApmmq1WrJtm15npdcy6/VaiMTqFwup3q9rkajIdd1Zdu2Wq1W0mdk0rHifW3bluu6cl1XGxsb8n0/ab6u1+vnZtset1/8fFutVvLLxjRNOY5zbttJx54Uc6xSqajT6ajZbC7lmEI3JU7iq9VqMgZNvPwicf+MfpOS+FHHjlUqFe3u7qpYLKpcLg8k09cxc3ulUpl45yUz0S+vedTpWVtgqJMLbt7jIQBYPMfHx1GxWIza7XbyVywWo1arlWpm9Hj29na7HbVarSiXy02cPX7cTOrHx8cDY+EUi8WB/a5j5vbhYzAT/e1wk3W6/3WPyzMMIyqXywOvqWVZUavViqKIOrlMGDkcAPrEHYaBRUGdXCz0cQLwzIs7omcyGS7hYiFQJxcXiROAZ16pVEr6vPAlhUVAnVxcXKoDAABIibvqAAAAUiJxAgAASInECQAAICUSJwAAgJS4qw7AUmo0GjIMQ5lMJhk9n7FuAFw37qoDsHTy+bzq9frAHFq2bUvSxOkpAOCySJwALBXbthUEgVqt1rl1a2trOjw8ZNwbANeGPk4Alkqj0VChUBi5zrKsZKJpALgOJE4AlkY8I/3GxsbI9aZpJrO8e56nfD6vRqMh6Wy+r2w2OzBTu+d5ajQacl03udTneZ6y2ayazaaazaby+Xyyb6lUkiSFYahsNpvsA+DZQedwALfG+vq6er2epLPWp52dnWRdsVjU/v5+8jgIAtm2rU6nI0nq9XpqNBqqVquyLEudTkeO4yiTyahYLKrX6yXbGoYh27ZVLpdv8NkBWAS0OAFYGqZpSvply9Owbrc7tjVqWJwUeZ6XtEIdHR1JOkuMstmsJCV36pXLZR0cHCTHT3scALcLLU4Alkq5XFa73U4SmngoAunsMts0d9XlcrmBO/P6W5DiMoeP3Ww2k1YoAM8eWpwALBXHcfT48WP5vi/XdZXJZOS6rhqNhizLGkhoDMPQu+++mzz2PC+ZcX5nZ2egv1O8PhZf8utXqVQY7gB4xjEcAYCl1Gg01O12lc/n1W63tbm5qWq1qjAMZRiGpLNO3LZtJ526HcdRGIZyHEemacrzvGRf6axf1OPHj2XbtjKZjGzbHmiRkqRSqTRyKAQAzwYSJwBLz/d9eZ6narWadPC+Lq7rcpkOeIaROAG4FdbW1lQul+X7vtrt9pWWXalUVCqVlMlkZBjGyP5PAJ4NdA4HcCvEHbev4zJaqVRK+kYxKjnwbKPFCQAAICXuqgMAAEiJxAkAACAlEicAAICUSJwAAABSInECAABIicQJAAAgJRInAACAlEicAAAAUiJxAgAASOn/BzpFhtgu75b7AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFnCAYAAABQEsaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4s0lEQVR4nO3dXWwr6Z3n95+m7RyPAR+VKMCwDZ/ZPsWrvfDuHFJCJkAGceaUZoIYiwBuUgqQi51gLdJOgATpzLBaCALbN+Yh7WQRIMF08XSyngtfSKzu3SDxxSxLPQaMBQaWWG2PA/hiwDo9aY8xaMyhSuqNp4/t7sqFtsokxZci9UJS5/sBhHPIquepP4sPpT+feup5VqIoigQAAICJfmPeAQAAACwLEicAAICUSJwAAABSInECAABIicQJAAAgJRInAACAlEicAAAAUiJxAgAASInE6TkVBIFs29ba2pqy2ezYfbPZrNbW1mTbtsIwvJkAsTB839fW1tbEdgJMK25b+Xx+3qEsBT6Li4HE6TllmqZqtZr29vbU7Xbl+/7Q/TzPUy6X0/b2tmq1mgzDuNlABzQajQvP2batYrE4h2jODYvpNsnlcrJte+pyN3Ve5v3+L4JFOwej4hlsE3HbmuULmed5KhaLajQa8jxPtm3Ldd2+fer1uhqNhhqNhur1+oU6Lrt9lOtq+7N+FnG1SJyec4ZhaHt7W47jDN2+aD1MrVbrwnNbW1va2dmZQzTnhsV022QymanL3NR5mff7vwgW7RyMimdYm5ilbUnnv5s8z1O5XFa5XFY2m1WhUEi2x4lOqVRSqVRSLpdTuVy+su3jXGfbn/V84QpFeK45jhO12+3IMIwL205OTqJ2ux0VCoWoVCrNIbp+juNEuVxu3mH0WcSYrkO73Y5M00y9//NyXpDeqDYxbduKNZvN6OTkZOR2wzAubO/9k3fZ7aNcd9uf9Xzh6nxkznkbFkAul1Mmk5Hrun3f2I6Pj2VZ1shy9XpdpmkqCAKZppmUDcNQjUZDpmmq1WqpXC4rl8tJUtKlLkmPHz9WEAQKgkBPnz5VrVYbeSzP89RqtRQEQfJNsFKpyPd92batIAjU6XRGHqPb7ardbstxHDUaDWUyGe3v72tvby+JbdLrShvTYD3S+Ziy3m3jDHbzl0qliXXO+prjcplMJrm0EobhxPdjMJ7ec5X2vEw6v7EwDGXbtvL5vNrttrLZrHK5nBzH0d7e3oX333VdVatVBUGgZrMpy7IUBIG2trZkmqYcx5FpmiNjn6V99r426bwnN5PJyDRNdbtdWZY1tK3atq1Go6FarTb0fR4Wm2maKpfLSa/Gzs7OhXonnev48xmGoYIgkGEYfcfv5bpuck4cx1EQBMll+2azqUwmo4cPHyoMQzWbzeR1DX4mx7UJ6Xz8zrTne5QgCBSG4dChBZ7nJa991u2jfi9O83tq8L2/js+iNN17jZTmnblhvhzHiaIoiiqVSlQoFPq2NZvNKIqioT1OhUIh2R5FUWRZVtRut5O6Op1Oss00zb5vbq1WKzJNM2q1Wn37xOVHabVaqb+xjjpGpVLpe32D9Y17XdPEVCgU+o7d6XQiy7LGvLpztVrtQoy978O4Omd9zc1mM5LU955VKpW+93zYOR53rsadl2nO72CZk5OTC3GMe/971Wq11LHP0j5LpVLfOet0OlEul+urZ1hclmUln8NJscXvX6vVitrtdvLeTvP+NJvNvuN1Op2+x8M4jtPX1oa10972M+o9GfX5NQxj6vMdv4743954Wq3W0N4hwzCiZrN56e3jjHqdad77q/4szvJeYzLGOEGSVC6X5bpuMqYpCIILPTGxIAgu9E4Vi8VknFQQBPI8L9lmmmbf40wmoyAI+r61xd+UrsqoY/TK5XJ9x5z0utLyff/Ct9K456H3PAyKe1b29vaS5/b39xUEQao6Z3nN0nnvSC6X69t3b29PjUZj5Hsyy7ma9fy6rpu0RcMwkl6JcSzLunDTQ9x7MCmOWdpn3Mva2zMQf8vvNWx8Sm+vxqTYDMOQ7/uyLEu5XG5kT8SkeprNZhKbaZra2NgY+dokaXt7+0Lb7R2I3e12L7S1aYRhOPXvg1wuJ8uyVCgUVCqVlM1mJw6Qz2Qy6na717Z90rEHDfZoXcdncdr3GpNxqQ6Szj9QuVxOBwcHKpVK8n1/7CUqwzD6fpF2Op3kgx1318ddw91u98Ivm8FfsoZhzPwLaZRhxxh3G++k15XW8fHx0D8i8aXLUd38x8fHMgyj75dpfC7j7vZJdU77mkeJ4/B9f+hxZzlXs57fXC53IQFJ80e6VCrJcRw5jiPP87S9vZ06jmnbZ1znsD+E05gltmnrKRQKchxHa2tryuVy2tnZmXgZOf6DHv+B7k1CL5MwxWb5fTBYZnt7W+VyeewNLZPqvOz263CZz+Is7zUmI3FColwuy3EclUqlsb/wwzCUaZp9CUDv/33fV7Va1dbWlra3t6/kF+swV/VLOzbpdaWNadY7EceVW7S7G6c9V/F5meX8lstlVatVPX78WI1GI3UPYLlcVj6fT8blxMe6ivf5KvW+t2liS5OMTaqn1WolvZjx+Zz0B3VnZ0f7+/vK5XLa2NhIeqkty5rp/F328zvYy5ImmYvPy2W3T2NSPJd1He81xuNSHRLb29vyfV+u647tzh12uUc6/wCHYaiHDx9qb28vScB6L/9dpVFzT81q3OtKK76MMqyeIAi0ubk59vjDjhVfxpilzlnF7+Woy7XTnivf9y91fh8/fizP85LLMmmYppnc9NB7meQq3udB8Xs3Sx29vRhXFdu4euKbD3K5nCqVitrttvb39yfWWSgU5LpuMrdb3Jsxqod1kst8fsMwVLFY7HuNvZejTNNMLusOsizr0tunMe51punBusxncdb3GuOROD3neu/CMQxDlmVpf39/7Lday7K0sbFxYbK5g4ODpGeh90Me/3IY9wskzR+G3nEP48ZgzXqMca9rmpjisRe9Xefxax93B1l8J0zvRHthGOrg4GDmOtP+wfV9v2/farWqUqk08g/ipHM17LzMcn4lqd1uyzAMFQqFqf9Al8tl7e7uXvg2Pm0ck86jaZoqlUp9d0QOG4s1OHYnvpwd1z/rORo0rp7eP6i9cU0SX86Pf2fEZdK2sWk+v5PqNAxDlUqlL+5Go9F3GXFvb6/v8+K6bl/Sfdnto4x6nZPe+9hVfhZnfa8xwbxHp2M+Op1OVCqVIklRqVRK7uLovYvr5OQkqtVqkWEYkWmaUa1W67s7rlKpJHe19N7RUalUokqlErVarajVakWdTie56yOeF0pScpdTfIxcLjfxjpW47vjOkGH1jTuGZVnJHUnxPpVKJdXrShvTYD2Dd/ykqa9Wq124I2ZcnZd5zfFdQPHdRLVare8OtMFyw+IZdq4mnZe05ze+0yhuh7lcbuz73+vk5GTkHGTD4riK9uk4TtL2B++qi+uL399msxkVCoXINM0Ln6HB2FqtVmRZVmQYRlSr1ZLP7LhzMKyeuP3Ezw1+rsep1Wp9d7v1xhGbFM+kz2/a8x3/fop/hn3Ges/zdWwfZVTbn/TeX/Vn8TLvNUZbiaIomkO+BmBBxPPHtNvteYdyQRiG2t3d1ePHj5PLvvE6i8ViceHno8nn86rVanMdQ4XlscifRfwal+oALKxGo6FyuZxcfonv7qrVavxxATAXJE4AFlYul0umZOjleZ62trbmEBGA5x3TEQDPMc/zVKvV5Pu+6vX6wt2mHF/iGlxqJs1SLfNWr9fl+34ySSWX6zDOon8W8WuMcQIAAEiJS3UAAAApkTgBAACkdOvHOH344Yf62c9+pk984hNaWVmZdzgAAGDBRFGk9957T5/5zGf0G78xvk/p1idOP/vZz3Tv3r15hwEAABbcO++8o89+9rNj97n1idMnPvEJSecn4+7du3OOBgAALJqzszPdu3cvyRnGufWJU3x57u7duyROAABgpDRDeuaWOAVBINd1k4UPS6XSyIVl48VM41Wgx60UDQAAcF3mljgVi8VkyYQgCLS7uzt0hmBJchwnWeHZsqyR+wEAAFynuSROQRD0PTZNU57njdw/n8/r5OREkkb2SgEAAFy3uSROnucpk8n0PZfJZOT7/shLcNedMH3wwQf65S9/ea3HABbRRz/6Ub3wwgvzDgMAlsJcEqcwDIc+3+12R+7vuq4k6ejoSOVyOVm3atCzZ8/07Nmz5PHZ2dnYWKIo0t/+7d+OjAl4HhiGoU996lPMdQYAEyzUXXWjkpfegeOmaWpra0udTmfovtVqVV//+tdTHzNOmj75yU/q4x//OH848FyJokg///nP9e6770qSPv3pT885IgBYbHNJnAzDuNC71O12R16OC4IguYQX34UXr5A+aG9vTy+//HLyOJ6bYZgPPvggSZrW19dnfDXAcvvN3/xNSdK7776rT37yk1y2A4Ax5rJWnWVZQ5/f2Ni48Jzv+3r48OGF5wfHSMXu3LmTzNk0ae6meEzTxz/+8TRhA7dW/BlgnB8AjDeXxGmwpygIAm1sbCQ9Tr7vJ3femaapWq2W7Ot5ngqFwpUOFufyHJ53fAYAIJ25jXFqNpuybVubm5s6Ojrqm5upWq1qc3NTlUpFhmFoY2ND9XpdhmGo0+lc+zxOL77y3Wutf9Dbj75wo8cDAACzWYmiKJp3ENfp7OxMq6urOj09vXDZ7v3339eTJ090//59fexjH0ueX+TEyff9ZELQSqWibDarTqejIAhULpdHXgadVqPRkG3bOjw8XNpZ2vP5vPb29lQoFCSdv6Zms6lWqzV12dvmL38a9j2OfvULvfuzn+prf/6u/ua9D+YT1Ah8scBN/06+LNrs8hmXKwxaqLvqMFkul1OtVlOj0dDe3l5yyTIMQ62trandbl9JolMqla60Zy8MwxufvLRWq/WNm7Msa+Q0FpPKAgAgzWmME66eYRgyTVP7+/vzDuWCIAh0cHBw48e1LKsvWTNNM3WP3GBZAAAkEqdbpdvtKpvNzjuMC3oH9wMAsMxInG6BMAxl27Ysy1KpVJLnecpms2o0Gmo0Gsrn85LOx0fV63W5rqt6vX5hzUDf92XbtlzXleu6fXNteZ6nfD6ver0uSXJdV9lstm+NwSAIkvKNRkNhGMrzPB0fH6vVaqnRaFw4Zm/9cWy2bffFVC6Xk5hc15Xv+xPj8X1f+Xw+WRw6DEOVy+W+xHLU+RgsGx+r0WjI8zw1Gg0Vi8UZ3ikAwLJjjNMSazQayZid3mVoLMuSZVlqt9tyHEeZTCZJanoHRufzeR0eHsowDIVhqGKx2Dcje7VaTf5vWZZ2dnaSx4VCoe+yYBiG2traUrvdlmEYsm07GcBuWZay2axKpdLQ1xHH1m63JZ33nNXrdZVKJT18+FBPnjxJLputra3p8PBwYjy5XK5vu2EYchxHa2trfcccdj4Gy8bns9VqJeO+ms3m2LUVAQC3E4nTEutdimaQYRjJbOiFQkG2bV/4I2+apg4ODlQqlXRwcHBh+6hJRoc5ODiQaZpJPHt7e6nLxsldb+/V0dGRDMO4MNboqgZsO44z9nwMWl9f75tdftjs9wCA24/E6RZLewfZVRi8a25UQjfq7rpcLtc3cLtUKiWXygAAWBSMcVpik3o8erfv7Oz09ehI52N5tre3JZ1fjvJ9v2/74HgkwzD09OnT5LHnecnCzIVC4UL5weONem5YbJ7naXt7e2xM4+KJjVo4etL5GFcWAPD8osdpiEWevMz3/WQsT61WU7lcvnDJyfM8eZ4n3/eTW/Dj+Z/q9bpM00xma497f0zTTGZz39raSnqGqtWqarWaTNPU9va2bNtOEg7LspJLXqZpynGcZDb4eLt0Pv4qnntq2HQAcWyDZQ3DGBpTbFw8YRhqf39fmUxGhULhQu/buPMRn+O4bFxXfIwgCJKJSE3TvNGePQDAfDFz+JCZw7G4tra2VKvVZh6Uvba2ppOTkyuOavkwcziWCTOH47oxczhurVkGZDcaDXU6HZXLZWYDBwBcCmOcsDTieaAcx5lq/JFlWVpfX5frunIc5/oCBADcevQ4YWmUSqWRc0GNY5qmKpXKNUQEAHje0OMEAACQEokTAABASiROAAAAKZE4AQAApETiBAAAkBJ31Q3ztdUbPt7pTMXi+Ymy2awymYwMw1AQBLIsa2Fns/Y8T7Ztq1wuz3SH3LTy+bz29vZUKBSu/ViXNRhro9FQs9lUq9WauiwA4HqQOC2pra0tFYtF1Wq15Dnf97W1taVOpzPHyMazLGvosivXpVarLc2kl4OxTpMAL9PrBIBlRuK0hOr1uiRd6LHJ5XI30otzWevr6zd2rJtM0i5rMNZp1sFbptcJAMuMxGkJVatVPX78eOi2YrF4w9EAAPD8YHD4kgmCQGEYjuyJ6L284/u+6vW6XNdVvV5XEASSzscZ5fN5NRoNeZ6nRqOhYrGoIAiSMuVyOanT8zxls1mVy2W5rqtGo6FyuZwsexJvbzQaajQayufzyfPx8W3b7oszDMO+Y/caVm5UzL31xdvicr7vJ2Vi056TUUa9Nt/3k/MU//i+n9Qf9xa6rqtsNivP85JyvbGGYahyuaxsNjsx9sGy074WAEB69DjdUkEQyLbtvoHF+Xxeh4eHyTijVqulZrMpSWo2m3JdV5VKRblcTtlsVmEYyjAMWZalQqGg9fX1ZPCx67oqFotqtVpJfe12W47jKJPJJMdvt9uSzhfnrdfrydInR0dHyf+bzaZ831culxtbbljMcblGo6FcLpdcsup2u8rlctrZ2bnUOYnrH3ZuB2MslUp6+PChnjx5IsMwJElra2tJ/b2xFAoF7e/vJ48HYzUMQ47jaG1tbWLsg2WneS0AgOmQOC2ZuDcpCIKhfwSDIFAmk5HjOBe2m6apg4MDlUolra+v9401MgyjrxfLMAx1u90kAYifixUKBRWLxSS5Mgwjqa9QKMi2bWUymaRHRTpPlmKbm5sXjiUpSbyGlRsWc1yuUCgon8/LNE3t7OwMHes1yzmJ6x+sZ1iMcZLZe56uasD2pNgHpX0tAIDpkDgtoUqlIsdxht567vv+zLek9/7Bn8Xg5cPeHiDp4mD2UWYpl8lkdHJyIt/3tb+/n/SGXZdhMfZeEgQA3E6McVpC8RQEg3+o4zFHkrSzs9PXIyKdJ1Xb29sj6+0tP2m767oXeld6ezSGHX/w8TCzlqtWq0kvXK1W64srjnuWczJNjNvb2/J9v+/5eBySdJ6YPn36tK/M4Dkf9R6kiX3S+wcAuDx6nIaZckLKv/xpeLnjzVD+f/oXTf2LP/lf9F/+V/+t7v2D+1o1zsfCbH3hP9Nf/jTURz5pqvxH/6P+u//h6/rsb72o/+dHvr7xv/4fMgwj6ZWRzsfDxIPCpfOeFM/zFASBarVaXxLS6XSSP/ZHR0fJ+BnP8+R5nnzfl2masiwrSWBs204uy1mWNfLYjuPINM2Zy62vr8vzPGUyGXW7Xe3s7CRlMpmMCoVCUne9XpdpmslrGHdO4vp7e9NGxWgYhprNpmzb1tbWVnIZM7a9vS3btpMEyLKs5BJcGIZ9sQ7rvZsUe1w2rivNawEATGcliqJo3kFcp7OzM62urur09FR3797t2/b+++/ryZMnun//vj72sY/NfIxLJ0436B991pipnG3bymazSzFP1CLZ2tpSrVabeVD22tqaTk5Orjiqi202+tUv9O7Pfqqv/fm7+pv3Prjy413G24++MO8QMGcvvvLdeYcwFdrs8hmXKwyixwm4RrMMyI6X0imXy8wGDgALhjFOmCi+FBff0o50Go2GgiCQ4zhTjT+yLEvr6+tyXVeO41xfgACAqdHjhIniOZownVKpNNOlTdM0kzmuAACLhR4nAACAlEicAAAAUiJxAgAASInECQAAICUSJwAAgJS4q26Iz/3p5270eN95+P3U+/7F97+nf/3df6XXv/On+sOv/Df6D373P9bv/O7npzpeo9GQbds6PDyceWLGRTxWr3w+r729vWTdvkajoWazmWr9usGyAADESJyWzO/87uf12d96Ua9/50/1z/7rl3V3dXXqOkqlUrJcynW7yWP1qtVqfZNHWpaVeqmRwbIAAMRInJbQ3X+3Lh1Gsyyr7/E0a7QNlgUAIMYYJwAAgJTmljgFQaB6vS7XdVWv11MvSWHb9lTLVzwP/uL739N//p9+Xu53vq2/+P735H7n2/qjL/9h3z4/+fGP9M+/8VW5rivXdS+soeZ5XvJ+2LYtSXJdV/l8XtlsVpJUr9eVzWZVr9dHlpEk3/dl2/bIYw0aV0+5XE7qcV1Xvu/L8zzl8/kkDtd1lc1m5XleUi6fz6vRaEiSwjBUuVxOXke8T2/7C4JgaNn4WI1GQ57nqdFoqFgsTnxPAAC309wu1RWLxWQZjyAItLu7O3EsTPzHbm9v7yZCXBq/87uf17///f9If/H97+lbr35bktT67v+pn/z4R/qHn/vHOjs91R99+Q/13X/zlv7RZw1JUrVaTcoHQSDbtpP3o9vtql6vq1KpyLIsPXz4UGEYyjAMtdttGYYxskypVFKxWFSn00nq7z3WoHH1PHz4UE+ePJFhnMe8tramw8NDWZalnZ2dpI5CoaD9/f3kcS6X69tuGIYcx9Ha2lrfMXsHiufz+WQAe29Zy7JkWZZarVbSPuM1+25ysDsAYDHMJXGKv93HTNNMegsmlUs7TuV5Y6xlZKxlksefuLuq0/BEkvSv/+9/qX/4uX/ct38m8+t9HcdRJpPpew+Ojo7O6zUMPX78WPl8Xs1mM0liRpUxDONCQtF7rEHj6rEsKzmepCsbsO04zoUYTdPUwcHB0LXl1tfXtb6+njw2DGNiLxoA4HaaS+Lked6FP6aZTGbst3jXdVUoFPou5Qzz7NkzPXv2LHl8dnZ2+YCfA7lcrm9QdG8CESdD+/v7fe/PsDLxJa7LHnuWegAAuG5zGeM0aozSqG/x8WWiNKrVqlZXV5Ofe/fuzRjl4jr7dz1Jaf3Of/h5/eTHP+p7rrfXb2dn50KPX/w4DEN5nqdms6kgCOS67tgylmXJ9/2Rxxo0qp7t7e2x9RiGoadPn/aVGWxXo9rZsGP6vq/t7e2JZQEAz7eFmo5g1B+rUZdQhtnb29PLL7+cPD47O7tVyVM8AaYk/e//2/+s/+SffFGS9Gf/17+UdJ4k/fT/fVs/+fGP5H7n2/rsb72oz/6DF/WtV7+tf/6Nr+q/+OI/SRLRarWqWq2mXC6nWq0m27a1ubkp6XxsT6PRUK1WU7lcliRtbm5qd3dXQRCoUqkMLWMYhprNpmzb1tbW1oVjDV5qHXXsUfXEtre3Zdt2kgBZlpVcggvDUPv7+8pkMioUCiOPWa/XZZqmjo6OksuQvu/3lY3rio8RBIF835fjOFNNcQAAuB1WoiiKbvqgjUZDjuMkA4Kl84G/zWbzwhw6nudpY2Mj+aOZzWaTAcppnJ2daXV1Vaenp7p7927ftvfff19PnjzR/fv39bGPfWzm1/OXPw1nLnvT4sHhy2hraytJ9Gaxtramk5Ppeutuq8E2G/3qF3r3Zz/V1/78Xf3Nex/MJ6gR3n70hXmHgDl78ZXvzjuEqdBml8+4XGHQXHqc4t6BQaMG/x4cHCT/D4JA1WpVOzs73NX0nJllQHaj0VCn01G5XGY2cADApc0lcRq8vBEEQV+vku/7MgxDpmle6IEql8sql8tcInnONBoNBUEgx3FUq9VS9zhalqUwDOW67tBkHQCAacxtjFM8fmVzczMZYxKrVqva3NxUpVJJngvDMLnTKh53Q4/T86NUKqUe59bLNM2+dgQAwGXMLXEyTVO1Wk2SLqxCP2wiTMMwVKlU+CMIAADmhrXqJM1hfDywWKJIUqQP+SgAwFjPdeL00Y9+VJL085//fM6RAPMV/eoX+uUHkU7e/3DeoQDAQluoeZxu2gsvvCDDMPTuu+9Kkj7+8Y9rZWVl6nqiX/3iqkO7Nu+///68Q8ACSNpsFCn61S900v07HQb/Vu//ii4nABjnuU6cJOlTn/qUJCXJ0yzePfn7qwrn2v17f/+b8w4BC+DXbTbSLz+IdBj8W73xk/9vrjEBwDJ47hOnlZUVffrTn9YnP/lJ/fKXv5ypji+98b2rDeoaHf73n593CFgAcZv9MJJO3v+QniYASOm5T5xiL7zwgl544YWZyi7aTMvjXGaGdNwey9RmAWCRPNeDwwEAAKZB4gQAAJASiRMAAEBKJE4AAAApkTgBAACkROIEAACQEokTAABASiROAAAAKZE4AQAApETiBAAAkBKJEwAAQEokTgAAACmROAEAAKRE4gQAAJASiRMAAEBKJE4AAAApkTgBAACkROIEAACQEokTAABASiROAAAAKZE4AQAApETiBAAAkNJHpi3w9ttvq9lsqtVq6eTkJHk+k8loa2tLhUJBL7744lXGCAAAsBCmSpxeeeUVraysaHt7W3/8x398Yftbb72lV199VSsrK6pWq1cWJAAAwCJInTh985vf1N7enlZXV0fu8+DBAz148ECnp6fa29sjeQIAALdK6sRpWA/TKKurqyRNAADg1pl5cPgrr7yi1157Taenp/r93/997ezs6I033rjK2AAAABbKzInT5uamvvSlL6nRaCifz2t/f19Pnz69ytgAAAAWysyJ09ramiTp4OBAOzs7ks7vrAMAALitpp6OINbpdBRFkTqdjn77t39bT5486ZueAAAA4LaZucdpe3tbvu+r3W7r9PRUjuMoDMMrDA0AAGCxpOpxOj091cnJSd/Elqurq3132j169KivzNnZmSTp7t27VxAmAADA/KXqcVpdXVWr1Up919zrr7+ug4MDkiYAAHCrpB7jtLu7q7feekvb29vKZrPa3NyUaZoyDENhGCoIAv3gBz/QkydPVC6X9dJLL11n3AAAADduqsHhDx480MHBgU5PT3VwcKAf/OAHCsNQhmEom82qXC7r/v371xUrAADAXM10V93q6qp2d3cvdeAgCOS6rkzTVBAEKpVKMgxj6L6e50mSwjDU0dGRdnZ2lMvlLnV8AACAac08HcFlFYtFtdttSedJ1O7urprN5sh9Dw8PZVmWut2uisWiOp3OTYYLAAAw+3QElxEEQd9j0zSTXqVhms1mXw/TqJ4pAACA6zSXxMnzvAuzjGcyGfm+P3R/y7KS/zebTZXL5ZF1P3v2TGdnZ30/AAAAV2EuidOoiTK73e7IMr7vy7ZtbW1tqVQqjdyvWq1qdXU1+bl3795lwwUAAJB0ycTpm9/8ZrJO3eHh4aV7d8bNPJ7L5bS3t6dOpyPXdUfut7e3p9PT0+TnnXfeuVRMAAAAsZkTp1deeUWGYSSX0R4+fDh2nFIvwzAu9C51u92JY5cMw1CxWFSxWByZZN25c0d3797t+wEAALgKMydOm5ub2t3dlWmaU5ftHbPUa2Nj48JznudpbW0teRwfb3CAOQAAwHWbOXF68uSJJGllZSV57ujoKFXZwWQrCAJtbGwkPU6+7yeJUSaT6Uu0fN+XYRjM4wQAAG7czPM4PXjwQBsbG1pfX1er1ZLnearVaqnLN5tN2batzc1NHR0d9c3hVK1Wtbm5qUqlolwup52dHTUaDUlSq9VK5n8CAAC4SStRFEWzFn7y5Ikcx5Ek7ezs6MGDB1cW2FU5OzvT6uqqTk9Pr22804uvfPda6r0Obz/6wrxDwAKgzWKZLFN7lWizy2iaXOFSM4ffv39fjx496jswg7EBAMBtdanpCM7OzvT2228nP7ZtX1VcAAAAC2fmHqcvf/nL8jyvbwqBJ0+e6E/+5E+uIi4AAICFM3PilM1m9eqrr/Y99/jx40sHBAAAsKhmvlQ3bC6mra2tSwUDAACwyGbucVpbW9O3vvUtmaYpwzAUhqH29/e1v79/lfEBAAAsjJkTp0qlojAM+8Y4vfXWW1cREwAAwEKaOXHa2trS7u5u33Ovv/76pQMCAABYVDOPccpms6meAwAAuC1m7nHqdDpyHEebm5uSpCiKdHBwkHq9OgAAgGUzc4+T4zi6f/++oihSvGrLJVZvAQAAWHgz9zjVajU9fPiw77lhUxQAAADcFjP3OA0mTdL5FAUAAAC3VeoepzfeeEOWZSWL+L722mt928MwVKvV0p/92Z9dbYQAAAALInWP0ze+8Q0dHx8nj1999VWdnJwkP1EU6enTp9cSJAAAwCJI3ePUmzRJ5+vSPXjwoO85xjgBAIDbbOYxTr3jmU5PT/X6668zxgkAANxqMydOnucl/19dXdVLL73U9xwAAMBtM9V0BKenpzo4ONDKyopardaF7e12W1/60peuLDgAAIBFMlXitLq6KsuyVKvV1Ol0dP/+/b7tlUrlSoMDAABYJFNPgHn//n29+uqrOjw8HDqXEwAAwG11pRNgAgAA3GYzJ04AAADPGxInAACAlEicAAAAUrrSxOntt9++yuoAAAAWytR31fX64Q9/qG63mzx2HEf7+/uXDgoAAGARzZw4bW9vKwxDGYaRPPfWW29dRUwAAAALaebEaWtrS7u7u33Pvf7665cOCAAAYFHNPMYpm82meg4AAOC2mLnHqdPpyHEcbW5uSpKiKNLBwYGOjo6uLDgAAIBFMnPi5DiOLMtSFEXJc73/B4Ar8bXVeUeQ3tdO5x0BgGs2c+JUq9UuLLtiWdalAwIAAFhUV7ZW3ZtvvqknT55cOiAAAIBFdal5nN544w0FQSDp/DLd8fGxvvjFL15JYAAAAItm5sTplVdeURiG6na7Mk1TYRiqXC5fZWwAAAALZebEKZvNand3V0+ePNHKyopefPFFvfnmm1cZGwAAy4cbGm61mcc4maapv/7rv9b9+/fluu5VxgQAALCQZu5xCsNQpmnq5OREf/d3f6c/+IM/kGEY+r3f+72rjA8AAGBhzJw4vfTSS/rggw8kSY8ePdLh4aE2NjauLDAAAIBFc6m76r75zW/q+PhY+/v7kqSVlZXUZYMgkOu6Mk1TQRCoVCr1LRjcy/d9eZ4nSTo6OtLjx49H7osJuPYOAMDMLnVXXTabTSa9fPjwod54443U0xEUi0W1221J50nU7u6ums3m0H09z1OlUpEk1et1PXz4MCkLAABwU2YeHL65uand3V2Zpjl12Xjup5hpmkmP0iDf91WtVpPHhUJBvu9fqAMAAOC6zZw4xbOE916eS7vAr+d5ymQyfc9lMhn5vn9h31wup8ePHyePwzBM9gcAALhJM1+qe/DggTY2NrS+vq5WqyXP81Sr1VKVjZOfQd1ud+jzhUIh+f/+/r4syxo5xunZs2d69uxZ8vjs7CxVTAAAAJNcaq26ZrOpBw8eKIoiNRqNS09FMCqh6t3uuu7IsVCSVK1Wtbq6mvzcu3fvUjEBAADELnVX3f379/Xo0aOpyxmGcaF3qdvtTrxTzrZttVqtsfvt7e3p5ZdfTh6fnZ2RPAEAgCuRusfpW9/61sR9XnvttVR1xXfiDRo3D1S9Xpdt28m6eKN6p+7cuaO7d+/2/QAAAFyF1D1O3/jGN9Rqtcbuc3x8rC996UsT6xq8Ey8IAm1sbCQ9Sb7vyzCMZD/XdZXL5ZKk6eDgQKVSKW3oAAAAVyJ14vTw4UOtr68rn8+P3CeKotQHbjabsm1bm5ubOjo66hu3VK1Wtbm5qUqloiAIVCwW+8oahkHiBAAAblzqxKnZbOr09FTHx8eSzudxGrwMNs0UAaZpJnfh9d41Fx+rd79pEjIAAIDrMtXg8NXVVT18+FCS9NZbb6nb7WplZSW5m+6ll166+ggBAAAWxKXmcYq9+eabarVa2trauvSUBAAAAItq5nmcJOmHP/yhvvKVr6hQKKjVarEMCgAAuNWm7nF6++231Ww25TiOVlZW9NJLL6ndbuv+/fvXER8AAMDCSN3j9Nprr2lzc1P5fF5BEKjZbOqv/uqv9OjRoyRpeuONN64tUAAAgHlL3eNUKpVUKBT0yiuvyDAMnZyc6M0330y2n5yc6NGjR/riF794LYECAADM21SJU71eHzs1wP7+/pUEBQAAsIhSJ07lcnni8iV7e3uXDggAAGBRpR7j1Dv9wGX2AQAAWFaXmo4AAADgeULiBAAAkBKJEwAAQEokTgAAACmROAEAAKRE4gQAAJASiRMAAEBKJE4AAAApkTgBAACkROIEAACQEokTAABASiROAAAAKZE4AQAApETiBAAAkBKJEwAAQEokTgAAACmROAEAAKRE4gQAAJASiRMAAEBKJE4AAAApkTgBAACkROIEAACQEokTAABASiROAAAAKZE4AQAApETiBAAAkBKJEwAAQEokTgAAACmROAEAAKRE4gQAAJASiRMAAEBKJE4AAAApzS1xCoJA9XpdruuqXq8rDMOx+/u+r3w+fzPBAQAADPGReR24WCyq3W5LOk+idnd31Ww2h+7ruq5M05Tv+zcZIgAAQJ+5JE5BEPQ9Nk1TnueN3L9QKFx3SAAAABPN5VKd53nKZDJ9z2UymSvpUXr27JnOzs76fgAAAK7CXBKnUeOZut3upeuuVqtaXV1Nfu7du3fpOgEAAKQFu6tu0gDxNPb29nR6epr8vPPOO5cPDAAAQHMa42QYxoXepW63K8MwLl33nTt3dOfOnUvXAwAAMGguPU6WZQ19fmNj44YjAQAASG8uiZNpmn2PgyDQxsZG0uPk+/6FO+9iV3E5DwAAYBZzG+PUbDZl27Zc15XjOH1zOFWrVbmumzz2PE+2bQ/dBgAAcFPmNgGmaZqq1WqSLs7TNDgRpmVZsiwr2R8AAGAeFuquOgAAgEVG4gQAAJASiRMAAEBKJE4AAAApkTgBAACkROIEAACQEokTAABASnObxwkAAMzX5/70c/MOIbUf/9MfzzsESfQ4AQAApEbiBAAAkBKJEwAAQEokTgAAACmROAEAAKRE4gQAAJASiRMAAEBKzOMEAFeEOXGA248eJwAAgJRInAAAAFIicQIAAEiJxAkAACAlEicAAICUSJwAAABSInECAABIicQJAAAgJRInAACAlEicAAAAUiJxAgAASInECQAAICUSJwAAgJRInAAAAFIicQIAAEiJxAkAACClj8w7AGCUz/3p5+YdQmo//qc/nncIAIAbQI8TAABASiROAAAAKZE4AQAApETiBAAAkBKJEwAAQEokTgAAACmROAEAAKRE4gQAAJDS3CbADIJAruvKNE0FQaBSqSTDMC69LwAAwHWZW+JULBbVbrclnSdGu7u7ajabl94XAADguszlUl0QBH2PTdOU53mX3hcAAOA6zaXHyfM8ZTKZvucymYx831cul5t5X0l69uyZnj17ljw+PT2VJJ2dnV1V+Bd8+Ozn11b3VTtbieYdQmof/P0H8w4htetsX9eBNns9aLPXY5naq0SbvS7X2WbjuqNo8ns3l8QpDMOhz3e73UvtK0nValVf//rXLzx/79691PHdZqvzDmAqP5l3AKmtfmW5zuwyWa4zS5sFbfa63ESbfe+997S6Ov44cxvjNMyoJGmafff29vTyyy8njz/88EN1u12tr69rZWXlkhFi0NnZme7du6d33nlHd+/enXc4wES0WSwb2uz1i6JI7733nj7zmc9M3HcuiZNhGBd6jLrd7tA75abZV5Lu3LmjO3fuXKgD1+vu3bt8oLFUaLNYNrTZ6zWppyk2l8HhlmUNfX5jY+NS+wIAAFynuSROpmn2PQ6CQBsbG0nPkO/7yd10k/YFAAC4KXMb49RsNmXbtjY3N3V0dNQ3L1O1WtXm5qYqlcrEfTFfd+7c0Ve/+tULl0eBRUWbxbKhzS6WlSjNvXcAAABgrToAAIC0SJwAAABSInECAABIicRpATUaDW1tbaXaN5/Py3Xda44oPd/3VS6XtbKyItu21Wg0ZNu2isUiawzeYrRZLBvaLGbF4PAFFASBgiAYOYdVL8/zFm56hjAMtba2ppOTkySu+Ll2uz10jcGbFobhQp2zZUebvX602atFm71+t7XN0uO0gEzTTPVhls4nCF2GhmkYhkzT1P7+/rxDURAEOjg4mHcYtwpt9nrRZq8ebfZ63eY2S+KEG9PtdpXNZucdhmq12rxDwJKgzWLZ0Gav30It8ovzrk3btuV5njqdjqTz69me58k0TQVBoEKhINM05fu+dnd3VS6XVSqV5HmebNtWuVxO9m21WmMnDB1Vd5q6PM+T7/syTVNHR0cjPyhhGKparcqyLJVKpZFlPc9TuVyWbduSJMdx1G63FQSBHMfR5uamut2utre3ZRjGyDrGxe15no6Pj5P1Dy3LujA7PaZDm6XNLhvaLG32UiIsJMMwoiiKok6nE1mW1bctl8tFJycnURRFUa1WixzHSbZVKpWoUCgkjy3Litrt9tBjTKp7XF2dTifK5XLJNsdxolqtFkVRFJ2cnESSolqtFjWbzajZbEadTqfvuKPKlkqlqFQqRVEURc1mMzo5OYlM0+yLqVarja1j0jmoVCp95wxXgzZLm102tFna7CzocVpwjuNcGORnmqYODg6SbxW91tfXtb6+njw2DCPJ+qete1xdjuMok8n03cFxdHTUV1epVBo6LmBcWcMwkmMWCgU1Gg2ZppnUs7e3J+l8WZ5RdUxzDnD1aLO02WVDm6XNToPECTPL5XJ9gyuH/YKZpWxvl+7gXRm9/7/M8UfVj9uNNotlQ5tdPAwOX3A7OzsX5uXwfV/b29vJ4zAMr63uacoOPh717WNS2d5yhUJBvu9f2DfN8dNgzpOrR5ulzS4b2ixtdirzvlaI4eJr71EURa1WK7mOXalUkuvI7XY7yuVykWVZUafTSR7ncrmo3W5HzWYzMk0zKhQKfde+e02qe1xdrVYrqlQqyfX1k5OTqN1uR5VKJZIUlUqlkdf9h5VttVrJ62m1WmP3HXf8SXF3Op2oVCpFjuOMPC+YHm2WNrtsaLO02VkwAeaCiic2A5YFbRbLhjaLWTDGaYE0Gg11Oh2Vy2VtbGzMOxxgItoslg1tFpdFj9MCCYIgWQ8pnucDWGS0WSwb2iwui8TplooXfTw8PLyxNYt835fjOGo0GqpUKspms+p0OgqCQOVyOfXyBgDwPAjDUMfHxwu3Dh7GI3G6xba2tlSr1W50sUcWnsSgeSTxV4kvBBiUtk27rqtutyvTNBWGoQqFQrItDEPt7u6qVqupWCyq3W6nPj5tcs7mNy4d123cbLbXJZ7NNr4jI2aaZlSpVG40lmE6nc6tnc12kaVpi4Nt5rpNc7xh7Tp+7qY/Y6Pc9Pl73k1q061WK5mdO4qiC+2n2Wz2zQLe+28atMn5YR4n3AgWnsQ4N72S+lUcj5XoMU6r1dLW1lbyuNPp9PV0B0GQPDYMgza5RLirbsG4rpt8iDqdTvKHPs1ikL7va39/X5ubm5JGT4zWu/9NLzw5r0Un45hv9cKTS6xWqymfzy/d8RbpC8FNnj9Mb9LvGtrk8iBxWjDFYlGdTkeWZalcLst1XRUKBVmWJcuy+pKBZrMp3/eVy+UUhmFSNlatVkceJwgC2batVquVPJfP53V4eDjxWHHZ+Jp8t9tVvV5XpVJJ6orXPpLUl8yMKmdZltrtdrK+UhiG2traUrvdlmEYsm1bjUZDhUJhbB2jYpaUvK5sNjvTsgHPm5tK4ocltPGK9Nvb231JdbPZ1PHxsYrFoh4/fizDMK5k5Xbf92XbtnK5nJrNpsIwVD6fV6FQGPqlgJXol9NNtmnf9xUEQbK2W6PRSMZE+b7f97vXNE3a5BIhcVow8aDqIAjU7XYVBEGybdyiigcHBxcGKWYymZHHmcfCkyw6uVxuKokfltDGv6TX19eVy+Vk27Ycx5FhGLIsK7npoXdQbdoketTxut1uUlecrA8m2MO+EEia65cCvhCkd5NtutVqaXNzMxkQ3rukSS6XSy7jxe8ZbXJ5kDgtmGq1qvX19YWfX2TWhR8XZdHJYcdAv5tK4kcpl8sqFouqVCoKw1BBECS3b29vb195El0qlbS2tibHcRQEwdDJEVmJfrnNu01Piza5mEicFkjcJRp34YZhqPX1dXmeN/H20vhbeK/eXwqDdnZ2tLu72/ec7/t6/PjxxDiHlR2MsdvtXvgwTyo3uOik4zgX9k1z7LQ8z+u7PRj95pXExwltfMz4m/rOzo4ODg6UyWSStnXVK7eXSiU1Gg1lMpmp28aifCngC8Foy/LFlDa52LirboHEk6B5nifP81QsFnV0dKQwDJPr6/v7+/J9X67rJnN5BEEg0zTVbDZl27Y8z0uu5Ver1aEJVC6XU61WU71el+u6sm1bzWYzGTMy7lhxWdu25bquXNfVxsaGfN9Puq9rtdqF1bZHlYtfb7PZTL7ZmKYpx3Eu7Dvu2ONijpXLZbXbbTUajaWcU+imxEl8pVJJ5qCJn58kHp/Ra1wSP+zYsXK5rN3dXRUKBZVKpb5k+jpWbi+Xy2PvvGQl+uU1jzY9aw8MbXLBzXs+BACL5+TkJCoUClGr1Up+CoVC1Gw2U62MHq/e3mq1omazGeVyubGrx49aSf3k5KRvLpxCodBX7jpWbh88BivR3w432aZ73/e4PsMwolKp1PeeWpYVNZvNKIpok8uEmcMBoEc8YBhYFLTJxcIYJwDPvXggeiaT4RIuFgJtcnGROAF47hWLxWTMC3+ksAhok4uLS3UAAAApcVcdAABASiROAAAAKZE4AQAApETiBAAAkBJ31QFYSvV6XYZhKJPJJLPnM9cNgOvGXXUAlk4+n1etVutbQ8u2bUkauzwFAFwWiROApWLbtoIgULPZvLBtbW1Nh4eHzHsD4NowxgnAUqnX69ra2hq6zbKsZKFpALgOJE4Alka8Iv3GxsbQ7aZpJqu8e56nfD6ver0u6Xy9r2w227dSu+d5qtfrcl03udTneZ6y2awajYYajYby+XxStlgsSpLCMFQ2m03KAHh+MDgcwK2xvr6ubrcr6bz3aWdnJ9lWKBS0v7+fPA6CQLZtq91uS5K63a7q9boqlYosy1K73ZbjOMpkMioUCup2u8m+hmHItm2VSqUbfHUAFgE9TgCWhmmakn7d8zSo0+mM7I0aFCdFnuclvVBHR0eSzhOjbDYrScmdeqVSSQcHB8nx0x4HwO1CjxOApVIqldRqtZKEJp6KQDq/zDbNXXW5XK7vzrzeHqS4zsFjNxqNpBcKwPOHHicAS8VxHB0fH8v3fbmuq0wmI9d1Va/XZVlWX0JjGIaePn2aPPY8L1lxfmdnp2+8U7w9Fl/y61Uul5nuAHjOMR0BgKVUr9fV6XSUz+fVarW0ubmpSqWiMAxlGIak80Hctm0ng7odx1EYhnIcR6ZpyvO8pKx0Pi7q+PhYtm0rk8nItu2+HilJKhaLQ6dCAPB8IHECsPR835fneapUKskA7+viui6X6YDnGIkTgFthbW1NpVJJvu+r1Wpdad3lclnFYlGZTEaGYQwd/wTg+cDgcAC3Qjxw+zouoxWLxWRsFLOSA883epwAAABS4q46AACAlEicAAAAUiJxAgAASInECQAAICUSJwAAgJRInAAAAFIicQIAAEiJxAkAACCl/x8HwoFJdbehtQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -877,9 +877,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3A0lEQVR4nO3db2wj+X3n+Y8yMdoxkFaJAozY8GSni0CAPJhNmpRweXCLM6xicthgcYCHlBbYB1ngRqSDwwGL3IbVenKx74HVpI3L7YNDpthzWOdBDpDImdxhzzhkWT0x4DvAsMQax3MHA0lYPbl2HGOQpkqarDNte6bugVIVkiKpIkWKpPR+AUQ368+vviz+KH75q1/9fithGIYCAADApX5m3gEAAAAsCxInAACAhEicAAAAEiJxAgAASIjECQAAICESJwAAgIRInAAAABIicQIAAEiIxOmW8H1ftm1rbW1N6XR65LbpdFpra2uybVtBEFxPgFgYnucpl8tdWk+AcUV1K5vNzjuUG4HP6nyQON0SpmmqUqlob29PnU5HnucN3M51XWUyGW1vb6tSqcgwjOsNtE+tVruwzLZtFQqFOURzblBMN0kmk5Ft22Pvd13nZd7v/yJYtHMwLJ7+OhHVrUl/kAVBoFqtplwuN3B9tVpVrVZTrVZTtVq99vXDzOqzMelnFVdD4nTLGIah7e1tOY4zcP2itTA1m80Ly3K5nHZ2duYQzblBMd00qVRq7H2u67zM+/1fBIt2DobFM6hOTFK3pPPWlcPDQwVBoE6nc2F9lMgUi0UVi0VlMhmVSqVrWz/KLD8bk55PXEGIW8VxnLDVaoWGYVxYd3JyErZarTCfz4fFYnEO0fVyHCfMZDLzDqPHIsY0C61WKzRNM/H2t+W8ILlhdWLcutWvXq8PLNcwjPDk5KRnWfdX3KzXDzPrz8ZVzyfG97PzTdswD5lMRqlUSo1GQ/l8Pl5+fHwsy7KG7letVmWapnzfl2ma8b5R87lpmmo2myqVSspkMpLOL/1FTcmPHj2S7/vyfV/Pnj1TpVIZeizXddVsNuX7fvxLr1wuy/M82bYt3/fVbreHHqPT6ajVaslxHNVqNaVSKR0cHGhvby+O7bLXlTSm/nKk8z5l3etG6W/GLxaLl5Y56WuO9kulUvGllSAILn0/+uPpPldJz8tl5zcSBIFs21Y2m1Wr1VI6nVYmk5HjONrb27vw/jcaDe3v78v3fdXrdVmWJd/3lcvlZJqmHMeRaZpDY5+kfna/Num8JTeVSsk0TXU6HVmWNbCu2ratWq2mSqUy8H0eFJtpmiqVSnGrxc7OzoVyLzvX0eczCAL5vi/DMHqO363RaMTnxHEc+b4fX7av1+tKpVLa2tpSEASq1+vx6+r/TI6qE9J5C9K453sY3/cVBMHArgWu68avfVbrh/3dHOfvWH/dmMVnVRqvLmCIeWduuF6O44RhGIblcjnM5/M96+r1ehiG4cAWp3w+H68PwzC0LCtstVpxWe12O15nmmbPL7Nmsxmaphk2m82ebaL9h2k2m4l/sQ47Rrlc7nl9/eWNel3jxJTP53uO3W63Q8uyRry6c5VK5UKM3e/DqDInfc31ej2U1POelcvlnvd80Dkeda5GnZdxzm//PicnJxfiGPX+d6tUKoljn6R+FovFnnPWbrfDTCbTU86guCzLij+Hl8UWvX/NZjNstVrxezvO+1Ov13uO1263e54P4jhOT10bVE+768+w92TY59cwjLHPd/ex+8ttNpsDW38Mwwjr9frM148y7DwkqRvT/qxOUhdwEX2cbqlSqaRGoxH3afJ9/0JLTMT3/QutU4VCIe4n5fu+XNeN15mm2fM8lUrJ9/2eX2XRL6FpGXaMbplMpueYl72upDzPu/CrM2p56D4P/aKWlb29vXjZwcGBfN9PVOYkr1k6bx3JZDI92+7t7alWqw19TyY5V5Oe30ajEddFwzDiVolRLMu6cNND1DpwWRyT1M+olbX7l3/0K77boP4n3a0Wl8VmGIY8z5NlWcpkMkNbGi4rp16vx7GZpqmNjY2hr02Stre3L9TdRqMR/7/T6Vyoa+MIgmCmfw8iqVRqYH+o61p/WWz9+lu0ZvFZHbcu4CIu1d1Spmkqk8no8PBQxWJRnueNvERlGEbPH9J2ux1/cKPm+qjpt9PpXPhj0v9H1jCMif/gDDPoGKNu073sdSV1fHw88EskunQ5rBn/+PhYhmH0/LGMzmXUnH5ZmeO+5mGiODzPG3jcSc7VpOc3k8lcSECSfEkXi0U5jiPHceS6rra3txPHMW79jMoc9EU3jkliG7ecfD4vx3G0tramTCajnZ2dSy8jR1/Y0RdwdxJ6lYQpch1/DyRdWuas18/CVT6rk9QFXETidIuVSiU5jqNisTjyD34QBDJNsycB6P6/53na399XLpfT9vb2VP6wDjKtP9qRy15X0piucmv1JOvmYdxzFZ2XSc5vqVTS/v6+Hj16pFqtlrgFsFQqKZvNxv1yomNN432epu73NklsSZKxy8ppNptxK2Z0Pi/7wtzZ2dHBwYEymYw2NjbiVmrLsiY6f9P+/HYbVm50Xma9fhyjzsM0PvezqAvoxaW6W2x7e1ue56nRaIxsrh10uUc6/4AGQaCtrS3t7e3FCVj35b9pGjb21KRGva6kossog8rxfV+bm5sjjz/oWNFljEnKnFT0Xg67XDvuufI870rn99GjR3JdV/l8PnHHVdM045seui+DTON97he9d5OU0d1KMa3YRpUT3XyQyWRULpfVarV0cHBwaZn5fF6NRiMe2y1qrRjWwnqZaX9+u5mmGV/W7WdZ1szXj2PUeUjSgnWVz+qkdQG9SJxume67cAzDkGVZOjg4GPmr1rIsbWxs9PRxkKTDw8O4ZaH7Qxx9+Ef9gUjyxdDd72FUH6xJjzHqdY0TUyaTkWVZPU3j0WsfdQdZdKdL90B6QRDo8PBw4jKTfuF6ntez7f7+vorF4tAvxMvO1aDzMsn5laRWqyXDMJTP58f+gi6VStrd3b3wa3vcOC47j6Zpqlgs9twROagvVn/fnehydlT+pOeo36hyur8wu+O6THQ5P/qbEe2TtI6N8/kdJ1Ecllzs7e31fF4ajUZP0j3r9cMMOw+X1Y3IND+rk9YF9Jl373Rcj3a7HRaLxVBSWCwW47s0uu/iOjk5CSuVSmgYRmiaZlipVHrujiuXy6HjOD37RMvL5XLYbDbDZrMZttvt+K6OaFwoSfFdTtExMpnMpXekRGVHd34MKm/UMSzLiu9IirYpl8uJXlfSmPrLcRyn5w6kJOVVKpULd7yMKvMqrzm6yye6W6hSqfTcgda/36B4Bp2ry85L0vMb3UkU1cNMJjPy/e92cnIydAyyQXFMo346jhPX/f676qLyove3Xq+H+Xw+NE3zwmeoP7ZmsxlalhUahhFWKpX4MzvqHAwqJ6o/0bL+z/UolUql52637jgil8Vz2ec36flut9thpVIJM5lMXDf7t+8+z4M+g7NeP8ywz8ZldWPan9Wr1AX8o5UwDMPrT9cAzEs0Pkyr1Zp3KBcEQaDd3V09evQovuwbzbNYKBQWfryZbDarSqUy1z5UuDkW+bN6m3GpDsDCqNVqKpVK8aXj6O6uSqXClweAhUDiBGBhZDKZeEiGbq7rDp3YFQCuE8MRALeI67qqVCryPE/VanXhbkOOLnH1TzWTZKqWeatWq/I8Lx6kkst1uIpF/6zeZvRxAgAASIhLdQAAAAmROAEAACRE4gQAAJDQ3DqHR3PlSNLR0VE8bssg0WzP0Uirl82t1u2jjz7SD37wA/38z/+8VlZWphQ9AAC4KcIw1Pvvv69Pf/rT+pmfuaRNaV4jb3aPfhqNBjtM97poVOqknj59GkriwYMHDx48ePAY+Xj69OmlecVc7qrzPE9bW1s6OTmRdN6ilE6n1W63L8yb4/u+CoVCz+B3a2tr8b6XOT09lWEYevr0qe7evTu9FwEAAG6Es7MzvfjiiwqCQKurqyO3nculukwmo0ePHsXPowkMu2c0j7iue2F5KpWKZ1+/THR57u7duyROAABgqCRdeubWx6l7MLuDgwNZljWw39KwWbOHzZD9/PlzPX/+PH5+dnZ2pTgBAAAic7+rLggCNRqNgdMsXLbfIPv7+1pdXY0fL7744hSiBAAAWIDEybZtNZvNoXfJGYZxoXWp0+kM3X5vb0+np6fx4+nTp1OOGAAA3FZznauuWq3Ktm2Zphm3IPUnRJZlyXGcC/tubGwMLPPOnTu6c+fO2LF8+OGH+slPfjL2fsCy+9jHPqYXXnhh3mEAwFKYW+LUaDSUyWTipOnw8FDFYlHS+V13hmHINM2Bd9ltbGwkHsfpMmEY6oc//OHQS3/AbWAYhn7hF36Bsc4A4BJzGY4gGn6gm2EY8RADhUJBm5ub8WzQvu/LcRxtbm7q6OhIe3t7iROns7Mzra6u6vT0dOBddX/zN3+jIAj0yU9+Up/4xCf44sCtEoahfvSjH+m9996TYRj61Kc+Ne+QAODaXZYrdJtL4nSdRp2MDz/8UH/+53+uT37yk1pfX59ThMD8PXv2TO+9955+6Zd+ict2AG6dcRKnuXcOn6eoT9MnPvGJOUcCzFf0GaCfHwCMdqsTpwiX53Db8RkAgGTmelfdonrpwdev9XjvPvzNxNt6nifHcVSr1VQul+OpanzfV6lUkmVZU4mpVqvJtm09fvw40QjtiyibzWpvby8ebLVWq6ler6vZbI69703z3e8HPc/Dn/5Y7538vV598xv66/c/nE9QQ4zz+cDNdN1/k6+KOnuzkTgtmUwmo0qlolqt1tNJPggCra2tqdVqTSXRKRaLYw9KOkoQBFO7EzKpSqXSM2yFZVkX7tJMui8AABKX6m6MaPiGg4ODeYdyge/7Ojw8vPbj9k/jY5pm4ha5YVMAAQBuNxKnG6TT6VwY5mERVCqVeYcAAMBUkDjdAEEQyLZtWZalYrEo13WVTqdVq9VUq9WUzWYlnfePqlarajQaqlar8n2/pxzP82TbthqNhhqNRs9UN67rKpvNqlqtSjofwDSdTst13Xgb3/fj/Wu1moIgkOu6Oj4+VrPZVK1Wu3DM7vKj2Gzb7ompVCrFMTUaDXmed2k8nucpm82qVqvF56hUKvUklsPOR/++0bFqtZpc11WtVlOhUJjgnQIALDv6OC2xWq0W99kplUrx/y3LkmVZarVachxHqVQqTmq6O0Zns1k9fvxYhmEoCAIVCgW12+14/f7+fvx/y7K0s7MTP8/n8z2XBYMgUC6XU6vVkmEYsm077sBuWZbS6XQ8Mny/KLZWqyXpvOWsWq2qWCxqa2tLT548iS+bra2t6fHjx5fGk8lketYbhiHHcbS2ttZzzEHno3/f6Hw2m82431e9XpfneUvbcR4AMBkSpyVWLBZHTo4cDeqZz+dl2/aFL3nTNOOpbg4PDy+sT6VSiWM5PDyUaZpxPHt7e4n3jZK77taro6MjGYZxoa/RtDpsO44z8nz0W19f7xkkddDk0wCAm4/E6QZLegfZNPTfNTcsoRt2d10mk+npuF0sFuNLZQAALAr6OC2xy1o8utfv7Oz0tOhI5315tre3JZ1fjvI8r2d9f38kwzD07Nmz+LnruvHkyPl8/sL+/ccbtmxQbK7rant7e2RMo+KJDJu8+bLzMWpfAMDtRYvTkvE8L+7LU6lUVCqVLlxycl1XruvK87z4Fvxo/KdqtSrTNHV0dKR6vR63/pimqXq9Ltu2lcvl4pah/f19VSoVmaap7e1t2bYdJxyWZcWXvEzTlOM4sm1bm5ub8XrpvP9VNPbUoOEAotj69zUMY2BMkVHxBEGgg4MDpVIp5fP5C61vo85HdI6jfaOyomP4vh8PRGqa5rW27AEA5utWT/L7wQcf6MmTJ7p3754+/vGPzylCjCOXy6lSqUzcKXttbU0nJydTjmr5DBw5/Aff1xf/9D1GDsfCYeRwzNo4k/zS4oSlMkmH7Fqtpna7rVKpxGjgAIAroY8TlkY0DpTjOGP1P7IsS+vr62o0GnIcZ3YBAgBuPFqcsDSKxeLQsaBGMU1T5XJ5BhEBAG4bWpwAAAASInECAABIiMQJAAAgIRInAACAhEicAAAAEiJxWmK1Wk22batWq6nRaMh13fiW/UXluq6y2ey1zUOXzWbVaDSu5VhX1R9rrVZTLpebaF8AwGwwHMEgX1y95uOdjr1LLpdToVBQpVKJl3mep1wup3a7Pc3opsqyrIHTrsxKpVJZmkEv+2O1LCvxdC7L9DoBYJmROC2harUqSRfGNMpkMhONc3Td1tfXr+1Y15mkXVV/rOPMg7dMrxMAlhmJ0xLa39/Xo0ePBq4rFArXHA0AALcHfZyWjO/7CoJgaEtE9+Udz/NUrVbVaDRUrVbjvk/d/YyiflGFQkG+78f7lEqluEzXdZVOp1UqldRoNFSr1VQqleJpT6L1tVpNtVpN2Ww2Xh4d37btnjiDIOg5drdB+w2Lubu8aF20n+d5F/pTjXtOhhn22jzPi89T9PA8Ly4/ai1sNBpKp9NyXTferzvWIAhUKpWUTqcvjb1/33FfCwAgOVqcbijf92XbtprNZrwsm83q8ePHcT+jZrOper0uSarX62o0GiqXy8pkMkqn0wqCQIZhyLIs5fN5ra+vK5/PSzr/4i8UCmo2m3F5rVZLjuMolUrFx2+1WpLOJ+etVqvx1CdHR0fx/+v1ujzPUyaTGbnfoJij/Wq1mjKZTHzJqtPpKJPJaGdn50rnJCp/0Lntj7FYLGpra0tPnjyRYRiSpLW1tbj87ljy+bwODg7i5/2xGoYhx3G0trZ2aez9+47zWgAA4yFxWjJRa5Lv+wO/BH3fVyqVkuM4F9abpqnDw0MVi0Wtr6/39DUyDKOnFcswDHU6nTgBiJZF8vm8CoVCnFwZhhGXl8/nZdu2UqlU3KIinSdLkc3NzQvHkhQnXoP2GxRztF8+n1c2m5VpmtrZ2RnY12uScxKV31/OoBijJLP7PE2rw/ZlsfdL+loAAOMhcVpC5XJZjuPErT/dPM8buDyJ7i/8SfRfPuxuAZIudmYfZpL9UqmUTk5O5HmeDg4O4tawWRkU43UNsQAAmB/6OC2A734/GOvxr/7bPf3d85/qv6/8Tz3L/6//96/0V8/+k777/UCZz/5z/Yf/80961n/r28fa3t4eGkfUZynJ+kajcaF1pbtFY2dnp6dFRtKF54NMut/+/n7cClepVHriiuIeVLbneSPPyTgxbm9vy/O8nuXdY2oZhqFnz5717NN/zoe9B0liv+z9AwBcHS1OS8r5X/9Y//4P/p1+/8u/pxf/yT2tGud9YXK/+V9Jkn755V/Rv9n7ov79H/w7feYXX9L/82eevvra12QYRtwqI533h4k6hUvnLSmu68r3fVUqlZ4kpN1ux1/2R0dHcf8Z13Xluq48z5NpmrIsK05gbNuOL8tZljX02I7jyDTNifdbX1+X67pKpVLqdDra2dmJ90mlUsrn83HZ1WpVpmnGr2HUOYnK725NGxajYRiq1+uybVu5XC6+jBnZ3t6WbdtxAmRZVnwJLgiCnlgHtd5dFnu0b1RWktcCABjPShiG4byDmKWzszOtrq7q9PRUd+/e7Vn3wQcf6MmTJ7p3754+/vGPT3yM734/uGKU1+effsaYaD/btpVOp5dinKhFksvlVKlUJu6Uvba2ppOTkylHdbHOhj/9sd77wff1xT99T3/9/odTP95VvPvwN+cdAubspQdfn3cIY6HOLp9RuUI/WpyAGZqkQ3atVlO73VapVGI0cABYMPRxwqWiS3HRLe1IJpo30HGcsfofWZal9fV1NRoNOY4zuwABAGOjxQmXisZowniKxeJElzZN04zHuAIALBZanAAAABIicQIAAEiIxAkAACAhEicAAICESJwAAAASInFaMt/65jf0Pzz4N/qVF9f0+1/+PX3rm98Yu4xaraa1tbVrGVrgOo/VLZvNqtFo9MSRy+Um2hcAgAjDEQzw8h++fK3H+6Otbybe9tf+2Wf1mV98SW/80R/qv/5vfkd3V1fHPl6xWIynS5m16zxWt0ql0jN4pGVZiaca6d8XAIAIidMSuvsP89JhOMuyep6PM0db/74AAES4VAcAAJAQidMN8K1vfkP/8p9/Vo0/+pq+9c1vqPFHX9O//cK/7tnme+/8mX7/y7+nRqOhRqNxYQ4113VVrVbVaDRk27YkqdFoKJvNKp1OS5Kq1arS6bSq1erQfSTJ8zzZtj30WP1GlVMqleJyGo2GPM+T67rKZrNxHI1GQ+l0Wq7rxvtls1nVajVJUhAEKpVK8euItomOWa1W5fv+wH2jY9VqNbmuq1qtpkKhcOl7AgC4mbhUdwP82j/7rP6zb/4X+tY3v6GvvvY1SVLz6/+7vvfOn+mXX/4VnZ2e6t9+4V/r6//32/qnnzEkSfv7+/H+vu/Ltu14WpVOp6NqtapyuSzLsrS1taUgCGQYhlqtlgzDGLpPsVhUoVBQu92Oy+8+Vr9R5WxtbenJkycyjPOY19bW9PjxY1mWpZ2dnbiMfD6vg4OD+Hkmk+lZbxiGHMfR2tpazzGbzWa8TTab1ePHjy/sa1mWLMtSs9mM+2pFc/ZlMpnRbwwA4MYhcbohjLWUjLVU/Pzn767qNDiRJP3H/+OP9csv/0rP9qnUP27rOI5SqVTcYiNJR0dH5+Uahh49eqRsNqt6vR4nMcP2MQzjQkLRfax+o8qxLCs+nqSpddh2HOdCjKZp6vDwcODccuvr61pfX4+fG4ZxaSsaAOBmInGCpPNWmu5O0d0JRJQMHRwc9CQcg/aJLnFd9diTlAMAwKzRx2kJnf1DS1JSv/aff1bfe+fPepZFfXokaWdnp6fFR1L8PAgCua6rer0u3/fj8Y2G7WNZ1oUxm7qP1W9YOdvb2yPLMQxDz54969knCIKe7fufjzqm53na3t6+dF8AwO02txYnz/O0u7sb920ZtZ103irh+76CILjVfUu+9c1v6D9+/X+TJP0v//P/qP/yX3xekvQn/+GPJZ0nSd///97V9975MzX+6Gv6zC++pM/8k5f01de+pt//8u/pX33+X8T9lfb391WpVJTJZFSpVGTbtjY3NyWd9+2p1WqqVCoqlUqSpM3NTe3u7sr3fZXL5YH7GIaher0u27aVy+UuHKt/SIBhxx5WTmR7e1u2bccJkGVZ8SW4IAh0cHCgVCqlfD4/9JjValWmaero6Ci+DOl5Xs++UVnRMXzfl+d5chxnrCEOAAA3w0oYhuF1H7TRaMg0TWWzWV12+FKpFF+2sSyrp59NEmdnZ1pdXdXp6anu3r3bs+6DDz7QkydPdO/ePX384x+Ply/yAJhXFXUOX0a5XC5O9Caxtramk5PxWutuqu9+P+h5Hv70x3rvB9/XF//0Pf31+x/OJ6gh3n34m/MOAXP20oOvzzuEsVBnl8+oXKHfXFqc8vl84m2z2Wz8ZTdOwnQV7/zWO2Nt3/8lhNmYpEN2rVZTu91WqVRiNHAAwJUtRR8nwzCuLWnCYqrVavJ9X47jjNX/yLIsra+vq9FoyHGc2QUIALgVFv6uuiAI4g7JR0dHKpVK9Cu5hYrF4sChAi5jmqbK5fIMIgIA3EYLnzgVi8W4tck0TeVyuZ7BFfs9f/5cz58/j5+fnZ3NOkQAAHBLLPyluu5b0E3TlO/7I29v39/f1+rqavx48cUXryNMAABwCyx04uR5nra2ti4sHzUS9d7enk5PT+PH06dPLz3OHG4sBBZLGEoK9REfBQAYae6X6vrH5/E8T4ZhxGPkVCqVeJ3rusrn8yM7it+5c0d37txJdOyPfexjkqQf/ehH+rmf+7mJ4gdugvCnP9ZPPgx18sFH8w4FABbaXBIn13XjCVb39/e1ubkZD1EQPS+XyzIMQxsbG6pWqzIMQ+12O55odRpeeOEFGYah9957T5L0iU98QisrK2OXE/70x1OLadY++OCDeYeABRDX2TBU+NMf66Tzt3rs/50++ClNTgAwylwGwLxOlw1qFYahfvjDH15pio3vn/z9FSK8Xp9Zo2UN3XU21E8+DPXY/zu9+b3/pEX8Y8BggmAATMzawg+AuUhWVlb0qU99Sp/85Cf1k5/8ZKIyXn3zG9MNaoYe/3efnXcIWABRnf0olE4++IiWJgBI6NYnTpEXXnhBL7zwwkT7LtoUFaN0Ty2D22uZ6iwALJKFvqsOAABgkZA4AQAAJETiBAAAkBCJEwAAQEIkTgAAAAmROAEAACRE4gQAAJAQiRMAAEBCJE4AAAAJkTgBAAAkROIEAACQ0Nhz1b377ruq1+tqNps6OTmJl6dSKeVyOeXzeb300kvTjBEAAGAhjJU4PXjwQCsrK9re3tbv/u7vXlj/9ttv67XXXtPKyor29/enFiQAAMAiSJw4feUrX9He3p5WV1eHbnP//n3dv39fp6en2tvbI3kCAAA3SuLEaVAL0zCrq6skTQAA4MaZuHP4gwcP9Prrr+v09FS//uu/rp2dHb355pvTjA0AAGChTJw4bW5u6tVXX1WtVlM2m9XBwYGePXs2zdgAAAAWysSJ09ramiTp8PBQOzs7ks7vrAMAALipxh6OINJutxWGodrttn71V39VT5486RmeAAAA4KaZuMVpe3tbnuep1Wrp9PRUjuMoCIIphgYAALBYErU4nZ6e6uTkpGdgy9XV1Z477R4+fNizz9nZmSTp7t27UwgTAABg/hK1OK2urqrZbCa+a+6NN97Q4eEhSRMAALhREvdx2t3d1dtvv63t7W2l02ltbm7KNE0ZhqEgCOT7vr797W/ryZMnKpVKeuWVV2YZNwAAwLUbq3P4/fv3dXh4qNPTUx0eHurb3/62giCQYRhKp9MqlUq6d+/erGIFAACYq4nuqltdXdXu7u60YwEAAFhoE99VBwAAcNuQOAEAACRE4gQAAJAQiRMAAEBCV0qcvvKVr8Tz1D1+/Dge9BIAAOAmmjhxevDggQzDkGVZkqStrS25rju1wAAAABbNxInT5uamdnd3ZZrmNOMBAABYWBMnTk+ePJEkraysxMuOjo6uHhEAAMCCmmgATOl8FPGNjQ2tr6+r2WzKdV1VKpVpxgYAALBQJm5x2traUr1e1/379xWGoWq1mj73uc9NMzYAAICFMnGLkyTdu3dPDx8+jJ+fnZ3p7t27Vw4KAABgEV1pOIKzszO9++678cO27WnFBQAAsHAmbnH6whe+INd1ZRhGvOzJkyf6gz/4g2nEBQAAsHAmTpzS6bRee+21nmWPHj26ckAAAACLauJLddHAl91yudyVggEAAFhkE7c4ra2t6atf/apM05RhGAqCQAcHBzo4OJhmfAAAAAtj4sSpXC4rCIKePk5vv/32NGICAABYSBMnTrlcTru7uz3L3njjjSsHBAAAsKgm7uOUTqcTLQMAALgpJm5xarfbchxHm5ubkqQwDHV4eMh8dQAA4MaauMXJcRzdu3dPYRgqDENJiv8FAAC4iSZucapUKtra2upZNmiIAgAAgJviSpP89ltbW7tSMAAAAIsscYvTm2++Kcuy4kl8X3/99Z71QRCo2WzqT/7kTxKV53mednd31Wq1Rm7n+74ajYZM05Tv+yoWiz1DIAAAAFyXxInTl7/8ZRmGoc997nOSpNdee007Ozs92zx79ixRWVEi5HnepdsWCoU4ufJ9X7u7u6rX60nDBgAAmJrEidPx8XHP80ePHun+/fs9y5L2ccrn84m2832/57lpmnJdN9G+AAAA0zZxH6fu/kynp6d64403pt7HyXVdpVKpnmWpVCpRSxUAAMC0TZw4dbf8rK6u6pVXXpl6a1AQBAOXdzqdofs8f/5cZ2dnPQ8AAIBpGGs4gtPTUx0eHmplZUXNZvPC+larpVdffXVqwQ0zLKGSpP39fX3pS1+aeQwAAOD2GavFaXV1VZZl6fj4WO12W3/5l3/Z8yiXy1MNzjCMC61LnU5n5F11e3t7Oj09jR9Pnz6dakwAAOD2GnsAzHv37um1117T48ePB47lNE2WZclxnAvLNzY2hu5z584d3blzZ5ZhAQCAW2qqA2BOov+ym+d58d10pmn2rPN9XxsbG4zjBAAA5mLixOkqXNeVbduSzvskNRqNeF3/83q9Ltu21Wg05DgOYzgBAIC5WQlv+My8Z2dnWl1d1enpaTzq+bS99ODrMyl3Ft59+JvzDgELgDqLZbJM9VWizi6jcXKFubQ4AQAALKOpJk7vvvvuNIsDAABYKGPfVdftO9/5Ts9wAY7j6ODg4MpBAQAALKKJE6ft7W0FQdBzh9vbb789jZgAAAAW0sSJUy6X0+7ubs+yN95448oBAQAALKqJ+zil0+lEywAAAG6KiVuc2u22HMfR5uamJCkMQx0eHuro6GhqwQGAvrg67wiS++LpvCMAMGMTtzg5jqN79+4pDENFQ0Hd8CGhAADALTdxi1OlUrkw7YplWVcOCACApUYr6Y02tbnq3nrrLT158uTKAQEAACyqK43j9Oabb8YT8oZhqOPjY33+85+fSmAAAACLZuLE6cGDBwqCQJ1OR6ZpKggClUqlacYGAACwUCZOnNLptHZ3d/XkyROtrKzopZde0ltvvTXN2AAAABbKxH2cTNPUX/3VX+nevXtqNBrTjAkAAGAhTdziFASBTNPUycmJ/vZv/1a/8Ru/IcMw9LnPfW6a8WHauNsDAICJTZw4vfLKK/rwww8lSQ8fPtTjx4+1sbExtcAAAAAWzcSX6iTpK1/5inZ2duLnKysrVw4IAABgUU2cOD148ECGYcSDXm5tbcl13akFBgAAsGgmTpw2Nze1u7sr0zSnGQ8AAMDCmjhxikYJ7748xwS/AADgJpu4c/j9+/e1sbGh9fV1NZtNua6rSqUyzdgAAAAWypXmqqvX67p//77CMFStVmMoAgAAcKNdaa66e/fu6eHDh9OKBQAAYKElbnH66le/euk2r7/++pWCAQAAWGSJW5y+/OUvq9lsjtzm+PhYr7766pWDAgAAWESJE6etrS2tr68rm80O3SYMw6kEBQAAsIgSJ071el2np6c6Pj6WdD6O0927d3u2SaVS040OAABggYzVOXx1dVVbW1uSpLfffludTkcrKyvx3XSvvPLK9CMEAABYEFcaxyny1ltvqdlsKpfLMSQBAAC4sa40ye93vvMd/fZv/7by+byazaZ8359WXAAAAAtn7Band999V/V6XY7jaGVlRa+88oparZbu3bs3i/gAAAAWRuIWp9dff12bm5vKZrPyfV/1el1/8Rd/oYcPH8ZJ05tvvjmzQAEAAOYtcYtTsVhUPp/XgwcPZBiGTk5O9NZbb8XrT05O9PDhQ33+85+fSaAAAADzNlbiVK1WR47VdHBwMJWgAAAAFlHixKlUKl0Yt6nf3t7elQMCAABYVIn7OHUPP3CVbQAAAJbVlYYjAAAAuE1InAAAABIicQIAAEiIxAkAACAhEicAAICESJwAAAASInECAABIiMQJAAAgIRInAACAhEicAAAAEiJxAgAASIjECQAAICESJwAAgIR+dl4H9n1fjUZDpmnK930Vi0UZhjFwW8/zJEmZTEa+7ysIAmUymWuMFgAAYI6JU6FQUKvVknSeRO3u7qperw/c1nEc1Wo1SZJlWUO3AwAAmKW5JE6+7/c8N01TrusO3T6bzerk5ESShrZKAQAAzNpc+ji5rqtUKtWzLJVKxZfkBjEMg6QJAADM1VxanIIgGLi80+kM3b7RaEiSjo6OVCqVZJrmwG2fP3+u58+fx8/Pzs6uFiwAAMA/mFsfp0GGJVTdHcdN01Qul1O73R647f7+vr70pS/NKEIAAHCbzeVSnWEYF1qXOp3O0Etx3X2iorvw+vtJRfb29nR6eho/nj59OrW4AQDA7TaXxMmyrIHLNzY2LizzPE9bW1sXlvf3kYrcuXNHd+/e7XkAAABMw1wSp/7+Sb7va2NjI25x8jwvblEyTVOVSiXe1nVd5fN5OooDAIBrN7c+TvV6XbZta3NzU0dHRz1jM+3v72tzc1PlclmGYWhjY0PValWGYajdbjOOEwAAmIu5JU7dLUn5fL5nXX9ilMlkGCkcAADMHXPVAQAAJETiBAAAkBCJEwAAQEIkTgAAAAmROAEAACRE4gQAAJAQiRMAAEBCJE4AAAAJkTgBAAAkROIEAACQEIkTAABAQiROAAAACc1tkl8AADBfL//hy/MOIbF3fuudeYcgiRYnAACAxEicAAAAEiJxAgAASIjECQAAICESJwAAgIRInAAAABIicQIAAEiIxAkAACAhEicAAICESJwAAAASInECAABIiMQJAAAgIRInAACAhEicAAAAEiJxAgAASIjECQAAIKGfnXcAAHBTvPyHL887hMTe+a135h0CsJRocQIAAEiIxAkAACAhEicAAICESJwAAAASInECAABIiMQJAAAgIRInAACAhEicAAAAEiJxAgAASIjECQAAICESJwAAgIRInAAAABIicQIAAEiIxAkAACAhEicAAICEfnbeAQDDvPyHL887hMTe+a135h0CAOAa0OIEAACQEIkTAABAQiROAAAACZE4AQAAJDS3zuG+76vRaMg0Tfm+r2KxKMMwrrwtAADArMwtcSoUCmq1WpLOE6Pd3V3V6/UrbwsAADArc7lU5/t+z3PTNOW67pW3BQAAmKW5JE6u6yqVSvUsS6VS8jzvStsCAADM0lwu1QVBMHB5p9O50raS9Pz5cz1//jx+fnp6Kkk6OzsbL8gxfPT8RzMre9rOVsJ5h5DYh3//4bxDSGyW9WsWqLOzQZ2djWWqrxJ1dlZmWWejssPw8vduoUYOH5YkjbPt/v6+vvSlL11Y/uKLL04Y1c2yOu8AxvK9eQeQ2OpvL9eZXSbLdWaps6DOzsp11Nn3339fq6ujjzOXxMkwjAstRp1OZ+CdcuNsK0l7e3v6nd/5nfj5Rx99pE6no/X1da2srFw5dvQ6OzvTiy++qKdPn+ru3bvzDge4FHUWy4Y6O3thGOr999/Xpz/96Uu3nUviZFmWHMe5sHxjY+NK20rSnTt3dOfOnZ5lDF0we3fv3uUDjaVCncWyoc7O1mUtTZG5dA43TbPnue/72tjYiBMcz/Piu+ku2xYAAOC6zK2PU71el23b2tzc1NHRUc+4TPv7+9rc3FS5XL50WwAAgOuyEibpQg4M8fz5c+3v72tvb+/CJVJgEVFnsWyos4uFxAkAACAhJvkFAABIiMQJAAAgIRKnBVSr1ZTL5RJtm81m1Wg0ZhxRcp7nqVQqaWVlRbZtq1arybZtFQoF5hi8waizWDbUWUyKPk4LyPd9+b4vy7Iu3dZ13YUbniEIAq2trenk5CSOK1rWarWUyWTmG+A/xLNI52zZUWdnjzo7XdTZ2bupdZYWpwVkmmaiD7N0PkDoMlRMwzBkmqYODg7mHYp839fh4eG8w7hRqLOzRZ2dPursbN3kOkvihGvT6XSUTqfnHYYqlcq8Q8CSoM5i2VBnZ2+hJvnFedOmbdtyXVftdlvS+fVs13VlmqZ831c+n5dpmvI8T7u7uyqVSioWi3JdV7Ztq1Qqxds2m82RA4YOKztJWa7ryvM8maapo6OjoR+UIAi0v78vy7JULBaH7uu6rkqlkmzbliQ5jqNWqyXf9+U4jjY3N9XpdLS9vS3DMIaWMSpu13V1fHwcz39oWdaF0ekxHuosdXbZUGeps1cSYiEZhhGGYRi22+3QsqyedZlMJjw5OQnDMAwrlUroOE68rlwuh/l8Pn5uWVbYarUGHuOyskeV1W63w0wmE69zHCesVCphGIbhyclJKCmsVCphvV4P6/V62G63e447bN9isRgWi8UwDMOwXq+HJycnoWmaPTFVKpWRZVx2Dsrlcs85w3RQZ6mzy4Y6S52dBC1OC85xnAud/EzT1OHhYfyrotv6+rrW19fj54ZhxFn/uGWPKstxHKVSqZ47OI6OjnrKKhaLA/sFjNrXMIz4mPl8XrVaTaZpxuXs7e1JOp+WZ1gZ45wDTB91ljq7bKiz1NlxkDhhYplMpqdz5aA/MJPs292k239XRvf/r3L8YeXjZqPOYtlQZxcPncMX3M7OzoVxOTzP0/b2dvw8CIKZlT3Ovv3Ph/36uGzf7v3y+bw8z7uwbZLjJ8GYJ9NHnaXOLhvqLHV2LPO+VojBomvvYRiGzWYzvo5dLpfj68itVivMZDKhZVlhu92On2cymbDVaoX1ej00TTPM5/M91767XVb2qLKazWZYLpfj6+snJydhq9UKy+VyKCksFotDr/sP2rfZbMavp9lsjtx21PEvi7vdbofFYjF0HGfoecH4qLPU2WVDnaXOToIBMBdUNLAZsCyos1g21FlMgj5OC6RWq6ndbqtUKmljY2Pe4QCXos5i2VBncVW0OC0Q3/fj+ZCicT6ARUadxbKhzuKqSJxuqGjSx8ePH1/bnEWe58lxHNVqNZXLZaXTabXbbfm+r1KplHh6AwC4DYIg0PHx8cLNg4fRSJxusFwup0qlcq2TPTLxJPrNI4mfJn4QoF/SOt1oNNTpdGSapoIgUD6fj9cFQaDd3V1VKhUVCgW1Wq3Ex6dOztn8+qVj1kaNZjsr0Wi20R0ZEdM0w3K5fK2xDNJut2/saLaLLEld7K8zszbO8QbV62jZdX/Ghrnu83fbXVanm81mPDp3GIYX6k+9Xu8ZBbz73ySok/PDOE64Fkw8iVGueyb1aRyPmegxSrPZVC6Xi5+32+2elm7f9+PnhmFQJ5cId9UtmEajEX+I2u12/EWfZDJIz/N0cHCgzc1NScMHRuve/ronnpzXpJNRzDd64sklVqlUlM1ml+54i/SD4DrPH8Z32d8a6uTyIHFaMIVCQe12W5ZlqVQqqdFoKJ/Py7IsWZbVkwzU63V5nqdMJqMgCOJ9I/v7+0OP4/u+bNtWs9mMl2WzWT1+/PjSY0X7RtfkO52OqtWqyuVyXFY095GknmRm2H6WZanVasXzKwVBoFwup1arJcMwZNu2arWa8vn8yDKGxSwpfl3pdHqiaQNum+tK4gcltNGM9Nvb2z1Jdb1e1/HxsQqFgh49eiTDMKYyc7vnebJtW5lMRvV6XUEQKJvNKp/PD/xRwEz0y+k667TnefJ9P57brVarxX2iPM/r+dtrmiZ1comQOC2YqFO17/vqdDryfT9eN2pSxcPDwwudFFOp1NDjzGPiSSadXC7XlcQPSmijP9Lr6+vKZDKybVuO48gwDFmWFd/00N2pNmkSPex4nU4nLitK1vsT7EE/CCTN9UcBPwiSu8463Ww2tbm5GXcI757SJJPJxJfxoveMOrk8SJwWzP7+vtbX1xd+fJFJJ35clEknBx0Dva4riR+mVCqpUCioXC4rCAL5vh/fvr29vT31JLpYLGptbU2O48j3/YGDIzIT/XKbd50eF3VyMZE4LZCoSTRqwg2CQOvr63Jd99LbS6Nf4d26/yj029nZ0e7ubs8yz/P06NGjS+MctG9/jJ1O58KH+bL9+ieddBznwrZJjp2U67o9twej17yS+CihjY4Z/VLf2dnR4eGhUqlUXLemPXN7sVhUrVZTKpUau24syo8CfhAMtyw/TKmTi4276hZINAia67pyXVeFQkFHR0cKgiC+vn5wcCDP89RoNOKxPHzfl2maqtfrsm1bruvG1/L39/cHJlCZTEaVSkXValWNRkO2bater8d9RkYdK9rXtm01Gg01Gg1tbGzI87y4+bpSqVyYbXvYftHrrdfr8S8b0zTlOM6FbUcde1TMkVKppFarpVqttpRjCl2XKIkvl8vxGDTR8stE/TO6jUriBx07UiqVtLu7q3w+r2Kx2JNMz2Lm9lKpNPLOS2aiX17zqNOTtsBQJxfcvMdDALB4Tk5Ownw+HzabzfiRz+fDer2eaGb0aPb2ZrMZ1uv1MJPJjJw9fthM6icnJz1j4eTz+Z79ZjFze/8xmIn+ZrjOOt39vkflGYYRFovFnvfUsqywXq+HYUidXCaMHA4AXaIOw8CioE4uFvo4Abj1oo7oqVSKS7hYCNTJxUXiBODWKxQKcZ8XvqSwCKiTi4tLdQAAAAlxVx0AAEBCJE4AAAAJkTgBAAAkROIEAACQEHfVAVhK1WpVhmEolUrFo+cz1g2AWeOuOgBLJ5vNqlKp9MyhZdu2JI2cngIArorECcBSsW1bvu+rXq9fWLe2tqbHjx8z7g2AmaGPE4ClUq1WlcvlBq6zLCueaBoAZoHECcDSiGak39jYGLjeNM14lnfXdZXNZlWtViWdz/eVTqd7Zmp3XVfValWNRiO+1Oe6rtLptGq1mmq1mrLZbLxvoVCQJAVBoHQ6He8D4PagcziAG2N9fV2dTkfSeevTzs5OvC6fz+vg4CB+7vu+bNtWq9WSJHU6HVWrVZXLZVmWpVarJcdxlEqllM/n1el04m0Nw5Bt2yoWi9f46gAsAlqcACwN0zQl/WPLU792uz20NapflBS5rhu3Qh0dHUk6T4zS6bQkxXfqFYtFHR4exsdPehwANwstTgCWSrFYVLPZjBOaaCgC6fwy2zh31WUymZ4787pbkKIy+49dq9XiVigAtw8tTgCWiuM4Oj4+lud5ajQaSqVSajQaqlarsiyrJ6ExDEPPnj2Ln7uuG884v7Oz09PfKVofiS75dSuVSgx3ANxyDEcAYClVq1W1221ls1k1m01tbm6qXC4rCAIZhiHpvBO3bdtxp27HcRQEgRzHkWmacl033lc67xd1fHws27aVSqVk23ZPi5QkFQqFgUMhALgdSJwALD3P8+S6rsrlctzBe1YajQaX6YBbjMQJwI2wtramYrEoz/PUbDanWnapVFKhUFAqlZJhGAP7PwG4HegcDuBGiDpuz+IyWqFQiPtGMSo5cLvR4gQAAJAQd9UBAAAkROIEAACQEIkTAABAQiROAAAACZE4AQAAJETiBAAAkBCJEwAAQEIkTgAAAAmROAEAACT0/wOy7BcGsp/hZgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFnCAYAAABQEsaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+mklEQVR4nO3dTWwr6X3v+Z/8EtkBfFSiNrHhk9unhATIwjc5pIjJABOMxyolgwlm4yali7tJgLHIBAPMoueG1VrFvbGatDG7Qbp4eoB44YXE6r4zmPEil3UcA94ElljtxAtvwjrH044DdHKokvpO3GrbXbPQrQrfVaQoUZS+H0A4p96e+rP4UPrzqaeeZymKokgAAAC41MfmHQAAAMCiIHECAABIicQJAAAgJRInAACAlEicAAAAUiJxAgAASInECQAAICUSJwAAgJRInO6hIAhk27ZWV1e1vr4+dt/19XWtrq7Ktm2FYXgzAeLW8H1fW1tbl9YTYFJx3crlcvMO5U7gs3pzSJzuIdM0Va1Wtbe3p06nI9/3h+7neZ6y2ay2t7dVrVZlGMbNBtqnXq8PrLNtW8VicQ7RXBgW012SzWZl2/bEx93UdZn3+38b3LZrMCqe/joR161pv5CFYah6va6tra2h22u1mur1uur1umq12o1vH+W6PhvTflYxORKne8wwDG1vb8txnKHbb1sLU7PZHFi3tbWlnZ2dOURzYVhMd00mk5n4mJu6LvN+/2+D23YNRsUzrE5MU7eki9aVw8NDhWGoTqczsD1OZEqlkkqlkrLZrMrl8o1tH+c6PxvTXk9MKMK95ThO1Gq1IsMwBradnJxErVYrKhQKUalUmkN0vRzHibLZ7LzD6HEbY7oOrVYrMk0z9f735bogvVF1YtK61a/RaAwt1zCM6OTkpGdd95+7694+ynV/Nq56PZHOJ+abtmHestmsMpmMXNdVoVBI1h8fH8uyrJHH1Wo1maapIAhkmmZybNx8bpqmms2myuWystmspItbf3FT8pMnTxQEgYIg0IsXL1StVkeey/M8NZtNBUGQfNOrVCryfV+2bSsIArXb7ZHn6HQ6arVachxH9XpdmUxGBwcH2tvbS2K77HWljam/HOmiT1n3tnH6m/FLpdKlZU77muPjMplMcmslDMNL34/+eLqvVdrrctn1jYVhKNu2lcvl1Gq1tL6+rmw2K8dxtLe3N/D+u66r/f19BUGgRqMhy7IUBIG2trZkmqYcx5FpmiNjn6Z+dr826aIlN5PJyDRNdTodWZY1tK7atq16va5qtTr0fR4Wm2maKpfLSavFzs7OQLmXXev48xmGoYIgkGEYPefv5rpuck0cx1EQBMlt+0ajoUwmo83NTYVhqEajkbyu/s/kuDohXbQgTXq9RwmCQGEYDu1a4Hle8tqva/uo35uT/B7rrxvX8VmVJqsL6DLvzA3z4zhOFEVRVKlUokKh0LOt0WhEURQNbXEqFArJ9iiKIsuyolarlZTVbreTbaZp9nwzazabkWmaUbPZ7NknPn6UZrOZ+hvrqHNUKpWe19df3rjXNUlMhUKh59ztdjuyLGvMq7tQrVYHYux+H8aVOe1rbjQakaSe96xSqfS858Ou8bhrNe66THJ9+485OTkZiGPc+9+tWq2mjn2a+lkqlXquWbvdjrLZbE85w+KyLCv5HF4WW/z+NZvNqNVqJe/tJO9Po9HoOV+73e5ZHsZxnJ66NqyedtefUe/JqM+vYRgTX+/uc/eX22w2h7b+GIYRNRqNa98+zqjrkKZuzPqzOk1dwAX6OEHlclmu6yZ9moIgGGiJiQVBMNA6VSwWk35SQRDI87xkm2maPcuZTEZBEPR8K4u/Cc3KqHN0y2azPee87HWl5fv+wLfOuOWh+zr0i1tW9vb2knUHBwcKgiBVmdO8ZumidSSbzfbsu7e3p3q9PvI9meZaTXt9XddN6qJhGEmrxDiWZQ089BC3DlwWxzT1M25l7f7mH3+L7zas/0l3q8VlsRmGId/3ZVmWstnsyJaGy8ppNBpJbKZpamNjY+Rrk6Tt7e2Buuu6bvL/TqczUNcmEYbhtf4+iGUymaH9oW5q+2Wx9etv0bqOz+qkdQEXuFUHmaapbDarw8NDlUol+b4/9haVYRg9v0jb7XbywY2b6+Om306nM/DLpP+XrGEYU//CGWXYOcY9pnvZ60rr+Ph46B+R+NblqGb84+NjGYbR88syvpZxc/plZU76mkeJ4/B9f+h5p7lW017fbDY7kICk+SNdKpXkOI4cx5Hnedre3k4dx6T1My5z2B+6SUwT26TlFAoFOY6j1dVVZbNZ7ezsXHobOf6DHf8B7k5Cr5IwxW7i94GkS8u87u3X4Sqf1WnqAi6QOEHSRauT4zgqlUpjf+GHYSjTNHsSgO7/+76v/f19bW1taXt7eya/WIeZ1S/t2GWvK21MV3m0eppt8zDptYqvyzTXt1wua39/X0+ePFG9Xk/dAlgul5XL5ZJ+OfG5ZvE+z1L3e5smtjTJ2GXlNJvNpBUzvp6X/cHc2dnRwcGBstmsNjY2klZqy7Kmun6z/vx2G1VufF2ue/skxl2HWXzur6MugOEI8F9sb2/L9325rju2uXbY7R7p4gMahqE2Nze1t7eXJGDdt/9madTYU9Ma97rSim+jDCsnCALl8/mx5x92rvg2xjRlTit+L0fdrp30Wvm+f6Xr++TJE3mep0KhkLrjqmmayUMP3bdBZvE+94vfu2nK6G6lmFVs48qJHz7IZrOqVCpqtVo6ODi4tMxCoSDXdZOx3eLWilEtrJeZ9ee3m2mayW3dfpZlXfv2SYy7DmlasK7yWZ22LoDE6V7rfgrHMAxZlqWDg4Ox32oty9LGxkZPHwdJOjw8TFoWuj/E8Yd/3C+INH8Yuvs9jOuDNe05xr2uSWLKZrOyLKunaTx+7eOeIIufdOkeSC8MQx0eHk5dZto/uL7v9+y7v7+vUqk08g/iZddq2HWZ5vpKUqvVkmEYKhQKE/+BLpfL2t3dHfi2PWkcl11H0zRVKpV6nogc1herv+9OfDs7Ln/aa9RvXDndfzC747pMfDs//p0RH5O2jk3y+Z0kURyVXOzt7fV8XlzX7Um6r3v7KKOuw2V1IzbLz+q0dQHiqbr7qN1uR6VSKZIUlUql5CmN7qe4Tk5Oomq1GhmGEZmmGVWr1Z6n4yqVSuQ4Ts8x8fpKpRI1m82o2WxG7XY7eaojHhdKUvKUU3yObDZ76RMpcdnxkx/Dyht3DsuykieS4n0qlUqq15U2pv5yHMfpeQIpTXnVanXgiZdxZV7lNcdP+cRPC1Wr1Z4n0PqPGxbPsGt12XVJe33jJ4niepjNZse+/91OTk5GjkE2LI5Z1E/HcZK63/9UXVxe/P42Go2oUChEpmkOfIb6Y2s2m5FlWZFhGFG1Wk0+s+OuwbBy4voTr+v/XI9TrVZ7nnbrjiN2WTyXfX7TXu92ux1Vq9Uom80mdbN//+7rPOwzeN3bRxn12bisbsz6s3qVunDfLUVRFN18ugbgNojHh2m1WvMOZUAYhtrd3dWTJ0+S277xPIvFYvHWjzeTy+VUrVbn2ocKd8dt/qzeN9yqA3Ar1et1lcvl5NZx/HRXtVrljweAuSFxAnArZbPZZEiGbp7njZzYFQCuG8MRAPeU53mqVqvyfV+1Wu3WPYYc3+Lqn2omzVQt81ar1eT7fjJIJbfrcBW3/bN639DHCQAAICVu1QEAAKRE4gQAAJDSve7j9NFHH+mnP/2pPvOZz2hpaWne4QAAgDmIokjvv/++Pve5z+ljHxvfpjS3xCmeH0eSjo6OkrFaholneI5HV+2eT23ctsv89Kc/1cOHD2fwagAAwKJ799139fnPf37sPnNLnDzPS54MqNVq2tzcHDk2S7FYTLYFQaDd3d3kMeVx2y7zmc98RtLFhXrw4MGVXg8AAFhMZ2dnevjwYZIXjDOXp+p839fm5qZOTk4kXSQ86+vrarfbA3PlBEHQkxxJ0urqqk5OTsZuS+Ps7EwrKys6PT0lcQIA4J6aJB+YS4tTNpvVkydPkuV40sLuWcxjnucNrM9kMvJ9X8fHxyO3DZtE8vz8XOfn58ny2dnZVV4GAAC4Z+b2VF33AHYHBweyLGto36RRM2V3Op2x24bZ39/XyspK8kP/JgAAMIm5D0cQhqFc103dL6n7uEm37e3t6fT0NPl59913JzonAAC43+Y+HIFt22o2myOfhDMMY6AFqdPpyDCMsduGWV5e1vLy8kTxffTRR/rwww8nOga4Kz75yU/q4x//+LzDAIBbY66JU61Wk23bMk0zaSXqT3osy5LjOAPHbmxsyDTNkdtm4cMPP9SzZ8/00UcfzaQ8YBEZhqFf+7VfY6wzANAcEyfXdZXNZpOk6fDwUKVSSdLFU3eGYcg0zaFP2W1sbCQtTqO2XVUURfrHf/xHffzjH9fDhw8vHRALuGuiKNK//Mu/6L333pMkffazn51zRAAwf3MZjiAefqCbYRjJMALFYlH5fD4Z5ykIAjmOo3w+r6OjI+3t7fUMgDlq22XGPX7485//XH//93+vz33uc1pZWbnaCwYW2IsXL/Tee+/pN3/zN7ltB+BOmmQ4grkkTrfFuAv1wQcf6NmzZ3rppZf06U9/ek4RAvP3s5/9TM+fP9ejR4/0qU99at7hAMDMTZI4cf/pEvTrwH3HZwAA/tXcn6pbNC+9+u0bPd/z1//wRs8HAABGI3G6Q3zfl+M4qtfrqlQqyTQ2QRCoXC7LsqyZnKder8u2bT19+nToCO2LIJfLaW9vLxmItV6vq9FoqNlsTnzsXfB3PwlHbot+8aHeO/mZvvL2d/UP7//y5oIagS8T99tNf3mdFvX07iJxukOy2ayq1arq9XpPJ/kwDLW6uqpWqzWTRKdUKk08YOk4YRjO5EnISVSr1Z5hKyzLGniCM+2xAID7gz5O90A8tMPBwcG8QxkQBIEODw9v/Lz9U/yYppm6RW7U9EAAgLuPxOme6HQ6A0NA3AbVanXeIQAAkBqJ0x0XhqFs25ZlWSqVSvI8T+vr66rX66rX68rlcpIu+kfVajW5rqtaraYgCHrK8X1ftm3LdV25rtsz1Y3necrlcqrVapIuBjddX1+X53nJPkEQJMfX63WFYSjP83R8fKxms6l6vT5wzu7y49hs2+6JqVwuJzG5rivf9y+Nx/d95XI51ev15BqVy+WexHLU9eg/Nj5XvV6X53mq1+sqFotTvFMAgEVAH6c7ql6vJ312yuVy8n/LsmRZllqtlhzHUSaTSZKa7o7RuVxOT58+lWEYCsNQxWJR7XY72b6/v5/837Is7ezsJMuFQqHntmAYhtra2lKr1ZJhGLJtO+nAblmW1tfXk1Hj+8WxtVotSRctZ7VaTaVSSZubm3r27Fly22x1dVVPnz69NJ5sNtuz3TAMOY6j1dXVnnMOux79x8bXs9lsJv2+Go2GfN9f2I7zAIDRSJzuqFKpNHbi5LW1NUkXSYVt2wN/5E3TTKbBOTw8HNieyWRSx3J4eCjTNJN49vb2Uh8bJ3fdrVdHR0cyDGOgr9GsOmw7jjP2evRbW1tLrqc0fGJqAMDdQOJ0T6V9gmwW+p+aG5XQjXq6LpvN9nTcLpVKya0yAABuEn2c7qjLWjy6t+/s7PS06EgXfXm2t7clXdyO8n2/Z3t/fyTDMPTixYtk2fM8hWEo6aJVq//4/vONWjcsNs/ztL29PTamcfHE+pfHnbP7eow7FgBwt9HiNKHbPKiZ7/tJX55qtapyuTxwy8nzPHmeJ9/3k0fw4/GfarWaTNPU0dGRGo1G0vpjmqYajYZs29bW1lbSMrS/v69qtSrTNLW9vS3btpOEw7Ks5JaXaZpyHEe2bSufzyfbpYv+V/HYU8OGA4hj6z/WMIyhMcXGxROGoQ4ODpTJZFQoFAZa38Zdj/gax8fGZcXnCIIgGYjUNM0bbdkDAFw/Jvm9ZJJfJjZdHFtbW6pWq1N3yl5dXdXJycmMo1oMl44c/tOf6Kt//R4jh2PuGDkc12GSSX5pccKdMU2H7Hq9rna7rXK5zGjgAIBL0ccJd0I8DpTjOBP1P7IsS2tra3JdV47jXF+AAIA7gRYn3AmlUmnkWFDjmKapSqVyDREBAO4iWpwAAABSInECAABIicQJAAAgJRInAACAlEicAAAAUuKpukl9deWGz3c61WHx+ETr6+vKZDIyDENBEMiyrFs7mrXnebJtW+Vyeaon5CaVy+W0t7enQqFw7ee6qv5Y6/W6Go2Gms3mxMcCAKY3t8TJ933t7u6q1WqN3c913WQqjv4JYOO5yrLZrIIgUBiGU48afZdsbW2pWCyqWq0m63zf19bWltrt9hwjG8+yrKHTrlyXarW6MINe9sc6SQK8SK8TAG67udyqc11XkgYmaR2mWCxqdXVVq6urWlpa0tLSkmq1miTJcRzlcjktLS2pXC7f2paUmxRfm/4Wm2w2eyOtOFe1trZ2Y+eK57xbBP2xxvMMTnMsAGB6c2lxSnvLIAxDNRqNnv1rtVoyYGEul0vmFuMPw4X9/X09efJk6LZisXjD0QAAcLfc+s7h3UmT67oDSZdhGKmTpvPzc52dnfX83CXx7cpRLW/dt3d831etVpPruqrVagqCQNJFP6NcLqd6vS7P81Sv11UsFhUEQXJMuVxOyvQ8T+vr6yqXy3JdV/V6XeVyOZn2JN5er9dVr9eVy+WS9fH5bdvuiTMMw55zdxt23KiYu8uLt8XH+b6fHBOb9JqMMuq1+b6fXKf4x/f9pPy4tdB1Xa2vr8vzvOS47ljDMFS5XNb6+vqlsfcfO+lrAQD0utWdw7sTojAM1el0epKCMAyT235HR0eX3q7b39/Xa6+9dm3xLoogCGTbdk/H4lwup6dPnyb9jJrNphqNhiSp0WjIdV1VKhVls1mtr68rDEMZhiHLslQoFLS2tpYkta7rqlgsqtlsJuW1Wi05jqNMJpOcP+7f1ul0eloSj46Okv83Gg35vp/0Yxt13LCY4+Pq9bqy2Wxya6vT6SibzWpnZ+dK1yQuf9i17Y+xVCppc3NTz549S+r16upqUn53LIVCQQcHB8lyf6yGYchxHK2url4ae/+xo17Lj374t/qtL/z2iBoDAIjd6sSpm23bPZ2dpYt+PPEfIdM0L+38vLe3p1deeSVZPjs708OHD68l3nmIk8YgCIZ2kg+CQJlMRo7jDGw3TVOHh4cqlUpaW1vr6WtkGEZPQmoYhjqdTk9i2/3/QqGgYrGYJFeGYSTlFQoF2batTCaTtKhIF8lSLJ/PD5xLUpJ4DTtuWMzxcYVCQblcTqZpamdnZ2hfr2muSVx+fznDYoyTzO7rNKsO25fF3m/YazkNT2YSCwDcdQuROMW3bvpvyXUnCKZpKggCBUEwstVpeXlZy8vL1x3uXFUqFTmOM7Qfme/7Uz+SftU+ZP3vSXcLkDTYmX2UaY7LZDI6OTmR7/s6ODhIWsOuy7AYu28JAgAW163v4yRJx8fHQ4ci2NzcHNg3k8ncUFS3U9wq1/+HOu5zJEk7Ozs9LSLSxfXc3t4eWW738Zdtj4eQ6H7Pultnhp2/f3mYaY/b399PkuxqtTpwC3hU2Zddk0li3N7eHniKNO6HJF0kpi9evOg5pv+aj3oP0sR+2fsHAEhn7i1O8e2cmO/7A7eGfN8fSIhM0+y5ded5ngqFwvU/XTflgJQ3qdlsqlarybbtZABM6V872scJRK1Wk2maOjo6UqPRkGEYSauMdNEfJu4UHh/neZ6CIFC1Wu1JQtrtdvLHPi5PunhfPM+T7/vJI/Tx+W3bTm7LWZY18tyO48g0zamPW1tbk+d5ymQy6nQ62tnZSY7JZDIqFApTXZO4/O66OipGwzDUaDRk27a2trYG6v329rZs204SIMuykltwYRj2xDqs9e6y2ONj47L6X8vpz36uz//6S/r8v3npKlUPAO68pSiKops+qed5yR/3SqWifD6f/FEvFovK5/NJ52DpYgiCdrstx3F6yomfSDIMQ+12e6AP1GXOzs60srKi09NTPXjwoGfbBx98oGfPnunRo0f61Kc+NdXr/LufhFMdNw//9vPG1MfGCdoijBN1m2xtbalarU49aOvq6moyHMdVjaur0S8+1Hs//Ym++tfv6R/e/+VMzncVz1//w3mHgDl66dVvzzuEVKini2VcPtBvLi1O8ZM9wxKduKWiW3cS1S2bzTJSOBbWsM7ll4mn0imXy4wGDgBzsBB9nHB7xbfi4sfzkU69XlcQBHIcZ6L+R5ZlaW1tTa7rDrTAAgCu39z7OGGxxWM0YTKlUmmqW5umaY5sgQUAXD9anAAAAFIicQIAAEiJxAkAACAlEicAAICUSJwAAABS4qm6CX3hm1+40fN9a/N7qff9m+99V//p2/+n3vrWN/XHf/q/6L/+vf9Ov/t7X5zofPV6XbZt6+nTp9c+RtZNnqtbLpfT3t5eMuhqvV5Xo9FINX9d/7EAgPuFxOkO+d3f+6I+/+sv6a1vfVP/0//8ih6srExcRqlUGjoI6XW4yXN1q1arPYNHWpY1cmLoy44FANwvJE53zANjdd4h3HqWZfUs9883N8mxAID7hT5OAAAAKZE43XF/873v6t/9D1+U+62/1N9877tyv/WX+g9/8sc9+/zoh38r27bluq5c1x2YQ83zPNVqNbmuK9u2JUmu6yqXy2l9fV3SxUTM6+vrqtVqI4+RLiZmHneufuPKKZfLSTmu6yaTPudyuSQO13W1vr4uz/OS43K5nOr1uiQpDEOVy+XkdcT7xOes1WoKgmDosfG56vW6PM9TvV5XsVi89D0BACwubtXdcb/7e1/Uf/W9/1Z/873v6htv/KUkqfnt/0s/+uHf6re+8Ns6Oz3Vf/iTP9a7P36WHLO/v5/8PwgC2badTKvS6XRUq9VUqVRkWZY2NzcVhqEMw1Cr1ZJhGCOPKZVKKhaLarfbQ8/Vb1w5m5ubevbsmQzDkCStrq7q6dOnsixLOzs7SRmFQkEHBwfJcjab7dluGIYcx9Hq6mrPObs7iudyuaQDe/ex8WTVzWYz6asVz9nH5NMAcDeRON0DxmpGxmomWf7MgxWdhieSpP/0//xH/dYXfrtn/0zmX/d1HEeZTCZpsZGko6Oji3INQ0+ePFEul1Oj0UiSmFHHGIYxkFB0n6vfuHIsy0rOJ2lmHbYdxxmI0TRNHR4eDp1bbm1tTWtra8myYRiXtqIBABYXiRMulc1mezpFdycQcTJ0cHDQk3AMOya+xXXVc09TDgAAs0Afpzvm7L+0JKX1u//NF/WjH/5tz7q4T48k7ezs9LT4SEqWwzCU53lqNBoKgkCu6449xrIs+b4/8lz9RpWzvb09thzDMPTixYueY8Iw7Nm/f3ncOX3f1/b29qXHAgDuPlqc7pB4AExJ+j/+9/9N//3/+GVJ0l/93/9R0kWS9JP/97l+9MO/lfutv9Tnf/0lff7fvKRvvPGXsm1bW1tbSX+l/f19VatVZbNZVatV2batfD4v6aJvT71eV7VaVblcliTl83nt7u4qCAJVKpWhxxiGoUajMfJc/UMCjDr3qHJi29vbsm07SYAsy0puwYVhqIODA2UyGRUKhZHnrNVqMk1TR0dHyW1I3/d7jo3Lis8RBIF835fjOBMNcQAAWBxLURRF8w5iXs7OzrSysqLT01M9ePCgZ9sHH3ygZ8+e6dGjR/rUpz41Vfl/95NwBlHejH/7eWPeIVzJ1tZWkuhNY3V1VScnk7XW3SXj6mr0iw/13k9/oq/+9Xv6h/d/eXNBjfD89T+cdwiYo5de/fa8Q0iFerpYxuUD/Whxwp0wTYfser2udrutcrnMaOAAgFTo44SFV6/XFQSBHMeZqP+RZVlaW1uT67pyHOf6AgQA3Bm0OGHhlUqloUMFXMY0TVUqlWuICABwV9HiBAAAkNLcEqd4+oo0+8WPnsdPLcWCIOiZGuM6HhO/x33ngQtRJCnSR3wUAGA+t+pc15VpmgNj8QzjOE4y4KFlWcnUFpJULBaT6TiCINDu7m7P9qv4+Mc/Lkn68MMP9elPf3omZQKLKPrFh/r5LyOdfPDRvEMBgLmbS+JUKBRS75vL5ZLHxLvH6ukfONE0zYGBC6/iE5/4hH71V39V//RP/6RPfvKT+tjHJm+ci37x4cziuW4ffPDBvEPAHA2tq1Gk6Bcf6qTzz3oa/Gd98AuanABgITqHdydMMc/zBuY5y2QyYydYPT8/1/n5ebJ8dnY28pxLS0v67Gc/q2fPnunHP/7xVHG/d/KzqY6bh1/5Ga1q99nwuhrp57+M9DT4z3r7R//fjccEALfRrU+cwjBMpvI4OjpSuVyWaZoj+zONG89nf39fr732Wupz/8qv/Ip+4zd+Qx9+OF3L0Vfe/u5Ux83D0//1i/MOAXM0rK5+FEknH3xESxMAdLn1iVOpVEpanEzT1NbWltrt9sj9x3UQ39vb0yuvvJIsn52d6eHDh2PP/7GPfWzqkcNvwyjLaU37GnE3LFJdBYB5uvXDEXT3ZTJNU0EQKAgCGYYx0LrU6XSG3taLLS8v68GDBz0/AAAAad3qxMn3fW1ubg6sz2Qysixr6DFMnQEAAK7L3BOn/ltrvu8nrUymaaparSbbPM9ToVCQYRgDM88HQaCNjY2xLU4AAABXMZc+Tp7nqdlsSrrosJ3P55MhCuLlSqUiwzC0sbGhWq0mwzDUbrd7xmlqNBqybVv5fF5HR0czG8MJAABgmKXoHg+NfXZ2ppWVFZ2enl5Lf6eXXv32zMu8Ls9f/8N5h4A5oq5iUSxKXaWeLpZJ8oG536oDAABYFCROAAAAKZE4AQAApETiBAAAkBKJEwAAQEokTgAAACmROAEAAKRE4gQAAJASiRMAAEBKJE4AAAApkTgBAACkROIEAACQEokTAABASiROAAAAKZE4AQAApETiBAAAkBKJEwAAQEqfmPSA58+fq9FoqNls6uTkJFmfyWS0tbWlQqGgl156aZYxAgAA3AoTJU6vvvqqlpaWtL29rT/7sz8b2P7OO+/ojTfe0NLSkvb392cWJAAAwG2QOnH6+te/rr29Pa2srIzc5/Hjx3r8+LFOT0+1t7dH8gQAAO6U1InTsBamUVZWVkiaAADAnTN15/BXX31Vb775pk5PT/X7v//72tnZ0dtvv536eN/3lcvlUu1Xq9VUq9VULBYVhmHPNt/3JUlBECT/BwAAuA5TJ075fF5f+cpXVK/XlcvldHBwoBcvXqQ61nVdSUqV6Hiep0qlokqlonw+r83NzWSb4zjK5XJaWlpSuVyWaZrTvRgAAIAUpk6cVldXJUmHh4fa2dmRdPFkXRqFQkHZbPbS/Xzf77nlVygU5Pu+giCQJOVyOZ2cnOjk5ETNZlOGYUz4KgAAANKbeDiCWLvdVhRFarfb+p3f+R09e/asZ3iCWchms3ry5EmyHN+m607QJkmWzs/PdX5+niyfnZ1dOUYAAHB/TN3itL29Ld/31Wq1dHp6KsdxevofzUqhUEj+f3BwIMuykmQpDEO5rivXdWXbdtISNcr+/r5WVlaSn4cPH848XgAAcHelanE6PT3VyclJz8CWKysrPU/avf766z3HxK05Dx48mEGY/5oktVqtZF2pVEqSKNM0tbW1pXa7PbKMvb09vfLKKz0xkjwBAIC0UrU4raysqNlspn5q7q233tLh4eHMkiZJsm17oB9TdwuTaZoKgmBsq9Py8rIePHjQ8wMAAJBW6j5Ou7u7euedd7S9va319XXl83mZpinDMBSGoYIg0Pe//309e/ZM5XJZL7/88syCrNVqsm1bpmkmtwODINDm5uZAv6q0HdQBAAAmNVHn8MePH+vw8FCnp6c6PDzU97//fYVhKMMwtL6+rnK5rEePHk0UQHx8zPd9GYaRDC3guq6y2WySNB0eHqpUKsk0TVWr1eQ4z/NUKBR4sg4AAFybqZ6qW1lZ0e7u7tQn9TxPzWZT0kWH7Xw+n3QCj5crlYqCIFCxWOw51jCMpG/TxsaGarWaDMNQu91Wo9GYOiYAAIDLTD0cwVVYliXLsnpajGLdyY9pmoqiaGQ52Ww21XhQAAAAszD1cAQAAAD3DYkTAABASiROAAAAKV0pcfr617+ezFP39OlTpjABAAB32tSJ06uvvirDMGRZliRpc3NTnufNLDAAAIDbZurEKZ/Pa3d3NxlvCQAA4K6bOnF69uyZJGlpaSlZd3R0dPWIAAAAbqmpx3F6/PixNjY2tLa2pmazKc/zho7LBAAAcFdM3eK0ubmpRqOhx48fK4oi1et1felLX5plbAAAALfKlUYOf/TokV5//fVk+ezsTA8ePLhyUAAAALfRlYYjODs70/Pnz5Mf27ZnFRcAAMCtM3WL05/8yZ/I8zwZhpGse/bsmf7iL/5iFnEBAADcOlMnTuvr63rjjTd61j158uTKAQEAANxWU9+qiwe+7La1tXWlYAAAAG6zqVucVldX9Y1vfEOmacowDIVhqIODAx0cHMwyPgAAgFtj6sSpUqkoDMOePk7vvPPOLGICAAC4laZOnLa2trS7u9uz7q233rpyQAAAALfV1H2c1tfXU60DAAC4K6ZucWq323IcR/l8XpIURZEODw+Zrw4AANxZU7c4OY6jR48eKYoiRVEkScm/AAAAd9HULU7ValWbm5s964YNUQAAAHBXXGmS336rq6tXCgYAAOA2S93i9Pbbb8uyrGQS3zfffLNnexiGajab+qu/+qtU5fm+r93dXbVarbH7BUEg13VlmqaCIFCpVEqGQBi3DQAAYNZSJ05f+9rXZBiGvvSlL0mS3njjDe3s7PTs8+LFi1RlxcmO7/uX7lssFpPkKggC7e7uqtFoXLoNAABg1lInTsfHxz3LT5480ePHj3vWpe3jVCgUUu0XBEHPsmma8jzv0m0AAADXYeo+Tt39mU5PT/XWW2/NvI+T53nKZDI96zKZjHzfH7ttlPPzc52dnfX8AAAApDV14tTdurOysqKXX3555i0+YRgOXd/pdMZuG2V/f18rKyvJz8OHD2cQJQAAuC8mGo7g9PRUh4eHWlpaUrPZHNjearX0la98ZWbBjTIqabps297enl555ZVk+ezsjOQJAACkNlHitLKyIsuyVK1W1W639ejRo57tlUplpsEZhjHQgtTpdGQYxthtoywvL2t5eXmmMQIAgPtj4gEwHz16pDfeeENPnz4dOpbTLFmWJcdxBtZvbGzINM2R2wAAAK7DTAfAnEb/rTXf95Mn5kzT7NkWBIE2NjZkGMbYbQAAANdh6ilXrsLzvKSP1P7+vvL5fDJEQbwc3/ZrNBqybVv5fF5HR0c94zSN2wYAADBrS9E9npn37OxMKysrOj09TUZEn6WXXv32zMu8Ls9f/8N5h4A5oq5iUSxKXaWeLpZJ8oGpb9UBAADcNzNNnJ4/fz7L4gAAAG6VK/Vx+sEPftAzJIDjODo4OLhyUAAAALfR1InT9va2wjDseYrtnXfemUVMAAAAt9LUidPW1pZ2d3d71r311ltXDggAAOC2mrqP0/r6eqp1AAAAd8XULU7tdluO4yifz0uSoijS4eGhjo6OZhYcAADAbTJ14uQ4jizLUvcwUPd4SCgAN+WrK/OOIJ2vns47AgDXYOrEqVqtDky7YlnWlQMCAAC4raZOnPqTpu985zsKw1CPHz++clAAACy0RWkZlWgdndCVxnF6++23kwl5oyjS8fGxvvzlL88kMAAAgNtm6sTp1VdfVRiG6nQ6Mk1TYRiqXC7PMjYAAIBbZerEaX19Xbu7u3r27JmWlpb00ksv6Tvf+c4sYwMAALhVph7HyTRN/fjHP9ajR4/kuu4sYwIAALiVpm5xCsNQpmnq5ORE//zP/6w/+IM/kGEY+tKXvjTL+AAAAG6NqROnl19+Wb/85S8lSa+//rqePn2qjY2NmQWGG8YTIAAAXGrqW3WS9PWvf107OzvJ8tLS0pUDAgAAuK2mTpxeffVVGYaRDHq5ubkpz/NmFhgAAMBtM3XilM/ntbu7K9M0ZxkPAADArTV14vTs2TNJvbfnmOAXAADcZVN3Dn/8+LE2Nja0tramZrMpz/NUrVZnGRsAAMCtMnWL0+bmphqNhh4/fqwoilSv1xmKAAAA3GlXmqvu0aNHev3116c6NggCua4r0zQVBIFKpZIMwxi6r+u6SSf0/n1835ckZbNZBUGgMAyVzWanigkAAGCc1C1O3/jGNy7d580330x94mKxqEqlokKhoEKhoN3d3bH7rq6uanV1VUtLS1paWlKtVpMkOY6jXC6npaUllctlOqsDAIBrk7rF6Wtf+5qazebYfY6Pj/WVr3zl0rKCIOhZNk1z5FAGYRiq0WioUCgk62q1miqViiQpl8vp5ORE0mBrFAAAwCylTpw2Nze1tramXC43cp8oilKV5XmeMplMz7pMJiPf94feZutOmlzX7VmW0idM5+fnOj8/T5bPzs5SHQcAACBNkDg1Gg2dnp7q+PhY0sU4Tg8ePOjZpz8ZGiUMw6HrO53OwLrupCgMQ3U6nZ7bcWEYJpMMHx0djb1dt7+/r9deey1VjAAAAP0m6hy+srKizc1NSdI777yjTqejpaWl5Gm6l19++UrBjEqoYrZtDwx50N2p3DRNbW1tqd1uDz1+b29Pr7zySrJ8dnamhw8fXilmAABwf1xpHKfYd77zHTWbTW1tbaUaksAwjIHWpU6nM/aWWxiG8jxvYJ8gCJLbe/ETekEQDG11Wl5e1vLy8qXxAQAADHOlSX5/8IMf6E//9E9VKBTUbDYHOn2PEg8t0G9jY2PkMcfHx0OHIohbwLqlvWUIAAAwiYlbnJ4/f65GoyHHcbS0tKSXX35ZrVZLjx49Sl1Gf2tQEATa2NhIEiPf92UYRs9+vu8PJESmafbcuvM8T4VCgafrAADAtUidOL355ptyHEdBEGh7ezsZNbzb22+/rS9/+cupyms0GrJtW/l8XkdHR2o0Gsm2/f195fP5ZMiBWH/CZRiGNjY2VKvVZBiG2u12TzkAAACztBSlHEPgYx/7mAqFgnZ2dmQYRs/kvpJ0cnKi119/faEm+j07O9PKyopOT08HnhCchZde/fbMy7wuzz/17+cdQnpfPZ13BHcOdfUaUE+vxaLU1YWppxJ1VZPlA6lbnEqlkmq12tixmg4ODtJHCQAAsGBSJ07lcvnSLGxvb+/KAQEAANxWqZ+q6+/PNO0+AAAAi+pKwxEAAADcJyROAAAAKZE4AQAApETiBAAAkBKJEwAAQEokTgAAACmROAEAAKRE4gQAAJASiRMAAEBKJE4AAAApkTgBAACkROIEAACQEokTAABASiROAAAAKZE4AQAApETiBAAAkBKJEwAAQEokTgAAACl9Yl4nDoJAruvKNE0FQaBSqSTDMIbu6/u+JCmbzSoIAoVhqGw2O3E5AAAAVzG3xKlYLKrVakm6SH52d3fVaDSG7us4jur1uiTJsqye/SYpBwAA4CrmkjgFQdCzbJqmPM8buX8ul9PJyYkk9bQmTVoOAADAVcylj5PnecpkMj3rMplMcktuGMMwBm7BTVMOAADAtObS4hSG4dD1nU5n5P6u60qSjo6OVC6XZZrmxOWcn5/r/Pw8WT47O0sfNAAAuPfm1sdpmFGJUHeHb9M0tbW1pXa7PXE5+/v7eu21164YJQAAuK/mcqvOMIyBVqFOpzPyabjuvkzx03NBEExczt7enk5PT5Ofd99990qvAwAA3C9zSZwsyxq6fmNjY2Cd7/va3NwcWJ/JZCYqR5KWl5f14MGDnh8AAIC05nKrzjTNnuUgCLSxsZG0FPm+L8MwZJqmTNNUtVpN9vU8T4VCYWhn8f5yAAAAZmlufZwajYZs21Y+n9fR0VHP2Ev7+/vK5/OqVCoyDEMbGxuq1WoyDEPtdrtn33HlAAAAzNJSFEXRvIOYl7OzM62srOj09PRabtu99Oq3Z17mdXn+qX8/7xDS++rpvCO4c6ir14B6ei0Wpa4uTD2VqKuaLB9grjoAAICUSJwAAABSInECAABIicQJAAAgJRInAACAlEicAAAAUiJxAgAASInECQAAICUSJwAAgJRInAAAAFIicQIAAEiJxAkAACClT8w7AAAAMD9f+OYX5h1Caj/8ox/OOwRanAAAANIicQIAAEiJxAkAACAlEicAAICUSJwAAABSInECAABIicQJAAAgJRInAACAlEicAAAAUprbyOFBEMh1XZmmqSAIVCqVZBjG0H1935fneZKko6MjPXnyJNnX931JUjabVRAECsNQ2Wz2Jl4CAAC4Z+aWOBWLRbVaLUkXSdTu7q4ajcbQfT3PU6VSkSTVajVtbm4mxzqOo3q9LkmyLGtkGQAAAFc1l1t1QRD0LJummbQo9fN9X/v7+8lyoVCQ7/tJGblcTicnJzo5OVGz2RzZagUAAHBVc2lx8jxPmUymZ10mk5Hv+wO32bLZrJ48eZIsh2GY7B9Lmyydn5/r/Pw8WT47O5swcgAAcJ/NpcUpTn76dTqdoesLhULy/4ODA1mWlSRLYRjKdV25rivbtgdas7rt7+9rZWUl+Xn48OHUrwEAANw/c+vjNMyohKp7u+u6Sf8mST2dyk3T1NbWltrt9tDj9/b29MorryTLZ2dnJE8AACC1ubQ4GYYx0LrU6XQuveVm2/ZAP6buFqb4Cb1RrU7Ly8t68OBBzw8AAEBac0mcLMsaun5jY2PkMbVaTbZtyzRNhWGoMAzl+742NzcH9u3vPwUAADALc0mcTNPsWQ6CQBsbGz1jM3W3Grmuq2w2myRNh4eHMgxDpmmqWq0m+3mep0KhwJN1AADgWsytj1Oj0ZBt28rn8zo6OuoZf2l/f1/5fF6VSkVBEKhYLPYcaxhG0rdpY2NDtVpNhmGo3W4zjhOAW+EL3/zCvENI7Yd/9MN5hwAsjLklTt2tRd1PzUnqSX5M01QURSPLyWazjBQOAABuBHPVAQAApETiBAAAkBKJEwAAQEokTgAAACmROAEAAKRE4gQAAJASiRMAAEBKJE4AAAApkTgBAACkROIEAACQEokTAABASiROAAAAKZE4AQAApETiBAAAkBKJEwAAQEqfmHcAwKS+8M0vzDuEVH74Rz+cdwgAgBmjxQkAACAlEicAAICUSJwAAABSInECAABIicQJAAAgJRInAACAlOY2HEEQBHJdV6ZpKggClUolGYYx8b6TlAMAAHAVc0ucisWiWq2WpIvkZ3d3V41GY+J9JykHAADgKuZyqy4Igp5l0zTled7E+05SDgAAwFXNpcXJ8zxlMpmedZlMRr7vK5vNpt73+Pg4dTmSdH5+rvPz82T59PRUknR2dnal1zPKR+f/ci3lXoezpWjeIaT2y5/9ct4hpHJd9eo6UFdnb1HqqURdvQ6LUk8l6mp3uVF0+fs2l8QpDMOh6zudzkT7TlKOJO3v7+u1114bWP/w4cOh+98nK/MOYCI/mncAqaz86WJd1UWxOFd1MeqpRF29Dot1Ramrsffff18rK+PPcavmqhuVCE2676hte3t7euWVV5Lljz76SJ1OR2tra1paWkp9blzu7OxMDx8+1LvvvqsHDx7MOxxgJOoqFgV19fpEUaT3339fn/vc5y7ddy6Jk2EYA61CnU5n6NNw4/adpBxJWl5e1vLy8kD5uD4PHjzgA46FQF3FoqCuXo/LWppic+kcblnW0PUbGxsT7TtJOQAAAFc1lxYn0zR7loMg0MbGRtL64/u+DMOQaZpj9+1vLeovBwAAYJbm1sep0WjItm3l83kdHR31jL20v7+vfD6vSqVy6b7jtmF+lpeX9ed//ucDt0aB24a6ikVBXb0dlqI0z94BAACAueoAAADSInECAABIicQJAAAgJRKnBVGv17W1tZVq31wuJ9d1rzmi9HzfV7lc1tLSkmzbVr1el23bKhaLzC14B1FXsSioq5gGncMXRBAECoJg5NhV3TzPu3XDMoRhqNXVVZ2cnCRxxetardbQuQVvWhiGt+qaLSrq6vWjrs4GdfX63cW6SovTgjBNM9WHW7oYNHQRKmo8VtfBwcG8Q1EQBDo8PJx3GHcCdfV6UVdnh7p6ve5qXSVxwlx1Oh2tr6/POwxVq9V5h4BbjrqKRUFdvV63apJfDBeGoWzblud5arfbki7ub3ueJ9M0FQSBCoWCTNOU7/va3d1VuVxWqVSS53mybVvlcjnZt9lsjh0odFTZacryPE++78s0TR0dHY384IRhqP39fVmWpVKpNPJYz/NULpdl27YkyXEctVotBUEgx3GUz+fV6XS0vb0twzBGljEubs/zdHx8nMx7aFnWwIj1SIe6Sl1dFNRV6urUIiwMwzCiKIqidrsdWZbVsy2bzUYnJydRFEVRtVqNHMdJtlUqlahQKCTLlmVFrVZr6DkuK3tcWe12O8pms8k2x3GiarUaRVEUnZycRJKiarUaNRqNqNFoRO12u+e8o44tlUpRqVSKoiiKGo1GdHJyEpmm2RNTtVodW8Zl16BSqfRcM1wNdZW6uiioq9TVSdHitIAcxxno9Geapg4PD5NvGd3W1ta0traWLBuGkXwLmLTscWU5jqNMJtPzRMfR0VFPWaVSaWg/gXHHGoaRnLNQKKher8s0zaScvb09SRdT9YwqY5JrgNmhrlJXFwV1lbqaFokTZiqbzfZ0thz2C2eaY7ubePuf0uj+/1XOP6p83E3UVSwK6urtQufwBbSzszMwTofv+9re3k6WwzC8trInObZ/edS3kcuO7T6uUCjI9/2BfdOcPw3GQJkd6ip1dVFQV6mrqc37XiHSi+/FR1EUNZvN5L52pVJJ7iu3Wq0om81GlmVF7XY7Wc5ms1Gr1YoajUZkmmZUKBR67oV3u6zscWU1m82oUqkk99tPTk6iVqsVVSqVSFJUKpVG9gMYdmyz2UxeT7PZHLvvuPNfFne73Y5KpVLkOM7I64L0qKvU1UVBXaWuTooBMBdIPNAZcNtRV7EoqKuYFH2cbrl6va52u61yuayNjY15hwOMRF3FoqCu4ipocbrlgiBI5keKx/0AbiPqKhYFdRVXQeJ0z8QTQT59+vTG5jHyfV+O46her6tSqWh9fV3tdltBEKhcLqee8gAA7powDHV8fHzr5sHDaCRO99DW1paq1eqNTgDJZJSQ5pO4zxJfAhBLW5dd11Wn05FpmgrDUIVCIdkWhqF2d3dVrVZVLBbVarVSn5+6OEfz65eOeRk3wu11iUe4jZ/SiJmmGVUqlRuNZZh2u30nR7i9jdLUv/56ct0mOd+wuhyvu+nP1Sg3ff3uq8vqcrPZTEbnjqJooN40Go2eUcC7/02DujgfjOOEuWIySvS76RnVZ3E+ZqTHMM1mU1tbW8lyu93uadUOgiBZNgyDurggeKpuQbium3yw2u128oc+zQSRvu/r4OBA+Xxe0ujB0rr3v+nJKOc1EWUc852djHIBVatV5XK5hTvfbfoScJPXD+ld9nuFurgYSJwWRLFYVLvdlmVZKpfLcl1XhUJBlmXJsqyeZKDRaMj3fWWzWYVhmBwb29/fH3meIAhk27aazWayLpfL6enTp5eeKz42vk/f6XRUq9VUqVSSsuL5kCT1JDOjjrMsS61WK5lzKQxDbW1tqdVqyTAM2bater2uQqEwtoxRMUtKXtf6+vpUUwncBzeVuA9LYuOZ6be3t3sS6UajoePjYxWLRT158kSGYcxkBnff92XbtrLZrBqNhsIwVC6XU6FQGPpFgBnpF8tN1mXf9xUEQTK3W71eT/pE+b7f83vWNE3q4oIgcVoQcafqIAjU6XQUBEGybdxEi4eHhwMdFzOZzMjzzGMySiaivP1uKnEflsTGv6zX1taUzWZl27Ycx5FhGLIsK3nQobtzbdrEedT5Op1OUlacoPcn1cO+BEia6xcBvgRc7ibrcrPZVD6fTzqEd09pks1mk9t48XtFXVwMJE4LYn9/X2tra7d+zJFpJ4O8LRNRDjsHbi5xH6VcLqtYLKpSqSgMQwVBkDzGvb29PfPEuVQqaXV1VY7jKAiCoYMkMiP9Ypp3XZ4UdfH2IXFaAHEzadysG4ah1tbW5HnepY+cxt/Iu3X/oui3s7Oj3d3dnnW+7+vJkyeXxjns2P4YO53OwAf8suP6J6J0HGdg3zTnTsvzvJ5HhjG/xD1OYuNzxt/Yd3Z2dHh4qEwmk9SnWc/gXiqVVK/XlclkJq4Pt+WLAF8CBi3Kl1Dq4u3FU3ULIB4YzfM8eZ6nYrGoo6MjhWGY3HM/ODiQ7/tyXTcZ3yMIApmmqUajIdu25Xlecn9/f39/aAKVzWZVrVZVq9Xkuq5s21aj0Uj6j4w7V3ysbdtyXVeu62pjY0O+7ydN2tVqdWAG7lHHxa+30Wgk33ZM05TjOAP7jjv3uJhj5XJZrVZL9Xp9IccXuk5x4l6pVJKxaOL1l4n7aXQbl7gPO3esXC5rd3dXhUJBpVKpJ4G+jhncy+Xy2KctmZF+8cyjLk/bAkNdvMXmPR4CgNvt5OQkKhQKUbPZTH4KhULUaDRSzZAez+LebDajRqMRZbPZsbPIj5pR/eTkpGdMnEKh0HPcdczg3n8OZqRfbDdZl7vf77g8wzCiUqnU815alhU1Go0oiqiLi4KRwwFghLjjMDBv1MXbgz5OANAl7oieyWS4bYu5oi7eTiROANClWCwmfV/4Y4V5oi7eTtyqAwAASImn6gAAAFIicQIAAEiJxAkAACAlEicAAICUeKoOwMKr1WoyDEOZTCYZMZ8xbwBcB56qA7DQcrmcqtVqz1xatm1L0thpKgBgGiROABaWbdsKgkCNRmNg2+rqqp4+fcr4NwBmij5OABZWrVbT1tbW0G2WZSWTSwPArJA4AVhI8cz0GxsbQ7ebppnM9u55nnK5nGq1mqSLeb/W19d7Zmz3PE+1Wk2u6ya3+jzP0/r6uur1uur1unK5XHJssViUJIVhqPX19eQYAHcbncMB3Elra2vqdDqSLlqfdnZ2km2FQkEHBwfJchAEsm1brVZLktTpdFSr1VSpVGRZllqtlhzHUSaTUaFQUKfTSfY1DEO2batUKt3gqwMwL7Q4AVhIpmlK+teWp37tdntka1S/OCnyPC9phTo6OpJ0kRitr69LUvKkXqlU0uHhYXL+tOcBsPhocQKwsEqlkprNZpLQxEMRSBe32SZ5qi6bzfY8mdfdghSX2X/uer2etEIBuB9ocQKwsBzH0fHxsXzfl+u6ymQycl1XtVpNlmX1JDSGYejFixfJsud5yczzOzs7Pf2d4u2x+JZft3K5zHAHwD3EcAQAFl6tVlO73VYul1Oz2VQ+n1elUlEYhjIMQ9JFJ27btpNO3Y7jKAxDOY4j0zTleV5yrHTRL+r4+Fi2bSuTyci27Z4WKUkqFotDh0IAcHeROAG4U3zfl+d5qlQqSQfv6+K6LrfpgHuGxAnAnbO6uqpSqSTf99VsNmdadrlcVrFYVCaTkWEYQ/s/Abi76BwO4M6JO25fx220YrGY9I1iVHLg/qHFCQAAICWeqgMAAEiJxAkAACAlEicAAICUSJwAAABSInECAABIicQJAAAgJRInAACAlEicAAAAUvr/AdCBEYjPu+tVAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -907,9 +907,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6vklEQVR4nO3df2wj933/+ZeSOE5zsDSigCIN7GR3hAI1Lo67pIT6i8TofrOjtIjbb64xJeVbH1AX34hM8D18m8u15Or+ONv9w1oyxjn+I2cP1/l684fbSqSd87VbfFPOGls4X8CNxHFc586Hazm7zrr9I62pkQz4m3Uaz/2hckJK/DGkKJGSng9A2CXnM595z5Azeuszn/l8xoIgCAQAAICu3jfsAAAAAI4KEicAAICISJwAAAAiInECAACIiMQJAAAgIhInAACAiEicAAAAIiJxAgAAiIjECXt4nqdsNqvJyUlNT093LDs9Pa3JyUlls1n5vn84AWJkuK6rubm5rt8ToFf171YikRh2KEcC5+LhIXHCHqZpKpfLaXl5WbVaTa7rtiznOI7i8bgWFhaUy+VkGMbhBrpLoVDY8142m9X8/PwQotnRKqbjJB6PK5vN9rzeYR2XYX/+o2DUjkG7eHZ/J+rfrX7/IPN9X4VCQXNzcy2X5/N5FQoFFQoF5fP5gS9v56C++/2ei+gdiRPaMgxDCwsLsm275fJRa2Eql8t73pubm9Pi4uIQotnRKqbjJhaL9bzOYR2XYX/+o2DUjkG7eFp9J/r5bkk7rS9ra2vyfV+1Wm3P8nqik0qllEqlFI/HlU6nB7a8k4P87vd7vNCjAGjDtu2gUqkEhmHsWba5uRlUKpUgmUwGqVRqCNE1s207iMfjww6jySjGdBAqlUpgmmbk8ifluCC6dt+JXr9buxWLxZb1GoYRbG5uNr3X+Otwv8vbOejv/n6PF6L5wJDzNoy4eDyuWCymUqmkZDIZvr+xsSHLstqul8/nZZqmPM+TaZrhuvXmc9M0VS6XlU6nFY/HJe3c+qs3NV+8eFGe58nzPL311lvK5XJtt+U4jsrlsjzPC/8SzGQycl1X2WxWnuepWq223UatVlOlUpFt2yoUCorFYlpdXdXy8nIYW7f9ihrT7nqknT5ljcs62d3Mn0qlutbZ7z7X14vFYuGtFd/3u34eu+NpPFZRj0u341vn+76y2awSiYQqlYqmp6cVj8dl27aWl5f3fP6lUkkrKyvyPE/FYlGWZcnzPM3Nzck0Tdm2LdM028bez/ezcd+knZbcWCwm0zRVq9VkWVbL72o2m1WhUFAul2v5ObeKzTRNpdPpsFVjcXFxT73djnX9/PR9X57nyTCMpu03KpVK4TGxbVue54W37YvFomKxmM6dOyff91UsFsP92n1OdvpOSDstSL0e73Y8z5Pv+y27FjiOE+57v8vbXRd7uU7t/uwP4lyUevus0WDYmRtGl23bQRAEQSaTCZLJZNOyYrEYBEHQssUpmUyGy4MgCCzLCiqVSlhXtVoNl5mm2fSXW7lcDkzTDMrlclOZ+vrtlMvlyH+xtttGJpNp2r/d9XXar15iSiaTTduuVquBZVkd9m5HLpfbE2Pj59Cpzn73uVgsBpKaPrNMJtP0mbc6xp2OVafj0svx3b3O5ubmnjg6ff6Ncrlc5Nj7+X6mUqmmY1atVoN4PN5UT6u4LMsKz8NusdU/v3K5HFQqlfCz7eXzKRaLTdurVqtNr1uxbbvpu9bqe9r4/Wn3mbQ7fw3D6Pl4N257d73lcrll65BhGEGxWNz38k7a7WeUz37Q52I/nzV20McJXaXTaZVKpbBPk+d5e1pi6jzP29M6NT8/H/aT8jxPjuOEy0zTbHodi8XkeV7TX231v5QGpd02GsXj8aZtdtuvqFzX3fNXab3lofE47FZvWVleXg7fW11dled5kersZ5+lndaReDzeVHZ5eVmFQqHtZ9LPser3+JZKpfC7aBhG2CrRiWVZex56qLcedIujn+9nvZW1sWWg/ld+o1b9UxpbNbrFZhiGXNeVZVmKx+NtWyK61VMsFsPYTNPUzMxM232TpIWFhT3f3VKpFP6/Vqvt+a71wvf9A70e1MVisZb9oQa1vNu2d9vdonUQ52KvnzV2cKsOXZmmqXg8rrW1NaVSKbmu2/EWlWEYTRfSarUantj15vp603CtVttzsdl9kTUMo+8LUjutttHpMd5u+xXVxsZGy18i9VuX7Zr5NzY2ZBhG08W0fizrze3d6ux1n9upx+G6bsvt9nOs+j2+8Xh8TwIS5Zd0KpWSbduybVuO42hhYSFyHL1+P+t1tvpF2It+Yuu1nmQyKdu2NTk5qXg8rsXFxa63keu/0Ou/oBuT0P0kTHWHcT2Q1LXO/S4/CPs5F/v5rLGDxAmRpNNp2batVCrV8YLv+75M02xKABr/77quVlZWNDc3p4WFhYFcWFsZ1EW7rtt+RY1pP49W97NsGHo9VvXj0s/xTafTWllZ0cWLF1UoFCK3AKbTaSUSibBfTn1bg/icB6nxs40SW5RkrFs95XI5bMWsH89uv1AXFxe1urqqeDyumZmZsJXasqy+jt+gz99G7eqtH5f9Lu9Fp/0cxHl9EJ81GI4AES0sLMh1XZVKpY7Nua1u90g7J7Dv+zp37pyWl5fDBKzx9t8gtRt7ql+d9iuq+m2UVvV4nqfZ2dmO22+1rfptjH7q7Ff9s2x3u7bXY+W67r6O78WLF+U4jpLJZOSOraZphg89NN4mGcTnvFv9s+unjsZWjEHF1qme+sMH8XhcmUxGlUpFq6urXetMJpMqlUrh2G711ox2LazdDPr8bWSaZnhbdzfLsva9vBed9jNKC9Z+zsV+P2uQOKGDxqdwDMOQZVlaXV3t+FetZVmamZlp6uMgSWtra2HLQuNJXr84dLqARPnF0NjvoVMfrH630Wm/eokpHo/LsqympvP6vnd6gqz+JEzjQHu+72ttba3vOqP+wnVdt6nsysqKUqlU21+I3Y5Vq+PSz/GVpEqlIsMwlEwme/4FnU6ntbS0tOev8V7j6HYcTdNUKpVqeiKyVV+s3X136rez6/X3e4x261RP4y/Uxri6qd/Or18z6utE/Y71cv72kii2Sz6Wl5ebzpdSqdSUdO93eTvt9rPbZ183yHOx388a4qk67FWtVoNUKhVIClKpVPgUR+NTXJubm0EulwsMwwhM0wxyuVzT03GZTCawbbtpnfr7mUwmKJfLQblcDqrVavjUR31cKEnhU071bcTj8a5PrNTrrj8Z0qq+TtuwLCt8IqleJpPJRNqvqDHtrse27aYnkKLUl8vl9jwR06nO/exz/Smg+tNEuVyu6Qm03eu1iqfVsep2XKIe3/qTRvXvYTwe7/j5N9rc3Gw7BlmrOAbx/bRtO/zu736qrl5f/fMtFotBMpkMTNPccw7tjq1cLgeWZQWGYQS5XC48Zzsdg1b11L8/9fd2n9ed5HK5pqfdGuOo6xZPt/M36vGuVqtBLpcL4vF4+N3cXb7xOLc6B/e7vJ123/1un/2gz8X9fNYn3VgQBMHhp2sAjoL6+DGVSmXYoezh+76WlpZ08eLF8LZvfZ7F+fn5kR+PJpFIKJfLDbUPFY6OUT4XTxpu1QE4kgqFgtLpdHjruP50Vy6X45cLgAND4gTgSIrH4+GQDI0cx2k7sSsA7BfDEQBoyXEc5XI5ua6rfD4/co8p129x7Z5qJspULcOWz+flum44SCW369DJqJ+LJw19nAAAACLiVh0AAEBEJE4AAAARDa2PU33ywfrAX52m8uhUtj5cvCStr6+Hjyb3ug0AAIBuhpY4zc/Ph48Me56npaWllk/IdCvrOE7YUS6fz+vcuXNh2V62sdt7772nf/zHf9Rtt92msbGx/ncUAACMtCAI9Pbbb+ujH/2o3ve+LjfjhjHqZrVaDeLxeNN7hmH0XLZSqTStV61WA0lBtVrtaRut3LhxI5DEDz/88MMPP/yckJ8bN250zQ+G0uLkOE7TxJqSFIvFwsk+eyl78eLF8P36HD6xWExra2uRt9HKbbfdJkm6ceOGxsfHI+8bAAA4Wra3t3XHHXeEv/s7GUri1G6SxlYTMnYr2zhey+rqqizLCqdfiLoNSbp586Zu3rwZvn777bclSePj4yROAACcAFG65ozUU3W9zHq9u6zv+yqVSl37MLXbxsrKiiYmJsKfO+64I3IsAADgZBhK4mQYxp6Wn1qt1vKJt6hls9msyuVy07xVUbchScvLy9ra2gp/bty40dM+AQCA428oiVO76QVmZmb6KpvP55XNZmWapnzfl+/7PW1Dkm699dbwthy35wAAQCtD6eNUn1eqzvM8zczMNI3NZBiGTNPsWrZUKikej4dJ09raWsvxmnavNwjvvfee3n333YHVBxwlt9xyi97//vcPOwwAOFRDm6vO8zzZtq3Z2Vmtr69reXk5TGrm5+c1Ozsbjs/UrqzneZqenm6q1zAMbW5udt1GN9vb25qYmNDW1lbL1qd3331X165d03vvvdf/QQCOOMMw9JGPfISxzgAcad1+5zdikt82Oh3EIAj0ox/9SD/96U+jDZYFHDNBEOidd97Rj3/8YxmGoV/6pV8adkgA0LdeEqehjRx+lP3Lv/yL3nnnHX30ox/Vhz/84WGHAwzFL/zCL0iSfvzjH+sXf/EXuW0H4ESgqaQPP/vZzyRJH/zgB4ccCTBc9T8cfvrTnw45EgA4HCRO+0C/Dpx0nAMAThpu1Q3QqfOXD3V7/9f/9KnIZV9/7VUVn31Gzz37bT34lf+kOz5+WjfeuKZ/+NEbSj7woO659+xAYio9e0nfWHlYF//0Bd15191dy3/ydmMg2x2kRCKh5eXlcFT6QqGgYrGocrnc87oAgOOFxOmEuPOuu/XV5Uf03LPf1n/4j1/T+MSEJGl7a0v3fuKU/uwvr0ZKdLpJPvCgypdf2Hc9db7vD3QIiShyuVzTeF+WZe0ZFiPqugCA44VbdSfc+MSEbv/YKf2XP39+2KHs4Xme1tbWDn279fkO60zTbDugard1AQDHCy1O0NbWpu74+Olhh7FHLpdTIpEYdhjAoTvs2/6j7PqF+4YdAtCEFqcTbHtrS48/+pDu+fRZJR94UC+/dFX3feqMSs9eUunZS/ri585K2ukf9cyTT6h8+QU98+QTevON6031vP7aq3r80YdUvvyCypdf0Ja/GS57+aWr+uLnzuqZJ5+QJJUvv6D7PnVGL790NSzjeZ6y2axKpZIKhYJ835fjONrY2FC5XFahUJDneS33wXEc5fN5lUolZbPZ8H3XdZVOp1UqlcIf13XlOI4SiYTy+byknZHnp6en5ThOuF4ikVChUJC0c6swnU43DbTqum64zXw+H8a2e936tgqFghzHUaFQ0Pz8fE+fEQBgtNDidAI99yeXdPvHTkmS5h/4fd3+8Z3/33PvWf3avb+u/+e1H+h/u/ANTRiTevON6/rGysOy/+Q74fpf/NxZFf70BY1PTGh7a0t/+OUHdfm/vhIu/9Y3Hw//f8+9Z/UbP/yd8PXcfZ/Xd//853X5vq+5uTlVKhUZhqFsNqtCoaBMJiPLsjQ9Pa1UKtVyP+oJV6VSkbQziXM+n1cqldK5c+d07dq18LbZ5OSkrly5IsuytLi4GNaRTCa1uroavo7H403LDcOQbduanJxs2mZjR/FEIqErV67sWdeyLFmWpXK5rGKxKEkqFotyXVfxeLzlPgEARhuJ0wl0/+8+GHYO3+228QkZkzFJO0nO448+pF/5xCebytz+sVP6q7/4jpIPPKi/+ovv7OlUPmFMRo5lbW1NpmmGCc7y8nLkdW3bViwWC1uLJGl9fV2GYezpazSoDtu2be9JekzTDOdI3G1qakpTU1Pha8MwVKvVBhILAODwkThhj3pr1GHY/dRcu47V7Z6ui8fjTR23U6lUeKsMAIBBo4/TCbTd0AeplcY+Sr/521/Q33zvr5uWv/7aq/rsb+3cfrvn02f1+muvNi3f3QfqtvEJ+Zs/b2V5+XtX9fb2lqSdW2Wu6zaVb2xB6vTe4uLinvcdx9HCwsKeOhv7SBmGobfeeqtpHd/3m8rvft1pm67ramFhoeu6AICjjxanE+L1114Nhxz4z09+Q/MP/P6eW2wvv3RVf/O9v9b/+8O/1e0fO6V77j37r+M/PaxnnnxCt3/slH74qqvHnroU3uq7/eOn9NhTl/T4ow/p39z7b/X29pZum5jQt775uL66/LBu//gpffa3fkffWHko7BB+z6fPqvTsJd35ibv1uU/9qmzbVjab1ezsrCSFLUjpdFq5XE6FQqHlcADxeFy5XG7PuoZhqFgsKpvNam5ubk9r1cLCgrLZbJgAWZYV3oLzfV+rq6uKxWJKJpN7xm+qbzOfz8s0Ta2vr6tYLMowDLmu27Ruva76NjzPk+u6sm1bpmlGHhsKADA6xoIgCIYdxCjqNFPyT37yE127dk2nT5/Whz70ob7q/9s3/QFEefQd1sjhc3NzyuVyfXfKnpyc1OZm55a6k2gQ5wL2YjiCn2M4AhyGTr/zd6PFCSdCPx2yC4WCqtWq0uk0o4EDACTRxwknQH0cKNu2e+p/ZFmWpqamVCqVZNv2wQUIADgyaHHCsZdKpdqOBdWJaZrKZDIHEBEA4KiixQkAACAiEicAAICISJwAAAAiInECAACIiMQJAAAgIhKnE6j07M5I36VnL6l8+QW9/NJVlZ69tGeqlFHiOI4SicShzUOXSCRUKpUOZVv7tTvWQqGgubm5vtYFAHTGcASD9PBE5KKfHMDm/vZLb/S8Tvp3f0dz931e//P/+kj43uuvvar07/6OLn/vlQFEdTAsy2o57cpByeVyR2bQy92xWpYVeTqXo7SfADAKSJxOkGeefEKSlHzgwab377zrbt3/wO8NIaLeTE1NHdq2DjNJ26/dsfYyD95R2k8AGAXcqjtBvvXNx/ckTXWfve9/ONRYAAA4ikicTog337iut7e2dPvHTrVcfs+9Z3X7x3eWvf7aq3rmySdUvvyCnnnyibDv08svXdUXP3dWpWcvhf2i/vDLD+rNN66H6/zx+a+Gdb780lXd96kz+uPzX1X58gsqPXtJf3z+q9re2gqXT09Pq1AoqFAoKJFISNrpz5TP51UqlZTNZpvi9H1fjuOoUChofn6+aVmr9Rr7RrVaz/f9cFl9Pdd19/Sncl03rDufz8vzvEj179Zu31zXVTqdVqlUCn9c1w3rz+fzkqRSqaTp6Wk5jhOu1xir7/tKp9Oanp7uGvvudXvdFwA4ibhVhyZvvnFd31h5WPaffCd874ufO6vCn76ge+49q1976df18ktX9dhTlyRJ5csvqPyXL+j3v/IHuvOuu3Xfp85oe2tL4xMTuufes7Lu+3cyJmOau+/zYfk/+sqDsv/kOzvLLUuVSkW2bSsWi8nzPGWzWVUqFUk7k/Pm8/lw6pP19fXw/8ViUa7rKh6Pd1zPsiyVy2UVi8U96xUKBcXj8fCWVa1WUzwe1+LiYrj/9brL5XL4XiKR0JUrV8K+V+3qb9QuxlQqpXPnzunatWsyDEOSNDk5GdbfGEsymdTq6mr4eneshmHItm1NTk52jX33ur3sCwCcVCROJ0S9NenNH13XnXfdvWf5m29c17gxqeKzz+hXPtHcdf32j53SX/3Fd5R84EEZkzEZk7Fw2W3jE02tWLdNTGjb39T4xERTmbq5+z6vP/zyg2FyZRhG2HcpmUwqm80qFouFLSrSTrJUNzs7G/7fMAzVajVJChOvVutNTU019Y9qXC+ZTCqRSMg0TS0uLrac08627T2Jg2maWltbUyqV6lj/7npaxWgYhizLCpMmSQPrsN0t9t2i7gsAnFQkTifIg1/5Tyo9eyls/Wn0+g9fbfl+FI2JUT92d2RubAGSFHmC3n7Wi8Vi2tzclOu6Wl1d1fz8fFPrzKC1ivGwhlgAAOwffZxOkPoQBKVnLzW9X+9zJEm/+dtf0N9876+blr/+2qv67G/9Ttt6397earts9/Ly5Z1bfo0tUo0tGouLi00tMpL2vG6l3/VWVlbkeZ7i8bhyuVxTq4/v+23rdl1XCwsLXeuPEuPCwoJc1216v94PSdpp9Xnrrbea1qnHtjvWKNvcHXu7dQEAe9HidMLYf/IdPfPkE3r80Yd0x8dPa8LY6QtTb22686679dXlh/XMk0/o9o+d0g9fdfXYU5c0PjGh1197Vd/9852+T/d8+qze/NFOp3BJuvMTd+vl713Vmz+6rv/85Df01eVHwuToxhvX9PJLV/X29pZ++Kqrrz95SdJO53DHceS6rkzTlGVZYQKTzWbD23KWZYUtQvXXnufJdV3Zti3TNPteb2pqSo7jKBaLqVaraXFxMVwnFospmUyGdefzeZmmqfX1dRWLRRmG0bX+xta0djEahqFisahsNqu5uTn5vt+UwC0sLCibzYYJkGVZ4S043/ebYm3Vetct9vq69bqi7AsAnFRjQRAEww5iFG1vb2tiYkJbW1saHx9vWvaTn/xE165d0+nTp/WhD32or/r/9k1/AFGOvnqC1m4YhE/ebhxqPEfF3Nyccrlc352yJycntbm5OeCo9hrEuYC9Tp2/POwQRsb1C/cNOwScAJ1+5+9GixMwgvrpkF0oFFStVpVOpxkNHAAOCH2ccGBefumq/uZ7f63y5RfCW3rorlAoyPM82bbdU/8jy7I0NTWlUqkk27YPLkAAOMFoccKBuefes/qze68OO4wjJ5VKRX6SsJFpmuEYVwCAg0GLEwAAQEQkTgAAABGROAEAAERE4gQAABARiRMAAEBEJE4nxMsvXdUfn/+q7r5jUo8/+pBefulqz3WUnr2kT3/i1KEMLVAoFDQ5OblnKpKDlkgkVCqVmuKYm5vra10AwPHDcAQDdNe37zrU7T177qXIZe+596xu/9gpPffst/Uf/uPXmuaKiyr5wIMqX36h5/X6kUqlVCwWD2VbjXK5XNPgkZZlRZ5qZPe6AIDjh8TpBBn/13np0J5lWU2ve5mjbfe6AIDjh1t1AAAAEZE4nWAvv3RVX/zcWZWevaSXX7qq0rOX9IdffrCpzOuvvarHH31I5csvqHz5BW35m3vqeObJJ1S+/IIef/QhSVL58gv64ufO6r5PnZEkPfPkE7rvU2f0zJNP7Fknm82Gdbmuq2w2q1KppFKp1HW+NsdxlM/nVSqV9tSTTqfDekqlklzXleM4SiQSyufzkqRSqaTp6Wk5jhOul0gkVCgUJEm+7yudTmt6erqp7vo28/m8PM9ruW59W4VCQY7jqFAoaH5+vssnAgAYddyqO8Huufesfu2lX9fLL13VY09dkqRwXrk777pb21tb+sMvP6jL//WVcJ1vffPx8P9vvnFd31h5WH/2l1clSVv+pp558gn9/lf+QL/26bNK/fvPa3trS7eNT+hP//Kqxicm9qzz8l/eVD6fVyqV0vz8vKrValj/yspK29g9z1M2m1WlUpG0MyluvZ5z587p2rVrMgxDkjQ5OakrV67IsiwtLi6GdSSTSa2uroav4/F403LDMGTbtiYnJ5u2WS6XwzKJREJXrlzZs65lWbIsS+VyOeyrVSwW5bqu4vF42/0CAIw2EqcTzpiMyZiMha9vG58IW5X+6i++ozvvurup/ERDP6nis89owphsekLv/351J8kan5jQQ7kn9O8/d1aPPXUp7Izeap319XUZhrEnoYjFYmrHtm3FYrGwtaixHsuywqRJ0sA6bNu2vSdG0zS1trbWcm65qakpTU1Nha8Nw+jaigYAGG0kTtiXX/nEJ3XPvWfD18kHHgz/f9v4hO686279lz9/vikBa1znk7cbSqVS4S2uXsTj8aYO2f3WAwBAVPRxOkG2d/VP6uaeT5/dM2bTm29cD///m7/9Bf3N9/66aXm9JWl7a0svf2/nFuA//OiNcBiDVus4jiPLsvaM2VTvP9TK4uJiU2tTvZ6FhYWO9RiGobfeeqtpHd/3m8rvft1pm67ramFhoeu6AIDjYWgtTp7nqVQqyTRNeZ6nVCrVdHull7Ku62ppaSns79L4vrTTMuF5nnzfP7H9S15+6ar+6vL/KUn61jf/d/3mb39BkvTdP/+OpJ0k6c0fXdfrr72q0rOXdPvHTun2j5/SY09d0uOPPqR/c++/1dvbW7ptYkLf+ubj+uryw7rzrrv11eWH9fijD+kTd+8c11/79E5n82f+jyeU/B8flCT993ef0SPZP9CbP7qu3//KHzSt8/9N/XfhrbVisahsNqu5uTn5vi/DMLSysqJcLrdnSIB4PK5cLqdsNqvZ2VlJ6lhP3cLCgrLZbJgAWZYV3oLzfV+rq6uKxWJKJpNtt5nP52WaptbX11UsFmUYhlzXbVq3Xld9G57nyXVd2bbd0xAHAIDRMhYEQTCMDScSiTDRqXe6bTfgYaey9YQqkUho966k0+nw1o1lWeEvuSi2t7c1MTGhra0tjY+PNy37yU9+omvXrun06dP60Ic+FL4/ygNgjqpP3m4c+Dbm5uaUy+X6TponJye1udlba91J0e5cwP6cOn952CGMjOsX7ht2CDgBOv3O320oLU67b8GYprnnFkjUsslksu12EolE+AsvasK0H6/93muRy/7tm/7BBYIm/XTILhQKqlarSqfTjAYOAAgNpY+T4zh7npiKxWIt5yXrpWwrhmEcStKE0VQoFOR5nmzb7qn/kWVZmpqaUqlUkm3bBxcgAOBIGUqLU7tfYK1aBnop22rd+qSr6+vrSqfTbfuW3Lx5Uzdv3gxfb29vd60foy+VSrUcKqAb0zSVyWQOICIAwFE2UsMR9NIiEKVsYydy0zQ1NzfXNMBio5WVFT3yyCORtw8AAE6eodyqazUQYK1Wa3lLrZeyuzX2j6o/kdfuEffl5WVtbW2FPzdu3Oi+IwAA4EQZSuLUbhb5Vp1weynbyHVdnTt3bs/77UajvvXWWzU+Pt70082QHkgERgbnAICTZiiJ0+5+Rp7naWZmJmxFcl03bBnqVrZR4+070zSVy+XC147jKJlMDqSj+Pvf/35J0rvvvrvvuoCj7J133pEk3XLLLUOOBAAOx9D6ONUHKZydnQ0HEqxbWVnR7Oxs2Dm3U1nHccJJV+vr1ROkmZkZ5fN5GYaharXadpyoXn3gAx/Qhz/8Yf3TP/2TbrnlFr3vfb3nn8G/kHRJO+MA4egJgkDvvPOOfvzjH8swjPCPCQA47oY2AOao6zYY1rvvvqtr167pvffe66v+Nzf/235DPBZun/yFYYeAfTAMQx/5yEc0NjY27FCOFQbA/DkGwMRhGPkBMI+DD37wg/rlX/7lvm/Xfen5q4MN6Ii68r+cHXYI6NMtt9xCSxOAE4fEaR/e97739T3NxD+8/bMBR3M0MU0HAOAoGUrncAAAgKOIxAkAACAiEicAAICISJwAAAAiInECAACIiMQJAAAgIhInAACAiEicAAAAIiJxAgAAiIjECQAAICISJwAAgIh6nqvu+vXrKhaLKpfL2tzcDN+PxWKam5tTMpnUqVOnBhkjAADASOgpcTp//rzGxsa0sLCgP/qjP9qz/JVXXtFTTz2lsbExraysDCxIAACAURA5cfr617+u5eVlTUxMtC1z5swZnTlzRltbW1peXiZ5AgAAx0rkxKlVC1M7ExMTJE0AAODY6btz+Pnz5/X0009ra2tLn/3sZ7W4uKjnn39+kLEBAACMlL4Tp9nZWX3pS19SoVBQIpHQ6uqq3nrrrUHGBgAAMFL6TpwmJyclSWtra1pcXJS082QdAADAcdXzcAR11WpVQRCoWq3qV3/1V3Xt2rWm4QkAAACOm75bnBYWFuS6riqVira2tmTbtnzfH2BoAAAAoyVSi9PW1pY2NzebBracmJhoetLuwoULTetsb29LksbHxwcQJgAAwPBFanGamJhQuVyO/NTcc889p7W1NZImAABwrETu47S0tKRXXnlFCwsLmp6e1uzsrEzTlGEY8n1fnufp+9//vq5du6Z0Oq3777//IOMGAAA4dD11Dj9z5ozW1ta0tbWltbU1ff/735fv+zIMQ9PT00qn0zp9+vRBxQoAADBUfT1VNzExoaWlpUHHAgAAMNL6fqoOAADgpCFxAgAAiIjECQAAICISJwAAgIj2lTh9/etfD+epu3LlSjjoJQAAwHHUd+J0/vx5GYYhy7IkSefOnZPjOAMLDAAAYNT0nTjNzs5qaWlJpmkOMh4AAICR1XfidO3aNUnS2NhY+N76+vr+IwIAABhRfQ2AKe2MIj4zM6OpqSmVy2U5jqNcLjfI2AAAAEZK3y1O586dU7FY1JkzZxQEgQqFgj7zmc8MMjYAAICR0neLkySdPn1aFy5cCF9vb29rfHx830EBAACMon0NR7C9va3r16+HP9lsdlBxAQAAjJy+W5y+/OUvy3EcGYYRvnft2jU9+eSTg4gLAABg5PSdOE1PT+upp55qeu/ixYv7DggAAGBU9X2rrj7wZaO5ubl9BQMAADDK+m5xmpyc1GOPPSbTNGUYhnzf1+rqqlZXVwcZHwAAwMjoO3HKZDLyfb+pj9Mrr7wyiJgAAABGUt+J09zcnJaWlpree+655/YdEAAAwKjqu4/T9PR0pPcAAACOi75bnKrVqmzb1uzsrCQpCAKtra0xXx0AADi2+m5xsm1bp0+fVhAECoJAksJ/AQAAjqO+W5xyuZzOnTvX9F6rIQoAAACOi74Tp91Jk7QzREFUnuepVCrJNE15nqdUKtX0hF4vZV3X1dLSkiqVSt/bAAAA6CZy4vT888/LsqxwEt+nn366abnv+yqXy/rud78bqb75+fkw0fE8T0tLSyoWiz2XrSdGruvuaxsAAADdRO7j9Oijj2pjYyN8/dRTT2lzczP8CYJAb731VqS6PM9rem2aphzH6atsMplUPB7f1zYAAACiiNzi1Jg0STvz0p05c6bpvah9nBzHUSwWa3ovFovJdd09SVAvZQexHgAAQDv7mnKlbmtrS47jKJFIRFrX9/2W79dqtX2V3c96N2/e1M2bN8PX29vbHesHAAAnT9/DETTe9pqYmND999+/71th7ZKd/ZaNst7KyoomJibCnzvuuKOv+gEAwPHVU4vT1taW1tbWNDY2pnK5vGd5pVLRl770pa71GIaxp+WnVqu1fOKtl7L7WW95eVlf+9rXwtfb29skTwAAoElPLU4TExOyLEsbGxuqVqv6+7//+6afTCYTqZ52faFmZmb2VXY/6916660aHx9v+gEAAGjUcx+n06dP66mnntKVK1dajuUUhWmaTa89z9PMzEzYGuS6rgzDkGmaXcs28n0/fL+X9QAAAKIY6ACYvSgWi8pms5qdndX6+nrT+EorKyuanZ0NW7A6lXUcJ7xtWF8vmUx2XQ8AAKBXYwETzLW0vb2tiYkJbW1tHchtu1PnLw+8zqPo+oX7hh0CMHK4Pvwc1wgchl5+5/f9VB0AAMBJQ+IEAAAQ0UATp+vXrw+yOgAAgJHSd+dwSfrBD37QNFaSbdtaXV3dd1AAAACjqO/EaWFhoenxf0l65ZVXBhETAADASOo7cZqbm9PS0lLTe88999y+AwIAABhVffdxmp6ejvQeAADAcdF3i1O1WpVt25qdnZUkBUGgtbU1ra+vDyw4AACAUdJ3i5Nt2zp9+rSCIFB9DE3G0gQAAMdZ3y1OuVxuz7Qr7SbWBQAAOA76bnHanTS9+OKLunbt2r4DAgAAGFX7Gsfp+eefl+d5knZu021sbOgLX/jCQAIDAAAYNX0nTufPn5fv+6rVajJNU77vK51ODzI2AACAkdJ34jQ9Pa2lpSVdu3ZNY2NjOnXqlF588cVBxoaT4OGJYUcwGh7eGnYEAIAI+u7jZJqm3njjDZ0+fVqlUmmQMQEAAIykvlucfN+XaZra3NzUP//zP+s3fuM3ZBiGPvOZzwwyPgAAgJHRd+J0//3362c/+5kk6cKFC7py5YpmZmYGFhgAAMCo2ddTdV//+te1sbGh1dVVSdLY2NhAggIAQBL9IOvoBzky+u7jdP78eRmGEQ56ee7cOTmOM7DAAAAARk3fidPs7KyWlpZkmuYg4wEAABhZfSdO9VHCG2/PMcEvAAA4zvru43TmzBnNzMxoampK5XJZjuMol8sNMjYAAICRsq+56orFos6cOaMgCFQoFBiKAAAAHGv7eqru9OnTunDhwqBiAQAAGGmRW5wee+yxrmWefvrpfQUDAAAwyiK3OD366KMql8sdy2xsbOhLX/rSvoMCAAAYRZETp3PnzmlqakqJRKJtmSAIBhIUAADAKIqcOBWLRW1tbWljY0PSzjhO4+PjTWVisdhgowMAABghPXUOn5iY0Llz5yRJr7zyimq1msbGxsKn6e6///7BRwgAADAi9jWOU92LL76ocrmsubk5hiQAAADHVt/jOEnSD37wA33lK19RMplUuVyW53mDigsAAGDk9NzidP36dRWLRdm2rbGxMd1///2qVCo6ffr0QcQHAAAwMiK3OD399NOanZ1VIpGQ53kqFov6u7/7O124cCFMmp5//vkDCxQAAGDYIrc4pVIpJZNJnT9/XoZhaHNzUy+++GK4fHNzUxcuXNAXvvCFAwkUAABg2HpKnPL5fMexmlZXVwcSFHDS3PXtu4Ydwkh47fdeG3YIANBR5MQpnU7vGbdpt+Xl5X0HBAAAMKoi93FqHH5gP2UAAACOqn0NRwAAAHCSkDgBAABEROIEAAAQEYkTAABARCROAAAAEZE4AQAARETiBAAAEBGJEwAAQEQkTgAAABGROAEAAERE4gQAABARiRMAAEBEJE4AAAARfWBYG/Y8T6VSSaZpyvM8pVIpGYbRc9lOy1zXlSTF43F5niff9xWPxw9h7wAAwHE0tMRpfn5elUpF0k7ys7S0pGKx2HPZTsts21ahUJAkWZbVtn4AAIAohpI4eZ7X9No0TTmO03PZbvUkEgltbm5KUtvWLAAAgKiG0sfJcRzFYrGm92KxWHhrLWrZKPUYhkHSBAAABmIoLU6+77d8v1ar9VS2Wz2+76tUKkmS1tfXlU6nZZpmy3Vu3rypmzdvhq+3t7fbRA8AAE6qofVxaqVdItRr2fqyxo7ipmlqbm5O1Wq15TorKyt65JFHIm8fAACcPEO5VWcYxp7WpVqt1vKWWqey3epp7ANVf+pud7+ouuXlZW1tbYU/N27c6GPPAADAcTaUxMmyrJbvz8zM9FS20zLXdXXu3Lk9y3b3iaq79dZbNT4+3vQDAADQaCi36nb3M/I8TzMzM03jLxmGIdM0O5bd3ULVuMw0TeVyuXCZ4zhKJpN0FAcAAH0bWh+nYrGobDar2dlZra+vN42xtLKyotnZWWUyma5l2y0zDEMzMzPK5/MyDEPVapVxnAAAwL6MBUEQDDuIUbS9va2JiQltbW0dyG27U+cvD7zOo+j6h3532CGMhLtOf2zYIYyE137vtWGHMBK4Pvwc14h/9fDWsCM41nr5nc9cdQAAABGROAEAAERE4gQAABARiRMAAEBEJE4AAAARkTgBAABEROIEAAAQEYkTAABARCROAAAAEZE4AQAARETiBAAAENHQJvkFAADR3PXtu4YdwkgYhfksaXECAACIiMQJAAAgIhInAACAiEicAAAAIiJxAgAAiIjECQAAICISJwAAgIhInAAAACIicQIAAIiIxAkAACAiEicAAICISJwAAAAiInECAACIiMQJAAAgIhInAACAiEicAAAAIiJxAgAAiIjECQAAICISJwAAgIhInAAAACIicQIAAIiIxAkAACAiEicAAICISJwAAAAiInECAACIiMQJAAAgIhInAACAiEicAAAAIiJxAgAAiIjECQAAICISJwAAgIhInAAAACIicQIAAIiIxAkAACAiEicAAICISJwAAAAiInECAACIiMQJAAAgog8Ma8Oe56lUKsk0TXmep1QqJcMwei7b7zIAAIBeDS1xmp+fV6VSkbST4CwtLalYLPZctt9lAAAAvRrKrTrP85pem6Ypx3F6LtvvMgAAgH4MJXFyHEexWKzpvVgsJtd1eyrb7zIAAIB+DOVWne/7Ld+v1Wo9le13WSs3b97UzZs3w9dbW1uSpO3t7Zbl9+u9m+8cSL1HzfZYMOwQRsLP/tvPhh3CSDio8+2o4frwc1wjdnCN2HFQ14h6vUHQ/fs2tD5OrbRLdnot28+ylZUVPfLII3vev+OOOyLHhN5NDDuAkfH6sAMYCRNf4RuBZnwj6rhGSAd/jXj77bc1MdF5G0NJnAzD2NPyU6vVWj7x1qlsv8taWV5e1te+9rXw9XvvvadaraapqSmNjY31sHc4Sra3t3XHHXfoxo0bGh8fH3Y4AEYM14iTIQgCvf322/roRz/atexQEifLsmTb9p73Z2ZmeiprmmZfy1q59dZbdeuttza9x9AFJ8f4+DgXRQBtcY04/rq1NNUNJXEyTbPpted5mpmZCRMV13VlGIZM0+xYdndiE3UZAABAP4bWx6lYLCqbzWp2dlbr6+tN4yutrKxodnZWmUyma9l+lwEAAPRqLIjShRw4pm7evKmVlRUtLy/vuVULAFwjsBuJEwAAQERM8gsAABARiRMAAEBEJE6IpFAoaG5uLlLZRCKhUql0wBENh+u6SqfTGhsbUzabVaFQUDab1fz8PHMh4kQ47teCfD6vQqGgUqmkfD4/sPi5dhwf9HFCJJ7nyfM8WZbVtazjOPse+sH3/UMdOqKX7fm+r8nJSW1ubobr1N+rVCqKx+MHF2gPDvsY4mQ47GvBYUokErp48WLTOZzNZiVJuVxu3/UfhWsH143uaHFCJKZpRrpQSjuDlu7nxPM8T2tra32vP4zt1ccdW11dHVBU+3PYxxAnx2FeCw5TNpuVaZp7kpdcLqdCoXBgE8SP0rWD60Y0JE4YOYP4y24Y26vVapqenh5IXft12McQOOry+XzbW5CWZWllZeXAtj0q1w6uG9GQOKEr3/eVTqebTmzXdcP7//l8Xp7nhe8nEgkVCgVJO0319deO46hQKGh+fr7tthzH0cbGhsrlsgqFgjzPU6lU0uTkpNLptFzX1dzcnObm5uT7vhzH0eTkZNgPwXGcMK56E3unGNptb3p6Oizj+76mp6fD+lodn2w2K8uylEqlOsYxPT2tQqGgQqGgRCIhaeevvGw2q1KppEKhEE5E3eu+dDqGwCAc5rWgvs7uc6Dd+ZlOp9uu023b9ZjbTcllmmbY4hT1HNwdQ7vjOSrXDq4bPQiAiAzDCIIgCKrVamBZVtOyeDwebG5uBkEQBLlcLrBtO1yWyWSCZDIZvrYsK6hUKm23k8lkmtavv5fL5YIgCIJyudxUX71stVoN4vF40/v1dTrF0Gp7tm0HqVRqzzaCIAg2NzcDSUEulwuKxWJQLBaDarUaLu8URyqVCustFovB5uZmYJpmeOzq+9nvvnQ6hsCgHMa1oNM50O787Pe8qVargaSgXC63jCWTyQSmaUbaj04xjPq1g+tGNEObcgVHl23be/oBmKaptbW18K+mRlNTU5qamgpfG4ahWq3W0zbT6bTm5+eVyWTk+748z5Pv+9rY2NDCwkIYVywWa3pCZX19va8YUqmUJicnZdt2OM9hqzKt+m90isMwjDCOZDKpQqEg0zTDepaXlyXtTDs0qH0BDspBXgs6nUeN56fv++Gcpv1eA+rrt2tlcV23aT871dUphjquHUcbiRNGWv0Jj/qFrd5cvri4qLW1NcVisaYLUDweb+q42uriHWV79XULhYJisZiSyWRP9XSKo3Hi6t1PsAxyX9ptAzgqOp0DCwsL4W3Axvf7PW8ymYyKxWLL8hsbGz3Ndbqfc3dUrh1cN9qjjxN6tri4uGfcEdd1w5YfSeG99v1q3E46ndbS0pKSyaRSqZRs2+4aV6/jo+zeXqfOku3+UusWR+N6yWRyz9M6juMMZF/2ux7QzUFeC7qdA9lsVrlcTrFYLPI6neRyOdVqtT3l0+m0FhYWIj9JGCWGo3Dt4LrRwbDvFeLoqPdrCIKdfkb1+/SZTCa8T16pVIJ4PB5YlhVUq9XwdTweDyqVSlAsFgPTNINkMtl0b79RtVoNUqlUYNt2U5nNzc2mfg2N9+ob48pkMmH/gc3Nza4xtNteq21UKpUgk8kEkoJUKtW2f0arOMrlcnhsGvtStCrb7750O4bAIBzWtaDduVGXTCb3vLef8yYIft7Pp1gshvvVKEpd7WIY9WsH141oGAATkdUHbjtJSqVSz7fpgOPuJF4LgDr6OKGjQqGgarWqdDrd9lHd46beET0Wi43ESL7AKDiJ1wKgFVqc0FF9XCNp5556Y+fE48pxnLBjZNR+DcBxdxKvBUArdA5HR6ZpKpPJKJPJHNqFslAoaHJy8sCmOGilcQLOcrmsWq2mcrnMBJzAvzqoa8Egz/dudXVazuS+iGy4XayA1roNknkQ6oPTNXY2rb932LG0s7sjLHAcDPJ871ZXq+X1DtONMplMkMlkBhLTqF9buK70hhYnoAMm4ASOt5M+uS/Xld6ROAFdMAEncHyd9Ml9ua70jqfqMDClUkmGYcjzPFWr1fCEdBxH2WxW6XRapmnK8zyVy+WmkXhd19Xq6qpmZ2cltR8grrG84zhhffXOqlG25TiOXNeVaZpaX19ve+HwfV8rKyvhBJyt1nMcR+l0OpxI07ZtVSoVeZ4n27Y1OzurWq2mhYUFGYbRto4oMW9sbITHxbIsOudiqEbhfI9SV6flUSb3bZxA/LhdW7iu9GnY9wpxfEgKB01LpVJNA8d1mlyyPlllo1Z9Duq6TSx6EBNwDnvyzXoZJuDEqBiF871bXd2Wj8LkvsO+tnBd6R0tThiYzc3N8C/QWq3WNGFmp8kl19bW9vQvaJxGYbduE4sexAScTL4JNBuF811Sx7q6bWsUJvfl2nL0kDhhYFZWVjQ1NTXyY7z0OwHmqEy+2WobwGE7Kud7N6Mwue+oXFu4rkRD53AMRP3+en2Ml/rEnlHGKbEsa8+TK+3+ApSiTSzay7pRJuAcpck397MeMAijcr53qyvKtoY9ue8oXVu4rkTDyOEYCN/3tbS0pHQ6Hb5n27YWFxdlmqaWlpYkSRcvXpTnecpms4rH48rlcjJNM+zAOTc3F3acNE0zXL7b7o6Qi4uLisfjcl2367Ycx1G5XA47i1qWJc/ztLq6qnw+r1QqpXQ6vaeJv9V6GxsbymazisViymaz4UW2Vdl6B85W2+4Ws7Rzwc/lckokEnTixFCNyvkuqWtdUbeVzWY1PT2tWCwmz/NkmmbTPJXH9drCdaV3JE4AAAARcasOAAAgIhInAACAiEicAAAAIiJxAgAAiIjECQAAICISJwAAgIhInAAAACIicQIAAIiIueoAHDv5fF6GYbQdBRoA+sXI4QCOlUQioVwu1zTHWDablbQzLxkA7AeJE4BjI5vNyvO8ljPaT05O6sqVK3vmCQOAXtDHCcCxkc/nNTc313KZZVlaWVk55IgAHDckTgCOBc/zJEkzMzMtl5umKdd1Je3MMJ9IJJTP5yVJpVJJ09PTchwnLO84jvL5vEqlUnirz3EcTU9Pq1AoqFAoKJFIhOvOz89Lknzf1/T0dLgOgOOFzuEAToSpqSnVajVJO61Pi4uL4bJkMqnV1dXwted5ymazqlQqkqRaraZ8Pq9MJiPLslSpVGTbtmKxmJLJpGq1WljWMAxls1mlUqlD3DsAh4UWJwDHgmmakn7e8rRbtVpt2xq1Wz0pchwnbIVaX1+XtJMYTU9PS1L4pF4qldLa2lq4/ajbAXD00OIE4NhIpVIql8thQlMfikDauc3Wy1N18Xi86cm8xhakep27t10oFMJWKADHEy1OAI4N27a1sbEh13VVKpUUi8VUKpWUz+dlWVZTQmMYht56663wteM48n1fkrS4uNjU36m+vK5+y69ROp1muAPgBGA4AgDHTj6fV7VaVSKRULlc1uzsrDKZjHzfl2EYknY6cWez2bBTt23b8n1ftm3LNE05jhOuK+30i9rY2FA2m1UsFlM2m21qkZKk+fn5lkMhADg+SJwAHGuu68pxHGUymbCD90EplUrcpgOOORInAMfe5OSkUqmUXNdVuVweaN3pdFrz8/OKxWIyDKNl/ycAxwedwwEce/WO2wdxG21+fj7sG8Wo5MDxR4sTAABARDxVBwAAEBGJEwAAQEQkTgAAABGROAEAAERE4gQAABARiRMAAEBEJE4AAAARkTgBAABEROIEAAAQ0f8PQiR2lfPMvecAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFnCAYAAABQEsaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDE0lEQVR4nO3dX4wj130v+G9H9rZirJrVbFzDNmbkmWIQRFjLyhRJWIEtZKIuJoGVrNcadrevdYHIuG7SwgUS72zCGu7DSsqDOKSElfXglaravho/jJ1uluQVnAmuzRphDPkCsrtZsizvahGENSNL+QMhQxYpQFGvV6596FtlFv9WsdlNNvv7ARozrDr/WGRV//rUqXPmHMdxQERERERD/cakG0BERER0VDBwIiIiIgqIgRMRERFRQAyciIiIiAJi4EREREQUEAMnIiIiooAYOBEREREFxMCJiIiIKCAGTjSQZVlQFAWLi4uIxWID08ZiMSwuLkJRFNi2fTgNpKlhmiZSqdTQ7wlRWO53Kx6PT7opRwLPxYPFwIkGEkURxWIR+Xwe9Xodpmn2TGcYBiRJwurqKorFIgRBONyGdtA0rWuboihYWVmZQGv29GrTLJEkCYqihM53WMdl0p//NJi2Y9CvPZ3fCfe7NeofZLZtQ9M0pFKpnvtLpRI0TYOmaSiVSmPf389BffdHPRcpGAZOFIggCFhdXYWqqj33T1sPU6VS6dqWSqWwtrY2gdbs6dWmWRONRkPnOazjMunPfxpM2zHo155e34lRvlvAXu/L1tYWbNtGvV7v2u8GOplMBplMBpIkIZvNjm3/IAf53R/1eFEADlEAqqo61WrVEQSha1+j0XCq1aqTTqedTCYzgdb5qarqSJI06Wb4TGObDkK1WnVEUQyc/rgcFwqu33ci7HerU7lc7lmuIAhOo9HwbWv/1bjf/f0c9Hd/v8eL+vvAhOM2OkIkSUI0GoWu60in0972nZ0dyLLcN1+pVIIoirAsC6Ioennd7nNRFFGpVJDNZiFJEoC9W39uV/PGxgYsy4JlWbh58yaKxWLfugzDQKVSgWVZ3l+CuVwOpmlCURRYloVarda3jnq9jmq1ClVVoWkaotEoNjc3kc/nvbYNe19B29RZDrA3pqx93yCd3fyZTGZomaO+ZzdfNBr1bq3Ytj308+hsT/uxCnpchh1fl23bUBQF8Xgc1WoVsVgMkiRBVVXk8/muz1/XdRQKBViWhXK5DFmWYVkWUqkURFGEqqoQRbFv20f5fra/N2CvJzcajUIURdTrdciy3PO7qigKNE1DsVjs+Tn3apsoishms16vxtraWle5w461e37atg3LsiAIgq/+drque8dEVVVYluXdti+Xy4hGo1heXoZt2yiXy9776jwnB30ngL0epLDHux/LsmDbds+hBYZheO991P39rothrlOdn/1BnItAuM/62Jt05EZHg6qqjuM4Ti6Xc9LptG9fuVx2HMfp2eOUTqe9/Y7jOLIsO9Vq1SurVqt5+0RR9P3lVqlUHFEUnUql4kvj5u+nUqkE/ou1Xx25XM73/jrLG/S+wrQpnU776q7Vao4sywPe3Z5isdjVxvbPYVCZo77ncrnsAPB9ZrlczveZ9zrGg47VoOMS5vh25mk0Gl3tGPT5tysWi4HbPsr3M5PJ+I5ZrVZzJEnyldOrXbIse+fhsLa5n1+lUnGq1ar32Yb5fMrlsq++Wq3me92Lqqq+71qv72n796ffZ9Lv/BUEIfTxbq+7s9xKpdKzd0gQBKdcLu97/yD93meQz37c5+Ion/VxxjFOFEo2m4Wu696YJsuyunpiXJZldfVOrayseOOkLMuCYRjePlEUfa+j0Sgsy/L91eb+pTQu/epoJ0mSr85h7yso0zS7/ip1ex7aj0Mnt2cln8972zY3N2FZVqAyR3nPwF7viCRJvrT5fB6apvX9TEY5VqMeX13Xve+iIAher8Qgsix3PfTg9h4Ma8co30+3l7W9Z8D9K79dr/Ep7b0aw9omCAJM04Qsy5AkqW9PxLByyuWy1zZRFJFIJPq+NwBYXV3t+u7quu79v16vd33XwrBt+0CvB65oNNpzPNS49g+ru1Nnj9ZBnIthP+vjjLfqKBRRFCFJEra2tpDJZGCa5sBbVIIg+C6ktVrNO7Hd7nq3a7her3ddbDovsoIgjHxB6qdXHYMe4x32voLa2dnp+UvEvXXZr5t/Z2cHgiD4LqbusXS724eVGfY99+O2wzTNnvWOcqxGPb6SJHUFIEF+SWcyGaiqClVVYRgGVldXA7cj7PfTLbPXL8IwRmlb2HLS6TRUVcXi4iIkScLa2trQ28juL3T3F3R7ELqfgMl1GNcDAEPL3O/+g7Cfc3GUz/o4Y+BEoWWzWaiqikwmM/CCb9s2RFH0BQDt/zdNE4VCAalUCqurq2O5sPYyrou2a9j7Ctqm/TxaPcq+SQh7rNzjMsrxzWazKBQK2NjYgKZpgXsAs9ks4vG4Ny7HrWscn/M4tX+2QdoWJBgbVk6lUvF6Md3jOewX6traGjY3NyFJEhKJhNdLLcvySMdv3Odvu37lusdlv/vDGPQ+x3FeH8RnfVzxVh2Ftrq6CtM0oev6wO7cXrd7gL0T2LZtLC8vI5/PewFY++2/ceo399SoBr2voNzbKL3KsSwLyWRyYP296nJvY4xS5qjcz7Lf7dqwx8o0zX0d342NDRiGgXQ6HXhgqyiK3kMP7bdJxvE5d3I/u1HKaO/FGFfbBpXjPnwgSRJyuRyq1So2NzeHlplOp6Hruje3m9ub0a+HdZhxn7/tRFH0but2kmV53/vDGPQ+g/Rg7edcHPWzPq4YOFEg7U/hCIIAWZaxubk58K9aWZaRSCR8YxwAYGtry+tZaD/J3YvDoAtIkF8M7eMeBo3BGrWOQe8rTJskSYIsy76uc/e9D3qCzH0Spn2iPdu2sbW1NXKZQX/hmqbpS1soFJDJZPr+Qhx2rHodl1GOLwBUq1UIgoB0Oh36F3Q2m8X6+nrXX+Nh2zHsOIqiiEwm43sistdYrM6xO+7tbLf8UY9Rp0HltP9CbW/XMO7tfPea4eYJ+h0Lc/6GCRT7BR/5fN53vui67gu697u/n37vc9hn7xrnuTjqZ31sTXp0Ok23Wq3mZDIZB4CTyWS8pzjan+JqNBpOsVh0BEFwRFF0isWi7+m4XC7nqKrqy+Nuz+VyTqVScSqVilOr1bynPtx5oQB4Tzm5dUiSNPSJFbds98mQXuUNqkOWZe+JJDdNLpcL9L6CtqmzHFVVfU8gBSmvWCx2PREzqMz9vGf3KSD3aaJiseh7Aq0zX6/29DpWw45L0OPrPmnkfg8lSRr4+bdrNBp95yDr1Y5xfD9VVfW++51P1bnluZ9vuVx20um0I4pi1znU2bZKpeLIsuwIguAUi0XvnB10DHqV435/3G2d5/UgxWLR97Rbeztcw9oz7PwNerxrtZpTLBYdSZK872Zn+vbj3Osc3O/+fvp994d99uM+F/fzWR9Hc47jOIcfrhHRUePOH1OtVifdlC62bWN9fR0bGxvebV93ncWVlZWpn48mHo+jWCxOdAwVHR3TfC4eB7xVR0RHnqZpyGaz3q1j9+muYrHIXy5ENFYMnIjoyJMkyZuSoZ1hGH0XdiUiGgWnIyCioQzDQLFYhGmaKJVKU/eYsnuLq3OpmSBLtUxaqVSCaZreJJW8XUeDTPu5eBxwjBMRERFRQLxVR0RERBQQAyciIiKigCY2xsldcNCd7GvQ8h2D0rpTxAPA9va29zjysHxh6u/0q1/9Cv/0T/+E2267DXNzc/s4CkRERDRpjuPgnXfewcc+9jH8xm8M6VOa1ARSkiR5/3cnPhwlbfukX+4kZ0Hyham/05tvvukA4A9/+MMf/vCHPzP08+abbw6NASbS49RreYH2KeuDpnUXiXWfKkin01AUped6PO35wtTfy2233QYAePPNN7GwsBA4HxEREU2fVquFkydPer/fB5lI4GQYhm8xTQCIRqPeAp9h0m5sbHjb3XV7otEotra2+ubb2dkJXD8A7O7uYnd313v9zjvvAAAWFhYYOBEREc2IIMNvJjI4vN/CjL0WYRyWtn2Ols3NTciy7C250C9fmPqBvcUTI5GI93Py5Mme6YiIiGi2TdVTdWFWuu5Ma9s2dF3vOXtw0Dr67cvn82g2m97Pm2++GbidRERENDsmcqtOEISu3p16vd7zqbagaRVFQaVS8a1V1S9fmPoBYH5+HvPz88PfGBEREc20iQROsixDVdWu7YlEYqS0pVIJiqJAFEWv12hQPlEUA9c/qvfffx+//OUvx1Ye0VHywQ9+ELfccsukm0FENHYTCZzctaRclmUhkUj45mYSBAGiKA5Nq+s6JEnygqatra2eczK15xu0b78cx8G//Mu/hLrtSDSLBEHARz7yEc51RkQzZWJr1VmWBVVVkUwmsb29jXw+7wUuKysrSCaT3jQD/dJaloVYLOYrVxAENBqNoXUM2jdMq9VCJBJBs9nseqrun//5n2HbNj784Q/jQx/6EH9p0LHjOA7effddvP322xAEAR/96Ecn3SQiooEG/V7vxEV+R9DvAL///vv4+7//e3z4wx/G0tLSBFtINHk3b97E22+/jd/+7d/mbTsimmphAqepeqruqHPHNH3oQx+acEuIJs89DzjWj4hmCQOnA8Dbc0Q8D4hoNk1skd/j5tSFK4da342L9x1qfURERMcBA6cZ9bO37MBpX3/tVZQvP4vnLn8LDz705zj58dN4843r+MdfvIH0Aw/i7nvOjqVN+uVL+FrhEWx85wXcceddA9N+8oQwljrHLR6PI5/PezPWa5qGcrmMSqUSOi8RER09DJwId9x5F76afxTPXf4W/uN/Oo+FSAQA0Go2cc8nTuFv/u7a0EAniPQDD6Jy5YV9l+OybXssU0iEUSwWffN9ybLcNWVG0LxERHT0cIwT9bUQieDE7afwX773/KSb0sWyLGxtbR16ve5aiC5RFCHL8kh5iYjo6GGPEw3UbDZw8uOnJ92MLsViEfF4fNLNIDpwhz0+clpx3CZNC/Y4UU+tZhNPPvYw7v7MWaQfeBAvv3QN9336DPTLl6BfvoQvfPYsgL3xUc8+/RQqV17As08/hbfeuOEr5/XXXsWTjz2MypUXULnyApp2w9v38kvX8IXPnsWzTz8FAKhceQH3ffoMXn7pmpfGsiwoigJd16FpGmzbhmEY2NnZQaVSgaZpsCyr53swDAOlUgm6rkNRFG+7aZrIZrPQdd37MU0ThmEgHo+jVCoB2JuVPhaLwTAML188HoemaQD2bhVms1nfJKymaXp1lkolr22ded26NE2DYRjQNA0rKyuhPiMiIjp87HEin+e+fQknbj8FAFh54Es48fG9/999z1l86p7fx//92k/xv138GiLCIt564wa+VngE6re/6+X/wmfPQvvOC1iIRNBqNvGXX3kQV/7rK97+b379Se//d99zFn/08897r1P3fQ7f/96vy7JtG6lUCtVqFYIgQFEUaJqGXC4HWZYRi8WQyWR6vg834KpWqwD2FnEulUrIZDJYXl7G9evXvdtmi4uLuHr1KmRZxtramldGOp3G5uam91qSJN9+QRCgqioWFxd9dbYPFI/H47h69WpXXlmWIcsyKpUKyuUyAKBcLsM0TUiS1PM9ERHR5DFwIp9zX3zQGxze6baFCITFKIC9IOfJxx7G73zik740J24/hR/87XeRfuBB/OBvv9s1qDwiLAZuy9bWFkRR9AKcfD4fOK+qqohGo15vEQBsb29DEISusUbjGrCtqmpX0COKord+YqelpSXfDPOCIKBer4+lLUREdDAYOFEobm/UYeh8aq7fwOp+T9dJkuQbuJ3JZLxbZURERKPgGCfyabWNQeqlfYzSH//p/fjxj37o2//6a6/iD/9k7/bb3Z85i9dfe9W3v3MM1G0LEdiNX/eyvPyja3in1QSwd6vMNE1f+vYepEHb1tbWurYbhoHV1dWuMtvHSAmCgJs3b/ry2LbtS9/5elCdpmlidXV1aF4iIjoa2ON0SII+ERJm4spxef21V70pB/7z01/DygNf6rrF9vJL1/DjH/0Q/8/Pf4YTt5/C3fec/W/zPz2CZ59+CiduP4Wfv2riiWcuebf6Tnz8FJ545hKefOxh/N49f4B3Wk3cFongm19/El/NP4ITHz+FP/yTz+NrhYe9AeF3f+Ys9MuX8PnUPRBFEaqqQlEUJJNJAPB6kLLZLIrFIjRN6zkdgCRJKBaLXXkFQUC5XIaiKEilUl29Vaurq1AUxQuAZFn2bsHZto3NzU1Eo1Gk0+mu+ZvcOkulEkRRxPb2NsrlMgRBgGmavrxuWW4dlmXBNE2oqgpRFAPPDUVERIdrznEcZ9KNOGr6raL83nvv4fr16zh9+jRuvfXWkcqeROA0jQ5z5vBUKoVisTjyoOzFxUU0GoN76o6jcZwPxOkIXJyOgA5Sv9/rvbDHiY69UQZka5qGWq2GbDbL2cCJiI4RjnGiY82dB0pV1VDjj2RZxtLSEnRdh6qqB9dAIiKaKuxxomMtk8n0nQtqEFEUkcvlDqBFREQ0zdjjRERERBQQAyciIiKigBg4EREREQXEwImIiIgoIAZORERERAFN7Kk6y7Kg6zpEUYRlWchkMn3XIhuW1jRNrK+vo1qt+vLpuu7NKt1ZtrvshiRJsCwLtm0f7Kr0j/ReOLfTJ4cnCeRnX35jpHz65Ut4843rOPnx04gIi7htIYK3fnEDd3/mLE58/NSYWjdehmFAURRks9mRnpALKx6PI5/PI51OH3hd+9XZVk3TUC6XUalUQuclIqIJBk4rKyteoGNZFtbX11Eul0OndQOqzvXH3HydisUicrkcVFX1FnyVZblv3cdJ9oufR+q+z+F//l8f9ba9/tqryH7x87jyo1cm2LLBZFnuuezKQSkWi0dm0svOtsqyHHg5l6P0PomIDstEAqf2RVWBvTlxei3UGiRtv7+GbdtGuVz27S+VSt7cO/F43Fsmo19P13Hy7NNPAQDSDzzo237HnXfh3AN/NoEWhbO0tHRodR1mkLZfnW0Nsw7eUXqfRESHZSJjnAzDQDQa9W2LRqM9e43CpO3UHjTput4VZAmCECho2t3dRavV8v3Mmm9+/cmuoMn1h/f9T4faFiIiomk1kcCp39IWvdYMC5O2XXtAZNs26vW67y9t27ah6zp0XYeiKF09W+0KhQIikYj3c/LkyYF1HzVvvXED7zSbOHH7qZ77777n1+ObXn/tVTz79FOoXHkBzz79FN564wYA4OWXruELnz0L/fIlvPzSNeiXL+Evv/Ig3nrjhpfnry981Svz5Zeu4b5Pn8FfX/gqKldegH75Ev76wlfRajYB7AXMsVgMmqZB0zTE43Fve6lU8j63drZtwzAMaJrWdZu2Vz7DMBCPx6FpWs98tm17+9x8pml6eVymaXpll0ol77s0rPxO/d6baZrIZrPe91XXdZim6ZVfKpUA7P1xEIvFvB7Zzrbato1sNotYLDa07Z15w74XIqJZNVVLroRZKyxMWkVRUCwWfdvaB5iLoohUKoVardYzfz6fx/nz573XrVZr5oKnIN564wa+VngE6re/6237wmfPQvvOC7j7nrP41Eu/j5dfuoYnnrkEAKhceQGVv3sBX3roL3DHnXfhvk+fQavZxEIkgrvvOQv5vv8RwmIUqfs+56X/q4cehPrt73rjlqrVKlRVRTQahWVZUBTFG+9Wr9d9t1+3t7e9/5fLZZim6Q3+75dPlmVUKhVvjFt7Pk3TIEmSd8uqXq9DkiSsra15798tu32wdTwex9WrV7330K/8dv3amMlksLy8jOvXr3vf18XFRa/89rak02lsbm56rzvbKggCVFXF4uLi0LZ35g3zXoiIZtlEAidBELp6jOr1es/bZmHS9uL2QnSmtyzLu+C7T+tZltVz/Mf8/Dzm5+cD1XcUub1Jb/3iBu64866u/W+9cQMLwiLKl5/F73zC/9zfidtP4Qd/+12kH3gQwmIUwuKvb6vethDx9WLdFomgZTewEIn40rhS930Of/mVB/d6nU7s3UZ1xy6l02koioJoNOob47a9ve39P5lMev9v/964gVevfEtLS77xUe350uk04vE4RFHE2tpazyf2VFXtChxEUcTW1hYymczA8jvL6dVGQRAgy7Lv+zuuAdvD2t4p6HshIpplE7lV12/Qaa9fCGHS9rKzs9NzKoLl5eWutJ1jqY6TBx/6c+iXL/Xc9/rPX/UFO2G0B0aj6Axk3R4gWZaRyWQCPw05Sr5oNIpGo4GNjQ3cvHnzwG9NjfreiIjo8EwkcOr8ZWhZFhKJhBfgmKbpjbUYlrZdr9t3pml2BUSiKPpu3RmGgXQ6fayfrnOnIOgMntwxRwDwx396P378ox/69r/+2qv4wz/5fN9y32k1++7r3F+5snfLrz1Ia+/RWFtb63r6st/TmO1GzVcoFLyeyWKx2DVurl/ZpmlidXV1aPlB2ri6utr1IET7eDxBEHDz5k1fns7zoN9t7SBtD3NLnIjoOJjYGKdyuQxFUZBMJrG9ve3767pQKCCZTPrGq/RLaxiGN0bDzdf59Fxn8CUIAhKJBEqlEgRBQK1WO/i/7h8ZHEC4fvaWfbDtGED99nfx7NNP4cnHHvYmwATgjUG648678NX8I3j26adw4vZT+PmrJp545hIWIhG8/tqr+P739sY+3f2Zs3jrF3uDwgHgjk/chZd/dA1v/eIG/vPTX8NX8496wdGbb1zHyy9dwzutJn7+qonHn74EYO9zNQwDpmlCFEXIsuwFMO53AdjrkTRN0xvbI8syLMuCaZpQVRWiKI6cb2lpyXuqs16vY21tzcsTjUaRTqe9skulEkRR9L6fgiAMLb/9e9mvjYIgeN//VCoF27Z9Adzq6ioURfECIFmWvVtwtm372tqr925Y2928bllB3gsR0SybcxzHmXQjjppWq4VIJIJms4mFhQVv+3vvvYfr16/j9OnTuPXWW0cqe5KB02FzA7Re0yB88oRw6O05KlKpFIrF4siDshcXF705zA7SOM4HAk5duDLpJkyFGxfvm3QTaIb1+73ey1Q9VUdEw40yIFvTNNRqNWSzWc4GTkS0D1zklybi5Zeu4cc/+iEqV17wbunRcJqmwbIsqKoaavyRLMtYWlqCrutQVfXgGkhENOPY40QTcfc9Z/E391ybdDOOnEwmM9JCxqIoemMGiYhodOxxIiIiIgqIgRMRERFRQAyciIiIiAJi4EREREQUEAMnIiIiooD4VN0hufNbdx5qfZeXXwqc9uWXruEHV/5PPHf5W3jwoT/H793zB7j7nrOh6tMvX8LXCo9g4zsv9FwoeJw0TYOiKLh69erIk0COIh6PI5/PezPTa5qGcrnszVwfJi8RER1NDJwId99zFiduP4XnLn8L//E/nR9pQd/0Aw+icuWFA2hdt0ktgFssFn2TR8qyHHipkc68RER0NDFwIgDAwn9bl476k2XZ9zrMGm2deYmI6GjiGCciIiKigBg4UU8vv3QNX/jsWeiXL+Hll65Bv3wJf/mVB31pXn/tVTz52MOoXHkBlSsvoGk3usp49umnULnyAp587GEAQOXKC/jCZ8/ivk+fAQA8+/RTuO/TZ/Ds00/58ui6DkVRvLJM04SiKNB1HbquD12vzTAMlEqlnuVks1mvHF3XYZomDMNAPB5HqVQCAOi6jlgsBsMwvHzxeByapgEAbNtGNptFLBbzle3WWSqVYFlWz7xuXZqmwTAMaJqGlZWVIZ8IERFNA96qo57uvucsPvXS7+Pll67hiWcuAYC3rtwdd96FVrOJv/zKg7jyX1/x8nzz6096/3/rjRv4WuER/M3fXQMANO0Gnn36KXzpob/Apz5zFpl//zm0mk3cthDBd/7uGhYiEV+eT54QUK/XUSqVkMlksLKyglqt5pVfKBT6tt2yLCiKgmq1CgC+cpaXl3H9+nUIggAAWFxcxNWrVyHLMtbW1rwy0uk0Njc3vdeSJPn2C4IAVVWxuLjoq7N9oHg8HvcGsLfnlWUZsiyjUql4Y7XK5TJM0zzUwe5ERBQeAyfqS1iMQliMeq9vW4h4vUo/+Nvvdj09F2kbJ1W+/CwiwiJefumat+3/enUvyFqIRPBw8Sn8+8+exRPPXPIGo7fnefvf/fcAgO3tbQiC0BVQRKNR9KOqKqLRqNdb1F6OLMte0ARgbAO2VVXtaqMoitja2uq5ttzS0hKWlpa814IgDO1FIyKiyWPgRAfmdz7xSd+0BukHHvT+f9tCBHfceRf+y/ee9wVgbp5PnhAA7D1B597iCkOSJN+A7FHLISIiascxTgQAaHWMTxrm7s+cxeuvverb9tYbN7z///Gf3o8f/+iHvv1u71Or2cTLP9q7BfiPv3jDm8agVx7DMCDLMkzT9G13xw/1sra25uttcstZXV0dWI4gCLh586Yvj23bvvSdrwfVaZomVldXh+YlIqKjgz1O5E2ACQDf/Pr/jj/+0/sBAN//3ncB7AVJb/3iBl5/7VXoly/hxO2ncOLjp/DEM5fw5GMP4/fu+QO802ritkgE3/z6k/hq/hHccedd+Gr+ETz52MP4xF17t7A+9Zm9webP/h9PIf0fHgQA/A93ncGjyl/grV/cwJce+gsvz3333gMA3q21crkMRVGQSqVg2zYEQUChUECxWOyaEkCSJBSLRSiKgmQyObQc1+rqKhRF8QIgWZa9W3C2bWNzcxPRaBTpdLpvnaVSCaIoYnt7G+VyGYIgwDRNX163LLcOy7JgmiZUVQ01xQERER2+OcdxnEk34qhptVqIRCJoNptYWFjwtr/33nu4fv06Tp8+jVtvvXWksn/2lj2mVh5t7q26g5ZKpVAsFkcelL24uIhGI1xv3XExjvOBgFMXrky6CVPhxsX7Jt0EmmH9fq/3wh4nOtZGGZCtaRpqtRqy2SxnAyciOmY4xomOLU3TYFkWVFUNNf5IlmUsLS1B13WoqnpwDSQioqnDHic6tjKZTM+pAoYRRRG5XO4AWkRERNNuYoGTZVnQdR2iKMKyLGQyGd9A3TBpTdPE+vq6N+Fh+3Zgb+CuZVmwbdsbyxKmfiIiIiJggoHTysqKF+hYloX19fW+K94PSusGP52PmQN7kxK6c/fIsuwrP0z9YXG8PRHPAyKaTRMJnDrn4BFFsWsOnKBp0+l033ri8bj3xFN7b1KY+sP44Ac/CAB499138Zu/+Zv7Lo/oKHv33XcB/Pq8ICKaBRMJnAzD6FoyIxqN9lyrK0zaXnrdfgtb5u7uLnZ3d73XrVarZ1233HILBEHA22+/DQD40Ic+hLm5uaFtbOf8f/9vqPSz6r333pt0E2hEjuPg3Xffxdtvvw1BEHDLLbdMuklERGMzkcCp3xNMvR4ND5O2V15d1wHsrVWWzWYhimLoMguFAh599NGh9QHARz7yEQDwgqew3m7820j5Zs1/92/ssTvqBEHwzgciolkxVU/VhXkkPEja9gHfoigilUqhVquFLjOfz+P8+fPe61arhZMnT/ZMOzc3h49+9KP48Ic/jF/+8pdD29jpy89fC51nFl39X85Ougm0Dx/84AfZ00REM2kigVOvleDr9XrP22ph0nayLMu79eY+PWdZVugy5+fnMT8/P7S+drfccstIvzj+8Z33Q+eZRZxpmoiIptFEJsBsX7W+Xa9ZmMOkbWeaJpaXl7u2R6PRkcskIiKi420igVPnIqaWZSGRSHg9PqZpek++DUvbrv1WmyiKKBaL3mvDMJBOpyEIQqgyiYiIiFwTG+PkrlKfTCa9leRdhUIByWTSm515UFrDMFCpVHz53AApkUigVCpBEATUajVfvkFlEhEREfUy53CWutDCrKIcFldC38OV0In28Jqwh9cEOkhhfq9zkV8iIiKigBg4EREREQXEwImIiIgoIAZORERERAExcCIiIiIKiIETERERUUAMnIiIiIgCYuBEREREFBADJyIiIqKAGDgRERERBcTAiYiIiCggBk5EREREATFwIiIiIgqIgRMRERFRQAyciIiIiAJi4EREREQUEAMnIiIiooAYOBEREREF9IGwGW7cuIFyuYxKpYJGo+Ftj0ajSKVSSKfTOHXq1DjbSERERDQVQgVOFy5cwNzcHFZXV/FXf/VXXftfeeUVPPPMM5ibm0OhUBhbI4mIiIimQeDA6fHHH0c+n0ckEumb5syZMzhz5gyazSby+TyDJyIiIpopgQOnXj1M/UQiEQZNRERENHNCj3FyXbhwAb/1W7+FlZUVrKysYHFxEWtra7j//vsD5bcsC7quQxRFWJaFTCYDQRBGSmuaJtbX11GtVn35TNOEYRgAgO3tbWxsbHj5TNMEAEiSBMuyYNs2JEkKdxCIiIjoWBk5cEomkzh37hwef/xxxONxFAoFbGxsBM6/srLiBTqWZWF9fR3lcjl0WjegcgOhdoZhIJfLAQBKpRKWl5e9clRVhaZpAABZlvvWTUREROQaeTqCxcVFAMDW1hbW1tYA7D1ZF4RlWb7Xoih6PUNh06bT6Z49RaZp+m4XptNpmKbplRePx9FoNNBoNFCpVPr2dhERERG5Ru5xqtVqcBwHtVoNv/u7v4vr16/7picYxDCMriArGo3CNM2uIChM2naSJPl6wGzb9vK6ggZLu7u72N3d9V63Wq1A+YiIiGi2jNzjtLq6CtM0Ua1W0Ww2oaqqF5wM0y9dvV7fV9pO6XTa+//m5iZkWfaCJdu2oes6dF2HoihdPVvtCoUCIpGI93Py5MmhdRMREdHsCdTj1Gw20Wg0fBNbRiIR35N2Fy9e9OVxe2UWFhYCNyZo4DVKWl3XfYPH2weYi6KIVCqFWq3WM38+n8f58+e9161Wi8ETERHRMRSoxykSiaBSqeD5558PVOhzzz2Hra2tvkGTIAhdPUb1er3nrbMwaftRFKVrHFN7D5P7tF6/Xqf5+XksLCz4foiIiOj4CTzGaX19Ha+88gpWV1cRi8WQTCYhiiIEQYBt27AsCz/5yU9w/fp1ZLNZnDt3rm9ZsixDVdWu7YlEYl9peymVSlAUBaIoer1UlmVheXm5a0xW0MHtREREdDyFGhx+5swZbG1todlsYmtrCz/5yU9g2zYEQUAsFkM2m8Xp06eHliOKou+1ZVlIJBK+OZYEQYAoikPTtnPb4tJ1HZIkeUHT1tYWMpkMRFFEsVj00hmGgXQ6zSfriIiIaKCRnqqLRCJYX1/fV8XlchmKoiCZTGJ7e9s3j1KhUEAymfTmYBqU1jAMVCoVX750Og3LsrCysuKrUxAEb2xTIpFAqVSCIAio1Wqcx4mIiIiGmnMcx5l0I46aVquFSCSCZrM59vFOpy5cGWt5R9WNi/dNuglEU4HXhD28JtBBCvN7feTpCIiIiIiOGwZORERERAExcCIiIiIKaF+B0+OPP+6tU3f16lUuRUJEREQzbeTA6cKFCxAEAbIsAwCWl5f7LtRLRERENAtGDpySySTW19e75lkiIiIimlUjB07Xr18HAMzNzXnbtre3998iIiIioik10gSYwN4s4olEAktLS6hUKjAMwzcbNxEREdGsGbnHaXl5GeVyGWfOnIHjONA0Dffee+8420ZEREQ0VUbucQKA06dP4+LFi97rVqs19pm0iYiIiKbFvqYjaLVauHHjhvejKMq42kVEREQ0dUbucfrKV74CwzAgCIK37fr163j66afH0S4iIiKiqTNy4BSLxfDMM8/4tm1sbOy7QURERETTauRbde7El+1SqdS+GkNEREQ0zUbucVpcXMQTTzwBURQhCAJs28bm5iY2NzfH2T4iIiKiqTFy4JTL5WDbtm+M0yuvvDKONhERERFNpZEDp1QqhfX1dd+25557bt8NIiIiIppWI49xisVigbYRERERzYqRe5xqtRpUVUUymQQAOI6Dra0trldHREREM2vkHidVVXH69Gk4jgPHcQDA+5eIiIhoFo3c41QsFrG8vOzb1muKAiIiIqJZMXLg1Bk0AXtTFARlWRZ0XYcoirAsC5lMxveEXpi0pmlifX0d1Wo1cL4w9RMREREBIQKn559/HrIse4v4fuMb3/Dtt20blUoF3//+9wOVt7Ky4gU6lmVhfX0d5XI5dFo3+DFNM1S+MPUTERERASHGOD322GPY2dnxXj/zzDNoNBrej+M4uHnzZqCyLMvyvRZFEYZhjJQ2nU5DkqRQ+cLUT0REROQK3OPUHjQBe+vSnTlzxrct6BgnwzAQjUZ926LRKEzT7AqCwqQNmm9nZ2ekMomIiOh429eSK65mswnDMBCPxwPltW275/Z6vb6vtEHzhS1zd3cXu7u73utWqzWwbiIiIppNI09H0H5rKxKJ4Ny5c/u+3dUvoNlv2qD5+u0rFAqIRCLez8mTJ0eqm4iIiI62UD1OzWYTW1tbmJubQ6VS6dpfrVbx5S9/eWg5giB09e7U6/WeT7WFSRs0X9gy8/k8zp8/771utVoMnoiIiI6hUD1OkUgEsixjZ2cHtVoN//AP/+D7yeVygcrpNxYqkUjsK23QfGHLnJ+fx8LCgu+HiIiIjp/QY5xOnz6NZ555BlevXu05l1MQoij6XluWhUQi4fX4mKYJQRAgiuLQtO1s2/a2D8rXmXdQmURERESusU6AGUa5XIaiKEgmk9je3vbNoVQoFJBMJr0erEFpDcPwbhu6+dLp9NB8g/YRERER9TLncIG50FqtFiKRCJrN5thv2526cGWs5R1VNy7eN+kmEE0FXhP28JpABynM7/WRn6ojIiIiOm4YOBEREREFNNbA6caNG+MsjoiIiGiqjDw4HAB++tOf+uZDUlUVm5ub+24UERER0TQaOXBaXV31Pf4PAK+88so42kREREQ0lUYOnFKpFNbX133bnnvuuX03iIiIiGhajTzGKRaLBdpGRERENCtG7nGq1WpQVRXJZBIA4DgOtra2sL29PbbGEREREU2TkXucVFXF6dOn4TgO3Dk0OZcmERERzbKRe5yKxWLXsiv9Fs8lIiIimgUj9zh1Bk0vvvgirl+/vu8GEREREU2rfc3j9Pzzz8OyLAB7t+l2dnZw//33j6VhRERERNNm5MDpwoULsG0b9XodoijCtm1ks9lxto2IiIhoqowcOMViMayvr+P69euYm5vDqVOn8OKLL46zbXScPRKZdAsm75HmpFtAREQdRh7jJIoi3njjDZw+fRq6ro+zTURERERTaeQeJ9u2IYoiGo0G/vVf/xV/9Ed/BEEQcO+9946zfURERERTY+TA6dy5c3j//fcBABcvXsTVq1eRSCTG1jAiIiKiaTPyrToAePzxx7G2tua9npub23eDiIiIiKbVvp6qi8Vi3qSXy8vLeP755zkdARERjR8fGOEDI1Ni5B6nZDKJ9fV1iKI4zvYQERERTa2RAyd3lvD223Nc4JeIiIhm2ci36s6cOYNEIoGlpSVUKhUYhoFisTjOthERERFNlZEDp+XlZZTLZaiqCsdxoGkazpw5Ezi/ZVnQdR2iKMKyLGQyGQiCEDrtoH26rntjsDrLNk0TACBJEizLgm3bkCQp1DEgIiKi42Vfa9WdPn0aFy9eHCnvysoKqtUqgL3gZ319HeVyOXTaYfs6FYtF5HI5qKoKTdMAALIs962biIiIyBV4jNMTTzwxNM03vvGNQGW5CwO7RFGEYRih0w7aZ9s2yuUyHMfxftygCQDi8TgajQYajQYqlUrf3i4iIiIiV+Aep8ceewyVSmVgmp2dHXz5y18eWpZhGIhGo75t0WgUpml23S4blHZnZ6fvPlEUkU6nve26rvteA9237/rZ3d3F7u6u97rVagXKR0RERLMlcOC0vLyMpaUlxOPxvmkcxwlUlm3bPbfX6/VQaQftaw/AbNtGvV73TZ1g27a3xt729jay2WzfqRUKhQIeffTRnvuIiIjo+AgcOJXLZTSbTezs7ADYm8dpYWHBl6az9yesfoFQ2LSd+xRF6Xrir30QuSiKSKVSqNVqPcvL5/M4f/6897rVauHkyZOB20pERESzIdTg8EgkguXlZQDAK6+8gnq9jrm5OW9h33PnzgUqRxCErt6ler3e89bZoLRByrFtG4ZhdJVtWZbXK+U+kWdZVs9ep/n5eczPzwd6b0RERDS7Rp4A88yZM1heXsa9996LF198Efl8Hi+++GKgvO4UAZ16LRI8KG2QcnZ2dnpOReAGgO3222NGREREs21fi/z+9Kc/xUMPPYR0Oo1KpdL1lFs/nb06lmUhkUh4AY5pml5Zg9IOK8ctqzMgEkXRd+vOMAyk02k+WUdEREQDhZ7H6caNG97El3Nzczh37hyq1SpOnz4dqpxyuQxFUZBMJrG9ve2bR6lQKCCZTHpTBwxKO2ifqzPAEgQBiUQCpVIJgiCgVqtxHiciIiIaas4J+CjcN77xDaiqCsuysLq6ikwm0zVT+PPPP4/777//QBo6TVqtFiKRCJrNZtcA+f06deHKWMs7qm7c+sVJN2HyuBI6gdcEF68J4DXhAIX5vR64xymTySCdTuPChQsQBAGNRsM3pqnRaODixYvHInAiIiKi4ylU4FQqlQbO1bS5uTmWRhERERFNo8CBUzabHdp9lc/n990gIiIiomkV+Km6zvFMo6YhIiIiOqpCP1VHRIfjzm/dOekmTNxrf/bapJtAROSzr3mciIiIiI4TBk5EREREATFwIiIiIgqIgRMRERFRQAyciIiIiAJi4EREREQUEAMnIiIiooAYOBEREREFxMCJiIiIKCAGTkREREQBMXAiIiIiCoiBExEREVFADJyIiIiIAmLgRERERBQQAyciIiKigBg4EREREQXEwImIiIgooA9MqmLLsqDrOkRRhGVZyGQyEAQhdNpB+0zTBABIkgTLsmDbNiRJCl0/ERERETDBwGllZQXVahXAXhCzvr6OcrkcOu2gfaqqQtM0AIAsy77yw9RPREREBEwocLIsy/daFEUYhhE67bBy4vE4Go0GAPh6k8LUT0REROSayBgnwzAQjUZ926LRqHdrLWjaIOUIgtB1Cy5M/QCwu7uLVqvl+yEiIqLjZyKBk23bPbfX6/VQaYeVY9s2dF2HrutQFMXraQpTPwAUCgVEIhHv5+TJkz3TERER0Wyb2BinXvoFNGHTuvvaB3yLoohUKoVarRa6zHw+j/Pnz3uvW60WgyciIqJjaCI9ToIgdPXu1Ov1nk+1DUo7rJz2sUzu03OWZYWqHwDm5+exsLDg+yEiIqLjZyKBkyzLPbcnEolQaQftM00Ty8vLXfui0Wio+omIiIhcE7lVJ4qi77VlWUgkEr75lwRBgCiKA9N29hC17xNFEcVi0dtnGAbS6fTQfERERET9TGyMU7lchqIoSCaT2N7e9s2hVCgUkEwmkcvlhqbtt08QBCQSCZRKJQiCgFqtFigfERERUT9zjuM4k27EUdNqtRCJRNBsNsc+3unUhStjLe+ounHrFyfdhIm78/Ttk27CxL32Z69NugkTx2vCHl4TADzSnHQLZlaY3+tcq46IiIgoIAZORERERAExcCIiIiIKiIETERERUUAMnIiIiIgCYuBEREREFBADJyIiIqKAGDgRERERBcTAiYiIiCggBk5EREREATFwIiIiIgqIgRMRERFRQB+YdAOIiIhouDu/deekmzBx07DwN3uciIiIiAJi4EREREQUEAMnIiIiooAYOBEREREFxMCJiIiIKCAGTkREREQBMXAiIiIiCoiBExEREVFADJyIiIiIAprYzOGWZUHXdYiiCMuykMlkIAhC6LSD9pmmCcMwAADb29vY2Njw7QMASZJgWRZs24YkSQf5lomIiOiIm1jgtLKygmq1CmAv+FlfX0e5XA6ddtA+wzCQy+UAAKVSCcvLy15aVVWhaRoAQJblvnUTERERuSZyq86yLN9rURS9nqEwaQftM00ThULB25dOp2GappcnHo+j0Wig0WigUqn07e0iIiIick2kx8kwDESjUd+2aDQK0zS7bpcNSruzszOwnI2NDW+7bdveflfQYGl3dxe7u7ve61arFSgfERERzZaJ9Di5QUyner0eKu2wctLptLdtc3MTsix7wZJt29B1HbquQ1GUrt6rdoVCAZFIxPs5efJk37REREQ0uyY2xqmXfoFQ2LSd+9wgyR3fBMA3iFwURaRSKdRqtZ7l5fN5nD9/3nvdarUYPBERER1DE+lxEgShq3epXq/3vHU2KG3QchRF6RrH1N7D5D6R16/XaX5+HgsLC74fIiIiOn4mEjjJstxzeyKRCJU2SDmlUgmKokAURdi2Ddu2YZomlpeXu/J1jpciIiIiajeRwEkURd9ry7KQSCR8cyy5vT+D0g4rR9d1SJLkBU1bW1tevmKx6OUzDAPpdJpP1hEREdFAExvjVC6XoSgKkskktre3ffMoFQoFJJNJbw6mQWn77bMsCysrK746BUHwxjYlEgmUSiUIgoBarcZ5nIiIiGioOcdxnEk34qhptVqIRCJoNptjH+906sKVsZZ3VN249YuTbsLE3Xn69kk3YeJe+7PXJt2EieM1YQ+vCbwmAAd3TQjze51r1REREREFxMCJiIiIKCAGTkREREQBMXAiIiIiCoiBExEREVFADJyIiIiIAmLgRERERBQQAyciIiKigBg4EREREQXEwImIiIgoIAZORERERAExcCIiIiIKiIETERERUUAMnIiIiIgCYuBEREREFBADJyIiIqKAGDgRERERBcTAiYiIiCggBk5EREREATFwIiIiIgqIgRMRERFRQAyciIiIiAL6wKQqtiwLuq5DFEVYloVMJgNBEEKnPYh9RERERL1MLHBaWVlBtVoFsBfErK+vo1wuh057EPuIiIiIepnIrTrLsnyvRVGEYRih0x7EPiIiIqJ+JtLjZBgGotGob1s0GoVpmpAkKXDanZ2dse/rrB8Adnd3sbu7671uNpsAgFarFfAdB/er3XfHXuZR1JpzJt2EiXv/396fdBMm7iDOsaOG14Q9vCbwmgAc3DXBLddxhn/PJhI42bbdc3u9Xg+V9iD29VIoFPDoo492bT958mTP9LR/kUk3YCq8PukGTFzkIX4TaA+/CQCvCQd/TXjnnXcQiQyuY2JjnHrpF9CETTvuffl8HufPn/de/+pXv0K9XsfS0hLm5uaGtJSOmlarhZMnT+LNN9/EwsLCpJtDRBPGa8LscxwH77zzDj72sY8NTTuRwEkQhK7enXq93vOptkFpD2JfL/Pz85ifn+9qF822hYUFXiSJyMNrwmwb1tPkmsjgcFmWe25PJBKh0h7EPiIiIqJ+JtLjJIqi77VlWUgkEl4vjmmaEAQBoigOTNvZ6zOOfURERET9TGyMU7lchqIoSCaT2N7e9s2hVCgUkEwmkcvlhqY9iH10vM3Pz+Phhx/uuj1LRMcTrwnUbs4J8uwdEREREXGtOiIiIqKgGDgRERERBcTAiYiIiCggBk60L5qmIZVKBUobj8eh6/oBt2gyTNNENpvF3NwcFEWBpmlQFAUrKytcB5Fm0qyf+6VSCZqmQdd1lEqlsbWf14qjj4PDaV8sy4JlWX3nxmpnGMa+p32wbftQp40IU59t21hcXESj0fDyuNuq1WrPdRAn4bCPIc2mwz73D1M8HsfGxobvnFUUBQBQLBb3Xf5RuFbwOtEfe5xoX0RRDHThBPYmM93PiWhZFra2tkbOP4n63PnINjc3x9Sq/TnsY0iz6zDP/cOkKApEUewKXorFIjRNg2maB1LvNF0reJ0YjIETHRnj+EtvEvXV63XEYrGxlLVfh30MiY6aUqnU9xakLMsoFAoHVve0XCt4nRiMgRONzLZtZLNZ34lumqY3HqBUKsGyLG97PB6HpmkA9rru3deGYUDTNKysrPStyzAM7OzsoFKpQNM0WJYFXdexuLiIbDYL0zSRSqWQSqVg2zYMw8Di4qI3LsEwDK9dbpf7oDb0qy8Wi3lpbNtGLBbzyut1fBRFgSzLyGQyA9sRi8WgaRo0TUM8Hgew91efoijQdR2apnmLUId9L4OOIdEoDvPcd/N0fuf7nY/ZbLZvnmF1u23ut/yWKIpej1PQc66zDf2O57RcK3idCMAh2idBEBzHcZxarebIsuzbJ0mS02g0HMdxnGKx6Kiq6u3L5XJOOp32Xsuy7FSr1b715HI5X353W7FYdBzHcSqViq88N22tVnMkSfJtd/MMakOv+lRVdTKZTFcdjuM4jUbDAeAUi0WnXC475XLZqdVq3v5B7chkMl655XLZaTQajiiK3rFz3+eo72XQMSQa1WGc+4O+8/3Ox1HPk1qt5gBwKpVKz7bkcjlHFMVA72NQG6b9WsHrxGATW3KFZo+qql3jAkRRxNbWlvdXVLulpSUsLS15rwVBQL1eD1VnNpvFysoKcrkcbNuGZVmwbRs7OztYXV312hWNRn1PrGxvb4/Uhkwmg8XFRaiq6q1x2CtNr/Ecg9ohCILXjnQ6DU3TIIqiV04+nwewtxzRuN4L0bgc5Lk/6LxpPx9t2/bWNh31nHfz9+tlMU3T9z4HlTWoDS5eK44mBk50JLlPfLgXOrf7fG1tDVtbW4hGo74LkiRJvoGsvS7mQepz82qahmg0inQ6HaqcQe1oX9C684mWcb6XfnUQTatB3/nV1VXvNmD79lHPk1wuh3K53DP9zs5OqHVN93OuTsu1gteJbhzjRGOztrbWNQ+JaZpezw8A7977frXXk81msb6+jnQ6jUwmA1VVh7Yr7HwpnfUNGjzZ7y+3Ye1oz5dOp7ue3jEMYyzvZb/5iDod5Lk/7DuvKAqKxSKi0WjgPIMUi0XU6/Wu9NlsFqurq4GfJAzShqNwreB1oodJ3yuko88d5+A4e+OM3Pv2uVzOu29erVYdSZIcWZadWq3mvZYkyalWq065XHZEUXTS6bTvXn+7Wq3mZDIZR1VVX5pGo+Eb59B+7769XblczhtP0Gg0hrahX3296qhWq04ul3MAOJlMpu94jV7tqFQq3rFpH1vRK+2o72XYMSQaxWGd+/3OBVc6ne7atp/zxHF+Pc6nXC5776tdkLL6tWHarxW8TgzGCTBp39yJ3I4TXddD36YjmjXH8dwn4hgnGommaajVashms30f3Z017kD0aDQ6FTP7Ek3CcTz3idqxx4lG4s5rBOzdY28frDirDMPwBkoGHedANGuO47lP1I6Dw2kkoigil8shl8sd2oVT0zQsLi4e2JIHvbQvyFmpVFCv11GpVLggJx1bB3Huj/PcHlbWoP1c2JcCmewQK6Jwhk2SeRDcyeraB5+62w67Lf10DowlOmrGeW4PK6vXfnewdLtcLufkcrmxtGnaryO8hgTHHieiEXBBTqLZcdwX9uU1JBwGTkQj4oKcRLPhuC/sy2tIOHyqjg6crusQBAGWZaFWq3knqWEYUBQF2WwWoijCsixUKhXfzLymaWJzcxPJZBJA/wnj2tMbhuGV5w5eDVKXYRgwTROiKGJ7e7vvxcS2bRQKBW9Bzl75DMNANpv1FtZUVRXVahWWZUFVVSSTSdTrdayurkIQhL5lBGnzzs6Od1xkWeZgXTo003BuBylr0P4gC/u2LxY+a9cRXkNGMOl7hTT7AHiTqGUyGd9EcoMWm3QXr2zXaxyCa9hCowexIOekF+N003BBTpqEaTi3h5U1bP80LOw76esIryHhsMeJDlyj0fD+Kq3X674FNActNrm1tdU15qB9WYVOwxYaPYgFObkYJx1n03BuAxhY1rC6pmFhX15HjhYGTnTgCoUClpaWpn7Ol1EXxJyWxTh71UF0kI7KuT3MNCzsOy3XEV5DhuPgcDpQ7j13d84Xd6HPIHOXyLLc9TRLv78KgWALjYbJG2RBzmlajHM/+YjCmpZze1hZQeqa9MK+03Qd4TVkOM4cTgfKtm2sr68jm81621RVxdraGkRRxPr6OgBgY2MDlmVBURRIkoRisQhRFL1BnalUyhtMKYqit79T5+DItbU1SJIE0zSH1mUYBiqVijeAVJZlWJaFzc1NlEolZDIZZLPZrm7/Xvl2dnagKAqi0SgURfEuvL3SuoM6e9U9rM3A3i+BYrGIeDzOgZ10aKbl3AYwtKygdSmKglgshmg0CsuyIIqib03KWb2O8BoSDgMnIiIiooB4q46IiIgoIAZORERERAExcCIiIiIKiIETERERUUAMnIiIiIgCYuBEREREFBADJyIiIqKAGDgRERERBcS16ohoppVKJQiC0Hc2aCKiMDhzOBHNrHg8jmKx6FtrTFEUAHvrkxERhcXAiYhmkqIosCyr58r2i4uLuHr1atd6YUREw3CMExHNpFKphFQq1XOfLMsoFAqH3CIimgUMnIho5liWBQBIJBI994uiCNM0AeytNB+Px1EqlQAAuq4jFovBMAwvvWEYKJVK0HXdu9VnGAZisRg0TYOmaYjH417elZUVAIBt24jFYl4eIjr6ODiciI6dpaUl1Ot1AHu9T2tra96+dDqNzc1N77VlWVAUBdVqFQBQr9dRKpWQy+UgyzKq1SpUVUU0GkU6nUa9XvfSCoIARVGQyWQO8d0R0UFijxMRzRxRFAH8uuepU61W69sb1ckNigzD8Hqhtre3AewFRrFYDAC8J/UymQy2tra8+oPWQ0RHA3uciGgmZTIZVCoVL6BxpyIA9m6zhXmqTpIk35N57T1IbpmddWua5vVCEdHsYI8TEc0kVVWxs7MD0zSh6zqi0Sh0XUepVIIsy76ARhAE3Lx503ttGAZs2wYArK2t+cY7uftd7i2/dtlsltMdEM0oTkdARDOtVCqhVqshHo+jUqkgmUwil8vBtm0IggBgbxC3oijeoG5VVWHbNlRVhSiKMAzDywvsjYva2dmBoiiIRqNQFMXXIwUAKysrPadCIKKjjYETER0bpmnCMAzkcjlvgPdB0XWdt+mIZhADJyI6VhYXF5HJZGCaJiqVyljLzmazWFlZQTQahSAIPcc/EdHRxsHhRHSsuAO3D+I22srKijc2irOSE80m9jgRERERBcSn6oiIiIgCYuBEREREFBADJyIiIqKAGDgRERERBcTAiYiIiCggBk5EREREATFwIiIiIgqIgRMRERFRQP8/iAaEC2JpuGgAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -917,9 +917,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFUCAYAAAA5ywiWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7GUlEQVR4nO3dYWwj533v+5/q5q4bwOKIAoIk2HV2R29qnDjukhLqg8bonmiUFnF7c2JTUhsfoA6ORcY4F6c5vSm5OsA9tvvCMhnjOn6Ra5PrHG+Au20l0s71TbdowlljC6eAG0njOM49PkDB2XXWDQqjpkgZSL0315n7QmcmpERSQ1ISKen7AYRdzszzzJ9DzuivZ555nhHP8zwBAACgo18ZdAAAAACHAUkTAABACCRNAAAAIZA0AQAAhEDSBAAAEAJJEwAAQAgkTQAAACGQNAEAAIRA0nRMua6rTCajsbExTUxMdNx2YmJCY2NjymQyqtVqBxMghobjOJqZmdn1ewJ0y/9uxePxQYdyKHAuDh5J0zFlmqay2awWFxdVrVblOE7L7WzbViwW09zcnLLZrAzDONhAtykUCjuWZTIZzc7ODiCaLa1iOkpisZgymUzX5Q7quAz68x8Gw3YM2sWz/Tvhf7d6+WPMtm3Nzs6qUCjItm1lMhmVSqWmbXK5nAqFggqFgnK53I46+l3fzn5993s9F7F3SJqOOcMwNDc3p3w+33L9sLUslcvlHctmZmY0Pz8/gGi2tIrpqIlGo12XOajjMujPfxgM2zFoF0+r70Qv3y1p69pk27ZSqZRSqZQmJiaUSCSC9X6Sk0wmlUwmFYvFlEql9mx9J/v53e/1eGGPeDjW8vm8t76+7hmGsWPdxsaGt76+7iUSCS+ZTA4gumb5fN6LxWKDDqPJMMa0H9bX1z3TNENvf1yOC8Jr953o9rvlKxaL3sbGRtv1hmHsWN/4K6/f9e3s93e/1+OFvfGrA87ZMARisZii0ahKpVLTX2pra2uyLKttuVwuJ9M05bquTNMMytZqNRUKBZmmqXK5rFQqpVgsJklBM7okXbhwQa7rynVdvfvuu8pms233Zdu2yuWyXNcN/gJMp9NyHEeZTEau66pSqbTdR7Va1fr6uvL5vAqFgqLRqJaXl7W4uBjEttv7ChvT9nqkrT5kjes62d60n0wmd62z1/fsl4tGo8HtlFqttuvnsT2exmMV9rjsdnx9tVpNmUxG8Xhc6+vrmpiYUCwWUz6f1+Li4o7Pv1QqaWlpSa7rqlgsyrIsua6rmZkZmaapfD4v0zTbxt7L97PxvUlbLbjRaFSmaaparcqyrJbf1Uwmo0KhoGw22/JzbhWbaZpKpVJBa8b8/PyOenc71v75WavV5LquDMNo2n+jUqkUHJN8Pi/XdYNb9cViUdFoVNPT06rVaioWi8H72n5OdvpOSFv9dbo93u24rqtardayO4Ft28F773V9u+tiN9ep7Z/9fpyLUnefNUIYdNaGwcrn857neV46nfYSiUTTumKx6Hme17KlKZFIBOs9z/Msy/LW19eDuiqVSrDONM2mv9jK5bJnmqZXLpebtvHLt1Mul0P/pdpuH+l0uun9ba+v0/vqJqZEItG070ql4lmW1eHdbclmsztibPwcOtXZ63suFouepKbPLJ1ON33mrY5xp2PV6bh0c3y3l9nY2NgRR6fPv1E2mw0dey/fz2Qy2XTMKpWKF4vFmuppFZdlWcF5uFts/udXLpe99fX14LPt5vMpFotN+6tUKk2vW8nn803ftVbf08bvT7vPpN35axhG18fbfx/+v43xlMvllq1ChmF4xWKx7/WdtHufYT77vT4Xe/ms0Rl9miBJSqVSKpVKQR8m13V3tMD4XNfd0So1Ozsb9ItyXVe2bQfrTNNseh2NRuW6btNfa/5fSHul3T4axWKxpn3u9r7Cchxnx1+jfotD43HYzm9RWVxcDJYtLy/Ldd1QdfbynqWtVpFYLNa07eLiogqFQtvPpJdj1evxLZVKwXfRMIygNaITy7J2PODgtxrsFkcv30+/dbWxRcD/675Rq/4oja0Zu8VmGIYcx5FlWYrFYm1bIHarp1gsBrGZpqnJycm2702S5ubmdnx3GztdV6vVHd+1btRqta6vB7FYTJZlKZFIKJlMamJiYtfO8NFoVNVqdd/W77bv7ba3ZO3HudjtZ43OuD0HSVsnUywW08rKipLJpBzH6XhbyjCMpotopVIJTmq/id5vDq5WqzsuNNsvsIZh9HwxaqfVPjo9qrvb+wprbW2t5S8Q/3Zlu6b9tbU1GYbRdCH1j6XfxL5bnd2+53b8OBzHabnfXo5Vr8c3FovtSD7C/IJOJpPK5/PK5/OybVtzc3Oh4+j2++nX2eqXYDd6ia3behKJhPL5vMbGxhSLxTQ/P7/rrWP/l7n/y7kxAe0nWfL1cj3YXmZubk6pVKrjwyu71dnv+v3Qz7nYy2eNzkiaEEilUsrn80omkx0v9rVaTaZpNv3yb/y/4zhaWlrSzMyM5ubm9uSi2speXbB9u72vsDH1+sRhp3LD9hRjt8fKPy69HN9UKqWlpSVduHBBhUIhdMtfKpVSPB4P+uH4+9qLz3kvNX62YWILk4jtVk+5XA5aL/3judsv0/n5eS0vLysWi2lycjJonbYsq6fj1+/5u711JUwi5x+Xftd3Y7d4+rUfnzXa4/YcAnNzc3IcR6VSqWMTbqtbPNLWyVur1TQ9Pa3FxcUg+Wq85beX2o0t1atO7yss/9ZJq3pc19XU1FTH/bfal3/ropc6e+V/lu1u0XZ7rBzH6ev4XrhwQbZtB7diwjBNM3jAofHWyF58ztv5n10vdTS2XuxVbJ3q8R80iMViSqfTWl9f1/Ly8q51JhIJlUqlYOw2vxWjXcvqbvo5f2u1mmZnZ5veY+MtKNM0g1u521mW1ff6bnR6n2Farvo5F3v9rNEeSdMx1/i0jWEYsixLy8vLHf+atSxLk5OTOwaSW1lZCVoUGk9w/8LQ6eIR5pdCYz+HTn2uet1Hp/fVTUx+X4vG5nL/vXd6Usx/4qVxEL1araaVlZWe6wz7y9ZxnKZtl5aWlEwm2/4y3O1YtTouvRxfSVpfX5dhGEokEl3/ck6lUlpYWNjxV3i3cex2HE3TVDKZbHrysVXfq+19dfxb2H79vR6j7TrV0/jLtDGu3fi38P1rhl8m7Hesm/N3tzoNw1A6nW6Ku1AoNN06XFxcbDpfSqVSU8Ld7/p22r3P3T57316ei71+1uhg0D3RMRiVSsVLJpOeJC+ZTAZPazQ+rbWxseFls1nPMAzPNE0vm802PQWXTqeDp1can9xIp9NeOp32yuWyVy6XvUqlEjzd4Y/7JCl4msnfRywW2/XJFL9u/wmQVvV12odlWcGTR/426XQ61PsKG9P2erY/2ROmvmw2u+PJl0519vOe/ad9/KeGstls05Nm28u1iqfVsdrtuIQ9vv4TRf73MBaLdfz8G21sbLQdY6xVHHvx/czn88F3f/vTc359/udbLBa9RCLhmaa54xzaHlu5XPYsy/IMw/Cy2WxwznY6Bq3q8b8//rLt53Un2Wy26am2xjh8u8Wz2/kb9nj71yf/p9U51nic92N9O+2++7t99nt9LvbzWaO1Ec/zvAHkagCGhD8+zPr6+qBD2aFWq2lhYUEXLlwIbvX68ybOzs4O/Xgz8Xhc2Wx2oH2mcHgM87mILdyeAzC0CoWCUqlUcMvFf4orm83yiwXAgSNpAjC0YrFYMOxCI9u2NTMzM4CIABxnDDkAHGO2bSubzcpxHOVyuaF7FNm/rbV9+pgw068MWi6Xk+M4wQCU3KJDJ8N+LmILfZoAAABC4PYcAABACAO7PefPl+OPXdFpFGp/PBp/EK9OA30BAADsh4ElTbOzs8HTL67ramFhoWWHT0nK5/PBAF2WZbXdDgAAYL8MJGlqNUpup9nf4/G4NjY2JHU/AeYvfvEL/fSnP9Vtt92mkZGRrmMFAABHm+d5eu+99/Txj39cv/Ir7XsuDSRpsm27aS4oSYpGo8H8VK10myz5fvrTn+rUqVM9lQUAAMfHjRs3dPLkybbrB5I0tZtXqN3khbVaLZhXZ3V1ValUqu38OTdv3tTNmzeD1/7DgTdu3NDo6GgfUQMAgKNoc3NTp06d0m233dZxu6Eap6ldMtXYSdw0Tc3MzDRNNNtoaWlJjz322I7lo6OjJE0AAKCt3brxDGTIAcMwdrQqVavVtrfgGvtA+U/bbe8X5VtcXFS9Xg9+bty4sWdxAwCA42sgSVO7kXEnJyd3LHMcR9PT0zuWb+8T5Ttx4kTQqkTrEgAA2CsDSZq290dyXVeTk5NBS5PjOEFLkmmawTQE0lYn8kQi0XPHcAAAgF4MrE9TsVhUJpPR1NSUVldXm8ZeWlpa0tTUlNLptAzD0OTkpHK5nAzDUKVS2Zdxmj744AP9/Oc/3/N6gWH3oQ99SLfccsugwwCAoXfk557b3NxUJBJRvV5veavO8zz90z/9U9tO6MBxYBiGPvrRjzKWGYBjabdcwTdUT88Ngp8wfeQjH9GHP/xhfmngWPE8Tz/72c/0zjvvSJI+9rGPDTgiABhexzpp+uCDD4KEaXx8fNDhAAPxa7/2a5Kkd955Rx/5yEe4VQcAbQykI/iw8PswffjDHx5wJMBg+ecA/foAoL1jnTT5uCWH445zAAB2d6xvz7Vz+vzlA93f//2//Fbobd9843UVLz2vFy59Sw8+/B916hNndOOta/rHn7ylxAMP6u57zu1JTKVLF/X1pUd14S9e0h133tVV2U+dNPYkhn7F43EtLi4qkUhIkgqFgorFosrlctdlAQAgaTpk7rjzLn1l8TG9cOlb+vf/4U80GolIkjbrdd3zydP6y7++2nWS00rigQdVvvxS3/X4arXagY+tlc1mmwZMtSyr7ZyFu5UF9sNB/4E27K4/ce+gQwA64vbcETEaiejk7af1N995cdCh7OC6rlZWVg58v5ZlNSVqpmm2HY1+t7IAAJA0HSH1+oZOfeLMoMPYoXFEdwAADiuSpiNgs17XU48/ors/fU6JBx7Uq69c1b2/dValSxdVunRRf/C5c5K2+kM9/8zTKl9+Sc8/87Tefut6Uz1vvvG6nnr8EZUvv6Ty5ZdUr20E61595ar+4HPn9PwzT0uSypdf0r2/dVavvnI12Obtt67rqccfUalUUqFQUK1Wk23bWltbU7lcVqFQaDvRsm3byuVyKpVKymQywXLHcZRKpVQqlYIfx3Fk27bi8bhyuZwkqVQqaWJiQrZtB+Xi8bgKhYKkrduDqVRKExMTTXX7+8zlckFs28v6+yoUCrJtW4VCQbOzs119RgCAw48+TYfYC39+USdvPy1Jmn3gSzr5ia3/333POf3mPb+t//bGD/Vfnvi6IsaY3n7rur6+9Kjyf/7toPwffO6cCn/xkkYjEW3W6/rqlx/U5b97LVj/zW88Ffz/7nvO6Xd+/IXg9cy9n9d3v/PLujbrdaW++AX9xV9f1af/1SeUyWRUKBSUTqdlWZYmJiaUTCZbvg/XdZXJZLS+vi5JqlaryuVySiaTmp6e1rVr14JbZWNjY7py5Yosy9L8/HxQRyKR0PLycvA6Fos1rTcMQ/l8XmNjY037bOwUHo/HdeXKlR1lLcuSZVkql8vBFD7FYlGO4ygWi7V8TwCAo4ek6RC7/4sPBh3Bt7ttNCJjLCppK8F56vFH9Ouf/FTTNidvP63v/dW3lXjgQX3vr769owN5xBgLHcv3/urbOvmJ00E8i4uLocvm83lFo9GglUiSVldXZRjGjr5Fe9U5O5/P70h4TNPUyspKy+RufHy8aQBUwzBUrVb3JBYAwOFA0nSE+a1QB+G9zbpuG/1lAteuE3W7p+hisVhTJ+1kMhncHgMAYBjQp+kQ22zoc9RKY5+k3/39+/T33//bpvVvvvG6Pvt7W7fc7v70Ob35xutN67f3ebptNKLaxi9bV179/lW9t1mXJM187vM7yje2HHVaNj8/v2O5bduam5uT4zhNyxv7RBmGoXfffbepzPaJl9tNxNxqn47jaG5ubteyAIDjiZamQ+bNN14PhhX4r898XbMPfGnHbbVXX7mqv//+3+q///hHOnn7ad19z7n/Mb7To3r+mad18vbT+vHrjp589mJwO+3kJ07ryWcv6qnHH9G/vuffbLUcRSL65jee0lcWH9XJT5zWZ3/vC/r60iNB5++7P31OpUsXdccn79LJT5zW//bEU3rq8Ud072fukaSg5SiVSimbzapQKLR85D8WiymbzSqTyWhqaiooaxiGisWiMpmMZmZmdrRSzc3NKZPJBMmPZVnBbbdarabl5WVFo1ElEokd4zP5+8zlcjJNU6urqyoWizIMQ47jNJX16/L34bquHMdRPp+XaZqhx34CABxuI57neYMOYj9tbm4qEomoXq9rdHS0ad3777+va9eu6cyZM7r11lt73seP3q71GeXRsp8jgs/MzCibzfbcAXtsbEwbG51b6I6jvToX0B0Gt2zG4JYYlE65QiNamnCo9NL5ulAoqFKpKJVKMco3AKBn9GnCoeGP85TP57vqb2RZlsbHx1UqlZTP5/cvQADAkUZLEw6NZDLZdqynTkzTVDqd3oeIAADHCS1NAAAAIZA0AQAAhEDSBAAAEAJJEwAAQAgkTQAAACGQNB1ipUtbI3iXLl1U+fJLevWVqypdurhj+pNhYtu24vH4gc0rF4/HVSqVDmRf/doea6FQ0MzMTE9lAQB7jyEHWnk0svs2DT7V5+5+9NBbXZdJffELmrn38/pP//mxYNmbb7yu1Be/oMvff63PiPaPZVktp1LZL9ls9tAMaLk9VsuyQk/RcpjeJwAcViRNh9DzzzwtSUo88GDT8jvuvEv3P/BHA4ioO+Pj4we2r4NM0Pq1PdZu5rU7TO8TAA4rbs8dQt/8xlM7EibfZ+/9twcaCwAAxwVJ0yHz9lvX9V69rpO3n265/u57zunkJ7bWvfnG63r+madVvvySnn/m6aCv06uvXNUffO6cSpcuBv2gvvrlB/X2W9eDMn92/itBna++clX3/tZZ/dn5r6h8+SWVLl3Un53/ijbr9ab1pUsXVbp0UfF4XNJW/6VcLqdSqaRMJtMUZ61Wk23bKhQKmp2dbVrXqlxjX6hW5Wq1WrDOL+c4zo7+U47jBHXncjm5rhuq/u3avTfHcZRKpVQqlYIfx3GC+nO5nCSpVCppYmJCtm0H5RpjrdVqSqVSmpiY2DX27WW7fS8AgHC4PXdEvf3WdX196VHl//zbwbI/+Nw5Ff7iJd19zzn95iu/rVdfuaonn70oSSpffknlv35JX3r4j3XHnXfp3t86q816XaORiO6+55yse/9nGWNRzdz7+WD7P334QeX//Ntb9d3z2/pvb/xQ/+WJr+tTEyfluq4ymYzW19clbU20m8vlgulMVldXg/8Xi0U5jqNYLNaxnGVZKpfLKhaLO8oVCgXFYrHgNlW1WlUsFtP8/Hzw/v26y+VysCwej+vKlStBX6t29TdqF2MymdT09LSuXbsmwzAkSWNjY0H9jbEkEgktLy8Hr7fHahiG8vm8xsbGdo19e9lu3gsAIDySpkPGb0V6+yfXdcedd+1Y//Zb1zVqjKl46Xn9+iebu6ifvP20vvdX31bigQdljEVljEWDdbeNRppar26LRLRZ29BoJNK0jW/m3s/rq19+MEisbhuNBPUlEgllMhlFo9GgJUXaSpR8U1NTwf8Nw1C1WpUk5fP5tuXGx8eb+kM1lkskEorH4zJNU/Pz8y3nqMvn8zuSBtM0tbKyomQy2bH+7fW0itEwDFmWFSRMkvasc/ZusW8X9r0AAMIjaTqEHnz4P6p06WLQ6tPozR+/3nJ5GI1JUS+23zJsbPmRFHqy3V7KRaNRbWxsyHEcLS8va3Z2tqlVZq+1ivGghlEAAAwGfZoOIX+YgdKli03L/T5GkvS7v3+f/v77f9u0/s03Xtdnf+8Lbet9b7Pedt329eXLW7f5Glui6rWN4P/z8/NNLTGSdrxupddyS0tLcl1XsVhM2Wy2qbWnVqu1rdtxHM3Nze1af5gY5+bm5DhO03K/35G01drz7rvvNpXxY9sea5h9bo+9XVkAwN6gpemQyv/5t/X8M0/rqccf0alPnFHE2Or74rcy3XHnXfrK4qN6/pmndfL20/rx646efPaiRiMRvfnG6/rud7b6Ot396XN6+ydbHcAl6Y5P3qVXv39Vb//kuv7rM1/XVxYfCxKjG29d06uvXNV7m3X9+HVHX3vmoqStjuB///2/1X//8Y908vbT+tQf/tsgeclkMsGtOMuygpYg/7XrunIcR/l8XqZp9lxufHxctm0rGo2qWq1qfn4+KBONRpVIJIK6c7mcTNPU6uqqisWiDMPYtf7GR//bxWgYhorFojKZjGZmZlSr1ZqSt7m5OWUymSD5sSwruO1Wq9WaYt0+1ECY2P2yfl1h3gsAILwRz/O8QQexnzY3NxWJRFSv1zU6Otq07v3339e1a9d05swZ3XrrrT3v40dv1/qMcvj5yVm7oQ4afeqkse/xHBYzMzPKZrM9d8AeGxvTxsbG7hv2aa/OBXTn9PnLgw5hqFx/4t5Bh4BjqlOu0IiWJmAf9dL5ulAoqFKpKJVKMco3AAwR+jRhV/7tt/Lll4LbeNhdoVCQ67rK5/Nd9TeyLEvj4+MqlUrK5/P7FyAAoCu0NGFXd99zTn95z9VBh3HoJJPJ0E8MNjJNMxjDCgAwPGhpAgAACGFgSZPruk1TQoS9fZHJZHi0GgAAHLiBJU2zs7NKp9NKJBJKJBJaWFjYtYw/9xYAAMBBG0jS1Djgn7TVhyPMAIau6zLGDAAAGIiBJE3+IISNotHojtGUG5VKJSUSif0ODQAAoKWBJE3t+iS1G9Nm+8jKndy8eVObm5tNP0fJq69c1Z+d/4ruOjWmpx5/RK++crXrOkqXLurTnzx9IMMHFAoFjY2NdUyI90M8HlepVGqKY2ZmpqeyAABIQzbkQLtkqt1M7q0sLS3pscce6yuOO791Z1/lu3Vp+pXQ2959zzmdvP20Xrj0Lf37//AnTXO/hZV44EGVL7/UdbleJJNJFYvFA9lXo2w22zQwpGVZoW/tbi8LAIA0oJYmwzB2tCpVq9WWrUn+RKhhLS4uql6vBz83btzoN9yhM/o/5plDe/5ccD7TNGVZVk9lAQCQBtTS5E9Uul27v+5XVlaC/7uuq6WlJc3Pz7ecz+vEiRM6ceLE3gULAACgASVN22+TuK6rycnJ4K97x3FkGEbL1oFUKqVUKsVTdA1efeWqvr70qBIPPKiTt5/W2z+5rldfuaonn70YbPPmG6/rb77zoj5511aiWa9t7KjjzR+/rpO3n9aPX3f0n/7zYypffknf/MZTeq9e1+W/e03PP/O0Sv/nRSX+3YP60sN/3LKMtPX5LS8va2pqStLu86/Zti3HcWSaplZXV5XNZoN68vl8U18k0zRVrVaVyWQ0Pz+vdDqtUqmkTCajfD4vy7LkOI4WFhaUSqWUTCZVq9WUyWRk27YqlUpQt23bMk1TrusqkUjINM0dZW3bViaTCb5zruuqXC4P5JYjAGCwBtanqVgsKpPJaGpqSqurq02/hJaWljQ1NdU0lUStVlOhUJC01ecklUr1PHP8UXP3Pef0m6/8dlOi5M8Td8edd2mzXtdXv/ygLv/da0GZb37jqeD/b791XV9felR/+ddXJW0lVM8/87S+9PAf6zc/fU7JP/y8Nut13TYa0V/89VWNRiJty9z/xQf1R7OzQXIibX2e7biuq0wmo/X1dUlbCVYul1MymdT09LSuXbsWJNNjY2O6cuWKLMvS/Px8UEcikdDy8nLwOhaLNa03DEP5fF5jY2NN+yyXy8E28XhcV65c2VHWsixZltWUKBWLRTmOw/cPAI6ZgSVNpmkGLQrbhxJo9Ve8YRhKp9PMydWGMRaVMfbLYRxuG40ErUnf+6tv644772raPtLQL6p46XlFjLGmJ/H+n9e3EqzRSESPZJ/WH37unJ589mLQ8bxdmdtGIzuSie3DSzTK5/OKRqNN43Strq7KMIwdfYv2qnN2Pp/fEaNpmm0fOBgfH9f4+HjwulWfPADA0TdUT89hcH79k5/S3fecC14nHngw+P9toxHdcedd+pvvvNiUfLUqU7p0set9x2KxptuwyWQyaFUEAGBYMGHvIbS5rT/Sbu7+9LkdYzK9/db14P+/+/v36e+//7dN6/0WpM16Xa9+f+u23z/+5K1gqIJ2Ze7+9LkdYzJtHwG+0fz8/I7R4P0nJjvVYxiG3n333aYy24esaDeERat9Oo7T9JQm8xsCALajpemQefWVq/re5f9LkvTNb/zv+t3fv0+S9N3vfFvSVoL09k+u6803Xlfp0kWdvP20Tn7itJ589qKeevwR/et7/o3e26zrtkhE3/zGU/rK4qO648679JXFR/XU448EHcV/89PnVLp0Uc//H08r8e8elCT9q7vO6rHMH+vtn1zXlx7+45ZlRiORoL/azMxMMDDp0tKSstnsjg78sVhM2Ww26N8m/fKR/1b1+Obm5oLO3X4Z/7ZbrVbT8vKyotFo0MG71T5zuVzQ+bxYLMowjKATu1/Wr8vfh+u6QQd10zR5IAEAjpERz/O8QQexnzY3NxWJRFSv1zU6Otq07v3339e1a9d05swZ3XrrrcHyYR7c8jD41EljX+qdmZlRNpvtuQP22NiYNja6a6U7LtqdC9hfp89fHnQIQ+X6E/cOOgQcU51yhUa0NLXwxh+90dX2P3q7tj+BoEkvna8LhYIqlYpSqRSjfAMA+kKfJhwKhUJBrusqn8931d/IsiyNj4+rVCq1HFAVAICwaGnCoZBMJkPPP9jINE2GqQAA7AlamgAAAEIgaQIAAAiBpEnSEX+AENgV5wAA7O5YJ00f+tCHJEk/+9nPBhwJMFj+OeCfEwCAnY51R/BbbrlFhmHonXfekSR9+MMf1sjISNf1eP/f/7vXoR1q77///qBDQEie5+lnP/uZ3nnnHRmGoVtuuWXQIQHA0DrWSZMkffSjH5WkIHHqxTsb/7JX4RwJ/9O//NqgQ0CXDMMIzgUAQGvHPmkaGRnRxz72MX3kIx/Rz3/+857qeOjFq3sb1CF35X89N+gQ0IUPfehDtDABQAjHPmny3XLLLT3/4vjH9z7Y42gON6bhAAAcRce6IzgAAEBYJE0AAAAhkDQBAACEQNIEAAAQAkkTAABACCRNAAAAIZA0AQAAhEDSBAAAEAJJEwAAQAgkTQAAACGQNAEAAITQ9dxz169fV7FYVLlc1sbGRrA8Go1qZmZGiURCp0+f3ssYAQAABq6rpOn8+fMaGRnR3Nyc/vRP/3TH+tdee03PPvusRkZGtLS0tGdBAgAADFropOlrX/uaFhcXFYlE2m5z9uxZnT17VvV6XYuLiyROAADgyAidNLVqWWonEomQMAEAgCOl547g58+f13PPPad6va7Pfvazmp+f14svvriXsQEAAAyNnpOmqakpPfTQQyoUCorH41peXta77767l7EBAAAMjZ6TprGxMUnSysqK5ufnJW09QQcAAHAUdT3kgK9SqcjzPFUqFf3Gb/yGrl271jQEAQAAwFHSc0vT3NycHMfR+vq66vW68vm8arXaHoYGAAAwPEK1NNXrdW1sbDQNWhmJRJqeqHviiSeaymxubkqSRkdH9yBMAACAwQrV0hSJRFQul0M/HffCCy9oZWWFhAkAABwZofs0LSws6LXXXtPc3JwmJiY0NTUl0zRlGIZqtZpc19UPfvADXbt2TalUSvfff3/H+lzXValUkmmacl1XyWRShmG03Na2bUlSrVbT6uqq5ufnFYvFwr9LAACAPnXVEfzs2bNaWVlRvV7XysqKfvCDH6hWq8kwDE1MTCiVSunMmTOh6pqdndX6+rqkrQRqYWFBxWKx7bZXrlyRZVmqVquanZ1VpVLpJnQAAIC+9PT0XCQS0cLCQs87dV236bVpmkFrUivFYrGpZaldixQAAMB+6fnpuX7Ytr1jTKdoNCrHcVpub1lW8P9isahUKrWv8QEAAGzX8zhN/Wg3NEG1Wm1bxnEcLS8va2ZmRslkcp8iAwAAaG0gLU3tdBrnKRaLaXFxUZVKRaVSqe12N2/e1ObmZtMPAABAvwaSNBmGsaNVqVqt7tpXyTAMzc7OanZ2tm2CtbS0pEgkEvycOnVqj6IGAADHWV9J09e+9rVg3rkrV66EbtVp7KPUaHJycscy27aDee6krU7j0s7O5L7FxUXV6/Xg58aNG6FiAgAA6KTnpOn8+fMyDCNIgKanpzs+AdfIT3x8rutqcnIyaGlyHCdIiqLRaFOS5TiODMNoO07TiRMnNDo62vQDAADQr547gk9NTen+++/XlStXeipfLBaVyWQ0NTWl1dXVpjGalpaWNDU1pXQ6rVgspvn5eRUKBUlSuVwOxncCAAA4KD0nTdeuXZMkjYyMBMtWV1d13333hSpvmqay2awkKZFINK3bPshl43qenAMAAIPQc9J09uxZTU5Oanx8XOVyWbZtB0kQAADAUdNzn6bp6WkVi0WdPXtWnuepUCjoM5/5zF7GBgAAMDT6GtzyzJkzeuKJJ4LXm5ubdLwGAABHUl9DDmxubur69evBTyaT2au4AAAAhkrPLU1f/vKXZdt204CU165d0zPPPLMXcQEAAAyVnpOmiYkJPfvss03LLly40HdAAAAAw6jn23OtRvWemZnpKxgAAIBh1XNL09jYmJ588kmZpinDMFSr1bS8vKzl5eW9jA8AAGAo9Jw0pdNp1Wq1pj5Nr7322l7EBAAAMHR6TppmZma0sLDQtOyFF17oOyAAAIBh1HOfpomJiVDLAAAAjoKeW5oqlYry+bympqYkSZ7naWVlRaurq3sWHAAAwLDouaUpn8/rzJkz8jxPnudJUvAvAADAUdNzS1M2m9X09HTTslbDEAAAABwFfU3Yu93Y2FhfwQAAAAyr0C1NL774oizLCibkfe6555rW12o1lctlffe7393bCAEAAIZA6Jamxx9/XGtra8HrZ599VhsbG8GP53l699139yVIAACAQQvd0tSYMElb88ydPXu2aRl9mgAAwFHVc5+mxv5L9XpdL7zwAn2aAADAkdVz0mTbdvD/SCSi+++/v2kZAADAUdLVkAP1el0rKysaGRlRuVzesX59fV0PPfTQngUHAAAwLLpKmiKRiCzLUjabVaVS0ZkzZ5rWp9PpPQ0OAABgWHQ9uOWZM2f07LPP6sqVKy3HagIAADiK9nRwSwAAgKOq56QJAADgOCFpAgAACIGkCQAAIIQ9TZquX7++l9UBAAAMja6fnmv0wx/+UNVqNXidz+e1vLzcd1AAAADDpuekaW5uTrVaTYZhBMtee+21vYgJAABg6PScNM3MzGhhYaFp2QsvvNB3QAAAAMOo5z5NExMToZYBAAAcBT23NFUqFeXzeU1NTUmSPM/TysqKVldX9yw4AACAYdFzS1M+n9eZM2fkeZ48z5Ok4F8AAICjpueWpmw2u2MqFcuy+g4IAABgGO3Z3HMvv/yyrl271ndAAAAAw6ivcZpefPFFua4raevW3Nramu677749CQwAAGCY9Jw0nT9/XrVaTdVqVaZpqlarKZVK7WVsAAAAQ6PnpGliYkILCwu6du2aRkZGdPr0ab388suhy7uuq1KpJNM05bqukslk00CZjRzHkW3bkqTV1VVduHCh7bYAAAD7oeekyTRNvfXWWzpz5oyefPJJffWrX+2q/OzsrNbX1yVtJVALCwsqFostt7VtW+l0WpKUy+U0PT0dlMUQejQy6AiGx6P1QUcAANgjPXcEr9VqMk1Tm5ub+ud//mf9zu/8jvL5fKiyfj8on2maQUvSdo7jaGlpKXidSCTkOM6OOgAAAPZTzy1N999/vz744ANJ0hNPPKErV65ocnIyVFnbthWNRpuWRaNROY6jWCzWtDwWi+nChQvB61qtFmwPAABwUPp6eu5rX/ua1tbWtLy8LEkaGRkJVc5PfLarVqstlycSieD/y8vLsiyrbZ+mmzdv6ubNm8Hrzc3NUDEBAAaMW/vNuL0/dHq+PXf+/HkZhhEMaDk9Pd32FltY7ZKpxvWlUqlt3ydJWlpaUiQSCX5OnTrVV0wAAABSH0nT1NSUFhYWZJpm12UNw9jRqlStVnd9Ii6TyahcLnfcbnFxUfV6Pfi5ceNG1/EBAABs13PS5I/+3XhLLuxkve2mW+nUJyqXyymTyQRjQrVrlTpx4oRGR0ebfgAAAPrVc9J09uxZTU5OKpvNanFxUVNTU5qZmQlVdnvrlOu6mpycDFqQtj8dVyqVFIvFgoRpZWWFcZoAAMCB6rkj+PT0tIrFovL5vDzPU6FQ0NmzZ0OXLxaLymQympqa0urqalM/paWlJU1NTSmdTst1Xc3OzjaVNQxDyWSy19ABAAC6NuJ5njfoIPbT5uamIpGI6vX6vt2qO33+8r7Ue1hdv/WLgw5hePD0Czrg2tGMa8c2XD8OTNhcIfTtuSeffHLXbZ577rmw1QEAABwqoW/PPf744yqXyx23WVtb00MPPdR3UAAAAMMmdNI0PT2t8fFxxePxttsc8Tt9AADgGAudNBWLRdXrda2trUnaGqdp+30/pjYBAABHVVdPz0UiEU1PT0uSXnvtNVWrVY2MjOgzn/mMpK356AAAAI6inoccaBxe4OWXX1a5XNbMzEyQQAEAABwlPQ9uKUk//OEP9fDDDyuRSKhcLjcNSAkAAHCUdN3SdP369WBQy5GREd1///1aX1/XmTNn9iM+AACAoRC6pem5557T1NSU4vG4XNdVsVjUP/zDP+iJJ54IEqYXX3xx3wIFAAAYpNAtTclkUolEQufPn5dhGNrY2NDLL78crN/Y2NATTzyh++67b18CBQAAGKSukqZcLtdxLKbl5eU9CQoAAGDYhE6aUqnUrnO3LS4u9h0QAADAMArdp6lxiIF+tgEAADiM+hpyAAAA4LggaQIAAAiBpAkAACAEkiYAAIAQSJoAAABCIGkCAAAIgaQJAAAgBJImAACAEEiaAAAAQiBpAgAACIGkCQAAIASSJgAAgBBImgAAAEIgaQIAAAiBpAkAACAEkiYAAIAQSJoAAABCIGkCAAAIgaQJAAAgBJImAACAEEiaAAAAQiBpAgAACIGkCQAAIASSJgAAgBBImgAAAEIYWNLkuq5yuZxKpZJyuZxqtVrH7R3HUTweP5jgAAAAtvnVQe14dnZW6+vrkrYSqIWFBRWLxZbblkolmaYpx3EOMkQAAIDAQJIm13WbXpumKdu2226fSCT2OyQAAICOBnJ7zrZtRaPRpmXRaJSWJAAAMLQG0tLUrv9StVrtu+6bN2/q5s2bwevNzc2+6wQAABiqp+d26wwextLSkiKRSPBz6tSp/gMDAADH3kCSJsMwdrQqVatVGYbRd92Li4uq1+vBz40bN/quEwAAYCBJk2VZLZdPTk72XfeJEyc0Ojra9AMAANCvgSRNpmk2vXZdV5OTk0FLk+M4O56w8+3FLTwAAIBuDaxPU7FYVCaTUalUUj6fbxqjaWlpSaVSKXht27YymUzLdQAAAAdhxPM8b9BB7KfNzU1FIhHV6/V9u1V3+vzlfan3sLp+6xcHHcLweLQ+6AgwxLh2NOPasQ3XjwMTNlcYqqfnAAAAhhVJEwAAQAgkTQAAACGQNAEAAIRA0gQAABACSRMAAEAIJE0AAAAhkDQBAACEQNIEAAAQAkkTAABACCRNAAAAIZA0AQAAhEDSBAAAEAJJEwAAQAgkTQAAACGQNAEAAIRA0gQAABDCrw46AOAou/Nbdw46hKHyxh+9MegQAKBntDQBAACEQNIEAAAQAkkTAABACCRNAAAAIZA0AQAAhEDSBAAAEAJJEwAAQAgkTQAAACGQNAEAAIRA0gQAABACSRMAAEAIJE0AAAAhkDQBAACEQNIEAAAQAkkTAABACCRNAAAAIZA0AQAAhEDSBAAAEAJJEwAAQAgkTQAAACH86qB27LquSqWSTNOU67pKJpMyDKPvbQEAAPbDwJKm2dlZra+vS9pKihYWFlQsFvveFgCAo+DOb9056BCGyht/9MagQxjM7TnXdZtem6Yp27b73hYAAGC/DCRpsm1b0Wi0aVk0GpXjOH1tCwAAsF8GcnuuVqu1XF6tVvvaVpJu3rypmzdvBq/r9bokaXNzs7sgu/CLmz/bt7oPo80Rb9AhDI0P/uWDQYcwVPbzPDyMuHY049rRjOtHs/28fvh1e17n7+DA+jS10i5B6mbbpaUlPfbYYzuWnzp1qseo0K3IoAMYKm8OOoChEnmYbwfa49uxHdePRgdx/XjvvfcUibTfz0CSJsMwdrQUVavVlk/EdbOtJC0uLupP/uRPgte/+MUvVK1WNT4+rpGRkb5jx+GwubmpU6dO6caNGxodHR10OAAOCa4dx5PneXrvvff08Y9/vON2A0maLMtSPp/fsXxycrKvbSXpxIkTOnHiRNMyhic4vkZHR7nwAega147jp1MLk28gHcFN02x67bquJicng+TGcZzgqbndtgUAADgIA+vTVCwWlclkNDU1pdXV1aZxl5aWljQ1NaV0Or3rtgAAAAdhxNutqzhwCN28eVNLS0taXFzccbsWANrh2oFOSJoAAABCYMJeAACAEEiaAAAAQiBpOuYKhYJmZmZCbRuPx1UqlfY5osFwHEepVEojIyPKZDIqFArKZDKanZ1lrkMce0f9OpHL5VQoFFQqlZTL5fYsfq4rRw99mo4513Xluq4sy9p1W9u2+x7uoVarHehwEd3sr1araWxsTBsbG0EZf9n6+rpisdj+BdqFgz6GwEFfJw5SPB7XhQsXms7vTCYjScpms33XfxiuK1xTwqOl6ZgzTTPUhVDaGmi0nxPLdV2trKz0XH4Q+zMMQ6Zpanl5eY+i6s9BH0NAOtjrxEHKZDIyTXNH4pLNZlUoFPZtYvhhuq5wTekOSRMOzF781TaI/VWrVU1MTOxJXf066GMIHGW5XK7tbUfLsrS0tLRv+x6W6wrXlO6QNB1jtVpNqVSq6cR1HCe4p5/L5YKR2R3HUTweV6FQkLTVBO+/tm1bhUJBs7Ozbfdl27bW1tZULpdVKBTkuq5KpZLGxsaUSqXkOI5mZmY0MzOjWq0m27Y1NjYW9C2wbTuIy2867xRDu/1NTEwE29RqNU1MTAT1tTo+mUxGlmUpmUx2jGNiYkKFQkGFQkHxeFzS1l9wmUxGpVJJhUIhmGS62/fS6RgC++0grxN+me3nR7tzN5VKtS2z2779mNtNyWWaZtDSFPb83B5Du+M5LNcVrik98HDsGYbheZ7nVSoVz7KspnWxWMzb2NjwPM/zstmsl8/ng3XpdNpLJBLBa8uyvPX19bb7SafTTeX9Zdls1vM8zyuXy031+dtWKhUvFos1LffLdIqh1f7y+byXTCZ37MPzPG9jY8OT5GWzWa9YLHrFYtGrVCrB+k5xJJPJoN5isehtbGx4pmkGx85/n72+l07HEDgIB3Gd6HR+tDt3ez2nKpWKJ8krl8stY0mn055pmqHeR6cYhv26wjWlOwObRgXDJ5/P77i3b5qmVlZWgr+IGo2Pj2t8fDx4bRiGqtVqV/tMpVKanZ1VOp1WrVaT67qq1WpaW1vT3NxcEFc0Gm162mR1dbWnGJLJpMbGxpTP54N5DFtt06pPRqc4DMMI4kgkEioUCjJNM6hncXFR0tYUQXv1XoBB2M/rRKdzrPHcrdVqwbykvV4f/PLtWlccx2l6n53q6hSDj+vK0UDShIHwn9bwL1x+M/j8/LxWVlYUjUabLjCxWKypI2qri3OY/fllC4WCotGoEolEV/V0iqNxcuntT6Ps5Xtptw/gKOh0fszNzQW3/hqX93pOpdNpFYvFltuvra11Nc9pP+f1sFxXuKbsjj5NCMzPz+8YO8RxnKDFR1Jw/7xfjftJpVJaWFhQIpFQMplUPp/fNa5uxzjZvr9OnR/b/RW2WxyN5RKJxI4nb2zb3pP30m85oB/7eZ3Y7fzIZDLKZrOKRqOhy3SSzWZVrVZ3bJ9KpTQ3Nxf6icEwMRyG6wrXlBAGfX8Qg+f3VfC8rX5F/r33dDod3PteX1/3YrGYZ1mWV6lUgtexWMxbX1/3isWiZ5qml0gkmu7XN6pUKl4ymfTy+XzTNhsbG019FRrvvzfGlU6ngz4BGxsbu8bQbn+t9rG+vu6l02lPkpdMJtv2uWgVR7lcDo5NY/+IVtv2+l52O4bAfjuo60S788aXSCR2LOvnnPK8X/brKRaLwftqFKaudjEM+3WFa0p3GNwSwcBrx0mpVOr61hxwnB3H6wSwHX2ajqlCoaBKpaJUKtX2kdujxu90Ho1Gh2IUXmDYHcfrBNAJLU3HlD9ukbR1n7yxs+FRZdt20NExbF8F4Dg7jtcJoBM6gh9TpmkqnU4rnU4f2IWwUChobGxs36YmaKVxwsxyuaxqtapyucyEmUAI+3Gd2MvrwG51dVrPJL3oyWC7VOG42W0AzP3gDy7X2HnUX3bQsbSzvWMrcJTt5XVgt7parfc7RjdKp9NeOp3ek5iG/ZrD9aZ3tDThWGLCTOB4Ou6T9HK96Q9JE44tJswEjp/jPkkv15v+8PQcdlUqlWQYhlzXVaVSCU4627aVyWSUSqVkmqZc11W5XG4aRddxHC0vL2tqakpS+wHeGre3bTuoz+98GmZftm3LcRyZpqnV1dW2F4daraalpaVgwsxW5WzbViqVCia+zOfzWl9fl+u6yufzmpqaUrVa1dzcnAzDaFtHmJjX1taC42JZFp1tMZSG4ToQpq5O68NM0ts4SfhRu+ZwvdkDg74/iOEnKRj0LJlMNg381mkySH9yyUat+hL4dpsIdD8mzBz0ZJn+NkyYiWE3DNeB3erabf0wTNI76GsO15v+0NKEXW1sbAR/YVar1aYJLjtNBrmysrKj30Dj9Afb7TYR6H5MmMlkmUA4w3AdkNSxrt32NQyT9HLNOdxImrCrpaUljY+PD/04Lb1OWDksk2W22gcwLA7LdWA3wzBJ77Bcc7jedI+O4OjIv2/uj9PiT8QZZrwRy7J2PInS7i88KdxEoN2UDTNh5jBNltlPOWA/Dct1YLe6wuxr0JP0DtM1h+tN9xgRHB3VajUtLCwolUoFy/L5vObn52WaphYWFiRJFy5ckOu6ymQyisViymazMk0z6JQ5MzMTdIY0TTNYv932zo3z8/OKxWJyHGfXfdm2rXK5HHQAtSxLrutqeXlZuVxOyWRSqVRqR/N9q3Jra2vKZDKKRqPKZDLBhbTVtn6nzFb73i1maeuins1mFY/H6ZiJoTQs1wFJu9YVdl+ZTEYTExOKRqNyXVemaTbNR3lUrzlcb/pD0gQAABACt+cAAABCIGkCAAAIgaQJAAAgBJImAACAEEiaAAAAQiBpAgAACIGkCQAAIASSJgAAgBCYew7AoZTL5WQYRtsRnQFgrzEiOIBDJx6PK5vNNs0TlslkJG3NLQYA+4GkCcChkslk5Lpuy9nox8bGdOXKlR1zfQHAXqBPE4BDJZfLaWZmpuU6y7K0tLR0wBEBOC5ImgAcGq7rSpImJydbrvdnuZe2ZoePx+PK5XKSpFKppImJCdm2HWxv27ZyuZxKpVJwe8+2bU1MTKhQKKhQKCgejwdlZ2dnJUm1Wk0TExNBGQDHAx3BARwZ4+PjqlarkrZanebn54N1iURCy8vLwWvXdZXJZLS+vi5JqlaryuVySqfTsixL6+vryufzikajSiQSqlarwbaGYSiTySiZTB7guwMwaLQ0ATg0TNOU9MsWp+0qlUrbVqjt/ITItu2g9Wl1dVXSVlI0MTEhScETeclkUisrK8H+w+4HwNFBSxOAQyWZTKpcLgfJjD/cgLR1a62bp+disVjTE3iNLUd+ndv3XSgUgtYnAMcLLU0ADpV8Pq+1tTU5jqNSqaRoNKpSqaRcLifLspqSGcMw9O677wavbdtWrVaTJM3Pzzf1b/LX+/zbfI1SqRRDGgDHGEMOADiUcrmcKpWK4vG4yuWypqamlE6nVavVZBiGpK0O25lMJujAnc/nVavVlM/nZZqmbNsOykpb/aDW1taUyWQUjUaVyWSaWqIkaXZ2tuVwBwCOPpImAIee4ziybVvpdDrozL1fSqUSt+aAY4qkCcCRMDY2pmQyKcdxVC6X97TuVCql2dlZRaNRGYbRsr8TgKOPjuAAjgS/k/Z+3DqbnZ0N+kIx2jhwfNHSBAAAEAJPzwEAAIRA0gQAABACSRMAAEAIJE0AAAAhkDQBAACEQNIEAAAQAkkTAABACCRNAAAAIZA0AQAAhPD/A9JJ6AoCfIlpAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFnCAYAAAC7JX2VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA75ElEQVR4nO3df2wj533v+4/q5q4bwOKIAoIk2LV3R//UOHHcJSXURWJ0mx2lRdzenNiUlMYXqItjkTEO0Ob6tuTqAvfY6R/WkjGu4z9ybXKd480fm1Qi7Vyj3eIknDW2cA7gRtI4jnOPD1Bwdh27aWF0qaEMpN6b68z9Q4cTUuKPIfWDlPR+AcIuOTPPfGfIefTVM888z4jv+74AAADQ0a8NOgAAAICDgKQJAAAgBJImAACAEEiaAAAAQiBpAgAACIGkCQAAIASSJgAAgBBImgAAAEIgaTqiXNdVJpPR2NiYJiYmOq47MTGhsbExZTIZeZ63PwFiaDiOo+np6a7fE6BX9e9WPB4fdCgHAtfi4JE0HVGmaSqbzWphYUHValWO47Rcz7ZtxWIxzc7OKpvNyjCM/Q10i0KhsO29TCajmZmZAUSzqVVMh0ksFlMmk+l5u/06L4P+/IfBsJ2DdvFs/U7Uv1v9/DFm27ZmZmZUKBRk27YymYxKpVLTOrlcToVCQYVCQblcblsZO13ezl599/u9FrF7SJqOOMMwNDs7q3w+33L5sLUslcvlbe9NT09rbm5uANFsahXTYRONRnveZr/Oy6A//2EwbOegXTytvhP9fLekzbrJtm2lUimlUilNTEwokUgEy+tJTjKZVDKZVCwWUyqV2rXlnezld7/f84Vd4uNIy+fz/tramm8YxrZl6+vr/tramp9IJPxkMjmA6Jrl83k/FosNOowmwxjTXlhbW/NN0wy9/lE5Lwiv3Xei1+9WXbFY9NfX19suNwxj2/LGX3k7Xd7OXn/3+z1f2B2/PuCcDUMgFospGo2qVCo1/aW2uroqy7LabpfL5WSaplzXlWmawbae56lQKMg0TZXLZaVSKcViMUkKmtEl6cKFC3JdV67r6saNG8pms233Zdu2yuWyXNcN/gJMp9NyHEeZTEau66pSqbTdR7Va1dramvL5vAqFgqLRqJaWlrSwsBDE1u24wsa0tRxpsw9Z47JOtjbtJ5PJrmX2e8z17aLRaHA7xfO8rp/H1ngaz1XY89Lt/NZ5nqdMJqN4PK61tTVNTEwoFospn89rYWFh2+dfKpW0uLgo13VVLBZlWZZc19X09LRM01Q+n5dpmm1j7+f72Xhs0mYLbjQalWmaqlarsiyr5Xc1k8moUCgom822/JxbxWaaplKpVNCaMTc3t63cbue6fn16nifXdWUYRtP+G5VKpeCc5PN5ua4b3KovFouKRqM6e/asPM9TsVgMjmvrNdnpOyFt9tfp9Xy347quPM9r2Z3Atu3g2Ptd3q5e7KWe2vrZ78W1KPX2WSOEQWdtGKx8Pu/7vu+n02k/kUg0LSsWi77v+y1bmhKJRLDc933fsix/bW0tKKtSqQTLTNNs+outXC77pmn65XK5aZ369u2Uy+XQf6m220c6nW46vq3ldTquXmJKJBJN+65UKr5lWR2OblM2m90WY+Pn0KnMfo+5WCz6kpo+s3Q63fSZtzrHnc5Vp/PSy/ndus36+vq2ODp9/o2y2Wzo2Pv5fiaTyaZzVqlU/Fgs1lROq7gsywquw26x1T+/crnsr62tBZ9tL59PsVhs2l+lUml63Uo+n2/6rrX6njZ+f9p9Ju2uX8Mwej7f9eOo/9sYT7lcbtkqZBiGXywWd7y8k3bHGeaz3+1rsZ/PGp3RpwmSpFQqpVKpFPRhcl13WwtMneu621qlZmZmgn5RruvKtu1gmWmaTa+j0ahc1236a63+F9JuabePRrFYrGmf3Y4rLMdxtv01Wm9xaDwPW9VbVBYWFoL3lpaW5LpuqDL7OWZps1UkFos1rbuwsKBCodD2M+nnXPV7fkulUvBdNAwjaI3oxLKsbQ841FsNusXRz/ez3rra2CJQ/+u+Uav+KI2tGd1iMwxDjuPIsizFYrG2LRDdyikWi0FspmlqcnKy7bFJ0uzs7LbvbmOn62q1uu271gvP83quD2KxmCzLUiKRUDKZ1MTERNfO8NFoVNVqdc+Wd9v3VltbsvbiWuz1s0Zn3J6DpM2LKRaLaXl5WclkUo7jdLwtZRhGUyVaqVSCi7reRF9vDq5Wq9sqmq0VrGEYfVdG7bTaR6dHdbsdV1irq6stf4HUb1e2a9pfXV2VYRhNFWn9XNab2LuV2esxt1OPw3Gclvvt51z1e35jsdi25CPML+hkMql8Pq98Pi/btjU7Oxs6jl6/n/UyW/0S7EU/sfVaTiKRUD6f19jYmGKxmObm5rreOq7/Mq//cm5MQHeSLNX1Ux9s3WZ2dlapVKrjwyvdytzp8r2wk2uxn88anZE0IZBKpZTP55VMJjtW9p7nyTTNpl/+jf93HEeLi4uanp7W7OzsrlSqrexWhV3X7bjCxtTvE4edthu2pxh7PVf189LP+U2lUlpcXNSFCxdUKBRCt/ylUinF4/GgH059X7vxOe+mxs82TGxhErFu5ZTL5aD1sn4+u/0ynZub09LSkmKxmCYnJ4PWacuy+jp/O71+t7auhEnk6udlp8t70S2endqLzxrtcXsOgdnZWTmOo1Kp1LEJt9UtHmnz4vU8T2fPntXCwkKQfDXe8ttN7caW6len4wqrfuukVTmu62pqaqrj/lvtq37rop8y+1X/LNvdou31XDmOs6Pze+HCBdm2HdyKCcM0zeABh8ZbI7vxOW9V/+z6KaOx9WK3YutUTv1Bg1gspnQ6rbW1NS0tLXUtM5FIqFQqBWO31Vsx2rWsdrOT69fzPM3MzDQdY+MtKNM0g1u5W1mWtePlveh0nGFarnZyLfb7WaM9kqYjrvFpG8MwZFmWlpaWOv41a1mWJicntw0kt7y8HLQoNF7g9YqhU+UR5pdCYz+HTn2u+t1Hp+PqJaZ6X4vG5vL6sXd6Uqz+xEvjIHqe52l5ebnvMsP+snUcp2ndxcVFJZPJtr8Mu52rVueln/MrSWtrazIMQ4lEoudfzqlUSvPz89v+Cu81jm7n0TRNJZPJpicfW/W92tpXp34Lu15+v+doq07lNP4ybYyrm/ot/HqdUd8m7Hesl+u3W5mGYSidTjfFXSgUmm4dLiwsNF0vpVKpKeHe6fJ22h1nt8++bjevxX4/a3Qw6J7oGIxKpeInk0lfkp9MJoOnNRqf1lpfX/ez2axvGIZvmqafzWabnoJLp9PB0yuNT26k02k/nU775XLZL5fLfqVSCZ7uqI/7JCl4mqm+j1gs1vXJlHrZ9SdAWpXXaR+WZQVPHtXXSafToY4rbExby9n6ZE+Y8rLZ7LYnXzqVuZNjrj/tU39qKJvNNj1ptnW7VvG0OlfdzkvY81t/oqj+PYzFYh0//0br6+ttxxhrFcdufD/z+Xzw3d/69Fy9vPrnWywW/UQi4Zumue0a2hpbuVz2LcvyDcPws9lscM12Ogetyql/f+rvbb2uO8lms01PtTXGUdctnm7Xb9jzXa+f6j+trrHG87wXy9tp993v9tnv9rW4k88arY34vu8PIFcDMCTq48Osra0NOpRtPM/T/Py8Lly4ENzqrc+bODMzM/TjzcTjcWWz2YH2mcLBMczXIjZxew7A0CoUCkqlUsEtl/pTXNlsll8sAPYdSROAoRWLxYJhFxrZtq3p6ekBRATgKGPIAeAIs21b2WxWjuMol8sN3aPI9dtaW6ePCTP9yqDlcjk5jhMMQMktOnQy7NciNtGnCQAAIARuzwEAAIQwsNtz9fly6mNXdBqFuj4eTX0Qr04DfQEAAOyFgSVNMzMzwdMvrutqfn6+ZYdPScrn88EAXZZltV2vlV/+8pf62c9+pttuu00jIyM7DxwAABwqvu/rvffe08c//nH92q+1vwk3kKSp1Si5nWZ/j8fjWl9fl9T7BJg/+9nPdOLEiZ5jBAAAR8vbb7+t48ePt10+kKTJtu2muaAkKRqNBvNTtRI2Wbp586Zu3rwZvK73c3/77bc1OjraX8AAAODQ2tjY0IkTJ3Tbbbd1XG8gSVO7eYXaTV7oeV4wr87KyopSqVTb+XMWFxf11a9+ddv7o6OjJE0AAKCtbt14hmqcpnbJVGMncdM0NT093TTRbKOFhQU9+uijwet69ggAALATAxlywDCMba1K1Wq17S24xj5Q9afttvaLqjt27FjQqkTrEgAA2C0DSZrajYw7OTm57T3HcXT27Nlt72/tEwUAALCXBnJ7bmt/JNd1NTk5GbQ0OY4jwzBkmqZM0wymIZA2O5EnEomen6Lr5oMPPtAvfvGLXS0TOAg+9KEP6ZZbbhl0GAAw9AbWp6lYLCqTyWhqakorKytNYy8tLi5qampK6XRahmFocnJSuVxOhmGoUqn0NE5TN77v61/+5V/a9qcCjgLDMPTRj36UscwAoINDP/fcxsaGIpGIarVay/5N//zP/yzP8/SRj3xEH/7wh/mlgSPF9339/Oc/17vvvivDMPSxj31s0CEBwL7rlivUDdXTc/vtgw8+CBKm8fHxQYcDDMRv/MZvSJLeffddfeQjH+FWHQC0caQn7K33Yfrwhz884EiAwapfA/TrA4D2jnTSVMctORx1XAMA0N2Rvj3Xzslzl/d1f9fP37ev+wMAAL0jaRoCP37HC73um2+8ruKl5/XCpW/poUf+TCfuOKW337qmf/rpW0o8+JDuuffMrsRUunRRX198XBe+85LuvOvunrb95HFjV2LYqXg8roWFBSUSCUlSoVBQsVhUuVzueVsAAEiaDpg777pbX1n4ql649C39h//4qEYjEUnSRq2mez9xUn/9d1d7TnJaSTz4kMqXX9pxOXWe5+362FrdZLPZpgFTLctqO2dht22BvbDfrdrDjlZ3DDv6NB0So5GIjt9+Uv/lb14cdCjbuK6r5eXlfd+vZVlNiZppmm1Ho++2LQAAJE2HSK22rhN3nBp0GNs0jugOAMBBRdJ0CGzUanrqicd0z6fPKPHgQ3r1lau671OnVbp0UaVLF/XFz52RtNkf6vlnnlb58kt6/pmn9c5b15vKefON1/XUE4+pfPkllS+/pJq3Hix79ZWr+uLnzuj5Z56WJJUvv6T7PnVar75yNVjnnbeu66knHlOpVFKhUJDnebJtW6urqyqXyyoUCm0nWrZtW7lcTqVSSZlMJnjfcRylUimVSqXgx3Ec2bateDyuXC4nSSqVSpqYmJBt28F28XhchUJB0ubtwVQqpYmJiaay6/vM5XJBbFu3re+rUCjItm0VCgXNzMz09BkBAA4++jQdYC98+6KO335SkjTz4J/q+B2b/7/n3jP67Xt/V//tjR/pP53/uiLGmN5567q+vvi48t/+brD9Fz93RoXvvKTRSEQbtZr+4ssP6fJ/fS1Y/s1vPBX8/557z+j3f/KF4PX0fZ/X9/7mV2Vt1GpKfekL+s7fXdWn/90dymQyKhQKSqfTsixLExMTSiaTLY/DdV1lMhmtra1JkqrVqnK5nJLJpM6ePatr164Ft8rGxsZ05coVWZalubm5oIxEIqGlpaXgdSwWa1puGIby+bzGxsaa9tnYKTwej+vKlSvbtrUsS5ZlqVwuB1P4FItFOY6jWCzW8pgAAIcPSdMB9sCXHgo6gm9122hExlhU0maC89QTj+k3P/HJpnWO335S3//b7yrx4EP6/t9+d1sH8ogxFjqW7//td3X8jpNBPAsLC6G3zefzikajQSuRJK2srMgwjG19i3arc3Y+n9+W8JimqeXl5ZbJ3fj4eNOo8YZhqFqt7kosAICDgaTpEKu3Qu2H9zZqum30Vwlcu07U7Z6ii8ViTZ20k8lkcHsMAIBhQJ+mA2yjoc9RK419kv7gj+7XP/zg75uWv/nG6/rsH27ecrvn02f05huvNy3f2ufpttGIvPVfta68+oOrem+jJkma/tznt23f2HLU6b25ublt79u2rdnZWTmO0/R+Y58owzB048aNpm08z2taf+vrTvt0HEezs7NdtwUAHE20NLXQ61ghvQxOuVNvvvF6MKzAf37m65p58E+33VZ79ZWr+ocf/L3++09+rOO3n9Q99575H+M7Pa7nn3lax28/qZ+87ujJZy8Gt9OO33FSTz57UU898Zh+597f22w5ikT0zW88pa8sPK7jd5zUZ//wC/r64mNB5+97Pn1GpUsXdecn7tbxO07q/zj/lJ564jHd95l7JSloOUqlUspmsyoUCi0f+Y/FYspms8pkMpqamgq2NQxDxWJRmUxG09PT21qpZmdnlclkguTHsqzgtpvneVpaWlI0GlUikdg2PlN9n7lcTqZpamVlRcViUYZhyHGcpm3rZdX34bquHMdRPp+XaZqhx34CABxsI77v+4MOYi9tbGwoEomoVqtpdHS0adn777+va9eu6dSpU7r11lv73sd+Jk0HwV6OCD49Pa1sNtt3B+yxsTGtr3duoTuKdutaQG8Y3LIZg1tiUDrlCo1oacKB0k/n60KhoEqlolQqxSjfAIC+0acJB0Z9nKd8Pt9TfyPLsjQ+Pq5SqaR8Pr93AQIADjVamnBgJJPJtmM9dWKaptLp9B5EBAA4SmhpAgAACIGkCQAAIASSJgAAgBBImgAAAEIgaQIAAAiBp+daebz1JLjtfLL7Kh39+OG3+tqudOmi3n7rmk7ccUoRY0y3jUb0zk+v655Pn9HxO07uMKq9Ydu2MpmMUqlUX0/C9Soej2thYUGJRGLP97VTW2MtFAoqFosql8s9bwsA2H0kTQdU6ktf0PR9n9f/+r9/NXjvzTdeV+pLX9DlH7w2wMg6syyr5VQqeyWbzR6YAS23xmpZVugpWg7ScQLAQUXSdAA9/8zTkqTEgw81vX/nXXfrgQf/ZAAR9WZ8fHzf9rWfCdpObY21l3ntDtJxAsBBRZ+mA+ib33hqW8JU99n7/v2+xgIAwFFB0nTAvPPWdb1Xq+n47SdbLr/n3l/1Z3rzjdf1/DNPq3z5JT3/zNN6563rkqRXX7mqL37ujEqXLurVV66qdOmi/uLLD+mdt64H2/zVua8EZb76ylXd96nT+qtzX1H58ksqXbqovzr3FW3Uak3LS5cuqnTpouLxuKTN/ku5XE6lUkmZTKYpTs/zZNu2CoWCZmZmmpa12s62bcXjcRUKhZbbeZ4XLKtv5zhOsE2d4zhB2blcTq7rhip/q3bH5jiOUqmUSqVS8OM4TlB+LpeTJJVKJU1MTMi27WC7xlg9z1MqldLExETX2Ldu2+uxAADC4fbcIfXOW9f19cXHlf/2d4P3vvi5Myp85yXdc+8Z/fYrv6tXX7mqJ5+9KEkqX35J5b97SX/6yJ/rzrvu1n2fOq2NWk2jkYjuufeMrPv+ZxljUU3f9/lg/b985CHlv/3dzfLu/V39tzd+pP90/uv65MRxua6rTCajtbU1SZsT7eZyuWA6k5WVleD/xWJRjuMoFot13M6yLJXLZRWLxW3bFQoFxWKx4DZVtVpVLBbT3NxccPz1shs7VsfjcV25ciXoa9Wu/EbtYkwmkzp79qyuXbsmwzAkSWNjY0H5jbEkEgktLS0Fr7fGahiG8vm8xsbGusa+ddtejgUAEB5J0wFTb0V656fXdeddd29b/s5b1zVqjKl46Xn95iean+s7fvtJff9vv6vEgw/JGIvKGIsGy24bjTS1Xt0WiWjDW9doJNK0Tt30fZ/XX3z5oSCxum00EpSXSCSUyWQUjUaDlhRpM1Gqm5qaCv5vGIaq1aokKZ/Pt91ufHy8qT9U43aJRELxeFymaWpubq7lk3n5fH5b0mCappaXl5VMJjuWv7WcVjEahiHLsoKESdKudc7uFvtWYY8FABAeSdMB9NAjf6bSpYtBq0+jN3/yesv3w2hMivqx9ZZhY8uPpNBDDPSzXTQa1fr6uhzH0dLSkmZmZkI9qt+vVjE23gYEABw+9Gk6gOrDDJQuXWx6v97HSJL+4I/u1z/84O+blr/5xuv67B9+oW25723U2i7burx8efM2X2NLVM1bD/4/NzfX1BIjadvrVvrdbnFxUa7rKhaLKZvNNrX2eJ7XtmzHcTQ7O9u1/DAxzs7OynGcpvfr/Y6kzdaeGzduNG1Tj21rrGH2uTX2dtsCAHYHLU2tPN45edjqx+94exNHB/lvf1fPP/O0nnrisWBwS0lBK9Odd92tryw8ruefeVrHbz+pn7zu6MlnL2o0EtGbb7yu7/3NZl+nez59Ru/8dLMDuCTd+Ym79eoPruqdn17Xf37m6/rKwleDxOjtt67p1Veu6r2Nmn7yuqOvPXNR0mZH8H/4wd/rv//kxzp++0l98o//fZC8ZDKZ4FacZVlBS1D9teu6chxH+Xxepmn2vd34+Lhs21Y0GlW1WtXc3FywTTQaVSKRCMrO5XIyTVMrKysqFosyDKNr+Y2P/reL0TAMFYtFZTIZTU9Py/O8puRtdnZWmUwmSH4sywpuu3me1xTr1qEGwsRe37ZeVphjAQCEN+L7vj/oIPbSxsaGIpGIarWaRkdHm5a9//77unbtmk6dOqVbb721730MImnab/XkrN1QB40+edzY83gOiunpaWWz2b47YI+NjWl9fb37iju0W9cCenPy3OVBhzBUrp+/b9Ah4IjqlCs0oqUJ2EP9dL4uFAqqVCpKpVKM8g0AQ4Q+TeiqfvutfPml4DYeuisUCnJdV/l8vqf+RpZlaXx8XKVSSfl8fu8CBAD0hJYmdHXPvWf01/deHXQYB04ymexrUmLTNIMxrAAAw4OWJgAAgBBImgAAAEIgaQIAAAiBpAkAACAEkiYAAIAQBvb0nOu6KpVKMk1TrusqmUw2jZ7cTiaT0cLCQqh1+3XXt+7as7JbuXT2ldDrvvrKVX3/8v+tFy59Sw898mf6nXt/T/fce6an/ZUuXdTXFx/Xhe+81HLS391UKBSUyWR05cqVvgd47Ec8HtfCwoISiUQQR7FYDDUf3dZtAQCQBpg0zczMaG1tTdJmAjU/P69isdhxG8dxlMvltLCwsB8hDqV77j2j47ef1AuXvqX/8B8fbZr7LazEgw+pfPmlPYhuu2Qy2fVz3QvZbLZpYEjLskJPH7J1WwAApAElTY2TmEqb49KEmZTVdV3mzZI0+j/mmUN7lmU1ve5lzrWt2wIAIA2oT1N9YtVG0Wh02wzxjUqlUqjbJTdv3tTGxkbTDwAAwE4NJGlqN6VEu3m6ts4W38ni4qIikUjwc+LEiT6jPDhefeWqvvi5MypduqhXX7mq0qWL+osvP9S0zptvvK6nnnhM5csvqXz5JdW89W1lPP/M0ypffklPPfGYJKl8+SV98XNndN+nTkuSnn/mad33qdN6/pmn224jbd5GzWQyKpVKKpVKXedfs21buVxOpVJJmUymqZxUKhWUUyqV5DiObNtWPB5XLpeTtJlQT0xMBK2VjuMoHo+rUChI2vz+pFIpTUxMNJVd32culwtaP7duW99XoVCQbdsqFAqamZnp8okAAA6joZpGpV0ytby8HHo6ioWFBT366KPB642NjUOfON1z7xn99iu/q1dfuaonn70oScE8cXfedbc2ajX9xZcf0uX/+lqwzTe/8VTw/3feuq6vLz6uv/67q5Kkmreu5595Wn/6yJ/rtz99Rsk//rw2ajXdNhrRd/7uqkYjkbbbPPClh/QnMzOqVCpB+YuLi21jd11XmUwm6N9WrVaVy+WUTCZ19uxZXbt2LUiYx8bGdOXKFVmWpbm5uaCMRCKhpaWl4HUsFmtabhiG8vm8xsbGmvbZ2Ck8Ho8HndUbt7UsS5ZlqVwuB32zisWiHMfZ147tAIDBG0jSZBjGttaHarXasjXJtm3Nzs6GLvvYsWM6duzYTkM8cIyxqIyxX93yvG00ErQmff9vv7vtKblIQ7+o4qXnFTHG9OorV4P3/p/XNxOs0UhEj2Wf1h9/7oyefPZi0PG83Ta3jUa2JRNbb8U2yufzikajTX3aVlZWZBiGLMtq+k7sVufsfD6/LUbTNNsm5+Pj4xofHw9et/r+AgAOv4EkTZZltZy9vd0vxeXl5eD/rutqcXFRc3Nz/KW/i37zE59sGrog8eBDwf9vG43ozrvu1n/5mxebkq9W25QuXex537FYrKnzdTKZDG6PAQAwLAbSp2nrU0yu62pycjJoVXAcJ+hjYllWMFt8vRUglUod6YRpY0t/pG7u+fQZvfnG603vvfPW9eD/f/BH9+sffvD3TcvrLUgbtZpe/cHmbb9/+ulbwVAF7ba559NntnXo3/q0ZKO5ubltT07WWxc7lWMYhm7cuNG0zdbbu+1u97bap+M4TS2a7bYFABxdA+vTVCwWlclkNDU1pZWVlaaxfBYXFzU1NaV0Oh2853le0PqQzWaPbOJUH9xSkr75jf9Tf/BH90uSvvc335W0mSC989PrevON11W6dFHHbz+p43ec1JPPXtRTTzym37n39/TeRk23RSL65jee0lcWHtedd92tryw8rqeeeEyfuHvznP72pzc7lj//fz2txP/ykCTp3919Wl/N/Lne+el1/ekjf95ym9FIJPhsp6eng078i4uLymaz2xLmWCymbDYbfBckBbflWpVTNzs7q0wmEyQ/9dbLWCwmz/O0tLSkaDSqRCLRdp+5XE6maQbfP8Mw5DhO07b1sur7cF1XjuMon8/3NIwBAODgG/F93x90EHtpY2NDkUhEtVpNo6OjTcvef/99Xbt2TadOndKtt97a9z5+/I63wygPl08eN/ak3OnpaWWz2b6T5bGxMa2v99ZKd1Ts1rWA3pw8d3nQIQyV6+fvG3QIOKI65QqNhurpOaCTfjpfFwoFVSoVpVIpRvkGAOwIE/biQCgUCnJdV/l8vqf+RpZlaXx8XKVSqeXDBwAAhEVLEw6ExgcBemGaZlPfOAAA+kVLEwAAQAgkTZIOeV94oCuuAQDo7kgnTR/60IckST//+c8HHAkwWPVroH5NAAC2O9J9mm655RYZhqF3331XkvThD39YIyMjPZfj/3//726HdqC9//77gw4BIfm+r5///Od69913ZRiGbrnllkGHBABD60gnTZL00Y9+VJKCxKkf767/226Fcyj8T//2G4MOAT0yDCO4FgAArR35pGlkZEQf+9jH9JGPfES/+MUv+irj4Rev7m5QB9yV/+3MoENADz70oQ/RwgQAIRz5pKnulltu6fsXxz+998EuR3OwMaI0AOAwOtIdwQEAAMIiaQIAAAiBpAkAACAEkiYAAIAQSJoAAABCIGkCAAAIgaQJAAAgBJImAACAEEiaAAAAQiBpAgAACIGkCQAAIASSJgAAgBBImgAAAEIgaQIAAAiBpAkAACAEkiYAAIAQSJoAAABCIGkCAAAIgaQJAAAgBJImAACAEEiaAAAAQiBpAgAACOHXe93g+vXrKhaLKpfLWl9fD96PRqOanp5WIpHQyZMndzNGAACAgespaTp37pxGRkY0Ozurv/zLv9y2/LXXXtOzzz6rkZERLS4u7lqQAAAAgxY6afra176mhYUFRSKRtuucPn1ap0+fVq1W08LCAokTAAA4NEInTa1altqJRCIkTAAA4FDpuyP4uXPn9Nxzz6lWq+mzn/2s5ubm9OKLL+5mbAAAAEOj76RpampKDz/8sAqFguLxuJaWlnTjxo3djA0AAGBo9J00jY2NSZKWl5c1NzcnafMJOgAAgMOo5yEH6iqVinzfV6VS0W/91m/p2rVrTUMQAAAAHCZ9tzTNzs7KcRytra2pVqspn8/L87xdDA0AAGB4hGppqtVqWl9fbxq0MhKJND1Rd/78+aZtNjY2JEmjo6Mty3RdV6VSSaZpynVdJZNJGYbRcl3btiVJnudpZWVFc3NzisViYUIHAADYFaGSpkgkouXlZY2Pj+v+++/vuv4LL7yg9fV1Pfzww23XmZmZ0dramqTNBGp+fl7FYrHtuleuXJFlWapWq5qZmVGlUgkTOgAAwK4I3adpfn5er732mmZnZzUxMaGpqSmZpinDMOR5nlzX1Q9/+ENdu3ZNqVRKDzzwQNuyXNdtem2aZtCa1EqxWGxqWWrXIgUAALBXeuoIfvr0aS0vL6tWq2l5eVk//OEP5XmeDMPQxMSEUqmUTp061bUc27a3PWkXjUblOE7L226WZQX/LxaLSqVSvYQNAACwY309PReJRDQ/P9/3Ttt1GK9Wq223cRxHS0tLmp6eVjKZbLvezZs3dfPmzeB1vW8VAADATvT99Nxe6PT0XSwW08LCgiqVikqlUtv1FhcXFYlEgp8TJ07sQaQAAOCoGUjSZBjGtlalarXata+SYRiamZnRzMxM2wRrYWFBtVot+Hn77bd3KWoAAHCUDSRpauyj1GhycnLbe7ZtB6OPS5udxqXtncnrjh07ptHR0aYfAACAnRpI0lRPfOpc19Xk5GTQ0uQ4TpAURaPRpiTLcRwZhsE4TQAAYF/1PY2KJH3ta1/T6uqqlpaWdOXKFU1NTYVu2SkWi8pkMpqamtLKykrTGE2Li4uamppSOp1WLBbT3NycCoWCJKlcLgfjOwEAAOyXEd/3/X42PHfunCYmJiQpeJLuxRdfDDX45X7a2NhQJBJRrVbbs1t1J89d3pNyD6rr5+8bdAjAgUDd0Yy6A4MSNlfo+/bc1NSU5ufnt91qAwAAOIz6TpquXbsmSRoZGQneW1lZ2XlEAAAAQ6jvPk2nT5/W5OSkxsfHVS6XZdu2stnsbsYGAAAwNPpuaTp79qyKxaJOnz4t3/dVKBT0mc98ZjdjAwAAGBo7enru1KlTOn/+fPB6Y2ODcZEAAMChtKNxmjY2NnT9+vXgJ5PJ7FZcAAAAQ6XvlqYvf/nLsm27aeqTa9eu6ZlnntmNuAAAAIZK30nTxMSEnn322ab3Lly4sOOAAAAAhlHft+dazR83PT29o2AAAACGVd8tTWNjY3ryySdlmqYMw5DneVpaWtLS0tJuxgcAADAU+k6a0um0PM9r6tP02muv7UZMAAAAQ6fvpGl6ejqYc67uhRde2HFAAAAAw6jvPk31yXq7vQcAAHAY9N3SVKlUlM/nNTU1JUnyfV/Ly8vMPwcAAA6lvlua8vm8Tp06Jd/35fu+JAX/AgAAHDZ9tzRls1mdPXu26b1WwxAAAAAcBjuasHersbGxHQUDAAAwrEK3NL344ouyLCuYkPe5555rWu55nsrlsr73ve/tboQAAABDIHRL0xNPPKHV1dXg9bPPPqv19fXgx/d93bhxY0+CBAAAGLTQLU2NCZO0Oc/c6dOnm96jTxMAADis+u7T1Nh/qVar6YUXXqBPEwAAOLT6Tpps2w7+H4lE9MADDzS9BwAAcJj0NORArVbT8vKyRkZGVC6Xty1fW1vTww8/vGvBAQAADIuekqZIJCLLspTNZlWpVHTq1Kmm5el0eleDAwAAGBY9D2556tQpPfvss7py5UrLsZoAAAAOo10d3BIAAOCw6jtpAgAAOEpImgAAAEIgaQIAAAhhV5Om69ev72ZxAAAAQ6Pnp+ca/ehHP1K1Wg1e5/N5LS0t7TgoAACAYdN30jQ7OyvP82QYRvDea6+9thsxAQAADJ2+k6bp6WnNz883vffCCy/sOCAAAIBh1HefpomJiVDvAQAAHAZ9tzRVKhXl83lNTU1Jknzf1/LyslZWVnYtOAAAgGHRd0tTPp/XqVOn5Pu+fN+XpOBfAACAw6bvlqZsNrttKhXLsnYcEAAAwDDatbnnXn75ZV27dm3HAQEAAAyjHY3T9OKLL8p1XUmbt+ZWV1d1//3370pgAAAAw6TvpOncuXPyPE/ValWmacrzPKVSqd2MDQAAYGj0nTRNTExofn5e165d08jIiE6ePKmXX355N2MDAAAYGn33aTJNU2+99ZZOnTqlUqm0mzEBAAAMnb5bmjzPk2maWl9f17/+67/q93//92UYhj7zmc+E2t51XZVKJZmmKdd1lUwmm6ZkaeQ4jmzbliStrKzowoULbdfFEHg8MugIhsfjtUFHAADYJX0nTQ888IA++OADSdL58+d15coVTU5Oht5+ZmZGa2trkjYTqPn5eRWLxZbr2ratdDotScrlcjp79mywLQAAwH7o+/acJH3ta1/T3Nxc8HpkZCTUdvUn7upM0wxakrZyHEeLi4vB60QiIcdxtpUBAACwl3b09NzExEQwoOXZs2f14osvhhpywLZtRaPRpvei0agcx1EsFmt6PxaL6cKFC8Frz/OC9Vu5efOmbt68Gbze2NgIdTwAgAHj1n4zbu8Pnb5bmqampjQ/Py/TNHvetp74bFWtVlu+n0gkgv8vLS3Jsqy2fZoWFxcViUSCnxMnTvQcHwAAwFZ9J0310b8bb8ntdLLedslU4/JSqdS275MkLSwsqFarBT9vv/32jmICAACQdnB77vTp05qcnNT4+LjK5bJs21Y2mw21rWEY21qVqtVq1yfiMpmMyuVyx/WOHTumY8eOhYoDAAAgrB3NPVcsFnX69Gn5vq9CoRB6uIF2E/t2evoul8spk8kEo493a5UCAADYTTuae+7UqVM6f/58z9tt7Qfluq4mJyeDFiTHcWQYRrBeqVRSLBYLEqbl5WUlk8mdhA4AANCT0C1NTz75ZNd1nnvuudA7LhaLymQyKpVKyufzTf2UFhcXg1HGXdfVzMyMpqenNTIyorGxMWUymdD7AQAA2A0jvu/7YVaMRqOamprquM7q6qpu3LixK4Htlo2NDUUiEdVqNY2Oju7JPk6eu7wn5R5U12/90qBDGB48MowOqDuaUXdsQf2xb8LmCqFvz509e1bj4+OKx+Nt1wmZfwEAABw4oZOmYrGoWq2m1dVVSZvjNG3NxtoNOAkAAHDQ9dQRPBKJ6OzZs5Kk1157TdVqVSMjI8FTcw888MDuRwgAADAEdjROU93LL7+scrms6enp0MMOAAAAHCQ7mrD3Rz/6kR555BElEgmVy2Um0QUAAIdWzy1N169fV7FYVD6f18jIiB544AGtra3p1KlTexEfAADAUAjd0vTcc89pampK8XhcruuqWCzqH//xH3X+/PkgYXrxxRf3LFAAAIBBCt3SlEwmlUgkdO7cORmGofX1db388svB8vX1dZ0/f17333//ngQKAAAwSD0lTblcruNYTEtLS7sSFAAAwLAJnTSlUqmuI2ovLCzsOCAAAIBhFLpPU+MQAztZBwAA4CDa0ZADAAAARwVJEwAAQAgkTQAAACGQNAEAAIRA0gQAABACSRMAAEAIJE0AAAAhkDQBAACEQNIEAAAQAkkTAABACCRNAAAAIZA0AQAAhEDSBAAAEAJJEwAAQAgkTQAAACGQNAEAAIRA0gQAABACSRMAAEAIJE0AAAAhkDQBAACEQNIEAAAQAkkTAABACCRNAAAAIZA0AQAAhEDSBAAAEAJJEwAAQAgkTQAAACGQNAEAAIRA0gQAABACSRMAAEAIJE0AAAAhDCxpcl1XuVxOpVJJuVxOnud1XN9xHMXj8f0JDgAAYItfH9SOZ2ZmtLa2JmkzgZqfn1exWGy5bqlUkmmachxnP0MEAAAIDCRpcl236bVpmrJtu+36iURir0MCAADoaCC352zbVjQabXovGo3uSkvSzZs3tbGx0fQDAACwUwNJmtr1X6pWqzsue3FxUZFIJPg5ceLEjssEAAAYqqfnunUGD2NhYUG1Wi34efvtt3ceGAAAOPIG0qfJMIxtrUrValWGYey47GPHjunYsWM7LgcAAKDRQFqaLMtq+f7k5OQ+RwIAABDOQJIm0zSbXruuq8nJyaClyXGcbU/Y1e3GLTwAAIBeDaxPU7FYVCaTUalUUj6fbxqjaXFxUaVSKXht27YymUzLZQAAAPthxPd9f9BB7KWNjQ1FIhHVajWNjo7uyT5Onru8J+UeVNdv/dKgQxgej9cGHQGGGHVHM+qOLag/9k3YXGGonp4DAAAYViRNAAAAIZA0AQAAhEDSBAAAEAJJEwAAQAgkTQAAACGQNAEAAIRA0gQAABACSRMAAEAIJE0AAAAhkDQBAACEQNIEAAAQAkkTAABACCRNAAAAIZA0AQAAhEDSBAAAEAJJEwAAQAgkTQAAACH8+qADAA6zu75116BDGCpv/Mkbgw4BAPpGSxMAAEAIJE0AAAAhkDQBAACEQNIEAAAQAkkTAABACCRNAAAAIZA0AQAAhEDSBAAAEAJJEwAAQAgkTQAAACGQNAEAAIRA0gQAABACSRMAAEAIJE0AAAAhkDQBAACEQNIEAAAQAkkTAABACCRNAAAAIZA0AQAAhEDSBAAAEAJJEwAAQAgkTQAAACGQNAEAAITw64Paseu6KpVKMk1TrusqmUzKMIwdrwsAwGFw17fuGnQIQ+WNP3lj0CEMLmmamZnR2tqapM2kaH5+XsViccfrAgAA7IWB3J5zXbfptWmasm17x+sCAADslYG0NNm2rWg02vReNBqV4ziKxWJ9rytJN2/e1M2bN4PXtVpNkrSxsbFb4W/zy5s/37OyD6KNEX/QIQyND/7tg0GHMFT28jo8iKg7mlF3NKP+aLaX9Ue9bN/v/B0cSNLkeV7L96vV6o7WlaTFxUV99atf3fb+iRMnQseHnYkMOoCh8uagAxgqkUf4dqA9vh1bUX802o/647333lMk0n4/A+vT1Eq7BKmXdRcWFvToo48Gr3/5y1+qWq1qfHxcIyMjO4wQB8XGxoZOnDiht99+W6Ojo4MOB8ABQd1xNPm+r/fee08f//jHO643kKTJMIxtLUXVarXlE3G9rCtJx44d07Fjx7aVgaNpdHSUig9Az6g7jp5OLUx1A+kIbllWy/cnJyd3tC4AAMBeGUjSZJpm02vXdTU5ORm0CDmOEzw1121dAACA/TCwPk3FYlGZTEZTU1NaWVlpGndpcXFRU1NTSqfTXdcFWjl27Jgee+yxbbdqAaAT6g50MuJ3e74OAAAAzD0HAAAQBkkTAABACCRNAAAAIZA0HXGFQkHT09Oh1o3H4yqVSnsc0WA4jqNUKqWRkRFlMhkVCgVlMhnNzMww1yGOvMNeT+RyORUKBZVKJeVyuV2Ln3rl8KEj+BHnuq5c1207HlYj27Z3PNyD53n7OlxEL/vzPE9jY2NaX18Ptqm/t7a21nKuw0HY73MI7Hc9sZ/i8bguXLjQdH1nMhlJUjab3XH5B6FeoU4Jj5amI840zVAVobQ50OhOLizXdbW8vNz39oPYn2EYMk1TS0tLuxTVzuz3OQSk/a0n9lMmk5FpmtsSl2w2q0KhIMdx9mS/w1SvUKf0hqQJ+2Y3/mobxP6q1aomJiZ2payd2u9zCBxmuVyu7W1Hy7K0uLi4Z/selnqFOqU3JE1HmOd5SqVSTReu4zjBPf1cLheMzO44juLxuAqFgqTNJvj6a9u2VSgUNDMz03Zftm1rdXVV5XJZhUJBruuqVCppbGxMqVRKjuNoenpa09PT8jxPtm1rbGws6Ftg23YQV73pvFMM7fY3MTERrON5niYmJoLyWp2fTCYjy7KUTCY7xjExMaFCoaBCoaB4PC5p8y+4TCajUqmkQqEQTDLd67F0OofAXtvPeqK+zdbro921m0ql2m7Tbd/1mNtNyWWaZtDSFPb63BpDu/M5LPUKdUoffBx5hmH4vu/7lUrFtyyraVksFvPX19d93/f9bDbr5/P5YFk6nfYTiUTw2rIsf21tre1+0ul00/b197LZrO/7vl8ul5vKq69bqVT8WCzW9H59m04xtNpfPp/3k8nktn34vu+vr6/7kvxsNusXi0W/WCz6lUolWN4pjmQyGZRbLBb99fV13zTN4NzVj7PfY+l0DoH9sB/1RKfro9212+81ValUfEl+uVxuGUs6nfZN0wx1HJ1iGPZ6hTqlNwObRgXDJ5/Pb7u3b5qmlpeXg7+IGo2Pj2t8fDx4bRiGqtVqT/tMpVKamZlROp2W53lyXVee52l1dVWzs7NBXNFotOlpk5WVlb5iSCaTGhsbUz6fD+YxbLVOqz4ZneIwDCOII5FIqFAoyDTNoJyFhQVJm1ME7daxAIOwl/VEp2us8dr1PC+Yl7Tf+qG+fbvWFcdxmo6zU1mdYqijXjkcSJowEPWnNeoVV70ZfG5uTsvLy4pGo00VTCwWa+qI2qpyDrO/+raFQkHRaFSJRKKncjrF0Ti59NanUXbzWNrtAzgMOl0fs7Ozwa2/xvf7vabS6bSKxWLL9VdXV3ua53Qn1/Ww1CvUKd3RpwmBubm5bWOHOI4TtPhICu6f71TjflKplObn55VIJJRMJpXP57vG1esYJ1v316nzY7u/wrrF0bhdIpHY9uSNbdu7ciw73Q7Yib2sJ7pdH5lMRtlsVtFoNPQ2nWSzWVWr1W3rp1Ipzc7Ohn5iMEwMB6FeoU4JYdD3BzF49b4Kvr/Zr6h+7z2dTgf3vtfW1vxYLOZbluVXKpXgdSwW89fW1vxiseibpuknEomm+/WNKpWKn0wm/Xw+37TO+vp6U1+FxvvvjXGl0+mgT8D6+nrXGNrtr9U+1tbW/HQ67Uvyk8lk2z4XreIol8vBuWnsH9Fq3X6Ppds5BPbaftUT7a6bukQise29nVxTvv+rfj3FYjE4rkZhymoXw7DXK9QpvWFwSwQDrx0lpVKp51tzwFF2FOsJYCv6NB1RhUJBlUpFqVSq7SO3h02903k0Gh2KUXiBYXcU6wmgE1qajqj6uEXS5n3yxs6Gh5Vt20FHx7B9FYCj7CjWE0AndAQ/okzTVDqdVjqd3reKsFAoaGxsbM+mJmilccLMcrmsarWqcrnMhJlACHtRT+xmPdCtrE7LmaQXfRlslyocNd0GwNwL9cHlGjuP1t/b71ja2dqxFTjMdrMe6FZWq+X1jtGN0um0n06ndyWmYa9zqG/6R0sTjiQmzASOpqM+SS/1zc6QNOHIYsJM4Og56pP0Ut/sDE/PoatSqSTDMOS6riqVSnDR2batTCajVCol0zTluq7K5XLTKLqO42hpaUlTU1OS2g/w1ri+bdtBefXOp2H2Zdu2HMeRaZpaWVlpWzl4nqfFxcVgwsxW29m2rVQqFUx8mc/ntba2Jtd1lc/nNTU1pWq1qtnZWRmG0baMMDGvrq4G58WyLDrbYigNQz0QpqxOy8NM0ts4Sfhhq3Oob3bBoO8PYvhJCgY9SyaTTQO/dZoMsj65ZKNWfQnquk0EuhcTZg56ssz6OkyYiWE3DPVAt7K6LR+GSXoHXedQ3+wMLU3oan19PfgLs1qtNk1w2WkyyOXl5W39BhqnP9iq20SgezFhJpNlAuEMQz0gqWNZ3fY1DJP0UuccbCRN6GpxcVHj4+NDP05LvxNWDstkma32AQyLg1IPdDMMk/QOS51DfdM7OoKjo/p98/o4LfWJOMOMN2JZ1rYnUdr9hSeFmwi0l23DTJg5TJNl7mQ7YC8NSz3Qraww+xr0JL3DVOdQ3/SOEcHRked5mp+fVyqVCt7L5/Oam5uTaZqan5+XJF24cEGu6yqTySgWiymbzco0zaBT5vT0dNAZ0jTNYPlWWzs3zs3NKRaLyXGcrvuybVvlcjnoAGpZllzX1dLSknK5nJLJpFKp1Lbm+1bbra6uKpPJKBqNKpPJBBVpq3XrnTJb7btbzNJmpZ7NZhWPx+mYiaE0LPWApK5lhd1XJpPRxMSEotGoXNeVaZpN81Ee1jqH+mZnSJoAAABC4PYcAABACCRNAAAAIZA0AQAAhEDSBAAAEAJJEwAAQAgkTQAAACGQNAEAAIRA0gQAABACc88BOJByuZwMw2g7ojMA7DZGBAdw4MTjcWWz2aZ5wjKZjKTNucUAYC+QNAE4UDKZjFzXbTkb/djYmK5cubJtri8A2A30aQJwoORyOU1PT7dcZlmWFhcX9zkiAEcFSROAA8N1XUnS5ORky+X1We6lzdnh4/G4crmcJKlUKmliYkK2bQfr27atXC6nUqkU3N6zbVsTExMqFAoqFAqKx+PBtjMzM5Ikz/M0MTERbAPgaKAjOIBDY3x8XNVqVdJmq9Pc3FywLJFIaGlpKXjtuq4ymYzW1tYkSdVqVblcTul0WpZlaW1tTfl8XtFoVIlEQtVqNVjXMAxlMhklk8l9PDoAg0ZLE4ADwzRNSb9qcdqqUqm0bYXaqp4Q2bYdtD6trKxI2kyKJiYmJCl4Ii+ZTGp5eTnYf9j9ADg8aGkCcKAkk0mVy+UgmakPNyBt3lrr5em5WCzW9AReY8tRvcyt+y4UCkHrE4CjhZYmAAdKPp/X6uqqHMdRqVRSNBpVqVRSLpeTZVlNyYxhGLpx40bw2rZteZ4nSZqbm2vq31RfXle/zdcolUoxpAFwhDHkAIADKZfLqVKpKB6Pq1wua2pqSul0Wp7nyTAMSZsdtjOZTNCBO5/Py/M85fN5maYp27aDbaXNflCrq6vKZDKKRqPKZDJNLVGSNDMz03K4AwCHH0kTgAPPcRzZtq10Oh105t4rpVKJW3PAEUXSBOBQGBsbUzKZlOM4KpfLu1p2KpXSzMyMotGoDMNo2d8JwOFHR3AAh0K9k/Ze3DqbmZkJ+kIx2jhwdNHSBAAAEAJPzwEAAIRA0gQAABACSRMAAEAIJE0AAAAhkDQBAACEQNIEAAAQAkkTAABACCRNAAAAIfz/4PzXaTBVE80AAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -927,9 +927,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/w0lEQVR4nO3db2wj530v+q+SOHIDWBxSRZHk7tq7IxSoceO4OxQRF8ki22iYFnF7cmOPpJz4AHVQi4xxLk5zchPO6l7cY++9gLmkjWv7Ra49s87x5sWmlTheX99kiyacNTZYH2ATieM4m1NfoOBoN+umgNslhzTgWmnjuS/UmeXw75CiREr6foDFivPnmR+HnNFPz/PM80y4ruuCiIiIiHr6wKgDICIiItormDgRERERhcTEiYiIiCgkJk5EREREITFxIiIiIgqJiRMRERFRSEyciIiIiEJi4kREREQUEhOnA8i2baiqimg0ipmZma7bzszMIBqNQlVVOI6zOwHS2LAsC8lksuf3hKhf3ncrHo+POpR9gdfq7mHidACJoohcLofl5WVUKhVYltV2O9M0IUkSFhYWkMvlIAjC7gbaRNf1lmWqqmJ+fn4E0WxpF9N+IkkSVFXte7/dOi+j/vzHwbidg07xNH8nvO/WoH+QOY4DXdeRTCbbrs/n89B1HbquI5/P7/r6Tnbq2hj0WqX+MXE6wARBwMLCAjRNa7t+3GqYisViy7JkMonFxcURRLOlXUz7TSwW63uf3Tovo/78x8G4nYNO8bT7Tgzy3QK2aldWV1fhOA4qlUrLei+RSaVSSKVSkCQJ6XR619Z3s5PXxqDnk/rk0oGlaZpbKpVcQRBa1lWrVbdUKrmKoripVGoE0QVpmuZKkjTqMALGMaadUCqVXFEUQ29/UM4LhdfpO9Hvd6tZoVBoW64gCG61Wg0sa/x1t9PrO9npa2O755PC+dBo0zYaNUmSEIvFYBgGFEXxl6+vr0OW5Y775fN5iKII27YhiqK/r1d9LooiisUi0uk0JEkCsNX051UlnzlzBrZtw7Zt3Lx5E7lcruOxTNNEsViEbdv+X3qZTAaWZUFVVdi2jXK53PEYlUoFpVIJmqZB13XEYjGsrKxgeXnZj63X+wobU3M5wFafssZ13TRX46dSqZ5lDvqevf1isZjftOI4Ts/PozmexnMV9rz0Or8ex3Ggqiri8ThKpRJmZmYgSRI0TcPy8nLL528YBrLZLGzbRqFQgCzLsG0byWQSoihC0zSIotgx9kG+n43vDdiqyY3FYhBFEZVKBbIst/2uqqoKXdeRy+Xafs7tYhNFEel02q+1WFxcbCm317n2rk/HcWDbNgRBCBy/kWEY/jnRNA22bfvN9oVCAbFYDHNzc3AcB4VCwX9fzddkt+8EsFWD1O/57sS2bTiO07ZrgWma/nvfqfWd7pv93Meavxs7ca0C/X0XqMGoMzcaHU3TXNd13Uwm4yqKElhXKBRc13Xb1jgpiuKvd13XlWXZLZVKflnlctlfJ4pi4C+zYrHoiqLoFovFwDbe/p0Ui8XQf7F2OkYmkwm8v+byur2vfmJSFCVw7HK57Mqy3OXdbcnlci0xNn4O3coc9D0XCgUXQOAzy2Qygc+83Tnudq66nZd+zm/zPtVqtSWObp9/o1wuFzr2Qb6fqVQqcM7K5bIrSVKgnHZxybLsX4e9YvM+v2Kx6JZKJf+z7efzKRQKgeOVy+XA63Y0TQt819p9Txu/P50+k07XryAIfZ/vxmM3l1ssFtvW/giC4BYKhR1f302n8xDmuzHsa3WQ7wJtYR8nQjqdhmEYfp8m27ZbamI8tm231E7Nz8/7/aRs24Zpmv46URQDr2OxGGzbDvxV5v0lNCydjtFIkqTAMXu9r7Asy2r5q9OreWg8D828mpXl5WV/2crKCmzbDlXmIO8Z2KodkSQpsO3y8jJ0Xe/4mQxyrgY9v4Zh+N9FQRD8WoluZFlueejBqx3oFccg30+vlrXxL3/vr/hG7fqfNNZa9IpNEARYlgVZliFJUseahl7lFAoFPzZRFDE7O9vxvQHAwsJCy3fXMAz/50ql0vJd64fjODt6P/DEYrG2/aF2a32v2Jo112jtxLXa73eBtrCpjiCKIiRJwurqKlKpFCzL6tpEJQhC4EZaLpf9C9errveqfiuVSsvNpPkmKwjCwDecTtodo9tjur3eV1jr6+ttf4l4TZedqvHX19chCELgZumdS686vVeZ/b7nTrw4LMtqe9xBztWg51eSpJYEJMwv6VQqBU3ToGkaTNPEwsJC6Dj6/X56Zbb7RdePQWLrtxxFUaBpGqLRKCRJwuLiYs9mZO8XtvcLuDEJ3U7C5NmN+wGAnmXu9PqdsJ1rdZDvAm1h4kQAtmqdNE1DKpXqesN3HAeiKAYSgMafLctCNptFMpnEwsLCUG6s7Qzrpu3p9b7CxrSdR6sHWTcK/Z4r77wMcn7T6TSy2SzOnDkDXddD1wCm02nE43G/X453rGF8zsPU+NmGiS1MMtarnGKx6Ndieuez1y/MxcVFrKysQJIkzM7O+rXUsiwPdP6Gff026lSud152en0/up2HYVz3O/FdIA5HQP9mYWEBlmXBMIyu1bXtmnuArQvUcRzMzc1heXnZT8Aam/+GqdPYU4Pq9r7C8ppR2pVj2zYSiUTX47c7lteMMUiZg/I+y07Ntf2eK8uytnV+z5w5A9M0oShK6I6roij6Dz00NoMM43Nu5n12g5TRWEsxrNi6leM9fCBJEjKZDEqlElZWVnqWqSgKDMPwx3bzais61bD2Muzrt5Eoin6zbjNZlnd8fT+6nYcwNVjbuVYH/S4QE6cDrfEpHEEQIMsyVlZWuv5VK8syZmdnA30cAGB1ddWvWWi8iL2Lv9sNIswvhsZ+D936YA16jG7vq5+YJEmCLMuBqnHvvXd7gsx70qVxID3HcbC6ujpwmWF/4VqWFdg2m80ilUp1/IXY61y1Oy+DnF8AKJVKEAQBiqL0/Qs6nU5jaWmp5a/tfuPodR5FUUQqlQo8EdmuL1Zz3x2vOdsrf9Bz1KxbOY2/MBvj6sVrzvfuGd4+Yb9j/Vy//SSKnZKL5eXlwPViGEYg6d7p9Z10Og+9vhueYV6rg34XCHyq7iAql8tuKpVyAbipVMp/SqPxKa5qtermcjlXEARXFEU3l8sFno7LZDKupmmBfbzlmUzGLRaLbrFYdMvlsv9UhzcuFAD/KSfvGJIk9XwixSvbe/KjXXndjiHLsv9EkrdNJpMJ9b7CxtRcjqZpgSeQwpSXy+VannjpVuZ23rP3lI/3tFAulws8gda8X7t42p2rXucl7Pn1niTyvoeSJHX9/BtVq9WOY5C1i2MY309N0/zvfvNTdV553udbKBRcRVFcURRbrqHm2IrFoivLsisIgpvL5fxrtts5aFeO9/3xljVf193kcrnA026NcXh6xdPr+g17vsvlspvL5VxJkvzvZvP2jee53TW40+s76XRt9PpuDPta3c534aCbcF3X3f10jYjGgTc+TKlUGnUoLRzHwdLSEs6cOeM3+3rzLM7Pz4/9eDPxeBy5XG6kfaho/xjna/WgYVMdEY0lXdeRTqf9pmPv6a5cLsdfHkQ0MkyciGgsSZLkD8nQyDTNjhO7EhHtNA5HQHRAmaaJXC4Hy7KQz+fH7jFkr4mreaqZMFO1jFo+n4dlWf4glWyuo+0Y92v1oGEfJyIiIqKQ2FRHREREFBITJyIiIqKQmDgRERERhXSgO4e///77+NWvfoU77rgDExMTow6HiIiIRsB1Xbzzzjv4+Mc/jg98oHud0oFOnH71q1/h8OHDow6DiIiIxsCNGzdw6NChrtsc6MTpjjvuALB1oqampkYcDREREY1CvV7H4cOH/bygmwOdOHnNc1NTU0yciIiIDrgw3XbYOZyIiIgoJCZORERERCExcSIiIiIK6UD3cQrj/fffx69//etRh0E0Erfddhs++MEPjjoMIqKxwcSpi1//+tfY2NjA+++/P+pQiEZGEAR89KMf5VhnRERg4tSR67r4h3/4B3zwgx/E4cOHew6IRbTfuK6Ld999F2+//TYA4GMf+9iIIyIiGj0mTh3867/+K9599118/OMfx0c+8pFRh0M0Er/1W78FAHj77bfxO7/zO2y2I6IDj9UoHfzmN78BAHz4wx8ecSREo+X94fAv//IvI46EiGj0mDj1wH4ddNDxGiAiuoVNdX06cvLCrh7v//2fPx162zevvoHCuRfx0rnv4uFH/xMO33UUN65v4O9/eR3KQw/jvuMnhhKTce4snsk+jjN/+QruvufeUPt88pAwlGMPSzwex/LyMhRFAQDouo5CoYBisdj3vkREdHAwcdpH7r7nXnx9+RReOvdd/Pl//AamIhEAQL1Ww/FPHMFf/fWl0IlON8pDD6N44ZVtl+NxHAeCIAytvDByuRxmZ2f917IsQxTFgfYlIqKDg4nTATAVieDQnUfwN98/P5TEaZhs24ZpmkilUrt6XFmWA69FUQydODXvSzQMu12bPc6unb5/1CEQdcQ+TgdErVbF4buOjjqMFrlcbtQhEBERhcbEaZ+r12p4+onHcN9nTkB56GFcuXwJ93/6GIxzZ2GcO4svf+EEgK3+US8+9yyKF17Bi889i7euXwuU8+bVN/D0E4+heOEVFC+8gppT9ddduXwJX/7CCbz43LMAgOKFV3D/p4/hyuVL/ja2bUNVVRiGAV3X4TgOTNPE+vo6isUidF2Hbdtt34Npmsjn8zAMA6qq+ssty0I6nYZhGP4/y7Jgmibi8Tjy+TwAwDAMzMzMwDRNf794PA5d1wFsNRWm02nMzMwEyvaOmc/n/dia9/WOpes6TNOEruuYn5/v6zMiIqK9g011+9RL3zuLQ3ceAQDMP/RVHLpr6+f7jp/Ap45/Fn979Wf4L6efQUSI4q3r1/BM9nFo33vZ3//LXzgB/S9fwVQkgnqthm9+7WFc+G+v++u/8+2n/Z/vO34Cf/SLL/mvk/d/ET/8/q2y6rUavvTvkiiVShAEAaqqQtd1ZDIZyLKMmZmZjk11XsJVKpUAAJVKBfl8HqlUCnNzc9jY2PD7R0WjUVy8eBGyLGNxcdEvQ1EUrKys+K8lSQqsFwQBmqYhGo0GjtnYUTwej+PixYst+8qyDFmWUSwWUSgUAACFQgGWZUGSpLbviYiI9i4mTvvUg1952O8c3uyOqQiEaAzAVpLz9BOP4fc+8cnANofuPIIf/eBlKA89jB/94OWWvlERIRo6lh/94GWIougnOMvLy6H31TQNsVjMry0CgLW1NQiCAFmWA53Kh9VhW9O0lqRHFEWsrq62TfCmp6cxPT3tvxYEAZVKZSixEBHReGHidEB5tVG74Z16LZDgdHqCrtPTdZIkBTpkp1Ipv6mMiIhoN7GP0z5Vb+iD1E5jH6U//tMH8JPXfhxY/+bVN/D5P9lqfrvvMyfw5tU3Auub+0DdMRWBU71Vy3LltUt4p14DACS/8EVYlhXYvrEGqduyxcXFluWmaWJhYaGlzMY+UoIg4ObNm4F9HMcJbN/8utsxLcvCwsJCz32JiGh/Y43TPvLm1TfwN98/DwD4r889g/mHvtrSxHbl8iX85LUf4//7xc9x6M4juO/4iX8b/+lxvPjcszh05xH84g0LTz1/1m/qO3TXETz1/Fk8/cRj+IPjf4h36jXcEYngO99+Gl9ffhyH7jqCz//Jl/BM9jG/Q/h9nzkB49xZ3P2Je3HoriPQNA2qqiKRSAC49Uh/Op1GLpeDruttH/OXJAm5XK5lX0EQUCgUoKoqkslkS23VwsICVFX1EyBZlv0mOMdxsLKyglgsBkVRWoYh8I6Zz+chiiLW1tZQKBQgCAIsywrs65XlHcO2bViWBU3T+hrigIiI9oYJ13XdUQcxKvV6HZFIBLVaDVNTU4F17733HjY2NnD06FHcfvvtA5X/87ecIUS5P+zGyOHJZBK5XG7gTtnRaBTVaveauoNoGNcC9cZxnG7hOE6027rlA81Y40T7xiAdsnVdR7lcRjqd5mjgRETUE/s40b7gjQOlaVpf/Y9kWcb09DQMw4CmaTsXIBER7Qsjq3GyLAtLS0v++DydGIbh931pfuLK6xwsSRJs24bjOBw754BKpVIDTdsiiiIymcwORERERPvRSGqcDMMAgJanotqZn59HNBpFNBrFxMQEJiYm/BGhNU1DPB7HxMQE0uk0O+ISERHRjhpJjZOiKKG2cxwHhUIhsH0+n/drCOLxuN+Zt9PYQERERETDMvadwxuTJsMwWpIuJkxERES0W8Y6cWpMihzHQaVSCTTHOY7jN/utra31bK7b3NzE5uam/7perw8/aCIiItq3xjpxaqSqKnK5XGBZKpXykytRFJFMJlEulzuWkc1mcerUqZ0Mk4iIiPaxPTEcgeM4ME2zpVmucYoNURRh23ZgWbPl5WXUajX/340bN3Yq5JEzzm2N9G2cO4vihVdw5fIlGOfOtkyVMk5M00Q8Ht+1eeji8bhfYznummPVdR3JZHKgfYmIaHB7osZpfX297VAEc3NzLSM9x2KxjuVMTk5icnJye8E8Hgm96Se3dyQAwM8fud73PumvfAnJ+7+I//y/3qpde/PqG0h/5Uu48NrrQ4hqZ8iy3HbalZ2Sy+X2zKCXzbHKshz6KdK99D6JiMbdyBOn5jnGLMuCIAiBXwqWZbUkRKIoBpruTNOEoigHvrP4i889CwBQHno4sPzue+7Fgw/92Qgi6s/09PSuHWs3k7Ttao61n3nw9tL7JCIadyNpqjNNE6qqAtjqd9TYjND82tP8S0IQBMzOziKfz0PXdX8i1oPuO99+uiVp8nz+/v9pV2MhIiLab0ZS4+Q1yTR39gbQNvnpNLKzJEkcKbzBW9ev4Z1aDYfuPNJ2/X3HT/g/v3n1DVx57RIO3XkEb/3yGpJf+CIO3XUEVy5fwjPZx6E89LC/7srlS/j68uN4p17Dldcu4cb1DfyX088AAK5cvoT/8+R/xqeOfxZ/cPwPUXOq+NurP8PXl09hKhLx1//v/9sygK1BS0ulEkzThGVZEEURa2trge+C16fNtm0Ui8XAd6Ldfl4i7j1V2byf4zhYXV2FKIpwHAdra2tYXFzE0tIS0um0P+K4ZVkwTdMvQ1EUiKLYs/xmnd6bZVnQNC3QN0kURVQqFaiqisXFRWQyGRiGAVVVoWkaZFn2R9n3YnUcB6qqwjRN/2GITrE379vveyEioqCRN9XR7nvr+jU8k30c2vde9pd9+QsnoP/lK7jv+Al86vJnceXyJTz1/FkAQPHCKyj+9Sv46qN/gbvvuRf3f/oY6rUapiIR3Hf8BOT7/x2EaAzJ+7/ob/+tRx+G9r2Xt8o7/lmUSiVomoZYLAbbtqGqqj/dTqVSCQxsura25v9cKBRgWZY/rU6n/WRZDiQAjfvpug5Jkvwmq0qlAkmSsLi46L9/r+xisegvi8fjuHjxop/odyq/UacYU6kU5ubmsLGx4TcnR6NRv/zGWBRFwcrKiv+6OVZBEKBpGqLRaM/Ym/ft570QEVErJk77yKG7jgAA3vrlNdx9z70t69+6fg1TQhSFcy/i9z4R7Lp+6M4j+NEPXoby0MMQojEI0Vt9yu6YigRqse6IRFB3qpiKRALbeJL3fxHf/NrDfnJ1x1QEM0f+BwBbSYGqqojFYjBN099nbW3N/zmRSPg/C4KASqUCAH7i1W6/6enpQP+oxv0URUE8HocoilhcXGw7p52maS2JgyiKWF1dRSqV6lp+czntYhQEAbIsB/rgDavDdq/Ym4V9L0RE1IqJ0z7z8KP/Cca5s37tT6M3f/FG2+VhNCZGg2juo9ZYAwQg9AS9g+wXi8VQrVZhWRZWVlYwPz8fqJ0ZtnYx7tYQC0REtLP2xDhOFJ43BIFx7mxgeb1W83/+4z99AD957ceB9W9efQOf/5MvdSz3nXqt47rm9cULW01+jTVSjTUai4uLgRoZAC2v2xl0v2w2C9u2IUkScrlcy4j0ncq2LAsLCws9yw8T48LCQsuk1o1jjgmCgJs3bwb28WJrjjXMMZtj77QvERH1hzVO+5D2vZfx4nPP4uknHsPhu44iImz1hfFqm+6+5158fflxvPjcszh05xH84g0LTz1/FlORCN68+gZ++P2tvk/3feYE3vrlNbx59Y2t/T5xL668dglv/fIa/utzz/gdwAHgxvUNXLl8Ce/Ua/jFGxaefO4sgK3O4z957cd46+/+FqIoQpZlP4FRVdVvlvM6QXt9e2RZhm3bfodqURQH3m96ehqmaSIWi6FSqWBxcdHfJxaLQVEUv+x8Pu936i4UChAEoWf5jbVpnWIUBAGFQgGqqiKZTLYMw7GwsOB3+Pb28ZrgHMcJxNqu9q5X7N6+Xllh3gsREbWacF3XHXUQo1Kv1xGJRFCr1TA1NRVY995772FjYwNHjx7F7bffPlD5P3/LGUKU489L0DoNgwAAnzwk7Fo8e0UymUQulxu4U3Y0Gm0ZAHYnDONaoN6OnLww6hDGxrXT9486BDpguuUDzVjjRDQig3TI1nUd5XIZ6XSao4ETEY0A+zjRtnhNccULr/hNetSbruuwbRuapvXV/0iWZUxPT8MwDGiatnMBEhFRW6xxom257/gJ/NXxS6MOY89JpVKhnyRsJIpixwFhiYho57HGiYiIiCgkJk5EREREITFxIiIiIgqJiRMRERFRSEyciIiIiEJi4rSPXLl8Cf/Hya/j3sNRPP3EY7hy+VLfZRjnzuIznziyK0ML6LqOaDTaMhXJTovH4zAMIxBHMpkcaF8iIjpYOBxBn+757j27erxzc5dDb3vf8RM4dOcRvHTuu/jz//iNwFxxYSkPPYzihVf63m8QqVQKhUJhV47VKJfLBQaPlGU59FQjzfsSEdHBwsRpn5n6t3npqDNZlgOv+5mjrXlfIiI6WNhUR0RERBQSE6d97srlS/jyF07AOHcWVy5fgnHuLL75tYcD27x59Q08/cRjKF54BcULr6DmVFvKePG5Z1G88AqefuIxAEDxwiv48hdO4P5PHwMAvPjcs7j/08fw4nPPdtwHACzLgqqqMAwDhmH0nK/NNE3k83kYhgFVVQPlpNNpvxzDMGBZFkzTRDweRz6fBwAYhoGZmRmYpunvF4/Hoes6AMBxHKTTaczMzATK9o6Zz+dh23bbfb1j6boO0zSh6zrm5+d7fCJERLSXjaypzrIsLC0toVQq9dwOACRJgm3bcBzHn03etm0YhgFRFGHbNlKpFARB2OnQ95T7jp/Apy5/FlcuX8JTz58FAH9eubvvuRf1Wg3f/NrDuPDfXvf3+c63n/Z/fuv6NTyTfRx/9deXAAA1p4oXn3sWX330L/Cpz5xA6t9/EfVaDXdMRfCXf30JU5FI233y+TxSqRTm5+dRLpf98rPZbMfYbduGqqr+d6RSqfjlzM3NYWNjw/+8o9EoLl68CFmWsbi46JehKApWVlb815IkBdYLggBN0xCNRgPHLBaL/jbxeBwXL15s2VeWZciyjGKx6PfVKhQKsCzL/44SEdH+MpLEyUt2wjxNpWma/xe+LMuBzsTz8/P+L1XbtrG0tDSSzsbjTojGIERj/us7piJ+rdKPfvAy7r7n3sD2kYZ+UoVzLyIiRANP6P33N7aSrKlIBI/lnsW//8IJPPX8Wb8zert91tbWIAhCS0IRi8XQiaZpiMVifm1RYzmyLAeS5GF12NY0rSVGURSxurradm656elpTE9P+68FQehZi0ZERHvXSBInRVFCbxuPx1Gtbv2Sb/xF6TWfeERRDPyCpeH5vU98EvcdP+G/Vh562P/5jqkI7r7nXvzN988HErDmfT6pft1PgPshSVKgQ3YqlRqoHCIiomHYE32cBEFoaYIzTbOltiIWi+36mEDjpt7UP6mX+z5zomXMpreuX/N//uM/fQA/ee3HgfVeTVK9VsOV17aaAP/+l9f9YQza7WOaJmRZbvl8mhPgRouLiy3JsGmaWFhY6FqOIAi4efNmYB/HcQLbN7/udkzLsrCwsNBzXyIi2v/GfjgCx3H8AQfX1taQTqchimLHX14HuZnkyuVL+NGF/wcA8J1v/1/44z99AADww++/DGArSXrrl9fw5tU3YJw7i0N3HsGhu47gqefP4uknHsMfHP9DvFOv4Y5IBN/59tP4+vLjuPuee/H15cfx9BOP4RP3bjVhfeozW53NX/y/n4XyHx4GAPyP9x7DKfUv8NYvr+Grj/5Fyz5/vvhFCIKAQqEAVVWRTCbhOA4EQUA2m0Uul2sZEkCSJORyOaiqikQiAQB+E127cjwLCwtQVdVPgGRZ9pvgHMfBysoKYrEYFEXpeMx8Pg9RFLG2toZCoQBBEGBZVmBfryzvGLZtw7IsaJrW1xAHRES0d0y4ruuO7OATE+h1+MZfipZl+Z2L8/k8isVioBPvzMwMcrlcx6bAzc1NbG5u+q/r9ToOHz6MWq2GqampwLbvvfceNjY2cPToUdx+++3+8nEeAHOcffKQsKPlJ5NJ5HK5gTtlR6NRv0mYgjpdCzRcR05eGHUIY+Pa6ftHHQIdMPV6HZFIpG0+0Gzsa5xs2/Z/GXpPz9m23bYTbqVS6fpUXTabxalTp7YVz9U/uxp625+/5WzrWBTeIDWNuq6jXC4jnU5zNHAiIgplrPs4WZaFubm5luWxWKzjCM7dfgEuLy+jVqv5/27cuDG0WGl0dF2HbdvQNK2v/keyLGN6ehqGYUDTtJ0LkIiI9o2R1zg190+xLAuCIPh9RHK5nL/ONE0oitK2s7ht25idne1a4zQ5OYnJyckhvwMatVQq1XaogF5EUUQmk9mBiIiIaL8aSeJkmqbfNymbzSKRSPj9krzXmUwGgiBgdnYW+XwegiCgXC4HxmnyOggnEgm/Ey8RERHRThlp5/BR69YZbBgdYtnH6Zad7hxOO4edw3cHO4ffws7htNv66Rw+1n2cxsEBziuJAPAaICJqxMSpgw9+8IMAgF//+tcjjoRotN59910AwG233TbiSIiIRm/kncPH1Yc+9CF85CMfwT/+4z/itttuwwc+0H+O6f4rky7Pe++9N+oQqE+u6+Ldd9/F22+/DUEQ/D8miIgOMiZOHUxMTOBjH/sYNjY2cP369YHKeLv6z0OOau/68D//1qhDoAEJgoCPfvSjow6DiGgsMHHq4sMf/jB+93d/d+DmukfOXxpuQHvYxf/lxKhDoAHcdtttrGkiImrAxKmHD3zgAwM/SfT37/xmyNHsXXwai4iI9gN2DiciIiIKiYkTERERUUhMnIiIiIhCYuJEREREFBITJyIiIqKQmDgRERERhcTEiYiIiCgkJk5EREREITFxIiIiIgqJiRMRERFRSEyciIiIiELqe666a9euoVAooFgsolqt+stjsRiSySQURcGRI0eGGSMRERHRWOgrcTp58iQmJiawsLCAb33rWy3rX3/9dTz//POYmJhANpsdWpBERERE4yB04vTkk09ieXkZkUik4zbHjh3DsWPHUKvVsLy8zOSJiIiI9pXQfZy+9a1vdU2aGkUikZ5Jk2VZiMfjPcuyLAv5fB75fB7z8/NwHCewzrIsAIBt2/7PRERERDth4M7hJ0+exAsvvIBarYbPf/7zWFxcxPnz50PtaxgGAIRKdEzTRCaTQSaTQSKRwNzcnL9O0zTE43FMTEwgnU5DFMXB3gwRERFRCAMnTolEAo888gh0XUc8HsfKygpu3rwZal9FUSBJUs/tLMsK1FwpigLLsmDbNgAgHo+jWq2iWq2iWCxCEISB3gsRERFRGH0/VeeJRqMAgNXVVZw5cwbA1pN1wyRJkl82AL+ZrvE4TJaIiIhotwycOJXLZbiui3K5jN///d/HxsZGYHiCYVEUxf95ZWUFsiz7yZLjOH6z39raWs/mus3NTWxubvqv6/X60OMlIiKi/WvgxGlhYQG6rqNUKqFWq0HTNPz2b//2MGML8JKkUqnkL0ulUn4SJYoikskkyuVyxzKy2SxOnTq1YzESERHR/jbhuq7ba6NarYZqtdrXwJZebc7U1FTng09MIMThAQDpdBqqqgZqlCzL8vtKOY6DaDSKcrncsdapXY3T4cOHUavVusY5qCMnLwy9zL3q2un7Rx0C0Vjj/eIW3i9ot9XrdUQikVD5QKgap0gkgtXVVUxPT+OBBx7ouf1LL72EarWKRx55JFzEPeTzeT9p8vo52baNubm5lubBbv2sJicnMTk5OZSYiIiI6OAJ3VS3tLSE119/HQsLC5iZmUEikYAoihAEAY7jwLZt/PSnP8XGxgbS6TQefPDBUOU6jhPo4G1ZFgRB8GuNDMOAJEl+0rS6uopUKgVRFJHL5fz9TNOEoijsLE5EREQ7pq8+TseOHcPq6ipqtRpWV1fx05/+1E98ZmZmkE6ncfTo0Z7lmKaJYrEIYKvfUSKR8DuBe68zmQxs28b8/HxgX0EQ/L5Ns7OzyOfzEAQB5XIZhUKhn7dDRERE1JdQfZz2q37aNAfBPgu3sM8CUXe8X9zC+wXttn7ygYEHwCQiIiI6aJg4EREREYXExImIiIgoJCZORERERCFtK3F68sknsbi4CAC4ePEipzAhIiKifW3gxOnkyZMQBAGyLAMA5ubmYJrm0AIjIiIiGjcDJ06JRAJLS0tdJ9UlIiIi2k8GTpw2NjYAbM0351lbW9t+RERERERjqq+RwxsdO3YMs7OzmJ6eRrFYhGmagSlQiIiIiPabgWuc5ubmUCgUcOzYMbiuC13X8bnPfW6YsRERERGNlYFrnADg6NGjOH36tP+6Xq/vyNQlRERERONgW8MR1Ot1XLt2zf+nquqw4iIiIiIaOwPXOH3ta1+DaZoQBMFftrGxgeeee24YcRERERGNnYETp5mZGTz//POBZWfOnNl2QERERETjauCmOm/gy0bJZHJbwRARERGNs4FrnKLRKJ566imIoghBEOA4DlZWVrCysjLM+IiIiIjGxsCJUyaTgeM4gT5Or7/++jBiIiIiIhpLAydOyWQSS0tLgWUvvfTStgMiIiIiGlcD93GamZkJtYyIiIhovxi4xqlcLkPTNCQSCQCA67pYXV3lfHVERES0bw1c46RpGo4ePQrXdeG6LgD4/4dhWRbi8XjP7WzbRj6fh2EYyOfzcBwn1DoiIiKiYRu4ximXy2Fubi6wrN0QBe0YhgFRFGFZVs9t5+fnUSqVAGwlSktLSygUCj3XEREREQ3bwIlTc9IEbA1REIaiKKG2s2078FoURZim2XMdERER0U4InTidP38esiz7k/i+8MILgfWO46BYLOKHP/zh0IIzTROxWCywLBaLwbIsrK+vd1wnSdLQYiAiIiLyhO7j9MQTT2B9fd1//fzzz6Narfr/XNfFzZs3hxpcpz5LlUql67pONjc3Ua/XA/+IiIiIwgpd49SYNAFb89IdO3YssCxsH6ft6tYJvNu6bDaLU6dODT8gIiIiOhAGfqqusT9TrVbDSy+9FLqPU1iCILTUIFUqFQiC0HVdJ8vLy6jVav6/GzduDDVeIiIi2t8GTpwaO2JHIhE8+OCDQ++c3akGa3Z2tuu6TiYnJzE1NRX4R0RERBRWX0/V1Wo1rK6uYmJiAsVisWV9qVTCI4880lcAzfPdWZYFQRAgiiJEUQxsa9s2Zmdn/RqnTuuIiIiIdkJfiVMkEoEsy8jlciiXyzh69GhgfSaTCVWOaZp+4pXNZpFIJPwhCrzXXlmFQgGqqiKRSGBtbS0wTlO3dURERETDNuH2M9x3g4sXL7Ydy2kvqdfriEQiqNVqO9Jsd+TkhaGXuVddO33/qEMgGmu8X9zC+wXttn7ygYH7OO31pImIiIioXwMnTkREREQHDRMnIiIiopCYOBERERGFNNTE6dq1a8MsjoiIiGis9DUcQbOf/exngdG7NU3DysrKtoMiIiIiGkcDJ04LCwstg1e+/vrrw4iJiIiIaCwNnDglk0ksLS0Flr300kvbDoiIiIhoXA3cx2lmZibUMiIiIqL9YuAap3K5DE3TkEgkAACu62J1dRVra2tDC46IiIhonAxc46RpGo4ePQrXdeHN2jLg7C1EREREe8LANU65XK5l2hVZlrcdEBEREdG4Gtpcda+++io2Nja2HRARERHRuNrWOE7nz5+HbdsAtprp1tfX8cADDwwlMCIiIqJxM3DidPLkSTiOg0qlAlEU4TgO0un0MGMjIiIiGisDJ04zMzNYWlrCxsYGJiYmcOTIEbz66qvDjI2IiIhorAycOImiiOvXr+Po0aN46qmn8M1vfnOYcdF+83hk1BGMj8dro46AiIgGNHDi5DgORFFEtVrFP/3TP+GP/uiPIAgCPve5zw0zPiIiIqKxMXDi9OCDD+I3v/kNAOD06dO4ePEiZmdnhxYYERER0bgZeDgCAHjyySexuLjov56YmNh2QERERETjaltP1c3MzPiDXs7NzeH8+fOhhyOwbRuGYUAURdi2jVQqBUEQ2m5rGIZ/nOZtLMsCAEiSBNu24TgOJEka7E0REdHosU/kLewTOXYGrnFKJBJYWlqCKIoD7T8/P49MJgNFUaAoCpaWlrpuG41GEY1GMTExgYmJCeTzeQBbU7/E43FMTEwgnU4PHA8RERFRLwMnTt4o4Y3Nc2En+PUGzfSIogjTNNtu6zgOCoWCPyee67rI5XLIZDIAgHg8jmq1imq1imKx2LHWioiIiGi7Bm6qO3bsGGZnZzE9PY1isQjTNJHL5ULta5omYrFYYFksFoNlWW2b2RRF8X82DCPwGmhtviMiIiLaCQMnTnNzcygUCtA0Da7rQtd1HDt2LNS+juO0XV6pVFqWNSZFjSOVNy4zDAPAVo1Xt+a6zc1NbG5u+q/r9XqoeImIiIiAbc5Vd/ToUZw+fXpYsXRMqDyqqrbUajV2KhdFEclkEuVyue3+2WwWp06dGkaoREREdACF7uP01FNP9dzmhRdeCFWWIAgttUuVSqVrk5vjODBNs2Wbxv5S3hN6zX2oPMvLy6jVav6/GzduhIqXiIiICOijxumJJ55AsVjsus36+joeeeSRnmXJsgxN01qWdxtAc319ve1QBHNzc6hWq4Hlzf2nPJOTk5icnOwZHxEREVE7oROnubk5TE9PIx6Pd9zGdd1QZTX3QbJtG7Ozs35iZFkWBEEIbGdZVktCJIpioOnONE0oisLO4kRERLQjQidOhUIBtVoN6+vrALbGcZqamgps06mmp1N5qqoikUhgbW0NhULBX5fNZpFIJPwhBzzNCZcgCJidnUU+n4cgCCiXy4FyiIiIiIZpwg1bTdTk9ddfR6VSwcTExJ6d2LderyMSiaBWq7UkgcNw5OSFoZe5V127/SujDmF8cCRgaoP3i1t4v2jA+8Wu6Ccf2NY4Tp5XX30VxWIRyWRyzyZRRERERL1sa5Lfn/3sZ3j00UehKAqKxWLHp9mIiIiI9oO+a5yuXbvmD3w5MTGBBx98EKVSCUePHt2J+IiIiIjGRugapxdeeAGJRALxeBy2baNQKODv/u7vcPr0aT9pOn/+/I4FSkRERDRqoWucUqkUFEXByZMnIQgCqtUqXn31VX99tVrF6dOn8cADD+xIoERERESj1lfilM/nu47VtLKyMpSgiIiIiMZR6MQpnU73fERveXl52wERERERjavQfZwahx/YzjZEREREe9W2hiMgIiIiOkiYOBERERGFxMSJiIiIKCQmTkREREQhMXEiIiIiComJExEREVFITJyIiIiIQmLiRERERBQSEyciIiKikJg4EREREYXExImIiIgoJCZORERERCF9aFQHtm0bhmFAFEXYto1UKgVBENpua1kWAECSJNi2DcdxIElS3+UQERERbcfIEqf5+XmUSiUAW8nP0tISCoVC2201TYOu6wAAWZYD2/VTDhEREdF2jCRxsm078FoURZim2XH7eDyOarUKAIHapH7LISIiItqOkfRxMk0TsVgssCwWi/lNcu0IgtDSBDdIOURERESDGkmNk+M4bZdXKpWO2xuGAQBYW1tDOp2GKIp9l7O5uYnNzU3/db1eDx80ERERHXgj6+PUTqdEqLHDtyiKSCaTKJfLfZeTzWZx6tSpbUZJREREB9VImuoEQWipFapUKh2fhmvsy+Q9PWfbdt/lLC8vo1ar+f9u3LixrfdBREREB8tIEidZltsun52dbVlmWRbm5uZalsdisb7KAYDJyUlMTU0F/hERERGFNZKmOlEUA69t28bs7KxfU2RZFgRBgCiKEEURuVzO39Y0TSiK0razeHM5RERERMM0sj5OhUIBqqoikUhgbW0tMPZSNptFIpFAJpOBIAiYnZ1FPp+HIAgol8uBbbuVQ0RERDRME67ruqMOYlTq9ToikQhqtdqONNsdOXlh6GXuVddu/8qoQxgfj9dGHQGNId4vbuH9ogHvF7uin3yAc9URERERhcTEiYiIiCgkJk5EREREITFxIiIiIgqJiRMRERFRSEyciIiIiEJi4kREREQUEhMnIiIiopCYOBERERGFxMSJiIiIKCQmTkREREQhMXEiIiIiComJExEREVFITJyIiIiIQmLiRERERBQSEyciIiKikJg4EREREYXExImIiIgoJCZORERERCExcSIiIiIK6UOjOrBt2zAMA6IowrZtpFIpCILQdlvLsmCaJgBgbW0NZ86c8be1LAsAIEkSbNuG4ziQJGk33gIREREdMCNLnObn51EqlQBsJVFLS0soFApttzVNE5lMBgCQz+cxNzfn76tpGnRdBwDIstyxDCIiIqLtGklTnW3bgdeiKPo1Ss0sy0I2m/VfK4oCy7L8MuLxOKrVKqrVKorFYsdaKyIiIqLtGkniZJomYrFYYFksFvOb3RpJkoQzZ874rx3H8bf3CILAhImIiIh23Eia6rzkp1mlUmm7XFEU/+eVlRXIsuwnSo7jwDAMAFv9n9LpNERRbFvO5uYmNjc3/df1en2A6ImIiOigGlkfp3Y6JVSN6w3D8Ps3AQh0KhdFEclkEuVyue3+2WwWp06dGla4REREdMCMpKlOEISW2qVKpdKzuU1V1ZZ+TI39pbwn9Jr7UHmWl5dRq9X8fzdu3Bj4PRAREdHBM5LESZbltstnZ2c77pPP56GqKkRRhOM4cBwHlmVhbm6uZdvm/lOeyclJTE1NBf4RERERhTWSxKm5D5Jt25idnQ2MzdRYa2QYBiRJ8pOm1dVVCIIAURSRy+X87UzThKIo7ChOREREO2JkfZwKhQJUVUUikcDa2lpg/KVsNotEIoFMJgPbtjE/Px/YVxAEv2/T7Ows8vk8BEFAuVzmOE5ERES0YyZc13VHHcSo1Ot1RCIR1Gq1HWm2O3LywtDL3Kuu3f6VUYcwNu45eueoQxgbV//s6qhDGBu8X9zC+0WDx2ujjuBA6Ccf4Fx1RERERCExcSIiIiIKiYkTERERUUhMnIiIiIhCYuJEREREFBITJyIiIqKQmDgRERERhcTEiYiIiCgkJk5EREREITFxIiIiIgqJiRMRERFRSEyciIiIiEJi4kREREQUEhMnIiIiopCYOBERERGFxMSJiIiIKCQmTkREREQhMXEiIiIiComJExEREVFITJyIiIiIQvrQqA5s2zYMw4AoirBtG6lUCoIg9L1tP+UQERERbcfIEqf5+XmUSiUAW8nP0tISCoVC39v2Uw4RERHRdoykqc627cBrURRhmmbf2/ZTDhEREdF2jaTGyTRNxGKxwLJYLAbLsiBJUuht19fXQ5dDRES019zz3XtGHcJYufpnV0cdwmgSJ8dx2i6vVCp9bdtPOQCwubmJzc1N/3WtVgMA1Ov1zsFuw/ub7+5IuXtRfcIddQhj4zf//JtRhzA2dura24t4v7iF94tbeL8I2ql7hleu6/b+7o2sj1M7nRKhfrfttC6bzeLUqVMtyw8fPhz6uDSYyKgDGCtvjjqAsRF5lN8MasVvRSPeLxrt9D3jnXfeQSTS/RgjSZwEQWipFapUKm2fhuu2bT/lAMDy8jK+8Y1v+K/ff/99VCoVTE9PY2JiYrA3Q3tGvV7H4cOHcePGDUxNTY06HCIaY7xfHCyu6+Kdd97Bxz/+8Z7bjiRxkmUZmqa1LJ+dne1rW1EUQ5cDAJOTk5icnAws49AFB8/U1BRvhEQUCu8XB0evmibPSBInURQDr23bxuzsrJ/EWJYFQRAgimLXbZuTnuZyiIiIiIZpZH2cCoUCVFVFIpHA2tpaYOylbDaLRCKBTCbTc9tu64iIiIiGacIN04WcaB/Y3NxENpvF8vJyS5MtEVEj3i+oEyZORERERCFxkl8iIiKikJg4EREREYXExIla6LqOZDIZatt4PA7DMHY4otGwLAvpdBoTExNQVRW6rkNVVczPz3NORDqQ9vu9IZ/PQ9d1GIaBfD4/tPh5L9lf2MeJWti2Ddu2Ictyz21N09z2EBCO4+zqEBL9HM9xHESjUVSrVX8fb1mpVBqbORF3+xzSwbTb94bdFI/HcebMmcA1raoqACCXy227/L1wL+F9JBzWOFELURRD3RiBrQFKt3Oh2baN1dXVgfcfxfG8McZWVlaGFNX27PY5pINrN+8Nu0lVVYii2JK85HI56LoOy7J25LjjdC/hfSQ8Jk40UsP4S24Ux6tUKpiZmRlKWdu12+eQaL/J5/MdmyBlWUY2m92xY4/LvYT3kfCYOFGA4zhIp9OBC9myLL+9P5/Pw7Ztf3k8Hoeu6wC2qua916ZpQtd1zM/PdzyWaZpYX19HsViEruuwbRuGYSAajSKdTsOyLCSTSSSTSTiOA9M0EY1G/X4Hpmn6cXlV6t1i6HS8mZkZfxvHcTAzM+OX1+78qKoKWZaRSqW6xjEzMwNd16HrOuLxOICtv+pUVYVhGNB13Z+Qut/30u0cEu2E3bw3ePs0XxOdrtd0Ot1xn17H9mLuNFWXKIp+jVPYa7I5hk7nc1zuJbyP9MklakMQBNd1XbdcLruyLAfWSZLkVqtV13VdN5fLuZqm+esymYyrKIr/WpZlt1QqdTxOJpMJ7O8ty+Vyruu6brFYDJTnbVsul11JkgLLvX26xdDueJqmualUquUYruu61WrVBeDmcjm3UCi4hULBLZfL/vpucaRSKb/cQqHgVqtVVxRF/9x573PQ99LtHBLtlN24N3S7Jjpdr4NeR+Vy2QXgFovFtrFkMhlXFMVQ76NbDON+L+F9JLyRTblCe4OmaS3t/qIoYnV11f8rqdH09DSmp6f914IgoFKp9HXMdDqN+fl5ZDIZOI4D27bhOA7W19exsLDgxxWLxQJPpKytrQ0UQyqVQjQahaZp/nyH7bZp11+jWxyCIPhxKIoCXdchiqJfzvLyMoCtKYaG9V6IdstO3hu6XVeN16vjOP58poPeE7z9O9WyWJYVeJ/dyuoWg4f3kr2PiRONDe+JDu9G5lWPLy4uYnV1FbFYLHDDkSQp0FG13c06zPG8fXVdRywWg6IofZXTLY7GSaqbn1gZ5nvpdAyivarbNbGwsOA3AzYuH/Q6ymQyKBQKbbdfX1/vaw7U7VzL43Iv4X2kO/Zxoq4WFxdbxhmxLMuv+QHgt61vV+Nx0uk0lpaWoCgKUqkUNE3rGVe/46E0H69b58hOf5n1iqNxP0VRWp7OMU1zKO9lu/sR9Wsn7w29rglVVZHL5RCLxULv000ul0OlUmnZPp1OY2FhIfSThGFi2Av3Et5Hehh1WyGNJ68fg+tu9TPy2uUzmYzfLl4qlVxJklxZlt1yuey/liTJLZVKbqFQcEVRdBVFCbTlNyqXy24qlXI1TQtsU61WA/0YGtvmG+PKZDJ+f4Fqtdozhk7Ha3eMUqnkZjIZF4CbSqU69sdoF0exWPTPTWPfiXbbDvpeep1Dop2wW/eGTteKR1GUlmXbuY5c91Y/n0Kh4L+vRmHK6hTDuN9LeB8JjwNgUlveQG0HiWEYfTfTER00B/HeQNSIfZzIp+s6yuUy0ul0x0dz9xuvI3osFhuLkXuJxtFBvDcQdcIaJ/J54xoBW23ojZ0R9yvTNP2OkGH7MRAdNAfx3kDUCTuHk08URWQyGWQymV27Meq6jmg0umNTGrTTOOFmsVhEpVJBsVjkhJtEHezEvWGY136vsrqt58S+1LfRdrEi6j1I5k7wBqNr7FzqLdvtWDpp7vhKtN8M89rvVVa79V5n6UaZTMbNZDJDiWnc7zO8xwyGNU5E/4YTbhIdHAd9Yl/eYwbHxImoASfcJDoYDvrEvrzHDI5P1dFADMOAIAiwbRvlctm/CE3ThKqqSKfTEEURtm2jWCwGRt61LAsrKytIJBIAOg8I17i9aZp+eV7n1DDHMk0TlmVBFEWsra11vFk4joNsNutPuNluP9M0kU6n/YkzNU1DqVSCbdvQNA2JRAKVSgULCwsQBKFjGWFiXl9f98+LLMvsjEtjYxyu/TBldVsfZmLfxsnE99t9hveYbRp1WyHtTQD8QdJSqVRgoLhuk0l6k1M2atfPwNNrItGdmHBz1JNtettwwk0aR+Nw7fcqq9f6cZjYd9T3Gd5jBscaJxpItVr1/+qsVCqBCTK7TSa5urra0qegcdqEZr0mEt2JCTc52SZRZ+Nw7QPoWlavY43DxL68z+xdTJxoINlsFtPT02M/psugE16Oy2Sb7Y5BNEp75drvZRwm9h2X+wzvMf1h53Dqm9em7o3p4k3kGWZsElmWW55W6fRXHxBuItF+9g0z4eY4Tba5nf2Ihm1crv1eZYU51qgn9h2n+wzvMf3hyOHUN8dxsLS0hHQ67S/TNA2Li4sQRRFLS0sAgDNnzsC2baiqCkmSkMvlIIqi32kzmUz6nSVFUfTXN2vu/Li4uAhJkmBZVs9jmaaJYrHodxCVZRm2bWNlZQX5fB6pVArpdLqlWr/dfuvr61BVFbFYDKqq+jfWdtt6nTbbHbtXzMDWTT6XyyEej7PjJo2Ncbn2AfQsK+yxVFXFzMwMYrEYbNuGKIqBOSv3632G95jBMXEiIiIiColNdUREREQhMXEiIiIiComJExEREVFITJyIiIiIQmLiRERERBQSEyciIiKikJg4EREREYXExImIiIgoJM5VR0R7Xj6fhyAIHUd/JiIaFo4cTkR7WjweRy6XC8wtpqoqgK35yIiIhomJExHtWaqqwrbttjPZR6NRXLx4sWV+MCKi7WAfJyLas/L5PJLJZNt1siwjm83uckREtN8xcSKiPcm2bQDA7Oxs2/WiKMKyLABbM8vH43Hk83kAgGEYmJmZgWma/vamaSKfz8MwDL+pzzRNzMzMQNd16LqOeDzu7zs/Pw8AcBwHMzMz/j5EtL+xczgR7UvT09OoVCoAtmqfFhcX/XWKomBlZcV/bds2VFVFqVQCAFQqFeTzeWQyGciyjFKpBE3TEIvFoCgKKpWKv60gCFBVFalUahffHRGNCmuciGhPEkURwK2ap2blcrljbVQzLykyTdOvhVpbWwOwlRjNzMwAgP+kXiqVwurqqn/8sMchor2PNU5EtGelUikUi0U/ofGGIgC2mtn6eapOkqTAk3mNNUhemc3H1nXdr4UiooOBNU5EtGdpmob19XVYlgXDMBCLxWAYBvL5PGRZDiQ0giDg5s2b/mvTNOE4DgBgcXEx0N/JW+/xmvwapdNpDndAdABxOAIi2vPy+TzK5TLi8TiKxSISiQQymQwcx4EgCAC2OnGrqup36tY0DY7jQNM0iKII0zT9fYGtflHr6+tQVRWxWAyqqgZqpABgfn6+7VAIRLR/MXEion3FsiyYpolMJuN38N4phmGwmY7ogGHiRET7TjQaRSqVgmVZKBaLQy07nU5jfn4esVgMgiC07f9ERPsXO4cT0b7jddzeiWa0+fl5v28URyUnOnhY40REREQUEp+qIyIiIgqJiRMRERFRSEyciIiIiEJi4kREREQUEhMnIiIiopCYOBERERGFxMSJiIiIKCQmTkREREQhMXEiIiIiCun/B6d/2qhiHU8XAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFnCAYAAABQEsaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABAKUlEQVR4nO3db2wj530v+q+SOHIDWBxSQJHk7jq7wxaoceO4OxQRF4nRbTRsi7g9ObFJKSe+QB3UIhMcoPXdm3JW98Wx3Rfmkjau4xe59swmx5sXm1SasX2MZIuTcNbYwDmAE4njOM45PkDB0W7skwJulxzSgGuljee8UGaWw79DihIp6fsBFjbnzzO/GXFGPz3PM88z47quCyIiIiIa6H2TDoCIiIjooGDiRERERBQSEyciIiKikJg4EREREYXExImIiIgoJCZORERERCExcSIiIiIKiYkTERERUUhMnI4g27ahKAqi0Sji8XjfbePxOKLRKBRFgeM4+xMgTQ3LspBKpQZ+T4iG5X23EonEpEM5FHiv7h8mTkeQKIooFotYXV1FrVaDZVldtzNNE5IkYWlpCcViEYIg7G+gbTRN61imKAoymcwEotnRLabDRJIkKIoy9H77dV0m/fOfBtN2DXrF0/6d8L5bo/5B5jgONE1DKpXqur5UKkHTNGiahlKptO/re9mre2PUe5WGx8TpCBMEAUtLS1BVtev6aathKpfLHctSqRSWl5cnEM2ObjEdNrFYbOh99uu6TPrnPw2m7Rr0iqfbd2KU7xawU7uyvr4Ox3FQq9U61nuJTDabRTabhSRJyOVy+7a+n728N0a9njQkl44sVVXdSqXiCoLQsa5er7uVSsVNp9NuNpudQHRBqqq6kiRNOoyAaYxpL1QqFVcUxdDbH5XrQuH1+k4M+91qp+t613IFQXDr9XpgWeuvu71e38te3xu7vZ4Uzgcmm7bRpEmShFgsBsMwkE6n/eWbm5uQZbnnfqVSCaIowrZtiKLo7+tVn4uiiHK5jFwuB0mSAOw0/XlVyefPn4dt27BtG9evX0exWOx5LNM0US6XYdu2/5dePp+HZVlQFAW2baNarfY8Rq1WQ6VSgaqq0DQNsVgMa2trWF1d9WMbdF5hY2ovB9jpU9a6rp/2avxsNjuwzFHP2dsvFov5TSuO4wz8ebTH03qtwl6XQdfX4zgOFEVBIpFApVJBPB6HJElQVRWrq6sdP3/DMFAoFGDbNnRdhyzLsG0bqVQKoihCVVWIotgz9lG+n63nBuzU5MZiMYiiiFqtBlmWu35XFUWBpmkoFotdf87dYhNFEblczq+1WF5e7ih30LX27k/HcWDbNgRBCBy/lWEY/jVRVRW2bfvN9rquIxaLYXFxEY7jQNd1/7za78l+3wlgpwZp2Ovdi23bcByna9cC0zT9c9+r9b2em8M8x9q/G3txrwLDfReoxaQzN5ocVVVd13XdfD7vptPpwDpd113XdbvWOKXTaX+967quLMtupVLxy6pWq/46URQDf5mVy2VXFEW3XC4HtvH276VcLof+i7XXMfL5fOD82svrd17DxJROpwPHrlarrizLfc5uR7FY7Iix9efQr8xRz1nXdRdA4GeWz+cDP/Nu17jftep3XYa5vu371Ov1jjj6/fxbFYvF0LGP8v3MZrOBa1atVl1JkgLldItLlmX/PhwUm/fzK5fLbqVS8X+2w/x8dF0PHK9arQY+d6OqauC71u172vr96fUz6XX/CoIw9PVuPXZ7ueVyuWvtjyAIrq7re76+n17XIcx3Y9z36ijfBdrBPk6EXC4HwzD8Pk22bXfUxHhs2+6oncpkMn4/Kdu2YZqmv04UxcDnWCwG27YDf5V5fwmNS69jtJIkKXDMQecVlmVZHX91ejUPrdehnVezsrq66i9bW1uDbduhyhzlnIGd2hFJkgLbrq6uQtO0nj+TUa7VqNfXMAz/uygIgl8r0Y8syx0vPXi1A4PiGOX76dWytv7l7/0V36pb/5PWWotBsQmCAMuyIMsyJEnqWdMwqBxd1/3YRFHEwsJCz3MDgKWlpY7vrmEY/v/XarWO79owHMfZ0+eBJxaLde0PtV/rB8XWrr1Gay/u1WG/C7SDTXUEURQhSRLW19eRzWZhWVbfJipBEAIP0mq16t+4XnW9V/Vbq9U6HibtD1lBEEZ+4PTS7Rj9XtMddF5hbW5udv0l4jVd9qrG39zchCAIgYeldy296vRBZQ57zr14cViW1fW4o1yrUa+vJEkdCUiYX9LZbBaqqkJVVZimiaWlpdBxDPv99Mrs9otuGKPENmw56XQaqqoiGo1CkiQsLy8PbEb2fmF7v4Bbk9DdJEye/XgeABhY5l6v3wu7uVdH+S7QDiZOBGCn1klVVWSz2b4PfMdxIIpiIAFo/X/LslAoFJBKpbC0tDSWB2s343poewadV9iYdvNq9SjrJmHYa+Vdl1Guby6XQ6FQwPnz56FpWugawFwuh0Qi4ffL8Y41jp/zOLX+bMPEFiYZG1ROuVz2azG96znoF+by8jLW1tYgSRIWFhb8WmpZlke6fuO+f1v1Kte7Lnu9fhj9rsM47vu9+C4QhyOg31haWoJlWTAMo291bbfmHmDnBnUcB4uLi1hdXfUTsNbmv3HqNfbUqPqdV1heM0q3cmzbRjKZ7Hv8bsfymjFGKXNU3s+yV3PtsNfKsqxdXd/z58/DNE2k0+nQHVdFUfRfemhtBhnHz7md97MbpYzWWopxxdavHO/lA0mSkM/nUalUsLa2NrDMdDoNwzD8sd282opeNayDjPv+bSWKot+s206W5T1fP4x+1yFMDdZu7tVRvwvExOlIa30LRxAEyLKMtbW1vn/VyrKMhYWFQB8HAFhfX/drFlpvYu/m7/eACPOLobXfQ78+WKMeo995DROTJEmQZTlQNe6de783yLw3XVoH0nMcB+vr6yOXGfYXrmVZgW0LhQKy2WzPX4iDrlW36zLK9QWASqUCQRCQTqeH/gWdy+WwsrLS8df2sHEMuo6iKCKbzQbeiOzWF6u9747XnO2VP+o1atevnNZfmK1xDeI153vPDG+fsN+xYe7fYRLFXsnF6upq4H4xDCOQdO/1+l56XYdB3w3POO/VUb8LBL5VdxRVq1U3m826ANxsNuu/pdH6Fle9XneLxaIrCIIriqJbLBYDb8fl83lXVdXAPt7yfD7vlstlt1wuu9Vq1X+rwxsXCoD/lpN3DEmSBr6R4pXtvfnRrbx+x5Bl2X8jydsmn8+HOq+wMbWXo6pq4A2kMOUVi8WON176lbmbc/be8vHeFioWi4E30Nr36xZPt2s16LqEvb7em0Te91CSpL4//1b1er3nGGTd4hjH91NVVf+73/5WnVee9/PVdd1Np9OuKIod91B7bOVy2ZVl2RUEwS0Wi/492+8adCvH+/54y9rv636KxWLgbbfWODyD4hl0/4a93tVq1S0Wi64kSf53s3371uvc7R7c6/W99Lo3Bn03xn2v7ua7cNTNuK7r7n+6RkTTwBsfplKpTDqUDo7jYGVlBefPn/ebfb15FjOZzNSPN5NIJFAsFifah4oOj2m+V48aNtUR0VTSNA25XM5vOvbe7ioWi/zlQUQTw8SJiKaSJEn+kAytTNPsObErEdFe43AEREeUaZooFouwLAulUmnqXkP2mrjap5oJM1XLpJVKJViW5Q9SyeY62o1pv1ePGvZxIiIiIgqJTXVEREREITFxIiIiIgrpSPdxeu+99/DLX/4St9xyC2ZmZiYdDhEREU2A67p4++238dGPfhTve1//OqUjnTj98pe/xPHjxycdBhEREU2BN954A8eOHeu7zZFOnG655RYAOxdqbm5uwtEQERHRJDSbTRw/ftzPC/o50omT1zw3NzfHxImIiOiIC9Nth53DiYiIiEJi4kREREQUEhMnIiIiopCOdB+nMN577z386le/mnQYRBNx00034f3vf/+kwyAimhpMnPr41a9+ha2tLbz33nuTDoVoYgRBwIc//GGOdUZEBCZOPbmui3/8x3/E+9//fhw/fnzggFhEh43runjnnXfw1ltvAQA+8pGPTDgiIqLJY+LUw7/927/hnXfewUc/+lF86EMfmnQ4RBPxW7/1WwCAt956C7/927/NZjsiOvJYjdLDr3/9awDABz/4wQlHQjRZ3h8O//qv/zrhSIiIJo+J0wDs10FHHe8BIqIb2FQ3pBNnL+3r8a6eu3tfj0dERES9MXGacj970wm97euvvQr94jN49uK3cP9X/grHP3YSb1zbwv/6xTWk77sfd951eiwxGRcv4GuFh3H+Oy/gttvvCLXPJ44JYzn2uCQSCayuriKdTgMANE2Drusol8tD70tEREcHE6dD5Lbb78CDq4/g2Yvfwl/+xzOYi0QAAM1GA3d9/AT+7u+vhE50+knfdz/Kl17YdTkex3EgCMLYygujWCxiYWHB/yzLMkRRHGlfIiI6OtjH6QiYi0Rw7NYT+K/ffW7SoXSwbRvr6+v7flxZlgPJmiiKkGV5pH2JiOjoYI3TEdFo1HH8YycnHUaHYrGIRCIx6TCIJm6/+09OM/btpGnGGqdDrtlo4IlHH8Kdnz6N9H334+WXruDuT52CcfECjIsX8IXPngaw0z/qmaeeRPnSC3jmqSfx5rWrgXJef+1VPPHoQyhfegHlSy+g4dT9dS+/dAVf+OxpPPPUkwCA8qUXcPenTuHll67429i2DUVRYBgGNE2D4zgwTRObm5sol8vQNA22bXc9B9M0USqVYBgGFEXxl1uWhVwuB8Mw/H+WZcE0TSQSCZRKJQCAYRiIx+MwTdPfL5FIQNM0ADtNhblcDvF4PFC2d8xSqeTH1r6vdyxN02CaJjRNQyaTGepnREREBwdrnA6pZ799AcduPQEAyNz3JRz72M7/33nXaXzyrj/E/3jtp/hP576GiBDFm9eu4muFh6F++3l//y989jS077yAuUgEzUYDX/3y/bj0317x13/z60/4/3/nXafxJz//vP85dffn8P3v3iir2Wjg8/8uhUqlAkEQoCgKNE1DPp+HLMuIx+PIZrNdz8NLuCqVCgCgVquhVCohm81icXERW1tbfrNZNBrF5cuXIcsylpeX/TLS6TTW1tb8z5IkBdYLggBVVRGNRgPHbO0onkgkcPny5Y59ZVmGLMsol8vQdR0AoOs6LMuCJEldz4mIiA4uJk6H1L1fvN/vHN7ulrkIhGgMwE6S88SjD+H3Pv6JwDbHbj2BH3zveaTvux8/+N7zHZ3KI0I0dCw/+N7zEEXRT3BWV1dD76uqKmKxmF9bBAAbGxsQBKGjr9G4OmyrqtqR9IiiiPX19a4J3vz8PObn5/3PgiCgVquNJRYiIpouTJyOKK82aj+83WwEEpxeHat7vV0nSVKg43Y2m/WbyoiIiPYT+zgdUs2WPkjdtPZR+tM/vwc//tEPA+tff+1V/PGf7TS/3fnp03j9tVcD69v7QN0yF4FTv1HL8vKPruDtZgMAkPrs52BZVmD71hqkfsuWl5c7lpumiaWlpY4yW/tICYKA69evB/ZxHCewffvnfse0LAtLS0sD9yUiosONNU5DGuZtj2EGrxyH11971R9y4D8/9TVk7vtSRxPbyy9dwY9/9EP8z5//DMduPYE77zr9m/GfHsYzTz2JY7eewM9ftfD40xf8pr5jHzuBx5++gCcefQh/cNcf4e1mA7dEIvjm15/Ag6sP49jHTuCP/+zz+FrhIb9D+J2fPg3j4gXc9vE7cOxjJ6CqKhRFQTKZBAC/BimXy6FYLELTtK7DAUiShGKx2LGvIAjQdR2KoiCVSnXUVi0tLUFRFD8BkmXZb4JzHAdra2uIxWJIp9Md4zd5xyyVShBFERsbG9B1HYIgwLKswL5eWd4xbNuGZVlQVRWiKIYeG4qIiA6GGdd13UkHMSnNZhORSASNRgNzc3OBde+++y62trZw8uRJ3HzzzSOVv9+J0zTbj5HDU6kUisXiyJ2yo9Eo6vX+NXVH0TjuBRqMwxHcwOEIaL/1ywfascaJDo1ROmRrmoZqtYpcLsfRwImIaCD2caJDwRsHSlXVofofybKM+fl5GIYBVVX3LkAiIjoUWONEh0I2m+05FlQ/oigin8/vQURERHQYscaJiIiIKKSJJU7e1BWDGIYBx3G6Nr9YluW/ku69zURERES0VyaSOBmGAQChEp1MJoNoNIpoNIqZmRnMzMz4c5CpqopEIoGZmRnkcjm++k1ERER7aiJ9nNLpdKjtHMeBruuB7Uulkt8nJZFI+K+P9xqNmoiIiGhcpr5zeGvSZBhGR9I1TMK0vb2N7e1t/3Oz2dx1fERERHR0THXi1JoUOY6DWq0WaI5zHMdv9tvY2BjYXFcoFPDII4/sLqiHu0+c280nBm8y0M8euDbSfsbFC3jj2haOf+wkIkIUt8xF8OYvruLOT5/GsY+dGENk42eaJhRFQS6XG+kNuWElEgmsrq6GrgGdpPZYNU2Drusol8tD70tERKOb6sSplaIoKBaLgWXZbNZPrkRRRCqVQrVa7VnG6uoqzpw5439uNps4fvz4nsQ7Sbkvfh6puz+H//v/vZEkvv7aq8h98fO49KNXJhhZf7Isd512Za8Ui8UDM+hle6yyLIfu03eQzpOIaNodiMTJcRyYptnRLGfbtj+9hiiKsG0btm33/IUyOzuL2dnZvQ53op556kkAQPq++wPLb7v9Dtx7319MIKLhzM/P79ux9jNJ2632WIeZB+8gnScR0bQ7EOM4bW5udiRNlmVhcXGxY9tYLLZPUU2nb379iY6kyfPHd//7fY2FiIjosJl44tQ+PpNlWbBtu2NZe0IkimKg6c40TaTT6SP9dt2b167i7UYDx2490XX9nXfd6N/0+muv4pmnnkT50gt45qkn8ea1qwCAl1+6gi989jSMixfw8ktXYFy8gK9++X68ee2qv8/fnn3QL/Pll67g7k+dwt+efRDlSy/AuHgBf3v2QTQbjcB6TdOgaZo/dpdpmiiVSjAMA4qiBOL0ahg1TUMmkwms67afaZpIJBLQNK3rfo7j+Ou8/bxxxDRN87ezLMsvu1Qq+d/DQeW363VulmUhl8vBMAz/n2VZfvneMBuGYSAej8M0TX+/1lgdx0Eul0M8Hh8Ye/u+w54LEREFTaSpzjRNv1NroVBAMpn0O656n9unwWhvlhAEAQsLCyiVShAEAdVqFbqu788JHHBvXruKrxUehvrt5/1lX/jsaWjfeQF33nUan3zpD/HyS1fw+NMXAADlSy+g/Pcv4Etf+WvcdvsduPtTp9BsNDAXieDOu05DvvvfQYjGkLr7c/72f/OV+6F++/md8u76Q1QqFaiqilgsBtu2oSgKKpUKgJ3JeVuHmdjY2PD/X9d1WJYFSZL67ifLMsrlsv8daN1P0zRIkuQ3WdVqNUiShOXlZf/8vbJbO1snEglcvnzZ73vVq/xWvWLMZrNYXFzE1taWn9xHo1G//NZY0uk01tbW/M/tsQqCAFVVEY1GB8bevu8w50JERJ0mkjh5D+/2zt4AuiY/veYSkySJD/sWXm3Sm7+4ittuv6Nj/ZvXrmJOiEK/+Ax+7+PBd/6O3XoCP/je80jfdz+EaAxC9EYN3y1zkUAt1i2RCJpOHXORSGAbT+ruz+GrX77fT65umYsgfuL/ALCTFCiKglgs5teoADvJkieZTPr/LwgCarUaAPiJV7f95ufnA/2jWvdLp9NIJBIQRRHLy8td39hTVbXjuySKItbX15HNZvuW315OtxgFQYAsy4Ea0XF12B4Ue7uw50JERJ0OROdwCu/+r/wVjIsX/NqfVq///NWuy8NoTYxG0V5j2FoDBCD08AOj7BeLxVCv12FZFtbW1pDJZEK9xj+qbjG2NgkSEdHBNfE+TjRe3hAExsULgeVenyMA+NM/vwc//tEPA+tff+1V/PGffb5nuW83Gz3Xta8vX9pp8mutkWqt0VheXg7UyADo+NzNqPsVCgX/DcxisdgxPlivsi3LwtLS0sDyw8S4tLTUMcVQa18+QRBw/fr1wD7t/f+6zdcYNvZe+xIR0XBY4zSsh/snEK1+9qazd3H0oX77eTzz1JN44tGH/AEwAfi1TbfdfgceXH0Yzzz1JI7degI/f9XC409fwFwkgtdfexXf/+5O36c7P30ab/5ip1M4ANz28Tvw8o+u4M1fXMV/fupreHD1ET85euPaFl5+6Qrebjbw81ctPPbUBQA7ncN//KMf4s1/+B8QRRGyLPsJjKIofrOcLMt+jZD32Zu4WVVViKI48n7z8/MwTROxWAy1Wg3Ly8v+PrFYDOl02i+7VCpBFEVsbGxA13UIgjCw/NbatF4xCoIAXdehKApSqRQcxwkkcEtLS1AUxU+AZFn2m+AcxwnE2q32blDs3r5eWWHOhYiIOs24rutOOohJaTabiEQiaDQamJubC6x79913sbW1hZMnT+Lmm28eqfxJJU77zUvQeg2DAACfOCbsWzwHRSqVQrFYHLmfXjQa9edq3EvjuBdosBNnL006hKlx9dzdkw6Bjph++UA71jgRTcgoHbI1TUO1WkUul+No4EREE8A+TrQrXlNc+dILfpMeDaZpGmzbhqqqQ/U/kmUZ8/PzMAwDqqruXYBERNQVa5xoV+686zT+7q4rkw7jwMlmsyNNZCyKYs/hOYiIaO+xxomIiIgoJCZORERERCExcSIiIiIKiYkTERERUUhMnIiIiIhC4lt1Q7r9W7fv6/EuLr4UetuXX7qCH1z6L3j24rdw/1f+Cn9w1x/hzrtOD3U84+IFfK3wMM5/54WuEwWPk6ZpUBQFly9f3tfJmhOJBFZXV5FOp/04dF0PNX9d+75ERHS0MHE6RO686zSO3XoCz178Fv7yP54JzBUXVvq++1G+9MIeRNcpm81C1/V9OVarYrEYGDxSluXQU42070tEREcLE6dDZu4389JRb7IsBz4PM0db+75ERHS0sI8TERERUUhMnA65l1+6gi989jSMixfw8ktXYFy8gK9++f7ANq+/9iqeePQhlC+9gPKlF9Bw6h1lPPPUkyhfegFPPPoQAKB86QV84bOncfenTgEAnnnqSdz9qVN45qkne+4DAJZlQVEUGIYBwzAGztdmmiZKpRIMw4CiKIFycrmcX45hGLAsC6ZpIpFIoFQqAQAMw0A8Hodpmv5+iUQCmqYBABzHQS6XQzweD5TtHbNUKsG27a77esfSNA2maULTNGQymQE/ESIiOsjYVHfI3XnXaXzypT/Eyy9dweNPXwAAf165226/A81GA1/98v249N9e8ff55tef8P//zWtX8bXCw/i7v78CAGg4dTzz1JP40lf+Gp/89Glk/8Pn0Gw0cMtcBN/5+yuYi0S67lMqlZDNZpHJZFCtVv3yC4VCz9ht24aiKKhUKgB2JsX1yllcXMTW1hYEQQAARKNRXL58GbIsY3l52S8jnU5jbW3N/yxJUmC9IAhQVRXRaDRwzNaO4olEwu/A3rqvLMuQZRnlctnvq6XrOizL2tfO7kREtH+YOB0BQjQGIRrzP98yF/FrlX7wvec73p6LtPST0i8+g4gQxcsvXfGX/fdXd5KsuUgEDxWfxH/47Gk8/vQFvzN6t302NjYgCEJHQhGLxdCLqqqIxWJ+bVFrObIs+0kTgLF12FZVtSNGURSxvr7edW65+fl5zM/P+58FQRhYi0ZERAcXEyca6Pc+/onAsAbp++73//+WuQhuu/0O/NfvPhdIwNr3+YTyoN/ENQxJkgIdsrPZ7EjlEBERjQP7OB0yzbb+SYPc+enTeP21VwPL3rx21f//P/3ze/DjH/0wsN6rSWo2Gnj5RztNgP/rF9f8YQy67WOaJmRZhmVZgeVe/6FulpeXA7VNXjlLS0t9yxEEAdevXw/s4zhOYPv2z/2OaVkWlpaWBu5LRESHH2ucDhFvAEwA+ObX/z/86Z/fAwD4/nefB7CTJL35i6t4/bVXYVy8gGO3nsCxj53A409fwBOPPoQ/uOuP8HazgVsiEXzz60/gwdWHcdvtd+DB1YfxxKMP4eN37DRhffLTO53Nn/n/n0T6/7ofAPB/3nEKjyh/jTd/cRVf+spfd+zzl8ufgyAI0HUdiqIglUrBcRwIgoBCoYBisdgxJIAkSSgWi1AUBclkEgD8Jrpu5XiWlpagKIqfAMmy7DfBOY6DtbU1xGIxpNPpnscslUoQRREbGxvQdR2CIMCyrMC+XlneMWzbhmVZUFV1qCEOiIjo4JhxXdedxIEty8LKyorf8bffdsDOLzTbtuE4jt8HxbZtGIYBURRh2zay2WzgF+ggzWYTkUgEjUYDc3NzgXXvvvsutra2cPLkSdx8883Dndxv/OxNZ6T9DqNPHBP2tPxUKoVisThyp+xoNIp6fbjauqNiHPcCDXbi7KVJhzA1rp67e9Ih0BHTLx9oN5EaJy/ZaW9u6UZVVb9PiyzLgZGmM5mMn3jZto2VlZWJjERNkzdKh2xN01CtVpHL5TgaOBERhTKRxGmYeb4SiYRfE9Bam9TeN0YUxY6+KXQ0aJoG27ahqiqKxWLoWkdZluE4DgzDgKqqexskEREdCgeij1O3X4SmaXa8yh6LxTiGzhGUzWa7DhUwiCiKyOfzexAREREdVlOfOHk1AsDOGD65XA6iKPZ8s6lfk8329ja2t7f9z81mc6yxEhER0eE29YlTa4dvURSRSqUCI0+36/eqeKFQwCOPPDLU8SfUd55oavAeICK6YerHcWrty+S9PWfbdtcRmmu1Wt/+Laurq2g0Gv6/N954o+e273//+wEAv/rVr3Z3AkQH3DvvvAMAuOmmmyYcCRHR5E11jZNlWVhcXOx4TTwWi/lj87Tr93bU7OwsZmdnQx37Ax/4AD70oQ/hn/7pn3DTTTfhfe8bPsd0/41Jl+fdd9+ddAg0JNd18c477+Ctt96CIAj+HxNEREfZxBOn9sELLcuCIAj+AILFYtFfZ5om0uk0BEHoqFmybRsLCwtDjePUz8zMDD7ykY9ga2sL165dG6mMt+r/MpZYDoMP/stvTToEGpEgCPjwhz886TCIiKbCRBIn0zT92ecLhQKSyaQ/RIH3OZ/PQxAELCwsoFQqQRAEVKvVwDhN3ujRyWTSH+F5nD74wQ/id3/3d0durnvguStjjecgu/z/nJ50CDSCm266iTVNREQtJjZy+DQYZqTQUXAk4Bs4EjBRf3xe3MDnBe23YfKBqe8cTkRERDQtmDgRERERhcTEiYiIiCgkJk5EREREITFxIiIiIgqJiRMRERFRSEyciIiIiEJi4kREREQUEhMnIiIiopCYOBERERGFxMSJiIiIKCQmTkREREQhMXEiIiIiComJExEREVFITJyIiIiIQmLiRERERBQSEyciIiKikJg4EREREYXExImIiIgoJCZORERERCExcSIiIiIKiYkTERERUUgfGHaHq1evQtd1lMtl1Ot1f3ksFkMqlUI6ncaJEyfGGSMRERHRVBgqcTp79ixmZmawtLSEv/mbv+lY/8orr+Dpp5/GzMwMCoVC37Isy8LKygoqlcrA7UzTBABsbGzg/PnzEATBXwcAkiTBtm04jgNJkoY5JSIiIqLQQidOjz32GFZXVxGJRHpuc+rUKZw6dQqNRgOrq6s9kyfDMCCKop/49GOaJvL5PACgVCphcXHRT7ZUVYWmaQAAWZah63rY0yEiIiIa2ozruu7EDj4zg36HtywLi4uLfpOgbduIx+OoVqsQRRGapmFpaQkA/FqoYTSbTUQiETQaDczNzY10Dv2cOHtp7GUeVFfP3T3pEIimGp8XN/B5QfttmHxg6D5OnrNnz+J3fud3kMlkkMlkEI1Gsby8jHvuuWfUIjtIkoTz58/7nx3HAbDTn8ozTMK0vb2N7e1t/3Oz2dx1jERERHR0jPxWXTKZxAMPPABN05BIJLC2tobr16+PMzYAQDqd9v9/bW0Nsiz7yZLjODAMA4ZhQFEU2Lbdt6xCoYBIJOL/O378+NjjJSIiosNr5BqnaDQKAFhfX/drhVprgsbNS5JaO5Nns1k/iRJFEalUCtVqtWcZq6urOHPmjP+52WwyeSIiIqLQRk6cqtUqXNdFtVrF7//+72NrayswPMG4KYqCcrkcaJqzbdt/i04URdi2Ddu2IYpi1zJmZ2cxOzu7ZzESERHR4TZyU93S0hIsy0KlUkGj0YCqqn4fpHErlUpQFAWiKMJxHDiO43ccb7eXtV5ERER0tIWqcWo0GqjX64GBLSORSGAsp3PnzgX28TpeD+qd7jhOoBbJsiwIguDXGhmGAUmS/KRpfX0d2WwWoiiiWCz6+5mmiXQ6PdLbdURERERhhEqcIpEI1tfXMT8/H+qtuWeffRb1eh0PPPBA1/WmaaJcLgPY6bCdTCb9TuDe53w+D9u2kclkAvsKguD3bVpYWECpVIIgCKhWqxzHiYiIiPbUUOM4vfLKKygUCojH40gmkxBFEYIgwHEc2LaNn/zkJ9ja2kIul8NnPvOZvYx7LDiO0/7huCxE/fF5cQOfF7Tf9mwcp1OnTmF9fR2NRgPr6+v4yU9+4je1xeNx5HI5nDx5clfBExEREU2rkd6qi0QiWFlZGXcsRERERFNt5LfqiIiIiI4aJk5EREREITFxIiIiIgqJiRMRERFRSLtKnB577DEsLy8DAC5fvuwPeklERER0GI2cOJ09exaCIECWZQDA4uIiTNMcW2BERERE02bkxCmZTGJlZaXnhLpEREREh83IidPW1hYAYGZmxl+2sbGx+4iIiIiIptRIA2ACO6OILywsYH5+HuVyGaZpBibdJSIiIjpsRq5xWlxchK7rOHXqFFzXhaZpB2J+OiIiIqJRjVzjBAAnT57EuXPn/M/NZnNPJsslIiIimga7Go6g2Wzi6tWr/j9FUcYVFxEREdHUGbnG6ctf/jJM04QgCP6yra0tPPXUU+OIi4iIiGjqjJw4xeNxPP3004Fl58+f33VARERERNNq5KY6b+DLVqlUalfBEBEREU2zkWucotEoHn/8cYiiCEEQ4DgO1tbWsLa2Ns74iIiIiKbGyIlTPp+H4ziBPk6vvPLKOGIiIiIimkojJ06pVAorKyuBZc8+++yuAyIiIiKaViP3cYrH46GWERERER0WI9c4VatVqKqKZDIJAHBdF+vr65yvjoiIiA6tkWucVFXFyZMn4bouXNcFAP+/YViWhUQiMXA727ZRKpVgGAZKpRIcxwm1joiIiGjcRq5xKhaLWFxcDCzrNkRBN4ZhQBRFWJY1cNtMJoNKpQJgJ1FaWVmBrusD1xERERGN28iJU3vSBOwMURBGOp0OtZ1t24HPoijCNM2B64iIiIj2QujE6bnnnoMsy/4kvt/4xjcC6x3HQblcxve///2xBWeaJmKxWGBZLBaDZVnY3NzsuU6SpK7lbW9vY3t72//cbDbHFisREREdfqH7OD366KPY3Nz0Pz/99NOo1+v+P9d1cf369bEG16vPUq1W67uul0KhgEgk4v87fvz4GKIkIiKioyJ0jVNr0gTszEt36tSpwLKwfZx2q18n8H7rVldXcebMGf9zs9lk8kRERESh7WrKFU+j0YBpmqHekhuGIAgdNUi1Wg2CIPRd18vs7CxmZ2fHGiMREREdHSMPR9DaETsSieDee+8de+fsXjVYCwsLfdcRERER7YWhapwajQbW19cxMzODcrncsb5SqeCBBx4YKoD2+e4sy4IgCBBFEaIoBra1bRsLCwt+jVOvdURERER7YajEKRKJQJZlFItFVKtVnDx5MrA+n8+HKsc0TT/xKhQKSCaT/hAF3mevLF3XoSgKkskkNjY2AuM09VtHRERENG4z7jDDfbe4fPly17GcDpJms4lIJIJGo+EPszBOJ85eGnuZB9XVc3dPOgSiqcbnxQ18XtB+GyYfGLmP00FPmoiIiIiGNXLiRERERHTUMHEiIiIiComJExEREVFIY02crl69Os7iiIiIiKbKyCOHA8BPf/rTwOjdqqpibW1t10ERERERTaORE6elpaWOwStfeeWVccRERERENJVGTpxSqRRWVlYCy5599tldB0REREQ0rUbu4xSPx0MtIyIiIjosRq5xqlarUFUVyWQSAOC6LtbX17GxsTG24IiIiIimycg1Tqqq4uTJk3BdF96sLSPO3kJERER0IIxc41QsFjumXZFledcBEREREU2rsc1V9+KLL2Jra2vXARERERFNq12N4/Tcc8/Btm0AO810m5ubuOeee8YSGBEREdG0GTlxOnv2LBzHQa1WgyiKcBwHuVxunLERERERTZWRE6d4PI6VlRVsbW1hZmYGJ06cwIsvvjjO2IiIiIimysh9nERRxLVr13Dy5EkYhjHOmIiIiIim0sg1To7jQBRF1Ot1/PM//zP+5E/+BIIg4DOf+cw446PD4uHIpCOYHg83Jh0BERGNaOTE6d5778Wvf/1rAMC5c+dw+fJlLCwsjC0wIiIiomkzclMdADz22GNYXl72P8/MzOw6ICIiIqJpNXLidPbsWQiC4A96ubi4CNM0xxYYERER0bQZuakumUzi3nvvxeXLl8cZDxERHXXsE3kD+0ROnZFrnLxRwlub5zjBLxERER1mI9c4nTp1CgsLC5ifn0e5XIZpmigWi6H3t20bhmFAFEXYto1sNgtBELpuaxiG3yTYvo1lWQAASZJg2zYcx4EkSSOdExEREVE/u5qrTtd1nDp1Cq7rQtO0oYYiyGQyyOfzSKfTSKfTWFlZ6bttNBpFNBrFzMwMZmZmUCqVAACqqiKRSGBmZga5XA6iKI56SkRERER97WquupMnT+LcuXND7+fNb+cRRbFnx3LHcaDrOtLptL+sVCohn88DABKJBOr1OoDO2igiIiKicQpd4/T4448P3OYb3/hGqLJM00QsFgssi8VifrNbu9akyTCMwGdgJ2EKkzRtb2+j2WwG/hERERGFFbrG6dFHH0W5XO67zebmJh544IGBZTmO03V5rVbrWNaaELVOKty6zJvyZWNjo29zXaFQwCOPPDIwPiIiIqJuQidOi4uLmJ+fRyKR6LmN67q7CqZXQuVRFKWjA3prp3JRFJFKpVCtVrvuv7q6ijNnzvifm80mjh8/vquYiYiI6OgInTjpuo5Go4HNzU0AO+M4zc3NBbZpb37rRRCEjtqlWq3Wt7nNcRyYptmxjW3b/lt03ht6tm13rXWanZ3F7OxsqBiJiIiI2g31Vl0kEsHi4iIWFxdRrVZx+fJlvPjii/76e++9N1Q53tAC7frNdbe5udl1KILFxcWObcMmcERERETD2NU4Tp4XX3wR5XIZqVQq1JAE7bVBtm1jYWHBT4wsy4IgCIHtLMvqSIhEUQw03ZmmiXQ6zbfriIiIaE/sajiCn/70p1BVFWtraxBFEfF4PPRYTrquQ1EUJJNJbGxsQNd1f12hUEAymfSHHPC0J1yCIGBhYQGlUgmCIKBarQbKISIiIhqnGXfIHt1Xr16FrutQVRUzMzO49957kcvlcPLkyb2Kcc80m01EIhE0Go2O/lrjcOLspbGXeVBdvfmLkw5henDuKeqCz4sb+LxowefFvhgmHwjdx+kb3/gGkskkEokEbNuGruv4h3/4B5w7d85Pmp577rndRU5EREQ0xUI31WWzWaTTaZw9exaCIKBerwc6htfrdZw7dw733HPPngRKRERENGlDJU6lUqnvWE1ra2tjCYqIiIhoGoVOnHK53MB2v9XV1V0HRERERDStQvdxah1+YDfbEBERER1UQw2ASURERHSUMXEiIiIiComJExEREVFITJyIiIiIQmLiRERERBQSEyciIiKikJg4EREREYXExImIiIgoJCZORERERCExcSIiIiIKiYkTERERUUhMnIiIiIhCYuJEREREFBITJyIiIqKQmDgRERERhcTEiYiIiCgkJk5EREREIX1gUge2bRuGYUAURdi2jWw2C0EQum5rWRYAQJIk2LYNx3EgSdLQ5RARERHtxsQSp0wmg0qlAmAn+VlZWYGu6123VVUVmqYBAGRZDmw3TDlEREREuzGRxMm27cBnURRhmmbP7ROJBOr1OgAEapOGLYeIiIhoNybSx8k0TcRiscCyWCzmN8l1IwhCRxPcsOVsb2+j2WwG/hERERGFNZHEyXGcrstrtVrP7Q3DgGEYUBTFr2katpxCoYBIJOL/O378+NCxExER0dE1sT5O3fRKhFo7fIuiiFQqhWq1OnQ5q6urOHPmjP+52WwyeSIiIqLQJlLjJAhCR61QrVbr+TZca18m7+0527aHLmd2dhZzc3OBf0RERERhTSRxkmW56/KFhYWOZZZlYXFxsWN5LBYbqhwiIiKi3ZpIU50oioHPtm1jYWHBrymyLAuCIEAURYiiiGKx6G9rmibS6XTXzuLt5RARERGN08T6OOm6DkVRkEwmsbGxERh7qVAoIJlMIp/PQxAELCwsoFQqQRAEVKvVwLb9yiEiIiIapxnXdd1JBzEpzWYTkUgEjUZjT/o7nTh7aexlHlRXb/7ipEOYHg83Jh0BTSE+L27g86IFnxf7Yph8gHPVEREREYXExImIiIgoJCZORERERCExcSIiIiIKiYkTERERUUhMnIiIiIhCYuJEREREFBITJyIiIqKQmDgRERERhcTEiYiIiCgkJk5EREREITFxIiIiIgqJiRMRERFRSEyciIiIiEJi4kREREQUEhMnIiIiopCYOBERERGFxMSJiIiIKCQmTkREREQhMXEiIiIiComJExEREVFITJyIiIiIQvrApA5s2zYMw4AoirBtG9lsFoIgdN3WsiyYpgkA2NjYwPnz5/1tLcsCAEiSBNu24TgOJEnaj1MgIiKiI2ZiiVMmk0GlUgGwk0StrKxA1/Wu25qmiXw+DwAolUpYXFz091VVFZqmAQBkWe5ZBhEREdFuTaSpzrbtwGdRFP0apXaWZaFQKPif0+k0LMvyy0gkEqjX66jX6yiXyz1rrYiIiIh2ayKJk2maiMVigWWxWMxvdmslSRLOnz/vf3Ycx9/eIwgCEyYiIiLacxNpqvOSn3a1Wq3r8nQ67f//2toaZFn2EyXHcWAYBoCd/k+5XA6iKHYtZ3t7G9vb2/7nZrM5QvRERER0VE2sj1M3vRKq1vWGYfj9mwAEOpWLoohUKoVqtdp1/0KhgEceeWRc4RIREdERM5GmOkEQOmqXarXawOY2RVE6+jG19pfy3tBr70PlWV1dRaPR8P+98cYbI58DERERHT0TSZxkWe66fGFhoec+pVIJiqJAFEU4jgPHcWBZFhYXFzu2be8/5ZmdncXc3FzgHxEREVFYE0mc2vsg2baNhYWFwNhMrbVGhmFAkiQ/aVpfX4cgCBBFEcVi0d/ONE2k02l2FCciIqI9MbE+TrquQ1EUJJNJbGxsBMZfKhQKSCaTyOfzsG0bmUwmsK8gCH7fpoWFBZRKJQiCgGq1ynGciIiIaM/MuK7rTjqISWk2m4hEImg0GnvSbHfi7KWxl3lQXb35i5MOYWrcfvLWSYcwNV77i9cmHcLU4PPiBj4vWjzcmHQER8Iw+QDnqiMiIiIKiYkTERERUUhMnIiIiIhCYuJEREREFBITJyIiIqKQmDgRERERhcTEiYiIiCgkJk5EREREITFxIiIiIgqJiRMRERFRSEyciIiIiEJi4kREREQUEhMnIiIiopCYOBERERGFxMSJiIiIKCQmTkREREQhMXEiIiIiComJExEREVFITJyIiIiIQmLiRERERBQSEyciIiKikJg4EREREYXExImIiIgopA9M6sC2bcMwDIiiCNu2kc1mIQjC0NsOUw4RERHRbkwsccpkMqhUKgB2kp+VlRXouj70tsOUQ0RERLQbE0mcbNsOfBZFEaZpDr3tMOUQEREdNLd/6/ZJhzBVXvuL1yYdwmQSJ9M0EYvFAstisRgsy4IkSaG33dzcDF0OAGxvb2N7e9v/3Gg0AADNZnNX59PLe9vv7Em5B1Fzxp10CFPj1//y60mHMDX26t47iPi8uIHPixv4vAjaq2eGV67rDv7uTSRxchyn6/JarTbUtsOUAwCFQgGPPPJIx/Ljx4933Z7GJzLpAKbK65MOYGpEvsJvBnXit6IVnxet9vqZ8fbbbyMS6X+MifVx6qZXIjTstr3Wra6u4syZM/7n9957D7VaDfPz85iZmQl9bDqYms0mjh8/jjfeeANzc3OTDoeIphifF0eL67p4++238dGPfnTgthNJnARB6KgVqtVqXd+G67ftMOUAwOzsLGZnZzvKp6Nlbm6OD0IiCoXPi6NjUE2TZyLjOMmy3HX5wsLCUNsOUw4RERHRbk2kxkkUxcBn27axsLDg1/5YlgVBECCKYt9t22uL2sshIiIiGqeJ9XHSdR2KoiCZTGJjYyMw9lKhUEAymUQ+nx+4bb91RK1mZ2fx0EMPdTTXEhG14/OCeplxw7x7R0REREScq46IiIgoLCZORERERCExcSIiIiIKiYkTddA0DalUKtS2iUQChmHscUSTYVkWcrkcZmZmoCgKNE2DoijIZDKcE5GOpMP+bCiVStA0DYZhoFQqjS1+PksOF3YOpw62bcO27Z7jZLUyTXPXQ0A4jrOvQ0gMczzHcRCNRlGv1/19vGWVSqXrnIiTsN/XkI6m/X427KdEIoHz588H7mlFUQAAxWJx1+UfhGcJnyPhsMaJOoiiGOrBCOwMULqbG822bayvr4+8/ySO540xtra2Nqaodme/ryEdXfv5bNhPiqJAFMWO5KVYLELTNFiWtSfHnaZnCZ8j4TFxookax19ykzherVZDPB4fS1m7td/XkOiwKZVKPZsgZVlGoVDYs2NPy7OEz5HwmDhRgOM4yOVygRvZsiy/vb9UKsG2bX95IpGApmkAdqrmvc+maULTNGQymZ7HMk0Tm5ubKJfL0DQNtm3DMAxEo1HkcjlYloVUKoVUKgXHcWCaJqLRqN/vwDRNPy6vSr1fDL2OF4/H/W0cx0E8HvfL63Z9FEWBLMvIZrN944jH49A0DZqmIZFIANj5q05RFBiGAU3T/Amphz2XfteQaC/s57PB26f9nuh1v+ZyuZ77DDq2F3OvqbpEUfRrnMLek+0x9Lqe0/Is4XNkSC5RF4IguK7rutVq1ZVlObBOkiS3Xq+7ruu6xWLRVVXVX5fP5910Ou1/lmXZrVQqPY+Tz+cD+3vLisWi67quWy6XA+V521arVVeSpMByb59+MXQ7nqqqbjab7TiG67puvV53AbjFYtHVdd3Vdd2tVqv++n5xZLNZv1xd1916ve6KouhfO+88Rz2XfteQaK/sx7Oh3z3R634d9T6qVqsuALdcLneNJZ/Pu6IohjqPfjFM+7OEz5HwJjblCh0Mqqp2tPuLooj19XX/r6RW8/PzmJ+f9z8LgoBarTbUMXO5HDKZDPL5PBzHgW3bcBwHm5ubWFpa8uOKxWKBN1I2NjZGiiGbzSIajUJVVX++w27bdOuv0S8OQRD8ONLpNDRNgyiKfjmrq6sAdqYYGte5EO2XvXw29LuvWu9Xx3H8+UxHfSZ4+/eqZbEsK3Ce/crqF4OHz5KDj4kTTQ3vjQ7vQeZVjy8vL2N9fR2xWCzwwJEkKdBRtdvDOszxvH01TUMsFkM6nR6qnH5xtE5S3f7GyjjPpdcxiA6qfvfE0tKS3wzYunzU+yifz0PX9a7bb25uDjUH6m7u5Wl5lvA50h/7OFFfy8vLHeOMWJbl1/wA8NvWd6v1OLlcDisrK0in08hms1BVdWBcw46H0n68fp0je/1lNiiO1v3S6XTH2zmmaY7lXHa7H9Gw9vLZMOieUBQFxWIRsVgs9D79FItF1Gq1ju1zuRyWlpZCv0kYJoaD8Czhc2SASbcV0nTy+jG47k4/I69dPp/P++3ilUrFlSTJlWXZrVar/mdJktxKpeLquu6Kouim0+lAW36rarXqZrNZV1XVwDb1ej3Qj6G1bb41rnw+7/cXqNfrA2Podbxux6hUKm4+n3cBuNlstmd/jG5xlMtl/9q09p3otu2o5zLoGhLthf16NvS6VzzpdLpj2W7uI9e90c9H13X/vFqFKatXDNP+LOFzJDwOgEldeQO1HSWGYQzdTEd01BzFZwNRK/ZxIp+maahWq8jlcj1fzT1svI7osVhsKkbuJZpGR/HZQNQLa5zI541rBOy0obd2RjysTNP0O0KG7cdAdNQcxWcDUS/sHE4+URSRz+eRz+f37cGoaRqi0eieTWnQTeuEm+VyGbVaDeVymRNuEvWwF8+Gcd77g8rqt54T+9LQJtvFimjwIJl7wRuMrrVzqbdsv2Pppb3jK9FhM857f1BZ3dZ7naVb5fN5N5/PjyWmaX/O8BkzGtY4Ef0GJ9wkOjqO+sS+fMaMjokTUQtOuEl0NBz1iX35jBkd36qjkRiGAUEQYNs2qtWqfxOapglFUZDL5SCKImzbRrlcDoy8a1kW1tbWkEwmAfQeEK51e9M0/fK8zqlhjmWaJizLgiiK2NjY6PmwcBwHhULBn3Cz236maSKXy/kTZ6qqikqlAtu2oaoqkskkarUalpaWIAhCzzLCxLy5uelfF1mW2RmXpsY03Pthyuq3PszEvq2TiR+25wyfMbs06bZCOpgA+IOkZbPZwEBx/SaT9CanbNWtn4Fn0ESiezHh5qQn2/S24YSbNI2m4d4fVNag9dMwse+knzN8xoyONU40knq97v/VWavVAhNk9ptMcn19vaNPQeu0Ce0GTSS6FxNucrJNot6m4d4H0LesQceahol9+Zw5uJg40UgKhQLm5+enfkyXUSe8nJbJNrsdg2iSDsq9P8g0TOw7Lc8ZPmOGw87hNDSvTd0b08WbyDPM2CSyLHe8rdLrrz4g3ESiw+wbZsLNaZpsczf7EY3btNz7g8oKc6xJT+w7Tc8ZPmOGw5HDaWiO42BlZQW5XM5fpqoqlpeXIYoiVlZWAADnz5+HbdtQFAWSJKFYLEIURb/TZiqV8jtLiqLor2/X3vlxeXkZkiTBsqyBxzJNE+Vy2e8gKssybNvG2toaSqUSstkscrlcR7V+t/02NzehKApisRgURfEfrN229Tptdjv2oJiBnYd8sVhEIpFgx02aGtNy7wMYWFbYYymKgng8jlgsBtu2IYpiYM7Kw/qc4TNmdEyciIiIiEJiUx0RERFRSEyciIiIiEJi4kREREQUEhMnIiIiopCYOBERERGFxMSJiIiIKCQmTkREREQhMXEiIiIiColz1RHRgVcqlSAIQs/Rn4mIxoUjhxPRgZZIJFAsFgNziymKAmBnPjIionFi4kREB5aiKLBtu+tM9tFoFJcvX+6YH4yIaDfYx4mIDqxSqYRUKtV1nSzLKBQK+xwRER12TJyI6ECybRsAsLCw0HW9KIqwLAvAzszyiUQCpVIJAGAYBuLxOEzT9Lc3TROlUgmGYfhNfaZpIh6PQ9M0aJqGRCLh75vJZAAAjuMgHo/7+xDR4cbO4UR0KM3Pz6NWqwHYqX1aXl7216XTaaytrfmfbduGoiioVCoAgFqthlKphHw+D1mWUalUoKoqYrEY0uk0arWav60gCFAUBdlsdh/PjogmhTVORHQgiaII4EbNU7tqtdqzNqqdlxSZpunXQm1sbADYSYzi8TgA+G/qZbNZrK+v+8cPexwiOvhY40REB1Y2m0W5XPYTGm8oAmCnmW2Yt+okSQq8mddag+SV2X5sTdP8WigiOhpY40REB5aqqtjc3IRlWTAMA7FYDIZhoFQqQZblQEIjCAKuX7/ufzZNE47jAACWl5cD/Z289R6vya9VLpfjcAdERxCHIyCiA69UKqFarSKRSKBcLiOZTCKfz8NxHAiCAGCnE7eiKH6nblVV4TgOVFWFKIowTdPfF9jpF7W5uQlFURCLxaAoSqBGCgAymUzXoRCI6PBi4kREh4plWTBNE/l83u/gvVcMw2AzHdERw8SJiA6daDSKbDYLy7JQLpfHWnYul0Mmk0EsFoMgCF37PxHR4cXO4UR06Hgdt/eiGS2Tyfh9ozgqOdHRwxonIiIiopD4Vh0RERFRSEyciIiIiEJi4kREREQUEhMnIiIiopCYOBERERGFxMSJiIiIKCQmTkREREQhMXEiIiIiCul/A7WskCj9bqp9AAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -980,12 +980,12 @@ "name": "stdout", "output_type": "stream", "text": [ - " 1000 tuples 5000 tuples 10000 tuples\n", - "Product equijoin -81.187829 -98.442521 -99.181323\n", - "Comprehension equijoin -55.932181 -96.325369 -98.060049\n", - " 1000 tuples 5000 tuples 10000 tuples\n", - "Product equijoin -65.125860 -89.158245 -88.944901\n", - "Comprehension equijoin -20.843916 -75.071061 -74.480953\n" + " 1000 tuples 5000 tuples 10000 tuples\n", + "Product equijoin -81.2\\% -98.4\\% -99.2\\%\n", + "Comprehension equijoin -55.9\\% -96.3\\% -98.1\\%\n", + " 1000 tuples 5000 tuples 10000 tuples\n", + "Product equijoin -65.1\\% -89.2\\% -88.9\\%\n", + "Comprehension equijoin -20.8\\% -75.1\\% -74.5\\%\n" ] } ], @@ -1018,9 +1018,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/4UlEQVR4nO3dfZAjZ50n+G8ZTDmIcOkp1T9gut3dWTETGDCe1svZF2czDirl2QUz7LpTVRxmYs2eSxrYiWOP2FF2zcuOO3ZAncIRa28Mi1PtYHwRNhslqc0x4N0BZTsMZiNsqpS2sZfmD5Td7fYQcZ6xlFLH+Sg4rPujnGmlXlMqVaeq6vuJUHQrX578ZeYj6VdPPvnkTKvVaoGIiIiIhrom6ACIiIiI9gomTkREREQ+MXEiIiIi8omJExEREZFPTJyIiIiIfGLiREREROQTEyciIiIin5g4EREREfnExOkAsiwLqqpifn4ei4uLA5ddXFzE/Pw8VFWFbdtXJ0CaGqZpIpFIDK0nRKNy6lY0Gg06lH2Bn9Wrh4nTASRJEjRNw9raGmq1GkzT7LmcYRiIRCJYXl6GpmkQQlzdQDvk8/muaaqqIplMBhDNtl4x7SeRSASqqo683tU6LkGf/2kwbcegXzyddcKpW+P+QWbbNvL5PBKJRM/5uVwO+Xwe+XweuVzuqs/vZ7c+G+N+Vml0TJwOMCEElpeXoet6z/nT1sJULpe7piUSCaysrAQQzbZeMe034XB45HWu1nEJ+vxPg2k7Bv3i6VUnxqlbwHbrSqFQgG3bqNVqXfOdRCaVSiGVSiESiSCdTl+1+YPs5mdj3ONJI2rRgaXreqtSqbSEEF3z6vV6q1KptBRFaaVSqQCi89J1vRWJRIIOw2MaY9oNlUqlJUmS7+UPynEh//rViVHrVqdisdizXCFEq16ve6a1/9zt9vx+dvuzsdPjSf68O9i0jYIWiUQQDodRKpWgKIo7fXNzE7Is910vl8tBkiRYlgVJktx1neZzSZJQLpeRTqcRiUQAbF/6c5qSz5w5A8uyYFkW3njjDWia1ndbhmGgXC7Dsiz3L71MJgPTNKGqKizLQrVa7buNWq2GSqUCXdeRz+cRDoexvr6OtbU1N7Zh++U3ps5ygO0+Ze3zBulsxk+lUkPLHHefnfXC4bB7acW27aHnozOe9mPl97gMO74O27ahqiqi0SgqlQoWFxcRiUSg6zrW1ta6zn+pVEI2m4VlWSgWi5BlGZZlIZFIQJIk6LoOSZL6xj5O/WzfN2C7JTccDkOSJNRqNciy3LOuqqqKfD4PTdN6nudesUmShHQ67bZarKysdJU77Fg7n0/btmFZFoQQnu23K5VK7jHRdR2WZbmX7YvFIsLhMJaWlmDbNorFortfnZ/JQXUC2G5BGvV492NZFmzb7tm1wDAMd993a36/781Rvsc668ZufFaB0eoCtQk6c6Pg6LrearVarUwm01IUxTOvWCy2Wq1WzxYnRVHc+a1WqyXLcqtSqbhlVatVd54kSZ6/zMrlckuSpFa5XPYs46zfT7lc9v0Xa79tZDIZz/51ljdov0aJSVEUz7ar1WpLluUBe7dN07SuGNvPw6Ayx93nYrHYAuA5Z5lMxnPOex3jQcdq0HEZ5fh2rlOv17viGHT+22ma5jv2cepnKpXyHLNqtdqKRCKecnrFJcuy+zkcFptz/srlcqtSqbjndpTzUywWPdurVque973ouu6pa73qaXv96XdO+n1+hRAjH+/2bXeWWy6Xe7b+CCFaxWJx1+cP0u84+Kkbk/6sjlMXaBv7OBHS6TRKpZLbp8myrK6WGIdlWV2tU8lk0u0nZVkWDMNw50mS5HkfDodhWZbnrzLnL6FJ6beNdpFIxLPNYfvll2maXX91Oi0P7cehk9Oysra25k5bX1+HZVm+yhxnn4Ht1pFIJOJZdm1tDfl8vu85GedYjXt8S6WSWxeFEG6rxCCyLHfd9OC0DgyLY5z66bSytv/l7/wV365X/5P2VothsQkhYJomZFlGJBLp29IwrJxisejGJkkSYrFY330DgOXl5a66WyqV3P/XarWuujYK27Z39fvAEQ6He/aHulrzh8XWqbNFazc+q6PWBdrGS3UESZIQiURQKBSQSqVgmubAS1RCCM8XabVadT+4TnO90/Rbq9W6vkw6v2SFEGN/4fTTaxuDbtMdtl9+bW5u9vwRcS5d9mvG39zchBDC82XpHEunOX1YmaPucz9OHKZp9tzuOMdq3OMbiUS6EhA/P9KpVAq6rkPXdRiGgeXlZd9xjFo/nTJ7/dCNYpzYRi1HURTouo75+XlEIhGsrKwMvYzs/GA7P8DtSehOEibH1fg+ADC0zN2evxt28lkdpy7QNiZOBGC71UnXdaRSqYFf+LZtQ5IkTwLQ/n/TNJHNZpFIJLC8vDyRL9ZeJvWl7Ri2X35j2smt1ePMC8Kox8o5LuMc33Q6jWw2izNnziCfz/tuAUyn04hGo26/HGdbkzjPk9R+bv3E5icZG1ZOuVx2WzGd4znsB3NlZQXr6+uIRCKIxWJuK7Usy2Mdv0l/ftv1K9c5Lrs9fxSDjsMkPve7UReIwxHQ25aXl2GaJkql0sDm2l6Xe4DtD6ht21haWsLa2pqbgLVf/pukfmNPjWvQfvnlXEbpVY5lWYjH4wO332tbzmWMccocl3Mu+12uHfVYmaa5o+N75swZGIYBRVF8d1yVJMm96aH9MsgkznMn59yNU0Z7K8WkYhtUjnPzQSQSQSaTQaVSwfr6+tAyFUVBqVRyx3ZzWiv6tbAOM+nPbztJktzLup1kWd71+aMYdBz8tGDt5LM6bl0gJk4HWvtdOEIIyLKM9fX1gX/VyrKMWCzm6eMAAIVCwW1ZaP8QOx/+QV8Qfn4Y2vs9DOqDNe42Bu3XKDFFIhHIsuxpGnf2fdAdZM6dLu0D6dm2jUKhMHaZfn9wTdP0LJvNZpFKpfr+IA47Vr2OyzjHFwAqlQqEEFAUZeQf6HQ6jdXV1a6/tkeNY9hxlCQJqVTKc0dkr75YnX13nMvZTvnjHqNOg8pp/8Fsj2sY53K+853hrOO3jo3y+R0lUeyXXKytrXk+L6VSyZN07/b8fvodh2F1wzHJz+q4dYHAu+oOomq12kqlUi0ArVQq5d6l0X4XV71eb2ma1hJCtCRJamma5rk7LpPJtHRd96zjTM9kMq1yudwql8utarXq3tXhjAsFwL3LydlGJBIZekeKU7Zz50ev8gZtQ5Zl944kZ5lMJuNrv/zG1FmOruueO5D8lKdpWtcdL4PK3Mk+O3f5OHcLaZrmuQOtc71e8fQ6VsOOi9/j69xJ5NTDSCQy8Py3q9frfccg6xXHJOqnrutu3e+8q84pzzm/xWKxpShKS5Kkrs9QZ2zlcrkly3JLCNHSNM39zA46Br3KceqPM63zcz2Ipmmeu93a43AMi2fY59fv8a5Wqy1N01qRSMStm53Ltx/nXp/B3Z7fT7/PxrC6MenP6k7qwkE302q1Wlc/XSOiaeCMD1OpVIIOpYtt21hdXcWZM2fcy77OcxaTyeTUjzcTjUahaVqgfaho/5jmz+pBw0t1RDSV8vk80um0e+nYubtL0zT+eBBRYJg4EdFUikQi7pAM7QzD6PtgVyKi3cbhCIgOKMMwoGkaTNNELpebutuQnUtcnY+a8fOolqDlcjmYpukOUsnLdbQT0/5ZPWjYx4mIiIjIJ16qIyIiIvKJiRMRERGRT0yciIiIiHwKrHO483wcANjY2HDHaunFecKzM7pq+/PUBs0b5q233sIvf/lLXH/99ZiZmZnAXhEREdFe02q1cOXKFdxwww245pohbUpBjbzZPuKpMwJsP+3znJGo/cwb5vLlyy0AfPHFF1988cUXX63Lly8PzR0CuavONE0sLS2hXq8D2G41WlxcRLVa7XpWjmVZSCaTngHv5ufnUa/XB87zo9FoQAiBy5cvY25ubgJ7RkRERHtNs9nE4cOHYds2QqHQwGUDuVQXiURw5swZ973z0ML2p5g7DMPomh4Oh2GaJjY3N/vO8/MQWOfy3NzcHBMnIiKiA85Pt53A+ji1D2C3vr4OWZZ79k3q96TsWq02cF4vW1tb2Nract83m03f8RIREREFfledbdsolUo9H60wbL1R52WzWYRCIfd1+PDhkbZJREREB1vgiZOqqiiXy33vhBNCdLUg1Wo1CCEGzutlbW0NjUbDfV2+fHkSu0BEREQHRKDPqsvlclBVFZIkua1EnUmPLMvQdb1r3VgsBkmS+s7rZXZ2FrOzsyPF+NZbb+HXv/71SOsQ0f5y7bXX4l3velfQYRDRFAgscSqVSohEIm7SVCgUkEqlAGzfdSeEgCRJPe+yi8VibotTv3mT8Otf/xoXLlzAW2+9NZHyiGjvEkLgfe97H8d8IzrgAhmOwBl+oJ0Qwh1GIJlMIh6Pu0+AtiwLuq4jHo9jY2MDa2trngEw+80bptlsIhQKodFodN1V12q18Oqrr+I3v/mNvwGxiGhfarVaePPNN/H6669DCIH3v//9QYdERBM2KB/oFEjiNC0GHajf/OY3+MUvfoEbbrhh6JgORLT/vfHGG3j99dfxu7/7u7xsR7TPjJI4sRmlj9/+9rcAgPe85z0BR0JE0+C9730vgO0/qojo4GLiNAT7MxARwO8CItoW6F11e9HRk09d1e393Z/8LyOvU3riMZSf+g70b3176LKf+cSd+N/+zf+BxCc/PU54A330kBh5HdM0oes68vk8MpmM+ygey7KQTqchy/LE45x2+Xweqqri3LlzvkbEnzY8p0S0n7CPU59rmr/61a9w4cIFHDt2DNddd507fS8kTq9duojXXr2I2+64c+iyzz37DD700eOY24V+XOMkTsD2AKbOMwedjv7OtEqlMhXJg23bE7t7049EIgFN0wbu+9WOaZTt7Ydz2u87gYj2PvZxOuAOHTnqK2kCgNvuuHNXkqZJc4anWF9fDzoUWJaFQqEQdBgeVzumSWyP55SI9iImTrRn1Gq1rmEsgqBpWtAhdLnaMU1qezynRLTXsI/TPtNsNPBQ9q/w/LM/xFP//QUAwPmXX8JzP34Gh248itdevYjEJz6NQ0eO4vzLL+GU+iUo994H5d778Nyzz+Ch7ANQ7r3PXfa5Z5/Bg4881nd7/cp+7tln8PkH/wPS6TQkSYJlWSiXy55nEhqGAdM0IUkSNjY2+v542baNbDYLWZbdQVJ7rWsYBtLpNFRVBQDouo5KpeIZ66tWq2F5eRlCiL5lqKraN27DMLC5uek+6keW5a5BWh2lUglCCFiWhWq16u7fsG0A2/2C1tfXEY/HAfR/cHW/mEzTxOrqKpaXlz3HpFgsYnNzE8lkEmfOnIGiKCMfh37bU1UVkUgExWIRtm0jGo1CUZSe53WvnlMiIiZO+8xcKIR/f/oh3P6RowC2+zs9lH3A01H8M5+4E/n/8h3cdPMt+INP/Ut3+m133Ilbn/19T7JUfuo7OP/yS7jp5lu6tjWo7NvuuBPVH/9fKP9dEcV8DvjQAoqPfxPm97+FyM03wbr0GtQvZ1D5+28BAGrWi8j9xZeQ+eJ9QOMKACD/4F9BuvEQACD9L26HdOQzwC9fGLiu/D//Hio/+j703F8gjAbs8z9C4p/fi8p/ewIidD3Ur3wP+Vf/B5RPyv3LuO3mvnHLH1qAfNvNWDxyCKm74wAawC9f6HkukskkqtUqZFlGOp1GqVSCoiiQZRmyLHt+vIvFIkzTRCQSgW3b7rqObDbb95w75S0uLrpJiJM4LCwsIBKJQFVV6LoOIQRkWYamaVAUBZZlQVVVVCqV7eNQqyGXyyGTyfSNsd/2arWaW44QAqqquvMd+XzeTUqcRAbA0DgqlQp0XUc4HIZt20gkEqhUKu528vk8FEUZeV8ikUjP/SEi6oeJ0z5XfOJv8cGPfNQz7dCNR/GD730byr33dS0v5sMQ82H3/fVzITTs+lhlL8yHsDD/Tv8pMXc9avUmAEB//CzCIgTjR8+78zde/JmnrNS9JyBC13dtd9C6InS9u03lbhn5x89CuvEDbjlrf/KvAQDZv/lm3zIGxT0KpyO0ZVmo1WqwLMudt7CwgIWFhXe20fbA6kKh0NVZOhwOY1TpdBrJZBKZTAa2bcOyLNi2jc3NTSwvLwOAm4wYhuGut7GxMTTGXlKpFObn56Hruvv4o17L9OqAPSgOIYQbh6IobvLllLO2tgZgO7mc1L4QEfXDxIkCE7n5g5A/duvb725F6nMnJrKu00oFAHbzCsTcO8lXeyK2k+275Teu9EzugO0f8oWFBSiKclUv/Th3hznbNE0TALCysoJCoYBwOOxJXpxWF8eorS7td6OlUink83mEw2EoijJSOYPiaD9+nXe/TXJfepVPRNSOncP3uX/2qXvw/I9/6Jl2/uWXcNfd71yiu9Js7FrZ/az84V0wnn3eM6299QcAanbvuIat276e8kkZ5is/71rWz/b96CyjvSzTNJHJZNwHWQPwtIb04/QZatfeWjU0prZtpNNprK6uQlEUpFIp6LruWXZlZaUrJj8xDtreoI7W/Vp5hsXRvp6iKF3HxzCMiezLuOsQ0cHBFqd97qabb8G/XXsAf/uNh3HoxqN45SUTDz7yGOZCIZx/+SV8/7vfRkjMI/GJT+NKs4Hvf3e7v9Jtt9+J1169iPMvv4TSE4/h0I1HcejI0ZHKXv+7HwAA5DtuhXXpH2C+8nPoj5+FdOQDiNx8E7Q/+xLUrzyM+C0fdpczXz7vrqd9/TGk/+gEIjff5Nluv3WNHz0P49nnYb78c0g3HoL8sVshHTkE/fSfdy0rQtcP3X6vuKUjh5D+3AloX38M+cfPQr7jVvQSu+VDEOKc+yOcTCah6zokSXI7fgPbSZJlWe4gkZIkQZIkFItFqKqKRCLhtoBks1lomtaz9cpJWPL5vKfFZXl52dPvSJIkT0tQJBKBpmlQVdXtiO4kboNi7Lc9SZIQiUQ822gvS9M0pNPprkuR/eIwDMPT4dvpuK3reteyQoix9mXQ/hARdeIAmCMOgDmKn75mTyDK8dz+kaP48SsXA9s+AHz0mguBbj9wNxwPOoJAOJ3g9xsOgEm0f40yACZbnPaR0hOP4fKlC0je+3l8+KMH80ebguF0RA+Hw1MxCjgR0W5h4rSP3Hb7nbjSbKD8X7+Dv8z+x6DDoQMkmUy6/biYOBHRfsbEaR85dOQoPv+FLwUdBh1A7BdERAcF76ojIiIi8omJExEREZFPTJyIiIiIfGLiREREROQTEyciIiIinwJLnEzTRDQaHbpcqVSCbdvurc6dZTiPXnBGA6bt8ZzSnx3+2BMA+Mwn7kT5qe/sckTBMF8+j3TmrzHzgQjUrzyM/ONnoX7lYSRTmbEer7Jf5PN5zM/PX9XPi2maSKfTmJmZgaqqyOfzUFUVyWSSjzghoj0lkJHDS6USJElCNBrFsM3PzMx0TdM0DZlMBul0Gvl8HsD27dDFYnGkh3OONXL4AyHf5U/CT++/NPI6r126iNdevYjb7rhz6LLPPfsMPvTR45gLjb9fzUaj5/q7NXL4oAfr9lp2/kO/j/rPfuiu40yr/P0TXY9zmagRRg6/2g+WTSQS0DTtqo65ZNs25ufnUa/X3X11plUqlcDHfxp2DjhyONH+NcrI4YG0OCmK4utL0rZtFItFtFot9+UkTQAQjUZRr9dRr9dRLpf5RPO3HTpy1FfSBAC33XHnjpKm1y5dxA++9+2x1x+Vdek1FL77gx2VIULXQzpyyH0mXdAsy0KhUAg6jEA4z89zniUXlIN8DohoNFPfx6n9mVe9noElhGDCFKBvfuOhq7o97euPTaScmt3A4pFDEylrpzRNCzqEQNVqNSwuLgYaw0E/B0Tk31SPHN6eENm2jVqt5nkyvG3bKJVKAICNjQ2k0+meT453bG1tYWtry33fbDYnH3TAmo0GHsr+FZ5/9od46r+/AAA4//JLeO7Hz+DQjUfx2qsXkfjEp3HoyFGcf/klnFK/BOXe+6Dcex+ee/YZPJR9AMq997nLPvfsM3jwkcd6buu5Z5/Bz376Ippv9z+77fY7cf6V7TLvuvtf4M/+6C6oX/lPAICinsPmSz9D8o8zOJP7Syh3yzB+9DzMV85DuvEQNl76H9D+/EswfvQ81K8+jPTnTkC68RCsV19D+UfPo5jPwfjR89j86c9Qs7fPm3zHrTBf/jnUr/4nRD7yQRTzOdiNK4j+83uhfHIJ2p93j6JuN64g+zffhHz7rUh97gQA9I0jffIrUL/4rwAA+uNnUfn7b8G69Br0x88ifsuHUbMbWP7UXRCh63uXYRhQVdWtl5ZloVwuo1gsuvEYhoHNzU3UarXtfZLlvnW4VCpBCAHLslCtVt0fez/bMU0T6+vriMfjAOBurx/TNGEYhlueoiiQJMn3PpmmCUmSsLGx0TcpsW0b2WwWsiwjlUr1XM8wDKTTaaiqun0edB2VSgWWZUHXdcTjcdRqNSwvL0MI0beMQTGPcg6IiKY6cWqnqmrXF3AqlXKTK0mSkEgkUK1W+5aRzWZx6tSp3QwzcHOhEP796Ydw+0eOAti+lPZQ9gHo33rnctpnPnEn8v/lO7jp5lvwB596pxP5bXfciVuf/X1PslR+6js4//JLuOnmW7q25Sx/+MgxKPfeB2D7MuErL5kQ82FEbr4J6hfvg/74WYjQ9ZA/diu0P/vfodwtw7r0GtSvPozK338LwHYLUO4/P4bMF++D/OytbydLJwDciuL3DJgvn4f8sVshP3srFo8ccpMe6cgh1OwGKj89D2D7Mpz6xX/lznfknzgL6cbtFqb0505Aeru1aWAct/9PqPz0PPTcXyAsQrAbV5D4X7+Iyn97Yns7X3kY+SfOQvmk3LuMv34Ysix7fqSLxSJM03QvVcuyDFmWsbi4iFQqNfDcJpNJVKtVyLKMdDrttsA6ZfTbjm3b7rqObDbbdzuWZUFVVZTLZXdaNBrFuXPnhm7LWbdSqWwfi1oNuVzOvbwObHdOdxKT9mSm33qyLKNSqUDXdYTDYdi2jUQigUqlAiGE29lcUZSBZfSLeZRzQES0JxIn27ZhGEbXJTnLstwfIOfL17Ksvn8trq2t4ctf/rL7vtls4vDhw7sW9zQoPvG3+OBHPuqZdujGo/jB977tJjvtxHwYYj7svr9+LoSGXR9pm8l7P49/94X7gH/zh7CbV2C9+hrsxhVsvvQzLH/qLgDbLThhEfLc3bbx4s8AAAvzISzMv9PvSsxdj1q9f+tg6nMnMP+h34ee+wtYl15D7JYPdS9z74meHcoHxSFC17txKHfLyD9+FtKNH3DLWfuTfw0AyP7NN/vvy8ICFhYW3tkXIYa29vTjdKq2LAu1Wg2WZbnzBm2nUCh09SkMh8PoR9f1ruUlSUKhUEAqlRq4LSe5ab9TbmNjw1NW+x887dvst54Qwt2eoihu4uWUsba2BmA7GexXxiTPAxEdbHsicdrc3Oz6ojVNE0tLS6jXvT/qg34QZmdnMTs7uxshEt65u+7QkaMAtocDAICVP7wLhe/+AGER8iQvkZs/CPljt7797tauVqJh2u+uS917D/JvJ0HK3aM9cHZQHE4rFQDYzSsQc+/EP8l9cbcx4M6ubDaLhYUF97LZtHJacRx+W3EGrdd5ib79GLX/f9xtt7vadzgS0d4SeOfwzvGZTNP0/CXtTOtMiCRJ8ly6MwwDiqLwC6/DP/vUPXj+xz/0TDv/8ku46+53LtFdaTYmsq3nf/yM+3/l3vuw+qf/AcrdMlL3noD++FnPsit/eBeMZ71jKY06tlL7+unPnYD2n//PvsvW7N77OCyO9vWUT8owX/l517KT2Bd3vT5jGjl9dzKZDCRJcj83fsZAkmW5a8ymzs9Yu5WVla5yTdPE8vLy0G31Wrfzfa+WnmHrta+jKErX/hiG4WvbfnBcKSIaJJAWJ8Mw3P4T2WwW8XjcvVvOed/eJwJA11/YQgjEYjHkcjkIIVCtVj0dVGnbTTffgn+79gD+9hsP49CN2/2PHnzkMcyFQjj/8kv4/ne/jZCYR+ITn8aVZgPf/+52X6jbbr8Tr716EedffgmlJx7DoRuPui1J7ZL3fh7f/MZDKD3xGG67/U53+l13/0v83y8/C+Dt2/9vPORpCYrcfBO0P/sS1K88jPgtHwbgdPY+7w4TIN9xK6xL/wDzlZ9Df/wspCMf2E6Qvv4Y8o+fhXzHrW550pFDiHzkg55ttJelff0xpP/oRNe4Tf3iMH70PIxnn4f58s8h3XgI8sduhXTkEPTTf961rAhd33tf3u6QDWwnL84grbquQ5IkTz8fTdOQz+c9rSXtYrGY2/kZ2O7v5JTjZzvFYhGqqiKRSLgtKtlsFpqmdX22IpEINE1DLpdzO1k7Y6QN25azrqqqbkd0J3Fz1tM0Del02nM5sN96hmF4Onw7Hbd1Xe9aVggxdNv9jo+fc0BEBAQ0AOa0GGsAzBH89DV7AlGO5/aPHMWPX7kY2PaB3RsAs5/S94yRL9PtqhEGwKTpxwEwifavUQbA3BN9nMif0hOP4fKlC0je+3l8+KMH40c7nflrJO9OIDw/h8jNHww6HCIi2ueYOO0jt91+J640Gyj/1+/gL7P/Mehwrork3QnYzSsAsLuPTyEiIgITp33l0JGj+PwXugd93M/euZONiIho9wV+Vx0RERHRXsHEiYiIiMgnJk5DHOCbDomoDb8LiAhg4tTXu971LgDAr3/964AjIaJp8OabbwIArr322oAjIaIgsXN4H+9+97vx3ve+F//4j/+Ia6+9FtdcM3qO2fr/DnbS9atrDvhf6L/6VdAR0AS0Wi28+eabeP311yGEcP+oIqKDiYlTHzMzM3j/+9+PCxcu4NKlS2OV8Xr9/51wVHvLe2b+MegQgvX/XN0BQGl3CSHwvve9L+gwiChgTJwGeM973oPf+Z3fGfty3f1PPjPZgPaYc7P/LugQgvUnm0FHQBNy7bXXsqWJiAAwcRrqmmuuGfvxCv9w5bcTjmZvue43l4MOIVh8LAcR0b7DzuFEREREPjFxIiIiIvKJiRMRERGRT0yciIiIiHxi4kRERETkExMnIiIiIp+YOBERERH5xMSJiIiIyCcmTkREREQ+MXEiIiIi8imwxMk0TUSjUV/LmaYJALAsy/2/8z6Xy6FUKiGXy8G27d0Kl4iIiCiYZ9WVSiVIkuRJgvrRdR35fB4AIMsyisWiOy+ZTKJSqQDYTqJWV1c984mIiIgmKZDESVEU38tGo1HU63UAgBDCnW5Zlmc5SZJgGMZE4iMiIiLqZU/0cRJCeJImADAMA+Fw2DMtHA77asUiIiIiGkcgLU6jsG0bpVIJALCxsYF0Og1Jkvr2Z6rVan3L2trawtbWlvu+2WxONFYiIiLa36Y+cUqlUm5rkyRJSCQSqFarfZcf1EE8m83i1KlTE46QiIiIDoqpv1TX3pdJkiRYlgXLsiCE6GpdqtVqXZf02q2traHRaLivy5cv71bYREREtA9NdeJkmiaWlpa6pofDYciy3HOdWCzWt7zZ2VnMzc15XkRERER+BZ44dV5aM03TbWWSJAmaprnzDMOAoigQQkCSJM96lmUhFosNbHEiIiIi2olA+jgZhoFyuQxgu99RPB53hyhw3mcyGQghEIvFkMvlIIRAtVr1jNNULBahqiri8Tg2NjY4hhMRERHtqplWq9UKOoigNJtNhEIhNBqNXblsd/TkUxMvcy+5eN1ngw4hWA80go6AiIh8GCUfCPxSHREREdFewcSJiIiIyCcmTkREREQ+MXEiIiIi8omJExEREZFPTJyIiIiIfGLiREREROQTEyciIiIin5g4EREREfnExImIiIjIJyZORERERD4xcSIiIiLyiYkTERERkU9MnIiIiIh8YuJERERE5BMTJyIiIiKf3j3qChcvXkSxWES5XEa9Xnenh8NhJBIJKIqCo0ePTjJGIiIioqkwUuJ08uRJzMzMYHl5GX/6p3/aNf+FF17AI488gpmZGWSz2YkFSURERDQNfCdOX/va17C2toZQKNR3mePHj+P48eNoNBpYW1tj8kRERET7iu/EqVcLUz+hUIhJExEREe07Y3cOP3nyJB599FE0Gg3cddddWFlZwZNPPjnJ2IiIiIimytiJUzwex/333498Po9oNIr19XW88cYbvtc3TRPRaNTXcrlcDrlcDslkErZte+aZpgkAsCzL/T8RERHRbhg7cZqfnwcAFAoFrKysANi+s86PUqkEAL4SHcMwkMlkkMlkEI/HsbS05M7TdR3RaBQzMzNIp9OQJGnU3SAiIiLybezEqVqt4ty5c6hWq/i93/s9XLhwwTM8wSCKoiASiQxdzjRNT18pRVFgmiYsywIARKNR1Ot11Ot1lMtlCCHG2hciIiIiP8ZOnJaXl2GaJiqVChqNBnRd91xGm4RIJIIzZ864753y21u2hBBMmIiIiOiq8HVXXaPRQL1e9wxsGQqFPHfanT592rNOs9kEAMzNze0oQEVR3P+vr69DlmU3UbJt273st7GxMfRy3dbWFra2trpiJCIiIvLDV+IUCoVQKBSwsLCAe+65Z+jyZ8+eRb1ex/3337/jAB1OklSpVNxpqVTKTaIkSUIikUC1Wu1bRjabxalTpyYWExERER0sM61Wq+V34RdeeAHZbBaLi4uIx+OQJAlCCNi2Dcuy8JOf/AQXLlxAOp3Gxz/+8eEbn5mB382n02moquppUTJN0+0rZds25ufnUa1W+7Y69WpxOnz4MBqNxo5bxno5evKpiZe5l1y87rNBhxCsBxpBR0BERD40m02EQiFf+cBIj1w5fvw4CoUCGo0GCoUCfvKTn8C2bQghsLi4iHQ6jWPHju0o+F5yuZybNDn9nCzLwtLSUleH9EF39s3OzmJ2dnbi8REREdHBMPJDfoHtS3erq6sTCcBJvBymaUII4bYalUolRCIRN2kqFApIpVKQJAmaprnrGYYBRVHYUZyIiIh2zViJ004ZhoFyuQxgu99RPB53O4E77zOZDCzLQjKZ9KwrhHD7NsViMeRyOQghUK1WUSwWr/q+EBER0cExUh+n/WaUa5rjYB8n9nEiIqLpN0o+MPY4TkREREQHDRMnIiIiIp92lDh97Wtfc59Td+7cOQ4oSURERPva2InTyZMnIYSALMsAgKWlJRiGMbHAiIiIiKbN2IlTPB7H6urqwEecEBEREe0nYydOFy5cALA9+rdjY2Nj5xERERERTamxx3E6fvw4YrEYFhYWUC6XYRiGZ0BKIiIiov1m7BanpaUlFItFHD9+HK1WC/l83tfz6YiIiIj2qh2NHH7s2DGcPn3afd9sNndlIEkiIiKiabCj4QiazSYuXrzovlRVnVRcRERERFNn7BanP/7jP4ZhGJ6H6l64cAHf+MY3JhEXERER0dQZO3FaXFzEI4884pl25syZHQdERERENK3GvlTnDHzZLpFI7CgYIiIiomk2dovT/Pw8HnzwQUiSBCEEbNvG+vo61tfXJxkfERER0dQYO3HKZDKwbdvTx+mFF16YRExEREREU2nsxCmRSGB1ddUz7ezZszsOiIiIiGhajd3HaXFx0dc0IiIiov1i7BanarUKXdcRj8cBAK1WC4VCgc+rIyIion1r7BYnXddx7NgxtFottFotAHD/JSIiItqPxm5x0jQNS0tLnmm9higgIiIi2i929JDfTvPz8zsKhoiIiGia+W5xevLJJyHLsvsQ30cffdQz37ZtlMtlfP/73/dVnmmaWF1dRaVSGbicZVkolUqQJAmWZSGVSrlDIAyaR0RERDRpvhOnr371qxBC4OMf/zgA4JFHHsHKyopnmTfeeMNXWU6yY5rm0GWTyaSbXFmWhdXVVRSLxaHziIiIiCbNd+K0ubnpeX/mzBkcP37cM81vHydFUXwtZ1mW570kSTAMY+g8IiIiot0wdh+n9v5MjUYDZ8+enXgfJ8MwEA6HPdPC4TBM0xw4j4iIiGg3jJ04tbfuhEIhnDhxYuItPrZt95xeq9UGzutna2sLzWbT8yIiIiLya6ThCBqNBgqFAmZmZlAul7vmVyoV3H///RMLrp9+SdOwedlsFqdOnZp8QERERHQgjNTiFAqFIMsyNjc3Ua1W8Ytf/MLzymQyEw1OCNHVglSr1SCEGDivn7W1NTQaDfd1+fLlicZLRERE+9vIA2AeO3YMjzzyCM6dO9dzLKdJkmUZuq53TY/FYpAkqe+8fmZnZzE7OzvRGImIiOjgmOgAmOPovLRmmqZ7x5wkSZ55lmUhFotBCDFwHhEREdFuGPuRKzthGIbbRyqbzSIej7tDFDjvnct+xWIRqqoiHo9jY2PDM07ToHlEREREkzbTOsBP5m02mwiFQmg0Gu6I6JN09ORTEy9zL7l43WeDDiFYDzSCjoCIiHwYJR8Y+1IdERER0UEz0cTp4sWLkyyOiIiIaKrsqI/Tiy++6BkSQNd1rK+v7zgoIiIiomk0duK0vLwM27Y9d7G98MILk4iJiIiIaCqNnTglEgmsrq56pp09e3bHARERERFNq7H7OC0uLvqaRkRERLRfjN3iVK1Woes64vE4AKDVaqFQKGBjY2NiwRERERFNk7ETJ13XIcsy2oeBOsBDQhHtaQd+zLHTnww6BCLaI8ZOnDRN63rsiizLOw6IiIiIaFpN7Fl1Tz/9NC5cuLDjgIiIiIim1Y7GcXryySfdB/K2Wi1sbm7innvumUhgRERERNNm7MTp5MmTsG0btVoNkiTBtm2k0+lJxkZEREQ0VcZOnBYXF7G6uooLFy5gZmYGR48exdNPPz3J2IiIiIimyth9nCRJwqVLl3Ds2DGUSqVJxkREREQ0lcZucbJtG5IkoV6v45/+6Z/wB3/wBxBC4OMf//gk4yMiIiKaGmMnTidOnMBvf/tbAMDp06dx7tw5xGKxiQVGRERENG3GvlQHAF/72tewsrLivp+ZmdlxQERERETTakd31S0uLrqDXi4tLeHJJ5/kcAREtPc8EAo6gmA90Ag6AqI9Y+wWp3g8jtXVVUiSNMl4iIiIiKbW2ImTM0p4++U5PuCXiIiI9rOxL9UdP34csVgMCwsLKJfLMAwDmqZNMjYiIiKiqbKjZ9UVi0UcP34crVYL+Xx+pKEILMtCLpdDqVRCLpeDbdt9ly2VSrBtu+cypmnCNE23TOf/RERERJO2o2fVHTt2DKdPnx5r3WQyiUqlAmA74VldXUWxWOy7bCdN05DJZKDrOvL5PABAluW+ZRARERHtlO8WpwcffHDoMo8++qivspwHAzskSYJhGD2XtW0bxWIRrVbLfTlJEwBEo1HU63XU63WUy2UIIXzFQERERDQq3y1OX/3qV1Eulwcus7m5ifvvv39oWYZhIBwOe6aFw2GYpolIJNK1vKIo7v9LpZLnPQAmS0RERHRV+E6clpaWsLCwgGg02neZVqvlq6x+/ZlqtVrXtPakyLZt1Go1zxAItm27z8rb2NhAOp3uO0TC1tYWtra23PfNZtNXvERERETACIlTsVhEo9HA5uYmgO1xnObm5jzLdLYijWpQB3EAUFW16869VCrlJleSJCGRSKBarfZcP5vN4tSpUzuKkYiIiA6uke6qC4VCWFpawtLSEqrVKs6dO4enn37anX/ixAlf5QghulqXarXawEtutm3DMIyuZdr7S0mSBMuyuvpQOdbW1tBoNNzX5cuXfcVLREREBOxwHCfH008/jXK5jEQi4WtIAlmWoet61/RBDwne3NzsSppM08TS0hLq9bpner+Wr9nZWczOzg6Nj4iIiKiXHT3k98UXX8QXvvAFKIqCcrnct6WnU2cfJMuyEIvF3MTINM2uskzT7EqIJEnyXLozDAOKorCzOBEREe2KkVucLl68iGKxCF3XMTMzgxMnTqBSqeDYsWMjlVMsFqGqKuLxODY2NjzjL2WzWcTjcXfIAUdnwiWEQCwWQy6XgxAC1WqV4zgRERHRrplp+bwV7tFHH4Wu67AsC8vLy0ilUp7LdQDw5JNP4p577tmVQHdDs9lEKBRCo9Ho6ug+CUdPPjXxMveSi9d9NugQgrWHnjjPusq6SnSQjZIP+G5xSqVSUBQFJ0+ehBAC9Xrd0zG8Xq/j9OnTeypxIiIiIhrFSIlTLpcbOFbT+vr6RIIiIiIimka+E6d0Oj20+WptbW3HARERERFNK9931XX2Zxp3GSIiIqK9akfDERAREREdJEyciIiIiHxi4kRERETkExMnIiIiIp+YOBERERH5xMSJiIiIyCcmTkREREQ+MXEiIiIi8omJExEREZFPTJyIiIiIfGLiREREROQTEyciIiIin5g4EREREfnExImIiIjIJyZORERERD4xcSIiIiLyiYkTERERkU/vDmrDlmWhVCpBkiRYloVUKgUhRM9lTdMEAEQiEViWBdu2EYlERi6HiIiIaCcCS5ySySQqlQqA7eRndXUVxWKx57K6riOfzwMAZFn2LDdKOUREREQ7EUjiZFmW570kSTAMo+/y0WgU9XodADytSaOWQ0RERLQTgfRxMgwD4XDYMy0cDruX5HoRQnRdghunHCIiIqJxBdLiZNt2z+m1Wq3v8qVSCQCwsbGBdDoNSZJGLmdrawtbW1vu+2az6T9oIiIiOvAC6+PUS79EqL3DtyRJSCQSqFarI5eTzWZx6tSpHUZJREREB1Ugl+qEEF2tQrVare/dcO19mZy75yzLGrmctbU1NBoN93X58uUd7QcREREdLIEkTrIs95wei8W6ppmmiaWlpa7p4XB4pHIAYHZ2FnNzc54XERERkV+BXKqTJMnz3rIsxGIxt6XINE0IISBJEiRJgqZp7rKGYUBRlJ6dxTvLISIiIpqkwPo4FYtFqKqKeDyOjY0Nz9hL2WwW8XgcmUwGQgjEYjHkcjkIIVCtVj3LDiqHiIiIaJJmWq1WK+gggtJsNhEKhdBoNHblst3Rk09NvMy95OJ1nw06hGA90Ag6At9YV1lXiQ6yUfIBPquOiIiIyCcmTkREREQ+MXEiIiIi8omJExEREZFPTJyIiIiIfGLiREREROQTEyciIiIin5g4EREREfnExImIiIjIJyZORERERD4xcSIiIiLyiYkTERERkU9MnIiIiIh8YuJERERE5BMTJyIiIiKfmDgRERER+cTEiYiIiMgnJk5EREREPjFxIiIiIvKJiRMRERGRT0yciIiIiHx6d1AbtiwLpVIJkiTBsiykUikIIXoua5omDMMAAGxsbODMmTPusqZpAgAikQgsy4Jt24hEIldjF4iIiOiACSxxSiaTqFQqALaTqNXVVRSLxZ7LGoaBTCYDAMjlclhaWnLX1XUd+XweACDLct8yiIiIiHYqkEt1lmV53kuS5LYodTJNE9ls1n2vKApM03TLiEajqNfrqNfrKJfLfVutiIiIiHYqkMTJMAyEw2HPtHA47F52axeJRHDmzBn3vW3b7vIOIQQTJiIiItp1gVyqc5KfTrVared0RVHc/6+vr0OWZTdRsm0bpVIJwHb/p3Q6DUmSepaztbWFra0t932z2RwjeiIiIjqoAuvj1Eu/hKp9fqlUcvs3AfB0KpckCYlEAtVqtef62WwWp06dmlS4REREdMAEcqlOCNHVulSr1YZeblNVtasfU3t/KecOvc4+VI61tTU0Gg33dfny5bH3gYiIiA6eQBInWZZ7To/FYn3XyeVyUFUVkiTBtm3Ytg3TNLG0tNS1bGf/Kcfs7Czm5uY8LyIiIiK/AkmcOvsgWZaFWCzmGZupvdWoVCohEom4SVOhUIAQApIkQdM0dznDMKAoCjuKExER0a4IrI9TsViEqqqIx+PY2NjwjL+UzWYRj8eRyWRgWRaSyaRnXSGE27cpFoshl8tBCIFqtcpxnIiIiGjXzLRarVbQQQSl2WwiFAqh0WjsymW7oyefmniZe8nF6z4bdAjBeqARdAS+sa6yru4VrKusq7thlHyAz6ojIiIi8omJExEREZFPTJyIiIiIfGLiREREROQTEyciIiIin5g4EREREfnExImIiIjIJyZORERERD4xcSIiIiLyiYkTERERkU9MnIiIiIh8YuJERERE5BMTJyIiIiKfmDgRERER+cTEiYiIiMgnJk5EREREPjFxIiIiIvKJiRMRERGRT0yciIiIiHxi4kRERETkExMnIiIiIp/eHdSGLctCqVSCJEmwLAupVApCiJGXHaUcIiIiop0ILHFKJpOoVCoAtpOf1dVVFIvFkZcdpRwiIiKinQjkUp1lWZ73kiTBMIyRlx2lHCIiIqKdCiRxMgwD4XDYMy0cDsM0zZGWHaUcIiIiop0K5FKdbds9p9dqtZGWHaUcANja2sLW1pb7vtFoAACazWb/YHfgra03d6XcvaI50wo6hGDtUr3aDayrrKt7Besq6+ruFLtdbqs1/PgG1sepl36J0KjL9puXzWZx6tSprumHDx/2vV3yLxR0AEE7feCPwJ5x4M8U6+qeceDP1C7X1StXriAUGryNQBInIURXq1CtVut5N9ygZUcpBwDW1tbw5S9/2X3/1ltvoVarYWFhATMzM+PtDPXUbDZx+PBhXL58GXNzc0GHQ9QX6yrtFayru6fVauHKlSu44YYbhi4bSOIkyzJ0Xe+aHovFRlpWkiTf5QDA7OwsZmdnPdM4dMHumpub4wec9gTWVdorWFd3x7CWJkcgiZMkSZ73lmUhFou5SYxpmhBCQJKkgct2Jj2d5RARERFNUmB9nIrFIlRVRTwex8bGhmfspWw2i3g8jkwmM3TZQfOIiIiIJmmm5acLOdGItra2kM1msba21nV5lGiasK7SXsG6Oh2YOBERERH5xIf8EhEREfnExImIiIjIJyZOU8g0TaTTaczMzEBVVeTzeaiqimQyOdFn8eXzeczPz+/pR9REo1GUSiX3fT6fRyKRGGvdg8CpS/l8HqVSCYZhIJ/Pdz33cZoYhoFoNIp8Pn9VtreX6gXrv3+GYXi+V8f5Lr2a35lBfT+zTvnQoqlUr9dbAFr1er1rWqVSmdh2ZFmeWHntsV4t5XLZs91qtdoql8tjrbvfybLc0nXdM61SqbQAtKrVakBR+ZPJZLpi3y17qV6w/o+mWq12fa+OapLfmdO0LQfr1HBT9cgVGswZ22p9fR2RSCTocDwsy4JhGEilUld1u7Ise973GvvL77r7WS6XA4Cu8xOJRK76ORvHwsLCVdvWXqoXrP+j6XwoPHVjnRqOl+r2mFqthsXFxaDD6KJpWtAh0ADZbBbpdLrnvGQyeZWjISLau5g47RG2bUNVVciyjFQqBcMwsLi4iHw+j3w+j2g0CmC7f1Qul0OpVEIul+vqu2KaJlRVRalUQqlU8jzrz+lL4rROlEolLC4uevoCWJblrp/P52HbNgzDwObmJsrl8sD+MoZhuLGpquqJKZ1OuzGVSiWYpjk0HtM0PX1fbNtGOp32JJb9jkfnuu39aJx+P/slobAsC7Zt9/2rUZZld16/49Xv+FiW5a7Tnpg59dM5r/l8Hul02n0Ad7/626+OAHDrWq9z02u9YefUtm13nrNeZ70Y55j0w/o/ffzs96DvTKeMzvNaKpUQjUbdc5HL5bC4uOiey0F1YdC2esXPOhWAoK8VUm9OfyZN01rFYrFVLBa7+qGkUqlWKpVqtVotd74sy55lIpGIe825Xq+3JEnqmt9+DV3TtJamae57RVHc69vO+k55mUzGXXZYH5RqtdqKRCLue13XW5qmter1eksI4bkuLoRwYxoUjzO/c7tCCHebg45H57qZTKalKIr7Poj+BbvB6dcxbF+GHa9ex6f93LTXDWf59vnFYtFTfq/626uOtFrb56rfuRm03qBzqmmapy45daG9XoxzTHodZ9b/6dCr7+ig/R72nTmo7tXrdfd467rubnNQXRj2/dyOdSo47OM05VKpVN9n7wkh3L4fiqJAVdWuvk+SJKFQKCCVSqFQKHTNH+Waf6FQgCRJbjxra2u+19V1HeFw2NN6tbGxASEEZFn27GO/hzSPStf1gcej08LCgqcvjRBi6F98e4HTmmRZVs++cZZlIRwODz1evY5PeyuWc7zaz2X7/xVFQTKZhG3b7rMmO+tvrzriiMfjXdsC+tctYPA5VRQF0WgUkiRhZWWlZ50Y55j0qjOs/9Nr0H4P+84cVPeEEDhz5gyi0SiKxaJ7jgfVhVG+n1mngsPEaY/z22lvEpwfPEe/hK5zOUckEvF0HkylUlftFvODLpPJQNd1KIrSNc80zZ7T/djpA7U762+vOuLHOOuFw2HU63WYpon19XUkk0mUy2WfkY+O9X9/GlT3nGSo84aeSdUF1qlgsI/TlBuWnbfPX1lZ6RqbxDRNLC8vA9juy9I5JkhnfyQhBN544w33vWEYbr8URVG61u81Fkqvab1iMwwDy8vLA2MaFI+j8/2gbbYfj0Hr7jdO5/3OL9X2/fdzvDoNO37t80ulUtdfwsPqr5+xdsZdL5vNuq1wmqZ54nLiHueYjBIj6//VNWprx7DvzEF1z+mTVywWYVmWO75Rv3X8fD+3Y50KDlucppDzFzCw/YOXTqe7mkcNw4BhGDBNE5IkQZZl9wcgl8tBkiRsbGx4moglSUKxWISqqkgkEm7LUDabhaZpkCQJy8vLnsHhZFl2m2clSYKu61BV1b1s4vy1k06noWka8vl8z1tSndg61xVC9IzJMSge27axvr6OcDgMRVF6tl70Ox7OMXbWdcpytuF0etZ1faTbcadZuVxGLpeDqqpYXFx0LwM4rU1+jhfgPT7OeoZhwLIsaJrmSUKq1ar7xeyUBwyuv511pN+2nXMz7noLCwswDAPhcBi1Wg0rKytd9WKcY9KrzrD+B89JYoDtpHllZQUAhu73oO/Mfuc1n8+7393A9mXm1dVVWJaFTCYzUl1o/35uxzoVHD7kl6ZOIpFwv5TGMT8/j3q9PuGoaFROgrYXxomaJqz/NGmsU5PFFieaOuN0Hszn86hWq0in0xPrCEkUBNZ/mjTWqcliHyeaKs44ULquj3StXJZlLCwsoFQqQdf13QuQfHEuxRWLxT39LMSrjfWfJo11avJ4qY6IiIjIJ7Y4EREREfnExImIiIjIJyZORERERD4xcSIiIiLyiYkTEU0l5wnvMzMzUFUV+XweuVzOnXa1RyiORqPu6M9EdHDxrjoimlqWZWFxcRH1et0z+nE+n0csFht7QD8/OkdcNgwDsVhsx8/nI6K9jS1ORDS1+j0dfnl5eVefsm5ZFgqFgmda53P2iOhgYuJERHuGaZpuS9BuPuvKeSgyEVEnJk5EtGc4Dw0FtluFotEocrkcAKBUKmFxcdF9eKlhGIhGo8jn8zAMA/l8Hslk0lOeZVlQVRWlUgn5fN59ov3m5ibK5bI76rJpmm5ZDtM0kcvlUCqVkMvl3CfQ+9kuEe1dfFYdEU09J2ExDANra2sAti+dOU+4BwBFUTyJlSzLkGUZ5XIZxWIRANxHwDhPgk8kEqhUKhBCuB3QM5kMZFnuekBx+7achKtcLrvTotEozp07N3S7RLS3MXEioqmXSqUghBg58VhYWMDCwoL7Xgjh9o0qFAqQJMntt+QkZH7out4ViyRJKBQKSKVSA7dLRHsbEyci2jNkWZ5YWZ13zfXr+N25HBEdbOzjRERTa1grjRACb7zxhvveMAzf4zspigLTND3TnP5R/aY5Za+srHQta5omlpeXfW2biPYutjgR0VQyTRO6rgMAVFVFIpGAoiieZZaXl6GqqpvEyLLsXkazbdvt8yTLstvJW9d1SJIESZKg6zpUVUU8HneXA4B0Og1N05DP5yHLMkzTxPr6OsLhMBRFQSQSgaZpyOVykCQJGxsbKBaLEEK4yw7aLhHtXRwAk4iIiMgnXqojIiIi8omJExEREZFPTJyIiIiIfGLiREREROQTEyciIiIin5g4EREREfnExImIiIjIJyZORERERD4xcSIiIiLyiYkTERERkU9MnIiIiIh8YuJERERE5NP/D/MgiADPdDT5AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFoCAYAAAChRHRDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/9UlEQVR4nO3df3Aj533n+Q9ty+PylYZNsK7KdmakmWaSsx3LzoDkSXVnOyqzqez5R3LrAcmc5dTKVyYQ51LnLdcaGCb7Q7qNDQHS1tpbm7Uao0p0VVb2SGDk8jrei42WSrG8dVZItCzLZ7mujJ6RR0nVOhHYpO50pn0W7g+62wDxgw0QHIDk+1XFmkH/ePrb3Q+AL55++umxer1eFwAAAPb1mmEHAAAAcFSQOAEAAERE4gQAABARiRMAAEBEJE4AAAARkTgBAABEROIEAAAQEYkTAABARCROJ5DnecpkMpqYmNDU1FTXZaempjQxMaFMJiPf929MgBgZrutqfn5+33oC9CqoW9PT08MO5VjgvXrjkDidQKZpKpfLaWVlRbVaTa7rtl3OcRzF43EtLi4ql8vJMIwbG+gehUKhZVomk9HCwsIQotnVLqbjJB6PK5PJ9LzejTouwz7/o2DUjkGnePbWiaBu9fuDzPd9FQoFzc/Pt52fz+dVKBRUKBSUz+dv+PxODuu90e97Fb0jcTrBDMPQ4uKibNtuO3/UWpjK5XLLtPn5eS0tLQ0hml3tYjpuYrFYz+vcqOMy7PM/CkbtGHSKp12d6KduSbutK2tra/J9X7VarWV+kMgkk0klk0nF43GlUqkbNr+bw3xv9Hs80aM6TizbtuuVSqVuGEbLvM3NzXqlUqknEol6MpkcQnTNbNuux+PxYYfRZBRjOgyVSqVummbk5U/KcUF0nepEr3Vrr2Kx2LZcwzDqm5ubTdMav+4Oe34nh/3eOOjxRDSvG27ahmGLx+OKxWIqlUpKJBLh9I2NDVmW1XG9fD4v0zTleZ5M0wzXDZrPTdNUuVxWKpVSPB6XtHvpL2hKvnz5sjzPk+d5eumll5TL5Tpuy3EclctleZ4X/tJLp9NyXVeZTEae56larXbcRq1WU6VSkW3bKhQKisViWl1d1crKShjbfvsVNaa95Ui7fcoa53Wztxk/mUzuW2a/+xysF4vFwksrvu/vez72xtN4rKIel/2Ob8D3fWUyGU1PT6tSqWhqakrxeFy2bWtlZaXl/JdKJWWzWXmep2KxKMuy5Hme5ufnZZqmbNuWaZodY++nfjbum7TbkhuLxWSapmq1mizLaltXM5mMCoWCcrlc2/PcLjbTNJVKpcJWi6WlpZZy9zvWwfvT9315nifDMJq236hUKoXHxLZteZ4XXrYvFouKxWKam5uT7/sqFovhfu19T3arE9JuC1Kvx7sTz/Pk+37brgWO44T7fljzO31u9vI5trduHMZ7VeqtLqDBsDM3DI9t2/V6vV5Pp9P1RCLRNK9YLNbr9XrbFqdEIhHOr9frdcuy6pVKJSyrWq2G80zTbPplVi6X66Zp1svlctMywfqdlMvlyL9YO20jnU437d/e8rrtVy8xJRKJpm1Xq9W6ZVld9m5XLpdribHxPHQrs999LhaLdUlN5yydTjed83bHuNux6nZcejm+e9fZ3NxsiaPb+W+Uy+Uix95P/Uwmk03HrFqt1uPxeFM57eKyLCt8H+4XW3D+yuVyvVKphOe2l/NTLBabtletVptet2PbdlNda1dPG+tPp3PS6f1rGEbPx7tx23vLLZfLbVt/DMOoF4vFQ5/fTafjEKVuDPq92k9dwC76OEGpVEqlUins0+R5XktLTMDzvJbWqYWFhbCflOd5chwnnGeaZtPrWCwmz/OafpUFv4QGpdM2GsXj8aZt7rdfUbmu2/KrM2h5aDwOewUtKysrK+G01dVVeZ4Xqcx+9lnabR2Jx+NNy66srKhQKHQ8J/0cq36Pb6lUCuuiYRhhq0Q3lmW13PQQtA7sF0c/9TNoZW385R/8im/Urv9JY6vFfrEZhiHXdWVZluLxeMeWhv3KKRaLYWymaWpmZqbjvknS4uJiS90tlUrh/2u1Wktd64Xv+4f6eRCIxWJt+0PdqPn7xbbX3hatw3iv9loXsItLdZBpmorH41pbW1MymZTrul0vURmG0fRBWq1Wwzdu0FwfNP3WarWWD5O9H7KGYfT9gdNJu210u013v/2KamNjo+2XSHDpslMz/sbGhgzDaPqwDI5l0Jy+X5m97nMnQRyu67bdbj/Hqt/jG4/HWxKQKF/SyWRStm3Ltm05jqPFxcXIcfRaP4My233R9aKf2HotJ5FIyLZtTUxMKB6Pa2lpad/LyMEXdvAF3JiEHiRhCtyIzwNJ+5Z52PMPw0Heq/3UBewicYKk3VYn27aVTCa7fuD7vi/TNJsSgMb/u66rbDar+fl5LS4uDuSDtZ1BfWgH9tuvqDEd5NbqfuYNQ6/HKjgu/RzfVCqlbDary5cvq1AoRG4BTKVSmp6eDvvlBNsaxHkepMZzGyW2KMnYfuWUy+WwFTM4nvt9YS4tLWl1dVXxeFwzMzNhK7VlWX0dv0G/fxt1Kjc4Loc9vxfdjsMg3veHURfAcAT4ucXFRbmuq1Kp1LW5tt3lHmn3Der7vubm5rSyshImYI2X/wap09hT/eq2X1EFl1HaleN5nmZnZ7tuv922gssY/ZTZr+Bcdrpc2+uxcl33QMf38uXLchxHiUQicsdV0zTDmx4aL4MM4jzvFZy7fspobKUYVGzdygluPojH40qn06pUKlpdXd23zEQioVKpFI7tFrRWdGph3c+g37+NTNMML+vuZVnWoc/vRbfjEKUF6yDv1X7rAkicTrTGu3AMw5BlWVpdXe36q9ayLM3MzDT1cZCktbW1sGWh8U0cvPm7fUBE+WJo7PfQrQ9Wv9votl+9xBSPx2VZVlPTeLDv3e4gC+50aRxIz/d9ra2t9V1m1C9c13Wbls1ms0omkx2/EPc7Vu2OSz/HV5IqlYoMw1Aikej5CzqVSml5ebnl13avcex3HE3TVDKZbLojsl1frL19d4LL2UH5/R6jvbqV0/iF2RjXfoLL+cFnRrBO1DrWy/u3l0SxU3KxsrLS9H4plUpNSfdhz++k03HYr24EBvle7bcuQNxVdxJVq9V6MpmsS6onk8nwLo3Gu7g2NzfruVyubhhG3TTNei6Xa7o7Lp1O123bblonmJ5Op+vlcrleLpfr1Wo1vKsjGBdKUniXU7CNeDy+7x0pQdnBnR/tyuu2DcuywjuSgmXS6XSk/Yoa095ybNtuugMpSnm5XK7ljpduZR5kn4O7fIK7hXK5XNMdaHvXaxdPu2O133GJenyDO4mCehiPx7ue/0abm5sdxyBrF8cg6qdt22Hd33tXXVBecH6LxWI9kUjUTdNseQ/tja1cLtcty6obhlHP5XLhe7bbMWhXTlB/gml739fd5HK5prvdGuMI7BfPfu/fqMe7Wq3Wc7lcPR6Ph3Vz7/KNx7nde/Cw53fS6b2xX90Y9Hv1IHXhpBur1+v1G5+uARgFwfgwlUpl2KG08H1fy8vLunz5cnjZN3jO4sLCwsiPNzM9Pa1cLjfUPlQ4Pkb5vXrScKkOwEgqFApKpVLhpePg7q5cLseXB4ChIXECMJLi8Xg4JEMjx3E6PtgVAA4bwxEAJ5TjOMrlcnJdV/l8fuRuQw4uce191EyUR7UMWz6fl+u64SCVXK7DQYz6e/WkoY8TAABARFyqAwAAiIjECQAAICISJwAAgIiG1jk8eD6OJK2vr4djtbQTPOE5GF218Xlq3ebt59VXX9Xf/u3f6uabb9bY2NgA9goAABw19XpdL7/8st7ylrfoNa/Zp01pWCNvNo54GowA20njvGAk6ijz9nP9+vW6JP74448//vjjj7/69evX980dhnJXneu6mpub0+bmpqTdVqOpqSlVq9WWZ+V4nqeFhYWmAe8mJia0ubnZdV4UW1tbMgxD169f1+nTpwewZwAA4KjZ3t7W2bNn5fu+xsfHuy47lEt18Xhcly9fDl8HDy1sfIp5wHGclumxWEyu62pjY6PjvCgPgQ0uz50+fZrECQCAEy5Kt52h9XFqHMBudXVVlmW17ZvU6UnZtVqt67x2dnZ2tLOzE77e3t6OHC8AAMDQ76rzfV+lUqntoxX2W6/XedlsVuPj4+Hf2bNne9omAAA42YaeOGUyGZXL5Y53whmG0dKCVKvVZBhG13ntrKysaGtrK/y7fv36IHYBAACcEEN9Vl0+n1cmk5FpmmEr0d6kx7Is2bbdsu7MzIxM0+w4r51Tp07p1KlTPcX46quv6ic/+UlP6wA4Xm666Sa99rWvHXYYAEbA0BKnUqmkeDweJk1ra2tKJpOSdu+6MwxDpmm2vctuZmYmbHHqNG8QfvKTn+jq1at69dVXB1IegKPLMAy96U1vYsw34IQbynAEwfADjQzDCIcRWFhY0OzsbPgEaM/zZNu2Zmdntb6+rpWVlaYBMDvN28/29rbGx8e1tbXVclddvV7XD3/4Q/30pz+NNiAWgGOpXq/rlVde0Y9+9CMZhqE3v/nNww4JwIB1ywf2GkriNCq6Haif/vSn+sEPfqC3vOUt+47pAOD4e+mll/SjH/1Iv/qrv8plO+CY6SVxohmlg5/97GeSpNe//vVDjgTAKHjjG98oafdHFYCTi8RpH/RnACDxWQBg11DvqjuKzl366g3d3rX7P9DzOoVCQcViUeVyed9lp6entbKy0jQg6TC5rivbtlUoFJROp8NH8Xiep1QqJcuyhh3iDVcoFJTJZPT4449HGhF/1HBOARwn9HHqcE3zxz/+sa5evarz58/rDW94Qzj9RidO/+EP/tue13nxhWt68YfXdMd77tx32W899aTe/s4LOn0I/bjeecboaz3f98NnDgYd/YNplUplJJIH3/cHdvdmFPPz88rlcl33/UbH1Mv2jsM57fSZAODoo4/TCXfm1nORkiZJuuM9dx5K0jRowfAUq6urww5FnudpbW1t2GE0udExDWJ7nFMARxGJE46MWq3WMozFMORyuWGH0OJGxzSo7XFOARw19HE6Zra3tvS57L/Q00/9lb76n56RJD3/3LP61jef1JlbzunFH17T/Pt/W2duPafnn3tW92U+qcTd9yhx9z361lNP6nPZe5W4+55w2W899aQefOiRjtvrVPa3nnpSH3vwXyqVSsk0TXmep3K53PRMQsdx5LquTNPU+vp6xy8v3/eVzWZlWVY4SGq7dR3HUSqVUiaTkSTZtq1KpdI01letVtPi4qIMw+hYRiaT6Ri34zja2NgIH/VjWVbLIK2BUqkkwzDkeZ6q1Wq4f/ttQ9rtF7S6uqrZ2VlJnR9c3Skm13W1vLysxcXFpmNSLBa1sbGhhYUFXb58WYlEoufj0Gl7mUxG8XhcxWJRvu9renpaiUSi7Xk9qucUAEicjpnT4+P65/d/Tu9+xzlJu/2dPpe9V/affylc5nfef6cK//7Lettt79JvfugfhtPveM+duv2p32hKlspf/bKef+5Zve22d7Vsq1vZd7znTlW//X80fUEVi0W5rqt4PC7P85TJZFSpVCTtJgb5fD4c9FTa7RQdfIEFX3qSuq5rWZYqlYps21YsFpPv+5qfn1elUpFhGMpkMioUCkokEl3L6BS3ZVmyLEtTU1PhF34nCwsLqlarsixLqVRKpVJJiUQiLKPTNnzfD9cNZLPZjttpF1OQOExOTioejyuTyci2bRmGIcuylMvllEgk9j2W7WLstL1arRaWExzrvcfoqJ9TACBxOuaKj/6Z3vqOdzZNO3PLOX39L76kxN33tCxvTMRkTMTC1zefHteWv9lX2ZM3/ViT/9VbpL/dbfkyTkm1/+uvpTeNyf5Xn1fsv7hJzv/20O6K/ota/8bT0kfnpa2XJUnJD90hY/zmn5e8FZbTbV3jdTuanBiX/vYZJf6bKRUKD8r8pf9SxitXpVeklXt271LM/qv/pWMZ3eKWJP3f/1nybwrndxJ0hPY8T7VaTZ7nhfMmJyc1OTn5i+Pe8MDqtbW1ls7SsVhMvUqlUlpYWFA6nZbv+/I8T77va2NjQ4uLi7vH8ufJiOM44Xrr6+v7xthOMpnUxMSEbNsOH3/Ubpl2HbC7xWEYRhhHIpEIk6+gnJWVFUm7yeWg9gUAOiFxwtDEb3urrPfe/vNXtyv50YsDWde85Uz4f3/7ZRmnbw5f/yIRO9j2w/K3Xm4qs1E2m9Xk5KQSicQNvfQT3B0WbNN1XUnS0tKS1tbWFIvFmpKXoNUl0GurS+PdaMlkUoVCQbFYrOchLrrF0Xj89t79Nsh9aVc+ADSic/gx9w8+9GE9/c2/apr2/HPP6q4P/uIS3cvbW4dWdidLv3WXnKeebprmfKP5dc1vH9d+6zaul/iAJfe7329ZNsr2o9hbRmNZrusqnU6HD7KW1NQa0knQZ6hRY2vVvjE1bCOVSml5eVmJRELJZFK2bTctu7S01BJTlBi7ba9bR+tOrTz7xdG4XiKRaDk+juMMZF/6XQfAyUGL0zH3ttvepX+8cq/+7Auf15lbzum7z7p68KFHdHp8XM8/96y+9pUvadyY0Pz7f1svb2/pa1/Z7a90x7vv1Is/vKbnn3tWpUcf0ZlbzunMred6Knv1P3xdkmS953Z5L/yN3O9+X/YXr8i89ZcUv+1tyv3hJ5X5zOc1+65fC5dzn3s+XC/3J48o9bsXFb/tbU3b7bSu842n5Tz1tNznvi/zljOy3nu7zFvPyL7/j1qWNcZv3nf77eI2bz2j1EcvKvcnj6jwxSuy3nO72pl519tlGI+HX8ILCwuybVumaYYdv6XdJMnzvHCQSNM0ZZqmisWiMpmM5ufnwxaQbDarXC7XtvUqSFgKhUJTi8vi4mJTvyPTNJtaguLxuHK5nDKZTNgRPUjcusXYaXumaSoejzdto7GsXC6nVCrVcimyUxyO4zR1+A46btu23bKsYRh97Uu3/QGAvRgAs8cBMHvxnRf9AUTZn3e/45y++d1rQ9u+JL3zNVeHuv2he8uFYUcwFEEn+OOGATCB46uXATBpcTpGSo8+ousvXNXC3R/Tr73zZH5pYziCjuixWGwkRgEHgMNC4nSM3PHuO/Xy9pbK//HL+mfZfz3scHCCLCwshP24SJwAHGckTsfImVvP6WOf+OSww8AJRL8gACcFd9UBAABEROIEAAAQEYkTAABARCROAAAAEZE4AQAARETidAyVHn1EqY/s/9gTSfqd99+p8le/fMgRDYf73PNKpf9YY78UV+Yzn1fhi1eU+czntZBM9/V4leOiUChoYmKi5bElh8l1XaVSKY2NjSmTyahQKCiTyWhhYYFHnAA4Uhg5vNeRw+8dv6ExfufjL/S8zosvXNOLP7ymO95z577LfuupJ/X2d17Q6fH+92t7a6vt+oc1cni3B+u2W3bi7b+hze/9VbhOMK3yl4+2PM5loHoYOfxGP1h2fn5euVzuho655Pu+JiYmtLm5Ge5rMK1SqQx9/Kf9zgEjhwPHVy8jhw+txcl1XU1PT++7XKlUku/74eB6e8sIfjUHz5/C7nhOUZImSbrjPXceKGl68YVr+vpffKnv9XvlvfCi1r7y9QOVYYzfLPPWM+Ez6YbN8zytra0NO4yhCJ6fFzxLblhO8jkA0JuhJE6lUkmSIiU6CwsLmpiY0MTEhMbGxjQ2NqZ8Pi9Jsm1b09PTGhsbUyqVavvwUxyuP/3C527o9nJ/8shAyqn5W5q69cxAyjqoXC437BCGqlaraWpqaqgxnPRzACC6oYwcHvUBoL7vq1gsNi2fz+eVTqclSdPT09rc3JSkG3qZY5Rtb23pc9l/oaef+it99T89I0l6/rln9a1vPqkzt5zTiz+8pvn3/7bO3HpOzz/3rO7LfFKJu+9R4u579K2nntTnsvcqcfc94bLfeupJPfjQI2239a2nntT3vvNtbf+8NfCOd9+p57+7W+ZdH/zv9Ye/e5cyn/k3kqSindfGs9/Twu+ldTn/z5T4oCXnG0/L/e7zMm85o/Vn/0/l/uiTcr7xtDKf/bxSH70o85Yz8n74osrfeFrFQl7ON57Wxne+p5q/LUmy3nO73Oe+r8xn/43i73irioW8/K2XNf3f3a3EB+aU+6PWUdT9rZeV/bd/Kuvdtyv50YuS1DGO1KXPKPP7/0iSZH/xiip/+efyXnhR9hevaPZdv6aav6XFD90lY/zm9mU4jjKZTJjUe56ncrmsYrEYxuM4jjY2NlSr1Xb3ybI6/gAolUoyDEOe56larYZf9lG247quVldXNTs7K0nh9jpxXVeO44TlJRIJmaYZeZ9c15VpmlpfX++YlPi+r2w2K8uylEwm267nOI5SqZQymczuebBtVSoVeZ4n27Y1OzurWq2mxcVFGYbRsYxuMfdyDgBg5B+50pg0tXvqOglTs9Pj4/rn939O737HOUm7l9I+l71X9p//4nLa77z/ThX+/Zf1ttvepd/80C86kd/xnjt1+1O/0ZQslb/6ZT3/3LN6223vatlWsPzZW88rcfc9knYvE373WVfGREzx296mzO/fI/uLV2SM3yzrvbcr94f/sxIftOS98KIyn/28Kn/555J2W4Dy/+4RpX//HllP3f7zZOmipNtV/AtH7nPPy3rv7bKeul1Tt54Jkx7z1jOq+VuqfOd5SbuX4TK//4/C+YHCo1dk3rLbwpT66EWZP29t6hrHu/9rVb7zvOz8P1XMGJe/9bLm/4ffV+V/f3R3O5/5vAqPXlHiA1b7Mv7487Isq+lLulgsynXdsD+PZVmyLEtTU1NKJpNdz+3CwoKq1aosy1IqlQrfD0EZnbbj+364biCbzXbcjud5ymQyKpfL4bTp6Wk9/vjj+24rWLdSqewei1qt6ceOtNs5PUhMGpOZTutZlqVKpSLbthWLxeT7vubn51WpVGQYRtjZPJFIdC2jU8y9nAMAGOnEqTEp8n1ftVqt6Zeg7/vhZb/19XUu17VRfPTP9NZ3vLNp2plbzunrf/GlMNlpZEzEZEzEwtc3nx7Xlr/Z0zYX7v6Y/skn7pH+p9+Sv/2yvB++KH/rZW08+z0tfuguSbstODFjvOnutvVvf0+SNDkxrsmJX/S7Mk7frNrmdsftJT96URNv/w3Z+X8q74UXNfOut7cuc/fFth3Ku8VhjN8cxpH4oKXCF6/IvOWXwnJW/uB/lCRl/+2fdt6XyUlNTk7+Yl8MY9/Wnk6CTtWe56lWq8nzvHBet+2sra21dLyOxWLqxLbtluVN09Ta2pqSyWTXbQXJTeOdcuvr601lJZPJlh883dYzDCPcXiKRCBOvoIyVlRVJu8lgpzIGeR4AnGwjnTg1ymQyLU3+jR/Apmlqfn6+6Vf1Xjs7O9rZ2Qlfb293/jJG74K7687cek7S7nAAkrT0W3dp7StfV8wYb0pe4re9VdZ7b//5q9tbWon203h3XfLuD6vw8yQo8cHeHjjbLY6glUqS/O2XZZz+RfyD3JdwG13u7Mpms5qcnAwvm42qoBUnELUVp9t6e38wNR6jxv/3u+1GN/oORwBHy5EYx8n3fTmO0/Jh1viLO2jub5y2Vzab1fj4ePh39uzZwwp5ZPyDD31YT3/zr5qmPf/cs7rrg7+4RPfy9tZAtvX0N58M/5+4+x4tf/pfKvFBS8m7L8r+4pWmZZd+6y45TzWPpdTr2EqN66c+elG5f/e/dly25rffx/3iaFwv8QFL7ne/37LsIPYlXK/DmEZB3510Oi3TNMO7TKOMgWRZVsuNGN3eJ0tLSy3luq6rxcXFfbfVbt29r9u19Oy3XuM6iUSiZX8cx4m07SgYVwpAN0eixWljY6MlaXJdV3Nzc2Hn8EC3SxArKyv61Kc+Fb7e3t4+9snT2257l/7xyr36sy98Xmdu2e1/9OBDj+j0+Lief+5Zfe0rX9K4MaH59/+2Xt7e0te+stsX6o5336kXf3hNzz/3rEqPPqIzt5wLW5IaLdz9Mf3pFz6n0qOP6I533xlOv+uD/1D/+bmnJP389v9bzjS1BMVve5tyf/hJZT7zec2+69ckBZ29nw+HCbDec7u8F/5G7ne/L/uLV2Te+ku7CdKfPKLCF6/Ies/tYXnmrWcUf8dbm7bRWFbuTx5R6ncvtozb1CkO5xtPy3nqabnPfV/mLWdkvfd2mbeekX3/H7Usa4zf3H5fft4hW9pNXoIhM2zblmmaTf18crmcCoVCU2tJo5mZmbDzs7Tb3ykoJ8p2isWiMpmM5ufnwxaVbDarXC7X0noVj8eVy+WUz+fDTtbFYlGGYey7rWDdTCYTdkQPErdgvVwup1Qq1XQ5sNN6juM0dfgOOm7btt2yrGEY+2670/GJcg4AQBryAJhjY2NNg+FJuwlRMLZLIJ/Pq1wuN3VW9X0/7HMh7XYcX11dbbq7Zz99DYDZg++86Pe13iC8+x3n9M3vXhva9qXDGwCzk9JfOD1fpjtUPQyAidHHAJjA8dXLAJhDaXFyHCdMgrLZrGZnZ8O75YLXjXfhSGr5VWwYhmZmZpTP52UYhqrVak9J03FUevQRXX/hqhbu/ph+7Z0n40s7lf5jLXxwXrGJ04rf9tZhhwMAOOZ45MoxanF68YVrKv/H3efOBWM1DdONaHFyvvF02Gn7F52zRwQtTscKLU7A8TXyLU44HGduPaePfaJ10MfjbOSSJQDAsXYk7qoDAAAYBSROAAAAEZE47eMEdwED0IDPAgASiVNHr33tayVJP/nJT4YcCYBR8Morr0iSbrrppiFHAmCY6Bzewete9zq98Y1v1N/93d/ppptu0mte03uOWf//TnbS9ePXnPBf6D/+8bAjwADU63W98sor+tGPfiTDMMIfVQBOJhKnDsbGxvTmN79ZV69e1QsvvNBXGT/a/H8HHNXR8vqxvxt2CMP1/9zYAUBxuAzD0Jve9KZhhwFgyEicunj961+vX/mVX+n7ct3HH3tysAEdMY+f+ifDDmG4/mBj2BFgQG666SZamgBIInHa12te85q+B7v7m5d/NuBojpY3/PT6sEMYLgZJBIBjh87hAAAAEZE4AQAARETiBAAAEBGJEwAAQEQkTgAAABGROAEAAERE4gQAABARiRMAAEBEJE4AAAARkTgBAABEROIEAAAQEYkTAABARCROAAAAEZE4AQAARETiBAAAENHQEifXdTU9PR1pOdd1JUme54X/D17n83mVSiXl83n5vn9Y4QIAAOh1w9hoqVSSaZpNSVAntm2rUChIkizLUrFYDOctLCyoUqlI2k2ilpeXm+YDAAAM0lASp0QiEXnZ6elpbW5uSpIMwwine57XtJxpmnIcZyDxAQAAtHMk+jgZhtGUNEmS4ziKxWJN02KxWKRWLAAAgH4MpcWpF77vq1QqSZLW19eVSqVkmmbH/ky1Wq1jWTs7O9rZ2Qlfb29vDzRWAABwvI184pRMJsPWJtM0NT8/r2q12nH5bh3Es9ms7rvvvgFHCAAAToqRv1TX2JfJNE15nifP82QYRkvrUq1Wa7mk12hlZUVbW1vh3/Xr1w8rbAAAcAyNdOLkuq7m5uZapsdiMVmW1XadmZmZjuWdOnVKp0+fbvoDAACIauiJ095La67rhq1Mpmkql8uF8xzHUSKRkGEYMk2zaT3P8zQzM9O1xQkAAOAghtLHyXEclctlSbv9jmZnZ8MhCoLX6XRahmFoZmZG+XxehmGoWq02jdNULBaVyWQ0Ozur9fV1xnACAACHaqxer9eHHcSwbG9va3x8XFtbW4dy2e7cpa8OvMyj5NobPjLsEIbr3q1hRwAAiKCXfGDol+oAAACOChInAACAiEicAAAAIiJxAgAAiIjECQAAICISJwAAgIhInAAAACIicQIAAIiIxAkAACAiEicAAICISJwAAAAiInECAACIiMQJAAAgIhInAACAiEicAAAAIiJxAgAAiIjECQAAICISJwAAgIhInAAAACIicQIAAIiIxAkAACCi1/W6wrVr11QsFlUul7W5uRlOj8Vimp+fVyKR0Llz5wYZIwAAwEjoKXG6dOmSxsbGtLi4qE9/+tMt85955hk99NBDGhsbUzabHViQAAAAoyBy4vTAAw9oZWVF4+PjHZe5cOGCLly4oK2tLa2srHRNnlzX1fLysiqVStftuq4rx3EkSevr67p8+bIMwwjnSVI8HpfnefJ9X/F4POouAQAA9CRyH6dPf/rTXZOmRuPj412TplKpJOkXiU83juMonU4rnU5rdnZWc3Nz4TzbtjU9Pa2xsTGlUimZphkpPgAAgH703Tn80qVLevjhh7W1taW77rpLS0tLeuyxxyKtm0gkIrUMua7blIAlEgm5rivP8yRJ09PT2tzc1ObmpsrlctgSBQAAcBj6TpxmZ2f18Y9/XIVCQdPT01pdXdVLL700yNgUj8d1+fLl8LXv+5J2O6IHDMMgYQIAADdEz3fVBSYmJiRJa2trYXLTmNAMSiKRCP+/uroqy7LCRMn3/fCy3/r6OpfrAADAoeo7capWq6rX66pWq/r1X/91Xb16tWl4gkELkqTGzuTJZDJMokzT1Pz8vKrVascydnZ2tLOzE77e3t4+tHgBAMDx0/elusXFRbmuq0qloq2tLdm2HV5KOwyZTKalH1PQ10naTZw8z2uatlc2m9X4+Hj4d/bs2UOLFwAAHD9j9Xq9vt9CW1tb2tzc7Glgy6A15/Tp0503PjamCJtXPp9XIpGQaZphcuZ5nubm5sJWLt/3NTExoc3NzY59ntq1OJ09e1ZbW1td4+zXuUtfHXiZR8m1N3xk2CEM171bw44AABDB9va2xsfHI+UDkVqcxsfHVS6XI981d+XKFa2trUVKRva2UjXeNSftDl0Qj8fDpGltbU2GYcg0TeVyuXA5x3GUSCS6dhQ/deqUTp8+3fQHAAAQVeQ+TsvLy3rmmWe0uLioqakpzc7OyjRNGYYh3/fleZ7++q//WlevXlUqldLFixc7luU4jsrlsqTdy2ezs7NhJ/DgdTqdlud5WlhYaFrXMIywb9PMzIzy+bwMw1C1WlWxWOznGAAAAEQS6VLdXltbW1pbW1O1WpXv+zIMQ1NTU7IsS+fPnz+MOA9FL01z/eBSHZfqAACjr5d8oK+76sbHx7W8vNxXcAAAAEdV33fVAQAAnDQkTgAAABGROAEAAERE4gQAABDRgRKnBx54QEtLS5Kkxx9/nEeYAACAY63vxOnSpUsyDEOWZUmS5ubm5DjOwAIDAAAYNX0nTrOzs1peXpZpmoOMBwAAYGT1nThdvXpV0u7z5gLr6+sHjwgAAGBE9TUApiRduHBBMzMzmpycVLlcluM4Tc+OAwAAOG76bnGam5tTsVjUhQsXVK/XVSgU9L73vW+QsQEAAIyUvlucJOn8+fO6//77w9fb29uH8sw3AACAUXCg4Qi2t7d17dq18C+TyQwqLgAAgJHTd4vT7/3e78lxHBmGEU67evWqvvCFLwwiLgAAgJHTd+I0NTWlhx56qGna5cuXDxwQAADAqOr7Ul0w8GWj+fn5AwUDAAAwyvpucZqYmNCDDz4o0zRlGIZ839fq6qpWV1cHGR8AAMDI6DtxSqfT8n2/qY/TM888M4iYAAAARlLfidP8/LyWl5ebpl25cuXAAQEAAIyqvvs4TU1NRZoGAABwXPTd4lStVmXbtmZnZyVJ9Xpda2trPK8OAAAcW323ONm2rfPnz6ter6ter0tS+C8AAMBx1HeLUy6X09zcXNO0dkMUAAAAHBcHesjvXhMTEwcKBgAAYJRFbnF67LHHZFlW+BDfhx9+uGm+7/sql8v62te+Fqk813W1vLysSqXSdTnP81QqlWSapjzPUzKZDIdA6DYPAABg0CInTp/97GdlGIbe9773SZIeeughLS0tNS3z0ksvRSorSHZc19132YWFhTC58jxPy8vLKhaL+84DAAAYtMiJ08bGRtPry5cv68KFC03TovZxSiQSkZbzPK/ptWmachxn33kAAACHoe8+To39mba2tnTlypWB93FyHEexWKxpWiwWk+u6XecBAAAchr4Tp8bWnfHxcV28eHHgLT6+77edXqvVus7rZGdnR9vb201/AAAAUfU0HMHW1pbW1tY0NjamcrncMr9SqejjH//4wILrpFPStN+8bDar++67b/ABAQCAE6GnFqfx8XFZlqWNjQ1Vq1X94Ac/aPpLp9MDDc4wjJYWpFqtJsMwus7rZGVlRVtbW+Hf9evXBxovAAA43noeAPP8+fN66KGH9Pjjj7cdy2mQLMuSbdst02dmZmSaZsd5nZw6dUqnTp0aaIwAAODkGOgAmP3Ye2nNdd3wjjnTNJvmeZ6nmZkZGYbRdR4AAMBh6PuRKwfhOE7YRyqbzWp2djYcoiB4HVz2KxaLymQymp2d1fr6etM4Td3mAQAADNpY/QQ/mXd7e1vj4+Pa2toKR0QfpHOXvjrwMo+Sa2/4yLBDGK57t4YdAQAggl7ygb4v1QEAAJw0A02crl27NsjiAAAARsqB+jh9+9vfbhoSwLZtra6uHjgoAACAUdR34rS4uCjf95vuYnvmmWcGERMAAMBI6jtxmp+f1/LyctO0K1euHDggAACAUdV3H6epqalI0wAAAI6LvlucqtWqbNvW7OysJKler2ttbU3r6+sDCw4AAGCU9N3iZNu2zp8/r3q9rmAoqBM8JBQAADgB+m5xyuVyLY9dsSzrwAEBuPFO/GCt939g2CEAOCIG9qy6J554QlevXj1wQAAAAKPqQOM4PfbYY+EDeev1ujY2NvThD394IIEBAACMmr4Tp0uXLsn3fdVqNZmmKd/3lUqlBhkbAADASOk7cZqamtLy8rKuXr2qsbExnTt3Tk888cQgYwMAABgpffdxMk1TL7zwgs6fP69SqTTImAAAAEZS3y1Ovu/LNE1tbm7q7//+7/Wbv/mbMgxD73vf+wYZHwAAwMjoO3G6ePGifvazn0mS7r//fj3++OOamZkZWGAAAACjpu9LdZL0wAMPaGlpKXw9NjZ24IAAAABGVd+J06VLl2QYRjjo5dzcnBzHGVhgAAAAo6bvxGl2dlbLy8syTXOQ8QAAAIysvvs4BaOEN16eW19fZwBMAEfPvePDjmC47t0adgTAkdF34nThwgXNzMxocnJS5XJZjuMol8sNMjYAAICRcqBn1RWLRV24cEH1el2FQoGhCAAAwLF2oGfVnT9/Xvfff/+gYgEAABhpkVucHnzwwX2XefjhhyNv2PM85fN5lUol5fN5+b7fcdlSqSTf99su47quXNcNywz+DwAAMGiRW5w++9nPqlwud11mY2NDH//4xyOVt7CwoEqlImk34VleXlaxWOy47F65XE7pdFq2batQKEiSLMvqWAYAAMBBRU6c5ubmNDk5qenp6Y7L1Ov1SGV5ntf02jTNjmNA+b6vYrGoRCIRTsvn80qn05Kk6elpbW5uSpIMw4i0fQAAgH5ETpyKxaK2tra0sbEhaXccp9OnTzctE4vFIpXlOE7LsrFYTK7rKh6PtyzfmDSVSqWm1xIJEwAAuDF66hw+Pj6uubk5SdIzzzyjWq2msbGx8G66ixcvRiqnU3+mWq3WMq0xKfJ9X7VarWnQTd/3VSqVJO2OI5VKpRiUEwAAHIoDjeMUeOKJJ1QulzU/P3+gIQm6dRCXpEwm0zJWVDKZDJMr0zQ1Pz+varXadv2dnR3t7OyEr7e3t/uOFQAAnDwHesjvt7/9bX3iE59QIpFQuVxu6bvUiWEYLa1LtVqt6yU33/flOE7LMo3bNE1Tnud1jCObzWp8fDz8O3v2bKR4AQAApD4Sp2vXrumBBx7QL//yL2thYUHj4+OqVCo93VEXPBh4r5mZmY7rbGxstCRNruuGlw4bdeprtbKyoq2trfDv+vXrkeIFAACQerhU9/DDD8u2bXmep8XFxXDU8EaPPfZYpGfV7e2D5HmeZmZmwsTIdV0ZhtG0nOu6LQmRaZpNl+4cx1EikejYcnXq1CmdOnVq3/gAAADaiZw4JZNJJRIJXbp0SYZhaHNzU0888UQ4f3NzU/fff3/kh/wWi0VlMhnNzs5qfX29afylbDar2dnZcMiBwN6EyzAMzczMKJ/PyzAMVatVxnECAACHpqfEKZ/Pdx2raXV1NfKGG1uL9g4v0C752ZtEBeLxeNshDAAAAAYtcuKUSqVaxm3aa2Vl5cABAQAAjKrIncP39mfqdxkAAICj6kDDEQAAAJwkJE4AAAARkTgBAABEROIEAAAQEYkTAABARCROAAAAEZE4AQAARETiBAAAEBGJEwAAQEQkTgAAABGROAEAAERE4gQAABARiRMAAEBEJE4AAAARkTgBAABEROIEAAAQEYkTAABARCROAAAAEZE4AQAARETiBAAAEBGJEwAAQEQkTgAAABG9blgb9jxPpVJJpmnK8zwlk0kZhtF2Wdd1JUnxeFye58n3fcXj8Z7LAQAAOIihJU4LCwuqVCqSdpOf5eVlFYvFtsvatq1CoSBJsiyrableygEAADiIoSROnuc1vTZNU47jdFx+enpam5ubktTUmtRrOQAAAAcxlD5OjuMoFos1TYvFYuEluXYMw2i5BNdPOQAAAP0aSouT7/ttp9dqtY7Ll0olSdL6+rpSqZRM0+y5nJ2dHe3s7ISvt7e3owcNAABOvKH1cWqnUyLU2OHbNE3Nz8+rWq32XE42m9V99913wCgBAMBJNZRLdYZhtLQK1Wq1jnfDNfZlCu6e8zyv53JWVla0tbUV/l2/fv1A+wEAAE6WoSROlmW1nT4zM9MyzXVdzc3NtUyPxWI9lSNJp06d0unTp5v+AAAAohrKpTrTNJtee56nmZmZsKXIdV0ZhiHTNGWapnK5XLis4zhKJBJtO4vvLQcAAGCQhtbHqVgsKpPJaHZ2Vuvr601jL2WzWc3OziqdTsswDM3MzCifz8swDFWr1aZlu5UDAAAwSGP1er0+7CCGZXt7W+Pj49ra2jqUy3bnLn114GUeJdfe8JFhhzBc924NO4LIqKvUVeAk6yUf4Fl1AAAAEZE4AQAARETiBAAAEBGJEwAAQEQkTgAAABGROAEAAERE4gQAABARiRMAAEBEJE4AAAARkTgBAABEROIEAAAQEYkTAABARCROAAAAEZE4AQAARETiBAAAEBGJEwAAQEQkTgAAABGROAEAAERE4gQAABARiRMAAEBEJE4AAAARkTgBAABEROIEAAAQ0euGtWHP81QqlWSapjzPUzKZlGEYbZd1XVeO40iS1tfXdfny5XBZ13UlSfF4XJ7nyfd9xePxG7ELAADghBla4rSwsKBKpSJpN4laXl5WsVhsu6zjOEqn05KkfD6vubm5cF3btlUoFCRJlmV1LAMAAOCghnKpzvO8ptemaYYtSnu5rqtsNhu+TiQScl03LGN6elqbm5va3NxUuVzu2GoFAABwUENJnBzHUSwWa5oWi8XCy26N4vG4Ll++HL72fT9cPmAYBgkTAAA4dEO5VBckP3vVarW20xOJRPj/1dVVWZYVJkq+76tUKkna7f+USqVkmuZA4wUAAJCG2MepnU4JVeP8UqkU9m+S1NSp3DRNzc/Pq1qttl1/Z2dHOzs74evt7e0DxwwAAE6OoVyqMwyjpXWpVqvte7ktk8m09GNq7C8V3KG3tw9VIJvNanx8PPw7e/Zs3/sAAABOnqEkTpZltZ0+MzPTcZ18Pq9MJiPTNOX7vnzfl+u6mpuba1l2b/+pwMrKira2tsK/69ev97cDAADgRBpK4rS3D5LneZqZmWkam6mx1ahUKikej4dJ09ramgzDkGmayuVy4XKO4yiRSHRsuTp16pROnz7d9AcAABDV0Po4FYtFZTIZzc7Oan19vWn8pWw2q9nZWaXTaXmep4WFhaZ1DcMI+zbNzMwon8/LMAxVq1XGcQIAAIdmrF6v14cdxLBsb29rfHxcW1tbh9L6dO7SVwde5lFy7Q0fGXYIw3Xv1rAjiIy6Sl0FTrJe8oGRuqsOAIBuSPJJ8oeNh/wCAABEROIEAAAQEYkTAABARCROAAAAEZE4AQAARETiBAAAEBGJEwAAQEQkTgAAABGROAEAAERE4gQAABARiRMAAEBEJE4AAAARkTgBAABEROIEAAAQEYkTAABARCROAAAAEZE4AQAARETiBAAAEBGJEwAAQEQkTgAAABGROAEAAERE4gQAABARiRMAAEBErxvWhj3PU6lUkmma8jxPyWRShmH0vGwv5QAAABzE0BKnhYUFVSoVSbvJz/LysorFYs/L9lIOAADAQQzlUp3neU2vTdOU4zg9L9tLOQAAAAc1lMTJcRzFYrGmabFYTK7r9rRsL+UAAAAc1FAu1fm+33Z6rVbradleypGknZ0d7ezshK+3trYkSdvb252DPYBXd145lHKPiu2x+rBDGK5DqleHgbpKXT0qqKvU1cMpdrfcen3/4zu0Pk7tdEqEel2207xsNqv77ruvZfrZs2cjbxfRjQ87gGG7/8QfgSPjxJ8p6uqRceLP1CHX1Zdfflnj4923MZTEyTCMllahWq3W9m64bsv2Uo4krays6FOf+lT4+tVXX1WtVtPk5KTGxsb62xm0tb29rbNnz+r69es6ffr0sMMBOqKu4qigrh6eer2ul19+WW95y1v2XXYoiZNlWbJtu2X6zMxMT8uaphm5HEk6deqUTp061TSNoQsO1+nTp3mD40igruKooK4ejv1amgJDSZxM02x67XmeZmZmwiTGdV0ZhiHTNLsuuzfp2VsOAADAIA2tj1OxWFQmk9Hs7KzW19ebxl7KZrOanZ1VOp3ed9lu8wAAAAZprB6lCznQo52dHWWzWa2srLRcHgVGCXUVRwV1dTSQOAEAAETEQ34BAAAiInECAACIiMRpBLmuq1QqpbGxMWUyGRUKBWUyGS0sLAz0WXyFQkETExNH+hE109PTKpVK4etCoaD5+fm+1j0JgrpUKBRUKpXkOI4KhULLcx9HieM4mp6eVqFQuCHbO0r1gvofneM4TZ+r/XyW3sjPzGF9PlOnIqhjJG1ubtYl1Tc3N1umVSqVgW3HsqyBldcY641SLpebtlutVuvlcrmvdY87y7Lqtm03TatUKnVJ9Wq1OqSookmn0y2xH5ajVC+o/72pVqstn6u9GuRn5ihtK0Cd2t9IPXIF3QVjW62urioejw87nCae58lxHCWTyRu6Xcuyml63G/sr6rrHWT6fl6SW8xOPx2/4OevH5OTkDdvWUaoX1P/e7H0oPFpRp/bHpbojplaraWpqathhtMjlcsMOAV1ks1mlUqm28xYWFm5wNABwdJE4HRG+7yuTyciyLCWTSTmOo6mpKRUKBRUKBU1PT0va7R+Vz+dVKpWUz+db+q64rqtMJqNSqaRSqdT0rL+gL0nQOlEqlTQ1NdXUF8DzvHD9QqEg3/flOI42NjZULpe79pdxHCeMLZPJNMWUSqXCmEqlklzX3Tce13Wb+r74vq9UKtWUWHY6HnvXbexHE/T7OS4Jhed58n2/469Gy7LCeZ2OV6fj43leuE5jYhbUz+C8FgoFpVKp8AHcnepvpzoiKaxr7c5Nu/X2O6e+74fzgvX21ot+jkkn1P/RE2W/u31mBmXsPa+lUknT09Phucjn85qamgrPZbe60G1b7eKnTg3BsK8Vor2gP1Mul6sXi8V6sVhs6YeSTCbryWSyXq/Xw/mWZTUtE4/Hw2vOm5ubddM0W+Y3XkPP5XL1XC4Xvk4kEuH17WD9oLx0Oh0uu18flGq1Wo/H4+Fr27bruVyuvrm5WTcMo+m6uGEYYUzd4gnm792uYRjhNrsdj73rptPpeiKRCF8Po3/BYQj6dey3L/sdr3bHp/HcNNaNYPnG+cVisan8dvW3XR2p13fPVadz0229buc0l8s11aWgLjTWi36OSbvjTP0fDe36jnbb7/0+M7vVvc3NzfB427YdbrNbXdjv87kRdWp46OM04pLJZMdn7xmGEfb9SCQSymQyLX2fTNPU2tqaksmk1tbWWub3cs1/bW1NpmmG8aysrERe17ZtxWKxptar9fV1GYYhy7Ka9rHTQ5p7Zdt21+Ox1+TkZFNfGsMw9v3FdxQErUme57XtG+d5nmKx2L7Hq93xaWzFCo5X47ls/H8ikdDCwoJ83w+fNbm3/rarI4HZ2dmWbUmd65bU/ZwmEglNT0/LNE0tLS21rRP9HJN2dYb6P7q67fd+n5nd6p5hGLp8+bKmp6dVLBbDc9ytLvTy+UydGh4SpyMuaqe9QQi+8AKdErq9ywXi8XhT58FkMnnDbjE/6dLptGzbViKRaJnnum7b6VEc9IHae+tvuzoSRT/rxWIxbW5uynVdra6uamFhQeVyOWLkvaP+H0/d6l6QDO29oWdQdYE6NRz0cRpx+2XnjfOXlpZaxiZxXVeLi4uSdvuy7B0TZG9/JMMw9NJLL4WvHccJ+6UkEomW9duNhdJuWrvYHMfR4uJi15i6xRPY+7rbNhuPR7d1j5ug8/7eD9XG/Y9yvPba7/g1zi+VSi2/hPerv1HG2ul3vWw2G7bC5XK5priCuPs5Jr3ESP2/sXpt7djvM7Nb3Qv65BWLRXmeF45v1GmdKJ/PjahTw0OL0wgKfgFLu194qVSqpXnUcRw5jiPXdWWapizLCr8A8vm8TNPU+vp6UxOxaZoqFovKZDKan58PW4ay2axyuZxM09Ti4mLT4HCWZYXNs6ZpyrZtZTKZ8LJJ8GsnlUopl8upUCi0vSU1iG3vuoZhtI0p0C0e3/e1urqqWCymRCLRtvWi0/EIjnGwblBWsI2g07Nt2z3djjvKyuWy8vm8MpmMpqamwssAQWtTlOMlNR+fYD3HceR5nnK5XFMSUq1Www/moDype/3dW0c6bTs4N/2uNzk5KcdxFIvFVKvVtLS01FIv+jkm7eoM9X/4giRG2k2al5aWJGnf/e72mdnpvBYKhfCzW9q9zLy8vCzP85ROp3uqC42fz42oU8PDQ34xcubn58MPpX5MTExoc3NzwFGhV0GCdhTGiRol1H8MGnVqsGhxwsjpp/NgoVBQtVpVKpUaWEdIYBio/xg06tRg0ccJIyUYB8q27Z6ulVuWpcnJSZVKJdm2fXgBIpLgUlyxWDzSz0K80aj/GDTq1OBxqQ4AACAiWpwAAAAiInECAACIiMQJAAAgIhInAACAiEicAIyk4AnvY2NjymQyKhQKyufz4bQbPULx9PR0OPozgJOLu+oAjCzP8zQ1NaXNzc2m0Y8LhYJmZmb6HtAvir0jLjuOo5mZmQM/nw/A0UaLE4CR1enp8IuLi4f6lHXP87S2ttY0be9z9gCcTCROAI4M13XDlqDDfNZV8FBkANiLxAnAkRE8NFTabRWanp5WPp+XJJVKJU1NTYUPL3UcR9PT0yoUCnIcR4VCQQsLC03leZ6nTCajUqmkQqEQPtF+Y2ND5XI5HHXZdd2wrIDrusrn8yqVSsrn8+ET6KNsF8DRxbPqAIy8IGFxHEcrKyuSdi+dBU+4l6REItGUWFmWJcuyVC6XVSwWJSl8BEzwJPj5+XlVKhUZhhF2QE+n07Isq+UBxY3bChKucrkcTpuentbjjz++73YBHG0kTgBGXjKZlGEYPScek5OTmpycDF8bhhH2jVpbW5NpmmG/pSAhi8K27ZZYTNPU2tqakslk1+0CONpInAAcGZZlDaysvXfNder4vXc5ACcbfZwAjKz9WmkMw9BLL70UvnYcJ/L4TolEQq7rNk0L+kd1mhaUvbS01LKs67paXFyMtG0ARxctTgBGkuu6sm1bkpTJZDQ/P69EItG0zOLiojKZTJjEWJYVXkbzfT/s82RZVtjJ27ZtmaYp0zRl27YymYxmZ2fD5SQplUopl8upUCjIsiy5rqvV1VXFYjElEgnF43Hlcjnl83mZpqn19XUVi0UZhhEu2227AI4uBsAEAACIiEt1AAAAEZE4AQAARETiBAAAEBGJEwAAQEQkTgAAABGROAEAAERE4gQAABARiRMAAEBEJE4AAAARkTgBAABEROIEAAAQEYkTAABARP8/WVaUrl64eVgAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -1107,9 +1107,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACS00lEQVR4nOydeXxb1Zn3f1q8b7Jsx86eXBPCDpFtSukKkYEO0AVk+52u0ymR2hmmUKa1Yjpd6LQ4cjstdEUKXWfaqS1Dh0JbiBSg0ALFllgKtEnQTUISx0ssyfsm6bx/yLrWritbsiT7+fIJ9r333HOee+617k/nPOd5JIwxBoIgCIIgCCIh0kwbQBAEQRAEkSuQcCIIgiAIghAJCSeCIAiCIAiRkHAiCIIgCIIQCQkngiAIgiAIkZBwIgiCIAiCEAkJJ4IgCIIgCJGQcCIIgiAIghAJCSciJ+F5Hnq9HpWVlaivr49btr6+HpWVldDr9XC73atjYA5htVqh0+mg0+nQ29ubljbSVa9Op0NlZSWsVmta6s/29rMJk8mEhoaGhOVW43kjiHRCwonISTiOg8FgQEdHB5xOJ+x2e9RyVqsVKpUKra2tMBgMUCgUq2toGCaTKWKfXq9HS0tLBqzx09zcDIPBgJaWlrT0T29vLzQaTci+VF2z0WgEx3ErridX2w8mWp+63W5UVlbG/PsQW48Y1Go11Gp1wrbS/bzFIhv/9ojcRJ5pAwhiJSgUCrS2tsJoNMJoNEYcz7YRJovFAq1WG7Kvubk5Y3ba7XZwHAeFQgG1Wp2WNqK9HDN5zWuVaH2qUCig1WqTEnfLvTccx0Gn08UtsxrPWyyy7W+PyF1IOBE5j06nw969eyOEk9vtzprRAMD/jZfn+Yj9q/0CCSfd3/rtdjvsdjva29uFfZm+5rVIrD41GAwpqUcMdrs9YnQxnEyM+mbr3x6Rm5BwInIelUoFpVIZMSXU398f94Oxq6sLHMeB53lwHCec63a7YTKZwHEcLBYLdDodVCoVAP/Un16vBwAcPHgQPM+D53mMjo7GfUFZrVZYLBbwPI+uri4AQHt7O+x2O/R6PXieh8PhiNmG0+mEzWaD0WiEyWSCUqlEd3c3Ojo6BNsSXVc4drsdRqNRsCm4bGAb8PuTBURPwLbA6ILFYgEQ/+WsUChgMBiEOsRec6x+7erqgkKhgFKpjNlmtD4wmUwwGo2w2+0wm83QaDTQ6XTo6emJmMqN14di2hdrU/CxQF8plUpwHAen0ylMfYX3l16vh8lkgsFggFarjVoGgHB9Bw8ejGgv2v1dyb1xu91xRVG0543juITXlsyzET4dFzhf7N9eov5Z7t8/scZgBJHDGI1Gxhhj7e3tTKPRhBwzm82MMcY0Gg3TarUhxzQajXCcMcbUajWz2WxCXQ6HQzjGcRxzuVzCtsViYRzHMYvFElImcH4sLBYLU6lUEfttNhvjOC6ibLQ22tvbQ64vvL541xWNaG1rNJqQdh0OB1Or1RHtWiwWZrPZQmwSSzLXHGx/e3u7cM8ZY8zlcjEAIeck6gOFQiFsG43GiP5J9Gwkaj8a8erUarUhz6fD4RD6N7xvglGr1SG2ROvTQLngthPd3+XeGzHEqzvetYlp32AwRPx9BK47mb+9RP2Tqr4gchdyDifWBIEVOgF/BZ7nI0ZiAvA8HzE61dLSIkz18TwfskqK47iQbaVSCZ7nQ0azAiMJqSJWG8GoVKqQNhNdlxjsdjusVmtEu06nU+gDhUIBu90OtVoNlUqVsm/aifrV7Xajq6srxE9FoVCE3GcxfWA2m9HS0gKe56FUKkWfL6b9aCSqMzC6EnzN4X430Ua3xE55BZcTc3+jkc5nXsy1iXk29Ho9Ojo6hOPd3d1J2yemf1bj75/IbmiqjlgTcBwHlUqFnp4eYeoi1hSV1WqFQqEIeVE4HA7hg89sNgPwfxgHpsmcTmdEe8EoFIqIMislWhvxQi8kui4x9Pf3R/ULC0xbBl4W6fIdi9evgeuLh5g+CKz+amlpgc1mE32+mPaTtSlwLLzedPkBib2/0ViNZz4e8drv7++P6MfA33EyLPf5X+2+IDILCSdizaDT6WA0GqHVauO+eAJO48EvieDf7XY7Ojs70dzcjNbW1rSJhICvS6pIdF1i6xBDpsI6JPIrEtsHDQ0NsFqtsNvtISNG8c7v7e1N2q9JTJ3LZTmrwXJlBVmydiZbPtbfXq70D5FZaKqOWDO0trbCbrejt7cXjY2NMcuFT3EFcLvdcLvd2Lt3Lzo6OgQBFjz9l0qSia0jhnjXJRa1Wh21Dp7n0dTUtBLzVkys6xNTJrgPAi9No9EYEcMn3vli2k/WJpVKJTx3ybKcEY5svr/BJHttgX4MJ1a/xvrby5X+ITILCScipwleDROIDdPd3R13REStVqOxsTHi235PTw94nhdeaAECH+LxhI6YF1+wH0Q8H6zlthHvusSiUqmgVqtDppUC151omXk6CL5mjuOg1WpDVk653W7Y7XahnJg+MBqNwnSdWq0OiT0U73wx7Ucj2ToDK7WCCfehCUwjJyu4Unl/UzU6s9xrC382NBqNsGoucDxw38X+7S23f2ikap2Rae90glgODoeDabVaBoBptVphFVzwShqXy8UMBgNTKBSM4zhmMBhCVscFVkgFnxPY397eziwWC7NYLMzhcAiromw2G9NoNAwAMxgMjDEmtKFSqULqiUag7sCKoWj1xWtDrVYLq9kCZdrb20VdVzjhdURbvWY0GkNWKlksFqZWq5lCoWAGgyFk9aFYkr3m8H41GAzMbDYL90elUkWsQovWBwaDgXEcF7KKKtCmVquNev3R+lBM+9GIV2fgWHCd4fUZDAahbbPZzDQaDeM4LuZzGXyNsdoLv78rvTfxiPe8JXttsdpvb28X6glelRc4luhvbzn9s5y+IHIbCWOMrb5cIwiCIGLR0NAAg8GQkgCNLS0taGtry8iIIUGsRWiqjiAIYo0RmO4K/J7pHI0EsZYg4UQQBLHG6OzsFHy3eJ6Pu1iCIIjkoKk6giCILKKrqwt6vR5qtVr4mSyBoJuBFC40TUcQqYOEE0EQBEEQhEhoqo4g1jl2ux3Nzc1xo5ITyWG1WtHQ0IDm5uZMm5I09DwQRHxIOBFEAsIzrq81VCqVkPE9GXK9X/R6fUQAzFShVqvR0dGR1jQc6er/5T4P2UquP6dE9kHCiSASYLFYMm1C2llOKpFc75fm5ma0tbWlrf50r2RLZ/8v53nIVnL9OSWyD8pVRxBxMJlMlPU8CmuhX1IRIylTrIX+Xw2on4h0QMKJIGJgtVphsVjA87yQyqG9vV043tXVJSQK5Xk+5Fg8wqcOtFptwjqtVqswfXLw4EHwPA+n0wmbzQaj0QiTyQSlUonu7m50dHQIKSUC5ymVSmFayu12Y3R0FAaDIaGtAXsC+d00Go3ofgk+J1EbAIQVYBzHwel0Qq1Ww263Q6/Xg+d5Ib2OXq+HyWSCwWCI2nfhtur1enAcB51OJ4w+tLW1RdSbyH6TyQSO44QYSQqFIqT9WARSrTidTrjdbqGvent70dnZCZ7nYTabhTxpzc3NQi69aIloY/W/mL5Kx/MQj+U868lcB7D098DzfMh1JHpOCWLZZDJsOUFkO4H0F+FoNJqQlBgOh4Op1eqE9RkMhpAUDsHpNxLVabFYGMdxIWU4jouoL9xes9nMAISkR2lvb2darVbYttlsIalIAvYEp5BQq9VCmox4/RLrnGhotdoQOxwOR0S6kcB1B6NWq0NSasRrN9AngVQ1gf5K5prDU3g4HI6IlB7hWCwWBiAkHY7RaAy53mjXFp7+I1bd0fpfTF+l43mIRiqe9XjXEevvIdimWP1EECuBhBNBxCHaB6/NZmMKhSKibKJ8ZS6XK+JFqtFomMFgEFWnzWZj4d911Gp1yMvJ4XBE1BPtGgK2BF6e4S9Kh8MR0VbwSz9anYnOCSdafzDGIl6GsV7igZeoGFujfUdM5prNZjNTq9UhtsYTDYF2o720w0WLQqEIqUtMvrNYdSfqq1jnrvR5CCcVz3qi64j19xDcfySciHRAU3UEkST9/f1Rp1A4joPFYonpO9Pf3w+FQhHiNGw2mwEsTQMlqjO8jEKhWNay8YAddrs95nSQQqEIyRLvcDji+oske06gfLgTdbJO1WLajXaNydSj0WhgNBpRWVkJlUqFtra2ZU/7cBwX0u9arRbd3d1QqVSwWq0Z8b1K9fOQimddDNH+HtK5kpEgAPJxIoik4Hkebrd7WefGO2+5daYLt9sNjuNCXmLxXmiBfknmnJXal4ytYsRYonosFgvsdjusViuMRiOA5fnMhL/Y29rasHfvXhgMBvA8v+xI4bHEYSqerWTvbTqe9VRcR7x+IgixUDgCgkgCu90uOPGGw/M8mpqaYp6rUqmifvi73e5l17lc3G433G634EQejkqlimpPrJeX3W5P+pxAfyznhRgsPpJtNxbx6gk4OatUKrS3t8Nms6G7uzs5o4PqC+53lUoFpVKJ3t7eZYcBsNvtMY+JGYFJ9fOQjmc9FSNJ8fqJIMRCwokg4hBYQQT4P9hVKhVUKhXUanXItEXgAzneKqPAKqTACh/A/yLp6elZdp1ixYHdbg8p29nZCa1WG/Pbt1qtRmNjo7AiLEBPT49wLeH9kuiccDiOg1arDVl5FVgdFV4ueF9gVVvgepJtNxbx6gkWT8F2JSJ8hNJkMkXtd51Oh3379onOKRet/8P3A5F9FSDVz0M0+1byrIu9jnDCj8fqJ4JYCZSrjiASEFj2XF9fH7KcWq/XC/5FDodD1HLuwHlVVVXCsnsxddrtdnR2dqK3txcGgwHt7e3o6upCZ2cnGhsbhSXmgTLt7e3o6OgQ/FL0er2wHXhJBS//Dj4v+DoC9gRGQoJf7In6Jdo5sfqjvr5eeGnr9XoYDIaQqaDACzhQpru7G3a7HQaDQag/WrtWqxUGgwH9/f3o6OiARqMRfIzC+zOe/QHRFNjH8zy0Wm3cKUC73S6EIAAiwxEEw/M89Hq94Ackhlj9n6iv0vU8xLIx2WddzHVwHBfz74HjOOFex+snglguJJwIYo0TeFHabLZMmyKKhoaGCOG01nG73ejv71+Va86154Egsg2aqiMIgsgAwdNKPT0960ooEkQuQ8KJIAgiAwSiYQNrKzccQax1SDgRxBom4ONjt9tDHHWzla6uLsGPJdh5eC2i0+kA+B3GxTqFr5Rcex4IIhshHyeCIAiCIAiR0IgTQRAEQRCESEg4EQRBEARBiISEE0EQBEEQhEjWda46n8+HgYEBlJWVQSKRZNocgiAIgiAyAGMMExMT2LRpE6TS+GNK61o4DQwMYOvWrZk2gyAIgiCILODUqVPYsmVL3DLrWjiVlZUB8HdUeXl5hq0hCIIgCCITjI+PY+vWrYIuiMe6Fk6B6bny8nISTgRBEASxzhHjtkPO4QRBEARBECIh4UQQBEEQBCESEk4EQRAEQRAiWdc+TmLw+XyYn5/PtBkEQRAR5OfnJ1w6TRBrAeb1YrrfBs/ICOQ1NShubIBEJsuILSSc4jA/P4/jx4/D5/Nl2hSCIIgIpFIpdu7cifz8/EybQhBpY/zQIQzd2wnP4KCwT15Xh9q7O1B+3XWrbg8JpxgwxnD27FnIZDJs3bqVvtURBJFVBAL4nj17Ftu2baMgvsSaZPzQIZy5406AsZD9nqEh//7771t18UTCKQYejwfT09PYtGkTiouLM20OQRBEBDU1NRgYGIDH40FeXl6mzSGIlMK8Xgzd2xkhmvwHGSCRYOjeTpTt3buq03Y0jBIDr9cLADQEThBE1hL4fAp8XhHEWmK63xYyPRcBY/AMDmK637Z6RiGDI048z6O3txccx4HneWi1WigUiqhlrVYrAMDtdqOvrw9tbW1QqVQAALvdDgBQqVTgeR5ut1s4lgpo+JsgiGyFPp+ItYxnZCSl5VJFxkacWlpa0N7eDo1GA41Gg3379sUtq1QqodFoUF9fj5aWFuGY0WhEQ0MDJBIJdDodOI5bDfNF4/UxPO8YxSMvn8HzjlF4fVGGHFOMyWRCc3OzqLINDQ3o7e1Ns0Xisdvt0Ol0kEgk0Ov1MJlM0Ov1aGlpEQT0esNkMqGyslL4krAa0H0gCCLTyGtqUlouVWRkxInn+ZBtjuPifhibzeaQUaTgkamGhga4XK6I/dnA46+dxT2PvoGzY7PCvo0VhfjKzRfhhks2pq1dtVotWkAaDAY0NjamzZZkUalUMBgMMJlM6OjoEO6p2+1GZWUlbDZbSkcUl4vb7V61502r1cJsNq9KWwHoPhAEkWmK9lwBSX4+WKyQQBIJ5LW1KG5sWFW7MjLiZLVaoVQqQ/YplcqY36jVarXwu9lshk6nCzmuUCiy7sPz8dfO4jP/Yw8RTQAwODaLz/yPHY+/djZtbXMcF9Jn8VCr1VnXd9FQKBTgOA7d3d2ZNgU8z6OnpyfTZmQEug8EQawW577/g7iiCQBq7+5Y9XhOGRlxcrvdUfc7nc6Y59jtdnR3d6O5uRlarTakrsBUU19fX9zpurm5OczNzQnb4+Pjom1mjGFmQZwDptfH8JXfvo5ok3IMgATAV3/7Bt5xXjVk0sQ+CkV5MvJlgP/5qK+vz7QZMBgMaGhY3W842QTdB4Ig0s3E4cMYNZkAAJWf+AQmnngiNI5TbS3FcQJiCyrAP3XAcRz0ej16e3uh0WgAIMSpnOM4NDc3w+FwRK2js7MT99xzz7Jsm1nw4qIvP7Gsc8NhAAbHZ3HpVw+JKv/G165Hcb64W+V2u6HX62G1WoV+sNvtsFqtgiO+RqMBx3Gw2+3Yt28fdDodtFotrFYr9Hq9ID55nofFYok7TRSrbjF1Wa1W2O12cByHvr4+GAyGmNfU2dkJtVotiOZo51qtVuh0Ouj1egB+/zebzQae52E0GtHU1ASn04nW1lYoFIqYdcSz22q1or+/XxD58aZFe3t7oVAowPM8HA6HcH1i+ibwRaGpqQlA/C8VdB+Sm54mCCK7mT95EgP6/QCAyo99DHUd+1Hb/oX1HTlcoVBEvAicTmfCKSOFQoGWlhY0NzfD5XIJL6WAr0XgA5bn+agfoh0dHbjrrruE7fHxcWzdunXlF5RFKBQKGI1GVFZWAvBPZ+j1elgsFqFMQ0MDDh8+DJVKhba2NmG/Wq2GWq0OeUGZzWbY7fao/izx6k5UV+Bcm82/jNTpdKKrqwvt7e1CXSaTSbiPwSOJ8c5Vq9Ww2WwwGo1QKpVwu91obm6GzWaDQqEQHJ01Gk3cOmLZHbiu+vr6kJHPaLS0tMDhcECtVkOn0wmCP1HfuN1u4dwAnZ2dMduh+xD/PhAEkTv4ZmZw+rN3wDc5iaI9e1D7hc8DACQyGUredmWGrfOTEeGkVqthNBoj9kdzUrZarWhpaREcwIM/tAFg7969wrEA4f5TAQoKClBQULAsm4vyZHjja9eLKvvicSf+6ad9Ccv97JNNuHJndFvD214uRqMxQvRwHIeenp6oL5yqqipUVVUJ29FErti649UVeKEGLwro6wvts1ghKuKdq1AohDY1Go3w0g/U09HRAcAvRGLVkUwfxCNY3DudzpBFEfHa6OnpiejXWM80QPeBIIi1AWMMg1/9KuaOHIGsqgqb7/sOJFkYSzEjwil8NIjneTQ2Ngofqna7XXBCVSqVIY7OgWOBb+bB0wpWqxUajSYtzs4SiUT0dNm7dtVgY0UhBsdmo/o5SQDUVRTiXbtqRPk4rVUCIwcBkhk5iHdu8PMVvuoq+PeVtB+r/mA6OztRVVUlTJtlK2v9PhAEkRu4f/1rjD3yW0Amw+Zvfxt5tbWZNikqGYvjZDabBX8lo9EY4nPR2dkpOHwHppNMJhNMJhO6u7uFYX2FQoHGxkZ0dXXBZDKhr69v1ZdtR0MmleArN18EwC+Sgglsf+Xmi1ZFNLW1tUWEerDb7WhtbRW24/mWrbTuZM4N3441upDo3ODzNBpNxGpNq9Uqqn0xxDon4LfT3t4OjuOEPhbThlqtjrA5PIRHMHQflncOQRDZw8zLL2PwXr9Lwoa77sqaabloSBiLlgRmfTA+Po6KigqMjY2hvLw85Njs7CyOHz+OnTt3orCwcFn1ZyqOEwBUVlYKU5jhzreByOsB53ClUgmj0Qi32y0EIj148KDgwxKI6RNt1CRR3fHqslqtsFgsggO0Wq0Gz/Po7u5GV1cXtFotdDpdVP+qaOf29/dDr9dDqVRCr9cLoxjRygackqO1n8hunueFFV2xnJIDfRkcOsNoNKKtrQ0cxyVsI3gVacApm+M4ug9J3oe1Tio+pwgi03icThy/5VZ4BgdRdt112Hz/fau+kjyeHgiHhFMahRPgD03w4nEnhidmsaGsEFfuVK7KSFOwcCIIYm1CwonIdZjXi7duuw3Tz7+A/J07scPcA1lp6arbkYxwyqpwBGsRmVSCt9dXJS6YAkwmExwOB3Q6XVZFAycIgiCIaIzc/11MP/8CJEVF2PLd+zMimpKFhNMaQq1WCwFBo61aJAiCIIhsITjI5cav/ycKdu3KsEXiIOG0huA4LiT+DkEQBEFkI+FBLituvDHDFoknY6vqCIIgCIJYf8QKcpkrkHAiCIIgCGJVyJUgl/Eg4UQQBEEQxKqQK0Eu40HCiSAIgiCItDPzyitBQS4/l9VBLuNBwokgCIIgiLTicTpx+o47gYUFlDU3Q/nP/5xpk5YNCac1iMlkQnNzs6iyDQ0NQnqbbMBut0On00EikUCv18NkMkGv16OlpWXdptUwmUyorKyMSFmSK9A9JYj1DfN6MfD5z8MzOIj8HTuwsfPeVY8MnkoocniaI4fD5wVOPgdMDgGltcD2qwGpbIWWx4fnefA8H5I4NRZWqzUkwXI24Ha7hcjnAbsC+2w2W9TUH6vNaieVbW5uhsFgiHvtq21TMu3RPU0PFDmcyAWGv3MfRo1GSIqKsLOnOyvjNSUTOZxGnNLJG78F7rsE+PlNwEOf8v+87xL//jTCcZwo0QQs5QvLdhQKBTiOQ3d3d6ZNAc/z6OnpybQZIay2Taloj+4pQax9Jp58EqOLAZk3/mfuBLmMBwmndPHGb4GejwPjA6H7x8/696dZPK1FnE4n6uvrM20GDAZDpk2IYLVtSlV7dE8JYu0SEuTyox9FxU25E+QyHhQ5XCyMAQvT4sr6vMAf2gFEmwVlACTA43qAe6+4abu8YkDkfLDb7YZer4fVaoXD4QDg9zGxWq1CRnmNRgOO42C327Fv3z7odDpotVpYrVbo9XrodDqhrMVigdlsjtlerLrF1GW1WmG328FxHPr6+mK+vNxuNzo7O6FWq6HVamOea7VaodPpoNfrAQBGoxE2mw08z8NoNKKpqQlOpxOtra1QKBQx64hnt9VqRX9/P5xOJwD/iB3HcVHt7u3thUKhAM/zcDgcwvWJ6Ru73Y7u7m40NTUBgNBeNKLZFLi3ra2tIX1iNpvR39+PlpYWHDx4EBqNJul+iNWeXq+HSqWC2WyG2+1GQ0MDNBpN1Puaq/eUIAhxCEEuJyZQdMUVqG3/QqZNSh1sHTM2NsYAsLGxsYhjMzMz7I033mAzMzP+HXOTjH2lPDP/5iaTvjaFQsEYY8zhcDC1Wh1yTKVSMZfLxRhjzGAwMKPRKBxrb29nGo1G2Far1cxms0VtI1Hd8epyOBxMpVIJx4xGIzMYDIwxxlwuFwPADAYDM5vNzGw2M4fDEdJurHO1Wi3TarWMMcbMZjNzuVyM47gQmwwGQ9w6EvVBe3t7SJ/FAoBgt1arZWazOaSOWG0EbA5GpVLFvA+xbApcK2OMWSyWkPYCZZfbD9HaMxqNQt8HtxG4prVwT7ONiM8pgsgCfD4fO9OuZ2/svoAdufodbH5wMNMmJSSeHgiHRpzWOEajMcLxluM49PT0CN/0g6mqqkJVVZWwrVAoYo52JKo7Xl1GoxFKpTJkVVVfX19IXVqtNqr/VbxzFQqF0KZGo4HJZALHcUI9HR0dAIDOzs6YdSTTB/EIOELzPA+n0wme54Vj8dro6emJ6FelUpl0+zqdDi0tLWhvb4fb7QbP83C73ejv70drayuA+H2ZbD9otVpUVlbCaDSC53k0NjZGLZPL95QgiMS4u7sx9sgjgFSKzf/1XzkZ5DIeJJzEklcM3D2QuBzgX0X3S03ich/p9a+yE9P2GkSlUoU4sUcTcss5N3iaJXylVPDvK2k/Vv3BdHZ2oqqqSpi+XC0CNgXaDIQxaGtrQ09PD5RKZUr7IbgPtFotTCYTlEolNBoRfwNB5MI9JQgiPjOvvoqhb9wLYDHI5VVvy7BFqYecw8UikQD5JeL+1V8LlG8CEMsvSQKUb/aXE1PfCuJdtLW1RcTKsdvtwogD4H9RpKvuZM4N3441IpDo3ODzNBpNRPwjq9Uqqn0xxDon4GvT3t4OjuOEPhbTRsBnKJjg0apkbNLpdNi3bx80Gg20Wi2Mi6tbAqSiH8Lbi+doncv3lCCI+HhcLpy+406whQWUNauh/NSnMm1SeliFqcOsJSkfp2R5/RHGvlKx+C/YZ2lx3+uPrMDyxAR8nBjz+7cEfEva29sF3w6bzcZUKhVTq9XM4XAI2wF/GrPZzDiOYxqNJsQfJZhEdcery2KxsPb2dsHnxeVyMZvNxtrb2xkAptVqY/r1RDvXYrEI12OxWOKWjdd+IrsdDgfTarXMaDTG7BeXy8U0Gg2zWCzCP41Gw8xms6g2Av1gsViY2WxmKpUq7n2IZZPL5QrxOwr284nXP4lsjNcH4W2slXuajZCPE5Et+DwedvKTn2Rv7L6AvXnd9cwzPp5pk5IiGR8nCoCZzgCYb/zWv3ouOCRB+WbghgPARe9fgeWJCQQbJIjVpre3N+lpOmJ5UABMIlsYvu8+jD7gD3K5o/vXKDz//EyblBTJBMDMmI8Tz/Po7e0VlgfHchoFlobO3W43+vr60NbWJjjPJlPPqnPR+4ELbly1yOEmkwkOhwM6nS6qYy5BpIuAI7pSqcyKKOAEQaweE08+hdEHFoNcfu1rOSeakiVjwqmlpQU2mw2AX/zs27cvZryglpYWHD58GGq1Gk6nEy0tLUKMomTqyQhSGbDzXavSlFqthtvtRm9vb4QvC0Gkk5aWFsGPi4QTQawf5t96CwOLcdYqP/IRVNx8U4YtSj8ZEU7hjq6BgImxMJvNIR/GgRGlZOtZ63Ach/b29kybQaxDxKb4IQhi7RAR5FK/Pt4/GVlVZ7VaI+LSKJXKmNnfgz+UzWYzdDrdsuohCIIgCGLlMMYweM/XMPf3v0NWVYXN998HSX5+ps1aFTIy4hRr+Xu8gHSBFBTNzc1CbJZk65mbm8Pc3JywPT4+Ls5ggiAIgiAE3N09GPu//1uzQS7jkVVxnOLFE1KpVOjo6IDD4UBvb++y6uns7ERFRYXwb+vWrSuwliAIgiDWHzN//SuGvvENAGs3yGU8MiKcoqU7cDqdCVfDKRQKtLS0CI6oydbT0dGBsbEx4d+pU6dWchkEQRAEsa7wuFw4/dk71n6QyzhkRDjFciSNtoTearWisrJS2A6kXuB5Pql6AKCgoADl5eUh/wiCIAiCSAzzejHw75+H5+xZ5G/fjo333gvJCjJb5CoZ8XEKz9sVSAgaGCmy2+1Cri2lUhkikALHoi15Dq+HIAiCIIjUMPL972PquecgKSrC5u99F7KyskyblBEy5uNkNpuh1+uFmEPBsZc6OzsFPyaVSoW2tjaYTCaYTCZ0d3cLcZsS1ZMNeH1e9A324ff879E32Aevz5v2Nk0mE5qbm0WVbWhoSOgzlqvY7XbodDpIJBLo9XqYTCbo9Xq0tLSs67AVJpMJlZWVq7r6lO4FQeQ2E089hdEfPQBgfQS5jAelXEljyhXrSSsOvHgAQ9NDwr7a4lrsv3I/1NvTF/eG5/m4U5khNlqtKx6lW+1s8sm053a7hfQzgXMC+2w2W9YEa1ztPmxubobBYFjV68/2e7Ha9yAVUMoVYjWYP3UKx2/VwDc+jsqPfAR1X/qPTJuUcpJJuZJVq+rWEtaTVtz19F0hogkAhqeHcdfTd8F6Mn3fsjmOEx2QUK1Wr+hlwfM8enp6ln1+JtoLTAN3d3enyKqVsdp9mE1ky71Yz/eAIOLhm531B7kcH19XQS7jQcJJJIwxTC9Mi/o3MTeBzhc7wRA5mMcW/zvw4gFMzE2Iqi+bBwUNBkNOtud0OlFfX5+SulbKavdhtpEN92K93wOCiIYQ5PJvf4NMqcTm+76zboJcxiNjuepyjRnPDN72q9TFqhiaHsLVv75aVNm/fPgvKM4rFlXW7XZDr9fDarUK+fzsdjusVquQCFmj0YDjONjtduzbtw86nQ5arRZWqxV6vR46nU4oa7FYYvqNWa1W9Pf3CyEh1Gq1UGdrayt0Oh30izmMzGYz+vv70dLSgoMHD0Kj0cBqtcJut4PjOPT19cFgMMS1IVZ7er0eKpUKZrMZbrcbDQ0N0Gg0UV+GbrcbnZ2dUKvVQiDVWHYE2280GmGz2cDzPIxGI5qamuB0OtHa2gqFQpH0tcTrw/DFEwF6e3uhUCjA8zwcDodwfWLaCQSQbWpqAhA/2Gy8Z0bsNYX3RTTC70Wm7kMy94Ag1hPuHjPGfvMbf5DLb/8X8urqMm1SdsDWMWNjYwwAGxsbizg2MzPD3njjDTYzM8MYY2xqfopd8rNLMvJvan4q6WtTKBSMMcYcDgdTq9Uhx1QqFXO5XIwxxgwGAzMajcKx9vZ2ptFohG21Ws1sNlvMdtrb20POD+wzGAyMMcYsFktIfYGyDoeDqVSqkP2Bc+LZEK09o9HItFptRBuMMeZyuRgAZjAYmNlsZmazmTkcDuF4PDu0Wq1Qr9lsZi6Xi3EcJ/Rd4DqXey3x+jAaAATbtVotM5vNIXXEaidgdzAqlSrmfU30zMRrK15fxLsXmb4PYu9BthH+OUUQqWL61VfZ3y65lL2x+wI2YjJl2py0E08PhEMjTiIpkhfhLx/+i6iytiEb/uXwvyQs98O9P0RDbYOotpeL0WiMcLrlOA49PT3CiEswVVVVqKqqErajBRlNhE6nQ0tLC9rb2+F2u8HzPNxuN/r7+9Ha2irYpVQqQ1ZU9fX1LcsGrVaLyspKGI1GISRFtDLRfLni2aFQKAQ7NBoNTCYTOI4T6uno6ADgXwWaqmuJR8Cpmud5OJ3OkCTX8drp6emJeAbCczwGk+iZiddWvP4MEO1e5NJ9IIi1jsflwuk7/EEuS9V7UXXbbZk2Kasg4SQSiUQierrs6k1Xo7a4FsPTw1H9nCSQoLa4FldvuhoyqSzVpmaMwKqkwDRHYLl7W1sbenp6oFQqQ16YKpUqxIk9mpAT017gXJPJBKVSCY1Gk1Q98ewInrIJX3WVymuJ1UYwnZ2dqKqqEqbNspXl9kW23IdcXF1HEKmCeb0Y+PwX4BnwB7nc1Nm5LoNcxoOcw9OATCrD/iv3A/CLpGAC2/or9asimtra2iLi5NjtdmHkB4ifIzAZgtvR6XTYt28fNBoNtFotjEZjQruSjecT3l48B99YowuJ7Ag+T6PRRMQ+slqtKbmWROcFfHfa29vBcZxwz8S0E/AFCyZ4tCocMc9MMueGb0e7F9l0HyiuFLGeOfeDH2Dqz3+GpLAQm7+7foNcxmUVpg6zlmR8nJaD5YSF7e3ZG+KvpO5RM8sJy0rMFkXAx4kxv59RwK+kvb1d8O2w2WxMpVIxtVrNHA6HsB3wfzGbzYzjOKbRaEL8goJxOBxMq9Uyo9EYUsblcoX4HQX7lwTb1d7eLvi7uFyuhDbEai9aGzabjbW3tzMATKvVxvTpiWaHxWIR+sZiscQtu9xrSdSHwbhcLqbRaJjFYhH+aTQaZjabRbUT6AuLxcLMZjNTqVRx72uiZyZeW7H6ItG9yOR9EHMPshHycSJSyfhTT7E3dl/A3th9AXP/9reZNmdVScbHiQJgpjEAJuCPHG4ftmNkegQ1xTVQbVCtykhTINDgeqK3tzfpaTqCyGUoACaRKkKCXH74w6j78pcybdKqkkwATPJxSjMyqQxNdU2r0pbJZILD4YBOp4uZ6HitEXBEVyqVGY88TRAEkYuEBLm8/HLU7tdn2qSshoTTGkKtVsPtdgt5+9YDLS0tgr8PCSeCIIjkYIxh8Gv/uRTk8v77KMhlAkg4rSE4jkN7+/oKhy82tQxBEAQRidtsxtjDD1OQyySgVXUEQRAEsQ6Z+etrGPrPrwMAau68EyVXXZVhi3IDGnEiCIIgiHUA83ox3W+DZ2QEkqJCDH39G/4gl3v3omofBbkUCwkngiAIgljjjB86hKF7O+EZHAzZL6upxqYDFOQyGWiqjiAIgiDWMOOHDuHMHXdGiCYA8I6cw9Tzz2fAqtyFhBNBrBPcbjesVmvKIsUTBJH9MK8XQ/d2ArFCNkokGLq3E8zrXV3DchgSTmmGeb2Y+suLGHvsd5j6y4ur8nCaTCY0NzeLKtvQ0IDe3t40WyQeu90OnU4HiUQCvV4Pk8kEvV6PlpaWdZsKw2QyobKyMiLNSDi9vb0wmUywWq0R99TtdmPfvn3gOA579+5Nqn26JwSRu0z326KONAkwBs/gIKb7batnVI5DkcPTGDk82pyyvK4OtXd3oPy661Zkezx4ngfP86KW6lutVjQ2NmZVUlO32y1EPg/YFdhns9myIl7TaieCbW5uhsFgiHntVqsVZrNZiN8lkUhC+q+3txc8z6O9vV2wPZlroHuSnVDkcCIRY4/9DgOf/3zCcpu+9S1U3HTjKliUnSQTOZxGnNJErDllz9AQztxxJ8YPHUpb2xzHiY5vpFarc+Jlo1AowHEcuru7M20KeJ5HT09Pps0IwWKxhIwyOhyOkPvK87ywrVAoUnINdE8IIvuR19SktByRwVV1PM+jt7cXHMeB53lotdqYL3C73S5MCfT19eHgwYNC2cD0hUqlAs/zcLvdafn2yxgDm5kRV9brxdDXvxF9TpkxQAIMfeNelLz97ZDIEuetkxQV0YoHAE6nE/X19Zk2AwaDAQ0NDZk2Iy4cx8U9nqproHtCENnN3Inj8QtIJJDX1qK4kf5+xJIx4dTS0gKbzT+nyvM89u3bB7PZHLWs1WoVImJ3dXVh7969wrlGoxEmkwmAf/QkVh0rhc3M4IgqRQ8W8488HW26UlTx3XYbJMXFosq63W7o9XpYrVY4HA4AS8IzIFI1Gg04joPdbse+ffug0+mg1WphtVqh1+uh0+mEshaLJW6fxqpbTF1WqxV2ux0cx6Gvrw8GgyHmNXV2dkKtVkOr1cY812q1QqfTQa/351kyGo2w2WzgeR5GoxFNTU1wOp1obW2FQqGIWUc8u61WK/r7++F0OgH4n7lYIqW3t1cY3XE4HML1iekbu92O7u5uNDX58xwG2otG4Dp4nkdfXx8Av1/U4cOHoVKpYLfbYbFYhPIcx0Vcg91uh16vh0qlgtlshtvtRkNDAzQaTdT7kqv3hCDWC4wxnPv+D3DuBz9Y2imRhH6hX/xCXnt3h6gv8cQiLAM4HA6mUqlC9ikUiqhlbTZbyDGHw8EAMIfDwRhjzGg0MpfLxVwuV9J2jI2NMQBsbGws4tjMzAx744032MzMDGOMMe/UFHtj9wUZ+eedmkr62gJ95nA4mFqtDjmmUqmE/jIYDMxoNArH2tvbmUajEbbVajWz2WxR20hUd7y6wp8Bo9HIDAYDY4wxl8vFADCDwcDMZjMzm83C/U50rlarZVqtljHGmNlsZi6Xi3EcF2KTwWCIW0eiPmhvbw/ps1gEP6darZaZzeaQOmK1EbA5GJVKFfM+BOoLrj/cZoPBIFxfrGswGo1C3wW2A6yVe7LWCP+cIgjGGPPNz7Mzd98tvEOG7ruPjT3+BDv6nveGvFuOvue9bOyJJzJtblYQTw+Ek5ERJ6vVCqVSGbJPqVTCbrdHTLOpVCocPHhQ2A4spQ4+fzV8dCRFRdhtF7fqYLq/H6e0uoTltpqMKG5sFNX2cjEajRF9ynEcenp6hJGCYKqqqlBVVSVsKxSKmKMdieqOV5fRaIRSqQxZlRUYLQkQa/o23rkKhUJoU6PRwGQygeM4oZ6Ojg4AQGdnZ8w6kumDeAQcqXmeh9PpBM/zwrF4bfT09ET0a/jfSzrQarWorKyE0WgEz/NojPJs5vo9IYi1jm9qCqc/9zlMPfMsIJWi7stfRuX/awMAlKn3CpHD5TU1KG5soJGmZZAR4RQrjkysD0KNRiP83t3dHeLQ7Ha7haXXfX19wnB+NObm5jA3Nydsj4+Pi7ZZIpGIni4recc7IK+rg2doKLqf0+Kccsk73rGuH1qVShXixB5NyC3n3OD7H77SKvj3lbQfq/5gOjs7UVVVJUxfZivB16DVamEymaBUKkP+7sSQC/eEINYynnPncEr3acy+/jokhYXY/O1vo+zaa4TjEpkMJW8T5yJCxCarVtUlCswXEEnBviBarRYajQYajQZtbW1x4xd1dnaioqJC+Ld169ZUmR6CRCZD7d0dixthTt2rPKfc1tYWEWvHbrejtbVV2F5uQEQxdSdzbvh2LCGd6Nzg8zQaTUT8I6vVKqp9McQ6J+Cr097eDo7jhD4W00bA5yiY4NGqWCx3BCbYJp1OF9PXLF4buXBPCGItM3f8OE78v3/E7OuvQ1ZZie0//1mIaCJSyCpMHUZgNBqj+jhZLJa452m12hC/CsZYiJ9DwA8jvEyA2dlZNjY2Jvw7deqUaB+n5TD2RObmlIP9wiwWi+Cb0t7eLvSZzWZjKpWKqdVq5nA4hO2AP43ZbGYcxzGNRhOzTxPVHa8ui8Ui+OYEfF9sNhtrb29nAJhWq43p1xPtXIvFIlxP8LMUrWy89hPZ7XA4mFarZUajMWa/uFwuptFomMViEf5pNBpmNptFtRHoB4vFwsxmM1OpVDHvQ/B1B+pTKBRMq9WGXJNarRb8oOJdQ7AvUbAtuX5P1iLk40Qwxtj0Sy+xI2+7ir2x+wJ2rPk6Nnf8eKZNyjmS8XHKSABMnudDVtUBQGVlJY4fPx5ziL2rq0uY8gh8e+d5Hnv37oXL5QIQPUhfPNIdABMIzUa9mnPKgX4giGTp7e1NepqOyAwUAJOYePJJnLnr38FmZ1F4ySXYanwA8iB/QEIcyQTATNrH6cSJEzCbzbBYLCEvZqVSiebmZmg0GuzYsSNuHeH+HgFH1ODYTIHgeoD/g1ylUgmiKeB8zHFcyLSC1WqFRqPJKv+G1ZxTNplMcDgc0Ol0UR17CSIWOp0OLS0tUCqVWREFnCCIxLj+938x+J9fB3w+lLzn3djyne9AKtIXl1g+SY047d+/HxKJBK2trdizZ0/E8Zdeegnd3d2QSCTo7OyMW1dwHJe+vj50dHQIgqelpQVNTU1ob28Hz/MRAfYUCoUg2gJxhBQKRUisHDGsxojTahIIKgog6x2SiewikPxXoVCIjjpPZJ5c/JwiVg5jDCP33Y/RxRRLihYN6r7yFUjkGQvNmPMkM+IkWjh985vfhFarRUVFRcKyY2NjOHDgQELxlGnWmnAiCGJ9QZ9T6w82P4+zX/oyxh55BABQ/W+3o/pf/oWyS6yQtEzVfeELXxBtQEVFRdaLJoIgCILIJbyTkzjz2Tsw9dxzgEyGjV+7B4pbb820WeuOZYcj2L9/Px588EGMjY3huuuuQ1tbGx5++OFU2kYQBEEQBICF4WGc/NjHMfXcc5AUF2Prj35IoilDLFs4NTU14bbbboPJZEJDQwO6u7sxOjqaStsIgiAIYt0z53Dg5P/7R8z97W+QVVVh+89/jtJ3vzvTZq1bli2cKisrAfjTQ7S1+cO5r0ZaCIIgCIJYL0zb7Tjx4Y9gYWAA+du3Y8ev/xdFl16SabPWNct2wXc4HGCMweFw4IorrsDx48cpbhBBEARBpIjxQ4cw8PkvgM3Po+jyy7HlgR9BvjhoQWSOZY84tba2wm63w2azYWxsDEajcdmpO4jUYjKZ4qaeCaahoUEIYZArdHV1wWQyobe3F11dXSmz3263Q6fTQSKRQK/Xw2QyQa/Xo6WlZd2m8TCZTKisrIxIkZKOuuIdp3tOrDec//0/OHPHnWDz8yjduxfbfvZTEk3ZgphQ5G63mx1PMoR7IK1JNhMvxHqqUhl4vT52+u9OduTFs+z0353M6/WtqD4xOByOhOlrAlgsFiHdRS4QSLsRTHt7O2tvb09J/YG0PcF9EtgXK9XIarPa9yuQymU16op2fL3f83j3m1KurD18Xi8b7OoS0nQNfPWrzOfxZNqsNU8yKVdETdVVVFSgp6cHVVVVuOWWWxKWf+ihh+ByuXDbbbetQNLlPo6XhvFs9zFMueeEfSWKAryrbRfq92xIW7scx4kOfplLwQ71ej04jouIbG0wGFBZWYm2tra0RL0ORLHv7u7OeFRtnudhtVqh1Wozasdqsd7v+Xq73+sd3/w8zt79RYw/9hgAoOZzn0OVdh/FaMoyRE/V7du3Dzt37kRrays6Ojrw8MMP4+WXX8aJEyfw8ssv4+GHH8b+/fvR1taGyspKEk0vDeNx42shogkAptxzeNz4GhwvDWfIstylq6sr5hSkWq1Oa+wwp9MZEcE+EyQTGX8tsN7v+Xq73+sZ78QETu3T+kWTXI5NhgOo1mlJNGUhSTmH79mzBz09PRgbG0NPTw9efPFFIU1DfX09dDoddu7cmS5bMwpjDJ55n6iyPh/Ds91H45Z5tvsYtlyghFSa+I9Cni8V/cfjdruh1+thtVrhcDgALKWl4TgOPM8L6Vjsdjv27dsHnU4HrVYLq9UKvV4PnU4nlLVYLDCbzTHbs1qtsNvt4DgOfX19MBgM6O3thV6vh0qlgtlshtvtRkNDA9RqNYxGY9RzErXN8zwAxMzBx3Gc4Pci5jqi2RCrPzs7O6FWq4Vv/bHs1+l00Ov1AACj0QibzRaSWsjpdKK1tRUKhWJZfWC1WtHf3w+n0wnALxxijSz29vZCoVCA5/mQVERi+sZut6O7uxtNTU0AILQXi1jPl5i64h3PlnueC/ebyG0WhoZwap8Wc0ePQlpcjM3f+y5K3/GOTJtFxGBZq+oqKiqwb9++VNuS1XjmfTDd8ceU1TflnsODn3tGVFnt/e9BXoFMVFmFQgGj0SiEi+B5Hnq9HhaLRSjT0NCAw4cPQ6VSCaEkAP8Hs1qtDvnwNpvNsNvtUacrAnXbbDYA/pdeV1cX2tvb4XQ6hf0KhQJ6vR5arTbuOWLaTvQSF3Md8WwIYDKZhJdU4MWW6JrVajVsNhuMRiOUSiXcbjeam5ths9mEPjCZTNBoNMvqg8B11dfXJ5y6aWlpgcPhgFqthk6nQ29vLzQaTcK+cbvdwrkB4o3qxHu+gu2IVpfYtjJ5z3PlfhO5y9yxY3hrnxaewUHIaqqxzWRC4YUXZtosIg6UEXCNYzQaI0QPx3Ho6emJ+mFcVVWFqqoqYVuhUMR8cQVeGMGrj/r6+gAAWq0WlZWVwmrLwAsp3jnx2g4WLtEIF1jx6opnQwCtVisknRZ7zQqFQmhTo9EIL+JAPR0dHQD84mA5fZAMLpdLGHFyOp0h/RavjZ6enojnJV58tnjPF4C4dSVqKxvuea7cbyI3mXrxRZz+19vhm5hAPsdh20ET8jZvzrRZRAJIOIlEni+F9v73iCo7cMyNx77/SsJyN91+OTbtUohqO1sJfDMOECzGWltbYTKZIvbHOyce7e3tMJvNUcv39/fHnVJMxu6VnBs8lRKYxg4Q/PtK2o9VfzCdnZ2oqqoKmTbLRbLhnufC/SZyj/E//AED7XqwhQUUqVTY+sMfQEb3NyfI3jdyliGRSJBXIBP1b+tFSpQoCuLWV1pZgK0XKUXVtxLnwLa2toh4NHa7Ha2trcL2cuNvRas7eFuv18NgMISMIiQ6Jx4GgwFOpzOivE6nQ2trq+gVgmJsiPWtP9G5wedpNJqImERWq3VFfSDmnIA/TXt7OziOE+6vmDbUanWEzbFGfID4z1eiusS0lel7ngv3m8g9Rn/2M5z53F1gCwsoa27Gtp/8mERTInxe4PizwF97/T993oyZImGMsYy1nmHGx8dRUVGBsbExlJeXhxybnZ3F8ePHsXPnThQWFiZdd2BVXSxu0F2S1pAElZWVQiT3cMfUwBLugHO4UqkUptQCvmsHDx4U/DtUKhUMBkPUkQur1QqLxSI496rV6pBvxS0tLTh48GDIvmjn8Dwvum29Xo/6+noolUrwPA+O46DRaITjgeuKV1csG7q7u9HV1QWtVgudThfVtyvauf39/dDr9VAqldDr9cILPVb/LLcPeJ6HwWAQnO2j3ZPAfdTpdMI+o9GItrY2cByXsI2Aw3Zzc7PgKM1xXNxnINrzFbgX8eoS21Ym73k23++Vfk4Rqwvz+TBsMMD5818AACo/9jHU7tdDIhPnw7pueeO38D6uh31+FCMyGWq8XqjyqyC7wQBc9P6UNBFPD4SzIuH0zW9+E/39/eju7sbhw4fR1NSUsMFsIp3CCYgex6m0sgDvbE1vHCcgVDgRBLE2IeGUO/jm5jCwfz8m/vA4AGDDF74A5T9/ksINJOKN38L6mA4HqhQYki95F9V6PNg/6ob6JmNKxFMywmnZPk779+9HfX298E1r7969ePjhh0UFyFwv1O/ZgJ2X1+DsMTemxudQUl6AjbsUokIQLAeTyQSHwwGdThdzCTdBEASxunjHxnD6X2/HdH8/kJeHTffei4qbb8q0WdmPzwvrk/tx14YqhI/wDMtkuGtDFb795H6oL7gRkK7eqN2yhVNTUxNuvfVWYdkxER2pVILNu1cnv5BarYbb7UZvby+MRuOqtEkQBEHEZmFgAG9ptZh/0wFpaSm2fP/7KLnqbZk2KyfwnvgTDhQxv2gKG5ljEgkkjMFQxHDNiT9BxolbvJUKli2cjh8/DgAhw4x9fX004pRBOI4LiUtDEARBZI7ZI0dwap8WnuFhyGtrsdVkQuHu8zNtVs5gH+wLmZ4Lh0kkGJTLYR/sQ1MuCKc9e/agsbERVVVVsFgssFqtlB6AIAiCIABMvfACTt/+b/BNTqJg13nYajIhb+PGTJuVU4xMDYkrJ1vdAAHLFk579+6F2WyG0WgEYwwmkwl79uwRfT7P8+jt7RVWjsQKOAgspXQA/KNawau0kqmHIAiCINLN2KOPYeDuu4GFBRQ3NWHLD74PWQ4tnMo4jAG2nyHvlV8BNbED8Aao2Xr1Khi1xIoCYO7cuRMHDhwQtsfHx0WvqmtpaRFSEASW5cYKZme1WoUpqK6uLuzdu1c4N5l6lsM6jtZAEESWQ59P2QVjDM4f/xjD3/ovAED5P7wPGw8cgDQ/P8OW5RALM8DvP49DRx7C16oXRRNjET5OACBhDLUFCqjqmlbVxBWNb42Pj+PEiRPCv0DCy0SEB7kLxFiJht1uD8lfFQgyx/N8UvUki2wxrsb8/HxK6iMIgkg1gc8nGcUByjjM68XQ178hiCblJz+JTd/6FommZHCdxPhPmtFx+g/499oajMlk2FyyGVh0BA9Gsiim9Fd/FbJVXFEHrGDE6dOf/jSsVmvItNjx48fxox/9KOG5Vqs1Iv+VUqmMmkxWpVLh4MGDwnYgCrJSqURPT4/oepJFLpejuLgYIyMjyMvLg1RKQdYJgsgefD4fRkZGUFxcDHkcB1oi/fhmZzHwhS9gwmIFJBLU7tdD+YlPZNqs3OJNK154VIf/KM/HUGEJpJDgU5fehs9c/hn88fQfceDFAxiaXvJ5qi2pg/7K/VBvF5c9IJUs+6+tvr4eDzzwQMi+YIETj1gpPmKluQiOENzd3S1E4022nmSQSCTYuHEjjh8/jpMnT664PoIgiFQjlUqxbds2CqK4ijCvF9P9NnhGRiCvqUF+PYcz//ZZzLz0EiT5+djUZUD5DTdk2szcwefD7B8NuO+vRvxSWQYA2FayCd94twFXbLgCAKDersY1W6+BfdiOkekR1BTXQLVBteojTQGWLZyi5Yhqbm5ekTGJcqYFYhQFfJqSrWdubg5zc0tRvMfHx+PWk5+fj127dtF0HUEQWUl+fj6Nhq8i44cOYejeTngGB5d2ymSA1wtpeTm2/uD7KG5aXX+bnGbGjdcf+jg6Zo7ieIVfNLWedyv+/cp2FOcVhxSVSWVoWmVfplgsWzhVVlbiW9/6FjiOE0Z/uru70d3dnfBchUIRMSrkdDoTrobT6/WwWCxCuWTr6ezsxD333JPQvmCkUimlMiAIgljnjB86hDN33Ol3VA7G6082W/Ov/0KiKQkWBl7Gg7/9OEyFPnjy81AjL8E97/km3rXlXZk2LSHLzlXX2toKt9sdIlJeeuklHDt2LOG5PM+HrIYD/ELs+PHjMUVPV1cXNBpNSLZ3p9OZVD3RRpy2bt0qKjcNQRAEsT5hXi/e3KsOHWkKQ15Xh/MOWylhrwiOv/hD3P3yd/FaQR4A4PraK/Ef7/0vKAoVGbNpVXLVNTc3C5m9Azz00EOizg3P8M3zPBobGwWxY7fboVAohHK9vb1QqVSCaOrp6Ykarym8nnAKCgpQUFAgykaCIAiCAOD3aYojmgDAMziI6X4bSt525SpZlXv4Fmbx699+At8Zfw2zBXkogxRffNvd+IfdrTnlp7ci53Ax+2JhNpuh1+vR1NSEvr6+kNhLnZ2daGpqQnt7uzA6FYxCoYBWq01YD0EQBEGslIWBM6LKeUZG0mxJ7jI49Cq+/PtP4nnpPCCV4u0Ftfjajb9AXdmmTJuWNMueqjt48CCsViuaFud0GWPo6elBX19fSg1MJ8kMzREEQRDrC+bxwP3wwxj+9nfgS7B4CQC2/fznNOIUBmMMv3/xPnzjjR9jQipBoY/hc9wH8f/e/TVIJdmzsGFVpuqMRiPUanVI5FqKYksQBEHkOowxTByyYOS++zC/mNAeUing80U/QSKBvLYWxY0Nq2dkDuCeceHrv/8knph0AFIJLvFKce/e72Hn9ndn2rQVsWzhZDAYsHfv3pB90UIUEARBEESuMPXCCxj+r29j9q9/BQDIKitR/ZlPQ1ZdjYF//7y/UPAgwaJvTu3dHeQYHsSfTljw5Wf0GGELkDEGXcEW3PahbuQVVmTatBWzoiS/4VRWVq7IGIIgCILIBDOvv46Rb38HU3/+MwBAUlyMqn/6Jyj/+ZOQlZb698nlEXGc5LW1qL27A+XXXZcRu7ON6YVp/Nefvoyet54AAOxcWEDneR/Gxe/5UtR8c7mIaOH08MMPQ61WC3N/Dz74YMhxt9sNi8WCJ554IrUWEgRBEESamD95EiP334/x3//BvyMvD5Vtbaj+tA7y6uqQsuXXXYeyvXtDIocXNzbQSNMiLw+/jC8+eSfemhsFAHxk2os7bzChcGduT82FI1o43XvvvVAoFLj22msBAA888ADa2tpCyoyOjqbWOoIgCIJIA56REYz88Idwm3sBjweQSFB+002o+ey/IX/r1pjnSWQycgAPY8G7gB+9/AP8+LUfwweg1uPB1yV1uOqjvwbKajNtXsoRLZz6+/tDtg8ePIg9e/aE7CMfJ4IgCCKb8U5MYPTHP4bz578Am5kBAJS8+13YcNddKLzgggxbl3u86XoTdz/Tjr+5/cGvb5qcQsfOW1F+/b2ALC/D1qWHFaVcCTA2Ngar1YqGBlpRQBAEQWQfvrk5uH75K4wajfCOjQEAii6/HDX/fhdKrqQRpGTxMR/++43/xnft92He50GF14svu6dwXfN/AZdqMm1eWll2EAWr1Sr8XlFRgVtvvTVkH0EQBEFkGubxwP3QQ3BcfwOGu7rgHRtDfn09tnz/e9j+6/8l0bQMBiYH8KknPoVv9X8L8z4P3jU9g99MF+K6jz6+5kUTkOSI09jYGHp6eiCRSGCxWCKO22w23HbbbSkzjiAIgiCWA2MMk4cPY/g792He4QAAyDduRM3tt6Pigx8gh+5lwBjDI45HcOAvBzDlmUKRz4cvOF3QbHovJB/6EbAGQg2IISnhVFFRAbVaDYPBAIfDgZ07d4Ycb29vT6lxBEEQBJEs0319GP6vb2Pm5ZcBALKKClTpdKj8yIchpXyly8I568Q9z92DJ089CQC4YnYO3zjnxLb3fBF4x51rJtSAGJadcuXw4cNRYznlEpRyhSAIYu0w+/e/Y/jb38bUM88CACRFRVB+4uOo+tSnICsry7B1uctTbz2Frz7/VThnnZAzhn91jeGTC3mQ3fpjoP6aTJuXElYl5UquiyaCIAhibTB/6hRGvvs9jD/2mD+qt1wORYsG1Z/5DPI2bMi0eTnL5Pwkuvq68Js3fwMAOG9+Hp0jo7ig+lKg9ReAInbYhrXMsoUTQRAEQWQSz7lzOPejB+Dq6QEWFgAA5f/wPtTccQfyt2/PsHW5Tf9gP/7jz/+BM5NnIAHwCfc4bne7UaD6J+AGA5BXmGkTMwYJJ4IgCCKn8E5OwvmTn2L0Zz8Dm54GAJS84x2o+dznUHTJxRm2LreZ987jey99Dz9//edgYNjkA74+NISmBQA3fx9QfSzTJmYcEk4EQRBETuCbn4f7f/8X5x4wwutyAQAKL70UG/79LpRcdVWGrct9jjiPYP+z+/Gm+00AwIcmZ9B+7hxKy7cCH/8FsGlPghrWBykVTidOnMCOHTtSWSVBEASxzmFeL8YefRTnvvs9LAwMAADyd+xAzZ13ouz66yBZRyu60oHX58VPX/8pfvDyD+DxeaCU5OMrg2dw7fQMUH8tcOuPgWJlps3MGlYknF5++WU4nU5h22g0oru7e8VGEQRBEARjDJNPP42Rb38Hc8f8KT3kGzag+vZ/heKWWyCR06RJMnh9XtiH7RiZHkFNcQ1UG1QYmBzA3X+6Gy+PvAwAuMZXiK+cehNVPh/w7i8A7+0ApBTzKphlP3Wtra1wu91QKBTCvpdeeikVNhEEQRDrnGm7HcPf+i/M2O0AAGl5Oar23QblRz8KaVFRhq3LPawnrTjw4gEMTQ8J+8rzyzHrmcW8bx4lskLsd03gA6NvQVJQAdxiBHa/L4MWZy/LFk7Nzc3Yt29fyL6HHnpoxQYRBEEQaxvm9WK63wbPyAjkNTUobmwQInnPHj2Kke/ch8mnngIASAoKoPz4x1B1222QVayPyNSpxnrSiruevgsMoWEbx+fHAQD1+ZX4Af83bF6YBzZcDLT9N1BVnwlTc4JlC6f6+shOjbaPIAiCIAKMHzqEoXs74RkcFPbJ6+pQ/WkdZl56GWO//a0/FpNMBsUtt6D69n9FXm1tBi3Obbw+Lw68eCBCNAUzOT2CuoV54NIW4Ob7gfySVbQw91i2cHI4HDAajWhqagLgn4vu6elBX1+fqPN5nkdvby84jgPP89BqtSHTfuHY7Xbs27cPNpstYj8AqFQq8DwPt9sNlUq1vIsiCIIg0sb4oUM4c8edfmEUhGdwEINfvUfYLrv+etTccQcKuJ0glg9jDL/nfx8yPReNIbkc9nd/Fk3XfG1dpU5ZLssWTkajEWq1GsEZW5LJ3tLS0iKIIJ7nsW/fPpjN5qhlAwIrIJLC7TCZTAAAtVodsw6CIAgiczCvF0P3dkaIpmAk+fnY9otfoPiKy1fRsrUDYwxvTbyFvsE+vDj4IvoH+zEyMyLq3JEdbyfRJJJlCyeDwRCRdkWtVos6l+f5kG2O42C1WmOW12g0MY81NDTAtRjPI96IFUEQBJE5pvttIdNz0WDz82Bzc6tkUe7DGMOpiVPoG+xD31Af+gb7MDw9HFJGJpHBy7wJ66oppHADYklZrronn3wSbrcbe/YkDpBltVqhVIbeJKVSCbvdvqxpNhJMBEEQ2Y1nRNzIh9hy6xHGGE5PnvYLpcV/4dNwedI8XFZzGZrqmtC0oQEXv/USPvD6dzEsk4FFGVGSMIZarxeqWRKsYllREIyHH35YGD1ijKG/vx+33HJLwvPcbnfU/cExocTidrvR29sLAOjr64NOpwPHcUnXQxAEQaQH7/g4xh9/XFRZeU1Nmq3JHRhjODN5ZkkoDfVhcCp01E4uleOy6kWhVNeEy/KrUXTyOeDYk8AT3wJmnNhfXIS7NlRDwliIeJIsTpvqR12QTZFgFcuyhdP+/fvhdrvhdDrBcRzcbjd0Ot2KjIklqOIR7FTOcRyam5vhcDiilp2bm8Nc0DDw+Pj4cswkCIIgRMAYw9gjj2D4m9+Cd3Q0fmGJBPLaWhQ3NqyOcVlKiFAa7MPZqbMhx+VSOS6tvhSNtY24cuOVuLzifBSdsQOOw8Bz/w2M/D20wrxiqKen8e3hczhQVYmhoKChtV4v9KMuqKdngFJauSiWFYUj2LdvH44fPw6JRIIdO3bgySefFHWuQqGIGF1yOp3LmnLjeV6Y3gus0ON5PuqoU2dnJ+65556I/QRBEERqmT1yBINf+0/MLC4Cyuc4lL/vfTj3wx/6CwQ7iS+OgtTe3SHEc1ovDEwOCCKpf6gfZybPhByXS+S4pPoSYUTp8urLUOw87hdKlk7g5POAN2iaTSIFNqmA8/b606Vs3AN87wqox8/imukB2AsLMCKToWZxek4GCVC+Gdh+9Spfee6ybOHEcRxOnjyJnTt34lvf+hY+//nPiz5XrVbDaDRG7G9sbEzKBrvdjr179wrO4QHC/acCdHR04K677hK2x8fHsXXr1qTaJAiCIGLjnZjAue9/H87/+SXg9UJSVITqf/kMqj7xCUjy81Gw+/zIOE61tai9uwPl112XQctXh8GpQbw4+KIglqIJpYurL/YLpdomXLHhChTPTQH8U8ALP/P/nAwLL1C+BTjvWr9Q2vmeyLxyNxiAno9DBgmaQnyZFqftbjhAaVWSYNnCye12g+M4uFwunDt3Dtdffz0UCgWuvfbahOeGjwbxPI/GxkZhxMlut0OhUEQdNQpO88JxHAwGg3DMarVCo9HEHLkqKChAQUGBuAskCIIgRMMYw/hjj2GoqwvekXMA/PGYavfrkbdxo1Cu/LrrULZ3b8zI4dlOtHxvsjiiY3BqMGTq7fTk6ZDjMokMF1ddLIwo7dmwB8USGXDqL8AbTwCP6oHBV0MrzSsGdrzTL5Tq9wLVu+KHErjo/UDrL4DH9cD4wNL+8k1+0XTR+5fTFesWCUsm+FIcDh8+jMbGRlSIDInP87wQQLOvrw8dHR2C4GlpaUFTUxPa29sB+AWRxWJBV1cX2tvb0dTUJIQosNvtsFqtUCgUcDgcIUIqEePj46ioqMDY2BjKy8uTu2CCIAgCADB37BgGv/afmF4MgJy/fTtqv/QllL7zHRm2LLVEy/dWW1yL/Vfuh3q7PxzP0NQQ+ob60D/YjxcHX8SpiVMhdcgkMlxUdREa6xpxZd2V2LNhD0rkxcC5Y4DjSf8U3Ik/AQvToY3XXeoXSfXXAtuuAuTLGATweYGTz/lHrEpr/dNzNNIEIDk9sCLh9M1vfhP9/f3o7u7G4cOH0dTUlFMChIQTQRDE8vFOTuHcD34A53//N+DxQFJYiOpPfxrKf/4kpPn5mTYvpcTK9xbgqo1X4ezUWZwcPxmyXyqR4iLlRWiqa0JjXSNUG1QozS8FZlwA/0e/UHI8BYyFCiyUbFgcUboWqL8GKN2QrksjkJweWNGquvr6eiHo5d69e/Hwww+LCkdAEARB5C6MMUz84Q8YOmCAZ9gfcLFUvRe1+zuQv2Vzhq1LPWLyvb1w9gUAfqF0ofLCkKm3svwywOsBzvQDf/4u8OZhYMAOMN9SBbJ8YNvb/ULpvL3+ZLtSabovjVgGyxZOTU1NuPXWW3H48OFU2kMQBEFkMXM8j8H//E9MP+8XCnnbtqHui3ej9D3vybBl6ePPZ/6cMN8bAHx2z2fRdkEbyvMXRyxcJ4BXzX6hdPwZYC4sBE717qXVb9vfAeQXp954IuUsWzgdP34cACAJckjr6+ujESeCIIg1iG9qCuceeACjP/s5sLAASUEBqnRaVH3qU5CuwUU3UwtT+OOpP+KJE0/gj6f/KOqczYVKlPN/WvRVehJwhsUULFT4p90CU3AVW1JvOJF2li2c9uzZg8bGRlRVVcFiscBqtSblmE0QBEFkP4wxTDxxCEMHDgghBErf+17UfvFu5K+xcC7TC9N45vQzeOLEE3j2zLOY8yaXhqTmN7cDM0FO3RIZsPXKpdVvm64gZ+w1wIpy1ZnNZhiNRjDGYDKZROWpIwiCIHKDuePHMfT1b2Dqz38GAORt3ozaL34RZddek2HLUseMZwbPnn4WT5x4As+cfgaz3lnh2Laybbh+x/VQb9uLz/62DcNSxM/3NjMNVO5YWv22811AobiV5kTusKJcdTt37sSBAwdSZQtBEASRBfhmZnDuASOcP/kJ2MICJPn5qLrtNlRp90FaWJhp81bMrGcWfzrzJ2EabsYzIxzbUroFN+y8AdfvuB67K3f73VGO/B77z51LnO/tloPAZa2rfj3E6iJaOImJDv7ggw/itttuW7FRBEEQxOrDGMPk4cMYvPdeeAb8OdJK3v0u1H3xi8jfvj3D1q2MOe+cIJaePvV0iFjaXLoZ1++4HtfvuB4XKi/0i6XZMeCVXwOv/wZ40wo18ybO9yahVXDrAdFxnJRKJZqamuKW6e/vx2iiRI5ZBMVxIgiC8DP/1lsY/PrXMfXMswAA+aaNqLv7bpTu3RuyCCiXmPPO4bkzz+GJk36xNLUwJRzbWLJREEsXV13sv8a5CeDIHwSxBO98RJ1eIEq+t0U+8Zh/eo7IOdISx2nv3r2oqqpCQ0PszNUpCkJOEARBrBK+2VmMmg5i9MEHwebngbw8VP3zP6Nap4W0OPeWx8975/H8wPN44sQTeOrUU5hcmBSO1RbXCmLp0upLF8XSJPDaQ36xdMwSmjC3+nzg4luAC98P/EoDjJ+FDCws3xsASPzpSyhR7rpAtHAym80YGxtDf38/AESNEh4ruS5BEASRfUw89RSGvnEvFk7786eVXH01ar/0HyjYuTPDliXHgncBz59dFEtvPYWJhQnh2IbiDbhu+3W4fsf1uKzmMkglUmB+GnjjEeD1h4Gjh4CgaTso64FLbgEu/hCw4aKlHHCLiXL9iXGDBwkoUe56Y9kpV1566SU4nU5IJBJRiX2zEZqqIwhiPTJ/+jSGvnEvJp96CgAgr6tDbUcHyq5rzplpuQXfAv5y9i944sQTOPzWYUzML4mlmqIaXLfDL5Yur7ncL5YWZvzTb689DBx9PDQXXOUO/8jSxR/y54SL1Qdv/DZKotzNlCh3DbBqueoCPPnkk7BYLGhubs4pEUXCiSCI9YRvbg6jP/4xRo0msLk5QC5H1Sf/CdWf/jSkJSWZNi8hHp8HLw6+iEMnDsH6lhVjc2PCsarCKjRvb8YNO2/Ang17/GLJM+eP2v36b4Ajvwfml6btoNjmF0oXfwjYeEVssRQOJcpdk6xKrjoAePnll2E0GtHd3Q2O41BfX59TwokgCGK9MPnMMxj8+jew8NZbAIDiq65C3Zf+AwX19Rm2LD4enwf9Q/144sQTsJ60wj3nFo4pC5Vo3t6M63dcD9UGFWRSGeCZ9/sqvf4b4O+/C01zUr4FuPiD/tGlzSrxYikYqYwcwNc5SQunEydOCIEvJRIJbr31VthsNuzMsTlxgiCI9cDCmTMY7OzEpNWfV1S+YQNq9+tR9r73ZWxazuvzwj5sx8j0CGqKa5ZET9Bx25DNL5bessI56xSOVRZUQr1djet3XI+G2gbIpXLAuwA4nloUS4/6QwkEKNu0KJY+BGxupMS5xIoRLZwefPBBGI1G8DyP1tZWmM3miEjhDz/8MOWqIwiCyAJ88/Nw/uSnOPfAA2Czs4BcDuXHP47qf/kXyEozNy1nPWnFgRcPhCTNrS2uRXtTOyoLK4WRpdHZpdA2FQUVUG/zi6WmuqZFseQBjj/rd/D+26PAjGupkdJa4KIP+sXS1reRWCJSimgfJ6lUCo1Gg7a2NigUiohvKi6XCwcOHEBfX19aDE0H5ONEEMRaZPJPf8bQ17+O+RMnAADFTU2o+/KXULBrV0btsp604q6n7wJD4tdOeX65f2Rp+/Vo2tiEPGneon/Rn/0jS2/8Fpg+t3RCSQ1w0Qf8Ymnb28nviEiKtPg4abVadHV1xY3V1N3dLd5KgiAIYtkwrxfT/TZ4RkYgr6lBcWMDPCMjGOo8gIknngAAyGqqUdvejvKbbsr4ajmvz4sDLx6IK5okkOBm7mbcsPMGXLXxKuTJ8gCfD3jr+UWx9AgwNbx0QnGVP8bSxR8Ctr8DkK3IbZcgRCH6KdPpdAlVWEdHx4oNIgiCIOIzfugQhu7thGdwUNgnLS2Fb34emJ8HZDIoP/oRVN9+O2RlZRm0dIkXzr4QMj0XDQaGD+76IJo2NACnX/SLpdf/D5hcuk4UVQIX3uwXSzveTWKJWHVEP3Hh/kzLLUMQBEEsn/FDh3DmjjuBsNF/36R/qX0+x2Hzd76Nwt27M2BdJG+NvwXzUTN6jvSIKj/y/PeB433A+JmlnQUVwIU3+VfDce8BZHlpspYgEkNSnSAIIkdgXi+G7u2MEE3B+KanUXDeeatoVSQenwdPn3oaPUd68PzZ55M6t+bIH4DZOaCgHNj9D/4o3tw1gDw/PcYSRJKQcCIIgsgRpvttIdNz0fAMDmK634aSt125SlYtMTg1iIeOPYSHjz6M4Rm/L5IEErxj8zugOe8WdD75OQxLARbF30rCGGq9XqjqbwIu1QD11wJ5hat9CQSRkIwJJ57n0dvbC47jwPM8tFotFApFzPJ2ux379u2DzWZbUT0EQRC5yMwrr2DIYBBV1jMykmZrlvAxH54feB7dR7rxx9N/hI/5APiDU37ovA/h1vNvxdayrcDffgd27hzu2lANCWMh4kmyOIKmH3VBdu0nKcAkkdVkTDi1tLQIIojneezbtw9mszlq2YAwstvtK6qHIAgil2CMYfqFF3DOaML0Cy+IPk9eU5NGq/w4Z534vzf/D+YjZpyePC3sb6htQNvuNuzdthf5DMCxJ4CX9cDRP0DNfPj28DkcqKrEkHzp9VPr9UI/6oJ6esafyoQgspiMCCee50O2OY6D1WqNWV6j0aSkHoIgiFyA+XyYfPppnDMaMfvKq/6dcjnKb74ZU88+C+/oaHQ/J4kE8tpaFDc2pMcuxvDS8EvoOdqDQycOYcG3AAAozSvF++vfj9bdraiv4IABO/DEF4G/9gIzzpA61NMzuGZ6BvbCAozIZKjxeqGanYMQdam0Ni22E0SqyIhwslqtUCqVIfuUSiXsdjtUKtWq10MQBJENMI8H448/gVGjEXPHjgEAJAUFULS0oOqfP4m8TZuWVtVJJKHiaXHqq/buDkhkqQ3+ODk/iUf5R9FzpAdvut8U9l9UdRHadrfhhh03oHjGDbzaDbz8v8C5I0snl20ELmsFLm0FftUCjJ+FDAxNs3NhrUiA8k3+pLkEkcVkRDi53e6o+51OZ9T9qapnbm4Oc3NLf6zj4+NRyxEEQawmvvl5jD3yCEYPPigk4ZWWlKDywx+G8hMfh7y6Wihbft11wP33RcRxktfWovbuDv/xFPG30b+h+0g3fn/895jxzAAACmWFeN/O96FtdxsuLt8J/P0x4NcfAfingUX/JsgLgQtuAq74R/+KuEAU7xsMQM/HAUiAkECYi/5ONxygiN9E1pNVq+piCaFU1dPZ2Yl77rknJW0QBEGsFN/0NNxmM0Z/8lN4hvy+PTKFAsp/+gQqP/xhyGIEHS6/7jqU7d0bETk8FSNNM54ZPHHiCfQc6cFfz/1V2M9VcGjd3Yqbd96I8sHXgT//EHj9EWB+YunkbVf7xdJFHwQKo9h+0fuB1l8Aj+uB8YGgC9rkF00XvX/F9hNEusmIcFIoFBGjQk6nM+nVcMnW09HRgbvuukvYHh8fx9atW5NqkyAIYqV4x8fh+tWv4Pz5L+B1+ZPTymtrUfXPn4SipQXS4uKEdUhkspSGHODHeJiPmPGI4xFMLIohuVSO5m3NaNndgsY8JSSv9gBPvBtwn1w6UbEduPwfgcv/H6Dcmbihi94PXHAjcPI5vyN4aa1/eo5GmogcISPCSa1Ww2g0RuxvbGxMaz0FBQUoKChIqg2CIIhU4RkdhfNnP4frV7+Cb2oKAJC3dSuq9t2Gig9+ENL81Q3yuOBdwOFTh2E+YsaLgy8K+zeXbobmfA0+uHUvqh3PAL//kj9fXID8MuDiDwJXfBjYehUglSbXsFRGIQeInCUjwonjuJBtnufR2NgojBTZ7XYoFIqIcoB/Gi5QLlE9BEEQ2cDCwABGf/JTuM1msEU/y4Jdu1Cl06H8hushka/uR/HA5AB6j/bi4WMPY3R2FAAglUjx7s3vRuv5Glw9MwfZq78GHvki4Jn1nySRAtx7gcs/7B8xyk88KkYQa5GM+TiZzWbo9Xo0NTWhr68vJPZSZ2cnmpqa0N7eDsC/es5isYQcC4QoiFcPQRBEJpk7fhyjDz6IsUd+C3g8AIDCyy5D9ad1KH3veyFJdqRmBXh9Xvx54M/oOdKDZ888KwSqrC6qxi27boFGeQU2HjkEdGtDk+rWXOCfirus1e+LRBAZwOtjePG4E8MTs9hQVogrdyohk0ZGoF8NJIzFSXq0xhkfH0dFRQXGxsZQHsMJkyAIIllm//53nDMaMfH4E0LIgOKrrkK1Toviq66CJErKkXRxbuYcfnPsN+g92ouBqSWH7LdtfBtat78P17iGkPdKN3D25aWTipT+tCeX/yOwaY8Q6oAgMsHjr53FPY++gbNjs8K+jRWF+MrNF+GGSzampI1k9EBWraojCILIZabtL2HUaMTkH/8o7Cu95hpU67QouuKKlLbl9XlhH7ZjZHoENcU1UG1QQbboYM0YQ/9QP7qPdOPwW4fh8flHu8rzy/FB7mZo8jZg5xEr8IIWWDwGqRzYdb1/Vdyu6ympLpEVPP7aWXzmf+wIH+EZHJvFZ/7Hjh99VJUy8SQWEk4EQRArgDGGqeeew+gDRkz39fl3SqUof9/7UKXdh8Ldu1PepvWkFQdePICh6aX0JLXFtfjsns9ifH4cPUd7cHzsuHDssurL0Lbhbbhu6DgKn34AmHEtVbbxCr+T9yUaoKQq5bYSxHLx+hjuefSNCNEE+KOASQDc8+gbaL6oblWn7Ug4EQRBLAPm82HyySdxzmjC7F8X4x3l5UHxwQ+g6lOfQv6OHWlp13rSiruevgss7HUyND2EL/75i8J2kbwIN225Bq2ePFzwt0NA32NLhUvr/D5LV3wY2HBhWuwkiJUwND6LX/3lrZDpuXAYgLNjs3jxuBNvr1890U/CiSAIIgmYx4Px3/8e50wmzL/pAABICgtR2dYK5Sc/iby6urS17fV5ceDFAxGiKRi5RI72TWrcPHAUpU+bokfz3vleQEYf/0R24PMxHB2eQN8JF2wnnOg/6cJp14zo84cnYourdEB/OQRBECLwzc1h7Df/h9EHH8TC6dMAAGlZGSo/8mEoP/5xyMPyZqYD+7A9ZHouGh7mwXn9P0dpIBfctqv9wSkv/iBQWJF2GwkiETPzXrx8yo3+RZFkf8uFiVlPSBmpBNhaWYyTzumE9W0oK0yXqVEh4UQQBBEH39QUXN09cP70p/CMjAAAZEollJ/4BCo//I+QlZWl3YZAGhTTqyZR5UfKaoG3fRi4vA1QRsbDI4jVZHh8Fv0nXeg/4YLtpBOvD4zD4wsdNS3Ol2HPNgUativRuL0Se7YpUJwvxzsNT2JwbDbqGKsEQF2FPzTBakLCiSCIdQvzemPme/O63XD+8pdw/eK/4R0bAwDI6+pQ9alPQaG5FdKiorTb96brTZiPmvEo/6iQBkUMNW+/A1DdlkbLCCI6Ph/DseFJ9J90wnbChb6TTpxyRk671ZUXomFHJRq3V6JphxIX1JVBLouMa/aVmy/CZ/7HHistNL5y80WrHs+JhBNBEOuS8UOHMHRvJzyDS8Ee5XV1qLn9XzF/4gRcv/pf+Kb90wT527ejSrsPFTffDEma06LMeedw6MQh9B7thX3YLuzfjDzc4nbi16VFOCeTgUWJrSRhDLVeL1RyiktHrA4z8168ctoN20kX+k44YT/pwnjYtJtEAuyuLUPTDiUad1SiYXslNiuKRMUzu+GSjfjRR1URcZzqUhzHKRlIOBEEse4YP3QIZ+64UwhOGcAzOIiz//ElYbtg925U67Qou/56YSQqXRwfOw7zUTN+++YjGJsfBwDIGPDe6Wm0TEzi7TOzkALg5mZx14ZqSBgLEU+SxWvRj7ogK1v9lwmxPhiZmIPtpBN9J1zoP+nC62fGIqbdivL8026N2yvRsEOJPdsUKC/MW3abN1yyEc0X1WVN5HASTgRBrCuY14uhezsjRFMIeXnYfP99KLvmmrRG+Z73zuPwSSvMr/83+pyvCfvrPB7cOjGJWyamsMEHYNtVwHl7Ae5aqLs/jG8Pj+JAlQJDQTnuar1e6EfdUMuVwPar02Yzkbskm7bE52N4c2QS/Sdc/qm3ky6cHI101q4tL0DjdiUatleicUclLtxYjrwo024rQSaVrGrIgXiQcCIIYl0x3W8LmZ6LysICZCWlaRNNb43+Hb227+P/Bp+Diy0AAKSM4d3TM2iZmMQ75ErIdn0QOK8Z4N4TuhruBgPUPR/HNdMzsBfmY0QmQ43XC9XsPGQA0GoEpOkdHSNyDzFpS2YXvHjllBv9J12wLf4bm1kIqScw7daw6JvUsL0SWyrFTbutFUg4EQSxLvDNzGDiyScx+uCPRZUPrKBLCYxhYeh1PPXKj2Ee/DNewJKz7AaPB7dMzuBWxYWou/x9wHlqf1DKWC+ii94PtP4Cssf1aBpfyj2H8s3ADQf8xwkiiFhpS86OzeLT/2OH+sINGJ2ax2tnxrDgDS1VmCfFFVsVgkjas60SFUXLn3ZbC5BwIghizcI8Hkw99xzGHnsME9bDYNOJY8IEkNfUrKzx2XHg+B9x+sijeGjwOfwmz4dRuX8kSMIYrvZI0Kq8HO++sA1y7hqgoFR83Re9H7jgRuDkc8DkEFBa65+eo5EmIox4aUsCWP82LPy+oaxg0YHbHxbgok2pn3bLdUg4EQSxpmCMYebllzH+2O8w/oc/wOt0Csfytm5F2T+8D2MPPQzv6Gh0PyeJBPLaWhQ3NiTbMDD0GvCmFZ5jFvzx3CswlxbhuaJCsCIJABmqIMMtystx6+VabN56dexRJTFIZcDOdy3/fGJNMufxwjE8hWPDEzgyOIEX+NG4aUsC/Mt76/H/mrZhq3J9TbstBxJOBEGsCeYcDow9+ijGH/udENkb8AerLH/f+1Bx800ovPxySCQSFF18sX9VnUQSKp4WXxi1d3eIW0U34wL4p4FjVuBNK87OjOChslL8pqwEwxuWgvJdVXE+Wi/9JN6783rkSdf3NAeRGjxeH046p3F0cAJHhiZwdMgvlE6MTsPrize+FJ3ddWXYVlWcBkvXHiScCILIWRYGBzH+u99j7LHHMPe3vwn7pcXFKGtWo/ymm1Dy9rdDIg/9qCu/7jrg/vsw9I174RlaSmEir61F7d0d/uPR8PmAwVcEoYTTL8LLfPhTUSHM5WV4tnoTfIviS5lfgQ+cfws0uzTYVr4t9RdPrAt8PoYz7hm/MBqaWBRKk3AMT2Le64t6TnmhHLvrynB+bRny5VL89M8nEraz2mlLchkSTgRB5BTesTGMHzqE8Ucfw3Rf39KIkVyO0ne9C+U33Yiya69NGNm7fMssym4ewrTjHDyzMsgLvSiuByRbwqY1pkYBx5N+oeQ4DEz5ncaHZTI8XFGKhyoqMShd+obfVNeE1vNbce22a5EvS2+wTGLtwBjDyMQcjiyOHPmF0iSODU1get4b9ZyiPBnOry3F+bVlglDaXVeGDWUFwnSb18fw+GuDWZe2JJch4UQQRNbjm53F5NNPY+yxxzD1x2fAFpaWSBc1NqDipptRdv11kFdWiqvwjd8CPR+HBAwltUH7J88CPR8H9n4Z8MwBb1qAM3YEkj34ADxXVgnzhs34o28CXjAADBUFFfhA/QegOV+DnRU7U3XZRBaSbCykaLim5nE0ML02NIGjg5M4OjwB9/RC1PL5Mim4mpIlcbQokDYriiBN0LZMKsnKtCW5jISxeFHg1jbj4+OoqKjA2NgYysspRQFBZBPM68XUCy9g/NHHMGGxwDc1JRwr2L0b5TfdiIobb0Tepk3JVezzAvddAgQv5U/AudqL8H+129A7P4Qzc6PCftUGFVp2t6B5ezMKZAXJ2UHkHGJiIQUzOefBMcH/aFJw2B6emItav1QC7Kguwe7asqBRpFJsrypZ8cq2ZG1fbySjB0g4kXAiiKyBMYbZ117zO3n//g/wnjsnHMvbtAnlN92E8ptuROH55y+/kePPAj+/CQDgBWAvLAgKIjmHgEu4b/vV+Ev91TDPncVTZ5+Hh/nzb5Xll+H99e+HZpcG51Wet3w7iJwiViykwDhNxz9cgJqyAr9AWhxJOu2KTG4bYEtlkV8gLYqj82vLUF9TisK89IWUSMVo2VolGT2Qsak6nufR29sLjuPA8zy0Wi0UCkXSZe12fxJMlUoFnufhdruhUqlW6SoIgkgFc8eP+8MHPPYY5k+eFPbLFAqUve8GVNx0E4r27IFEusxv3XOTwFsvACeeAV5/BABgLS7CgarK0LQlHg9ud7rhksvQWzSNt473CMcuq7kMree34rod16FIHt9/ilhbxIuFFNh37+//HvXcDWUFwhRbQCDtqi1DacHqv36zKW1JLpMx4dTS0gKbzQbAL4z27dsHs9mcdFmj0QiTyQQAUKvVMesgCCK7WBgexsQf/oCxRx/D7GtLedokRUUou/ZalN98E0qvvhqS/GU4WM9PA6de8I8unXjW76fElhxsrcVFuGtDdcSLcEgmw5dqqvxhCeacKMkrwU3cTWg5vwW7lbuXeaVErsAYg3NqHidGp/GWcwonR6dxcnQar51xi4qFdEFdGRp3VApTbefXlqGyhBYIrDUyIpx4ng/Z5jgOVqt1WWUbGhrgcrkAIOaIFUEQ2YF3YgIThywY/91jmHrhL/7l/QAgk6HkHVej4uab/SviSkqSq3hhBjj1ol8kHX8WOGMDfGGOtoptwI53wbvt7TjwssEvmsID/S1uyxnDF6/6Mv6h/iYU51Fsm7WEz8cwOD67KIqmcNK5+HNRJE3OeZZd92feW48PXLE5hdYS2UhGhJPVaoVSGbr0UalUwm63R0yziSlLgokgMgfzev2Jc0dGIK+pQXFjQ0jwSN/8PCb/+EeMP/oYJp9+Gmx+XjhWtGcPym+6EeXvex/kyiSWQy/MAmf6l0aUTvcB3vnQMuVb/JG1d7wT2PEujBQU49WRV/H4iccxJIvv1+GRSLBdsZNEU5pIt6/NgteH066ZEEEUEElvOacx74ke/yjApopCbKsqxo6qEmyrKsbcgg/3Hz6WsF2KhbQ+yIhwcrvdUfc7g1IjiC3rdrvR29sLAOjr64NOpwPHcVHPmZubw9zc0mqG8fHxJKwmCCKc8UOHMHRvJzyDg8I+eV0davfrIVNUYuyxRzHxxCH4JiaE4/nn1aPipptRftONyN+yRVxDnnn/KNKJZ4Hjz/iFkids6qRsI7DjXcDOd2Fu65X4m28Gr5x7FX899zJePfwLnJ06m9S1jUynMMkvIZCq1V3T8x685QwSRQGB5JzCgHs2bvRsuVSCrcpibFMWY3tVMbZXlWC7shg7qouxpbI4wkHb62Po6T9FsZAIAFkWxymWSIpXNthRnOM4NDc3w+FwRD2ns7MT99xzzwqtJAgC8IumM3fcGZHvzTM4iDN3fi5kn7yuDuU3/gMqbr4ZBbt3J86F5V3w+yWdWBxReusvgCdshVLJBmDnu8C2vxOna8/HqwtuvHrur3h14A/4++vfgccXOuUilUhxnuI81JXU4ZnTzyS8vpriFSb5JSKItTJtcGwWn/kfO370UVWIeBqbXsCJwHTaudBptVhL+gMU5kn9I0bB4mhxFGljRSHkSSzvp1hIRDAZEU4KhSJidMnpdEadcktUlud5YcousOqO5/moo04dHR246667hO3x8XFs3bp1hVdDEOsP5vVi6N7O6ElyA0gkqLj1VlS8/2YUNzbGXxHn9QBnX17yUXrrBWBhKrRMcTWw452Y3HYlXquoxavzo36h5PgZXG+4IqpUFipxec3luKzmMlxWfRkurr4YJXkl8Pq8uP6h6zE8PQwWZfxAAglqi2uh2kCrc1OJmJVpnze/isdePSuMJI3NRA8IGaCiKA87qoqxbXHEKCCQdlQVoyYoenYquOGSjfjRR1URo2V1FAtp3ZER4aRWq2E0GiP2NzY2JlXWbrdj7969gnN4gHCfqAAFBQUoKKAgdQSxXLxjY5h+6SWMP/pYyPRcVBhDxc03o+TKKyOP+bzA2VeAE3/yi6WTzwPzE6FlipTwbn8H+E0X49WSMvx1dgSvnHsVjiPGCMGTJ83DhcoL/SJp8d+mkk1RX5wyqQz7r9yPu56+CxJIQuqSLI4f6K/UQyZNXzyd9YbXx/DIy2cSrkybnPPgsVdDp1Q3lBWETKdtr14SSYri1V2xdsMlG9F8UR3FQlrnZEQ4hY8G8TyPxsbGkNhMCoUCHMfFLctxHAwGg3DMarVCo9GQszhBpIiFgQFM2+yYttswY7Nj7tix+KNMYXhGFv2EfD5g6K9+oXT8WeDkc8DcWGjhQgWc26/CX2t24JWCfLw6fRavjb6GqeOvRNS7uXQzLqteEkkXKC9IKi+cersa337vt3HgxQMYml5K8ltbXAv9lXqot6tF10UsEUhIe2RwAkeHJ3BsaBJHBifgGJnEXAKH7AAfuGIT/uHSjdhe5fdBKs7PKo8SioVEZC5yOM/zMBqNaGpqQl9fHzo6OgTB09LSgqamJrS3tycsa7fbYbVaoVAo4HA4QoRUIihyOEEswXw+zB17EzN2myCWPAORDtX5O3Ygb9s2TD2T2E9om/5WlBQd9wumWXfIsYWCChzZugevKDfiVRnDq5Nv4fTk6Yg6iuRFuLT6UlxWc5nws7qoetnXGYzX54V92I6R6RHUFNdAtUFFI00iYIzh7NiskG/t6GIy2mPDkzET0ubJJFjwJn7d/O++q0iYEKsOpVwRCQknYj3jm5vD7GuvYdpmx4zNhumXXoIvfKWpTIbCiy5CcUMDihpUKFapIK+qAluYx5tXXY6FKSZMbwXDwJBX7MV5Nw1DIvX7sAwWleOVTRfh1TIl/opZvDHxFuZ98xHnchXc0pRb9WU4T3EeiZkMwRjDyOScPwmtIJL8I0kTMeIdBRLSBnKt7dpQit11ZdhYUYT3fPOphCvT/qS/lqa+iFUnJ1KuEASxugT8k2Zsdkzb7Zh99VWwhVDnW2lxMYquuMIvkhoaUHTZZZAWR8YykjisGHrbJJRPlsIHINjt2we/r9Ar71zAs9svwKsVNXh1YQwj827ANwCMLSXXrSioCJlyu6T6EpTn05cYMaQ6FpJzaj5EHB0dnMTR4Qm4p6M7aMulEuysLllMIVKK3YupRHZUFcdcsUYr04i1AI040YgTsUYR458kq65GcUMDihtUKFI1oPCC3ZDIw75PzU8Dg6/64yidsQFn7PC6juP6rZuw/U0p/snqQ3WQX/e5MuBnailevCD05SmXyHG+8vwQobStbFtKVz6tF1YSC2lsZgHHFqfXgoXSucnI0T8AkEqA7VUlIXnWdteWYWd1CfLlyecOTFUcJ4JIJTRVJxISTsRaIcI/yWaD52wU/6SdOxen3PxiKW9bmHDxeoCRv/ljKC2KJAy/IeR5OyeV4lh+Hg4XF6O7ogwAIPExXHiKoXIScJUCf9sqAVscNWgoPw/v3fUBXFZzGS6supCS46aAWLGQAncxEAtpcs7j9ztaFEhHFn8fHI+9sm2rsgjnbyjD+XX+hLS7NpThvA2lEQEhV0q6I4cTRLKQcBIJCSciW0iUtiQcUf5JcrnfP0mlCvFPWmqUAa4TfoE08NLiz5cBzwxmJBLweXk4mp+HY/l5OFpUimP5+XAiuTxehnd24h/qb0rqHCI2Xh/DOw1Pxl3WXyCXoqokHwNxymysKFxMQlsqJKM9b0MpSgrIe4NYn5CPE0HkEDHTltzdgfLrrgMQ5p9ks2H2r39N3j9pcgQ4+kTIlJtvxonTcrlfHOXn4ZiyBMcKlHhLLkPk4nEPJJBgW/k2VBVWwT5sT3htNSW1y+wVAgBmF7wYGp/F0PgchsZn8ZfjowljIc15fIJoqikrCBFH59eWYldtGcoL81bDfIJYk5BwIogMEjdtyWfvgOud74B3aNjvnxRGXP+kuUngrD1kys01cRrHFkeQjuXn46giD29u2IKZGBG9KwsqcX7l+dhVuUv4yVVwKM4rDoq+PRRzhVRtcV3WR9/O1JTRgteHc5NzGBqfw+DYLIYnZkMEUuD3RJGzY/HZa8/DJ9+xE5UlqxsgkiDWAyScCCJD+NOW3Bs3oOT0n/4s/B7TP8m7AAy9Drz0c2DAjrkzNvBjPI7lyXEsMN1WnocRZfSEugWyAnAVXIhAOr/yfFQVVsV03A6Nvo2cjL6dDidln4/BOT2PofFZDC+KoMFFETQ8PouhiVkMjs1hdGpOdBzRwjwpassLUVteCJlUgucdownPeXt9NYkmgkgT5ONEPk7EKsC8XiwMDGDO4cC8g8cc78DMK69i/s03E55b/dl/Q2Vbm98/yecDnDwwYAc73Y+BgT4cdb+JYzIs+iPl42SeHN4YgmdL6ZYQgbSrche2lW2DXLq871DWk9aI6Nt1xXVZH31brIN1AMYYJuY8fvGzOEo0NBEqjobH5zA8MSsqyCPgX86/oawAG8oLUVtegLrywsXfQ7fLC+WCgA34OFEsJIJILeQcLhISTkSq8c3NYf7ESczzDsw5+KWfJ06AzcXP5h6LTXd9BNg5h2MDL+LYmAPHJB4czc/Hm/l5mIoxzVaRX4ZdlbtDRNJ5ivNQkleyksuLSq5F3xbjYF1SIMO1uzdgeGIOwxN+oTSzED0idjgSCVBVUoDa8gJBBNUGCaINZYWoqyiEsjgf0mWIm4DoA6LHQgoXfQRBJIaEk0hIOBHLxTs+jnmex9zi6JF/FInHwunT/lGhKEjy85G/cyfyuZ0o4Orh8y7A+YApYVv3twF/5qKPCOVJZODKtmJX9SVLo0iKXdhQvGHdx0dijME9vYDB8VkMjs0KP1897cZTR0aWVWd5oRy15X7hs6EsUhTVlheipqwAeTECQKYKioVEEKmFVtUR65Jkl/QnrI8xeIaHMe9wYI4/LowezfEOeEfOxTxPWl6OAo5DPsehoD7wsx55yhJg/DTGnUdx5tzf8Mxbz+DiMkA5ERp5O4APgLMMeG6H/xo25ZVjV0U9zq/bg13KC7BLsQvbK7YjT5rZFVKZcLBe8PqEkaChMGE0OL60T2xi2Wh88IpNuPbCWtSWFQhCqSg/O0bSbrhkI5ovqqNYSMS6wedjOHvMjanxOZSUF2DjLsWyRmxTAQknYk0gZkl/LJjHg/lTp/wjSDwvjB7N8zx8k5Mxz5PX1i4Ko3rk79yJgs01KKiSYdI3hLOjf4dj7DjOTP4FAw4XzhyZwoCU4UyePGR67cpmKf79YV+MtCXAz5ql+PSm9+Jj13SiLL9seZ2TRtIx8jE55xEE0dkYwujcpHjn6qqSfGGUqLa8EB6vD2ZbZDLhcNqatmV1slmZVJLV9hFEqnC8NIxnu49hyr3k7lCiKMC72nahfs+GVbeHpupoqi7nibWkH4tTVZvvvw/l110H38wM5o8f9/scHecFH6T5EycjYiIJyGTI37oV+fUcCrbUIX9DCTwVCxgpdGJg/gwGJgcwMOfCGe8UBqQSDMjlmBAxTVMNOcolcvBsFlce8eGfLFHSljRL8eJuKX5y2Z1o2vOpZfZO+kjWwdrnYxidml8SQeOzGBoLEkeLwmgyRvLYcPJkEsFfqK6iEHXli/+CtjeUF6BAHjpKRA7WxHolm0ZtxOJ4aRiPG1+LefwG3SUpEU/k4yQSEk65D/N68eZeNRYGBxHtz58BkBYUQFZV5U9BEuNxlxQWIn/7FhRsqgaq8zBRNovhknGcKnThtNeNAe80BmRSnBEpjKokcmyWl2NTUTU2lW3BZkU9NlVfhM2V9dhYshGF8kJ4PfO4/hcqDEv9hoanLYEEqPUBj3/cDpk8u5aWi3KwzpfhPefXYGhiKVaR2BVnZQVyQQDVlhdi4+LPYGG0XOdqgBysieWTi+IDyL5RGzH4fAy/uPu5EJvDKa0swMe+cfWK7wH5OBFrFt/0NBaGhuAZGsLC4CCm+/rhiSGaAP+LkM3NwTMwAACQlZdAtrES81UyjJcvYLhsEifKpuAoncCA/CjOyB0YD/eLkgNAYcgupSQPm/PKsKmwxi+MKs/DpuoLsVmxExtLNorKySaT52P/+R/BXW/+EpAAb2xfEmSSRYGnP/8jqyaaFrw+jM8swD2zgLHFf+MzC3BPL20Hfj/tnE4YwXpq3ovfvzYYsk8iAWpKC5ZGiIIE0caKQtQu7k936o8bLtmIH31UFTHNWEcO1qsCiY/VJdaozZR7Do8bX1vxqA1jDMzH4PMyeL0MPq8PPg+Dd/Gnf78PPi+Dz+ML2w763euDd7G8z+uDa3A6rmgCgEnXHM4ec2Pz7spl258sJJyIEFLtYJ0M3slJeAYHsTA4BM/QIBYGB+EZHMLCUODnEHxjY8uq23alB1aVFG+WT2NMFv6HKAEQKnSUkjxsyivDpqIN2Fy2BZsqz8Om6ouwpXw76krqUJxXjFTgUfwTdg84cK72eZyTL704qr0MVUNvh6fxn5Kqz+tjGA8SPmNBQmhcED/zQcc9GFvcnpoXt9w+GW5RbUbzhbWCIFqNFWdiueGSjdh7QS2eevYURs9No6q6GNe8ayvy5NlhXyJIfKwu6RYfiWCMwevxwbvgg2fBJ/zu/8ng9XgX9zP//gUvvB6GhTkvXnyMj1u39adv4OhfBuHzwS96vP62/AImWND4lsRRmACKOu+9SkyNLy/Uy3Ih4bTGSUYIjR86hKFv3AvP0FIwQ3ltLWq/eHdCB+u4NjAG39iYf6QoRBgtbi/u901NiarPly/BXJkUU6U+TMKHHScTvywePS8fb1QuvRArJXnYlFfuF0blW7Cpchc2V12AzeXbsLFkY8qEUTy8PuYf8Rj/EKTjN+PikmdQLD+HaU81Xp96N3jIcfz/XkNxnhwTc54gITQfIo6CR4QmZpNLwhuNskI5KoryhH+KYv/P8qI8KIryUVGUh6HxWdx/2J8GRsKALR4pSpgEUxKG03If2OItaWnYmrUOzOEvcCeAgSdOZ/0LHCDxsVowxuDzMXjmfXj210fjln36l0cABvi8LFLYeBbFTtB+z4IPPo8PHk/kfm/4Po9/5CZdeOZ94F+OvVJ4OUgkgFQuhVQmgUzm/ymVSyCVSSGTLf6US/z7A8fD9s1OzuPU31wJ2yopL0ip7YkgH6cc83FKlxAaP3QIpz97BwCETHsFHo4t370/qnhiPh+8Lpd/dGhx+swTRRix2fjTOgHmCoDxMgZXKTBSLsHZcglGyiUYLQNGyyVwlgEzBUsWSnwMP/ihF8oJf6oPt+I8zOWXo2B+HAr3m2BgcJYBT+y/BM1N/4LNZVuxqXTTioURYwxzHh9mF7yYnvf/W/rdE2N/4HcPpue9GHDPwP6W238dccTHcijJlwliJ1j8CP+K85eEUdD+skI55CJGhAI+TmUj87hmJg/lbOmccYkPTxUtYKImP2sdrFfL4TQd5KrtYvxVisvzcePtl4H5AJ/HFzmyETT9ExgR8f9cGhHxeljIuSE/w8uFlA+r35tesbIiJIBMLoU8TwqZfPFf3uK/wP7F36fH5zF8YjxhlRe8vQ51XAVkcmmImFnalkQ5FvS7TLoojBb3peDvnnyc1hEzU1N49P77MO6YgcRTCp98AtI8H/JKpSjeUIYb//XfUFRSIpT93Q++h5lzkyiqLg05Fs74oUM4+41OjM6VCeKgqmACG78YueQ+IIQYJBhT7BLKVwy9idOfvSNECDGvFye/0gG//JLAFSY+AIa37m7HxoEBeIZHFsXQIDxnB7Awcg5YEDfKMV7sXy3mLPMLIWdAEC3uc5YBc/nRH/4CSFApzccOWTEq80tRWaBAZVE1JqfO4WfNr+Djz1yKY+e1YK5waZ67YNaFXW+a8Yt3/xUfqn4vlFIVRl0enB6exMz8GKbnvZhZ8GJm8ef0vBcz856g370xfveX8aXoM3XXvBTXRhEfTxYt4Fi+D3XlBdiqLEZFUX7UkSC/EFr6vbwwD/lpnm6SSSX494u2YPAPkcv6y5gE75/OR91FW7JSNPl8DM92RyZNDuZPPcew8/KalE99McbAGMC8/pEM5ovyM+IYlvZ7ff6RjTg89T9/x9yU/2/S5/XBF16nN2h78afwe6B88LHwsl5/PV5vFHsDvirh17IocBJ9TZ8en4f53v5UdfeqU7GhCKWVBZDJZYuiRrIoaGSQySVLQidI4EjDhE6I+AkSRcHnSmUS0QFuzxxx4f++81LCchdctXFV/YTEIJVK8K62XXG/KLyzddeqT1HTiFOKR5x++cUvY2KwEd680phl8uZdKNn4CgBg6uzlWMivjDj2kW98LdTWQ4fw0td+ElMc7PnyP4cIodfeeSWcsl0xy1dP/w0bbvs02MwMZh1vYurJpzBcfXnM8hvOvRLzenwA3KX+YI2jiwJodFEUBUSSqwxYWPThkTCgQiJDpTQfClkxKuSlKMuvQEmeEoX51cjPr4UsrxYyqRISXwkkvlJ4PHnCSE1gVGd63otB1zjK5x/E2x2fgoRBCEHg7wgGJgFeqP8xnhttgy9N3xPyZBIU5clQnC9HUb5s8XdZlN/lKMqX+svlyXB2bAZPHz6JD0z7nb8lQWN9gaS5jxTP42v/emXWTXeJ+SZYoijAP371bZAwJCUOGItyPIHQ8G8nqGPx58S5GVHTErU7ylFQLF8SCyy4Lb/N4TYKZaK277ePiE9+kQz5RfLFEQypMKoR96dcKox4hE4DSYVREpk8cDzaT2no6EnYuUPHx/HY92N/Bgb44Of2ZJ34WM1Rm3QRbWq6tLIA72xN3dR0ToQj4Hkevb294DgOPM9Dq9VCoVAkXTaZesJJtXD65Re/DPe59/g34n0biBFvKPiYovqPgnhiXi+efN8n8fedn4hZ/qKjP8EF79kF76gTs7wDZ8bK8NrF+2KWv+T1gyFiaLj68oTl3fmv4OhmiTBlNrooimZKgFKpHKXIQwkKUYBi5KEMYOXwoRJzvipMeqoxtaDA/HwRZuYKMT3vw8y8F54VvkgkDLh90ocCb3GI8BDMB8OcbBo/rsxDeXFeiKApyl8UNXkyFC2KmeiCJ4YoWtxO5OwsjDIEv0QZsLDgxY86/oQiL2LaPisF/vFzKkgkEmHEITBiEDwKIYwMBI0mBH/793kDIwph5YPrCB4dWNzHIsr598/PejE7GSP2FbEsJBJAIpNAKpVAIo3+07PgxcxE4n6v3lKKUmWhf9pEKhF+BuoXfl+cUpHKltoITMsEb0ukfkHiP18aWld43YFzw7aHT0zgiYOxRw4CkPhIPbk6vRtMuhdD5IRwamhogM1mA+AXP3q9HmazOemyydQTTiqF08zUFH5x++Pw5Cvii6YAgW6PVpYx5M+7cb7vl5DNzEPqnMTrWz+L+fyKOOXHoHrpO4BEAgYpXrriDsznl8cpP4GS4R/hbJUERXOAvOTTWMgri1k+b2ESpxQ9OF66C3Pecsx4KzDrLQN8RZAwufDalyxKgJB/DJH7Qo5JIJMCBTIp8mVS5MmkyJdJkC+VIk8mQZ50cb9UArnUvx34fco9B/lAYv+pkq0lqK0uFsRLQMj4RcziaAALHbmI3B8qgJiP+afrWOiIgnCej8HHMrvaJNsQxIFEEiESAtMPkeIBES93iTT0ZR11vwSQLAqD4DomnXM42jeU0NY9121F1aZSSKRLQkAiiW5H6DFEFz5Rzg/YJpGKm3oRO+1C4iP15Lr4WI1Rm1wm632ceD50aSTHcbBarUmXTaaedPO7H3wPnoIrxZ8Q70NSIsF8QSVew+3+VfLKxHXNFyjwwlX3iG57vqAc81v1KATAioG432ElEizkl6Fu+lOomxbXxMpgi/9i5xnzLv4T+wBPnZoCf0rcqr1so6gsDwXFeRHf4pf+SUP3Sf37JAGHziijC0tlpSHbESMLssh6pTIJzp2ewB9/FX+VEQDcdPvl2LxbIYiHbEg87PMxnDnmTvgCv+qD52XdC3zjLgVKFAUJbd+4S7F6RokkW/1VxFK/ZwNu0F2Ss+Kjfs8G7Ly8JidDWGQbGRFOVqsVSmWoGlAqlbDb7VCpVKLL9vf3i64n3cyci53TbLXwwQMmlQCMQcYS31qvbB6ygiL4FnyQLiQeFskrk6NCUegfFZAEviXD/zJc/CmRYum4/3+h+4LOkUgQeTywf/ElG7wv5Fyp/9xJ5yyOvph49ODSa7ZAWVcsjB4s1ScJeqkj5Lg0YIN0ab9U6r/WpWNL5wmjB5IlkRAY6QivXyqR4MybLjx6f2K/ietvuyTrRg827ChH/+9PJnyBb71ImXUfzLn8As9l2wESH5lGKpVk3WdJLpIR4eR2u6PudzqdSZVNph4AmJubw9zc0h/r+HjiJZpiKaouRQqrAwDU7uzDLZ//An75qx9j/M/1CctXvvMkPvrRfXj88JtwmN9KWP78W87DDXvPw1t/d+LR+15OWP6GT12CbRckGv5aXXw+hjNHE48evLMl+14mW3YrafQgQ+TyCzyXbQdIfBC5T1aFI4glhJItG+tYZ2cn7rlH5HRWktz4r/+WUh+nvAUXbrz9dkhlUrS0fAwPPPc75Pli1M0YFqQuaDQfAwDsfQ+HN37zd+R7imI6Hc/LZ7D3PRwAYMv5lZCVyuGZXIhZXl6ahy3nZ9+HRS6/wHPZdoBe4Jkkl20HSHwQuU1GhJNCoYgYFXI6nVFXw8Urm0w9ANDR0YG77rpL2B4fH8fWrVuXdxFhFJWUoHTTK/5VdYyJX1UXXnbxWMnGV1FUogEAFBYWovCKU/C8pPDnMIuy5L7witMoLPTnU8uTS7GteRcG/3AaDCzqMvdtzbuE1BJSqQTNH7kAjxtfi1peAv/xbP1QzuUXeC7bDtALPJPksu0EkctkZFUdz/NoaWkRVsMBQGVlJY4fPx4heuKVdTqdouuJRubiODlRsvFVANHiOPmPhcdxAoAHjPdh4rWtKF5YKj+d50TZJafxad2dEeV7HzkC/tBplHiXXmJTMgbuui3QfGB3RPmoaRwqC/CuHHiBA7mbuwvIbdsJgiBynaxfVcdxXMg2z/NobGwUxI7dbodCoQDHcXHLRhNZwfVkgo9842siI4f7R5OiRw7XRK3707o7MTs7i96Hfwm30w2FUoFP3fIRYaQpHM0HdmPhxl2ik5jS6EHmyGXbCYIg1hMZDYBpNBrR1NSEvr4+dHR0CIKnpaUFTU1NaG9vT1g23rFE5GKuOoIgCIIgUktOBMDMBkg4EQRBEASRjB5IbyZQgiAIgiCINQQJJ4IgCIIgCJFkVRyn1SYwS5nKQJgEQRAEQeQWAR0gxntpXQuniYkJAEhZLCeCIAiCIHKXiYkJVFRUxC2zrp3DfT4fBgYGUFZWlvLko4HgmqdOnSLH81WE+j0zUL9nBur3zED9nhnS2e+MMUxMTGDTpk2QSuN7Ma3rESepVIotW7aktY3y8nL6w8oA1O+Zgfo9M1C/Zwbq98yQrn5PNNIUgJzDCYIgCIIgRELCiSAIgiAIQiQknNJEQUEBvvKVr6CgoCDTpqwrqN8zA/V7ZqB+zwzU75khW/p9XTuHEwRBEARBJAONOBEEQRAEQYiEhBNBEARBEIRI1nU4gnTA8zx6e3vBcRx4nodWq4VCoci0WTmL3W6H1WoFAPT19eHgwYNCf8br6+UeIyLR6/Xo6Oigfl8lrFYreJ4Hx3EAALVaDYD6PZ3wPA+r1QqlUgme56HRaIT+p35PHXa7Hfv27YPNZgvZn44+Tmv/MyKlqFQq4XeHw8E0Gk0Grcl9DAZDyO/B/Ruvr5d7jAjFZrMxAMzlcgn7qN/Th8ViYVqtljHm7yOO44Rj1O/pI/hzhjEm3APGqN9ThdlsFj5PwklHH6ez/0k4pRCHwxFysxhjTKFQZMia3Mdms4X0n8PhYACYw+GI29fLPUZEYjabGcdxgnCifk8vwX3NmL/fAj+p39NHeB8Fi1fq99QSLpzS0cfp7n/ycUohgaHeYJRKJex2e4Ysym1UKhUOHjwobLvdbgD+Po3X18s9RoTS29sLjUYTso/6PX3wPA+n0wmFQgG73Q632y1MF1G/pxelUomGhgZhyq65uRkA9ftqkI4+Tnf/k3BKIYEXezhOp3N1DVlDBL+4u7u7oVaroVAo4vb1co8RS7jd7qj+ANTv6cNut0OpVAp+GSaTCb29vQCo39ON2WwGANTX18NsNgufO9Tv6ScdfZzu/ifn8FUg1k0kxON2u9Hb2xvhVBitXKqPrUd6enqg1WpFl6d+XzlOpxM8zwtfDrRaLSorK8HihNqjfk8NVqsVBoMBPM9Dp9MBAIxGY8zy1O/pJx19nKr+pxGnFKJQKCIUbWDonVgZer0eFotF6Mt4fb3cY4Qfq9WK1tbWqMeo39MHx3FCXwEQftrtdur3NMLzPPr6+qBWq6HVauFwONDT0wOe56nfV4F09HG6+5+EUwoJLBsOp7GxcZUtWVt0dXVBr9eD4zi43W643e64fb3cY8QSPT09MJlMMJlM4HkenZ2dsNvt1O9pJODPFA3q9/Rht9vR1NQkbHMch46ODvqcWSXS0cfp7n+aqksh4R98PM+jsbGRvmWsgN7eXqhUKkE0BaaQwvs0uK+Xe4zwE/6ho9PpoNPpor7Yqd9TB8dxaGxsFPzLArGcVCpVRFnq99ShUqlgNBpD/ClHR0ep39NIsA9lvPdmtn7OU666FMPzPIxGI5qamtDX1xcSOJBIDp7nUV9fH7JPoVDA5XIJx2P19XKPEUu43W6YTCbo9XpotVrodDqoVCrq9zTidruh1+vR0NAAm80mjLQC9LynE6vVKkyJAv4vD9TvqcVqtcJisaCrqwvt7e1oamoSxGo6+jid/U/CiSAIgiAIQiTk40QQBEEQBCESEk4EQRAEQRAiIeFEEARBEAQhEhJOBEEQBEEQIiHhRBAEQRAEIRISTgRBEARBECIh4UQQBEEQBCESEk4EQaw6VqsV9fX16OrqgslkQkNDAxoaGoSAm/X19bDb7StuI1AnQRBEqqCUKwRBrDputxsWi0WIzmyxWKBUKqHVagEAbW1t4Hk+atoLsajVarS1taXE3tUgOA0FQRDZC404EQSx6jidzrhJbVUqVUR287UMz/Po6enJtBkEQYiAhBNBEKtOa2trSsqsFQwGQ6ZNIAhCJCScCIJYdcRMSfX396OhoQFdXV0AgN7eXtTX18NqtQJY8pPS6XTo7e2FyWSCTqeD2+2OWafVakVXVxd6e3uh1+tjluN5Hnq9Xqg3UKfdbhfO7+rqAs/zQr2JbA34W1mtVphMJrS0tAjH+vv7YbFYYDKZhDoJgshOyMeJIIisJNxHSaPRoLu7O+S4RqNBVVWVkGW9t7cXLS0tsFgsEfUFxJDNZgPgny4MZGoPxu12o7m5GTabDQqFAnq9HiaTCRqNBnq9PqTuhoYGHD58WJStarUaFosFZrMZAGA2m2G324Vj9fX1go8XQRDZCwkngiBymuDRK41Gg5aWlqiO1kajEUqlUhgFAoC+vr6I+np6esBxnHB+R0cHAKCzszPCWZ3jOPT09IgSPFVVVaiqqgqxez35cRHEWoGEE0EQ6waVSgW1Wi1sRxM84aJrtVe60eo6gshuyMeJIIisRaFQYHR0VNi2Wq0RPkzB2729vVCr1SHCI3C8ra0tZLQpUF84Go0mIoaU1WqNer7dbhec2MXYKoZoNhEEkT1IGGMs00YQBLE+sVqt4HleWFWm1+vR2NgoTIm53W7o9XrBkdpoNMLtdsNoNILjOOj1erjdbmF6rq+vDx0dHVAoFLDb7di3bx8A4ODBg1CpVLBarbBYLGj6/+3csQ2DMBBA0ZuFEUBswA7MxE63gSVm8QipQESJoquIkN6rXRzdl208zxERH5F1nevbusyMfd9jGIZorcW6rqVZe+9vsxz3rcZxPL9927aYpimWZfn5VAPwX8IJeKzjlXGXqoG7OKoDACgSTsAjZWZk5vlbP8AdHNUBABTZcQIAKBJOAABFwgkAoEg4AQAUCScAgCLhBABQJJwAAIqEEwBAkXACACh6AUjn1yBHO2qXAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFoCAYAAAChRHRDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWnElEQVR4nOydeXwb1bn3fyPJ+zaWtziJAxknJARaiGyzpKUFIgOFC9yC7Nyy3W6WutM3pRamt6XQFkempaW0t8jp7UpLbRnaQlsgFrSUFkpsKUAhhIAmexzbiSTvm6Tz/iFrLFm7bVmW/Xzz0SeemTPnPHNG0vz0nOc8h2OMMRAEQRAEQRBRkSXbAIIgCIIgiFSBhBNBEARBEESMkHAiCIIgCIKIERJOBEEQBEEQMULCiSAIgiAIIkZIOBEEQRAEQcQICSeCIAiCIIgYIeFEEARBEAQRIySciJREFEXo9XoUFhaisrIyYtnKykoUFhZCr9fD6XQujoEphNlshk6ng06nQ0dHR0LaSFS9Op0OhYWFMJvNCal/qbe/lGhtbUVVVVXUcovxfiOIRELCiUhJBEGAwWBAU1MT7HY7rFZryHJmsxkqlQr19fUwGAzgeX5xDZ1Fa2tr0D69Xo+6urokWOOltrYWBoMBdXV1Cemfjo4OaDSagH0Ldc1GoxGCIMy7nlRt359Qfep0OlFYWBj28xFrPbGgVquhVqujtpXo91s4luJnj0hNFMk2gCDmA8/zqK+vh9FohNFoDDq+1DxMnZ2d0Gq1Aftqa2uTZqfVaoUgCOB5Hmq1OiFthHo4JvOalyuh+pTneWi12rjE3VzvjSAI0Ol0EcssxvstHEvts0ekLiSciJRHp9Nh+/btQcLJ6XQuGW8A4P3FK4pi0P7FfoDMJtG/+q1WK6xWKxobG6V9yb7m5Ui4PjUYDAtSTyxYrdYg7+JskuH1XaqfPSI1IeFEpDwqlQpKpTJoSKi7uzviF2NLSwsEQYAoihAEQTrX6XSitbUVgiCgs7MTOp0OKpUKgHfoT6/XAwB2794NURQhiiLOnDkT8QFlNpvR2dkJURTR0tICAGhsbITVaoVer4coirDZbGHbsNvtsFgsMBqNaG1thVKpRFtbG5qamiTbol3XbKxWK4xGo2STf1nfNuCNJ/OJHp9tPu9CZ2cngMgPZ57nYTAYpDpiveZw/drS0gKe56FUKsO2GaoPWltbYTQaYbVaYTKZoNFooNPp0N7eHjSUG6kPY2k/Vpv8j/n6SqlUQhAE2O12aehrdn/p9Xq0trbCYDBAq9WGLANAur7du3cHtRfq/s7n3jidzoiiKNT7TRCEqNcWz3tj9nCc7/xYP3vR+meun39imcEIIoUxGo2MMcYaGxuZRqMJOGYymRhjjGk0GqbVagOOaTQa6ThjjKnVamaxWKS6bDabdEwQBOZwOKTtzs5OJggC6+zsDCjjOz8cnZ2dTKVSBe23WCxMEISgsqHaaGxsDLi+2fVFuq5QhGpbo9EEtGuz2ZharQ5qt7Ozk1kslgCbYiWea/a3v7GxUbrnjDHmcDgYgIBzovUBz/PSttFoDOqfaO+NaO2HIlKdWq024P1ps9mk/p3dN/6o1eoAW0L1qa+cf9vR7u9c700sRKo70rXF0r7BYAj6fPiuO57PXrT+Wai+IFIXCg4nlgW+GTq+eAVRFIM8MT5EUQzyTtXV1UlDfaIoBsySEgQhYFupVEIUxQBvls+TsFCEa8MflUoV0Ga064oFq9UKs9kc1K7dbpf6gOd5WK1WqNVqqFSqBfulHa1fnU4nWlpaAuJUeJ4PuM+x9IHJZEJdXR1EUYRSqYz5/FjaD0W0On3eFf9rnh13E8q7FeuQl3+5WO5vKBL5no/l2mJ5b+j1ejQ1NUnH29ra4rYvlv5ZjM8/sbShoTpiWSAIAlQqFdrb26Whi3BDVGazGTzPBzwobDab9MVnMpkAeL+MfcNkdrs9qD1/eJ4PKjNfQrURKfVCtOuKhe7u7pBxYb5hS9/DIlGxY5H61Xd9kYilD3yzv+rq6mCxWGI+P5b247XJd2x2vYmKA4r1/oZiMd7zkYjUfnd3d1A/+j7H8TDX9/9i9wWRXEg4EcsGnU4Ho9EIrVYb8cHjCxr3f0j4/221WtHc3Iza2lrU19cnTCT4Yl0WimjXFWsdsZCstA7R4opi7YOqqiqYzWZYrdYAj1Gk8zs6OuKOa4qlzrkyl9lgqTKDLF474y0f7rOXKv1DJBcaqiOWDfX19bBarejo6EB1dXXYcrOHuHw4nU44nU5s374dTU1NkgDzH/5bSOLJrRMLka4rVtRqdcg6RFFETU3NfMybN+GuL5Yy/n3ge2gajcagHD6Rzo+l/XhtUqlU0vsuXubi4VjK99efeK/N14+zCdev4T57qdI/RHIh4USkNP6zYXy5Ydra2iJ6RNRqNaqrq4N+7be3t0MURemB5sP3JR5J6MTy4POPg4gUgzXXNiJdV6yoVCqo1eqAYSXfdUebZp4I/K9ZEARotdqAmVNOpxNWq1UqF0sfGI1GabhOrVYH5B6KdH4s7Yci3jp9M7X8mR1D4xtGjldwLeT9XSjvzFyvbfZ7Q6PRSLPmfMd99z3Wz95c+4c8VSuMZEenE8RcsNlsTKvVMgBMq9VKs+D8Z9I4HA5mMBgYz/NMEARmMBgCZsf5Zkj5n+Pb39jYyDo7O1lnZyez2WzSrCiLxcI0Gg0DwAwGA2OMSW2oVKqAekLhq9s3YyhUfZHaUKvV0mw2X5nGxsaYrms2s+sINXvNaDQGzFTq7OxkarWa8TzPDAZDwOzDWIn3mmf3q8FgYCaTSbo/KpUqaBZaqD4wGAxMEISAWVS+NrVabcjrD9WHsbQfikh1+o751zm7PoPBILVtMpmYRqNhgiCEfV/6X2O49mbf3/nem0hEer/Fe23h2m9sbJTq8Z+V5zsW7bM3l/6ZS18QqQ3HGGOLL9cIgiCIcFRVVcFgMCxIgsa6ujrs2LEjKR5DgliO0FAdQRDEMsM33OX7O9lrNBLEcoKEE0EQxDKjublZit0SRTHiZAmCIOKDhuoIgiCWEC0tLdDr9VCr1dL/8eJLuulbwoWG6Qhi4SDhRBAEQRAEESM0VEcQKxyr1Yra2tqIWcmJ+DCbzaiqqkJtbW2yTYkbej8QRGRIOBFEFGavuL7cUKlU0orv8ZDq/aLX64MSYC4UarUaTU1NCV2GI1H9P9f3w1Il1d+nxNKDhBNBRKGzszPZJiScuSwlkur9Ultbix07diSs/kTPZEtk/8/l/bBUSfX3KbH0oLXqCCICra2ttOp5CJZDvyxEjqRksRz6fzGgfiISAQknggiD2WxGZ2cnRFGUlnJobGyUjre0tEgLhYqiGHAsErOHDrRabdQ6zWazNHyye/duiKIIu90Oi8UCo9GI1tZWKJVKtLW1oampSVpSwneeUqmUhqWcTifOnDkDg8EQ1VafPb713TQaTcz94n9OtDYASDPABEGA3W6HWq2G1WqFXq+HKIrS8jp6vR6tra0wGAwh+262rXq9HoIgQKfTSd6HHTt2BNUbzf7W1lYIgiDlSOJ5PqD9cPiWWrHb7XA6nVJfdXR0oLm5GaIowmQySeuk1dbWSmvphVqINlz/x9JXiXg/RGIu7/V4rgOY+TyIohhwHdHepwQxZ5KZtpwgljq+5S9mo9FoApbEsNlsTK1WR63PYDAELOHgv/xGtDo7OzuZIAgBZQRBCKpvtr0mk4kBCFgepbGxkWm1WmnbYrEELEXis8d/CQm1Wi0tkxGpX8KdEwqtVhtgh81mC1puxHfd/qjV6oAlNSK16+sT31I1vv6K55pnL+Fhs9mClvSYTWdnJwMQsByO0WgMuN5Q1zZ7+Y9wdYfq/1j6KhHvh1AsxHs90nWE+zz42xSunwhiPpBwIogIhPritVgsjOf5oLLR1itzOBxBD1KNRsMMBkNMdVosFjb7t45arQ54ONlstqB6Ql2Dzxbfw3P2g9JmswW15f/QD1VntHNmE6o/GGNBD8NwD3HfQzQWW0P9Roznmk0mE1Or1QG2RhINvnZDPbRnixae5wPqimW9s3B1R+urcOfO9/0wm4V4r0e7jnCfB//+I+FEJAIaqiOIOOnu7g45hCIIAjo7O8PGznR3d4Pn+YCgYZPJBGBmGChanbPL8Dw/p2njPjusVmvY4SCe5wNWibfZbBHjReI9x1d+dhB1vEHVsbQb6hrjqUej0cBoNKKwsBAqlQo7duyY87CPIAgB/a7VatHW1gaVSgWz2ZyU2KuFfj8sxHs9FkJ9HhI5k5EgAIpxIoi4EEURTqdzTudGOm+udSYKp9MJQRACHmKRHmi+fonnnPnaF4+tsYixaPV0dnbCarXCbDbDaDQCmFvMzOwH+44dO7B9+3YYDAaIojjnTOHhxOFCvLfivbeJeK8vxHVE6ieCiBVKR0AQcWC1WqUg3tmIooiampqw56pUqpBf/k6nc851zhWn0wmn0ykFkc9GpVKFtCfcw8tqtcZ9jq8/5vJA9Bcf8bYbjkj1+IKcVSoVGhsbYbFY0NbWFp/RfvX597tKpYJSqURHR8ec0wBYrdawx2LxwCz0+yER7/WF8CRF6ieCiBUSTgQRAd8MIsD7xa5SqaBSqaBWqwOGLXxfyJFmGflmIflm+ADeB0l7e/uc64xVHFit1oCyzc3N0Gq1YX99q9VqVFdXSzPCfLS3t0vXMrtfop0zG0EQoNVqA2Ze+WZHzS7nv883q813PfG2G45I9fiLJ3+7ojHbQ9na2hqy33U6HRoaGmJeUy5U/8/eDwT3lY+Ffj+Esm8+7/VYr2M2s4+H6yeCmA+0Vh1BRME37bmysjJgOrVer5fii2w2W0zTuX3nFRUVSdPuY6nTarWiubkZHR0dMBgMaGxsREtLC5qbm1FdXS1NMfeVaWxsRFNTkxSXotfrpW3fQ8p/+rf/ef7X4bPH5wnxf7BH65dQ54Trj8rKSumhrdfrYTAYAoaCfA9gX5m2tjZYrVYYDAap/lDtms1mGAwGdHd3o6mpCRqNRooxmt2fkez3iSbfPlEUodVqIw4BWq1WKQUBEJyOwB9RFKHX66U4oFgI1//R+ipR74dwNsb7Xo/lOgRBCPt5EARButeR+okg5goJJ4JY5vgelBaLJdmmxERVVVWQcFruOJ1OdHd3L8o1p9r7gSCWGjRURxAEkQT8h5Xa29tXlFAkiFSGhBNBEEQS8GXDBpbX2nAEsdwh4UQQyxhfjI/Vag0I1F2qtLS0SHEs/sHDyxGdTgfAGzAea1D4fEm19wNBLEUoxokgCIIgCCJGyONEEARBEAQRIyScCIIgCIIgYoSEE0EQBEEQRIys6LXqPB4PTp48iby8PHAcl2xzCIIgCIJIAowxDA0NYfXq1ZDJIvuUVrRwOnnyJCoqKpJtBkEQBEEQS4Bjx45h7dq1EcusaOGUl5cHwNtR+fn5SbaGIAiCIIhkMDg4iIqKCkkXRGJFCyff8Fx+fj4JJ4IgCIJY4cQStkPB4QRBEARBEDFCwokgCIIgCCJGSDgRBEEQBEHEyIqOcYoFj8eDycnJZJtBEAQRRHp6etSp0wRBLCwknCIwOTmJQ4cOwePxJNsUgiCIIGQyGdavX4/09PRkm0IQCYW53RjttsDV3w9FSQmyq6vAyeVJsYWEUxgYY+jp6YFcLkdFRQX9qiMIYknhS+Db09ODdevWURJfYtkyuGcPeh9ohuvUKWmfYtUqlN3ThPyrrlp0e0g4hcHlcmF0dBSrV69GdnZ2ss0hCIIIoqSkBCdPnoTL5UJaWlqyzSGIBWdwzx6cuPPLAGMB+129vd79D/9g0cUTuVHC4Ha7AYBc4ARBLFl830++7yuCWE4wtxu9DzQHiSbvQe++3geawRb5/U/CKQrk/iYIYqlC30/Ecma02xIwPBcEY3CdOoXRbsviGYUkCidRFNHS0oKOjg60tLTA6XSGLWs2m2E2m9HR0QG9Xg+r1Sods1qt0rYoigHHlgJuD8MrtjP442sn8IrtDNyeEMp5gWltbUVtbW1MZauqqtDR0ZFgi2LHarVCp9OB4zjo9Xq0trZCr9ejrq4OZrM52eYlhdbWVhQWFi7qe5vuA0EQycbV37+g5RYKjrFQPrDEU1VVBYvFqxJFUYRer4fJZApZtrCwEM8//zxUKhVaW1thMBhgs9kAADqdDq2trQAAtVoNk8kEnudjsmFwcBAFBQUYGBgIWnJlfHwchw4dwvr165GZmTmna3z2zR7c9/R+9AyMS/vKCzJx7/VbcM355XOqMxZEUYQoilCr1VHLms1mVFdXx9xni4HT6URhYSEcDodkl2+fxWKBSqVKroHT9ixmn9XW1sJgMCzqtdN9WPosxPcUQSxVRl7di6P//d9Ry6375S+Rc/FF82orkh6YTVI8TqIoBmwLghDxV6zJZAr4kvb/oqyqqoLD4YDD4UBnZ+eS+RJ99s0efPYxa4BoAoBTA+P47GNWPPtmT8LaFgQhJtEEeMXmUumzSPA8D0EQ0NbWlmxTIIoi2tvbk21GUqD7QBDEYpFdXQUu0g8CjoNi1SpkV1ctnlFIknAym81QKpUB+5RKZdihCH8RYDKZoNPpAo7zPJ/whz9jDKOTrpheQ+NTuPeptxDKlefb982n9mNofCqm+pLkFFxy2O12VFZWJtsMGAyGZJuQVOg+EASxGAw+8yzY+Hjog9PxfWX3NC16PqekpCMIF89kt9vDnmO1WtHW1oba2lpotdqAunwxOl1dXdDpdBAEIWQdExMTmJiYkLYHBwdjtnlsyo0t33gu5vKRYABODY7jfd/cE1P5/fdfjez02G6V0+mEXq+H2WyWhjOtVivMZjMEQYAoitBoNBAEAVarFQ0NDdDpdNBqtTCbzdDr9VIfiqKIzs7OsEOokeqOpS6z2Qyr1QpBENDV1RX2Qeh0OtHc3Ay1Wi3d+1Dnms1m6HQ66PV6AIDRaITFYoEoijAajaipqYHdbkd9fT14ng9bRyS7zWYzuru7pfeqWq0O+37r6OgAz/MQRRE2m026vlj6xvd+r6mpARD5s0H3IfJ9IAgi9Zg8fgKnvvlNAEDe1Vdj7PXXA/M4lZVRHicgvKACAJVKBUEQoNfr0dHRAY1GAwDQarWSt0kQBNTW1kqCYTbNzc247777FtrsJQXP8zAajSgsLAQwEz/W2dkplamqqpJixnbs2CHtV6vVUKvVAQ8ok8kEq9UaMp4lUt3R6vKd64tzs9vtaGlpQWNjo1RXa2ur9DD0F8SRzlWr1bBYLDAajVAqlXA6naitrYXFYgHP81Kgs0ajiVhHOLt911VZWRkg4ENRV1cHm80GtVoNnU4nvW+j9Y3T6ZTO9dHc3By2HboPke8DQRCpBXO5cPKrX4VneBhZF16INd/7LsBxKztzOM/zQb+g7XZ71OE2nudRV1eH2tpaKWBVFEXpoe77ZSqKYshfn01NTdi5c6e0PTg4iIqKiphszkqTY//9V8dUdu8hOz7+866o5X7xiRpctF4ZtVxW2tzfHEajMUj0CIKA9vb2kA+coqIiFBUVSduh7lWsdUeqy/dA9Y9t6+oK7DN/UTy73XDn8jwvtanRaKSHvq+epqYmAF4hEq6OePogEv7vUbvdHhDbF6mN9vb2oH6dPbTtD90HgiCWE6d/8ijG9u2DLDcXq7/7IDiFV6rMNwB8oUiKcFKr1TAajUH7q6urg/aZzWbU1dXB4XAAQMCvXQDYvn27dMxHuIdMRkYGMjIy5mQzx3ExD5ddtrEE5QWZODUwHjLOiQOwqiATl20sgVy2cvOw+DwHPuLxHEQ61180z5515f/3fNoPV78/zc3NKCoqkobNlirL/T4QBJE6jFosOP2TnwAAVn3zm0hfuzbJFgWTlODw2Q8RURQDpsRbrVZJGCmVyoAvVavVCp7npaE7/3gMs9kMjUaT9C9QuYzDvddvAeAVSf74tu+9fsuiiKYdO3YEzVi0Wq2or6+XtiMNkc637njOnb0dzrsQ7Vz/8zQaTdCkA7PZHFP7sRDuHF/cTmNjIwRBkPo4ljbUanWQzbNnovpD92Fu5xAEsbRwDw7ixFe/Cng8KLjxRhT8x3XJNikkScvj5B8o2tXVhaamJknw1NXVoaamRoqz6OjokL6EOzs7YTAYJPHlC4rleT4gADcWlmseJwBS/h0gOIB3x44dUKlUUnC4UqmE0WiE0+lEQ0MDAGD37t1SDItKpQroc3+i1R2pLrPZjM7OTikAWq1WQxRFtLW1oaWlBVqtFjqdLmR8Vahzu7u7odfroVQqodfrJcEdqqwvKDlU+9HsFkURBoMBVVVVYYOSfX3pPwPUaDRix44dEAQhahv+kyF8Qdm+Hwp0H2K/D8sdyuNELBcYYzixcyeGnnkWaRUVWP/730Oem7No7ceTxylpwmkpkGjhBHgzh+89ZEff0DhK8zJx0Xrlonia/IUTQRDLExJOxHLB+eTv0XPPPYBCgbN/+xtkvf/9i9p+PMJpSc2qW47IZRwurSyKXnABaG1thc1mg06nCxkvRhAEQRBLjcnDh3Hq298GAJR88YuLLprihYTTMkKtVkt5rUIF3xMEQRDEUoJNTuLEXV8FGx1Fdk0Nij79qWSbFBUSTssIQRAC8u8QBEEQxFKm/5EfYfzNNyErKMDqFkPScjPFQ1Jm1REEQRAEsbIZ+de/cOanPwUAlN9/P9LKEztpaqEg4UQQBEEQxKLicjhwslEPMAa+rg75Vy/+0ilzhYQTQRAEQRCLBmMMPV//Olx9fUhfvx5lTXcn26S4IOFEEARBEMSi4Wxrx7D5eSAtDWu+913IsrOTbVJckHAiCIIgCGJRmHjvPfTu2gUAKN25E5lbtiTZovgh4bQMaW1tRW1tbUxlq6qq0NHRkWCLYsdqtUKn04HjOOj1erS2tkKv16Ourm7FLqvR2tqKwsLCoCVLUgW6pwRBAIBnYsKbemB8HDkf+ACU/31Hsk2aE5Q5PMGZw+FxA0deBoZ7gdwy4KxtgCyx0y1FUYQoigFr/IXDbDYHrBO4FHA6nVLmc59dvn0WiyXk0h+LzWIvKltbWwuDwRDx2hfbpnjao3uaGChzOJFK9DY3w/7LX0GuVEL44x+gKClJtkkS8WQOJ49TItn/FPCD84Ff/gfwxKe8///gfO/+BCIIQkyiCZhZL2ypw/M8BEFAW1tbsk2BKIpob29PthkBLLZNC9Ee3VOCWDkMv/QS7L/8FQCg/IHvLCnRFC8knBLF/qeA9juAwZOB+wd7vPsTLJ6WI3a7HZWVlck2I66FpBeLxbZpodqje0oQyx/X6dM4eXcTAKDwttuQd/nlyTVonlDm8FhhDJgaja2sxw080wgg1CgoA8ABz+oB4fLYhu3SsgEutoWBnU4n9Ho9zGYzbDYbAG+MidlsllaU12g0EAQBVqsVDQ0N0Ol00Gq1MJvN0Ov10Ol0UtnOzk6YTKaw7YWrO5a6zGYzrFYrBEFAV1dX2IeX0+lEc3Mz1Go1tFpt2HPNZjN0Oh30ej0AwGg0wmKxQBRFGI1G1NTUwG63o76+HjzPh60jkt1msxnd3d2w2+0AvB47QRBC2t3R0QGe5yGKImw2m3R9sfSN1WpFW1sbampqAEBqLxShbPLd2/r6+oA+MZlM6O7uRl1dHXbv3g2NRhN3P4RrT6/XQ6VSwWQywel0oqqqChqNJuR9TdV7ShBEfDDGcPKee+A+cwYZGzei9Kt3Jduk+cNWMAMDAwwAGxgYCDo2NjbG9u/fz8bGxrw7JoYZuzc/Oa+J4bivjed5xhhjNpuNqdXqgGMqlYo5HA7GGGMGg4EZjUbpWGNjI9NoNNK2Wq1mFoslZBvR6o5Ul81mYyqVSjpmNBqZwWBgjDHmcDgYAGYwGJjJZGImk4nZbLaAdsOdq9VqmVarZYwxZjKZmMPhYIIgBNhkMBgi1hGtDxobGwP6LBwAJLu1Wi0zmUwBdYRrw2ezPyqVKux9CGeT71oZY6yzszOgPV/ZufZDqPaMRqPU9/5t+K5pOdzTpUbQ9xRBLDHO/PJXbP+mzezt972fjb3zTrLNCUskPTAb8jgtc4xGY1DgrSAIaG9vl37p+1NUVISioiJpm+f5sN6OaHVHqstoNEKpVAbMqurq6gqoS6vVhoy/inQuz/NSmxqNBq2trRAEQaqnqcnrLm5ubg5bRzx9EAlfILQoirDb7RBFUToWqY329vagflUqlXG3r9PpUFdXh8bGRjidToiiCKfTie7ubtTX1wOI3Jfx9oNWq0VhYSGMRiNEUUR1dXXIMql8TwmCiJ3xd95B34MPAgBK9Y3IPOecJFu0MJBwipW0bOCek9HLAd5ZdL/RRC93a4d3ll0sbS9DVCpVQBB7KCE3l3P9h1lmz5Ty/3s+7Yer35/m5mYUFRVJw5eLhc8mX5u+NAY7duxAe3s7lErlgvaDfx9otVq0trZCqVRCo4nhM+BHKtxTgiBiwzM2hhNf+QrY1BRyL78chbfckmyTFgwKDo8VjgPSc2J7VV4J5K8GEC4uiQPy13jLxVJfjPFNodixY0dQrhyr1Sp5HADvgyJRdcdz7uztcB6BaOf6n6fRaILyH5nN5pjaj4Vw5/hibRobGyEIgtTHsbThixnyx99bFY9NOp0ODQ0N0Gg00Gq1MBqNAWUXoh9mtxcp0DqV7ylBELHT29KCyfdskJcUo/yB74Cbx3NsybEIQ4dLlrhinOLlrT8ydm/B9Ms/Zml631t/nIfl0fHFODHmjW/xxZY0NjZKsR0Wi4WpVCqmVquZzWaTtn3xNCaTiQmCwDQaTUA8ij/R6o5UV2dnJ2tsbJRiXhwOB7NYLKyxsZEBYFqtNmxcT6hzOzs7pevp7OyMWDZS+9HsttlsTKvVMqPRGLZfHA4H02g0rLOzU3ppNBpmMpliasPXD52dncxkMjGVShXxPoSzyeFwBMQd+cf5ROqfaDZG6oPZbSyXe7oUoRgnYikyaDaz/Zs2s/2bNrOhf/wj2ebERDwxTpQAM5EJMPc/5Z0955+SIH8NcM0uYMsN87A8Or5kgwSx2HR0dMQ9TEfMDUqASSw1pnr7cOjGG+F2OqH85CdR1vjVZJsUE/EkwKQYp0Sy5QZg83WLljm8tbUVNpsNOp0uZGAuQSQKXyC6UqlcElnACYJYfJjHg5N36+F2OpG5ZQtKv3xnsk1KCCScEo1MDqy/bFGaUqvVcDqd6OjoCIplIYhEUldXJ8VxkXAiiJWJ/ec/x+gr/wKXlYXV3/0uuPT0ZJuUEEg4LSMEQUBjY2OyzSBWILEu8UMQxPJk7N9vou/7PwAArPraPcgQ1ifXoARCs+oIgiAIgpgznpERnLzrLsDlQt5VV6Hg5puTbVJCSZrHSRRFdHR0SEsghEuMB8xMD3Y6nejq6sKOHTuk4YB46iEIgiAIYmE59cADmDxyBIpVq1B+/33LK/VACJImnOrq6mCxWAB4xU9DQ0PYNdHq6urw/PPPQ61Ww263o66uTlqHLZ56CIIgCIJYOAafeQYDTzwJcBxWtxggXwGOi6QM1c1O5udbFDYcJpMpIODU51GKtx6CIAiCIBaGqRMn0PONewEARTotci66KMkWLQ5JEU5mszlo7S2lUhmUDdiHf+CpyWSCTqebUz0EQRAEQcwf5nbjhF4Pz9AQMi94P0o+//lkm7RoJGWoLtwSH5EW3bRarWhra0Ntba20/lS89UxMTGBiYkLaHhwcjM1ggiAIgiAkzrS2YqzbAllODtZ897vg0tKSbdKisaRm1UVaM02lUqGpqQk2mw0dHR1zqqe5uRkFBQXSq6KiYh7Wxobb40bXqS78RfwLuk51we1xJ7zN1tZW1NbWxlS2qqoqan+mKlarFTqdDhzHQa/Xo7W1FXq9HnV1dSt6SLe1tRWFhYWL6pmle0EQy4fRffvQ/6MfAwBW3fsNpC/Cs3RJkfAFYEJgNBqZSqUK2MfzfMBaVOHo7OxkAJjD4Yi7nvHxcTYwMCC9jh07lri16hhjnYc72fb27ez8X5wvvba3b2edh6Nf53yw2Wwx9SVj3v70rfM1V+Z7fiLbczgc0vtl9r5wa6Ylg8XuQ7VavejXv9TvxWLfg4WA1qojFhvX4CB798rtbP+mzez4XV9NtjkLRjxr1SXF4xQuWV6oZULMZjMKCwulbUEQAHgDw+OpBwAyMjKQn58f8EoU5iNm7PzbTvSO9gbs7xvtw86/7YT5SOJ+ZQuCEHNCQrVaPa/0DaIoor29fc7nJ6M9nuchCALa2toWyKr5sdh9uJRYKvdiJd8DgoiHU/d/C1MnTiBt7Vqs+sbXk21OUkiKcPKJHx+iKKK6ulp6gFutVmnGnFKpDBABVqsVPM9DpVJFrWchYYxhdGo0ptfQxBCa9zaDIXj9ZDb9b9feXRiaGIqpPraE12E2GAwp2Z7dbkdlZeWC1DVfFrsPlxpL4V6s9HtAELEw8NRTGHz6aUAux+oHWyDPy0u2SUkhaXmcTCYT9Ho9ampq0NXVFZB7qbm5GTU1NWhsbIRKpcKOHTvQ2toKAOjs7JTyNkWrZyEZc43h4t9evGD19Y72YtvvtsVU9tVbXkV2WnZMZZ1OJ/R6Pcxms5Trymq1wmw2S0lCNRoNBEGA1WpFQ0MDdDodtFotzGYz9Ho9dDqdVLazszNsn5rNZnR3d0vB+Gq1Wqqzvr4eOp0Oer0egPc+dXd3o66uDrt374ZGo4HZbIbVaoUgCOjq6oLBYIhoQ7j29Ho9VCoVTCYTnE4nqqqqoNFoQj4MnU4nmpuboVarpUkG4ezwt99oNMJisUAURRiNRtTU1MBut6O+vh48z8d9LZH6cPYPAh8dHR3geR6iKMJms0nXF0s7vskVNTU1ACJPxIj0non1mmb3RShm34tk3Yd47gFBrFQmjx7FqfvuBwCUfOHzyN66NckWJZGEDxwuYSKNac6OHRiZHAmIVVrM18jkSNzXxvM8Y8wb76RWqwOOqVQqKZ7DYDAwo9EoHWtsbGQajUbajhYL09jYGHC+b5/BYGCMeWOo/OvzlbXZbAHxaUajUTonkg2h2jMajUyr1Qa1wdhMDI3BYGAmk4mZTCZms9mk45Hs0Gq1Ur0mk4k5HA4mCILUd77rnOu1ROrDUACQbNdqtcxkMgXUEa4dn93+qFSqsPc12nsmUluR+iLSvUj2fYj1Hiw1KMaJWAw8k5NMrK9n+zdtZoduvZV5XK5km7TgxBPjRIv8xkiWIguv3vJqTGUtvRZ87vnPRS33v9v/F1VlVTG1PVeMRmPQavWCIKC9vV3yuPhTVFSEoqIiaZvn+ajeidnodDrU1dWhsbERTqcToijC6XSiu7sb9fX1kl1KpTJgRlVXV9ecbNBqtSgsLITRaJSGa0OVCTWEG8kOnuclOzQaDVpbWyEIglRPU1MTAK+HdKGuJRIOh0PyONnt9oAEsJHaaW9vD3oPzM5/5k+090yktiL1p49Q9yKV7gNBrDT6f/xjjL/+BmR5eVjT0gJOLk+2SUmFhFOMcBwX83DZttXbUJZdhr7RvpBxThw4lGWXYdvqbZDLls8b0Ol0SsG+AKTp7jt27EB7ezuUSmXAA1OlUgXEr4UScrG05zu3tbUVSqUSGo0mrnoi2eE/ZOPfHoAFvZZwbfjT3NyMoqIiadhsqTLXvlgq9yHSPSCIlcbI3r04Y/SGypTffx/SVq9OskXJZ0nlcVouyGVy3H3R3QC8Iskf37b+Iv2iiKYdO3YE5cmxWq2S5weInD8rHvzb0el0aGhogEajgVarhdFojGpXvPl8ZrcXKcA3nHchmh3+52k0mqDcR2azeUGuJdp5vtidxsZGCIIg3bNY2vHFgvkze7kif2J5z8Rz7uztUPdiKd0HyitFEF7cAwM42agHGEPBzTch/yMfSbZJS4NFGDpcssQT4zQXQuVxUrerE57HibGZGCfGvHFGvriSxsZGKbbDYrEwlUrF1Go1s9ls0rYv/sVkMjFBEJhGowmIC/LHZrMxrVbLjEZjQBmHwxEQd+QfX+JvV2NjoxTv4nA4otoQrr1QbVgsFtbY2MgAMK1WGzamJ5QdnZ2dUt/458QKVXau1xKtD/1xOBxMo9Gwzs5O6aXRaJjJZIqpHV9fdHZ2MpPJxFQqVcT7Gu09E6mtcH0R7V4k8z7Ecg+WIhTjRCQKj8fDjn3pTrZ/02b23lVXM/fwcLJNSijxxDhxjC3hue4JZnBwEAUFBRgYGAjK6TQ+Po5Dhw5h/fr1yMzMnHMbbo8b1j4r+kf7UZJdAlWpalE8TYWFhXA4HAlvZynR0dER9zAdQaQyC/U9RRCzcXZ0oOd/vg6kpeHsxx9H1vnnJdukhBJJD8yGYpwSjFwmR82qmkVpq7W1FTabDTqdLmwS0OWGLxBdqVQGBTQTBEEQ8TMhHsKp7zwAACj98p3LXjTFCwmnZYRarYbT6URHR0dQTNFypa6uTor3IeFEEAQxPzyTkzhx11fAxsaQfeklUH7iE8k2aclBwmkZIQgCGhsbk23GohLr0jIEQRBEdPp/8DAm9r8NOc9j9S4DOBnNIZsN9QhBEARBEBj+5z9h/9nPAADlD3wHaWWlSbZoaULCiSAIgiBWOC67HSfv9qbRKbzlY8i78sokW7R0IeFEEARBECsYxhh6vvY/cPefRvqGSpSusJCPeCHhRBAEQRArGMfjj2P4r38Fl56ONd/7HmSU2iIiJJwIYoXgdDphNpsXLFM8QRCpz/jBg+gztAAASu+6C5mbNiXZoqUPCacEw9xujLy6FwN/+jNGXt0L5nYnvM3W1lbU1tbGVLaqqgodHR0Jtih2rFYrdDodOI6DXq9Ha2sr9Ho96urqVuxSGK2trSgsLAxaZmQ2HR0daG1thdlsDrqnTqcTDQ0NEAQB27dvj6t9uicEsTzxjI/j5FfuApuYQM6HLkPh7bcl26SUgDKHJzBz+OCePeh9oBmuU6ekfYpVq1B2TxPyr7pqXrZHQhRFiKIY01R9s9mM6urqJbWoqdPplDKf++zy7bNYLEsiX9NiLwRbW1sLg8EQ9trNZjNMJpOUv4vjuID+6+jogCiKaGxslGyP5xronixNKHM4MR9Offs7cDz2GOTFxRD++AcoioqSbVLSiCdzOHmcEsTgnj04ceeXA0QTALh6e3Hizi9jcM+ehLUtCELM+Y3UanVKPGx4nocgCGhra0u2KRBFEe3t7ck2I4DOzs4AL6PNZgu4r6IoSts8zy/INdA9IYjUwn8EpN/YCsdjjwEAVjc/sKJFU7xQAswYYYyBjY3FVtbtRu+3vwOEcuYxBnBA73ceQM6ll4KTR1+3jsvKAsdx8Zq87LDb7aisrEy2GTAYDKiqqkq2GRERBCHi8YW6BronBJEahBoBAYDcyy9H7mWXJcmq1ISEU4ywsTG8o1qgL2bm9TwdrLkopuKbrBZw2dkxlXU6ndDr9TCbzbDZbAC8MSpmsxmCIEAURWg0GgiCAKvVioaGBuh0Omi1WpjNZuj1euh0OqlsZ2cnTCZT2PbC1R1LXWazGVarFYIgoKurCwaDIew1NTc3Q61WQ6vVhj3XbDZDp9NBr9cDAIxGIywWC0RRhNFoRE1NDex2O+rr68HzfNg6ItltNpvR3d0Nu90OwOuxCydSOjo6JO+OzWaTri+WvrFarWhra0NNjXedQ197ofBdhyiK6OrqAuCNi3r++eehUqlgtVrR2dkplRcEIegarFYr9Ho9VCoVTCYTnE4nqqqqoNFoQt6XVL0nBLES8Y2AhPoxP/ziixjcsyeh4SPLDraCGRgYYADYwMBA0LGxsTG2f/9+NjY2xhhjzD0ywvZv2pyUl3tkJO5r43meMcaYzWZjarU64JhKpWIOh4MxxpjBYGBGo1E61tjYyDQajbStVquZxWIJ2Ua0uiPVZbPZmEqlko4ZjUZmMBgYY4w5HA4GgBkMBmYymZjJZGI2my2g3XDnarVaptVqGWOMmUwm5nA4mCAIATYZDIaIdUTrg8bGxoA+CwcAyW6tVstMJlNAHeHa8Nnsj0qlCnsffPX51z/bZoPBIF1fuGswGo1S3/m2fSyXe7LcmP09RRCz8bhc7OCHLw//jNl8Ljv44cuZx+VKtqlJJZIemA15nGKEy8rCJqslprKj3d04ptVFLVfRakR2dXVMbc8Vo9EYFLgrCALa29slT4E/RUVFKPIb6+Z5Pqy3I1rdkeoyGo1QKpUBs7J83hIfWq02ZPxVpHN5npfa1Gg0aG1thSAIUj1NTU0AgObm5rB1xNMHkfAFUouiCLvdDlEUpWOR2mhvbw/qV6VSGXf78aLValFYWAij0QhRFFEd4r2Z6veEIFYao92WoOG5ABiD69QpjHZbkHNxbKMgKx0STjHCcVzMw2U5H/gAFKtWwdXbGzrOieOgKCtDzgc+EFOM03JFpVIFBLGHEnJzOdd/mGb2TCv/v+fTfrj6/WlubkZRUZE0fLlU8b8GrVaL1tZWKJVKaDSauOpJhXtCECsNV3//gpYjaFZdQuDkcpTd0zS9MSuoe3q77J6mRRFNO3bsCMq1Y7VaUV9fL23PNSFiLHXHc+7s7XAehWjn+p+n0WiC8h+ZzeaY2o+FcOf4YnUaGxshCILUx7G04Ys58sffWxWOuXpg/G3S6XRhY80itZEK94QgViKKkpIFLUeQxylh5F91FfDwD4LzOJWVJTyPkz8qlQoGgwEtLS1SwK3JZALP81IAss+74HQ6panlarUaoijCarXCaDRCEIQgr0ksdYery3euXq+XAqB9gsF3nsFggE6nCxq2Cneu2WwOCC72BQkbjcagsjzPR20/XB/4xEVra2vYtA++3Fi+h3hdXZ1URyxtmEwm6PV61NbWSh6U5uZmGAyGoPvgf93V1dUQRRHd3d0wGo0wGAwQRVG6z4IgQKPRhL0G373x9zYtl3tCECsRz+hI5ALTIyDZ1TQrNVaSlgBTFEV0dHRIs2TCxU4AMzO3AG/Mw+7du6Wyvl+uKpUKoijC6XTGnIwv0QkwAW9qgtFuC1z9/VCUlCC7umpRPE2+ZIUEES8dHR1xD9MRyYESYBKRGHxuD07cdRcwNeXdwXGB4SPTIyBrHv7Bip9VF08CzKR5nOrq6mCxeIOtRVFEQ0ND2GnvZrMZjdOrNbe0tGD79u3SuUajEa2trQC8v0YjTZ1PBpxcvmgBd62trbDZbNDpdCEDewkiHDqdDnV1dVAqlUsiCzhBEPNj4OmncfLuJsDtRv61H0FebS16DS1JHQFZLiRFOM2O1/Dl/QmF1WpFc3OzJJw0Gg30ej1EUYQgCKiqqpI8Kys9IFStVsPpdKKjo0NaeoMgYqGurk6KwyLhRBCpjcNkwqlv3AswhoKPfhTl3/4WOLkceVddlZQRkOVGUoST2WwOml6tVCphtVpDxk7s3r1b2vZ9ufufv9IFkw9BECSBSRDxQHFBBLE8sP/q1+h94AEAAP+x/8Kqr38dnMw7D2wxR0CWM0kRTuFmcYWbseMfb9HW1hawvprPwwJ445982YVDMTExgYmJCWl7cHBwDtYTBEEQxNLjdOtu9D/0EABA+YlPoLTxq7RcVwJYUrPqok2L94kkX3wTEJiQTxAE1NbWSkuNzKa5uRn33XffQplLEARBEEmHMYbTjzyC0//7EwBA8ec+h+IvfoFEU4JISh6nUFl/7XZ71CE3vV6Pzs7OoFXfffhm6IXLedPU1ISBgQHpdezYsTlfA0EQBEEkG8YY+loelERTyVd2ouRLXyTRlECSIpwi5b4JR0tLC/R6vZRM0Ol0wmq1Yvv27UFlwy1PkZGRgfz8/IAXQRAEQaQizOPBqfvvh/3nPwcAlH3tayhuaEiyVcufpAin2TFIvnWx/HMz+XuNOjo6oFKpJNHU3t4OnuchCEJAlmOz2QyNRkPB4gRBEMSyhrnd6Pna/8D5+O8AjsOqb90P5e23JdusFUHSllzxZUb2TZ33z7/U3NwsBXyLooi6ujrU1taC4zgUFhZCr9cD8A75VVdXo6WlBa2trVLm6pVOa2sramtrYypbVVUl9XWq4LvfHR0daGlpWTD7rVYrdDodOI6DXq9Ha2sr9Ho96urqVuwyHq2trSgsLAxaIiURdUU6TvecIGZgU1M4+dWvYuD3vwfkcqxuMaCwri7ZZq0c2ApmYGCAAWADAwNBx8bGxtj+/fvZ2NjYvNpwuz3s+AE7e2dvDzt+wM7cbs+86osFm83GOjs7Yyrb2dnJHA5HYg1aQFQqFbNYLAH7GhsbWWNj44LU73A4GICAPvHtm91usljs+6VWqxfs2qPVFer4Sr/nke73Qn1PEamDe2KCHf3c59n+TZvZ/vPfxwaeey7ZJi0LIumB2cQ9q+7w4cMwmUzo7OwMWNJDqVSitrYWGo0GZ5999sKouhTHtq8PL7W9ixHnTAqEHD4Dl+3YiMqtpQlrN9S6cuFIpfw9vhi32bm+DAYDCgsLsWPHjoQkb/QNC7e1tSU9OaQoijCbzdBqtUm1Y7FY6fd8pd1vIjKesTEc/8IXMfLPf4JLT8faR36I3A9/ONlmrTjiGqq7++67YTQaoVarsWfPHnR1dUmv5557Dtu3b8ejjz6KpqamRNmbMtj29eFZ45sBogkARpwTeNb4Jmz7+pJkWerS0tISdghSrVajubk5YW3b7XZUVlYmrP5Y8Y/pWwms9Hu+0u43ER738AiONWi9oikrCxXGR0k0JYmYPU4PPvggmpqaUFBQELbM1q1bsXXrVgwMDKCpqSmhX2qLDWMMrklPTGU9HoaX2g5GLPNS27tYu1kJmSz6lFFFuizmqaVOpxN6vR5ms1nKZ+VbJNmXrkGj0UAQBFitVjQ0NECn00Gr1cJsNkOv10tJREVRRGdnZ8S4MbN5ZuX7rq4uGAwGdHR0QK/XQ6VSwWQywel0oqqqCmq1GkajMeQ50dr2TRYIN/NSEAQp7iWW6whlQ7j+bG5uhlqtln71h7Nfp9NJ8XdGoxEWiwWiKMJoNKKmpgZ2ux319fXgeX5OfWA2m9Hd3S2l8lCr1WE9ix0dHeB5HqIowmazSdcXS99YrVa0tbWhpqYGQPjEtP7lQ72/Yqkr0vGlcs9T4X4Tyxv34CCONjRg/PU3IMvNRUWrEdm0NFLSiFk4ffWrX4250oKCgmUlmgDANelB650vLlh9I84J/PT//T2mstqHP4y0jNjWE+J5HkajEYWFhQC8Dx9f/isfVVVVeP7556FSqbBjxw5pv1qthlqtDvjyNplMIZfC8a/bl5DUbrejpaUFjY2NsNvt0n6e56HX66HVaiOeE0vb0R7isVxHJBt8tLa2Sg8p/2z00ey3WCwwGo1QKpVwOp2ora2FxWKR+qC1tVVabzHePvBdV2VlZdShm7q6OthsNqjVauh0OnR0dECj0UTtG6fTKZ3rI9JnOdL7y9+OUHXF2lYy73mq3G9i+eJyOHD0U5/CxP63ISsowLqf/hRZ7zs/2WataOacOfzuu+/Ghg0bUFdXh7q6Oine4KabblpI+4h5YjQag0SPIAhob28P+WVcVFSEoqIiaTtUslL/upVKZcDso66uLgDejO6FhYUwGo1wOp3SAynSOZHa9hcuoZgtsCLVFckGH/4Z6WO9Zp7npTY1Go30IPbV4xvCbm5unlMfxIPD4ZA8Tna7PaDfIrXR3t4e9H4JlxcNiPz+AoIXDPavK1pbS+Gep8r9JpYnU319OPrJT2LyPRvkRUVY97P/Q+amTck2a8UzZ+FUU1ODm2++GQ8++CCqqqrQ3NwcsBjvckORLoP24djGk0++68SffvR61HL/8YULsHojH1PbSxXfL2Mf/mKsvr4era2tQfsjnROJxsZGmEymkOW7u7vjSkUxVxuines/lOJ0OgMexP5/z6f9cPX709zcjKKiooBhs1RkKdzzVLjfxPJj6uRJHPnEJzB15CgUpaVY94ufIyOFP8vLiTk/kX1DQe3t7dJwT6RfpqkOx3FIy5DH9KrYokQOnxGxvtzCDFRsUcZU33xS5+/YsSMoH43VakV9fb20HW2NwHjq9t/W6/UwGAwB74to50TCYDDAbrcHldfpdKivr495hmAsNoT71R/tXP/zNBpNUE4is9k8rz6I5RxfPE1jY6OUNDbWNtRqdZDN4Tw+QOT3V7S6Ymkr2fc8Fe43sfyYPHoUR267HVNHjiJtzRqc9ZvHSDQtIebscbLZbGCMwWaz4cILL8ShQ4cC0hOsZGQyDpft2IhnjW+GLfPB+o0xBYbPF5VKBYPBgJaWFikw1WQyged5KTBXqVRCo9HA6XSira0NgPehJooirFYrjEZjyBQHvrr1er0U3Ov/IPNNI/ffF+4cny3R2rZYLNDr9RBFEUqlEqIoSmkwfESrKxYbDAYDdDpd0FBSuHPNZnNAALAvkNdoNAaV5Xl+zn2g0+lgMBjQ2toacekiX0Ay4I0z8tURSxu+5LS1tbWSl6O5uRkGgyHseyDU+4vn+ah1xdJWMu95KtxvYnkxIYo4+vFPwNXXh/SzzsK6X/wcaeXlyTaL8INjjLG5nDgwMCAFPiqVSjQ3N6O4uBh33XXXQtuYMAYHB1FQUICBgYGgdevGx8dx6NAhrF+/HpmZmXOqP1Qep9zCDHywPrF5nACvR5CELEEsbxbie4pYOowfOICjn/wU3HY7MjZuwLqf/QyKkpJkm7UiiKQHZhOTx2lgYAAOhyMgsWVBQUHATLtdu3YFGQFgRS+kW7m1FOsvKEHPu06MDE4gJz8D5Rv5hHmaWltbYbPZoNPpIi6YTBAEQSwtxt54A0cbtPAMDCBzyxZU/N9PoZgOiSGWFjEJp4KCArS3t6OoqCimWXNPPPEEHA4HPv3pT8/bwFRHJuOwZtPivPnVajWcTqe0/h9BEASx9Bm1WHBMq4NnZARZF16IilYj5CvY6bDUiTnGqaGhAfv27UN9fT0qKytRU1MjTb11Op0QRRF79+7FoUOHoNPpcPPNNyfSbiIEgiAE5KUhCIIgljYjL7+MY5//AtjYGLIvuggVP/lfyHJykm0WEYG4gsO3bt2K9vZ2DAwMoL29HXv37pUCOisrK6HT6bB+/fpE2UoQBEEQy4ahv/0NJ750J9jkJHI++EGsfeSHkGVlJdssIgpzmlVXUFCAhoaGhbaFIAiCIFYEg88+hxN33QW4XMhVb8eahx6CLD092WYRMTDndAQrhTlOOiQIgkg49P2Umgw89RRO3t0EeDzIv/ZarDbsApeWlmyzljYeN3DkZWC4F8gtA87aBshiW4psoSHhFAa53HtDJicnkUWuU4IgliCTk5MAZr6viKWPo60dp775TYAxFNx0E8q/dT84un+R2f8U8KweGDw5sy9/NXCNAdhyw6KbQ8IpDAqFAtnZ2ejv70daWhpksqW77AlBECsPj8eD/v5+ZGdnQ6Ggr/JUwP6rX6H3Ae9C1oW33IKy//kaOHq2RGb/U0D7HXCDwZqZgX65HCVuN1SDPZC33wHU/2rRxRN92sLAcRzKy8tx6NAhHDlyJNnmEARBBCGTybBu3bp5LctELA6nHzWi/wc/AAAoP/VJlN51F923aHjcwLN6mLMzsauoEL1+PxDKXC7cfcYJ9bN3A5uvW9Rhu3kJpwcffBDd3d1oa2vD888/j5qammWV8DI9PR0bN26U3OEEQRBLifT0dPKGL3EYY+h/+GGcedSbW6/4859H8Rc+T6IpFo68DLPLgZ2lxZgdzdcnl2NnaREe6jsN9ZGXgfWXLZpZcxZOd999NyorK6X1k7Zv344nn3wypgSZqYRMJqOlDAiCIIi4YYyhb5cB9l/+EgBQetdXUESJoWPGPdSDXUWFXtE0S2gyjgPHGAxFhbhiqAeLGSU2558qNTU1aGhoCFr0kyAIgiBWOszjwan77pNEU9n//A+Jpjixuoe8w3NhvHOM43BKoYDVPbSods1ZOB06dAgAAtyNXV1d87eIIAiCIFIY5nKhp+keOH/XBnAcyr/zbShvuzXZZqUWbhf6Dz0fU9H+/LIEGxPInIfqtm7diurqahQVFaGzsxNmsxkGgyHm80VRREdHBwRBgCiK0Gq14Hk+ZFmr1Qqz2QzAK852794tlY2nHoIgCIJIJGxqCie+2oihZ58F5HKsNhhQ8B/XJdus1GJ8EOj4JI72vwoo+ajFS3JSRDht374dJpMJRqMRjDG0trZi69atMZ9fV1cHi8UCwCt+GhoaYDKZQpY1m83SGmwtLS3Yvn27dG489RAEQRBEovBMTODEl/8fhv/6VyAtDWse+h7ya2uTbVZq4TiCqd/W4yH3KTwWRTRxAMqyV0FVqloU06R22QKmnh0cHIxpVp0oigGCBwAKCwvhcDiCylqtVmzfvl06JooiKisrYbPZACDmesLZW1BQgIGBgWU1G5AgCIJYXDxjYzj++S9g5OWXwWVkYO0jP0Tuhz6UbLNSi2NdONZ+C76ax+GtjAwAwOVrL8eLx18EADC/uXUcvGFCD13+ENRnqefddDx6YF7zWAcHB3H48GHppdfrYzrPbDZDqVQG7FMqlbBarUFlVSoVdu/eLW07nU6pfDz1EARBEEQicA8P42hDg1c0ZWejwmgk0RQv/+6Aue0m7ChMx1sZGShIy8MjVz6CR7Y/gocufwil2aUBxcuyyxZMNMXLnIfqPvOZz8BsNgfEEx06dAg/+clPop7rEz+zsdvtIfdrNBrp77a2NqjVavA8H3c9BEEQBDEfmNuN0W4LXP39UJSUIGPjBhz7zGcx/sYbkOXmoqK1Fdmq2MNWVjyMYfJvzfjuv1vxeAkPALig6Hw8ePlDKM8tBwCoz1LjioorYO2zon+0HyXZJVCVqiBPtbXqKisr8eijjwbs8/cMzYVwQsj/eEdHR8DQXDz1TExMYGJiQtoeHByM10SCIAhihTK4Zw96H2iG69SpmZ0KBeByQV5QgIr/+z9knX9e8gxMNabGcewPDbjL8Sr2F+QBAD5x3sfxRdWXkCYLXPRYLpOjZlVNMqwMYs7CyZf40p/aGIPgeJ4P8grZ7faos+H0ej06OzulcvHW09zcjPvuuy8mGwmCIAjCx+CePThx55eB2WHBLhcAoOiznyXRFA8jp/Fc20fxTc6O4YwM8PJMfOfy7+FDa5f+EOecg8MPHz4spQHwDZu1tbWhra0t6rnhgsMPHToUVvS0tLRAo9FAEATJo2S32+OqJ5THqaKigoLDCYIgiLAwtxvvbVcHeppmoVi1ChueN4OTJ2f4KJWY6HkDDz51K9qmF+XYmi+g5SojVuWsSppN8QSHz9nj1NjYCKfTGSBQ9u3bF9O5s7ONi6KI6upqqS6r1Qqe56VyHR0dUKlUkmhqb28Pma9pdj2zycjIQMZ0pD5BEARBxMJotyWiaAIA16lTGO22IOfiixbJqtTkyJu/w13/ug8HMr3y49OVN+Hz274OhWxeS+cuKnO2tLa2Fg0NDQH7nnjiiZjPN5lM0Ov1qKmpQVdXV0DupebmZtTU1KCxsVHyTvnD8zy0Wm3UegiCIAhivrj6+xe03ErlGfNX8c1jf8FomgKFTIYHLmvGByuvTbZZcTPnoboXXngBV155ZcC+1157DRdeeOFC2LUoUB4ngiAIIhKeiQmc+vZ3MBDDj/J1v/wleZxCMD45gpbf18M0fhQAoJLno+WG36EsvyLJls2wKEN1NpsNRqMRNTXeKHfGGNrb22m9OoIgCCLlYYxh+Pnn0WtowdSxY5ELcxwUZWXIrq5aHONSiEP9b+Kuv3wcBzEBjjF8mn8/Pnf9L6GQp0U/eYky5wSYRqMR69evB2MMPqfVAiYhJwiCIIikMH7wII5+8pM4/oUvYurYMShKSlB4+20Ax3lf/kxvl93TRIHhs/jTv3+FHX/+GA5iAkq3B4+ecwe+9J+/TWnRBMzD42QwGLB9+/aAfaFSFBAEQRBEKuByOHD6kR/B8bvfAR4PuPR0KD/xCRRrGyDLyUF2TU1QHidFWRnK7mlC/lVXJdHypcW4axy7/voVPHHy7wAH1Ey6sevKH6K0cnlohAVdq+7w4cM4++yzF6q6hEMxTgRBEARzueD4XRv6H3kEnoEBAEBebS1KG7+K9IrAOJzZmcOzq6vI0+SHOCDiK8814L2xPnCMQTeVgc9onoC88OxkmxaRhMQ4Pfnkk1Cr1VKFP/3pTwOOO51OdHZ24rnnnpuDyQRBEASx+Iy8/DJ6m5sx8e57AICMc85B2T1NyLnkkpDlObmcAsDD8PR7T+FbL9+LMeZCkcuN5vT1uPRjvwMy8pJt2oISs3B64IEHwPO8NJPu0UcfxY4dOwLKnDlzZmGtIwiCIIgEMHn0KHoNLRh+/nkAgJznUXLnl8DX1YFTpE5OoaXAmGsMD7zyLfxBfBoAcPHYOHatvQ7F134PSNJ6cokk5ndHd3d3wPbu3buxdWvgQoYU40QQBEEsZdzDIzhjfBT2X/wSbGoKkMtReMstKPn85yCPsuwXEYzNacNdf/0y3hs8DI4xfNY5BO22r0F+kTbZpiWMOcvqwsJC6e+BgQGYzWZUVdFUTIIgCGLpwTweDPzhj+j7/kNw958GAORs24aye5qQsWFDkq1LTf7w3h/wwL++jTH3BIpdbhicY7joxp8BG7ZHPzmFmXM6ArPZLP1dUFCAm2++OWAfQRAEQSwFRvftw+H6Hei55x64+08j7ax1WPu//4uK//spiaY5MDo1iq/942v4+j+/jjH3BC4ZG4NpWI6Lbn9m2YsmIE6P08DAANrb28FxHDo7O4OOWywWfPrTn14w4wiCIAhirkz19qLve9/D4FPe2BtZTg6KP/dZFN5+O2Tp6Um2LjV51/Eu7nrxLogDImSM4XPOAXw6bzPktz8O5BQn27xFIS7hVFBQALVaDYPBAJvNhvXr1wccb2xsXFDjCIIgCCJePOPjsP/85zjduhtsbAzgOBTc9FGUfvnLUJSUJNu8lIQx5h2ae/UBjLvHUeJywdB/BjUbbwBu+BGQlplsExeNOedxev7554MSYKYalMeJIAhi+cAYw9Bze9DX0oKpkycBAFlbt6LsnnuQ9b7zk2xd6jI6NYpv/etb+JP4JwDAttExPNB/BkUfuhv4cGNwNvUUZFHWqkt10UQQBEEsH8YPHEDvA80Y3bsXAKBYtQqld92F/OuuBbcMHuzJ4h37O7jrxbtwePAwZAz4gsOJTw1PQPbR3cD7NMk2LylQsgqCIAgiZXHZ7ej/4Q/hbDd5l0nJyEDRpz6Fok9/CrLs7GSbl7IwxvDEu09g195dmHBPoNTN0NLbhypFPvDxJ4GKmmSbmDRIOBEEQRApB5uaguPxx9H/ox/DMzgIAMj7yDUou+supK1Zk2TrUpuRqRHc98p9eObQMwCAD4xN4oG+PiiLNgG3tAGFZyXZwuRCwokgCIJIKYZfegm9zbswKYoAgIxzz8Wqe5qQXbNyvSALxTv2d/CVF7+CI4NHIAeHL9rt+MTAEGQb1IDm50AmxQMvqHBKtUV+CYIgiNRh4tAh9O0yYPjFFwEA8sJClPy/L4O/+WZaaHeeMMZgOmiCYa8Bk55JlHHpePDEUWydmAQu0gJXNwNy8rUA8xROr732Gux2u7RtNBrR1tY2b6MIgiAIwod7aAinf/Io7L/+NTA1BSgUUN56K4o//znIaUb0vBmeHMZ9r9yHZw8/CwD4EMvEd468B54B+MiDwMXLd/mUuTBn4VRfXw+n0wneb22fffv2LYRNBEEQBAHmdmPg979H3/d/APf0IvI5H7oMZXffjQxBSLJ1qYfb44a1z4r+0X6UZJdAVarCQcdB3PXiXTg6dBQKTo47RxnuOHUQsvQ8oO7nwMbaZJu95JizcKqtrUVDQ0PAvieeeGLeBhEEQRDEqMWC3u88gPH9+wEA6WefjbKmu5H74Q8n2bLUxHzEjF17d6F3tFfal5eeh9GpUbiZG+UZhWg5cRwXDp0BCtZ5g8DLtiTR4qXLnIVTZWVlTPsIgiAIIlamTp5E33e/h8G//AUAIMvNRfHnPw/lrbeAo2VS5oT5iBk7/7YTDIH5rocmhwAA52WWwfjuayhwTQFrqoGPPQ7klibD1JRgzsLJZrPBaDSiZnoWA2MM7e3t6OrqWjDjCIIgiOUHc7sx2m2Bq78fipISZFdXgU1O4sz//QxnfvpTsPFxgOPAazQo+fKdUBQVJdvklMXtcWPX3l1BosmfM8MnkOuaAs6/Gbjxx0Ba1iJamHrMWTgZjUao1Wr4r9gyx9VbCIIgiBXC4J496H2gGa5Tp6R9soICgOPgcToBAFnVVVh1zz3I3EJDRfPF0msJGJ4LxSmFAtaLP46aa36wLJZPSTRzFk4GgyFo2RW1Wh3z+aIooqOjA4IgQBRFaLXagEDz2VitVjQ0NMBisQTtBwCVSgVRFOF0OqFSqWK/EIIgCGJRGNyzByfu/DIw60e2Z2AAACAr5FH+jW8g75praJmUeeAYd+BfPf/CyydfxgtHX4jpnP5NV5NoipEFW6vuhRdegNPpxNatW2M6v66uThJBoiiioaEBJpMpZFmfwPKJJH+MRiNaW1sBeIVbuDoIgiCI5MHcbvQ+0BwkmvyRpWcg76qrSDTFyaR7Evv69uGVk6/g5ZMv44D9QMShuVCUZCoTZN3yY155nJ588kmI05lbGWPo7u7GTTfdFPU83zk+BEGA2WwOW16jCb+QYFVVFRwOBwBE9FgRBEEQyWO02xIwPBcKV28vRrstyLn4okWyKjVhjMHmtOHlky/jlZ5XYOm1YMw1FlDmnMJzsG31NlyMbNz7+g/RL5eDhRCkHGMoc7uhGp9YLPNTnjkLp7vvvhtOpxN2ux2CIMDpdEKn08V0rtlshlIZqG6VSiWsVuuchtlIMBEEQSxtJmzvxVTO1d+fYEtSkzNjZ6Tht3+d/Bf6xvoCjhdnFePS8ktx6Wrvq3hyHDj4HGD5OZoGHdhZWgyOsQDxxE17//RnHJCPUL/HyrzSETQ0NODQoUPgOA5nn302XnghtrFU53QA4Gz8s5DHitPpREdHBwCgq6sLOp0OQpjEaBMTE5iYmFHVg9MLQxIEQRCJgTGGgSd/j77vfi+m8oqSkgRblBpMuCdg7bXilZ5X8MrJV3DAfiDgeIY8A9Vl1ZJQ2phfCa5nH/DOM8AeA9D7b6msGsBDfaexq6gQvYqZx36Z2w39GQfUo2NAbtliXVrKM2fhJAgCjhw5gvXr1+O73/0u7rrrrnkbE05QRcI/qFwQBNTW1sJms4Us29zcjPvuu28eFhIEQRCxMnn8BE594xsYefll7w6FAnC5QhfmOCjKypBdXbV4Bi4hGGN41/muFKdk6bVgwh04fLZZuRmXrr4U21Zvw9bSrciYmgDEvwIv/gB4dw8Q4DXigIqLvJm/X22FeqQfV4yehDUzA/1yOUqmh+fk4ID8NcBZ2xb1elOZOQsnp9MJQRDgcDhw+vRpXH311eB5HldeeWXUc3meD/Iu2e32OQ25iaIoDe/5ZuiJohjS69TU1ISdO3dK24ODg6ioqIi7TYIgCCI8zOOB47ePo++hh8BGR8Glp6PkS19E2pq1OOH7DvYPEp8ePiq7p2lFLdZ7euw0Xjnp9Si90vMKTo+dDjhemlWKS1Zfgm2rt+GS8ktQlFUE2A95h+A6dwGH/wF4pmZOyMgHKq8EzrnGK5hyir37izcB7XdADg41AbFM08N21+wCZCun3+cLxxYo+dLzzz+P6upqFBQURC0rimLArDoAKCwsxKFDhyKKJ47jAnJFWa1WbN++XQoOdzqdKCwshMPhiEmEDQ4OoqCgAAMDA8inhSIJgiDmzYR4CD1f/zrGpr/fs6qqUP7tbyFj/XoAofM4KVatQtk9Tci/6qqk2LxYjLvGYe21SkHdBx0HA45nyjNRvaoa21Zvw6Xll6KSrwTncQPH9wIHn/UKpv7AITsoBeCcjwDnXA2suxRQhMmuvv8p4Fk9MHhyZl/+Gq9o2nLDAl9p6hGPHpjXrLoHH3wQ3d3daGtrA4CYp5DO9gaJoojq6mpJ7FitVvA8H9Jr5L+wsCAIMBgM0jGz2QyNRkPB4gRBEIsMc7lw5uc/x+lHfgQ2OQkuOxulX9mJwo99DJxMJpXLv+oq5G3fHpQ5PFU8TaEWypWH8dZ4mAcHHQel4TdrrxWTnsmAMucqz8W21duwbfU2XFh6IdLl6cCYA3jveeCFXcC7ncC4c+YETu4dVjvnaq9nqWhDbPmXttwAbL4OOPIyMNzrjWk6axt5mubAvGbVVVZWSkkvt2/fjieffDKmdAQAYDKZoNfrUVNTg66uroD8S83NzaipqUFjYyMAryDq7OwMOOYTSNXV1WhpaQHP87DZbJTHiSAIYpEZP3AAPV/7H4y/9RYAIOcDH0D5/fchbc2akOU5uTwlUw6EWii3LLsMd190N9RneZ+FfaN90tDbKydfgX08MCylLLvM61FafSkuLr8Yykyld9jyzHvAvx71epWOvgIw98xJmTyw8SqvWNqwHcgqnNsFyOTA+svmdi4hMeehuieeeAI333wznn/+eSkZZjzCaSlAQ3UEQRBzxzM5iTOPPorTrbsBlwuy/HyU3X03Cj76n8suiWW4hXJ9fHjth3Fi+ATecwamXchSZKFmVY0kltbnr/f2jWsSOPqyVygdfBawB+Y3RMnmaa/SR4C1NYB8XgNERBQWZaju0KFDAAKH57q6ulJKOBEEQRBzY+z113Hya1/D5HveWcx5tWqUff3rSCstTbJlC08sC+W+ePxFAAAHDucVnSelCbiw5EKkydO8hUZOA6//ziuUbC8AE34pcWRpwNkfBDZ9xOtdUq5P5CUR82DOwmnr1q2orq5GUVEROjs7YTabA+KNCIIgiOWHZ2wM/Q//EPZf/QrweCAvKsKqr/8P8q6+etl5mXxY+6xRF8oFgM9c8BncuvlW8Jm8dwdjQN9+r1B651ngeBfgL75ySoCNV3s9S5VXABl5CbGfWFjmtVadyWSC0WgEYwytra0xr1NHEARBpB4jr+5Fz9e/jqmjRwEA+Tdcj7KmJigK5xhzs8QZmBjAniN78Ku3fhVT+fX568HLM4F3zcDBZ7zDcAPHAgutep83qPuca4DVKsAvcJ5IDRYsHUEqQjFOBEEQ0XEPD6Pvwe/COT2DWrFqFVZ9817kXX55cg1LAFPuKbx04iX8SfwT/nbsb5jyz5MUhZ8p1qPmcBcwNTqzU5EJrP/wdLzS1UDB2oU3mpg3CYlxiiU7+E9/+lN8+tOfjrVKgiAIYokz/OKL6Ln3m1LeJX7HDpR+9S7Ic3OTbNnCwRjDv0//G0/ZnsJzh5+Dc8IpHdtYuBHXnf0RPGZ5GGc4RF4o95A3zgl55TOB3es/BKRnL9KVEItBzB4npVKJmpqaiGW6u7tx5syZBTFsMSCPE0EQRGhcDgd6m5sx+NTTAIC0detQfv/9yLnk4iRbtnAcHzqOP4l/wp/EP+HI4BFpf3FWMa5bfx2ur7wem5SbgEMvwWyqw85SbybuUAvlPtR3GupzbgYu1gKr3h9bbiViyZAQj9P27dtRVFSEqqrw6wit4FE/giCIZQFjDEPPPYdT3/o23GfOADIZlHfcgZI7vwRZVlayzZs3vrilP9n+BGufVdqfpcjCleuuxPXC9bi4/GIoZNOPx8EewPILqEfHoi+UW3kFUH7BYl8SscjELJxMJhMGBgbQ3d0NAKipqQlSZUqlcmGtIwiCIBaNqb4+9H7rWxjqNAMA0jdUYvV3voOsC1JbDEy5p/CPE//A0+LTAXFLHDhcXH4xrq+8HtvXbUdOWo73hMkR4O0ngNcfBw69CDAPAEA9OoYrRsdCLJQ7TW7Zol8bsfjMOTh83759sNvt4DgupoV9lyI0VEcQBOH1Mg38/g/o3bULnsFBQKFAsbYBRZ/5DGTpYdY+W+L44paetj2NZw8/GxC3tIHfgOsrr8e166/FqpxV3p0eN3Do78Abbd513aZGZiqruMS7Rtz4ABAylxMH5K8GvvxvWsIkRVmUBJj+qQdeeOEFdHZ2ora2NmVFFEEQxEpk6sQJ9Nz7TYz84x8AgMwtW1D+wHeQuXlzki2bG764pT+Lf8bhwcPS/uKsYly7/lpv3FLhppmcU737gTd+B7xhAob8FsAtXA9c8DHg/fXeZJT7nwLa7wDAIVA8TddzzS4STSuEeeVwf+2112A0GtHW1gZBEFBZWUnCiSAIIgVgHg8cjz+O/u89BM/oKLj0dBR/8Qso+sQnwClSa3mPwclB7Dm8B0/bno4tbmm4D/i3yZvF+9QbMxVl8sD5N3kF09qawADvLTcA9b8CntUDg34CK3+1VzRtuSGxF0ksGeL+dBw+fFhKfMlxHG6++WZYLBasX0/p4QmCIFKBiUOH0PP1r2Os2wIAyFKpUP7tbyNDSJ3vcf+4pRePvYhJzyQAb9zSReUX4XrheqjPUs/ELU2NAW/9wSuWbC/MLKIrS/OmDnj/Du//iozwjW65Adh8HXDkZWC41xvTdNY28jStMGIWTj/96U9hNBohiiLq6+thMpmCMoWn2iK/BEEQKwnmcsH+i1+g/5EfgU1MgMvORunOnSi85WPgUiCDNWMMb55+E0+LT+OZQ8/EELfkAQ695B2Ke+uPwOTQTGVrqoEL/gs4/2YgO46JTTI5sP6yhbkgIiWJOThcJpNBo9Fgx44d4Hk+aE0ih8OBXbt2oaurKyGGJgIKDicIYqUw/s476Pna/2D8zTcBADnbtmHV/fcjfe2aJFsWnRPDJ/Anmzffkn/cUlFmEa4VrsUNlTcExi31H5yOW2oPXPKEX+f1LL3/v4DiDYt7EcSSJiHB4VqtFi0tLRFzNbVNp+MnCIIglgZschKnHzXidGsr4HJBlp+PMr0eBTd9NGmL8ro9blj7rOgf7UdJdglUpSrIZw13hYtbypRneuOWKq/HJeWXzMQtjZwB3pxOIXBypjwy8oHz/tMrltZdSmvDEfMmZuGk0+miqrCmpqZ5G0QQBEEsDGNvvIGer30NE+++BwDIVW/Hqm98A2mlpUmzyXzEjF17d6F3tFfaV5Zdhrsvuhsfrvgw/nnin3ja5s23FD1uaRx4+0/eFALv7gE8Lu9+Tg5sUHuH4jZ9BEhL/cSdxNKBFvmloTqCIJYZnrEx9P/wEdh/+UvA44FcqcSqr/8P8q65JmleJsArmnb+bSdYyFxIQI4iByOumfxJG/gN+A/hP3CdcN1M3BJjwLFXvZ6lt34/nVtpmvILp+OWNEBuSQKvhFhuLEoeJ4IgCCJ5MLcbo90WuPr7oSgpQXZ1FTi5HCN796Ln61/H1JGjAID8669H2T1NUBQWJtVet8eNXXt3hRVNADDiGoEyQ4nrKq/D9cL12KzcPCP07CLweps3dslxeOak/DXeXEvv/y+gNDVzTxGpBQkngiCIFGNwzx70PtAM16lT0j5FaSnSN27E6D//6d0uK8Oq+76JvMsvT5KVgVj7rAHDc+EwfMiAS1Zf4t0YtXu9Sm+0eb1MPtJzgXNv8HqXzv4gpQMgFhUSTgRBECnE4J49OHHnl71DVn64+vrg6usDAPD19Sj96l2Q5+UlwcJgJt2TeObQMzGVtY/2AQf+7B2KO/gc4PbGOYGTAcIV3uSUm68F0nMSaDFBhIeEE0EQRIrA3G70PtAcJJr8kSuVWHXvN8DJk++FsY/b0fZOG9oOtOHM+JmYzil5eicw0D+zo+x9wAU7gPfVAXmrEmQpQcQOCSeCIIgUYbTbEjA8Fwq33Y7RbgtyLr5okawK5j3He3js7cfwtO1paWZcSVYJxkb6MMwhcCmTaTjGUOZ2QzXQD+SuAt5f541bWnX+IltPEJEh4UQQBJEiuHqjxwgBgKu/P3qhBYYxhn+e/Cd+vf/XePnky9L+84rOwx1b7kAty8aLT/wXdpYWA4yB+YknbtqDpj/jgFx9P7DtCxS3RCxZkiacRFFER0cHBEGAKIrQarXgeT5seavVioaGBlgslnnVQxAEkWowjwdDzz2Hvu9/P6byipLFm4o/7hrH0+LTeGz/YxAHRACAjJPhyoorcfuW27G1dKt3Ztw/fwj16Bge6juNXUWF6PVbSLjM7Yb+jAPq0TGgYA2JJmJJkzThVFdXJ4kgURTR0NAAk8kUsqxPGFmt1qBj8dRDEASRSjDGMPzXv6H/hz/ExIED3p0cFz7GieOgKCtDdnVVwm3rH+3H7975HdrfaZfWjMtJy8FHN3wUt557K9bmrfUmqHyjHbD8Ajjq9UKpR8dwxegYrJkZ6JfLUeJ2QzU+AUkq5ZYl3HaCmA9JEU6iKAZsC4IAs9kctrxGo1mQegiCIFIBxhhGX3kFfQ8/jPHX3wAAyHJzofzEx5FWUYEe/d2+gjMnTQ99ld3TlNDA8AP2A/j1/l/jL4f+Atd0pu41uWtwy+ZbcNPGm5CbnutdK+6fTd6ZcWOO6TNlgCIdcI1DDqBmfGJWzRyQvxo4a1vCbCeIhSApwslsNkOpDFyNWqlUwmq1QqVSLXo9BEEQS4VRiwX9P3gYo9MLpnNZWVDedhuKPvVJyKfDEGSZmcF5nMrKUHZPE/KvumrBbfIwD1489iJ+/fav0XVqZiH3C0suxB3n3YErKq6Awu0C3n7K61068s+ZkwsqANUdwNbbgOPdQPsd0wf8vWbT8U7X7KJhOmLJkxTh5HQ6Q+632+0JrWdiYgITEzO/cgYHB+NqjyAIIlGM/ftN9P/whxh56SUAAJeejsKP/ReKGhqgKC4OKJt/1VXI2749ZObwhWR0ahR/tP0Rj+1/DEeHvJnI5ZwcV511FW7fcjveV/I+r3ep817gtd8CY9PfvZwMOOcjQNXHgQ3bZ8TQlhuA+l8Bz+qBwZN+F7TaK5q23LCg9hNEIlhSs+rCCaGFqqe5uRn33XffgrRBEASxEIwfPIjTjzyCoc7pMAOFAvzNN6P4MzqklZeHPY+TyxOWcuDUyCn89sBv0XGwA0OTQwCAvPQ8aM7R4JbNt2BVRiGw/yngT3cDR/4xc2L+Wq93SXW7VwyFYssNwObrgCMvA8O93pims7aRp4lIGZIinHieD/IK2e32uGfDxVtPU1MTdu7cKW0PDg6ioqIirjYJgiAWgsnDh9H/yI8w+Je/eGOVZDIUXH89ij//OaSvW5cUm/7d/2/8ev+vsefIHriZGwCwLm8dbttyG26svBHZAyeAfzwS7F3aeDVQ/Qlggzo2ASSTA+svS+CVEETiSIpwUqvVMBqNQfurq6sTWk9GRgYyMjLiaoMgCGIhmTpxAv3/+78Y+MMfAbdXnORdcw1KvvgFZFRWLro9Lo8LLxx9Ab/e/2u81v+atL9mVQ1uP/d2fLj8EsgO/Bn4TT1w+KWZE/PXTMcu3e5NIUAQK4SkCCdBEAK2RVFEdXW15CmyWq3geT6oHOAdhvOVi1YPQRDEUmGqtw9njEY4TCZgagoAkHv55Si580vIPPfcRbdneHIYT777JH574Lc4MXwCAKCQKXDt+mtx27m34VyWBlh/AfzuU8Do9HIpnAzYeBVQ9QlgYy0NrxErkqTFOJlMJuj1etTU1KCrqysg91JzczNqamrQ2NgIwDt7rrOzM+CYL0VBpHoIgiCSjcvhwJndP4XjN78Bm56ckrPtUpR86UvIuvDCRbfn+NBx/Obt3+D37/0eI1MjAAA+g0f9pnr814abUHL4FeDprwZ6l/JWz8QuFaxddJsJYinBMRZhtchlzuDgIAoKCjAwMID8/Pxkm0MQxDLCPTiIMz//ORy//BU8o6MAgKytW1Hy5S8v+jpyjDHs69uHX+//NV449gI8zAMAEAoE3LblNlzPn4fM1x4HXvtNoHdpQ+107FItIF9Sc4mIFYbbw7D3kB19Q+MozcvEReuVkMuC1zycK/HoAfokEARBLCCekRHYf/0YzvzsZ/BMpzzJ3LIFJV++EzmXXeZdfmSRmPJMofNwJ361/1d468xb0v5tq7fh9k0fw7aBfshe+RVw6O8zJ+WVz8Qu8TR5hkg+z77Zg/ue3o+egXFpX3lBJu69fguuOT/8zNNEQcKJIAhiAfCMj8Pxu9/hTOtuuKdn+2Zs3IDiL30JeWr1ggsmt8cNa58V/aP9KMkugapUBfl0zNHAxAA6Dnbg8QOPo3fUuzBwuiwd11dej9tWfxgb3v3rdOzS6enaOG/MUtUnvDFM5F0ilgjPvtmDzz5mxeyhsVMD4/jsY1b85DbVoosn+nQQBEHMAzY5CeeTT+L0Tx6Fq9crUtLOWoeSL3wR+dd+JCHLn5iPmLFr7y5JFAFAWXYZPnn+JyEOiHjK9hTGXGMAgKLMIvzXOXWoRz6Ub5iAPX4LBeeVez1LqtsBPjkpEAgiHG4Pw31P7w8STYA37zwH4L6n96N2y6oFHbaLBgkngiCIOcBcLgw8/Sec/vGPMXX8OABAsbocJZ/7HApuvBFcWlpC2jUfMWPn33aCzXqc9I72onlvs7R9TuE5uP2sa3Bt7xGkm78PjPRPH+G8+ZaqPg6ccw15l4glB2MMx+xj+M2rRwKG54LKAegZGMfeQ3ZcWlm0aPbRJ4YgCCIOmMeDoWefRf8jP8LkoUMAAHlJMYp1nwFfXwdZenrC2nZ73Ni1d1eQaPInQ56BR4QduOTdl8BZ75o5kLvK61naejtQeFbCbCSIePEJpX+JZ6TXyQiCaTZ9Q7GXXQhIOBEEQcQAYwzDf/0r+h/+ISbeeQcAIOd5FDV8GoW33AJZVlbCbbD2WQOG50Ix4Z6A4u8PghufgNe7tN3Pu5QYLxhBxEMsQilNzmF9cQ4O9g5Hra80LzNRpoaEhBNBEEQEGGMYefll9D/8Q4y/8QYAQJabC+UnPwHlHXdAnpu7KHYcsB/Aj/f9KKay/dmFQM1tXg9T4dmJNYwgohCrULpgLY9LhCJcIhRBdRaPDIUcHzS8gFMD4yF9rByAVQXe1ASLCQkngiBWLMztxmi3Ba7+fihKSpBdXRUQzD1qsaD/+z/AaHc3AIDLyoLy9ttR9MlPQL4IKxS4PW787fjf8Nj+x9Dd2x3zeSUf+ApQpU2gZQQRHsYYjjvG8Mq0SHpVtOOEcyygTCihlJ0eLEnuvX4LPvuYFRwQIJ44v+OLGRgOkHAiCGKFMrhnD3ofaIbr1Clpn2LVKpTd04S08tXof/hhjPzjHwAALj0dhR/7LxQ1NEBRXJxw24Ymh/D7d38fuBwKZFC75diLcThkMrAQ6Q04xlDmdkOVxifcRoLwEYtQUsg4XFgRXSjN5przy/GT21RBeZxWUR4ngiCIxWNwzx6cuPPLwKyFE1ynTuHEl+6c2aFQgL/5ZhR/9jNIW7Uq4XYdHTyK37z9G/zhvT9g1OXNNl7AZKgbcGLH4BBWud0wZ2dhZ2kxOMYCxBM3fS36Mw7I8xb/YUKsHBIplEJxzfnlqN2yKqGZw+OBhBNBECsK5naj94HmINE0m/wbbkDJF7+A9IrEZs9mjOHVU6/iN/sfw4vH/y7NmKucnMRtg0O4bngUWYwBZe8Dzrkaausv8VDfGewq4tGrmPkKL3O7oT/jhFqhBM7allCbidRkrsuWxCqULqjgcYmgxCVCEarOKpyzUAqFXMYtasqBSJBwIghiRTHabQkYngsHf/PNCRVN465x/OXdP+DX//4/vDc2Y8+HRsdw68AQLp10gTv7g8AHr/XOiPOlECi/AOr2O3DF6Bismenol8tR4nZDNT4JOQDUGwHZwifdJFKbeJYtWQpCaSmzMq6SIAhimsnDh2Iq5+rvj15oDvT178fvur4PU38XnHADALI8Htw4PIJbxxjOFrZ7xdIGNZDFB1ew5Qag/leQP6tHzeDJmf35a4BrdnmPE4Qf0ZYt+d9bVTh/TQEJpRhZmVdNEMSKgrndGHn5FTiffAJDezpjOkdRUrJAjTPg9EG8+fov8etjndjDjcE1HZu0esqFW6bk+GjFVcj/0A3AWR8AFDEk0NxyA7D5OuDIy8BwL5Bb5h2eI08TMYtoy5YAwBd+a4V7VgESSuGhXiAIYtkyeewYnE8+iYHf/yFweE6hAFyu0CdxHBRlZciurpp7w24XcHwvXG8/jefFZ/CYfBSvZWYAMgDgoPIocFvZNlxxYQMU5RcAc1kAWCYH1l82dxuJFcHeQ/aIy5YAgJsBMg7Yuq6QhFIMUK8QBLGs8IyNYWjPHjifeBKje/dK+2UFBSi4/nrwN30Uk8ePe2fVAYFB4tMCpuyepvgX550YBmwvAO88g4F3n8UTaVN4PD8Pp3IUADKgAHBtwbm4devnsOWsy+dziQQREo/HG5u0v2cA+3uGsP/kICxH7DGdu+vm96O+OrETIZYLJJwIgkh5GGMYf+MNOJ94EoN/+Qs8w9PLNHAccj7wAfA334TcK6+ELCMDAJC5ZQvw8A+C8ziVlaHsnibkX3VVbA0P9gAHnwHeeQYQX4Qoc+M3+Xl4uiQHYzIZAECpyEH9pnrsOO8OFGclPgcUsTIYn3LjnVNDeLtnEPt7BvF2zyDe7hnC8EQYT2oUKgqzF9jC5QsJJ4IgUhbXmTMY+ONTcD75BCbfs0n70yoqwN/0URT8538irTx0TqP8q65C3vbtETOHB8EY0LcfeOcvwIG/ACet8AB4OSsTjxXn45/ZM+vVbSo8B7dtuR0fWf8RZMgzFuqSiRVI39A49p/0CiOfUBL7h+EJEbiULpdhY1kutpTn49zyfGwqy8NO02voG5xYUsuWpDIknAiCSCmYy4Xhv78E55NPYPhvL0qxSlxmJvKvvgoFN92M7JpqcNMen0hwHJBTOgFkjwG5EzPrOPjjngKOvuIVSu/8BXAeAQCMchz+lJeLx4pKcIjzzo7jwOGKiitw25bbUF1WDW4usUvEisXl9kA8PeIVRydnPEmnhydDllfmpE8LpDxsWe0VSpUluUiTB77377vhvCW3bEkqQ8KJIIiUYEIUMfDkk3D+8Y9w95+W9mde8H7wN92M/Gs/AnleXuwV7n8KeFYPBEzpXw1cYwCEy4H3zN4huHf3AONOqUhPRjYeX7sJHRjGkGcCgBs5aTm4aeNN+Njmj6Eij+JEljNzTSI5m8HxKRzoGcL+kwN4u2cI+3sG8U7vECZdnqCyHAesL86RvEhbyvOxZXU+SvMyYhLnS3HZklSGYyxK+txlzODgIAoKCjAwMID8/Pxkm0MQxCzcwyMYevYZOJ94EmP79kn75UolCm68EfxNH0XGxo3xV7z/KaD9DiDk4AUATg4wt7TJsovwurANj2V4YHbsh3v6WEVeBW4991bcWHkjctNz47eDSCniSSLpw5dM0uc92n9yEG+fGsQx+1jI8tnpcpzr8yKVF+Dc8jxsWpW3IDPcFkr0LUfi0QMknEg4EcSSgjGGMYvFG+j97LNgY9MPGLkcuR/6kDfQ+8MfBpeWNrcGPG7gB+cDgyfhBmDNzPDLvj0BKcJJuQFTm67Bc4Ul+E3fv/DmmbekKi5edTFu23IbLltzGeSUO2lFEC6JpE92/OQ2FS7fVIp3e4exv2faizQtkobGQwdsry7IlIbYfJ6kdcpsyEjMLDrx6IGkDdWJooiOjg4IggBRFKHVasHzfNxlrVYrAEClUkEURTidTqhUqkW6CoIgFoqp3l4M/OGPGHjySUweOSLtT1+/HvzNNyH/hhuQVlo6v0acR4FXjcDgSZizs7CrqDBwvTeXC3efcUA1PoGOC67G73pfQf8pbwbxdFk6/qPyP3DL5luwSblpfnYQKUVsSST3wcNYyIDtNDmHjaV5XnG02udNygefHUOyU2LJkTThVFdXB4vFAsArjBoaGmAymeIuazQa0draCgBQq9Vh6yAIYunBJicx9Ne/wfnkExh56R+AxxvfIcvORt61HwF/083I2nrh3IOsJ4aAw//w5leyvQCceQ8AYM7Ows7S4qAHYa9cjv9XWgwFA1yHnwYAlGSVYMemHajbVAdlJs08WklMuT04Zh/FM2/2RE0i6ZpWTIXZaV5xtCpfEkqVJblIV0SfrECkBkkRTqIoBmwLggCz2TynslVVVXA4HAAQ1mNFEMTSYvydgxh48gkMPPU03NOfXwDIqq7yBnpffRVkOTnxV+xxAz2vTQulvwLHXgU8fsMknBzu4o3YlTnoFU2zBdn0tosDtuRU4HbV53D1WVcjTT7HYUFiycMYQ9/QBMT+ERw6PQKxfxiHTnv/PmoflQRRLNx/w3m4/dKzaDblMicpwslsNkOpDPzlplQqYbVag4bZYilLgokgkgdzu2PKheQeHMTgn/8M5xNPYvzNN6X9itJSFPznf4K/6aNIP/vs+A0YOD7jURL/Bow5Ao8Xrgcqr/S+1l8Gq/1t9HY2RK32K5d+AxetuSR+e4glydD4lCSIxP4RiKdHcOj0MA71j2Bk0h32vKw0OUrzMnDEPhq1jY1leSSaVgBJEU5OpzPkfrs9ODV8tLJOpxMdHR0AgK6uLuh0OgiCsCB2EgQRmcE9e4Kzb69aJWXfZh4PRl99Fc4nnsRQZyfYxIS3UFoa8q64AvzNNyHnAx8Ap4jjq2hiGDjyzxmxdPpg4PGMfGD9h6bF0hXwFJ4N0SnC2meFtasZ/zzxz5iaOT0R21IVRPwkanbXpMuDY47Rae+R13Nkm/Yk9Q9NhD1PxgEVymwIxTlYX5yL9SU5qCzOwfqSHKzKz4SHAR80vIBTA+OURJJYWnmcwomkSGX9A8UFQUBtbS1sNlvIcyYmJjAxMfPhGRwcnKupBLHiGdyzx7ve26yJua7eXpz40p0Y/MhHMP7665g6OZMnKeOcc7yB3tdfD4UyxoeMxwOcen1m+O3ovwDP1MxxTgasqZa8SlOr3o+3nO/A2mfFvn3fx77+fRiYGIj7+kqyS+I+h4jOXKb0+8MYQ+/gBMTTw9Lwmm+I7ZhjDO4IQ2vFuRkQinMglORgfbH3JZTkYp0yO2IMkpzzJomkJJIEkCThxPN8kHfJbreHHHKLVlYURWnIzjfrThTFkF6n5uZm3HfffQtzEQSxgmFuN3ofaA4STd6D3n1DzzwDAJDl5SH/P64Df9PNyDz/vNiGMgZPekWS7QVA/CsweibwOL8OqNwOVF6J4bUqvDZ0GNZeK6z7f4I3//4mJtyB3oUsRRbeX/x+bC3bigtLLsQ3Xv4G+kf7wUL4DzhwKMsug6qUZucuNOGm9J8aGMdnH7PiJ7epJPE0OD6FQ35xR+LpGZE0GmFoLTtdLgmi9cU5014kr/coP3PusWqURJLwkZQ8TqIoBsyUA4DCwkIcOnQoSDxFKiuKIrZv3y4FhzudThQWFsLhcIQUYaE8ThUVFZTHiSDiZOTVvTj63/8dtVzRZz6D4s/oIMvMjFxwchQ48vLM8Fv/24HH03Ol4be+NRfCOnkG+/r2wdpnxUHHQXhYYLblwoxCbC3dClWZCqpSFTYXbUaabOahaT5ixs6/7QSAAPHETfsPHrr8IajPUke9PiJ23B6GDxpeiDg7LStNjvNX5+PQmVGcHg4/tCaXcVinzPbzGnn/ryzJjTmb9lyhJJLLkyWfx2m2N0gURVRXVwfkZuJ5HoIgRCwrCAIMBoN0zGw2Q6PRhA0Wz8jIQEYGLbZJEHPFPTyCMUs37L99PKbyGRs2hBZNHg/Q++aMUDr6CuD2X4+LA9aowIQrcKj8POyTuWA9/Tqsx57E8bd/GFTd2ty1kkjaWrYV6/PXR3x4qs9S46HLH8KuvbvQO9or7S/LLoP+Ij2JpgWGMYY/v3Ey6pT+sSk3uo7MBPeX5AUOrQnT8UcVhZGH1hKJXMbh0sqipLRNLA2SljlcFEUYjUbU1NSgq6sLTU1NkuCpq6tDTU0NGhsbo5a1Wq0wm83geR42my1ASEWDMocTRGQ8Y2MYtVox+upejL76KsbefBNwhx8mmc26X/4SORdf5N0YOhU4/DbSH1g4fy2mKi/HgVWbYc1QwGo/gH19++CYCJwlx4HDJuUmSSRtLdmKspyyOV2f2+OGtc+K/tF+lGSXQFWqokzg82Rs0o13eofw9vQSI2/3DOJAzxCGJkJnz57NHZeehbqqCpxdnI28eQytEUQ80JIrMULCiSAC8UxMYOy11zH66r8w8upejL3xBjA1FVAmbe1aZF18EYafewae4VHMhMf6w6Ao4rHhZ98Cd/hvXsHU91ZgkbQcjJ79AbxevgnWzAzsGzqMN07/G2OuwDW80mXpeF/J+6AqVUFVpsIFJRcgLz2OxXyJhMAYQ8/AOA6cGpQWqX27ZxCHT4+EzJ6tkHEx5UR6vOES8ugQi86SH6ojCGJpwCYnMfbvf2Pk1Vcx+upejO3bBzY5GVBGUV6OnIsuQvbFFyPn4ouQtmYN4HFjcPBJHO/0lvGXTr5HY9nmQ+Ae1/gd4XC6/H14bc25sGRmYd/YKRxwvAP3sQMB7eWn5wfEJ20p2oJ0OS1NkUwmXO7pNdj8vEinhuAcnQpZvjg3XVp/7dxy71IjZxfl4Irv/o2m9BMpDwknglhBMJcL42+9hZHpobdRq3VmEd1p5CXFyLnoYmRfcjFyLr4YaRUVwfFCR17G3goHfvfRIvy32YPioZlDZ/KAX6rl2FHIYZOsGJZ1F2JfdjasE6dxZPg4cOaVgKrKc8olkaQqVUHgBcg4Wp4iWfQNjePtnsChNlv/SMhp/nIZh8qSHD+R5BVKpXmhJwPQlH5iOUBDdTRURyxjmNuN8bcPYPTVVzGy91WMdVvgGRkJKCMvLJS8SdkXX4z09WECqyeGgBMW4OircO//A67OcKJXLgfHgHOPMRQOA45c4O0KDowDZAA8s+rhwGFD4QZvfFLpVqhKVSjPpWncc2G+s7um3B7Y+oenxdGMUDo9PBmyPJ+dJq2/tnl6kdoNpbnITIsvJmy+eZwIIhHQUB1BrFCYx4OJd9/1CqVX92K0qwueWYleZQUFyK6p9nqVLr4YGRs3gJPN8vAwBjiPAMf2etd7O/Yq0PsWMD3tvzszA73l3oBsxgH7zwp+YHsAyCHD+0svwNbSragqq8IFJRegIKMgIde+kohXfDhGJvF2z+D0UJtXJL3XN4xJtyeoLMcB64u9XqQtfkNtq/IzF2Sa/zXnl6N2yyqa0k+kLORxIo8TsQSIdb23oPMYw6QoSjFKo3v3BiyaCwCynBxkV1cj+5JLkHPxRcjYtCm4btcE0PPGtEj6l1cwDXun6U8BsKWn4e30dBzIK8KB7Fy86RnDJKLPrvv2tvtx48aPxtwPRHTCJZH0yY5vXL8FxbkZfkNtQzg1GDoNQF6GApunhZHvtaksD1npNLOQWFmQx4kgUoho6735wxjD1JEjUozSSNdeuPtPB5ThsrORrVIh++KLkHPxxcjcsiV4LbjhPj9v0l7g5D7APYFRjsM7PpFUUoQD2QV4T+bBFPw8E57hmK9tdd7a2DuCiIrbw3Df0/tDBlf79t339P6Q565TZkveI583aW1hFi1KSxBxQsKJIJJIxPXe7vwy8PAPkLnlPG8g917v8Ju/wAIALiMDWVu3TscoXYKs950PLs0v/43H7R1m84mko/8CHIfgkMm8AikjDQeUuXg7swRHFLJZD2Vv7p28tDxsLtqMzcrNOFd5LjYWbsQXnv8C+kZ7w86QKsteRcuWzIFJlwe9g+M4NTiOk84xnBoYR8/AOHoGxvBe73DUJJIAUFmSg4vWF2HLtFDatCqPciIRxAJBwokgkkQs672d+H87gxNOpqUh+4ILkH3xxci++CJkXXABZP4Z8ccHgaMvSR4ldrwbPe4Rr0hKT8eB9DS8XbEavbO9UNOUZpUGiKTNys1Yk7smyDNx90V3Y+ffdk7PkApetkR/kX7JJ5Nc7OUzfKLIJ4T8RVHP9N+nhydCviXi4UvbN+LGC9csjNEEQQRAwokgksRotyXIexSE2w3IZMh6//ulmW9ZW7dClpXlPc4Y4DgMHPCKJPexV3HEcRBvpylwID0db2ek40BZHgbkfMjq1+Wt8wqkIq9A2qzcjOKs4pjsT/VlSxZ6dtdsUdQzMI5TA9Neo8H4RFG6XIZVBZko9734LJQXZGJgdArf6zwY9fxw6QAIgpg/FBxOweHEIuAZHcXEe+9h4t13MXHwXe/Mt3//G2xoKOq55d/5Nvibb/ZuuCaAk68Bx17FxNFX8N4pC972DHtFUno63k1Pw9jsGXIAFJwClXxlgEjaVLgJuem58762VFy2JFqA9U9uUwWIp2ii6KRzPOKitP6kK2QoL8jEqvxAUVRekCUJJWVOesjYI99CudGSSP5DfyXNUiOIOKDgcIJIEmxyEhOHD0viyPeaOnZsznWmeY5h+Fk9Dpz4Fw4MHcbbChnezkjHobQ0uJQZAAIXrs6SZ+Cc6WE2n0jawG9IWPZtuUyOmlU1Cak7EcQSYL2z/XU8YTmOU4MTkqcoFvxF0Wo+C6sKMrG6IBOrYhBFsSCXcZREkiCSDHmcyONEzAHm8WDq+PFpD9LBGZF06DDgCr2Yqby4GBkbNyDznHOQsXEj5Gevw5uf+W/kD3uTRc7GA8CRBzzQwHAsI3RgL5+Wi81FW3Bu0XneobaizTgr76wl7/FZLDwehtMjEzjpHEePcwwnnGOwHHHgmTejDJGGwCeKfN6hhRZF8UBJJAliYSGPE0EsEIwxuPr6A7xHEwcPYsJmC1qqxIcsNxcZGzd6X9MiKWPjBiiUSu9Qm/Moxk8fxLP7f4Cnr5LhK0964EGgePLA60H4ea0MxzK8R8rT8r1DbauqsHnam1SWXZb06eSLHWDtz+D4FHqc3iGzkwNjOOkcQ49zHCecY9Kw2pR7br8N66rW4qrzVi26KIoFSiJJEMmDhBOxbJhrEkkf7oGBWQLJ+797YCBkeS49HekbKpHpL5I2bIAiTwE4DsN5+m0cO/06jh35PY7t78HxSSeOYRLHFQr0+Wa0bZLhezcBH+8MXO/Nngf8olaGvZtk+HTZB/HflzeDz+Tn0TuJIZGejwmXG70DE9MiaGxaHE2LpGmBNDQR2rvnj4wDyqbjiVbz3qD6P73RE/W8m1RrcWll0byuIZHIZdySto8gFhKPh6HnXSdGBieQk5+B8o08ZEn6oUDCiVgWDO7Zg97vPABX78zsLkVZGcq+dk9QEknP2Bgm3rMFiqR33w04NwCZDOlnnz3jRRLOQsaqXMiyRtB7ej+O2A/i+FAHjr3Tj+NvDeGYnMPxNAWG/YO0ZQAyZQBmZjtlMmCcA/ZukqFrIxe83tv0l8K2suolK5pCBVifGhjHZx+zBgVY++M/hOYTQied4wECqX8otrgiPjsN5QVZWMN7h9BW81lYzXtFUnlBJsryM5Emn7kXbg+D5YgjaoD1ReuVsXUEQaQIS0l8xINtXx9eansXI86Z74QcPgOX7diIyq2li24PxThRjFPKM7hnD0586c6wx5Uf/29wWVkzgdpHj4XOnQRAsbocmRvPQcbZa5CxKheMd+NURh9OjBzG8eGTODbpwDHPBI6nKXBSoYArytBNKZeOivRCVOSUo4IXsLZ4CyqKz0VF3jrkyrNwza+r0CcDWIh6OMZQ5gGevcMKuSIxgd1zxTe7K1wyRg5AcW4Gdt30PpwaGp/zEFqGQoY1fBbK+UysLshCOR8skLLT4//95xN9QOgA60iijyBSkaUmPmLFtq8PzxrfDHv8Gt35C2J/PHqAhBMJp5TGMz6O9y7/EFzOQSnxYizIC3lkrK9AxupCTCkZ7HlDOJZtx1HPaRybGsJxOXBMocAZReShvnRwWCPPQUVWMdbmVqBCuREVJe9DBS9gde5qZCoi59Mx/6MZO9/7DYBA8cRNfywf2nAr1B9sivm6EsWU24OBsSk4RyfhGJ3Cq+IZfHdP9HxCkZg9hLaaz8Lq6en5a6a3C7PTEhZXRAHWxFxIRa/NYomPhcbjYfjVPS8HiL3Z5BZm4PbvbJv3PaDgcGLZ4B4extSJk5jqOQlXTw+mTp7E1MkeTPV4X65TpwDGooom2ZYyDJ2twKn8IdjyhyBm9uFYmh3HFYrgvEfpgdP78zkFKtIKUJGzChUF61FRdC7WFm1GRf46lGaXQsaFmhMXG+oPNuELZ4bx+Ok/4LRi5hqK3Qz/VfyfCy6aPB6GoXEXHKOTcIxOwukTQyNTM3+Pev93jk7BOTYJ58hUTLFEoVjNZ2FLed70sNnMENpqPguleRkBQ2iLDQVYJ49UFB9AanptPB6Gl9rejVjm7787iKI1uWAeBo+bwe3yzPzvYnC7PcH7Zx93eeB2s9D/uxg8keqQ6go81z3liWg3AAw7JtDzrhNrNhUuVJdFhYQTEcB8A6zjbcvV3+8VQif9xNGJk5Iw8sSQIDIWvr+hH/88z/eQlgPIlo5xAFbJslCRWYSK3LVYW7gBa0vOQwW/Hmtz16Igo2BBbAjFs2/2oPmVbeBwEc7L+TuyFacx6irG/pEPofldBdZV9oT0fjDGMDrp9oqf0Sk4R6dmhNDItPgZm5T2D/j+H5uCZx4+5oKsNPDZaVDIONj6R6KW/17dBUs6gJkDsM4lQ9GUHDkuWRw+y+RD4mNxCee1GXFO4Fnjm3F7bTxuD1xTHrinQv3vntl2eeCa9P7vOza7/Mzf7qBzxkemMDowGdGW0YFJ/OYb/4q7T5YKI4OxxUMuFCScljnxCKF4AqxjwTMyIgmgAHHk+7uvL2zOI3/cWTKM5XEYzvPAketGfz5DTwGHowUyyEc47PxDdCUwlANsSOOxNrsUa/PPRkXRZlQUbUJF3jqszl2dsOSQkXC5PfjmU2+BAWBQ4N8jVwaV+YrpdTz/dp93mMzPIzQwOoVJd/RfY+HITpejMDsdfHba9Csdhdlp4LO8+2aOTe/PTkdBVprkjfHPYA0GrHXJkMM4jHAMxxUegFv6Adap+gAHUtf2hRYf8eJxz3gyfF4OyWvi8sx4TlyB3hTXpBv/7HgvYt3mn+/Hu1293nNDiZtpMeOaFkBsPr9gEoBMwSEtXQ6ZnINcIfP7Xwa5gpv5XyGDXB7uf+95MkWUOkLW5XeuXAaZgkPfkSE81xp+iNFHTn5G1DILCcU4pViMU6KE0OCePTg+HWDt/5vV9+ZY+8OHA85hHg9cp0/DdfLkLGE0PYR28mTYafz+eGTAcC6DIw/oLwB6CjicLJDhdAFwOp/D6XxgIj38r2jOw/Dj/3VDOeRdXNbJb8BEej4yJgfBO98DA4M9Dxh8+FO4bttdUe0JaaOHYWzKjZFJF8Ym3RiZcGNsyoWRCTdGJ90YnXRJ/3uPuTEyMV1WOjar7IQLI5Mzi/dyIcQHi8F5kC6XhRY/OdPiJytQ/BRmp6EgOw0ZUWK3YuHZN3vw0M9ew5VjachjM0NuQ5wHL2RNYecnL1yysUKpGvMBLB3bGfMO63imh3eY2ysyfMM90svjHaZxuzz4y0/+jfHhqbB1ZmQrUH3t2YFDOFM+QTMjbtxTM3X6hoG85XxDQ377XTPDQEv1aSdXyCBP874UChkU6dPbvr8Vcih8x9P8yvq2FfIQ53iP2XtG8VJb9HjE//x/Wxd1uCsWKMZpBTE2MoKnH/4BBm1j4Fy58CiGIEvzIC1XhuzSPFz3+S8iKydHKvvnHz+CsdPDyCrODTg2m8E9e9DznWacmciTxEFRxhDKv9YUVggxcBjgN0rlC3rfw/Ev3RkghJjbjSP3NsH7KOXgmCU+AIZjjXeBf/5auHpOYurECUz19gIu92wTgxjNAPrzgdMFXhHUP/2/TxQ5ciFNu/dHAQ5KLh2CIhvK9DwUZSqhzC6FMrccyvwKKHNXQ5mlxBHHEfzi3a/ijr+/D+9uqMNE5swHP2PcgY3vmfCrD/0bF3jORYfleIBwGZ10Y2TSjbFJ1/T/fuJo0oXRaWE0NhX9OufDxkkZrhxLQ76f+BicFh/vpntw7fmrcOmGYvBZM56gwhyvKMpOlyctKePGKTluHM0AmzWpP5dxuHE0Axunlmb28lhiPv7R/i7WX1AS85cxY16BwPyFxLSwkISEJ8Tf/uf4/e07Jp3vO8/lwSt/ECPa8vwv3saJgw4wD2bOc3u8dfvZ5xM0PoHDPAxuf3t9xzyzjvvqS4AImRh1RfXsLCRyhUzyjkieD4XXGyJ5StI4jA9P4cyJ6EPTmy5ZhdUb+EABMy2GvEJHHiB+FNPluAQOsa4+pxDW545EFR/lG/mE2TBXZDIOl+3YGPGHwgfrNy76EDV5nBbY4/Sbr30DQ6eq4U4Lv3hq2qQDOeWvAwBGei7AVHph0LFbv3N/oK179mDf/T8LKw62fuOTAULozQ9eBLt8Y9jyxcNvofCGj4KNjmHy6BGMv/Fv9BVfELZ86enXg67Dw3kTNZ7OB/rzuQAv0ekCDqfzgLHMmTd0PmQokmVAqciBMj0fBRlK5GUUIzujDBmZa5CmWAUFlw+ZJw8edwZGJz0YnXRheGLGm+PdnhY9Ey6cGRlHRfrjuNJ2GzgGwF9EMAbGAS9UPgbrmZsQemGT+MhJlyMrXYGcDDmy0uTIyVAgO10+/Qrxd4YC2Wlyb/l0BXL8jr19ahAP/ew13DjqHSb0D3D3iZE/Zk/i/s9ftOTihGL5JZhdkI6P3qUCBy6CeAh+OEsPfI8nUIh4Ah/6bNb+gHpDiBHf3yODEzhlG4x6jbmFGZCnyWISPiv3W3QWHLzDLTLvcIz3f+/L7fJgbCi8t8nHKiEffFm2NHwjDenMFjS+vyXhIwvc9h8qmr0vzWtbrD86TrzjwB++vy9quaXotQGWjpdyroQams4tzMAH6xduaDol0hGIooiOjg4IggBRFKHVasHzfNxl46lnNgstnH7ztW/AefrD3o1IH8jZXT7rYQ8AfPGLknhibjde+MgncGD9f4ctv+Xgz3DORRVw9/dj4vAhnJwsxZvnNYQtf/5buwPEUF/xBVHLv1vyBiwbOMl7NJzrnXGWj3TkclnI4nKRhgLIOCVcrBjjKMGwqwRTU7kYn8jC6AQChrMWAo4BumEZct3pIWfWMTAMySfReXYm1hblBAiX7Aw5stOmRVC6HDnpisD/p49nZ3jFUKZCPudfNszD4GEzwoB5GCan3PhJ0z+Q5UZY28dlwI47t0IGzjts4ech8Hj8/vb3EEz/7Y5wLNR57gjHpL+nhYMvboOIDMcBnE9IyDjpb07GSaIi1N+cT3DM+ntkYBL9R6NPmFj//mIUVeRC7qtzlojxFzdcmP2+bd9xeaSyfvaHI5XFx2IOGSWKxRAfiSTRkyFSQjhVVVXBYrEA8IofvV4Pk8kUd9l46pnNQgqnsZER/OoLz8KVzkcWTT583R6qLGNIn3Rga6YJspFRoMcO65qdmMgIUzdjyJhw4qKu7wAcwCDD3pp7MJleEKH+AWDg+zi8ikP+KKDk/h8m0/MjlB/EEb4dXdnbMOJWwuPOAce8YoVj3rioUC8Zm4mZ4sBB5ncMDJBzQKZChgy5HBkKGTLkMqTLZchQTP8v55Am9+5Pk8uQLuOgkHFIl8uQJuNwpncU7sPRXeh5Z+ViVWkOGAv0asxsM3imBY1vX9jt6X0ePxEUtC0JJSy5INDFhJNzUEz/yo8oFuTeX/+hxEIo4eErE/aYPLgt3/8Dp8fwuvlYVNs/ULcBZWflR6zL337//Zycg4yLLCTmAomP5JHqXhsgdWdiLgZLPsZJFAPH6AVBgNlsjrtsPPUkmj//+BG4Mi6K/YRI4orjMJmhxKueTwNZHFAZZYiJ4zCRWYiXLvtuzG1PZvBA6X1Y7QGQCUScrMpxmMwoQPlYA24Iva7tAsEAuKdfoY9OTL+iS6VAho4MY+jI8LysSxZZeWnIzEkL8AJ4X9NxGXIu5LFQf8sjHPM+/MPXI/f7u+/oIMw/ezuq7Td+6cIl+QB/r7sv6gP8/VdULLmHSvlGHjl8BsWrJIHKraW4Rnd+SnttZDJuyX0eU5GkCCez2QylMnCaslKphNVqhUqlirlsd3d3zPUkmrHTCXgoc4kNrvXAA04uB/MwyGJwisgzZMjOSQcnA8Bx4DjvB9H3Nyeb/j9gmwMnQ+D/vjLT5YPqilLev/4R5wRs+/qj2n7eZavBl2UHeAx8dUjb0+3NbM/YxUneBD9bpHNn9oXeDlU3cPI9J55+ODh2bDZXf/r8JfdlV1CajVeeFOkBvsiksu1A6ouPyq2lWH9BCXltVjhJEU5OpzPkfrvdHlfZeOoBgImJCUxMzHxYBwejB4jGSlZxLhawOgBA8brX8B+f/zyefOI3GNx7dtTy+dtE3HLrJ9H5gg22J6IPRWysOxvXbN+AowfsePoHr0Utf+1n3491m5dWXp5Y3f8f+timJffltnaTkrwHSSKVH+CpbDuQ+uKDvDbEkkpHEE4IxVs23LHm5mbcd9998RkVI9d9/osLGuOUNuXADXfqkJWTgbpbbsGjXX9GmidM3YxhSuZAXf1tkMtl2H5FJfb/8R2ku7LCBh1PKsaw/cMCAGDtOYWQ5yrgGp4KW16Rm4a15yy9L4tUfoCnsu0APcCTSSrbDpD4IFKbpAgnnueDvEJ2uz3kbLhIZeOpBwCampqwc+dOaXtwcBAVFRVzu4hZZOXkIHf1695ZdYzFPqtudtnpYznlbyArRwMAyMzMROaFx+Dax3sXfw0x5T7zwuPIzPQuKJumkGFd7UaceuY4GFjIae7rajciTeGNnZLJONTeuhnPGt8MWZ6D9/hS/VJO5Qd4KtsO0AM8maSy7QSRyiRlVp0oiqirq5NmwwFAYWEhDh06FCR6IpW12+0x1xOK5OVxsiOn/A0AofI4eY/NzuMEAI8af4ChNyuQPTVTfjTNjrzzj+Mzui8Hle/44zsQ9xxHjnvmITYiZxCuWgvNjZuCyodcxqEwA5elwAMcSO0ZI6lsO0EQRKqz5GfVCYIQsC2KIqqrqyWxY7VawfM8BEGIWDaUyPKvJxnc+p37Y8wc7vUmhc4crglZ92d0X8b4+Dg6nvwNnHYneCWPT910q+Rpmo3mxk2Yum4j/vrSMZw5PYqi4mxccVmF5GmaDXkPkkcq204QBLGSSGoCTKPRiJqaGnR1daGpqUkSPHV1daipqUFjY2PUspGORSMV16ojCIIgCGJhSYkEmEsBEk4EQRAEQcSjB+a/eBdBEARBEMQKgYQTQRAEQRBEjJBwIgiCIAiCiJEllQBzsfGFdy1kBnGCIAiCIFILnw6IJex7RQunoaEhAFiwJJgEQRAEQaQuQ0NDKCgoiFhmRc+q83g8OHnyJPLy8sDFskxKHPiykh87doxm7C0i1O/Jgfo9OVC/Jwfq9+SQyH5njGFoaAirV6+GTBY5imlFe5xkMhnWrl2b0Dby8/Ppg5UEqN+TA/V7cqB+Tw7U78khUf0ezdPkg4LDCYIgCIIgYoSEE0EQBEEQRIyQcEoQGRkZuPfee5GRkZFsU1YU1O/Jgfo9OVC/Jwfq9+SwVPp9RQeHEwRBEARBxAN5nAiCIAiCIGKEhBNBEARBEESMrOh0BIlAFEV0dHRAEASIogitVgue55NtVspitVphNpsBAF1dXdi9e7fUn5H6eq7HiGD0ej2ampqo3xcJs9kMURQhCAIAQK1WA6B+TySiKMJsNkOpVEIURWg0Gqn/qd8XDqvVioaGBlgsloD9iejjhPY/IxYUlUol/W2z2ZhGo0miNamPwWAI+Nu/fyP19VyPEYFYLBYGgDkcDmkf9Xvi6OzsZFqtljHm7SNBEKRj1O+Jw/97hjEm3QPGqN8XCpPJJH2fzCYRfZzI/ifhtIDYbLaAm8UYYzzPJ8ma1MdisQT0n81mYwCYzWaL2NdzPUYEYzKZmCAIknCifk8s/n3NmLfffP9TvyeO2X3kL16p3xeW2cIpEX2c6P6nGKcFxOfq9UepVMJqtSbJotRGpVJh9+7d0rbT6QTg7dNIfT3XY0QgHR0d0Gg0Afuo3xOHKIqw2+3geR5WqxVOp1MaLqJ+TyxKpRJVVVXSkF1tbS0A6vfFIBF9nOj+J+G0gPge7LOx2+2La8gywv/B3dbWBrVaDZ7//+3d4XHaShiF4XM7INCB1IEEHSgdgKkgqINoqMCDOpBSQYQ60KYCjDrIdmBnO/D94WFtDPbVtRF27Pf5k8Er1puTjPiQPkmDZ7N+6RjuOeeO9gOQe3/attVwOPR9GWVZqq5rSeTet/V6LUkKw1Dr9drvd8i9f31k3Hf+NIefwVP/iOjOOae6rg+aCo9td+qxz6iqKi0Wi87bk/vr3dzcyFrrvxwsFgt9+fJFt8/cao/cT8MYo9VqJWut0jSVJBVF8eT25N6/PjI+Vf4ccTqhwWBwUNHuDr3jdbIsU9M0Psvnsn7pGO4YY3RxcXF0jNz7EwSBz0qS/7NtW3LvkbVWm81GSZJosVjo9+/fqqpK1lpyP4M+Mu47fwqnE9pdNvzYeDw+80o+ljzPlWWZgiCQc07OuWezfukY7lVVpbIsVZalrLW6vLxU27bk3qNdP9Mx5N6ftm01mUz86yAItFwu2c+cSR8Z950/p+pO6PGOz1qr8XjMt4xXqOtaURT5oml3Culxpg+zfukY7jze6aRpqjRNj36wk/vpBEGg8Xjs+8t293KKouhgW3I/nSiKVBTFXj/l9fU1uffoYQ/lc5+b73U/z7PqTsxaq6IoNJlMtNls9m4ciP/HWqswDPd+NhgM9OfPHz/+VNYvHcM955zKslSWZVosFkrTVFEUkXuPnHPKskxxHGu73fojrRL/3/tkjPGnRKW7Lw/kflrGGDVNozzP9f37d00mE1+s9pFxn/lTOAEAAHREjxMAAEBHFE4AAAAdUTgBAAB0ROEEAADQEYUTAABARxROAAAAHVE4AQAAdEThBODsjDEKw1B5nqssS8VxrDiO/Q03wzBU27av/h27OQHgVHjkCoCzc86paRp/d+amaTQcDrVYLCRJ8/lc1tqjj73oKkkSzefzk6z3HB4+hgLA+8URJwBnd3Nz8+xDbaMoOni6+UdmrVVVVW+9DAAdUDgBOLuLi4uTbPNRrFart14CgI4onACcXZdTUldXV4rjWHmeS5LqulYYhjLGSLrvk0rTVHVdqyxLpWkq59yTcxpjlOe56rpWlmVPbmetVZZlft7dnG3b+vfneS5rrZ/3v9a667cyxqgsS81mMz92dXWlpmlUlqWfE8D7RI8TgHfpcY/SdDrVz58/98an06lGo5F/ynpd15rNZmqa5mC+XTG03W4l3Z0u3D2p/SHnnL5+/artdqvBYKAsy1SWpabTqbIs25s7jmP9+vWr01qTJFHTNFqv15Kk9Xqttm39WBiGvscLwPtF4QTgr/bw6NV0OtVsNjvaaF0UhYbDoT8KJEmbzeZgvqqqFASBf/9yuZQkXV5eHjSrB0Ggqqo6FTyj0Uij0Whv3Z+pjwv4KCicAHwaURQpSRL/+ljB87joOveVblxdB7xv9DgBeLcGg4Gur6/9a2PMQQ/Tw9d1XStJkr3CYzc+n8/3jjbt5ntsOp0e3EPKGHP0/W3b+ib2Lmvt4tiaALwf/9ze3t6+9SIAfE7GGFlr/VVlWZZpPB77U2LOOWVZ5hupi6KQc05FUSgIAmVZJuecPz232Wy0XC41GAzUtq2+ffsmSfrx44eiKJIxRk3TaDKZSNJBkfVwXce2M8aobVsFQaDNZqP5fN5prc65vbXs+q2iKPJ/99VqpTiOlSTJs7dqAPC2KJwA/LV2dxmnqRrAuXCqDgAAoCMKJwB/JWOMjDH+sn4AOAdO1QEAAHTEEScAAICOKJwAAAA6onACAADoiMIJAACgIwonAACAjiicAAAAOqJwAgAA6IjCCQAAoCMKJwAAgI7+BTBKKrSxqLGaAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -1148,9 +1148,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSZElEQVR4nO3deXzU1b3/8dfMZCPrECCEJSzDKrJoSHCrK6HSWpdWoPa6b1B77+1ib4ncLhZti9Bba3vb24KKS/VXJbF1a0VJa63WhcC4gKhABiHIEiCZTBYySWa+vz++ySSTTJJJyGSyvJ+PRx6Z+X7PDJ/MQObNOed7jsUwDAMRERER6ZI12gWIiIiIDBQKTiIiIiJhUnASERERCZOCk4iIiEiYFJxEREREwqTgJCIiIhImBScRERGRMCk4iYiIiIQpJtoFdIff7+fQoUOkpKRgsViiXY6IiIgMAoZhUFVVxdixY7FaO+9TGlDB6dChQ2RlZUW7DBERERmESktLGT9+fKdtBlRwSklJAcwfLDU1NcrViIiIyGDg8XjIysoK5IzODKjg1Dw8l5qaquAkIiIivSqcaUDdmhzudDqZP39+l+0KCwtxu9243e6Qz+F0OgFwuVyB2yIiIiL9XdjBqbCwECCsoLN06VKGDx/O8OHDsVgsWCwW1q1bB8D69euZP38+FouFFStW4HA4eli6iIiISN8Ke6huyZIlYbVzu90UFBQEtV+3bh0rV64EYP78+VRUVABgt9u7UaqIiIhIdEVkjlPr0FRYWNgudCkwiYiIyEDU68GpdShyu92Ul5cHDce53e7AsF9xcXGnw3Verxev1xu47/F4ertcERERkbBF9Kq6/Px81q5dG3Rs+fLlgXDlcDhYtGgRJSUlIR+/Zs0aVq9eHckSRURERMJmMQzD6NYDLBbCeYjb7Wb+/PntQpHT6SQ7OzvQZvjw4ZSUlITsdQrV45SVlUVlZaWWIxARERkCfH6DrfvKKauqIyMlgQWT07FZe3f3EI/HQ1paWlj5ImI9Ttu2bWs3l8npdLJw4cLA5PBm6enpIZ8jPj6e+Pj4SJUoIiIi/djmnYdZ/cIuDlfWBY6NSUvg7stnsXj2mKjU1KNNftuuz+R0OnG5XO2OtQ1EDocjaOiuqKiIJUuWaLK4iIiIBNm88zB3POEMCk0ARyrruOMJJ5t3Ho5KXWEHp6KiIvLz8wFz7lHzBO9Q95u1HX6z2+3k5OSwbt06NmzYQHFxMQUFBT2tXURERAYhn99g9Qu7CDUxqPnY6hd24fN3a7ZRr+j2HKdo6s4YpIiIiAxMb5Wc4GsPvt1luz/efjbnTBlxyn9ed/JFj4bqRERERCKlrKqu60bdaNebFJxERESkX8lISejVdr0pous4iYiIiHRXV4sNWIDMNHNpgr6mHicRERHpN3YcrOS2x7cF7rcNUc337758Vq+v5xQOBScRERHpF/YcreKGje9Q7W1kweR0fnXNGWSmBQ/HZaYl8LvrsqO2jpOG6kRERCTqSstrue7hd6iobWDu+DQevjGHlIRYvjR3bMRXDu8OBScRERGJqqOeOq596B2OerxMy0jmsZsXkJIQC4DNaumVJQd6i4bqREREJGrKa+q57qF3OFBey4T0RJ647SyGJ8VFu6wOKTiJiIhIVFTVNXDjxq3sKatmdGo8T952FqNT+36Jge5QcBIREZE+d7Lex62PbWPHZ5UMT4zliVvPIis9MdpldUnBSURERPpUfaOfO57cztZ95aTEx/D4LWcxbXRKtMsKi4KTiIiI9Bmf3+A7T7/HPz45RkKslYdvymXO+LRolxU2BScRERHpE4Zh8N9/2sFfdhwm1mbh99fNj8rq36dCwUlEREQizjAMfvKXj3h6WylWC/zqmjO5aEZGtMvqNgUnERERibhf/W0PD7+xD4D7rp7LF+dEZ+XvU6XgJCIiIhH18Bv7eKBoDwA/+tIsluVkRbminlNwEhERkYjZVFzKvS/uAuA7edO55XOTo1zRqVFwEhERkYj4yweHuetPHwBw2+cm882FU6Nc0alTcBIREZFe9+onZXz76XfxG3BNbhbfv+w0LJbobc7bWxScREREpFe94zrB1/+wnQafwZfmjuGnX54zKEITKDiJiIhIL/rgoJtbH9uGt9HPJTMzuH/ZGdisgyM0gYKTiIiI9JI9R6u4ceNWqr2NnO1I5/+uzSYuZnBFjcH104iIiEhUHDhRy7UPvUNFbQPzxqfx0I25JMTaol1Wr1NwEhERkVNypLKOax9+m7IqLzNGp/DozQtIjo+JdlkRoeAkIiIiPVZeU891D79DaflJJo5I5A+3LmB4Uly0y4oYBScRERHpEU9dAzdu3MresmoyUxN44tazyEhNiHZZEaXgJCIiIt12st7HbY9uY8dnlaQnxfHEbWeRlZ4Y7bIiTsFJREREuqW+0c/Xn9jO1k/LSYmP4fFbFjA1IznaZfUJBScREREJm89v8J2n3+O13cdIiLWy8eZcZo9Li3ZZfaZbwcnpdDJ//vyw2jmdTgBcLlfgdvP9devWUVhYyLp163C73d2rWERERKLC7zdY9acP+MuOw8TaLKy/PofcSenRLqtPhX2tYGFhIQ6HIygEdWT9+vVs2LABgLy8PAoKCgLnli5dyvbt2wEzRN1+++1B50VERKT/MQyDn/zlIzZtO4jVAr++5kwunD4q2mX1ubCD05IlS8J+0vnz51NRUQGA3W4PHHe5XEHtHA4HRUVFYT+viIiIRMcDRXvY+K99AKxbMo8vzBkT5YqiI2JznOx2e1BoAigqKiI9PbhLLz09PaxeLBEREYmOh1538au/7QHgx5fPYsn88VGuKHoisqyn2+2msLAQgOLiYlasWIHD4ehwPlN5eXnI416vF6/XG7jv8Xh6vVYRERHp2NPFB/jJXz4C4LuLpnPTeZOjXFF0RSQ4LV++PNDb5HA4WLRoESUlJR227yhQrVmzhtWrV0egQhEREenKC+8f4q4/7QBg+QUO/uOSqVGuKPoiMlTXei6Tw+HA5XLhcrmw2+3tepfKy8vbDek1W7VqFZWVlYGv0tLSSJQrIiIibfz946N85+n3MAz42oIJrPrCTCwWS7TLirpeD05Op5OFCxe2O56enk5eXl7Ix+Tk5IQ8Hh8fT2pqatCXiIiIRNbbrhPc8YSTRr/B5fPG8pOrZis0NelRcGo7tOZ0OgO9TA6Hg7Vr1wbOFRUVsWTJEux2Ow6HI+hxLpeLnJycDnucREREpG+9X+rm1keL8Tb6WTgzg/uXzcNmVWhqFvYcp6KiIrZs2QKYc49yc3MDSxQ031+5ciV2u52cnBzWrVuH3W6npKQkaJ2mgoIC8vPzyc3Npbi4WGs4iYiI9BOfHKnixke2UlPv4xzHCH57bTaxNm0y0prFMAwj2kWEy+PxkJaWRmVlpYbtREREetH+EzUs+f1bHKvyMi/LzpO3nUVyfESuIet3upMvFCNFRESGuMOVJ7n2oXc4VuVlxugUHrs5d8iEpu5ScBIRERnCTlR7ue6hdzhYcZKJIxL5w60LsCfGRbusfkvBSUREZIjy1DVww8atlByrYUxaAk/cehYZqQnRLqtfU3ASEREZgk7W+7j10WI+PORhRFIcf7j1LLLSE6NdVr+n4CQiIjLEeBt9rHhiO8WfVpCSEMNjtyxgakZytMsaEBScREREhpBGn59vP/Ue/9x9jGGxNh65KZfZ49KiXdaAoeAkIiIyRPj9Bnf9aQcv7TxCnM3K+uvnkzMpPdplDSi61lBERGSQ8vkNtu4rp6yqjoyUeF7aeYTC7QexWuDXXzuDC6aPinaJA46Ck4iIyCC0eedhVr+wi8OVde3OrVsyj8Wzx0ShqoFPwUlERGSQ2bzzMHc84aSjrUGS4219Ws9gojlOIiIig4jPb7D6hV0dhiYLsPqFXfj8A2bHtX5FwUlERGQQ2bqvPOTwXDMDOFxZx9Z95X1X1CCi4CQiIjKIlFV1HJp60k6CKTiJiIgMIulh7jOXkaKtVXpCk8NFREQGiWpvI79/raTTNhYgMy2BBZO1flNPKDiJiIgMAmVVddz8iLn3XFyMlfpGPxYImiRuafp+9+WzsFktIZ5FuqKhOhERkQHOdayaq3/3ZmDD3oIV5/D767LJTAsejstMS+B312VrDadToB4nERGRAezdAxXc+tg2ymvqmZCeyOO3LGDSyCTmZdlZNCuz1crh5vCceppOjYKTiIjIAPX3j4/y70++y8kGH3PGpbHxplxGpcQHztusFs6ZMiKKFQ4+Ck4iIiID0KbiUlb9eQc+v8EF00fxu2uzSYrXx3qk6RUWEREZQAzD4Dd/38svtuwG4CvZ41h79VxibZq23BcUnERERAYIn9/gR8/t5Ml3DgDwjYum8L1LZ2CxaN5SX1FwEhERGQDqGnx884/v8squo1gs8OPLT+fGcydFu6whR8FJRESkn3PX1nPrY9vYvr+CuBgrD3z1DL44R0sKRIOCk4iISD92sKKWGzdupeRYDSkJMTx0Qw5nOXSlXLQoOImIiPRTHx32cNMjWznq8ZKZmsBjtyxgRmZKtMsa0hScRERE+qG3Sk6w/PFtVHkbmZaRzGO3LGCsfVi0yxryFJxERET6mRc/OMSdT79Pvc/PgknpPHhDDmmJsdEuS+jmXnVOp5P58+eH1W7dunWsW7eOpUuX4na7g845nU4AXC5X4LaIiIjAxjf28Z9/fJd6n5/Fp2fy+K0LFJr6kbCDU2FhIUBYQaeoqIiVK1eycuVKcnNzWbhwYeDc+vXrmT9/PhaLhRUrVuBwOHpQtoiIyODi9xus+etH3PPiLgwDrj97Ir+9NpuEWFu0S5NWLIZhGN16gMVCZw9xOp0sXLiQiooKwOxVmjJlCiUlJTgcDjZs2MCyZcsAsNvt3SrW4/GQlpZGZWUlqamp3XqsiIhIf1Xf6Gdl4fs8+94hAL536Qy+cdEULWzZR7qTL3p9jlN2djYPPvhg4H7zMF16enrgWHcDk4iIyGBV7W3kjie28/qe49isFtZePZcl88dHuyzpQEQmhy9ZsiRw++mnnyYvLy8Qltxud2DYr7i4uNPhOq/Xi9frDdz3eDyRKFdERCQqyqrquOXRYnZ+5iExzsb/XZvNRTMyol2WdCKiV9U1h6Tt27cHji1fvjwQohwOB4sWLaKkpCTk49esWcPq1asjWaKIiEhU7Dteww0b36G0/CQjkuLYeFMu87Ls0S5LuhDRrZTz8/PZsmVL0NCcy+UK3HY4HLhcrqBjra1atYrKysrAV2lpaSTLFRER6RPvlbq5+ndvUlp+kgnpiTxzx7kKTQNExHqc1q1bR35+Pg6HIzDPyeVyBU0cb9Z6/lNr8fHxxMfHR6pEERGRPvfqx2V840knJxt8zBmXxsabchmVos+6gaJHPU6t12UC80q61r1GhYWFZGdnB0LTpk2bsNvtOBwO1q5dG2hXVFTEkiVLNFlcRESGhE3Fpdz2+DZONvi4YPoonlp+tkLTABN2j1NRURFbtmwBzLlHubm5gUngzfdXrlyJy+Vi6dKlQY+12+2BuU05OTmsW7cOu91OSUkJBQUFvfjjiIiI9D+GYfCbv+/lF1t2A/CV7HGsvXousbaIzpiRCOj2Ok7RpHWcRERkoPH5DX703E6efOcAAHdcNIWVl87QGk39SFTXcRIRERFTXYOPb/7xXV7ZdRSLBX58+enceO6kaJclp0DBSUREJALctfXc9tg2tu2vIC7GygNfPYMvzhkT7bLkFCk4iYiI9LLP3Ce5ceNW9pZVk5IQw0M35HCWY0S0y5JeoOAkIiLSiz4+4uHGjVs56vGSmZrAY7csYEZmSrTLkl6i4CQiItJL3io5wfLHt1HlbWRaRjKP3bKAsfZh0S5LepGCk4iISC/4yweH+c7T71Hv87NgUjoP3pBDWmJstMuSXqbgJCIicooe+dc+7nlxF4YBi0/P5IFrziAh1hbtsiQCFJxERER6yO83WPvyx6x/zdw94/qzJ/LjK07HZtUaTYOVgpOIiEgP1Df6yX/mA/787mcAfO/SGXzjoila2HKQU3ASERHppmpvI3c8sZ3X9xzHZrVw31fmsDQnK9plSR9QcBIREemGsqo6bnm0mJ2feRgWa+P/rsvm4hkZ0S5L+oiCk4iISAg+v8HWfeWUVdWRkZLAgsnpHCiv5YaN71BafpIRSXFsvCmXeVn2aJcqfUjBSUREpI3NOw+z+oVdHK6sCxwbkRSHt9FPtbeRCemJPH7LAiaNTIpilRINCk4iIiKtbN55mDuecGK0OX6iph6ACemJPHPHuYxKie/74iTqrNEuQEREpL/w+Q1Wv7CrXWhqrb7RT3pSXJ/VJP2LgpOIiEiTrfvKg4bnQjniqWPrvvI+qkj6GwUnERGRJmVVnYem7raTwUfBSUREpElGSkKvtpPBR8FJRESkyaSRicR0sl2KBRiTZi5NIEOTgpOIiAiwt6yKJb97i0Z/6KnhzXHq7stnaS+6IUzBSUREhryt+8q5+ndv8Zn7JJNGJHLvlaczJi14OC4zLYHfXZfN4tljolSl9Adax0lERIa0Fz84xJ1Pv0+9z8+ZE+w8dEMOI5Lj+bezJrZbOVw9TaLgJCIiQ5JhGDz4uouf/fVjAC49fTQPfPVMhsXZALBZLZwzZUQ0S5R+SMFJRESGHJ/f4J4XPuSxt/YDcNO5k/jhlzR3Sbqm4CQiIkPKyXof33rqXV7ZdRSAH1x2Grd+bjIWi0KTdE3BSUREhowT1V5ufWwb75W6iYux8stlZ3DZXE32lvApOImIyJDw6fEabnpkK5+eqCVtWCwP3ZhD7iStxyTdo+AkIiKDnvNABbc9to3ymnrGDx/GozcvYGpGcrTLkgFIwUlERAa1lz88wjf/+C7eRj9zxqXx8E052jJFeqxbwcnpdHL77bezffv2Ttu5XC4KCwtxOBy4XC6WL1+O3W7v8pyIiEhveuzNT/nxCx9iGHDxjFH85t+ySYpXn4H0XNh/e5rDjtPp7LLt0qVLA+HK5XJx++23U1BQ0OU5ERGR3uD3G9y3+WM2/NMFwNcWTODeK08nxqYNM+TUhB2clixZElY7l8sVdN/hcFBUVNTlORERkd5Q1+DjuwXv85cPDgPwvUtn8I2Lpmi5AekVvR69i4qKSE8PvkohPT0dp9PZ6TkREZFT5a6t54aHt/KXDw4Ta7Pwy6/O498vnqrQJL2m1wd63W53yOPl5eWdngvF6/Xi9XoD9z0ez6mWJyIig1RpeS03PbKVkmM1pMTHsP76+Zw7dWS0y5JBps8GezsKTZ2dW7NmDWlpaYGvrKysyBQnIiID2o6DlXz5/96k5FgNY9ISKLzjXIUmiYheD052u71dD1J5eTl2u73Tc6GsWrWKysrKwFdpaWlvlysiIgPcqx+X8dUNb3G82svMzBT+/I3zmJGZEu2yZJDq9eCUl5cX8nhOTk6n50KJj48nNTU16EtERKTZH7ce4LbHt1Fb7+P8aSMp+Po5ZKZpjSaJnB7NcXK73UG9RE6nE7vdjsPhwOFwBLV1uVzk5OQEepw6OiciIhIuwzD4xSu7+c2rewG4Ons89109h1gtNyARFnZwKioqYsuWLYA59yg3NzewREHz/ZUrVwJQUFBAfn4+ubm5FBcXB63T1Nk5ERGRrtQ3+rnrmQ/407ufAfDNhdP4Tt40XTknfcJiGIYR7SLC5fF4SEtLo7KyUsN2IiJDkKeugTue2M6/9p7AZrXwsy/P5qu5E6Jdlgxw3ckXWndeREQGhMOVJ7n5kWI+PlJFUpyN316bzUUzMqJdlgwxCk4iItLvfXTYw82PFHPEU8eolHgeuSmX2ePSol2WDEEKTiIi0q+9sec4X39iO9XeRqZmJPPozbmMH54Y7bJkiFJwEhGRfuuZ7QfJf+YDGv0GZ01OZ8P1OaQlxka7LBnCFJxERKTfMQyD3/x9L7/YshuAK+aN5edL5xIfY4tyZTLUKTiJiEi/0uDz88Nnd/JUsblbxNcvnMLKS2dgtWq5AYk+BScREek3aryNfONJJ6/tPobVAquvOJ3rz5kU7bJEAhScRESkXyjz1HHLY8Xs/MxDQqyV//1aNotmjY52WSJBFJxERCTq9pZVcePGYj5zn2REUhwP35TLGVn2aJcl0o6Ck4iIRNU7rhPc/vg2PHWNTB6ZxKM35zJxRFK0yxIJScFJRESi5vn3D/Ffm96n3ucne4Kdh27MJT0pLtpliXRIwUlERPqcYRhs+KeLNS99DMDi0zN54JozSIjVcgPSvyk4iYhIn/L5DVa/8CGPv7UfgJvPm8QPLpuFTcsNyACg4CQiIn3mZL2Pbz71Llt2HcVige9/8TRuO98R7bJEwqbgJCIivc7nN9i6r5yyqjoyUhJYMDkdd209tz62jfdK3cTFWHngq2fwxTljol2qSLcoOImISK/avPMwq1/YxeHKusCxUcnxgMGx6nrsibE8dEMOOZPSo1ekDBx+H+x/E6qPQvJomHguWKM3F07BSUREes3mnYe54wknRpvjx6q9AIxIjmPTinOYMiq574uTgWfX87A5HzyHWo6ljoXFa2HWFVEpyRqVP1VERAYdc9L3rnahqbUYq4VJWqNJwrHredh0Q3BoAvAcNo/vej4qZSk4iYhIr9i6rzxoeC6Uox4vW/eV91FFMmD5fWZPU8gY3nRs811muz6m4CQiIr2irKrz0NTddjKE7X+zfU9TEAM8n5nt+piCk4iI9ApzAnjXMlISIlyJDHgHi8NrV300snWEoMnhIiJyyg5W1PLrv+3ptI0FyEwzlyYQCanyM/j7T+D9/xde++TRka0nBAUnERHpMcMwKNh2kHte3EW1t5E4m5V6nx8LwbNTmtcEv/tyrRAuIXir4I0H4K3fQuNJ81jMMGisI/Q8J4t5dd3Ec/uwSJOCk4iI9EhZVR2rntnB3z4uA2D+xOH8Yuk8Pj7iabeOU2ZaAndfPovFs7XgpbTiawTnY/CPNVBzzDw24Rz4/E/MOU6bboCOYvji+6KynpOCk4iIdNuLHxziB8/uxF3bQJzNyp2fn87t5zuwWS1MGpnEolmZ7VYOV0+TBBgG7N4MW34Ex3ebx9KnwKJ7YOZlYGn6u7Ls8Q7Wcbovaus4KTiJiEjY3LX1/PC5D3nhffODbNaYVO7/6jxmZqYGtbNZLZwzZUQ0SpT+7tC78MoP4dPXzfvD0uGiVZBzM9hig9vOusIMUlo5XEREBppXPykjv/ADyqq82KwW/v2iKfzHJdOIi9EF2hIGdyn8/V744Gnzvi0ezr4Dzr8TEtI6fpzVBpPP75saw6DgJCIinar2NvLTv+zij1tLAXCMSuL+ZWdwRpY9uoXJwFBXCa/fD2//Dnzm1jvM/Spc8gOwT4hubT3QreDkcrkoLCzE4XDgcrlYvnw5drs9ZNvCwkLy8vIA2rVxOp0AZGdn43K5cLvdZGdnd796ERGJqHdcJ/ivwvcpLTevdLrlvMmsXDyDhNjoDZXIAOFrgG2PwGv3Qe0J89ik8+Hz98LYM6Nb2ynoVnBaunQp27dvB8wQdfvtt1NQUNBh27bWrl3LypUrWb9+PRs2bAAgLy+vw+cQEZHoqGvw8fOXP2Hjv/ZhGDDOPoz/WTpP85aka4YBH//FnPhdXmIeGzndnPg9fXHLxO8BKuzg5HK5gu47HA6KiopCtnW73RQUFLBkyZLAsXXr1rFy5UoA5s+fT0VFBdC+N0pERKLrg4Nu7tz0PnvLqgH4ak4WP/jSaaQkxHbxSBnyDm6HV74PB94y7yeOhIv/G7JvBNvgmB0U9k9RVFREenrwaq/p6ek4nc6Qw2ytQ1NhYWHQfVBgEhHpbxp8fv7373v57at78fkNRqXEs/bqOVwys+9XZ5YBpuJT+Ns9sPMZ835MApzzH3DetyAhtdOHDjRhBye32x3yeHl5+12uW4cit9tNeXk5Docj6FhhYSEAxcXFrFixIuh8M6/Xi9frDdz3eDzhlisiIt2w+2gVd256j52fmb9nvzR3DPdeOZvhSXFRrkz6tZMV8M//ga0bwFcPWGDe18yJ32njol1dRJxyv1lHgapZfn4+a9euDTrWelK5w+Fg0aJFlJSUtHvsmjVrWL169amWKCIiHfD5DR5+w8X/vLKb+kY/9sRY7r1yNpfPGxvt0qQ/a6yH4ofgtbVQ5zaPTb7QXPF7zNyolhZpYS++Ybfb2/UulZeXdzrk5na7KSoqatem9Xyp5iv02s6hAli1ahWVlZWBr9LS0nDLFRGRLuw/UcM1G97iZ3/9mPpGPxfPGMUr375AoUk6Zhjw4bPw2wXw8iozNI06Da4thBueG/ShCbrR45SXl8f69evbHc/JyenwMdu2bQu5FMHChQsDk8ObtZ0/BRAfH098fHy4JYqISBgMw+DJdw7ws79+RG29j6Q4Gz/80iy+mpuFZYBf8SQRVLoVXv4+HNxq3k8eDRd/H864dtBM/A5H2D9p2zlILpeLnJycQDByOp3Y7fagdk6ns10gcjgcQUN3RUVFLFmyRJPFRUT6wJHKOlY+8wH/3G1uqHrW5HT+Z+k8stITo1yZ9FvlLij6Mex6zrwfmwjnfhPO/U+IT45qadHQrYhYUFBAfn4+ubm5FBcXB62/tGbNGnJzcwNLDjRrG7jsdjs5OTmsW7cOu91OSUmJ1nESEYkwwzB47r1D/Oi5nXjqGomPsbJy8UxuPncSVm2+K6HUlsM/fw5bHwR/A2CBM68ze5lSx0S7uqixGIZhRLuIcHk8HtLS0qisrCQ1dXBd3igiEiknqr384NmdvLTzCADzxqfxi2VnMDVj6PUWSBga6syr5F7/H3O7FIApC80FLDNnR7e2COlOvhg6g5IiIkPQKx8e4b//vIPj1fXEWC18c+E0vnHRFGJs2phX2jAMcx2mv60G9wHz2OjZZmCaujC6tfUjCk4iIoOQp66B1c/v4hnnQQCmj07m/mVnMHtcJ7vQy9C1/0145QfwmbmtGiljzLWY5n0NrNqXsDUFJxGRQeZfe4/zvYL3OVRZh8UCyy9wcOei6cTH6ANQ2ji+F4ruho9fNO/HJsHnvg3n/DvEJUW1tP5KwUlEZJA4We/jvpc+4rG39gMwcUQiv1g6j5xJ7Zd7kSHC7zN7k6qPmssHTDzX7EGqOW4uXrltI/gbwWI195O7aBWkaIudzig4iYgMAtv3V/BfBe+z73gNANefPZG7vjCTpHj9mh+ydj0Pm/PBc6jlWMoYmHw+fLIZvE3bmE271JzHlDEzOnUOMPoXJSIygHkbfTxQtIf1r5XgNyAzNYF1S+ZywfRR0S5NomnX87DpBqDNhfNVh+GDTebtzLnmFimOC/u8vIFMwUlEZIDadcjDnZve4+MjVQB85cxx3H356aQlxka5Mokqv8/saWobmlobNhxu+zvE6O9Kdyk4iYgMMI0+P+v/6eKBot00+AxGJMXx0y/PZvHsobsoobSy/83g4blQTlZA6dvmsJ10i4KTiEg/5PMbbN1XTllVHRkpCSyYnI7NasF1rJo7N73Pe6VuAD4/azQ/+8ocRiZrX08Bju2GN+4Pr2310cjWMkgpOImI9DObdx5m9Qu7OFxZFziWmZrABdNH8vz7h6hr8JOSEMPqK07ny2eO08a8Q52vEXa/ZG6Nsu+18B+XrKvnekLBSUSkH9m88zB3POFsNzvliKeOTdvMxSzPnzaStVfPZax9WN8XKP1HdRk4H4Ntj4LH/LuBxQrTFsPBd8y95kLOc7JA6lhzaQLpNgUnEZF+wuc3WP3Crs6m9JI2LIZHbsrVlilDlWFA6VYofhA+fLZp810gcYS5DlPOzWCf0OqqOgvB4ampd3LxfVoRvIcUnERE+omt+8qDhudCqTzZSPGnFZwzZUQfVSX9Qn0t7CgwA9ORHS3Hx+dC7u1w+lUQ02qe26wrYNnj7ddxSh1rhqZZV/RZ6YONgpOISD9RVtV5aOpuOxkETpRA8cPw3hNQV2kei0mAOUsg9zYYe2bHj511Bcy8LPTK4dJjCk4iIv1EdV1jWO0yUhIiXIlEld8He14xJ3uX/K3l+PBJZlg641pIDHMbHatNSw70MgUnEZEoq6pr4Bev7OaxNz/ttJ0FyEwzlyaQQajmBLz7uLl/nPtA00ELTFtkDsdNzQOr5rZFm4KTiEiUGIbBX3ccYfULH1JW5QUgd9Jwij+t6GhKL3dfPgubVcsPDCoHt5tzl3b+CXzm3wOGDYczr4OcWyF9cnTrkyAKTiIiUVBaXssPn9vJPz45BsCkEYn85Ko5fG7ayNDrOKUlcPfls7Q6+GDRcNIMSsUPwqF3W46POQMW3A6zr4ZYLTfRHyk4iYj0oQafnwdfd/Hrv+2hrsFPnM3K1y+awjcumkJCrDlpd/HsMSyalRly5XAZ4Co+NSd7v/sHc9sTAFscnP4VMzCNmw9a0LRfU3ASEekjxZ+W8/0/72D30WoAznak85Or5jA1I7ldW5vVoiUHBgu/35zkvfVBc9J38yBsWhbk3ALZN0DSyKiWKOFTcBIRibCKmnrue+ljnt5WCkB6Uhw/uOw0bZcy2NWWw3tPmj1MFftajk+5xJzsPf1SLQ0wACk4iYhEiGEY/Mn5GT/960eU19QDcE1uFnd9YSb2xLgoVycRc+g9c+7Sjmeg8aR5LD4NzrzWnOw9cmpUy5NTo+AkIhIBJceq+cGfd/KW6wQA00cn89MvzyF3kpYSGJQaveYWKMUPwsHiluOjZ5trL81dBnFJUStPeo+Ck4hIL6pr8PF/r+7l96+5qPf5SYi18q2F07n1c5OJi9EaPAOK39f1qtvuUnPdJefjUHvcPGaNgVlXmsNxE87WZO9BRsFJRKSXvL7nGD98diefnqgF4OIZo7jnytlkpSdGuTLptl3Pd7DP21o47XJwvQpbH4LdL4HhN8+njDU32c2+EVJGR6duiTgFJxGRU1RWVcdPXvyI5983P2RHp8Zz9+Wn84XZmZr8PRDteh423UDwEqSA5zBsuh6SM6H6SMvxSeebSwnMuAxs+lgd7PQOi4j0kN9v8P+2HmDt5o+pqmvEaoEbzpnEdz8/nZSE2GiXJz3h95k9TW1DE7Qcqz4CsUlwxr+Z85cyZvZlhRJlCk4iIj2w65CH7z+7g3cPuAGYMy6Nn315DnPGp0W3MDk1+98MHp7ryNJHzOUEZMjpVnByuVwUFhbicDhwuVwsX74cu90esq3T6QQgOzsbl8uF2+0mOzu7288jItKf1HgbeaBoNxv/9Sk+v0FyfAzf/fx0bjhnklb2HgxO7AmvnbcqsnVIv9Wt4LR06VK2b98OmOHn9ttvp6CgIGTb9evXs2HDBgDy8vKC2nXneURE+ostu45y93M7OdS0h9wX52Tyoy+dTmZaQpQrk1N26D3YugE+2BRe+2RN/h6qwg5OLpcr6L7D4aCoqKjD9vPnz6eiwtyHp3VvUnefR0Qk2g65T3L38x+yZddRAMYPH8a9V87m4pkZUa5MTomvAT56Ht7ZAKVvtxy3xoK/oYMHWcyr6yae2yclSv8TdnAqKioiPT144bb09HScTmdgCK6tUMNvPXkeEZFoaPT5efTNT7l/y25q633EWC3cfoGDb14yjWFx2ipjwKo+BtsfhW0PQ9Vh85g1BmZdBWetMI9turGpcetJ4k1DsYvv01YpQ1jYwcntdoc8Xl5e3mH7wsJCAIqLi1mxYgUOh6PbzyMiEg3vlbr57z/tYNdhDwA5E4fz0y/PYUZmSpQrkx77zGkOx+18BnzmFjgkjTI32p1/M6SOaWm77PEO1nG6D2Zd0bd1S79yylfVdRSEWk/4djgcLFq0iJKSkm49j9frxev1Bu57PJ5TKVVEpEuVJxv4+csf8+Q7BzAMSBsWy6ovzGRZThZWTf4eeBrrm4bjfh+8FcrYbDjr63D6VRAT3/5xs66AmZd1vXK4DDlhBye73d6uV6i8vLzDq+FcLldg6K356jmXy9Wt51mzZg2rV68Ot0QRkR4zDIMXPjjMvS/u4liV+R+2r2SP4/tfPI0RySE+WKV/qzraMhxXbc5NwxoLp3/ZHI4bn9P1c1htMPn8iJYpA4/FMIxQq3y143K5gq6GAxg+fDj79u1rF3qcTicLFy4MTA53u90MHz6ciooKysvLw36eUD1OWVlZVFZWkpqa2t2fVUQkpP0navjBszt5fY+515hjVBI/uWo2504ZGeXKpNsObjd7lz78c8sE7+TRLcNx2gpFQvB4PKSlpYWVL8LucXI4HEH3XS4XOTk5gbDjdDqx2+04HA4cDgdr164NtC0qKmLJkiXY7fZ24ajt87QWHx9PfLz+pycikeFt9LHhNRe/eXUv3kY/cTFW/uPiqay40EF8jIZkBozGetj1rBmYPmv5Tznjc2HBCnPD3Zi4qJUng0u35jgVFBSQn59Pbm4uxcXFQWsvrVmzhtzcXFauXIndbicnJ4d169Zht9spKSkJatvZ84iI9IW3XSf4/p93UHKsBoDPTR3JvVfNZvLIpChXJmGrOgLbNsK2R6CmzDxmi4PTvwJnLYdx86NbnwxKYQ/V9Qfd6UoTEQmlvKaen/7lI55xHgRgZHIcP/zSLK6YN1Yb8g4EhmFO8n5nvdnL5G80j6eMgZxbYf5NkDwqmhXKABSRoToRkYHC5zfYuq+csqo6MlISWDA5HasFCrYd5GcvfYS7tgGLBf5twQRWXjqTtERtyNvvNXph559g63o49G7L8ayzzd6l064Am95HiTwFJxEZVDbvPMzqF3ZxuGlbFDB7lezD4th7rBqAmZkp/Owrc8ieMDxaZUq4PIdahuNqzcn72OJhzhJYsBzGnhHV8mToUXASkUFj887D3PGEk7bzD45X13O8up44m5X/unQ6N583mVibNSo1ShgMA0rfMSd7f/RCy3Bc6rimq+NugiRd8SjRoeAkIoOCz2+w+oVd7UJTa/bEWG79nAObFrLsnxrqYGehOX/pyActxyeca669NPNLYNPHlkSX/gaKyKCwdV950PBcKGVVXrbuK+ecKSP6qCoJS+VBKH4YnI9B7QnzWExC03DcChgzN7r1ibSi4CQig8JbrhNhtSur6jxcSS/x+zrfrsQw4MBbTcNxL4LhM4+njocFt0H2jZCYHvq5RaJIwUlEBrTt+yv45ZbdvLH3eFjtM1ISIlyRsOv5DjbIXQvTFsGOAnhnAxzd0XJ+0vnmZO8ZX9RwnPRr+tspIgPSe6VufrllN6/tPgZAjBXiYmzU1vtCtrcAmWnm0gQSQbueh003QNvZZp7DsOl6iEuCenPRUWKGwdxlZmDKnN3npYr0hIKTiAwoOz+r5JdbdvO3j82Vom1WC0vnj+ffL57Kh4cqueMJJxD8sd08Ffzuy2dpYngk+X1mT1PIKfpNx+prIDULzrodzrxew3Ey4Cg4iciAsOuQhweKdvPKLnOne6sFvpI9nv+8ZCoTR5jbpGSlJ/K767LbreOUmZbA3ZfPYvHsMVGpfcjY/2bw8FxHrvotOC6MfD0iEaDgJCL92idHqvjV33bz1x1HADMwXXnGOP7zkqk4RiW3a7949hgWzcpst3K4epoiyO83111644Hw2tcci2g5IpGk4CQi/dLesip+9be9vPjBIQwDLBb40tyxfGvhVKZmpHT6WJvVoiUHIq35qrldz5mLVFYfCf+xyaMjV5dIhCk4iUi/4jpWza//tofn3jcDE8AX52TyrYXTmZHZeWCSCPM1wqevm2Hp4xeDe47i02D6pbC3CE5WEHqek8W8um7iuX1VsUivU3ASkX7hwIlafv33PfzJeRB/02fu52eN5tt505k1tvPdyiWCGuth3z9h17Pw8V/gZHnLuQS7uZr3rCvNOUsx8a2uqrMQcor+4vuC13MSGWAUnEQkqkrLa/ntq3sp2H4QX1NiWjgzg2/nTWfO+LQoVzdENXqh5FWzZ+mTv0BdZcu5xBEtYWnyBWCLDX7srCtg2eMdrON0n3leZABTcBKRqDjkPslvXt1LwbZSGnxmYLpoxii+nTedM7Ls0S1uKGo4CXv/Zoal3ZvB62k5l5QBp10Op19l7hvX1QKVs66AmZd1vnK4yACl4CQifepIZR3/94+9PLW1lHqfH4Dzp43k23nTmT9xeJSrG2Lqa2DPlqaw9DI01LScSxkDp11h9ixNOLv7ocdqg8nn9269Iv2AgpOI9Imyqjp+948SnnznAPWNZmA625HOnYtmaDXvvuStMkPSrufM0NR4suVc6ngzKM26EsbngtUavTpF+ikFJxGJqOPVXta/VsIf3t5PXYMZmHInDec7i6Zz7pSRUa5uiKirhE82m2FpbxH4vC3n7BObwtJVMC7bXPdBRDqk4CQiEVFeU8+Gf7p47M1POdlg7h935gQ73100g/OmjsCiD+jIqi2HT14yw1LJ38Hf0HIufYo5X2nWlZA5V2FJpBsUnESkV7lr63no9X088q991DRtuDtvfBrfWTSdC6ePUmCKpJoT5vpKu56Dfa+Bv7Hl3MgZLWEpY5bCkkgPKTiJSK+oPNnAxjf2sfGNfVR5zQ/s08emcuei6VwyM0OBqbuaV+bu6qq06jJz5e5dz8Gnb4DhazmXcXrLnKWMmX1Xu8ggpuAkIqekqq6BR//1KQ++7sJTZwammZkpfGfRdD4/a7QCU0/ser6DdZDWmpf6ew63hKX9/yJoockx88ygdNqVMHJqn5cuMtgpOIlIj9R4G3nsrU/Z8E8X7lpz/sy0jGS+s2g6i0/PxKpNdXsmsPJ2my1LPIdh0/UwYjqc2B18btz8prB0BaRP7rNSRYYiBScRCeLzG2zdV05ZVR0ZKQksmJyOrVUIOlnv4w9vf8rvX3NRXlMPgGNUEt/Om85lc8YEtZVu8vvMnqaQ+7w1HWsOTVlnNYWly8E+oa8qFBnyFJxEJGDzzsOsfmEXhyvrAsfGpCVw9+WzuGhGBk++c4Df/aOE49Xm5eyTRiTyrbxpXDFvnAJTb/j0jeDhuY4seRRmfzni5YhIewpOIgKYoemOJ5zt+jqOVNbx9SecpCbEBOYwZaUP45uXTOPLZ44jxqZFEk9JXaW51cnul815S+FoPQFcRPqUgpOI4PMbrH5hV2cDRHjqGhmblsA3F07j6vnjiVVg6rkTJeZ+cLs3m1fOtV42IBzJoyNTl4h0ScFJRNi6rzxoeK4ja6+ey/nTR/VBRYOMrwEOvN0Ull6GE3uCz4+cDtMvhamL4M9fh6rDhJ7nZDGvrpt4bl9ULSIhdCs4uVwuCgsLcTgcuFwuli9fjt1uD9nW6XRSVFQEQHFxMQ8++GCgrdPpBCA7OxuXy4Xb7SY7O7vnP4WInJIyT9ehCaC8tj7ClQwiteXm9ia7N5vf6ypbzlljYOJ5MH2xGZhGTGk594W1TVfVWQgOT01zyBbf1/0Nd0Wk13QrOC1dupTt27cDZoi6/fbbKSgoCNm2qKiIlStXArBu3ToWLlwYeOz69evZsGEDAHl5eR0+h4hEVnlNPX9yHmTjv/aF1T4jJSHCFQ1ghgHHPmkZgit9Bwx/y/nEETDt82ZQmnIJJKSFfp5ZV8CyxztYx+k+87yIRI3FMIxQ/cHtuFyuoOAEMHz4cCoqKtq1dTqdLFy4MHDO5XIxZcoUSkpKcDgcbNiwgWXLlgF02GMVisfjIS0tjcrKSlJTU8N+nIi08PsN3nad4I/Fpby88wj1Pn+Xj7EAmWkJvJF/ia6ea63Ray5A+UlTWHLvDz6fcboZlGZ8wVxrqTs9ReGuHC4ip6w7+SLsHqeioiLS09ODjqWnp+N0OtsNs2VnZ/Pggw8G7rvd7kD7Zt0JTCJy6o5VeSncfpCnig+w/0Rt4PjscalckzuBxDgb3930PhBygIi7L5+l0ARQfQz2vGwGpZJXob665ZwtHiZfYIal6Zee2vpKVhtMPv/U6xWRXhV2cGoOP22Vl5eHPL5kyZLA7aeffpq8vLxAWHK73RQWFgLm/KcVK1bgcDjaPYfX68Xr9QbuezyecMsVEcyr5V7fc4yntpZS9NFRGv1mJEqOj+GKM8bytdwJzBnfMmSUGGdrt45TZtM6Totnj+nz+vsFw4AjO8xJ3bs3w2fbCYqWyaObgtJimHwhxCdHrVQRibxTvqquo0DV+nxhYWHQEF/rSeUOh4NFixZRUlLS7rFr1qxh9erVp1qiyJBzuPIkBdsO8nRxKZ+5TwaOnznBztdyJ3DZ3DEkxbf/57949hgWzcrsdOXwIaHhJOz7Z8tVcJ7Pgs+POaNlYveYM8CqpRlEhoqwg5Pdbm/Xu1ReXt7lkFt+fj5btmwJaudyuQLDe81X6Llcrna9TqtWreLOO+8M3Pd4PGRlZYVbssiQ0ujz8+onx3hq6wFe/aSMps4lUhNi+Er2eK5ZkMXMzK7nBtqsFs6ZMiLC1UZYT+YHeQ419Sq9DK5/QGNL4CRmGEy52AxK0y6F1CHa+yYi4QenvLw81q9f3+54Tk5Oh49Zt24d+fn5OByOQM+Uy+UKmjjerO38KYD4+Hji4+PDLVFkSCotr2XTtlI2bSvlqKdlaHvB5HS+tiCLL8weQ0LsEJpUvOv5Dq5IWxt8RZrfD4ffbRmCO/x+8POkjm+Z2D3pcxA7rG/qF5F+Lezg1LY3yOVykZOTE7Q2k91uD7QrLCwkOzs7EJo2bdrE8uXLcTgcrF27NvA8RUVFLFmyRJPFRbqhvtFP0UdH+ePWA7yx9zjN18amJ8VxdfY4vpo7gakZQ3Cuza7nm9ZAanOxsOewefwrGyA2EXa/BLtfgZqyVo0sMD6naQhuMYw+HSxDbIhSRLoU9nIEYIal9evXk5ubS3FxMatWrQoEnqVLl5Kbm8vKlSsDyw+0ZrfbA71MzYtj2u12SkpKgoJUZ7QcgQx1+47X8FTxAZ7ZfpDj1S2LUX5u6kiuWZDFolmjiY8ZQr1Lrfl98MDs8DbJbRaXAlMvMYPS1EWQrFXRRYai7uSLbgWnaFNwkqGorsHHyx8e4Y9bD/C2q2We4aiUeJbOH89Xc7OYOCIpihX2E/teh8e+1HW75NFw+lfMYbiJ50FMXORrE5F+LSLrOIlI39pztIo/bi3lT+8exF3bAJgjRxdNH8U1CyZwycwMbbQL5tYm+9+E7Y+G1/7zP4W5SyNakogMXgpOIv3IyXofL35wiKeKS9m+v+UCirFpCSzNyWJZbhbj7EN8knLVUXO17v3/MgNT2a7uPT4lMzJ1iciQoOAk0g98eKiSp7aW8uy7n1HlbQTMZQEWzszgawsmcMH0UUNvLaVm7lIzIO1/w/x+Ym/7NqNmwoSzYddzcNJNu8nhAFjMq+smnhvhgkVkMFNwEomSam8jz793iKeKD/DBwcrA8az0YVyTO4Gl88eTkTrENtU1DCh3NQWlpl4l94E2jSyQOducnzTxPDMIJY00T01Z2HRVnYWQG8csvk/7vYnIKVFwEulFPr/R6arbhmHw/sFKntp6gOffP0RtvQ+AWJuFz5+eyddyJ3DulBFYh0rvkmHAsU+Ch96qDge3sdhg7BlmQJr4OZhwFgwbHvr5Zl0Byx7vYB2n+4LXcRIR6QEFJ5Fesnnn4Xb7vI1p2uftnCkjefbdz/jj1gN8fKQqcN4xMomvLZjAV7LHMSJ5CCz26vfD0Z2tht7egtrjwW1scTBuflNQOg+yFkB8Svh/xqwrYOZl3V85XEQkDFqOQKQXbN55mDuecIacWQNmj1KDzzwbF2PlsjljuCY3iwWT07EM5kUWfY3mitzNPUoH3oK6yuA2McMgK7dl6G18jlbpFpE+peUIRPqQz2+w+oVdHYYmgAafwfSMZP7trAl8+czxpCXG9ll93daTfd6aNXrh0LvwadNE7tJ3oL46uE1csjmRu3nobeyZWktJRAYMBSeRU/TG3mNBw3MdWX3l6ZwzZWQfVHQKwt3nrVl9LXy2DT5t6lE6WAyNbV6LBHtTSGoaesucCzb96hGRgUm/vUR6YN/xGl77pIzXdh/jjb3Hu34AUFbl7bpRNHW1z9uyx2HKxWYv0qdNE7k/2w7+huD2iSNh0nktQ28Zs8CqhTpFZHBQcBIJQ423kbddJ3ht9zFe232M/Sdqu/0cGSn9eGkBv8/saQo54Nh0rPAWsx3+4NMpY5uCUtPQ28hp2hxXRAYtBSeREAzDYPfRal7bbfYqFe+roN7XEhhibRZyJqZz4YxRfG7qSG57fBtHK+s6WnaRzDRzaYJ+a/+bXW+O29yzZJ8Ikz7XMvQ2fJKCkogMGQpOIk0qTzbwr73Hee0Ts1fpiCd4rs744cO4aMYoLpyewTlTRpAc3/LP58eXz+KOJ5wdLbvI3ZfP6l8rf1cfgyMfNH3tMOcnheML6+CsFZGtTUSkH1NwkiHL7zfYeagyEJTeLXXj87fEnvgYK+dMGcGF00dx4fRRTB6Z1OHSAYtnj+F312W3W8cps2kdp8Wzx0T85wnJ74eKfS0B6XDT9+ojPXu+jFm9W5+IyACj4CRDyolqL6/vOc5ru4/xz93HOFFTH3R+akZyICgtmJxOQmz4iyYunj2GRbMyO105PKIa6swNb4/saPk6urP9cgAAWGDEVMicY36NPh2e/6a5BIH2eRMR6ZCCkwxqjT4/75W6A5O6d3xWSeslX5PjYzhv6ggunJ7BBdNHMn544in9eTarhXOmjDjFqsNQW94Ujj5oCUnHPgHD175tTIIZjJpDUuZc835cUnC7L/5c+7yJSL/j8/twljk5VnuMUYmjyM7IxhbF30UKTjLoHK48yT+bgtLre45TVdcYdH7WmFQunGH2KmVPGE5cTD++VN4wwL2/JRw1D7V5DoZunzjCDEbNASlzjtmzFM66SdrnTUT6maL9Rdy39T6O1h4NHBudOJq7FtxF3sS8qNSkLVekX+lqk9xQvI0+tn9awT92H+O1T47xydGqoPP2xFjOn2YGpQumjSQjNYLLApzSqtv1cOzjVkNtH8CRneCtDN1++GQzGI2Z2xKSUsac+hVup/IziIj0kqL9Rdz5jzsx2kwfsDT1gt9/0f29Fp605YoMSJ1tktt2cvWBE7WBpQLeLDlBbX3LEJXFAmdk2QNzleaOt/fNPKPurLpdVxk8F+nIB1D2cfvFJMHc9DbjtFa9SE1DbQkR+s+D1QaTz4/Mc4tIn+pvw1zh8vl93Lf1vnahCcDAwIKFtVvXcnHWxX3+86jHSfqFjjbJbY47D1xzBqkJsYG5SvuO1wS1G5kcz4XTR3FR07pKw5P6eO+zjlbdbv4JPvcdc65R85wk9/7Qz5OQ1hKOmuckjZoBtn68t52I9EvRHuZq9DdS01BDVX1V8PeGKmrqm7431FBdX011Q9NXfTU1DTUcqz3G8bqud2XYeOlGcjNzT7lW9TjJgNLZJrnNx7711HtBx2OsFuZPHB6Yq3RaZirWaK2T5PfBS12suv3G/e1PpU1oNdTWFJLSsrSYpEg/MVB7a6DjYa6y2jLu/MednQ5z+Q0/tQ21gSDTOtS0/h4qDLVuW+freg/PU3Ws9ljE/4y2FJwk6rbuKw9rk9yRSXF8fnYmF04fxblTRpCS0Me9MN5qqPjUXBepfJ/5veJTOLorvHWRplwCUxc1haTZMGx4pCsWiZqBHDog+r013WEYBl6fl5ONJznZeJKahhruffveDoe5AP77jf/mpX0vmT0+bQJSTUNNu8edigRbAslxySTHml9JcUmkxKaQFJtESlzw9+TYZJLjkin1lPKzrT/r8rlHJY7q1VrDoaE66VPu2np2H63mk6NV7Dlaxe6jVez4rJIab4jL6Nv41VfP4Mozx0WuOMMwJ0SX72sTkJpu15zi/2yufhjmLOmNSkX6tYEUOkLp7UnJhmFQ76/nZMNJ6nx11DbWmiGn6X5z4KlrNG83n2++3/Z226+6xrqQIelUxVhj2gWc5mATFHpiU0KGoeaQFGvt/n9yfX4flz5zKWW1ZSF/NgsWRieOZvPVm3slkGuoTqLOU9fAnqPV7G4KR3uawtKxKm+nj7PiZ4H1YzJwU4adrf6Z+DGXC+iVq+EaveAubR+Kmm83nuz88cPSIX2yeUXb8Enm7boqePmurv/s5NGnXr8MGQO1x+ZUhoiiwef34fV5qfPVUe+rp6ahhp+8/ZNOe2t++K8f8v6x96n31YcONj4zFAXO+erwG/52zxcJcdY4bBYbJ31d/C4DrphyBQsyFwTCUNtQFGeN63C3hEizWW3cteAu7vzHnViwBL0fzQE2f0F+VP5NqMdJTkmNt5G9Za17kMyw1NnQ2zj7MGZkpjBtdDLTM1KYmpHMij9s44zq1/lR7OOMtZQH2h4y0rmn4QbeT7mAN/IvCe/quJMVZghqPZzWHIwqDxJ6LlITixXSxpvBKL0pHLW+nZDW/jF+HzwwGzyHO3juplW3v71Dl/VLWAZqj01zL0HrulvrrJegebgp8NXYcrvOV9fumNfnpa6xjnp/PXWNdcGPbWrbHIbqfHXtHtvcptFoDFlrpMRaYxkWM4yEmAQSYxIDt4fFDGt3u+1Xgq3pXGzL/cSYRIbFmrcTYhKIscZQfKSYW16+pctaemtidSSF+reQmZhJ/oL8Xv230J18oeAkYalr8LG3rLkHqZo9R6v45GgVBys6/l9NZmoC00YnM2N0CtNHm0Fp2uiUoM1xm7378mPMe/ObALTORs1bx71/7q8589Ibmw76zEv+g0JRq9t17s5/mNikVqFoUnBAsk/o2RVsgavqIOSq28se1wKSfWig9tZA365dEw6/4Q/0ptT56gI9Ka2HmJq/9lTsoWB3QZfPOTZpLBaLJSjU1Pvru3xcpMVaY7FZbGFNaj5v7HnMGjErONh0FnqazsVYIz/Q09fDXJHWF/+eFZyGqJ4sHtmWt9HHvuM1fHKkKmio7UB5Lf4O/qaMTI5n+uhkpjcFpOlNASltWJgBpKnHxvAcIlS1BmCJS4Ksc8D9KbgPgK+LX7LJo4OH01rfThoVmSvXQq7jNG7Arbo9kEMHDNzeGuhZj43P7ws5T6ajeTHN4SdU8An12L64Mqotm8VGvC3e/IqJD9xOsCUQZ4sjPqbldoItodO2CTGtztviSYhpeVzg8THx5hCX1TZoemuaAzgQcpirvw2ZRpuC0yDRnSC0eedh7n1+B1nV7wfmB5Umz+OHV8xpt3gkQIPPz/4TNeZE7SNV7Ckze5L2Ha/B10FCGp4Yy7SmYDRjdErT7RTSw1kzyddoDqHVHoea462+nzDXNfr4RbMZ4EyI55jNxiifj+w6LyE/sq2xZu9Qu+G0yTB8Yvt92PqIr7Ee544/cMxzgFGpE8iecz22mD5eU+oUDOTQAX3bW+Pz+2jwN1Dvr6fB10CDvyHwvfWx5tv1/vqgNm2P1fvrOeA5wOZPN3f5Zw9PGB7oCfL6Op832Juah4M66mGpaajhzUNvdvk838v5HnNHze0w1PRkMnFvGUy9NX01zDUYRCw4uVwuCgsLcTgcuFwuli9fjt1u73bb7jxPT3+wnqiu8fDLZ75BWd1nAExOmUVNQyVpw0aRaZ/MVReuIC4uHoD6ei/PvraeMs8BMlInBJ3rSHces3nnYe55/n1G+LaQGHOc2saRnLAt4kdXzGsXhDbvPMyz/+/3fD/2cY4MqwmEjsyTSfy04QbO+dLNZKYlsPtIFbvLzGG2kmPVNPhCv/UpCTGBnqPprYbZRiXHt0wUbKgzw0/tiZYA1DYQtT520k2nc4uAosRh3DdiOEdjWrqyRzc2cteJCvJqT0L2DTB7iRmQUsf1u/lCCh29yzAMGo1GM1T46gMhpPl2IHg0fa9rrOPHb/6YyvoOtqgBkmKTuHLKlfiMptDT/LzNz9k6/LQ61vrPbD7mC7WhcpSFmg/T1fyZ5mNBc246eKzV0vm+joMldAym3pqB3oPcVyIWnObPn8/27dsBM/zk5+dTUBB6PLuztt15np7+YN313YcWUxRzEH8nQzgjG/18beRVAPzx+LMcb7U5bPO55Vf+NORjNzz3/bAfs3nnYR5+/occH/1Wu/Yjj57DrVfcGwhPPr/B93/2My6J/V/WjWwfOlYer+CZyhW87F/QrqbEOJvZazQqidmjrMxMrWdKUh0jLFVYgoJQUwhqHYrqqzt5NTtiMdcuShppbkabOMK8XV9LUckL3Jkx0vwV1eo9sDT99by/7Dh5Swv67VYg/S10dMVv+AM9Jj7DR31jPUtfXMqxkx0vuTA8fjj3nHcPPr8vKMC0DRhdHm/dG+OrD+6RaRNaInGJdaTEWmPNL1sscVaz1yTOFkeMNSZwu/X35ratj504eYJX9r/S5Z/1w7N/yPzR84NCTYItIWpXQLU2WEKHemuGlogEJ5fLxdKlSwOBB2D48OFUVFR0q213nudUfrDu+O5Di3klpmm3+c5+8bR9qUJ8wP/H8CvbBaENz32f31Q812EoaP0Yn9/gll/ewbsj3uiw/elHziV21K2UVXk54q7hv4f9Jz8ZndBh+3uOVuPyLWNmWiPj42rJsFVhNzzEN1RgqWkKRF3NGQrFGgOJI9sHocSRkDTC/N762LDhYGs/MdLXWM+lj2dz1ErI199iGIz2w+YbnF0OexmGgc/w4Tf8QV9tj/kMX6Bt28f4DB8GTcf8fvx0/lyN/kbufvNu3F53h3WlxqWyYu4KDAwa/Y00+hvxGb7Ad5/fR6PRGHS/uVek+bbP76PBCL4feEzTsaDnbTofaOtvNO/7fQMqkDSzWqxmIGkVNloHlOqGakqrSrt8nouzLmZm+sxAWImxxrSEmtbP3+p222PNf27z7RhrTK+ElsHUYzMYQod6a4aOiKzjVFRURHp6etCx9PR0nE4n2dnZYbfdtm1b2M/TF6prPBSFE5qazzeHpzZtjaZzTx5/lguOXYefGOoafXhqa3ni+LMYNkuHj3ni+LO8uyGDhvoGamo8HBz5OgYdtz846g2+dHQ3OZZGUuMr+d9Rce1CU+v2Px+VyLfLn6C6zsKuOtgJ+C0WfIDfCv7kePwk4LPF4o9Lwh87DH/sMHyxw/DHJOCPTcAfk4AvJh5/TBx+Wzx+Wyw+a0wgVLSECR9+4zC+qoP4Pf52waT5Q7s5lPgMH9UN1Ry1dfzaGxYLR2xw/qaLsFqtIUNR85/RX3nqPfx828+jXcYpG588npHDRppBo1WYaNebYuvgeHPgCRVUmoOQLfTxrj6wwp3Ue/2s6/vtpN7+vHZNd+RNzOPirIsHfOiwWW399u+KRE/Ywcntdoc8Xl5e3u5YZ2278zxerxevt2Xio8fj6bLO7vrlM9/odHiunc7aWiyUx1hY+tdlwcdjOpkXYLFQEWPhjZiHIB5IAei8vTvGxhPjTrQ62MkvI4sFj83GPaNGdNymnZNgnIR6zK9+oqqhqleex2qxml9YsVltgdtWa9N3ixWbxYbFYgn6Hnhc0/nm2556T1g9HfNGzWNCygRsVhs2i40Yawwx1hhsFhs2q40YS/v7NqstcCzonDXGPN/2sa2eO/C91XMF/tw2998te5fbXrmty5/hnvPu6bcfJNkZ2YxOHN1lb012Rt//B6078ibmcf9F94ecLzeQemwUOmSwOuUFJToKQt1tG+rcmjVrWL16dfeL6oZj3sPQyxc9DfP7iTMMLECDxUKNtfMJlQCpPj8JQB3gsXXdPoNYRiQMx9NQw2e+rvcVOi0pizHp09oFhc4Cwane7+hc2zCyt2Iv9ztDbILbxj3n3sO8UfOCnrP1c7cNOB2Fn94Wbk/Ht7K/1W8/SHJG5wz40DFYemtg8PTYiAxGYQcnu93erleovLw85NVwnbXtzvOsWrWKO++8M3Df4/GQlZUVbslhGRU/BoyyXn3O/MSL+OK8q4iLi+fF91/kB56XunzMt7JWsGzRN3nb+RC37/hVl+1/OucbnJ19G8WH3uaWLbd32f575/6I3LFnh1V/Xzt37Lk8+fGTXX5oXzHlin75wTEYejoGS+gYLL01oB4bkf4q7P9+5+WF/oWTk5PTrbbdeZ74+HhSU1ODvnrbd67+P6yG0X7id0c6aWsxDEY1+rn8y/czbOYibI4L+MJl9zKy0R+YqN3RY666cAUAuXNvIMNndNp+tM8gd665SnV2Zi6jY1M7bZ8Zl0Z2P/4F3PyhDS0f0s0Gwof2QK+/WXPoyEjMCDo+OnH0gLkSCsyf4+WrX2bjpRtZe/5aNl66kc1Xbx4w9YtI/xZ2cHI4HEH3XS4XOTk5gZ4ip9OJy+Xqsm1Xz9PXkpNSyWscb97pKjy1Ot82qDTfv2bkVUFrM8XFxQeWMAjnMbaYOFZNv7bT9ndNvzZwdZnNauOu81aDxRK6vcVC/rk/1od2hA30+psNltDR3FvzRccXyc3M7fd//0Vk4Oj2Apjr168nNzeX4uJiVq1aFQg8S5cuJTc3l5UrV3bZtrNznYn2Ok6jGv1c08E6Ts3nurOOU2ePKXpjDfftfjLoarNMn0H+9GvJ+9yq9u1DXv47mvwBsvhis4F++e9Ar19EZCjSlis91J9WDofub9+hD20REZHuU3ASERERCVN38kXvX5stIiIiMkgpOImIiIiEScFJREREJEwKTiIiIiJhUnASERERCZOCk4iIiEiYTnmT377UvHKCx+OJciUiIiIyWDTninBWaBpQwamqqgqg1zf6FREREamqqiItLa3TNgNqAUy/38+hQ4dISUnB0snWKD3l8XjIysqitLRUC2xGkd6H6NN70D/ofYg+vQf9Q6TfB8MwqKqqYuzYsVitnc9iGlA9TlarlfHjx0f8z0lNTdU/kH5A70P06T3oH/Q+RJ/eg/4hku9DVz1NzTQ5XERERCRMCk4iIiIiYVJwaiU+Pp67776b+Pj4aJcypOl9iD69B/2D3ofo03vQP/Sn92FATQ4XERERiSb1OImIiIiEScFJREREJEwDajmCSHK5XBQWFuJwOHC5XCxfvhy73R7tsgYFp9NJUVERAMXFxTz44IOB17az172n56Rz+fn5rFq1Su9BlBQVFeFyuXA4HADk5eUBeh/6isvloqioiPT0dFwuF0uWLAm8F3oPIsfpdHL77bezffv2oOOReM0j/n4YYhiGYWRnZwdul5SUGEuWLIliNYPL2rVrg263fq07e917ek46tn37dgMwKioqAsf0HvSdLVu2GMuXLzcMw3zNHA5H4Jzeh77R+veRYRiB98Mw9B5ESkFBQeB3T1uReM0j/X4oOBnmC9v6hTYMw7Db7VGqZnDZvn170GtZUlJiAEZJSUmnr3tPz0nnCgoKDIfDEQhOeg/6VuvX3jDM17H5u96HvtH29WodZPUeRFbb4BSJ17wv3g/NcYJAt21r6enpOJ3OKFU0eGRnZ/Pggw8G7rvdbsB8fTt73Xt6TjpWWFjIkiVLgo7pPeg7LpeL8vJy7HY7TqcTt9sdGCLS+9B30tPTmT9/fmDIbtGiRYDeg2iIxGveF++HghMtH+ZtlZeX920hg1TrD+unn36avLw87HZ7p697T89JaG63O+QYv96DvuN0OklPTw/MvdiwYQOFhYWA3oe+VFBQAMCUKVMoKCgI/H7Se9D3IvGa98X7ocnhnejoDZCecbvdFBYWtpscGKpdb58b6jZt2sTy5cvDbq/3oPeVl5fjcrkC/3FYvnw5w4cPx+hkKT29D72vqKiItWvX4nK5WLFiBQDr16/vsL3eg74Xide8N98P9TgBdru9XRpt7lKX3pOfn8+WLVsCr2tnr3tPz0l7RUVFLFu2LOQ5vQd9x+FwBF47IPDd6XTqfegjLpeL4uJi8vLyWL58OSUlJWzatAmXy6X3IAoi8Zr3xfuh4ETL5cBt5eTk9HElg9e6devIz8/H4XDgdrtxu92dvu49PSehbdq0iQ0bNrBhwwZcLhdr1qzB6XTqPehDzfOZQtH70DecTie5ubmB+w6Hg1WrVun3UZRE4jXvi/dDQ3W0/4XmcrnIycnR/xh6SWFhIdnZ2YHQ1Dxs1Pb1bf269/SctNf2F8mKFStYsWJFyA9yvQeR43A4yMnJCcw3a17LKTs7u11bvQ+RkZ2dzfr164PmXZ44cULvQR9qPd+ys8/e/vz5oL3qmrhcLtavX09ubi7FxcVBCwRKz7lcLqZMmRJ0zG63U1FRETjf0eve03MSmtvtZsOGDeTn57N8+XJWrFhBdna23oM+5Ha7yc/PZ/78+Wzfvj3QCwv6t9BXioqKAsOjYP7HQu9BZBUVFbFlyxbWrVvHypUryc3NDYTXSLzmkX4/FJxEREREwqQ5TiIiIiJhUnASERERCZOCk4iIiEiYFJxEREREwqTgJCIiIhImBScRERGRMCk4iYiIiIRJwUlEREQkTApOIiIiImFScBIREREJk4KTiIiISJgUnERERETC9P8B+zIH3Y/l1bQAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFnCAYAAABQEsaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABT+klEQVR4nO3deXxU9b3/8dfMZCOQZAgQ1rAMyiaCZkFBrQuhoq1L22AXrUsrUPvr6r0l0t5eS5eLYOtte29rQeveuiS1KrbFEltrb0UJDKIIiGbYhECAMJmEkEkyc35/nGSSyToJmS15Px+PPJI55zvDJ3MgefP9fs/3azEMw0BEREREemSNdgEiIiIi8ULBSURERCRECk4iIiIiIVJwEhEREQmRgpOIiIhIiBScREREREKk4CQiIiISooRoF9Abfr+fI0eOkJaWhsViiXY5IiIiMgAYhkFNTQ3jxo3Dau2+TymugtORI0fIzs6OdhkiIiIyAB06dIgJEyZ02yauglNaWhpgfmPp6elRrkZEREQGAo/HQ3Z2diBndCeuglPL8Fx6erqCk4iIiPSrUKYBaXK4iIiISIgUnERERERC1Kvg5HQ6yc3N7bFdSUkJbrcbt9vd6Ws4nU4AXC5X4GsRERGRWBdycCopKQEIKegsWbKE4cOHM3z4cCwWCxaLhbVr1wKwbt06cnNzsVgsLF++HIfD0cfSRURERCIr5MnhhYWFIbVzu90UFxcHtV+7di0rVqwAIDc3l1OnTgFgt9t7UaqIiIhIdIXlrrq2oamkpKRD6Ao1MHm9Xrxeb+Cxx+Ppl/pERERE+qLfJ4e3DUVut5uqqqqg4Ti3201JSQklJSUUFRXhcrm6fK3Vq1eTkZER+NDilyIiIhJNFsMwjF49wWIh1KcsX76cNWvWdAhTLY+dTidLliyhvLy80+d31uOUnZ1NdXW11nESEREZBHx+gy37qqisqScrLYV5UzKxWft32zWPx0NGRkZI+SJsC2C63W5KS0s7DMu5XC5ycnIAcDgcuFwuXC5Xp5PEk5OTSU5ODleJIiIiEsM27qxg1YZdVFTXB46NzUjh3utmsXj22KjUFLZ1nLZu3dohNDmdThYuXNihbWZmZrjKEBERkTi0cWcFdz3lDApNAEer67nrKScbd1ZEpa4+Baf26zM5nc4Oc5WcTmeHQORwOFizZk3gcWlpKYWFhbq7TkRERAJ8foNVG3bR2cSglmOrNuzC5+/VbKN+EXJwKi0tpaioCDAnbbes69TZ4xbth9/sdjt5eXmsXbuW9evXU1ZWRnFxcV9rFxERkQFoy76qDj1NbRlARXU9W/ZVRa6oZr2eHB5NvZm8JSIiIvHpxbcP881n3u6x3S8+dwE3XDD+rP+83uQL7VUnIiIiMSUrLaVf2/UnBScRERGJKVlpyVi6WXHAgnl33bwpkb+5TMFJREREYsbJWi9feryMlolE7fNTy+N7r5vV7+s5hULBSURERGLCmQYfX3p8KwdO1pGdOYQ1n5nDmIzg4bgxGSk8eEtO1NZxCtsCmCIiIiKhavL5+frTTnYccmNPTeSxO+YxddQwCnMnhH3l8N5QcBIREZGoMgyDH2x4j9LdlSQnWPntbXlMHTUMAJvVwvypI6JcYSsN1YmIiEhUPfiPcp568yAWi7nEQO6k2N1RRMFJREREouaF7YdZu/F9AO79ZPT2oAuVgpOIiIhExRsfnuA7JTsAWHrZFG6/ZEqUK+qZgpOIiIhE3J6jHpY/uY1Gn8En5oxl5TUzo11SSBScREREJKIqqs9w+yNl1HibmDclk58tmYs1infK9YaCk4iIiESMp76R2x8p46innnOyhvHQF/NISbRFu6yQKTiJiIhIRDQ0+Vn+xDbeP1ZDVloyj92RT0ZqYrTL6hUFJxEREQk7v99gRckONrtOMjTJxqN35DNheGq0y+o1BScREREJu/v/+j4vvH2EBKuFB2/J5bxxGdEuqU8UnERERCSsnnzzAA++Vg7A6k+fz8emjYpyRX2n4CQiIiJhs2nXMe59cScAdy+axpK87ChXdHYUnERERCQsth88xdefduI34HP52Xz9qnOiXdJZU3ASERGRfrf/xGm+/PhW6hv9XDl9FD++cTYWS3ys1dQdBScRERHpVydrvdz26BaqTjdw/vgM/vcLOSTYBkbkGBjfhYiIiMSEMw0+vvT4Vg6crCM7cwiP3J7P0OSEaJfVbxScREREpF80+fx8/WknOw65sacm8tgd8xiVlhztsvqVgpOIiIicNcMw+MGG9yjdXUlSgpWHb81j6qhh0S6r3yk4iYiIyFn7zT9cPPXmQSwW+MVnLyBvcma0SwoLBScRERE5Ky9sP8yajXsA+M9PzuKa88dGuaLwUXASERGRPnvjwxN8p2QHAEsvm8Idl0yJckXhpeAkIiIifbLnqIflT26j0WfwiTljWXnNzGiXFHYKTiIiItJrFdVnuP2RMmq8TcybksnPlszFao3/BS57ouAkIiIiveKpb+T2R8o46qnnnKxhPPTFPFISbdEuKyIUnERERCRkDU1+lj+xjfeP1TAqLZnH7sgnIzUx2mVFjIKTiIiIhMQwDFaU7GCz6yRDk2w8ens+E4anRrusiOpVcHI6neTm5obUzul0AuByuQJftzxeu3YtJSUlrF27Frfb3buKRUREJCruf+V9Xnj7CAlWCw/eksvs8RnRLiniQt48pqSkBIfDERSCurJu3TrWr18PQEFBAcXFxYFzS5YsYdu2bYAZopYuXRp0XkRERGLPk28e4NevlQOw+tPn87Fpo6JcUXSEHJwKCwtDftHc3FxOnToFgN1uDxx3uVxB7RwOB6WlpSG/roiIiETepl3HuPfFnQDcvWgaS/Kyo1xR9IRtu+K2galFaWkpmZnBS7BnZmbidDrJycnp0N7r9eL1egOPPR5Pv9cpIiIiXdt+8BRff9qJ34DP5Wfz9avOiXZJURWWyeFut5uSkhJKSkooKioK9DR1NZ+pqqqq0+OrV68mIyMj8JGdPXgTroiISKTtP3GaLz++lfpGP1dOH8WPb5yNxTLw12rqTlh6nJYtWxbocXI4HCxatIjy8vIu23cVqFauXMndd98deOzxeBSeREREIuBkrZfbHt1C1ekGzh+fwf9+IYcEm27GD8s70HYuk8PhwOVy4XK5sNvtHXqXqqqqOh3WA0hOTiY9PT3oQ0RERMLrTIOPLz2+lQMn65gwfAi/vT2Poclhm90TV/o9ODmdThYuXNjheGZmJgUFBZ0+Jy8vr7/LEBERkT7w+Q2+/vR2dhxyY09N5PEvzSMrLSXaZcWMPgWn9kNrTqcz0MvkcDhYs2ZN4FxpaSmFhYXY7XYcDkfQ81wuF3l5eV32OImIiEjkGIbBvS/tpHT3MZISrDx8ax5TRw2LdlkxJeR+t9LSUjZt2gSYk7bz8/MDSxS0PF6xYgV2u528vDzWrl2L3W6nvLw8aJ2m4uJiioqKyM/Pp6ysTGs4iYiIxIjf/MPFU28exGKBX3z2AvImZ/b8pEHGYhiGEe0iQuXxeMjIyKC6ulrznURERPrRC9sP861n3wbg3utmccclU6JbUAT1Jl9oeryIiMgg98aHJ/hOyQ4All42ZVCFpt5ScBIRERnE9hz1sPzJbTT6DD4xZywrr5kZ7ZJimoKTiIjIIFVRfYbbHymjxtvEvMmZ/GzJXKzWwb3AZU8UnERERAYhT30jtz9SxlFPPedkDWP9rbmkJNqiXVbMU3ASEREZZBqa/Cx/YhvvH6thVFoyj92Rjz01KdplxQUFJxERkUHEMAxWlOxgs+skQ5NsPHp7PhOGp0a7rLih4CQiIjKI3P/K+7zw9hESrBYevCWX2eMzol1SXNHGMyIiIgOUz2+wZV8VlTX1ZKWlsLeyhl+/Vg7A6k+fz8emjYpyhfFHwUlERGQA2rizglUbdlFRXd/h3LcLprEkLzsKVcU/BScREZEBZuPOCu56yklXW4NMG6395/pKc5xEREQGEJ/fYNWGXV2GJgvww5d34fPHzY5rMUXBSUREZADZsq+q0+G5FgZQUV3Pln1VkStqAFFwEhERGUAqa7oOTX1pJ8EUnERERAaQrLSUfm0nwRScREREBpBhyQl0t92cBRibkcK8KZkRq2kgUXASEREZILYfPMXND79Jy7zv9vmp5fG9183Cps18+0TBSUREZAB4y3WSWx5+C099E7mThvPATXMZkxE8HDcmI4UHb8lh8eyxUaoy/mkdJxERkTj3j73HWf7kVuob/SyYOoKHbs1jaHICN1wwPmjl8HlTMtXTdJYUnEREROLYK+8d5eu/306Dz89VM7L49c05pCTaALBZLcyfOiLKFQ4sCk4iIiJx6sW3D3P3czvw+Q2uPX8MP//shSQlaBZOOCk4iYiIxKFnyw5yz/PvYhjw6ZzxrP3MHBJsCk3hpuAkIiISZx75v3388OVdANx80UR+dMNsrJq7FBEKTiIiInHkV3//kPtfeR+ApZdN4bvXzsRiUWiKFAUnERGROGAYBve/8j6/fq0cgG8uPJdvFZyr0BRhCk4iIiIxzjAMVm3YxWNv7Adg5TUzWH751OgWNUgpOImIiMQwn9/ge398l2fKDgHwoxvO44vzJ0e3qEFMwUlERCRGNfr8/HvxDl58+whWC6wtnEth7oRolzWoKTiJiIjEIG+Tj6//fjt/3XWMBKuFX3zuQj4xR1ulRJuCk4iISIw50+Bj+VPbeH3vcZISrDx4cw4LZ46OdlmCgpOIiEhMqfU28aXHytiyr4ohiTYevi2PS84ZGe2ypJmCk4iISIyormvk1ke3sOOQm7TkBB69I5+8yZnRLkva6NXa7E6nk9zc3JDarV27lrVr17JkyRLcbnfQOafTCYDL5Qp8LSIiMpidqPXyuYfeZMchN/bURH6/9GKFphgUcnAqKSkBCCnolJaWsmLFClasWEF+fj4LFy4MnFu3bh25ublYLBaWL1+Ow+HoQ9kiIiIDx9Hqej67bjO7KzyMHJbMs8vmc/6EjGiXJZ2wGIZh9OoJFgvdPcXpdLJw4UJOnToFmL1KU6dOpby8HIfDwfr167npppsAsNvtvSrW4/GQkZFBdXU16enpvXquiIhILDpUVccXHn6TQ1VnGJeRwu+WXsyUkUOjXdag0pt80e9znHJycnjooYcCj1uG6TIzW7sbQw1MXq8Xr9cbeOzxePqlRhERkVhQfryWmx96i6OeeiaNSOV3d17EhOGp0S5LutGrOU6hKiwsDHz97LPPUlBQEAhLbrebkpISSkpKKCoqwuVydfk6q1evJiMjI/CRnZ0djnJFREQibneFh8+u28xRTz3nZA3jueXzFZriQL8P1bXldrvJzc1l27ZtQcGp5Wun08mSJUsoLy/v9Pmd9ThlZ2drqE5EROLajkNubn1kC9VnGpk1Np0nvzyPEcOSo13WoNWbobqw9Di1KCoqYtOmTUFDc217mBwOBy6Xq8tep+TkZNLT04M+RERE4tmWfVXc/PBbVJ9p5MKJdp5edrFCUxwJ2zpOa9eupaioCIfDEZjn5HK5giaOt2g7/0lERGSg+ucHx1n6xFbqG/1c7Mjk4dvyGZasJRXjSZ96nNquywTmkFvbXqOSkhJycnICoem5557DbrfjcDhYs2ZNoF1paSmFhYW9vrtOREQk3mzadYwvP2aGpiunj+KxO+YpNMWhkK9YaWkpmzZtAsxJ2/n5+YFJ4C2PV6xYgcvlYsmSJUHPtdvtLFu2DLvdTl5eHmvXrsVut1NeXk5xcXE/fjsiIiKx56UdR/j2s2/j8xtcM3sMv/jchSQlhHW2jIRJryeHR5PWcRIRkXjzXNkhip5/B8OAT104nvsL55BgU2iKJVFdx0lERERMj7+xn3tfeg+AL1w0kR/fMBur1RLlquRsKDiJiIiEwYOvlbNm4x4AvnzpFP7jEzOxWBSa4p2Ck4iISD8yDIMHNu3lf/72IQDfuOocvr1omkLTAKHgJCIi0k8Mw+DHf9rNb/9vHwBFi2dw1xVTo1yV9CcFJxERkX7g8xv8xwvv8vSWQwCsuv48blswObpFSb9TcBIRETlLTT4//168gxfePoLVAvd9Zg435Wl/1YFIwUlEROQseJt8fOPp7bzy3jESrBb++7MXcN3ccdEuS8JEwUlERKSP6ht9LH9yG//Ye5wkm5Vf3ZzDolmjo12WhJGCk4iISB/Uepu48/Ey3nRVMSTRxkO35nHpuSOjXZaEmYKTiIhIL1XXNXL7Y1vYftDNsOQEHr0jn/zJ2rB+MFBwEhER6YWTtV6++Nst7KrwYE9N5IkvzWPOBHu0y5IIUXASEREJ0TFPPTc//BYfVtYyclgST915ETPGaO/UwUTBSUREpBM+v8GWfVVU1tSTlZbC2IwUbn1kCwer6hibkcLv7rwIx6hh0S5TIkzBSUREpJ2NOytYtWEXFdX1gWNWC/gNmJiZyu/uvIjszNQoVijRouAkIiLSxsadFdz1lBOj3XF/84G7rpiq0DSIWaNdgIiISKzw+Q1WbdjVITS19ctXP8Dn766FDGQKTiIiIs227KsKGp7rTEV1PVv2VUWoIok1Ck4iIiLNKmu6D029bScDj4KTiIhIs6y0lH5tJwOPJoeLiIg0c52o7fa8BRiTkcK8KVolfLBScBIREQHWv17Of/15T+CxBYImiVuaP9973SxsVgsyOGmoTkREBjXDMPjpK+8HQtNXLp/KgzfnMCYjeDhuTEYKD96Sw+LZY6NRpsQI9TiJiMig5fcb/GDDezyx+QAAKxZP56tXnAPAx88bE7Ry+LwpmeppEgUnEREZnJp8fr5T8g5/3H4YiwV+dMNsbrl4UuC8zWph/tQRUaxQYpGCk4iIDDr1jT6+/vR2Nu06hs1q4YGb5nLDBeOjXZbEAQUnEREZVE57m1j6xFbeKD9JUoKVX38hh4JZo6NdlsQJBScRERk03HUN3P5oGW8fcjM0ycbDt+VrOE56RcFJREQGhcqaem797Rb2HK3BnprI43fMY262PdplSZxRcBIRkQHvUFUdt/z2LQ6crCMrLZmn7ryIaaPTol2WxCEFJxERGdA+rKzhloe3cNRTT3bmEH735YuZOCI12mVJnFJwEhGRAevdj6q57dEtVJ1u4NysYTx150WMTtc+c9J3vQpOTqeTpUuXsm3btm7buVwuSkpKcDgcuFwuli1bht1u7/GciIhIf3nLdZIvP76VWm8TcyZk8Pgd8xg+NCnaZUmcCzk4tYQdp9PZY9slS5YEwpXL5WLp0qUUFxf3eE5ERKQ//H1PJV95ahveJj8XTcnk4dvySEtJjHZZMgCEHJwKCwtDaudyuYIeOxwOSktLezwnIiLSHzbsOMK3n32bJr/BwhlZ/OrmHFISbdEuSwaIfp/jVFpaSmZmZtCxzMxMnE4nW7du7fJcTk5Oh9fyer14vd7AY4/H09/liojIAPL0loN894/vYhhw/dxx/OymuSTatJ+99J9+/9vkdrs7PV5VVdXtuc6sXr2ajIyMwEd2dnY/VSkiIgPN+tfLWfm8GZpuvmgi//3ZCxSapN9F7G9UV6Gpu3MrV66kuro68HHo0KHwFCciInHLMAx++sr7/Nef9wDwlcun8uMbZ2OzWqJcmQxE/T5UZ7fbO/QgVVVVYbfbuz3XmeTkZJKTk/u7RBERGSD8foMfbHiPJzYfAGDF4ul89YpzolyVDGT93uNUUFDQ6fG8vLxuz4mIiPRGk8/PvxXv4InNB7BY4Mc3zlZokrDrU4+T2+0O6iVyOp3Y7XYcDgcOhyOorcvlIi8vL9Dj1NU5ERGRUNU3+vj609vZtOsYNquFB26ayw0XjI92WTIIhBycSktL2bRpE2BO2s7Pzw8sUdDyeMWKFQAUFxdTVFREfn4+ZWVlQes0dXdORESkJ6e9TSx9YitvlJ8kKcHKr7+QQ8Gs0dEuSwYJi2EYRrSLCJXH4yEjI4Pq6mrS09OjXY6IiESYu66B2x8t4+1DboYm2Xj4tnzmTx0R7bIkzvUmX2ivOhERiQuVNfXc+tst7Dlagz01kcfvmMfcbHu0y5JBRsFJRERi3qGqOm757VscOFlHVloyT915EdNGp0W7LBmEFJxERCSmfVhZwy0Pb+Gop57szCH87ssXM3FEarTLkkFKwUlERGLWzsPV3PrIFqpON3Bu1jCeuvMiRqenRLssGcQUnEREJCZt2VfFlx8ro8bbxJwJGTx+xzyGD02KdlkyyCk4iYhIzPn7+5V85clteJv8XDQlk4dvyyMtJTHaZYkoOImISGx5+Z0jfOuZt2nyGyyckcWvbs4hJdEW7bJEAAUnERGJIc9sOcjKP76LYcD1c8fxs5vmkmiL2H70Ij1ScBIRkZjw0OsufvLn3QDcfNFEfnjDbGxWS5SrEgmm4CQiIlFlGAYPbNrL//ztQwC+cvlUihZPx2JRaJLYo+AkIiJR4/cbrNrwHo9vPgDAisXT+eoV50S5KpGuKTiJiEhUNPn8rCh5h+e3H8ZigR/dMJtbLp4U7bJEuqXgJCIiEVff6OMbT2/nr7uOYbNaeOCmudxwwfholyXSIwUnERGJqNPeJpY9uZV/fXiSpAQrv/5CDgWzRke7LJGQKDiJiEjEuOsauP3RMt4+5GZoko2Hb8tn/tQR0S5LJGQKTiIi0u98foMt+6qorKknKy2FeVMyOXnay62/3cKeozXYUxN5/I55zM22R7tUkV5RcBIRkX61cWcFqzbsoqK6PnBsVFoyGAbHaxvISkvmqTsvYtrotChWKXHD74MDb0DtMRg2GiYtAGv0VpJXcBIRkX6zcWcFdz3lxGh3/HiNF4ARw5Io+coCJo5IjXxxEn92vQQbi8BzpPVY+jhYvAZmXR+VkrSOvYiI9Auf32DVhl0dQlNbCVYL44cPiVhNEsd2vQTP3RocmgA8FebxXS9FpSwFJxER6Rdb9lUFDc915pjHy5Z9VRGqSOKW32f2NHUaw5uPbbzHbBdhCk4iItIvKmu6D029bSeD2IE3OvY0BTHAc9hsF2EKTiIi0i+y0lL6tZ0MYjUVobWrPRbeOjqh4CQiIv3ieE093W3LawHGZphLE4h06fA2eP3+0NoOi/zCqbqrTkREzkpdQxM/3LCLZ8oOddmmJVDde90sbNbu4pUMWqdPQOkPYPtTmPOYLHQ+xwnzXPo4c2mCCFNwEhGRPttd4eFrv3dSfvw0Fgt87cpzmDEmjR//aXfQRPExGSnce90sFs8eG8VqJSb5mmDrb+HvP4H6avPYnM/B5EvgpW80N2oboJqD9+L7orKek4KTiIj0mmEYPPnmAX78p900NPkZnZ7Mf3/2AhZMHQnA4tljO6wcrp4m6WD//8GfV0Dle+bjMXPg2vth4sXm4xR7F+s43Re1dZwUnEREpFdOnW7gOyXvULrbnJi7cEYW9y+ZS+bQpEAbm9WiPeika9WHYdP3YecfzMdDhsPC/4Sc24J7kWZdDzM+oZXDRUQkPr3pOsm3nnmbo556kmxWVl47g9sXTMZiUW+ShKDJC5t/Ba//FBpPg8UKuXfAVf8BqV3cNGC1wZTLIltnNxScRESkR00+P7/824f8798+wG+AY9RQ/ufzF3LeuIxolybxYu9fzUUrq8rNx9kXw7VrYezc6NbVSwpOIiLSrcPuM3zrme2U7T8FwE15E/jB9eeRmqRfIRKCKhdsXAl7N5qPh42GRT+COTdBHPZU6m+9iIh0aePOClaUvIOnvolhyQn85FOzueGC8dEuS+JBw2n45wPwxi/B1wDWBLj4LvjYCkhJj3Z1fdar4ORyuSgpKcHhcOByuVi2bBl2u73TtiUlJRQUFAB0aON0OgHIycnB5XLhdrvJycnpffUiIhIW9Y0+fvTyLn731kEA5mbb+Z/PXcjEEalRrkxinmHArhfglf8Az0fmMceVcM1aGDUtqqX1h14FpyVLlrBt2zbADFFLly6luLi4y7btrVmzhhUrVrBu3TrWr18PQEFBQZevISIikbf3WA1f+72TvcdqAfjK5VP5t49PI9GmzSakB5W74c/fgf3/NB9nTITF/wUzPhmXw3KdCTk4uVyuoMcOh4PS0tJO27rdboqLiyksLAwcW7t2LStWrAAgNzeXU6fMsfKueqxERCSyDMPg91sO8sMNu/A2+RmVlswDN83lsnNHRbs0iXX11fDaffDWOjB8kJACl3wLLv0WJA6JdnX9KuTgVFpaSmZm8K2CmZmZOJ3OTofZ2oamkpKSoMcQWmDyer14vd7AY4/HE2q5IiLSC9V1jdzz/Dv8ZedRAC6fNoqf3TSXkcOSo1yZxDS/H3b83twq5fRx89iMT8LV/wXDJ0W1tHAJOTi53e5Oj1dVVXU41jYUud1uqqqqcDgcQcdKSkoAKCsrY/ny5UHnW6xevZpVq1aFWqKIiPRB2f4qvvn0do5U15Nos1C0eAZfumQKVq30Ld057DSH5Q5vNR+PnAbXrIGpV0W3rjA767vqugpULYqKilizZk3QsbaTyh0OB4sWLaK8vLzDc1euXMndd98deOzxeMjOzj7bkkVEBPD5DX719w/5eele/AZMHpHKLz9/IXMm2KNdmsSy0yfg1VXgfBIwIGkYXF4EF30FEpJ6fHq8Czk42e32Dr1LVVVV3Q65ud1uSktLO7RxuVyB4b2WO/RcLleHXqfk5GSSk9VNLCLS345W1/OtZ7fzpsv8uf7pC8fzwxtnMyxZq9RIF3xNsPUR+PuPgzfjXbQK0sZEt7YICvlfSEFBAevWretwPC8vr8vnbN26tdOlCBYuXBiYHN6i/fwpEREJj027jvGdkh246xoZmmTjRzfO5tM5E6JdlsSy/f8yh+UCm/GeD9f+tHUz3kEk5ODUvjfI5XKRl5cXCEZOpxO73R7Uzul0dghEDocjaOiutLSUwsJC3V0nIhJm9Y0+Vv95N49vPgDA+eMz+OXnL2TKyKFRrkxilucI/PX7sNOcl8yQ4XDV9yH39qhutBtNveqTLS4upqioiPz8fMrKyoLWX1q9ejX5+fmBJQdatA9cdrudvLw81q5di91up7y8XOs4iYiE2YeVtXz96e3srjDvTr7z0imsWDyDpAStzSSdaL8ZLxbIu8MMTV1txjtIWAzDMKJdRKg8Hg8ZGRlUV1eTnh6/y7WLiESKYRg8t/UQP3hpF2cafYwYmsRPb5rLldOzol2axKoPNsFfitpsxnuRuer3uAuiWlY49SZfaBagiMgA5alv5LvPv8vL71QAcOk5I3ngs3PJSkuJcmUSk6pcsPG7sPcv5uOhWfDxH8Gczw6YVb/7g4KTiMgA5Dx4im88vZ2PTp0hwWrh3z4+neUfc2htJumooQ7+7wH41y/B5zU3473oK+YSA3G8GW+4KDiJiAwgfr/Bb14v52d/3YvPb5CdOYRffu5CLpw4PNqlSazpcjPeNTBqelRLi2UKTiIiA0Slp55vP/c2//rwJADXzR3HTz41m/SUxChXJlHj98GBN6D2GAwbDZMWmHfDVe6Gv6yAfa+b7QbgZrzhouAkIjIA/H1PJf9WvIOq0w0MSbSx6obzWJI7AYt+CQ5eu16CjUXmkgIt0sbC2DnwQWnwZryXfBOSUqNWajxRcBIRiWPeJh9rN77Pb/9vHwAzx6bzP5+/kHOyhkW5MomqXS/Bc7cC7W6cr6kwP6B5M96fwPDJka4urik4iYjEKdfxWr7xzHZ2HjbXZrp9wWTuuWYGKYmDc2FCaeb3mT1N7UNTW6kj4KYnBu0ilmdDwUlEJA79YdtHfP/FndQ1+Biemsj9hXMpmDU62mVJLDjwRvDwXGfqTprtplwWmZoGEAUnEZE4UlPfyH+++B5/3H4YgIsdmfz8sxcyJkNrMwnQeAbefS60trXHwlvLAKXgJCISg3x+gy37qqisqScrLYV5UzLZebiabzyznQMn67BZLXy74FzuuuIcbFqbSWoroexh86PuZGjPGaYeyr5QcBIRiTEbd1awasMuKqrrA8fSUhI47W3Cb8B4+xB++fkLyJ00uPcME8xlBTb/L7zzHPgazGPp2eD1mB+dznOyQPo4c2kC6TUFJxGRGLJxZwV3PeXs8Ouupr4JgAuz7Tx2xzwyUrU206BlGFD+N3MT3vJXW4+Pz4MFX4MZ18H7f26+q85CcHhq7p1cfJ8mhveRgpOISIzw+Q1WbdjV3b1QHPXUMyxFP7oHpSYvvFtsBqbKXeYxi9VcVmD+12DiRa1tZ11v3jXXfh2n9HFmaJp1fWRrH0D0r09EJEZs2VcVNDzXmYrqerbsq2L+1BERqkqi7vQJ2PoIbHkITleax5KGwYVfhIuWQ+aUzp8363qY8YnOVw6XPlNwEhGJEZU13Yem3raTOHd8L7z5K9jxDDQ1X/P08eYGvDm3whB7z69htWnJgX6m4CQiEgNqvU1s2NHD2jvNstK09MCAZRjm/nGbfwUfvNJ6fOwFsODrMOsGsGl+WzQpOImIRNk/PzjOPX94l8PuM922swBjMsylCWSAaWqA954375A7+m7zQQtMv9ac8D1xvjbfjREKTiIiUeKpb+S//rSbZ8oOAZCdOYTP5EzgF6UfAJ3eC8W9183Suk0DSV0VbHsU3loPtUfNY4mpcMHNcPFdMGJqdOuTDhScRESi4O/vV/Ld598NTAa/fcFkvnP1dIYmJzBjTFqHdZzGZKRw73WzWDx7bLRKlv50shze/DW8/XtorDOPpY2Fecsg93ZIVa9irFJwEhGJoOq6Rn70p12UbPsIgEkjUln7mTlc5Gi9S27x7LEsmjWmw8rh6mmKc4Zh3uG2+VfmOkstfYpjzjeXEzjv05CQFNUSpWcKTiIiEVK66xjf/eO7VNZ4sVjgS5dM4d8/Pp0hSR1vD7dZLVpyYKDwNcKuF835S0e2tx6fthjm/z+YfJnmL8URBScRkTBz1zXwww27eL55Y17HyKGsLZxD3mQNxwxoZ9zgfBzeWgce89qTkAJzPw8XfxVGTYtqedI3Ck4iImH0yntH+Y8XdnK8xovVAnde5uDuRdNISdQihANW1T546zfgfBIaT5vHhmaZ85fyvgRD1ZMYzxScRETCoOp0Az946T1eal6b6ZysYdxfOIcLJw6PcmUSNgffMofj9rwMht88ljXLHI6bXQiJWn9rIFBwEhHpZ39+t4L/fHEnJ2obsFpg+eVT+ebCc9XLNBD5mmDPBnPC90dlrcfPKTADk+NKzV8aYBScRET6yYlaL/e++B5/ercCgGmjh3F/4VzmZtujW5j0jd/X9T5v9R7Y/iS8+RuoPmgesyXDnJvMwJQ1M3p1S1gpOImInCXDMHj5nQrufek9qk43YLNa+OoVU/naVeeQnKBepri06yXYWASeNtvgpI+Dj33HXINp2+PQUGMeTx0B+Ush/8swLCs69UrEKDiJiJyFypp6vv/CTl557xgAM8ak8dMlc5k9PiPKlUmf7XoJnruV4LXbMUPUy99ufTxymtm7NOezkDgkoiVK9Cg4iYj0gWEYvPj2EX6w4T3cdY0kWC187apz+OoV55CUYI12edJXfp/Z09Q+NLVlS4abnoBzPw5WXevBRsFJRKSXKj31fPePOyndbfYynTcunfsL5zJrXHqUK5OzduCN4OG5zvi8kDRUoWmQUnASEQmRYRj8wXmYH254D099E4k2C9+46ly+csVUEm36JRr3Tp+ELQ+F1rb2WHhrkZjVq+DkcrkoKSnB4XDgcrlYtmwZdru907ZOpxOAnJwcXC4XbrebnJycXr+OiEgsqKg+w3eff5e/v38cgPPHZ3D/kjnMGKNeprhX5TKXE9j+O2g6E9pzho0Ob00Ss3oVnJYsWcK2bdsAM/wsXbqU4uLiTtuuW7eO9evXA1BQUBDUrjevIyISTYZh8NzWQ/z45d3UeJtIsln51qJzWXaZgwT1MsW3j7bCv34BuzfQuuHuHKg+ZG6X0uk8J4t5d92kBZGrU2JKyMHJ5XIFPXY4HJSWlnbZPjc3l1OnTgEE9Sb19nVERKLlsPsM9/zhHf75wQkALsi2c3/hHM4dnRblyqTP/H7YuxHe+B84+Ebr8XMWwSXfMDfc3b2h+a46C8HhqXkhy8X3ta7nJINOyMGptLSUzMzgDSkzMzNxOp2BIbj2Oht+683reL1evF5v4LHH4wm1XBGRPjMMg6e3HOK//rybWm8TSQlW/v3j0/jypQ5sVq0CHZca6+GdZ80tUU7sNY9ZE5sXrPwajJ7V2nbW9eZdc52t47T4PvO8DFohBye3293p8aqqqi7bl5SUAFBWVsby5ctxOBy9ep3Vq1ezatWqUEsUETlrh6rquOf5d/jXhycByJ00nLWFc5g6aliUK5M+qauCrb+Ft9bD6UrzWHIG5N0BFy03w1BnZl0PMz7R9crhMmid9V11XQWhthO+HQ4HixYtory8vFevs3LlSu6+++7AY4/HQ3Z29tmUKyLSKb/f4HdvHWD1X/ZQ1+AjJdHKd66ewe0LJquXKR6d2g9vPgjOJ6HxtHksfQJcfBfk3AopIUzqt9pgymVhLVPiT8jByW63d+gVqqqq6vJuOJfLFRh6a7l7zuVy9ep1kpOTSU5ODrVEEZE+OXDyNEV/eIc3XebPpnmTM1lTOIcpI4dGuTLptSPb4V+/hF0vgOE3j40+35y/dN6nwJYY1fIk/oV8S0hBQUGnx/Py8jocczqdLFy4sMPxzMzMXr2OiEg4+f0Gj/5rH4t//k/edFUxJNHGD66bxTPLLlZoiieGAXv/Co99EtZfAe89b4amqVfBF/8IX/mnOZdJoUn6Qcg9Tg6HI+ixy+UiLy8v0FPkdDqx2+04HA4cDgdr1qwJtC0tLaWwsBC73d6hZ6n964iIRMK+E6dZUbKDsv3m3b8XOzJZ+5m5TByRGuXKJGRNXni3xLxD7vhu85g1AWYXwoKvwZjzo1ufDEi9muNUXFxMUVER+fn5lJWVBa29tHr1avLz81mxYgV2u528vDzWrl2L3W6nvLw8qG13ryMiEk6+5l6m+195H2+Tn6FJNu65diY3z5uIVXOZ4sMZN2x7FN78DdQeNY8lpUHubeYcpowJUS1PBjaLYRjd7GQYWzweDxkZGVRXV5OertV6RaRzPr/Bln1VVNbUk5WWwrwpmdisFsqP1/Kd4h04D7oBuOScEdz36TlkZ6qXKS64DzVP+H4cGmrNY2ljzbCUezukZES1PIlfvckX2qtORAaUjTsrWLVhFxXV9YFjY9JTWDB1BC+/W0FDk59hyQl899qZfH5eNhaLepliXsU75nDczj+A4TOPZc2CBV83h+USkqJbnwwqCk4iMmBs3FnBXU85O2yUcdRTz/PbDwPwsWmjWP3p8xlvHxL5AiV0hgHlf4M3fgmu11qPT/kYLPgmnLMQFHolChScRGRA8PkNVm3Y1enuYi0yhiTyyG152mMulvkazZ6lN/4Hju00j1ls5lICC74O4y6IankiCk4iMiBs2VcVNDzXmeozjZTtP8X8qSMiVJWErN5jzl1680HwmL2DJA41F6u8+C4YPim69Yk0U3ASkQGhsqb70NTbdhIhniNmWNr2GHib9yMdNtrcDiXvSzBkeFTLE2lPwUlE4t5h9xlKtn0UUtustJQwVyMA+H3d7/N27D1zOO7dYvA3mcdGTjeH4+bcBAnaNUJik4KTiMQtd10Dv/r7hzy++QANTf5u21qAMRnm0gQSZrtego1FZm9Si/RxsPg+SLGbE74/LG09N+lSMzCd+3Gwav6ZxDYFJxGJO/WNPh57Yz+//vuHeOrN3oqLHZlcMS2LNRv3AARNEm+59+re62Zpw95w2/USPHcrtJ+m7znSfLyZxQozr4cF34AJuREtUeRsKDiJSNzw+Q3+4PyI/960NzARfMaYNIqumcEV00ZhsViYPDK14zpOGSnce90sFs8eG63SBwe/z+xp6vbeRiD/Tpj/NcicEpGyRPqTgpOIxDzDMPj7+5Ws+cv7vH+sBoBxGSn828enc+OF44N6kRbPHsuiWWM6XTlcwuzAG8HDc12ZdaNCk8QtBScRiWnbD55i9V/2sGVfFWCuxfT/rpzKrfMnk5Jo6/Q5NqtFSw5Ekq/RXKTy9Z+F1r72WFjLEQknBScRiUmu47X89K/v8+d3zU1ckxKs3HHJZL56+TlkpCZGuTrB74dDb5l3xe16AepOhv7cYaPDVpZIuCk4iUhMOV7j5Rev7uXpLYfw+Q0sFvhMzgTuXjSNcdomJboMw1zN+91i2Pk8VB9qPZc6Es67Ed57oTlEdTbPyWLeXTdpQWTqFQkDBScRiQm13ibWv+7i4X+6qGswN3K9akYWKxZPZ8aY7ncrlzCrcsG7f4CdJXB8T+vxpDSYeR2c/xmYcgXYEmDK5c13z1no9N7GxfcFr+ckEmcUnEQkqhp9fp7ecpBfvvoBJ2obAJibbWflNTO42KF5SlFTcxTe+6PZu3R4W+txWzJM+zicv8RcdymxXS/grOvhpie6Xsdp1vWRqV8kTBScRCQqDMPgT+9W8NNX3mf/yToApowcyneuns41s8dgseguuIg744bdG8ywtP+fYDQvKmqxmj1J5y+BmZ+ElIzuX2fW9TDjE92vHC4SpxScRCTiNpef5L6/7GbHR9UAjByWxDcXnsvn5k0k0aaVoyOq8Qzs3QjvlsAHfwVfQ+u5CflmWJp1I6T1ckK31QZTLuvXUkVigYKTiETM7goPazbu4bX3jwOQmmRj2cccLL3MwdBk/TiKGF8juP5h9izteRkaalvPjZoJ5xfC7M9orSWRTugnlYiE3WH3GR74616e3/4RhgEJVgufnzeRbyw8l1Fp2sw1IlqWD9hZYs5dart8QMZEc4L3+Utg9HnRq1EkDig4iUjYuOsa+PVr5Tz2xv7AJryfOH8s/371dKaMHBrl6gaBwPIBJbDzD50sH/ApMyxlzwPNKRMJiYKTiPS7rjbhveeamVyQbY9ucYNB1T6zZ+ndzpYP+KQ5FDflCnP5ABHpFf2rEZF+4/MbPO/8iAfabMI7fXQa91wzgyumj9KdcuFUc6zN8gFbW4/bkmDa1TC70PzcfvkAEekVBScROWtdbcJ798en86l2m/BKiPy+nm/nb1k+YGcJ7Hu9k+UDCmHGJ2GIPdLViwxYCk4icla2HzzFfX/Zw1vNm/CmpyTw/648h9sWdL0Jr/Rg10tdLCC5Bs5d1P3yAbMLzblLvV0+QERCouAkIn2y78Rp7n9lT/AmvAsm89UrtAnvWdn1UvOWJe32evMcgee+CAkp0FTfenzUDHOCt5YPEIkIBScR6ZWWTXif2XKIpjab8H570TTGaxPes+P3mT1NnW6Q26ypHtKzYU6h2bs0+jzdEScSQQpOIhLE5zfYsq+Kypp6stJSmDclE5vVQq23iYded/FQm014r5w+iqJrZmgT3v6y7/Xg4bmu3PhrcHws/PWISAcKTiISsHFnBas27ArcEQcwJj2FK6aPonT3sdZNeCdkcM81M5k/VZvwnrWG0/Dhq+YK3rtfCu05pyvDW5OIdEnBSUQAMzTd9ZSzwyDRUU89z5SZCydOHpHKd66ewbXnaxPes3LmFOx9xbwj7sNXoelM754/TBO/RaJFwUlE8PkNVm3Y1d3MGjKGJLDxWx/TnXJ9VXO0uVdpA+z/P/A3tZ6zT4QZ18H0a+GPS8FTQefznCzm3XWTFkSqahFpR8FJRNiyrypoeK4z1Wea2H7QreG53jhZ3hyWXoaPtgSfy5plrrE08zoYc37rBO/Fa5rvqrMQHJ5azt/XcT0nEYmYXgUnl8tFSUkJDocDl8vFsmXLsNvtnbZ1Op2UlpYCUFZWxkMPPRRo63Q6AcjJycHlcuF2u8nJyen7dyEifbb3WA3/+/cPQmpbWdN9uBr0DAOOvtsalirfCz4/Ib81LI2Y2vlrzLoebnqii3Wc7jPPi0jU9Co4LVmyhG3btgFmiFq6dCnFxcWdti0tLWXFihUArF27loULFwaeu27dOtavXw9AQUFBl68hIuHR5PNTuvsYj79xgM2ukyE/LystJYxVxSm/Dw5taR2Gcx9oPWexwZTLzLA04xNm+AnFrOvN9j2tHC4iERdycHK5XEGPHQ5HoEepPafTyerVqwPBqbCwkKKiIlwuFw6Hg9zcXE6dOgXQZY+ViPS/E7Veni07xFNvHggMzVktsGjmaMoOnOLU6YauZtYwJsNcmkCApgbY/7oZlPb8Ofgut4QUOKfADEvTrobUPr5n1ubQJSIxJeTgVFpaSmZm8A+AzMxMnE5nh2G2nJwcHnroocBjt9sdaN8ilMDk9Xrxer2Bxx6PJ9RyRaSNtw+5eeKN/bz8TgUNPnM/s8yhSXx+XjZfuGgS4+1DAnfVdTGzhnuvmzW495xrOA0flpphae9fwVvdei45wwxJM6+DcxZC0tDo1SkiYRVycGoJP+1VVVV1erywsDDw9bPPPktBQUEgLLndbkpKSgBz/tPy5ctxOBwdXmP16tWsWrUq1BJFpI36Rh9/eqeCJzbvZ8dHrb/k507I4Nb5k/nEnLFBd8gtnj2WB2/J6biOU0YK9143i8Wzx0a0/phQV2XuC7f7ZSh/NXirk6FZ5nDazOtg8mWQkBS9OkUkYs76rrquAlXb8yUlJYH5TUDQpHKHw8GiRYsoLy/v8NyVK1dy9913Bx57PB6ys7PPtmSRAe2w+wy/e/MAz5Qdouq0uWBlks3KJ+eO5db5k7kg297lcxfPHsuiWWM6XTl80PAcgT1/al02wPC1nhs+uXVy94R8zTkSGYRCDk52u71D71JVVVWPQ25FRUVs2rQpqJ3L5QoM77Xcodcy/6mt5ORkkpOTQy1RZNAyDIPN5Sd5fPN+Nu06hr95rG1cRgo3XzyJz+ZnM3JYaP+WbFZL/C854Pf1bmL1iQ9hzwazZ+nw1uBzo2c3h6VPml9r4U+RQS3k4FRQUMC6des6HM/Ly+vyOWvXrqWoqAiHwxHomXK5XCxcuDAwObxF+/lTItKzWm8Tf3R+xOObD/BhZW3g+IKpI7h1/mQKZmaRYLNGscIo2PVSF7fyr2m9ld8w4Og7Zq/S7pfh+O7g15gwz+xVmvlJyOw4jUBEBq+Qg1P73iCXy0VeXl7Q2kx2uz3QrqSkhJycnEBoeu6551i2bBkOh4M1a9YEXqe0tJTCwkLdXSfSC+XHa3ly8wFKtn1ErddcgTo1ycanc8Zz6/zJTBudFuUKo2TXS82LR7a7N9BTYR6/8ntwpsoMS9UHW89bE8x5SjOvM+ctpY2JaNkiEj8shmF0t8tCEJfLxbp168jPz6esrIyVK1cGAs+SJUvIz89nxYoVuFwupk4NXtzNbrcHeplaFse02+2Ul5cHBanueDweMjIyqK6uJj1du7HL4OLzG/xtTyVPbN7PPz84ETjuGDmUL86fxGdyJ5CekhjFCqPM74Ofzw7uaepOwhDzDriZ18O0j8OQ4eGtT0RiVm/yRa+CU7QpOMlgdOp0A89uPcSTmw9w2G1uBmuxwMIZo7l1/iQuPWck1sE0ebsr+/4Jj3+y53aOKyH/yzB1ISSlhr8uEYl5vckX2qtOJEbtPFzNE5v38+LbR/A2mWsv2VMT+Wx+NrdcNInsTP3SB8zNc/e9DtseC639hbeYQ3IiIn2g4CQSQxqa/PxlZwVPbD7AtgOtN1DMGpvO7Qsmc/0F44LWXhqUzrjNZQL2/cMMTMf39O75w0aHpSwRGRwUnERiwDFPPb976yC/f+sgJ2rN1fITrBauPX8sty2YRM7E4VgG623wDXVw6E1w/cMMSxU7wPC3aWCBsXNg8qWw4xlz0cquNo5JH2cuTSAi0kcKTiJRYhgGZftP8fjm/byy8yhNzYsvZaUlc/NFk/j8vGyy0gfhprq+RjjsNEOS6x/w0RbwNQS3GXEuTPkYOC4374Zr2Q8u++Lmu+q62Dhm8X1atFJEzoqCk0g/8vmNHlfdrmto4sW3j/D4G/vZc7QmcHze5ExuXTCJq88bQ+JgWnvJ74djO81ht33/MBeubKgNbpM+HqZcboalKR+DjPGdv9as6+GmJ7pYx+m+1nWcRET6SMFJpJ9s3FnRYZ+3sW32edt/4jRPvXmA57YewlNvrr2UkmjlUxeO54sXT2bWuEFyp6hhQJWrtUdp/z+h7mRwmyGZMOWy5rB0OYyYGvqK3bOuN9di6s3K4SIiIdJyBCL9YOPOCu56ytlhZk3LgNHscem8V+Gh5V/bxMxUbp0/iSW52WSkDoK1lzwVrZO5Xf8Az0fB5xOHmuHG0dyrNPp8sA6iXjcRiSotRyASQT6/waoNuzqdjtxybOcRDwBXTB/FbfMnc/m0UQN77aW6quY735qH307sDT5vTYTseWZvkuNyGJcDCUnRqVVEpBcUnETO0pZ9VUHDc13575vm8qmcCRGo6Cz1doNcgIbTcHBz851vr5t3vrWfnD3uguY5SpfDxPlafFJE4pKCk0gfGYbBB5W1/O6tAyG1j4seplA2yAVoaoDD29rc+VYG/sbg1xo5vXXobfKl2tJERAYEBSeRXmho8rNlXxWlu4/x6p5jHKo6E/Jzs9JifGmBnjbIXfRD8/G+f8CBzdB4OrhdRnbwnW/pYyNStohIJCk4ifSg6nQDr71fyau7K3l973FqvE2Bc0kJVhY4MnEedAfulGvPAozJMJcmiFl+n9nT1N1MrU3fDz6cOqJ16G3KxyDTEfqdbyIicUrBSaQdwzD4sLKW0t2VvLr7GM6Dp/C3yRMjhyWzcEYWC2dmcem5I0lNSgjcVQedLrvIvdfN6rCeU8wwDLO3qe3wXFfG58PsT5lBKes83fkmIoOOgpMI5hBc2f7mIbjdlRysqgs6P3NsOgUzs1g4czRzxmd0mK+0ePZYHrwlp8M6TmParOMUEwwDairgyNtwZDtUNH8+fTy051/8FTi/MJwViojENAUnGbROnW7gtb2VlO6u5PX32w3B2azMnzqCgplZXDVzNOPtQ3p8vcWzx7Jo1pgeVw6PKE9Fczh6uzUo1R7rpKEV8HdyvB1tkCsig5yCkwwahmFQfrx1CG7bgfZDcElcNcPsVbr0nJEMTe79Pw+b1cL8qSP6sepeqDkW3It05G2oPdqxncUKo2aaywOMuxDGXgBZM+FX+WbQ0ga5IiJdUnCSAa3R56dsX5UZlvYc48DJ4CG4GWPSKJg5moUzs5g7wR4fSwYA1FZ2HG6rqejYzmI1lwUYd2FrUBo9u/M1lBav0Qa5IhJzfH4fzkonx+uOMyp1FDlZOdii+LNIwUkGHHddA6+9f5zS3cf4x97j1NQHD8Fd3DIENyOLCcPjYBHG2uMdh9s8hztpaIFR080epJagNOZ8SBoa2p+jDXJFJMaUHijlvi33cayudYrB6NTR3DPvHgomFUSlJu1VJ3HPHII7zavNE7u3HqjqMAR35XRzCO6yc/s2BBeyvqy63dbpk1CxvXWo7cjbHfd1A8ACI89tHWobd6EZkpKHRf97EBHpB6UHSrn7tbsx2k0fsDT3gj9wxQP9Fp60V53ELZ/fCGlydaPPvAvu1eb5Svs7GYJb2HwX3AWRGoILddXtFnVV7eYk7YDqg52/9ohzg+ckjZ0DyWlh+CYwQ9KUy8Lz2iISUbE2zBUqn9/HfVvu6xCaAAwMLFhYs2UNV2ZfGfHvR8FJYsbGnRUdbucf2+Z2fnddA//Ye5zS3ZW89n5lhyG4ixyZFMwczVUzssjOjPAQXE+rbt/4a0gbGxyU3F2EpMypwXOSxsyBFPWwikjvxNowl9/wc7rxNLUNtXgaPNQ21gZ9XdNQQ21DLTWNNRyoPhBUd3sGBkfrjuKsdJI/Jj+C34WG6iRGtCwg2dVfxnOyhrHvxGl8bcbgMoeaQ3AFM7O4bNoohoVzCK47fh/8fHZoC0i2l+loM9x2AYydCykZ/V2hiPRBvPbWQP8PcxmGgdfnpbaxOeg0NIeeRvPrmoYaM/i0CUBtw1HLuc56kM7GmsvWcK3j2rN+HQ3VSVzx+Q1WbdjV7T+nDytrAZg+us0QXLY9OmskGYa5YOTJcqgqh/LXQgtNw8bApPlthtvmwhB7mIsVkb6Itd6a3uhpmAvgR2/+CAODusY6M/Q01gQFnJZw1DYMNbbfyLuPEq2JpCWlmR+JaQxLGhZ4PCzR/Lqqvoqn9zzd42uNSh3VLzX1hnqcJCqafH72n6xjd4WHV3cf44W3ew4ev/zcBVx/wfgIVIcZjuqqzGDUEpACn13QUNP71/zMb7Xqtgwa6q3pm0Z/I2eazlDXWMeZpjNBX9c11XU81+5YXVMdx+uO46p2haU+CxYz6LQNPInNoafN4y7PJaWRbEvu8c/x+X1c/Yerqayr7DQAWrAwOnU0Gz+zsV/+XqnHSWLKqdMN7D7qYU9FDbsrPOw5WsPeYzV4m0JYqbqNsCT8M6fMINRZQKqv7uaJFsjIhhEOSEiFvX/u+c/SqtsySAzk3pqWScnzx87H6/eedchp/7z+6tUJRXZaNhPTJrYGm04CUPtzqYmpWC3h36PSZrVxz7x7uPu1u7FgCboeLQG2aF5RVMK4epyk3zT6/LiOn2bPUQ+7K2qaP3s45vF22n5Ioo3pY9LIHJrE3/ZUAmDFzzzrHrJwU4mdLf4Z+DH/kT699OK+rcpd72kTiFzBAelMVffPTR9vzkMaMdWctN3yefhkSEwx2wTmOPWw6va33tVt/RKyeO2xiXZvjbfJS72vHq/PS31Tvfl1y7Hmz/VN5nmvzww+LW29Pi+Haw/zxpE3wlJfbyRYEhiSMIQhiUNITUg1v273ODUhtcP51MRUPqr5iF+9/ase/4xHrn4k4hOre6uzED4mdQxF84r69e+Repwk7E7UegM9SC29SR9W1tLg67wXaWJmKjPGpDFjbDqzxqYxY0w6EzNTsVot+PwGl675G3NrXuc/E59gnKU1zBwxMvlh463sSPsY86Zkdl2Qt9YMRZ0FpJ42sB02pjkQtQtIw6d0vsJ2e1abVt2OMfEaOlrEa49NKHNrfvzmj8lMyaTB3xAUbNoGnbbBpkP46eaYz/BF+lsmxZYSFFoCgaaT0BN0vn0Aanc+0ZbY55p8fh8le0t6HObKyco5m289IgomFXBl9pUx9e9ZPU7SrYYmPx9W1rLnqDnEtrvC7E06Udt5L9Kw5ITmgGSGo5lj05k+Jq3HO962v/I4c9/4BgBt53u33ES3Y8EvufCqmzr2GLU87mxPtraGjmrTY9QmIGU6+mfRSOhiHafxWnU7wuI1dLSIdI+NYRg0+Bs409j50FFXw0yBY42tbU6cOcGR0324uzQMUmwpJCckk2xLZkjCEJJtyZ0eS7Ylk5KQEvh8vO44xXuLe3z9Xy38FZeMuyRmA3nL3yOg02GucPb8xaPe5AsFpwEk1MUjO2MYBsdrvOxqnoO0p/nzh5W1NPk7+R+LBSaPGMrM5oA0Y0waM8emM2H4ECyWXt7p1jzUZXiO0NkzDcBisUFP/5scktluSK1NQIrUOkgDYNXteO6tieYwUX9omRDb3fo1o4aM4uGrH8bb5O0QaroLP90d9xu9m294tjJTMslMyQwEmRRbSlB4afmcYuvbsWRbcu9/DjWL9KTkcIrUMNdAoOA0QPQmCG3cWcGPXnqX7NodgflBh4bN5fvXn8/i2WOD2tY3+viwsjbQe9TSm1R1uqHT105PSWDG2HRmNoejGWPTmTZ6GKlJIYz0NtSZQ2WnTzR/Pg6nK4Mfn9pvfgA+wJmSzHGbjVE+Hzn1XoJ+NKVkBM81Cnx2wJDhPdcTZvEcOiC+e2t6Ch29/YVnGAaN/kYafA00+Bto8DXQ6Gukwd/Qerz5XOB48+cGX3CbRn+b821fz98Y9Jyq+qqw3Q0ViiRrUpfDS0FDUF2cO1hzkJ9u/WmPf06sz60ZSL018f4zKVIUnPqooamBZ/c+y4HqA1gsFmYOn8V7R4/h96UyKWMcX5h7BUkJZlhoaPDywj/WUek5SFb6RG68fDlJSd3fYtmb52zcWcEPX9rBCN8mUhNOUNc0kpO2Rfzn9XM7BKGNOyt44fe/4XuJT3B0yOlA6BhzZig/bryVcy7/PKlJCYGhtvYLSbawWsAxalig96jl89iMlNb/vfl95p1op49DbWUnoajtxwloqA35/S9NHcJ9I4ZzLKE1kI1uauKek6coqDsDn/w55N5udnfFoHgOHRDd3hrDMGgymgLBwuvzdggi7UNK4Fjz8XJ3OX/44A89/lkzM2cyJGFItwGmwd9Ak7+px9eKlmRbMulJ6d0Gmw7HE7tvMyRhCAnWs5v2qt4aiVdhC04ul4uSkhIcDgcul4tly5Zht9t73bY3r9PXb6y3Htj6AI+/9zh+uu6ytjRl8MVp3ySj6m2ePvECJxJab8kc2eTn8yNvZNkNP+n0uetf/F7Iz9m4s4LfvvR9Toze3KH9yGPz+fL1PwqEp8YmP99b/V8UJP0va0d2DB0rTpziD9XLecU/L+jPsKcmMrN5DtJ5o2ycl9HAlCF1JHur2oSiE8Eh6HQl1J2E3nbr25JhWBYMHWnONRo6qvnrLPPrmqOUvrGau7NGmj9q2wQjS/NfzwcqT1CwpDhm91CL9SEin9+Hz/DR5G+iyWiiyd+Ez9/62Ovzcucrd3Ky/mSXr5GRnMG3c75Nk78pKGA0+hrNoNO2l6Xd+aBjnfTgNPga+n1F4f6WYE0g0ZpIki2JJGsSSbakwOO2xxNtiV2fb9Omw2vZEtlfvT/u74ZSb43Eo7AFp9zcXLZt2waY4aeoqIji4s4n0XXXtjev09dvrDce2PoAj+58FDC6780wDILumurkF/zXht/QIQitf/F7/O+pF7sMBW2f4/MbfOm/72L7iP/rsv2sowtoTL+Nox4vlZ7T/CTj2/x4dEqX7X94rJaaxCXMsjcxNrGWEYabJG8VlpZA1Hg6xHeqjSGZrSFo2Kh2gWhUcyhq/jo5rdv31dfUwNVP5HDMSqftLIbBaD9svNWJLSGpy9cxDAO/4cdv+PEZvk6/7u6xz/BhGEa3j4Oe5zcfNxlN/Gjzj6hu6Hrdp7TENG6ffXugZ6VtaAmEmOavm/xNgZDj8/toNBoD7QPhp22bNsfaH2/0m8+N9VDSns1iCwSOZFtyh3DSEjRavk6yJlHdUB3SbeRLz1/KzBEzuwwwHY43/9mRWLtmoPTYqLdG4k1YgpPL5WLJkiWBwAMwfPhwTp061au2vXmds/nGQtXQ1EDeU7nmD6lQhoCMjqGp7bkRPoMnCzeSlJBEo89P9ek6vvrn66myWbp8TqbPYIbxHRq8Xmpq3VSOfIJT3bQf7vNzfcU4hlgayeQUD45t4pTV2mX7DL+fopOnwAI+LPgBnwX8WPABfosFnzUBf3IavqRU/ElD8SWm4k8cYj5OTMGfkIIvIQV/QjK+hCTzNToLFn5/h6DR4bM/ONTUNNRwsKaLDW/bSEtMw2q14vf78RMcXloeS+hsFhs2i40EawJ+w0+9r77H58zInMGEYROCQ0u7npZkW7L5dSdhJOhYu6/bBpi+hIKBFDoGQo+NemsknoRlHafS0lIyM4PX0cnMzMTpdJKTkxNy261bt4b8OpHwu/eewrAAnd7P1YnuwpXFwskEC9e+0G7DwYRu/qdqsVCVYOENfgaJwDCA7tufSrDxeHbbCbDd/DCyWKi22fhu1siu2wSpA38deDE/YkhNYx+2OWnHarGaH1ixWW2tjy1WbBZbj1+3fdzy2e11s9+zv8c/O290HpPSJ5FgTTA/LAnYrLbA1wnW5sfNxxOtiYFg06Fd8/GWj0A7S/PzrLbgdm1fv/l42x6UsqNlfOmVL/X4PazIXxGzQ0SxvNJwbxRMKuCBKx7odL5cPPXY2Ky2mP27InI2Qg5Obre70+NVVR1XXu6ubW9ex+v14vW2/vb2eDw91tlb23ds6PfXtBhGIMoYgC+Enqxkv59EoAmot/Y8JGA3bGQkp1HXVM9xf889BVNTxzLaPqXTX/w2iw2rtePxroKC1dIaOjp9rc6e2037D90f8nPnz3v8HlYtWMXcUXMDz7NYLKH9ubQe7+styt0JNXR89YKvxuwvkpysHEanjo77BfMGSuiIxUX/RMR01iuHdxWEetu2s3OrV69m1apVvS+qF0ad8UJK/77mf1rzuWr6x0lOSubVD17le2de7/E5KyYs56ZF3+BN58MsffcXPba/f87XuDjnTsqOvMmXNi3tsf33Lvkh+eMuDqn+SLt0/KU8vefpHn9p3zD1hpj8xTEQQsdA6a2BgRM61GMjEptCnu1ot9s79ApVVVV1ejdcd2178zorV66kuro68HHo0KFQyw3ZFanzsBpG69ylnnTT1mIYjGryc/3nfkPmRZ9n6IWfZvGNDzCyyR+YqN3Vc268fDkA+XNuJctndNt+tM8gf86tAOSMyWd0Ynq37cckZZATwz+AW35pQ+sv6Rbx8Es73utv0dJbk5WaFXR8dOrouJlX06IldFzruJb8Mfkx/96LSPwIOTgVFHT+QzMvL69XbXvzOsnJyaSnpwd99LeLltzDF93Nc2d6Ck9tzrcPKi2PPzfyxqC1mZKSkvn8yBtDfo4tIYmV027utv09024O3F1ms9q455JVYLF03t5ioWjBD2L+F0e8/9KO9/pbFEwq4JXPvMIjVz/CmsvW8MjVj7DxMxvjpn4RkXALeajO4XAEPXa5XOTl5QV6ipxOJ3a7HYfD0W3b9j1L7V8n0pJSUrgk5RNY3C/zhD29m1WcYIzPx4qTbirHXcXD3rc5kdDauzDSZ/C5LtZxWnbDT+BFmtdx6vk5BZeu5AHgvr2/41ibvDPaD0XTbqbg0pXB7ScV8MAV/91xXsfQMRTFyeKLEP9DLPFefwsNEYmIdK3XC2CuW7eO/Px8ysrKWLlyZSDwLFmyhPz8fFasWNFj2+7OdSecC2Bu/s1XuaDi95RkDOVAQgIW4DxvAzU2K8N9fkb7fFyYNJKE5g1bw71yOJjrGznffZLjnoOMSp9Izvlf7HYdI93+KyIi0nvacqWPGurr2faH+6GqHADbhFxGJdQzKXsi1oxxcblhq4iIiHQvLOs4DQZJKSnMv/n70S5DREREYlT49xAQERERGSAUnERERERCpOAkIiIiEiIFJxEREZEQKTiJiIiIhEjBSURERCREcbUcQcuSUx6PJ8qViIiIyEDRkitCWdoyroJTTY25p1x2dnaUKxEREZGBpqamhoyMjG7bxNXK4X6/nyNHjpCWlobFYun5Cb3k8XjIzs7m0KFDYVmZXEKj6xB9ugaxQdch+nQNYkO4r4NhGNTU1DBu3Dis1u5nMcVVj5PVamXChAlh/3PS09P1DyQG6DpEn65BbNB1iD5dg9gQzuvQU09TC00OFxEREQmRgpOIiIhIiBSc2khOTubee+8lOTk52qUMaroO0adrEBt0HaJP1yA2xNJ1iKvJ4SIiIiLRpB4nERERkRApOImIiIiESMFJREREJERxtY5TOLlcLkpKSnA4HLhcLpYtW4bdbo92WQOC0+mktLQUgLKyMh566KHAe9vd+97Xc9K9oqIiVq5cqWsQJaWlpbhcLhwOBwAFBQWArkOkuFwuSktLyczMxOVyUVhYGLgWugbh43Q6Wbp0Kdu2bQs6Ho73POzXwxDDMAwjJycn8HV5eblRWFgYxWoGljVr1gR93fa97u597+s56dq2bdsMwDh16lTgmK5B5GzatMlYtmyZYRjme+ZwOALndB0io+3PI8MwAtfDMHQNwqW4uDjws6e9cLzn4b4eCk6G+ca2faMNwzDsdnuUqhlYtm3bFvRelpeXG4BRXl7e7fve13PSveLiYsPhcASCk65BZLV97w3DfB9bPus6REb796ttkNU1CK/2wSkc73kkrofmOEGg27atzMxMnE5nlCoaOHJycnjooYcCj91uN2C+v9297309J10rKSmhsLAw6JiuQeS4XC6qqqqw2+04nU7cbndgiEjXIXIyMzPJzc0NDNktWrQI0DWIhnC855G4HgpOtP4yb6+qqiqyhQxQbX9ZP/vssxQUFGC327t93/t6Tjrndrs7HePXNYgcp9NJZmZmYO7F+vXrKSkpAXQdIqm4uBiAqVOnUlxcHPj5pGsQeeF4zyNxPTQ5vBtdXQDpG7fbTUlJSYfJgZ216+9zg91zzz3HsmXLQm6va9D/qqqqcLlcgf84LFu2jOHDh2N0swaxrkP/Ky0tZc2aNbhcLpYvXw7AunXrumyvaxB54XjP+/N6qMcJsNvtHdJoS5e69J+ioiI2bdoUeF+7e9/7ek46Ki0t5aabbur0nK5B5DgcjsB7BwQ+O51OXYcIcblclJWVUVBQwLJlyygvL+e5557D5XLpGkRBON7zSFwPBSdabwduLy8vL8KVDFxr166lqKgIh8OB2+3G7XZ3+7739Zx07rnnnmP9+vWsX78el8vF6tWrcTqdugYR1DKfqTO6DpHhdDrJz88PPHY4HKxcuVI/j6IkHO95JK6Hhuro+APN5XKRl5en/zH0k5KSEnJycgKhqWXYqP372/Z97+s56aj9D5Lly5ezfPnyTn+R6xqEj8PhIC8vLzDfrGUtp5ycnA5tdR3CIycnh3Xr1gXNuzx58qSuQQS1nW/Z3e/eWP79oE1+m7lcLtatW0d+fj5lZWVBCwRK37lcLqZOnRp0zG63c+rUqcD5rt73vp6TzrndbtavX09RURHLli1j+fLl5OTk6BpEkNvtpqioiNzcXLZt2xbohQX9W4iU0tLSwPAomP+x0DUIr9LSUjZt2sTatWtZsWIF+fn5gfAajvc83NdDwUlEREQkRJrjJCIiIhIiBScRERGRECk4iYiIiIRIwUlEREQkRApOIiIiIiFScBIREREJkYKTiIiISIgUnERERERCpOAkIiIiEiIFJxEREZEQKTiJiIiIhOj/A8KBaQLt7Mj9AAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -1167,9 +1167,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFTCAYAAADP+YMtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVR0lEQVR4nO3deXxU9b3/8ddM9n0SIAlIWIZFRXAJCYpbtYSW2mo3oLV1qQvh2vbX3uu9JaW91Us3JL1Xu922QG2t2qokXcT2FsvUWq1aCYwoGBTIIIQ1hGSykGSSmTm/P04yyZBJMglJJsv7+Xjkkcw53xm/mYPJO9/v93y+FsMwDERERESkT9ZId0BERERktFBwEhEREQmTgpOIiIhImBScRERERMKk4CQiIiISJgUnERERkTApOImIiIiEScFJREREJEzRke5Af/j9fo4fP05KSgoWiyXS3REREZExwDAMGhoamDJlClZr72NK/QpOTqcTh8MBQFlZGZs3b8Zms4Vs63K5KC0txW6343K5KCwsDLTt7Vxvjh8/Tk5OTn+6LCIiIhKWyspKpk6d2mubfgUnh8PBmjVrACguLmbJkiXs2rUrZNsVK1YEzrlcLlatWkVJSUmf53qTkpICmN9Yampqf7ouIiIiElJ9fT05OTmBnNEbS7h71TmdTpYsWUJtbS1gBp5Zs2ZRUVGB3W4PautyuYLCEUB6ejq1tbW9ngvnG0tLS6Ourk7BSURERAZFf/JF2CNOubm5bN68OfDY7XYDkJGR0a2tw+HodjwjIwOn08nOnTt7PJebmxt03OPx4PF4Ao/r6+vD7a6IiIjIoOvXXXXLly8PfP3MM89QUFAQcm1SR6g6V01NTa/nzrV+/XrS0tICH1rfJCIiIpE0oHIEbreb0tLSsNYlnfu8/pxbu3YtdXV1gY/Kysp+9lRERERk8AyoHEFRURHbt2/v8U44m83WbQSppqYGm83W67lzxcXFERcXN5AuioiIiAy6fo84FRcXU1RUhN1ux+12hxwpKigoCPncvLy8Xs+JiIiIjGT9Ck6lpaXk5uYGQtOWLVsCI0VOpxOXywUQ8i67vLw8bDZbr+dEREREuvL5DV6rOMOzu4/xWsUZfP6wigEMmbDLEXSUH+jKZrMFygisWLGC/Pz8QJ0nl8vFxo0byc/Pp6ysjLVr1wYVwOzpXG9UjkBERGT82Lb3BOueK+dEXUvg2OS0eB68eR7L5k8etP9Of/JF2MFpJFBwEhERGR+27T3BfU86OTekdGy49tPbcgctPPUnX2iTXxERERlRfH6Ddc+VdwtNQODYuufKIzJtp+AkIiIiI8qOQzVB03PnMoATdS3sONS9BuRQU3ASERGREaWqoefQNJB2g0nBSUREREaUzJT4QW03mBScREREZERZOD2d+JieI4oF8+66RTO775c71BScREREZMQwDIMHt+6lpc0f8nzHXXUP3jyPKKslZJuhpOAkIiIiI8ZD297hqR2VWC2w6rqZTE4Lno7LTosf1FIE/TWgvepEREREBttPXjzIxr+bu5B89+ML+PSiaXz1Qxez41ANVQ0tZKaY03ORGGnqoOAkIiIiEffkPw9TvO1dAL5200V8etE0AKKsFhbPmhDJrgXRVJ2IiIhE1LO7j/GNZ/cC8MUbZ1N4/aw+nhE5Ck4iIiISMS+8c4p/3/ImhgF3LJ7Ov39gbqS71CsFJxEREYmIf7rOcN+TTrx+g49dPoX/uvkSLJbIrV8Kh4KTiIiIDLs9R+u491c78Xj9FFycyfdWXIY1gou+w6XgJCIiIsPqYFUDd/5yB40eL1fOzODHn8klJmp0RJLR0UsREREZEyprmrjt5zuoOdvKpVPT+PmdecTHREW6W2FTcBIREZFhUdXQwu2Pvs7J+hbmZCbz2F2LSImPiXS3+kXBSURERIZcXVMbdzy6g/fONDE1PYEn7rmSjKTYSHer3xScREREZEg1tXq567EdvHOygYnJcTx5z5Vkn7OVymih4CQiIiJDxuP1sfqJXTiPuElLiOHJexcxY2JSpLs1YApOIiIiMiS8Pj//+vRuXj5QTWJsFL+8K5+LslMj3a3zouAkIiIig84wDL72+z38ee9JYqOsbLo9j9xp6ZHu1nlTcBIREZFBZRgG3/7TPrbsPIrVAj+89XKunTMx0t0aFApOIiIiMqh+9MJBHv3HIQA2fPJSls2fHOEeDR4FJxERERk0j71yiIe37wfggY/MY0VeToR7NLj6FZycTicLFy7ss11paSlutxu32x3yNZxOJwAulyvwtYiIiIxuv3Me5b+eKwfgy0vmcPe1MyPco8EXdnAqLS0FCCvorFixgvT0dNLT07FYLFgsFoqLiwHYuHEjCxcuxGKxsHr1aux2+wC7LiIiIiPFX94+yVdK3wLgc1fP4F8L5kS4R0MjOtyGy5cvD6ud2+2mpKQkqH1xcTFr1qwBYOHChdTW1gJgs9n60VUREREZiV49WM0Xn3oDn9/gk7lTeeAj87BYLJHu1pAIOzj1R9fQVFpa2i10hRuYPB4PHo8n8Li+vn5Q+iciIiKDY3elm3sf30mr188H5mWx4ZMLsFrHZmiCIVgc3jUUud1uampqgqbj3G43paWllJaWUlRUhMvl6vG11q9fT1paWuAjJ2dsLTATEREZzd492cDnfrmDplYf18yewA9vvYLoqLF935nFMAyjX0+wWAj3KatXr2bDhg3dwlTHY6fTyYoVK6ioqAj5/FAjTjk5OdTV1ZGaOrorj4qIiIxmR840sfxnr1LV4OHyHBu/vvdKkuKGZCJryNXX15OWlhZWvhiyWOh2u3E4HN2m5bqOMNntdlwuV4+jTnFxcaSmpgZ9iIiISGSdqm/htkdfp6rBw4VZKTx2V/6oDU39NWTBaefOnd1Ck9PpZMmSJd3aZmRkDFU3REREZBDVnm3l9kdf50hNE9MyEnninkXYEmMj3a1hM6DgdG59JqfT2W3UyOl0dgtEdrudDRs2BB47HA6WL1+uu+tERERGgUaPl889Vsb+U41kpcbx63uvJDM1PtLdGlZhj6s5HA62b98OmIu28/PzA3fLdTzuKDnQ4dwaTTabjby8PIqLi7HZbFRUVFBSUnK+34OIiIgMsZY2H4WP7+TNSje2xBieuOdKcjISI92tYdfvxeGR1J/FWyIiIjI4vD4/9/3ayfbyUyTFRvGbVVdxWY4t0t0aNCNicbiIiIiMfn6/wZrSt9heforYaCub78wbU6GpvxScREREJCTDMPjmH8v53RvHiLJa+Mlncrl61sRIdyuiFJxEREQkpEccB3js1fcA+O8Vl1IwLyuyHRoBFJxERESkm0f/cYgf/vUAAN/86CV8/IqpEe7RyKDgJCIiIkG27KzkW38sB+Dfl87ljsUzItuhEUTBSURERAL+vOcEX/3tWwCsum4mX3z/7Aj3aGRRcBIREREAXj5wmi8/vRu/AZ/Ky+FrN12MxWKJdLdGFAUnERERYdfhWgof30Wrz89NC7L57icWKDSFoOAkIiIyzu07Uc9dv9xBc5uP6+ZM5JFPXU6UVaEpFAUnERGRcexQ9Vluf3QH9S1eFk5PZ+PtC4mLjop0t0YsBScREZFx6kRdM7f9/HWqGz1cPDmVX3wun8TYsLexHZcUnERERMahmrOt3P7oDo65m5k5MYnH715EWkJMpLs14ik4iYiIjDMNLW3c+YsdHKxqZHJaPE/cs4hJKXGR7taooOAkIiIyjrS0+bjnVzvZc6yOjKRYnrjnSqamJ0a6W6OGgpOIiMg40ebz8/lfO9lxqIaUuGgev3sRszOTI92tUUUrwERERMYon99gx6EaqhpamJQcx9NlR3jhnSrioq38/M485l+QFukujjoKTiIiImPQtr0nWPdcOSfqWoKOWy3ws9sWcqV9QoR6NropOImIiIwx2/ae4L4nnRghzvkN8Hh9w96nsUJrnERERMYQn99g3XPlIUMTgAVY91w5Pn9PLaQ3Ck4iIiJjyI5DNd2m57oygBN1Lew4VDN8nRpDFJxERETGkKqGnkPTQNpJMAUnERGRMWRCUmxY7TJT4oe4J2OTFoeLiIiMES1tPn75ynu9trEA2WnxLJqZMSx9Gmv6NeLkdDpZuHBhWO2cTicALpcr8HXH4+LiYkpLSykuLsbtdvevxyIiItJNffs2Kn99p4poqwUwQ1JXHY8fvHkeUdZzz0o4wh5xKi0txW63B4WgnmzcuJFNmzYBUFBQQElJSeDcihUr2LVrF2CGqFWrVgWdFxERkf6pbvRw5y928PbxelLiotl8Zx7uptZudZyy0+J58OZ5LJs/OYK9Hd3CDk7Lly8P+0UXLlxIbW0tADabLXDc5XIFtbPb7TgcjrBfV0RERIIdrW3i9kd3cKj6LBOSYvnV3YsCFcGXzssOVA7PTDGn5zTSdH6GbI1T18DUweFwkJERPKeakZGB0+kkNzd3qLoiIiIyJh041cDtj+7gZH0LF9gSeOKeRdgnde49F2W1sHiWKoQPpiEJTm63m9LSUgDKyspYvXo1dru9x/VMNTWha0l4PB48Hk/gcX19/aD3VUREZDTaXenmc7/cgbupjTmZyTx+zyImpyVEultj3pAEp8LCwsCIk91uZ+nSpVRUVPTYvqdAtX79etatWzcEPRQRERm9/nGgmsIndtLU6uOyHBuPfS6f9DDLEMj5GZI6Tl3XMtntdlwuFy6XC5vN1m10qaamJuS0HsDatWupq6sLfFRWVg5Fd0VEREaNP+85wd2PldHU6uPa2RP5zb1XKjQNo0EPTk6nkyVLlnQ7npGRQUFBQcjn5OXlhTweFxdHampq0IeIiMh49dSOI3zhN05afX5uWpDNo5/LIylOJRmH04CC07lTa06nMzDKZLfb2bBhQ+Ccw+Fg+fLl2Gw27HZ70PNcLhd5eXk9jjiJiIiI6acvVrD2d3vwG3Drohx+dGsucdFRke7WuBN2THU4HGzfvh0w1x7l5+cHShR0PF6zZg02m428vDyKi4ux2WxUVFQE1WkqKSmhqKiI/Px8ysrKVMNJRESkF4Zh8NCf32HjS+YAxX03zGLNBy/EYlFZgUiwGIZhRLoT4aqvryctLY26ujpN24mIyJjn9fn52u/3sGXnUQC+dtNFFF4/K8K9Gnv6ky80MSoiIjICtbT5+PLTb/D826ewWuChT17KyrycSHdr3FNwEhERGWEaPV4KH9/JqxVniI2y8sNbr2DZ/OxId0tQcBIRERlRzjR6uOuxMt46WkdSbBSb78zj6lkTI90taafgJCIiMkIcdzdz26Ov4zp9loykWB67K59Lp9oi3S3pQsFJRERkBKg43cjtP3+d43UtTEmL5/F7rmR2ZnLfT5RhpeAkIiISYXuO1nHnL3dQc7YV+6QknrjnSi6wad+5kUjBSUREJIJeqzjDqsd30ujxcunUNH75uXwmJMdFulvSAwUnERGRCHn+7ZP8v6feoNXrZ7F9ApvvzCNZW6iMaLo6IiIiEVCys5Ki376F34APzMvih7deQXyMtlAZ6RScREREhtnPX3bx7T/tA2Bl3lS++/EFREcNaPtYGWYKTiIiIsPEMAy+9/y7/OTFCgAKr7ez9kMXad+5UUTBSUREZBj4/Ab/+Ye9PLXjCABFyy7ivhu079xoo+AkIiIyxDxeH/c/8yZ/2nMCqwW+8/EF3LpoWqS7JQOg4CQiIjKEznq8/MuTu3j5QDWxUVa+/+nLuWnB5Eh3SwZIwUlERGSI1J5t5a7Hythd6SYxNopNt+dx7RztOzeaKTiJiIgMgZN1Ldz+6OscqGrElhjDY3ct4vIcW6S7JedJwUlERGSQHao+y20/f51j7mayU+N54p5FzMlKiXS3ZBAoOImIiAyivcfq+Nwvd1Dd2MrMiUk8cc8ipqYnRrpbMkgUnERERAbJ664z3PurnTR4vFwyJZVf3b2Iidp3bkxRcBIRERkEjvJTfOE3TjxeP4tmZvDzO/NIjY+JdLdkkCk4iYiInKffOY/yldK38PkNCi7O4sef0b5zY5WCk4iIyHn4xT8O8c0/lgPwidwLKP7kpdp3bgxTcBIRERkAwzB4ZPt+fvjCQQDuvmYm//nhi7Fate/cWKbgJCIi0k9+v8GDW9/miX8eBuA/PjCXL9w4W5v1jgP9Ck5Op5NVq1axa9euPts5HA4AysrK2Lx5MzabLXAOIDc3F5fLhdvtJjc3dwBdFxERGX6tXj//XvImz715HIsFvvnR+dx+1fRId0uGSdiTsKWlpUBn8OmNw+FgzZo1rFmzhvz8fJYsWRI4t3HjRhYuXIjFYmH16tXY7fYBdFtERGT4Nbf6KHxiJ8+9eZxoq4UffPoKhaZxxmIYhtGvJ1gs9PYUp9PJkiVLqK2tBcDlcjFr1iwqKiqw2+1s2rSJlStXAgRGocJVX19PWloadXV1pKam9uu5IiIi/eHzG+w4VENVQwuZKfFcmJXCqid2sutwLQkxUfz0tlxuuDAz0t2UQdCffDHoa5xyc3PZvHlz4LHb7QYgIyMjcKy/gUlERGQ4bdt7gnXPlXOiriVwLNpqwes3SI2P5pd35bNwekYvryBj1ZAsDl++fHng62eeeYaCgoJAWHK73YFpv7Kysl6n6zweDx6PJ/C4vr5+KLorIiISsG3vCe570sm5cytev3nkSwVzFJrGsSG9q64jJHVdTF5YWBgIUXa7naVLl1JRURHy+evXr2fdunVD2UUREZEAn99g3XPl3UJTV4++fIi7rp5JlMoOjEtDWqGrqKiI7du3B03NuVyuwNd2ux2XyxV0rKu1a9dSV1cX+KisrBzK7oqIyDi341BN0PRcKCfqWthxqGaYeiQjzZCNOBUXF1NUVITdbg+sc3K5XEELxzt0Xf/UVVxcHHFx2hxRRESGR1VD76Gpv+1k7BnQiFNHEOrgdDqDRo1KS0vJzc0NhKYtW7Zgs9mw2+1s2LAh0M7hcLB8+XItFhcRkREhPTG8TXkzU+KHuCcyUoU94uRwONi+fTtgrj3Kz88PLALveLxmzRpcLhcrVqwIeq7NZgusbcrLy6O4uBibzUZFRQUlJSWD+O2IiIgMzOkGD993HOi1jQXITotn0UwtDh+v+l3HKZJUx0lERIZC+fF6Vj2+k2PuZhJirDS3+bFA0CLxjqXgP70tl2XzJ0eglzJU+pMvtH2ziIiMa9v2nuSTP32VY+5m7BOT+NOXruNnt+WSnRY8HZedFq/QJNrkV0RExifDMPjfvx3kv/+yH4Dr5kzkx7fmkpYYg31SMkvnZQdVDl80M0MlCETBSURExp+WNh9fKX2L5948DsDnrp7Bf374YqKjOidioqwWFs+aEKkuygil4CQiIuPKyboWCp/YyVtH64i2WvjWx+Zz66Jpke6WjBIKTiIiMm68Welm1eM7qWrwkJ4Yw09vW8hVdo0qSfgUnEREZFx4dvcx1pS+hcfrZ25WMo/emU9ORmKkuyWjjIKTiIiMaX6/wSOO/fzohYMALLkok+9/+nJS4sMrdinSlYKTiIiMWWc9Xu7fspvn3z4FwL+8bxZf+eCFujtOBkzBSURExqSjtU2senwX+07UExtl5aFPLuATuVMj3S0Z5RScRERkzNl1uIbVT+yiurGViclxbLx9IQunp0e6WzIGKDiJiMiYUrKzkq//fi+tPj/zJqey+c48LrAlRLpbMkYoOImIyJjg8xts2PYOm15yAfCh+dn8z8rLSIzVrzoZPPrXJCIio15DSxtfeuoN/vbuaQC+tGQO/7pkDlYtApdBpuAkIiKj2uEzZ7n3Vzs5UNVIXLSV/15xGTdfNiXS3ZIxSsFJRERGrVcrqvn8r524m9rISo1j8x15XDrVFuluyRim4CQiIqPSr18/zIPPvo3Xb3BZjo1Nty8kKzU+0t2SMU7BSURERhWvz8+3/ljOr147DMDHLp/CQ5+8lPiYqAj3TMYDBScRERk16pra+MJvnPzjYDUAX/nghXz+hllYLFoELsNDwUlEREaFg1WNrHp8J4eqz5IYG8X3P3U5H7gkO9LdknFGwUlEREa8v+8/zRd/46ShxcsFtgR+fmceF09OjXS3ZBxScBIRkRHLMAx++cp7fPtP5fgNyJ+Rzk9vW8jE5LhId03GKQUnEREZkVq9fh54di9Pl1UCsGLhVL798fnERWsRuESOgpOIiIw4NWdb+Zcnd7HjUA1WC3ztpou559qZWgQuEafgJCIiI8q7Jxu451dlHK1tJiUumh9+5gpuvDAz0t0SAfoZnJxOJ6tWrWLXrl29tnO5XJSWlmK323G5XBQWFmKz2fo8JyIi49v28lP869NvcLbVx/QJiTx6Zx6zM1Mi3S2RgLCDU0fYcTqdfbZdsWJFIFy5XC5WrVpFSUlJn+dERGR8MgyDn/3dRfHz72AYcPWsCfzvZ3JJT4qNdNdEgoQdnJYvXx5WO5fLFfTYbrfjcDj6PCciIuNTS5uPtb/bw+/fOAbA7VdN54Gb5xETZY1wz0S6G/Q1Tg6Hg4yMjKBjGRkZOJ1Odu7c2eO53Nzcwe6KiIiMcFUNLRQ+vovdlW6irBb+6+Z53L54RqS7JdKjQQ9Obrc75PGamppez4Xi8XjweDyBx/X19efbPRERGSH2Hqtj1eM7OVHXQlpCDD/9bC5Xz54Y6W6J9GrYxkF7Ck29nVu/fj1paWmBj5ycnKHpnIiIDKv/23OC5T97lRN1LcyalMSzX7hGoUlGhUEPTjabrdsIUk1NDTabrddzoaxdu5a6urrAR2Vl5WB3V0REhpFhGPzAcYDP/9pJS5uf982dxO+/cA0zJiZFumsiYRn04FRQUBDyeF5eXq/nQomLiyM1NTXoQ0RERj6f3+C1ijM8u/sYr1Wcwec3aG718cWn3uARx34A7r12Jr/4XD6p8TER7q1I+Aa0xsntdgeNEjmdTmw2G3a7HbvdHtTW5XKRl5cXGHHq6ZyIiIwN2/aeYN1z5Zyoawkcy0yJIy7GSmVNMzFRFr7zsQWszNfyCxl9wg5ODoeD7du3A+bao/z8/ECJgo7Ha9asAaCkpISioiLy8/MpKysLqtPU2zkRERndtu09wX1POjHOOV7VYN7okxwXzS/vyid/Rkb3J4uMAhbDMM799z1i1dfXk5aWRl1dnabtRERGGJ/f4NoNLwSNNJ0rMyWO19YuIcqqPedk5OhPvlB1MRERGRQ7DtX0GprAHHnacSh0CRqR0UDBSUREBkVVQ++hqb/tREYiBScRERkUE8LcVy4zJX6IeyIydAa9criIiIw/rtONFD//bq9tLEB2WjyLZmphuPSD3weHX4XGU5CcBdOvBmtUxLqj4CQiIgNmGAZP/PMw3/2/fbS0+UmIsdLc5scCQXfWdSwFf/DmeVoYLuEr3wrbiqD+eOex1CmwbAPMuyUiXdJUnYiIDMjJuhbu+MUOHnj2bVra/Fw7eyIv/McN/Oy2XLLTgqfjstPi+eltuSybPzlCvZVRp3wrbLkjODQB1J8wj5dvjUi3NOIkIiL9tvXN43zjD3upa24jLtrK2g9dxB2LZ2C1WpiclsDSednsOFRDVUMLmSnm9JxGmiRsfp850tStIhjtxyyw7atw0YeHfdpOwUlERMLmbmrlG8++zXNvmqMAl05N4+GVlzM7MzmoXZTVwuJZEyLRRRkLDr/afaQpiAH1x8x2M68btm6BgpOIiITppf2n+Urpm5yq9xBltfD/3j+bL9w4m5gorfqQQVZ3NLx2jaeGth8hKDiJiEivmlt9rP/zPh5/7TAA9klJPLLyci7LsUW2YzL2+Nrgzafgr98Kr31y1tD2JwQFJxER6dHuSjf3P7MbV/VZAO5cPJ2vfuhiEmIjdzu4jEF+H+wphb8/BDUu85jFCoa/hydYzLvrpl89bF3soOAkIiLdtPn8/OiFg/zv3w7i8xtkp8bzvRWXct2cSZHumowlfj/s2wp/+y5Ut9cBS5wI191vjib99t72hiGKWyx7KCL1nBScREQkyMGqBv7tmTfZc6wOgI9ePoVv3jKftMSYCPdMxgzDgP3b4IXvwKk95rF4G1zzJVi0GuLabzaIiu2hjtNDEavjpOAkIiIA+P0Gj736Hhu2vYPH6yctIYbvfHw+H7l0SqS7JmOFYUDFC/C378CxXeax2BRY/AVY/HmITwtuP+8Ws+SAKoeLiMhIctzdzFdK3+SVg2cAuH7uJL63/FKyUrWvnAyS9/5hjjAdedV8HJMIV66Gq78Eib1sw2ONGvaSA71RcBIRGccMw+APu4/xwLNv09DiJSEmiq99+GJuu3IaFosKVsogqCyDv30bXC+aj6PiIP8euPbfIDkzol0bCAUnEZFxqvZsK1//wx7+b89JAC7PsfHIpy5n5sSkCPdMxoTju81F3weeNx9bYyD3Drj+P8x1SqOUgpOIyDj0t3erWFP6FqcbPERbLXx5yRzuu2EW0SpmKefrVDm8+F3Y95z52BIFl98K16+B9OmR7dsgUHASERlHznq8fOf/9vGb148AMDszmUdWXs6CqWl9PFOkD9UHzTpMe0oJ7Ce3YAXc8FWYMCvSvRs0Ck4iIuPErsO13L9lN4fPNAFw9zUzWbPsQuJjVMxSzkPtYfh7sVnx2/CZx+Z9FG5YC5kXR7ZvQ0DBSURkjGv1+vnBX/fz0xcr8BswJS2e/15xGVfPnhjprsloVncMXv5vcD4B/jbz2NxlcOPXYPJlke3bEFJwEhEZw/afauDfntnN28frAfhE7gU8ePMlpCWomKUMUGMVvPww7PwF+DzmMfuN8P7/hKl5ke3bMFBwEhEZg/x+g1+8coji59+l1esnPTGG7358AR9aMDnSXZPRqqkGXvkB7NgEbeZ0L9OuNgPTjGsi27dhpOAkIjLGHK1t4j9K3uSfrhoAbrxwEhuWX0pmiopZygA0u+GfP4HXfgKtDeaxC/Lg/V83R5rGWb2vfgUnl8tFaWkpdrsdl8tFYWEhNpstZNvS0lIKCgoAurVxOp0A5Obm4nK5cLvd5Obm9r/3IiISYBgGv3UeY93Wt2nweEmMjeIbH5nHp/NzVMxS+s/TCK//DF79IbSY+xaSvQBu/E+Y+8FxF5g69Cs4rVixgl27zL1lXC4Xq1atoqSkpMe259qwYQNr1qxh48aNbNq0CYCCgoIeX0NERMJzptHD136/h+ffPgXAwunpPLzyMqZPUDFL6ae2Zij7OfzjEWgyt+Bh0kXmou+Lbgbr+K71FXZwcrlcQY/tdjsOhyNkW7fbTUlJCcuXLw8cKy4uZs2aNQAsXLiQ2tpaoPtolIiI9M9f952i6LdvUd3YSkyUhX9bOpfV188iyjo+RwRkgLwe2PUrePl/oNGsJk+GHW74Gsz/REQ31h1Jwg5ODoeDjIzgTfgyMjJwOp0hp9m6hqbS0tKgx6DAJCJyvho9Xr79x3KeLqsE4MKsFB7+1GVcMkXFLKUffG2w+zdmLab6o+axtGlwQxFc+mmI0nLorsJ+N9xud8jjNTU13Y51DUVut5uamhrsdnvQsdLSUgDKyspYvXp10PkOHo8Hj8cTeFxfXx9ud0VExrSy92q4f8tuKmuasVhg1XV27l86V8UsJZjfB4dfhcZTkJwF06/uHDny+2BPCby4HmrfM4+lTDb3krviDoiOjVi3R7LzjpE9BaoORUVFbNiwIehY10XldrudpUuXUlFR0e2569evZ926defbRRGRMcPj9fHw9v1sesmFYcAFtgT+Z+VlXGWfEOmuyUhTvhW2FUH98c5jqVPggw+ZFb5fXA/V+83jSZPg2vsh7y6ISYhMf0eJsIOTzWbrNrpUU1PT65Sb2+3G4XB0a+NyuQLTex136Llcrm6jTmvXruX+++8PPK6vrycnJyfcLouIjFo+v8GOQzVUNbSQmRLPopkZgWKW75w0bwlfsXAqD9w8j5R4FbOUc5RvhS13YO4Z10X9cSi5o/NxQjpc82VYVAixupEgHGEHp4KCAjZu3NjteF5ez1VCd+7cGbIUwZIlSwKLwzucu34KIC4ujri4uHC7KCIyJmzbe4J1z5Vzoq4lcCwlPprmVh9ev8GEpFjWf2IBH7gkO4K9lBHL7zNHms4NTUEs8L4iWPwFiE8drp6NCWEHp3NHg1wuF3l5eYFg5HQ6sdlsQe2cTme3QGS324Om7hwOB8uXL9dicRERzNB035PObr/yGlq8AFx6QRq/uCuficn6o1J6cPjV4Om5kAyYca1C0wD0a41TSUkJRUVF5OfnU1ZWFlR/af369eTn5wdKDnQ4N3DZbDby8vIoLi7GZrNRUVGhOk4iIpjTc+ueK+91nOB0o4f0RC3alV6c2hteu8ZTQ9uPMcpiGEZv/4+OKPX19aSlpVFXV0dqqlKyiIwtr1Wc4dbN/+yz3VOrrmLxLC0Gly78PjiwHXY+Cgf+Et5z7vwjzLxuaPs1SvQnX6g4g4jICHHM3RRWu6qGlr4byfjQWAXOx83ClXVHOo9HxYHP08OTLObdddOvHpYujjUKTiIiI8ArB6v57+f3h9VWm/WOc4ZhrmPa+ah595y/zTyekA6Xfxby7oZTb7ffVQfBi8Tbq8kve0iVwAdIwUlEJIJON3j4zp/K+cNuczGv1QL+HhZQWIDsNLM0gYxDLXXw5jOw8xdwel/n8QvyIP9euORjnTWYJsyClY+HruO07CGYd8uwdn0sUXASEYkAv9/gqbIjbPjzO9S3eLFY4M7FM7hsahr3b3kTCDlOwIM3z9MedOPNibfM0aW3SqDtrHksJhEWrID8e2DyZaGfN+8WuOjDPVcOlwFRcBIRGWb7TtTztd/v4Y0jbgDmX5DKdz++gEun2gBIiI3qVscpOy2eB2+ex7L5kyPQYxl2bS1Q/gco+zkcLes8PvFCc3Tpsk9BfBh7ElqjtAB8kCk4iYgMk6ZWL993HODRfxzC5zdIjovm3z8wlzsWzwgaRVo2fzJL52V3qxyukaZxoMZlTsW98Wtobt+twxoNF99iji5NvwYs+ncQSQpOIiLDYHv5Kf5r69scczcDcNOCbB74yCVkp4Ve6B1ltajkwHjh88KB583RpYoXOo+n5cDCO80Nd1OyItc/CaLgJCIyhI67m3lw69tsLzeLDU5NT+BbH53PjRdlRrhnEnENJ9tLCTwG9cfaD1pgdoE5ujTnA1qPNAIpOImIDAGvz89jr77Hw9v309TqI9pqYdX1dr70/jkkxOqX4bhlGPDey+bo0jt/Ar+5lQ6JE+CK22DhXZAxM7J9lF4pOImIDLI3jtTytd/vZd+JegDypqfznY8v4MLslAj3TCKm2Q1vPmWuX6ruUq8r5ypzdGneRyFa+w+OBgpOIiKDpK65je89/w6/fv0IhgG2xBjWfugiVizMwaqF3ePT8Teg7FHYUwpec30bsclw6UrIuwey50e2f9JvCk4iIufJMAy2vnmcb/1xH9WN5jYXn8ydytduuogJyRpFGHdam+Dt35mB6biz83jmJZB/N1z6KYjT6ONopeAkInIe3qs+yzee3cvLB6oBmDUpiW9/bIHuiBuPqg+aU3G7fw0tbvNYVKw5DZd/L+RcqVICY4CCk4jIAHi8Pjb+3cWP/3aQVq+fuGgr/+/9s1l1vZ24aC3+HhP8vr6rbvva4N3/M0eXDv2987htmrln3BW3Q9LE4e23DCkFJxGRfnq1opr//MNeXKfN7S+umzORb39sPtMnJEW4ZzJoyrf2sM/bBnMrk/rjsOtX4PwVNJxob2CBuR801y7NXqJSAmOUgpOISJiqGz1890/7+N0bZs2dSSlxPPCReXzk0slYNAUzdpRvhS13ELxbIFB/ArbcDhcshOO7wfCZx5MmQe4dsPBz5kiTjGkKTiIiffD7DZ7ZWclDf36HuuY2LBa47crp/McHLyQtISbS3ZPB5PeZI03nhiboPHZsl/l5+jXmdNzFt0B07HD1UCJMwUlEpBfvnmzg67/fw87DtQDMm5zKdz+xgMtzbJHtmAyNw68GT8/15KP/axaslHFHwUlEJISmVi8/+OsBHn35EF6/QVJsFPd/4ELuXDyd6ChrpLsnQ6VrccreRIfeY1DGPgUnEZFz/HXfKR54tnND3mWXZPPgLfOYnJYQ4Z7JkPD74OBf4Y3HzW1QwpGsTXfHKwUnEZF2J+qaWbe1nG1vnwTgAlsC3/zoJSy5WL8kx6Taw/DGk2bdpcAmu0BUjFlmICSLeXfd9KuHpYsy8ig4ici45/X5+dVrh3n4L+9ytn1D3nuum8mXl8whMVY/JscUr8ccVXI+Dq4XCSz4TkiHy2416y6dOdh+Vx0ELxJvv3Ny2UMqNTCO6SeCiIxruyvdfP33e3j7uLkh78Lp6Xzn4/O5KDs1wj2TQVW1zwxLbz4NzTWdx+03Qu7tcNFHOjfZzZoHKx/voY7TQ2YdJxm3FJxEZFyqb2njv59/lyf+eRjDgLSEGL76oYv4VJ425B0zPI3mnnHOx+FoWefxlCnmHXFXfBbSZ4R+7rxb4KIP9105XMadfgUnl8tFaWkpdrsdl8tFYWEhNpstZFun09zYMDc3F5fLhdvtJjc3t9+vIyIymAzD4I9vneCbfyzndIO5Ie8nrriAr334YiZqQ97RzzDg6E5zoffe30Fro3ncGg1zl0HuneFX9bZGwczrhra/Mur0KzitWLGCXbvMwl8ul4tVq1ZRUlISsu3GjRvZtGkTAAUFBUHt+vM6IiL95fMb7DhUQ1VDC5kp8SyamUGU1cLhM2f5xrNv89L+0wDYJybx7Y/P5+pZ2kts1Dt7Bt56xhxdOr2v8/iE2WZV78tuheTMyPVPxoywg5PL5Qp6bLfbcTgcPbZfuHAhtbVmwbiuo0n9fR0Rkf7YtvcE654r50RdS+BYdmoci2Zk8Hz5KTxeP7HRVr5ww2z+5QZtyDuq+f3mxrrOx+GdP4Kv1TwenQCXfMwMTNMWg7bDkUEUdnByOBxkZGQEHcvIyMDpdAam4M4VavptIK8jIhKObXtPcN+Tzm6bZZys97D1LXMj1mtnT+RbH5vPzInakHfUqjtmlhB44wlwH+k8Pvlyc6H3/OWQYItU72SMCzs4ud3ukMdrampCHne73ZSWlgJQVlbG6tWrsdvt/Xodj8eDx+MJPK6vrw+3uyIyzvj8BuueKw+5w1gHW2IMj92Vr8rfo5GvDfZvM0eXDjrA8JvH49Lg0pVmYJp8WWT7KOPCed9V11MQ6rrg2263s3TpUioqKvr1OuvXr2fdunXn20URGQd2HKoJmp4Lxd3URtl7tSyeNWGYeiXnrfqgudB792/g7OnO49OvNafi5t0CMaroLsMn7OBks9m6jQrV1NT0eDecy+UKTL113D3ncrn69Tpr167l/vvvDzyur68nJycn3C6LyDhSWdsUVruqht7DlYwArU2wb6s5unT4lc7jSZlmCYErbocJsyLXPxnXwg5OBQUFbNy4sdvxvLy8bsecTidLliwJLA7vkJGR0a/XiYuLIy5OtweLSM/Oerz86rX3+MnfDobVPjNFm7OOWMd3m2FpTwl42pdmWKww5wPm6NKcD5jboYhEUNjByW63Bz12uVzk5eUFRoqcTic2mw273Y7dbmfDhg2Btg6Hg+XLl2Oz2bqNLJ37OiIi4Whq9fLEa4fZ+JKLmrPm3VRRVgs+f+hVThYgO80sTSDDwO8Lr3hks9sMSs7H4eRbncdt0811S5d/1qzYLTJC9GuNU0lJCUVFReTn51NWVhZUe2n9+vXk5+ezZs0abDYbeXl5FBcXY7PZqKioCGrb2+uIiPSmudXHr18/zM/+XkF1oxmYZkxI5EtL5hAXbeWLv3kDCLnDGA/ePI8oVQUfeuVbe9iuZIO5JskwzCk45xNQ/gfwtk+fRsXCxbeYo0szrgOrFvHLyGMxDKO3m1BGlPr6etLS0qirqyM1VftIiYwnLW0+fvP6EX7694pAxe9pGWZg+tjlUwJ3yoWq4zQ5LZ4Hb57HsvmTI9L3caV8a/sGuef+amkPrJeugKO7oKbLzUKZ88yK3peuhESNCMrw60++UHASkRGtpc3H0zuO8JMXK6hqD0xT0xP40vvn8PHcC4gJUVqgp8rhMsT8Pvj+/OCRpp7EJsP8T5qB6YJcFamUiOpPvtAmvyIyInm8PraUVfK/f6vgZL05enSBLYEvvn82n8ydSmx0z9M4UVaLSg5EwuFXwwtN13wZrl8DcclD3yeRQabgJCIjSqvXT8muSv73hYMcb59um5wWzxdunM3KvJxeA5NEkM8Lrr+F1zb7UoUmGbUUnERkRGjz+fntrqP86IWDHHM3A5CVGscXb5zNyvwc7Sk3Enlbzb3iyp+Fd/8Pms6E97zkrKHtl8gQUnASkYhq8/n5vfMYP/rbASprzMA0KSWOL9wwi08vmkZ8jALTiNLWbG55Ur7V3ALF02UrrPh08HmgradipBbz7rrpVw9LV0WGgoKTiESE1+fnD7uP86MXDnD4jPmLdmJyHPfdMIvPXqnANKJ4GmD/82Y17wPbg4NRcjZc/BGzjMD0a8yRpy13tJ8MURRi2UOh6zmJjBIKTiIyrHx+g61vHuOHfz3IoeqzAExIiuVf3jeL266aTkKsfqmOCE015ohS+VaoeMEcSeqQNs2sx3TxzTB1UXC9pXm3wMrHe6jj9JB5XmQUU3ASkWHh8xv88a3j/OCvB3CdNgNTRlIshdfbuWPxdBJj9eMo4hqr4J0/mmHpvZfB7+08N2G2Oao07xaYfHnv5QPm3QIXfTi8yuEio4x+UonIkPL7Df605wQ/+OsBDlY1AmBLjKHwejt3Lp5BUpx+DEVU3THY95w5DXf4VYKm1zIvaR9ZugUyL+5frSVrFMy8btC7KxJp+oklIkPC7zfY9vZJfuA4wLunGgBIS4hh1XUzufPqGaTEa7PWiKlxmaNK+7bCsV3B56Zc0T6y9FGYMCsy/RMZwRScRGRQ+f0Gfyk/yfcdB3jnpBmYUuKjufdaO3ddO4NUBabIqHrHDErlW+HUni4nLDDtKjMsXXwz2HIi1kWR0UDBSUQGhWEYbC8/xfcdByg/Yd6inhIXzd3XzuTua2eSlqDANKwMA06+1TmyVL2/85wlCmZc274W6SOQkh25foqMMgpOInJeDMPghXeq+L7jAHuO1QGQHBfNXdfM4N5r7aQlKjANG78fju00C1Luew7chzvPRcWC/UZzVOmiD2szXZEBUnASkQExDIMX95/m+9v38+ZRMzAlxkbxuatnsOo6O+lJsRHu4Sjn94V3V1pHu31bYd8foaFLCYDoBJhTABd/FOZ+AOLThq//ImOUgpOI9IthGLx0oJpHtu9nd6UbgISYKO68egaF19vJUGA6f+Vbe6iDtMGcXvO2wnsvme3e+RM0VXe2i02BuR80280ugNik4e+/yBim4CQiQXx+gx2HaqhqaCEzJZ5FMzOIslowDINXDp7hEcd+dh2uBSA+xsodi83ANDE5LsI9HyPKt7ZX3jaCj9efgC23m9W5T+2FlrrOc/E2c/rt4lvAfgPExA9jh0XGFwUnEQnYtvcE654r50RdS+DY5LR4PpWfwysHqyl7zwxMcdFWbrtqOqvfZyczRb+kB43fZ440nRuaoPPY4VfMz0mZnVudzLgWorSWTGQ4KDiJCGCGpvuedHb7lX2iroXvOw4AEBtt5bNXTuO+980iM1WBadAdfiV4eq4nyzbAolWqxC0SAQpOIoLPb7DuufKQ4xwdEmOj2P5v7+OC9IRh69e40FIHrr/DQYd5J1w4kiYqNIlEiIKTiLDjUE3Q9FwoTa0+jtQ0KTidL78fTr4JB/9qflS+Doavf6+RnDU0fRORPik4iYxjfr/BKxXV/M9f3g2rfVVD7+FKenC2GipeMEeVDv41+C44gAlzzDvg7DfCH78MDScJvc7JYt5dN/3q4ei1iISg4CQyDlU1tFCy8yhPlx2hsqY57OdpIXiYfF6zEOVBh/lxfDdBQSg2GWa+D2YvMT/SZ3R5bnH7XXWW4OfQvsHusoc0TScSQQpOIuOE32/w8sFqnnr9CI59p/D6zV/KKXHRfPSKKWzbe5Izja09jXOQnWaWJpAe1B1tn35zmGuWPHXB57MXmKNKs5ZAzpUQ3UO9q3m3wMrHe6jj9JB5XkQiRsFJZIw7Vd9Cyc5Kni6r5Ght5+jSwunp3LpoGh9eMJmE2CiunT2R+5509jTOwYM3zyPKakHaeT1mxe6O6bfT+4LPJ6TDrPe3h6X3928/uHm3mHWZwqkcLiLDql/ByeVyUVpait1ux+VyUVhYiM1mC9nW6XTicDgAKCsrY/PmzYG2TqcTgNzcXFwuF263m9zc3IF/FyISxOc3eOnAaZ56/Qh/facKX/voUmp8NJ/Incqti6ZxYXZK0HOWzZ/MT2/L7VbHKTstngdvnsey+ZOH9XsYkc5UdI4qvfcytDV1nrNY4YKFZlCaXQBTrji/oGONgpnXnX+fRWRQ9Ss4rVixgl27dgFmiFq1ahUlJSUh2zocDtasWQNAcXExS5YsCTx348aNbNq0CYCCgoIeX0NE+udEXTNbyo6yZWclx9ydo0v5M8zRpZsWTCY+pudf5svmT2bpvOyQlcPHJU+jGZA61irVvhd8Pjm7PSgtMSt2a+NckTHPYhhGb6VbAlwuV1BwAkhPT6e2trZbW6fTyZIlSwLnXC4Xs2bNoqKiArvdzqZNm1i5ciVAjyNWodTX15OWlkZdXR2pqalhP09kLPP5DV58t4qndhzhhXeqaB9cwpYYwydzp/Lp/BzmZKX0/iJiMgyoKu8MSodfA39b53lrDEy7qnNUKesSsIzTUCkyhvQnX4Q94uRwOMjICP5rKiMjA6fT2W2aLTc3l82bNwceu93uQPsO/QlMItLdcXczz5RVsmVnZdDU2pUzM/jMldP44CXZvY4ujWl+X/jrg5pqwPUiVLTXVWo4EXzeNh3mLDUXdc+8DuIUQkXGs7CDU0f4OVdNTU3I48uXLw98/cwzz1BQUBAIS263m9LSUsBc/7R69Wrsdnu31/B4PHg8nsDj+vr6cLsrMiZ5fX5eeKeKp8sqefHdztGl9MQYli+cyqfypzE7MzmynYy08q093JG2wVx07feZ5QE6RpWO7QTD39k2OsEMSB2jShl2jSqJSMB531XXU6Dqer60tDRoiq/ronK73c7SpUupqKjo9tz169ezbt268+2iyKhXWdPElp3m6NKp+s4/JhbbJ3DrldP44CVZxEWP09Glrsq3ttdAOmcFQv0J2HI75CyG6neh+Zw/+CZd1LlWadrVEKN6VSIjhc/vw1nl5HTTaSYlTiI3M5eoCN5hGnZwstls3UaXampq+pxyKyoqYvv27UHtXC5XYHqv4w49l8vVbdRp7dq13H///YHH9fX15OTkhNtlkVGtzefnr/vMtUsvHThNx2rEjKRYViycyqfyc7BPGuejS135feZIU8hKVO3HKl8zP8elmou5O8JS2tRh6qSI9IfjsIOHdjzEqaZTgWNZiVl8ddFXKZheEJE+hR2cCgoK2LhxY7fjeXl5PT6nuLiYoqIi7HZ7YGTK5XIFLRzvcO76KYC4uDji4uLC7aLImFBZ08TTZUfYsvMopxs6R5eunT2RTy/KYek8jS5101IHZb8Inp7rybINkH8PRMUMfb9EZMAchx3c/+L9GOf8MVTVVMX9L97Pwzc8HJHwFHZwOnc0yOVykZeXF1SbyWazBdqVlpaSm5sbCE1btmyhsLAQu93Ohg0bAq/jcDhYvny5FovLuNbm8+MoP8Vvdhzh5QOd+5hNTI5lRV4On87PYfqEpAj2cIRpPA1HXjUXgB9+FU7tDV6n1JukiQpNIiOcz+/joR0PdQtNAAYGFixs2LGBG3NuHPZpu36tcSopKaGoqIj8/HzKysqC6i+tX7+e/Px81qxZEyhd0JXNZgusbcrLy6O4uBibzUZFRYXqOMm49V71WZ4uq6R011GqGztHl66bM5HPLJrGkouziI22RrCHI4T7iFka4PArZlA6c6B7m5TJ3e+ICyU5a/D7JyLnrc3Xxnv171HhruCloy8FTc+dy8DgZNNJnFVO8rPzh7GX/ajjNBKojpOMdD6/0WfxyFavn7+Un+SpHUd45eCZwPFJKXGszJvKp/KmMW1C4nB3feQwDKg+YIakI6+ZQamusnu7zEvMMgMdH0mT4PvzzYXgPe24lzoF/nWPti4RiSCv38uRhiNUuCs46D7IwdqDVLgrOFx/GK/h7ddrbbhuAzfZbzrvPg1JHScR6d22vSe6bVcyuct2JYeqz/L0jiOU7jrKmbOtgHmX+/VzJnHromksuTiTmKhxOLrk95lTbYdfbR9Reg2aqoPbWKJgyuXtIekac5PcUFW6l21ov6uuhx33lj2k0CQyTHx+H8caj5nhqP2jwl3BobpDtHUtLNtFUkwSs2yzsMXaeOnYS33+NyYlThrsbvdJI04ig2Db3hPc96Sz2zhHx6/vuVnJ7D/VGDielRrHyrwcVublkJMxzkaXvB44/kbn+qTK18FzTo226HiYmm8GpWmLza/jwryDMGQdpwvM0DTvlsH7PkQEAL/h58TZE1S4KzhQeyAwkuSqc+HxeUI+JyE6AXuandm22cy2zWaWbRZz0ueQlZiFxWLB5/fxwd9+kKqmqpDrnCxYyErMYtsntw3KGieNOIkMI5/fYN1z5b3dBB8ITe+/KJNbF03jxgsnET1eRpdaz0LlDjMkHXkNjpaBtyW4TWyKuZVJx4jSlMsheoB31M67BS76cPiVw0XGsMGsgWQYBqeaTgVGjgLTbHUVNHubQz4nLioOe5qdWbZZZjiyzWGWbRZTkqdgtfT8MzDKGsVXF32V+1+8HwuWoPBkaR9BLlpUFJF6TgpOIudpx6GaoOm5nvzo1iu4+bIpw9Cj89Sf7UpCaaoxR5E6FnKfeBP856xbSJwI0xebIWn61ZA1f3CDjTXKrP4tMo4NtAaSYRhUN1cHB6T2rxvbGkM+J9oazcy0mcxOm83sdHMEabZtNlOTpw443BRML+DhGx4O+T0ULSoa+XWcRKSTYRgcqGrkpf2nKd11NKzn+EfDrHhf25WEUn+iS2mA16Dq7e5t0nI6p92mXwMT52gbE5EhFG4NpJqWmqDRo4NucwSpzlMX8nWjLFFMT50eNHo02zabnNQcYqyDX+ajYHoBN+bcODorh4uMd7VnW/nHwWpePnCalw9UhzXK1FVmygjfxqPX7UrugJWPw8U3Q+17neuTDr8CtYe6v9bEuZ0hafpisE0bju9AZFCNtK0+wtVXDSSAopeKSIpJotZT260NgNViJSclJ7D+qGMt0ozUGcQMcx20KGvUsJcc6I2Ck0gPvD4/b1S6eXn/af5+oJq3jrrpOmgUF23lSvsErp09gU0vuTjT2NrTTfBkp5mlCUascLYr+X0h/F8aNJ4857wFshd0lgWYthiSM4e4wyJDayRt9WEYBh6fh4bWBhraGmhsbaSxtZGGtgYaWhsCXze2NtLY1sjh+sO91kACaPW30uox7+6dmjw1EJA6FmnPSJ1BfPQI/2MvQhScRLqorGnipQOneWn/aV49eIYGT/DanAuzUrhuzkSunzuJRTMziI8x//qclpHIfU86e7oJngdvntetntOIcvjVvrcraWs2P6wxcEFue0i6GnIWQYJtWLopMhwGe6uPVl+rGXDazMBT31of+LrjeENrQ1Cbc0OR99x1goPg/13+/7ht3m0kxoyzO3vPk4KTjGtnPV7+6TrDS/tP89KBag5Vnw06b0uM4drZZlC6fs4kstNC/wW2bP5kfnpbbrc6Ttld6jiNKG3NUFUOp96Gk3vB9WJ4z7vuK3Dd/RCrH7QyNoUzzbXutXU0tDbQ5G0yQ1D7SE8g/HR53NjW2OMt+f1lwUJyTDLJscmkxKaQHNP+OTaZ5JhkUmNTSY5Nprqpmif2PdHn612RdYVC0wAoOMm44vcblJ+oD4wq7TpcS5uv8wdklNVC7jQb18+ZxPVzJzH/grSwR4qWzZ/M0nnZfVYOH1aGAXVHzYB0ak9nUKqpCH9vt67s71NokrCMtPVBhmHQ2NaI2+Om3lOP2+PG7XFT56mjzlNnft1aF9Y0l9vj5oFXH+h3HxKjE0mJTQmEnuTYZFJiUgLhp2sYCtUmMSax11v4O/j8Pv5y+C991kDKzczt9/cgCk4yDpxu8PBye1D6x8Fqqhtbg87nZCQEgtLiWRNIjR/4wscoq4XFsyacb5cHprUJqvaZVbhPvd3+eS+0hL47hsQJZhmA7AWQeTE4/gvOVtPrdiXTrx7Cb0DGiqFeH9TibekWetweN/Wt9bhbugSi1rqgdj7Dd97/7Q5zbHOw2+ydoz6hAk/XxzHJwxYcR3INpLFAlcNlzPF4fex6r5a/HzjNS/ur2XciuCp1YmwUV8+aEJh+mz4hEctoujXeMMy92zpGjzoC0pkKQoYeazRMvBCyLoHs+ebnrAXmAu6u33fgrjoIuVJr5eOqvC196ml9UMcv7K7rg9r8bdR56nodAQp83eXz+Ux9xUfFkxaXRlpcGrY4W/DXsWnUtNTwy7d/2efr/OKDvxhRd3qFEirAZidmR7QG0kjVn3yh4CQjSjib5J7LMAxc1WfNdUr7T/NPVw3NbcF/Wc6/IDUwqpQ7LZ3Y6CGq2n2+xSPP1XoWqt4JnmY79Tb0UGOFpEnmKFLWJe2jSfPN0gDhVuHWdiUjxkib6upLq6+V6uZqPvOnz3Cm5UyP7aKt0WQmZAYWSA9UtCWa1LhUbHE2bHG2oK/PDUNdQ1Jfd4oN91YfQ220/TuKFAUnGZX62iS3q7rmNl49WN2+VqmaY+7gcv+TUuLMu9/mTOLaOROZmDzA7Tv6YyDFIzsYBriPBE+xndwLNS5CjyLFwKQLOwNS1iXmlNtglAEY7PAn/RbpW+ENwzCnvTxualtqzQ+P+dntcVPTUtPt3Nm2s32/cAgWLKTEpoQMQEFhKDaNtPg00mLNEJQUkzRkI8Udo2ZAyGmu/t5VJyOfgpOMOr1tkgvwv5/JJdsWz0v7zeKTuyvd+PydrWOjrOTPTOf6OZO4bs4kLp6cMrzTbz0Vjww1zdV61lyLdHJPl6D0dveNbjskZXaZYptvfkycC9GxQ/XdSAT1Z6orXK2+1m6hJ1T46fi6zlOH1+j/7e9WrPjp+6aDz1/+eT4040PY4mykxKaMyBEQTXONLwpOMqr4/AbXbnih10rc59ZHApg1KSmwTulKewaJsRG618Hvg+/P770OUlwqzHyfWQKg11Gki85ZizRfxSQHYLROT3RME/V0V1fHNNEzH3mGhraGkKEn1MjQQEeDkmKSSI9LJz3e/LDF2ciIzwj63HEuPT6dd868wz1/uafP1x0N64Ng9P47kv7rT77QXXUSceFskmsACTFWbrgwk+vnTuK6OROZmj4Cbov3+83Rpr6KR3rq4Z3nOh8nZ3VfizRhjkaRBkGkp7nCEVQJur0adENrA7urdvd6K7yBwcmmk7xvy/v6/d+MskQFB50wAlFsVP/+PS7MWkhWYtaYuQ1+pG31ISODgpMMq+ZWHwerGnn3VAMHTjWw/1QDuyvdYT33ux9fwMdzpw5tB89lGNB0BtyHofZw9891leBr7ft1ABashMs/0z6KNGlo+z1ODXbF5574DT9NbU00tDYEFjkHQlCXj8Y2s0p01wrQHefa/G3n1YekmKTuIz9dwtC5wSg1NnXIp691G7yMBwpOMiRa2ny4Tp/lQFUD755sYP+pRg5UNXCkpomBTg5npyUMbic7eBpChyL3YXPBdmsfd/5YrOEVk8y9A2ZeNzh9HkKjdXqir4rPFixs2LGBG3NuxI8/sN9XfVuXYBNmEGpsbQz53+kvq8UaVP/HMAzerX23z+f9rOBnXHPBNef93x8KBdMLePiGh0OO+ml9kIwFCk5yXtp8fg5Vn2X/qQb2twek/VUNvFd9Fn8Pv1cykmKZm5XM3KwU5mSlMGdSMl9+5g2q6j1Y8LPI+g6ZuKnCxg7/RRhYz2+TXK8H3JXgfi90QGqu6fs1UiaDbTqkT+/+OSkLfnQ51J9gtBePHOnTXIZh0Oxt5mzbWRrbGjs/t57lreq3wprmWvTrRbT6wxwl7EOMNYaU2BRSY1O7FUHs+tGxHUZHheiOrxOjg2uIhXsr/FWTrxqU/g+VgukF3Jhz46gM4CJ90eJwCYvX5+dwTVP79FrnVNuh6rNBW5Z0lRofzdysFOZmpzA3MznwdajSANv2nuAPv/kZD8Q8zhRLZ5A5bmTwzbY7+Nhn/qXn/d78Pqg/1vOoUcOJvr/BhIzuoajj67QciOljl/D2u+p8gDM+ltNRUUzy+chtaSUKRkXxyKG4m6uDz++jydtkBp32fbyCwk9rY7cw1BGIzm3rH8hWMT3ougVG15DTEYa6Vn/u2Pai60dc1OCXudCt8CLDT3fVjVMDKR55Lr/foLK2yRw5al+DtP9UIxWnG2n1hv6FlRQbxZysFC7MSmFO+0jShdkpZKbEhb+monwrxpY7MDDoWprSj/kLw3LLj8w7ztyHofa94GBUdxT62jk8Jin0aJFtOtimQfz5/3ty/GM9D+3/NaeiOr/nLJ/BV+d+loJr15736w+lvu7mApgQP4Hi64tp9jYHB5wQoaeprSko+DR5mwa1v1aLlaSYJJJjkgOfvYaXvdV7+3zuQ9c9xLUXXEtSTBLR1pE56K5b4UWGl4LTGNGfILRt7wm+tXUPOY1vBqa5KpMv4xu3LAg5UmMYBsfrWtqn1xoCQelgVWO3qtsd4mOszMk0w9GFWSmBEaQpafEDW3Tq90OLGxpPw69ugrPV7SM2cV1GbDyENbgfFWuODPUUjhInBG8vMsiGcrQmHF6/l2ZvM83eZprammjyNoX8utnbTJO3KejrZm8zpxpPsa9235D1r0O0NZqUmBQz7MQmdws/SbHBj0MdS4pJIiE6odu/OVV8FpGBUjmCAWo8W88jv/08VS3HAJiZMo+zbXWkJUwi2zaTj71vNbGx5tB8a6uHP/x9I1X1R8hMnRZ0rif9ec62vSf45tY3meDbTmJ0NU3eiZyJWsoDt1zWLQh1THM9HfM4J1PPBkJHdnMS3/nNHbg/dg9TbAnsP9XAgfZptoNVjTR6Qo/SxEZbmTUpObAOyfxIJic9EWtPI1i+NmiuhaYac81Q0xnz66Yz7Y9ru3zdfrzFHbSo2pGYwEMT0jkV3fnPMsvr5atnailoaobEiWa17FDBKGUyWIdoG5U+9GdRsoHRr0AT9Lgt9PGmtqZBW7PTl4kJE8lKzOoMMv0MP/29vb0/xtodXboVXmRk6teIk8vlorS0FLvdjsvlorCwEJvN1u+2/XmdroZyxOnff74MR/RR/L2MSkz0+rl14scAeKr6D1R32e+s41zhR78T8rmbnv162M/ZtvcEj279BtVZr3VrP/HUYu655VuB8OTzG3z9u9/l/TE/onhi99CxprqW39at5nn/om59irZasE9KCkyzzc1KZk5WCtNTrUR73CFCUE1w8Al8XdPz3mnhiE7AEQv3Z040f9V1uQaW9n+eD1dVU/ChH8OC5QP6TxiGgdfvpdXfSpuvjVZ/K62+1sDjNn9b4HGrr8uxjna+1kCbc9sebzzOy8de7vvbtEQPqBpzf0RZokiMTiQhOoHEGPNz16+7nuv69fHG42zes7nP1x8NhQs1zSUi/TVkU3ULFy5k165dgBl+ioqKKCkp6Xfb/rzOQL+x/vj3ny/jL9FHzQe9Teec+1aF+AX/xfSPdgtCm579Oj+ufbbHUND1OT6/wd2P3McbE/7RY/tLTl2N7YJCqhpaqayu5z9iv8i3s+J7bP/AqWb+2PYVrphkYXayh+mJHibHnMVGI1Ettd1HhfqoMmwAPsBnAS8WvBYLXsBrseJNSMWbkI4vLo22hFS88al4Y5PxxafgjU3GG5vU/pGINyYBb3QcbaffoXjfY9RbraHff8Mg0TD40OTraEueQJu/LTj8+FoDoajjcau//ViXxyNJIODEJHQLOonRiX0GnZDtYhKItcYOaNpU01wiMp4NSXByuVysWLEiEHgA0tPTqa2t7Vfb/rzO+Xxj4Wo8W881JVebuyuF8wun4+3q4Rf8BJ/BE8u3EWWNpsXrpb7pLF/e9klqoiw9PsfmM5gT/SU8rV7qGt24035DnbXn9il+g0vOTCPa4iPV4ual9LM09tI+3jC4sakZH+C1WPAFgo6FNgv4sOBtD0EdYajNYsFrteKzWM1AZDHDUhsG3kGoXxNpUZYoYqNiibHGEGONITYqNvC46+dYaywxUTFBn4POR8Vy6uwpfn/w933+N793/fe4avJVJMYkEmONGd699MKgu7lEZLwakjVODoeDjIzgOjoZGRk4nU5yc3PDbrtz586wX8fj8eDxeIK+scH2yG8/3+v0XDe9tbVYOBNt4aY/3BR8PLqXtTcWC+5oC2X8GGKBDIDe2zdEWfhn5tEuB3tv32Kx8OfkpJ7b9Cm827+jLdFEW82PKGtU0ONoa3TgcZQ1KvA4xhpDTUsNB9wH+nz9pdOXcsmESwKBJjbKDDMx1s5A02v46ThmjR3U0Qef38erx1/tc7Rm6fSlI3rUQ4ULRUT6FnZwcrvdIY/X1HQvHthb2/68zvr161m3bl24XRyQ054TZmAZRFbDIKr9sx9oC2PR8kSvlxS/QZPVErROqSfzfDHMSMrkZGs9Tn9Dn+1vylzEZTOW9BhkYqwx3YNNlzaBQGQxz8VYYwJfdxwf6AhK2cky7n7+7j7b3XrRrSNyfc1YWpSswoUiIr0777vqegpC/W0b6tzatWu5//77A4/r6+vJycnpR+/6NiluMhhVg/qaD0QvZum8ZcTFxvKXd7bztbN/6/M5n88pZMXSf+WfbzzKqj0/6LP9v13+ea7KvZey4//k7u2r+my//LJV5E8ZmdWGczNzR/3GoGNptEZ3c4mI9Czs4GSz2bqNCtXU1IS8G663tv15nbi4OOLiBr8yb1f/9smfUDpIa5wshsFEn8HNt/44UGbgg3M/wMNP5HImyoLRy3M+esPnwWIh/9I7yNz9fU5b6bF9ph/yL70DgNzsfLJiUqlqreuxfVacjdwR/ItwrIzYaLRGRGTsC7vwTUFB6L+Y8/Ly+tW2P68zHJKTUinwTjUf9LVOvst5yzltOx5/euLHgmozxcbGBUoYhPOcqOhY1s79bK/tvzr3s0RFm/OLUdYovnrNOrBYQre3WCi6+r9G/C/vjhGbzMTMoONZiVmjalFyx2jNTfabyM/OH/Hvu4iI9E/YI052uz3oscvlIi8vLzBS5HQ6sdls2O32XtueO7J07utEwv/cu62zjlMv7Sb5DD4dVMepc4RnYvu5UHWcCj/6HXg2/OcUXLuWh6F9+47O41l+KAqxfYcZOh7pPk2UlE3RCNmcNRwasRERkZGu3wUwN27cSH5+PmVlZaxduzYQeFasWEF+fj5r1qzps21v53oz1FuujKTK4QA+byvOPU9wuv4Ik1Knkbvg9sBIU8j2ql0jIiLSb9qrTkRERCRM/ckXkdncS0RERGQUUnASERERCZOCk4iIiEiYFJxEREREwqTgJCIiIhImBScRERGRMJ33XnXDqaNyQn19fYR7IiIiImNFR64Ip0LTqApODQ0NAIO+0a+IiIhIQ0MDaWlpvbYZVQUw/X4/x48fJyUlBUs4G/L2U319PTk5OVRWVqrAZgTpOkSersHIoOsQeboGI8NQXwfDMGhoaGDKlClYrb2vYhpVI05Wq5WpU6cO+X8nNTVV/4OMALoOkadrMDLoOkSersHIMJTXoa+Rpg5aHC4iIiISJgUnERERkTApOHURFxfHgw8+SFxcXKS7Mq7pOkSersHIoOsQeboGI8NIug6janG4iIiISCRpxElEREQkTApOIiIiImFScBIREREJ06iq4zSUXC4XpaWl2O12XC4XhYWF2Gy2SHdrTHA6nTgcDgDKysrYvHlz4L3t7X0f6DnpXVFREWvXrtU1iBCHw4HL5cJutwNQUFAA6DoMF5fLhcPhICMjA5fLxfLlywPXQtdg6DidTlatWsWuXbuCjg/Fez7k18MQwzAMIzc3N/B1RUWFsXz58gj2ZmzZsGFD0Ndd3+ve3veBnpOe7dq1ywCM2trawDFdg+Gzfft2o7Cw0DAM8z2z2+2Bc7oOw6PrzyPDMALXwzB0DYZKSUlJ4GfPuYbiPR/q66HgZJhvbNc32jAMw2azRag3Y8uuXbuC3suKigoDMCoqKnp93wd6TnpXUlJi2O32QHDSNRheXd97wzDfx47Pug7D49z3q2uQ1TUYWucGp6F4z4fjemiNEwSGbbvKyMjA6XRGqEdjR25uLps3bw48drvdgPn+9va+D/Sc9Ky0tJTly5cHHdM1GD4ul4uamhpsNhtOpxO32x2YItJ1GD4ZGRksXLgwMGW3dOlSQNcgEobiPR+O66HgROcv83PV1NQMb0fGqK6/rJ955hkKCgqw2Wy9vu8DPSehud3ukHP8ugbDx+l0kpGREVh7sWnTJkpLSwFdh+FUUlICwKxZsygpKQn8fNI1GH5D8Z4Px/XQ4vBe9HQBZGDcbjelpaXdFgeGajfY58a7LVu2UFhYGHZ7XYPBV1NTg8vlCvzhUFhYSHp6OkYvNYh1HQafw+Fgw4YNuFwuVq9eDcDGjRt7bK9rMPyG4j0fzOuhESfAZrN1S6MdQ+oyeIqKiti+fXvgfe3tfR/oOenO4XCwcuXKkOd0DYaP3W4PvHdA4LPT6dR1GCYul4uysjIKCgooLCykoqKCLVu24HK5dA0iYCje8+G4HgpOdN4OfK68vLxh7snYVVxcTFFREXa7Hbfbjdvt7vV9H+g5CW3Lli1s2rSJTZs24XK5WL9+PU6nU9dgGHWsZwpF12F4OJ1O8vPzA4/tdjtr167Vz6MIGYr3fDiuh6bq6P4DzeVykZeXp78YBklpaSm5ubmB0NQxbXTu+9v1fR/oOenu3B8kq1evZvXq1SF/kesaDB273U5eXl5gvVlHLafc3NxubXUdhkZubi4bN24MWnd55swZXYNh1HW9ZW+/e0fy7wdt8tvO5XKxceNG8vPzKSsrCyoQKAPncrmYNWtW0DGbzUZtbW3gfE/v+0DPSWhut5tNmzZRVFREYWEhq1evJjc3V9dgGLndboqKili4cCG7du0KjMKC/l8YLg6HIzA9CuYfFroGQ8vhcLB9+3aKi4tZs2YN+fn5gfA6FO/5UF8PBScRERGRMGmNk4iIiEiYFJxEREREwqTgJCIiIhImBScRERGRMCk4iYiIiIRJwUlEREQkTApOIiIiImFScBIREREJk4KTiIiISJgUnERERETCpOAkIiIiEqb/D1KkRB2VAYsZAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFnCAYAAABQEsaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUJUlEQVR4nO3deXxU9b3/8ddMlgmBJJOwhC0sgyyyiGZBpbUuhIpatWqwWluXtsC1t6u9Erld/NENSXttb283oK3VcrWSaKu2vbSMS6tVS2AURDbJsEogQjKZQMg2c35/nGSSSSaTSUgyyeT9fDzySOac70y+mQPkzff7PZ+vxTAMAxERERHpkjXaHRAREREZLBScRERERCKk4CQiIiISIQUnERERkQgpOImIiIhESMFJREREJEIKTiIiIiIRio92B7rD7/dz/PhxUlJSsFgs0e6OiIiIxADDMKipqWH8+PFYreHHlAZVcDp+/DhZWVnR7oaIiIjEoKNHjzJx4sSwbboVnFwuF06nE4DS0lI2bNiA3W4P2dbtdlNSUoLD4cDtdrN8+fJA23DnwklJSQHMHyw1NbU7XRcREREJyev1kpWVFcgZ4XQrODmdTlauXAlAUVERixYtYvv27SHbLl26NHDO7XazbNkyiouLuzwXTsv0XGpqqoKTiIiI9KpIlgFFvDjc5XKxZs2awOOCggJcLhdut7tD2/bHHA5HYKQq3DkRERGRgSziEafs7Gw2bNgQeOzxeADIyMjo0NbpdHY4npGRgcvlYtu2bZ2ey87ODjpeX19PfX194LHX6420uyIiIiK9rlvlCAoKCgJfP/300+Tn54dcm9QSqtqrrKwMe669NWvWkJaWFvjQwnARERGJph7VcfJ4PJSUlES0Lqn987pzbtWqVVRXVwc+jh492s2eioiIiPSeHpUjKCwsZMuWLZ3eCWe32zuMIFVWVmK328Oea89ms2Gz2XrSRREREZFe1+0Rp6KiIgoLC3E4HHg8npAjRfn5+SGfm5ubG/aciIiIyEDWreBUUlJCdnZ2IDRt2rQpMFLU9g47h8MR9Dy3201ubi52uz3sOREREZGBzGIYhhFJQ7fbzbRp04KO2e12qqqqALM2U15eXqDOk9vtZt26deTl5VFaWsqqVauCCmB2di4cr9dLWloa1dXVquMkIiIyBPj8BlsPVlJRU8eYlCQWTM0gztq72651J19EHJwGAgUnERGRoWPzrnJWv7Cb8uq6wLFxaUk8fONslswd12vfpzv5okd31YmIiIj0pc27yrl/oysoNAGcqK7j/o0uNu8qj0q/FJxERERkQPH5DVa/sJtQU2Itx1a/sBufv/8nzRScREREZEDZerCyw0hTWwZQXl3H1oMdi2f3NQUnERERGVAqajoPTT1p15sUnERERGRAGZOS1KvtepOCk4iIiAwoF2fZSYzrPKJYMO+uWzA1o/861UzBSURERAYMwzD4+h/eocHnD3m+pYLTwzfO7vV6TpFQcBIREZEB40db9vPsW+8TZ7XwxWsuYFxa8HTc2LQkfvGp7F6t49QdPdrkV0RERKS3PV16hJ+8dACA798yl0/kTeIr+TP6vHJ4dyg4iYiISNT9ff8H/OcfdgHwpWsu4BN5kwCIs1q4fNrIaHYtiKbqREREJKrePV7N5zdux+c3uPWSCXx18Yxod6lTCk4iIiISNe97znHfY6WcbfCxcNpIHrntIiyW6E3FdUXBSURERKKi+lwj9z22lYqaemZmpvDLT+eQGD+wo8nA7p2IiIjEpIYmP/dv3M7+k2fITLXx2H15pCYlRLtbXVJwEhERkX5lGAYPPbOT18tOMzwxjt/cm8d4+7BodysiCk4iIiLSr9rWavr5p3KYMz4t2l2KmIKTiIiI9Jv2tZqunDE6yj3qHgUnERER6Red1WoaTBScREREpM8NplpN4Sg4iYiISJ8abLWawlFwEhERkT4zGGs1hTN4ey4iIiID2mCt1RSOgpOIiIj0usFcqykcBScRERHpdYO5VlM4Ck4iIiLSqwZ7raZwFJxERESk18RCraZwuhWcXC4XOTk5XbYrKSnB4/Hg8XhCvobL5QLA7XYHvhYREZHBLVZqNYUTcXAqKSkBiCjoLF26lPT0dNLT07FYLFgsFoqKigBYt24dOTk5WCwWVqxYgcPh6GHXRUREZKCIpVpN4cRH2rCgoCCidh6Ph+Li4qD2RUVFrFy5EoCcnByqqqoAsNvt3eiqiIiIDESxVqspnIiDU3e0DU0lJSUdQpcCk4iISGyIxVpN4fR6cGobijweD5WVlUHTcR6PJzDtV1paGna6rr6+nvr6+sBjr9fb290VERGRHorVWk3h9MmIU4vCwkLWrl0bdGz58uWBcOVwOFi8eDFlZWUhn79mzRpWr17dl10UERGRHorVWk3h9NkEpMfjwel0dpiWc7vdga8dDgdutzvoWFurVq2iuro68HH06NG+6q6IiIh0QyzXagqnz0actm3b1iE0uVwuFi1aFFgc3iIjIyPka9hsNmw2W191UURERHog1ms1hdOjEaf29ZlcLleHUSOXy9UhEDkcjqCpO6fTSUFBgRaLi4iIDBJDoVZTOBGPODmdTrZs2QKYa4/y8vICd8u1PG4pOdCi/aJvu91Obm4uRUVF2O12ysrKKC4uPt+fQURERPrBUKnVFI7FMAwj2p2IlNfrJS0tjerqalJTU6PdHRERkSGj+lwjS3/5OvtPnmFmZgrF918eM2UHupMvYrM6lYiIiPSaoVarKRwFJxEREenUUKzVFI6Ck4iIiHRqKNZqCkfBSUREREIaqrWawlFwEhERkQ7a1mr64hCr1RSOgpOIiIgEaV+r6YEhVqspHAUnERERCWhbq+lyx9Cs1RSOgpOIiIgAZq2m+x7bSkVNPTMyR/DLT+eQGK+o0JbeDREREQmq1TQmxcZj9y0gbdjQrNUUjoKTiIjIEBeqVtOEIVyrKRwFJxERkSGuba2mn92VzdwJQ7tWUzgKTiIiIkNY21pN3/v4XK6aOSbKPRrYFJxERESGqPa1mu5YoFpNXVFwEhERGYJUq6lnFJxERESGGNVq6jkFJxERkSFEtZrOj94pERGRIUK1ms5ffLQ7ICIiIn3D5zfYerCSipo6xqTY2FR6VLWazpOCk4iISAzavKuc1S/spry6Lui41YJqNZ0HBScREZEYs3lXOfdvdGGEOOc3oK7R1+99ihVa4yQiIhJDfH6D1S/sDhmaACzA6hd24/N31kLCUXASERGJIVsPVnaYnmvLAMqr69h6sLL/OhVDFJxERERiSEVN56GpJ+0kmIKTiIhIDBmTktSr7SSYFoeLiIjEkCafP+x5CzA2LYkFUzP6p0MxRiNOIiIiMeLV9z7gc09sCzxuv4lKy+OHb5xNnFVbrPREt4KTy+UiJycnonYulwsAt9sd+LrlcVFRESUlJRQVFeHxeLrXYxEREenglX0VfPbxbdQ3+Vk0awz/c+fFjE0Lno4bm5bELz6VzZK546LUy8Ev4qm6kpISHA5HUAjqzLp161i/fj0A+fn5FBcXB84tXbqU7du3A2aIWrZsWdB5ERER6Z6X91aw4nfbafD5yb8wk5/ddQm2+Diunze+TeVwc3pOI03nJ+LgVFBQEPGL5uTkUFVVBYDdbg8cd7vdQe0cDgdOpzPi1xUREZFgL+45yf0bXTT4/Fw7J5P/uTM7sGlvnNXC5dNGRrmHsaXP1jjZ7fag0ATgdDrJyAhejJaRkRHRKJaIiIgE+9u7J/i3jeZI0/XzxvLTT7aGJukbfXJXncfjoaSkBIDS0lJWrFiBw+HodD1TZWXoIlz19fXU19cHHnu93l7vq4iIyGC0eVc5X3jyLZr8BjdcNI4ff+JiEuIUmvpanwSn5cuXB0abHA4HixcvpqysrNP2nQWqNWvWsHr16j7ooYiIyOD1l3fK+eJTb+HzG9w0fzyP3j6feIWmftEn73LbtUwOhwO3243b7cZut3cYXaqsrOwwpddi1apVVFdXBz6OHj3aF90VEREZNF7YcTwQmm65ZAI/+sTFCk39qNffaZfLxaJFizocz8jIID8/P+RzcnNzQx632WykpqYGfYiIiAxVz739Pl/+vRmabsueyA+Xztddcv2sR8Gp/dSay+UKjDI5HA7Wrl0bOOd0OikoKMBut+NwOIKe53a7yc3N7XTESUREREx/eOsYX336bfwG3J47kaKCixSaoiDiNU5Op5MtW7YA5tqjvLy8QImClscrV67EbreTm5tLUVERdrudsrKyoDpNxcXFFBYWkpeXR2lpqWo4iYiIdKFk+zEeLNmBYcCdC7L43sfnYVVoigqLYRhGtDsRKa/XS1paGtXV1Zq2ExGRIWFT6VEKn92JYcBdl07iOzfPVWjqZd3JF9rkV0REZIB6ausRVj37DgB3Xz6Z1TfNwWJRaIomBScREZEBaOObh/nGH3cBcO/CKTx842yFpgFAwUlERGSAeeKNQ3zruXcB+OyHp/KNGy5UaBogFJxEREQGkMf+eZDVL+wGYPlHHKy6bpZC0wCi4CQiIjJA/OpVN9/98x4A7r9qGiuvnanQNMAoOImIiAwA6/9Rxvf/sheAL1x9AV/76AyFpgFIwUlERCTKfv7KAYo27wPgS4um89X86QpNA5SCk4iISBT99KX3+OHf9gPw1fwZfDl/epR7JOEoOImIiETJfzvf40dOMzT9x0dn8IVrFJoGOgUnERGRfmYYBj9yvsdPXnwPgJVLZvL5qy6Icq8kEgpOIiIi/cgwDP7rb/v56csHAFh13SxWXDktyr2SSCk4iYiI9BPDMCj66z5+8UoZAN+44UI+d4Ujyr2S7lBwEhER6QeGYfDI/+1l3T/cAHzrY7P5zIenRrlX0l0KTiIiIn3MMAy+++c9/Pq1gwB8++Y53H35lOh2SnpEwUlERKQPGYbBt/+0m8f+eQiA7358Lp+6bHJ0OyU9puAkIiLSRwzD4OHn3+WJNw4D8P1b5vHJSydFuVdyPhScRERE+oDfb/DN53bxv/86gsUCa2+9iNvzsqLdLTlPCk4iIiK9zO83+Pof3+GprUexWOAHBfMpyJkY7W5JL1BwEhER6UV+v8FDz+5k07ZjWC3ww6XzuTVboSlWKDiJiIj0Ep/fYGXJTp5xmaHpR5+4mJsvnhDtbkkvUnASERHpBT6/wYPFO3j2rfeJs1r48Scu5sb546PdLellCk4iIiLnqcnn52vFO3ju7ePEWS385I5LuOGicdHulvQBBScREZHz0OTz85Wn3+ZPO8uJt1r46ScvYclchaZYpeAkIiLSQ40+P1/+/Vv85Z0TJMRZ+Nkns/nonLHR7pb0IQUnERGRHmho8vOlp95i87snSIyz8vO7ssmfnRntbkkfU3ASERHppoYmP//+pIstu0+SGG9l3adyuHrWmGh3S/qBgpOIiEg31Df5+PxGFy/urSAx3sqGu3O5csboaHdL+om1O41dLhc5OTkRtSsqKqKoqIilS5fi8XiCzrlcLgDcbnfgaxERkYGurtHHv/1uOy/urcAWb+XX9yg0DTURB6eSkhKAiIKO0+lk5cqVrFy5kry8PBYtWhQ4t27dOnJycrBYLKxYsQKHw9GDbouIiPQtn9/gjbLTPPf2+7xRdpqz9U2s+N12Xt73AUkJVn5zbx5XTFdoGmoshmEY3XqCxUK4p7hcLhYtWkRVVRVgjipNmzaNsrIyHA4H69ev5/bbbwfAbrd3q7Ner5e0tDSqq6tJTU3t1nNFREQitXlXOatf2E15dV3gWGK8lYYmP8MS4vjNvXlcPm1kFHsovak7+aLX1zhlZ2ezYcOGwOOWabqMjIzAsUgDU319PfX19YHHXq+3V/ooIiLSmc27yrl/o4v2QwQNTX4A7r9qmkLTENatNU6RKigoCHz99NNPk5+fHwhLHo+HkpISSkpKKCwsxO12d/o6a9asIS0tLfCRlZXVF90VEREBzOm51S/s7hCa2npq6xF8/m5N1kgM6fWpurY8Hg85OTls3749KDi1fO1yuVi6dCllZWUhnx9qxCkrK0tTdSIi0ifeKDvNnRve7LLdU8su06hTDOnOVF2fjDi1KCwsZMuWLUFTc21HmBwOB263u9NRJ5vNRmpqatCHiIhIX6moqeu6UTfaSezpszpORUVFFBYW4nA4Auuc3G530MLxFm3XP4mIiETLmJSkXm0nsadHI05t6zKBOeXWdtSopKSE7OzsQGjatGkTdrsdh8PB2rVrA+2cTicFBQXdvrtORESkL9Q3+rCEOW8BxqUlsWCq/sM/VEU84uR0OtmyZQtgLtrOy8sLLAJvebxy5UrcbjdLly4Neq7dbmf58uXY7XZyc3MpKirCbrdTVlZGcXFxL/44IiIiPVOy/RgPPbMzsDDcAkGLxFsC1cM3zibOGi5eSSzr9uLwaFIdJxER6W2GYfDTlw7wX1v2A3DzxePJvzCT7/9lT1Adp3FpSTx842yWzB0Xra5KH4lqHScREZHBosnn55vPvctTW48AZo2mBz86E6vVwvXzxrH1YCUVNXWMSTGn5zTSJApOIiIyJNU2NPHFJ9/ixb0VWCyw+qY53H35lMD5OKtFJQekAwUnEREZck6dqeezvy1lx7FqbPFWfnLnJVw7Z2y0uyWDgIKTiIgMKQdPneXex7Zy+HQt6ckJ/OqePHImp0e7WzJIKDiJiMiQ8daRKj77+DYqzzaQlTGMx+9bgGP0iGh3SwYRBScRERkStuw+yRefclHX6GfehDR+c28eo1Ns0e6WDDIKTiIiEvM2vnmYbz23C78BV80czc8+mc1wm34FSvfpT42IiMQswzD4wV/38fNXzM3kP5GbxfdumUt8XJ9u1SoxTMFJRERiUkOTn4ee2cmzb70PwFfzZ/ClRRdgsagWk/ScgpOIiMScmrpG7t/o4rUDp4izWlhz6zxuz82KdrckBig4iYhITDnpreOe32xl74kakhPj+Pld2Vw1c0y0uyUxQsFJRERixv6TNdz7m60cr65j1Agbj92bx7yJadHulsQQBScREYkJb7pPs/yJbXjrmnCMHs7j9y0gKyM52t2SGKPgJCIig96fdh7ngad30ODzkzM5nV/dnUv68MRod0tikIKTiIgMar961c13/7wHgGvnZPLfd1xCUkJclHslsUrBSUREBiW/3+C7f97Db/55EIB7F07hmx+bTZxV5Qak7yg4iYjIoFPX6OOBTW/zl3dOAPCf189i2RUO1WiSPqfgJCIig4qntoFlT2yj9FAVCXEWfrh0PjdfPCHa3ZIhQsFJREQGjWNVtdz7WCkHKs6QkhTPuk/nsHDaqGh3S4YQBScRERkUdr1fzX2/LeWDmnrGpSXx2H15zBqbGu1uyRCj4CQiIgPeP/Z/wP0bt3O2wcessSk8dl8e49KGRbtbMgQpOImIyIBWsv0YDz2zkya/weWOkay7O4fUpIRod0uGKAUnEREZkAzD4KcvHeC/tuwH4OaLx/ODgvkkxluj3DMZyhScRERkwGny+fnmc+/y1NYjAPzbldNYee1MrKrRJFGm4CQiIgNKbUMTX3zyLV7cW4HFAqtvmsPdl0+JdrdEAAUnEREZQE6dqeezvy1lx7FqbPFWfnLnJVw7Z2y0uyUS0K3g5HK5WLZsGdu3bw/bzu12U1JSgsPhwO12s3z5cux2e5fnRERk6Dp06iz3PLaVw6drsScn8Ot7csmZnBHtbokEiTg4tYQdl8vVZdulS5cGwpXb7WbZsmUUFxd3eU5ERIamt45U8dnHt1F5toGsjGH89r4FTBs9ItrdEukg4uBUUFAQUTu32x302OFw4HQ6uzwnIiJD05bdJ/niUy7qGv3Mm5DGb+7NY3SKLdrdEgmp19c4OZ1OMjKCh1YzMjJwuVxs27at03PZ2dkdXqu+vp76+vrAY6/X29vdFRGRKNr45mG+9dwu/AZcNXM0P/tkNsNtWn4rA1evF8PweDwhj1dWVoY9F8qaNWtIS0sLfGRlZfVSL0VEJJoMw6Bo816+8UczNH0iN4tf3Z2r0CQDXr9VEessNIU7t2rVKqqrqwMfR48e7ZvOiYhIv2lo8vO1TTv4+StlAHwlfzqP3DaP+DgVtpSBr9ejvd1u7zCCVFlZid1uD3suFJvNhs2meW4RkVhRU9fI/RtdvHbgFHFWC2tumcfteZpNkMGj1+N9fn5+yOO5ublhz4mISOzw+Q3eKDvNc2+/zxtlp/H5DU5661j6yzd47cApkhPj+PU9uQpNMuj0aMTJ4/EEjRK5XC7sdjsOhwOHwxHU1u12k5ubGxhx6uyciIjEhs27yln9wm7Kq+sCx0aNSMTnN6iqbWTUCBuP3ZvHvIlpUeylSM9EHJycTidbtmwBzEXbeXl5gRIFLY9XrlwJQHFxMYWFheTl5VFaWhpUpyncORERGdw27yrn/o0ujHbHT51pACAz1UbJvy0kKyO5/zsn0gsshmG0//M9YHm9XtLS0qiuriY1NTXa3RERkTZ8foMPr30paKSpvcxUG68/tIg4bdYrA0h38oVuYRARkV6x9WBl2NAEcNJbz9aDoUvQiAwGCk4iItIrKmrCh6buthMZiBScRESkV4xJSerVdiIDkUq0iojIeWv0+Xllf0XYNhZgbFoSC6ZmhG0nMpApOImIyHk5VlXLl556C9cRT+CYBYLurGtZCv7wjbO1MFy6x++Dw6/DmZMwIhMmLwRrXNS6o+AkIiI9tnnXCVaW7MBb10SKLZ61BRdhtdChjtPYtCQevnE2S+aOi2JvZdDZ/TxsLgTv8dZjqeNhyVqYfVNUuqTgJCIi3VbX6OP7f9nDE28cBmB+lp2f3nlJoD7T4tlj2XqwkoqaOsakmNNzGmmSbtn9PGy6G9pXBfOWm8dvfyIq4UnBSUREusX9wRm+8ORb7C73ArD8Iw7+46MzSYxvvd8ozmrh8mkjo9VFGez8PnOkqUMpVZqPWWDzQzDrhn6ftlNwEhGRiP3hrWN8/Q+7qG3wkTE8kf+6fT5XzxwT7W5JrDn8evD0XAcGeN832029ot+6BQpOIiISgbP1TXzruXd5xnUMgMscGfz3HZeQmarSAtIHDv0zsnZnTvZtP0JQcBIRkbD2lHv59ydduD84i9UCX1o0nS9eM11rlqT3nS4D5/+DPc9H1n5EZp92JxQFJxERCckwDP73X0f49p9209DkJzPVxn/fcQmXObR2SXrZ2VPw97Ww7TfgbwIskDAMGs8Rep2Txby7bvLCfu6ogpOIiIRQfa6RVc/u5C/vnADg6pmj+eHS+YwcYYtyzySmNNTCmz+H134MDTXmsekfhfzVcPpA8111nVQFW/JIVOo5KTiJiEiQt45U8cWn3uJY1TnirRYeum4Wn/nQVKyampPe4vfBjqfgpe9BTfMi8HHzYfF3wHGl+ThztllyIGQdp0dUx0lERKLL7zfY8KqbH/x1H01+g6yMYfzPndlcnGWPdtckVhgGHHgRtnwLKt41j6VNgkXfgrm3gbXdFrqzbzJLDqhyuIiIDCSnz9TzteIdvLLvAwBumDeONbfNIzUpIco9k5hRvhO2fBPcr5iPk9LgIw9C3jJICHN3pjWu30sOhKPgJCIyxL1Rdpov//4tKmrqscVbefjGOdy5IAuLRVNz0gs8R+Gl78LOpwED4hJhwXK44muQPPg2fFZwEhEZonx+g/9+8T3+56X3MAyYNno4P7srm1ljU6PdNYkF5zzw2qPw5i/BV28em1sAi74J6VOi2bPzouAkIjIEnaiu40u/f4utBysBWJozkdU3zyE5Ub8W5Dw1NUDpr+AfRXCuyjw25QpY/G2YkB3dvvUC/Q0RERliXtp7kq9t2kFVbSPDE+P43i3z+PglE6LdLRnsDAPefRZe/DZUHTKPjZppBqYZ10KMTP0qOImIDBENTX6KNu/lV68dBGDO+FR++slspo4aHuWeyaB3+HX42zfg/e3m4xGZcPV/wsWfgrjYihqx9dOIiEhIR07X8sWnXOw4Vg3AvQunsOr6Wdjio3dbt8SAD/aD82HY9xfzccJw+NCXYeEXIDE2A7mCk4hIjPvTzuOseuYdauqbSBuWQFHBRVw7Z2y0uyWDWc1JeGUNuJ4AwweWOMi5B65aBSPGRLt3fUrBSUQkRtU1+lj9wm6e2noEgJzJ6fzkzkuYYB8W5Z7JoFV/Bt74KfzzJ9B41jw28wbI/38wekZUu9ZfFJxERGLQeydr+MKTb7HvZA0WC3z+qml8JX8GCXHWrp8s0p6vCd7eCC9/36zgDTAhx9wiZcqHotu3fqbgJCISQwzDoHjbMb71/C7qGv2MGmHjR5+YzxXTR0e7azIYGQbs/6u5jumDveax9Cmw6GGYc0vM3CnXHd0KTm63m5KSEhwOB263m+XLl2O320O2LSkpIT8/H6BDG5fLBUB2djZutxuPx0N29uCv7SAiEk1n6pv4+h/e4bm3zQ1RP3zBKB79xHzGpITZzkKkM++74G/fhMOvmY+HpcOVhZD7WYhPjG7foqhbwWnp0qVs327eauh2u1m2bBnFxcWdtm1v7dq1rFy5knXr1rF+/XoA8vPzO30NERGJzK73q/nCky4Ona4lzmrhgcUzuP/KaVitQ29EQM5T1SGzFtOuZ8zHcTa47H748FdhmD2aPRsQIg5Obrc76LHD4cDpdIZs6/F4KC4upqCgIHCsqKiIlStXApCTk0NVlVlNtLMRKxER6ZphGPz29UOs+cteGnx+xqcl8ZM7LyF3yuDbA0yirLYSXv0v2LoefA2ABebfAVd/HexZ0e7dgBFxcHI6nWRkBP9FzMjIwOVyhZxmaxuaSkpKgh6DApOIyPny1DbwYMlOtuw2F+sunp3JDwouwp48dKdRpAca68yw9OoPoc6s84XjKrPi97j5Ue3aQBRxcPJ4PCGPV1ZWdjjWNhR5PB4qKytxOBxBx0pKSgAoLS1lxYoVQedb1NfXU19fH3js9Xoj7a6ISEzbdqiSLz31Fser60iMs/Kf18/inoVTsAzBxboSht9nVvU+c9Ks5j15IVibi576/bCrBF78DlSbJSsYMwc++m2YtmhILvyOxHnfVddZoGpRWFjI2rVrg461XVTucDhYvHgxZWVlHZ67Zs0aVq9efb5dFBGJGX6/wS/+XsajW/bj8xtMGZnMTz+ZzdwJadHumgw0u5+HzYXgPd56LHU8LFkLSWmw5ZtQvsM8njIervmGOTVnVTX5cCIOTna7vcPoUmVlZdgpN4/Hg9Pp7NDG7XYHpvda7tBzu90dRp1WrVrFAw88EHjs9XrJytI8q4jEPp/fYOvBSipq6hiTksSCqRmcPlvPA0/v4LUDpwC4+eLxfO+WeYywqbKMtLP7edh0N2AEH/ceh02fbn2cmAJXfBUuvR8Sk/u1i4NVxH/b8vPzWbduXYfjubm5nT5n27ZtIUsRLFq0KLA4vEX79VMANpsNm80WaRdFRGLC5l3lrH5hN+XVdYFjGcMTafT5qalrYlhCHKtvnsPSnImampOO/D5zpKl9aGovbxlc9RAMH9Uv3YoVEQen9qNBbreb3NzcQDByuVzY7fagdi6Xq0MgcjgcQVN3TqeTgoICLRYXEcEMTfdvdHX4lVd5tgGA8WlJPP6ZBUzPTOn/zsngcPj14Om5zsy+WaGpB7o1vltcXExhYSF5eXmUlpYG1V9as2YNeXl5gZIDLdoHLrvdTm5uLkVFRdjtdsrKylTHSUQEc3pu9Qu7w44T+AHH6BH91SUZjFq2ROmtdhLEYhhGF2N5A4fX6yUtLY3q6mpSU1Oj3R0RkV71Rtlp7tzwZpftnlp2GZdPG9kPPZJBxe+Dff8Hr6yBk7u6bn/Pn2DqFX3fr0GgO/lCKwpFRAaIipq6rht1o50MEXVeePt/4V+/NKt+d8li3l03eWFf9ywmKTiJiAwAhmGwt7wmorbae04AMyT9az289Tuob65zmGSH3PvAPgX+9JXmhm0nlppvJljyiMoO9JCCk4hIlJ2ormPVszt5ed8HYdtZgLFpZmkCGaIMA468AW/+HPb+GQy/eXzUDHM/uYvuaC0rkJzRSR2nR2D2Tf3f9xih4CQiEiWGYVC87Rjf+fNuauqaSIyzct28sTz/tvmLLsQ4AQ/fOJs4bdw79DQ1wLt/MANT+dutx6ddA5f9u/nZag1+zuybYNYNnVcOlx5RcBIRiYLjnnM89Ow7/GO/Oco0P8vODwouYkZmCtfNHduhjtPYtCQevnE2S+aOi1aXJRrOnoZtv4HSDa13wcUnmRW+L/03GHNh+Odb47QAvJcpOImI9CPDMPh96VG+9+c9nKlvIjHeygOLZ/C5D08lPs4cMVgydxyLZ4/tUDlcI01DSMUec3Rp5yZoag7QI8bCgmWQcx8M112V0aLgJCLST45W1rLq2XcCW6ZkT7JTVDCfC8Z0rMsUZ7Wo5MBQ4/fDAacZmNwvtx4fdzFc/u8w++MQnxit3kkzBScRkT7m9xv879YjPPKXPZxt8GGLt/LgtTO570NTNYok0HAWdjwFb/4STr9nHrNYYdbH4LLPw6TLQFvrDBgKTiIifejI6VpWPrODN93mJul5U9IpKpjP1FHDo9wzibrqY7B1A2z/LdR5zGO2VMi+25ySS58Sxc5JZxScRET6gN9v8MQbh1i7eR/nGn0MS4hj5ZKZ3HP5FKwaZRrajm2DN34Gu58Dw2ceS58Cl94Pl9wFNu1DOJApOImI9LKDp85SWLKTrYfMUaZLp2ZQVHARk0dqlGnI8jXBnufN9UvHSluPT7nCrL80Y4nKBAwSCk4iIr3E5zd47J8H+eHf9lHX6Cc5MY5V183irksna5RpqDpXBdsfN6fkvMfMY3GJMLfADEzjLopu/6TbFJxERHpB2QdneLB4B64jHgAWThvJ2tsuIisjObodk+g49Z65d9zbT0JjrXkseRTkfQ5yPwMpmdHtn/SYgpOIyHnw+Q1+9aqbR7fsp77JzwhbPP95/YXcuSALi+6EGloMA9yvwJu/gPf+2np8zBy4/PPmKFOC9hkc7BScRER66L2TNTxYspO3j3oAuGL6KB657SIm2IdFt2PSvxrPwTvFZmCq2N180GKuW7rsfpj6EZUTiCEKTiIi3dTk87PuH27+2/keDT4/KbZ4vvmx2SzNnahRplji94Xf563mBJT+Grb9GmpPm8cShpt3xl36bzByWnT6LX1KwUlEpBv2najhwZId7DxWDcDVM0fz/VvnMS5No0wxZffzsLkQvMdbj6WOhyVrIX2yObr0Tgn4G81zaVmwYDlkfxqGpUenz9IvFJxERCLQ6PPzi1fK+J+X3qPRZ5CaFM/DN87h1uwJGmWKNbufh013A0bwce9x2PTp4GNZl5rTcbNuhDj9Sh0KdJVFRLqw+7iXB0t28O5xLwD5F2byvVvmkpmqhb4xx+8zR5rah6b25txm7h83MadfuiUDh4KTiEgnGpr8/OzlA/zs5QM0+Q3syQmsvmkON80fr1GmWHX49eDpuc7k3qfQNEQpOImIhLDr/Wr+o3gHe0/UALBkzli+/fE5jEnRKFPM8jXCnhcia3vmZN/2RQYsBScRkTbqm3z8z4sH+MXfy/D5DTKGJ/Ltm+dww7xxGmWKVd7j5ka7238beSAaoQKWQ5WCk4hIsx1HPTxYsoP9J88AcMNF4/j2TXMYOcIW5Z5JrzMMOPQqlP4K9vypdbPd5NHQVAcNZwi9zsli3l03eWF/9lYGEAUnERny6hp9/Nj5Huv/UYbfgFEjEvnOzXO5bt64aHdNeludF3b83gxMp/a1Hp+0EBZ8zrw7bv/m5rvqLASHp+YRxyWPaEPeIUzBSUSGNNeRKh4s3kHZB2cBuPni8Tx84xwyhidGuWfSq07uNsPSzqebR5Mwi1XO/wTkfhbGzm1tO/smuP2JTuo4PWKelyFLwUlEhqS6Rh//9bd9/Pq1g/gNGJ1i43sfn8tH54yNdtekt7Qs9i79FRz+Z+vxUTPMzXbn3wFJaaGfO/smmHVD+MrhMiR1Kzi53W5KSkpwOBy43W6WL1+O3W4P2dblcgGQnZ2N2+3G4/GQnZ3d7dcREelt2w5VsrJkJ+5T5ijTrdkT+NbHZmNP1ihTTAi12NsSB7Ouh7xlke8dZ42DqVf0ZU9lEOpWcFq6dCnbt28HzPCzbNkyiouLQ7Zdt24d69evByA/Pz+oXXdeR0Sku3x+g60HK6moqWNMShILpmYQZ7VwrsHHD/66j8deP4hhQGaqjTW3zuOaWbpDatDrbLH38DGQc6/5kTYhmj2UGBFxcHK73UGPHQ4HTqez0/Y5OTlUVVUBBI0mdfd1RES6Y/Oucla/sJvy6rrAsXFpSdy5YBLPuI5x+HQtALfnTuTrN8wmbVhCtLoqvSGSxd7xGkmU3hNxcHI6nWRkZAQdy8jIwOVyBabg2gs1/daT1xERicTmXeXcv9HV4Sby8uo6Ht2yHzBD1Jpb53HVzDH930HpPeEWe+d9DjLnRLd/ErMiDk4ejyfk8crKyk7bl5SUAFBaWsqKFStwOBzdep36+nrq6+sDj71eb6TdFZEhxuc3WP3C7rA7jCUnxvGXL19ButYyDU5hF3svM0NTZ4u9RXrJed9V11kQarvg2+FwsHjxYsrKyrr1OmvWrGH16tXn20URGQK2HqwMmp4LpbbBx97yGi6fNrKfeiW9otPF3jeYo0uRLvYW6QURBye73d5hVKiysrLTu+Hcbndg6q3l7jm3292t11m1ahUPPPBA4LHX6yUrKyvSLovIEFJREz40dbedRFnLYu+tG2Dvn1sXe4/INBd6Z9+jxd4SFREHp/z8fNatW9fheG5ubodjLpeLRYsWBRaHt8jIyOjW69hsNmw2bXUgIuE1+vzsOOqJqK026R3gOlvsPflDkPdZLfaWqIs4ODkcjqDHbreb3NzcwEiRy+XCbrfjcDhwOBysXbs20NbpdFJQUIDdbu8wstT+dUREIuX3G/xlVzk//Os+DjXfLdcZCzA2zSxNIAPQyd1QugF2PA2NZn0tc7H3HWZg0mJvGSC6tcapuLiYwsJC8vLyKC0tDaq9tGbNGvLy8li5ciV2u53c3FyKioqw2+2UlZUFtQ33OiIikXj9wCke2byXnceqARg1wkb+7DE8vfUoEHKHMR6+cTZxVq2F6Rd+X9dVt5saYO8LUPrrdou9Z7ap7J3av/0W6YLFMIxwN6EMKF6vl7S0NKqrq0lN1V8mkaFo93Evj2zeyz/2fwDA8MQ4Vlw5jc9+eCrDbfGd1nF6+MbZLJmrTXv7xe7nO9nnba25lUm4xd4LlsGUK7TYW/pVd/KFgpOIDApHK2t5dMt+/vj2+xgGJMRZuOvSyXzhmgsYNSJ4LWRnlcOlH+x+HjbdDR0KQ1jMYxNy4fhbHRd759xrhiuRKOhOvtAmvyIyoFWebeCnLx1g45uHafD5Abhp/ni+9tEZTB45PORz4qwWlRyIBr/PHGkKWU2r+dj728zPkz9kTsddeCPEqXq7DB4KTiIyINU2NPGb1w6y7u9uauqbALhi+igKl8xi7gQVORyQDr8ePD3XmZt+Btmf6vv+iPQBBScRGVCafH42bTvGj537qagxdw6YMz6Vh66bxRXTR0e5d9Ipvx8O/iOytgkqCSGDl4KTiAwIhmHw13dPULR5H+5T5u3okzKS+Y9rZ/KxeeOwao3SwGMYcNwFu541P2oiGG0Cc12TyCCl4CQiUfcv92nW/N9e3m4uYpkxPJEvXXMBn7x0Monx1uh2Tjqq2APvlMCuZ6DqYOvxxFQwmqCxs5paFnMB+OSF/dJNkb6g4CQiUbP3hJeizft4aW8FYG7C+7krHCy7YiopSVowPKBUHjSD0q5noGJ36/GEZJh5Hcy9DS7Ih/1/bb6rDkJW01rySMd6TiKDiIKTiPS79z3n+NGW/TzjOoZhQLzVwp0LJvHFRRdoS5SBxFsO7z5rhqX3t7cetybA9MVmWJp5HSS2ubtx9k1w+xOd1HF6xDwvMogpOIlIv/HUNvDzV8r47euHaGgySwvcMG8c/3HtTKaOCl1aQPrZ2dOw5zlzzdKh1wiMGlmsMPVKMyxd+DEYlt75a8y+ySxm2VXlcJFBSMFJRPpcXaOPx/55iJ+/coCaOrO0wGWODB667kIuzrJHt3Nibqy77y/muiX3y+Bvaj2XdRnMK4DZN8OIMZG/pjUOpl7R+30ViTIFJxHpM00+P8+63ufRLfs54TW3QJk1NoWHrpvFlTNGY9G2GtHTeM5cj7TrGXjvb9DUukUNYy8yw9KcW8GeFb0+igxACk4i0usMw8C5p4KizXt5r+IMABPsw/jaR2fw8YsnqLRAtPgaoexl2FUCe/8MDWdaz42cboalubfBqOnR66PIAKfgJCK9atuhSh75v71sO1wFgD05gS9cfQGfumwySQla49Lv/D44/E9zZGn3c3CuqvVc2iSYe6sZlsbO08a6IhFQcBKRXvHeyRqK/rqPLbvN3e6TEqx89sNTWXHlNFJVWqB/GYZ5F9w7JfDuH+DMidZzw8fAnFvM0aWJeQpLIt2k4CQi5+VEdR0/2rKf4u1H8RtgtcAn8rL4Sv4MMlNVWqDfGAacfLe11pLncOu5JLt5p9vc22DKFbq7TeQ8KDiJSI9Un2vkl38v4zevHaS+ubTAtXMyefDaWVwwZkSUexcD/L7Ibuc/XdYalj7Y23o8YTjMut4MS9MWQXxi//VdJIYpOIlIt9Q1+vjdG4f56csHqD7XCEDelHQeuu5CciaHqe0jkdv9fCcFJNeaI0fVx8wpuHdKoPzt1jZxiTD9o2ZYmnFtcGFKEekVCk4iEsTnN9h6sJKKmjrGpCSxYGoGcVYLPr/BH956n0f/to/j1eat6zMyR1C4ZBbXzBqj0gK9ZffzzVuWGMHHveWw6dMwaiac2td63BIHjqtaC1MmpfVnb0WGHAUnEQnYvKuc1S/spry6tabP2LQkbsuewIt7Kth7ogaAcWlJfHXxDG7LnkicSgv0Hr/PHGlqH5qg9VhLaJq0EObdBhfeDCNG91cPRYY8BScRAczQdP9GV4df2Seq6/jZy2UApCbF8+9XX8A9C6eotEBfOPx68PRcZwoeM8sIiEi/U3ASEXx+g9Uv7A45ztFiuC2OV/7jajJGaJFxr/L7zNIB+/4Pdj4d2XMMf9/2SUQ6peAkImw9WBk0PRfK2Xof+07WcPmIkf3UqxhWXwNlL8G+zeZ2J7Wnuvf8EZl90y8R6ZKCk8gQ56lt4KmtRyJqW1ETPlxJGFWHzb3h9v8fHHoNfA2t52xpcMEi804458NQc5LQ65ws5t11kxf2V69FpB0FJ5Ehak+5l8dfP8Qf336fusbIpn7GpKigZcTaTsHt3wwVu4PPZzhgxnVmWJq8EOKaq6snJDffVWchODw1L8Jf8ogKWIpEkYKTyBDS6PPzt3dP8vjrh9h6qDJwfNbYFMqr6/Cea+xsnIOxaWZpAgmjZQpu/1/Nj7ZTcBYrZF0GM5eYgWnU9NDbncy+CW5/opM6To+Y50UkahScRIaAU2fq+f3WI2x88wgnvOZ0W5zVwpK5Y7l34RRyJ6fz13dPcP9GV2fjHDx842yVHgglkim4mdfBBfmQHGHwnH0TzLohssrhItKvFJxEYtjOYx5++/oh/rSjnAafOR03akQidy6YxF2XTmZsWuvU25K54/jFp7JD1nF6+MbZLJk7rt/7PyD1dAquu6xxMPWK8++viPSqbgUnt9tNSUkJDocDt9vN8uXLsdvtIdu6XC6cTicApaWlbNiwIdDW5XIBkJ2djdvtxuPxkJ2d3fOfQkQCGpr8/OWdcn77+iHePuoJHJ8/MY17Fk7hhovGYYsPPXKxZO44Fs8eG7Jy+JDWG1NwIhITuhWcli5dyvbt2wEzRC1btozi4uKQbZ1OJytXrgSgqKiIRYsWBZ67bt061q9fD0B+fn6nryEikTvpreN//3WEJ/91hFNn6gFIiLPwsYvGc8/CKVycZY/odeKsFi6fppIDfTIFJyKDXsTBye12Bz12OByBEaX2XC4Xa9asCQSngoICCgsLcbvdOBwOcnJyqKqqAuh0xEpEumYYBtsPV/Hb1w+xedcJmvzm6qTMVBt3XTqZOxdMYnSKLcq9HCT6awpORAa1iIOT0+kkIyP4f1UZGRm4XK4O02zZ2dls2LAh8Njj8QTat4gkMNXX11NfXx947PV6I+2uSEyra/Tx/I7jPP76Id493vr3IndyOvcsnMKSuWNJiLNGsYdR5vdFtrBaU3Ai0k0RB6eW8NNeZWVlyOMFBQWBr59++mny8/MDYcnj8VBSUgKY659WrFiBw+Ho8Bpr1qxh9erVkXZRJOa97znHxjcP8/utR6iqbQTAFm/l5ovHc/flU5g7IS3KPRwAdj/fya38a8271TxHzIrdmoITkR4477vqOgtUbc+XlJQE1jcBQYvKHQ4HixcvpqysrMNzV61axQMPPBB47PV6ycrKOt8uiwwqhmHwhvs0j79+iC27T9I8G8cE+zA+ddlk7sjLIn249o8DzNC06W46VN32HodNn4bUieA9FnxOU3AiA5rP78NV4eKD2g8YnTya7DHZxEWxNEfEwclut3cYXaqsrOxyyq2wsJAtW7YEtXO73YHpvZY79FrWP7Vls9mw2bQ+Q4am2oYm/vDW+zzx+mH2nawJHF84bST3LJxC/oWZututLb/PHGkKt1Wx9xhggUmXawpOZBBwHnbyyNZHOFl7MnAsMzmThxY8RP7k/Kj0KeLglJ+fz7p16zocz83N7fQ5RUVFFBYW4nA4AiNTbrebRYsWBRaHt2i/fkpkqDpyupYn3jjEpm1H8dY1ATAsIY5bsydwz8IpzMhMiXIPB6A6L2zdEDw915k7noRZ1/d9n0TkvDgPO3nglQcw2v1nqKK2ggdeeYBHr3o0KuEp4uDUfjTI7XaTm5sbVJvJbrcH2pWUlJCdnR0ITZs2bWL58uU4HA7Wrl0beB2n00lBQYHurpMhze83ePXAKR5//RAv76vAaP53YvLIZD592WSW5maRNkxTSAENtXD0TTj4Dzj4Khx/CwxfZM9trO3bvonIefP5fTyy9ZEOoQnAwMCChbVb13J11tX9Pm3XrTVOxcXFFBYWkpeXR2lpaVD9pTVr1pCXl8fKlStxu90sXbo06Ll2uz2wtik3N5eioiLsdjtlZWWq4yRDVk1dI89sP8YTbxzGfeps4PiVM0Zz78IpXDljNFZNx0FTA7y/rTko/QOObgV/Y3CblHFQU971a43I7Js+ish5q22s5YDnAH879Leg6bn2DAxO1J7AVeEib2xeP/YQLIZhhFkQMLB4vV7S0tKorq4mNTU12t0R6cDnNyKqun2g4gxPvHGIZ7Yf42yDOVIywhZPQc5E7r58Mo7RI/q76wOLrwnKd8DBv5tB6cib0HQuuE3qBJh6pbktyZQrzDvnfjwXvOWEXudkMdt85R3t+SYSZX7Dz/Ezx9lftZ99Vft4r+o99lft54j3SMhRps6svWIt1zvOf+q9O/lCe9WJ9JLNu8o77PM2rs0+bz6/wct7K3j8jUO8+l5rvaBpo4dzz8Ip3Jo9kRG2IfpX0u+HinfNabeD/4DD/4T6dnXbkkfB1I+0fmQ4Oi7qXrK2+a66TrYqXvKIQpNIPzvbeDYQjPZX7Wdf5T7e87zH2cazIduPGjaKsclj2XV6V5evPTp5dG93t0sacRLpBZt3lXP/RleH/ye1/Fq/NXsCWw9VcrTSHDWxWGDRrEzuXTiFD10wEstQu6vLMOD0gdYRpYOvwrl2NeGS0syRpKkfMT+PuTCyu99C1nGaYIam2Tf17s8hIgF+w8+xmmPsq9pnhqRKMygdO3MsZPsEawIX2C9gevp0ZqbPZEbGDKbbpzNy2Eh8fh/XPnMtFbUVIUegLFjITM5k822be2WNk0acRPqRz2+w+oXdIQeXW44943ofgLRhCXwiL4tPXzaZrIzkfuvjgFB12AxJh5pHldqvR0oYDpMvbx1RGntRz0aHZt8Es26IrHK4iPSIt8EbGEXaV2lOtb3neY9z7afUm2UmZzIjfUbgY2bGTCalTiLBGvqmlzhrHA8teIgHXnkAC5ag8GRp/i9p4YLCqNRzUnASOU9bD1YGTc91ZtkVU3lg8UyGJQ6RX+A1J5qn3ppHlTyHg8/H2SBrQfM6pY/AhOzeKz5pjTPXPokMcedbPNLn93G45nDQCNL+qv2Unw19I4YtzsYF9guYmTEzEJKm26djT7J3u+/5k/N59KpHQ9ZxKlxQOPDrOIlIRz6/wdZDpyNqO3dC2uAITZHu89ZebWXraNLBV+HUvuDzljiYkNM6opS1ABKG9c3PICLdLh7pqfMEglHLxwHPAep99R3aAowfPt4MRunTA0FpUsqkXh0Fyp+cz9VZVw/OyuEiYvLWNfLq/lO8tLeCV/ZVcPpsQ9dPAsakJPVxz3pBV/u8tVXnhSNvNAelv8OJXXRYkD3uouagdCVMugxsKt4p0h+6Kh75YO6DjBw2snU9UtV+KmorQr7WsPhhTE+fHjTVNj19OqmJ/bPWOM4a1+8lB8LR4nCRCLg/OMNLeyt4cU8FpYcqafK3/rUZkRhHk2FQ1+gP+VwLMDYtidcKrxnYW6R0ts9byxL3WzfA8FGt65Ted3UsOjl6VuuI0uQPaZNcGdQG2h5pkTAMgzMNZ7jpuZs4de5U109oZ+KIiWY4yphhLthOn8HElIlYLdY+6O3AocXhIuepocnP1oOVvLS3gpf2nuTQ6eBq047Rw1k0awzXzMokd0o6L+45yf0bXUDIm+B5+MbZAzs0hd3nrfnYs5/reCp9amtQmnIFpKi4pMSGaO6R1uBrwNvgxdvgpaahJvDhrfdS01gTOO6tb3O+sfVxk9EU0fe5wH4BOZk5QaNIwxOG9+nPFgs04iTS7IOael7eV8FLeyp47cApztS3/uOTEGfhMsdIrp45hmtmjWHKqI7/uHRVx2lAK3sFfndz1+2GjYTpi5vD0hVgn9TnXRPpb51Nc7XczdXVHmlN/qbgwBMqBLU71vbrztYU9bbeKh4ZCzTiJBIBv9/g3ePewKjSjmPVQedHp9i4euZorpmVyYenj+qyOOWSueNYPHtsRJXDo6qpHip2Q/lOszp3y0ckrlsLFy3tup3IINXVHmkA3/jnN/hX+b8423g2ZAiqbTr//RAtWBiROILUxFRSE1NJSUwhJTEl6OuWx+3P76/az+df/HyX3yMaxSNjgYKTDCln65t47cApXtpTwcv7KqioCf6f3UUT07h65hgWXTiGuePTur1PXJzVwuXTRvZml89P/Rk4uSs4JH2wB/yRDeV3kDK2d/snMWsgrQ9q9DdSXV+Np85DVX0VnnoPVXXmZ0+9p/V4nYcTZ09wqi782qCzjWf5/b7fd/l9k+OTSbU1h5qE5pBjaxN8ElICj1vCT8vn4QnDe7yuaNSwUWQmZ3ZZPDJ7THaPXn+oU3CSmHfkdC0v7T3Ji3sr+Je7kgZf6yLu4YlxfHj6KBbNyuSqmaMZkzoI7nzrTG0lnNgZHJJOHyDkuqVh6TBuvllkctx8yJwLG2/pep+3yQv7+IeQWNCX64N8fh/eBm8g6FTVV1FdXx0IQoHPbc7XNNSc74/UwdVZV3PJmEs6jPa0PB6ROIJ4a3R+xQ7k4pGxQGucJOY0+vxsP1zVPAVXwYGKM0HnJ2Uks+hCc63SgqkZ2OIH4T8eNSeaw9FOKH/bDEyeI6HbpowLDknjLoK0rI7blwTuqoOQS9xvf0JblkiXurM+yG/4qWmoCTny035kqOVzdX11tzaBbfv902xp2G120pPSSbOlkW5Lx55kNz83Hy8/U873t36/y9f7zbW/GVC3yIcSKsCOTR4b1eKRA1V38oWCk8SEyrMNvLLPDEp/3/8BNXWtU1HxVgu5U9JZNCuTq2eNYdro4YNnbzjDMCtutx1FOrHTLE4ZSvqUNiHpYjMkjRgT+ffTPm9yHuqa6rj+2ev54NwHnbZJsCaQNSILT4MZgnztS1pEKCUhpTX0JNnN4NM2CLX7nJqYGtEIS3/vkdbXBtKU6UCm4CSDls9vRLS42jAM9p6oCYwquY5U0fZPcsbwRK6aOZprZo3hiumjSRvWS1t5dKWnVbdbnnv6QOsoUktIqqvu2NZihVEzgkeSxs6DYfbo/gzSawbCLzy/4cdb76WyrpLTdaeprKts/ThXSVV9FafPtR73Nnh79H2S45NJTzJHfdqPAAV9bg5Caba0Tvc46w0to2ZAyGmuru6qk8FHwUkGpa5u5z/X4OP1MrNi98t7Kzjebn+4C8elmrWVLhzD/In2/r+brTtVt5sazEXaLSNJJ3bCiXegMcTdONYEyJzdZqrtYsicA4lDbJPgIaSv1ggZhsG5pnOtIehcZVAYahuOquqqqKqr6vGIUDifm/c5lkxZEghKtjhbr3+P86VprqFFwUkGnc27yrl/o6vTlQtzx6fyXsUZ6ptaF3YnJVj58AWjuHrWGK6eOYbx9ijue9ZV1e1F3wRbamtIOrkb/I0dXych2Rw5CoSk+WY17vjEvv4JZIDobg2hBl9DUNgJCkHtglFlXWWPagSlJKYwMmkkGUkZrR/DMoIfJ2Vw2HuYL7/85S5fbzCsD4KBMeon/UPBSQYVn9/gw2tfChpp6swE+zCuaR5VutwxkqSEAfCPmN8HP54bPNIUiaS0duuR5sPIaZoW6wWD9Rdeo6+RJc8soeJc6D3DwNx9/sKMC6mqr6LyXCU1jd2/YywpLomRw0aSbksPGYBGJo0MHE+3pZMQF9m0WKytD5KhQwUwZcDz+w2OVtWyp7yGLbtPRBSaim67iKW5E6O7sLuuGioPQtVBqHSbXx9/O7LQNCEXHFe1jiTZJ3W8s03OWzS3ygCzZtCZhjNmUcT61sKILUUSW461LZrYtl1Xd4zV++p5+4O3g47FWeI6jAal29IZOWxkh1CUkZRBckLfTPPqNngZChScpM/V1DWy70QNe8q97DlRw95yL/tO1HC2oXtrJ2wJ1r4PTYZhLooOhKPmgNTy9bnKnr/2ZffDvILe66t00NWO8JEu6q1rqgsOPO3CTsueYKECUG9Uje7KXRfeRf6kfDKGmaNDKYkpA2YT1vzJ+Tx61aMhw6vWB0ksUHCSXuPzGxw+fZa9zeFoT3NYOlZ1LmT7xHgrMzJHkDE8kX/sNyv1WvGzwLqXMXiowM5W/yz8mL8QxqT0UnFKXxNUHwkOR1WHmgPSodALtNsaPtrc3DbDARlTzYXer/1X1993xODYAHewTnNFslXGw68/zNGao5xpPBNyNKgl/DT4G867P8MThgcVRQxUhralBlWJTrOlBR67PW4e+PsDXb72okmLyB2be9597Cv5k/O5OuvqQfnnSKQrCk7SI9W1jew94WVvm5Gk/SdqONcYehRpXFoSF45LZdbYFGaNS2X2uBSmjBxOfJw1sMZpfs0/+FbCE4y3tI7qHDcy+Hbj3exI+QgLpmZE3sGGs81hqG04ah498hyFcHcKWayQNrE5HE0NDknpU8CWEtze74OdT8VE1e1oT3OBGYDONJ4xPxrOUNNQw5lG8/PZxrOBr880nKGm0fx8pvEMJ8+eDOp3KN4GL49ufzSiflgt1qBtMUKFn6CPdltn9KRq9JTUKTGzVUacNW5QLAAX6S4FJwnL5zc4eOose0942VPuZW95DXtP1PC+J/QoUlKClZmZKcwam8qscSmBsGRP7vyusDirhZ9nH2P+6z/ucG4slfw84cfsyHYElxcwDDhX1brOKCgcHYQzJ8L/YPFJZggKCkfNASktq3t3sVnjzJIDm+7GhwVXUiIfxMUx2ucju66BODALSA7w/233xjRXk7+pQ6DpEHzanA+0a/N1X091XTz6YmZmzAyM9gSNCrUJP+ezV1hPaY2QyMCnu+piSKTFIztTdbaBPSdawpE5mrTvRE1QCYC2JtiHceE4MyRdOM4MSlNGDu9+/aTmu9IM73FCPdMALEl2yLkHqg43h6NDUB+iMGRbSWntRovahKSUcWDt3V+KztfW8Mj+/+VkXOtPkekzeGjGXeR/eFWvfq/e1tDUwHXPXhf2bq4RCSO45YJbqG2qDYSh9iHpXFPoQN0TidZERiSOMPf9Shhhfp1g7gHW8nhEQuv598+8H9Fo0mC4FV41hET6l8oRxIjuBKHNu8r5zvPvkHVmR2B90NER8/nmTfNYMndcUNsmnx/3qbPmCFLzVNve8hpOeEPf2TYsIY6ZY83Ro5agNHNsSs+qcRsG1Hvh7ClzU9raU2aV6td/Yv7MgCvJ1mbEpp6w/7dOGddmtKhdOEruxtTeeepu7Z3z0VLEsLaplnON5zjbdJbaxlrONp6ltqmW2sbawOdIj9X5ur6rsTuS4pI6BJtQIahlHVD7UJSSmEJiXPdqV8XarfCDda2ZyGCkcgQ91NDUwNP7n+Zw9WEsFgtzRs6hprGGdFs6mcMzg/7hamio549/X0eF9whjUifx8StXkJgYvvptd56zeVc5335+ByN9W0iOP0Vt0yhOxy3mWzfN7xCENu8q549P/pLfJzzBidSzgdAx9txwvvvk3ey9+i5GJMWzp3kk6b2TZ2jwhR5FmpSRHFiHdGFzWJqUkYy1s1EkX5N5p1nt6eYwdKr569Pm12ebHwfOnw5d+BFwJg/jkZHpnIxv/WOZ2dTEQ6eryK89B46r4YL81ik1++QBUT27q0XJFiys+dcaZmbMpK6prjW0NAeXtkHmbONZzjWdC3mstrE2EJJ6sslpb/jIxI9w0aiLgkNQ+9GgxBF9uh1GZ2JtmktrhEQGpm6NOLndbkpKSnA4HLjdbpYvX47dbu922+68Tlt9OeL06LZHefzdx/ETOlBA6yJZ99sv89SpP3IqvnWqZ1STnztHfZzlN38v5HPXP/f1iJ+zeVc5v37+m5zKfKND+1EnL+ezN30nEJ58foP//P73WJTwU4pGdQwdK09V8Uz1Cv7qXxD0PYYnxjGref1Ry0jSjMwUUqyNzUHnVHP46SwANT8+5yH0guguJCRD8igYPhKw4PTs4YExo8xXalNywNL8x/PRilPkLy2GqVdE/C0Mw6DJ30SDv4F6Xz0NvgYafY3m1/4G87G/MXCu5VjLR7hzbR+fOneKPZV7uv8e9ILk+GSSE5IZnjCc5PhkhsUPM7/u5FhyfOvx5ITkwLH9VftjpuKzprlEpLv6bKouJyeH7du3A2b4KSwspLi4uNttu/M6Pf3BuuPRbY/y2K7HACN8QULDwNxCo/ktC/EL/gvpN3cIQuuf+zo/rXqu01DQ9jk+v8FnfnQ/b418rdP2c04sxDLyPk566ymvOsv/S/ky381M6rT9t06eY2fSSvLGWpmaXMfExLOkGV4sLaGo7QhRV7fiY06nNVmgCQtNFguNQNMwO03DMpo/22lMSqUpKZWmpBSaElNoTBpBU8JwmhKTaUoYRpM1jiajyQw2TXX85M3vU2Mh9PtvGCQBV01ZQoO/kQZ/+ADU9txAEm+JJyUxJSiwBIWYdiGos3YtXyfFJ/Xa4mVNc4nIUNYnwcntdrN06dJA4AFIT0+nqqqqW2278zrn84NFqqGpgdyNOeYvi0iKKxodQ1Pbc6N8BsV3/J2E+AR8fh/VtbXc98drOR1n6fQ56T4DR8I3qGuop6qmirNpv6La2nn7FL/B7FNTSbA0Ybd4eCWjhjNh2g8zDK6pPdcceCw0AY0WS7uvW4NQk8ViBhuLlSarhUbMdk0YNOGP0iTR+Yu3xpNoTSQxrvmj+WtbnI2EuISQ5zp83fZx8+ejNUfZ8M6GLr//QB+t0Y7wIjJU9ckaJ6fTSUZG8GLbjIwMXC4X2dnZEbfdtm1bxK/TH/733Y0YFiDk/VwhhAtXFgun4i1cXXJ18PH4MKMCFgtV8Ra2G9+HBCADIHz7mjgL/8o83OZg+PbnLBb+PGJ45206ZRDpNFy8NZ4EawLxlnjiraE/EqwJ5teWNl9b4zl17hTvnn63y+9xo+NGLh5zcadhJmQAatO2r24t9/l9PF/2/KCvvaOKzyIiXYs4OHk8npDHKys7bkERrm13Xqe+vp76+tadvL1eb5f97K63drzQ66/ZE6k+HyP8BnUWqIzv+rLM9CUwKXkkFQ1n2GGc6bL99aNzuWhqfqfBpm3oSYgLHYDaBp+2x+Mscee1FUrpiVI+89fPdNnulum3DMgRm1halKyKzyIi4Z33XXWdBaHutg11bs2aNaxevbr7neqG0efqoZd28mjxDWMeV029EltiEn8/+CrfaPxXl895YPw93HbNF3jznSdZtusnXbb/j4s/z2XZn6P0+Jt8ZsuyLtsXXLyCvPGXRdT//pY9JnvQV0uOpdEa3c0lItK5iIOT3W7vMCpUWVkZ8m64cG278zqrVq3igQda923yer1kZWVF2uWIXJW8gBLfEfNeuvNc42RpXuN0y6cfC5QZuC7nDn78u2xOx1kwwjznxmu+Aok28ubfw5gd/80HVjptP8YPeRfdDUD22DwyE1KpaKjutH2mzU72AP5FGCsjNhqtERGJfREv+sjPD/0/5tzcjhtNhmvbndex2WykpqYGffS2S5c+xKc9NeaDrtbJtzlvade25fEdoz4eVJspMdHGnaM+HvFz4uITWTXjrrDtH5pxF3HNW4LEWeN46EOrwWIJ3d5ioXDh/xvwv7xbRmzGJI8JOp6ZnDmoFiW3jNZc77ievLF5A/59FxGR7ol4xMnhcAQ9drvd5ObmBkaKXC4Xdrsdh8MRtm37kaX2r9PfEpOS+FDSDVg8f+IJe2qYKk4w1ufjwVNVvJf+EUri3uVUfOsIzyifwR2d1HFafvP34Dma6zh1/Zz8D6/iUWjevqP1eKYfCkNs32GGjh91nCYaPpbCftyc9XxpxEZERAa6bhfAXLduHXl5eZSWlrJq1apA4Fm6dCl5eXmsXLmyy7bhzoXTlwUw3/jl57m4/ElK0oZzOD4eCzCnvoGaOCvpPj+ZPh/j60ZQcfnDXHLtPX1eORzA19SA653f8YH3CKNTJ5E979OBkaaQ7VW7RkREpNu0V10PNdTVsf2ZH0BlGQDWiTn4az3Ep4wmeWQWsy69lrgI7ngTERGRwUN71fVQYlISl9/1zWh3Q0RERAaovqkIKCIiIhKDFJxEREREIqTgJCIiIhIhBScRERGRCCk4iYiIiERIwUlEREQkQoOqHEFLySmv1xvlnoiIiEisaMkVkZS2HFTBqabG3FOutzf6FREREampqSEtLS1sm0FVOdzv93P8+HFSUlKwWCxdP6GbvF4vWVlZHD16tE8qk0tkdB2iT9dgYNB1iD5dg4Ghr6+DYRjU1NQwfvx4rNbwq5gG1YiT1Wpl4sSJff59UlNT9RdkANB1iD5dg4FB1yH6dA0Ghr68Dl2NNLXQ4nARERGRCCk4iYiIiERIwakNm83Gww8/jM1mi3ZXhjRdh+jTNRgYdB2iT9dgYBhI12FQLQ4XERERiSaNOImIiIhESMFJREREJEIKTiIiIiIRGlR1nPqS2+2mpKQEh8OB2+1m+fLl2O32aHcrJrhcLpxOJwClpaVs2LAh8N6Ge997ek7CKywsZNWqVboGUeJ0OnG73TgcDgDy8/MBXYf+4na7cTqdZGRk4Ha7KSgoCFwLXYO+43K5WLZsGdu3bw863hfveZ9fD0MMwzCM7OzswNdlZWVGQUFBFHsTW9auXRv0ddv3Otz73tNz0rnt27cbgFFVVRU4pmvQf7Zs2WIsX77cMAzzPXM4HIFzug79o+2/R4ZhBK6HYega9JXi4uLAvz3t9cV73tfXQ8HJMN/Ytm+0YRiG3W6PUm9iy/bt24Pey7KyMgMwysrKwr7vPT0n4RUXFxsOhyMQnHQN+lfb994wzPex5bOuQ/9o/361DbK6Bn2rfXDqi/e8P66H1jhBYNi2rYyMDFwuV5R6FDuys7PZsGFD4LHH4wHM9zfc+97Tc9K5kpISCgoKgo7pGvQft9tNZWUldrsdl8uFx+MJTBHpOvSfjIwMcnJyAlN2ixcvBnQNoqEv3vP+uB4KTrT+Mm+vsrKyfzsSo9r+sn766afJz8/HbreHfd97ek5C83g8Ief4dQ36j8vlIiMjI7D2Yv369ZSUlAC6Dv2puLgYgGnTplFcXBz490nXoP/1xXveH9dDi8PD6OwCSM94PB5KSko6LA4M1a63zw11mzZtYvny5RG31zXofZWVlbjd7sB/HJYvX056ejpGmBrEug69z+l0snbtWtxuNytWrABg3bp1nbbXNeh/ffGe9+b10IgTYLfbO6TRliF16T2FhYVs2bIl8L6Ge997ek46cjqd3H777SHP6Rr0H4fDEXjvgMBnl8ul69BP3G43paWl5Ofns3z5csrKyti0aRNut1vXIAr64j3vj+uh4ETr7cDt5ebm9nNPYldRURGFhYU4HA48Hg8ejyfs+97TcxLapk2bWL9+PevXr8ftdrNmzRpcLpeuQT9qWc8Uiq5D/3C5XOTl5QUeOxwOVq1apX+PoqQv3vP+uB6aqqPjP2hut5vc3Fz9j6GXlJSUkJ2dHQhNLdNG7d/ftu97T89JR+3/IVmxYgUrVqwI+Ytc16DvOBwOcnNzA+vNWmo5ZWdnd2ir69A3srOzWbduXdC6y9OnT+sa9KO26y3D/e4dyL8ftMlvM7fbzbp168jLy6O0tDSoQKD0nNvtZtq0aUHH7HY7VVVVgfOdve89PSeheTwe1q9fT2FhIcuXL2fFihVkZ2frGvQjj8dDYWEhOTk5bN++PTAKC/q70F+cTmdgehTM/1joGvQtp9PJli1bKCoqYuXKleTl5QXCa1+85319PRScRERERCKkNU4iIiIiEVJwEhEREYmQgpOIiIhIhBScRERERCKk4CQiIiISIQUnERERkQgpOImIiIhESMFJREREJEIKTiIiIiIRUnASERERiZCCk4iIiEiE/j+/QYyXOMV5WQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -1186,9 +1186,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSmklEQVR4nO3deXxU9b3/8dfMZF+HACEsYRkQEHEhCy51qSVUaqu2Flxal7pBbe/tQm+h3NtbL3cpkvZa29tfe0Gt1WqrJLe3Lr3Fy9yqrdpCYBRFFCTDTiCEZDJZJ5mZ8/vjJJMMmSSTkGSyvJ+PRx7JnHNm+GQOJG++q8UwDAMRERER6ZU11gWIiIiIjBQKTiIiIiJRUnASERERiZKCk4iIiEiUFJxEREREoqTgJCIiIhIlBScRERGRKCk4iYiIiEQpLtYF9EUwGOTEiROkp6djsVhiXY6IiIiMAoZhUFdXx5QpU7Bae25TGlHB6cSJE+Tm5sa6DBERERmFjh49yrRp03q8ZkQFp/T0dMD8xjIyMmJcjYiIiIwGXq+X3NzcUM7oyYgKTu3dcxkZGQpOIiIiMqCiGQakweEiIiIiUVJwEhEREYmSgpOIiIhIlBScRERERKKk4CQiIiISJQUnERERkSiNqOUIREREZGwJBA12HKymsq6Z7PQkFs/KwmaN3e4hCk4iIiIyLG3dU8H6l/ZSUdscOjY5M4mHbljAsoWTY1KTuupERERk2Nm6p4IHn3GFhSaAk7XNPPiMi617KmJSl4KTiIiIDCuBoMH6l/ZiRDjXfmz9S3sJBCNdMbgUnERERGRY2XGwuktLU2cGUFHbzI6D1UNXVBsFJxERERlWKuu6D039uW4gKTiJiIjIsJKdnjSg1w0kzaoTERGRYcV1pKbH8xYgJ9NcmmCoqcVJREREho1ntx/mB6/sCz0+e8Wm9scP3bAgJus5KTiJiIjIsPDCO8f57u/2APDVa2fzn3fkkZMZ3h2Xk5nEz+/Ii9k6TuqqExERkZj7vw9O8a0tuzEMuPOyGfzdJ+dhsVhYuiBHK4eLiIiItPtL+Rm+8qwLf9Dgc4umsv7GC7BYzHBks1q4fPb4GFfYQV11IiIiEjO7j3q4/6kyfP4gRedPonj5RVhj2KLUGwUnERERiYn9p+q4+8kdNLQEuNwxnp9+YRHxtuEdTYZ3dSIiIjIqHTnTyB2Pb8fT2MrFuXYeu7uApHhbrMvqlYKTiIiIDKlT3mbueGI7lXU+5k1K56l7CklLHBnDrhWcREREZMjUNLRw5xPbOVLdyPSsFH5132LsKQmxLitqCk4iIiIyJOqaW7n7yR3sP1VPTkYSz95/KdkZQ79tyrlQcBIREZFB19wa4P6ndvLusVrGpcTzzP2Lyc1KiXVZfabgJCIiIoOqNRDkq8+62H6wmrTEOJ6+91LmZKfHuqx+6VNwcrlc5Ofn93pdaWkpHo8Hj8cT8TVcLhcAbrc79LWIiIiMPoGgwbe27Ob/PqwkMc7KE3cXcOG0zFiX1W9RB6fS0lKAqILOihUrGDduHOPGjcNisWCxWCguLgZg06ZN5OfnY7FYWLVqFQ6Ho5+li4iIyHBmGAbfe2EPL+4+QZzVwn/ekc+ljuGzCnh/RD33b/ny5VFd5/F4KCkpCbu+uLiYNWvWAJCfn09NTQ0Adru9D6WKiIjISFL8yj6e3X4EiwV+dOslXDs/O9YlnbNBWTShc2gqLS3tEroUmEREREa3n712gJ+/Vg7A9z93ITdcPCXGFQ2MAQ9OnUORx+Ohuro6rDvO4/GEuv3KysrUXSciIjLKPPPXwxRv3QfA318/n9sXT49xRQNnUJfpXLt2LRs3bgw7tnLlylC4cjgcLF26lPLy8ojP9/l8+Hy+0GOv1ztotYqIiMi5e+Gd4/zjC3sA+Jtr57Dy6tkxrmhgDdpyBB6PB6fT2aVbzu12h752OBy43e6wY51t2LCBzMzM0Edubu5glSsiIiLnyLn3FKu37MYw4O7LZ/CtT86NdUkDbtCC086dO7uEJpfLxZIlS7pcm5WVFfE11q1bR21tbejj6NGjg1GqiIiInKO3yqv4yq9dBIIGNy+aykM3XIDFYol1WQOuX111Ho8nLBS5XC7sdnvYWCWXy9UlEDkcjrCuO6fTyfLly7sdLJ6YmEhiYmJ/ShQREZEh8s5RDw88tZMWf5BPLphE8fKLsFpHX2iCPgQnp9PJtm3bALMLrbCwMDRbrv1x+5ID7c4e9G232ykoKKC4uBi73U55eTklJSXn+j2IiIhIjOw7WceXntxBQ0uAj80Zz09uX0ScbfRuTGIxDMOIdRHR8nq9ZGZmUltbS0ZGRqzLERERGdMOn2lgxX/+hco6H5fk2nn2/ktJTRzUeWeDoi/5YvRGQhERERk0J2ubueOJ7VTW+Zifk84v7ykckaGprxScREREpE+qG1q484ntHK1uYsb4FJ6+bzH2lIRYlzUkFJxEREQkanXNrXzpyR18VFlPTkYSz9x3KdnpSbEua8goOImIiEhUmlsD3P/UTt49VktWagLP3H8puVkpsS5rSCk4iYiISK9a/EG+8qyL7QerSU+M4+l7FzMnOy3WZQ05BScRERHpUSBosHrLO/zxw0qS4q088aVCFk7NjHVZMaHgJCIiIt0yDIPv/m4PL79bQbzNwn/ekc/iWZF3/BgLFJxEREQkIsMwePgPH/KbHUewWuDRWxfx8XnZsS4rphScREREJKKfvVbOpj+5Adhw84V8+qLJMa4o9hScREREpItf/eUQP3hlHwDf/fT53Fo4PcYVDQ8KTiIiIhLmv98+xj++8D4AX/vEHO6/ytHLM8YOBScREREJ2bb3FH9X8i4AX7piJt9cOjfGFQ0vCk4iIiICwFsHqvjqr10Eggafz5vG9z6zAIvFEuuyhhUFJxEREeHtIzXc//ROWvxBrrtgEhs/fyFWq0LT2RScRERExrgPT3r50pNlNLYEuOq8Cfzk9kXE2RQRItG7IiIiMoYdqmrgzid2UNvUSt50O5vuzCcxzhbrsoYtBScREZExqqK2iS8+vp3TdT7m56Tz5JcWk5IQF+uyhjUFJxERkTHoTL2POx7fznFPEzPHp/Cr+y4lMyU+1mUNewpOIiIiY4y3uZW7n9xB+ekGJmcm8cz9lzIxPTHWZY0ICk4iIiJjSFNLgPt/uZM9x72MT03gV/ddyrRxKbEua8RQcBIRERkjWvxBHnx2FzsOVZOeFMdT9y5mTnZarMsaUTQCTEREZJQKBA12HKymsq6ZCWmJ/Hr7YV7bd5qkeCtPfqmQhVMzY13iiKPgJCIiMgpt3VPB+pf2UlHbHHbcZoVNdxZQMDMrRpWNbApOIiIio8zWPRU8+IwLI8K5QBCaWvxDXtNooTFOIiIio0ggaLD+pb0RQxOABVj/0l4Cwe6ukJ70KTi5XC7y8/Ojus7lcgHgdrtDX7c/Li4uprS0lOLiYjweT98qFhERkW7tOFjdpXuuMwOoqG1mx8HqoStqFIm6q660tBSHwxEWgrqzadMmNm/eDEBRURElJSWhcytWrGDXrl2AGaIeeOCBsPMiIiLSf5V13Yem/lwn4aIOTsuXL4/6RfPz86mpqQHAbreHjrvd7rDrHA4HTqcz6tcVERGRnk1Ii24hy+z0pEGuZHQatDFOdrs9LDQBOJ1OsrLCR/FnZWVF1YolIiIiPWvxB3n2r4d7vMYCTM5MYvEszarrj0GZVefxeCgtLQWgrKyMVatW4XA4uh3PVF0duZ/V5/Ph8/lCj71e74DXKiIiMho0tQR48NldvLbvNHFWC/6ggQXCBolb2j4/dMMCbFZLhFeR3gxKcFq5cmWotcnhcLB06VLKy8u7vb67QLVhwwbWr18/CBWKiIiMHt7mVu7/5U52HKomOd7G5rvyafD5u6zjlJOZxEM3LGDZwskxrHZkG5Tg5Ha7ycvLA8zg5Ha7cbvd2O32Lq1L1dXVXbr02q1bt47Vq1eHHnu9XnJzcwejZBERkRGpuqGFu36xnT3HvaQnxfHklwpDi1suXZATWjk8O93snlNL07kZ8ODkcrlYsmRJaHB4u6ysLIqKiti0aVOX5xQUFER8rcTERBITtVuziIhIJCdrm7njie0cqKxnfGoCT927OGwbFZvVwuWzx8ewwtGnX4PDz+5ac7lcoRlzDoeDjRs3hs45nU6WL1+O3W7H4XCEPc/tdlNQUNBti5OIiIhEduRMIys2vcWBynomZybx/KrLtffcEIi6xcnpdLJt2zbAHHtUWFgYWqKg/fGaNWuw2+0UFBRQXFyM3W6nvLw8bJ2mkpIS1q5dS2FhIWVlZVrDSUREpI/2n6rjjse3U1nnY+b4FJ65/1KmjUuJdVljgsUwjBGz5rrX6yUzM5Pa2loyMjJiXY6IiMiQ233Uw91P7sDT2Mr8nHSevm+x1mQ6R33JF9rkV0REZIT4S/kZ7n+qjIaWAJfk2vnlPYXYUxJiXdaYouAkIiIyAvzxw1M8+IwLnz/IFbPHs/muAtIS9Wt8qOkdFxERGeZe2n2Cbz7/Dv6gQdH52fz0C3kkxdtiXdaYpOAkIiIyjP1mxxH+/r/fwzDgpkum8MMVFxNvG7Qd06QXCk4iIiLD1GN/cvNv//MBAF+8dDr/ctNCrFrAMqYUnERERIYZwzB4ZNt+/uOPBwD48jWzWbtsHhaLQlOsKTiJiIgMI8GgwT+/vJdfvnUIgDXL5vGVj8+JbVESouAkIiIyTPgDQb7z2/co3XUMgH+56QLuvHxmbIuSMApOIiIiw4DPH+Abz73DH/acxGa18MMVF/G5RdNiXZacRcFJREQkxhpb/Kz61S7+/FEVCTYr//GFRVx3QU6sy5IIFJxERERiqLaplft+WcbOwzWkJNh47K4CPjZnQqzLkm4oOImIiMRIVb2Pu57Ywd4KLxlJcTx5z2LyZ4yLdVnSAwUnERGRGKiobeKLj2/HfbqBCWkJPH3vpSyYog3shzsFJxERkSF2qKqBLz6+neOeJqZkJvHM/ZfimJgW67IkCgpOIiIiQ+jDk17ueHwHVfU+HBNS+dX9lzLVnhzrsiRKCk4iIiJD5O0jNXzpyTJqm1o5f3IGT9+7mInpibEuS/pAwUlERGQIvFVexf1P7aSxJUDedDtPfmkxmSnxsS5L+kjBSUREZJA5957iK7920eIPcuWcCWy6M5/URP0KHol010RERAbRC+8cZ/WW3QSCBp9cMImf3L6IpHhbrMuSflJwEhERGSTP/PUw//jCHgwDbl40leLlFxFns8a6LDkHCk4iIiKD4OevlbNx64cA3HX5DP7phguwWi0xrkrOlYKTiIjIADIMgx+8so+fvVYOwFevnc3ffXIeFotC02ig4CQiIjJAgkGDf3rpfZ7+y2EAvvOp+Xz5mtkxrkoGkoKTiIjIAPAHgqwpfZffvn0ciwX+5aaF3HHZjFiXJQNMwUlEROQcNbcG+Npv3uZ/957CZrXwyC0Xc9MlU2NdlgyCPg3td7lc5OfnR3VdcXExxcXFrFixAo/HE3bO5XIB4Ha7Q1+LiIiMRA0+P/c9Vcb/7j1FQpyVTXfkKzSNYlEHp9LSUoCogo7T6WTNmjWsWbOGwsJClixZEjq3adMm8vPzsVgsrFq1CofD0Y+yRUREYq+2sZU7n9jOmwfOkJpg45f3FFK0YFKsy5JBZDEMw+jTEywWenqKy+ViyZIl1NTUAGar0uzZsykvL8fhcLB582ZuueUWAOx2e5+K9Xq9ZGZmUltbS0ZGRp+eKyIiMpBO1/m46xc7+KDCS2ZyPL+8p5BF08fFuizph77kiwEf45SXl8djjz0WetzeTZeVlRU61tfAJCIiMpwc9zRx5+PbcVc1MCEtkWfuX8z8HP2HfiwYlMHhy5cvD339/PPPU1RUFApLHo8n1O1XVlbWY3edz+fD5/OFHnu93sEoV0REJGru0/Xc8fh2TtQ2M9WezLP3X8rMCamxLkuGyKDOqmsPSbt27QodW7lyZShEORwOli5dSnl5ecTnb9iwgfXr1w9miSIiIhEFggY7DlZTWddMdnoSi2dlse9kHXf9YjtV9S04JqbyzH2XMsWeHOtSZQgN+BinzlatWsXatWvDWpRcLhd5eXmAGazGjRsXGv90tkgtTrm5uRrjJCIig2rrngrWv7SXitrm0LHxqQk0tvhpag1ywZQMnr53MePTEmNYpQyUmI5xaldcXBwKTe3jnNxud9jA8Xadxz91lpiYSGKi/lKKiMjQ2bqnggefcXF2E8GZhhYAZk9M5dcPXEZmcvzQFycx168tmjuvywRmK5Lb7Q49Li0tJS8vLxSatmzZgt1ux+FwsHHjxtB1TqeT5cuXa7C4iIgMC4GgwfqX9nYJTZ01+AKkJWr96LEq6jvvdDrZtm0bYI49KiwsDA0Cb3+8Zs0a3G43K1asCHuu3W4PjW0qKCiguLgYu91OeXk5JSUlA/jtiIiI9N+Og9Vh3XORnPQ2s+NgNZfPHj9EVclw0ucxTrGkdZxERGQwvfDOcb7+3Du9Xvfj2y7R6uCjSF/yRb+66kREREaj7PSkAb1ORh8FJxERkTZT7EnEWS3dnrcAkzPNpQlkbFJwEhERAXYequbmn72FPxh5BEt7nHrohgXYeghXMropOImIyJhXsvMotz/2V840tLBgcgbf/9xCJmeGd8flZCbx8zvyWLZwcoyqlOFA8ylFRGTMCgQNHv7DBzz254MAfGphDv9+y8WkJMRxa+H0LiuHq6VJFJxERGRMqmtu5Wu/eZtX950G4GtLzuMbS87D2haObFaLlhyQLhScRERkzDlyppH7nirjo8p6EuOs/HDFxdxw8ZRYlyUjgIKTiIiMKX8pP8NXnt1FTWMrkzISeeyuAi6aZo91WTJCKDiJiMiY8evtR/jeC3vwBw0unpbJ5rsKmJShNZkkegpOIiIy6vkDQf719x/wy7cOAXDDxVP4wfKLSIq3xbYwGXEUnEREZFSrbWzlb37j4s8fVQHwd5+cy1evnYPFohly0ncKTiIiMmq5T9dz/1M7cVc1kBxv40e3XsKyhTmxLktGMAUnEREZld74qIqvPLsLb7OfKZlJPHZ3ARdMyYx1WTLCKTiJiMioYhgGv/rrYda/tJdA0CBvup1NdxYwMT0x1qXJKKDgJCIio0ZrIMg/vfg+z24/AsDNeVPZcPOFJMZpELgMDAUnEREZFWoaWnjw2V381V2NxQLfWTaflVc7NAhcBpSCk4iIjHgHKuu476mdHD7TSGqCjZ/cvogl50+KdVkyCik4iYjIiPbqvkq+9uu3qfP5mTYumSfuLmReTnqsy5JRSsFJRERGJMMweOKNg3z/fz4gaMDiWVn8/It5jE/TIHAZPApOIiIy4vj8Af7xd3vYsvMYALcV5vLPNy0kIc4a48pktFNwEhGREeVMvY8vP7OLskM1WC3w3U8v4J6PzdQgcBkSCk4iIjJifHjSy32/3MlxTxPpSXH89At5XDN3YqzLkjFEwUlEREaEbXtP8Y3n3qahJcDM8Sk8fnchc7LTYl2WjDEKTiIiMqwZhsHPXy/nB6/swzDgitnj+dkX87CnJMS6NBmD+hScXC4XDzzwALt27erxOrfbTWlpKQ6HA7fbzcqVK7Hb7b2eExER6ay5NcC6377Hf799HIA7L5vB925YQLxNg8AlNqIOTu1hx+Vy9XrtihUrQuHK7XbzwAMPUFJS0us5ERGRdpV1zax8ehfvHPVgs1r4pxsWcOflM2NdloxxUQen5cuXR3Wd2+0Oe+xwOHA6nb2eExERabfneC0PPL2TitpmMpPj+fkX87hizoRYlyXCgLd1Op1OsrKywo5lZWXhcrl6PCciIgLwh/cqWPGff6GithnHxFR+99WPKTTJsDHgg8M9Hk/E49XV1T2eExGRsc0wDH7yfwf4kXM/AFfPnch/3L6IzOT4GFcm0mHIZtV1F5p6Oufz+fD5fKHHXq93gKsSEZHhoKklwLdLd/PyuxUA3PuxWfz99fOJ0yBwGWYG/G+k3W7v0oJUXV2N3W7v8VwkGzZsIDMzM/SRm5s70OWKiEiMnaxt5pZNf+HldyuIt1l4+OYL+d4NCxSaZFga8L+VRUVFEY8XFBT0eC6SdevWUVtbG/o4evTogNUpIiKxt/uohxt/+gbvHa9lXEo8z9x3Kbctnh7rskS61a+uOo/HE9ZK5HK5sNvtOBwOHA5H2LVut5uCgoJQi1N35yJJTEwkMVG7XIuIjEYvvHOcNaXv4vMHmTspjSfuLiQ3KyXWZYn0KOrg5HQ62bZtG2B2oRUWFoaWKGh/vGbNGgBKSkpYu3YthYWFlJWVha3T1NM5EREZ/YJBgx859/MffzwAwJL52Tx62yWkJ2kQuAx/FsMwjFgXES2v10tmZia1tbVkZGTEuhwREemjBp+f1Vve4ZX3TwGw6hoHa66bj81qiXFlMpb1JV9orzoRERlwgaDBjoPVVNY1k52exOJZWZz0NnP/Uzv5oMJLgs3Khpsv5PP502JdqkifKDiJiMiA2rqngvUv7aWitjl0bHxqAi2BIHXNfiakJbDpzgLyZ4yLYZUi/aPgJCIiA2brngoefMbF2WNAzjS0ADDVnsyWL1/OVHvy0BcnMgC0SIaIiAyIQNBg/Ut7u4Sms6/JyUgasppEBpqCk4iIDIgdB6vDuuciOeltZsdBbbMlI5eCk4iIDIjKup5DU1+vExmOFJxERGRA2FOiW4cpO11ddTJyaXC4iIicsw8qvPzry3t7vMYC5GSaSxOIjFQKTiIi0m+GYfDUW4f4/h8+pMUfJCMpDm+zHwuEDRJvX97yoRsWaLFLGdEUnEREpF+q6n18u2Q3r+47DZhbpxQvv4iyQ9Vd1nHKyUzioRsWsGzh5FiVKzIgFJxERKTPXt9/mm9t2U1VvY+EOCvf/fT53HnZDCwWC8sWTmbpgpwuK4erpUlGAwUnERGJms8f4Adb9/H4GwcBmDspjZ/cvoj5OeH7e9msFi6fPT4WJYoMKgUnERGJyoHKer72m7fZW+EF4O7LZ7Du+vNJirfFuDKRoaPgJCIiPTIMg+fKjrL+pfdpbg2SlZrAD5ZfxJLzJ8W6NJEhp+AkIiLdqmlo4Tu/fZdX3j8FwFXnTeDfV1xMtrZNkTFKwUlERCJ6q7yK1c/v5qS3mXibhTXXzee+K2dh1SBvGUrBABx+C+pPQdokmHEFWGPXPazgJCIiYVoDQX60bT8/f70cwwDHhFR+cvsiFk7NjHVpMtbsfRG2rgXviY5jGVNg2UZYcGNMSlJwEhGRkENVDXz9+XfYfdQDwG2FuXzvhgWkJOjXhQyxvS/ClrsIX0oV8FaYx295OibhSf8SREQEwzD4res433thDw0tATKS4nj48xdx/YVasFJiIBgwW5rODk3QdswCW78D8z895N12Ck4iImOct7mV7/73Hl7cbXaHLJ6VxaO3XsIUe3KMK5Mx6/Bb4d1zXRjgPW5eN+uqISsLFJxERMa0XYer+fpz73Cspgmb1cI3i87jwY/P0SrfEluVPW8YHVJ/anDriEDBSURkDPIHgvy/V8v5yR8/IhA0yM1K5se3LSJv+rhYlyZj2el98OaPYfdvors+bejXElNwEhEZY47VNPLN59+h7FANAJ9bNJV/vukC0pPiY1yZjFlHy+CNH8G+33ccsyVAoKWbJ1jM2XUzrhiS8jpTcBIRGUNefvcE6377HnXNftIS4/jXzy7ks4umxrosGYsMAw78nxmYDr/RdtBiDvi+8pvmGKctd7Vf3OmJbd3Iyx6OyXpOCk4iImNAg8/PP734PiW7jgGwaLqdH9+6iOnjU2JcmYw5AT/s/R288Sices88Zo2Hi2+FK74OE+d2XHvL092s4/TwyFjHye12U1paisPhwO12s3LlSux2e8RrS0tLKSoqAuhyjcvlAiAvLw+3243H4yEvL6/v1YuISK92H/Xw9efe5tCZRqwW+Jtr5/C3S84j3maNdWkylrQ2wTvPwps/Ac9h81h8KhTcA5d9BTIjtHwuuNFsgRqpK4evWLGCXbt2AWaIeuCBBygpKen22rNt3LiRNWvWsGnTJjZv3gxAUVFRt68hIiL9FwwabP6zmx++sg9/0GByZhKP3noJlzrGx7o0GUuaPFD2OGz/T2g4bR5LGQ+XPgiF90FKVs/Pt9qGfMmBnkQdnNxud9hjh8OB0+mMeK3H46GkpITly5eHjhUXF7NmzRoA8vPzqakxByV212IlIiL9d7K2mdVb3uGt8jMAXH9hDhs+dxGZKRoALkPEWwF//X+w85fQUmcey5wOV/wtLLoDEkZmN3HUwcnpdJKVFZ4Ks7KycLlcEbvZOoem0tLSsMegwCQiMlheef8ka//rXTyNrSTH21h/4wWsKJiGxaK1mWQIVB2At34Mu5/rmBWXvcAc8H3B58A2ssN71MHJ4/FEPF5dXd3lWOdQ5PF4qK6uxuFwhB0rLS0FoKysjFWrVoWdb+fz+fD5fKHHXq832nJFRMacppYA//r7vTy7/QgAC6dm8OPbFjF7YlqMK5Mx4fguc8D3By8RmgU3/QozMJ23FEZJcD/nWXXdBap2a9euZePGjWHHOg8qdzgcLF26lPLy8i7P3bBhA+vXrz/XEkVERr29J7x87bm3OVBZD8Cqqx1865PzSIjTAHAZRIYB7tfMJQUOvt5xfO6n4MpvwPTLYlXZoIk6ONnt9i6tS9XV1T12uXk8HpxOZ5dr3G53qHuvfYae2+3u0uq0bt06Vq9eHXrs9XrJzc2NtmQRkVHPMAyefPMQD//hQ1oCQbLTE3nklku48rwJsS5NRrNgAD540QxMFbvNY9Y4uHAFXPE1mLQgtvUNoqiDU1FREZs2bepyvKCgoNvn7Ny5M+JSBEuWLAkNDm939vgpgMTERBITE6MtUURkTDld5+Pbpbt5bZ85U6no/Gw2fv4ixqfp56YMktZmczuUt34C1W2TxuJTIO8uuPyrYJ8e2/qGQNTB6ezWILfbTUFBQSgYuVwu7HZ72HUul6tLIHI4HGFdd06nk+XLl2uwuIhIH7y2r5K/K9lNVX0LiXFWvvvp87njshkaAC6Do9kLO38Bf/1Zx8a6yeNg8SpYvBJSx84SF30a41RSUsLatWspLCykrKwsbP2lDRs2UFhYGFpyoN3Zgctut1NQUEBxcTF2u53y8nKt4yQiEqXm1gDFW/fxizcPAjBvUjo/uX0R83LSY1yZjEr1lfDXn0PZE+CrNY9lTIXL/8ZsZUocexMPLIZhGL1fNjx4vV4yMzOpra0lIyMj1uWIiAyaQNBgx8FqKuuayU5PYvGsLNyn6/nac+/wQYU5w/hLV8zkO5+aT1J87FZRllGq2g1v/Qe8/SwE2ma3T5hnDvheuBziEmJa3kDrS77QXnUiIsPM1j0VrH9pLxW1zaFjGUlxNLUGaA0YZKUm8MMVF/GJ+ZNiWKWMShW7zSUF9v4OjKB5bFqhuaTA3E+BVbM0FZxERIaRrXsqePAZF2d3BXib/QCcPzmdp+5ZTHZG0tAXJ6OTYcChN8wZcuX/13F8zlIzMM24YtSswTQQFJxERIaJQNBg/Ut7u4SmzjyNrZo1J9ELBrrfIDcYhH2/NwPTcXMfWixWWPh5+NjXIefC2NU9jCk4iYgMEzsOVod1z0VSUdvMjoPVXD577Mxikn7a+yJsXQveEx3HMqbAJ/8NWhvNLrkzH5nH45LM/eMu/xvImhWTckcKBScRkWHipLfn0NSusi6662QM2/sibLkLzm6/9J6A0ns6HidlQuEDcOmXIW3ikJY4Uik4iYgMAzsPVfPotv1RXZudrvFN0oNgwGxp6qnT12KFJQ9Bwb2QpFnqfaHgJCISQ5XeZh7+w4f89u3jAFjo/tedBcjJNJcmEOnW4bfCu+ciMYIwNV+hqR8UnEREYqA1EOSptw7xqPMj6n1+LBa4tSCX/BnjWFP6LhAeoNrnND10wwJsVs1wkm40nAHXU9Fd274CuPSJgpOIyBB760AVD734Ph9V1gNw8bRM1t+0kEty7QCkJ8V1WccpJzOJh25YwLKFk2NRsgxnwSAc+jPs+iV8+DIEWqJ7XprWAesPBScRkSFywtPEv/3PB/z+3QoAslITWLtsHivyc7F2akVatnAySxfkdFk5XC1NEqb+NLzzrNnC1L7hLsDkS6DmEDTXErnj12LOrptxxdDUOcooOImIDDKfP8Djfz7IT/94gKbWAFYL3HnZDFYvnUdmSnzE59isFi05IF0Fg3DwtbbWpf+BYKt5PCEdLroF8u+GyRd3mlV39qi5tvC97OGO9ZykTxScREQG0Wv7Kln/0l4OVjUAUDhzHOtvXMiCKRqUK31QdwreeQZ2PQWewx3HpxZA/pfggs+Fb7i74Ea45enI6zgte9g8L/2i4CQiMgiOVjfyzy/vZdtecwDuxPRE/v76+Xz2kqlYtH2FRCMYgPJXYdeTsH8rBM1td0jMgItuNVuXelrde8GNMP/T3a8cLv2i4CQiMoCaWwP8/LVyfv56OS3+IHFWC/d8bCZfW3Ie6UmRu+VEwngr4O1nwPU01B7pOJ57qdm6tOCzkJAS3WtZbTDrqsGocsxScBIRGQCGYfC/e0/xLy/v5VhNEwBXzB7P+hsv4LxJ6TGuToa9YAAOOM2uuP1bwQiYx5My4eLbIe9umLQgtjUKoOAkInLO3Kfr+aeX9vKn/acBmJKZxHc/s4BPLcxRt5z0rPZYW+vSr8B7rOP49CvaWpduhPjkmJUnXSk4iYj0U4PPz09fPcDjf3bTGjBIsFl54OpZfPXaOaQk6MerdCPghwPbzJlxH/2vuYo3QPI4uPgL5tilifNiWqJ0T/+yRUT6yDAMXn63gn/7/QehjXk/Pm8iD91wAbMmpMa4Ohm2PEfMlqW3fwV1FR3HZ15lti7N/wzEax/C4U7BSUSkD/adrOOhF/fwV3c1ALlZyTz0mQtYcn62uuWkq0Ar7H/FbF064CS0plLKeLjkC+bYpQnnxbJC6SMFJxGRKHibW3l020c89ZdDBIIGiXFWvnrtHFZe7SApXtO75Sw1h8xZcW8/C/UnO47Pusbsipv/GYhLjFl50n8KTiIiPQgGDf777eNs+MOHVNX7ALjugkl899MLyM2Kckq4jA2BVtj3P2brUvmrhFqXUifCJV+EvLtg/OxYVigDQMFJRKQbe47X8tCL77PrcA0AjgmpPHTjBVwzd2KMK5MhEQxEt3jkmXKzdemdX0NDZcdxx7Xm2KV510NcwpCVLYNLwUlE5CyexhZ++L/7eHb7EQwDUhJsfG3Jedz7sVkkxFljXZ4Mhb0vdrNdyUZziQB/C3z4stm6dPD1jmvSJsGiO2DRnZA1a8jLlsGn4CQi0iYQNHi+7Cg/eOVDahrNzVNvvHgKf3/9+eRkarbTmBHaINcIP+6tgC13wrxPwdEyaKxqO2GBOUvM1qW5y8CmFeJHMwUnERHg7SM1PPTi+7x7rBaAeZPS+acbL+Dy2eNjXJkMqWDAbGk6OzRBx7F9fzA/p082W5YW3QHjZgxVhRJjfQpObreb0tJSHA4HbreblStXYrfbI17rcrkAyMvLw+124/F4yMvL6/PriIgMpqp6H8VbP2TLTnPV5vTEOL65dC53Xj6DeJu65cacw2+Fd89159p/hCu/ATa1P4w1fbrjK1asYNeuXYAZfh544AFKSkoiXrtp0yY2b94MQFFRUdh1fXkdEZHB4A8Eeeavh/n3bfupazZ3nV+eP421y+YzMV3TxMesU3uiuy5rpkLTGBX1XXe73WGPHQ4HTqez2+vz8/OpqTFnonRuTerr64iIDLTt7jM89OL7fHiyDoCFUzNYf+NC8meMi3FlEhNNHtj7O9j9PBx5K7rnpE0azIpkGIs6ODmdTrKyssKOZWVl4XK5Ql1wZ4vU/daf1xER6YtA0GDHwWoq65rJTk9i8awsbFYLp7zNfP9/PuCFd8yuGHtKPN++bh63FU7HZtWq32OKv8XcL273c7B/KwRaOs7ZEsIfh7GYs+tmXDEkZcrwE3Vw8ng8EY9XV1d3e31paSkAZWVlrFq1CofD0afX8fl8+Hy+0GOv1xttuSIyRm3dU8H6l/ZSUdscOpaTkcQVc8bzyp6TNLQEsFjg9sXT+fYn5zEuVevrjBmGAUd3wLvPw/u/haaajnPZC+CiW+HC5XDc1TarDsIHibeF62UPR17PScaEc+6g7S4IdR7w7XA4WLp0KeXl5X16nQ0bNrB+/fpzLVFExoiteyp48BlXl/lQJ73N/NZ1HIBLcu38y00LuXBa5tAXKLFxptwMS+8+b26F0i4txwxKF90KORdC+16DmdPglqe7WcfpYXMdJxmzog5Odru9S6tQdXV1t7Ph3G53qOutffac2+3u0+usW7eO1atXhx57vV5yc3OjLVlExpBA0GD9S3sjTiJvZ0+Op2TV5cRrEcvRr+GM2aq0+zk4vrPjeHwqnH8DXHyruW9cdy1HC26E+Z+ObuVwGVOiDk5FRUVs2rSpy/GCgoIux1wuF0uWLAkNDm+XlZXVp9dJTEwkMVGzW0SkdzsOVod1z0XiaWpl5+Earc00WrU2mWssvbvFHL8UNGdLYrHC7E+YLUvzPw0JqdG9ntUGs64avHplRIo6ODkcjrDHbrebgoKCUEuRy+XCbrfjcDhwOBxs3LgxdK3T6WT58uXY7fYuLUtnv46ISH+Un66P6rrKup7DlYwwwSAcfhPefc5c8dvXaSzs5Ivhottg4echXbPgZGD0aYxTSUkJa9eupbCwkLKysrC1lzZs2EBhYSFr1qzBbrdTUFBAcXExdrud8vLysGt7eh0Rkb6obmhh05/KefKNQ1Fdn52urVNGhcoPzbD0bgl4j3Ucz8yFC1eYrUvZ82NXn4xaFsMwehoSMKx4vV4yMzOpra0lIyMj1uWISAx5Glt47M9ufvnmIRpaAgDE2yy0BiL/SLMAOZlJvLH2E1p6YKSqOwV7Ss1xSyff7TiemAELboKLb4PpV4BVY9ikb/qSL7TsqYiMKLWNrTzxhptfvHmIep85hmXh1Ay+WTSXFn+QrzxrbvcUYRI5D92wQKFppGlpgA9eNmfEuV8FI2get8bBeZ+Ei26BuZ+CeLUkytBQcBKREcHb3MqTbxzi8TfcoS1Szp+cwTeLzmPpgklY2qaS//yOvK7rOGUm8dANC1i2cHJMapc+CgbA/ZoZlj54GVobOs5NKzS74S64GVI1yF+GnoKTiAxr9T4/v3zzII/9+SC1Ta0AzJ2UxjeL5nLdBTlYz2pBWrZwMksX5ERcOVyGMcMwu9/e3QLvlZhLALQbN8sMSxfdAuNnx65GERScRGSYavD5efovh9n8p3JqGs3ANCc7jW8Uncf1Cyd3CUyd2awWLTkQa8FAdGsg1R4zg9Lu5+H0Bx3Hk8eZs+EuutVsZbIo+MrwoOAkIsNKU0uAX/31EJted3OmwdwvzDEhla8XncdnLpqilqORYO+L3ay6vdFcWLK51rzm3efh0BuERqTZEmHeMjMszVkKcdoOR4YfBScRGRaaWwM8u/0IP3+tnKp6c4/KGeNT+PqS87jx4inE2TRTakTY+2LbPm9nzW70VsCWOyF3MVS8C/5O62nN+JgZlhbcBMn2oaxWpM8UnEQkpppbAzy34wg/e62cyjozME0bl8zXlpzHzYumKjCNJMGA2dIUceObtmNHd5ifJ8ztGLdknz5UFYqcMwUnEYkJnz/Alp3H+H9/PMBJr9n6MNWezN98Yg6fz5tGgvaTG3kOvxXePdedz/wI8u/RuCUZkRScRGRItQaClO46xk//eIDjniYAcjKS+Oon5nBLwTQS47SJ6ohTdxL2vwI7fxHd9YkZCk0yYik4iciQaA0E+W/XcX7yx484VmMGpuz0RL567RxuLcwlKV6BacRoXzpg31bYvxVOuPr2/DTtGycjl4KTiAwqfyDIC++c4Cd//IjDZxoBmJCWyIMfn80XL52uwDRStDbBwT/Bvj+YrUt1Z3XJTcmDuddB2ePQUEXkcU4Wc3bdjCuGomKRQaHgJCKDIhA0eGn3CX78fx9xsMpc+Xl8agJfvmY2d1w2g+QEBaZhr+6k2aK0/xUofxX8TR3n4lPAca0ZluZeB+k55vHsBW2z6ixE3Phm2cOR13MSGSEUnERkQAWDBr9/r4JHnfspP20GJntKPKuuns1dl88gNVE/doYtw4CK3W1haSuceDv8fMZUmLvM/Jh1FcQnd32NBTfCLU93s47Tw+Z5kRFMP8FEZEAEgwavvH+SR50fse9UHQCZyfGsvNrB3VfMJE2BaXhqbQL367C/vQuuIvz81HxzE92510HOhdEN6l5wI8z/dHQrh4uMMPpJJiLnxDAM/nfvKR51fsQHFV4A0pPiuP9KB/dcOZOMpPgYVyhdeCs6uuDcr3Xtgpv9CbNV6bxPQno/B3JbbWarlMgoo+AkIv1iGAZ//LCSHzn3s+e4GZjSEuO498pZ3HflLDKTFZiGDcOAinfMoLTvD+bXnWVMM7c6mbsMZl4F8UmxqFJkRFBwEpE+MQyD1/af5tFt+9l9rBaAlAQb93xsJg9c5cCeov3FhoWWRjj4ekfLUlgXnMXsgmsPS5MWal0lkSgpOIlImEDQYMfBairrmslOT2LxrCxsVguGYfDGgSoe2baft494AEiOt3H3FTNZebWDrFQFppjznjBD0v6tbV1wnfaDi0+F2dfCvE+ZXXBp2TErU2QkU3ASkZCteypY/9JeKmo7fuFOzkzi1sJc3jxQRdmhGgAS46zcdfkMVl0zmwlpibEqd3QLBnofXB0MdnTB7f+DOSOus8zcjllwM69UF5zIAFBwEhHADE0PPuPqsmxhRW0zjzo/AiAhzsoXL53Og9fMJjtDv4QHzd4Xu5nOvxHmFJmtSe1dcPUnOz3RAtMKOsLSpAvUBScywBScRIRA0GD9S3sjrvXcLiXBxrZvXsPUcRHW7pGBs/fFtgUkz7ob3hOw5U6wxkOwteN4QprZBdc+C05dcCKDSsFJRNhxsDqsey6SxpYAR6obFZwGUzBgtjT1FGGDrZCRC/Pb1laaeRXEqbtUZKgoOImMYYGgwZ/2n+aRbfuiur6yrudwJf1kGFC1H8qeCO+e687nfgazrh78ukSkCwUnkTHoWE0jW3Yeo2Tn0V5bmjrLTte4pgFTX2mu2O1+1Ryz5D3et+eKSEwoOImMEa2BIM69p3iu7Ch/+ug0RltvkD0lns9eMpWX3z3BmfqW7va0JyfTXJpA+qml0Zwl1x6UTu0JP29LhOz5XWfGRZLWz9W8ReSc9Sk4ud1uSktLcTgcuN1uVq5cid1uj3ity+XC6XQCUFZWxmOPPRa61uVyAZCXl4fb7cbj8ZCXl9f/70JEuuU+Xc/zO4/yX7uOUVXfEjp+xezx3FqYy3UX5JAUb+MyRxYPPuPqbk97HrphATarZmhFLRgwlwpwvwblr8LR7RBoCb8m5yJwfNwc3D39crAlwKMLzS1RuouwGVPMpQlEJCb6FJxWrFjBrl27ADNEPfDAA5SUlES81ul0smbNGgCKi4tZsmRJ6LmbNm1i8+bNABQVFXX7GiLSP82tAbbuOclvdhxh+8Hq0PEJaYmsKJjGrQW5zJyQGvacZQsn8/M78rqs45STmcRDNyxg2cLJQ1b/iFV90AxK7lfh4J+gqSb8fMY0mP1xcFxrBqbUCV1fY9nGtll13UTYZQ9rs1yRGLIYhtHTDOQQt9sdFpwAxo0bR01NTZdrXS4XS5YsCZ1zu93Mnj2b8vJyHA4Hmzdv5pZbbgHotsUqEq/XS2ZmJrW1tWRkZET9PJGx4sOTXp7bcZT/fvs4tU3mlHWrBa6ZO5HbFk/nE/OzibdZe3yN7lYOlwgaq+HQn80WJferUHMo/Hxihjnrbfa1ZlgaPzu6dZUiruM01QxNC24c0G9BRPqWL6JucXI6nWRlhY9vyMrKwuVydelmy8vL47HHHgs99ng8oevb9SUwiUj3Gnx+Xtp9gt+UHWX3UU/o+FR7MrcU5LKiYBpT7NEvIWCzWrh89vhBqHQU8PvMLrf27rcTbxPWKmSNg2mLO7rfpuSBrR9DSRfcCPM/3fvK4SIy5KL+F90efs5WXV0d8fjy5ctDXz///PMUFRWFwpLH46G0tBQwxz+tWrUKh8PR5TV8Ph8+ny/02Ov1RluuyKhmGAa7j9Xy3I4jvLT7BA0tAQDirBaWLpjEbYunc+WcCWopOleGAafe7+h+O/wWtDaGXzNxvhmUHNfCzI9BYvrA/NlWG8y6amBeS0QGzDnPqusuUHU+X1paGtbF13lQucPhYOnSpZSXl3d57oYNG1i/fv25ligyatQ2tvK7d47zmx1H+PBkXej4rAmp3FaYy81505iYrsUQz4n3REeLkvs1aDhr6n9qdkeLkuPj5mBtERk0gWAAV6WL042nmZgykbzsPGwxbH2NOjjZ7fYurUvV1dW9drmtXbuWbdu2hV3ndrtD3XvtM/TcbneXVqd169axevXq0GOv10tubm60JYuMCoZhjjl6ruwo//NeBT5/EDD3jfv0hZO5tTCXS2dlYdGeZB2i2SC3na8ODr3REZaqzloMND7FfL7jWjMsZS/Q/m8iQ8R52MnDOx7mVOOp0LFJKZP4zuLvUDSjKCY1RR2cioqK2LRpU5fjBQUF3T6nuLiYtWvX4nA4Qi1Tbrc7bOB4u7PHTwEkJiaSmKj/PcvYVFXv4792HeP5sqO4qxpCx+fnpHNbYS6fWzSNzJT4GFY4TPW0Qe6CGyHgh+O7OrrfjpVB0N9xrcUKUxZ1dL/lLtaWJiIx4DzsZPVrqzHOWpqjsrGS1a+t5pGPPxKT8BR1cDq7NcjtdlNQUBC2NpPdbg9dV1paSl5eXig0bdmyhZUrV+JwONi4cWPodZxOJ8uXL9dgcREgGDT484EqnttxhG17T+EPmj8wUhJs3HjxFG5bPJ2Lp2Wqdak7vW2QOyUPzhwA31njJcfN6uh+m3U1JI8bqopFJIJAMMDDOx7uEpoADAwsWNi4YyPX5l475N12US9HAGZY2rRpE4WFhZSVlbFu3bpQ4FmxYgWFhYWsWbMmtPxAZ3a7PdTK1L44pt1up7y8PCxI9UTLEchoVVHbRMlOs3XpuKcpdPziXDu3F+bymYunkJaohf57FAy0LR4ZxV5vSXZwXNPR/TZu5mBXJyJ9UHayjHtfubfX635x3S8ozCk85z+vL/miT8Ep1hScZDTxB4L88cNKnis7ymv7KmlrXCIjKY7PLZrKbYunc/5k/T3vla8eTrjgvRJwPd379Z/+EeTfran9IsNAa6CVI3VHOFR7iIPegxyqPcQh7yH21+ynyd/U6/M3XrWR6x3Xn3Mdg7KOk4j0LprFIw+faeD5sqOU7jpGZV3HchuLZ2Vx++JcPrVwMknx+qUeUTAI1eXmuKSjO+DYTqh8H4xg9K+RlKHQJDKEDMPgTPMZDtYe5JD3UCgcHao9xPH64wSMQL9fe2LKxAGsNDoKTiIDZOueii7blUxu267k2vnZvPL+KZ4vO8KbB86Ezo9PTWB5/jRuLczFMTEtFmUPb821Zjg6ttMMS8fKoNnT9bqMaZA105wd1xttkCsyKJr9zRz2Hu4Sjg55D1HfWt/t81LiUpiVOYuZmTOZmTGTmZkzmZ4+nb/9499yuvF0xHFOFixMSplEXvbQ73Or4CQyALbuqeDBZ1xd/nlX1Dbz5WdcpCbYQotUWixw1XkTub0wlyXnTyIhructUMaMYABO72sLSG2tSaf30WWgd1ySOettWoG5Sve0AnPWXGiMkzbIFWk30GsgGYbBqcZTEVuPKhoqIoYcAKvFypTUKaFwNCtzVigkTUyeGHHCy7rF61j92mosWMJe19K2b+PaxWtjsp6TgpPIOQoEDda/tLebHxemhpYAORmJ3FI4nRX508jNShmy+oathjNwfGdHt9txF7TUdb1u3My2gFRohqScC8EWYRkGq00b5Ip0ci5rIDW2NkZsOTrkPdTj2KOMhIyu4ShjJtMzppNgS+hT/UUzinjk449E/B7WLl4bs3WcNDhc5By9eaCKLz6+vdfrnr3/Uj42Z8IQVDQMBfzmWKT2cUnHysyxSmeLT4WpeWZIyl0MUwsgrY9jGLRBrki3ayC1t9Y88vFHuDb3WioaKroEpIPeg1Q2VkZ6WQDiLHFMS5/WEY46dbGNSxw34MulDMXK4RocLjLIKuua+fP+Kl7ff5r/++BU70/AXNByROjLqtvdqTvVMSbpWJm5Ge7Ze7wBjD/PDEjTCsywNPH8/m2K25k2yJUBMty2+ohWb2sgAXz79W9jwUKr0drt62QlZYUCUXvL0czMmUxLn0a8degW37VZbQOy5MBAUXASiUKLP8iuwzX86aPTvL7vNHsr+r7hdHZ60iBUNsB6W3U7En8LnHyvbVxSW1DyHOl6XWImTMtv63IrhKn5kNJ1x4ABoQ1y5RzFcqsPwzBoCbZQ11JHQ2sD9a31NLQ0UNfa9rilPnS8vqXePN9+XWsDVY1VVDVX9fhn+A1ztfx4azwzMmaEB6S2z5mJmYP6fY5U6qoT6cbR6kZe23+aP+0/zVsHqkKDu9tdODWTa+ZO5MrzJvCN597hlLe5uyHJ5GQm8cbaT3RZmmBY6W7V7fbxQbc8bYan2mNtAWmn2fVWsRsCZ7emWSD7/I6QNK0QJswFqwbCy/AXTTdXpPBkGAa+gC8syIQFm7bAU9daR0NLQ/fXtdbj77wN0CBZU7iGL8z/wohoRRtsWgBTpB+aWgL81X2G19vCUuf94cBcOuDquRNDYWlCWsf+Ze2z6iDikGR+fkceyxZOHuTv4BxEs+p2XBIkjYP6iq7nkrM6AlJuobm1SZL+jY5lI7GbyzAMPD4PN79wc48tNkm2JBbnLO7S0jMYgSc1PpW0+DTS4tNITTC/To1PJT0hPXQudE2Ced0R7xG+v+P7vb72QK26PRooOIlEwTAMPqqs5/V9p/nTR6fZfrCaFn/HQoo2q4X86eO4Zp4ZlhZMzsDaQ4tRT+s4DevQBHDwz/DUZ6K71mKDSRd0DOCeVghZDnOdBRGGx472rYFWPD5P6KPWV9vj17W+Wmp9tee0GGM7CxZS41M7gk1CKunxbUEnIS0sDHV+fHYgSolPwWrpeyttIBjguv+6jsrGyh7XQNr6+a3DPswOFQUnkW7UNrXy5oGqUFjqHHIAptqTQ61KV8wZT0ZS3wZARrNyeMw1e+H0h1C5FyrbPp94u+vGt5Fc/W248puQkDr4dcqI1N9uru4YhkF9a3334ac58vFGf4TJCANo+XnLuWzKZWYgSghv+elv4BlI7fcBiLgGUl/vw2inWXUibYJBg/eO1/L6/tO8vv807xz1EAh2/BBJjLNymWN8KCzNnph6TlNpbVYLl88ePxCln7vWJqjaD5UftIWkD8yP2qP9f81Z1yg0Sbei2dH++9u/z/SM6dS11EUOQ81dW4LaBzL3lQULmYmZ2BPtXT539/UBzwG+7Pxyr699veP6Yd3NNVzXQBoNFJxk1Om8VMCfPzpNTWP4dNs52WlcM3ciV8+dyKWzskb+vnCBVjhTDqc/CA9J1e7u93BLn2wO3s5eYH6eMNccGF53Eq26LdEyDINaXy1nms9wpukMO07uCPsl3eV6DE43nebzL36+z39Wki0pYtAJHUvqGobSE9L73PIzIXkCk1Im9drNFYutPvqqaEYR1+ZeO+LGmg13Ck4yrPSnq6vFH8R1pMZsVYqwVEB6YhwfmzOBa+aZYWmqPXkwv4XBEwyC53DXFqSq/RDsZi2W5HEd4ag9KE2cH3kZgE8Va9XtYSRWg6uDRhCPz8OZpjOhQNT+dVVTFWeaz1DdVM2ZpjNUN1f3qzUo2ZbMxJSJ3bcEJXV83X4uOW5o/t3arDa+s/g7w3Krj/4YbmsgjQYa4yTDRl8GVx+tbgx1v/W0VMA18yZySa6deNsQjTcYiMUjDcNs+ekcjir3muOSIi0iCeaK253DUfvntOy+DdrWqtvDwkAPrg4EA9T4asLCUHVzdXg4agtGNc01fR4gnZ6QzoTkCcRb49lfs7/X60fCbK5I9yAnJUfdXKOUBofLiNPdJrntv/Ifve0SMpLjzUHdEZYKmJCWwFXnRV4qYMj0Z/HIxupOAanT5+bayNfbEmDCvK4hKTN34NZIGojwJ/0W7eBqf9Afahlqbwnq3DrU+XONr4Zgd9223chMzGR80ngmJE9gfNJ4xie3fSSFf85KygrtQTbaZnONxCUVpH8UnGRECQQNrtz4xy4z3Hpis1rInzHObFWKYqmAQdfb4pE3b4Ks2V1DUn0340EsNhg/OzwcTTzfnPZ/rluSyLDV7G/mU7/9FFVN3a8hFGeJIz0hHY/P0+1O9JFYsGBPtIeHnwhBaHzSeLKSs/q9pYZmc8lIpFl1MqLsOHgmqtA0ITWBpRfk9HupgEETDJgtTRF/ibUd++3K7p9vnx7evZZ9vrmHW/wI2KJlmBpOLQXN/uYurUGRusmqm6up9XXT0tiJ3/BT46sBzDAyLmlcl+AzIXlCl2PjksYRZx38H/mazSWjnYKTDKnqhhb2n6rr9FHPnuO9/7IA+MfPLOCmRVMHucIe+FvAe9yczu852vG5YnfPK263SxoHUy4JD0kT50Fi2qCXPpYM9uKL7esKRQw/TdVduskGYz2hb+R9g5vm3MS4xHHDsutIs7lkNFNwkkFR29TKR6fq2Heqjo9O1YeCUlV9S79fMztjkFtgWho7haIj5mfPkY5jdRVEblWK0qd/CBcuH7ByB8twaq3pq+7GB1U2VrL6tdXddhMFjSC1vtqIYejsgdTVzdX4uuzN17MEa0JYN1ikcULjk8ZzpO4IX3/1672+3kUTL2JC8oQ+1TDUNJtLRisFJzkn9T4/H3VqPWoPSKe83f9iyc1KZt6kdM6blM7cSWnMnpjGyqd3csrrw0KQxdYPycZDJXZ2BOdjYCUn01yaoN8MA5o94S1FniMdAan2KDSe6f11bIlgzzUHY9tzIXO6OdPtjUd6f27apP7XP0SGw1YZ/dXb4osA33vze7xd+TY1zTVmGGofPN1c0+dp9SlxKV3Dz9ljhdqOpcWnRbWw6qzMWaNmDSGR0UqDwyUqTS0BDlTWt7UgdQSl456mbp8zJTOJuTnpzJ2UznnZaczLSWdOdhopCV3z+tY9Ffzu1//J9+KfZoqlOnT8hJHFP7fexWe/8OWe93szDKivbAtFR8Jbito/t9T1/o0mZnQKRZ0/Tzc/Uid2nd4f2iC3ggAGrqRETttsTAwEyGv2YWtfPPIb7w3r2WkDvVVGXwSCARr9jTS2Nnb53NDa0PG1v4Gm1iYa/W3HO11X1VTFiYYoukx7kJGQ0W346TygOispa9DWFdLgapGhp1l1Y9RA7JPW3BrAfbohbAzS/lN1HK1ppLu/KdnpiczLSee8bLMFaW6OGZTS+zJ4e++LGFvuwsCg86T6IOYvDMvyJ2Fa/lndZ53D0TGIpvskZUJ4GAqForZjyfboaz6rfufLq3h4vJ1TcR3BcJLfz3fOeCj6zKZhvQ5S+zTy7lZ97jyN3Gqx0uRv6lOwaWhtMJ9z1vXtn5sD0c+oPFdXTb2KgpyCUPdY54AUbxseEw60hpDI0NKsulGiL0Fo654K/vnF3YwPbCMlropG/wTO2JbyvRsvjthS0+IPcuhMW0A62RGQDp1pINhNQBqfmsDctu618yalt4WlNOwpCf3/JluboaEKfv8tLBgEgbKzWmysGFD6pd5fy2I1txLp0lLU1qWWOQ0SUvpfaw+cqSmsnjSBs/8fUmmzsXrSBB5JTWGoft0FjSC+gI9mfzPN/maaAk2hr7s8DjTT5G/C7XH3ulXGycaTXPrspbQEW/o0Db4vbBYbKfEppMSlkBqfGvqcHJ8cdiwlvu14XLL5dVwqR+qO8MOdP+z1z7hn4T3DfuyNBleLDF99Ck5ut5vS0lIcDgdut5uVK1dit9v7fG1fXmco1Td4+dF/fYXK5uMAzEpfQENrLZnJE8mxz+Kz16wiIcFcWLGlxcfvXt9EpfcI2RnTw851py/P6UsQ2rqngide/EcSJ/2FQ3Ed7TUT/Ft54sXLOen9B3Iykth3sp79lWZXm/t0A/5uElJmcnzbGKS0tqBkhqXxPS0qGQyYizY2VkNTNTTVdHwd8ViN+bnTStjOlGQeHj8uQotNDUWNTebaRp2DUOeWInuuucJ1DFoMOsbW0KUbz7BYsGBh446NfHzaxzEwwoJLk7+J5kA3oaabkNP5caTXGMzWG1+wo1XPgiUs5IRCTKdw0/lzanxql2NnX59gTej3JsuBYIBf7f3VqBkfpMHVIsNTn7rq8vPz2bVrF2CGn7Vr11JSUtLna/vyOp0NZlfdtx5fhjPuGMEefmhP8Ae5fcJnAfhN1e+oCgsp5rmVN/1bxOdufuEfon5OexCqmvSXLtdPOHU59934L6HwFAga3PujB3l7/BtdfnFb2m7t3BOXsdP7uS41pSXGmV1rbQO1501KZ252KhOT/FiaaiKEn0jH2o976P+MMwvOlCRWZ0/o9nt4pLKKomU/gYtu6defEAgGaAm20BJooTXYSkvA/NoX8HU8bj8faA19Hfoc6Hgcdj7QQkVDBTtO7ui1BitWgvRt9eZzlWBNICkuiaS4JJLjkkmyJXU8tiWHvq711fLq0Vd7fb2Hr3yYS6dcSkpcCslxyf0OOYNF44NEpD8GZYyT2+1mxYoVocADMG7cOGpqavp0bV9e51y+sb741uPL+N+4Y+aDnn4RnP1WRfgF/zfjbuoShDa/8A/8tOaFbkNB5+dEE4QuOHkF8RPvo7LOxwlPHeNz11Bls0Ss3WIYTAgYXHR6JRdPtOFI9TEtqZnsuEbSAl4sTdVm6OkchAI9LxlgAH7Ab7HgBwIWC34L+LHgT0jDn5xJICkTf2I6/qQM/InpBBLT8SemmucTkgnEp+KPTyIQn4yvupziD36J12qN/P4bBimGwfVTrqIldXyXYNMaOCv4BFvxBXxhIamve28NNqvFGhZkuoSasx4n2dqORXrczblEW2LUXTujaasMjQ8Skb4alDFOTqeTrKzw6eBZWVm4XC7y8vKivnbnzp1Rv85QqG/w4owmNLWfbw9PEbpkMAyerfodnzjzJYLYaGoN4G1q5Jmq32FECDbtz/lV1e9447HxtPr9eBu9eMb9GYPurz+U/SYXV5czxxIgN8vLX+O636PMsFg4HWfBY/8pb/uC7GzpCDutFghghp5AnAV/Jvgzx5shyGIlYLHit1rMQGSxEMDA3zYOqXe15kcz5kdvbD38MrZYaLRYKD35ZlR/cm8sWEiwJZBgTSDeFh/6OsGWEPZ1vC2+43j7Mat5faItMXT+ZMNJntv3XK9/7r9f8+9cNuUykm3JxFnjhlVrzWjaEV7jg0RkMEUdnDweT8Tj1dXVXY71dG1fXsfn8+HzdYyp8Hq9vdbZVz/6r6/02D3XRU/XWixUx1n43Ms3hx/vIdhgseCJs/A2T0ICkALQ8/X1NgtvTqyMvmZgV/K5LB5p0Fs3nAULcdY488MSh81qI84ah81iCzseZ+041/64prmGjzwf9VrF0hlLuWD8BR3BpS3EhIWgswJQvC2eRFtiWBiKswxsaAkEA7x69NVeW2uWTF8yrH95j6atMjQ+SEQGyznPqusuCPX12kjnNmzYwPr16/teVB+c9lWYgWUAJQaDxAMWA/wWaIpi1/ocv5/MoEG9xcLx+N5vy4XBJOakT+WMr5Y/+bvfELTd7VM+znkzrg6FlUihpnPYibfGm48tXYNOKPx0emy19P49dqfsZBn3vnJv79/D/NuH5S9DtdaIiIwdUQcnu93epVWouro64my4nq7ty+usW7eO1atXhx57vV5yc3OjLTkqExMng9G31pverEu+musvvIGEhER+/+7L/EO9s9fnPDD9QW5Z+jX+6nqcB977ca/Xf+3iVVyWdz8BfwuffDqP09a2rryzWAyD7CCsvfbfscUNcEIcIHnZeSN+tWS11oiIjA1RNxMUFUX+wV9QUNCna/vyOomJiWRkZIR9DLRvfv5nWA2j68Dv7vRwrcUwmOgPcsPNj5J8wfXYzlvCshseZoI/GBrY3d1zPnvNKgAKL7qL7IDR4/WTAgaFF90FgC0ugXVzvxg6d/a1AN+Z+8VhG5qgo8UGOlpo2o2kFpuiGUW88vlX+MV1v2DjVRv5xXW/YOvnt46o0CQiIj2LOjg5HI6wx263m4KCglBLkcvlwu1293ptb68z1NJSMyjyTzMf9BaeOp3vLqTcNuGzYWszJSQkhpYwiOY5/QlCRVeu45E5XyT7rFHbk4LwyJwvUnTlup6/r2GgvcUmOyU77PiklEkjagp5e2vN9Y7rKcwpHPZhT0RE+qZP6zi53W42bdpEYWEhZWVlrFu3LhR4VqxYQWFhIWvWrOn12p7O9STW6zhN9Ae5rZt1nNrP9WUdp56e43xjAw/vf5ZTto56cgIGa+d2H4QC/hZc7/2K094jTMyYTt6Fdw7rlqZIAsGAxteIiMiQ0l51/TScVg6H0RGEREREhjsFJxEREZEo9SVf9H8OuYiIiMgYo+AkIiIiEiUFJxEREZEoKTiJiIiIREnBSURERCRKCk4iIiIiUTrnTX6HUvvKCV6vN8aViIiIyGjRniuiWaFpRAWnuro6gAHf6FdERESkrq6OzMzMHq8ZUQtgBoNBTpw4QXp6OpYetkbpL6/XS25uLkePHtUCmzGk+xB7ugfDg+5D7OkeDA+DfR8Mw6Curo4pU6ZgtfY8imlEtThZrVamTZs26H9ORkaG/oEMA7oPsad7MDzoPsSe7sHwMJj3obeWpnYaHC4iIiISJQUnERERkSgpOHWSmJjIQw89RGJiYqxLGdN0H2JP92B40H2IPd2D4WE43YcRNThcREREJJbU4iQiIiISJQUnERERkSiNqOUIBpPb7aa0tBSHw4Hb7WblypXY7fZYlzUquFwunE4nAGVlZTz22GOh97an972/56Rna9euZd26dboHMeJ0OnG73TgcDgCKiooA3Yeh4na7cTqdZGVl4Xa7Wb58eehe6B4MHpfLxQMPPMCuXbvCjg/Gez7o98MQwzAMIy8vL/R1eXm5sXz58hhWM7ps3Lgx7OvO73VP73t/z0n3du3aZQBGTU1N6JjuwdDZtm2bsXLlSsMwzPfM4XCEzuk+DI3OP48MwwjdD8PQPRgsJSUloZ89ZxuM93yw74eCk2G+sZ3faMMwDLvdHqNqRpddu3aFvZfl5eUGYJSXl/f4vvf3nPSspKTEcDgcoeCkezC0Or/3hmG+j+2fdR+GxtnvV+cgq3swuM4OToPxng/F/dAYJwg123aWlZWFy+WKUUWjR15eHo899ljoscfjAcz3t6f3vb/npHulpaUsX7487JjuwdBxu91UV1djt9txuVx4PJ5QF5Huw9DJysoiPz8/1GW3dOlSQPcgFgbjPR+K+6HgRMcv87NVV1cPbSGjVOdf1s8//zxFRUXY7fYe3/f+npPIPB5PxD5+3YOh43K5yMrKCo292Lx5M6WlpYDuw1AqKSkBYPbs2ZSUlIR+PukeDL3BeM+H4n5ocHgPursB0j8ej4fS0tIugwMjXTfQ58a6LVu2sHLlyqiv1z0YeNXV1bjd7tB/HFauXMm4ceMwelhKT/dh4DmdTjZu3Ijb7WbVqlUAbNq0qdvrdQ+G3mC85wN5P9TiBNjt9i5ptL1JXQbO2rVr2bZtW+h97el97+856crpdHLLLbdEPKd7MHQcDkfovQNCn10ul+7DEHG73ZSVlVFUVMTKlSspLy9ny5YtuN1u3YMYGIz3fCjuh4ITHdOBz1ZQUDDElYxexcXFrF27FofDgcfjwePx9Pi+9/ecRLZlyxY2b97M5s2bcbvdbNiwAZfLpXswhNrHM0Wi+zA0XC4XhYWFoccOh4N169bp51GMDMZ7PhT3Q111dP2B5na7KSgo0P8YBkhpaSl5eXmh0NTebXT2+9v5fe/vOenq7B8kq1atYtWqVRF/keseDB6Hw0FBQUFovFn7Wk55eXldrtV9GBx5eXls2rQpbNzlmTNndA+GUOfxlj397h3Ovx+0V10bt9vNpk2bKCwspKysLGyBQOk/t9vN7Nmzw47Z7XZqampC57t73/t7TiLzeDxs3ryZtWvXsnLlSlatWkVeXp7uwRDyeDysXbuW/Px8du3aFWqFBf1bGCpOpzPUPQrmfyx0DwaX0+lk27ZtFBcXs2bNGgoLC0PhdTDe88G+HwpOIiIiIlHSGCcRERGRKCk4iYiIiERJwUlEREQkSgpOIiIiIlFScBIRERGJkoKTiIiISJQUnERERESipOAkIiIiEiUFJxEREZEoKTiJiIiIREnBSURERCRKCk4iIiIiUfr/NEwOWlME368AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFnCAYAAABQEsaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUVUlEQVR4nO3de1xU953/8dcw3K8DIuAFL2Ni1JgbF3Np0jQRE7dt0qbVNGnu7YpNd9vuprsSu9tN7f5ao9tNu9tus5omadKkuUCybdI2pk7Tey6ik5tRozLeRVFgGBAYmJnz++PAwMAAAwLD5f18PHgwcy7DlzkIb7/f7/l8LYZhGIiIiIjIgGKi3QARERGR8ULBSURERCRCCk4iIiIiEVJwEhEREYmQgpOIiIhIhBScRERERCKk4CQiIiISodhoN2AwAoEAx48fJy0tDYvFEu3miIiIyARgGAaNjY1Mnz6dmJj++5TGVXA6fvw4+fn50W6GiIiITEBHjhxh5syZ/R4zroJTWloaYH5j6enpUW6NiIiITAQej4f8/PxgzujPuApOncNz6enpCk4iIiIyrCKZBqTJ4SIiIiIRUnASERERiZCCk4iIiEiEFJxEREREIqTgJCIiIhIhBScRERGRCCk4iYiIiERoXNVxEhERkcnFHzDYdqCOmsZWctISWTI3C2tM9JZdU3ASERGRMWnLzmrWvbyL6obW4LZpGYk8cMMili+eFpU2aahORERExpwtO6u59ylnSGgCONHQyr1POdmyszoq7VJwEhERkTHFHzBY9/IujDD7Orete3kX/kC4I0aWgpOIiIiMKdsO1PXqaerOAKobWtl2oG70GtVBwUlERETGlJrGvkPTUI4bTgpOIiIiMqbkpCUO63HDSXfViYiIyJhyaoCeJAuQl2GWJhht6nESERGRMWPbgTr+qfy94POeFZs6nz9ww6Ko1HNScBIREZExYX9NI6ue3E6bP8D15+fy488XkJcROhyXl5HIw7cXRK2Ok4bqREREJOpqGlu567FKGlrauWSWjf+65RIS46xcvzhPlcNFREREOp3x+vjCTys55m5hzpRkfnJnEYlxVgCsMRYunzclyi3soqE6ERERiRqfP8Df/9zJzmMeslLi+ek9S5iSmhDtZvVJwUlERESiwjAMvvnLnfz+w1MkxsXw6F1FzMlOiXaz+qXgJCIiIlHxP7/fzzPbjhBjgf++5RIumZUZ7SYNSMFJRERERt2LzqN877d7AfjWjedz3fl5UW5RZBScREREZFT9df9p1lSYtZpWf9TOnZfPiW6DBkHBSUREREbNnhMevvSzHfgCBjdcNJ2y5Qui3aRBUXASERGRUVHd0MLdj1XS6PWxZG4W31t5ITFRrMk0FApOIiIiMuI8re3c83glJzytnJOTyiN3FJEQa412swZNwUlERERGVJsvwL1P7WDPiUampiXw03uKyUiOi3azhkTBSUREREaMYRjc/+J7/HV/LcnxVh6/u5iZmcnRbtaQKTiJiIjIiHlo615edB7DGmPhx7cVsHhGRrSbdFYGFZycTieFhYUDHldRUYHb7cbtdod9DafTCYDL5Qo+FhERkYnlmW2H+eFr+wH47k2L+dh5OVFu0dmLODhVVFQARBR0Vq5cSWZmJpmZmVgsFiwWCxs3bgRg06ZNFBYWYrFYWL16NXa7fYhNFxERkbHq9x/W8K+/2AnAV689h88Vz4pyi4ZHbKQHrlixIqLj3G435eXlIcdv3LiRNWvWAFBYWEh9fT0ANpttEE0VERGR8eD9ow383dNO/AGDzxbM5B+XzY92k4ZNxMFpMLqHpoqKil6hK9LA5PV68Xq9wecej2dY2iciIiIj40hdM/f8tJLmNj9XnpPN+s9cgMUyvmo19WfYJ4d3D0Vut5u6urqQ4Ti3201FRQUVFRWUlZXhcrn6fK3169eTkZER/MjPzx/u5oqIiMgwcTe3cffj2zjd5GVBXhoP315AfOzEug/NYhiGMagTLBYiPWX16tVs2LChV5jqfO50Olm5ciVVVVVhzw/X45Sfn09DQwPp6emDabaIiIiMoNZ2P3c+uo1tB+uYlpHI/335I+RlJEa7WRHxeDxkZGRElC9GLAa63W4cDkevYbnuPUx2ux2Xy9Vnr1NCQgLp6ekhHyIiIjK2BAIGXy9/l20H60hLiOXxe4rHTWgarBELTtu3b+8VmpxOJ0uXLu11bFZW1kg1Q0REREbYg1v28Ov3qomzWth0RyEL8iZuR8eQglPP+kxOp7NXr5HT6ewViOx2Oxs2bAg+dzgcrFixQnfXiYiIjFNPvH6QzX8yM8DGFRdyxTnZUW7RyIr4rjqHw8HWrVsBc9J2cXFx8G65zuedJQc69azRZLPZKCoqYuPGjdhsNqqqqigvLz/b70FERESi4NUPTvCtlz8A4J+vP4+bLpkZ5RaNvEFPDo+mwUzeEhERkZHjPFzPrZvfxOsLcOuSWXz3psXjtuzAmJgcLiIiIhPTwdNn+NsntuP1Bbh2QQ7//qnzx21oGiwFJxEREYlYbZOXux7fRt2ZNi6YkcEPb72EWOvkiROT5zsVERGRs9LS5ueLT2znUG0zMzOTePTuIlISRmQRkjFLwUlEREQG5A8YfPXZt3nniJuMpDh+es8SctImZq2m/ig4iYiISL8Mw+DbL3/A1l0niY+N4Sd3FXFOTmq0mxUVCk4iIiLSr0f+7OKJNw5hscD3b76Y4jmTt3C1gpOIiIj06eV3j/Pd3+wB4F8+vpBPXDgtyi2KLgUnERERCestVy1ff/5dAO6+Yg5fvHJulFsUfQpOIiIi0sv+mkZWPbmdNn+A68/P5ZufXDRpajX1R8FJREREQtR4WrnrsUo8rT4KZtn4r1suwRqj0AQKTiIiItLNGa+PLzxRyTF3C3OzU/jJXcUkxlmj3awxQ8FJREREAPD5A/zdz53sPOZhSko8P72nmKyU+Gg3a0xRcBIREREMw+Bff7GTP3x4isS4GB69u5jZU1Ki3awxR8FJRERE+NFr+3m28ggxFvjhrQVcnG+LdpPGJAUnERGRSe6FHUf5z617AVh34/ksW5Qb5RaNXQpOIiIik9hf9p2m7IX3AFh9tZ07Lp8T3QaNcQpOIiIik9Tuag9femoHvoDBDRdNp+z6BdFu0pin4CQiIjIJVTe0cM/jlTR5fVw6N4vvrbyQGNVqGpCCk4iIyCTjaW3n7scqOeFp5dycVDbfUURCrGo1RULBSUREZBJp8wW496kdfHiykalpCTx+TzEZyXHRbta4oeAkIiIySRiGwf0vvMdf99eSEm/l8buLmZmZHO1mjSux0W6AiIiIjAx/wGDbgTpqGlvJSUvkz/tO8eLbx7DGWPjx7YUsnpER7SaOOwpOIiIiE9CWndWse3kX1Q2tvfatv+kCrp4/NQqtGv8UnERERCaYLTurufcpJ0Yf+9OT9Od/qDTHSUREZALxBwzWvbyrz9BkAda9vAt/oK8jpD8KTiIiIhPItgN1YYfnOhlAdUMr2w7UjV6jJhAFJxERkQmkprHv0DSU4yTUoIKT0+mksLAwouOcTicALpcr+Ljz+caNG6moqGDjxo243e7BtVhERET6lJOWOKzHSaiIZ4dVVFRgt9tDQlBfNm3axObNmwEoKSmhvLw8uG/lypXs2LEDMEPUqlWrQvaLiIjI0GWnxhNjgb6mMFmAvIxElszNGtV2TRQRB6cVK1ZE/KKFhYXU19cDYLPZgttdLlfIcXa7HYfDEfHrioiISN8OnD7D7Y++1W9oAnjghkVYtS7dkIzYHCebzRYSmgAcDgdZWaEJNysrq89eLK/Xi8fjCfkQERGR3g6cPsMtm9/gpMfLeblpbFxxIdMyQofj8jISefj2ApYvnhalVo5/I1LIwe12U1FRAUBlZSWrV6/Gbrf3OZ+pri78zP7169ezbt26kWiiiIjIhHHw9Blu3fwmJz1e5uem8vSqS8lOTeCzBTNDKocvmZulnqazNCLBqbS0NNjbZLfbWbZsGVVVVX0e31egWrt2Lffdd1/wucfjIT8/fzibKiIiMq4dPH2GWza/yQlPK/NzU/n5qsvITk0AwBpj4fJ5U6LcwollRIbqus9lstvtuFwuXC4XNputV+9SXV1dryG9TgkJCaSnp4d8iIiIiOlQ7RlufcQMTefmhIYmGRnDHpycTidLly7ttT0rK4uSkpKw5xQVFQ13M0RERCa0Q7VmT1N1g0LTaBpScOo5tOZ0OoO9THa7nQ0bNgT3ORwOVqxYgc1mw263h5zncrkoKirqs8dJREREeusems7pCE1T0xSaRkPEc5wcDgdbt24FzEnbxcXFwRIFnc/XrFmDzWajqKiIjRs3YrPZqKqqCqnTVF5eTllZGcXFxVRWVqqGk4iIyCAcrm3m1o7QNG9qCj9fdalC0yiyGIYxblb583g8ZGRk0NDQoPlOIiIy6RyubeaWzW9wvCM0PVN6mSqAD4PB5AutVSciIjIOHKlr5tZH3uR4Qyv2qSk8s0qhKRoUnERERMa4I3XN3LL5TY65W7BPTeHZVZeRk67QFA0KTiIiImNYSGjKVmiKNgUnERGRMapnaHqmVKEp2hScRERExqCj9eacpmPuFuZ2hKZchaaoU3ASEREZY47Wmz1NR+vN0PSsQtOYoeAkIiIyhhxzt3DrI12h6ZlVCk1jiYKTiIjIGHHM3cItm9/gSF0Lc6Yk88yqy8jLUGgaSxScRERExoBj7hZu3fwmR+pamD0lmWdKFZrGIgUnERGRKDveEZoO1zUze0oyz5ZexrSMpGg3S8JQcBIREYmi4+4WbukITbOyzOE5haaxS8FJREQkSqobzIngnaHp2dLLmG5TaBrLFJxERESioLrB7Gk6VNtMflYSzyg0jQsKTiIiIqPsREMrt3YLTc+WXs4MhaZxQcFJRERkFJ1oaOWWzW9wsLaZmZlJPLPqMoWmcUTBSUREZJScaGjl1kfeDIamZ0svY2ZmcrSbJYOg4CQiIjIKTnrM0HTg9JlgT5NC0/ij4CQiIjLCTnrMOU0HTp9hhs0MTflZCk3jkYKTiIjICKrpCE2ujtD0bKlC03im4CQiIjJCajyt3PKIQtNEouAkIiIyAmoazTlNrlMKTROJgpOIiMgwq2k0h+eqTp1hekai5jRNIApOIiIiw6hnaHq29HJmTVFomigUnERERIbJqUYvn3/kLapOnWFaRiLPlF6m0DTBKDiJiIgMg1ONXm595E321zQxLSORZ0svY/aUlGg3S4aZgpOIiMhZMnuazNCUl27OaVJompgUnERERM7C6SYzNO3rCE3Pll7GnGyFpolqUMHJ6XRSWFgY0XEbN25k48aNrFy5ErfbHbLP6XQC4HK5go9FRETGm+6hKTc9gWcUmia8iINTRUUFQERBx+FwsGbNGtasWUNxcTFLly4N7tu0aROFhYVYLBZWr16N3W4fQrNFRESiq7bJy22PvMXek2Zoerb0cuYqNE14FsMwjEGdYLHQ3ylOp5OlS5dSX18PmL1K8+bNo6qqCrvdzubNm7n55psBsNlsg2qsx+MhIyODhoYG0tPTB3WuiIjIcKltMu+e+/Bko9nTtOoy7FNTo90sGaLB5IvY4f7iBQUFPPLII8HnncN0WVlZwW2RBiav14vX6w0+93g8w9JGERGRoapt8nLbT8zQlJOm0DTZjMjk8BUrVgQfP/fcc5SUlATDktvtpqKigoqKCsrKynC5XH2+zvr168nIyAh+5Ofnj0RzRUREIlJ3po3bfvIWe06YoenZUoWmyWbYh+q6c7vdFBYWsmPHjpDg1PnY6XSycuVKqqqqwp4frscpPz9fQ3UiIjLi/AGDbQfqqGlsJSctkXNyUrnj0a7Q9EzpZcxTaJoQojpU111ZWRlbt24NGZpzuVwUFBQAYLfbcblcuFyusJPEExISSEhIGMkmioiI9LJlZzXrXt5FdUNrcFtsjAVfwGCqQtOkNmLBaePGjZSVlWG324PznFwuV8jE8U7d5z+JiIhE05ad1dz7lJOeYyu+gLnlyx+bp9A0iQ1pjlP3ukxgDrl1n6tUUVFBQUFBMDQ9//zz2Gw27HY7GzZsCB7ncDhYsWLFoO+uExERGQn+gMG6l3f1Ck3dbf6TC39gULNcZAKJuMfJ4XCwdetWwJy0XVxcHJwE3vl8zZo1uFwuVq5cGXKuzWajtLQUm81GUVERGzduxGazUVVVRXl5+TB+OyIiIkO37UBdyPBcONUNrWw7UMfl86aMUqtkLBn05PBoUh0nEREZSb985xhfe/adAY/7r1su5lMXzxj5BsmoGEy+0Fp1IiIiHXLSEof1OJl4RvSuOhERkfGkxtP/MJ0FyMtIZMlc3dQ0WSk4iYjIpGcYBo/+5QD/79e7g9ssEDJJ3NLx+YEbFmGNsSCTk4bqRERkUvMHDL79q13B0HT3FXP48ecLyMsIHY7Ly0jk4dsLWL54WjSaKWOEepxERGTSam3384/PvcMrO08A8I2PL2DVVXYsFgvXL84LqRy+ZG6WeppEwUlERCYnd3Mbq57cTuXBeuKtMXzv5ou48aLpwf3WGItKDkgvCk4iIjLpHK1v5u7HK9lf00RaYiyb7yhSSJKIKDiJiMiksvNYA/f8tJJTjV6mZSTy03uWcF5eWrSbJeOEgpOIiEwaf9p7inuf2sGZNj8L8tJ4/J5ipmUkRbtZMo4oOImIyKRQseMo97/wHr6AweX2KWy6s5D0xLhoN0vGGQUnERGZ0AzD4H9+v5/v/XYvAJ+6eDobV1xIQqw1yi2T8UjBSUREJiyfP8C/vfQBP3/rMABfunoea64/jxiVFZAhUnASEZEJqbnNx1d+/ja/21ODxQLrbjyfOy+fE+1myTin4CQiIhPO6SYvX3xiO+8ecZMQG8N/3XIJyxfnRbtZMgEoOImIyIRy8PQZ7np8G4dqm7Elx/HoXUUUztaivDI8FJxERGTCeOeImy/+tJLaM23MzEziiS8sYd7U1Gg3SyYQBScREZkQHLtO8vfPOGltD3DBjAwevbuInLTEgU8UGQQFJxERGfeefusQ3/zFTgIGXD1/Kj++rYCUBP2Jk+GnnyoRERm3DMPgP3+7lx/9fj8AKwtn8t3PXECcNSbKLZOJSsFJRETGpXZ/gPtfeJ8XnEcB+NrSc/mHknOxWFSjSUaOgpOIiIw7ja3tfPlpJ3/edxprjIXv3rSYzxXPinazZBJQcBIRkXHlpKeVex6vZFe1h6Q4Kz++rYBrFuREu1kySSg4iYjIuLG/ppG7HqvkmLuF7NR4Hru7mAtn2qLdLJlEFJxERGRcqDxYx98+sZ2GlnbmZqfwxD1LmDUlOdrNkklGwUlERMa8V96v5mvPvUObL8Als2w8elcxWSnx0W6WTEIKTiIiMqY99pcD/Puvd2EYsGxRLv99yyUkxVuj3SyZpBScRERkTAoEDL77m9385C8HALjjstl868bzscao3IBEz6CCk9PpZNWqVezYsaPf41wuFxUVFdjtdlwuF6WlpdhstgH3iYiIAHh9fr7+/Lv86r1qAMqWL+BLV9tVo0miLuLg1Bl2nE7ngMeuXLkyGK5cLherVq2ivLx8wH0iIiINze2U/mw7bx2oI85qYeOKC7npkpnRbpYIMIjgtGLFioiOc7lcIc/tdjsOh2PAfSIiIsfcLdzz+Db2nmwiNSGWTXcU8pFzsqPdLJGgYZ/j5HA4yMrKCtmWlZWF0+lk+/btfe4rKCjo9Vperxev1xt87vF4hru5IiIyRuw67uGen27jpMdLbnoCj9+9hEXT06PdLJEQw74KotvtDru9rq6u333hrF+/noyMjOBHfn7+MLVSRETGkr/uP83Nm97gpMfLuTmpvPjljyg0yZg0astH9xWa+tu3du1aGhoagh9HjhwZmcaJiEjU/OLtY9z9+DaavD4unZtFxZeuYIYtKdrNEglr2IfqbDZbrx6kuro6bDZbv/vCSUhIICEhYbibKCIiY4BhGDz8xyo2bvkQgE9cOI2Hbr6IhFjVaJKxa9h7nEpKSsJuLyoq6nefiIhMHv6Awb/98oNgaPrbK+fyw1suUWiSMW9IPU5utzukl8jpdGKz2bDb7djt9pBjXS4XRUVFwR6nvvaJiMjk0NLm56vPvs3WXSexWOBfP7GIL145N9rNEolIxMHJ4XCwdetWwJy0XVxcHCxR0Pl8zZo1AJSXl1NWVkZxcTGVlZUhdZr62yciIhNb3Zk2vvhEJW8fdhMfG8MPPncxH79gWrSbJRIxi2EYRrQbESmPx0NGRgYNDQ2kp+tuCxGRscofMNh2oI6axlZy0hJZMjeLY/Ut3PX4Ng6cPkNGUhyP3FnEkrlZA7+YyAgbTL7QWnUiIjKstuysZt3Lu6huaA1um5IaT5svQGOrjxm2JJ74QjHn5KRFsZUiQ6PgJCIiw2bLzmrufcpJz6GM2qY2AGbYknjxy1eQm544+o0TGQajVsdJREQmNn/AYN3Lu3qFptBjAmSnqsyMjF8KTiIiMiy2HagLGZ4L54THy7YD4VeLEBkPFJxERGRY1DT2H5oGe5zIWKTgJCIiwyInLbJ5S5EeJzIWaXK4iIictUDAwHm4vt9jLEBeRqJKEMi4puAkIiJnpaG5na+Xv4tj98ngNguETBK3dHx+4IZFWGMsiIxXCk4iIjJkO481cO/TOzhS10K8NYZv3Xg+mclxfPtXoXWc8jISeeCGRSxfrCrhMr4pOImIyKAZhsGzlUd44KUPaPMFmJmZxMO3FXLBzAwArjs/r1flcPU0yUSg4CQiIoPS0ubnX37xPi86jwGwdEEOD918MRnJccFjrDEWLp83JVpNFBkxCk4iIhIx16km7n3KyYcnG4mxwD9fv4DVH7UTo94kmSQUnEREJCK/fq+ashfeo8nrIzs1gR/eeol6lWTSUXASEZF+tfkCrH9lN4//9SAAS+Zm8aNbLyFH683JJKTgJCIifTrubuHvfu7k7cNuAL509Tz+6br5xFpVP1kmJwUnEREJ68/7TvG1Z9+h7kwbaYmxPHTzxSxblBvtZslkE/DDodeh6SSk5sLsKyDGGrXmKDiJiEiIQMDgh6/t5we/24thwPnT03n4tkJmTUmOdtNkstn1EmwpA8/xrm3p02H5Blh0Y1SapL5WEREJqjvTxt0/reT7DjM03boknxfuvUKhSUbfrpfg+TtDQxOAp9rcvuulqDRLPU4iIgKA83A9f/e0k+qGVhLjYvh/n76AFYUzo90smYwCfrOnKWThnk4GYIEt98OCT4z6sJ2Ck4jIJGcYBk+8fpDv/GY37X6DudkpPHx7AQvy0qPdNJmsDr3eu6cphAGeY+Zxc68atWaBgpOIyKTW5PVR9sJ7/Pq9agA+fkEeGz57IWmJcQOcKTKCmk4OfMxgjhtGCk4iIpPU3pONfOmpHbhOnSE2xsI3Pr6Qez4yB4tFVcAlSgwDDv4Z/vL9yI5PHf27PBWcREQmof97+yjfeHEnLe1+pmUk8qPPF1A4OzPazZLJqjMw/eFBOPTXCE6wmHfXzb5ixJvWk4KTiMgk0tru59u/2sXP3zoMwFXnZvODz13MlNSEKLdMJiXDgAN/MgPT4dfNbdZ4KLwbcs6HX/1D54HdTuroEV3+YFTqOSk4iYhMEkfqmvny007eP9aAxQJfvfZcvrr0XKxaoFdGW9jAlGAGpiv/wexNAkjO6qOO04NRq+Ok4CQiMgk4dp3kvuffwdPqIzM5jh/ccglXz58a7WbJZGMYcOCPHYHpDXNbuMDUadGNZskBVQ4XEZHR4PMH+M+te3n4D1UAXJxv439uK2CGLSnKLZNJpa/AVHQPfOQfIH1a3+fGWEe95EB/BhWcXC4XFRUV2O12XC4XpaWl2Gy2sMdWVFRQUlIC0OsYp9MJQEFBAS6XC7fbTUFBweBbLyIifappbOWrz7zNm646AO6+Yg7f+PhC4mO1aISMEsMA1x/MwHTkTXNbpIFpjBpUcFq5ciU7duwAzBC1atUqysvL+zy2pw0bNrBmzRo2bdrE5s2bASgpKenzNUREZGjectXy98+8zalGLynxVjasuJBPXjh94BNFhkOfgekL8JGvjcvA1Cni4ORyuUKe2+12HA5H2GPdbjfl5eWsWLEiuG3jxo2sWbMGgMLCQurr64HevVEiIjJ0hmGw+U8uNr76If6AwfzcVH58WyHn5KRGu2kyGRgGuH7fEZjeMrfFJkLhPeM+MHWKODg5HA6ysrJCtmVlZeF0OsMOs3UPTRUVFSHPIbLA5PV68Xq9wecejyfS5oqITDoNLe38U/m7bN1lVlO+6ZIZfOemxSTHazqrjLC+AlNnD1NaXnTbN4wi/tfkdrvDbq+rq+u1rXsocrvd1NXVYbfbQ7ZVVFQAUFlZyerVq0P2d1q/fj3r1q2LtIkiIpPWzmMNfPlpJ4frmom3xvCtG8/n1iX5qgIuI8swoOo1MzAd3WZum6CBqdNZ/zekr0DVqaysjA0bNoRs6z6p3G63s2zZMqqqqnqdu3btWu67777gc4/HQ35+/tk2WURkwjAMg+cqj/BvL31Amy/AzMwkHr6tkAtmZkS7aTKR9RmYvggf+eqEDEydIg5ONputV+9SXV1dv0Nubrcbh8PR6xiXyxUc3uu8Q8/lcvXqdUpISCAhQdVsRUTCaWnz86+/2MkLzqMALF2Qw0M3X0xGshbolRFiGFD1u47AVGluCwamr0Ha6K8dN9oiDk4lJSVs2rSp1/aioqI+z9m+fXvYUgRLly4NTg7v1HP+lIiI9M11qokvP+1kz4lGYizwT9efx5c+Oo8YVQGXkRA2MCVB8Rfhiq9OisDUKeLg1LM3yOVyUVRUFAxGTqcTm80WcpzT6ewViOx2e8jQncPhYMWKFbq7TkQkQr95v5o1Fe/R5PWRnZrAD2+9hMvnTYl2s2QiMgzY/zv4w3o4tt3cNkkDU6dBzXEqLy+nrKyM4uJiKisrQ+ovrV+/nuLi4mDJgU49A5fNZqOoqIiNGzdis9moqqpSHScRkR78AYNtB+qoaWwlJy2RJXOzCBgGD76yh0f/cgCAJXOz+NGtl5CTnhjl1sqE019g+sjXIDUnuu2LIothGMbAh40NHo+HjIwMGhoaSE9Pj3ZzRERGxJad1ax7eRfVDa3BbTlpCaQmxuI6dQaA1Vfb+efrziPWqirgMowMA/Y7OgKTWfB6MgSmweQLFfcQERlDtuys5t6nnPT8H21No5eaRi+JcTH89y2XcN35E/euJYmCvgLTkr81h+QmaGAaCgUnEZExwh8wWPfyrl6hqbv0xDiWLpx880pkhBgG7NtqBqbj5jqyCkz9U3ASERkjth2oCxmeC6em0cu2A3WaDC6RCfjh0OvQdBJSc2H2FRBjDR+Y4pKhuDMwTY1uu8cwBScRkTGiprH/0DTY42SS2/USbCkDz/GubenT4aJbzeKVx982tykwDYqCk4jIGNHuj+xenZw03UUnA9j1Ejx/J/Qc+PUchz//p/k4LhmWrILLv6LANAgKTiIiUeb1+Xn4D1X8z2v7+z3OAuRlmKUJRPoU8Js9Tf3NlotPha84J2UdprOl4CQiEkWVB+tY++L77K9pAmDx9HR2HvdgIfTPXmc98AduWIRV1cGlP4deDx2eC6etCU7vVXAaAgUnEZEoaGhpZ+OWPTz91mEAslPjeeCG8/nkhdN49YMTveo45WUk8sANi1i+eFq0mizjwckP4E8bIzu26eTItmWCUnASERlFhmGwZecJHnjpA2oavQDcUpzP/X+zAFtyPADLF09j2aK8XpXD1dMkYfl98OGvYdsjcPDPkZ+Xqt6moVBwEhEZJdUNLXzzFx/g2G3+T9+encJ3brogbGkBa4xFJQekf2dOg/MJqHwMPEfNbRYrLPiEOVzXXEv4eU4W8+662VeMZmsnDAUnEZER5g8YPPXmIf7j1Q9p8vqIjbFw78fm8XfXnENinDXazZPx5vjb8NZm2PkC+M1eS5KzofBuKPoCZMzodlddH7Pllj9o1nOSQVNwEhEZQXtOeFj74vu8fdgNQMEsG+s/cyHn5aVFt2EyvvjaYNcvYdsmOFrZtX16AVy6GhZ9GuK6lalYdCPc/GT4Ok7LHzT3y5AoOImIjIDWdj8/fG0fm/7owhcwSE2IpexvFnDbklnEaK6SRMpTDTseh+2Pw5kac1tMHCz+DCwphZlFfZ+76MauYbuelcNlyBScRESG2etVp/nGi+9zsLYZgOsW5fLtTy0mL0OFKyUChgFH3oK3NsHulyDgM7enTTOH4grvjnwNuRgrzL1qxJo6GSk4iYgMk/ozbXz3N7sp32FO1M1NT2DdjYtZvjgvyi2TcaG9Bd6vgG2b4cR7XdtnXWFW+F54A1jjotc+ARScRETOmmEYvPTucb798i5qz7RhscDtl87mn5efR3qi/tDJANyHofJRcD4JLXXmtthEuGClORw37cLotk9CKDiJiJyFI3XN/OsvdvLHvacAmJ+byvrPXEDhbC2LIv0wDDjwJ7N36cPfgBEwt9tmmQvuXnIHJOtnaCxScBIRGQKfP8BPXz/If/52Ly3tfuKtMXzl2nNYffU84mNjot08Gau8TfDes2axylN7urbbPwZLVsP86zV5e4xTcBIRGaSdxxq4/8X32HnMA8CSuVms/8wFzJuaGuWWyZhVW2WGpXeeBq/5c0N8Klx0qzl/aep50W2fREzBSUQkQs1tPn7g2MejfzmAP2CQnhjLv3xiISsL81ViQHoLBGC/w6y9tN/RtT1rnjl36eJbITEjeu2TIVFwEhGJwB/3nuJff/E+R+paAPjkhdP4txsWkZOmEgPSQ4sb3vk5VD4Cda6OjRY49zq4tBTs10KMhnPHKwUnEZF+nG7y8v9+tYtfvGNWX55hS+LfP30+1y7QAqnSQ81uc7L3u89B+xlzW0IGFNwBxV+ELHt02yfDQsFJRCQMwzCo2HGU7/xmN+7mdmIscPcVc/n6dfNJSdCvzkkh4B+46rbfB3tfMYtVHvxz1/acRebcpQs/B/Epo9tuGVH61y8i0sPB02f4xv+9z+tVtQAsnJbOg5+5gIvybdFtmIyeXS/1sc7bBnMpkzO14HwCtj8GDUfM/RarucTJklKYcyVYNO9tIlJwEhHp0O4P8MifXfyXYx9eX4CE2Bj+cdl8vnjlXOKsmpMyaex6CZ6/EzBCt3uq4fk7YM5HzSVR/F5ze/IUKLjLHI7LmDnqzZXRpeAkIgK8fbietS++z54TjQBceU4237lpMbOnaJhlUgn4zZ6mnqEJurYd/JP5edrFcOlqOP8zEKebBCYLBScRmdSavD6+9+qHPPHGQQwDMpPj+OYnF3HTJTOwaKhl8jn0eujwXF8+/j2zwrd+RiadQQUnl8tFRUUFdrsdl8tFaWkpNpst7LFOpxOAgoICXC4XbrebgoKCQb+OiMhIcew6yTd/uZPqhlYAPnPJDP71k4vISomPcsskajrnKw0kKVOhaZIaVHBauXIlO3bsAMzws2rVKsrLy8Meu2nTJjZv3gxASUlJyHGDeR0RkeFW42ll3cu7+PX71QDMykrmOzct5qpzp0a5ZRI11e+C82dm/aVIpKocxWQVcXByuVwhz+12Ow6Ho4+jobCwkPr6eoCQ3qTBvo6IyGD5AwbbDtRR09hKTloiS+ZmYY2xEAgYPFt5hPWv7Kax1Yc1xsKqq+x8bem5JMVrfbBJp6Ue3iuHt5+EE+93bbdYwfD3cZLFvLtu9hWj0kQZeyIOTg6Hg6ys0JWas7KycDqdwSG4nsINvw3mdbxeL16vN/jc4/FE2lwRmaS27Kxm3cu7gsNvANMyEin9qJ1X3j/BtoN1AFw4M4P1n7mA86dryYtJJRCAA3+Et38Gu3/VdWecNR4WfNIsVtnaCOV3dZzQfZJ4x9Dc8ge1EO8kFnFwcrvdYbfX1dX1eXxFRQUAlZWVrF69GrvdPqjXWb9+PevWrYu0iSIyyW3ZWc29Tzl73Q9V3WAOzQEkx1v5+nXncfcVc7BqfbnJw33EHIZ75ylwH+7annuBGZYuWAnJ3f5Tb3myjzpOD5p1nGTSOuu76voKQt0nfNvtdpYtW0ZVVdWgXmft2rXcd999wecej4f8/Pyzaa6ITFD+gMG6l3eFvYm8U0JsDK987SqVGJgsfF7Y82uzd6nq9wR7jxIy4MKVcMntZkmBcJO8F91oFrMcqHK4TDoRByebzdarV6iurq7Pu+FcLldw6K3z7jmXyzWo10lISCAhISHSJorIJLbtQF3I8Fw4Xl+A4+5WBaeJ7sROMyy995w5j6nTnKug4E5YeAPEJQ38OjFWmHvVyLVTxqWIS+GWlJSE3V5UVNRrm9PpZOnSpb22Z2VlDep1REQiVdPYf2ga7HEyzrQ2QOWjsPlj8L8fgbf+1wxNadPho/8MX30b7v4VXHhzZKFJpA8R9zjZ7aGrOrtcLoqKioI9RU6nE5vNht1ux263s2HDhuCxDoeDFStWYLPZevUs9XwdEZHBavMFeOeIO6Jjc9JU4XnCMAw4+Bezd2nXL8HXEYpj4uC8vzF7l+Zdq+E1GVaDmuNUXl5OWVkZxcXFVFZWhtReWr9+PcXFxaxZswabzUZRUREbN27EZrNRVVUVcmx/ryMiEinDMPj1+9X8x6sfcqi2ud9jLUBehlmaQMY5z3F452l4+2moP9C1fepCc6L3hZ+DlOzotU8mNIthGP3NpRxTPB4PGRkZNDQ0kJ6eHu3miEgUvV51mgdf2cN7RxsAyE5NoGRRDs9tMys/h7mJnIdvL2D54mmj21AZHr422LvF7F3a7wAjYG6PT4MLPguX3AEzClXNW4ZkMPlCa9WJyLiyu9rDg6/s4Y97TwGQEm+l9KPz+Nur5pKSEMvH5k/tVccpLyORB25YpNA0HtXsMcPSu89C8+mu7bOuMHuXFn0K4jXZX0aPgpOIjAtH65t56Ld7+b93jmEYEBtj4bZLZ/GVpeeSndp19+3yxdNYtigvbOVwGSdaPfDBi/D2U3C0smt7ah5cfCtcfDtknxO99smkpuAkImNa/Zk2/uf3+3nyjUO0+c3hmU9eOI1/uu485mSH72mwxli4fN6U0WymnC3DgMNvmr1LH/wftHfMWYuJhfnLzZpL5ywDq/5sSXTpJ1BExqTWdj+P/fUAD/+hisZWHwCX26dw/98s4KJ8W3QbJwML+CMrHtl4Et79udm7VLu/a/uUc82huItuhdSc0Wu3yAAUnERkTPH5A7zgPMr3t+7jhMecp7QgL437/2YBV8+fikWTf8e+XS/1sVzJBrMit78d9v3WDEt7X+1aUDcuBRbfBJfcCflLNNFbxiQFJxEZEwzDwLG7ho1b9rCvpgmAGbYkvn7dfD598QxiNEdpfNj1Ejx/J/Rc/MZTDc/fYS5jcqQSztR07cu/1ByKO/8mSEgb1eaKDJaCk4hE3Y5D9Tz4ym4qD5rLY9iS4/j7a87h9stmkxin4oXjRsBv9jSFXTGwY9ueX5ufU6bCRbeYZQSmnjdaLRQ5awpOIhI1+2ua+I9X9/DqBycBcxHeL1w5ly9dPY+MpLgot04G7dDrocNzfbnmX+DKfwSrrrGMPwpOIjLqTnpa+YFjH89vP4I/YBBjgZWF+fzjsvnkZWhJlHGppd68Gy4SWXaFJhm3FJxEZNR4WtvZ/EcXP/mLi9Z2s7RAycJcypafx7m5mtsy7jSehD2/Mj8O/AkCvsjOS80d2XaJjCAFJxEZcV6fn6ffPMwPX9tHfXM7AAWzbKz9+EKK52jtuHGl/iDs/hXsfhmOvEXIfKapC6HhKLQ19nGyxby7bvYVo9BQkZGh4CQiIyYQMHj5veN877cfcqSuBQD71BTKli/gukW5Ki0wHhgGnPrQDEq7X4IT74Xun1EEC28wP6bM63ZXHYRdMXD5g+HrOYmMEwpOIjIi/rzvFA++socPjnsAyElL4B9K5nNz0UxirTFRbp30yzDguLMjLL0cWpjSEgOzPwILbzRLC2TMCD130Y1w85N91HF60NwvMo4pOInIsNp5rIEHX9nDX/abC7KmJsTypavtfOHKuSTH61fOmBXww+E3OsLSr8BztGufNR7s15i9Sud9HFIGWM5mUUeoiqRyuMg4o99iIjIsDtc2873ffshL75q9DHFWC3dcNoe/v/YcslLio9w6CcvnBdcfzSG4D1+B5tNd++JSYP51Zlg6Zxkkpg/utWOsMPeq4W2vyBig4CQiZ6W2ycsPX9vP028dot1vzmn59MXT+fp155GflRzl1kkv3ibY7zB7lva+GjqROynT7FFaeIPZwxSn0hAiPSk4iciQNLf5ePTPB9j0JxdNXvM29KvOzaZs+QIWz8iIcuskRHMd7N1iDsFV/Q58rV370qbBgk+aYWn2R8CqPwsi/dG/EBEZFJ8/wHPbj/ADxz5ONXoBOH96Omv/ZiFXnpsd5dZJUOMJs77S7pfhwJ+7FtIFyJzbcSfcjTCjEGI0WV8kUgpOIhLCHzDYdqCOmsZWctISWTI3C2uMBcMwePWDE2x89UNcp84AkJ+VxD9ddx43XDhdi/COBXUHusLSkW2ElAPIXWyGpQWfhNzzQaUgRIZEwUlEgrbsrGbdy7uobugaypmWkcjnl8zitQ9rePuwG4CslHi+cu05fP7SWSTE6k6pERHwD3xXmmFAze6usgEn3w/dP7O4KyxNmTd6bReZwBScRAQwQ9O9Tzl7rWtf3dDKf27dC0BSnJW/vWoupR+1k5aotcZGzK6X+qiDtMEMQcffNu+E2/0y1FV1HWOxwpwrO8LSJ8xzRGRYKTiJCP6AwbqXd/UKTd0lx1v53X1XM82WNGrtmpSClbd7XA3PcXj+DkjKgpa6ru3WBJh3bUeNpb+BZC1hIzKSFJxEhG0H6kKG58JpbvNzsLZZwWkkBfxmT1N/EbalzqyxdN5ys/fp3GWQoAWSRUaLgpPIJNfY2s4LO44OfCBQ09h/uJKz9H5F6PBcXz73Mzhn6ci3R0R6UXASmaT2nWzkyTcO8aLzKGfa/AOfAOSkqSDisGpvgYN/gX1bYf9WqHNFdl5L/ci2S0T6pOAkMon4/AG27jrJk28c4g1XbXD73OxkapvaaGz1hR0ksgB5GWZpAjlLdS4zKO3bCgf/HFqM0mINrbfUl9TckWufiPRLwUlkEjjV6OXZbYf5+bbDwblMMRYoWZjLXVfM4Yp5U3j1gxPc+5QTC6EzbDqr/TxwwyKsqtU0eO2tcOgvXWGp+11wAOkz4dwSOPc6s3L3w5eDp5rw85ws5p1ys68YjZaLSBiDCk4ul4uKigrsdjsul4vS0lJsNlvYY51OJw6HA4DKykoeeeSR4LFOpxOAgoICXC4XbrebgoKCoX8XItKLYRg4D7t58o2D/Ob96uA6clkp8dxSnM9tl81mRreJ3ssXT+Ph2wt61XHKy0jkgRsWsXzxtFH/HsatugPmenD7fmtW7fa1dO2LiYVZl5uTus+9DqYuCC1GuXxDx111fUTY5Q/2ruckIqNmUMFp5cqV7NixAzBD1KpVqygvLw97rMPhYM2aNQBs3LiRpUuXBs/dtGkTmzdvBqCkpKTP1xCRwWtp8/PSu8d48o1DfHDcE9x+cb6NOy+fzccvmEZiXPg/vMsXT2PZorywlcOlH+2tcOivXWGpdn/o/vQZcE6JGZbmXg2J6X2/1qIb4eYn+6jj9KC5X0SixmIYRn+lW4JcLldIcALIzMykvr73JEWn08nSpUuD+1wuF/PmzaOqqgq73c7mzZu5+eabAfrssQrH4/GQkZFBQ0MD6en9/OIRmYQO1zbz1FuHeK7yCA0t7QDEx8Zw40XTufPy2Vw40xbdBk409Qc7JnU74MCfoL25a19MLORf1tGrtAxyFg1+iZNIKoeLyLAYTL6IuMfJ4XCQlRU6MTQrKwun09lrmK2goIBHHnkk+NztdgeP7xRJYPJ6vXi93uBzj8fTz9Eik08gYPDHfaf42RuH+P2HNXT+N2hmZhK3Xzabm4vyyUqJj24jJwqf1wwynXfAnd4buj9tWkev0nVgvxoSM87u68VYYe5VZ/caIjLsIg5OneGnp7q6urDbV6xYEXz83HPPUVJSEgxLbrebiooKwJz/tHr1aux2e6/XWL9+PevWrYu0iSKTRkNzO+U7jvCzNw9xqLarp+Oj86dy52WzuWZBjobXhkP9ITMk7evsVTrTtc9ihVmXdYUlLZwrMimc9V11fQWq7vsrKipChvi6Tyq32+0sW7aMqqqqXueuXbuW++67L/jc4/GQn59/tk0WGbc+ON7Az944xC/eOUZrewCAtMRYVhbmc/tls7BPTY1yC8c5nxcOv9F1B9zpD0P3p+aZd8CdswzsH4MkWzRaKSJRFHFwstlsvXqX6urqBhxyKysrY+vWrSHHuVyu4PBe5x16LperV69TQkICCQkJkTZRZEJq8wV4ZWc1P3vjENsPdc0pXJCXxp2Xz+HTl0wnOV6VRUIMZn6Q+0hHr9JWcP2xd69S/qVdYSnvAvUqiYwyf8CPs8bJqeZTTE2eSkFOAdYozveL+LdtSUkJmzZt6rW9qKioz3M2btxIWVkZdrs92DPlcrlCJo536jl/SmSyO9HQys/fOsTPtx3hdJM51y82xsLyxXncefkciudkYtEf8d52vdTHHWkbzDvSfG1mr1LnENyp3aHnp+aaIencErBfo14lkShyHHLw4LYHOdl8MrgtNzmX+5fcT8nskqi0KeLg1LM3yOVyUVRUFFKbyWazBY+rqKigoKAgGJqef/55SktLsdvtbNiwIfg6DoeDFStWDOruOpGJyjAM3nTV8bM3D/LqByfxB8zZ3jlpCXz+0lncumQWuela9qRPu17qqIHU42ZhTzU8fwfMKIRTH0JbU9c+SwzMXNJ1B1zuBRATM6rNFpHeHIcc3PeH+zB6/Huuaa7hvj/cx0Mfeygq4SnicgRghqVNmzZRXFxMZWUla9euDQaelStXUlxczJo1a4LlB7qz2WzBXqbO4pg2m42qqqqQINUflSOQieqM18eLbx/jZ28cZO/Jrj/qS+ZkcecVs7n+/DzirPpj3q+AH36wOLJFclNyuuoqzbsGkjJHvn0iEjF/wM/1L1wf0tPUnQULucm5bPnslmEZthtMvhhUcIo2BSeZaPbXNPHUm4d4YcdRGr0+AJLirHz6khnceflsFk7Tz3lEmmpg++Pwh+8OfOwnvw8Fd6tXSWSM8AV8HGk8gsvtwtXgoqqhivdPvc/hxsMDnvvY9Y9RnFd81m0YkTpOIjIwf8AYsOq2zx/gd3tq+Nkbh/jL/tPB7XOzU7jjstl8tnAmGUlxo9308cMwzIVyD78Bh94wP/dc/60/CekKTSJR0OZv46DnYFdAclfhanBx0HMQX8A3pNc81XxqmFs5MAUnkWGyZWd1r3XepnVb5622ycuzlUf4+VuHOeY21y6zWGDpghzuvHwOV56TTYxqL/Xmb4cT78HhN82QdPhNONPzl6UFbLPBfXDg10vNHYlWikiH5vZmDngO9ApIRxqPEDACYc9Jik1ibsZc7Bl25tnm4Q/4+dE7Pxrwa01NnjrczR+QgpPIMNiys5p7n3L2Ws/+REMrX3rKyaVzs3j7sJs2v/lLIzM5jpuL87n90tnkZyWPfoPHMm8THK3sCElvwNHtocuZAFgTzInesy4zF8zNLzZ7kn6w2JwI3utKAFjMu+tmXzEa34XIhOdp8+ByuzjQcIAqdxVVDVUcaDjAsaZjfZ6TFpeG3WYPBiR7hh27zc60lGnEWLp6gv0BP+V7y6lpruk1ORy65jgV5BT02jfSFJxEzpI/YLDu5V1h/1R3bnvrgFkD7cKZGdx5+Rw+eWHfC+1OOo0nOnqTOnqUTrwPhj/0mERbV0iadTlMvxhiw9R4W76h4646C6HhqaMnb/mDWu9NJpXhqIFU11rXq/fI5XZR01LT5zlZiVlmKOoIRp0haWrS1IjKqFhjrNy/5H7u+8N9WLCEhCdLx7/nsiVlUannpOAkcpa2HagLGZ7ry79/ejF3XDZ7FFo0hhkGnN7XNeR2+A2oP9D7ONusjpDUEZayz4tsXtKiG+HmJ/uo4/SguV9kkhhMDSTDMKhprjFDUY+AVO+t7/nSQTnJOczLmNerFykz8ezvVC2ZXcJDH3so7PdQtqRs7NdxEpHejrtbePHtoxEdm544Cf+5+do65id1C0rNtT0OskDe4q6glH8ZZMwY+tdcdCMs+ETklcNF+jDWKlYPRn81kP7xD//IqgtWkR6fHryLzeV20dTeFPa1LFiYnjq9a2itIyDNzZhLWnzaiH4fJbNLuCb/mjF1HSbhb3KRoQsEDN471sDvdp/kd7tr2FXtifjcnLRxUrhyMMuV9NTqgaPbuobejm4HX0voMbGJMKModH5SYsbwfg8xVph71fC+pkwqY7FidV+8fi+NbY00tjXS1NZEQ1sD33r9W2HnBnVue+T9R3rts1qs5Kflh8w9mpcxjzkZc0iKTRrx76Mv1hjrsJQcGC4KTiIDOOP18ed9p3ltz0le23MquPwJmHfFXZJvY+/JJpq84W+ntQB5GWZpgjFvoOVKevJUd+tNeh1OfgA975pJygoddpt2EcTGj+z3IXIWRrNidZu/zQw87U00tTXR2G6Gn2AQam8K3d/WGDymc197oH1IX7s4t5jivOJgQJqVPot4q/5tDkTBSSSMo/XNvLanBsfuGt6sqg3eDQeQmhDLR+dns3RBLh87bypTUhOCd9VB2CnJPHDDol71nMacfpcruRNWPgFTzwsddnMf6v06mXNCg9KUc1U3ScYNf8DPg9se7LO3xoKFDds2cE3+NQQImAGmrQlPuyf4OBh+2rt6gYIBqNvjxrZG2gJtw9JuCxZS41JJjU/FwODEmRMDnrNi/go+bv/4sHz9yUTBSQTzzrh3jrj53e6TvLanhj0nGkP2z8pKZunCHJYuyGXJ3CziY0ODwPLF03j49oJedZzyutVxGtMCfrOnqb97A8vv6r3fEgN5F4TOT0of49+rjIrxND+oxdeCu9VNvbeeN4+/2ecyH2CGpxPNJyh+unjIPT3hpMSlkBqXSlp8GmnxacEQlBaXZn6OTwt53Lk/PT6d1LhUkuOSg7fzV56o5AuvfmHArxmNGkgTgYKTTFqNre38ed9pfre7hj98WEPtma7/+cVYoGh2FtcuzKFkYQ7zpqYOeAvt8sXTWLYob8DK4WPSfkcEa7wZEBMPsy7tFpSWQMLITg6V8Sea84N8AR8N3gbcXjd1rXW4vW7qW+upb603H3vrcbd27XN73bT0nIcXge6hKTk2OSTkdD5Oi08L3R7XFXqCASk+lZTYlGENlQU5BeQm547JGkgTgdaqk0nlcG0zv9tjTux+60At7f6uH/+0xFiunj+VkoW5XD1/KpkpE3CsPxAwh9dO7oQTO83PJ3dC/cHIzr9pE1x0y4g2Uca3vuYHddbeGcz8IMMwONN+hnpvt+DTEYLqvfVd4ajVHQxFHq8nbFgYSGxMLFkJWcRb4znaNPCdshuu2sBHZnyElLgUYmPGXh9E53UAwtZAGs55WhOB1qoT6eDzB3j7iBvH7pO8truGfTWht9vOzU5h6YIcrl2YQ/GcLOKsE2guTtsZOLmrKxyd2GlO3m5rHPjcvqSfRZkAmfAGmh8E8N23vsv01Ol42jwhPT/BMNQxZNb5fKhrmGUkZJCZkElmYia2BBuZiZlhn9sSbWQmZJISl4LFYsEf8HP9C9cP2Ftz/Zzrx+zQI4zdGkgTgYKTTDie1nb++OEpXttTw+8/rMHd3NWlbo2xUDwnk6ULclm6MAf71NQotnSYGAY0HO0Wjt43P9e5CDtnyRoPUxeYc5NyF5s1lKYuhM0f1XIlMmjt/nZOt5zmdMtpXj/+er/zgwBOtZzic7/63KC+RlJsUkjI6R5+bAk2shKzusJQYibp8elD7gUayxWrB2ss1kCaCDRUJxPCgdNngrWVKg/W4Qt0/VhnJMXxsfOmsnRhLlefO5WM5LgotvQstbdAze7eQ22tDeGPT82F3PM7AlJHUMo+F6xh3oPgXXUQ9t7Am59U5e1RFM3J1YZh0NTeFAxEp1tOc6r5VNfjlq7Hbq970K+fGpdKXkper56fYADqCEeZiZlkJGREpYZQuHlaecl56q2ZoAaTLxScZEzxB4yIJlf7/AG2H6o3w9KeGlynzoTsnzc1hZKFuVy7IIfC2ZnEjtYQ3NkUj+zOMKCxuqsH6eQH5uPafb3rJAHExJrLkuQt7upFyr0AUgd510zYOk4ztFzJKBupydX+gJ96b32fIaj79lb/wMsIdYqNiSU7KZskaxIHPGGW0OnhsesfG1MFDfsynu4MlLOj4CTj0pad1b1u55/W7Xb+huZ2/rC3JngXnKe1a+5DbIyFS+1ZXLsgl6ULcpiTnTL638Bgi0d28nnh1J6ucNQ51NZSF/745CmhPUh5i83QNFxFJYcr/MmQDGVydauvtVcQ6h6COrfXtdYRCBe8+5Aal0p2UjbZSdlMTZpKdnK3x922ZyRkDGp+0JbPblEAkTFFwUnGnc4Ckn39MJ6Tk8qB02fwdxuCy0yO45rzcli6MJer5meTnhjFIbi+ikf2HOZqqoET74cOtZ3eC+EmwFqs5rBa7mJzuK0zKKXlmSXLZcLpDB79zRNKjk3mozM/Sm1rLaeaT1HbUktje+QT/i1YyErMYmpyaPgJPu62fShDZLqbS8YjBScZV/wBgys3vBbS09SX+bmpLF1o9ipdMitzbNRICvjhB4v7r4NkTTDrHTWfDr8/McMcWus+1DZ1IcSNk/XtJGJev5faltpgL1D3x/vq9/HuqXeH9LoJ1oQBg9DUpKlkJmaO+O3zmh8k443KEciY5/MHOHD6DLuqPfxud01Eoem/b7mYGy8eI7fDGwa01Jv1j/ZuGbh4pN8LzV7AAlPmhc5DyltsziNSL9KwGe25KYZh0OBtCJkv1NeHpy3yhaH78om5n+CqmVeFDJ+lxaUNWKR1tOhuLpnIFJxkxNU2edlzopHd1R52Vzey54SHfTVNtPkin2sB4W+SH1FtzeA+bBaMrD9khqTOx+5D4B3kH8Br/gUu/zuIj8L8q0lkOCdWe/3e4Hyhzp6h062hz0+1nKK2tXZQ9YbiYuKCvUDdP5ramvjZ7p8NeP5n5392zE+uHmsr2osMFwUnGTZtvgBVp5rYc8LDnupGdneEpVON3rDHp8RbOS8vjayUeBy7awCIIcCSmD3k4KYGG9sCCwhg3hGXkzbMw1Z+H3iOdYShg12BqPNzU//1aABz8nRiJpzeM/Cxsy4fF6FpPN9JFMmq9tfOuha31x2+R6jZDEadjwczdwjAlmAjOymbKUlTQobLen6kx6eH7R3yB/z89tBvtVSGyBim4CSDZhgGp5q8Zjiq9gR7k6pONYUsYdLJYoHZWcksyEtnwbQ0Fk5LZ2FeOjMzk4iJsQTnOF3U+Cf+Le5Jplu67iY7bmTx7fY7eTftoyyZmzXYhsKZU90C0cHQkNRwFAx//6+RkA6Zs8E2GzLndHzufDwL4pK6zXEa/8Ujo7nG2GC1B9ppbm/mTPsZmtrNVenXvbGu36rVX//j17EYFvwMcN27iY+JNwNPcjbZidldj5PM551ziLISzeU6zsZEKr4oMlFpcrj0q7Xdz/6aJvacaGRPtYfdHb1J3RfE7S4tMZaFHQFpQV46C6elMT83jZSE/jP6268+wUWvfxUwF9jt1HkT3btX/DeXXH9X7xO9jaHBqGevUXtz/9+gNd4MQJ2BqDMgdT5Oyoxs7lHHXXV+wJkYzymrlal+PwWtbVhhXBSPHM41xsIxDIMWXwvNPjPshPtobm/mjK+P7T22tQXC/wxGKjMhc8Ceoezk6Mwd0uRqkdGlu+omqUiLR4ZjGAYnPV5zHlJHONpzwkPVqdASAJ1iLDAnO6Wj9ygt2Js0w5Y0+D8yHT02huc44c40AEvyFLjmG+A+EhqS+qp1FNTR2xPSU9QtJKVNg5jhKY7p+Mt6Htz7NCetXd9Frt/g/vm3UXLl2mH5GiMlktvgsxOzeeiah8zw062np3uo6QxFvbZ3BKLB1BCKVII1gZS4FDCgzjvQzwOsXbKWleetJC5mbFeQH89DpiLjje6qmyAGE4S27Kzm2y+9yxT/VpJjT9Psy6bWuox/u/Eili+eFnJsa7ufvScb2VPdyK5qjzkn6URjyJpu3WUkxbGwowdp0TQzIJ2bk0ZS/BB/iQf80OKG5lrz4+CfoSM0mT02Cd16bLxmj01zLfz66+FfLymzdyDKnA2ZcyFjJsQmDK2dg+A45OC+qmcwrKHXp8Yaw31Vz/BQfvGI9BQYhkGrv5VWXystvhZafC20+lpp9jWHPO/5uNnXHLK9prlmwDXGTree5s5X7uz3mEhYsJAcl0xKbArJccmkxqWSEmc+TolL6fWRHBt+e+c5nQGo8kQlX3j1CwN+/XMzzx3zoQk0uVpkrFJw6qbN18Zze5/jUMMhLBYLCzMX8cGJkwT8yczOmM7nL/oY8bHmW9bW5uUXf9xEjecwOemz+PTVq4mP7/8P9GDOGUwQ2rKzmkdf+iYJuW9wMLar9yTbt4WfvHQ57x75J1ISrMHJ2gdPnyFMJxLWGAvzpqZ0zUXKS2fhtHRy0xP67kUyDPPusuZaaK7rCkMhHz22t9SHXTbEkZzEg1MyORnb9WOZ6/Nxf209Jc0tkHchzLqs93BaYnR7HyNZEX79W+s5L+s82v3tYYNL98ct/hZa2lu69vk79rV3e9ztvHBfd6RkJmSSnZxNSmxXcOkVfGJTSIlPCR7TfV9qXCqJsYnEWIZ/CZyCnAJyk3M1sVpERtSghupcLhcVFRXY7XZcLhelpaXYbLZBHzuY1+luJIfqHtr+EE988AQB+h5KsPgyuGP+18ioe4dnTv+C0yEhJcCt2Z+m9FPfCXvu5l/+S8TndAah07lv9Do+++TlfPHGfw+Gp3ZfgC/+4Mu8k/0X809Ft4Bj6bi0849fxnbPTSFfIyslnoUd4WjBtHQW5KVxTk4qiYa3/9ATbnsgfE/VgBIyIDkLrPE4mg9zX052n9/DQzWnKVlZDnOvivjlDcPAZ/ho87fh9Xtp87cFP7wBL+3+drx+L15/1+O2QLdjOs8J9Dg/ELq/tqWWfe59Q3sPhlF8TDxJcUkkxZofidZE83FcEknWbttjE0MeJ8cmc7zpOP/73v8O+DXG+hpjqlotIkMxYnOcCgsL2bFjB2CGn7KyMsrLywd97GBeZ6jf2GA8tP0hHt/5OGD0PxHYMDCX0Oh4y8L8gf/7zE/1CkKbf/kv/Kj+l32Ggu7n+AMGX/j+vbw9pe8gtOjEFbSn38UJj5caTyMz532D01ZL2LZbDINsv8G1zV/m0jwrc5JbmRbXTIrPjaWlrncQGmgyNRAAfIDPYqHdAj4s+OJS8Cdn4kvKwJdooz0xHV9iBr6ENPyJqfjiU/HFp+CLT6E9Phl/XBI+OoJNeysPvfFtGi2Ef/8NgyTg2rmfoM1ojyjkdB4zmr0xA7FarKTGp3YFmh4f3QNN9+fJscm9wk6vc62JZzX/ZSKtMaaJ1SIyWCMSnFwuFytXrgwGHoDMzEzq6+sHdexgXudsvrFItfnaKHqq0PxjEcmkZqN3aOq+b4rf4Lmbf0dsbBxtfj/uM2f40q8+SV0fwQbDwOY3mGP5Oq3tbTQ21dGU+TQNMX0fnxYwuLB2JrEWH+3xbl7PGPjuoiUtLWQEDNoBv8WCrzPwBD/3eBxjxWeJwR9joR2LGZQw8BEYQ1FkcGJjYkmwJhAfE0+8Nd58bDUfx8eYz+OscX0f0/E8LsY8pvP4I54j/PjdHw/49dVbM3o0sVpEBmNEJoc7HA6yskLr6GRlZeF0OikoKIj42O3bt0f8OqPh6Q+ewrAAYe/nCqO/cGWxUBtroeTFZaHbY/uZz2Gx4I618A7fByuQCND/8Y1WC3/NGWCJjx62JQ1+sU6zZy2ymGS1WImNiQ1+dD6Pi4kzt1m67YuxEmvp2lfXWsfuut0Dfo1PzP0EF+VcFAw1IcEmJnzI6dwXb40fkXk1YP6RfmHfC+N+bk3J7BIe+thDYes4jbfeGk2sFpGREnFwcrvdYbfX1fW+/be/YwfzOl6vF6+3q+q0x3P2azz19Pa7Lw/7a3aKMcw/o0YEPVmZPj/pRoBmi4VTsQNfloWBeOak5OJua+IN/8C9dTdP+yjnzLqyV4gJ+zzSY7ptP5s6N5HeDTVWl5mYSEULtcaYiEj/zvquur6C0GCPDbdv/fr1rFu3bvCNGoSpLd6OXp7h8y0u4tpzS4iPT+C1qj/yjda/DnjOV2Z8gZXL/oE33/0pq97/rwGPv++ie7ms4G/x+9q47skCTsWED2gWwyAnAN+49vtYY8+uqvFImQh3Q6m3RkRkcoh47MJms/XqFaqrqwt7N1x/xw7mddauXUtDQ0Pw48iRI5E2N2IfS15CjGF0zV0aSD/HWgyDqb4AN9z6KJlX3E1K0a1cf9N/ke0LBCd293XOp679ClhjKb7wTnL8Rr/H5/oNii806+lYY+NZO/+24L6exwLcP/+2MRuaoKvHBrp6aDqNpx6bktklvPrZV3ns+sfYcNUGHrv+MbZ8dsu4Ck0iItK/iINTSUn4X/5FRUWDOnYwr5OQkEB6enrIx3C7dOX93OHuWMhzoPDUbX9fIeWW7E+H1GaKj0/g1uxPR3zOUIJQyZVreeic28jpUUkhNwAPnTP2q1ZDV49NTnJOyPbc5NxxNSm5s7fm4/aPU5xXPObDnoiIDE7EQ3V2uz3kucvloqioKNhT5HQ6sdls2O32fo/t2bPU83VGW3xiIh9J/AQW96940pbeTxUnyPP7WVPrpmb6tfzE+w6nY7t6R7L9Brf0Ucep9FPfgV/SUcdp4HNKrlzLQ9CxfEfX9twAlPWxfEfJlWu55rKv43z/Z5zyHGZq+iwKLrhjTPc09aT5NSIiMtYNugDmpk2bKC4uprKykrVr1wYDz8qVKykuLmbNmjUDHtvfvv6MZAHMN/73y1xc/XMqMlI4FBuLBTjf20ajNYZMf4Bcv59L4rOJXf4gLLpxxCuHA/h9beM6CImIiIwHWuR3iNpaW9nxwn9AXRUA1pmFTI1tZXb+LGIypsPsK0C9HyIiIhOKFvkdovjERC6/7ZvRboaIiIiMUSNTEVBERERkAlJwEhEREYmQgpOIiIhIhBScRERERCKk4CQiIiISIQUnERERkQiNq3IEnSWnPB5PlFsiIiIiE0VnroiktOW4Ck6Njeaacvn5+VFuiYiIiEw0jY2NZGRk9HvMuKocHggEOH78OGlpaVgsloFPGCSPx0N+fj5HjhwZkcrkEhldh+jTNRgbdB2iT9dgbBjp62AYBo2NjUyfPp2YmP5nMY2rHqeYmBhmzpw54l8nPT1d/0DGAF2H6NM1GBt0HaJP12BsGMnrMFBPUydNDhcRERGJkIKTiIiISIQUnLpJSEjggQceICEhIdpNmdR0HaJP12Bs0HWIPl2DsWEsXYdxNTlcREREJJrU4yQiIiISIQUnERERkQgpOImIiIhEaFzVcRpJLpeLiooK7HY7LpeL0tJSbDZbtJs1ITidThwOBwCVlZU88sgjwfe2v/d9qPukf2VlZaxdu1bXIEocDgculwu73Q5ASUkJoOswWlwuFw6Hg6ysLFwuFytWrAheC12DkeN0Olm1ahU7duwI2T4S7/mIXw9DDMMwjIKCguDjqqoqY8WKFVFszcSyYcOGkMfd3+v+3veh7pO+7dixwwCM+vr64DZdg9GzdetWo7S01DAM8z2z2+3BfboOo6P77yPDMILXwzB0DUZKeXl58HdPTyPxno/09VBwMsw3tvsbbRiGYbPZotSaiWXHjh0h72VVVZUBGFVVVf2+70PdJ/0rLy837HZ7MDjpGoyu7u+9YZjvY+dnXYfR0fP96h5kdQ1GVs/gNBLv+WhcD81xgmC3bXdZWVk4nc4otWjiKCgo4JFHHgk+d7vdgPn+9ve+D3Wf9K2iooIVK1aEbNM1GD0ul4u6ujpsNhtOpxO32x0cItJ1GD1ZWVkUFhYGh+yWLVsG6BpEw0i856NxPRSc6Ppj3lNdXd3oNmSC6v7H+rnnnqOkpASbzdbv+z7UfRKe2+0OO8avazB6nE4nWVlZwbkXmzdvpqKiAtB1GE3l5eUAzJs3j/Ly8uDvJ12D0TcS7/loXA9NDu9HXxdAhsbtdlNRUdFrcmC444Z732T3/PPPU1paGvHxugbDr66uDpfLFfyPQ2lpKZmZmRj91CDWdRh+DoeDDRs24HK5WL16NQCbNm3q83hdg9E3Eu/5cF4P9TgBNputVxrt7FKX4VNWVsbWrVuD72t/7/tQ90lvDoeDm2++Oew+XYPRY7fbg+8dEPzsdDp1HUaJy+WisrKSkpISSktLqaqq4vnnn8flcukaRMFIvOejcT0UnOi6HbinoqKiUW7JxLVx40bKysqw2+243W7cbne/7/tQ90l4zz//PJs3b2bz5s24XC7Wr1+P0+nUNRhFnfOZwtF1GB1Op5Pi4uLgc7vdztq1a/X7KEpG4j0fjeuhoTp6/0JzuVwUFRXpfwzDpKKigoKCgmBo6hw26vn+dn/fh7pPeuv5i2T16tWsXr067B9yXYORY7fbKSoqCs4366zlVFBQ0OtYXYeRUVBQwKZNm0LmXdbW1uoajKLu8y37+9s7lv8+aJHfDi6Xi02bNlFcXExlZWVIgUAZOpfLxbx580K22Ww26uvrg/v7et+Huk/Cc7vdbN68mbKyMkpLS1m9ejUFBQW6BqPI7XZTVlZGYWEhO3bsCPbCgv4tjBaHwxEcHgXzPxa6BiPL4XCwdetWNm7cyJo1ayguLg6G15F4z0f6eig4iYiIiERIc5xEREREIqTgJCIiIhIhBScRERGRCCk4iYiIiERIwUlEREQkQgpOIiIiIhFScBIRERGJkIKTiIiISIQUnEREREQipOAkIiIiEiEFJxEREZEI/X8/iqgwJxEs+wAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -1205,9 +1205,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFTCAYAAADP+YMtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWa0lEQVR4nO3deXxU9b3/8ddkm5B1EsjCEpBBVhE1C7hbS6z2Wpe2gWrr0toC2t5u9F5Sfve2ym17Edpqe2/vtWC1rdqrkthW7ULL2Fp3CYwiiGwZZA0kMJkkJGSbOb8/TjLJJJNkJiSZLO/n45EHmXO+M3ydg5l3vuf7/XwthmEYiIiIiEifoiLdAREREZGRQsFJREREJEQKTiIiIiIhUnASERERCZGCk4iIiEiIFJxEREREQqTgJCIiIhKimEh3IBw+n4/jx4+TnJyMxWKJdHdERERkFDAMg7q6OiZNmkRUVO9jSiMqOB0/fpycnJxId0NERERGoSNHjjBlypRe24QVnJxOJw6HA4CysjIeffRRbDZb0LYul4vS0lLsdjsul4vly5f72/Z2rjfJycmA+R+WkpISTtdFREREgqqtrSUnJ8efM3oTVnByOBysWrUKgPXr17N48WK2b98etO2SJUv851wuF8uWLaOkpKTPc71pvz2XkpKi4CQiIiIDKpRpQCFPDnc6naxdu9b/uKioCKfTicvl6ta26zG73e4fqertnIiIiMhwFvKIU25uLo8++qj/scfjASA9Pb1bW4fD0e14eno6TqeTbdu29XguNzc34HhTUxNNTU3+x7W1taF2V0RERGTAhVWOoKioyP/9s88+S2FhYdC5Se2hqiu3293rua7Wrl1Lamqq/0sTw0VERCSS+lXHyePxUFpaGtK8pK7PC+fc6tWrqamp8X8dOXIkzJ6KiIiIDJx+lSMoLi5my5YtPa6Es9ls3UaQ3G43Nput13NdWa1WrFZrf7ooIiIiMuDCHnFav349xcXF2O12PB5P0JGiwsLCoM/Nz8/v9ZyIiIjIcBZWcCotLSU3N9cfmjZt2uQfKeq8ws5utwc8z+VykZ+fj81m6/WciIiISGden8Gb5ad5/t1jvFl+Gq/PiGh/LIZhhNQDl8vFjBkzAo7ZbDaqq6sBszZTQUGBv86Ty+Viw4YNFBQUUFZWxurVqwMKYPZ0rje1tbWkpqZSU1OjOk4iIiKj3OZdFax5cTcVNY3+YxNT47n/pnncMH/igP094eSLkIPTcKDgJCIiMjZs3lXBfU856RpS2ktUPnJH7oCFp3DyRb9W1YmIiIgMFq/PYM2Lu7uFJsB/bM2LuyNy207BSURERIaVrQfdAbfnujKAippGth7sXgNysCk4iYiIyLBSWddzaOpPu4Gk4CQiIiLDSmZy/IC2G0gKTiIiIjKsJMRF+yeBB2PBXF23cHr3/XIHm4KTiIiIDBsHT9XzxV+X+SeBdw1Q7Y/vv2ke0VG9xavBoeAkIiIiw8LJ2kbufOxtTp1pZt7EFB5aehHZqYG347JT4we0FEG4+rVXnYiIiMhAqmlo4e7Ht3K0+izTxifw63sWkpFs5ZaLJ7P1oJvKukYyk83bc5EYaWqn4CQiIiIRdbbZyxd/XcaeE3VkJFt58p5FZCRbAYiOsnDZjPER7mEH3aoTERGRiGnx+vjK/znZdqia5PgYnrhnIVPHJ0S6Wz1ScBIREZGI8PkMikvf4297KrHGRPH45wuYO3F4b6mm4CQiIiJDzjAMfvCnD/jtO8eIjrLwyB25FJw39OUFwqXgJCIiIkPuf18u57HXDgLww6IFfHROVoR7FBoFJxERERlST289zA//sheAf79xLp/KnRLhHoVOwUlERESGzOZdFfzb73YC8OWPzOBLV9kj3KPwKDiJiIjIkHjjwCm+9vS7+Ay4rSCHf71+dqS7FDYFJxERERl0O4/WsOyJbTR7fVx/QRbfv3U+FkvkCln2l4KTiIiIDCpX1Rk+/8ut1Dd7ucw+np/edgkx0SMzgozMXouIiMiIcKKmkTsf28rp+mbmT05h4115xMdGR7pb/abgJCIiIoPC09DMXY+/zTHPWaZPSORXX1hIcnxspLt1ThScREREZMA1NLdyz6/K2HfyDFkpVp64ZyETkqyR7tY5U3ASERGRAdXi9fHl3zhxHvaQOi6WJ+5ZRE768N1/LhwKTiIiIjJgfD6DfynZwct7q4iPjeLxz+czOzs50t0aMApOIiIiMiAMw+A//rCb5989TkyUhUfuyCNv2vDffy4cYQUnp9NJXl5en+1KS0vxeDx4PJ6gr+F0OgFwuVz+70VERGRk+9nfDvCrNz4E4EdLLuLa2ZmR7dAgCDk4lZaWAoQUdJYsWUJaWhppaWlYLBYsFgvr168HYMOGDeTl5WGxWFixYgV2+8gqtS4iIiLdPfXWIX68ZR8A9980j1svmRzhHg2OmFAbFhUVhdTO4/FQUlIS0H79+vWsWrUKgLy8PKqrqwGw2WxhdFVERESGoz++V8F3nt8FwFc/ej5fuGJ6hHs0eEIOTuHoHJpKS0u7ha5QA1NTUxNNTU3+x7W1tQPSPxERERkYr+0/xTeefQfDgM8umsrK62ZFukuDasAnh3cORR6PB7fbHXA7zuPxUFpaSmlpKcXFxbhcrh5fa+3ataSmpvq/cnJyBrq7IiIi0k/vHfWw4slttHgN/unCbL53y8jcfy4cFsMwjLCeYLEQ6lNWrFjBunXruoWp9sdOp5MlS5ZQXl4e9PnBRpxycnKoqakhJSUlnG6LiIjIADpQeYalG97EXd/MFeeP5/HPF2CNGZlbqdTW1pKamhpSvhi0cgQejweHw9HttlznESa73Y7L5epx1MlqtZKSkhLwJSIiIpFVUXOWux57G3d9MwumpLLhzvwRG5rCNWjBadu2bd1Ck9PpZPHixd3apqePrhoPIiIio1V1fTN3PraV4zWN2DMS+eXnC0iyDsqU6WGpX8Gpa30mp9PZbdTI6XR2C0R2u51169b5HzscDoqKirS6TkREZASob2rlC78q40DlGbJT4nnyi4sYPwr2nwtHyBHR4XCwZcsWwJy0XVBQ4F8t1/64veRAu641mmw2G/n5+axfvx6bzUZ5eTklJSXn+t8gIiIig6y51ce9T23n3SMebAmxPPnFhUy2jYt0t4Zc2JPDIymcyVsiIiIyMHw+g68/+y4v7jjOuNhofrNsEblT0yLdrQEzLCaHi4iIyMhnGAYPvPg+L+44Tmy0hZ/fmTeqQlO4FJxERESkRz99aT9PvHkIiwV+vPRirpmVEekuRZSCk4iIiAT15Jsf8hPHfgDW3HwBN180KcI9ijwFJxEREenmxR3H+e4L7wPw9cUzueuy8yLboWFCwUlEREQCvLKvipWb3sUw4M5Lp/GNwpmR7tKwoeAkIiIifu8crubep7bT4jX4xIKJPHDzBaN+/7lwKDiJiIgIAAcq6/jCr8poaPZy1cwJPLT0YqKjFJo6U3ASERERjnnOcudjW/E0tHBRjo2f35FHXIxiQld6R0RERMY4d30zdz72NhU1jcxo238ucQztPxcOBScREZEx7ExTK1/45VZcVfVMSjX3n0tPjIt0t4YtBScREZExqqnVy71PbmfH0RrSEmJ54ouLmDQG958Lh4KTiIjIGOT1Gax8dgevHThFQlw0v/zCQs7PTIp0t4Y9BScREZExxjAMvvv8Lv64s4LYaAsb78zn4hxbpLs1Iig4iYiIjDEPb9nHb94+jMUCP/nMJVw5c0KkuzRiKDiJiIiMIb96/SD/9bcDAPzHLfO5ccHECPdoZNFaQxERkVHK6zPYetBNZV0jmcnxnKg5ywMv7gbgm4WzuPPSaRHu4cij4CQiIjIKbd5VwZoXd1NR09jt3N2XTeNri8+PQK9GPgUnERGRUWbzrgrue8qJ0cP5RdPHa/+5ftIcJxERkVHE6zNY8+LuHkOTBfjeH3fj9fXUQnqj4CQiIjKKbD3oDnp7rp0BVNQ0svWge+g6NYooOImIiIwilXU9h6b+tJNACk4iIiKjSGZy/IC2k0CaHC4iIjKKuM809XreAmSnxrNwevrQdGiU0YiTiIjIKPH01sN89Zl3/I+7rptrf3z/TfOIjtKquv4IKzg5nU7y8vJCaud0OgFwuVz+79sfr1+/ntLSUtavX4/H4wmvxyIiIhLAMAweebmc1b/dic+A2xfm8L+fzSU7NfB2XHZqPI/ckcsN81UtvL9CvlVXWlqK3W4PCEE92bBhAxs3bgSgsLCQkpIS/7klS5awfft2wAxRy5YtCzgvIiIioTMMg7V/3sPGV1wAfPkjM/jX62djsVi4fn52QOXwhdPTNdJ0jkIOTkVFRSG/aF5eHtXV1QDYbDb/cZfLFdDObrfjcDhCfl0RERHp0Or1sfq3OynZfhSAf/unuSy72u4/Hx1l4bIZ4yPVvVFp0CaHdw5M7RwOB+npgZPR0tPTcTqd5Obmdmvf1NREU1PHJLfa2toB76eIiMhI1Nji5atPv8OW3SeJjrLw4KcuZEl+TqS7NeoNSnDyeDyUlpYCUFZWxooVK7Db7T3OZ3K7gxfhWrt2LWvWrBmMLoqIiIxYdY0tfOnX23j7oJu4mCh+dvslfOyC7Eh3a0wYlOC0fPly/4iT3W7nuuuuo7y8vMf2PQWq1atXs3LlSv/j2tpacnKUpkVEZOw6daaJz/9yK7uO1ZJkjeHRu/J1O24IDUpwcrlc/ltvdrsdl8uFy+XCZrN1G11yu91Bb+sBWK1WrFbrYHRRRERkxDla3cCdj23l4Kl6xifG8et7FjJ/cmqkuzWmDHgdJ6fTyeLFi7sdT09Pp7CwMOhz8vPzB7obIiIio8r+k3UUPfImB0/VM9k2jpJ7L1NoioB+Baeut9acTqd/xZzdbmfdunX+cw6Hg6KiImw2G3a7PeB5LpeL/Pz8HkecREREBN45XM2SDW9yoraRmZlJlN53GfaMpEh3a0wK+Vadw+Fgy5YtgDlpu6CgwF+ioP3xqlWrsNls5Ofns379emw2G+Xl5QF1mkpKSiguLqagoICysjLVcBIREenFq/urWPHkdhqavVycY+OXny8gLTEu0t0asyyGYRiR7kSoamtrSU1NpaamhpSUlEh3R0REZFD98b0KvvHsO7R4Da6aOYGf35FHolXbzA60cPKF3n0REZFh6DdvH+Lff78Lw4AbL5zIQ5+5CGtMdKS7NeYpOImIiAwjhmHwvy+X88O/7AXgs4um8r1b5murlGFCwUlERGSY8PkMfvCnD3jstYMA/PO15/Otj83CYlFoGi4UnERERIaBVq+P4ud28pzT3Hfu32+cy5eusvfxLBlqCk4iIiIR1tji5Z//7x0cH5j7zq3/9AI+nTcl0t2SIBScREREIqi2bd+5rQfdWGOi+J/P5lI4LyvS3ZIeKDiJiIhESFVdE3c/vpXdFbUkW2P4xd35LLJr37nhTMFJREQkAo64G7jzsbf58HQDE5Li+NUXtO/cSKDgJCIiMsT2nazjzsfe5mRtE5Nt43jqS4uYPiEx0t2SECg4iYiIDKHth6q551dl1JxtYVZWEk/cs4js1PhId0tCpOAkIiIyRP6xr4p7n9zO2RYvl0w1952zJWjfuZFEwUlERGQIvLjjOCs3vUuL1+DqWRn8/I5cEuL0MTzS6IqJiIgMsiffOsR3nzf3nfvEgok8tPRi4mKiIt0t6QcFJxERkUFiGAY/+9sBfrxlHwB3XDqVNTdr37mRTMFJRERkEPh8Bt/7425++fqHAHzto+fzzeu079xIp+AkIiIywFq8PlaVvsfv3jkGwHc/MY97rpwe4V7JQFBwEhERGUCNLV6+8hsnL+2pJDrKwo+WLOCTl2jfudFCwUlERGSA1JxtYdmvt7H1Q3Pfuf/9XC6L52rfudFEwUlERGQAVNY1cvfjZXxQUUtyfAyP3V3Awunpke6WDDAFJxERkXN0xN3AHY+9zaHTDUxIsvLEPQuZNykl0t2SQaDgJCIicg72nKjlrse2UlnXRE76OJ764iKmjde+c6OVgpOIiEg/bT/k5gu/LKO2sZXZWck88cWFZKVo37nRTMFJRESkH17eW8m9T22nscVH3rQ0Hr+7gNSE2Eh3SwaZgpOIiEiYnn/3GN/atINWn8E1szJ4RPvOjRlhbZTjdDrJy8sLqd369etZv349S5YswePxBJxzOp0AuFwu//ciIiIjwRNvfsg3nn2XVp/BzRdN4tG78hWaxpCQg1NpaSlASEHH4XCwatUqVq1aRUFBAYsXL/af27BhA3l5eVgsFlasWIHdbu9Ht0VERAaX12fwZvlpnn/3GG+Wn6bV6+Onjv189/n3MQy467Jp/OQz2qx3rLEYhmGE9QSLhd6e4nQ6Wbx4MdXV1YA5qjRjxgzKy8ux2+1s3LiRpUuXAmCz2cLqbG1tLampqdTU1JCSomWeIiIyODbvqmDNi7upqGn0H0uIi6ah2QvA1xfP5BuFM7Xv3CgRTr4Y8LHF3NxcHn30Uf/j9tt06ekdRcBCDUxNTU00NTX5H9fW1g5IH0VERHqyeVcF9z3lpOsQQXtoWpo/hW9eN2voOybDwqCMLxYVFfm/f/bZZyksLPSHJY/HQ2lpKaWlpRQXF+NyuXp8nbVr15Kamur/ysnJGYzuioiIAObtuTUv7u4Wmjp7df8pvL6wbtbIKDLgt+o683g85OXlsX379oDg1P690+lkyZIllJeXB31+sBGnnJwc3aoTEZFB8Wb5aW5/9K0+2z297FIumzF+CHokQyGcW3WDOqOtuLiYLVu2BNya6zzCZLfbcblcPY46Wa1WUlJSAr5EREQGS2VdY9+Nwmgno8+grZ9cv349xcXF2O12/zwnl8sVMHG8Xef5TyIiIpGSmRxa1e9Q28no068Rp851mcC85dZ51Ki0tJTc3Fx/aNq0aRM2mw273c66dev87RwOB0VFRWGvrhMRERloPp/Baweqem1jASamxrNwun7hH6tCHnFyOBxs2bIFMCdtFxQU+CeBtz9etWoVLpeLJUuWBDzXZrOxfPlybDYb+fn5rF+/HpvNRnl5OSUlJQP4nyMiIhK++qZWVm56l7+8f9J/zAIBk8TbCw/cf9M8oqNUhmCsCntyeCSpjpOIiAy0I+4Glj2xjT0n6oiLjuI/P3UhSdbobnWcJqbGc/9N87hh/sQI9lYGQ0TrOImIiIwUb7tOc99vnLjrm5mQZGXjXXnkTk0D4Lp52Ww96KayrpHMZPP2nEaaRMFJRETGpP97+zDffX4XrT6D+ZNTePSufCamjvOfj46yqOSAdKPgJCIiY0qL18f3/7CbX795CIBPLJjID4suYlxcdIR7JiOBgpOIiIwZnoZmvvwbJ2+UnwbgXz42i69ce772nJOQKTiJiMiYsP9kHV96YhuHTjeQEBfNw5+5mOsvyI50t2SEUXASEZFR76UPTvL1Z97lTFMrU9LG8Yu785mTrdXZEj4FJxERGbUMw+Dn/3Cx/i97MAxYOD2dRz6Xy/gka6S7JiOUgpOIiIxKjS1eVv92J7975xgAn100lQduuoC4mEHdplVGOQUnEREZdU7WNrL8ye3sOOIhOsrC/TfN485Lp2kSuJwzBScRERlVdhzxsPzJbZysbcKWEMv/fjaXy8+fEOluySih4CQiIqPG8+8eY1XpezS1+piZmcQv7s5n2vjESHdLRhEFJxERGfF8PoMf/nUvj7xcDsDiOZn85LaLSY6PjXDPZLRRcBIRkRGtrrGFbz77Lo4PKgG495oZ/Ov1s7WvnAwKBScRERmxDp9u4EtPlLHv5BniYqJY/+kF3HrJ5Eh3S0YxBScRERmR3ig/xZd/48TT0EJmspWNd+VzcY4t0t2SUU7BSURERpwn3/yQB17cjddncNGUVDbelU9WSnykuyVjgIKTiIiMGC1eHw+88D6/efswALdcPIl1n15AfGx0hHsmY4WCk4iIjAju+mbue2o7bx90Y7HAquvncO81dhW1lCGl4CQiIsPe3hN1fOmJMo64z5IYF81Pb7uEwnlZke6WjEEKTiIiMqz99f0TfPPZd6lv9jI1PYFf3J3PrKzkSHdLxigFJxERGZYMw+B//n6AH/11HwCX2cfzv5/LJS0xLsI9k7FMwUlERIads81eVj33Hi/uOA7AXZdN4zufmEdsdFSEeyZjnYKTiIgMKxU1Z1n+xHZ2HqshJsrCmlsu4HOLpkW6WyJAmMHJ6XSybNkytm/f3ms7l8tFaWkpdrsdl8vF8uXLsdlsfZ4TEZGxzXm4mhVPbqeqrom0hFgeuSOPS+3jI90tEb+Qg1N72HE6nX22XbJkiT9cuVwuli1bRklJSZ/nRERk7Hpu+1FW/3YnzV4fs7OS+cXd+eSkJ0S6WyIBQg5ORUVFIbVzuVwBj+12Ow6Ho89zIiIyNnl9Bus272HjK+ZnxHXzsnj4MxeTZNVsEhl+BvxfpcPhID09PeBYeno6TqeTbdu29XguNzd3oLsiIiLDXG1jC197+h1e3lsFwD9fez4rr5tFVJSKWsrwNODByePxBD3udrt7PRdMU1MTTU1N/se1tbXn2j0RERkmDp6q50u/LqO8qh5rTBQ/WnIRN100KdLdEunVkK3r7Ck09XZu7dq1pKam+r9ycnIGp3MiIjKkXt1fxS0/e43yqnqyU+IpvfdyhSYZEQY8ONlstm4jSG63G5vN1uu5YFavXk1NTY3/68iRIwPdXRERGUKGYfDL1w/y+V+WUdvYyiVTbbzw1Su4cEpqpLsmEpIBD06FhYVBj+fn5/d6Lhir1UpKSkrAl4iIDH9en8Gb5ad5/t1jvFl+Gq/PoLnVx7ef28maF3fj9Rl8KncyTy+7lMzk+Eh3VyRk/Zrj5PF4AkaJnE4nNpsNu92O3W4PaOtyucjPz/ePOPV0TkRERofNuypY8+JuKmoa/ccyk60kx8dQXlVPlAVWf3wuX7pqOhaLJoHLyBJycHI4HGzZsgUw5x4VFBT4SxS0P161ahUAJSUlFBcXU1BQQFlZWUCdpt7OiYjIyLZ5VwX3PeXE6HK8sq6Jyrom4mOieOTOPK6dnRmR/omcK4thGF3/fQ9btbW1pKamUlNTo9t2IiLDjNdncOW6vwWMNHWVkWzlrdWLiVa5ARlGwskX2i1RREQGxNaD7l5DE0BVXRNbDwYvQSMyEig4iYjIgKis6z00hdtOZDhScBIRkQER6uo4raKTkUwbAYmIyDmra2xhU9nhXttYgOzUeBZOT++1nchwpuAkIiLn5N0jHr729DscdjdgAQzw/9mufSr4/TfN08RwGdEUnEREpF+8PoOf/6Och7fso9VnMNk2jp/edjGnzjR1q+OUnRrP/TfN44b5EyPYYxmRfF449AacOQlJWTDtcoiKjlh3FJxERCRsJ2oa+eaz7/Km6zQANy6YyH9+8kJSx8UCcN28bLYedFNZ10hmsnl7TiNNErbdL8DmYqg93nEsZRLcsA7m3RyRLik4iYhIWP76/gmKn3uP6oYWxsVGs+bmC1iSPyWgCnh0lIXLZoyPYC9lxNv9Amy6C7qWU62tMI8vfSIi4UnBSUREQtLY4uUHf/yAJ986BMD8ySn89LZLmJGRFOGeyajj85ojTd1q0IN/Ft3mb8OcG4f8tp2Ck4iI9GnviTq++rSTfSfPALDsqun8y/WzscZEbq6JjGKH3gi8PdeNAbXHzHbTrxqyboGCk4iI9MIwDJ586xDf/+MHNLf6mJBk5cdLL+KaWRmR7pqMZmdODmy7AaTgJCIiQbnrm1lVugPHB5UAfGR2Bj9achETkqwR7pmMWoYBB1+B1x4OrX1S1uD2JwgFJxER6eb1A6f45rPvUlnXRFx0FN/++By+cMV5ARPARQaMYcDBf8DLD8LhN0N4gsVcXTft8kHvWlcKTiIi4tfi9fHjv+5jwyvlGAbMyEjkv26/hAsmpUa6azIaGQa4/g4vr4Mjb5nHoq2QdzdkXgB/+EZ7w05PagvvNzwYkXpOCk4iIgLAh6fq+foz77DjaA0Aty+cync+MZeEOH1UyAAzDCh/yQxMR7eax6KtkP8FuOIbkNJWKDUhvYc6Tg+qjpOIiESGYRj81nmM7z6/i/pmL6njYnnwUxfy8QtV5VsGmGHAAYd5S+7YNvNYTDzk3wNXfB2SswPbz7vZLDmgyuEiIjIc1DW28O+/38Xz75q/0S+cns5PPnMxk2zjItwzGVUMA/b/Ff6xDo5tN4/FjIOCL8LlX4PkXiZ5R0UPecmB3ig4iYiMUc7D1Xz9mXc44j5LdJSFbyyeyZevPV9bo8jAMQzYt9kMTMffMY+1B6Yrvg5JmZHtXz8oOImIjDFen8EjLx/gYcd+vD6DKWnm5rx509Ij3TUZLQwD9v4Z/vEgVOwwj8UmQMGXzBGmpJFbB0zBSURkDKmoOcs3n32Xt1xuAG66aBI/+OR8UuJjI9wzGRUMA/b80RxhOvGeeSw2ERYug8u/CokTItu/AaDgJCIyRmzeZW7OW3O2hYS4aP7jlvl8OneyajPJufP5YM8f4B/r4eRO81hcEixcDpf9MySOng2fFZxEREa5s81evvfH3fzf24cBuHByKv91+yVMn5AY4Z7JiOfzwQcvwCs/hJO7zGNxybCoLTAljL7bvwpOIiKj2AcVtXzt6XfYX2luzrviajvf+ths4mKiItwzGdF8Ptj9ezMwVe42j1lTYNEKuPTLozIwtVNwEhEZhQzD4NdvfMh//nkPza0+MpKtPLz0Yq6cOfLnmEgE+bxmYPrHeqjaYx6zpsCl95lf49Ii2r2hEFZwcrlclJaWYrfbcblcLF++HJvNFrRtaWkphYWFAN3aOJ1OAHJzc3G5XHg8HnJzc8PvvYiIdHP6TBP/Wvoef9tjbs770TmZ/LBoAeO1Oa/0l88L7//ODEyn9prHrKltgeneMRGY2oUVnJYsWcL27WbhKpfLxbJlyygpKemxbVfr1q1j1apVbNiwgY0bNwJQWFjY42uIiEh4Xt1fxcpNO6iqayIuJor/9/E53H25NueVfvJ5Yddz5i25U/vMY/GpcOlXzNty42wR7V4khBycXC5XwGO73Y7D4Qja1uPxUFJSQlFRkf/Y+vXrWbVqFQB5eXlUV1cD3UejREQkfM2tPn70171sfMX8WT0zM4n/uv0S5k5MiXDPZETytsKuUjMwnT5gHou3mRO+Fy03w9MYFXJwcjgcpKcHTvZKT0/H6XQGvc3WOTSVlpYGPAYFJhGRgXLwVD1fe/oddh4zN+f93KKp/PuN8xgXF7n9vGSE8rbCzk3wyo/AXW4eG5dmBqaFyyFeQTzk4OTxeIIed7vd3Y51DkUejwe3243dbg84VlpaCkBZWRkrVqwION+uqamJpqYm/+Pa2tpQuysiMuoZhkHp9qPc/8L7NDR7sSXE8uCnFnDD/Oy+nyzSmbcF3nvWDEzVB81j49LNopULl4E1ObL9G0bOeVVdT4GqXXFxMevWrQs41nlSud1u57rrrqO8vLzbc9euXcuaNWvOtYsiIqNOzVlzc94Xd5ib815qT+fhz1zMxFRtzith8LbAjmfg1R9B9YfmsYTxZmAqWAbWpIh2bzgKOTjZbLZuo0tut7vXW24ejweHw9Gtjcvl8t/ea1+h53K5uo06rV69mpUrV/of19bWkpOTE2qXRURGpe2H3Hzt6Xc55jE351153SzuvWaGNueV7nxeOPQGnDkJSVkw7XKIiobWZtjxNLz6Y/AcMtsmTIArvgb5X1Rg6kXIwamwsJANGzZ0O56fn9/jc7Zt2xa0FMHixYv9k8PbdZ0/BWC1WrFatXxWRMYer89g60E3lXWNZCbHs3C6+TPyf/5+gJ++ZG7Om5M+jp/edgm5U8fOUnAJw+4XYHMx1B7vOJY8CWZdDwdeghqzkjyJGXDF1yH/HohTNfm+hBycuo4GuVwu8vPz/cHI6XRis9kC2jmdzm6ByG63B9y6czgcFBUVabK4iEibzbsqWPPibipqGv3HMpKtpMbHcqDKrAB+y8WT+N6t2pxXerD7Bdh0F2AEHq87Dtt/aX6flGUGprwvQFzCkHdxpAprjlNJSQnFxcUUFBRQVlYWUH9p7dq1FBQU+EsOtOsauGw2G/n5+axfvx6bzUZ5ebnqOImItNm8q4L7nnJ2/bijqq6JqromrDFRrP3UhXwqd0pE+icjgM9rjjR1+1fUSXwqfNWpW3L9YDEMo5d3dnipra0lNTWVmpoaUlK0JFJERhevz+DKdX8LGGnqKjPZypurF2s+k/Ts4Kvw60/03e7uP8D0qwa/PyNAOPlCuzyKiAwTWw+6ew1NAJV1TWw92L0MjAiGAQdfgS3fCa39mZOD259RSpv8iogME5V1vYemcNvJGNFyFt7bBG9vgMr3Q39eUtbg9WkUU3ASERkGmlq9vFl+OqS2mcnxg9wbGRFqjkLZL2D7r+Bs20r12ARY8BnY80eoryL4PCcLpEwySxNI2BScREQi7O97KvmPP+zm4Kn6XttZgOzUjtIEMgYZBhx+C97+OXzwIhhe87htqrklyiV3mFukzPho26o6C4HhqW1u3A0PmvWcJGwKTiIiEfLhqXq+94fdvLSnEoAJSVZuvDCbJ940CxIG+bjj/pvmaWL4WNTaBLueMwNTxY6O4+ddBYvuhdkfDwxC826GpU90r+OUMskMTfNuHrq+jzIKTiIiQ6yhuZX/+fsBHn3lIM1eHzFRFr5wxXl8bfFMkuNjuWzG+G51nLJT47n/pnncMH9iBHsuQ662ArY9btZeqq8yj8XEw4KlsHAFZM/v+bnzboY5NwavHC79pnIEIiJDxDAM/vBeBf/5pw/8oeiqmRO4/6Z5nJ8ZuIlqsMrhGmkaQ45uM0eX3v8d+FrNYymToeBLkHs3JI6PbP9GmXDyhUacRESGwJ4TtTzwwvu85TJLCUxJG8d3PjGPj83LwmLpHoiioyxcNkMfjmNKazPsfh7efgSObe84PvUyWLQC5nwColUpPtIUnEREBlFNQwsPbdnLk28dwmeANSaKL3/kfFZcYyc+VrdMBDhTaa6MK3sMzpwwj0XHwfwiWLQcJl0S0e5JIAUnEZFB4PUZbNp2hB/+ZS/u+mYAPj4/m3+7cS5T0rQvmADH3zVrL+0qBa/5b4SkLPN2XN7nISkzkr2THig4iYgMMOfhau5//n12HqsB4PzMJB646QKunDkhwj2TiPO2wp4XzcB0+M2O45PzYNF9MO8WiImLXP+kTwpOIiIDpLKukXV/3stzzqMAJFtj+HrhTO6+/Dxio7XD1ZjW4G67HfcLqD1mHouKgQs+aZYTmJIf0e5J6BScRETOUYvXx6/f+JCfOvZT12SugCrKm0LxDXPISLZGuHcSUSd2wdYN5pYorW3lJRImQP495leKykuMNApOIiLn4LX9p3jgxfc5UHkGgAVTUnng5gvInZoW4Z5JxPi8sPfPZjmBD1/tOJ69AC69Dy74FMRq25yRSsFJRKQfjrgb+MEfP2Dz++YqqPTEOFZdP5ul+TlEqd7S2HS2Gt55CrZuBM9h85glGubeZN6Om3opBCk9ISOLgpOISBgaW7z8/B/lPPJyOU2tPqKjLNx56TS+WTiL1ATV2BmTqvaao0s7noGWBvPYuDRzZVz+F8GWE9HuycBScBIRCYFhGPzl/ZN8/4+7OVp9FoBL7ek8cPMFzMnWTgajks/b83YlPh8c2AJvPQKuv3c8J/MCs1jlgqUQOy4y/ZZBpeAkItKHA5VnWPPi+7y6/xQAE1Pj+bcb53LjhRODVv2WUWD3C8E3yF38gHlLbusGcLvaTljMPeEWrTA33dW/iVFNwUlEpAd1jS3810v7+eXrH9LqM4iLjmL51Xa+fO0MEuL043PU2v0CbLoL6LKVa+1x+N3yjsfWVMi9ExYug7TzhrKHEkH6P19EpAufz+C37xzjwT/v4dSZJgAK52bynU/MY9r4xAj3TgaVz2uONHUNTZ1FxcANa+Giz4I1aci6JsODgpOISCc7j9Zw/wu7cB72ADB9QiLfvWke187W9hdjwoevB96eC8bXChlzFZrGKAUnERHAXd/MD/+yh2fKjmAYkBAXzVc/OpN7rjwPa4w24x31TuyCnSXgfCK09mdODm5/ZNhScBKRMa3V6+M3bx/mx3/dS22jWfX7losnsfrjc8lOVZHCUa36kLnB7s5SqNwd3nOTsganTzLsKTiJyJj1lus0D7zwPntO1AEwb2IKa265gILz0iPcMxk09afg/d+ZYenIWx3Ho+Ng5sdg/qfhL/8P6k4QfJ6TxVxdN+3yoeqxDDNhBSeXy0VpaSl2ux2Xy8Xy5cux2WxB2zqdTgByc3NxuVx4PB5yc3PDfh0RkYFWUXOW//zTHl7cYc5lsSXE8q2PzeazC6cSrarfo0/TGdj7J/NW3IGXwPC2nbDA9KvgwiUw92YYZzMPR8W0raqzEBie2v5t3PBgRz0nGXPCCk5Llixh+/btgBl+li1bRklJSdC2GzZsYOPGjQAUFhYGtAvndUREwuX1GWw96KayrpHM5HgWTk8nOspCU6uXX7x6kJ/97QBnW7xYLPDZhVP5l4/NJi0xLtLdloHU2gzlfzPD0t4/dVT0Bph4sRmW5n86+Ca7826GpU8Er+N0w4PmeRmzQg5OLpcr4LHdbsfhcPTYPi8vj+rqaoCA0aRwX0dEJBybd1Ww5sXdVNQ0+o9NTI3nU7mT+eN7FXx42vwAzZ+WxgM3X8D8yamR6qoMNJ/PvP22swTe/z2cdXecS5tuVvOeXwQZs/p+rXk3m0Ute6ocLmNWyMHJ4XCQnh543z89PR2n0+m/BddVsNtv/XkdEZFQbN5VwX1PObvNTKmoaeR//l4OQGayldX/NIdbL56sqt+jRfuKuF3PQc2RjuOJmeao0oVLYHJu+BW9o6LNW3kinYQcnDweT9Djbrc76HGPx0NpaSkAZWVlrFixArvdHtbrNDU10dTU5H9cW1sbandFZIzx+gzWvLi7t7KFJFqj2bLyGlLHaTPeEa+nFXFxyeZo0YVFcN7VEK01UDKwzvlfVE9BqPOEb7vdznXXXUd5eXlYr7N27VrWrFlzrl0UkTFg60F3wO25YOqbvOw+XstlM8YPUa9kQPlXxJXAkbc7jreviLtwCcy6XpvryqAKOTjZbLZuo0Jut7vH1XAul8t/66199ZzL5QrrdVavXs3KlSv9j2tra8nJyQm1yyIyhhz3NPTdCKis6z1cyTAT7oo4kUEWcnAqLCxkw4YN3Y7n5+d3O+Z0Olm8eLF/cni79PT0sF7HarVitVpD7aKIjEHNrT5Ktx/lx3/dE1L7zGQVtRz2zmVFnMggCzk42e32gMcul4v8/Hz/SJHT6cRms2G327Hb7axbt87f1uFwUFRUhM1m6zay1PV1RERC0eL18VvnUf7rpQMc85wFIMoCvh4mOVmA7FSzNIEMQwEr4n4HZzv94p1uN8PShUtgwszI9VGEMOc4lZSUUFxcTEFBAWVlZQG1l9auXUtBQQGrVq3CZrORn5/P+vXrsdlslJeXB7Tt7XVERHrT6vXxu3eO8d9/O8BhtzkSkZFs5csfmcH4xDi+/sy7QNCyhdx/0zwVuBwqPm/fS/kNA06+3/uKuAVLYFI/VsSJDBKLYRi9LUIZVmpra0lNTaWmpoaUlJRId0dEhlCr18cLO47zXy/t99dimpAUx73XzOCOS6cRH2t+KPdUx+n+m+Zxw3zd2hkSu1/ooXjkOnPFW/uKuPdKoOqDjjb+FXFL4LyrtCJOhkw4+ULBSUSGNa/P4A/vHeenjv24TtUDkJ4Yx73X2Lnj0mkkxHX/cO2pcrgMgd0vtG1X0vWjpW37kvEz4fT+jsPtK+IWLDX/1Io4iYBw8oXivIgMSz6fwR93VvDTl/ZzoPIMYO4pt+LqGdx12TQSrT3/+IqOsqjkQCT4vOZIU9BqWm3H2kPT9KvhwqUw9yatiJMRRcFJRIYVn89g8/sn+IljH/tOmoEpdVwsy6+2c/fl55HUS2CSCDv0RuDtuZ4s+TVccOugd0dkMOgnkIgMC4Zh8Jf3T/ITxz72nKgDIDk+hmVX2fn8FeeREq9q38OWYcCRrfDqj0Nr72sd3P6IDCIFJxGJKMMwcHxQycNb9rG7wtxWKdkawz1XTueeK6dre5ThrGovvLfJXBXnORT685KyBq9PIoNMwUlEIsIwDP62p5KfOPaz81gNAIlx0dxz5XS+eOV0bAlxEe6hBFVb0bYibhOceK/jeGwizLkRyl+CBjfB5zlZzNV10y4fqt6KDDgFJxEZUoZh8PK+Kn6yZR87jpqBKSEums9ffh7LrrKTlqjANOw01sAHL8J7z8LBV/GHoqgYOL/QLB8w+58gLqHTqjoLQatp3fBg93pOIiOIgpOIDAnDMHh1/ykeduzjncMeAMbFRnPX5dNYfpWd8UnaXmlYaW2C/Vtg5ybYuxm8TR3nci41C1PO+yQkdlm9OO9mWPpED3WcHjTPi4xgCk4iMqgMw+CN8tM8vGUf2w6Z22jEx0Zx56XTWHHNDCYoMA0fPh8cfsO8Dbf79+ZIU7uMOW3bnhRB2nm9v868m83bdn1VDhcJgdfnxVnppKqhioyEDHIzc4mO4L8lBScRGTRvuU7z0JZ9bD3oBsAaE8XnFk3j3o/YtdnucHJilzmytPM5qD3acTx5Elz4abPeUvaF4W17EhUN068a+L7KmOI45ODBrQ9ysuGk/1hWQhbfXvhtCqcVRqRPCk4iMuC2HnTz8JZ9vOk6DUBcdBSfXTSV+z4yg6wUBaZhwXPEXA23swQqd3cct6aaI0YLlsK0KzRKJBHjOORg5csrMbosNKhsqGTlyyt56CMPRSQ8KTiJyIDZfsjNw1v289qBUwDERlu4rWAqX752BhNTtZVGxDW4zVtw75WYt+Ta+bc9+UzbticKtxJZXp+XB7c+2C00ARgYWLCwbus6rs25dshv2yk4icg5e+dwNQ879vPKvioAYqIsLC3I4SvXns9kmwJTRLWchb1/NkeW9m8BX0vbCQucd6U5b2nezTAuLaLdFOnMWekMuD3XlYHBiYYTOCudFGQXDGHPFJxE5By8d9TDw1v28fe9ZmCKjrKwJG8KX7n2fHLSEyLcuzHM54WD/zBHlj54EZrrOs5lXWiuiJtfBKmTI9dHkSC8Pi+7T+/m6T1Ph9S+qqFqkHvUnYKTiIRt17EafuLYh+ODSsAMTJ+6ZDJf/ehMpo5XYIoIw4Dj75gjS7ueM1eztUudaq6GW7AUMudGro8iQVQ2VPL6sdd54/gbvFnxJjVNNX0/qU1GQsYg9iw4BScRCeD1GWw96KayrpHM5HgWTk8nOspcTbX7eC0/cezjr7vND+UoC9x6yWS+9tGZnDchMZLdHn183tCW87td5sjSzhI4vb/j+Lg0uOCT5oq4nEUQFTV0fRfpRZO3CedJJ28cf4PXjr3GAc+BgPNJsUksyl5E2ckyaptrg76GBQtZCVnkZuYORZcDKDiJiN/mXRWseXE3FTWN/mMTU+P54lXT2f5hNX/edQIwV6XfctEkvrZ4JvaMpEh1d/Ta/UIPBSTXmfORzlTB+7816y0d29bRJmYczP64ObI0YzHEqAq7RJ5hGBysPcgbx97g9eOvs+3ENhq9HT9jLFi4YPwFXD75cq6YdAUXZlxIbFSsf1UdEDBJ3NJWhb54YXFE6jlZDMMItqHQsFRbW0tqaio1NTWkpKREujsio8rmXRXc95Qz6A5j7SwW+MSCSXx98fmcn5k8ZH0bU/xblnS9Em1bmGQvgJPvg+FtOxwF9o+YI0tzPwFWXReJvLrmOt6ueJvXj7/OG8fe4Hj98YDzGeMyuHzS5Vwx+QounXgpafHBFycEq+OUnZBN8cLiAS1FEE6+0IiTiOD1Gax5cXevoSk+NorfffkK5k7ULy2Dxuc1R5qCXom2Y+0b607KNUeWLvgUJGcNVQ9Fgmqf1P36cXOu0ntV7+FtD/dAbFQsuVm5XDHpCi6fdDmz0mZhCaGgauG0Qq7NuVaVw0VkeNl60B1wey6YxhYfnoaWXtvIOTr0RuDtuZ58ciNc9JnB749ILyobKnnj+Bu8ccyc1O1p8gScPy/lPK6YbAal/Kx8EmL7t3AkOip6yEsO9EbBSWSM23Wshp/9bX/fDYHKut7DlfTD2Wo4+Aq4XoYP/hDac1TNWyKg2dvM9pPbeeO4OVdpf3Xgz42k2CQWTVzkD0uTk0ZnuQsFJ5ExqK6xhRd2HOeZrUfYeSz0pb/aX24AtDTCkbfNoOR62Swh0OtN0iCSdGtOBp9hGHxY+6EZlI69TtmJspAmdY92Ck4iY4RhGLx7xMPTWw/zh/cqaGg25x/ERUfxsQuyeKP8NNX1zUE/wi1AdqpZmkDC5PPByZ1mSCr/Oxx+E1q7jNxlzDEneJ93DfxpJdSdIHiYspir66ZdPvj9llHB6/OGNT+or0ndE8ZNMCd1T7qCyyZd1uOk7tFMwUlklKtpaOF37xzlmbIj7DnRUUF6RkYity+cyqdyp5CeGOdfVde2dsuvffrm/TfN89dzkj5Uf9gxouT6B5x1B55PyoYZ15phafo1kDKx45zR2raqrocrccODulUnIQm2Ii0rIYtvL/y2f0Waz/CZk7rbClDuqNoxIJO6R7OwyhG4XC5KS0ux2+24XC6WL1+OzWYL2tbpdOJwOAAoKyvj0Ucf9bd1Op0A5Obm4nK58Hg85Ob2XcRK5QhEQmMYBmUfVvP01sP8aWcFTa0+AKwxUdy4YCK3L5xK/rS0bj8Ae6rjdP9N87hh/kSkBw3ujnlKrpeh+mDg+bhkc184+0fMr4zZZm2HngSt4zTZDE3zbh74/suo014DqesmuRYsGBjcNuc2ahprepzU3V4q4FwmdY8k4eSLsIJTXl4e27dvB8wQVVxcTElJSdC269evZ9WqVf7vn332Wf9zV6xYwcaNGwEoLCykpKSkxwDW3/8wkbHIXd/Mc9uP8kzZYcqr6v3H52Qnc/vCqdx68WRSE3qfg9Bb5XBp09IIR97quP1WsYOA0aGoGJhS0BaUroXJuRAd5tyPUCuHi3Th9Xm5/rnre90kt7P2Sd3tYWm0TuruzaDUcXK5XAGP7Xa7f0SpK6fTydq1a/3BqaioiOLiYlwuF3a7nby8PKqrqwFCCkwi0jOfz+BN12me3nqYv7x/ghav+QGeEBfNzRdN4raFU7loSmrIw+vRURYumzF+MLs88vh8cGJHx4jS4beCzFOa23H7bdrl516IMioapl91bq8hY059Sz2/3//7kELTjdNvZOnspWNmUvdACTk4ORwO0tMDJ4amp6fjdDq73WbLzc3l0Ucf9T/2eDz+9u0UmETOTWVdIyXbjvJs2REOuxv8xxdMSeW2gqncfPEkkqyaxthv7oMdQengP8yyAZ0lTzRHk+wfAfs1kJwdgU7KWOZudLPn9B4+cH/AHvce9rj3cKj2ULfbcz25esrV5GYN/V5vI13IP1Xbw09Xbrc76PGioiL/988++yyFhYX+sOTxeCgtLQXM+U8rVqzAbrd3e42mpiaampr8j2trg2/2JzJWeH0Gr+yv4pmth3npg0pafeYPyGRrDLdeMpnbFuZwwaTUCPdyGOjPba760/DhK+atN9fL4DkUeD4u2RwBap+nNGFW7/OURAaIYRgcrz8eEJI+cH9AZUNl0Pa2OBueZk+fr5uRkDHAPR0bzvnX0Z4CVefzpaWl/vlNQMCkcrvdznXXXUd5eXm3565du5Y1a9acaxdFRrzjnrNs2naEkm1HOeY56z+eNy2N2wpyuHHBRBLiNLoE9L1BbruWs2ZpgPZRpYr36D5PaWHH7bdJuRCt91gGV6uvlQ9rPgwYRdrj3kNtc/CBg2kp05iTPoc56XOYmz6XOelzsFltXP/c9VQ2VAYdfbJgISshi9xMjTb1R8g/BWw2W7fRJbfb3ectt+LiYrZs2RLQzuVy+W/vta/Qa5//1Nnq1atZuXKl/3FtbS05OTmhdllkRGv1+vjbnkqeKTvCy3sraRtcInVcLJ/OncJtC3OYlaUNXQP0tEFubYV5vPABMHwd85S8TYHtMi/oGFGadjlYk4ak2zI2NbY2sr96f0BI2le9j6au/y6BmKgYzredHxCSZqfPJjE2Mehrf3vht1n58kr/Krp2lrayFsULiyO639tIFvKqOpfLxZIlSwJGjtLS0jh48GCP4Wn9+vUUFRVht9v9I1Mul4vFixf7J4d7PB7S0tKorq7uM4RpVZ2MBUfcDTxTdpiSbUeprOv4AXqpPZ3bF07l+guyiY/VD7xufF74yfzQ9nprlzwpsJ6SNsuVTsItHtmb2uZa9rr38sHpD/xB6WDNwYCaSe3GxYzrNoo0wzaDuOi4sP7OYHWcshOyKV5Y7K/jJKZBWVXXdTTI5XKRn58fUJvJZrP525WWlpKbm+sPTZs2bWL58uXY7XbWrVvnfx2Hw0FRUZEmi8uY1tzqY8vukzxTdphX95/yHx+fGEdR3hQ+U5CDPUOjH706+EpooSnnUriwyAxL48/XPCUJKpTikcEYhkHV2SpzHtLpjvlIx84cC9o+zZpmhqTxZkiamz6XqSlTibJEnfN/Q+G0Qq7NuXbAwp+Ywi6AuWHDBgoKCigrK2P16tX+wLNkyRIKCgpYtWoVLpeLGTNmBDzXZrP5R5nai2PabDbKy8sDglRvNOIko42r6gzPlB3hue1HOV3fDJif41eeP4HbF06lcG4WcTHn/gN0VDpTBUe3mvu+HSmDo2Xga+n7eZ9+zAxOIj3orXgkwEMfeYjCaYX4DB9H6o6YI0in9/hDkrsx+KKpSYmTAkLSnPQ5ZCVkjflK3MPBoBXAjDQFJxnuQike2djiZfOuEzy99TBvH+z4AZuZbGVpfg6fKcghJ330V+oNi7cVKt+HI1vNgHTkbXNbk/64+w+qjyQ9CqV4ZEJMArPTZrPPs4/6lvpu56MsUUxPmR4QkOakzyHVqhWvw9Wg3KoTkd71tV3JvpN1PL31ML91HqPmrDkyEmWBa2dnctvCqVw7O4OYaI0uAeYWJkfLzKB05G045oRuH1AWc3PcnIXm1+R8eOqT5kRwbZArYTIMg9rmWhyHHH0Wj2xobeCdqncAiIuKY2baTOaOn+sPSTPTZjIuZtxQdFsiQMFJZAC0b5Db9eP6RE0j9z7lZPqEBA6e6ihSOdk2jqX5OSwtmMLE1DH+A9bng6o9bbfd2r5O7+/ezpoCU/LNEgE5C83v47v8Bn/DOm2QK0E1tjZyov4EJxpOUHGmghMNJ8zH9SeoqK/gRP0Jzrae7fuF2iydvZTPzP4M01Onq+r2GKPgJHKOvD6DNS/uDjrG0X7s4KkGoi1w3bxsbluYw1UzM8bu/m9nPXBsW9u8pK1wdBs0BalRM35mx2jSlIXmxrh9hZ55N8PSJ3qo46QNcofSQK5IC+Xvqjpb5Q9CncNQ+5/VTdV9vxCQHJtMXUtdn+1uOO8GZqXNOteuywik4CRyjrYedAfcnuvJzz6Xy8fnTxyCHg0jhgGn9geOJlXtoduttNhEcyPcnEVtQakAEtKDvmSf5t0Mc27UBrkR1N8VacG030ILFobav69sqAy6rL+rcTHjmJg4kezEbCYmTiQrMSvwcUIWsVGxKh4pvVJwEukHn89g57EaXtlXxe/fCb7MuKvmVt8g92qA9Ge7knZNZ+DY9o6gdLSs+x5vAGnnmSFpSoH5Z+a8ga3KrQ1yI6anFWmVDZWsfHmlf0Vau8bWRk42nAwIRSfrzcfh3EKLtkSTlZBFdmK2/2ti4kR/MMpOzCYlLiWkFWwqHim9UXASCdHJ2kZe2VfFK/tP8dr+KqobQlj63klmcvwg9WwAhbpdCZijSdUHzVtuR942w9LJ983K3J3FxJvbleQUdISlpMzB/2+RIef1eXlw64NBR2raj/3ba//GCwde4ETDCU42nOxx6X5X6fHpZCWYI0QTkyaSnZBNdlI22QlmQJowbsKAhZnCaYU89JGHgo6aqXikqByBSA8aW7yUfejm1f2neGVfFXtOBM57SLLGcPmM8Vw5cwL//bcDnKpr6mktF9mp8bxW/NHhPa+pp+1K2idWf+pRM0Qd3doxP6m+qvvrpOZ0jCTlFEDWhRATXsVjGTlqmmo4euYox+qO8VbFW5TsKwn7NUK5hRYfM/S/eAzlPC2JLJUjEOkHwzAorzrDP/aZQentg6dpbOkYPbFYYMHkVK6elcHVszK4OMdGbFv5gMxkK/c95expLRf33zRveIcmn9ccaeptivtvv9T9VHQcTLyo0223hWa4klGjydvEsTPHOFZ3zB+Qjp3p+D6UidRd3TrjVhZPW+wPR6HeQhtq0VHRFGQXRLobMswoOMmYVtPQwuvlZlB6ZV8Vx7tM8s5KsXLVTDMoXXn+BNITg4+c3DB/Io/ckdutjlN2pzpOw1ZzPbz7TGjblcSnmXOHchaaYSl7AcSOgFuQI9BQjXa0r0g7UnfEDEhnjnG07qg/LFWerezzNSaMm8DkpMnER8fz9om3+2x/8/k3K5DIiKXgJGNKq9fHjqM1bXOVqthxxIOv0yBLXEwUi6anc/XMDK6aNYHZWckh/yZ8w/yJXDcvu8/K4RHj84LbZc5Dqtzd8af7IMFHmoL4px/CgiWD2k0Z+FVpNU01/lEifyhqC0jH64/T6mvt9TUSYxOZnDSZyUmTmZI8xfwzaQpTkqcwKWmSv9hje9VtrUiT0UzBSUa9456z/qD02v5T1DYGfkicn5nE1TMzuHrWBBZNH8+4uP7/Vh8dZeGyGePPtcvn7kylGYw6h6SqvdDT6qR4GzR6+n7d5OyB7KUEEe6qNDBXph0/czwgGHUOSGdazvT6d8ZYYpiYNJEpSVOYnNwRkKYkmSHJZrWF9AtEdFS0VqTJqKfJ4TLqnG328tbB07y67xSv7K/iQGXgh0ZKfAxXzpzQFpYymGQbwZW7mxug6gM4ubstIO0yv284Fbx9zDjInANZF0DmBZA1z/wzIR1+Mr/v7Uq+sVP1kAZRKPukpcSlsHT2UirqK/zzjk6d7eF6dzJh3AR/MGoPRO3hKDMhc0DDTLARs+yEbK1Ik2FLm/zKiBXKJrldGYbB3pN1bfOUTrH1Q3dAzaQoC1ycY/NP6l4wOXXk7Qnn85qb2rYHo8r3zT/dLnoMOun2jmCU1faVdl7Pwce/qg6CTnFf+oQqbw+CFl8Lp8+eprKhkjeOvcH/7Piffr1OYmxiQCDqHIwmJU0a8lVpWpEmI4lW1cmI1NcmuZ2565t5dX8Vr+4/xav7qzhZ2xRwflJqvD8oXTFjAqkJQ7SX1LkUj2x3pqotGL3fEZIq9/R8my1hQkcwypxnhqWMuRCXEN7fO4q2KxkOH9qGYeBp8lDZUEllQyVVZ6s42XCSqoYqqhravj9bxemzp4POB+rNouxFXDbpsoDbaanW1GG1Mk0r0mS00oiTDAs9bZLb/jHw35+9hMzkeP9cpZ3Hauj8Lzc+NopF08dz9awMrpk1gRkZSUP/IRJO8Uhou822p+0WW9tttsrdwWsjgVlIMmNOl5B0wcAXkxyI8BdBAzmxuicNLQ3+QFR5tpKqhqqOx20hqbKhkhZfaEVSYywxTEiYQEJ0Aq5aV5/tH7/+cYUSkQGkW3Uyonh9Bleu+1uv+711rY8EMCc72RxVmplB/nlpxMdG8MO9r+KRH19vTqwOWM3m6l5lu/056dM7glHmPMiabx4bQQEmEnqaWN0+MTnYxOrOWrwtnDp7isqzlYFBqD0YtYWkviZbd5ZmTSMzIZOMhAyyErLISMggMyGTzHGZ/u/T49OJskSFvCpt86c367aXyADSrToZUULZJNcAkqzRXDsni6tnTuDqWRlkpQyT+kGhFI/8878Gf27C+I5g1D4fKXMOxCUOVm9HrVC2+/j+W98nJirGDEddRocqGypD3v4DICEmwQxACZkBYajzsYxxGcRFh141XavSRIY/jTjJkKprbGF/5Rn2n6xj38kz7DtZx46jHmrP9l5HBuDhz1zMJy+ZPAS9DMIwoOE0eA6bXzVHwHPE/LPyA3PPtr6kzzCLRmbN61jVlpRpliQfRobD/KC++Awfdc11eJo8VDdW42ny8E7lOzy+6/Fzfu2YqBgyxmX4A1BmQmbA4/aRo8TYwQu3WpUmMrQ04iQR19DcyoHKM+w9Ucf+SjMg7T95hmOevnc570n2YI4w+bxQd6JTIGoLSO3hqOYotDSc299x7f+DC4sGpr+DZCjmB3Xl9Xmpba7F0+Qxvxo9/u+rm6oDHrefr2muwRf0NmffJiVO4vy088kY1+XWWVtASotPI8oS2VWXhdMKuTbn2mEfYEXGIgUnOSeNLV4OVJ5hf6U5grT/ZB17T9ZxtPosPY1lZiZbmZWVzMysJGZnJWPPSOKrTzuprG3Cgo+FUXvIxEMlNrb65mAQRXaqWZqg31qbofZoRxDy/9k2elRzDEKZyJuUDbYccyNbWw7YpkJjHbz0QAjPzep//4dAfwovdtXqazVDUGPvwafz45qmmrBXlbVLiEkgLT7NLNCIhV2nd/X5nO9f+f0RMbFaq9JEhicFJwlJc6sP16kzHeGobSTp0On6gC1LOhufGOcPRzOzkpmVlcysrCRsCd3nfKy5+QJ+/38/57uxTzDJ0jHP5LiRzn+03MWtN93bez2n5oaeR4s8R6Cup8KOnViiIXUypE7tHo5ScyB1CsRYuz/P54WyjVBbgRcDZ7yVquhoMrxechubiG4vHjnt8t7//ggKZX7QmjfX4G50+4NRdVN1tzBU21zb7z4kxSZhs9rMr3ib//v2YBTsXOf5Q9ruQ0SGguY4jSL9KR7ZVYvXx6HT9ew90XZ7rW0k6eCperw9JKTUcbFt4SipLRyZAWl8UpCQ0ZPdL2BsuotWDN7tFDwubmwiBguWWx8x5wV1HS1qHzFqON333xETb4af9iBkywkMSckTIbqfv0vsfgHHH1bw4HgbJ2M6XiOrtZVvn/ZQ+IkNg14HyTAMGr2N1LfU09DSQH1Lvfl9a8f3AedaOx5X1Fewr3rfgPUlOS7ZDD3WtICg0zX4tAej1LhUYqPPvdZW+6gZEHRidSijZiIy9miO0ygRThDavKuC/3hhB+O9W0iIOUVD6wROR1/Hd2++qFvxyPbXPnS63j+CtK/yDPtO1OE6dYYWb/CAlGyN6RKOzICUkWztX80knxfOVpsFH//wTV5KiOfB8WlBgkc1hb+/t+/Xs6Z0CkRtI0Wdw1FixqBNxHYkJrAyawJdfw+pjI5mZdYEHkpMINjHdYu3pVuICQg5vYSegHDU0kBDawNewzso/33t5qbPZVbaLH8ASrOmdQtDqdZUYqIi86OlcFohD33koaDztDSxWkQGgkacOjlTX8vDz32ZysZjAExPnkd9Sw2p4zLItk3n1mtWEBdnjqI0Nzfx+39soLL2MJkpUwPO9SSc54QThDbvquCxF77Dqaw3ORXTMal1QquPCScv4+Zrv8PE1Hj2Vdax74Q5glRedYam1uCTaxPios1ba5lJHXORspPJTonvOSC1NkGDG866zT8bTnf6vofjnTaVdSSMY2XmBHOMoNPfYWn75/lQ5SkKvbEwfkZHKOoaksbZen3/w2UYBi2+Fhq9jTS1Nvn/bPKaX+2Pz7ae5Qdv/6DX21RxUXHMTZ9Lg7chIPCEWiAxXONixpEYm0hibCIJMQkd38e2fR8T+PhE/Qk2vLehz9cdKYUXR8LKQBEZPgatAKbL5aK0tBS73Y7L5WL58uXYbLaw24bzOv39DwvXt35xA46Yo/h6GZGY0Orj9gm3AvD0qd93Cym3T7iV5bf8IOhzNz7/byE/p68g9MWbv+cPT16fwT0P38c741/rMXTMOn4p22o/2a1P8bFRnJ+ZxKxMcw7S7OwkZmYkMTnRIKqxa+DpIxQ1h14QsCtv7Diuz07jZHR00BEhi2GQ5fXyfN53aJ33iW4hptHbaIaZ1sBA0zXg+NsFadvobaTZ29zttfo7aTlccVFxgcGm/fu2gNM19HRu17VtQmxC2KvCVHhRRMayQQtOeXl5bN++HTDDT3FxMSUlJWG3Ded1+vsfFo5v/eIG/hpz1HzQ262crm9VkJDyz2m3dAtCG5//N35W/XyPwabzc0IJQhecvJyErC9RWdfM0dM12HJWcSra0mPomOA1mHnyPi7JiGZGcjM51rNkxzaQYtQRdfY0NLgxzrppbXDTctZNi6+ZFiy0Wiy0WCy0WDD/pNP3bY+bOz+2RNESl0BLXCItseNoiRtHS4yV1hgrLTFxtETH0RIdQ0tUDC1RUWZ7i4VTng/ZXX+klysUeRYsxMfEY422Yo22Bnx/pvkMB2v7ruN0x9w7uGryVUFDT2zUEO2l1wvNDxKRsWpQ5ji5XIH7J9ntdhwOR9htw3mdoXCmvhZHKKGp/Xx7eOrS1mg799Sp33NF5e34sFDf0kxtQz1PnP49RlT3YNP+nF+efp6//jKGltYWzpytoz6te2jq3L4883Wm1u4lER8zMs+wN6bn0QXDYqEqxsK4jJ9RiUHLGQvN9UFCUIIFEmKBgVgy3wrUgbcOvEBTX+3DE2WJ8oeWziEmPjoea4yVuOg48/suAafr4/iY+JDaxkfHExMV0+NtyrITZdzzl3v67PdHp350WN/m0vwgEZG+hRycHA4H6emBdXTS09NxOp3k5uaG3Hbbtm0hv05TUxNNTR2furW1/V/q3JOHn/tyr7fnuumtrcVCdYyF2/58e+Dx6F5um1gsnImGvfwW4jC/6P3vOGuxsDc19K0hAA7HhT+iERcVR2x0LLFRnb66PI6JiumxTW/Pj4mK8R87UneER3c+2md/fvbRn3H5pMt7DTGRkJuZS1ZC1qhYBq/CiyIivQs5OHk8nqDH3e7uH+C9tQ3nddauXcuaNWtC7WK/VDVVtIWVgZPs9ZFg+IgxoNECp2P6fpvnNzYxpdXLiZho3o3vexn/ta0JLEibztHGUzzXcrLP9t8471YunHVT9yDTFmZiomKIi47zH4u2RA9ZOPH6vLxQ/gKVDSeDziiyAFkJ2Vw5+cph+QE+2vYXU+FFEZGenfO+Aj0FoXDbBju3evVqampq/F9Hjgz8PJgMa/el+ufqW/FX8Pv8B3nxiof4lu1jIT3nk/Yv88OvlPOVglUhtf/sJcv40qee4TtL/0Sm1/DPf+rKnFht8PkrvsPCiQu5JPMS5k+Yz+z02dhtdnJScshOzGbCuAmkxKUwLmbckI/otAcPM2YE/r3mY8uwDx7tt7kyEzIDjmclZGlukIjIKBLyiJPNZus2KuR2u4OuhuutbTivY7VasVrDKKLYD9/89P9SWnI5Pgitxk8Pc5ygYyL2Tbf/t7/MwPUzPspDT+ZyOtpizlHq4Tm3XnMfAAUL7iLz3Z9QFUWP7TN9ZjuA6Jg4Vs/6HCsP/AaLYQQ8pz1MfXvW54iOGeBhtQE2GubX6DaXiMjoF/KIU2Fh8A+u/Pz8sNqG8zpDISkxhcLWKeaDvhYYdjrfdYSn/fFtE24NqM0UF2f1lzAI5TntQai39l2DUOGVq3no/M+R2aUsU5YPHjr/cxReubr3/65honBaIX/59F94/PrHWXfVOh6//nE2f3rziAhN7dpvc/2T/Z8oyC5QaBIRGWVCHnGy2+0Bj10uF/n5+f6RIqfTic1mw26399q268hS19eJhB9/aXNHHade2mV4DW4LqOPUMbozoe1csDpOy2/5ATwf+nMKr1zNQ8CD+37DyU6fu1k+KJ4VPAgVXrmaay/9Fs6dT1JVe5iMlKnkXnjnsB9p6krza0REZDgLuwDmhg0bKCgooKysjNWrV/sDz5IlSygoKGDVqlV9tu3tXG/GUuVwAG9r84gPQiIiIsPdoBXAjDRt8isiIiIDLZx8cc6r6kRERETGCgUnERERkRApOImIiIiESMFJREREJEQKTiIiIiIhUnASERERCVHIBTCHg/bKCbW1tRHuiYiIiIwW7bkilApNIyo41dXVAZCTkxPhnoiIiMhoU1dXR2pqaq9tRlQBTJ/Px/Hjx0lOTsYSyoa8YaqtrSUnJ4cjR46owGYE6TpEnq7B8KDrEHm6BsPDYF8HwzCoq6tj0qRJREX1PotpRI04RUVFMWXKlEH/e1JSUvQ/yDCg6xB5ugbDg65D5OkaDA+DeR36Gmlqp8nhIiIiIiFScBIREREJkYJTJ1arlfvvvx+r1Rrproxpug6Rp2swPOg6RJ6uwfAwnK7DiJocLiIiIhJJGnESERERCZGCk4iIiEiIFJxEREREQjSi6jgNJpfLRWlpKXa7HZfLxfLly7HZbJHu1qjgdDpxOBwAlJWV8eijj/rf297e9/6ek94VFxezevVqXYMIcTgcuFwu7HY7AIWFhYCuw1BxuVw4HA7S09NxuVwUFRX5r4WuweBxOp0sW7aM7du3BxwfjPd80K+HIYZhGEZubq7/+/LycqOoqCiCvRld1q1bF/B95/e6t/e9v+ekZ9u3bzcAo7q62n9M12DobNmyxVi+fLlhGOZ7Zrfb/ed0HYZG559HhmH4r4dh6BoMlpKSEv/Pnq4G4z0f7Ouh4GSYb2znN9owDMNms0WoN6PL9u3bA97L8vJyAzDKy8t7fd/7e056V1JSYtjtdn9w0jUYWp3fe8Mw38f2P3UdhkbX96tzkNU1GFxdg9NgvOdDcT00xwn8w7adpaen43Q6I9Sj0SM3N5dHH33U/9jj8QDm+9vb+97fc9Kz0tJSioqKAo7pGgwdl8uF2+3GZrPhdDrxeDz+W0S6DkMnPT2dvLw8/y276667DtA1iITBeM+H4nooONHxYd6V2+0e2o6MUp0/rJ999lkKCwux2Wy9vu/9PSfBeTyeoPf4dQ2GjtPpJD093T/3YuPGjZSWlgK6DkOppKQEgBkzZlBSUuL/+aRrMPQG4z0fiuuhyeG96OkCSP94PB5KS0u7TQ4M1m6gz411mzZtYvny5SG31zUYeG63G5fL5f/FYfny5aSlpWH0UoNY12HgORwO1q1bh8vlYsWKFQBs2LChx/a6BkNvMN7zgbweGnECbDZbtzTaPqQuA6e4uJgtW7b439fe3vf+npPuHA4HS5cuDXpO12Do2O12/3sH+P90Op26DkPE5XJRVlZGYWEhy5cvp7y8nE2bNuFyuXQNImAw3vOhuB4KTnQsB+4qPz9/iHsyeq1fv57i4mLsdjsejwePx9Pr+97fcxLcpk2b2LhxIxs3bsTlcrF27VqcTqeuwRBqn88UjK7D0HA6nRQUFPgf2+12Vq9erZ9HETIY7/lQXA/dqqP7DzSXy0V+fr5+YxggpaWl5Obm+kNT+22jru9v5/e9v+eku64/SFasWMGKFSuCfpDrGgweu91Ofn6+f75Zey2n3Nzcbm11HQZHbm4uGzZsCJh3efr0aV2DIdR5vmVvn73D+fNBm/y2cblcbNiwgYKCAsrKygIKBEr/uVwuZsyYEXDMZrNRXV3tP9/T+97fcxKcx+Nh48aNFBcXs3z5clasWEFubq6uwRDyeDwUFxeTl5fH9u3b/aOwoP8XhorD4fDfHgXzFwtdg8HlcDjYsmUL69evZ9WqVRQUFPjD62C854N9PRScREREREKkOU4iIiIiIVJwEhEREQmRgpOIiIhIiBScREREREKk4CQiIiISIgUnERERkRApOImIiIiESMFJREREJEQKTiIiIiIhUnASERERCZGCk4iIiEiI/j+m8m0oxCIw6AAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFnCAYAAABQEsaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABaYUlEQVR4nO3deVxU973/8dcwwCAIDKiACy7jviQxLEbNYhKxSZekaYtp0yxN0qpNb2/bm/ZKvPf2pt7e1ujtTddfe9XszdIo6ZK099pKkybNKjKJcY2RcUFFUWEYFhlg5vz+ODAwrAMBhuX9fDx4wJxzZvwwR+XN93y/n2MxDMNARERERLoVEe4CRERERIYKBScRERGRECk4iYiIiIRIwUlEREQkRApOIiIiIiFScBIREREJkYKTiIiISIgiw11AT/j9fk6fPk18fDwWiyXc5YiIiMgwYBgGVVVVTJgwgYiIrseUhlRwOn36NOnp6eEuQ0RERIahkpISJk2a1OUxPQpOTqeTgoICAAoLC9m6dSt2u73DY10uF/n5+TgcDlwuF6tXrw4c29W+rsTHxwPmN5aQkNCT0kVEREQ65PF4SE9PD+SMrvQoOBUUFLB27VoANm3axPLlyykqKurw2JUrVwb2uVwuVq1axfbt27vd15Xmy3MJCQkKTiIiItKnQpkGFPLkcKfTyYYNGwKPc3NzcTqduFyudse23eZwOAIjVV3tExERERnMQh5xysjIYOvWrYHHbrcbgOTk5HbHFhQUtNuenJyM0+lk9+7dne7LyMgI2u71evF6vYHHHo8n1HJFRERE+lyP2hHk5uYGvn7++efJycnpcG5Sc6hqq7y8vMt9bW3YsIHExMTAhyaGi4iISDj1qo+T2+0mPz8/pHlJbZ/Xk33r1q2jsrIy8FFSUtLDSkVERET6Tq/aEeTl5bFz585OV8LZ7fZ2I0jl5eXY7fYu97Vls9mw2Wy9KVFERESkz/V4xGnTpk3k5eXhcDhwu90djhTl5OR0+NysrKwu94mIiIgMZj0KTvn5+WRkZARC07Zt2wIjRa1X2DkcjqDnuVwusrKysNvtXe4TERERGcwshmEYoRzocrmYPn160Da73U5FRQVg9mbKzs4O9HlyuVxs3ryZ7OxsCgsLWbduXVADzM72dcXj8ZCYmEhlZaX6OImIiIwAPr/BrqPllFXVkRIfw6JpyVgj+va2az3JFyEHp8FAwUlERGTk2LGvlPUvHaC0si6wbXxiDA/eNI8bF4zvsz+nJ/miV6vqRERERPrTjn2l3Pe0Myg0AZyprOO+p53s2FcalroUnERERGRQ8fkN1r90gI4uiTVvW//SAXz+gb9opuAkIiIig8quo+XtRppaM4DSyjp2HW3fPLu/KTiJiIjIoFJW1Xlo6s1xfUnBSURERAaVlPiYPj2uL/Wqc7iIiIhIv+lmwb8FSEs0WxMMNI04iYiIyKDhOlfNfc86A4/bdmxqfvzgTfP6vJ9TKBScREREZFAor6nn3icKcdc2sDDdzs++sJC0xODLcWmJMfzqjow+7ePUE7pUJyIiImFX1+Bj9VO7OXahlklJo9h6Vxbj4m188tIJ/d45vCcUnERERCSsDMNgbf777D5eQXxMJI/fnc24eBsA1ggLS6aPCXOFLXSpTkRERMLqxzsP8+Ke00RGWPifOzKZmRof7pI6peAkIiIiYZNfdJKfvXwEgB9+5hKunDE2zBV1TcFJREREwuLN4vOs++37APzDddO5NTs9zBV1T8FJREREBtyRsmq++usiGnwGn7p0PN9eMTvcJYVEwUlEREQG1IVqL/c8sQtPXSOZU5L40crLiAjjSrmeUHASERGRAVPX4GPVU7spKb/I5ORYttyZSUyUNdxlhUzBSURERAaE32/w7e17cJ5wkxATyWN3ZzNmtC3cZfWIgpOIiIgMiB/95QP+9H4pUVYLm+/MYkbK6HCX1GMKTiIiItLvni88wS//VgzAhs9eOqiaWvaEgpOIiIj0q9c/PM+//m4fAN+4fga5mZPCXFHvKTiJiIhIvzl8tor7ni6i0W/w6YUT+KcVs8Jd0kei4CQiIiL94lyVl3seL6TK20j21CQ2fu5SLJah0XagMwpOIiIi0ucu1vv4ylO7OeW+yNQxsWy+M2tItR3ojIKTiIiI9Cm/3+Cfnn+PPSVu7LFRPH7PIpLjosNdVp9QcBIREZE+tXHHIXbsP0O0NYItd2YxbWxcuEvqMwpOIiIi0meefecEm19zAbAp91IWTUsOc0V9q0fByel0kpmZ2e1x+fn5uN1u3G53h6/hdDoBcLlcga9FRERkaHvt8Dm++wez7cA/5czilssnhrmivhdycMrPzwcIKeisXLmSpKQkkpKSsFgsWCwWNm3aBMDmzZvJzMzEYrGwZs0aHA5HL0sXERGRweKDM1V87RknPr/BZy+fyDeWzwh3Sf0iMtQDc3NzQzrO7Xazffv2oOM3bdrE2rVrAcjMzKSiogIAu93eg1JFRERkMCrz1HHvE4VUexu5YloyGz53yZBvO9CZkINTT7QOTfn5+e1ClwKTiIjI8FBb3xhoO+AYG8fmOzOxRQ79tgOd6fPg1DoUud1uysvLgy7Hud3uwGW/wsLCLi/Xeb1evF5v4LHH4+nrckVERKSXfH6Db/7mPd4/WUlyXDSP35ONPXZ4tB3oTL+MODXLy8tj48aNQdtWr14dCFcOh4MVK1ZQXFzc4fM3bNjA+vXr+7NEERER6aUN/3uQnQfOEh0ZwZY7M5kyZvi0HehMv7UjcLvdFBQUtLss53K5Al87HA5cLlfQttbWrVtHZWVl4KOkpKS/yhUREZEe+PVbx3jk9aMA/GjlZWRNHV5tBzrTbyNOu3fvbheanE4ny5cvD0wOb5ac3PGbbbPZsNls/VWiiIiI9MIrh8p48MX9APzzDbO5+bIJYa5o4PRqxKltfyan09lu1MjpdLYLRA6HI+jSXUFBAbm5uZosLiIiMkQcOO3h68868RuwMnMSX7t2erhLGlAhjzgVFBSwc+dOwJx7lJ2dHVgt1/y4ueVAs7aTvu12O1lZWWzatAm73U5xcTHbt2//qN+DiIiIDIAzlWbbgZp6H0unj+EHnxm+bQc6YzEMwwh3EaHyeDwkJiZSWVlJQkJCuMsREREZMWq8jdy6+S32n/YwfVwcv73vShJjo8JdVp/oSb7QvepERESkSz6/wTeee5f9pz2MiYvm8bsXDZvQ1FMKTiIiItKl7//xAH89VIYtMoKtX8pi8pjYcJcUNgpOIiIi0qnH3zjKE28eA+DhWxeSMTkpvAWFmYKTiIiIdKjgwFm+/8cDAOTdOIdPXjo+zBWFn4KTiIiItLPvVCX/+Ny7+A34QnY6X13W8e3RRhoFJxEREQly2n2Re58o5GKDj6tmjOX7tywYcW0HOqPgJCIiIgHV3kbufaKQsiovM1NG88s7MoiyKi400zshIiIiADT6/Hz9WSeHzlQxdrSNx+7OJiFmZLYd6IyCk4iIiGAYBt97aT9/++AcMVERPPKlLNKTR27bgc4oOImIiAiPvn6Up98+gcUCP/n85SxMt4e7pEFJwUlERGSE+/P+M/zgfw8C8C8fn8uNC9LCXNHgpeAkIiIygr1/0s03f/MuhgG3XzGZr1w9LdwlDWoKTiIiIiPUKfdFvvzkbuoa/CybNY71N89X24FuKDiJiIiMQFV1Ddz7eCHnqrzMSYvnF1+8nEi1HeiW3iEREZERpsHn52vPOPngbBUp8WbbgXi1HQiJgpOIiMgIYhgGD764n79/eJ5RUVYe/VI2E+yjwl3WkKHgJCIiMoJs/buLZ98x2w787LbLuWRSYrhLGlIiw12AiIiI9A+f32DX0XLKqupIiY+hvNrLD//3EADf/eQ8VsxLDXOFQ4+Ck4iIyDC0Y18p6186QGllXbt9X1oyhXuunDrwRQ0DCk4iIiLDzI59pdz3tBOjk/2LpiWr7UAvaY6TiIjIMOLzG6x/6UCnockC/OefDuLzd3aEdEXBSUREZBjZdbS8w8tzzQygtLKOXUfLB66oYUTBSUREZBgpq+o8NPXmOAmm4CQiIjKMpMTH9OlxEkzBSUREZBhZMDGB6C5unWIBxifGsGha8sAVNYwoOImIiAwTNd5GVj21m3qfv8P9zevoHrxpHtYIrarrDQUnERGRYaDa28g9jxfytquc0bZI/vmG2YxPDL4cl5YYw6/uyODGBePDVOXQ16M+Tk6nk1WrVlFUVNTtcQAZGRm4XC7cbjcZGRkAuFwu8vPzcTgcuFwuVq9ejd1u7131IiIiQlVdA3c/XkjR8QriYyJ56t5FXD45ia8umx7UOXzRtGSNNH1EIQen5rDTHIq6snnzZrZs2QJATk4O27dvD+xbuXJlIHi5XC5WrVoVtF9ERERC56lr4K5Hd/FeiZuEmEie/soVXDrJDoA1wsKS6WPCW+AwE3Jwys3NDflFMzMzqaioAAgaTXK5XEHHORwOCgoKQn5dERERaVFZ28Bdj73DnpOVJI6K4pmvXMGCibppb3/qt1uudHT5raCggOTk4Fn8ycnJOJ3OwKW81rxeL16vN/DY4/H0eZ0iIiJDkbu2njsefYd9pzwkxUbx9FeuYP4Ehab+1i+Tw91uN/n5+eTn55OXlxcYaXK73R0eX17ecffSDRs2kJiYGPhIT0/vj3JFRESGlIqaer641QxNY+KieW71YoWmAdIvI06tJ3w7HA5WrFhBcXFxp8d3FqjWrVvH/fffH3js8XgUnkREZES7UO3l9kfe4dCZKsaOjubZVYuZlRof7rJGjH4JTi6XK3DprXn1nMvlwm63txtdKi8v73RVnc1mw2az9UeJIiIiQ865Ki+3P/I2h89WMy7exnOrrmBGikLTQOrzS3VOp5Ply5e3256cnExOTk6Hz8nKyurrMkRERIaVsqo6bttqhqbUBBu/Wb1YoSkMehWc2l5aczqdgXlMDoeDjRs3BvYVFBSQm5uL3W7H4XAEPc/lcpGVlaU+TiIiIl0466njC1ve5khZNeMTY3h+9RKmjxsd7rJGpJAv1RUUFLBz507AnLSdnZ0daFHQ/Hjt2rXY7XaysrLYtGkTdrud4uLioD5N27dvJy8vj+zsbAoLC9XDSUREpAtnKs2RpqPna5iQGMNzqxczZUxcuMsasSyGYRjhLiJUHo+HxMREKisrSUhICHc5IiIi/eq0+yK3bX2b4xdqmWgfxW9WLyY9OTbcZQ07PckX/dbHSURERHrvZEUtt219m5Lyi6Qnj+K5VYuZlKTQFG4KTiIiIoNMSXktX9jyNqfcF5kyJpbnVi1mgn1UuMsSFJxEREQGleMXarhty9ucrqxj2tg4nlu1mLTEmHCXJU0UnERERAaJo+fN0HTGU8f0cWZoSklQaBpMFJxEREQGgeJz1dy25W3KqrzMTBnNM6uuICVeoWmwUXASEREJsyNlVdy29R3OVXmZnRrPM6uuYOxo3TljMFJwEhERCaPDZ6v44ta3OV9dz5y0eJ5dtZjkuOhwlyWdUHASEREJk4OlHm5/5B3Ka+qZNz6BZ75yBUkKTYOagpOIiEgY7D9dyR2PvENFbQOXTEzk119ehD1WoWmwU3ASEREZYPtOVXL7I+9QebGBy9LtPHXvIhJHRYW7LAmBgpOIiMgA2lPi5s5H38FT18jlk+08ee8iEmIUmoYKBScREZEB8u6JCu56bBdVdY1kTUni8XuyiVdoGlIUnERERAZA0fFyvvRYIdXeRhZNS+bxu7OJs+nH8FCjMyYiItLPCo+Vc/dju6ip97HEMYZH784iNlo/gocinTUREZF+9LbrAvc+UUhtvY8rZ4zhkbuyGRVtDXdZ0ksKTiIiIv3kzSPnuffJQuoa/Fw9cyxb78oiJkqhaShTcBIREekHr394ni8/WYi30c+yWePYfGemQtMwoOAkIiLSx149fI7VT+3G2+jn+jkp/OqODGyRCk3DgYKTiIhIH3rlUBlrni6ivtHPinmp/OKLlys0DSMKTiIiIn2k4MBZvvaMk3qfnxvnp/Gz2y4nOjIi3GVJH1JwEhER6QN/3n+Grz/rpMFn8MlLxvOTLywkyqrQNNwoOImIiHxE/7e3lH987l0a/QY3XTaBH996GZEKTcOSzqqIiMhH8Mf3T/P1ptB0y0KFpuFOI04iIiK99If3TvFPz7+H34DPZkzkv3IvwxphCXdZ0o8UiUVERHrhd++eDISmW7MmKTSNEBpxEhER6aH8opP8c/4eDANuW5TOD265hAiFphGhRyNOTqeTzMzMkI7btGkTmzZtYuXKlbjd7qB9TqcTAJfLFfhaRERkKHi+8EQgNN2xeLJC0wgTcnDKz88HCCnoFBQUsHbtWtauXUt2djbLly8P7Nu8eTOZmZlYLBbWrFmDw+HoRdkiIiL9y+c3eKv4An947xRvFV/A5zd49p0T5L2wF8OAu5dO5fufXqDQNMJYDMMwevQEi4WunuJ0Olm+fDkVFRWAOao0ffp0iouLcTgcbNmyhVtvvRUAu93eo2I9Hg+JiYlUVlaSkJDQo+eKiIiEase+Uta/dIDSyrrAtoSYSDx1jQDce+U0vvupuVgsCk3DQU/yRZ/PccrIyGDr1q2Bx82X6ZKTkwPbQg1MXq8Xr9cbeOzxePqkRhERkc7s2FfKfU87aTtE0ByaVsxLVWgawfplVV1ubm7g6+eff56cnJxAWHK73eTn55Ofn09eXh4ul6vT19mwYQOJiYmBj/T09P4oV0REBDAvz61/6UC70NTavlOV+Ht0rUaGkz6/VNea2+0mMzOToqKioODU/LXT6WTlypUUFxd3+PyORpzS09N1qU5ERPrFW8UXuG3r290e99yqxSyZPmYAKpKB0JNLdf3axykvL4+dO3cGXZprPcLkcDhwuVydjjrZbDYSEhKCPkRERPpLWVVd9wf14DgZfvqtj9OmTZvIy8vD4XAE5jm5XK6giePNWs9/EhERCZeU+Jg+PU6Gn16NOLXuywTmJbfWo0b5+flkZGQEQtO2bduw2+04HA42btwYOK6goIDc3Nwer64TERHpD9PHxRFl7XzStwUYnxjDomn6hX+kCnnEqaCggJ07dwLmpO3s7OzAJPDmx2vXrsXlcrFy5cqg59rtdlavXo3dbicrK4tNmzZht9spLi5m+/btffjtiIiI9M6x8zXc/fguGnwdz+NtjlMP3jRPt1YZwXo8OTyc1MdJRET6w7snKvjyk7spr6lnUtIovnzVNLa85grq4zQ+MYYHb5rHjQvGh7FS6Q9h7eMkIiIylPxl/xm+8Zt3qWvwc8nERB69O4uU+BjuWjKVXUfLKauqIyXevDynkSZRcBIRkRHrqbeO8eCL+zEMuG72OH7xxQzibOaPRmuERS0HpB0FJxERGXH8foONOw6x+TVzYdNtiybz/U/PJ9Lar116ZBhQcBIRkRGlrsHHd7bv4Y/vlwLwzzfM5mvXTtctVCQkCk4iIjJiuGvrWf3rInYdLSfKamFT7qV85vJJ4S5LhhAFJxERGRFKymu5+/FdFJ+rId4WyeY7M1k6Y2y4y5IhRsFJRESGvb0nK7n3yULOVXkZnxjDE/csYnZafLjLkiFIwUlERIa1Vw6V8Q/POqmt9zEnLZ4n7llEWqJumSK9o+AkIiLD1nO7TvBvv9+Hz29w9cyx/PL2DOJjosJdlgxhCk4iIjLsGIbBwzsP8/OXjwCQmzmJDZ+9hCi1G5CPSMFJRESGlfpGPw+88D6/ffcUAN9cPpNv5cxUuwHpEwpOIiIybHjqGrjv6SLeOHIBa4SFH35mAZ/PnhzusmQYUXASEZFhobTyIvc8XsihM1XERVv55R2ZLJs1LtxlyTCj4CQiIkPewVIP9zxeyBlPHSnxNh67O5sFExPDXZYMQwpOIiIypL3+4Xnue7qIKm8jM1JG88Q92UxKig13WTJMKTiJiMiQ9ULRSfJeeJ9Gv8EV05LZcmcWibFqNyD9R8FJRESGHMMw+MXLR/jvnYcBuPmyCfzXykuxRVrDXJkMdwpOIiIypDT4/Hz39/v4TWEJAF9dNp21N8wmIkLtBqT/KTiJiMiQUe1t5B+ecfLq4XNEWGD9pxdw5+Ip4S5LRhAFJxERGRLKPHXc80Qh+097iImK4Oe3ZbBiXmq4y5IRRsFJREQGvSNlVXzpsUJOuS8yJi6aR+/OZmG6PdxlyQik4CQiIoPaO64LrHpqN566RqaNjeOJe7KZMiYu3GXJCKXgJCIig9aLe07znW17qPf5yZySxNa7skiOiw53WTKCKTiJiMigYxgGW15zseH/DgHw8QVp/PjzC4mJUrsBCS8FJxERGVR8foPvvbifX799HIB7r5zGv35yLla1G5BBQMFJREQGjYv1Pr7xm3fZeeAsFgv82yfn8eWrpoW7LJGAHgUnp9PJqlWrKCoq6vI4l8tFfn4+DocDl8vF6tWrsdvt3e4TEZGR63y1ly8/uZs9JW6iIyP46ecX8vFLxoe7LJEgIQen5rDjdDq7PXblypWBcOVyuVi1ahXbt2/vdp+IiIxMR8/X8KXHdnGivBZ7bBSP3JVF1tTkcJcl0k7IwSk3Nzek41wuV9Bjh8NBQUFBt/tERGRkKjpewVeeLKSitoH05FE8cc8ipo8bHe6yRDrU53OcCgoKSE4O/i0hOTkZp9PJ7t27O92XkZHR7rW8Xi9erzfw2OPx9HW5IiISRjv2neGbv3kXb6OfSycl8uiXshkXbwt3WSKdiujrF3S73R1uLy8v73JfRzZs2EBiYmLgIz09vY+qFBGRcHv8jaPc90wR3kY/y+ek8JvVixWaZNDr8+DUmc5CU1f71q1bR2VlZeCjpKSkf4oTEZEB4/cb/OcfD7D+pQMYBtyxeDKb78wkNloLvWXw6/O/pXa7vd0IUnl5OXa7vct9HbHZbNhs+u1DRGS4qGvw8e1te/jT3lIA1t44m/uWTcdiUY8mGRr6fMQpJyenw+1ZWVld7hMRkeHD5zd4q/gCf3jvFG8VX8DnN6ioqeeOR97hT3tLibJa+OkXFvK1a2coNMmQ0qsRJ7fbHTRK5HQ6sdvtOBwOHA5H0LEul4usrKzAiFNn+0REZHjYsa+U9S8doLSyLrBtXLyNCAuc9XiJj4lky51ZLJk+JoxVivROyMGpoKCAnTt3Auak7ezs7ECLgubHa9euBWD79u3k5eWRnZ1NYWFhUJ+mrvaJiMjQtmNfKfc97cRos/1clblCOik2iufXLGFWavzAFyfSByyGYbT9+z1oeTweEhMTqaysJCEhIdzliIhIKz6/wVUbXw4aaWorNcHGmw8s133nZFDpSb4YsFV1IiIyvO06Wt5laALzUt2uox23oBEZChScRESkT5RVdR2aenqcyGCk4CQiIn0iJT6mT48TGYwUnEREpE+cqbxIVzOXLMD4xBgWTdPNe2XoUptWERH5SOob/fzgTwd48q3jnR7THKgevGmeJobLkKbgJCIivXbafZGvPePkvRI3AF+/bgbzxifw/T8F93FKS4zhwZvmceOC8WGqVKRvKDiJiEivvHb4HN/8zbtU1DaQEBPJjz+/kOVzUwG4YUEau46WU1ZVR0q8eXlOI03SK34fHH8Tqs/C6FSYshQirGErR8FJRER6xO83+PnLR/jJXw9jGLBgYgK/uj2T9OTYwDHWCIs6g8tHd+BF2JEHntMt2xImwI0bYd7NYSlJk8NFRCRkFTX13PtkIT8uMEPTbYsmk//VpUGhSaRPHHgRtt0VHJoAPKXm9gMvhqUsjTiJiEhI9pS4+dozTk65L2KLjOAHn7mE3MxJ4S5LhiO/zxxpanfzHpq2WWDHAzDnkwN+2U7BSUREumQYBk+/c4Lvv3SAep+fqWNi+dUdmcwdr1tfST85/mb7kaYgBnhOmcdNu3rAygIFJxER6UJtfSP/+rt9/O7dUwB8bF4qP7r1MhJiosJcmQxrlSWhHVd9tn/r6ICCk4iIdKj4XDX3PV3E4bPVWCMs5N04m1VXO7BYtDpO+omvEd57Ggr+I7TjR6f2bz0dUHASEZF2/ndvKWvz36fa28i4eBu/uO1yrnBolZz0E78fDv4BXv5PuHDE3GaxguHr5AkWc3XdlKUDVmIzBScREQlo8Pl56P8O8ejrRwFYNC2ZX9x2OSkJur+c9APDgOKX4a/roXSPuS12DFz9HXM06YUvNx/Y6klNI543PhSWfk4KTiIiAsCZyjq+/qyT3ccrAFhzjYN/vmE2kVZ1rpF+cHI3FHwPjv3dfBw9Gpb+Iyz+GsQ0LTywRnXSx+mhsPVxUnASERHeLD7PN557l/PV9cTbIvnRrZdxw/y0cJclw1HZIXj5+3Doj+ZjazRkfwWu/jbEjQ0+dt7NZssBdQ4XEZHBwO83+J/XivnRnz/Ab8CctHj+545Mpo6NC3dpMty4T8DfHoI9z4HhB0sEXHYbXPsA2Cd3/rwI64C3HOiKgpOIyAhVWdvAt7e/R8HBMgByMyfx/U8vYFR0+H6bl2Go+hz8/b9h96Pgqze3zfkUXP9dSJkT3tp6QcFJRGQE2neqkvueKaKk/CLRkRH8x83z+Xx2uloNSN+p88Bb/w/e+gXUV5vbpl4NOd+DSVlhLe2jUHASERlhni88wXf/sJ/6Rj+TkkbxP3dksmBiYrjLkuGioc4cXXrtR3Cx3Nw2/jIzMDmugyEezhWcRERGiLoGH9/9/T62F50EYPmcFB6+dSGJseoCLn3A1wjv/wZe2QAe8+8YY2bA9f8Gcz8NEcNjdaaCk4jICHDsfA33PePkYKmHCAt8+2OzuW/ZdCIihvZv/zIIGAYcfMlsXnn+A3Nb/ARz0vfC28E6vKLG8PpuRESknb/sP8O3t++hqq6RMXHR/Oy2y7lyxtjunyjSHderZvPKU0Xm41FJcNX9sGgVRI0Kb239RMFJRGSYavT5+a+/fMDmV10AZE5J4v99MYO0RHUBl4/olBP++h/gesV8HBULS/7BbGAZM7znyyk4iYgMQ2VVdXzjuXd522VOzr33ymms+8QcotQFXD6K8x+azSsP/MF8HBEFWfeYt0iJH/gb7oaDgpOIyDCz62g5X3/WSVmVl7hoKxtzL+VTl04Id1kylFWeglcfgnefabrxrgUu/Txctw6Spoa7ugHVo+DkcrnIz8/H4XDgcrlYvXo1dru9w2Pz8/PJyckBaHeM0+kEICMjA5fLhdvtJiMjo+fVi4hIgGEYPPL3ozy04xA+v8Gs1NH88vZMZqSMDndpMlTVlpvNK3dtBZ/X3Dbr47D8u5A6P7y1hUmPgtPKlSspKjIngLlcLlatWsX27ds7PbatjRs3snbtWjZv3syWLVsAyMnJ6fQ1REQkNJ66BtZuf58d+88AcMvCCfzws5cQG60LC9IL3mp4+1fw5s/A6zG3TV5q9mKafEVYSwu3kP9FuVyuoMcOh4OCgoIOj3W73Wzfvp3c3NzAtk2bNrF27VoAMjMzqagw777d2YiViIiE5tAZD/c97eTo+RqirBb+/ab53HHFZHUBl55r9ELRE/Daf0HNOXNb6iWQ8yDMyBnyzSv7QsjBqaCggOTk5KBtycnJOJ3ODi+ztQ5N+fn5QY8htMDk9Xrxer2Bxx6PJ9RyRURGhBeKTvKvv99LXYOfifZR/L/bM1iYbg93WTLU+H2wdzu88gPzZrwASdPM5pXzPztsmlf2hZCDk9vt7nB7eXl5u22tQ5Hb7aa8vByHwxG0LT8/H4DCwkLWrFkTtL/Zhg0bWL9+faglioiMGHUNPta/dIDndpk/5K6ZNY6ffH4hyXHRYa5MhhTDgA/+z2wtcO6guW10KizLg4y7wKqu8m195IvfnQWqZnl5eWzcuDFoW+tJ5Q6HgxUrVlBcXNzuuevWreP+++8PPPZ4PKSnp3/UkkVEhrSS8lq+9oyTvacqsVjgm8tn8o/Xz8SqLuDSlt8Hx9+E6rNmIJqyFCKs5r5jb0DB9+DkLvNxTCJc+S24Yg1Ex4Wr4kEv5OBkt9vbjS6Vl5d3ecnN7XZTUFDQ7hiXyxW4vNe8Qs/lcrUbdbLZbNhstlBLFBEZ9l45VMa3nn+PyosN2GOj+OkXLmfZrHHhLksGowMvwo488Jxu2ZYwAa74Ghx9FY7sNLdFjoLFX4Urv2l2/pYuhRyccnJy2Lx5c7vtWVlZnT5n9+7dHbYiWL58eWByeLO286dEREYyn99g19FyyqrqSImPIXNKEj9/+UN+/vIRAC5Lt/PL2zOYaB+et7WQj+jAi7DtLsAI3u45DTv/zfw6ItK8HHfNWkgYP+AlDlUhB6e2o0Eul4usrKxAMHI6ndjt9qDjnE5nu0DkcDiCLt0VFBSQm5ur1XUiIk127Ctl/UsHKK2sC2yLtkZQ7/MDcOfiKfzbp+Zii7SGq0QZzPw+c6SpbWhqLWoUrH4Nxs0asLKGix7Ncdq+fTt5eXlkZ2dTWFgY1H9pw4YNZGdnB1oONGsbuOx2O1lZWWzatAm73U5xcbH6OImINNmxr5T7nna2+5HXHJruvXIq/37TyGw8KCE6/mbw5bmONFw05z0pOPWYxTCMLiLp4OLxeEhMTKSyspKEhIRwlyMi0qd8foOrNr4cNNLU1vjEGF7Pu14TwaVzr24y2wp053OPwiW53R83AvQkX6gxg4jIILHraHmXoQmgtLKOXUfbt4GREc7vh8N/hsc/EVpoAnOVnfSYevGLiAwSpe6LIR1XVtV1uJIRpLEe9uXDGz9r6cNkiYTIaGio7eRJFnN13ZSlA1bmcKLgJCIyCBQdL+fhgg9COjYlPqafq5FBr85j3hrl7V9BVdN8puh4yLobrrgPThU1raqD4EniTZd4b3yopZ+T9IiCk4hIGFVebGDTjkM8847ZATzCAv5OZp5agLTEGBZNU/uWEavqjBmWdj/WcvPd0amw+D7IvAdG2c1tiRPh1qc67uN040Mw7+YBL324UHASEQkDwzD4371n+N5L+zlXZd6T89asSSyamsw/579vHtPq+Oap4A/eNE8Tw0eic4fhzZ/B+8+Dr97cNmYmXPkNuPTzENlBs+h5N8OcT3beOVx6RcFJRGSAnayo5d//sJ+XD5UB4Bgbxw8+cwlLpo8BYHRMZLs+TmmJMTx40zxuXKBGhSPKiXfgjZ/CB39q2ZZ+hdnle9bHu7/5boQVpl3dvzWOMApOIiIDpNHn54k3j/HwzsPU1vuIslq479oZfO3a6cREtYwC3LhgPCvmpQV1Dl80LVkjTSOF3w+Hd5iBqeTtlu2zP2mOME1eHL7aRMFJRGQg7DtVyQO/fZ99p8x5KYumJvPDzy5gRkp8h8dbIyyBESgZIRq95qW4N38O5w+b26zR5qW4pf8I42aHtz4BFJxERPpVjbeRh3ce5vE3juI3ICEmkn/5xFxuzUonQiNIAlBXaU72fvt/oPqMuc2WAFn3whVf1X3kBhkFJxGRfvLyobN89/f7OdXUn+mmyybw3U/NVTsBMXlOw9u/hN1PQH2VuS1+QtMKubshRnfIGIwUnERE+liZp471Lx3gT3tLAZiUNIr/vGUB185OCXNlMiiUHTQvx72/DfwN5rZxc8wJ3wtyzeaVMmgpOImI9BG/3+DZXSfYuOMQVXWNWCMsfOWqaXwzZyax0frvdkQzDDjxljnh+/COlu1TroSl34CZH+t+hZwMCvqXLCLSBw6frWLdb/dSdLwCgMsmJfLDz17C/AmJYa5Mwsrvg0N/MnswnSxs2miBuZ+Cpd+E9Oywlic9p+AkIvIR1DX4+MXLR9j8WjENPoO4aCvfuWE2dy2ZqvYBI1lDHex5zrwkV15sbrPaYOFtsOQfYeyM8NYnvabgJCLSS28eOc+//G4vxy6YN1NdMS+V9TfPZ4J9VJgrk7C5WAGFj8I7m6HGbHBKTCJkfwUWrYH41PDWJx+ZgpOISA+V19Tzn386wG+dpwBITbCx/uYF3LggLcyVSdi4S8x7yBU9AQ015raEibDkHyDjLrB13K9Lhh4FJxGREBmGwQvOU/zgTweoqG3AYoE7F0/hOzfMJiEmKtzlSV/z+7q/z9vZ/fDGz2BfPvgbzW0p880O3ws+B1b9vRhuFJxEREJw9HwN//q7vbxZfAGAOWnx/PCzl5AxOSnMlUm/OPAi7Mgzey01S5gAN26EuTfBsdfNFXJHdrbsn3o1XPktmLEcLJrfNlwpOImIdKG+0c+W14r52ctHqG/0Y4uM4Fs5s/jK1dOIsmr5+LB04EXYdhdgBG/3lMK2OyFpGlQcNbdZImDuzeYI08TMAS9VBp6Ck4hIJ3YfK+dffreXw2erAbh65lj+85YFTBkTF+bKpN/4feZIU9vQBC3bKo6aK+Quv8OcwzRm+kBWKGGm4CQi0kblxQY27TjEM++cAGBMXDTf/dQ8Pr1wAhZdghnejr8ZfHmuM597FObd1P/1yKCj4CQi0sQwDP537xm+99J+zlV5Abg1axLrPj6XpDjdBmNEqDge2nE+b//WIYOWgpOICHCyopZ//8N+Xj5k9t5xjIvjh5+5hMWOMWGuTPqd3w8n3oR3n4F9vw3tOaPVj2mkUnASkRGt0efniTeP8d9/OczFBh9RVgtfu3YGX7tuOrZIa/cvIENXxXHY8xt47xlwtxppsljB8HXyJIu5um7K0gEpUQYfBScRGbH2nqxk3e/eZ98pDwCLpibzw88uYEaKmhUOW/W1cPBFMywdfa1le3Q8LPgMLLzd7Nu07UtNO1pPEm+a33bjQ+37OcmIoeAkIiNOjbeRh3ce5vE3juI3ICEmkn/5xFxuzUonQveXG34MA0regXefhv2/h/qqln3TroGFd5g33Y1utVry1qc66eP0EMy7ecBKl8GnR8HJ5XKRn5+Pw+HA5XKxevVq7HZ7h8c6nU4AMjIycLlcuN1uMjIyevw6IiI95fMb7DpaTllVHSnxMSyalhy44e5fD57l3/+wn1PuiwDcdNkEvvupuaTEx4SzZOkPlSebLsU923KjXQD7FHNkaeFtYJ/c8XPn3QxzPtl953AZcXoUnFauXElRURFghp9Vq1axffv2Do/dvHkzW7ZsASAnJyfouJ68johIT+zYV8r6lw5QWlkX2DY+MYZvLZ/Jqx+e43/3ngFgUtIo/vOWBVw7OyVcpUp/aLgIh/5kXoorfoXApbaoOJh/Cyz8IkxeChEhNC+NsMK0q/uzWhmCQg5OLpcr6LHD4aCgoKDT4zMzM6moqAAIGk3q6euIiIRqx75S7nva2a51YWllHXm/3QuANcLCV66axjdzZhIbrdkKw4JhwKki81Lcvt+Ct7Jl35SrzLA079NgGx2+GmXYCPl/jYKCApKTk4O2JScn43Q6A5fg2uro8ltPXsfr9eL1tvTK8Hg8oZYrIiOMz2+w/qUDHfZ7bhZltfDCfUu5dJJ9oMqS/uQphfefNy/Fnf+gZXtiuhmWLvsCJDvCV58MSyEHJ7fb3eH28vLyTo/Pz88HoLCwkDVr1uBwOHr0Ohs2bGD9+vWhligiI9iuo+VBl+c60uAzqPF2tsxchoRGL3zwv2ZYOlIAht/cHjnKnJe08HbzZruhXIoT6YWPPE7dWRBqPeHb4XCwYsUKiouLOzy2s9dZt24d999/f+Cxx+MhPT39o5QrIsNUWVXXoamnx8kgYhhQ+p7ZoHLvdqhzt+xLv8IMS/NvgZjEMBUoI0nIwclut7cbFSovL+90NZzL5QpcemtePedyuXr0OjabDZvNFmqJIjJC+f0GH56t6v5A0Oq5oaS6DN7fZk70LjvQsj1+gnkZbuHtMHZG+OqTESnk4JSTk8PmzZvbbc/Kymq3zel0snz58sDk8GbJyck9eh0Rke68/uF5HtpxMNDEsjMWIC3RbE0gg1hjPXz4Z/NS3Id/AX+jud1qM3stLbwdHNeqLYCETcjByeEInmDncrnIysoKjBQ5nU7sdjsOhwOHw8HGjRsDxxYUFJCbm4vdbm83stT2dUREQrHvVCUbdxzi7x+eB2C0LZLr54zjpT2lQIf9nnnwpnmBfk4yyJzZ23QpbhvUXmjZPjHLnOi94HMwyh628kSa9WiO0/bt28nLyyM7O5vCwsKg3ksbNmwgOzubtWvXYrfbycrKYtOmTdjtdoqLi4OO7ep1RES6cuJCLf+98wP+8J7Z0TnKauGOxVP4+nUzGDPaxicuad/HKS0xhgdvmseNC8aHq+yRx+/rvnlkzQVzztJ7T5vBqdnoVPNS3GVfhJQ5A1u3SDcshmF0tXp3UPF4PCQmJlJZWUlCQkK4yxGRAXSh2svPXz7CM+8cp8Fn/rf16YUT+M7HZpOeHBt0bFedw2UAHHixk9uVbITZn4AjO815Sx/sAH+Dud8aDbM/bt7+ZPr1YFWPLRk4PckX+pspIoNabX0jj/79KJtfc1HtNee7XD1zLHk3zmHBxI5XUVkjLCyZPmYgy5RmB16EbXdB245antOw7U6wJYC31Xy08QvNeUuX5EKs5p/J4KfgJCKDUoPPz7bdJfyk4EPOVZmNcBdMTOCBG+dy1cyxYa5OOuT3mSNNXbUh9Xpg1JimVXFfhLQFA1aeSF9QcBKRQcUwDHbsO8N//fkDXOdrAJicHMt3bpjNpy4ZT4QuuQ1ex98MvjzXmdxHYfp1/V+PSD9QcBKRQeMd1wU2/N8h3itxA5AcF803rp/BF6+YQnSkOkEPaheK4e1fhXZs61VzIkOMgpOIhN2hMx427fiAlw+VARAbbeUrVztYdfU04mOiwlyddMpbDQd+b7YROPFm6M8bndpvJYn0NwUnEQmbU+6L/HjnYV5wnsQwzEndty1K5xvLZ6rD92BlGHDiLXj3adj/e2gwL6diiQDHdXDaCRfddDzPyWKurpuydODqFeljCk4iMuDctfX86m/FPP7mMeobzZu0fuKSNL7zsdk4xo0Oc3XSocpTsOdZs6N3uatle/J0uPx2uOw2MxQFVtVZ6LAN6Y0Pqeu3DGkKTiIyYOoafDzx5jF++coRPHVma4ErpiXzwMfncPnkpDBXJ+001MEHfzIvxRW/TCAIRY82b6q78A6YvBgsrSbsz7sZbn2qkz5OD5n7RYYwBScR6Xc+v8ELzpP8eOfhQEfvOWnx5N04h2tnj8Ni0Uq5QcMwoPQ981Lc3nyoc7fsm3KVObo092awdTEyOO9mmPPJ7juHiwxBCk4i0m8Mw+CvB8vY9OdDHD5bDcBE+yjuXzGLWy6fqG7eg0nNeXj/eXN0qWx/y/aESbDwNrPnUrKj8+e3FWGFaVf3fZ0y4vj8PpxlTs7VnmNc7DgyUjKwhjGEKziJSL8oOl7Bxv87xK5j5QAkjori69fN4M4lU4iJ0sjDoOBrNG9/8u7TcHgH+M3Lp1htMPdTcPkdMG2ZRookbAqOF/DQroc4W3s2sC01NpUHFj1AzpScsNSk4CQifar4XDX/teMDduw/A4AtMoJ7r5rGV5dNJ3GUWgsMCmWHzBvr7nkeaspatk/IMC/FLfgcjNKcMwmvguMF3P+3+zHarNAsqy3j/r/dz8PXPhyW8KTgJCJ94qynjp8UfMi23SX4/AYRFliZmc63VsxkfOKocJcndZWw7wVzdOlUUcv22LFNtz+5HVLnha8+kVZ8fh8P7XqoXWgCMDCwYGHjro1cl37dgF+2U3ASkY/EU9fAllddPPK6i7oGs7VAztxU8m6czczU+DBXN8L5/XD0VXjvGTj4EjSaE/OxWGHWDealuJkfA6tGAmVwcZY5gy7PtWVgcKb2DM4yJ9lp2QNYmYKTiPSSt9HH02+f4Bcvf0hFbQMAmVOSeODjc8ieqrvch1XFMbPf0nvPQeWJlu3j5pqX4i79PIxOCVt5Ip057jnOqyWv8tsPfxvS8edqz/VzRe0pOIlIj/j9Bi/uOc2P/vIBJysuAjB9XBxrb5zDx+alqrVAuNTXmM0n33sGjv29ZbstES75nDm6NCEjuOeSSJg1+Bt49+y7vHryVV47+RrHPMd69PxxseP6p7AuKDiJSBCf32DX0XLKqupIiY9h0bRkrBEWDMPgtQ/P89D/HeJgqQeA1AQb/5Qzi9zMSURadRPePuX3dd8HyTCgZJc50Xvf76C+qmmHBRzXmmFpzichSnPMZPCoqKvg9VOv8+rJV3nj1BtUN1QH9kVGRJKVmsXVE6/m8X2Pc6HuQofznCxYSI1NJSMlYyBLN2sc8D9RRAatHftKWf/SgUCTSoDxiTHcvXQqr314jjeOmHe1j7dF8tVrp3PvldMYFa2l6n3uwIuddN7eaDaX9JTC+78xey5d+LDlmKSp5iTvy24De/qAly3SEcMw+ND9Ia+dfI1XS15lz7k9QWEoOSaZqydezbL0ZSwZv4TR0WZz1QmjJ3D/3+7HgiXoeEvT7XvyFuWFpZ+TxTCMju7EOCh5PB4SExOprKwkISEh3OWIDCs79pVy39PODm/N2izaGsFdS6bwD9fNICkuesBqG1EC93preyaa7v02/jI4sxcMcyI+UbEw7xZz7tLkpRChkT8JP6/Py67SXYFLcKU1pUH75yTP4ZpJ17Bs0jIWjF1AhKXjv7cd9XFKi00jb1Fen7Yi6Em+0IiTiODzG6x/6UCXoWlUlJUd37qaKWPiBqyuEcfvM0eaOjwTTdtK95if0xebYWn+Z8Cm1YsSfmW1Zeao0slXeaf0HS42Xgzss1ltLB6/mGsmXcM1k64hLS4tpNfMmZLDdenXqXO4iAwuu46WB12e68jFBh+n3XUKTv3p+JvBl+c6c8tmWPiF/q9HpAt+w8+BCwd49eSrvFryKgfLDwbtT41NZdmkZSxLX0Z2WjajIns3184aYR3wlgNdUXASGeHqGnz88f0QflgDZVVdhyvppeoyOFIAux8L7Xir/uuW8KhpqOHt028HLsFdqLsQ2GfBwiXjLjHD0qRlzEqaNSxX2epfn8gIdbKilmfeOcHzhSWU19SH9JyU+Jh+rmqE8DXCyUIzLB3Z2XL5LVSjU/unLpEOlFSV8NrJ13jt5GsUnimkwd8Q2BcXFcfSCUtZNmkZV028ijGjxoSx0oGh4CQyghiGwVvFF3jizWMUHDyLv2nazPgEG9VeH1Xexg6fZwHSEs3WBNJLVWfMoPThTnC9Yt4CpbXxl8H05eB8Cmov0PE8J4u5um7K0oGoWEaoRn8je87tMUeVSl6juLI4aH96fHrgElxmSiZRI6zzvIKTyAhQ7W3kd86TPPnWcY6UtfRMuXLGGO5aMpXlc1IoOHiW+552AsE/spsH2h+8aR7WiOE37N5vfA1mj6UjO83AdGZv8P5RSTD9epixwvwc3zSKNOHyplV1TavoApre+xsfat/PSaQTPr8vpInVld5K3jj1Bq+efJXXT72Op94T2Ge1WMlIzWDZpGVcM+kapiZMHZaX4EKldgQiw1jxuWp+/dZx8otOUt00mhQXbeVzmZO4c/GUdveS66yP04M3zePGBeMHtPYhyXPaHFE6UgCuv4HX02qnxQxFM3Jg5gqYmNl5AOqwj9NEMzTNu7k/vwMZRjpayp8am8oDix5g+eTlHK08ak7sPvkq75W9h8/wBY5LtCWavZUmLWPpxKUkRA/vn7k9yRc9Ck4ul4v8/HwcDgcul4vVq1djt9s7PNbpdFJQUABAYWEhW7duDRzrdJq/1WZkZOByuXC73WRkdN/9U8FJpHs+v8HLh8p46q1j/P3D84HtjrFx3LVkCp/LnER8TOdD6511DpcONNZDyTvmqNKHBVC2P3j/qGSYsbxlVGl0D24PEUrncJFOFBwv4P6/3d9h122AMTFjgiZ2A8xMmsk1E69hWfoyLh17aViX/A+0fuvjtHLlSoqKigAzRK1atYrt27d3eGxBQQFr164FYNOmTSxfvjzw3M2bN7NlyxYAcnJyOn0NEQldRU09z+8u4ddvHeeU2+yfYrHA8jmpfGnpFK6cPpaIEAKQNcLCkunDf4Jnr1WebDWq9Gqr25wAWMyRpJkrzLA0YWHvw06EFaZd3RcVywjj8/t4aNdDnYYmgAt1F4iyRHHFhCsCl+AmjJ4wgFUOXSEHJ5fLFfTY4XAERpTacjqdbNiwIRCccnNzycvLw+Vy4XA4yMzMpKKiAqDTESsRCc2+U5U89dYx/vDeabyNZjdpe2wUn89O544rppCeHBvmCoe4Ri+ceKtpYncBnAvuVUPsWPPy24wcc1QpTqFTBp7P7+No5VH2X9jPyydeDro815mfXv9Trp6kcN5TIQengoICkpODV9QkJyfjdDrbXWbLyMhg69atgcdutztwfLNQApPX68Xr9QYeezyeLo4WGTnqG/38375SnnrrOEXHKwLb509I4EtLp3LzZROIiRo5w+x9zn0ieFSpoaZlnyUCJmY1jSrlwPiFus2JDCjDMDhRdYL95/ez/8J+9p3fx8Hyg0GdukNRFTRaKqEKOTg1h5+2ysvLO9yem5sb+Pr5558nJycnEJbcbjf5+fmAOf9pzZo1OByOdq+xYcMG1q9fH2qJIsPeWU8dz7xzgmffOcH5avOXisgIC5+4ZDxfWjqVjMn2Eb3aJaCn84MavXD8DXNE6chOOH84eH9cStOk7hxwXAexassgA8MwDEprSgMBaf+F/Ry4cKDD0DMqchTzxsxjTMwY/nL8L92+9rjYHsy5k4CP3I6gs0DVen9+fn5gfhMQNKnc4XCwYsUKiouL2z133bp13H///YHHHo+H9HTd8VtGFsMwKDxWwZNvHePP+87Q2NR8KSXexu1XTOG2RemkJKgxZUCHK9ImwI0bg1eklR9takBZAEdfg4baln0WK6QvapnYnXapRpVkQJyrPdcuJJXXtR+gsFltzE6ezfwx81kwdgHzx8xnasJUrBFWfH4fe17YQ1ltWYfznCxYSI1NJSOl+0VZ0l7Iwclut7cbXSovL+/2klteXh47d+4MOs7lcgUu7zWv0Gue/9SazWbDZrOFWqLIsFJb38gf3jvNk28e49CZlt8uF01N5q6lU7hhfhpRVv0wD3LgxaYeSG1+WHhKze3XfAe81eao0oUjwceMTms1qnSt2WdJpB9V1FVw4MKBQEjaf2E/ZbVl7Y6LtEQyM2km88fOZ8GYBcwfO5/p9ulERXS8OtYaYeWBRQ9w/9/ux4IlKDxZmvqB5S3KG1Gr5vpSyO0IXC5X0Ko6gKSkJI4ePdppeNq0aRO5ubk4HI7AyJTL5WL58uWByeFut5ukpCQqKiq6DWFqRyAjwfELNfz6reNs212Cp87svRQTFcEtCydy15KpzJugv/sd8vvgJwtCu0kumKNKkxe39FVKXWAuQxTpB1X1VRy8cJB9F/YF5iadqj7V7rgISwSOREfQSNKs5FnYrD0fROioj1NabBp5i/LImZLzkb6f4aZf2hG0HQ1yuVxkZWUF9Way2+2B4/Lz88nIyAiEpm3btrF69WocDgcbN24MvE5BQQG5ublaXScjmt9v8NqH53jyzWP87fA5mn+dmZwcy52Lp7AyaxL22OjwFjnYHX8jtNA0YwVk3GmOKsUk9ntZMnSF2nW7rdqGWg6VHwqMIu0/v59jnmMdHjs1YSrzxswLhKQ5yXOIjeqblbA5U3K4Lv26Xn0P0rkeN8DcvHkz2dnZFBYWsm7dukDgWblyJdnZ2axduxaXy8X06dODnmu32wOjTM3NMe12O8XFxUFBqisacZLhpvJiA/lFJ/n1W8c4dqFljs2yWeP40tIpLJuVouaTnfH74Ox+s1XA8Teh+OU2nbo78blH4ZLc7o+TEa2rrtutR2vqffV8UP5BICTtO78PV6ULv+Fv95oTR08MCknzxswjPjq+3XEy8Pqtc3i4KTjJYBdq1+1DZzw89dZxfuc8xcUG8zYH8bZIVmalc+eSKUwbGzfQpQ9+jfVw+l1zZOnEW3DiHfBWdv+8tr70RzWWlC511nW7eb7QrbNuxY+f/ef386H7Qxr97W+OnTIqhXlj5wXmJM0bM4/kGK3GHKz6rXO4iHSuu/u8Nfj87DxwliffPMY7R1sWWsxKHc2Xlk7lloUTibPpn2SAtxpO7jJHk46/Bad2Q2Nd8DHR8ebqtylLYNIV8LvVUHWGdpPDAbCYq+umLB2I6mWI8vl9bNi1ocPVaM3bth3eFrTdbrO3TNweM5/5Y+eTEpsyIPXKwNP/0iJ9YMe+Uu572tnuv9ozlXV89WknN186nl3HKjjjMX/wWyMsfGxeKnctmcpiR7J6LwHUXGgaSXrLHFUqfR9a3XQUMLt0T1kCk5ean1MvAWur/8Y+vqlpVZ2F4PDU9P7e+JDu9yZU11dzuuY0pdWlnKo+xenq05yuOc3p6tOc8JygqqH7xpAfn/pxcqbkMH/sfCbETdC/4RFEwUnkI/L5Dda/dKDDMY7mbS++XwrAmLhobls0mS9eMZkJ9lEDVuOg5C5pmZ90/E04/0H7YxInmyNEzWFp7MyuV77NuxlufaqTPk4PBfdxkmHJMAw89R5Ka1qFoqaP5m2e+o9+F4pr06/lY1M/1gcVy1Cj4CTyEe06Wh50ea4z/3DddL6xfCa2yBE44mEYcP7DlvlJx9+CyhPtjxs3xwxKzSNKiZN6/mfNuxnmfLJnncOlz/V2RVp3DMPA7XVzuvo0p6pPBcJQaXUpp2rMz9UN1d2+TqItkQlxE5gwegLj48YzcfREJoyeQEVdBd9763vdPl9dt0cuBSeRj6C+0c/rR86FdOys1PiRE5p8jXB2rxmQjr8BJ96G2vPBx1isMP6yphGlpZC+uO9ukBth1QTwMAp1RVpHDMPgQt2FljDUJhydrjkd0j3ZkmOSA8Eo8NHqcVxUxwswfH4fv9rzK3Xdlk4pOIn00PlqL68cKuOVD8p47fB5qr3tV9R0JCV+iNwWpaf3eQNoqINTRXCi6bJbyS6ob/Nbf2QMTMqGyUvM15yUDbbR/fd9SFh0tiKtrLaM+/92Pz9a9iMuHXdp8EhRUzhqvqRW76/v9s8ZN2pcuzDU/Hj86PGMiuzdpXB13ZbuqB2BSDcMw2D/aQ+vHCrjr4fK2HPSTet/NcmxUVxs8AfaCrRlAdISY3g97/rB35Mp1Pu81VWa4ah5ftJpJ/ja/LCzJZqduZvnJ024HCLVxHM48/l93PDCDUEjTb0RYYkgJTal3aW08aPNz2lxab3qpN0T6ro9sqiPk8hHdLHexxtHzvPXQ2W8cqgssBqu2fwJCSyfk8L1c1O5dGIifzlwhvuedgIdruXiV3dkcOOC8QNTfG91dp+35u9iydfB32AGpbP7oG2Dv9FpwSveUuZpXtEw5Tf8nKs9R0lVCSVVJZyoOkFJVQkHLxzkRFUHc9faiCCC8aPHB4eiVvOMUuNSO70P20Dqr3laMvgoOIn0wsmK2sCo0pvFF6hvbAkGo6KsXDljLMvnpnDd7BTSEttfduuuj9Og1tP7vAEkTYMpVzaFpSWQ7NC93oaRRn8jZ2rOmKHIExyQTladpM7X/YKIzvzwqh9y0/Sb+rBakY9GDTBFQuDzG7x7ooK/Hirj5YNlfHA2uHfLRPsols9N4fo5KSx2jCEmquvfNG9cMJ4V89JC6hw+aDRchLIDsPeF0ELTnE/Bgs+Zc5Ti0/q/vhFsIEY76n31nKw+2S4YlVSVcKrqFI1G5/P3rBYr4+PGMzlhMunx6aTHp+Nt9PLz937e7Z+bFqe/OzJ0KTjJiFJZ28CrH57j5YNn+dvhc7hrGwL7IiyQOSWJ6+eksnxuCjNTRve4qZ01wsKS6X20Mqyv1VyAM+/Dmb1NH+/D+cPtL7l1Zf5nYMFn+69GAT7aqrS2ahtq211SK/GYX5+pOdPhyrFm0RHRTIqfxOT4yebnppA0OX4y40ePb3c5zef3se3wNq1Ik2FNwUmGNcMwKD5XzV8Pmpfgio5X4PO3/IeeOCqKZbPGsXxuCtfMHEdS3DCYvGwYUHEsOCCd2QueUx0fHzsW7OnmfeC6Mzq1T0uV9rpblfbwtQ+3C0+V3kozGHlOBI0alVSVcP5imzYQbcRGxgaNGk2ObwpHCZNJiU0hwhIRcu1akSYjgeY4ybDjbfTxjquclw+V8fKhMk6U1wbtn5kymuvnprB8TioZk+1EWkP/wTDoNNbDuUPBAenMXvB20hk52QFpl0DapU0fl5iX3Ax/0xynUrq8z9u39mrCdz8KZVVaYnQiK2ev5FTVqcAoUnedsO02e4ejRpPiJzEmZkyf3y5EK9JkqNEcJxlxyjx1vPKBGZT+/uF5autbWgNEWyNYPH2MuQpuTgrpybFhrPQjqKtsNYrUFJTKDpkr3dqyRkPK3OCAlLYAbPEdv7bFarYc0H3ewqLB18DZ2rP8reRv3S7lr6yv5JG9j7TbnjIqpV0wSk8wR5ESogf2F82cKTlcl36dVqTJsKTgJIOKz2+ENLna7zfYd7qSvx40G1G+f7IyaH9KvI3rm4LSlTPGEmcboL/qvWke2ZZhmJfVmgNS6R7zs/t4x8fHJLYEpPFNIWnsLLD2cDm37vPWL7w+L2U1ZZypPcPZ2rOcrTnL2dqznKlpeXyh7kKPXnNx2mKunHhlIBhNGj2J2KjB9QuBNcJKdlp2uMsQ6XMKTjJodLecv8bbyN8/PM8rh8p4+YMyzlV5g55/2aTEwMTueeMTiBjo1WyhNo9szdcIFz4MDkhn9sLF8o6PT5zcNHp0SUtISkzvuzYAw+Q+bwPVf6eusS4oDAUCUavH5XWdnMs2oiOiSbQlcu5i97fwWX3ZaoUSkTDRHCcZFHbsK+W+p52dru+ZOz6e4rIa6n0tK8Dioq1cPXMc189N4drZ48J7S5Pumkfe+hRMv95c+t86IJUdgMYO+uFYrOYNb1sHpNQFEJvc39/JkNdXK9JqG2oD4ScQhGrOmiNHTY/dXndIrxVjjSE1LpXU2FTS4tJIjTW/To1reWy32fEbfm544YZuV6Xt+NwOXfYS6UNqgClDis9vcNXGl4NGmjozZUws188xJ3ZnT0saHDfNDaV5ZEQk+DvpiRM92gxFzQEp7RIYNxeihsi97QaRzlakNa/oal6RVttQy5maM0EhqO3ls+4mXDcbFTmqJQTFprULSGlxaSREJ4Q8Abv5ewA6XJXW0ao6EfloFJxk0PP5DY5dqOFQaRU7D5zh9+9133zxv2+9jM9ePrHPVwD1Sn2tOeeo4jgc+SsUbgnteaPTggNS2qVmB+6IIbyyb5Dw+X187IWPUVZb1ukxkZZIYqwxVDdWd3pMa7GRsUEBqDkUtR4tio+K16o0kSFOq+pkUHHX1nOwtIpDZzwcLPVw6EwVH5ypwtvqliahiIywDFxo8jWC56QZjJoDUsWxlq9rOv/h3KlPPgzZX+7zUvvaYLk/l2EYVDVUUVFXQUVdBeV15ebX3oqWbd7ywNfnL56noaMVhq00Go2B0BQfFd8ShNqMFjUHpdHRowfiW21Hq9JEBi8FJ+kzDT4/R8/XBMLRwVIPh0qr2t0gt9moKCuz0+JJjovi5UPmhNgI/CyKOEQKbsqws8s/Bz/maEyfzmEyDKg53yoMtfpccRwqT4Lh6/o1bImQNAWi4+DEW93/mWNn9UHh/asvO1a35fP7qKyvDA5BrcKPu84dFIQqvBU0dnZ58yP4dua3WTl7JXFRcX3+2n1Jq9JEBicFJ+mV89VeDgVGkczPH56tDpq83Vp68ijmpCUwd3wCc9PimTM+gcnJsVgjLIE5TpdVvca/Rz3FBEvLKqTTRjL/0XAXe+KvYdG0Hk6M9lYHh6G2I0cNtV0/3xoN9smQNBXsU8yQ1PrrUUnmcYE5TqX4MHDG2DhntTLO5yOjzou1uXnklKU9q3+A9bRjdYOvITD603o0KCgU1ZXj9rrNYOR1d3l7j87ERsaSFJNEckwySTFJ2G32wNdJtpbtJVUlPPD3B7p9vflj5w/60CQig5eCk3SpvtFP8bnq4FGkM1XtWgE0i4u2Mmd8AnOawtG88fHMSo0nPqbznkLWCAu/zDjJZW/+pN2+NMr5ZdRP2JPhaN/PydcAlSWtQtGx4K9ru+uN0xRoWoche1M4SppizkcKZe5RhNk8suCPa3hojJ2zkS3/rFIbG3nggpucQdo80jAM6v31VNZV8oO3f9BhsGne9sDfH2DWvlmBIFTdENo8obYSohOCgk9zKLLb7EEBqfmzzWoL6XXnj5nPj4t+rPukiUi/UnAaRkJtHtkRwzA4V+Xl4JkqDpW2zEU6UlZNo7+DH0IWmDomzgxIaQnMGR/PvPEJTLSP6nn/JL+Py/c/hGEBP1DYZsQmArj8vQfBdgbcJ1pGjjwnu79B7aik4DAUGDmaBomTIDK0H8rdKYiL5f7UsbRda1FmtXJ/6lgejoulL6f0+g0/tQ21VDdUBz5XN1RT01BDdX3T54ZWn+trqGnseF+ol8O8Pi97z+8N2ma1WEm0JXYYhJJimr62JWOPMUeJEm2J7W4M21d0nzQRGQhaVTeI9SQI7dhXyn+8uIcxvp3ERp6ntnEsF6wr+PebL+PGBeODjq1r8HGkrP0oUnlNfYevHR8TGXSJbU5aPLPT4omN7kXuNgzz1iG1F8w5RrUXzPlBb/6MgthRPDQmqYMRmwpyai92/HqRMR1fRmv+HJPY8xp7qLv7i7XuveM3/IHQEhRg6quDg07TttrG2qCw0/q54XDn3DvJmZITCEfx0fE9ugnsQNCKNBHpKbUj6KX6xnqeP/w8xyuPY7FYmJs0j/1nzuL3xTIlcQJfvOxaopt+qNfXe/n9q5sp85wgJWEytyxbQ3R016MXPXlOT4LQjn2lPPridzmf+hbnI1t+iI1t9DPm7BKuyPwOsdGRHGoaTXKdr8HXwShShAWmjY0zQ1Kry20TEmM6X83mazDDTyAInYfa8lZfN28vb3ncwQhHQewo7k8Za44RtPqzLE1/PR8uO0/OuAxwXBccjEan9lnX7ObLVnWNdeaHr+Wzt9EbeOz1ebnYeBGvz4vX56XYXcwfXX/s9vUjLZE0Gn072TnSEklcdByjo0YTF9Xmc9P22KhYRkeN7nBf8+P9F/bzlb98pds/77EbHhsSE5YHy8pAERka+i04uVwu8vPzcTgcuFwuVq9ejd1u7/GxPXmd3n5jPfXw7od5cv+T+On80o+lMZE7Z32TxPL3eO7879uFlNvG3sLqT/+gw+du+cO/hvycroLQ2LNL+PLN3w+Ep4ZGP1/+ydd4b+zrnYaOWacXs9vzmaA/wx4bxdymydpzxsczNy2BmSlxxBgXm8JOUxiqPd8yMlR7Pnh77QVz9Kg3ouMhbgzEjsGHhRsiTnPWau04BBkGKT4fTy35IQ0TLw8p0HS0v/nxRd9FvI3edsd7fd5eTV7ujVGRo9oHnag4RkePJjYyltHR7YNQ221xUXHYrLY+adHQPGqmjtUiMhL1W3DKzMykqKgIMMNPXl4e27dv7/GxPXmd3n5jPfHw7od5fN/jgNH16IVhEHTn+A5CyteTPt0uCG35w7/yi4o/dBpsWj/H5ze498f38e6YzoPQvDNL8SXezZmqOs66q5k4fR3nrZYOa7cYBmN9BtfWfp0r0qxMjb3IxKga4hrdWC62jAz5astpqD1Pvb+eBiw0WJo/oN5ioQGL+bn5cdD+CBqiR9Ngi6M+KpaG6FHUR8XQGBlDvTWahsgo6iMiabBGmsdaLDQYPhr8DTT4G6ioK+eYp5Mb2IaJ1WIlJjKGGGtM4LMt0hZ4bLPaAtvdXjevlLzS7WtuumYTSycsJS4qjsiIwTe9UB2rRWSk6pfg5HK5WLlyZSDwACQlJVFRUdGjY3vyOh/lGwtVfWM9WU9nmj8oQvnN3WgfmlrvS/YZPHLL77BaI6n3NeCureGf/3In7k6CDYZBvB/SrLfjra+n5qKHutF/piai8z9jlGEw2ZOC1eLDH1nNobium/4BpNc3EI0RCD3NYajBAg0WC77B0I27G1aLldjI2HbBxRbZ6murjVGRo4L2d3T8KOuoToOQLdLWownMw2m0RvODRGQk6pfO4QUFBSQnB/fRSU5Oxul0kpGREfKxu3fvDvl1BsIz+5/GsEDgZqzd6SpgWCyUR1r47B8/F7w9sovJsxYLVVao4lmIxvzoqhaLhYsWCx/Yz4dWb5OS6J6tZIqKiCIqIopoa3TQ58iIyHbboiOiibJGtXtO0NfWjl8vOiKao56j/NT5025r2vqxrYNyfs1wWs2ljtUiIl0LOTi53e4Ot5eXl7fb1tWxPXkdr9eL19vSL8jjCe2mmz3x7p6X+vw1bX4/owwDqwENFvBYu/+hM9dbz8TGRs5ZI9gT032H7GWNo7jEPoXT3gp+29Dxaq7WvjX1Fi6dfXNQiOko/ERHRBMZETmg94Pz+X385tBvhnT/nZwpOTx87cMddt0eaqM16lgtItK5jzzRorMg1NNjO9q3YcMG1q9f3/OiemDcRS/08U3o10VkcN2M64mOtvGK62/8S133t+O4dfKXyc35Jm/v+TWr9nU/+nLH5atZnPEVfI31vP5UBuciwOhkjlOKH+6+8rtYI6N79f30t+EyYqPRGhGR4S/kBix2u73dqFB5eXmHq+G6OrYnr7Nu3ToqKysDHyUlJaGWG7JrYxcRYRgtc5e608WxFsNgXKOfm257hOQr72F09he54TM/Z2yjPzCxu7Pn3Hz9NyHSRvZld5HiM7o8PtVnkH3pXQBYI6NZN+v2wL62xwI8MOv2QRuamjWP2KTEpgRtT41NHVKTkptHaz7h+ATZadkKTSIiw0zIwSknp+MfXFlZWT06tievY7PZSEhICProa1esfIA73VXmg+7CU6v9nYWUL4y9Jag3U3S0jdvG3hLyc3oThHKuWsfDM24npU0nhVQ/PDzjdnKuWtf19zVI5EzJ4c+f+zOP3fAYG6/eyGM3PMaOz+0YMqFJRESGv5Av1TkcjqDHLpeLrKyswEiR0+nEbrfjcDi6PLbtyFLb1xlo0TExXBnzSSzuP/KUPaGLLk6Q5vOx9oKbsgnX84j3Pc5HtlwaG+sz+EInfZxWf/oH8Aea+jh1/5ycq9bxMPDQ4Wc422rAItUPebM6DkI5V63jusXfxrn315zznGBcwmQyLrlz0I80taX5NSIiMpj1uAHm5s2byc7OprCwkHXr1gUCz8qVK8nOzmbt2rXdHtvVvq70ZwPMt/7naywsfZb8xDiOR0ZiAeZ766myRpDk85Pq83F59Fgib3wI5t3c753DAXyN9UM+CImIiAx2uuVKL9XX1VH0wn9BeTEA1kmZjIusY0r6ZCISJ8CUpYPyDvciIiLSe/3Sx2kkiI6JYcnt3w13GSIiIjJIDa7bmouIiIgMYgpOIiIiIiFScBIREREJkYKTiIiISIgUnERERERCpOAkIiIiEqIh1Y6gueWUx+MJcyUiIiIyXDTnilBaWw6p4FRVZd5TLj09PcyViIiIyHBTVVVFYmJil8cMqc7hfr+f06dPEx8fj8Vi6f4JPeTxeEhPT6ekpKRfOpNLaHQewk/nYHDQeQg/nYPBob/Pg2EYVFVVMWHCBCIiup7FNKRGnCIiIpg0aVK//zkJCQn6BzII6DyEn87B4KDzEH46B4NDf56H7kaammlyuIiIiEiIFJxEREREQqTg1IrNZuPBBx/EZrOFu5QRTech/HQOBgedh/DTORgcBtN5GFKTw0VERETCSSNOIiIiIiFScBIREREJkYKTiIiISIiGVB+n/uRyucjPz8fhcOByuVi9ejV2uz3cZQ0LTqeTgoICAAoLC9m6dWvgve3qfe/tPulaXl4e69at0zkIk4KCAlwuFw6HA4CcnBxA52GguFwuCgoKSE5OxuVykZubGzgXOgf9x+l0smrVKoqKioK298d73u/nwxDDMAwjIyMj8HVxcbGRm5sbxmqGl40bNwZ93fq97up97+0+6VxRUZEBGBUVFYFtOgcDZ+fOncbq1asNwzDfM4fDEdin8zAwWv9/ZBhG4HwYhs5Bf9m+fXvg/562+uM97+/zoeBkmG9s6zfaMAzDbreHqZrhpaioKOi9LC4uNgCjuLi4y/e9t/uka9u3bzccDkcgOOkcDKzW771hmO9j82edh4HR9v1qHWR1DvpX2+DUH+/5QJwPzXGCwLBta8nJyTidzjBVNHxkZGSwdevWwGO32w2Y729X73tv90nn8vPzyc3NDdqmczBwXC4X5eXl2O12nE4nbrc7cIlI52HgJCcnk5mZGbhkt2LFCkDnIBz64z0fiPOh4ETLD/O2ysvLB7aQYar1D+vnn3+enJwc7HZ7l+97b/dJx9xud4fX+HUOBo7T6SQ5OTkw92LLli3k5+cDOg8Dafv27QBMnz6d7du3B/5/0jkYeP3xng/E+dDk8C50dgKkd9xuN/n5+e0mB3Z0XF/vG+m2bdvG6tWrQz5e56DvlZeX43K5Ar84rF69mqSkJIwuehDrPPS9goICNm7ciMvlYs2aNQBs3ry50+N1DgZef7znfXk+NOIE2O32dmm0eUhd+k5eXh47d+4MvK9dve+93SftFRQUcOutt3a4T+dg4DgcjsB7BwQ+O51OnYcB4nK5KCwsJCcnh9WrV1NcXMy2bdtwuVw6B2HQH+/5QJwPBSdalgO3lZWVNcCVDF+bNm0iLy8Ph8OB2+3G7XZ3+b73dp90bNu2bWzZsoUtW7bgcrnYsGEDTqdT52AANc9n6ojOw8BwOp1kZ2cHHjscDtatW6f/j8KkP97zgTgfulRH+//QXC4XWVlZ+o2hj+Tn55ORkREITc2Xjdq+v63f997uk/ba/keyZs0a1qxZ0+EPcp2D/uNwOMjKygrMN2vu5ZSRkdHuWJ2H/pGRkcHmzZuD5l1euHBB52AAtZ5v2dXP3sH880E3+W3icrnYvHkz2dnZFBYWBjUIlN5zuVxMnz49aJvdbqeioiKwv7P3vbf7pGNut5stW7aQl5fH6tWrWbNmDRkZGToHA8jtdpOXl0dmZiZFRUWBUVjQv4WBUlBQELg8CuYvFjoH/augoICdO3eyadMm1q5dS3Z2diC89sd73t/nQ8FJREREJESa4yQiIiISIgUnERERkRApOImIiIiESMFJREREJEQKTiIiIiIhUnASERERCZGCk4iIiEiIFJxEREREQqTgJCIiIhIiBScRERGRECk4iYiIiITo/wNbuBcRr9uKvwAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -1224,9 +1224,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFUCAYAAADS/LOVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABO3UlEQVR4nO3deXxUd73/8ddMViDLEEgIS6AMawOlJQt0sa1KaNEKVRvQ1i52Aaz3Xpf6k4herbhcSrxWva7QWrXF1jZR29IqlXGp1rYkZOhCgQIZyhoIkEwmBLLNnN8fJ5lksk4gk5kk76eP2Mw535l8zhyYvPme7/l+LYZhGIiIiIhIr6zhLkBERERksFBwEhEREQmSgpOIiIhIkBScRERERIKk4CQiIiISJAUnERERkSApOImIiIgEScFJREREJEjR4S6gL3w+H8ePHycxMRGLxRLuckRERGQIMAyD2tpaJkyYgNXac5/SoApOx48fJyMjI9xliIiIyBB05MgRJk2a1GObQRWcEhMTAfPAkpKSwlyNiIiIDAUej4eMjAx/zujJoApOrZfnkpKSFJxERESkXwUzDEiDw0VERESCpOAkIiIiEiQFJxEREZEgKTiJiIiIBEnBSURERCRICk4iIiIiQRpU0xGIiIjI8OL1GZQcrKKytp60xHgWTE0hyhq+1UMUnERERCQibd1Vwbotu6moqfdvG58cz4NLM1kyd3xYatKlOhEREYk4W3dVcP9mZ0BoAjhRU8/9m51s3VURlroUnERERCSieH0G67bsxuhiX+u2dVt24/V11SK0FJxEREQkopQcrOrU09SeAVTU1FNysGrgimqh4CQiIiIRpbK2+9B0Ie36k4KTiIiIRJS0xLgg28WHuJLOdFediIiIRAzDMPjb3soe21iA9GRzaoKBph4nERERiRg/+0c5j/zroP9xxxmbWh8/uDQzLPM5KTiJiIhIRPjNq+/xvZfeBeC/b7qUX9yeRXpy4OW49OR4fn57VtjmcdKlOhEREQm735cd5cHn3wHgc4tmcN+1dgAWZ6Zr5nARERGRVlt3nWDN798C4NNXX8IX82b490VZLVw1bUy4SutEl+pEREQkbP61/xSfe2onXp9BfvYkvvGRTCyW8PUo9UbBSURERMKi7FA1qx4vo9Hr40Nz03no45dhDeNluGAoOImIiMiA233cw92/KuF8k5drZ4zlh5+8guioyI8lkV+hiIiIDCmuU2e587HteOqbyZkymo13ZBMXHRXusoKi4CQiIiID5pj7PLc/up3TZxuZMyGJx+7OZWTs4LlXrU/Byel0kp2d3Wu74uJi3G43bre7y9dwOp0AuFwu//ciIiIytJ2qbeD2R7dzvKYee+oofnPPApLiY8JdVp8EHZyKi4sBggo6y5cvZ/To0YwePRqLxYLFYqGwsBCAjRs3kp2djcViYfXq1djt9gssXURERAaLmnNN3PlYCQdP1zHRNoLf3reQsQnBrUkXSYLuG8vPzw+qndvtpqioKKB9YWEha9asASA7O5vq6moAbDZbH0oVERGRwaiuoZm7f13CngoPYxPi+O19CxmfPCLcZV2QkFxUbB+aiouLO4UuBSYREZHhob7Jy+onynAedpM8IobN9y3gkrGjwl3WBev34NQ+FLndbqqqqgIux7ndbv9lv9LSUl2uExERGaKavT4+99ROXjlwmpGxUfz67lxmpyeFu6yLEtJh7AUFBWzYsCFg26pVq/zhym63s3jxYsrLy7t8fkNDAw0NDf7HHo8nZLWKiIhI//H5DNYUv8Vfdp8kNtrKo3flMH/y6HCXddFCNh2B2+3G4XB0uizncrn839vtdlwuV8C29tavX09ycrL/KyMjI1TlioiISD8xDINvbnmHP+w8RpTVws9uy+LqaWPDXVa/CFlw2rFjR6fQ5HQ6WbRoUae2KSkpXb7G2rVrqamp8X8dOXIkFKWKiIhIP/r+X/bx+GuHsFjg4RWXk5c5Ltwl9ZsLulTndrsDQpHT6cRmswWMVXI6nZ0Ckd1uD7h053A4yM/P73aweFxcHHFxg+9WRRERkeFq48vl/OTvBwD4zkfncvMVE8NcUf8KOjg5HA62bdsGmJfQcnNz/XfLtT5unXKgVcdB3zabjZycHAoLC7HZbJSXl1NUVHSxxyAiIiIR4LfbD7H+z3sB+MqHZvOphVPCXFH/sxiGYYS7iGB5PB6Sk5OpqakhKWlwj8oXEREZSp574xhfePoNDAM++/5prFkyO9wlBa0v+UJr1YmIiMhF+euek3zpmTcxDLjzqil8+cZZ4S4pZBScRERE5IK9Wn6a+3/rpNln8LH5E/nm0jlYLJZwlxUyCk4iIiJyQd444mblb3bQ2OxjceY4vpc/D6t16IYmUHASERGRC/DuiVrueqyEukYv10wfw49vnU901NCPFUP/CEVERKRfvXe6jtt/uZ2a803Mn2xj0x05xMdEhbusAaHgJCIiIkGrqDnPpx7dzqnaBmanJ/LrTy9gVFxIV3CLKApOIiIiEpQzZxu4/dHtHHOfZ+rYUTxx70KSR8aEu6wBpeAkIiIivfLUN3HnYyWUn6pjQnI8m+9bSGri8FvdQ8FJREREenS+0cu9vy7lneMexoyK5Yn7FjLRNiLcZYWFgpOIiIh0q7HZx2c2l1H6XjWJ8dE8fu8CpqUmhLussFFwEhERkS41e3184emdvLzvFCNiovj13bnMmZAc7rLCSsFJREREOvH5DNb+4W3+9PYJYqOsbLozm+wpKeEuK+wUnERERCSAYRh858U9FJUdJcpq4f9unc+1M1LDXVZEUHASERGRAD907Oexfx8EoPCWeSyZmx7miiKHgpOIiIj4PfovFz/6634A1i2bwy3Zk8JcUWRRcBIREREAnik9wnde3APA/7thJnddfUl4C4pACk4iIiLCi29V8JU/vAXA6uvs/McHpoe5osik4CQiIjLM/f3dSr7w9E58Bty6YDJf+dBsLBZLuMuKSApOIiIiw1jJwSru31xGk9dg6eUT+M5H5yo09UDBSUREZJh6+2gN9/y6lPomH4tmp/HwisuJsio09UTBSUREZBg6UFnLXb8q4WxDM1faU/jpp7KIiVIs6I3eIRERkWHmSNU5PvXodqrqGrl8UjKP3pVLfExUuMsaFBScREREhpFKTz2fenQ7Jz0NzBqXyK/vXkBCXHS4yxo09E6JiIgMUV6fQcnBKipr60lLjGdGWgK3/3I7h6vOMTllJE/cu4DRo2LDXeagouAkIiIyBG3dVcG6LbupqKn3b4uJstDkNUhPiue39y0kLSk+jBUOTn26VOd0OsnOzg6qndPpBMDlcvm/b31cWFhIcXExhYWFuN3uvlUsIiIiPdq6q4L7NzsDQhNAk9cAYPX1djJSRoajtEEv6OBUXFwMEBCCurNx40ays7OxWCysXr0au93u37d8+XLWrFlDfn4++fn5rFy58gLKFhERka54fQbrtuzG6KHNpn+68Pp6aiHdCfpSXX5+ftAvmp2dTXV1NQA2m82/3eVyBbSz2+04HI6gX1dERER6VnKwqlNPU0cVNfWUHKziqmljBqiqoSNkd9XZbLaA0ATgcDhISUkJ2JaSkhJUL5aIiIj0rrK259DU13YSKCSDw91ut//SXmlpqf9yXXfjmaqqqkJRhoiIyLCTlhjcgO9g20mgkASnVatW+Xub7HY7ixcvpry8vNv23QWqhoYGGhoa/I89Hk9/likiIjLkXDo+kdgoC43erscwWYD05HgWTE3pcr/0LCSX6tqPZbLb7bhcLlwuFzabrVPvUlVVVadLeq3Wr19PcnKy/ysjIyMU5YqIiAwJ1XWN3PlYSY+hCeDBpZlak+4C9XtwcjqdLFq0qNP2lJQU8vLyunxOTk5Ol9vXrl1LTU2N/+vIkSP9WquIiMhQUemp5xObXuOtozWkjIrlqx+azfjkwMtx6cnx/Pz2LJbMHR+mKge/C7pU53a7A3qJnE4nNpsNu92O3W5nw4YN/n0Oh4P8/PwuB4u7XC5ycnK67XGKi4sjLi7uQkoUEREZNo5UneP2X27n0JlzpCfFs/m+hUxPS+Dea+0BM4cvmJqinqaLFHRwcjgcbNu2DTAvoeXm5vqnKGh9vGbNGmw2Gzk5ORQWFmKz2SgvL6eoqMj/OkVFRRQUFJCbm0tpaWnAPhEREemb8lNnuf3R7VTU1DM5ZSS/vW+hf3LLKKtFUw70M4thGINmBiyPx0NycjI1NTUkJSWFuxwREZGw2n3cwx2/3M6ZukZmpCWw+b6FjNMyKn3Wl3yhtepEREQGobJD1dz9qxI89c3MnZjE4/csJEUL9oacgpOIiMgg8+qB09z3+A7ONXrJmTKax+7OJSk+JtxlDQsKTiIiIoOIY/dJPvukk8ZmH9fOGMvGO7IZGatf5wNF77SIiMgg8fybx3ng6Tdo9hncOGcc/3frfOKio8Jd1rCi4CQiIjII/K7kMGv/+DaGAR+fP5HC/HlER4VsyVnphoKTiIhIhHv0Xy6+8+IeAG6/cjLfWjYXq+ZjCgsFJxERkQhlGAY/+ut+fujYD8Dq6+18ZclsLBaFpnBRcBIREYlAhmHwP3/awyP/OgjAl2+cxWffP02hKcwUnERERCKM12fw38++zVMl5hqtDy7N5O5rpoa5KgEFJxERkYjS5PXxpWfe5Pk3j2O1wEO3zGNFTka4y5IWCk4iIiIRor7Jy38+6cSxp5KYKAs//MR8bpo3PtxlSTsKTiIiIhGgrqGZVU/s4N8HzhAXbeUXt2fzgdlp4S5LOlBwEhERCbOa803c/asSnIfdjIqN4pefzuVK+5hwlyVdUHASEREJo9NnG7jzlyXsrvCQPCKG39yzgCsybOEuS7qh4CQiIhImFTXn+dSj23GdqmNsQhyb71vA7PSkcJclPVBwEhERCYNDZ+q47ZHtHHOfZ6JtBJvvW8jUsaPCXZb0QsFJRERkgO07Wcvtj26nsraBqWNHsfm+hUy0jQh3WRIEBScREZEB9PbRGu58bDvV55qYnZ7IE/cuJDUxLtxlSZAUnERERAZIycEq7vl1KWcbmrk8w8Zv7s7FNjI23GVJHyg4iYiIDICX951i9RM7qG/ycaU9hUfvyiUhTr+GBxudMRERkRDbuquC/3pqJ01egw/MSuXnt2cTHxMV7rLkAig4iYiIhNDvy47y5eI38Rlw02Xj+cEnriA22hrusuQCKTiJiIiEyBOvvcfXn3sHgBU5k1j/8XlEWS1hrkouhoKTiIhICPzsHwco3PouAHdfcwlfvykTq0LToKfgJCIi0o8Mw+B7L73Lz/5RDsDnPjidLy6eicWi0DQUKDiJiIj0E5/PYN2Wd/jNa4cAWPuh2ay+flqYq5L+1KfRaU6nk+zs7KDaFRYWUlhYyPLly3G73QH7nE4nAC6Xy/+9iIjIYNbs9bHm92/xm9cOYbHAdz46V6FpCAo6OBUXFwMEFXQcDgdr1qxhzZo15ObmsmjRIv++jRs3kp2djcViYfXq1djt9gsoW0REJHI0Nvv43O92Ulx2lCirhYdXXM7tV04Jd1kSAhbDMIw+PcFioaenOJ1OFi1aRHV1NWD2Kk2bNo3y8nLsdjubNm1ixYoVANhstj4V6/F4SE5OpqamhqQkrR4tIiLhd77Ry2c2l/HyvlPERln58W3zuXFOerjLkj7oS77o9zFOWVlZPPLII/7HrZfpUlJS/Nv6GphEREQiUW19E/f+ZgclB6sYERPFpjuzuXZGarjLkhAKyeDw/Px8//dPP/00eXl5/rDkdrv9l/1KS0t7vFzX0NBAQ0OD/7HH4wlFuSIiIn1WXdfIXb8q4a2jNSTGRfOru3PJuSSl9yfKoBbSu+paQ1JZWZl/26pVq/whym63s3jxYsrLy7t8/vr161m3bl0oSxQREemzSk89t/9yO/tOniVlVCyP37OAuROTw12WDICQzvleUFDAtm3bAi7NuVwu//d2ux2XyxWwrb21a9dSU1Pj/zpy5EgoyxUREenV0epzrNj4GvtOnmVcUhxPr7pSoWkYCVmPU2FhIQUFBdjtdv84J5fLFTBwvFX78U/txcXFERcXF6oSRURE+qT81Fluf3Q7FTX1ZKSM4Lf3XsnkMSPDXZYMoAvqcWo/LxOYd9K17zUqLi4mKyvLH5qeeeYZbDYbdrudDRs2+Ns5HA7y8/M1WFxERCKO12fwWvkZnnvjGK+Vn+HtozV8YuNrVNTUMz0tgaLVVys0DUNB9zg5HA62bdsGmGOPcnNz/YPAWx+vWbMGl8vF8uXLA55rs9n8Y5tycnIoLCzEZrNRXl5OUVFRPx6OiIjIxdu6q4J1W3ZTUVPv32YBDGDOhCQev2cBYxJ0RWQ46vM8TuGkeZxERCTUtu6q4P7NTrr75fj9FZdzS9akAa1JQqsv+SKkg8NFREQGE6/PYN2W3d2GJgvwvy+9i9c3aPocpJ8pOImIiLQoOVgVcHmuIwOoqKmn5GDVwBUlEUXBSUREpEVlbfeh6ULaydCj4CQiItIiNiq4X4tpifEhrkQiVUhnDhcRERks3jzi5sHnd/XYxgKkJ8ezYKqWVhmu1OMkIiLD3nNvHGPFxteorG0kPcnsTbJ0aNP6+MGlmURZO+6V4ULBSUREhi2fz2DD1r18/ndv0NDs44Oz09j2wHX84vYs0pMDL8elJ8fz89uzWDJ3fJiqlUigS3UiIjIs1dY38cWn38CxpxKA+98/jf93wyyirBaWzB3P4sx0Sg5WUVlbT1qieXlOPU2i4CQiIsPOoTN13PebHeyvPEtctJXC/HncfMXEgDZRVgtXTRsTpgolUik4iYjIsPLvA6f57G+d1JxvYlxSHJvuyOHyDFu4y5JBQsFJRESGBcMwePy1Q3zrhd14fQZXZNjYdEc2aUmaWkCCp+AkIiJDXmOzjwef38VTJUcA+Pj8ifzPxy8jPiYqzJXJYKPgJCIiQ9rpsw3cv7mM0veqsVhg7Ydms/JaOxaLBnpL3yk4iYjIkPXO8RpWPV7GMfd5EuOi+b9b5/OB2WnhLksGMQUnEREZkv78dgUPPPMm55u8TB07ikfuzGF6WkK4y5JBTsFJRESGFJ/P4Ed/3c+P/rofgGtnjOUnt2aRPDImzJXJUKDgJCIiQ8a5xma+9Myb/HnXCQDufd9U1n5oNtFBLt4r0hsFJxERGRKOVp9j5eNl7KnwEBtl5Tsfm8uKnIxwlyVDjIKTiIgMeiUHq7h/cxln6hoZmxDHxjuyyJ6SEu6yZAhScBIRkUHtqZLDfOO5XTR5DeZOTGLTHTlMsI0Id1kyRCk4iYjIoNTk9fGdF3bzm9cOAXDTvPH8b/7ljIjVpJYSOgpOIiIy6FTXNfIfTzp5tfwMAP/vhpn8xwema1JLCTkFJxERGVT2naxl5eM7OHTmHCNjo/jhJ67ghjnp4S5LhgkFJxERGTQcu0/yhaff4GxDM5NGj+DRu3KYnZ4U7rJkGFFwEhGRiGcYBj9/uZzvvfQuhgELp6bw89uzSRkVG+7SZJjpU3ByOp2sXLmSsrKyHtu5XC6Ki4ux2+24XC5WrVqFzWbrdZ+IiEhH9U1eCn7/Fs+9cRyA26+czINL5xCjSS0lDIIOTq1hx+l09tp2+fLl/nDlcrlYuXIlRUVFve4TERFp70RNPaue2MFbR2uItlp4cNkc7rhySrjLkmEs6OCUn58fVDuXyxXw2G6343A4et0nIiLS3s7D1ax6ooxTtQ2MHhnDzz6VzVXTxoS7LBnm+r2f0+FwkJISOFtrSkoKTqezx30iIiKtfl92lE9sep1TtQ3MGpfI8//5PoUmiQj9Pjjc7XZ3ub2qqqrHfV1paGigoaHB/9jj8VxseSIiEsG8PoMNW/ey6Z/mFYobMsfx8CeuICFO9zJJZBiwkXXdhaae9q1fv57k5GT/V0aGFmsUERmqas43cc+vS/2h6XMfnM4vbs9WaJKI0u/ByWazdepBqqqqwmaz9bivK2vXrqWmpsb/deTIkf4uV0REIoDr1Fk+9rN/8/K+U8THWPnJbfN54IZZWK2aCVwiS78Hp7y8vC635+Tk9LivK3FxcSQlJQV8iYjI0PLyvlPc/NN/4zpVx/jkeIo/czUfmTch3GWJdOmC+j/dbndAL5HT6cRms2G327Hb7QFtXS4XOTk5/h6n7vaJiMjwYhgGv3zlIP/zpz34DMieMppf3J5NamJcuEsT6VbQwcnhcLBt2zbAHHuUm5vrn6Kg9fGaNWsAKCoqoqCggNzcXEpLSwPmaeppn4iIDA8NzV6+9sddFJcdBWB59iS+87G5xEVHhbkykZ5ZDMMwwl1EsDweD8nJydTU1OiynYjIIFVZW89nnijDediN1QL/fVMmd19zCRaLxjNJePQlX+hWBRERGTC7jtWw8vEdVNTUkxQfzU9uy+K6manhLkskaApOIiLS77w+g5KDVVTW1pOWGM+CqSn86e0Kvlz8JvVNPqaljuLRu3KZOnZUuEsV6RMFJxER6Vdbd1WwbstuKmrq/dsS4qI42+AF4AOzUvnRrfNJio8JV4kiF0zBSURE+s3WXRXcv9lJx8GzraFpceY4fnF7NlGan0kGqQGbOVxERIY2r89g3ZbdnUJTe7uO1QxYPSKhoOAkIiL9ouRgVcDlua5U1NRTcrDr9UlFBgMFJxER6ReVtT2Hpr62E4lECk4iItIvzjU2B9UuLTE+xJWIhI4Gh4uIyEUxDIPfvPoe331xT4/tLEB6sjk1gchgpeAkIiIXrLqukS8Xv4Vjz0kA5k1M4u1jHoCAQeKt99A9uDRTd9TJoKbgJCIiF+R11xm+8Ls3OOGpJzbKylc/PJu7rr6El9450Wkep/TkeB5cmsmSuePDWLHIxVNwEhGRPmn2+vi/vx3gJ3/bj88Ae+oofnzrfOZMSAZgydzxLM5M7zRzuHqaZChQcBIRkaAdd5/nC797g5L3zCkFlmdPYt3NcxgZG/jrJMpq4appY8JRokhIKTiJiEhQXnrnBGuK36LmfBMJcdF892NzufmKieEuS2RAKTiJiEiP6pu8fPfFPTzx+iEALp+UzP/dOp8pY7RArww/Ck4iItKtA5W1/OeTO9l7ohaA1dfZ+dINs4iN1jSAMjwpOImISCeGYfB06RG+ueUd6pt8jE2I5fsrruD6manhLk0krBScREQkgKe+ia/+4W1eeKsCgGtnjOX7Ky7XjN8iKDiJiEg7zsPVfO6pnRytPk+01cL/u3EWq661Y9VUAiKAgpOIiAA+n8Ev/lnOw3/ZR7PPICNlBP/3yfnMnzw63KXJcOfzwqFX4exJSBgHU64Ga1TYylFwEhEZ5ipr63ng6Td55cBpAD4ybzz/8/HLSIqPCXNlMuztfh62FoDneNu2pAmwZANkLgtLSQpOIiLD2D/ereRLz7zJmbpGRsREsW7ZHJbnTMJi0aU5CbPdz8MzdxK46iHgqTC3r3g8LOFJwUlEZBhqbPbxvZf28si/DgIwOz2Rn9w2n+lpiWGuTATz8tzWAjqFJmjZZoGtX4HZNw34ZTsFJxGRYea903V87nc7eetoDQB3XTWFtR++lPiY8I0bEQlw6NXAy3OdGOA5Zrabeu2AlQUKTiIiw8qzO4/x38/u4mxDM7aRMRTeMo8b5qSHuyyRNt4m2PtCcG3PngxtLV3oU3ByuVwUFxdjt9txuVysWrUKm83WZdvi4mLy8vIAOrVxOp0AZGVl4XK5cLvdZGVl9b16EREJSl1DM9947h1+7zwKwIJLUvjhJ69ggm1EmCsTaVH9HpT9BnZuhrrK4J6TMC6kJXWlT8Fp+fLllJWVAWaIWrlyJUVFRd227WjDhg2sWbOGjRs3smnTJgDy8vK6fQ0REbl4u47V8LmnduI6XYfVAp9bNIP//MB0oqO0bIqEmbcZ9m2Fsl/Bgb/iH9M0Kg2azkFjHV2Pc7KYd9dNuXoAizUFHZxcLlfAY7vdjsPh6LKt2+2mqKiI/Px8/7bCwkLWrFkDQHZ2NtXV1UDn3igREekfhmHwq3+/x0N/3kuj10d6Ujw/+uQVLLSPCXdpMty5j4Dzcdj5BNRWtG23fwBy7oZZH4Z3/9xyV52FwPDUcsfnkofCMp9T0MHJ4XCQkpISsC0lJQWn09nlZbb2oam4uDjgMSgwiYiEUlVdI18uepO/7jUveSzOHEfhLfMYPSo2zJXJsOXzwv6/wI5fwYFtYPjM7SPHwvzbIfsuSLG3tc9cZk450OU8Tg9F/jxObre7y+1VVVWdtrUPRW63m6qqKux2e8C24uJiAEpLS1m9enXA/lYNDQ00NDT4H3s8nmDLFREZtl4rP8MXnt7JSU8DsdFW/vumS7njyimam0nCw3Pc7F1yPm7eCdfqkmvN3qXZSyG6m0CfucyccmAozRzeXaBqVVBQwIYNGwK2tR9UbrfbWbx4MeXl5Z2eu379etatW3exJYqIDAvNXh//99f9/PjvBzAMmJY6ih/fmkXmhKRwlybDjc8L5X8ze5f2/bmtd2lEClxxG2TfDWOnB/da1qgBn3KgJ0EHJ5vN1ql3qaqqqsdLbm63G4fD0amNy+XyX95rvUPP5XJ16nVau3YtDzzwgP+xx+MhIyMj2JJFRIaNY+7zfP6pnew4ZI4f/UROBg8uy2RkrGadkQFUe8Ict1T2ONQcbts+5RozLF26FGLiw1dfPwj6b1ReXh4bN27stD0nJ6fb5+zYsaPLqQgWLVrkHxzequP4KYC4uDji4uKCLVFEZFjauquCNcVv4alvJiEumv/5+GUsu3xCuMuS4cLnA9ffzTvj3v0z+JrN7fHJcMWnIPvTkDorrCX2p6CDU8feIJfLRU5Ojj8YOZ1ObDZbQDun09kpENnt9oBLdw6Hg/z8fA0WFxHpo/omL995cTebXzf/ZX95ho0ff3I+k8eMDHNlMiycPQVvbIayX5tzMLXKWGj2Ls35KMQMvXnC+tSHW1RUREFBAbm5uZSWlgbMv7R+/Xpyc3P9Uw606hi4bDYbOTk5FBYWYrPZKC8v1zxOIiJ9tO9kLf/15E7ePVkLwOrr7fy/G2YRo7mZJJQMAw7+0+xd2vMC+JrM7XHJcPknzMA0LjO8NYaYxTCMrmaWikgej4fk5GRqampIStJgRxEZfgzD4KmSI3zrhXeob/IxNiGOh1dcznUzU8NdmgxldWfgjd+avUtV7W7mmphj3hk352MQOyps5V2svuQLjRoUEYlAXp9BycEqKmvrSUuMZ8HUFM42NPPVP7zNi2+bEwZeO2MsD6+4gtREjQWVEDAMOPRv8864Pc+Dt9HcHpsI85abvUvj54W3xjBQcBIRiTBbd1WwbstuKmrq/dvGjIrFMKDqXCPRVgtfvnEWK6+1Y7VqbibpZ+eq4M3fmZfjTu9r2z7+CrN3aW4+xCWErbxwU3ASEYkgW3dVcP9mZ6fVuc7Umf/aH5sQy6N35XJFhm3Aa5MhzDDgyHazd+mdP4K3ZfLpmFFwWb4ZmCbMD2+NEULBSUQkQnh9Buu27O5ySdNW0VYLl01MHrCaZJDzeXuedfu8G9562gxMp/a0bR93mRmWLlsO8RpT3J6Ck4hIhCg5WBVwea4rJzwNlBys4qppWqhXerH7+e7XeUucYF6K2/UHaD5v7oseAXNvMQPTxGzQEj1dUnASEYkQlbU9h6a+tpNhbPfz8Myd0LH/0nO8ZXs7aZnmQO95K2CEbaAqHLQUnEREIkClp57isqNBtU1LHNxLVkiI+bxmT1OPF32BeZ+AnHshY4F6l/pAwUlEJIwamr388pWD/PRvB6hr9PbY1gKkJ5tTE4h069CrgZfnujP/Dpi8MPT1DDEKTiIiYWAYBtt2n+S7f9rDoTPnAHPJlBszx/G9l94127Rr39of8ODSTKI0BYF0p77GXGQ3GGdPhraWIUrBSURkgO0/Wcu3XtjNv/afBiA1MY6vLJnNx+ZPxGq1YE8d1Wkep/TkeB5cmsmSuePDVbZEsqqDsH0j7NwMjbXBPSdhXGhrGqIUnEREBkjNuSZ+4NjHE68fwusziI2ycu+1U/mPD0wnIa7t43jJ3PEszkzvNHO4epokgGGYl+Ve/xnsfRF/H+WYmVBXafY+dTnOyWLeXTfl6gEsduhQcBIRCTGvz+CpksN8/y/vUn3OXBR1ceY4vvbhS7lkbNfre0VZLZpyQLrW3Ajv/MEMTBVvtm2ftgiu+qz53z1bWu6es9DlRd8lDwXO5yRBU3ASEQmh111nWLdlN3sqPABMT0vgwaWZXDtDi/JKH9WdgbLHoORROHvC3BYdD5d/EhbeD2mz29pmLoMVj3c/j1PmsoGtfQhRcBIRCYGj1edY/6e9/gV5k+Kj+eLimdx+5RRioqxhrk4Glcq9Zu/SW09Dc8u4t4R0WHAfZN8Do7rpmcxcBrNv6nnmcOkzBScRkX50vtHLz18uZ+PL5TQ0+7Ba4NYFk3lg8UzGJMSFuzwZLAwDDvwVXv8plP+tbfv4y+HK/4A5H4Po2N5fxxoFU68NXZ3DkIKTiEg/MAyDF96qYP2f9nC85W64hVNTeHDpHDInaK0vCVLjObNn6fWfw+l3WzZazJ6jq/4DJl+lySrDTMFJROQi7TpWw7e27KbkvSoAJtpG8NUPX8qHL0vHol9yEgzPcSh91Fxs97z554jYRMi6AxasgpSp4a1P/BScREQu0JmzDfzvX/bxu9LDGAbEx1i5//rprL7eTnyMxpFIEI7vhNd+Zt4l52s2t9kmw8LPmDN7x6u3MtIoOImI9FGT18fjrx3ih4591Nabv+yWXj6BtR+azQTbiDBXJxHP5zXnXXr953D41bbtk6+CKz9rXpbTAO6IpeAkItIHL+87xbe2vEP5qToA5kxI4sGlc7R+nPSu3mMuh7L9F+A+bG6zRsOcj8OV98PErPDWJ0FRcBIRCcLB03V898XdOPZUApAyKpYv3ziLFTkZmtFbelb9nrkcivOJtuVQRoyG7LthwUpzbiUZNBScRER6UFvfxE/+foDHXjlIk9cg2mrhrqsv4XOLZpA8Iibc5UmkMgw4/Bq89lN4909g+MztY2eavUvzPgmxI8Nbo1wQBScRkS74fAa/dx6l8KV3OVXbAMB1M1P5xkcuZXpaYpirk4jV3Ajv/LFlOZQ32rZP+6A5/9K0D4JVE6AOZgpOIiIdOA9Xs+75d3jzaA0Al4wZydc/kskHZ6dpegHpWt0ZKPuVOaVArTlbPNHxMO8TZg9T2qXhrU/6jYKTiEiLk556Nvx5L3/YeQyAhLho/uuD0/n0NZcQF627nIYdn7f35UpOvWv2Lr35uy6WQ7kbRo0d+LolpPoUnFwuF8XFxdjtdlwuF6tWrcJms3XZ1ul0ApCVlYXL5cLtdpOVldXn1xERCbX6Ji+/fOUgP/37Ac41egFYnj2JLy+ZRVpifJirk7DY/Xw3C+RugEuXQvlfzfmXyv/atj99njm795yPB7ccigxKfQpOy5cvp6ysDDDDz8qVKykqKuqy7caNG9m0aRMAeXl5Ae368joiIqFiGAbbdp/kOy/u4XDVOQDmT7bxzaVzuDzDFt7iJHx2Pw/P3AkYgds9FfDMHZA0ETzHWja2LIdy5WfNHildyh3ygg5OLpcr4LHdbsfhcHTbPjs7m+rqaoCA3qS+vo6ISCjsP1nLt17Yzb/2nwZgXFIcX/nQbG6+fCJWTS8wfPm8Zk9Tx9AEbds8xyBmFGTdCQtXQYp9ICuUMAs6ODkcDlJSAid4S0lJwel0+i/BddTV5bcLeR0Rkb7w+gxKDlZRWVtPWmI8C6am+OdaqjnXxA8c+3ji9UN4fQaxUVZWXjeVz75/OqPiNOxz2Dv0auDlue7kPwazloS+Hok4QX9KuN3uLrdXVVV12764uBiA0tJSVq9ejd1u79PrNDQ00NDQ4H/s8XiCLVdEhqmtuypYt2U3FTX1/m3jk+P5+k2ZVJ1r5Pt/eZfqc00A3JA5jv++KZPJYzSfjgD1NfDOs8G1bTwb0lIkcl30P6+6C0LtB3zb7XYWL15MeXl5n15n/fr1rFu37mJLFJFhYuuuCu7f7Ox0kaWipp7PPun0P545LoFvfGQO75uhO56GvXNV5rpxe56H8r+Drym45yWMC21dErGCDk42m61Tr1BVVVW3d8O5XC7/pbfWu+dcLlefXmft2rU88MAD/scej4eMjIxgSxaRYcTrM1i3ZXeXI1NaWYBvLM3kjiunEB2lSQiHrbOVsPcFcxD4wX+C4W3bN3aWeamudWmUTizm3XVTrh6QUiXyBB2c8vLy2LhxY6ftOTk5nbY5nU4WLVrkHxzeKiUlpU+vExcXR1xcXLAlisgwVnKwKuDyXFcMYHZ6kkLTcOSpgD1bYPdzcPjVtiVQAMZdBpk3Q+YySJ3V7q46CBwk3nLTwJKHOs/nJMNG0MHJbg+8a8DlcpGTk+PvKXI6ndhsNux2O3a7nQ0bNvjbOhwO8vPzsdlsnXqWOr6OiMiFqKztOTT1tZ0MAe4j5iW43c/Bke2B+ybMN8PSpctgzLTAfZnLYMXj3czj9JC5X4atPo1xKioqoqCggNzcXEpLSwPmXlq/fj25ubmsWbMGm81GTk4OhYWF2Gw2ysvLA9r29DoiIn1V3+Sl9GDXN6p0pAkth7gql9ljtPs5OO4M3DdpQUtYWgqjp/T8OpnLzPmZeps5XIYdi2EYPQ0JiCgej4fk5GRqampISkoKdzkiEmYNzV5+V3KEn/z9gH8h3u5YgPTkeF4p+KB/agIZIk7tgz3PmWHpxNvtdlhgyjVmCLp0qdljJNKFvuQLTVoiIoNOk9dH0Y6j/ORv+zneMq5pom0EH5ydxubXDwFdjkzhwaWZCk1DgWFA5W4zKO1+Hk7tadtniYKp15qX4GZ/BBJ195v0LwUnERk0mr0+nn3jOD/66z6OVJ0HID0pnv/84HRW5GQQG23lmuljOs3jlJ4cz4NLM1kyd3y4SpeLZRhQ8aYZlvY8D2cOtO2zxoD9/eZluFkfhlFjwlamDH0KTiIS8Xw+gy1vHedHjv24TtcBMDYhjs++fxq3LZxMfEzbuJMlc8ezODO925nDZRAxDDhWBrufNXuW3Ifa9kXFwfRFZliauQRG2MJVpQwzCk4iErEMw+Cld07wg237efekOa/O6JExfOb6adxx1RRGxnb9ERZltXDVNPU6DEo+n3kHXGvPkn8xXSB6BMxY3BKWboS4xPDVKcOWgpOIRBzDMPjb3koe3raPd46bSy0lxkez6lo7d79vKglaUy7y+bzB35HmbYZD/zaD0p4t5nNaxSaYISnzZpieB7GjBqZ+kW7o00dEIoZhGLxy4DTf/8s+3jjiBmBUbBT3vG8q973PTvLImPAWKMHZ/Xw3cyBtaJsDydsEB1822+59Ac6daWsblwyzP2wO8J72QYjRFBISORScRCQibHed4ft/2UfJe+Z8TPExVu66+hJWXzeNlFGxYa5OguafdbvDTDeeCnP7+74ItSfg3T9Bvbtt/4jR5l1wmTfD1OshWudcIpOCk4iElfNwNQ//ZR+vHDgNQGy0ldsXTuH+908jNVFLLg0qPq/Z09TlioEt2155uG3TqFRzfqVLl8El74Mo9ShK5FNwEpGwePtoDQ9ve5e/v3sKgJgoC5/IzeA/PjCd8ckjwlydXJBDrwZenuvO7KVw5f0w+UrNxC2DjoKTiAyovSc8/GDbPl56xxwAHGW1cEvWRP7rgzPISBkZ5urkgp13wzt/DK7tnI/CJdeEshqRkFFwEpEBcaDyLD907OPFtyswDLBY4KNXTOTzi2ZwyVjdKTUo1Z2Bd180xzW5/gG+puCel6DZvGXwUnASkZA6dKaOH/11P8/uPIavZZjLTZeN5wt5M5gxTvPwDDq1J2HvFnOepff+DYa3bd/YWealusbabp5sMe+um3L1gJQqEgoKTiISEsfc5/nxX/dTVHYUb0tiWpw5ji/mzSRzghbpHlRqjprzK+1+Dg6/TsDg7/R5LYvo3gypM9vdVQddrhi45CGNa5JBTcFJRPrVSU89P/37AX5XcoRGrw+A989K5YHFM5k3yRbe4iR4VS4zBO153lz2pL2JOS1haRmkTA3cl7kMVjzezTxOD7XN4yQySCk4iUi/OH22gV/8o5wnXj9EQ7MZmK6eNoYv3TCT7CkpYa5OgnLq3Zaw9ByceLvdDgtMvqolLC2F5Ek9v07mMph9U/Azh4sMIgpOInJRqusa2fQvF7959T3ONZrjXXKmjOaBG2Zy9bSxYa5OemQYcHJXW8/Sqb1t+yxR5txKmcvM6QMS+zig2xoFU6/t33pFIoCCk4hcEE99E4/+6yCPvXKQsw3NAFw+KZkHbpjFdTPGYrFYwlyhdMkw4LizLSxVudr2WWPA/n4zLM26CUZpoWSRjhScRCSA12dQcrCKytp60hLjWTA1hShrWwiqa2jm16++x6Z/uqg5b95+fun4JL60eCaLLk1TYIpEPh8cLWkLSzVH2vZFxZmL52Yug5lLYIQtbGWKDAYKTiLit3VXBeu27Kaipt6/bXxyPA8uzeT6mWlsfv0QP3+5nKq6RgBmpCXwxcUzWTInHatVgSmieJvh8KstYWkLnD3Rti9mFMxYbK4LN+MGiEsIX50ig4yCk4gAZmi6f7Oz0ypjJ2rq+cxmJ0nx0XjqzUtyU8eO4vOLZrD08gkBvVESZt4mOPiyGZb2vgDnzrTti0sye5Qyb4bpiyBGy9qIXAgFJxHB6zNYt2V3T0uz4qlvZqItns/nzeTj8ycSHWUdyBKHH583uLvSmurB9XdzjqV3/wT1NW37Row2xypl3gz26yFaiyaLXCwFJxGh5GBVwOW57jz08XlcOzN1ACoa5nY/3808SBvMsUiNdXDAYYalfS9B49m2dqNSzSkDLl1m3hUXFTPw9YsMYQpOIkKlp/fQBFB1rjHElUjbzNsd+v88FfDMHebkkyffgebzbfsSJ7RNSDn5Ss2XJBJCCk4iw1htfRPPvXGcR//l6r0xkJYYH+KKhjmf1+xp6umi6bEd5n9tU9qWOpmYDVZdOhUZCApOIsOMYRi8ebSGp7Yf5vk3j3O+ydvrcyxAerI5NYGE0H5H4OW57nzkh5D9adDUDyIDrk/ByeVyUVxcjN1ux+VysWrVKmw2W5dtnU4nDocDgNLSUh555BF/W6fTCUBWVhYulwu3201WVtaFH4WI9MpT38RzO4/xZMkR9lR4/NunpyVw64LJJMdH8+Xit4Aul2blwaWZuoOuvzXUmovmvvcveO8VOOYM7nlxiQpNImHSp+C0fPlyysrMxR5dLhcrV66kqKioy7YOh4M1a9YAUFhYyKJFi/zP3bhxI5s2bQIgLy+v29cQkYtjGAY7j7h5avthtrx1nPomcw252GgrH7lsPLcunEzOlNH+SSsT4qM7zeOU3jKP05K548NyDENKx6B0/A0weu/x6yShj8ufiEi/sRiG0dXF9E5cLldAcAIYPXo01dXVndo6nU4WLVrk3+dyuZg2bRrl5eXY7XY2bdrEihUrALrtseqKx+MhOTmZmpoakpKSgn6eyHBTc76JZ3ce46mSw+w9UevfPiMtgdsWTuZj8ydiGxnb5XN7mzlc+iCYoDT6EvPut0uuhYwr4dcfMgeCdznOyWLeXfeFtzUAXKQf9SVfBN3j5HA4SEkJHN+QkpKC0+nsdJktKyuLRx55xP/Y7Xb727fqS2ASkd4ZhoHzcDVPbj/Ci2+39S7FRVv5yLwJ3LYwg6zJo3tdEiXKauGqaVqj7II01MLh7e2C0s6eg9KUa8CWEbh/yYaWu+osdHnRdMlDCk0iYRR0cGoNPx1VVVV1uT0/P9///dNPP01eXp4/LLndboqLiwFz/NPq1aux2+2dXqOhoYGGhgb/Y4/H06mNyHBXc66JP+w8ylMlh9l3sm0+n1njErlt4WQ+esVEkkdqLp+Q6I+g1FHmMljxeDfzOD1k7heRsLnou+q6C1Tt9xcXFwdc4ms/qNxut7N48WLKy8s7PXf9+vWsW7fuYksUGXIMw2DHoWqe2n6YF9+uoKHZ7F2Kj7GydN4Ebl04mfkZNi2429+CCUq2KWZIuuR9cMk1YJvc95+TuQxm3xTczOEiMqCCDk42m61T71JVVVWvl9wKCgrYtm1bQDuXy+W/vNd6h57L5erU67R27VoeeOAB/2OPx0NGRi//WhMZwqrrGvlDy9ilA5VtvUuz0xP51MLJLLtiIskj1LvUbxrOwpHXzZDUetdbKIJSV6xRMPXa/nktEek3QQenvLw8Nm7c2Gl7Tk5Ot88pLCykoKAAu93u75lyuVwBA8dbdRw/BRAXF0dcnNZWkuHNMMzB2k+VHOZPu07Q2NK7NCImimWXm71Ll09KVu9Se8Gu89ZROIOSiAwKQQenjr1BLpeLnJycgLmZbDabv11xcTFZWVn+0PTMM8+watUq7HY7GzZs8L+Ow+EgPz9fg8VFOqiqa+QPzqM8WXIY16k6//bM8UnctnAyN18xgcR49S510ts6b+0FFZQmtwWlKdfA6CmhPwYRiVhBT0cAZljauHEjubm5lJaWsnbtWn/gWb58Obm5uaxZs8Y//UB7NpvN38vUOjmmzWajvLw8IEj1RNMRyFBnGAavu8zepa27TtDoNXuXRsZGcfMVE7h1wWQum6jepW51t85b6x1pH98EI1PagtLxneBrDmyqoCQy7PQlX/QpOIWbgpMMVWfONvB751F+V3IE1+m23qW5E5O4bcEUll0xgYQ4rZDUI58Xfjg3uCVL2kuebI4lUlASGbZCMo+TiPQvn8/gddcZniw5zEvvnKDJa/4bZlRsFMuumMhtCyZz2aTkMFc5iBz6d3ChaVQqTF/cMkbpfQpKItInCk4i/SiYWbdPn22guOwovys5zHtnzvm3z5uUzK0LJrP0cvUuBeV8NRwrg6NlcGyHORg8GEsegsvye28nItIFfTqL9JOtuyo6rfM2vmWdtxsy03m1/AxPlRzmL7vbepcS4qL9Y5fmTlTvUre8TXByFxzdYX4d2wFnDlzYa2mdNxG5CApOIv1g664K7t/s7DQkuaKmns9sdjI2IZbTZxv92y/PsHHbggw+Mm8Co9S7FMgwwH3YDEetvUkVb0Jzfee2o6fCpByYmAMT5kPRp6G2l3Xeplwd4gMQkaFMn9giF8nrM1i3ZXeXv6pbnT7bSEJsFB/LmsQnF2QwZ4J6l/zqa8xpANoHpbpTndvF22BidltQmpgNozqsqfchrfMmIqGl4CRykUoOVgVcnuvOTz6VxftnpQ1ARRHM2wyV77Rcbisz/3t6H516iKzRMG5uW0ialAtjpkFv0zBonTcRCTEFJ5ELUN/kpeRgFf/cd4oX3gru9vea800hrirCGAZ4jrWNSTpaBhVvQNO5zm1tk1sCUktQGj8PYkZc2M/VOm8iEkIKTiJBMAyD8lN1vLzvFP/cd4rXXWf8C+sGKy0xPkTV9bMLXq6k1pxQsn1v0tkTndvFJcHErHZBKRsS+rknTuu8iUiIKDiJdMNT38SrB063hKXTHHOfD9g/LimO62em8r7pY/nun/ZQ6Wnobkgy6cnm1AQRL9jlSnxeqNzT0pPUEpRO7QWjQ5i0RMG4Oe0uueXAmBlgtQ7M8YiI9DMFJ5EWPp/B28dq/L1KO4+48fraolBstJWFU1O4bkYq181MZea4BP/SJ7HRVu7f7OxuSDIPLs3sNJ9TxOluuRJPhbn9ms8BFjMoHd8JTXWdXyNpEkzKbgtJ46+A2JEDULyIyMDQkisyrFV66vnn/tP8c98p/rX/FNXnAsch2VNHcf1MMyhdOXUMI2K7v2TV0zxOS+aOD9kx9IsLWa4kNsGcAqB9b1JieuhqFBEJES25ItKNhmYvZe9V8/J+8/LbngpPwP7EuGiunj6G62emcd3MsUwaHXxvyZK541mcmd7rzOERo+4MnNpjXnI78LfgQtOMG+HSj5hBKXWWBlyLyLCj4CRD3nun2wZ1v+Y6w7lGr3+fxQKXTUzmuhmpXD8rlSsybMREXfj4myirhaumjem94UA6Xw2Ve1tC0l6o3G2OR+pqrqTezFuh5UpEZFhTcJIh52xDM6+Vn+HlfZX8c99pDlcF3v4+NiGO62aO9Q/sHpMQF6ZK+1lDbdcBqbai++fYpkDapRA7Cnb9vvefoeVKRGSYU3CSiBLMIrkd+XwGuys8/HP/KV5+9xTOw9X+teAAYqIs5ExJ4bqZqVw3cyyXpidhjdTLZ8ForINT75qhqLLlUtupvVBzpPvnJE2CtNmQOhvSMs3vx86CuARzv88Lh18zB4JruRIRkW4pOEnE6Mvg6tNnG3ilZVD3P/efClgHDmDKmJHmoO4ZqVw1bczArQd3oXMgdaWp3pxVOyAg7YHqQ3QdboCE9JaAdKnZk5R2qTkWKb6XJV6sUeaUA1quRESkR7qrTiJCd4vktvYL/fi2+aQmxPHPlkHdbx+rCWg3MjaKq6eN8d8BN2XMqAGpO0CwcyB11NwIZw50vsRW5eo8L1KrkWPMnqPU2e0C0mwYeZFzRXV5DBO1XImIDGl9yRcKThJ2Xp/B+zb8rcf13jr2gQBkjk/iupmpXD8zlewpo4mNDuOkit3NgdQa/VY8DrM+bIahjgHpzAHwNXf9uvHJXQSkSyEhNXTH0p+9ZiIig4CmI5BBJZhFcg0gMT6aD85O47oZqVw7c2zkLGHi85q9NF1ePmvZVnxPS9tu1quLTWw3BqldQEpM731h2/6m5UpERLql4CQD6mxDM/tP1rL/5Fn2naxlX+VZ3jziDuq53755Lh+dPzG0BQaj3gM1R83B2DVHzN6Z3uZAag1MMSPNMUepl5pBqbU3KXnSwAckERHpMwUnCYlzjc0cqDzLvpNn2X+y1gxJJ892Wu+tL8YlDUAPk88HdZXgPtIWjGqOtjw+CjWHob6m99fpyo3rYeFntE6biMggpuAkF6W+ycuByrPsrzSD0b4TteyrrOVo9Xm6Gz2XlhjHzHGJzBiXwMxxiUxLHcV/PbWTSk8DFnwssO4lDTeV2CjxzcbA2n+L5DY3tOstOhoYkNxHwHMMvI29v068DZIzwJYBFivsfaH356RfptAkIjLIKThJUBqavbhO1bGv5TLbuydr2X+ylsNV5/B1E5DGJsQyIy2RmeMSmDEukZnjzO9tI2M7tV23bA7PPvkLvhHzOBMsVf7tx40UvtV0Jx9d+pnely4xDKh3t+sdaheIWoPS2ZO9H6zFConjzWCUPMkMR8mTIHmy+X3SRIhvN3jQv86b5kASERnqFJyGkAuZPLKjxmYf750xA9K+Ey29SJW1HDpzDm83Cck2MsYfimaOS/SHpb7MyL3EWsqNsT/C6BA80i1V/Dz2R1is2eC7yZwFu2NPUfvHjWd7/2HRI9qFoYy2nqPWoJQ0AaJigq5dcyCJSKTy+rw4K52cOneK1JGpZKVlETXIPosi7Rg0HUEE60sQ2rqrgm8//zYZZ9/0X+Y6knA5X192WafJIwGavT7eO3OO/SdrW3qPzMHaB0/X0dxNQEqMj2bWuMSW3qME/+W21IQ4LBczsLm5CX50Wc9Lg1ha/pIY3u7btBo5tl1PUftg1NJrNDIlNAOxNQdSxIi0D9oLMdiPYbDXD4P/GByHHDxU8hAnz7X1tI8bOY6vLPgKeVPywlhZ8AbqGEI2j5PL5aK4uBi73Y7L5WLVqlXYbLY+t+3L61zogV2Is3UefvD7z1JZfwyAqYmZ1DXVkDwilXTbVD56/WpiY81elMbGBp59eSOVnsOkJU0O2Nedvjxn664KvvX8m4zxbmNk9GnONY/lTNRivrHs8k5BaOuuCp598hd8LeZxToyo41RUFKleL+nnR/Hdpju56iN3k54c3zL+yBys7TpVR6O368kVE+KizfFHaW3jkGaOS2RcUi8ByTDM9dLOV5kLy56vhnPtvu/0uOX7c9WAWYsXcMbH+Y8hq76BgI8pa7TZI5Q8ucNltAywTTaDSuzIHs9DKHmbG3G+/QSnPIdJTZpM1mV3EBXd+dJkJNMvi/Ab7Mcw2OuHwX8MjkMOHvjHA5168S0tveAPv//hiD+OgTyGkAWn7OxsysrKADP8FBQUUFRU1Oe2fXmdCz2wvvrSo0twRB/F10MwGNvs49axHwXgqdPPcrrdhIut+1bd/N0un7vpua8F/Zytuyr45fNf5/S41zq1H3vyKu5d9m1/ePL6DL72P//DB2N+TOHY0ZyMbrv6Oq65mTWnq/l9zWpe8i3oVNOImKh244/axiFNSIrD0nSuXbCpCgw6591dbGv56m4ixyA4Ro7goTGdj+ErZ6rJO3cePvQ9yL03Yi95DfYPWhj8x6BfFuE32OuHwX8MXp+XG39/Y8Df4/YsWBg3chxbb9kasf8oGuhjCElwcrlcLF++3B94AEaPHk11dXWf2vbldS7mwPriS48u4S/RR80HvfWotNeuraVl33+OvrlTENr03Nf4SfVz5l/BXp7j9Rnc84P72TnmlW7bzzlxNTGp91JZ20CFu46vjfgvvjMuvtv2Xz95npeMtWSlWZmW0MSUEfWkx54n2ajFUu/u0PvT8t/uJmoMRvQIGDHavCQ2YjSMsMGIlA7bRrdtO7MfxwureSBtbLfH8HDlafKWF0XsxIyD/YMWBv8x6JdF+PVWP5hB/I/L/kiUNQoDA5/hw8DAMFq+Wv7na1luyDDa2gA9tjcwwGjXhnZtDAMfPswmHX5uu/82+5r58stfprqh+99Jtjgb37zqm1gsFv/rtn+9nr734fPX7v++pZ7WY279vsvXaP1ZhtHpOFq/rzhbgeOwo9fzdc2EaxgzYkzn97Uv/+3ive22Tes57eY5re8HwNmmsxyp7WHh8haP3fgYuem5vbbrTUhmDnc4HKSkBN4OnpKSgtPpJCsrK+i2O3bsCPp1BsLZOg+OYEJT6/7W8NShrdGy78nTz/KRms/is0RzvslL7bnz/Pb0sxhRlh6f43zkUhobm/HUujmV+i8Mum9fkfoKS45Uk00z4yyV/HxsTKfA0b79z8bG8quKAqwtQ28MoKbly/C3bdtHFBAVDdYYjPhk89b7+CSMuKR2/03GiE+EuGSMuEQYkQxxiRCXBNHx/g+51r8E/sftfykb5v95x0zm26mdQ1P7Y/h26lhGx8dhrdwZ8JodX7/1Z3b8ee23tf5F7e01utrf/jVat3kNL99+/dudAkf71/zma9/kXPM5fwjp+OHSaVsXvxgCjsvoYVsvbQ3zDQho6zW8PLX3qR6P4WuvfA3nSaf5y6Jd3T0dT8e6unpvuzpHHd9z/75273vH51fVV/X4C9vA4MS5E9z55ztJjksOeC+6ev9bz3P7n9W+XbfH2MPr9fTnyjAMzjWdC+oYFhcvJi4qrudz3672rt7fntp3e3w9/Bnq6s9OV06eO8nVvxvcd5i6G9x84R9fCHcZF+3fx/8d7hIu2qlzpwb8ZwYdnNxud5fbq6qqOm3rqW1fXqehoYGGhgb/Y4/H02udffWD33+2x8tznfTU1mLhTLSFG59dEri9pzXUWp7zbzZALJAA0Fv7KH47dW/7H9Bj+9PR0SzNmNB9m16dM7+aTkATUHsRL9Wdnu7+s1iossCn/3JvCH7wwKhpqOFrr3wt3GVclHPN53hizxPhLuOivXX6rXCXcNFOnR/4XxbhYMGC1WI1/8FhAStWLBYLFiwB/7VixWzS1r6rdu3bt47X7Ni+rqkuqPc3IzGDlPiUgOdbLVZ/LVasWC2B37f+DKulZV/Lz/c/p+X7btt1+Fntj6f9zzpRd4IXD77Y6zHcMuMWJidN9v+s1ve89fXbPw5o0+5x6z8Ge23Tcn662tb+WFqPdV/VPn7g/EGvx5A6MoTrdnbjoqcj6C4I9bVtV/vWr1/PunXr+l5UH5xqqDADS38yjNab0OmqF6UrVsPA2tLeG0T7aAOirVF4DR9NQfxLL84SQ3R0bNsfctr9DAsB21r/8HbVtuPg8O6eE/B9N6/fuu1883ncDe5ej2FM/BgSYhO6ran1L2Wnn9HN/u5ew9+2/bZ2x9DxZ1TXV/Oe571e659um07qiNS2n93ug8T/od7Dh0l37dpv67Jtu2Ptru2h2kO8dvy1Xo/h+knXY7fZu3yNju9rx1rbv38d23X1nrd/3NUxddx+2HOYzXs293oMd8+5m6nJUwNr7Ok42tfb03F0OKddvX6n42h7QSxY2Fe9j//d8b+9HsNXF3yVS8dc2ul97unPVrdt2/38i/kzBvBG5Rt88R9f7LX+ny36GTnpOW1/xrv483pRd+pehNITpdzz0j29tlt39bp+uUQUCl6flx0nd1B5rrLLnkAL5iXfr1/59Yi85Atw1fireHLvk70eQ1bawF+pCjo42Wy2Tr1CVVVVXd4N11PbvrzO2rVreeCBB/yPPR4PGRkZwZYclNS48WBU9utrfjPufXx43jJiY2J48e0/8bWzvV9r/trEVaxY/Dledz7Kyrd/1Gv7n8/7PFdm3Ufp8de5Z9vK3tvn/YzcCVcGVf9AC/aD6nvXfy8iP6iCrf+rC78akfWDeQzBBKe75twVscfg9XnZdmhbrx+0n8/6fMT+sliQvoAndj/R6zGsmLUiIo/hAxkfYNzIcb3Wf/WEqyOyfoCstKygjiEcv7CDFWWN4isLvsID/3gAC5aA42gNywULCiL2HEBkH0PQ6z/k5XU9KDQnJ6dPbfvyOnFxcSQlJQV89bcv3vIzrIbReeB3d3poazEMUpt9LL3lR4yY82GiZi5mydKHGNvs8w9y7u45H71+NQC58+4kzWv02H6c1yB33p0AZKXnMi4mqcf26bHJZEXoLzto+6Dy/+u3AwsW0kemR+wH1WCvH4bGMbR+0AKdjiPcH7TBGuzHMNjrh6FxDAB5U/J4+P0PkzYyLWD7uJHjIv5Gj1aRegxBBye73R7w2OVykZOT4+8pcjqduFyuXtv29joDLWFUEnnNk8wHvYWndvs7BpXWx58c+9GAuZliY+P8UxgE85yo6FjWzvxUj+2/MvNT/rmBoqxRfOWadWCxdN3eYqHg6m9G9F/ywf5BNdjrh6FxDBC5H7R9MdiPYbDXD0PjGMA8jpdueYnHbnyMDddu4LEbH2PrLVsHTf0QmcfQ5wkwN27cSG5uLqWlpaxdu9YfeJYvX05ubi5r1qzptW1P+3oS7nmcUpt9fLKbeZxa9/VlHqeenuN4ZT0P7fstJ6Pa6kn3GhTM/BR571vbuX0X8++kjxxHwSCZfwe6O4Z0ChYUDIpjGOz1w9A4Bhj8k3jC4D+GwV4/DI1jkOCEbALMcBtOM4dD32ehHgp/yQf7MQz2+mFoHIOISF8oOImIiIgEqS/5IugxTiIiIiLDnYKTiIiISJAUnERERESCpOAkIiIiEiQFJxEREZEgKTiJiIiIBOmiF/kdSK0zJ3g8njBXIiIiIkNFa64IZoamQRWcamtrAfp9oV8RERGR2tpakpOTe2wzqCbA9Pl8HD9+nMTERCw9LI1yoTweDxkZGRw5ckQTbIaRzkP46RxEBp2H8NM5iAyhPg+GYVBbW8uECROwWnsexTSoepysViuTJk0K+c9JSkrSX5AIoPMQfjoHkUHnIfx0DiJDKM9Dbz1NrTQ4XERERCRICk4iIiIiQVJwaicuLo4HH3yQuLi4cJcyrOk8hJ/OQWTQeQg/nYPIEEnnYVANDhcREREJJ/U4iYiIiARJwUlEREQkSINqOoJQcrlcFBcXY7fbcblcrFq1CpvNFu6yhgSn04nD4QCgtLSURx55xP/e9vS+X+g+6VlBQQFr167VOQgTh8OBy+XCbrcDkJeXB+g8DBSXy4XD4SAlJQWXy0V+fr7/XOgchI7T6WTlypWUlZUFbA/Fex7y82GIYRiGkZWV5f++vLzcyM/PD2M1Q8uGDRsCvm//Xvf0vl/oPuleWVmZARjV1dX+bToHA2fbtm3GqlWrDMMw3zO73e7fp/MwMNp/HhmG4T8fhqFzECpFRUX+z56OQvGeh/p8KDgZ5hvb/o02DMOw2WxhqmZoKSsrC3gvy8vLDcAoLy/v8X2/0H3Ss6KiIsNut/uDk87BwGr/3huG+T62/lfnYWB0fL/aB1mdg9DqGJxC8Z4PxPnQGCfwd9u2l5KSgtPpDFNFQ0dWVhaPPPKI/7Hb7QbM97en9/1C90n3iouLyc/PD9imczBwXC4XVVVV2Gw2nE4nbrfbf4lI52HgpKSkkJ2d7b9kt3jxYkDnIBxC8Z4PxPlQcKLtl3lHVVVVA1vIENX+l/XTTz9NXl4eNputx/f9QvdJ19xud5fX+HUOBo7T6SQlJcU/9mLTpk0UFxcDOg8DqaioCIBp06ZRVFTk/3zSORh4oXjPB+J8aHB4D7o7AXJh3G43xcXFnQYHdtWuv/cNd8888wyrVq0Kur3OQf+rqqrC5XL5/+GwatUqRo8ejdHDVHo6D/3P4XCwYcMGXC4Xq1evBmDjxo3dttc5GHiheM/783yoxwmw2Wyd0mhrl7r0n4KCArZt2+Z/X3t63y90n3TmcDhYsWJFl/t0DgaO3W73v3eA/79Op1PnYYC4XC5KS0vJy8tj1apVlJeX88wzz+ByuXQOwiAU7/lAnA8FJ9puB+4oJydngCsZugoLCykoKMBut+N2u3G73T2+7xe6T7r2zDPPsGnTJjZt2oTL5WL9+vU4nU6dgwHUOp6pKzoPA8PpdJKbm+t/bLfbWbt2rT6PwiQU7/lAnA9dqqPzB5rL5SInJ0f/YugnxcXFZGVl+UNT62Wjju9v+/f9QvdJZx0/SFavXs3q1au7/EWucxA6drudnJwc/3iz1rmcsrKyOrXVeQiNrKwsNm7cGDDu8syZMzoHA6j9eMuefvdG8u8HrVXXwuVysXHjRnJzcyktLQ2YIFAunMvlYtq0aQHbbDYb1dXV/v3dve8Xuk+65na72bRpEwUFBaxatYrVq1eTlZWlczCA3G43BQUFZGdnU1ZW5u+FBf1dGCgOh8N/eRTMf1joHISWw+Fg27ZtFBYWsmbNGnJzc/3hNRTveajPh4KTiIiISJA0xklEREQkSApOIiIiIkFScBIREREJkoKTiIiISJAUnERERESCpOAkIiIiEiQFJxEREZEgKTiJiIiIBEnBSURERCRICk4iIiIiQVJwEhEREQmSgpOIiIhIkP4/MDKgYvt1a0IAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAFnCAYAAABQEsaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRfklEQVR4nO3deXxU9b3/8ddkJ2QZAoQECMuACAguWQBRayvhSm21VYOtW11aQu1ye8u9JVJv64972yK013t7uyhQ16pVEmvV9oolbq1VIWRcCJuSQdZAgGQygSSTZOb8/jjJJJN1AklmJnk/H488yJzzncn3zIHJm/P9ns/XYhiGgYiIiIj0KiLYHRAREREJFwpOIiIiIgFScBIREREJkIKTiIiISIAUnEREREQCpOAkIiIiEiAFJxEREZEARQW7A33h9Xo5evQoiYmJWCyWYHdHREREhgDDMKitrWX8+PFERPR8TSmsgtPRo0fJyMgIdjdERERkCDp06BATJ07ssU1YBafExETAPLCkpKQg90ZERESGApfLRUZGhi9n9CSsglPr8FxSUpKCk4iIiPSrQKYBaXK4iIiISIAUnEREREQCpOAkIiIiEiAFJxEREZEAKTiJiIiIBEjBSURERCRAYVWOQERERIYXj9dg2/4qKmsbSE2MY97UFCIjgrd6iIKTiIiIhKTNZRWsfnkXFTUNvm3pyXHcf+1slsxJD0qfNFQnIiIiIWdzWQX3PGX3C00Ax2oauOcpO5vLKoLSLwUnERERCSker8Hql3dhdLGvddvql3fh8XbVYmApOImIiEhI2ba/qtOVpvYMoKKmgW37qwavUy0UnERERCSkVNZ2H5rOpl1/UnASERGRkJKaGNev7fqTgpOIiIiElHlTU0iIjex2vwXz7rp5U1MGr1MtFJxEREQkpDxbcpDTbk+X+1orON1/7eyg1HNScBIREZGQ8dru4/zoT2UAfPHCdNKT/Yfj0pLjeOi2zKDVcVIBTBEREQkJHx5y8p1n3sdrwE3ZE1l744V4DVQ5XERERKS9g6fq+PoTJdQ3efjMjLH89Pq5WCwWIi1w6bTRwe6ej4bqREREJKiqzjRyx2PbOHm6kQvGJ/HbWzOJjgzNiBKavRIREZFhoaHJwzeeKGH/yTNMsI7gsTtzSIgN3QExBScREREJCo/X4HvPvo/9oJOkuCieuDuH1KTBr83UFwpOIiIiMugMw+A//7yLV3ceJyYygt/dkcP01MRgd6tXCk4iIiIy6B55ez+Pv/MpAA9+5aKgFLM8GwpOIiIiMqj+/NFRfvKX3QDcd80svnjh+CD3KHAKTiIiIjJotjpOseK5DwG4c+EUvnHF1CD3qG8UnERERGRQ7KusZdmT22n0eLn6gnH86IuzsViCV8zybPQpONntdrKysnptV1RUhNPpxOl0dvkadrsdAIfD4fteREREhq5KVwN3PFqCq6GZzElWfvnVS4JaAfxsBRycioqKAAIKOkuXLmXUqFGMGjUKi8WCxWJh3bp1AKxfv56srCwsFgvLly/HZrOdZddFREQkHJx2N3PX4yUccdYzdcxIfndHDnHRkcHu1lkJuMJUXl5eQO2cTieFhYV+7detW8fKlSsByMrKorq6GgCr1dqHroqIiEi4afJ4+fbTdnYedTEmIYYn7ppHysiYYHfrrA1Iac72oamoqKhT6FJgEhERGfoMw+C+F3bw1scnGBEdySN35DBpdHywu3VO+j04tQ9FTqeTqqoqv+E4p9PpG/YrKSnpcbjO7Xbjdrt9j10uV393V0RERAbI/762j03bDxNhgV/fcgkXZViD3aVzNqCLwRQUFLB27Vq/bfn5+b5wZbPZWLx4MeXl5V0+f82aNaxevXoguygiIiIDYNP2Q/x38ccA/OeX57Bo1rgg96h/DFg5AqfTSXFxcadhOYfD4fveZrPhcDj8trW3atUqampqfF+HDh0aqO6KiIhIP3nr4xOs+uMOAL79uWncOn9ykHvUfwbsitP27ds7hSa73c6iRYt8k8NbpaR0XWY9NjaW2NjYgeqiiIiI9LOyIzV866lSPF6DGy6ZwL/90/nB7lK/OqsrTh3rM9nt9k5Xjex2e6dAZLPZ/IbuiouLycvL02RxERGRIeBwdR13PV7CmUYPl00fzQM3Xhh2BS57E/AVp+LiYrZs2QKYc49ycnJ8d8u1Pm4tOdCq46Rvq9VKdnY269atw2q1Ul5eTmFh4bkeg4iIiARZTV0Tdz5WwolaNzPTEnnotixioobeAiUWwzCMYHciUC6Xi+TkZGpqakhKSgp2d0RERARwN3u4/ZFtbNtfRVpSHC98eyHpySOC3a2A9SVfDL0oKCIiIoPG6zX4100fsm1/FYmxUTx+d05Yhaa+UnASERGRs/bA5j38+aMKoiMtrL89i5lpQ3tESMFJREREzsrj/9jPhr+ZN4f9PO8iFk4fE+QeDTwFJxEREemzzWXHWP3nXQD84Orz+fIlE4Lco8Gh4CQiIiJ9Unqgmu89+z6GAbfOn8S3Pjst2F0aNApOIiIiEjDHidN844kS3M1ecmelsvq6C4ZcraaeKDiJiIhIQE6ednPnYyVU1zVx0cRk/vfmS4iKHF5RYngdrYiIiJyVusZmvv54CQer6piUEs8jd+YQHzNgK7eFLAUnERER6VGzx8t3n3mfDw/XMCo+mifunseYhOG5lqyCk4iIiHTLMAx+/NJOXttTSWxUBL+7I4epY0YGu1tBo+AkIiIi3frtm+U8s/UgFgv88quXkDV5VLC7FFQKTiIiItKlF94/zM9f3QvA/7v2ApbMSQtyj4JPwUlEREQ6eWffSVYWfQRA/mds3LFwSnA7FCIUnERERMTPnmMulv++lCaPwRcvTOfeJTOD3aWQoeAkIiIiPhU19dz5aAm17mbmTU3hv266iIiI4VPgsjcKTiIiIgKAq6GJux4r4ZirgempCWy8PZvYqMhgdyukKDiJiIgIjc1e7nmqlD3HahmbGMvjd+WQHB8d7G6FHAUnERGRYc4wDAqe/4h/7DvFyJhIHrszh4mj4oPdrZCk4CQiIjLM/eKve3nh/SNERVh46LYs5kxIDnaXQpaCk4iIyDD29NYD/OaNcgDW3DCXz8wYG+QehTYFJxERkWHqtd3H+dGfygD4fu4MlmZnBLlHoU/BSUREZBj68JCT7zzzPl4DvpKdwT8vmh7sLoUFBScREZFh5uCpOr7+RAn1TR6unDGWn1w/B4tFtZoCoeAkIiIyjFSdaeSOx7Zx8nQjF4xP4je3ZhIdqTgQKL1TIiIiw0RDk4dvPFHC/pNnmGAdwWN35pAQGxXsboUVvVsiIiJDlMdrsG1/FZW1DYxJiOWJd/ZjP+gkeUQ0T9ydQ2pSXLC7GHYUnERERIagzWUVrH55FxU1DX7boyIsbPxaNtNTE4PUs/Cm4CQiIjLEbC6r4J6n7Bhd7Gv2GlSdcQ96n4aKPs1xstvtZGVlBdTObrcD4HA4fN+3Pl63bh1FRUWsW7cOp9PZtx6LiIhItzxeg9Uv7+oyNAFYgNUv78Lj7a6F9CTg4FRUVATgF4K6s379erKysrBYLCxfvhybzebbt3TpUlauXEleXh55eXksW7bsLLotIiIiXdm2v6rT8Fx7BlBR08C2/VWD16khJOChury8vIBfNCsri+rqagCsVqtvu8Ph8Gtns9koLi4O+HVFRESkZ5W13Yems2kn/gZsjlP7wNSquLiYlJQUv20pKSnY7XYyMzM7tXe73bjdbeOwLper3/spIiIylKQmBnanXKDtxN+A1HFyOp0UFRVRVFREQUGB70pTd/OZqqq6vly4Zs0akpOTfV8ZGVpDR0REpCdNzd4e91uA9OQ45k1N6bGddG1Arjjl5+f7rjjZbDYWL15MeXl5t+27C1SrVq1ixYoVvscul0vhSUREpBvv7DtJ/lPbfY8t4DdJvHVRlfuvnU1khJZYORsDcsWp/Vwmm82Gw+HA4XBgtVo7XV2qqqrqclgPIDY2lqSkJL8vERER6ezd8lPc/UQJDU1eFs1M5Vc3X0xasv9wXFpyHA/dlsmSOelB6mX46/crTna7nUWLFvkmh7dKSUkhNzeX9evXd3pOdnZ2f3dDRERk2NjqOMXdj5uh6XPnj+W3t2USGxXJNXPH+yqHpyaaw3O60nRuzio4OZ1Ov6tEdrsdq9WKzWbDZrOxdu1a377i4mLy8vKwWq2driw5HA6ys7O7veIkIiIiPdu2v4q7Hi+hvsnDlTPG8tBtWcRGRQIQGWHh0mmjg9zDoSXg4FRcXMyWLVsAc9J2Tk6Or0RB6+OVK1ditVrJzs5m3bp1WK1WysvLKSws9L1OYWEhBQUF5OTkUFJS4rdPREREArf90yrufGwbdY0erjhvDOtvzyIuOjLY3RrSLIZhhE3pUJfLRXJyMjU1NZrvJCIiw1rpgSq+9sg2zjR6uHz6GH53R7ZC01nqS74YkMnhIiIiMnDsB6u549ESzjR6WDhtNBu/ptA0WBScREREwsgHh5zc8cg2TrubudQ2mkfuyGFEjELTYFFwEhERCRMfHnJy+yNbqXU3M39qCo/cma3QNMgUnERERMLAjsM1ZmhqaGbelBQeuyuH+JgBWzlNuqHgJCIiEuLKjtRw2yNbcTU0kzNllEJTECk4iYiIhLCdR2u49XdbqalvImvyKB67ax4jYxWagkXBSUREJETtOuryhaZLJll5/K4cEhSagkrBSUREJATtrnBx6+/ew1nXxEUZVp64ex6JcdHB7tawp+AkIiISYvYeq+XW322luq6JiyYm8+Td80hSaAoJCk4iIiIh5OPjtdyy8T2qzjQyd0IyT359PskjFJpChYKTiIhIiNhXaYamU2camTMhiacUmkKOgpOIiEgI2Fd5mq9u2MrJ043MTm8JTfEKTaFGwUlERCTIyk+c5uaN73HytJtZ6Uk8/Y35WONjgt0t6YKCk4iISBDtP3mGmze8x4laNzPTEnn6G/MZNVKhKVQpOImIiATJpy2hqbLWzfnjzNCUotAU0hScREREguDAqTPcvPE9jrkaOC81gaeXzWd0QmywuyW9UHASEREZZAdP1XHzhveoqGlgemoCzyxbwBiFprCg4CQiIjKIDlXVcfPG9zha08C0sSN5Ztl8xiYqNIULBScREZFBcri6jq9ueI8jznpsY0byh2ULSE2MC3a3pA8UnERERAbBEWc9N280Q9PUMSP5Q/4CUpMUmsKNgpOIiMgAO+qs5+YN73Goqp4po+P5w7IFjFNoCksKTiIiIgPoWE0DN298j4NVdUxKiecP+QtIS1ZoClcKTiIiIgOkNTQdOFVHRsoI/pC/gPTkEcHulpwDBScREZEBUOlq4JaN77H/5BkmjhrBH5YtYIJVoSncKTiJiIj0s8raBr668T0cJ88wwWqGpomj4oPdLekHCk4iIiL96EStm5s3vIfjxBnGJ8fxbP4CMlIUmoYKBScREZF+cvK0m1s2vkf5iTOkJ8fxbP6lCk1DjIKTiIhIPzjVEpo+qTxNWlIcf1i2gEmjFZqGmj4FJ7vdTlZWVkDt1q1bx7p161i6dClOp9Nvn91uB8DhcPi+FxERCVdVZxq59Xdb+fj4acYlxfKH/AVMGTMy2N2SARBwcCoqKgIIKOgUFxezcuVKVq5cSU5ODosWLfLtW79+PVlZWVgsFpYvX47NZjuLbouIiISG6jON3LLxPfYcqyU1MZZnli1gqkLTkGUxDMPo0xMsFnp6it1uZ9GiRVRXVwPmVaVp06ZRXl6OzWZjw4YN3HTTTQBYrdY+ddblcpGcnExNTQ1JSUl9eq6IiEh/c9Y1csvGreyqcDEmIZZn8xcwPTUh2N2SPupLvojq7x+emZnJxo0bfY9bh+lSUlJ82wINTG63G7fb7Xvscrn6pY8iIiLnyllnDs+ZoSmGZ/PnKzQNAwMyOTwvL8/3/XPPPUdubq4vLDmdToqKiigqKqKgoACHw9Ht66xZs4bk5GTfV0ZGxkB0V0REpE9q6pq4/ZFt7DzqYvTIGP6wbAHTUxOD3S0ZBP0+VNee0+kkKyuL0tJSv+DU+r3dbmfp0qWUl5d3+fyurjhlZGRoqE5ERIKmpr6J2x/ZykeHa0hpCU3npyk0hbO+DNUNaDmCgoICtmzZ4jc01/4Kk81mw+FwdHvVKTY2lqSkJL8vERGRYHE1NPG1R7fx0eEaRsVH88yy+QpNw0y/z3FqtW7dOgoKCrDZbL55Tg6Hw2/ieKv2859ERERCgcdrsG1/FZW1DaQmxjErPZG7Hi/hw0NOrPHRPP2NBcxM03/oh5uzCk7th9vAHHKzWq2+0gJFRUVkZmb6QtOmTZvIz8/HZrOxdu1a3/OKi4vJy8vr8911IiIiA2lzWQWrX95FRU2Db1t0pIUmj0HyiGie/sZ8Zo9XaBqOAg5OxcXFbNmyBTAnbefk5Pgmgbc+XrlyJQ6Hg6VLl/o912q1kp+fj9VqJTs7m3Xr1mG1WikvL6ewsLAfD0dEROTcbC6r4J6n7HSczdvkMbd8+7PTuGB88uB3TEJCnyeHB5PqOImIyEDyeA0uX/u635WmjtKT43i74CoiIyyD2DMZSCEzOVxERCScbNtf1WNoAqioaWDb/qpB6pGEGgUnERGRFpW1PYemvraToUfBSUREpEVqYly/tpOhZ8DKEYiIiISb2vqmHvdbgLTkOOZNVRmd4UpXnERERIDfv3eAbz5d6nvccep36+P7r52tieHDmIKTiIgMa16vwZpXdvOjP5XhNeCm7In8+pZLSEv2H45LS47jodsyWTInPUg9lVCgoToRERm23M0e/q3wI17+8CgAKxbP4LtXTcdisfD5Oel+lcPnTU3RlSZRcBIRkeHJWddI/u9L2ba/iqgIC2tvvJAbsyb69kdGWLh02ugg9lBCkYKTiIgMO4eq6rjzsW2UnzhDYmwUD9+exWXTxwS7WxIGFJxERGRY+eiwk7sf387J027Sk+N47K4cLdYrAVNwEhGRYeO13cf5zjPvU9/kYWZaIo/fNa/TJHCRnig4iYjIsPD01gO+O+euOG8Mv701k8S46GB3S8KMgpOIiAxpXq/Bz/+6l4feLAdgadZEfnbDXKIjVZFH+k7BSUREhix3s4cfFH7ESy3lBr6fO4N/XmSWGxA5GwpOIiIyJNXUNZH/++1sbSk38MCNF5LXrtyAyNlQcBIRkSHncHUddz5Wwr7K0yTERvHQbZlccd7YYHdLhgAFJxERGVLKjtRw1+MlnKh1k5ZklhuYla5yA9I/FJxERGTIeGNPJd9+xk5do1lu4LG7ckhPHhHsbskQouAkIiJDwjNbD/KjF8vweA0unz6G396WSZLKDUg/U3ASEZGwZhgGv/jrXn7zhllu4MbMiay5YS4xUSo3IP1PwUlERMKWu9lDQdFH/OkDs9zA9xadx7/knqdyAzJgFJxERCQs1dQ3sfz323nPYZYb+NkNc7kpOyPY3ZIhTsFJRETCzhFnPXc+uo1PKk8zMiaSh27L4jMzVG5ABp6Ck4iIhJWyIzXc/XgJlbVuxiXF8uidOVwwPjnY3ZJhQsFJRETCxht7K/nO03bONHo4f5xZbmC8VeUGZPAoOImISFh4dttB7vuTWW7gsumjeei2LJUbkEGn4CQiIiHNMAwe3PIxv3p9HwA3ZE7ggRsuVLkBCYo+BSe73c6yZcsoLS3tsZ3D4aCoqAibzYbD4SA/Px+r1drrPhERkfYam73c+/xH/PH9IwD886Lz+L7KDUgQBRycWsOO3W7vte3SpUt94crhcLBs2TIKCwt73SciItKqpr6Je54q5Z3yU0RGWPjZ9XP4Ss6kYHdLhrmAg1NeXl5A7RwOh99jm81GcXFxr/tERERaHXXWc+dj2/j4uFlu4Le3ZXGlyg1ICOj3OU7FxcWkpKT4bUtJScFut7N9+/Zu92VmZnZ6Lbfbjdvt9j12uVz93V0REQkxO4+a5QaOu9ykJsby2F0qNyCho99n1jmdzi63V1VV9bivK2vWrCE5Odn3lZGhirAiIkPZWx+f4KaH3+W4y82McQm88O3LFJokpAzaLQndhaae9q1atYqamhrf16FDhwamcyIiEnTPlRzk7sdLONPo4VLbaAq/uZAJqtEkIabfh+qsVmunK0hVVVVYrdYe93UlNjaW2NjY/u6iiIiEEMMw+O8tH/O/LeUGrr9kAmtvVLkBCU39/rcyNze3y+3Z2dk97hMRkeGnsdnLvxZ+6AtN371qOg/edJFCk4Sss7ri5HQ6/a4S2e12rFYrNpsNm83m19bhcJCdne274tTdPhERGV5cDWa5gX/sM8sN/OTLc7h5nsoNSGgLODgVFxezZcsWwJy0nZOT4ytR0Pp45cqVABQWFlJQUEBOTg4lJSV+dZp62iciIsPDUWc9dz1Wwt7jtcTHRPKbWzP53Pmpwe6WSK8shmEYwe5EoFwuF8nJydTU1JCUlBTs7oiIyFnYddTF3Y+XcMzVwNjEWB67M4c5E3TnnARPX/KF1qoTEZFB8/dPTnDPU3ZOu5s5LzWBx+7KYeKo+GB3SyRgCk4iItLvPF6DbfurqKxtIDUxjnlTU3jefpgf/nEHzV6DBbYU1t+WTXJ8dLC7KtInCk4iItKvNpdVsPrlXVTUNPi2JcRGcdrdDMCXLh7PurwLiY2KDFYXRc6agpOIiPSbzWUV3POUnY6TZ1tD05I54/ifr1yMxWIZ/M6J9AMVyhARkX7h8RqsfnlXp9DU3oeHavCGzS1JIp0pOImISL/Ytr/Kb3iuKxU1DWzb3/X6pCLhQMFJRET6RWVtz6Gpr+1EQpGCk4iI9IvRI2MCapeaGDfAPREZOJocLiIi56zS1cAviz/psY0FSEs2SxOIhCsFJxEROScln1bxraftnKh1ExcVQUOzFwv4TRJvvYfu/mtnExmhO+okfGmoTkREzophGDzy9n5u3vAeJ2rdzBiXwP997woevi2TtGT/4bi05Dgeui2TJXPSg9Rbkf6hK04iItJnZ9zNFDz/EX/+qAKA6y4azwM3ziU+Jgrb2AQWz07rVDlcV5pkKFBwEhGRPik/cZpv/r6UTypPExVh4d+/MIs7Fk7xK2oZGWHh0mmjg9hLkYGh4CQiIgF7ZUcFPyj6iNPuZlITY/ntrZlkT9Fkbxk+FJxERKRXzR4vP391L+v/5gBg/tQUfnXLJSotIMOOgpOIiPToRK2b7/7BznsOs+J3/mdsrLz6fKIidX+RDD8KTiIi0q3SA9V86+lSjrvcjIyJ5OdLL+KaubozToYvBScREenEMAyefPcAP/nLLpo8BtNTE3j4tkympyYGu2siQaXgJCIifuoam/nhH3fwpw+OAvCFuemszbuQhFj9yhDRvwIREfHZf/IM9zxVyp5jtURGWFj1+Zl8/fKpfqUGRIYzBScREQHgrzuP8a+bPqTW3cyYhFh+c8slzLepFpNIewpOIiLDnMdr8OCWvfzmjXIAsieP4je3ZjIuSaUGJAR4PXDgHTh9HBLGweSFEBEZtO4oOImIDGOnTrv53rMf8Pa+kwDcddkUfnjNLKJVakBCwa6XYHMBuI62bUsaD0vWwuzrgtIlBScRkWHqg0NOvvVUKUdrGhgRHcnavAu57qLxwe6WiGnXS7Dpa4Dhv91VYW6/6cmghCf9l0JEZJgxDIOntx7gpoff5WhNA7YxI3nxO5cpNEno8HrMK00dQxO0bdt8r9lukOmKk4jIMNLQ5OG+F8p43n4YgKsvGMcvll5EYlx0kHsm0s6Bf/gPz3VigOuIOfdp6hWD1i1QcBIRGTYOnqrjm0+VsqvCRYQFCpbMJP8zNpUakNDR1ABlRfDmA4G1P318YPvTBQUnEZFh4PU9x/mXZz/A1dDM6JEx/OrmS1g4fUywuyViqjkC2x+B0seh7lTgz0sYN2Bd6k6fgpPD4aCoqAibzYbD4SA/Px+r1dpl26KiInJzcwE6tbHb7QBkZmbicDhwOp1kZmb2vfciItIjj9fgl699wv++9gkAl0yy8ttbM0lPHhHknsmwZxhwaCtsfdicCG60zFdKzoDsu2Hbeqg9TtfznCzm3XWTFw5mj4E+BqelS5dSWloKmCFq2bJlFBYWdtu2o7Vr17Jy5UrWr1/Phg0bAMjNze32NURE5OxVn2nke899wN8+PgHA1y6dzL9/YTYxUbovSIKoqQF2/tEMTBUftm2ffDnMXw7nXwORUTB6estddRb8w1PL0PKSB4JSzyng4ORwOPwe22w2iouLu2zrdDopLCwkLy/Pt23dunWsXLkSgKysLKqrq4HOV6NEROTc7ThcwzefKuWIs5646Ah+dv1cbsicGOxuyXDmqjCH47Y/BnVm3TCi4mDuUjMwpc31bz/7OrPkQJd1nB4I/TpOxcXFpKSk+G1LSUnBbrd3OczWPjQVFRX5PYbAApPb7cbtdvseu1yuQLsrIjJsPVdykB+9uJPGZi+TR8fz8G1ZzEpPCna3ZDgyDDhc0jIc9yJ4m83tSRMg5xuQeQeM7GFZn9nXwcwvhGflcKfT2eX2qqqqTtvahyKn00lVVRU2m81vW1FREQAlJSUsX77cb3+rNWvWsHr16kC7KCIyrDU0efh/L+3k2ZJDAOTOSuW/brqY5BEqNSCDrNkNO/9kBqaj9rbtkxaaV5dmftEcjgtEROSglxzoyTnfVdddoGpVUFDA2rVr/ba1n1Rus9lYvHgx5eXlnZ67atUqVqxY4XvscrnIyMg41y6LiAw5h6rq+NbTdnYcqcFigX/7p/O558ppRESo1IAMotpjsP1RczjuTKW5LTK2ZTguH9IvCm7/+kHAwclqtXa6ulRVVdXjkJvT6aS4uLhTG4fD4Rvea71Dz+FwdLrqFBsbS2xsbKBdFBEZlt76+ATfe/Z9nHVNjIqP5n9vvoQrzhsb7G7JcHK41Ly6tPMF8DaZ2xLHQ87XIetOGDl0Sl8EHJxyc3NZv359p+3Z2dndPmf79u1dliJYtGiRb3J4q47zp0REpGder8Gv39jHfxd/jGHAhROTeei2LCZYVWpABkFzozlvaevDcGR72/aM+TD/mzDrWogcesPEAQenjleDHA4H2dnZvmBkt9uxWq1+7ex2e6dAZLPZ/IbuiouLycvL0911IiJ9UFPXxPc3fcDre8zhkJvnTeL+a2cTFx28SbMyTJyuNIfitj/SVrk7Mgbm3Ajz8mHC0K7L2Kc5ToWFhRQUFJCTk0NJSYlf/aU1a9aQk5PjKznQqmPgslqtZGdns27dOqxWK+Xl5arjJCLSBzuP1nDPU3YOVtURGxXBf355Djdla/6nDLAjdti63qzB5Gk0tyWktQ3HJaQGtXuDxWIYRlclOUOSy+UiOTmZmpoakpJ0a62IDD/Plx7mhy/swN3sJSNlBA/dmsWcCcnB7pYMVZ6mluG49XB4W9v2iTktw3HXQVRM8PrXT/qSL7RWnYhICPJ4Dbbtr6KytoHUxDguykjmp3/ZzdNbDwLwufPH8t9fuRhrfPj/0pIQdPqEuW7c9kegtsLcFhENc26AecthYlZQuxdMCk4iIiFmc1kFq1/eRUVNg29bdKSFJo+BxQL/smgG371qukoNSP87+oF5damsqG04bmRqy3DcXZA4+IvqhhoFJxGRELK5rIJ7nrJ3Wta0yWNu+dZnp/G93PMGv2MSnrye3qtue5pg98tmYDr0Xtv28Zmw4B6Y/eUhMRzXXxScRERChMdrsPrlXV2uBd/qj/YjrFh8PpG62iS92fVSN+u8rTWXMjlz0hyOK3kEalvaRETBBdeb85cmdl9uaDhTcBIRCRHb9lf5Dc91paKmgW37q7h0Wg/re4nsegk2fQ06xnBXBWy6HaZ8Bg5tBU/LerDxYyD7bvMrKX3QuxtOFJxERELE4eq6gNpV1vYcrmSY83rMK01dXrts2fbp38w/0y82ry7NuQGitFJHIBScRERCwJZdx1n7yp6A2qYmxg1wbySsHXjHf3iuO5//OcxbBhYN+/aFgpOISBAdddZz/0s72bLLrMAcaQFPN5OcLEBachzzpmqJKulBazXv3sSnKDSdBQUnEZEgaPZ4efydT3lwy8fUNXqIirDwjStszEpP5F+e/QDwH2hp/fV2/7WzNTFculflgB1FgbVNUGmBs6HgJCIyyN4/WM0PXyhjd4ULgOzJo/jp9XM5Py0RgNioiE51nNKS47j/2tksmaOJu9KFYzvg7f8xl0MxvL00tph3101eOBg9G3IUnEREBklNfRM/f3UPT289iGGANT6aVZ+fydKsDL9ilkvmpLN4dppf5fB5U1N0pUn8GYY5n+nt/4Z9W9q2T8+FjHnwxprWhu2e1PJ3aMkDnes5SUAUnEREBphhGLz04VH+88+7OXnavP37xsyJ/PCamYxO6PpOpsgIi0oOSNe8XvjkVTMwHdpqbrNEmIUqL/8XSL/I3DZ2Vjd1nB4w6zjJWVFwEhEZQJ+ePMOPXizj75+cBMA2diQ//fJchSLpO08TlD1vDsmd2G1ui4yBi2+Fhd+F0dP828++DmZ+offK4dInCk4iIgPA3exh/VsOfv3GPhqbvcRERfDdz00n/0obsVH6xSV90FgH7z8F7/wKasxFnolJhJy7YcG3IDGt++dGRMLUKwann8OEgpOISD97p/wk//6nMhwnzgBwxXlj+M8vzWHKmJFB7pmElfpq2PY72PoQ1J0yt40ca64fl/11GGENaveGKwUnEZF+cvK0m5/9ZTd/fP8IAGMSYvnxtbO59sJ0LKqXI4FyVcB7v4Htj0HjaXObdRIs/Ge45DaIHhHc/g1zCk4iIufI6zV4bvshHnhlDzX1TVgscNv8yfzb1eeTPCI62N2TcHGqHP7xP/Dhs+BpNLelXgCXf99ceDdSv7JDgc6CiMg52HPMxX0vlFF6oBqA2elJ/PT6OVwyaVSQeyZh4+j75oTvXS/iKx0w6VIzMJ33T6ruHWIUnEREzkJdYzO/fO0THvn7fpq9BvExkaxYPIM7F04hKjIi2N2TUGcYsP9vZkkBxxtt28+72gxMky8NXt+kRwpOIiJ99Nru4/z4xZ0ccdYDcPUF47j/2gsYb9XcE+mF1wt7/2IGpiOl5jZLJMy5ES77HqTNCW7/pFcKTiIiAaqoqWf1S7vYvPMYABOsI1h93QXkztaaX9KL5kbYsckckjv1ibktKg4uuR0WfgdGTQlm76QPFJxERHrR7PHyxLsHePCveznT6CEywsI3Lp/K93LPIz5GH6PSA/dpsD8J7/4aXObdlsQmw7xvwPx7IGFscPsnfaZ/8SIiPfjgkJP7XtjBzqPmgryZk6z89Pq5zEpPCnLPJKTVVcHW9bBtvVmPCczK3Zd+G7Lugjj9/QlXCk4iIl1wNTTxi1f38vv3DmAYkBQXxaprZvGVbP8FeUX81ByGd38DpY9DU525bdRUc/7SRTdDdFxQuyfnTsFJRKQdwzD480cV/Mefd3Gi1lyQ9/pLJnDfF2YxppsFeUU4sRf+8Uv46DnwNpvb0i4075Cb/SWtDzeEKDiJiLQ4cOoMP3pxJ3/7+AQAtjEj+cmX57Bw+pgg90yCwuvpfYHcw6Xw9oOw5y/4ajBNuQIu/xeYtkg1mIYgBScRGfbczR42tCzI625ZkPfbn53ONz+rBXmHrV0vweYCcB1t25Y0HpashVnXQvnrZkmBT//etn/mF+Gyf4GMnEHvrgyePgUnh8NBUVERNpsNh8NBfn4+Vqu1y7Z2ux2AzMxMHA4HTqeTzMzMPr+OiMhAes9xivte2EF5y4K8l00fzU++PJepWpB3+Nr1Emz6Gr4rSK1cFbDpdrBOBucBc1tEFMy9yZzDlDpz0Lsqg69PwWnp0qWUlpoFuxwOB8uWLaOwsLDLtuvXr2fDhg0A5Obm+rXry+uIiAyEqjON/PQvu3nefhiAMQkx/OiLs7nuovFakHc483rMK00dQxO0bXMegKgRkHWneZecNWMQOyjBFnBwcjgcfo9tNhvFxcXdts/KyqK62rwFs/3VpL6+johIf/J6DYpKD/OzV3bjrDMX5L1l3iRWXj2T5HgtyDvsHXjHf3iuOzc+ArO+MPD9kZATcHAqLi4mJSXFb1tKSgp2u903BNdRV8NvfXkdt9uN2+32PXa5XIF2V0SGMY/XYNv+KiprG0hNjGPe1BQiIyx8fLyW+17YQcmn5n/qZqYl8rMb5pKpBXml1Yk9gbVrrh/YfkjICjg4OZ3OLrdXVVV1276oqAiAkpISli9fjs1m69PrrFmzhtWrVwfaRRERNpdVsPrlXVTUNPi2pSXFclGGldd2V9LsNRgRbS7Ie9dlWpBXMItV7n4JdhT5T/buSYKW2Rmuzvmuuu6CUPsJ3zabjcWLF1NeXt6n11m1ahUrVqzwPXa5XGRkaCxZRLq2uayCe56yd5qdcszl5tjO4wDkzhrH6i9dwAQtyDu8uU/D3legrAj2vQbeprZ9kTHgaezmiRbz7rrJCwelmxJ6Ag5OVqu101Whqqqqbu+GczgcvqG31rvnHA5Hn14nNjaW2FgVnBOR3nm8Bqtf3tXllN5Wo+KjWX97FpGq/D08NTfCvmIzLO19pa2yN8C4uTD3RphzIxz9oOWuOvCfJN7y92bJAypoOYwFfI06Nze3y+3Z2dmdttntdhYtWtRpe0pKSp9eR0QkUNv2V/kNz3Wluq6Jbfu7nl4gQ5TXA4634MXvwC+mw7M3Q9nzZmgaNRU+8wP41la4522zyrd1Esy+Dm56EpLS/V8raby5ffZ1wTkWCQkBX3Gy2Wx+jx0OB9nZ2b4rRXa7HavVis1mw2azsXbtWl/b4uJi8vLysFqtna4sdXwdEZGzcawmsMm6lbU9hysZAgwDjpSac5Z2vgCnj7XtS0iDOTfA3DwYn9l9Ze/Z18HML/ReOVyGnT7NcSosLKSgoICcnBxKSkr8ai+tWbOGnJwcVq5cidVqJTs7m3Xr1mG1WikvL/dr29PriIj0hWEYFO+u5Oev7g2ofWqiFlkdsip3m2GprAiqP23bHmc114ubmweTLws8/EREwtQrBqKnEsYshmH0NCUgpLhcLpKTk6mpqSEpKSnY3RGRIHv/YDVr/m8P2z41h98sFvNiQ1csQFpyHG8XXKU5TkNJ9QFz6G1HEVTubNseHQ/nX2OGpWmLIComeH2UkNeXfKG16kQk7Hx68gw/f3Uvf9lRAUBsVAR3Xz6V81IT+NdNHwJdTunl/mtnKzQNBacrzSG4HUVweFvb9ohomJ5rhqXzPw8xWjZH+p+Ck4iEjVOn3fzq9X08vfUATR4DiwVuzJzIisUzGN9SXiA+JrJzHafkOO6/djZL5qR399IS6uqdsOfPZlja/xYY3pYdFnM4bU6eufhufEpPryJyzhScRCTk1Td6ePQf+3n4zXJq3c0AXDljLPd+fiaz0v0vqy+Zk87i2WldVg6XMNNUDx9vNsPSJ3/1r600IcsMSxdc3/nuN5EBpOAkIiHL4zV43n6YB//6Mcdc5hWkC8Ynserzs7j8vDHdPi8ywsKl00YPVjelP3maoPwNc4L3nr9A4+m2fWNnmmFpzg0welrw+ijDmoKTiIQcwzB48+MTPPB/e9h7vBaACdYR/ODq87nuovFE6OpR6PN6Ar+V3+uFg++aYWnnn6C+Xa2t5EkthSnzYNwF3ZcPEBkkCk4iElJ2HK5hzSu7eaf8FABJcVF896rzuP3SycRFq4ZOWNj1EmwuANfRtm1J42HJ2rbikYYBFR/CjkJzorfrSFvbkWPNIbg5eZAxT2FJQoqCk4iEhENVdfzir3t58QPzl21MZAR3XjaFb312GtZ43UoeNna91LJcSYe6EK4Kc/vn15qL6pYVwal9bftjk8zJ3XNuhKlXQqR+PUlo0t9MEQkqZ10jv359H0++e4BGj3mn1PWXTGDF4hlkpMQHuXfSJ16PeaWpyxUDW7a9srJtU1QczFhilg+YvhiiVZxUQp+Ck4gERUOThyff/ZRfv74PV4N5p9xl00ez6vOzmDMhOci9k7Ny4B3/4bnujM+C+flmgco4FTOW8KLgJCKDyus1ePHDI/zi1Y854jTXl5uZlsiqa2bxmfPGYNF8lvBVvT+wdpd+y7zKJBKGFJxEZNC8/clJfvZ/u9lV4QIgLSmOf/2nGdyQOVF1lsJVU71ZY2lHEex9JbDnJIwb2D6JDCAFJxEZcLuOunhg8x7+9vEJABJjo7jnc9O4+7KpulMuHHmawPGmGZb2/AUaa9v2RUSBt7mbJ1rMu+smLxyMXooMCAUnERkwR531/NdfP+aP7x/GMCA60sJtCybz3avOI2Wk7pQLK+1rLe16EepOte1LmmgWpZybB9WfwqY7WnZ0sWLgkge6r+ckEgYUnESk39XUN/HQm+U8+o/9NDabd8p98cJ0fnD1+UwerYVXw4ZhQMUH5pWljrWW4seYtZbm5sHEeRARYW5PvwhuerKbOk4PtNVxEglTCk4i0m/czR6eeu8gv3r9E5x1TQDMm5rCD6+ZxcUZ1uB2TgJ3Yi+UPW8Gpqrytu2B1lqafR3M/ELglcNFwoiCk4icM6/X4C87Klj36h4OVZl3yk1PTWDV52dy1cxU3SkXDpwHW8LS83B8R9v2qBFw/hIzLPWl1lJEJEy9YmD6KhJECk4ick7eLT/FA6/s5sPDNQCkJsayYvEM8rImEhUZEeTeSY9OV5prw5UVwaGtbdsjomDaInMY7vzPQ2xi0LooEmoUnETkrHx8vJa1r+zhtT2VAIyMieSbV07j61dMJT5GHy0hq94Ju182ry7tfwsMb8sOC0y53LyyNPtLEJ8SzF6KhCx9uolInxx3NfDfWz5m0/ZDeA2IjLBwy7xJfC/3PMYkxAa7e9KVxjr4+BVzGG7fFvA0tu2bkGWGpQuuNydwi0iPFJxExI/Ha7BtfxWVtQ2kJsYxb2oKkREWahua2PA3Bxv/7qChybxKseSCNH6w5HymjU0Icq+lk+ZGKH/dHIbb83/QdKZt39hZMPdGMzCl2ILXR5EwpOAkIj6byypY/fIuKmoafNvSkuL47Plj2bLrOKfOmFcqsiaP4ofXzCRrsoZzQorXAwf+Yd4Nt/slqK9u22edbAaluXkw7oLg9VEkzCk4iQhghqZ7nrJ3Wtf+mKuBZ0sOAWAbM5KVS2Zy9QXjdKfcQPN6Arud3zDgSKk5Z6nsj3D6WNu+hHFwwQ1mYJqYDTpnIudMwUlE8HgNVr+8q1Noai95RDT/970rtETKYNj1UjcFJNe2FZA8vsschit73qzW3SrOaraZk2dO9lbtJJF+peAkImzbX+U3PNeVmvom3j/o5NJpowepV8PUrpdg09egY4x1VZjb59wIlbvMr1bR8XD+NeYw3LRFEKXlbEQGioKTyDB34NQZ1v+tvPeGQGVtz+FKzpHXY15p6vLaX8u2siLzz8gYsyDl3BthxhKI0VI2IoNBwUlkGPJ6Df72yQmefPcAb+ytxOhpjK6d1MQAq0bL2Tnwjv/wXHcW/jNcsQJGjBr4PomIHwUnkWGktqGJotLD/P7dAzhOtt2e/pnzxrDjSA3OuqYur3VYgLRkszSBDIDqA+B4A97/fWDt0y9SaBIJEgUnkWFgX+Vpnnz3U54vPcyZRg8ACbFR5GVN5GuXTsY2NsF3V50F/4Gi1vuw7r92NpERuiurX9RVwad/B8ebUP4GVO/v2/MTxg1It0Skd30KTg6Hg6KiImw2Gw6Hg/z8fKxWa5dt7XY7xcXFAJSUlLBx40ZfW7vdDkBmZiYOhwOn00lmZubZH4WIdOLxGryxp5In3v2Uv39y0rd9emoCd1w6meszJ5IQ2/YRsGROOg/dltm5jlNyHPdfO5slc9IHtf9DSrMbDr5nBiXHm3D0ffziqSUSJuaA7UooeQTqTtH1PCeLeXfd5IWD0m0R6axPwWnp0qWUlpYCZohatmwZhYWFXbYtLi5m5cqVAKxbt45Fixb5nrt+/Xo2bNgAQG5ubrevISJ9V1PXxHPbD/L79w5wqKoeMMv3LJo5jjsXTuGy6aO7rcG0ZE46i2endVk5XPrA64XjZebwm+NNOPAuNNf7txk7E2yfBdvnzCAUl2RuHzen5a66bq79LXlAJQZEgshiGIFNC3U4HH7BCWDUqFFUV1d3amu321m0aJFvn8PhYNq0aZSXl2Oz2diwYQM33XQTQLdXrLricrlITk6mpqaGpKSkgJ8nMhzsOebiiXc+5YX3j/iWREkeEc1XcjK4fcFkMlLig9zDIc55sG3obf9bLVeN2klIawlKLV9JPVzB67KO0wQzNLXWcRKRftOXfBHwFafi4mJSUvwnhqakpGC32zsNs2VmZrJx40bfY6fT6WvfKpDA5Ha7cbvdvsculyvQ7ooMC80eL1t2Hefxdz5l6/4q3/aZaYncuXAKX7p4AiNidHViQNRXw/6/tw2/VXUo6RA90ixAOe1zZlAaOzPwyt2zr4OZXwiscriIDKqAg1Nr+Omoqqqqy+15eXm+75977jlyc3N9YcnpdFJUZNYiKSkpYfny5dhsnReaXLNmDatXrw60iyLDxqnTbp4tOcRT7x3wzUeKjLBw9QXjuOPSKcybmqIlUfpbsxsObWsbfjv6Phjetv2WSHNZk9bhtwlZ51aIMiISpl5xrr0WkX52znfVdReo2u8vKiryG+JrP6ncZrOxePFiyss7F+BbtWoVK1as8D12uVxkZGSca5dFwtaOwzU8/s6nvPzRURqbzV/aKSNjuHleBrfOn8x464gg93AI8Xqhcmfb8NuBdzrPUxozwwxJts/ClMsgLjkYPRWRQRRwcLJarZ2uLlVVVfU65FZQUMCWLVv82jkcDt/wXusdeg6Ho9NVp9jYWGJjYwPtosiQ1Njs5ZWyCp5451PsB52+7RdOTOaOS6fwhQvTtX5cR4EukNtRzWEzJDneNOcpnTnhv39kqv88peQJ/d93EQlpAQen3Nxc1q9f32l7dnZ2t89Zt24dBQUF2Gw235Uph8PhN3G8Vcf5UyLDXaWrgae3HuSZbQc5UWvO9YuOtHDN3HTuWDiFSzKsGo7rSiAL5Laqd8Knb7cNv53a578/eqR5Jak1KKXODnyekogMSQEHp45XgxwOB9nZ2X61maxWq69dUVERmZmZvtC0adMm8vPzsdlsrF271vc6xcXF5OXl9enuOpGhyjAM7AedPPHOp7xSVkGTx7zpdWxiLLfOn8Qt8ydp2ZOe9LZAbt6jkJDaNvx21N5hnlKEOTepdfhtYo4WzBURPwGXIwAzLK1fv56cnBxKSkpYtWqVL/AsXbqUnJwcVq5c6Ss/0J7VavVdZWotjmm1WikvL/cLUj1ROQIZqhqaPPz5I3M4bseRGt/2rMmjuGPhFJZckEZMVEQQexgGvB74nzm9rPXWsTYSMPq8titKUy6HEdYB66KIhKa+5Is+BadgU3CSoeaos56n3jvAsyWHqDrTCEBMVATXXTSeOxdOYc4ETTYO2P6/wxNf7L1dbBKc909mmYCpV4JVN5yIDHcDUsdJRHrn8Rq9Vt02DIOt+6t44p1P+euu43i85v9dxifHceuCyXw1J4PRCbopIiANLjhcAoe2wu6XAnvOF/4LLrxpYPslIkOWgpNIP9lcVtFpnbf0duu81Td6+NMHR3jinU/Zc6zW12aBLYU7F04hd9Y4oiI1HNctwzCrcx/aan4d3GqWC2g/RykQiVpzT0TOnoKTSD/YXFbBPU/ZOy3LeqymgW8+ZSd3Virb9lfhamgGIC46gusvmcgdCyczM03Dzl3yNMGxj8yA1BqWais6t7NOgowFkJEDb62DMyfRArkiMlAUnETOkcdrsPrlXV3+qm7dVry7EoCMlBF8bcEUbsrOIDk+etD6GBbqq+FQCRx6z6zQfaQUmur820REQdqFMGkBZMw3v9qv+ZaQpgVyRWRAKTiJnKNt+6v8hue684OrZ/DNK6d3mvM0LBkGVDlahtxagtKJ3Z3bxSW3BaRJC2B8JsT0sFjx7Ovgpie7qeOkBXJF5NwpOImcg/pGD6/vOR5Q24mj4odvaGp2Q8WHLSGpZditY1VugJRpLSFpvjn8NmYGRPRx3pcWyBWRAaTgJNJHR5z1vL6nktd3H+ed8lO4mwObnDysCleeOdUSkFqH3ezgcfu3iYyB9IvbQlLGfEgY2z8/XwvkisgAUXAS6YXHa/DhYSev767ktT2V7K5w+e0fnxyHs76JukZPl8+3AGnJZmmCsNDXdd4MA05+Yoak1oncpz7p3C5+tP+wW/rFED2MwqSIDAkKTiJdqG1o4u+fnOS13ZW8ubeSUy3FKQEiLJA5aRRXzUpl0cxxzBiXwKs7j3HPU3agyynJ3H/t7PAYpgtknbemejj6vv+wW31159cacz5kzGuZyL0ARk/TOm8iEvZUOVykxYFTZ3htdyWv7TnOtv1VvnXiABLjorhyxlgWzUrlyhmppIzsvH5Zb3WcQl5367y13qE24/NQdxKOfgDeJv8mUXHmGm8Z81qG3eZBfJhcYRORYU9LrogEoMnjpfRANa/vqeS13ccpP3HGb79tzEiumpnKVbNSyZmSQnQAxSkDqRwekgJa562dkaltc5MmLTBLBGgxXBEJU1pyRaQb1WcaeevjE7y2p5K39lb6ClICREVYmDc1xQxLM1OxjU3o8+tHRli4dNro/uzywPA0Q1U5HC+D4zth/98CC02Xr4DMr8GoKRp2E5FhScFJhjTDMNhXeZrX9lTy+u5Kth+owtvuGuuo+Gg+d755VekzM8aSFDcEi1LWVZkB6VhLSDpeBif2QHPvtac6GXcBpEzt/z6KiIQJBScZctzNHrY6qswhuD3HOVRV77d/ZloiV81MZdGsVC7OGBUeQ2mB8DSZd7e1hqPWq0ldLVMCEB0PqbMhbY45R2nrw73/jIRx/dtnEZEwo+AkQ8KJWjdv7DXnKv39k5N+pQFiIiO4dNpoFs0yh+Amjuqh8nS4OH0Cju9oCUmtV5H2gqex6/ajpsC4OeYVo9Y/R01tKy7p9cDul8BVgdZ5ExHpnoKThJRAJ1cbhsHOo66Wq0qVfHjI6bd/bGIsi1rmKl02fQwjYwfpr3pfayD1ptkNJz82w9GxdkHpTGXX7WMSW8JRy1faXEidBbGJPf+ciEiz5IDWeRMR6ZGCk4SM3m7nr2/08I99J3ltTyVv7KnkmMt/js7cCcksaqmtdMH4JCIGewgukBpI3TEMqD3Wbpit5c+TH4O3uYsnWCDFZg6z+a4kXQDWyWc/aVvrvImI9ErlCCQkbC6r4J6n7F0OEgHMmZDEJ8dP+y1vMiI6ksvPG8Oimal8bmYq45KCWIW6xxpImIHEV0CywZyc3T4gHd8Jdae6fu245JZw1G6oLXUmxIwcmGPp76tmIiIhTuUIJKx4vAarX97VbWgCKDtiLnMywTrCN1dpgW00cdEh8Avd6zGv0nR5BC3bXvw2lP0RKnfBqX1gdLE8iyUCRp/nP8w27gJImjC4t/5rnTcRkW4pOElQeL0GR5z17K5wsWXXcb/hue6svXEuN2VnYAml+kFeL+x+ufcaSG4X7Hqh7fGIlM7DbGNnQvSIge2viIicEwUnGXC1DU3sPVbL7mO17KlwsedYLXuP1XLa3dXcne7FRUcOfmgyDDhzEpwHwfmp+Wf1AXAeaNl2CDzuwF5rTh5cdLMZkhLTVEBSRCQMKThJv/F4DQ6cOsOeY7XsrnCxu6KWPcdcHK6u77J9TGQE01MTGJ0Qw98/Odnr66cmDtAcpvrqzoGoujUYHYSmM728QATg7aUNkHWnhsBERMKcgpOcFWddoy8Y7Wn5c+/xWhqaug4QaUlxzExPZGZaErPSE5mVnsTUMSOJjozA4zW4fO3rHKtpwIKXeRF7SMVJJVa2eWdiEEFaslma4Ky4T7eEoAPtAlFLSKo+CO6aXl7AAonpMGoyWCeZd661/z4hDX51sWogiYgMAwpO0qMmj5f9J8/4XUHaU1HbqRRAq7joCM4fZwak1qA0My2RUSO7XwA2MsLC/dfO5k/PPMyPo59kvKXKt++okcJ/NH2NL1/7ze4rfDc1tF0d6mo4rbu71dobOdYMQdZJLaGo9fspkDwRomJ7fr5qIImIDAsKTkNIoMUju3Oi1u0LRrtb/txXeZpGT9dXkTJSRphXkNISmZluBqTJo0ee1RImSyJKuDrmlxgdrtikWap4KOaXWOomguM8/ytGrd+fPtb7D4izdrhiNKXte+skiDnHauKqgSQiIcjj9WCvtHOi7gRj48eSmZpJZJj9Jy7UjkF1nEJYX4LQ5rIK/vOlHWSc/tA3zHUo4SJ+dN1clsxJ92vrbvawr/K0eQWpZbL2nmMuTp7uermOkTGRvmA0M90MSuenJZJ4rgviNtaZV4NOV8IzSwO7MtSdmIRurhi1/BmXfG59DZRqIIWEUPugPRvhfgzh3n8I/2MoPlDMA9se4Hjdcd+2cfHjuHfeveROzg1izwI3WMfQl3yh4NROY3Mjz338HAdqDmCxWJg1ajY7jx3H64lncvJ4brnos8REmRfpGhvd/Omt9VS6DpKaNIkvX7mcmJieh3P68pzNZRX8x0sfMtqzhfiok9Q1j+FU5GJ+fN1FnYLQ5rIK/vTMw9wX/STHRpzhRGQkYz0e0upH8pOmrzH9ypsZGRvlm4tUfuIMHm/n026xwNTRI/2G2GalJzHBOqLnKtyGAU0tIaiuqu3P+tbv222vr2r7vrnzcJ8HsMfF+o4hs8GN72MqaaJZ+LHjHKNRU2DEqJC4Sy3cP2gh/I9BvyyCL9z7D+F/DMUHilnx5opOV/EtLdMHHvzsgyF/HIN5DAMWnBwOB0VFRdhsNhwOB/n5+Vit1j637cvrnO2B9dWD2x/kiZ1P4O3h7ihLczK3z/geyVUf8IeTf+JkVIRv35hmLzeP+TL5X/ppl8/d8OJ9AT9nc1kFj7z0I06Oe7dT+zHHL+Xr1/2nLzw1NXu5b83PyI35NevGjOJ4VNvo67jmZlaerOb5muW86p3n9zOSR0Qzq91k7ZlpScwYl8iI6AhoPNMh9FS3Cz3tg1C7MNRFCApIZAxEjQB3DcXxI3hgdOdjuPdUNbl19XDjIzA37+x+ziAI9w9aCP9j0C+L4Av3/kP4H4PH6+Hq56/2+3fcngUL4+LHsfnGzSH7n6LBPoYBC05ZWVmUlpYCZvgpKCigsLCwz2378jpne2B98eD2B3ms7DHA6PmqhWHgN/m3XVtLy9v4nVFf6hSENrx4H7+uftF8Vi/P8XgN7v7ve3h/9Nvdtp99bCFNSXdwvNbN8Zoz/DT5+/xkXFy37X98vJ4PRv6Y+eMtTIt3MzGugURvDRa/q0LtglCgdYk6ioyB+NHm14hRbd/Hp7RsS2n3uOX7mAT49G2KC5eyInVMt8fwYOVJcpcWhuzt/OH+QQvhfwz6ZRF8vfUfzCD+wnUvEBERgdfwYmBgGC1fGP7bWh6DubC3F69f207t27UBOr2W32u0Pm5p09reY3i492/3Uu2u7vYYrLFW/n3Bv7f1y/D6va7X8Hbe3vKz2+9r36fetnf7ui3bffvwUnmmkr8d+Vuv5yt7XDaj4kZ1en8w8H9vO5yjTu9p6zlq95xOr2H4P6+r89r+Neqb6jnZ0HuZmkevfpSctJxe2/VmQIKTw+Fg6dKlvsADMGrUKKqrO//l6qltX17nXA4sUI3NjWQ/lWWe6ECGeozOoan9vjEeg5dueZfo6BiaPV5q6uu47fkrORlp6fE551l+QUNDE07XKVxjf8GpHtqP9Xj5pwOXMIJmMiwV/HrSCU5ERnbbPtXj4dkjx4ik7X4v30m3+D82WjYYkTEwYhTGCCuMsELcKIiztjwehTEi2Xwcl2w+jrNC9AgMi/8PaP1HZnal7R9G+z89nkaWvZjHKUv37+toA377xWeJjIz2/ePr+Pqt/1Bbf1bHn9P+r3qn1+jQt65ew69Nu+PzGB7ue/s+nG5n5763sMZa+fGCH2OxWPw/RNp9wHT1AdL+w6Z1W/sPovb9bN8e8PvA7a5d658er4cndj3BmR5qVo2MHslXzv8KEZaIbvvf/px09/521aee2nX6e9PhOFr3nao7xbbj27rtf6uLx15s/rJo3/eO/epwXF1u7+UY278X3b1Wx+fUNdVx6PShXo9hXPw4YiNju30//bZ3d4xn07ar896hrchgWnvFWq6xXXPOrzMga9UVFxeTkuJfRyclJQW73U5mZmbAbbdv3x7w6wyGp3c+1fLLPsD5MT2FK4uFk1EWFm66zH97u+G27p5zkpUwEvOLntufiIrk6Wkftf8BPbavjIriqskTu2/To9PmV8NhaACcZ/kyvelpDpXFwikLfOX/bh6gHz7wnG4nK95aEexunJMzTWd4tOzRYHfjnH1w4oNgd+Gc9XRFZyiwYMFisRBBBFjMxxGWCN/2jvtb90VYInzP92vf8pzW/Z3at7yWxWLhdNNpjp3p/U7dKUlTGDNijPla7V6/9bU6bm//M895e7v+drX9yOkjvLDvhV6P4ZaZtzA1eWqn96nTe9PSl47vVXfno/1rtK724Dsf3ZwT32u0tNt9ajc/2/azXo9hbPzYXtv0t4CDk9Pp7HJ7VVVVp209te3L67jdbtzutmEjl8vVaz/76v0PX+731wwn7f8x+D1uDZIWutzeqX2HQNmX123yNFHv6bq6eHsJ0QnERcX5ntf+tVr/0XXc175fndp06Ftr+/Z99Xt+N6/vcrs4eqaXteqAyYmTSRmR4vdcvw8e80D8PvTbfwh11a79h037Pndq125bVx94h2sPs+1Y71drLht/GVOTp3Z6v9q/nt856bi9h+Nu/962b9P+HHX8ee33Hao9xLN7n+31GG6fdTtTrVM7neeOP6O77zv97G6Otcd9ls4/24KFvVV7edD+YK/HcG/OvcweM7vbvvX2swNp29Pfn059b9n2QeUHfP/N7/fa/4dyHyInLafTa7f/RRssJcdKuPvVu3tt9+NLf9wvQ0QDweP18M7Rd6isq+zySqAFc8h3Zc7KkBzyBZg7Zi6PlD3S6zFkpg7+BZdzruPUXRDqa9uu9q1Zs4bVq1f3vVN9MLbeDf28kscPmctnbFcSHR3DW5/+g/9wb+39Oam3cP1V36Gk7Gm+VfabXts/POe7zLvkLrZXbCO/+Ju9tn8kdyM54+cH/UOpK4F+UP3vVf8bkh9Ugfb//oX3h2T/wTyGQILT1+d+PWSPweP18MahN3r9oP3X7H8N2V8W89Pn8/Sep3s9hq/O/GpIHsPnMj7HuPhxvfb/0vRLQ7L/AJmpmQEdQzB+YQcqMiKSe+fdy4o3V2DB4nccrQG6YF5ByJ4DCO1j6GFMyJ/Vau10VaiqqqrLu+F6atuX11m1ahU1NTW+r0OHeh/776vPxs8jwjDa5i71poe2FsNgbLOXG29+jAlXLCd1wV186YbfMKbZ65vk3O1zFq0gLjaRhRfdTarH6LH9OI/BgovuJDoimnnpCxgXndRj+7SYZLLSc0IyNEHbB1X7qxLtWbCQFp8Wsh9U4d5/GBrH0PpBC3Q6jmB/0AYq3I8h3PsPQ+MYAHIn5/LgZx8kNT7Vb/u4+HEhf6NHq1A9hoCDU25u1x3Mzs7uU9u+vE5sbCxJSUl+X/1t/tJ7ud1Zaz7oLTy1298xqLQ+/uqYL/vVZoqJieXmMV8O+DmRUTGsmnFrj+3vnXErkVHmEiaREZHce9lqsFi6bm+xULDw/4X0P/Jw/6AK9/7D0DgGCN0P2r4I92MI9/7D0DgGMI/j1Rtf5dGrH2XtFWt59OpH2Xzj5rDpP4TmMZxTOYLly5ezZcsWAOx2O1arFZvN1mvbnvb1ZKDKEbz78Ld4p+HPPGlNwtvDVZm05mZWnnJSOf4qfuf+wK/G0thmL1/tYx2nnp5T/PYaHvj4aY5HtvUnzWNQMONWci9f1bl9F/V30uLHURAm9Xegu2NIo2BeQVgcQ7j3H4bGMUD4F/GE8D+GcO8/DI1jkMAMaAHM9evXk5OTQ0lJCatWrfINsS1dupScnBxWrlzZa9ue9vXXgfXVuw9/i4srnqEoeSQHoqKwABe4G6mNjGCUx8s4j4dLYsYQ1bLu2EBXDgfwNDdi3/F7TrgOMjZpEplzb/ddaeqy/RD4Rx7uxxDu/YehcQwiIn2hJVfOUmNDA6XP/xyqygGInJjF2KgGJmdMIiJ5vNYdExERGYIGpI7TcBATF8elt/4o2N0QERGREBXw5HARERGR4U7BSURERCRACk4iIiIiAVJwEhEREQmQgpOIiIhIgBScRERERAIUVuUIWktOuVyuIPdEREREhorWXBFIacuwCk61teaachkZGUHuiYiIiAw1tbW1JCcn99gmrCqHe71ejh49SmJiIpYe1pQ7Wy6Xi4yMDA4dOjQglcklMDoPwadzEBp0HoJP5yA0DPR5MAyD2tpaxo8fT0REz7OYwuqKU0REBBMnThzwn5OUlKR/ICFA5yH4dA5Cg85D8OkchIaBPA+9XWlqpcnhIiIiIgFScBIREREJkIJTO7Gxsdx///3ExsYGuyvDms5D8OkchAadh+DTOQgNoXQewmpyuIiIiEgw6YqTiIiISIAUnEREREQCpOAkIiIiEqCwquM0kBwOB0VFRdhsNhwOB/n5+Vit1mB3a0iw2+0UFxcDUFJSwsaNG33vbU/v+9nuk54VFBSwatUqnYMgKS4uxuFwYLPZAMjNzQV0HgaLw+GguLiYlJQUHA4HeXl5vnOhczBw7HY7y5Yto7S01G/7QLznA34+DDEMwzAyMzN935eXlxt5eXlB7M3QsnbtWr/v27/XPb3vZ7tPuldaWmoARnV1tW+bzsHg2bJli5Gfn28Yhvme2Ww23z6dh8HR/vPIMAzf+TAMnYOBUlhY6Pvs6Wgg3vOBPh8KTob5xrZ/ow3DMKxWa5B6M7SUlpb6vZfl5eUGYJSXl/f4vp/tPulZYWGhYbPZfMFJ52BwtX/vDcN8H1v/1HkYHB3fr/ZBVudgYHUMTgPxng/G+dAcJ/Bdtm0vJSUFu90epB4NHZmZmWzcuNH32Ol0Aub729P7frb7pHtFRUXk5eX5bdM5GDwOh4OqqiqsVit2ux2n0+kbItJ5GDwpKSlkZWX5huwWL14M6BwEw0C854NxPhScaPtl3lFVVdXgdmSIav/L+rnnniM3Nxer1drj+362+6RrTqezyzF+nYPBY7fbSUlJ8c292LBhA0VFRYDOw2AqLCwEYNq0aRQWFvo+n3QOBt9AvOeDcT40ObwH3Z0AOTtOp5OioqJOkwO7atff+4a7TZs2kZ+fH3B7nYP+V1VVhcPh8P3HIT8/n1GjRmH0UINY56H/FRcXs3btWhwOB8uXLwdg/fr13bbXORh8A/Ge9+f50BUnwGq1dkqjrZfUpf8UFBSwZcsW3/va0/t+tvuks+LiYm666aYu9+kcDB6bzeZ77wDfn3a7XedhkDgcDkpKSsjNzSU/P5/y8nI2bdqEw+HQOQiCgXjPB+N8KDjRdjtwR9nZ2YPck6Fr3bp1FBQUYLPZcDqdOJ3OHt/3s90nXdu0aRMbNmxgw4YNOBwO1qxZg91u1zkYRK3zmbqi8zA47HY7OTk5vsc2m41Vq1bp8yhIBuI9H4zzoaE6On+gORwOsrOz9T+GflJUVERmZqYvNLUOG3V8f9u/72e7Tzrr+EGyfPlyli9f3uUvcp2DgWOz2cjOzvbNN2ut5ZSZmdmprc7DwMjMzGT9+vV+8y5PnTqlczCI2s+37Ol3byj/ftAivy0cDgfr168nJyeHkpISvwKBcvYcDgfTpk3z22a1Wqmurvbt7+59P9t90jWn08mGDRsoKCggPz+f5cuXk5mZqXMwiJxOJwUFBWRlZVFaWuq7Cgv6tzBYiouLfcOjYP7HQudgYBUXF7NlyxbWrVvHypUrycnJ8YXXgXjPB/p8KDiJiIiIBEhznEREREQCpOAkIiIiEiAFJxEREZEAKTiJiIiIBEjBSURERCRACk4iIiIiAVJwEhEREQmQgpOIiIhIgBScRERERAKk4CQiIiISIAUnERERkQD9f+elXi8gvwUTAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, diff --git a/analysis/src/joinbench/benchmark_group_table_generator.py b/analysis/src/joinbench/benchmark_group_table_generator.py index 8742684d..6bb31920 100644 --- a/analysis/src/joinbench/benchmark_group_table_generator.py +++ b/analysis/src/joinbench/benchmark_group_table_generator.py @@ -30,8 +30,8 @@ def get_percentage_change_of_indexed_equijoin_for_counts( p_percent_change = (i_mean - p_mean) / p_mean * 100 c_percent_change = (i_mean - c_mean) / c_mean * 100 percentage_change_of_means[f"{benchmark.get_tuple_count()} tuples"] = [ - p_percent_change, - c_percent_change, + f"{p_percent_change:.3g}\%", + f"{c_percent_change:.3g}\%", ] return percentage_change_of_means diff --git a/report/.hunspell b/report/.hunspell index 223c2f34..fcbc30a6 100644 --- a/report/.hunspell +++ b/report/.hunspell @@ -266,3 +266,18 @@ Bina Vishnuram Elysia indexedTableRelAlgOps +mystyle +backgroundcolor +commentstyle +keywordstyle +numberstyle +stringstyle +basicstyle +breakatwhitespace +captionpos +keepspaces +showspaces +showstringspaces +showtabs +tabsize +mystyle diff --git a/report/background/benchmarking.tex b/report/background/benchmarking.tex index f62b59e4..6e518357 100644 --- a/report/background/benchmarking.tex +++ b/report/background/benchmarking.tex @@ -1,47 +1,47 @@ \section{Benchmarking databases}\label{sec:background:dbbenchmarking} -Databases are pervasive to modern society and thus standards have arisen over +Databases are pervasive in modern society, and thus standards have arisen over the last few decades to ensure that customers are able to pick their preferred DBMS vendor. At the top level, database benchmarks are classified into three categories: industry-standard, vendor and -customer-application \cite{PractitionersIntroduction}. -These classifications are usually motivated by intention of the benchmark -instead of structure of the database management system; there is no shortage of -papers emphasising the importance of domain-specific benchmarks for applications -\cite{PractitionersIntroduction, BenchmarkHandbook} and depending on the -risk/performance tolerance of the application it may be necessary to consider +customer-application~\cite{PractitionersIntroduction}. +These classifications are usually motivated by the intention of the benchmark +instead of the structure of the database management system; there is no shortage of +papers emphasising the importance of domain-specific benchmarks for +applications~\cite{PractitionersIntroduction, BenchmarkHandbook} and depending on the +risk/performance tolerance of the application, it may be necessary to consider results from all three categories. \paragraph{Vendor benchmark} A vendor database benchmark is used by the database vendor during the production of the database management system. This benchmark usually serves multiple purposes not just limited to the design of the system. Of course, it is often used to highlight any performance -bottlenecks driving the design of the system internally but it usually doubles +bottlenecks driving the design of the system internally, but it usually doubles up and acts as the knowledge base for the marketing of the system. Vendor benchmarks are usually characterised by a more comprehensive suite of -tests to generate the insights capable of driving the direction of the -product \cite{PractitionersIntroduction}. +tests to generate insights capable of driving the direction of the +product~\cite{PractitionersIntroduction}. \paragraph{Industry-standard benchmark} An industry-standard benchmark is a set -benchmarking suite designed independently to any vendor or solution. It is +benchmarking suite designed independently of any vendor or solution. It is designed to allow for a fair comparison between different vendors and has been -shown to increase competition between vendors \cite{Wisconsin2}. As much of +shown to increase competition between vendors~\cite{Wisconsin2}. As much of this review will show, many industry-standard benchmarks have been developed to give results for a wide range of applications of databases for much more relevant and specialised results; and, although many benchmarks have similar -metrics \cite{SetQueryBenchmark, DebitCredit}, just selecting what metrics to -show consumers is not a trivial task \cite{DebitCredit}. When Gray's paper -\cite{BenchmarkHandbook} was written, it was noted that these benchmarks were +metrics~\cite{SetQueryBenchmark, DebitCredit}, just selecting what metrics to +show consumers is not a trivial task~\cite{DebitCredit}. When Gray's +paper~\cite{BenchmarkHandbook} was written, it was noted that these benchmarks were becoming so popular that vendors were also beginning to report their results with their marketing. \paragraph{Consumer-application benchmark} This type of benchmark refers to any benchmarking that a customer would run, typically to choose between different vendors for their application. This kind of testing can be critical for a -performance-sensitive application \cite{PractitionersIntroduction} and is often +performance-sensitive application~\cite{PractitionersIntroduction} and is often done to test the performance of the database under a specific installation -profile \cite{DoingYourOwnBenchmark} or loads. This is a very specialised -requirements based benchmarking. +profile~\cite{DoingYourOwnBenchmark} or loads. This is a very specialised +requirements-based benchmarking. The review now turns to different domain-specific benchmarking of databases in order to comment on and analyse any common structures found when designing @@ -54,46 +54,45 @@ \section{Benchmarking databases}\label{sec:background:dbbenchmarking} Furthermore, as most industrial-standard database benchmarks have been designed in order to allow comparison for specific domain requirements, you will commonly find database benchmarks that are designed with one of two different -applications in mind: \emph{transaction processing} or \emph{decision support} -\cite{PractitionersIntroduction}; it is worth mentioning that other application -types exist, however, such as \emph{document search} and \emph{direct marketing} -\cite{SetQueryBenchmark}. The application types of transaction processing and +applications in mind: \emph{transaction processing} or \emph{decision +support}~\cite{PractitionersIntroduction}; it is worth mentioning that other application +types exist, however, such as \emph{document search} and \emph{direct +marketing}~\cite{SetQueryBenchmark}. The application types of transaction processing and decision support are so pervasive that they are commonly also used to partition -other application types, for instance OLTP (Online transaction processing) and +other application types, for instance, OLTP (Online transaction processing) and OLAP (Online analytical processing) are specialised for online processing but share many comparative similarities as transaction processing and decision -support respectively \cite{OLTP-Oracle}. +support respectively~\cite{OLTP-Oracle}. This review will provide a brief overview of both the main database application types, then focus more strongly on decision support benchmarks as ad-hoc query processing is more heavily tested in these -benchmarks and thus more relevant to the project. +benchmarks and are thus more relevant to the project. \subsection{Transaction processing} Transaction processing is characterised by a large number of -update-intensive database services with a particular emphasis on integrity of -its requests \cite{PractitionersIntroduction}. +update-intensive database services with a particular emphasis on the integrity of +its requests~\cite{PractitionersIntroduction}. It is clear that this type of environment demands an emphasis on throughput and integrity. For instance, a bank would likely have an online transaction processing system in place and the ability to deal with a large number of transactions in a short period of time while maintaining the accuracy of the information is most likely paramount. -There are many well known benchmarks to test these types of systems, +There are many well-known benchmarks to test these types of systems, including \emph{DebitCredit}, \emph{TPC-C} and \emph{TPC-E} \cite{DebitCredit, TPC-OLTP}. These benchmarks usually measure transactions per second or price per transactions per second. Efforts have been made to try and describe what is meant by ``price'' and usually it refers to the five-year capital cost (e.g. -cost of hardware, software and system maintenance over a five year period) -\cite{BenchmarkHandbook, DebitCredit}. The advantage of giving a metric +cost of hardware, software and system maintenance over a five-year period)~\cite{BenchmarkHandbook, DebitCredit}. The advantage of giving a metric dependent on price is that price is likely to be a limiting of important factor to most (if not all) organisations when shopping for database solutions and so it helps encompass all information about the system into a single comparable -number \cite{SetQueryBenchmark}. It is worth noting that many benchmarks which -include this metric also give more information for the user \cite{TPC-H} or -allow the user to weight the comparative importance of features in this metric -\cite{SetQueryBenchmark} but it is expected that much emphasis will come down to -this defining number \cite{SetQueryBenchmark}. +number~\cite{SetQueryBenchmark}. It is worth noting that many benchmarks which +include this metric also gives more information to the user~\cite{TPC-H} or +allow the user to weight the comparative importance of features in this +metric~\cite{SetQueryBenchmark} but it is expected that much emphasis will come down to +this defining number~\cite{SetQueryBenchmark}. We note that the above definition of a transaction processing system not only highlights its intense performance requirements but also notes the importance of @@ -103,11 +102,11 @@ \subsection{Transaction processing} to go through twice. So what exactly is a transaction? And how can we specify its integrity in a rigorous way? -A transaction simply is an input to the database that must be considered as one -unit of work \cite{ComputerScienceDictionary} and completed independently to any -concurrent actions occurring \cite{ACID}. The integrity of this behaviour can be described +A transaction is simply an input to the database that must be considered as one +unit of work~\cite{ComputerScienceDictionary} and completed independently to any +concurrent actions occurring~\cite{ACID}. The integrity of this behaviour can be described by a set of properties typically remembered as the acronym \emph{ACID} and -explained below \cite{ACID, PractitionersIntroduction}. +explained below~\cite{ACID, PractitionersIntroduction}. \paragraph{Atomicity} An ``all or nothing'' property of a transaction. All individual operations must take place or any partially-completed sequence of @@ -116,9 +115,9 @@ \subsection{Transaction processing} \paragraph{Consistency} Given the database was in a consistent/valid state before the transaction processed, it must remain in a consistent/valid state -after any changes are committed; that is to say the changes cause not integrity -constraints to be violated \cite{IntroToDatabaseSystems}. -Some texts favour the term ``correctness'' \cite{IntroToDatabaseSystems} but this +after any changes are committed; that is to say the changes must not cause integrity +constraints to be violated~\cite{IntroToDatabaseSystems}. +Some texts favour the term ``correctness''~\cite{IntroToDatabaseSystems} but this discussion is outside of the scope of the project. % correctness vs consistency: correctness may be preferred as it is stronger, % and says that the database only contains true statements about the world @@ -130,28 +129,27 @@ \subsection{Transaction processing} order. \paragraph{Durability} Once a transaction has been successfully completed, its -effects must persist and future malfunctions. +effects must persist any future malfunctions. \subsection{Decision support} Decision support is characterised by the need to execute complicated queries on -a database with fewer changes \cite{IntroToDatabaseSystems, -PractitionersIntroduction}. The business value from this sort of application are +a database with fewer changes~\cite{IntroToDatabaseSystems, +PractitionersIntroduction}. The business value from this sort of application is vast, especially in automatic report generation to produce insights and direct -company strategy \cite{SetQueryBenchmark, IntroToDatabaseSystems}. Despite the +company strategy~\cite{SetQueryBenchmark, IntroToDatabaseSystems}. Despite the clear business needs, the measurements usually taken by decision support benchmarks are not as standard as those by transaction processing benchmarks and -metrics usually vary according to benchmark -\cite{PractitionersIntroduction}; some common metrics collected are a measure of -elapsed time \cite{Wisconsin, TPC-H, PractitionersIntroduction}, performance of -the underlying system (CPU and I/O utilisation) \cite{PractitionersIntroduction} -and the throughput or price per throughput \cite{TPC-H, SetQueryBenchmark, +metrics usually vary according to benchmark~\cite{PractitionersIntroduction}; some common metrics collected are a measure of +elapsed time~\cite{Wisconsin, TPC-H, PractitionersIntroduction}, performance of +the underlying system (CPU and I/O utilisation)~\cite{PractitionersIntroduction} +and the throughput or price per throughput~\cite{TPC-H, SetQueryBenchmark, PractitionersIntroduction} (as in transaction support systems). Although less pervasive in our every day life to transaction support systems, there are a large number of benchmarks for decision support systems. To name a -few there are the \emph{Wisconsin benchmark} \cite{Wisconsin}, \emph{Bull Single-User Decision -Support benchmark (SUDS)} \cite{PractitionersIntroduction}, \emph{Set Query -benchmark} \cite{SetQueryBenchmark} and \emph{TPC-H} \cite{TPC-H}. +few there are the \emph{Wisconsin benchmark}~\cite{Wisconsin}, \emph{Bull Single-User Decision +Support benchmark (SUDS)}~\cite{PractitionersIntroduction}, \emph{Set Query +benchmark}~\cite{SetQueryBenchmark} and \emph{TPC-H}~\cite{TPC-H}. \subsection{Database benchmarking case studies} In the section a variety of different benchmarks will be briefly presented and @@ -159,21 +157,21 @@ \subsection{Database benchmarking case studies} nowhere near exhaustive and are chosen specifically sample. Although the effort for representation has been made, the benchmarks also were not chosen to be representative of the large academic field; it must be noted that benchmarking -databases usually tests a lot more than is relevant to this project and so none +databases usually tests a lot more than is relevant to this project, and so none should be completely relevant. The decisions on which benchmarks to include in this section were made on the following criteria: \subparagraph{Historical importance}\label{enum:historicalImportance} I believe that the largest benefit of this literature review to the project is identifying the steps that benchmarks have taken to approach the empirically based and approximated rigorous approach they -are today in order to inform design decisions throughout the project. Therefore, +have today in order to inform design decisions throughout the project. Therefore, rather than just basing the decision on recency, I believe it more beneficial considering papers of more historical importance in order to present an intuition on key values within benchmarking databases instead of following a clear and inexpressive specification that could lead to designs that obfuscate the (specific) results the project deems important. \subparagraph{Relevance} Relevance to the project at hand is extremely -important. There are many defining features of the projects such as a query -based, join heavy theory and therefore benchmarks with specific abilities to +important. There are many defining features of the projects such as a +query-based, join-heavy theory, and therefore benchmarks with specific abilities to answer questions favouring these features were chosen (clearly leaning towards decision support benchmarks). \subparagraph{Recency} The recency of the benchmark was taken into consideration @@ -207,7 +205,7 @@ \subsubsection{Wisconsin} to specify the selectivity of the operations being benchmarked. Selectivity has been used loosely here to refer to any operation that acts on a subset of the tuples; as Bitton explains, it is difficult to construct a selection query that -selects a tenth of the database (i.e. a selection query with an \emph{selectivity +selects a tenth of the database (i.e. a selection query with a \emph{selectivity factor} of 10\%) or only keeps 1000 tuples in an empirical database. Bitton notes that modelling selectivity factors on queries with joins is especially difficult (a key part of our problem domain). @@ -215,18 +213,18 @@ \subsubsection{Wisconsin} Another benefit of using a synthetic database is, given that it is designed well, it should be more readable. The Wisconsin benchmark boasts relations and attributes with names that immediately give you an idea of what you would find -and the distribution of its values. In Jim Gray's later work -\cite{BenchmarkHandbook}, he specifically calls out simplicity as one of four -key properties of a domain-specific benchmark - defining it as a database's +and the distribution of its values. In Jim Gray's later +work~\cite{BenchmarkHandbook}, he specifically calls out simplicity as one of four +key properties of a domain-specific benchmark; defining it as a database's understandability and commenting that without it the database would lack credibility. -\paragraph{The relations} This section contains a description of the relations in -the database system and a brief description of their use. The database consists -of 4 relations, namely ``\relation{thoustup}'', ``\relation{twothoustup}'', -``\relation{fivethoustup}'', and ``\relation{tenthoustup}'' with 1000, 2000, 5000 +\paragraph{The relations} The database consists +of four relations, namely ``\relation{thoustup}'', ``\relation{twothoustup}'', +``\relation{fivethoustup}'', and ``\relation{tenthoustup}'' with 1000, 2000, +5000, and 10000 tuples respectively; where it is -clear that the relations are named after it's cardinality (the number of tuples +clear that the relations are named after their cardinality (the number of tuples it contains \cite{PractitionersIntroduction}). It is worth noting that multiple relations are generated for use in queries with multiple operands (such as a join), producing in practice @@ -288,7 +286,7 @@ \subsubsection{Wisconsin} \label{tab:WisconsinAttributes} \end{table} -\subparagraph{Unique integer attributes} The unique attributes, names \relationAttribute{unique1} and +\subparagraph{Unique integer attributes} The unique attributes, named \relationAttribute{unique1} and \relationAttribute{unique2} are integer fields that range from $0$ to $K - 1$ where $K$ is the cardinality (number of tuples) of the relation. \emph{Both} fields are randomly generated (as is emphasised in Bitton's reflective paper @@ -296,7 +294,7 @@ \subsubsection{Wisconsin} sort the relation. As the name suggests, both fields are unique. \subparagraph{Cyclic integer attributes} These names of these attributes are -named after the number of values they can take and any properties; for instance +named after the number of values they can take and any properties; for instance, ``\relationAttribute{four}'' can take 4 values from 0 to 3, and ``\relationAttribute{even100}'' can take any even number between 0 and 99 (the first 100 numbers counting from 0). The possible values for each of these attributes are cycled through while @@ -313,7 +311,7 @@ \subsubsection{Wisconsin} respectively. Whereas the final string attributes \relationAttribute{string4} cycles through four variations of a string. It is noted that all strings have names that help the reader understand their origins, with the first two containing -``u1'' or ``u2'' denoting what component the value would be derived from and the +``u1'' or ``u2'' denoting what component the value would be derived from, and the ``4'' in \relationAttribute{string4} denoting the cardinality of its domain. Each string follows the template outlined in \fref{fig:WisconsinStringTemplate}; each \$ is to be replaced with a letter between A and V inclusive (the \emph{significant @@ -339,11 +337,12 @@ \subsubsection{Wisconsin} corresponding to 0 is \WisconsinStringStructure{A}{A}{A} and to find the subsequent string, the leftmost character is `increased' and once it reaches `V', the next character increased (in the same way) and the current character is -reset to `A`. This can be seen counting in base 22 with the least significant +reset to `A`. This can be seen as counting in base 22 with the least significant digit on the left instead of the right. An example can be found in \fref{fig:WisconsinUniqueStringExample}. \begin{table}[h] + \centering \begin{tabular}{c c} \toprule \relationAttribute{unique1} & \relationAttribute{stringu1} \\ @@ -383,13 +382,13 @@ \subsubsection{Wisconsin} \paragraph{Improvements to the Wisconsin Database} As one of the first standard ways of testing database systems the Wisconsin database has been -criticised throughout the years and been subject to multiple retrospectives by -the original authors \cite{Wisconsin2}. Among other comments there were emphases +criticised throughout the years and has been subject to multiple retrospectives by +the original authors~\cite{Wisconsin2}. Among other comments there were emphases on criticism revolving around the single user limitation of the benchmark, its lack of scalability and string design. Not addressing the single user concerns in this benchmark improvements were suggested for the latter two issues. In order to address the scalability concerns and string design Bitton introduces a -change to a few of their attributes in \cite{Wisconsin2} as well as rework which +change to a few of their attributes in~\cite{Wisconsin2} as well as rework which can be seen in \fref{tab:WisconsinImprovedAttributes}. A brief non-exhaustive description of the changes follow. @@ -410,7 +409,7 @@ \subsubsection{Wisconsin} \subparagraph{String attributes} The string attributes remained the same size but their template and methods of generation changed. The justification for the fixed-length strings was so that each disk page could hold the same number of -tuples. An an overview of the template for \relationAttribute{stringu1} and +tuples. An overview of the template for \relationAttribute{stringu1} and \relationAttribute{stringu2} can be found in \fref{fig:NewWisconsinUniqueString} and for \relationAttribute{string4} in \fref{fig:NewWisconsinCyclicString}. The generation are not described but it suffices to know that @@ -487,33 +486,33 @@ \subsubsection{Wisconsin} \paragraph{Queries} Along with a synthetic database, the Wisconsin benchmark also provides a set of queries to benchmark different relational operators. Bitton's queries attempt to measure the performance of the following (as stated -in \cite{Wisconsin}) +in~\cite{Wisconsin}): \begin{enumerate} - \item Selection queries with varying selectivity factors + \item Selection queries with varying selectivity factors, \item Projections with different proportions of duplicated attributes (whose performance impact comes from the collapsing of duplicates as described - in \fref{sec:projections}) - \item Single and multiple joins - \item Simple aggregates and aggregate functions - \item Updates + in \fref{sec:projections}), + \item Single and multiple joins, + \item Simple aggregates and aggregate functions, + \item Updates. \end{enumerate} Many queries contain version for using both primary and secondary indices. \subsubsection{Set Query Benchmark} -The Set Query Benchmark as described by O'Neil \cite{SetQueryBenchmark} is a +The Set Query Benchmark as described by O'Neil~\cite{SetQueryBenchmark} is a benchmark that aims to use a more realistic set of operations for decision support benchmarks than TPC and DebitCredit, namely the \emph{set queries}. Set queries -are queries which potentially need information from a large set of tuples. +are queries that potentially need information from a large set of tuples. \paragraph{The BENCH relation} The table used in the set benchmark, named \relation{BENCH}, is synthetically generated with 21 columns. Similarly to the -Wisconsin benchmark there are a mixture of integer and string attributes; Namely +Wisconsin benchmark there are a mixture of integer and string attributes; namely 13 indexed attributes and eight character columns. The \relation{BENCH} table always has a multiple of 1 million rows, and for the information below we assume the default of 1 million rows. Each row has 200 bytes each. \paragraph{Indexed columns} The thirteen indexed columns are all integers, -twelve of which are ordered. The attributes are as follows +twelve of which are ordered. The attributes are as follows: \relationAttribute{KSEQ}, \relationAttribute{K500K}, \relationAttribute{K250K}, \relationAttribute{K100K}, \relationAttribute{K40K}, \relationAttribute{K10K}, @@ -557,12 +556,11 @@ \subsubsection{TPC-H} \paragraph{Overall Structure} The TPC-H benchmark takes a different, perhaps more realistic, approach to their database model. The benchmark consists of eight ``separate and individual tables'' which have varying relationships to each -other. The database has some constraints on size, such as a minimum on data from +other. The database has some constraints on size, such as a minimum of data from 10,000 suppliers which leads to a database of almost ten million rows -(approximately a raw storage capacity of 1 GB). This is default size not -comparable to either the Wisconsin benchmark and the set query benchmark; it is -worth arguing that both can be scaled up, but so too can the TPC-H benchmark be -scaled to much larger datasets. +(approximately a raw storage capacity of 1 GB). This is a default size not +comparable to either the Wisconsin benchmark or the set query benchmark; it is +worth arguing that both can be scaled up, but so too can the TPC-H benchmark. \paragraph{The relations} The table definition clearly has parallels to the business world with tables not only being assigned varying structures and cardinalities, but @@ -579,51 +577,51 @@ \subsection{Best practices}\label{sec:background:benchmarkbestpractices} It is clear that after the idea worked so well in the Wisconsin benchmark, a synthetic database is vital to a well done benchmark of DBMS. Despite the wide array of different takes to benchmarking, both due to progressions in the field -and difference in requirements there is a large overlap in what values each +and differences in requirements there is a large overlap in what values each designer chose. This subsection is designed to condense the lessons in the previous section. -\paragraph{Synthetic databases} Synthetic databases are key to give benchmarks +\paragraph{Synthetic databases} Synthetic databases are key to giving benchmarks the customisation, standards, readability and structure necessary to provide any sort of useful result. We see many approaches to the synthetic database structure, the multiple tables for relation sizes seen in -Set Query Benchmark \cite{SetQueryBenchmark}, the single table whose size is changed via selection -queries in Wisconsin \cite{Wisconsin}, and the realistic approach set up in -\cite{TPC-H}. The size of each tuple can be designed so that a relation's size +Set Query Benchmark~\cite{SetQueryBenchmark}, the single table whose size is changed via selection +queries in Wisconsin~\cite{Wisconsin}, and the realistic approach set up +in~\cite{TPC-H}. The size of each tuple can be designed so that a relation's size is known. And perhaps most importantly, selectivity factors and CPU usage can be changed by definition or combination of attributes. -\paragraph{Scalability} A key criticism for founding DBMS benchmark systems is a -lack of scalability, as can be seen in the update to the Wisconsin benchmark -\cite{Wisconsin2}. Technology is advancing often as well as vastly different +\paragraph{Scalability} A key criticism of the founding DBMS benchmark systems is a +lack of scalability, as can be seen in the update to the Wisconsin +benchmark~\cite{Wisconsin2}. Technology is advancing often as well as vastly different needs in different domains, and so a `one size fits all' approach is not viable for such benchmarks. A general strategy employed to overcome any of these limitations is to partition a percentage of the database or have the largest $n$ attributes scale to the size of the relation. It is also worth noting that -scalability to parallel execution is also desirable \cite{BenchmarkHandbook}. +scalability to parallel execution is also desirable~\cite{BenchmarkHandbook}. -\paragraph{Readability} The Wisconsin benchmark \cite{Wisconsin} was one of the +\paragraph{Readability} The Wisconsin benchmark~\cite{Wisconsin} was one of the first to emphasise the importance of making the relation easy for the reader to understand. A good benchmark should be able to be read and understood easily with any new, perhaps more relevant, queries added easily. Similarly, Jim Gray talks about the value of simplicity for the user, linking its understandability -to its credibility \cite{BenchmarkHandbook}. +to its credibility~\cite{BenchmarkHandbook}. \paragraph{Relevance} Jim Gray believes that relevance is important when designing a system and specifies metrics to be reported in order to fulfil such a requirement, namely ``peak performance and price/performance of systems when -performing typical operations within that problem domain''. For this project +performing typical operations within that problem domain''. For this project, these specific recommendations should be taken with a grain of salt as they are not completely indicative of the desired outcome however the idea of relevance -is key. Furthermore, some benchmarks such as TPC-H \cite{TPC-H} have also taken -relevance in the structure of their database which may be more attractive for +is key. Furthermore, some benchmarks such as TPC-H~\cite{TPC-H} have also taken +relevance into account when designing the structure of their database which may be more attractive for those working in the same or adjacent domains. \paragraph{Portability} Jim Gray also emphasises the need to implement the -benchmark on different systems and architectures \cite{BenchmarkHandbook}. You -can see varying approaches to this, in early Wisconsin benchmark and the time it -was created, the architectures were closely linked to the DBMS systems -\cite{Wisconsin} and so there was a more closed minded scope. However, reading +benchmark on different systems and architectures~\cite{BenchmarkHandbook}. You +can see varying approaches to this. In the early Wisconsin benchmark and the time it +was created, the architectures were closely linked to the DBMS +systems~\cite{Wisconsin} and so there was a more closed-minded scope. However, reading the literature you can see the portability of benchmarks evolve as the -technology does, notably defining queries in the very portable language SQL -\cite{Wisconsin2, SetQueryBenchmark}. +technology does, notably defining queries in the very portable language +SQL~\cite{Wisconsin2, SetQueryBenchmark}. diff --git a/report/background/categorytheory.tex b/report/background/categorytheory.tex index 86d91218..3edf56bd 100644 --- a/report/background/categorytheory.tex +++ b/report/background/categorytheory.tex @@ -1,5 +1,5 @@ \section{Category theory} -Category theory will be the main tool in describing the structure and operations +Category theory will be the main tool for describing the structure and operations of our database system. Category theory is a very powerful tool in mathematics and can be seen as an ``abstraction of abstractions''. The category theory that will appear in this paper is very limited and does not do justice to the full @@ -18,7 +18,8 @@ \subsection{Categories} \begin{categorydef} A \emph{category} \cat{C} is a set\footnote{In more rigorous definitions one must be careful of defining the collections of objects as a set lest Russell's paradox comes into play} of \emph{objects} \objs{C}, such as \obj{a}, \obj{b}, \obj{c}, and \emph{morphisms} (or \emph{arrows}) \morphs{C} between them, such as \morph{f}, \morph{g}. We require that: \begin{itemize} - \item There are two operations; \emph{domain} which associates with every arrow \morph{f} an object $\obj{a} = \domain{f}$ and \emph{codomain} which associates with every arrow \morph{f} an object $\obj{b} = \codomain{f}$. We can now express this information as \explicitmorph{f}{a}{b}.\footnote{Though we emphasise the distinction between a function and a morphism.} + \item There are two operations; \emph{domain}, which associates with every + arrow \morph{f} an object $\obj{a} = \domain{f}$ and \emph{codomain}, which associates with every arrow \morph{f} an object $\obj{b} = \codomain{f}$. We can now express this information as \explicitmorph{f}{a}{b}.\footnote{Though we emphasise the distinction between a function and a morphism.} \item There is a composition rule between morphisms such that given \explicitmorph{f}{a}{b} and \explicitmorph{g}{b}{c}, there is another arrow \explicitmorph{\morph{g} \circ \morph{f}}{a}{c} in \morphs{C}. \item Composition of arrows is associative. That is, for an additional object \obj{d} and arrow \explicitmorph{h}{c}{d} the resulting morphisms $\morph{h} \circ \left(\morph{g} \circ \morph{f}\right)$ and $\left(\morph{h} \circ \morph{g}\right) \circ \morph{f}$ coincide in \morphs{C}. \item Every object \obj{a} is assigned an arrow $\id{a}: \obj{a} \to \obj{a}$ in \morphs{C}, called the \emph{identity morphism}. @@ -53,7 +54,9 @@ \subsection{Functors} \subsection{Natural transformations} \theoremstyle{definition}\newtheorem*{nattransdef}{Natural Transformation} -We now can explore an intuitive way of relating two functors, called an \emph{natural transformation}. A natural transformation can be seen as a projection of one functor space to another and is in essence a family of arrows that describes this translation. +We now can explore an intuitive way of relating two functors, called a +\emph{natural transformation}. A natural transformation can be seen as a +projection from one functor space to another and is in essence a family of arrows that describes this translation. \begin{nattransdef} Given two functors $\functor{F}, \functor{G} : \cat{C} \to \cat{D}$ a \emph{natural transformation} $\explicitnattrans{\tau}{F}{G}$ associates to each element $\obj{a} \in \objs{C}$ an arrow $\nattransapply{\tau}{a} \in \morphs{D}$ such that $\nattransapply{\tau}{a}: \functorobj{F}{a} \to \functorobj{G}{a}$. Additionally, for $\obj{b} \in \cat{C}$ and \explicitmorph{f}{a}{b} a morphism in \cat{C}, we also require that $\nattransapply{\tau}{b} \circ \functormorph{F}{f} = \functormorph{G}{f} \circ \nattransapply{\tau}{a}$. @@ -66,7 +69,8 @@ \subsection{Natural transformations} Given two natural transformations \explicitnattrans{\tau}{E}{F} and \explicitnattrans{\nu}{F}{G} where $\functor{E, F, G}: \cat{C} \to - \cat{D}$ are functors. The vertical composition \cite{RelationalAlgebraByWayOfAdjunctions} + \cat{D}$ are functors. The vertical + composition~\cite{RelationalAlgebraByWayOfAdjunctions} $\explicitnattrans{\verticalcomposition{\tau}{\nu}}{E}{G}$ is defined by the composition of the underlying arrows for every object $\obj{a} \in \cat{C}$. Explicitly, the components @@ -77,7 +81,8 @@ \subsection{Natural transformations} \subsection{Adjunctions} -An adjunction expresses an intersection of arrows of two different functions. For instance Say you have the category \commoncatname{Set} of sets \cite{RelationalAlgebraByWayOfAdjunctions} and two functions $\morph{f}, \morph{g}$ with signatures \explicitmorph{f}{X}{A} and \explicitmorph{g}{X}{B} with $\obj{X}, \obj{A}, \obj{B} \in \commoncatname{Set}$. +An adjunction expresses an intersection of arrows of two different functions. +For instance Say you have the category \commoncatname{Set} of sets~\cite{RelationalAlgebraByWayOfAdjunctions} and two functions $\morph{f}, \morph{g}$ with signatures \explicitmorph{f}{X}{A} and \explicitmorph{g}{X}{B} with $\obj{X}, \obj{A}, \obj{B} \in \commoncatname{Set}$. in \commoncatname{Set} with a common domain $\domain{f} = \domain{g} = \obj{A} \in \commoncatname{Set}$, how might we interpret the application of both functions on one element. We could create a new function \explicitmorph{h}{X}{A @@ -96,7 +101,7 @@ \subsection{Adjunctions} become clear. We introduce the diagonal functor $\functor{\Delta}: \commoncatname{Set} \to \commoncatname{Set}^2$, s.t. $\functorobj{\Delta}{A} = (\obj{A}, \obj{A})$ and $\functormorph{\Delta}{f} = (\morph{f}, \morph{f})$. -Furthermore, the Cartesian product can also be seen view the lens of a functor $\functor{\times}: \commoncatname{Set}^2 \to \commoncatname{Set}$ that takes the pair of elements $(\obj{A}, \obj{B})$ and maps it to the set $\obj{A} \times \obj{B}$ and a pair of functions $(\morph{i}, \morph{j})$ to a function $k: \left(\domain{i} \times \domain{j}\right) \to \left(\codomain{i} \times \codomain{j}\right)$. +Furthermore, the Cartesian product can also be seen through the lens of a functor $\functor{\times}: \commoncatname{Set}^2 \to \commoncatname{Set}$ that takes the pair of elements $(\obj{A}, \obj{B})$ and maps it to the set $\obj{A} \times \obj{B}$ and a pair of functions $(\morph{i}, \morph{j})$ to a function $k: \left(\domain{i} \times \domain{j}\right) \to \left(\codomain{i} \times \codomain{j}\right)$. Considering the above problem again, we can see very clear links between the two functors. We can work our problem in \commoncatname{Set} in the domain of $\commoncatname{Set}^2$ by considering $\functorobj{\Delta}{A} = (\obj{A}, @@ -110,7 +115,7 @@ \subsection{Adjunctions} Given two functors $\functor{L}: \cat{D} \to \cat{C}$ and $\functor{R}: \cat{C} \to \cat{D}$, we define an adjunction $\adunction{L}{R}$ such that there is a natural isomorphism between the - hom-sets as follows \cite{RelationalAlgebraByWayOfAdjunctions}: + hom-sets as follows~\cite{RelationalAlgebraByWayOfAdjunctions}: \[ \lfloor - \rfloor: \homset{C}{\functorobj{L}{A}}{B} \cong \homset{D}{A}{\functorobj{R}{B}} :\lceil - \rceil @@ -123,7 +128,8 @@ \subsection{Adjunctions} \emph{counit}: $\explicitnattrans{\epsilon}{L \circ R}{\mathrm{Id}}$ such that $\nattransapply{\epsilon}{B} = \lceil \id{\functorobj{R}{A}} \rceil$. We - require that the unit and counit obey the `triangle identities' \cite{RelationalAlgebraByWayOfAdjunctions}: + require that the unit and counit obey the `triangle + identities'~\cite{RelationalAlgebraByWayOfAdjunctions}: $ \verticalcomposition {\nattransapply{\eta}{\functor{R}}} @@ -148,4 +154,4 @@ \subsection{Adjunctions} that $\nattransapply{\left(\verticalcomposition{\eta}{\epsilon}\right)}{\obj{A}} = \morphcomp{\nattransapply{\eta}{\obj{A}}}{\nattransapply{\epsilon}{\obj{A}}}$ -where the right hand side is simple the composition of arrows. +where the right-hand side is simple the composition of arrows. diff --git a/report/background/databaserepresentation.tex b/report/background/databaserepresentation.tex index ca711a9c..220fb791 100644 --- a/report/background/databaserepresentation.tex +++ b/report/background/databaserepresentation.tex @@ -4,7 +4,12 @@ \section{Evolution of database representation}\label{sec:background:dbrep} \fref{chap:database}. \subsection{Bags} -\paragraph{Characteristics of a database} We expect our database approximation to not be ordered and admit multiplicities and a finite bag of values is one of the simplest constructions that does so. Like a finite set, a bag contains a collection of unordered values. However, unlike a set, bags can contain duplicate elements. This multiplicity is key for processing non-idempotent aggregations. For instance, if summing up the ages of a database of people, without admitting multiplicity we would only sum each unique age once. +\paragraph{Characteristics of a database} We expect our database approximation +to not be ordered and admit multiplicities and a finite bag of values is one of +the simplest constructions that does so. Like a finite set, a bag contains a +collection of unordered values. However, unlike a set, bags can contain +duplicate elements. This multiplicity is key for processing non-idempotent +aggregations. For instance, summing the ages of a database of people, without admitting multiplicity would only sum each unique age once. \subparagraph{Generalisation} Furthermore, going forward we generalise to bags of any types instead of the classical ``bags of records''. This also allows us @@ -12,7 +17,7 @@ \subsection{Bags} may be useful for describing intermediate states of aggergations or projections. In \fref{tab:BagRelAlgOps} we summarise the implementation of relational algebra operators with bags -as their bulk type \cite{RelationalAlgebraByWayOfAdjunctions}. +as their bulk type~\cite{RelationalAlgebraByWayOfAdjunctions}. \begin{table}[h] \centering \begin{tabular}{r|l} @@ -48,7 +53,7 @@ \subsection{Indexed tables} We now have the mathematical tools required to define a map. In its finite form a map is widely known in computer science by many other names such as a dictionary, association lists or key-value maps. -Let $\keyset$ be a set and $\valset$ a pointed set. To those already familiar with maps, it may help to think of $\keyset$ as keys and $\valset$ as values. +Let $\keyset$ be a set and $\valset$ a pointed set. For those already familiar with maps, it may help to think of $\keyset$ as keys and $\valset$ as values. \begin{mapdef} A map of type $\map{\keyset}{\valset}$ is a total function from K to V. \end{mapdef} @@ -71,11 +76,11 @@ \subsection{Indexed tables} \end{split} \end{equation*} -The functions above tell us some extremely important information on creating -empty maps and calculating their unions. As you can see $empty$ returns a +The functions above tell us some extremely important information about creating +empty maps and calculating the unions of maps with the same key type. As you can see $empty$ returns a function that maps any key to the neutral element $()$. This is to be expected as there are no values in an empty map. More interestingly, we see the merge -of two maps as a function that returns a function that maps a key to a pair of +of two maps is function that maps a key to a pair of values, each of which holds the result of the key lookup in the respective table. diff --git a/report/background/relationalmodel.tex b/report/background/relationalmodel.tex index bde5878e..e24ae900 100644 --- a/report/background/relationalmodel.tex +++ b/report/background/relationalmodel.tex @@ -1,10 +1,10 @@ \section{The relational model of a database}\label{sec:relationalmodel} -We briefly describe the relational model of a database so that we can introduce -the key operators we seek to describe using category theory. \subsection{Introduction to the relational model} -There are several different data models to choose from when designing a database that specify important aspects of the design such as the structure, operations and constraints on the data \cite{DatabaseSystems}. For this project we concern ourselves with the relational model and its associated algebra. +There are several different data models to choose from when designing a database +that specifies important aspects of the design such as the structure, operations +and constraints on the data \cite{DatabaseSystems}. For this project, we concern ourselves with the relational model and its associated algebra. -The relational model represents data through two dimensional tables, called +The relational model represents data through two-dimensional tables, called \emph{relations}. The columns of the ``table'' are called its \emph{attributes} and the name of the relation with the set of its attributes is its \emph{schema} \cite{DatabaseSystems}. We denote the schema of a relation @@ -66,12 +66,12 @@ \subsection{Introduction to the relational model} \label{tab:peopleRelationWithTuple} \end{table} -In the relational model the constraint that each each component of a tuple must -be an of an atomic type; meaning the component should reasonably not be a -compound data type such as records, lists or sets. Furthermore, each attribute +The relational model has a constraint that each component of a tuple must +be of an atomic type; this means the component should reasonably not be a +compound data type such as a record, list or set. Furthermore, each attribute has its own associated \emph{domain}, specifying an elementary type that all components belonging to that column must take. The domain can be specified in -the the schema using a colon as shown in \fref{fig:peopleSchemaWithDomains}. +the schema using a colon as shown in \fref{fig:peopleSchemaWithDomains}. \begin{figure}[h] \centering \schema{\relation{People}}{\relationAttribute{firstName}: string,\ @@ -91,11 +91,15 @@ \subsection{Introduction to the relational model} \paragraph{A note on ordering} The distinction between lists and sets here is very important and has consequences. Firstly, note that a schema consists of a \textbf{set} of attributes, though in this case we do assign a ``standard'' ordering to them, typically following the ordering in the schema. Also note that when giving a tuple of a relation we do not also give the headings and thus some indication to which schema it belongs is necessary. Secondly, we introduced a relation as a \textbf{set} of tuples, in this case there is no standard ordering and thus invites many equivalent representations of the same relation \cite{DatabaseSystems}. In generality, the order of columns and rows do not matter, so long as they are consistent. \subsection{Relational Algebra} -Equipped with the information above we can now introduce the domain of the project, relational algebra. Relational algebra views queries as the creation of a relation by operating on other relations \cite{RelationalCalculus}. +Equipped with the information above, we can now introduce the domain of the project, relational algebra. Relational algebra views queries as the creation of a relation by operating on other relations~\cite{RelationalCalculus}. -The sections below describe some of the more interesting, specialised operations on this algebra but it is definitely worth noting that as relations are sets of tuples, given matching schemas between relations, set operations are also valid operations and produce relations \cite{RelationalModel}. More specifically, you can find the union, intersection and differences of two relations just as you would with sets \cite{DatabaseSystems}. +The sections below describe some of the more interesting and specialised +operations on this algebra, but it is definitely worth noting that as relations +are sets of tuples, given matching schemas between relations, set operations are +also valid operations and produce relations~\cite{RelationalModel}. More +specifically, you can find the union, intersection, and differences of two relations just as you would with sets~\cite{DatabaseSystems}. -For ease of demonstration we use a more populated instance of the \relation{People} relation as in \fref{tab:peopleRelationPopulated}. +For ease of demonstration, we use a more populated instance of the \relation{People} relation as in \fref{tab:peopleRelationPopulated}. \begin{table}[h] \centering @@ -151,7 +155,13 @@ \subsubsection{Selections} \subsubsection{Products}\label{sec:products} The product of two relations \relation{R} and \relation{S} is simply the Cartesian product of the set of tuples of each relation, where instead of a binary tuple of tuples, the result is a single longer tuple. Typically, the result of $\relation{R} \times \relation{S}$ has the elements of tuples in $R$ before those in $S$ \cite{DatabaseSystems}. -Clearly, the schema of the resulting relation $\relation{R} \times \relation{S}$ is altered. It takes the form of the union of the schemas of \relation{R} and \relation{S}. Of course in some instances there may be common attributes among \relation{R} and \relation{S}, say \relationAttribute{a}, but in this case the headings associated with the attributes are set to \relationAttribute{\relation{R}.a} and \relationAttribute{\relation{S}.a} respectively \cite{DatabaseSystems}. +Clearly, the schema of the resulting relation $\relation{R} \times \relation{S}$ +is altered. It takes the form of the union of the schemas of \relation{R} and +\relation{S}. Of course, in some instances, there may be common attributes among +\relation{R} and \relation{S}, say \relationAttribute{a}, but in this case the +headings associated with the attributes are set to +\relationAttribute{\relation{R}.a} and \relationAttribute{\relation{S}.a} +respectively~\cite{DatabaseSystems}. For instance, given the relations \relation{R} and \relation{S} as in \fref{tab:productRelationR} and \fref{tab:productRelationS}, we can calculate the product $\relation{R} \times \relation{S}$ is as in \fref{tab:productResult}. @@ -195,6 +205,7 @@ \subsubsection{Products}\label{sec:products} \label{tab:productResult} \end{table} +\noindent We note that a tuple in the product relation $\relation{R} \times \relation{S}$ is of the form \begin{verbatim} (1, 2, 3, 10, 11) @@ -230,8 +241,15 @@ \subsubsection{Joins}\label{sec:joins} \caption{Relation \relation{S} as example for joins.} \label{tab:joinRelationS} \end{table} -\paragraph{Natural join}\label{sec:natjoin} The natural join is the first way to combine relations. Given that relations \relation{R} and \relation{S} have common attributes \relationAttribute{a_1}, \ldots, \relationAttribute{a_k}, tuples in \relation{R} and \relation{S} are combined if the component of all attributes are equal. This join is expressed as \natjoin{R}{S} \cite{DatabaseSystems}. -\subparagraph*{Example of the natural join} Given the relations \relation{R} and \relation{S} in \fref{tab:joinRelationR} and \fref{tab:joinRelationS} respectively, the natural join $\natjoin{R}{S}$ is as in \fref{tab:naturalJoinResult} \cite{RelationalModel}. +\paragraph{Natural join}\label{sec:natjoin} The natural join is the first way to +combine relations. Given that relations \relation{R} and \relation{S} have +common attributes \relationAttribute{a_1}, \ldots, \relationAttribute{a_k}, +tuples in \relation{R} and \relation{S} are combined if the component of all +attributes are equal. This join is expressed as \natjoin{R}{S}~\cite{DatabaseSystems}. +\subparagraph*{Example of the natural join} Given the relations \relation{R} and +\relation{S} in \fref{tab:joinRelationR} and \fref{tab:joinRelationS} +respectively, the natural join $\natjoin{R}{S}$ is as in +\fref{tab:naturalJoinResult}~\cite{RelationalModel}. In this example we call the tuple \verb|(1, 2, 4)| a \emph{dangling tuple} as it failed to pair with any other tuple in relation \relation{S} \cite{DatabaseSystems}. \begin{table}[h] \centering @@ -245,9 +263,20 @@ \subsubsection{Joins}\label{sec:joins} \label{tab:naturalJoinResult} \end{table} -\paragraph{Theta-Join} The \emph{theta-join} is a generalisation of a join, where whether a record is kept is determined by some condition $\theta$. Given such a $\theta$, a theta-join between relations \relation{R} and \relation{S} is written as \thetajoin{\theta}{R}{S}. To determine the tuples of the new relation \thetajoin{\theta}{R}{S} we first must take the product $\relation{R} \times \relation{S}$ (as seen in \fref{sec:products}), then we filter out rows that return false in respect to the predicate $\theta$ \cite{DatabaseSystems}. +\paragraph{Theta-Join} The \emph{theta-join} is a generalisation of a join, +where whether a record is kept is determined by some condition $\theta$. Given +such a $\theta$, a theta-join between relations \relation{R} and \relation{S} is +written as \thetajoin{\theta}{R}{S}. To determine the tuples of the new relation +\thetajoin{\theta}{R}{S} we first must take the product $\relation{R} \times +\relation{S}$ (as seen in \fref{sec:products}), then we filter out rows that +return false with respect to the predicate $\theta$ \cite{DatabaseSystems}. -\paragraph{Equijoin} The most important class of joins concerning this project, a specialisation of the theta-join. Equijoin is used when the operator of predicate $\theta$ between two attributes is an equality\footnote{So common that joins using operators other than $=$, such as $<$, are sometimes called \emph{nonequijoins}\cite{JoinProcessing}.} \cite{JoinProcessing}. An equijoin between relations \relation{R} and \relation{S} where we want to join the values of attributes \relationAttribute{a} and \relationAttribute{b} respectively is denoted \equijoin{R}{a}{S}{b}. +\paragraph{Equijoin} The most important class of joins concerning this project +is a specialisation of the theta-join. Equijoin is used when the operator of predicate $\theta$ between two attributes is an equality\footnote{So common that joins using operators other than $=$, such as $<$, are sometimes called \emph{nonequijoins}\cite{JoinProcessing}.} \cite{JoinProcessing}. An equijoin between relations \relation{R} and \relation{S} where we want to join the values of attributes \relationAttribute{a} and \relationAttribute{b} respectively is denoted \equijoin{R}{a}{S}{b}. \subsubsection{Note on permutations} -Permutations is another specialist operation in relational algebra, though not important to the scope of the project. For completion, despite the fact that relations are domain--unordered, their internal representation in computers is not and so permutation may be done for performance benefits despite no logical difference storing a relation and its permutations \cite{RelationalModel}. Furthermore, permutation can be used (and is usually implied) to ensure that tuples with identical schemas differing only in ordering can have the normal set operations applied to them \cite{DatabaseSystems}. +Permutations is another specialist operation in relational algebra, though not +important to the scope of the project. For completion, despite the fact that +relations are domain-unordered, their internal representation in computers is +not and so permutation may be done for performance benefits despite no logical +difference between storing a relation and its permutations~\cite{RelationalModel}. Furthermore, permutation can be used (and is usually implied) to ensure that tuples with identical schemas differing only in ordering can have the normal set operations applied to them \cite{DatabaseSystems}. diff --git a/report/conclusion/conclusion.tex b/report/conclusion/conclusion.tex index ce6b32ec..8939d973 100644 --- a/report/conclusion/conclusion.tex +++ b/report/conclusion/conclusion.tex @@ -16,16 +16,16 @@ \chapter{Conclusion} The beginning of the project was successful with a crude implementation of the database system described in the paper. The implementation was functional with -unit tests strengthening belief in correctness tests and ease of use during -benchmarks. Slight alterations had to be made to the implementation described by -\relalg{}, a handful of original contributions such as the definition of -equality -of bags were made and much effort was put into the integration of the system to form the -library defined in the code of this project. The library could further be -expanded through the definition of more keys and much real world modification -must be done to the design to make it useful in real world (for instance the +unit tests strengthening the belief in correctness, and ease of use during +benchmarks. Alterations had to be made to the implementation described by +\relalg{} and supplementary functions and design decisions had to be invented to +integrate the code and transform it into a usable library. These contributions +are not limited to the definition of equality +of bags and much effort into the integration of the system. The library could further be +expanded through the definition of more keys, and much real-world modification +must be done to the design to make it viable for day-to-day use (for instance, the caching of indexed tables). The library defined is usable and functional for the -purposes of benchmarking and a good starting point for further expansion with +purposes of benchmarking and is a good starting point for further expansion with much room for many more query optimisations. The \relation{JOINBENCH} relation is a carefully thought out combination of @@ -35,7 +35,7 @@ \chapter{Conclusion} different orders of products on the performance of equijoins and can be scaled through select queries on the \relationAttribute{unique} attribute. There is no doubt as to whether it has achieved its purpose in the scope of this paper. -After spotting trends it may be extended with a few more attributes or +After considering unfinished trends in the data, it may be extended with a few more attributes or supporting queries to investigate edge cases more thoroughly. The synthetic database generator gives users a low-level tool to generate very @@ -43,30 +43,29 @@ \chapter{Conclusion} structure. For the benchmarking of this project, a wide array of different cell types were defined and used to create the \relation{JOINBENCH} relation and previous iterations of benchmarking databases. It has a capacity for both -qualitative and quantitative data, however I have found it extremely useful on the +qualitative and quantitative data, however, I have found it extremely useful on the quantitative side. Patterns and trends between cell values can be moderated through cell composition or passing shared objects into constructors and is very -powerful for customisation of the result. In future this framework could be +powerful for customisation of the result. In future, this framework could be extended to allow for a more user-friendly interaction, though care must be taken as to not lose the flexibility that comes from the low-levelled nature of -the design. Furthermore, work may be made to make the framework more context -aware so that it may be used to generate more useful tools such as SQL commands +the design. Furthermore, work may be made to make the framework more context-aware so that it may be used to generate more useful tools such as SQL commands to create the database and Haskell parsers to read its output; similarly, care must be taken not to lose the simplicity of the current solution and force users to give irrelevant information to their use case. This framework is a large original contribution of this project. Finally, although there is much room for more rigour in the statistical analysis -of results, benchmarking with the implementation above and this methodology has +of results, benchmarking with the implementation above combined with this methodology has produced extremely strong trends. It is clear that, as expected, indexed equijoin needs to have a substantial number of tuples in order to become -effective over methods with a worse asymptotic complexity but reduced overhead. -Furthermore, comprehension equijoin does much better than expected and although +effective over methods with worse asymptotic complexity but reduced overhead. +Furthermore, comprehension equijoin does much better than expected, and although scales similar to product equijoin, does so with a significantly lower slope. The trends behind indexed equijoin are more complicated, however, and rely -heavily on the number of and order of local products needed by the query. This -means that the performance increase of indexed equijoin heavily relies on the -query in question, though most real world situations would benefit from its +heavily on the order of local products needed by the query. This +means that the performance increase of indexed equijoin strongly depends on the +query in question, though most real-world situations would benefit from its implementation as they are unlikely to fall into the same category as edge cases. On the other hand, there are many query optimisations (such as a preceding join) that are not considered in this project and future work may be @@ -80,4 +79,4 @@ \chapter{Conclusion} samples and clearly strong trends that are unlikely to be variable. Although more work can be done to investigate the effect different contexts have on the results I am confident that the findings of this paper will inform a strong -theoretical background and help inform any conjectures. +theoretical background and aid any conjectures in future work. diff --git a/report/ethics/final.tex b/report/ethics/final.tex index daccddac..ef67ce50 100644 --- a/report/ethics/final.tex +++ b/report/ethics/final.tex @@ -2,7 +2,7 @@ \chapter*{Ethical Issues} \begin{comment} You are required to include a short discussion of ethical, legal, societal and professional issues that are relevant to your project (usually 1 to 2 pages long). This should fit in the most appropriate section of your project report, often the Background or Conclusions section. \end{comment} -The project is an ethically neutral project. The domain of databases is +The net ethical impact of this project is neutral. The domain of databases is pervasive in the modern world and so the project is not likely to have an especially biased impact on any particular group of people. Although language of choice, Haskell, is occasionally used in safety critical environments, code diff --git a/report/evaluation/benchmark.tex b/report/evaluation/benchmark.tex index d8bca36c..d26c1434 100644 --- a/report/evaluation/benchmark.tex +++ b/report/evaluation/benchmark.tex @@ -1,18 +1,18 @@ \section{Benchmark methodology and results} \subsection{\relation{JOINBENCH} relation and queries} The \relation{JOINBENCH} relation is a fundamental step in the design of -the benchmark as it single-handedly determines the possible complexity of the -possible queries. In this regard I think the \relation{JOINBENCH} was mostly +the benchmark as it single-handedly determines the limits of the possible +complexity queries can have. In this regard, I think the \relation{JOINBENCH} was mostly sufficient, it was largely based on previously designed benchmarks with slight modifications to make it more specialised for the type of interesting -selection and join based queries that would be interesting in this project. One +selection and join-based queries that would be interesting in this project. One attribute and family of queries that I found to be missing during my analysis, however, revolved around the idea of letting the local Cartesian products grow to be the same size as a normal product on the relations. This could be solved by adding an attribute \relationAttribute{oneHundredPercent} whose domain only contained one value (thus containing 100\% of the relation). I believe that this would more interestingly highlight the disadvantages of the indexed approach as -it is likely to be reduced to a normal product. Admittedly I speculate that the lack of a need +it is likely to be reduced to a normal product. Admittedly, I speculate that the lack of a need for a filter on $n^2$ elements would still make the indexed equijoin dominant over the product equijoin; however, I believe it would be much closer to the comprehension equijoin. Alternatively, this could be done by conducting a @@ -23,13 +23,13 @@ \subsection{\relation{JOINBENCH} relation and queries} \relationAttribute{onePercent} but this not only makes standardising relation cardinality more difficult, it destroys the readability synthetic data sets are meant to express. It may be interesting to include attributes in future that -cannot be derived from \relationAttribute{onePercent}, for instance other -multiples such as \relationAttribute{oneThird}, but I am not sure how much more +cannot be derived from \relationAttribute{onePercent}, for instance, other +proportions such as \relationAttribute{oneThird}, but I am not sure how much more information this would provide in this case. These suggestion may be taken forward as future work on designing the \relation{JOINBENCH} relation. On the topic of readability of attributes, I feel that the naming scheme has -mixed success. The attributes were names after similar attributes in the updated +mixed success. The attributes were named after similar attributes in the updated Wisconsin relation but were kept due to the importance of the cardinality of partitions to this domain. However, I do find that the attributes names struggle to easily convey the values in their domains somewhat limiting the expression of @@ -38,10 +38,10 @@ \subsection{\relation{JOINBENCH} relation and queries} sizes. Similarly, all queries are based on uniform sizing and partitions. It would be a very interesting piece of future work to see how dynamic sized local joins impact indexing; we could ask questions such as whether a joins with one -partition with a larger cardinality and few other small ones may be faster than +partition with a larger cardinality and a few other small ones may be faster than a join with relations with larger tuple counts but many small local partitions. -Having non uniform sizes in the queries would make the benchmark more realistic -to real world scenarios but I also struggle to see a scientific question that +Having non-uniform sizes in the queries would make the benchmark more like +real-world scenarios, but I also struggle to see a scientific question that may be asked. Furthermore, I feel the theoretical explanations of the results obtained in this experiment as described in \fref{sec:benchmark:results} already gives enough understanding to extrapolate and model into the @@ -51,11 +51,11 @@ \subsection{Results} This subsection will evaluate the results presented in \fref{sec:benchmark:results} and the processes that obtained them. At first glance the results of the benchmark seem to be very reasonable and -trends are smooth, expected and clear. A more thorough analysis can be completed +trends are smooth, expected, and clear. A more thorough analysis can be completed by checking the standard deviations associated with the results. Tables with the mean and standard deviation for a select number of queries can be found in \fref{tab:evaluation:std-dev-comparison-onePercent-onePercent}, -\fref{tab:evaluation:std-dev-comparison-onePercent-fiftyPercent} and +\fref{tab:evaluation:std-dev-comparison-onePercent-fiftyPercent}, and \fref{tab:evaluation:std-dev-comparison-evenOnePercent-oddOnePercent}. I have chosen these queries as I believe they most accurately sample the space of queries and edge cases. I have included the means in this result to give a @@ -64,12 +64,12 @@ \subsection{Results} mean, potentially indicating that the `quiet' computational environment (described in \fref{sec:benchmark:experiment}) the results were gathered in was successful in producing reproducible data. It is -worth noting that the function indexed equijoin continuously seems to have an +worth noting that the function indexed equijoin often seems to have an order of magnitude higher standard deviation, suggesting a larger spread of data. This could be due to the fact that the function is more computationally -complex and therefore more sensitive the runtime environment. Most importantly, -due to the nature of such a small spread, it is unlikely that results wrong -relative to each other (no lines overlap) and therefore the conclusions drawn +complex and therefore more sensitive to the runtime environment. Most importantly, +due to the nature of such a small spread, it is unlikely that results are wrong +relative to each other and therefore the conclusions drawn may be more confidently accepted despite any statistical noise and uncertainty. \begin{table}[h] @@ -103,27 +103,27 @@ \subsection{Results} of trends and despite the data clearly being consistent within repeats of the same query no statistical analysis has been conducted on the trends. Because of the clear visualisations of the data I am confident that the trends in question -are existent however it would be vital to conduct an analysis to model the +are existent, however it would be vital to conduct an analysis to model the relationships between tuple counts, different queries and functions. This is -clearly where the results fall short and future work would need to be done in +clearly where the results fall short, and future work would need to be done in order to add rigour to the already clear patterns the data shows. Finally, another shortcoming of the results is the potential improvements that -could have been made to statistics considered and ways in which the tools in +could have been made to the statistics considered and the ways in which the tools in question were understood and used. The mean average can easily be swayed by outliers and, although the spread suggests the data was quite tight and -outliers not too extreme, this could have been a heavy issue. Computer +outliers were not too extreme, this could have been a heavy issue. Computer benchmarking can be prone to outliers for a variety of factors from noise on the -system resources to caching effects and therefore more care should have been +system resources to caching effects and, therefore, more care should have been taken to mitigate these risks. However a quick heuristic analysis of the median -and means shows that in this case they are not far apart. Moreover, the +and means shows that, in this case, they are not far apart. Moreover, the \verb|Criterion| library itself gives a number of more reliable statistics that I did not use in this project because of time and scope constraints. These may have led to more reliable results. More time could have been spent on modifying -default options for the library to ensure that sampling rates and other useful +default the options for the library to ensure that sampling rates and other useful variables were consistent and the benchmarks done in a much fairer way. Luckily, I believe these did not have a serious impact on the results as the data -gathered seems to be consistent and patterns significantly distinct and clear. I +gathered seems to be consistent, and patterns significantly distinct and clear. I believe it would also be important to report the usage of other computer resources, especially CPU utilisation and memory, as these are important considerations when choosing a query function and standard practice in the academic @@ -131,12 +131,12 @@ \subsection{Results} \fref{sec:background:benchmarkbestpractices}. \section{Haskell considerations} -As Haskell is a lazy language many considerations, especially when benchmarking, +As Haskell is a lazy language, many considerations, especially when benchmarking, must be made to ensure that answers are evaluated at the correct time. In the context of benchmarking, we want to ensure that all results are fully evaluated -in the duration of the benchmark. In order to ensure the full evaluation of the +in the duration of the experiment. In order to ensure the full evaluation of the function we define a normal form for all the new data structures introduced by -this database implementation (detailed in \fref{chap:implementation}). During the +this database implementation (detailed in \fref{chap:database}). During the benchmarking we can then use the $nf$ function, along with a function missing an argument, to let \verb|Criterion| ensure that the results are fully evaluated. An example of a definition of a normal form can be found below. @@ -149,7 +149,7 @@ \section{Haskell considerations} you simply fully evaluate its underlying list. Similarly, a record type can be fully evaluated by evaluating a tuple of all its fields. The notion of a weak head normal form also exists which does not require these extra definitions, -however I do not believe that it is strong enough for the purposes of this +however, I do not believe that it is strong enough for the purposes of this benchmark. Although more than enough for some queries, the weak head normal form does not typically come close to fully evaluating the expressions and this can be seen in the mean times reported by the benchmark, this can be seen in @@ -196,9 +196,9 @@ \section{Haskell considerations} On the other hand, the implementation has not been thoroughly checked for space leaks. The problem with space leaks in this domain is that when benchmarking higher tuple counts this could lead to much time being wasted in the garbage -collector and therefore artificially increasing the time reported depending on +collector, and therefore, artificially increasing the time reported depending on the memory used by a function (including expressions that have not been fully -evaluated, otherwise known as thonks). This is clearly a downfall of the +evaluated, otherwise known as thonks). This is clearly a weakness of the experiment and despite preliminary checks for space leaks, more effort should be put into it to ensure that not only larger tuple counts can be considered but the results are more reliable and not impacted by garbage collection. diff --git a/report/evaluation/databaseimplementation.tex b/report/evaluation/databaseimplementation.tex index 987d770f..0b1426c2 100644 --- a/report/evaluation/databaseimplementation.tex +++ b/report/evaluation/databaseimplementation.tex @@ -4,10 +4,10 @@ \section{Database implementation} % Haskell database implementation not matter how long it takes. My strategy for ensuring correctness is rigorous unit tests. By automatically checking that different modules of the system reach the same result I do by hand helps ensure that it is working as expected. I -acknowledge that this is not complete however and integration tests are vital; -at times I print the result of large computations and check that they are close +acknowledge that this is not a complete solution, however, and integration tests are vital; +at times, I print the result of large computations and check that they are close to what I would expect but I doubt I have full integration coverage with -heuristics like this. Given more time it would be very beneficial to use a +heuristics like this. Given more time, it would be very beneficial to use a pre-existing DBMS to run the same queries and compare outputs. This could not be done now due to the extra tooling that would be required for the automatic parsing and comparisons needed to take place. Some of the suggestions in @@ -17,7 +17,7 @@ \section{Database implementation} % Haskell database implementation the context of its actions. This is especially true when thinking about queries, it is likely that the queries would need to be transcribed to SQL by hand, adding in an extra error-prone step. To conclude, I am confident in the -results due to extensive unit testing but I strongly believe that in future an +results due to extensive unit testing but I strongly believe that in the future an effort should be made to include both integration tests for functions used in benchmarking and system tests by comparing results with an existing DBMS. @@ -41,14 +41,15 @@ \section{Database implementation} % Haskell database implementation \paragraph{Readability and efficiency} It is clear that much of the code presented in \fref{chap:database} could be made more efficient and readable. The effects of this have varying degrees of severity. To begin with a -more high severity approach the efficiency of some parts of the code present +more high-severity approach, the efficiency of some parts of the code present could reasonably become hot spots that bias results of the benchmarking. Luckily, in the preliminary profiling undertaken of the code it did not seem to -be an issue, the algorithm for equality of bags could easily bias results to +be an issue, the algorithm for equality of bags could easily bias results +towards functions that compare more often and frame potentially viable solutions as much worse than they are. Of course the asymptotic complexity of the algorithm is important to consider, the project also had a focus on trends and needlessly slow algorithms may alter intersection points. In addition, readability is useful for further extending the -database system to approach a more real world use case. Code that +database system to approach a more real-world use case. Code that is written more nicely, especially important in the context of academic work, makes it easier to understand and express the theory behind. diff --git a/report/evaluation/syntheticdatabase.tex b/report/evaluation/syntheticdatabase.tex index 14107c5d..14d6237e 100644 --- a/report/evaluation/syntheticdatabase.tex +++ b/report/evaluation/syntheticdatabase.tex @@ -1,15 +1,15 @@ \section{Synthetic database creation}\label{sec:evaluation:syntheticdatabase} -This section evaluates the design decisions and outcomes in creating a synthetic -database generator as outlined in \fref{sec:benchmark:syntheticdatabase}. This -project introduced a framework to generate database to fit a custom schema. The +This section evaluates the design decisions and outcomes of creating a synthetic +database generator as outlined in \fref{sec:benchmark:database}. This +project introduced a framework to generate a database to fit a custom schema. The benefits of synthetic data are vast and include the ability to define schemas that are specialised in benchmarking and readability while controlling frequency of values and other important properties. -\paragraph{Comparison to existing solutions} Overall the result was quite different from other technologies available, -offering a low-level bare-bones solution. Many existing solutions equally support +\paragraph{Comparison to existing solutions} Overall, the result was quite different from other technologies available, +offering a low-level, bare-bones solution. Many existing solutions equally support qualitative data to quantitative with selling points based on the -\lstinline{Faker} python module \cite{Faker}. Although \lstinline{Faker} did not come to my +\lstinline{Faker} python module~\cite{Faker}. Although \lstinline{Faker} did not come to my attention while designing the framework, it would not have been much use for the \database{JOINBENCH} database in its final form as well. Additionally, much infrastructure would still need to be made around the \lstinline{Faker} module @@ -18,26 +18,26 @@ \section{Synthetic database creation}\label{sec:evaluation:syntheticdatabase} Advantages of the \lstinline{Faker} framework over my solution is the vast amount of data available for attributes that were considered to be qualitative, although there would still be time necessary in order to do due diligence on its -copyright and licensing creating further ethical considerations. The \lstinline{Faker} module has made interesting +copyright and licensing, creating further ethical considerations. The \lstinline{Faker} module has made interesting design decisions, favouring a \lstinline{unique} attribute to composition for uniqueness which itself comes with benefits and drawbacks. The \lstinline{Faker} -module does present interesting opportunities to enhance my solution however: +module does present interesting opportunities to enhance my solution, however: Using an adapter design pattern a faker object could easily be converted into using the cell API and enrich my solution with a larger variety of data, although I would accept the argument that it might be a waste of the set of rich features implemented by the module. Using the \lstinline{Faker} module implicitly with other data synthesising modules that depend on -it, such as \lstinline{pydbgen} \cite{pydbgen}, can give a more complete solution even in +it, such as \lstinline{pydbgen}~\cite{pydbgen}, can give a more complete solution even in comparison to my framework. In essence, it uses the variety of data sources provided by framework compiled into a variety of different outputs formats. Moreover, other solutions with very different aims exist. Academics in the US -have developed DataSynthesizer \cite{DataSynthesizer} which is a privacy -oriented synthetic data generator for collaborating with sensitive data. Given -an input of a sensitive data the technology comes in three parts, a +have developed DataSynthesizer~\cite{DataSynthesizer} which is a privacy-oriented +synthetic data generator for collaborating with sensitive data. Given +an input of sensitive data, the technology comes in three parts: a \lstinline{DataDescriber} which analyses the data and describes its form, a \lstinline{DataGenerator} which takes this information and creates a -predetermined number of rows, and finally a \lstinline{ModelInspector} for +predetermined number of rows, and finally, a \lstinline{ModelInspector} for determining the similarity of the produced data to the private data. It is clear in order to use the technology as intended I would already require a dataset to reproduce. Hypothetically, singling out the \lstinline{DataGenerator} and @@ -51,14 +51,14 @@ \section{Synthetic database creation}\label{sec:evaluation:syntheticdatabase} problem domain I believe the infrastructure created during this project for synthetic database creation is a useful contribution. Although, when taken for their intended purpose most alternate solution provide a more complete and -beneficial solution, I believe the framework created by me is low level enough +beneficial solution, I believe the framework created by me is low-level enough to be manipulatable in a clean way to express a wide range of properties that might be needed for a benchmark. Benchmarks are characterised by the need to strictly control the data and express properties on the data easily and -specifically, this may suggest that a low level solution may be better suited +specifically, this may suggest that a low-level solution may be better suited and when organised as such may result in cleaner code than trying to adapt higher level solutions. Although, ``low-level'' and ``bare-bones'' -might sound like drawbacks of deliverable it was intentionally designed and serves +might sound like drawbacks of a deliverable, it was intentionally designed and serves as a different style of implementation to the other solutions available; a style I believe suits the intricacies of the project and leaves much room for extensions if necessary in future. @@ -70,21 +70,22 @@ \section{Synthetic database creation}\label{sec:evaluation:syntheticdatabase} limitations in the scope currently developed have risen. My concerns lie in two main categories, interactions and overall system knowledge by the program. -\subparagraph{Interactions} Especially as cell composition became more prevalent -in the design or other potential dependencies between cells arose the potential +\subparagraph{Interactions} As cell composition became more prevalent +in the design and other potential dependencies between cells arose, the potential untidiness of the solution lurked in. An example currently in the system is the way \lstinline{RecordCell} strays from the simple \lstinline{Cell} API. Although -the solution prides itself in being low level and customisable by code, it -feels like a stray away from a uniformity that in future may be exploited for -different spin off solutions as may be described later in this section. Other +the solution prides itself on being low level and customisable by code, it +feels like a stray away from a uniformity that, in future, may be exploited for +different spin-off solutions, as may be described later in this section. Other instances of when extra code may need to be introduced due to unforeseen dependencies between components may be cells that require a larger context to function such as the total number of records to be generated. In current implementations, only higher levels of the system are made aware of this, also at the last possible -moment. Again, these are not large issues but concerns of difficulties as -use cases may scale; a client could simply initialise the needed -\lstinline{Cell}s with the needed context at runtime. Therefore this may only +moment. Again, these are not large issues but instead concerns of obstacles that +may arise as +use cases scale; a client could simply initialise the needed +\lstinline{Cell}s with the needed context at runtime. Therefore, this may only be an obstacle for potential automation and better message passing mechanisms might need to be developed between client and framework or within the framework itself to allow for cleaner solutions. @@ -96,12 +97,12 @@ \section{Synthetic database creation}\label{sec:evaluation:syntheticdatabase} by giving the program more knowledge, unnecessary for just the synthesis of data. -In the current implementation the data generated comes entirely from the +In the current implementation, the data generated comes entirely from the \lstinline{RecordGenerator} and larger structures defined by the user. Notably, -this lacks a larger knowledge, such as the exact domain of the attributes the -cells are working in and attribute names. The return type of \lstinline{Cell}'s +this lacks larger knowledge, such as the exact domain of the attributes the +cells are generating within and attribute names. The return type of \lstinline{Cell}'s \lstinline{generate} function is \lstinline[language=Python]{str} as it is what -it is needed to output the data into a plaintext CSV file. If design changes +is needed to output the data into a plaintext CSV file. If design changes were made to give the system a greater knowledge of the larger context and environment it is contributing to it can generate more useful structures; an example that would benefit this project would be automatically generating @@ -119,13 +120,13 @@ \section{Synthetic database creation}\label{sec:evaluation:syntheticdatabase} appeared while designing the system. \subparagraph{Cells} Cells are the most important component of the system design -wise and, in my opinion, introduce the largest surface for design difficulties. +and, in my opinion, introduce the largest surface to introduce design difficulties. Even, as mentioned in the previous paragraph, deciding the return types and number of abstract methods in the class can either introduce a whole level of extremely useful functionality or bloat the system. This part of the report will evaluate some more difficult design decisions made in cells and cell examples. -Composition of cells was introduced in the project as a way of adding another +The composition of cells was introduced in the project as a way of adding another level of complexity to the decisions developers were able to make. The examples coded during the project, however, tended to be quite inefficient and general; they would definitely need to be redefined and optimised to work at scale. @@ -134,10 +135,10 @@ \section{Synthetic database creation}\label{sec:evaluation:syntheticdatabase} efficient, solutions if taken seriously in further development. The generality described here is found in the inability to apply different algorithms when different properties are given in the domain. Going back to the -example in \fref{sec:benchmark:syntheticdatabase} for cell composition, +example in \fref{sec:benchmark:database} for cell composition, \lstinline{unique_nums}. The algorithm used in \lstinline{unique_nums}, which to remind you is simply a \lstinline{RandomModularIntegerCell} in a -\lstinline{UniqueCell} is quite inefficient and generates new values until an unseen +\lstinline{UniqueCell}, is quite inefficient and generates new values until an unseen integer is found. It has been widely known for decades that algorithms to produce a random permutations of integers are prevalent and a large discussion of methods to generate dense @@ -151,8 +152,21 @@ \section{Synthetic database creation}\label{sec:evaluation:syntheticdatabase} classes for unique cases. It is clear, however, that the number of cells may grow greatly as the framework is extended in this way and the correct times to use cell composition may become more confusing; it is -clearly a trade off between optimisation and readability. I believe that this +clearly a trade-off between optimisation and readability. I believe that this issue also highlights the strength my solution has in extensibility as the question is not whether the framework allows such structures, but whether we should and users of this system can make their own decisions and implement such cells for themselves and their use cases. + +\subparagraph{TableGenerator} The table generator is the component that +organises the efficient generation of the entire table, no matter the size. In +order to accomplish this it creates an iterator that generates the given number +of records. This iterator has an interesting trade-off in its design as it both allows +for the efficient generation of arbitrarily large tables but also restricts the +users ability to view the table as a whole. There are definitely cases +where the shuffling of records is useful (for instance, to get around the problem +of generating unique dense integers) and so with these restrictions the +``shuffling'' would be left as the responsibility of another program. I believe +that this counts as generation and so should be able to be handled by the +framework in the perfect case. However, it is a niche requirement and the efficiency of the current +implementation far outweighs this need. diff --git a/report/figures/eval-method-join-evenOnePercent-and-oddOnePercent-1000.pgf b/report/figures/eval-method-join-evenOnePercent-and-oddOnePercent-1000.pgf index 6e3da889..e2cd4c90 100644 --- a/report/figures/eval-method-join-evenOnePercent-and-oddOnePercent-1000.pgf +++ b/report/figures/eval-method-join-evenOnePercent-and-oddOnePercent-1000.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,14 +57,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.771061in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.771061in}{2.976534in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{5.771061in}{3.176534in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.176534in}}% \pgfpathlineto{\pgfqpoint{0.827470in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.424034in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.624034in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -77,14 +77,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.052179in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{1.501596in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{1.501596in}{2.861103in}}% -\pgfpathlineto{\pgfqpoint{1.052179in}{2.861103in}}% +\pgfpathlineto{\pgfqpoint{1.501596in}{3.051580in}}% +\pgfpathlineto{\pgfqpoint{1.052179in}{3.051580in}}% \pgfpathlineto{\pgfqpoint{1.052179in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.424034in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.624034in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -97,14 +97,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{2.849848in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{3.299265in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{3.299265in}{1.538023in}}% -\pgfpathlineto{\pgfqpoint{2.849848in}{1.538023in}}% +\pgfpathlineto{\pgfqpoint{3.299265in}{1.619335in}}% +\pgfpathlineto{\pgfqpoint{2.849848in}{1.619335in}}% \pgfpathlineto{\pgfqpoint{2.849848in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.424034in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.624034in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -117,14 +117,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.647517in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.096935in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.096935in}{0.986798in}}% -\pgfpathlineto{\pgfqpoint{4.647517in}{0.986798in}}% +\pgfpathlineto{\pgfqpoint{5.096935in}{1.022631in}}% +\pgfpathlineto{\pgfqpoint{4.647517in}{1.022631in}}% \pgfpathlineto{\pgfqpoint{4.647517in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.424034in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.624034in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -137,14 +137,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.501596in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{1.951013in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{1.951013in}{2.828554in}}% -\pgfpathlineto{\pgfqpoint{1.501596in}{2.828554in}}% +\pgfpathlineto{\pgfqpoint{1.951013in}{3.016345in}}% +\pgfpathlineto{\pgfqpoint{1.501596in}{3.016345in}}% \pgfpathlineto{\pgfqpoint{1.501596in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.424034in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.624034in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -157,14 +157,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{3.299265in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{3.748683in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{3.748683in}{1.570340in}}% -\pgfpathlineto{\pgfqpoint{3.299265in}{1.570340in}}% +\pgfpathlineto{\pgfqpoint{3.748683in}{1.654319in}}% +\pgfpathlineto{\pgfqpoint{3.299265in}{1.654319in}}% \pgfpathlineto{\pgfqpoint{3.299265in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.424034in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.624034in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -177,8 +177,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.096935in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.546352in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.546352in}{0.997247in}}% -\pgfpathlineto{\pgfqpoint{5.096935in}{0.997247in}}% +\pgfpathlineto{\pgfqpoint{5.546352in}{1.033942in}}% +\pgfpathlineto{\pgfqpoint{5.096935in}{1.033942in}}% \pgfpathlineto{\pgfqpoint{5.096935in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% @@ -304,7 +304,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{0.856132in}% +\pgfsys@transformshift{0.827470in}{0.881184in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -312,7 +312,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=0.807937in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0025}\)}% +\pgftext[x=0.344444in, y=0.832989in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0025}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -329,7 +329,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.159764in}% +\pgfsys@transformshift{0.827470in}{1.209868in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -337,7 +337,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.111570in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0050}\)}% +\pgftext[x=0.344444in, y=1.161673in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0050}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -354,7 +354,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.463396in}% +\pgfsys@transformshift{0.827470in}{1.538551in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -362,7 +362,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.415202in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0075}\)}% +\pgftext[x=0.344444in, y=1.490357in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0075}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -379,7 +379,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.767028in}% +\pgfsys@transformshift{0.827470in}{1.867235in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -387,7 +387,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.718834in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0100}\)}% +\pgftext[x=0.344444in, y=1.819041in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0100}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -404,7 +404,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.070660in}% +\pgfsys@transformshift{0.827470in}{2.195919in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -412,7 +412,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.022466in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0125}\)}% +\pgftext[x=0.344444in, y=2.147725in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0125}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -429,7 +429,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.374292in}% +\pgfsys@transformshift{0.827470in}{2.524603in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -437,7 +437,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.326098in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0150}\)}% +\pgftext[x=0.344444in, y=2.476409in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0150}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -454,7 +454,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.677925in}% +\pgfsys@transformshift{0.827470in}{2.853287in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -462,13 +462,13 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.629730in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0175}\)}% +\pgftext[x=0.344444in, y=2.805093in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0175}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.288889in,y=1.764517in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=1.864517in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -478,7 +478,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -489,7 +489,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.771061in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.771061in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{5.771061in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -510,21 +510,21 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.827470in}{2.976534in}}% -\pgfpathlineto{\pgfqpoint{5.771061in}{2.976534in}}% +\pgfpathmoveto{\pgfqpoint{0.827470in}{3.176534in}}% +\pgfpathlineto{\pgfqpoint{5.771061in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.985182in, y=3.232667in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to execute `join evenOnePercent and oddOnePercent'}% +\pgftext[x=0.985182in, y=3.432667in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to execute `join evenOnePercent and oddOnePercent'}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.680265in, y=3.059867in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont query by evaluation method with 1000 tuples}% +\pgftext[x=1.680265in, y=3.259867in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont query by evaluation method with 1000 tuples}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -537,16 +537,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.145783in}{2.479034in}}% -\pgfpathlineto{\pgfqpoint{5.673838in}{2.479034in}}% -\pgfpathquadraticcurveto{\pgfqpoint{5.701616in}{2.479034in}}{\pgfqpoint{5.701616in}{2.506812in}}% -\pgfpathlineto{\pgfqpoint{5.701616in}{2.879311in}}% -\pgfpathquadraticcurveto{\pgfqpoint{5.701616in}{2.907089in}}{\pgfqpoint{5.673838in}{2.907089in}}% -\pgfpathlineto{\pgfqpoint{4.145783in}{2.907089in}}% -\pgfpathquadraticcurveto{\pgfqpoint{4.118005in}{2.907089in}}{\pgfqpoint{4.118005in}{2.879311in}}% -\pgfpathlineto{\pgfqpoint{4.118005in}{2.506812in}}% -\pgfpathquadraticcurveto{\pgfqpoint{4.118005in}{2.479034in}}{\pgfqpoint{4.145783in}{2.479034in}}% -\pgfpathlineto{\pgfqpoint{4.145783in}{2.479034in}}% +\pgfpathmoveto{\pgfqpoint{4.145783in}{2.679034in}}% +\pgfpathlineto{\pgfqpoint{5.673838in}{2.679034in}}% +\pgfpathquadraticcurveto{\pgfqpoint{5.701616in}{2.679034in}}{\pgfqpoint{5.701616in}{2.706812in}}% +\pgfpathlineto{\pgfqpoint{5.701616in}{3.079311in}}% +\pgfpathquadraticcurveto{\pgfqpoint{5.701616in}{3.107089in}}{\pgfqpoint{5.673838in}{3.107089in}}% +\pgfpathlineto{\pgfqpoint{4.145783in}{3.107089in}}% +\pgfpathquadraticcurveto{\pgfqpoint{4.118005in}{3.107089in}}{\pgfqpoint{4.118005in}{3.079311in}}% +\pgfpathlineto{\pgfqpoint{4.118005in}{2.706812in}}% +\pgfpathquadraticcurveto{\pgfqpoint{4.118005in}{2.679034in}}{\pgfqpoint{4.145783in}{2.679034in}}% +\pgfpathlineto{\pgfqpoint{4.145783in}{2.679034in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -554,7 +554,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=4.330019in,y=2.755145in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Evaluation method}% +\pgftext[x=4.330019in,y=2.955145in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Evaluation method}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -566,11 +566,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.173561in}{2.561534in}}% -\pgfpathlineto{\pgfqpoint{4.451338in}{2.561534in}}% -\pgfpathlineto{\pgfqpoint{4.451338in}{2.658756in}}% -\pgfpathlineto{\pgfqpoint{4.173561in}{2.658756in}}% -\pgfpathlineto{\pgfqpoint{4.173561in}{2.561534in}}% +\pgfpathmoveto{\pgfqpoint{4.173561in}{2.761534in}}% +\pgfpathlineto{\pgfqpoint{4.451338in}{2.761534in}}% +\pgfpathlineto{\pgfqpoint{4.451338in}{2.858756in}}% +\pgfpathlineto{\pgfqpoint{4.173561in}{2.858756in}}% +\pgfpathlineto{\pgfqpoint{4.173561in}{2.761534in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -578,7 +578,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=4.562449in,y=2.561534in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont nf}% +\pgftext[x=4.562449in,y=2.761534in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont nf}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -590,11 +590,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.959949in}{2.561534in}}% -\pgfpathlineto{\pgfqpoint{5.237727in}{2.561534in}}% -\pgfpathlineto{\pgfqpoint{5.237727in}{2.658756in}}% -\pgfpathlineto{\pgfqpoint{4.959949in}{2.658756in}}% -\pgfpathlineto{\pgfqpoint{4.959949in}{2.561534in}}% +\pgfpathmoveto{\pgfqpoint{4.959949in}{2.761534in}}% +\pgfpathlineto{\pgfqpoint{5.237727in}{2.761534in}}% +\pgfpathlineto{\pgfqpoint{5.237727in}{2.858756in}}% +\pgfpathlineto{\pgfqpoint{4.959949in}{2.858756in}}% +\pgfpathlineto{\pgfqpoint{4.959949in}{2.761534in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -602,7 +602,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=5.348838in,y=2.561534in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont whnf}% +\pgftext[x=5.348838in,y=2.761534in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont whnf}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/eval-method-join-onePercent-and-fiftyPercent-1000.pgf b/report/figures/eval-method-join-onePercent-and-fiftyPercent-1000.pgf index 24547163..2dfb57f4 100644 --- a/report/figures/eval-method-join-onePercent-and-fiftyPercent-1000.pgf +++ b/report/figures/eval-method-join-onePercent-and-fiftyPercent-1000.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,14 +57,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.771061in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.771061in}{2.976534in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{5.771061in}{3.176534in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.176534in}}% \pgfpathlineto{\pgfqpoint{0.827470in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.424034in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.624034in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -77,14 +77,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.052179in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{1.501596in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{1.501596in}{2.861103in}}% -\pgfpathlineto{\pgfqpoint{1.052179in}{2.861103in}}% +\pgfpathlineto{\pgfqpoint{1.501596in}{3.051580in}}% +\pgfpathlineto{\pgfqpoint{1.052179in}{3.051580in}}% \pgfpathlineto{\pgfqpoint{1.052179in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.424034in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.624034in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -97,14 +97,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{2.849848in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{3.299265in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{3.299265in}{1.553359in}}% -\pgfpathlineto{\pgfqpoint{2.849848in}{1.553359in}}% +\pgfpathlineto{\pgfqpoint{3.299265in}{1.635937in}}% +\pgfpathlineto{\pgfqpoint{2.849848in}{1.635937in}}% \pgfpathlineto{\pgfqpoint{2.849848in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.424034in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.624034in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -117,14 +117,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.647517in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.096935in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.096935in}{1.456684in}}% -\pgfpathlineto{\pgfqpoint{4.647517in}{1.456684in}}% +\pgfpathlineto{\pgfqpoint{5.096935in}{1.531286in}}% +\pgfpathlineto{\pgfqpoint{4.647517in}{1.531286in}}% \pgfpathlineto{\pgfqpoint{4.647517in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.424034in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.624034in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -137,14 +137,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.501596in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{1.951013in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{1.951013in}{0.816404in}}% -\pgfpathlineto{\pgfqpoint{1.501596in}{0.816404in}}% +\pgfpathlineto{\pgfqpoint{1.951013in}{0.838178in}}% +\pgfpathlineto{\pgfqpoint{1.501596in}{0.838178in}}% \pgfpathlineto{\pgfqpoint{1.501596in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.424034in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.624034in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -157,14 +157,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{3.299265in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{3.748683in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{3.748683in}{0.676835in}}% -\pgfpathlineto{\pgfqpoint{3.299265in}{0.676835in}}% +\pgfpathlineto{\pgfqpoint{3.748683in}{0.687093in}}% +\pgfpathlineto{\pgfqpoint{3.299265in}{0.687093in}}% \pgfpathlineto{\pgfqpoint{3.299265in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.424034in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.624034in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -177,8 +177,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.096935in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.546352in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.546352in}{0.840083in}}% -\pgfpathlineto{\pgfqpoint{5.096935in}{0.840083in}}% +\pgfpathlineto{\pgfqpoint{5.546352in}{0.863810in}}% +\pgfpathlineto{\pgfqpoint{5.096935in}{0.863810in}}% \pgfpathlineto{\pgfqpoint{5.096935in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% @@ -287,7 +287,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=0.504305in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.000}\)}% +\pgftext[x=0.344444in, y=0.504305in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0000}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -304,7 +304,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.139325in}% +\pgfsys@transformshift{0.827470in}{0.870121in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -312,7 +312,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.091131in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.005}\)}% +\pgftext[x=0.344444in, y=0.821927in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0025}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -329,7 +329,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.726151in}% +\pgfsys@transformshift{0.827470in}{1.187742in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -337,7 +337,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.677956in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.010}\)}% +\pgftext[x=0.344444in, y=1.139548in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0050}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -354,7 +354,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.312976in}% +\pgfsys@transformshift{0.827470in}{1.505364in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -362,7 +362,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.264782in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.015}\)}% +\pgftext[x=0.344444in, y=1.457169in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0075}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -379,7 +379,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.899802in}% +\pgfsys@transformshift{0.827470in}{1.822985in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -387,13 +387,113 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.851607in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.020}\)}% +\pgftext[x=0.344444in, y=1.774791in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0100}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{2.140607in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.092412in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0125}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{2.458228in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.410034in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0150}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{2.775849in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.727655in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0175}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{3.093471in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=3.045276in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0200}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.358333in,y=1.764517in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=1.864517in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -403,7 +503,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -414,7 +514,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.771061in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.771061in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{5.771061in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -435,21 +535,21 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.827470in}{2.976534in}}% -\pgfpathlineto{\pgfqpoint{5.771061in}{2.976534in}}% +\pgfpathmoveto{\pgfqpoint{0.827470in}{3.176534in}}% +\pgfpathlineto{\pgfqpoint{5.771061in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.302515in, y=3.232667in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to execute `join onePercent and fiftyPercent'}% +\pgftext[x=1.302515in, y=3.432667in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to execute `join onePercent and fiftyPercent'}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.680265in, y=3.059867in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont query by evaluation method with 1000 tuples}% +\pgftext[x=1.680265in, y=3.259867in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont query by evaluation method with 1000 tuples}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -462,16 +562,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.145783in}{2.479034in}}% -\pgfpathlineto{\pgfqpoint{5.673838in}{2.479034in}}% -\pgfpathquadraticcurveto{\pgfqpoint{5.701616in}{2.479034in}}{\pgfqpoint{5.701616in}{2.506812in}}% -\pgfpathlineto{\pgfqpoint{5.701616in}{2.879311in}}% -\pgfpathquadraticcurveto{\pgfqpoint{5.701616in}{2.907089in}}{\pgfqpoint{5.673838in}{2.907089in}}% -\pgfpathlineto{\pgfqpoint{4.145783in}{2.907089in}}% -\pgfpathquadraticcurveto{\pgfqpoint{4.118005in}{2.907089in}}{\pgfqpoint{4.118005in}{2.879311in}}% -\pgfpathlineto{\pgfqpoint{4.118005in}{2.506812in}}% -\pgfpathquadraticcurveto{\pgfqpoint{4.118005in}{2.479034in}}{\pgfqpoint{4.145783in}{2.479034in}}% -\pgfpathlineto{\pgfqpoint{4.145783in}{2.479034in}}% +\pgfpathmoveto{\pgfqpoint{4.145783in}{2.679034in}}% +\pgfpathlineto{\pgfqpoint{5.673838in}{2.679034in}}% +\pgfpathquadraticcurveto{\pgfqpoint{5.701616in}{2.679034in}}{\pgfqpoint{5.701616in}{2.706812in}}% +\pgfpathlineto{\pgfqpoint{5.701616in}{3.079311in}}% +\pgfpathquadraticcurveto{\pgfqpoint{5.701616in}{3.107089in}}{\pgfqpoint{5.673838in}{3.107089in}}% +\pgfpathlineto{\pgfqpoint{4.145783in}{3.107089in}}% +\pgfpathquadraticcurveto{\pgfqpoint{4.118005in}{3.107089in}}{\pgfqpoint{4.118005in}{3.079311in}}% +\pgfpathlineto{\pgfqpoint{4.118005in}{2.706812in}}% +\pgfpathquadraticcurveto{\pgfqpoint{4.118005in}{2.679034in}}{\pgfqpoint{4.145783in}{2.679034in}}% +\pgfpathlineto{\pgfqpoint{4.145783in}{2.679034in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -479,7 +579,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=4.330019in,y=2.755145in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Evaluation method}% +\pgftext[x=4.330019in,y=2.955145in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Evaluation method}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -491,11 +591,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.173561in}{2.561534in}}% -\pgfpathlineto{\pgfqpoint{4.451338in}{2.561534in}}% -\pgfpathlineto{\pgfqpoint{4.451338in}{2.658756in}}% -\pgfpathlineto{\pgfqpoint{4.173561in}{2.658756in}}% -\pgfpathlineto{\pgfqpoint{4.173561in}{2.561534in}}% +\pgfpathmoveto{\pgfqpoint{4.173561in}{2.761534in}}% +\pgfpathlineto{\pgfqpoint{4.451338in}{2.761534in}}% +\pgfpathlineto{\pgfqpoint{4.451338in}{2.858756in}}% +\pgfpathlineto{\pgfqpoint{4.173561in}{2.858756in}}% +\pgfpathlineto{\pgfqpoint{4.173561in}{2.761534in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -503,7 +603,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=4.562449in,y=2.561534in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont nf}% +\pgftext[x=4.562449in,y=2.761534in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont nf}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -515,11 +615,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.959949in}{2.561534in}}% -\pgfpathlineto{\pgfqpoint{5.237727in}{2.561534in}}% -\pgfpathlineto{\pgfqpoint{5.237727in}{2.658756in}}% -\pgfpathlineto{\pgfqpoint{4.959949in}{2.658756in}}% -\pgfpathlineto{\pgfqpoint{4.959949in}{2.561534in}}% +\pgfpathmoveto{\pgfqpoint{4.959949in}{2.761534in}}% +\pgfpathlineto{\pgfqpoint{5.237727in}{2.761534in}}% +\pgfpathlineto{\pgfqpoint{5.237727in}{2.858756in}}% +\pgfpathlineto{\pgfqpoint{4.959949in}{2.858756in}}% +\pgfpathlineto{\pgfqpoint{4.959949in}{2.761534in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -527,7 +627,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=5.348838in,y=2.561534in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont whnf}% +\pgftext[x=5.348838in,y=2.761534in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont whnf}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/eval-method-join-onePercent-and-onePercent-1000.pgf b/report/figures/eval-method-join-onePercent-and-onePercent-1000.pgf index cb6c8819..2b2a7f85 100644 --- a/report/figures/eval-method-join-onePercent-and-onePercent-1000.pgf +++ b/report/figures/eval-method-join-onePercent-and-onePercent-1000.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,14 +57,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.771061in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.771061in}{2.978200in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{5.771061in}{3.178200in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.178200in}}% \pgfpathlineto{\pgfqpoint{0.827470in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.425701in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.625701in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -77,14 +77,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.052179in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{1.501596in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{1.501596in}{2.862691in}}% -\pgfpathlineto{\pgfqpoint{1.052179in}{2.862691in}}% +\pgfpathlineto{\pgfqpoint{1.501596in}{3.053167in}}% +\pgfpathlineto{\pgfqpoint{1.052179in}{3.053167in}}% \pgfpathlineto{\pgfqpoint{1.052179in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.425701in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.625701in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -97,14 +97,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{2.849848in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{3.299265in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{3.299265in}{1.677867in}}% -\pgfpathlineto{\pgfqpoint{2.849848in}{1.677867in}}% +\pgfpathlineto{\pgfqpoint{3.299265in}{1.770655in}}% +\pgfpathlineto{\pgfqpoint{2.849848in}{1.770655in}}% \pgfpathlineto{\pgfqpoint{2.849848in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.425701in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.625701in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -117,14 +117,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.647517in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.096935in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.096935in}{1.159025in}}% -\pgfpathlineto{\pgfqpoint{4.647517in}{1.159025in}}% +\pgfpathlineto{\pgfqpoint{5.096935in}{1.209033in}}% +\pgfpathlineto{\pgfqpoint{4.647517in}{1.209033in}}% \pgfpathlineto{\pgfqpoint{4.647517in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.425701in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.625701in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -144,7 +144,7 @@ \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.425701in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.625701in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -164,7 +164,7 @@ \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.425701in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.625701in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -177,8 +177,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.096935in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.546352in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.546352in}{0.892772in}}% -\pgfpathlineto{\pgfqpoint{5.096935in}{0.892772in}}% +\pgfpathlineto{\pgfqpoint{5.546352in}{0.920827in}}% +\pgfpathlineto{\pgfqpoint{5.096935in}{0.920827in}}% \pgfpathlineto{\pgfqpoint{5.096935in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% @@ -304,7 +304,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{0.884204in}% +\pgfsys@transformshift{0.827470in}{0.911553in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -312,7 +312,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=0.836010in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0025}\)}% +\pgftext[x=0.344444in, y=0.863359in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0025}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -329,7 +329,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.215909in}% +\pgfsys@transformshift{0.827470in}{1.270607in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -337,7 +337,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.167714in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0050}\)}% +\pgftext[x=0.344444in, y=1.222413in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0050}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -354,7 +354,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.547613in}% +\pgfsys@transformshift{0.827470in}{1.629661in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -362,7 +362,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.499419in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0075}\)}% +\pgftext[x=0.344444in, y=1.581466in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0075}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -379,7 +379,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.879318in}% +\pgfsys@transformshift{0.827470in}{1.988714in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -387,7 +387,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.831123in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0100}\)}% +\pgftext[x=0.344444in, y=1.940520in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0100}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -404,7 +404,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.211022in}% +\pgfsys@transformshift{0.827470in}{2.347768in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -412,7 +412,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.162828in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0125}\)}% +\pgftext[x=0.344444in, y=2.299573in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0125}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -429,7 +429,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.542726in}% +\pgfsys@transformshift{0.827470in}{2.706821in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -437,7 +437,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.494532in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0150}\)}% +\pgftext[x=0.344444in, y=2.658627in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0150}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -454,7 +454,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.874431in}% +\pgfsys@transformshift{0.827470in}{3.065875in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -462,13 +462,13 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.826236in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0175}\)}% +\pgftext[x=0.344444in, y=3.017681in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0175}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.288889in,y=1.765350in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=1.865350in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -478,7 +478,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -489,7 +489,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.771061in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.771061in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{5.771061in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -510,21 +510,21 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.827470in}{2.978200in}}% -\pgfpathlineto{\pgfqpoint{5.771061in}{2.978200in}}% +\pgfpathmoveto{\pgfqpoint{0.827470in}{3.178200in}}% +\pgfpathlineto{\pgfqpoint{5.771061in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.322932in, y=3.234333in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to execute `join onePercent and onePercent'}% +\pgftext[x=1.322932in, y=3.434333in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to execute `join onePercent and onePercent'}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.680265in, y=3.061534in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont query by evaluation method with 1000 tuples}% +\pgftext[x=1.680265in, y=3.261534in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont query by evaluation method with 1000 tuples}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -537,16 +537,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.145783in}{2.480701in}}% -\pgfpathlineto{\pgfqpoint{5.673838in}{2.480701in}}% -\pgfpathquadraticcurveto{\pgfqpoint{5.701616in}{2.480701in}}{\pgfqpoint{5.701616in}{2.508478in}}% -\pgfpathlineto{\pgfqpoint{5.701616in}{2.880978in}}% -\pgfpathquadraticcurveto{\pgfqpoint{5.701616in}{2.908756in}}{\pgfqpoint{5.673838in}{2.908756in}}% -\pgfpathlineto{\pgfqpoint{4.145783in}{2.908756in}}% -\pgfpathquadraticcurveto{\pgfqpoint{4.118005in}{2.908756in}}{\pgfqpoint{4.118005in}{2.880978in}}% -\pgfpathlineto{\pgfqpoint{4.118005in}{2.508478in}}% -\pgfpathquadraticcurveto{\pgfqpoint{4.118005in}{2.480701in}}{\pgfqpoint{4.145783in}{2.480701in}}% -\pgfpathlineto{\pgfqpoint{4.145783in}{2.480701in}}% +\pgfpathmoveto{\pgfqpoint{4.145783in}{2.680701in}}% +\pgfpathlineto{\pgfqpoint{5.673838in}{2.680701in}}% +\pgfpathquadraticcurveto{\pgfqpoint{5.701616in}{2.680701in}}{\pgfqpoint{5.701616in}{2.708478in}}% +\pgfpathlineto{\pgfqpoint{5.701616in}{3.080978in}}% +\pgfpathquadraticcurveto{\pgfqpoint{5.701616in}{3.108756in}}{\pgfqpoint{5.673838in}{3.108756in}}% +\pgfpathlineto{\pgfqpoint{4.145783in}{3.108756in}}% +\pgfpathquadraticcurveto{\pgfqpoint{4.118005in}{3.108756in}}{\pgfqpoint{4.118005in}{3.080978in}}% +\pgfpathlineto{\pgfqpoint{4.118005in}{2.708478in}}% +\pgfpathquadraticcurveto{\pgfqpoint{4.118005in}{2.680701in}}{\pgfqpoint{4.145783in}{2.680701in}}% +\pgfpathlineto{\pgfqpoint{4.145783in}{2.680701in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -554,7 +554,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=4.330019in,y=2.756811in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Evaluation method}% +\pgftext[x=4.330019in,y=2.956811in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Evaluation method}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -566,11 +566,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.173561in}{2.563200in}}% -\pgfpathlineto{\pgfqpoint{4.451338in}{2.563200in}}% -\pgfpathlineto{\pgfqpoint{4.451338in}{2.660423in}}% -\pgfpathlineto{\pgfqpoint{4.173561in}{2.660423in}}% -\pgfpathlineto{\pgfqpoint{4.173561in}{2.563200in}}% +\pgfpathmoveto{\pgfqpoint{4.173561in}{2.763200in}}% +\pgfpathlineto{\pgfqpoint{4.451338in}{2.763200in}}% +\pgfpathlineto{\pgfqpoint{4.451338in}{2.860423in}}% +\pgfpathlineto{\pgfqpoint{4.173561in}{2.860423in}}% +\pgfpathlineto{\pgfqpoint{4.173561in}{2.763200in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -578,7 +578,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=4.562449in,y=2.563200in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont nf}% +\pgftext[x=4.562449in,y=2.763200in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont nf}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -590,11 +590,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.959949in}{2.563200in}}% -\pgfpathlineto{\pgfqpoint{5.237727in}{2.563200in}}% -\pgfpathlineto{\pgfqpoint{5.237727in}{2.660423in}}% -\pgfpathlineto{\pgfqpoint{4.959949in}{2.660423in}}% -\pgfpathlineto{\pgfqpoint{4.959949in}{2.563200in}}% +\pgfpathmoveto{\pgfqpoint{4.959949in}{2.763200in}}% +\pgfpathlineto{\pgfqpoint{5.237727in}{2.763200in}}% +\pgfpathlineto{\pgfqpoint{5.237727in}{2.860423in}}% +\pgfpathlineto{\pgfqpoint{4.959949in}{2.860423in}}% +\pgfpathlineto{\pgfqpoint{4.959949in}{2.763200in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -602,7 +602,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=5.348838in,y=2.563200in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont whnf}% +\pgftext[x=5.348838in,y=2.763200in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont whnf}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/eval-method-join-onePercent-and-twentyPercent-1000.pgf b/report/figures/eval-method-join-onePercent-and-twentyPercent-1000.pgf index 28c20d62..46c4063a 100644 --- a/report/figures/eval-method-join-onePercent-and-twentyPercent-1000.pgf +++ b/report/figures/eval-method-join-onePercent-and-twentyPercent-1000.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,14 +57,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.771061in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.771061in}{2.978200in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{5.771061in}{3.178200in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.178200in}}% \pgfpathlineto{\pgfqpoint{0.827470in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.425701in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.625701in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -77,14 +77,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.052179in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{1.501596in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{1.501596in}{2.862691in}}% -\pgfpathlineto{\pgfqpoint{1.052179in}{2.862691in}}% +\pgfpathlineto{\pgfqpoint{1.501596in}{3.053167in}}% +\pgfpathlineto{\pgfqpoint{1.052179in}{3.053167in}}% \pgfpathlineto{\pgfqpoint{1.052179in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.425701in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.625701in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -97,14 +97,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{2.849848in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{3.299265in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{3.299265in}{1.557680in}}% -\pgfpathlineto{\pgfqpoint{2.849848in}{1.557680in}}% +\pgfpathlineto{\pgfqpoint{3.299265in}{1.640557in}}% +\pgfpathlineto{\pgfqpoint{2.849848in}{1.640557in}}% \pgfpathlineto{\pgfqpoint{2.849848in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.425701in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.625701in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -117,14 +117,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.647517in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.096935in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.096935in}{1.363129in}}% -\pgfpathlineto{\pgfqpoint{4.647517in}{1.363129in}}% +\pgfpathlineto{\pgfqpoint{5.096935in}{1.429965in}}% +\pgfpathlineto{\pgfqpoint{4.647517in}{1.429965in}}% \pgfpathlineto{\pgfqpoint{4.647517in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.425701in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.625701in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -137,14 +137,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.501596in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{1.951013in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{1.951013in}{0.603786in}}% -\pgfpathlineto{\pgfqpoint{1.501596in}{0.603786in}}% +\pgfpathlineto{\pgfqpoint{1.951013in}{0.608015in}}% +\pgfpathlineto{\pgfqpoint{1.501596in}{0.608015in}}% \pgfpathlineto{\pgfqpoint{1.501596in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.425701in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.625701in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -157,14 +157,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{3.299265in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{3.748683in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{3.748683in}{0.576337in}}% -\pgfpathlineto{\pgfqpoint{3.299265in}{0.576337in}}% +\pgfpathlineto{\pgfqpoint{3.748683in}{0.578302in}}% +\pgfpathlineto{\pgfqpoint{3.299265in}{0.578302in}}% \pgfpathlineto{\pgfqpoint{3.299265in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.425701in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.625701in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -177,8 +177,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.096935in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.546352in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.546352in}{0.845352in}}% -\pgfpathlineto{\pgfqpoint{5.096935in}{0.845352in}}% +\pgfpathlineto{\pgfqpoint{5.546352in}{0.869497in}}% +\pgfpathlineto{\pgfqpoint{5.096935in}{0.869497in}}% \pgfpathlineto{\pgfqpoint{5.096935in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% @@ -287,7 +287,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=0.504305in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.000}\)}% +\pgftext[x=0.344444in, y=0.504305in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0000}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -304,7 +304,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.143487in}% +\pgfsys@transformshift{0.827470in}{0.872357in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -312,7 +312,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.095293in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.005}\)}% +\pgftext[x=0.344444in, y=0.824162in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0025}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -329,7 +329,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.734474in}% +\pgfsys@transformshift{0.827470in}{1.192214in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -337,7 +337,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.686280in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.010}\)}% +\pgftext[x=0.344444in, y=1.144020in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0050}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -354,7 +354,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.325461in}% +\pgfsys@transformshift{0.827470in}{1.512071in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -362,7 +362,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.277267in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.015}\)}% +\pgftext[x=0.344444in, y=1.463877in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0075}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -379,7 +379,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.916449in}% +\pgfsys@transformshift{0.827470in}{1.831929in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -387,13 +387,113 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.868254in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.020}\)}% +\pgftext[x=0.344444in, y=1.783734in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0100}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{2.151786in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.103591in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0125}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{2.471643in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.423448in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0150}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{2.791500in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.743306in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0175}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{3.111357in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=3.063163in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0200}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.358333in,y=1.765350in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=1.865350in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -403,7 +503,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -414,7 +514,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.771061in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.771061in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{5.771061in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -435,21 +535,21 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.827470in}{2.978200in}}% -\pgfpathlineto{\pgfqpoint{5.771061in}{2.978200in}}% +\pgfpathmoveto{\pgfqpoint{0.827470in}{3.178200in}}% +\pgfpathlineto{\pgfqpoint{5.771061in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.207265in, y=3.234333in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to execute `join onePercent and twentyPercent'}% +\pgftext[x=1.207265in, y=3.434333in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to execute `join onePercent and twentyPercent'}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.680265in, y=3.061534in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont query by evaluation method with 1000 tuples}% +\pgftext[x=1.680265in, y=3.261534in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont query by evaluation method with 1000 tuples}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -462,16 +562,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.145783in}{2.480701in}}% -\pgfpathlineto{\pgfqpoint{5.673838in}{2.480701in}}% -\pgfpathquadraticcurveto{\pgfqpoint{5.701616in}{2.480701in}}{\pgfqpoint{5.701616in}{2.508478in}}% -\pgfpathlineto{\pgfqpoint{5.701616in}{2.880978in}}% -\pgfpathquadraticcurveto{\pgfqpoint{5.701616in}{2.908756in}}{\pgfqpoint{5.673838in}{2.908756in}}% -\pgfpathlineto{\pgfqpoint{4.145783in}{2.908756in}}% -\pgfpathquadraticcurveto{\pgfqpoint{4.118005in}{2.908756in}}{\pgfqpoint{4.118005in}{2.880978in}}% -\pgfpathlineto{\pgfqpoint{4.118005in}{2.508478in}}% -\pgfpathquadraticcurveto{\pgfqpoint{4.118005in}{2.480701in}}{\pgfqpoint{4.145783in}{2.480701in}}% -\pgfpathlineto{\pgfqpoint{4.145783in}{2.480701in}}% +\pgfpathmoveto{\pgfqpoint{4.145783in}{2.680701in}}% +\pgfpathlineto{\pgfqpoint{5.673838in}{2.680701in}}% +\pgfpathquadraticcurveto{\pgfqpoint{5.701616in}{2.680701in}}{\pgfqpoint{5.701616in}{2.708478in}}% +\pgfpathlineto{\pgfqpoint{5.701616in}{3.080978in}}% +\pgfpathquadraticcurveto{\pgfqpoint{5.701616in}{3.108756in}}{\pgfqpoint{5.673838in}{3.108756in}}% +\pgfpathlineto{\pgfqpoint{4.145783in}{3.108756in}}% +\pgfpathquadraticcurveto{\pgfqpoint{4.118005in}{3.108756in}}{\pgfqpoint{4.118005in}{3.080978in}}% +\pgfpathlineto{\pgfqpoint{4.118005in}{2.708478in}}% +\pgfpathquadraticcurveto{\pgfqpoint{4.118005in}{2.680701in}}{\pgfqpoint{4.145783in}{2.680701in}}% +\pgfpathlineto{\pgfqpoint{4.145783in}{2.680701in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -479,7 +579,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=4.330019in,y=2.756811in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Evaluation method}% +\pgftext[x=4.330019in,y=2.956811in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Evaluation method}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -491,11 +591,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.173561in}{2.563200in}}% -\pgfpathlineto{\pgfqpoint{4.451338in}{2.563200in}}% -\pgfpathlineto{\pgfqpoint{4.451338in}{2.660423in}}% -\pgfpathlineto{\pgfqpoint{4.173561in}{2.660423in}}% -\pgfpathlineto{\pgfqpoint{4.173561in}{2.563200in}}% +\pgfpathmoveto{\pgfqpoint{4.173561in}{2.763200in}}% +\pgfpathlineto{\pgfqpoint{4.451338in}{2.763200in}}% +\pgfpathlineto{\pgfqpoint{4.451338in}{2.860423in}}% +\pgfpathlineto{\pgfqpoint{4.173561in}{2.860423in}}% +\pgfpathlineto{\pgfqpoint{4.173561in}{2.763200in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -503,7 +603,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=4.562449in,y=2.563200in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont nf}% +\pgftext[x=4.562449in,y=2.763200in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont nf}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -515,11 +615,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.959949in}{2.563200in}}% -\pgfpathlineto{\pgfqpoint{5.237727in}{2.563200in}}% -\pgfpathlineto{\pgfqpoint{5.237727in}{2.660423in}}% -\pgfpathlineto{\pgfqpoint{4.959949in}{2.660423in}}% -\pgfpathlineto{\pgfqpoint{4.959949in}{2.563200in}}% +\pgfpathmoveto{\pgfqpoint{4.959949in}{2.763200in}}% +\pgfpathlineto{\pgfqpoint{5.237727in}{2.763200in}}% +\pgfpathlineto{\pgfqpoint{5.237727in}{2.860423in}}% +\pgfpathlineto{\pgfqpoint{4.959949in}{2.860423in}}% +\pgfpathlineto{\pgfqpoint{4.959949in}{2.763200in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -527,7 +627,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=5.348838in,y=2.563200in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont whnf}% +\pgftext[x=5.348838in,y=2.763200in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont whnf}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/eval-method-join-twentyPercent-and-onePercent-1000.pgf b/report/figures/eval-method-join-twentyPercent-and-onePercent-1000.pgf index 10ccac9e..baafe2d2 100644 --- a/report/figures/eval-method-join-twentyPercent-and-onePercent-1000.pgf +++ b/report/figures/eval-method-join-twentyPercent-and-onePercent-1000.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,14 +57,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.771061in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.771061in}{2.978200in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{5.771061in}{3.178200in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.178200in}}% \pgfpathlineto{\pgfqpoint{0.827470in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.425701in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.625701in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -77,14 +77,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.052179in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{1.501596in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{1.501596in}{2.862691in}}% -\pgfpathlineto{\pgfqpoint{1.052179in}{2.862691in}}% +\pgfpathlineto{\pgfqpoint{1.501596in}{3.053167in}}% +\pgfpathlineto{\pgfqpoint{1.052179in}{3.053167in}}% \pgfpathlineto{\pgfqpoint{1.052179in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.425701in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.625701in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -97,14 +97,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{2.849848in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{3.299265in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{3.299265in}{1.570311in}}% -\pgfpathlineto{\pgfqpoint{2.849848in}{1.570311in}}% +\pgfpathlineto{\pgfqpoint{3.299265in}{1.654230in}}% +\pgfpathlineto{\pgfqpoint{2.849848in}{1.654230in}}% \pgfpathlineto{\pgfqpoint{2.849848in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.425701in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.625701in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -117,14 +117,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.647517in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.096935in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.096935in}{1.358159in}}% -\pgfpathlineto{\pgfqpoint{4.647517in}{1.358159in}}% +\pgfpathlineto{\pgfqpoint{5.096935in}{1.424586in}}% +\pgfpathlineto{\pgfqpoint{4.647517in}{1.424586in}}% \pgfpathlineto{\pgfqpoint{4.647517in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.425701in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.625701in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -137,14 +137,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.501596in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{1.951013in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{1.951013in}{0.552708in}}% -\pgfpathlineto{\pgfqpoint{1.501596in}{0.552708in}}% +\pgfpathlineto{\pgfqpoint{1.951013in}{0.552726in}}% +\pgfpathlineto{\pgfqpoint{1.501596in}{0.552726in}}% \pgfpathlineto{\pgfqpoint{1.501596in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.425701in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.625701in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -157,14 +157,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{3.299265in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{3.748683in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{3.748683in}{0.552590in}}% -\pgfpathlineto{\pgfqpoint{3.299265in}{0.552590in}}% +\pgfpathlineto{\pgfqpoint{3.748683in}{0.552598in}}% +\pgfpathlineto{\pgfqpoint{3.299265in}{0.552598in}}% \pgfpathlineto{\pgfqpoint{3.299265in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.425701in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{4.943591in}{2.625701in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -177,8 +177,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.096935in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.546352in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.546352in}{0.849692in}}% -\pgfpathlineto{\pgfqpoint{5.096935in}{0.849692in}}% +\pgfpathlineto{\pgfqpoint{5.546352in}{0.874196in}}% +\pgfpathlineto{\pgfqpoint{5.096935in}{0.874196in}}% \pgfpathlineto{\pgfqpoint{5.096935in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% @@ -287,7 +287,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=0.504305in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.000}\)}% +\pgftext[x=0.344444in, y=0.504305in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0000}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -304,7 +304,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.151206in}% +\pgfsys@transformshift{0.827470in}{0.876535in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -312,7 +312,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.103012in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.005}\)}% +\pgftext[x=0.344444in, y=0.828340in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0025}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -329,7 +329,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.749913in}% +\pgfsys@transformshift{0.827470in}{1.200570in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -337,7 +337,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.701719in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.010}\)}% +\pgftext[x=0.344444in, y=1.152376in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0050}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -354,7 +354,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.348620in}% +\pgfsys@transformshift{0.827470in}{1.524605in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -362,7 +362,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.300425in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.015}\)}% +\pgftext[x=0.344444in, y=1.476411in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0075}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -379,7 +379,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.947326in}% +\pgfsys@transformshift{0.827470in}{1.848640in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -387,13 +387,113 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.899132in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.020}\)}% +\pgftext[x=0.344444in, y=1.800446in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0100}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{2.172675in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.124481in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0125}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{2.496711in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.448516in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0150}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{2.820746in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.772551in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0175}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{3.144781in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=3.096586in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0200}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.358333in,y=1.765350in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=1.865350in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -403,7 +503,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -414,7 +514,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.771061in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.771061in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{5.771061in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -435,21 +535,21 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.827470in}{2.978200in}}% -\pgfpathlineto{\pgfqpoint{5.771061in}{2.978200in}}% +\pgfpathmoveto{\pgfqpoint{0.827470in}{3.178200in}}% +\pgfpathlineto{\pgfqpoint{5.771061in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.207265in, y=3.234333in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to execute `join twentyPercent and onePercent'}% +\pgftext[x=1.207265in, y=3.434333in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to execute `join twentyPercent and onePercent'}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.680265in, y=3.061534in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont query by evaluation method with 1000 tuples}% +\pgftext[x=1.680265in, y=3.261534in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont query by evaluation method with 1000 tuples}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -462,16 +562,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.145783in}{2.480701in}}% -\pgfpathlineto{\pgfqpoint{5.673838in}{2.480701in}}% -\pgfpathquadraticcurveto{\pgfqpoint{5.701616in}{2.480701in}}{\pgfqpoint{5.701616in}{2.508478in}}% -\pgfpathlineto{\pgfqpoint{5.701616in}{2.880978in}}% -\pgfpathquadraticcurveto{\pgfqpoint{5.701616in}{2.908756in}}{\pgfqpoint{5.673838in}{2.908756in}}% -\pgfpathlineto{\pgfqpoint{4.145783in}{2.908756in}}% -\pgfpathquadraticcurveto{\pgfqpoint{4.118005in}{2.908756in}}{\pgfqpoint{4.118005in}{2.880978in}}% -\pgfpathlineto{\pgfqpoint{4.118005in}{2.508478in}}% -\pgfpathquadraticcurveto{\pgfqpoint{4.118005in}{2.480701in}}{\pgfqpoint{4.145783in}{2.480701in}}% -\pgfpathlineto{\pgfqpoint{4.145783in}{2.480701in}}% +\pgfpathmoveto{\pgfqpoint{4.145783in}{2.680701in}}% +\pgfpathlineto{\pgfqpoint{5.673838in}{2.680701in}}% +\pgfpathquadraticcurveto{\pgfqpoint{5.701616in}{2.680701in}}{\pgfqpoint{5.701616in}{2.708478in}}% +\pgfpathlineto{\pgfqpoint{5.701616in}{3.080978in}}% +\pgfpathquadraticcurveto{\pgfqpoint{5.701616in}{3.108756in}}{\pgfqpoint{5.673838in}{3.108756in}}% +\pgfpathlineto{\pgfqpoint{4.145783in}{3.108756in}}% +\pgfpathquadraticcurveto{\pgfqpoint{4.118005in}{3.108756in}}{\pgfqpoint{4.118005in}{3.080978in}}% +\pgfpathlineto{\pgfqpoint{4.118005in}{2.708478in}}% +\pgfpathquadraticcurveto{\pgfqpoint{4.118005in}{2.680701in}}{\pgfqpoint{4.145783in}{2.680701in}}% +\pgfpathlineto{\pgfqpoint{4.145783in}{2.680701in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -479,7 +579,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=4.330019in,y=2.756811in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Evaluation method}% +\pgftext[x=4.330019in,y=2.956811in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Evaluation method}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -491,11 +591,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.173561in}{2.563200in}}% -\pgfpathlineto{\pgfqpoint{4.451338in}{2.563200in}}% -\pgfpathlineto{\pgfqpoint{4.451338in}{2.660423in}}% -\pgfpathlineto{\pgfqpoint{4.173561in}{2.660423in}}% -\pgfpathlineto{\pgfqpoint{4.173561in}{2.563200in}}% +\pgfpathmoveto{\pgfqpoint{4.173561in}{2.763200in}}% +\pgfpathlineto{\pgfqpoint{4.451338in}{2.763200in}}% +\pgfpathlineto{\pgfqpoint{4.451338in}{2.860423in}}% +\pgfpathlineto{\pgfqpoint{4.173561in}{2.860423in}}% +\pgfpathlineto{\pgfqpoint{4.173561in}{2.763200in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -503,7 +603,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=4.562449in,y=2.563200in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont nf}% +\pgftext[x=4.562449in,y=2.763200in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont nf}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -515,11 +615,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.959949in}{2.563200in}}% -\pgfpathlineto{\pgfqpoint{5.237727in}{2.563200in}}% -\pgfpathlineto{\pgfqpoint{5.237727in}{2.660423in}}% -\pgfpathlineto{\pgfqpoint{4.959949in}{2.660423in}}% -\pgfpathlineto{\pgfqpoint{4.959949in}{2.563200in}}% +\pgfpathmoveto{\pgfqpoint{4.959949in}{2.763200in}}% +\pgfpathlineto{\pgfqpoint{5.237727in}{2.763200in}}% +\pgfpathlineto{\pgfqpoint{5.237727in}{2.860423in}}% +\pgfpathlineto{\pgfqpoint{4.959949in}{2.860423in}}% +\pgfpathlineto{\pgfqpoint{4.959949in}{2.763200in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -527,7 +627,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=5.348838in,y=2.563200in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont whnf}% +\pgftext[x=5.348838in,y=2.763200in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont whnf}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/indexed-equijoin-query-comparison.pgf b/report/figures/indexed-equijoin-query-comparison.pgf index 558bc37f..baafdfd3 100644 --- a/report/figures/indexed-equijoin-query-comparison.pgf +++ b/report/figures/indexed-equijoin-query-comparison.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,8 +57,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.549444in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.976534in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.176534in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.176534in}}% \pgfpathlineto{\pgfqpoint{0.688581in}{0.549444in}}% \pgfpathclose% \pgfusepath{fill}% @@ -234,7 +234,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{0.639993in}% +\pgfsys@transformshift{0.688581in}{0.647454in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -242,7 +242,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=0.591798in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% +\pgftext[x=0.344444in, y=0.599260in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -259,7 +259,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{0.950709in}% +\pgfsys@transformshift{0.688581in}{0.983775in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -267,7 +267,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=0.902515in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.05}\)}% +\pgftext[x=0.344444in, y=0.935581in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.05}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -284,7 +284,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.261426in}% +\pgfsys@transformshift{0.688581in}{1.320096in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -292,7 +292,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.213232in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.10}\)}% +\pgftext[x=0.344444in, y=1.271901in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.10}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -309,7 +309,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.572143in}% +\pgfsys@transformshift{0.688581in}{1.656416in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -317,7 +317,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.523948in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.15}\)}% +\pgftext[x=0.344444in, y=1.608222in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.15}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -334,7 +334,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.882859in}% +\pgfsys@transformshift{0.688581in}{1.992737in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -342,7 +342,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.834665in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.20}\)}% +\pgftext[x=0.344444in, y=1.944542in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.20}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -359,7 +359,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.193576in}% +\pgfsys@transformshift{0.688581in}{2.329057in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -367,7 +367,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.145381in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.25}\)}% +\pgftext[x=0.344444in, y=2.280863in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.25}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -384,7 +384,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.504292in}% +\pgfsys@transformshift{0.688581in}{2.665378in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -392,7 +392,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.456098in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.30}\)}% +\pgftext[x=0.344444in, y=2.617184in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.30}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -409,7 +409,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.815009in}% +\pgfsys@transformshift{0.688581in}{3.001699in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -417,16 +417,16 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.766814in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.35}\)}% +\pgftext[x=0.344444in, y=2.953504in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.35}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.288889in,y=1.762989in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=1.862989in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -434,27 +434,27 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.659790in}}% -\pgfpathlineto{\pgfqpoint{0.930236in}{0.659928in}}% -\pgfpathlineto{\pgfqpoint{0.941978in}{0.660055in}}% -\pgfpathlineto{\pgfqpoint{0.965463in}{0.660324in}}% -\pgfpathlineto{\pgfqpoint{1.035916in}{0.660894in}}% -\pgfpathlineto{\pgfqpoint{1.153339in}{0.662419in}}% -\pgfpathlineto{\pgfqpoint{1.270761in}{0.663821in}}% -\pgfpathlineto{\pgfqpoint{1.388183in}{0.668400in}}% -\pgfpathlineto{\pgfqpoint{1.857873in}{0.689076in}}% -\pgfpathlineto{\pgfqpoint{2.327563in}{0.708591in}}% -\pgfpathlineto{\pgfqpoint{2.797252in}{0.740193in}}% -\pgfpathlineto{\pgfqpoint{3.266942in}{0.790152in}}% -\pgfpathlineto{\pgfqpoint{3.736632in}{0.838244in}}% -\pgfpathlineto{\pgfqpoint{4.206321in}{0.917742in}}% -\pgfpathlineto{\pgfqpoint{4.676011in}{0.982629in}}% -\pgfpathlineto{\pgfqpoint{5.145700in}{1.062954in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{1.171349in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.668883in}}% +\pgfpathlineto{\pgfqpoint{0.930236in}{0.669033in}}% +\pgfpathlineto{\pgfqpoint{0.941978in}{0.669169in}}% +\pgfpathlineto{\pgfqpoint{0.965463in}{0.669461in}}% +\pgfpathlineto{\pgfqpoint{1.035916in}{0.670078in}}% +\pgfpathlineto{\pgfqpoint{1.153339in}{0.671728in}}% +\pgfpathlineto{\pgfqpoint{1.270761in}{0.673246in}}% +\pgfpathlineto{\pgfqpoint{1.388183in}{0.678203in}}% +\pgfpathlineto{\pgfqpoint{1.857873in}{0.700582in}}% +\pgfpathlineto{\pgfqpoint{2.327563in}{0.721706in}}% +\pgfpathlineto{\pgfqpoint{2.797252in}{0.755911in}}% +\pgfpathlineto{\pgfqpoint{3.266942in}{0.809987in}}% +\pgfpathlineto{\pgfqpoint{3.736632in}{0.862042in}}% +\pgfpathlineto{\pgfqpoint{4.206321in}{0.948091in}}% +\pgfpathlineto{\pgfqpoint{4.676011in}{1.018324in}}% +\pgfpathlineto{\pgfqpoint{5.145700in}{1.105269in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{1.222595in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -479,76 +479,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.923191in}{0.659790in}% +\pgfsys@transformshift{0.923191in}{0.668883in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.930236in}{0.659928in}% +\pgfsys@transformshift{0.930236in}{0.669033in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.941978in}{0.660055in}% +\pgfsys@transformshift{0.941978in}{0.669169in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.965463in}{0.660324in}% +\pgfsys@transformshift{0.965463in}{0.669461in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.035916in}{0.660894in}% +\pgfsys@transformshift{1.035916in}{0.670078in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.153339in}{0.662419in}% +\pgfsys@transformshift{1.153339in}{0.671728in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.270761in}{0.663821in}% +\pgfsys@transformshift{1.270761in}{0.673246in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.388183in}{0.668400in}% +\pgfsys@transformshift{1.388183in}{0.678203in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.857873in}{0.689076in}% +\pgfsys@transformshift{1.857873in}{0.700582in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.327563in}{0.708591in}% +\pgfsys@transformshift{2.327563in}{0.721706in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.797252in}{0.740193in}% +\pgfsys@transformshift{2.797252in}{0.755911in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.266942in}{0.790152in}% +\pgfsys@transformshift{3.266942in}{0.809987in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.736632in}{0.838244in}% +\pgfsys@transformshift{3.736632in}{0.862042in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.206321in}{0.917742in}% +\pgfsys@transformshift{4.206321in}{0.948091in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676011in}{0.982629in}% +\pgfsys@transformshift{4.676011in}{1.018324in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.145700in}{1.062954in}% +\pgfsys@transformshift{5.145700in}{1.105269in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{1.171349in}% +\pgfsys@transformshift{5.615390in}{1.222595in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -556,27 +556,27 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.660174in}}% -\pgfpathlineto{\pgfqpoint{0.930236in}{0.659927in}}% -\pgfpathlineto{\pgfqpoint{0.941978in}{0.660106in}}% -\pgfpathlineto{\pgfqpoint{0.965463in}{0.660241in}}% -\pgfpathlineto{\pgfqpoint{1.035916in}{0.661567in}}% -\pgfpathlineto{\pgfqpoint{1.153339in}{0.665424in}}% -\pgfpathlineto{\pgfqpoint{1.270761in}{0.672587in}}% -\pgfpathlineto{\pgfqpoint{1.388183in}{0.682612in}}% -\pgfpathlineto{\pgfqpoint{1.857873in}{0.722645in}}% -\pgfpathlineto{\pgfqpoint{2.327563in}{0.780377in}}% -\pgfpathlineto{\pgfqpoint{2.797252in}{0.878749in}}% -\pgfpathlineto{\pgfqpoint{3.266942in}{0.997279in}}% -\pgfpathlineto{\pgfqpoint{3.736632in}{1.130068in}}% -\pgfpathlineto{\pgfqpoint{4.206321in}{1.303737in}}% -\pgfpathlineto{\pgfqpoint{4.676011in}{1.461962in}}% -\pgfpathlineto{\pgfqpoint{5.145700in}{1.590972in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{1.957965in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.669298in}}% +\pgfpathlineto{\pgfqpoint{0.930236in}{0.669032in}}% +\pgfpathlineto{\pgfqpoint{0.941978in}{0.669225in}}% +\pgfpathlineto{\pgfqpoint{0.965463in}{0.669371in}}% +\pgfpathlineto{\pgfqpoint{1.035916in}{0.670806in}}% +\pgfpathlineto{\pgfqpoint{1.153339in}{0.674981in}}% +\pgfpathlineto{\pgfqpoint{1.270761in}{0.682734in}}% +\pgfpathlineto{\pgfqpoint{1.388183in}{0.693586in}}% +\pgfpathlineto{\pgfqpoint{1.857873in}{0.736917in}}% +\pgfpathlineto{\pgfqpoint{2.327563in}{0.799406in}}% +\pgfpathlineto{\pgfqpoint{2.797252in}{0.905885in}}% +\pgfpathlineto{\pgfqpoint{3.266942in}{1.034182in}}% +\pgfpathlineto{\pgfqpoint{3.736632in}{1.177913in}}% +\pgfpathlineto{\pgfqpoint{4.206321in}{1.365893in}}% +\pgfpathlineto{\pgfqpoint{4.676011in}{1.537157in}}% +\pgfpathlineto{\pgfqpoint{5.145700in}{1.676798in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{2.074031in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -601,76 +601,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.923191in}{0.660174in}% +\pgfsys@transformshift{0.923191in}{0.669298in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.930236in}{0.659927in}% +\pgfsys@transformshift{0.930236in}{0.669032in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.941978in}{0.660106in}% +\pgfsys@transformshift{0.941978in}{0.669225in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.965463in}{0.660241in}% +\pgfsys@transformshift{0.965463in}{0.669371in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.035916in}{0.661567in}% +\pgfsys@transformshift{1.035916in}{0.670806in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.153339in}{0.665424in}% +\pgfsys@transformshift{1.153339in}{0.674981in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.270761in}{0.672587in}% +\pgfsys@transformshift{1.270761in}{0.682734in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.388183in}{0.682612in}% +\pgfsys@transformshift{1.388183in}{0.693586in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.857873in}{0.722645in}% +\pgfsys@transformshift{1.857873in}{0.736917in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.327563in}{0.780377in}% +\pgfsys@transformshift{2.327563in}{0.799406in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.797252in}{0.878749in}% +\pgfsys@transformshift{2.797252in}{0.905885in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.266942in}{0.997279in}% +\pgfsys@transformshift{3.266942in}{1.034182in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.736632in}{1.130068in}% +\pgfsys@transformshift{3.736632in}{1.177913in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.206321in}{1.303737in}% +\pgfsys@transformshift{4.206321in}{1.365893in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676011in}{1.461962in}% +\pgfsys@transformshift{4.676011in}{1.537157in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.145700in}{1.590972in}% +\pgfsys@transformshift{5.145700in}{1.676798in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{1.957965in}% +\pgfsys@transformshift{5.615390in}{2.074031in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -678,27 +678,27 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.660150in}}% -\pgfpathlineto{\pgfqpoint{0.930236in}{0.659893in}}% -\pgfpathlineto{\pgfqpoint{0.941978in}{0.660049in}}% -\pgfpathlineto{\pgfqpoint{0.965463in}{0.660404in}}% -\pgfpathlineto{\pgfqpoint{1.035916in}{0.661470in}}% -\pgfpathlineto{\pgfqpoint{1.153339in}{0.664881in}}% -\pgfpathlineto{\pgfqpoint{1.270761in}{0.672162in}}% -\pgfpathlineto{\pgfqpoint{1.388183in}{0.681805in}}% -\pgfpathlineto{\pgfqpoint{1.857873in}{0.719287in}}% -\pgfpathlineto{\pgfqpoint{2.327563in}{0.778138in}}% -\pgfpathlineto{\pgfqpoint{2.797252in}{0.861204in}}% -\pgfpathlineto{\pgfqpoint{3.266942in}{0.963504in}}% -\pgfpathlineto{\pgfqpoint{3.736632in}{1.152513in}}% -\pgfpathlineto{\pgfqpoint{4.206321in}{1.343989in}}% -\pgfpathlineto{\pgfqpoint{4.676011in}{1.501618in}}% -\pgfpathlineto{\pgfqpoint{5.145700in}{1.619433in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{1.943220in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.669272in}}% +\pgfpathlineto{\pgfqpoint{0.930236in}{0.668994in}}% +\pgfpathlineto{\pgfqpoint{0.941978in}{0.669163in}}% +\pgfpathlineto{\pgfqpoint{0.965463in}{0.669547in}}% +\pgfpathlineto{\pgfqpoint{1.035916in}{0.670701in}}% +\pgfpathlineto{\pgfqpoint{1.153339in}{0.674393in}}% +\pgfpathlineto{\pgfqpoint{1.270761in}{0.682274in}}% +\pgfpathlineto{\pgfqpoint{1.388183in}{0.692712in}}% +\pgfpathlineto{\pgfqpoint{1.857873in}{0.733283in}}% +\pgfpathlineto{\pgfqpoint{2.327563in}{0.796983in}}% +\pgfpathlineto{\pgfqpoint{2.797252in}{0.886894in}}% +\pgfpathlineto{\pgfqpoint{3.266942in}{0.997623in}}% +\pgfpathlineto{\pgfqpoint{3.736632in}{1.202208in}}% +\pgfpathlineto{\pgfqpoint{4.206321in}{1.409462in}}% +\pgfpathlineto{\pgfqpoint{4.676011in}{1.580081in}}% +\pgfpathlineto{\pgfqpoint{5.145700in}{1.707604in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{2.058072in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -723,76 +723,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.923191in}{0.660150in}% +\pgfsys@transformshift{0.923191in}{0.669272in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.930236in}{0.659893in}% +\pgfsys@transformshift{0.930236in}{0.668994in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.941978in}{0.660049in}% +\pgfsys@transformshift{0.941978in}{0.669163in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.965463in}{0.660404in}% +\pgfsys@transformshift{0.965463in}{0.669547in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.035916in}{0.661470in}% +\pgfsys@transformshift{1.035916in}{0.670701in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.153339in}{0.664881in}% +\pgfsys@transformshift{1.153339in}{0.674393in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.270761in}{0.672162in}% +\pgfsys@transformshift{1.270761in}{0.682274in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.388183in}{0.681805in}% +\pgfsys@transformshift{1.388183in}{0.692712in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.857873in}{0.719287in}% +\pgfsys@transformshift{1.857873in}{0.733283in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.327563in}{0.778138in}% +\pgfsys@transformshift{2.327563in}{0.796983in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.797252in}{0.861204in}% +\pgfsys@transformshift{2.797252in}{0.886894in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.266942in}{0.963504in}% +\pgfsys@transformshift{3.266942in}{0.997623in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.736632in}{1.152513in}% +\pgfsys@transformshift{3.736632in}{1.202208in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.206321in}{1.343989in}% +\pgfsys@transformshift{4.206321in}{1.409462in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676011in}{1.501618in}% +\pgfsys@transformshift{4.676011in}{1.580081in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.145700in}{1.619433in}% +\pgfsys@transformshift{5.145700in}{1.707604in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{1.943220in}% +\pgfsys@transformshift{5.615390in}{2.058072in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -800,27 +800,27 @@ \definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.660147in}}% -\pgfpathlineto{\pgfqpoint{0.930236in}{0.659955in}}% -\pgfpathlineto{\pgfqpoint{0.941978in}{0.660138in}}% -\pgfpathlineto{\pgfqpoint{0.965463in}{0.660351in}}% -\pgfpathlineto{\pgfqpoint{1.035916in}{0.662561in}}% -\pgfpathlineto{\pgfqpoint{1.153339in}{0.670744in}}% -\pgfpathlineto{\pgfqpoint{1.270761in}{0.681868in}}% -\pgfpathlineto{\pgfqpoint{1.388183in}{0.687868in}}% -\pgfpathlineto{\pgfqpoint{1.857873in}{0.739136in}}% -\pgfpathlineto{\pgfqpoint{2.327563in}{0.813923in}}% -\pgfpathlineto{\pgfqpoint{2.797252in}{0.924233in}}% -\pgfpathlineto{\pgfqpoint{3.266942in}{1.090073in}}% -\pgfpathlineto{\pgfqpoint{3.736632in}{1.314123in}}% -\pgfpathlineto{\pgfqpoint{4.206321in}{1.596751in}}% -\pgfpathlineto{\pgfqpoint{4.676011in}{1.847265in}}% -\pgfpathlineto{\pgfqpoint{5.145700in}{2.263100in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{2.866211in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.669269in}}% +\pgfpathlineto{\pgfqpoint{0.930236in}{0.669062in}}% +\pgfpathlineto{\pgfqpoint{0.941978in}{0.669260in}}% +\pgfpathlineto{\pgfqpoint{0.965463in}{0.669491in}}% +\pgfpathlineto{\pgfqpoint{1.035916in}{0.671882in}}% +\pgfpathlineto{\pgfqpoint{1.153339in}{0.680739in}}% +\pgfpathlineto{\pgfqpoint{1.270761in}{0.692780in}}% +\pgfpathlineto{\pgfqpoint{1.388183in}{0.699275in}}% +\pgfpathlineto{\pgfqpoint{1.857873in}{0.754767in}}% +\pgfpathlineto{\pgfqpoint{2.327563in}{0.835717in}}% +\pgfpathlineto{\pgfqpoint{2.797252in}{0.955117in}}% +\pgfpathlineto{\pgfqpoint{3.266942in}{1.134622in}}% +\pgfpathlineto{\pgfqpoint{3.736632in}{1.377135in}}% +\pgfpathlineto{\pgfqpoint{4.206321in}{1.683053in}}% +\pgfpathlineto{\pgfqpoint{4.676011in}{1.954210in}}% +\pgfpathlineto{\pgfqpoint{5.145700in}{2.404310in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{3.057120in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -845,76 +845,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.923191in}{0.660147in}% +\pgfsys@transformshift{0.923191in}{0.669269in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.930236in}{0.659955in}% +\pgfsys@transformshift{0.930236in}{0.669062in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.941978in}{0.660138in}% +\pgfsys@transformshift{0.941978in}{0.669260in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.965463in}{0.660351in}% +\pgfsys@transformshift{0.965463in}{0.669491in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.035916in}{0.662561in}% +\pgfsys@transformshift{1.035916in}{0.671882in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.153339in}{0.670744in}% +\pgfsys@transformshift{1.153339in}{0.680739in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.270761in}{0.681868in}% +\pgfsys@transformshift{1.270761in}{0.692780in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.388183in}{0.687868in}% +\pgfsys@transformshift{1.388183in}{0.699275in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.857873in}{0.739136in}% +\pgfsys@transformshift{1.857873in}{0.754767in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.327563in}{0.813923in}% +\pgfsys@transformshift{2.327563in}{0.835717in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.797252in}{0.924233in}% +\pgfsys@transformshift{2.797252in}{0.955117in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.266942in}{1.090073in}% +\pgfsys@transformshift{3.266942in}{1.134622in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.736632in}{1.314123in}% +\pgfsys@transformshift{3.736632in}{1.377135in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.206321in}{1.596751in}% +\pgfsys@transformshift{4.206321in}{1.683053in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676011in}{1.847265in}% +\pgfsys@transformshift{4.676011in}{1.954210in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.145700in}{2.263100in}% +\pgfsys@transformshift{5.145700in}{2.404310in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{2.866211in}% +\pgfsys@transformshift{5.615390in}{3.057120in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -922,27 +922,27 @@ \definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.660144in}}% -\pgfpathlineto{\pgfqpoint{0.930236in}{0.659766in}}% -\pgfpathlineto{\pgfqpoint{0.941978in}{0.659951in}}% -\pgfpathlineto{\pgfqpoint{0.965463in}{0.660860in}}% -\pgfpathlineto{\pgfqpoint{1.035916in}{0.660444in}}% -\pgfpathlineto{\pgfqpoint{1.153339in}{0.661000in}}% -\pgfpathlineto{\pgfqpoint{1.270761in}{0.661758in}}% -\pgfpathlineto{\pgfqpoint{1.388183in}{0.662215in}}% -\pgfpathlineto{\pgfqpoint{1.857873in}{0.666006in}}% -\pgfpathlineto{\pgfqpoint{2.327563in}{0.671128in}}% -\pgfpathlineto{\pgfqpoint{2.797252in}{0.679546in}}% -\pgfpathlineto{\pgfqpoint{3.266942in}{0.686189in}}% -\pgfpathlineto{\pgfqpoint{3.736632in}{0.692741in}}% -\pgfpathlineto{\pgfqpoint{4.206321in}{0.700383in}}% -\pgfpathlineto{\pgfqpoint{4.676011in}{0.711264in}}% -\pgfpathlineto{\pgfqpoint{5.145700in}{0.725295in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{0.735354in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.669266in}}% +\pgfpathlineto{\pgfqpoint{0.930236in}{0.668857in}}% +\pgfpathlineto{\pgfqpoint{0.941978in}{0.669057in}}% +\pgfpathlineto{\pgfqpoint{0.965463in}{0.670041in}}% +\pgfpathlineto{\pgfqpoint{1.035916in}{0.669591in}}% +\pgfpathlineto{\pgfqpoint{1.153339in}{0.670192in}}% +\pgfpathlineto{\pgfqpoint{1.270761in}{0.671013in}}% +\pgfpathlineto{\pgfqpoint{1.388183in}{0.671507in}}% +\pgfpathlineto{\pgfqpoint{1.857873in}{0.675611in}}% +\pgfpathlineto{\pgfqpoint{2.327563in}{0.681155in}}% +\pgfpathlineto{\pgfqpoint{2.797252in}{0.690267in}}% +\pgfpathlineto{\pgfqpoint{3.266942in}{0.697458in}}% +\pgfpathlineto{\pgfqpoint{3.736632in}{0.704549in}}% +\pgfpathlineto{\pgfqpoint{4.206321in}{0.712821in}}% +\pgfpathlineto{\pgfqpoint{4.676011in}{0.724598in}}% +\pgfpathlineto{\pgfqpoint{5.145700in}{0.739786in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{0.750674in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -967,71 +967,71 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.923191in}{0.660144in}% +\pgfsys@transformshift{0.923191in}{0.669266in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.930236in}{0.659766in}% +\pgfsys@transformshift{0.930236in}{0.668857in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.941978in}{0.659951in}% +\pgfsys@transformshift{0.941978in}{0.669057in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.965463in}{0.660860in}% +\pgfsys@transformshift{0.965463in}{0.670041in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.035916in}{0.660444in}% +\pgfsys@transformshift{1.035916in}{0.669591in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.153339in}{0.661000in}% +\pgfsys@transformshift{1.153339in}{0.670192in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.270761in}{0.661758in}% +\pgfsys@transformshift{1.270761in}{0.671013in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.388183in}{0.662215in}% +\pgfsys@transformshift{1.388183in}{0.671507in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.857873in}{0.666006in}% +\pgfsys@transformshift{1.857873in}{0.675611in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.327563in}{0.671128in}% +\pgfsys@transformshift{2.327563in}{0.681155in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.797252in}{0.679546in}% +\pgfsys@transformshift{2.797252in}{0.690267in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.266942in}{0.686189in}% +\pgfsys@transformshift{3.266942in}{0.697458in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.736632in}{0.692741in}% +\pgfsys@transformshift{3.736632in}{0.704549in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.206321in}{0.700383in}% +\pgfsys@transformshift{4.206321in}{0.712821in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676011in}{0.711264in}% +\pgfsys@transformshift{4.676011in}{0.724598in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.145700in}{0.725295in}% +\pgfsys@transformshift{5.145700in}{0.739786in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{0.735354in}% +\pgfsys@transformshift{5.615390in}{0.750674in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1043,7 +1043,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1054,7 +1054,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1075,21 +1075,21 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.688581in}{2.976534in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.976534in}}% +\pgfpathmoveto{\pgfqpoint{0.688581in}{3.176534in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.787040in, y=3.232667in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time for `indexed equijoin' function}% +\pgftext[x=1.787040in, y=3.432667in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time for `indexed equijoin' function}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.031290in, y=3.059867in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont to complete queries by tuple count}% +\pgftext[x=2.031290in, y=3.259867in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont to complete queries by tuple count}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -1102,16 +1102,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.785803in}{1.888340in}}% -\pgfpathlineto{\pgfqpoint{3.727331in}{1.888340in}}% -\pgfpathquadraticcurveto{\pgfqpoint{3.755109in}{1.888340in}}{\pgfqpoint{3.755109in}{1.916118in}}% -\pgfpathlineto{\pgfqpoint{3.755109in}{2.879311in}}% -\pgfpathquadraticcurveto{\pgfqpoint{3.755109in}{2.907089in}}{\pgfqpoint{3.727331in}{2.907089in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.907089in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.907089in}}{\pgfqpoint{0.758025in}{2.879311in}}% -\pgfpathlineto{\pgfqpoint{0.758025in}{1.916118in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{1.888340in}}{\pgfqpoint{0.785803in}{1.888340in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{1.888340in}}% +\pgfpathmoveto{\pgfqpoint{0.785803in}{2.088340in}}% +\pgfpathlineto{\pgfqpoint{3.727331in}{2.088340in}}% +\pgfpathquadraticcurveto{\pgfqpoint{3.755109in}{2.088340in}}{\pgfqpoint{3.755109in}{2.116118in}}% +\pgfpathlineto{\pgfqpoint{3.755109in}{3.079311in}}% +\pgfpathquadraticcurveto{\pgfqpoint{3.755109in}{3.107089in}}{\pgfqpoint{3.727331in}{3.107089in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{3.107089in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{3.107089in}}{\pgfqpoint{0.758025in}{3.079311in}}% +\pgfpathlineto{\pgfqpoint{0.758025in}{2.116118in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.088340in}}{\pgfqpoint{0.785803in}{2.088340in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{2.088340in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -1122,9 +1122,9 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.802922in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.802922in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.802922in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{3.002922in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{3.002922in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{3.002922in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1151,7 +1151,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.802922in}% +\pgfsys@transformshift{0.952470in}{3.002922in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1159,7 +1159,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.754311in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont join onePercent and onePercent}% +\pgftext[x=1.202470in,y=2.954311in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont join onePercent and onePercent}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -1168,9 +1168,9 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.607784in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.607784in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.607784in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.807784in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.807784in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.807784in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1197,7 +1197,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.607784in}% +\pgfsys@transformshift{0.952470in}{2.807784in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1205,7 +1205,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.559173in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont join onePercent and twentyPercent}% +\pgftext[x=1.202470in,y=2.759173in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont join onePercent and twentyPercent}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -1214,9 +1214,9 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.412645in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.412645in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.412645in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.612645in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.612645in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.612645in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1243,7 +1243,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.412645in}% +\pgfsys@transformshift{0.952470in}{2.612645in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1251,7 +1251,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.364034in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont join twentyPercent and onePercent}% +\pgftext[x=1.202470in,y=2.564034in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont join twentyPercent and onePercent}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -1260,9 +1260,9 @@ \definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.216812in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.216812in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.216812in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.416812in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.416812in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.416812in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1289,7 +1289,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.216812in}% +\pgfsys@transformshift{0.952470in}{2.416812in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1297,7 +1297,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.168201in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont join onePercent and fiftyPercent}% +\pgftext[x=1.202470in,y=2.368201in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont join onePercent and fiftyPercent}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -1306,9 +1306,9 @@ \definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.020979in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.020979in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.020979in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.220979in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.220979in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.220979in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1335,7 +1335,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.020979in}% +\pgfsys@transformshift{0.952470in}{2.220979in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1343,7 +1343,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=1.972368in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont join evenOnePercent and oddOnePercent}% +\pgftext[x=1.202470in,y=2.172367in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont join evenOnePercent and oddOnePercent}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/join-evenOnePercent-and-oddOnePercent-1000.pgf b/report/figures/join-evenOnePercent-and-oddOnePercent-1000.pgf index 25df4bba..245e9795 100644 --- a/report/figures/join-evenOnePercent-and-oddOnePercent-1000.pgf +++ b/report/figures/join-evenOnePercent-and-oddOnePercent-1000.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,14 +57,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.149333in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{3.149333in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.349333in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.349333in}}% \pgfpathlineto{\pgfqpoint{0.827470in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.596834in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.796834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -77,14 +77,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.055767in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{2.360320in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{2.360320in}{3.025675in}}% -\pgfpathlineto{\pgfqpoint{1.055767in}{3.025675in}}% +\pgfpathlineto{\pgfqpoint{2.360320in}{3.216151in}}% +\pgfpathlineto{\pgfqpoint{1.055767in}{3.216151in}}% \pgfpathlineto{\pgfqpoint{1.055767in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.596834in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.796834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -97,14 +97,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{2.686458in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{3.991012in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{3.991012in}{1.608277in}}% -\pgfpathlineto{\pgfqpoint{2.686458in}{1.608277in}}% +\pgfpathlineto{\pgfqpoint{3.991012in}{1.689589in}}% +\pgfpathlineto{\pgfqpoint{2.686458in}{1.689589in}}% \pgfpathlineto{\pgfqpoint{2.686458in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.596834in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.796834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -117,8 +117,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.317150in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.621703in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.621703in}{1.017758in}}% -\pgfpathlineto{\pgfqpoint{4.317150in}{1.017758in}}% +\pgfpathlineto{\pgfqpoint{5.621703in}{1.053590in}}% +\pgfpathlineto{\pgfqpoint{4.317150in}{1.053590in}}% \pgfpathlineto{\pgfqpoint{4.317150in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% @@ -244,7 +244,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{0.877777in}% +\pgfsys@transformshift{0.827470in}{0.902828in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -252,7 +252,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=0.829582in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0025}\)}% +\pgftext[x=0.344444in, y=0.854634in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0025}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -269,7 +269,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.203053in}% +\pgfsys@transformshift{0.827470in}{1.253157in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -277,7 +277,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.154859in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0050}\)}% +\pgftext[x=0.344444in, y=1.204963in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0050}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -294,7 +294,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.528330in}% +\pgfsys@transformshift{0.827470in}{1.603486in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -302,7 +302,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.480136in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0075}\)}% +\pgftext[x=0.344444in, y=1.555291in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0075}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -319,7 +319,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.853607in}% +\pgfsys@transformshift{0.827470in}{1.953814in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -327,7 +327,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.805413in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0100}\)}% +\pgftext[x=0.344444in, y=1.905620in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0100}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -344,7 +344,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.178884in}% +\pgfsys@transformshift{0.827470in}{2.304143in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -352,7 +352,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.130689in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0125}\)}% +\pgftext[x=0.344444in, y=2.255948in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0125}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -369,7 +369,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.504161in}% +\pgfsys@transformshift{0.827470in}{2.654472in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -377,7 +377,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.455966in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0150}\)}% +\pgftext[x=0.344444in, y=2.606277in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0150}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -394,7 +394,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.829438in}% +\pgfsys@transformshift{0.827470in}{3.004800in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -402,13 +402,13 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.781243in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0175}\)}% +\pgftext[x=0.344444in, y=2.956606in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0175}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.288889in,y=1.850917in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Time (s)}% +\pgftext[x=0.288889in,y=1.950917in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Time (s)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -418,7 +418,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{3.149333in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.349333in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -429,7 +429,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.149333in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.349333in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -450,15 +450,15 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.827470in}{3.149333in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.149333in}}% +\pgfpathmoveto{\pgfqpoint{0.827470in}{3.349333in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.349333in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=3.338735in,y=3.232667in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join evenOnePercent and oddOnePercent' with 1000 tuples}% +\pgftext[x=3.338735in,y=3.432667in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join evenOnePercent and oddOnePercent' with 1000 tuples}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/join-evenOnePercent-and-oddOnePercent-by-tuple-with-inset.pgf b/report/figures/join-evenOnePercent-and-oddOnePercent-by-tuple-with-inset.pgf index c8500e9f..08c2dcbe 100644 --- a/report/figures/join-evenOnePercent-and-oddOnePercent-by-tuple-with-inset.pgf +++ b/report/figures/join-evenOnePercent-and-oddOnePercent-by-tuple-with-inset.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,8 +57,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.549444in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.976534in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.176534in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.176534in}}% \pgfpathlineto{\pgfqpoint{0.688581in}{0.549444in}}% \pgfpathclose% \pgfusepath{fill}% @@ -234,7 +234,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{0.659766in}% +\pgfsys@transformshift{0.688581in}{0.668857in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -242,7 +242,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=0.611572in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0}\)}% +\pgftext[x=0.344444in, y=0.620663in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -259,7 +259,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.248337in}% +\pgfsys@transformshift{0.688581in}{0.987393in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -267,7 +267,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.200143in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.5}\)}% +\pgftext[x=0.344444in, y=0.939198in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.25}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -284,7 +284,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.836909in}% +\pgfsys@transformshift{0.688581in}{1.305929in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -292,7 +292,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.788714in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.0}\)}% +\pgftext[x=0.344444in, y=1.257734in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.50}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -309,7 +309,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.425480in}% +\pgfsys@transformshift{0.688581in}{1.624464in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -317,16 +317,116 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.377285in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.5}\)}% +\pgftext[x=0.344444in, y=1.576270in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.75}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{1.943000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=1.894805in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.00}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.261535in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.213341in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.25}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.580071in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.531877in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.50}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.898607in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.850412in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.75}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.358333in,y=1.762989in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=1.862989in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -334,27 +434,27 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.927883in}{0.659769in}}% -\pgfpathlineto{\pgfqpoint{0.934921in}{0.659780in}}% -\pgfpathlineto{\pgfqpoint{0.946652in}{0.659822in}}% -\pgfpathlineto{\pgfqpoint{0.970113in}{0.659988in}}% -\pgfpathlineto{\pgfqpoint{1.040496in}{0.661142in}}% -\pgfpathlineto{\pgfqpoint{1.157801in}{0.665264in}}% -\pgfpathlineto{\pgfqpoint{1.275106in}{0.672139in}}% -\pgfpathlineto{\pgfqpoint{1.392411in}{0.682142in}}% -\pgfpathlineto{\pgfqpoint{1.861631in}{0.749104in}}% -\pgfpathlineto{\pgfqpoint{2.330850in}{0.859764in}}% -\pgfpathlineto{\pgfqpoint{2.800070in}{1.018003in}}% -\pgfpathlineto{\pgfqpoint{3.269290in}{1.221617in}}% -\pgfpathlineto{\pgfqpoint{3.738510in}{1.452123in}}% -\pgfpathlineto{\pgfqpoint{4.207730in}{1.742239in}}% -\pgfpathlineto{\pgfqpoint{4.676950in}{2.068157in}}% -\pgfpathlineto{\pgfqpoint{5.146170in}{2.443829in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{2.866211in}}% +\pgfpathmoveto{\pgfqpoint{0.927883in}{0.668860in}}% +\pgfpathlineto{\pgfqpoint{0.934921in}{0.668873in}}% +\pgfpathlineto{\pgfqpoint{0.946652in}{0.668917in}}% +\pgfpathlineto{\pgfqpoint{0.970113in}{0.669097in}}% +\pgfpathlineto{\pgfqpoint{1.040496in}{0.670346in}}% +\pgfpathlineto{\pgfqpoint{1.157801in}{0.674807in}}% +\pgfpathlineto{\pgfqpoint{1.275106in}{0.682250in}}% +\pgfpathlineto{\pgfqpoint{1.392411in}{0.693077in}}% +\pgfpathlineto{\pgfqpoint{1.861631in}{0.765557in}}% +\pgfpathlineto{\pgfqpoint{2.330850in}{0.885335in}}% +\pgfpathlineto{\pgfqpoint{2.800070in}{1.056614in}}% +\pgfpathlineto{\pgfqpoint{3.269290in}{1.277006in}}% +\pgfpathlineto{\pgfqpoint{3.738510in}{1.526507in}}% +\pgfpathlineto{\pgfqpoint{4.207730in}{1.840529in}}% +\pgfpathlineto{\pgfqpoint{4.676950in}{2.193303in}}% +\pgfpathlineto{\pgfqpoint{5.146170in}{2.599932in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{3.057120in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -379,76 +479,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.927883in}{0.659769in}% +\pgfsys@transformshift{0.927883in}{0.668860in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.934921in}{0.659780in}% +\pgfsys@transformshift{0.934921in}{0.668873in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.946652in}{0.659822in}% +\pgfsys@transformshift{0.946652in}{0.668917in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.970113in}{0.659988in}% +\pgfsys@transformshift{0.970113in}{0.669097in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.040496in}{0.661142in}% +\pgfsys@transformshift{1.040496in}{0.670346in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.157801in}{0.665264in}% +\pgfsys@transformshift{1.157801in}{0.674807in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.275106in}{0.672139in}% +\pgfsys@transformshift{1.275106in}{0.682250in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.392411in}{0.682142in}% +\pgfsys@transformshift{1.392411in}{0.693077in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.861631in}{0.749104in}% +\pgfsys@transformshift{1.861631in}{0.765557in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.330850in}{0.859764in}% +\pgfsys@transformshift{2.330850in}{0.885335in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.800070in}{1.018003in}% +\pgfsys@transformshift{2.800070in}{1.056614in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.269290in}{1.221617in}% +\pgfsys@transformshift{3.269290in}{1.277006in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.738510in}{1.452123in}% +\pgfsys@transformshift{3.738510in}{1.526507in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.207730in}{1.742239in}% +\pgfsys@transformshift{4.207730in}{1.840529in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676950in}{2.068157in}% +\pgfsys@transformshift{4.676950in}{2.193303in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.146170in}{2.443829in}% +\pgfsys@transformshift{5.146170in}{2.599932in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{2.866211in}% +\pgfsys@transformshift{5.615390in}{3.057120in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -456,27 +556,27 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.927883in}{0.659768in}}% -\pgfpathlineto{\pgfqpoint{0.934921in}{0.659773in}}% -\pgfpathlineto{\pgfqpoint{0.946652in}{0.659791in}}% -\pgfpathlineto{\pgfqpoint{0.970113in}{0.659861in}}% -\pgfpathlineto{\pgfqpoint{1.040496in}{0.660351in}}% -\pgfpathlineto{\pgfqpoint{1.157801in}{0.662098in}}% -\pgfpathlineto{\pgfqpoint{1.275106in}{0.665357in}}% -\pgfpathlineto{\pgfqpoint{1.392411in}{0.669318in}}% -\pgfpathlineto{\pgfqpoint{1.861631in}{0.697863in}}% -\pgfpathlineto{\pgfqpoint{2.330850in}{0.745286in}}% -\pgfpathlineto{\pgfqpoint{2.800070in}{0.812493in}}% -\pgfpathlineto{\pgfqpoint{3.269290in}{0.897905in}}% -\pgfpathlineto{\pgfqpoint{3.738510in}{0.997288in}}% -\pgfpathlineto{\pgfqpoint{4.207730in}{1.126490in}}% -\pgfpathlineto{\pgfqpoint{4.676950in}{1.256192in}}% -\pgfpathlineto{\pgfqpoint{5.146170in}{1.430968in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{1.590906in}}% +\pgfpathmoveto{\pgfqpoint{0.927883in}{0.668859in}}% +\pgfpathlineto{\pgfqpoint{0.934921in}{0.668864in}}% +\pgfpathlineto{\pgfqpoint{0.946652in}{0.668883in}}% +\pgfpathlineto{\pgfqpoint{0.970113in}{0.668960in}}% +\pgfpathlineto{\pgfqpoint{1.040496in}{0.669490in}}% +\pgfpathlineto{\pgfqpoint{1.157801in}{0.671381in}}% +\pgfpathlineto{\pgfqpoint{1.275106in}{0.674909in}}% +\pgfpathlineto{\pgfqpoint{1.392411in}{0.679196in}}% +\pgfpathlineto{\pgfqpoint{1.861631in}{0.710093in}}% +\pgfpathlineto{\pgfqpoint{2.330850in}{0.761424in}}% +\pgfpathlineto{\pgfqpoint{2.800070in}{0.834169in}}% +\pgfpathlineto{\pgfqpoint{3.269290in}{0.926619in}}% +\pgfpathlineto{\pgfqpoint{3.738510in}{1.034192in}}% +\pgfpathlineto{\pgfqpoint{4.207730in}{1.174041in}}% +\pgfpathlineto{\pgfqpoint{4.676950in}{1.314431in}}% +\pgfpathlineto{\pgfqpoint{5.146170in}{1.503609in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{1.676726in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -501,76 +601,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.927883in}{0.659768in}% +\pgfsys@transformshift{0.927883in}{0.668859in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.934921in}{0.659773in}% +\pgfsys@transformshift{0.934921in}{0.668864in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.946652in}{0.659791in}% +\pgfsys@transformshift{0.946652in}{0.668883in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.970113in}{0.659861in}% +\pgfsys@transformshift{0.970113in}{0.668960in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.040496in}{0.660351in}% +\pgfsys@transformshift{1.040496in}{0.669490in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.157801in}{0.662098in}% +\pgfsys@transformshift{1.157801in}{0.671381in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.275106in}{0.665357in}% +\pgfsys@transformshift{1.275106in}{0.674909in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.392411in}{0.669318in}% +\pgfsys@transformshift{1.392411in}{0.679196in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.861631in}{0.697863in}% +\pgfsys@transformshift{1.861631in}{0.710093in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.330850in}{0.745286in}% +\pgfsys@transformshift{2.330850in}{0.761424in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.800070in}{0.812493in}% +\pgfsys@transformshift{2.800070in}{0.834169in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.269290in}{0.897905in}% +\pgfsys@transformshift{3.269290in}{0.926619in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.738510in}{0.997288in}% +\pgfsys@transformshift{3.738510in}{1.034192in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.207730in}{1.126490in}% +\pgfsys@transformshift{4.207730in}{1.174041in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676950in}{1.256192in}% +\pgfsys@transformshift{4.676950in}{1.314431in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.146170in}{1.430968in}% +\pgfsys@transformshift{5.146170in}{1.503609in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{1.590906in}% +\pgfsys@transformshift{5.615390in}{1.676726in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -578,27 +678,27 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.927883in}{0.663583in}}% -\pgfpathlineto{\pgfqpoint{0.934921in}{0.663512in}}% -\pgfpathlineto{\pgfqpoint{0.946652in}{0.663547in}}% -\pgfpathlineto{\pgfqpoint{0.970113in}{0.663719in}}% -\pgfpathlineto{\pgfqpoint{1.040496in}{0.663640in}}% -\pgfpathlineto{\pgfqpoint{1.157801in}{0.663746in}}% -\pgfpathlineto{\pgfqpoint{1.275106in}{0.663889in}}% -\pgfpathlineto{\pgfqpoint{1.392411in}{0.663976in}}% -\pgfpathlineto{\pgfqpoint{1.861631in}{0.664694in}}% -\pgfpathlineto{\pgfqpoint{2.330850in}{0.665664in}}% -\pgfpathlineto{\pgfqpoint{2.800070in}{0.667259in}}% -\pgfpathlineto{\pgfqpoint{3.269290in}{0.668517in}}% -\pgfpathlineto{\pgfqpoint{3.738510in}{0.669758in}}% -\pgfpathlineto{\pgfqpoint{4.207730in}{0.671206in}}% -\pgfpathlineto{\pgfqpoint{4.676950in}{0.673267in}}% -\pgfpathlineto{\pgfqpoint{5.146170in}{0.675925in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{0.677830in}}% +\pgfpathmoveto{\pgfqpoint{0.927883in}{0.672989in}}% +\pgfpathlineto{\pgfqpoint{0.934921in}{0.672912in}}% +\pgfpathlineto{\pgfqpoint{0.946652in}{0.672949in}}% +\pgfpathlineto{\pgfqpoint{0.970113in}{0.673136in}}% +\pgfpathlineto{\pgfqpoint{1.040496in}{0.673051in}}% +\pgfpathlineto{\pgfqpoint{1.157801in}{0.673164in}}% +\pgfpathlineto{\pgfqpoint{1.275106in}{0.673320in}}% +\pgfpathlineto{\pgfqpoint{1.392411in}{0.673413in}}% +\pgfpathlineto{\pgfqpoint{1.861631in}{0.674191in}}% +\pgfpathlineto{\pgfqpoint{2.330850in}{0.675241in}}% +\pgfpathlineto{\pgfqpoint{2.800070in}{0.676967in}}% +\pgfpathlineto{\pgfqpoint{3.269290in}{0.678329in}}% +\pgfpathlineto{\pgfqpoint{3.738510in}{0.679672in}}% +\pgfpathlineto{\pgfqpoint{4.207730in}{0.681239in}}% +\pgfpathlineto{\pgfqpoint{4.676950in}{0.683470in}}% +\pgfpathlineto{\pgfqpoint{5.146170in}{0.686347in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{0.688409in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -623,71 +723,71 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.927883in}{0.663583in}% +\pgfsys@transformshift{0.927883in}{0.672989in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.934921in}{0.663512in}% +\pgfsys@transformshift{0.934921in}{0.672912in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.946652in}{0.663547in}% +\pgfsys@transformshift{0.946652in}{0.672949in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.970113in}{0.663719in}% +\pgfsys@transformshift{0.970113in}{0.673136in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.040496in}{0.663640in}% +\pgfsys@transformshift{1.040496in}{0.673051in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.157801in}{0.663746in}% +\pgfsys@transformshift{1.157801in}{0.673164in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.275106in}{0.663889in}% +\pgfsys@transformshift{1.275106in}{0.673320in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.392411in}{0.663976in}% +\pgfsys@transformshift{1.392411in}{0.673413in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.861631in}{0.664694in}% +\pgfsys@transformshift{1.861631in}{0.674191in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.330850in}{0.665664in}% +\pgfsys@transformshift{2.330850in}{0.675241in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.800070in}{0.667259in}% +\pgfsys@transformshift{2.800070in}{0.676967in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.269290in}{0.668517in}% +\pgfsys@transformshift{3.269290in}{0.678329in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.738510in}{0.669758in}% +\pgfsys@transformshift{3.738510in}{0.679672in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.207730in}{0.671206in}% +\pgfsys@transformshift{4.207730in}{0.681239in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676950in}{0.673267in}% +\pgfsys@transformshift{4.676950in}{0.683470in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.146170in}{0.675925in}% +\pgfsys@transformshift{5.146170in}{0.686347in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{0.677830in}% +\pgfsys@transformshift{5.615390in}{0.688409in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -699,7 +799,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -710,7 +810,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -731,24 +831,24 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.688581in}{2.976534in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.976534in}}% +\pgfpathmoveto{\pgfqpoint{0.688581in}{3.176534in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.676373in, y=3.232667in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join evenOnePercent and oddOnePercent' query}% +\pgftext[x=0.676373in, y=3.432667in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join evenOnePercent and oddOnePercent' query}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.396540in, y=3.059867in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont according to tuple count}% +\pgftext[x=2.396540in, y=3.259867in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont according to tuple count}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -757,11 +857,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.500000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.659766in}}% -\pgfpathlineto{\pgfqpoint{1.439333in}{0.659766in}}% -\pgfpathlineto{\pgfqpoint{1.439333in}{0.684379in}}% -\pgfpathlineto{\pgfqpoint{0.923191in}{0.684379in}}% -\pgfpathlineto{\pgfqpoint{0.923191in}{0.659766in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.668857in}}% +\pgfpathlineto{\pgfqpoint{1.439333in}{0.668857in}}% +\pgfpathlineto{\pgfqpoint{1.439333in}{0.695498in}}% +\pgfpathlineto{\pgfqpoint{0.923191in}{0.695498in}}% +\pgfpathlineto{\pgfqpoint{0.923191in}{0.668857in}}% \pgfpathclose% \pgfusepath{stroke}% \end{pgfscope}% @@ -773,8 +873,8 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.500000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{2.248407in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.115571in}{1.466393in}}{\pgfqpoint{0.923191in}{0.684379in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{2.388407in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.115571in}{1.541953in}}{\pgfqpoint{0.923191in}{0.695498in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -785,8 +885,8 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.500000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.114448in}{1.398925in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.276890in}{1.029346in}}{\pgfqpoint{1.439333in}{0.659766in}}% +\pgfpathmoveto{\pgfqpoint{3.114448in}{1.468925in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.276890in}{1.068891in}}{\pgfqpoint{1.439333in}{0.668857in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -799,11 +899,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{1.398925in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{1.398925in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{2.248407in}}% -\pgfpathlineto{\pgfqpoint{1.307951in}{2.248407in}}% -\pgfpathlineto{\pgfqpoint{1.307951in}{1.398925in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{1.468925in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{1.468925in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{2.388407in}}% +\pgfpathlineto{\pgfqpoint{1.307951in}{2.388407in}}% +\pgfpathlineto{\pgfqpoint{1.307951in}{1.468925in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -822,7 +922,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.307951in}{1.398925in}% +\pgfsys@transformshift{1.307951in}{1.468925in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -830,7 +930,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.307951in,y=1.301703in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0}\)}% +\pgftext[x=1.307951in,y=1.371703in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -847,7 +947,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.129086in}{1.398925in}% +\pgfsys@transformshift{2.129086in}{1.468925in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -855,7 +955,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.129086in,y=1.301703in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {500}\)}% +\pgftext[x=2.129086in,y=1.371703in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {500}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -872,7 +972,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.950221in}{1.398925in}% +\pgfsys@transformshift{2.950221in}{1.468925in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -880,7 +980,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.950221in,y=1.301703in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1000}\)}% +\pgftext[x=2.950221in,y=1.371703in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1000}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -897,7 +997,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.307951in}{1.398925in}% +\pgfsys@transformshift{1.307951in}{1.468925in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -905,7 +1005,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.963814in, y=1.350731in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% +\pgftext[x=0.963814in, y=1.420731in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -922,7 +1022,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.307951in}{1.805200in}% +\pgfsys@transformshift{1.307951in}{1.908678in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -930,7 +1030,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.963814in, y=1.757005in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.01}\)}% +\pgftext[x=0.963814in, y=1.860484in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.01}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -947,7 +1047,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.307951in}{2.211474in}% +\pgfsys@transformshift{1.307951in}{2.348431in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -955,10 +1055,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.963814in, y=2.163280in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.02}\)}% +\pgftext[x=0.963814in, y=2.300236in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.02}\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.398925in}}{\pgfqpoint{1.806497in}{0.849481in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.468925in}}{\pgfqpoint{1.806497in}{0.919481in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -966,18 +1066,18 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.324374in}{1.399006in}}% -\pgfpathlineto{\pgfqpoint{1.349008in}{1.399410in}}% -\pgfpathlineto{\pgfqpoint{1.390065in}{1.400844in}}% -\pgfpathlineto{\pgfqpoint{1.472178in}{1.406558in}}% -\pgfpathlineto{\pgfqpoint{1.718518in}{1.446405in}}% -\pgfpathlineto{\pgfqpoint{2.129086in}{1.588652in}}% -\pgfpathlineto{\pgfqpoint{2.539653in}{1.825950in}}% -\pgfpathlineto{\pgfqpoint{2.950221in}{2.171181in}}% +\pgfpathmoveto{\pgfqpoint{1.324374in}{1.469013in}}% +\pgfpathlineto{\pgfqpoint{1.349008in}{1.469450in}}% +\pgfpathlineto{\pgfqpoint{1.390065in}{1.471002in}}% +\pgfpathlineto{\pgfqpoint{1.472178in}{1.477187in}}% +\pgfpathlineto{\pgfqpoint{1.718518in}{1.520318in}}% +\pgfpathlineto{\pgfqpoint{2.129086in}{1.674286in}}% +\pgfpathlineto{\pgfqpoint{2.539653in}{1.931138in}}% +\pgfpathlineto{\pgfqpoint{2.950221in}{2.304818in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.398925in}}{\pgfqpoint{1.806497in}{0.849481in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.468925in}}{\pgfqpoint{1.806497in}{0.919481in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -1002,40 +1102,40 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.324374in}{1.399006in}% +\pgfsys@transformshift{1.324374in}{1.469013in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.349008in}{1.399410in}% +\pgfsys@transformshift{1.349008in}{1.469450in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.390065in}{1.400844in}% +\pgfsys@transformshift{1.390065in}{1.471002in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.472178in}{1.406558in}% +\pgfsys@transformshift{1.472178in}{1.477187in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.718518in}{1.446405in}% +\pgfsys@transformshift{1.718518in}{1.520318in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.129086in}{1.588652in}% +\pgfsys@transformshift{2.129086in}{1.674286in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.539653in}{1.825950in}% +\pgfsys@transformshift{2.539653in}{1.931138in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.950221in}{2.171181in}% +\pgfsys@transformshift{2.950221in}{2.304818in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.398925in}}{\pgfqpoint{1.806497in}{0.849481in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.468925in}}{\pgfqpoint{1.806497in}{0.919481in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1043,18 +1143,18 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.324374in}{1.398965in}}% -\pgfpathlineto{\pgfqpoint{1.349008in}{1.399142in}}% -\pgfpathlineto{\pgfqpoint{1.390065in}{1.399758in}}% -\pgfpathlineto{\pgfqpoint{1.472178in}{1.402185in}}% -\pgfpathlineto{\pgfqpoint{1.718518in}{1.419098in}}% -\pgfpathlineto{\pgfqpoint{2.129086in}{1.479401in}}% -\pgfpathlineto{\pgfqpoint{2.539653in}{1.591887in}}% -\pgfpathlineto{\pgfqpoint{2.950221in}{1.728595in}}% +\pgfpathmoveto{\pgfqpoint{1.324374in}{1.468968in}}% +\pgfpathlineto{\pgfqpoint{1.349008in}{1.469160in}}% +\pgfpathlineto{\pgfqpoint{1.390065in}{1.469827in}}% +\pgfpathlineto{\pgfqpoint{1.472178in}{1.472454in}}% +\pgfpathlineto{\pgfqpoint{1.718518in}{1.490760in}}% +\pgfpathlineto{\pgfqpoint{2.129086in}{1.556033in}}% +\pgfpathlineto{\pgfqpoint{2.539653in}{1.677788in}}% +\pgfpathlineto{\pgfqpoint{2.950221in}{1.825761in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.398925in}}{\pgfqpoint{1.806497in}{0.849481in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.468925in}}{\pgfqpoint{1.806497in}{0.919481in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -1079,40 +1179,40 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.324374in}{1.398965in}% +\pgfsys@transformshift{1.324374in}{1.468968in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.349008in}{1.399142in}% +\pgfsys@transformshift{1.349008in}{1.469160in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.390065in}{1.399758in}% +\pgfsys@transformshift{1.390065in}{1.469827in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.472178in}{1.402185in}% +\pgfsys@transformshift{1.472178in}{1.472454in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.718518in}{1.419098in}% +\pgfsys@transformshift{1.718518in}{1.490760in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.129086in}{1.479401in}% +\pgfsys@transformshift{2.129086in}{1.556033in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.539653in}{1.591887in}% +\pgfsys@transformshift{2.539653in}{1.677788in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.950221in}{1.728595in}% +\pgfsys@transformshift{2.950221in}{1.825761in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.398925in}}{\pgfqpoint{1.806497in}{0.849481in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.468925in}}{\pgfqpoint{1.806497in}{0.919481in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1120,18 +1220,18 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.324374in}{1.530667in}}% -\pgfpathlineto{\pgfqpoint{1.349008in}{1.528199in}}% -\pgfpathlineto{\pgfqpoint{1.390065in}{1.529407in}}% -\pgfpathlineto{\pgfqpoint{1.472178in}{1.535351in}}% -\pgfpathlineto{\pgfqpoint{1.718518in}{1.532630in}}% -\pgfpathlineto{\pgfqpoint{2.129086in}{1.536261in}}% -\pgfpathlineto{\pgfqpoint{2.539653in}{1.541221in}}% -\pgfpathlineto{\pgfqpoint{2.950221in}{1.544204in}}% +\pgfpathmoveto{\pgfqpoint{1.324374in}{1.611523in}}% +\pgfpathlineto{\pgfqpoint{1.349008in}{1.608851in}}% +\pgfpathlineto{\pgfqpoint{1.390065in}{1.610159in}}% +\pgfpathlineto{\pgfqpoint{1.472178in}{1.616592in}}% +\pgfpathlineto{\pgfqpoint{1.718518in}{1.613647in}}% +\pgfpathlineto{\pgfqpoint{2.129086in}{1.617578in}}% +\pgfpathlineto{\pgfqpoint{2.539653in}{1.622947in}}% +\pgfpathlineto{\pgfqpoint{2.950221in}{1.626175in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.398925in}}{\pgfqpoint{1.806497in}{0.849481in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.468925in}}{\pgfqpoint{1.806497in}{0.919481in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -1156,35 +1256,35 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.324374in}{1.530667in}% +\pgfsys@transformshift{1.324374in}{1.611523in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.349008in}{1.528199in}% +\pgfsys@transformshift{1.349008in}{1.608851in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.390065in}{1.529407in}% +\pgfsys@transformshift{1.390065in}{1.610159in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.472178in}{1.535351in}% +\pgfsys@transformshift{1.472178in}{1.616592in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.718518in}{1.532630in}% +\pgfsys@transformshift{1.718518in}{1.613647in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.129086in}{1.536261in}% +\pgfsys@transformshift{2.129086in}{1.617578in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.539653in}{1.541221in}% +\pgfsys@transformshift{2.539653in}{1.622947in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.950221in}{1.544204in}% +\pgfsys@transformshift{2.950221in}{1.626175in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1195,8 +1295,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{1.398925in}}% -\pgfpathlineto{\pgfqpoint{1.307951in}{2.248407in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{1.468925in}}% +\pgfpathlineto{\pgfqpoint{1.307951in}{2.388407in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1206,8 +1306,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.114448in}{1.398925in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{2.248407in}}% +\pgfpathmoveto{\pgfqpoint{3.114448in}{1.468925in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{2.388407in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1217,8 +1317,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{1.398925in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{1.398925in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{1.468925in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{1.468925in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1228,8 +1328,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{2.248407in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{2.248407in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{2.388407in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{2.388407in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1243,16 +1343,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.785803in}{2.279312in}}% -\pgfpathlineto{\pgfqpoint{2.689970in}{2.279312in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.279312in}}{\pgfqpoint{2.717747in}{2.307090in}}% -\pgfpathlineto{\pgfqpoint{2.717747in}{2.879311in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.907089in}}{\pgfqpoint{2.689970in}{2.907089in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.907089in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.907089in}}{\pgfqpoint{0.758025in}{2.879311in}}% -\pgfpathlineto{\pgfqpoint{0.758025in}{2.307090in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.279312in}}{\pgfqpoint{0.785803in}{2.279312in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.279312in}}% +\pgfpathmoveto{\pgfqpoint{0.785803in}{2.479312in}}% +\pgfpathlineto{\pgfqpoint{2.689970in}{2.479312in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.479312in}}{\pgfqpoint{2.717747in}{2.507090in}}% +\pgfpathlineto{\pgfqpoint{2.717747in}{3.079311in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{3.107089in}}{\pgfqpoint{2.689970in}{3.107089in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{3.107089in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{3.107089in}}{\pgfqpoint{0.758025in}{3.079311in}}% +\pgfpathlineto{\pgfqpoint{0.758025in}{2.507090in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.479312in}}{\pgfqpoint{0.785803in}{2.479312in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{2.479312in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -1263,9 +1363,9 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.802922in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.802922in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.802922in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{3.002922in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{3.002922in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{3.002922in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1292,7 +1392,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.802922in}% +\pgfsys@transformshift{0.952470in}{3.002922in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1300,7 +1400,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.754311in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% +\pgftext[x=1.202470in,y=2.954311in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -1309,9 +1409,9 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.607089in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.607089in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.607089in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.807089in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.807089in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.807089in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1338,7 +1438,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.607089in}% +\pgfsys@transformshift{0.952470in}{2.807089in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1346,7 +1446,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.558478in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% +\pgftext[x=1.202470in,y=2.758478in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -1355,9 +1455,9 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.411951in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.411951in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.411951in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.611951in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.611951in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.611951in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1384,7 +1484,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.411951in}% +\pgfsys@transformshift{0.952470in}{2.611951in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1392,7 +1492,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.363339in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% +\pgftext[x=1.202470in,y=2.563339in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/join-evenOnePercent-and-oddOnePercent-by-tuples.pgf b/report/figures/join-evenOnePercent-and-oddOnePercent-by-tuples.pgf index 8a6096f5..a9ca8807 100644 --- a/report/figures/join-evenOnePercent-and-oddOnePercent-by-tuples.pgf +++ b/report/figures/join-evenOnePercent-and-oddOnePercent-by-tuples.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,8 +57,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.549444in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.976534in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.176534in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.176534in}}% \pgfpathlineto{\pgfqpoint{0.688581in}{0.549444in}}% \pgfpathclose% \pgfusepath{fill}% @@ -234,7 +234,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{0.659765in}% +\pgfsys@transformshift{0.688581in}{0.668856in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -242,7 +242,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=0.611571in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0}\)}% +\pgftext[x=0.344444in, y=0.620662in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -259,7 +259,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.248337in}% +\pgfsys@transformshift{0.688581in}{0.987392in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -267,7 +267,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.200142in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.5}\)}% +\pgftext[x=0.344444in, y=0.939197in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.25}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -284,7 +284,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.836908in}% +\pgfsys@transformshift{0.688581in}{1.305928in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -292,7 +292,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.788714in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.0}\)}% +\pgftext[x=0.344444in, y=1.257733in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.50}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -309,7 +309,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.425479in}% +\pgfsys@transformshift{0.688581in}{1.624463in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -317,16 +317,116 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.377285in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.5}\)}% +\pgftext[x=0.344444in, y=1.576269in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.75}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{1.942999in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=1.894805in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.00}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.261535in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.213341in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.25}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.580071in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.531876in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.50}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.898607in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.850412in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.75}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.358333in,y=1.762989in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=1.862989in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -334,27 +434,27 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.659768in}}% -\pgfpathlineto{\pgfqpoint{0.930236in}{0.659779in}}% -\pgfpathlineto{\pgfqpoint{0.941978in}{0.659821in}}% -\pgfpathlineto{\pgfqpoint{0.965463in}{0.659986in}}% -\pgfpathlineto{\pgfqpoint{1.035916in}{0.661141in}}% -\pgfpathlineto{\pgfqpoint{1.153339in}{0.665262in}}% -\pgfpathlineto{\pgfqpoint{1.270761in}{0.672138in}}% -\pgfpathlineto{\pgfqpoint{1.388183in}{0.682141in}}% -\pgfpathlineto{\pgfqpoint{1.857873in}{0.749103in}}% -\pgfpathlineto{\pgfqpoint{2.327563in}{0.859763in}}% -\pgfpathlineto{\pgfqpoint{2.797252in}{1.018002in}}% -\pgfpathlineto{\pgfqpoint{3.266942in}{1.221616in}}% -\pgfpathlineto{\pgfqpoint{3.736632in}{1.452122in}}% -\pgfpathlineto{\pgfqpoint{4.206321in}{1.742239in}}% -\pgfpathlineto{\pgfqpoint{4.676011in}{2.068156in}}% -\pgfpathlineto{\pgfqpoint{5.145700in}{2.443829in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{2.866211in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.668859in}}% +\pgfpathlineto{\pgfqpoint{0.930236in}{0.668871in}}% +\pgfpathlineto{\pgfqpoint{0.941978in}{0.668916in}}% +\pgfpathlineto{\pgfqpoint{0.965463in}{0.669095in}}% +\pgfpathlineto{\pgfqpoint{1.035916in}{0.670345in}}% +\pgfpathlineto{\pgfqpoint{1.153339in}{0.674806in}}% +\pgfpathlineto{\pgfqpoint{1.270761in}{0.682248in}}% +\pgfpathlineto{\pgfqpoint{1.388183in}{0.693075in}}% +\pgfpathlineto{\pgfqpoint{1.857873in}{0.765556in}}% +\pgfpathlineto{\pgfqpoint{2.327563in}{0.885334in}}% +\pgfpathlineto{\pgfqpoint{2.797252in}{1.056613in}}% +\pgfpathlineto{\pgfqpoint{3.266942in}{1.277005in}}% +\pgfpathlineto{\pgfqpoint{3.736632in}{1.526506in}}% +\pgfpathlineto{\pgfqpoint{4.206321in}{1.840529in}}% +\pgfpathlineto{\pgfqpoint{4.676011in}{2.193303in}}% +\pgfpathlineto{\pgfqpoint{5.145700in}{2.599932in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{3.057120in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -379,76 +479,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.923191in}{0.659768in}% +\pgfsys@transformshift{0.923191in}{0.668859in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.930236in}{0.659779in}% +\pgfsys@transformshift{0.930236in}{0.668871in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.941978in}{0.659821in}% +\pgfsys@transformshift{0.941978in}{0.668916in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.965463in}{0.659986in}% +\pgfsys@transformshift{0.965463in}{0.669095in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.035916in}{0.661141in}% +\pgfsys@transformshift{1.035916in}{0.670345in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.153339in}{0.665262in}% +\pgfsys@transformshift{1.153339in}{0.674806in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.270761in}{0.672138in}% +\pgfsys@transformshift{1.270761in}{0.682248in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.388183in}{0.682141in}% +\pgfsys@transformshift{1.388183in}{0.693075in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.857873in}{0.749103in}% +\pgfsys@transformshift{1.857873in}{0.765556in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.327563in}{0.859763in}% +\pgfsys@transformshift{2.327563in}{0.885334in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.797252in}{1.018002in}% +\pgfsys@transformshift{2.797252in}{1.056613in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.266942in}{1.221616in}% +\pgfsys@transformshift{3.266942in}{1.277005in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.736632in}{1.452122in}% +\pgfsys@transformshift{3.736632in}{1.526506in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.206321in}{1.742239in}% +\pgfsys@transformshift{4.206321in}{1.840529in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676011in}{2.068156in}% +\pgfsys@transformshift{4.676011in}{2.193303in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.145700in}{2.443829in}% +\pgfsys@transformshift{5.145700in}{2.599932in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{2.866211in}% +\pgfsys@transformshift{5.615390in}{3.057120in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -456,27 +556,27 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.659766in}}% -\pgfpathlineto{\pgfqpoint{0.930236in}{0.659772in}}% -\pgfpathlineto{\pgfqpoint{0.941978in}{0.659789in}}% -\pgfpathlineto{\pgfqpoint{0.965463in}{0.659860in}}% -\pgfpathlineto{\pgfqpoint{1.035916in}{0.660350in}}% -\pgfpathlineto{\pgfqpoint{1.153339in}{0.662097in}}% -\pgfpathlineto{\pgfqpoint{1.270761in}{0.665356in}}% -\pgfpathlineto{\pgfqpoint{1.388183in}{0.669317in}}% -\pgfpathlineto{\pgfqpoint{1.857873in}{0.697861in}}% -\pgfpathlineto{\pgfqpoint{2.327563in}{0.745285in}}% -\pgfpathlineto{\pgfqpoint{2.797252in}{0.812492in}}% -\pgfpathlineto{\pgfqpoint{3.266942in}{0.897904in}}% -\pgfpathlineto{\pgfqpoint{3.736632in}{0.997288in}}% -\pgfpathlineto{\pgfqpoint{4.206321in}{1.126490in}}% -\pgfpathlineto{\pgfqpoint{4.676011in}{1.256192in}}% -\pgfpathlineto{\pgfqpoint{5.145700in}{1.430968in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{1.590906in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.668857in}}% +\pgfpathlineto{\pgfqpoint{0.930236in}{0.668863in}}% +\pgfpathlineto{\pgfqpoint{0.941978in}{0.668882in}}% +\pgfpathlineto{\pgfqpoint{0.965463in}{0.668958in}}% +\pgfpathlineto{\pgfqpoint{1.035916in}{0.669489in}}% +\pgfpathlineto{\pgfqpoint{1.153339in}{0.671380in}}% +\pgfpathlineto{\pgfqpoint{1.270761in}{0.674908in}}% +\pgfpathlineto{\pgfqpoint{1.388183in}{0.679195in}}% +\pgfpathlineto{\pgfqpoint{1.857873in}{0.710091in}}% +\pgfpathlineto{\pgfqpoint{2.327563in}{0.761423in}}% +\pgfpathlineto{\pgfqpoint{2.797252in}{0.834168in}}% +\pgfpathlineto{\pgfqpoint{3.266942in}{0.926618in}}% +\pgfpathlineto{\pgfqpoint{3.736632in}{1.034191in}}% +\pgfpathlineto{\pgfqpoint{4.206321in}{1.174040in}}% +\pgfpathlineto{\pgfqpoint{4.676011in}{1.314430in}}% +\pgfpathlineto{\pgfqpoint{5.145700in}{1.503608in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{1.676725in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -501,76 +601,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.923191in}{0.659766in}% +\pgfsys@transformshift{0.923191in}{0.668857in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.930236in}{0.659772in}% +\pgfsys@transformshift{0.930236in}{0.668863in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.941978in}{0.659789in}% +\pgfsys@transformshift{0.941978in}{0.668882in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.965463in}{0.659860in}% +\pgfsys@transformshift{0.965463in}{0.668958in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.035916in}{0.660350in}% +\pgfsys@transformshift{1.035916in}{0.669489in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.153339in}{0.662097in}% +\pgfsys@transformshift{1.153339in}{0.671380in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.270761in}{0.665356in}% +\pgfsys@transformshift{1.270761in}{0.674908in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.388183in}{0.669317in}% +\pgfsys@transformshift{1.388183in}{0.679195in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.857873in}{0.697861in}% +\pgfsys@transformshift{1.857873in}{0.710091in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.327563in}{0.745285in}% +\pgfsys@transformshift{2.327563in}{0.761423in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.797252in}{0.812492in}% +\pgfsys@transformshift{2.797252in}{0.834168in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.266942in}{0.897904in}% +\pgfsys@transformshift{3.266942in}{0.926618in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.736632in}{0.997288in}% +\pgfsys@transformshift{3.736632in}{1.034191in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.206321in}{1.126490in}% +\pgfsys@transformshift{4.206321in}{1.174040in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676011in}{1.256192in}% +\pgfsys@transformshift{4.676011in}{1.314430in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.145700in}{1.430968in}% +\pgfsys@transformshift{5.145700in}{1.503608in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{1.590906in}% +\pgfsys@transformshift{5.615390in}{1.676725in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -578,27 +678,27 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.663582in}}% -\pgfpathlineto{\pgfqpoint{0.930236in}{0.663511in}}% -\pgfpathlineto{\pgfqpoint{0.941978in}{0.663546in}}% -\pgfpathlineto{\pgfqpoint{0.965463in}{0.663718in}}% -\pgfpathlineto{\pgfqpoint{1.035916in}{0.663639in}}% -\pgfpathlineto{\pgfqpoint{1.153339in}{0.663744in}}% -\pgfpathlineto{\pgfqpoint{1.270761in}{0.663888in}}% -\pgfpathlineto{\pgfqpoint{1.388183in}{0.663975in}}% -\pgfpathlineto{\pgfqpoint{1.857873in}{0.664693in}}% -\pgfpathlineto{\pgfqpoint{2.327563in}{0.665663in}}% -\pgfpathlineto{\pgfqpoint{2.797252in}{0.667258in}}% -\pgfpathlineto{\pgfqpoint{3.266942in}{0.668516in}}% -\pgfpathlineto{\pgfqpoint{3.736632in}{0.669757in}}% -\pgfpathlineto{\pgfqpoint{4.206321in}{0.671205in}}% -\pgfpathlineto{\pgfqpoint{4.676011in}{0.673266in}}% -\pgfpathlineto{\pgfqpoint{5.145700in}{0.675924in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{0.677829in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.672988in}}% +\pgfpathlineto{\pgfqpoint{0.930236in}{0.672910in}}% +\pgfpathlineto{\pgfqpoint{0.941978in}{0.672948in}}% +\pgfpathlineto{\pgfqpoint{0.965463in}{0.673135in}}% +\pgfpathlineto{\pgfqpoint{1.035916in}{0.673049in}}% +\pgfpathlineto{\pgfqpoint{1.153339in}{0.673163in}}% +\pgfpathlineto{\pgfqpoint{1.270761in}{0.673319in}}% +\pgfpathlineto{\pgfqpoint{1.388183in}{0.673412in}}% +\pgfpathlineto{\pgfqpoint{1.857873in}{0.674190in}}% +\pgfpathlineto{\pgfqpoint{2.327563in}{0.675240in}}% +\pgfpathlineto{\pgfqpoint{2.797252in}{0.676966in}}% +\pgfpathlineto{\pgfqpoint{3.266942in}{0.678328in}}% +\pgfpathlineto{\pgfqpoint{3.736632in}{0.679671in}}% +\pgfpathlineto{\pgfqpoint{4.206321in}{0.681238in}}% +\pgfpathlineto{\pgfqpoint{4.676011in}{0.683469in}}% +\pgfpathlineto{\pgfqpoint{5.145700in}{0.686346in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{0.688408in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -623,71 +723,71 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.923191in}{0.663582in}% +\pgfsys@transformshift{0.923191in}{0.672988in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.930236in}{0.663511in}% +\pgfsys@transformshift{0.930236in}{0.672910in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.941978in}{0.663546in}% +\pgfsys@transformshift{0.941978in}{0.672948in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.965463in}{0.663718in}% +\pgfsys@transformshift{0.965463in}{0.673135in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.035916in}{0.663639in}% +\pgfsys@transformshift{1.035916in}{0.673049in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.153339in}{0.663744in}% +\pgfsys@transformshift{1.153339in}{0.673163in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.270761in}{0.663888in}% +\pgfsys@transformshift{1.270761in}{0.673319in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.388183in}{0.663975in}% +\pgfsys@transformshift{1.388183in}{0.673412in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.857873in}{0.664693in}% +\pgfsys@transformshift{1.857873in}{0.674190in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.327563in}{0.665663in}% +\pgfsys@transformshift{2.327563in}{0.675240in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.797252in}{0.667258in}% +\pgfsys@transformshift{2.797252in}{0.676966in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.266942in}{0.668516in}% +\pgfsys@transformshift{3.266942in}{0.678328in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.736632in}{0.669757in}% +\pgfsys@transformshift{3.736632in}{0.679671in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.206321in}{0.671205in}% +\pgfsys@transformshift{4.206321in}{0.681238in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676011in}{0.673266in}% +\pgfsys@transformshift{4.676011in}{0.683469in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.145700in}{0.675924in}% +\pgfsys@transformshift{5.145700in}{0.686346in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{0.677829in}% +\pgfsys@transformshift{5.615390in}{0.688408in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -699,7 +799,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -710,7 +810,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -731,21 +831,21 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.688581in}{2.976534in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.976534in}}% +\pgfpathmoveto{\pgfqpoint{0.688581in}{3.176534in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.676373in, y=3.232667in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join evenOnePercent and oddOnePercent' query}% +\pgftext[x=0.676373in, y=3.432667in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join evenOnePercent and oddOnePercent' query}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.396540in, y=3.059867in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont according to tuple count}% +\pgftext[x=2.396540in, y=3.259867in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont according to tuple count}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -758,16 +858,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.785803in}{2.279312in}}% -\pgfpathlineto{\pgfqpoint{2.689970in}{2.279312in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.279312in}}{\pgfqpoint{2.717747in}{2.307090in}}% -\pgfpathlineto{\pgfqpoint{2.717747in}{2.879311in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.907089in}}{\pgfqpoint{2.689970in}{2.907089in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.907089in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.907089in}}{\pgfqpoint{0.758025in}{2.879311in}}% -\pgfpathlineto{\pgfqpoint{0.758025in}{2.307090in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.279312in}}{\pgfqpoint{0.785803in}{2.279312in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.279312in}}% +\pgfpathmoveto{\pgfqpoint{0.785803in}{2.479312in}}% +\pgfpathlineto{\pgfqpoint{2.689970in}{2.479312in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.479312in}}{\pgfqpoint{2.717747in}{2.507090in}}% +\pgfpathlineto{\pgfqpoint{2.717747in}{3.079311in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{3.107089in}}{\pgfqpoint{2.689970in}{3.107089in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{3.107089in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{3.107089in}}{\pgfqpoint{0.758025in}{3.079311in}}% +\pgfpathlineto{\pgfqpoint{0.758025in}{2.507090in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.479312in}}{\pgfqpoint{0.785803in}{2.479312in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{2.479312in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -778,9 +878,9 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.802922in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.802922in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.802922in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{3.002922in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{3.002922in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{3.002922in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -807,7 +907,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.802922in}% +\pgfsys@transformshift{0.952470in}{3.002922in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -815,7 +915,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.754311in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% +\pgftext[x=1.202470in,y=2.954311in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -824,9 +924,9 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.607089in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.607089in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.607089in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.807089in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.807089in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.807089in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -853,7 +953,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.607089in}% +\pgfsys@transformshift{0.952470in}{2.807089in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -861,7 +961,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.558478in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% +\pgftext[x=1.202470in,y=2.758478in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -870,9 +970,9 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.411951in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.411951in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.411951in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.611951in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.611951in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.611951in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -899,7 +999,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.411951in}% +\pgfsys@transformshift{0.952470in}{2.611951in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -907,7 +1007,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.363339in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% +\pgftext[x=1.202470in,y=2.563339in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/join-onePercent-and-fiftyPercent-1000.pgf b/report/figures/join-onePercent-and-fiftyPercent-1000.pgf index 14c7e6ab..8112794e 100644 --- a/report/figures/join-onePercent-and-fiftyPercent-1000.pgf +++ b/report/figures/join-onePercent-and-fiftyPercent-1000.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,14 +57,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.149333in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{3.149333in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.349333in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.349333in}}% \pgfpathlineto{\pgfqpoint{0.827470in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.596834in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.796834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -77,14 +77,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.055767in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{2.360320in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{2.360320in}{3.025675in}}% -\pgfpathlineto{\pgfqpoint{1.055767in}{3.025675in}}% +\pgfpathlineto{\pgfqpoint{2.360320in}{3.216151in}}% +\pgfpathlineto{\pgfqpoint{1.055767in}{3.216151in}}% \pgfpathlineto{\pgfqpoint{1.055767in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.596834in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.796834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -97,14 +97,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{2.686458in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{3.991012in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{3.991012in}{1.624706in}}% -\pgfpathlineto{\pgfqpoint{2.686458in}{1.624706in}}% +\pgfpathlineto{\pgfqpoint{3.991012in}{1.707284in}}% +\pgfpathlineto{\pgfqpoint{2.686458in}{1.707284in}}% \pgfpathlineto{\pgfqpoint{2.686458in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.596834in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.796834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -117,8 +117,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.317150in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.621703in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.621703in}{1.521140in}}% -\pgfpathlineto{\pgfqpoint{4.317150in}{1.521140in}}% +\pgfpathlineto{\pgfqpoint{5.621703in}{1.595741in}}% +\pgfpathlineto{\pgfqpoint{4.317150in}{1.595741in}}% \pgfpathlineto{\pgfqpoint{4.317150in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% @@ -244,7 +244,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{0.866829in}% +\pgfsys@transformshift{0.827470in}{0.891037in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -252,7 +252,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=0.818634in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0025}\)}% +\pgftext[x=0.344444in, y=0.842843in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0025}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -269,7 +269,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.181158in}% +\pgfsys@transformshift{0.827470in}{1.229575in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -277,7 +277,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.132963in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0050}\)}% +\pgftext[x=0.344444in, y=1.181380in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0050}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -294,7 +294,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.495487in}% +\pgfsys@transformshift{0.827470in}{1.568113in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -302,7 +302,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.447292in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0075}\)}% +\pgftext[x=0.344444in, y=1.519918in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0075}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -319,7 +319,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.809816in}% +\pgfsys@transformshift{0.827470in}{1.906650in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -327,7 +327,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.761621in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0100}\)}% +\pgftext[x=0.344444in, y=1.858456in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0100}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -344,7 +344,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.124145in}% +\pgfsys@transformshift{0.827470in}{2.245188in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -352,7 +352,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.075950in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0125}\)}% +\pgftext[x=0.344444in, y=2.196993in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0125}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -369,7 +369,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.438474in}% +\pgfsys@transformshift{0.827470in}{2.583725in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -377,7 +377,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.390279in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0150}\)}% +\pgftext[x=0.344444in, y=2.535531in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0150}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -394,7 +394,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.752803in}% +\pgfsys@transformshift{0.827470in}{2.922263in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -402,7 +402,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.704608in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0175}\)}% +\pgftext[x=0.344444in, y=2.874069in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0175}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -419,7 +419,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{3.067132in}% +\pgfsys@transformshift{0.827470in}{3.260801in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -427,13 +427,13 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=3.018937in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0200}\)}% +\pgftext[x=0.344444in, y=3.212606in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0200}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.288889in,y=1.850917in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Time (s)}% +\pgftext[x=0.288889in,y=1.950917in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Time (s)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -443,7 +443,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{3.149333in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.349333in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -454,7 +454,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.149333in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.349333in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -475,15 +475,15 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.827470in}{3.149333in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.149333in}}% +\pgfpathmoveto{\pgfqpoint{0.827470in}{3.349333in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.349333in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=3.338735in,y=3.232667in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join onePercent and fiftyPercent' with 1000 tuples}% +\pgftext[x=3.338735in,y=3.432667in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join onePercent and fiftyPercent' with 1000 tuples}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/join-onePercent-and-fiftyPercent-by-tuple-smallest.pgf b/report/figures/join-onePercent-and-fiftyPercent-by-tuple-smallest.pgf index 5dcc5044..25126d68 100644 --- a/report/figures/join-onePercent-and-fiftyPercent-by-tuple-smallest.pgf +++ b/report/figures/join-onePercent-and-fiftyPercent-by-tuple-smallest.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,8 +57,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.549444in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.976534in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.176534in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.176534in}}% \pgfpathlineto{\pgfqpoint{0.827470in}{0.549444in}}% \pgfpathclose% \pgfusepath{fill}% @@ -234,7 +234,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{0.659658in}% +\pgfsys@transformshift{0.827470in}{0.668740in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -242,7 +242,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=0.611463in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.000}\)}% +\pgftext[x=0.344444in, y=0.620545in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0000}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -259,7 +259,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.220543in}% +\pgfsys@transformshift{0.827470in}{0.972292in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -267,7 +267,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.172349in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.005}\)}% +\pgftext[x=0.344444in, y=0.924097in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0025}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -284,7 +284,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.781428in}% +\pgfsys@transformshift{0.827470in}{1.275844in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -292,7 +292,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.733234in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.010}\)}% +\pgftext[x=0.344444in, y=1.227649in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0050}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -309,7 +309,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.342314in}% +\pgfsys@transformshift{0.827470in}{1.579396in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -317,7 +317,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.294119in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.015}\)}% +\pgftext[x=0.344444in, y=1.531201in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0075}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -334,7 +334,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.903199in}% +\pgfsys@transformshift{0.827470in}{1.882948in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -342,16 +342,116 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.855005in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.020}\)}% +\pgftext[x=0.344444in, y=1.834754in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0100}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{2.186500in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.138306in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0125}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{2.490052in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.441858in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0150}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{2.793604in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.745410in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0175}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{3.097156in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=3.048962in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0200}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.358333in,y=1.762989in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=1.862989in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.549444in}}{\pgfqpoint{5.022530in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.549444in}}{\pgfqpoint{5.022530in}{2.627089in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -359,18 +459,18 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.055767in}{0.659881in}}% -\pgfpathlineto{\pgfqpoint{1.124948in}{0.661061in}}% -\pgfpathlineto{\pgfqpoint{1.240249in}{0.665018in}}% -\pgfpathlineto{\pgfqpoint{1.470852in}{0.680876in}}% -\pgfpathlineto{\pgfqpoint{2.162660in}{0.791875in}}% -\pgfpathlineto{\pgfqpoint{3.315675in}{1.193611in}}% -\pgfpathlineto{\pgfqpoint{4.468689in}{1.869781in}}% -\pgfpathlineto{\pgfqpoint{5.621703in}{2.866211in}}% +\pgfpathmoveto{\pgfqpoint{1.055767in}{0.668981in}}% +\pgfpathlineto{\pgfqpoint{1.124948in}{0.670258in}}% +\pgfpathlineto{\pgfqpoint{1.240249in}{0.674542in}}% +\pgfpathlineto{\pgfqpoint{1.470852in}{0.691706in}}% +\pgfpathlineto{\pgfqpoint{2.162660in}{0.811852in}}% +\pgfpathlineto{\pgfqpoint{3.315675in}{1.246693in}}% +\pgfpathlineto{\pgfqpoint{4.468689in}{1.978582in}}% +\pgfpathlineto{\pgfqpoint{5.621703in}{3.057120in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.549444in}}{\pgfqpoint{5.022530in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.549444in}}{\pgfqpoint{5.022530in}{2.627089in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -395,40 +495,40 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.055767in}{0.659881in}% +\pgfsys@transformshift{1.055767in}{0.668981in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.124948in}{0.661061in}% +\pgfsys@transformshift{1.124948in}{0.670258in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.240249in}{0.665018in}% +\pgfsys@transformshift{1.240249in}{0.674542in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.470852in}{0.680876in}% +\pgfsys@transformshift{1.470852in}{0.691706in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.162660in}{0.791875in}% +\pgfsys@transformshift{2.162660in}{0.811852in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.315675in}{1.193611in}% +\pgfsys@transformshift{3.315675in}{1.246693in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.468689in}{1.869781in}% +\pgfsys@transformshift{4.468689in}{1.978582in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.621703in}{2.866211in}% +\pgfsys@transformshift{5.621703in}{3.057120in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.549444in}}{\pgfqpoint{5.022530in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.549444in}}{\pgfqpoint{5.022530in}{2.627089in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -436,18 +536,18 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.055767in}{0.659766in}}% -\pgfpathlineto{\pgfqpoint{1.124948in}{0.660340in}}% -\pgfpathlineto{\pgfqpoint{1.240249in}{0.662043in}}% -\pgfpathlineto{\pgfqpoint{1.470852in}{0.668833in}}% -\pgfpathlineto{\pgfqpoint{2.162660in}{0.716552in}}% -\pgfpathlineto{\pgfqpoint{3.315675in}{0.888298in}}% -\pgfpathlineto{\pgfqpoint{4.468689in}{1.196003in}}% -\pgfpathlineto{\pgfqpoint{5.621703in}{1.616275in}}% +\pgfpathmoveto{\pgfqpoint{1.055767in}{0.668857in}}% +\pgfpathlineto{\pgfqpoint{1.124948in}{0.669478in}}% +\pgfpathlineto{\pgfqpoint{1.240249in}{0.671322in}}% +\pgfpathlineto{\pgfqpoint{1.470852in}{0.678671in}}% +\pgfpathlineto{\pgfqpoint{2.162660in}{0.730322in}}% +\pgfpathlineto{\pgfqpoint{3.315675in}{0.916220in}}% +\pgfpathlineto{\pgfqpoint{4.468689in}{1.249282in}}% +\pgfpathlineto{\pgfqpoint{5.621703in}{1.704185in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.549444in}}{\pgfqpoint{5.022530in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.549444in}}{\pgfqpoint{5.022530in}{2.627089in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -472,40 +572,40 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.055767in}{0.659766in}% +\pgfsys@transformshift{1.055767in}{0.668857in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.124948in}{0.660340in}% +\pgfsys@transformshift{1.124948in}{0.669478in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.240249in}{0.662043in}% +\pgfsys@transformshift{1.240249in}{0.671322in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.470852in}{0.668833in}% +\pgfsys@transformshift{1.470852in}{0.678671in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.162660in}{0.716552in}% +\pgfsys@transformshift{2.162660in}{0.730322in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.315675in}{0.888298in}% +\pgfsys@transformshift{3.315675in}{0.916220in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.468689in}{1.196003in}% +\pgfsys@transformshift{4.468689in}{1.249282in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.621703in}{1.616275in}% +\pgfsys@transformshift{5.621703in}{1.704185in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.549444in}}{\pgfqpoint{5.022530in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.549444in}}{\pgfqpoint{5.022530in}{2.627089in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -513,18 +613,18 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.055767in}{1.023461in}}% -\pgfpathlineto{\pgfqpoint{1.124948in}{1.020008in}}% -\pgfpathlineto{\pgfqpoint{1.240249in}{1.023306in}}% -\pgfpathlineto{\pgfqpoint{1.470852in}{1.027156in}}% -\pgfpathlineto{\pgfqpoint{2.162660in}{1.067045in}}% -\pgfpathlineto{\pgfqpoint{3.315675in}{1.214749in}}% -\pgfpathlineto{\pgfqpoint{4.468689in}{1.415565in}}% -\pgfpathlineto{\pgfqpoint{5.621703in}{1.523873in}}% +\pgfpathmoveto{\pgfqpoint{1.055767in}{1.062522in}}% +\pgfpathlineto{\pgfqpoint{1.124948in}{1.058784in}}% +\pgfpathlineto{\pgfqpoint{1.240249in}{1.062354in}}% +\pgfpathlineto{\pgfqpoint{1.470852in}{1.066521in}}% +\pgfpathlineto{\pgfqpoint{2.162660in}{1.109697in}}% +\pgfpathlineto{\pgfqpoint{3.315675in}{1.269572in}}% +\pgfpathlineto{\pgfqpoint{4.468689in}{1.486936in}}% +\pgfpathlineto{\pgfqpoint{5.621703in}{1.604170in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.549444in}}{\pgfqpoint{5.022530in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.549444in}}{\pgfqpoint{5.022530in}{2.627089in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -549,35 +649,35 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.055767in}{1.023461in}% +\pgfsys@transformshift{1.055767in}{1.062522in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.124948in}{1.020008in}% +\pgfsys@transformshift{1.124948in}{1.058784in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.240249in}{1.023306in}% +\pgfsys@transformshift{1.240249in}{1.062354in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.470852in}{1.027156in}% +\pgfsys@transformshift{1.470852in}{1.066521in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.162660in}{1.067045in}% +\pgfsys@transformshift{2.162660in}{1.109697in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.315675in}{1.214749in}% +\pgfsys@transformshift{3.315675in}{1.269572in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.468689in}{1.415565in}% +\pgfsys@transformshift{4.468689in}{1.486936in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.621703in}{1.523873in}% +\pgfsys@transformshift{5.621703in}{1.604170in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -589,7 +689,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -600,7 +700,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -621,21 +721,21 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.827470in}{2.976534in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.976534in}}% +\pgfpathmoveto{\pgfqpoint{0.827470in}{3.176534in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.063152in, y=3.232667in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join onePercent and fiftyPercent' query}% +\pgftext[x=1.063152in, y=3.432667in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join onePercent and fiftyPercent' query}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.465985in, y=3.059867in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont according to tuple count}% +\pgftext[x=2.465985in, y=3.259867in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont according to tuple count}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -648,16 +748,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.924692in}{2.279312in}}% -\pgfpathlineto{\pgfqpoint{2.828859in}{2.279312in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.856637in}{2.279312in}}{\pgfqpoint{2.856637in}{2.307090in}}% -\pgfpathlineto{\pgfqpoint{2.856637in}{2.879311in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.856637in}{2.907089in}}{\pgfqpoint{2.828859in}{2.907089in}}% -\pgfpathlineto{\pgfqpoint{0.924692in}{2.907089in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.896914in}{2.907089in}}{\pgfqpoint{0.896914in}{2.879311in}}% -\pgfpathlineto{\pgfqpoint{0.896914in}{2.307090in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.896914in}{2.279312in}}{\pgfqpoint{0.924692in}{2.279312in}}% -\pgfpathlineto{\pgfqpoint{0.924692in}{2.279312in}}% +\pgfpathmoveto{\pgfqpoint{0.924692in}{2.479312in}}% +\pgfpathlineto{\pgfqpoint{2.828859in}{2.479312in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.856637in}{2.479312in}}{\pgfqpoint{2.856637in}{2.507090in}}% +\pgfpathlineto{\pgfqpoint{2.856637in}{3.079311in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.856637in}{3.107089in}}{\pgfqpoint{2.828859in}{3.107089in}}% +\pgfpathlineto{\pgfqpoint{0.924692in}{3.107089in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.896914in}{3.107089in}}{\pgfqpoint{0.896914in}{3.079311in}}% +\pgfpathlineto{\pgfqpoint{0.896914in}{2.507090in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.896914in}{2.479312in}}{\pgfqpoint{0.924692in}{2.479312in}}% +\pgfpathlineto{\pgfqpoint{0.924692in}{2.479312in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -668,9 +768,9 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.952470in}{2.802922in}}% -\pgfpathlineto{\pgfqpoint{1.091359in}{2.802922in}}% -\pgfpathlineto{\pgfqpoint{1.230248in}{2.802922in}}% +\pgfpathmoveto{\pgfqpoint{0.952470in}{3.002922in}}% +\pgfpathlineto{\pgfqpoint{1.091359in}{3.002922in}}% +\pgfpathlineto{\pgfqpoint{1.230248in}{3.002922in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -697,7 +797,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.091359in}{2.802922in}% +\pgfsys@transformshift{1.091359in}{3.002922in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -705,7 +805,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.341359in,y=2.754311in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% +\pgftext[x=1.341359in,y=2.954311in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -714,9 +814,9 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.952470in}{2.607089in}}% -\pgfpathlineto{\pgfqpoint{1.091359in}{2.607089in}}% -\pgfpathlineto{\pgfqpoint{1.230248in}{2.607089in}}% +\pgfpathmoveto{\pgfqpoint{0.952470in}{2.807089in}}% +\pgfpathlineto{\pgfqpoint{1.091359in}{2.807089in}}% +\pgfpathlineto{\pgfqpoint{1.230248in}{2.807089in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -743,7 +843,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.091359in}{2.607089in}% +\pgfsys@transformshift{1.091359in}{2.807089in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -751,7 +851,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.341359in,y=2.558478in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% +\pgftext[x=1.341359in,y=2.758478in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -760,9 +860,9 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.952470in}{2.411951in}}% -\pgfpathlineto{\pgfqpoint{1.091359in}{2.411951in}}% -\pgfpathlineto{\pgfqpoint{1.230248in}{2.411951in}}% +\pgfpathmoveto{\pgfqpoint{0.952470in}{2.611951in}}% +\pgfpathlineto{\pgfqpoint{1.091359in}{2.611951in}}% +\pgfpathlineto{\pgfqpoint{1.230248in}{2.611951in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -789,7 +889,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.091359in}{2.411951in}% +\pgfsys@transformshift{1.091359in}{2.611951in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -797,7 +897,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.341359in,y=2.363339in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% +\pgftext[x=1.341359in,y=2.563339in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/join-onePercent-and-fiftyPercent-by-tuple-with-inset.pgf b/report/figures/join-onePercent-and-fiftyPercent-by-tuple-with-inset.pgf index d787496a..0be36f92 100644 --- a/report/figures/join-onePercent-and-fiftyPercent-by-tuple-with-inset.pgf +++ b/report/figures/join-onePercent-and-fiftyPercent-by-tuple-with-inset.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,8 +57,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.549444in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.976534in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.176534in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.176534in}}% \pgfpathlineto{\pgfqpoint{0.688581in}{0.549444in}}% \pgfpathclose% \pgfusepath{fill}% @@ -234,7 +234,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{0.659766in}% +\pgfsys@transformshift{0.688581in}{0.668857in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -242,7 +242,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=0.611572in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0}\)}% +\pgftext[x=0.344444in, y=0.620663in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -259,7 +259,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.229004in}% +\pgfsys@transformshift{0.688581in}{0.976930in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -267,7 +267,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.180809in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.5}\)}% +\pgftext[x=0.344444in, y=0.928735in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.25}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -284,7 +284,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.798241in}% +\pgfsys@transformshift{0.688581in}{1.285002in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -292,7 +292,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.750047in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.0}\)}% +\pgftext[x=0.344444in, y=1.236807in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.50}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -309,7 +309,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.367479in}% +\pgfsys@transformshift{0.688581in}{1.593074in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -317,7 +317,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.319284in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.5}\)}% +\pgftext[x=0.344444in, y=1.544879in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.75}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -334,7 +334,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.936716in}% +\pgfsys@transformshift{0.688581in}{1.901146in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -342,16 +342,116 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.888521in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {2.0}\)}% +\pgftext[x=0.344444in, y=1.852952in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.00}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.209218in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.161024in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.25}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.517290in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.469096in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.50}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.825363in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.777168in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.75}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{3.133435in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=3.085240in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {2.00}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.358333in,y=1.762989in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=1.862989in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -359,27 +459,27 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.927883in}{0.659769in}}% -\pgfpathlineto{\pgfqpoint{0.934921in}{0.659781in}}% -\pgfpathlineto{\pgfqpoint{0.946652in}{0.659821in}}% -\pgfpathlineto{\pgfqpoint{0.970113in}{0.659982in}}% -\pgfpathlineto{\pgfqpoint{1.040496in}{0.661108in}}% -\pgfpathlineto{\pgfqpoint{1.157801in}{0.665185in}}% -\pgfpathlineto{\pgfqpoint{1.275106in}{0.672048in}}% -\pgfpathlineto{\pgfqpoint{1.392411in}{0.682161in}}% -\pgfpathlineto{\pgfqpoint{1.861631in}{0.749372in}}% -\pgfpathlineto{\pgfqpoint{2.330850in}{0.859472in}}% -\pgfpathlineto{\pgfqpoint{2.800070in}{1.016667in}}% -\pgfpathlineto{\pgfqpoint{3.269290in}{1.217780in}}% -\pgfpathlineto{\pgfqpoint{3.738510in}{1.452177in}}% -\pgfpathlineto{\pgfqpoint{4.207730in}{1.739128in}}% -\pgfpathlineto{\pgfqpoint{4.676950in}{2.066179in}}% -\pgfpathlineto{\pgfqpoint{5.146170in}{2.432929in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{2.866211in}}% +\pgfpathmoveto{\pgfqpoint{0.927883in}{0.668860in}}% +\pgfpathlineto{\pgfqpoint{0.934921in}{0.668873in}}% +\pgfpathlineto{\pgfqpoint{0.946652in}{0.668916in}}% +\pgfpathlineto{\pgfqpoint{0.970113in}{0.669090in}}% +\pgfpathlineto{\pgfqpoint{1.040496in}{0.670310in}}% +\pgfpathlineto{\pgfqpoint{1.157801in}{0.674723in}}% +\pgfpathlineto{\pgfqpoint{1.275106in}{0.682151in}}% +\pgfpathlineto{\pgfqpoint{1.392411in}{0.693097in}}% +\pgfpathlineto{\pgfqpoint{1.861631in}{0.765846in}}% +\pgfpathlineto{\pgfqpoint{2.330850in}{0.885019in}}% +\pgfpathlineto{\pgfqpoint{2.800070in}{1.055168in}}% +\pgfpathlineto{\pgfqpoint{3.269290in}{1.272853in}}% +\pgfpathlineto{\pgfqpoint{3.738510in}{1.526565in}}% +\pgfpathlineto{\pgfqpoint{4.207730in}{1.837161in}}% +\pgfpathlineto{\pgfqpoint{4.676950in}{2.191162in}}% +\pgfpathlineto{\pgfqpoint{5.146170in}{2.588134in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{3.057120in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -404,76 +504,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.927883in}{0.659769in}% +\pgfsys@transformshift{0.927883in}{0.668860in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.934921in}{0.659781in}% +\pgfsys@transformshift{0.934921in}{0.668873in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.946652in}{0.659821in}% +\pgfsys@transformshift{0.946652in}{0.668916in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.970113in}{0.659982in}% +\pgfsys@transformshift{0.970113in}{0.669090in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.040496in}{0.661108in}% +\pgfsys@transformshift{1.040496in}{0.670310in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.157801in}{0.665185in}% +\pgfsys@transformshift{1.157801in}{0.674723in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.275106in}{0.672048in}% +\pgfsys@transformshift{1.275106in}{0.682151in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.392411in}{0.682161in}% +\pgfsys@transformshift{1.392411in}{0.693097in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.861631in}{0.749372in}% +\pgfsys@transformshift{1.861631in}{0.765846in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.330850in}{0.859472in}% +\pgfsys@transformshift{2.330850in}{0.885019in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.800070in}{1.016667in}% +\pgfsys@transformshift{2.800070in}{1.055168in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.269290in}{1.217780in}% +\pgfsys@transformshift{3.269290in}{1.272853in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.738510in}{1.452177in}% +\pgfsys@transformshift{3.738510in}{1.526565in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.207730in}{1.739128in}% +\pgfsys@transformshift{4.207730in}{1.837161in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676950in}{2.066179in}% +\pgfsys@transformshift{4.676950in}{2.191162in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.146170in}{2.432929in}% +\pgfsys@transformshift{5.146170in}{2.588134in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{2.866211in}% +\pgfsys@transformshift{5.615390in}{3.057120in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -481,27 +581,27 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.927883in}{0.659768in}}% -\pgfpathlineto{\pgfqpoint{0.934921in}{0.659773in}}% -\pgfpathlineto{\pgfqpoint{0.946652in}{0.659791in}}% -\pgfpathlineto{\pgfqpoint{0.970113in}{0.659860in}}% -\pgfpathlineto{\pgfqpoint{1.040496in}{0.660344in}}% -\pgfpathlineto{\pgfqpoint{1.157801in}{0.662087in}}% -\pgfpathlineto{\pgfqpoint{1.275106in}{0.665210in}}% -\pgfpathlineto{\pgfqpoint{1.392411in}{0.669475in}}% -\pgfpathlineto{\pgfqpoint{1.861631in}{0.699487in}}% -\pgfpathlineto{\pgfqpoint{2.330850in}{0.747883in}}% -\pgfpathlineto{\pgfqpoint{2.800070in}{0.818170in}}% -\pgfpathlineto{\pgfqpoint{3.269290in}{0.907301in}}% -\pgfpathlineto{\pgfqpoint{3.738510in}{1.013182in}}% -\pgfpathlineto{\pgfqpoint{4.207730in}{1.154539in}}% -\pgfpathlineto{\pgfqpoint{4.676950in}{1.294873in}}% -\pgfpathlineto{\pgfqpoint{5.146170in}{1.466345in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{1.663759in}}% +\pgfpathmoveto{\pgfqpoint{0.927883in}{0.668859in}}% +\pgfpathlineto{\pgfqpoint{0.934921in}{0.668865in}}% +\pgfpathlineto{\pgfqpoint{0.946652in}{0.668884in}}% +\pgfpathlineto{\pgfqpoint{0.970113in}{0.668958in}}% +\pgfpathlineto{\pgfqpoint{1.040496in}{0.669482in}}% +\pgfpathlineto{\pgfqpoint{1.157801in}{0.671369in}}% +\pgfpathlineto{\pgfqpoint{1.275106in}{0.674749in}}% +\pgfpathlineto{\pgfqpoint{1.392411in}{0.679366in}}% +\pgfpathlineto{\pgfqpoint{1.861631in}{0.711851in}}% +\pgfpathlineto{\pgfqpoint{2.330850in}{0.764235in}}% +\pgfpathlineto{\pgfqpoint{2.800070in}{0.840314in}}% +\pgfpathlineto{\pgfqpoint{3.269290in}{0.936790in}}% +\pgfpathlineto{\pgfqpoint{3.738510in}{1.051396in}}% +\pgfpathlineto{\pgfqpoint{4.207730in}{1.204401in}}% +\pgfpathlineto{\pgfqpoint{4.676950in}{1.356298in}}% +\pgfpathlineto{\pgfqpoint{5.146170in}{1.541901in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{1.755582in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -526,76 +626,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.927883in}{0.659768in}% +\pgfsys@transformshift{0.927883in}{0.668859in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.934921in}{0.659773in}% +\pgfsys@transformshift{0.934921in}{0.668865in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.946652in}{0.659791in}% +\pgfsys@transformshift{0.946652in}{0.668884in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.970113in}{0.659860in}% +\pgfsys@transformshift{0.970113in}{0.668958in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.040496in}{0.660344in}% +\pgfsys@transformshift{1.040496in}{0.669482in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.157801in}{0.662087in}% +\pgfsys@transformshift{1.157801in}{0.671369in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.275106in}{0.665210in}% +\pgfsys@transformshift{1.275106in}{0.674749in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.392411in}{0.669475in}% +\pgfsys@transformshift{1.392411in}{0.679366in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.861631in}{0.699487in}% +\pgfsys@transformshift{1.861631in}{0.711851in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.330850in}{0.747883in}% +\pgfsys@transformshift{2.330850in}{0.764235in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.800070in}{0.818170in}% +\pgfsys@transformshift{2.800070in}{0.840314in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.269290in}{0.907301in}% +\pgfsys@transformshift{3.269290in}{0.936790in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.738510in}{1.013182in}% +\pgfsys@transformshift{3.738510in}{1.051396in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.207730in}{1.154539in}% +\pgfsys@transformshift{4.207730in}{1.204401in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676950in}{1.294873in}% +\pgfsys@transformshift{4.676950in}{1.356298in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.146170in}{1.466345in}% +\pgfsys@transformshift{5.146170in}{1.541901in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{1.663759in}% +\pgfsys@transformshift{5.615390in}{1.755582in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -603,27 +703,27 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.927883in}{0.663459in}}% -\pgfpathlineto{\pgfqpoint{0.934921in}{0.663424in}}% -\pgfpathlineto{\pgfqpoint{0.946652in}{0.663457in}}% -\pgfpathlineto{\pgfqpoint{0.970113in}{0.663496in}}% -\pgfpathlineto{\pgfqpoint{1.040496in}{0.663901in}}% -\pgfpathlineto{\pgfqpoint{1.157801in}{0.665400in}}% -\pgfpathlineto{\pgfqpoint{1.275106in}{0.667438in}}% -\pgfpathlineto{\pgfqpoint{1.392411in}{0.668537in}}% -\pgfpathlineto{\pgfqpoint{1.861631in}{0.677929in}}% -\pgfpathlineto{\pgfqpoint{2.330850in}{0.691631in}}% -\pgfpathlineto{\pgfqpoint{2.800070in}{0.711840in}}% -\pgfpathlineto{\pgfqpoint{3.269290in}{0.742222in}}% -\pgfpathlineto{\pgfqpoint{3.738510in}{0.783268in}}% -\pgfpathlineto{\pgfqpoint{4.207730in}{0.835046in}}% -\pgfpathlineto{\pgfqpoint{4.676950in}{0.880940in}}% -\pgfpathlineto{\pgfqpoint{5.146170in}{0.957122in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{1.067613in}}% +\pgfpathmoveto{\pgfqpoint{0.927883in}{0.672854in}}% +\pgfpathlineto{\pgfqpoint{0.934921in}{0.672816in}}% +\pgfpathlineto{\pgfqpoint{0.946652in}{0.672852in}}% +\pgfpathlineto{\pgfqpoint{0.970113in}{0.672894in}}% +\pgfpathlineto{\pgfqpoint{1.040496in}{0.673333in}}% +\pgfpathlineto{\pgfqpoint{1.157801in}{0.674955in}}% +\pgfpathlineto{\pgfqpoint{1.275106in}{0.677161in}}% +\pgfpathlineto{\pgfqpoint{1.392411in}{0.678351in}}% +\pgfpathlineto{\pgfqpoint{1.861631in}{0.688517in}}% +\pgfpathlineto{\pgfqpoint{2.330850in}{0.703347in}}% +\pgfpathlineto{\pgfqpoint{2.800070in}{0.725222in}}% +\pgfpathlineto{\pgfqpoint{3.269290in}{0.758107in}}% +\pgfpathlineto{\pgfqpoint{3.738510in}{0.802536in}}% +\pgfpathlineto{\pgfqpoint{4.207730in}{0.858581in}}% +\pgfpathlineto{\pgfqpoint{4.676950in}{0.908257in}}% +\pgfpathlineto{\pgfqpoint{5.146170in}{0.990716in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{1.110312in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -648,71 +748,71 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.927883in}{0.663459in}% +\pgfsys@transformshift{0.927883in}{0.672854in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.934921in}{0.663424in}% +\pgfsys@transformshift{0.934921in}{0.672816in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.946652in}{0.663457in}% +\pgfsys@transformshift{0.946652in}{0.672852in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.970113in}{0.663496in}% +\pgfsys@transformshift{0.970113in}{0.672894in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.040496in}{0.663901in}% +\pgfsys@transformshift{1.040496in}{0.673333in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.157801in}{0.665400in}% +\pgfsys@transformshift{1.157801in}{0.674955in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.275106in}{0.667438in}% +\pgfsys@transformshift{1.275106in}{0.677161in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.392411in}{0.668537in}% +\pgfsys@transformshift{1.392411in}{0.678351in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.861631in}{0.677929in}% +\pgfsys@transformshift{1.861631in}{0.688517in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.330850in}{0.691631in}% +\pgfsys@transformshift{2.330850in}{0.703347in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.800070in}{0.711840in}% +\pgfsys@transformshift{2.800070in}{0.725222in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.269290in}{0.742222in}% +\pgfsys@transformshift{3.269290in}{0.758107in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.738510in}{0.783268in}% +\pgfsys@transformshift{3.738510in}{0.802536in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.207730in}{0.835046in}% +\pgfsys@transformshift{4.207730in}{0.858581in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676950in}{0.880940in}% +\pgfsys@transformshift{4.676950in}{0.908257in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.146170in}{0.957122in}% +\pgfsys@transformshift{5.146170in}{0.990716in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{1.067613in}% +\pgfsys@transformshift{5.615390in}{1.110312in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -724,7 +824,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -735,7 +835,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -756,24 +856,24 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.688581in}{2.976534in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.976534in}}% +\pgfpathmoveto{\pgfqpoint{0.688581in}{3.176534in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.993707in, y=3.232667in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join onePercent and fiftyPercent' query}% +\pgftext[x=0.993707in, y=3.432667in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join onePercent and fiftyPercent' query}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.396540in, y=3.059867in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont according to tuple count}% +\pgftext[x=2.396540in, y=3.259867in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont according to tuple count}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -782,11 +882,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.500000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.659766in}}% -\pgfpathlineto{\pgfqpoint{1.439333in}{0.659766in}}% -\pgfpathlineto{\pgfqpoint{1.439333in}{0.684400in}}% -\pgfpathlineto{\pgfqpoint{0.923191in}{0.684400in}}% -\pgfpathlineto{\pgfqpoint{0.923191in}{0.659766in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.668857in}}% +\pgfpathlineto{\pgfqpoint{1.439333in}{0.668857in}}% +\pgfpathlineto{\pgfqpoint{1.439333in}{0.695521in}}% +\pgfpathlineto{\pgfqpoint{0.923191in}{0.695521in}}% +\pgfpathlineto{\pgfqpoint{0.923191in}{0.668857in}}% \pgfpathclose% \pgfusepath{stroke}% \end{pgfscope}% @@ -798,8 +898,8 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.500000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{2.248407in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.115571in}{1.466403in}}{\pgfqpoint{0.923191in}{0.684400in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{2.388407in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.115571in}{1.541964in}}{\pgfqpoint{0.923191in}{0.695521in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -810,8 +910,8 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.500000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.114448in}{1.398925in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.276890in}{1.029346in}}{\pgfqpoint{1.439333in}{0.659766in}}% +\pgfpathmoveto{\pgfqpoint{3.114448in}{1.468925in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.276890in}{1.068891in}}{\pgfqpoint{1.439333in}{0.668857in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -824,11 +924,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{1.398925in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{1.398925in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{2.248407in}}% -\pgfpathlineto{\pgfqpoint{1.307951in}{2.248407in}}% -\pgfpathlineto{\pgfqpoint{1.307951in}{1.398925in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{1.468925in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{1.468925in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{2.388407in}}% +\pgfpathlineto{\pgfqpoint{1.307951in}{2.388407in}}% +\pgfpathlineto{\pgfqpoint{1.307951in}{1.468925in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -847,7 +947,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.307951in}{1.398925in}% +\pgfsys@transformshift{1.307951in}{1.468925in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -855,7 +955,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.307951in,y=1.301703in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0}\)}% +\pgftext[x=1.307951in,y=1.371703in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -872,7 +972,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.129086in}{1.398925in}% +\pgfsys@transformshift{2.129086in}{1.468925in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -880,7 +980,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.129086in,y=1.301703in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {500}\)}% +\pgftext[x=2.129086in,y=1.371703in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {500}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -897,7 +997,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.950221in}{1.398925in}% +\pgfsys@transformshift{2.950221in}{1.468925in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -905,7 +1005,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.950221in,y=1.301703in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1000}\)}% +\pgftext[x=2.950221in,y=1.371703in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1000}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -922,7 +1022,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.307951in}{1.398925in}% +\pgfsys@transformshift{1.307951in}{1.468925in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -930,7 +1030,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.963814in, y=1.350731in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% +\pgftext[x=0.963814in, y=1.420731in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -947,7 +1047,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.307951in}{1.791526in}% +\pgfsys@transformshift{1.307951in}{1.893877in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -955,7 +1055,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.963814in, y=1.743331in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.01}\)}% +\pgftext[x=0.963814in, y=1.845683in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.01}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -972,7 +1072,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.307951in}{2.184126in}% +\pgfsys@transformshift{1.307951in}{2.318829in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -980,10 +1080,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.963814in, y=2.135932in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.02}\)}% +\pgftext[x=0.963814in, y=2.270635in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.02}\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.398925in}}{\pgfqpoint{1.806497in}{0.849481in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.468925in}}{\pgfqpoint{1.806497in}{0.919481in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -991,18 +1091,18 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.324374in}{1.399003in}}% -\pgfpathlineto{\pgfqpoint{1.349008in}{1.399416in}}% -\pgfpathlineto{\pgfqpoint{1.390065in}{1.400802in}}% -\pgfpathlineto{\pgfqpoint{1.472178in}{1.406351in}}% -\pgfpathlineto{\pgfqpoint{1.718518in}{1.445199in}}% -\pgfpathlineto{\pgfqpoint{2.129086in}{1.585800in}}% -\pgfpathlineto{\pgfqpoint{2.539653in}{1.822448in}}% -\pgfpathlineto{\pgfqpoint{2.950221in}{2.171181in}}% +\pgfpathmoveto{\pgfqpoint{1.324374in}{1.469010in}}% +\pgfpathlineto{\pgfqpoint{1.349008in}{1.469457in}}% +\pgfpathlineto{\pgfqpoint{1.390065in}{1.470956in}}% +\pgfpathlineto{\pgfqpoint{1.472178in}{1.476963in}}% +\pgfpathlineto{\pgfqpoint{1.718518in}{1.519012in}}% +\pgfpathlineto{\pgfqpoint{2.129086in}{1.671199in}}% +\pgfpathlineto{\pgfqpoint{2.539653in}{1.927347in}}% +\pgfpathlineto{\pgfqpoint{2.950221in}{2.304818in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.398925in}}{\pgfqpoint{1.806497in}{0.849481in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.468925in}}{\pgfqpoint{1.806497in}{0.919481in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -1027,40 +1127,40 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.324374in}{1.399003in}% +\pgfsys@transformshift{1.324374in}{1.469010in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.349008in}{1.399416in}% +\pgfsys@transformshift{1.349008in}{1.469457in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.390065in}{1.400802in}% +\pgfsys@transformshift{1.390065in}{1.470956in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.472178in}{1.406351in}% +\pgfsys@transformshift{1.472178in}{1.476963in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.718518in}{1.445199in}% +\pgfsys@transformshift{1.718518in}{1.519012in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.129086in}{1.585800in}% +\pgfsys@transformshift{2.129086in}{1.671199in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.539653in}{1.822448in}% +\pgfsys@transformshift{2.539653in}{1.927347in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.950221in}{2.171181in}% +\pgfsys@transformshift{2.950221in}{2.304818in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.398925in}}{\pgfqpoint{1.806497in}{0.849481in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.468925in}}{\pgfqpoint{1.806497in}{0.919481in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1068,18 +1168,18 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.324374in}{1.398963in}}% -\pgfpathlineto{\pgfqpoint{1.349008in}{1.399164in}}% -\pgfpathlineto{\pgfqpoint{1.390065in}{1.399760in}}% -\pgfpathlineto{\pgfqpoint{1.472178in}{1.402137in}}% -\pgfpathlineto{\pgfqpoint{1.718518in}{1.418837in}}% -\pgfpathlineto{\pgfqpoint{2.129086in}{1.478945in}}% -\pgfpathlineto{\pgfqpoint{2.539653in}{1.586637in}}% -\pgfpathlineto{\pgfqpoint{2.950221in}{1.733725in}}% +\pgfpathmoveto{\pgfqpoint{1.324374in}{1.468967in}}% +\pgfpathlineto{\pgfqpoint{1.349008in}{1.469184in}}% +\pgfpathlineto{\pgfqpoint{1.390065in}{1.469829in}}% +\pgfpathlineto{\pgfqpoint{1.472178in}{1.472401in}}% +\pgfpathlineto{\pgfqpoint{1.718518in}{1.490478in}}% +\pgfpathlineto{\pgfqpoint{2.129086in}{1.555539in}}% +\pgfpathlineto{\pgfqpoint{2.539653in}{1.672105in}}% +\pgfpathlineto{\pgfqpoint{2.950221in}{1.831313in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.398925in}}{\pgfqpoint{1.806497in}{0.849481in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.468925in}}{\pgfqpoint{1.806497in}{0.919481in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -1104,40 +1204,40 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.324374in}{1.398963in}% +\pgfsys@transformshift{1.324374in}{1.468967in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.349008in}{1.399164in}% +\pgfsys@transformshift{1.349008in}{1.469184in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.390065in}{1.399760in}% +\pgfsys@transformshift{1.390065in}{1.469829in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.472178in}{1.402137in}% +\pgfsys@transformshift{1.472178in}{1.472401in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.718518in}{1.418837in}% +\pgfsys@transformshift{1.718518in}{1.490478in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.129086in}{1.478945in}% +\pgfsys@transformshift{2.129086in}{1.555539in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.539653in}{1.586637in}% +\pgfsys@transformshift{2.539653in}{1.672105in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.950221in}{1.733725in}% +\pgfsys@transformshift{2.950221in}{1.831313in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.398925in}}{\pgfqpoint{1.806497in}{0.849481in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.468925in}}{\pgfqpoint{1.806497in}{0.919481in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1145,18 +1245,18 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.324374in}{1.526250in}}% -\pgfpathlineto{\pgfqpoint{1.349008in}{1.525042in}}% -\pgfpathlineto{\pgfqpoint{1.390065in}{1.526196in}}% -\pgfpathlineto{\pgfqpoint{1.472178in}{1.527543in}}% -\pgfpathlineto{\pgfqpoint{1.718518in}{1.541504in}}% -\pgfpathlineto{\pgfqpoint{2.129086in}{1.593198in}}% -\pgfpathlineto{\pgfqpoint{2.539653in}{1.663480in}}% -\pgfpathlineto{\pgfqpoint{2.950221in}{1.701386in}}% +\pgfpathmoveto{\pgfqpoint{1.324374in}{1.606742in}}% +\pgfpathlineto{\pgfqpoint{1.349008in}{1.605434in}}% +\pgfpathlineto{\pgfqpoint{1.390065in}{1.606684in}}% +\pgfpathlineto{\pgfqpoint{1.472178in}{1.608142in}}% +\pgfpathlineto{\pgfqpoint{1.718518in}{1.623253in}}% +\pgfpathlineto{\pgfqpoint{2.129086in}{1.679207in}}% +\pgfpathlineto{\pgfqpoint{2.539653in}{1.755280in}}% +\pgfpathlineto{\pgfqpoint{2.950221in}{1.796310in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.398925in}}{\pgfqpoint{1.806497in}{0.849481in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.468925in}}{\pgfqpoint{1.806497in}{0.919481in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -1181,35 +1281,35 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.324374in}{1.526250in}% +\pgfsys@transformshift{1.324374in}{1.606742in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.349008in}{1.525042in}% +\pgfsys@transformshift{1.349008in}{1.605434in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.390065in}{1.526196in}% +\pgfsys@transformshift{1.390065in}{1.606684in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.472178in}{1.527543in}% +\pgfsys@transformshift{1.472178in}{1.608142in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.718518in}{1.541504in}% +\pgfsys@transformshift{1.718518in}{1.623253in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.129086in}{1.593198in}% +\pgfsys@transformshift{2.129086in}{1.679207in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.539653in}{1.663480in}% +\pgfsys@transformshift{2.539653in}{1.755280in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.950221in}{1.701386in}% +\pgfsys@transformshift{2.950221in}{1.796310in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1220,8 +1320,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{1.398925in}}% -\pgfpathlineto{\pgfqpoint{1.307951in}{2.248407in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{1.468925in}}% +\pgfpathlineto{\pgfqpoint{1.307951in}{2.388407in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1231,8 +1331,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.114448in}{1.398925in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{2.248407in}}% +\pgfpathmoveto{\pgfqpoint{3.114448in}{1.468925in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{2.388407in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1242,8 +1342,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{1.398925in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{1.398925in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{1.468925in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{1.468925in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1253,8 +1353,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{2.248407in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{2.248407in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{2.388407in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{2.388407in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1268,16 +1368,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.785803in}{2.279312in}}% -\pgfpathlineto{\pgfqpoint{2.689970in}{2.279312in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.279312in}}{\pgfqpoint{2.717747in}{2.307090in}}% -\pgfpathlineto{\pgfqpoint{2.717747in}{2.879311in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.907089in}}{\pgfqpoint{2.689970in}{2.907089in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.907089in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.907089in}}{\pgfqpoint{0.758025in}{2.879311in}}% -\pgfpathlineto{\pgfqpoint{0.758025in}{2.307090in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.279312in}}{\pgfqpoint{0.785803in}{2.279312in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.279312in}}% +\pgfpathmoveto{\pgfqpoint{0.785803in}{2.479312in}}% +\pgfpathlineto{\pgfqpoint{2.689970in}{2.479312in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.479312in}}{\pgfqpoint{2.717747in}{2.507090in}}% +\pgfpathlineto{\pgfqpoint{2.717747in}{3.079311in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{3.107089in}}{\pgfqpoint{2.689970in}{3.107089in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{3.107089in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{3.107089in}}{\pgfqpoint{0.758025in}{3.079311in}}% +\pgfpathlineto{\pgfqpoint{0.758025in}{2.507090in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.479312in}}{\pgfqpoint{0.785803in}{2.479312in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{2.479312in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -1288,9 +1388,9 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.802922in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.802922in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.802922in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{3.002922in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{3.002922in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{3.002922in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1317,7 +1417,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.802922in}% +\pgfsys@transformshift{0.952470in}{3.002922in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1325,7 +1425,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.754311in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% +\pgftext[x=1.202470in,y=2.954311in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -1334,9 +1434,9 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.607089in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.607089in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.607089in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.807089in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.807089in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.807089in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1363,7 +1463,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.607089in}% +\pgfsys@transformshift{0.952470in}{2.807089in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1371,7 +1471,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.558478in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% +\pgftext[x=1.202470in,y=2.758478in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -1380,9 +1480,9 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.411951in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.411951in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.411951in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.611951in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.611951in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.611951in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1409,7 +1509,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.411951in}% +\pgfsys@transformshift{0.952470in}{2.611951in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1417,7 +1517,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.363339in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% +\pgftext[x=1.202470in,y=2.563339in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/join-onePercent-and-fiftyPercent-by-tuples.pgf b/report/figures/join-onePercent-and-fiftyPercent-by-tuples.pgf index 4a75cbe9..c5c09ad9 100644 --- a/report/figures/join-onePercent-and-fiftyPercent-by-tuples.pgf +++ b/report/figures/join-onePercent-and-fiftyPercent-by-tuples.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,8 +57,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.549444in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.976534in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.176534in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.176534in}}% \pgfpathlineto{\pgfqpoint{0.688581in}{0.549444in}}% \pgfpathclose% \pgfusepath{fill}% @@ -234,7 +234,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{0.659765in}% +\pgfsys@transformshift{0.688581in}{0.668856in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -242,7 +242,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=0.611571in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0}\)}% +\pgftext[x=0.344444in, y=0.620662in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -259,7 +259,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.229003in}% +\pgfsys@transformshift{0.688581in}{0.976928in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -267,7 +267,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.180809in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.5}\)}% +\pgftext[x=0.344444in, y=0.928734in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.25}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -284,7 +284,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.798241in}% +\pgfsys@transformshift{0.688581in}{1.285001in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -292,7 +292,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.750046in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.0}\)}% +\pgftext[x=0.344444in, y=1.236806in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.50}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -309,7 +309,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.367478in}% +\pgfsys@transformshift{0.688581in}{1.593073in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -317,7 +317,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.319284in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.5}\)}% +\pgftext[x=0.344444in, y=1.544879in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.75}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -334,7 +334,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.936716in}% +\pgfsys@transformshift{0.688581in}{1.901145in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -342,16 +342,116 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.888521in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {2.0}\)}% +\pgftext[x=0.344444in, y=1.852951in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.00}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.209218in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.161023in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.25}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.517290in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.469096in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.50}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.825362in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.777168in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.75}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{3.133435in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=3.085240in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {2.00}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.358333in,y=1.762989in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=1.862989in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -359,27 +459,27 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.659768in}}% -\pgfpathlineto{\pgfqpoint{0.930236in}{0.659780in}}% -\pgfpathlineto{\pgfqpoint{0.941978in}{0.659820in}}% -\pgfpathlineto{\pgfqpoint{0.965463in}{0.659981in}}% -\pgfpathlineto{\pgfqpoint{1.035916in}{0.661107in}}% -\pgfpathlineto{\pgfqpoint{1.153339in}{0.665184in}}% -\pgfpathlineto{\pgfqpoint{1.270761in}{0.672047in}}% -\pgfpathlineto{\pgfqpoint{1.388183in}{0.682159in}}% -\pgfpathlineto{\pgfqpoint{1.857873in}{0.749371in}}% -\pgfpathlineto{\pgfqpoint{2.327563in}{0.859471in}}% -\pgfpathlineto{\pgfqpoint{2.797252in}{1.016666in}}% -\pgfpathlineto{\pgfqpoint{3.266942in}{1.217779in}}% -\pgfpathlineto{\pgfqpoint{3.736632in}{1.452176in}}% -\pgfpathlineto{\pgfqpoint{4.206321in}{1.739127in}}% -\pgfpathlineto{\pgfqpoint{4.676011in}{2.066178in}}% -\pgfpathlineto{\pgfqpoint{5.145700in}{2.432929in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{2.866211in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.668859in}}% +\pgfpathlineto{\pgfqpoint{0.930236in}{0.668872in}}% +\pgfpathlineto{\pgfqpoint{0.941978in}{0.668915in}}% +\pgfpathlineto{\pgfqpoint{0.965463in}{0.669089in}}% +\pgfpathlineto{\pgfqpoint{1.035916in}{0.670309in}}% +\pgfpathlineto{\pgfqpoint{1.153339in}{0.674722in}}% +\pgfpathlineto{\pgfqpoint{1.270761in}{0.682150in}}% +\pgfpathlineto{\pgfqpoint{1.388183in}{0.693096in}}% +\pgfpathlineto{\pgfqpoint{1.857873in}{0.765845in}}% +\pgfpathlineto{\pgfqpoint{2.327563in}{0.885018in}}% +\pgfpathlineto{\pgfqpoint{2.797252in}{1.055167in}}% +\pgfpathlineto{\pgfqpoint{3.266942in}{1.272852in}}% +\pgfpathlineto{\pgfqpoint{3.736632in}{1.526564in}}% +\pgfpathlineto{\pgfqpoint{4.206321in}{1.837161in}}% +\pgfpathlineto{\pgfqpoint{4.676011in}{2.191162in}}% +\pgfpathlineto{\pgfqpoint{5.145700in}{2.588134in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{3.057120in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -404,76 +504,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.923191in}{0.659768in}% +\pgfsys@transformshift{0.923191in}{0.668859in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.930236in}{0.659780in}% +\pgfsys@transformshift{0.930236in}{0.668872in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.941978in}{0.659820in}% +\pgfsys@transformshift{0.941978in}{0.668915in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.965463in}{0.659981in}% +\pgfsys@transformshift{0.965463in}{0.669089in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.035916in}{0.661107in}% +\pgfsys@transformshift{1.035916in}{0.670309in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.153339in}{0.665184in}% +\pgfsys@transformshift{1.153339in}{0.674722in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.270761in}{0.672047in}% +\pgfsys@transformshift{1.270761in}{0.682150in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.388183in}{0.682159in}% +\pgfsys@transformshift{1.388183in}{0.693096in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.857873in}{0.749371in}% +\pgfsys@transformshift{1.857873in}{0.765845in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.327563in}{0.859471in}% +\pgfsys@transformshift{2.327563in}{0.885018in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.797252in}{1.016666in}% +\pgfsys@transformshift{2.797252in}{1.055167in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.266942in}{1.217779in}% +\pgfsys@transformshift{3.266942in}{1.272852in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.736632in}{1.452176in}% +\pgfsys@transformshift{3.736632in}{1.526564in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.206321in}{1.739127in}% +\pgfsys@transformshift{4.206321in}{1.837161in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676011in}{2.066178in}% +\pgfsys@transformshift{4.676011in}{2.191162in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.145700in}{2.432929in}% +\pgfsys@transformshift{5.145700in}{2.588134in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{2.866211in}% +\pgfsys@transformshift{5.615390in}{3.057120in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -481,27 +581,27 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.659766in}}% -\pgfpathlineto{\pgfqpoint{0.930236in}{0.659772in}}% -\pgfpathlineto{\pgfqpoint{0.941978in}{0.659790in}}% -\pgfpathlineto{\pgfqpoint{0.965463in}{0.659858in}}% -\pgfpathlineto{\pgfqpoint{1.035916in}{0.660343in}}% -\pgfpathlineto{\pgfqpoint{1.153339in}{0.662086in}}% -\pgfpathlineto{\pgfqpoint{1.270761in}{0.665209in}}% -\pgfpathlineto{\pgfqpoint{1.388183in}{0.669474in}}% -\pgfpathlineto{\pgfqpoint{1.857873in}{0.699486in}}% -\pgfpathlineto{\pgfqpoint{2.327563in}{0.747882in}}% -\pgfpathlineto{\pgfqpoint{2.797252in}{0.818169in}}% -\pgfpathlineto{\pgfqpoint{3.266942in}{0.907300in}}% -\pgfpathlineto{\pgfqpoint{3.736632in}{1.013181in}}% -\pgfpathlineto{\pgfqpoint{4.206321in}{1.154538in}}% -\pgfpathlineto{\pgfqpoint{4.676011in}{1.294872in}}% -\pgfpathlineto{\pgfqpoint{5.145700in}{1.466344in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{1.663758in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.668857in}}% +\pgfpathlineto{\pgfqpoint{0.930236in}{0.668864in}}% +\pgfpathlineto{\pgfqpoint{0.941978in}{0.668882in}}% +\pgfpathlineto{\pgfqpoint{0.965463in}{0.668957in}}% +\pgfpathlineto{\pgfqpoint{1.035916in}{0.669481in}}% +\pgfpathlineto{\pgfqpoint{1.153339in}{0.671368in}}% +\pgfpathlineto{\pgfqpoint{1.270761in}{0.674748in}}% +\pgfpathlineto{\pgfqpoint{1.388183in}{0.679365in}}% +\pgfpathlineto{\pgfqpoint{1.857873in}{0.711850in}}% +\pgfpathlineto{\pgfqpoint{2.327563in}{0.764234in}}% +\pgfpathlineto{\pgfqpoint{2.797252in}{0.840312in}}% +\pgfpathlineto{\pgfqpoint{3.266942in}{0.936789in}}% +\pgfpathlineto{\pgfqpoint{3.736632in}{1.051395in}}% +\pgfpathlineto{\pgfqpoint{4.206321in}{1.204400in}}% +\pgfpathlineto{\pgfqpoint{4.676011in}{1.356298in}}% +\pgfpathlineto{\pgfqpoint{5.145700in}{1.541900in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{1.755581in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -526,76 +626,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.923191in}{0.659766in}% +\pgfsys@transformshift{0.923191in}{0.668857in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.930236in}{0.659772in}% +\pgfsys@transformshift{0.930236in}{0.668864in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.941978in}{0.659790in}% +\pgfsys@transformshift{0.941978in}{0.668882in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.965463in}{0.659858in}% +\pgfsys@transformshift{0.965463in}{0.668957in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.035916in}{0.660343in}% +\pgfsys@transformshift{1.035916in}{0.669481in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.153339in}{0.662086in}% +\pgfsys@transformshift{1.153339in}{0.671368in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.270761in}{0.665209in}% +\pgfsys@transformshift{1.270761in}{0.674748in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.388183in}{0.669474in}% +\pgfsys@transformshift{1.388183in}{0.679365in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.857873in}{0.699486in}% +\pgfsys@transformshift{1.857873in}{0.711850in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.327563in}{0.747882in}% +\pgfsys@transformshift{2.327563in}{0.764234in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.797252in}{0.818169in}% +\pgfsys@transformshift{2.797252in}{0.840312in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.266942in}{0.907300in}% +\pgfsys@transformshift{3.266942in}{0.936789in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.736632in}{1.013181in}% +\pgfsys@transformshift{3.736632in}{1.051395in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.206321in}{1.154538in}% +\pgfsys@transformshift{4.206321in}{1.204400in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676011in}{1.294872in}% +\pgfsys@transformshift{4.676011in}{1.356298in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.145700in}{1.466344in}% +\pgfsys@transformshift{5.145700in}{1.541900in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{1.663758in}% +\pgfsys@transformshift{5.615390in}{1.755581in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -603,27 +703,27 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.663458in}}% -\pgfpathlineto{\pgfqpoint{0.930236in}{0.663422in}}% -\pgfpathlineto{\pgfqpoint{0.941978in}{0.663456in}}% -\pgfpathlineto{\pgfqpoint{0.965463in}{0.663495in}}% -\pgfpathlineto{\pgfqpoint{1.035916in}{0.663900in}}% -\pgfpathlineto{\pgfqpoint{1.153339in}{0.665399in}}% -\pgfpathlineto{\pgfqpoint{1.270761in}{0.667437in}}% -\pgfpathlineto{\pgfqpoint{1.388183in}{0.668536in}}% -\pgfpathlineto{\pgfqpoint{1.857873in}{0.677928in}}% -\pgfpathlineto{\pgfqpoint{2.327563in}{0.691630in}}% -\pgfpathlineto{\pgfqpoint{2.797252in}{0.711839in}}% -\pgfpathlineto{\pgfqpoint{3.266942in}{0.742221in}}% -\pgfpathlineto{\pgfqpoint{3.736632in}{0.783267in}}% -\pgfpathlineto{\pgfqpoint{4.206321in}{0.835045in}}% -\pgfpathlineto{\pgfqpoint{4.676011in}{0.880939in}}% -\pgfpathlineto{\pgfqpoint{5.145700in}{0.957121in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{1.067612in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.672853in}}% +\pgfpathlineto{\pgfqpoint{0.930236in}{0.672815in}}% +\pgfpathlineto{\pgfqpoint{0.941978in}{0.672851in}}% +\pgfpathlineto{\pgfqpoint{0.965463in}{0.672893in}}% +\pgfpathlineto{\pgfqpoint{1.035916in}{0.673331in}}% +\pgfpathlineto{\pgfqpoint{1.153339in}{0.674954in}}% +\pgfpathlineto{\pgfqpoint{1.270761in}{0.677160in}}% +\pgfpathlineto{\pgfqpoint{1.388183in}{0.678350in}}% +\pgfpathlineto{\pgfqpoint{1.857873in}{0.688516in}}% +\pgfpathlineto{\pgfqpoint{2.327563in}{0.703346in}}% +\pgfpathlineto{\pgfqpoint{2.797252in}{0.725220in}}% +\pgfpathlineto{\pgfqpoint{3.266942in}{0.758106in}}% +\pgfpathlineto{\pgfqpoint{3.736632in}{0.802535in}}% +\pgfpathlineto{\pgfqpoint{4.206321in}{0.858579in}}% +\pgfpathlineto{\pgfqpoint{4.676011in}{0.908256in}}% +\pgfpathlineto{\pgfqpoint{5.145700in}{0.990715in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{1.110311in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.427089in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.627089in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -648,71 +748,71 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.923191in}{0.663458in}% +\pgfsys@transformshift{0.923191in}{0.672853in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.930236in}{0.663422in}% +\pgfsys@transformshift{0.930236in}{0.672815in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.941978in}{0.663456in}% +\pgfsys@transformshift{0.941978in}{0.672851in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.965463in}{0.663495in}% +\pgfsys@transformshift{0.965463in}{0.672893in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.035916in}{0.663900in}% +\pgfsys@transformshift{1.035916in}{0.673331in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.153339in}{0.665399in}% +\pgfsys@transformshift{1.153339in}{0.674954in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.270761in}{0.667437in}% +\pgfsys@transformshift{1.270761in}{0.677160in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.388183in}{0.668536in}% +\pgfsys@transformshift{1.388183in}{0.678350in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.857873in}{0.677928in}% +\pgfsys@transformshift{1.857873in}{0.688516in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.327563in}{0.691630in}% +\pgfsys@transformshift{2.327563in}{0.703346in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.797252in}{0.711839in}% +\pgfsys@transformshift{2.797252in}{0.725220in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.266942in}{0.742221in}% +\pgfsys@transformshift{3.266942in}{0.758106in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.736632in}{0.783267in}% +\pgfsys@transformshift{3.736632in}{0.802535in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.206321in}{0.835045in}% +\pgfsys@transformshift{4.206321in}{0.858579in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676011in}{0.880939in}% +\pgfsys@transformshift{4.676011in}{0.908256in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.145700in}{0.957121in}% +\pgfsys@transformshift{5.145700in}{0.990715in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{1.067612in}% +\pgfsys@transformshift{5.615390in}{1.110311in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -724,7 +824,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -735,7 +835,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.976534in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -756,21 +856,21 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.688581in}{2.976534in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.976534in}}% +\pgfpathmoveto{\pgfqpoint{0.688581in}{3.176534in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.176534in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.993707in, y=3.232667in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join onePercent and fiftyPercent' query}% +\pgftext[x=0.993707in, y=3.432667in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join onePercent and fiftyPercent' query}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.396540in, y=3.059867in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont according to tuple count}% +\pgftext[x=2.396540in, y=3.259867in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont according to tuple count}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -783,16 +883,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.785803in}{2.279312in}}% -\pgfpathlineto{\pgfqpoint{2.689970in}{2.279312in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.279312in}}{\pgfqpoint{2.717747in}{2.307090in}}% -\pgfpathlineto{\pgfqpoint{2.717747in}{2.879311in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.907089in}}{\pgfqpoint{2.689970in}{2.907089in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.907089in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.907089in}}{\pgfqpoint{0.758025in}{2.879311in}}% -\pgfpathlineto{\pgfqpoint{0.758025in}{2.307090in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.279312in}}{\pgfqpoint{0.785803in}{2.279312in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.279312in}}% +\pgfpathmoveto{\pgfqpoint{0.785803in}{2.479312in}}% +\pgfpathlineto{\pgfqpoint{2.689970in}{2.479312in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.479312in}}{\pgfqpoint{2.717747in}{2.507090in}}% +\pgfpathlineto{\pgfqpoint{2.717747in}{3.079311in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{3.107089in}}{\pgfqpoint{2.689970in}{3.107089in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{3.107089in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{3.107089in}}{\pgfqpoint{0.758025in}{3.079311in}}% +\pgfpathlineto{\pgfqpoint{0.758025in}{2.507090in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.479312in}}{\pgfqpoint{0.785803in}{2.479312in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{2.479312in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -803,9 +903,9 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.802922in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.802922in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.802922in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{3.002922in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{3.002922in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{3.002922in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -832,7 +932,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.802922in}% +\pgfsys@transformshift{0.952470in}{3.002922in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -840,7 +940,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.754311in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% +\pgftext[x=1.202470in,y=2.954311in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -849,9 +949,9 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.607089in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.607089in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.607089in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.807089in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.807089in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.807089in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -878,7 +978,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.607089in}% +\pgfsys@transformshift{0.952470in}{2.807089in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -886,7 +986,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.558478in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% +\pgftext[x=1.202470in,y=2.758478in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -895,9 +995,9 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.411951in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.411951in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.411951in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.611951in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.611951in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.611951in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -924,7 +1024,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.411951in}% +\pgfsys@transformshift{0.952470in}{2.611951in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -932,7 +1032,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.363339in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% +\pgftext[x=1.202470in,y=2.563339in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/join-onePercent-and-onePercent-1000.pgf b/report/figures/join-onePercent-and-onePercent-1000.pgf index 61f84d0b..76ea87c5 100644 --- a/report/figures/join-onePercent-and-onePercent-1000.pgf +++ b/report/figures/join-onePercent-and-onePercent-1000.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,14 +57,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.351000in}}% \pgfpathlineto{\pgfqpoint{0.827470in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.598500in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.798500in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -77,14 +77,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.055767in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{2.360320in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{2.360320in}{3.027262in}}% -\pgfpathlineto{\pgfqpoint{1.055767in}{3.027262in}}% +\pgfpathlineto{\pgfqpoint{2.360320in}{3.217738in}}% +\pgfpathlineto{\pgfqpoint{1.055767in}{3.217738in}}% \pgfpathlineto{\pgfqpoint{1.055767in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.598500in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.798500in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -97,14 +97,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{2.686458in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{3.991012in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{3.991012in}{1.758035in}}% -\pgfpathlineto{\pgfqpoint{2.686458in}{1.758035in}}% +\pgfpathlineto{\pgfqpoint{3.991012in}{1.850822in}}% +\pgfpathlineto{\pgfqpoint{2.686458in}{1.850822in}}% \pgfpathlineto{\pgfqpoint{2.686458in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.598500in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.798500in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -117,8 +117,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.317150in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.621703in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.621703in}{1.202232in}}% -\pgfpathlineto{\pgfqpoint{4.317150in}{1.202232in}}% +\pgfpathlineto{\pgfqpoint{5.621703in}{1.252240in}}% +\pgfpathlineto{\pgfqpoint{4.317150in}{1.252240in}}% \pgfpathlineto{\pgfqpoint{4.317150in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% @@ -244,7 +244,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{0.907834in}% +\pgfsys@transformshift{0.827470in}{0.935183in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -252,7 +252,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=0.859639in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0025}\)}% +\pgftext[x=0.344444in, y=0.886989in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0025}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -269,7 +269,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.263168in}% +\pgfsys@transformshift{0.827470in}{1.317866in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -277,7 +277,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.214973in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0050}\)}% +\pgftext[x=0.344444in, y=1.269672in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0050}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -294,7 +294,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.618502in}% +\pgfsys@transformshift{0.827470in}{1.700550in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -302,7 +302,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.570308in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0075}\)}% +\pgftext[x=0.344444in, y=1.652355in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0075}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -319,7 +319,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.973836in}% +\pgfsys@transformshift{0.827470in}{2.083233in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -327,7 +327,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.925642in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0100}\)}% +\pgftext[x=0.344444in, y=2.035038in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0100}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -344,7 +344,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.329170in}% +\pgfsys@transformshift{0.827470in}{2.465916in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -352,7 +352,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.280976in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0125}\)}% +\pgftext[x=0.344444in, y=2.417722in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0125}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -369,7 +369,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.684504in}% +\pgfsys@transformshift{0.827470in}{2.848599in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -377,7 +377,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.636310in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0150}\)}% +\pgftext[x=0.344444in, y=2.800405in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0150}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -394,7 +394,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{3.039838in}% +\pgfsys@transformshift{0.827470in}{3.231283in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -402,13 +402,13 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.991644in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0175}\)}% +\pgftext[x=0.344444in, y=3.183088in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0175}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.288889in,y=1.851750in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Time (s)}% +\pgftext[x=0.288889in,y=1.951750in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Time (s)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -418,7 +418,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -429,7 +429,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -450,15 +450,15 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.827470in}{3.151000in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% +\pgfpathmoveto{\pgfqpoint{0.827470in}{3.351000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=3.338735in,y=3.234333in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join onePercent and onePercent' with 1000 tuples}% +\pgftext[x=3.338735in,y=3.434333in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join onePercent and onePercent' with 1000 tuples}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/join-onePercent-and-onePercent-by-tuple-with-inset.pgf b/report/figures/join-onePercent-and-onePercent-by-tuple-with-inset.pgf index d1767c04..950aee2a 100644 --- a/report/figures/join-onePercent-and-onePercent-by-tuple-with-inset.pgf +++ b/report/figures/join-onePercent-and-onePercent-by-tuple-with-inset.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,8 +57,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.549444in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.978200in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.178200in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.178200in}}% \pgfpathlineto{\pgfqpoint{0.688581in}{0.549444in}}% \pgfpathclose% \pgfusepath{fill}% @@ -234,7 +234,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{0.659842in}% +\pgfsys@transformshift{0.688581in}{0.668933in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -242,7 +242,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=0.611648in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% +\pgftext[x=0.344444in, y=0.620739in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -259,7 +259,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{0.981652in}% +\pgfsys@transformshift{0.688581in}{1.017243in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -267,7 +267,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=0.933457in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.25}\)}% +\pgftext[x=0.344444in, y=0.969048in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.25}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -284,7 +284,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.303461in}% +\pgfsys@transformshift{0.688581in}{1.365552in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -292,7 +292,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.255267in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.50}\)}% +\pgftext[x=0.344444in, y=1.317357in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.50}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -309,7 +309,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.625271in}% +\pgfsys@transformshift{0.688581in}{1.713861in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -317,7 +317,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.577076in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.75}\)}% +\pgftext[x=0.344444in, y=1.665667in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.75}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -334,7 +334,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.947080in}% +\pgfsys@transformshift{0.688581in}{2.062171in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -342,7 +342,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.898886in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.00}\)}% +\pgftext[x=0.344444in, y=2.013976in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.00}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -359,7 +359,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.268890in}% +\pgfsys@transformshift{0.688581in}{2.410480in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -367,7 +367,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.220695in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.25}\)}% +\pgftext[x=0.344444in, y=2.362286in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.25}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -384,7 +384,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.590699in}% +\pgfsys@transformshift{0.688581in}{2.758790in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -392,7 +392,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.542505in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.50}\)}% +\pgftext[x=0.344444in, y=2.710595in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.50}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -409,7 +409,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.912509in}% +\pgfsys@transformshift{0.688581in}{3.107099in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -417,16 +417,16 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.864314in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.75}\)}% +\pgftext[x=0.344444in, y=3.058905in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.75}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.288889in,y=1.763822in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=1.863822in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -434,27 +434,27 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.927883in}{0.659845in}}% -\pgfpathlineto{\pgfqpoint{0.934921in}{0.659857in}}% -\pgfpathlineto{\pgfqpoint{0.946652in}{0.659899in}}% -\pgfpathlineto{\pgfqpoint{0.970113in}{0.660066in}}% -\pgfpathlineto{\pgfqpoint{1.040496in}{0.661229in}}% -\pgfpathlineto{\pgfqpoint{1.157801in}{0.665389in}}% -\pgfpathlineto{\pgfqpoint{1.275106in}{0.672263in}}% -\pgfpathlineto{\pgfqpoint{1.392411in}{0.682255in}}% -\pgfpathlineto{\pgfqpoint{1.861631in}{0.749632in}}% -\pgfpathlineto{\pgfqpoint{2.330850in}{0.861636in}}% -\pgfpathlineto{\pgfqpoint{2.800070in}{1.018954in}}% -\pgfpathlineto{\pgfqpoint{3.269290in}{1.220974in}}% -\pgfpathlineto{\pgfqpoint{3.738510in}{1.467755in}}% -\pgfpathlineto{\pgfqpoint{4.207730in}{1.739520in}}% -\pgfpathlineto{\pgfqpoint{4.676950in}{2.089111in}}% -\pgfpathlineto{\pgfqpoint{5.146170in}{2.445188in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{2.867802in}}% +\pgfpathmoveto{\pgfqpoint{0.927883in}{0.668936in}}% +\pgfpathlineto{\pgfqpoint{0.934921in}{0.668949in}}% +\pgfpathlineto{\pgfqpoint{0.946652in}{0.668995in}}% +\pgfpathlineto{\pgfqpoint{0.970113in}{0.669176in}}% +\pgfpathlineto{\pgfqpoint{1.040496in}{0.670434in}}% +\pgfpathlineto{\pgfqpoint{1.157801in}{0.674937in}}% +\pgfpathlineto{\pgfqpoint{1.275106in}{0.682377in}}% +\pgfpathlineto{\pgfqpoint{1.392411in}{0.693191in}}% +\pgfpathlineto{\pgfqpoint{1.861631in}{0.766117in}}% +\pgfpathlineto{\pgfqpoint{2.330850in}{0.887344in}}% +\pgfpathlineto{\pgfqpoint{2.800070in}{1.057617in}}% +\pgfpathlineto{\pgfqpoint{3.269290in}{1.276272in}}% +\pgfpathlineto{\pgfqpoint{3.738510in}{1.543375in}}% +\pgfpathlineto{\pgfqpoint{4.207730in}{1.837519in}}% +\pgfpathlineto{\pgfqpoint{4.676950in}{2.215898in}}% +\pgfpathlineto{\pgfqpoint{5.146170in}{2.601296in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{3.058711in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -479,76 +479,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.927883in}{0.659845in}% +\pgfsys@transformshift{0.927883in}{0.668936in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.934921in}{0.659857in}% +\pgfsys@transformshift{0.934921in}{0.668949in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.946652in}{0.659899in}% +\pgfsys@transformshift{0.946652in}{0.668995in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.970113in}{0.660066in}% +\pgfsys@transformshift{0.970113in}{0.669176in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.040496in}{0.661229in}% +\pgfsys@transformshift{1.040496in}{0.670434in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.157801in}{0.665389in}% +\pgfsys@transformshift{1.157801in}{0.674937in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.275106in}{0.672263in}% +\pgfsys@transformshift{1.275106in}{0.682377in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.392411in}{0.682255in}% +\pgfsys@transformshift{1.392411in}{0.693191in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.861631in}{0.749632in}% +\pgfsys@transformshift{1.861631in}{0.766117in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.330850in}{0.861636in}% +\pgfsys@transformshift{2.330850in}{0.887344in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.800070in}{1.018954in}% +\pgfsys@transformshift{2.800070in}{1.057617in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.269290in}{1.220974in}% +\pgfsys@transformshift{3.269290in}{1.276272in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.738510in}{1.467755in}% +\pgfsys@transformshift{3.738510in}{1.543375in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.207730in}{1.739520in}% +\pgfsys@transformshift{4.207730in}{1.837519in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676950in}{2.089111in}% +\pgfsys@transformshift{4.676950in}{2.215898in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.146170in}{2.445188in}% +\pgfsys@transformshift{5.146170in}{2.601296in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{2.867802in}% +\pgfsys@transformshift{5.615390in}{3.058711in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -556,27 +556,27 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.927883in}{0.659844in}}% -\pgfpathlineto{\pgfqpoint{0.934921in}{0.659850in}}% -\pgfpathlineto{\pgfqpoint{0.946652in}{0.659871in}}% -\pgfpathlineto{\pgfqpoint{0.970113in}{0.659954in}}% -\pgfpathlineto{\pgfqpoint{1.040496in}{0.660519in}}% -\pgfpathlineto{\pgfqpoint{1.157801in}{0.662540in}}% -\pgfpathlineto{\pgfqpoint{1.275106in}{0.666016in}}% -\pgfpathlineto{\pgfqpoint{1.392411in}{0.670760in}}% -\pgfpathlineto{\pgfqpoint{1.861631in}{0.703107in}}% -\pgfpathlineto{\pgfqpoint{2.330850in}{0.757033in}}% -\pgfpathlineto{\pgfqpoint{2.800070in}{0.832011in}}% -\pgfpathlineto{\pgfqpoint{3.269290in}{0.929174in}}% -\pgfpathlineto{\pgfqpoint{3.738510in}{1.047689in}}% -\pgfpathlineto{\pgfqpoint{4.207730in}{1.178244in}}% -\pgfpathlineto{\pgfqpoint{4.676950in}{1.348221in}}% -\pgfpathlineto{\pgfqpoint{5.146170in}{1.514585in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{1.734994in}}% +\pgfpathmoveto{\pgfqpoint{0.927883in}{0.668935in}}% +\pgfpathlineto{\pgfqpoint{0.934921in}{0.668942in}}% +\pgfpathlineto{\pgfqpoint{0.946652in}{0.668964in}}% +\pgfpathlineto{\pgfqpoint{0.970113in}{0.669054in}}% +\pgfpathlineto{\pgfqpoint{1.040496in}{0.669665in}}% +\pgfpathlineto{\pgfqpoint{1.157801in}{0.671853in}}% +\pgfpathlineto{\pgfqpoint{1.275106in}{0.675616in}}% +\pgfpathlineto{\pgfqpoint{1.392411in}{0.680750in}}% +\pgfpathlineto{\pgfqpoint{1.861631in}{0.715761in}}% +\pgfpathlineto{\pgfqpoint{2.330850in}{0.774127in}}% +\pgfpathlineto{\pgfqpoint{2.800070in}{0.855279in}}% +\pgfpathlineto{\pgfqpoint{3.269290in}{0.960444in}}% +\pgfpathlineto{\pgfqpoint{3.738510in}{1.088718in}}% +\pgfpathlineto{\pgfqpoint{4.207730in}{1.230024in}}% +\pgfpathlineto{\pgfqpoint{4.676950in}{1.413997in}}% +\pgfpathlineto{\pgfqpoint{5.146170in}{1.594061in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{1.832620in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -601,76 +601,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.927883in}{0.659844in}% +\pgfsys@transformshift{0.927883in}{0.668935in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.934921in}{0.659850in}% +\pgfsys@transformshift{0.934921in}{0.668942in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.946652in}{0.659871in}% +\pgfsys@transformshift{0.946652in}{0.668964in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.970113in}{0.659954in}% +\pgfsys@transformshift{0.970113in}{0.669054in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.040496in}{0.660519in}% +\pgfsys@transformshift{1.040496in}{0.669665in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.157801in}{0.662540in}% +\pgfsys@transformshift{1.157801in}{0.671853in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.275106in}{0.666016in}% +\pgfsys@transformshift{1.275106in}{0.675616in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.392411in}{0.670760in}% +\pgfsys@transformshift{1.392411in}{0.680750in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.861631in}{0.703107in}% +\pgfsys@transformshift{1.861631in}{0.715761in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.330850in}{0.757033in}% +\pgfsys@transformshift{2.330850in}{0.774127in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.800070in}{0.832011in}% +\pgfsys@transformshift{2.800070in}{0.855279in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.269290in}{0.929174in}% +\pgfsys@transformshift{3.269290in}{0.960444in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.738510in}{1.047689in}% +\pgfsys@transformshift{3.738510in}{1.088718in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.207730in}{1.178244in}% +\pgfsys@transformshift{4.207730in}{1.230024in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676950in}{1.348221in}% +\pgfsys@transformshift{4.676950in}{1.413997in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.146170in}{1.514585in}% +\pgfsys@transformshift{5.146170in}{1.594061in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{1.734994in}% +\pgfsys@transformshift{5.615390in}{1.832620in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -678,27 +678,27 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.927883in}{0.663943in}}% -\pgfpathlineto{\pgfqpoint{0.934921in}{0.663972in}}% -\pgfpathlineto{\pgfqpoint{0.946652in}{0.663998in}}% -\pgfpathlineto{\pgfqpoint{0.970113in}{0.664054in}}% -\pgfpathlineto{\pgfqpoint{1.040496in}{0.664172in}}% -\pgfpathlineto{\pgfqpoint{1.157801in}{0.664488in}}% -\pgfpathlineto{\pgfqpoint{1.275106in}{0.664778in}}% -\pgfpathlineto{\pgfqpoint{1.392411in}{0.665726in}}% -\pgfpathlineto{\pgfqpoint{1.861631in}{0.670009in}}% -\pgfpathlineto{\pgfqpoint{2.330850in}{0.674052in}}% -\pgfpathlineto{\pgfqpoint{2.800070in}{0.680598in}}% -\pgfpathlineto{\pgfqpoint{3.269290in}{0.690946in}}% -\pgfpathlineto{\pgfqpoint{3.738510in}{0.700908in}}% -\pgfpathlineto{\pgfqpoint{4.207730in}{0.717375in}}% -\pgfpathlineto{\pgfqpoint{4.676950in}{0.730816in}}% -\pgfpathlineto{\pgfqpoint{5.146170in}{0.747454in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{0.769907in}}% +\pgfpathmoveto{\pgfqpoint{0.927883in}{0.673372in}}% +\pgfpathlineto{\pgfqpoint{0.934921in}{0.673403in}}% +\pgfpathlineto{\pgfqpoint{0.946652in}{0.673431in}}% +\pgfpathlineto{\pgfqpoint{0.970113in}{0.673491in}}% +\pgfpathlineto{\pgfqpoint{1.040496in}{0.673619in}}% +\pgfpathlineto{\pgfqpoint{1.157801in}{0.673961in}}% +\pgfpathlineto{\pgfqpoint{1.275106in}{0.674275in}}% +\pgfpathlineto{\pgfqpoint{1.392411in}{0.675302in}}% +\pgfpathlineto{\pgfqpoint{1.861631in}{0.679937in}}% +\pgfpathlineto{\pgfqpoint{2.330850in}{0.684313in}}% +\pgfpathlineto{\pgfqpoint{2.800070in}{0.691398in}}% +\pgfpathlineto{\pgfqpoint{3.269290in}{0.702598in}}% +\pgfpathlineto{\pgfqpoint{3.738510in}{0.713380in}}% +\pgfpathlineto{\pgfqpoint{4.207730in}{0.731204in}}% +\pgfpathlineto{\pgfqpoint{4.676950in}{0.745751in}}% +\pgfpathlineto{\pgfqpoint{5.146170in}{0.763760in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{0.788062in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -723,71 +723,71 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.927883in}{0.663943in}% +\pgfsys@transformshift{0.927883in}{0.673372in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.934921in}{0.663972in}% +\pgfsys@transformshift{0.934921in}{0.673403in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.946652in}{0.663998in}% +\pgfsys@transformshift{0.946652in}{0.673431in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.970113in}{0.664054in}% +\pgfsys@transformshift{0.970113in}{0.673491in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.040496in}{0.664172in}% +\pgfsys@transformshift{1.040496in}{0.673619in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.157801in}{0.664488in}% +\pgfsys@transformshift{1.157801in}{0.673961in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.275106in}{0.664778in}% +\pgfsys@transformshift{1.275106in}{0.674275in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.392411in}{0.665726in}% +\pgfsys@transformshift{1.392411in}{0.675302in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.861631in}{0.670009in}% +\pgfsys@transformshift{1.861631in}{0.679937in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.330850in}{0.674052in}% +\pgfsys@transformshift{2.330850in}{0.684313in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.800070in}{0.680598in}% +\pgfsys@transformshift{2.800070in}{0.691398in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.269290in}{0.690946in}% +\pgfsys@transformshift{3.269290in}{0.702598in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.738510in}{0.700908in}% +\pgfsys@transformshift{3.738510in}{0.713380in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.207730in}{0.717375in}% +\pgfsys@transformshift{4.207730in}{0.731204in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676950in}{0.730816in}% +\pgfsys@transformshift{4.676950in}{0.745751in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.146170in}{0.747454in}% +\pgfsys@transformshift{5.146170in}{0.763760in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{0.769907in}% +\pgfsys@transformshift{5.615390in}{0.788062in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -799,7 +799,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -810,7 +810,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -831,24 +831,24 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.688581in}{2.978200in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.978200in}}% +\pgfpathmoveto{\pgfqpoint{0.688581in}{3.178200in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.014123in, y=3.234333in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join onePercent and onePercent' query}% +\pgftext[x=1.014123in, y=3.434333in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join onePercent and onePercent' query}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.396540in, y=3.061534in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont according to tuple count}% +\pgftext[x=2.396540in, y=3.261534in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont according to tuple count}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -857,11 +857,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.500000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.659842in}}% -\pgfpathlineto{\pgfqpoint{1.439333in}{0.659842in}}% -\pgfpathlineto{\pgfqpoint{1.439333in}{0.684496in}}% -\pgfpathlineto{\pgfqpoint{0.923191in}{0.684496in}}% -\pgfpathlineto{\pgfqpoint{0.923191in}{0.659842in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.668933in}}% +\pgfpathlineto{\pgfqpoint{1.439333in}{0.668933in}}% +\pgfpathlineto{\pgfqpoint{1.439333in}{0.695617in}}% +\pgfpathlineto{\pgfqpoint{0.923191in}{0.695617in}}% +\pgfpathlineto{\pgfqpoint{0.923191in}{0.668933in}}% \pgfpathclose% \pgfusepath{stroke}% \end{pgfscope}% @@ -873,8 +873,8 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.500000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{2.249573in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.115571in}{1.467035in}}{\pgfqpoint{0.923191in}{0.684496in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{2.389573in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.115571in}{1.542595in}}{\pgfqpoint{0.923191in}{0.695617in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -885,8 +885,8 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.500000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.114448in}{1.399509in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.276890in}{1.029675in}}{\pgfqpoint{1.439333in}{0.659842in}}% +\pgfpathmoveto{\pgfqpoint{3.114448in}{1.469509in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.276890in}{1.069221in}}{\pgfqpoint{1.439333in}{0.668933in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -899,11 +899,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{1.399509in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{1.399509in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{2.249573in}}% -\pgfpathlineto{\pgfqpoint{1.307951in}{2.249573in}}% -\pgfpathlineto{\pgfqpoint{1.307951in}{1.399509in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{1.469509in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{1.469509in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{2.389573in}}% +\pgfpathlineto{\pgfqpoint{1.307951in}{2.389573in}}% +\pgfpathlineto{\pgfqpoint{1.307951in}{1.469509in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -922,7 +922,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.307951in}{1.399509in}% +\pgfsys@transformshift{1.307951in}{1.469509in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -930,7 +930,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.307951in,y=1.302287in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0}\)}% +\pgftext[x=1.307951in,y=1.372287in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -947,7 +947,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.129086in}{1.399509in}% +\pgfsys@transformshift{2.129086in}{1.469509in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -955,7 +955,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.129086in,y=1.302287in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {500}\)}% +\pgftext[x=2.129086in,y=1.372287in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {500}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -972,7 +972,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.950221in}{1.399509in}% +\pgfsys@transformshift{2.950221in}{1.469509in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -980,7 +980,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.950221in,y=1.302287in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1000}\)}% +\pgftext[x=2.950221in,y=1.372287in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1000}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -997,7 +997,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.307951in}{1.399509in}% +\pgfsys@transformshift{1.307951in}{1.469509in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1005,7 +1005,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.963814in, y=1.351314in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% +\pgftext[x=0.963814in, y=1.421314in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -1022,7 +1022,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.307951in}{1.843345in}% +\pgfsys@transformshift{1.307951in}{1.949893in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1030,10 +1030,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.963814in, y=1.795151in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.01}\)}% +\pgftext[x=0.963814in, y=1.901699in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.01}\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.399509in}}{\pgfqpoint{1.806497in}{0.850065in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.469509in}}{\pgfqpoint{1.806497in}{0.920065in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1041,18 +1041,18 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.324374in}{1.399600in}}% -\pgfpathlineto{\pgfqpoint{1.349008in}{1.400020in}}% -\pgfpathlineto{\pgfqpoint{1.390065in}{1.401468in}}% -\pgfpathlineto{\pgfqpoint{1.472178in}{1.407241in}}% -\pgfpathlineto{\pgfqpoint{1.718518in}{1.447313in}}% -\pgfpathlineto{\pgfqpoint{2.129086in}{1.590757in}}% -\pgfpathlineto{\pgfqpoint{2.539653in}{1.827775in}}% -\pgfpathlineto{\pgfqpoint{2.950221in}{2.172295in}}% +\pgfpathmoveto{\pgfqpoint{1.324374in}{1.469608in}}% +\pgfpathlineto{\pgfqpoint{1.349008in}{1.470062in}}% +\pgfpathlineto{\pgfqpoint{1.390065in}{1.471629in}}% +\pgfpathlineto{\pgfqpoint{1.472178in}{1.477878in}}% +\pgfpathlineto{\pgfqpoint{1.718518in}{1.521249in}}% +\pgfpathlineto{\pgfqpoint{2.129086in}{1.676506in}}% +\pgfpathlineto{\pgfqpoint{2.539653in}{1.933041in}}% +\pgfpathlineto{\pgfqpoint{2.950221in}{2.305931in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.399509in}}{\pgfqpoint{1.806497in}{0.850065in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.469509in}}{\pgfqpoint{1.806497in}{0.920065in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -1077,40 +1077,40 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.324374in}{1.399600in}% +\pgfsys@transformshift{1.324374in}{1.469608in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.349008in}{1.400020in}% +\pgfsys@transformshift{1.349008in}{1.470062in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.390065in}{1.401468in}% +\pgfsys@transformshift{1.390065in}{1.471629in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.472178in}{1.407241in}% +\pgfsys@transformshift{1.472178in}{1.477878in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.718518in}{1.447313in}% +\pgfsys@transformshift{1.718518in}{1.521249in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.129086in}{1.590757in}% +\pgfsys@transformshift{2.129086in}{1.676506in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.539653in}{1.827775in}% +\pgfsys@transformshift{2.539653in}{1.933041in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.950221in}{2.172295in}% +\pgfsys@transformshift{2.950221in}{2.305931in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.399509in}}{\pgfqpoint{1.806497in}{0.850065in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.469509in}}{\pgfqpoint{1.806497in}{0.920065in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1118,18 +1118,18 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.324374in}{1.399565in}}% -\pgfpathlineto{\pgfqpoint{1.349008in}{1.399786in}}% -\pgfpathlineto{\pgfqpoint{1.390065in}{1.400502in}}% -\pgfpathlineto{\pgfqpoint{1.472178in}{1.403355in}}% -\pgfpathlineto{\pgfqpoint{1.718518in}{1.422833in}}% -\pgfpathlineto{\pgfqpoint{2.129086in}{1.492532in}}% -\pgfpathlineto{\pgfqpoint{2.539653in}{1.612393in}}% -\pgfpathlineto{\pgfqpoint{2.950221in}{1.775958in}}% +\pgfpathmoveto{\pgfqpoint{1.324374in}{1.469570in}}% +\pgfpathlineto{\pgfqpoint{1.349008in}{1.469809in}}% +\pgfpathlineto{\pgfqpoint{1.390065in}{1.470584in}}% +\pgfpathlineto{\pgfqpoint{1.472178in}{1.473672in}}% +\pgfpathlineto{\pgfqpoint{1.718518in}{1.494754in}}% +\pgfpathlineto{\pgfqpoint{2.129086in}{1.570192in}}% +\pgfpathlineto{\pgfqpoint{2.539653in}{1.699924in}}% +\pgfpathlineto{\pgfqpoint{2.950221in}{1.876957in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.399509in}}{\pgfqpoint{1.806497in}{0.850065in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.469509in}}{\pgfqpoint{1.806497in}{0.920065in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -1154,40 +1154,40 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.324374in}{1.399565in}% +\pgfsys@transformshift{1.324374in}{1.469570in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.349008in}{1.399786in}% +\pgfsys@transformshift{1.349008in}{1.469809in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.390065in}{1.400502in}% +\pgfsys@transformshift{1.390065in}{1.470584in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.472178in}{1.403355in}% +\pgfsys@transformshift{1.472178in}{1.473672in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.718518in}{1.422833in}% +\pgfsys@transformshift{1.718518in}{1.494754in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.129086in}{1.492532in}% +\pgfsys@transformshift{2.129086in}{1.570192in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.539653in}{1.612393in}% +\pgfsys@transformshift{2.539653in}{1.699924in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.950221in}{1.775958in}% +\pgfsys@transformshift{2.950221in}{1.876957in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.399509in}}{\pgfqpoint{1.806497in}{0.850065in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.469509in}}{\pgfqpoint{1.806497in}{0.920065in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1195,18 +1195,18 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.324374in}{1.540902in}}% -\pgfpathlineto{\pgfqpoint{1.349008in}{1.541891in}}% -\pgfpathlineto{\pgfqpoint{1.390065in}{1.542794in}}% -\pgfpathlineto{\pgfqpoint{1.472178in}{1.544719in}}% -\pgfpathlineto{\pgfqpoint{1.718518in}{1.548788in}}% -\pgfpathlineto{\pgfqpoint{2.129086in}{1.559678in}}% -\pgfpathlineto{\pgfqpoint{2.539653in}{1.569691in}}% -\pgfpathlineto{\pgfqpoint{2.950221in}{1.602399in}}% +\pgfpathmoveto{\pgfqpoint{1.324374in}{1.622545in}}% +\pgfpathlineto{\pgfqpoint{1.349008in}{1.623616in}}% +\pgfpathlineto{\pgfqpoint{1.390065in}{1.624593in}}% +\pgfpathlineto{\pgfqpoint{1.472178in}{1.626676in}}% +\pgfpathlineto{\pgfqpoint{1.718518in}{1.631080in}}% +\pgfpathlineto{\pgfqpoint{2.129086in}{1.642868in}}% +\pgfpathlineto{\pgfqpoint{2.539653in}{1.653705in}}% +\pgfpathlineto{\pgfqpoint{2.950221in}{1.689106in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.399509in}}{\pgfqpoint{1.806497in}{0.850065in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.469509in}}{\pgfqpoint{1.806497in}{0.920065in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -1231,35 +1231,35 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.324374in}{1.540902in}% +\pgfsys@transformshift{1.324374in}{1.622545in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.349008in}{1.541891in}% +\pgfsys@transformshift{1.349008in}{1.623616in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.390065in}{1.542794in}% +\pgfsys@transformshift{1.390065in}{1.624593in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.472178in}{1.544719in}% +\pgfsys@transformshift{1.472178in}{1.626676in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.718518in}{1.548788in}% +\pgfsys@transformshift{1.718518in}{1.631080in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.129086in}{1.559678in}% +\pgfsys@transformshift{2.129086in}{1.642868in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.539653in}{1.569691in}% +\pgfsys@transformshift{2.539653in}{1.653705in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.950221in}{1.602399in}% +\pgfsys@transformshift{2.950221in}{1.689106in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1270,8 +1270,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{1.399509in}}% -\pgfpathlineto{\pgfqpoint{1.307951in}{2.249573in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{1.469509in}}% +\pgfpathlineto{\pgfqpoint{1.307951in}{2.389573in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1281,8 +1281,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.114448in}{1.399509in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{2.249573in}}% +\pgfpathmoveto{\pgfqpoint{3.114448in}{1.469509in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{2.389573in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1292,8 +1292,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{1.399509in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{1.399509in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{1.469509in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{1.469509in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1303,8 +1303,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{2.249573in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{2.249573in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{2.389573in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{2.389573in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1318,16 +1318,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.785803in}{2.280978in}}% -\pgfpathlineto{\pgfqpoint{2.689970in}{2.280978in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.280978in}}{\pgfqpoint{2.717747in}{2.308756in}}% -\pgfpathlineto{\pgfqpoint{2.717747in}{2.880978in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.908756in}}{\pgfqpoint{2.689970in}{2.908756in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.908756in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.908756in}}{\pgfqpoint{0.758025in}{2.880978in}}% -\pgfpathlineto{\pgfqpoint{0.758025in}{2.308756in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.280978in}}{\pgfqpoint{0.785803in}{2.280978in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.280978in}}% +\pgfpathmoveto{\pgfqpoint{0.785803in}{2.480978in}}% +\pgfpathlineto{\pgfqpoint{2.689970in}{2.480978in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.480978in}}{\pgfqpoint{2.717747in}{2.508756in}}% +\pgfpathlineto{\pgfqpoint{2.717747in}{3.080978in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{3.108756in}}{\pgfqpoint{2.689970in}{3.108756in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{3.108756in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{3.108756in}}{\pgfqpoint{0.758025in}{3.080978in}}% +\pgfpathlineto{\pgfqpoint{0.758025in}{2.508756in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.480978in}}{\pgfqpoint{0.785803in}{2.480978in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{2.480978in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -1338,9 +1338,9 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.804589in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.804589in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.804589in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{3.004589in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{3.004589in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{3.004589in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1367,7 +1367,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.804589in}% +\pgfsys@transformshift{0.952470in}{3.004589in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1375,7 +1375,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.755978in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% +\pgftext[x=1.202470in,y=2.955978in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -1384,9 +1384,9 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.608756in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.608756in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.608756in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.808756in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.808756in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.808756in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1413,7 +1413,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.608756in}% +\pgfsys@transformshift{0.952470in}{2.808756in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1421,7 +1421,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.560145in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% +\pgftext[x=1.202470in,y=2.760145in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -1430,9 +1430,9 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.413617in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.413617in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.413617in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.613617in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.613617in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.613617in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1459,7 +1459,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.413617in}% +\pgfsys@transformshift{0.952470in}{2.613617in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1467,7 +1467,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.365006in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% +\pgftext[x=1.202470in,y=2.565006in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/join-onePercent-and-onePercent-by-tuples.pgf b/report/figures/join-onePercent-and-onePercent-by-tuples.pgf index c3bfa961..e2c65e44 100644 --- a/report/figures/join-onePercent-and-onePercent-by-tuples.pgf +++ b/report/figures/join-onePercent-and-onePercent-by-tuples.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,8 +57,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.549444in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.978200in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.178200in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.178200in}}% \pgfpathlineto{\pgfqpoint{0.688581in}{0.549444in}}% \pgfpathclose% \pgfusepath{fill}% @@ -234,7 +234,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{0.659841in}% +\pgfsys@transformshift{0.688581in}{0.668931in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -242,7 +242,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=0.611646in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% +\pgftext[x=0.344444in, y=0.620737in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -259,7 +259,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{0.981650in}% +\pgfsys@transformshift{0.688581in}{1.017241in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -267,7 +267,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=0.933456in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.25}\)}% +\pgftext[x=0.344444in, y=0.969047in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.25}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -284,7 +284,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.303460in}% +\pgfsys@transformshift{0.688581in}{1.365551in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -292,7 +292,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.255266in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.50}\)}% +\pgftext[x=0.344444in, y=1.317356in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.50}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -309,7 +309,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.625270in}% +\pgfsys@transformshift{0.688581in}{1.713860in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -317,7 +317,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.577075in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.75}\)}% +\pgftext[x=0.344444in, y=1.665666in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.75}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -334,7 +334,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.947079in}% +\pgfsys@transformshift{0.688581in}{2.062170in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -342,7 +342,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.898885in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.00}\)}% +\pgftext[x=0.344444in, y=2.013976in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.00}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -359,7 +359,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.268889in}% +\pgfsys@transformshift{0.688581in}{2.410480in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -367,7 +367,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.220695in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.25}\)}% +\pgftext[x=0.344444in, y=2.362285in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.25}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -384,7 +384,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.590699in}% +\pgfsys@transformshift{0.688581in}{2.758789in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -392,7 +392,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.542504in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.50}\)}% +\pgftext[x=0.344444in, y=2.710595in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.50}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -409,7 +409,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.912509in}% +\pgfsys@transformshift{0.688581in}{3.107099in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -417,16 +417,16 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.864314in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.75}\)}% +\pgftext[x=0.344444in, y=3.058905in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.75}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.288889in,y=1.763822in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=1.863822in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -434,27 +434,27 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.659843in}}% -\pgfpathlineto{\pgfqpoint{0.930236in}{0.659855in}}% -\pgfpathlineto{\pgfqpoint{0.941978in}{0.659897in}}% -\pgfpathlineto{\pgfqpoint{0.965463in}{0.660065in}}% -\pgfpathlineto{\pgfqpoint{1.035916in}{0.661227in}}% -\pgfpathlineto{\pgfqpoint{1.153339in}{0.665387in}}% -\pgfpathlineto{\pgfqpoint{1.270761in}{0.672261in}}% -\pgfpathlineto{\pgfqpoint{1.388183in}{0.682253in}}% -\pgfpathlineto{\pgfqpoint{1.857873in}{0.749630in}}% -\pgfpathlineto{\pgfqpoint{2.327563in}{0.861635in}}% -\pgfpathlineto{\pgfqpoint{2.797252in}{1.018953in}}% -\pgfpathlineto{\pgfqpoint{3.266942in}{1.220972in}}% -\pgfpathlineto{\pgfqpoint{3.736632in}{1.467754in}}% -\pgfpathlineto{\pgfqpoint{4.206321in}{1.739519in}}% -\pgfpathlineto{\pgfqpoint{4.676011in}{2.089111in}}% -\pgfpathlineto{\pgfqpoint{5.145700in}{2.445188in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{2.867802in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.668934in}}% +\pgfpathlineto{\pgfqpoint{0.930236in}{0.668947in}}% +\pgfpathlineto{\pgfqpoint{0.941978in}{0.668993in}}% +\pgfpathlineto{\pgfqpoint{0.965463in}{0.669174in}}% +\pgfpathlineto{\pgfqpoint{1.035916in}{0.670432in}}% +\pgfpathlineto{\pgfqpoint{1.153339in}{0.674935in}}% +\pgfpathlineto{\pgfqpoint{1.270761in}{0.682375in}}% +\pgfpathlineto{\pgfqpoint{1.388183in}{0.693190in}}% +\pgfpathlineto{\pgfqpoint{1.857873in}{0.766115in}}% +\pgfpathlineto{\pgfqpoint{2.327563in}{0.887343in}}% +\pgfpathlineto{\pgfqpoint{2.797252in}{1.057615in}}% +\pgfpathlineto{\pgfqpoint{3.266942in}{1.276270in}}% +\pgfpathlineto{\pgfqpoint{3.736632in}{1.543374in}}% +\pgfpathlineto{\pgfqpoint{4.206321in}{1.837518in}}% +\pgfpathlineto{\pgfqpoint{4.676011in}{2.215897in}}% +\pgfpathlineto{\pgfqpoint{5.145700in}{2.601296in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{3.058711in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -479,76 +479,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.923191in}{0.659843in}% +\pgfsys@transformshift{0.923191in}{0.668934in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.930236in}{0.659855in}% +\pgfsys@transformshift{0.930236in}{0.668947in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.941978in}{0.659897in}% +\pgfsys@transformshift{0.941978in}{0.668993in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.965463in}{0.660065in}% +\pgfsys@transformshift{0.965463in}{0.669174in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.035916in}{0.661227in}% +\pgfsys@transformshift{1.035916in}{0.670432in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.153339in}{0.665387in}% +\pgfsys@transformshift{1.153339in}{0.674935in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.270761in}{0.672261in}% +\pgfsys@transformshift{1.270761in}{0.682375in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.388183in}{0.682253in}% +\pgfsys@transformshift{1.388183in}{0.693190in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.857873in}{0.749630in}% +\pgfsys@transformshift{1.857873in}{0.766115in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.327563in}{0.861635in}% +\pgfsys@transformshift{2.327563in}{0.887343in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.797252in}{1.018953in}% +\pgfsys@transformshift{2.797252in}{1.057615in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.266942in}{1.220972in}% +\pgfsys@transformshift{3.266942in}{1.276270in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.736632in}{1.467754in}% +\pgfsys@transformshift{3.736632in}{1.543374in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.206321in}{1.739519in}% +\pgfsys@transformshift{4.206321in}{1.837518in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676011in}{2.089111in}% +\pgfsys@transformshift{4.676011in}{2.215897in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.145700in}{2.445188in}% +\pgfsys@transformshift{5.145700in}{2.601296in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{2.867802in}% +\pgfsys@transformshift{5.615390in}{3.058711in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -556,27 +556,27 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.659842in}}% -\pgfpathlineto{\pgfqpoint{0.930236in}{0.659849in}}% -\pgfpathlineto{\pgfqpoint{0.941978in}{0.659869in}}% -\pgfpathlineto{\pgfqpoint{0.965463in}{0.659952in}}% -\pgfpathlineto{\pgfqpoint{1.035916in}{0.660517in}}% -\pgfpathlineto{\pgfqpoint{1.153339in}{0.662538in}}% -\pgfpathlineto{\pgfqpoint{1.270761in}{0.666015in}}% -\pgfpathlineto{\pgfqpoint{1.388183in}{0.670759in}}% -\pgfpathlineto{\pgfqpoint{1.857873in}{0.703106in}}% -\pgfpathlineto{\pgfqpoint{2.327563in}{0.757031in}}% -\pgfpathlineto{\pgfqpoint{2.797252in}{0.832009in}}% -\pgfpathlineto{\pgfqpoint{3.266942in}{0.929173in}}% -\pgfpathlineto{\pgfqpoint{3.736632in}{1.047688in}}% -\pgfpathlineto{\pgfqpoint{4.206321in}{1.178243in}}% -\pgfpathlineto{\pgfqpoint{4.676011in}{1.348220in}}% -\pgfpathlineto{\pgfqpoint{5.145700in}{1.514584in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{1.734993in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.668933in}}% +\pgfpathlineto{\pgfqpoint{0.930236in}{0.668940in}}% +\pgfpathlineto{\pgfqpoint{0.941978in}{0.668962in}}% +\pgfpathlineto{\pgfqpoint{0.965463in}{0.669052in}}% +\pgfpathlineto{\pgfqpoint{1.035916in}{0.669663in}}% +\pgfpathlineto{\pgfqpoint{1.153339in}{0.671851in}}% +\pgfpathlineto{\pgfqpoint{1.270761in}{0.675614in}}% +\pgfpathlineto{\pgfqpoint{1.388183in}{0.680748in}}% +\pgfpathlineto{\pgfqpoint{1.857873in}{0.715759in}}% +\pgfpathlineto{\pgfqpoint{2.327563in}{0.774125in}}% +\pgfpathlineto{\pgfqpoint{2.797252in}{0.855277in}}% +\pgfpathlineto{\pgfqpoint{3.266942in}{0.960442in}}% +\pgfpathlineto{\pgfqpoint{3.736632in}{1.088716in}}% +\pgfpathlineto{\pgfqpoint{4.206321in}{1.230023in}}% +\pgfpathlineto{\pgfqpoint{4.676011in}{1.413996in}}% +\pgfpathlineto{\pgfqpoint{5.145700in}{1.594060in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{1.832619in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -601,76 +601,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.923191in}{0.659842in}% +\pgfsys@transformshift{0.923191in}{0.668933in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.930236in}{0.659849in}% +\pgfsys@transformshift{0.930236in}{0.668940in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.941978in}{0.659869in}% +\pgfsys@transformshift{0.941978in}{0.668962in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.965463in}{0.659952in}% +\pgfsys@transformshift{0.965463in}{0.669052in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.035916in}{0.660517in}% +\pgfsys@transformshift{1.035916in}{0.669663in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.153339in}{0.662538in}% +\pgfsys@transformshift{1.153339in}{0.671851in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.270761in}{0.666015in}% +\pgfsys@transformshift{1.270761in}{0.675614in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.388183in}{0.670759in}% +\pgfsys@transformshift{1.388183in}{0.680748in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.857873in}{0.703106in}% +\pgfsys@transformshift{1.857873in}{0.715759in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.327563in}{0.757031in}% +\pgfsys@transformshift{2.327563in}{0.774125in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.797252in}{0.832009in}% +\pgfsys@transformshift{2.797252in}{0.855277in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.266942in}{0.929173in}% +\pgfsys@transformshift{3.266942in}{0.960442in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.736632in}{1.047688in}% +\pgfsys@transformshift{3.736632in}{1.088716in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.206321in}{1.178243in}% +\pgfsys@transformshift{4.206321in}{1.230023in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676011in}{1.348220in}% +\pgfsys@transformshift{4.676011in}{1.413996in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.145700in}{1.514584in}% +\pgfsys@transformshift{5.145700in}{1.594060in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{1.734993in}% +\pgfsys@transformshift{5.615390in}{1.832619in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -678,27 +678,27 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.663941in}}% -\pgfpathlineto{\pgfqpoint{0.930236in}{0.663970in}}% -\pgfpathlineto{\pgfqpoint{0.941978in}{0.663996in}}% -\pgfpathlineto{\pgfqpoint{0.965463in}{0.664052in}}% -\pgfpathlineto{\pgfqpoint{1.035916in}{0.664170in}}% -\pgfpathlineto{\pgfqpoint{1.153339in}{0.664486in}}% -\pgfpathlineto{\pgfqpoint{1.270761in}{0.664776in}}% -\pgfpathlineto{\pgfqpoint{1.388183in}{0.665725in}}% -\pgfpathlineto{\pgfqpoint{1.857873in}{0.670008in}}% -\pgfpathlineto{\pgfqpoint{2.327563in}{0.674050in}}% -\pgfpathlineto{\pgfqpoint{2.797252in}{0.680596in}}% -\pgfpathlineto{\pgfqpoint{3.266942in}{0.690944in}}% -\pgfpathlineto{\pgfqpoint{3.736632in}{0.700906in}}% -\pgfpathlineto{\pgfqpoint{4.206321in}{0.717374in}}% -\pgfpathlineto{\pgfqpoint{4.676011in}{0.730814in}}% -\pgfpathlineto{\pgfqpoint{5.145700in}{0.747453in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{0.769906in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.673370in}}% +\pgfpathlineto{\pgfqpoint{0.930236in}{0.673401in}}% +\pgfpathlineto{\pgfqpoint{0.941978in}{0.673429in}}% +\pgfpathlineto{\pgfqpoint{0.965463in}{0.673490in}}% +\pgfpathlineto{\pgfqpoint{1.035916in}{0.673617in}}% +\pgfpathlineto{\pgfqpoint{1.153339in}{0.673959in}}% +\pgfpathlineto{\pgfqpoint{1.270761in}{0.674273in}}% +\pgfpathlineto{\pgfqpoint{1.388183in}{0.675300in}}% +\pgfpathlineto{\pgfqpoint{1.857873in}{0.679936in}}% +\pgfpathlineto{\pgfqpoint{2.327563in}{0.684311in}}% +\pgfpathlineto{\pgfqpoint{2.797252in}{0.691396in}}% +\pgfpathlineto{\pgfqpoint{3.266942in}{0.702597in}}% +\pgfpathlineto{\pgfqpoint{3.736632in}{0.713379in}}% +\pgfpathlineto{\pgfqpoint{4.206321in}{0.731202in}}% +\pgfpathlineto{\pgfqpoint{4.676011in}{0.745749in}}% +\pgfpathlineto{\pgfqpoint{5.145700in}{0.763758in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{0.788060in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -723,71 +723,71 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.923191in}{0.663941in}% +\pgfsys@transformshift{0.923191in}{0.673370in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.930236in}{0.663970in}% +\pgfsys@transformshift{0.930236in}{0.673401in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.941978in}{0.663996in}% +\pgfsys@transformshift{0.941978in}{0.673429in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.965463in}{0.664052in}% +\pgfsys@transformshift{0.965463in}{0.673490in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.035916in}{0.664170in}% +\pgfsys@transformshift{1.035916in}{0.673617in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.153339in}{0.664486in}% +\pgfsys@transformshift{1.153339in}{0.673959in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.270761in}{0.664776in}% +\pgfsys@transformshift{1.270761in}{0.674273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.388183in}{0.665725in}% +\pgfsys@transformshift{1.388183in}{0.675300in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.857873in}{0.670008in}% +\pgfsys@transformshift{1.857873in}{0.679936in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.327563in}{0.674050in}% +\pgfsys@transformshift{2.327563in}{0.684311in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.797252in}{0.680596in}% +\pgfsys@transformshift{2.797252in}{0.691396in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.266942in}{0.690944in}% +\pgfsys@transformshift{3.266942in}{0.702597in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.736632in}{0.700906in}% +\pgfsys@transformshift{3.736632in}{0.713379in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.206321in}{0.717374in}% +\pgfsys@transformshift{4.206321in}{0.731202in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676011in}{0.730814in}% +\pgfsys@transformshift{4.676011in}{0.745749in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.145700in}{0.747453in}% +\pgfsys@transformshift{5.145700in}{0.763758in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{0.769906in}% +\pgfsys@transformshift{5.615390in}{0.788060in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -799,7 +799,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -810,7 +810,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -831,21 +831,21 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.688581in}{2.978200in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.978200in}}% +\pgfpathmoveto{\pgfqpoint{0.688581in}{3.178200in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.014123in, y=3.234333in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join onePercent and onePercent' query}% +\pgftext[x=1.014123in, y=3.434333in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join onePercent and onePercent' query}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.396540in, y=3.061534in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont according to tuple count}% +\pgftext[x=2.396540in, y=3.261534in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont according to tuple count}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -858,16 +858,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.785803in}{2.280978in}}% -\pgfpathlineto{\pgfqpoint{2.689970in}{2.280978in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.280978in}}{\pgfqpoint{2.717747in}{2.308756in}}% -\pgfpathlineto{\pgfqpoint{2.717747in}{2.880978in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.908756in}}{\pgfqpoint{2.689970in}{2.908756in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.908756in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.908756in}}{\pgfqpoint{0.758025in}{2.880978in}}% -\pgfpathlineto{\pgfqpoint{0.758025in}{2.308756in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.280978in}}{\pgfqpoint{0.785803in}{2.280978in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.280978in}}% +\pgfpathmoveto{\pgfqpoint{0.785803in}{2.480978in}}% +\pgfpathlineto{\pgfqpoint{2.689970in}{2.480978in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.480978in}}{\pgfqpoint{2.717747in}{2.508756in}}% +\pgfpathlineto{\pgfqpoint{2.717747in}{3.080978in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{3.108756in}}{\pgfqpoint{2.689970in}{3.108756in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{3.108756in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{3.108756in}}{\pgfqpoint{0.758025in}{3.080978in}}% +\pgfpathlineto{\pgfqpoint{0.758025in}{2.508756in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.480978in}}{\pgfqpoint{0.785803in}{2.480978in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{2.480978in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -878,9 +878,9 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.804589in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.804589in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.804589in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{3.004589in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{3.004589in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{3.004589in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -907,7 +907,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.804589in}% +\pgfsys@transformshift{0.952470in}{3.004589in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -915,7 +915,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.755978in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% +\pgftext[x=1.202470in,y=2.955978in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -924,9 +924,9 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.608756in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.608756in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.608756in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.808756in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.808756in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.808756in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -953,7 +953,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.608756in}% +\pgfsys@transformshift{0.952470in}{2.808756in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -961,7 +961,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.560145in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% +\pgftext[x=1.202470in,y=2.760145in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -970,9 +970,9 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.413617in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.413617in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.413617in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.613617in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.613617in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.613617in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -999,7 +999,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.413617in}% +\pgfsys@transformshift{0.952470in}{2.613617in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1007,7 +1007,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.365006in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% +\pgftext[x=1.202470in,y=2.565006in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/join-onePercent-and-twentyPercent-1000.pgf b/report/figures/join-onePercent-and-twentyPercent-1000.pgf index e198385e..687d25aa 100644 --- a/report/figures/join-onePercent-and-twentyPercent-1000.pgf +++ b/report/figures/join-onePercent-and-twentyPercent-1000.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,14 +57,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.351000in}}% \pgfpathlineto{\pgfqpoint{0.827470in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.598500in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.798500in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -77,14 +77,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.055767in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{2.360320in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{2.360320in}{3.027262in}}% -\pgfpathlineto{\pgfqpoint{1.055767in}{3.027262in}}% +\pgfpathlineto{\pgfqpoint{2.360320in}{3.217738in}}% +\pgfpathlineto{\pgfqpoint{1.055767in}{3.217738in}}% \pgfpathlineto{\pgfqpoint{1.055767in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.598500in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.798500in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -97,14 +97,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{2.686458in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{3.991012in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{3.991012in}{1.629286in}}% -\pgfpathlineto{\pgfqpoint{2.686458in}{1.629286in}}% +\pgfpathlineto{\pgfqpoint{3.991012in}{1.712163in}}% +\pgfpathlineto{\pgfqpoint{2.686458in}{1.712163in}}% \pgfpathlineto{\pgfqpoint{2.686458in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.598500in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.798500in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -117,8 +117,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.317150in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.621703in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.621703in}{1.420875in}}% -\pgfpathlineto{\pgfqpoint{4.317150in}{1.420875in}}% +\pgfpathlineto{\pgfqpoint{5.621703in}{1.487712in}}% +\pgfpathlineto{\pgfqpoint{4.317150in}{1.487712in}}% \pgfpathlineto{\pgfqpoint{4.317150in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% @@ -244,7 +244,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{0.869043in}% +\pgfsys@transformshift{0.827470in}{0.893407in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -252,7 +252,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=0.820849in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0025}\)}% +\pgftext[x=0.344444in, y=0.845213in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0025}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -269,7 +269,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.185587in}% +\pgfsys@transformshift{0.827470in}{1.234314in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -277,7 +277,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.137393in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0050}\)}% +\pgftext[x=0.344444in, y=1.186120in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0050}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -294,7 +294,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.502131in}% +\pgfsys@transformshift{0.827470in}{1.575222in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -302,7 +302,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.453936in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0075}\)}% +\pgftext[x=0.344444in, y=1.527027in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0075}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -319,7 +319,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.818675in}% +\pgfsys@transformshift{0.827470in}{1.916129in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -327,7 +327,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.770480in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0100}\)}% +\pgftext[x=0.344444in, y=1.867934in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0100}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -344,7 +344,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.135218in}% +\pgfsys@transformshift{0.827470in}{2.257036in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -352,7 +352,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.087024in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0125}\)}% +\pgftext[x=0.344444in, y=2.208842in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0125}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -369,7 +369,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.451762in}% +\pgfsys@transformshift{0.827470in}{2.597943in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -377,7 +377,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.403568in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0150}\)}% +\pgftext[x=0.344444in, y=2.549749in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0150}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -394,7 +394,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.768306in}% +\pgfsys@transformshift{0.827470in}{2.938851in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -402,7 +402,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.720111in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0175}\)}% +\pgftext[x=0.344444in, y=2.890656in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0175}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -419,7 +419,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{3.084849in}% +\pgfsys@transformshift{0.827470in}{3.279758in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -427,13 +427,13 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=3.036655in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0200}\)}% +\pgftext[x=0.344444in, y=3.231564in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0200}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.288889in,y=1.851750in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Time (s)}% +\pgftext[x=0.288889in,y=1.951750in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Time (s)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -443,7 +443,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -454,7 +454,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -475,15 +475,15 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.827470in}{3.151000in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% +\pgfpathmoveto{\pgfqpoint{0.827470in}{3.351000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=3.338735in,y=3.234333in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join onePercent and twentyPercent' with 1000 tuples}% +\pgftext[x=3.338735in,y=3.434333in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join onePercent and twentyPercent' with 1000 tuples}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/join-onePercent-and-twentyPercent-by-tuple-with-inset.pgf b/report/figures/join-onePercent-and-twentyPercent-by-tuple-with-inset.pgf index 2e9e7b9f..03b0269a 100644 --- a/report/figures/join-onePercent-and-twentyPercent-by-tuple-with-inset.pgf +++ b/report/figures/join-onePercent-and-twentyPercent-by-tuple-with-inset.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,8 +57,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.549444in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.978200in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.178200in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.178200in}}% \pgfpathlineto{\pgfqpoint{0.688581in}{0.549444in}}% \pgfpathclose% \pgfusepath{fill}% @@ -234,7 +234,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{0.659842in}% +\pgfsys@transformshift{0.688581in}{0.668933in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -242,7 +242,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=0.611648in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0}\)}% +\pgftext[x=0.344444in, y=0.620739in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -259,7 +259,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.230718in}% +\pgfsys@transformshift{0.688581in}{0.977876in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -267,7 +267,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.182524in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.5}\)}% +\pgftext[x=0.344444in, y=0.929681in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.25}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -284,7 +284,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.801594in}% +\pgfsys@transformshift{0.688581in}{1.286819in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -292,7 +292,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.753399in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.0}\)}% +\pgftext[x=0.344444in, y=1.238624in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.50}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -309,7 +309,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.372470in}% +\pgfsys@transformshift{0.688581in}{1.595761in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -317,7 +317,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.324275in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.5}\)}% +\pgftext[x=0.344444in, y=1.547567in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.75}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -334,7 +334,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.943346in}% +\pgfsys@transformshift{0.688581in}{1.904704in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -342,16 +342,116 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.895151in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {2.0}\)}% +\pgftext[x=0.344444in, y=1.856510in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.00}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.213647in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.165453in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.25}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.522590in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.474395in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.50}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.831533in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.783338in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.75}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{3.140475in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=3.092281in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {2.00}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.358333in,y=1.763822in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=1.863822in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -359,27 +459,27 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.927883in}{0.659844in}}% -\pgfpathlineto{\pgfqpoint{0.934921in}{0.659856in}}% -\pgfpathlineto{\pgfqpoint{0.946652in}{0.659897in}}% -\pgfpathlineto{\pgfqpoint{0.970113in}{0.660057in}}% -\pgfpathlineto{\pgfqpoint{1.040496in}{0.661196in}}% -\pgfpathlineto{\pgfqpoint{1.157801in}{0.665268in}}% -\pgfpathlineto{\pgfqpoint{1.275106in}{0.672110in}}% -\pgfpathlineto{\pgfqpoint{1.392411in}{0.682158in}}% -\pgfpathlineto{\pgfqpoint{1.861631in}{0.749680in}}% -\pgfpathlineto{\pgfqpoint{2.330850in}{0.859846in}}% -\pgfpathlineto{\pgfqpoint{2.800070in}{1.018562in}}% -\pgfpathlineto{\pgfqpoint{3.269290in}{1.219989in}}% -\pgfpathlineto{\pgfqpoint{3.738510in}{1.466952in}}% -\pgfpathlineto{\pgfqpoint{4.207730in}{1.742511in}}% -\pgfpathlineto{\pgfqpoint{4.676950in}{2.072708in}}% -\pgfpathlineto{\pgfqpoint{5.146170in}{2.441182in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{2.867802in}}% +\pgfpathmoveto{\pgfqpoint{0.927883in}{0.668936in}}% +\pgfpathlineto{\pgfqpoint{0.934921in}{0.668948in}}% +\pgfpathlineto{\pgfqpoint{0.946652in}{0.668992in}}% +\pgfpathlineto{\pgfqpoint{0.970113in}{0.669166in}}% +\pgfpathlineto{\pgfqpoint{1.040496in}{0.670399in}}% +\pgfpathlineto{\pgfqpoint{1.157801in}{0.674806in}}% +\pgfpathlineto{\pgfqpoint{1.275106in}{0.682211in}}% +\pgfpathlineto{\pgfqpoint{1.392411in}{0.693086in}}% +\pgfpathlineto{\pgfqpoint{1.861631in}{0.766169in}}% +\pgfpathlineto{\pgfqpoint{2.330850in}{0.885406in}}% +\pgfpathlineto{\pgfqpoint{2.800070in}{1.057192in}}% +\pgfpathlineto{\pgfqpoint{3.269290in}{1.275206in}}% +\pgfpathlineto{\pgfqpoint{3.738510in}{1.542506in}}% +\pgfpathlineto{\pgfqpoint{4.207730in}{1.840756in}}% +\pgfpathlineto{\pgfqpoint{4.676950in}{2.198144in}}% +\pgfpathlineto{\pgfqpoint{5.146170in}{2.596961in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{3.058711in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -404,76 +504,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.927883in}{0.659844in}% +\pgfsys@transformshift{0.927883in}{0.668936in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.934921in}{0.659856in}% +\pgfsys@transformshift{0.934921in}{0.668948in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.946652in}{0.659897in}% +\pgfsys@transformshift{0.946652in}{0.668992in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.970113in}{0.660057in}% +\pgfsys@transformshift{0.970113in}{0.669166in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.040496in}{0.661196in}% +\pgfsys@transformshift{1.040496in}{0.670399in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.157801in}{0.665268in}% +\pgfsys@transformshift{1.157801in}{0.674806in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.275106in}{0.672110in}% +\pgfsys@transformshift{1.275106in}{0.682211in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.392411in}{0.682158in}% +\pgfsys@transformshift{1.392411in}{0.693086in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.861631in}{0.749680in}% +\pgfsys@transformshift{1.861631in}{0.766169in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.330850in}{0.859846in}% +\pgfsys@transformshift{2.330850in}{0.885406in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.800070in}{1.018562in}% +\pgfsys@transformshift{2.800070in}{1.057192in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.269290in}{1.219989in}% +\pgfsys@transformshift{3.269290in}{1.275206in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.738510in}{1.466952in}% +\pgfsys@transformshift{3.738510in}{1.542506in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.207730in}{1.742511in}% +\pgfsys@transformshift{4.207730in}{1.840756in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676950in}{2.072708in}% +\pgfsys@transformshift{4.676950in}{2.198144in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.146170in}{2.441182in}% +\pgfsys@transformshift{5.146170in}{2.596961in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{2.867802in}% +\pgfsys@transformshift{5.615390in}{3.058711in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -481,27 +581,27 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.927883in}{0.659843in}}% -\pgfpathlineto{\pgfqpoint{0.934921in}{0.659849in}}% -\pgfpathlineto{\pgfqpoint{0.946652in}{0.659867in}}% -\pgfpathlineto{\pgfqpoint{0.970113in}{0.659935in}}% -\pgfpathlineto{\pgfqpoint{1.040496in}{0.660432in}}% -\pgfpathlineto{\pgfqpoint{1.157801in}{0.662190in}}% -\pgfpathlineto{\pgfqpoint{1.275106in}{0.665306in}}% -\pgfpathlineto{\pgfqpoint{1.392411in}{0.669552in}}% -\pgfpathlineto{\pgfqpoint{1.861631in}{0.699739in}}% -\pgfpathlineto{\pgfqpoint{2.330850in}{0.751025in}}% -\pgfpathlineto{\pgfqpoint{2.800070in}{0.823361in}}% -\pgfpathlineto{\pgfqpoint{3.269290in}{0.919386in}}% -\pgfpathlineto{\pgfqpoint{3.738510in}{1.031357in}}% -\pgfpathlineto{\pgfqpoint{4.207730in}{1.160428in}}% -\pgfpathlineto{\pgfqpoint{4.676950in}{1.315923in}}% -\pgfpathlineto{\pgfqpoint{5.146170in}{1.479783in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{1.684741in}}% +\pgfpathmoveto{\pgfqpoint{0.927883in}{0.668934in}}% +\pgfpathlineto{\pgfqpoint{0.934921in}{0.668940in}}% +\pgfpathlineto{\pgfqpoint{0.946652in}{0.668960in}}% +\pgfpathlineto{\pgfqpoint{0.970113in}{0.669033in}}% +\pgfpathlineto{\pgfqpoint{1.040496in}{0.669571in}}% +\pgfpathlineto{\pgfqpoint{1.157801in}{0.671475in}}% +\pgfpathlineto{\pgfqpoint{1.275106in}{0.674847in}}% +\pgfpathlineto{\pgfqpoint{1.392411in}{0.679442in}}% +\pgfpathlineto{\pgfqpoint{1.861631in}{0.712115in}}% +\pgfpathlineto{\pgfqpoint{2.330850in}{0.767625in}}% +\pgfpathlineto{\pgfqpoint{2.800070in}{0.845917in}}% +\pgfpathlineto{\pgfqpoint{3.269290in}{0.949849in}}% +\pgfpathlineto{\pgfqpoint{3.738510in}{1.071041in}}% +\pgfpathlineto{\pgfqpoint{4.207730in}{1.210741in}}% +\pgfpathlineto{\pgfqpoint{4.676950in}{1.379040in}}% +\pgfpathlineto{\pgfqpoint{5.146170in}{1.556393in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{1.778229in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -526,76 +626,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.927883in}{0.659843in}% +\pgfsys@transformshift{0.927883in}{0.668934in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.934921in}{0.659849in}% +\pgfsys@transformshift{0.934921in}{0.668940in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.946652in}{0.659867in}% +\pgfsys@transformshift{0.946652in}{0.668960in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.970113in}{0.659935in}% +\pgfsys@transformshift{0.970113in}{0.669033in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.040496in}{0.660432in}% +\pgfsys@transformshift{1.040496in}{0.669571in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.157801in}{0.662190in}% +\pgfsys@transformshift{1.157801in}{0.671475in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.275106in}{0.665306in}% +\pgfsys@transformshift{1.275106in}{0.674847in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.392411in}{0.669552in}% +\pgfsys@transformshift{1.392411in}{0.679442in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.861631in}{0.699739in}% +\pgfsys@transformshift{1.861631in}{0.712115in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.330850in}{0.751025in}% +\pgfsys@transformshift{2.330850in}{0.767625in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.800070in}{0.823361in}% +\pgfsys@transformshift{2.800070in}{0.845917in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.269290in}{0.919386in}% +\pgfsys@transformshift{3.269290in}{0.949849in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.738510in}{1.031357in}% +\pgfsys@transformshift{3.738510in}{1.071041in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.207730in}{1.160428in}% +\pgfsys@transformshift{4.207730in}{1.210741in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676950in}{1.315923in}% +\pgfsys@transformshift{4.676950in}{1.379040in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.146170in}{1.479783in}% +\pgfsys@transformshift{5.146170in}{1.556393in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{1.684741in}% +\pgfsys@transformshift{5.615390in}{1.778229in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -603,27 +703,27 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.927883in}{0.663550in}}% -\pgfpathlineto{\pgfqpoint{0.934921in}{0.663505in}}% -\pgfpathlineto{\pgfqpoint{0.946652in}{0.663538in}}% -\pgfpathlineto{\pgfqpoint{0.970113in}{0.663562in}}% -\pgfpathlineto{\pgfqpoint{1.040496in}{0.663806in}}% -\pgfpathlineto{\pgfqpoint{1.157801in}{0.664515in}}% -\pgfpathlineto{\pgfqpoint{1.275106in}{0.665831in}}% -\pgfpathlineto{\pgfqpoint{1.392411in}{0.667673in}}% -\pgfpathlineto{\pgfqpoint{1.861631in}{0.675028in}}% -\pgfpathlineto{\pgfqpoint{2.330850in}{0.685635in}}% -\pgfpathlineto{\pgfqpoint{2.800070in}{0.703709in}}% -\pgfpathlineto{\pgfqpoint{3.269290in}{0.725486in}}% -\pgfpathlineto{\pgfqpoint{3.738510in}{0.749883in}}% -\pgfpathlineto{\pgfqpoint{4.207730in}{0.781791in}}% -\pgfpathlineto{\pgfqpoint{4.676950in}{0.810862in}}% -\pgfpathlineto{\pgfqpoint{5.146170in}{0.834564in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{0.901992in}}% +\pgfpathmoveto{\pgfqpoint{0.927883in}{0.672946in}}% +\pgfpathlineto{\pgfqpoint{0.934921in}{0.672897in}}% +\pgfpathlineto{\pgfqpoint{0.946652in}{0.672933in}}% +\pgfpathlineto{\pgfqpoint{0.970113in}{0.672960in}}% +\pgfpathlineto{\pgfqpoint{1.040496in}{0.673223in}}% +\pgfpathlineto{\pgfqpoint{1.157801in}{0.673990in}}% +\pgfpathlineto{\pgfqpoint{1.275106in}{0.675415in}}% +\pgfpathlineto{\pgfqpoint{1.392411in}{0.677408in}}% +\pgfpathlineto{\pgfqpoint{1.861631in}{0.685369in}}% +\pgfpathlineto{\pgfqpoint{2.330850in}{0.696850in}}% +\pgfpathlineto{\pgfqpoint{2.800070in}{0.716412in}}% +\pgfpathlineto{\pgfqpoint{3.269290in}{0.739982in}}% +\pgfpathlineto{\pgfqpoint{3.738510in}{0.766388in}}% +\pgfpathlineto{\pgfqpoint{4.207730in}{0.800924in}}% +\pgfpathlineto{\pgfqpoint{4.676950in}{0.832388in}}% +\pgfpathlineto{\pgfqpoint{5.146170in}{0.858043in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{0.931023in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -648,71 +748,71 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.927883in}{0.663550in}% +\pgfsys@transformshift{0.927883in}{0.672946in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.934921in}{0.663505in}% +\pgfsys@transformshift{0.934921in}{0.672897in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.946652in}{0.663538in}% +\pgfsys@transformshift{0.946652in}{0.672933in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.970113in}{0.663562in}% +\pgfsys@transformshift{0.970113in}{0.672960in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.040496in}{0.663806in}% +\pgfsys@transformshift{1.040496in}{0.673223in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.157801in}{0.664515in}% +\pgfsys@transformshift{1.157801in}{0.673990in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.275106in}{0.665831in}% +\pgfsys@transformshift{1.275106in}{0.675415in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.392411in}{0.667673in}% +\pgfsys@transformshift{1.392411in}{0.677408in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.861631in}{0.675028in}% +\pgfsys@transformshift{1.861631in}{0.685369in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.330850in}{0.685635in}% +\pgfsys@transformshift{2.330850in}{0.696850in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.800070in}{0.703709in}% +\pgfsys@transformshift{2.800070in}{0.716412in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.269290in}{0.725486in}% +\pgfsys@transformshift{3.269290in}{0.739982in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.738510in}{0.749883in}% +\pgfsys@transformshift{3.738510in}{0.766388in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.207730in}{0.781791in}% +\pgfsys@transformshift{4.207730in}{0.800924in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676950in}{0.810862in}% +\pgfsys@transformshift{4.676950in}{0.832388in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.146170in}{0.834564in}% +\pgfsys@transformshift{5.146170in}{0.858043in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{0.901992in}% +\pgfsys@transformshift{5.615390in}{0.931023in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -724,7 +824,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -735,7 +835,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -756,24 +856,24 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.688581in}{2.978200in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.978200in}}% +\pgfpathmoveto{\pgfqpoint{0.688581in}{3.178200in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.898457in, y=3.234333in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join onePercent and twentyPercent' query}% +\pgftext[x=0.898457in, y=3.434333in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join onePercent and twentyPercent' query}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.396540in, y=3.061534in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont according to tuple count}% +\pgftext[x=2.396540in, y=3.261534in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont according to tuple count}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -782,11 +882,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.500000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.659842in}}% -\pgfpathlineto{\pgfqpoint{1.439333in}{0.659842in}}% -\pgfpathlineto{\pgfqpoint{1.439333in}{0.684389in}}% -\pgfpathlineto{\pgfqpoint{0.923191in}{0.684389in}}% -\pgfpathlineto{\pgfqpoint{0.923191in}{0.659842in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.668933in}}% +\pgfpathlineto{\pgfqpoint{1.439333in}{0.668933in}}% +\pgfpathlineto{\pgfqpoint{1.439333in}{0.695502in}}% +\pgfpathlineto{\pgfqpoint{0.923191in}{0.695502in}}% +\pgfpathlineto{\pgfqpoint{0.923191in}{0.668933in}}% \pgfpathclose% \pgfusepath{stroke}% \end{pgfscope}% @@ -798,8 +898,8 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.500000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{2.249573in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.115571in}{1.466981in}}{\pgfqpoint{0.923191in}{0.684389in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{2.389573in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.115571in}{1.542538in}}{\pgfqpoint{0.923191in}{0.695502in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -810,8 +910,8 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.500000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.114448in}{1.399509in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.276890in}{1.029675in}}{\pgfqpoint{1.439333in}{0.659842in}}% +\pgfpathmoveto{\pgfqpoint{3.114448in}{1.469509in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.276890in}{1.069221in}}{\pgfqpoint{1.439333in}{0.668933in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -824,11 +924,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{1.399509in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{1.399509in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{2.249573in}}% -\pgfpathlineto{\pgfqpoint{1.307951in}{2.249573in}}% -\pgfpathlineto{\pgfqpoint{1.307951in}{1.399509in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{1.469509in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{1.469509in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{2.389573in}}% +\pgfpathlineto{\pgfqpoint{1.307951in}{2.389573in}}% +\pgfpathlineto{\pgfqpoint{1.307951in}{1.469509in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -847,7 +947,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.307951in}{1.399509in}% +\pgfsys@transformshift{1.307951in}{1.469509in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -855,7 +955,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.307951in,y=1.302287in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0}\)}% +\pgftext[x=1.307951in,y=1.372287in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -872,7 +972,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.129086in}{1.399509in}% +\pgfsys@transformshift{2.129086in}{1.469509in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -880,7 +980,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.129086in,y=1.302287in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {500}\)}% +\pgftext[x=2.129086in,y=1.372287in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {500}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -897,7 +997,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.950221in}{1.399509in}% +\pgfsys@transformshift{2.950221in}{1.469509in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -905,7 +1005,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.950221in,y=1.302287in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1000}\)}% +\pgftext[x=2.950221in,y=1.372287in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1000}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -922,7 +1022,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.307951in}{1.399509in}% +\pgfsys@transformshift{1.307951in}{1.469509in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -930,7 +1030,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.963814in, y=1.351314in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% +\pgftext[x=0.963814in, y=1.421314in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -947,7 +1047,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.307951in}{1.794893in}% +\pgfsys@transformshift{1.307951in}{1.897452in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -955,7 +1055,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.963814in, y=1.746699in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.01}\)}% +\pgftext[x=0.963814in, y=1.849257in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.01}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -972,7 +1072,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.307951in}{2.190278in}% +\pgfsys@transformshift{1.307951in}{2.325395in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -980,10 +1080,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.963814in, y=2.142083in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.02}\)}% +\pgftext[x=0.963814in, y=2.277200in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.02}\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.399509in}}{\pgfqpoint{1.806497in}{0.850065in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.469509in}}{\pgfqpoint{1.806497in}{0.920065in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -991,18 +1091,18 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.324374in}{1.399587in}}% -\pgfpathlineto{\pgfqpoint{1.349008in}{1.399988in}}% -\pgfpathlineto{\pgfqpoint{1.390065in}{1.401403in}}% -\pgfpathlineto{\pgfqpoint{1.472178in}{1.406957in}}% -\pgfpathlineto{\pgfqpoint{1.718518in}{1.446407in}}% -\pgfpathlineto{\pgfqpoint{2.129086in}{1.587420in}}% -\pgfpathlineto{\pgfqpoint{2.539653in}{1.824337in}}% -\pgfpathlineto{\pgfqpoint{2.950221in}{2.172295in}}% +\pgfpathmoveto{\pgfqpoint{1.324374in}{1.469594in}}% +\pgfpathlineto{\pgfqpoint{1.349008in}{1.470028in}}% +\pgfpathlineto{\pgfqpoint{1.390065in}{1.471559in}}% +\pgfpathlineto{\pgfqpoint{1.472178in}{1.477570in}}% +\pgfpathlineto{\pgfqpoint{1.718518in}{1.520269in}}% +\pgfpathlineto{\pgfqpoint{2.129086in}{1.672894in}}% +\pgfpathlineto{\pgfqpoint{2.539653in}{1.929320in}}% +\pgfpathlineto{\pgfqpoint{2.950221in}{2.305931in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.399509in}}{\pgfqpoint{1.806497in}{0.850065in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.469509in}}{\pgfqpoint{1.806497in}{0.920065in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -1027,40 +1127,40 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.324374in}{1.399587in}% +\pgfsys@transformshift{1.324374in}{1.469594in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.349008in}{1.399988in}% +\pgfsys@transformshift{1.349008in}{1.470028in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.390065in}{1.401403in}% +\pgfsys@transformshift{1.390065in}{1.471559in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.472178in}{1.406957in}% +\pgfsys@transformshift{1.472178in}{1.477570in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.718518in}{1.446407in}% +\pgfsys@transformshift{1.718518in}{1.520269in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.129086in}{1.587420in}% +\pgfsys@transformshift{2.129086in}{1.672894in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.539653in}{1.824337in}% +\pgfsys@transformshift{2.539653in}{1.929320in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.950221in}{2.172295in}% +\pgfsys@transformshift{2.950221in}{2.305931in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.399509in}}{\pgfqpoint{1.806497in}{0.850065in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.469509in}}{\pgfqpoint{1.806497in}{0.920065in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1068,18 +1168,18 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.324374in}{1.399547in}}% -\pgfpathlineto{\pgfqpoint{1.349008in}{1.399731in}}% -\pgfpathlineto{\pgfqpoint{1.390065in}{1.400357in}}% -\pgfpathlineto{\pgfqpoint{1.472178in}{1.402709in}}% -\pgfpathlineto{\pgfqpoint{1.718518in}{1.419919in}}% -\pgfpathlineto{\pgfqpoint{2.129086in}{1.480822in}}% -\pgfpathlineto{\pgfqpoint{2.539653in}{1.588730in}}% -\pgfpathlineto{\pgfqpoint{2.950221in}{1.735753in}}% +\pgfpathmoveto{\pgfqpoint{1.324374in}{1.469550in}}% +\pgfpathlineto{\pgfqpoint{1.349008in}{1.469749in}}% +\pgfpathlineto{\pgfqpoint{1.390065in}{1.470426in}}% +\pgfpathlineto{\pgfqpoint{1.472178in}{1.472973in}}% +\pgfpathlineto{\pgfqpoint{1.718518in}{1.491600in}}% +\pgfpathlineto{\pgfqpoint{2.129086in}{1.557518in}}% +\pgfpathlineto{\pgfqpoint{2.539653in}{1.674312in}}% +\pgfpathlineto{\pgfqpoint{2.950221in}{1.833442in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.399509in}}{\pgfqpoint{1.806497in}{0.850065in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.469509in}}{\pgfqpoint{1.806497in}{0.920065in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -1104,40 +1204,40 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.324374in}{1.399547in}% +\pgfsys@transformshift{1.324374in}{1.469550in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.349008in}{1.399731in}% +\pgfsys@transformshift{1.349008in}{1.469749in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.390065in}{1.400357in}% +\pgfsys@transformshift{1.390065in}{1.470426in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.472178in}{1.402709in}% +\pgfsys@transformshift{1.472178in}{1.472973in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.718518in}{1.419919in}% +\pgfsys@transformshift{1.718518in}{1.491600in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.129086in}{1.480822in}% +\pgfsys@transformshift{2.129086in}{1.557518in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.539653in}{1.588730in}% +\pgfsys@transformshift{2.539653in}{1.674312in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.950221in}{1.735753in}% +\pgfsys@transformshift{2.950221in}{1.833442in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.399509in}}{\pgfqpoint{1.806497in}{0.850065in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.469509in}}{\pgfqpoint{1.806497in}{0.920065in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1145,18 +1245,18 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.324374in}{1.527908in}}% -\pgfpathlineto{\pgfqpoint{1.349008in}{1.526342in}}% -\pgfpathlineto{\pgfqpoint{1.390065in}{1.527478in}}% -\pgfpathlineto{\pgfqpoint{1.472178in}{1.528338in}}% -\pgfpathlineto{\pgfqpoint{1.718518in}{1.536772in}}% -\pgfpathlineto{\pgfqpoint{2.129086in}{1.561315in}}% -\pgfpathlineto{\pgfqpoint{2.539653in}{1.606886in}}% -\pgfpathlineto{\pgfqpoint{2.950221in}{1.670674in}}% +\pgfpathmoveto{\pgfqpoint{1.324374in}{1.608481in}}% +\pgfpathlineto{\pgfqpoint{1.349008in}{1.606786in}}% +\pgfpathlineto{\pgfqpoint{1.390065in}{1.608016in}}% +\pgfpathlineto{\pgfqpoint{1.472178in}{1.608947in}}% +\pgfpathlineto{\pgfqpoint{1.718518in}{1.618076in}}% +\pgfpathlineto{\pgfqpoint{2.129086in}{1.644639in}}% +\pgfpathlineto{\pgfqpoint{2.539653in}{1.693963in}}% +\pgfpathlineto{\pgfqpoint{2.950221in}{1.763003in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.399509in}}{\pgfqpoint{1.806497in}{0.850065in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.469509in}}{\pgfqpoint{1.806497in}{0.920065in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -1181,35 +1281,35 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.324374in}{1.527908in}% +\pgfsys@transformshift{1.324374in}{1.608481in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.349008in}{1.526342in}% +\pgfsys@transformshift{1.349008in}{1.606786in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.390065in}{1.527478in}% +\pgfsys@transformshift{1.390065in}{1.608016in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.472178in}{1.528338in}% +\pgfsys@transformshift{1.472178in}{1.608947in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.718518in}{1.536772in}% +\pgfsys@transformshift{1.718518in}{1.618076in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.129086in}{1.561315in}% +\pgfsys@transformshift{2.129086in}{1.644639in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.539653in}{1.606886in}% +\pgfsys@transformshift{2.539653in}{1.693963in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.950221in}{1.670674in}% +\pgfsys@transformshift{2.950221in}{1.763003in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1220,8 +1320,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{1.399509in}}% -\pgfpathlineto{\pgfqpoint{1.307951in}{2.249573in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{1.469509in}}% +\pgfpathlineto{\pgfqpoint{1.307951in}{2.389573in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1231,8 +1331,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.114448in}{1.399509in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{2.249573in}}% +\pgfpathmoveto{\pgfqpoint{3.114448in}{1.469509in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{2.389573in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1242,8 +1342,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{1.399509in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{1.399509in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{1.469509in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{1.469509in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1253,8 +1353,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{2.249573in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{2.249573in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{2.389573in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{2.389573in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1268,16 +1368,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.785803in}{2.280978in}}% -\pgfpathlineto{\pgfqpoint{2.689970in}{2.280978in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.280978in}}{\pgfqpoint{2.717747in}{2.308756in}}% -\pgfpathlineto{\pgfqpoint{2.717747in}{2.880978in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.908756in}}{\pgfqpoint{2.689970in}{2.908756in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.908756in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.908756in}}{\pgfqpoint{0.758025in}{2.880978in}}% -\pgfpathlineto{\pgfqpoint{0.758025in}{2.308756in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.280978in}}{\pgfqpoint{0.785803in}{2.280978in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.280978in}}% +\pgfpathmoveto{\pgfqpoint{0.785803in}{2.480978in}}% +\pgfpathlineto{\pgfqpoint{2.689970in}{2.480978in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.480978in}}{\pgfqpoint{2.717747in}{2.508756in}}% +\pgfpathlineto{\pgfqpoint{2.717747in}{3.080978in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{3.108756in}}{\pgfqpoint{2.689970in}{3.108756in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{3.108756in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{3.108756in}}{\pgfqpoint{0.758025in}{3.080978in}}% +\pgfpathlineto{\pgfqpoint{0.758025in}{2.508756in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.480978in}}{\pgfqpoint{0.785803in}{2.480978in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{2.480978in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -1288,9 +1388,9 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.804589in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.804589in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.804589in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{3.004589in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{3.004589in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{3.004589in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1317,7 +1417,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.804589in}% +\pgfsys@transformshift{0.952470in}{3.004589in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1325,7 +1425,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.755978in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% +\pgftext[x=1.202470in,y=2.955978in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -1334,9 +1434,9 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.608756in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.608756in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.608756in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.808756in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.808756in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.808756in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1363,7 +1463,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.608756in}% +\pgfsys@transformshift{0.952470in}{2.808756in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1371,7 +1471,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.560145in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% +\pgftext[x=1.202470in,y=2.760145in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -1380,9 +1480,9 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.413617in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.413617in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.413617in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.613617in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.613617in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.613617in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1409,7 +1509,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.413617in}% +\pgfsys@transformshift{0.952470in}{2.613617in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1417,7 +1517,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.365006in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% +\pgftext[x=1.202470in,y=2.565006in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/join-onePercent-and-twentyPercent-by-tuples.pgf b/report/figures/join-onePercent-and-twentyPercent-by-tuples.pgf index c0d7ac8b..b7ae77f8 100644 --- a/report/figures/join-onePercent-and-twentyPercent-by-tuples.pgf +++ b/report/figures/join-onePercent-and-twentyPercent-by-tuples.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,8 +57,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.549444in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.978200in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.178200in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.178200in}}% \pgfpathlineto{\pgfqpoint{0.688581in}{0.549444in}}% \pgfpathclose% \pgfusepath{fill}% @@ -234,7 +234,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{0.659841in}% +\pgfsys@transformshift{0.688581in}{0.668932in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -242,7 +242,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=0.611647in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0}\)}% +\pgftext[x=0.344444in, y=0.620737in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -259,7 +259,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.230717in}% +\pgfsys@transformshift{0.688581in}{0.977875in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -267,7 +267,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.182523in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.5}\)}% +\pgftext[x=0.344444in, y=0.929680in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.25}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -284,7 +284,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.801593in}% +\pgfsys@transformshift{0.688581in}{1.286818in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -292,7 +292,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.753399in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.0}\)}% +\pgftext[x=0.344444in, y=1.238623in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.50}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -309,7 +309,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.372470in}% +\pgfsys@transformshift{0.688581in}{1.595761in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -317,7 +317,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.324275in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.5}\)}% +\pgftext[x=0.344444in, y=1.547566in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.75}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -334,7 +334,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.943346in}% +\pgfsys@transformshift{0.688581in}{1.904704in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -342,16 +342,116 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.895151in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {2.0}\)}% +\pgftext[x=0.344444in, y=1.856509in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.00}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.213647in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.165452in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.25}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.522590in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.474395in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.50}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.831533in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.783338in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.75}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{3.140476in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=3.092281in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {2.00}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.358333in,y=1.763822in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=1.863822in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -359,27 +459,27 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.659843in}}% -\pgfpathlineto{\pgfqpoint{0.930236in}{0.659855in}}% -\pgfpathlineto{\pgfqpoint{0.941978in}{0.659896in}}% -\pgfpathlineto{\pgfqpoint{0.965463in}{0.660056in}}% -\pgfpathlineto{\pgfqpoint{1.035916in}{0.661195in}}% -\pgfpathlineto{\pgfqpoint{1.153339in}{0.665267in}}% -\pgfpathlineto{\pgfqpoint{1.270761in}{0.672109in}}% -\pgfpathlineto{\pgfqpoint{1.388183in}{0.682157in}}% -\pgfpathlineto{\pgfqpoint{1.857873in}{0.749679in}}% -\pgfpathlineto{\pgfqpoint{2.327563in}{0.859845in}}% -\pgfpathlineto{\pgfqpoint{2.797252in}{1.018561in}}% -\pgfpathlineto{\pgfqpoint{3.266942in}{1.219988in}}% -\pgfpathlineto{\pgfqpoint{3.736632in}{1.466952in}}% -\pgfpathlineto{\pgfqpoint{4.206321in}{1.742511in}}% -\pgfpathlineto{\pgfqpoint{4.676011in}{2.072708in}}% -\pgfpathlineto{\pgfqpoint{5.145700in}{2.441182in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{2.867802in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.668934in}}% +\pgfpathlineto{\pgfqpoint{0.930236in}{0.668947in}}% +\pgfpathlineto{\pgfqpoint{0.941978in}{0.668991in}}% +\pgfpathlineto{\pgfqpoint{0.965463in}{0.669165in}}% +\pgfpathlineto{\pgfqpoint{1.035916in}{0.670398in}}% +\pgfpathlineto{\pgfqpoint{1.153339in}{0.674805in}}% +\pgfpathlineto{\pgfqpoint{1.270761in}{0.682210in}}% +\pgfpathlineto{\pgfqpoint{1.388183in}{0.693085in}}% +\pgfpathlineto{\pgfqpoint{1.857873in}{0.766168in}}% +\pgfpathlineto{\pgfqpoint{2.327563in}{0.885405in}}% +\pgfpathlineto{\pgfqpoint{2.797252in}{1.057191in}}% +\pgfpathlineto{\pgfqpoint{3.266942in}{1.275205in}}% +\pgfpathlineto{\pgfqpoint{3.736632in}{1.542505in}}% +\pgfpathlineto{\pgfqpoint{4.206321in}{1.840756in}}% +\pgfpathlineto{\pgfqpoint{4.676011in}{2.198143in}}% +\pgfpathlineto{\pgfqpoint{5.145700in}{2.596960in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{3.058711in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -404,76 +504,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.923191in}{0.659843in}% +\pgfsys@transformshift{0.923191in}{0.668934in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.930236in}{0.659855in}% +\pgfsys@transformshift{0.930236in}{0.668947in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.941978in}{0.659896in}% +\pgfsys@transformshift{0.941978in}{0.668991in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.965463in}{0.660056in}% +\pgfsys@transformshift{0.965463in}{0.669165in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.035916in}{0.661195in}% +\pgfsys@transformshift{1.035916in}{0.670398in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.153339in}{0.665267in}% +\pgfsys@transformshift{1.153339in}{0.674805in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.270761in}{0.672109in}% +\pgfsys@transformshift{1.270761in}{0.682210in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.388183in}{0.682157in}% +\pgfsys@transformshift{1.388183in}{0.693085in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.857873in}{0.749679in}% +\pgfsys@transformshift{1.857873in}{0.766168in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.327563in}{0.859845in}% +\pgfsys@transformshift{2.327563in}{0.885405in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.797252in}{1.018561in}% +\pgfsys@transformshift{2.797252in}{1.057191in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.266942in}{1.219988in}% +\pgfsys@transformshift{3.266942in}{1.275205in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.736632in}{1.466952in}% +\pgfsys@transformshift{3.736632in}{1.542505in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.206321in}{1.742511in}% +\pgfsys@transformshift{4.206321in}{1.840756in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676011in}{2.072708in}% +\pgfsys@transformshift{4.676011in}{2.198143in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.145700in}{2.441182in}% +\pgfsys@transformshift{5.145700in}{2.596960in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{2.867802in}% +\pgfsys@transformshift{5.615390in}{3.058711in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -481,27 +581,27 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.659842in}}% -\pgfpathlineto{\pgfqpoint{0.930236in}{0.659847in}}% -\pgfpathlineto{\pgfqpoint{0.941978in}{0.659866in}}% -\pgfpathlineto{\pgfqpoint{0.965463in}{0.659933in}}% -\pgfpathlineto{\pgfqpoint{1.035916in}{0.660430in}}% -\pgfpathlineto{\pgfqpoint{1.153339in}{0.662189in}}% -\pgfpathlineto{\pgfqpoint{1.270761in}{0.665305in}}% -\pgfpathlineto{\pgfqpoint{1.388183in}{0.669551in}}% -\pgfpathlineto{\pgfqpoint{1.857873in}{0.699738in}}% -\pgfpathlineto{\pgfqpoint{2.327563in}{0.751024in}}% -\pgfpathlineto{\pgfqpoint{2.797252in}{0.823360in}}% -\pgfpathlineto{\pgfqpoint{3.266942in}{0.919385in}}% -\pgfpathlineto{\pgfqpoint{3.736632in}{1.031356in}}% -\pgfpathlineto{\pgfqpoint{4.206321in}{1.160427in}}% -\pgfpathlineto{\pgfqpoint{4.676011in}{1.315922in}}% -\pgfpathlineto{\pgfqpoint{5.145700in}{1.479782in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{1.684740in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.668933in}}% +\pgfpathlineto{\pgfqpoint{0.930236in}{0.668939in}}% +\pgfpathlineto{\pgfqpoint{0.941978in}{0.668958in}}% +\pgfpathlineto{\pgfqpoint{0.965463in}{0.669032in}}% +\pgfpathlineto{\pgfqpoint{1.035916in}{0.669570in}}% +\pgfpathlineto{\pgfqpoint{1.153339in}{0.671473in}}% +\pgfpathlineto{\pgfqpoint{1.270761in}{0.674846in}}% +\pgfpathlineto{\pgfqpoint{1.388183in}{0.679441in}}% +\pgfpathlineto{\pgfqpoint{1.857873in}{0.712114in}}% +\pgfpathlineto{\pgfqpoint{2.327563in}{0.767623in}}% +\pgfpathlineto{\pgfqpoint{2.797252in}{0.845916in}}% +\pgfpathlineto{\pgfqpoint{3.266942in}{0.949848in}}% +\pgfpathlineto{\pgfqpoint{3.736632in}{1.071040in}}% +\pgfpathlineto{\pgfqpoint{4.206321in}{1.210740in}}% +\pgfpathlineto{\pgfqpoint{4.676011in}{1.379039in}}% +\pgfpathlineto{\pgfqpoint{5.145700in}{1.556392in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{1.778228in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -526,76 +626,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.923191in}{0.659842in}% +\pgfsys@transformshift{0.923191in}{0.668933in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.930236in}{0.659847in}% +\pgfsys@transformshift{0.930236in}{0.668939in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.941978in}{0.659866in}% +\pgfsys@transformshift{0.941978in}{0.668958in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.965463in}{0.659933in}% +\pgfsys@transformshift{0.965463in}{0.669032in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.035916in}{0.660430in}% +\pgfsys@transformshift{1.035916in}{0.669570in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.153339in}{0.662189in}% +\pgfsys@transformshift{1.153339in}{0.671473in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.270761in}{0.665305in}% +\pgfsys@transformshift{1.270761in}{0.674846in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.388183in}{0.669551in}% +\pgfsys@transformshift{1.388183in}{0.679441in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.857873in}{0.699738in}% +\pgfsys@transformshift{1.857873in}{0.712114in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.327563in}{0.751024in}% +\pgfsys@transformshift{2.327563in}{0.767623in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.797252in}{0.823360in}% +\pgfsys@transformshift{2.797252in}{0.845916in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.266942in}{0.919385in}% +\pgfsys@transformshift{3.266942in}{0.949848in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.736632in}{1.031356in}% +\pgfsys@transformshift{3.736632in}{1.071040in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.206321in}{1.160427in}% +\pgfsys@transformshift{4.206321in}{1.210740in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676011in}{1.315922in}% +\pgfsys@transformshift{4.676011in}{1.379039in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.145700in}{1.479782in}% +\pgfsys@transformshift{5.145700in}{1.556392in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{1.684740in}% +\pgfsys@transformshift{5.615390in}{1.778228in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -603,27 +703,27 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.663549in}}% -\pgfpathlineto{\pgfqpoint{0.930236in}{0.663504in}}% -\pgfpathlineto{\pgfqpoint{0.941978in}{0.663536in}}% -\pgfpathlineto{\pgfqpoint{0.965463in}{0.663561in}}% -\pgfpathlineto{\pgfqpoint{1.035916in}{0.663805in}}% -\pgfpathlineto{\pgfqpoint{1.153339in}{0.664514in}}% -\pgfpathlineto{\pgfqpoint{1.270761in}{0.665830in}}% -\pgfpathlineto{\pgfqpoint{1.388183in}{0.667672in}}% -\pgfpathlineto{\pgfqpoint{1.857873in}{0.675027in}}% -\pgfpathlineto{\pgfqpoint{2.327563in}{0.685634in}}% -\pgfpathlineto{\pgfqpoint{2.797252in}{0.703708in}}% -\pgfpathlineto{\pgfqpoint{3.266942in}{0.725485in}}% -\pgfpathlineto{\pgfqpoint{3.736632in}{0.749882in}}% -\pgfpathlineto{\pgfqpoint{4.206321in}{0.781790in}}% -\pgfpathlineto{\pgfqpoint{4.676011in}{0.810861in}}% -\pgfpathlineto{\pgfqpoint{5.145700in}{0.834563in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{0.901991in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.672945in}}% +\pgfpathlineto{\pgfqpoint{0.930236in}{0.672896in}}% +\pgfpathlineto{\pgfqpoint{0.941978in}{0.672932in}}% +\pgfpathlineto{\pgfqpoint{0.965463in}{0.672958in}}% +\pgfpathlineto{\pgfqpoint{1.035916in}{0.673222in}}% +\pgfpathlineto{\pgfqpoint{1.153339in}{0.673989in}}% +\pgfpathlineto{\pgfqpoint{1.270761in}{0.675413in}}% +\pgfpathlineto{\pgfqpoint{1.388183in}{0.677407in}}% +\pgfpathlineto{\pgfqpoint{1.857873in}{0.685368in}}% +\pgfpathlineto{\pgfqpoint{2.327563in}{0.696848in}}% +\pgfpathlineto{\pgfqpoint{2.797252in}{0.716411in}}% +\pgfpathlineto{\pgfqpoint{3.266942in}{0.739981in}}% +\pgfpathlineto{\pgfqpoint{3.736632in}{0.766387in}}% +\pgfpathlineto{\pgfqpoint{4.206321in}{0.800923in}}% +\pgfpathlineto{\pgfqpoint{4.676011in}{0.832387in}}% +\pgfpathlineto{\pgfqpoint{5.145700in}{0.858042in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{0.931022in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -648,71 +748,71 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.923191in}{0.663549in}% +\pgfsys@transformshift{0.923191in}{0.672945in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.930236in}{0.663504in}% +\pgfsys@transformshift{0.930236in}{0.672896in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.941978in}{0.663536in}% +\pgfsys@transformshift{0.941978in}{0.672932in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.965463in}{0.663561in}% +\pgfsys@transformshift{0.965463in}{0.672958in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.035916in}{0.663805in}% +\pgfsys@transformshift{1.035916in}{0.673222in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.153339in}{0.664514in}% +\pgfsys@transformshift{1.153339in}{0.673989in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.270761in}{0.665830in}% +\pgfsys@transformshift{1.270761in}{0.675413in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.388183in}{0.667672in}% +\pgfsys@transformshift{1.388183in}{0.677407in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.857873in}{0.675027in}% +\pgfsys@transformshift{1.857873in}{0.685368in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.327563in}{0.685634in}% +\pgfsys@transformshift{2.327563in}{0.696848in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.797252in}{0.703708in}% +\pgfsys@transformshift{2.797252in}{0.716411in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.266942in}{0.725485in}% +\pgfsys@transformshift{3.266942in}{0.739981in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.736632in}{0.749882in}% +\pgfsys@transformshift{3.736632in}{0.766387in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.206321in}{0.781790in}% +\pgfsys@transformshift{4.206321in}{0.800923in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676011in}{0.810861in}% +\pgfsys@transformshift{4.676011in}{0.832387in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.145700in}{0.834563in}% +\pgfsys@transformshift{5.145700in}{0.858042in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{0.901991in}% +\pgfsys@transformshift{5.615390in}{0.931022in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -724,7 +824,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -735,7 +835,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -756,21 +856,21 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.688581in}{2.978200in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.978200in}}% +\pgfpathmoveto{\pgfqpoint{0.688581in}{3.178200in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.898457in, y=3.234333in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join onePercent and twentyPercent' query}% +\pgftext[x=0.898457in, y=3.434333in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join onePercent and twentyPercent' query}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.396540in, y=3.061534in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont according to tuple count}% +\pgftext[x=2.396540in, y=3.261534in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont according to tuple count}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -783,16 +883,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.785803in}{2.280978in}}% -\pgfpathlineto{\pgfqpoint{2.689970in}{2.280978in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.280978in}}{\pgfqpoint{2.717747in}{2.308756in}}% -\pgfpathlineto{\pgfqpoint{2.717747in}{2.880978in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.908756in}}{\pgfqpoint{2.689970in}{2.908756in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.908756in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.908756in}}{\pgfqpoint{0.758025in}{2.880978in}}% -\pgfpathlineto{\pgfqpoint{0.758025in}{2.308756in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.280978in}}{\pgfqpoint{0.785803in}{2.280978in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.280978in}}% +\pgfpathmoveto{\pgfqpoint{0.785803in}{2.480978in}}% +\pgfpathlineto{\pgfqpoint{2.689970in}{2.480978in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.480978in}}{\pgfqpoint{2.717747in}{2.508756in}}% +\pgfpathlineto{\pgfqpoint{2.717747in}{3.080978in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{3.108756in}}{\pgfqpoint{2.689970in}{3.108756in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{3.108756in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{3.108756in}}{\pgfqpoint{0.758025in}{3.080978in}}% +\pgfpathlineto{\pgfqpoint{0.758025in}{2.508756in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.480978in}}{\pgfqpoint{0.785803in}{2.480978in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{2.480978in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -803,9 +903,9 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.804589in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.804589in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.804589in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{3.004589in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{3.004589in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{3.004589in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -832,7 +932,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.804589in}% +\pgfsys@transformshift{0.952470in}{3.004589in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -840,7 +940,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.755978in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% +\pgftext[x=1.202470in,y=2.955978in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -849,9 +949,9 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.608756in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.608756in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.608756in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.808756in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.808756in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.808756in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -878,7 +978,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.608756in}% +\pgfsys@transformshift{0.952470in}{2.808756in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -886,7 +986,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.560145in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% +\pgftext[x=1.202470in,y=2.760145in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -895,9 +995,9 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.413617in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.413617in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.413617in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.613617in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.613617in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.613617in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -924,7 +1024,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.413617in}% +\pgfsys@transformshift{0.952470in}{2.613617in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -932,7 +1032,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.365006in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% +\pgftext[x=1.202470in,y=2.565006in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/join-onePercent-and-twentyPercent-flipped-10000-tuples.pgf b/report/figures/join-onePercent-and-twentyPercent-flipped-10000-tuples.pgf index 33340d36..be56413e 100644 --- a/report/figures/join-onePercent-and-twentyPercent-flipped-10000-tuples.pgf +++ b/report/figures/join-onePercent-and-twentyPercent-flipped-10000-tuples.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,14 +57,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.351000in}}% \pgfpathlineto{\pgfqpoint{0.688581in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.552500in}}{\pgfqpoint{5.161419in}{2.598500in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.552500in}}{\pgfqpoint{5.161419in}{2.798500in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -77,14 +77,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.923191in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{1.563036in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{1.563036in}{3.027262in}}% -\pgfpathlineto{\pgfqpoint{0.923191in}{3.027262in}}% +\pgfpathlineto{\pgfqpoint{1.563036in}{3.217738in}}% +\pgfpathlineto{\pgfqpoint{0.923191in}{3.217738in}}% \pgfpathlineto{\pgfqpoint{0.923191in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.552500in}}{\pgfqpoint{5.161419in}{2.598500in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.552500in}}{\pgfqpoint{5.161419in}{2.798500in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -97,14 +97,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{2.629445in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{3.269290in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{3.269290in}{1.701243in}}% -\pgfpathlineto{\pgfqpoint{2.629445in}{1.701243in}}% +\pgfpathlineto{\pgfqpoint{3.269290in}{1.789659in}}% +\pgfpathlineto{\pgfqpoint{2.629445in}{1.789659in}}% \pgfpathlineto{\pgfqpoint{2.629445in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.552500in}}{\pgfqpoint{5.161419in}{2.598500in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.552500in}}{\pgfqpoint{5.161419in}{2.798500in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -117,14 +117,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.335699in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{4.975545in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{4.975545in}{0.823910in}}% -\pgfpathlineto{\pgfqpoint{4.335699in}{0.823910in}}% +\pgfpathlineto{\pgfqpoint{4.975545in}{0.844799in}}% +\pgfpathlineto{\pgfqpoint{4.335699in}{0.844799in}}% \pgfpathlineto{\pgfqpoint{4.335699in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.552500in}}{\pgfqpoint{5.161419in}{2.598500in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.552500in}}{\pgfqpoint{5.161419in}{2.798500in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -137,14 +137,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.563036in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{2.202881in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{2.202881in}{2.980100in}}% -\pgfpathlineto{\pgfqpoint{1.563036in}{2.980100in}}% +\pgfpathlineto{\pgfqpoint{2.202881in}{3.166946in}}% +\pgfpathlineto{\pgfqpoint{1.563036in}{3.166946in}}% \pgfpathlineto{\pgfqpoint{1.563036in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.552500in}}{\pgfqpoint{5.161419in}{2.598500in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.552500in}}{\pgfqpoint{5.161419in}{2.798500in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -157,14 +157,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{3.269290in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{3.909136in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{3.909136in}{1.604160in}}% -\pgfpathlineto{\pgfqpoint{3.269290in}{1.604160in}}% +\pgfpathlineto{\pgfqpoint{3.909136in}{1.685103in}}% +\pgfpathlineto{\pgfqpoint{3.269290in}{1.685103in}}% \pgfpathlineto{\pgfqpoint{3.269290in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.552500in}}{\pgfqpoint{5.161419in}{2.598500in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.552500in}}{\pgfqpoint{5.161419in}{2.798500in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -177,8 +177,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.975545in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.615390in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{0.820873in}}% -\pgfpathlineto{\pgfqpoint{4.975545in}{0.820873in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{0.841529in}}% +\pgfpathlineto{\pgfqpoint{4.975545in}{0.841529in}}% \pgfpathlineto{\pgfqpoint{4.975545in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% @@ -304,7 +304,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{0.872429in}% +\pgfsys@transformshift{0.688581in}{0.897053in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -312,7 +312,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=0.824235in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.25}\)}% +\pgftext[x=0.344444in, y=0.848859in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.25}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -329,7 +329,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.192358in}% +\pgfsys@transformshift{0.688581in}{1.241606in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -337,7 +337,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.144164in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.50}\)}% +\pgftext[x=0.344444in, y=1.193412in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.50}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -354,7 +354,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.512287in}% +\pgfsys@transformshift{0.688581in}{1.586160in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -362,7 +362,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.464093in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.75}\)}% +\pgftext[x=0.344444in, y=1.537965in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.75}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -379,7 +379,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.832217in}% +\pgfsys@transformshift{0.688581in}{1.930713in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -387,7 +387,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.784022in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.00}\)}% +\pgftext[x=0.344444in, y=1.882519in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.00}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -404,7 +404,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.152146in}% +\pgfsys@transformshift{0.688581in}{2.275267in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -412,7 +412,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.103951in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.25}\)}% +\pgftext[x=0.344444in, y=2.227072in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.25}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -429,7 +429,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.472075in}% +\pgfsys@transformshift{0.688581in}{2.619820in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -437,7 +437,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.423881in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.50}\)}% +\pgftext[x=0.344444in, y=2.571626in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.50}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -454,7 +454,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.792004in}% +\pgfsys@transformshift{0.688581in}{2.964373in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -462,7 +462,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.743810in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.75}\)}% +\pgftext[x=0.344444in, y=2.916179in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.75}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -479,7 +479,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{3.111934in}% +\pgfsys@transformshift{0.688581in}{3.308927in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -487,13 +487,13 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=3.063739in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {2.00}\)}% +\pgftext[x=0.344444in, y=3.260732in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {2.00}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.288889in,y=1.851750in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=1.951750in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -503,7 +503,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -514,7 +514,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -535,15 +535,15 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.688581in}{3.151000in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% +\pgfpathmoveto{\pgfqpoint{0.688581in}{3.351000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=3.269290in,y=3.234333in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete given queries with 10000 tuples}% +\pgftext[x=3.269290in,y=3.434333in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete given queries with 10000 tuples}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -556,16 +556,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.785803in}{2.649611in}}% -\pgfpathlineto{\pgfqpoint{3.348997in}{2.649611in}}% -\pgfpathquadraticcurveto{\pgfqpoint{3.376775in}{2.649611in}}{\pgfqpoint{3.376775in}{2.677389in}}% -\pgfpathlineto{\pgfqpoint{3.376775in}{3.053778in}}% -\pgfpathquadraticcurveto{\pgfqpoint{3.376775in}{3.081556in}}{\pgfqpoint{3.348997in}{3.081556in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{3.081556in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{3.081556in}}{\pgfqpoint{0.758025in}{3.053778in}}% -\pgfpathlineto{\pgfqpoint{0.758025in}{2.677389in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.649611in}}{\pgfqpoint{0.785803in}{2.649611in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.649611in}}% +\pgfpathmoveto{\pgfqpoint{0.785803in}{2.849611in}}% +\pgfpathlineto{\pgfqpoint{3.348997in}{2.849611in}}% +\pgfpathquadraticcurveto{\pgfqpoint{3.376775in}{2.849611in}}{\pgfqpoint{3.376775in}{2.877389in}}% +\pgfpathlineto{\pgfqpoint{3.376775in}{3.253778in}}% +\pgfpathquadraticcurveto{\pgfqpoint{3.376775in}{3.281556in}}{\pgfqpoint{3.348997in}{3.281556in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{3.281556in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{3.281556in}}{\pgfqpoint{0.758025in}{3.253778in}}% +\pgfpathlineto{\pgfqpoint{0.758025in}{2.877389in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.849611in}}{\pgfqpoint{0.785803in}{2.849611in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{2.849611in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -579,11 +579,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.928778in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.928778in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{3.026000in}}% -\pgfpathlineto{\pgfqpoint{0.813581in}{3.026000in}}% -\pgfpathlineto{\pgfqpoint{0.813581in}{2.928778in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{3.128778in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{3.128778in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{3.226000in}}% +\pgfpathlineto{\pgfqpoint{0.813581in}{3.226000in}}% +\pgfpathlineto{\pgfqpoint{0.813581in}{3.128778in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -591,7 +591,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.928778in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont join onePercent and twentyPercent}% +\pgftext[x=1.202470in,y=3.128778in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont join onePercent and twentyPercent}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -603,11 +603,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.733639in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.733639in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.830861in}}% -\pgfpathlineto{\pgfqpoint{0.813581in}{2.830861in}}% -\pgfpathlineto{\pgfqpoint{0.813581in}{2.733639in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.933639in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.933639in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{3.030861in}}% +\pgfpathlineto{\pgfqpoint{0.813581in}{3.030861in}}% +\pgfpathlineto{\pgfqpoint{0.813581in}{2.933639in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -615,7 +615,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.733639in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont join twentyPercent and onePercent}% +\pgftext[x=1.202470in,y=2.933639in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont join twentyPercent and onePercent}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/join-twentyPercent-and-onePercent-1000.pgf b/report/figures/join-twentyPercent-and-onePercent-1000.pgf index 4fdeb21e..c8b879df 100644 --- a/report/figures/join-twentyPercent-and-onePercent-1000.pgf +++ b/report/figures/join-twentyPercent-and-onePercent-1000.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,14 +57,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.351000in}}% \pgfpathlineto{\pgfqpoint{0.827470in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.598500in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.798500in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -77,14 +77,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.055767in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{2.360320in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{2.360320in}{3.027262in}}% -\pgfpathlineto{\pgfqpoint{1.055767in}{3.027262in}}% +\pgfpathlineto{\pgfqpoint{2.360320in}{3.217738in}}% +\pgfpathlineto{\pgfqpoint{1.055767in}{3.217738in}}% \pgfpathlineto{\pgfqpoint{1.055767in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.598500in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.798500in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -97,14 +97,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{2.686458in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{3.991012in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{3.991012in}{1.642816in}}% -\pgfpathlineto{\pgfqpoint{2.686458in}{1.642816in}}% +\pgfpathlineto{\pgfqpoint{3.991012in}{1.726735in}}% +\pgfpathlineto{\pgfqpoint{2.686458in}{1.726735in}}% \pgfpathlineto{\pgfqpoint{2.686458in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.598500in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.552500in}}{\pgfqpoint{5.022530in}{2.798500in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -117,8 +117,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.317150in}{0.552500in}}% \pgfpathlineto{\pgfqpoint{5.621703in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.621703in}{1.415552in}}% -\pgfpathlineto{\pgfqpoint{4.317150in}{1.415552in}}% +\pgfpathlineto{\pgfqpoint{5.621703in}{1.481979in}}% +\pgfpathlineto{\pgfqpoint{4.317150in}{1.481979in}}% \pgfpathlineto{\pgfqpoint{4.317150in}{0.552500in}}% \pgfpathclose% \pgfusepath{fill}% @@ -244,7 +244,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{0.873178in}% +\pgfsys@transformshift{0.827470in}{0.897860in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -252,7 +252,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=0.824984in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0025}\)}% +\pgftext[x=0.344444in, y=0.849665in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0025}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -269,7 +269,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.193856in}% +\pgfsys@transformshift{0.827470in}{1.243220in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -277,7 +277,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.145662in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0050}\)}% +\pgftext[x=0.344444in, y=1.195026in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0050}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -294,7 +294,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.514535in}% +\pgfsys@transformshift{0.827470in}{1.588580in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -302,7 +302,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.466340in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0075}\)}% +\pgftext[x=0.344444in, y=1.540386in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0075}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -319,7 +319,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.835213in}% +\pgfsys@transformshift{0.827470in}{1.933940in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -327,7 +327,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.787019in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0100}\)}% +\pgftext[x=0.344444in, y=1.885746in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0100}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -344,7 +344,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.155892in}% +\pgfsys@transformshift{0.827470in}{2.279301in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -352,7 +352,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.107697in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0125}\)}% +\pgftext[x=0.344444in, y=2.231106in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0125}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -369,7 +369,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.476570in}% +\pgfsys@transformshift{0.827470in}{2.624661in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -377,7 +377,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.428376in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0150}\)}% +\pgftext[x=0.344444in, y=2.576466in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0150}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -394,7 +394,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.797248in}% +\pgfsys@transformshift{0.827470in}{2.970021in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -402,7 +402,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.749054in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0175}\)}% +\pgftext[x=0.344444in, y=2.921827in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0175}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -419,7 +419,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{3.117927in}% +\pgfsys@transformshift{0.827470in}{3.315381in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -427,13 +427,13 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=3.069732in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0200}\)}% +\pgftext[x=0.344444in, y=3.267187in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0200}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.288889in,y=1.851750in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Time (s)}% +\pgftext[x=0.288889in,y=1.951750in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Time (s)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -443,7 +443,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -454,7 +454,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.552500in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -475,15 +475,15 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.827470in}{3.151000in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% +\pgfpathmoveto{\pgfqpoint{0.827470in}{3.351000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=3.338735in,y=3.234333in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join twentyPercent and onePercent' with 1000 tuples}% +\pgftext[x=3.338735in,y=3.434333in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join twentyPercent and onePercent' with 1000 tuples}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/join-twentyPercent-and-onePercent-by-tuple-with-inset.pgf b/report/figures/join-twentyPercent-and-onePercent-by-tuple-with-inset.pgf index b2212a59..238bab79 100644 --- a/report/figures/join-twentyPercent-and-onePercent-by-tuple-with-inset.pgf +++ b/report/figures/join-twentyPercent-and-onePercent-by-tuple-with-inset.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,8 +57,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.549444in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.978200in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.178200in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.178200in}}% \pgfpathlineto{\pgfqpoint{0.688581in}{0.549444in}}% \pgfpathclose% \pgfusepath{fill}% @@ -234,7 +234,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{0.659842in}% +\pgfsys@transformshift{0.688581in}{0.668933in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -242,7 +242,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=0.611648in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0}\)}% +\pgftext[x=0.344444in, y=0.620739in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -259,7 +259,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.241809in}% +\pgfsys@transformshift{0.688581in}{0.983878in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -267,7 +267,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.193614in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.5}\)}% +\pgftext[x=0.344444in, y=0.935683in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.25}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -284,7 +284,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.823775in}% +\pgfsys@transformshift{0.688581in}{1.298823in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -292,7 +292,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.775581in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.0}\)}% +\pgftext[x=0.344444in, y=1.250628in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.50}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -309,7 +309,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.405742in}% +\pgfsys@transformshift{0.688581in}{1.613767in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -317,16 +317,116 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.357547in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.5}\)}% +\pgftext[x=0.344444in, y=1.565573in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.75}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{1.928712in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=1.880518in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.00}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.243657in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.195463in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.25}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.558602in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.510407in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.50}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.873547in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.825352in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.75}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.358333in,y=1.763822in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=1.863822in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -334,27 +434,27 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.927883in}{0.659844in}}% -\pgfpathlineto{\pgfqpoint{0.934921in}{0.659856in}}% -\pgfpathlineto{\pgfqpoint{0.946652in}{0.659898in}}% -\pgfpathlineto{\pgfqpoint{0.970113in}{0.660061in}}% -\pgfpathlineto{\pgfqpoint{1.040496in}{0.661224in}}% -\pgfpathlineto{\pgfqpoint{1.157801in}{0.665359in}}% -\pgfpathlineto{\pgfqpoint{1.275106in}{0.672202in}}% -\pgfpathlineto{\pgfqpoint{1.392411in}{0.682298in}}% -\pgfpathlineto{\pgfqpoint{1.861631in}{0.749586in}}% -\pgfpathlineto{\pgfqpoint{2.330850in}{0.860879in}}% -\pgfpathlineto{\pgfqpoint{2.800070in}{1.017204in}}% -\pgfpathlineto{\pgfqpoint{3.269290in}{1.218727in}}% -\pgfpathlineto{\pgfqpoint{3.738510in}{1.454935in}}% -\pgfpathlineto{\pgfqpoint{4.207730in}{1.740519in}}% -\pgfpathlineto{\pgfqpoint{4.676950in}{2.070216in}}% -\pgfpathlineto{\pgfqpoint{5.146170in}{2.444021in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{2.867802in}}% +\pgfpathmoveto{\pgfqpoint{0.927883in}{0.668936in}}% +\pgfpathlineto{\pgfqpoint{0.934921in}{0.668948in}}% +\pgfpathlineto{\pgfqpoint{0.946652in}{0.668993in}}% +\pgfpathlineto{\pgfqpoint{0.970113in}{0.669170in}}% +\pgfpathlineto{\pgfqpoint{1.040496in}{0.670429in}}% +\pgfpathlineto{\pgfqpoint{1.157801in}{0.674905in}}% +\pgfpathlineto{\pgfqpoint{1.275106in}{0.682311in}}% +\pgfpathlineto{\pgfqpoint{1.392411in}{0.693238in}}% +\pgfpathlineto{\pgfqpoint{1.861631in}{0.766067in}}% +\pgfpathlineto{\pgfqpoint{2.330850in}{0.886525in}}% +\pgfpathlineto{\pgfqpoint{2.800070in}{1.055723in}}% +\pgfpathlineto{\pgfqpoint{3.269290in}{1.273841in}}% +\pgfpathlineto{\pgfqpoint{3.738510in}{1.529499in}}% +\pgfpathlineto{\pgfqpoint{4.207730in}{1.838600in}}% +\pgfpathlineto{\pgfqpoint{4.676950in}{2.195446in}}% +\pgfpathlineto{\pgfqpoint{5.146170in}{2.600034in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{3.058711in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -379,76 +479,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.927883in}{0.659844in}% +\pgfsys@transformshift{0.927883in}{0.668936in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.934921in}{0.659856in}% +\pgfsys@transformshift{0.934921in}{0.668948in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.946652in}{0.659898in}% +\pgfsys@transformshift{0.946652in}{0.668993in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.970113in}{0.660061in}% +\pgfsys@transformshift{0.970113in}{0.669170in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.040496in}{0.661224in}% +\pgfsys@transformshift{1.040496in}{0.670429in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.157801in}{0.665359in}% +\pgfsys@transformshift{1.157801in}{0.674905in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.275106in}{0.672202in}% +\pgfsys@transformshift{1.275106in}{0.682311in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.392411in}{0.682298in}% +\pgfsys@transformshift{1.392411in}{0.693238in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.861631in}{0.749586in}% +\pgfsys@transformshift{1.861631in}{0.766067in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.330850in}{0.860879in}% +\pgfsys@transformshift{2.330850in}{0.886525in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.800070in}{1.017204in}% +\pgfsys@transformshift{2.800070in}{1.055723in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.269290in}{1.218727in}% +\pgfsys@transformshift{3.269290in}{1.273841in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.738510in}{1.454935in}% +\pgfsys@transformshift{3.738510in}{1.529499in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.207730in}{1.740519in}% +\pgfsys@transformshift{4.207730in}{1.838600in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676950in}{2.070216in}% +\pgfsys@transformshift{4.676950in}{2.195446in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.146170in}{2.444021in}% +\pgfsys@transformshift{5.146170in}{2.600034in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{2.867802in}% +\pgfsys@transformshift{5.615390in}{3.058711in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -456,27 +556,27 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.927883in}{0.659843in}}% -\pgfpathlineto{\pgfqpoint{0.934921in}{0.659849in}}% -\pgfpathlineto{\pgfqpoint{0.946652in}{0.659867in}}% -\pgfpathlineto{\pgfqpoint{0.970113in}{0.659937in}}% -\pgfpathlineto{\pgfqpoint{1.040496in}{0.660446in}}% -\pgfpathlineto{\pgfqpoint{1.157801in}{0.662230in}}% -\pgfpathlineto{\pgfqpoint{1.275106in}{0.665462in}}% -\pgfpathlineto{\pgfqpoint{1.392411in}{0.669736in}}% -\pgfpathlineto{\pgfqpoint{1.861631in}{0.698932in}}% -\pgfpathlineto{\pgfqpoint{2.330850in}{0.747253in}}% -\pgfpathlineto{\pgfqpoint{2.800070in}{0.815442in}}% -\pgfpathlineto{\pgfqpoint{3.269290in}{0.902905in}}% -\pgfpathlineto{\pgfqpoint{3.738510in}{1.009607in}}% -\pgfpathlineto{\pgfqpoint{4.207730in}{1.128693in}}% -\pgfpathlineto{\pgfqpoint{4.676950in}{1.272377in}}% -\pgfpathlineto{\pgfqpoint{5.146170in}{1.430473in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{1.616352in}}% +\pgfpathmoveto{\pgfqpoint{0.927883in}{0.668934in}}% +\pgfpathlineto{\pgfqpoint{0.934921in}{0.668940in}}% +\pgfpathlineto{\pgfqpoint{0.946652in}{0.668960in}}% +\pgfpathlineto{\pgfqpoint{0.970113in}{0.669036in}}% +\pgfpathlineto{\pgfqpoint{1.040496in}{0.669586in}}% +\pgfpathlineto{\pgfqpoint{1.157801in}{0.671517in}}% +\pgfpathlineto{\pgfqpoint{1.275106in}{0.675015in}}% +\pgfpathlineto{\pgfqpoint{1.392411in}{0.679641in}}% +\pgfpathlineto{\pgfqpoint{1.861631in}{0.711242in}}% +\pgfpathlineto{\pgfqpoint{2.330850in}{0.763542in}}% +\pgfpathlineto{\pgfqpoint{2.800070in}{0.837346in}}% +\pgfpathlineto{\pgfqpoint{3.269290in}{0.932011in}}% +\pgfpathlineto{\pgfqpoint{3.738510in}{1.047500in}}% +\pgfpathlineto{\pgfqpoint{4.207730in}{1.176392in}}% +\pgfpathlineto{\pgfqpoint{4.676950in}{1.331908in}}% +\pgfpathlineto{\pgfqpoint{5.146170in}{1.503023in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{1.704208in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -501,76 +601,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.927883in}{0.659843in}% +\pgfsys@transformshift{0.927883in}{0.668934in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.934921in}{0.659849in}% +\pgfsys@transformshift{0.934921in}{0.668940in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.946652in}{0.659867in}% +\pgfsys@transformshift{0.946652in}{0.668960in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.970113in}{0.659937in}% +\pgfsys@transformshift{0.970113in}{0.669036in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.040496in}{0.660446in}% +\pgfsys@transformshift{1.040496in}{0.669586in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.157801in}{0.662230in}% +\pgfsys@transformshift{1.157801in}{0.671517in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.275106in}{0.665462in}% +\pgfsys@transformshift{1.275106in}{0.675015in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.392411in}{0.669736in}% +\pgfsys@transformshift{1.392411in}{0.679641in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.861631in}{0.698932in}% +\pgfsys@transformshift{1.861631in}{0.711242in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.330850in}{0.747253in}% +\pgfsys@transformshift{2.330850in}{0.763542in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.800070in}{0.815442in}% +\pgfsys@transformshift{2.800070in}{0.837346in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.269290in}{0.902905in}% +\pgfsys@transformshift{3.269290in}{0.932011in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.738510in}{1.009607in}% +\pgfsys@transformshift{3.738510in}{1.047500in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.207730in}{1.128693in}% +\pgfsys@transformshift{4.207730in}{1.176392in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676950in}{1.272377in}% +\pgfsys@transformshift{4.676950in}{1.331908in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.146170in}{1.430473in}% +\pgfsys@transformshift{5.146170in}{1.503023in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{1.616352in}% +\pgfsys@transformshift{5.615390in}{1.704208in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -578,27 +678,27 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.927883in}{0.663618in}}% -\pgfpathlineto{\pgfqpoint{0.934921in}{0.663569in}}% -\pgfpathlineto{\pgfqpoint{0.946652in}{0.663599in}}% -\pgfpathlineto{\pgfqpoint{0.970113in}{0.663665in}}% -\pgfpathlineto{\pgfqpoint{1.040496in}{0.663865in}}% -\pgfpathlineto{\pgfqpoint{1.157801in}{0.664504in}}% -\pgfpathlineto{\pgfqpoint{1.275106in}{0.665867in}}% -\pgfpathlineto{\pgfqpoint{1.392411in}{0.667673in}}% -\pgfpathlineto{\pgfqpoint{1.861631in}{0.674694in}}% -\pgfpathlineto{\pgfqpoint{2.330850in}{0.685716in}}% -\pgfpathlineto{\pgfqpoint{2.800070in}{0.701275in}}% -\pgfpathlineto{\pgfqpoint{3.269290in}{0.720435in}}% -\pgfpathlineto{\pgfqpoint{3.738510in}{0.755836in}}% -\pgfpathlineto{\pgfqpoint{4.207730in}{0.791699in}}% -\pgfpathlineto{\pgfqpoint{4.676950in}{0.821223in}}% -\pgfpathlineto{\pgfqpoint{5.146170in}{0.843290in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{0.903934in}}% +\pgfpathmoveto{\pgfqpoint{0.927883in}{0.673019in}}% +\pgfpathlineto{\pgfqpoint{0.934921in}{0.672967in}}% +\pgfpathlineto{\pgfqpoint{0.946652in}{0.672999in}}% +\pgfpathlineto{\pgfqpoint{0.970113in}{0.673071in}}% +\pgfpathlineto{\pgfqpoint{1.040496in}{0.673287in}}% +\pgfpathlineto{\pgfqpoint{1.157801in}{0.673978in}}% +\pgfpathlineto{\pgfqpoint{1.275106in}{0.675454in}}% +\pgfpathlineto{\pgfqpoint{1.392411in}{0.677409in}}% +\pgfpathlineto{\pgfqpoint{1.861631in}{0.685008in}}% +\pgfpathlineto{\pgfqpoint{2.330850in}{0.696938in}}% +\pgfpathlineto{\pgfqpoint{2.800070in}{0.713777in}}% +\pgfpathlineto{\pgfqpoint{3.269290in}{0.734516in}}% +\pgfpathlineto{\pgfqpoint{3.738510in}{0.772832in}}% +\pgfpathlineto{\pgfqpoint{4.207730in}{0.811648in}}% +\pgfpathlineto{\pgfqpoint{4.676950in}{0.843603in}}% +\pgfpathlineto{\pgfqpoint{5.146170in}{0.867487in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{0.933125in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -623,71 +723,71 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.927883in}{0.663618in}% +\pgfsys@transformshift{0.927883in}{0.673019in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.934921in}{0.663569in}% +\pgfsys@transformshift{0.934921in}{0.672967in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.946652in}{0.663599in}% +\pgfsys@transformshift{0.946652in}{0.672999in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.970113in}{0.663665in}% +\pgfsys@transformshift{0.970113in}{0.673071in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.040496in}{0.663865in}% +\pgfsys@transformshift{1.040496in}{0.673287in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.157801in}{0.664504in}% +\pgfsys@transformshift{1.157801in}{0.673978in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.275106in}{0.665867in}% +\pgfsys@transformshift{1.275106in}{0.675454in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.392411in}{0.667673in}% +\pgfsys@transformshift{1.392411in}{0.677409in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.861631in}{0.674694in}% +\pgfsys@transformshift{1.861631in}{0.685008in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.330850in}{0.685716in}% +\pgfsys@transformshift{2.330850in}{0.696938in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.800070in}{0.701275in}% +\pgfsys@transformshift{2.800070in}{0.713777in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.269290in}{0.720435in}% +\pgfsys@transformshift{3.269290in}{0.734516in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.738510in}{0.755836in}% +\pgfsys@transformshift{3.738510in}{0.772832in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.207730in}{0.791699in}% +\pgfsys@transformshift{4.207730in}{0.811648in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676950in}{0.821223in}% +\pgfsys@transformshift{4.676950in}{0.843603in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.146170in}{0.843290in}% +\pgfsys@transformshift{5.146170in}{0.867487in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{0.903934in}% +\pgfsys@transformshift{5.615390in}{0.933125in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -699,7 +799,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -710,7 +810,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -731,24 +831,24 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.688581in}{2.978200in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.978200in}}% +\pgfpathmoveto{\pgfqpoint{0.688581in}{3.178200in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.898457in, y=3.234333in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join twentyPercent and onePercent' query}% +\pgftext[x=0.898457in, y=3.434333in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join twentyPercent and onePercent' query}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.396540in, y=3.061534in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont according to tuple count}% +\pgftext[x=2.396540in, y=3.261534in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont according to tuple count}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -757,11 +857,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.500000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.659842in}}% -\pgfpathlineto{\pgfqpoint{1.439333in}{0.659842in}}% -\pgfpathlineto{\pgfqpoint{1.439333in}{0.684544in}}% -\pgfpathlineto{\pgfqpoint{0.923191in}{0.684544in}}% -\pgfpathlineto{\pgfqpoint{0.923191in}{0.659842in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.668933in}}% +\pgfpathlineto{\pgfqpoint{1.439333in}{0.668933in}}% +\pgfpathlineto{\pgfqpoint{1.439333in}{0.695669in}}% +\pgfpathlineto{\pgfqpoint{0.923191in}{0.695669in}}% +\pgfpathlineto{\pgfqpoint{0.923191in}{0.668933in}}% \pgfpathclose% \pgfusepath{stroke}% \end{pgfscope}% @@ -773,8 +873,8 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.500000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{2.249573in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.115571in}{1.467059in}}{\pgfqpoint{0.923191in}{0.684544in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{2.389573in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.115571in}{1.542621in}}{\pgfqpoint{0.923191in}{0.695669in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -785,8 +885,8 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.500000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.114448in}{1.399509in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.276890in}{1.029675in}}{\pgfqpoint{1.439333in}{0.659842in}}% +\pgfpathmoveto{\pgfqpoint{3.114448in}{1.469509in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.276890in}{1.069221in}}{\pgfqpoint{1.439333in}{0.668933in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -799,11 +899,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{1.399509in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{1.399509in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{2.249573in}}% -\pgfpathlineto{\pgfqpoint{1.307951in}{2.249573in}}% -\pgfpathlineto{\pgfqpoint{1.307951in}{1.399509in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{1.469509in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{1.469509in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{2.389573in}}% +\pgfpathlineto{\pgfqpoint{1.307951in}{2.389573in}}% +\pgfpathlineto{\pgfqpoint{1.307951in}{1.469509in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -822,7 +922,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.307951in}{1.399509in}% +\pgfsys@transformshift{1.307951in}{1.469509in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -830,7 +930,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.307951in,y=1.302287in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0}\)}% +\pgftext[x=1.307951in,y=1.372287in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -847,7 +947,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.129086in}{1.399509in}% +\pgfsys@transformshift{2.129086in}{1.469509in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -855,7 +955,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.129086in,y=1.302287in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {500}\)}% +\pgftext[x=2.129086in,y=1.372287in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {500}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -872,7 +972,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.950221in}{1.399509in}% +\pgfsys@transformshift{2.950221in}{1.469509in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -880,7 +980,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.950221in,y=1.302287in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1000}\)}% +\pgftext[x=2.950221in,y=1.372287in,,top]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1000}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -897,7 +997,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.307951in}{1.399509in}% +\pgfsys@transformshift{1.307951in}{1.469509in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -905,7 +1005,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.963814in, y=1.351314in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% +\pgftext[x=0.963814in, y=1.421314in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -922,7 +1022,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.307951in}{1.800058in}% +\pgfsys@transformshift{1.307951in}{1.903042in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -930,7 +1030,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.963814in, y=1.751863in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.01}\)}% +\pgftext[x=0.963814in, y=1.854847in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.01}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -947,7 +1047,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.307951in}{2.200606in}% +\pgfsys@transformshift{1.307951in}{2.336574in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -955,10 +1055,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.963814in, y=2.152412in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.02}\)}% +\pgftext[x=0.963814in, y=2.288380in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.02}\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.399509in}}{\pgfqpoint{1.806497in}{0.850065in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.469509in}}{\pgfqpoint{1.806497in}{0.920065in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -966,18 +1066,18 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.324374in}{1.399588in}}% -\pgfpathlineto{\pgfqpoint{1.349008in}{1.399994in}}% -\pgfpathlineto{\pgfqpoint{1.390065in}{1.401428in}}% -\pgfpathlineto{\pgfqpoint{1.472178in}{1.407056in}}% -\pgfpathlineto{\pgfqpoint{1.718518in}{1.447060in}}% -\pgfpathlineto{\pgfqpoint{2.129086in}{1.589377in}}% -\pgfpathlineto{\pgfqpoint{2.539653in}{1.824863in}}% -\pgfpathlineto{\pgfqpoint{2.950221in}{2.172295in}}% +\pgfpathmoveto{\pgfqpoint{1.324374in}{1.469595in}}% +\pgfpathlineto{\pgfqpoint{1.349008in}{1.470034in}}% +\pgfpathlineto{\pgfqpoint{1.390065in}{1.471586in}}% +\pgfpathlineto{\pgfqpoint{1.472178in}{1.477677in}}% +\pgfpathlineto{\pgfqpoint{1.718518in}{1.520975in}}% +\pgfpathlineto{\pgfqpoint{2.129086in}{1.675012in}}% +\pgfpathlineto{\pgfqpoint{2.539653in}{1.929890in}}% +\pgfpathlineto{\pgfqpoint{2.950221in}{2.305931in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.399509in}}{\pgfqpoint{1.806497in}{0.850065in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.469509in}}{\pgfqpoint{1.806497in}{0.920065in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -1002,40 +1102,40 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.324374in}{1.399588in}% +\pgfsys@transformshift{1.324374in}{1.469595in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.349008in}{1.399994in}% +\pgfsys@transformshift{1.349008in}{1.470034in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.390065in}{1.401428in}% +\pgfsys@transformshift{1.390065in}{1.471586in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.472178in}{1.407056in}% +\pgfsys@transformshift{1.472178in}{1.477677in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.718518in}{1.447060in}% +\pgfsys@transformshift{1.718518in}{1.520975in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.129086in}{1.589377in}% +\pgfsys@transformshift{2.129086in}{1.675012in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.539653in}{1.824863in}% +\pgfsys@transformshift{2.539653in}{1.929890in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.950221in}{2.172295in}% +\pgfsys@transformshift{2.950221in}{2.305931in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.399509in}}{\pgfqpoint{1.806497in}{0.850065in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.469509in}}{\pgfqpoint{1.806497in}{0.920065in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1043,18 +1143,18 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.324374in}{1.399548in}}% -\pgfpathlineto{\pgfqpoint{1.349008in}{1.399735in}}% -\pgfpathlineto{\pgfqpoint{1.390065in}{1.400373in}}% -\pgfpathlineto{\pgfqpoint{1.472178in}{1.402769in}}% -\pgfpathlineto{\pgfqpoint{1.718518in}{1.420278in}}% -\pgfpathlineto{\pgfqpoint{2.129086in}{1.481668in}}% -\pgfpathlineto{\pgfqpoint{2.539653in}{1.592895in}}% -\pgfpathlineto{\pgfqpoint{2.950221in}{1.739979in}}% +\pgfpathmoveto{\pgfqpoint{1.324374in}{1.469551in}}% +\pgfpathlineto{\pgfqpoint{1.349008in}{1.469754in}}% +\pgfpathlineto{\pgfqpoint{1.390065in}{1.470444in}}% +\pgfpathlineto{\pgfqpoint{1.472178in}{1.473037in}}% +\pgfpathlineto{\pgfqpoint{1.718518in}{1.491988in}}% +\pgfpathlineto{\pgfqpoint{2.129086in}{1.558434in}}% +\pgfpathlineto{\pgfqpoint{2.539653in}{1.678820in}}% +\pgfpathlineto{\pgfqpoint{2.950221in}{1.838015in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.399509in}}{\pgfqpoint{1.806497in}{0.850065in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.469509in}}{\pgfqpoint{1.806497in}{0.920065in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -1079,40 +1179,40 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.324374in}{1.399548in}% +\pgfsys@transformshift{1.324374in}{1.469551in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.349008in}{1.399735in}% +\pgfsys@transformshift{1.349008in}{1.469754in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.390065in}{1.400373in}% +\pgfsys@transformshift{1.390065in}{1.470444in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.472178in}{1.402769in}% +\pgfsys@transformshift{1.472178in}{1.473037in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.718518in}{1.420278in}% +\pgfsys@transformshift{1.718518in}{1.491988in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.129086in}{1.481668in}% +\pgfsys@transformshift{2.129086in}{1.558434in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.539653in}{1.592895in}% +\pgfsys@transformshift{2.539653in}{1.678820in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.950221in}{1.739979in}% +\pgfsys@transformshift{2.950221in}{1.838015in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.399509in}}{\pgfqpoint{1.806497in}{0.850065in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.469509in}}{\pgfqpoint{1.806497in}{0.920065in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1120,18 +1220,18 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.324374in}{1.529431in}}% -\pgfpathlineto{\pgfqpoint{1.349008in}{1.527773in}}% -\pgfpathlineto{\pgfqpoint{1.390065in}{1.528783in}}% -\pgfpathlineto{\pgfqpoint{1.472178in}{1.531067in}}% -\pgfpathlineto{\pgfqpoint{1.718518in}{1.537938in}}% -\pgfpathlineto{\pgfqpoint{2.129086in}{1.559926in}}% -\pgfpathlineto{\pgfqpoint{2.539653in}{1.606855in}}% -\pgfpathlineto{\pgfqpoint{2.950221in}{1.669011in}}% +\pgfpathmoveto{\pgfqpoint{1.324374in}{1.610130in}}% +\pgfpathlineto{\pgfqpoint{1.349008in}{1.608335in}}% +\pgfpathlineto{\pgfqpoint{1.390065in}{1.609428in}}% +\pgfpathlineto{\pgfqpoint{1.472178in}{1.611900in}}% +\pgfpathlineto{\pgfqpoint{1.718518in}{1.619337in}}% +\pgfpathlineto{\pgfqpoint{2.129086in}{1.643136in}}% +\pgfpathlineto{\pgfqpoint{2.539653in}{1.693930in}}% +\pgfpathlineto{\pgfqpoint{2.950221in}{1.761204in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{1.307951in}{1.399509in}}{\pgfqpoint{1.806497in}{0.850065in}}% +\pgfpathrectangle{\pgfqpoint{1.307951in}{1.469509in}}{\pgfqpoint{1.806497in}{0.920065in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -1156,35 +1256,35 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.324374in}{1.529431in}% +\pgfsys@transformshift{1.324374in}{1.610130in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.349008in}{1.527773in}% +\pgfsys@transformshift{1.349008in}{1.608335in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.390065in}{1.528783in}% +\pgfsys@transformshift{1.390065in}{1.609428in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.472178in}{1.531067in}% +\pgfsys@transformshift{1.472178in}{1.611900in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.718518in}{1.537938in}% +\pgfsys@transformshift{1.718518in}{1.619337in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.129086in}{1.559926in}% +\pgfsys@transformshift{2.129086in}{1.643136in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.539653in}{1.606855in}% +\pgfsys@transformshift{2.539653in}{1.693930in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.950221in}{1.669011in}% +\pgfsys@transformshift{2.950221in}{1.761204in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1195,8 +1295,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{1.399509in}}% -\pgfpathlineto{\pgfqpoint{1.307951in}{2.249573in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{1.469509in}}% +\pgfpathlineto{\pgfqpoint{1.307951in}{2.389573in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1206,8 +1306,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.114448in}{1.399509in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{2.249573in}}% +\pgfpathmoveto{\pgfqpoint{3.114448in}{1.469509in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{2.389573in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1217,8 +1317,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{1.399509in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{1.399509in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{1.469509in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{1.469509in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1228,8 +1328,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.307951in}{2.249573in}}% -\pgfpathlineto{\pgfqpoint{3.114448in}{2.249573in}}% +\pgfpathmoveto{\pgfqpoint{1.307951in}{2.389573in}}% +\pgfpathlineto{\pgfqpoint{3.114448in}{2.389573in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1243,16 +1343,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.785803in}{2.280978in}}% -\pgfpathlineto{\pgfqpoint{2.689970in}{2.280978in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.280978in}}{\pgfqpoint{2.717747in}{2.308756in}}% -\pgfpathlineto{\pgfqpoint{2.717747in}{2.880978in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.908756in}}{\pgfqpoint{2.689970in}{2.908756in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.908756in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.908756in}}{\pgfqpoint{0.758025in}{2.880978in}}% -\pgfpathlineto{\pgfqpoint{0.758025in}{2.308756in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.280978in}}{\pgfqpoint{0.785803in}{2.280978in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.280978in}}% +\pgfpathmoveto{\pgfqpoint{0.785803in}{2.480978in}}% +\pgfpathlineto{\pgfqpoint{2.689970in}{2.480978in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.480978in}}{\pgfqpoint{2.717747in}{2.508756in}}% +\pgfpathlineto{\pgfqpoint{2.717747in}{3.080978in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{3.108756in}}{\pgfqpoint{2.689970in}{3.108756in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{3.108756in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{3.108756in}}{\pgfqpoint{0.758025in}{3.080978in}}% +\pgfpathlineto{\pgfqpoint{0.758025in}{2.508756in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.480978in}}{\pgfqpoint{0.785803in}{2.480978in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{2.480978in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -1263,9 +1363,9 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.804589in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.804589in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.804589in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{3.004589in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{3.004589in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{3.004589in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1292,7 +1392,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.804589in}% +\pgfsys@transformshift{0.952470in}{3.004589in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1300,7 +1400,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.755978in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% +\pgftext[x=1.202470in,y=2.955978in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -1309,9 +1409,9 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.608756in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.608756in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.608756in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.808756in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.808756in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.808756in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1338,7 +1438,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.608756in}% +\pgfsys@transformshift{0.952470in}{2.808756in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1346,7 +1446,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.560145in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% +\pgftext[x=1.202470in,y=2.760145in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -1355,9 +1455,9 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.413617in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.413617in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.413617in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.613617in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.613617in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.613617in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1384,7 +1484,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.413617in}% +\pgfsys@transformshift{0.952470in}{2.613617in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1392,7 +1492,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.365006in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% +\pgftext[x=1.202470in,y=2.565006in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/join-twentyPercent-and-onePercent-by-tuples.pgf b/report/figures/join-twentyPercent-and-onePercent-by-tuples.pgf index b60a9a99..1f0db594 100644 --- a/report/figures/join-twentyPercent-and-onePercent-by-tuples.pgf +++ b/report/figures/join-twentyPercent-and-onePercent-by-tuples.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,8 +57,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.549444in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.978200in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.178200in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.178200in}}% \pgfpathlineto{\pgfqpoint{0.688581in}{0.549444in}}% \pgfpathclose% \pgfusepath{fill}% @@ -234,7 +234,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{0.659841in}% +\pgfsys@transformshift{0.688581in}{0.668932in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -242,7 +242,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=0.611647in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0}\)}% +\pgftext[x=0.344444in, y=0.620737in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -259,7 +259,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.241808in}% +\pgfsys@transformshift{0.688581in}{0.983877in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -267,7 +267,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.193613in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.5}\)}% +\pgftext[x=0.344444in, y=0.935682in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.25}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -284,7 +284,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.823775in}% +\pgfsys@transformshift{0.688581in}{1.298822in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -292,7 +292,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.775580in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.0}\)}% +\pgftext[x=0.344444in, y=1.250627in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.50}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -309,7 +309,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.405742in}% +\pgfsys@transformshift{0.688581in}{1.613767in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -317,16 +317,116 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.357547in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.5}\)}% +\pgftext[x=0.344444in, y=1.565572in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.75}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{1.928712in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=1.880517in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.00}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.243657in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.195462in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.25}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.558602in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.510407in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.50}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.873547in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.825352in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.75}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.358333in,y=1.763822in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=1.863822in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -334,27 +434,27 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.659843in}}% -\pgfpathlineto{\pgfqpoint{0.930236in}{0.659855in}}% -\pgfpathlineto{\pgfqpoint{0.941978in}{0.659897in}}% -\pgfpathlineto{\pgfqpoint{0.965463in}{0.660060in}}% -\pgfpathlineto{\pgfqpoint{1.035916in}{0.661223in}}% -\pgfpathlineto{\pgfqpoint{1.153339in}{0.665358in}}% -\pgfpathlineto{\pgfqpoint{1.270761in}{0.672201in}}% -\pgfpathlineto{\pgfqpoint{1.388183in}{0.682297in}}% -\pgfpathlineto{\pgfqpoint{1.857873in}{0.749585in}}% -\pgfpathlineto{\pgfqpoint{2.327563in}{0.860878in}}% -\pgfpathlineto{\pgfqpoint{2.797252in}{1.017203in}}% -\pgfpathlineto{\pgfqpoint{3.266942in}{1.218727in}}% -\pgfpathlineto{\pgfqpoint{3.736632in}{1.454934in}}% -\pgfpathlineto{\pgfqpoint{4.206321in}{1.740519in}}% -\pgfpathlineto{\pgfqpoint{4.676011in}{2.070216in}}% -\pgfpathlineto{\pgfqpoint{5.145700in}{2.444021in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{2.867802in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.668934in}}% +\pgfpathlineto{\pgfqpoint{0.930236in}{0.668947in}}% +\pgfpathlineto{\pgfqpoint{0.941978in}{0.668992in}}% +\pgfpathlineto{\pgfqpoint{0.965463in}{0.669169in}}% +\pgfpathlineto{\pgfqpoint{1.035916in}{0.670427in}}% +\pgfpathlineto{\pgfqpoint{1.153339in}{0.674903in}}% +\pgfpathlineto{\pgfqpoint{1.270761in}{0.682310in}}% +\pgfpathlineto{\pgfqpoint{1.388183in}{0.693237in}}% +\pgfpathlineto{\pgfqpoint{1.857873in}{0.766066in}}% +\pgfpathlineto{\pgfqpoint{2.327563in}{0.886524in}}% +\pgfpathlineto{\pgfqpoint{2.797252in}{1.055722in}}% +\pgfpathlineto{\pgfqpoint{3.266942in}{1.273840in}}% +\pgfpathlineto{\pgfqpoint{3.736632in}{1.529498in}}% +\pgfpathlineto{\pgfqpoint{4.206321in}{1.838600in}}% +\pgfpathlineto{\pgfqpoint{4.676011in}{2.195446in}}% +\pgfpathlineto{\pgfqpoint{5.145700in}{2.600033in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{3.058711in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -379,76 +479,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.923191in}{0.659843in}% +\pgfsys@transformshift{0.923191in}{0.668934in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.930236in}{0.659855in}% +\pgfsys@transformshift{0.930236in}{0.668947in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.941978in}{0.659897in}% +\pgfsys@transformshift{0.941978in}{0.668992in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.965463in}{0.660060in}% +\pgfsys@transformshift{0.965463in}{0.669169in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.035916in}{0.661223in}% +\pgfsys@transformshift{1.035916in}{0.670427in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.153339in}{0.665358in}% +\pgfsys@transformshift{1.153339in}{0.674903in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.270761in}{0.672201in}% +\pgfsys@transformshift{1.270761in}{0.682310in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.388183in}{0.682297in}% +\pgfsys@transformshift{1.388183in}{0.693237in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.857873in}{0.749585in}% +\pgfsys@transformshift{1.857873in}{0.766066in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.327563in}{0.860878in}% +\pgfsys@transformshift{2.327563in}{0.886524in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.797252in}{1.017203in}% +\pgfsys@transformshift{2.797252in}{1.055722in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.266942in}{1.218727in}% +\pgfsys@transformshift{3.266942in}{1.273840in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.736632in}{1.454934in}% +\pgfsys@transformshift{3.736632in}{1.529498in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.206321in}{1.740519in}% +\pgfsys@transformshift{4.206321in}{1.838600in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676011in}{2.070216in}% +\pgfsys@transformshift{4.676011in}{2.195446in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.145700in}{2.444021in}% +\pgfsys@transformshift{5.145700in}{2.600033in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{2.867802in}% +\pgfsys@transformshift{5.615390in}{3.058711in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -456,27 +556,27 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.659842in}}% -\pgfpathlineto{\pgfqpoint{0.930236in}{0.659848in}}% -\pgfpathlineto{\pgfqpoint{0.941978in}{0.659866in}}% -\pgfpathlineto{\pgfqpoint{0.965463in}{0.659936in}}% -\pgfpathlineto{\pgfqpoint{1.035916in}{0.660445in}}% -\pgfpathlineto{\pgfqpoint{1.153339in}{0.662228in}}% -\pgfpathlineto{\pgfqpoint{1.270761in}{0.665461in}}% -\pgfpathlineto{\pgfqpoint{1.388183in}{0.669735in}}% -\pgfpathlineto{\pgfqpoint{1.857873in}{0.698931in}}% -\pgfpathlineto{\pgfqpoint{2.327563in}{0.747252in}}% -\pgfpathlineto{\pgfqpoint{2.797252in}{0.815441in}}% -\pgfpathlineto{\pgfqpoint{3.266942in}{0.902904in}}% -\pgfpathlineto{\pgfqpoint{3.736632in}{1.009606in}}% -\pgfpathlineto{\pgfqpoint{4.206321in}{1.128692in}}% -\pgfpathlineto{\pgfqpoint{4.676011in}{1.272376in}}% -\pgfpathlineto{\pgfqpoint{5.145700in}{1.430472in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{1.616351in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.668933in}}% +\pgfpathlineto{\pgfqpoint{0.930236in}{0.668939in}}% +\pgfpathlineto{\pgfqpoint{0.941978in}{0.668959in}}% +\pgfpathlineto{\pgfqpoint{0.965463in}{0.669034in}}% +\pgfpathlineto{\pgfqpoint{1.035916in}{0.669585in}}% +\pgfpathlineto{\pgfqpoint{1.153339in}{0.671516in}}% +\pgfpathlineto{\pgfqpoint{1.270761in}{0.675014in}}% +\pgfpathlineto{\pgfqpoint{1.388183in}{0.679640in}}% +\pgfpathlineto{\pgfqpoint{1.857873in}{0.711241in}}% +\pgfpathlineto{\pgfqpoint{2.327563in}{0.763541in}}% +\pgfpathlineto{\pgfqpoint{2.797252in}{0.837345in}}% +\pgfpathlineto{\pgfqpoint{3.266942in}{0.932010in}}% +\pgfpathlineto{\pgfqpoint{3.736632in}{1.047499in}}% +\pgfpathlineto{\pgfqpoint{4.206321in}{1.176391in}}% +\pgfpathlineto{\pgfqpoint{4.676011in}{1.331907in}}% +\pgfpathlineto{\pgfqpoint{5.145700in}{1.503022in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{1.704208in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -501,76 +601,76 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.923191in}{0.659842in}% +\pgfsys@transformshift{0.923191in}{0.668933in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.930236in}{0.659848in}% +\pgfsys@transformshift{0.930236in}{0.668939in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.941978in}{0.659866in}% +\pgfsys@transformshift{0.941978in}{0.668959in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.965463in}{0.659936in}% +\pgfsys@transformshift{0.965463in}{0.669034in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.035916in}{0.660445in}% +\pgfsys@transformshift{1.035916in}{0.669585in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.153339in}{0.662228in}% +\pgfsys@transformshift{1.153339in}{0.671516in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.270761in}{0.665461in}% +\pgfsys@transformshift{1.270761in}{0.675014in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.388183in}{0.669735in}% +\pgfsys@transformshift{1.388183in}{0.679640in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.857873in}{0.698931in}% +\pgfsys@transformshift{1.857873in}{0.711241in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.327563in}{0.747252in}% +\pgfsys@transformshift{2.327563in}{0.763541in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.797252in}{0.815441in}% +\pgfsys@transformshift{2.797252in}{0.837345in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.266942in}{0.902904in}% +\pgfsys@transformshift{3.266942in}{0.932010in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.736632in}{1.009606in}% +\pgfsys@transformshift{3.736632in}{1.047499in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.206321in}{1.128692in}% +\pgfsys@transformshift{4.206321in}{1.176391in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676011in}{1.272376in}% +\pgfsys@transformshift{4.676011in}{1.331907in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.145700in}{1.430472in}% +\pgfsys@transformshift{5.145700in}{1.503022in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{1.616351in}% +\pgfsys@transformshift{5.615390in}{1.704208in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -578,27 +678,27 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.923191in}{0.663616in}}% -\pgfpathlineto{\pgfqpoint{0.930236in}{0.663568in}}% -\pgfpathlineto{\pgfqpoint{0.941978in}{0.663598in}}% -\pgfpathlineto{\pgfqpoint{0.965463in}{0.663664in}}% -\pgfpathlineto{\pgfqpoint{1.035916in}{0.663864in}}% -\pgfpathlineto{\pgfqpoint{1.153339in}{0.664503in}}% -\pgfpathlineto{\pgfqpoint{1.270761in}{0.665866in}}% -\pgfpathlineto{\pgfqpoint{1.388183in}{0.667672in}}% -\pgfpathlineto{\pgfqpoint{1.857873in}{0.674693in}}% -\pgfpathlineto{\pgfqpoint{2.327563in}{0.685715in}}% -\pgfpathlineto{\pgfqpoint{2.797252in}{0.701274in}}% -\pgfpathlineto{\pgfqpoint{3.266942in}{0.720434in}}% -\pgfpathlineto{\pgfqpoint{3.736632in}{0.755835in}}% -\pgfpathlineto{\pgfqpoint{4.206321in}{0.791698in}}% -\pgfpathlineto{\pgfqpoint{4.676011in}{0.821222in}}% -\pgfpathlineto{\pgfqpoint{5.145700in}{0.843289in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{0.903933in}}% +\pgfpathmoveto{\pgfqpoint{0.923191in}{0.673018in}}% +\pgfpathlineto{\pgfqpoint{0.930236in}{0.672966in}}% +\pgfpathlineto{\pgfqpoint{0.941978in}{0.672998in}}% +\pgfpathlineto{\pgfqpoint{0.965463in}{0.673070in}}% +\pgfpathlineto{\pgfqpoint{1.035916in}{0.673286in}}% +\pgfpathlineto{\pgfqpoint{1.153339in}{0.673977in}}% +\pgfpathlineto{\pgfqpoint{1.270761in}{0.675453in}}% +\pgfpathlineto{\pgfqpoint{1.388183in}{0.677408in}}% +\pgfpathlineto{\pgfqpoint{1.857873in}{0.685006in}}% +\pgfpathlineto{\pgfqpoint{2.327563in}{0.696937in}}% +\pgfpathlineto{\pgfqpoint{2.797252in}{0.713776in}}% +\pgfpathlineto{\pgfqpoint{3.266942in}{0.734515in}}% +\pgfpathlineto{\pgfqpoint{3.736632in}{0.772831in}}% +\pgfpathlineto{\pgfqpoint{4.206321in}{0.811647in}}% +\pgfpathlineto{\pgfqpoint{4.676011in}{0.843602in}}% +\pgfpathlineto{\pgfqpoint{5.145700in}{0.867486in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{0.933124in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.428756in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.549444in}}{\pgfqpoint{5.161419in}{2.628756in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -623,71 +723,71 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.923191in}{0.663616in}% +\pgfsys@transformshift{0.923191in}{0.673018in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.930236in}{0.663568in}% +\pgfsys@transformshift{0.930236in}{0.672966in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.941978in}{0.663598in}% +\pgfsys@transformshift{0.941978in}{0.672998in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{0.965463in}{0.663664in}% +\pgfsys@transformshift{0.965463in}{0.673070in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.035916in}{0.663864in}% +\pgfsys@transformshift{1.035916in}{0.673286in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.153339in}{0.664503in}% +\pgfsys@transformshift{1.153339in}{0.673977in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.270761in}{0.665866in}% +\pgfsys@transformshift{1.270761in}{0.675453in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.388183in}{0.667672in}% +\pgfsys@transformshift{1.388183in}{0.677408in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{1.857873in}{0.674693in}% +\pgfsys@transformshift{1.857873in}{0.685006in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.327563in}{0.685715in}% +\pgfsys@transformshift{2.327563in}{0.696937in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{2.797252in}{0.701274in}% +\pgfsys@transformshift{2.797252in}{0.713776in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.266942in}{0.720434in}% +\pgfsys@transformshift{3.266942in}{0.734515in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{3.736632in}{0.755835in}% +\pgfsys@transformshift{3.736632in}{0.772831in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.206321in}{0.791698in}% +\pgfsys@transformshift{4.206321in}{0.811647in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{4.676011in}{0.821222in}% +\pgfsys@transformshift{4.676011in}{0.843602in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.145700in}{0.843289in}% +\pgfsys@transformshift{5.145700in}{0.867486in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \begin{pgfscope}% -\pgfsys@transformshift{5.615390in}{0.903933in}% +\pgfsys@transformshift{5.615390in}{0.933124in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -699,7 +799,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -710,7 +810,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.549444in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.978200in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -731,21 +831,21 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.688581in}{2.978200in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{2.978200in}}% +\pgfpathmoveto{\pgfqpoint{0.688581in}{3.178200in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.178200in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.898457in, y=3.234333in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join twentyPercent and onePercent' query}% +\pgftext[x=0.898457in, y=3.434333in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete `join twentyPercent and onePercent' query}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.396540in, y=3.061534in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont according to tuple count}% +\pgftext[x=2.396540in, y=3.261534in, left, base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont according to tuple count}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -758,16 +858,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.785803in}{2.280978in}}% -\pgfpathlineto{\pgfqpoint{2.689970in}{2.280978in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.280978in}}{\pgfqpoint{2.717747in}{2.308756in}}% -\pgfpathlineto{\pgfqpoint{2.717747in}{2.880978in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.908756in}}{\pgfqpoint{2.689970in}{2.908756in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.908756in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.908756in}}{\pgfqpoint{0.758025in}{2.880978in}}% -\pgfpathlineto{\pgfqpoint{0.758025in}{2.308756in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.280978in}}{\pgfqpoint{0.785803in}{2.280978in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.280978in}}% +\pgfpathmoveto{\pgfqpoint{0.785803in}{2.480978in}}% +\pgfpathlineto{\pgfqpoint{2.689970in}{2.480978in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.480978in}}{\pgfqpoint{2.717747in}{2.508756in}}% +\pgfpathlineto{\pgfqpoint{2.717747in}{3.080978in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{3.108756in}}{\pgfqpoint{2.689970in}{3.108756in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{3.108756in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{3.108756in}}{\pgfqpoint{0.758025in}{3.080978in}}% +\pgfpathlineto{\pgfqpoint{0.758025in}{2.508756in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.480978in}}{\pgfqpoint{0.785803in}{2.480978in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{2.480978in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -778,9 +878,9 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.804589in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.804589in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.804589in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{3.004589in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{3.004589in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{3.004589in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -807,7 +907,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.804589in}% +\pgfsys@transformshift{0.952470in}{3.004589in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -815,7 +915,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.755978in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% +\pgftext[x=1.202470in,y=2.955978in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -824,9 +924,9 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.608756in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.608756in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.608756in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.808756in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.808756in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.808756in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -853,7 +953,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.608756in}% +\pgfsys@transformshift{0.952470in}{2.808756in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -861,7 +961,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.560145in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% +\pgftext[x=1.202470in,y=2.760145in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -870,9 +970,9 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.413617in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.413617in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.413617in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.613617in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.613617in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.613617in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -899,7 +999,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952470in}{2.413617in}% +\pgfsys@transformshift{0.952470in}{2.613617in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -907,7 +1007,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.365006in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% +\pgftext[x=1.202470in,y=2.565006in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/non-standard-query-with-1000-tuples.pgf b/report/figures/non-standard-query-with-1000-tuples.pgf index 7090782c..afbfb8ba 100644 --- a/report/figures/non-standard-query-with-1000-tuples.pgf +++ b/report/figures/non-standard-query-with-1000-tuples.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,14 +57,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.698166in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.351000in}}% \pgfpathlineto{\pgfqpoint{0.827470in}{0.698166in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698166in}}{\pgfqpoint{5.022530in}{2.452834in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698166in}}{\pgfqpoint{5.022530in}{2.652834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -77,14 +77,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.055767in}{0.698166in}}% \pgfpathlineto{\pgfqpoint{1.708043in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{1.708043in}{3.034198in}}% -\pgfpathlineto{\pgfqpoint{1.055767in}{3.034198in}}% +\pgfpathlineto{\pgfqpoint{1.708043in}{3.224675in}}% +\pgfpathlineto{\pgfqpoint{1.055767in}{3.224675in}}% \pgfpathlineto{\pgfqpoint{1.055767in}{0.698166in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698166in}}{\pgfqpoint{5.022530in}{2.452834in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698166in}}{\pgfqpoint{5.022530in}{2.652834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -97,14 +97,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{3.664873in}{0.698166in}}% \pgfpathlineto{\pgfqpoint{4.317150in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{4.317150in}{2.999697in}}% -\pgfpathlineto{\pgfqpoint{3.664873in}{2.999697in}}% +\pgfpathlineto{\pgfqpoint{4.317150in}{3.187360in}}% +\pgfpathlineto{\pgfqpoint{3.664873in}{3.187360in}}% \pgfpathlineto{\pgfqpoint{3.664873in}{0.698166in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698166in}}{\pgfqpoint{5.022530in}{2.452834in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698166in}}{\pgfqpoint{5.022530in}{2.652834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -117,14 +117,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.708043in}{0.698166in}}% \pgfpathlineto{\pgfqpoint{2.360320in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{2.360320in}{1.727362in}}% -\pgfpathlineto{\pgfqpoint{1.708043in}{1.727362in}}% +\pgfpathlineto{\pgfqpoint{2.360320in}{1.811281in}}% +\pgfpathlineto{\pgfqpoint{1.708043in}{1.811281in}}% \pgfpathlineto{\pgfqpoint{1.708043in}{0.698166in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698166in}}{\pgfqpoint{5.022530in}{2.452834in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698166in}}{\pgfqpoint{5.022530in}{2.652834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -137,14 +137,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.317150in}{0.698166in}}% \pgfpathlineto{\pgfqpoint{4.969427in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{4.969427in}{1.680670in}}% -\pgfpathlineto{\pgfqpoint{4.317150in}{1.680670in}}% +\pgfpathlineto{\pgfqpoint{4.969427in}{1.760781in}}% +\pgfpathlineto{\pgfqpoint{4.317150in}{1.760781in}}% \pgfpathlineto{\pgfqpoint{4.317150in}{0.698166in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698166in}}{\pgfqpoint{5.022530in}{2.452834in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698166in}}{\pgfqpoint{5.022530in}{2.652834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -157,14 +157,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{2.360320in}{0.698166in}}% \pgfpathlineto{\pgfqpoint{3.012597in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{3.012597in}{1.512837in}}% -\pgfpathlineto{\pgfqpoint{2.360320in}{1.512837in}}% +\pgfpathlineto{\pgfqpoint{3.012597in}{1.579264in}}% +\pgfpathlineto{\pgfqpoint{2.360320in}{1.579264in}}% \pgfpathlineto{\pgfqpoint{2.360320in}{0.698166in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698166in}}{\pgfqpoint{5.022530in}{2.452834in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698166in}}{\pgfqpoint{5.022530in}{2.652834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -177,8 +177,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.969427in}{0.698166in}}% \pgfpathlineto{\pgfqpoint{5.621703in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{5.621703in}{1.131134in}}% -\pgfpathlineto{\pgfqpoint{4.969427in}{1.131134in}}% +\pgfpathlineto{\pgfqpoint{5.621703in}{1.166438in}}% +\pgfpathlineto{\pgfqpoint{4.969427in}{1.166438in}}% \pgfpathlineto{\pgfqpoint{4.969427in}{0.698166in}}% \pgfpathclose% \pgfusepath{fill}% @@ -274,7 +274,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=0.649972in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.000}\)}% +\pgftext[x=0.344444in, y=0.649972in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0000}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -291,7 +291,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.303570in}% +\pgfsys@transformshift{0.827470in}{1.025550in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -299,7 +299,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.255375in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.005}\)}% +\pgftext[x=0.344444in, y=0.977355in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0025}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -316,7 +316,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.908974in}% +\pgfsys@transformshift{0.827470in}{1.352933in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -324,7 +324,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.860779in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.010}\)}% +\pgftext[x=0.344444in, y=1.304739in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0050}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -341,7 +341,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.514377in}% +\pgfsys@transformshift{0.827470in}{1.680317in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -349,7 +349,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.466183in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.015}\)}% +\pgftext[x=0.344444in, y=1.632123in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0075}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -366,7 +366,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{3.119781in}% +\pgfsys@transformshift{0.827470in}{2.007701in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -374,13 +374,113 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=3.071586in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.020}\)}% +\pgftext[x=0.344444in, y=1.959506in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0100}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{2.335084in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.286890in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0125}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{2.662468in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.614274in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0150}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{2.989852in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.941657in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0175}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{3.317235in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=3.269041in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0200}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.358333in,y=1.924583in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=2.024583in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -390,7 +490,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -401,7 +501,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -422,15 +522,15 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.827470in}{3.151000in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% +\pgfpathmoveto{\pgfqpoint{0.827470in}{3.351000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=3.338735in,y=3.234333in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete given queries with 1000 tuples}% +\pgftext[x=3.338735in,y=3.434333in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete given queries with 1000 tuples}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -443,16 +543,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.924692in}{2.453778in}}% -\pgfpathlineto{\pgfqpoint{2.828859in}{2.453778in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.856637in}{2.453778in}}{\pgfqpoint{2.856637in}{2.481556in}}% -\pgfpathlineto{\pgfqpoint{2.856637in}{3.053778in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.856637in}{3.081556in}}{\pgfqpoint{2.828859in}{3.081556in}}% -\pgfpathlineto{\pgfqpoint{0.924692in}{3.081556in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.896914in}{3.081556in}}{\pgfqpoint{0.896914in}{3.053778in}}% -\pgfpathlineto{\pgfqpoint{0.896914in}{2.481556in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.896914in}{2.453778in}}{\pgfqpoint{0.924692in}{2.453778in}}% -\pgfpathlineto{\pgfqpoint{0.924692in}{2.453778in}}% +\pgfpathmoveto{\pgfqpoint{0.924692in}{2.653778in}}% +\pgfpathlineto{\pgfqpoint{2.828859in}{2.653778in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.856637in}{2.653778in}}{\pgfqpoint{2.856637in}{2.681556in}}% +\pgfpathlineto{\pgfqpoint{2.856637in}{3.253778in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.856637in}{3.281556in}}{\pgfqpoint{2.828859in}{3.281556in}}% +\pgfpathlineto{\pgfqpoint{0.924692in}{3.281556in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.896914in}{3.281556in}}{\pgfqpoint{0.896914in}{3.253778in}}% +\pgfpathlineto{\pgfqpoint{0.896914in}{2.681556in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.896914in}{2.653778in}}{\pgfqpoint{0.924692in}{2.653778in}}% +\pgfpathlineto{\pgfqpoint{0.924692in}{2.653778in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -466,11 +566,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.952470in}{2.928778in}}% -\pgfpathlineto{\pgfqpoint{1.230248in}{2.928778in}}% -\pgfpathlineto{\pgfqpoint{1.230248in}{3.026000in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{3.026000in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.928778in}}% +\pgfpathmoveto{\pgfqpoint{0.952470in}{3.128778in}}% +\pgfpathlineto{\pgfqpoint{1.230248in}{3.128778in}}% +\pgfpathlineto{\pgfqpoint{1.230248in}{3.226000in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{3.226000in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{3.128778in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -478,7 +578,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.341359in,y=2.928778in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% +\pgftext[x=1.341359in,y=3.128778in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -490,11 +590,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.952470in}{2.732945in}}% -\pgfpathlineto{\pgfqpoint{1.230248in}{2.732945in}}% -\pgfpathlineto{\pgfqpoint{1.230248in}{2.830167in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.830167in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.732945in}}% +\pgfpathmoveto{\pgfqpoint{0.952470in}{2.932945in}}% +\pgfpathlineto{\pgfqpoint{1.230248in}{2.932945in}}% +\pgfpathlineto{\pgfqpoint{1.230248in}{3.030167in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{3.030167in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.932945in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -502,7 +602,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.341359in,y=2.732945in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% +\pgftext[x=1.341359in,y=2.932945in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -514,11 +614,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.952470in}{2.537806in}}% -\pgfpathlineto{\pgfqpoint{1.230248in}{2.537806in}}% -\pgfpathlineto{\pgfqpoint{1.230248in}{2.635028in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.635028in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.537806in}}% +\pgfpathmoveto{\pgfqpoint{0.952470in}{2.737806in}}% +\pgfpathlineto{\pgfqpoint{1.230248in}{2.737806in}}% +\pgfpathlineto{\pgfqpoint{1.230248in}{2.835028in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.835028in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.737806in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -526,7 +626,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.341359in,y=2.537806in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% +\pgftext[x=1.341359in,y=2.737806in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/non-standard-query-with-10000-tuples.pgf b/report/figures/non-standard-query-with-10000-tuples.pgf index 5f3c7fd3..4a8dec45 100644 --- a/report/figures/non-standard-query-with-10000-tuples.pgf +++ b/report/figures/non-standard-query-with-10000-tuples.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,14 +57,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.698166in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.351000in}}% \pgfpathlineto{\pgfqpoint{0.688581in}{0.698166in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698166in}}{\pgfqpoint{5.161419in}{2.452834in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698166in}}{\pgfqpoint{5.161419in}{2.652834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -77,14 +77,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.923191in}{0.698166in}}% \pgfpathlineto{\pgfqpoint{1.593505in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{1.593505in}{3.034198in}}% -\pgfpathlineto{\pgfqpoint{0.923191in}{3.034198in}}% +\pgfpathlineto{\pgfqpoint{1.593505in}{3.224675in}}% +\pgfpathlineto{\pgfqpoint{0.923191in}{3.224675in}}% \pgfpathlineto{\pgfqpoint{0.923191in}{0.698166in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698166in}}{\pgfqpoint{5.161419in}{2.452834in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698166in}}{\pgfqpoint{5.161419in}{2.652834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -97,14 +97,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{3.604447in}{0.698166in}}% \pgfpathlineto{\pgfqpoint{4.274762in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{4.274762in}{3.006400in}}% -\pgfpathlineto{\pgfqpoint{3.604447in}{3.006400in}}% +\pgfpathlineto{\pgfqpoint{4.274762in}{3.194610in}}% +\pgfpathlineto{\pgfqpoint{3.604447in}{3.194610in}}% \pgfpathlineto{\pgfqpoint{3.604447in}{0.698166in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698166in}}{\pgfqpoint{5.161419in}{2.452834in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698166in}}{\pgfqpoint{5.161419in}{2.652834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -117,14 +117,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.593505in}{0.698166in}}% \pgfpathlineto{\pgfqpoint{2.263819in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{2.263819in}{1.710158in}}% -\pgfpathlineto{\pgfqpoint{1.593505in}{1.710158in}}% +\pgfpathlineto{\pgfqpoint{2.263819in}{1.792674in}}% +\pgfpathlineto{\pgfqpoint{1.593505in}{1.792674in}}% \pgfpathlineto{\pgfqpoint{1.593505in}{0.698166in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698166in}}{\pgfqpoint{5.161419in}{2.452834in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698166in}}{\pgfqpoint{5.161419in}{2.652834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -137,14 +137,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.274762in}{0.698166in}}% \pgfpathlineto{\pgfqpoint{4.945076in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{4.945076in}{1.672262in}}% -\pgfpathlineto{\pgfqpoint{4.274762in}{1.672262in}}% +\pgfpathlineto{\pgfqpoint{4.945076in}{1.751688in}}% +\pgfpathlineto{\pgfqpoint{4.274762in}{1.751688in}}% \pgfpathlineto{\pgfqpoint{4.274762in}{0.698166in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698166in}}{\pgfqpoint{5.161419in}{2.452834in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698166in}}{\pgfqpoint{5.161419in}{2.652834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -157,14 +157,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{2.263819in}{0.698166in}}% \pgfpathlineto{\pgfqpoint{2.934133in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{2.934133in}{0.956417in}}% -\pgfpathlineto{\pgfqpoint{2.263819in}{0.956417in}}% +\pgfpathlineto{\pgfqpoint{2.934133in}{0.977474in}}% +\pgfpathlineto{\pgfqpoint{2.263819in}{0.977474in}}% \pgfpathlineto{\pgfqpoint{2.263819in}{0.698166in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698166in}}{\pgfqpoint{5.161419in}{2.452834in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698166in}}{\pgfqpoint{5.161419in}{2.652834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -177,8 +177,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.945076in}{0.698166in}}% \pgfpathlineto{\pgfqpoint{5.615390in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{0.717063in}}% -\pgfpathlineto{\pgfqpoint{4.945076in}{0.717063in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{0.718604in}}% +\pgfpathlineto{\pgfqpoint{4.945076in}{0.718604in}}% \pgfpathlineto{\pgfqpoint{4.945076in}{0.698166in}}% \pgfpathclose% \pgfusepath{fill}% @@ -291,7 +291,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.006028in}% +\pgfsys@transformshift{0.688581in}{1.031130in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -299,7 +299,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=0.957833in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.25}\)}% +\pgftext[x=0.344444in, y=0.982936in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.25}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -316,7 +316,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.313890in}% +\pgfsys@transformshift{0.688581in}{1.364095in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -324,7 +324,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.265695in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.50}\)}% +\pgftext[x=0.344444in, y=1.315900in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.50}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -341,7 +341,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.621751in}% +\pgfsys@transformshift{0.688581in}{1.697059in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -349,7 +349,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.573557in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.75}\)}% +\pgftext[x=0.344444in, y=1.648864in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.75}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -366,7 +366,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.929613in}% +\pgfsys@transformshift{0.688581in}{2.030023in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -374,7 +374,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.881419in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.00}\)}% +\pgftext[x=0.344444in, y=1.981829in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.00}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -391,7 +391,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.237475in}% +\pgfsys@transformshift{0.688581in}{2.362987in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -399,7 +399,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.189280in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.25}\)}% +\pgftext[x=0.344444in, y=2.314793in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.25}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -416,7 +416,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.545336in}% +\pgfsys@transformshift{0.688581in}{2.695952in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -424,7 +424,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.497142in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.50}\)}% +\pgftext[x=0.344444in, y=2.647757in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.50}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -441,7 +441,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.853198in}% +\pgfsys@transformshift{0.688581in}{3.028916in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -449,13 +449,13 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.805004in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.75}\)}% +\pgftext[x=0.344444in, y=2.980721in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.75}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.288889in,y=1.924583in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=2.024583in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -465,7 +465,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -476,7 +476,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -497,15 +497,15 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.688581in}{3.151000in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% +\pgfpathmoveto{\pgfqpoint{0.688581in}{3.351000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=3.269290in,y=3.234333in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete given queries with 10000 tuples}% +\pgftext[x=3.269290in,y=3.434333in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete given queries with 10000 tuples}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -518,16 +518,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.785803in}{2.453778in}}% -\pgfpathlineto{\pgfqpoint{2.689970in}{2.453778in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.453778in}}{\pgfqpoint{2.717747in}{2.481556in}}% -\pgfpathlineto{\pgfqpoint{2.717747in}{3.053778in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{3.081556in}}{\pgfqpoint{2.689970in}{3.081556in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{3.081556in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{3.081556in}}{\pgfqpoint{0.758025in}{3.053778in}}% -\pgfpathlineto{\pgfqpoint{0.758025in}{2.481556in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.453778in}}{\pgfqpoint{0.785803in}{2.453778in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.453778in}}% +\pgfpathmoveto{\pgfqpoint{0.785803in}{2.653778in}}% +\pgfpathlineto{\pgfqpoint{2.689970in}{2.653778in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.653778in}}{\pgfqpoint{2.717747in}{2.681556in}}% +\pgfpathlineto{\pgfqpoint{2.717747in}{3.253778in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{3.281556in}}{\pgfqpoint{2.689970in}{3.281556in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{3.281556in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{3.281556in}}{\pgfqpoint{0.758025in}{3.253778in}}% +\pgfpathlineto{\pgfqpoint{0.758025in}{2.681556in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.653778in}}{\pgfqpoint{0.785803in}{2.653778in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{2.653778in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -541,11 +541,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.928778in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.928778in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{3.026000in}}% -\pgfpathlineto{\pgfqpoint{0.813581in}{3.026000in}}% -\pgfpathlineto{\pgfqpoint{0.813581in}{2.928778in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{3.128778in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{3.128778in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{3.226000in}}% +\pgfpathlineto{\pgfqpoint{0.813581in}{3.226000in}}% +\pgfpathlineto{\pgfqpoint{0.813581in}{3.128778in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -553,7 +553,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.928778in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% +\pgftext[x=1.202470in,y=3.128778in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -565,11 +565,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.732945in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.732945in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.830167in}}% -\pgfpathlineto{\pgfqpoint{0.813581in}{2.830167in}}% -\pgfpathlineto{\pgfqpoint{0.813581in}{2.732945in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.932945in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.932945in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{3.030167in}}% +\pgfpathlineto{\pgfqpoint{0.813581in}{3.030167in}}% +\pgfpathlineto{\pgfqpoint{0.813581in}{2.932945in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -577,7 +577,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.732945in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% +\pgftext[x=1.202470in,y=2.932945in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -589,11 +589,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.537806in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.537806in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.635028in}}% -\pgfpathlineto{\pgfqpoint{0.813581in}{2.635028in}}% -\pgfpathlineto{\pgfqpoint{0.813581in}{2.537806in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.737806in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.737806in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.835028in}}% +\pgfpathlineto{\pgfqpoint{0.813581in}{2.835028in}}% +\pgfpathlineto{\pgfqpoint{0.813581in}{2.737806in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -601,7 +601,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.537806in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% +\pgftext[x=1.202470in,y=2.737806in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/non-standard-query-with-5000-tuples.pgf b/report/figures/non-standard-query-with-5000-tuples.pgf index 12d3384a..0227c251 100644 --- a/report/figures/non-standard-query-with-5000-tuples.pgf +++ b/report/figures/non-standard-query-with-5000-tuples.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,14 +57,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.619136in}{0.698166in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% -\pgfpathlineto{\pgfqpoint{0.619136in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% +\pgfpathlineto{\pgfqpoint{0.619136in}{3.351000in}}% \pgfpathlineto{\pgfqpoint{0.619136in}{0.698166in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698166in}}{\pgfqpoint{5.230864in}{2.452834in}}% +\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698166in}}{\pgfqpoint{5.230864in}{2.652834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -77,14 +77,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.856903in}{0.698166in}}% \pgfpathlineto{\pgfqpoint{1.536236in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{1.536236in}{3.034198in}}% -\pgfpathlineto{\pgfqpoint{0.856903in}{3.034198in}}% +\pgfpathlineto{\pgfqpoint{1.536236in}{3.224675in}}% +\pgfpathlineto{\pgfqpoint{0.856903in}{3.224675in}}% \pgfpathlineto{\pgfqpoint{0.856903in}{0.698166in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698166in}}{\pgfqpoint{5.230864in}{2.452834in}}% +\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698166in}}{\pgfqpoint{5.230864in}{2.652834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -97,14 +97,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{3.574235in}{0.698166in}}% \pgfpathlineto{\pgfqpoint{4.253568in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{4.253568in}{3.020240in}}% -\pgfpathlineto{\pgfqpoint{3.574235in}{3.020240in}}% +\pgfpathlineto{\pgfqpoint{4.253568in}{3.209579in}}% +\pgfpathlineto{\pgfqpoint{3.574235in}{3.209579in}}% \pgfpathlineto{\pgfqpoint{3.574235in}{0.698166in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698166in}}{\pgfqpoint{5.230864in}{2.452834in}}% +\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698166in}}{\pgfqpoint{5.230864in}{2.652834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -117,14 +117,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.536236in}{0.698166in}}% \pgfpathlineto{\pgfqpoint{2.215569in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{2.215569in}{1.714122in}}% -\pgfpathlineto{\pgfqpoint{1.536236in}{1.714122in}}% +\pgfpathlineto{\pgfqpoint{2.215569in}{1.796961in}}% +\pgfpathlineto{\pgfqpoint{1.536236in}{1.796961in}}% \pgfpathlineto{\pgfqpoint{1.536236in}{0.698166in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698166in}}{\pgfqpoint{5.230864in}{2.452834in}}% +\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698166in}}{\pgfqpoint{5.230864in}{2.652834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -137,14 +137,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.253568in}{0.698166in}}% \pgfpathlineto{\pgfqpoint{4.932900in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{4.932900in}{1.682369in}}% -\pgfpathlineto{\pgfqpoint{4.253568in}{1.682369in}}% +\pgfpathlineto{\pgfqpoint{4.932900in}{1.762619in}}% +\pgfpathlineto{\pgfqpoint{4.253568in}{1.762619in}}% \pgfpathlineto{\pgfqpoint{4.253568in}{0.698166in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698166in}}{\pgfqpoint{5.230864in}{2.452834in}}% +\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698166in}}{\pgfqpoint{5.230864in}{2.652834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -157,14 +157,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{2.215569in}{0.698166in}}% \pgfpathlineto{\pgfqpoint{2.894902in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{2.894902in}{0.951433in}}% -\pgfpathlineto{\pgfqpoint{2.215569in}{0.951433in}}% +\pgfpathlineto{\pgfqpoint{2.894902in}{0.972084in}}% +\pgfpathlineto{\pgfqpoint{2.215569in}{0.972084in}}% \pgfpathlineto{\pgfqpoint{2.215569in}{0.698166in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698166in}}{\pgfqpoint{5.230864in}{2.452834in}}% +\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698166in}}{\pgfqpoint{5.230864in}{2.652834in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -177,8 +177,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.932900in}{0.698166in}}% \pgfpathlineto{\pgfqpoint{5.612233in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{5.612233in}{0.734332in}}% -\pgfpathlineto{\pgfqpoint{4.932900in}{0.734332in}}% +\pgfpathlineto{\pgfqpoint{5.612233in}{0.737281in}}% +\pgfpathlineto{\pgfqpoint{4.932900in}{0.737281in}}% \pgfpathlineto{\pgfqpoint{4.932900in}{0.698166in}}% \pgfpathclose% \pgfusepath{fill}% @@ -291,7 +291,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.619136in}{1.184668in}% +\pgfsys@transformshift{0.619136in}{1.224336in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -299,7 +299,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.136473in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.1}\)}% +\pgftext[x=0.344444in, y=1.176142in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.1}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -316,7 +316,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.619136in}{1.671169in}% +\pgfsys@transformshift{0.619136in}{1.750506in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -324,7 +324,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.622975in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.2}\)}% +\pgftext[x=0.344444in, y=1.702312in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.2}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -341,7 +341,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.619136in}{2.157671in}% +\pgfsys@transformshift{0.619136in}{2.276676in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -349,7 +349,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.109476in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.3}\)}% +\pgftext[x=0.344444in, y=2.228482in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.3}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -366,7 +366,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.619136in}{2.644172in}% +\pgfsys@transformshift{0.619136in}{2.802846in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -374,7 +374,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.595978in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.4}\)}% +\pgftext[x=0.344444in, y=2.754652in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.4}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -391,7 +391,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.619136in}{3.130674in}% +\pgfsys@transformshift{0.619136in}{3.329016in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -399,13 +399,13 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=3.082479in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.5}\)}% +\pgftext[x=0.344444in, y=3.280822in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.5}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.288889in,y=1.924583in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=2.024583in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -415,7 +415,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.619136in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{0.619136in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{0.619136in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -426,7 +426,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.698166in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -447,15 +447,15 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.619136in}{3.151000in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% +\pgfpathmoveto{\pgfqpoint{0.619136in}{3.351000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=3.234568in,y=3.234333in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete given queries with 5000 tuples}% +\pgftext[x=3.234568in,y=3.434333in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete given queries with 5000 tuples}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -468,16 +468,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.716358in}{2.453778in}}% -\pgfpathlineto{\pgfqpoint{2.620525in}{2.453778in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.648303in}{2.453778in}}{\pgfqpoint{2.648303in}{2.481556in}}% -\pgfpathlineto{\pgfqpoint{2.648303in}{3.053778in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.648303in}{3.081556in}}{\pgfqpoint{2.620525in}{3.081556in}}% -\pgfpathlineto{\pgfqpoint{0.716358in}{3.081556in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.688581in}{3.081556in}}{\pgfqpoint{0.688581in}{3.053778in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.481556in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.688581in}{2.453778in}}{\pgfqpoint{0.716358in}{2.453778in}}% -\pgfpathlineto{\pgfqpoint{0.716358in}{2.453778in}}% +\pgfpathmoveto{\pgfqpoint{0.716358in}{2.653778in}}% +\pgfpathlineto{\pgfqpoint{2.620525in}{2.653778in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.648303in}{2.653778in}}{\pgfqpoint{2.648303in}{2.681556in}}% +\pgfpathlineto{\pgfqpoint{2.648303in}{3.253778in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.648303in}{3.281556in}}{\pgfqpoint{2.620525in}{3.281556in}}% +\pgfpathlineto{\pgfqpoint{0.716358in}{3.281556in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.688581in}{3.281556in}}{\pgfqpoint{0.688581in}{3.253778in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{2.681556in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.688581in}{2.653778in}}{\pgfqpoint{0.716358in}{2.653778in}}% +\pgfpathlineto{\pgfqpoint{0.716358in}{2.653778in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -491,11 +491,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.744136in}{2.928778in}}% -\pgfpathlineto{\pgfqpoint{1.021914in}{2.928778in}}% -\pgfpathlineto{\pgfqpoint{1.021914in}{3.026000in}}% -\pgfpathlineto{\pgfqpoint{0.744136in}{3.026000in}}% -\pgfpathlineto{\pgfqpoint{0.744136in}{2.928778in}}% +\pgfpathmoveto{\pgfqpoint{0.744136in}{3.128778in}}% +\pgfpathlineto{\pgfqpoint{1.021914in}{3.128778in}}% +\pgfpathlineto{\pgfqpoint{1.021914in}{3.226000in}}% +\pgfpathlineto{\pgfqpoint{0.744136in}{3.226000in}}% +\pgfpathlineto{\pgfqpoint{0.744136in}{3.128778in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -503,7 +503,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.133025in,y=2.928778in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% +\pgftext[x=1.133025in,y=3.128778in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -515,11 +515,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.744136in}{2.732945in}}% -\pgfpathlineto{\pgfqpoint{1.021914in}{2.732945in}}% -\pgfpathlineto{\pgfqpoint{1.021914in}{2.830167in}}% -\pgfpathlineto{\pgfqpoint{0.744136in}{2.830167in}}% -\pgfpathlineto{\pgfqpoint{0.744136in}{2.732945in}}% +\pgfpathmoveto{\pgfqpoint{0.744136in}{2.932945in}}% +\pgfpathlineto{\pgfqpoint{1.021914in}{2.932945in}}% +\pgfpathlineto{\pgfqpoint{1.021914in}{3.030167in}}% +\pgfpathlineto{\pgfqpoint{0.744136in}{3.030167in}}% +\pgfpathlineto{\pgfqpoint{0.744136in}{2.932945in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -527,7 +527,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.133025in,y=2.732945in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% +\pgftext[x=1.133025in,y=2.932945in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -539,11 +539,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.744136in}{2.537806in}}% -\pgfpathlineto{\pgfqpoint{1.021914in}{2.537806in}}% -\pgfpathlineto{\pgfqpoint{1.021914in}{2.635028in}}% -\pgfpathlineto{\pgfqpoint{0.744136in}{2.635028in}}% -\pgfpathlineto{\pgfqpoint{0.744136in}{2.537806in}}% +\pgfpathmoveto{\pgfqpoint{0.744136in}{2.737806in}}% +\pgfpathlineto{\pgfqpoint{1.021914in}{2.737806in}}% +\pgfpathlineto{\pgfqpoint{1.021914in}{2.835028in}}% +\pgfpathlineto{\pgfqpoint{0.744136in}{2.835028in}}% +\pgfpathlineto{\pgfqpoint{0.744136in}{2.737806in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -551,7 +551,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.133025in,y=2.537806in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% +\pgftext[x=1.133025in,y=2.737806in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/onePercent-joins-with-1000-tuples.pgf b/report/figures/onePercent-joins-with-1000-tuples.pgf index 6bd94b85..5a622ccd 100644 --- a/report/figures/onePercent-joins-with-1000-tuples.pgf +++ b/report/figures/onePercent-joins-with-1000-tuples.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,14 +57,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.351000in}}% \pgfpathlineto{\pgfqpoint{0.827470in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698472in}}{\pgfqpoint{5.022530in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698472in}}{\pgfqpoint{5.022530in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -77,14 +77,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.055767in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{1.470852in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{1.470852in}{2.765997in}}% -\pgfpathlineto{\pgfqpoint{1.055767in}{2.765997in}}% +\pgfpathlineto{\pgfqpoint{1.470852in}{2.934601in}}% +\pgfpathlineto{\pgfqpoint{1.055767in}{2.934601in}}% \pgfpathlineto{\pgfqpoint{1.055767in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698472in}}{\pgfqpoint{5.022530in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698472in}}{\pgfqpoint{5.022530in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -97,14 +97,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{2.716107in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{3.131192in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{3.131192in}{3.019359in}}% -\pgfpathlineto{\pgfqpoint{2.716107in}{3.019359in}}% +\pgfpathlineto{\pgfqpoint{3.131192in}{3.208624in}}% +\pgfpathlineto{\pgfqpoint{2.716107in}{3.208624in}}% \pgfpathlineto{\pgfqpoint{2.716107in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698472in}}{\pgfqpoint{5.022530in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698472in}}{\pgfqpoint{5.022530in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -117,14 +117,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.376448in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{4.791533in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{4.791533in}{3.034213in}}% -\pgfpathlineto{\pgfqpoint{4.376448in}{3.034213in}}% +\pgfpathlineto{\pgfqpoint{4.791533in}{3.224689in}}% +\pgfpathlineto{\pgfqpoint{4.376448in}{3.224689in}}% \pgfpathlineto{\pgfqpoint{4.376448in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698472in}}{\pgfqpoint{5.022530in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698472in}}{\pgfqpoint{5.022530in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -137,14 +137,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.470852in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{1.885937in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{1.885937in}{1.705630in}}% -\pgfpathlineto{\pgfqpoint{1.470852in}{1.705630in}}% +\pgfpathlineto{\pgfqpoint{1.885937in}{1.787762in}}% +\pgfpathlineto{\pgfqpoint{1.470852in}{1.787762in}}% \pgfpathlineto{\pgfqpoint{1.470852in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698472in}}{\pgfqpoint{5.022530in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698472in}}{\pgfqpoint{5.022530in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -157,14 +157,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{3.131192in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{3.546278in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{3.546278in}{1.708306in}}% -\pgfpathlineto{\pgfqpoint{3.131192in}{1.708306in}}% +\pgfpathlineto{\pgfqpoint{3.546278in}{1.790656in}}% +\pgfpathlineto{\pgfqpoint{3.131192in}{1.790656in}}% \pgfpathlineto{\pgfqpoint{3.131192in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698472in}}{\pgfqpoint{5.022530in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698472in}}{\pgfqpoint{5.022530in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -177,14 +177,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.791533in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{5.206618in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{5.206618in}{1.711096in}}% -\pgfpathlineto{\pgfqpoint{4.791533in}{1.711096in}}% +\pgfpathlineto{\pgfqpoint{5.206618in}{1.793674in}}% +\pgfpathlineto{\pgfqpoint{4.791533in}{1.793674in}}% \pgfpathlineto{\pgfqpoint{4.791533in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698472in}}{\pgfqpoint{5.022530in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698472in}}{\pgfqpoint{5.022530in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -197,14 +197,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.885937in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{2.301022in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{2.301022in}{1.241287in}}% -\pgfpathlineto{\pgfqpoint{1.885937in}{1.241287in}}% +\pgfpathlineto{\pgfqpoint{2.301022in}{1.285553in}}% +\pgfpathlineto{\pgfqpoint{1.885937in}{1.285553in}}% \pgfpathlineto{\pgfqpoint{1.885937in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698472in}}{\pgfqpoint{5.022530in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698472in}}{\pgfqpoint{5.022530in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -217,14 +217,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{3.546278in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{3.961363in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{3.961363in}{1.512854in}}% -\pgfpathlineto{\pgfqpoint{3.546278in}{1.512854in}}% +\pgfpathlineto{\pgfqpoint{3.961363in}{1.579266in}}% +\pgfpathlineto{\pgfqpoint{3.546278in}{1.579266in}}% \pgfpathlineto{\pgfqpoint{3.546278in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698472in}}{\pgfqpoint{5.022530in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.827470in}{0.698472in}}{\pgfqpoint{5.022530in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -237,8 +237,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.206618in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{5.621703in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{5.621703in}{1.613285in}}% -\pgfpathlineto{\pgfqpoint{5.206618in}{1.613285in}}% +\pgfpathlineto{\pgfqpoint{5.621703in}{1.687886in}}% +\pgfpathlineto{\pgfqpoint{5.206618in}{1.687886in}}% \pgfpathlineto{\pgfqpoint{5.206618in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% @@ -365,7 +365,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=0.650277in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.000}\)}% +\pgftext[x=0.344444in, y=0.650277in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0000}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -382,7 +382,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.292195in}% +\pgfsys@transformshift{0.827470in}{1.019542in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -390,7 +390,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.244001in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.005}\)}% +\pgftext[x=0.344444in, y=0.971348in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0025}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -407,7 +407,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{1.885919in}% +\pgfsys@transformshift{0.827470in}{1.340613in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -415,7 +415,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.837725in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.010}\)}% +\pgftext[x=0.344444in, y=1.292418in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0050}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -432,7 +432,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{2.479643in}% +\pgfsys@transformshift{0.827470in}{1.661683in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -440,7 +440,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.431448in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.015}\)}% +\pgftext[x=0.344444in, y=1.613489in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0075}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -457,7 +457,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.827470in}{3.073366in}% +\pgfsys@transformshift{0.827470in}{1.982753in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -465,13 +465,113 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=3.025172in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.020}\)}% +\pgftext[x=0.344444in, y=1.934559in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0100}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{2.303824in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.255629in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0125}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{2.624894in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.576700in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0150}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{2.945965in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.897770in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0175}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.827470in}{3.267035in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=3.218841in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0200}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.358333in,y=1.924736in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=2.024736in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -481,7 +581,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.827470in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{0.827470in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{0.827470in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -492,7 +592,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -513,15 +613,15 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.827470in}{3.151000in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% +\pgfpathmoveto{\pgfqpoint{0.827470in}{3.351000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=3.338735in,y=3.234333in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete given queries with 1000 tuples}% +\pgftext[x=3.338735in,y=3.434333in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete given queries with 1000 tuples}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -534,16 +634,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.924692in}{2.453778in}}% -\pgfpathlineto{\pgfqpoint{2.828859in}{2.453778in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.856637in}{2.453778in}}{\pgfqpoint{2.856637in}{2.481556in}}% -\pgfpathlineto{\pgfqpoint{2.856637in}{3.053778in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.856637in}{3.081556in}}{\pgfqpoint{2.828859in}{3.081556in}}% -\pgfpathlineto{\pgfqpoint{0.924692in}{3.081556in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.896914in}{3.081556in}}{\pgfqpoint{0.896914in}{3.053778in}}% -\pgfpathlineto{\pgfqpoint{0.896914in}{2.481556in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.896914in}{2.453778in}}{\pgfqpoint{0.924692in}{2.453778in}}% -\pgfpathlineto{\pgfqpoint{0.924692in}{2.453778in}}% +\pgfpathmoveto{\pgfqpoint{0.924692in}{2.653778in}}% +\pgfpathlineto{\pgfqpoint{2.828859in}{2.653778in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.856637in}{2.653778in}}{\pgfqpoint{2.856637in}{2.681556in}}% +\pgfpathlineto{\pgfqpoint{2.856637in}{3.253778in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.856637in}{3.281556in}}{\pgfqpoint{2.828859in}{3.281556in}}% +\pgfpathlineto{\pgfqpoint{0.924692in}{3.281556in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.896914in}{3.281556in}}{\pgfqpoint{0.896914in}{3.253778in}}% +\pgfpathlineto{\pgfqpoint{0.896914in}{2.681556in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.896914in}{2.653778in}}{\pgfqpoint{0.924692in}{2.653778in}}% +\pgfpathlineto{\pgfqpoint{0.924692in}{2.653778in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -557,11 +657,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.952470in}{2.928778in}}% -\pgfpathlineto{\pgfqpoint{1.230248in}{2.928778in}}% -\pgfpathlineto{\pgfqpoint{1.230248in}{3.026000in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{3.026000in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.928778in}}% +\pgfpathmoveto{\pgfqpoint{0.952470in}{3.128778in}}% +\pgfpathlineto{\pgfqpoint{1.230248in}{3.128778in}}% +\pgfpathlineto{\pgfqpoint{1.230248in}{3.226000in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{3.226000in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{3.128778in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -569,7 +669,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.341359in,y=2.928778in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% +\pgftext[x=1.341359in,y=3.128778in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -581,11 +681,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.952470in}{2.732945in}}% -\pgfpathlineto{\pgfqpoint{1.230248in}{2.732945in}}% -\pgfpathlineto{\pgfqpoint{1.230248in}{2.830167in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.830167in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.732945in}}% +\pgfpathmoveto{\pgfqpoint{0.952470in}{2.932945in}}% +\pgfpathlineto{\pgfqpoint{1.230248in}{2.932945in}}% +\pgfpathlineto{\pgfqpoint{1.230248in}{3.030167in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{3.030167in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.932945in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -593,7 +693,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.341359in,y=2.732945in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% +\pgftext[x=1.341359in,y=2.932945in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -605,11 +705,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.952470in}{2.537806in}}% -\pgfpathlineto{\pgfqpoint{1.230248in}{2.537806in}}% -\pgfpathlineto{\pgfqpoint{1.230248in}{2.635028in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.635028in}}% -\pgfpathlineto{\pgfqpoint{0.952470in}{2.537806in}}% +\pgfpathmoveto{\pgfqpoint{0.952470in}{2.737806in}}% +\pgfpathlineto{\pgfqpoint{1.230248in}{2.737806in}}% +\pgfpathlineto{\pgfqpoint{1.230248in}{2.835028in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.835028in}}% +\pgfpathlineto{\pgfqpoint{0.952470in}{2.737806in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -617,7 +717,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.341359in,y=2.537806in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% +\pgftext[x=1.341359in,y=2.737806in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/onePercent-joins-with-10000-tuples.pgf b/report/figures/onePercent-joins-with-10000-tuples.pgf index 34765933..03676198 100644 --- a/report/figures/onePercent-joins-with-10000-tuples.pgf +++ b/report/figures/onePercent-joins-with-10000-tuples.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,14 +57,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.351000in}}% \pgfpathlineto{\pgfqpoint{0.688581in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698472in}}{\pgfqpoint{5.161419in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698472in}}{\pgfqpoint{5.161419in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -77,14 +77,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.923191in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{1.349754in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{1.349754in}{2.765695in}}% -\pgfpathlineto{\pgfqpoint{0.923191in}{2.765695in}}% +\pgfpathlineto{\pgfqpoint{1.349754in}{2.934274in}}% +\pgfpathlineto{\pgfqpoint{0.923191in}{2.934274in}}% \pgfpathlineto{\pgfqpoint{0.923191in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698472in}}{\pgfqpoint{5.161419in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698472in}}{\pgfqpoint{5.161419in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -97,14 +97,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{2.629445in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{3.056009in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{3.056009in}{3.029108in}}% -\pgfpathlineto{\pgfqpoint{2.629445in}{3.029108in}}% +\pgfpathlineto{\pgfqpoint{3.056009in}{3.219168in}}% +\pgfpathlineto{\pgfqpoint{2.629445in}{3.219168in}}% \pgfpathlineto{\pgfqpoint{2.629445in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698472in}}{\pgfqpoint{5.161419in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698472in}}{\pgfqpoint{5.161419in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -117,14 +117,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.335699in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{4.762263in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{4.762263in}{3.034213in}}% -\pgfpathlineto{\pgfqpoint{4.335699in}{3.034213in}}% +\pgfpathlineto{\pgfqpoint{4.762263in}{3.224689in}}% +\pgfpathlineto{\pgfqpoint{4.335699in}{3.224689in}}% \pgfpathlineto{\pgfqpoint{4.335699in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698472in}}{\pgfqpoint{5.161419in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698472in}}{\pgfqpoint{5.161419in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -137,14 +137,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.349754in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{1.776318in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{1.776318in}{1.705093in}}% -\pgfpathlineto{\pgfqpoint{1.349754in}{1.705093in}}% +\pgfpathlineto{\pgfqpoint{1.776318in}{1.787181in}}% +\pgfpathlineto{\pgfqpoint{1.349754in}{1.787181in}}% \pgfpathlineto{\pgfqpoint{1.349754in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698472in}}{\pgfqpoint{5.161419in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698472in}}{\pgfqpoint{5.161419in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -157,14 +157,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{3.056009in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{3.482572in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{3.482572in}{1.780315in}}% -\pgfpathlineto{\pgfqpoint{3.056009in}{1.780315in}}% +\pgfpathlineto{\pgfqpoint{3.482572in}{1.868537in}}% +\pgfpathlineto{\pgfqpoint{3.056009in}{1.868537in}}% \pgfpathlineto{\pgfqpoint{3.056009in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698472in}}{\pgfqpoint{5.161419in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698472in}}{\pgfqpoint{5.161419in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -177,14 +177,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.762263in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{5.188826in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{5.188826in}{1.761297in}}% -\pgfpathlineto{\pgfqpoint{4.762263in}{1.761297in}}% +\pgfpathlineto{\pgfqpoint{5.188826in}{1.847969in}}% +\pgfpathlineto{\pgfqpoint{4.762263in}{1.847969in}}% \pgfpathlineto{\pgfqpoint{4.762263in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698472in}}{\pgfqpoint{5.161419in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698472in}}{\pgfqpoint{5.161419in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -197,14 +197,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.776318in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{2.202881in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{2.202881in}{0.801521in}}% -\pgfpathlineto{\pgfqpoint{1.776318in}{0.801521in}}% +\pgfpathlineto{\pgfqpoint{2.202881in}{0.809925in}}% +\pgfpathlineto{\pgfqpoint{1.776318in}{0.809925in}}% \pgfpathlineto{\pgfqpoint{1.776318in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698472in}}{\pgfqpoint{5.161419in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698472in}}{\pgfqpoint{5.161419in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -217,14 +217,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{3.482572in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{3.909136in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{3.909136in}{0.954075in}}% -\pgfpathlineto{\pgfqpoint{3.482572in}{0.954075in}}% +\pgfpathlineto{\pgfqpoint{3.909136in}{0.974919in}}% +\pgfpathlineto{\pgfqpoint{3.482572in}{0.974919in}}% \pgfpathlineto{\pgfqpoint{3.482572in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698472in}}{\pgfqpoint{5.161419in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.688581in}{0.698472in}}{\pgfqpoint{5.161419in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -237,8 +237,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.188826in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{5.615390in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{5.615390in}{1.130218in}}% -\pgfpathlineto{\pgfqpoint{5.188826in}{1.130218in}}% +\pgfpathlineto{\pgfqpoint{5.615390in}{1.165426in}}% +\pgfpathlineto{\pgfqpoint{5.188826in}{1.165426in}}% \pgfpathlineto{\pgfqpoint{5.188826in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% @@ -365,7 +365,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=0.650277in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.0}\)}% +\pgftext[x=0.344444in, y=0.650277in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.00}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -382,7 +382,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.301066in}% +\pgfsys@transformshift{0.688581in}{1.024339in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -390,7 +390,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.252872in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.5}\)}% +\pgftext[x=0.344444in, y=0.976145in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.25}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -407,7 +407,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{1.903660in}% +\pgfsys@transformshift{0.688581in}{1.350207in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -415,7 +415,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=1.855466in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.0}\)}% +\pgftext[x=0.344444in, y=1.302012in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.50}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -432,7 +432,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{2.506255in}% +\pgfsys@transformshift{0.688581in}{1.676074in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -440,7 +440,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=2.458060in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.5}\)}% +\pgftext[x=0.344444in, y=1.627880in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.75}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -457,7 +457,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.688581in}{3.108849in}% +\pgfsys@transformshift{0.688581in}{2.001942in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -465,13 +465,113 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.413889in, y=3.060655in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {2.0}\)}% +\pgftext[x=0.344444in, y=1.953747in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.00}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.327809in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.279615in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.25}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.653677in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.605482in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.50}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{2.979544in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=2.931350in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {1.75}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.688581in}{3.305412in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.344444in, y=3.257217in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {2.00}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.358333in,y=1.924736in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=2.024736in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -481,7 +581,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.688581in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -492,7 +592,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -513,15 +613,15 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.688581in}{3.151000in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% +\pgfpathmoveto{\pgfqpoint{0.688581in}{3.351000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=3.269290in,y=3.234333in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete given queries with 10000 tuples}% +\pgftext[x=3.269290in,y=3.434333in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete given queries with 10000 tuples}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -534,16 +634,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.785803in}{2.453778in}}% -\pgfpathlineto{\pgfqpoint{2.689970in}{2.453778in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.453778in}}{\pgfqpoint{2.717747in}{2.481556in}}% -\pgfpathlineto{\pgfqpoint{2.717747in}{3.053778in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{3.081556in}}{\pgfqpoint{2.689970in}{3.081556in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{3.081556in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{3.081556in}}{\pgfqpoint{0.758025in}{3.053778in}}% -\pgfpathlineto{\pgfqpoint{0.758025in}{2.481556in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.453778in}}{\pgfqpoint{0.785803in}{2.453778in}}% -\pgfpathlineto{\pgfqpoint{0.785803in}{2.453778in}}% +\pgfpathmoveto{\pgfqpoint{0.785803in}{2.653778in}}% +\pgfpathlineto{\pgfqpoint{2.689970in}{2.653778in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{2.653778in}}{\pgfqpoint{2.717747in}{2.681556in}}% +\pgfpathlineto{\pgfqpoint{2.717747in}{3.253778in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.717747in}{3.281556in}}{\pgfqpoint{2.689970in}{3.281556in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{3.281556in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{3.281556in}}{\pgfqpoint{0.758025in}{3.253778in}}% +\pgfpathlineto{\pgfqpoint{0.758025in}{2.681556in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.758025in}{2.653778in}}{\pgfqpoint{0.785803in}{2.653778in}}% +\pgfpathlineto{\pgfqpoint{0.785803in}{2.653778in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -557,11 +657,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.928778in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.928778in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{3.026000in}}% -\pgfpathlineto{\pgfqpoint{0.813581in}{3.026000in}}% -\pgfpathlineto{\pgfqpoint{0.813581in}{2.928778in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{3.128778in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{3.128778in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{3.226000in}}% +\pgfpathlineto{\pgfqpoint{0.813581in}{3.226000in}}% +\pgfpathlineto{\pgfqpoint{0.813581in}{3.128778in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -569,7 +669,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.928778in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% +\pgftext[x=1.202470in,y=3.128778in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -581,11 +681,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.732945in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.732945in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.830167in}}% -\pgfpathlineto{\pgfqpoint{0.813581in}{2.830167in}}% -\pgfpathlineto{\pgfqpoint{0.813581in}{2.732945in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.932945in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.932945in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{3.030167in}}% +\pgfpathlineto{\pgfqpoint{0.813581in}{3.030167in}}% +\pgfpathlineto{\pgfqpoint{0.813581in}{2.932945in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -593,7 +693,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.732945in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% +\pgftext[x=1.202470in,y=2.932945in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -605,11 +705,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813581in}{2.537806in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.537806in}}% -\pgfpathlineto{\pgfqpoint{1.091358in}{2.635028in}}% -\pgfpathlineto{\pgfqpoint{0.813581in}{2.635028in}}% -\pgfpathlineto{\pgfqpoint{0.813581in}{2.537806in}}% +\pgfpathmoveto{\pgfqpoint{0.813581in}{2.737806in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.737806in}}% +\pgfpathlineto{\pgfqpoint{1.091358in}{2.835028in}}% +\pgfpathlineto{\pgfqpoint{0.813581in}{2.835028in}}% +\pgfpathlineto{\pgfqpoint{0.813581in}{2.737806in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -617,7 +717,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.202470in,y=2.537806in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% +\pgftext[x=1.202470in,y=2.737806in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/figures/onePercent-joins-with-5000-tuples.pgf b/report/figures/onePercent-joins-with-5000-tuples.pgf index 403617a1..3f157095 100644 --- a/report/figures/onePercent-joins-with-5000-tuples.pgf +++ b/report/figures/onePercent-joins-with-5000-tuples.pgf @@ -26,7 +26,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.500000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{3.700000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,8 +39,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{3.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.500000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{3.700000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.700000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,14 +57,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.619136in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{5.850000in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% -\pgfpathlineto{\pgfqpoint{0.619136in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% +\pgfpathlineto{\pgfqpoint{0.619136in}{3.351000in}}% \pgfpathlineto{\pgfqpoint{0.619136in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698472in}}{\pgfqpoint{5.230864in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698472in}}{\pgfqpoint{5.230864in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -77,14 +77,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.856903in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{1.289205in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{1.289205in}{2.773865in}}% -\pgfpathlineto{\pgfqpoint{0.856903in}{2.773865in}}% +\pgfpathlineto{\pgfqpoint{1.289205in}{2.943111in}}% +\pgfpathlineto{\pgfqpoint{0.856903in}{2.943111in}}% \pgfpathlineto{\pgfqpoint{0.856903in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698472in}}{\pgfqpoint{5.230864in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698472in}}{\pgfqpoint{5.230864in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -97,14 +97,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{2.586114in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{3.018417in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{3.018417in}{3.034213in}}% -\pgfpathlineto{\pgfqpoint{2.586114in}{3.034213in}}% +\pgfpathlineto{\pgfqpoint{3.018417in}{3.224689in}}% +\pgfpathlineto{\pgfqpoint{2.586114in}{3.224689in}}% \pgfpathlineto{\pgfqpoint{2.586114in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698472in}}{\pgfqpoint{5.230864in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698472in}}{\pgfqpoint{5.230864in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -117,14 +117,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.315325in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{4.747628in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{4.747628in}{3.032017in}}% -\pgfpathlineto{\pgfqpoint{4.315325in}{3.032017in}}% +\pgfpathlineto{\pgfqpoint{4.747628in}{3.222314in}}% +\pgfpathlineto{\pgfqpoint{4.315325in}{3.222314in}}% \pgfpathlineto{\pgfqpoint{4.315325in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698472in}}{\pgfqpoint{5.230864in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698472in}}{\pgfqpoint{5.230864in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -137,14 +137,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.289205in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{1.721508in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{1.721508in}{1.694621in}}% -\pgfpathlineto{\pgfqpoint{1.289205in}{1.694621in}}% +\pgfpathlineto{\pgfqpoint{1.721508in}{1.775855in}}% +\pgfpathlineto{\pgfqpoint{1.289205in}{1.775855in}}% \pgfpathlineto{\pgfqpoint{1.289205in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698472in}}{\pgfqpoint{5.230864in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698472in}}{\pgfqpoint{5.230864in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -157,14 +157,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{3.018417in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{3.450719in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{3.450719in}{1.780735in}}% -\pgfpathlineto{\pgfqpoint{3.018417in}{1.780735in}}% +\pgfpathlineto{\pgfqpoint{3.450719in}{1.868992in}}% +\pgfpathlineto{\pgfqpoint{3.018417in}{1.868992in}}% \pgfpathlineto{\pgfqpoint{3.018417in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698472in}}{\pgfqpoint{5.230864in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698472in}}{\pgfqpoint{5.230864in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -177,14 +177,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{4.747628in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{5.179931in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{5.179931in}{1.733632in}}% -\pgfpathlineto{\pgfqpoint{4.747628in}{1.733632in}}% +\pgfpathlineto{\pgfqpoint{5.179931in}{1.818047in}}% +\pgfpathlineto{\pgfqpoint{4.747628in}{1.818047in}}% \pgfpathlineto{\pgfqpoint{4.747628in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698472in}}{\pgfqpoint{5.230864in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698472in}}{\pgfqpoint{5.230864in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -197,14 +197,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{1.721508in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{2.153811in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{2.153811in}{0.813512in}}% -\pgfpathlineto{\pgfqpoint{1.721508in}{0.813512in}}% +\pgfpathlineto{\pgfqpoint{2.153811in}{0.822894in}}% +\pgfpathlineto{\pgfqpoint{1.721508in}{0.822894in}}% \pgfpathlineto{\pgfqpoint{1.721508in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698472in}}{\pgfqpoint{5.230864in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698472in}}{\pgfqpoint{5.230864in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -217,14 +217,14 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{3.450719in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{3.883022in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{3.883022in}{0.972198in}}% -\pgfpathlineto{\pgfqpoint{3.450719in}{0.972198in}}% +\pgfpathlineto{\pgfqpoint{3.883022in}{0.994520in}}% +\pgfpathlineto{\pgfqpoint{3.450719in}{0.994520in}}% \pgfpathlineto{\pgfqpoint{3.450719in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698472in}}{\pgfqpoint{5.230864in}{2.452528in}}% +\pgfpathrectangle{\pgfqpoint{0.619136in}{0.698472in}}{\pgfqpoint{5.230864in}{2.652528in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetmiterjoin% @@ -237,8 +237,8 @@ \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.179931in}{0.698472in}}% \pgfpathlineto{\pgfqpoint{5.612233in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{5.612233in}{1.043290in}}% -\pgfpathlineto{\pgfqpoint{5.179931in}{1.043290in}}% +\pgfpathlineto{\pgfqpoint{5.612233in}{1.071409in}}% +\pgfpathlineto{\pgfqpoint{5.179931in}{1.071409in}}% \pgfpathlineto{\pgfqpoint{5.179931in}{0.698472in}}% \pgfpathclose% \pgfusepath{fill}% @@ -382,7 +382,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.619136in}{1.174568in}% +\pgfsys@transformshift{0.619136in}{1.213393in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -390,7 +390,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.126374in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.1}\)}% +\pgftext[x=0.344444in, y=1.165199in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.1}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -407,7 +407,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.619136in}{1.650664in}% +\pgfsys@transformshift{0.619136in}{1.728314in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -415,7 +415,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=1.602470in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.2}\)}% +\pgftext[x=0.344444in, y=1.680120in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.2}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -432,7 +432,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.619136in}{2.126761in}% +\pgfsys@transformshift{0.619136in}{2.243235in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -440,7 +440,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.078566in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.3}\)}% +\pgftext[x=0.344444in, y=2.195041in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.3}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -457,7 +457,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.619136in}{2.602857in}% +\pgfsys@transformshift{0.619136in}{2.758156in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -465,7 +465,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=2.554662in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.4}\)}% +\pgftext[x=0.344444in, y=2.709962in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.4}\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -482,7 +482,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.619136in}{3.078953in}% +\pgfsys@transformshift{0.619136in}{3.273078in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -490,13 +490,13 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.344444in, y=3.030759in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.5}\)}% +\pgftext[x=0.344444in, y=3.224883in, left, base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {0.5}\)}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.288889in,y=1.924736in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% +\pgftext[x=0.288889in,y=2.024736in,,bottom,rotate=90.000000]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Mean time (s)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -506,7 +506,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.619136in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{0.619136in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{0.619136in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -517,7 +517,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{5.850000in}{0.698472in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -538,15 +538,15 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.619136in}{3.151000in}}% -\pgfpathlineto{\pgfqpoint{5.850000in}{3.151000in}}% +\pgfpathmoveto{\pgfqpoint{0.619136in}{3.351000in}}% +\pgfpathlineto{\pgfqpoint{5.850000in}{3.351000in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=3.234568in,y=3.234333in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete given queries with 5000 tuples}% +\pgftext[x=3.234568in,y=3.434333in,,base]{\color{textcolor}\rmfamily\fontsize{12.000000}{14.400000}\selectfont Mean time to complete given queries with 5000 tuples}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -559,16 +559,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.716358in}{2.453778in}}% -\pgfpathlineto{\pgfqpoint{2.620525in}{2.453778in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.648303in}{2.453778in}}{\pgfqpoint{2.648303in}{2.481556in}}% -\pgfpathlineto{\pgfqpoint{2.648303in}{3.053778in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.648303in}{3.081556in}}{\pgfqpoint{2.620525in}{3.081556in}}% -\pgfpathlineto{\pgfqpoint{0.716358in}{3.081556in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.688581in}{3.081556in}}{\pgfqpoint{0.688581in}{3.053778in}}% -\pgfpathlineto{\pgfqpoint{0.688581in}{2.481556in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.688581in}{2.453778in}}{\pgfqpoint{0.716358in}{2.453778in}}% -\pgfpathlineto{\pgfqpoint{0.716358in}{2.453778in}}% +\pgfpathmoveto{\pgfqpoint{0.716358in}{2.653778in}}% +\pgfpathlineto{\pgfqpoint{2.620525in}{2.653778in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.648303in}{2.653778in}}{\pgfqpoint{2.648303in}{2.681556in}}% +\pgfpathlineto{\pgfqpoint{2.648303in}{3.253778in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.648303in}{3.281556in}}{\pgfqpoint{2.620525in}{3.281556in}}% +\pgfpathlineto{\pgfqpoint{0.716358in}{3.281556in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.688581in}{3.281556in}}{\pgfqpoint{0.688581in}{3.253778in}}% +\pgfpathlineto{\pgfqpoint{0.688581in}{2.681556in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.688581in}{2.653778in}}{\pgfqpoint{0.716358in}{2.653778in}}% +\pgfpathlineto{\pgfqpoint{0.716358in}{2.653778in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -582,11 +582,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.744136in}{2.928778in}}% -\pgfpathlineto{\pgfqpoint{1.021914in}{2.928778in}}% -\pgfpathlineto{\pgfqpoint{1.021914in}{3.026000in}}% -\pgfpathlineto{\pgfqpoint{0.744136in}{3.026000in}}% -\pgfpathlineto{\pgfqpoint{0.744136in}{2.928778in}}% +\pgfpathmoveto{\pgfqpoint{0.744136in}{3.128778in}}% +\pgfpathlineto{\pgfqpoint{1.021914in}{3.128778in}}% +\pgfpathlineto{\pgfqpoint{1.021914in}{3.226000in}}% +\pgfpathlineto{\pgfqpoint{0.744136in}{3.226000in}}% +\pgfpathlineto{\pgfqpoint{0.744136in}{3.128778in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -594,7 +594,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.133025in,y=2.928778in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% +\pgftext[x=1.133025in,y=3.128778in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Product equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -606,11 +606,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.744136in}{2.732945in}}% -\pgfpathlineto{\pgfqpoint{1.021914in}{2.732945in}}% -\pgfpathlineto{\pgfqpoint{1.021914in}{2.830167in}}% -\pgfpathlineto{\pgfqpoint{0.744136in}{2.830167in}}% -\pgfpathlineto{\pgfqpoint{0.744136in}{2.732945in}}% +\pgfpathmoveto{\pgfqpoint{0.744136in}{2.932945in}}% +\pgfpathlineto{\pgfqpoint{1.021914in}{2.932945in}}% +\pgfpathlineto{\pgfqpoint{1.021914in}{3.030167in}}% +\pgfpathlineto{\pgfqpoint{0.744136in}{3.030167in}}% +\pgfpathlineto{\pgfqpoint{0.744136in}{2.932945in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -618,7 +618,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.133025in,y=2.732945in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% +\pgftext[x=1.133025in,y=2.932945in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Comprehension equijoin}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -630,11 +630,11 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.744136in}{2.537806in}}% -\pgfpathlineto{\pgfqpoint{1.021914in}{2.537806in}}% -\pgfpathlineto{\pgfqpoint{1.021914in}{2.635028in}}% -\pgfpathlineto{\pgfqpoint{0.744136in}{2.635028in}}% -\pgfpathlineto{\pgfqpoint{0.744136in}{2.537806in}}% +\pgfpathmoveto{\pgfqpoint{0.744136in}{2.737806in}}% +\pgfpathlineto{\pgfqpoint{1.021914in}{2.737806in}}% +\pgfpathlineto{\pgfqpoint{1.021914in}{2.835028in}}% +\pgfpathlineto{\pgfqpoint{0.744136in}{2.835028in}}% +\pgfpathlineto{\pgfqpoint{0.744136in}{2.737806in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% @@ -642,7 +642,7 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.133025in,y=2.537806in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% +\pgftext[x=1.133025in,y=2.737806in,left,base]{\color{textcolor}\rmfamily\fontsize{10.000000}{12.000000}\selectfont Indexed equijoin}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/report/introduction/final.tex b/report/introduction/final.tex index 143a23d5..6390c6b0 100644 --- a/report/introduction/final.tex +++ b/report/introduction/final.tex @@ -3,14 +3,14 @@ \chapter{Introduction} The introduction should summarise the subject area, the specific problem you are addressing, including key ideas for their solution, together with a summary of the project's main contributions. When detailing the contributions it is helpful to provide forward references to the section(s) of the report that provide the relevant technical details. The introduction should be aimed at an informed, but otherwise non-expert, reader. A good tip is to assume that all your assessors will read the abstract and introduction, whereas the more detailed technical sections may only be read by your first and second markers - it's therefore really important to get it right. \end{comment} -This project is follows the consequences of new techniques to optimise -relational queries of joins followed by selections in Haskell. Say you have the +This project follows the consequences of new techniques to optimise +relational queries of joins followed by selections in Haskell. Say there are the following records in Haskell. \input{code/introRecordExample.tex} \noindent -How might you join two bags of these records together by id? One way would be to +How might one join two bags of these records together by id? One way would be to write the following. \[\lbag\:(s, g)\:|\:s \leftarrow students,\:g \leftarrow grades,\:uid\;s == sid\;g @@ -18,12 +18,12 @@ \chapter{Introduction} What are the disadvantages of this approach? Clearly, every possible pair of elements are considered regardless of whether they have matching ids or not. -This clearly has an asymptotic complexity of $O(nm)$ where $n$ and $m$ are the +This has an asymptotic complexity of $O(nm)$ where $n$ and $m$ are the cardinality of the $students$ and $grades$ bags respectively. -Databases are vital to modern day society for their ability to structure, sort -and query vast amounts of data from any domain. Of course no one theoretical -model of data has surfaced since its conception, with different approaches +Databases are vital to modern-day society for their ability to structure, sort +and query vast amounts of data from any domain. Of course, many theoretical +models of data have surfaced since its conception, with different approaches describing how exactly to hold the data. Examples of such data models include the semi-structured model~\cite{DatabaseSystems} and, more relevant to this project, the relational model~\cite{RelationalModel} as introduced in @@ -33,40 +33,40 @@ \chapter{Introduction} This project explores one such solution to the optimisation of queries consisting of products followed by selections in the relational model. Such behaviour can be modelled by equijoins, the type of join seen in the example -above, where you wish to keep only two records who share a common attribute. +above, where you wish to keep only two records that share a common attribute. This project will implement a functioning database system in Haskell according to the solution outlined in the paper \relalg{}~\cite{RelationalAlgebraByWayOfAdjunctions}. It then describes original tools and workflows created to help the benchmarking and testing of the system in order to evaluate its performance. -Going back to the example, say you could instead index both tables by their -$uid$ and $sid$ respectively. You would not need to consider all possible pair -of elements to find the matching attributes any more as you would already know which -tuples share the same indexed element. This will allow you to greatly reduce the -order at which you are taking products and, in effect, `making more work for -yourself'. How might this be achieved? The authors of the paper \relalg{}, +Going back to the example, say it was possible to instead index both tables by their +$uid$ and $sid$ respectively. One would not need to consider all possible pairs +of elements to find the matching attributes any more as which tuples share the +same indexed element would already be known. This will allow the developer to greatly reduce the +order in which they are taking products and, in effect, `making more work for +themselves'. How might this be achieved? The authors of the paper \relalg{}, seemingly enchanted by the elegance of a comprehension notation, have outlined a category theoretical framework to interpret relational algebra. They found that many bulk types, such as the bags above, could be made by the adjunction of two functors and therefore granted them the properties of monads. Moreover, monad -comprehensions have been known about for a substantial amount of -time~\cite{MonadComprehensions} and are generalisation of the expressive list -comprehensions. Therefore, in conjunction with the SQL-like syntax extensions +comprehensions have been known for a substantial amount of +time~\cite{MonadComprehensions} and are a generalisation of the expressive list +comprehension. Therefore, in conjunction with the SQL-like syntax extensions available to list comprehensions~\cite{ComprehensiveComprehensions} it is hoped -that the defined framework defined in the paper for efficient equijoin can be +that the framework defined in the paper for an efficient equijoin can be expressed in the same concise and powerful manner as the example above. -Continuing from the example above, how might we more efficiently join the -two relations? We could start by indexing both by the key we are looking for and -merging the results. +Continuing from the example above, how might one more efficiently join the +two relations? They could start by indexing both relations by the attributes the equijoin +is targeting and merging the results. \begin{center} \input{code/indexSchoolAndGrade} \end{center} \noindent -After this we simply can perform a Cartesian product on all values matching keys +After this they simply could perform a Cartesian product on all values matching keys and reduce the answer back to a bag. \begin{center} @@ -74,13 +74,13 @@ \chapter{Introduction} \end{center} \noindent -Note the types of the functions used. They will be modified from their general -form in order to help the reader see how they apply in this restricted context. +Note the types of the functions used. The types will be modified from their general +form in order to better inform their use in this restricted context. \input{code/introFunctionTypes.tex} \noindent -As you can see, the need for a global Cartesian product is removed by localising +The example demonstrates that the need for a global Cartesian product is removed by localising the operation on to values that definitely require it. This is accomplished by indexing both relations entirely, to an intermediate $Map$ form. The merging of these maps is responsible for matching the keys, the values requested in the @@ -89,9 +89,9 @@ \chapter{Introduction} however, the result must be reduced back to the database implementation and therefore the $Map$ is transformed back to a $Bag$. -Theoretically, this indexing should help us reduce the asymptotic complexity of +Theoretically, this indexing should help reduce the asymptotic complexity of the algorithm. Practically, however, what are the results of such a method? Are -there any limitations? Does it give the gains promised in real life? This +there any limitations? Does it see the gains theorised in real life? This project is about exploring exactly that idea. After describing a working implementation of the database system mentioned here, @@ -110,17 +110,17 @@ \chapter{Introduction} Synthetic data generation is key to creating a readable and reproducible benchmark. Generating synthetic data allows us to specify the properties of attributes and thereby conduct specific experiments determining the pitfalls and -strengths of functions depending on the shape of the data. Of course there is +strengths of functions depending on the shape of the data. Of course, there is the argument to be made that the results are not `life-like' as they do not take -the form of real world data, however I believe that this way of doing it is not -only more archetypal and therefore gives us an insight to the underlying trends +the form of real-world data. However, I believe that this way of doing it is not +only more archetypal and therefore gives us an insight into the underlying trends and lesson to be learned about the query optimisation but it counter-intuitively -is more readable. In order to synthesise such data, a low level synthetic -database generating library was created within the scope of the project. This is +is more readable. In order to synthesise such data, a low-level synthetic +database-generating library was created within the scope of the project. This is a framework that allows users to specify trends between attributes and control the generation of cells within their domain. Furthermore, a \relation{JOINBENCH} -relation was inspired from similar work in the past to include attributes that I -believe most suitable tested and described join based benchmarking queries. +relation was inspired by similar work in the past to include attributes that I +believe most suitably tested and described join-based benchmarking queries. To summarise, the main contributions of this project are: \begin{itemize} diff --git a/report/packages.tex b/report/packages.tex index 61c0b659..aff8369a 100644 --- a/report/packages.tex +++ b/report/packages.tex @@ -41,5 +41,27 @@ %% Code formatting \input{code/lhs2tex} +\definecolor{codegreen}{rgb}{0,0.6,0} +\definecolor{codegray}{rgb}{0.5,0.5,0.5} +\definecolor{codepurple}{rgb}{0.58,0,0.82} +\definecolor{backcolour}{rgb}{0.95,0.95,0.92} + +\lstdefinestyle{mystyle}{ + backgroundcolor=\color{backcolour}, + commentstyle=\color{codegreen}, + keywordstyle=\color{magenta}, + numberstyle=\tiny\color{codegray}, + stringstyle=\color{codepurple}, + basicstyle=\ttfamily, + breakatwhitespace=false, + captionpos=b, + keepspaces=true, + showspaces=false, + showstringspaces=false, + showtabs=false, + tabsize=4 +} + +\lstset{style=mystyle} %$ diff --git a/report/project/benchmark/benchmark.tex b/report/project/benchmark/benchmark.tex index 4fa3521f..91dbaf9c 100644 --- a/report/project/benchmark/benchmark.tex +++ b/report/project/benchmark/benchmark.tex @@ -1,11 +1,12 @@ \chapter{Benchmark} -In order to establish a judgement on the claimed improvements of the query -optimisation a benchmark is design, conducted and presented for this project. +In order to evaluate the performance of the alternative equijoin algorithm a +benchmark must be designed. We present the benchmark, methodology and results in +this chapter. The purpose of this chapter is two-fold. After establishing the set of technologies we will benchmark in \fref{chap:database} we present the benchmarks -conducted on the database in \fref{sec:results} as well as explaining the implementation details of the tools -designed to help conduct the benchmark in \fref{sec:benchmark:syntheticdatabase} and +conducted on the database in \fref{sec:benchmark:results} as well as explaining the implementation details of the tools +designed to help conduct the benchmark in \fref{sec:benchmark:database} and \fref{sec:benchmark:workflow}. \input{project/benchmark/database} diff --git a/report/project/benchmark/database.tex b/report/project/benchmark/database.tex index 3473ab6f..2ec1e7b9 100644 --- a/report/project/benchmark/database.tex +++ b/report/project/benchmark/database.tex @@ -1,5 +1,5 @@ \section{Benchmarking database} -As part of the project a benchmark will be run on the database system outlined +As part of the project, a benchmark will be run on the database system outlined in \fref{chap:database}. As the paper \relalg{} had a focus on their join algorithm, so will the benchmark focus on the performance of join queries in particular representing the class of query optimisations most prominent in the paper. This section will describe some design @@ -9,7 +9,7 @@ \section{Benchmarking database} \subsection{Initial design decisions} As explained in \fref{sec:background:dbbenchmarking} there are a number of styles that can be adapted to -conduct benchmarks for database management system implementations. Often the +conduct benchmarks for database management system implementations. Often, the style is greatly dependent on the context the system works in and the purposes of the information gathering. It was my decision that a decision support system had many important parallels to the domain of interest and so to design the @@ -20,10 +20,10 @@ \subsection{Initial design decisions} project. \subparagraph{Join complexity} Queries in decision support systems typically -have more complicated design this is caused by the need to access many +have more complicated designs. This is caused by the need to access many kinds of facts in order to answer complex queries. Although the paper \relalg{}~\cite{RelationalAlgebraByWayOfAdjunctions} -does not recommend any advice for dealing with multiple joins on a practical +does not offer any advice for dealing with multiple joins on a practical industrial scale (as the book An introduction to database systems~\cite{IntroToDatabaseSystems} describes with industry standard \emph{prejoin}s), its work is central on the efficiency of joins as a @@ -34,52 +34,53 @@ \subsection{Initial design decisions} ability to deal with these queries more than other applications~\cite{SetQueryBenchmark, PractitionersIntroduction}. This is a similar query type that is of interest for this benchmark. -\subparagraph{Integrity unimportant} The paper \relalg{} does not provide any way of +\subparagraph{Integrity not considered} The paper \relalg{} does not provide any way of updating the table, only query methods. This is similar to the aspect of decision support systems who assume that the data is correct and -does not deal with many updates. Therefore little or no emphasis is placed on +do not deal with many updates. Therefore little or no emphasis is placed on testing the integrity of the system. This helps construct a benchmark that more accurately reflects the algorithmic core of the paper where the focus was on query optimisation. \subsection{The \relation{JOINBENCH} relation}\label{sec:benchmark:joinbench} The \relation{JOINBENCH} relation is an easily synthesised relation designed in -order to help test the performance of join based queries. Its standard set of +order to help test the performance of join-based queries. Its standard set of attributes allows it to be versatile in testing queries and their specified selectivity. The relation is entirely comprised of integer attributes in an attempt to specialise the relation for queries on join optimisations. When testing joins and selections the key areas of interest are algorithm optimisations in different situations. The variables we can control when designing queries are the specificity of the selections or joins and the cardinality -of the two relations in the operation. Therefore a relation with attributes in -the integer domain and readable names makes should make it easier to calculate +of the two relations in the operation. Therefore, a relation with attributes in +the integer domain and readable names should make it easier to calculate query selectivity as well as expected cardinality of operands. The attributes of the \relation{JOINBENCH} relation can be found in \fref{tab:joinbenchattributes}. As can be seen, besides the -\relationAttribute{unique} attribute all other attributes are percentage based. +\relationAttribute{unique} attribute all other attributes are percentage-based. -\subparagraph{Percentage based attributes} Percentage based attributes are +\subparagraph{Percentage-based attributes} Percentage-based attributes are important for specifying the selectivity of joins especially. On a high level, the percentage in the attribute name expresses the expected proportion of the tuple to be selected by an equality containing only one value in the domain. For -instance a selection using the predicate `$\relationAttribute{twentyPercent} = -0$' is expected to select twenty percent of the relation. Precisely, given a -percentage based attribute of percent $n$, say, the domain of such an integer +instance, a selection using the predicate `$\relationAttribute{twentyPercent} = +0$' is expected to select twenty percent of the relation. In other words, given a +percentage-based attribute of percent $n$, say, the domain of such an integer would be the numbers $\left\{0, 1, \ldots, \frac{100}{n} - 1\right\}$ (where we assume that $\frac{100}{n}$ is an integer). An alternative way of thinking about this is that an $n$-percent attribute partitions the relation such that each partition has $n$ percent of the tuples. \subparagraph{The \relationAttribute{unique} attribute} The purpose of the -\relationAttribute{unique} attribute is partly classical and partly pragmatic. In a classical +\relationAttribute{unique} attribute is partly classical and partly pragmatic. +From a classical perspective, primary keys are paramount to relations and so I thought it imperative to include an attribute that could fill this role. Furthermore, despite the implementation of relations as bags allowing duplicates (for use in aggregations) theoretically databases should not allow duplicate tuples and so giving each tuple a unique identifier is a way to ensure this. More importantly, the \relationAttribute{unique} attribute allows us to specify selectivity not -based on proportion but rather given numbers. Say we want to select $n$ tuples +based on proportion but rather absolute numbers. Say we want to select $n$ tuples (where $n$ is less than the cardinality of the relation), we can simply perform a selection on unique that takes the first $n$ tuples using the predicate `$\relationAttribute{unique} < n$'; it is clear the result is a relation with diff --git a/report/project/benchmark/databasecreation.tex b/report/project/benchmark/databasecreation.tex index a36edbb5..345d9596 100644 --- a/report/project/benchmark/databasecreation.tex +++ b/report/project/benchmark/databasecreation.tex @@ -4,9 +4,9 @@ \section{Synthetic database creation}\label{sec:benchmark:database} databases in order to specify a large amount of unknowns in the data of the benchmarks run. Examples of such parameters range from both the size of the database as a whole to on a tuple level by carefully choosing attribute domains. -Attribute domains can also help give a heuristic control to resource load while +Attribute domains can also help give heuristic control to resource load while processing queries by determining how difficult it is to compute an answer (for -instance using the equality of strings). Furthermore, when designed correctly synthetic +instance, using the equality of strings). Furthermore, when designed correctly synthetic databases can provide a readable method to easily specify wanted properties of queries via explicit and easy to calculate selectivity factors in selections and joins. More information on database benchmark design can be found in @@ -18,7 +18,7 @@ \section{Synthetic database creation}\label{sec:benchmark:database} classes to represent different cell domains which then can be configured, specified and passed to objects representing larger structures of the database and handle generation for each of their responsibilities. This section is a -walk through the ensuing python modules and their internal relationships. +walk-through of the ensuing python modules and their internal relationships. \begin{figure}[t] \begin{tikzpicture} @@ -59,8 +59,8 @@ \section{Synthetic database creation}\label{sec:benchmark:database} \fref{fig:project:benchmark:creation-class-diagram}. We start with a list of objects extending the \lstinline{Cell} abstract class. We pass this list to a \lstinline{RecordGenerator} object, which -then can be given to a \lstinline{TableGenerator} object to generate the -database. Finally the database generator can be given to an object, such as the +can then be given to a \lstinline{TableGenerator} object to generate the +database. Finally, the database generator can be given to an object, such as the implemented \lstinline{CSVTableGenerator} to create the specified output. The advantages of this approach is the ability to easily configure a handful of properties of the output database by varying just the list of cells. @@ -76,7 +76,7 @@ \section{Synthetic database creation}\label{sec:benchmark:database} an object must be instantiated; this gives every attribute the ability to hold state to help control the generation of values. -In practice, when extending the cell class for uses within the project, specific +In practice, when extending the cell class for use within the project, specific patterns would emerge. Usually, most cells require a \lstinline{Random} object in their initialiser. The benefit to the composition with an external \lstinline{Random} object is that the generation of values can @@ -88,11 +88,11 @@ \section{Synthetic database creation}\label{sec:benchmark:database} or give default behaviours. The result of generating a cell can be so varied that no default behaviour would be appropriate in a general case, potentially causing future extensions of the \lstinline{Cell} class to behave unexpectedly. -Furthermore, unfortunately python does not support interfaces and favours duck -typing and so abstract classes were a necessary evil to specify a common API and -type the code for static analysis; otherwise an interface would much better suit +Furthermore, unfortunately Python does not support interfaces and favours duck +typing so abstract classes were a necessary evil to specify a common API and +type the code for static analysis; an interface would much better suit the problem domain. As a final addition, abstract classes with behaviour -increases the coupling of the code and so the argument could be made it would +increases the coupling of the code and so the argument could be made that it would negatively impact the cleanliness of the code. In order to create the joinbench benchmark a handful of different cells were @@ -118,7 +118,7 @@ \section{Synthetic database creation}\label{sec:benchmark:database} from the cells described above are needed for a larger set of use cases. How might we randomly generate entries from the first $10$ values of the geometric sequence $3^i$ say? Or, more relevant to the \relation{JOINBENCH} relation, the -first $100$ even numbers? To allow a more general number generation from +first $100$ even numbers? To allow a more general number generation of integers the \lstinline{RandomIntegerRangeCell} and \lstinline{RandomModularIntegerCell} are based on \lstinline{RandomModifiedIntegerRangeCell} and @@ -143,14 +143,14 @@ \section{Synthetic database creation}\label{sec:benchmark:database} \relation{JOINBENCH} relation, is the \lstinline{CounterCell}. The \lstinline{CounterCell} is used in the \relation{JOINBENCH} relation to provide a unique integer for each row representing what is commonly known as a primary -key. Its implementation consisting of an integer +key. Its implementation consists of an integer attribute initialised in the constructor and returned then incremented after every call to \lstinline{generate} is a simple advocate to the utility of implementing \lstinline{Cell} as a class allowing state in contrast to stateless alternatives. Before \relation{JOINBENCH} was settled on and domains specified other test attributes for an \database{INVOICE} database were defined and represent a more creative coverage of possible attribute domains. A \relation{CUSTOMER} table was defined -for the \database{INVOICE} database and it is no surprise a +for the \database{INVOICE} database and it is no surprise that a \relationAttribute{firstName} attribute followed. In response to this attribute a \lstinline{RandomChoiceCell} was defined which once initialised with a list of strings (such as names in this example) the \lstinline{generate} method @@ -164,13 +164,13 @@ \section{Synthetic database creation}\label{sec:benchmark:database} database. The \lstinline{DateCell} generated a random valid date contained within the range of years provided in the constructor returned in long form \verb|YYYYMMDD|. -Before much of the complexity was alleviated by the integer based design of the -\relation{JOINBENCH} relation systems had to be design to ensure attributes had +Before much of the complexity was alleviated by the integer-based design of the +\relation{JOINBENCH} relation, systems had to be designed to ensure attributes had the desired properties. The \relation{JOINBENCH} relation gives us mathematical -approximations, algorithms and laws to ensure properties such as frequency of +approximations, algorithms, and laws to ensure properties such as frequency of values and uniqueness but for the more general space of domains as required by previous iterations of databases used, such as the \database{INVOICE} database, -alternative methods were required. To fulfil these requirements the idea of cell +alternative methods were required. To fulfil these requirements, the idea of cell composition was introduced. Cell composition is simply a cell that takes another cell during initialisation to offer a modified behaviour. A prime example of such a composite cell is the \lstinline{UniqueCell}. As the name suggests the @@ -194,7 +194,7 @@ \section{Synthetic database creation}\label{sec:benchmark:database} of problems can also be solved by cell composition, namely the \lstinline{TrackingCell} cell. The \lstinline{TrackingCell} follows the pattern of cell composition by taking another \lstinline{Cell} during -construction and obeys the \lstinline{Cell} API, however it also defines an +construction and obeys the \lstinline{Cell} API. However, it also defines an additional method that returns the set of all values generated by the cell. This may be converted to a list and fed into a \lstinline{RandomChoiceCell} later, for instance, in order to allow the duplication of data for use in an attribute @@ -203,9 +203,9 @@ \section{Synthetic database creation}\label{sec:benchmark:database} imperative to have an idea of the frequency values appear in the table and to ensure that data is repeated at least the number of times desired. The \lstinline{DuplicateCell} enables a more general tune over duplicates in larger -domains. On instantiation you state the rate of duplication as a number +domains. On instantiation, you state the rate of duplication as a number between 0 and 1 and the cell chooses an already seen value with that -probability; this ensures that a proportion of the results are repeated and so +probability; this ensures that a proportion of the results are repeated which enables joining attributes with a larger level of scarcity. \begin{figure}[t] @@ -239,7 +239,7 @@ \section{Synthetic database creation}\label{sec:benchmark:database} \paragraph{RecordGenerator} The \lstinline{RecordGenerator} class is responsible for defining objects that generate the tuples of a table. As a tuple is a set of attributes, the \lstinline{RecordGenerator} must be instantiated -with a list of \lstinline{Cell}s. Note that in this implementation the set of +with a list of \lstinline{Cell}s. Note that in this implementation, the set of attributes as theoretically outlined in \fref{sec:relationalmodel} gain an order but this is for the obvious pragmatic use when exporting data. The \lstinline{RecordGenerator} class defines only one operation, @@ -249,8 +249,8 @@ \section{Synthetic database creation}\label{sec:benchmark:database} \paragraph{TableGenerator} The \lstinline{TableGenerator} builds on the \lstinline{RecordGenerator} in much the same way a table is a set of tuples. It -requires a \lstinline{RecordGenerator} in its constructor to define the domain -and number of attributes and also has a consistently named operation, +requires a \lstinline{RecordGenerator} in its constructor to define the domain, +and number of attributes, and also has a consistently named operation, \lstinline{generate}. The operation \lstinline{generate} however is subtly different from the pattern established in \lstinline{RecordGenerator}. Assuming a table in practice should at least an order of magnitude larger than a single @@ -264,25 +264,28 @@ \section{Synthetic database creation}\label{sec:benchmark:database} \paragraph{Outputting the data} Although there is no need for a next step, outputting the data is likely to be a next step. After defining a \lstinline{TableGenerator} we are left with an function that given the -cardinality of a relation, will product an iterator that generates such a table. +cardinality of a relation, will produce iterator that generates such a table. A recommended pattern for outputting data is again to take the \lstinline{TableGenerator} as an argument during construction and define a \lstinline{generate} function that specifies a number of records and returns nothing. This counter intuitive return value is to ensure that the efficiency gained by the \lstinline{TableGenerator} is not lost as accumulating the table -would cause, where possible it would be beneficial to write the relation one +in memory would cause. Where possible it would be beneficial to write the relation one tuple at a time to whatever output is desired. I did not define an interface as +I think that this step in the process is closest to client code and is not needed -by framework outlined therefore it would be needlessly restrictive. +by the framework outlined, therefore it would be needlessly restrictive. + \subparagraph{CSVTableGenerator} An example of such a class used in the project is the \lstinline{CSVTableGenerator} that follows the exact recommendations above. It takes a specification of the CSV file to write to, namely a path and -CSV dialect, and generate commands the CSV library to write each record one row -at a time. Of course the operating system may buffer the output but at a high -level this allows for what I believe to fine-grained yet logical writes that the +CSV dialect, and generates commands to the CSV library to write each record one row +at a time. Of course, the operating system may buffer the output, but at a high +level this allows for what I believe to be fine-grained yet logical writes that the operating system can schedule. -\subparagraph{Other ideas} There are many other way to potentially output the + +\subparagraph{Other ideas} There are many other ways to potentially output the data in useful ways. For instance, one may output the database to the standard output -stream (or perhaps both standard output and a given file). More interestingly one could execute an SQL \lstinline{INSERT} +stream (or perhaps both standard output and a given file). More interestingly, one could execute an SQL \lstinline{INSERT} statement for each tuple, populating a running database. diff --git a/report/project/benchmark/experiment.tex b/report/project/benchmark/experiment.tex index 839beb4a..d7217217 100644 --- a/report/project/benchmark/experiment.tex +++ b/report/project/benchmark/experiment.tex @@ -1,9 +1,9 @@ \section{Experiment details}\label{sec:benchmark:experiment} -This section will briefly describe the specifics about the experiment so that -reproducibly is more likely and the results are placed within their context. +This section will briefly describe the specifics of the experiment so that +reproducibility is more likely and the results are placed within their context. The benchmark uses the \verb|Criterion| library to collect all data (version -1.6.2.0). Sampling was left to default behaviour of the library and results were +1.6.2.0). Sampling was left to the default behaviour of the library and results were read directly without further processing. Results were read using Python's \verb|pandas| library (version 1.5.3) and may be the source of very minor floating point rounding errors as has been observed in extremely small orders. diff --git a/report/project/benchmark/functions.tex b/report/project/benchmark/functions.tex index 8a8d82e7..772af441 100644 --- a/report/project/benchmark/functions.tex +++ b/report/project/benchmark/functions.tex @@ -1,5 +1,5 @@ \section{Functions to benchmark}\label{sec:benchmark:functions} -In this section we present an overview of the three functions we will +In this section, we present an overview of the three functions we will be comparing in this benchmark. The paper \relalg{} presents a solution for equijoin (and arbitrary selections followed by joins) query optimisation using structures in Haskell, the algorithms compared will comprise of two alternative @@ -57,12 +57,12 @@ \section{Functions to benchmark}\label{sec:benchmark:functions} As is to be expected, the previous code takes the form of a monad comprehension. This is possible using the GHC extension \verb|MonadComprehensions| and allowed by the fact that $Bag$ is a monad. We see many similar -features to the $productEquijoin$ function. A major difference is that there is +features to the $productEquijoin$ function. A major difference is that there are no explicit product operations but the pair is created explicitly when matching results are found (however, all possible pairs are still considered). The equality, though not explicitly named as a helper function, also includes the transformation described above. -\paragraph{Indexed equijoin} The final function is the only of the three to use +\paragraph{Indexed equijoin} The final function is the only one of the three to use indexing. The indexing tested in this benchmark is basic however and further optimisations are not considered. To this extent this function can also be seen as modular; where a query engine or @@ -70,8 +70,8 @@ \section{Functions to benchmark}\label{sec:benchmark:functions} order putting together whole steps in a deterministic and segregated way. This algorithm is by far the most complex and is a version of what is proposed in the paper \relalg{}. In -simple terms, we index the bags and merge the result. After modification it to form -another valid indexed +simple terms, we index the bags and merge the result. After modification, it +forms another valid indexed structure we reduce this higher level construct back to a bag. The code for these operations is as follows. @@ -79,19 +79,19 @@ \section{Functions to benchmark}\label{sec:benchmark:functions} \noindent In order to understand the code it may be useful to explain some naming -conventions. Preceding $i$s are used to denote indexed or indexing structures, -for instance $if1$ is an `indexing function'. Furthermore, the letter $t$ -refers to tables. As with previous functions it operates on two bags and +conventions. Preceding $i$s are used to denote indexed or indexing structures; +for instance, $if1$ is an `indexing function'. Furthermore, the letter $t$ +refers to tables. As with previous functions, it operates on two bags and so the indices in variables refer to which bag the function is referring to. As discussed above, the first step is to index the bags. This is achieved using an inline form of the $indexBy$ function whose type signature can be seen below. The $indexBy$ function -takes a table and a function that can transform the table to a key and indexes +takes a table and a function that can transform the table into a key and indexes the table by the key. The result of indexing a bag is simply a structure that associates to each key a bag of the values that share that key. Now, with a pair of indexed tables $merge$, whose type signature can be seen below, -combines the two indexed tables to one such that for each key a pair of bags is +combines the two indexed tables into one such that for each key a pair of bags is associated to it. In order to complete reach a usable structure we must perform a local Cartesian product (hence the $fmap cp$) on each pair of bags to finally reach a single bag per key. Now we have a simple diff --git a/report/project/benchmark/queries.tex b/report/project/benchmark/queries.tex index 5f62312e..96d3743f 100644 --- a/report/project/benchmark/queries.tex +++ b/report/project/benchmark/queries.tex @@ -1,15 +1,15 @@ \section{Queries} This section will present the queries explored during the benchmarking of the -database system. Along with each query an analysis of its purpose will also be +database system. Along with each query, an analysis of its purpose will also be presented. The benchmark will run each query a number of times against each of the functions presented in \fref{sec:benchmark:functions} and the mean results will be analysed and compared during the rest of this chapter. As the method for -describing the queries becomes increasingly clear, the explanations will become +describing the queries become increasingly clear, the explanations will become more concise in this section. The queries presented all have a similar structure in how they are presented and form. They are all equijoins, as equijoins are the focus of this project and a -good way to judge the optimisation of a join followed by a selection. At times +good way to judge the optimisation of a join followed by a selection. At times, queries also measure the potential of a preceding selection but the functions are not designed to take this optimisation into consideration. Each join will be given a name of the form ``join \relationAttribute{x} and @@ -27,8 +27,8 @@ \section{Queries} what this means and its significance to the project and benchmark. As described in \fref{sec:benchmark:joinbench}, the attribute \relationAttribute{onePercent} has 100 different values all in the range of 0 to 99. Similarly, twentyPercent -has 5 attributes each in the range of 0 to 4. This in effect means that any -tuples whose \relationAttribute{onePercent} value is above 4 is discarded and as +has 5 attributes each in the range of 0 to 4. This, in effect, means that any +tuple whose \relationAttribute{onePercent} value is above 4 is discarded. As \relationAttribute{onePercent} partitions the relation into 100 groups with a size of 1\% of the relation, we lost 95\% of the tuples in the first table. Of the remaining 5\% of tuples in the first table, they will each pair with 20\% of @@ -37,7 +37,7 @@ \section{Queries} Cartesian product is performed with one percent of the total number of tuples and twenty percent of the total number of tuples. Given $n$ tuples, each group then has $\frac{n}{100} \cdot \frac{n}{5} = \frac{n^2}{500}$ tuples and as we -worked out above there are 5 groups. Therefore we expect the result to have +worked out above there are 5 groups. Therefore, we expect the result to have $\frac{n^2}{100}$ tuples. As both tables have $n$ tuples, a Cartesian product performed on them will have $n^2$ tuples, thus we expect a selectivity proportion of one percent on all possible pairs. We expect 5 local Cartesian @@ -45,14 +45,14 @@ \section{Queries} is the equivalent of running a selection with selectivity factor of 1\% on the first table then a product of 5 equally sized groups. -\paragraph{`join onePercent and onePercent'} This query is symmetric and an +\paragraph{`join onePercent and onePercent'} This query is symmetric and is an example that cannot be optimised by an initial selection as the domains of both attributes are the same. This query joins two partitions of 1\% of the table together 100 times. Therefore we expect the total tuple count to be $100 \cdot \frac{n}{100} \cdot \frac{n}{100} = \frac{n^2}{100}$, where $n$ is the number of tuples in each relation. You will notice that it produces the same number of -tuples as above but the distinction is in the number and size of local products. -We expect 100 local products all which create 1\% of the result and 0.01\% of +tuples as above, but the distinction is in the number and size of local products. +We expect 100 local products all of which create 1\% of the result and 0.01\% of the total number of possible pairs of tuples. \paragraph{`join onePercent and fiftyPercent'} This query follows a similar diff --git a/report/project/benchmark/results.tex b/report/project/benchmark/results.tex index a9c1d023..c28bdac7 100644 --- a/report/project/benchmark/results.tex +++ b/report/project/benchmark/results.tex @@ -1,12 +1,12 @@ \section{Results}\label{sec:benchmark:results} The results clearly show the expected pattern. In most cases indexed equijoin -shows a clear time advantage over both other methods completely independent to +shows a clear time advantage over both other methods completely independent of the query asked. The justification for this is clearly the localised Cartesian products. Methods that consider all possible pairs must select through $n^2$ pairs whereas in order to index only $2n$ searches are required and the Cartesian product is localised to strictly only the required pairs. This is a large advantage for any reasonable number of tuples. This can be seen for tuple -counts of 1000, 5000 and 10000 where indexed join performs significantly better. +counts of 1000, 5000, and 10000 where indexed join performs significantly better. Considering the query `join onePercent and onePercent' when using indexed equijoin over product equijoin the mean time to complete each query is over 70\% faster with both 5000 and 10000 tuples recording a mean time above 90\% faster. This @@ -17,11 +17,11 @@ \section{Results}\label{sec:benchmark:results} improvements of well over 80\%. A visual representation of the results can be found in \fref{fig:benchmark:onePercent-1000}, \fref{fig:benchmark:onePercent-5000}, -\fref{fig:benchmark:onePercent-10000} for 1000, 5000 and 10000 tuples +\fref{fig:benchmark:onePercent-10000} for 1000, 5000, and 10000 tuples respectively when considering the standard queries that join attributes to \relationAttribute{onePercent}. -\begin{table}[b] +\begin{table}[p] \centering \input{tables/percentage-change-of-means-join-onePercent-and-onePercent.tex} \caption{Percentage change of mean time to complete query `join onePercent @@ -61,32 +61,32 @@ \section{Results}\label{sec:benchmark:results} The results for the join queries `join twentyPercent and onePercent' and `join evenOnePercent and oddOnePercent' are very similar to the above where indexed equijoin far outperforms the alternatives; tables comparing -results with 1000, 5000 and 10000 tuples can be found in +results with 1000, 5000, and 10000 tuples can be found in \fref{tab:percentage-change-of-means-join-evenOnePercent-and-oddOnePercent} and \fref{tab:percentage-change-of-means-join-twentyPercent-and-onePercent}. Interestingly, -the gains for 'join evenOnePercent and oddOnePercent' are significantly larger +the gains for `join evenOnePercent and oddOnePercent' are significantly larger than the other queries and grow to be more extreme as tuple count increases; it is in these queries that we also find such an extreme improvement over comprehension equijoin. As the query is an edge case I feel it clearly demonstrates the strength of the indexed equijoin method not participating in as much unnecessary work. Although indexed equijoin must still search all tuples in order to index them, no Cartesian products are performed at all. It is clear why -this is such an advantage over the product equijoin, however comprehensions do +this is such an advantage over the product equijoin, however, comprehensions do not perform Cartesian products either. I believe that the advantage could come from poor optimisation of such an unlikely edge case by GHC or an idea of balancedness between both relations, an idea that will be explored later. Visualisations of the results can be found in \fref{fig:non-standard-1000}, \fref{fig:non-standard-5000} and -\fref{fig:non-standard-10000} for 1000, 5000 and 10000 tuples respectively. +\fref{fig:non-standard-10000} for 1000, 5000, and 10000 tuples respectively. -\begin{table}[b] +\begin{table}[p] \centering \input{tables/percentage-change-of-means-join-evenOnePercent-and-oddOnePercent.tex} \caption{Percentage change of mean time to complete query `join evenOnePercent and oddOnePercent' when using indexed equijoin compared to other functions.} \label{tab:percentage-change-of-means-join-evenOnePercent-and-oddOnePercent} \end{table} -\begin{table}[b] +\begin{table}[p] \centering \input{tables/percentage-change-of-means-join-twentyPercent-and-onePercent.tex} \caption{Percentage change of mean time to complete query `join twentyPercent and onePercent' when using indexed equijoin compared to other functions.} @@ -126,7 +126,7 @@ \section{Results}\label{sec:benchmark:results} \fref{fig:benchmark:onePercent-twentyPercent-flipped-5000}. As mentioned before, I thought that the lack of symmetry in the computation of the function would play a larger effect than can be observed. It is clear from the graph that this -was not the case to a significant proportion. Most surprisingly I thought that, +was not the case to a significant proportion. Most surprisingly, I thought that, despite not being too drastic, the difference would be most notable in the comprehension equijoin function; though from further inspection there does not seem to be any particular difference between all functions. It is clear that the @@ -134,7 +134,7 @@ \section{Results}\label{sec:benchmark:results} as it was designed to be modular and not take circumstance into much consideration, in fact the statistics support this and in the case with 5000 tuples the mean time to complete `join twentyPercent and onePercent' was only -2\% faster than the time to compute the contrary. Surprisingly however, the +2\% faster than the time to compute the contrary. Surprisingly, however, the indexed equijoin function had the largest relative decrease in order of operands with a 9\% decrease, closely followed by the expected victor comprehension equijoin with 8\%. This seems to be an act of chance, as varying the tuple count @@ -143,7 +143,7 @@ \section{Results}\label{sec:benchmark:results} actually has an increase in mean time for tuple counts of 6000, 7000, 8000 and 9000 whereas the comprehension equijoin has a similar order of decrease at all counts (as does the product equijoin). This suggests that the pattern of -optimisation in the comprehension equijoin may be there but in my opinion the +optimisation in the comprehension equijoin may be there but, in my opinion, the results are not significant and more research will need to be done in this area as well as a more thorough analysis on the lower levels of the Haskell compiler. @@ -190,7 +190,7 @@ \section{Results}\label{sec:benchmark:results} \fref{fig:benchmark:onePercent-twentyPercent-tuples}). I believe this is not just down to the lack of strong significance in order of operands as shown above, but rather the size of the local Cartesian products. The attribute -\relationAttribute{twentyPercent} has 5 different values that partitions the +\relationAttribute{twentyPercent} has 5 different values that partition the space into roughly 5 groups with 20\%. This equates to 5 medium sized Cartesian products (the operation that contains the largest algorithmic complexity). If you compare the graphs for the query `join onePercent and fiftyPercent' (in @@ -200,19 +200,19 @@ \section{Results}\label{sec:benchmark:results} products, each holding 50\% of the second relation. This is a clear suggestion as to why it grows more unfavourably than the other queries: the local Cartesian product, the main contributor to computational complexity, is fed much larger -tuples. Expectedly, the query `join onePercent and onePercent` (as seen in +tuples. Expectedly, the query `join onePercent and onePercent' (as seen in \fref{fig:benchmark:onePercent-onePercent-tuples}) has a much more shallow slope -than `join onePercent and twentyPercent` due to having 100 local Cartesian +than `join onePercent and twentyPercent' due to having 100 local Cartesian products all with only 1\% of the second relation; the additive effect of having so many products is negligible compared to the multiplicative effect of -few large products. Taking this to an extreme we can see that the query `join +few large products. Taking this to an extreme, we can see that the query `join evenOnePercent and oddOnePercent' (in \fref{fig:benchmark:evenOnePercent-oddOnePercent-tuples}) has no slope at all. The domains of the attributes in question are mutually exclusive and therefore the result is an empty relation. The result of this are no local Cartesian products which when noted next to the almost non-existent gradient of mean time gives me confidence that the local Cartesian products are the main contributor -to growth in mean time over tuple count. An graph comparing the slopes of the +to growth in mean time over tuple count. A graph comparing the slopes of the indexed equijoin function for the queries discussed can be found in \fref{fig:benchmark:indexed-equijoin-query-comparison}. It is worth noting that the other functions seem to grow in the same way irrespective of the query selectivity; diff --git a/report/project/benchmark/workflow.tex b/report/project/benchmark/workflow.tex index 06516d62..872a5b9b 100644 --- a/report/project/benchmark/workflow.tex +++ b/report/project/benchmark/workflow.tex @@ -4,12 +4,13 @@ \section{Benchmark workflow}\label{sec:benchmark:workflow} involved. This section will briefly describe the workflow and its creation. There are multiple steps involved in the benchmarking of the database management -systems. The first step is to create synthetic version of the +systems. The first step is to create a synthetic version of the \relation{JOINBENCH} relation up to the specifications of the benchmark. Alternatively, one relation at least as large as the highest cardinality -interested in benchmarking can be made and then selections the -\relationAttribute{unique} attributes can be used to alter the cardinality; -however, this involved extra computation on the side of the system to benchmark +interested in benchmarking can be made and then selections on the +\relationAttribute{unique} attributes can be used to alter the cardinality for +different benchmarks; +however, this involves extra computation on the side of the system doing the benchmark and therefore I decided to create a synthetic relation for each tuple count. After the relations are created, they must be parsed into the Haskell program and loaded into the database. All the queries can then be run and benchmarked. @@ -17,21 +18,21 @@ \section{Benchmark workflow}\label{sec:benchmark:workflow} extracted and created. An overview of the workflow can be found in \fref{fig:benchmark:workflow}. -The workflow is largely managed through use of a Makefile. The advantage of this +The workflow is largely managed through the use of a Makefile. The advantage of this approach is making sure that a table is always generated for the benchmark to -run and that unnecessary computation is kept at a minimum. Below is an example +run and that unnecessary computation is kept to a minimum. Below is an example of the most important rules in the Makefile; a rule to run the benchmark and a rule to generate the tables. \begin{lstlisting}[language=make] joinbench%: $(tables_path)/joinbenchtable%.csv cabal run joinbench-benchmark -- \ - $(tables_path)/joinbenchtable$*.csv \ - --template json --output data/joinbench$*.json + $(tables_path)/joinbenchtable$*.csv \ + --template json --output data/joinbench$*.json $(tables_path)/joinbenchtable%.csv: python3 $(database_gen_path)/generate_JOINBENCH_database.py \ - $* ${tables_path}/joinbenchtable$*.csv + $* ${tables_path}/joinbenchtable$*.csv \end{lstlisting} The target of the first rule is a phony target set to run a benchmark with a @@ -48,7 +49,7 @@ \section{Benchmark workflow}\label{sec:benchmark:workflow} separates lines as elements of the bag and ``cells'' (values separated by commas) to be either integers or $Word16$s. As I will not join on the \relationAttribute{unique} attribute, it is specified as an integer and all -others $Word16$s for limitations discussed in \fref{chap:implementation}. For +others $Word16$s for limitations discussed in \fref{chap:database}. For readability of benchmarks during development the final type the \relation{JOINBENCH} relation takes is a bag of records as specified in \fref{sec:benchmark:database}. @@ -58,14 +59,15 @@ \section{Benchmark workflow}\label{sec:benchmark:workflow} in the Makefile). This file is stored in a designated \verb|data| directory and can be automatically loaded in by my statistical analysis python module. This module describes some useful abstractions to reference parts of the data used -most often and utility functions for automatically loading, grouping and finding +most often and utility functions for automatically loading, grouping, and finding data. Furthermore, there are some graphing classes that have been created to automatically generate graphs in this paper and other that help understand the -data before writing. In order to run this code I used an non-automated approach -by creating a Jupyter notebook. Originally the notebook was meant to be used for +data before writing. In order to run this code I used a non-automated approach +by creating a Jupyter notebook. Originally, the notebook was meant to be used for preliminary data analysis and I planned to easily write a script to automate the -generation of figures in my CI/CD pipeline made easier by virtue of the fact that -all of the difficult code was written in a dedicated python module so would not +generation of figures in my CI/CD pipeline; this would have been made easier by virtue of the fact that +all of the difficult code for this was written in a dedicated python module so +it would not need to be duplicated. However, I found the ability to check the quality of the graphs in an interactive environment before producing an output to be very useful and so kept the notebook as a quality assurance mechanism. diff --git a/report/project/database/database.tex b/report/project/database/database.tex index 539d98ba..75ead87f 100644 --- a/report/project/database/database.tex +++ b/report/project/database/database.tex @@ -1,8 +1,8 @@ \chapter{Database implementation}\label{chap:database} This chapter will describe the implementation of the database system outlined in -\relalg{}. The aims of the chapter are to highlight key implementations of the +\relalg{}. The aim of the chapter is to highlight key implementations of the algorithms of the paper. The purpose of implementing the structures in the paper -are to benchmark and so a high level pragmatic approach is taken in order to +are to benchmark and so a high-level pragmatic approach is taken in order to create a working system that can easily be benchmarked. The structure of the database management system implemented in this @@ -16,11 +16,11 @@ \chapter{Database implementation}\label{chap:database} \relalg{}) in order to describe what is being benchmarked in subsequent chapters. -\paragraph{Bags} In order to construct the database system an -implementation of a $Bag$ (also known as multiset) data structure is +\paragraph{Bags} In order to construct the database system, an +implementation of a $Bag$ (also known as a multiset) data structure is required. Fleshing out the $Bag$ type is one of the main challenges and contributions of this project in the area of implementing the database. We -base the $Bag$ type off a list as the list allows multiple elements and +base the $Bag$ type off a list as the list allows multiple elements. We now define an equality function. \input{code/bagDefAndEquality.tex} @@ -29,13 +29,13 @@ \chapter{Database implementation}\label{chap:database} It is worth noting that the equality must be defined in such a way that does not pay attention to the order of elements in the $Bag$. We first create a helper function $eq'$ that checks equality on lists $xs$ and $ys$ up to permutation. -Given that $xs$ is not empty we check whether $ys$ is non-empty as otherwise +Given that $xs$ is not empty, we check whether $ys$ is non-empty as otherwise equality would not be possible. If $ys$ has an element, we split the list into two parts where the head of $xs$ is the first element of the second half of $ys$. We can then `remove' that element from $ys$, reconstruct the list and recursively check equality. -As well as defining equality it is also important create instances of $Monad$, +As well as defining equality it is also important to create instances of $Monad$, $Functor$ and $CMonoid$ type classes for the $Bag$ type. A $Bag$'s status as a $Functor$ allows $fmap$s (the parallel to a projection as seen in \fref{sec:background:dbrep}) to be performed on @@ -53,7 +53,7 @@ \chapter{Database implementation}\label{chap:database} relational algebra but their implementations are omitted as they are either elementary or have been detailed in \relalg{}. -\paragraph{Pointed set} In order to create an indexed structure we must first +\paragraph{Pointed set} In order to create an indexed structure, we must first implement structures for a pointed set. The pointed set gives us a `null' element to use for keys where there are no value present and therefore is vital to a future indexed structure. The type class for a pointed set suggested in @@ -76,18 +76,18 @@ \chapter{Database implementation}\label{chap:database} $PointedSet$ for $Bag$ is that it does not force $Eq$ on the type in the $Bag$. This is unlikely to be a problem in the very controlled environment of the benchmark but I appreciated the more general approach so modified the instance -to allow for this behaviour. To restate the power of letting $Maybe;a$ be an +to allow for this behaviour. To restate the power of letting $Maybe\;a$ be an instance of $PointedSet$, it allows us to promote any type to a $PointedSet$ and therefore be the value to a map. This means that when we want a `null' value for any type we can accept $Nothing$ but in return any non-null value must be of the -form $Just a$ where $a$ has the promoted type. +form $Just\;a$ where $a$ has the promoted type. -\paragraph{Finite map} Finally we define a finite map. As the map is the most +\paragraph{Finite map} Finally, we define a finite map. As the map is the most complicated structure to implement and explain we will only present one implementation also found in \relalg{}. A few others also from the paper were defined in the project for testing however they are not presented here. Only a handful of examples were implemented as much of the implementation was out of -the scope of an early implementation of this database system with the intention +the scope of an early version of this database system with the intention of benchmarking. As will be discussed in \fref{sec:benchmark:joinbench} only integer keys will be used for indexing and so it suffices to implement a map whose key is $Word16$, representing a map with constant space (all of which can @@ -97,16 +97,17 @@ \chapter{Database implementation}\label{chap:database} \input{code/word16Key} \noindent -The implementation of the map is simply a constant space array. A brief -explanation of some of the function will be given to give an intuition as to how +The implementation of the map is simply a constant-space array as an array is a +set of values indexed by numbers (in this case $Word16$s). A brief +explanation of some of the function will be given to provide an intuition as to how the indexed structure works. The $accumArray$ function is often used in the implementation to create new arrays. The first argument is an accumulation function that is used only when multiple values are assigned to the same key on initialisation. Of course this is not necessary for creating an $empty$ map but -it is always set to replace the old value with the new value. Next we assign any +it is always set to replace the old value with the new value. Next, we assign any keys with no values to the $null$ element of the $PointedSet$, indicating no value in this case. We specify the bounds, which is exactly the number of values -a 16 bit word can refer to $2^16 - 1$ and specify any initial key value pairs. +a 16 bit word can refer to $2^{16} - 1$ and specify any initial key value pairs. To recap what was said above, for a value to be empty it must have the $null$ value of the $PointedSet$; this helps us also prescribe a domain ($dom$) function for keys whose value is not $null$ and a codomain ($cod$) function for @@ -117,7 +118,7 @@ \chapter{Database implementation}\label{chap:database} be modified from the original implementation in the paper. In order to allow for the accumulation function to form a union of bags (as was suggested by the lambda function in the paper) the value must be prescribed to be of type -$Bag\;a$ in order to avoid a type error and so before the key value pairs can be indexed, all values are +$Bag\;a$ in order to avoid a type error and so before the key-value pairs can be indexed, all values are transformed into a singleton $Bag$. I find this to be a reasonable solution as the preservation of multiplicity is paramount to database systems and that is the context in which this implementation is being used and so over specifying or diff --git a/report/tables/percentage-change-of-means-join-evenOnePercent-and-oddOnePercent.tex b/report/tables/percentage-change-of-means-join-evenOnePercent-and-oddOnePercent.tex index c433e856..60f98dcc 100644 --- a/report/tables/percentage-change-of-means-join-evenOnePercent-and-oddOnePercent.tex +++ b/report/tables/percentage-change-of-means-join-evenOnePercent-and-oddOnePercent.tex @@ -1,8 +1,8 @@ -\begin{tabular}{lrrr} +\begin{tabular}{llll} \toprule & 1000 tuples & 5000 tuples & 10000 tuples \\ \midrule -Product equijoin & -81.187829 & -98.442521 & -99.181323 \\ -Comprehension equijoin & -55.932181 & -96.325369 & -98.060049 \\ +Product equijoin & -81.2\% & -98.4\% & -99.2\% \\ +Comprehension equijoin & -55.9\% & -96.3\% & -98.1\% \\ \bottomrule \end{tabular} diff --git a/report/tables/percentage-change-of-means-join-onePercent-and-onePercent.tex b/report/tables/percentage-change-of-means-join-onePercent-and-onePercent.tex index bd5caaed..86d7a038 100644 --- a/report/tables/percentage-change-of-means-join-onePercent-and-onePercent.tex +++ b/report/tables/percentage-change-of-means-join-onePercent-and-onePercent.tex @@ -1,8 +1,8 @@ -\begin{tabular}{lrrr} +\begin{tabular}{llll} \toprule & 1000 tuples & 5000 tuples & 10000 tuples \\ \midrule -Product equijoin & -73.745666 & -94.456930 & -95.015077 \\ -Comprehension equijoin & -46.104262 & -88.451473 & -89.762830 \\ +Product equijoin & -73.7\% & -94.5\% & -95\% \\ +Comprehension equijoin & -46.1\% & -88.5\% & -89.8\% \\ \bottomrule \end{tabular} diff --git a/report/tables/percentage-change-of-means-join-twentyPercent-and-onePercent.tex b/report/tables/percentage-change-of-means-join-twentyPercent-and-onePercent.tex index 35a6e507..1666c582 100644 --- a/report/tables/percentage-change-of-means-join-twentyPercent-and-onePercent.tex +++ b/report/tables/percentage-change-of-means-join-twentyPercent-and-onePercent.tex @@ -1,8 +1,8 @@ -\begin{tabular}{lrrr} +\begin{tabular}{llll} \toprule & 1000 tuples & 5000 tuples & 10000 tuples \\ \midrule -Product equijoin & -65.125860 & -89.158245 & -88.944901 \\ -Comprehension equijoin & -20.843916 & -75.071061 & -74.480953 \\ +Product equijoin & -65.1\% & -89.2\% & -88.9\% \\ +Comprehension equijoin & -20.8\% & -75.1\% & -74.5\% \\ \bottomrule \end{tabular}