-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathskelTree.py
1027 lines (786 loc) · 37 KB
/
skelTree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
import random, os
from utils import *
import time , sys
import pickle
"""
Implementation of the SkelTree algorithm from 'Robust skeleton extraction from imperfect point clouds - 2010'
Workings:
1) Divide the 3D space containing points into N cubes
2) Each box has 6 adjacent boxes which can be part of a similar pointcloud object. It finds which boxes are connected and labels the connection direction.
3) Iteratively merges boxes while trying to preserve the local direction of the pointcloud structure restuling in a skeleton of the tree
"""
class myBox:
"""
The class needs to be defined in the file which defines 'myDict'
REASON: It refers to and maniuplates the dictionary `dict_name` which is defined in this file.
If the class is imported it does not have aceces to this dictionary and is thus not functional
"""
def calc_cg(self):
self.cg = np.mean(self.points, axis = 0)
def __init__(self, dict_name, box_name, points, use_higher_dimensional_boxes = False):
"""
INPUTS
dict_name: Name of the parent dictionary containing all the box objects
box_name: Name of this box object corresponding to Box'xyz'. For example: Box001
points: The points contained inside this box
use_higher_dimensional_boxes: Indicate if you want to try connect higher dimenional octtree boxes if no connections are found at the lowest dimensionality
ATTRIBUTES:
self.dict_name = name of parrent dict
self.name = name of the box object
self.points = all the points present in this box. Is empty np.ndarray when no points are present
self.contains_points = Boolean indicating if there are points yes or no
self.cg = Center of Gravity of this box. Is 'None' when no points are present
self.merged = Boolean stating if this box is merged to another box. If False this is parent box. Either having children or not.
self.parent = the name of the parent. If no parent (i.e. merged == False) parent == None
self.children = list of children boxes
self.connections = dictionary of connected boxes with corresponding directional label as np.array; i.e. self.connections = {"Box001": np.arrray([0,0,1]), .... , "Box100":np.arrray([-1,0,0])}
self.Vdim = the number of connections
self.Vdir = the sum of the connections directional labels. i.e. [-1,0,1]
"""
#####################
#####SOME CHECKS#####
#####################
if not box_name.startswith("Box"):
raise Exception("box_name should be of this format: `Box'xyz'`. So like Box001...")
if not isinstance(points, np.ndarray):
raise Exception("Points should be in ndarray Nx3...")
if points.any():
if not points.shape[1] ==3:
raise Exception("Points should be an np.ndarray Nx3...")
self.dict_name = dict_name
self.name = box_name
self.points = points
self.use_higher_dimensional_boxes = use_higher_dimensional_boxes
#If more than 1 points
if points.any():# and points.shape[0] > 1:
self.calc_cg()
self.contains_points = True
else:
self.cg = None
self.contains_points = False
self.merged = False
self.parent = None
self.children = []
self.connections = {}
self.Vdim = 0
self.Vdir = []
self.Vpairs = []
self.Epairs = []
def merged_with(self, box_name):
"""
Set everything to merge status, deleting everything
"""
self.parent = box_name
self.merged =True
self.points = None
self.points = np.array([])
self.contains_points = False
self.cg = None
self.connections = {}
self.children = []
self.connections = {}
self.Vdim = 0
self.Vdir = []
self.Vpairs = []
self.Epairs = []
def replace_connections(self, parent):
"""
INPUT
- name of the parent box which will eat this box
DESCRIPTION:
- Replaces all connections to this box with the parent box EXCEPT when the parent is already connected with this vertex
- Deletes this box from vpair and epair lists
"""
for connection in self.connections:
if connection == parent:
continue
box = self.get_box_object(connection)
if not parent in box.connections:
box.connections[parent] = box.connections[self.name]
if self.name in box.connections:
box.connections.pop(self.name)
if self.name in box.Vpairs:
index_to_delete = box.Vpairs.index(self.name)
box.Vpairs.pop(index_to_delete)
if self.name in box.Epairs:
index_to_delete = box.Epairs.index(self.name)
box.Epairs.pop(index_to_delete)
def calc_Vdim(self):
vdim = 0
distinct_labels = []
for connection in self.connections:
label = self.connections[connection]
present =False
for distinct_label in distinct_labels:
if (label == distinct_label).all():
present = True
if not present:
distinct_labels.append(label)
self.Vdim = len(distinct_labels)
def calc_Vdir(self):
Vdir = [0,0,0]
distinct_labels = []
for connection in self.connections:
label = self.connections[connection]
present =False
for distinct_label in distinct_labels:
if (label == distinct_label).all():
present = True
if not present:
distinct_labels.append(label)
for label in distinct_labels:
Vdir[0] += label[0]
Vdir[1] += label[1]
Vdir[2] += label[2]
self.Vdir = Vdir
def get_potential_neighbours_names(self):
name_split = self.name.split("_")
x = int(name_split[-3])
y = int(name_split[-2])
z = int(name_split[-1])
neigbours = ['Box_' +str(x+1) + "_" + str(y) + "_" + str(z),
'Box' + "_" + str(x-1) + "_" + str(y) + "_" + str(z),
'Box' + "_" + str(x) + "_" + str(y+1) + "_" + str(z),
'Box' + "_" + str(x) + "_" + str(y-1) + "_" + str(z),
'Box' + "_" + str(x) + "_" + str(y) + "_" + str(z+1),
'Box' + "_" + str(x) + "_" + str(y) + "_" + str(z-1)]
return neigbours
def get_surrounding_boxes(self, box_name):
"""
Gets all the boxes of enlarged cube (i.e. one octree subdivision level higher)
"""
name_split = box_name.split("_")
x_base = int(name_split[-3])
y_base = int(name_split[-2])
z_base = int(name_split[-1])
x,y,z = np.mgrid[ x_base - 1 : x_base + 2 : 1, y_base -1 : y_base + 2 : 1, z_base -1 : z_base + 2 : 1]
xyz_stack = np.vstack((x.flatten(), y.flatten(), z.flatten())).T
neighbours = []
parent_dict = eval(self.dict_name)
for xyz in xyz_stack:
neighbour_name = 'Box_' +str(xyz[0]) + "_" + str(xyz[1]) + "_" + str(xyz[2])
if neighbour_name in parent_dict:
neighbours.append(neighbour_name)
#Delete ourselves from the list
if self.name in neighbours:
index_to_delete= neighbours.index(self.name)
neighbours.pop(index_to_delete)
return neighbours
def get_directional_labels(self, neighbours):
"""
Returns dict of the labels associated with the given neighbours
i.e.:
labels = {"Box001": [0,1,0], ...., "Box021": np.array([0,0,-1]) }
+/-x = (-/+1, 0, 0)
+/-y = (0, -/+1, 0)
+/-z = (0, 0, -/+1)
"""
name_box = self.name.split("_")
x = int(name_box[-3])
y = int(name_box[-2])
z = int(name_box[-1])
labels = {}
for neighbour in neighbours:
name_neighbour = neighbour.split("_")
x_n = int(name_neighbour[-3])
y_n = int(name_neighbour[-2])
z_n = int(name_neighbour[-1])
#X should be negative when current x is HIGHER then the neighbours x:
labels[neighbour] = np.array([x_n-x, y_n-y, z_n-z])
return labels
def get_box_object(self, box_name):
#Returns the actual class object whithe name
#If box object does not exists it returns false
try:
box_object = eval("{}['{}']".format(self.dict_name, box_name))
except KeyError:
box_object = False
return box_object
def get_neighbour_names(self):
"""
Returns list of neighbour names as list of strings
I.E. ["Box002", ..., "Box003"]
"""
neighbour_names = self.get_potential_neighbours_names()
neighbours = []
parent_dict = eval(self.dict_name)
for neighbour_name in neighbour_names:
#If name inside the dict it exists and thus is a valid neighbour
if neighbour_name in parent_dict:
neighbours.append(neighbour_name)
return neighbours
def calc_median_distance(self, points, cg, normal_vec):
'''
Calculates the median of the SQUARED distances
INPUTS
points: points calculate the distances in Nx3 format
cg: position of the plane to which we calculate the distance
normal_vec: the vector normal the plane
ACTIONS:
1) Calculate all the distances
2) return the median value
'''
distances = []
#in ax +by + cZ = d, this is d
d = np.dot(normal_vec, cg)
#a,b,c are the entries of normal vec, respectively
for point in points:
distance_to_plane = (np.dot(normal_vec, point) - d )**2
distances.append(distance_to_plane)
return np.mean(distances)
def check_connection_criteria(self,c1,c2,points1,points2,treshold):
c12 = c1 + (c2-c1)*0.5
normal_plane_vec = (c2-c1)/np.linalg.norm((c2-c1))
d1 = self.calc_median_distance(points1, c1, normal_plane_vec)
d2 = self.calc_median_distance(points2, c2, normal_plane_vec)
d12 = self.calc_median_distance( np.concatenate((points1, points2), axis = 0), c12, normal_plane_vec)
#If meets critera: add connection to both the boxes
if treshold*d12 <= min(d1,d2):
return True
else:
return False
def find_super_boxes(self, levels_higher):
"""
The octree is a cube divided by 8 and the resultant cubes divided by 8 etc. Thus it has 8^N squares where N is the subdivison level.
Here we choose to get a certain super box which ensures that during level 2 this specific box is never on the edge
RETURNS:
- list with 1 superboxes i.e. super_box:[name1, name2,name3]
level == 1 --> super box lower right, extended forward
level == 2 --> super box of level 1 taken to be the upper left, extended backward
"""
name_split = self.name.split("_")
x_base = int(name_split[-3])
y_base = int(name_split[-2])
z_base = int(name_split[-1])
if levels_higher == 1:
x,y,z = np.mgrid[ x_base -1 : x_base +1 : 1, y_base : y_base + 2 : 1, z_base : z_base + 2 : 1]
elif levels_higher ==2:
x,y,z = np.mgrid[ x_base - 1 : x_base + 3 : 1, y_base -2 : y_base + 2 : 1, z_base -2 : z_base + 2 : 1]
xyz_stack = np.vstack((x.flatten(), y.flatten(), z.flatten())).T
super_box = []
for x,y,z in xyz_stack:
box_name = "Box_" + str(x) + "_" + str(y) + "_" + str(z)
super_box.append(box_name)
return super_box
def find_adjacent_super_boxes(self, super_box, levels_higher):
"""
Finds the adjacent superboxes for this super box
"""
x_min = 99999999; x_max =0
y_min = 99999999; y_max =0
z_min = 99999999; z_max =0
#First find minimum x,y,z
for box_name in super_box:
name_split = box_name.split("_")
x = int(name_split[-3])
y = int(name_split[-2])
z = int(name_split[-1])
if x< x_min:
x_min = x
elif x> x_max:
x_max = x
if y< y_min:
y_min = y
elif y> y_max:
y_max = y
if z< z_min:
z_min = z
elif z> z_max:
z_max = z
step_size = (2* levels_higher)
#Make all combinations of xyz and z values in range of +/-2 of the min and maximum x,y,z, values:
x,y,z = np.mgrid[ x_min - step_size : x_max + (step_size + 1) : 1, y_min -step_size : y_max + (step_size+1) : 1, z_min -step_size : z_max + (step_size+1) : 1]
xyz_stack = np.vstack((x.flatten(), y.flatten(), z.flatten())).T
adj_super_boxes = {'adj_super_box1': {'directional_label':[], 'box_names':[]},'adj_super_box2': {'directional_label':[], 'box_names':[]},'adj_super_box3': {'directional_label':[], 'box_names':[]}
,'adj_super_box4': {'directional_label':[], 'box_names':[]}, 'adj_super_box5': {'directional_label':[], 'box_names':[]}, 'adj_super_box6': {'directional_label':[], 'box_names':[]}}
#Now select the appropriate values from this list:
for x,y,z in xyz_stack:
box_name = "Box_" + str(x) + "_" + str(y) + "_" + str(z)
#Super boxes extended from x axis
if (x < x_min or x > x_max) and (y >= y_min and y <= y_max) and (z >= z_min and z <= z_max):
if x< x_min:
adj_super_boxes['adj_super_box1']['box_names'].append(box_name)
adj_super_boxes['adj_super_box1']['directional_label'] = np.array([-1,0,0])
elif x > x_max:
adj_super_boxes['adj_super_box2']['box_names'].append(box_name)
adj_super_boxes['adj_super_box2']['directional_label'] = np.array([1,0,0])
#Super boxes extended from y axis
if (y < y_min or y > y_max) and (x >= x_min and x <= x_max) and (z >= z_min and z <= z_max):
if y < y_min:
adj_super_boxes['adj_super_box3']['box_names'].append(box_name)
adj_super_boxes['adj_super_box3']['directional_label'] = np.array([0,-1,0])
elif y > y_max:
adj_super_boxes['adj_super_box4']['box_names'].append(box_name)
adj_super_boxes['adj_super_box4']['directional_label'] = np.array([0,1,0])
#Super boxes extended from z axis
if (z < z_min or z > z_max) and (y >= y_min and y <= y_max) and (x >= x_min and x <= x_max):
if z < z_min:
adj_super_boxes['adj_super_box5']['box_names'].append(box_name)
adj_super_boxes['adj_super_box5']['directional_label'] = np.array([0,0,-1])
elif z > z_max:
adj_super_boxes['adj_super_box6']['box_names'].append(box_name)
adj_super_boxes['adj_super_box6']['directional_label'] = np.array([0,0,1])
return adj_super_boxes
def get_super_box_properties(self, super_box):
points = np.array([])
for box in super_box:
box = self.get_box_object(box)
if box:
if points.any():
points = np.concatenate((points,box.points), axis = 0)
else:
points = box.points
if points.any():
cg = np.mean(points,axis =0)
else:
cg = np.array([0,0,0])
return points, cg
def get_best_connection_to_super_box(self, super_box, directional_label):
"""
INPUT:
- the directional label from this super box to this super box
- the names of the small boxes in the adjacent super box
OUTPUT
- minimum distance and box_name
DESCRIPTION:
- Finds the closest box with points in the super box and connects to it with the given directional label
"""
distances =[]
potential_boxes = []
for box in super_box:
box = self.get_box_object(box)
#If the box exists:
if box:
if box.contains_points:
distance_vec = (self.cg - box.cg)
#Squared distance
distance = np.dot(distance_vec, distance_vec)
distances.append(distance)
potential_boxes.append(box.name)
#If there were any boxes with points found, i.e. if there are ANY distances
if distances:
#Find minimum
index_minimum = np.argmin(distances)
box_to_connect = potential_boxes[index_minimum]
min_distance = distances[index_minimum]
#Add the found connections to both boxes
box_to_connect = self.get_box_object(box_to_connect)
self.connections[box_to_connect.name] = directional_label
box_to_connect.connections[self.name] = -directional_label
else:
min_distance = box_to_connect = False
return min_distance, box_to_connect
def find_connections_higher_level_box(self, threshold):
"""
DESCRIPTION:
Finds the connections 1 subdivision level higher in the octree.
i.e. combines this box with 3 other boxes == the cube at one higher level. Checks connections between this box and other higher level boxes
ACTIONS
1) Finds a 'super box'
2) Finds the neighbouring 'super boxes'
3) checks connections
4) If not found go the next level super box
5) If found we connect the regular box to the clossest regular box in the connected super box.
"""
levels_higher =1
while len(self.connections) == 0:
#find super box, 8 possibilities: this box is lower right, lower left, upper right or upper left, extended forward/backward
super_box = self.find_super_boxes(levels_higher)
# #List the super boxes and shuffle to choose randomly:
# keys = list(super_boxes.keys())
# random.shuffle(keys)
# found_connection = False
possible_connection = {}
adj_super_boxes = self.find_adjacent_super_boxes(super_box, levels_higher)
points1, cg1 = self.get_super_box_properties(super_box)
#Check if we can find a conenction between our super box and the adjacent ones:
for super_box_name in adj_super_boxes:
adj_super_box_names = adj_super_boxes[super_box_name]['box_names']
directional_label = adj_super_boxes[super_box_name]['directional_label']
points2, cg2 = self.get_super_box_properties(adj_super_box_names)
if points2.any():
connection = self.check_connection_criteria(cg1,cg2,points1,points2,threshold)
else:
connection = False
if connection:
distance, box_name = self.get_best_connection_to_super_box(adj_super_box_names, directional_label)
if box_name:
possible_connection[box_name] = [distance,directional_label]
if levels_higher ==2:
break
levels_higher +=1
def find_connections(self,treshold):
"""
INPUTS:
threshold for the connection criteria: threshold * d12 <= min(d1,d2)
ACTION:
1) Find the neighbours
2) Check if there is already a connection with this neighbour if so continue with next neighbour
3) Check criteria for connection
4) If we make a conncection add this connection to BOTH the boxes
5) Calculate the new Vdim and Vdir for both the neighbour and this box
"""
neighbour_names = self.get_neighbour_names()
directional_labels = self.get_directional_labels(neighbour_names)
for neighbour in neighbour_names:
neighbour = self.get_box_object(neighbour)
#Check if neighbour is already in connection:
if neighbour.name in self.connections or neighbour.contains_points ==False:
continue
connection = self.check_connection_criteria(self.cg, neighbour.cg, self.points, neighbour.points, treshold)
#If meets critera: add connection to both the boxes
if connection:
#Directional label form the directional_label dict:
directional_label = directional_labels[neighbour.name]
#Add the connection to the connections dict as {"boxname": direction}
self.connections[neighbour.name] = directional_label
#Do the same for the neighbour label but there the directional label is negative of what is found here
neighbour.connections[self.name] = -directional_label
neighbour.calc_Vdim()
neighbour.calc_Vdir()
if self.use_higher_dimensional_boxes:
if len(self.connections) < 2 and self.contains_points:
self.find_connections_higher_level_box(threshold)
self.calc_Vdim()
self.calc_Vdir()
def get_combined_dim(self, neighbour):
#First obtains the lsit of connection and labels if these 2 boxes were combined
#Then calculates the vdim
total_connections = self.connections.copy()
#delete the neighbour from the connection list
total_connections.pop(neighbour.name)
#Add all the connection of the neighbour excluding the ones already present and this box itself
for connection in neighbour.connections.keys():
if connection != self.name and not connection in total_connections:
total_connections[connection] = neighbour.connections[connection]
#calulate vdim:
vdim = 0
distinct_labels = []
for connection in total_connections.keys():
label = total_connections[connection]
present =False
for distinct_label in distinct_labels:
if (label == distinct_label).all():
present = True
if not present:
distinct_labels.append(label)
combined_dim = len(distinct_labels)
return combined_dim
def find_v_pairs(self):
"""
Checks wheter a V pair is present
1) Check if neighbour is already a vpair
2) dim(combination) <= max(self.dim, neighbour.dim)
3) Do we have an identical neighbour i.e. name + direction
"""
found_pair = False
# print("Checking Vpairs of", self.name)
for neighbour_name in self.connections.keys():
neighbour = self.get_box_object(neighbour_name)
#Check 1: is it already a vpair?
if neighbour_name in self.Vpairs:
continue
#check 2:
combined_dim = self.get_combined_dim(neighbour)
if not (combined_dim <= max(neighbour.Vdim, self.Vdim)):
#If false skip this neighbour
continue
#check 3:
#For each neighbour we check wheter they have an identical neighbour i.e. matching in name and directional label
for connection_neighbour in neighbour.connections.keys():
#matching name?
if connection_neighbour in self.connections.keys():
#matching directional label?
if (neighbour.connections[connection_neighbour] == self.connections[connection_neighbour]).all():
#This neighbour is a Vpair:
self.Vpairs.append(neighbour_name)
# neighbour.Vpairs.append(self.name)
found_pair = True
return found_pair
def find_e_pairs(self):
"""
Checks wheter a E pair is present
1) Check if neighbour is already a epair
2) dim(combination) <= max(self.dim, neighbour.dim)
3) vdir is NOT [0,0,0]
4) is the connection with the neighbour in the same direction of one of the nonzero entries of vdir?
5) The Epair does not form a line
"""
check1 = 0; check2 = 0; check3 = 0; check4 = 0; check5 = 0
found_pair = False
for neighbour_name in self.connections.keys():
neighbour = self.get_box_object(neighbour_name)
#Check1 is it already a Epair or is it already merged??
if neighbour_name in self.Epairs or neighbour.merged:
continue
#check 2:
combined_dim = self.get_combined_dim(neighbour)
if not (combined_dim <= max(neighbour.Vdim, self.Vdim)):
check2+=1
continue
#check 3:
if (self.Vdir.count(0) == 3):
check3+=1
continue
#check 4:
connection_direction = self.connections[neighbour_name]
index_connection_direction = np.nonzero(connection_direction)[0]
non_zero_indices_Vdir = np.nonzero(self.Vdir)[0]
if not index_connection_direction in non_zero_indices_Vdir:
check4+=1
continue
#check 5:
#Does this pair form a line? I.E. one of them only has 2 connections or less
if len(self.connections)<3 or len(neighbour.connections) <3:
check5+= 1
continue
#Passed all checks thus it is an Epair
self.Epairs.append(neighbour.name)
# neighbour.Epairs.append(self.name)
# print("Found EPAIR connecting:", self.name, "and", neighbour.name)
found_pair = True
return found_pair
def get_best_epair(self, box_name):
smallest_norm = 999
best_Epair = ""
box = self.get_box_object(box_name)
for Epair in box.Epairs:
# if Epair == requester_name:
# continue
Epair = self.get_box_object(Epair)
#If Epair is not already merged check it
if Epair.merged:
#If merged delte it from the Epair list
Epair_index = box.Epairs.index(Epair.name)
box.Epairs.pop(Epair_index)
else:
#Norm of vdir
norm = abs(Epair.Vdir[0]) + abs(Epair.Vdir[1]) + abs(Epair.Vdir[2])
# print(norm)
if norm < smallest_norm:
best_Epair = Epair.name
smallest_norm = norm
return best_Epair, smallest_norm
def get_best_vpair(self, box_name, requester_name):
smallest_norm = 999
best_Vpair = ""
box = self.get_box_object(box_name)
for Vpair in box.Vpairs:
if Vpair == requester_name:
continue
Vpair = self.get_box_object(Vpair)
#If Vpair is not already merged check it
if Vpair.merged:
Vpair_index = box.Vpairs.index(Vpair.name)
box.Vpairs.pop(Vpair_index)
# print(Vpair.name, "is merged with", Vpair.parent, " Deleted index", Vpair_index)
else:
#Norm of vdir
norm = abs(Vpair.Vdir[0]) + abs(Vpair.Vdir[1]) + abs(Vpair.Vdir[2])
# print(norm)
if norm < smallest_norm:
best_Vpair = Vpair.name
smallest_norm = norm
return best_Vpair, smallest_norm
def eat_v_pair(self):
"""
Here we merge the Vpairs
INPUTS:
self
RETURNS:
List of new Vpairs
ACTION:
1) Eat one of them
2) Then delete the vpair from the Vpair list
"""
ate_vpair = False
for Vpair in self.Vpairs:
self.eat_box(Vpair)
ate_vpair = True
break
return ate_vpair
def eat_e_pair(self):
"""
Here we merge the Vpairs
INPUTS:
self
RETURNS:
True if E pair was eaten
ACTION:
1) Get the best Epair
2) EAT IT
3) Delete the Epiar from the EPAIR list
"""
ate_Epair = False
best_Epair, norm = self.get_best_epair(self.name)
#If we found an Epair we have to check if they themselve dont have a better epair
if best_Epair:
#Now check if this node has a better epair:
box = self.get_box_object(best_Epair)
box_best_epair, box_norm = self.get_best_epair(box.name)
#This box has a better epair when it finds a normal smaller then we found
if norm <= box_norm or box_best_epair == self.name:
ate_Epair = True
# print("Found Epair to eat:", self.name, "Should eat", box.name)
#Eat it
self.eat_box(box.name)
return ate_Epair
def eat_box(self, box_name):
"""
Here we merge the given box with this one making this the parent box
INPUTS:
box_name: Box to eat
RETURNS:
True or False based on if ANY new Vpairs were created during this action
ACTION:
1) Will add box_to_eat to the children of this box
2) Will remove the points of box_to_eat and add them to this box
3) Will redirect all connections of box_to_eat to THIS box
4) Will calculate the new C.G based on all the new points
The paper says to use: CG_new = (W1 * CG1* + W2*CG2) / (W1+W2)
where W1 and W2 are equal to the number of points in the corresponding boxes
But they mention subdivision levels and such so lets just keep it simple for now..
5) Delete this box from vpairs/epairs list
6) Set the parent and merge status of the box_to_eat to: the name of this box and `True`.
7) Deletes the merged box from the dictionary of boxes
"""
#Get box to eat
box_to_eat = self.get_box_object(box_name)
#Add the new points to this box
if box_to_eat.contains_points:
self.points = np.concatenate((self.points, box_to_eat.points), axis = 0)
#Append the new child to the child list as well as its own children
self.children.append(box_to_eat.name)
for child in box_to_eat.children:
self.children.append(child)
#Calc new cg
self.calc_cg()
"""
Add connections and change the old connection to box_to_eat to his now parent
1) Add all the connections of box_to_eat to his parents connections if they are not already present
2) Change THEIR connection (so the boxes refering to box_to_eat now refer to its parent) and delete the old connections
"""
for connection in box_to_eat.connections.keys():
#Skip if its our selves
if connection == self.name:
continue
#skip if its already in our connection list
if connection in self.connections:
continue
self.connections[connection] = box_to_eat.connections[connection]
#replace all connections with box_to_eat with this parent box
box_to_eat.replace_connections(self.name)
#delete connection with eaten box
if box_name in self.connections:
self.connections.pop(box_name)
if box_name in self.Vpairs:
index_to_delete = self.Vpairs.index(box_name)
self.Vpairs.pop(index_to_delete)
if box_name in self.Epairs:
index_to_delete = self.Epairs.index(box_name)
self.Epairs.pop(index_to_delete)
#recalculate the Vdir and Vdim
self.calc_Vdir()
self.calc_Vdim()
#Check for new Vpairs for this vertex and all its connections
found_vpair = self.find_v_pairs()
for connection in self.connections:
neighbour = self.get_box_object(connection)
neighbour_found_vpair = neighbour.find_v_pairs()
if neighbour_found_vpair:
found_vpair = True
#Set eaten box to merge status
box_to_eat.merged_with(self.name)
return found_vpair
if __name__ == "__main__":
import random
nboxes = 5000 #Number of boxes in which to divide the bounding box of the given set of points
#SAVE THE OUTPUT?
SAVE_DICT = False
folder = os.path.abspath("./Data")
save_name = "myDict" #Automatically adds "_Nxxx_txx.pkl" N = number of points, t = threshold
points = np.load("Data/simple_tree.npy")
make_plot(points)
print("Getting ~", nboxes, "boxes for the", len(points), "points!")
t0 = time.perf_counter()
boxes = get_boxes(nboxes,points)
t1 =time.perf_counter()
print("\tTime:", round(t1-t0,3),"seconds!")
myDict = {}
#SHUFFLEs THE BOXES: This makes sure that random Vpairs are merge and it does not have a bias to start a 0,0 and work is way up from there
random.shuffle(boxes)
for box in boxes:
box_name = box[1]
points_box = box[0]
myDict[box_name] = myBox("myDict", box_name, points_box)
# #make OCTREE
ts = [16] #[8,16,24,32,64,128]
for t in ts:
threshold = 1/t
print("Getting octtree using threshold 1 /", t,"...")
t0 = time.perf_counter()
find_all_connections(myDict, threshold)
t1 = time.perf_counter()
number_of_boxes = count_boxes_with_points(myDict)
number_of_connections = count_connections(myDict)
print("\tFound %s boxes with points!"%number_of_boxes)
print("\tTotal connections: %s!"%number_of_connections)
print("\tTime:", round(t1-t0,3),"seconds!")
cg, labels_cg = plot_boxes(myDict)
cube_points, cube_labels = draw_cubes(boxes)
print("Performing collapsing procedure...")
t0 = time.perf_counter()
for dim in [5,4,3,2]:
dim_list = make_dim_list(myDict, dim)
find_all_Vpairs(myDict, dim_list)
find_all_Epairs(myDict, dim_list)
#If we are Vpairs we check for the new Vpairs and eat all of them till we have nothing mroe to eat
vpairs_there = True
cycles = 0
csv_path = os.getcwd() + "/Data/NNModel/class_dict.csv"
while vpairs_there:
_ = eat_all_Vpairs(myDict, dim_list)
find_all_Vpairs(myDict, dim_list)
vpairs_there, total = still_vpairs(myDict, dim_list)
sys.stdout.write("\tEating Vpair cycle {}!\r".format(cycles))
sys.stdout.flush()
cycles+=1
#If we didnt find any new V-pairs we merge ONE E-pair
if vpairs_there:
continue
else:
find_all_Epairs(myDict, dim_list)
succes = eat_one_epair(myDict, dim_list)
find_all_Vpairs(myDict, dim_list)
#If there was an Epair eaten: We continue the search for Vpairs
if succes:
#Make this one to stay in the loop
vpairs_there = True
# cg, labels_cg = plot_boxes(myDict, False)
# make_plot(np.concatenate((points,cg), axis = 0), np.concatenate((labels/255,labels_cg*2/255), axis=0))
print("\tFinished dim %s collapse in %s cycles!"%(dim,cycles))
total_E= 0
total_V= 0
for box in dim_list:
try: