-
Notifications
You must be signed in to change notification settings - Fork 0
/
FSM.h
380 lines (315 loc) · 11.9 KB
/
FSM.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#pragma once
#include "./FSMState.h"
class FSMValues {
protected:
short _PerfectMax;
short _GoodMax;
short _BadMax;
short _PerfectReset;
short _GoodReset;
short _BadReset;
public:
FSMValues(short pPerfectMax, short pGoodMax, short pBadMax, short pGood2PerfectDelta, short pBad2GoodDelta, short pAlert2BadDelta) {
_PerfectMax = pPerfectMax;
_GoodMax = pGoodMax;
_BadMax = pBadMax;
_PerfectReset = _PerfectMax - pGood2PerfectDelta;
_GoodReset = _GoodMax - pBad2GoodDelta;
_BadReset = _BadMax - pAlert2BadDelta;
}
FSMValues(short pPerfectMax, short pGoodMax, short pBadMax, short pDownStepDelta) : FSMValues(pPerfectMax, pGoodMax, pBadMax, pDownStepDelta, pDownStepDelta, pDownStepDelta) {}
};
class FSM : FSMValues {
private:
FSMState _CurState;
short _CurValue;
void Init() {
_CurState = FSMState::UNKNOWN;
_CurValue = 0;
}
FSMState GetValueStatue(short pValue) {
if (pValue > _BadMax) {
return(FSMState::ALERT);
}
if (pValue > _GoodMax) {
return(FSMState::BAD);
}
if (pValue > _PerfectMax) {
return(FSMState::GOOD);
}
return(FSMState::PERFECT);
}
public:
const FSMState& CurState = _CurState;
FSM(FSMValues pValues) : FSMValues(pValues) { Init(); }
FSM(short pPerfectMax, short pGoodMax, short pBadMax, short pDownStepDelta) : FSMValues(pPerfectMax, pGoodMax, pBadMax, pDownStepDelta, pDownStepDelta, pDownStepDelta) { Init(); }
FSM(short pPerfectMax, short pGoodMax, short pBadMax, short pGood2PerfectDelta, short pBad2GoodDelta, short pAlert2BadDelta)
:FSMValues(pPerfectMax, pGoodMax, pBadMax, pGood2PerfectDelta, pBad2GoodDelta, pAlert2BadDelta) {
Init();
}
bool SetValue(short pNewValue);
};
bool FSM::SetValue(short pNewValue) {
if (_CurValue == pNewValue) {
Serial.print("SAME value");
return(false); //nothing changed
}
_CurValue = pNewValue;
FSMState sForNewValue = GetValueStatue(pNewValue);
if (sForNewValue == _CurState) { //still the same
Serial.print("SAME State");
return(false);
}
if (sForNewValue > _CurState) { //becoming worse (or UNKNOWN >> GOOD)- no check needed
Serial.print(sForNewValue);
_CurState = sForNewValue;
return(true);
}
if (_CurValue <= _PerfectReset) { //going down - check for reset (hysteresis) from top to bottom (can bypass some states if going down fast)
Serial.print("PERF RESET");
_CurState = sForNewValue;
return(true);
}
if (_CurValue <= _GoodReset) {
Serial.print("GOOD RESET");
Serial.print(sForNewValue);
_CurState = sForNewValue;
return(true);
}
if (_CurValue <= _BadReset) {
Serial.print("BAD RESET");
_CurState = sForNewValue;
return(true);
}
Serial.print("END FSM");
return(false); //not going down due to hysteresis
}
#if false
/*
The TFT_eSPI library incorporates an Adafruit_GFX compatible
button handling class, this sketch is based on the Arduin-o-phone
example.
This example diplays a keypad where numbers can be entered and
send to the Serial Monitor window.
The sketch has been tested on the ESP8266 (which supports SPIFFS)
The minimum screen size is 320 x 240 as that is the keypad size.
*/
// The SPIFFS (FLASH filing system) is used to hold touch screen
// calibration data
#include "FS.h"
#include <SPI.h>
#include <TFT_eSPI.h> // Hardware-specific library
TFT_eSPI tft = TFT_eSPI(); // Invoke custom library
// This is the file name used to store the calibration data
// You can change this to create new calibration files.
// The SPIFFS file name must start with "/".
#define CALIBRATION_FILE "/TouchCalData1"
// Set REPEAT_CAL to true instead of false to run calibration
// again, otherwise it will only be done once.
// Repeat calibration if you change the screen rotation.
#define REPEAT_CAL false
// Keypad start position, key sizes and spacing
#define KEY_X 40 // Centre of key
#define KEY_Y 96
#define KEY_W 62 // Width and height
#define KEY_H 30
#define KEY_SPACING_X 18 // X and Y gap
#define KEY_SPACING_Y 20
#define KEY_TEXTSIZE 1 // Font size multiplier
// Using two fonts since numbers are nice when bold
#define LABEL1_FONT &FreeSansOblique12pt7b // Key label font 1
#define LABEL2_FONT &FreeSansBold12pt7b // Key label font 2
// Numeric display box size and location
#define DISP_X 1
#define DISP_Y 10
#define DISP_W 238
#define DISP_H 50
#define DISP_TSIZE 3
#define DISP_TCOLOR TFT_CYAN
// Number length, buffer for storing it and character index
#define NUM_LEN 12
char numberBuffer[NUM_LEN + 1] = "";
uint8_t numberIndex = 0;
// We have a status line for messages
#define STATUS_X 120 // Centred on this
#define STATUS_Y 65
// Create 15 keys for the keypad
char keyLabel[15][5] = { "New", "Del", "Send", "1", "2", "3", "4", "5", "6", "7", "8", "9", ".", "0", "#" };
uint16_t keyColor[15] = { TFT_RED, TFT_DARKGREY, TFT_DARKGREEN,
TFT_BLUE, TFT_BLUE, TFT_BLUE,
TFT_BLUE, TFT_BLUE, TFT_BLUE,
TFT_BLUE, TFT_BLUE, TFT_BLUE,
TFT_BLUE, TFT_BLUE, TFT_BLUE
};
// Invoke the TFT_eSPI button class and create all the button objects
TFT_eSPI_Button key[15];
//------------------------------------------------------------------------------------------
void setup() {
// Use serial port
Serial.begin(9600);
// Initialise the TFT screen
tft.init();
// Set the rotation before we calibrate
tft.setRotation(0);
// Calibrate the touch screen and retrieve the scaling factors
touch_calibrate();
// Clear the screen
tft.fillScreen(TFT_BLACK);
// Draw keypad background
tft.fillRect(0, 0, 240, 320, TFT_DARKGREY);
// Draw number display area and frame
tft.fillRect(DISP_X, DISP_Y, DISP_W, DISP_H, TFT_BLACK);
tft.drawRect(DISP_X, DISP_Y, DISP_W, DISP_H, TFT_WHITE);
// Draw keypad
drawKeypad();
}
//------------------------------------------------------------------------------------------
void loop(void) {
uint16_t t_x = 0, t_y = 0; // To store the touch coordinates
// Pressed will be set true is there is a valid touch on the screen
boolean pressed = tft.getTouch(&t_x, &t_y);
// / Check if any key coordinate boxes contain the touch coordinates
for (uint8_t b = 0; b < 15; b++) {
if (pressed && key[b].contains(t_x, t_y)) {
key[b].press(true); // tell the button it is pressed
}
else {
key[b].press(false); // tell the button it is NOT pressed
}
}
// Check if any key has changed state
for (uint8_t b = 0; b < 15; b++) {
if (b < 3) tft.setFreeFont(LABEL1_FONT);
else tft.setFreeFont(LABEL2_FONT);
if (key[b].justReleased()) key[b].drawButton(); // draw normal
if (key[b].justPressed()) {
key[b].drawButton(true); // draw invert
// if a numberpad button, append the relevant # to the numberBuffer
if (b >= 3) {
if (numberIndex < NUM_LEN) {
numberBuffer[numberIndex] = keyLabel[b][0];
numberIndex++;
numberBuffer[numberIndex] = 0; // zero terminate
}
status(""); // Clear the old status
}
// Del button, so delete last char
if (b == 1) {
numberBuffer[numberIndex] = 0;
if (numberIndex > 0) {
numberIndex--;
numberBuffer[numberIndex] = 0;//' ';
}
status(""); // Clear the old status
}
if (b == 2) {
status("Sent value to serial port");
Serial.println(numberBuffer);
}
// we dont really check that the text field makes sense
// just try to call
if (b == 0) {
status("Value cleared");
numberIndex = 0; // Reset index to 0
numberBuffer[numberIndex] = 0; // Place null in buffer
}
// Update the number display field
tft.setTextDatum(TL_DATUM); // Use top left corner as text coord datum
tft.setFreeFont(&FreeSans18pt7b); // Choose a nicefont that fits box
tft.setTextColor(DISP_TCOLOR); // Set the font colour
// Draw the string, the value returned is the width in pixels
int xwidth = tft.drawString(numberBuffer, DISP_X + 4, DISP_Y + 12);
// Now cover up the rest of the line up by drawing a black rectangle. No flicker this way
// but it will not work with italic or oblique fonts due to character overlap.
tft.fillRect(DISP_X + 4 + xwidth, DISP_Y + 1, DISP_W - xwidth - 5, DISP_H - 2, TFT_BLACK);
delay(10); // UI debouncing
}
}
}
//------------------------------------------------------------------------------------------
void drawKeypad()
{
// Draw the keys
for (uint8_t row = 0; row < 5; row++) {
for (uint8_t col = 0; col < 3; col++) {
uint8_t b = col + row * 3;
if (b < 3) tft.setFreeFont(LABEL1_FONT);
else tft.setFreeFont(LABEL2_FONT);
key[b].initButton(&tft, KEY_X + col * (KEY_W + KEY_SPACING_X),
KEY_Y + row * (KEY_H + KEY_SPACING_Y), // x, y, w, h, outline, fill, text
KEY_W, KEY_H, TFT_WHITE, keyColor[b], TFT_WHITE,
keyLabel[b], KEY_TEXTSIZE);
key[b].drawButton();
}
}
}
//------------------------------------------------------------------------------------------
void touch_calibrate()
{
uint16_t calData[5];
uint8_t calDataOK = 0;
// check file system exists
if (!SPIFFS.begin()) {
Serial.println("Formating file system");
SPIFFS.format();
SPIFFS.begin();
}
// check if calibration file exists and size is correct
if (SPIFFS.exists(CALIBRATION_FILE)) {
if (REPEAT_CAL)
{
// Delete if we want to re-calibrate
SPIFFS.remove(CALIBRATION_FILE);
}
else
{
File f = SPIFFS.open(CALIBRATION_FILE, "r");
if (f) {
if (f.readBytes((char*)calData, 14) == 14)
calDataOK = 1;
f.close();
}
}
}
if (calDataOK && !REPEAT_CAL) {
// calibration data valid
tft.setTouch(calData);
}
else {
// data not valid so recalibrate
tft.fillScreen(TFT_BLACK);
tft.setCursor(20, 0);
tft.setTextFont(2);
tft.setTextSize(1);
tft.setTextColor(TFT_WHITE, TFT_BLACK);
tft.println("Touch corners as indicated");
tft.setTextFont(1);
tft.println();
if (REPEAT_CAL) {
tft.setTextColor(TFT_RED, TFT_BLACK);
tft.println("Set REPEAT_CAL to false to stop this running again!");
}
tft.calibrateTouch(calData, TFT_MAGENTA, TFT_BLACK, 15);
tft.setTextColor(TFT_GREEN, TFT_BLACK);
tft.println("Calibration complete!");
// store data
File f = SPIFFS.open(CALIBRATION_FILE, "w");
if (f) {
f.write((const unsigned char*)calData, 14);
f.close();
}
}
}
//------------------------------------------------------------------------------------------
// Print something in the mini status bar
void status(const char* msg) {
tft.setTextPadding(240);
//tft.setCursor(STATUS_X, STATUS_Y);
tft.setTextColor(TFT_WHITE, TFT_DARKGREY);
tft.setTextFont(0);
tft.setTextDatum(TC_DATUM);
tft.setTextSize(1);
tft.drawString(msg, STATUS_X, STATUS_Y);
}
//------------------------------------------------------------------------------------------
#endif