-
Notifications
You must be signed in to change notification settings - Fork 0
/
mode_ac.c
386 lines (342 loc) · 14 KB
/
mode_ac.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
// dump1090, a Mode S messages decoder for RTLSDR devices.
//
// Copyright (C) 2012 by Salvatore Sanfilippo <[email protected]>
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
#include "dump1090.h"
//
// ===================== Mode A/C detection and decoding ===================
//
//
// This table is used to build the Mode A/C variable called ModeABits.Each
// bit period is inspected, and if it's value exceeds the threshold limit,
// then the value in this table is or-ed into ModeABits.
//
// At the end of message processing, ModeABits will be the decoded ModeA value.
//
// We can also flag noise in bits that should be zeros - the xx bits. Noise in
// these bits cause bits (31-16) in ModeABits to be set. Then at the end of message
// processing we can test for errors by looking at these bits.
//
uint32_t ModeABitTable[24] = {
0x00000000, // F1 = 1
0x00000010, // C1
0x00001000, // A1
0x00000020, // C2
0x00002000, // A2
0x00000040, // C4
0x00004000, // A4
0x40000000, // xx = 0 Set bit 30 if we see this high
0x00000100, // B1
0x00000001, // D1
0x00000200, // B2
0x00000002, // D2
0x00000400, // B4
0x00000004, // D4
0x00000000, // F2 = 1
0x08000000, // xx = 0 Set bit 27 if we see this high
0x04000000, // xx = 0 Set bit 26 if we see this high
0x00000080, // SPI
0x02000000, // xx = 0 Set bit 25 if we see this high
0x01000000, // xx = 0 Set bit 24 if we see this high
0x00800000, // xx = 0 Set bit 23 if we see this high
0x00400000, // xx = 0 Set bit 22 if we see this high
0x00200000, // xx = 0 Set bit 21 if we see this high
0x00100000, // xx = 0 Set bit 20 if we see this high
};
//
// This table is used to produce an error variable called ModeAErrs.Each
// inter-bit period is inspected, and if it's value falls outside of the
// expected range, then the value in this table is or-ed into ModeAErrs.
//
// At the end of message processing, ModeAErrs will indicate if we saw
// any inter-bit anomolies, and the bits that are set will show which
// bits had them.
//
uint32_t ModeAMidTable[24] = {
0x80000000, // F1 = 1 Set bit 31 if we see F1_C1 error
0x00000010, // C1 Set bit 4 if we see C1_A1 error
0x00001000, // A1 Set bit 12 if we see A1_C2 error
0x00000020, // C2 Set bit 5 if we see C2_A2 error
0x00002000, // A2 Set bit 13 if we see A2_C4 error
0x00000040, // C4 Set bit 6 if we see C3_A4 error
0x00004000, // A4 Set bit 14 if we see A4_xx error
0x40000000, // xx = 0 Set bit 30 if we see xx_B1 error
0x00000100, // B1 Set bit 8 if we see B1_D1 error
0x00000001, // D1 Set bit 0 if we see D1_B2 error
0x00000200, // B2 Set bit 9 if we see B2_D2 error
0x00000002, // D2 Set bit 1 if we see D2_B4 error
0x00000400, // B4 Set bit 10 if we see B4_D4 error
0x00000004, // D4 Set bit 2 if we see D4_F2 error
0x20000000, // F2 = 1 Set bit 29 if we see F2_xx error
0x08000000, // xx = 0 Set bit 27 if we see xx_xx error
0x04000000, // xx = 0 Set bit 26 if we see xx_SPI error
0x00000080, // SPI Set bit 15 if we see SPI_xx error
0x02000000, // xx = 0 Set bit 25 if we see xx_xx error
0x01000000, // xx = 0 Set bit 24 if we see xx_xx error
0x00800000, // xx = 0 Set bit 23 if we see xx_xx error
0x00400000, // xx = 0 Set bit 22 if we see xx_xx error
0x00200000, // xx = 0 Set bit 21 if we see xx_xx error
0x00100000, // xx = 0 Set bit 20 if we see xx_xx error
};
//
// The "off air" format is,,
// _F1_C1_A1_C2_A2_C4_A4_xx_B1_D1_B2_D2_B4_D4_F2_xx_xx_SPI_
//
// Bit spacing is 1.45uS, with 0.45uS high, and 1.00us low. This is a problem
// because we ase sampling at 2Mhz (500nS) so we are below Nyquist.
//
// The bit spacings are..
// F1 : 0.00,
// 1.45, 2.90, 4.35, 5.80, 7.25, 8.70,
// X : 10.15,
// : 11.60, 13.05, 14.50, 15.95, 17.40, 18.85,
// F2 : 20.30,
// X : 21.75, 23.20, 24.65
//
// This equates to the following sample point centers at 2Mhz.
// [ 0.0],
// [ 2.9], [ 5.8], [ 8.7], [11.6], [14.5], [17.4],
// [20.3],
// [23.2], [26.1], [29.0], [31.9], [34.8], [37.7]
// [40.6]
// [43.5], [46.4], [49.3]
//
// We know that this is a supposed to be a binary stream, so the signal
// should either be a 1 or a 0. Therefore, any energy above the noise level
// in two adjacent samples must be from the same pulse, so we can simply
// add the values together..
//
int detectModeA(uint16_t *m, struct modesMessage *mm)
{
int j, lastBitWasOne;
int ModeABits = 0;
int ModeAErrs = 0;
int byte, bit;
int thisSample, lastBit, lastSpace = 0;
int m0, m1, m2, m3, mPhase;
int n0, n1, n2 ,n3;
int F1_sig, F1_noise;
int F2_sig, F2_noise;
int fSig, fNoise, fLevel, fLoLo;
// m[0] contains the energy from 0 -> 499 nS
// m[1] contains the energy from 500 -> 999 nS
// m[2] contains the energy from 1000 -> 1499 nS
// m[3] contains the energy from 1500 -> 1999 nS
//
// We are looking for a Frame bit (F1) whose width is 450nS, followed by
// 1000nS of quiet.
//
// The width of the frame bit is 450nS, which is 90% of our sample rate.
// Therefore, in an ideal world, all the energy for the frame bit will be
// in a single sample, preceeded by (at least) one zero, and followed by
// two zeros, Best case we can look for ...
//
// 0 - 1 - 0 - 0
//
// However, our samples are not phase aligned, so some of the energy from
// each bit could be spread over two consecutive samples. Worst case is
// that we sample half in one bit, and half in the next. In that case,
// we're looking for
//
// 0 - 0.5 - 0.5 - 0.
m0 = m[0]; m1 = m[1];
if (m0 >= m1) // m1 *must* be bigger than m0 for this to be F1
{return (0);}
m2 = m[2]; m3 = m[3];
//
// if (m2 <= m0), then assume the sample bob on (Phase == 0), so don't look at m3
if ((m2 <= m0) || (m2 < m3))
{m3 = m2; m2 = m0;}
if ( (m3 >= m1) // m1 must be bigger than m3
|| (m0 > m2) // m2 can be equal to m0 if ( 0,1,0,0 )
|| (m3 > m2) ) // m2 can be equal to m3 if ( 0,1,0,0 )
{return (0);}
// m0 = noise
// m1 = noise + (signal * X))
// m2 = noise + (signal * (1-X))
// m3 = noise
//
// Hence, assuming all 4 samples have similar amounts of noise in them
// signal = (m1 + m2) - ((m0 + m3) * 2)
// noise = (m0 + m3) / 2
//
F1_sig = (m1 + m2) - ((m0 + m3) << 1);
F1_noise = (m0 + m3) >> 1;
if ( (F1_sig < MODEAC_MSG_SQUELCH_LEVEL) // minimum required F1 signal amplitude
|| (F1_sig < (F1_noise << 2)) ) // minimum allowable Sig/Noise ratio 4:1
{return (0);}
// If we get here then we have a potential F1, so look for an equally valid F2 20.3uS later
//
// Our F1 is centered somewhere between samples m[1] and m[2]. We can guestimate where F2 is
// by comparing the ratio of m1 and m2, and adding on 20.3 uS (40.6 samples)
//
mPhase = ((m2 * 20) / (m1 + m2));
byte = (mPhase + 812) / 20;
n0 = m[byte++]; n1 = m[byte++];
if (n0 >= n1) // n1 *must* be bigger than n0 for this to be F2
{return (0);}
n2 = m[byte++];
//
// if the sample bob on (Phase == 0), don't look at n3
//
if ((mPhase + 812) % 20)
{n3 = m[byte++];}
else
{n3 = n2; n2 = n0;}
if ( (n3 >= n1) // n1 must be bigger than n3
|| (n0 > n2) // n2 can be equal to n0 ( 0,1,0,0 )
|| (n3 > n2) ) // n2 can be equal to n3 ( 0,1,0,0 )
{return (0);}
F2_sig = (n1 + n2) - ((n0 + n3) << 1);
F2_noise = (n0 + n3) >> 1;
if ( (F2_sig < MODEAC_MSG_SQUELCH_LEVEL) // minimum required F2 signal amplitude
|| (F2_sig < (F2_noise << 2)) ) // maximum allowable Sig/Noise ratio 4:1
{return (0);}
fSig = (F1_sig + F2_sig) >> 1;
fNoise = (F1_noise + F2_noise) >> 1;
fLoLo = fNoise + (fSig >> 2); // 1/2
fLevel = fNoise + (fSig >> 1);
lastBitWasOne = 1;
lastBit = F1_sig;
//
// Now step by a half ModeA bit, 0.725nS, which is 1.45 samples, which is 29/20
// No need to do bit 0 because we've already selected it as a valid F1
// Do several bits past the SPI to increase error rejection
//
for (j = 1, mPhase += 29; j < 48; mPhase += 29, j ++)
{
byte = 1 + (mPhase / 20);
thisSample = m[byte] - fNoise;
if (mPhase % 20) // If the bit is split over two samples...
{thisSample += (m[byte+1] - fNoise);} // add in the second sample's energy
// If we're calculating a space value
if (j & 1)
{lastSpace = thisSample;}
else
{// We're calculating a new bit value
bit = j >> 1;
if (thisSample >= fLevel)
{// We're calculating a new bit value, and its a one
ModeABits |= ModeABitTable[bit--]; // or in the correct bit
if (lastBitWasOne)
{ // This bit is one, last bit was one, so check the last space is somewhere less than one
if ( (lastSpace >= (thisSample>>1)) || (lastSpace >= lastBit) )
{ModeAErrs |= ModeAMidTable[bit];}
}
else
{// This bit,is one, last bit was zero, so check the last space is somewhere less than one
if (lastSpace >= (thisSample >> 1))
{ModeAErrs |= ModeAMidTable[bit];}
}
lastBitWasOne = 1;
}
else
{// We're calculating a new bit value, and its a zero
if (lastBitWasOne)
{ // This bit is zero, last bit was one, so check the last space is somewhere in between
if (lastSpace >= lastBit)
{ModeAErrs |= ModeAMidTable[bit];}
}
else
{// This bit,is zero, last bit was zero, so check the last space is zero too
if (lastSpace >= fLoLo)
{ModeAErrs |= ModeAMidTable[bit];}
}
lastBitWasOne = 0;
}
lastBit = (thisSample >> 1);
}
}
//
// Output format is : 00:A4:A2:A1:00:B4:B2:B1:00:C4:C2:C1:00:D4:D2:D1
//
if ((ModeABits < 3) || (ModeABits & 0xFFFF8808) || (ModeAErrs) )
{return (ModeABits = 0);}
fSig = (fSig + 0x7F) >> 8;
mm->signalLevel = ((fSig < 255) ? fSig : 255);
return ModeABits;
}
//
//=========================================================================
//
// Input format is : 00:A4:A2:A1:00:B4:B2:B1:00:C4:C2:C1:00:D4:D2:D1
//
int ModeAToModeC(unsigned int ModeA)
{
unsigned int FiveHundreds = 0;
unsigned int OneHundreds = 0;
if ( (ModeA & 0xFFFF888B) // D1 set is illegal. D2 set is > 62700ft which is unlikely
|| ((ModeA & 0x000000F0) == 0) ) // C1,,C4 cannot be Zero
{return -9999;}
if (ModeA & 0x0010) {OneHundreds ^= 0x007;} // C1
if (ModeA & 0x0020) {OneHundreds ^= 0x003;} // C2
if (ModeA & 0x0040) {OneHundreds ^= 0x001;} // C4
// Remove 7s from OneHundreds (Make 7->5, snd 5->7).
if ((OneHundreds & 5) == 5) {OneHundreds ^= 2;}
// Check for invalid codes, only 1 to 5 are valid
if (OneHundreds > 5)
{return -9999;}
//if (ModeA & 0x0001) {FiveHundreds ^= 0x1FF;} // D1 never used for altitude
if (ModeA & 0x0002) {FiveHundreds ^= 0x0FF;} // D2
if (ModeA & 0x0004) {FiveHundreds ^= 0x07F;} // D4
if (ModeA & 0x1000) {FiveHundreds ^= 0x03F;} // A1
if (ModeA & 0x2000) {FiveHundreds ^= 0x01F;} // A2
if (ModeA & 0x4000) {FiveHundreds ^= 0x00F;} // A4
if (ModeA & 0x0100) {FiveHundreds ^= 0x007;} // B1
if (ModeA & 0x0200) {FiveHundreds ^= 0x003;} // B2
if (ModeA & 0x0400) {FiveHundreds ^= 0x001;} // B4
// Correct order of OneHundreds.
if (FiveHundreds & 1) {OneHundreds = 6 - OneHundreds;}
return ((FiveHundreds * 5) + OneHundreds - 13);
}
//
//=========================================================================
//
void decodeModeAMessage(struct modesMessage *mm, int ModeA)
{
mm->msgtype = 32; // Valid Mode S DF's are DF-00 to DF-31.
// so use 32 to indicate Mode A/C
mm->msgbits = 16; // Fudge up a Mode S style data stream
mm->msg[0] = (ModeA >> 8);
mm->msg[1] = (ModeA);
// Fudge an ICAO address based on Mode A (remove the Ident bit)
// Use an upper address byte of FF, since this is ICAO unallocated
mm->addr = 0x00FF0000 | (ModeA & 0x0000FF7F);
// Set the Identity field to ModeA
mm->modeA = ModeA & 0x7777;
mm->bFlags |= MODES_ACFLAGS_SQUAWK_VALID;
// Flag ident in flight status
mm->fs = ModeA & 0x0080;
// Not much else we can tell from a Mode A/C reply.
// Just fudge up a few bits to keep other code happy
mm->crcok = 1;
mm->correctedbits = 0;
}
//
// ===================== Mode A/C detection and decoding ===================
//