diff --git a/.gitignore b/.gitignore index ec48707..af32c7e 100644 --- a/.gitignore +++ b/.gitignore @@ -152,12 +152,17 @@ dmypy.json # Cython debug symbols cython_debug/ +#Model weight +*.pt # PyCharm # JetBrains specific template is maintained in a separate JetBrains.gitignore that can # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore # and can be added to the global gitignore or merged into this file. For a more nuclear # option (not recommended) you can uncomment the following to ignore the entire idea folder. #.idea/ +wandb/ +*.pkl +events.out* grafana.db 000000* lock @@ -166,5 +171,8 @@ tombstones prometheus/prometheus-volume/data/* index 0000* +meta.json +*.tar +*.pth *.onnx *.pth diff --git a/docker/mlflow/DockerFile.mlflow b/docker/mlflow/DockerFile.mlflow new file mode 100644 index 0000000..4eb5baf --- /dev/null +++ b/docker/mlflow/DockerFile.mlflow @@ -0,0 +1,14 @@ +FROM amd64/python:3.9-slim + +RUN apt-get update && apt-get install -y \ + git \ + wget \ + && rm -rf /var/lib/apt/lists/* + +RUN pip install -U pip &&\ + pip install boto3==1.26.8 mlflow==1.30.0 psycopg2-binary + +RUN cd /tmp && \ + wget https://dl.min.io/client/mc/release/linux-amd64/mc && \ + chmod +x mc && \ + mv mc /usr/bin/mc diff --git a/docker/mlflow/docker-compose_mlflow.yaml b/docker/mlflow/docker-compose_mlflow.yaml new file mode 100644 index 0000000..f284193 --- /dev/null +++ b/docker/mlflow/docker-compose_mlflow.yaml @@ -0,0 +1,58 @@ +version: "3" + +services: + mlflow-backend-store: + image: postgres:14.0 + container_name: mlflow-backend-store + environment: + POSTGRES_USER: mlflowuser + POSTGRES_PASSWORD: mlflowpassword + POSTGRES_DB: mlflowdatabase + healthcheck: + test: ["CMD", "pg_isready", "-q", "-U", "mlflowuser", "-d", "mlflowdatabase"] + interval: 10s + timeout: 5s + retries: 5 + + mlflow-artifact-store: + image: minio/minio:RELEASE.2024-01-18T22-51-28Z + container_name: mlflow-artifact-store + ports: + - 9000:9000 + - 9001:9001 + environment: + MINIO_ROOT_USER: minio + MINIO_ROOT_PASSWORD: miniostorage + command: server /data/minio --console-address :9001 + healthcheck: + test: ["CMD", "mc", "ready", "local"] + interval: 5s + timeout: 5s + retries: 5 + + mlflow-server: + build: + context: . + dockerfile: DockerFile_mlflow + container_name: mlflow-server + depends_on: + mlflow-backend-store: + condition: service_healthy + mlflow-artifact-store: + condition: service_healthy + ports: + - 5001:5000 + environment: + AWS_ACCESS_KEY: AKIA3FLD32HPRN22NJQ7 + AWS_SECRET_ACCESS_KEY: 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 + MLFLOW_S3_ENDPOINT_URL: http://mlflow-artifact-store:9000 + command: + - /bin/sh + - -c + - | + mc config host add mlflowminio http://mlflow-artifact-store:9000 minio miniostorage && + mc mb --ignore-existing mlflowminio/mlflow + mlflow server \ + --backend-store-uri postgresql://mlflowuser:mlflowpassword@mlflow-backend-store/mlflowdatabase \ + --default-artifact-root s3://mlflow/ \ + --host 0.0.0.0 diff --git a/mlflow/registry/Swimswap/checkpoints/people/iter.txt b/mlflow/registry/Swimswap/checkpoints/people/iter.txt new file mode 100644 index 0000000..f05eb86 --- /dev/null +++ b/mlflow/registry/Swimswap/checkpoints/people/iter.txt @@ -0,0 +1,2 @@ +519 +4062 diff --git a/mlflow/registry/Swimswap/checkpoints/people/loss_log.txt b/mlflow/registry/Swimswap/checkpoints/people/loss_log.txt new file mode 100644 index 0000000..0585ac8 --- /dev/null +++ b/mlflow/registry/Swimswap/checkpoints/people/loss_log.txt @@ -0,0 +1,11208 @@ +================ Training Loss (Sun Apr 19 12:26:39 2020) ================ +(epoch: 1, iters: 400, time: 0.075) G_GAN: -0.149 G_GAN_Feat: 2.780 G_ID: 1.016 G_Rec: 0.992 D_GP: 0.019 D_real: 0.583 D_fake: 1.174 +(epoch: 1, iters: 800, time: 0.063) G_GAN: -0.172 G_GAN_Feat: 2.544 G_ID: 0.748 G_Rec: 1.044 D_GP: 0.031 D_real: 0.281 D_fake: 1.176 +(epoch: 1, iters: 1200, time: 0.063) G_GAN: 0.689 G_GAN_Feat: 2.089 G_ID: 1.005 G_Rec: 0.932 D_GP: 0.028 D_real: 1.355 D_fake: 0.362 +(epoch: 1, iters: 1600, time: 0.064) G_GAN: 0.376 G_GAN_Feat: 1.997 G_ID: 0.609 G_Rec: 0.903 D_GP: 0.028 D_real: 1.281 D_fake: 0.633 +(epoch: 1, iters: 2000, time: 0.063) G_GAN: 0.175 G_GAN_Feat: 1.587 G_ID: 0.981 G_Rec: 0.788 D_GP: 0.017 D_real: 0.824 D_fake: 0.841 +(epoch: 1, iters: 2400, time: 0.063) G_GAN: 0.010 G_GAN_Feat: 1.704 G_ID: 0.563 G_Rec: 0.708 D_GP: 0.034 D_real: 0.683 D_fake: 0.991 +(epoch: 1, iters: 2800, time: 0.063) G_GAN: 0.335 G_GAN_Feat: 1.430 G_ID: 0.991 G_Rec: 0.668 D_GP: 0.022 D_real: 1.130 D_fake: 0.671 +(epoch: 1, iters: 3200, time: 0.064) G_GAN: 0.127 G_GAN_Feat: 1.707 G_ID: 0.592 G_Rec: 0.958 D_GP: 0.050 D_real: 0.967 D_fake: 0.883 +(epoch: 1, iters: 3600, time: 0.063) G_GAN: -0.091 G_GAN_Feat: 1.385 G_ID: 0.983 G_Rec: 0.648 D_GP: 0.020 D_real: 0.696 D_fake: 1.091 +(epoch: 1, iters: 4000, time: 0.063) G_GAN: 0.290 G_GAN_Feat: 1.444 G_ID: 0.584 G_Rec: 0.722 D_GP: 0.040 D_real: 0.886 D_fake: 0.713 +(epoch: 1, iters: 4400, time: 0.063) G_GAN: -0.082 G_GAN_Feat: 1.536 G_ID: 0.997 G_Rec: 0.635 D_GP: 0.044 D_real: 0.781 D_fake: 1.082 +(epoch: 1, iters: 4800, time: 0.064) G_GAN: -0.138 G_GAN_Feat: 1.452 G_ID: 0.654 G_Rec: 0.626 D_GP: 0.053 D_real: 0.733 D_fake: 1.138 +(epoch: 1, iters: 5200, time: 0.064) G_GAN: 0.011 G_GAN_Feat: 1.153 G_ID: 1.004 G_Rec: 0.532 D_GP: 0.031 D_real: 0.769 D_fake: 0.990 +(epoch: 1, iters: 5600, time: 0.063) G_GAN: -0.038 G_GAN_Feat: 1.194 G_ID: 0.619 G_Rec: 0.553 D_GP: 0.036 D_real: 0.926 D_fake: 1.040 +(epoch: 1, iters: 6000, time: 0.063) G_GAN: -0.102 G_GAN_Feat: 1.214 G_ID: 0.981 G_Rec: 0.904 D_GP: 0.056 D_real: 0.589 D_fake: 1.102 +(epoch: 1, iters: 6400, time: 0.064) G_GAN: 0.025 G_GAN_Feat: 1.220 G_ID: 0.544 G_Rec: 0.605 D_GP: 0.037 D_real: 0.987 D_fake: 0.975 +(epoch: 1, iters: 6800, time: 0.063) G_GAN: 0.309 G_GAN_Feat: 1.110 G_ID: 1.040 G_Rec: 0.548 D_GP: 0.027 D_real: 1.106 D_fake: 0.695 +(epoch: 1, iters: 7200, time: 0.064) G_GAN: -0.014 G_GAN_Feat: 1.094 G_ID: 0.531 G_Rec: 0.562 D_GP: 0.036 D_real: 0.868 D_fake: 1.015 +(epoch: 1, iters: 7600, time: 0.064) G_GAN: 0.036 G_GAN_Feat: 1.040 G_ID: 1.029 G_Rec: 0.685 D_GP: 0.026 D_real: 0.821 D_fake: 0.964 +(epoch: 1, iters: 8000, time: 0.064) G_GAN: 0.114 G_GAN_Feat: 1.039 G_ID: 0.552 G_Rec: 0.505 D_GP: 0.035 D_real: 0.922 D_fake: 0.888 +(epoch: 1, iters: 8400, time: 0.063) G_GAN: 0.206 G_GAN_Feat: 1.051 G_ID: 0.967 G_Rec: 0.502 D_GP: 0.034 D_real: 1.008 D_fake: 0.796 +(epoch: 2, iters: 192, time: 0.063) G_GAN: 0.444 G_GAN_Feat: 0.948 G_ID: 0.473 G_Rec: 1.017 D_GP: 0.013 D_real: 1.357 D_fake: 0.582 +(epoch: 2, iters: 592, time: 0.063) G_GAN: 0.275 G_GAN_Feat: 1.016 G_ID: 0.997 G_Rec: 0.490 D_GP: 0.030 D_real: 1.145 D_fake: 0.727 +(epoch: 2, iters: 992, time: 0.064) G_GAN: -0.031 G_GAN_Feat: 1.141 G_ID: 0.524 G_Rec: 0.510 D_GP: 0.041 D_real: 0.697 D_fake: 1.032 +(epoch: 2, iters: 1392, time: 0.064) G_GAN: 0.327 G_GAN_Feat: 1.060 G_ID: 1.025 G_Rec: 0.422 D_GP: 0.053 D_real: 1.016 D_fake: 0.677 +(epoch: 2, iters: 1792, time: 0.064) G_GAN: 0.208 G_GAN_Feat: 0.843 G_ID: 0.505 G_Rec: 0.653 D_GP: 0.013 D_real: 1.128 D_fake: 0.803 +(epoch: 2, iters: 2192, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.990 G_ID: 0.992 G_Rec: 0.692 D_GP: 0.039 D_real: 0.982 D_fake: 0.745 +(epoch: 2, iters: 2592, time: 0.064) G_GAN: 0.086 G_GAN_Feat: 1.025 G_ID: 0.453 G_Rec: 0.583 D_GP: 0.048 D_real: 0.910 D_fake: 0.914 +(epoch: 2, iters: 2992, time: 0.064) G_GAN: 0.137 G_GAN_Feat: 1.077 G_ID: 0.993 G_Rec: 0.510 D_GP: 0.073 D_real: 0.690 D_fake: 0.865 +(epoch: 2, iters: 3392, time: 0.064) G_GAN: -0.145 G_GAN_Feat: 0.977 G_ID: 0.442 G_Rec: 0.431 D_GP: 0.046 D_real: 0.611 D_fake: 1.145 +(epoch: 2, iters: 3792, time: 0.064) G_GAN: 0.089 G_GAN_Feat: 0.892 G_ID: 1.006 G_Rec: 0.590 D_GP: 0.020 D_real: 1.005 D_fake: 0.915 +(epoch: 2, iters: 4192, time: 0.064) G_GAN: 0.187 G_GAN_Feat: 0.993 G_ID: 0.551 G_Rec: 0.589 D_GP: 0.040 D_real: 1.031 D_fake: 0.817 +(epoch: 2, iters: 4592, time: 0.064) G_GAN: 0.390 G_GAN_Feat: 0.996 G_ID: 0.995 G_Rec: 0.517 D_GP: 0.061 D_real: 1.158 D_fake: 0.614 +(epoch: 2, iters: 4992, time: 0.064) G_GAN: 0.342 G_GAN_Feat: 1.101 G_ID: 0.477 G_Rec: 0.843 D_GP: 0.041 D_real: 1.131 D_fake: 0.661 +(epoch: 2, iters: 5392, time: 0.064) G_GAN: 0.102 G_GAN_Feat: 0.819 G_ID: 0.987 G_Rec: 0.398 D_GP: 0.034 D_real: 0.857 D_fake: 0.898 +(epoch: 2, iters: 5792, time: 0.064) G_GAN: 0.028 G_GAN_Feat: 0.885 G_ID: 0.463 G_Rec: 0.489 D_GP: 0.022 D_real: 0.821 D_fake: 0.973 +(epoch: 2, iters: 6192, time: 0.064) G_GAN: 0.201 G_GAN_Feat: 0.875 G_ID: 1.003 G_Rec: 0.398 D_GP: 0.045 D_real: 0.997 D_fake: 0.800 +(epoch: 2, iters: 6592, time: 0.064) G_GAN: -0.040 G_GAN_Feat: 0.904 G_ID: 0.454 G_Rec: 0.434 D_GP: 0.031 D_real: 0.754 D_fake: 1.040 +(epoch: 2, iters: 6992, time: 0.064) G_GAN: 0.115 G_GAN_Feat: 0.948 G_ID: 0.934 G_Rec: 0.439 D_GP: 0.054 D_real: 0.975 D_fake: 0.891 +(epoch: 2, iters: 7392, time: 0.064) G_GAN: 0.322 G_GAN_Feat: 1.029 G_ID: 0.501 G_Rec: 0.452 D_GP: 0.061 D_real: 0.894 D_fake: 0.682 +(epoch: 2, iters: 7792, time: 0.064) G_GAN: 0.180 G_GAN_Feat: 0.882 G_ID: 1.016 G_Rec: 0.476 D_GP: 0.039 D_real: 0.923 D_fake: 0.820 +(epoch: 2, iters: 8192, time: 0.064) G_GAN: 0.004 G_GAN_Feat: 0.991 G_ID: 0.541 G_Rec: 0.780 D_GP: 0.045 D_real: 0.800 D_fake: 0.996 +(epoch: 2, iters: 8592, time: 0.064) G_GAN: -0.001 G_GAN_Feat: 0.880 G_ID: 1.019 G_Rec: 0.499 D_GP: 0.029 D_real: 0.743 D_fake: 1.001 +(epoch: 3, iters: 384, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 1.037 G_ID: 0.490 G_Rec: 0.696 D_GP: 0.038 D_real: 0.917 D_fake: 0.837 +(epoch: 3, iters: 784, time: 0.064) G_GAN: 0.151 G_GAN_Feat: 0.865 G_ID: 0.990 G_Rec: 0.409 D_GP: 0.049 D_real: 0.909 D_fake: 0.849 +(epoch: 3, iters: 1184, time: 0.064) G_GAN: -0.022 G_GAN_Feat: 0.814 G_ID: 0.442 G_Rec: 0.457 D_GP: 0.024 D_real: 0.774 D_fake: 1.022 +(epoch: 3, iters: 1584, time: 0.064) G_GAN: 0.229 G_GAN_Feat: 0.892 G_ID: 0.994 G_Rec: 0.673 D_GP: 0.037 D_real: 1.000 D_fake: 0.773 +(epoch: 3, iters: 1984, time: 0.064) G_GAN: -0.190 G_GAN_Feat: 0.847 G_ID: 0.463 G_Rec: 0.375 D_GP: 0.026 D_real: 0.596 D_fake: 1.190 +(epoch: 3, iters: 2384, time: 0.064) G_GAN: 0.437 G_GAN_Feat: 0.909 G_ID: 0.992 G_Rec: 0.464 D_GP: 0.032 D_real: 1.266 D_fake: 0.577 +(epoch: 3, iters: 2784, time: 0.064) G_GAN: 0.361 G_GAN_Feat: 0.958 G_ID: 0.524 G_Rec: 0.490 D_GP: 0.068 D_real: 1.151 D_fake: 0.641 +(epoch: 3, iters: 3184, time: 0.064) G_GAN: 0.120 G_GAN_Feat: 0.720 G_ID: 0.971 G_Rec: 0.545 D_GP: 0.013 D_real: 1.015 D_fake: 0.881 +(epoch: 3, iters: 3584, time: 0.064) G_GAN: 0.117 G_GAN_Feat: 0.940 G_ID: 0.439 G_Rec: 0.497 D_GP: 0.041 D_real: 0.908 D_fake: 0.883 +(epoch: 3, iters: 3984, time: 0.064) G_GAN: 0.032 G_GAN_Feat: 0.903 G_ID: 0.975 G_Rec: 0.459 D_GP: 0.043 D_real: 0.848 D_fake: 0.969 +(epoch: 3, iters: 4384, time: 0.064) G_GAN: 0.162 G_GAN_Feat: 0.898 G_ID: 0.422 G_Rec: 0.481 D_GP: 0.035 D_real: 0.877 D_fake: 0.838 +(epoch: 3, iters: 4784, time: 0.064) G_GAN: 0.080 G_GAN_Feat: 1.111 G_ID: 0.994 G_Rec: 0.512 D_GP: 0.060 D_real: 0.630 D_fake: 0.920 +(epoch: 3, iters: 5184, time: 0.064) G_GAN: 0.272 G_GAN_Feat: 0.968 G_ID: 0.462 G_Rec: 0.464 D_GP: 0.066 D_real: 0.938 D_fake: 0.728 +(epoch: 3, iters: 5584, time: 0.064) G_GAN: 0.041 G_GAN_Feat: 1.039 G_ID: 0.982 G_Rec: 0.621 D_GP: 0.054 D_real: 0.672 D_fake: 0.960 +(epoch: 3, iters: 5984, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 0.823 G_ID: 0.424 G_Rec: 0.445 D_GP: 0.035 D_real: 0.974 D_fake: 0.779 +(epoch: 3, iters: 6384, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.915 G_ID: 1.007 G_Rec: 0.432 D_GP: 0.078 D_real: 1.004 D_fake: 0.696 +(epoch: 3, iters: 6784, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 1.005 G_ID: 0.473 G_Rec: 0.534 D_GP: 0.046 D_real: 1.028 D_fake: 0.785 +(epoch: 3, iters: 7184, time: 0.064) G_GAN: 0.264 G_GAN_Feat: 0.943 G_ID: 0.988 G_Rec: 0.523 D_GP: 0.039 D_real: 1.083 D_fake: 0.738 +(epoch: 3, iters: 7584, time: 0.064) G_GAN: 0.320 G_GAN_Feat: 0.810 G_ID: 0.444 G_Rec: 0.395 D_GP: 0.021 D_real: 1.115 D_fake: 0.681 +(epoch: 3, iters: 7984, time: 0.064) G_GAN: 0.067 G_GAN_Feat: 0.844 G_ID: 0.998 G_Rec: 0.445 D_GP: 0.029 D_real: 0.793 D_fake: 0.933 +(epoch: 3, iters: 8384, time: 0.064) G_GAN: 0.103 G_GAN_Feat: 0.967 G_ID: 0.420 G_Rec: 0.580 D_GP: 0.051 D_real: 0.858 D_fake: 0.897 +(epoch: 4, iters: 176, time: 0.064) G_GAN: 0.051 G_GAN_Feat: 0.797 G_ID: 0.993 G_Rec: 0.374 D_GP: 0.036 D_real: 0.758 D_fake: 0.949 +(epoch: 4, iters: 576, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 0.879 G_ID: 0.526 G_Rec: 0.431 D_GP: 0.037 D_real: 1.062 D_fake: 0.807 +(epoch: 4, iters: 976, time: 0.064) G_GAN: -0.062 G_GAN_Feat: 0.940 G_ID: 0.975 G_Rec: 0.481 D_GP: 0.042 D_real: 0.681 D_fake: 1.062 +(epoch: 4, iters: 1376, time: 0.064) G_GAN: 0.017 G_GAN_Feat: 0.884 G_ID: 0.461 G_Rec: 0.519 D_GP: 0.022 D_real: 0.939 D_fake: 0.983 +(epoch: 4, iters: 1776, time: 0.064) G_GAN: -0.003 G_GAN_Feat: 0.931 G_ID: 1.008 G_Rec: 0.499 D_GP: 0.036 D_real: 0.566 D_fake: 1.003 +(epoch: 4, iters: 2176, time: 0.064) G_GAN: 0.132 G_GAN_Feat: 0.685 G_ID: 0.473 G_Rec: 0.459 D_GP: 0.013 D_real: 0.998 D_fake: 0.870 +(epoch: 4, iters: 2576, time: 0.064) G_GAN: 0.250 G_GAN_Feat: 0.933 G_ID: 0.978 G_Rec: 0.546 D_GP: 0.046 D_real: 0.989 D_fake: 0.751 +(epoch: 4, iters: 2976, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.849 G_ID: 0.517 G_Rec: 0.383 D_GP: 0.034 D_real: 1.061 D_fake: 0.753 +(epoch: 4, iters: 3376, time: 0.064) G_GAN: 0.077 G_GAN_Feat: 0.875 G_ID: 1.008 G_Rec: 0.442 D_GP: 0.057 D_real: 0.765 D_fake: 0.924 +(epoch: 4, iters: 3776, time: 0.064) G_GAN: 0.539 G_GAN_Feat: 0.901 G_ID: 0.517 G_Rec: 0.412 D_GP: 0.051 D_real: 1.254 D_fake: 0.484 +(epoch: 4, iters: 4176, time: 0.064) G_GAN: 0.154 G_GAN_Feat: 0.827 G_ID: 0.974 G_Rec: 0.446 D_GP: 0.056 D_real: 0.958 D_fake: 0.849 +(epoch: 4, iters: 4576, time: 0.064) G_GAN: 0.172 G_GAN_Feat: 0.848 G_ID: 0.480 G_Rec: 0.459 D_GP: 0.041 D_real: 1.059 D_fake: 0.829 +(epoch: 4, iters: 4976, time: 0.064) G_GAN: 0.527 G_GAN_Feat: 0.867 G_ID: 1.031 G_Rec: 0.513 D_GP: 0.030 D_real: 1.342 D_fake: 0.478 +(epoch: 4, iters: 5376, time: 0.064) G_GAN: 0.073 G_GAN_Feat: 1.050 G_ID: 0.511 G_Rec: 0.814 D_GP: 0.044 D_real: 0.877 D_fake: 0.928 +(epoch: 4, iters: 5776, time: 0.064) G_GAN: 0.397 G_GAN_Feat: 0.932 G_ID: 0.976 G_Rec: 0.472 D_GP: 0.052 D_real: 1.108 D_fake: 0.607 +(epoch: 4, iters: 6176, time: 0.064) G_GAN: 0.083 G_GAN_Feat: 0.963 G_ID: 0.456 G_Rec: 0.391 D_GP: 0.068 D_real: 0.705 D_fake: 0.917 +(epoch: 4, iters: 6576, time: 0.064) G_GAN: 0.440 G_GAN_Feat: 0.844 G_ID: 0.984 G_Rec: 0.406 D_GP: 0.041 D_real: 1.212 D_fake: 0.563 +(epoch: 4, iters: 6976, time: 0.064) G_GAN: -0.016 G_GAN_Feat: 0.989 G_ID: 0.425 G_Rec: 0.501 D_GP: 0.042 D_real: 0.573 D_fake: 1.016 +(epoch: 4, iters: 7376, time: 0.064) G_GAN: 0.610 G_GAN_Feat: 0.742 G_ID: 1.012 G_Rec: 0.383 D_GP: 0.023 D_real: 1.441 D_fake: 0.592 +(epoch: 4, iters: 7776, time: 0.064) G_GAN: 0.235 G_GAN_Feat: 1.001 G_ID: 0.431 G_Rec: 0.631 D_GP: 0.126 D_real: 0.979 D_fake: 0.770 +(epoch: 4, iters: 8176, time: 0.064) G_GAN: 0.130 G_GAN_Feat: 0.808 G_ID: 0.982 G_Rec: 0.436 D_GP: 0.023 D_real: 0.929 D_fake: 0.870 +(epoch: 4, iters: 8576, time: 0.064) G_GAN: 0.206 G_GAN_Feat: 0.811 G_ID: 0.495 G_Rec: 0.444 D_GP: 0.030 D_real: 1.010 D_fake: 0.794 +(epoch: 5, iters: 368, time: 0.064) G_GAN: 0.093 G_GAN_Feat: 0.792 G_ID: 1.018 G_Rec: 0.649 D_GP: 0.034 D_real: 0.835 D_fake: 0.907 +(epoch: 5, iters: 768, time: 0.064) G_GAN: 0.301 G_GAN_Feat: 0.759 G_ID: 0.467 G_Rec: 0.508 D_GP: 0.025 D_real: 1.117 D_fake: 0.699 +(epoch: 5, iters: 1168, time: 0.064) G_GAN: 0.803 G_GAN_Feat: 0.758 G_ID: 0.983 G_Rec: 0.466 D_GP: 0.016 D_real: 1.650 D_fake: 0.218 +(epoch: 5, iters: 1568, time: 0.064) G_GAN: -0.000 G_GAN_Feat: 0.901 G_ID: 0.407 G_Rec: 0.419 D_GP: 0.054 D_real: 0.693 D_fake: 1.000 +(epoch: 5, iters: 1968, time: 0.064) G_GAN: -0.033 G_GAN_Feat: 0.799 G_ID: 0.979 G_Rec: 0.488 D_GP: 0.037 D_real: 0.805 D_fake: 1.033 +(epoch: 5, iters: 2368, time: 0.064) G_GAN: 0.176 G_GAN_Feat: 0.997 G_ID: 0.475 G_Rec: 0.546 D_GP: 0.074 D_real: 0.752 D_fake: 0.825 +(epoch: 5, iters: 2768, time: 0.064) G_GAN: 0.077 G_GAN_Feat: 0.872 G_ID: 1.023 G_Rec: 0.393 D_GP: 0.042 D_real: 0.813 D_fake: 0.923 +(epoch: 5, iters: 3168, time: 0.064) G_GAN: 0.224 G_GAN_Feat: 0.864 G_ID: 0.402 G_Rec: 0.476 D_GP: 0.031 D_real: 1.038 D_fake: 0.777 +(epoch: 5, iters: 3568, time: 0.064) G_GAN: -0.044 G_GAN_Feat: 0.685 G_ID: 1.025 G_Rec: 0.601 D_GP: 0.019 D_real: 0.826 D_fake: 1.046 +(epoch: 5, iters: 3968, time: 0.064) G_GAN: 0.006 G_GAN_Feat: 0.925 G_ID: 0.448 G_Rec: 0.388 D_GP: 0.056 D_real: 0.642 D_fake: 0.995 +(epoch: 5, iters: 4368, time: 0.064) G_GAN: 0.306 G_GAN_Feat: 0.798 G_ID: 0.937 G_Rec: 0.651 D_GP: 0.028 D_real: 1.142 D_fake: 0.694 +(epoch: 5, iters: 4768, time: 0.064) G_GAN: 0.128 G_GAN_Feat: 1.041 G_ID: 0.532 G_Rec: 0.514 D_GP: 0.072 D_real: 0.750 D_fake: 0.872 +(epoch: 5, iters: 5168, time: 0.064) G_GAN: 0.512 G_GAN_Feat: 0.925 G_ID: 0.989 G_Rec: 0.415 D_GP: 0.043 D_real: 1.188 D_fake: 0.525 +(epoch: 5, iters: 5568, time: 0.064) G_GAN: 0.149 G_GAN_Feat: 0.895 G_ID: 0.465 G_Rec: 0.568 D_GP: 0.037 D_real: 0.891 D_fake: 0.851 +(epoch: 5, iters: 5968, time: 0.064) G_GAN: 0.019 G_GAN_Feat: 0.611 G_ID: 0.964 G_Rec: 0.388 D_GP: 0.015 D_real: 0.985 D_fake: 0.981 +(epoch: 5, iters: 6368, time: 0.064) G_GAN: 0.155 G_GAN_Feat: 0.893 G_ID: 0.479 G_Rec: 0.403 D_GP: 0.035 D_real: 0.899 D_fake: 0.845 +(epoch: 5, iters: 6768, time: 0.064) G_GAN: 0.345 G_GAN_Feat: 0.910 G_ID: 0.979 G_Rec: 0.648 D_GP: 0.033 D_real: 0.962 D_fake: 0.656 +(epoch: 5, iters: 7168, time: 0.064) G_GAN: 0.373 G_GAN_Feat: 0.862 G_ID: 0.464 G_Rec: 0.401 D_GP: 0.053 D_real: 1.161 D_fake: 0.630 +(epoch: 5, iters: 7568, time: 0.064) G_GAN: 0.095 G_GAN_Feat: 0.737 G_ID: 0.993 G_Rec: 0.439 D_GP: 0.023 D_real: 0.973 D_fake: 0.905 +(epoch: 5, iters: 7968, time: 0.064) G_GAN: -0.164 G_GAN_Feat: 1.144 G_ID: 0.462 G_Rec: 0.829 D_GP: 0.102 D_real: 0.504 D_fake: 1.164 +(epoch: 5, iters: 8368, time: 0.064) G_GAN: 0.319 G_GAN_Feat: 0.947 G_ID: 1.013 G_Rec: 0.484 D_GP: 0.031 D_real: 1.347 D_fake: 0.682 +(epoch: 6, iters: 160, time: 0.064) G_GAN: 0.095 G_GAN_Feat: 0.823 G_ID: 0.357 G_Rec: 0.430 D_GP: 0.024 D_real: 0.856 D_fake: 0.905 +(epoch: 6, iters: 560, time: 0.064) G_GAN: 0.648 G_GAN_Feat: 0.995 G_ID: 1.027 G_Rec: 0.461 D_GP: 0.046 D_real: 1.335 D_fake: 0.393 +(epoch: 6, iters: 960, time: 0.064) G_GAN: -0.214 G_GAN_Feat: 0.687 G_ID: 0.403 G_Rec: 0.383 D_GP: 0.027 D_real: 0.612 D_fake: 1.214 +(epoch: 6, iters: 1360, time: 0.064) G_GAN: 0.780 G_GAN_Feat: 0.840 G_ID: 1.001 G_Rec: 0.714 D_GP: 0.017 D_real: 1.650 D_fake: 0.497 +(epoch: 6, iters: 1760, time: 0.064) G_GAN: -0.160 G_GAN_Feat: 0.776 G_ID: 0.490 G_Rec: 0.380 D_GP: 0.054 D_real: 0.604 D_fake: 1.160 +(epoch: 6, iters: 2160, time: 0.064) G_GAN: 0.186 G_GAN_Feat: 0.840 G_ID: 0.999 G_Rec: 0.646 D_GP: 0.040 D_real: 0.909 D_fake: 0.814 +(epoch: 6, iters: 2560, time: 0.064) G_GAN: 0.353 G_GAN_Feat: 1.001 G_ID: 0.480 G_Rec: 0.542 D_GP: 0.041 D_real: 1.250 D_fake: 0.655 +(epoch: 6, iters: 2960, time: 0.064) G_GAN: 0.355 G_GAN_Feat: 0.836 G_ID: 1.003 G_Rec: 0.374 D_GP: 0.042 D_real: 1.029 D_fake: 0.646 +(epoch: 6, iters: 3360, time: 0.064) G_GAN: 0.270 G_GAN_Feat: 0.821 G_ID: 0.502 G_Rec: 0.326 D_GP: 0.045 D_real: 1.002 D_fake: 0.735 +(epoch: 6, iters: 3760, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 0.902 G_ID: 0.987 G_Rec: 0.426 D_GP: 0.028 D_real: 0.842 D_fake: 0.827 +(epoch: 6, iters: 4160, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 0.954 G_ID: 0.518 G_Rec: 0.426 D_GP: 0.057 D_real: 1.052 D_fake: 0.826 +(epoch: 6, iters: 4560, time: 0.064) G_GAN: 0.314 G_GAN_Feat: 0.848 G_ID: 1.003 G_Rec: 0.456 D_GP: 0.036 D_real: 1.084 D_fake: 0.686 +(epoch: 6, iters: 4960, time: 0.064) G_GAN: 0.345 G_GAN_Feat: 0.948 G_ID: 0.395 G_Rec: 0.406 D_GP: 0.053 D_real: 0.904 D_fake: 0.655 +(epoch: 6, iters: 5360, time: 0.064) G_GAN: 0.086 G_GAN_Feat: 0.872 G_ID: 0.989 G_Rec: 0.381 D_GP: 0.057 D_real: 0.877 D_fake: 0.915 +(epoch: 6, iters: 5760, time: 0.064) G_GAN: 0.513 G_GAN_Feat: 0.791 G_ID: 0.422 G_Rec: 0.381 D_GP: 0.028 D_real: 1.343 D_fake: 0.584 +(epoch: 6, iters: 6160, time: 0.064) G_GAN: 0.234 G_GAN_Feat: 0.814 G_ID: 0.961 G_Rec: 0.363 D_GP: 0.043 D_real: 0.964 D_fake: 0.766 +(epoch: 6, iters: 6560, time: 0.064) G_GAN: 0.067 G_GAN_Feat: 0.902 G_ID: 0.409 G_Rec: 0.356 D_GP: 0.079 D_real: 0.765 D_fake: 0.934 +(epoch: 6, iters: 6960, time: 0.064) G_GAN: 0.162 G_GAN_Feat: 0.794 G_ID: 1.007 G_Rec: 0.437 D_GP: 0.030 D_real: 0.954 D_fake: 0.838 +(epoch: 6, iters: 7360, time: 0.064) G_GAN: 0.234 G_GAN_Feat: 0.825 G_ID: 0.403 G_Rec: 0.483 D_GP: 0.036 D_real: 1.022 D_fake: 0.766 +(epoch: 6, iters: 7760, time: 0.064) G_GAN: 0.102 G_GAN_Feat: 0.910 G_ID: 1.008 G_Rec: 0.529 D_GP: 0.050 D_real: 0.708 D_fake: 0.898 +(epoch: 6, iters: 8160, time: 0.064) G_GAN: -0.009 G_GAN_Feat: 0.811 G_ID: 0.552 G_Rec: 0.405 D_GP: 0.029 D_real: 0.735 D_fake: 1.010 +(epoch: 6, iters: 8560, time: 0.064) G_GAN: 0.160 G_GAN_Feat: 0.815 G_ID: 0.996 G_Rec: 0.488 D_GP: 0.038 D_real: 0.932 D_fake: 0.840 +(epoch: 7, iters: 352, time: 0.064) G_GAN: 0.265 G_GAN_Feat: 0.824 G_ID: 0.382 G_Rec: 0.375 D_GP: 0.043 D_real: 0.980 D_fake: 0.735 +(epoch: 7, iters: 752, time: 0.064) G_GAN: -0.008 G_GAN_Feat: 1.127 G_ID: 0.990 G_Rec: 0.421 D_GP: 0.075 D_real: 0.556 D_fake: 1.008 +(epoch: 7, iters: 1152, time: 0.064) G_GAN: -0.149 G_GAN_Feat: 0.800 G_ID: 0.477 G_Rec: 0.490 D_GP: 0.039 D_real: 0.623 D_fake: 1.149 +(epoch: 7, iters: 1552, time: 0.064) G_GAN: -0.040 G_GAN_Feat: 0.750 G_ID: 0.952 G_Rec: 0.363 D_GP: 0.043 D_real: 0.831 D_fake: 1.040 +(epoch: 7, iters: 1952, time: 0.064) G_GAN: 0.112 G_GAN_Feat: 0.568 G_ID: 0.497 G_Rec: 0.390 D_GP: 0.014 D_real: 1.012 D_fake: 0.888 +(epoch: 7, iters: 2352, time: 0.064) G_GAN: 0.066 G_GAN_Feat: 0.783 G_ID: 0.985 G_Rec: 0.380 D_GP: 0.057 D_real: 0.715 D_fake: 0.934 +(epoch: 7, iters: 2752, time: 0.064) G_GAN: 0.492 G_GAN_Feat: 0.944 G_ID: 0.549 G_Rec: 0.444 D_GP: 0.068 D_real: 1.279 D_fake: 0.513 +(epoch: 7, iters: 3152, time: 0.064) G_GAN: 0.359 G_GAN_Feat: 0.846 G_ID: 0.973 G_Rec: 0.498 D_GP: 0.054 D_real: 1.202 D_fake: 0.642 +(epoch: 7, iters: 3552, time: 0.064) G_GAN: 0.399 G_GAN_Feat: 0.756 G_ID: 0.423 G_Rec: 0.434 D_GP: 0.036 D_real: 1.160 D_fake: 0.602 +(epoch: 7, iters: 3952, time: 0.064) G_GAN: 0.367 G_GAN_Feat: 0.951 G_ID: 0.975 G_Rec: 0.395 D_GP: 0.046 D_real: 0.926 D_fake: 0.639 +(epoch: 7, iters: 4352, time: 0.064) G_GAN: -0.003 G_GAN_Feat: 0.828 G_ID: 0.453 G_Rec: 0.400 D_GP: 0.061 D_real: 0.746 D_fake: 1.003 +(epoch: 7, iters: 4752, time: 0.064) G_GAN: 0.224 G_GAN_Feat: 1.070 G_ID: 0.940 G_Rec: 0.408 D_GP: 0.147 D_real: 0.538 D_fake: 0.778 +(epoch: 7, iters: 5152, time: 0.064) G_GAN: 0.293 G_GAN_Feat: 1.008 G_ID: 0.382 G_Rec: 0.390 D_GP: 0.055 D_real: 0.757 D_fake: 0.707 +(epoch: 7, iters: 5552, time: 0.064) G_GAN: 0.408 G_GAN_Feat: 1.161 G_ID: 0.964 G_Rec: 0.361 D_GP: 0.076 D_real: 1.254 D_fake: 0.609 +(epoch: 7, iters: 5952, time: 0.064) G_GAN: 0.400 G_GAN_Feat: 0.850 G_ID: 0.422 G_Rec: 0.444 D_GP: 0.039 D_real: 1.139 D_fake: 0.600 +(epoch: 7, iters: 6352, time: 0.064) G_GAN: 0.224 G_GAN_Feat: 0.854 G_ID: 0.981 G_Rec: 0.423 D_GP: 0.034 D_real: 0.950 D_fake: 0.776 +(epoch: 7, iters: 6752, time: 0.064) G_GAN: 0.143 G_GAN_Feat: 0.887 G_ID: 0.557 G_Rec: 0.399 D_GP: 0.045 D_real: 0.905 D_fake: 0.858 +(epoch: 7, iters: 7152, time: 0.064) G_GAN: 0.252 G_GAN_Feat: 1.094 G_ID: 0.967 G_Rec: 0.373 D_GP: 0.099 D_real: 0.565 D_fake: 0.749 +(epoch: 7, iters: 7552, time: 0.064) G_GAN: -0.019 G_GAN_Feat: 0.901 G_ID: 0.361 G_Rec: 0.404 D_GP: 0.079 D_real: 0.719 D_fake: 1.019 +(epoch: 7, iters: 7952, time: 0.064) G_GAN: 0.192 G_GAN_Feat: 0.677 G_ID: 0.997 G_Rec: 0.613 D_GP: 0.022 D_real: 1.013 D_fake: 0.808 +(epoch: 7, iters: 8352, time: 0.064) G_GAN: -0.009 G_GAN_Feat: 0.767 G_ID: 0.407 G_Rec: 0.358 D_GP: 0.024 D_real: 0.750 D_fake: 1.009 +(epoch: 8, iters: 144, time: 0.064) G_GAN: -0.207 G_GAN_Feat: 0.785 G_ID: 0.997 G_Rec: 0.381 D_GP: 0.048 D_real: 0.512 D_fake: 1.207 +(epoch: 8, iters: 544, time: 0.064) G_GAN: 0.179 G_GAN_Feat: 0.886 G_ID: 0.424 G_Rec: 0.372 D_GP: 0.048 D_real: 0.835 D_fake: 0.823 +(epoch: 8, iters: 944, time: 0.064) G_GAN: -0.169 G_GAN_Feat: 0.695 G_ID: 0.988 G_Rec: 0.387 D_GP: 0.028 D_real: 0.694 D_fake: 1.169 +(epoch: 8, iters: 1344, time: 0.064) G_GAN: 0.385 G_GAN_Feat: 0.547 G_ID: 0.543 G_Rec: 0.533 D_GP: 0.009 D_real: 1.281 D_fake: 0.615 +(epoch: 8, iters: 1744, time: 0.064) G_GAN: -0.024 G_GAN_Feat: 0.543 G_ID: 0.960 G_Rec: 0.428 D_GP: 0.018 D_real: 0.886 D_fake: 1.024 +(epoch: 8, iters: 2144, time: 0.064) G_GAN: 0.019 G_GAN_Feat: 0.643 G_ID: 0.377 G_Rec: 0.350 D_GP: 0.056 D_real: 0.778 D_fake: 0.981 +(epoch: 8, iters: 2544, time: 0.064) G_GAN: 0.419 G_GAN_Feat: 0.679 G_ID: 0.968 G_Rec: 0.401 D_GP: 0.026 D_real: 1.266 D_fake: 0.582 +(epoch: 8, iters: 2944, time: 0.064) G_GAN: 0.003 G_GAN_Feat: 0.913 G_ID: 0.405 G_Rec: 0.436 D_GP: 0.085 D_real: 0.566 D_fake: 0.997 +(epoch: 8, iters: 3344, time: 0.064) G_GAN: 0.160 G_GAN_Feat: 1.116 G_ID: 0.990 G_Rec: 0.471 D_GP: 0.078 D_real: 0.797 D_fake: 0.840 +(epoch: 8, iters: 3744, time: 0.064) G_GAN: 0.351 G_GAN_Feat: 0.842 G_ID: 0.383 G_Rec: 0.394 D_GP: 0.028 D_real: 1.033 D_fake: 0.649 +(epoch: 8, iters: 4144, time: 0.064) G_GAN: 0.105 G_GAN_Feat: 0.814 G_ID: 0.990 G_Rec: 0.360 D_GP: 0.027 D_real: 0.779 D_fake: 0.895 +(epoch: 8, iters: 4544, time: 0.064) G_GAN: -0.019 G_GAN_Feat: 0.580 G_ID: 0.418 G_Rec: 0.501 D_GP: 0.019 D_real: 0.810 D_fake: 1.019 +(epoch: 8, iters: 4944, time: 0.064) G_GAN: 0.234 G_GAN_Feat: 0.641 G_ID: 0.969 G_Rec: 0.309 D_GP: 0.038 D_real: 0.999 D_fake: 0.766 +(epoch: 8, iters: 5344, time: 0.064) G_GAN: 0.176 G_GAN_Feat: 0.743 G_ID: 0.434 G_Rec: 0.368 D_GP: 0.068 D_real: 1.013 D_fake: 0.824 +(epoch: 8, iters: 5744, time: 0.064) G_GAN: 0.191 G_GAN_Feat: 0.949 G_ID: 0.951 G_Rec: 0.431 D_GP: 0.079 D_real: 0.675 D_fake: 0.811 +(epoch: 8, iters: 6144, time: 0.064) G_GAN: 0.128 G_GAN_Feat: 0.962 G_ID: 0.364 G_Rec: 0.389 D_GP: 0.076 D_real: 0.698 D_fake: 0.872 +(epoch: 8, iters: 6544, time: 0.064) G_GAN: 0.143 G_GAN_Feat: 0.974 G_ID: 0.984 G_Rec: 0.757 D_GP: 0.088 D_real: 0.624 D_fake: 0.857 +(epoch: 8, iters: 6944, time: 0.064) G_GAN: 0.408 G_GAN_Feat: 1.090 G_ID: 0.408 G_Rec: 0.428 D_GP: 0.090 D_real: 1.143 D_fake: 0.606 +(epoch: 8, iters: 7344, time: 0.064) G_GAN: 0.151 G_GAN_Feat: 0.806 G_ID: 0.952 G_Rec: 0.353 D_GP: 0.036 D_real: 0.814 D_fake: 0.849 +(epoch: 8, iters: 7744, time: 0.064) G_GAN: 0.004 G_GAN_Feat: 0.896 G_ID: 0.420 G_Rec: 0.344 D_GP: 0.124 D_real: 0.733 D_fake: 0.996 +(epoch: 8, iters: 8144, time: 0.064) G_GAN: 0.121 G_GAN_Feat: 0.627 G_ID: 0.988 G_Rec: 0.394 D_GP: 0.016 D_real: 1.048 D_fake: 0.879 +(epoch: 8, iters: 8544, time: 0.064) G_GAN: 0.228 G_GAN_Feat: 0.891 G_ID: 0.428 G_Rec: 0.387 D_GP: 0.069 D_real: 0.870 D_fake: 0.774 +(epoch: 9, iters: 336, time: 0.064) G_GAN: 0.058 G_GAN_Feat: 0.899 G_ID: 0.986 G_Rec: 0.346 D_GP: 0.107 D_real: 0.599 D_fake: 0.942 +(epoch: 9, iters: 736, time: 0.064) G_GAN: 0.082 G_GAN_Feat: 0.970 G_ID: 0.424 G_Rec: 0.330 D_GP: 0.095 D_real: 0.495 D_fake: 0.918 +(epoch: 9, iters: 1136, time: 0.064) G_GAN: 0.142 G_GAN_Feat: 0.625 G_ID: 0.986 G_Rec: 0.412 D_GP: 0.014 D_real: 1.022 D_fake: 0.858 +(epoch: 9, iters: 1536, time: 0.064) G_GAN: 0.357 G_GAN_Feat: 0.768 G_ID: 0.380 G_Rec: 0.401 D_GP: 0.048 D_real: 1.134 D_fake: 0.643 +(epoch: 9, iters: 1936, time: 0.064) G_GAN: 0.217 G_GAN_Feat: 0.872 G_ID: 0.963 G_Rec: 0.369 D_GP: 0.089 D_real: 0.799 D_fake: 0.783 +(epoch: 9, iters: 2336, time: 0.064) G_GAN: -0.044 G_GAN_Feat: 0.710 G_ID: 0.437 G_Rec: 0.372 D_GP: 0.036 D_real: 0.717 D_fake: 1.044 +(epoch: 9, iters: 2736, time: 0.064) G_GAN: -0.028 G_GAN_Feat: 1.063 G_ID: 0.975 G_Rec: 0.479 D_GP: 0.114 D_real: 0.497 D_fake: 1.028 +(epoch: 9, iters: 3136, time: 0.064) G_GAN: 0.247 G_GAN_Feat: 0.662 G_ID: 0.463 G_Rec: 0.388 D_GP: 0.028 D_real: 1.080 D_fake: 0.753 +(epoch: 9, iters: 3536, time: 0.064) G_GAN: 0.011 G_GAN_Feat: 0.589 G_ID: 0.967 G_Rec: 0.339 D_GP: 0.018 D_real: 0.929 D_fake: 0.989 +(epoch: 9, iters: 3936, time: 0.064) G_GAN: 0.082 G_GAN_Feat: 0.876 G_ID: 0.369 G_Rec: 0.400 D_GP: 0.114 D_real: 0.674 D_fake: 0.918 +(epoch: 9, iters: 4336, time: 0.064) G_GAN: 0.108 G_GAN_Feat: 0.798 G_ID: 0.935 G_Rec: 0.468 D_GP: 0.050 D_real: 0.829 D_fake: 0.892 +(epoch: 9, iters: 4736, time: 0.064) G_GAN: 0.088 G_GAN_Feat: 1.019 G_ID: 0.445 G_Rec: 0.372 D_GP: 0.068 D_real: 0.558 D_fake: 0.912 +(epoch: 9, iters: 5136, time: 0.064) G_GAN: 0.262 G_GAN_Feat: 1.389 G_ID: 0.990 G_Rec: 0.432 D_GP: 0.351 D_real: 0.388 D_fake: 0.740 +(epoch: 9, iters: 5536, time: 0.064) G_GAN: 0.056 G_GAN_Feat: 0.671 G_ID: 0.442 G_Rec: 0.450 D_GP: 0.030 D_real: 0.795 D_fake: 0.944 +(epoch: 9, iters: 5936, time: 0.064) G_GAN: 0.302 G_GAN_Feat: 0.817 G_ID: 0.935 G_Rec: 0.442 D_GP: 0.077 D_real: 0.890 D_fake: 0.698 +(epoch: 9, iters: 6336, time: 0.064) G_GAN: -0.064 G_GAN_Feat: 0.747 G_ID: 0.453 G_Rec: 0.358 D_GP: 0.057 D_real: 0.649 D_fake: 1.064 +(epoch: 9, iters: 6736, time: 0.064) G_GAN: 0.317 G_GAN_Feat: 0.612 G_ID: 0.959 G_Rec: 0.324 D_GP: 0.019 D_real: 1.150 D_fake: 0.683 +(epoch: 9, iters: 7136, time: 0.064) G_GAN: 0.718 G_GAN_Feat: 0.713 G_ID: 0.485 G_Rec: 0.537 D_GP: 0.019 D_real: 1.583 D_fake: 0.345 +(epoch: 9, iters: 7536, time: 0.064) G_GAN: -0.217 G_GAN_Feat: 0.831 G_ID: 0.973 G_Rec: 0.392 D_GP: 0.050 D_real: 0.735 D_fake: 1.217 +(epoch: 9, iters: 7936, time: 0.064) G_GAN: 0.082 G_GAN_Feat: 1.072 G_ID: 0.352 G_Rec: 0.420 D_GP: 0.061 D_real: 0.520 D_fake: 0.918 +(epoch: 9, iters: 8336, time: 0.064) G_GAN: 0.366 G_GAN_Feat: 0.801 G_ID: 0.971 G_Rec: 0.339 D_GP: 0.052 D_real: 1.052 D_fake: 0.634 +(epoch: 10, iters: 128, time: 0.064) G_GAN: 0.328 G_GAN_Feat: 0.941 G_ID: 0.393 G_Rec: 0.391 D_GP: 0.078 D_real: 0.831 D_fake: 0.673 +(epoch: 10, iters: 528, time: 0.064) G_GAN: 0.652 G_GAN_Feat: 1.110 G_ID: 0.961 G_Rec: 0.417 D_GP: 0.083 D_real: 1.016 D_fake: 0.461 +(epoch: 10, iters: 928, time: 0.064) G_GAN: 0.313 G_GAN_Feat: 0.717 G_ID: 0.400 G_Rec: 0.595 D_GP: 0.030 D_real: 1.115 D_fake: 0.688 +(epoch: 10, iters: 1328, time: 0.064) G_GAN: 0.127 G_GAN_Feat: 0.801 G_ID: 0.946 G_Rec: 0.391 D_GP: 0.069 D_real: 0.901 D_fake: 0.873 +(epoch: 10, iters: 1728, time: 0.064) G_GAN: 0.549 G_GAN_Feat: 0.736 G_ID: 0.434 G_Rec: 0.341 D_GP: 0.023 D_real: 1.345 D_fake: 0.466 +(epoch: 10, iters: 2128, time: 0.064) G_GAN: 0.415 G_GAN_Feat: 0.791 G_ID: 0.983 G_Rec: 0.350 D_GP: 0.045 D_real: 1.103 D_fake: 0.585 +(epoch: 10, iters: 2528, time: 0.064) G_GAN: 0.294 G_GAN_Feat: 0.660 G_ID: 0.447 G_Rec: 0.382 D_GP: 0.018 D_real: 1.143 D_fake: 0.708 +(epoch: 10, iters: 2928, time: 0.064) G_GAN: 0.586 G_GAN_Feat: 0.867 G_ID: 0.984 G_Rec: 0.452 D_GP: 0.058 D_real: 1.290 D_fake: 0.476 +(epoch: 10, iters: 3328, time: 0.064) G_GAN: 0.440 G_GAN_Feat: 0.872 G_ID: 0.392 G_Rec: 0.349 D_GP: 0.053 D_real: 1.103 D_fake: 0.609 +(epoch: 10, iters: 3728, time: 0.064) G_GAN: 0.007 G_GAN_Feat: 0.709 G_ID: 0.947 G_Rec: 0.383 D_GP: 0.029 D_real: 0.783 D_fake: 0.993 +(epoch: 10, iters: 4128, time: 0.064) G_GAN: 0.551 G_GAN_Feat: 0.736 G_ID: 0.465 G_Rec: 0.338 D_GP: 0.031 D_real: 1.343 D_fake: 0.554 +(epoch: 10, iters: 4528, time: 0.064) G_GAN: 0.406 G_GAN_Feat: 0.800 G_ID: 0.992 G_Rec: 0.582 D_GP: 0.051 D_real: 1.077 D_fake: 0.599 +(epoch: 10, iters: 4928, time: 0.064) G_GAN: 0.586 G_GAN_Feat: 0.979 G_ID: 0.418 G_Rec: 0.478 D_GP: 0.041 D_real: 1.163 D_fake: 0.492 +(epoch: 10, iters: 5328, time: 0.064) G_GAN: -0.007 G_GAN_Feat: 1.012 G_ID: 1.000 G_Rec: 0.497 D_GP: 0.099 D_real: 0.990 D_fake: 1.007 +(epoch: 10, iters: 5728, time: 0.064) G_GAN: 0.452 G_GAN_Feat: 0.857 G_ID: 0.398 G_Rec: 0.361 D_GP: 0.029 D_real: 1.090 D_fake: 0.548 +(epoch: 10, iters: 6128, time: 0.064) G_GAN: 0.468 G_GAN_Feat: 0.707 G_ID: 0.932 G_Rec: 0.407 D_GP: 0.015 D_real: 1.310 D_fake: 0.543 +(epoch: 10, iters: 6528, time: 0.064) G_GAN: 0.384 G_GAN_Feat: 0.672 G_ID: 0.488 G_Rec: 0.470 D_GP: 0.031 D_real: 1.157 D_fake: 0.616 +(epoch: 10, iters: 6928, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 0.719 G_ID: 0.967 G_Rec: 0.395 D_GP: 0.039 D_real: 0.996 D_fake: 0.807 +(epoch: 10, iters: 7328, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 1.028 G_ID: 0.369 G_Rec: 0.438 D_GP: 0.113 D_real: 0.618 D_fake: 0.738 +(epoch: 10, iters: 7728, time: 0.064) G_GAN: 0.052 G_GAN_Feat: 0.922 G_ID: 0.971 G_Rec: 0.517 D_GP: 0.140 D_real: 0.553 D_fake: 0.948 +(epoch: 10, iters: 8128, time: 0.064) G_GAN: 0.308 G_GAN_Feat: 0.673 G_ID: 0.437 G_Rec: 0.476 D_GP: 0.018 D_real: 1.176 D_fake: 0.692 +(epoch: 10, iters: 8528, time: 0.064) G_GAN: 0.130 G_GAN_Feat: 0.720 G_ID: 0.994 G_Rec: 0.320 D_GP: 0.071 D_real: 0.860 D_fake: 0.870 +(epoch: 11, iters: 320, time: 0.064) G_GAN: -0.044 G_GAN_Feat: 0.757 G_ID: 0.403 G_Rec: 0.407 D_GP: 0.042 D_real: 0.674 D_fake: 1.044 +(epoch: 11, iters: 720, time: 0.064) G_GAN: 0.401 G_GAN_Feat: 0.901 G_ID: 0.927 G_Rec: 0.421 D_GP: 0.087 D_real: 0.864 D_fake: 0.600 +(epoch: 11, iters: 1120, time: 0.064) G_GAN: 0.441 G_GAN_Feat: 0.961 G_ID: 0.398 G_Rec: 0.409 D_GP: 0.123 D_real: 0.835 D_fake: 0.571 +(epoch: 11, iters: 1520, time: 0.064) G_GAN: 0.411 G_GAN_Feat: 0.761 G_ID: 0.972 G_Rec: 0.473 D_GP: 0.043 D_real: 1.176 D_fake: 0.589 +(epoch: 11, iters: 1920, time: 0.064) G_GAN: 0.413 G_GAN_Feat: 0.707 G_ID: 0.472 G_Rec: 0.334 D_GP: 0.033 D_real: 1.243 D_fake: 0.588 +(epoch: 11, iters: 2320, time: 0.064) G_GAN: 0.397 G_GAN_Feat: 1.027 G_ID: 0.970 G_Rec: 0.354 D_GP: 0.048 D_real: 0.865 D_fake: 0.603 +(epoch: 11, iters: 2720, time: 0.064) G_GAN: 0.272 G_GAN_Feat: 0.907 G_ID: 0.327 G_Rec: 0.364 D_GP: 0.059 D_real: 0.959 D_fake: 0.731 +(epoch: 11, iters: 3120, time: 0.064) G_GAN: 0.334 G_GAN_Feat: 0.763 G_ID: 0.975 G_Rec: 0.399 D_GP: 0.029 D_real: 1.084 D_fake: 0.669 +(epoch: 11, iters: 3520, time: 0.064) G_GAN: 0.237 G_GAN_Feat: 0.696 G_ID: 0.405 G_Rec: 0.418 D_GP: 0.025 D_real: 1.009 D_fake: 0.763 +(epoch: 11, iters: 3920, time: 0.064) G_GAN: -0.078 G_GAN_Feat: 0.918 G_ID: 0.940 G_Rec: 0.385 D_GP: 0.094 D_real: 0.494 D_fake: 1.078 +(epoch: 11, iters: 4320, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 0.698 G_ID: 0.422 G_Rec: 0.413 D_GP: 0.026 D_real: 1.147 D_fake: 0.737 +(epoch: 11, iters: 4720, time: 0.064) G_GAN: 0.508 G_GAN_Feat: 0.892 G_ID: 0.946 G_Rec: 0.418 D_GP: 0.031 D_real: 1.174 D_fake: 0.498 +(epoch: 11, iters: 5120, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 0.983 G_ID: 0.399 G_Rec: 0.364 D_GP: 0.104 D_real: 0.880 D_fake: 0.565 +(epoch: 11, iters: 5520, time: 0.064) G_GAN: 0.214 G_GAN_Feat: 0.489 G_ID: 0.971 G_Rec: 0.320 D_GP: 0.016 D_real: 1.151 D_fake: 0.786 +(epoch: 11, iters: 5920, time: 0.064) G_GAN: -0.065 G_GAN_Feat: 0.613 G_ID: 0.418 G_Rec: 0.520 D_GP: 0.022 D_real: 0.700 D_fake: 1.065 +(epoch: 11, iters: 6320, time: 0.064) G_GAN: -0.042 G_GAN_Feat: 0.618 G_ID: 0.939 G_Rec: 0.347 D_GP: 0.038 D_real: 0.823 D_fake: 1.042 +(epoch: 11, iters: 6720, time: 0.064) G_GAN: 0.234 G_GAN_Feat: 0.647 G_ID: 0.353 G_Rec: 0.312 D_GP: 0.033 D_real: 1.007 D_fake: 0.766 +(epoch: 11, iters: 7120, time: 0.064) G_GAN: 0.555 G_GAN_Feat: 0.910 G_ID: 0.973 G_Rec: 0.477 D_GP: 0.042 D_real: 1.348 D_fake: 0.587 +(epoch: 11, iters: 7520, time: 0.064) G_GAN: 0.026 G_GAN_Feat: 0.664 G_ID: 0.399 G_Rec: 0.484 D_GP: 0.034 D_real: 0.873 D_fake: 0.974 +(epoch: 11, iters: 7920, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 1.114 G_ID: 0.997 G_Rec: 0.433 D_GP: 0.140 D_real: 0.488 D_fake: 0.727 +(epoch: 11, iters: 8320, time: 0.064) G_GAN: 0.034 G_GAN_Feat: 0.838 G_ID: 0.351 G_Rec: 0.308 D_GP: 0.057 D_real: 0.595 D_fake: 0.966 +(epoch: 12, iters: 112, time: 0.064) G_GAN: 0.244 G_GAN_Feat: 0.763 G_ID: 0.950 G_Rec: 0.623 D_GP: 0.036 D_real: 1.038 D_fake: 0.756 +(epoch: 12, iters: 512, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.668 G_ID: 0.428 G_Rec: 0.398 D_GP: 0.023 D_real: 1.084 D_fake: 0.722 +(epoch: 12, iters: 912, time: 0.064) G_GAN: 0.499 G_GAN_Feat: 0.929 G_ID: 0.956 G_Rec: 0.461 D_GP: 0.078 D_real: 0.982 D_fake: 0.527 +(epoch: 12, iters: 1312, time: 0.064) G_GAN: 0.032 G_GAN_Feat: 0.977 G_ID: 0.431 G_Rec: 0.608 D_GP: 0.058 D_real: 0.514 D_fake: 0.968 +(epoch: 12, iters: 1712, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 0.752 G_ID: 0.962 G_Rec: 0.310 D_GP: 0.060 D_real: 1.078 D_fake: 0.689 +(epoch: 12, iters: 2112, time: 0.064) G_GAN: -0.177 G_GAN_Feat: 0.622 G_ID: 0.445 G_Rec: 0.379 D_GP: 0.022 D_real: 0.647 D_fake: 1.177 +(epoch: 12, iters: 2512, time: 0.064) G_GAN: 0.066 G_GAN_Feat: 1.198 G_ID: 0.928 G_Rec: 0.403 D_GP: 0.115 D_real: 0.388 D_fake: 0.934 +(epoch: 12, iters: 2912, time: 0.064) G_GAN: 0.169 G_GAN_Feat: 0.576 G_ID: 0.482 G_Rec: 0.400 D_GP: 0.015 D_real: 1.049 D_fake: 0.834 +(epoch: 12, iters: 3312, time: 0.064) G_GAN: 0.078 G_GAN_Feat: 0.845 G_ID: 1.003 G_Rec: 0.604 D_GP: 0.082 D_real: 0.745 D_fake: 0.922 +(epoch: 12, iters: 3712, time: 0.064) G_GAN: 0.196 G_GAN_Feat: 1.101 G_ID: 0.395 G_Rec: 0.653 D_GP: 0.152 D_real: 0.473 D_fake: 0.807 +(epoch: 12, iters: 4112, time: 0.064) G_GAN: 0.520 G_GAN_Feat: 0.851 G_ID: 0.952 G_Rec: 0.467 D_GP: 0.039 D_real: 1.284 D_fake: 0.484 +(epoch: 12, iters: 4512, time: 0.064) G_GAN: 0.185 G_GAN_Feat: 0.796 G_ID: 0.415 G_Rec: 0.349 D_GP: 0.047 D_real: 0.826 D_fake: 0.815 +(epoch: 12, iters: 4912, time: 0.064) G_GAN: 0.267 G_GAN_Feat: 0.435 G_ID: 0.953 G_Rec: 0.391 D_GP: 0.011 D_real: 1.190 D_fake: 0.733 +(epoch: 12, iters: 5312, time: 0.064) G_GAN: 0.200 G_GAN_Feat: 0.456 G_ID: 0.359 G_Rec: 0.340 D_GP: 0.012 D_real: 1.059 D_fake: 0.800 +(epoch: 12, iters: 5712, time: 0.064) G_GAN: 0.189 G_GAN_Feat: 0.491 G_ID: 0.946 G_Rec: 0.366 D_GP: 0.015 D_real: 1.098 D_fake: 0.811 +(epoch: 12, iters: 6112, time: 0.064) G_GAN: 0.036 G_GAN_Feat: 0.615 G_ID: 0.389 G_Rec: 0.421 D_GP: 0.019 D_real: 1.009 D_fake: 0.968 +(epoch: 12, iters: 6512, time: 0.064) G_GAN: -0.270 G_GAN_Feat: 0.532 G_ID: 0.948 G_Rec: 0.310 D_GP: 0.030 D_real: 0.566 D_fake: 1.270 +(epoch: 12, iters: 6912, time: 0.064) G_GAN: 0.098 G_GAN_Feat: 0.603 G_ID: 0.375 G_Rec: 0.318 D_GP: 0.052 D_real: 0.875 D_fake: 0.902 +(epoch: 12, iters: 7312, time: 0.064) G_GAN: 0.311 G_GAN_Feat: 0.696 G_ID: 0.906 G_Rec: 0.388 D_GP: 0.064 D_real: 1.057 D_fake: 0.690 +(epoch: 12, iters: 7712, time: 0.064) G_GAN: 0.270 G_GAN_Feat: 0.674 G_ID: 0.363 G_Rec: 0.345 D_GP: 0.065 D_real: 1.027 D_fake: 0.731 +(epoch: 12, iters: 8112, time: 0.064) G_GAN: 0.394 G_GAN_Feat: 0.585 G_ID: 0.960 G_Rec: 0.344 D_GP: 0.021 D_real: 1.261 D_fake: 0.606 +(epoch: 12, iters: 8512, time: 0.064) G_GAN: 0.240 G_GAN_Feat: 0.770 G_ID: 0.412 G_Rec: 0.500 D_GP: 0.066 D_real: 0.880 D_fake: 0.760 +(epoch: 13, iters: 304, time: 0.064) G_GAN: -0.080 G_GAN_Feat: 0.658 G_ID: 0.917 G_Rec: 0.354 D_GP: 0.049 D_real: 0.674 D_fake: 1.080 +(epoch: 13, iters: 704, time: 0.064) G_GAN: 0.379 G_GAN_Feat: 0.798 G_ID: 0.411 G_Rec: 0.471 D_GP: 0.069 D_real: 1.007 D_fake: 0.626 +(epoch: 13, iters: 1104, time: 0.064) G_GAN: 0.390 G_GAN_Feat: 0.740 G_ID: 0.947 G_Rec: 0.411 D_GP: 0.043 D_real: 1.147 D_fake: 0.612 +(epoch: 13, iters: 1504, time: 0.064) G_GAN: 0.582 G_GAN_Feat: 1.012 G_ID: 0.453 G_Rec: 0.466 D_GP: 0.127 D_real: 0.883 D_fake: 0.436 +(epoch: 13, iters: 1904, time: 0.064) G_GAN: -0.050 G_GAN_Feat: 0.735 G_ID: 0.946 G_Rec: 0.349 D_GP: 0.061 D_real: 0.624 D_fake: 1.050 +(epoch: 13, iters: 2304, time: 0.064) G_GAN: 0.566 G_GAN_Feat: 0.902 G_ID: 0.459 G_Rec: 0.346 D_GP: 0.143 D_real: 1.003 D_fake: 0.510 +(epoch: 13, iters: 2704, time: 0.064) G_GAN: 0.289 G_GAN_Feat: 0.679 G_ID: 0.972 G_Rec: 0.384 D_GP: 0.032 D_real: 1.033 D_fake: 0.711 +(epoch: 13, iters: 3104, time: 0.064) G_GAN: 0.175 G_GAN_Feat: 0.842 G_ID: 0.386 G_Rec: 0.571 D_GP: 0.085 D_real: 0.778 D_fake: 0.825 +(epoch: 13, iters: 3504, time: 0.064) G_GAN: 0.359 G_GAN_Feat: 0.767 G_ID: 0.920 G_Rec: 0.365 D_GP: 0.063 D_real: 0.998 D_fake: 0.641 +(epoch: 13, iters: 3904, time: 0.064) G_GAN: 0.793 G_GAN_Feat: 0.705 G_ID: 0.459 G_Rec: 0.349 D_GP: 0.025 D_real: 1.559 D_fake: 0.277 +(epoch: 13, iters: 4304, time: 0.064) G_GAN: 0.453 G_GAN_Feat: 0.734 G_ID: 0.954 G_Rec: 0.367 D_GP: 0.048 D_real: 1.102 D_fake: 0.557 +(epoch: 13, iters: 4704, time: 0.064) G_GAN: 0.088 G_GAN_Feat: 0.709 G_ID: 0.393 G_Rec: 0.370 D_GP: 0.028 D_real: 0.854 D_fake: 0.912 +(epoch: 13, iters: 5104, time: 0.064) G_GAN: 0.552 G_GAN_Feat: 0.694 G_ID: 0.933 G_Rec: 0.357 D_GP: 0.023 D_real: 1.362 D_fake: 0.499 +(epoch: 13, iters: 5504, time: 0.064) G_GAN: 0.157 G_GAN_Feat: 0.594 G_ID: 0.384 G_Rec: 0.450 D_GP: 0.024 D_real: 0.920 D_fake: 0.843 +(epoch: 13, iters: 5904, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.664 G_ID: 0.949 G_Rec: 0.341 D_GP: 0.050 D_real: 0.960 D_fake: 0.751 +(epoch: 13, iters: 6304, time: 0.064) G_GAN: 0.246 G_GAN_Feat: 0.725 G_ID: 0.416 G_Rec: 0.339 D_GP: 0.079 D_real: 0.984 D_fake: 0.757 +(epoch: 13, iters: 6704, time: 0.064) G_GAN: 0.041 G_GAN_Feat: 0.644 G_ID: 0.938 G_Rec: 0.403 D_GP: 0.045 D_real: 0.741 D_fake: 0.959 +(epoch: 13, iters: 7104, time: 0.064) G_GAN: 0.415 G_GAN_Feat: 0.824 G_ID: 0.363 G_Rec: 0.347 D_GP: 0.096 D_real: 0.893 D_fake: 0.587 +(epoch: 13, iters: 7504, time: 0.064) G_GAN: 0.060 G_GAN_Feat: 0.850 G_ID: 0.921 G_Rec: 0.431 D_GP: 0.026 D_real: 0.712 D_fake: 0.940 +(epoch: 13, iters: 7904, time: 0.064) G_GAN: 0.239 G_GAN_Feat: 0.787 G_ID: 0.478 G_Rec: 0.415 D_GP: 0.073 D_real: 1.030 D_fake: 0.761 +(epoch: 13, iters: 8304, time: 0.064) G_GAN: 0.004 G_GAN_Feat: 0.784 G_ID: 0.950 G_Rec: 0.438 D_GP: 0.064 D_real: 0.609 D_fake: 0.996 +(epoch: 14, iters: 96, time: 0.064) G_GAN: 0.523 G_GAN_Feat: 0.987 G_ID: 0.483 G_Rec: 0.440 D_GP: 0.047 D_real: 1.045 D_fake: 0.485 +(epoch: 14, iters: 496, time: 0.064) G_GAN: 0.723 G_GAN_Feat: 0.740 G_ID: 0.919 G_Rec: 0.377 D_GP: 0.040 D_real: 1.437 D_fake: 0.411 +(epoch: 14, iters: 896, time: 0.064) G_GAN: 0.220 G_GAN_Feat: 0.934 G_ID: 0.408 G_Rec: 0.391 D_GP: 0.044 D_real: 0.695 D_fake: 0.780 +(epoch: 14, iters: 1296, time: 0.064) G_GAN: 0.168 G_GAN_Feat: 0.866 G_ID: 0.941 G_Rec: 0.367 D_GP: 0.035 D_real: 1.034 D_fake: 0.832 +(epoch: 14, iters: 1696, time: 0.064) G_GAN: 0.102 G_GAN_Feat: 0.824 G_ID: 0.402 G_Rec: 0.526 D_GP: 0.041 D_real: 0.929 D_fake: 0.898 +(epoch: 14, iters: 2096, time: 0.064) G_GAN: -0.040 G_GAN_Feat: 0.887 G_ID: 0.923 G_Rec: 0.574 D_GP: 0.067 D_real: 0.415 D_fake: 1.040 +(epoch: 14, iters: 2496, time: 0.064) G_GAN: 0.454 G_GAN_Feat: 0.688 G_ID: 0.455 G_Rec: 0.353 D_GP: 0.038 D_real: 1.145 D_fake: 0.553 +(epoch: 14, iters: 2896, time: 0.064) G_GAN: -0.044 G_GAN_Feat: 0.753 G_ID: 0.932 G_Rec: 0.371 D_GP: 0.038 D_real: 0.729 D_fake: 1.044 +(epoch: 14, iters: 3296, time: 0.064) G_GAN: 0.219 G_GAN_Feat: 0.665 G_ID: 0.454 G_Rec: 0.384 D_GP: 0.025 D_real: 0.971 D_fake: 0.781 +(epoch: 14, iters: 3696, time: 0.064) G_GAN: -0.050 G_GAN_Feat: 0.984 G_ID: 0.944 G_Rec: 0.341 D_GP: 0.130 D_real: 0.384 D_fake: 1.050 +(epoch: 14, iters: 4096, time: 0.064) G_GAN: 0.294 G_GAN_Feat: 0.821 G_ID: 0.302 G_Rec: 0.367 D_GP: 0.038 D_real: 1.029 D_fake: 0.706 +(epoch: 14, iters: 4496, time: 0.064) G_GAN: 0.228 G_GAN_Feat: 0.533 G_ID: 0.931 G_Rec: 0.337 D_GP: 0.015 D_real: 1.137 D_fake: 0.772 +(epoch: 14, iters: 4896, time: 0.064) G_GAN: 0.074 G_GAN_Feat: 0.739 G_ID: 0.430 G_Rec: 0.615 D_GP: 0.041 D_real: 0.924 D_fake: 0.926 +(epoch: 14, iters: 5296, time: 0.064) G_GAN: 0.581 G_GAN_Feat: 0.805 G_ID: 0.908 G_Rec: 0.390 D_GP: 0.055 D_real: 1.223 D_fake: 0.422 +(epoch: 14, iters: 5696, time: 0.064) G_GAN: 0.206 G_GAN_Feat: 0.681 G_ID: 0.456 G_Rec: 0.385 D_GP: 0.042 D_real: 0.937 D_fake: 0.795 +(epoch: 14, iters: 6096, time: 0.064) G_GAN: -0.085 G_GAN_Feat: 0.681 G_ID: 0.943 G_Rec: 0.359 D_GP: 0.039 D_real: 0.773 D_fake: 1.085 +(epoch: 14, iters: 6496, time: 0.064) G_GAN: 0.057 G_GAN_Feat: 0.766 G_ID: 0.521 G_Rec: 0.381 D_GP: 0.074 D_real: 0.746 D_fake: 0.943 +(epoch: 14, iters: 6896, time: 0.064) G_GAN: 0.028 G_GAN_Feat: 0.819 G_ID: 0.953 G_Rec: 0.352 D_GP: 0.053 D_real: 0.640 D_fake: 0.972 +(epoch: 14, iters: 7296, time: 0.064) G_GAN: 0.014 G_GAN_Feat: 1.235 G_ID: 0.351 G_Rec: 0.343 D_GP: 0.088 D_real: 0.499 D_fake: 0.986 +(epoch: 14, iters: 7696, time: 0.064) G_GAN: -0.037 G_GAN_Feat: 0.774 G_ID: 0.926 G_Rec: 0.504 D_GP: 0.049 D_real: 0.661 D_fake: 1.037 +(epoch: 14, iters: 8096, time: 0.064) G_GAN: 0.178 G_GAN_Feat: 0.720 G_ID: 0.438 G_Rec: 0.382 D_GP: 0.024 D_real: 0.844 D_fake: 0.822 +(epoch: 14, iters: 8496, time: 0.064) G_GAN: 0.533 G_GAN_Feat: 0.687 G_ID: 0.893 G_Rec: 0.352 D_GP: 0.027 D_real: 1.317 D_fake: 0.489 +(epoch: 15, iters: 288, time: 0.064) G_GAN: 0.306 G_GAN_Feat: 0.894 G_ID: 0.399 G_Rec: 0.495 D_GP: 0.104 D_real: 0.831 D_fake: 0.695 +(epoch: 15, iters: 688, time: 0.064) G_GAN: 0.036 G_GAN_Feat: 0.802 G_ID: 0.955 G_Rec: 0.341 D_GP: 0.040 D_real: 0.642 D_fake: 0.964 +(epoch: 15, iters: 1088, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 0.952 G_ID: 0.429 G_Rec: 0.414 D_GP: 0.055 D_real: 0.640 D_fake: 0.830 +(epoch: 15, iters: 1488, time: 0.064) G_GAN: 0.090 G_GAN_Feat: 0.986 G_ID: 0.951 G_Rec: 0.325 D_GP: 0.103 D_real: 0.576 D_fake: 0.911 +(epoch: 15, iters: 1888, time: 0.064) G_GAN: 0.184 G_GAN_Feat: 0.703 G_ID: 0.413 G_Rec: 0.387 D_GP: 0.037 D_real: 0.862 D_fake: 0.816 +(epoch: 15, iters: 2288, time: 0.064) G_GAN: 0.092 G_GAN_Feat: 0.752 G_ID: 0.919 G_Rec: 0.403 D_GP: 0.041 D_real: 0.823 D_fake: 0.908 +(epoch: 15, iters: 2688, time: 0.064) G_GAN: 0.134 G_GAN_Feat: 0.580 G_ID: 0.486 G_Rec: 0.344 D_GP: 0.018 D_real: 1.006 D_fake: 0.866 +(epoch: 15, iters: 3088, time: 0.064) G_GAN: 0.353 G_GAN_Feat: 0.708 G_ID: 0.935 G_Rec: 0.370 D_GP: 0.057 D_real: 1.000 D_fake: 0.648 +(epoch: 15, iters: 3488, time: 0.064) G_GAN: 0.202 G_GAN_Feat: 0.739 G_ID: 0.400 G_Rec: 0.606 D_GP: 0.060 D_real: 0.911 D_fake: 0.818 +(epoch: 15, iters: 3888, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 1.123 G_ID: 0.932 G_Rec: 0.356 D_GP: 0.154 D_real: 0.459 D_fake: 0.826 +(epoch: 15, iters: 4288, time: 0.064) G_GAN: 0.355 G_GAN_Feat: 0.927 G_ID: 0.419 G_Rec: 0.420 D_GP: 0.045 D_real: 0.804 D_fake: 0.645 +(epoch: 15, iters: 4688, time: 0.064) G_GAN: 0.451 G_GAN_Feat: 1.369 G_ID: 0.959 G_Rec: 0.369 D_GP: 0.298 D_real: 0.493 D_fake: 0.565 +(epoch: 15, iters: 5088, time: 0.064) G_GAN: 0.016 G_GAN_Feat: 0.663 G_ID: 0.421 G_Rec: 0.459 D_GP: 0.034 D_real: 0.744 D_fake: 0.984 +(epoch: 15, iters: 5488, time: 0.064) G_GAN: 0.003 G_GAN_Feat: 0.826 G_ID: 0.912 G_Rec: 0.361 D_GP: 0.094 D_real: 0.455 D_fake: 0.997 +(epoch: 15, iters: 5888, time: 0.064) G_GAN: 0.526 G_GAN_Feat: 0.940 G_ID: 0.423 G_Rec: 0.705 D_GP: 0.032 D_real: 1.128 D_fake: 0.523 +(epoch: 15, iters: 6288, time: 0.064) G_GAN: -0.014 G_GAN_Feat: 1.008 G_ID: 0.931 G_Rec: 0.368 D_GP: 0.170 D_real: 0.409 D_fake: 1.014 +(epoch: 15, iters: 6688, time: 0.064) G_GAN: 0.328 G_GAN_Feat: 0.762 G_ID: 0.365 G_Rec: 0.344 D_GP: 0.031 D_real: 1.202 D_fake: 0.672 +(epoch: 15, iters: 7088, time: 0.064) G_GAN: 0.077 G_GAN_Feat: 0.672 G_ID: 0.944 G_Rec: 0.373 D_GP: 0.017 D_real: 0.902 D_fake: 0.923 +(epoch: 15, iters: 7488, time: 0.064) G_GAN: 0.122 G_GAN_Feat: 0.755 G_ID: 0.332 G_Rec: 0.412 D_GP: 0.064 D_real: 0.798 D_fake: 0.878 +(epoch: 15, iters: 7888, time: 0.064) G_GAN: 0.250 G_GAN_Feat: 0.930 G_ID: 0.930 G_Rec: 0.441 D_GP: 0.128 D_real: 0.689 D_fake: 0.754 +(epoch: 15, iters: 8288, time: 0.064) G_GAN: 0.068 G_GAN_Feat: 0.594 G_ID: 0.412 G_Rec: 0.315 D_GP: 0.016 D_real: 0.948 D_fake: 0.932 +(epoch: 16, iters: 80, time: 0.064) G_GAN: 0.021 G_GAN_Feat: 0.790 G_ID: 0.924 G_Rec: 0.410 D_GP: 0.066 D_real: 0.744 D_fake: 0.979 +(epoch: 16, iters: 480, time: 0.064) G_GAN: 0.334 G_GAN_Feat: 1.100 G_ID: 0.361 G_Rec: 0.364 D_GP: 0.169 D_real: 0.652 D_fake: 0.669 +(epoch: 16, iters: 880, time: 0.064) G_GAN: 0.023 G_GAN_Feat: 0.729 G_ID: 0.922 G_Rec: 0.549 D_GP: 0.038 D_real: 0.772 D_fake: 0.977 +(epoch: 16, iters: 1280, time: 0.064) G_GAN: 0.310 G_GAN_Feat: 0.755 G_ID: 0.392 G_Rec: 0.320 D_GP: 0.061 D_real: 1.005 D_fake: 0.698 +(epoch: 16, iters: 1680, time: 0.064) G_GAN: -0.661 G_GAN_Feat: 1.123 G_ID: 0.931 G_Rec: 0.370 D_GP: 0.111 D_real: 0.061 D_fake: 1.661 +(epoch: 16, iters: 2080, time: 0.064) G_GAN: 0.237 G_GAN_Feat: 1.046 G_ID: 0.379 G_Rec: 0.377 D_GP: 0.334 D_real: 0.503 D_fake: 0.768 +(epoch: 16, iters: 2480, time: 0.064) G_GAN: 0.001 G_GAN_Feat: 0.892 G_ID: 0.903 G_Rec: 0.457 D_GP: 0.113 D_real: 0.884 D_fake: 1.000 +(epoch: 16, iters: 2880, time: 0.064) G_GAN: 0.521 G_GAN_Feat: 0.875 G_ID: 0.375 G_Rec: 0.420 D_GP: 0.045 D_real: 1.224 D_fake: 0.536 +(epoch: 16, iters: 3280, time: 0.064) G_GAN: 0.404 G_GAN_Feat: 0.820 G_ID: 0.907 G_Rec: 0.607 D_GP: 0.055 D_real: 1.017 D_fake: 0.596 +(epoch: 16, iters: 3680, time: 0.064) G_GAN: -0.031 G_GAN_Feat: 0.915 G_ID: 0.353 G_Rec: 0.479 D_GP: 0.075 D_real: 0.821 D_fake: 1.031 +(epoch: 16, iters: 4080, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.984 G_ID: 0.915 G_Rec: 0.369 D_GP: 0.028 D_real: 0.850 D_fake: 0.744 +(epoch: 16, iters: 4480, time: 0.064) G_GAN: 0.340 G_GAN_Feat: 0.957 G_ID: 0.377 G_Rec: 0.448 D_GP: 0.070 D_real: 0.789 D_fake: 0.665 +(epoch: 16, iters: 4880, time: 0.064) G_GAN: 0.200 G_GAN_Feat: 0.598 G_ID: 0.922 G_Rec: 0.455 D_GP: 0.015 D_real: 1.075 D_fake: 0.800 +(epoch: 16, iters: 5280, time: 0.064) G_GAN: 0.478 G_GAN_Feat: 0.837 G_ID: 0.404 G_Rec: 0.397 D_GP: 0.027 D_real: 1.247 D_fake: 0.544 +(epoch: 16, iters: 5680, time: 0.064) G_GAN: 0.188 G_GAN_Feat: 0.788 G_ID: 0.924 G_Rec: 0.358 D_GP: 0.057 D_real: 0.869 D_fake: 0.812 +(epoch: 16, iters: 6080, time: 0.064) G_GAN: 0.322 G_GAN_Feat: 0.840 G_ID: 0.338 G_Rec: 0.373 D_GP: 0.052 D_real: 0.934 D_fake: 0.679 +(epoch: 16, iters: 6480, time: 0.064) G_GAN: 0.205 G_GAN_Feat: 0.694 G_ID: 0.881 G_Rec: 0.457 D_GP: 0.061 D_real: 0.966 D_fake: 0.795 +(epoch: 16, iters: 6880, time: 0.064) G_GAN: 0.019 G_GAN_Feat: 0.823 G_ID: 0.408 G_Rec: 0.355 D_GP: 0.078 D_real: 0.782 D_fake: 0.981 +(epoch: 16, iters: 7280, time: 0.064) G_GAN: -0.045 G_GAN_Feat: 1.056 G_ID: 0.942 G_Rec: 0.450 D_GP: 0.176 D_real: 0.262 D_fake: 1.045 +(epoch: 16, iters: 7680, time: 0.064) G_GAN: 0.092 G_GAN_Feat: 1.206 G_ID: 0.426 G_Rec: 0.366 D_GP: 0.274 D_real: 0.496 D_fake: 0.909 +(epoch: 16, iters: 8080, time: 0.064) G_GAN: 0.378 G_GAN_Feat: 0.804 G_ID: 0.960 G_Rec: 0.446 D_GP: 0.057 D_real: 1.057 D_fake: 0.624 +(epoch: 16, iters: 8480, time: 0.064) G_GAN: 0.508 G_GAN_Feat: 0.951 G_ID: 0.418 G_Rec: 0.341 D_GP: 0.069 D_real: 1.102 D_fake: 0.493 +(epoch: 17, iters: 272, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.850 G_ID: 0.894 G_Rec: 0.388 D_GP: 0.051 D_real: 0.903 D_fake: 0.676 +(epoch: 17, iters: 672, time: 0.064) G_GAN: 0.448 G_GAN_Feat: 0.897 G_ID: 0.372 G_Rec: 0.426 D_GP: 0.059 D_real: 0.971 D_fake: 0.552 +(epoch: 17, iters: 1072, time: 0.064) G_GAN: 0.624 G_GAN_Feat: 0.794 G_ID: 0.946 G_Rec: 0.402 D_GP: 0.048 D_real: 1.279 D_fake: 0.380 +(epoch: 17, iters: 1472, time: 0.064) G_GAN: 0.530 G_GAN_Feat: 0.656 G_ID: 0.447 G_Rec: 0.423 D_GP: 0.031 D_real: 1.319 D_fake: 0.471 +(epoch: 17, iters: 1872, time: 0.064) G_GAN: 0.118 G_GAN_Feat: 0.845 G_ID: 0.934 G_Rec: 0.436 D_GP: 0.041 D_real: 0.710 D_fake: 0.882 +(epoch: 17, iters: 2272, time: 0.064) G_GAN: -0.163 G_GAN_Feat: 0.713 G_ID: 0.461 G_Rec: 0.348 D_GP: 0.024 D_real: 0.706 D_fake: 1.164 +(epoch: 17, iters: 2672, time: 0.064) G_GAN: 0.471 G_GAN_Feat: 0.838 G_ID: 0.896 G_Rec: 0.330 D_GP: 0.030 D_real: 1.107 D_fake: 0.530 +(epoch: 17, iters: 3072, time: 0.064) G_GAN: 0.476 G_GAN_Feat: 0.832 G_ID: 0.404 G_Rec: 0.342 D_GP: 0.053 D_real: 1.197 D_fake: 0.545 +(epoch: 17, iters: 3472, time: 0.064) G_GAN: 0.356 G_GAN_Feat: 0.851 G_ID: 0.902 G_Rec: 0.425 D_GP: 0.043 D_real: 1.127 D_fake: 0.655 +(epoch: 17, iters: 3872, time: 0.064) G_GAN: 0.316 G_GAN_Feat: 0.923 G_ID: 0.436 G_Rec: 0.382 D_GP: 0.026 D_real: 0.931 D_fake: 0.684 +(epoch: 17, iters: 4272, time: 0.064) G_GAN: 0.295 G_GAN_Feat: 0.857 G_ID: 0.920 G_Rec: 0.520 D_GP: 0.041 D_real: 0.956 D_fake: 0.705 +(epoch: 17, iters: 4672, time: 0.064) G_GAN: 0.319 G_GAN_Feat: 0.497 G_ID: 0.400 G_Rec: 0.337 D_GP: 0.021 D_real: 1.138 D_fake: 0.681 +(epoch: 17, iters: 5072, time: 0.064) G_GAN: 0.239 G_GAN_Feat: 0.704 G_ID: 0.909 G_Rec: 0.431 D_GP: 0.047 D_real: 0.917 D_fake: 0.761 +(epoch: 17, iters: 5472, time: 0.064) G_GAN: 0.012 G_GAN_Feat: 0.874 G_ID: 0.426 G_Rec: 0.348 D_GP: 0.120 D_real: 0.553 D_fake: 0.989 +(epoch: 17, iters: 5872, time: 0.064) G_GAN: 0.337 G_GAN_Feat: 0.883 G_ID: 0.886 G_Rec: 0.363 D_GP: 0.312 D_real: 0.708 D_fake: 0.665 +(epoch: 17, iters: 6272, time: 0.064) G_GAN: 0.076 G_GAN_Feat: 0.851 G_ID: 0.341 G_Rec: 0.374 D_GP: 0.054 D_real: 0.519 D_fake: 0.924 +(epoch: 17, iters: 6672, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 1.015 G_ID: 0.854 G_Rec: 0.343 D_GP: 0.179 D_real: 0.682 D_fake: 0.677 +(epoch: 17, iters: 7072, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 0.689 G_ID: 0.486 G_Rec: 0.440 D_GP: 0.027 D_real: 1.171 D_fake: 0.646 +(epoch: 17, iters: 7472, time: 0.064) G_GAN: 0.302 G_GAN_Feat: 0.867 G_ID: 0.894 G_Rec: 0.353 D_GP: 0.079 D_real: 0.957 D_fake: 0.698 +(epoch: 17, iters: 7872, time: 0.064) G_GAN: 0.186 G_GAN_Feat: 0.621 G_ID: 0.461 G_Rec: 0.378 D_GP: 0.018 D_real: 0.991 D_fake: 0.814 +(epoch: 17, iters: 8272, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.831 G_ID: 0.915 G_Rec: 0.437 D_GP: 0.052 D_real: 0.827 D_fake: 0.744 +(epoch: 18, iters: 64, time: 0.064) G_GAN: -0.060 G_GAN_Feat: 0.583 G_ID: 0.418 G_Rec: 0.453 D_GP: 0.020 D_real: 0.810 D_fake: 1.060 +(epoch: 18, iters: 464, time: 0.064) G_GAN: 0.406 G_GAN_Feat: 0.730 G_ID: 0.892 G_Rec: 0.340 D_GP: 0.046 D_real: 1.128 D_fake: 0.594 +(epoch: 18, iters: 864, time: 0.064) G_GAN: 0.672 G_GAN_Feat: 1.016 G_ID: 0.456 G_Rec: 0.387 D_GP: 0.254 D_real: 1.252 D_fake: 0.362 +(epoch: 18, iters: 1264, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.610 G_ID: 0.903 G_Rec: 0.353 D_GP: 0.024 D_real: 1.103 D_fake: 0.714 +(epoch: 18, iters: 1664, time: 0.064) G_GAN: 0.035 G_GAN_Feat: 0.764 G_ID: 0.418 G_Rec: 0.436 D_GP: 0.062 D_real: 0.817 D_fake: 0.966 +(epoch: 18, iters: 2064, time: 0.064) G_GAN: 0.670 G_GAN_Feat: 0.836 G_ID: 0.907 G_Rec: 0.700 D_GP: 0.036 D_real: 1.427 D_fake: 0.339 +(epoch: 18, iters: 2464, time: 0.064) G_GAN: 0.311 G_GAN_Feat: 0.656 G_ID: 0.421 G_Rec: 0.382 D_GP: 0.036 D_real: 1.046 D_fake: 0.689 +(epoch: 18, iters: 2864, time: 0.064) G_GAN: 0.215 G_GAN_Feat: 0.901 G_ID: 0.875 G_Rec: 0.400 D_GP: 0.107 D_real: 0.648 D_fake: 0.785 +(epoch: 18, iters: 3264, time: 0.064) G_GAN: 0.401 G_GAN_Feat: 0.563 G_ID: 0.333 G_Rec: 0.560 D_GP: 0.020 D_real: 1.323 D_fake: 0.599 +(epoch: 18, iters: 3664, time: 0.064) G_GAN: 0.447 G_GAN_Feat: 0.770 G_ID: 0.932 G_Rec: 0.422 D_GP: 0.056 D_real: 1.163 D_fake: 0.577 +(epoch: 18, iters: 4064, time: 0.064) G_GAN: 0.245 G_GAN_Feat: 1.142 G_ID: 0.406 G_Rec: 0.463 D_GP: 0.168 D_real: 0.481 D_fake: 0.755 +(epoch: 18, iters: 4464, time: 0.064) G_GAN: -0.035 G_GAN_Feat: 0.798 G_ID: 0.922 G_Rec: 0.424 D_GP: 0.055 D_real: 0.631 D_fake: 1.035 +(epoch: 18, iters: 4864, time: 0.064) G_GAN: 0.054 G_GAN_Feat: 0.667 G_ID: 0.360 G_Rec: 0.397 D_GP: 0.022 D_real: 0.807 D_fake: 0.946 +(epoch: 18, iters: 5264, time: 0.064) G_GAN: 0.119 G_GAN_Feat: 0.662 G_ID: 0.909 G_Rec: 0.358 D_GP: 0.041 D_real: 0.907 D_fake: 0.881 +(epoch: 18, iters: 5664, time: 0.064) G_GAN: -0.071 G_GAN_Feat: 0.711 G_ID: 0.430 G_Rec: 0.337 D_GP: 0.071 D_real: 0.592 D_fake: 1.071 +(epoch: 18, iters: 6064, time: 0.064) G_GAN: 0.442 G_GAN_Feat: 0.889 G_ID: 0.872 G_Rec: 0.386 D_GP: 0.090 D_real: 0.869 D_fake: 0.559 +(epoch: 18, iters: 6464, time: 0.064) G_GAN: 0.383 G_GAN_Feat: 0.674 G_ID: 0.389 G_Rec: 0.371 D_GP: 0.027 D_real: 1.155 D_fake: 0.617 +(epoch: 18, iters: 6864, time: 0.064) G_GAN: 0.303 G_GAN_Feat: 0.676 G_ID: 0.888 G_Rec: 0.414 D_GP: 0.020 D_real: 1.275 D_fake: 0.697 +(epoch: 18, iters: 7264, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 0.726 G_ID: 0.363 G_Rec: 0.338 D_GP: 0.048 D_real: 0.834 D_fake: 0.830 +(epoch: 18, iters: 7664, time: 0.064) G_GAN: 0.119 G_GAN_Feat: 0.853 G_ID: 0.881 G_Rec: 0.444 D_GP: 0.080 D_real: 0.592 D_fake: 0.881 +(epoch: 18, iters: 8064, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 0.848 G_ID: 0.351 G_Rec: 0.336 D_GP: 0.073 D_real: 0.890 D_fake: 0.830 +(epoch: 18, iters: 8464, time: 0.064) G_GAN: 0.749 G_GAN_Feat: 0.847 G_ID: 0.882 G_Rec: 0.514 D_GP: 0.037 D_real: 1.372 D_fake: 0.353 +(epoch: 19, iters: 256, time: 0.064) G_GAN: 0.373 G_GAN_Feat: 0.766 G_ID: 0.425 G_Rec: 0.405 D_GP: 0.056 D_real: 0.997 D_fake: 0.627 +(epoch: 19, iters: 656, time: 0.064) G_GAN: 0.048 G_GAN_Feat: 0.746 G_ID: 0.883 G_Rec: 0.359 D_GP: 0.067 D_real: 0.695 D_fake: 0.952 +(epoch: 19, iters: 1056, time: 0.064) G_GAN: 0.564 G_GAN_Feat: 0.877 G_ID: 0.413 G_Rec: 0.410 D_GP: 0.071 D_real: 1.042 D_fake: 0.449 +(epoch: 19, iters: 1456, time: 0.064) G_GAN: 0.392 G_GAN_Feat: 0.663 G_ID: 0.873 G_Rec: 0.317 D_GP: 0.045 D_real: 1.110 D_fake: 0.609 +(epoch: 19, iters: 1856, time: 0.064) G_GAN: 0.306 G_GAN_Feat: 0.874 G_ID: 0.460 G_Rec: 0.330 D_GP: 0.117 D_real: 0.739 D_fake: 0.694 +(epoch: 19, iters: 2256, time: 0.064) G_GAN: 0.132 G_GAN_Feat: 1.014 G_ID: 0.894 G_Rec: 0.388 D_GP: 0.067 D_real: 0.453 D_fake: 0.868 +(epoch: 19, iters: 2656, time: 0.064) G_GAN: 0.251 G_GAN_Feat: 0.857 G_ID: 0.410 G_Rec: 0.355 D_GP: 0.115 D_real: 1.046 D_fake: 0.750 +(epoch: 19, iters: 3056, time: 0.064) G_GAN: -0.001 G_GAN_Feat: 0.785 G_ID: 0.885 G_Rec: 0.373 D_GP: 0.055 D_real: 0.583 D_fake: 1.001 +(epoch: 19, iters: 3456, time: 0.064) G_GAN: 0.020 G_GAN_Feat: 0.887 G_ID: 0.396 G_Rec: 0.366 D_GP: 0.061 D_real: 0.521 D_fake: 0.980 +(epoch: 19, iters: 3856, time: 0.064) G_GAN: 0.223 G_GAN_Feat: 0.720 G_ID: 0.858 G_Rec: 0.404 D_GP: 0.015 D_real: 1.081 D_fake: 0.777 +(epoch: 19, iters: 4256, time: 0.064) G_GAN: -0.039 G_GAN_Feat: 0.914 G_ID: 0.362 G_Rec: 0.340 D_GP: 0.067 D_real: 0.444 D_fake: 1.039 +(epoch: 19, iters: 4656, time: 0.064) G_GAN: 0.438 G_GAN_Feat: 0.627 G_ID: 0.906 G_Rec: 0.374 D_GP: 0.022 D_real: 1.281 D_fake: 0.563 +(epoch: 19, iters: 5056, time: 0.064) G_GAN: 0.403 G_GAN_Feat: 0.851 G_ID: 0.355 G_Rec: 0.333 D_GP: 0.037 D_real: 1.045 D_fake: 0.597 +(epoch: 19, iters: 5456, time: 0.064) G_GAN: 0.525 G_GAN_Feat: 0.805 G_ID: 0.898 G_Rec: 0.366 D_GP: 0.036 D_real: 1.182 D_fake: 0.478 +(epoch: 19, iters: 5856, time: 0.064) G_GAN: 0.282 G_GAN_Feat: 0.647 G_ID: 0.399 G_Rec: 0.388 D_GP: 0.033 D_real: 1.014 D_fake: 0.718 +(epoch: 19, iters: 6256, time: 0.064) G_GAN: 0.344 G_GAN_Feat: 0.705 G_ID: 0.894 G_Rec: 0.340 D_GP: 0.050 D_real: 1.087 D_fake: 0.656 +(epoch: 19, iters: 6656, time: 0.064) G_GAN: -0.214 G_GAN_Feat: 0.677 G_ID: 0.339 G_Rec: 0.327 D_GP: 0.045 D_real: 0.536 D_fake: 1.214 +(epoch: 19, iters: 7056, time: 0.064) G_GAN: 0.395 G_GAN_Feat: 0.696 G_ID: 0.903 G_Rec: 0.344 D_GP: 0.027 D_real: 1.227 D_fake: 0.605 +(epoch: 19, iters: 7456, time: 0.064) G_GAN: 0.394 G_GAN_Feat: 0.458 G_ID: 0.440 G_Rec: 0.413 D_GP: 0.015 D_real: 1.362 D_fake: 0.606 +(epoch: 19, iters: 7856, time: 0.064) G_GAN: 0.282 G_GAN_Feat: 0.535 G_ID: 0.883 G_Rec: 0.355 D_GP: 0.018 D_real: 1.121 D_fake: 0.718 +(epoch: 19, iters: 8256, time: 0.064) G_GAN: 0.217 G_GAN_Feat: 0.655 G_ID: 0.348 G_Rec: 0.558 D_GP: 0.054 D_real: 0.967 D_fake: 0.783 +(epoch: 20, iters: 48, time: 0.064) G_GAN: 0.100 G_GAN_Feat: 0.851 G_ID: 0.884 G_Rec: 0.379 D_GP: 0.122 D_real: 0.541 D_fake: 0.900 +(epoch: 20, iters: 448, time: 0.064) G_GAN: 0.162 G_GAN_Feat: 0.736 G_ID: 0.402 G_Rec: 0.396 D_GP: 0.048 D_real: 0.860 D_fake: 0.838 +(epoch: 20, iters: 848, time: 0.064) G_GAN: 0.398 G_GAN_Feat: 0.635 G_ID: 0.879 G_Rec: 0.429 D_GP: 0.048 D_real: 1.136 D_fake: 0.602 +(epoch: 20, iters: 1248, time: 0.064) G_GAN: 0.187 G_GAN_Feat: 0.682 G_ID: 0.341 G_Rec: 0.331 D_GP: 0.038 D_real: 0.875 D_fake: 0.814 +(epoch: 20, iters: 1648, time: 0.064) G_GAN: 0.232 G_GAN_Feat: 0.769 G_ID: 0.858 G_Rec: 0.357 D_GP: 0.071 D_real: 0.812 D_fake: 0.772 +(epoch: 20, iters: 2048, time: 0.064) G_GAN: 0.226 G_GAN_Feat: 0.580 G_ID: 0.444 G_Rec: 0.297 D_GP: 0.029 D_real: 1.030 D_fake: 0.774 +(epoch: 20, iters: 2448, time: 0.064) G_GAN: -0.072 G_GAN_Feat: 0.886 G_ID: 0.848 G_Rec: 0.377 D_GP: 0.058 D_real: 0.324 D_fake: 1.072 +(epoch: 20, iters: 2848, time: 0.064) G_GAN: 0.219 G_GAN_Feat: 0.672 G_ID: 0.447 G_Rec: 0.368 D_GP: 0.038 D_real: 0.940 D_fake: 0.781 +(epoch: 20, iters: 3248, time: 0.064) G_GAN: 0.400 G_GAN_Feat: 0.885 G_ID: 0.864 G_Rec: 0.393 D_GP: 0.065 D_real: 0.967 D_fake: 0.642 +(epoch: 20, iters: 3648, time: 0.064) G_GAN: 0.619 G_GAN_Feat: 0.804 G_ID: 0.374 G_Rec: 0.368 D_GP: 0.033 D_real: 1.300 D_fake: 0.431 +(epoch: 20, iters: 4048, time: 0.064) G_GAN: 0.482 G_GAN_Feat: 1.070 G_ID: 0.848 G_Rec: 0.365 D_GP: 0.096 D_real: 0.782 D_fake: 0.518 +(epoch: 20, iters: 4448, time: 0.064) G_GAN: 0.005 G_GAN_Feat: 0.760 G_ID: 0.411 G_Rec: 0.345 D_GP: 0.054 D_real: 0.551 D_fake: 0.995 +(epoch: 20, iters: 4848, time: 0.064) G_GAN: 0.120 G_GAN_Feat: 0.672 G_ID: 0.890 G_Rec: 0.342 D_GP: 0.021 D_real: 1.045 D_fake: 0.880 +(epoch: 20, iters: 5248, time: 0.064) G_GAN: 0.238 G_GAN_Feat: 0.732 G_ID: 0.312 G_Rec: 0.347 D_GP: 0.028 D_real: 1.055 D_fake: 0.763 +(epoch: 20, iters: 5648, time: 0.064) G_GAN: 0.163 G_GAN_Feat: 0.791 G_ID: 0.868 G_Rec: 0.350 D_GP: 0.036 D_real: 1.002 D_fake: 0.837 +(epoch: 20, iters: 6048, time: 0.064) G_GAN: 0.213 G_GAN_Feat: 0.883 G_ID: 0.374 G_Rec: 0.337 D_GP: 0.060 D_real: 0.823 D_fake: 0.788 +(epoch: 20, iters: 6448, time: 0.064) G_GAN: 0.378 G_GAN_Feat: 0.761 G_ID: 0.824 G_Rec: 0.365 D_GP: 0.038 D_real: 1.163 D_fake: 0.622 +(epoch: 20, iters: 6848, time: 0.064) G_GAN: 0.074 G_GAN_Feat: 0.901 G_ID: 0.392 G_Rec: 0.551 D_GP: 0.077 D_real: 0.670 D_fake: 0.926 +(epoch: 20, iters: 7248, time: 0.064) G_GAN: 0.011 G_GAN_Feat: 0.819 G_ID: 0.828 G_Rec: 0.368 D_GP: 0.077 D_real: 0.687 D_fake: 0.989 +(epoch: 20, iters: 7648, time: 0.064) G_GAN: -0.041 G_GAN_Feat: 0.801 G_ID: 0.395 G_Rec: 0.362 D_GP: 0.065 D_real: 0.703 D_fake: 1.041 +(epoch: 20, iters: 8048, time: 0.064) G_GAN: 0.235 G_GAN_Feat: 0.840 G_ID: 0.835 G_Rec: 0.361 D_GP: 0.041 D_real: 0.968 D_fake: 0.766 +(epoch: 20, iters: 8448, time: 0.064) G_GAN: 0.260 G_GAN_Feat: 1.023 G_ID: 0.479 G_Rec: 0.378 D_GP: 0.076 D_real: 0.750 D_fake: 0.742 +(epoch: 21, iters: 240, time: 0.064) G_GAN: 0.397 G_GAN_Feat: 0.861 G_ID: 0.831 G_Rec: 0.343 D_GP: 0.044 D_real: 1.051 D_fake: 0.603 +(epoch: 21, iters: 640, time: 0.064) G_GAN: 0.259 G_GAN_Feat: 1.022 G_ID: 0.368 G_Rec: 0.449 D_GP: 0.111 D_real: 1.136 D_fake: 0.743 +(epoch: 21, iters: 1040, time: 0.064) G_GAN: 0.385 G_GAN_Feat: 0.983 G_ID: 0.853 G_Rec: 0.399 D_GP: 0.063 D_real: 0.908 D_fake: 0.616 +(epoch: 21, iters: 1440, time: 0.064) G_GAN: 0.233 G_GAN_Feat: 0.867 G_ID: 0.350 G_Rec: 0.409 D_GP: 0.069 D_real: 0.898 D_fake: 0.769 +(epoch: 21, iters: 1840, time: 0.064) G_GAN: 0.343 G_GAN_Feat: 0.905 G_ID: 0.815 G_Rec: 0.357 D_GP: 0.038 D_real: 0.951 D_fake: 0.658 +(epoch: 21, iters: 2240, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.762 G_ID: 0.352 G_Rec: 0.327 D_GP: 0.044 D_real: 1.094 D_fake: 0.717 +(epoch: 21, iters: 2640, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 0.693 G_ID: 0.865 G_Rec: 0.349 D_GP: 0.032 D_real: 0.918 D_fake: 0.826 +(epoch: 21, iters: 3040, time: 0.064) G_GAN: 0.383 G_GAN_Feat: 0.959 G_ID: 0.499 G_Rec: 0.417 D_GP: 0.078 D_real: 0.715 D_fake: 0.617 +(epoch: 21, iters: 3440, time: 0.064) G_GAN: 0.253 G_GAN_Feat: 1.118 G_ID: 0.878 G_Rec: 0.399 D_GP: 0.138 D_real: 0.589 D_fake: 0.748 +(epoch: 21, iters: 3840, time: 0.064) G_GAN: 0.227 G_GAN_Feat: 0.643 G_ID: 0.382 G_Rec: 0.417 D_GP: 0.022 D_real: 1.010 D_fake: 0.773 +(epoch: 21, iters: 4240, time: 0.064) G_GAN: 0.254 G_GAN_Feat: 0.765 G_ID: 0.883 G_Rec: 0.513 D_GP: 0.069 D_real: 0.975 D_fake: 0.746 +(epoch: 21, iters: 4640, time: 0.064) G_GAN: 0.186 G_GAN_Feat: 0.994 G_ID: 0.423 G_Rec: 0.373 D_GP: 0.093 D_real: 0.548 D_fake: 0.816 +(epoch: 21, iters: 5040, time: 0.064) G_GAN: -0.040 G_GAN_Feat: 0.632 G_ID: 0.854 G_Rec: 0.431 D_GP: 0.023 D_real: 0.769 D_fake: 1.040 +(epoch: 21, iters: 5440, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.735 G_ID: 0.429 G_Rec: 0.370 D_GP: 0.036 D_real: 1.028 D_fake: 0.720 +(epoch: 21, iters: 5840, time: 0.064) G_GAN: 0.516 G_GAN_Feat: 0.769 G_ID: 0.833 G_Rec: 0.368 D_GP: 0.030 D_real: 1.263 D_fake: 0.485 +(epoch: 21, iters: 6240, time: 0.064) G_GAN: 0.692 G_GAN_Feat: 0.502 G_ID: 0.379 G_Rec: 0.391 D_GP: 0.019 D_real: 1.636 D_fake: 0.337 +(epoch: 21, iters: 6640, time: 0.064) G_GAN: 0.320 G_GAN_Feat: 0.536 G_ID: 0.835 G_Rec: 0.457 D_GP: 0.016 D_real: 1.192 D_fake: 0.680 +(epoch: 21, iters: 7040, time: 0.064) G_GAN: 0.135 G_GAN_Feat: 0.487 G_ID: 0.366 G_Rec: 0.478 D_GP: 0.018 D_real: 1.017 D_fake: 0.865 +(epoch: 21, iters: 7440, time: 0.064) G_GAN: 0.202 G_GAN_Feat: 0.545 G_ID: 0.845 G_Rec: 0.376 D_GP: 0.027 D_real: 1.000 D_fake: 0.798 +(epoch: 21, iters: 7840, time: 0.064) G_GAN: 0.357 G_GAN_Feat: 0.565 G_ID: 0.463 G_Rec: 0.373 D_GP: 0.035 D_real: 1.184 D_fake: 0.643 +(epoch: 21, iters: 8240, time: 0.064) G_GAN: 0.224 G_GAN_Feat: 0.634 G_ID: 0.801 G_Rec: 0.347 D_GP: 0.059 D_real: 0.973 D_fake: 0.776 +(epoch: 22, iters: 32, time: 0.064) G_GAN: 0.186 G_GAN_Feat: 0.768 G_ID: 0.390 G_Rec: 0.398 D_GP: 0.056 D_real: 0.782 D_fake: 0.815 +(epoch: 22, iters: 432, time: 0.064) G_GAN: 0.240 G_GAN_Feat: 0.669 G_ID: 0.887 G_Rec: 0.433 D_GP: 0.043 D_real: 1.042 D_fake: 0.760 +(epoch: 22, iters: 832, time: 0.064) G_GAN: 0.272 G_GAN_Feat: 0.821 G_ID: 0.403 G_Rec: 0.357 D_GP: 0.067 D_real: 0.795 D_fake: 0.732 +(epoch: 22, iters: 1232, time: 0.064) G_GAN: 0.219 G_GAN_Feat: 0.794 G_ID: 0.808 G_Rec: 0.652 D_GP: 0.070 D_real: 0.748 D_fake: 0.781 +(epoch: 22, iters: 1632, time: 0.064) G_GAN: 0.384 G_GAN_Feat: 0.734 G_ID: 0.425 G_Rec: 0.356 D_GP: 0.067 D_real: 1.018 D_fake: 0.616 +(epoch: 22, iters: 2032, time: 0.064) G_GAN: 0.209 G_GAN_Feat: 0.731 G_ID: 0.862 G_Rec: 0.339 D_GP: 0.061 D_real: 0.920 D_fake: 0.791 +(epoch: 22, iters: 2432, time: 0.064) G_GAN: 0.250 G_GAN_Feat: 1.068 G_ID: 0.413 G_Rec: 0.420 D_GP: 0.102 D_real: 0.496 D_fake: 0.750 +(epoch: 22, iters: 2832, time: 0.064) G_GAN: 0.228 G_GAN_Feat: 0.706 G_ID: 0.837 G_Rec: 0.344 D_GP: 0.026 D_real: 0.959 D_fake: 0.772 +(epoch: 22, iters: 3232, time: 0.064) G_GAN: 0.519 G_GAN_Feat: 0.773 G_ID: 0.412 G_Rec: 0.377 D_GP: 0.065 D_real: 1.115 D_fake: 0.499 +(epoch: 22, iters: 3632, time: 0.064) G_GAN: 0.242 G_GAN_Feat: 0.480 G_ID: 0.856 G_Rec: 0.330 D_GP: 0.016 D_real: 1.147 D_fake: 0.758 +(epoch: 22, iters: 4032, time: 0.064) G_GAN: 0.020 G_GAN_Feat: 0.553 G_ID: 0.332 G_Rec: 0.406 D_GP: 0.029 D_real: 0.906 D_fake: 0.980 +(epoch: 22, iters: 4432, time: 0.064) G_GAN: 0.905 G_GAN_Feat: 0.584 G_ID: 0.846 G_Rec: 0.438 D_GP: 0.023 D_real: 1.698 D_fake: 0.215 +(epoch: 22, iters: 4832, time: 0.064) G_GAN: 0.284 G_GAN_Feat: 0.628 G_ID: 0.325 G_Rec: 0.452 D_GP: 0.049 D_real: 0.983 D_fake: 0.717 +(epoch: 22, iters: 5232, time: 0.064) G_GAN: 0.385 G_GAN_Feat: 0.653 G_ID: 0.857 G_Rec: 0.425 D_GP: 0.054 D_real: 1.065 D_fake: 0.616 +(epoch: 22, iters: 5632, time: 0.064) G_GAN: 0.245 G_GAN_Feat: 0.570 G_ID: 0.414 G_Rec: 0.338 D_GP: 0.041 D_real: 1.065 D_fake: 0.757 +(epoch: 22, iters: 6032, time: 0.064) G_GAN: 0.122 G_GAN_Feat: 0.709 G_ID: 0.848 G_Rec: 0.353 D_GP: 0.076 D_real: 0.758 D_fake: 0.878 +(epoch: 22, iters: 6432, time: 0.064) G_GAN: 0.408 G_GAN_Feat: 0.785 G_ID: 0.388 G_Rec: 0.401 D_GP: 0.106 D_real: 1.011 D_fake: 0.596 +(epoch: 22, iters: 6832, time: 0.064) G_GAN: 0.195 G_GAN_Feat: 0.671 G_ID: 0.822 G_Rec: 0.421 D_GP: 0.066 D_real: 0.917 D_fake: 0.805 +(epoch: 22, iters: 7232, time: 0.064) G_GAN: 0.194 G_GAN_Feat: 1.041 G_ID: 0.399 G_Rec: 0.378 D_GP: 0.193 D_real: 0.479 D_fake: 0.806 +(epoch: 22, iters: 7632, time: 0.064) G_GAN: 0.326 G_GAN_Feat: 0.737 G_ID: 0.818 G_Rec: 0.329 D_GP: 0.042 D_real: 1.092 D_fake: 0.674 +(epoch: 22, iters: 8032, time: 0.064) G_GAN: 0.368 G_GAN_Feat: 0.731 G_ID: 0.391 G_Rec: 0.381 D_GP: 0.046 D_real: 1.178 D_fake: 0.633 +(epoch: 22, iters: 8432, time: 0.064) G_GAN: 0.160 G_GAN_Feat: 0.703 G_ID: 0.811 G_Rec: 0.468 D_GP: 0.063 D_real: 0.884 D_fake: 0.840 +(epoch: 23, iters: 224, time: 0.064) G_GAN: 0.237 G_GAN_Feat: 0.809 G_ID: 0.400 G_Rec: 0.412 D_GP: 0.089 D_real: 0.695 D_fake: 0.763 +(epoch: 23, iters: 624, time: 0.064) G_GAN: 0.318 G_GAN_Feat: 0.728 G_ID: 0.839 G_Rec: 0.418 D_GP: 0.036 D_real: 1.034 D_fake: 0.683 +(epoch: 23, iters: 1024, time: 0.064) G_GAN: 0.425 G_GAN_Feat: 0.582 G_ID: 0.381 G_Rec: 0.395 D_GP: 0.022 D_real: 1.328 D_fake: 0.579 +(epoch: 23, iters: 1424, time: 0.064) G_GAN: 0.512 G_GAN_Feat: 0.611 G_ID: 0.798 G_Rec: 0.431 D_GP: 0.024 D_real: 1.329 D_fake: 0.490 +(epoch: 23, iters: 1824, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 0.681 G_ID: 0.467 G_Rec: 0.410 D_GP: 0.046 D_real: 1.020 D_fake: 0.779 +(epoch: 23, iters: 2224, time: 0.064) G_GAN: 0.091 G_GAN_Feat: 0.639 G_ID: 0.834 G_Rec: 0.427 D_GP: 0.039 D_real: 0.776 D_fake: 0.913 +(epoch: 23, iters: 2624, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.852 G_ID: 0.429 G_Rec: 0.376 D_GP: 0.056 D_real: 0.799 D_fake: 0.717 +(epoch: 23, iters: 3024, time: 0.064) G_GAN: 0.328 G_GAN_Feat: 1.085 G_ID: 0.835 G_Rec: 0.382 D_GP: 0.167 D_real: 0.587 D_fake: 0.675 +(epoch: 23, iters: 3424, time: 0.064) G_GAN: 0.042 G_GAN_Feat: 0.760 G_ID: 0.417 G_Rec: 0.346 D_GP: 0.077 D_real: 0.567 D_fake: 0.960 +(epoch: 23, iters: 3824, time: 0.064) G_GAN: 0.151 G_GAN_Feat: 0.648 G_ID: 0.824 G_Rec: 0.409 D_GP: 0.035 D_real: 0.948 D_fake: 0.849 +(epoch: 23, iters: 4224, time: 0.064) G_GAN: 0.395 G_GAN_Feat: 0.823 G_ID: 0.461 G_Rec: 0.451 D_GP: 0.068 D_real: 0.856 D_fake: 0.606 +(epoch: 23, iters: 4624, time: 0.064) G_GAN: 0.302 G_GAN_Feat: 0.757 G_ID: 0.801 G_Rec: 0.342 D_GP: 0.071 D_real: 0.830 D_fake: 0.701 +(epoch: 23, iters: 5024, time: 0.064) G_GAN: 0.084 G_GAN_Feat: 0.829 G_ID: 0.381 G_Rec: 0.405 D_GP: 0.040 D_real: 0.625 D_fake: 0.916 +(epoch: 23, iters: 5424, time: 0.064) G_GAN: 0.066 G_GAN_Feat: 0.692 G_ID: 0.868 G_Rec: 0.361 D_GP: 0.040 D_real: 0.796 D_fake: 0.935 +(epoch: 23, iters: 5824, time: 0.064) G_GAN: 0.140 G_GAN_Feat: 1.091 G_ID: 0.367 G_Rec: 0.384 D_GP: 0.086 D_real: 0.455 D_fake: 0.860 +(epoch: 23, iters: 6224, time: 0.064) G_GAN: 0.200 G_GAN_Feat: 0.621 G_ID: 0.817 G_Rec: 0.357 D_GP: 0.024 D_real: 1.015 D_fake: 0.800 +(epoch: 23, iters: 6624, time: 0.064) G_GAN: 0.546 G_GAN_Feat: 0.837 G_ID: 0.341 G_Rec: 0.379 D_GP: 0.107 D_real: 1.114 D_fake: 0.455 +(epoch: 23, iters: 7024, time: 0.064) G_GAN: 0.292 G_GAN_Feat: 1.085 G_ID: 0.798 G_Rec: 0.397 D_GP: 0.105 D_real: 0.643 D_fake: 0.727 +(epoch: 23, iters: 7424, time: 0.064) G_GAN: 0.612 G_GAN_Feat: 0.521 G_ID: 0.412 G_Rec: 0.445 D_GP: 0.018 D_real: 1.482 D_fake: 0.393 +(epoch: 23, iters: 7824, time: 0.064) G_GAN: 0.126 G_GAN_Feat: 0.536 G_ID: 0.777 G_Rec: 0.383 D_GP: 0.020 D_real: 0.997 D_fake: 0.874 +(epoch: 23, iters: 8224, time: 0.064) G_GAN: 0.190 G_GAN_Feat: 0.503 G_ID: 0.437 G_Rec: 0.324 D_GP: 0.025 D_real: 1.040 D_fake: 0.811 +(epoch: 24, iters: 16, time: 0.064) G_GAN: 0.407 G_GAN_Feat: 0.548 G_ID: 0.858 G_Rec: 0.339 D_GP: 0.031 D_real: 1.196 D_fake: 0.594 +(epoch: 24, iters: 416, time: 0.064) G_GAN: 0.163 G_GAN_Feat: 0.530 G_ID: 0.429 G_Rec: 0.309 D_GP: 0.031 D_real: 1.005 D_fake: 0.837 +(epoch: 24, iters: 816, time: 0.064) G_GAN: 0.440 G_GAN_Feat: 0.601 G_ID: 0.829 G_Rec: 0.367 D_GP: 0.042 D_real: 1.186 D_fake: 0.567 +(epoch: 24, iters: 1216, time: 0.064) G_GAN: 0.292 G_GAN_Feat: 0.648 G_ID: 0.337 G_Rec: 0.367 D_GP: 0.038 D_real: 1.063 D_fake: 0.709 +(epoch: 24, iters: 1616, time: 0.064) G_GAN: 0.187 G_GAN_Feat: 0.672 G_ID: 0.821 G_Rec: 0.377 D_GP: 0.055 D_real: 0.846 D_fake: 0.813 +(epoch: 24, iters: 2016, time: 0.064) G_GAN: 0.151 G_GAN_Feat: 0.613 G_ID: 0.377 G_Rec: 0.336 D_GP: 0.060 D_real: 0.917 D_fake: 0.849 +(epoch: 24, iters: 2416, time: 0.064) G_GAN: 0.060 G_GAN_Feat: 0.614 G_ID: 0.823 G_Rec: 0.316 D_GP: 0.063 D_real: 0.854 D_fake: 0.940 +(epoch: 24, iters: 2816, time: 0.064) G_GAN: 0.373 G_GAN_Feat: 0.802 G_ID: 0.403 G_Rec: 0.462 D_GP: 0.046 D_real: 1.095 D_fake: 0.654 +(epoch: 24, iters: 3216, time: 0.064) G_GAN: 0.185 G_GAN_Feat: 1.155 G_ID: 0.808 G_Rec: 0.372 D_GP: 0.227 D_real: 0.507 D_fake: 0.817 +(epoch: 24, iters: 3616, time: 0.064) G_GAN: 0.090 G_GAN_Feat: 0.616 G_ID: 0.358 G_Rec: 0.472 D_GP: 0.044 D_real: 0.885 D_fake: 0.910 +(epoch: 24, iters: 4016, time: 0.064) G_GAN: 0.474 G_GAN_Feat: 0.740 G_ID: 0.790 G_Rec: 0.530 D_GP: 0.030 D_real: 1.249 D_fake: 0.528 +(epoch: 24, iters: 4416, time: 0.064) G_GAN: 0.552 G_GAN_Feat: 0.692 G_ID: 0.360 G_Rec: 0.366 D_GP: 0.066 D_real: 1.223 D_fake: 0.453 +(epoch: 24, iters: 4816, time: 0.064) G_GAN: 0.499 G_GAN_Feat: 0.877 G_ID: 0.834 G_Rec: 0.381 D_GP: 0.050 D_real: 1.068 D_fake: 0.523 +(epoch: 24, iters: 5216, time: 0.064) G_GAN: -0.163 G_GAN_Feat: 0.733 G_ID: 0.419 G_Rec: 0.388 D_GP: 0.084 D_real: 0.455 D_fake: 1.164 +(epoch: 24, iters: 5616, time: 0.064) G_GAN: 0.282 G_GAN_Feat: 0.861 G_ID: 0.789 G_Rec: 0.387 D_GP: 0.042 D_real: 1.048 D_fake: 0.722 +(epoch: 24, iters: 6016, time: 0.064) G_GAN: 0.479 G_GAN_Feat: 0.684 G_ID: 0.385 G_Rec: 0.419 D_GP: 0.041 D_real: 1.225 D_fake: 0.522 +(epoch: 24, iters: 6416, time: 0.064) G_GAN: 0.096 G_GAN_Feat: 0.729 G_ID: 0.795 G_Rec: 0.389 D_GP: 0.039 D_real: 0.780 D_fake: 0.906 +(epoch: 24, iters: 6816, time: 0.064) G_GAN: 0.584 G_GAN_Feat: 0.724 G_ID: 0.413 G_Rec: 0.463 D_GP: 0.025 D_real: 1.323 D_fake: 0.418 +(epoch: 24, iters: 7216, time: 0.064) G_GAN: 0.346 G_GAN_Feat: 0.694 G_ID: 0.798 G_Rec: 0.473 D_GP: 0.024 D_real: 1.140 D_fake: 0.654 +(epoch: 24, iters: 7616, time: 0.064) G_GAN: 0.723 G_GAN_Feat: 0.692 G_ID: 0.372 G_Rec: 0.351 D_GP: 0.040 D_real: 1.416 D_fake: 0.303 +(epoch: 24, iters: 8016, time: 0.064) G_GAN: 0.487 G_GAN_Feat: 0.668 G_ID: 0.813 G_Rec: 0.334 D_GP: 0.028 D_real: 1.284 D_fake: 0.514 +(epoch: 24, iters: 8416, time: 0.064) G_GAN: 0.026 G_GAN_Feat: 0.897 G_ID: 0.326 G_Rec: 0.504 D_GP: 0.114 D_real: 0.510 D_fake: 0.975 +(epoch: 25, iters: 208, time: 0.064) G_GAN: 0.234 G_GAN_Feat: 0.655 G_ID: 0.834 G_Rec: 0.341 D_GP: 0.051 D_real: 0.936 D_fake: 0.766 +(epoch: 25, iters: 608, time: 0.064) G_GAN: 0.338 G_GAN_Feat: 0.835 G_ID: 0.417 G_Rec: 0.336 D_GP: 0.108 D_real: 0.977 D_fake: 0.683 +(epoch: 25, iters: 1008, time: 0.064) G_GAN: 0.161 G_GAN_Feat: 1.075 G_ID: 0.757 G_Rec: 0.405 D_GP: 0.326 D_real: 0.554 D_fake: 0.840 +(epoch: 25, iters: 1408, time: 0.064) G_GAN: 0.218 G_GAN_Feat: 1.259 G_ID: 0.407 G_Rec: 0.430 D_GP: 0.367 D_real: 0.306 D_fake: 0.782 +(epoch: 25, iters: 1808, time: 0.064) G_GAN: 0.233 G_GAN_Feat: 0.793 G_ID: 0.824 G_Rec: 0.465 D_GP: 0.083 D_real: 0.757 D_fake: 0.768 +(epoch: 25, iters: 2208, time: 0.064) G_GAN: 0.158 G_GAN_Feat: 0.636 G_ID: 0.390 G_Rec: 0.354 D_GP: 0.024 D_real: 1.040 D_fake: 0.842 +(epoch: 25, iters: 2608, time: 0.064) G_GAN: 0.584 G_GAN_Feat: 0.760 G_ID: 0.782 G_Rec: 0.336 D_GP: 0.070 D_real: 1.186 D_fake: 0.422 +(epoch: 25, iters: 3008, time: 0.064) G_GAN: 0.230 G_GAN_Feat: 0.589 G_ID: 0.351 G_Rec: 0.326 D_GP: 0.035 D_real: 1.026 D_fake: 0.770 +(epoch: 25, iters: 3408, time: 0.064) G_GAN: 0.664 G_GAN_Feat: 0.724 G_ID: 0.786 G_Rec: 0.385 D_GP: 0.034 D_real: 1.442 D_fake: 0.377 +(epoch: 25, iters: 3808, time: 0.064) G_GAN: 0.399 G_GAN_Feat: 0.882 G_ID: 0.333 G_Rec: 0.409 D_GP: 0.040 D_real: 1.010 D_fake: 0.601 +(epoch: 25, iters: 4208, time: 0.064) G_GAN: 0.395 G_GAN_Feat: 1.238 G_ID: 0.777 G_Rec: 0.521 D_GP: 0.239 D_real: 0.593 D_fake: 0.613 +(epoch: 25, iters: 4608, time: 0.064) G_GAN: 0.470 G_GAN_Feat: 0.855 G_ID: 0.359 G_Rec: 0.328 D_GP: 0.076 D_real: 1.008 D_fake: 0.530 +(epoch: 25, iters: 5008, time: 0.064) G_GAN: 0.482 G_GAN_Feat: 0.744 G_ID: 0.835 G_Rec: 0.351 D_GP: 0.040 D_real: 1.247 D_fake: 0.534 +(epoch: 25, iters: 5408, time: 0.064) G_GAN: 0.522 G_GAN_Feat: 0.580 G_ID: 0.351 G_Rec: 0.347 D_GP: 0.022 D_real: 1.313 D_fake: 0.480 +(epoch: 25, iters: 5808, time: 0.064) G_GAN: 0.033 G_GAN_Feat: 0.881 G_ID: 0.819 G_Rec: 0.385 D_GP: 0.082 D_real: 0.444 D_fake: 0.967 +(epoch: 25, iters: 6208, time: 0.064) G_GAN: 0.233 G_GAN_Feat: 0.725 G_ID: 0.348 G_Rec: 0.372 D_GP: 0.059 D_real: 0.869 D_fake: 0.767 +(epoch: 25, iters: 6608, time: 0.064) G_GAN: 0.064 G_GAN_Feat: 0.830 G_ID: 0.796 G_Rec: 0.354 D_GP: 0.047 D_real: 1.040 D_fake: 0.937 +(epoch: 25, iters: 7008, time: 0.064) G_GAN: 0.120 G_GAN_Feat: 0.949 G_ID: 0.323 G_Rec: 0.494 D_GP: 0.095 D_real: 0.573 D_fake: 0.881 +(epoch: 25, iters: 7408, time: 0.064) G_GAN: 0.285 G_GAN_Feat: 0.631 G_ID: 0.774 G_Rec: 0.407 D_GP: 0.026 D_real: 1.057 D_fake: 0.715 +(epoch: 25, iters: 7808, time: 0.064) G_GAN: 0.287 G_GAN_Feat: 1.059 G_ID: 0.431 G_Rec: 0.440 D_GP: 0.110 D_real: 0.699 D_fake: 0.726 +(epoch: 25, iters: 8208, time: 0.064) G_GAN: 0.653 G_GAN_Feat: 0.834 G_ID: 0.800 G_Rec: 0.370 D_GP: 0.096 D_real: 1.109 D_fake: 0.365 +(epoch: 25, iters: 8608, time: 0.064) G_GAN: 0.388 G_GAN_Feat: 0.560 G_ID: 0.421 G_Rec: 0.384 D_GP: 0.024 D_real: 1.190 D_fake: 0.612 +(epoch: 26, iters: 400, time: 0.064) G_GAN: 0.157 G_GAN_Feat: 1.221 G_ID: 0.802 G_Rec: 0.499 D_GP: 0.127 D_real: 0.442 D_fake: 0.843 +(epoch: 26, iters: 800, time: 0.064) G_GAN: 0.363 G_GAN_Feat: 1.063 G_ID: 0.365 G_Rec: 0.446 D_GP: 0.058 D_real: 1.194 D_fake: 0.642 +(epoch: 26, iters: 1200, time: 0.064) G_GAN: 0.388 G_GAN_Feat: 1.135 G_ID: 0.776 G_Rec: 0.353 D_GP: 0.092 D_real: 1.084 D_fake: 0.660 +(epoch: 26, iters: 1600, time: 0.064) G_GAN: 0.130 G_GAN_Feat: 0.686 G_ID: 0.368 G_Rec: 0.500 D_GP: 0.039 D_real: 0.814 D_fake: 0.871 +(epoch: 26, iters: 2000, time: 0.064) G_GAN: 0.390 G_GAN_Feat: 0.748 G_ID: 0.783 G_Rec: 0.364 D_GP: 0.043 D_real: 1.035 D_fake: 0.610 +(epoch: 26, iters: 2400, time: 0.064) G_GAN: 0.407 G_GAN_Feat: 0.584 G_ID: 0.334 G_Rec: 0.376 D_GP: 0.017 D_real: 1.270 D_fake: 0.593 +(epoch: 26, iters: 2800, time: 0.064) G_GAN: 0.314 G_GAN_Feat: 0.783 G_ID: 0.789 G_Rec: 0.398 D_GP: 0.040 D_real: 1.142 D_fake: 0.687 +(epoch: 26, iters: 3200, time: 0.064) G_GAN: 0.069 G_GAN_Feat: 0.947 G_ID: 0.386 G_Rec: 0.475 D_GP: 0.425 D_real: 0.524 D_fake: 0.931 +(epoch: 26, iters: 3600, time: 0.064) G_GAN: 0.575 G_GAN_Feat: 0.703 G_ID: 0.747 G_Rec: 0.374 D_GP: 0.028 D_real: 1.354 D_fake: 0.438 +(epoch: 26, iters: 4000, time: 0.064) G_GAN: 0.371 G_GAN_Feat: 0.837 G_ID: 0.394 G_Rec: 0.388 D_GP: 0.070 D_real: 0.965 D_fake: 0.649 +(epoch: 26, iters: 4400, time: 0.064) G_GAN: 0.247 G_GAN_Feat: 0.749 G_ID: 0.784 G_Rec: 0.431 D_GP: 0.038 D_real: 0.883 D_fake: 0.753 +(epoch: 26, iters: 4800, time: 0.064) G_GAN: 0.663 G_GAN_Feat: 0.804 G_ID: 0.396 G_Rec: 0.530 D_GP: 0.038 D_real: 1.429 D_fake: 0.356 +(epoch: 26, iters: 5200, time: 0.064) G_GAN: 0.298 G_GAN_Feat: 0.658 G_ID: 0.762 G_Rec: 0.356 D_GP: 0.033 D_real: 1.037 D_fake: 0.702 +(epoch: 26, iters: 5600, time: 0.064) G_GAN: 0.409 G_GAN_Feat: 0.739 G_ID: 0.355 G_Rec: 0.356 D_GP: 0.051 D_real: 1.091 D_fake: 0.592 +(epoch: 26, iters: 6000, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.751 G_ID: 0.751 G_Rec: 0.378 D_GP: 0.051 D_real: 0.970 D_fake: 0.764 +(epoch: 26, iters: 6400, time: 0.064) G_GAN: 0.355 G_GAN_Feat: 1.151 G_ID: 0.366 G_Rec: 0.355 D_GP: 0.361 D_real: 0.296 D_fake: 0.670 +(epoch: 26, iters: 6800, time: 0.064) G_GAN: 0.456 G_GAN_Feat: 0.756 G_ID: 0.798 G_Rec: 0.376 D_GP: 0.051 D_real: 1.095 D_fake: 0.547 +(epoch: 26, iters: 7200, time: 0.064) G_GAN: 0.232 G_GAN_Feat: 0.633 G_ID: 0.396 G_Rec: 0.361 D_GP: 0.024 D_real: 0.970 D_fake: 0.771 +(epoch: 26, iters: 7600, time: 0.064) G_GAN: 0.157 G_GAN_Feat: 0.693 G_ID: 0.769 G_Rec: 0.322 D_GP: 0.051 D_real: 0.861 D_fake: 0.843 +(epoch: 26, iters: 8000, time: 0.064) G_GAN: 0.414 G_GAN_Feat: 1.083 G_ID: 0.355 G_Rec: 0.425 D_GP: 0.239 D_real: 0.565 D_fake: 0.588 +(epoch: 26, iters: 8400, time: 0.064) G_GAN: 0.328 G_GAN_Feat: 0.521 G_ID: 0.783 G_Rec: 0.337 D_GP: 0.022 D_real: 1.211 D_fake: 0.672 +(epoch: 27, iters: 192, time: 0.064) G_GAN: 0.306 G_GAN_Feat: 0.554 G_ID: 0.374 G_Rec: 0.358 D_GP: 0.026 D_real: 1.152 D_fake: 0.694 +(epoch: 27, iters: 592, time: 0.064) G_GAN: 0.166 G_GAN_Feat: 0.578 G_ID: 0.771 G_Rec: 0.345 D_GP: 0.040 D_real: 0.937 D_fake: 0.835 +(epoch: 27, iters: 992, time: 0.064) G_GAN: 0.477 G_GAN_Feat: 0.661 G_ID: 0.330 G_Rec: 0.367 D_GP: 0.045 D_real: 1.215 D_fake: 0.523 +(epoch: 27, iters: 1392, time: 0.064) G_GAN: 0.521 G_GAN_Feat: 0.677 G_ID: 0.725 G_Rec: 0.350 D_GP: 0.044 D_real: 1.247 D_fake: 0.479 +(epoch: 27, iters: 1792, time: 0.064) G_GAN: 0.348 G_GAN_Feat: 0.927 G_ID: 0.343 G_Rec: 0.353 D_GP: 0.061 D_real: 0.773 D_fake: 0.652 +(epoch: 27, iters: 2192, time: 0.064) G_GAN: 0.314 G_GAN_Feat: 0.740 G_ID: 0.758 G_Rec: 0.386 D_GP: 0.039 D_real: 0.976 D_fake: 0.691 +(epoch: 27, iters: 2592, time: 0.064) G_GAN: 0.559 G_GAN_Feat: 0.904 G_ID: 0.390 G_Rec: 0.431 D_GP: 0.118 D_real: 0.838 D_fake: 0.523 +(epoch: 27, iters: 2992, time: 0.064) G_GAN: 0.465 G_GAN_Feat: 1.200 G_ID: 0.780 G_Rec: 0.403 D_GP: 0.243 D_real: 0.500 D_fake: 0.545 +(epoch: 27, iters: 3392, time: 0.064) G_GAN: 0.363 G_GAN_Feat: 0.778 G_ID: 0.362 G_Rec: 0.599 D_GP: 0.028 D_real: 1.114 D_fake: 0.638 +(epoch: 27, iters: 3792, time: 0.064) G_GAN: 0.604 G_GAN_Feat: 0.776 G_ID: 0.793 G_Rec: 0.378 D_GP: 0.091 D_real: 1.221 D_fake: 0.495 +(epoch: 27, iters: 4192, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.826 G_ID: 0.318 G_Rec: 0.345 D_GP: 0.095 D_real: 0.823 D_fake: 0.670 +(epoch: 27, iters: 4592, time: 0.064) G_GAN: 0.432 G_GAN_Feat: 0.825 G_ID: 0.733 G_Rec: 0.423 D_GP: 0.029 D_real: 1.032 D_fake: 0.569 +(epoch: 27, iters: 4992, time: 0.064) G_GAN: -0.152 G_GAN_Feat: 0.825 G_ID: 0.391 G_Rec: 0.472 D_GP: 0.088 D_real: 0.591 D_fake: 1.152 +(epoch: 27, iters: 5392, time: 0.064) G_GAN: 0.451 G_GAN_Feat: 0.644 G_ID: 0.801 G_Rec: 0.363 D_GP: 0.028 D_real: 1.231 D_fake: 0.549 +(epoch: 27, iters: 5792, time: 0.064) G_GAN: 0.048 G_GAN_Feat: 0.734 G_ID: 0.353 G_Rec: 0.391 D_GP: 0.039 D_real: 0.727 D_fake: 0.953 +(epoch: 27, iters: 6192, time: 0.064) G_GAN: 0.153 G_GAN_Feat: 0.696 G_ID: 0.752 G_Rec: 0.410 D_GP: 0.023 D_real: 0.866 D_fake: 0.847 +(epoch: 27, iters: 6592, time: 0.064) G_GAN: 0.553 G_GAN_Feat: 0.787 G_ID: 0.360 G_Rec: 0.405 D_GP: 0.045 D_real: 1.326 D_fake: 0.451 +(epoch: 27, iters: 6992, time: 0.064) G_GAN: 0.624 G_GAN_Feat: 0.634 G_ID: 0.790 G_Rec: 0.447 D_GP: 0.020 D_real: 1.534 D_fake: 0.425 +(epoch: 27, iters: 7392, time: 0.064) G_GAN: 0.279 G_GAN_Feat: 1.169 G_ID: 0.390 G_Rec: 0.394 D_GP: 0.103 D_real: 0.490 D_fake: 0.721 +(epoch: 27, iters: 7792, time: 0.064) G_GAN: 0.497 G_GAN_Feat: 0.840 G_ID: 0.699 G_Rec: 0.383 D_GP: 0.049 D_real: 1.191 D_fake: 0.529 +(epoch: 27, iters: 8192, time: 0.064) G_GAN: 0.733 G_GAN_Feat: 0.737 G_ID: 0.330 G_Rec: 0.343 D_GP: 0.042 D_real: 1.375 D_fake: 0.275 +(epoch: 27, iters: 8592, time: 0.064) G_GAN: 0.425 G_GAN_Feat: 0.871 G_ID: 0.764 G_Rec: 0.353 D_GP: 0.057 D_real: 1.072 D_fake: 0.576 +(epoch: 28, iters: 384, time: 0.064) G_GAN: 0.138 G_GAN_Feat: 0.629 G_ID: 0.309 G_Rec: 0.358 D_GP: 0.035 D_real: 0.997 D_fake: 0.862 +(epoch: 28, iters: 784, time: 0.064) G_GAN: 0.412 G_GAN_Feat: 0.719 G_ID: 0.798 G_Rec: 0.372 D_GP: 0.063 D_real: 1.086 D_fake: 0.590 +(epoch: 28, iters: 1184, time: 0.064) G_GAN: 0.313 G_GAN_Feat: 1.014 G_ID: 0.352 G_Rec: 0.432 D_GP: 0.261 D_real: 0.895 D_fake: 0.701 +(epoch: 28, iters: 1584, time: 0.064) G_GAN: 0.300 G_GAN_Feat: 0.924 G_ID: 0.712 G_Rec: 0.426 D_GP: 0.076 D_real: 1.048 D_fake: 0.711 +(epoch: 28, iters: 1984, time: 0.064) G_GAN: 0.436 G_GAN_Feat: 0.817 G_ID: 0.299 G_Rec: 0.425 D_GP: 0.058 D_real: 1.172 D_fake: 0.564 +(epoch: 28, iters: 2384, time: 0.064) G_GAN: -0.048 G_GAN_Feat: 0.914 G_ID: 0.763 G_Rec: 0.392 D_GP: 0.155 D_real: 0.513 D_fake: 1.049 +(epoch: 28, iters: 2784, time: 0.064) G_GAN: 0.676 G_GAN_Feat: 1.238 G_ID: 0.367 G_Rec: 0.409 D_GP: 0.060 D_real: 1.449 D_fake: 0.447 +(epoch: 28, iters: 3184, time: 0.064) G_GAN: 0.513 G_GAN_Feat: 0.903 G_ID: 0.699 G_Rec: 0.358 D_GP: 0.121 D_real: 1.125 D_fake: 0.488 +(epoch: 28, iters: 3584, time: 0.064) G_GAN: 0.347 G_GAN_Feat: 0.568 G_ID: 0.361 G_Rec: 0.358 D_GP: 0.025 D_real: 1.173 D_fake: 0.653 +(epoch: 28, iters: 3984, time: 0.064) G_GAN: 0.389 G_GAN_Feat: 0.729 G_ID: 0.725 G_Rec: 0.356 D_GP: 0.034 D_real: 1.168 D_fake: 0.612 +(epoch: 28, iters: 4384, time: 0.064) G_GAN: 0.189 G_GAN_Feat: 0.567 G_ID: 0.344 G_Rec: 0.415 D_GP: 0.030 D_real: 0.979 D_fake: 0.812 +(epoch: 28, iters: 4784, time: 0.064) G_GAN: -0.116 G_GAN_Feat: 0.717 G_ID: 0.715 G_Rec: 0.452 D_GP: 0.048 D_real: 0.472 D_fake: 1.116 +(epoch: 28, iters: 5184, time: 0.064) G_GAN: 0.117 G_GAN_Feat: 0.584 G_ID: 0.345 G_Rec: 0.482 D_GP: 0.031 D_real: 0.906 D_fake: 0.883 +(epoch: 28, iters: 5584, time: 0.064) G_GAN: 0.123 G_GAN_Feat: 0.824 G_ID: 0.717 G_Rec: 0.357 D_GP: 0.047 D_real: 0.630 D_fake: 0.877 +(epoch: 28, iters: 5984, time: 0.064) G_GAN: 0.563 G_GAN_Feat: 0.769 G_ID: 0.383 G_Rec: 0.373 D_GP: 0.045 D_real: 1.135 D_fake: 0.477 +(epoch: 28, iters: 6384, time: 0.064) G_GAN: 0.220 G_GAN_Feat: 0.699 G_ID: 0.711 G_Rec: 0.399 D_GP: 0.033 D_real: 1.115 D_fake: 0.780 +(epoch: 28, iters: 6784, time: 0.064) G_GAN: 0.527 G_GAN_Feat: 0.680 G_ID: 0.352 G_Rec: 0.380 D_GP: 0.022 D_real: 1.307 D_fake: 0.478 +(epoch: 28, iters: 7184, time: 0.064) G_GAN: 0.238 G_GAN_Feat: 0.570 G_ID: 0.675 G_Rec: 0.356 D_GP: 0.028 D_real: 1.028 D_fake: 0.762 +(epoch: 28, iters: 7584, time: 0.064) G_GAN: 0.464 G_GAN_Feat: 0.589 G_ID: 0.358 G_Rec: 0.354 D_GP: 0.037 D_real: 1.243 D_fake: 0.536 +(epoch: 28, iters: 7984, time: 0.064) G_GAN: 0.079 G_GAN_Feat: 1.147 G_ID: 0.688 G_Rec: 0.435 D_GP: 0.548 D_real: 0.331 D_fake: 0.921 +(epoch: 28, iters: 8384, time: 0.064) G_GAN: 0.023 G_GAN_Feat: 0.887 G_ID: 0.352 G_Rec: 0.377 D_GP: 0.067 D_real: 0.457 D_fake: 0.977 +(epoch: 29, iters: 176, time: 0.064) G_GAN: 0.685 G_GAN_Feat: 0.642 G_ID: 0.733 G_Rec: 0.383 D_GP: 0.035 D_real: 1.471 D_fake: 0.327 +(epoch: 29, iters: 576, time: 0.064) G_GAN: 0.187 G_GAN_Feat: 0.594 G_ID: 0.248 G_Rec: 0.327 D_GP: 0.029 D_real: 0.915 D_fake: 0.813 +(epoch: 29, iters: 976, time: 0.064) G_GAN: 0.304 G_GAN_Feat: 0.781 G_ID: 0.787 G_Rec: 0.349 D_GP: 0.095 D_real: 0.862 D_fake: 0.696 +(epoch: 29, iters: 1376, time: 0.064) G_GAN: 0.505 G_GAN_Feat: 0.708 G_ID: 0.335 G_Rec: 0.440 D_GP: 0.040 D_real: 1.152 D_fake: 0.496 +(epoch: 29, iters: 1776, time: 0.064) G_GAN: 0.287 G_GAN_Feat: 1.163 G_ID: 0.743 G_Rec: 0.426 D_GP: 0.072 D_real: 0.345 D_fake: 0.714 +(epoch: 29, iters: 2176, time: 0.064) G_GAN: 0.853 G_GAN_Feat: 0.822 G_ID: 0.304 G_Rec: 0.378 D_GP: 0.047 D_real: 1.446 D_fake: 0.482 +(epoch: 29, iters: 2576, time: 0.064) G_GAN: 0.634 G_GAN_Feat: 0.781 G_ID: 0.711 G_Rec: 0.429 D_GP: 0.046 D_real: 1.331 D_fake: 0.496 +(epoch: 29, iters: 2976, time: 0.064) G_GAN: 0.088 G_GAN_Feat: 0.692 G_ID: 0.333 G_Rec: 0.360 D_GP: 0.029 D_real: 0.825 D_fake: 0.912 +(epoch: 29, iters: 3376, time: 0.064) G_GAN: 0.345 G_GAN_Feat: 0.715 G_ID: 0.722 G_Rec: 0.463 D_GP: 0.041 D_real: 0.977 D_fake: 0.655 +(epoch: 29, iters: 3776, time: 0.064) G_GAN: 0.433 G_GAN_Feat: 0.794 G_ID: 0.360 G_Rec: 0.395 D_GP: 0.051 D_real: 0.942 D_fake: 0.568 +(epoch: 29, iters: 4176, time: 0.064) G_GAN: 0.396 G_GAN_Feat: 0.706 G_ID: 0.702 G_Rec: 0.391 D_GP: 0.042 D_real: 1.098 D_fake: 0.604 +(epoch: 29, iters: 4576, time: 0.064) G_GAN: 0.235 G_GAN_Feat: 0.802 G_ID: 0.354 G_Rec: 0.360 D_GP: 0.049 D_real: 1.097 D_fake: 0.766 +(epoch: 29, iters: 4976, time: 0.064) G_GAN: 0.226 G_GAN_Feat: 0.840 G_ID: 0.726 G_Rec: 0.382 D_GP: 0.041 D_real: 0.831 D_fake: 0.774 +(epoch: 29, iters: 5376, time: 0.064) G_GAN: 0.089 G_GAN_Feat: 0.757 G_ID: 0.326 G_Rec: 0.381 D_GP: 0.071 D_real: 0.664 D_fake: 0.911 +(epoch: 29, iters: 5776, time: 0.064) G_GAN: -0.004 G_GAN_Feat: 0.820 G_ID: 0.686 G_Rec: 0.381 D_GP: 0.129 D_real: 0.469 D_fake: 1.004 +(epoch: 29, iters: 6176, time: 0.064) G_GAN: 0.366 G_GAN_Feat: 0.538 G_ID: 0.316 G_Rec: 0.348 D_GP: 0.019 D_real: 1.269 D_fake: 0.635 +(epoch: 29, iters: 6576, time: 0.064) G_GAN: 0.148 G_GAN_Feat: 0.602 G_ID: 0.669 G_Rec: 0.358 D_GP: 0.019 D_real: 0.991 D_fake: 0.853 +(epoch: 29, iters: 6976, time: 0.064) G_GAN: 0.147 G_GAN_Feat: 0.734 G_ID: 0.406 G_Rec: 0.472 D_GP: 0.040 D_real: 0.756 D_fake: 0.853 +(epoch: 29, iters: 7376, time: 0.064) G_GAN: 0.781 G_GAN_Feat: 1.135 G_ID: 0.689 G_Rec: 0.478 D_GP: 0.079 D_real: 1.044 D_fake: 0.379 +(epoch: 29, iters: 7776, time: 0.064) G_GAN: 0.184 G_GAN_Feat: 0.805 G_ID: 0.359 G_Rec: 0.360 D_GP: 0.081 D_real: 0.721 D_fake: 0.818 +(epoch: 29, iters: 8176, time: 0.064) G_GAN: 0.117 G_GAN_Feat: 1.066 G_ID: 0.779 G_Rec: 0.365 D_GP: 0.194 D_real: 0.518 D_fake: 0.885 +(epoch: 29, iters: 8576, time: 0.064) G_GAN: 0.472 G_GAN_Feat: 1.011 G_ID: 0.362 G_Rec: 0.422 D_GP: 0.076 D_real: 0.634 D_fake: 0.529 +(epoch: 30, iters: 368, time: 0.064) G_GAN: 0.341 G_GAN_Feat: 1.532 G_ID: 0.704 G_Rec: 0.360 D_GP: 0.287 D_real: 0.491 D_fake: 0.660 +(epoch: 30, iters: 768, time: 0.064) G_GAN: 0.806 G_GAN_Feat: 0.725 G_ID: 0.338 G_Rec: 0.384 D_GP: 0.034 D_real: 1.540 D_fake: 0.427 +(epoch: 30, iters: 1168, time: 0.064) G_GAN: 0.187 G_GAN_Feat: 1.095 G_ID: 0.739 G_Rec: 0.541 D_GP: 0.156 D_real: 0.422 D_fake: 0.813 +(epoch: 30, iters: 1568, time: 0.064) G_GAN: 0.470 G_GAN_Feat: 0.681 G_ID: 0.327 G_Rec: 0.379 D_GP: 0.031 D_real: 1.217 D_fake: 0.535 +(epoch: 30, iters: 1968, time: 0.064) G_GAN: 0.518 G_GAN_Feat: 0.820 G_ID: 0.696 G_Rec: 0.374 D_GP: 0.086 D_real: 1.064 D_fake: 0.495 +(epoch: 30, iters: 2368, time: 0.064) G_GAN: 0.180 G_GAN_Feat: 0.683 G_ID: 0.351 G_Rec: 0.378 D_GP: 0.030 D_real: 0.996 D_fake: 0.820 +(epoch: 30, iters: 2768, time: 0.064) G_GAN: 0.377 G_GAN_Feat: 0.737 G_ID: 0.755 G_Rec: 0.388 D_GP: 0.027 D_real: 1.113 D_fake: 0.623 +(epoch: 30, iters: 3168, time: 0.064) G_GAN: 0.222 G_GAN_Feat: 0.686 G_ID: 0.335 G_Rec: 0.418 D_GP: 0.051 D_real: 0.879 D_fake: 0.779 +(epoch: 30, iters: 3568, time: 0.064) G_GAN: 0.401 G_GAN_Feat: 0.595 G_ID: 0.704 G_Rec: 0.368 D_GP: 0.024 D_real: 1.221 D_fake: 0.600 +(epoch: 30, iters: 3968, time: 0.064) G_GAN: 0.426 G_GAN_Feat: 1.174 G_ID: 0.318 G_Rec: 0.448 D_GP: 0.237 D_real: 0.539 D_fake: 0.577 +(epoch: 30, iters: 4368, time: 0.064) G_GAN: -0.119 G_GAN_Feat: 0.937 G_ID: 0.725 G_Rec: 0.371 D_GP: 0.158 D_real: 0.546 D_fake: 1.119 +(epoch: 30, iters: 4768, time: 0.064) G_GAN: -0.039 G_GAN_Feat: 0.692 G_ID: 0.354 G_Rec: 0.490 D_GP: 0.032 D_real: 0.683 D_fake: 1.039 +(epoch: 30, iters: 5168, time: 0.064) G_GAN: 0.184 G_GAN_Feat: 0.686 G_ID: 0.679 G_Rec: 0.451 D_GP: 0.027 D_real: 1.020 D_fake: 0.816 +(epoch: 30, iters: 5568, time: 0.064) G_GAN: 0.353 G_GAN_Feat: 0.666 G_ID: 0.338 G_Rec: 0.433 D_GP: 0.032 D_real: 1.109 D_fake: 0.647 +(epoch: 30, iters: 5968, time: 0.064) G_GAN: 0.471 G_GAN_Feat: 0.716 G_ID: 0.661 G_Rec: 0.378 D_GP: 0.035 D_real: 1.195 D_fake: 0.532 +(epoch: 30, iters: 6368, time: 0.064) G_GAN: 0.282 G_GAN_Feat: 0.682 G_ID: 0.310 G_Rec: 0.354 D_GP: 0.048 D_real: 0.934 D_fake: 0.718 +(epoch: 30, iters: 6768, time: 0.064) G_GAN: 0.574 G_GAN_Feat: 0.973 G_ID: 0.666 G_Rec: 0.403 D_GP: 0.173 D_real: 0.867 D_fake: 0.437 +(epoch: 30, iters: 7168, time: 0.064) G_GAN: 0.235 G_GAN_Feat: 0.856 G_ID: 0.272 G_Rec: 0.436 D_GP: 0.048 D_real: 0.773 D_fake: 0.765 +(epoch: 30, iters: 7568, time: 0.064) G_GAN: 0.302 G_GAN_Feat: 0.558 G_ID: 0.697 G_Rec: 0.351 D_GP: 0.018 D_real: 1.201 D_fake: 0.698 +(epoch: 30, iters: 7968, time: 0.064) G_GAN: 0.526 G_GAN_Feat: 0.598 G_ID: 0.332 G_Rec: 0.384 D_GP: 0.028 D_real: 1.389 D_fake: 0.477 +(epoch: 30, iters: 8368, time: 0.064) G_GAN: 0.413 G_GAN_Feat: 0.774 G_ID: 0.694 G_Rec: 0.366 D_GP: 0.055 D_real: 1.054 D_fake: 0.588 +(epoch: 31, iters: 160, time: 0.064) G_GAN: 0.491 G_GAN_Feat: 0.841 G_ID: 0.321 G_Rec: 0.387 D_GP: 0.054 D_real: 1.006 D_fake: 0.509 +(epoch: 31, iters: 560, time: 0.064) G_GAN: 0.558 G_GAN_Feat: 1.008 G_ID: 0.713 G_Rec: 0.392 D_GP: 0.115 D_real: 0.739 D_fake: 0.450 +(epoch: 31, iters: 960, time: 0.064) G_GAN: 0.561 G_GAN_Feat: 0.823 G_ID: 0.360 G_Rec: 0.393 D_GP: 0.044 D_real: 1.211 D_fake: 0.442 +(epoch: 31, iters: 1360, time: 0.064) G_GAN: 0.647 G_GAN_Feat: 0.861 G_ID: 0.677 G_Rec: 0.362 D_GP: 0.045 D_real: 1.428 D_fake: 0.470 +(epoch: 31, iters: 1760, time: 0.064) G_GAN: 0.055 G_GAN_Feat: 0.854 G_ID: 0.371 G_Rec: 0.356 D_GP: 0.083 D_real: 0.605 D_fake: 0.945 +(epoch: 31, iters: 2160, time: 0.064) G_GAN: 0.544 G_GAN_Feat: 0.522 G_ID: 0.709 G_Rec: 0.391 D_GP: 0.018 D_real: 1.444 D_fake: 0.487 +(epoch: 31, iters: 2560, time: 0.064) G_GAN: 0.260 G_GAN_Feat: 0.542 G_ID: 0.340 G_Rec: 0.374 D_GP: 0.022 D_real: 1.078 D_fake: 0.740 +(epoch: 31, iters: 2960, time: 0.064) G_GAN: 0.208 G_GAN_Feat: 0.591 G_ID: 0.651 G_Rec: 0.326 D_GP: 0.034 D_real: 1.009 D_fake: 0.792 +(epoch: 31, iters: 3360, time: 0.064) G_GAN: 0.340 G_GAN_Feat: 0.731 G_ID: 0.350 G_Rec: 0.381 D_GP: 0.092 D_real: 0.909 D_fake: 0.661 +(epoch: 31, iters: 3760, time: 0.064) G_GAN: 0.145 G_GAN_Feat: 0.742 G_ID: 0.713 G_Rec: 0.405 D_GP: 0.054 D_real: 0.903 D_fake: 0.855 +(epoch: 31, iters: 4160, time: 0.064) G_GAN: 0.527 G_GAN_Feat: 0.675 G_ID: 0.301 G_Rec: 0.402 D_GP: 0.036 D_real: 1.278 D_fake: 0.475 +(epoch: 31, iters: 4560, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 0.740 G_ID: 0.648 G_Rec: 0.396 D_GP: 0.034 D_real: 1.047 D_fake: 0.664 +(epoch: 31, iters: 4960, time: 0.064) G_GAN: 0.448 G_GAN_Feat: 0.807 G_ID: 0.353 G_Rec: 0.360 D_GP: 0.064 D_real: 0.996 D_fake: 0.553 +(epoch: 31, iters: 5360, time: 0.064) G_GAN: 0.539 G_GAN_Feat: 0.905 G_ID: 0.668 G_Rec: 0.375 D_GP: 0.108 D_real: 1.019 D_fake: 0.467 +(epoch: 31, iters: 5760, time: 0.064) G_GAN: 0.188 G_GAN_Feat: 0.745 G_ID: 0.322 G_Rec: 0.325 D_GP: 0.063 D_real: 0.905 D_fake: 0.812 +(epoch: 31, iters: 6160, time: 0.064) G_GAN: 0.688 G_GAN_Feat: 0.725 G_ID: 0.736 G_Rec: 0.382 D_GP: 0.031 D_real: 1.440 D_fake: 0.395 +(epoch: 31, iters: 6560, time: 0.064) G_GAN: 0.544 G_GAN_Feat: 0.766 G_ID: 0.296 G_Rec: 0.371 D_GP: 0.073 D_real: 1.034 D_fake: 0.461 +(epoch: 31, iters: 6960, time: 0.064) G_GAN: 1.075 G_GAN_Feat: 0.714 G_ID: 0.665 G_Rec: 0.389 D_GP: 0.023 D_real: 1.808 D_fake: 0.085 +(epoch: 31, iters: 7360, time: 0.064) G_GAN: 0.538 G_GAN_Feat: 0.658 G_ID: 0.356 G_Rec: 0.449 D_GP: 0.030 D_real: 1.357 D_fake: 0.465 +(epoch: 31, iters: 7760, time: 0.064) G_GAN: 0.702 G_GAN_Feat: 0.788 G_ID: 0.661 G_Rec: 0.396 D_GP: 0.056 D_real: 1.351 D_fake: 0.336 +(epoch: 31, iters: 8160, time: 0.064) G_GAN: 0.345 G_GAN_Feat: 0.688 G_ID: 0.359 G_Rec: 0.359 D_GP: 0.037 D_real: 1.049 D_fake: 0.655 +(epoch: 31, iters: 8560, time: 0.064) G_GAN: 0.360 G_GAN_Feat: 0.635 G_ID: 0.672 G_Rec: 0.390 D_GP: 0.029 D_real: 1.207 D_fake: 0.643 +(epoch: 32, iters: 352, time: 0.064) G_GAN: 0.425 G_GAN_Feat: 0.698 G_ID: 0.342 G_Rec: 0.365 D_GP: 0.034 D_real: 1.164 D_fake: 0.576 +(epoch: 32, iters: 752, time: 0.064) G_GAN: 0.129 G_GAN_Feat: 1.048 G_ID: 0.693 G_Rec: 0.486 D_GP: 0.117 D_real: 0.361 D_fake: 0.871 +(epoch: 32, iters: 1152, time: 0.064) G_GAN: 0.379 G_GAN_Feat: 0.628 G_ID: 0.389 G_Rec: 0.408 D_GP: 0.019 D_real: 1.277 D_fake: 0.636 +(epoch: 32, iters: 1552, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.567 G_ID: 0.683 G_Rec: 0.360 D_GP: 0.017 D_real: 1.183 D_fake: 0.669 +(epoch: 32, iters: 1952, time: 0.064) G_GAN: 0.343 G_GAN_Feat: 0.548 G_ID: 0.310 G_Rec: 0.394 D_GP: 0.022 D_real: 1.381 D_fake: 0.658 +(epoch: 32, iters: 2352, time: 0.064) G_GAN: 0.282 G_GAN_Feat: 0.603 G_ID: 0.619 G_Rec: 0.369 D_GP: 0.029 D_real: 1.087 D_fake: 0.730 +(epoch: 32, iters: 2752, time: 0.064) G_GAN: 0.270 G_GAN_Feat: 0.594 G_ID: 0.399 G_Rec: 0.366 D_GP: 0.029 D_real: 1.116 D_fake: 0.730 +(epoch: 32, iters: 3152, time: 0.064) G_GAN: 0.072 G_GAN_Feat: 0.683 G_ID: 0.733 G_Rec: 0.355 D_GP: 0.058 D_real: 0.818 D_fake: 0.928 +(epoch: 32, iters: 3552, time: 0.064) G_GAN: 0.290 G_GAN_Feat: 0.753 G_ID: 0.311 G_Rec: 0.358 D_GP: 0.067 D_real: 1.017 D_fake: 0.712 +(epoch: 32, iters: 3952, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 0.981 G_ID: 0.685 G_Rec: 0.395 D_GP: 0.065 D_real: 0.816 D_fake: 0.662 +(epoch: 32, iters: 4352, time: 0.064) G_GAN: 0.197 G_GAN_Feat: 0.738 G_ID: 0.331 G_Rec: 0.341 D_GP: 0.037 D_real: 0.831 D_fake: 0.803 +(epoch: 32, iters: 4752, time: 0.064) G_GAN: 0.553 G_GAN_Feat: 0.789 G_ID: 0.657 G_Rec: 0.479 D_GP: 0.061 D_real: 1.165 D_fake: 0.478 +(epoch: 32, iters: 5152, time: 0.064) G_GAN: 0.458 G_GAN_Feat: 0.731 G_ID: 0.352 G_Rec: 0.409 D_GP: 0.034 D_real: 1.105 D_fake: 0.543 +(epoch: 32, iters: 5552, time: 0.064) G_GAN: 0.514 G_GAN_Feat: 0.903 G_ID: 0.634 G_Rec: 0.365 D_GP: 0.083 D_real: 0.911 D_fake: 0.489 +(epoch: 32, iters: 5952, time: 0.064) G_GAN: 0.209 G_GAN_Feat: 0.618 G_ID: 0.278 G_Rec: 0.437 D_GP: 0.022 D_real: 1.033 D_fake: 0.791 +(epoch: 32, iters: 6352, time: 0.064) G_GAN: 0.189 G_GAN_Feat: 0.660 G_ID: 0.642 G_Rec: 0.411 D_GP: 0.033 D_real: 1.046 D_fake: 0.811 +(epoch: 32, iters: 6752, time: 0.064) G_GAN: 0.330 G_GAN_Feat: 0.732 G_ID: 0.330 G_Rec: 0.455 D_GP: 0.049 D_real: 1.001 D_fake: 0.672 +(epoch: 32, iters: 7152, time: 0.064) G_GAN: 0.314 G_GAN_Feat: 0.775 G_ID: 0.679 G_Rec: 0.335 D_GP: 0.043 D_real: 0.975 D_fake: 0.686 +(epoch: 32, iters: 7552, time: 0.064) G_GAN: 0.268 G_GAN_Feat: 0.847 G_ID: 0.346 G_Rec: 0.432 D_GP: 0.042 D_real: 0.750 D_fake: 0.733 +(epoch: 32, iters: 7952, time: 0.064) G_GAN: 0.437 G_GAN_Feat: 0.605 G_ID: 0.640 G_Rec: 0.325 D_GP: 0.028 D_real: 1.266 D_fake: 0.565 +(epoch: 32, iters: 8352, time: 0.064) G_GAN: 0.425 G_GAN_Feat: 0.870 G_ID: 0.328 G_Rec: 0.363 D_GP: 0.099 D_real: 0.898 D_fake: 0.577 +(epoch: 33, iters: 144, time: 0.064) G_GAN: -0.015 G_GAN_Feat: 0.844 G_ID: 0.682 G_Rec: 0.354 D_GP: 0.160 D_real: 0.530 D_fake: 1.015 +(epoch: 33, iters: 544, time: 0.064) G_GAN: 0.176 G_GAN_Feat: 0.924 G_ID: 0.323 G_Rec: 0.341 D_GP: 0.058 D_real: 0.568 D_fake: 0.824 +(epoch: 33, iters: 944, time: 0.064) G_GAN: 0.355 G_GAN_Feat: 1.024 G_ID: 0.693 G_Rec: 0.470 D_GP: 0.136 D_real: 0.581 D_fake: 0.646 +(epoch: 33, iters: 1344, time: 0.064) G_GAN: 0.759 G_GAN_Feat: 1.042 G_ID: 0.324 G_Rec: 0.391 D_GP: 0.075 D_real: 0.951 D_fake: 0.285 +(epoch: 33, iters: 1744, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.489 G_ID: 0.650 G_Rec: 0.362 D_GP: 0.017 D_real: 1.209 D_fake: 0.693 +(epoch: 33, iters: 2144, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.494 G_ID: 0.303 G_Rec: 0.326 D_GP: 0.020 D_real: 1.077 D_fake: 0.744 +(epoch: 33, iters: 2544, time: 0.064) G_GAN: 0.152 G_GAN_Feat: 0.546 G_ID: 0.703 G_Rec: 0.398 D_GP: 0.022 D_real: 0.943 D_fake: 0.848 +(epoch: 33, iters: 2944, time: 0.064) G_GAN: 0.421 G_GAN_Feat: 0.560 G_ID: 0.311 G_Rec: 0.446 D_GP: 0.027 D_real: 1.281 D_fake: 0.594 +(epoch: 33, iters: 3344, time: 0.064) G_GAN: 0.121 G_GAN_Feat: 0.570 G_ID: 0.644 G_Rec: 0.410 D_GP: 0.029 D_real: 0.859 D_fake: 0.879 +(epoch: 33, iters: 3744, time: 0.064) G_GAN: 0.257 G_GAN_Feat: 0.648 G_ID: 0.361 G_Rec: 0.377 D_GP: 0.039 D_real: 0.953 D_fake: 0.745 +(epoch: 33, iters: 4144, time: 0.064) G_GAN: 0.024 G_GAN_Feat: 0.654 G_ID: 0.683 G_Rec: 0.393 D_GP: 0.055 D_real: 0.723 D_fake: 0.976 +(epoch: 33, iters: 4544, time: 0.064) G_GAN: 0.386 G_GAN_Feat: 0.960 G_ID: 0.382 G_Rec: 0.382 D_GP: 0.120 D_real: 0.701 D_fake: 0.616 +(epoch: 33, iters: 4944, time: 0.064) G_GAN: 0.427 G_GAN_Feat: 0.800 G_ID: 0.605 G_Rec: 0.370 D_GP: 0.051 D_real: 1.115 D_fake: 0.574 +(epoch: 33, iters: 5344, time: 0.064) G_GAN: 0.728 G_GAN_Feat: 0.789 G_ID: 0.301 G_Rec: 0.416 D_GP: 0.061 D_real: 1.268 D_fake: 0.444 +(epoch: 33, iters: 5744, time: 0.064) G_GAN: 0.385 G_GAN_Feat: 0.572 G_ID: 0.648 G_Rec: 0.353 D_GP: 0.020 D_real: 1.289 D_fake: 0.615 +(epoch: 33, iters: 6144, time: 0.064) G_GAN: 0.356 G_GAN_Feat: 0.643 G_ID: 0.319 G_Rec: 0.373 D_GP: 0.032 D_real: 1.178 D_fake: 0.650 +(epoch: 33, iters: 6544, time: 0.064) G_GAN: 0.337 G_GAN_Feat: 0.816 G_ID: 0.639 G_Rec: 0.376 D_GP: 0.049 D_real: 1.008 D_fake: 0.668 +(epoch: 33, iters: 6944, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 0.872 G_ID: 0.331 G_Rec: 0.505 D_GP: 0.055 D_real: 0.700 D_fake: 0.780 +(epoch: 33, iters: 7344, time: 0.064) G_GAN: 0.279 G_GAN_Feat: 0.657 G_ID: 0.664 G_Rec: 0.405 D_GP: 0.038 D_real: 0.973 D_fake: 0.721 +(epoch: 33, iters: 7744, time: 0.064) G_GAN: 0.422 G_GAN_Feat: 0.729 G_ID: 0.270 G_Rec: 0.429 D_GP: 0.056 D_real: 1.037 D_fake: 0.579 +(epoch: 33, iters: 8144, time: 0.064) G_GAN: 0.291 G_GAN_Feat: 0.684 G_ID: 0.704 G_Rec: 0.373 D_GP: 0.041 D_real: 1.096 D_fake: 0.709 +(epoch: 33, iters: 8544, time: 0.064) G_GAN: 0.150 G_GAN_Feat: 0.675 G_ID: 0.367 G_Rec: 0.364 D_GP: 0.019 D_real: 0.964 D_fake: 0.850 +(epoch: 34, iters: 336, time: 0.064) G_GAN: 0.176 G_GAN_Feat: 0.647 G_ID: 0.618 G_Rec: 0.367 D_GP: 0.034 D_real: 0.807 D_fake: 0.825 +(epoch: 34, iters: 736, time: 0.064) G_GAN: 0.474 G_GAN_Feat: 0.866 G_ID: 0.294 G_Rec: 0.351 D_GP: 0.122 D_real: 0.740 D_fake: 0.541 +(epoch: 34, iters: 1136, time: 0.064) G_GAN: 0.118 G_GAN_Feat: 0.738 G_ID: 0.651 G_Rec: 0.448 D_GP: 0.028 D_real: 0.836 D_fake: 0.882 +(epoch: 34, iters: 1536, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 0.753 G_ID: 0.346 G_Rec: 0.345 D_GP: 0.040 D_real: 1.145 D_fake: 0.555 +(epoch: 34, iters: 1936, time: 0.064) G_GAN: 0.655 G_GAN_Feat: 0.730 G_ID: 0.644 G_Rec: 0.369 D_GP: 0.036 D_real: 1.423 D_fake: 0.354 +(epoch: 34, iters: 2336, time: 0.064) G_GAN: 0.419 G_GAN_Feat: 0.994 G_ID: 0.330 G_Rec: 0.375 D_GP: 0.107 D_real: 1.108 D_fake: 0.584 +(epoch: 34, iters: 2736, time: 0.064) G_GAN: 0.180 G_GAN_Feat: 0.770 G_ID: 0.648 G_Rec: 0.359 D_GP: 0.058 D_real: 0.891 D_fake: 0.821 +(epoch: 34, iters: 3136, time: 0.064) G_GAN: 0.281 G_GAN_Feat: 0.726 G_ID: 0.290 G_Rec: 0.404 D_GP: 0.031 D_real: 1.027 D_fake: 0.719 +(epoch: 34, iters: 3536, time: 0.064) G_GAN: 0.667 G_GAN_Feat: 0.794 G_ID: 0.642 G_Rec: 0.351 D_GP: 0.046 D_real: 1.411 D_fake: 0.348 +(epoch: 34, iters: 3936, time: 0.064) G_GAN: -0.065 G_GAN_Feat: 0.723 G_ID: 0.332 G_Rec: 0.356 D_GP: 0.031 D_real: 0.641 D_fake: 1.065 +(epoch: 34, iters: 4336, time: 0.064) G_GAN: 0.374 G_GAN_Feat: 0.762 G_ID: 0.607 G_Rec: 0.348 D_GP: 0.047 D_real: 0.974 D_fake: 0.626 +(epoch: 34, iters: 4736, time: 0.064) G_GAN: 0.563 G_GAN_Feat: 1.106 G_ID: 0.295 G_Rec: 0.354 D_GP: 0.084 D_real: 0.690 D_fake: 0.449 +(epoch: 34, iters: 5136, time: 0.064) G_GAN: 0.100 G_GAN_Feat: 0.575 G_ID: 0.590 G_Rec: 0.353 D_GP: 0.030 D_real: 0.971 D_fake: 0.900 +(epoch: 34, iters: 5536, time: 0.064) G_GAN: 0.343 G_GAN_Feat: 0.716 G_ID: 0.358 G_Rec: 0.409 D_GP: 0.052 D_real: 1.086 D_fake: 0.659 +(epoch: 34, iters: 5936, time: 0.064) G_GAN: 0.341 G_GAN_Feat: 0.712 G_ID: 0.634 G_Rec: 0.389 D_GP: 0.056 D_real: 1.066 D_fake: 0.660 +(epoch: 34, iters: 6336, time: 0.064) G_GAN: 0.366 G_GAN_Feat: 0.783 G_ID: 0.320 G_Rec: 0.400 D_GP: 0.088 D_real: 0.850 D_fake: 0.636 +(epoch: 34, iters: 6736, time: 0.064) G_GAN: 0.053 G_GAN_Feat: 0.995 G_ID: 0.643 G_Rec: 0.486 D_GP: 0.086 D_real: 0.387 D_fake: 0.947 +(epoch: 34, iters: 7136, time: 0.064) G_GAN: 0.329 G_GAN_Feat: 0.784 G_ID: 0.325 G_Rec: 0.356 D_GP: 0.046 D_real: 0.974 D_fake: 0.672 +(epoch: 34, iters: 7536, time: 0.064) G_GAN: 0.777 G_GAN_Feat: 0.729 G_ID: 0.572 G_Rec: 0.393 D_GP: 0.036 D_real: 1.523 D_fake: 0.393 +(epoch: 34, iters: 7936, time: 0.064) G_GAN: 0.155 G_GAN_Feat: 0.541 G_ID: 0.275 G_Rec: 0.314 D_GP: 0.028 D_real: 1.003 D_fake: 0.846 +(epoch: 34, iters: 8336, time: 0.064) G_GAN: 0.092 G_GAN_Feat: 0.702 G_ID: 0.681 G_Rec: 0.415 D_GP: 0.032 D_real: 0.776 D_fake: 0.909 +(epoch: 35, iters: 128, time: 0.064) G_GAN: 0.305 G_GAN_Feat: 0.668 G_ID: 0.358 G_Rec: 0.500 D_GP: 0.059 D_real: 0.983 D_fake: 0.695 +(epoch: 35, iters: 528, time: 0.064) G_GAN: 0.537 G_GAN_Feat: 0.852 G_ID: 0.592 G_Rec: 0.420 D_GP: 0.091 D_real: 1.163 D_fake: 0.515 +(epoch: 35, iters: 928, time: 0.064) G_GAN: 0.438 G_GAN_Feat: 0.790 G_ID: 0.284 G_Rec: 0.419 D_GP: 0.066 D_real: 1.076 D_fake: 0.564 +(epoch: 35, iters: 1328, time: 0.064) G_GAN: 0.522 G_GAN_Feat: 0.569 G_ID: 0.653 G_Rec: 0.345 D_GP: 0.021 D_real: 1.390 D_fake: 0.479 +(epoch: 35, iters: 1728, time: 0.064) G_GAN: 0.310 G_GAN_Feat: 0.619 G_ID: 0.303 G_Rec: 0.452 D_GP: 0.035 D_real: 1.120 D_fake: 0.690 +(epoch: 35, iters: 2128, time: 0.064) G_GAN: 0.486 G_GAN_Feat: 0.624 G_ID: 0.609 G_Rec: 0.381 D_GP: 0.039 D_real: 1.149 D_fake: 0.515 +(epoch: 35, iters: 2528, time: 0.064) G_GAN: 0.254 G_GAN_Feat: 0.788 G_ID: 0.311 G_Rec: 0.474 D_GP: 0.087 D_real: 0.708 D_fake: 0.746 +(epoch: 35, iters: 2928, time: 0.064) G_GAN: 0.233 G_GAN_Feat: 0.746 G_ID: 0.612 G_Rec: 0.347 D_GP: 0.086 D_real: 0.875 D_fake: 0.767 +(epoch: 35, iters: 3328, time: 0.064) G_GAN: 0.218 G_GAN_Feat: 0.923 G_ID: 0.302 G_Rec: 0.352 D_GP: 0.072 D_real: 0.565 D_fake: 0.783 +(epoch: 35, iters: 3728, time: 0.064) G_GAN: 0.326 G_GAN_Feat: 0.855 G_ID: 0.623 G_Rec: 0.352 D_GP: 0.153 D_real: 0.774 D_fake: 0.674 +(epoch: 35, iters: 4128, time: 0.064) G_GAN: 0.703 G_GAN_Feat: 0.697 G_ID: 0.331 G_Rec: 0.452 D_GP: 0.029 D_real: 1.490 D_fake: 0.313 +(epoch: 35, iters: 4528, time: 0.064) G_GAN: 0.391 G_GAN_Feat: 1.183 G_ID: 0.644 G_Rec: 0.370 D_GP: 0.301 D_real: 0.466 D_fake: 0.613 +(epoch: 35, iters: 4928, time: 0.064) G_GAN: 0.458 G_GAN_Feat: 1.097 G_ID: 0.362 G_Rec: 0.430 D_GP: 0.219 D_real: 0.451 D_fake: 0.571 +(epoch: 35, iters: 5328, time: 0.064) G_GAN: 0.190 G_GAN_Feat: 0.564 G_ID: 0.686 G_Rec: 0.450 D_GP: 0.019 D_real: 1.137 D_fake: 0.810 +(epoch: 35, iters: 5728, time: 0.064) G_GAN: 0.175 G_GAN_Feat: 0.569 G_ID: 0.325 G_Rec: 0.356 D_GP: 0.027 D_real: 1.020 D_fake: 0.826 +(epoch: 35, iters: 6128, time: 0.064) G_GAN: 0.181 G_GAN_Feat: 0.516 G_ID: 0.636 G_Rec: 0.451 D_GP: 0.021 D_real: 1.043 D_fake: 0.819 +(epoch: 35, iters: 6528, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.553 G_ID: 0.290 G_Rec: 0.353 D_GP: 0.024 D_real: 1.162 D_fake: 0.761 +(epoch: 35, iters: 6928, time: 0.064) G_GAN: 0.150 G_GAN_Feat: 0.571 G_ID: 0.641 G_Rec: 0.409 D_GP: 0.034 D_real: 0.961 D_fake: 0.850 +(epoch: 35, iters: 7328, time: 0.064) G_GAN: 0.066 G_GAN_Feat: 0.629 G_ID: 0.276 G_Rec: 0.348 D_GP: 0.059 D_real: 0.870 D_fake: 0.935 +(epoch: 35, iters: 7728, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 0.649 G_ID: 0.606 G_Rec: 0.365 D_GP: 0.056 D_real: 0.973 D_fake: 0.782 +(epoch: 35, iters: 8128, time: 0.064) G_GAN: 0.245 G_GAN_Feat: 0.654 G_ID: 0.291 G_Rec: 0.430 D_GP: 0.036 D_real: 1.039 D_fake: 0.755 +(epoch: 35, iters: 8528, time: 0.064) G_GAN: 0.441 G_GAN_Feat: 0.732 G_ID: 0.649 G_Rec: 0.366 D_GP: 0.059 D_real: 1.098 D_fake: 0.561 +(epoch: 36, iters: 320, time: 0.064) G_GAN: 0.103 G_GAN_Feat: 0.891 G_ID: 0.360 G_Rec: 0.368 D_GP: 0.100 D_real: 0.506 D_fake: 0.897 +(epoch: 36, iters: 720, time: 0.064) G_GAN: 0.456 G_GAN_Feat: 0.705 G_ID: 0.603 G_Rec: 0.357 D_GP: 0.074 D_real: 1.050 D_fake: 0.546 +(epoch: 36, iters: 1120, time: 0.064) G_GAN: 0.582 G_GAN_Feat: 0.710 G_ID: 0.325 G_Rec: 0.333 D_GP: 0.060 D_real: 1.233 D_fake: 0.450 +(epoch: 36, iters: 1520, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.719 G_ID: 0.609 G_Rec: 0.406 D_GP: 0.034 D_real: 1.041 D_fake: 0.722 +(epoch: 36, iters: 1920, time: 0.064) G_GAN: 0.406 G_GAN_Feat: 0.827 G_ID: 0.298 G_Rec: 0.385 D_GP: 0.093 D_real: 0.938 D_fake: 0.631 +(epoch: 36, iters: 2320, time: 0.064) G_GAN: 0.406 G_GAN_Feat: 0.651 G_ID: 0.568 G_Rec: 0.370 D_GP: 0.030 D_real: 1.197 D_fake: 0.598 +(epoch: 36, iters: 2720, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 0.796 G_ID: 0.328 G_Rec: 0.374 D_GP: 0.103 D_real: 0.712 D_fake: 0.808 +(epoch: 36, iters: 3120, time: 0.064) G_GAN: 0.321 G_GAN_Feat: 0.781 G_ID: 0.599 G_Rec: 0.390 D_GP: 0.071 D_real: 0.805 D_fake: 0.679 +(epoch: 36, iters: 3520, time: 0.064) G_GAN: 0.227 G_GAN_Feat: 0.897 G_ID: 0.242 G_Rec: 0.400 D_GP: 0.110 D_real: 0.473 D_fake: 0.773 +(epoch: 36, iters: 3920, time: 0.064) G_GAN: 0.125 G_GAN_Feat: 0.689 G_ID: 0.664 G_Rec: 0.361 D_GP: 0.042 D_real: 0.819 D_fake: 0.875 +(epoch: 36, iters: 4320, time: 0.064) G_GAN: 0.202 G_GAN_Feat: 0.652 G_ID: 0.292 G_Rec: 0.409 D_GP: 0.032 D_real: 0.955 D_fake: 0.798 +(epoch: 36, iters: 4720, time: 0.064) G_GAN: 0.404 G_GAN_Feat: 0.810 G_ID: 0.636 G_Rec: 0.328 D_GP: 0.056 D_real: 1.225 D_fake: 0.596 +(epoch: 36, iters: 5120, time: 0.064) G_GAN: 0.508 G_GAN_Feat: 0.722 G_ID: 0.312 G_Rec: 0.338 D_GP: 0.042 D_real: 1.134 D_fake: 0.499 +(epoch: 36, iters: 5520, time: 0.064) G_GAN: 0.326 G_GAN_Feat: 0.796 G_ID: 0.619 G_Rec: 0.342 D_GP: 0.049 D_real: 0.950 D_fake: 0.678 +(epoch: 36, iters: 5920, time: 0.064) G_GAN: 0.215 G_GAN_Feat: 0.764 G_ID: 0.296 G_Rec: 0.480 D_GP: 0.029 D_real: 0.940 D_fake: 0.785 +(epoch: 36, iters: 6320, time: 0.064) G_GAN: 0.308 G_GAN_Feat: 0.895 G_ID: 0.602 G_Rec: 0.372 D_GP: 0.083 D_real: 0.768 D_fake: 0.693 +(epoch: 36, iters: 6720, time: 0.064) G_GAN: 0.369 G_GAN_Feat: 0.633 G_ID: 0.296 G_Rec: 0.332 D_GP: 0.025 D_real: 1.207 D_fake: 0.632 +(epoch: 36, iters: 7120, time: 0.064) G_GAN: 0.223 G_GAN_Feat: 0.623 G_ID: 0.628 G_Rec: 0.326 D_GP: 0.026 D_real: 1.114 D_fake: 0.777 +(epoch: 36, iters: 7520, time: 0.064) G_GAN: 0.123 G_GAN_Feat: 0.669 G_ID: 0.321 G_Rec: 0.374 D_GP: 0.020 D_real: 1.009 D_fake: 0.877 +(epoch: 36, iters: 7920, time: 0.064) G_GAN: 0.103 G_GAN_Feat: 0.791 G_ID: 0.625 G_Rec: 0.415 D_GP: 0.032 D_real: 0.815 D_fake: 0.897 +(epoch: 36, iters: 8320, time: 0.064) G_GAN: 0.242 G_GAN_Feat: 0.721 G_ID: 0.279 G_Rec: 0.416 D_GP: 0.049 D_real: 1.027 D_fake: 0.759 +(epoch: 37, iters: 112, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.802 G_ID: 0.592 G_Rec: 0.370 D_GP: 0.073 D_real: 1.043 D_fake: 0.720 +(epoch: 37, iters: 512, time: 0.064) G_GAN: 0.617 G_GAN_Feat: 0.774 G_ID: 0.327 G_Rec: 0.400 D_GP: 0.046 D_real: 1.309 D_fake: 0.401 +(epoch: 37, iters: 912, time: 0.064) G_GAN: 0.088 G_GAN_Feat: 0.738 G_ID: 0.615 G_Rec: 0.336 D_GP: 0.057 D_real: 0.741 D_fake: 0.914 +(epoch: 37, iters: 1312, time: 0.064) G_GAN: 0.474 G_GAN_Feat: 0.732 G_ID: 0.273 G_Rec: 0.346 D_GP: 0.035 D_real: 1.197 D_fake: 0.526 +(epoch: 37, iters: 1712, time: 0.064) G_GAN: -0.008 G_GAN_Feat: 1.181 G_ID: 0.656 G_Rec: 0.374 D_GP: 0.154 D_real: 0.289 D_fake: 1.008 +(epoch: 37, iters: 2112, time: 0.064) G_GAN: 0.241 G_GAN_Feat: 0.738 G_ID: 0.304 G_Rec: 0.419 D_GP: 0.031 D_real: 0.976 D_fake: 0.762 +(epoch: 37, iters: 2512, time: 0.064) G_GAN: 0.185 G_GAN_Feat: 0.605 G_ID: 0.607 G_Rec: 0.331 D_GP: 0.022 D_real: 1.075 D_fake: 0.816 +(epoch: 37, iters: 2912, time: 0.064) G_GAN: 0.485 G_GAN_Feat: 1.518 G_ID: 0.284 G_Rec: 0.461 D_GP: 0.080 D_real: 0.462 D_fake: 0.516 +(epoch: 37, iters: 3312, time: 0.064) G_GAN: 0.504 G_GAN_Feat: 0.602 G_ID: 0.635 G_Rec: 0.401 D_GP: 0.024 D_real: 1.335 D_fake: 0.499 +(epoch: 37, iters: 3712, time: 0.064) G_GAN: 0.087 G_GAN_Feat: 0.611 G_ID: 0.252 G_Rec: 0.366 D_GP: 0.034 D_real: 0.904 D_fake: 0.913 +(epoch: 37, iters: 4112, time: 0.064) G_GAN: 0.433 G_GAN_Feat: 0.636 G_ID: 0.626 G_Rec: 0.358 D_GP: 0.027 D_real: 1.218 D_fake: 0.568 +(epoch: 37, iters: 4512, time: 0.064) G_GAN: 0.274 G_GAN_Feat: 0.895 G_ID: 0.333 G_Rec: 0.360 D_GP: 0.075 D_real: 0.752 D_fake: 0.726 +(epoch: 37, iters: 4912, time: 0.064) G_GAN: 0.367 G_GAN_Feat: 0.842 G_ID: 0.557 G_Rec: 0.435 D_GP: 0.045 D_real: 0.964 D_fake: 0.633 +(epoch: 37, iters: 5312, time: 0.064) G_GAN: 0.427 G_GAN_Feat: 0.735 G_ID: 0.290 G_Rec: 0.363 D_GP: 0.062 D_real: 1.030 D_fake: 0.576 +(epoch: 37, iters: 5712, time: 0.064) G_GAN: 0.611 G_GAN_Feat: 0.787 G_ID: 0.620 G_Rec: 0.395 D_GP: 0.044 D_real: 1.289 D_fake: 0.409 +(epoch: 37, iters: 6112, time: 0.064) G_GAN: 0.471 G_GAN_Feat: 0.786 G_ID: 0.292 G_Rec: 0.437 D_GP: 0.033 D_real: 1.254 D_fake: 0.536 +(epoch: 37, iters: 6512, time: 0.064) G_GAN: 0.463 G_GAN_Feat: 0.752 G_ID: 0.615 G_Rec: 0.363 D_GP: 0.047 D_real: 1.223 D_fake: 0.571 +(epoch: 37, iters: 6912, time: 0.064) G_GAN: 0.371 G_GAN_Feat: 0.850 G_ID: 0.279 G_Rec: 0.375 D_GP: 0.053 D_real: 0.939 D_fake: 0.629 +(epoch: 37, iters: 7312, time: 0.064) G_GAN: 0.154 G_GAN_Feat: 0.781 G_ID: 0.583 G_Rec: 0.377 D_GP: 0.040 D_real: 0.730 D_fake: 0.846 +(epoch: 37, iters: 7712, time: 0.064) G_GAN: 0.206 G_GAN_Feat: 0.767 G_ID: 0.318 G_Rec: 0.381 D_GP: 0.070 D_real: 0.899 D_fake: 0.794 +(epoch: 37, iters: 8112, time: 0.064) G_GAN: 0.540 G_GAN_Feat: 1.050 G_ID: 0.577 G_Rec: 0.463 D_GP: 0.195 D_real: 0.670 D_fake: 0.532 +(epoch: 37, iters: 8512, time: 0.064) G_GAN: 0.510 G_GAN_Feat: 0.697 G_ID: 0.278 G_Rec: 0.359 D_GP: 0.030 D_real: 1.238 D_fake: 0.492 +(epoch: 38, iters: 304, time: 0.064) G_GAN: 0.171 G_GAN_Feat: 1.157 G_ID: 0.573 G_Rec: 0.359 D_GP: 0.165 D_real: 0.457 D_fake: 0.832 +(epoch: 38, iters: 704, time: 0.064) G_GAN: 0.176 G_GAN_Feat: 0.777 G_ID: 0.328 G_Rec: 0.348 D_GP: 0.044 D_real: 0.764 D_fake: 0.824 +(epoch: 38, iters: 1104, time: 0.064) G_GAN: 0.574 G_GAN_Feat: 0.707 G_ID: 0.620 G_Rec: 0.379 D_GP: 0.030 D_real: 1.345 D_fake: 0.459 +(epoch: 38, iters: 1504, time: 0.064) G_GAN: 0.469 G_GAN_Feat: 0.661 G_ID: 0.265 G_Rec: 0.363 D_GP: 0.029 D_real: 1.320 D_fake: 0.532 +(epoch: 38, iters: 1904, time: 0.064) G_GAN: 0.439 G_GAN_Feat: 1.124 G_ID: 0.573 G_Rec: 0.455 D_GP: 0.052 D_real: 0.677 D_fake: 0.565 +(epoch: 38, iters: 2304, time: 0.064) G_GAN: 0.484 G_GAN_Feat: 0.634 G_ID: 0.324 G_Rec: 0.381 D_GP: 0.022 D_real: 1.338 D_fake: 0.516 +(epoch: 38, iters: 2704, time: 0.064) G_GAN: 0.185 G_GAN_Feat: 0.825 G_ID: 0.650 G_Rec: 0.377 D_GP: 0.042 D_real: 0.733 D_fake: 0.815 +(epoch: 38, iters: 3104, time: 0.064) G_GAN: 0.177 G_GAN_Feat: 0.848 G_ID: 0.289 G_Rec: 0.434 D_GP: 0.075 D_real: 0.711 D_fake: 0.826 +(epoch: 38, iters: 3504, time: 0.064) G_GAN: 0.012 G_GAN_Feat: 0.842 G_ID: 0.617 G_Rec: 0.404 D_GP: 0.039 D_real: 0.585 D_fake: 0.988 +(epoch: 38, iters: 3904, time: 0.064) G_GAN: 0.271 G_GAN_Feat: 0.845 G_ID: 0.331 G_Rec: 0.395 D_GP: 0.039 D_real: 0.857 D_fake: 0.729 +(epoch: 38, iters: 4304, time: 0.064) G_GAN: 0.486 G_GAN_Feat: 0.894 G_ID: 0.587 G_Rec: 0.378 D_GP: 0.040 D_real: 1.047 D_fake: 0.515 +(epoch: 38, iters: 4704, time: 0.064) G_GAN: 0.582 G_GAN_Feat: 0.554 G_ID: 0.304 G_Rec: 0.367 D_GP: 0.020 D_real: 1.494 D_fake: 0.420 +(epoch: 38, iters: 5104, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.509 G_ID: 0.617 G_Rec: 0.352 D_GP: 0.021 D_real: 1.240 D_fake: 0.675 +(epoch: 38, iters: 5504, time: 0.064) G_GAN: 0.435 G_GAN_Feat: 0.550 G_ID: 0.291 G_Rec: 0.596 D_GP: 0.022 D_real: 1.294 D_fake: 0.565 +(epoch: 38, iters: 5904, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.574 G_ID: 0.581 G_Rec: 0.405 D_GP: 0.022 D_real: 1.142 D_fake: 0.714 +(epoch: 38, iters: 6304, time: 0.064) G_GAN: 0.231 G_GAN_Feat: 0.645 G_ID: 0.303 G_Rec: 0.369 D_GP: 0.032 D_real: 1.081 D_fake: 0.769 +(epoch: 38, iters: 6704, time: 0.064) G_GAN: 0.419 G_GAN_Feat: 0.703 G_ID: 0.609 G_Rec: 0.431 D_GP: 0.040 D_real: 1.157 D_fake: 0.583 +(epoch: 38, iters: 7104, time: 0.064) G_GAN: 0.371 G_GAN_Feat: 0.660 G_ID: 0.310 G_Rec: 0.349 D_GP: 0.050 D_real: 1.110 D_fake: 0.629 +(epoch: 38, iters: 7504, time: 0.064) G_GAN: 0.440 G_GAN_Feat: 0.808 G_ID: 0.626 G_Rec: 0.406 D_GP: 0.040 D_real: 1.207 D_fake: 0.565 +(epoch: 38, iters: 7904, time: 0.064) G_GAN: 0.592 G_GAN_Feat: 0.710 G_ID: 0.270 G_Rec: 0.392 D_GP: 0.030 D_real: 1.269 D_fake: 0.411 +(epoch: 38, iters: 8304, time: 0.064) G_GAN: 0.591 G_GAN_Feat: 0.711 G_ID: 0.575 G_Rec: 0.374 D_GP: 0.035 D_real: 1.357 D_fake: 0.462 +(epoch: 39, iters: 96, time: 0.064) G_GAN: 0.310 G_GAN_Feat: 0.741 G_ID: 0.311 G_Rec: 0.505 D_GP: 0.076 D_real: 0.981 D_fake: 0.690 +(epoch: 39, iters: 496, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.708 G_ID: 0.643 G_Rec: 0.347 D_GP: 0.064 D_real: 1.029 D_fake: 0.722 +(epoch: 39, iters: 896, time: 0.064) G_GAN: 0.441 G_GAN_Feat: 0.783 G_ID: 0.341 G_Rec: 0.358 D_GP: 0.077 D_real: 1.099 D_fake: 0.567 +(epoch: 39, iters: 1296, time: 0.064) G_GAN: 0.380 G_GAN_Feat: 0.770 G_ID: 0.622 G_Rec: 0.373 D_GP: 0.069 D_real: 1.013 D_fake: 0.621 +(epoch: 39, iters: 1696, time: 0.064) G_GAN: 0.398 G_GAN_Feat: 0.672 G_ID: 0.276 G_Rec: 0.382 D_GP: 0.035 D_real: 1.086 D_fake: 0.605 +(epoch: 39, iters: 2096, time: 0.064) G_GAN: 0.328 G_GAN_Feat: 0.646 G_ID: 0.545 G_Rec: 0.354 D_GP: 0.051 D_real: 1.117 D_fake: 0.683 +(epoch: 39, iters: 2496, time: 0.064) G_GAN: 0.614 G_GAN_Feat: 0.832 G_ID: 0.261 G_Rec: 0.428 D_GP: 0.061 D_real: 1.080 D_fake: 0.452 +(epoch: 39, iters: 2896, time: 0.064) G_GAN: 0.272 G_GAN_Feat: 1.056 G_ID: 0.602 G_Rec: 0.362 D_GP: 0.137 D_real: 0.461 D_fake: 0.729 +(epoch: 39, iters: 3296, time: 0.064) G_GAN: 0.522 G_GAN_Feat: 0.888 G_ID: 0.267 G_Rec: 0.410 D_GP: 0.049 D_real: 1.179 D_fake: 0.481 +(epoch: 39, iters: 3696, time: 0.064) G_GAN: 0.227 G_GAN_Feat: 0.980 G_ID: 0.566 G_Rec: 0.412 D_GP: 0.064 D_real: 0.568 D_fake: 0.774 +(epoch: 39, iters: 4096, time: 0.064) G_GAN: 0.519 G_GAN_Feat: 1.037 G_ID: 0.289 G_Rec: 0.383 D_GP: 0.318 D_real: 0.700 D_fake: 0.525 +(epoch: 39, iters: 4496, time: 0.064) G_GAN: 0.705 G_GAN_Feat: 1.442 G_ID: 0.637 G_Rec: 0.478 D_GP: 0.615 D_real: 0.428 D_fake: 0.445 +(epoch: 39, iters: 4896, time: 0.064) G_GAN: 0.491 G_GAN_Feat: 0.706 G_ID: 0.283 G_Rec: 0.379 D_GP: 0.054 D_real: 1.123 D_fake: 0.509 +(epoch: 39, iters: 5296, time: 0.064) G_GAN: 0.447 G_GAN_Feat: 0.689 G_ID: 0.556 G_Rec: 0.351 D_GP: 0.034 D_real: 1.175 D_fake: 0.557 +(epoch: 39, iters: 5696, time: 0.064) G_GAN: 0.540 G_GAN_Feat: 0.643 G_ID: 0.265 G_Rec: 0.363 D_GP: 0.020 D_real: 1.345 D_fake: 0.465 +(epoch: 39, iters: 6096, time: 0.064) G_GAN: 0.184 G_GAN_Feat: 0.656 G_ID: 0.538 G_Rec: 0.407 D_GP: 0.031 D_real: 0.949 D_fake: 0.816 +(epoch: 39, iters: 6496, time: 0.064) G_GAN: 0.217 G_GAN_Feat: 1.075 G_ID: 0.311 G_Rec: 0.395 D_GP: 0.058 D_real: 0.474 D_fake: 0.784 +(epoch: 39, iters: 6896, time: 0.064) G_GAN: 0.301 G_GAN_Feat: 0.823 G_ID: 0.567 G_Rec: 0.395 D_GP: 0.034 D_real: 0.967 D_fake: 0.700 +(epoch: 39, iters: 7296, time: 0.064) G_GAN: 0.474 G_GAN_Feat: 0.788 G_ID: 0.284 G_Rec: 0.495 D_GP: 0.067 D_real: 1.087 D_fake: 0.526 +(epoch: 39, iters: 7696, time: 0.064) G_GAN: 0.290 G_GAN_Feat: 0.745 G_ID: 0.590 G_Rec: 0.412 D_GP: 0.034 D_real: 1.015 D_fake: 0.711 +(epoch: 39, iters: 8096, time: 0.064) G_GAN: 0.759 G_GAN_Feat: 0.898 G_ID: 0.273 G_Rec: 0.354 D_GP: 0.049 D_real: 1.493 D_fake: 0.267 +(epoch: 39, iters: 8496, time: 0.064) G_GAN: 0.418 G_GAN_Feat: 0.670 G_ID: 0.586 G_Rec: 0.378 D_GP: 0.019 D_real: 1.218 D_fake: 0.583 +(epoch: 40, iters: 288, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 0.550 G_ID: 0.307 G_Rec: 0.362 D_GP: 0.025 D_real: 1.007 D_fake: 0.807 +(epoch: 40, iters: 688, time: 0.064) G_GAN: 0.009 G_GAN_Feat: 0.607 G_ID: 0.588 G_Rec: 0.307 D_GP: 0.031 D_real: 0.897 D_fake: 0.991 +(epoch: 40, iters: 1088, time: 0.064) G_GAN: 0.274 G_GAN_Feat: 0.739 G_ID: 0.274 G_Rec: 0.434 D_GP: 0.040 D_real: 0.909 D_fake: 0.727 +(epoch: 40, iters: 1488, time: 0.064) G_GAN: 0.177 G_GAN_Feat: 0.697 G_ID: 0.578 G_Rec: 0.381 D_GP: 0.034 D_real: 1.072 D_fake: 0.823 +(epoch: 40, iters: 1888, time: 0.064) G_GAN: 0.072 G_GAN_Feat: 0.829 G_ID: 0.353 G_Rec: 0.380 D_GP: 0.277 D_real: 0.459 D_fake: 0.930 +(epoch: 40, iters: 2288, time: 0.064) G_GAN: 0.489 G_GAN_Feat: 1.009 G_ID: 0.620 G_Rec: 0.361 D_GP: 0.127 D_real: 0.573 D_fake: 0.513 +(epoch: 40, iters: 2688, time: 0.064) G_GAN: 0.126 G_GAN_Feat: 0.710 G_ID: 0.319 G_Rec: 0.400 D_GP: 0.041 D_real: 0.946 D_fake: 0.874 +(epoch: 40, iters: 3088, time: 0.064) G_GAN: 0.752 G_GAN_Feat: 1.033 G_ID: 0.526 G_Rec: 0.421 D_GP: 0.110 D_real: 1.194 D_fake: 0.294 +(epoch: 40, iters: 3488, time: 0.064) G_GAN: 0.114 G_GAN_Feat: 0.652 G_ID: 0.335 G_Rec: 0.347 D_GP: 0.022 D_real: 0.964 D_fake: 0.886 +(epoch: 40, iters: 3888, time: 0.064) G_GAN: 0.335 G_GAN_Feat: 0.883 G_ID: 0.605 G_Rec: 0.434 D_GP: 0.068 D_real: 1.105 D_fake: 0.666 +(epoch: 40, iters: 4288, time: 0.064) G_GAN: 0.023 G_GAN_Feat: 0.744 G_ID: 0.260 G_Rec: 0.374 D_GP: 0.055 D_real: 0.743 D_fake: 0.977 +(epoch: 40, iters: 4688, time: 0.064) G_GAN: 0.521 G_GAN_Feat: 1.020 G_ID: 0.575 G_Rec: 0.456 D_GP: 0.178 D_real: 0.675 D_fake: 0.480 +(epoch: 40, iters: 5088, time: 0.064) G_GAN: 0.451 G_GAN_Feat: 0.726 G_ID: 0.255 G_Rec: 0.426 D_GP: 0.021 D_real: 1.249 D_fake: 0.560 +(epoch: 40, iters: 5488, time: 0.064) G_GAN: 0.308 G_GAN_Feat: 0.644 G_ID: 0.572 G_Rec: 0.351 D_GP: 0.028 D_real: 1.092 D_fake: 0.692 +(epoch: 40, iters: 5888, time: 0.064) G_GAN: 0.494 G_GAN_Feat: 0.607 G_ID: 0.277 G_Rec: 0.363 D_GP: 0.030 D_real: 1.312 D_fake: 0.511 +(epoch: 40, iters: 6288, time: 0.064) G_GAN: 0.507 G_GAN_Feat: 0.769 G_ID: 0.568 G_Rec: 0.382 D_GP: 0.044 D_real: 1.220 D_fake: 0.496 +(epoch: 40, iters: 6688, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 0.802 G_ID: 0.297 G_Rec: 0.393 D_GP: 0.071 D_real: 0.971 D_fake: 0.662 +(epoch: 40, iters: 7088, time: 0.064) G_GAN: 0.349 G_GAN_Feat: 0.669 G_ID: 0.555 G_Rec: 0.397 D_GP: 0.029 D_real: 1.244 D_fake: 0.651 +(epoch: 40, iters: 7488, time: 0.064) G_GAN: 0.254 G_GAN_Feat: 0.754 G_ID: 0.293 G_Rec: 0.352 D_GP: 0.081 D_real: 0.932 D_fake: 0.747 +(epoch: 40, iters: 7888, time: 0.064) G_GAN: 0.012 G_GAN_Feat: 1.500 G_ID: 0.559 G_Rec: 0.404 D_GP: 1.063 D_real: 0.541 D_fake: 0.992 +(epoch: 40, iters: 8288, time: 0.064) G_GAN: 0.332 G_GAN_Feat: 0.859 G_ID: 0.273 G_Rec: 0.444 D_GP: 0.075 D_real: 0.813 D_fake: 0.668 +(epoch: 41, iters: 80, time: 0.064) G_GAN: 0.441 G_GAN_Feat: 0.745 G_ID: 0.553 G_Rec: 0.360 D_GP: 0.036 D_real: 1.219 D_fake: 0.583 +(epoch: 41, iters: 480, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.708 G_ID: 0.356 G_Rec: 0.353 D_GP: 0.043 D_real: 0.949 D_fake: 0.722 +(epoch: 41, iters: 880, time: 0.064) G_GAN: 0.217 G_GAN_Feat: 0.886 G_ID: 0.614 G_Rec: 0.371 D_GP: 0.050 D_real: 0.831 D_fake: 0.783 +(epoch: 41, iters: 1280, time: 0.064) G_GAN: 0.212 G_GAN_Feat: 0.948 G_ID: 0.309 G_Rec: 0.342 D_GP: 0.095 D_real: 0.825 D_fake: 0.789 +(epoch: 41, iters: 1680, time: 0.064) G_GAN: 0.566 G_GAN_Feat: 0.756 G_ID: 0.557 G_Rec: 0.433 D_GP: 0.028 D_real: 1.328 D_fake: 0.441 +(epoch: 41, iters: 2080, time: 0.064) G_GAN: 0.313 G_GAN_Feat: 0.989 G_ID: 0.291 G_Rec: 0.402 D_GP: 0.042 D_real: 0.763 D_fake: 0.687 +(epoch: 41, iters: 2480, time: 0.064) G_GAN: 0.494 G_GAN_Feat: 0.743 G_ID: 0.501 G_Rec: 0.341 D_GP: 0.053 D_real: 1.188 D_fake: 0.507 +(epoch: 41, iters: 2880, time: 0.064) G_GAN: 0.054 G_GAN_Feat: 0.706 G_ID: 0.305 G_Rec: 0.346 D_GP: 0.040 D_real: 0.788 D_fake: 0.946 +(epoch: 41, iters: 3280, time: 0.064) G_GAN: 0.564 G_GAN_Feat: 0.873 G_ID: 0.553 G_Rec: 0.367 D_GP: 0.184 D_real: 0.965 D_fake: 0.439 +(epoch: 41, iters: 3680, time: 0.064) G_GAN: 0.329 G_GAN_Feat: 0.642 G_ID: 0.333 G_Rec: 0.385 D_GP: 0.033 D_real: 1.080 D_fake: 0.671 +(epoch: 41, iters: 4080, time: 0.064) G_GAN: 0.264 G_GAN_Feat: 0.927 G_ID: 0.531 G_Rec: 0.420 D_GP: 0.099 D_real: 0.766 D_fake: 0.736 +(epoch: 41, iters: 4480, time: 0.064) G_GAN: 0.183 G_GAN_Feat: 0.605 G_ID: 0.268 G_Rec: 0.339 D_GP: 0.023 D_real: 0.940 D_fake: 0.817 +(epoch: 41, iters: 4880, time: 0.064) G_GAN: 0.384 G_GAN_Feat: 0.792 G_ID: 0.538 G_Rec: 0.384 D_GP: 0.037 D_real: 0.934 D_fake: 0.617 +(epoch: 41, iters: 5280, time: 0.064) G_GAN: 0.151 G_GAN_Feat: 0.759 G_ID: 0.257 G_Rec: 0.384 D_GP: 0.069 D_real: 0.885 D_fake: 0.849 +(epoch: 41, iters: 5680, time: 0.064) G_GAN: 0.252 G_GAN_Feat: 0.716 G_ID: 0.579 G_Rec: 0.379 D_GP: 0.047 D_real: 1.044 D_fake: 0.749 +(epoch: 41, iters: 6080, time: 0.064) G_GAN: 0.482 G_GAN_Feat: 0.926 G_ID: 0.308 G_Rec: 0.376 D_GP: 0.092 D_real: 0.827 D_fake: 0.548 +(epoch: 41, iters: 6480, time: 0.064) G_GAN: 0.382 G_GAN_Feat: 0.611 G_ID: 0.595 G_Rec: 0.347 D_GP: 0.025 D_real: 1.286 D_fake: 0.618 +(epoch: 41, iters: 6880, time: 0.064) G_GAN: 0.192 G_GAN_Feat: 0.564 G_ID: 0.289 G_Rec: 0.394 D_GP: 0.026 D_real: 1.018 D_fake: 0.808 +(epoch: 41, iters: 7280, time: 0.064) G_GAN: -0.129 G_GAN_Feat: 0.623 G_ID: 0.539 G_Rec: 0.398 D_GP: 0.039 D_real: 0.642 D_fake: 1.129 +(epoch: 41, iters: 7680, time: 0.064) G_GAN: 0.230 G_GAN_Feat: 0.701 G_ID: 0.272 G_Rec: 0.389 D_GP: 0.049 D_real: 0.887 D_fake: 0.770 +(epoch: 41, iters: 8080, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 0.729 G_ID: 0.547 G_Rec: 0.340 D_GP: 0.045 D_real: 1.183 D_fake: 0.556 +(epoch: 41, iters: 8480, time: 0.064) G_GAN: 0.349 G_GAN_Feat: 0.777 G_ID: 0.270 G_Rec: 0.357 D_GP: 0.092 D_real: 0.812 D_fake: 0.651 +(epoch: 42, iters: 272, time: 0.064) G_GAN: 0.163 G_GAN_Feat: 0.884 G_ID: 0.574 G_Rec: 0.351 D_GP: 0.043 D_real: 0.659 D_fake: 0.838 +(epoch: 42, iters: 672, time: 0.064) G_GAN: 0.010 G_GAN_Feat: 0.725 G_ID: 0.334 G_Rec: 0.379 D_GP: 0.045 D_real: 0.777 D_fake: 0.990 +(epoch: 42, iters: 1072, time: 0.064) G_GAN: 0.188 G_GAN_Feat: 0.828 G_ID: 0.619 G_Rec: 0.430 D_GP: 0.074 D_real: 0.809 D_fake: 0.812 +(epoch: 42, iters: 1472, time: 0.064) G_GAN: 0.378 G_GAN_Feat: 0.867 G_ID: 0.230 G_Rec: 0.412 D_GP: 0.041 D_real: 0.912 D_fake: 0.623 +(epoch: 42, iters: 1872, time: 0.064) G_GAN: 0.375 G_GAN_Feat: 0.787 G_ID: 0.592 G_Rec: 0.426 D_GP: 0.029 D_real: 1.134 D_fake: 0.626 +(epoch: 42, iters: 2272, time: 0.064) G_GAN: 0.139 G_GAN_Feat: 0.782 G_ID: 0.286 G_Rec: 0.348 D_GP: 0.079 D_real: 0.671 D_fake: 0.861 +(epoch: 42, iters: 2672, time: 0.064) G_GAN: 0.464 G_GAN_Feat: 0.790 G_ID: 0.581 G_Rec: 0.352 D_GP: 0.055 D_real: 1.134 D_fake: 0.545 +(epoch: 42, iters: 3072, time: 0.064) G_GAN: 0.666 G_GAN_Feat: 0.796 G_ID: 0.293 G_Rec: 0.368 D_GP: 0.039 D_real: 1.467 D_fake: 0.340 +(epoch: 42, iters: 3472, time: 0.064) G_GAN: 0.458 G_GAN_Feat: 0.918 G_ID: 0.569 G_Rec: 0.365 D_GP: 0.046 D_real: 1.139 D_fake: 0.542 +(epoch: 42, iters: 3872, time: 0.064) G_GAN: 0.289 G_GAN_Feat: 0.918 G_ID: 0.270 G_Rec: 0.384 D_GP: 0.088 D_real: 0.642 D_fake: 0.711 +(epoch: 42, iters: 4272, time: 0.064) G_GAN: 0.379 G_GAN_Feat: 0.811 G_ID: 0.530 G_Rec: 0.391 D_GP: 0.040 D_real: 1.056 D_fake: 0.621 +(epoch: 42, iters: 4672, time: 0.064) G_GAN: 0.458 G_GAN_Feat: 0.725 G_ID: 0.242 G_Rec: 0.467 D_GP: 0.029 D_real: 1.151 D_fake: 0.543 +(epoch: 42, iters: 5072, time: 0.064) G_GAN: 0.347 G_GAN_Feat: 0.593 G_ID: 0.477 G_Rec: 0.378 D_GP: 0.021 D_real: 1.218 D_fake: 0.653 +(epoch: 42, iters: 5472, time: 0.064) G_GAN: 0.756 G_GAN_Feat: 0.670 G_ID: 0.245 G_Rec: 0.485 D_GP: 0.028 D_real: 1.460 D_fake: 0.285 +(epoch: 42, iters: 5872, time: 0.064) G_GAN: 0.386 G_GAN_Feat: 0.673 G_ID: 0.538 G_Rec: 0.379 D_GP: 0.036 D_real: 1.222 D_fake: 0.614 +(epoch: 42, iters: 6272, time: 0.064) G_GAN: 0.254 G_GAN_Feat: 0.784 G_ID: 0.270 G_Rec: 0.374 D_GP: 0.073 D_real: 0.743 D_fake: 0.747 +(epoch: 42, iters: 6672, time: 0.064) G_GAN: 0.449 G_GAN_Feat: 0.800 G_ID: 0.612 G_Rec: 0.356 D_GP: 0.040 D_real: 1.085 D_fake: 0.552 +(epoch: 42, iters: 7072, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 0.783 G_ID: 0.272 G_Rec: 0.375 D_GP: 0.044 D_real: 0.992 D_fake: 0.650 +(epoch: 42, iters: 7472, time: 0.064) G_GAN: 0.643 G_GAN_Feat: 0.717 G_ID: 0.571 G_Rec: 0.395 D_GP: 0.037 D_real: 1.357 D_fake: 0.359 +(epoch: 42, iters: 7872, time: 0.064) G_GAN: -0.068 G_GAN_Feat: 0.970 G_ID: 0.309 G_Rec: 0.383 D_GP: 0.114 D_real: 0.531 D_fake: 1.068 +(epoch: 42, iters: 8272, time: 0.064) G_GAN: 0.222 G_GAN_Feat: 0.813 G_ID: 0.546 G_Rec: 0.379 D_GP: 0.038 D_real: 0.775 D_fake: 0.779 +(epoch: 43, iters: 64, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.949 G_ID: 0.274 G_Rec: 0.371 D_GP: 0.158 D_real: 0.368 D_fake: 0.724 +(epoch: 43, iters: 464, time: 0.064) G_GAN: 0.279 G_GAN_Feat: 0.866 G_ID: 0.559 G_Rec: 0.412 D_GP: 0.029 D_real: 1.099 D_fake: 0.721 +(epoch: 43, iters: 864, time: 0.064) G_GAN: 0.023 G_GAN_Feat: 0.892 G_ID: 0.326 G_Rec: 0.349 D_GP: 0.142 D_real: 0.408 D_fake: 0.978 +(epoch: 43, iters: 1264, time: 0.064) G_GAN: 0.431 G_GAN_Feat: 1.030 G_ID: 0.534 G_Rec: 0.378 D_GP: 0.051 D_real: 0.789 D_fake: 0.570 +(epoch: 43, iters: 1664, time: 0.064) G_GAN: 0.391 G_GAN_Feat: 1.053 G_ID: 0.245 G_Rec: 0.387 D_GP: 0.066 D_real: 0.578 D_fake: 0.612 +(epoch: 43, iters: 2064, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 0.696 G_ID: 0.551 G_Rec: 0.395 D_GP: 0.024 D_real: 1.132 D_fake: 0.688 +(epoch: 43, iters: 2464, time: 0.064) G_GAN: 0.232 G_GAN_Feat: 0.592 G_ID: 0.249 G_Rec: 0.381 D_GP: 0.028 D_real: 1.130 D_fake: 0.768 +(epoch: 43, iters: 2864, time: 0.064) G_GAN: 0.157 G_GAN_Feat: 0.670 G_ID: 0.523 G_Rec: 0.401 D_GP: 0.036 D_real: 0.943 D_fake: 0.843 +(epoch: 43, iters: 3264, time: 0.064) G_GAN: 0.449 G_GAN_Feat: 0.747 G_ID: 0.278 G_Rec: 0.383 D_GP: 0.049 D_real: 1.077 D_fake: 0.553 +(epoch: 43, iters: 3664, time: 0.064) G_GAN: 0.157 G_GAN_Feat: 0.843 G_ID: 0.551 G_Rec: 0.405 D_GP: 0.097 D_real: 0.691 D_fake: 0.844 +(epoch: 43, iters: 4064, time: 0.064) G_GAN: 0.116 G_GAN_Feat: 0.832 G_ID: 0.284 G_Rec: 0.337 D_GP: 0.045 D_real: 0.635 D_fake: 0.884 +(epoch: 43, iters: 4464, time: 0.064) G_GAN: 0.253 G_GAN_Feat: 0.720 G_ID: 0.612 G_Rec: 0.357 D_GP: 0.039 D_real: 0.978 D_fake: 0.747 +(epoch: 43, iters: 4864, time: 0.064) G_GAN: 0.300 G_GAN_Feat: 0.806 G_ID: 0.320 G_Rec: 0.349 D_GP: 0.050 D_real: 0.758 D_fake: 0.701 +(epoch: 43, iters: 5264, time: 0.064) G_GAN: 0.576 G_GAN_Feat: 0.740 G_ID: 0.599 G_Rec: 0.365 D_GP: 0.028 D_real: 1.379 D_fake: 0.458 +(epoch: 43, iters: 5664, time: 0.064) G_GAN: 0.430 G_GAN_Feat: 0.707 G_ID: 0.301 G_Rec: 0.376 D_GP: 0.032 D_real: 1.169 D_fake: 0.570 +(epoch: 43, iters: 6064, time: 0.064) G_GAN: 0.043 G_GAN_Feat: 0.771 G_ID: 0.579 G_Rec: 0.387 D_GP: 0.025 D_real: 0.894 D_fake: 0.957 +(epoch: 43, iters: 6464, time: 0.064) G_GAN: 0.420 G_GAN_Feat: 0.847 G_ID: 0.276 G_Rec: 0.363 D_GP: 0.066 D_real: 0.928 D_fake: 0.601 +(epoch: 43, iters: 6864, time: 0.064) G_GAN: 0.421 G_GAN_Feat: 0.790 G_ID: 0.541 G_Rec: 0.398 D_GP: 0.027 D_real: 1.122 D_fake: 0.579 +(epoch: 43, iters: 7264, time: 0.064) G_GAN: 0.493 G_GAN_Feat: 0.879 G_ID: 0.263 G_Rec: 0.401 D_GP: 0.070 D_real: 0.990 D_fake: 0.517 +(epoch: 43, iters: 7664, time: 0.064) G_GAN: 0.377 G_GAN_Feat: 0.800 G_ID: 0.567 G_Rec: 0.382 D_GP: 0.026 D_real: 1.146 D_fake: 0.624 +(epoch: 43, iters: 8064, time: 0.064) G_GAN: 0.783 G_GAN_Feat: 0.805 G_ID: 0.304 G_Rec: 0.427 D_GP: 0.039 D_real: 1.600 D_fake: 0.322 +(epoch: 43, iters: 8464, time: 0.064) G_GAN: 0.543 G_GAN_Feat: 1.147 G_ID: 0.551 G_Rec: 0.381 D_GP: 0.101 D_real: 0.519 D_fake: 0.459 +(epoch: 44, iters: 256, time: 0.064) G_GAN: -0.319 G_GAN_Feat: 0.838 G_ID: 0.274 G_Rec: 0.414 D_GP: 0.044 D_real: 0.506 D_fake: 1.319 +(epoch: 44, iters: 656, time: 0.064) G_GAN: 0.300 G_GAN_Feat: 0.640 G_ID: 0.565 G_Rec: 0.494 D_GP: 0.029 D_real: 1.141 D_fake: 0.700 +(epoch: 44, iters: 1056, time: 0.064) G_GAN: 0.277 G_GAN_Feat: 0.762 G_ID: 0.270 G_Rec: 0.357 D_GP: 0.089 D_real: 1.047 D_fake: 0.725 +(epoch: 44, iters: 1456, time: 0.064) G_GAN: 0.368 G_GAN_Feat: 0.888 G_ID: 0.542 G_Rec: 0.366 D_GP: 0.047 D_real: 0.921 D_fake: 0.634 +(epoch: 44, iters: 1856, time: 0.064) G_GAN: 0.130 G_GAN_Feat: 0.972 G_ID: 0.250 G_Rec: 0.341 D_GP: 0.158 D_real: 0.333 D_fake: 0.870 +(epoch: 44, iters: 2256, time: 0.064) G_GAN: 0.047 G_GAN_Feat: 0.906 G_ID: 0.545 G_Rec: 0.348 D_GP: 0.179 D_real: 0.440 D_fake: 0.954 +(epoch: 44, iters: 2656, time: 0.064) G_GAN: 0.743 G_GAN_Feat: 0.981 G_ID: 0.305 G_Rec: 0.373 D_GP: 0.064 D_real: 1.328 D_fake: 0.395 +(epoch: 44, iters: 3056, time: 0.064) G_GAN: 0.516 G_GAN_Feat: 0.892 G_ID: 0.584 G_Rec: 0.356 D_GP: 0.056 D_real: 0.951 D_fake: 0.562 +(epoch: 44, iters: 3456, time: 0.064) G_GAN: 0.489 G_GAN_Feat: 0.856 G_ID: 0.249 G_Rec: 0.381 D_GP: 0.045 D_real: 1.105 D_fake: 0.533 +(epoch: 44, iters: 3856, time: 0.064) G_GAN: 0.254 G_GAN_Feat: 0.659 G_ID: 0.560 G_Rec: 0.380 D_GP: 0.022 D_real: 1.135 D_fake: 0.748 +(epoch: 44, iters: 4256, time: 0.064) G_GAN: 0.318 G_GAN_Feat: 0.613 G_ID: 0.339 G_Rec: 0.330 D_GP: 0.030 D_real: 1.084 D_fake: 0.682 +(epoch: 44, iters: 4656, time: 0.064) G_GAN: 0.372 G_GAN_Feat: 0.859 G_ID: 0.530 G_Rec: 0.441 D_GP: 0.115 D_real: 0.945 D_fake: 0.629 +(epoch: 44, iters: 5056, time: 0.064) G_GAN: 0.526 G_GAN_Feat: 0.904 G_ID: 0.276 G_Rec: 0.366 D_GP: 0.044 D_real: 1.178 D_fake: 0.482 +(epoch: 44, iters: 5456, time: 0.064) G_GAN: 0.630 G_GAN_Feat: 1.709 G_ID: 0.619 G_Rec: 0.512 D_GP: 1.071 D_real: 0.515 D_fake: 0.386 +(epoch: 44, iters: 5856, time: 0.064) G_GAN: 0.218 G_GAN_Feat: 0.576 G_ID: 0.268 G_Rec: 0.462 D_GP: 0.024 D_real: 1.046 D_fake: 0.782 +(epoch: 44, iters: 6256, time: 0.064) G_GAN: 0.305 G_GAN_Feat: 0.716 G_ID: 0.534 G_Rec: 0.380 D_GP: 0.052 D_real: 1.075 D_fake: 0.696 +(epoch: 44, iters: 6656, time: 0.064) G_GAN: 0.512 G_GAN_Feat: 0.831 G_ID: 0.265 G_Rec: 0.392 D_GP: 0.060 D_real: 0.983 D_fake: 0.505 +(epoch: 44, iters: 7056, time: 0.064) G_GAN: 0.292 G_GAN_Feat: 0.688 G_ID: 0.564 G_Rec: 0.410 D_GP: 0.035 D_real: 1.057 D_fake: 0.709 +(epoch: 44, iters: 7456, time: 0.064) G_GAN: 0.119 G_GAN_Feat: 0.759 G_ID: 0.249 G_Rec: 0.337 D_GP: 0.054 D_real: 0.747 D_fake: 0.881 +(epoch: 44, iters: 7856, time: 0.064) G_GAN: 0.374 G_GAN_Feat: 1.039 G_ID: 0.544 G_Rec: 0.386 D_GP: 0.216 D_real: 0.652 D_fake: 0.631 +(epoch: 44, iters: 8256, time: 0.064) G_GAN: 0.367 G_GAN_Feat: 0.800 G_ID: 0.284 G_Rec: 0.517 D_GP: 0.064 D_real: 0.956 D_fake: 0.634 +(epoch: 45, iters: 48, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 0.946 G_ID: 0.527 G_Rec: 0.361 D_GP: 0.063 D_real: 0.752 D_fake: 0.705 +(epoch: 45, iters: 448, time: 0.064) G_GAN: 0.277 G_GAN_Feat: 1.196 G_ID: 0.282 G_Rec: 0.395 D_GP: 0.291 D_real: 0.517 D_fake: 0.723 +(epoch: 45, iters: 848, time: 0.064) G_GAN: 0.453 G_GAN_Feat: 0.697 G_ID: 0.518 G_Rec: 0.358 D_GP: 0.027 D_real: 1.217 D_fake: 0.548 +(epoch: 45, iters: 1248, time: 0.064) G_GAN: 0.403 G_GAN_Feat: 0.773 G_ID: 0.272 G_Rec: 0.372 D_GP: 0.054 D_real: 0.952 D_fake: 0.599 +(epoch: 45, iters: 1648, time: 0.064) G_GAN: 0.392 G_GAN_Feat: 0.729 G_ID: 0.547 G_Rec: 0.378 D_GP: 0.034 D_real: 1.132 D_fake: 0.608 +(epoch: 45, iters: 2048, time: 0.064) G_GAN: 0.253 G_GAN_Feat: 0.727 G_ID: 0.242 G_Rec: 0.339 D_GP: 0.057 D_real: 0.894 D_fake: 0.747 +(epoch: 45, iters: 2448, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 0.581 G_ID: 0.521 G_Rec: 0.373 D_GP: 0.020 D_real: 1.097 D_fake: 0.784 +(epoch: 45, iters: 2848, time: 0.064) G_GAN: 0.333 G_GAN_Feat: 0.805 G_ID: 0.274 G_Rec: 0.383 D_GP: 0.048 D_real: 0.923 D_fake: 0.668 +(epoch: 45, iters: 3248, time: 0.064) G_GAN: 0.046 G_GAN_Feat: 1.211 G_ID: 0.516 G_Rec: 0.395 D_GP: 0.298 D_real: 0.423 D_fake: 0.955 +(epoch: 45, iters: 3648, time: 0.064) G_GAN: 0.524 G_GAN_Feat: 0.915 G_ID: 0.293 G_Rec: 0.399 D_GP: 0.131 D_real: 0.935 D_fake: 0.494 +(epoch: 45, iters: 4048, time: 0.064) G_GAN: 0.395 G_GAN_Feat: 0.843 G_ID: 0.525 G_Rec: 0.414 D_GP: 0.025 D_real: 1.214 D_fake: 0.608 +(epoch: 45, iters: 4448, time: 0.064) G_GAN: 0.347 G_GAN_Feat: 0.670 G_ID: 0.238 G_Rec: 0.374 D_GP: 0.029 D_real: 1.127 D_fake: 0.653 +(epoch: 45, iters: 4848, time: 0.064) G_GAN: 0.466 G_GAN_Feat: 0.800 G_ID: 0.537 G_Rec: 0.401 D_GP: 0.031 D_real: 1.296 D_fake: 0.540 +(epoch: 45, iters: 5248, time: 0.064) G_GAN: 0.578 G_GAN_Feat: 0.753 G_ID: 0.235 G_Rec: 0.348 D_GP: 0.070 D_real: 1.248 D_fake: 0.426 +(epoch: 45, iters: 5648, time: 0.064) G_GAN: 0.393 G_GAN_Feat: 0.842 G_ID: 0.543 G_Rec: 0.365 D_GP: 0.070 D_real: 0.910 D_fake: 0.615 +(epoch: 45, iters: 6048, time: 0.064) G_GAN: 0.408 G_GAN_Feat: 0.840 G_ID: 0.285 G_Rec: 0.386 D_GP: 0.043 D_real: 1.093 D_fake: 0.595 +(epoch: 45, iters: 6448, time: 0.064) G_GAN: 0.201 G_GAN_Feat: 0.708 G_ID: 0.583 G_Rec: 0.372 D_GP: 0.030 D_real: 0.958 D_fake: 0.799 +(epoch: 45, iters: 6848, time: 0.064) G_GAN: 0.420 G_GAN_Feat: 0.624 G_ID: 0.240 G_Rec: 0.309 D_GP: 0.025 D_real: 1.266 D_fake: 0.580 +(epoch: 45, iters: 7248, time: 0.064) G_GAN: 0.390 G_GAN_Feat: 0.876 G_ID: 0.562 G_Rec: 0.349 D_GP: 0.078 D_real: 0.929 D_fake: 0.610 +(epoch: 45, iters: 7648, time: 0.064) G_GAN: 0.240 G_GAN_Feat: 0.751 G_ID: 0.227 G_Rec: 0.391 D_GP: 0.032 D_real: 1.075 D_fake: 0.760 +(epoch: 45, iters: 8048, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.790 G_ID: 0.537 G_Rec: 0.338 D_GP: 0.035 D_real: 1.024 D_fake: 0.720 +(epoch: 45, iters: 8448, time: 0.064) G_GAN: 0.414 G_GAN_Feat: 0.977 G_ID: 0.288 G_Rec: 0.408 D_GP: 0.111 D_real: 0.693 D_fake: 0.589 +(epoch: 46, iters: 240, time: 0.064) G_GAN: 0.460 G_GAN_Feat: 0.746 G_ID: 0.590 G_Rec: 0.378 D_GP: 0.038 D_real: 1.212 D_fake: 0.540 +(epoch: 46, iters: 640, time: 0.064) G_GAN: 0.401 G_GAN_Feat: 0.710 G_ID: 0.262 G_Rec: 0.334 D_GP: 0.032 D_real: 1.159 D_fake: 0.600 +(epoch: 46, iters: 1040, time: 0.064) G_GAN: 0.524 G_GAN_Feat: 0.614 G_ID: 0.548 G_Rec: 0.388 D_GP: 0.024 D_real: 1.389 D_fake: 0.476 +(epoch: 46, iters: 1440, time: 0.064) G_GAN: 0.409 G_GAN_Feat: 0.785 G_ID: 0.293 G_Rec: 0.366 D_GP: 0.065 D_real: 0.979 D_fake: 0.594 +(epoch: 46, iters: 1840, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 0.885 G_ID: 0.500 G_Rec: 0.363 D_GP: 0.148 D_real: 0.852 D_fake: 0.779 +(epoch: 46, iters: 2240, time: 0.064) G_GAN: 0.085 G_GAN_Feat: 0.725 G_ID: 0.291 G_Rec: 0.364 D_GP: 0.035 D_real: 0.771 D_fake: 0.915 +(epoch: 46, iters: 2640, time: 0.064) G_GAN: 0.560 G_GAN_Feat: 0.840 G_ID: 0.519 G_Rec: 0.390 D_GP: 0.054 D_real: 1.165 D_fake: 0.443 +(epoch: 46, iters: 3040, time: 0.064) G_GAN: 0.330 G_GAN_Feat: 0.737 G_ID: 0.312 G_Rec: 0.387 D_GP: 0.036 D_real: 0.983 D_fake: 0.670 +(epoch: 46, iters: 3440, time: 0.064) G_GAN: 0.319 G_GAN_Feat: 0.832 G_ID: 0.587 G_Rec: 0.373 D_GP: 0.049 D_real: 0.857 D_fake: 0.681 +(epoch: 46, iters: 3840, time: 0.064) G_GAN: 0.428 G_GAN_Feat: 1.066 G_ID: 0.217 G_Rec: 0.396 D_GP: 0.310 D_real: 0.677 D_fake: 0.592 +(epoch: 46, iters: 4240, time: 0.064) G_GAN: 0.321 G_GAN_Feat: 0.789 G_ID: 0.510 G_Rec: 0.369 D_GP: 0.041 D_real: 0.889 D_fake: 0.681 +(epoch: 46, iters: 4640, time: 0.064) G_GAN: 0.212 G_GAN_Feat: 0.673 G_ID: 0.279 G_Rec: 0.400 D_GP: 0.033 D_real: 0.994 D_fake: 0.789 +(epoch: 46, iters: 5040, time: 0.064) G_GAN: 0.302 G_GAN_Feat: 0.957 G_ID: 0.529 G_Rec: 0.402 D_GP: 0.057 D_real: 0.687 D_fake: 0.698 +(epoch: 46, iters: 5440, time: 0.064) G_GAN: 0.379 G_GAN_Feat: 0.902 G_ID: 0.279 G_Rec: 0.371 D_GP: 0.075 D_real: 0.806 D_fake: 0.654 +(epoch: 46, iters: 5840, time: 0.064) G_GAN: 0.483 G_GAN_Feat: 0.819 G_ID: 0.551 G_Rec: 0.368 D_GP: 0.042 D_real: 1.148 D_fake: 0.520 +(epoch: 46, iters: 6240, time: 0.064) G_GAN: 0.362 G_GAN_Feat: 0.694 G_ID: 0.250 G_Rec: 0.338 D_GP: 0.039 D_real: 1.129 D_fake: 0.639 +(epoch: 46, iters: 6640, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.940 G_ID: 0.495 G_Rec: 0.397 D_GP: 0.102 D_real: 0.549 D_fake: 0.744 +(epoch: 46, iters: 7040, time: 0.064) G_GAN: 0.619 G_GAN_Feat: 1.309 G_ID: 0.266 G_Rec: 0.388 D_GP: 0.107 D_real: 0.531 D_fake: 0.392 +(epoch: 46, iters: 7440, time: 0.064) G_GAN: 0.475 G_GAN_Feat: 0.832 G_ID: 0.544 G_Rec: 0.361 D_GP: 0.058 D_real: 1.193 D_fake: 0.530 +(epoch: 46, iters: 7840, time: 0.064) G_GAN: 0.531 G_GAN_Feat: 0.784 G_ID: 0.246 G_Rec: 0.346 D_GP: 0.036 D_real: 1.198 D_fake: 0.476 +(epoch: 46, iters: 8240, time: 0.064) G_GAN: 0.182 G_GAN_Feat: 0.892 G_ID: 0.519 G_Rec: 0.395 D_GP: 0.044 D_real: 0.696 D_fake: 0.818 +(epoch: 47, iters: 32, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 1.384 G_ID: 0.272 G_Rec: 0.360 D_GP: 0.099 D_real: 0.215 D_fake: 0.807 +(epoch: 47, iters: 432, time: 0.064) G_GAN: 0.341 G_GAN_Feat: 0.855 G_ID: 0.567 G_Rec: 0.339 D_GP: 0.067 D_real: 0.971 D_fake: 0.660 +(epoch: 47, iters: 832, time: 0.064) G_GAN: 0.577 G_GAN_Feat: 0.820 G_ID: 0.280 G_Rec: 0.409 D_GP: 0.047 D_real: 1.259 D_fake: 0.447 +(epoch: 47, iters: 1232, time: 0.064) G_GAN: 0.062 G_GAN_Feat: 0.738 G_ID: 0.516 G_Rec: 0.440 D_GP: 0.034 D_real: 0.795 D_fake: 0.938 +(epoch: 47, iters: 1632, time: 0.064) G_GAN: 0.379 G_GAN_Feat: 0.632 G_ID: 0.284 G_Rec: 0.347 D_GP: 0.026 D_real: 1.184 D_fake: 0.621 +(epoch: 47, iters: 2032, time: 0.064) G_GAN: 0.423 G_GAN_Feat: 0.737 G_ID: 0.554 G_Rec: 0.361 D_GP: 0.054 D_real: 1.182 D_fake: 0.578 +(epoch: 47, iters: 2432, time: 0.064) G_GAN: 0.127 G_GAN_Feat: 0.811 G_ID: 0.230 G_Rec: 0.440 D_GP: 0.045 D_real: 0.663 D_fake: 0.873 +(epoch: 47, iters: 2832, time: 0.064) G_GAN: 0.841 G_GAN_Feat: 1.052 G_ID: 0.490 G_Rec: 0.380 D_GP: 0.080 D_real: 1.423 D_fake: 0.273 +(epoch: 47, iters: 3232, time: 0.064) G_GAN: 0.470 G_GAN_Feat: 0.610 G_ID: 0.284 G_Rec: 0.351 D_GP: 0.022 D_real: 1.406 D_fake: 0.532 +(epoch: 47, iters: 3632, time: 0.064) G_GAN: 0.351 G_GAN_Feat: 0.635 G_ID: 0.523 G_Rec: 0.369 D_GP: 0.022 D_real: 1.206 D_fake: 0.651 +(epoch: 47, iters: 4032, time: 0.064) G_GAN: 0.282 G_GAN_Feat: 0.572 G_ID: 0.263 G_Rec: 0.374 D_GP: 0.024 D_real: 1.142 D_fake: 0.719 +(epoch: 47, iters: 4432, time: 0.064) G_GAN: 0.123 G_GAN_Feat: 0.650 G_ID: 0.561 G_Rec: 0.420 D_GP: 0.037 D_real: 0.874 D_fake: 0.877 +(epoch: 47, iters: 4832, time: 0.064) G_GAN: 0.036 G_GAN_Feat: 0.655 G_ID: 0.280 G_Rec: 0.417 D_GP: 0.041 D_real: 0.771 D_fake: 0.964 +(epoch: 47, iters: 5232, time: 0.064) G_GAN: 0.444 G_GAN_Feat: 0.696 G_ID: 0.493 G_Rec: 0.358 D_GP: 0.042 D_real: 1.145 D_fake: 0.560 +(epoch: 47, iters: 5632, time: 0.064) G_GAN: 0.178 G_GAN_Feat: 0.751 G_ID: 0.288 G_Rec: 0.423 D_GP: 0.067 D_real: 0.772 D_fake: 0.822 +(epoch: 47, iters: 6032, time: 0.064) G_GAN: 0.255 G_GAN_Feat: 0.682 G_ID: 0.589 G_Rec: 0.370 D_GP: 0.036 D_real: 1.037 D_fake: 0.746 +(epoch: 47, iters: 6432, time: 0.064) G_GAN: 0.324 G_GAN_Feat: 0.705 G_ID: 0.288 G_Rec: 0.345 D_GP: 0.046 D_real: 1.023 D_fake: 0.678 +(epoch: 47, iters: 6832, time: 0.064) G_GAN: 0.262 G_GAN_Feat: 1.209 G_ID: 0.544 G_Rec: 0.363 D_GP: 0.480 D_real: 0.486 D_fake: 0.738 +(epoch: 47, iters: 7232, time: 0.064) G_GAN: -0.062 G_GAN_Feat: 0.693 G_ID: 0.270 G_Rec: 0.365 D_GP: 0.041 D_real: 0.670 D_fake: 1.062 +(epoch: 47, iters: 7632, time: 0.064) G_GAN: 0.233 G_GAN_Feat: 1.098 G_ID: 0.542 G_Rec: 0.374 D_GP: 0.092 D_real: 0.430 D_fake: 0.767 +(epoch: 47, iters: 8032, time: 0.064) G_GAN: 0.631 G_GAN_Feat: 0.796 G_ID: 0.259 G_Rec: 0.442 D_GP: 0.053 D_real: 1.214 D_fake: 0.376 +(epoch: 47, iters: 8432, time: 0.064) G_GAN: 0.441 G_GAN_Feat: 0.773 G_ID: 0.508 G_Rec: 0.379 D_GP: 0.039 D_real: 1.155 D_fake: 0.560 +(epoch: 48, iters: 224, time: 0.064) G_GAN: 0.160 G_GAN_Feat: 0.707 G_ID: 0.266 G_Rec: 0.444 D_GP: 0.029 D_real: 0.850 D_fake: 0.840 +(epoch: 48, iters: 624, time: 0.064) G_GAN: 0.493 G_GAN_Feat: 0.829 G_ID: 0.525 G_Rec: 0.380 D_GP: 0.041 D_real: 1.105 D_fake: 0.508 +(epoch: 48, iters: 1024, time: 0.064) G_GAN: 0.172 G_GAN_Feat: 0.648 G_ID: 0.262 G_Rec: 0.400 D_GP: 0.024 D_real: 0.996 D_fake: 0.829 +(epoch: 48, iters: 1424, time: 0.064) G_GAN: 0.153 G_GAN_Feat: 0.745 G_ID: 0.507 G_Rec: 0.369 D_GP: 0.029 D_real: 0.929 D_fake: 0.848 +(epoch: 48, iters: 1824, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 0.698 G_ID: 0.249 G_Rec: 0.370 D_GP: 0.030 D_real: 1.020 D_fake: 0.826 +(epoch: 48, iters: 2224, time: 0.064) G_GAN: 0.197 G_GAN_Feat: 0.859 G_ID: 0.509 G_Rec: 0.384 D_GP: 0.052 D_real: 0.912 D_fake: 0.804 +(epoch: 48, iters: 2624, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 0.919 G_ID: 0.302 G_Rec: 0.354 D_GP: 0.037 D_real: 1.114 D_fake: 0.807 +(epoch: 48, iters: 3024, time: 0.064) G_GAN: 0.390 G_GAN_Feat: 1.001 G_ID: 0.501 G_Rec: 0.375 D_GP: 0.047 D_real: 0.974 D_fake: 0.614 +(epoch: 48, iters: 3424, time: 0.064) G_GAN: 0.509 G_GAN_Feat: 0.772 G_ID: 0.255 G_Rec: 0.339 D_GP: 0.049 D_real: 1.243 D_fake: 0.544 +(epoch: 48, iters: 3824, time: 0.064) G_GAN: 0.208 G_GAN_Feat: 0.798 G_ID: 0.565 G_Rec: 0.374 D_GP: 0.032 D_real: 1.082 D_fake: 0.793 +(epoch: 48, iters: 4224, time: 0.064) G_GAN: 0.290 G_GAN_Feat: 0.794 G_ID: 0.289 G_Rec: 0.339 D_GP: 0.044 D_real: 0.949 D_fake: 0.712 +(epoch: 48, iters: 4624, time: 0.064) G_GAN: -0.050 G_GAN_Feat: 0.874 G_ID: 0.490 G_Rec: 0.388 D_GP: 0.037 D_real: 0.548 D_fake: 1.050 +(epoch: 48, iters: 5024, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 0.708 G_ID: 0.249 G_Rec: 0.346 D_GP: 0.023 D_real: 1.069 D_fake: 0.705 +(epoch: 48, iters: 5424, time: 0.064) G_GAN: 0.125 G_GAN_Feat: 0.704 G_ID: 0.496 G_Rec: 0.333 D_GP: 0.037 D_real: 0.955 D_fake: 0.875 +(epoch: 48, iters: 5824, time: 0.064) G_GAN: -0.213 G_GAN_Feat: 0.858 G_ID: 0.253 G_Rec: 0.376 D_GP: 0.047 D_real: 0.513 D_fake: 1.213 +(epoch: 48, iters: 6224, time: 0.064) G_GAN: 0.419 G_GAN_Feat: 0.918 G_ID: 0.493 G_Rec: 0.348 D_GP: 0.052 D_real: 1.234 D_fake: 0.582 +(epoch: 48, iters: 6624, time: 0.064) G_GAN: 0.211 G_GAN_Feat: 0.590 G_ID: 0.259 G_Rec: 0.328 D_GP: 0.022 D_real: 1.079 D_fake: 0.789 +(epoch: 48, iters: 7024, time: 0.064) G_GAN: 0.259 G_GAN_Feat: 0.682 G_ID: 0.513 G_Rec: 0.458 D_GP: 0.026 D_real: 1.002 D_fake: 0.741 +(epoch: 48, iters: 7424, time: 0.064) G_GAN: 0.188 G_GAN_Feat: 0.721 G_ID: 0.291 G_Rec: 0.370 D_GP: 0.053 D_real: 0.915 D_fake: 0.812 +(epoch: 48, iters: 7824, time: 0.064) G_GAN: 0.322 G_GAN_Feat: 0.796 G_ID: 0.565 G_Rec: 0.380 D_GP: 0.039 D_real: 0.992 D_fake: 0.678 +(epoch: 48, iters: 8224, time: 0.064) G_GAN: 0.666 G_GAN_Feat: 1.164 G_ID: 0.272 G_Rec: 0.438 D_GP: 0.114 D_real: 1.092 D_fake: 0.339 +(epoch: 49, iters: 16, time: 0.064) G_GAN: 0.107 G_GAN_Feat: 0.975 G_ID: 0.546 G_Rec: 0.350 D_GP: 0.107 D_real: 0.411 D_fake: 0.894 +(epoch: 49, iters: 416, time: 0.064) G_GAN: 0.489 G_GAN_Feat: 0.847 G_ID: 0.270 G_Rec: 0.400 D_GP: 0.046 D_real: 1.108 D_fake: 0.511 +(epoch: 49, iters: 816, time: 0.064) G_GAN: 0.659 G_GAN_Feat: 0.967 G_ID: 0.535 G_Rec: 0.347 D_GP: 0.160 D_real: 0.997 D_fake: 0.448 +(epoch: 49, iters: 1216, time: 0.064) G_GAN: 0.771 G_GAN_Feat: 0.986 G_ID: 0.304 G_Rec: 0.406 D_GP: 0.102 D_real: 1.035 D_fake: 0.256 +(epoch: 49, iters: 1616, time: 0.064) G_GAN: 0.767 G_GAN_Feat: 1.042 G_ID: 0.509 G_Rec: 0.479 D_GP: 0.073 D_real: 1.235 D_fake: 0.446 +(epoch: 49, iters: 2016, time: 0.064) G_GAN: 0.362 G_GAN_Feat: 0.850 G_ID: 0.267 G_Rec: 0.348 D_GP: 0.060 D_real: 0.860 D_fake: 0.638 +(epoch: 49, iters: 2416, time: 0.064) G_GAN: 0.317 G_GAN_Feat: 0.890 G_ID: 0.528 G_Rec: 0.399 D_GP: 0.071 D_real: 0.779 D_fake: 0.684 +(epoch: 49, iters: 2816, time: 0.064) G_GAN: 0.460 G_GAN_Feat: 0.717 G_ID: 0.291 G_Rec: 0.369 D_GP: 0.029 D_real: 1.219 D_fake: 0.541 +(epoch: 49, iters: 3216, time: 0.064) G_GAN: 0.340 G_GAN_Feat: 0.637 G_ID: 0.534 G_Rec: 0.400 D_GP: 0.025 D_real: 1.210 D_fake: 0.660 +(epoch: 49, iters: 3616, time: 0.064) G_GAN: 0.406 G_GAN_Feat: 0.547 G_ID: 0.233 G_Rec: 0.489 D_GP: 0.020 D_real: 1.155 D_fake: 0.595 +(epoch: 49, iters: 4016, time: 0.064) G_GAN: 0.349 G_GAN_Feat: 0.598 G_ID: 0.532 G_Rec: 0.349 D_GP: 0.022 D_real: 1.290 D_fake: 0.656 +(epoch: 49, iters: 4416, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.672 G_ID: 0.232 G_Rec: 0.346 D_GP: 0.030 D_real: 1.038 D_fake: 0.722 +(epoch: 49, iters: 4816, time: 0.064) G_GAN: 0.272 G_GAN_Feat: 0.753 G_ID: 0.481 G_Rec: 0.338 D_GP: 0.076 D_real: 0.857 D_fake: 0.728 +(epoch: 49, iters: 5216, time: 0.064) G_GAN: 0.389 G_GAN_Feat: 0.821 G_ID: 0.268 G_Rec: 0.384 D_GP: 0.066 D_real: 1.075 D_fake: 0.631 +(epoch: 49, iters: 5616, time: 0.064) G_GAN: 0.721 G_GAN_Feat: 0.890 G_ID: 0.568 G_Rec: 0.440 D_GP: 0.084 D_real: 1.115 D_fake: 0.443 +(epoch: 49, iters: 6016, time: 0.064) G_GAN: 0.246 G_GAN_Feat: 0.725 G_ID: 0.233 G_Rec: 0.356 D_GP: 0.042 D_real: 1.021 D_fake: 0.754 +(epoch: 49, iters: 6416, time: 0.064) G_GAN: 0.088 G_GAN_Feat: 0.695 G_ID: 0.531 G_Rec: 0.359 D_GP: 0.030 D_real: 0.847 D_fake: 0.912 +(epoch: 49, iters: 6816, time: 0.064) G_GAN: 0.488 G_GAN_Feat: 0.672 G_ID: 0.262 G_Rec: 0.363 D_GP: 0.029 D_real: 1.305 D_fake: 0.512 +(epoch: 49, iters: 7216, time: 0.064) G_GAN: 0.635 G_GAN_Feat: 0.903 G_ID: 0.488 G_Rec: 0.408 D_GP: 0.064 D_real: 1.338 D_fake: 0.386 +(epoch: 49, iters: 7616, time: 0.064) G_GAN: 0.470 G_GAN_Feat: 0.694 G_ID: 0.277 G_Rec: 0.373 D_GP: 0.030 D_real: 1.190 D_fake: 0.531 +(epoch: 49, iters: 8016, time: 0.064) G_GAN: 0.317 G_GAN_Feat: 0.715 G_ID: 0.544 G_Rec: 0.337 D_GP: 0.029 D_real: 1.112 D_fake: 0.683 +(epoch: 49, iters: 8416, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.987 G_ID: 0.242 G_Rec: 0.364 D_GP: 0.061 D_real: 0.585 D_fake: 0.675 +(epoch: 50, iters: 208, time: 0.064) G_GAN: 0.761 G_GAN_Feat: 1.155 G_ID: 0.451 G_Rec: 0.411 D_GP: 0.059 D_real: 1.154 D_fake: 0.385 +(epoch: 50, iters: 608, time: 0.064) G_GAN: 0.061 G_GAN_Feat: 0.697 G_ID: 0.263 G_Rec: 0.403 D_GP: 0.031 D_real: 0.892 D_fake: 0.940 +(epoch: 50, iters: 1008, time: 0.064) G_GAN: 0.694 G_GAN_Feat: 0.848 G_ID: 0.512 G_Rec: 0.374 D_GP: 0.045 D_real: 1.268 D_fake: 0.335 +(epoch: 50, iters: 1408, time: 0.064) G_GAN: 0.453 G_GAN_Feat: 0.782 G_ID: 0.242 G_Rec: 0.369 D_GP: 0.037 D_real: 1.045 D_fake: 0.548 +(epoch: 50, iters: 1808, time: 0.064) G_GAN: 0.510 G_GAN_Feat: 0.807 G_ID: 0.550 G_Rec: 0.335 D_GP: 0.049 D_real: 1.120 D_fake: 0.490 +(epoch: 50, iters: 2208, time: 0.064) G_GAN: 0.510 G_GAN_Feat: 0.766 G_ID: 0.274 G_Rec: 0.453 D_GP: 0.047 D_real: 1.260 D_fake: 0.493 +(epoch: 50, iters: 2608, time: 0.064) G_GAN: 0.154 G_GAN_Feat: 1.035 G_ID: 0.502 G_Rec: 0.459 D_GP: 0.032 D_real: 1.054 D_fake: 0.881 +(epoch: 50, iters: 3008, time: 0.064) G_GAN: 0.355 G_GAN_Feat: 0.629 G_ID: 0.241 G_Rec: 0.379 D_GP: 0.020 D_real: 1.200 D_fake: 0.645 +(epoch: 50, iters: 3408, time: 0.064) G_GAN: 0.111 G_GAN_Feat: 0.625 G_ID: 0.520 G_Rec: 0.350 D_GP: 0.021 D_real: 0.994 D_fake: 0.889 +(epoch: 50, iters: 3808, time: 0.064) G_GAN: 0.229 G_GAN_Feat: 0.656 G_ID: 0.262 G_Rec: 0.343 D_GP: 0.029 D_real: 1.054 D_fake: 0.771 +(epoch: 50, iters: 4208, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 0.766 G_ID: 0.501 G_Rec: 0.360 D_GP: 0.031 D_real: 1.136 D_fake: 0.689 +(epoch: 50, iters: 4608, time: 0.064) G_GAN: 0.600 G_GAN_Feat: 0.793 G_ID: 0.275 G_Rec: 0.451 D_GP: 0.059 D_real: 1.283 D_fake: 0.408 +(epoch: 50, iters: 5008, time: 0.064) G_GAN: 0.064 G_GAN_Feat: 0.783 G_ID: 0.516 G_Rec: 0.404 D_GP: 0.083 D_real: 0.795 D_fake: 0.937 +(epoch: 50, iters: 5408, time: 0.064) G_GAN: 0.309 G_GAN_Feat: 1.103 G_ID: 0.254 G_Rec: 0.388 D_GP: 0.080 D_real: 0.584 D_fake: 0.691 +(epoch: 50, iters: 5808, time: 0.064) G_GAN: 0.389 G_GAN_Feat: 1.068 G_ID: 0.525 G_Rec: 0.456 D_GP: 0.092 D_real: 0.743 D_fake: 0.614 +(epoch: 50, iters: 6208, time: 0.064) G_GAN: 0.264 G_GAN_Feat: 0.743 G_ID: 0.227 G_Rec: 0.373 D_GP: 0.045 D_real: 0.978 D_fake: 0.738 +(epoch: 50, iters: 6608, time: 0.064) G_GAN: 0.119 G_GAN_Feat: 0.809 G_ID: 0.481 G_Rec: 0.393 D_GP: 0.062 D_real: 0.665 D_fake: 0.881 +(epoch: 50, iters: 7008, time: 0.064) G_GAN: 0.774 G_GAN_Feat: 1.046 G_ID: 0.266 G_Rec: 0.502 D_GP: 0.282 D_real: 1.175 D_fake: 0.273 +(epoch: 50, iters: 7408, time: 0.064) G_GAN: 0.147 G_GAN_Feat: 1.229 G_ID: 0.510 G_Rec: 0.425 D_GP: 0.146 D_real: 0.299 D_fake: 0.854 +(epoch: 50, iters: 7808, time: 0.064) G_GAN: 0.294 G_GAN_Feat: 0.825 G_ID: 0.296 G_Rec: 0.369 D_GP: 0.052 D_real: 0.932 D_fake: 0.706 +(epoch: 50, iters: 8208, time: 0.064) G_GAN: 0.300 G_GAN_Feat: 0.771 G_ID: 0.524 G_Rec: 0.348 D_GP: 0.027 D_real: 1.042 D_fake: 0.700 +(epoch: 50, iters: 8608, time: 0.064) G_GAN: 0.237 G_GAN_Feat: 0.723 G_ID: 0.267 G_Rec: 0.377 D_GP: 0.039 D_real: 0.898 D_fake: 0.763 +(epoch: 51, iters: 400, time: 0.064) G_GAN: 0.118 G_GAN_Feat: 0.875 G_ID: 0.466 G_Rec: 0.363 D_GP: 0.048 D_real: 0.627 D_fake: 0.882 +(epoch: 51, iters: 800, time: 0.064) G_GAN: 0.335 G_GAN_Feat: 0.845 G_ID: 0.285 G_Rec: 0.368 D_GP: 0.060 D_real: 0.774 D_fake: 0.665 +(epoch: 51, iters: 1200, time: 0.064) G_GAN: 0.566 G_GAN_Feat: 0.790 G_ID: 0.540 G_Rec: 0.419 D_GP: 0.038 D_real: 1.254 D_fake: 0.495 +(epoch: 51, iters: 1600, time: 0.064) G_GAN: 0.250 G_GAN_Feat: 1.325 G_ID: 0.213 G_Rec: 0.374 D_GP: 0.357 D_real: 0.511 D_fake: 0.750 +(epoch: 51, iters: 2000, time: 0.064) G_GAN: 0.430 G_GAN_Feat: 0.620 G_ID: 0.482 G_Rec: 0.383 D_GP: 0.024 D_real: 1.238 D_fake: 0.570 +(epoch: 51, iters: 2400, time: 0.064) G_GAN: 0.533 G_GAN_Feat: 0.851 G_ID: 0.265 G_Rec: 0.330 D_GP: 0.033 D_real: 1.379 D_fake: 0.470 +(epoch: 51, iters: 2800, time: 0.064) G_GAN: -0.086 G_GAN_Feat: 0.759 G_ID: 0.498 G_Rec: 0.432 D_GP: 0.047 D_real: 0.652 D_fake: 1.086 +(epoch: 51, iters: 3200, time: 0.064) G_GAN: 0.440 G_GAN_Feat: 0.832 G_ID: 0.222 G_Rec: 0.388 D_GP: 0.041 D_real: 1.068 D_fake: 0.561 +(epoch: 51, iters: 3600, time: 0.064) G_GAN: 0.638 G_GAN_Feat: 0.801 G_ID: 0.501 G_Rec: 0.419 D_GP: 0.059 D_real: 1.270 D_fake: 0.377 +(epoch: 51, iters: 4000, time: 0.064) G_GAN: 0.709 G_GAN_Feat: 0.889 G_ID: 0.224 G_Rec: 0.439 D_GP: 0.080 D_real: 1.144 D_fake: 0.310 +(epoch: 51, iters: 4400, time: 0.064) G_GAN: 0.199 G_GAN_Feat: 0.819 G_ID: 0.439 G_Rec: 0.366 D_GP: 0.064 D_real: 0.936 D_fake: 0.801 +(epoch: 51, iters: 4800, time: 0.064) G_GAN: 0.438 G_GAN_Feat: 0.873 G_ID: 0.238 G_Rec: 0.401 D_GP: 0.037 D_real: 1.138 D_fake: 0.562 +(epoch: 51, iters: 5200, time: 0.064) G_GAN: 0.911 G_GAN_Feat: 0.749 G_ID: 0.470 G_Rec: 0.429 D_GP: 0.026 D_real: 1.645 D_fake: 0.219 +(epoch: 51, iters: 5600, time: 0.064) G_GAN: 0.473 G_GAN_Feat: 0.685 G_ID: 0.221 G_Rec: 0.444 D_GP: 0.024 D_real: 1.258 D_fake: 0.527 +(epoch: 51, iters: 6000, time: 0.064) G_GAN: 0.343 G_GAN_Feat: 0.823 G_ID: 0.550 G_Rec: 0.430 D_GP: 0.040 D_real: 1.012 D_fake: 0.657 +(epoch: 51, iters: 6400, time: 0.064) G_GAN: 0.381 G_GAN_Feat: 0.886 G_ID: 0.248 G_Rec: 0.370 D_GP: 0.107 D_real: 0.782 D_fake: 0.625 +(epoch: 51, iters: 6800, time: 0.064) G_GAN: 0.302 G_GAN_Feat: 1.157 G_ID: 0.510 G_Rec: 0.372 D_GP: 0.621 D_real: 0.273 D_fake: 0.706 +(epoch: 51, iters: 7200, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 1.245 G_ID: 0.248 G_Rec: 0.374 D_GP: 0.592 D_real: 0.356 D_fake: 0.751 +(epoch: 51, iters: 7600, time: 0.064) G_GAN: 0.815 G_GAN_Feat: 0.930 G_ID: 0.514 G_Rec: 0.379 D_GP: 0.039 D_real: 1.413 D_fake: 0.335 +(epoch: 51, iters: 8000, time: 0.064) G_GAN: 0.398 G_GAN_Feat: 0.861 G_ID: 0.319 G_Rec: 0.376 D_GP: 0.032 D_real: 1.088 D_fake: 0.602 +(epoch: 51, iters: 8400, time: 0.064) G_GAN: 0.266 G_GAN_Feat: 1.222 G_ID: 0.542 G_Rec: 0.401 D_GP: 0.142 D_real: 0.348 D_fake: 0.734 +(epoch: 52, iters: 192, time: 0.064) G_GAN: 0.476 G_GAN_Feat: 0.906 G_ID: 0.269 G_Rec: 0.360 D_GP: 0.045 D_real: 1.082 D_fake: 0.525 +(epoch: 52, iters: 592, time: 0.064) G_GAN: 0.391 G_GAN_Feat: 0.888 G_ID: 0.520 G_Rec: 0.377 D_GP: 0.067 D_real: 0.926 D_fake: 0.611 +(epoch: 52, iters: 992, time: 0.064) G_GAN: 0.142 G_GAN_Feat: 1.152 G_ID: 0.283 G_Rec: 0.411 D_GP: 0.137 D_real: 0.351 D_fake: 0.859 +(epoch: 52, iters: 1392, time: 0.064) G_GAN: 0.391 G_GAN_Feat: 1.085 G_ID: 0.502 G_Rec: 0.390 D_GP: 0.085 D_real: 0.651 D_fake: 0.613 +(epoch: 52, iters: 1792, time: 0.064) G_GAN: 0.452 G_GAN_Feat: 0.931 G_ID: 0.246 G_Rec: 0.413 D_GP: 0.028 D_real: 1.224 D_fake: 0.548 +(epoch: 52, iters: 2192, time: 0.064) G_GAN: 0.386 G_GAN_Feat: 0.798 G_ID: 0.542 G_Rec: 0.355 D_GP: 0.025 D_real: 1.119 D_fake: 0.621 +(epoch: 52, iters: 2592, time: 0.064) G_GAN: 0.063 G_GAN_Feat: 0.989 G_ID: 0.267 G_Rec: 0.371 D_GP: 0.116 D_real: 0.407 D_fake: 0.937 +(epoch: 52, iters: 2992, time: 0.064) G_GAN: 0.464 G_GAN_Feat: 0.771 G_ID: 0.517 G_Rec: 0.388 D_GP: 0.026 D_real: 1.271 D_fake: 0.622 +(epoch: 52, iters: 3392, time: 0.064) G_GAN: -0.042 G_GAN_Feat: 0.522 G_ID: 0.267 G_Rec: 0.343 D_GP: 0.022 D_real: 0.939 D_fake: 1.042 +(epoch: 52, iters: 3792, time: 0.064) G_GAN: 0.623 G_GAN_Feat: 0.600 G_ID: 0.545 G_Rec: 0.397 D_GP: 0.018 D_real: 1.488 D_fake: 0.432 +(epoch: 52, iters: 4192, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 0.541 G_ID: 0.216 G_Rec: 0.387 D_GP: 0.020 D_real: 1.044 D_fake: 0.826 +(epoch: 52, iters: 4592, time: 0.064) G_GAN: 0.247 G_GAN_Feat: 0.606 G_ID: 0.476 G_Rec: 0.510 D_GP: 0.026 D_real: 1.064 D_fake: 0.754 +(epoch: 52, iters: 4992, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.671 G_ID: 0.267 G_Rec: 0.382 D_GP: 0.032 D_real: 1.036 D_fake: 0.678 +(epoch: 52, iters: 5392, time: 0.064) G_GAN: 0.178 G_GAN_Feat: 0.642 G_ID: 0.547 G_Rec: 0.364 D_GP: 0.044 D_real: 0.896 D_fake: 0.822 +(epoch: 52, iters: 5792, time: 0.064) G_GAN: 0.341 G_GAN_Feat: 0.637 G_ID: 0.230 G_Rec: 0.315 D_GP: 0.045 D_real: 1.062 D_fake: 0.659 +(epoch: 52, iters: 6192, time: 0.064) G_GAN: 0.162 G_GAN_Feat: 0.760 G_ID: 0.512 G_Rec: 0.393 D_GP: 0.051 D_real: 0.845 D_fake: 0.838 +(epoch: 52, iters: 6592, time: 0.064) G_GAN: -0.081 G_GAN_Feat: 0.839 G_ID: 0.228 G_Rec: 0.446 D_GP: 0.080 D_real: 0.308 D_fake: 1.081 +(epoch: 52, iters: 6992, time: 0.064) G_GAN: 0.228 G_GAN_Feat: 0.919 G_ID: 0.532 G_Rec: 0.361 D_GP: 0.069 D_real: 0.669 D_fake: 0.772 +(epoch: 52, iters: 7392, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.648 G_ID: 0.265 G_Rec: 0.394 D_GP: 0.025 D_real: 1.012 D_fake: 0.751 +(epoch: 52, iters: 7792, time: 0.064) G_GAN: 0.595 G_GAN_Feat: 0.771 G_ID: 0.502 G_Rec: 0.382 D_GP: 0.055 D_real: 1.312 D_fake: 0.408 +(epoch: 52, iters: 8192, time: 0.064) G_GAN: 0.400 G_GAN_Feat: 0.873 G_ID: 0.254 G_Rec: 0.503 D_GP: 0.039 D_real: 1.159 D_fake: 0.600 +(epoch: 52, iters: 8592, time: 0.064) G_GAN: 0.562 G_GAN_Feat: 0.733 G_ID: 0.488 G_Rec: 0.353 D_GP: 0.044 D_real: 1.305 D_fake: 0.461 +(epoch: 53, iters: 384, time: 0.064) G_GAN: 0.060 G_GAN_Feat: 1.258 G_ID: 0.229 G_Rec: 0.350 D_GP: 0.112 D_real: 0.348 D_fake: 0.940 +(epoch: 53, iters: 784, time: 0.064) G_GAN: 0.480 G_GAN_Feat: 0.709 G_ID: 0.477 G_Rec: 0.430 D_GP: 0.030 D_real: 1.341 D_fake: 0.521 +(epoch: 53, iters: 1184, time: 0.064) G_GAN: 0.406 G_GAN_Feat: 0.882 G_ID: 0.256 G_Rec: 0.395 D_GP: 0.048 D_real: 1.080 D_fake: 0.594 +(epoch: 53, iters: 1584, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 0.823 G_ID: 0.520 G_Rec: 0.407 D_GP: 0.030 D_real: 1.040 D_fake: 0.664 +(epoch: 53, iters: 1984, time: 0.064) G_GAN: 0.271 G_GAN_Feat: 0.684 G_ID: 0.248 G_Rec: 0.419 D_GP: 0.027 D_real: 1.025 D_fake: 0.729 +(epoch: 53, iters: 2384, time: 0.064) G_GAN: 0.290 G_GAN_Feat: 0.832 G_ID: 0.508 G_Rec: 0.368 D_GP: 0.054 D_real: 0.931 D_fake: 0.711 +(epoch: 53, iters: 2784, time: 0.064) G_GAN: 0.417 G_GAN_Feat: 1.146 G_ID: 0.295 G_Rec: 0.393 D_GP: 0.055 D_real: 0.469 D_fake: 0.583 +(epoch: 53, iters: 3184, time: 0.064) G_GAN: 0.725 G_GAN_Feat: 0.985 G_ID: 0.504 G_Rec: 0.372 D_GP: 0.090 D_real: 1.224 D_fake: 0.311 +(epoch: 53, iters: 3584, time: 0.064) G_GAN: 0.573 G_GAN_Feat: 0.745 G_ID: 0.242 G_Rec: 0.395 D_GP: 0.035 D_real: 1.345 D_fake: 0.435 +(epoch: 53, iters: 3984, time: 0.064) G_GAN: 0.735 G_GAN_Feat: 1.027 G_ID: 0.510 G_Rec: 0.418 D_GP: 0.033 D_real: 1.309 D_fake: 0.503 +(epoch: 53, iters: 4384, time: 0.064) G_GAN: 0.383 G_GAN_Feat: 0.953 G_ID: 0.252 G_Rec: 0.383 D_GP: 0.051 D_real: 0.905 D_fake: 0.617 +(epoch: 53, iters: 4784, time: 0.064) G_GAN: 1.063 G_GAN_Feat: 0.949 G_ID: 0.446 G_Rec: 0.391 D_GP: 0.096 D_real: 1.526 D_fake: 0.229 +(epoch: 53, iters: 5184, time: 0.064) G_GAN: 0.582 G_GAN_Feat: 0.802 G_ID: 0.201 G_Rec: 0.426 D_GP: 0.040 D_real: 1.252 D_fake: 0.429 +(epoch: 53, iters: 5584, time: 0.064) G_GAN: 0.428 G_GAN_Feat: 0.726 G_ID: 0.509 G_Rec: 0.349 D_GP: 0.028 D_real: 1.211 D_fake: 0.572 +(epoch: 53, iters: 5984, time: 0.064) G_GAN: 0.382 G_GAN_Feat: 0.874 G_ID: 0.246 G_Rec: 0.405 D_GP: 0.037 D_real: 0.928 D_fake: 0.618 +(epoch: 53, iters: 6384, time: 0.064) G_GAN: 0.406 G_GAN_Feat: 0.832 G_ID: 0.495 G_Rec: 0.351 D_GP: 0.035 D_real: 1.194 D_fake: 0.594 +(epoch: 53, iters: 6784, time: 0.064) G_GAN: 0.811 G_GAN_Feat: 0.852 G_ID: 0.275 G_Rec: 0.361 D_GP: 0.066 D_real: 1.361 D_fake: 0.293 +(epoch: 53, iters: 7184, time: 0.064) G_GAN: 0.206 G_GAN_Feat: 0.768 G_ID: 0.456 G_Rec: 0.363 D_GP: 0.056 D_real: 0.838 D_fake: 0.795 +(epoch: 53, iters: 7584, time: 0.064) G_GAN: 0.155 G_GAN_Feat: 0.725 G_ID: 0.235 G_Rec: 0.460 D_GP: 0.022 D_real: 0.962 D_fake: 0.845 +(epoch: 53, iters: 7984, time: 0.064) G_GAN: 0.044 G_GAN_Feat: 0.971 G_ID: 0.470 G_Rec: 0.385 D_GP: 0.175 D_real: 0.508 D_fake: 0.956 +(epoch: 53, iters: 8384, time: 0.064) G_GAN: 0.371 G_GAN_Feat: 1.015 G_ID: 0.219 G_Rec: 0.455 D_GP: 0.108 D_real: 0.558 D_fake: 0.630 +(epoch: 54, iters: 176, time: 0.064) G_GAN: 0.156 G_GAN_Feat: 0.934 G_ID: 0.483 G_Rec: 0.427 D_GP: 0.032 D_real: 0.833 D_fake: 0.844 +(epoch: 54, iters: 576, time: 0.064) G_GAN: 0.500 G_GAN_Feat: 0.846 G_ID: 0.226 G_Rec: 0.356 D_GP: 0.046 D_real: 1.087 D_fake: 0.501 +(epoch: 54, iters: 976, time: 0.064) G_GAN: 0.187 G_GAN_Feat: 0.828 G_ID: 0.484 G_Rec: 0.412 D_GP: 0.026 D_real: 0.981 D_fake: 0.813 +(epoch: 54, iters: 1376, time: 0.064) G_GAN: 0.522 G_GAN_Feat: 0.666 G_ID: 0.228 G_Rec: 0.345 D_GP: 0.027 D_real: 1.301 D_fake: 0.479 +(epoch: 54, iters: 1776, time: 0.064) G_GAN: 0.497 G_GAN_Feat: 0.856 G_ID: 0.507 G_Rec: 0.419 D_GP: 0.039 D_real: 1.230 D_fake: 0.506 +(epoch: 54, iters: 2176, time: 0.064) G_GAN: 0.377 G_GAN_Feat: 0.843 G_ID: 0.238 G_Rec: 0.408 D_GP: 0.068 D_real: 1.014 D_fake: 0.624 +(epoch: 54, iters: 2576, time: 0.064) G_GAN: 0.407 G_GAN_Feat: 0.688 G_ID: 0.473 G_Rec: 0.426 D_GP: 0.020 D_real: 1.334 D_fake: 0.594 +(epoch: 54, iters: 2976, time: 0.064) G_GAN: 0.271 G_GAN_Feat: 0.656 G_ID: 0.221 G_Rec: 0.390 D_GP: 0.025 D_real: 1.078 D_fake: 0.729 +(epoch: 54, iters: 3376, time: 0.064) G_GAN: 0.282 G_GAN_Feat: 0.745 G_ID: 0.512 G_Rec: 0.398 D_GP: 0.043 D_real: 0.995 D_fake: 0.719 +(epoch: 54, iters: 3776, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.791 G_ID: 0.213 G_Rec: 0.384 D_GP: 0.057 D_real: 0.849 D_fake: 0.717 +(epoch: 54, iters: 4176, time: 0.064) G_GAN: 0.342 G_GAN_Feat: 1.036 G_ID: 0.472 G_Rec: 0.432 D_GP: 0.039 D_real: 0.736 D_fake: 0.659 +(epoch: 54, iters: 4576, time: 0.064) G_GAN: 0.423 G_GAN_Feat: 0.872 G_ID: 0.212 G_Rec: 0.389 D_GP: 0.033 D_real: 1.123 D_fake: 0.577 +(epoch: 54, iters: 4976, time: 0.064) G_GAN: 0.284 G_GAN_Feat: 0.910 G_ID: 0.491 G_Rec: 0.376 D_GP: 0.094 D_real: 0.729 D_fake: 0.716 +(epoch: 54, iters: 5376, time: 0.064) G_GAN: 0.148 G_GAN_Feat: 0.558 G_ID: 0.238 G_Rec: 0.344 D_GP: 0.020 D_real: 1.082 D_fake: 0.852 +(epoch: 54, iters: 5776, time: 0.064) G_GAN: 0.261 G_GAN_Feat: 0.680 G_ID: 0.514 G_Rec: 0.369 D_GP: 0.029 D_real: 1.007 D_fake: 0.739 +(epoch: 54, iters: 6176, time: 0.064) G_GAN: -0.017 G_GAN_Feat: 0.749 G_ID: 0.268 G_Rec: 0.467 D_GP: 0.067 D_real: 0.560 D_fake: 1.017 +(epoch: 54, iters: 6576, time: 0.064) G_GAN: -0.172 G_GAN_Feat: 0.793 G_ID: 0.486 G_Rec: 0.363 D_GP: 0.238 D_real: 0.646 D_fake: 1.172 +(epoch: 54, iters: 6976, time: 0.064) G_GAN: -0.296 G_GAN_Feat: 0.828 G_ID: 0.218 G_Rec: 0.425 D_GP: 0.108 D_real: 0.515 D_fake: 1.296 +(epoch: 54, iters: 7376, time: 0.064) G_GAN: 0.755 G_GAN_Feat: 0.721 G_ID: 0.467 G_Rec: 0.364 D_GP: 0.034 D_real: 1.498 D_fake: 0.279 +(epoch: 54, iters: 7776, time: 0.064) G_GAN: 0.317 G_GAN_Feat: 0.761 G_ID: 0.233 G_Rec: 0.391 D_GP: 0.040 D_real: 1.053 D_fake: 0.684 +(epoch: 54, iters: 8176, time: 0.064) G_GAN: 0.462 G_GAN_Feat: 1.009 G_ID: 0.442 G_Rec: 0.413 D_GP: 0.057 D_real: 0.768 D_fake: 0.540 +(epoch: 54, iters: 8576, time: 0.064) G_GAN: 0.334 G_GAN_Feat: 0.666 G_ID: 0.258 G_Rec: 0.378 D_GP: 0.030 D_real: 1.099 D_fake: 0.666 +(epoch: 55, iters: 368, time: 0.064) G_GAN: 0.631 G_GAN_Feat: 0.889 G_ID: 0.476 G_Rec: 0.411 D_GP: 0.060 D_real: 1.222 D_fake: 0.456 +(epoch: 55, iters: 768, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 1.137 G_ID: 0.233 G_Rec: 0.403 D_GP: 0.449 D_real: 0.636 D_fake: 0.669 +(epoch: 55, iters: 1168, time: 0.064) G_GAN: 0.324 G_GAN_Feat: 1.004 G_ID: 0.506 G_Rec: 0.378 D_GP: 0.063 D_real: 0.683 D_fake: 0.676 +(epoch: 55, iters: 1568, time: 0.064) G_GAN: 0.550 G_GAN_Feat: 0.932 G_ID: 0.241 G_Rec: 0.357 D_GP: 0.063 D_real: 0.990 D_fake: 0.468 +(epoch: 55, iters: 1968, time: 0.064) G_GAN: 0.247 G_GAN_Feat: 0.804 G_ID: 0.500 G_Rec: 0.406 D_GP: 0.037 D_real: 0.983 D_fake: 0.754 +(epoch: 55, iters: 2368, time: 0.064) G_GAN: 0.370 G_GAN_Feat: 0.752 G_ID: 0.256 G_Rec: 0.362 D_GP: 0.031 D_real: 1.103 D_fake: 0.630 +(epoch: 55, iters: 2768, time: 0.064) G_GAN: 0.093 G_GAN_Feat: 0.820 G_ID: 0.454 G_Rec: 0.493 D_GP: 0.056 D_real: 0.712 D_fake: 0.907 +(epoch: 55, iters: 3168, time: 0.064) G_GAN: 0.493 G_GAN_Feat: 0.818 G_ID: 0.319 G_Rec: 0.368 D_GP: 0.042 D_real: 1.191 D_fake: 0.508 +(epoch: 55, iters: 3568, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.788 G_ID: 0.458 G_Rec: 0.345 D_GP: 0.030 D_real: 0.966 D_fake: 0.717 +(epoch: 55, iters: 3968, time: 0.064) G_GAN: 0.965 G_GAN_Feat: 0.896 G_ID: 0.214 G_Rec: 0.382 D_GP: 0.037 D_real: 1.536 D_fake: 0.297 +(epoch: 55, iters: 4368, time: 0.064) G_GAN: 0.246 G_GAN_Feat: 0.824 G_ID: 0.454 G_Rec: 0.382 D_GP: 0.020 D_real: 1.041 D_fake: 0.755 +(epoch: 55, iters: 4768, time: 0.064) G_GAN: -0.098 G_GAN_Feat: 0.719 G_ID: 0.261 G_Rec: 0.372 D_GP: 0.026 D_real: 0.637 D_fake: 1.098 +(epoch: 55, iters: 5168, time: 0.064) G_GAN: 0.057 G_GAN_Feat: 0.839 G_ID: 0.481 G_Rec: 0.378 D_GP: 0.077 D_real: 0.654 D_fake: 0.943 +(epoch: 55, iters: 5568, time: 0.064) G_GAN: 0.334 G_GAN_Feat: 0.633 G_ID: 0.220 G_Rec: 0.336 D_GP: 0.027 D_real: 1.162 D_fake: 0.666 +(epoch: 55, iters: 5968, time: 0.064) G_GAN: 0.333 G_GAN_Feat: 0.836 G_ID: 0.452 G_Rec: 0.390 D_GP: 0.073 D_real: 0.926 D_fake: 0.672 +(epoch: 55, iters: 6368, time: 0.064) G_GAN: 0.234 G_GAN_Feat: 0.854 G_ID: 0.275 G_Rec: 0.428 D_GP: 0.051 D_real: 0.803 D_fake: 0.766 +(epoch: 55, iters: 6768, time: 0.064) G_GAN: 0.764 G_GAN_Feat: 0.690 G_ID: 0.449 G_Rec: 0.524 D_GP: 0.022 D_real: 1.564 D_fake: 0.344 +(epoch: 55, iters: 7168, time: 0.064) G_GAN: 0.265 G_GAN_Feat: 1.077 G_ID: 0.261 G_Rec: 0.375 D_GP: 0.046 D_real: 0.773 D_fake: 0.735 +(epoch: 55, iters: 7568, time: 0.064) G_GAN: 0.622 G_GAN_Feat: 0.777 G_ID: 0.496 G_Rec: 0.378 D_GP: 0.037 D_real: 1.248 D_fake: 0.382 +(epoch: 55, iters: 7968, time: 0.064) G_GAN: 0.421 G_GAN_Feat: 0.775 G_ID: 0.271 G_Rec: 0.321 D_GP: 0.041 D_real: 1.207 D_fake: 0.581 +(epoch: 55, iters: 8368, time: 0.064) G_GAN: 0.524 G_GAN_Feat: 0.849 G_ID: 0.466 G_Rec: 0.379 D_GP: 0.042 D_real: 1.117 D_fake: 0.479 +(epoch: 56, iters: 160, time: 0.064) G_GAN: 0.246 G_GAN_Feat: 0.951 G_ID: 0.246 G_Rec: 0.399 D_GP: 0.052 D_real: 0.534 D_fake: 0.754 +(epoch: 56, iters: 560, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.705 G_ID: 0.496 G_Rec: 0.391 D_GP: 0.029 D_real: 1.185 D_fake: 0.716 +(epoch: 56, iters: 960, time: 0.064) G_GAN: 0.433 G_GAN_Feat: 0.609 G_ID: 0.288 G_Rec: 0.297 D_GP: 0.025 D_real: 1.349 D_fake: 0.569 +(epoch: 56, iters: 1360, time: 0.064) G_GAN: 0.462 G_GAN_Feat: 0.857 G_ID: 0.480 G_Rec: 0.418 D_GP: 0.034 D_real: 1.105 D_fake: 0.538 +(epoch: 56, iters: 1760, time: 0.064) G_GAN: 0.161 G_GAN_Feat: 0.851 G_ID: 0.253 G_Rec: 0.350 D_GP: 0.105 D_real: 0.628 D_fake: 0.839 +(epoch: 56, iters: 2160, time: 0.064) G_GAN: 0.397 G_GAN_Feat: 0.897 G_ID: 0.496 G_Rec: 0.377 D_GP: 0.033 D_real: 1.076 D_fake: 0.603 +(epoch: 56, iters: 2560, time: 0.064) G_GAN: 0.493 G_GAN_Feat: 0.763 G_ID: 0.260 G_Rec: 0.390 D_GP: 0.037 D_real: 1.147 D_fake: 0.513 +(epoch: 56, iters: 2960, time: 0.064) G_GAN: 0.450 G_GAN_Feat: 0.810 G_ID: 0.473 G_Rec: 0.362 D_GP: 0.076 D_real: 1.150 D_fake: 0.551 +(epoch: 56, iters: 3360, time: 0.064) G_GAN: 0.358 G_GAN_Feat: 0.933 G_ID: 0.240 G_Rec: 0.348 D_GP: 0.050 D_real: 0.997 D_fake: 0.642 +(epoch: 56, iters: 3760, time: 0.064) G_GAN: 0.435 G_GAN_Feat: 1.205 G_ID: 0.467 G_Rec: 0.387 D_GP: 0.090 D_real: 0.604 D_fake: 0.565 +(epoch: 56, iters: 4160, time: 0.064) G_GAN: 0.370 G_GAN_Feat: 1.041 G_ID: 0.243 G_Rec: 0.379 D_GP: 0.320 D_real: 0.408 D_fake: 0.662 +(epoch: 56, iters: 4560, time: 0.064) G_GAN: 0.073 G_GAN_Feat: 0.742 G_ID: 0.476 G_Rec: 0.358 D_GP: 0.034 D_real: 0.857 D_fake: 0.927 +(epoch: 56, iters: 4960, time: 0.064) G_GAN: 0.623 G_GAN_Feat: 0.891 G_ID: 0.221 G_Rec: 0.406 D_GP: 0.048 D_real: 1.204 D_fake: 0.392 +(epoch: 56, iters: 5360, time: 0.064) G_GAN: 0.706 G_GAN_Feat: 0.696 G_ID: 0.501 G_Rec: 0.409 D_GP: 0.021 D_real: 1.580 D_fake: 0.307 +(epoch: 56, iters: 5760, time: 0.064) G_GAN: 0.379 G_GAN_Feat: 0.713 G_ID: 0.277 G_Rec: 0.340 D_GP: 0.037 D_real: 1.125 D_fake: 0.627 +(epoch: 56, iters: 6160, time: 0.064) G_GAN: 0.313 G_GAN_Feat: 0.708 G_ID: 0.502 G_Rec: 0.376 D_GP: 0.028 D_real: 1.115 D_fake: 0.687 +(epoch: 56, iters: 6560, time: 0.064) G_GAN: 0.210 G_GAN_Feat: 0.877 G_ID: 0.214 G_Rec: 0.382 D_GP: 0.061 D_real: 0.781 D_fake: 0.790 +(epoch: 56, iters: 6960, time: 0.064) G_GAN: 0.338 G_GAN_Feat: 0.698 G_ID: 0.476 G_Rec: 0.381 D_GP: 0.024 D_real: 1.121 D_fake: 0.662 +(epoch: 56, iters: 7360, time: 0.064) G_GAN: 0.081 G_GAN_Feat: 0.593 G_ID: 0.237 G_Rec: 0.337 D_GP: 0.023 D_real: 0.978 D_fake: 0.919 +(epoch: 56, iters: 7760, time: 0.064) G_GAN: 0.485 G_GAN_Feat: 0.841 G_ID: 0.487 G_Rec: 0.366 D_GP: 0.051 D_real: 1.147 D_fake: 0.517 +(epoch: 56, iters: 8160, time: 0.064) G_GAN: 0.524 G_GAN_Feat: 0.700 G_ID: 0.233 G_Rec: 0.370 D_GP: 0.031 D_real: 1.363 D_fake: 0.485 +(epoch: 56, iters: 8560, time: 0.064) G_GAN: 0.355 G_GAN_Feat: 0.851 G_ID: 0.469 G_Rec: 0.355 D_GP: 0.066 D_real: 0.879 D_fake: 0.649 +(epoch: 57, iters: 352, time: 0.064) G_GAN: 0.377 G_GAN_Feat: 0.775 G_ID: 0.252 G_Rec: 0.406 D_GP: 0.028 D_real: 1.206 D_fake: 0.623 +(epoch: 57, iters: 752, time: 0.064) G_GAN: 0.806 G_GAN_Feat: 0.765 G_ID: 0.488 G_Rec: 0.412 D_GP: 0.027 D_real: 1.577 D_fake: 0.437 +(epoch: 57, iters: 1152, time: 0.064) G_GAN: 0.329 G_GAN_Feat: 0.597 G_ID: 0.238 G_Rec: 0.344 D_GP: 0.027 D_real: 1.162 D_fake: 0.673 +(epoch: 57, iters: 1552, time: 0.064) G_GAN: 0.158 G_GAN_Feat: 0.877 G_ID: 0.454 G_Rec: 0.434 D_GP: 0.092 D_real: 0.692 D_fake: 0.844 +(epoch: 57, iters: 1952, time: 0.064) G_GAN: 0.314 G_GAN_Feat: 0.784 G_ID: 0.266 G_Rec: 0.471 D_GP: 0.037 D_real: 1.076 D_fake: 0.686 +(epoch: 57, iters: 2352, time: 0.064) G_GAN: 0.524 G_GAN_Feat: 0.888 G_ID: 0.455 G_Rec: 0.399 D_GP: 0.054 D_real: 1.139 D_fake: 0.493 +(epoch: 57, iters: 2752, time: 0.064) G_GAN: 0.448 G_GAN_Feat: 0.981 G_ID: 0.279 G_Rec: 0.363 D_GP: 0.070 D_real: 0.671 D_fake: 0.554 +(epoch: 57, iters: 3152, time: 0.064) G_GAN: 0.464 G_GAN_Feat: 0.705 G_ID: 0.461 G_Rec: 0.376 D_GP: 0.021 D_real: 1.272 D_fake: 0.544 +(epoch: 57, iters: 3552, time: 0.064) G_GAN: 0.690 G_GAN_Feat: 0.965 G_ID: 0.244 G_Rec: 0.384 D_GP: 0.045 D_real: 1.383 D_fake: 0.353 +(epoch: 57, iters: 3952, time: 0.064) G_GAN: 0.199 G_GAN_Feat: 1.094 G_ID: 0.490 G_Rec: 0.408 D_GP: 0.142 D_real: 0.583 D_fake: 0.804 +(epoch: 57, iters: 4352, time: 0.064) G_GAN: 0.201 G_GAN_Feat: 0.773 G_ID: 0.258 G_Rec: 0.381 D_GP: 0.028 D_real: 1.019 D_fake: 0.799 +(epoch: 57, iters: 4752, time: 0.064) G_GAN: 0.822 G_GAN_Feat: 0.847 G_ID: 0.456 G_Rec: 0.384 D_GP: 0.033 D_real: 1.484 D_fake: 0.424 +(epoch: 57, iters: 5152, time: 0.064) G_GAN: 0.332 G_GAN_Feat: 0.654 G_ID: 0.266 G_Rec: 0.392 D_GP: 0.027 D_real: 1.097 D_fake: 0.668 +(epoch: 57, iters: 5552, time: 0.064) G_GAN: 0.140 G_GAN_Feat: 0.665 G_ID: 0.523 G_Rec: 0.349 D_GP: 0.026 D_real: 0.929 D_fake: 0.860 +(epoch: 57, iters: 5952, time: 0.064) G_GAN: 0.324 G_GAN_Feat: 0.692 G_ID: 0.214 G_Rec: 0.391 D_GP: 0.033 D_real: 1.165 D_fake: 0.676 +(epoch: 57, iters: 6352, time: 0.064) G_GAN: 0.363 G_GAN_Feat: 0.837 G_ID: 0.498 G_Rec: 0.447 D_GP: 0.057 D_real: 0.957 D_fake: 0.642 +(epoch: 57, iters: 6752, time: 0.064) G_GAN: 0.353 G_GAN_Feat: 0.735 G_ID: 0.268 G_Rec: 0.374 D_GP: 0.027 D_real: 1.131 D_fake: 0.648 +(epoch: 57, iters: 7152, time: 0.064) G_GAN: 0.432 G_GAN_Feat: 0.702 G_ID: 0.467 G_Rec: 0.362 D_GP: 0.030 D_real: 1.305 D_fake: 0.569 +(epoch: 57, iters: 7552, time: 0.064) G_GAN: 0.279 G_GAN_Feat: 0.723 G_ID: 0.228 G_Rec: 0.361 D_GP: 0.039 D_real: 1.097 D_fake: 0.721 +(epoch: 57, iters: 7952, time: 0.064) G_GAN: 0.229 G_GAN_Feat: 0.798 G_ID: 0.509 G_Rec: 0.359 D_GP: 0.037 D_real: 0.925 D_fake: 0.771 +(epoch: 57, iters: 8352, time: 0.064) G_GAN: 0.284 G_GAN_Feat: 0.742 G_ID: 0.237 G_Rec: 0.330 D_GP: 0.053 D_real: 1.033 D_fake: 0.719 +(epoch: 58, iters: 144, time: 0.064) G_GAN: 0.262 G_GAN_Feat: 0.741 G_ID: 0.497 G_Rec: 0.401 D_GP: 0.032 D_real: 1.072 D_fake: 0.738 +(epoch: 58, iters: 544, time: 0.064) G_GAN: 0.463 G_GAN_Feat: 0.781 G_ID: 0.270 G_Rec: 0.371 D_GP: 0.044 D_real: 1.251 D_fake: 0.538 +(epoch: 58, iters: 944, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 0.979 G_ID: 0.483 G_Rec: 0.404 D_GP: 0.277 D_real: 0.531 D_fake: 0.707 +(epoch: 58, iters: 1344, time: 0.064) G_GAN: 0.784 G_GAN_Feat: 0.806 G_ID: 0.226 G_Rec: 0.362 D_GP: 0.042 D_real: 1.398 D_fake: 0.234 +(epoch: 58, iters: 1744, time: 0.064) G_GAN: 0.589 G_GAN_Feat: 0.956 G_ID: 0.467 G_Rec: 0.384 D_GP: 0.096 D_real: 0.961 D_fake: 0.523 +(epoch: 58, iters: 2144, time: 0.064) G_GAN: 0.109 G_GAN_Feat: 0.790 G_ID: 0.231 G_Rec: 0.361 D_GP: 0.034 D_real: 0.724 D_fake: 0.891 +(epoch: 58, iters: 2544, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 1.044 G_ID: 0.491 G_Rec: 0.400 D_GP: 0.072 D_real: 0.454 D_fake: 0.651 +(epoch: 58, iters: 2944, time: 0.064) G_GAN: 0.387 G_GAN_Feat: 0.726 G_ID: 0.256 G_Rec: 0.399 D_GP: 0.029 D_real: 1.203 D_fake: 0.613 +(epoch: 58, iters: 3344, time: 0.064) G_GAN: 0.269 G_GAN_Feat: 1.014 G_ID: 0.441 G_Rec: 0.366 D_GP: 0.098 D_real: 0.556 D_fake: 0.732 +(epoch: 58, iters: 3744, time: 0.064) G_GAN: 0.138 G_GAN_Feat: 0.925 G_ID: 0.244 G_Rec: 0.360 D_GP: 0.049 D_real: 0.547 D_fake: 0.862 +(epoch: 58, iters: 4144, time: 0.064) G_GAN: 0.423 G_GAN_Feat: 1.150 G_ID: 0.494 G_Rec: 0.435 D_GP: 0.149 D_real: 0.474 D_fake: 0.579 +(epoch: 58, iters: 4544, time: 0.064) G_GAN: 0.317 G_GAN_Feat: 0.614 G_ID: 0.222 G_Rec: 0.341 D_GP: 0.025 D_real: 1.124 D_fake: 0.685 +(epoch: 58, iters: 4944, time: 0.064) G_GAN: 0.285 G_GAN_Feat: 0.689 G_ID: 0.467 G_Rec: 0.352 D_GP: 0.032 D_real: 1.091 D_fake: 0.716 +(epoch: 58, iters: 5344, time: 0.064) G_GAN: 0.342 G_GAN_Feat: 0.777 G_ID: 0.258 G_Rec: 0.363 D_GP: 0.036 D_real: 1.025 D_fake: 0.659 +(epoch: 58, iters: 5744, time: 0.064) G_GAN: 0.532 G_GAN_Feat: 1.180 G_ID: 0.483 G_Rec: 0.396 D_GP: 0.150 D_real: 0.681 D_fake: 0.495 +(epoch: 58, iters: 6144, time: 0.064) G_GAN: 0.200 G_GAN_Feat: 0.908 G_ID: 0.221 G_Rec: 0.395 D_GP: 0.100 D_real: 0.607 D_fake: 0.802 +(epoch: 58, iters: 6544, time: 0.064) G_GAN: 0.596 G_GAN_Feat: 0.670 G_ID: 0.469 G_Rec: 0.370 D_GP: 0.021 D_real: 1.468 D_fake: 0.438 +(epoch: 58, iters: 6944, time: 0.064) G_GAN: 0.461 G_GAN_Feat: 0.782 G_ID: 0.210 G_Rec: 0.422 D_GP: 0.034 D_real: 1.301 D_fake: 0.543 +(epoch: 58, iters: 7344, time: 0.064) G_GAN: 0.321 G_GAN_Feat: 0.815 G_ID: 0.478 G_Rec: 0.392 D_GP: 0.090 D_real: 0.893 D_fake: 0.680 +(epoch: 58, iters: 7744, time: 0.064) G_GAN: 0.630 G_GAN_Feat: 0.813 G_ID: 0.248 G_Rec: 0.415 D_GP: 0.047 D_real: 1.299 D_fake: 0.376 +(epoch: 58, iters: 8144, time: 0.064) G_GAN: 0.372 G_GAN_Feat: 0.909 G_ID: 0.511 G_Rec: 0.402 D_GP: 0.166 D_real: 0.651 D_fake: 0.632 +(epoch: 58, iters: 8544, time: 0.064) G_GAN: 0.582 G_GAN_Feat: 1.024 G_ID: 0.230 G_Rec: 0.390 D_GP: 0.095 D_real: 0.733 D_fake: 0.424 +(epoch: 59, iters: 336, time: 0.064) G_GAN: 0.108 G_GAN_Feat: 0.856 G_ID: 0.438 G_Rec: 0.370 D_GP: 0.073 D_real: 0.701 D_fake: 0.892 +(epoch: 59, iters: 736, time: 0.064) G_GAN: 0.830 G_GAN_Feat: 1.335 G_ID: 0.217 G_Rec: 0.391 D_GP: 0.405 D_real: 0.730 D_fake: 0.225 +(epoch: 59, iters: 1136, time: 0.064) G_GAN: 0.309 G_GAN_Feat: 1.002 G_ID: 0.470 G_Rec: 0.388 D_GP: 0.040 D_real: 0.750 D_fake: 0.691 +(epoch: 59, iters: 1536, time: 0.064) G_GAN: 0.451 G_GAN_Feat: 0.772 G_ID: 0.276 G_Rec: 0.356 D_GP: 0.040 D_real: 1.147 D_fake: 0.566 +(epoch: 59, iters: 1936, time: 0.064) G_GAN: 0.661 G_GAN_Feat: 0.642 G_ID: 0.496 G_Rec: 0.400 D_GP: 0.020 D_real: 1.477 D_fake: 0.397 +(epoch: 59, iters: 2336, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.614 G_ID: 0.252 G_Rec: 0.420 D_GP: 0.028 D_real: 1.127 D_fake: 0.744 +(epoch: 59, iters: 2736, time: 0.064) G_GAN: 0.449 G_GAN_Feat: 0.860 G_ID: 0.483 G_Rec: 0.432 D_GP: 0.065 D_real: 0.914 D_fake: 0.553 +(epoch: 59, iters: 3136, time: 0.064) G_GAN: 0.362 G_GAN_Feat: 0.835 G_ID: 0.195 G_Rec: 0.399 D_GP: 0.043 D_real: 0.960 D_fake: 0.638 +(epoch: 59, iters: 3536, time: 0.064) G_GAN: 0.077 G_GAN_Feat: 0.813 G_ID: 0.517 G_Rec: 0.365 D_GP: 0.060 D_real: 0.814 D_fake: 0.923 +(epoch: 59, iters: 3936, time: 0.064) G_GAN: 0.144 G_GAN_Feat: 0.841 G_ID: 0.269 G_Rec: 0.458 D_GP: 0.025 D_real: 0.792 D_fake: 0.856 +(epoch: 59, iters: 4336, time: 0.064) G_GAN: 0.270 G_GAN_Feat: 0.871 G_ID: 0.469 G_Rec: 0.341 D_GP: 0.083 D_real: 0.782 D_fake: 0.730 +(epoch: 59, iters: 4736, time: 0.064) G_GAN: 0.271 G_GAN_Feat: 0.923 G_ID: 0.278 G_Rec: 0.406 D_GP: 0.069 D_real: 0.614 D_fake: 0.729 +(epoch: 59, iters: 5136, time: 0.064) G_GAN: 0.414 G_GAN_Feat: 0.956 G_ID: 0.455 G_Rec: 0.352 D_GP: 0.116 D_real: 0.773 D_fake: 0.587 +(epoch: 59, iters: 5536, time: 0.064) G_GAN: 0.496 G_GAN_Feat: 0.544 G_ID: 0.237 G_Rec: 0.378 D_GP: 0.015 D_real: 1.431 D_fake: 0.514 +(epoch: 59, iters: 5936, time: 0.064) G_GAN: 0.439 G_GAN_Feat: 0.585 G_ID: 0.486 G_Rec: 0.371 D_GP: 0.018 D_real: 1.286 D_fake: 0.568 +(epoch: 59, iters: 6336, time: 0.064) G_GAN: 0.292 G_GAN_Feat: 0.584 G_ID: 0.183 G_Rec: 0.385 D_GP: 0.022 D_real: 1.267 D_fake: 0.710 +(epoch: 59, iters: 6736, time: 0.064) G_GAN: 0.164 G_GAN_Feat: 0.687 G_ID: 0.457 G_Rec: 0.370 D_GP: 0.045 D_real: 0.925 D_fake: 0.836 +(epoch: 59, iters: 7136, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.697 G_ID: 0.235 G_Rec: 0.372 D_GP: 0.039 D_real: 1.043 D_fake: 0.718 +(epoch: 59, iters: 7536, time: 0.064) G_GAN: 0.361 G_GAN_Feat: 0.737 G_ID: 0.467 G_Rec: 0.408 D_GP: 0.075 D_real: 0.964 D_fake: 0.639 +(epoch: 59, iters: 7936, time: 0.064) G_GAN: 0.184 G_GAN_Feat: 0.751 G_ID: 0.257 G_Rec: 0.384 D_GP: 0.070 D_real: 0.729 D_fake: 0.816 +(epoch: 59, iters: 8336, time: 0.064) G_GAN: 0.525 G_GAN_Feat: 0.934 G_ID: 0.494 G_Rec: 0.382 D_GP: 0.080 D_real: 0.893 D_fake: 0.493 +(epoch: 60, iters: 128, time: 0.064) G_GAN: 0.441 G_GAN_Feat: 1.045 G_ID: 0.268 G_Rec: 0.377 D_GP: 0.060 D_real: 0.693 D_fake: 0.564 +(epoch: 60, iters: 528, time: 0.064) G_GAN: 0.290 G_GAN_Feat: 0.748 G_ID: 0.481 G_Rec: 0.383 D_GP: 0.032 D_real: 1.023 D_fake: 0.710 +(epoch: 60, iters: 928, time: 0.064) G_GAN: 0.525 G_GAN_Feat: 0.688 G_ID: 0.264 G_Rec: 0.348 D_GP: 0.030 D_real: 1.275 D_fake: 0.477 +(epoch: 60, iters: 1328, time: 0.064) G_GAN: 0.729 G_GAN_Feat: 0.968 G_ID: 0.465 G_Rec: 0.371 D_GP: 0.120 D_real: 1.170 D_fake: 0.491 +(epoch: 60, iters: 1728, time: 0.064) G_GAN: 0.258 G_GAN_Feat: 0.698 G_ID: 0.278 G_Rec: 0.368 D_GP: 0.024 D_real: 1.142 D_fake: 0.742 +(epoch: 60, iters: 2128, time: 0.064) G_GAN: 0.008 G_GAN_Feat: 0.700 G_ID: 0.448 G_Rec: 0.385 D_GP: 0.044 D_real: 0.855 D_fake: 0.992 +(epoch: 60, iters: 2528, time: 0.064) G_GAN: 0.156 G_GAN_Feat: 0.766 G_ID: 0.225 G_Rec: 0.386 D_GP: 0.062 D_real: 0.794 D_fake: 0.844 +(epoch: 60, iters: 2928, time: 0.064) G_GAN: 0.171 G_GAN_Feat: 1.343 G_ID: 0.499 G_Rec: 0.401 D_GP: 0.776 D_real: 0.430 D_fake: 0.829 +(epoch: 60, iters: 3328, time: 0.064) G_GAN: 0.309 G_GAN_Feat: 0.649 G_ID: 0.250 G_Rec: 0.387 D_GP: 0.024 D_real: 1.060 D_fake: 0.691 +(epoch: 60, iters: 3728, time: 0.064) G_GAN: 0.167 G_GAN_Feat: 0.725 G_ID: 0.495 G_Rec: 0.378 D_GP: 0.043 D_real: 0.890 D_fake: 0.833 +(epoch: 60, iters: 4128, time: 0.064) G_GAN: 0.266 G_GAN_Feat: 0.725 G_ID: 0.260 G_Rec: 0.395 D_GP: 0.042 D_real: 0.992 D_fake: 0.735 +(epoch: 60, iters: 4528, time: 0.064) G_GAN: 0.078 G_GAN_Feat: 0.778 G_ID: 0.432 G_Rec: 0.372 D_GP: 0.056 D_real: 0.739 D_fake: 0.922 +(epoch: 60, iters: 4928, time: 0.064) G_GAN: 0.257 G_GAN_Feat: 0.912 G_ID: 0.260 G_Rec: 0.385 D_GP: 0.058 D_real: 0.741 D_fake: 0.743 +(epoch: 60, iters: 5328, time: 0.064) G_GAN: 0.342 G_GAN_Feat: 0.748 G_ID: 0.465 G_Rec: 0.349 D_GP: 0.047 D_real: 0.992 D_fake: 0.658 +(epoch: 60, iters: 5728, time: 0.064) G_GAN: 0.660 G_GAN_Feat: 0.874 G_ID: 0.260 G_Rec: 0.373 D_GP: 0.081 D_real: 1.166 D_fake: 0.396 +(epoch: 60, iters: 6128, time: 0.064) G_GAN: 0.352 G_GAN_Feat: 1.213 G_ID: 0.454 G_Rec: 0.430 D_GP: 0.837 D_real: 0.389 D_fake: 0.671 +(epoch: 60, iters: 6528, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 0.688 G_ID: 0.189 G_Rec: 0.352 D_GP: 0.031 D_real: 1.111 D_fake: 0.807 +(epoch: 60, iters: 6928, time: 0.064) G_GAN: 0.364 G_GAN_Feat: 1.018 G_ID: 0.407 G_Rec: 0.411 D_GP: 0.262 D_real: 0.478 D_fake: 0.637 +(epoch: 60, iters: 7328, time: 0.064) G_GAN: 0.084 G_GAN_Feat: 0.968 G_ID: 0.238 G_Rec: 0.375 D_GP: 0.120 D_real: 0.415 D_fake: 0.917 +(epoch: 60, iters: 7728, time: 0.064) G_GAN: 0.240 G_GAN_Feat: 0.730 G_ID: 0.469 G_Rec: 0.421 D_GP: 0.033 D_real: 0.981 D_fake: 0.760 +(epoch: 60, iters: 8128, time: 0.064) G_GAN: 0.386 G_GAN_Feat: 0.890 G_ID: 0.241 G_Rec: 0.375 D_GP: 0.031 D_real: 1.034 D_fake: 0.617 +(epoch: 60, iters: 8528, time: 0.064) G_GAN: 0.115 G_GAN_Feat: 1.101 G_ID: 0.490 G_Rec: 0.412 D_GP: 0.079 D_real: 0.454 D_fake: 0.885 +(epoch: 61, iters: 320, time: 0.064) G_GAN: 0.288 G_GAN_Feat: 0.981 G_ID: 0.244 G_Rec: 0.398 D_GP: 0.156 D_real: 0.734 D_fake: 0.712 +(epoch: 61, iters: 720, time: 0.064) G_GAN: 0.652 G_GAN_Feat: 0.814 G_ID: 0.446 G_Rec: 0.360 D_GP: 0.051 D_real: 1.321 D_fake: 0.358 +(epoch: 61, iters: 1120, time: 0.064) G_GAN: 0.449 G_GAN_Feat: 0.930 G_ID: 0.227 G_Rec: 0.380 D_GP: 0.043 D_real: 0.886 D_fake: 0.552 +(epoch: 61, iters: 1520, time: 0.064) G_GAN: 0.320 G_GAN_Feat: 1.078 G_ID: 0.460 G_Rec: 0.404 D_GP: 0.064 D_real: 0.660 D_fake: 0.680 +(epoch: 61, iters: 1920, time: 0.064) G_GAN: 0.376 G_GAN_Feat: 0.733 G_ID: 0.240 G_Rec: 0.372 D_GP: 0.031 D_real: 1.115 D_fake: 0.625 +(epoch: 61, iters: 2320, time: 0.064) G_GAN: 0.491 G_GAN_Feat: 0.634 G_ID: 0.428 G_Rec: 0.400 D_GP: 0.022 D_real: 1.347 D_fake: 0.512 +(epoch: 61, iters: 2720, time: 0.064) G_GAN: 0.220 G_GAN_Feat: 0.654 G_ID: 0.244 G_Rec: 0.406 D_GP: 0.028 D_real: 0.992 D_fake: 0.780 +(epoch: 61, iters: 3120, time: 0.064) G_GAN: 0.563 G_GAN_Feat: 0.851 G_ID: 0.464 G_Rec: 0.389 D_GP: 0.081 D_real: 1.056 D_fake: 0.445 +(epoch: 61, iters: 3520, time: 0.064) G_GAN: 0.435 G_GAN_Feat: 0.730 G_ID: 0.198 G_Rec: 0.373 D_GP: 0.038 D_real: 1.122 D_fake: 0.566 +(epoch: 61, iters: 3920, time: 0.064) G_GAN: 0.132 G_GAN_Feat: 0.932 G_ID: 0.492 G_Rec: 0.396 D_GP: 0.075 D_real: 0.498 D_fake: 0.868 +(epoch: 61, iters: 4320, time: 0.064) G_GAN: 0.232 G_GAN_Feat: 0.657 G_ID: 0.257 G_Rec: 0.376 D_GP: 0.025 D_real: 1.068 D_fake: 0.768 +(epoch: 61, iters: 4720, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 0.705 G_ID: 0.456 G_Rec: 0.372 D_GP: 0.036 D_real: 0.981 D_fake: 0.737 +(epoch: 61, iters: 5120, time: 0.064) G_GAN: 0.208 G_GAN_Feat: 0.672 G_ID: 0.229 G_Rec: 0.333 D_GP: 0.042 D_real: 0.965 D_fake: 0.792 +(epoch: 61, iters: 5520, time: 0.064) G_GAN: 0.326 G_GAN_Feat: 0.858 G_ID: 0.496 G_Rec: 0.376 D_GP: 0.041 D_real: 0.915 D_fake: 0.678 +(epoch: 61, iters: 5920, time: 0.064) G_GAN: 0.343 G_GAN_Feat: 0.797 G_ID: 0.246 G_Rec: 0.368 D_GP: 0.051 D_real: 1.193 D_fake: 0.659 +(epoch: 61, iters: 6320, time: 0.064) G_GAN: 0.415 G_GAN_Feat: 0.821 G_ID: 0.429 G_Rec: 0.362 D_GP: 0.105 D_real: 0.963 D_fake: 0.591 +(epoch: 61, iters: 6720, time: 0.064) G_GAN: 0.209 G_GAN_Feat: 0.624 G_ID: 0.236 G_Rec: 0.447 D_GP: 0.020 D_real: 1.115 D_fake: 0.791 +(epoch: 61, iters: 7120, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.862 G_ID: 0.431 G_Rec: 0.401 D_GP: 0.040 D_real: 1.003 D_fake: 0.693 +(epoch: 61, iters: 7520, time: 0.064) G_GAN: 0.199 G_GAN_Feat: 0.816 G_ID: 0.265 G_Rec: 0.391 D_GP: 0.052 D_real: 0.829 D_fake: 0.801 +(epoch: 61, iters: 7920, time: 0.064) G_GAN: 0.394 G_GAN_Feat: 0.830 G_ID: 0.435 G_Rec: 0.403 D_GP: 0.046 D_real: 1.099 D_fake: 0.607 +(epoch: 61, iters: 8320, time: 0.064) G_GAN: 0.470 G_GAN_Feat: 0.767 G_ID: 0.290 G_Rec: 0.366 D_GP: 0.048 D_real: 1.142 D_fake: 0.547 +(epoch: 62, iters: 112, time: 0.064) G_GAN: 0.370 G_GAN_Feat: 0.840 G_ID: 0.480 G_Rec: 0.424 D_GP: 0.037 D_real: 1.037 D_fake: 0.639 +(epoch: 62, iters: 512, time: 0.064) G_GAN: 0.293 G_GAN_Feat: 0.730 G_ID: 0.221 G_Rec: 0.325 D_GP: 0.042 D_real: 1.127 D_fake: 0.709 +(epoch: 62, iters: 912, time: 0.064) G_GAN: 0.222 G_GAN_Feat: 0.862 G_ID: 0.446 G_Rec: 0.405 D_GP: 0.034 D_real: 0.864 D_fake: 0.781 +(epoch: 62, iters: 1312, time: 0.064) G_GAN: 0.337 G_GAN_Feat: 0.883 G_ID: 0.253 G_Rec: 0.395 D_GP: 0.030 D_real: 1.030 D_fake: 0.663 +(epoch: 62, iters: 1712, time: 0.064) G_GAN: 0.194 G_GAN_Feat: 0.890 G_ID: 0.439 G_Rec: 0.363 D_GP: 0.085 D_real: 0.642 D_fake: 0.808 +(epoch: 62, iters: 2112, time: 0.064) G_GAN: 0.658 G_GAN_Feat: 1.064 G_ID: 0.250 G_Rec: 0.397 D_GP: 0.060 D_real: 1.323 D_fake: 0.558 +(epoch: 62, iters: 2512, time: 0.064) G_GAN: 0.366 G_GAN_Feat: 1.194 G_ID: 0.480 G_Rec: 0.424 D_GP: 0.146 D_real: 0.494 D_fake: 0.634 +(epoch: 62, iters: 2912, time: 0.064) G_GAN: 0.115 G_GAN_Feat: 1.057 G_ID: 0.220 G_Rec: 0.443 D_GP: 0.105 D_real: 0.243 D_fake: 0.885 +(epoch: 62, iters: 3312, time: 0.064) G_GAN: 0.284 G_GAN_Feat: 0.762 G_ID: 0.498 G_Rec: 0.390 D_GP: 0.024 D_real: 1.044 D_fake: 0.716 +(epoch: 62, iters: 3712, time: 0.064) G_GAN: 0.453 G_GAN_Feat: 0.746 G_ID: 0.240 G_Rec: 0.358 D_GP: 0.027 D_real: 1.174 D_fake: 0.555 +(epoch: 62, iters: 4112, time: 0.064) G_GAN: 0.550 G_GAN_Feat: 0.896 G_ID: 0.445 G_Rec: 0.362 D_GP: 0.051 D_real: 1.118 D_fake: 0.451 +(epoch: 62, iters: 4512, time: 0.064) G_GAN: 0.345 G_GAN_Feat: 0.685 G_ID: 0.290 G_Rec: 0.372 D_GP: 0.022 D_real: 1.123 D_fake: 0.655 +(epoch: 62, iters: 4912, time: 0.064) G_GAN: 0.088 G_GAN_Feat: 0.815 G_ID: 0.432 G_Rec: 0.387 D_GP: 0.101 D_real: 0.593 D_fake: 0.912 +(epoch: 62, iters: 5312, time: 0.064) G_GAN: 0.572 G_GAN_Feat: 0.715 G_ID: 0.223 G_Rec: 0.362 D_GP: 0.035 D_real: 1.371 D_fake: 0.430 +(epoch: 62, iters: 5712, time: 0.064) G_GAN: 0.314 G_GAN_Feat: 1.145 G_ID: 0.411 G_Rec: 0.434 D_GP: 0.106 D_real: 0.491 D_fake: 0.686 +(epoch: 62, iters: 6112, time: 0.064) G_GAN: 0.351 G_GAN_Feat: 0.857 G_ID: 0.220 G_Rec: 0.481 D_GP: 0.056 D_real: 0.908 D_fake: 0.649 +(epoch: 62, iters: 6512, time: 0.064) G_GAN: 0.664 G_GAN_Feat: 1.151 G_ID: 0.440 G_Rec: 0.405 D_GP: 0.298 D_real: 0.664 D_fake: 0.386 +(epoch: 62, iters: 6912, time: 0.064) G_GAN: 0.416 G_GAN_Feat: 1.093 G_ID: 0.232 G_Rec: 0.438 D_GP: 0.096 D_real: 0.467 D_fake: 0.586 +(epoch: 62, iters: 7312, time: 0.064) G_GAN: 0.239 G_GAN_Feat: 1.073 G_ID: 0.440 G_Rec: 0.402 D_GP: 0.055 D_real: 0.539 D_fake: 0.762 +(epoch: 62, iters: 7712, time: 0.064) G_GAN: 0.685 G_GAN_Feat: 0.764 G_ID: 0.218 G_Rec: 0.331 D_GP: 0.047 D_real: 1.400 D_fake: 0.353 +(epoch: 62, iters: 8112, time: 0.064) G_GAN: 0.232 G_GAN_Feat: 0.674 G_ID: 0.446 G_Rec: 0.405 D_GP: 0.024 D_real: 1.056 D_fake: 0.768 +(epoch: 62, iters: 8512, time: 0.064) G_GAN: 0.299 G_GAN_Feat: 0.842 G_ID: 0.208 G_Rec: 0.365 D_GP: 0.057 D_real: 0.755 D_fake: 0.702 +(epoch: 63, iters: 304, time: 0.064) G_GAN: 0.417 G_GAN_Feat: 0.654 G_ID: 0.442 G_Rec: 0.382 D_GP: 0.027 D_real: 1.212 D_fake: 0.584 +(epoch: 63, iters: 704, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.847 G_ID: 0.248 G_Rec: 0.380 D_GP: 0.080 D_real: 0.780 D_fake: 0.725 +(epoch: 63, iters: 1104, time: 0.064) G_GAN: 0.267 G_GAN_Feat: 0.805 G_ID: 0.460 G_Rec: 0.380 D_GP: 0.035 D_real: 0.929 D_fake: 0.734 +(epoch: 63, iters: 1504, time: 0.064) G_GAN: 0.415 G_GAN_Feat: 0.626 G_ID: 0.308 G_Rec: 0.348 D_GP: 0.024 D_real: 1.162 D_fake: 0.591 +(epoch: 63, iters: 1904, time: 0.064) G_GAN: 0.251 G_GAN_Feat: 0.659 G_ID: 0.427 G_Rec: 0.358 D_GP: 0.031 D_real: 1.043 D_fake: 0.749 +(epoch: 63, iters: 2304, time: 0.064) G_GAN: 0.000 G_GAN_Feat: 0.738 G_ID: 0.224 G_Rec: 0.334 D_GP: 0.050 D_real: 0.850 D_fake: 1.000 +(epoch: 63, iters: 2704, time: 0.064) G_GAN: 0.038 G_GAN_Feat: 0.793 G_ID: 0.426 G_Rec: 0.370 D_GP: 0.060 D_real: 0.714 D_fake: 0.962 +(epoch: 63, iters: 3104, time: 0.064) G_GAN: 0.463 G_GAN_Feat: 0.750 G_ID: 0.228 G_Rec: 0.369 D_GP: 0.039 D_real: 1.154 D_fake: 0.537 +(epoch: 63, iters: 3504, time: 0.064) G_GAN: 0.620 G_GAN_Feat: 0.893 G_ID: 0.414 G_Rec: 0.411 D_GP: 0.077 D_real: 1.113 D_fake: 0.414 +(epoch: 63, iters: 3904, time: 0.064) G_GAN: 0.411 G_GAN_Feat: 0.994 G_ID: 0.195 G_Rec: 0.375 D_GP: 0.042 D_real: 0.785 D_fake: 0.590 +(epoch: 63, iters: 4304, time: 0.064) G_GAN: 0.423 G_GAN_Feat: 0.833 G_ID: 0.513 G_Rec: 0.369 D_GP: 0.044 D_real: 1.149 D_fake: 0.577 +(epoch: 63, iters: 4704, time: 0.064) G_GAN: 0.444 G_GAN_Feat: 0.849 G_ID: 0.200 G_Rec: 0.361 D_GP: 0.089 D_real: 0.910 D_fake: 0.632 +(epoch: 63, iters: 5104, time: 0.064) G_GAN: 0.398 G_GAN_Feat: 1.236 G_ID: 0.482 G_Rec: 0.361 D_GP: 0.070 D_real: 0.429 D_fake: 0.604 +(epoch: 63, iters: 5504, time: 0.064) G_GAN: 0.107 G_GAN_Feat: 0.718 G_ID: 0.212 G_Rec: 0.382 D_GP: 0.022 D_real: 0.924 D_fake: 0.893 +(epoch: 63, iters: 5904, time: 0.064) G_GAN: 0.502 G_GAN_Feat: 0.759 G_ID: 0.487 G_Rec: 0.363 D_GP: 0.036 D_real: 1.212 D_fake: 0.515 +(epoch: 63, iters: 6304, time: 0.064) G_GAN: 0.423 G_GAN_Feat: 0.840 G_ID: 0.233 G_Rec: 0.417 D_GP: 0.030 D_real: 1.122 D_fake: 0.578 +(epoch: 63, iters: 6704, time: 0.064) G_GAN: 0.303 G_GAN_Feat: 0.686 G_ID: 0.428 G_Rec: 0.425 D_GP: 0.022 D_real: 1.167 D_fake: 0.697 +(epoch: 63, iters: 7104, time: 0.064) G_GAN: 0.503 G_GAN_Feat: 0.703 G_ID: 0.249 G_Rec: 0.352 D_GP: 0.027 D_real: 1.262 D_fake: 0.505 +(epoch: 63, iters: 7504, time: 0.064) G_GAN: 0.550 G_GAN_Feat: 0.698 G_ID: 0.432 G_Rec: 0.338 D_GP: 0.032 D_real: 1.329 D_fake: 0.453 +(epoch: 63, iters: 7904, time: 0.064) G_GAN: 0.733 G_GAN_Feat: 0.864 G_ID: 0.256 G_Rec: 0.394 D_GP: 0.085 D_real: 1.191 D_fake: 0.300 +(epoch: 63, iters: 8304, time: 0.064) G_GAN: 0.439 G_GAN_Feat: 0.931 G_ID: 0.447 G_Rec: 0.406 D_GP: 0.041 D_real: 0.968 D_fake: 0.563 +(epoch: 64, iters: 96, time: 0.064) G_GAN: -0.106 G_GAN_Feat: 1.209 G_ID: 0.261 G_Rec: 0.390 D_GP: 0.300 D_real: 0.335 D_fake: 1.106 +(epoch: 64, iters: 496, time: 0.064) G_GAN: 0.727 G_GAN_Feat: 0.886 G_ID: 0.450 G_Rec: 0.402 D_GP: 0.033 D_real: 1.333 D_fake: 0.296 +(epoch: 64, iters: 896, time: 0.064) G_GAN: 0.852 G_GAN_Feat: 0.846 G_ID: 0.240 G_Rec: 0.372 D_GP: 0.074 D_real: 1.486 D_fake: 0.315 +(epoch: 64, iters: 1296, time: 0.064) G_GAN: 0.380 G_GAN_Feat: 1.165 G_ID: 0.482 G_Rec: 0.389 D_GP: 0.086 D_real: 0.376 D_fake: 0.620 +(epoch: 64, iters: 1696, time: 0.064) G_GAN: 0.166 G_GAN_Feat: 0.721 G_ID: 0.239 G_Rec: 0.399 D_GP: 0.021 D_real: 1.002 D_fake: 0.835 +(epoch: 64, iters: 2096, time: 0.064) G_GAN: 0.291 G_GAN_Feat: 0.726 G_ID: 0.468 G_Rec: 0.402 D_GP: 0.027 D_real: 0.989 D_fake: 0.717 +(epoch: 64, iters: 2496, time: 0.064) G_GAN: 0.108 G_GAN_Feat: 0.682 G_ID: 0.241 G_Rec: 0.332 D_GP: 0.033 D_real: 0.925 D_fake: 0.892 +(epoch: 64, iters: 2896, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 0.837 G_ID: 0.462 G_Rec: 0.386 D_GP: 0.071 D_real: 0.926 D_fake: 0.701 +(epoch: 64, iters: 3296, time: 0.064) G_GAN: 0.481 G_GAN_Feat: 0.731 G_ID: 0.219 G_Rec: 0.409 D_GP: 0.037 D_real: 1.196 D_fake: 0.519 +(epoch: 64, iters: 3696, time: 0.064) G_GAN: 0.747 G_GAN_Feat: 0.978 G_ID: 0.462 G_Rec: 0.406 D_GP: 0.098 D_real: 0.972 D_fake: 0.351 +(epoch: 64, iters: 4096, time: 0.064) G_GAN: 0.226 G_GAN_Feat: 0.877 G_ID: 0.241 G_Rec: 0.426 D_GP: 0.040 D_real: 0.923 D_fake: 0.774 +(epoch: 64, iters: 4496, time: 0.064) G_GAN: 0.518 G_GAN_Feat: 0.881 G_ID: 0.475 G_Rec: 0.347 D_GP: 0.092 D_real: 0.973 D_fake: 0.483 +(epoch: 64, iters: 4896, time: 0.064) G_GAN: 0.287 G_GAN_Feat: 0.573 G_ID: 0.221 G_Rec: 0.406 D_GP: 0.023 D_real: 1.194 D_fake: 0.714 +(epoch: 64, iters: 5296, time: 0.064) G_GAN: 0.371 G_GAN_Feat: 0.655 G_ID: 0.435 G_Rec: 0.371 D_GP: 0.021 D_real: 1.159 D_fake: 0.630 +(epoch: 64, iters: 5696, time: 0.064) G_GAN: 0.178 G_GAN_Feat: 0.611 G_ID: 0.225 G_Rec: 0.391 D_GP: 0.027 D_real: 1.039 D_fake: 0.822 +(epoch: 64, iters: 6096, time: 0.064) G_GAN: 0.258 G_GAN_Feat: 0.607 G_ID: 0.436 G_Rec: 0.352 D_GP: 0.029 D_real: 1.069 D_fake: 0.743 +(epoch: 64, iters: 6496, time: 0.064) G_GAN: 0.287 G_GAN_Feat: 0.674 G_ID: 0.215 G_Rec: 0.446 D_GP: 0.043 D_real: 1.021 D_fake: 0.714 +(epoch: 64, iters: 6896, time: 0.064) G_GAN: 0.250 G_GAN_Feat: 0.759 G_ID: 0.426 G_Rec: 0.389 D_GP: 0.044 D_real: 0.893 D_fake: 0.750 +(epoch: 64, iters: 7296, time: 0.064) G_GAN: 0.285 G_GAN_Feat: 0.920 G_ID: 0.255 G_Rec: 0.346 D_GP: 0.126 D_real: 0.575 D_fake: 0.715 +(epoch: 64, iters: 7696, time: 0.064) G_GAN: 0.567 G_GAN_Feat: 0.734 G_ID: 0.446 G_Rec: 0.357 D_GP: 0.053 D_real: 1.260 D_fake: 0.438 +(epoch: 64, iters: 8096, time: 0.064) G_GAN: 0.603 G_GAN_Feat: 0.864 G_ID: 0.236 G_Rec: 0.372 D_GP: 0.068 D_real: 1.199 D_fake: 0.445 +(epoch: 64, iters: 8496, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.779 G_ID: 0.483 G_Rec: 0.384 D_GP: 0.039 D_real: 1.068 D_fake: 0.669 +(epoch: 65, iters: 288, time: 0.064) G_GAN: 0.787 G_GAN_Feat: 0.860 G_ID: 0.233 G_Rec: 0.358 D_GP: 0.060 D_real: 1.353 D_fake: 0.409 +(epoch: 65, iters: 688, time: 0.064) G_GAN: 0.621 G_GAN_Feat: 0.974 G_ID: 0.463 G_Rec: 0.374 D_GP: 0.056 D_real: 0.990 D_fake: 0.416 +(epoch: 65, iters: 1088, time: 0.064) G_GAN: 0.330 G_GAN_Feat: 0.739 G_ID: 0.221 G_Rec: 0.425 D_GP: 0.032 D_real: 1.264 D_fake: 0.671 +(epoch: 65, iters: 1488, time: 0.064) G_GAN: 0.273 G_GAN_Feat: 0.718 G_ID: 0.415 G_Rec: 0.369 D_GP: 0.026 D_real: 1.063 D_fake: 0.728 +(epoch: 65, iters: 1888, time: 0.064) G_GAN: 0.433 G_GAN_Feat: 1.117 G_ID: 0.205 G_Rec: 0.384 D_GP: 0.212 D_real: 0.556 D_fake: 0.569 +(epoch: 65, iters: 2288, time: 0.064) G_GAN: 0.066 G_GAN_Feat: 0.964 G_ID: 0.473 G_Rec: 0.425 D_GP: 0.105 D_real: 0.289 D_fake: 0.934 +(epoch: 65, iters: 2688, time: 0.064) G_GAN: 0.206 G_GAN_Feat: 0.835 G_ID: 0.255 G_Rec: 0.396 D_GP: 0.065 D_real: 0.688 D_fake: 0.794 +(epoch: 65, iters: 3088, time: 0.064) G_GAN: 0.726 G_GAN_Feat: 0.769 G_ID: 0.416 G_Rec: 0.414 D_GP: 0.034 D_real: 1.426 D_fake: 0.310 +(epoch: 65, iters: 3488, time: 0.064) G_GAN: 0.419 G_GAN_Feat: 0.661 G_ID: 0.195 G_Rec: 0.358 D_GP: 0.026 D_real: 1.282 D_fake: 0.581 +(epoch: 65, iters: 3888, time: 0.064) G_GAN: 0.933 G_GAN_Feat: 1.078 G_ID: 0.378 G_Rec: 0.403 D_GP: 0.082 D_real: 1.074 D_fake: 0.200 +(epoch: 65, iters: 4288, time: 0.064) G_GAN: 0.209 G_GAN_Feat: 0.991 G_ID: 0.229 G_Rec: 0.375 D_GP: 0.152 D_real: 0.367 D_fake: 0.791 +(epoch: 65, iters: 4688, time: 0.064) G_GAN: 0.314 G_GAN_Feat: 0.759 G_ID: 0.438 G_Rec: 0.458 D_GP: 0.042 D_real: 0.967 D_fake: 0.686 +(epoch: 65, iters: 5088, time: 0.064) G_GAN: 0.432 G_GAN_Feat: 0.768 G_ID: 0.247 G_Rec: 0.337 D_GP: 0.045 D_real: 1.139 D_fake: 0.568 +(epoch: 65, iters: 5488, time: 0.064) G_GAN: 0.154 G_GAN_Feat: 0.929 G_ID: 0.399 G_Rec: 0.375 D_GP: 0.080 D_real: 0.917 D_fake: 0.848 +(epoch: 65, iters: 5888, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 0.956 G_ID: 0.229 G_Rec: 0.374 D_GP: 0.063 D_real: 0.647 D_fake: 0.808 +(epoch: 65, iters: 6288, time: 0.064) G_GAN: 0.334 G_GAN_Feat: 1.133 G_ID: 0.437 G_Rec: 0.457 D_GP: 0.044 D_real: 0.532 D_fake: 0.666 +(epoch: 65, iters: 6688, time: 0.064) G_GAN: 0.145 G_GAN_Feat: 0.718 G_ID: 0.238 G_Rec: 0.353 D_GP: 0.025 D_real: 1.065 D_fake: 0.855 +(epoch: 65, iters: 7088, time: 0.064) G_GAN: 0.281 G_GAN_Feat: 0.808 G_ID: 0.450 G_Rec: 0.361 D_GP: 0.031 D_real: 0.966 D_fake: 0.719 +(epoch: 65, iters: 7488, time: 0.064) G_GAN: 0.156 G_GAN_Feat: 0.670 G_ID: 0.283 G_Rec: 0.345 D_GP: 0.026 D_real: 0.923 D_fake: 0.844 +(epoch: 65, iters: 7888, time: 0.064) G_GAN: 0.476 G_GAN_Feat: 0.760 G_ID: 0.417 G_Rec: 0.344 D_GP: 0.036 D_real: 1.190 D_fake: 0.525 +(epoch: 65, iters: 8288, time: 0.064) G_GAN: 0.233 G_GAN_Feat: 0.711 G_ID: 0.236 G_Rec: 0.361 D_GP: 0.032 D_real: 1.045 D_fake: 0.768 +(epoch: 66, iters: 80, time: 0.064) G_GAN: 0.238 G_GAN_Feat: 0.777 G_ID: 0.412 G_Rec: 0.358 D_GP: 0.066 D_real: 0.837 D_fake: 0.763 +(epoch: 66, iters: 480, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.996 G_ID: 0.207 G_Rec: 0.417 D_GP: 0.037 D_real: 0.570 D_fake: 0.732 +(epoch: 66, iters: 880, time: 0.064) G_GAN: 0.321 G_GAN_Feat: 0.670 G_ID: 0.410 G_Rec: 0.380 D_GP: 0.020 D_real: 1.110 D_fake: 0.679 +(epoch: 66, iters: 1280, time: 0.064) G_GAN: 0.260 G_GAN_Feat: 0.899 G_ID: 0.218 G_Rec: 0.351 D_GP: 0.069 D_real: 0.722 D_fake: 0.741 +(epoch: 66, iters: 1680, time: 0.064) G_GAN: 0.820 G_GAN_Feat: 1.213 G_ID: 0.444 G_Rec: 0.438 D_GP: 0.120 D_real: 0.699 D_fake: 0.235 +(epoch: 66, iters: 2080, time: 0.064) G_GAN: 0.184 G_GAN_Feat: 1.223 G_ID: 0.216 G_Rec: 0.405 D_GP: 0.200 D_real: 0.499 D_fake: 0.816 +(epoch: 66, iters: 2480, time: 0.064) G_GAN: 0.427 G_GAN_Feat: 1.461 G_ID: 0.441 G_Rec: 0.387 D_GP: 1.862 D_real: 0.440 D_fake: 0.579 +(epoch: 66, iters: 2880, time: 0.064) G_GAN: 0.324 G_GAN_Feat: 0.597 G_ID: 0.218 G_Rec: 0.381 D_GP: 0.025 D_real: 1.174 D_fake: 0.676 +(epoch: 66, iters: 3280, time: 0.064) G_GAN: 0.152 G_GAN_Feat: 0.614 G_ID: 0.462 G_Rec: 0.426 D_GP: 0.022 D_real: 1.067 D_fake: 0.848 +(epoch: 66, iters: 3680, time: 0.064) G_GAN: 0.358 G_GAN_Feat: 0.574 G_ID: 0.222 G_Rec: 0.396 D_GP: 0.019 D_real: 1.238 D_fake: 0.642 +(epoch: 66, iters: 4080, time: 0.064) G_GAN: 0.456 G_GAN_Feat: 0.725 G_ID: 0.423 G_Rec: 0.409 D_GP: 0.043 D_real: 1.227 D_fake: 0.554 +(epoch: 66, iters: 4480, time: 0.064) G_GAN: 0.415 G_GAN_Feat: 0.776 G_ID: 0.219 G_Rec: 0.396 D_GP: 0.053 D_real: 1.110 D_fake: 0.586 +(epoch: 66, iters: 4880, time: 0.064) G_GAN: 0.486 G_GAN_Feat: 0.762 G_ID: 0.428 G_Rec: 0.367 D_GP: 0.054 D_real: 1.240 D_fake: 0.527 +(epoch: 66, iters: 5280, time: 0.064) G_GAN: 0.121 G_GAN_Feat: 0.644 G_ID: 0.251 G_Rec: 0.373 D_GP: 0.024 D_real: 0.934 D_fake: 0.879 +(epoch: 66, iters: 5680, time: 0.064) G_GAN: 0.406 G_GAN_Feat: 0.968 G_ID: 0.465 G_Rec: 0.365 D_GP: 0.049 D_real: 0.869 D_fake: 0.596 +(epoch: 66, iters: 6080, time: 0.064) G_GAN: 0.144 G_GAN_Feat: 0.725 G_ID: 0.245 G_Rec: 0.369 D_GP: 0.044 D_real: 0.908 D_fake: 0.859 +(epoch: 66, iters: 6480, time: 0.064) G_GAN: 0.373 G_GAN_Feat: 0.828 G_ID: 0.497 G_Rec: 0.371 D_GP: 0.061 D_real: 0.956 D_fake: 0.630 +(epoch: 66, iters: 6880, time: 0.064) G_GAN: 0.227 G_GAN_Feat: 0.667 G_ID: 0.223 G_Rec: 0.339 D_GP: 0.030 D_real: 1.074 D_fake: 0.774 +(epoch: 66, iters: 7280, time: 0.064) G_GAN: 0.425 G_GAN_Feat: 0.863 G_ID: 0.404 G_Rec: 0.383 D_GP: 0.041 D_real: 1.000 D_fake: 0.577 +(epoch: 66, iters: 7680, time: 0.064) G_GAN: 0.402 G_GAN_Feat: 0.796 G_ID: 0.226 G_Rec: 0.347 D_GP: 0.062 D_real: 0.961 D_fake: 0.599 +(epoch: 66, iters: 8080, time: 0.064) G_GAN: 0.427 G_GAN_Feat: 0.883 G_ID: 0.429 G_Rec: 0.430 D_GP: 0.038 D_real: 0.964 D_fake: 0.574 +(epoch: 66, iters: 8480, time: 0.064) G_GAN: 0.379 G_GAN_Feat: 0.748 G_ID: 0.205 G_Rec: 0.431 D_GP: 0.034 D_real: 1.134 D_fake: 0.622 +(epoch: 67, iters: 272, time: 0.064) G_GAN: 0.340 G_GAN_Feat: 0.929 G_ID: 0.434 G_Rec: 0.370 D_GP: 0.065 D_real: 1.028 D_fake: 0.691 +(epoch: 67, iters: 672, time: 0.064) G_GAN: 0.384 G_GAN_Feat: 1.081 G_ID: 0.198 G_Rec: 0.374 D_GP: 0.052 D_real: 0.722 D_fake: 0.620 +(epoch: 67, iters: 1072, time: 0.064) G_GAN: 0.177 G_GAN_Feat: 1.121 G_ID: 0.462 G_Rec: 0.424 D_GP: 0.082 D_real: 0.217 D_fake: 0.824 +(epoch: 67, iters: 1472, time: 0.064) G_GAN: 0.455 G_GAN_Feat: 0.829 G_ID: 0.194 G_Rec: 0.408 D_GP: 0.051 D_real: 0.991 D_fake: 0.546 +(epoch: 67, iters: 1872, time: 0.064) G_GAN: 0.407 G_GAN_Feat: 0.784 G_ID: 0.428 G_Rec: 0.403 D_GP: 0.029 D_real: 1.151 D_fake: 0.602 +(epoch: 67, iters: 2272, time: 0.064) G_GAN: 0.082 G_GAN_Feat: 1.408 G_ID: 0.249 G_Rec: 0.365 D_GP: 0.237 D_real: 0.239 D_fake: 0.918 +(epoch: 67, iters: 2672, time: 0.064) G_GAN: 0.433 G_GAN_Feat: 1.056 G_ID: 0.393 G_Rec: 0.394 D_GP: 0.068 D_real: 0.634 D_fake: 0.576 +(epoch: 67, iters: 3072, time: 0.064) G_GAN: 0.453 G_GAN_Feat: 0.662 G_ID: 0.213 G_Rec: 0.358 D_GP: 0.022 D_real: 1.254 D_fake: 0.548 +(epoch: 67, iters: 3472, time: 0.064) G_GAN: 0.448 G_GAN_Feat: 0.746 G_ID: 0.392 G_Rec: 0.405 D_GP: 0.025 D_real: 1.144 D_fake: 0.553 +(epoch: 67, iters: 3872, time: 0.064) G_GAN: 0.382 G_GAN_Feat: 0.826 G_ID: 0.255 G_Rec: 0.361 D_GP: 0.051 D_real: 0.954 D_fake: 0.618 +(epoch: 67, iters: 4272, time: 0.064) G_GAN: 0.166 G_GAN_Feat: 0.997 G_ID: 0.425 G_Rec: 0.393 D_GP: 0.105 D_real: 0.762 D_fake: 0.834 +(epoch: 67, iters: 4672, time: 0.064) G_GAN: 0.262 G_GAN_Feat: 0.684 G_ID: 0.250 G_Rec: 0.402 D_GP: 0.029 D_real: 1.191 D_fake: 0.739 +(epoch: 67, iters: 5072, time: 0.064) G_GAN: 0.525 G_GAN_Feat: 0.717 G_ID: 0.381 G_Rec: 0.384 D_GP: 0.026 D_real: 1.348 D_fake: 0.477 +(epoch: 67, iters: 5472, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.784 G_ID: 0.237 G_Rec: 0.361 D_GP: 0.060 D_real: 1.067 D_fake: 0.714 +(epoch: 67, iters: 5872, time: 0.064) G_GAN: 0.520 G_GAN_Feat: 0.897 G_ID: 0.459 G_Rec: 0.436 D_GP: 0.038 D_real: 1.151 D_fake: 0.484 +(epoch: 67, iters: 6272, time: 0.064) G_GAN: 0.366 G_GAN_Feat: 0.742 G_ID: 0.231 G_Rec: 0.376 D_GP: 0.027 D_real: 1.157 D_fake: 0.634 +(epoch: 67, iters: 6672, time: 0.064) G_GAN: 0.413 G_GAN_Feat: 0.806 G_ID: 0.421 G_Rec: 0.403 D_GP: 0.047 D_real: 1.074 D_fake: 0.588 +(epoch: 67, iters: 7072, time: 0.064) G_GAN: 0.394 G_GAN_Feat: 0.804 G_ID: 0.244 G_Rec: 0.437 D_GP: 0.093 D_real: 1.065 D_fake: 0.608 +(epoch: 67, iters: 7472, time: 0.064) G_GAN: 0.389 G_GAN_Feat: 1.086 G_ID: 0.421 G_Rec: 0.431 D_GP: 0.097 D_real: 0.534 D_fake: 0.612 +(epoch: 67, iters: 7872, time: 0.064) G_GAN: 0.299 G_GAN_Feat: 0.961 G_ID: 0.217 G_Rec: 0.370 D_GP: 0.069 D_real: 0.832 D_fake: 0.702 +(epoch: 67, iters: 8272, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.757 G_ID: 0.429 G_Rec: 0.369 D_GP: 0.040 D_real: 1.113 D_fake: 0.671 +(epoch: 68, iters: 64, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.975 G_ID: 0.240 G_Rec: 0.358 D_GP: 0.062 D_real: 0.651 D_fake: 0.726 +(epoch: 68, iters: 464, time: 0.064) G_GAN: 0.765 G_GAN_Feat: 0.818 G_ID: 0.415 G_Rec: 0.396 D_GP: 0.031 D_real: 1.509 D_fake: 0.262 +(epoch: 68, iters: 864, time: 0.064) G_GAN: 0.696 G_GAN_Feat: 0.869 G_ID: 0.208 G_Rec: 0.399 D_GP: 0.076 D_real: 1.111 D_fake: 0.362 +(epoch: 68, iters: 1264, time: 0.064) G_GAN: 0.618 G_GAN_Feat: 0.812 G_ID: 0.449 G_Rec: 0.419 D_GP: 0.031 D_real: 1.323 D_fake: 0.399 +(epoch: 68, iters: 1664, time: 0.064) G_GAN: 0.378 G_GAN_Feat: 0.737 G_ID: 0.230 G_Rec: 0.369 D_GP: 0.030 D_real: 1.150 D_fake: 0.622 +(epoch: 68, iters: 2064, time: 0.064) G_GAN: 0.496 G_GAN_Feat: 0.826 G_ID: 0.412 G_Rec: 0.385 D_GP: 0.038 D_real: 1.140 D_fake: 0.509 +(epoch: 68, iters: 2464, time: 0.064) G_GAN: 0.317 G_GAN_Feat: 0.687 G_ID: 0.252 G_Rec: 0.366 D_GP: 0.029 D_real: 1.079 D_fake: 0.683 +(epoch: 68, iters: 2864, time: 0.064) G_GAN: 0.747 G_GAN_Feat: 1.004 G_ID: 0.436 G_Rec: 0.397 D_GP: 0.069 D_real: 1.359 D_fake: 0.305 +(epoch: 68, iters: 3264, time: 0.064) G_GAN: 0.398 G_GAN_Feat: 0.826 G_ID: 0.236 G_Rec: 0.364 D_GP: 0.055 D_real: 1.091 D_fake: 0.614 +(epoch: 68, iters: 3664, time: 0.064) G_GAN: 0.593 G_GAN_Feat: 0.971 G_ID: 0.465 G_Rec: 0.406 D_GP: 0.094 D_real: 1.029 D_fake: 0.456 +(epoch: 68, iters: 4064, time: 0.064) G_GAN: 0.161 G_GAN_Feat: 0.678 G_ID: 0.259 G_Rec: 0.401 D_GP: 0.022 D_real: 1.074 D_fake: 0.839 +(epoch: 68, iters: 4464, time: 0.064) G_GAN: 0.349 G_GAN_Feat: 0.994 G_ID: 0.413 G_Rec: 0.414 D_GP: 0.075 D_real: 0.623 D_fake: 0.652 +(epoch: 68, iters: 4864, time: 0.064) G_GAN: 0.499 G_GAN_Feat: 0.817 G_ID: 0.235 G_Rec: 0.378 D_GP: 0.054 D_real: 1.148 D_fake: 0.506 +(epoch: 68, iters: 5264, time: 0.064) G_GAN: 0.460 G_GAN_Feat: 0.825 G_ID: 0.442 G_Rec: 0.416 D_GP: 0.035 D_real: 1.084 D_fake: 0.541 +(epoch: 68, iters: 5664, time: 0.064) G_GAN: 0.591 G_GAN_Feat: 0.926 G_ID: 0.203 G_Rec: 0.408 D_GP: 0.080 D_real: 0.970 D_fake: 0.519 +(epoch: 68, iters: 6064, time: 0.064) G_GAN: 0.694 G_GAN_Feat: 0.977 G_ID: 0.388 G_Rec: 0.378 D_GP: 0.034 D_real: 1.511 D_fake: 0.316 +(epoch: 68, iters: 6464, time: 0.064) G_GAN: 0.177 G_GAN_Feat: 1.100 G_ID: 0.252 G_Rec: 0.392 D_GP: 0.086 D_real: 0.433 D_fake: 0.823 +(epoch: 68, iters: 6864, time: 0.064) G_GAN: 0.049 G_GAN_Feat: 0.866 G_ID: 0.443 G_Rec: 0.436 D_GP: 0.032 D_real: 0.758 D_fake: 0.951 +(epoch: 68, iters: 7264, time: 0.064) G_GAN: 0.153 G_GAN_Feat: 0.909 G_ID: 0.226 G_Rec: 0.386 D_GP: 0.098 D_real: 0.702 D_fake: 0.847 +(epoch: 68, iters: 7664, time: 0.064) G_GAN: 0.096 G_GAN_Feat: 0.767 G_ID: 0.392 G_Rec: 0.364 D_GP: 0.037 D_real: 0.773 D_fake: 0.904 +(epoch: 68, iters: 8064, time: 0.064) G_GAN: 0.405 G_GAN_Feat: 0.833 G_ID: 0.261 G_Rec: 0.431 D_GP: 0.053 D_real: 0.958 D_fake: 0.598 +(epoch: 68, iters: 8464, time: 0.064) G_GAN: 0.864 G_GAN_Feat: 1.298 G_ID: 0.402 G_Rec: 0.394 D_GP: 0.115 D_real: 1.144 D_fake: 0.249 +(epoch: 69, iters: 256, time: 0.064) G_GAN: 0.212 G_GAN_Feat: 0.666 G_ID: 0.206 G_Rec: 0.365 D_GP: 0.029 D_real: 1.035 D_fake: 0.788 +(epoch: 69, iters: 656, time: 0.064) G_GAN: 0.455 G_GAN_Feat: 0.762 G_ID: 0.387 G_Rec: 0.510 D_GP: 0.035 D_real: 1.274 D_fake: 0.547 +(epoch: 69, iters: 1056, time: 0.064) G_GAN: -0.006 G_GAN_Feat: 1.153 G_ID: 0.293 G_Rec: 0.388 D_GP: 0.183 D_real: 0.258 D_fake: 1.006 +(epoch: 69, iters: 1456, time: 0.064) G_GAN: 0.573 G_GAN_Feat: 0.954 G_ID: 0.443 G_Rec: 0.460 D_GP: 0.032 D_real: 1.243 D_fake: 0.476 +(epoch: 69, iters: 1856, time: 0.064) G_GAN: 0.404 G_GAN_Feat: 0.688 G_ID: 0.254 G_Rec: 0.338 D_GP: 0.027 D_real: 1.227 D_fake: 0.596 +(epoch: 69, iters: 2256, time: 0.064) G_GAN: 0.506 G_GAN_Feat: 0.965 G_ID: 0.410 G_Rec: 0.364 D_GP: 0.089 D_real: 0.951 D_fake: 0.497 +(epoch: 69, iters: 2656, time: 0.064) G_GAN: 0.250 G_GAN_Feat: 0.941 G_ID: 0.224 G_Rec: 0.329 D_GP: 0.040 D_real: 0.758 D_fake: 0.750 +(epoch: 69, iters: 3056, time: 0.064) G_GAN: 0.674 G_GAN_Feat: 0.900 G_ID: 0.428 G_Rec: 0.396 D_GP: 0.062 D_real: 1.276 D_fake: 0.350 +(epoch: 69, iters: 3456, time: 0.064) G_GAN: 0.463 G_GAN_Feat: 0.723 G_ID: 0.184 G_Rec: 0.357 D_GP: 0.030 D_real: 1.182 D_fake: 0.538 +(epoch: 69, iters: 3856, time: 0.064) G_GAN: 0.438 G_GAN_Feat: 0.856 G_ID: 0.414 G_Rec: 0.371 D_GP: 0.039 D_real: 1.112 D_fake: 0.564 +(epoch: 69, iters: 4256, time: 0.064) G_GAN: 0.656 G_GAN_Feat: 0.977 G_ID: 0.194 G_Rec: 0.391 D_GP: 0.109 D_real: 0.874 D_fake: 0.408 +(epoch: 69, iters: 4656, time: 0.064) G_GAN: 0.503 G_GAN_Feat: 0.699 G_ID: 0.414 G_Rec: 0.377 D_GP: 0.024 D_real: 1.355 D_fake: 0.501 +(epoch: 69, iters: 5056, time: 0.064) G_GAN: 0.292 G_GAN_Feat: 1.043 G_ID: 0.211 G_Rec: 0.429 D_GP: 0.183 D_real: 0.415 D_fake: 0.710 +(epoch: 69, iters: 5456, time: 0.064) G_GAN: 0.334 G_GAN_Feat: 0.922 G_ID: 0.417 G_Rec: 0.447 D_GP: 0.035 D_real: 1.123 D_fake: 0.666 +(epoch: 69, iters: 5856, time: 0.064) G_GAN: 0.456 G_GAN_Feat: 0.727 G_ID: 0.237 G_Rec: 0.341 D_GP: 0.041 D_real: 1.188 D_fake: 0.546 +(epoch: 69, iters: 6256, time: 0.064) G_GAN: 0.468 G_GAN_Feat: 0.845 G_ID: 0.397 G_Rec: 0.413 D_GP: 0.036 D_real: 1.168 D_fake: 0.533 +(epoch: 69, iters: 6656, time: 0.064) G_GAN: 0.087 G_GAN_Feat: 0.928 G_ID: 0.201 G_Rec: 0.361 D_GP: 0.069 D_real: 0.507 D_fake: 0.913 +(epoch: 69, iters: 7056, time: 0.064) G_GAN: 0.306 G_GAN_Feat: 0.775 G_ID: 0.420 G_Rec: 0.372 D_GP: 0.029 D_real: 1.042 D_fake: 0.694 +(epoch: 69, iters: 7456, time: 0.064) G_GAN: 0.131 G_GAN_Feat: 0.761 G_ID: 0.262 G_Rec: 0.367 D_GP: 0.035 D_real: 0.827 D_fake: 0.869 +(epoch: 69, iters: 7856, time: 0.064) G_GAN: 0.201 G_GAN_Feat: 0.783 G_ID: 0.419 G_Rec: 0.373 D_GP: 0.055 D_real: 0.809 D_fake: 0.799 +(epoch: 69, iters: 8256, time: 0.064) G_GAN: 0.485 G_GAN_Feat: 0.783 G_ID: 0.221 G_Rec: 0.356 D_GP: 0.042 D_real: 1.201 D_fake: 0.518 +(epoch: 70, iters: 48, time: 0.064) G_GAN: 0.383 G_GAN_Feat: 0.749 G_ID: 0.410 G_Rec: 0.385 D_GP: 0.026 D_real: 1.062 D_fake: 0.618 +(epoch: 70, iters: 448, time: 0.064) G_GAN: 0.483 G_GAN_Feat: 0.785 G_ID: 0.223 G_Rec: 0.366 D_GP: 0.056 D_real: 1.189 D_fake: 0.521 +(epoch: 70, iters: 848, time: 0.064) G_GAN: 0.367 G_GAN_Feat: 1.511 G_ID: 0.400 G_Rec: 0.431 D_GP: 0.226 D_real: 0.450 D_fake: 0.637 +(epoch: 70, iters: 1248, time: 0.064) G_GAN: 0.779 G_GAN_Feat: 0.901 G_ID: 0.190 G_Rec: 0.341 D_GP: 0.049 D_real: 1.324 D_fake: 0.238 +(epoch: 70, iters: 1648, time: 0.064) G_GAN: 1.037 G_GAN_Feat: 1.149 G_ID: 0.411 G_Rec: 0.371 D_GP: 0.054 D_real: 1.550 D_fake: 0.220 +(epoch: 70, iters: 2048, time: 0.064) G_GAN: 0.621 G_GAN_Feat: 0.724 G_ID: 0.213 G_Rec: 0.393 D_GP: 0.018 D_real: 1.536 D_fake: 0.391 +(epoch: 70, iters: 2448, time: 0.064) G_GAN: 0.341 G_GAN_Feat: 0.642 G_ID: 0.441 G_Rec: 0.410 D_GP: 0.018 D_real: 1.140 D_fake: 0.659 +(epoch: 70, iters: 2848, time: 0.064) G_GAN: 0.300 G_GAN_Feat: 0.615 G_ID: 0.205 G_Rec: 0.353 D_GP: 0.025 D_real: 1.155 D_fake: 0.700 +(epoch: 70, iters: 3248, time: 0.064) G_GAN: 0.029 G_GAN_Feat: 0.775 G_ID: 0.442 G_Rec: 0.395 D_GP: 0.042 D_real: 0.740 D_fake: 0.971 +(epoch: 70, iters: 3648, time: 0.064) G_GAN: 0.274 G_GAN_Feat: 0.663 G_ID: 0.193 G_Rec: 0.364 D_GP: 0.032 D_real: 1.098 D_fake: 0.727 +(epoch: 70, iters: 4048, time: 0.064) G_GAN: 0.590 G_GAN_Feat: 0.818 G_ID: 0.374 G_Rec: 0.378 D_GP: 0.053 D_real: 1.209 D_fake: 0.425 +(epoch: 70, iters: 4448, time: 0.064) G_GAN: 0.358 G_GAN_Feat: 0.763 G_ID: 0.189 G_Rec: 0.385 D_GP: 0.030 D_real: 1.174 D_fake: 0.642 +(epoch: 70, iters: 4848, time: 0.064) G_GAN: 0.259 G_GAN_Feat: 0.822 G_ID: 0.377 G_Rec: 0.401 D_GP: 0.075 D_real: 0.827 D_fake: 0.741 +(epoch: 70, iters: 5248, time: 0.064) G_GAN: 0.456 G_GAN_Feat: 0.771 G_ID: 0.217 G_Rec: 0.372 D_GP: 0.052 D_real: 1.094 D_fake: 0.545 +(epoch: 70, iters: 5648, time: 0.064) G_GAN: 0.365 G_GAN_Feat: 0.883 G_ID: 0.375 G_Rec: 0.375 D_GP: 0.082 D_real: 0.878 D_fake: 0.635 +(epoch: 70, iters: 6048, time: 0.064) G_GAN: 0.264 G_GAN_Feat: 0.823 G_ID: 0.254 G_Rec: 0.396 D_GP: 0.067 D_real: 0.911 D_fake: 0.736 +(epoch: 70, iters: 6448, time: 0.064) G_GAN: 0.500 G_GAN_Feat: 0.919 G_ID: 0.379 G_Rec: 0.445 D_GP: 0.052 D_real: 0.972 D_fake: 0.507 +(epoch: 70, iters: 6848, time: 0.064) G_GAN: 0.348 G_GAN_Feat: 0.821 G_ID: 0.210 G_Rec: 0.384 D_GP: 0.065 D_real: 0.895 D_fake: 0.653 +(epoch: 70, iters: 7248, time: 0.064) G_GAN: 0.288 G_GAN_Feat: 0.904 G_ID: 0.385 G_Rec: 0.380 D_GP: 0.056 D_real: 0.832 D_fake: 0.726 +(epoch: 70, iters: 7648, time: 0.064) G_GAN: 0.509 G_GAN_Feat: 0.845 G_ID: 0.217 G_Rec: 0.351 D_GP: 0.051 D_real: 1.210 D_fake: 0.495 +(epoch: 70, iters: 8048, time: 0.064) G_GAN: 0.403 G_GAN_Feat: 0.815 G_ID: 0.428 G_Rec: 0.353 D_GP: 0.029 D_real: 1.200 D_fake: 0.598 +(epoch: 70, iters: 8448, time: 0.064) G_GAN: 0.231 G_GAN_Feat: 0.917 G_ID: 0.197 G_Rec: 0.371 D_GP: 0.088 D_real: 0.608 D_fake: 0.769 +(epoch: 71, iters: 240, time: 0.064) G_GAN: 0.048 G_GAN_Feat: 1.406 G_ID: 0.420 G_Rec: 0.489 D_GP: 2.646 D_real: 0.458 D_fake: 0.953 +(epoch: 71, iters: 640, time: 0.064) G_GAN: 0.135 G_GAN_Feat: 0.899 G_ID: 0.209 G_Rec: 0.423 D_GP: 0.027 D_real: 0.900 D_fake: 0.866 +(epoch: 71, iters: 1040, time: 0.064) G_GAN: 0.191 G_GAN_Feat: 0.847 G_ID: 0.420 G_Rec: 0.363 D_GP: 0.036 D_real: 0.904 D_fake: 0.809 +(epoch: 71, iters: 1440, time: 0.064) G_GAN: -0.206 G_GAN_Feat: 0.897 G_ID: 0.238 G_Rec: 0.389 D_GP: 0.057 D_real: 0.656 D_fake: 1.206 +(epoch: 71, iters: 1840, time: 0.064) G_GAN: 0.163 G_GAN_Feat: 0.988 G_ID: 0.387 G_Rec: 0.399 D_GP: 0.089 D_real: 0.713 D_fake: 0.837 +(epoch: 71, iters: 2240, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 0.834 G_ID: 0.232 G_Rec: 0.375 D_GP: 0.049 D_real: 1.041 D_fake: 0.650 +(epoch: 71, iters: 2640, time: 0.064) G_GAN: 0.437 G_GAN_Feat: 0.802 G_ID: 0.350 G_Rec: 0.434 D_GP: 0.030 D_real: 1.247 D_fake: 0.563 +(epoch: 71, iters: 3040, time: 0.064) G_GAN: 0.291 G_GAN_Feat: 1.129 G_ID: 0.221 G_Rec: 0.371 D_GP: 0.093 D_real: 0.774 D_fake: 0.711 +(epoch: 71, iters: 3440, time: 0.064) G_GAN: 0.467 G_GAN_Feat: 0.848 G_ID: 0.382 G_Rec: 0.396 D_GP: 0.044 D_real: 1.176 D_fake: 0.547 +(epoch: 71, iters: 3840, time: 0.064) G_GAN: 0.114 G_GAN_Feat: 0.987 G_ID: 0.255 G_Rec: 0.370 D_GP: 0.058 D_real: 0.705 D_fake: 0.886 +(epoch: 71, iters: 4240, time: 0.064) G_GAN: 0.664 G_GAN_Feat: 0.885 G_ID: 0.394 G_Rec: 0.365 D_GP: 0.041 D_real: 1.376 D_fake: 0.372 +(epoch: 71, iters: 4640, time: 0.064) G_GAN: 0.171 G_GAN_Feat: 0.768 G_ID: 0.253 G_Rec: 0.369 D_GP: 0.032 D_real: 1.029 D_fake: 0.829 +(epoch: 71, iters: 5040, time: 0.064) G_GAN: 0.220 G_GAN_Feat: 0.796 G_ID: 0.338 G_Rec: 0.391 D_GP: 0.038 D_real: 0.973 D_fake: 0.780 +(epoch: 71, iters: 5440, time: 0.064) G_GAN: 0.226 G_GAN_Feat: 0.816 G_ID: 0.220 G_Rec: 0.368 D_GP: 0.057 D_real: 0.898 D_fake: 0.774 +(epoch: 71, iters: 5840, time: 0.064) G_GAN: 0.115 G_GAN_Feat: 0.766 G_ID: 0.414 G_Rec: 0.370 D_GP: 0.034 D_real: 0.777 D_fake: 0.886 +(epoch: 71, iters: 6240, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.867 G_ID: 0.200 G_Rec: 0.414 D_GP: 0.058 D_real: 0.816 D_fake: 0.744 +(epoch: 71, iters: 6640, time: 0.064) G_GAN: -0.123 G_GAN_Feat: 0.943 G_ID: 0.424 G_Rec: 0.376 D_GP: 0.090 D_real: 0.694 D_fake: 1.123 +(epoch: 71, iters: 7040, time: 0.064) G_GAN: 0.238 G_GAN_Feat: 0.922 G_ID: 0.195 G_Rec: 0.361 D_GP: 0.047 D_real: 0.738 D_fake: 0.764 +(epoch: 71, iters: 7440, time: 0.064) G_GAN: 0.624 G_GAN_Feat: 0.845 G_ID: 0.398 G_Rec: 0.392 D_GP: 0.035 D_real: 1.334 D_fake: 0.383 +(epoch: 71, iters: 7840, time: 0.064) G_GAN: 0.565 G_GAN_Feat: 1.004 G_ID: 0.257 G_Rec: 0.371 D_GP: 0.037 D_real: 1.238 D_fake: 0.442 +(epoch: 71, iters: 8240, time: 0.064) G_GAN: 0.191 G_GAN_Feat: 0.774 G_ID: 0.415 G_Rec: 0.466 D_GP: 0.028 D_real: 0.895 D_fake: 0.809 +(epoch: 72, iters: 32, time: 0.064) G_GAN: 0.445 G_GAN_Feat: 0.939 G_ID: 0.209 G_Rec: 0.352 D_GP: 0.031 D_real: 1.029 D_fake: 0.555 +(epoch: 72, iters: 432, time: 0.064) G_GAN: 0.271 G_GAN_Feat: 0.845 G_ID: 0.381 G_Rec: 0.433 D_GP: 0.032 D_real: 0.977 D_fake: 0.735 +(epoch: 72, iters: 832, time: 0.064) G_GAN: 0.804 G_GAN_Feat: 0.854 G_ID: 0.210 G_Rec: 0.388 D_GP: 0.052 D_real: 1.471 D_fake: 0.259 +(epoch: 72, iters: 1232, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 1.358 G_ID: 0.403 G_Rec: 0.410 D_GP: 0.230 D_real: 0.474 D_fake: 0.690 +(epoch: 72, iters: 1632, time: 0.064) G_GAN: 0.176 G_GAN_Feat: 1.152 G_ID: 0.190 G_Rec: 0.368 D_GP: 0.065 D_real: 0.462 D_fake: 0.824 +(epoch: 72, iters: 2032, time: 0.064) G_GAN: 0.127 G_GAN_Feat: 0.710 G_ID: 0.438 G_Rec: 0.371 D_GP: 0.029 D_real: 0.913 D_fake: 0.873 +(epoch: 72, iters: 2432, time: 0.064) G_GAN: 0.093 G_GAN_Feat: 0.838 G_ID: 0.198 G_Rec: 0.395 D_GP: 0.058 D_real: 0.715 D_fake: 0.907 +(epoch: 72, iters: 2832, time: 0.064) G_GAN: -0.050 G_GAN_Feat: 0.804 G_ID: 0.337 G_Rec: 0.438 D_GP: 0.024 D_real: 0.869 D_fake: 1.050 +(epoch: 72, iters: 3232, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 0.701 G_ID: 0.176 G_Rec: 0.355 D_GP: 0.029 D_real: 0.938 D_fake: 0.831 +(epoch: 72, iters: 3632, time: 0.064) G_GAN: 0.199 G_GAN_Feat: 0.800 G_ID: 0.391 G_Rec: 0.427 D_GP: 0.038 D_real: 0.872 D_fake: 0.801 +(epoch: 72, iters: 4032, time: 0.064) G_GAN: 0.409 G_GAN_Feat: 0.805 G_ID: 0.217 G_Rec: 0.359 D_GP: 0.031 D_real: 1.127 D_fake: 0.591 +(epoch: 72, iters: 4432, time: 0.064) G_GAN: 0.700 G_GAN_Feat: 0.991 G_ID: 0.407 G_Rec: 0.468 D_GP: 0.079 D_real: 1.180 D_fake: 0.426 +(epoch: 72, iters: 4832, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 0.815 G_ID: 0.246 G_Rec: 0.384 D_GP: 0.038 D_real: 0.937 D_fake: 0.706 +(epoch: 72, iters: 5232, time: 0.064) G_GAN: 0.202 G_GAN_Feat: 1.166 G_ID: 0.388 G_Rec: 0.406 D_GP: 0.162 D_real: 0.362 D_fake: 0.798 +(epoch: 72, iters: 5632, time: 0.064) G_GAN: 0.163 G_GAN_Feat: 0.727 G_ID: 0.244 G_Rec: 0.345 D_GP: 0.033 D_real: 0.936 D_fake: 0.837 +(epoch: 72, iters: 6032, time: 0.064) G_GAN: 0.613 G_GAN_Feat: 0.716 G_ID: 0.384 G_Rec: 0.460 D_GP: 0.027 D_real: 1.412 D_fake: 0.395 +(epoch: 72, iters: 6432, time: 0.064) G_GAN: -0.041 G_GAN_Feat: 0.761 G_ID: 0.223 G_Rec: 0.400 D_GP: 0.034 D_real: 0.840 D_fake: 1.041 +(epoch: 72, iters: 6832, time: 0.064) G_GAN: 0.420 G_GAN_Feat: 0.731 G_ID: 0.385 G_Rec: 0.382 D_GP: 0.029 D_real: 1.174 D_fake: 0.583 +(epoch: 72, iters: 7232, time: 0.064) G_GAN: 0.210 G_GAN_Feat: 0.722 G_ID: 0.236 G_Rec: 0.353 D_GP: 0.028 D_real: 0.990 D_fake: 0.790 +(epoch: 72, iters: 7632, time: 0.064) G_GAN: -0.273 G_GAN_Feat: 0.991 G_ID: 0.382 G_Rec: 0.435 D_GP: 0.190 D_real: 0.310 D_fake: 1.273 +(epoch: 72, iters: 8032, time: 0.064) G_GAN: 0.077 G_GAN_Feat: 1.227 G_ID: 0.208 G_Rec: 0.409 D_GP: 0.077 D_real: 0.358 D_fake: 0.923 +(epoch: 72, iters: 8432, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 0.984 G_ID: 0.421 G_Rec: 0.380 D_GP: 0.032 D_real: 0.886 D_fake: 0.688 +(epoch: 73, iters: 224, time: 0.064) G_GAN: 0.129 G_GAN_Feat: 0.794 G_ID: 0.245 G_Rec: 0.348 D_GP: 0.049 D_real: 0.770 D_fake: 0.871 +(epoch: 73, iters: 624, time: 0.064) G_GAN: 0.494 G_GAN_Feat: 1.083 G_ID: 0.387 G_Rec: 0.414 D_GP: 0.295 D_real: 0.543 D_fake: 0.511 +(epoch: 73, iters: 1024, time: 0.064) G_GAN: 0.340 G_GAN_Feat: 0.874 G_ID: 0.213 G_Rec: 0.377 D_GP: 0.034 D_real: 0.881 D_fake: 0.663 +(epoch: 73, iters: 1424, time: 0.064) G_GAN: 0.200 G_GAN_Feat: 0.848 G_ID: 0.396 G_Rec: 0.384 D_GP: 0.051 D_real: 0.928 D_fake: 0.800 +(epoch: 73, iters: 1824, time: 0.064) G_GAN: 0.395 G_GAN_Feat: 0.676 G_ID: 0.226 G_Rec: 0.337 D_GP: 0.031 D_real: 1.214 D_fake: 0.606 +(epoch: 73, iters: 2224, time: 0.064) G_GAN: 0.463 G_GAN_Feat: 1.215 G_ID: 0.393 G_Rec: 0.397 D_GP: 0.074 D_real: 0.512 D_fake: 0.539 +(epoch: 73, iters: 2624, time: 0.064) G_GAN: 0.309 G_GAN_Feat: 0.934 G_ID: 0.203 G_Rec: 0.458 D_GP: 0.079 D_real: 0.698 D_fake: 0.691 +(epoch: 73, iters: 3024, time: 0.064) G_GAN: 0.316 G_GAN_Feat: 0.914 G_ID: 0.440 G_Rec: 0.413 D_GP: 0.036 D_real: 0.928 D_fake: 0.684 +(epoch: 73, iters: 3424, time: 0.064) G_GAN: 0.534 G_GAN_Feat: 0.880 G_ID: 0.256 G_Rec: 0.356 D_GP: 0.044 D_real: 1.068 D_fake: 0.470 +(epoch: 73, iters: 3824, time: 0.064) G_GAN: 0.377 G_GAN_Feat: 0.857 G_ID: 0.422 G_Rec: 0.411 D_GP: 0.028 D_real: 1.028 D_fake: 0.623 +(epoch: 73, iters: 4224, time: 0.064) G_GAN: 0.583 G_GAN_Feat: 0.788 G_ID: 0.237 G_Rec: 0.397 D_GP: 0.038 D_real: 1.353 D_fake: 0.421 +(epoch: 73, iters: 4624, time: 0.064) G_GAN: 0.188 G_GAN_Feat: 0.808 G_ID: 0.379 G_Rec: 0.406 D_GP: 0.026 D_real: 1.011 D_fake: 0.813 +(epoch: 73, iters: 5024, time: 0.064) G_GAN: 0.265 G_GAN_Feat: 0.678 G_ID: 0.205 G_Rec: 0.397 D_GP: 0.022 D_real: 1.117 D_fake: 0.735 +(epoch: 73, iters: 5424, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.825 G_ID: 0.343 G_Rec: 0.410 D_GP: 0.030 D_real: 1.010 D_fake: 0.670 +(epoch: 73, iters: 5824, time: 0.064) G_GAN: 0.458 G_GAN_Feat: 0.755 G_ID: 0.177 G_Rec: 0.359 D_GP: 0.048 D_real: 1.147 D_fake: 0.542 +(epoch: 73, iters: 6224, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 0.895 G_ID: 0.395 G_Rec: 0.373 D_GP: 0.029 D_real: 0.982 D_fake: 0.647 +(epoch: 73, iters: 6624, time: 0.064) G_GAN: 0.262 G_GAN_Feat: 0.929 G_ID: 0.293 G_Rec: 0.376 D_GP: 0.067 D_real: 0.922 D_fake: 0.744 +(epoch: 73, iters: 7024, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 1.020 G_ID: 0.378 G_Rec: 0.371 D_GP: 0.043 D_real: 0.634 D_fake: 0.669 +(epoch: 73, iters: 7424, time: 0.064) G_GAN: 0.377 G_GAN_Feat: 0.677 G_ID: 0.230 G_Rec: 0.349 D_GP: 0.026 D_real: 1.251 D_fake: 0.623 +(epoch: 73, iters: 7824, time: 0.064) G_GAN: 0.162 G_GAN_Feat: 0.908 G_ID: 0.348 G_Rec: 0.410 D_GP: 0.030 D_real: 0.754 D_fake: 0.838 +(epoch: 73, iters: 8224, time: 0.064) G_GAN: 0.334 G_GAN_Feat: 0.813 G_ID: 0.278 G_Rec: 0.359 D_GP: 0.032 D_real: 1.038 D_fake: 0.666 +(epoch: 74, iters: 16, time: 0.064) G_GAN: 0.427 G_GAN_Feat: 0.755 G_ID: 0.385 G_Rec: 0.441 D_GP: 0.027 D_real: 1.197 D_fake: 0.574 +(epoch: 74, iters: 416, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 0.631 G_ID: 0.238 G_Rec: 0.348 D_GP: 0.024 D_real: 1.187 D_fake: 0.705 +(epoch: 74, iters: 816, time: 0.064) G_GAN: 0.453 G_GAN_Feat: 1.044 G_ID: 0.391 G_Rec: 0.472 D_GP: 0.058 D_real: 1.045 D_fake: 0.548 +(epoch: 74, iters: 1216, time: 0.064) G_GAN: 0.330 G_GAN_Feat: 0.723 G_ID: 0.206 G_Rec: 0.430 D_GP: 0.031 D_real: 1.097 D_fake: 0.671 +(epoch: 74, iters: 1616, time: 0.064) G_GAN: 0.485 G_GAN_Feat: 0.865 G_ID: 0.378 G_Rec: 0.376 D_GP: 0.046 D_real: 1.098 D_fake: 0.516 +(epoch: 74, iters: 2016, time: 0.064) G_GAN: 0.473 G_GAN_Feat: 0.879 G_ID: 0.221 G_Rec: 0.354 D_GP: 0.084 D_real: 1.005 D_fake: 0.530 +(epoch: 74, iters: 2416, time: 0.064) G_GAN: 0.389 G_GAN_Feat: 0.896 G_ID: 0.431 G_Rec: 0.382 D_GP: 0.071 D_real: 0.906 D_fake: 0.613 +(epoch: 74, iters: 2816, time: 0.064) G_GAN: 0.332 G_GAN_Feat: 0.675 G_ID: 0.185 G_Rec: 0.370 D_GP: 0.024 D_real: 1.202 D_fake: 0.669 +(epoch: 74, iters: 3216, time: 0.064) G_GAN: 0.292 G_GAN_Feat: 0.784 G_ID: 0.356 G_Rec: 0.397 D_GP: 0.031 D_real: 0.980 D_fake: 0.708 +(epoch: 74, iters: 3616, time: 0.064) G_GAN: 0.274 G_GAN_Feat: 0.979 G_ID: 0.292 G_Rec: 0.393 D_GP: 0.052 D_real: 1.045 D_fake: 0.735 +(epoch: 74, iters: 4016, time: 0.064) G_GAN: 0.370 G_GAN_Feat: 1.154 G_ID: 0.353 G_Rec: 0.530 D_GP: 0.111 D_real: 0.533 D_fake: 0.634 +(epoch: 74, iters: 4416, time: 0.064) G_GAN: 0.218 G_GAN_Feat: 1.098 G_ID: 0.220 G_Rec: 0.400 D_GP: 0.554 D_real: 0.497 D_fake: 0.788 +(epoch: 74, iters: 4816, time: 0.064) G_GAN: 0.016 G_GAN_Feat: 1.093 G_ID: 0.365 G_Rec: 0.413 D_GP: 0.102 D_real: 0.321 D_fake: 0.986 +(epoch: 74, iters: 5216, time: 0.064) G_GAN: 0.410 G_GAN_Feat: 0.754 G_ID: 0.187 G_Rec: 0.375 D_GP: 0.022 D_real: 1.255 D_fake: 0.592 +(epoch: 74, iters: 5616, time: 0.064) G_GAN: 0.580 G_GAN_Feat: 0.977 G_ID: 0.378 G_Rec: 0.412 D_GP: 0.079 D_real: 1.005 D_fake: 0.436 +(epoch: 74, iters: 6016, time: 0.064) G_GAN: 0.769 G_GAN_Feat: 1.065 G_ID: 0.218 G_Rec: 0.398 D_GP: 0.139 D_real: 0.731 D_fake: 0.330 +(epoch: 74, iters: 6416, time: 0.064) G_GAN: 0.095 G_GAN_Feat: 0.969 G_ID: 0.374 G_Rec: 0.425 D_GP: 0.058 D_real: 0.500 D_fake: 0.905 +(epoch: 74, iters: 6816, time: 0.064) G_GAN: 0.295 G_GAN_Feat: 1.009 G_ID: 0.202 G_Rec: 0.393 D_GP: 0.076 D_real: 0.504 D_fake: 0.705 +(epoch: 74, iters: 7216, time: 0.064) G_GAN: 0.709 G_GAN_Feat: 0.979 G_ID: 0.399 G_Rec: 0.396 D_GP: 0.052 D_real: 1.025 D_fake: 0.370 +(epoch: 74, iters: 7616, time: 0.064) G_GAN: 0.328 G_GAN_Feat: 0.664 G_ID: 0.224 G_Rec: 0.365 D_GP: 0.020 D_real: 1.205 D_fake: 0.672 +(epoch: 74, iters: 8016, time: 0.064) G_GAN: 0.211 G_GAN_Feat: 0.692 G_ID: 0.403 G_Rec: 0.379 D_GP: 0.023 D_real: 1.025 D_fake: 0.789 +(epoch: 74, iters: 8416, time: 0.064) G_GAN: 0.179 G_GAN_Feat: 0.776 G_ID: 0.231 G_Rec: 0.399 D_GP: 0.059 D_real: 0.854 D_fake: 0.821 +(epoch: 75, iters: 208, time: 0.064) G_GAN: 0.382 G_GAN_Feat: 0.762 G_ID: 0.359 G_Rec: 0.375 D_GP: 0.026 D_real: 1.185 D_fake: 0.618 +(epoch: 75, iters: 608, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 1.079 G_ID: 0.181 G_Rec: 0.403 D_GP: 0.467 D_real: 0.530 D_fake: 0.650 +(epoch: 75, iters: 1008, time: 0.064) G_GAN: 0.513 G_GAN_Feat: 0.921 G_ID: 0.320 G_Rec: 0.437 D_GP: 0.091 D_real: 0.915 D_fake: 0.490 +(epoch: 75, iters: 1408, time: 0.064) G_GAN: 0.242 G_GAN_Feat: 0.678 G_ID: 0.191 G_Rec: 0.366 D_GP: 0.028 D_real: 1.130 D_fake: 0.758 +(epoch: 75, iters: 1808, time: 0.064) G_GAN: 0.374 G_GAN_Feat: 0.761 G_ID: 0.369 G_Rec: 0.337 D_GP: 0.034 D_real: 1.097 D_fake: 0.626 +(epoch: 75, iters: 2208, time: 0.064) G_GAN: 0.294 G_GAN_Feat: 1.020 G_ID: 0.181 G_Rec: 0.385 D_GP: 0.091 D_real: 0.498 D_fake: 0.707 +(epoch: 75, iters: 2608, time: 0.064) G_GAN: 0.105 G_GAN_Feat: 0.759 G_ID: 0.334 G_Rec: 0.379 D_GP: 0.025 D_real: 0.825 D_fake: 0.896 +(epoch: 75, iters: 3008, time: 0.064) G_GAN: 0.121 G_GAN_Feat: 1.146 G_ID: 0.223 G_Rec: 0.421 D_GP: 0.149 D_real: 0.437 D_fake: 0.879 +(epoch: 75, iters: 3408, time: 0.064) G_GAN: 0.357 G_GAN_Feat: 0.866 G_ID: 0.432 G_Rec: 0.415 D_GP: 0.039 D_real: 1.090 D_fake: 0.648 +(epoch: 75, iters: 3808, time: 0.064) G_GAN: 0.471 G_GAN_Feat: 0.846 G_ID: 0.202 G_Rec: 0.373 D_GP: 0.036 D_real: 1.143 D_fake: 0.530 +(epoch: 75, iters: 4208, time: 0.064) G_GAN: 0.107 G_GAN_Feat: 0.940 G_ID: 0.426 G_Rec: 0.386 D_GP: 0.093 D_real: 0.429 D_fake: 0.893 +(epoch: 75, iters: 4608, time: 0.064) G_GAN: 0.227 G_GAN_Feat: 0.759 G_ID: 0.222 G_Rec: 0.357 D_GP: 0.033 D_real: 1.019 D_fake: 0.774 +(epoch: 75, iters: 5008, time: 0.064) G_GAN: 0.485 G_GAN_Feat: 0.815 G_ID: 0.347 G_Rec: 0.408 D_GP: 0.034 D_real: 1.263 D_fake: 0.515 +(epoch: 75, iters: 5408, time: 0.064) G_GAN: 0.402 G_GAN_Feat: 0.786 G_ID: 0.218 G_Rec: 0.334 D_GP: 0.044 D_real: 1.048 D_fake: 0.599 +(epoch: 75, iters: 5808, time: 0.064) G_GAN: 0.813 G_GAN_Feat: 0.948 G_ID: 0.318 G_Rec: 0.397 D_GP: 0.056 D_real: 1.335 D_fake: 0.232 +(epoch: 75, iters: 6208, time: 0.064) G_GAN: 0.299 G_GAN_Feat: 0.648 G_ID: 0.205 G_Rec: 0.373 D_GP: 0.021 D_real: 1.229 D_fake: 0.702 +(epoch: 75, iters: 6608, time: 0.064) G_GAN: 0.332 G_GAN_Feat: 1.146 G_ID: 0.400 G_Rec: 0.423 D_GP: 0.051 D_real: 0.837 D_fake: 0.672 +(epoch: 75, iters: 7008, time: 0.064) G_GAN: 0.341 G_GAN_Feat: 0.960 G_ID: 0.200 G_Rec: 0.377 D_GP: 0.069 D_real: 1.132 D_fake: 0.663 +(epoch: 75, iters: 7408, time: 0.064) G_GAN: -0.194 G_GAN_Feat: 0.851 G_ID: 0.413 G_Rec: 0.397 D_GP: 0.060 D_real: 0.563 D_fake: 1.194 +(epoch: 75, iters: 7808, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 0.787 G_ID: 0.242 G_Rec: 0.370 D_GP: 0.070 D_real: 0.795 D_fake: 0.830 +(epoch: 75, iters: 8208, time: 0.064) G_GAN: 0.618 G_GAN_Feat: 0.741 G_ID: 0.357 G_Rec: 0.346 D_GP: 0.030 D_real: 1.364 D_fake: 0.391 +(epoch: 75, iters: 8608, time: 0.064) G_GAN: 0.288 G_GAN_Feat: 1.012 G_ID: 0.193 G_Rec: 0.347 D_GP: 0.056 D_real: 0.624 D_fake: 0.712 +(epoch: 76, iters: 400, time: 0.064) G_GAN: 0.329 G_GAN_Feat: 0.883 G_ID: 0.421 G_Rec: 0.428 D_GP: 0.029 D_real: 0.934 D_fake: 0.673 +(epoch: 76, iters: 800, time: 0.064) G_GAN: 0.131 G_GAN_Feat: 0.688 G_ID: 0.197 G_Rec: 0.349 D_GP: 0.027 D_real: 0.939 D_fake: 0.869 +(epoch: 76, iters: 1200, time: 0.064) G_GAN: 0.266 G_GAN_Feat: 0.946 G_ID: 0.350 G_Rec: 0.395 D_GP: 0.065 D_real: 0.823 D_fake: 0.735 +(epoch: 76, iters: 1600, time: 0.064) G_GAN: 0.140 G_GAN_Feat: 0.936 G_ID: 0.206 G_Rec: 0.381 D_GP: 0.168 D_real: 0.722 D_fake: 0.865 +(epoch: 76, iters: 2000, time: 0.064) G_GAN: 0.651 G_GAN_Feat: 0.780 G_ID: 0.327 G_Rec: 0.351 D_GP: 0.057 D_real: 1.356 D_fake: 0.379 +(epoch: 76, iters: 2400, time: 0.064) G_GAN: 0.223 G_GAN_Feat: 1.162 G_ID: 0.248 G_Rec: 0.368 D_GP: 0.173 D_real: 0.333 D_fake: 0.777 +(epoch: 76, iters: 2800, time: 0.064) G_GAN: 0.433 G_GAN_Feat: 0.882 G_ID: 0.306 G_Rec: 0.398 D_GP: 0.030 D_real: 1.104 D_fake: 0.571 +(epoch: 76, iters: 3200, time: 0.064) G_GAN: 0.317 G_GAN_Feat: 0.942 G_ID: 0.236 G_Rec: 0.377 D_GP: 0.087 D_real: 0.926 D_fake: 0.683 +(epoch: 76, iters: 3600, time: 0.064) G_GAN: 0.357 G_GAN_Feat: 0.860 G_ID: 0.437 G_Rec: 0.421 D_GP: 0.038 D_real: 0.988 D_fake: 0.645 +(epoch: 76, iters: 4000, time: 0.064) G_GAN: 0.085 G_GAN_Feat: 1.060 G_ID: 0.211 G_Rec: 0.392 D_GP: 0.404 D_real: 0.395 D_fake: 0.915 +(epoch: 76, iters: 4400, time: 0.064) G_GAN: 0.465 G_GAN_Feat: 0.931 G_ID: 0.355 G_Rec: 0.388 D_GP: 0.045 D_real: 0.963 D_fake: 0.539 +(epoch: 76, iters: 4800, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 0.696 G_ID: 0.184 G_Rec: 0.346 D_GP: 0.025 D_real: 1.148 D_fake: 0.737 +(epoch: 76, iters: 5200, time: 0.064) G_GAN: 0.521 G_GAN_Feat: 0.725 G_ID: 0.326 G_Rec: 0.397 D_GP: 0.022 D_real: 1.292 D_fake: 0.483 +(epoch: 76, iters: 5600, time: 0.064) G_GAN: 0.291 G_GAN_Feat: 0.632 G_ID: 0.216 G_Rec: 0.350 D_GP: 0.025 D_real: 1.085 D_fake: 0.709 +(epoch: 76, iters: 6000, time: 0.064) G_GAN: 0.545 G_GAN_Feat: 0.819 G_ID: 0.359 G_Rec: 0.450 D_GP: 0.041 D_real: 1.243 D_fake: 0.492 +(epoch: 76, iters: 6400, time: 0.064) G_GAN: 0.528 G_GAN_Feat: 0.746 G_ID: 0.218 G_Rec: 0.355 D_GP: 0.031 D_real: 1.321 D_fake: 0.479 +(epoch: 76, iters: 6800, time: 0.064) G_GAN: 0.401 G_GAN_Feat: 0.906 G_ID: 0.354 G_Rec: 0.401 D_GP: 0.043 D_real: 1.089 D_fake: 0.612 +(epoch: 76, iters: 7200, time: 0.064) G_GAN: -0.272 G_GAN_Feat: 0.835 G_ID: 0.216 G_Rec: 0.396 D_GP: 0.066 D_real: 0.402 D_fake: 1.272 +(epoch: 76, iters: 7600, time: 0.064) G_GAN: 0.292 G_GAN_Feat: 0.956 G_ID: 0.332 G_Rec: 0.384 D_GP: 0.032 D_real: 1.163 D_fake: 0.714 +(epoch: 76, iters: 8000, time: 0.064) G_GAN: 0.269 G_GAN_Feat: 0.881 G_ID: 0.238 G_Rec: 0.437 D_GP: 0.034 D_real: 0.907 D_fake: 0.732 +(epoch: 76, iters: 8400, time: 0.064) G_GAN: 0.732 G_GAN_Feat: 0.868 G_ID: 0.333 G_Rec: 0.380 D_GP: 0.072 D_real: 1.407 D_fake: 0.309 +(epoch: 77, iters: 192, time: 0.064) G_GAN: 0.524 G_GAN_Feat: 0.759 G_ID: 0.209 G_Rec: 0.362 D_GP: 0.034 D_real: 1.315 D_fake: 0.478 +(epoch: 77, iters: 592, time: 0.064) G_GAN: 0.238 G_GAN_Feat: 0.940 G_ID: 0.314 G_Rec: 0.388 D_GP: 0.059 D_real: 0.652 D_fake: 0.762 +(epoch: 77, iters: 992, time: 0.064) G_GAN: 0.294 G_GAN_Feat: 0.810 G_ID: 0.237 G_Rec: 0.367 D_GP: 0.064 D_real: 0.879 D_fake: 0.706 +(epoch: 77, iters: 1392, time: 0.064) G_GAN: 0.359 G_GAN_Feat: 0.856 G_ID: 0.399 G_Rec: 0.384 D_GP: 0.045 D_real: 1.092 D_fake: 0.641 +(epoch: 77, iters: 1792, time: 0.064) G_GAN: 0.328 G_GAN_Feat: 0.752 G_ID: 0.228 G_Rec: 0.343 D_GP: 0.033 D_real: 1.115 D_fake: 0.673 +(epoch: 77, iters: 2192, time: 0.064) G_GAN: 0.289 G_GAN_Feat: 0.755 G_ID: 0.378 G_Rec: 0.383 D_GP: 0.026 D_real: 1.132 D_fake: 0.711 +(epoch: 77, iters: 2592, time: 0.064) G_GAN: 0.346 G_GAN_Feat: 0.798 G_ID: 0.242 G_Rec: 0.406 D_GP: 0.044 D_real: 1.038 D_fake: 0.654 +(epoch: 77, iters: 2992, time: 0.064) G_GAN: 0.704 G_GAN_Feat: 0.891 G_ID: 0.345 G_Rec: 0.396 D_GP: 0.073 D_real: 1.208 D_fake: 0.314 +(epoch: 77, iters: 3392, time: 0.064) G_GAN: 0.242 G_GAN_Feat: 0.771 G_ID: 0.228 G_Rec: 0.359 D_GP: 0.034 D_real: 0.974 D_fake: 0.758 +(epoch: 77, iters: 3792, time: 0.064) G_GAN: 0.079 G_GAN_Feat: 0.996 G_ID: 0.330 G_Rec: 0.426 D_GP: 0.101 D_real: 0.266 D_fake: 0.921 +(epoch: 77, iters: 4192, time: 0.064) G_GAN: 0.287 G_GAN_Feat: 0.766 G_ID: 0.187 G_Rec: 0.369 D_GP: 0.039 D_real: 1.047 D_fake: 0.715 +(epoch: 77, iters: 4592, time: 0.064) G_GAN: 0.383 G_GAN_Feat: 0.770 G_ID: 0.369 G_Rec: 0.393 D_GP: 0.034 D_real: 1.112 D_fake: 0.618 +(epoch: 77, iters: 4992, time: 0.064) G_GAN: 0.257 G_GAN_Feat: 0.887 G_ID: 0.202 G_Rec: 0.364 D_GP: 0.088 D_real: 0.668 D_fake: 0.744 +(epoch: 77, iters: 5392, time: 0.064) G_GAN: 0.635 G_GAN_Feat: 0.906 G_ID: 0.367 G_Rec: 0.380 D_GP: 0.054 D_real: 1.263 D_fake: 0.377 +(epoch: 77, iters: 5792, time: 0.064) G_GAN: 0.519 G_GAN_Feat: 1.132 G_ID: 0.182 G_Rec: 0.420 D_GP: 0.354 D_real: 0.814 D_fake: 0.501 +(epoch: 77, iters: 6192, time: 0.064) G_GAN: 0.158 G_GAN_Feat: 1.277 G_ID: 0.382 G_Rec: 0.421 D_GP: 0.127 D_real: 0.255 D_fake: 0.842 +(epoch: 77, iters: 6592, time: 0.064) G_GAN: -0.065 G_GAN_Feat: 0.975 G_ID: 0.226 G_Rec: 0.379 D_GP: 0.138 D_real: 0.461 D_fake: 1.065 +(epoch: 77, iters: 6992, time: 0.064) G_GAN: 0.410 G_GAN_Feat: 1.517 G_ID: 0.382 G_Rec: 0.438 D_GP: 0.386 D_real: 0.553 D_fake: 0.595 +(epoch: 77, iters: 7392, time: 0.064) G_GAN: 0.334 G_GAN_Feat: 0.857 G_ID: 0.215 G_Rec: 0.354 D_GP: 0.221 D_real: 0.865 D_fake: 0.684 +(epoch: 77, iters: 7792, time: 0.064) G_GAN: 0.731 G_GAN_Feat: 1.057 G_ID: 0.324 G_Rec: 0.432 D_GP: 0.128 D_real: 0.861 D_fake: 0.315 +(epoch: 77, iters: 8192, time: 0.064) G_GAN: 0.121 G_GAN_Feat: 0.707 G_ID: 0.216 G_Rec: 0.359 D_GP: 0.031 D_real: 1.009 D_fake: 0.879 +(epoch: 77, iters: 8592, time: 0.064) G_GAN: 0.323 G_GAN_Feat: 0.755 G_ID: 0.391 G_Rec: 0.375 D_GP: 0.026 D_real: 1.165 D_fake: 0.677 +(epoch: 78, iters: 384, time: 0.064) G_GAN: 0.273 G_GAN_Feat: 0.875 G_ID: 0.198 G_Rec: 0.377 D_GP: 0.058 D_real: 0.864 D_fake: 0.729 +(epoch: 78, iters: 784, time: 0.064) G_GAN: 0.479 G_GAN_Feat: 0.781 G_ID: 0.344 G_Rec: 0.427 D_GP: 0.027 D_real: 1.248 D_fake: 0.559 +(epoch: 78, iters: 1184, time: 0.064) G_GAN: 0.210 G_GAN_Feat: 0.776 G_ID: 0.181 G_Rec: 0.351 D_GP: 0.034 D_real: 0.883 D_fake: 0.790 +(epoch: 78, iters: 1584, time: 0.064) G_GAN: 0.386 G_GAN_Feat: 0.753 G_ID: 0.344 G_Rec: 0.386 D_GP: 0.024 D_real: 1.178 D_fake: 0.614 +(epoch: 78, iters: 1984, time: 0.064) G_GAN: 0.576 G_GAN_Feat: 0.873 G_ID: 0.267 G_Rec: 0.382 D_GP: 0.036 D_real: 1.166 D_fake: 0.474 +(epoch: 78, iters: 2384, time: 0.064) G_GAN: 0.489 G_GAN_Feat: 0.898 G_ID: 0.358 G_Rec: 0.392 D_GP: 0.042 D_real: 1.012 D_fake: 0.513 +(epoch: 78, iters: 2784, time: 0.064) G_GAN: 0.422 G_GAN_Feat: 0.749 G_ID: 0.258 G_Rec: 0.399 D_GP: 0.025 D_real: 1.260 D_fake: 0.578 +(epoch: 78, iters: 3184, time: 0.064) G_GAN: 0.279 G_GAN_Feat: 0.841 G_ID: 0.368 G_Rec: 0.375 D_GP: 0.030 D_real: 1.053 D_fake: 0.721 +(epoch: 78, iters: 3584, time: 0.064) G_GAN: 0.351 G_GAN_Feat: 0.928 G_ID: 0.193 G_Rec: 0.377 D_GP: 0.050 D_real: 0.797 D_fake: 0.649 +(epoch: 78, iters: 3984, time: 0.064) G_GAN: 0.811 G_GAN_Feat: 1.147 G_ID: 0.351 G_Rec: 0.398 D_GP: 0.181 D_real: 0.765 D_fake: 0.357 +(epoch: 78, iters: 4384, time: 0.064) G_GAN: 0.254 G_GAN_Feat: 1.130 G_ID: 0.233 G_Rec: 0.396 D_GP: 0.074 D_real: 0.360 D_fake: 0.746 +(epoch: 78, iters: 4784, time: 0.064) G_GAN: 0.132 G_GAN_Feat: 0.920 G_ID: 0.355 G_Rec: 0.386 D_GP: 0.076 D_real: 0.684 D_fake: 0.868 +(epoch: 78, iters: 5184, time: 0.064) G_GAN: 0.150 G_GAN_Feat: 0.861 G_ID: 0.263 G_Rec: 0.393 D_GP: 0.025 D_real: 0.919 D_fake: 0.850 +(epoch: 78, iters: 5584, time: 0.064) G_GAN: 0.293 G_GAN_Feat: 1.217 G_ID: 0.356 G_Rec: 0.470 D_GP: 0.043 D_real: 0.518 D_fake: 0.707 +(epoch: 78, iters: 5984, time: 0.064) G_GAN: 0.240 G_GAN_Feat: 0.787 G_ID: 0.193 G_Rec: 0.388 D_GP: 0.023 D_real: 1.079 D_fake: 0.761 +(epoch: 78, iters: 6384, time: 0.064) G_GAN: 0.211 G_GAN_Feat: 0.808 G_ID: 0.330 G_Rec: 0.364 D_GP: 0.031 D_real: 0.963 D_fake: 0.790 +(epoch: 78, iters: 6784, time: 0.064) G_GAN: 0.543 G_GAN_Feat: 0.734 G_ID: 0.203 G_Rec: 0.384 D_GP: 0.025 D_real: 1.372 D_fake: 0.458 +(epoch: 78, iters: 7184, time: 0.064) G_GAN: 0.603 G_GAN_Feat: 0.904 G_ID: 0.331 G_Rec: 0.414 D_GP: 0.035 D_real: 1.223 D_fake: 0.406 +(epoch: 78, iters: 7584, time: 0.064) G_GAN: 0.529 G_GAN_Feat: 0.870 G_ID: 0.186 G_Rec: 0.379 D_GP: 0.080 D_real: 0.955 D_fake: 0.473 +(epoch: 78, iters: 7984, time: 0.064) G_GAN: 0.242 G_GAN_Feat: 0.920 G_ID: 0.370 G_Rec: 0.383 D_GP: 0.045 D_real: 0.807 D_fake: 0.759 +(epoch: 78, iters: 8384, time: 0.064) G_GAN: 0.341 G_GAN_Feat: 0.762 G_ID: 0.213 G_Rec: 0.369 D_GP: 0.047 D_real: 1.046 D_fake: 0.662 +(epoch: 79, iters: 176, time: 0.064) G_GAN: 0.165 G_GAN_Feat: 0.807 G_ID: 0.425 G_Rec: 0.398 D_GP: 0.026 D_real: 0.884 D_fake: 0.835 +(epoch: 79, iters: 576, time: 0.064) G_GAN: 0.202 G_GAN_Feat: 0.917 G_ID: 0.203 G_Rec: 0.349 D_GP: 0.092 D_real: 0.559 D_fake: 0.799 +(epoch: 79, iters: 976, time: 0.064) G_GAN: 0.897 G_GAN_Feat: 1.038 G_ID: 0.329 G_Rec: 0.406 D_GP: 0.050 D_real: 1.438 D_fake: 0.187 +(epoch: 79, iters: 1376, time: 0.064) G_GAN: 0.374 G_GAN_Feat: 1.265 G_ID: 0.223 G_Rec: 0.422 D_GP: 0.061 D_real: 0.404 D_fake: 0.626 +(epoch: 79, iters: 1776, time: 0.064) G_GAN: 0.791 G_GAN_Feat: 0.783 G_ID: 0.360 G_Rec: 0.394 D_GP: 0.026 D_real: 1.563 D_fake: 0.282 +(epoch: 79, iters: 2176, time: 0.064) G_GAN: 0.565 G_GAN_Feat: 0.802 G_ID: 0.178 G_Rec: 0.365 D_GP: 0.043 D_real: 1.214 D_fake: 0.440 +(epoch: 79, iters: 2576, time: 0.064) G_GAN: 0.118 G_GAN_Feat: 0.943 G_ID: 0.348 G_Rec: 0.427 D_GP: 0.055 D_real: 0.545 D_fake: 0.882 +(epoch: 79, iters: 2976, time: 0.064) G_GAN: 0.314 G_GAN_Feat: 0.917 G_ID: 0.226 G_Rec: 0.387 D_GP: 0.042 D_real: 1.105 D_fake: 0.687 +(epoch: 79, iters: 3376, time: 0.064) G_GAN: 0.388 G_GAN_Feat: 0.996 G_ID: 0.395 G_Rec: 0.400 D_GP: 0.079 D_real: 0.571 D_fake: 0.614 +(epoch: 79, iters: 3776, time: 0.064) G_GAN: 0.229 G_GAN_Feat: 0.893 G_ID: 0.235 G_Rec: 0.395 D_GP: 0.149 D_real: 0.779 D_fake: 0.773 +(epoch: 79, iters: 4176, time: 0.064) G_GAN: 0.474 G_GAN_Feat: 0.826 G_ID: 0.320 G_Rec: 0.483 D_GP: 0.032 D_real: 1.133 D_fake: 0.532 +(epoch: 79, iters: 4576, time: 0.064) G_GAN: 0.388 G_GAN_Feat: 0.993 G_ID: 0.202 G_Rec: 0.346 D_GP: 0.040 D_real: 0.811 D_fake: 0.614 +(epoch: 79, iters: 4976, time: 0.064) G_GAN: 0.274 G_GAN_Feat: 0.823 G_ID: 0.399 G_Rec: 0.385 D_GP: 0.039 D_real: 1.029 D_fake: 0.726 +(epoch: 79, iters: 5376, time: 0.064) G_GAN: 0.304 G_GAN_Feat: 0.776 G_ID: 0.173 G_Rec: 0.388 D_GP: 0.041 D_real: 0.983 D_fake: 0.696 +(epoch: 79, iters: 5776, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 1.278 G_ID: 0.344 G_Rec: 0.431 D_GP: 0.292 D_real: 0.436 D_fake: 0.718 +(epoch: 79, iters: 6176, time: 0.064) G_GAN: 0.357 G_GAN_Feat: 0.761 G_ID: 0.192 G_Rec: 0.390 D_GP: 0.021 D_real: 1.275 D_fake: 0.643 +(epoch: 79, iters: 6576, time: 0.064) G_GAN: 0.429 G_GAN_Feat: 0.836 G_ID: 0.302 G_Rec: 0.391 D_GP: 0.050 D_real: 1.157 D_fake: 0.571 +(epoch: 79, iters: 6976, time: 0.064) G_GAN: 0.412 G_GAN_Feat: 0.801 G_ID: 0.196 G_Rec: 0.356 D_GP: 0.045 D_real: 1.122 D_fake: 0.588 +(epoch: 79, iters: 7376, time: 0.064) G_GAN: 0.388 G_GAN_Feat: 0.837 G_ID: 0.401 G_Rec: 0.445 D_GP: 0.028 D_real: 1.049 D_fake: 0.612 +(epoch: 79, iters: 7776, time: 0.064) G_GAN: 0.409 G_GAN_Feat: 0.884 G_ID: 0.185 G_Rec: 0.432 D_GP: 0.044 D_real: 1.072 D_fake: 0.592 +(epoch: 79, iters: 8176, time: 0.064) G_GAN: 0.402 G_GAN_Feat: 0.838 G_ID: 0.349 G_Rec: 0.366 D_GP: 0.027 D_real: 1.058 D_fake: 0.598 +(epoch: 79, iters: 8576, time: 0.064) G_GAN: 0.273 G_GAN_Feat: 1.235 G_ID: 0.187 G_Rec: 0.384 D_GP: 0.275 D_real: 0.308 D_fake: 0.730 +(epoch: 80, iters: 368, time: 0.064) G_GAN: 0.413 G_GAN_Feat: 0.801 G_ID: 0.323 G_Rec: 0.381 D_GP: 0.032 D_real: 1.183 D_fake: 0.593 +(epoch: 80, iters: 768, time: 0.064) G_GAN: 0.465 G_GAN_Feat: 0.635 G_ID: 0.193 G_Rec: 0.363 D_GP: 0.020 D_real: 1.346 D_fake: 0.535 +(epoch: 80, iters: 1168, time: 0.064) G_GAN: 0.271 G_GAN_Feat: 0.895 G_ID: 0.369 G_Rec: 0.502 D_GP: 0.051 D_real: 0.938 D_fake: 0.729 +(epoch: 80, iters: 1568, time: 0.064) G_GAN: 0.191 G_GAN_Feat: 0.854 G_ID: 0.209 G_Rec: 0.432 D_GP: 0.090 D_real: 0.724 D_fake: 0.809 +(epoch: 80, iters: 1968, time: 0.064) G_GAN: 0.489 G_GAN_Feat: 0.813 G_ID: 0.299 G_Rec: 0.390 D_GP: 0.034 D_real: 1.304 D_fake: 0.514 +(epoch: 80, iters: 2368, time: 0.064) G_GAN: 0.357 G_GAN_Feat: 0.647 G_ID: 0.197 G_Rec: 0.393 D_GP: 0.022 D_real: 1.167 D_fake: 0.644 +(epoch: 80, iters: 2768, time: 0.064) G_GAN: 0.360 G_GAN_Feat: 0.739 G_ID: 0.340 G_Rec: 0.385 D_GP: 0.028 D_real: 1.156 D_fake: 0.640 +(epoch: 80, iters: 3168, time: 0.064) G_GAN: -0.269 G_GAN_Feat: 0.643 G_ID: 0.207 G_Rec: 0.326 D_GP: 0.024 D_real: 0.858 D_fake: 1.269 +(epoch: 80, iters: 3568, time: 0.064) G_GAN: 0.402 G_GAN_Feat: 1.044 G_ID: 0.329 G_Rec: 0.394 D_GP: 0.052 D_real: 0.696 D_fake: 0.598 +(epoch: 80, iters: 3968, time: 0.064) G_GAN: 0.139 G_GAN_Feat: 0.720 G_ID: 0.186 G_Rec: 0.418 D_GP: 0.040 D_real: 0.937 D_fake: 0.861 +(epoch: 80, iters: 4368, time: 0.064) G_GAN: 0.131 G_GAN_Feat: 0.805 G_ID: 0.377 G_Rec: 0.425 D_GP: 0.048 D_real: 0.775 D_fake: 0.869 +(epoch: 80, iters: 4768, time: 0.064) G_GAN: 0.490 G_GAN_Feat: 0.633 G_ID: 0.220 G_Rec: 0.337 D_GP: 0.031 D_real: 1.347 D_fake: 0.533 +(epoch: 80, iters: 5168, time: 0.064) G_GAN: 0.412 G_GAN_Feat: 0.873 G_ID: 0.371 G_Rec: 0.390 D_GP: 0.036 D_real: 1.042 D_fake: 0.593 +(epoch: 80, iters: 5568, time: 0.064) G_GAN: 0.381 G_GAN_Feat: 0.897 G_ID: 0.210 G_Rec: 0.413 D_GP: 0.057 D_real: 0.844 D_fake: 0.620 +(epoch: 80, iters: 5968, time: 0.064) G_GAN: 0.205 G_GAN_Feat: 0.876 G_ID: 0.361 G_Rec: 0.425 D_GP: 0.062 D_real: 0.790 D_fake: 0.796 +(epoch: 80, iters: 6368, time: 0.064) G_GAN: 0.600 G_GAN_Feat: 1.043 G_ID: 0.184 G_Rec: 0.427 D_GP: 0.223 D_real: 0.755 D_fake: 0.523 +(epoch: 80, iters: 6768, time: 0.064) G_GAN: 0.494 G_GAN_Feat: 0.896 G_ID: 0.340 G_Rec: 0.376 D_GP: 0.041 D_real: 1.125 D_fake: 0.510 +(epoch: 80, iters: 7168, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 0.821 G_ID: 0.187 G_Rec: 0.373 D_GP: 0.040 D_real: 1.035 D_fake: 0.664 +(epoch: 80, iters: 7568, time: 0.064) G_GAN: 0.330 G_GAN_Feat: 0.828 G_ID: 0.336 G_Rec: 0.410 D_GP: 0.040 D_real: 1.091 D_fake: 0.670 +(epoch: 80, iters: 7968, time: 0.064) G_GAN: 0.176 G_GAN_Feat: 0.987 G_ID: 0.234 G_Rec: 0.378 D_GP: 0.121 D_real: 0.379 D_fake: 0.824 +(epoch: 80, iters: 8368, time: 0.064) G_GAN: 0.450 G_GAN_Feat: 0.887 G_ID: 0.372 G_Rec: 0.418 D_GP: 0.049 D_real: 1.072 D_fake: 0.552 +(epoch: 81, iters: 160, time: 0.064) G_GAN: 0.215 G_GAN_Feat: 0.688 G_ID: 0.199 G_Rec: 0.329 D_GP: 0.034 D_real: 1.137 D_fake: 0.785 +(epoch: 81, iters: 560, time: 0.064) G_GAN: 0.554 G_GAN_Feat: 0.718 G_ID: 0.375 G_Rec: 0.404 D_GP: 0.024 D_real: 1.415 D_fake: 0.450 +(epoch: 81, iters: 960, time: 0.064) G_GAN: 0.203 G_GAN_Feat: 0.705 G_ID: 0.227 G_Rec: 0.356 D_GP: 0.022 D_real: 1.109 D_fake: 0.797 +(epoch: 81, iters: 1360, time: 0.064) G_GAN: 0.524 G_GAN_Feat: 0.723 G_ID: 0.305 G_Rec: 0.376 D_GP: 0.027 D_real: 1.293 D_fake: 0.477 +(epoch: 81, iters: 1760, time: 0.064) G_GAN: 0.314 G_GAN_Feat: 0.695 G_ID: 0.240 G_Rec: 0.361 D_GP: 0.028 D_real: 1.142 D_fake: 0.686 +(epoch: 81, iters: 2160, time: 0.064) G_GAN: 0.409 G_GAN_Feat: 0.726 G_ID: 0.351 G_Rec: 0.353 D_GP: 0.032 D_real: 1.195 D_fake: 0.591 +(epoch: 81, iters: 2560, time: 0.064) G_GAN: 0.442 G_GAN_Feat: 0.757 G_ID: 0.219 G_Rec: 0.366 D_GP: 0.032 D_real: 1.234 D_fake: 0.559 +(epoch: 81, iters: 2960, time: 0.064) G_GAN: 0.136 G_GAN_Feat: 0.992 G_ID: 0.365 G_Rec: 0.422 D_GP: 0.239 D_real: 0.549 D_fake: 0.865 +(epoch: 81, iters: 3360, time: 0.064) G_GAN: 0.302 G_GAN_Feat: 0.794 G_ID: 0.250 G_Rec: 0.361 D_GP: 0.036 D_real: 1.077 D_fake: 0.698 +(epoch: 81, iters: 3760, time: 0.064) G_GAN: 0.688 G_GAN_Feat: 0.969 G_ID: 0.324 G_Rec: 0.413 D_GP: 0.129 D_real: 1.074 D_fake: 0.325 +(epoch: 81, iters: 4160, time: 0.064) G_GAN: 0.275 G_GAN_Feat: 0.817 G_ID: 0.190 G_Rec: 0.460 D_GP: 0.046 D_real: 1.080 D_fake: 0.725 +(epoch: 81, iters: 4560, time: 0.064) G_GAN: 0.541 G_GAN_Feat: 0.730 G_ID: 0.335 G_Rec: 0.378 D_GP: 0.023 D_real: 1.372 D_fake: 0.476 +(epoch: 81, iters: 4960, time: 0.064) G_GAN: 0.457 G_GAN_Feat: 0.696 G_ID: 0.170 G_Rec: 0.325 D_GP: 0.034 D_real: 1.218 D_fake: 0.545 +(epoch: 81, iters: 5360, time: 0.064) G_GAN: 0.275 G_GAN_Feat: 0.983 G_ID: 0.385 G_Rec: 0.400 D_GP: 0.057 D_real: 0.769 D_fake: 0.725 +(epoch: 81, iters: 5760, time: 0.064) G_GAN: 0.226 G_GAN_Feat: 1.241 G_ID: 0.215 G_Rec: 0.408 D_GP: 0.472 D_real: 0.242 D_fake: 0.781 +(epoch: 81, iters: 6160, time: 0.064) G_GAN: 0.268 G_GAN_Feat: 1.043 G_ID: 0.320 G_Rec: 0.426 D_GP: 0.116 D_real: 0.358 D_fake: 0.732 +(epoch: 81, iters: 6560, time: 0.064) G_GAN: 0.476 G_GAN_Feat: 0.990 G_ID: 0.191 G_Rec: 0.432 D_GP: 0.116 D_real: 1.011 D_fake: 0.542 +(epoch: 81, iters: 6960, time: 0.064) G_GAN: 0.224 G_GAN_Feat: 0.904 G_ID: 0.355 G_Rec: 0.390 D_GP: 0.036 D_real: 0.835 D_fake: 0.776 +(epoch: 81, iters: 7360, time: 0.064) G_GAN: 0.274 G_GAN_Feat: 0.856 G_ID: 0.178 G_Rec: 0.405 D_GP: 0.071 D_real: 0.865 D_fake: 0.727 +(epoch: 81, iters: 7760, time: 0.064) G_GAN: 0.535 G_GAN_Feat: 0.900 G_ID: 0.357 G_Rec: 0.377 D_GP: 0.053 D_real: 1.033 D_fake: 0.473 +(epoch: 81, iters: 8160, time: 0.064) G_GAN: 0.445 G_GAN_Feat: 0.743 G_ID: 0.185 G_Rec: 0.376 D_GP: 0.035 D_real: 1.251 D_fake: 0.571 +(epoch: 81, iters: 8560, time: 0.064) G_GAN: 0.461 G_GAN_Feat: 0.861 G_ID: 0.339 G_Rec: 0.464 D_GP: 0.035 D_real: 1.311 D_fake: 0.543 +(epoch: 82, iters: 352, time: 0.064) G_GAN: 0.202 G_GAN_Feat: 0.759 G_ID: 0.193 G_Rec: 0.394 D_GP: 0.025 D_real: 0.985 D_fake: 0.798 +(epoch: 82, iters: 752, time: 0.064) G_GAN: 0.606 G_GAN_Feat: 0.797 G_ID: 0.322 G_Rec: 0.413 D_GP: 0.024 D_real: 1.345 D_fake: 0.433 +(epoch: 82, iters: 1152, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.779 G_ID: 0.174 G_Rec: 0.346 D_GP: 0.037 D_real: 1.090 D_fake: 0.724 +(epoch: 82, iters: 1552, time: 0.064) G_GAN: 0.427 G_GAN_Feat: 1.059 G_ID: 0.287 G_Rec: 0.421 D_GP: 0.047 D_real: 1.010 D_fake: 0.575 +(epoch: 82, iters: 1952, time: 0.064) G_GAN: 0.333 G_GAN_Feat: 0.990 G_ID: 0.188 G_Rec: 0.387 D_GP: 0.089 D_real: 1.004 D_fake: 0.688 +(epoch: 82, iters: 2352, time: 0.064) G_GAN: 0.196 G_GAN_Feat: 0.908 G_ID: 0.312 G_Rec: 0.406 D_GP: 0.066 D_real: 0.721 D_fake: 0.804 +(epoch: 82, iters: 2752, time: 0.064) G_GAN: 0.500 G_GAN_Feat: 0.988 G_ID: 0.191 G_Rec: 0.385 D_GP: 0.197 D_real: 0.825 D_fake: 0.517 +(epoch: 82, iters: 3152, time: 0.064) G_GAN: 0.527 G_GAN_Feat: 0.823 G_ID: 0.312 G_Rec: 0.373 D_GP: 0.024 D_real: 1.267 D_fake: 0.476 +(epoch: 82, iters: 3552, time: 0.064) G_GAN: 0.214 G_GAN_Feat: 0.718 G_ID: 0.226 G_Rec: 0.383 D_GP: 0.033 D_real: 1.061 D_fake: 0.787 +(epoch: 82, iters: 3952, time: 0.064) G_GAN: 0.406 G_GAN_Feat: 0.750 G_ID: 0.368 G_Rec: 0.369 D_GP: 0.030 D_real: 1.159 D_fake: 0.599 +(epoch: 82, iters: 4352, time: 0.064) G_GAN: 0.342 G_GAN_Feat: 0.767 G_ID: 0.229 G_Rec: 0.340 D_GP: 0.034 D_real: 1.233 D_fake: 0.659 +(epoch: 82, iters: 4752, time: 0.064) G_GAN: 0.544 G_GAN_Feat: 0.801 G_ID: 0.330 G_Rec: 0.340 D_GP: 0.029 D_real: 1.286 D_fake: 0.459 +(epoch: 82, iters: 5152, time: 0.064) G_GAN: 0.571 G_GAN_Feat: 0.768 G_ID: 0.184 G_Rec: 0.351 D_GP: 0.026 D_real: 1.474 D_fake: 0.484 +(epoch: 82, iters: 5552, time: 0.064) G_GAN: 0.576 G_GAN_Feat: 0.833 G_ID: 0.294 G_Rec: 0.393 D_GP: 0.027 D_real: 1.209 D_fake: 0.439 +(epoch: 82, iters: 5952, time: 0.064) G_GAN: 0.357 G_GAN_Feat: 0.806 G_ID: 0.163 G_Rec: 0.397 D_GP: 0.062 D_real: 1.115 D_fake: 0.643 +(epoch: 82, iters: 6352, time: 0.064) G_GAN: 0.161 G_GAN_Feat: 0.923 G_ID: 0.378 G_Rec: 0.401 D_GP: 0.045 D_real: 0.638 D_fake: 0.839 +(epoch: 82, iters: 6752, time: 0.064) G_GAN: 0.382 G_GAN_Feat: 0.877 G_ID: 0.183 G_Rec: 0.356 D_GP: 0.054 D_real: 0.901 D_fake: 0.618 +(epoch: 82, iters: 7152, time: 0.064) G_GAN: 0.894 G_GAN_Feat: 0.715 G_ID: 0.314 G_Rec: 0.393 D_GP: 0.024 D_real: 1.620 D_fake: 0.162 +(epoch: 82, iters: 7552, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.643 G_ID: 0.178 G_Rec: 0.346 D_GP: 0.025 D_real: 1.233 D_fake: 0.669 +(epoch: 82, iters: 7952, time: 0.064) G_GAN: 0.289 G_GAN_Feat: 1.045 G_ID: 0.366 G_Rec: 0.469 D_GP: 0.063 D_real: 0.591 D_fake: 0.714 +(epoch: 82, iters: 8352, time: 0.064) G_GAN: 0.073 G_GAN_Feat: 0.813 G_ID: 0.214 G_Rec: 0.392 D_GP: 0.062 D_real: 0.795 D_fake: 0.927 +(epoch: 83, iters: 144, time: 0.064) G_GAN: 0.415 G_GAN_Feat: 1.152 G_ID: 0.375 G_Rec: 0.430 D_GP: 0.269 D_real: 0.503 D_fake: 0.589 +(epoch: 83, iters: 544, time: 0.064) G_GAN: 0.490 G_GAN_Feat: 0.770 G_ID: 0.173 G_Rec: 0.331 D_GP: 0.048 D_real: 1.188 D_fake: 0.510 +(epoch: 83, iters: 944, time: 0.064) G_GAN: -0.063 G_GAN_Feat: 0.809 G_ID: 0.299 G_Rec: 0.441 D_GP: 0.030 D_real: 0.769 D_fake: 1.063 +(epoch: 83, iters: 1344, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.812 G_ID: 0.203 G_Rec: 0.385 D_GP: 0.045 D_real: 0.997 D_fake: 0.670 +(epoch: 83, iters: 1744, time: 0.064) G_GAN: 0.027 G_GAN_Feat: 0.847 G_ID: 0.350 G_Rec: 0.387 D_GP: 0.081 D_real: 0.571 D_fake: 0.973 +(epoch: 83, iters: 2144, time: 0.064) G_GAN: 0.320 G_GAN_Feat: 0.913 G_ID: 0.209 G_Rec: 0.337 D_GP: 0.047 D_real: 0.703 D_fake: 0.680 +(epoch: 83, iters: 2544, time: 0.064) G_GAN: 0.693 G_GAN_Feat: 0.719 G_ID: 0.352 G_Rec: 0.370 D_GP: 0.026 D_real: 1.497 D_fake: 0.319 +(epoch: 83, iters: 2944, time: 0.064) G_GAN: 0.712 G_GAN_Feat: 0.878 G_ID: 0.220 G_Rec: 0.367 D_GP: 0.055 D_real: 1.270 D_fake: 0.333 +(epoch: 83, iters: 3344, time: 0.064) G_GAN: -0.064 G_GAN_Feat: 0.887 G_ID: 0.434 G_Rec: 0.406 D_GP: 0.072 D_real: 0.570 D_fake: 1.064 +(epoch: 83, iters: 3744, time: 0.064) G_GAN: 0.395 G_GAN_Feat: 1.000 G_ID: 0.228 G_Rec: 0.405 D_GP: 0.067 D_real: 0.636 D_fake: 0.611 +(epoch: 83, iters: 4144, time: 0.064) G_GAN: 0.385 G_GAN_Feat: 1.060 G_ID: 0.324 G_Rec: 0.411 D_GP: 0.127 D_real: 0.464 D_fake: 0.627 +(epoch: 83, iters: 4544, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.780 G_ID: 0.208 G_Rec: 0.350 D_GP: 0.035 D_real: 1.025 D_fake: 0.724 +(epoch: 83, iters: 4944, time: 0.064) G_GAN: 0.533 G_GAN_Feat: 1.089 G_ID: 0.334 G_Rec: 0.413 D_GP: 0.098 D_real: 0.593 D_fake: 0.474 +(epoch: 83, iters: 5344, time: 0.064) G_GAN: 0.094 G_GAN_Feat: 0.754 G_ID: 0.211 G_Rec: 0.429 D_GP: 0.023 D_real: 0.980 D_fake: 0.906 +(epoch: 83, iters: 5744, time: 0.064) G_GAN: 0.466 G_GAN_Feat: 0.739 G_ID: 0.307 G_Rec: 0.453 D_GP: 0.024 D_real: 1.177 D_fake: 0.535 +(epoch: 83, iters: 6144, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 0.697 G_ID: 0.172 G_Rec: 0.356 D_GP: 0.027 D_real: 1.133 D_fake: 0.689 +(epoch: 83, iters: 6544, time: 0.064) G_GAN: 0.164 G_GAN_Feat: 0.845 G_ID: 0.354 G_Rec: 0.404 D_GP: 0.069 D_real: 0.805 D_fake: 0.836 +(epoch: 83, iters: 6944, time: 0.064) G_GAN: 0.327 G_GAN_Feat: 0.826 G_ID: 0.157 G_Rec: 0.357 D_GP: 0.037 D_real: 0.988 D_fake: 0.675 +(epoch: 83, iters: 7344, time: 0.064) G_GAN: 0.985 G_GAN_Feat: 1.213 G_ID: 0.345 G_Rec: 0.466 D_GP: 0.405 D_real: 0.853 D_fake: 0.135 +(epoch: 83, iters: 7744, time: 0.064) G_GAN: 0.201 G_GAN_Feat: 0.885 G_ID: 0.249 G_Rec: 0.424 D_GP: 0.062 D_real: 0.694 D_fake: 0.800 +(epoch: 83, iters: 8144, time: 0.064) G_GAN: 0.456 G_GAN_Feat: 0.817 G_ID: 0.302 G_Rec: 0.378 D_GP: 0.034 D_real: 1.215 D_fake: 0.554 +(epoch: 83, iters: 8544, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 0.731 G_ID: 0.193 G_Rec: 0.375 D_GP: 0.033 D_real: 1.272 D_fake: 0.557 +(epoch: 84, iters: 336, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 1.004 G_ID: 0.354 G_Rec: 0.400 D_GP: 0.063 D_real: 0.651 D_fake: 0.720 +(epoch: 84, iters: 736, time: 0.064) G_GAN: 0.365 G_GAN_Feat: 0.944 G_ID: 0.184 G_Rec: 0.366 D_GP: 0.035 D_real: 1.038 D_fake: 0.635 +(epoch: 84, iters: 1136, time: 0.064) G_GAN: -0.063 G_GAN_Feat: 0.832 G_ID: 0.363 G_Rec: 0.417 D_GP: 0.037 D_real: 0.663 D_fake: 1.065 +(epoch: 84, iters: 1536, time: 0.064) G_GAN: 0.245 G_GAN_Feat: 0.790 G_ID: 0.222 G_Rec: 0.379 D_GP: 0.039 D_real: 1.100 D_fake: 0.757 +(epoch: 84, iters: 1936, time: 0.064) G_GAN: 0.361 G_GAN_Feat: 0.795 G_ID: 0.313 G_Rec: 0.397 D_GP: 0.026 D_real: 1.131 D_fake: 0.639 +(epoch: 84, iters: 2336, time: 0.064) G_GAN: -0.136 G_GAN_Feat: 0.881 G_ID: 0.235 G_Rec: 0.407 D_GP: 0.064 D_real: 0.615 D_fake: 1.136 +(epoch: 84, iters: 2736, time: 0.064) G_GAN: 0.593 G_GAN_Feat: 0.957 G_ID: 0.353 G_Rec: 0.402 D_GP: 0.068 D_real: 1.199 D_fake: 0.420 +(epoch: 84, iters: 3136, time: 0.064) G_GAN: 0.110 G_GAN_Feat: 0.979 G_ID: 0.187 G_Rec: 0.425 D_GP: 0.026 D_real: 0.669 D_fake: 0.890 +(epoch: 84, iters: 3536, time: 0.064) G_GAN: 0.248 G_GAN_Feat: 0.791 G_ID: 0.364 G_Rec: 0.374 D_GP: 0.031 D_real: 1.034 D_fake: 0.753 +(epoch: 84, iters: 3936, time: 0.064) G_GAN: 0.383 G_GAN_Feat: 0.867 G_ID: 0.209 G_Rec: 0.383 D_GP: 0.036 D_real: 1.138 D_fake: 0.626 +(epoch: 84, iters: 4336, time: 0.064) G_GAN: 0.454 G_GAN_Feat: 1.132 G_ID: 0.302 G_Rec: 0.428 D_GP: 0.095 D_real: 0.463 D_fake: 0.547 +(epoch: 84, iters: 4736, time: 0.064) G_GAN: 0.304 G_GAN_Feat: 0.867 G_ID: 0.181 G_Rec: 0.410 D_GP: 0.035 D_real: 0.892 D_fake: 0.697 +(epoch: 84, iters: 5136, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.995 G_ID: 0.350 G_Rec: 0.436 D_GP: 0.148 D_real: 0.682 D_fake: 0.746 +(epoch: 84, iters: 5536, time: 0.064) G_GAN: 0.092 G_GAN_Feat: 0.830 G_ID: 0.193 G_Rec: 0.362 D_GP: 0.066 D_real: 0.748 D_fake: 0.908 +(epoch: 84, iters: 5936, time: 0.064) G_GAN: 0.585 G_GAN_Feat: 0.961 G_ID: 0.321 G_Rec: 0.483 D_GP: 0.054 D_real: 0.973 D_fake: 0.430 +(epoch: 84, iters: 6336, time: 0.064) G_GAN: 0.090 G_GAN_Feat: 0.867 G_ID: 0.178 G_Rec: 0.374 D_GP: 0.033 D_real: 0.668 D_fake: 0.910 +(epoch: 84, iters: 6736, time: 0.064) G_GAN: 0.397 G_GAN_Feat: 0.915 G_ID: 0.348 G_Rec: 0.367 D_GP: 0.035 D_real: 1.052 D_fake: 0.605 +(epoch: 84, iters: 7136, time: 0.064) G_GAN: 0.380 G_GAN_Feat: 0.751 G_ID: 0.193 G_Rec: 0.363 D_GP: 0.023 D_real: 1.251 D_fake: 0.620 +(epoch: 84, iters: 7536, time: 0.064) G_GAN: 0.500 G_GAN_Feat: 1.016 G_ID: 0.353 G_Rec: 0.412 D_GP: 0.046 D_real: 1.069 D_fake: 0.528 +(epoch: 84, iters: 7936, time: 0.064) G_GAN: 0.200 G_GAN_Feat: 0.819 G_ID: 0.184 G_Rec: 0.357 D_GP: 0.075 D_real: 0.856 D_fake: 0.800 +(epoch: 84, iters: 8336, time: 0.064) G_GAN: 0.416 G_GAN_Feat: 0.998 G_ID: 0.351 G_Rec: 0.434 D_GP: 0.066 D_real: 0.736 D_fake: 0.584 +(epoch: 85, iters: 128, time: 0.064) G_GAN: 0.205 G_GAN_Feat: 1.168 G_ID: 0.223 G_Rec: 0.360 D_GP: 0.102 D_real: 0.305 D_fake: 0.795 +(epoch: 85, iters: 528, time: 0.064) G_GAN: -0.478 G_GAN_Feat: 1.075 G_ID: 0.339 G_Rec: 0.469 D_GP: 0.258 D_real: 0.179 D_fake: 1.478 +(epoch: 85, iters: 928, time: 0.064) G_GAN: 0.537 G_GAN_Feat: 0.758 G_ID: 0.168 G_Rec: 0.348 D_GP: 0.030 D_real: 1.364 D_fake: 0.465 +(epoch: 85, iters: 1328, time: 0.064) G_GAN: 0.555 G_GAN_Feat: 0.812 G_ID: 0.319 G_Rec: 0.400 D_GP: 0.029 D_real: 1.233 D_fake: 0.448 +(epoch: 85, iters: 1728, time: 0.064) G_GAN: 0.521 G_GAN_Feat: 0.707 G_ID: 0.208 G_Rec: 0.391 D_GP: 0.024 D_real: 1.416 D_fake: 0.485 +(epoch: 85, iters: 2128, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.978 G_ID: 0.347 G_Rec: 0.404 D_GP: 0.080 D_real: 0.624 D_fake: 0.726 +(epoch: 85, iters: 2528, time: 0.064) G_GAN: 0.519 G_GAN_Feat: 0.894 G_ID: 0.208 G_Rec: 0.387 D_GP: 0.072 D_real: 1.047 D_fake: 0.509 +(epoch: 85, iters: 2928, time: 0.064) G_GAN: 0.778 G_GAN_Feat: 0.980 G_ID: 0.277 G_Rec: 0.442 D_GP: 0.044 D_real: 1.342 D_fake: 0.300 +(epoch: 85, iters: 3328, time: 0.064) G_GAN: 0.177 G_GAN_Feat: 0.611 G_ID: 0.208 G_Rec: 0.390 D_GP: 0.022 D_real: 0.976 D_fake: 0.823 +(epoch: 85, iters: 3728, time: 0.064) G_GAN: 0.391 G_GAN_Feat: 0.719 G_ID: 0.299 G_Rec: 0.398 D_GP: 0.020 D_real: 1.121 D_fake: 0.610 +(epoch: 85, iters: 4128, time: 0.064) G_GAN: 0.421 G_GAN_Feat: 0.636 G_ID: 0.170 G_Rec: 0.345 D_GP: 0.023 D_real: 1.262 D_fake: 0.579 +(epoch: 85, iters: 4528, time: 0.064) G_GAN: 0.421 G_GAN_Feat: 0.966 G_ID: 0.278 G_Rec: 0.526 D_GP: 0.216 D_real: 0.903 D_fake: 0.584 +(epoch: 85, iters: 4928, time: 0.064) G_GAN: 0.251 G_GAN_Feat: 0.753 G_ID: 0.191 G_Rec: 0.339 D_GP: 0.036 D_real: 1.026 D_fake: 0.749 +(epoch: 85, iters: 5328, time: 0.064) G_GAN: 0.381 G_GAN_Feat: 0.795 G_ID: 0.357 G_Rec: 0.366 D_GP: 0.029 D_real: 1.131 D_fake: 0.619 +(epoch: 85, iters: 5728, time: 0.064) G_GAN: 0.486 G_GAN_Feat: 0.696 G_ID: 0.163 G_Rec: 0.362 D_GP: 0.024 D_real: 1.287 D_fake: 0.515 +(epoch: 85, iters: 6128, time: 0.064) G_GAN: 0.501 G_GAN_Feat: 1.178 G_ID: 0.321 G_Rec: 0.432 D_GP: 0.477 D_real: 0.587 D_fake: 0.513 +(epoch: 85, iters: 6528, time: 0.064) G_GAN: 0.433 G_GAN_Feat: 0.757 G_ID: 0.188 G_Rec: 0.351 D_GP: 0.035 D_real: 1.221 D_fake: 0.568 +(epoch: 85, iters: 6928, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 1.059 G_ID: 0.331 G_Rec: 0.426 D_GP: 0.052 D_real: 0.546 D_fake: 0.737 +(epoch: 85, iters: 7328, time: 0.064) G_GAN: 0.309 G_GAN_Feat: 0.810 G_ID: 0.211 G_Rec: 0.396 D_GP: 0.024 D_real: 1.079 D_fake: 0.691 +(epoch: 85, iters: 7728, time: 0.064) G_GAN: 0.619 G_GAN_Feat: 0.816 G_ID: 0.323 G_Rec: 0.368 D_GP: 0.036 D_real: 1.283 D_fake: 0.391 +(epoch: 85, iters: 8128, time: 0.064) G_GAN: 0.017 G_GAN_Feat: 1.081 G_ID: 0.228 G_Rec: 0.348 D_GP: 0.048 D_real: 0.363 D_fake: 0.983 +(epoch: 85, iters: 8528, time: 0.064) G_GAN: 0.406 G_GAN_Feat: 0.823 G_ID: 0.336 G_Rec: 0.421 D_GP: 0.023 D_real: 1.232 D_fake: 0.605 +(epoch: 86, iters: 320, time: 0.064) G_GAN: 0.008 G_GAN_Feat: 0.733 G_ID: 0.202 G_Rec: 0.343 D_GP: 0.034 D_real: 0.890 D_fake: 0.992 +(epoch: 86, iters: 720, time: 0.064) G_GAN: 0.515 G_GAN_Feat: 0.879 G_ID: 0.371 G_Rec: 0.405 D_GP: 0.026 D_real: 1.201 D_fake: 0.487 +(epoch: 86, iters: 1120, time: 0.064) G_GAN: 0.341 G_GAN_Feat: 0.897 G_ID: 0.212 G_Rec: 0.359 D_GP: 0.065 D_real: 0.800 D_fake: 0.662 +(epoch: 86, iters: 1520, time: 0.064) G_GAN: 0.611 G_GAN_Feat: 0.785 G_ID: 0.304 G_Rec: 0.363 D_GP: 0.033 D_real: 1.313 D_fake: 0.396 +(epoch: 86, iters: 1920, time: 0.064) G_GAN: 0.247 G_GAN_Feat: 0.897 G_ID: 0.209 G_Rec: 0.368 D_GP: 0.053 D_real: 0.786 D_fake: 0.753 +(epoch: 86, iters: 2320, time: 0.064) G_GAN: 0.548 G_GAN_Feat: 0.868 G_ID: 0.341 G_Rec: 0.394 D_GP: 0.038 D_real: 1.209 D_fake: 0.457 +(epoch: 86, iters: 2720, time: 0.064) G_GAN: 0.327 G_GAN_Feat: 0.684 G_ID: 0.205 G_Rec: 0.392 D_GP: 0.023 D_real: 1.226 D_fake: 0.673 +(epoch: 86, iters: 3120, time: 0.064) G_GAN: 0.580 G_GAN_Feat: 1.041 G_ID: 0.313 G_Rec: 0.443 D_GP: 0.074 D_real: 0.910 D_fake: 0.427 +(epoch: 86, iters: 3520, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 0.822 G_ID: 0.187 G_Rec: 0.379 D_GP: 0.035 D_real: 0.922 D_fake: 0.826 +(epoch: 86, iters: 3920, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 1.131 G_ID: 0.356 G_Rec: 0.387 D_GP: 0.064 D_real: 0.395 D_fake: 0.751 +(epoch: 86, iters: 4320, time: 0.064) G_GAN: 0.374 G_GAN_Feat: 0.712 G_ID: 0.193 G_Rec: 0.400 D_GP: 0.024 D_real: 1.262 D_fake: 0.626 +(epoch: 86, iters: 4720, time: 0.064) G_GAN: 0.414 G_GAN_Feat: 0.848 G_ID: 0.285 G_Rec: 0.428 D_GP: 0.034 D_real: 1.042 D_fake: 0.593 +(epoch: 86, iters: 5120, time: 0.064) G_GAN: -0.022 G_GAN_Feat: 1.048 G_ID: 0.223 G_Rec: 0.423 D_GP: 0.131 D_real: 0.169 D_fake: 1.022 +(epoch: 86, iters: 5520, time: 0.064) G_GAN: 0.292 G_GAN_Feat: 0.900 G_ID: 0.370 G_Rec: 0.399 D_GP: 0.035 D_real: 0.896 D_fake: 0.708 +(epoch: 86, iters: 5920, time: 0.064) G_GAN: 0.366 G_GAN_Feat: 0.774 G_ID: 0.195 G_Rec: 0.340 D_GP: 0.039 D_real: 1.017 D_fake: 0.634 +(epoch: 86, iters: 6320, time: 0.064) G_GAN: 0.622 G_GAN_Feat: 0.842 G_ID: 0.325 G_Rec: 0.438 D_GP: 0.032 D_real: 1.288 D_fake: 0.386 +(epoch: 86, iters: 6720, time: 0.064) G_GAN: 0.468 G_GAN_Feat: 0.739 G_ID: 0.231 G_Rec: 0.353 D_GP: 0.037 D_real: 1.285 D_fake: 0.533 +(epoch: 86, iters: 7120, time: 0.064) G_GAN: 0.690 G_GAN_Feat: 0.859 G_ID: 0.332 G_Rec: 0.421 D_GP: 0.036 D_real: 1.312 D_fake: 0.322 +(epoch: 86, iters: 7520, time: 0.064) G_GAN: 0.563 G_GAN_Feat: 0.831 G_ID: 0.200 G_Rec: 0.391 D_GP: 0.027 D_real: 1.204 D_fake: 0.448 +(epoch: 86, iters: 7920, time: 0.064) G_GAN: 0.302 G_GAN_Feat: 1.238 G_ID: 0.312 G_Rec: 0.415 D_GP: 0.060 D_real: 0.450 D_fake: 0.698 +(epoch: 86, iters: 8320, time: 0.064) G_GAN: 0.425 G_GAN_Feat: 1.133 G_ID: 0.172 G_Rec: 0.361 D_GP: 0.097 D_real: 0.426 D_fake: 0.580 +(epoch: 87, iters: 112, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 0.761 G_ID: 0.341 G_Rec: 0.399 D_GP: 0.025 D_real: 1.151 D_fake: 0.704 +(epoch: 87, iters: 512, time: 0.064) G_GAN: 0.161 G_GAN_Feat: 0.679 G_ID: 0.175 G_Rec: 0.357 D_GP: 0.024 D_real: 1.027 D_fake: 0.839 +(epoch: 87, iters: 912, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 1.003 G_ID: 0.309 G_Rec: 0.466 D_GP: 0.065 D_real: 0.597 D_fake: 0.714 +(epoch: 87, iters: 1312, time: 0.064) G_GAN: 0.467 G_GAN_Feat: 0.754 G_ID: 0.182 G_Rec: 0.370 D_GP: 0.025 D_real: 1.379 D_fake: 0.533 +(epoch: 87, iters: 1712, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.769 G_ID: 0.305 G_Rec: 0.362 D_GP: 0.034 D_real: 1.095 D_fake: 0.693 +(epoch: 87, iters: 2112, time: 0.064) G_GAN: 0.190 G_GAN_Feat: 0.659 G_ID: 0.200 G_Rec: 0.345 D_GP: 0.027 D_real: 1.029 D_fake: 0.811 +(epoch: 87, iters: 2512, time: 0.064) G_GAN: 0.369 G_GAN_Feat: 0.842 G_ID: 0.304 G_Rec: 0.359 D_GP: 0.067 D_real: 0.935 D_fake: 0.632 +(epoch: 87, iters: 2912, time: 0.064) G_GAN: 0.291 G_GAN_Feat: 0.840 G_ID: 0.180 G_Rec: 0.360 D_GP: 0.038 D_real: 1.094 D_fake: 0.709 +(epoch: 87, iters: 3312, time: 0.064) G_GAN: 0.478 G_GAN_Feat: 0.900 G_ID: 0.311 G_Rec: 0.383 D_GP: 0.084 D_real: 0.983 D_fake: 0.524 +(epoch: 87, iters: 3712, time: 0.064) G_GAN: 0.210 G_GAN_Feat: 0.627 G_ID: 0.260 G_Rec: 0.342 D_GP: 0.023 D_real: 1.091 D_fake: 0.790 +(epoch: 87, iters: 4112, time: 0.064) G_GAN: 0.425 G_GAN_Feat: 0.674 G_ID: 0.344 G_Rec: 0.362 D_GP: 0.025 D_real: 1.299 D_fake: 0.582 +(epoch: 87, iters: 4512, time: 0.064) G_GAN: 0.152 G_GAN_Feat: 0.739 G_ID: 0.182 G_Rec: 0.353 D_GP: 0.065 D_real: 0.909 D_fake: 0.849 +(epoch: 87, iters: 4912, time: 0.064) G_GAN: 0.379 G_GAN_Feat: 0.705 G_ID: 0.331 G_Rec: 0.436 D_GP: 0.023 D_real: 1.163 D_fake: 0.621 +(epoch: 87, iters: 5312, time: 0.064) G_GAN: 0.420 G_GAN_Feat: 0.702 G_ID: 0.186 G_Rec: 0.365 D_GP: 0.035 D_real: 1.254 D_fake: 0.580 +(epoch: 87, iters: 5712, time: 0.064) G_GAN: 0.425 G_GAN_Feat: 0.875 G_ID: 0.298 G_Rec: 0.397 D_GP: 0.043 D_real: 1.123 D_fake: 0.575 +(epoch: 87, iters: 6112, time: 0.064) G_GAN: 0.072 G_GAN_Feat: 0.681 G_ID: 0.226 G_Rec: 0.376 D_GP: 0.026 D_real: 0.954 D_fake: 0.928 +(epoch: 87, iters: 6512, time: 0.064) G_GAN: 0.599 G_GAN_Feat: 1.263 G_ID: 0.306 G_Rec: 0.456 D_GP: 0.148 D_real: 0.517 D_fake: 0.405 +(epoch: 87, iters: 6912, time: 0.064) G_GAN: 0.093 G_GAN_Feat: 1.052 G_ID: 0.212 G_Rec: 0.381 D_GP: 0.183 D_real: 0.255 D_fake: 0.907 +(epoch: 87, iters: 7312, time: 0.064) G_GAN: 0.327 G_GAN_Feat: 0.941 G_ID: 0.294 G_Rec: 0.415 D_GP: 0.071 D_real: 0.667 D_fake: 0.674 +(epoch: 87, iters: 7712, time: 0.064) G_GAN: 0.519 G_GAN_Feat: 0.624 G_ID: 0.181 G_Rec: 0.342 D_GP: 0.022 D_real: 1.476 D_fake: 0.484 +(epoch: 87, iters: 8112, time: 0.064) G_GAN: 0.613 G_GAN_Feat: 0.960 G_ID: 0.290 G_Rec: 0.367 D_GP: 0.060 D_real: 0.984 D_fake: 0.391 +(epoch: 87, iters: 8512, time: 0.064) G_GAN: 0.340 G_GAN_Feat: 0.729 G_ID: 0.202 G_Rec: 0.395 D_GP: 0.026 D_real: 1.178 D_fake: 0.660 +(epoch: 88, iters: 304, time: 0.064) G_GAN: -0.161 G_GAN_Feat: 0.940 G_ID: 0.320 G_Rec: 0.423 D_GP: 0.077 D_real: 0.316 D_fake: 1.161 +(epoch: 88, iters: 704, time: 0.064) G_GAN: 0.240 G_GAN_Feat: 0.772 G_ID: 0.197 G_Rec: 0.360 D_GP: 0.024 D_real: 1.047 D_fake: 0.760 +(epoch: 88, iters: 1104, time: 0.064) G_GAN: 0.400 G_GAN_Feat: 0.804 G_ID: 0.327 G_Rec: 0.464 D_GP: 0.042 D_real: 1.063 D_fake: 0.600 +(epoch: 88, iters: 1504, time: 0.064) G_GAN: 0.414 G_GAN_Feat: 0.828 G_ID: 0.193 G_Rec: 0.367 D_GP: 0.056 D_real: 1.043 D_fake: 0.586 +(epoch: 88, iters: 1904, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.729 G_ID: 0.294 G_Rec: 0.396 D_GP: 0.026 D_real: 1.077 D_fake: 0.717 +(epoch: 88, iters: 2304, time: 0.064) G_GAN: 0.285 G_GAN_Feat: 0.780 G_ID: 0.192 G_Rec: 0.443 D_GP: 0.061 D_real: 0.949 D_fake: 0.715 +(epoch: 88, iters: 2704, time: 0.064) G_GAN: 0.242 G_GAN_Feat: 0.918 G_ID: 0.319 G_Rec: 0.404 D_GP: 0.027 D_real: 0.773 D_fake: 0.758 +(epoch: 88, iters: 3104, time: 0.064) G_GAN: 0.173 G_GAN_Feat: 0.725 G_ID: 0.188 G_Rec: 0.380 D_GP: 0.043 D_real: 1.006 D_fake: 0.827 +(epoch: 88, iters: 3504, time: 0.064) G_GAN: 0.269 G_GAN_Feat: 1.234 G_ID: 0.309 G_Rec: 0.389 D_GP: 0.079 D_real: 0.308 D_fake: 0.731 +(epoch: 88, iters: 3904, time: 0.064) G_GAN: 0.130 G_GAN_Feat: 0.992 G_ID: 0.199 G_Rec: 0.400 D_GP: 0.114 D_real: 0.378 D_fake: 0.870 +(epoch: 88, iters: 4304, time: 0.064) G_GAN: 0.407 G_GAN_Feat: 0.868 G_ID: 0.350 G_Rec: 0.416 D_GP: 0.031 D_real: 1.062 D_fake: 0.594 +(epoch: 88, iters: 4704, time: 0.064) G_GAN: 0.687 G_GAN_Feat: 1.040 G_ID: 0.160 G_Rec: 0.412 D_GP: 0.115 D_real: 1.227 D_fake: 0.473 +(epoch: 88, iters: 5104, time: 0.064) G_GAN: 0.338 G_GAN_Feat: 0.894 G_ID: 0.303 G_Rec: 0.440 D_GP: 0.045 D_real: 0.848 D_fake: 0.662 +(epoch: 88, iters: 5504, time: 0.064) G_GAN: 0.036 G_GAN_Feat: 0.691 G_ID: 0.204 G_Rec: 0.347 D_GP: 0.032 D_real: 0.848 D_fake: 0.964 +(epoch: 88, iters: 5904, time: 0.064) G_GAN: 0.449 G_GAN_Feat: 0.818 G_ID: 0.280 G_Rec: 0.395 D_GP: 0.028 D_real: 1.246 D_fake: 0.552 +(epoch: 88, iters: 6304, time: 0.064) G_GAN: 0.534 G_GAN_Feat: 0.877 G_ID: 0.228 G_Rec: 0.407 D_GP: 0.062 D_real: 1.074 D_fake: 0.533 +(epoch: 88, iters: 6704, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.873 G_ID: 0.352 G_Rec: 0.371 D_GP: 0.070 D_real: 0.735 D_fake: 0.721 +(epoch: 88, iters: 7104, time: 0.064) G_GAN: 0.301 G_GAN_Feat: 0.928 G_ID: 0.189 G_Rec: 0.359 D_GP: 0.060 D_real: 0.573 D_fake: 0.699 +(epoch: 88, iters: 7504, time: 0.064) G_GAN: 0.519 G_GAN_Feat: 0.953 G_ID: 0.310 G_Rec: 0.388 D_GP: 0.057 D_real: 0.881 D_fake: 0.486 +(epoch: 88, iters: 7904, time: 0.064) G_GAN: 0.650 G_GAN_Feat: 0.891 G_ID: 0.203 G_Rec: 0.359 D_GP: 0.087 D_real: 1.188 D_fake: 0.390 +(epoch: 88, iters: 8304, time: 0.064) G_GAN: 0.632 G_GAN_Feat: 1.012 G_ID: 0.328 G_Rec: 0.411 D_GP: 0.111 D_real: 0.964 D_fake: 0.433 +(epoch: 89, iters: 96, time: 0.064) G_GAN: 0.379 G_GAN_Feat: 0.810 G_ID: 0.187 G_Rec: 0.371 D_GP: 0.045 D_real: 1.204 D_fake: 0.622 +(epoch: 89, iters: 496, time: 0.064) G_GAN: 0.228 G_GAN_Feat: 0.796 G_ID: 0.316 G_Rec: 0.367 D_GP: 0.032 D_real: 1.121 D_fake: 0.773 +(epoch: 89, iters: 896, time: 0.064) G_GAN: 0.074 G_GAN_Feat: 0.744 G_ID: 0.168 G_Rec: 0.353 D_GP: 0.026 D_real: 0.894 D_fake: 0.926 +(epoch: 89, iters: 1296, time: 0.064) G_GAN: 0.168 G_GAN_Feat: 1.238 G_ID: 0.317 G_Rec: 0.483 D_GP: 0.948 D_real: 0.587 D_fake: 0.836 +(epoch: 89, iters: 1696, time: 0.064) G_GAN: 0.137 G_GAN_Feat: 0.724 G_ID: 0.201 G_Rec: 0.407 D_GP: 0.026 D_real: 0.959 D_fake: 0.863 +(epoch: 89, iters: 2096, time: 0.064) G_GAN: 0.428 G_GAN_Feat: 0.950 G_ID: 0.314 G_Rec: 0.405 D_GP: 0.074 D_real: 0.876 D_fake: 0.576 +(epoch: 89, iters: 2496, time: 0.064) G_GAN: 0.292 G_GAN_Feat: 0.696 G_ID: 0.177 G_Rec: 0.328 D_GP: 0.029 D_real: 1.195 D_fake: 0.708 +(epoch: 89, iters: 2896, time: 0.064) G_GAN: 0.314 G_GAN_Feat: 0.887 G_ID: 0.346 G_Rec: 0.472 D_GP: 0.039 D_real: 1.030 D_fake: 0.686 +(epoch: 89, iters: 3296, time: 0.064) G_GAN: 0.080 G_GAN_Feat: 0.977 G_ID: 0.194 G_Rec: 0.366 D_GP: 0.041 D_real: 0.510 D_fake: 0.920 +(epoch: 89, iters: 3696, time: 0.064) G_GAN: 0.407 G_GAN_Feat: 0.816 G_ID: 0.325 G_Rec: 0.375 D_GP: 0.030 D_real: 1.151 D_fake: 0.594 +(epoch: 89, iters: 4096, time: 0.064) G_GAN: 0.318 G_GAN_Feat: 0.768 G_ID: 0.163 G_Rec: 0.394 D_GP: 0.023 D_real: 1.132 D_fake: 0.684 +(epoch: 89, iters: 4496, time: 0.064) G_GAN: 0.340 G_GAN_Feat: 0.802 G_ID: 0.287 G_Rec: 0.403 D_GP: 0.028 D_real: 1.096 D_fake: 0.662 +(epoch: 89, iters: 4896, time: 0.064) G_GAN: 0.349 G_GAN_Feat: 0.723 G_ID: 0.189 G_Rec: 0.381 D_GP: 0.028 D_real: 1.138 D_fake: 0.651 +(epoch: 89, iters: 5296, time: 0.064) G_GAN: 0.565 G_GAN_Feat: 0.879 G_ID: 0.337 G_Rec: 0.371 D_GP: 0.030 D_real: 1.226 D_fake: 0.437 +(epoch: 89, iters: 5696, time: 0.064) G_GAN: -0.010 G_GAN_Feat: 0.669 G_ID: 0.241 G_Rec: 0.376 D_GP: 0.025 D_real: 0.948 D_fake: 1.011 +(epoch: 89, iters: 6096, time: 0.064) G_GAN: 0.417 G_GAN_Feat: 0.741 G_ID: 0.300 G_Rec: 0.402 D_GP: 0.025 D_real: 1.225 D_fake: 0.584 +(epoch: 89, iters: 6496, time: 0.064) G_GAN: 0.288 G_GAN_Feat: 0.836 G_ID: 0.188 G_Rec: 0.357 D_GP: 0.069 D_real: 0.883 D_fake: 0.713 +(epoch: 89, iters: 6896, time: 0.064) G_GAN: 0.498 G_GAN_Feat: 0.954 G_ID: 0.307 G_Rec: 0.420 D_GP: 0.069 D_real: 0.887 D_fake: 0.506 +(epoch: 89, iters: 7296, time: 0.064) G_GAN: 0.147 G_GAN_Feat: 0.787 G_ID: 0.158 G_Rec: 0.341 D_GP: 0.034 D_real: 0.843 D_fake: 0.853 +(epoch: 89, iters: 7696, time: 0.064) G_GAN: 0.514 G_GAN_Feat: 0.952 G_ID: 0.284 G_Rec: 0.429 D_GP: 0.098 D_real: 1.136 D_fake: 0.488 +(epoch: 89, iters: 8096, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 1.019 G_ID: 0.204 G_Rec: 0.386 D_GP: 0.100 D_real: 1.039 D_fake: 0.830 +(epoch: 89, iters: 8496, time: 0.064) G_GAN: 0.167 G_GAN_Feat: 0.919 G_ID: 0.299 G_Rec: 0.436 D_GP: 0.050 D_real: 0.799 D_fake: 0.833 +(epoch: 90, iters: 288, time: 0.064) G_GAN: 0.827 G_GAN_Feat: 1.069 G_ID: 0.218 G_Rec: 0.399 D_GP: 0.236 D_real: 1.116 D_fake: 0.605 +(epoch: 90, iters: 688, time: 0.064) G_GAN: 0.497 G_GAN_Feat: 0.726 G_ID: 0.310 G_Rec: 0.347 D_GP: 0.028 D_real: 1.209 D_fake: 0.504 +(epoch: 90, iters: 1088, time: 0.064) G_GAN: 0.543 G_GAN_Feat: 0.681 G_ID: 0.159 G_Rec: 0.380 D_GP: 0.026 D_real: 1.376 D_fake: 0.459 +(epoch: 90, iters: 1488, time: 0.064) G_GAN: 0.341 G_GAN_Feat: 0.991 G_ID: 0.336 G_Rec: 0.389 D_GP: 0.111 D_real: 0.585 D_fake: 0.660 +(epoch: 90, iters: 1888, time: 0.064) G_GAN: 0.373 G_GAN_Feat: 1.040 G_ID: 0.193 G_Rec: 0.382 D_GP: 0.114 D_real: 0.553 D_fake: 0.627 +(epoch: 90, iters: 2288, time: 0.064) G_GAN: 0.475 G_GAN_Feat: 1.033 G_ID: 0.309 G_Rec: 0.420 D_GP: 0.070 D_real: 0.833 D_fake: 0.533 +(epoch: 90, iters: 2688, time: 0.064) G_GAN: 0.285 G_GAN_Feat: 1.022 G_ID: 0.179 G_Rec: 0.366 D_GP: 0.103 D_real: 0.557 D_fake: 0.718 +(epoch: 90, iters: 3088, time: 0.064) G_GAN: 0.409 G_GAN_Feat: 0.829 G_ID: 0.338 G_Rec: 0.383 D_GP: 0.033 D_real: 1.057 D_fake: 0.592 +(epoch: 90, iters: 3488, time: 0.064) G_GAN: 0.419 G_GAN_Feat: 0.769 G_ID: 0.177 G_Rec: 0.386 D_GP: 0.027 D_real: 1.186 D_fake: 0.582 +(epoch: 90, iters: 3888, time: 0.064) G_GAN: 0.481 G_GAN_Feat: 0.864 G_ID: 0.296 G_Rec: 0.419 D_GP: 0.043 D_real: 1.161 D_fake: 0.521 +(epoch: 90, iters: 4288, time: 0.064) G_GAN: 0.233 G_GAN_Feat: 0.731 G_ID: 0.214 G_Rec: 0.356 D_GP: 0.029 D_real: 1.043 D_fake: 0.767 +(epoch: 90, iters: 4688, time: 0.064) G_GAN: 0.390 G_GAN_Feat: 1.026 G_ID: 0.274 G_Rec: 0.442 D_GP: 0.138 D_real: 0.567 D_fake: 0.611 +(epoch: 90, iters: 5088, time: 0.064) G_GAN: 0.343 G_GAN_Feat: 0.780 G_ID: 0.198 G_Rec: 0.359 D_GP: 0.042 D_real: 1.122 D_fake: 0.658 +(epoch: 90, iters: 5488, time: 0.064) G_GAN: 0.251 G_GAN_Feat: 0.819 G_ID: 0.304 G_Rec: 0.378 D_GP: 0.030 D_real: 0.989 D_fake: 0.749 +(epoch: 90, iters: 5888, time: 0.064) G_GAN: 0.102 G_GAN_Feat: 1.083 G_ID: 0.218 G_Rec: 0.430 D_GP: 0.183 D_real: 0.231 D_fake: 0.898 +(epoch: 90, iters: 6288, time: 0.064) G_GAN: 0.462 G_GAN_Feat: 0.905 G_ID: 0.311 G_Rec: 0.437 D_GP: 0.044 D_real: 1.145 D_fake: 0.638 +(epoch: 90, iters: 6688, time: 0.064) G_GAN: 0.066 G_GAN_Feat: 1.139 G_ID: 0.176 G_Rec: 0.376 D_GP: 0.716 D_real: 0.492 D_fake: 0.936 +(epoch: 90, iters: 7088, time: 0.064) G_GAN: 0.409 G_GAN_Feat: 0.922 G_ID: 0.301 G_Rec: 0.416 D_GP: 0.026 D_real: 1.109 D_fake: 0.591 +(epoch: 90, iters: 7488, time: 0.064) G_GAN: 0.555 G_GAN_Feat: 0.943 G_ID: 0.191 G_Rec: 0.350 D_GP: 0.102 D_real: 1.166 D_fake: 0.462 +(epoch: 90, iters: 7888, time: 0.064) G_GAN: 0.505 G_GAN_Feat: 0.806 G_ID: 0.303 G_Rec: 0.392 D_GP: 0.028 D_real: 1.219 D_fake: 0.496 +(epoch: 90, iters: 8288, time: 0.064) G_GAN: 0.134 G_GAN_Feat: 0.995 G_ID: 0.199 G_Rec: 0.383 D_GP: 0.044 D_real: 0.506 D_fake: 0.866 +(epoch: 91, iters: 80, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.869 G_ID: 0.295 G_Rec: 0.421 D_GP: 0.024 D_real: 0.955 D_fake: 0.731 +(epoch: 91, iters: 480, time: 0.064) G_GAN: 0.153 G_GAN_Feat: 0.800 G_ID: 0.175 G_Rec: 0.376 D_GP: 0.038 D_real: 0.877 D_fake: 0.850 +(epoch: 91, iters: 880, time: 0.064) G_GAN: 0.448 G_GAN_Feat: 0.891 G_ID: 0.305 G_Rec: 0.361 D_GP: 0.040 D_real: 1.033 D_fake: 0.554 +(epoch: 91, iters: 1280, time: 0.064) G_GAN: 0.148 G_GAN_Feat: 0.934 G_ID: 0.212 G_Rec: 0.376 D_GP: 0.118 D_real: 0.639 D_fake: 0.852 +(epoch: 91, iters: 1680, time: 0.064) G_GAN: 0.533 G_GAN_Feat: 1.260 G_ID: 0.281 G_Rec: 0.414 D_GP: 0.204 D_real: 0.514 D_fake: 0.472 +(epoch: 91, iters: 2080, time: 0.064) G_GAN: 0.133 G_GAN_Feat: 0.717 G_ID: 0.192 G_Rec: 0.342 D_GP: 0.027 D_real: 1.013 D_fake: 0.867 +(epoch: 91, iters: 2480, time: 0.064) G_GAN: 0.526 G_GAN_Feat: 0.849 G_ID: 0.300 G_Rec: 0.392 D_GP: 0.029 D_real: 1.187 D_fake: 0.476 +(epoch: 91, iters: 2880, time: 0.064) G_GAN: 0.384 G_GAN_Feat: 0.831 G_ID: 0.177 G_Rec: 0.361 D_GP: 0.039 D_real: 1.188 D_fake: 0.631 +(epoch: 91, iters: 3280, time: 0.064) G_GAN: 0.644 G_GAN_Feat: 0.865 G_ID: 0.317 G_Rec: 0.464 D_GP: 0.023 D_real: 1.450 D_fake: 0.363 +(epoch: 91, iters: 3680, time: 0.064) G_GAN: 0.423 G_GAN_Feat: 0.830 G_ID: 0.175 G_Rec: 0.427 D_GP: 0.050 D_real: 1.129 D_fake: 0.579 +(epoch: 91, iters: 4080, time: 0.064) G_GAN: 0.349 G_GAN_Feat: 0.800 G_ID: 0.299 G_Rec: 0.381 D_GP: 0.025 D_real: 1.069 D_fake: 0.653 +(epoch: 91, iters: 4480, time: 0.064) G_GAN: 0.408 G_GAN_Feat: 0.800 G_ID: 0.187 G_Rec: 0.375 D_GP: 0.035 D_real: 1.097 D_fake: 0.593 +(epoch: 91, iters: 4880, time: 0.064) G_GAN: 0.519 G_GAN_Feat: 1.155 G_ID: 0.344 G_Rec: 0.381 D_GP: 0.069 D_real: 0.504 D_fake: 0.485 +(epoch: 91, iters: 5280, time: 0.064) G_GAN: 0.322 G_GAN_Feat: 0.706 G_ID: 0.204 G_Rec: 0.446 D_GP: 0.023 D_real: 1.194 D_fake: 0.678 +(epoch: 91, iters: 5680, time: 0.064) G_GAN: 0.453 G_GAN_Feat: 0.959 G_ID: 0.283 G_Rec: 0.384 D_GP: 0.040 D_real: 0.904 D_fake: 0.550 +(epoch: 91, iters: 6080, time: 0.064) G_GAN: 0.370 G_GAN_Feat: 1.003 G_ID: 0.197 G_Rec: 0.421 D_GP: 0.040 D_real: 1.167 D_fake: 0.656 +(epoch: 91, iters: 6480, time: 0.064) G_GAN: 0.547 G_GAN_Feat: 1.039 G_ID: 0.325 G_Rec: 0.398 D_GP: 0.079 D_real: 0.840 D_fake: 0.478 +(epoch: 91, iters: 6880, time: 0.064) G_GAN: 0.472 G_GAN_Feat: 0.770 G_ID: 0.158 G_Rec: 0.363 D_GP: 0.024 D_real: 1.252 D_fake: 0.530 +(epoch: 91, iters: 7280, time: 0.064) G_GAN: 0.453 G_GAN_Feat: 1.223 G_ID: 0.311 G_Rec: 0.419 D_GP: 0.066 D_real: 0.554 D_fake: 0.548 +(epoch: 91, iters: 7680, time: 0.064) G_GAN: 0.197 G_GAN_Feat: 1.147 G_ID: 0.177 G_Rec: 0.434 D_GP: 0.385 D_real: 0.432 D_fake: 0.805 +(epoch: 91, iters: 8080, time: 0.064) G_GAN: 0.074 G_GAN_Feat: 0.811 G_ID: 0.334 G_Rec: 0.386 D_GP: 0.037 D_real: 0.806 D_fake: 0.926 +(epoch: 91, iters: 8480, time: 0.064) G_GAN: 0.035 G_GAN_Feat: 0.751 G_ID: 0.192 G_Rec: 0.363 D_GP: 0.027 D_real: 0.872 D_fake: 0.965 +(epoch: 92, iters: 272, time: 0.064) G_GAN: 0.664 G_GAN_Feat: 0.931 G_ID: 0.308 G_Rec: 0.387 D_GP: 0.042 D_real: 1.213 D_fake: 0.348 +(epoch: 92, iters: 672, time: 0.064) G_GAN: 0.390 G_GAN_Feat: 0.654 G_ID: 0.199 G_Rec: 0.360 D_GP: 0.023 D_real: 1.361 D_fake: 0.617 +(epoch: 92, iters: 1072, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.900 G_ID: 0.333 G_Rec: 0.375 D_GP: 0.037 D_real: 1.035 D_fake: 0.720 +(epoch: 92, iters: 1472, time: 0.064) G_GAN: 0.401 G_GAN_Feat: 0.668 G_ID: 0.245 G_Rec: 0.345 D_GP: 0.024 D_real: 1.284 D_fake: 0.602 +(epoch: 92, iters: 1872, time: 0.064) G_GAN: 0.487 G_GAN_Feat: 0.740 G_ID: 0.311 G_Rec: 0.387 D_GP: 0.025 D_real: 1.233 D_fake: 0.514 +(epoch: 92, iters: 2272, time: 0.064) G_GAN: 0.310 G_GAN_Feat: 0.870 G_ID: 0.194 G_Rec: 0.361 D_GP: 0.060 D_real: 0.840 D_fake: 0.690 +(epoch: 92, iters: 2672, time: 0.064) G_GAN: 0.578 G_GAN_Feat: 1.151 G_ID: 0.278 G_Rec: 0.399 D_GP: 0.281 D_real: 0.467 D_fake: 0.448 +(epoch: 92, iters: 3072, time: 0.064) G_GAN: 0.540 G_GAN_Feat: 0.850 G_ID: 0.230 G_Rec: 0.415 D_GP: 0.046 D_real: 1.235 D_fake: 0.496 +(epoch: 92, iters: 3472, time: 0.064) G_GAN: 0.761 G_GAN_Feat: 1.052 G_ID: 0.303 G_Rec: 0.437 D_GP: 0.169 D_real: 1.014 D_fake: 0.338 +(epoch: 92, iters: 3872, time: 0.064) G_GAN: 0.347 G_GAN_Feat: 0.585 G_ID: 0.165 G_Rec: 0.414 D_GP: 0.016 D_real: 1.260 D_fake: 0.654 +(epoch: 92, iters: 4272, time: 0.064) G_GAN: 0.413 G_GAN_Feat: 0.683 G_ID: 0.288 G_Rec: 0.416 D_GP: 0.018 D_real: 1.316 D_fake: 0.592 +(epoch: 92, iters: 4672, time: 0.064) G_GAN: 0.292 G_GAN_Feat: 0.737 G_ID: 0.173 G_Rec: 0.406 D_GP: 0.023 D_real: 1.151 D_fake: 0.709 +(epoch: 92, iters: 5072, time: 0.064) G_GAN: 0.178 G_GAN_Feat: 0.766 G_ID: 0.292 G_Rec: 0.419 D_GP: 0.027 D_real: 0.906 D_fake: 0.823 +(epoch: 92, iters: 5472, time: 0.064) G_GAN: 0.282 G_GAN_Feat: 0.716 G_ID: 0.193 G_Rec: 0.344 D_GP: 0.040 D_real: 1.026 D_fake: 0.719 +(epoch: 92, iters: 5872, time: 0.064) G_GAN: 0.237 G_GAN_Feat: 0.826 G_ID: 0.302 G_Rec: 0.377 D_GP: 0.054 D_real: 0.852 D_fake: 0.763 +(epoch: 92, iters: 6272, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 0.914 G_ID: 0.170 G_Rec: 0.404 D_GP: 0.075 D_real: 0.739 D_fake: 0.704 +(epoch: 92, iters: 6672, time: 0.064) G_GAN: 0.310 G_GAN_Feat: 0.873 G_ID: 0.313 G_Rec: 0.387 D_GP: 0.043 D_real: 1.039 D_fake: 0.693 +(epoch: 92, iters: 7072, time: 0.064) G_GAN: 0.472 G_GAN_Feat: 0.722 G_ID: 0.202 G_Rec: 0.367 D_GP: 0.029 D_real: 1.293 D_fake: 0.541 +(epoch: 92, iters: 7472, time: 0.064) G_GAN: 0.614 G_GAN_Feat: 0.937 G_ID: 0.309 G_Rec: 0.415 D_GP: 0.086 D_real: 0.985 D_fake: 0.395 +(epoch: 92, iters: 7872, time: 0.064) G_GAN: 0.304 G_GAN_Feat: 0.710 G_ID: 0.172 G_Rec: 0.391 D_GP: 0.025 D_real: 1.147 D_fake: 0.696 +(epoch: 92, iters: 8272, time: 0.064) G_GAN: 0.226 G_GAN_Feat: 0.787 G_ID: 0.303 G_Rec: 0.400 D_GP: 0.033 D_real: 0.955 D_fake: 0.774 +(epoch: 93, iters: 64, time: 0.064) G_GAN: 0.164 G_GAN_Feat: 0.836 G_ID: 0.182 G_Rec: 0.396 D_GP: 0.108 D_real: 0.759 D_fake: 0.837 +(epoch: 93, iters: 464, time: 0.064) G_GAN: 0.309 G_GAN_Feat: 0.854 G_ID: 0.333 G_Rec: 0.405 D_GP: 0.023 D_real: 1.024 D_fake: 0.691 +(epoch: 93, iters: 864, time: 0.064) G_GAN: 0.346 G_GAN_Feat: 0.863 G_ID: 0.220 G_Rec: 0.397 D_GP: 0.049 D_real: 0.974 D_fake: 0.655 +(epoch: 93, iters: 1264, time: 0.064) G_GAN: 0.180 G_GAN_Feat: 0.971 G_ID: 0.319 G_Rec: 0.387 D_GP: 0.207 D_real: 0.612 D_fake: 0.821 +(epoch: 93, iters: 1664, time: 0.064) G_GAN: 0.205 G_GAN_Feat: 0.706 G_ID: 0.205 G_Rec: 0.333 D_GP: 0.033 D_real: 1.022 D_fake: 0.795 +(epoch: 93, iters: 2064, time: 0.064) G_GAN: 0.099 G_GAN_Feat: 0.753 G_ID: 0.338 G_Rec: 0.428 D_GP: 0.025 D_real: 0.879 D_fake: 0.901 +(epoch: 93, iters: 2464, time: 0.064) G_GAN: 0.031 G_GAN_Feat: 0.666 G_ID: 0.154 G_Rec: 0.360 D_GP: 0.025 D_real: 0.872 D_fake: 0.969 +(epoch: 93, iters: 2864, time: 0.064) G_GAN: 0.378 G_GAN_Feat: 0.853 G_ID: 0.309 G_Rec: 0.378 D_GP: 0.047 D_real: 1.020 D_fake: 0.631 +(epoch: 93, iters: 3264, time: 0.064) G_GAN: 0.000 G_GAN_Feat: 0.748 G_ID: 0.155 G_Rec: 0.370 D_GP: 0.053 D_real: 0.699 D_fake: 1.000 +(epoch: 93, iters: 3664, time: 0.064) G_GAN: 0.802 G_GAN_Feat: 0.808 G_ID: 0.305 G_Rec: 0.357 D_GP: 0.032 D_real: 1.417 D_fake: 0.232 +(epoch: 93, iters: 4064, time: 0.064) G_GAN: 0.441 G_GAN_Feat: 0.798 G_ID: 0.188 G_Rec: 0.339 D_GP: 0.032 D_real: 1.269 D_fake: 0.622 +(epoch: 93, iters: 4464, time: 0.064) G_GAN: 0.094 G_GAN_Feat: 0.936 G_ID: 0.248 G_Rec: 0.376 D_GP: 0.032 D_real: 0.734 D_fake: 0.906 +(epoch: 93, iters: 4864, time: 0.064) G_GAN: 0.424 G_GAN_Feat: 0.846 G_ID: 0.199 G_Rec: 0.398 D_GP: 0.058 D_real: 1.208 D_fake: 0.579 +(epoch: 93, iters: 5264, time: 0.064) G_GAN: 0.330 G_GAN_Feat: 1.089 G_ID: 0.268 G_Rec: 0.414 D_GP: 0.083 D_real: 0.365 D_fake: 0.670 +(epoch: 93, iters: 5664, time: 0.064) G_GAN: -0.014 G_GAN_Feat: 0.766 G_ID: 0.194 G_Rec: 0.446 D_GP: 0.025 D_real: 0.779 D_fake: 1.014 +(epoch: 93, iters: 6064, time: 0.064) G_GAN: 0.041 G_GAN_Feat: 0.839 G_ID: 0.294 G_Rec: 0.368 D_GP: 0.036 D_real: 0.707 D_fake: 0.959 +(epoch: 93, iters: 6464, time: 0.064) G_GAN: 0.377 G_GAN_Feat: 1.039 G_ID: 0.174 G_Rec: 0.393 D_GP: 0.205 D_real: 0.538 D_fake: 0.625 +(epoch: 93, iters: 6864, time: 0.064) G_GAN: 0.217 G_GAN_Feat: 0.975 G_ID: 0.297 G_Rec: 0.445 D_GP: 0.049 D_real: 0.690 D_fake: 0.784 +(epoch: 93, iters: 7264, time: 0.064) G_GAN: 0.664 G_GAN_Feat: 0.872 G_ID: 0.183 G_Rec: 0.342 D_GP: 0.063 D_real: 1.233 D_fake: 0.496 +(epoch: 93, iters: 7664, time: 0.064) G_GAN: 0.685 G_GAN_Feat: 1.040 G_ID: 0.312 G_Rec: 0.446 D_GP: 0.112 D_real: 1.056 D_fake: 0.388 +(epoch: 93, iters: 8064, time: 0.064) G_GAN: 0.856 G_GAN_Feat: 0.879 G_ID: 0.210 G_Rec: 0.381 D_GP: 0.064 D_real: 1.354 D_fake: 0.403 +(epoch: 93, iters: 8464, time: 0.064) G_GAN: 0.301 G_GAN_Feat: 1.010 G_ID: 0.278 G_Rec: 0.413 D_GP: 0.035 D_real: 0.783 D_fake: 0.704 +(epoch: 94, iters: 256, time: 0.064) G_GAN: 0.450 G_GAN_Feat: 0.619 G_ID: 0.221 G_Rec: 0.408 D_GP: 0.020 D_real: 1.334 D_fake: 0.551 +(epoch: 94, iters: 656, time: 0.064) G_GAN: 0.488 G_GAN_Feat: 0.762 G_ID: 0.302 G_Rec: 0.398 D_GP: 0.027 D_real: 1.233 D_fake: 0.514 +(epoch: 94, iters: 1056, time: 0.064) G_GAN: 0.330 G_GAN_Feat: 0.969 G_ID: 0.200 G_Rec: 0.378 D_GP: 0.070 D_real: 0.793 D_fake: 0.670 +(epoch: 94, iters: 1456, time: 0.064) G_GAN: 0.674 G_GAN_Feat: 0.747 G_ID: 0.270 G_Rec: 0.411 D_GP: 0.026 D_real: 1.398 D_fake: 0.345 +(epoch: 94, iters: 1856, time: 0.064) G_GAN: 0.526 G_GAN_Feat: 0.712 G_ID: 0.165 G_Rec: 0.364 D_GP: 0.033 D_real: 1.375 D_fake: 0.475 +(epoch: 94, iters: 2256, time: 0.064) G_GAN: 0.431 G_GAN_Feat: 0.728 G_ID: 0.305 G_Rec: 0.347 D_GP: 0.029 D_real: 1.250 D_fake: 0.569 +(epoch: 94, iters: 2656, time: 0.064) G_GAN: 0.297 G_GAN_Feat: 0.665 G_ID: 0.197 G_Rec: 0.361 D_GP: 0.025 D_real: 1.078 D_fake: 0.704 +(epoch: 94, iters: 3056, time: 0.064) G_GAN: 0.588 G_GAN_Feat: 0.961 G_ID: 0.310 G_Rec: 0.389 D_GP: 0.054 D_real: 1.054 D_fake: 0.423 +(epoch: 94, iters: 3456, time: 0.064) G_GAN: 0.219 G_GAN_Feat: 0.745 G_ID: 0.185 G_Rec: 0.354 D_GP: 0.036 D_real: 0.958 D_fake: 0.781 +(epoch: 94, iters: 3856, time: 0.064) G_GAN: 0.568 G_GAN_Feat: 0.804 G_ID: 0.263 G_Rec: 0.368 D_GP: 0.035 D_real: 1.342 D_fake: 0.443 +(epoch: 94, iters: 4256, time: 0.064) G_GAN: 0.273 G_GAN_Feat: 0.630 G_ID: 0.186 G_Rec: 0.366 D_GP: 0.023 D_real: 1.114 D_fake: 0.728 +(epoch: 94, iters: 4656, time: 0.064) G_GAN: 0.153 G_GAN_Feat: 0.819 G_ID: 0.320 G_Rec: 0.387 D_GP: 0.043 D_real: 0.773 D_fake: 0.847 +(epoch: 94, iters: 5056, time: 0.064) G_GAN: 0.188 G_GAN_Feat: 0.642 G_ID: 0.172 G_Rec: 0.378 D_GP: 0.030 D_real: 1.077 D_fake: 0.813 +(epoch: 94, iters: 5456, time: 0.064) G_GAN: 0.539 G_GAN_Feat: 0.892 G_ID: 0.316 G_Rec: 0.393 D_GP: 0.062 D_real: 1.066 D_fake: 0.499 +(epoch: 94, iters: 5856, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 0.680 G_ID: 0.183 G_Rec: 0.374 D_GP: 0.027 D_real: 1.086 D_fake: 0.704 +(epoch: 94, iters: 6256, time: 0.064) G_GAN: 0.595 G_GAN_Feat: 0.836 G_ID: 0.313 G_Rec: 0.375 D_GP: 0.044 D_real: 1.223 D_fake: 0.409 +(epoch: 94, iters: 6656, time: 0.064) G_GAN: 0.306 G_GAN_Feat: 1.022 G_ID: 0.193 G_Rec: 0.379 D_GP: 0.201 D_real: 0.454 D_fake: 0.694 +(epoch: 94, iters: 7056, time: 0.064) G_GAN: 0.556 G_GAN_Feat: 1.168 G_ID: 0.271 G_Rec: 0.419 D_GP: 0.263 D_real: 0.653 D_fake: 0.457 +(epoch: 94, iters: 7456, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 0.640 G_ID: 0.161 G_Rec: 0.346 D_GP: 0.024 D_real: 1.238 D_fake: 0.662 +(epoch: 94, iters: 7856, time: 0.064) G_GAN: 0.542 G_GAN_Feat: 0.787 G_ID: 0.275 G_Rec: 0.381 D_GP: 0.034 D_real: 1.293 D_fake: 0.488 +(epoch: 94, iters: 8256, time: 0.064) G_GAN: 0.477 G_GAN_Feat: 0.796 G_ID: 0.241 G_Rec: 0.357 D_GP: 0.054 D_real: 1.208 D_fake: 0.526 +(epoch: 95, iters: 48, time: 0.064) G_GAN: 0.480 G_GAN_Feat: 1.107 G_ID: 0.267 G_Rec: 0.435 D_GP: 0.122 D_real: 0.533 D_fake: 0.521 +(epoch: 95, iters: 448, time: 0.064) G_GAN: -0.071 G_GAN_Feat: 0.872 G_ID: 0.200 G_Rec: 0.391 D_GP: 0.070 D_real: 0.561 D_fake: 1.071 +(epoch: 95, iters: 848, time: 0.064) G_GAN: 0.634 G_GAN_Feat: 1.181 G_ID: 0.275 G_Rec: 0.387 D_GP: 0.449 D_real: 0.591 D_fake: 0.382 +(epoch: 95, iters: 1248, time: 0.064) G_GAN: 0.024 G_GAN_Feat: 0.871 G_ID: 0.226 G_Rec: 0.383 D_GP: 0.093 D_real: 0.593 D_fake: 0.976 +(epoch: 95, iters: 1648, time: 0.064) G_GAN: 0.436 G_GAN_Feat: 0.670 G_ID: 0.275 G_Rec: 0.416 D_GP: 0.018 D_real: 1.343 D_fake: 0.567 +(epoch: 95, iters: 2048, time: 0.064) G_GAN: 0.430 G_GAN_Feat: 0.624 G_ID: 0.223 G_Rec: 0.356 D_GP: 0.019 D_real: 1.301 D_fake: 0.574 +(epoch: 95, iters: 2448, time: 0.064) G_GAN: 0.123 G_GAN_Feat: 0.729 G_ID: 0.261 G_Rec: 0.403 D_GP: 0.023 D_real: 0.976 D_fake: 0.877 +(epoch: 95, iters: 2848, time: 0.064) G_GAN: 0.291 G_GAN_Feat: 0.634 G_ID: 0.166 G_Rec: 0.359 D_GP: 0.025 D_real: 1.165 D_fake: 0.709 +(epoch: 95, iters: 3248, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 0.744 G_ID: 0.309 G_Rec: 0.383 D_GP: 0.031 D_real: 0.952 D_fake: 0.830 +(epoch: 95, iters: 3648, time: 0.064) G_GAN: -0.005 G_GAN_Feat: 0.720 G_ID: 0.225 G_Rec: 0.390 D_GP: 0.047 D_real: 0.750 D_fake: 1.005 +(epoch: 95, iters: 4048, time: 0.064) G_GAN: 0.316 G_GAN_Feat: 0.752 G_ID: 0.306 G_Rec: 0.403 D_GP: 0.022 D_real: 0.986 D_fake: 0.685 +(epoch: 95, iters: 4448, time: 0.064) G_GAN: -0.037 G_GAN_Feat: 0.797 G_ID: 0.160 G_Rec: 0.362 D_GP: 0.081 D_real: 0.670 D_fake: 1.037 +(epoch: 95, iters: 4848, time: 0.064) G_GAN: 0.319 G_GAN_Feat: 0.805 G_ID: 0.330 G_Rec: 0.418 D_GP: 0.033 D_real: 1.093 D_fake: 0.682 +(epoch: 95, iters: 5248, time: 0.064) G_GAN: 0.273 G_GAN_Feat: 0.822 G_ID: 0.215 G_Rec: 0.353 D_GP: 0.040 D_real: 0.965 D_fake: 0.727 +(epoch: 95, iters: 5648, time: 0.064) G_GAN: 0.328 G_GAN_Feat: 0.815 G_ID: 0.268 G_Rec: 0.384 D_GP: 0.039 D_real: 1.038 D_fake: 0.677 +(epoch: 95, iters: 6048, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.784 G_ID: 0.200 G_Rec: 0.335 D_GP: 0.041 D_real: 0.935 D_fake: 0.675 +(epoch: 95, iters: 6448, time: 0.064) G_GAN: -0.013 G_GAN_Feat: 1.069 G_ID: 0.309 G_Rec: 0.388 D_GP: 0.047 D_real: 0.220 D_fake: 1.013 +(epoch: 95, iters: 6848, time: 0.064) G_GAN: 0.319 G_GAN_Feat: 0.676 G_ID: 0.200 G_Rec: 0.324 D_GP: 0.020 D_real: 1.170 D_fake: 0.682 +(epoch: 95, iters: 7248, time: 0.064) G_GAN: 0.546 G_GAN_Feat: 0.870 G_ID: 0.270 G_Rec: 0.405 D_GP: 0.029 D_real: 1.116 D_fake: 0.457 +(epoch: 95, iters: 7648, time: 0.064) G_GAN: 0.459 G_GAN_Feat: 0.790 G_ID: 0.170 G_Rec: 0.350 D_GP: 0.075 D_real: 1.140 D_fake: 0.549 +(epoch: 95, iters: 8048, time: 0.064) G_GAN: 0.327 G_GAN_Feat: 1.308 G_ID: 0.320 G_Rec: 0.402 D_GP: 0.421 D_real: 0.552 D_fake: 0.678 +(epoch: 95, iters: 8448, time: 0.064) G_GAN: 0.347 G_GAN_Feat: 1.082 G_ID: 0.167 G_Rec: 0.391 D_GP: 0.193 D_real: 0.457 D_fake: 0.653 +(epoch: 96, iters: 240, time: 0.064) G_GAN: 0.447 G_GAN_Feat: 1.021 G_ID: 0.273 G_Rec: 0.432 D_GP: 0.111 D_real: 1.027 D_fake: 0.559 +(epoch: 96, iters: 640, time: 0.064) G_GAN: 0.037 G_GAN_Feat: 0.747 G_ID: 0.173 G_Rec: 0.337 D_GP: 0.031 D_real: 0.857 D_fake: 0.963 +(epoch: 96, iters: 1040, time: 0.064) G_GAN: 0.323 G_GAN_Feat: 0.729 G_ID: 0.336 G_Rec: 0.393 D_GP: 0.022 D_real: 1.153 D_fake: 0.677 +(epoch: 96, iters: 1440, time: 0.064) G_GAN: 0.380 G_GAN_Feat: 0.624 G_ID: 0.165 G_Rec: 0.367 D_GP: 0.020 D_real: 1.308 D_fake: 0.620 +(epoch: 96, iters: 1840, time: 0.064) G_GAN: 0.366 G_GAN_Feat: 0.759 G_ID: 0.307 G_Rec: 0.394 D_GP: 0.027 D_real: 1.066 D_fake: 0.636 +(epoch: 96, iters: 2240, time: 0.064) G_GAN: 0.185 G_GAN_Feat: 0.727 G_ID: 0.190 G_Rec: 0.369 D_GP: 0.048 D_real: 1.012 D_fake: 0.815 +(epoch: 96, iters: 2640, time: 0.064) G_GAN: 0.471 G_GAN_Feat: 0.898 G_ID: 0.277 G_Rec: 0.390 D_GP: 0.069 D_real: 1.019 D_fake: 0.531 +(epoch: 96, iters: 3040, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.751 G_ID: 0.196 G_Rec: 0.351 D_GP: 0.050 D_real: 1.047 D_fake: 0.675 +(epoch: 96, iters: 3440, time: 0.064) G_GAN: 0.410 G_GAN_Feat: 0.903 G_ID: 0.279 G_Rec: 0.395 D_GP: 0.043 D_real: 0.955 D_fake: 0.593 +(epoch: 96, iters: 3840, time: 0.064) G_GAN: 0.273 G_GAN_Feat: 0.867 G_ID: 0.190 G_Rec: 0.374 D_GP: 0.048 D_real: 0.782 D_fake: 0.727 +(epoch: 96, iters: 4240, time: 0.064) G_GAN: 0.087 G_GAN_Feat: 0.755 G_ID: 0.293 G_Rec: 0.380 D_GP: 0.028 D_real: 0.813 D_fake: 0.913 +(epoch: 96, iters: 4640, time: 0.064) G_GAN: 0.225 G_GAN_Feat: 0.962 G_ID: 0.168 G_Rec: 0.394 D_GP: 0.141 D_real: 0.509 D_fake: 0.776 +(epoch: 96, iters: 5040, time: 0.064) G_GAN: 0.315 G_GAN_Feat: 0.806 G_ID: 0.297 G_Rec: 0.403 D_GP: 0.035 D_real: 1.100 D_fake: 0.686 +(epoch: 96, iters: 5440, time: 0.064) G_GAN: 0.147 G_GAN_Feat: 0.690 G_ID: 0.183 G_Rec: 0.334 D_GP: 0.024 D_real: 1.002 D_fake: 0.853 +(epoch: 96, iters: 5840, time: 0.064) G_GAN: 0.449 G_GAN_Feat: 1.015 G_ID: 0.274 G_Rec: 0.397 D_GP: 0.139 D_real: 0.762 D_fake: 0.553 +(epoch: 96, iters: 6240, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.667 G_ID: 0.185 G_Rec: 0.350 D_GP: 0.027 D_real: 1.164 D_fake: 0.719 +(epoch: 96, iters: 6640, time: 0.064) G_GAN: 0.340 G_GAN_Feat: 0.867 G_ID: 0.264 G_Rec: 0.406 D_GP: 0.044 D_real: 0.978 D_fake: 0.661 +(epoch: 96, iters: 7040, time: 0.064) G_GAN: 0.496 G_GAN_Feat: 0.764 G_ID: 0.189 G_Rec: 0.358 D_GP: 0.031 D_real: 1.257 D_fake: 0.513 +(epoch: 96, iters: 7440, time: 0.064) G_GAN: 0.303 G_GAN_Feat: 0.821 G_ID: 0.243 G_Rec: 0.365 D_GP: 0.034 D_real: 1.058 D_fake: 0.698 +(epoch: 96, iters: 7840, time: 0.064) G_GAN: 0.419 G_GAN_Feat: 0.901 G_ID: 0.174 G_Rec: 0.361 D_GP: 0.043 D_real: 1.159 D_fake: 0.581 +(epoch: 96, iters: 8240, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 0.999 G_ID: 0.304 G_Rec: 0.393 D_GP: 0.088 D_real: 0.528 D_fake: 0.688 +(epoch: 97, iters: 32, time: 0.064) G_GAN: 0.337 G_GAN_Feat: 0.786 G_ID: 0.190 G_Rec: 0.364 D_GP: 0.048 D_real: 1.145 D_fake: 0.663 +(epoch: 97, iters: 432, time: 0.064) G_GAN: 0.140 G_GAN_Feat: 0.799 G_ID: 0.333 G_Rec: 0.397 D_GP: 0.041 D_real: 0.840 D_fake: 0.861 +(epoch: 97, iters: 832, time: 0.064) G_GAN: 0.164 G_GAN_Feat: 1.120 G_ID: 0.218 G_Rec: 0.404 D_GP: 0.161 D_real: 0.382 D_fake: 0.836 +(epoch: 97, iters: 1232, time: 0.064) G_GAN: 0.655 G_GAN_Feat: 0.976 G_ID: 0.276 G_Rec: 0.412 D_GP: 0.050 D_real: 1.069 D_fake: 0.361 +(epoch: 97, iters: 1632, time: 0.064) G_GAN: 0.334 G_GAN_Feat: 0.914 G_ID: 0.200 G_Rec: 0.335 D_GP: 0.046 D_real: 0.964 D_fake: 0.671 +(epoch: 97, iters: 2032, time: 0.064) G_GAN: 0.507 G_GAN_Feat: 0.716 G_ID: 0.228 G_Rec: 0.357 D_GP: 0.024 D_real: 1.333 D_fake: 0.498 +(epoch: 97, iters: 2432, time: 0.064) G_GAN: 0.297 G_GAN_Feat: 0.658 G_ID: 0.186 G_Rec: 0.332 D_GP: 0.025 D_real: 1.149 D_fake: 0.703 +(epoch: 97, iters: 2832, time: 0.064) G_GAN: 0.612 G_GAN_Feat: 0.833 G_ID: 0.295 G_Rec: 0.374 D_GP: 0.035 D_real: 1.345 D_fake: 0.393 +(epoch: 97, iters: 3232, time: 0.064) G_GAN: 0.362 G_GAN_Feat: 0.959 G_ID: 0.160 G_Rec: 0.376 D_GP: 0.054 D_real: 0.683 D_fake: 0.642 +(epoch: 97, iters: 3632, time: 0.064) G_GAN: 0.413 G_GAN_Feat: 0.839 G_ID: 0.302 G_Rec: 0.397 D_GP: 0.032 D_real: 1.124 D_fake: 0.588 +(epoch: 97, iters: 4032, time: 0.064) G_GAN: 0.277 G_GAN_Feat: 0.888 G_ID: 0.150 G_Rec: 0.341 D_GP: 0.102 D_real: 0.751 D_fake: 0.724 +(epoch: 97, iters: 4432, time: 0.064) G_GAN: 0.452 G_GAN_Feat: 0.965 G_ID: 0.296 G_Rec: 0.396 D_GP: 0.045 D_real: 1.031 D_fake: 0.548 +(epoch: 97, iters: 4832, time: 0.064) G_GAN: 0.577 G_GAN_Feat: 0.789 G_ID: 0.209 G_Rec: 0.388 D_GP: 0.062 D_real: 1.308 D_fake: 0.443 +(epoch: 97, iters: 5232, time: 0.064) G_GAN: 0.086 G_GAN_Feat: 0.832 G_ID: 0.285 G_Rec: 0.393 D_GP: 0.032 D_real: 0.723 D_fake: 0.914 +(epoch: 97, iters: 5632, time: 0.064) G_GAN: 0.317 G_GAN_Feat: 0.754 G_ID: 0.187 G_Rec: 0.388 D_GP: 0.041 D_real: 1.057 D_fake: 0.683 +(epoch: 97, iters: 6032, time: 0.064) G_GAN: 0.449 G_GAN_Feat: 0.989 G_ID: 0.318 G_Rec: 0.381 D_GP: 0.086 D_real: 0.670 D_fake: 0.555 +(epoch: 97, iters: 6432, time: 0.064) G_GAN: 0.201 G_GAN_Feat: 0.682 G_ID: 0.179 G_Rec: 0.369 D_GP: 0.023 D_real: 1.106 D_fake: 0.799 +(epoch: 97, iters: 6832, time: 0.064) G_GAN: 0.397 G_GAN_Feat: 0.758 G_ID: 0.270 G_Rec: 0.387 D_GP: 0.025 D_real: 1.109 D_fake: 0.604 +(epoch: 97, iters: 7232, time: 0.064) G_GAN: 0.015 G_GAN_Feat: 0.906 G_ID: 0.178 G_Rec: 0.390 D_GP: 0.190 D_real: 0.594 D_fake: 0.985 +(epoch: 97, iters: 7632, time: 0.064) G_GAN: 0.519 G_GAN_Feat: 0.876 G_ID: 0.317 G_Rec: 0.408 D_GP: 0.050 D_real: 1.175 D_fake: 0.502 +(epoch: 97, iters: 8032, time: 0.064) G_GAN: 0.514 G_GAN_Feat: 0.786 G_ID: 0.173 G_Rec: 0.348 D_GP: 0.033 D_real: 1.290 D_fake: 0.488 +(epoch: 97, iters: 8432, time: 0.064) G_GAN: 0.585 G_GAN_Feat: 1.036 G_ID: 0.307 G_Rec: 0.432 D_GP: 0.125 D_real: 0.794 D_fake: 0.428 +(epoch: 98, iters: 224, time: 0.064) G_GAN: 0.375 G_GAN_Feat: 0.692 G_ID: 0.173 G_Rec: 0.345 D_GP: 0.030 D_real: 1.170 D_fake: 0.626 +(epoch: 98, iters: 624, time: 0.064) G_GAN: 0.352 G_GAN_Feat: 0.762 G_ID: 0.321 G_Rec: 0.407 D_GP: 0.027 D_real: 1.108 D_fake: 0.649 +(epoch: 98, iters: 1024, time: 0.064) G_GAN: 0.177 G_GAN_Feat: 0.962 G_ID: 0.182 G_Rec: 0.399 D_GP: 0.076 D_real: 0.500 D_fake: 0.823 +(epoch: 98, iters: 1424, time: 0.064) G_GAN: 0.450 G_GAN_Feat: 0.978 G_ID: 0.261 G_Rec: 0.443 D_GP: 0.045 D_real: 0.920 D_fake: 0.577 +(epoch: 98, iters: 1824, time: 0.064) G_GAN: 0.319 G_GAN_Feat: 0.927 G_ID: 0.174 G_Rec: 0.391 D_GP: 0.028 D_real: 1.051 D_fake: 0.710 +(epoch: 98, iters: 2224, time: 0.064) G_GAN: 0.167 G_GAN_Feat: 0.780 G_ID: 0.288 G_Rec: 0.402 D_GP: 0.022 D_real: 0.942 D_fake: 0.833 +(epoch: 98, iters: 2624, time: 0.064) G_GAN: 0.144 G_GAN_Feat: 0.835 G_ID: 0.176 G_Rec: 0.361 D_GP: 0.055 D_real: 0.792 D_fake: 0.857 +(epoch: 98, iters: 3024, time: 0.064) G_GAN: 0.242 G_GAN_Feat: 1.069 G_ID: 0.318 G_Rec: 0.459 D_GP: 0.140 D_real: 0.429 D_fake: 0.762 +(epoch: 98, iters: 3424, time: 0.064) G_GAN: 0.611 G_GAN_Feat: 0.826 G_ID: 0.164 G_Rec: 0.374 D_GP: 0.037 D_real: 1.342 D_fake: 0.423 +(epoch: 98, iters: 3824, time: 0.064) G_GAN: 0.473 G_GAN_Feat: 0.926 G_ID: 0.330 G_Rec: 0.387 D_GP: 0.049 D_real: 0.994 D_fake: 0.528 +(epoch: 98, iters: 4224, time: 0.064) G_GAN: 0.285 G_GAN_Feat: 0.760 G_ID: 0.191 G_Rec: 0.357 D_GP: 0.031 D_real: 1.024 D_fake: 0.715 +(epoch: 98, iters: 4624, time: 0.064) G_GAN: 0.594 G_GAN_Feat: 1.090 G_ID: 0.263 G_Rec: 0.401 D_GP: 0.103 D_real: 0.863 D_fake: 0.442 +(epoch: 98, iters: 5024, time: 0.064) G_GAN: 0.049 G_GAN_Feat: 0.795 G_ID: 0.163 G_Rec: 0.347 D_GP: 0.045 D_real: 0.762 D_fake: 0.952 +(epoch: 98, iters: 5424, time: 0.064) G_GAN: 0.344 G_GAN_Feat: 0.824 G_ID: 0.287 G_Rec: 0.372 D_GP: 0.030 D_real: 1.030 D_fake: 0.659 +(epoch: 98, iters: 5824, time: 0.064) G_GAN: 0.084 G_GAN_Feat: 0.910 G_ID: 0.168 G_Rec: 0.425 D_GP: 0.061 D_real: 0.591 D_fake: 0.916 +(epoch: 98, iters: 6224, time: 0.064) G_GAN: 0.270 G_GAN_Feat: 1.198 G_ID: 0.255 G_Rec: 0.386 D_GP: 0.368 D_real: 0.549 D_fake: 0.735 +(epoch: 98, iters: 6624, time: 0.064) G_GAN: 0.399 G_GAN_Feat: 0.751 G_ID: 0.188 G_Rec: 0.372 D_GP: 0.030 D_real: 1.237 D_fake: 0.604 +(epoch: 98, iters: 7024, time: 0.064) G_GAN: 0.154 G_GAN_Feat: 0.812 G_ID: 0.260 G_Rec: 0.401 D_GP: 0.032 D_real: 0.875 D_fake: 0.846 +(epoch: 98, iters: 7424, time: 0.064) G_GAN: 0.246 G_GAN_Feat: 0.841 G_ID: 0.172 G_Rec: 0.356 D_GP: 0.062 D_real: 0.803 D_fake: 0.754 +(epoch: 98, iters: 7824, time: 0.064) G_GAN: 0.498 G_GAN_Feat: 0.709 G_ID: 0.310 G_Rec: 0.393 D_GP: 0.020 D_real: 1.324 D_fake: 0.504 +(epoch: 98, iters: 8224, time: 0.064) G_GAN: 0.024 G_GAN_Feat: 0.717 G_ID: 0.170 G_Rec: 0.374 D_GP: 0.023 D_real: 0.944 D_fake: 0.976 +(epoch: 99, iters: 16, time: 0.064) G_GAN: 0.287 G_GAN_Feat: 0.863 G_ID: 0.308 G_Rec: 0.400 D_GP: 0.034 D_real: 0.918 D_fake: 0.713 +(epoch: 99, iters: 416, time: 0.064) G_GAN: 0.574 G_GAN_Feat: 0.781 G_ID: 0.160 G_Rec: 0.361 D_GP: 0.037 D_real: 1.394 D_fake: 0.434 +(epoch: 99, iters: 816, time: 0.064) G_GAN: 0.298 G_GAN_Feat: 0.903 G_ID: 0.290 G_Rec: 0.366 D_GP: 0.055 D_real: 0.860 D_fake: 0.703 +(epoch: 99, iters: 1216, time: 0.064) G_GAN: 0.735 G_GAN_Feat: 0.858 G_ID: 0.168 G_Rec: 0.344 D_GP: 0.078 D_real: 1.299 D_fake: 0.336 +(epoch: 99, iters: 1616, time: 0.064) G_GAN: 0.372 G_GAN_Feat: 1.304 G_ID: 0.291 G_Rec: 0.384 D_GP: 0.108 D_real: 0.440 D_fake: 0.631 +(epoch: 99, iters: 2016, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 0.617 G_ID: 0.162 G_Rec: 0.391 D_GP: 0.024 D_real: 1.259 D_fake: 0.706 +(epoch: 99, iters: 2416, time: 0.064) G_GAN: 0.228 G_GAN_Feat: 0.957 G_ID: 0.313 G_Rec: 0.451 D_GP: 0.059 D_real: 0.790 D_fake: 0.773 +(epoch: 99, iters: 2816, time: 0.064) G_GAN: 0.308 G_GAN_Feat: 0.720 G_ID: 0.185 G_Rec: 0.355 D_GP: 0.026 D_real: 1.118 D_fake: 0.692 +(epoch: 99, iters: 3216, time: 0.064) G_GAN: 0.482 G_GAN_Feat: 0.816 G_ID: 0.270 G_Rec: 0.356 D_GP: 0.053 D_real: 1.133 D_fake: 0.522 +(epoch: 99, iters: 3616, time: 0.064) G_GAN: 0.042 G_GAN_Feat: 0.754 G_ID: 0.216 G_Rec: 0.380 D_GP: 0.031 D_real: 0.903 D_fake: 0.958 +(epoch: 99, iters: 4016, time: 0.064) G_GAN: 0.394 G_GAN_Feat: 0.868 G_ID: 0.240 G_Rec: 0.386 D_GP: 0.033 D_real: 1.036 D_fake: 0.608 +(epoch: 99, iters: 4416, time: 0.064) G_GAN: 0.330 G_GAN_Feat: 0.806 G_ID: 0.169 G_Rec: 0.362 D_GP: 0.038 D_real: 1.211 D_fake: 0.681 +(epoch: 99, iters: 4816, time: 0.064) G_GAN: 0.413 G_GAN_Feat: 1.025 G_ID: 0.298 G_Rec: 0.392 D_GP: 0.075 D_real: 0.773 D_fake: 0.588 +(epoch: 99, iters: 5216, time: 0.064) G_GAN: 0.349 G_GAN_Feat: 0.957 G_ID: 0.183 G_Rec: 0.356 D_GP: 0.087 D_real: 0.868 D_fake: 0.652 +(epoch: 99, iters: 5616, time: 0.064) G_GAN: 0.260 G_GAN_Feat: 0.986 G_ID: 0.304 G_Rec: 0.422 D_GP: 0.112 D_real: 0.756 D_fake: 0.756 +(epoch: 99, iters: 6016, time: 0.064) G_GAN: 0.633 G_GAN_Feat: 1.019 G_ID: 0.175 G_Rec: 0.400 D_GP: 0.139 D_real: 1.024 D_fake: 0.499 +(epoch: 99, iters: 6416, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 1.122 G_ID: 0.290 G_Rec: 0.450 D_GP: 0.189 D_real: 0.560 D_fake: 0.745 +(epoch: 99, iters: 6816, time: 0.064) G_GAN: 0.071 G_GAN_Feat: 0.854 G_ID: 0.179 G_Rec: 0.342 D_GP: 0.043 D_real: 0.693 D_fake: 0.929 +(epoch: 99, iters: 7216, time: 0.064) G_GAN: 0.434 G_GAN_Feat: 1.059 G_ID: 0.274 G_Rec: 0.374 D_GP: 0.062 D_real: 0.752 D_fake: 0.578 +(epoch: 99, iters: 7616, time: 0.064) G_GAN: 0.691 G_GAN_Feat: 1.015 G_ID: 0.178 G_Rec: 0.370 D_GP: 0.115 D_real: 0.837 D_fake: 0.331 +(epoch: 99, iters: 8016, time: 0.064) G_GAN: 0.423 G_GAN_Feat: 0.936 G_ID: 0.328 G_Rec: 0.374 D_GP: 0.093 D_real: 0.807 D_fake: 0.579 +(epoch: 99, iters: 8416, time: 0.064) G_GAN: 0.324 G_GAN_Feat: 0.873 G_ID: 0.160 G_Rec: 0.381 D_GP: 0.031 D_real: 1.032 D_fake: 0.676 +(epoch: 100, iters: 208, time: 0.064) G_GAN: 0.745 G_GAN_Feat: 0.973 G_ID: 0.293 G_Rec: 0.393 D_GP: 0.050 D_real: 1.343 D_fake: 0.344 +(epoch: 100, iters: 608, time: 0.064) G_GAN: 0.366 G_GAN_Feat: 0.784 G_ID: 0.187 G_Rec: 0.360 D_GP: 0.045 D_real: 1.105 D_fake: 0.634 +(epoch: 100, iters: 1008, time: 0.064) G_GAN: 0.634 G_GAN_Feat: 1.135 G_ID: 0.303 G_Rec: 0.407 D_GP: 0.197 D_real: 0.779 D_fake: 0.448 +(epoch: 100, iters: 1408, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 0.724 G_ID: 0.160 G_Rec: 0.402 D_GP: 0.029 D_real: 1.147 D_fake: 0.689 +(epoch: 100, iters: 1808, time: 0.064) G_GAN: 0.320 G_GAN_Feat: 0.993 G_ID: 0.274 G_Rec: 0.387 D_GP: 0.046 D_real: 0.629 D_fake: 0.681 +(epoch: 100, iters: 2208, time: 0.064) G_GAN: 0.394 G_GAN_Feat: 1.004 G_ID: 0.186 G_Rec: 0.400 D_GP: 0.101 D_real: 0.568 D_fake: 0.763 +(epoch: 100, iters: 2608, time: 0.064) G_GAN: 0.178 G_GAN_Feat: 0.894 G_ID: 0.344 G_Rec: 0.399 D_GP: 0.024 D_real: 0.935 D_fake: 0.822 +(epoch: 100, iters: 3008, time: 0.064) G_GAN: 0.154 G_GAN_Feat: 0.778 G_ID: 0.180 G_Rec: 0.366 D_GP: 0.032 D_real: 1.063 D_fake: 0.847 +(epoch: 100, iters: 3408, time: 0.064) G_GAN: 0.287 G_GAN_Feat: 0.838 G_ID: 0.273 G_Rec: 0.444 D_GP: 0.020 D_real: 1.137 D_fake: 0.713 +(epoch: 100, iters: 3808, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.832 G_ID: 0.194 G_Rec: 0.389 D_GP: 0.031 D_real: 1.034 D_fake: 0.714 +(epoch: 100, iters: 4208, time: 0.064) G_GAN: 0.291 G_GAN_Feat: 0.820 G_ID: 0.300 G_Rec: 0.448 D_GP: 0.022 D_real: 1.021 D_fake: 0.710 +(epoch: 100, iters: 4608, time: 0.064) G_GAN: 0.303 G_GAN_Feat: 0.716 G_ID: 0.170 G_Rec: 0.317 D_GP: 0.036 D_real: 1.090 D_fake: 0.698 +(epoch: 100, iters: 5008, time: 0.064) G_GAN: 0.338 G_GAN_Feat: 1.058 G_ID: 0.261 G_Rec: 0.405 D_GP: 0.050 D_real: 0.481 D_fake: 0.662 +(epoch: 100, iters: 5408, time: 0.064) G_GAN: 0.528 G_GAN_Feat: 1.171 G_ID: 0.172 G_Rec: 0.401 D_GP: 0.259 D_real: 1.067 D_fake: 0.523 +(epoch: 100, iters: 5808, time: 0.064) G_GAN: 0.593 G_GAN_Feat: 0.989 G_ID: 0.294 G_Rec: 0.399 D_GP: 0.029 D_real: 1.040 D_fake: 0.411 +(epoch: 100, iters: 6208, time: 0.064) G_GAN: 0.492 G_GAN_Feat: 0.846 G_ID: 0.172 G_Rec: 0.403 D_GP: 0.049 D_real: 1.210 D_fake: 0.552 +(epoch: 100, iters: 6608, time: 0.064) G_GAN: 0.238 G_GAN_Feat: 0.954 G_ID: 0.265 G_Rec: 0.454 D_GP: 0.033 D_real: 0.674 D_fake: 0.762 +(epoch: 100, iters: 7008, time: 0.064) G_GAN: 0.214 G_GAN_Feat: 0.745 G_ID: 0.151 G_Rec: 0.356 D_GP: 0.022 D_real: 1.046 D_fake: 0.786 +(epoch: 100, iters: 7408, time: 0.064) G_GAN: 0.106 G_GAN_Feat: 0.738 G_ID: 0.286 G_Rec: 0.356 D_GP: 0.027 D_real: 0.928 D_fake: 0.894 +(epoch: 100, iters: 7808, time: 0.064) G_GAN: 0.134 G_GAN_Feat: 1.120 G_ID: 0.187 G_Rec: 0.370 D_GP: 0.102 D_real: 0.413 D_fake: 0.866 +(epoch: 100, iters: 8208, time: 0.064) G_GAN: 0.051 G_GAN_Feat: 1.090 G_ID: 0.322 G_Rec: 0.414 D_GP: 0.390 D_real: 0.526 D_fake: 0.950 +(epoch: 100, iters: 8608, time: 0.064) G_GAN: 0.190 G_GAN_Feat: 0.715 G_ID: 0.187 G_Rec: 0.339 D_GP: 0.033 D_real: 1.008 D_fake: 0.810 +(epoch: 101, iters: 400, time: 0.064) G_GAN: 0.617 G_GAN_Feat: 0.800 G_ID: 0.295 G_Rec: 0.403 D_GP: 0.030 D_real: 1.377 D_fake: 0.389 +(epoch: 101, iters: 800, time: 0.064) G_GAN: 0.827 G_GAN_Feat: 0.825 G_ID: 0.156 G_Rec: 0.389 D_GP: 0.021 D_real: 1.616 D_fake: 0.234 +(epoch: 101, iters: 1200, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.776 G_ID: 0.267 G_Rec: 0.404 D_GP: 0.029 D_real: 1.045 D_fake: 0.670 +(epoch: 101, iters: 1600, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.865 G_ID: 0.164 G_Rec: 0.411 D_GP: 0.067 D_real: 0.733 D_fake: 0.752 +(epoch: 101, iters: 2000, time: 0.064) G_GAN: 0.372 G_GAN_Feat: 0.930 G_ID: 0.279 G_Rec: 0.407 D_GP: 0.084 D_real: 0.772 D_fake: 0.629 +(epoch: 101, iters: 2400, time: 0.064) G_GAN: 0.677 G_GAN_Feat: 0.845 G_ID: 0.218 G_Rec: 0.335 D_GP: 0.041 D_real: 1.510 D_fake: 0.357 +(epoch: 101, iters: 2800, time: 0.064) G_GAN: 0.293 G_GAN_Feat: 1.006 G_ID: 0.289 G_Rec: 0.417 D_GP: 0.036 D_real: 0.857 D_fake: 0.707 +(epoch: 101, iters: 3200, time: 0.064) G_GAN: 0.164 G_GAN_Feat: 0.875 G_ID: 0.176 G_Rec: 0.368 D_GP: 0.027 D_real: 1.063 D_fake: 0.836 +(epoch: 101, iters: 3600, time: 0.064) G_GAN: 0.449 G_GAN_Feat: 1.347 G_ID: 0.275 G_Rec: 0.463 D_GP: 0.059 D_real: 0.580 D_fake: 0.560 +(epoch: 101, iters: 4000, time: 0.064) G_GAN: 0.352 G_GAN_Feat: 0.705 G_ID: 0.172 G_Rec: 0.354 D_GP: 0.028 D_real: 1.209 D_fake: 0.648 +(epoch: 101, iters: 4400, time: 0.064) G_GAN: 0.561 G_GAN_Feat: 1.155 G_ID: 0.265 G_Rec: 0.396 D_GP: 0.069 D_real: 0.738 D_fake: 0.443 +(epoch: 101, iters: 4800, time: 0.064) G_GAN: 0.138 G_GAN_Feat: 0.706 G_ID: 0.188 G_Rec: 0.347 D_GP: 0.024 D_real: 0.971 D_fake: 0.862 +(epoch: 101, iters: 5200, time: 0.064) G_GAN: 0.245 G_GAN_Feat: 1.010 G_ID: 0.255 G_Rec: 0.434 D_GP: 0.104 D_real: 0.591 D_fake: 0.755 +(epoch: 101, iters: 5600, time: 0.064) G_GAN: 0.176 G_GAN_Feat: 0.700 G_ID: 0.185 G_Rec: 0.308 D_GP: 0.025 D_real: 1.125 D_fake: 0.824 +(epoch: 101, iters: 6000, time: 0.064) G_GAN: 0.726 G_GAN_Feat: 1.096 G_ID: 0.244 G_Rec: 0.431 D_GP: 0.114 D_real: 0.923 D_fake: 0.311 +(epoch: 101, iters: 6400, time: 0.064) G_GAN: 0.841 G_GAN_Feat: 0.856 G_ID: 0.164 G_Rec: 0.372 D_GP: 0.031 D_real: 1.522 D_fake: 0.360 +(epoch: 101, iters: 6800, time: 0.064) G_GAN: 0.374 G_GAN_Feat: 0.881 G_ID: 0.274 G_Rec: 0.416 D_GP: 0.042 D_real: 1.061 D_fake: 0.633 +(epoch: 101, iters: 7200, time: 0.064) G_GAN: 0.447 G_GAN_Feat: 0.779 G_ID: 0.164 G_Rec: 0.350 D_GP: 0.035 D_real: 1.232 D_fake: 0.557 +(epoch: 101, iters: 7600, time: 0.064) G_GAN: 0.196 G_GAN_Feat: 0.907 G_ID: 0.254 G_Rec: 0.397 D_GP: 0.039 D_real: 0.846 D_fake: 0.804 +(epoch: 101, iters: 8000, time: 0.064) G_GAN: 0.217 G_GAN_Feat: 0.740 G_ID: 0.193 G_Rec: 0.423 D_GP: 0.020 D_real: 1.117 D_fake: 0.783 +(epoch: 101, iters: 8400, time: 0.064) G_GAN: 0.600 G_GAN_Feat: 0.707 G_ID: 0.268 G_Rec: 0.473 D_GP: 0.020 D_real: 1.385 D_fake: 0.405 +(epoch: 102, iters: 192, time: 0.064) G_GAN: 0.387 G_GAN_Feat: 0.614 G_ID: 0.199 G_Rec: 0.328 D_GP: 0.021 D_real: 1.336 D_fake: 0.613 +(epoch: 102, iters: 592, time: 0.064) G_GAN: 0.275 G_GAN_Feat: 0.735 G_ID: 0.252 G_Rec: 0.363 D_GP: 0.026 D_real: 1.138 D_fake: 0.725 +(epoch: 102, iters: 992, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.637 G_ID: 0.204 G_Rec: 0.351 D_GP: 0.027 D_real: 1.137 D_fake: 0.722 +(epoch: 102, iters: 1392, time: 0.064) G_GAN: 0.544 G_GAN_Feat: 0.850 G_ID: 0.243 G_Rec: 0.413 D_GP: 0.042 D_real: 1.137 D_fake: 0.465 +(epoch: 102, iters: 1792, time: 0.064) G_GAN: -0.030 G_GAN_Feat: 0.881 G_ID: 0.199 G_Rec: 0.389 D_GP: 0.272 D_real: 0.540 D_fake: 1.030 +(epoch: 102, iters: 2192, time: 0.064) G_GAN: 0.541 G_GAN_Feat: 0.794 G_ID: 0.283 G_Rec: 0.402 D_GP: 0.025 D_real: 1.340 D_fake: 0.479 +(epoch: 102, iters: 2592, time: 0.064) G_GAN: 0.261 G_GAN_Feat: 0.798 G_ID: 0.193 G_Rec: 0.369 D_GP: 0.042 D_real: 0.971 D_fake: 0.739 +(epoch: 102, iters: 2992, time: 0.064) G_GAN: 0.457 G_GAN_Feat: 0.913 G_ID: 0.269 G_Rec: 0.403 D_GP: 0.078 D_real: 0.838 D_fake: 0.544 +(epoch: 102, iters: 3392, time: 0.064) G_GAN: 0.343 G_GAN_Feat: 0.891 G_ID: 0.159 G_Rec: 0.378 D_GP: 0.122 D_real: 0.953 D_fake: 0.658 +(epoch: 102, iters: 3792, time: 0.064) G_GAN: 0.214 G_GAN_Feat: 0.992 G_ID: 0.293 G_Rec: 0.440 D_GP: 0.084 D_real: 0.596 D_fake: 0.787 +(epoch: 102, iters: 4192, time: 0.064) G_GAN: 0.234 G_GAN_Feat: 0.735 G_ID: 0.196 G_Rec: 0.410 D_GP: 0.040 D_real: 1.128 D_fake: 0.777 +(epoch: 102, iters: 4592, time: 0.064) G_GAN: 0.449 G_GAN_Feat: 0.789 G_ID: 0.249 G_Rec: 0.370 D_GP: 0.034 D_real: 1.126 D_fake: 0.553 +(epoch: 102, iters: 4992, time: 0.064) G_GAN: 0.486 G_GAN_Feat: 0.874 G_ID: 0.178 G_Rec: 0.344 D_GP: 0.063 D_real: 1.047 D_fake: 0.516 +(epoch: 102, iters: 5392, time: 0.064) G_GAN: 0.351 G_GAN_Feat: 0.783 G_ID: 0.300 G_Rec: 0.440 D_GP: 0.026 D_real: 1.064 D_fake: 0.649 +(epoch: 102, iters: 5792, time: 0.064) G_GAN: 0.228 G_GAN_Feat: 0.726 G_ID: 0.172 G_Rec: 0.366 D_GP: 0.034 D_real: 1.069 D_fake: 0.772 +(epoch: 102, iters: 6192, time: 0.064) G_GAN: 0.412 G_GAN_Feat: 0.853 G_ID: 0.304 G_Rec: 0.425 D_GP: 0.033 D_real: 1.101 D_fake: 0.594 +(epoch: 102, iters: 6592, time: 0.064) G_GAN: 0.171 G_GAN_Feat: 0.798 G_ID: 0.186 G_Rec: 0.356 D_GP: 0.052 D_real: 0.867 D_fake: 0.829 +(epoch: 102, iters: 6992, time: 0.064) G_GAN: 0.260 G_GAN_Feat: 1.008 G_ID: 0.275 G_Rec: 0.400 D_GP: 0.086 D_real: 0.571 D_fake: 0.740 +(epoch: 102, iters: 7392, time: 0.064) G_GAN: 0.566 G_GAN_Feat: 0.804 G_ID: 0.169 G_Rec: 0.334 D_GP: 0.064 D_real: 1.192 D_fake: 0.440 +(epoch: 102, iters: 7792, time: 0.064) G_GAN: 0.551 G_GAN_Feat: 0.985 G_ID: 0.289 G_Rec: 0.429 D_GP: 0.039 D_real: 0.975 D_fake: 0.466 +(epoch: 102, iters: 8192, time: 0.064) G_GAN: 0.132 G_GAN_Feat: 0.913 G_ID: 0.183 G_Rec: 0.347 D_GP: 0.038 D_real: 0.659 D_fake: 0.868 +(epoch: 102, iters: 8592, time: 0.064) G_GAN: 0.547 G_GAN_Feat: 1.145 G_ID: 0.249 G_Rec: 0.424 D_GP: 0.023 D_real: 1.071 D_fake: 0.454 +(epoch: 103, iters: 384, time: 0.064) G_GAN: 0.245 G_GAN_Feat: 0.950 G_ID: 0.172 G_Rec: 0.396 D_GP: 0.473 D_real: 0.577 D_fake: 0.756 +(epoch: 103, iters: 784, time: 0.064) G_GAN: 0.080 G_GAN_Feat: 0.992 G_ID: 0.283 G_Rec: 0.395 D_GP: 0.121 D_real: 0.435 D_fake: 0.921 +(epoch: 103, iters: 1184, time: 0.064) G_GAN: 0.067 G_GAN_Feat: 0.902 G_ID: 0.231 G_Rec: 0.362 D_GP: 0.087 D_real: 0.705 D_fake: 0.934 +(epoch: 103, iters: 1584, time: 0.064) G_GAN: 0.810 G_GAN_Feat: 0.876 G_ID: 0.301 G_Rec: 0.390 D_GP: 0.033 D_real: 1.448 D_fake: 0.235 +(epoch: 103, iters: 1984, time: 0.064) G_GAN: 0.309 G_GAN_Feat: 0.710 G_ID: 0.223 G_Rec: 0.331 D_GP: 0.023 D_real: 1.098 D_fake: 0.693 +(epoch: 103, iters: 2384, time: 0.064) G_GAN: 0.593 G_GAN_Feat: 0.711 G_ID: 0.249 G_Rec: 0.351 D_GP: 0.023 D_real: 1.355 D_fake: 0.412 +(epoch: 103, iters: 2784, time: 0.064) G_GAN: 0.417 G_GAN_Feat: 0.748 G_ID: 0.163 G_Rec: 0.356 D_GP: 0.034 D_real: 1.219 D_fake: 0.583 +(epoch: 103, iters: 3184, time: 0.064) G_GAN: 0.353 G_GAN_Feat: 1.020 G_ID: 0.293 G_Rec: 0.392 D_GP: 0.062 D_real: 0.639 D_fake: 0.648 +(epoch: 103, iters: 3584, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 0.620 G_ID: 0.187 G_Rec: 0.345 D_GP: 0.020 D_real: 1.312 D_fake: 0.650 +(epoch: 103, iters: 3984, time: 0.064) G_GAN: 0.271 G_GAN_Feat: 0.813 G_ID: 0.269 G_Rec: 0.454 D_GP: 0.028 D_real: 0.983 D_fake: 0.733 +(epoch: 103, iters: 4384, time: 0.064) G_GAN: 0.246 G_GAN_Feat: 0.795 G_ID: 0.173 G_Rec: 0.472 D_GP: 0.052 D_real: 1.046 D_fake: 0.754 +(epoch: 103, iters: 4784, time: 0.064) G_GAN: 0.541 G_GAN_Feat: 0.925 G_ID: 0.264 G_Rec: 0.421 D_GP: 0.045 D_real: 1.124 D_fake: 0.480 +(epoch: 103, iters: 5184, time: 0.064) G_GAN: 0.149 G_GAN_Feat: 0.756 G_ID: 0.178 G_Rec: 0.365 D_GP: 0.024 D_real: 0.986 D_fake: 0.851 +(epoch: 103, iters: 5584, time: 0.064) G_GAN: 0.764 G_GAN_Feat: 0.828 G_ID: 0.283 G_Rec: 0.375 D_GP: 0.032 D_real: 1.475 D_fake: 0.270 +(epoch: 103, iters: 5984, time: 0.064) G_GAN: 0.245 G_GAN_Feat: 1.027 G_ID: 0.161 G_Rec: 0.371 D_GP: 0.055 D_real: 0.583 D_fake: 0.756 +(epoch: 103, iters: 6384, time: 0.064) G_GAN: 0.269 G_GAN_Feat: 0.818 G_ID: 0.280 G_Rec: 0.381 D_GP: 0.039 D_real: 0.959 D_fake: 0.731 +(epoch: 103, iters: 6784, time: 0.064) G_GAN: 0.474 G_GAN_Feat: 0.754 G_ID: 0.199 G_Rec: 0.320 D_GP: 0.042 D_real: 1.219 D_fake: 0.531 +(epoch: 103, iters: 7184, time: 0.064) G_GAN: 0.318 G_GAN_Feat: 0.889 G_ID: 0.266 G_Rec: 0.389 D_GP: 0.029 D_real: 0.958 D_fake: 0.682 +(epoch: 103, iters: 7584, time: 0.064) G_GAN: 0.349 G_GAN_Feat: 0.814 G_ID: 0.190 G_Rec: 0.326 D_GP: 0.052 D_real: 0.972 D_fake: 0.652 +(epoch: 103, iters: 7984, time: 0.064) G_GAN: 0.452 G_GAN_Feat: 0.838 G_ID: 0.258 G_Rec: 0.439 D_GP: 0.027 D_real: 1.166 D_fake: 0.551 +(epoch: 103, iters: 8384, time: 0.064) G_GAN: 0.084 G_GAN_Feat: 0.758 G_ID: 0.169 G_Rec: 0.355 D_GP: 0.044 D_real: 0.950 D_fake: 0.916 +(epoch: 104, iters: 176, time: 0.064) G_GAN: 0.281 G_GAN_Feat: 0.813 G_ID: 0.330 G_Rec: 0.369 D_GP: 0.030 D_real: 1.014 D_fake: 0.720 +(epoch: 104, iters: 576, time: 0.064) G_GAN: 0.481 G_GAN_Feat: 0.658 G_ID: 0.181 G_Rec: 0.326 D_GP: 0.028 D_real: 1.349 D_fake: 0.520 +(epoch: 104, iters: 976, time: 0.064) G_GAN: 0.529 G_GAN_Feat: 0.759 G_ID: 0.259 G_Rec: 0.375 D_GP: 0.035 D_real: 1.252 D_fake: 0.480 +(epoch: 104, iters: 1376, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 0.884 G_ID: 0.152 G_Rec: 0.326 D_GP: 0.236 D_real: 0.509 D_fake: 0.785 +(epoch: 104, iters: 1776, time: 0.064) G_GAN: 0.594 G_GAN_Feat: 0.768 G_ID: 0.271 G_Rec: 0.433 D_GP: 0.023 D_real: 1.310 D_fake: 0.413 +(epoch: 104, iters: 2176, time: 0.064) G_GAN: 0.355 G_GAN_Feat: 0.871 G_ID: 0.170 G_Rec: 0.353 D_GP: 0.033 D_real: 1.054 D_fake: 0.654 +(epoch: 104, iters: 2576, time: 0.064) G_GAN: 0.501 G_GAN_Feat: 0.875 G_ID: 0.317 G_Rec: 0.383 D_GP: 0.026 D_real: 1.253 D_fake: 0.515 +(epoch: 104, iters: 2976, time: 0.064) G_GAN: 0.122 G_GAN_Feat: 1.163 G_ID: 0.174 G_Rec: 0.383 D_GP: 3.192 D_real: 0.560 D_fake: 0.883 +(epoch: 104, iters: 3376, time: 0.064) G_GAN: 0.313 G_GAN_Feat: 0.641 G_ID: 0.301 G_Rec: 0.345 D_GP: 0.020 D_real: 1.168 D_fake: 0.687 +(epoch: 104, iters: 3776, time: 0.064) G_GAN: 0.359 G_GAN_Feat: 0.651 G_ID: 0.160 G_Rec: 0.372 D_GP: 0.022 D_real: 1.216 D_fake: 0.641 +(epoch: 104, iters: 4176, time: 0.064) G_GAN: 0.439 G_GAN_Feat: 0.669 G_ID: 0.273 G_Rec: 0.365 D_GP: 0.023 D_real: 1.266 D_fake: 0.563 +(epoch: 104, iters: 4576, time: 0.064) G_GAN: 0.319 G_GAN_Feat: 0.618 G_ID: 0.188 G_Rec: 0.331 D_GP: 0.023 D_real: 1.231 D_fake: 0.681 +(epoch: 104, iters: 4976, time: 0.064) G_GAN: 0.344 G_GAN_Feat: 0.845 G_ID: 0.243 G_Rec: 0.396 D_GP: 0.038 D_real: 1.059 D_fake: 0.660 +(epoch: 104, iters: 5376, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 0.752 G_ID: 0.172 G_Rec: 0.366 D_GP: 0.055 D_real: 1.005 D_fake: 0.649 +(epoch: 104, iters: 5776, time: 0.064) G_GAN: 0.176 G_GAN_Feat: 0.883 G_ID: 0.242 G_Rec: 0.412 D_GP: 0.057 D_real: 0.856 D_fake: 0.824 +(epoch: 104, iters: 6176, time: 0.064) G_GAN: 0.301 G_GAN_Feat: 0.955 G_ID: 0.187 G_Rec: 0.385 D_GP: 0.080 D_real: 0.628 D_fake: 0.699 +(epoch: 104, iters: 6576, time: 0.064) G_GAN: 0.308 G_GAN_Feat: 1.101 G_ID: 0.229 G_Rec: 0.444 D_GP: 0.232 D_real: 0.509 D_fake: 0.699 +(epoch: 104, iters: 6976, time: 0.064) G_GAN: 0.230 G_GAN_Feat: 0.830 G_ID: 0.160 G_Rec: 0.349 D_GP: 0.056 D_real: 1.042 D_fake: 0.771 +(epoch: 104, iters: 7376, time: 0.064) G_GAN: 0.187 G_GAN_Feat: 0.917 G_ID: 0.287 G_Rec: 0.409 D_GP: 0.076 D_real: 0.739 D_fake: 0.813 +(epoch: 104, iters: 7776, time: 0.064) G_GAN: 0.474 G_GAN_Feat: 0.765 G_ID: 0.143 G_Rec: 0.377 D_GP: 0.034 D_real: 1.172 D_fake: 0.529 +(epoch: 104, iters: 8176, time: 0.064) G_GAN: 0.774 G_GAN_Feat: 0.906 G_ID: 0.255 G_Rec: 0.397 D_GP: 0.041 D_real: 1.385 D_fake: 0.283 +(epoch: 104, iters: 8576, time: 0.064) G_GAN: 0.160 G_GAN_Feat: 0.977 G_ID: 0.200 G_Rec: 0.367 D_GP: 0.112 D_real: 0.408 D_fake: 0.841 +(epoch: 105, iters: 368, time: 0.064) G_GAN: 0.466 G_GAN_Feat: 0.988 G_ID: 0.312 G_Rec: 0.369 D_GP: 0.047 D_real: 0.992 D_fake: 0.534 +(epoch: 105, iters: 768, time: 0.064) G_GAN: 0.310 G_GAN_Feat: 0.855 G_ID: 0.160 G_Rec: 0.341 D_GP: 0.058 D_real: 1.197 D_fake: 0.694 +(epoch: 105, iters: 1168, time: 0.064) G_GAN: 0.398 G_GAN_Feat: 0.937 G_ID: 0.295 G_Rec: 0.389 D_GP: 0.036 D_real: 1.003 D_fake: 0.603 +(epoch: 105, iters: 1568, time: 0.064) G_GAN: 0.094 G_GAN_Feat: 0.936 G_ID: 0.177 G_Rec: 0.362 D_GP: 0.100 D_real: 0.530 D_fake: 0.906 +(epoch: 105, iters: 1968, time: 0.064) G_GAN: 0.638 G_GAN_Feat: 1.135 G_ID: 0.294 G_Rec: 0.422 D_GP: 0.068 D_real: 0.757 D_fake: 0.372 +(epoch: 105, iters: 2368, time: 0.064) G_GAN: -0.263 G_GAN_Feat: 0.875 G_ID: 0.209 G_Rec: 0.430 D_GP: 0.119 D_real: 0.577 D_fake: 1.268 +(epoch: 105, iters: 2768, time: 0.064) G_GAN: 0.553 G_GAN_Feat: 0.841 G_ID: 0.251 G_Rec: 0.379 D_GP: 0.031 D_real: 1.313 D_fake: 0.449 +(epoch: 105, iters: 3168, time: 0.064) G_GAN: 0.213 G_GAN_Feat: 0.823 G_ID: 0.170 G_Rec: 0.338 D_GP: 0.042 D_real: 0.904 D_fake: 0.788 +(epoch: 105, iters: 3568, time: 0.064) G_GAN: 0.209 G_GAN_Feat: 0.936 G_ID: 0.287 G_Rec: 0.418 D_GP: 0.037 D_real: 0.769 D_fake: 0.791 +(epoch: 105, iters: 3968, time: 0.064) G_GAN: -0.465 G_GAN_Feat: 0.915 G_ID: 0.215 G_Rec: 0.360 D_GP: 0.115 D_real: 0.177 D_fake: 1.465 +(epoch: 105, iters: 4368, time: 0.064) G_GAN: 0.118 G_GAN_Feat: 0.964 G_ID: 0.273 G_Rec: 0.424 D_GP: 0.080 D_real: 0.593 D_fake: 0.882 +(epoch: 105, iters: 4768, time: 0.064) G_GAN: 0.383 G_GAN_Feat: 0.767 G_ID: 0.154 G_Rec: 0.326 D_GP: 0.027 D_real: 1.232 D_fake: 0.617 +(epoch: 105, iters: 5168, time: 0.064) G_GAN: 0.327 G_GAN_Feat: 0.841 G_ID: 0.326 G_Rec: 0.405 D_GP: 0.023 D_real: 1.116 D_fake: 0.673 +(epoch: 105, iters: 5568, time: 0.064) G_GAN: 0.210 G_GAN_Feat: 0.789 G_ID: 0.177 G_Rec: 0.366 D_GP: 0.031 D_real: 0.988 D_fake: 0.791 +(epoch: 105, iters: 5968, time: 0.064) G_GAN: 0.332 G_GAN_Feat: 0.892 G_ID: 0.223 G_Rec: 0.417 D_GP: 0.028 D_real: 0.935 D_fake: 0.669 +(epoch: 105, iters: 6368, time: 0.064) G_GAN: 0.220 G_GAN_Feat: 0.750 G_ID: 0.191 G_Rec: 0.349 D_GP: 0.050 D_real: 0.942 D_fake: 0.782 +(epoch: 105, iters: 6768, time: 0.064) G_GAN: 0.369 G_GAN_Feat: 0.811 G_ID: 0.257 G_Rec: 0.398 D_GP: 0.032 D_real: 0.985 D_fake: 0.631 +(epoch: 105, iters: 7168, time: 0.064) G_GAN: 0.244 G_GAN_Feat: 1.161 G_ID: 0.184 G_Rec: 0.379 D_GP: 0.848 D_real: 0.369 D_fake: 0.756 +(epoch: 105, iters: 7568, time: 0.064) G_GAN: 0.496 G_GAN_Feat: 1.034 G_ID: 0.285 G_Rec: 0.404 D_GP: 0.031 D_real: 1.040 D_fake: 0.507 +(epoch: 105, iters: 7968, time: 0.064) G_GAN: 0.415 G_GAN_Feat: 0.724 G_ID: 0.142 G_Rec: 0.324 D_GP: 0.027 D_real: 1.330 D_fake: 0.586 +(epoch: 105, iters: 8368, time: 0.064) G_GAN: 0.238 G_GAN_Feat: 1.019 G_ID: 0.251 G_Rec: 0.373 D_GP: 0.107 D_real: 0.283 D_fake: 0.762 +(epoch: 106, iters: 160, time: 0.064) G_GAN: 0.389 G_GAN_Feat: 0.857 G_ID: 0.177 G_Rec: 0.412 D_GP: 0.038 D_real: 1.185 D_fake: 0.666 +(epoch: 106, iters: 560, time: 0.064) G_GAN: 0.533 G_GAN_Feat: 0.852 G_ID: 0.266 G_Rec: 0.383 D_GP: 0.032 D_real: 1.239 D_fake: 0.488 +(epoch: 106, iters: 960, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 1.048 G_ID: 0.180 G_Rec: 0.395 D_GP: 0.095 D_real: 0.549 D_fake: 0.780 +(epoch: 106, iters: 1360, time: 0.064) G_GAN: 0.531 G_GAN_Feat: 0.871 G_ID: 0.291 G_Rec: 0.406 D_GP: 0.022 D_real: 1.202 D_fake: 0.471 +(epoch: 106, iters: 1760, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.747 G_ID: 0.214 G_Rec: 0.326 D_GP: 0.036 D_real: 1.089 D_fake: 0.714 +(epoch: 106, iters: 2160, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.871 G_ID: 0.285 G_Rec: 0.416 D_GP: 0.029 D_real: 1.122 D_fake: 0.697 +(epoch: 106, iters: 2560, time: 0.064) G_GAN: 0.483 G_GAN_Feat: 0.910 G_ID: 0.170 G_Rec: 0.365 D_GP: 0.059 D_real: 1.072 D_fake: 0.521 +(epoch: 106, iters: 2960, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.879 G_ID: 0.282 G_Rec: 0.397 D_GP: 0.051 D_real: 0.952 D_fake: 0.724 +(epoch: 106, iters: 3360, time: 0.064) G_GAN: 0.134 G_GAN_Feat: 0.712 G_ID: 0.169 G_Rec: 0.321 D_GP: 0.029 D_real: 0.979 D_fake: 0.866 +(epoch: 106, iters: 3760, time: 0.064) G_GAN: 0.432 G_GAN_Feat: 0.968 G_ID: 0.324 G_Rec: 0.408 D_GP: 0.061 D_real: 0.952 D_fake: 0.569 +(epoch: 106, iters: 4160, time: 0.064) G_GAN: -0.348 G_GAN_Feat: 0.800 G_ID: 0.159 G_Rec: 0.384 D_GP: 0.033 D_real: 0.446 D_fake: 1.348 +(epoch: 106, iters: 4560, time: 0.064) G_GAN: 0.044 G_GAN_Feat: 0.852 G_ID: 0.259 G_Rec: 0.435 D_GP: 0.031 D_real: 0.684 D_fake: 0.956 +(epoch: 106, iters: 4960, time: 0.064) G_GAN: 0.505 G_GAN_Feat: 0.654 G_ID: 0.183 G_Rec: 0.347 D_GP: 0.021 D_real: 1.380 D_fake: 0.500 +(epoch: 106, iters: 5360, time: 0.064) G_GAN: 0.603 G_GAN_Feat: 0.828 G_ID: 0.222 G_Rec: 0.407 D_GP: 0.027 D_real: 1.258 D_fake: 0.406 +(epoch: 106, iters: 5760, time: 0.064) G_GAN: 0.260 G_GAN_Feat: 0.636 G_ID: 0.189 G_Rec: 0.346 D_GP: 0.024 D_real: 1.170 D_fake: 0.740 +(epoch: 106, iters: 6160, time: 0.064) G_GAN: 0.412 G_GAN_Feat: 1.017 G_ID: 0.258 G_Rec: 0.396 D_GP: 0.080 D_real: 0.736 D_fake: 0.590 +(epoch: 106, iters: 6560, time: 0.064) G_GAN: 0.508 G_GAN_Feat: 0.911 G_ID: 0.159 G_Rec: 0.346 D_GP: 0.039 D_real: 1.035 D_fake: 0.493 +(epoch: 106, iters: 6960, time: 0.064) G_GAN: 0.619 G_GAN_Feat: 1.052 G_ID: 0.234 G_Rec: 0.415 D_GP: 0.119 D_real: 0.731 D_fake: 0.438 +(epoch: 106, iters: 7360, time: 0.064) G_GAN: -0.261 G_GAN_Feat: 1.081 G_ID: 0.160 G_Rec: 0.384 D_GP: 0.074 D_real: 0.097 D_fake: 1.261 +(epoch: 106, iters: 7760, time: 0.064) G_GAN: 0.507 G_GAN_Feat: 1.044 G_ID: 0.260 G_Rec: 0.399 D_GP: 0.057 D_real: 0.886 D_fake: 0.495 +(epoch: 106, iters: 8160, time: 0.064) G_GAN: -0.028 G_GAN_Feat: 0.749 G_ID: 0.176 G_Rec: 0.369 D_GP: 0.022 D_real: 0.792 D_fake: 1.028 +(epoch: 106, iters: 8560, time: 0.064) G_GAN: 0.315 G_GAN_Feat: 0.913 G_ID: 0.277 G_Rec: 0.442 D_GP: 0.038 D_real: 0.839 D_fake: 0.688 +(epoch: 107, iters: 352, time: 0.064) G_GAN: 0.262 G_GAN_Feat: 1.035 G_ID: 0.147 G_Rec: 0.361 D_GP: 0.133 D_real: 0.387 D_fake: 0.739 +(epoch: 107, iters: 752, time: 0.064) G_GAN: 0.186 G_GAN_Feat: 0.924 G_ID: 0.286 G_Rec: 0.416 D_GP: 0.035 D_real: 0.921 D_fake: 0.814 +(epoch: 107, iters: 1152, time: 0.064) G_GAN: 0.353 G_GAN_Feat: 0.802 G_ID: 0.155 G_Rec: 0.352 D_GP: 0.087 D_real: 1.089 D_fake: 0.647 +(epoch: 107, iters: 1552, time: 0.064) G_GAN: 0.377 G_GAN_Feat: 0.861 G_ID: 0.287 G_Rec: 0.416 D_GP: 0.061 D_real: 0.953 D_fake: 0.623 +(epoch: 107, iters: 1952, time: 0.064) G_GAN: 0.294 G_GAN_Feat: 0.795 G_ID: 0.156 G_Rec: 0.351 D_GP: 0.046 D_real: 0.887 D_fake: 0.706 +(epoch: 107, iters: 2352, time: 0.064) G_GAN: 0.566 G_GAN_Feat: 0.970 G_ID: 0.240 G_Rec: 0.444 D_GP: 0.046 D_real: 0.991 D_fake: 0.449 +(epoch: 107, iters: 2752, time: 0.064) G_GAN: 0.311 G_GAN_Feat: 0.666 G_ID: 0.174 G_Rec: 0.331 D_GP: 0.026 D_real: 1.203 D_fake: 0.689 +(epoch: 107, iters: 3152, time: 0.064) G_GAN: 0.502 G_GAN_Feat: 0.938 G_ID: 0.251 G_Rec: 0.373 D_GP: 0.065 D_real: 1.034 D_fake: 0.509 +(epoch: 107, iters: 3552, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 1.182 G_ID: 0.175 G_Rec: 0.364 D_GP: 0.188 D_real: 1.159 D_fake: 0.750 +(epoch: 107, iters: 3952, time: 0.064) G_GAN: 0.393 G_GAN_Feat: 0.694 G_ID: 0.285 G_Rec: 0.406 D_GP: 0.021 D_real: 1.284 D_fake: 0.609 +(epoch: 107, iters: 4352, time: 0.064) G_GAN: 0.258 G_GAN_Feat: 0.667 G_ID: 0.141 G_Rec: 0.343 D_GP: 0.026 D_real: 1.108 D_fake: 0.742 +(epoch: 107, iters: 4752, time: 0.064) G_GAN: 0.505 G_GAN_Feat: 0.882 G_ID: 0.277 G_Rec: 0.474 D_GP: 0.033 D_real: 0.999 D_fake: 0.502 +(epoch: 107, iters: 5152, time: 0.064) G_GAN: 0.166 G_GAN_Feat: 0.658 G_ID: 0.170 G_Rec: 0.349 D_GP: 0.024 D_real: 1.021 D_fake: 0.839 +(epoch: 107, iters: 5552, time: 0.064) G_GAN: 0.449 G_GAN_Feat: 0.959 G_ID: 0.273 G_Rec: 0.393 D_GP: 0.068 D_real: 0.794 D_fake: 0.552 +(epoch: 107, iters: 5952, time: 0.064) G_GAN: 0.455 G_GAN_Feat: 0.814 G_ID: 0.156 G_Rec: 0.346 D_GP: 0.048 D_real: 1.112 D_fake: 0.550 +(epoch: 107, iters: 6352, time: 0.064) G_GAN: 0.652 G_GAN_Feat: 0.750 G_ID: 0.252 G_Rec: 0.361 D_GP: 0.024 D_real: 1.383 D_fake: 0.354 +(epoch: 107, iters: 6752, time: 0.064) G_GAN: 0.159 G_GAN_Feat: 0.964 G_ID: 0.162 G_Rec: 0.330 D_GP: 0.046 D_real: 0.620 D_fake: 0.841 +(epoch: 107, iters: 7152, time: 0.064) G_GAN: 0.805 G_GAN_Feat: 0.828 G_ID: 0.249 G_Rec: 0.409 D_GP: 0.027 D_real: 1.548 D_fake: 0.238 +(epoch: 107, iters: 7552, time: 0.064) G_GAN: 0.124 G_GAN_Feat: 1.030 G_ID: 0.151 G_Rec: 0.384 D_GP: 0.172 D_real: 0.409 D_fake: 0.876 +(epoch: 107, iters: 7952, time: 0.064) G_GAN: 0.245 G_GAN_Feat: 0.907 G_ID: 0.263 G_Rec: 0.398 D_GP: 0.032 D_real: 0.850 D_fake: 0.755 +(epoch: 107, iters: 8352, time: 0.064) G_GAN: 0.199 G_GAN_Feat: 0.686 G_ID: 0.173 G_Rec: 0.335 D_GP: 0.027 D_real: 1.079 D_fake: 0.801 +(epoch: 108, iters: 144, time: 0.064) G_GAN: 0.269 G_GAN_Feat: 1.008 G_ID: 0.299 G_Rec: 0.391 D_GP: 0.037 D_real: 0.693 D_fake: 0.734 +(epoch: 108, iters: 544, time: 0.064) G_GAN: 0.538 G_GAN_Feat: 0.750 G_ID: 0.186 G_Rec: 0.415 D_GP: 0.033 D_real: 1.378 D_fake: 0.475 +(epoch: 108, iters: 944, time: 0.064) G_GAN: 0.214 G_GAN_Feat: 0.925 G_ID: 0.249 G_Rec: 0.420 D_GP: 0.023 D_real: 0.796 D_fake: 0.786 +(epoch: 108, iters: 1344, time: 0.064) G_GAN: 0.363 G_GAN_Feat: 0.915 G_ID: 0.183 G_Rec: 0.350 D_GP: 0.032 D_real: 0.865 D_fake: 0.638 +(epoch: 108, iters: 1744, time: 0.064) G_GAN: 0.548 G_GAN_Feat: 0.902 G_ID: 0.255 G_Rec: 0.384 D_GP: 0.029 D_real: 1.200 D_fake: 0.454 +(epoch: 108, iters: 2144, time: 0.064) G_GAN: 0.592 G_GAN_Feat: 0.814 G_ID: 0.163 G_Rec: 0.457 D_GP: 0.026 D_real: 1.329 D_fake: 0.426 +(epoch: 108, iters: 2544, time: 0.064) G_GAN: 0.593 G_GAN_Feat: 1.065 G_ID: 0.263 G_Rec: 0.382 D_GP: 0.122 D_real: 0.791 D_fake: 0.424 +(epoch: 108, iters: 2944, time: 0.064) G_GAN: 0.270 G_GAN_Feat: 0.710 G_ID: 0.147 G_Rec: 0.377 D_GP: 0.025 D_real: 1.125 D_fake: 0.731 +(epoch: 108, iters: 3344, time: 0.064) G_GAN: 0.381 G_GAN_Feat: 0.963 G_ID: 0.249 G_Rec: 0.397 D_GP: 0.049 D_real: 1.029 D_fake: 0.624 +(epoch: 108, iters: 3744, time: 0.064) G_GAN: 0.230 G_GAN_Feat: 0.776 G_ID: 0.147 G_Rec: 0.348 D_GP: 0.024 D_real: 1.078 D_fake: 0.770 +(epoch: 108, iters: 4144, time: 0.064) G_GAN: 0.465 G_GAN_Feat: 0.884 G_ID: 0.265 G_Rec: 0.423 D_GP: 0.029 D_real: 1.110 D_fake: 0.542 +(epoch: 108, iters: 4544, time: 0.064) G_GAN: 0.166 G_GAN_Feat: 0.797 G_ID: 0.159 G_Rec: 0.387 D_GP: 0.047 D_real: 0.943 D_fake: 0.852 +(epoch: 108, iters: 4944, time: 0.064) G_GAN: 0.169 G_GAN_Feat: 0.872 G_ID: 0.272 G_Rec: 0.422 D_GP: 0.028 D_real: 0.906 D_fake: 0.831 +(epoch: 108, iters: 5344, time: 0.064) G_GAN: 0.212 G_GAN_Feat: 0.869 G_ID: 0.207 G_Rec: 0.368 D_GP: 0.094 D_real: 0.745 D_fake: 0.788 +(epoch: 108, iters: 5744, time: 0.064) G_GAN: 0.386 G_GAN_Feat: 0.857 G_ID: 0.247 G_Rec: 0.370 D_GP: 0.035 D_real: 0.951 D_fake: 0.615 +(epoch: 108, iters: 6144, time: 0.064) G_GAN: 0.371 G_GAN_Feat: 0.863 G_ID: 0.173 G_Rec: 0.398 D_GP: 0.057 D_real: 1.006 D_fake: 0.632 +(epoch: 108, iters: 6544, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 0.956 G_ID: 0.232 G_Rec: 0.476 D_GP: 0.080 D_real: 0.788 D_fake: 0.666 +(epoch: 108, iters: 6944, time: 0.064) G_GAN: 0.320 G_GAN_Feat: 1.266 G_ID: 0.153 G_Rec: 0.640 D_GP: 0.204 D_real: 0.391 D_fake: 0.680 +(epoch: 108, iters: 7344, time: 0.064) G_GAN: 0.495 G_GAN_Feat: 1.201 G_ID: 0.289 G_Rec: 0.440 D_GP: 0.043 D_real: 0.925 D_fake: 0.507 +(epoch: 108, iters: 7744, time: 0.064) G_GAN: 0.194 G_GAN_Feat: 0.946 G_ID: 0.192 G_Rec: 0.365 D_GP: 0.228 D_real: 0.510 D_fake: 0.808 +(epoch: 108, iters: 8144, time: 0.064) G_GAN: 0.662 G_GAN_Feat: 0.806 G_ID: 0.250 G_Rec: 0.420 D_GP: 0.025 D_real: 1.372 D_fake: 0.350 +(epoch: 108, iters: 8544, time: 0.064) G_GAN: 0.306 G_GAN_Feat: 0.820 G_ID: 0.154 G_Rec: 0.377 D_GP: 0.046 D_real: 0.989 D_fake: 0.699 +(epoch: 109, iters: 336, time: 0.064) G_GAN: 0.393 G_GAN_Feat: 0.825 G_ID: 0.256 G_Rec: 0.415 D_GP: 0.023 D_real: 1.121 D_fake: 0.609 +(epoch: 109, iters: 736, time: 0.064) G_GAN: 0.187 G_GAN_Feat: 0.839 G_ID: 0.150 G_Rec: 0.338 D_GP: 0.055 D_real: 0.784 D_fake: 0.813 +(epoch: 109, iters: 1136, time: 0.064) G_GAN: 0.504 G_GAN_Feat: 1.022 G_ID: 0.238 G_Rec: 0.400 D_GP: 0.065 D_real: 0.811 D_fake: 0.499 +(epoch: 109, iters: 1536, time: 0.064) G_GAN: 0.251 G_GAN_Feat: 0.793 G_ID: 0.147 G_Rec: 0.325 D_GP: 0.033 D_real: 1.018 D_fake: 0.749 +(epoch: 109, iters: 1936, time: 0.064) G_GAN: 0.629 G_GAN_Feat: 0.924 G_ID: 0.239 G_Rec: 0.415 D_GP: 0.035 D_real: 1.086 D_fake: 0.379 +(epoch: 109, iters: 2336, time: 0.064) G_GAN: 0.231 G_GAN_Feat: 0.724 G_ID: 0.175 G_Rec: 0.385 D_GP: 0.028 D_real: 1.127 D_fake: 0.769 +(epoch: 109, iters: 2736, time: 0.064) G_GAN: 0.345 G_GAN_Feat: 0.834 G_ID: 0.306 G_Rec: 0.446 D_GP: 0.025 D_real: 1.130 D_fake: 0.656 +(epoch: 109, iters: 3136, time: 0.064) G_GAN: -0.056 G_GAN_Feat: 0.843 G_ID: 0.141 G_Rec: 0.360 D_GP: 0.145 D_real: 0.639 D_fake: 1.056 +(epoch: 109, iters: 3536, time: 0.064) G_GAN: 0.472 G_GAN_Feat: 1.003 G_ID: 0.302 G_Rec: 0.421 D_GP: 0.048 D_real: 1.201 D_fake: 0.531 +(epoch: 109, iters: 3936, time: 0.064) G_GAN: 0.186 G_GAN_Feat: 0.675 G_ID: 0.195 G_Rec: 0.330 D_GP: 0.024 D_real: 1.019 D_fake: 0.814 +(epoch: 109, iters: 4336, time: 0.064) G_GAN: 0.513 G_GAN_Feat: 1.299 G_ID: 0.241 G_Rec: 0.430 D_GP: 0.692 D_real: 0.609 D_fake: 0.495 +(epoch: 109, iters: 4736, time: 0.064) G_GAN: 0.341 G_GAN_Feat: 0.744 G_ID: 0.154 G_Rec: 0.357 D_GP: 0.027 D_real: 1.154 D_fake: 0.659 +(epoch: 109, iters: 5136, time: 0.064) G_GAN: 0.282 G_GAN_Feat: 0.915 G_ID: 0.280 G_Rec: 0.419 D_GP: 0.028 D_real: 0.936 D_fake: 0.719 +(epoch: 109, iters: 5536, time: 0.064) G_GAN: 0.533 G_GAN_Feat: 0.882 G_ID: 0.165 G_Rec: 0.362 D_GP: 0.078 D_real: 0.968 D_fake: 0.483 +(epoch: 109, iters: 5936, time: 0.064) G_GAN: 0.541 G_GAN_Feat: 0.874 G_ID: 0.245 G_Rec: 0.431 D_GP: 0.023 D_real: 1.193 D_fake: 0.466 +(epoch: 109, iters: 6336, time: 0.064) G_GAN: 0.409 G_GAN_Feat: 0.752 G_ID: 0.166 G_Rec: 0.346 D_GP: 0.030 D_real: 1.219 D_fake: 0.593 +(epoch: 109, iters: 6736, time: 0.064) G_GAN: 0.426 G_GAN_Feat: 0.873 G_ID: 0.254 G_Rec: 0.393 D_GP: 0.036 D_real: 1.069 D_fake: 0.578 +(epoch: 109, iters: 7136, time: 0.064) G_GAN: 0.310 G_GAN_Feat: 0.790 G_ID: 0.151 G_Rec: 0.350 D_GP: 0.057 D_real: 0.993 D_fake: 0.693 +(epoch: 109, iters: 7536, time: 0.064) G_GAN: 0.353 G_GAN_Feat: 0.699 G_ID: 0.281 G_Rec: 0.369 D_GP: 0.025 D_real: 1.148 D_fake: 0.648 +(epoch: 109, iters: 7936, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 0.772 G_ID: 0.175 G_Rec: 0.359 D_GP: 0.054 D_real: 0.972 D_fake: 0.808 +(epoch: 109, iters: 8336, time: 0.064) G_GAN: 0.431 G_GAN_Feat: 0.849 G_ID: 0.262 G_Rec: 0.375 D_GP: 0.029 D_real: 1.177 D_fake: 0.569 +(epoch: 110, iters: 128, time: 0.064) G_GAN: 0.370 G_GAN_Feat: 0.761 G_ID: 0.177 G_Rec: 0.332 D_GP: 0.039 D_real: 1.112 D_fake: 0.630 +(epoch: 110, iters: 528, time: 0.064) G_GAN: 0.220 G_GAN_Feat: 0.847 G_ID: 0.259 G_Rec: 0.420 D_GP: 0.038 D_real: 0.945 D_fake: 0.781 +(epoch: 110, iters: 928, time: 0.064) G_GAN: 0.403 G_GAN_Feat: 0.899 G_ID: 0.145 G_Rec: 0.360 D_GP: 0.128 D_real: 0.826 D_fake: 0.600 +(epoch: 110, iters: 1328, time: 0.064) G_GAN: 0.461 G_GAN_Feat: 0.842 G_ID: 0.272 G_Rec: 0.407 D_GP: 0.028 D_real: 1.231 D_fake: 0.545 +(epoch: 110, iters: 1728, time: 0.064) G_GAN: 0.198 G_GAN_Feat: 0.698 G_ID: 0.189 G_Rec: 0.319 D_GP: 0.033 D_real: 1.023 D_fake: 0.802 +(epoch: 110, iters: 2128, time: 0.064) G_GAN: 0.425 G_GAN_Feat: 0.927 G_ID: 0.210 G_Rec: 0.408 D_GP: 0.037 D_real: 0.940 D_fake: 0.576 +(epoch: 110, iters: 2528, time: 0.064) G_GAN: 0.492 G_GAN_Feat: 0.696 G_ID: 0.165 G_Rec: 0.341 D_GP: 0.024 D_real: 1.342 D_fake: 0.510 +(epoch: 110, iters: 2928, time: 0.064) G_GAN: 0.508 G_GAN_Feat: 0.889 G_ID: 0.254 G_Rec: 0.388 D_GP: 0.036 D_real: 1.164 D_fake: 0.494 +(epoch: 110, iters: 3328, time: 0.064) G_GAN: 0.168 G_GAN_Feat: 0.863 G_ID: 0.175 G_Rec: 0.366 D_GP: 0.053 D_real: 0.717 D_fake: 0.842 +(epoch: 110, iters: 3728, time: 0.064) G_GAN: 0.371 G_GAN_Feat: 0.912 G_ID: 0.302 G_Rec: 0.401 D_GP: 0.056 D_real: 1.032 D_fake: 0.634 +(epoch: 110, iters: 4128, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 0.888 G_ID: 0.172 G_Rec: 0.345 D_GP: 0.051 D_real: 1.055 D_fake: 0.555 +(epoch: 110, iters: 4528, time: 0.064) G_GAN: 0.530 G_GAN_Feat: 0.929 G_ID: 0.247 G_Rec: 0.377 D_GP: 0.029 D_real: 1.207 D_fake: 0.472 +(epoch: 110, iters: 4928, time: 0.064) G_GAN: 0.459 G_GAN_Feat: 0.655 G_ID: 0.196 G_Rec: 0.309 D_GP: 0.026 D_real: 1.348 D_fake: 0.541 +(epoch: 110, iters: 5328, time: 0.064) G_GAN: 0.332 G_GAN_Feat: 0.948 G_ID: 0.250 G_Rec: 0.390 D_GP: 0.046 D_real: 1.030 D_fake: 0.686 +(epoch: 110, iters: 5728, time: 0.064) G_GAN: 0.403 G_GAN_Feat: 0.765 G_ID: 0.152 G_Rec: 0.367 D_GP: 0.024 D_real: 1.237 D_fake: 0.598 +(epoch: 110, iters: 6128, time: 0.064) G_GAN: 0.505 G_GAN_Feat: 0.832 G_ID: 0.229 G_Rec: 0.385 D_GP: 0.029 D_real: 1.241 D_fake: 0.495 +(epoch: 110, iters: 6528, time: 0.064) G_GAN: -0.085 G_GAN_Feat: 0.932 G_ID: 0.177 G_Rec: 0.355 D_GP: 0.073 D_real: 0.992 D_fake: 1.085 +(epoch: 110, iters: 6928, time: 0.064) G_GAN: 0.864 G_GAN_Feat: 0.975 G_ID: 0.265 G_Rec: 0.410 D_GP: 0.046 D_real: 1.439 D_fake: 0.183 +(epoch: 110, iters: 7328, time: 0.064) G_GAN: 0.561 G_GAN_Feat: 0.816 G_ID: 0.177 G_Rec: 0.362 D_GP: 0.042 D_real: 1.295 D_fake: 0.494 +(epoch: 110, iters: 7728, time: 0.064) G_GAN: 0.593 G_GAN_Feat: 0.765 G_ID: 0.264 G_Rec: 0.377 D_GP: 0.023 D_real: 1.377 D_fake: 0.434 +(epoch: 110, iters: 8128, time: 0.064) G_GAN: 0.254 G_GAN_Feat: 0.895 G_ID: 0.147 G_Rec: 0.342 D_GP: 0.056 D_real: 0.750 D_fake: 0.746 +(epoch: 110, iters: 8528, time: 0.064) G_GAN: 0.787 G_GAN_Feat: 1.238 G_ID: 0.258 G_Rec: 0.464 D_GP: 0.154 D_real: 0.614 D_fake: 0.319 +(epoch: 111, iters: 320, time: 0.064) G_GAN: 0.364 G_GAN_Feat: 0.786 G_ID: 0.165 G_Rec: 0.402 D_GP: 0.030 D_real: 1.214 D_fake: 0.636 +(epoch: 111, iters: 720, time: 0.064) G_GAN: 0.410 G_GAN_Feat: 0.870 G_ID: 0.263 G_Rec: 0.371 D_GP: 0.039 D_real: 1.075 D_fake: 0.592 +(epoch: 111, iters: 1120, time: 0.064) G_GAN: -0.811 G_GAN_Feat: 1.135 G_ID: 0.174 G_Rec: 0.456 D_GP: 0.940 D_real: 0.077 D_fake: 1.811 +(epoch: 111, iters: 1520, time: 0.064) G_GAN: 0.361 G_GAN_Feat: 0.738 G_ID: 0.247 G_Rec: 0.368 D_GP: 0.022 D_real: 1.113 D_fake: 0.640 +(epoch: 111, iters: 1920, time: 0.064) G_GAN: 0.486 G_GAN_Feat: 0.620 G_ID: 0.173 G_Rec: 0.310 D_GP: 0.027 D_real: 1.412 D_fake: 0.521 +(epoch: 111, iters: 2320, time: 0.064) G_GAN: 0.467 G_GAN_Feat: 0.814 G_ID: 0.269 G_Rec: 0.396 D_GP: 0.054 D_real: 1.034 D_fake: 0.549 +(epoch: 111, iters: 2720, time: 0.064) G_GAN: 0.119 G_GAN_Feat: 0.889 G_ID: 0.184 G_Rec: 0.424 D_GP: 0.034 D_real: 0.662 D_fake: 0.882 +(epoch: 111, iters: 3120, time: 0.064) G_GAN: 0.483 G_GAN_Feat: 0.789 G_ID: 0.227 G_Rec: 0.395 D_GP: 0.026 D_real: 1.232 D_fake: 0.518 +(epoch: 111, iters: 3520, time: 0.064) G_GAN: 0.233 G_GAN_Feat: 0.956 G_ID: 0.170 G_Rec: 0.391 D_GP: 0.072 D_real: 0.717 D_fake: 0.768 +(epoch: 111, iters: 3920, time: 0.064) G_GAN: 0.633 G_GAN_Feat: 1.234 G_ID: 0.255 G_Rec: 0.466 D_GP: 0.141 D_real: 0.863 D_fake: 0.452 +(epoch: 111, iters: 4320, time: 0.064) G_GAN: 0.501 G_GAN_Feat: 0.871 G_ID: 0.154 G_Rec: 0.337 D_GP: 0.033 D_real: 1.393 D_fake: 0.540 +(epoch: 111, iters: 4720, time: 0.064) G_GAN: 0.013 G_GAN_Feat: 0.745 G_ID: 0.269 G_Rec: 0.385 D_GP: 0.023 D_real: 0.853 D_fake: 0.987 +(epoch: 111, iters: 5120, time: 0.064) G_GAN: 0.154 G_GAN_Feat: 0.697 G_ID: 0.154 G_Rec: 0.357 D_GP: 0.027 D_real: 0.978 D_fake: 0.846 +(epoch: 111, iters: 5520, time: 0.064) G_GAN: 0.353 G_GAN_Feat: 0.829 G_ID: 0.257 G_Rec: 0.397 D_GP: 0.031 D_real: 0.958 D_fake: 0.647 +(epoch: 111, iters: 5920, time: 0.064) G_GAN: 0.259 G_GAN_Feat: 0.714 G_ID: 0.151 G_Rec: 0.309 D_GP: 0.026 D_real: 1.184 D_fake: 0.742 +(epoch: 111, iters: 6320, time: 0.064) G_GAN: 0.375 G_GAN_Feat: 0.881 G_ID: 0.250 G_Rec: 0.430 D_GP: 0.061 D_real: 1.010 D_fake: 0.628 +(epoch: 111, iters: 6720, time: 0.064) G_GAN: 0.486 G_GAN_Feat: 0.844 G_ID: 0.152 G_Rec: 0.372 D_GP: 0.074 D_real: 1.107 D_fake: 0.521 +(epoch: 111, iters: 7120, time: 0.064) G_GAN: 0.262 G_GAN_Feat: 0.852 G_ID: 0.252 G_Rec: 0.386 D_GP: 0.027 D_real: 1.010 D_fake: 0.739 +(epoch: 111, iters: 7520, time: 0.064) G_GAN: 0.735 G_GAN_Feat: 0.796 G_ID: 0.170 G_Rec: 0.341 D_GP: 0.037 D_real: 1.465 D_fake: 0.303 +(epoch: 111, iters: 7920, time: 0.064) G_GAN: 0.409 G_GAN_Feat: 0.834 G_ID: 0.269 G_Rec: 0.418 D_GP: 0.028 D_real: 1.163 D_fake: 0.594 +(epoch: 111, iters: 8320, time: 0.064) G_GAN: 0.206 G_GAN_Feat: 0.849 G_ID: 0.178 G_Rec: 0.396 D_GP: 0.059 D_real: 0.796 D_fake: 0.794 +(epoch: 112, iters: 112, time: 0.064) G_GAN: 0.611 G_GAN_Feat: 0.906 G_ID: 0.222 G_Rec: 0.427 D_GP: 0.043 D_real: 1.210 D_fake: 0.405 +(epoch: 112, iters: 512, time: 0.064) G_GAN: 0.319 G_GAN_Feat: 0.813 G_ID: 0.154 G_Rec: 0.339 D_GP: 0.033 D_real: 0.982 D_fake: 0.681 +(epoch: 112, iters: 912, time: 0.064) G_GAN: 0.232 G_GAN_Feat: 0.713 G_ID: 0.277 G_Rec: 0.390 D_GP: 0.023 D_real: 1.108 D_fake: 0.768 +(epoch: 112, iters: 1312, time: 0.064) G_GAN: 0.105 G_GAN_Feat: 0.815 G_ID: 0.179 G_Rec: 0.381 D_GP: 0.062 D_real: 0.844 D_fake: 0.895 +(epoch: 112, iters: 1712, time: 0.064) G_GAN: 0.675 G_GAN_Feat: 0.824 G_ID: 0.280 G_Rec: 0.387 D_GP: 0.031 D_real: 1.358 D_fake: 0.349 +(epoch: 112, iters: 2112, time: 0.064) G_GAN: 0.300 G_GAN_Feat: 0.795 G_ID: 0.178 G_Rec: 0.349 D_GP: 0.039 D_real: 1.030 D_fake: 0.701 +(epoch: 112, iters: 2512, time: 0.064) G_GAN: 0.328 G_GAN_Feat: 0.949 G_ID: 0.273 G_Rec: 0.404 D_GP: 0.033 D_real: 0.839 D_fake: 0.672 +(epoch: 112, iters: 2912, time: 0.064) G_GAN: 0.122 G_GAN_Feat: 1.091 G_ID: 0.220 G_Rec: 0.356 D_GP: 0.481 D_real: 0.246 D_fake: 0.902 +(epoch: 112, iters: 3312, time: 0.064) G_GAN: 0.381 G_GAN_Feat: 1.155 G_ID: 0.232 G_Rec: 0.394 D_GP: 0.086 D_real: 0.450 D_fake: 0.620 +(epoch: 112, iters: 3712, time: 0.064) G_GAN: 0.455 G_GAN_Feat: 0.762 G_ID: 0.153 G_Rec: 0.342 D_GP: 0.027 D_real: 1.257 D_fake: 0.548 +(epoch: 112, iters: 4112, time: 0.064) G_GAN: 0.341 G_GAN_Feat: 0.740 G_ID: 0.241 G_Rec: 0.406 D_GP: 0.026 D_real: 1.170 D_fake: 0.660 +(epoch: 112, iters: 4512, time: 0.064) G_GAN: 0.406 G_GAN_Feat: 0.751 G_ID: 0.156 G_Rec: 0.348 D_GP: 0.031 D_real: 1.138 D_fake: 0.594 +(epoch: 112, iters: 4912, time: 0.064) G_GAN: 0.347 G_GAN_Feat: 0.885 G_ID: 0.270 G_Rec: 0.388 D_GP: 0.027 D_real: 1.025 D_fake: 0.653 +(epoch: 112, iters: 5312, time: 0.064) G_GAN: 0.194 G_GAN_Feat: 0.674 G_ID: 0.183 G_Rec: 0.381 D_GP: 0.026 D_real: 1.066 D_fake: 0.807 +(epoch: 112, iters: 5712, time: 0.064) G_GAN: 0.265 G_GAN_Feat: 0.844 G_ID: 0.262 G_Rec: 0.386 D_GP: 0.043 D_real: 0.924 D_fake: 0.735 +(epoch: 112, iters: 6112, time: 0.064) G_GAN: 0.460 G_GAN_Feat: 0.777 G_ID: 0.157 G_Rec: 0.346 D_GP: 0.033 D_real: 1.286 D_fake: 0.545 +(epoch: 112, iters: 6512, time: 0.064) G_GAN: 0.457 G_GAN_Feat: 0.976 G_ID: 0.258 G_Rec: 0.449 D_GP: 0.031 D_real: 0.991 D_fake: 0.543 +(epoch: 112, iters: 6912, time: 0.064) G_GAN: 0.222 G_GAN_Feat: 0.886 G_ID: 0.157 G_Rec: 0.367 D_GP: 0.083 D_real: 0.728 D_fake: 0.779 +(epoch: 112, iters: 7312, time: 0.064) G_GAN: 0.324 G_GAN_Feat: 0.834 G_ID: 0.240 G_Rec: 0.377 D_GP: 0.031 D_real: 1.090 D_fake: 0.678 +(epoch: 112, iters: 7712, time: 0.064) G_GAN: 0.204 G_GAN_Feat: 0.710 G_ID: 0.198 G_Rec: 0.329 D_GP: 0.030 D_real: 1.054 D_fake: 0.796 +(epoch: 112, iters: 8112, time: 0.064) G_GAN: 0.959 G_GAN_Feat: 0.929 G_ID: 0.253 G_Rec: 0.389 D_GP: 0.050 D_real: 1.422 D_fake: 0.139 +(epoch: 112, iters: 8512, time: 0.064) G_GAN: 0.419 G_GAN_Feat: 0.719 G_ID: 0.148 G_Rec: 0.341 D_GP: 0.027 D_real: 1.309 D_fake: 0.586 +(epoch: 113, iters: 304, time: 0.064) G_GAN: 0.398 G_GAN_Feat: 0.948 G_ID: 0.243 G_Rec: 0.409 D_GP: 0.046 D_real: 0.874 D_fake: 0.602 +(epoch: 113, iters: 704, time: 0.064) G_GAN: 0.266 G_GAN_Feat: 0.766 G_ID: 0.194 G_Rec: 0.359 D_GP: 0.035 D_real: 1.128 D_fake: 0.734 +(epoch: 113, iters: 1104, time: 0.064) G_GAN: 0.560 G_GAN_Feat: 0.942 G_ID: 0.255 G_Rec: 0.369 D_GP: 0.059 D_real: 1.017 D_fake: 0.498 +(epoch: 113, iters: 1504, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.757 G_ID: 0.163 G_Rec: 0.330 D_GP: 0.036 D_real: 1.142 D_fake: 0.715 +(epoch: 113, iters: 1904, time: 0.064) G_GAN: 0.536 G_GAN_Feat: 0.842 G_ID: 0.273 G_Rec: 0.437 D_GP: 0.023 D_real: 1.310 D_fake: 0.467 +(epoch: 113, iters: 2304, time: 0.064) G_GAN: 0.275 G_GAN_Feat: 0.902 G_ID: 0.171 G_Rec: 0.369 D_GP: 0.092 D_real: 0.614 D_fake: 0.725 +(epoch: 113, iters: 2704, time: 0.064) G_GAN: 0.526 G_GAN_Feat: 1.052 G_ID: 0.271 G_Rec: 0.455 D_GP: 0.078 D_real: 0.960 D_fake: 0.520 +(epoch: 113, iters: 3104, time: 0.064) G_GAN: 0.321 G_GAN_Feat: 0.982 G_ID: 0.164 G_Rec: 0.351 D_GP: 0.040 D_real: 0.803 D_fake: 0.679 +(epoch: 113, iters: 3504, time: 0.064) G_GAN: 0.326 G_GAN_Feat: 0.869 G_ID: 0.221 G_Rec: 0.364 D_GP: 0.028 D_real: 0.977 D_fake: 0.674 +(epoch: 113, iters: 3904, time: 0.064) G_GAN: 0.438 G_GAN_Feat: 0.760 G_ID: 0.167 G_Rec: 0.354 D_GP: 0.027 D_real: 1.275 D_fake: 0.603 +(epoch: 113, iters: 4304, time: 0.064) G_GAN: 0.322 G_GAN_Feat: 0.898 G_ID: 0.242 G_Rec: 0.401 D_GP: 0.031 D_real: 0.938 D_fake: 0.678 +(epoch: 113, iters: 4704, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.720 G_ID: 0.140 G_Rec: 0.369 D_GP: 0.022 D_real: 1.104 D_fake: 0.720 +(epoch: 113, iters: 5104, time: 0.064) G_GAN: 0.474 G_GAN_Feat: 0.851 G_ID: 0.271 G_Rec: 0.406 D_GP: 0.032 D_real: 1.184 D_fake: 0.529 +(epoch: 113, iters: 5504, time: 0.064) G_GAN: 0.332 G_GAN_Feat: 0.928 G_ID: 0.167 G_Rec: 0.399 D_GP: 0.067 D_real: 0.853 D_fake: 0.691 +(epoch: 113, iters: 5904, time: 0.064) G_GAN: 0.426 G_GAN_Feat: 0.823 G_ID: 0.277 G_Rec: 0.407 D_GP: 0.021 D_real: 1.084 D_fake: 0.576 +(epoch: 113, iters: 6304, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.797 G_ID: 0.160 G_Rec: 0.362 D_GP: 0.022 D_real: 1.103 D_fake: 0.714 +(epoch: 113, iters: 6704, time: 0.064) G_GAN: 0.406 G_GAN_Feat: 0.885 G_ID: 0.231 G_Rec: 0.386 D_GP: 0.030 D_real: 1.138 D_fake: 0.598 +(epoch: 113, iters: 7104, time: 0.064) G_GAN: -0.012 G_GAN_Feat: 0.814 G_ID: 0.164 G_Rec: 0.352 D_GP: 0.053 D_real: 0.757 D_fake: 1.012 +(epoch: 113, iters: 7504, time: 0.064) G_GAN: 0.337 G_GAN_Feat: 0.783 G_ID: 0.284 G_Rec: 0.392 D_GP: 0.026 D_real: 1.135 D_fake: 0.664 +(epoch: 113, iters: 7904, time: 0.064) G_GAN: 0.257 G_GAN_Feat: 0.744 G_ID: 0.218 G_Rec: 0.379 D_GP: 0.032 D_real: 1.068 D_fake: 0.743 +(epoch: 113, iters: 8304, time: 0.064) G_GAN: 0.417 G_GAN_Feat: 1.091 G_ID: 0.239 G_Rec: 0.500 D_GP: 0.090 D_real: 0.917 D_fake: 0.618 +(epoch: 114, iters: 96, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.811 G_ID: 0.159 G_Rec: 0.401 D_GP: 0.038 D_real: 1.014 D_fake: 0.720 +(epoch: 114, iters: 496, time: 0.064) G_GAN: 0.621 G_GAN_Feat: 1.083 G_ID: 0.267 G_Rec: 0.424 D_GP: 0.134 D_real: 0.898 D_fake: 0.420 +(epoch: 114, iters: 896, time: 0.064) G_GAN: 0.521 G_GAN_Feat: 1.020 G_ID: 0.177 G_Rec: 0.423 D_GP: 0.290 D_real: 0.845 D_fake: 0.529 +(epoch: 114, iters: 1296, time: 0.064) G_GAN: 0.690 G_GAN_Feat: 0.862 G_ID: 0.240 G_Rec: 0.383 D_GP: 0.032 D_real: 1.412 D_fake: 0.333 +(epoch: 114, iters: 1696, time: 0.064) G_GAN: 0.138 G_GAN_Feat: 1.013 G_ID: 0.164 G_Rec: 0.365 D_GP: 0.122 D_real: 0.470 D_fake: 0.862 +(epoch: 114, iters: 2096, time: 0.064) G_GAN: 0.677 G_GAN_Feat: 0.745 G_ID: 0.272 G_Rec: 0.371 D_GP: 0.022 D_real: 1.484 D_fake: 0.346 +(epoch: 114, iters: 2496, time: 0.064) G_GAN: 0.367 G_GAN_Feat: 0.730 G_ID: 0.166 G_Rec: 0.389 D_GP: 0.031 D_real: 1.136 D_fake: 0.633 +(epoch: 114, iters: 2896, time: 0.064) G_GAN: 0.521 G_GAN_Feat: 0.905 G_ID: 0.241 G_Rec: 0.380 D_GP: 0.060 D_real: 1.170 D_fake: 0.527 +(epoch: 114, iters: 3296, time: 0.064) G_GAN: 0.392 G_GAN_Feat: 0.734 G_ID: 0.172 G_Rec: 0.357 D_GP: 0.030 D_real: 1.215 D_fake: 0.610 +(epoch: 114, iters: 3696, time: 0.064) G_GAN: 0.518 G_GAN_Feat: 0.867 G_ID: 0.223 G_Rec: 0.403 D_GP: 0.050 D_real: 1.165 D_fake: 0.493 +(epoch: 114, iters: 4096, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 0.754 G_ID: 0.132 G_Rec: 0.374 D_GP: 0.028 D_real: 1.192 D_fake: 0.650 +(epoch: 114, iters: 4496, time: 0.064) G_GAN: 0.310 G_GAN_Feat: 0.880 G_ID: 0.278 G_Rec: 0.389 D_GP: 0.043 D_real: 0.980 D_fake: 0.691 +(epoch: 114, iters: 4896, time: 0.064) G_GAN: 0.219 G_GAN_Feat: 0.921 G_ID: 0.177 G_Rec: 0.381 D_GP: 0.046 D_real: 0.772 D_fake: 0.781 +(epoch: 114, iters: 5296, time: 0.064) G_GAN: 0.225 G_GAN_Feat: 0.931 G_ID: 0.221 G_Rec: 0.390 D_GP: 0.060 D_real: 0.643 D_fake: 0.776 +(epoch: 114, iters: 5696, time: 0.064) G_GAN: 0.125 G_GAN_Feat: 1.089 G_ID: 0.184 G_Rec: 0.396 D_GP: 0.518 D_real: 0.335 D_fake: 0.876 +(epoch: 114, iters: 6096, time: 0.064) G_GAN: 0.072 G_GAN_Feat: 1.178 G_ID: 0.209 G_Rec: 0.423 D_GP: 0.137 D_real: 0.415 D_fake: 0.928 +(epoch: 114, iters: 6496, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.844 G_ID: 0.134 G_Rec: 0.356 D_GP: 0.068 D_real: 0.833 D_fake: 0.715 +(epoch: 114, iters: 6896, time: 0.064) G_GAN: 0.606 G_GAN_Feat: 0.947 G_ID: 0.299 G_Rec: 0.434 D_GP: 0.030 D_real: 1.152 D_fake: 0.405 +(epoch: 114, iters: 7296, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 0.900 G_ID: 0.155 G_Rec: 0.424 D_GP: 0.048 D_real: 0.735 D_fake: 0.705 +(epoch: 114, iters: 7696, time: 0.064) G_GAN: 0.273 G_GAN_Feat: 0.835 G_ID: 0.245 G_Rec: 0.366 D_GP: 0.041 D_real: 1.078 D_fake: 0.729 +(epoch: 114, iters: 8096, time: 0.064) G_GAN: 0.324 G_GAN_Feat: 0.759 G_ID: 0.188 G_Rec: 0.372 D_GP: 0.026 D_real: 1.168 D_fake: 0.677 +(epoch: 114, iters: 8496, time: 0.064) G_GAN: 0.441 G_GAN_Feat: 1.087 G_ID: 0.237 G_Rec: 0.396 D_GP: 0.072 D_real: 0.570 D_fake: 0.564 +(epoch: 115, iters: 288, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 0.814 G_ID: 0.159 G_Rec: 0.342 D_GP: 0.037 D_real: 0.921 D_fake: 0.780 +(epoch: 115, iters: 688, time: 0.064) G_GAN: 0.476 G_GAN_Feat: 0.873 G_ID: 0.272 G_Rec: 0.372 D_GP: 0.037 D_real: 1.181 D_fake: 0.531 +(epoch: 115, iters: 1088, time: 0.064) G_GAN: 0.059 G_GAN_Feat: 0.800 G_ID: 0.153 G_Rec: 0.418 D_GP: 0.028 D_real: 0.870 D_fake: 0.941 +(epoch: 115, iters: 1488, time: 0.064) G_GAN: 0.408 G_GAN_Feat: 0.974 G_ID: 0.264 G_Rec: 0.413 D_GP: 0.077 D_real: 0.861 D_fake: 0.595 +(epoch: 115, iters: 1888, time: 0.064) G_GAN: 0.381 G_GAN_Feat: 1.015 G_ID: 0.148 G_Rec: 0.406 D_GP: 0.029 D_real: 0.855 D_fake: 0.619 +(epoch: 115, iters: 2288, time: 0.064) G_GAN: 0.508 G_GAN_Feat: 0.759 G_ID: 0.252 G_Rec: 0.374 D_GP: 0.025 D_real: 1.268 D_fake: 0.495 +(epoch: 115, iters: 2688, time: 0.064) G_GAN: 0.663 G_GAN_Feat: 0.903 G_ID: 0.162 G_Rec: 0.374 D_GP: 0.121 D_real: 1.110 D_fake: 0.424 +(epoch: 115, iters: 3088, time: 0.064) G_GAN: 0.734 G_GAN_Feat: 0.917 G_ID: 0.252 G_Rec: 0.397 D_GP: 0.028 D_real: 1.366 D_fake: 0.339 +(epoch: 115, iters: 3488, time: 0.064) G_GAN: 0.075 G_GAN_Feat: 0.678 G_ID: 0.144 G_Rec: 0.428 D_GP: 0.026 D_real: 0.940 D_fake: 0.925 +(epoch: 115, iters: 3888, time: 0.064) G_GAN: 0.614 G_GAN_Feat: 0.917 G_ID: 0.241 G_Rec: 0.392 D_GP: 0.029 D_real: 1.264 D_fake: 0.392 +(epoch: 115, iters: 4288, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 0.715 G_ID: 0.188 G_Rec: 0.322 D_GP: 0.027 D_real: 1.046 D_fake: 0.737 +(epoch: 115, iters: 4688, time: 0.064) G_GAN: 0.266 G_GAN_Feat: 0.891 G_ID: 0.245 G_Rec: 0.415 D_GP: 0.030 D_real: 0.920 D_fake: 0.737 +(epoch: 115, iters: 5088, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 0.806 G_ID: 0.171 G_Rec: 0.361 D_GP: 0.042 D_real: 1.054 D_fake: 0.705 +(epoch: 115, iters: 5488, time: 0.064) G_GAN: 0.169 G_GAN_Feat: 1.214 G_ID: 0.241 G_Rec: 0.453 D_GP: 0.114 D_real: 0.346 D_fake: 0.833 +(epoch: 115, iters: 5888, time: 0.064) G_GAN: -0.023 G_GAN_Feat: 0.785 G_ID: 0.189 G_Rec: 0.525 D_GP: 0.033 D_real: 0.822 D_fake: 1.023 +(epoch: 115, iters: 6288, time: 0.064) G_GAN: 0.646 G_GAN_Feat: 1.036 G_ID: 0.249 G_Rec: 0.448 D_GP: 0.061 D_real: 0.941 D_fake: 0.364 +(epoch: 115, iters: 6688, time: 0.064) G_GAN: 0.029 G_GAN_Feat: 1.008 G_ID: 0.169 G_Rec: 0.343 D_GP: 0.049 D_real: 0.378 D_fake: 0.971 +(epoch: 115, iters: 7088, time: 0.064) G_GAN: 0.391 G_GAN_Feat: 0.936 G_ID: 0.234 G_Rec: 0.429 D_GP: 0.048 D_real: 1.056 D_fake: 0.615 +(epoch: 115, iters: 7488, time: 0.064) G_GAN: 0.645 G_GAN_Feat: 0.900 G_ID: 0.170 G_Rec: 0.361 D_GP: 0.056 D_real: 1.142 D_fake: 0.377 +(epoch: 115, iters: 7888, time: 0.064) G_GAN: 0.603 G_GAN_Feat: 0.970 G_ID: 0.244 G_Rec: 0.381 D_GP: 0.052 D_real: 0.996 D_fake: 0.440 +(epoch: 115, iters: 8288, time: 0.064) G_GAN: 0.400 G_GAN_Feat: 0.581 G_ID: 0.151 G_Rec: 0.333 D_GP: 0.017 D_real: 1.387 D_fake: 0.601 +(epoch: 116, iters: 80, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.681 G_ID: 0.235 G_Rec: 0.402 D_GP: 0.018 D_real: 1.158 D_fake: 0.724 +(epoch: 116, iters: 480, time: 0.064) G_GAN: 0.376 G_GAN_Feat: 0.619 G_ID: 0.141 G_Rec: 0.369 D_GP: 0.019 D_real: 1.328 D_fake: 0.626 +(epoch: 116, iters: 880, time: 0.064) G_GAN: 0.259 G_GAN_Feat: 0.723 G_ID: 0.271 G_Rec: 0.386 D_GP: 0.025 D_real: 1.036 D_fake: 0.741 +(epoch: 116, iters: 1280, time: 0.064) G_GAN: 0.069 G_GAN_Feat: 0.608 G_ID: 0.215 G_Rec: 0.350 D_GP: 0.024 D_real: 0.912 D_fake: 0.931 +(epoch: 116, iters: 1680, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 0.809 G_ID: 0.241 G_Rec: 0.406 D_GP: 0.044 D_real: 0.893 D_fake: 0.690 +(epoch: 116, iters: 2080, time: 0.064) G_GAN: 0.060 G_GAN_Feat: 0.611 G_ID: 0.165 G_Rec: 0.336 D_GP: 0.033 D_real: 0.983 D_fake: 0.940 +(epoch: 116, iters: 2480, time: 0.064) G_GAN: 0.068 G_GAN_Feat: 0.697 G_ID: 0.264 G_Rec: 0.373 D_GP: 0.034 D_real: 0.810 D_fake: 0.932 +(epoch: 116, iters: 2880, time: 0.064) G_GAN: -0.023 G_GAN_Feat: 0.690 G_ID: 0.175 G_Rec: 0.351 D_GP: 0.045 D_real: 0.776 D_fake: 1.023 +(epoch: 116, iters: 3280, time: 0.064) G_GAN: 0.010 G_GAN_Feat: 0.792 G_ID: 0.239 G_Rec: 0.412 D_GP: 0.039 D_real: 0.787 D_fake: 0.990 +(epoch: 116, iters: 3680, time: 0.064) G_GAN: 0.018 G_GAN_Feat: 0.804 G_ID: 0.207 G_Rec: 0.359 D_GP: 0.102 D_real: 0.575 D_fake: 0.985 +(epoch: 116, iters: 4080, time: 0.064) G_GAN: 0.538 G_GAN_Feat: 0.836 G_ID: 0.281 G_Rec: 0.394 D_GP: 0.032 D_real: 1.249 D_fake: 0.467 +(epoch: 116, iters: 4480, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.811 G_ID: 0.179 G_Rec: 0.363 D_GP: 0.057 D_real: 1.028 D_fake: 0.767 +(epoch: 116, iters: 4880, time: 0.064) G_GAN: 0.369 G_GAN_Feat: 1.089 G_ID: 0.231 G_Rec: 0.429 D_GP: 0.092 D_real: 0.643 D_fake: 0.634 +(epoch: 116, iters: 5280, time: 0.064) G_GAN: 0.274 G_GAN_Feat: 0.863 G_ID: 0.152 G_Rec: 0.413 D_GP: 0.098 D_real: 0.988 D_fake: 0.736 +(epoch: 116, iters: 5680, time: 0.064) G_GAN: 0.260 G_GAN_Feat: 1.049 G_ID: 0.266 G_Rec: 0.409 D_GP: 0.074 D_real: 0.634 D_fake: 0.741 +(epoch: 116, iters: 6080, time: 0.064) G_GAN: 0.541 G_GAN_Feat: 0.838 G_ID: 0.180 G_Rec: 0.365 D_GP: 0.094 D_real: 1.119 D_fake: 0.466 +(epoch: 116, iters: 6480, time: 0.064) G_GAN: 0.247 G_GAN_Feat: 0.748 G_ID: 0.241 G_Rec: 0.383 D_GP: 0.023 D_real: 0.959 D_fake: 0.754 +(epoch: 116, iters: 6880, time: 0.064) G_GAN: 0.077 G_GAN_Feat: 0.695 G_ID: 0.153 G_Rec: 0.331 D_GP: 0.035 D_real: 0.897 D_fake: 0.923 +(epoch: 116, iters: 7280, time: 0.064) G_GAN: 0.676 G_GAN_Feat: 0.862 G_ID: 0.252 G_Rec: 0.411 D_GP: 0.029 D_real: 1.423 D_fake: 0.345 +(epoch: 116, iters: 7680, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.713 G_ID: 0.168 G_Rec: 0.467 D_GP: 0.028 D_real: 1.149 D_fake: 0.751 +(epoch: 116, iters: 8080, time: 0.064) G_GAN: 0.464 G_GAN_Feat: 1.079 G_ID: 0.261 G_Rec: 0.420 D_GP: 0.152 D_real: 0.575 D_fake: 0.550 +(epoch: 116, iters: 8480, time: 0.064) G_GAN: 0.338 G_GAN_Feat: 0.895 G_ID: 0.132 G_Rec: 0.339 D_GP: 0.100 D_real: 0.743 D_fake: 0.662 +(epoch: 117, iters: 272, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.735 G_ID: 0.259 G_Rec: 0.421 D_GP: 0.022 D_real: 1.059 D_fake: 0.725 +(epoch: 117, iters: 672, time: 0.064) G_GAN: 0.128 G_GAN_Feat: 0.644 G_ID: 0.184 G_Rec: 0.330 D_GP: 0.026 D_real: 1.047 D_fake: 0.872 +(epoch: 117, iters: 1072, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 0.805 G_ID: 0.280 G_Rec: 0.400 D_GP: 0.045 D_real: 1.187 D_fake: 0.556 +(epoch: 117, iters: 1472, time: 0.064) G_GAN: 0.442 G_GAN_Feat: 0.721 G_ID: 0.160 G_Rec: 0.366 D_GP: 0.046 D_real: 1.229 D_fake: 0.560 +(epoch: 117, iters: 1872, time: 0.064) G_GAN: 0.778 G_GAN_Feat: 0.825 G_ID: 0.229 G_Rec: 0.398 D_GP: 0.042 D_real: 1.411 D_fake: 0.273 +(epoch: 117, iters: 2272, time: 0.064) G_GAN: 0.271 G_GAN_Feat: 0.708 G_ID: 0.161 G_Rec: 0.345 D_GP: 0.039 D_real: 1.106 D_fake: 0.729 +(epoch: 117, iters: 2672, time: 0.064) G_GAN: 0.560 G_GAN_Feat: 0.835 G_ID: 0.220 G_Rec: 0.376 D_GP: 0.040 D_real: 1.151 D_fake: 0.455 +(epoch: 117, iters: 3072, time: 0.064) G_GAN: 0.226 G_GAN_Feat: 0.641 G_ID: 0.149 G_Rec: 0.316 D_GP: 0.023 D_real: 1.128 D_fake: 0.774 +(epoch: 117, iters: 3472, time: 0.064) G_GAN: 0.322 G_GAN_Feat: 0.985 G_ID: 0.255 G_Rec: 0.381 D_GP: 0.289 D_real: 0.539 D_fake: 0.689 +(epoch: 117, iters: 3872, time: 0.064) G_GAN: 0.140 G_GAN_Feat: 0.874 G_ID: 0.143 G_Rec: 0.360 D_GP: 0.233 D_real: 0.502 D_fake: 0.860 +(epoch: 117, iters: 4272, time: 0.064) G_GAN: 0.419 G_GAN_Feat: 0.952 G_ID: 0.249 G_Rec: 0.442 D_GP: 0.088 D_real: 0.792 D_fake: 0.583 +(epoch: 117, iters: 4672, time: 0.064) G_GAN: 0.261 G_GAN_Feat: 0.672 G_ID: 0.187 G_Rec: 0.336 D_GP: 0.025 D_real: 1.113 D_fake: 0.739 +(epoch: 117, iters: 5072, time: 0.064) G_GAN: 0.812 G_GAN_Feat: 0.880 G_ID: 0.214 G_Rec: 0.409 D_GP: 0.040 D_real: 1.355 D_fake: 0.287 +(epoch: 117, iters: 5472, time: 0.064) G_GAN: 0.285 G_GAN_Feat: 1.045 G_ID: 0.174 G_Rec: 0.388 D_GP: 0.333 D_real: 0.484 D_fake: 0.715 +(epoch: 117, iters: 5872, time: 0.064) G_GAN: 0.215 G_GAN_Feat: 0.908 G_ID: 0.314 G_Rec: 0.369 D_GP: 0.049 D_real: 0.722 D_fake: 0.785 +(epoch: 117, iters: 6272, time: 0.064) G_GAN: 0.152 G_GAN_Feat: 0.843 G_ID: 0.178 G_Rec: 0.369 D_GP: 0.152 D_real: 0.643 D_fake: 0.849 +(epoch: 117, iters: 6672, time: 0.064) G_GAN: 0.497 G_GAN_Feat: 1.211 G_ID: 0.276 G_Rec: 0.471 D_GP: 0.147 D_real: 1.091 D_fake: 0.516 +(epoch: 117, iters: 7072, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 0.740 G_ID: 0.192 G_Rec: 0.402 D_GP: 0.035 D_real: 1.114 D_fake: 0.647 +(epoch: 117, iters: 7472, time: 0.064) G_GAN: 0.643 G_GAN_Feat: 0.933 G_ID: 0.301 G_Rec: 0.390 D_GP: 0.071 D_real: 1.061 D_fake: 0.378 +(epoch: 117, iters: 7872, time: 0.064) G_GAN: 0.434 G_GAN_Feat: 0.817 G_ID: 0.162 G_Rec: 0.356 D_GP: 0.047 D_real: 1.080 D_fake: 0.569 +(epoch: 117, iters: 8272, time: 0.064) G_GAN: 0.540 G_GAN_Feat: 0.773 G_ID: 0.243 G_Rec: 0.393 D_GP: 0.027 D_real: 1.321 D_fake: 0.464 +(epoch: 118, iters: 64, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 0.729 G_ID: 0.189 G_Rec: 0.327 D_GP: 0.042 D_real: 1.058 D_fake: 0.784 +(epoch: 118, iters: 464, time: 0.064) G_GAN: 0.156 G_GAN_Feat: 1.131 G_ID: 0.255 G_Rec: 0.396 D_GP: 0.190 D_real: 0.175 D_fake: 0.846 +(epoch: 118, iters: 864, time: 0.064) G_GAN: 0.377 G_GAN_Feat: 0.923 G_ID: 0.161 G_Rec: 0.370 D_GP: 0.136 D_real: 0.778 D_fake: 0.633 +(epoch: 118, iters: 1264, time: 0.064) G_GAN: 0.551 G_GAN_Feat: 0.919 G_ID: 0.214 G_Rec: 0.405 D_GP: 0.026 D_real: 1.308 D_fake: 0.452 +(epoch: 118, iters: 1664, time: 0.064) G_GAN: 0.526 G_GAN_Feat: 0.796 G_ID: 0.138 G_Rec: 0.328 D_GP: 0.061 D_real: 1.153 D_fake: 0.484 +(epoch: 118, iters: 2064, time: 0.064) G_GAN: 0.545 G_GAN_Feat: 0.857 G_ID: 0.215 G_Rec: 0.394 D_GP: 0.032 D_real: 1.126 D_fake: 0.458 +(epoch: 118, iters: 2464, time: 0.064) G_GAN: 0.393 G_GAN_Feat: 0.761 G_ID: 0.169 G_Rec: 0.396 D_GP: 0.028 D_real: 1.169 D_fake: 0.608 +(epoch: 118, iters: 2864, time: 0.064) G_GAN: 0.662 G_GAN_Feat: 0.762 G_ID: 0.224 G_Rec: 0.396 D_GP: 0.023 D_real: 1.411 D_fake: 0.352 +(epoch: 118, iters: 3264, time: 0.064) G_GAN: 0.220 G_GAN_Feat: 0.584 G_ID: 0.164 G_Rec: 0.350 D_GP: 0.022 D_real: 1.154 D_fake: 0.780 +(epoch: 118, iters: 3664, time: 0.064) G_GAN: 0.413 G_GAN_Feat: 0.753 G_ID: 0.263 G_Rec: 0.370 D_GP: 0.029 D_real: 1.070 D_fake: 0.587 +(epoch: 118, iters: 4064, time: 0.064) G_GAN: 0.202 G_GAN_Feat: 0.746 G_ID: 0.174 G_Rec: 0.337 D_GP: 0.045 D_real: 0.990 D_fake: 0.799 +(epoch: 118, iters: 4464, time: 0.064) G_GAN: 0.598 G_GAN_Feat: 0.941 G_ID: 0.224 G_Rec: 0.386 D_GP: 0.250 D_real: 0.879 D_fake: 0.422 +(epoch: 118, iters: 4864, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.779 G_ID: 0.149 G_Rec: 0.373 D_GP: 0.051 D_real: 0.986 D_fake: 0.718 +(epoch: 118, iters: 5264, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 0.894 G_ID: 0.255 G_Rec: 0.371 D_GP: 0.080 D_real: 0.820 D_fake: 0.662 +(epoch: 118, iters: 5664, time: 0.064) G_GAN: 0.122 G_GAN_Feat: 0.820 G_ID: 0.168 G_Rec: 0.392 D_GP: 0.047 D_real: 0.724 D_fake: 0.878 +(epoch: 118, iters: 6064, time: 0.064) G_GAN: 0.924 G_GAN_Feat: 1.193 G_ID: 0.223 G_Rec: 0.467 D_GP: 0.052 D_real: 1.473 D_fake: 0.244 +(epoch: 118, iters: 6464, time: 0.064) G_GAN: 0.113 G_GAN_Feat: 0.945 G_ID: 0.131 G_Rec: 0.339 D_GP: 0.116 D_real: 0.448 D_fake: 0.887 +(epoch: 118, iters: 6864, time: 0.064) G_GAN: 0.332 G_GAN_Feat: 0.689 G_ID: 0.243 G_Rec: 0.415 D_GP: 0.018 D_real: 1.109 D_fake: 0.668 +(epoch: 118, iters: 7264, time: 0.064) G_GAN: 0.047 G_GAN_Feat: 0.692 G_ID: 0.182 G_Rec: 0.363 D_GP: 0.023 D_real: 0.972 D_fake: 0.953 +(epoch: 118, iters: 7664, time: 0.064) G_GAN: 0.384 G_GAN_Feat: 0.777 G_ID: 0.204 G_Rec: 0.408 D_GP: 0.023 D_real: 1.165 D_fake: 0.620 +(epoch: 118, iters: 8064, time: 0.064) G_GAN: 0.106 G_GAN_Feat: 0.653 G_ID: 0.168 G_Rec: 0.365 D_GP: 0.022 D_real: 0.970 D_fake: 0.895 +(epoch: 118, iters: 8464, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 0.796 G_ID: 0.235 G_Rec: 0.415 D_GP: 0.034 D_real: 0.912 D_fake: 0.826 +(epoch: 119, iters: 256, time: 0.064) G_GAN: 0.214 G_GAN_Feat: 0.740 G_ID: 0.154 G_Rec: 0.375 D_GP: 0.078 D_real: 0.915 D_fake: 0.788 +(epoch: 119, iters: 656, time: 0.064) G_GAN: 0.330 G_GAN_Feat: 1.097 G_ID: 0.216 G_Rec: 0.418 D_GP: 0.075 D_real: 0.446 D_fake: 0.670 +(epoch: 119, iters: 1056, time: 0.064) G_GAN: 0.158 G_GAN_Feat: 0.703 G_ID: 0.197 G_Rec: 0.333 D_GP: 0.033 D_real: 1.051 D_fake: 0.842 +(epoch: 119, iters: 1456, time: 0.064) G_GAN: 0.455 G_GAN_Feat: 1.001 G_ID: 0.207 G_Rec: 0.396 D_GP: 0.049 D_real: 0.765 D_fake: 0.547 +(epoch: 119, iters: 1856, time: 0.064) G_GAN: 0.379 G_GAN_Feat: 0.712 G_ID: 0.171 G_Rec: 0.326 D_GP: 0.027 D_real: 1.252 D_fake: 0.621 +(epoch: 119, iters: 2256, time: 0.064) G_GAN: 0.233 G_GAN_Feat: 0.713 G_ID: 0.249 G_Rec: 0.367 D_GP: 0.027 D_real: 1.059 D_fake: 0.768 +(epoch: 119, iters: 2656, time: 0.064) G_GAN: 0.104 G_GAN_Feat: 0.695 G_ID: 0.138 G_Rec: 0.353 D_GP: 0.037 D_real: 0.932 D_fake: 0.896 +(epoch: 119, iters: 3056, time: 0.064) G_GAN: 0.580 G_GAN_Feat: 0.882 G_ID: 0.276 G_Rec: 0.392 D_GP: 0.060 D_real: 1.073 D_fake: 0.459 +(epoch: 119, iters: 3456, time: 0.064) G_GAN: 0.177 G_GAN_Feat: 0.707 G_ID: 0.166 G_Rec: 0.333 D_GP: 0.037 D_real: 0.947 D_fake: 0.823 +(epoch: 119, iters: 3856, time: 0.064) G_GAN: 0.189 G_GAN_Feat: 0.859 G_ID: 0.260 G_Rec: 0.439 D_GP: 0.038 D_real: 0.852 D_fake: 0.811 +(epoch: 119, iters: 4256, time: 0.064) G_GAN: 0.223 G_GAN_Feat: 0.701 G_ID: 0.138 G_Rec: 0.308 D_GP: 0.034 D_real: 1.027 D_fake: 0.777 +(epoch: 119, iters: 4656, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.922 G_ID: 0.260 G_Rec: 0.384 D_GP: 0.057 D_real: 0.966 D_fake: 0.726 +(epoch: 119, iters: 5056, time: 0.064) G_GAN: -0.072 G_GAN_Feat: 0.697 G_ID: 0.176 G_Rec: 0.346 D_GP: 0.028 D_real: 0.742 D_fake: 1.072 +(epoch: 119, iters: 5456, time: 0.064) G_GAN: 0.740 G_GAN_Feat: 0.805 G_ID: 0.221 G_Rec: 0.376 D_GP: 0.028 D_real: 1.429 D_fake: 0.280 +(epoch: 119, iters: 5856, time: 0.064) G_GAN: 0.223 G_GAN_Feat: 0.770 G_ID: 0.152 G_Rec: 0.347 D_GP: 0.049 D_real: 1.043 D_fake: 0.777 +(epoch: 119, iters: 6256, time: 0.064) G_GAN: 0.411 G_GAN_Feat: 0.838 G_ID: 0.282 G_Rec: 0.384 D_GP: 0.026 D_real: 1.144 D_fake: 0.591 +(epoch: 119, iters: 6656, time: 0.064) G_GAN: 0.211 G_GAN_Feat: 0.912 G_ID: 0.157 G_Rec: 0.386 D_GP: 0.038 D_real: 0.595 D_fake: 0.789 +(epoch: 119, iters: 7056, time: 0.064) G_GAN: 0.227 G_GAN_Feat: 1.007 G_ID: 0.213 G_Rec: 0.367 D_GP: 0.063 D_real: 0.496 D_fake: 0.774 +(epoch: 119, iters: 7456, time: 0.064) G_GAN: 0.306 G_GAN_Feat: 0.867 G_ID: 0.174 G_Rec: 0.348 D_GP: 0.049 D_real: 0.771 D_fake: 0.694 +(epoch: 119, iters: 7856, time: 0.064) G_GAN: 0.629 G_GAN_Feat: 0.988 G_ID: 0.244 G_Rec: 0.418 D_GP: 0.036 D_real: 1.101 D_fake: 0.379 +(epoch: 119, iters: 8256, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.845 G_ID: 0.155 G_Rec: 0.349 D_GP: 0.051 D_real: 0.841 D_fake: 0.693 +(epoch: 120, iters: 48, time: 0.064) G_GAN: 0.504 G_GAN_Feat: 0.841 G_ID: 0.196 G_Rec: 0.402 D_GP: 0.024 D_real: 1.160 D_fake: 0.500 +(epoch: 120, iters: 448, time: 0.064) G_GAN: 0.285 G_GAN_Feat: 1.148 G_ID: 0.161 G_Rec: 0.401 D_GP: 1.558 D_real: 0.469 D_fake: 0.724 +(epoch: 120, iters: 848, time: 0.064) G_GAN: 0.344 G_GAN_Feat: 0.824 G_ID: 0.248 G_Rec: 0.418 D_GP: 0.025 D_real: 1.095 D_fake: 0.656 +(epoch: 120, iters: 1248, time: 0.064) G_GAN: 0.474 G_GAN_Feat: 0.770 G_ID: 0.159 G_Rec: 0.386 D_GP: 0.044 D_real: 1.215 D_fake: 0.537 +(epoch: 120, iters: 1648, time: 0.064) G_GAN: 0.405 G_GAN_Feat: 0.898 G_ID: 0.225 G_Rec: 0.415 D_GP: 0.039 D_real: 0.968 D_fake: 0.596 +(epoch: 120, iters: 2048, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.745 G_ID: 0.153 G_Rec: 0.366 D_GP: 0.041 D_real: 1.021 D_fake: 0.722 +(epoch: 120, iters: 2448, time: 0.064) G_GAN: 0.589 G_GAN_Feat: 0.986 G_ID: 0.257 G_Rec: 0.397 D_GP: 0.067 D_real: 0.998 D_fake: 0.443 +(epoch: 120, iters: 2848, time: 0.064) G_GAN: 0.201 G_GAN_Feat: 0.699 G_ID: 0.165 G_Rec: 0.327 D_GP: 0.034 D_real: 1.106 D_fake: 0.800 +(epoch: 120, iters: 3248, time: 0.064) G_GAN: 0.517 G_GAN_Feat: 0.830 G_ID: 0.217 G_Rec: 0.388 D_GP: 0.027 D_real: 1.312 D_fake: 0.485 +(epoch: 120, iters: 3648, time: 0.064) G_GAN: 0.510 G_GAN_Feat: 0.768 G_ID: 0.148 G_Rec: 0.347 D_GP: 0.038 D_real: 1.274 D_fake: 0.520 +(epoch: 120, iters: 4048, time: 0.064) G_GAN: 0.618 G_GAN_Feat: 0.885 G_ID: 0.206 G_Rec: 0.389 D_GP: 0.054 D_real: 1.253 D_fake: 0.427 +(epoch: 120, iters: 4448, time: 0.064) G_GAN: 0.479 G_GAN_Feat: 0.879 G_ID: 0.164 G_Rec: 0.366 D_GP: 0.064 D_real: 0.966 D_fake: 0.529 +(epoch: 120, iters: 4848, time: 0.064) G_GAN: 0.647 G_GAN_Feat: 0.769 G_ID: 0.244 G_Rec: 0.374 D_GP: 0.026 D_real: 1.443 D_fake: 0.356 +(epoch: 120, iters: 5248, time: 0.064) G_GAN: 0.259 G_GAN_Feat: 0.639 G_ID: 0.175 G_Rec: 0.327 D_GP: 0.023 D_real: 1.203 D_fake: 0.741 +(epoch: 120, iters: 5648, time: 0.064) G_GAN: 0.399 G_GAN_Feat: 0.933 G_ID: 0.275 G_Rec: 0.392 D_GP: 0.052 D_real: 0.865 D_fake: 0.625 +(epoch: 120, iters: 6048, time: 0.064) G_GAN: 0.300 G_GAN_Feat: 0.968 G_ID: 0.208 G_Rec: 0.355 D_GP: 0.085 D_real: 0.509 D_fake: 0.700 +(epoch: 120, iters: 6448, time: 0.064) G_GAN: 0.201 G_GAN_Feat: 0.804 G_ID: 0.230 G_Rec: 0.385 D_GP: 0.033 D_real: 1.028 D_fake: 0.799 +(epoch: 120, iters: 6848, time: 0.064) G_GAN: 0.270 G_GAN_Feat: 0.930 G_ID: 0.153 G_Rec: 0.366 D_GP: 0.245 D_real: 0.590 D_fake: 0.733 +(epoch: 120, iters: 7248, time: 0.064) G_GAN: 0.698 G_GAN_Feat: 0.902 G_ID: 0.240 G_Rec: 0.401 D_GP: 0.036 D_real: 1.237 D_fake: 0.315 +(epoch: 120, iters: 7648, time: 0.064) G_GAN: 0.155 G_GAN_Feat: 0.748 G_ID: 0.196 G_Rec: 0.400 D_GP: 0.030 D_real: 0.959 D_fake: 0.845 +(epoch: 120, iters: 8048, time: 0.064) G_GAN: 0.340 G_GAN_Feat: 0.869 G_ID: 0.262 G_Rec: 0.364 D_GP: 0.048 D_real: 0.917 D_fake: 0.660 +(epoch: 120, iters: 8448, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.700 G_ID: 0.151 G_Rec: 0.312 D_GP: 0.024 D_real: 1.153 D_fake: 0.669 +(epoch: 121, iters: 240, time: 0.064) G_GAN: 0.146 G_GAN_Feat: 0.771 G_ID: 0.226 G_Rec: 0.383 D_GP: 0.022 D_real: 0.931 D_fake: 0.854 +(epoch: 121, iters: 640, time: 0.064) G_GAN: 0.056 G_GAN_Feat: 0.733 G_ID: 0.182 G_Rec: 0.317 D_GP: 0.040 D_real: 0.951 D_fake: 0.944 +(epoch: 121, iters: 1040, time: 0.064) G_GAN: 0.343 G_GAN_Feat: 0.871 G_ID: 0.251 G_Rec: 0.373 D_GP: 0.023 D_real: 1.073 D_fake: 0.657 +(epoch: 121, iters: 1440, time: 0.064) G_GAN: 0.516 G_GAN_Feat: 0.853 G_ID: 0.156 G_Rec: 0.335 D_GP: 0.059 D_real: 1.016 D_fake: 0.488 +(epoch: 121, iters: 1840, time: 0.064) G_GAN: 0.528 G_GAN_Feat: 0.852 G_ID: 0.214 G_Rec: 0.373 D_GP: 0.028 D_real: 1.241 D_fake: 0.516 +(epoch: 121, iters: 2240, time: 0.064) G_GAN: 0.247 G_GAN_Feat: 0.806 G_ID: 0.176 G_Rec: 0.361 D_GP: 0.028 D_real: 0.956 D_fake: 0.753 +(epoch: 121, iters: 2640, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 0.819 G_ID: 0.248 G_Rec: 0.391 D_GP: 0.022 D_real: 1.080 D_fake: 0.650 +(epoch: 121, iters: 3040, time: 0.064) G_GAN: 0.042 G_GAN_Feat: 0.892 G_ID: 0.158 G_Rec: 0.338 D_GP: 0.052 D_real: 0.393 D_fake: 0.958 +(epoch: 121, iters: 3440, time: 0.064) G_GAN: 0.389 G_GAN_Feat: 0.853 G_ID: 0.231 G_Rec: 0.422 D_GP: 0.026 D_real: 1.124 D_fake: 0.614 +(epoch: 121, iters: 3840, time: 0.064) G_GAN: 0.704 G_GAN_Feat: 0.712 G_ID: 0.159 G_Rec: 0.308 D_GP: 0.025 D_real: 1.548 D_fake: 0.324 +(epoch: 121, iters: 4240, time: 0.064) G_GAN: 0.405 G_GAN_Feat: 0.828 G_ID: 0.241 G_Rec: 0.379 D_GP: 0.036 D_real: 1.112 D_fake: 0.597 +(epoch: 121, iters: 4640, time: 0.064) G_GAN: 0.650 G_GAN_Feat: 0.837 G_ID: 0.140 G_Rec: 0.361 D_GP: 0.045 D_real: 1.312 D_fake: 0.425 +(epoch: 121, iters: 5040, time: 0.064) G_GAN: 0.476 G_GAN_Feat: 0.802 G_ID: 0.218 G_Rec: 0.390 D_GP: 0.028 D_real: 1.203 D_fake: 0.526 +(epoch: 121, iters: 5440, time: 0.064) G_GAN: -0.101 G_GAN_Feat: 0.659 G_ID: 0.219 G_Rec: 0.354 D_GP: 0.024 D_real: 0.854 D_fake: 1.101 +(epoch: 121, iters: 5840, time: 0.064) G_GAN: 0.583 G_GAN_Feat: 0.876 G_ID: 0.235 G_Rec: 0.398 D_GP: 0.039 D_real: 1.189 D_fake: 0.422 +(epoch: 121, iters: 6240, time: 0.064) G_GAN: 0.146 G_GAN_Feat: 0.819 G_ID: 0.162 G_Rec: 0.335 D_GP: 0.067 D_real: 0.791 D_fake: 0.854 +(epoch: 121, iters: 6640, time: 0.064) G_GAN: 0.738 G_GAN_Feat: 0.931 G_ID: 0.228 G_Rec: 0.384 D_GP: 0.030 D_real: 1.234 D_fake: 0.300 +(epoch: 121, iters: 7040, time: 0.064) G_GAN: 0.605 G_GAN_Feat: 0.720 G_ID: 0.156 G_Rec: 0.388 D_GP: 0.025 D_real: 1.408 D_fake: 0.439 +(epoch: 121, iters: 7440, time: 0.064) G_GAN: 0.517 G_GAN_Feat: 0.972 G_ID: 0.285 G_Rec: 0.416 D_GP: 0.051 D_real: 0.950 D_fake: 0.526 +(epoch: 121, iters: 7840, time: 0.064) G_GAN: 0.408 G_GAN_Feat: 0.766 G_ID: 0.151 G_Rec: 0.330 D_GP: 0.034 D_real: 1.207 D_fake: 0.593 +(epoch: 121, iters: 8240, time: 0.064) G_GAN: 0.432 G_GAN_Feat: 0.857 G_ID: 0.221 G_Rec: 0.500 D_GP: 0.024 D_real: 1.224 D_fake: 0.577 +(epoch: 122, iters: 32, time: 0.064) G_GAN: 0.190 G_GAN_Feat: 0.668 G_ID: 0.166 G_Rec: 0.356 D_GP: 0.025 D_real: 1.008 D_fake: 0.810 +(epoch: 122, iters: 432, time: 0.064) G_GAN: 0.389 G_GAN_Feat: 0.999 G_ID: 0.272 G_Rec: 0.401 D_GP: 0.068 D_real: 0.868 D_fake: 0.612 +(epoch: 122, iters: 832, time: 0.064) G_GAN: 0.209 G_GAN_Feat: 0.745 G_ID: 0.134 G_Rec: 0.327 D_GP: 0.041 D_real: 0.995 D_fake: 0.791 +(epoch: 122, iters: 1232, time: 0.064) G_GAN: 0.693 G_GAN_Feat: 0.963 G_ID: 0.248 G_Rec: 0.376 D_GP: 0.031 D_real: 1.188 D_fake: 0.345 +(epoch: 122, iters: 1632, time: 0.064) G_GAN: 0.505 G_GAN_Feat: 0.650 G_ID: 0.152 G_Rec: 0.339 D_GP: 0.022 D_real: 1.449 D_fake: 0.496 +(epoch: 122, iters: 2032, time: 0.064) G_GAN: 0.484 G_GAN_Feat: 0.867 G_ID: 0.240 G_Rec: 0.378 D_GP: 0.055 D_real: 1.062 D_fake: 0.520 +(epoch: 122, iters: 2432, time: 0.064) G_GAN: 0.251 G_GAN_Feat: 0.756 G_ID: 0.169 G_Rec: 0.361 D_GP: 0.030 D_real: 1.087 D_fake: 0.749 +(epoch: 122, iters: 2832, time: 0.064) G_GAN: 0.524 G_GAN_Feat: 1.122 G_ID: 0.237 G_Rec: 0.438 D_GP: 0.254 D_real: 0.546 D_fake: 0.483 +(epoch: 122, iters: 3232, time: 0.064) G_GAN: 0.230 G_GAN_Feat: 0.723 G_ID: 0.145 G_Rec: 0.327 D_GP: 0.030 D_real: 1.059 D_fake: 0.770 +(epoch: 122, iters: 3632, time: 0.064) G_GAN: 0.626 G_GAN_Feat: 0.824 G_ID: 0.268 G_Rec: 0.415 D_GP: 0.026 D_real: 1.386 D_fake: 0.390 +(epoch: 122, iters: 4032, time: 0.064) G_GAN: 0.267 G_GAN_Feat: 0.703 G_ID: 0.158 G_Rec: 0.315 D_GP: 0.028 D_real: 1.148 D_fake: 0.733 +(epoch: 122, iters: 4432, time: 0.064) G_GAN: 0.154 G_GAN_Feat: 0.995 G_ID: 0.266 G_Rec: 0.417 D_GP: 0.087 D_real: 0.426 D_fake: 0.846 +(epoch: 122, iters: 4832, time: 0.064) G_GAN: 0.416 G_GAN_Feat: 0.730 G_ID: 0.155 G_Rec: 0.340 D_GP: 0.025 D_real: 1.278 D_fake: 0.586 +(epoch: 122, iters: 5232, time: 0.064) G_GAN: 0.463 G_GAN_Feat: 0.821 G_ID: 0.223 G_Rec: 0.415 D_GP: 0.020 D_real: 1.282 D_fake: 0.538 +(epoch: 122, iters: 5632, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.968 G_ID: 0.157 G_Rec: 0.360 D_GP: 0.326 D_real: 0.536 D_fake: 0.729 +(epoch: 122, iters: 6032, time: 0.064) G_GAN: 0.229 G_GAN_Feat: 0.875 G_ID: 0.218 G_Rec: 0.396 D_GP: 0.041 D_real: 0.949 D_fake: 0.771 +(epoch: 122, iters: 6432, time: 0.064) G_GAN: 0.430 G_GAN_Feat: 0.818 G_ID: 0.156 G_Rec: 0.363 D_GP: 0.037 D_real: 1.086 D_fake: 0.577 +(epoch: 122, iters: 6832, time: 0.064) G_GAN: 0.455 G_GAN_Feat: 0.976 G_ID: 0.223 G_Rec: 0.414 D_GP: 0.086 D_real: 0.771 D_fake: 0.552 +(epoch: 122, iters: 7232, time: 0.064) G_GAN: 0.087 G_GAN_Feat: 0.679 G_ID: 0.157 G_Rec: 0.343 D_GP: 0.034 D_real: 0.932 D_fake: 0.913 +(epoch: 122, iters: 7632, time: 0.064) G_GAN: 0.037 G_GAN_Feat: 0.902 G_ID: 0.243 G_Rec: 0.404 D_GP: 0.084 D_real: 0.483 D_fake: 0.963 +(epoch: 122, iters: 8032, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 0.738 G_ID: 0.164 G_Rec: 0.343 D_GP: 0.035 D_real: 1.134 D_fake: 0.738 +(epoch: 122, iters: 8432, time: 0.064) G_GAN: 0.385 G_GAN_Feat: 0.948 G_ID: 0.236 G_Rec: 0.410 D_GP: 0.061 D_real: 0.767 D_fake: 0.620 +(epoch: 123, iters: 224, time: 0.064) G_GAN: 0.609 G_GAN_Feat: 1.026 G_ID: 0.168 G_Rec: 0.396 D_GP: 0.749 D_real: 0.695 D_fake: 0.466 +(epoch: 123, iters: 624, time: 0.064) G_GAN: 0.062 G_GAN_Feat: 1.014 G_ID: 0.270 G_Rec: 0.414 D_GP: 0.184 D_real: 0.294 D_fake: 0.938 +(epoch: 123, iters: 1024, time: 0.064) G_GAN: 0.370 G_GAN_Feat: 0.857 G_ID: 0.153 G_Rec: 0.341 D_GP: 0.054 D_real: 1.074 D_fake: 0.635 +(epoch: 123, iters: 1424, time: 0.064) G_GAN: 0.497 G_GAN_Feat: 0.783 G_ID: 0.212 G_Rec: 0.411 D_GP: 0.021 D_real: 1.257 D_fake: 0.522 +(epoch: 123, iters: 1824, time: 0.064) G_GAN: -0.062 G_GAN_Feat: 0.740 G_ID: 0.167 G_Rec: 0.323 D_GP: 0.032 D_real: 0.855 D_fake: 1.062 +(epoch: 123, iters: 2224, time: 0.064) G_GAN: 0.885 G_GAN_Feat: 1.047 G_ID: 0.258 G_Rec: 0.424 D_GP: 0.183 D_real: 0.945 D_fake: 0.274 +(epoch: 123, iters: 2624, time: 0.064) G_GAN: 0.471 G_GAN_Feat: 0.823 G_ID: 0.153 G_Rec: 0.353 D_GP: 0.033 D_real: 1.139 D_fake: 0.541 +(epoch: 123, iters: 3024, time: 0.064) G_GAN: 0.508 G_GAN_Feat: 0.904 G_ID: 0.223 G_Rec: 0.403 D_GP: 0.032 D_real: 1.142 D_fake: 0.494 +(epoch: 123, iters: 3424, time: 0.064) G_GAN: 0.521 G_GAN_Feat: 0.931 G_ID: 0.147 G_Rec: 0.354 D_GP: 0.195 D_real: 0.833 D_fake: 0.502 +(epoch: 123, iters: 3824, time: 0.064) G_GAN: 0.683 G_GAN_Feat: 0.973 G_ID: 0.260 G_Rec: 0.461 D_GP: 0.039 D_real: 1.352 D_fake: 0.350 +(epoch: 123, iters: 4224, time: 0.064) G_GAN: 0.315 G_GAN_Feat: 0.679 G_ID: 0.163 G_Rec: 0.333 D_GP: 0.028 D_real: 1.145 D_fake: 0.686 +(epoch: 123, iters: 4624, time: 0.064) G_GAN: 0.497 G_GAN_Feat: 0.918 G_ID: 0.240 G_Rec: 0.383 D_GP: 0.058 D_real: 0.972 D_fake: 0.511 +(epoch: 123, iters: 5024, time: 0.064) G_GAN: 0.425 G_GAN_Feat: 0.627 G_ID: 0.150 G_Rec: 0.363 D_GP: 0.019 D_real: 1.272 D_fake: 0.575 +(epoch: 123, iters: 5424, time: 0.064) G_GAN: 0.522 G_GAN_Feat: 0.821 G_ID: 0.233 G_Rec: 0.385 D_GP: 0.035 D_real: 1.116 D_fake: 0.485 +(epoch: 123, iters: 5824, time: 0.064) G_GAN: 0.119 G_GAN_Feat: 0.703 G_ID: 0.142 G_Rec: 0.324 D_GP: 0.037 D_real: 0.939 D_fake: 0.881 +(epoch: 123, iters: 6224, time: 0.064) G_GAN: 0.566 G_GAN_Feat: 0.826 G_ID: 0.247 G_Rec: 0.404 D_GP: 0.023 D_real: 1.339 D_fake: 0.435 +(epoch: 123, iters: 6624, time: 0.064) G_GAN: 0.297 G_GAN_Feat: 0.805 G_ID: 0.169 G_Rec: 0.358 D_GP: 0.055 D_real: 0.939 D_fake: 0.704 +(epoch: 123, iters: 7024, time: 0.064) G_GAN: 0.756 G_GAN_Feat: 1.036 G_ID: 0.235 G_Rec: 0.421 D_GP: 0.121 D_real: 0.878 D_fake: 0.322 +(epoch: 123, iters: 7424, time: 0.064) G_GAN: 0.244 G_GAN_Feat: 0.700 G_ID: 0.169 G_Rec: 0.352 D_GP: 0.031 D_real: 1.088 D_fake: 0.756 +(epoch: 123, iters: 7824, time: 0.064) G_GAN: 0.488 G_GAN_Feat: 1.001 G_ID: 0.231 G_Rec: 0.398 D_GP: 0.068 D_real: 0.808 D_fake: 0.516 +(epoch: 123, iters: 8224, time: 0.064) G_GAN: 0.500 G_GAN_Feat: 0.790 G_ID: 0.168 G_Rec: 0.337 D_GP: 0.036 D_real: 1.253 D_fake: 0.511 +(epoch: 124, iters: 16, time: 0.064) G_GAN: 0.553 G_GAN_Feat: 0.947 G_ID: 0.224 G_Rec: 0.411 D_GP: 0.046 D_real: 1.129 D_fake: 0.462 +(epoch: 124, iters: 416, time: 0.064) G_GAN: 0.003 G_GAN_Feat: 0.846 G_ID: 0.239 G_Rec: 0.345 D_GP: 0.055 D_real: 0.625 D_fake: 0.999 +(epoch: 124, iters: 816, time: 0.064) G_GAN: 0.741 G_GAN_Feat: 1.034 G_ID: 0.251 G_Rec: 0.387 D_GP: 0.121 D_real: 1.060 D_fake: 0.287 +(epoch: 124, iters: 1216, time: 0.064) G_GAN: 0.238 G_GAN_Feat: 0.682 G_ID: 0.148 G_Rec: 0.379 D_GP: 0.021 D_real: 1.194 D_fake: 0.762 +(epoch: 124, iters: 1616, time: 0.064) G_GAN: 0.532 G_GAN_Feat: 1.000 G_ID: 0.237 G_Rec: 0.438 D_GP: 0.139 D_real: 0.971 D_fake: 0.473 +(epoch: 124, iters: 2016, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 0.727 G_ID: 0.158 G_Rec: 0.318 D_GP: 0.047 D_real: 0.946 D_fake: 0.830 +(epoch: 124, iters: 2416, time: 0.064) G_GAN: 0.430 G_GAN_Feat: 0.979 G_ID: 0.239 G_Rec: 0.419 D_GP: 0.067 D_real: 0.881 D_fake: 0.571 +(epoch: 124, iters: 2816, time: 0.064) G_GAN: 0.357 G_GAN_Feat: 0.820 G_ID: 0.153 G_Rec: 0.328 D_GP: 0.040 D_real: 1.148 D_fake: 0.644 +(epoch: 124, iters: 3216, time: 0.064) G_GAN: 0.608 G_GAN_Feat: 0.981 G_ID: 0.216 G_Rec: 0.381 D_GP: 0.066 D_real: 0.851 D_fake: 0.417 +(epoch: 124, iters: 3616, time: 0.064) G_GAN: 0.330 G_GAN_Feat: 0.709 G_ID: 0.182 G_Rec: 0.360 D_GP: 0.028 D_real: 1.210 D_fake: 0.671 +(epoch: 124, iters: 4016, time: 0.064) G_GAN: 0.633 G_GAN_Feat: 0.839 G_ID: 0.237 G_Rec: 0.399 D_GP: 0.026 D_real: 1.321 D_fake: 0.398 +(epoch: 124, iters: 4416, time: 0.064) G_GAN: 0.316 G_GAN_Feat: 0.790 G_ID: 0.173 G_Rec: 0.359 D_GP: 0.043 D_real: 1.077 D_fake: 0.685 +(epoch: 124, iters: 4816, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 0.934 G_ID: 0.265 G_Rec: 0.398 D_GP: 0.060 D_real: 0.726 D_fake: 0.704 +(epoch: 124, iters: 5216, time: 0.064) G_GAN: -0.025 G_GAN_Feat: 0.862 G_ID: 0.168 G_Rec: 0.373 D_GP: 0.066 D_real: 0.758 D_fake: 1.025 +(epoch: 124, iters: 5616, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.802 G_ID: 0.237 G_Rec: 0.348 D_GP: 0.029 D_real: 1.017 D_fake: 0.721 +(epoch: 124, iters: 6016, time: 0.064) G_GAN: 0.377 G_GAN_Feat: 0.806 G_ID: 0.149 G_Rec: 0.359 D_GP: 0.063 D_real: 1.078 D_fake: 0.624 +(epoch: 124, iters: 6416, time: 0.064) G_GAN: 0.588 G_GAN_Feat: 1.019 G_ID: 0.237 G_Rec: 0.441 D_GP: 0.106 D_real: 1.096 D_fake: 0.473 +(epoch: 124, iters: 6816, time: 0.064) G_GAN: -0.010 G_GAN_Feat: 0.873 G_ID: 0.157 G_Rec: 0.369 D_GP: 0.030 D_real: 0.750 D_fake: 1.012 +(epoch: 124, iters: 7216, time: 0.064) G_GAN: 0.559 G_GAN_Feat: 1.126 G_ID: 0.269 G_Rec: 0.380 D_GP: 0.097 D_real: 0.622 D_fake: 0.444 +(epoch: 124, iters: 7616, time: 0.064) G_GAN: 0.144 G_GAN_Feat: 0.726 G_ID: 0.125 G_Rec: 0.330 D_GP: 0.024 D_real: 1.026 D_fake: 0.856 +(epoch: 124, iters: 8016, time: 0.064) G_GAN: 0.604 G_GAN_Feat: 0.912 G_ID: 0.217 G_Rec: 0.393 D_GP: 0.034 D_real: 1.225 D_fake: 0.403 +(epoch: 124, iters: 8416, time: 0.064) G_GAN: 0.154 G_GAN_Feat: 0.945 G_ID: 0.161 G_Rec: 0.373 D_GP: 0.366 D_real: 0.520 D_fake: 0.848 +(epoch: 125, iters: 208, time: 0.064) G_GAN: 0.476 G_GAN_Feat: 0.916 G_ID: 0.239 G_Rec: 0.384 D_GP: 0.035 D_real: 1.059 D_fake: 0.530 +(epoch: 125, iters: 608, time: 0.064) G_GAN: 0.081 G_GAN_Feat: 0.702 G_ID: 0.178 G_Rec: 0.336 D_GP: 0.027 D_real: 0.980 D_fake: 0.919 +(epoch: 125, iters: 1008, time: 0.064) G_GAN: 0.233 G_GAN_Feat: 1.068 G_ID: 0.216 G_Rec: 0.429 D_GP: 0.066 D_real: 0.766 D_fake: 0.771 +(epoch: 125, iters: 1408, time: 0.064) G_GAN: -0.032 G_GAN_Feat: 0.886 G_ID: 0.153 G_Rec: 0.337 D_GP: 0.053 D_real: 0.454 D_fake: 1.032 +(epoch: 125, iters: 1808, time: 0.064) G_GAN: 0.180 G_GAN_Feat: 1.065 G_ID: 0.253 G_Rec: 0.390 D_GP: 0.069 D_real: 0.426 D_fake: 0.820 +(epoch: 125, iters: 2208, time: 0.064) G_GAN: 0.128 G_GAN_Feat: 0.987 G_ID: 0.165 G_Rec: 0.334 D_GP: 0.194 D_real: 0.516 D_fake: 0.872 +(epoch: 125, iters: 2608, time: 0.064) G_GAN: 0.368 G_GAN_Feat: 0.908 G_ID: 0.242 G_Rec: 0.424 D_GP: 0.025 D_real: 1.086 D_fake: 0.632 +(epoch: 125, iters: 3008, time: 0.064) G_GAN: 0.179 G_GAN_Feat: 0.632 G_ID: 0.183 G_Rec: 0.342 D_GP: 0.020 D_real: 1.102 D_fake: 0.821 +(epoch: 125, iters: 3408, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 0.764 G_ID: 0.268 G_Rec: 0.372 D_GP: 0.024 D_real: 1.107 D_fake: 0.652 +(epoch: 125, iters: 3808, time: 0.064) G_GAN: 0.168 G_GAN_Feat: 0.732 G_ID: 0.135 G_Rec: 0.336 D_GP: 0.062 D_real: 0.869 D_fake: 0.833 +(epoch: 125, iters: 4208, time: 0.064) G_GAN: 0.585 G_GAN_Feat: 0.800 G_ID: 0.249 G_Rec: 0.382 D_GP: 0.027 D_real: 1.313 D_fake: 0.424 +(epoch: 125, iters: 4608, time: 0.064) G_GAN: 0.179 G_GAN_Feat: 1.047 G_ID: 0.183 G_Rec: 0.351 D_GP: 0.093 D_real: 0.528 D_fake: 0.821 +(epoch: 125, iters: 5008, time: 0.064) G_GAN: 0.531 G_GAN_Feat: 0.866 G_ID: 0.245 G_Rec: 0.379 D_GP: 0.049 D_real: 1.131 D_fake: 0.476 +(epoch: 125, iters: 5408, time: 0.064) G_GAN: 0.452 G_GAN_Feat: 0.869 G_ID: 0.147 G_Rec: 0.358 D_GP: 0.043 D_real: 1.127 D_fake: 0.549 +(epoch: 125, iters: 5808, time: 0.064) G_GAN: 0.549 G_GAN_Feat: 1.077 G_ID: 0.257 G_Rec: 0.471 D_GP: 0.210 D_real: 0.810 D_fake: 0.460 +(epoch: 125, iters: 6208, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.855 G_ID: 0.170 G_Rec: 0.348 D_GP: 0.068 D_real: 0.863 D_fake: 0.717 +(epoch: 125, iters: 6608, time: 0.064) G_GAN: 0.081 G_GAN_Feat: 0.831 G_ID: 0.213 G_Rec: 0.361 D_GP: 0.026 D_real: 0.885 D_fake: 0.919 +(epoch: 125, iters: 7008, time: 0.064) G_GAN: 0.405 G_GAN_Feat: 0.813 G_ID: 0.141 G_Rec: 0.376 D_GP: 0.040 D_real: 1.153 D_fake: 0.605 +(epoch: 125, iters: 7408, time: 0.064) G_GAN: 0.831 G_GAN_Feat: 1.029 G_ID: 0.268 G_Rec: 0.425 D_GP: 0.088 D_real: 1.023 D_fake: 0.254 +(epoch: 125, iters: 7808, time: 0.064) G_GAN: 0.282 G_GAN_Feat: 0.799 G_ID: 0.149 G_Rec: 0.358 D_GP: 0.033 D_real: 0.979 D_fake: 0.718 +(epoch: 125, iters: 8208, time: 0.064) G_GAN: 0.458 G_GAN_Feat: 1.034 G_ID: 0.257 G_Rec: 0.410 D_GP: 0.046 D_real: 0.767 D_fake: 0.551 +(epoch: 125, iters: 8608, time: 0.064) G_GAN: 0.393 G_GAN_Feat: 0.723 G_ID: 0.174 G_Rec: 0.347 D_GP: 0.025 D_real: 1.328 D_fake: 0.608 +(epoch: 126, iters: 400, time: 0.064) G_GAN: 0.246 G_GAN_Feat: 0.938 G_ID: 0.241 G_Rec: 0.383 D_GP: 0.046 D_real: 0.953 D_fake: 0.755 +(epoch: 126, iters: 800, time: 0.064) G_GAN: 0.381 G_GAN_Feat: 0.855 G_ID: 0.150 G_Rec: 0.364 D_GP: 0.046 D_real: 1.070 D_fake: 0.627 +(epoch: 126, iters: 1200, time: 0.064) G_GAN: 0.648 G_GAN_Feat: 1.118 G_ID: 0.217 G_Rec: 0.415 D_GP: 0.097 D_real: 0.801 D_fake: 0.414 +(epoch: 126, iters: 1600, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.835 G_ID: 0.147 G_Rec: 0.363 D_GP: 0.029 D_real: 1.040 D_fake: 0.720 +(epoch: 126, iters: 2000, time: 0.064) G_GAN: 0.591 G_GAN_Feat: 0.918 G_ID: 0.245 G_Rec: 0.404 D_GP: 0.027 D_real: 1.183 D_fake: 0.414 +(epoch: 126, iters: 2400, time: 0.064) G_GAN: 0.627 G_GAN_Feat: 0.839 G_ID: 0.136 G_Rec: 0.351 D_GP: 0.058 D_real: 1.328 D_fake: 0.386 +(epoch: 126, iters: 2800, time: 0.064) G_GAN: 0.380 G_GAN_Feat: 0.966 G_ID: 0.227 G_Rec: 0.431 D_GP: 0.039 D_real: 0.905 D_fake: 0.624 +(epoch: 126, iters: 3200, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 0.651 G_ID: 0.165 G_Rec: 0.337 D_GP: 0.021 D_real: 1.219 D_fake: 0.664 +(epoch: 126, iters: 3600, time: 0.064) G_GAN: 0.417 G_GAN_Feat: 0.981 G_ID: 0.233 G_Rec: 0.442 D_GP: 0.056 D_real: 0.843 D_fake: 0.586 +(epoch: 126, iters: 4000, time: 0.064) G_GAN: 0.233 G_GAN_Feat: 0.709 G_ID: 0.189 G_Rec: 0.325 D_GP: 0.027 D_real: 1.094 D_fake: 0.768 +(epoch: 126, iters: 4400, time: 0.064) G_GAN: 0.316 G_GAN_Feat: 0.831 G_ID: 0.257 G_Rec: 0.397 D_GP: 0.035 D_real: 1.044 D_fake: 0.685 +(epoch: 126, iters: 4800, time: 0.064) G_GAN: 0.346 G_GAN_Feat: 0.818 G_ID: 0.192 G_Rec: 0.343 D_GP: 0.038 D_real: 1.091 D_fake: 0.654 +(epoch: 126, iters: 5200, time: 0.064) G_GAN: 0.392 G_GAN_Feat: 0.921 G_ID: 0.222 G_Rec: 0.376 D_GP: 0.040 D_real: 0.954 D_fake: 0.608 +(epoch: 126, iters: 5600, time: 0.064) G_GAN: 0.114 G_GAN_Feat: 0.715 G_ID: 0.190 G_Rec: 0.350 D_GP: 0.026 D_real: 1.051 D_fake: 0.887 +(epoch: 126, iters: 6000, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 0.831 G_ID: 0.193 G_Rec: 0.394 D_GP: 0.036 D_real: 1.003 D_fake: 0.652 +(epoch: 126, iters: 6400, time: 0.064) G_GAN: 0.396 G_GAN_Feat: 0.861 G_ID: 0.144 G_Rec: 0.371 D_GP: 0.052 D_real: 0.966 D_fake: 0.633 +(epoch: 126, iters: 6800, time: 0.064) G_GAN: 0.172 G_GAN_Feat: 1.216 G_ID: 0.290 G_Rec: 0.424 D_GP: 0.241 D_real: 0.306 D_fake: 0.828 +(epoch: 126, iters: 7200, time: 0.064) G_GAN: 0.272 G_GAN_Feat: 0.779 G_ID: 0.144 G_Rec: 0.326 D_GP: 0.030 D_real: 1.037 D_fake: 0.728 +(epoch: 126, iters: 7600, time: 0.064) G_GAN: 0.407 G_GAN_Feat: 0.866 G_ID: 0.236 G_Rec: 0.398 D_GP: 0.030 D_real: 1.095 D_fake: 0.594 +(epoch: 126, iters: 8000, time: 0.064) G_GAN: 0.291 G_GAN_Feat: 0.929 G_ID: 0.155 G_Rec: 0.352 D_GP: 0.051 D_real: 0.645 D_fake: 0.709 +(epoch: 126, iters: 8400, time: 0.064) G_GAN: 0.328 G_GAN_Feat: 0.869 G_ID: 0.207 G_Rec: 0.355 D_GP: 0.033 D_real: 1.058 D_fake: 0.673 +(epoch: 127, iters: 192, time: 0.064) G_GAN: 0.595 G_GAN_Feat: 0.758 G_ID: 0.141 G_Rec: 0.381 D_GP: 0.037 D_real: 1.391 D_fake: 0.413 +(epoch: 127, iters: 592, time: 0.064) G_GAN: 0.268 G_GAN_Feat: 0.877 G_ID: 0.232 G_Rec: 0.430 D_GP: 0.026 D_real: 0.967 D_fake: 0.733 +(epoch: 127, iters: 992, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 0.610 G_ID: 0.140 G_Rec: 0.310 D_GP: 0.025 D_real: 1.056 D_fake: 0.830 +(epoch: 127, iters: 1392, time: 0.064) G_GAN: 0.290 G_GAN_Feat: 0.724 G_ID: 0.195 G_Rec: 0.354 D_GP: 0.026 D_real: 1.007 D_fake: 0.714 +(epoch: 127, iters: 1792, time: 0.064) G_GAN: -0.018 G_GAN_Feat: 0.745 G_ID: 0.160 G_Rec: 0.337 D_GP: 0.059 D_real: 0.753 D_fake: 1.018 +(epoch: 127, iters: 2192, time: 0.064) G_GAN: 0.382 G_GAN_Feat: 0.912 G_ID: 0.271 G_Rec: 0.415 D_GP: 0.058 D_real: 0.855 D_fake: 0.620 +(epoch: 127, iters: 2592, time: 0.064) G_GAN: 0.605 G_GAN_Feat: 0.773 G_ID: 0.131 G_Rec: 0.364 D_GP: 0.048 D_real: 1.401 D_fake: 0.412 +(epoch: 127, iters: 2992, time: 0.064) G_GAN: 0.417 G_GAN_Feat: 0.864 G_ID: 0.248 G_Rec: 0.396 D_GP: 0.034 D_real: 1.134 D_fake: 0.584 +(epoch: 127, iters: 3392, time: 0.064) G_GAN: 0.056 G_GAN_Feat: 0.943 G_ID: 0.147 G_Rec: 0.332 D_GP: 0.116 D_real: 0.360 D_fake: 0.944 +(epoch: 127, iters: 3792, time: 0.064) G_GAN: 0.632 G_GAN_Feat: 0.949 G_ID: 0.204 G_Rec: 0.392 D_GP: 0.064 D_real: 1.086 D_fake: 0.394 +(epoch: 127, iters: 4192, time: 0.064) G_GAN: 0.093 G_GAN_Feat: 1.055 G_ID: 0.168 G_Rec: 0.354 D_GP: 0.246 D_real: 0.424 D_fake: 0.907 +(epoch: 127, iters: 4592, time: 0.064) G_GAN: 0.395 G_GAN_Feat: 0.864 G_ID: 0.233 G_Rec: 0.401 D_GP: 0.027 D_real: 1.162 D_fake: 0.609 +(epoch: 127, iters: 4992, time: 0.064) G_GAN: 0.073 G_GAN_Feat: 0.948 G_ID: 0.174 G_Rec: 0.381 D_GP: 0.210 D_real: 0.481 D_fake: 0.928 +(epoch: 127, iters: 5392, time: 0.064) G_GAN: 0.300 G_GAN_Feat: 1.121 G_ID: 0.247 G_Rec: 0.438 D_GP: 0.332 D_real: 0.563 D_fake: 0.712 +(epoch: 127, iters: 5792, time: 0.064) G_GAN: 0.322 G_GAN_Feat: 0.798 G_ID: 0.178 G_Rec: 0.334 D_GP: 0.040 D_real: 1.050 D_fake: 0.683 +(epoch: 127, iters: 6192, time: 0.064) G_GAN: 0.573 G_GAN_Feat: 0.914 G_ID: 0.201 G_Rec: 0.393 D_GP: 0.040 D_real: 1.037 D_fake: 0.439 +(epoch: 127, iters: 6592, time: 0.064) G_GAN: 0.273 G_GAN_Feat: 0.732 G_ID: 0.173 G_Rec: 0.310 D_GP: 0.032 D_real: 1.135 D_fake: 0.727 +(epoch: 127, iters: 6992, time: 0.064) G_GAN: 0.547 G_GAN_Feat: 1.269 G_ID: 0.209 G_Rec: 0.420 D_GP: 0.058 D_real: 0.808 D_fake: 0.455 +(epoch: 127, iters: 7392, time: 0.064) G_GAN: 0.223 G_GAN_Feat: 0.971 G_ID: 0.133 G_Rec: 0.366 D_GP: 0.055 D_real: 0.626 D_fake: 0.777 +(epoch: 127, iters: 7792, time: 0.064) G_GAN: 0.873 G_GAN_Feat: 1.044 G_ID: 0.224 G_Rec: 0.441 D_GP: 0.157 D_real: 1.217 D_fake: 0.369 +(epoch: 127, iters: 8192, time: 0.064) G_GAN: 0.392 G_GAN_Feat: 0.974 G_ID: 0.149 G_Rec: 0.410 D_GP: 0.067 D_real: 0.627 D_fake: 0.609 +(epoch: 127, iters: 8592, time: 0.064) G_GAN: 0.412 G_GAN_Feat: 1.075 G_ID: 0.288 G_Rec: 0.412 D_GP: 0.088 D_real: 0.534 D_fake: 0.605 +(epoch: 128, iters: 384, time: 0.064) G_GAN: -0.048 G_GAN_Feat: 0.785 G_ID: 0.205 G_Rec: 0.389 D_GP: 0.063 D_real: 0.935 D_fake: 1.051 +(epoch: 128, iters: 784, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.803 G_ID: 0.232 G_Rec: 0.388 D_GP: 0.033 D_real: 0.994 D_fake: 0.698 +(epoch: 128, iters: 1184, time: 0.064) G_GAN: 0.324 G_GAN_Feat: 0.819 G_ID: 0.167 G_Rec: 0.368 D_GP: 0.039 D_real: 1.056 D_fake: 0.681 +(epoch: 128, iters: 1584, time: 0.064) G_GAN: 0.094 G_GAN_Feat: 1.005 G_ID: 0.205 G_Rec: 0.403 D_GP: 0.032 D_real: 0.840 D_fake: 0.906 +(epoch: 128, iters: 1984, time: 0.064) G_GAN: 0.418 G_GAN_Feat: 0.969 G_ID: 0.150 G_Rec: 0.374 D_GP: 0.041 D_real: 1.124 D_fake: 0.585 +(epoch: 128, iters: 2384, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 0.877 G_ID: 0.230 G_Rec: 0.367 D_GP: 0.044 D_real: 0.924 D_fake: 0.666 +(epoch: 128, iters: 2784, time: 0.064) G_GAN: 0.053 G_GAN_Feat: 1.163 G_ID: 0.154 G_Rec: 0.368 D_GP: 0.139 D_real: 1.110 D_fake: 0.947 +(epoch: 128, iters: 3184, time: 0.064) G_GAN: 0.378 G_GAN_Feat: 0.990 G_ID: 0.234 G_Rec: 0.421 D_GP: 0.047 D_real: 1.118 D_fake: 0.625 +(epoch: 128, iters: 3584, time: 0.064) G_GAN: 0.248 G_GAN_Feat: 0.734 G_ID: 0.158 G_Rec: 0.357 D_GP: 0.026 D_real: 1.105 D_fake: 0.753 +(epoch: 128, iters: 3984, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 0.848 G_ID: 0.255 G_Rec: 0.404 D_GP: 0.032 D_real: 0.916 D_fake: 0.784 +(epoch: 128, iters: 4384, time: 0.064) G_GAN: -0.008 G_GAN_Feat: 0.767 G_ID: 0.170 G_Rec: 0.371 D_GP: 0.032 D_real: 0.742 D_fake: 1.009 +(epoch: 128, iters: 4784, time: 0.064) G_GAN: 0.573 G_GAN_Feat: 1.194 G_ID: 0.232 G_Rec: 0.369 D_GP: 0.072 D_real: 0.439 D_fake: 0.437 +(epoch: 128, iters: 5184, time: 0.064) G_GAN: 0.301 G_GAN_Feat: 0.677 G_ID: 0.156 G_Rec: 0.374 D_GP: 0.021 D_real: 1.207 D_fake: 0.700 +(epoch: 128, iters: 5584, time: 0.064) G_GAN: 0.496 G_GAN_Feat: 0.792 G_ID: 0.215 G_Rec: 0.390 D_GP: 0.027 D_real: 1.174 D_fake: 0.522 +(epoch: 128, iters: 5984, time: 0.064) G_GAN: 0.277 G_GAN_Feat: 0.696 G_ID: 0.133 G_Rec: 0.336 D_GP: 0.049 D_real: 1.119 D_fake: 0.724 +(epoch: 128, iters: 6384, time: 0.064) G_GAN: 0.337 G_GAN_Feat: 0.843 G_ID: 0.235 G_Rec: 0.411 D_GP: 0.025 D_real: 1.090 D_fake: 0.665 +(epoch: 128, iters: 6784, time: 0.064) G_GAN: -0.064 G_GAN_Feat: 0.831 G_ID: 0.181 G_Rec: 0.348 D_GP: 0.133 D_real: 0.521 D_fake: 1.065 +(epoch: 128, iters: 7184, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.751 G_ID: 0.248 G_Rec: 0.378 D_GP: 0.020 D_real: 1.151 D_fake: 0.669 +(epoch: 128, iters: 7584, time: 0.064) G_GAN: 0.252 G_GAN_Feat: 0.675 G_ID: 0.165 G_Rec: 0.307 D_GP: 0.041 D_real: 1.054 D_fake: 0.748 +(epoch: 128, iters: 7984, time: 0.064) G_GAN: -0.039 G_GAN_Feat: 0.986 G_ID: 0.226 G_Rec: 0.382 D_GP: 0.229 D_real: 0.313 D_fake: 1.040 +(epoch: 128, iters: 8384, time: 0.064) G_GAN: 0.026 G_GAN_Feat: 1.019 G_ID: 0.146 G_Rec: 0.364 D_GP: 0.469 D_real: 0.464 D_fake: 0.974 +(epoch: 129, iters: 176, time: 0.064) G_GAN: 0.567 G_GAN_Feat: 0.870 G_ID: 0.249 G_Rec: 0.363 D_GP: 0.061 D_real: 0.943 D_fake: 0.444 +(epoch: 129, iters: 576, time: 0.064) G_GAN: 0.452 G_GAN_Feat: 0.801 G_ID: 0.161 G_Rec: 0.357 D_GP: 0.030 D_real: 1.257 D_fake: 0.553 +(epoch: 129, iters: 976, time: 0.064) G_GAN: 0.537 G_GAN_Feat: 0.980 G_ID: 0.214 G_Rec: 0.424 D_GP: 0.034 D_real: 0.985 D_fake: 0.470 +(epoch: 129, iters: 1376, time: 0.064) G_GAN: 0.345 G_GAN_Feat: 0.840 G_ID: 0.154 G_Rec: 0.360 D_GP: 0.031 D_real: 1.073 D_fake: 0.657 +(epoch: 129, iters: 1776, time: 0.064) G_GAN: 0.469 G_GAN_Feat: 1.039 G_ID: 0.215 G_Rec: 0.442 D_GP: 0.091 D_real: 0.830 D_fake: 0.562 +(epoch: 129, iters: 2176, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.863 G_ID: 0.146 G_Rec: 0.330 D_GP: 0.033 D_real: 0.972 D_fake: 0.695 +(epoch: 129, iters: 2576, time: 0.064) G_GAN: 0.210 G_GAN_Feat: 0.838 G_ID: 0.245 G_Rec: 0.393 D_GP: 0.033 D_real: 0.881 D_fake: 0.790 +(epoch: 129, iters: 2976, time: 0.064) G_GAN: 0.271 G_GAN_Feat: 0.788 G_ID: 0.175 G_Rec: 0.313 D_GP: 0.040 D_real: 1.011 D_fake: 0.732 +(epoch: 129, iters: 3376, time: 0.064) G_GAN: 0.511 G_GAN_Feat: 0.835 G_ID: 0.248 G_Rec: 0.373 D_GP: 0.030 D_real: 1.278 D_fake: 0.492 +(epoch: 129, iters: 3776, time: 0.064) G_GAN: 0.146 G_GAN_Feat: 0.751 G_ID: 0.148 G_Rec: 0.359 D_GP: 0.028 D_real: 0.973 D_fake: 0.854 +(epoch: 129, iters: 4176, time: 0.064) G_GAN: 0.714 G_GAN_Feat: 1.004 G_ID: 0.177 G_Rec: 0.404 D_GP: 0.042 D_real: 1.085 D_fake: 0.316 +(epoch: 129, iters: 4576, time: 0.064) G_GAN: 0.105 G_GAN_Feat: 0.836 G_ID: 0.147 G_Rec: 0.348 D_GP: 0.041 D_real: 0.867 D_fake: 0.895 +(epoch: 129, iters: 4976, time: 0.064) G_GAN: 0.390 G_GAN_Feat: 1.134 G_ID: 0.210 G_Rec: 0.418 D_GP: 0.332 D_real: 0.543 D_fake: 0.615 +(epoch: 129, iters: 5376, time: 0.064) G_GAN: 0.217 G_GAN_Feat: 0.689 G_ID: 0.165 G_Rec: 0.366 D_GP: 0.025 D_real: 1.103 D_fake: 0.783 +(epoch: 129, iters: 5776, time: 0.064) G_GAN: 0.368 G_GAN_Feat: 0.938 G_ID: 0.216 G_Rec: 0.399 D_GP: 0.069 D_real: 0.929 D_fake: 0.633 +(epoch: 129, iters: 6176, time: 0.064) G_GAN: 0.295 G_GAN_Feat: 0.860 G_ID: 0.165 G_Rec: 0.314 D_GP: 0.107 D_real: 0.736 D_fake: 0.705 +(epoch: 129, iters: 6576, time: 0.064) G_GAN: 0.493 G_GAN_Feat: 0.952 G_ID: 0.239 G_Rec: 0.431 D_GP: 0.037 D_real: 0.934 D_fake: 0.512 +(epoch: 129, iters: 6976, time: 0.064) G_GAN: 0.210 G_GAN_Feat: 0.737 G_ID: 0.171 G_Rec: 0.347 D_GP: 0.031 D_real: 1.012 D_fake: 0.790 +(epoch: 129, iters: 7376, time: 0.064) G_GAN: 0.605 G_GAN_Feat: 0.866 G_ID: 0.206 G_Rec: 0.381 D_GP: 0.032 D_real: 1.196 D_fake: 0.399 +(epoch: 129, iters: 7776, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.641 G_ID: 0.167 G_Rec: 0.336 D_GP: 0.018 D_real: 1.226 D_fake: 0.670 +(epoch: 129, iters: 8176, time: 0.064) G_GAN: 0.502 G_GAN_Feat: 0.858 G_ID: 0.277 G_Rec: 0.418 D_GP: 0.023 D_real: 1.206 D_fake: 0.509 +(epoch: 129, iters: 8576, time: 0.064) G_GAN: 0.318 G_GAN_Feat: 0.721 G_ID: 0.157 G_Rec: 0.328 D_GP: 0.039 D_real: 1.083 D_fake: 0.683 +(epoch: 130, iters: 368, time: 0.064) G_GAN: 0.487 G_GAN_Feat: 0.923 G_ID: 0.225 G_Rec: 0.394 D_GP: 0.042 D_real: 0.917 D_fake: 0.515 +(epoch: 130, iters: 768, time: 0.064) G_GAN: 0.135 G_GAN_Feat: 0.706 G_ID: 0.197 G_Rec: 0.328 D_GP: 0.035 D_real: 0.989 D_fake: 0.866 +(epoch: 130, iters: 1168, time: 0.064) G_GAN: 0.213 G_GAN_Feat: 0.876 G_ID: 0.218 G_Rec: 0.386 D_GP: 0.044 D_real: 0.870 D_fake: 0.793 +(epoch: 130, iters: 1568, time: 0.064) G_GAN: 0.175 G_GAN_Feat: 0.886 G_ID: 0.159 G_Rec: 0.336 D_GP: 0.168 D_real: 0.707 D_fake: 0.826 +(epoch: 130, iters: 1968, time: 0.064) G_GAN: 0.253 G_GAN_Feat: 1.193 G_ID: 0.237 G_Rec: 0.394 D_GP: 0.165 D_real: 0.257 D_fake: 0.748 +(epoch: 130, iters: 2368, time: 0.064) G_GAN: 0.271 G_GAN_Feat: 1.080 G_ID: 0.134 G_Rec: 0.354 D_GP: 0.071 D_real: 0.403 D_fake: 0.730 +(epoch: 130, iters: 2768, time: 0.064) G_GAN: 0.455 G_GAN_Feat: 0.843 G_ID: 0.224 G_Rec: 0.398 D_GP: 0.027 D_real: 1.162 D_fake: 0.547 +(epoch: 130, iters: 3168, time: 0.064) G_GAN: 0.375 G_GAN_Feat: 0.777 G_ID: 0.172 G_Rec: 0.351 D_GP: 0.038 D_real: 1.197 D_fake: 0.626 +(epoch: 130, iters: 3568, time: 0.064) G_GAN: 0.748 G_GAN_Feat: 1.039 G_ID: 0.195 G_Rec: 0.394 D_GP: 0.279 D_real: 0.878 D_fake: 0.387 +(epoch: 130, iters: 3968, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 0.795 G_ID: 0.159 G_Rec: 0.328 D_GP: 0.038 D_real: 1.155 D_fake: 0.650 +(epoch: 130, iters: 4368, time: 0.064) G_GAN: 0.409 G_GAN_Feat: 0.882 G_ID: 0.211 G_Rec: 0.442 D_GP: 0.033 D_real: 1.191 D_fake: 0.594 +(epoch: 130, iters: 4768, time: 0.064) G_GAN: 0.344 G_GAN_Feat: 0.685 G_ID: 0.153 G_Rec: 0.328 D_GP: 0.022 D_real: 1.279 D_fake: 0.656 +(epoch: 130, iters: 5168, time: 0.064) G_GAN: 0.729 G_GAN_Feat: 0.883 G_ID: 0.207 G_Rec: 0.395 D_GP: 0.027 D_real: 1.403 D_fake: 0.288 +(epoch: 130, iters: 5568, time: 0.064) G_GAN: -0.156 G_GAN_Feat: 0.928 G_ID: 0.159 G_Rec: 0.360 D_GP: 0.062 D_real: 0.958 D_fake: 1.156 +(epoch: 130, iters: 5968, time: 0.064) G_GAN: 0.538 G_GAN_Feat: 1.093 G_ID: 0.190 G_Rec: 0.394 D_GP: 0.042 D_real: 0.654 D_fake: 0.468 +(epoch: 130, iters: 6368, time: 0.064) G_GAN: 0.208 G_GAN_Feat: 0.680 G_ID: 0.154 G_Rec: 0.355 D_GP: 0.022 D_real: 1.162 D_fake: 0.794 +(epoch: 130, iters: 6768, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.826 G_ID: 0.227 G_Rec: 0.388 D_GP: 0.027 D_real: 1.005 D_fake: 0.724 +(epoch: 130, iters: 7168, time: 0.064) G_GAN: 0.301 G_GAN_Feat: 0.670 G_ID: 0.147 G_Rec: 0.335 D_GP: 0.024 D_real: 1.221 D_fake: 0.699 +(epoch: 130, iters: 7568, time: 0.064) G_GAN: 0.506 G_GAN_Feat: 0.878 G_ID: 0.246 G_Rec: 0.400 D_GP: 0.028 D_real: 1.217 D_fake: 0.514 +(epoch: 130, iters: 7968, time: 0.064) G_GAN: 0.224 G_GAN_Feat: 0.751 G_ID: 0.150 G_Rec: 0.341 D_GP: 0.032 D_real: 1.093 D_fake: 0.777 +(epoch: 130, iters: 8368, time: 0.064) G_GAN: 0.369 G_GAN_Feat: 0.892 G_ID: 0.242 G_Rec: 0.395 D_GP: 0.047 D_real: 0.900 D_fake: 0.631 +(epoch: 131, iters: 160, time: 0.064) G_GAN: 0.329 G_GAN_Feat: 0.778 G_ID: 0.124 G_Rec: 0.339 D_GP: 0.040 D_real: 1.137 D_fake: 0.673 +(epoch: 131, iters: 560, time: 0.064) G_GAN: 0.341 G_GAN_Feat: 0.828 G_ID: 0.228 G_Rec: 0.388 D_GP: 0.034 D_real: 1.080 D_fake: 0.662 +(epoch: 131, iters: 960, time: 0.064) G_GAN: 0.330 G_GAN_Feat: 0.766 G_ID: 0.144 G_Rec: 0.323 D_GP: 0.038 D_real: 1.056 D_fake: 0.672 +(epoch: 131, iters: 1360, time: 0.064) G_GAN: 0.514 G_GAN_Feat: 0.894 G_ID: 0.218 G_Rec: 0.408 D_GP: 0.040 D_real: 1.118 D_fake: 0.491 +(epoch: 131, iters: 1760, time: 0.064) G_GAN: 0.349 G_GAN_Feat: 0.928 G_ID: 0.152 G_Rec: 0.353 D_GP: 0.123 D_real: 0.694 D_fake: 0.657 +(epoch: 131, iters: 2160, time: 0.064) G_GAN: 0.471 G_GAN_Feat: 0.981 G_ID: 0.201 G_Rec: 0.432 D_GP: 0.051 D_real: 0.885 D_fake: 0.551 +(epoch: 131, iters: 2560, time: 0.064) G_GAN: 0.360 G_GAN_Feat: 0.752 G_ID: 0.155 G_Rec: 0.312 D_GP: 0.030 D_real: 1.136 D_fake: 0.641 +(epoch: 131, iters: 2960, time: 0.064) G_GAN: 0.468 G_GAN_Feat: 0.993 G_ID: 0.232 G_Rec: 0.379 D_GP: 0.042 D_real: 0.918 D_fake: 0.532 +(epoch: 131, iters: 3360, time: 0.064) G_GAN: 0.026 G_GAN_Feat: 0.619 G_ID: 0.167 G_Rec: 0.317 D_GP: 0.023 D_real: 0.973 D_fake: 0.974 +(epoch: 131, iters: 3760, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 0.817 G_ID: 0.202 G_Rec: 0.387 D_GP: 0.022 D_real: 1.136 D_fake: 0.670 +(epoch: 131, iters: 4160, time: 0.064) G_GAN: 0.099 G_GAN_Feat: 0.715 G_ID: 0.152 G_Rec: 0.363 D_GP: 0.043 D_real: 0.923 D_fake: 0.902 +(epoch: 131, iters: 4560, time: 0.064) G_GAN: 0.402 G_GAN_Feat: 0.888 G_ID: 0.242 G_Rec: 0.398 D_GP: 0.094 D_real: 0.911 D_fake: 0.620 +(epoch: 131, iters: 4960, time: 0.064) G_GAN: 0.169 G_GAN_Feat: 0.813 G_ID: 0.133 G_Rec: 0.329 D_GP: 0.092 D_real: 0.833 D_fake: 0.831 +(epoch: 131, iters: 5360, time: 0.064) G_GAN: 0.324 G_GAN_Feat: 0.893 G_ID: 0.220 G_Rec: 0.391 D_GP: 0.029 D_real: 0.944 D_fake: 0.676 +(epoch: 131, iters: 5760, time: 0.064) G_GAN: 0.012 G_GAN_Feat: 1.061 G_ID: 0.160 G_Rec: 0.432 D_GP: 1.313 D_real: 0.363 D_fake: 0.989 +(epoch: 131, iters: 6160, time: 0.064) G_GAN: 0.314 G_GAN_Feat: 0.970 G_ID: 0.250 G_Rec: 0.439 D_GP: 0.037 D_real: 0.775 D_fake: 0.692 +(epoch: 131, iters: 6560, time: 0.064) G_GAN: 0.321 G_GAN_Feat: 0.724 G_ID: 0.170 G_Rec: 0.315 D_GP: 0.035 D_real: 1.073 D_fake: 0.681 +(epoch: 131, iters: 6960, time: 0.064) G_GAN: 0.370 G_GAN_Feat: 0.990 G_ID: 0.268 G_Rec: 0.366 D_GP: 0.036 D_real: 0.901 D_fake: 0.631 +(epoch: 131, iters: 7360, time: 0.064) G_GAN: 0.514 G_GAN_Feat: 0.977 G_ID: 0.146 G_Rec: 0.355 D_GP: 0.198 D_real: 0.677 D_fake: 0.548 +(epoch: 131, iters: 7760, time: 0.064) G_GAN: 0.453 G_GAN_Feat: 1.001 G_ID: 0.209 G_Rec: 0.421 D_GP: 0.050 D_real: 0.809 D_fake: 0.552 +(epoch: 131, iters: 8160, time: 0.064) G_GAN: 0.190 G_GAN_Feat: 0.923 G_ID: 0.151 G_Rec: 0.355 D_GP: 0.030 D_real: 0.636 D_fake: 0.810 +(epoch: 131, iters: 8560, time: 0.064) G_GAN: 1.133 G_GAN_Feat: 0.864 G_ID: 0.241 G_Rec: 0.375 D_GP: 0.031 D_real: 1.804 D_fake: 0.135 +(epoch: 132, iters: 352, time: 0.064) G_GAN: 0.409 G_GAN_Feat: 0.928 G_ID: 0.141 G_Rec: 0.357 D_GP: 0.056 D_real: 0.756 D_fake: 0.592 +(epoch: 132, iters: 752, time: 0.064) G_GAN: 0.171 G_GAN_Feat: 0.833 G_ID: 0.259 G_Rec: 0.377 D_GP: 0.026 D_real: 0.975 D_fake: 0.829 +(epoch: 132, iters: 1152, time: 0.064) G_GAN: 0.397 G_GAN_Feat: 0.732 G_ID: 0.166 G_Rec: 0.325 D_GP: 0.024 D_real: 1.311 D_fake: 0.603 +(epoch: 132, iters: 1552, time: 0.064) G_GAN: 0.539 G_GAN_Feat: 0.877 G_ID: 0.189 G_Rec: 0.402 D_GP: 0.028 D_real: 1.208 D_fake: 0.463 +(epoch: 132, iters: 1952, time: 0.064) G_GAN: 0.153 G_GAN_Feat: 0.788 G_ID: 0.180 G_Rec: 0.329 D_GP: 0.043 D_real: 0.911 D_fake: 0.848 +(epoch: 132, iters: 2352, time: 0.064) G_GAN: 0.736 G_GAN_Feat: 1.027 G_ID: 0.257 G_Rec: 0.393 D_GP: 0.052 D_real: 0.881 D_fake: 0.357 +(epoch: 132, iters: 2752, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.818 G_ID: 0.189 G_Rec: 0.365 D_GP: 0.025 D_real: 1.148 D_fake: 0.717 +(epoch: 132, iters: 3152, time: 0.064) G_GAN: 0.492 G_GAN_Feat: 0.850 G_ID: 0.210 G_Rec: 0.343 D_GP: 0.029 D_real: 1.214 D_fake: 0.510 +(epoch: 132, iters: 3552, time: 0.064) G_GAN: 0.653 G_GAN_Feat: 1.002 G_ID: 0.137 G_Rec: 0.334 D_GP: 0.104 D_real: 0.783 D_fake: 0.409 +(epoch: 132, iters: 3952, time: 0.064) G_GAN: 0.516 G_GAN_Feat: 0.706 G_ID: 0.207 G_Rec: 0.354 D_GP: 0.021 D_real: 1.307 D_fake: 0.494 +(epoch: 132, iters: 4352, time: 0.064) G_GAN: 0.045 G_GAN_Feat: 0.805 G_ID: 0.152 G_Rec: 0.376 D_GP: 0.069 D_real: 0.786 D_fake: 0.955 +(epoch: 132, iters: 4752, time: 0.064) G_GAN: -0.031 G_GAN_Feat: 1.121 G_ID: 0.195 G_Rec: 0.387 D_GP: 0.049 D_real: 1.077 D_fake: 1.032 +(epoch: 132, iters: 5152, time: 0.064) G_GAN: 0.230 G_GAN_Feat: 0.813 G_ID: 0.130 G_Rec: 0.347 D_GP: 0.029 D_real: 1.005 D_fake: 0.770 +(epoch: 132, iters: 5552, time: 0.064) G_GAN: 0.389 G_GAN_Feat: 1.189 G_ID: 0.228 G_Rec: 0.430 D_GP: 0.205 D_real: 0.479 D_fake: 0.613 +(epoch: 132, iters: 5952, time: 0.064) G_GAN: 0.433 G_GAN_Feat: 0.934 G_ID: 0.157 G_Rec: 0.341 D_GP: 0.059 D_real: 1.041 D_fake: 0.605 +(epoch: 132, iters: 6352, time: 0.064) G_GAN: 0.333 G_GAN_Feat: 0.883 G_ID: 0.214 G_Rec: 0.382 D_GP: 0.026 D_real: 1.092 D_fake: 0.670 +(epoch: 132, iters: 6752, time: 0.064) G_GAN: 0.327 G_GAN_Feat: 0.825 G_ID: 0.141 G_Rec: 0.344 D_GP: 0.033 D_real: 0.915 D_fake: 0.673 +(epoch: 132, iters: 7152, time: 0.064) G_GAN: 0.603 G_GAN_Feat: 0.852 G_ID: 0.212 G_Rec: 0.537 D_GP: 0.024 D_real: 1.328 D_fake: 0.404 +(epoch: 132, iters: 7552, time: 0.064) G_GAN: -0.014 G_GAN_Feat: 0.749 G_ID: 0.184 G_Rec: 0.317 D_GP: 0.036 D_real: 0.905 D_fake: 1.016 +(epoch: 132, iters: 7952, time: 0.064) G_GAN: 0.302 G_GAN_Feat: 0.853 G_ID: 0.214 G_Rec: 0.369 D_GP: 0.027 D_real: 1.024 D_fake: 0.698 +(epoch: 132, iters: 8352, time: 0.064) G_GAN: 0.207 G_GAN_Feat: 0.753 G_ID: 0.167 G_Rec: 0.357 D_GP: 0.025 D_real: 1.061 D_fake: 0.794 +(epoch: 133, iters: 144, time: 0.064) G_GAN: 0.394 G_GAN_Feat: 0.854 G_ID: 0.217 G_Rec: 0.370 D_GP: 0.027 D_real: 1.130 D_fake: 0.607 +(epoch: 133, iters: 544, time: 0.064) G_GAN: 0.440 G_GAN_Feat: 1.079 G_ID: 0.177 G_Rec: 0.374 D_GP: 1.310 D_real: 0.565 D_fake: 0.570 +(epoch: 133, iters: 944, time: 0.064) G_GAN: 0.426 G_GAN_Feat: 0.860 G_ID: 0.224 G_Rec: 0.436 D_GP: 0.031 D_real: 1.062 D_fake: 0.574 +(epoch: 133, iters: 1344, time: 0.064) G_GAN: 0.742 G_GAN_Feat: 0.850 G_ID: 0.159 G_Rec: 0.363 D_GP: 0.059 D_real: 1.310 D_fake: 0.307 +(epoch: 133, iters: 1744, time: 0.064) G_GAN: 0.259 G_GAN_Feat: 0.806 G_ID: 0.242 G_Rec: 0.386 D_GP: 0.021 D_real: 1.046 D_fake: 0.741 +(epoch: 133, iters: 2144, time: 0.064) G_GAN: 0.084 G_GAN_Feat: 0.702 G_ID: 0.154 G_Rec: 0.323 D_GP: 0.026 D_real: 0.943 D_fake: 0.916 +(epoch: 133, iters: 2544, time: 0.064) G_GAN: 0.667 G_GAN_Feat: 1.187 G_ID: 0.259 G_Rec: 0.431 D_GP: 0.405 D_real: 0.625 D_fake: 0.357 +(epoch: 133, iters: 2944, time: 0.064) G_GAN: 0.506 G_GAN_Feat: 0.816 G_ID: 0.145 G_Rec: 0.343 D_GP: 0.035 D_real: 1.183 D_fake: 0.499 +(epoch: 133, iters: 3344, time: 0.064) G_GAN: 0.132 G_GAN_Feat: 0.877 G_ID: 0.218 G_Rec: 0.393 D_GP: 0.078 D_real: 0.786 D_fake: 0.868 +(epoch: 133, iters: 3744, time: 0.064) G_GAN: 0.231 G_GAN_Feat: 0.718 G_ID: 0.186 G_Rec: 0.310 D_GP: 0.029 D_real: 1.051 D_fake: 0.769 +(epoch: 133, iters: 4144, time: 0.064) G_GAN: 0.606 G_GAN_Feat: 0.985 G_ID: 0.215 G_Rec: 0.409 D_GP: 0.046 D_real: 1.004 D_fake: 0.403 +(epoch: 133, iters: 4544, time: 0.064) G_GAN: 0.272 G_GAN_Feat: 0.941 G_ID: 0.171 G_Rec: 0.351 D_GP: 0.193 D_real: 0.682 D_fake: 0.729 +(epoch: 133, iters: 4944, time: 0.064) G_GAN: 0.465 G_GAN_Feat: 0.914 G_ID: 0.190 G_Rec: 0.387 D_GP: 0.034 D_real: 1.115 D_fake: 0.535 +(epoch: 133, iters: 5344, time: 0.064) G_GAN: 0.151 G_GAN_Feat: 0.873 G_ID: 0.153 G_Rec: 0.348 D_GP: 0.053 D_real: 0.723 D_fake: 0.849 +(epoch: 133, iters: 5744, time: 0.064) G_GAN: 0.479 G_GAN_Feat: 1.133 G_ID: 0.216 G_Rec: 0.449 D_GP: 0.402 D_real: 0.515 D_fake: 0.527 +(epoch: 133, iters: 6144, time: 0.064) G_GAN: 0.210 G_GAN_Feat: 0.857 G_ID: 0.157 G_Rec: 0.325 D_GP: 0.028 D_real: 0.906 D_fake: 0.792 +(epoch: 133, iters: 6544, time: 0.064) G_GAN: 0.543 G_GAN_Feat: 1.165 G_ID: 0.231 G_Rec: 0.409 D_GP: 0.070 D_real: 0.826 D_fake: 0.464 +(epoch: 133, iters: 6944, time: 0.064) G_GAN: 0.271 G_GAN_Feat: 0.735 G_ID: 0.158 G_Rec: 0.326 D_GP: 0.030 D_real: 1.225 D_fake: 0.731 +(epoch: 133, iters: 7344, time: 0.064) G_GAN: 0.428 G_GAN_Feat: 0.918 G_ID: 0.203 G_Rec: 0.379 D_GP: 0.034 D_real: 1.107 D_fake: 0.578 +(epoch: 133, iters: 7744, time: 0.064) G_GAN: 0.409 G_GAN_Feat: 0.813 G_ID: 0.159 G_Rec: 0.319 D_GP: 0.044 D_real: 1.082 D_fake: 0.593 +(epoch: 133, iters: 8144, time: 0.064) G_GAN: 0.524 G_GAN_Feat: 0.981 G_ID: 0.221 G_Rec: 0.409 D_GP: 0.048 D_real: 0.962 D_fake: 0.486 +(epoch: 133, iters: 8544, time: 0.064) G_GAN: 0.335 G_GAN_Feat: 0.852 G_ID: 0.158 G_Rec: 0.336 D_GP: 0.028 D_real: 1.046 D_fake: 0.667 +(epoch: 134, iters: 336, time: 0.064) G_GAN: 0.241 G_GAN_Feat: 1.112 G_ID: 0.223 G_Rec: 0.424 D_GP: 0.046 D_real: 0.419 D_fake: 0.761 +(epoch: 134, iters: 736, time: 0.064) G_GAN: 0.251 G_GAN_Feat: 0.931 G_ID: 0.149 G_Rec: 0.354 D_GP: 0.066 D_real: 0.606 D_fake: 0.752 +(epoch: 134, iters: 1136, time: 0.064) G_GAN: -0.017 G_GAN_Feat: 0.859 G_ID: 0.209 G_Rec: 0.396 D_GP: 0.030 D_real: 0.818 D_fake: 1.017 +(epoch: 134, iters: 1536, time: 0.064) G_GAN: 0.191 G_GAN_Feat: 0.707 G_ID: 0.131 G_Rec: 0.335 D_GP: 0.028 D_real: 1.054 D_fake: 0.809 +(epoch: 134, iters: 1936, time: 0.064) G_GAN: 0.728 G_GAN_Feat: 1.032 G_ID: 0.224 G_Rec: 0.433 D_GP: 0.051 D_real: 1.223 D_fake: 0.313 +(epoch: 134, iters: 2336, time: 0.064) G_GAN: 0.303 G_GAN_Feat: 0.901 G_ID: 0.159 G_Rec: 0.407 D_GP: 0.069 D_real: 0.787 D_fake: 0.698 +(epoch: 134, iters: 2736, time: 0.064) G_GAN: 0.644 G_GAN_Feat: 1.087 G_ID: 0.211 G_Rec: 0.416 D_GP: 0.068 D_real: 0.816 D_fake: 0.366 +(epoch: 134, iters: 3136, time: 0.064) G_GAN: 0.130 G_GAN_Feat: 0.763 G_ID: 0.142 G_Rec: 0.382 D_GP: 0.027 D_real: 0.959 D_fake: 0.870 +(epoch: 134, iters: 3536, time: 0.064) G_GAN: 0.358 G_GAN_Feat: 0.826 G_ID: 0.233 G_Rec: 0.351 D_GP: 0.027 D_real: 1.116 D_fake: 0.645 +(epoch: 134, iters: 3936, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 1.020 G_ID: 0.154 G_Rec: 0.380 D_GP: 0.119 D_real: 0.494 D_fake: 0.787 +(epoch: 134, iters: 4336, time: 0.064) G_GAN: 0.373 G_GAN_Feat: 0.916 G_ID: 0.259 G_Rec: 0.378 D_GP: 0.027 D_real: 0.931 D_fake: 0.627 +(epoch: 134, iters: 4736, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 1.045 G_ID: 0.175 G_Rec: 0.321 D_GP: 0.150 D_real: 0.363 D_fake: 0.830 +(epoch: 134, iters: 5136, time: 0.064) G_GAN: 0.252 G_GAN_Feat: 0.928 G_ID: 0.211 G_Rec: 0.426 D_GP: 0.050 D_real: 0.679 D_fake: 0.749 +(epoch: 134, iters: 5536, time: 0.064) G_GAN: 0.153 G_GAN_Feat: 0.818 G_ID: 0.140 G_Rec: 0.359 D_GP: 0.062 D_real: 0.731 D_fake: 0.848 +(epoch: 134, iters: 5936, time: 0.064) G_GAN: 0.308 G_GAN_Feat: 0.978 G_ID: 0.199 G_Rec: 0.430 D_GP: 0.037 D_real: 0.844 D_fake: 0.692 +(epoch: 134, iters: 6336, time: 0.064) G_GAN: 0.505 G_GAN_Feat: 0.779 G_ID: 0.130 G_Rec: 0.328 D_GP: 0.029 D_real: 1.305 D_fake: 0.501 +(epoch: 134, iters: 6736, time: 0.064) G_GAN: 0.438 G_GAN_Feat: 0.757 G_ID: 0.212 G_Rec: 0.390 D_GP: 0.021 D_real: 1.258 D_fake: 0.564 +(epoch: 134, iters: 7136, time: 0.064) G_GAN: 0.344 G_GAN_Feat: 0.932 G_ID: 0.189 G_Rec: 0.348 D_GP: 0.052 D_real: 0.613 D_fake: 0.658 +(epoch: 134, iters: 7536, time: 0.064) G_GAN: 0.429 G_GAN_Feat: 1.105 G_ID: 0.288 G_Rec: 0.411 D_GP: 0.112 D_real: 0.832 D_fake: 0.596 +(epoch: 134, iters: 7936, time: 0.064) G_GAN: 0.434 G_GAN_Feat: 0.812 G_ID: 0.162 G_Rec: 0.320 D_GP: 0.029 D_real: 1.189 D_fake: 0.566 +(epoch: 134, iters: 8336, time: 0.064) G_GAN: 0.518 G_GAN_Feat: 0.981 G_ID: 0.244 G_Rec: 0.431 D_GP: 0.059 D_real: 0.947 D_fake: 0.483 +(epoch: 135, iters: 128, time: 0.064) G_GAN: 0.238 G_GAN_Feat: 0.715 G_ID: 0.154 G_Rec: 0.322 D_GP: 0.026 D_real: 1.109 D_fake: 0.762 +(epoch: 135, iters: 528, time: 0.064) G_GAN: 0.392 G_GAN_Feat: 0.971 G_ID: 0.224 G_Rec: 0.381 D_GP: 0.031 D_real: 1.267 D_fake: 0.623 +(epoch: 135, iters: 928, time: 0.064) G_GAN: 0.255 G_GAN_Feat: 0.730 G_ID: 0.164 G_Rec: 0.307 D_GP: 0.032 D_real: 1.111 D_fake: 0.745 +(epoch: 135, iters: 1328, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 0.830 G_ID: 0.246 G_Rec: 0.381 D_GP: 0.026 D_real: 0.839 D_fake: 0.826 +(epoch: 135, iters: 1728, time: 0.064) G_GAN: 0.515 G_GAN_Feat: 0.883 G_ID: 0.157 G_Rec: 0.347 D_GP: 0.085 D_real: 0.821 D_fake: 0.494 +(epoch: 135, iters: 2128, time: 0.064) G_GAN: 0.364 G_GAN_Feat: 0.853 G_ID: 0.212 G_Rec: 0.392 D_GP: 0.022 D_real: 1.112 D_fake: 0.636 +(epoch: 135, iters: 2528, time: 0.064) G_GAN: 0.234 G_GAN_Feat: 0.850 G_ID: 0.172 G_Rec: 0.320 D_GP: 0.037 D_real: 0.756 D_fake: 0.766 +(epoch: 135, iters: 2928, time: 0.064) G_GAN: 0.560 G_GAN_Feat: 0.930 G_ID: 0.224 G_Rec: 0.381 D_GP: 0.039 D_real: 1.047 D_fake: 0.447 +(epoch: 135, iters: 3328, time: 0.064) G_GAN: 0.127 G_GAN_Feat: 0.708 G_ID: 0.172 G_Rec: 0.328 D_GP: 0.028 D_real: 1.020 D_fake: 0.873 +(epoch: 135, iters: 3728, time: 0.064) G_GAN: 0.403 G_GAN_Feat: 1.139 G_ID: 0.203 G_Rec: 0.434 D_GP: 0.183 D_real: 0.453 D_fake: 0.598 +(epoch: 135, iters: 4128, time: 0.064) G_GAN: 0.126 G_GAN_Feat: 0.758 G_ID: 0.161 G_Rec: 0.303 D_GP: 0.036 D_real: 1.082 D_fake: 0.874 +(epoch: 135, iters: 4528, time: 0.064) G_GAN: 0.468 G_GAN_Feat: 1.092 G_ID: 0.202 G_Rec: 0.416 D_GP: 0.143 D_real: 0.882 D_fake: 0.642 +(epoch: 135, iters: 4928, time: 0.064) G_GAN: 0.203 G_GAN_Feat: 0.708 G_ID: 0.152 G_Rec: 0.342 D_GP: 0.021 D_real: 1.143 D_fake: 0.798 +(epoch: 135, iters: 5328, time: 0.064) G_GAN: 0.453 G_GAN_Feat: 0.792 G_ID: 0.231 G_Rec: 0.351 D_GP: 0.025 D_real: 1.222 D_fake: 0.553 +(epoch: 135, iters: 5728, time: 0.064) G_GAN: 0.289 G_GAN_Feat: 0.686 G_ID: 0.156 G_Rec: 0.321 D_GP: 0.025 D_real: 1.194 D_fake: 0.711 +(epoch: 135, iters: 6128, time: 0.064) G_GAN: 0.565 G_GAN_Feat: 1.040 G_ID: 0.245 G_Rec: 0.430 D_GP: 0.041 D_real: 1.050 D_fake: 0.452 +(epoch: 135, iters: 6528, time: 0.064) G_GAN: 0.215 G_GAN_Feat: 0.934 G_ID: 0.135 G_Rec: 0.301 D_GP: 0.045 D_real: 0.626 D_fake: 0.786 +(epoch: 135, iters: 6928, time: 0.064) G_GAN: 0.616 G_GAN_Feat: 0.891 G_ID: 0.200 G_Rec: 0.385 D_GP: 0.035 D_real: 1.247 D_fake: 0.409 +(epoch: 135, iters: 7328, time: 0.064) G_GAN: 0.322 G_GAN_Feat: 0.910 G_ID: 0.139 G_Rec: 0.352 D_GP: 0.069 D_real: 0.896 D_fake: 0.688 +(epoch: 135, iters: 7728, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 0.891 G_ID: 0.251 G_Rec: 0.383 D_GP: 0.032 D_real: 0.779 D_fake: 0.787 +(epoch: 135, iters: 8128, time: 0.064) G_GAN: 0.224 G_GAN_Feat: 0.853 G_ID: 0.144 G_Rec: 0.326 D_GP: 0.034 D_real: 0.938 D_fake: 0.776 +(epoch: 135, iters: 8528, time: 0.064) G_GAN: 0.357 G_GAN_Feat: 1.028 G_ID: 0.221 G_Rec: 0.442 D_GP: 0.056 D_real: 0.899 D_fake: 0.647 +(epoch: 136, iters: 320, time: 0.064) G_GAN: 0.180 G_GAN_Feat: 0.836 G_ID: 0.141 G_Rec: 0.326 D_GP: 0.029 D_real: 0.817 D_fake: 0.821 +(epoch: 136, iters: 720, time: 0.064) G_GAN: 0.514 G_GAN_Feat: 0.838 G_ID: 0.205 G_Rec: 0.408 D_GP: 0.024 D_real: 1.227 D_fake: 0.490 +(epoch: 136, iters: 1120, time: 0.064) G_GAN: 0.071 G_GAN_Feat: 0.929 G_ID: 0.138 G_Rec: 0.429 D_GP: 0.136 D_real: 0.402 D_fake: 0.929 +(epoch: 136, iters: 1520, time: 0.064) G_GAN: 0.465 G_GAN_Feat: 1.096 G_ID: 0.204 G_Rec: 0.405 D_GP: 0.132 D_real: 0.459 D_fake: 0.541 +(epoch: 136, iters: 1920, time: 0.064) G_GAN: 0.010 G_GAN_Feat: 0.665 G_ID: 0.154 G_Rec: 0.299 D_GP: 0.027 D_real: 0.928 D_fake: 0.990 +(epoch: 136, iters: 2320, time: 0.064) G_GAN: 0.559 G_GAN_Feat: 0.963 G_ID: 0.221 G_Rec: 0.416 D_GP: 0.043 D_real: 1.027 D_fake: 0.447 +(epoch: 136, iters: 2720, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 0.726 G_ID: 0.140 G_Rec: 0.325 D_GP: 0.026 D_real: 1.305 D_fake: 0.554 +(epoch: 136, iters: 3120, time: 0.064) G_GAN: 0.466 G_GAN_Feat: 0.886 G_ID: 0.218 G_Rec: 0.377 D_GP: 0.040 D_real: 1.111 D_fake: 0.544 +(epoch: 136, iters: 3520, time: 0.064) G_GAN: 0.270 G_GAN_Feat: 0.675 G_ID: 0.154 G_Rec: 0.333 D_GP: 0.022 D_real: 1.258 D_fake: 0.731 +(epoch: 136, iters: 3920, time: 0.064) G_GAN: 0.200 G_GAN_Feat: 0.793 G_ID: 0.224 G_Rec: 0.394 D_GP: 0.023 D_real: 0.916 D_fake: 0.801 +(epoch: 136, iters: 4320, time: 0.064) G_GAN: 0.119 G_GAN_Feat: 0.712 G_ID: 0.161 G_Rec: 0.414 D_GP: 0.049 D_real: 0.918 D_fake: 0.881 +(epoch: 136, iters: 4720, time: 0.064) G_GAN: 0.106 G_GAN_Feat: 0.867 G_ID: 0.251 G_Rec: 0.420 D_GP: 0.036 D_real: 0.743 D_fake: 0.894 +(epoch: 136, iters: 5120, time: 0.064) G_GAN: 0.213 G_GAN_Feat: 0.699 G_ID: 0.161 G_Rec: 0.351 D_GP: 0.028 D_real: 1.021 D_fake: 0.787 +(epoch: 136, iters: 5520, time: 0.064) G_GAN: 0.542 G_GAN_Feat: 1.095 G_ID: 0.251 G_Rec: 0.461 D_GP: 0.131 D_real: 1.025 D_fake: 0.478 +(epoch: 136, iters: 5920, time: 0.064) G_GAN: 0.095 G_GAN_Feat: 0.953 G_ID: 0.168 G_Rec: 0.362 D_GP: 0.225 D_real: 0.603 D_fake: 0.906 +(epoch: 136, iters: 6320, time: 0.064) G_GAN: 0.235 G_GAN_Feat: 0.828 G_ID: 0.246 G_Rec: 0.340 D_GP: 0.049 D_real: 0.899 D_fake: 0.765 +(epoch: 136, iters: 6720, time: 0.064) G_GAN: 0.575 G_GAN_Feat: 0.834 G_ID: 0.157 G_Rec: 0.369 D_GP: 0.051 D_real: 1.159 D_fake: 0.452 +(epoch: 136, iters: 7120, time: 0.064) G_GAN: 0.803 G_GAN_Feat: 0.902 G_ID: 0.220 G_Rec: 0.399 D_GP: 0.033 D_real: 1.396 D_fake: 0.316 +(epoch: 136, iters: 7520, time: 0.064) G_GAN: 0.053 G_GAN_Feat: 0.726 G_ID: 0.174 G_Rec: 0.302 D_GP: 0.035 D_real: 0.891 D_fake: 0.947 +(epoch: 136, iters: 7920, time: 0.064) G_GAN: 0.359 G_GAN_Feat: 0.912 G_ID: 0.223 G_Rec: 0.393 D_GP: 0.049 D_real: 0.948 D_fake: 0.643 +(epoch: 136, iters: 8320, time: 0.064) G_GAN: 0.449 G_GAN_Feat: 0.707 G_ID: 0.179 G_Rec: 0.340 D_GP: 0.023 D_real: 1.374 D_fake: 0.555 +(epoch: 137, iters: 112, time: 0.064) G_GAN: 0.393 G_GAN_Feat: 0.946 G_ID: 0.222 G_Rec: 0.402 D_GP: 0.030 D_real: 1.026 D_fake: 0.607 +(epoch: 137, iters: 512, time: 0.064) G_GAN: 0.328 G_GAN_Feat: 1.035 G_ID: 0.178 G_Rec: 0.354 D_GP: 0.191 D_real: 0.446 D_fake: 0.675 +(epoch: 137, iters: 912, time: 0.064) G_GAN: 0.755 G_GAN_Feat: 1.053 G_ID: 0.244 G_Rec: 0.427 D_GP: 0.040 D_real: 1.309 D_fake: 0.348 +(epoch: 137, iters: 1312, time: 0.064) G_GAN: 0.232 G_GAN_Feat: 0.859 G_ID: 0.170 G_Rec: 0.319 D_GP: 0.063 D_real: 0.724 D_fake: 0.768 +(epoch: 137, iters: 1712, time: 0.064) G_GAN: 0.377 G_GAN_Feat: 1.009 G_ID: 0.206 G_Rec: 0.395 D_GP: 0.064 D_real: 0.669 D_fake: 0.624 +(epoch: 137, iters: 2112, time: 0.064) G_GAN: 0.090 G_GAN_Feat: 0.841 G_ID: 0.191 G_Rec: 0.365 D_GP: 0.037 D_real: 0.719 D_fake: 0.910 +(epoch: 137, iters: 2512, time: 0.064) G_GAN: 0.247 G_GAN_Feat: 1.115 G_ID: 0.270 G_Rec: 0.424 D_GP: 0.272 D_real: 0.387 D_fake: 0.771 +(epoch: 137, iters: 2912, time: 0.064) G_GAN: 0.454 G_GAN_Feat: 0.818 G_ID: 0.150 G_Rec: 0.298 D_GP: 0.082 D_real: 1.065 D_fake: 0.562 +(epoch: 137, iters: 3312, time: 0.064) G_GAN: 0.474 G_GAN_Feat: 0.804 G_ID: 0.247 G_Rec: 0.392 D_GP: 0.024 D_real: 1.250 D_fake: 0.527 +(epoch: 137, iters: 3712, time: 0.064) G_GAN: 0.083 G_GAN_Feat: 0.799 G_ID: 0.140 G_Rec: 0.339 D_GP: 0.046 D_real: 0.788 D_fake: 0.917 +(epoch: 137, iters: 4112, time: 0.064) G_GAN: 0.786 G_GAN_Feat: 0.931 G_ID: 0.192 G_Rec: 0.401 D_GP: 0.028 D_real: 1.435 D_fake: 0.244 +(epoch: 137, iters: 4512, time: 0.064) G_GAN: 0.422 G_GAN_Feat: 0.827 G_ID: 0.181 G_Rec: 0.345 D_GP: 0.045 D_real: 1.082 D_fake: 0.580 +(epoch: 137, iters: 4912, time: 0.064) G_GAN: 0.485 G_GAN_Feat: 1.103 G_ID: 0.237 G_Rec: 0.421 D_GP: 0.332 D_real: 0.467 D_fake: 0.543 +(epoch: 137, iters: 5312, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 0.676 G_ID: 0.141 G_Rec: 0.328 D_GP: 0.024 D_real: 1.245 D_fake: 0.661 +(epoch: 137, iters: 5712, time: 0.064) G_GAN: 0.258 G_GAN_Feat: 0.899 G_ID: 0.199 G_Rec: 0.374 D_GP: 0.065 D_real: 0.849 D_fake: 0.752 +(epoch: 137, iters: 6112, time: 0.064) G_GAN: 0.161 G_GAN_Feat: 0.816 G_ID: 0.123 G_Rec: 0.340 D_GP: 0.054 D_real: 0.779 D_fake: 0.840 +(epoch: 137, iters: 6512, time: 0.064) G_GAN: 0.564 G_GAN_Feat: 0.937 G_ID: 0.196 G_Rec: 0.400 D_GP: 0.038 D_real: 1.159 D_fake: 0.448 +(epoch: 137, iters: 6912, time: 0.064) G_GAN: 0.234 G_GAN_Feat: 0.772 G_ID: 0.194 G_Rec: 0.340 D_GP: 0.035 D_real: 1.127 D_fake: 0.766 +(epoch: 137, iters: 7312, time: 0.064) G_GAN: 0.538 G_GAN_Feat: 0.883 G_ID: 0.197 G_Rec: 0.408 D_GP: 0.023 D_real: 1.303 D_fake: 0.471 +(epoch: 137, iters: 7712, time: 0.064) G_GAN: 0.416 G_GAN_Feat: 1.032 G_ID: 0.205 G_Rec: 0.384 D_GP: 0.381 D_real: 0.346 D_fake: 0.641 +(epoch: 137, iters: 8112, time: 0.064) G_GAN: 0.136 G_GAN_Feat: 0.785 G_ID: 0.214 G_Rec: 0.379 D_GP: 0.023 D_real: 0.929 D_fake: 0.864 +(epoch: 137, iters: 8512, time: 0.064) G_GAN: 0.344 G_GAN_Feat: 0.678 G_ID: 0.196 G_Rec: 0.330 D_GP: 0.023 D_real: 1.171 D_fake: 0.657 +(epoch: 138, iters: 304, time: 0.064) G_GAN: 0.302 G_GAN_Feat: 0.909 G_ID: 0.254 G_Rec: 0.418 D_GP: 0.029 D_real: 0.996 D_fake: 0.700 +(epoch: 138, iters: 704, time: 0.064) G_GAN: 0.211 G_GAN_Feat: 0.671 G_ID: 0.160 G_Rec: 0.344 D_GP: 0.023 D_real: 1.128 D_fake: 0.789 +(epoch: 138, iters: 1104, time: 0.064) G_GAN: 0.587 G_GAN_Feat: 1.110 G_ID: 0.201 G_Rec: 0.417 D_GP: 0.155 D_real: 0.622 D_fake: 0.423 +(epoch: 138, iters: 1504, time: 0.064) G_GAN: 0.292 G_GAN_Feat: 0.911 G_ID: 0.171 G_Rec: 0.353 D_GP: 0.090 D_real: 1.020 D_fake: 0.709 +(epoch: 138, iters: 1904, time: 0.064) G_GAN: 0.461 G_GAN_Feat: 0.990 G_ID: 0.205 G_Rec: 0.423 D_GP: 0.034 D_real: 1.069 D_fake: 0.540 +(epoch: 138, iters: 2304, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 0.699 G_ID: 0.142 G_Rec: 0.322 D_GP: 0.027 D_real: 1.318 D_fake: 0.655 +(epoch: 138, iters: 2704, time: 0.064) G_GAN: 0.457 G_GAN_Feat: 1.059 G_ID: 0.214 G_Rec: 0.447 D_GP: 0.037 D_real: 0.804 D_fake: 0.545 +(epoch: 138, iters: 3104, time: 0.064) G_GAN: 0.525 G_GAN_Feat: 0.795 G_ID: 0.141 G_Rec: 0.310 D_GP: 0.046 D_real: 1.201 D_fake: 0.485 +(epoch: 138, iters: 3504, time: 0.064) G_GAN: 0.071 G_GAN_Feat: 0.850 G_ID: 0.248 G_Rec: 0.402 D_GP: 0.025 D_real: 0.851 D_fake: 0.929 +(epoch: 138, iters: 3904, time: 0.064) G_GAN: 0.361 G_GAN_Feat: 0.908 G_ID: 0.151 G_Rec: 0.345 D_GP: 0.074 D_real: 0.864 D_fake: 0.647 +(epoch: 138, iters: 4304, time: 0.064) G_GAN: 0.440 G_GAN_Feat: 0.810 G_ID: 0.254 G_Rec: 0.390 D_GP: 0.027 D_real: 1.202 D_fake: 0.562 +(epoch: 138, iters: 4704, time: 0.064) G_GAN: 0.077 G_GAN_Feat: 0.678 G_ID: 0.143 G_Rec: 0.351 D_GP: 0.029 D_real: 0.925 D_fake: 0.923 +(epoch: 138, iters: 5104, time: 0.064) G_GAN: 0.641 G_GAN_Feat: 0.942 G_ID: 0.204 G_Rec: 0.425 D_GP: 0.031 D_real: 1.185 D_fake: 0.384 +(epoch: 138, iters: 5504, time: 0.064) G_GAN: 0.048 G_GAN_Feat: 1.229 G_ID: 0.176 G_Rec: 0.388 D_GP: 0.662 D_real: 0.309 D_fake: 0.953 +(epoch: 138, iters: 5904, time: 0.064) G_GAN: 0.390 G_GAN_Feat: 0.963 G_ID: 0.194 G_Rec: 0.406 D_GP: 0.036 D_real: 0.918 D_fake: 0.611 +(epoch: 138, iters: 6304, time: 0.064) G_GAN: 0.140 G_GAN_Feat: 0.861 G_ID: 0.184 G_Rec: 0.327 D_GP: 0.078 D_real: 0.826 D_fake: 0.896 +(epoch: 138, iters: 6704, time: 0.064) G_GAN: 0.363 G_GAN_Feat: 0.871 G_ID: 0.234 G_Rec: 0.412 D_GP: 0.029 D_real: 1.032 D_fake: 0.646 +(epoch: 138, iters: 7104, time: 0.064) G_GAN: 0.367 G_GAN_Feat: 1.124 G_ID: 0.164 G_Rec: 0.367 D_GP: 0.288 D_real: 0.476 D_fake: 0.639 +(epoch: 138, iters: 7504, time: 0.064) G_GAN: 0.414 G_GAN_Feat: 0.923 G_ID: 0.216 G_Rec: 0.400 D_GP: 0.038 D_real: 0.923 D_fake: 0.590 +(epoch: 138, iters: 7904, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 1.039 G_ID: 0.154 G_Rec: 0.383 D_GP: 0.876 D_real: 0.382 D_fake: 0.665 +(epoch: 138, iters: 8304, time: 0.064) G_GAN: 0.431 G_GAN_Feat: 0.890 G_ID: 0.223 G_Rec: 0.390 D_GP: 0.034 D_real: 1.006 D_fake: 0.570 +(epoch: 139, iters: 96, time: 0.064) G_GAN: 0.183 G_GAN_Feat: 0.875 G_ID: 0.158 G_Rec: 0.321 D_GP: 0.115 D_real: 0.683 D_fake: 0.817 +(epoch: 139, iters: 496, time: 0.064) G_GAN: 0.382 G_GAN_Feat: 0.801 G_ID: 0.202 G_Rec: 0.378 D_GP: 0.025 D_real: 1.137 D_fake: 0.627 +(epoch: 139, iters: 896, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 0.812 G_ID: 0.137 G_Rec: 0.317 D_GP: 0.050 D_real: 0.827 D_fake: 0.826 +(epoch: 139, iters: 1296, time: 0.064) G_GAN: 0.511 G_GAN_Feat: 0.846 G_ID: 0.244 G_Rec: 0.397 D_GP: 0.026 D_real: 1.175 D_fake: 0.504 +(epoch: 139, iters: 1696, time: 0.064) G_GAN: 0.226 G_GAN_Feat: 0.776 G_ID: 0.160 G_Rec: 0.374 D_GP: 0.023 D_real: 1.122 D_fake: 0.774 +(epoch: 139, iters: 2096, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.927 G_ID: 0.276 G_Rec: 0.411 D_GP: 0.029 D_real: 0.874 D_fake: 0.724 +(epoch: 139, iters: 2496, time: 0.064) G_GAN: 0.295 G_GAN_Feat: 0.654 G_ID: 0.148 G_Rec: 0.296 D_GP: 0.027 D_real: 1.147 D_fake: 0.707 +(epoch: 139, iters: 2896, time: 0.064) G_GAN: 0.179 G_GAN_Feat: 0.833 G_ID: 0.224 G_Rec: 0.380 D_GP: 0.036 D_real: 0.917 D_fake: 0.821 +(epoch: 139, iters: 3296, time: 0.064) G_GAN: 0.185 G_GAN_Feat: 0.695 G_ID: 0.182 G_Rec: 0.371 D_GP: 0.026 D_real: 1.048 D_fake: 0.816 +(epoch: 139, iters: 3696, time: 0.064) G_GAN: 0.527 G_GAN_Feat: 0.954 G_ID: 0.203 G_Rec: 0.401 D_GP: 0.048 D_real: 0.986 D_fake: 0.482 +(epoch: 139, iters: 4096, time: 0.064) G_GAN: 0.219 G_GAN_Feat: 0.707 G_ID: 0.151 G_Rec: 0.442 D_GP: 0.027 D_real: 1.083 D_fake: 0.782 +(epoch: 139, iters: 4496, time: 0.064) G_GAN: 0.388 G_GAN_Feat: 1.039 G_ID: 0.210 G_Rec: 0.419 D_GP: 0.031 D_real: 0.968 D_fake: 0.612 +(epoch: 139, iters: 4896, time: 0.064) G_GAN: 0.393 G_GAN_Feat: 0.763 G_ID: 0.153 G_Rec: 0.362 D_GP: 0.032 D_real: 1.219 D_fake: 0.612 +(epoch: 139, iters: 5296, time: 0.064) G_GAN: 0.461 G_GAN_Feat: 0.803 G_ID: 0.209 G_Rec: 0.397 D_GP: 0.022 D_real: 1.285 D_fake: 0.547 +(epoch: 139, iters: 5696, time: 0.064) G_GAN: 0.347 G_GAN_Feat: 0.882 G_ID: 0.135 G_Rec: 0.345 D_GP: 0.048 D_real: 0.964 D_fake: 0.657 +(epoch: 139, iters: 6096, time: 0.064) G_GAN: 0.768 G_GAN_Feat: 0.943 G_ID: 0.188 G_Rec: 0.406 D_GP: 0.034 D_real: 1.235 D_fake: 0.272 +(epoch: 139, iters: 6496, time: 0.064) G_GAN: -0.027 G_GAN_Feat: 0.975 G_ID: 0.159 G_Rec: 0.327 D_GP: 0.079 D_real: 1.021 D_fake: 1.028 +(epoch: 139, iters: 6896, time: 0.064) G_GAN: 0.456 G_GAN_Feat: 1.193 G_ID: 0.221 G_Rec: 0.488 D_GP: 0.063 D_real: 0.684 D_fake: 0.552 +(epoch: 139, iters: 7296, time: 0.064) G_GAN: -0.019 G_GAN_Feat: 0.874 G_ID: 0.163 G_Rec: 0.317 D_GP: 0.079 D_real: 0.423 D_fake: 1.019 +(epoch: 139, iters: 7696, time: 0.064) G_GAN: 0.661 G_GAN_Feat: 0.952 G_ID: 0.217 G_Rec: 0.396 D_GP: 0.034 D_real: 1.306 D_fake: 0.345 +(epoch: 139, iters: 8096, time: 0.064) G_GAN: 0.187 G_GAN_Feat: 0.771 G_ID: 0.175 G_Rec: 0.343 D_GP: 0.044 D_real: 0.952 D_fake: 0.813 +(epoch: 139, iters: 8496, time: 0.064) G_GAN: 0.658 G_GAN_Feat: 0.881 G_ID: 0.275 G_Rec: 0.408 D_GP: 0.024 D_real: 1.409 D_fake: 0.383 +(epoch: 140, iters: 288, time: 0.064) G_GAN: 0.093 G_GAN_Feat: 0.905 G_ID: 0.163 G_Rec: 0.355 D_GP: 0.060 D_real: 0.546 D_fake: 0.910 +(epoch: 140, iters: 688, time: 0.064) G_GAN: 0.399 G_GAN_Feat: 0.789 G_ID: 0.226 G_Rec: 0.404 D_GP: 0.023 D_real: 1.138 D_fake: 0.604 +(epoch: 140, iters: 1088, time: 0.064) G_GAN: 0.209 G_GAN_Feat: 0.565 G_ID: 0.142 G_Rec: 0.289 D_GP: 0.021 D_real: 1.171 D_fake: 0.791 +(epoch: 140, iters: 1488, time: 0.064) G_GAN: 0.365 G_GAN_Feat: 0.792 G_ID: 0.239 G_Rec: 0.417 D_GP: 0.028 D_real: 1.104 D_fake: 0.636 +(epoch: 140, iters: 1888, time: 0.064) G_GAN: 0.239 G_GAN_Feat: 0.640 G_ID: 0.147 G_Rec: 0.346 D_GP: 0.025 D_real: 1.090 D_fake: 0.761 +(epoch: 140, iters: 2288, time: 0.064) G_GAN: 0.141 G_GAN_Feat: 0.895 G_ID: 0.222 G_Rec: 0.457 D_GP: 0.047 D_real: 0.779 D_fake: 0.859 +(epoch: 140, iters: 2688, time: 0.064) G_GAN: -0.026 G_GAN_Feat: 0.741 G_ID: 0.152 G_Rec: 0.328 D_GP: 0.034 D_real: 0.932 D_fake: 1.026 +(epoch: 140, iters: 3088, time: 0.064) G_GAN: 0.386 G_GAN_Feat: 0.940 G_ID: 0.227 G_Rec: 0.424 D_GP: 0.035 D_real: 1.047 D_fake: 0.614 +(epoch: 140, iters: 3488, time: 0.064) G_GAN: 0.466 G_GAN_Feat: 0.879 G_ID: 0.161 G_Rec: 0.345 D_GP: 0.036 D_real: 0.974 D_fake: 0.543 +(epoch: 140, iters: 3888, time: 0.064) G_GAN: 0.355 G_GAN_Feat: 0.993 G_ID: 0.230 G_Rec: 0.404 D_GP: 0.045 D_real: 0.722 D_fake: 0.647 +(epoch: 140, iters: 4288, time: 0.064) G_GAN: 0.200 G_GAN_Feat: 0.803 G_ID: 0.164 G_Rec: 0.326 D_GP: 0.031 D_real: 0.948 D_fake: 0.800 +(epoch: 140, iters: 4688, time: 0.064) G_GAN: 0.538 G_GAN_Feat: 1.266 G_ID: 0.172 G_Rec: 0.461 D_GP: 0.165 D_real: 0.564 D_fake: 0.492 +(epoch: 140, iters: 5088, time: 0.064) G_GAN: 0.347 G_GAN_Feat: 0.786 G_ID: 0.134 G_Rec: 0.310 D_GP: 0.038 D_real: 1.075 D_fake: 0.654 +(epoch: 140, iters: 5488, time: 0.064) G_GAN: 0.157 G_GAN_Feat: 0.762 G_ID: 0.216 G_Rec: 0.391 D_GP: 0.024 D_real: 0.976 D_fake: 0.843 +(epoch: 140, iters: 5888, time: 0.064) G_GAN: 0.198 G_GAN_Feat: 0.735 G_ID: 0.159 G_Rec: 0.351 D_GP: 0.030 D_real: 1.056 D_fake: 0.803 +(epoch: 140, iters: 6288, time: 0.064) G_GAN: 0.088 G_GAN_Feat: 0.911 G_ID: 0.234 G_Rec: 0.397 D_GP: 0.061 D_real: 0.695 D_fake: 0.913 +(epoch: 140, iters: 6688, time: 0.064) G_GAN: 0.159 G_GAN_Feat: 0.786 G_ID: 0.192 G_Rec: 0.318 D_GP: 0.034 D_real: 1.113 D_fake: 0.841 +(epoch: 140, iters: 7088, time: 0.064) G_GAN: 0.529 G_GAN_Feat: 1.075 G_ID: 0.223 G_Rec: 0.431 D_GP: 0.141 D_real: 0.578 D_fake: 0.475 +(epoch: 140, iters: 7488, time: 0.064) G_GAN: 0.192 G_GAN_Feat: 0.701 G_ID: 0.135 G_Rec: 0.303 D_GP: 0.027 D_real: 1.073 D_fake: 0.808 +(epoch: 140, iters: 7888, time: 0.064) G_GAN: 0.498 G_GAN_Feat: 0.999 G_ID: 0.225 G_Rec: 0.381 D_GP: 0.089 D_real: 0.947 D_fake: 0.518 +(epoch: 140, iters: 8288, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.698 G_ID: 0.159 G_Rec: 0.324 D_GP: 0.025 D_real: 1.181 D_fake: 0.751 +(epoch: 141, iters: 80, time: 0.064) G_GAN: 0.383 G_GAN_Feat: 1.028 G_ID: 0.212 G_Rec: 0.439 D_GP: 0.031 D_real: 0.857 D_fake: 0.621 +(epoch: 141, iters: 480, time: 0.064) G_GAN: 0.189 G_GAN_Feat: 0.778 G_ID: 0.178 G_Rec: 0.334 D_GP: 0.031 D_real: 0.982 D_fake: 0.811 +(epoch: 141, iters: 880, time: 0.064) G_GAN: 0.482 G_GAN_Feat: 0.822 G_ID: 0.213 G_Rec: 0.376 D_GP: 0.025 D_real: 1.137 D_fake: 0.521 +(epoch: 141, iters: 1280, time: 0.064) G_GAN: 0.189 G_GAN_Feat: 0.684 G_ID: 0.158 G_Rec: 0.301 D_GP: 0.024 D_real: 1.064 D_fake: 0.812 +(epoch: 141, iters: 1680, time: 0.064) G_GAN: 0.383 G_GAN_Feat: 0.832 G_ID: 0.211 G_Rec: 0.356 D_GP: 0.030 D_real: 1.199 D_fake: 0.620 +(epoch: 141, iters: 2080, time: 0.064) G_GAN: 0.225 G_GAN_Feat: 0.844 G_ID: 0.170 G_Rec: 0.379 D_GP: 0.055 D_real: 0.768 D_fake: 0.776 +(epoch: 141, iters: 2480, time: 0.064) G_GAN: 0.645 G_GAN_Feat: 1.002 G_ID: 0.224 G_Rec: 0.408 D_GP: 0.045 D_real: 1.097 D_fake: 0.392 +(epoch: 141, iters: 2880, time: 0.064) G_GAN: 0.075 G_GAN_Feat: 0.689 G_ID: 0.154 G_Rec: 0.352 D_GP: 0.030 D_real: 0.915 D_fake: 0.926 +(epoch: 141, iters: 3280, time: 0.064) G_GAN: 0.447 G_GAN_Feat: 0.895 G_ID: 0.218 G_Rec: 0.434 D_GP: 0.033 D_real: 1.130 D_fake: 0.555 +(epoch: 141, iters: 3680, time: 0.064) G_GAN: 0.196 G_GAN_Feat: 0.620 G_ID: 0.152 G_Rec: 0.336 D_GP: 0.030 D_real: 1.119 D_fake: 0.804 +(epoch: 141, iters: 4080, time: 0.064) G_GAN: 0.185 G_GAN_Feat: 0.853 G_ID: 0.223 G_Rec: 0.402 D_GP: 0.053 D_real: 0.782 D_fake: 0.815 +(epoch: 141, iters: 4480, time: 0.064) G_GAN: 0.145 G_GAN_Feat: 0.866 G_ID: 0.153 G_Rec: 0.416 D_GP: 0.105 D_real: 0.519 D_fake: 0.855 +(epoch: 141, iters: 4880, time: 0.064) G_GAN: 0.574 G_GAN_Feat: 0.836 G_ID: 0.232 G_Rec: 0.371 D_GP: 0.027 D_real: 1.201 D_fake: 0.442 +(epoch: 141, iters: 5280, time: 0.064) G_GAN: 0.223 G_GAN_Feat: 0.759 G_ID: 0.136 G_Rec: 0.314 D_GP: 0.048 D_real: 0.979 D_fake: 0.779 +(epoch: 141, iters: 5680, time: 0.064) G_GAN: 0.441 G_GAN_Feat: 1.018 G_ID: 0.216 G_Rec: 0.442 D_GP: 0.100 D_real: 0.556 D_fake: 0.584 +(epoch: 141, iters: 6080, time: 0.064) G_GAN: 0.169 G_GAN_Feat: 0.855 G_ID: 0.147 G_Rec: 0.406 D_GP: 0.291 D_real: 0.801 D_fake: 0.833 +(epoch: 141, iters: 6480, time: 0.064) G_GAN: 0.393 G_GAN_Feat: 0.987 G_ID: 0.217 G_Rec: 0.431 D_GP: 0.042 D_real: 0.881 D_fake: 0.608 +(epoch: 141, iters: 6880, time: 0.064) G_GAN: 0.003 G_GAN_Feat: 0.928 G_ID: 0.159 G_Rec: 0.357 D_GP: 0.131 D_real: 0.391 D_fake: 0.997 +(epoch: 141, iters: 7280, time: 0.064) G_GAN: 0.311 G_GAN_Feat: 0.985 G_ID: 0.247 G_Rec: 0.404 D_GP: 0.032 D_real: 0.808 D_fake: 0.690 +(epoch: 141, iters: 7680, time: 0.064) G_GAN: 0.421 G_GAN_Feat: 0.936 G_ID: 0.187 G_Rec: 0.345 D_GP: 0.065 D_real: 0.739 D_fake: 0.584 +(epoch: 141, iters: 8080, time: 0.064) G_GAN: 0.555 G_GAN_Feat: 0.943 G_ID: 0.214 G_Rec: 0.386 D_GP: 0.028 D_real: 1.162 D_fake: 0.454 +(epoch: 141, iters: 8480, time: 0.064) G_GAN: 0.501 G_GAN_Feat: 0.703 G_ID: 0.147 G_Rec: 0.361 D_GP: 0.020 D_real: 1.413 D_fake: 0.509 +(epoch: 142, iters: 272, time: 0.064) G_GAN: 0.301 G_GAN_Feat: 1.042 G_ID: 0.189 G_Rec: 0.431 D_GP: 0.100 D_real: 0.706 D_fake: 0.705 +(epoch: 142, iters: 672, time: 0.064) G_GAN: 0.284 G_GAN_Feat: 0.809 G_ID: 0.160 G_Rec: 0.356 D_GP: 0.028 D_real: 0.901 D_fake: 0.717 +(epoch: 142, iters: 1072, time: 0.064) G_GAN: 0.516 G_GAN_Feat: 0.894 G_ID: 0.203 G_Rec: 0.374 D_GP: 0.038 D_real: 1.088 D_fake: 0.494 +(epoch: 142, iters: 1472, time: 0.064) G_GAN: 0.282 G_GAN_Feat: 0.731 G_ID: 0.152 G_Rec: 0.365 D_GP: 0.019 D_real: 1.167 D_fake: 0.718 +(epoch: 142, iters: 1872, time: 0.064) G_GAN: 0.314 G_GAN_Feat: 0.775 G_ID: 0.224 G_Rec: 0.358 D_GP: 0.027 D_real: 1.086 D_fake: 0.687 +(epoch: 142, iters: 2272, time: 0.064) G_GAN: 0.140 G_GAN_Feat: 0.734 G_ID: 0.177 G_Rec: 0.387 D_GP: 0.037 D_real: 0.929 D_fake: 0.860 +(epoch: 142, iters: 2672, time: 0.064) G_GAN: 0.823 G_GAN_Feat: 0.892 G_ID: 0.206 G_Rec: 0.389 D_GP: 0.042 D_real: 1.342 D_fake: 0.334 +(epoch: 142, iters: 3072, time: 0.064) G_GAN: 0.049 G_GAN_Feat: 0.823 G_ID: 0.157 G_Rec: 0.382 D_GP: 0.066 D_real: 1.018 D_fake: 0.953 +(epoch: 142, iters: 3472, time: 0.064) G_GAN: 0.383 G_GAN_Feat: 0.857 G_ID: 0.208 G_Rec: 0.429 D_GP: 0.029 D_real: 1.114 D_fake: 0.617 +(epoch: 142, iters: 3872, time: 0.064) G_GAN: 0.203 G_GAN_Feat: 0.799 G_ID: 0.153 G_Rec: 0.324 D_GP: 0.031 D_real: 1.048 D_fake: 0.797 +(epoch: 142, iters: 4272, time: 0.064) G_GAN: 0.521 G_GAN_Feat: 0.931 G_ID: 0.199 G_Rec: 0.439 D_GP: 0.042 D_real: 1.013 D_fake: 0.493 +(epoch: 142, iters: 4672, time: 0.064) G_GAN: 0.232 G_GAN_Feat: 0.686 G_ID: 0.164 G_Rec: 0.304 D_GP: 0.025 D_real: 1.100 D_fake: 0.768 +(epoch: 142, iters: 5072, time: 0.064) G_GAN: 0.517 G_GAN_Feat: 0.831 G_ID: 0.244 G_Rec: 0.387 D_GP: 0.027 D_real: 1.255 D_fake: 0.488 +(epoch: 142, iters: 5472, time: 0.064) G_GAN: 0.142 G_GAN_Feat: 0.735 G_ID: 0.122 G_Rec: 0.301 D_GP: 0.044 D_real: 0.938 D_fake: 0.858 +(epoch: 142, iters: 5872, time: 0.064) G_GAN: 0.522 G_GAN_Feat: 0.882 G_ID: 0.248 G_Rec: 0.414 D_GP: 0.026 D_real: 1.230 D_fake: 0.481 +(epoch: 142, iters: 6272, time: 0.064) G_GAN: 0.064 G_GAN_Feat: 0.878 G_ID: 0.155 G_Rec: 0.311 D_GP: 0.092 D_real: 0.454 D_fake: 0.937 +(epoch: 142, iters: 6672, time: 0.064) G_GAN: 0.145 G_GAN_Feat: 0.997 G_ID: 0.211 G_Rec: 0.417 D_GP: 0.077 D_real: 0.787 D_fake: 0.856 +(epoch: 142, iters: 7072, time: 0.064) G_GAN: 0.258 G_GAN_Feat: 0.631 G_ID: 0.191 G_Rec: 0.305 D_GP: 0.024 D_real: 1.139 D_fake: 0.742 +(epoch: 142, iters: 7472, time: 0.064) G_GAN: 0.342 G_GAN_Feat: 1.085 G_ID: 0.241 G_Rec: 0.392 D_GP: 0.083 D_real: 0.417 D_fake: 0.660 +(epoch: 142, iters: 7872, time: 0.064) G_GAN: 0.205 G_GAN_Feat: 0.860 G_ID: 0.176 G_Rec: 0.342 D_GP: 0.074 D_real: 0.816 D_fake: 0.806 +(epoch: 142, iters: 8272, time: 0.064) G_GAN: 0.735 G_GAN_Feat: 0.860 G_ID: 0.247 G_Rec: 0.414 D_GP: 0.024 D_real: 1.431 D_fake: 0.355 +(epoch: 143, iters: 64, time: 0.064) G_GAN: 0.159 G_GAN_Feat: 0.747 G_ID: 0.175 G_Rec: 0.349 D_GP: 0.034 D_real: 0.935 D_fake: 0.841 +(epoch: 143, iters: 464, time: 0.064) G_GAN: 0.152 G_GAN_Feat: 1.016 G_ID: 0.222 G_Rec: 0.438 D_GP: 0.078 D_real: 0.885 D_fake: 0.850 +(epoch: 143, iters: 864, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.665 G_ID: 0.147 G_Rec: 0.315 D_GP: 0.021 D_real: 1.265 D_fake: 0.675 +(epoch: 143, iters: 1264, time: 0.064) G_GAN: 0.375 G_GAN_Feat: 1.109 G_ID: 0.203 G_Rec: 0.377 D_GP: 0.048 D_real: 0.565 D_fake: 0.630 +(epoch: 143, iters: 1664, time: 0.064) G_GAN: 0.531 G_GAN_Feat: 1.075 G_ID: 0.159 G_Rec: 0.410 D_GP: 0.068 D_real: 1.299 D_fake: 0.546 +(epoch: 143, iters: 2064, time: 0.064) G_GAN: 0.428 G_GAN_Feat: 0.817 G_ID: 0.208 G_Rec: 0.399 D_GP: 0.021 D_real: 1.257 D_fake: 0.574 +(epoch: 143, iters: 2464, time: 0.064) G_GAN: 0.222 G_GAN_Feat: 0.908 G_ID: 0.151 G_Rec: 0.349 D_GP: 0.070 D_real: 0.741 D_fake: 0.780 +(epoch: 143, iters: 2864, time: 0.064) G_GAN: 0.682 G_GAN_Feat: 1.008 G_ID: 0.214 G_Rec: 0.432 D_GP: 0.056 D_real: 1.047 D_fake: 0.365 +(epoch: 143, iters: 3264, time: 0.064) G_GAN: -0.041 G_GAN_Feat: 0.802 G_ID: 0.131 G_Rec: 0.409 D_GP: 0.033 D_real: 0.696 D_fake: 1.041 +(epoch: 143, iters: 3664, time: 0.064) G_GAN: 0.458 G_GAN_Feat: 0.818 G_ID: 0.221 G_Rec: 0.392 D_GP: 0.023 D_real: 1.182 D_fake: 0.545 +(epoch: 143, iters: 4064, time: 0.064) G_GAN: 0.240 G_GAN_Feat: 0.807 G_ID: 0.151 G_Rec: 0.319 D_GP: 0.050 D_real: 0.813 D_fake: 0.764 +(epoch: 143, iters: 4464, time: 0.064) G_GAN: 0.556 G_GAN_Feat: 0.902 G_ID: 0.212 G_Rec: 0.437 D_GP: 0.023 D_real: 1.200 D_fake: 0.448 +(epoch: 143, iters: 4864, time: 0.064) G_GAN: 0.242 G_GAN_Feat: 0.818 G_ID: 0.152 G_Rec: 0.328 D_GP: 0.052 D_real: 0.963 D_fake: 0.759 +(epoch: 143, iters: 5264, time: 0.064) G_GAN: 0.199 G_GAN_Feat: 0.939 G_ID: 0.239 G_Rec: 0.423 D_GP: 0.031 D_real: 0.860 D_fake: 0.803 +(epoch: 143, iters: 5664, time: 0.064) G_GAN: 0.077 G_GAN_Feat: 0.855 G_ID: 0.117 G_Rec: 0.334 D_GP: 0.090 D_real: 0.825 D_fake: 0.923 +(epoch: 143, iters: 6064, time: 0.064) G_GAN: 0.297 G_GAN_Feat: 0.917 G_ID: 0.216 G_Rec: 0.461 D_GP: 0.026 D_real: 1.159 D_fake: 0.703 +(epoch: 143, iters: 6464, time: 0.064) G_GAN: 0.191 G_GAN_Feat: 0.697 G_ID: 0.145 G_Rec: 0.326 D_GP: 0.024 D_real: 1.112 D_fake: 0.810 +(epoch: 143, iters: 6864, time: 0.064) G_GAN: 0.641 G_GAN_Feat: 0.902 G_ID: 0.230 G_Rec: 0.404 D_GP: 0.040 D_real: 1.127 D_fake: 0.394 +(epoch: 143, iters: 7264, time: 0.064) G_GAN: 0.150 G_GAN_Feat: 1.085 G_ID: 0.134 G_Rec: 0.343 D_GP: 0.109 D_real: 0.312 D_fake: 0.850 +(epoch: 143, iters: 7664, time: 0.064) G_GAN: 0.661 G_GAN_Feat: 0.939 G_ID: 0.198 G_Rec: 0.439 D_GP: 0.029 D_real: 1.348 D_fake: 0.345 +(epoch: 143, iters: 8064, time: 0.064) G_GAN: 0.305 G_GAN_Feat: 0.831 G_ID: 0.149 G_Rec: 0.357 D_GP: 0.058 D_real: 0.989 D_fake: 0.696 +(epoch: 143, iters: 8464, time: 0.064) G_GAN: 0.820 G_GAN_Feat: 0.945 G_ID: 0.222 G_Rec: 0.415 D_GP: 0.043 D_real: 1.384 D_fake: 0.221 +(epoch: 144, iters: 256, time: 0.064) G_GAN: 0.070 G_GAN_Feat: 1.022 G_ID: 0.178 G_Rec: 0.328 D_GP: 0.064 D_real: 0.293 D_fake: 0.930 +(epoch: 144, iters: 656, time: 0.064) G_GAN: 0.648 G_GAN_Feat: 0.924 G_ID: 0.204 G_Rec: 0.422 D_GP: 0.025 D_real: 1.330 D_fake: 0.361 +(epoch: 144, iters: 1056, time: 0.064) G_GAN: 0.407 G_GAN_Feat: 0.639 G_ID: 0.136 G_Rec: 0.298 D_GP: 0.026 D_real: 1.335 D_fake: 0.594 +(epoch: 144, iters: 1456, time: 0.064) G_GAN: 0.145 G_GAN_Feat: 0.845 G_ID: 0.213 G_Rec: 0.402 D_GP: 0.037 D_real: 0.853 D_fake: 0.855 +(epoch: 144, iters: 1856, time: 0.064) G_GAN: -0.023 G_GAN_Feat: 0.724 G_ID: 0.172 G_Rec: 0.310 D_GP: 0.045 D_real: 0.870 D_fake: 1.023 +(epoch: 144, iters: 2256, time: 0.064) G_GAN: 0.439 G_GAN_Feat: 0.840 G_ID: 0.192 G_Rec: 0.392 D_GP: 0.030 D_real: 1.155 D_fake: 0.576 +(epoch: 144, iters: 2656, time: 0.064) G_GAN: 0.298 G_GAN_Feat: 0.814 G_ID: 0.173 G_Rec: 0.340 D_GP: 0.038 D_real: 1.035 D_fake: 0.704 +(epoch: 144, iters: 3056, time: 0.064) G_GAN: 0.230 G_GAN_Feat: 0.949 G_ID: 0.232 G_Rec: 0.401 D_GP: 0.074 D_real: 0.746 D_fake: 0.771 +(epoch: 144, iters: 3456, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.746 G_ID: 0.164 G_Rec: 0.327 D_GP: 0.037 D_real: 1.046 D_fake: 0.714 +(epoch: 144, iters: 3856, time: 0.064) G_GAN: 0.388 G_GAN_Feat: 1.013 G_ID: 0.229 G_Rec: 0.420 D_GP: 0.135 D_real: 0.831 D_fake: 0.615 +(epoch: 144, iters: 4256, time: 0.064) G_GAN: 0.260 G_GAN_Feat: 0.654 G_ID: 0.153 G_Rec: 0.320 D_GP: 0.026 D_real: 1.165 D_fake: 0.740 +(epoch: 144, iters: 4656, time: 0.064) G_GAN: 0.081 G_GAN_Feat: 1.095 G_ID: 0.213 G_Rec: 0.452 D_GP: 0.203 D_real: 0.293 D_fake: 0.919 +(epoch: 144, iters: 5056, time: 0.064) G_GAN: 0.175 G_GAN_Feat: 0.949 G_ID: 0.154 G_Rec: 0.359 D_GP: 0.097 D_real: 0.541 D_fake: 0.825 +(epoch: 144, iters: 5456, time: 0.064) G_GAN: 0.258 G_GAN_Feat: 1.064 G_ID: 0.219 G_Rec: 0.460 D_GP: 0.212 D_real: 0.523 D_fake: 0.750 +(epoch: 144, iters: 5856, time: 0.064) G_GAN: 0.405 G_GAN_Feat: 0.651 G_ID: 0.151 G_Rec: 0.289 D_GP: 0.026 D_real: 1.266 D_fake: 0.595 +(epoch: 144, iters: 6256, time: 0.064) G_GAN: 0.804 G_GAN_Feat: 1.326 G_ID: 0.239 G_Rec: 0.466 D_GP: 0.497 D_real: 0.731 D_fake: 0.246 +(epoch: 144, iters: 6656, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.883 G_ID: 0.156 G_Rec: 0.360 D_GP: 0.042 D_real: 0.739 D_fake: 0.673 +(epoch: 144, iters: 7056, time: 0.064) G_GAN: 0.481 G_GAN_Feat: 1.109 G_ID: 0.219 G_Rec: 0.410 D_GP: 0.501 D_real: 0.427 D_fake: 0.648 +(epoch: 144, iters: 7456, time: 0.064) G_GAN: 0.308 G_GAN_Feat: 0.702 G_ID: 0.151 G_Rec: 0.329 D_GP: 0.021 D_real: 1.173 D_fake: 0.692 +(epoch: 144, iters: 7856, time: 0.064) G_GAN: 0.473 G_GAN_Feat: 1.036 G_ID: 0.189 G_Rec: 0.417 D_GP: 0.144 D_real: 0.781 D_fake: 0.533 +(epoch: 144, iters: 8256, time: 0.064) G_GAN: 0.101 G_GAN_Feat: 0.631 G_ID: 0.177 G_Rec: 0.288 D_GP: 0.024 D_real: 1.019 D_fake: 0.899 +(epoch: 145, iters: 48, time: 0.064) G_GAN: 0.333 G_GAN_Feat: 0.957 G_ID: 0.193 G_Rec: 0.435 D_GP: 0.047 D_real: 1.067 D_fake: 0.669 +(epoch: 145, iters: 448, time: 0.064) G_GAN: 0.265 G_GAN_Feat: 0.614 G_ID: 0.161 G_Rec: 0.418 D_GP: 0.021 D_real: 1.177 D_fake: 0.735 +(epoch: 145, iters: 848, time: 0.064) G_GAN: 0.601 G_GAN_Feat: 0.787 G_ID: 0.231 G_Rec: 0.390 D_GP: 0.022 D_real: 1.272 D_fake: 0.422 +(epoch: 145, iters: 1248, time: 0.064) G_GAN: 0.272 G_GAN_Feat: 0.737 G_ID: 0.170 G_Rec: 0.325 D_GP: 0.080 D_real: 0.975 D_fake: 0.730 +(epoch: 145, iters: 1648, time: 0.064) G_GAN: 0.676 G_GAN_Feat: 1.044 G_ID: 0.213 G_Rec: 0.426 D_GP: 0.070 D_real: 0.969 D_fake: 0.366 +(epoch: 145, iters: 2048, time: 0.064) G_GAN: 0.561 G_GAN_Feat: 0.906 G_ID: 0.137 G_Rec: 0.337 D_GP: 0.059 D_real: 1.327 D_fake: 0.448 +(epoch: 145, iters: 2448, time: 0.064) G_GAN: 0.457 G_GAN_Feat: 0.877 G_ID: 0.192 G_Rec: 0.400 D_GP: 0.031 D_real: 1.080 D_fake: 0.553 +(epoch: 145, iters: 2848, time: 0.064) G_GAN: 0.308 G_GAN_Feat: 0.967 G_ID: 0.176 G_Rec: 0.357 D_GP: 0.105 D_real: 0.629 D_fake: 0.693 +(epoch: 145, iters: 3248, time: 0.064) G_GAN: 0.378 G_GAN_Feat: 0.895 G_ID: 0.197 G_Rec: 0.416 D_GP: 0.032 D_real: 0.929 D_fake: 0.623 +(epoch: 145, iters: 3648, time: 0.064) G_GAN: 0.322 G_GAN_Feat: 0.812 G_ID: 0.139 G_Rec: 0.379 D_GP: 0.033 D_real: 1.088 D_fake: 0.680 +(epoch: 145, iters: 4048, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 0.806 G_ID: 0.202 G_Rec: 0.377 D_GP: 0.025 D_real: 0.963 D_fake: 0.808 +(epoch: 145, iters: 4448, time: 0.064) G_GAN: 0.100 G_GAN_Feat: 0.749 G_ID: 0.146 G_Rec: 0.339 D_GP: 0.044 D_real: 0.882 D_fake: 0.901 +(epoch: 145, iters: 4848, time: 0.064) G_GAN: 0.373 G_GAN_Feat: 0.919 G_ID: 0.218 G_Rec: 0.415 D_GP: 0.030 D_real: 1.050 D_fake: 0.627 +(epoch: 145, iters: 5248, time: 0.064) G_GAN: 0.063 G_GAN_Feat: 0.750 G_ID: 0.144 G_Rec: 0.323 D_GP: 0.032 D_real: 0.874 D_fake: 0.937 +(epoch: 145, iters: 5648, time: 0.064) G_GAN: 0.573 G_GAN_Feat: 0.946 G_ID: 0.206 G_Rec: 0.392 D_GP: 0.055 D_real: 1.223 D_fake: 0.442 +(epoch: 145, iters: 6048, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 0.880 G_ID: 0.143 G_Rec: 0.324 D_GP: 0.039 D_real: 0.770 D_fake: 0.807 +(epoch: 145, iters: 6448, time: 0.064) G_GAN: 0.665 G_GAN_Feat: 1.094 G_ID: 0.215 G_Rec: 0.425 D_GP: 0.113 D_real: 0.958 D_fake: 0.414 +(epoch: 145, iters: 6848, time: 0.064) G_GAN: 0.315 G_GAN_Feat: 0.796 G_ID: 0.145 G_Rec: 0.330 D_GP: 0.027 D_real: 1.155 D_fake: 0.685 +(epoch: 145, iters: 7248, time: 0.064) G_GAN: 0.253 G_GAN_Feat: 0.826 G_ID: 0.203 G_Rec: 0.410 D_GP: 0.022 D_real: 0.997 D_fake: 0.747 +(epoch: 145, iters: 7648, time: 0.064) G_GAN: 0.138 G_GAN_Feat: 0.622 G_ID: 0.152 G_Rec: 0.321 D_GP: 0.027 D_real: 1.032 D_fake: 0.862 +(epoch: 145, iters: 8048, time: 0.064) G_GAN: 0.244 G_GAN_Feat: 0.845 G_ID: 0.191 G_Rec: 0.394 D_GP: 0.036 D_real: 0.898 D_fake: 0.757 +(epoch: 145, iters: 8448, time: 0.064) G_GAN: 0.253 G_GAN_Feat: 0.854 G_ID: 0.181 G_Rec: 0.344 D_GP: 0.037 D_real: 0.869 D_fake: 0.747 +(epoch: 146, iters: 240, time: 0.064) G_GAN: 0.553 G_GAN_Feat: 0.853 G_ID: 0.185 G_Rec: 0.423 D_GP: 0.022 D_real: 1.189 D_fake: 0.454 +(epoch: 146, iters: 640, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.758 G_ID: 0.158 G_Rec: 0.333 D_GP: 0.051 D_real: 1.076 D_fake: 0.670 +(epoch: 146, iters: 1040, time: 0.064) G_GAN: 0.666 G_GAN_Feat: 1.046 G_ID: 0.217 G_Rec: 0.430 D_GP: 0.108 D_real: 0.980 D_fake: 0.345 +(epoch: 146, iters: 1440, time: 0.064) G_GAN: 0.382 G_GAN_Feat: 0.873 G_ID: 0.129 G_Rec: 0.323 D_GP: 0.055 D_real: 0.760 D_fake: 0.618 +(epoch: 146, iters: 1840, time: 0.064) G_GAN: 0.519 G_GAN_Feat: 0.832 G_ID: 0.214 G_Rec: 0.390 D_GP: 0.027 D_real: 1.285 D_fake: 0.483 +(epoch: 146, iters: 2240, time: 0.064) G_GAN: 0.038 G_GAN_Feat: 0.911 G_ID: 0.163 G_Rec: 0.337 D_GP: 0.096 D_real: 0.499 D_fake: 0.963 +(epoch: 146, iters: 2640, time: 0.064) G_GAN: 0.669 G_GAN_Feat: 1.052 G_ID: 0.197 G_Rec: 0.401 D_GP: 0.031 D_real: 1.038 D_fake: 0.362 +(epoch: 146, iters: 3040, time: 0.064) G_GAN: 0.125 G_GAN_Feat: 1.187 G_ID: 0.145 G_Rec: 0.422 D_GP: 1.129 D_real: 0.859 D_fake: 0.876 +(epoch: 146, iters: 3440, time: 0.064) G_GAN: 0.290 G_GAN_Feat: 0.862 G_ID: 0.236 G_Rec: 0.419 D_GP: 0.026 D_real: 1.088 D_fake: 0.713 +(epoch: 146, iters: 3840, time: 0.064) G_GAN: 0.014 G_GAN_Feat: 0.752 G_ID: 0.169 G_Rec: 0.354 D_GP: 0.038 D_real: 0.792 D_fake: 0.986 +(epoch: 146, iters: 4240, time: 0.064) G_GAN: 0.397 G_GAN_Feat: 0.966 G_ID: 0.208 G_Rec: 0.410 D_GP: 0.053 D_real: 0.955 D_fake: 0.605 +(epoch: 146, iters: 4640, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 0.715 G_ID: 0.140 G_Rec: 0.294 D_GP: 0.033 D_real: 1.131 D_fake: 0.737 +(epoch: 146, iters: 5040, time: 0.064) G_GAN: 0.293 G_GAN_Feat: 0.930 G_ID: 0.265 G_Rec: 0.415 D_GP: 0.033 D_real: 0.869 D_fake: 0.708 +(epoch: 146, iters: 5440, time: 0.064) G_GAN: 0.304 G_GAN_Feat: 0.828 G_ID: 0.153 G_Rec: 0.315 D_GP: 0.027 D_real: 1.078 D_fake: 0.697 +(epoch: 146, iters: 5840, time: 0.064) G_GAN: 0.711 G_GAN_Feat: 0.846 G_ID: 0.206 G_Rec: 0.396 D_GP: 0.025 D_real: 1.345 D_fake: 0.302 +(epoch: 146, iters: 6240, time: 0.064) G_GAN: 0.319 G_GAN_Feat: 0.671 G_ID: 0.152 G_Rec: 0.322 D_GP: 0.023 D_real: 1.231 D_fake: 0.685 +(epoch: 146, iters: 6640, time: 0.064) G_GAN: 0.516 G_GAN_Feat: 0.993 G_ID: 0.207 G_Rec: 0.418 D_GP: 0.124 D_real: 0.830 D_fake: 0.491 +(epoch: 146, iters: 7040, time: 0.064) G_GAN: 0.160 G_GAN_Feat: 0.786 G_ID: 0.128 G_Rec: 0.349 D_GP: 0.036 D_real: 1.019 D_fake: 0.841 +(epoch: 146, iters: 7440, time: 0.064) G_GAN: 0.010 G_GAN_Feat: 1.240 G_ID: 0.223 G_Rec: 0.411 D_GP: 0.057 D_real: 1.244 D_fake: 0.991 +(epoch: 146, iters: 7840, time: 0.064) G_GAN: -0.070 G_GAN_Feat: 0.650 G_ID: 0.173 G_Rec: 0.338 D_GP: 0.020 D_real: 0.894 D_fake: 1.070 +(epoch: 146, iters: 8240, time: 0.064) G_GAN: 0.229 G_GAN_Feat: 0.957 G_ID: 0.224 G_Rec: 0.425 D_GP: 0.069 D_real: 0.712 D_fake: 0.772 +(epoch: 147, iters: 32, time: 0.064) G_GAN: 0.400 G_GAN_Feat: 0.680 G_ID: 0.128 G_Rec: 0.337 D_GP: 0.024 D_real: 1.338 D_fake: 0.600 +(epoch: 147, iters: 432, time: 0.064) G_GAN: 0.792 G_GAN_Feat: 1.117 G_ID: 0.217 G_Rec: 0.436 D_GP: 0.095 D_real: 0.850 D_fake: 0.263 +(epoch: 147, iters: 832, time: 0.064) G_GAN: 0.282 G_GAN_Feat: 0.743 G_ID: 0.145 G_Rec: 0.352 D_GP: 0.028 D_real: 1.208 D_fake: 0.721 +(epoch: 147, iters: 1232, time: 0.064) G_GAN: 0.250 G_GAN_Feat: 0.824 G_ID: 0.218 G_Rec: 0.376 D_GP: 0.027 D_real: 1.030 D_fake: 0.750 +(epoch: 147, iters: 1632, time: 0.064) G_GAN: 0.155 G_GAN_Feat: 0.869 G_ID: 0.171 G_Rec: 0.320 D_GP: 0.045 D_real: 0.688 D_fake: 0.846 +(epoch: 147, iters: 2032, time: 0.064) G_GAN: 0.204 G_GAN_Feat: 1.225 G_ID: 0.226 G_Rec: 0.467 D_GP: 0.851 D_real: 0.573 D_fake: 0.825 +(epoch: 147, iters: 2432, time: 0.064) G_GAN: 0.089 G_GAN_Feat: 0.727 G_ID: 0.146 G_Rec: 0.302 D_GP: 0.037 D_real: 0.941 D_fake: 0.911 +(epoch: 147, iters: 2832, time: 0.064) G_GAN: 0.477 G_GAN_Feat: 0.760 G_ID: 0.203 G_Rec: 0.399 D_GP: 0.021 D_real: 1.260 D_fake: 0.526 +(epoch: 147, iters: 3232, time: 0.064) G_GAN: 0.113 G_GAN_Feat: 0.642 G_ID: 0.146 G_Rec: 0.301 D_GP: 0.023 D_real: 1.053 D_fake: 0.887 +(epoch: 147, iters: 3632, time: 0.064) G_GAN: 0.273 G_GAN_Feat: 0.795 G_ID: 0.216 G_Rec: 0.407 D_GP: 0.032 D_real: 0.919 D_fake: 0.734 +(epoch: 147, iters: 4032, time: 0.064) G_GAN: 0.082 G_GAN_Feat: 0.742 G_ID: 0.154 G_Rec: 0.328 D_GP: 0.081 D_real: 0.894 D_fake: 0.918 +(epoch: 147, iters: 4432, time: 0.064) G_GAN: 0.643 G_GAN_Feat: 0.847 G_ID: 0.223 G_Rec: 0.386 D_GP: 0.026 D_real: 1.351 D_fake: 0.362 +(epoch: 147, iters: 4832, time: 0.064) G_GAN: 0.300 G_GAN_Feat: 0.824 G_ID: 0.182 G_Rec: 0.343 D_GP: 0.047 D_real: 0.936 D_fake: 0.700 +(epoch: 147, iters: 5232, time: 0.064) G_GAN: 0.595 G_GAN_Feat: 0.861 G_ID: 0.210 G_Rec: 0.391 D_GP: 0.027 D_real: 1.307 D_fake: 0.425 +(epoch: 147, iters: 5632, time: 0.064) G_GAN: 0.169 G_GAN_Feat: 0.793 G_ID: 0.167 G_Rec: 0.331 D_GP: 0.044 D_real: 0.885 D_fake: 0.831 +(epoch: 147, iters: 6032, time: 0.064) G_GAN: 0.617 G_GAN_Feat: 0.851 G_ID: 0.197 G_Rec: 0.415 D_GP: 0.026 D_real: 1.357 D_fake: 0.413 +(epoch: 147, iters: 6432, time: 0.064) G_GAN: 0.066 G_GAN_Feat: 0.830 G_ID: 0.138 G_Rec: 0.310 D_GP: 0.131 D_real: 0.447 D_fake: 0.936 +(epoch: 147, iters: 6832, time: 0.064) G_GAN: 0.557 G_GAN_Feat: 0.882 G_ID: 0.186 G_Rec: 0.456 D_GP: 0.022 D_real: 1.192 D_fake: 0.454 +(epoch: 147, iters: 7232, time: 0.064) G_GAN: 0.299 G_GAN_Feat: 0.602 G_ID: 0.154 G_Rec: 0.299 D_GP: 0.022 D_real: 1.221 D_fake: 0.701 +(epoch: 147, iters: 7632, time: 0.064) G_GAN: 0.707 G_GAN_Feat: 0.810 G_ID: 0.216 G_Rec: 0.358 D_GP: 0.028 D_real: 1.385 D_fake: 0.336 +(epoch: 147, iters: 8032, time: 0.064) G_GAN: 0.252 G_GAN_Feat: 0.807 G_ID: 0.163 G_Rec: 0.332 D_GP: 0.059 D_real: 0.822 D_fake: 0.748 +(epoch: 147, iters: 8432, time: 0.064) G_GAN: 0.203 G_GAN_Feat: 0.801 G_ID: 0.244 G_Rec: 0.426 D_GP: 0.031 D_real: 0.880 D_fake: 0.797 +(epoch: 148, iters: 224, time: 0.064) G_GAN: 0.244 G_GAN_Feat: 0.654 G_ID: 0.132 G_Rec: 0.296 D_GP: 0.027 D_real: 1.160 D_fake: 0.756 +(epoch: 148, iters: 624, time: 0.064) G_GAN: 0.477 G_GAN_Feat: 0.900 G_ID: 0.237 G_Rec: 0.395 D_GP: 0.028 D_real: 1.196 D_fake: 0.532 +(epoch: 148, iters: 1024, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 0.707 G_ID: 0.146 G_Rec: 0.332 D_GP: 0.025 D_real: 1.089 D_fake: 0.808 +(epoch: 148, iters: 1424, time: 0.064) G_GAN: 0.365 G_GAN_Feat: 0.974 G_ID: 0.206 G_Rec: 0.407 D_GP: 0.044 D_real: 0.804 D_fake: 0.645 +(epoch: 148, iters: 1824, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.836 G_ID: 0.163 G_Rec: 0.353 D_GP: 0.032 D_real: 1.149 D_fake: 0.696 +(epoch: 148, iters: 2224, time: 0.064) G_GAN: 0.684 G_GAN_Feat: 1.097 G_ID: 0.212 G_Rec: 0.436 D_GP: 0.091 D_real: 0.733 D_fake: 0.359 +(epoch: 148, iters: 2624, time: 0.064) G_GAN: 0.171 G_GAN_Feat: 0.750 G_ID: 0.157 G_Rec: 0.356 D_GP: 0.031 D_real: 0.998 D_fake: 0.829 +(epoch: 148, iters: 3024, time: 0.064) G_GAN: 0.172 G_GAN_Feat: 0.897 G_ID: 0.206 G_Rec: 0.410 D_GP: 0.060 D_real: 0.668 D_fake: 0.828 +(epoch: 148, iters: 3424, time: 0.064) G_GAN: 0.205 G_GAN_Feat: 0.751 G_ID: 0.133 G_Rec: 0.313 D_GP: 0.096 D_real: 0.862 D_fake: 0.796 +(epoch: 148, iters: 3824, time: 0.064) G_GAN: 0.611 G_GAN_Feat: 0.985 G_ID: 0.225 G_Rec: 0.382 D_GP: 0.058 D_real: 1.019 D_fake: 0.408 +(epoch: 148, iters: 4224, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.763 G_ID: 0.159 G_Rec: 0.321 D_GP: 0.026 D_real: 1.154 D_fake: 0.718 +(epoch: 148, iters: 4624, time: 0.064) G_GAN: 0.324 G_GAN_Feat: 0.861 G_ID: 0.249 G_Rec: 0.394 D_GP: 0.027 D_real: 1.001 D_fake: 0.676 +(epoch: 148, iters: 5024, time: 0.064) G_GAN: 0.171 G_GAN_Feat: 0.878 G_ID: 0.138 G_Rec: 0.329 D_GP: 0.060 D_real: 0.704 D_fake: 0.829 +(epoch: 148, iters: 5424, time: 0.064) G_GAN: 0.384 G_GAN_Feat: 1.043 G_ID: 0.219 G_Rec: 0.416 D_GP: 0.054 D_real: 0.676 D_fake: 0.659 +(epoch: 148, iters: 5824, time: 0.064) G_GAN: 0.546 G_GAN_Feat: 0.835 G_ID: 0.145 G_Rec: 0.315 D_GP: 0.073 D_real: 1.027 D_fake: 0.493 +(epoch: 148, iters: 6224, time: 0.064) G_GAN: 0.499 G_GAN_Feat: 0.966 G_ID: 0.207 G_Rec: 0.414 D_GP: 0.055 D_real: 0.887 D_fake: 0.507 +(epoch: 148, iters: 6624, time: 0.064) G_GAN: 0.082 G_GAN_Feat: 0.752 G_ID: 0.126 G_Rec: 0.342 D_GP: 0.028 D_real: 0.938 D_fake: 0.918 +(epoch: 148, iters: 7024, time: 0.064) G_GAN: 0.392 G_GAN_Feat: 0.881 G_ID: 0.228 G_Rec: 0.423 D_GP: 0.024 D_real: 1.043 D_fake: 0.618 +(epoch: 148, iters: 7424, time: 0.064) G_GAN: 0.292 G_GAN_Feat: 0.715 G_ID: 0.140 G_Rec: 0.342 D_GP: 0.035 D_real: 1.059 D_fake: 0.709 +(epoch: 148, iters: 7824, time: 0.064) G_GAN: 0.588 G_GAN_Feat: 0.887 G_ID: 0.181 G_Rec: 0.412 D_GP: 0.027 D_real: 1.220 D_fake: 0.427 +(epoch: 148, iters: 8224, time: 0.064) G_GAN: 0.225 G_GAN_Feat: 0.739 G_ID: 0.154 G_Rec: 0.340 D_GP: 0.025 D_real: 1.060 D_fake: 0.782 +(epoch: 149, iters: 16, time: 0.064) G_GAN: 0.703 G_GAN_Feat: 0.783 G_ID: 0.235 G_Rec: 0.402 D_GP: 0.026 D_real: 1.415 D_fake: 0.364 +(epoch: 149, iters: 416, time: 0.064) G_GAN: 0.272 G_GAN_Feat: 0.688 G_ID: 0.154 G_Rec: 0.328 D_GP: 0.020 D_real: 1.184 D_fake: 0.728 +(epoch: 149, iters: 816, time: 0.064) G_GAN: 0.333 G_GAN_Feat: 0.941 G_ID: 0.192 G_Rec: 0.444 D_GP: 0.025 D_real: 0.868 D_fake: 0.668 +(epoch: 149, iters: 1216, time: 0.064) G_GAN: 0.005 G_GAN_Feat: 0.843 G_ID: 0.133 G_Rec: 0.361 D_GP: 0.098 D_real: 0.481 D_fake: 0.995 +(epoch: 149, iters: 1616, time: 0.064) G_GAN: 0.530 G_GAN_Feat: 0.862 G_ID: 0.211 G_Rec: 0.392 D_GP: 0.026 D_real: 1.154 D_fake: 0.479 +(epoch: 149, iters: 2016, time: 0.064) G_GAN: 0.206 G_GAN_Feat: 0.935 G_ID: 0.136 G_Rec: 0.366 D_GP: 0.198 D_real: 0.477 D_fake: 0.794 +(epoch: 149, iters: 2416, time: 0.064) G_GAN: 0.458 G_GAN_Feat: 0.900 G_ID: 0.216 G_Rec: 0.384 D_GP: 0.058 D_real: 0.920 D_fake: 0.547 +(epoch: 149, iters: 2816, time: 0.064) G_GAN: 0.311 G_GAN_Feat: 0.732 G_ID: 0.148 G_Rec: 0.298 D_GP: 0.027 D_real: 1.152 D_fake: 0.689 +(epoch: 149, iters: 3216, time: 0.064) G_GAN: 0.376 G_GAN_Feat: 0.798 G_ID: 0.210 G_Rec: 0.346 D_GP: 0.028 D_real: 1.077 D_fake: 0.624 +(epoch: 149, iters: 3616, time: 0.064) G_GAN: 0.237 G_GAN_Feat: 0.967 G_ID: 0.149 G_Rec: 0.415 D_GP: 0.063 D_real: 0.768 D_fake: 0.764 +(epoch: 149, iters: 4016, time: 0.064) G_GAN: 1.019 G_GAN_Feat: 1.046 G_ID: 0.213 G_Rec: 0.421 D_GP: 0.062 D_real: 1.202 D_fake: 0.127 +(epoch: 149, iters: 4416, time: 0.064) G_GAN: 0.496 G_GAN_Feat: 0.974 G_ID: 0.162 G_Rec: 0.375 D_GP: 0.085 D_real: 0.555 D_fake: 0.545 +(epoch: 149, iters: 4816, time: 0.064) G_GAN: 0.622 G_GAN_Feat: 0.863 G_ID: 0.188 G_Rec: 0.420 D_GP: 0.025 D_real: 1.388 D_fake: 0.402 +(epoch: 149, iters: 5216, time: 0.064) G_GAN: 0.261 G_GAN_Feat: 0.879 G_ID: 0.158 G_Rec: 0.353 D_GP: 0.042 D_real: 1.013 D_fake: 0.740 +(epoch: 149, iters: 5616, time: 0.064) G_GAN: 0.095 G_GAN_Feat: 1.059 G_ID: 0.223 G_Rec: 0.423 D_GP: 0.063 D_real: 0.362 D_fake: 0.905 +(epoch: 149, iters: 6016, time: 0.064) G_GAN: 0.269 G_GAN_Feat: 0.825 G_ID: 0.150 G_Rec: 0.377 D_GP: 0.055 D_real: 0.994 D_fake: 0.732 +(epoch: 149, iters: 6416, time: 0.064) G_GAN: 0.447 G_GAN_Feat: 0.879 G_ID: 0.235 G_Rec: 0.450 D_GP: 0.025 D_real: 1.147 D_fake: 0.562 +(epoch: 149, iters: 6816, time: 0.064) G_GAN: 0.342 G_GAN_Feat: 0.849 G_ID: 0.151 G_Rec: 0.404 D_GP: 0.031 D_real: 1.053 D_fake: 0.658 +(epoch: 149, iters: 7216, time: 0.064) G_GAN: 0.584 G_GAN_Feat: 0.902 G_ID: 0.187 G_Rec: 0.383 D_GP: 0.028 D_real: 1.156 D_fake: 0.420 +(epoch: 149, iters: 7616, time: 0.064) G_GAN: 0.127 G_GAN_Feat: 0.838 G_ID: 0.143 G_Rec: 0.366 D_GP: 0.061 D_real: 0.760 D_fake: 0.873 +(epoch: 149, iters: 8016, time: 0.064) G_GAN: 0.603 G_GAN_Feat: 0.864 G_ID: 0.212 G_Rec: 0.425 D_GP: 0.025 D_real: 1.375 D_fake: 0.414 +(epoch: 149, iters: 8416, time: 0.064) G_GAN: 0.159 G_GAN_Feat: 0.678 G_ID: 0.144 G_Rec: 0.332 D_GP: 0.021 D_real: 1.037 D_fake: 0.841 +(epoch: 150, iters: 208, time: 0.064) G_GAN: 0.288 G_GAN_Feat: 0.764 G_ID: 0.203 G_Rec: 0.378 D_GP: 0.029 D_real: 1.069 D_fake: 0.713 +(epoch: 150, iters: 608, time: 0.064) G_GAN: 0.164 G_GAN_Feat: 0.645 G_ID: 0.169 G_Rec: 0.362 D_GP: 0.021 D_real: 1.127 D_fake: 0.836 +(epoch: 150, iters: 1008, time: 0.064) G_GAN: 0.310 G_GAN_Feat: 0.909 G_ID: 0.216 G_Rec: 0.415 D_GP: 0.065 D_real: 0.896 D_fake: 0.692 +(epoch: 150, iters: 1408, time: 0.064) G_GAN: 0.162 G_GAN_Feat: 0.739 G_ID: 0.130 G_Rec: 0.331 D_GP: 0.033 D_real: 1.045 D_fake: 0.838 +(epoch: 150, iters: 1808, time: 0.064) G_GAN: 0.680 G_GAN_Feat: 1.296 G_ID: 0.187 G_Rec: 0.429 D_GP: 0.589 D_real: 0.471 D_fake: 0.381 +(epoch: 150, iters: 2208, time: 0.064) G_GAN: -0.039 G_GAN_Feat: 0.916 G_ID: 0.144 G_Rec: 0.351 D_GP: 0.029 D_real: 0.641 D_fake: 1.039 +(epoch: 150, iters: 2608, time: 0.064) G_GAN: 0.545 G_GAN_Feat: 0.924 G_ID: 0.214 G_Rec: 0.385 D_GP: 0.032 D_real: 1.149 D_fake: 0.474 +(epoch: 150, iters: 3008, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 0.685 G_ID: 0.143 G_Rec: 0.343 D_GP: 0.023 D_real: 1.261 D_fake: 0.646 +(epoch: 150, iters: 3408, time: 0.064) G_GAN: 0.611 G_GAN_Feat: 0.840 G_ID: 0.227 G_Rec: 0.417 D_GP: 0.031 D_real: 1.456 D_fake: 0.410 +(epoch: 150, iters: 3808, time: 0.064) G_GAN: 0.222 G_GAN_Feat: 0.674 G_ID: 0.136 G_Rec: 0.344 D_GP: 0.028 D_real: 1.061 D_fake: 0.779 +(epoch: 150, iters: 4208, time: 0.064) G_GAN: 0.526 G_GAN_Feat: 0.897 G_ID: 0.198 G_Rec: 0.406 D_GP: 0.044 D_real: 1.115 D_fake: 0.478 +(epoch: 150, iters: 4608, time: 0.064) G_GAN: 0.375 G_GAN_Feat: 0.876 G_ID: 0.138 G_Rec: 0.331 D_GP: 0.221 D_real: 0.881 D_fake: 0.627 +(epoch: 150, iters: 5008, time: 0.064) G_GAN: 0.210 G_GAN_Feat: 0.975 G_ID: 0.200 G_Rec: 0.395 D_GP: 0.056 D_real: 0.731 D_fake: 0.791 +(epoch: 150, iters: 5408, time: 0.064) G_GAN: 0.287 G_GAN_Feat: 0.692 G_ID: 0.154 G_Rec: 0.320 D_GP: 0.035 D_real: 1.189 D_fake: 0.713 +(epoch: 150, iters: 5808, time: 0.064) G_GAN: 0.724 G_GAN_Feat: 1.092 G_ID: 0.192 G_Rec: 0.412 D_GP: 0.048 D_real: 0.846 D_fake: 0.318 +(epoch: 150, iters: 6208, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.911 G_ID: 0.137 G_Rec: 0.332 D_GP: 0.033 D_real: 0.928 D_fake: 0.675 +(epoch: 150, iters: 6608, time: 0.064) G_GAN: 0.429 G_GAN_Feat: 1.071 G_ID: 0.209 G_Rec: 0.409 D_GP: 0.049 D_real: 0.630 D_fake: 0.573 +(epoch: 150, iters: 7008, time: 0.064) G_GAN: 0.122 G_GAN_Feat: 0.673 G_ID: 0.132 G_Rec: 0.327 D_GP: 0.024 D_real: 1.087 D_fake: 0.878 +(epoch: 150, iters: 7408, time: 0.064) G_GAN: 0.541 G_GAN_Feat: 1.043 G_ID: 0.199 G_Rec: 0.420 D_GP: 0.185 D_real: 0.853 D_fake: 0.487 +(epoch: 150, iters: 7808, time: 0.064) G_GAN: 0.111 G_GAN_Feat: 1.065 G_ID: 0.161 G_Rec: 0.391 D_GP: 0.201 D_real: 0.364 D_fake: 0.889 +(epoch: 150, iters: 8208, time: 0.064) G_GAN: 0.222 G_GAN_Feat: 1.018 G_ID: 0.172 G_Rec: 0.436 D_GP: 0.024 D_real: 0.848 D_fake: 0.778 +(epoch: 150, iters: 8608, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 0.854 G_ID: 0.148 G_Rec: 0.325 D_GP: 0.038 D_real: 1.112 D_fake: 0.831 +(epoch: 151, iters: 400, time: 0.064) G_GAN: 0.468 G_GAN_Feat: 0.817 G_ID: 0.169 G_Rec: 0.373 D_GP: 0.024 D_real: 1.196 D_fake: 0.539 +(epoch: 151, iters: 800, time: 0.064) G_GAN: 0.115 G_GAN_Feat: 0.762 G_ID: 0.173 G_Rec: 0.372 D_GP: 0.026 D_real: 0.957 D_fake: 0.885 +(epoch: 151, iters: 1200, time: 0.064) G_GAN: 0.379 G_GAN_Feat: 1.035 G_ID: 0.227 G_Rec: 0.401 D_GP: 0.087 D_real: 0.465 D_fake: 0.621 +(epoch: 151, iters: 1600, time: 0.064) G_GAN: 0.318 G_GAN_Feat: 0.812 G_ID: 0.128 G_Rec: 0.343 D_GP: 0.039 D_real: 1.103 D_fake: 0.688 +(epoch: 151, iters: 2000, time: 0.064) G_GAN: 0.398 G_GAN_Feat: 0.806 G_ID: 0.186 G_Rec: 0.389 D_GP: 0.025 D_real: 1.259 D_fake: 0.602 +(epoch: 151, iters: 2400, time: 0.064) G_GAN: -0.120 G_GAN_Feat: 0.876 G_ID: 0.147 G_Rec: 0.313 D_GP: 0.049 D_real: 0.380 D_fake: 1.120 +(epoch: 151, iters: 2800, time: 0.064) G_GAN: 0.611 G_GAN_Feat: 0.898 G_ID: 0.208 G_Rec: 0.406 D_GP: 0.037 D_real: 1.251 D_fake: 0.461 +(epoch: 151, iters: 3200, time: 0.064) G_GAN: 0.270 G_GAN_Feat: 0.759 G_ID: 0.150 G_Rec: 0.332 D_GP: 0.035 D_real: 1.087 D_fake: 0.731 +(epoch: 151, iters: 3600, time: 0.064) G_GAN: 0.663 G_GAN_Feat: 0.910 G_ID: 0.188 G_Rec: 0.397 D_GP: 0.038 D_real: 1.130 D_fake: 0.354 +(epoch: 151, iters: 4000, time: 0.064) G_GAN: 0.015 G_GAN_Feat: 1.077 G_ID: 0.159 G_Rec: 0.353 D_GP: 0.299 D_real: 0.226 D_fake: 0.985 +(epoch: 151, iters: 4400, time: 0.064) G_GAN: 0.637 G_GAN_Feat: 1.154 G_ID: 0.200 G_Rec: 0.507 D_GP: 0.132 D_real: 1.082 D_fake: 0.397 +(epoch: 151, iters: 4800, time: 0.064) G_GAN: -0.154 G_GAN_Feat: 0.822 G_ID: 0.162 G_Rec: 0.366 D_GP: 0.076 D_real: 0.446 D_fake: 1.154 +(epoch: 151, iters: 5200, time: 0.064) G_GAN: 0.197 G_GAN_Feat: 1.012 G_ID: 0.252 G_Rec: 0.442 D_GP: 0.043 D_real: 0.799 D_fake: 0.803 +(epoch: 151, iters: 5600, time: 0.064) G_GAN: -0.118 G_GAN_Feat: 0.742 G_ID: 0.144 G_Rec: 0.336 D_GP: 0.040 D_real: 0.762 D_fake: 1.118 +(epoch: 151, iters: 6000, time: 0.064) G_GAN: 0.471 G_GAN_Feat: 0.819 G_ID: 0.194 G_Rec: 0.419 D_GP: 0.024 D_real: 1.200 D_fake: 0.529 +(epoch: 151, iters: 6400, time: 0.064) G_GAN: 0.239 G_GAN_Feat: 0.703 G_ID: 0.160 G_Rec: 0.327 D_GP: 0.036 D_real: 1.093 D_fake: 0.761 +(epoch: 151, iters: 6800, time: 0.064) G_GAN: 0.469 G_GAN_Feat: 0.867 G_ID: 0.200 G_Rec: 0.395 D_GP: 0.035 D_real: 1.136 D_fake: 0.533 +(epoch: 151, iters: 7200, time: 0.064) G_GAN: 0.129 G_GAN_Feat: 0.708 G_ID: 0.132 G_Rec: 0.324 D_GP: 0.025 D_real: 1.014 D_fake: 0.871 +(epoch: 151, iters: 7600, time: 0.064) G_GAN: 0.464 G_GAN_Feat: 0.837 G_ID: 0.181 G_Rec: 0.391 D_GP: 0.033 D_real: 1.183 D_fake: 0.543 +(epoch: 151, iters: 8000, time: 0.064) G_GAN: 0.144 G_GAN_Feat: 0.727 G_ID: 0.150 G_Rec: 0.318 D_GP: 0.035 D_real: 0.896 D_fake: 0.856 +(epoch: 151, iters: 8400, time: 0.064) G_GAN: 0.535 G_GAN_Feat: 1.021 G_ID: 0.212 G_Rec: 0.420 D_GP: 0.053 D_real: 0.845 D_fake: 0.469 +(epoch: 152, iters: 192, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 1.190 G_ID: 0.145 G_Rec: 0.347 D_GP: 0.189 D_real: 0.698 D_fake: 0.662 +(epoch: 152, iters: 592, time: 0.064) G_GAN: 0.508 G_GAN_Feat: 0.963 G_ID: 0.212 G_Rec: 0.378 D_GP: 0.041 D_real: 1.100 D_fake: 0.496 +(epoch: 152, iters: 992, time: 0.064) G_GAN: -0.044 G_GAN_Feat: 0.722 G_ID: 0.133 G_Rec: 0.342 D_GP: 0.021 D_real: 0.849 D_fake: 1.044 +(epoch: 152, iters: 1392, time: 0.064) G_GAN: 0.129 G_GAN_Feat: 1.248 G_ID: 0.190 G_Rec: 0.459 D_GP: 0.140 D_real: 0.376 D_fake: 0.871 +(epoch: 152, iters: 1792, time: 0.064) G_GAN: 0.387 G_GAN_Feat: 0.719 G_ID: 0.145 G_Rec: 0.330 D_GP: 0.026 D_real: 1.245 D_fake: 0.622 +(epoch: 152, iters: 2192, time: 0.064) G_GAN: 0.730 G_GAN_Feat: 0.953 G_ID: 0.200 G_Rec: 0.408 D_GP: 0.030 D_real: 1.307 D_fake: 0.333 +(epoch: 152, iters: 2592, time: 0.064) G_GAN: 0.397 G_GAN_Feat: 0.838 G_ID: 0.161 G_Rec: 0.367 D_GP: 0.031 D_real: 0.930 D_fake: 0.605 +(epoch: 152, iters: 2992, time: 0.064) G_GAN: 0.383 G_GAN_Feat: 0.749 G_ID: 0.215 G_Rec: 0.359 D_GP: 0.037 D_real: 1.196 D_fake: 0.619 +(epoch: 152, iters: 3392, time: 0.064) G_GAN: 0.121 G_GAN_Feat: 0.732 G_ID: 0.135 G_Rec: 0.314 D_GP: 0.041 D_real: 0.985 D_fake: 0.879 +(epoch: 152, iters: 3792, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 0.849 G_ID: 0.211 G_Rec: 0.391 D_GP: 0.045 D_real: 1.121 D_fake: 0.561 +(epoch: 152, iters: 4192, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 0.896 G_ID: 0.146 G_Rec: 0.354 D_GP: 0.106 D_real: 0.788 D_fake: 0.827 +(epoch: 152, iters: 4592, time: 0.064) G_GAN: 0.497 G_GAN_Feat: 0.900 G_ID: 0.201 G_Rec: 0.420 D_GP: 0.030 D_real: 1.236 D_fake: 0.509 +(epoch: 152, iters: 4992, time: 0.064) G_GAN: 0.206 G_GAN_Feat: 0.758 G_ID: 0.172 G_Rec: 0.324 D_GP: 0.027 D_real: 1.080 D_fake: 0.794 +(epoch: 152, iters: 5392, time: 0.064) G_GAN: 0.499 G_GAN_Feat: 0.954 G_ID: 0.188 G_Rec: 0.390 D_GP: 0.042 D_real: 1.064 D_fake: 0.511 +(epoch: 152, iters: 5792, time: 0.064) G_GAN: 0.326 G_GAN_Feat: 0.691 G_ID: 0.160 G_Rec: 0.308 D_GP: 0.022 D_real: 1.181 D_fake: 0.674 +(epoch: 152, iters: 6192, time: 0.064) G_GAN: 0.540 G_GAN_Feat: 1.061 G_ID: 0.218 G_Rec: 0.403 D_GP: 0.092 D_real: 1.075 D_fake: 0.556 +(epoch: 152, iters: 6592, time: 0.064) G_GAN: 0.390 G_GAN_Feat: 0.648 G_ID: 0.152 G_Rec: 0.334 D_GP: 0.020 D_real: 1.377 D_fake: 0.613 +(epoch: 152, iters: 6992, time: 0.064) G_GAN: 0.466 G_GAN_Feat: 0.838 G_ID: 0.200 G_Rec: 0.407 D_GP: 0.020 D_real: 1.181 D_fake: 0.538 +(epoch: 152, iters: 7392, time: 0.064) G_GAN: 0.119 G_GAN_Feat: 0.749 G_ID: 0.186 G_Rec: 0.381 D_GP: 0.028 D_real: 0.936 D_fake: 0.881 +(epoch: 152, iters: 7792, time: 0.064) G_GAN: 0.219 G_GAN_Feat: 0.834 G_ID: 0.235 G_Rec: 0.402 D_GP: 0.036 D_real: 0.883 D_fake: 0.782 +(epoch: 152, iters: 8192, time: 0.064) G_GAN: 0.063 G_GAN_Feat: 0.634 G_ID: 0.142 G_Rec: 0.317 D_GP: 0.026 D_real: 0.978 D_fake: 0.937 +(epoch: 152, iters: 8592, time: 0.064) G_GAN: 0.558 G_GAN_Feat: 0.985 G_ID: 0.197 G_Rec: 0.393 D_GP: 0.089 D_real: 0.898 D_fake: 0.460 +(epoch: 153, iters: 384, time: 0.064) G_GAN: 0.225 G_GAN_Feat: 0.972 G_ID: 0.139 G_Rec: 0.324 D_GP: 0.064 D_real: 0.507 D_fake: 0.775 +(epoch: 153, iters: 784, time: 0.064) G_GAN: 0.266 G_GAN_Feat: 0.805 G_ID: 0.221 G_Rec: 0.357 D_GP: 0.031 D_real: 1.110 D_fake: 0.734 +(epoch: 153, iters: 1184, time: 0.064) G_GAN: -0.074 G_GAN_Feat: 0.875 G_ID: 0.157 G_Rec: 0.355 D_GP: 0.050 D_real: 0.647 D_fake: 1.074 +(epoch: 153, iters: 1584, time: 0.064) G_GAN: 0.507 G_GAN_Feat: 1.022 G_ID: 0.202 G_Rec: 0.433 D_GP: 0.041 D_real: 0.894 D_fake: 0.499 +(epoch: 153, iters: 1984, time: 0.064) G_GAN: 0.032 G_GAN_Feat: 0.703 G_ID: 0.160 G_Rec: 0.316 D_GP: 0.025 D_real: 0.967 D_fake: 0.968 +(epoch: 153, iters: 2384, time: 0.064) G_GAN: 0.527 G_GAN_Feat: 0.923 G_ID: 0.221 G_Rec: 0.402 D_GP: 0.031 D_real: 1.109 D_fake: 0.500 +(epoch: 153, iters: 2784, time: 0.064) G_GAN: 0.117 G_GAN_Feat: 0.946 G_ID: 0.161 G_Rec: 0.346 D_GP: 0.198 D_real: 0.399 D_fake: 0.884 +(epoch: 153, iters: 3184, time: 0.064) G_GAN: 0.480 G_GAN_Feat: 0.847 G_ID: 0.181 G_Rec: 0.352 D_GP: 0.030 D_real: 1.187 D_fake: 0.533 +(epoch: 153, iters: 3584, time: 0.064) G_GAN: 0.229 G_GAN_Feat: 0.951 G_ID: 0.177 G_Rec: 0.361 D_GP: 0.274 D_real: 0.389 D_fake: 0.771 +(epoch: 153, iters: 3984, time: 0.064) G_GAN: 0.334 G_GAN_Feat: 0.884 G_ID: 0.208 G_Rec: 0.377 D_GP: 0.027 D_real: 1.107 D_fake: 0.666 +(epoch: 153, iters: 4384, time: 0.064) G_GAN: 0.499 G_GAN_Feat: 0.917 G_ID: 0.139 G_Rec: 0.332 D_GP: 0.042 D_real: 0.688 D_fake: 0.506 +(epoch: 153, iters: 4784, time: 0.064) G_GAN: 0.205 G_GAN_Feat: 1.066 G_ID: 0.199 G_Rec: 0.423 D_GP: 0.047 D_real: 0.345 D_fake: 0.798 +(epoch: 153, iters: 5184, time: 0.064) G_GAN: 0.030 G_GAN_Feat: 0.685 G_ID: 0.171 G_Rec: 0.325 D_GP: 0.022 D_real: 1.024 D_fake: 0.970 +(epoch: 153, iters: 5584, time: 0.064) G_GAN: 0.096 G_GAN_Feat: 1.005 G_ID: 0.236 G_Rec: 0.425 D_GP: 0.040 D_real: 0.537 D_fake: 0.904 +(epoch: 153, iters: 5984, time: 0.064) G_GAN: 0.400 G_GAN_Feat: 0.726 G_ID: 0.135 G_Rec: 0.333 D_GP: 0.025 D_real: 1.226 D_fake: 0.600 +(epoch: 153, iters: 6384, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.840 G_ID: 0.188 G_Rec: 0.473 D_GP: 0.021 D_real: 1.055 D_fake: 0.675 +(epoch: 153, iters: 6784, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 0.819 G_ID: 0.157 G_Rec: 0.328 D_GP: 0.026 D_real: 1.101 D_fake: 0.657 +(epoch: 153, iters: 7184, time: 0.064) G_GAN: 0.515 G_GAN_Feat: 0.865 G_ID: 0.180 G_Rec: 0.407 D_GP: 0.021 D_real: 1.310 D_fake: 0.496 +(epoch: 153, iters: 7584, time: 0.064) G_GAN: 0.667 G_GAN_Feat: 1.064 G_ID: 0.148 G_Rec: 0.343 D_GP: 0.630 D_real: 0.558 D_fake: 0.568 +(epoch: 153, iters: 7984, time: 0.064) G_GAN: 0.118 G_GAN_Feat: 0.869 G_ID: 0.205 G_Rec: 0.419 D_GP: 0.021 D_real: 0.821 D_fake: 0.885 +(epoch: 153, iters: 8384, time: 0.064) G_GAN: 0.052 G_GAN_Feat: 0.745 G_ID: 0.119 G_Rec: 0.301 D_GP: 0.054 D_real: 0.797 D_fake: 0.948 +(epoch: 154, iters: 176, time: 0.064) G_GAN: 0.103 G_GAN_Feat: 0.966 G_ID: 0.232 G_Rec: 0.418 D_GP: 0.046 D_real: 0.711 D_fake: 0.898 +(epoch: 154, iters: 576, time: 0.064) G_GAN: 0.277 G_GAN_Feat: 0.872 G_ID: 0.136 G_Rec: 0.326 D_GP: 0.038 D_real: 0.861 D_fake: 0.724 +(epoch: 154, iters: 976, time: 0.064) G_GAN: 0.497 G_GAN_Feat: 0.824 G_ID: 0.210 G_Rec: 0.408 D_GP: 0.022 D_real: 1.232 D_fake: 0.511 +(epoch: 154, iters: 1376, time: 0.064) G_GAN: 0.035 G_GAN_Feat: 0.681 G_ID: 0.167 G_Rec: 0.330 D_GP: 0.026 D_real: 0.951 D_fake: 0.965 +(epoch: 154, iters: 1776, time: 0.064) G_GAN: 0.345 G_GAN_Feat: 0.846 G_ID: 0.190 G_Rec: 0.406 D_GP: 0.034 D_real: 0.915 D_fake: 0.656 +(epoch: 154, iters: 2176, time: 0.064) G_GAN: 0.202 G_GAN_Feat: 0.759 G_ID: 0.139 G_Rec: 0.362 D_GP: 0.038 D_real: 1.043 D_fake: 0.799 +(epoch: 154, iters: 2576, time: 0.064) G_GAN: 0.410 G_GAN_Feat: 0.831 G_ID: 0.210 G_Rec: 0.394 D_GP: 0.028 D_real: 1.110 D_fake: 0.593 +(epoch: 154, iters: 2976, time: 0.064) G_GAN: 0.086 G_GAN_Feat: 0.729 G_ID: 0.160 G_Rec: 0.321 D_GP: 0.036 D_real: 0.952 D_fake: 0.914 +(epoch: 154, iters: 3376, time: 0.064) G_GAN: 0.682 G_GAN_Feat: 0.879 G_ID: 0.192 G_Rec: 0.408 D_GP: 0.028 D_real: 1.454 D_fake: 0.353 +(epoch: 154, iters: 3776, time: 0.064) G_GAN: 0.426 G_GAN_Feat: 0.922 G_ID: 0.151 G_Rec: 0.358 D_GP: 0.047 D_real: 0.824 D_fake: 0.575 +(epoch: 154, iters: 4176, time: 0.064) G_GAN: 0.687 G_GAN_Feat: 0.928 G_ID: 0.196 G_Rec: 0.404 D_GP: 0.031 D_real: 1.212 D_fake: 0.346 +(epoch: 154, iters: 4576, time: 0.064) G_GAN: 0.206 G_GAN_Feat: 0.596 G_ID: 0.143 G_Rec: 0.368 D_GP: 0.018 D_real: 1.198 D_fake: 0.794 +(epoch: 154, iters: 4976, time: 0.064) G_GAN: 0.393 G_GAN_Feat: 0.827 G_ID: 0.214 G_Rec: 0.382 D_GP: 0.026 D_real: 1.071 D_fake: 0.609 +(epoch: 154, iters: 5376, time: 0.064) G_GAN: 0.199 G_GAN_Feat: 0.665 G_ID: 0.132 G_Rec: 0.308 D_GP: 0.022 D_real: 1.092 D_fake: 0.802 +(epoch: 154, iters: 5776, time: 0.064) G_GAN: 0.613 G_GAN_Feat: 0.900 G_ID: 0.180 G_Rec: 0.439 D_GP: 0.025 D_real: 1.196 D_fake: 0.397 +(epoch: 154, iters: 6176, time: 0.064) G_GAN: -0.055 G_GAN_Feat: 0.713 G_ID: 0.167 G_Rec: 0.307 D_GP: 0.031 D_real: 0.806 D_fake: 1.055 +(epoch: 154, iters: 6576, time: 0.064) G_GAN: 0.787 G_GAN_Feat: 0.840 G_ID: 0.235 G_Rec: 0.386 D_GP: 0.024 D_real: 1.544 D_fake: 0.248 +(epoch: 154, iters: 6976, time: 0.064) G_GAN: 0.148 G_GAN_Feat: 0.750 G_ID: 0.172 G_Rec: 0.319 D_GP: 0.036 D_real: 0.913 D_fake: 0.852 +(epoch: 154, iters: 7376, time: 0.064) G_GAN: 0.434 G_GAN_Feat: 0.869 G_ID: 0.194 G_Rec: 0.381 D_GP: 0.037 D_real: 1.064 D_fake: 0.567 +(epoch: 154, iters: 7776, time: 0.064) G_GAN: 0.181 G_GAN_Feat: 0.867 G_ID: 0.176 G_Rec: 0.340 D_GP: 0.059 D_real: 0.782 D_fake: 0.819 +(epoch: 154, iters: 8176, time: 0.064) G_GAN: 0.459 G_GAN_Feat: 1.054 G_ID: 0.232 G_Rec: 0.468 D_GP: 0.024 D_real: 1.043 D_fake: 0.544 +(epoch: 154, iters: 8576, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.689 G_ID: 0.143 G_Rec: 0.304 D_GP: 0.025 D_real: 1.174 D_fake: 0.714 +(epoch: 155, iters: 368, time: 0.064) G_GAN: 0.408 G_GAN_Feat: 1.207 G_ID: 0.210 G_Rec: 0.407 D_GP: 0.257 D_real: 0.465 D_fake: 0.596 +(epoch: 155, iters: 768, time: 0.064) G_GAN: 0.222 G_GAN_Feat: 0.651 G_ID: 0.132 G_Rec: 0.304 D_GP: 0.023 D_real: 1.111 D_fake: 0.778 +(epoch: 155, iters: 1168, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 1.075 G_ID: 0.184 G_Rec: 0.464 D_GP: 0.126 D_real: 0.487 D_fake: 0.790 +(epoch: 155, iters: 1568, time: 0.064) G_GAN: 0.264 G_GAN_Feat: 0.642 G_ID: 0.126 G_Rec: 0.300 D_GP: 0.023 D_real: 1.223 D_fake: 0.736 +(epoch: 155, iters: 1968, time: 0.064) G_GAN: 0.768 G_GAN_Feat: 0.837 G_ID: 0.191 G_Rec: 0.409 D_GP: 0.026 D_real: 1.509 D_fake: 0.318 +(epoch: 155, iters: 2368, time: 0.064) G_GAN: 0.414 G_GAN_Feat: 0.785 G_ID: 0.132 G_Rec: 0.321 D_GP: 0.035 D_real: 1.241 D_fake: 0.589 +(epoch: 155, iters: 2768, time: 0.064) G_GAN: 0.599 G_GAN_Feat: 0.853 G_ID: 0.200 G_Rec: 0.382 D_GP: 0.024 D_real: 1.394 D_fake: 0.429 +(epoch: 155, iters: 3168, time: 0.064) G_GAN: 0.287 G_GAN_Feat: 0.711 G_ID: 0.146 G_Rec: 0.341 D_GP: 0.024 D_real: 1.124 D_fake: 0.713 +(epoch: 155, iters: 3568, time: 0.064) G_GAN: 0.455 G_GAN_Feat: 0.918 G_ID: 0.190 G_Rec: 0.388 D_GP: 0.029 D_real: 1.188 D_fake: 0.546 +(epoch: 155, iters: 3968, time: 0.064) G_GAN: 0.190 G_GAN_Feat: 0.752 G_ID: 0.146 G_Rec: 0.332 D_GP: 0.031 D_real: 1.030 D_fake: 0.810 +(epoch: 155, iters: 4368, time: 0.064) G_GAN: 0.880 G_GAN_Feat: 0.833 G_ID: 0.180 G_Rec: 0.362 D_GP: 0.035 D_real: 1.615 D_fake: 0.232 +(epoch: 155, iters: 4768, time: 0.064) G_GAN: 0.429 G_GAN_Feat: 0.677 G_ID: 0.155 G_Rec: 0.344 D_GP: 0.025 D_real: 1.360 D_fake: 0.580 +(epoch: 155, iters: 5168, time: 0.064) G_GAN: 0.191 G_GAN_Feat: 0.920 G_ID: 0.221 G_Rec: 0.451 D_GP: 0.037 D_real: 0.766 D_fake: 0.810 +(epoch: 155, iters: 5568, time: 0.064) G_GAN: 0.557 G_GAN_Feat: 0.916 G_ID: 0.137 G_Rec: 0.356 D_GP: 0.440 D_real: 0.656 D_fake: 0.459 +(epoch: 155, iters: 5968, time: 0.064) G_GAN: 0.532 G_GAN_Feat: 0.871 G_ID: 0.191 G_Rec: 0.399 D_GP: 0.022 D_real: 1.177 D_fake: 0.471 +(epoch: 155, iters: 6368, time: 0.064) G_GAN: 0.250 G_GAN_Feat: 1.064 G_ID: 0.146 G_Rec: 0.314 D_GP: 0.148 D_real: 0.409 D_fake: 0.751 +(epoch: 155, iters: 6768, time: 0.064) G_GAN: 0.480 G_GAN_Feat: 0.867 G_ID: 0.229 G_Rec: 0.437 D_GP: 0.021 D_real: 1.212 D_fake: 0.522 +(epoch: 155, iters: 7168, time: 0.064) G_GAN: 0.356 G_GAN_Feat: 0.659 G_ID: 0.141 G_Rec: 0.297 D_GP: 0.025 D_real: 1.222 D_fake: 0.644 +(epoch: 155, iters: 7568, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 0.819 G_ID: 0.172 G_Rec: 0.391 D_GP: 0.025 D_real: 1.096 D_fake: 0.647 +(epoch: 155, iters: 7968, time: 0.064) G_GAN: 0.323 G_GAN_Feat: 0.905 G_ID: 0.129 G_Rec: 0.336 D_GP: 0.123 D_real: 0.897 D_fake: 0.701 +(epoch: 155, iters: 8368, time: 0.064) G_GAN: 0.578 G_GAN_Feat: 0.873 G_ID: 0.193 G_Rec: 0.395 D_GP: 0.027 D_real: 1.272 D_fake: 0.427 +(epoch: 156, iters: 160, time: 0.064) G_GAN: 0.084 G_GAN_Feat: 0.854 G_ID: 0.183 G_Rec: 0.313 D_GP: 0.038 D_real: 0.600 D_fake: 0.916 +(epoch: 156, iters: 560, time: 0.064) G_GAN: 0.533 G_GAN_Feat: 0.794 G_ID: 0.214 G_Rec: 0.398 D_GP: 0.023 D_real: 1.241 D_fake: 0.530 +(epoch: 156, iters: 960, time: 0.064) G_GAN: -0.086 G_GAN_Feat: 0.748 G_ID: 0.151 G_Rec: 0.336 D_GP: 0.051 D_real: 0.646 D_fake: 1.086 +(epoch: 156, iters: 1360, time: 0.064) G_GAN: 0.666 G_GAN_Feat: 0.907 G_ID: 0.197 G_Rec: 0.382 D_GP: 0.043 D_real: 1.275 D_fake: 0.351 +(epoch: 156, iters: 1760, time: 0.064) G_GAN: 0.217 G_GAN_Feat: 0.803 G_ID: 0.140 G_Rec: 0.322 D_GP: 0.043 D_real: 0.886 D_fake: 0.783 +(epoch: 156, iters: 2160, time: 0.064) G_GAN: 0.329 G_GAN_Feat: 1.125 G_ID: 0.216 G_Rec: 0.450 D_GP: 0.100 D_real: 0.434 D_fake: 0.681 +(epoch: 156, iters: 2560, time: 0.064) G_GAN: 0.484 G_GAN_Feat: 0.792 G_ID: 0.130 G_Rec: 0.314 D_GP: 0.041 D_real: 1.025 D_fake: 0.520 +(epoch: 156, iters: 2960, time: 0.064) G_GAN: 0.638 G_GAN_Feat: 0.742 G_ID: 0.230 G_Rec: 0.417 D_GP: 0.020 D_real: 1.377 D_fake: 0.388 +(epoch: 156, iters: 3360, time: 0.064) G_GAN: 0.269 G_GAN_Feat: 0.577 G_ID: 0.166 G_Rec: 0.287 D_GP: 0.020 D_real: 1.224 D_fake: 0.732 +(epoch: 156, iters: 3760, time: 0.064) G_GAN: 0.324 G_GAN_Feat: 0.792 G_ID: 0.189 G_Rec: 0.415 D_GP: 0.027 D_real: 1.045 D_fake: 0.681 +(epoch: 156, iters: 4160, time: 0.064) G_GAN: 0.121 G_GAN_Feat: 0.594 G_ID: 0.166 G_Rec: 0.294 D_GP: 0.022 D_real: 1.065 D_fake: 0.879 +(epoch: 156, iters: 4560, time: 0.064) G_GAN: 0.434 G_GAN_Feat: 0.851 G_ID: 0.170 G_Rec: 0.405 D_GP: 0.052 D_real: 1.070 D_fake: 0.569 +(epoch: 156, iters: 4960, time: 0.064) G_GAN: 0.140 G_GAN_Feat: 0.739 G_ID: 0.160 G_Rec: 0.369 D_GP: 0.030 D_real: 1.059 D_fake: 0.860 +(epoch: 156, iters: 5360, time: 0.064) G_GAN: 0.481 G_GAN_Feat: 0.957 G_ID: 0.212 G_Rec: 0.437 D_GP: 0.047 D_real: 0.972 D_fake: 0.528 +(epoch: 156, iters: 5760, time: 0.064) G_GAN: 0.181 G_GAN_Feat: 0.675 G_ID: 0.142 G_Rec: 0.321 D_GP: 0.020 D_real: 1.079 D_fake: 0.819 +(epoch: 156, iters: 6160, time: 0.064) G_GAN: 0.478 G_GAN_Feat: 0.901 G_ID: 0.193 G_Rec: 0.389 D_GP: 0.045 D_real: 1.098 D_fake: 0.527 +(epoch: 156, iters: 6560, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.808 G_ID: 0.142 G_Rec: 0.306 D_GP: 0.039 D_real: 0.983 D_fake: 0.720 +(epoch: 156, iters: 6960, time: 0.064) G_GAN: 0.530 G_GAN_Feat: 0.784 G_ID: 0.174 G_Rec: 0.396 D_GP: 0.024 D_real: 1.288 D_fake: 0.470 +(epoch: 156, iters: 7360, time: 0.064) G_GAN: 0.314 G_GAN_Feat: 0.914 G_ID: 0.183 G_Rec: 0.360 D_GP: 0.052 D_real: 0.926 D_fake: 0.686 +(epoch: 156, iters: 7760, time: 0.064) G_GAN: 0.415 G_GAN_Feat: 0.914 G_ID: 0.189 G_Rec: 0.410 D_GP: 0.030 D_real: 1.085 D_fake: 0.587 +(epoch: 156, iters: 8160, time: 0.064) G_GAN: 0.431 G_GAN_Feat: 0.820 G_ID: 0.148 G_Rec: 0.315 D_GP: 0.050 D_real: 1.025 D_fake: 0.578 +(epoch: 156, iters: 8560, time: 0.064) G_GAN: 0.483 G_GAN_Feat: 0.920 G_ID: 0.177 G_Rec: 0.385 D_GP: 0.040 D_real: 1.086 D_fake: 0.519 +(epoch: 157, iters: 352, time: 0.064) G_GAN: 0.675 G_GAN_Feat: 0.856 G_ID: 0.147 G_Rec: 0.370 D_GP: 0.081 D_real: 1.232 D_fake: 0.350 +(epoch: 157, iters: 752, time: 0.064) G_GAN: 0.430 G_GAN_Feat: 0.881 G_ID: 0.220 G_Rec: 0.393 D_GP: 0.046 D_real: 1.095 D_fake: 0.576 +(epoch: 157, iters: 1152, time: 0.064) G_GAN: 0.488 G_GAN_Feat: 0.805 G_ID: 0.152 G_Rec: 0.317 D_GP: 0.034 D_real: 1.347 D_fake: 0.532 +(epoch: 157, iters: 1552, time: 0.064) G_GAN: 0.632 G_GAN_Feat: 1.200 G_ID: 0.186 G_Rec: 0.454 D_GP: 0.078 D_real: 0.388 D_fake: 0.423 +(epoch: 157, iters: 1952, time: 0.064) G_GAN: 0.361 G_GAN_Feat: 0.819 G_ID: 0.141 G_Rec: 0.324 D_GP: 0.036 D_real: 1.124 D_fake: 0.645 +(epoch: 157, iters: 2352, time: 0.064) G_GAN: 0.528 G_GAN_Feat: 0.824 G_ID: 0.189 G_Rec: 0.395 D_GP: 0.035 D_real: 1.254 D_fake: 0.492 +(epoch: 157, iters: 2752, time: 0.064) G_GAN: 0.074 G_GAN_Feat: 0.677 G_ID: 0.142 G_Rec: 0.305 D_GP: 0.031 D_real: 1.021 D_fake: 0.926 +(epoch: 157, iters: 3152, time: 0.064) G_GAN: 0.544 G_GAN_Feat: 1.067 G_ID: 0.204 G_Rec: 0.426 D_GP: 0.048 D_real: 1.129 D_fake: 0.522 +(epoch: 157, iters: 3552, time: 0.064) G_GAN: 0.387 G_GAN_Feat: 0.782 G_ID: 0.148 G_Rec: 0.325 D_GP: 0.036 D_real: 1.035 D_fake: 0.617 +(epoch: 157, iters: 3952, time: 0.064) G_GAN: 0.143 G_GAN_Feat: 0.992 G_ID: 0.239 G_Rec: 0.408 D_GP: 0.091 D_real: 0.460 D_fake: 0.857 +(epoch: 157, iters: 4352, time: 0.064) G_GAN: 0.525 G_GAN_Feat: 0.799 G_ID: 0.137 G_Rec: 0.331 D_GP: 0.030 D_real: 1.316 D_fake: 0.503 +(epoch: 157, iters: 4752, time: 0.064) G_GAN: 0.676 G_GAN_Feat: 1.242 G_ID: 0.234 G_Rec: 0.414 D_GP: 0.103 D_real: 0.703 D_fake: 0.338 +(epoch: 157, iters: 5152, time: 0.064) G_GAN: 0.384 G_GAN_Feat: 0.835 G_ID: 0.135 G_Rec: 0.318 D_GP: 0.046 D_real: 1.068 D_fake: 0.620 +(epoch: 157, iters: 5552, time: 0.064) G_GAN: 0.421 G_GAN_Feat: 1.192 G_ID: 0.199 G_Rec: 0.483 D_GP: 0.165 D_real: 0.447 D_fake: 0.585 +(epoch: 157, iters: 5952, time: 0.064) G_GAN: -0.126 G_GAN_Feat: 0.763 G_ID: 0.132 G_Rec: 0.333 D_GP: 0.026 D_real: 0.718 D_fake: 1.126 +(epoch: 157, iters: 6352, time: 0.064) G_GAN: 0.127 G_GAN_Feat: 0.856 G_ID: 0.200 G_Rec: 0.397 D_GP: 0.027 D_real: 0.960 D_fake: 0.874 +(epoch: 157, iters: 6752, time: 0.064) G_GAN: 0.036 G_GAN_Feat: 0.664 G_ID: 0.167 G_Rec: 0.324 D_GP: 0.023 D_real: 0.932 D_fake: 0.964 +(epoch: 157, iters: 7152, time: 0.064) G_GAN: 0.467 G_GAN_Feat: 0.982 G_ID: 0.211 G_Rec: 0.438 D_GP: 0.045 D_real: 0.880 D_fake: 0.552 +(epoch: 157, iters: 7552, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.724 G_ID: 0.126 G_Rec: 0.314 D_GP: 0.022 D_real: 1.172 D_fake: 0.694 +(epoch: 157, iters: 7952, time: 0.064) G_GAN: 0.479 G_GAN_Feat: 0.927 G_ID: 0.224 G_Rec: 0.401 D_GP: 0.028 D_real: 1.109 D_fake: 0.522 +(epoch: 157, iters: 8352, time: 0.064) G_GAN: 0.383 G_GAN_Feat: 0.777 G_ID: 0.143 G_Rec: 0.317 D_GP: 0.052 D_real: 1.149 D_fake: 0.618 +(epoch: 158, iters: 144, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.938 G_ID: 0.215 G_Rec: 0.461 D_GP: 0.043 D_real: 0.928 D_fake: 0.677 +(epoch: 158, iters: 544, time: 0.064) G_GAN: 0.248 G_GAN_Feat: 0.730 G_ID: 0.157 G_Rec: 0.337 D_GP: 0.070 D_real: 1.008 D_fake: 0.758 +(epoch: 158, iters: 944, time: 0.064) G_GAN: 0.568 G_GAN_Feat: 1.000 G_ID: 0.206 G_Rec: 0.409 D_GP: 0.114 D_real: 0.860 D_fake: 0.436 +(epoch: 158, iters: 1344, time: 0.064) G_GAN: 0.435 G_GAN_Feat: 0.890 G_ID: 0.128 G_Rec: 0.351 D_GP: 0.112 D_real: 0.770 D_fake: 0.571 +(epoch: 158, iters: 1744, time: 0.064) G_GAN: 0.228 G_GAN_Feat: 0.941 G_ID: 0.207 G_Rec: 0.411 D_GP: 0.033 D_real: 0.929 D_fake: 0.773 +(epoch: 158, iters: 2144, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 0.781 G_ID: 0.150 G_Rec: 0.315 D_GP: 0.028 D_real: 0.927 D_fake: 0.807 +(epoch: 158, iters: 2544, time: 0.064) G_GAN: 0.706 G_GAN_Feat: 1.024 G_ID: 0.218 G_Rec: 0.411 D_GP: 0.080 D_real: 0.984 D_fake: 0.371 +(epoch: 158, iters: 2944, time: 0.064) G_GAN: 0.013 G_GAN_Feat: 0.664 G_ID: 0.140 G_Rec: 0.323 D_GP: 0.022 D_real: 1.002 D_fake: 0.987 +(epoch: 158, iters: 3344, time: 0.064) G_GAN: 0.579 G_GAN_Feat: 0.784 G_ID: 0.189 G_Rec: 0.380 D_GP: 0.025 D_real: 1.289 D_fake: 0.433 +(epoch: 158, iters: 3744, time: 0.064) G_GAN: 0.090 G_GAN_Feat: 0.882 G_ID: 0.137 G_Rec: 0.389 D_GP: 0.113 D_real: 0.410 D_fake: 0.910 +(epoch: 158, iters: 4144, time: 0.064) G_GAN: 0.638 G_GAN_Feat: 1.228 G_ID: 0.237 G_Rec: 0.451 D_GP: 0.064 D_real: 1.043 D_fake: 0.674 +(epoch: 158, iters: 4544, time: 0.064) G_GAN: 0.483 G_GAN_Feat: 0.921 G_ID: 0.146 G_Rec: 0.350 D_GP: 0.119 D_real: 0.717 D_fake: 0.533 +(epoch: 158, iters: 4944, time: 0.064) G_GAN: 0.264 G_GAN_Feat: 0.852 G_ID: 0.208 G_Rec: 0.411 D_GP: 0.025 D_real: 1.027 D_fake: 0.737 +(epoch: 158, iters: 5344, time: 0.064) G_GAN: 0.088 G_GAN_Feat: 0.737 G_ID: 0.169 G_Rec: 0.359 D_GP: 0.030 D_real: 0.865 D_fake: 0.912 +(epoch: 158, iters: 5744, time: 0.064) G_GAN: 0.282 G_GAN_Feat: 0.795 G_ID: 0.198 G_Rec: 0.374 D_GP: 0.023 D_real: 1.066 D_fake: 0.719 +(epoch: 158, iters: 6144, time: 0.064) G_GAN: 0.142 G_GAN_Feat: 0.678 G_ID: 0.124 G_Rec: 0.321 D_GP: 0.037 D_real: 1.049 D_fake: 0.858 +(epoch: 158, iters: 6544, time: 0.064) G_GAN: 0.337 G_GAN_Feat: 0.873 G_ID: 0.190 G_Rec: 0.390 D_GP: 0.029 D_real: 1.010 D_fake: 0.664 +(epoch: 158, iters: 6944, time: 0.064) G_GAN: 0.362 G_GAN_Feat: 0.749 G_ID: 0.125 G_Rec: 0.335 D_GP: 0.030 D_real: 1.207 D_fake: 0.638 +(epoch: 158, iters: 7344, time: 0.064) G_GAN: 0.445 G_GAN_Feat: 0.970 G_ID: 0.196 G_Rec: 0.376 D_GP: 0.059 D_real: 0.797 D_fake: 0.565 +(epoch: 158, iters: 7744, time: 0.064) G_GAN: 0.011 G_GAN_Feat: 0.842 G_ID: 0.180 G_Rec: 0.326 D_GP: 0.039 D_real: 0.875 D_fake: 1.013 +(epoch: 158, iters: 8144, time: 0.064) G_GAN: 0.909 G_GAN_Feat: 1.059 G_ID: 0.198 G_Rec: 0.438 D_GP: 0.033 D_real: 1.252 D_fake: 0.171 +(epoch: 158, iters: 8544, time: 0.064) G_GAN: 0.342 G_GAN_Feat: 0.716 G_ID: 0.152 G_Rec: 0.329 D_GP: 0.023 D_real: 1.149 D_fake: 0.661 +(epoch: 159, iters: 336, time: 0.064) G_GAN: 0.411 G_GAN_Feat: 0.898 G_ID: 0.168 G_Rec: 0.435 D_GP: 0.031 D_real: 1.041 D_fake: 0.593 +(epoch: 159, iters: 736, time: 0.064) G_GAN: 0.365 G_GAN_Feat: 0.678 G_ID: 0.137 G_Rec: 0.320 D_GP: 0.026 D_real: 1.175 D_fake: 0.637 +(epoch: 159, iters: 1136, time: 0.064) G_GAN: 0.427 G_GAN_Feat: 0.773 G_ID: 0.209 G_Rec: 0.390 D_GP: 0.025 D_real: 1.171 D_fake: 0.576 +(epoch: 159, iters: 1536, time: 0.064) G_GAN: 0.197 G_GAN_Feat: 0.628 G_ID: 0.140 G_Rec: 0.287 D_GP: 0.025 D_real: 1.123 D_fake: 0.803 +(epoch: 159, iters: 1936, time: 0.064) G_GAN: 0.377 G_GAN_Feat: 0.819 G_ID: 0.207 G_Rec: 0.422 D_GP: 0.020 D_real: 1.111 D_fake: 0.624 +(epoch: 159, iters: 2336, time: 0.064) G_GAN: 0.179 G_GAN_Feat: 0.679 G_ID: 0.148 G_Rec: 0.296 D_GP: 0.032 D_real: 0.957 D_fake: 0.822 +(epoch: 159, iters: 2736, time: 0.064) G_GAN: 0.601 G_GAN_Feat: 1.109 G_ID: 0.226 G_Rec: 0.442 D_GP: 0.041 D_real: 1.181 D_fake: 0.448 +(epoch: 159, iters: 3136, time: 0.064) G_GAN: 0.534 G_GAN_Feat: 0.748 G_ID: 0.128 G_Rec: 0.305 D_GP: 0.032 D_real: 1.271 D_fake: 0.469 +(epoch: 159, iters: 3536, time: 0.064) G_GAN: 0.579 G_GAN_Feat: 1.004 G_ID: 0.214 G_Rec: 0.409 D_GP: 0.037 D_real: 1.034 D_fake: 0.434 +(epoch: 159, iters: 3936, time: 0.064) G_GAN: 0.348 G_GAN_Feat: 0.904 G_ID: 0.154 G_Rec: 0.369 D_GP: 0.065 D_real: 0.794 D_fake: 0.656 +(epoch: 159, iters: 4336, time: 0.064) G_GAN: 0.284 G_GAN_Feat: 0.752 G_ID: 0.227 G_Rec: 0.370 D_GP: 0.024 D_real: 1.097 D_fake: 0.720 +(epoch: 159, iters: 4736, time: 0.064) G_GAN: 0.186 G_GAN_Feat: 0.643 G_ID: 0.152 G_Rec: 0.322 D_GP: 0.027 D_real: 1.091 D_fake: 0.814 +(epoch: 159, iters: 5136, time: 0.064) G_GAN: 0.219 G_GAN_Feat: 0.796 G_ID: 0.202 G_Rec: 0.399 D_GP: 0.024 D_real: 1.010 D_fake: 0.781 +(epoch: 159, iters: 5536, time: 0.064) G_GAN: 0.037 G_GAN_Feat: 0.680 G_ID: 0.139 G_Rec: 0.308 D_GP: 0.032 D_real: 0.965 D_fake: 0.963 +(epoch: 159, iters: 5936, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 0.750 G_ID: 0.188 G_Rec: 0.355 D_GP: 0.028 D_real: 1.144 D_fake: 0.689 +(epoch: 159, iters: 6336, time: 0.064) G_GAN: 0.059 G_GAN_Feat: 0.758 G_ID: 0.136 G_Rec: 0.332 D_GP: 0.053 D_real: 0.860 D_fake: 0.941 +(epoch: 159, iters: 6736, time: 0.064) G_GAN: 0.180 G_GAN_Feat: 0.906 G_ID: 0.202 G_Rec: 0.375 D_GP: 0.056 D_real: 0.990 D_fake: 0.820 +(epoch: 159, iters: 7136, time: 0.064) G_GAN: 0.126 G_GAN_Feat: 0.663 G_ID: 0.123 G_Rec: 0.298 D_GP: 0.028 D_real: 1.061 D_fake: 0.874 +(epoch: 159, iters: 7536, time: 0.064) G_GAN: 0.392 G_GAN_Feat: 0.910 G_ID: 0.208 G_Rec: 0.404 D_GP: 0.029 D_real: 1.137 D_fake: 0.609 +(epoch: 159, iters: 7936, time: 0.064) G_GAN: 0.207 G_GAN_Feat: 0.676 G_ID: 0.133 G_Rec: 0.314 D_GP: 0.027 D_real: 1.100 D_fake: 0.793 +(epoch: 159, iters: 8336, time: 0.064) G_GAN: 0.427 G_GAN_Feat: 0.852 G_ID: 0.211 G_Rec: 0.401 D_GP: 0.029 D_real: 1.118 D_fake: 0.580 +(epoch: 160, iters: 128, time: 0.064) G_GAN: 0.049 G_GAN_Feat: 0.768 G_ID: 0.123 G_Rec: 0.340 D_GP: 0.059 D_real: 0.899 D_fake: 0.951 +(epoch: 160, iters: 528, time: 0.064) G_GAN: 0.363 G_GAN_Feat: 0.964 G_ID: 0.203 G_Rec: 0.455 D_GP: 0.046 D_real: 0.871 D_fake: 0.652 +(epoch: 160, iters: 928, time: 0.064) G_GAN: 0.202 G_GAN_Feat: 1.082 G_ID: 0.139 G_Rec: 0.353 D_GP: 0.036 D_real: 0.824 D_fake: 0.798 +(epoch: 160, iters: 1328, time: 0.064) G_GAN: 0.600 G_GAN_Feat: 0.987 G_ID: 0.182 G_Rec: 0.382 D_GP: 0.031 D_real: 1.209 D_fake: 0.410 +(epoch: 160, iters: 1728, time: 0.064) G_GAN: 0.044 G_GAN_Feat: 0.917 G_ID: 0.153 G_Rec: 0.346 D_GP: 0.225 D_real: 0.468 D_fake: 0.956 +(epoch: 160, iters: 2128, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.874 G_ID: 0.194 G_Rec: 0.393 D_GP: 0.029 D_real: 0.924 D_fake: 0.724 +(epoch: 160, iters: 2528, time: 0.064) G_GAN: 0.251 G_GAN_Feat: 0.737 G_ID: 0.116 G_Rec: 0.417 D_GP: 0.028 D_real: 0.971 D_fake: 0.749 +(epoch: 160, iters: 2928, time: 0.064) G_GAN: 0.414 G_GAN_Feat: 0.890 G_ID: 0.191 G_Rec: 0.413 D_GP: 0.030 D_real: 1.123 D_fake: 0.591 +(epoch: 160, iters: 3328, time: 0.064) G_GAN: 0.281 G_GAN_Feat: 0.703 G_ID: 0.162 G_Rec: 0.326 D_GP: 0.021 D_real: 1.214 D_fake: 0.719 +(epoch: 160, iters: 3728, time: 0.064) G_GAN: 0.454 G_GAN_Feat: 0.842 G_ID: 0.193 G_Rec: 0.398 D_GP: 0.028 D_real: 1.179 D_fake: 0.560 +(epoch: 160, iters: 4128, time: 0.064) G_GAN: 0.390 G_GAN_Feat: 0.739 G_ID: 0.138 G_Rec: 0.356 D_GP: 0.035 D_real: 1.221 D_fake: 0.611 +(epoch: 160, iters: 4528, time: 0.064) G_GAN: 0.292 G_GAN_Feat: 1.166 G_ID: 0.198 G_Rec: 0.421 D_GP: 0.244 D_real: 0.302 D_fake: 0.709 +(epoch: 160, iters: 4928, time: 0.064) G_GAN: 0.298 G_GAN_Feat: 0.845 G_ID: 0.143 G_Rec: 0.327 D_GP: 0.093 D_real: 0.785 D_fake: 0.706 +(epoch: 160, iters: 5328, time: 0.064) G_GAN: 0.289 G_GAN_Feat: 0.835 G_ID: 0.201 G_Rec: 0.399 D_GP: 0.021 D_real: 1.108 D_fake: 0.713 +(epoch: 160, iters: 5728, time: 0.064) G_GAN: 0.251 G_GAN_Feat: 0.645 G_ID: 0.142 G_Rec: 0.319 D_GP: 0.033 D_real: 1.092 D_fake: 0.749 +(epoch: 160, iters: 6128, time: 0.064) G_GAN: 0.218 G_GAN_Feat: 0.858 G_ID: 0.205 G_Rec: 0.395 D_GP: 0.029 D_real: 0.995 D_fake: 0.782 +(epoch: 160, iters: 6528, time: 0.064) G_GAN: 0.127 G_GAN_Feat: 0.768 G_ID: 0.136 G_Rec: 0.305 D_GP: 0.109 D_real: 0.837 D_fake: 0.873 +(epoch: 160, iters: 6928, time: 0.064) G_GAN: 0.517 G_GAN_Feat: 0.996 G_ID: 0.198 G_Rec: 0.422 D_GP: 0.035 D_real: 1.105 D_fake: 0.492 +(epoch: 160, iters: 7328, time: 0.064) G_GAN: 0.093 G_GAN_Feat: 0.849 G_ID: 0.137 G_Rec: 0.404 D_GP: 0.052 D_real: 0.714 D_fake: 0.908 +(epoch: 160, iters: 7728, time: 0.064) G_GAN: 0.397 G_GAN_Feat: 0.981 G_ID: 0.179 G_Rec: 0.424 D_GP: 0.067 D_real: 0.784 D_fake: 0.616 +(epoch: 160, iters: 8128, time: 0.064) G_GAN: 0.323 G_GAN_Feat: 0.850 G_ID: 0.134 G_Rec: 0.320 D_GP: 0.116 D_real: 0.848 D_fake: 0.679 +(epoch: 160, iters: 8528, time: 0.064) G_GAN: 0.583 G_GAN_Feat: 0.883 G_ID: 0.163 G_Rec: 0.410 D_GP: 0.025 D_real: 1.338 D_fake: 0.422 +(epoch: 161, iters: 320, time: 0.064) G_GAN: 0.213 G_GAN_Feat: 0.741 G_ID: 0.147 G_Rec: 0.307 D_GP: 0.041 D_real: 0.940 D_fake: 0.787 +(epoch: 161, iters: 720, time: 0.064) G_GAN: 0.214 G_GAN_Feat: 0.872 G_ID: 0.190 G_Rec: 0.376 D_GP: 0.039 D_real: 1.028 D_fake: 0.786 +(epoch: 161, iters: 1120, time: 0.064) G_GAN: 0.232 G_GAN_Feat: 0.882 G_ID: 0.173 G_Rec: 0.340 D_GP: 0.029 D_real: 1.091 D_fake: 0.774 +(epoch: 161, iters: 1520, time: 0.064) G_GAN: 0.779 G_GAN_Feat: 1.058 G_ID: 0.190 G_Rec: 0.444 D_GP: 0.032 D_real: 1.155 D_fake: 0.251 +(epoch: 161, iters: 1920, time: 0.064) G_GAN: -0.040 G_GAN_Feat: 0.896 G_ID: 0.152 G_Rec: 0.338 D_GP: 0.048 D_real: 0.418 D_fake: 1.040 +(epoch: 161, iters: 2320, time: 0.064) G_GAN: 0.423 G_GAN_Feat: 0.798 G_ID: 0.208 G_Rec: 0.406 D_GP: 0.023 D_real: 1.194 D_fake: 0.585 +(epoch: 161, iters: 2720, time: 0.064) G_GAN: 0.119 G_GAN_Feat: 0.644 G_ID: 0.145 G_Rec: 0.321 D_GP: 0.026 D_real: 1.062 D_fake: 0.881 +(epoch: 161, iters: 3120, time: 0.064) G_GAN: 0.521 G_GAN_Feat: 0.812 G_ID: 0.168 G_Rec: 0.393 D_GP: 0.031 D_real: 1.304 D_fake: 0.491 +(epoch: 161, iters: 3520, time: 0.064) G_GAN: 0.138 G_GAN_Feat: 0.728 G_ID: 0.141 G_Rec: 0.329 D_GP: 0.046 D_real: 1.002 D_fake: 0.862 +(epoch: 161, iters: 3920, time: 0.064) G_GAN: 0.175 G_GAN_Feat: 0.855 G_ID: 0.211 G_Rec: 0.411 D_GP: 0.027 D_real: 0.893 D_fake: 0.825 +(epoch: 161, iters: 4320, time: 0.064) G_GAN: 0.222 G_GAN_Feat: 0.704 G_ID: 0.149 G_Rec: 0.302 D_GP: 0.025 D_real: 1.133 D_fake: 0.778 +(epoch: 161, iters: 4720, time: 0.064) G_GAN: 0.426 G_GAN_Feat: 0.937 G_ID: 0.185 G_Rec: 0.454 D_GP: 0.055 D_real: 0.986 D_fake: 0.581 +(epoch: 161, iters: 5120, time: 0.064) G_GAN: 0.265 G_GAN_Feat: 0.791 G_ID: 0.162 G_Rec: 0.361 D_GP: 0.081 D_real: 0.930 D_fake: 0.736 +(epoch: 161, iters: 5520, time: 0.064) G_GAN: 0.144 G_GAN_Feat: 0.904 G_ID: 0.211 G_Rec: 0.393 D_GP: 0.036 D_real: 0.819 D_fake: 0.857 +(epoch: 161, iters: 5920, time: 0.064) G_GAN: 0.215 G_GAN_Feat: 0.754 G_ID: 0.159 G_Rec: 0.370 D_GP: 0.039 D_real: 0.911 D_fake: 0.785 +(epoch: 161, iters: 6320, time: 0.064) G_GAN: 0.337 G_GAN_Feat: 0.866 G_ID: 0.193 G_Rec: 0.408 D_GP: 0.052 D_real: 0.962 D_fake: 0.665 +(epoch: 161, iters: 6720, time: 0.064) G_GAN: 0.188 G_GAN_Feat: 0.742 G_ID: 0.142 G_Rec: 0.345 D_GP: 0.025 D_real: 1.092 D_fake: 0.815 +(epoch: 161, iters: 7120, time: 0.064) G_GAN: 0.536 G_GAN_Feat: 0.951 G_ID: 0.247 G_Rec: 0.393 D_GP: 0.050 D_real: 0.966 D_fake: 0.478 +(epoch: 161, iters: 7520, time: 0.064) G_GAN: 0.084 G_GAN_Feat: 0.881 G_ID: 0.155 G_Rec: 0.342 D_GP: 0.033 D_real: 0.731 D_fake: 0.916 +(epoch: 161, iters: 7920, time: 0.064) G_GAN: 0.656 G_GAN_Feat: 0.993 G_ID: 0.218 G_Rec: 0.435 D_GP: 0.039 D_real: 1.069 D_fake: 0.368 +(epoch: 161, iters: 8320, time: 0.064) G_GAN: 0.329 G_GAN_Feat: 0.650 G_ID: 0.133 G_Rec: 0.290 D_GP: 0.020 D_real: 1.297 D_fake: 0.671 +(epoch: 162, iters: 112, time: 0.064) G_GAN: 0.346 G_GAN_Feat: 0.976 G_ID: 0.225 G_Rec: 0.428 D_GP: 0.071 D_real: 0.720 D_fake: 0.655 +(epoch: 162, iters: 512, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.670 G_ID: 0.172 G_Rec: 0.299 D_GP: 0.021 D_real: 1.191 D_fake: 0.751 +(epoch: 162, iters: 912, time: 0.064) G_GAN: 0.362 G_GAN_Feat: 0.839 G_ID: 0.240 G_Rec: 0.379 D_GP: 0.046 D_real: 1.001 D_fake: 0.640 +(epoch: 162, iters: 1312, time: 0.064) G_GAN: 0.697 G_GAN_Feat: 0.774 G_ID: 0.138 G_Rec: 0.342 D_GP: 0.025 D_real: 1.562 D_fake: 0.422 +(epoch: 162, iters: 1712, time: 0.064) G_GAN: 0.212 G_GAN_Feat: 1.069 G_ID: 0.231 G_Rec: 0.405 D_GP: 0.065 D_real: 0.415 D_fake: 0.788 +(epoch: 162, iters: 2112, time: 0.064) G_GAN: 0.376 G_GAN_Feat: 0.782 G_ID: 0.165 G_Rec: 0.333 D_GP: 0.057 D_real: 1.025 D_fake: 0.645 +(epoch: 162, iters: 2512, time: 0.064) G_GAN: 0.505 G_GAN_Feat: 0.945 G_ID: 0.187 G_Rec: 0.427 D_GP: 0.049 D_real: 1.061 D_fake: 0.512 +(epoch: 162, iters: 2912, time: 0.064) G_GAN: 0.083 G_GAN_Feat: 0.716 G_ID: 0.154 G_Rec: 0.351 D_GP: 0.021 D_real: 0.989 D_fake: 0.917 +(epoch: 162, iters: 3312, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 1.468 G_ID: 0.177 G_Rec: 0.454 D_GP: 0.124 D_real: 0.483 D_fake: 0.659 +(epoch: 162, iters: 3712, time: 0.064) G_GAN: 0.403 G_GAN_Feat: 0.804 G_ID: 0.156 G_Rec: 0.323 D_GP: 0.085 D_real: 1.005 D_fake: 0.598 +(epoch: 162, iters: 4112, time: 0.064) G_GAN: 0.347 G_GAN_Feat: 0.868 G_ID: 0.209 G_Rec: 0.429 D_GP: 0.035 D_real: 1.015 D_fake: 0.653 +(epoch: 162, iters: 4512, time: 0.064) G_GAN: 0.172 G_GAN_Feat: 0.732 G_ID: 0.145 G_Rec: 0.296 D_GP: 0.067 D_real: 0.864 D_fake: 0.828 +(epoch: 162, iters: 4912, time: 0.064) G_GAN: 0.599 G_GAN_Feat: 0.895 G_ID: 0.212 G_Rec: 0.444 D_GP: 0.032 D_real: 1.281 D_fake: 0.409 +(epoch: 162, iters: 5312, time: 0.064) G_GAN: 0.064 G_GAN_Feat: 0.639 G_ID: 0.159 G_Rec: 0.312 D_GP: 0.023 D_real: 1.002 D_fake: 0.936 +(epoch: 162, iters: 5712, time: 0.064) G_GAN: 0.326 G_GAN_Feat: 0.855 G_ID: 0.167 G_Rec: 0.362 D_GP: 0.046 D_real: 0.956 D_fake: 0.674 +(epoch: 162, iters: 6112, time: 0.064) G_GAN: 0.166 G_GAN_Feat: 0.681 G_ID: 0.139 G_Rec: 0.317 D_GP: 0.033 D_real: 1.058 D_fake: 0.834 +(epoch: 162, iters: 6512, time: 0.064) G_GAN: 0.443 G_GAN_Feat: 0.998 G_ID: 0.225 G_Rec: 0.422 D_GP: 0.135 D_real: 0.664 D_fake: 0.562 +(epoch: 162, iters: 6912, time: 0.064) G_GAN: 0.200 G_GAN_Feat: 0.842 G_ID: 0.166 G_Rec: 0.340 D_GP: 0.057 D_real: 0.740 D_fake: 0.800 +(epoch: 162, iters: 7312, time: 0.064) G_GAN: 0.628 G_GAN_Feat: 0.977 G_ID: 0.198 G_Rec: 0.392 D_GP: 0.037 D_real: 1.004 D_fake: 0.377 +(epoch: 162, iters: 7712, time: 0.064) G_GAN: 0.164 G_GAN_Feat: 0.609 G_ID: 0.138 G_Rec: 0.294 D_GP: 0.021 D_real: 1.123 D_fake: 0.836 +(epoch: 162, iters: 8112, time: 0.064) G_GAN: 0.212 G_GAN_Feat: 0.829 G_ID: 0.199 G_Rec: 0.381 D_GP: 0.030 D_real: 0.842 D_fake: 0.789 +(epoch: 162, iters: 8512, time: 0.064) G_GAN: 0.125 G_GAN_Feat: 0.802 G_ID: 0.144 G_Rec: 0.340 D_GP: 0.122 D_real: 0.763 D_fake: 0.879 +(epoch: 163, iters: 304, time: 0.064) G_GAN: 0.451 G_GAN_Feat: 0.941 G_ID: 0.199 G_Rec: 0.406 D_GP: 0.044 D_real: 1.051 D_fake: 0.550 +(epoch: 163, iters: 704, time: 0.064) G_GAN: 0.068 G_GAN_Feat: 0.823 G_ID: 0.140 G_Rec: 0.360 D_GP: 0.047 D_real: 0.638 D_fake: 0.932 +(epoch: 163, iters: 1104, time: 0.064) G_GAN: 0.231 G_GAN_Feat: 0.988 G_ID: 0.209 G_Rec: 0.444 D_GP: 0.079 D_real: 0.771 D_fake: 0.775 +(epoch: 163, iters: 1504, time: 0.064) G_GAN: 0.275 G_GAN_Feat: 0.732 G_ID: 0.137 G_Rec: 0.319 D_GP: 0.025 D_real: 1.151 D_fake: 0.725 +(epoch: 163, iters: 1904, time: 0.064) G_GAN: 0.344 G_GAN_Feat: 0.916 G_ID: 0.239 G_Rec: 0.438 D_GP: 0.022 D_real: 1.035 D_fake: 0.656 +(epoch: 163, iters: 2304, time: 0.064) G_GAN: 0.374 G_GAN_Feat: 0.989 G_ID: 0.146 G_Rec: 0.342 D_GP: 0.054 D_real: 0.730 D_fake: 0.631 +(epoch: 163, iters: 2704, time: 0.064) G_GAN: 0.429 G_GAN_Feat: 0.877 G_ID: 0.217 G_Rec: 0.433 D_GP: 0.029 D_real: 1.081 D_fake: 0.573 +(epoch: 163, iters: 3104, time: 0.064) G_GAN: 0.246 G_GAN_Feat: 0.906 G_ID: 0.185 G_Rec: 0.353 D_GP: 0.053 D_real: 0.692 D_fake: 0.781 +(epoch: 163, iters: 3504, time: 0.064) G_GAN: 0.920 G_GAN_Feat: 0.931 G_ID: 0.190 G_Rec: 0.425 D_GP: 0.029 D_real: 1.655 D_fake: 0.167 +(epoch: 163, iters: 3904, time: 0.064) G_GAN: 0.143 G_GAN_Feat: 0.771 G_ID: 0.143 G_Rec: 0.325 D_GP: 0.035 D_real: 1.061 D_fake: 0.857 +(epoch: 163, iters: 4304, time: 0.064) G_GAN: 0.518 G_GAN_Feat: 1.005 G_ID: 0.193 G_Rec: 0.420 D_GP: 0.096 D_real: 0.856 D_fake: 0.495 +(epoch: 163, iters: 4704, time: 0.064) G_GAN: 0.459 G_GAN_Feat: 0.895 G_ID: 0.163 G_Rec: 0.323 D_GP: 0.072 D_real: 1.021 D_fake: 0.573 +(epoch: 163, iters: 5104, time: 0.064) G_GAN: 0.304 G_GAN_Feat: 0.840 G_ID: 0.207 G_Rec: 0.374 D_GP: 0.026 D_real: 1.133 D_fake: 0.701 +(epoch: 163, iters: 5504, time: 0.064) G_GAN: 0.107 G_GAN_Feat: 0.765 G_ID: 0.133 G_Rec: 0.322 D_GP: 0.028 D_real: 0.945 D_fake: 0.893 +(epoch: 163, iters: 5904, time: 0.064) G_GAN: 0.450 G_GAN_Feat: 0.924 G_ID: 0.201 G_Rec: 0.408 D_GP: 0.048 D_real: 1.060 D_fake: 0.552 +(epoch: 163, iters: 6304, time: 0.064) G_GAN: 0.224 G_GAN_Feat: 0.694 G_ID: 0.153 G_Rec: 0.322 D_GP: 0.022 D_real: 1.087 D_fake: 0.776 +(epoch: 163, iters: 6704, time: 0.064) G_GAN: 0.382 G_GAN_Feat: 0.931 G_ID: 0.196 G_Rec: 0.482 D_GP: 0.022 D_real: 1.107 D_fake: 0.619 +(epoch: 163, iters: 7104, time: 0.064) G_GAN: -0.076 G_GAN_Feat: 0.861 G_ID: 0.148 G_Rec: 0.348 D_GP: 0.085 D_real: 0.470 D_fake: 1.076 +(epoch: 163, iters: 7504, time: 0.064) G_GAN: 0.615 G_GAN_Feat: 0.941 G_ID: 0.213 G_Rec: 0.428 D_GP: 0.031 D_real: 1.325 D_fake: 0.425 +(epoch: 163, iters: 7904, time: 0.064) G_GAN: 0.107 G_GAN_Feat: 0.805 G_ID: 0.126 G_Rec: 0.383 D_GP: 0.035 D_real: 0.805 D_fake: 0.893 +(epoch: 163, iters: 8304, time: 0.064) G_GAN: 0.413 G_GAN_Feat: 0.980 G_ID: 0.188 G_Rec: 0.399 D_GP: 0.077 D_real: 1.070 D_fake: 0.607 +(epoch: 164, iters: 96, time: 0.064) G_GAN: 0.301 G_GAN_Feat: 0.908 G_ID: 0.147 G_Rec: 0.361 D_GP: 0.088 D_real: 0.568 D_fake: 0.718 +(epoch: 164, iters: 496, time: 0.064) G_GAN: 0.448 G_GAN_Feat: 0.834 G_ID: 0.206 G_Rec: 0.396 D_GP: 0.021 D_real: 1.184 D_fake: 0.554 +(epoch: 164, iters: 896, time: 0.064) G_GAN: 0.268 G_GAN_Feat: 0.706 G_ID: 0.144 G_Rec: 0.302 D_GP: 0.030 D_real: 1.135 D_fake: 0.732 +(epoch: 164, iters: 1296, time: 0.064) G_GAN: 0.343 G_GAN_Feat: 0.877 G_ID: 0.212 G_Rec: 0.385 D_GP: 0.026 D_real: 1.121 D_fake: 0.658 +(epoch: 164, iters: 1696, time: 0.064) G_GAN: 0.359 G_GAN_Feat: 0.747 G_ID: 0.137 G_Rec: 0.292 D_GP: 0.039 D_real: 1.112 D_fake: 0.642 +(epoch: 164, iters: 2096, time: 0.064) G_GAN: 0.173 G_GAN_Feat: 0.763 G_ID: 0.230 G_Rec: 0.386 D_GP: 0.023 D_real: 0.988 D_fake: 0.834 +(epoch: 164, iters: 2496, time: 0.064) G_GAN: 0.116 G_GAN_Feat: 0.680 G_ID: 0.155 G_Rec: 0.324 D_GP: 0.035 D_real: 0.960 D_fake: 0.884 +(epoch: 164, iters: 2896, time: 0.064) G_GAN: 0.301 G_GAN_Feat: 0.855 G_ID: 0.214 G_Rec: 0.412 D_GP: 0.034 D_real: 0.987 D_fake: 0.702 +(epoch: 164, iters: 3296, time: 0.064) G_GAN: 0.374 G_GAN_Feat: 0.641 G_ID: 0.161 G_Rec: 0.285 D_GP: 0.025 D_real: 1.267 D_fake: 0.629 +(epoch: 164, iters: 3696, time: 0.064) G_GAN: 0.370 G_GAN_Feat: 1.061 G_ID: 0.199 G_Rec: 0.520 D_GP: 0.031 D_real: 0.904 D_fake: 0.632 +(epoch: 164, iters: 4096, time: 0.064) G_GAN: 0.192 G_GAN_Feat: 0.746 G_ID: 0.137 G_Rec: 0.311 D_GP: 0.034 D_real: 0.898 D_fake: 0.808 +(epoch: 164, iters: 4496, time: 0.064) G_GAN: 0.566 G_GAN_Feat: 0.953 G_ID: 0.198 G_Rec: 0.392 D_GP: 0.044 D_real: 1.037 D_fake: 0.442 +(epoch: 164, iters: 4896, time: 0.064) G_GAN: 0.368 G_GAN_Feat: 0.812 G_ID: 0.132 G_Rec: 0.337 D_GP: 0.026 D_real: 1.119 D_fake: 0.633 +(epoch: 164, iters: 5296, time: 0.064) G_GAN: 0.511 G_GAN_Feat: 0.982 G_ID: 0.193 G_Rec: 0.476 D_GP: 0.028 D_real: 1.001 D_fake: 0.497 +(epoch: 164, iters: 5696, time: 0.064) G_GAN: 0.185 G_GAN_Feat: 0.657 G_ID: 0.124 G_Rec: 0.283 D_GP: 0.025 D_real: 1.066 D_fake: 0.815 +(epoch: 164, iters: 6096, time: 0.064) G_GAN: 0.669 G_GAN_Feat: 0.846 G_ID: 0.219 G_Rec: 0.402 D_GP: 0.026 D_real: 1.301 D_fake: 0.348 +(epoch: 164, iters: 6496, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 0.894 G_ID: 0.141 G_Rec: 0.343 D_GP: 0.047 D_real: 0.694 D_fake: 0.830 +(epoch: 164, iters: 6896, time: 0.064) G_GAN: 0.273 G_GAN_Feat: 0.905 G_ID: 0.176 G_Rec: 0.423 D_GP: 0.030 D_real: 0.884 D_fake: 0.731 +(epoch: 164, iters: 7296, time: 0.064) G_GAN: 0.420 G_GAN_Feat: 0.921 G_ID: 0.136 G_Rec: 0.373 D_GP: 0.159 D_real: 0.902 D_fake: 0.624 +(epoch: 164, iters: 7696, time: 0.064) G_GAN: 0.274 G_GAN_Feat: 1.067 G_ID: 0.245 G_Rec: 0.389 D_GP: 0.061 D_real: 0.475 D_fake: 0.732 +(epoch: 164, iters: 8096, time: 0.064) G_GAN: 0.145 G_GAN_Feat: 0.614 G_ID: 0.156 G_Rec: 0.301 D_GP: 0.020 D_real: 1.139 D_fake: 0.855 +(epoch: 164, iters: 8496, time: 0.064) G_GAN: 0.455 G_GAN_Feat: 0.825 G_ID: 0.189 G_Rec: 0.401 D_GP: 0.026 D_real: 1.107 D_fake: 0.558 +(epoch: 165, iters: 288, time: 0.064) G_GAN: 0.098 G_GAN_Feat: 0.696 G_ID: 0.144 G_Rec: 0.310 D_GP: 0.026 D_real: 0.993 D_fake: 0.902 +(epoch: 165, iters: 688, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 0.831 G_ID: 0.215 G_Rec: 0.382 D_GP: 0.026 D_real: 1.049 D_fake: 0.667 +(epoch: 165, iters: 1088, time: 0.064) G_GAN: 0.113 G_GAN_Feat: 0.721 G_ID: 0.154 G_Rec: 0.315 D_GP: 0.021 D_real: 0.972 D_fake: 0.887 +(epoch: 165, iters: 1488, time: 0.064) G_GAN: 0.424 G_GAN_Feat: 0.935 G_ID: 0.207 G_Rec: 0.443 D_GP: 0.124 D_real: 0.746 D_fake: 0.582 +(epoch: 165, iters: 1888, time: 0.064) G_GAN: -0.250 G_GAN_Feat: 0.733 G_ID: 0.161 G_Rec: 0.308 D_GP: 0.023 D_real: 0.736 D_fake: 1.250 +(epoch: 165, iters: 2288, time: 0.064) G_GAN: 0.534 G_GAN_Feat: 0.915 G_ID: 0.204 G_Rec: 0.402 D_GP: 0.024 D_real: 1.191 D_fake: 0.470 +(epoch: 165, iters: 2688, time: 0.064) G_GAN: 0.349 G_GAN_Feat: 0.726 G_ID: 0.143 G_Rec: 0.340 D_GP: 0.025 D_real: 1.331 D_fake: 0.655 +(epoch: 165, iters: 3088, time: 0.064) G_GAN: 0.400 G_GAN_Feat: 0.829 G_ID: 0.200 G_Rec: 0.394 D_GP: 0.029 D_real: 1.091 D_fake: 0.603 +(epoch: 165, iters: 3488, time: 0.064) G_GAN: 0.149 G_GAN_Feat: 0.865 G_ID: 0.156 G_Rec: 0.336 D_GP: 0.142 D_real: 0.523 D_fake: 0.851 +(epoch: 165, iters: 3888, time: 0.064) G_GAN: 0.279 G_GAN_Feat: 1.203 G_ID: 0.202 G_Rec: 0.447 D_GP: 0.640 D_real: 0.301 D_fake: 0.725 +(epoch: 165, iters: 4288, time: 0.064) G_GAN: -0.151 G_GAN_Feat: 0.806 G_ID: 0.127 G_Rec: 0.357 D_GP: 0.042 D_real: 0.516 D_fake: 1.151 +(epoch: 165, iters: 4688, time: 0.064) G_GAN: 0.855 G_GAN_Feat: 1.045 G_ID: 0.210 G_Rec: 0.426 D_GP: 0.036 D_real: 1.361 D_fake: 0.221 +(epoch: 165, iters: 5088, time: 0.064) G_GAN: 0.044 G_GAN_Feat: 0.801 G_ID: 0.124 G_Rec: 0.336 D_GP: 0.050 D_real: 0.744 D_fake: 0.956 +(epoch: 165, iters: 5488, time: 0.064) G_GAN: 0.478 G_GAN_Feat: 0.789 G_ID: 0.190 G_Rec: 0.382 D_GP: 0.022 D_real: 1.297 D_fake: 0.528 +(epoch: 165, iters: 5888, time: 0.064) G_GAN: 0.227 G_GAN_Feat: 0.650 G_ID: 0.122 G_Rec: 0.318 D_GP: 0.027 D_real: 1.139 D_fake: 0.773 +(epoch: 165, iters: 6288, time: 0.064) G_GAN: 0.441 G_GAN_Feat: 0.872 G_ID: 0.176 G_Rec: 0.382 D_GP: 0.027 D_real: 1.193 D_fake: 0.564 +(epoch: 165, iters: 6688, time: 0.064) G_GAN: 0.306 G_GAN_Feat: 0.702 G_ID: 0.168 G_Rec: 0.311 D_GP: 0.030 D_real: 1.061 D_fake: 0.694 +(epoch: 165, iters: 7088, time: 0.064) G_GAN: 0.587 G_GAN_Feat: 1.025 G_ID: 0.191 G_Rec: 0.428 D_GP: 0.078 D_real: 0.824 D_fake: 0.431 +(epoch: 165, iters: 7488, time: 0.064) G_GAN: 0.264 G_GAN_Feat: 0.937 G_ID: 0.165 G_Rec: 0.343 D_GP: 0.067 D_real: 0.960 D_fake: 0.741 +(epoch: 165, iters: 7888, time: 0.064) G_GAN: 0.357 G_GAN_Feat: 0.908 G_ID: 0.206 G_Rec: 0.425 D_GP: 0.024 D_real: 1.050 D_fake: 0.649 +(epoch: 165, iters: 8288, time: 0.064) G_GAN: 0.231 G_GAN_Feat: 0.756 G_ID: 0.138 G_Rec: 0.318 D_GP: 0.032 D_real: 1.050 D_fake: 0.769 +(epoch: 166, iters: 80, time: 0.064) G_GAN: 0.504 G_GAN_Feat: 0.909 G_ID: 0.181 G_Rec: 0.429 D_GP: 0.054 D_real: 1.121 D_fake: 0.498 +(epoch: 166, iters: 480, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.740 G_ID: 0.158 G_Rec: 0.300 D_GP: 0.089 D_real: 1.035 D_fake: 0.677 +(epoch: 166, iters: 880, time: 0.064) G_GAN: 0.496 G_GAN_Feat: 0.950 G_ID: 0.175 G_Rec: 0.431 D_GP: 0.072 D_real: 0.969 D_fake: 0.508 +(epoch: 166, iters: 1280, time: 0.064) G_GAN: 0.303 G_GAN_Feat: 0.824 G_ID: 0.149 G_Rec: 0.341 D_GP: 0.039 D_real: 1.016 D_fake: 0.700 +(epoch: 166, iters: 1680, time: 0.064) G_GAN: 0.365 G_GAN_Feat: 0.906 G_ID: 0.194 G_Rec: 0.381 D_GP: 0.036 D_real: 0.978 D_fake: 0.636 +(epoch: 166, iters: 2080, time: 0.064) G_GAN: 0.192 G_GAN_Feat: 0.656 G_ID: 0.132 G_Rec: 0.297 D_GP: 0.022 D_real: 1.092 D_fake: 0.808 +(epoch: 166, iters: 2480, time: 0.064) G_GAN: 0.478 G_GAN_Feat: 0.794 G_ID: 0.198 G_Rec: 0.384 D_GP: 0.027 D_real: 1.303 D_fake: 0.528 +(epoch: 166, iters: 2880, time: 0.064) G_GAN: -0.007 G_GAN_Feat: 0.819 G_ID: 0.131 G_Rec: 0.375 D_GP: 0.109 D_real: 0.701 D_fake: 1.007 +(epoch: 166, iters: 3280, time: 0.064) G_GAN: 0.366 G_GAN_Feat: 0.963 G_ID: 0.186 G_Rec: 0.417 D_GP: 0.037 D_real: 0.992 D_fake: 0.639 +(epoch: 166, iters: 3680, time: 0.064) G_GAN: 0.126 G_GAN_Feat: 0.816 G_ID: 0.149 G_Rec: 0.359 D_GP: 0.094 D_real: 0.782 D_fake: 0.874 +(epoch: 166, iters: 4080, time: 0.064) G_GAN: 0.452 G_GAN_Feat: 0.831 G_ID: 0.186 G_Rec: 0.395 D_GP: 0.025 D_real: 1.160 D_fake: 0.551 +(epoch: 166, iters: 4480, time: 0.064) G_GAN: 0.209 G_GAN_Feat: 0.665 G_ID: 0.124 G_Rec: 0.308 D_GP: 0.022 D_real: 1.064 D_fake: 0.792 +(epoch: 166, iters: 4880, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 0.973 G_ID: 0.227 G_Rec: 0.448 D_GP: 0.066 D_real: 0.888 D_fake: 0.565 +(epoch: 166, iters: 5280, time: 0.064) G_GAN: 0.282 G_GAN_Feat: 0.815 G_ID: 0.142 G_Rec: 0.350 D_GP: 0.032 D_real: 1.007 D_fake: 0.718 +(epoch: 166, iters: 5680, time: 0.064) G_GAN: 0.399 G_GAN_Feat: 1.040 G_ID: 0.171 G_Rec: 0.407 D_GP: 0.040 D_real: 0.676 D_fake: 0.607 +(epoch: 166, iters: 6080, time: 0.064) G_GAN: 0.184 G_GAN_Feat: 0.714 G_ID: 0.166 G_Rec: 0.310 D_GP: 0.025 D_real: 1.099 D_fake: 0.816 +(epoch: 166, iters: 6480, time: 0.064) G_GAN: 0.419 G_GAN_Feat: 0.928 G_ID: 0.216 G_Rec: 0.374 D_GP: 0.030 D_real: 1.000 D_fake: 0.585 +(epoch: 166, iters: 6880, time: 0.064) G_GAN: 0.295 G_GAN_Feat: 0.724 G_ID: 0.131 G_Rec: 0.345 D_GP: 0.028 D_real: 1.212 D_fake: 0.705 +(epoch: 166, iters: 7280, time: 0.064) G_GAN: 0.765 G_GAN_Feat: 0.814 G_ID: 0.222 G_Rec: 0.382 D_GP: 0.022 D_real: 1.504 D_fake: 0.332 +(epoch: 166, iters: 7680, time: 0.064) G_GAN: 0.137 G_GAN_Feat: 0.812 G_ID: 0.140 G_Rec: 0.323 D_GP: 0.070 D_real: 0.725 D_fake: 0.863 +(epoch: 166, iters: 8080, time: 0.064) G_GAN: 0.576 G_GAN_Feat: 1.225 G_ID: 0.184 G_Rec: 0.475 D_GP: 0.438 D_real: 0.440 D_fake: 0.445 +(epoch: 166, iters: 8480, time: 0.064) G_GAN: 0.039 G_GAN_Feat: 0.807 G_ID: 0.185 G_Rec: 0.309 D_GP: 0.025 D_real: 0.815 D_fake: 0.961 +(epoch: 167, iters: 272, time: 0.064) G_GAN: 0.522 G_GAN_Feat: 1.132 G_ID: 0.198 G_Rec: 0.465 D_GP: 0.302 D_real: 0.469 D_fake: 0.487 +(epoch: 167, iters: 672, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.817 G_ID: 0.129 G_Rec: 0.325 D_GP: 0.022 D_real: 1.055 D_fake: 0.718 +(epoch: 167, iters: 1072, time: 0.064) G_GAN: 0.315 G_GAN_Feat: 0.735 G_ID: 0.205 G_Rec: 0.405 D_GP: 0.019 D_real: 1.221 D_fake: 0.685 +(epoch: 167, iters: 1472, time: 0.064) G_GAN: 0.281 G_GAN_Feat: 0.567 G_ID: 0.163 G_Rec: 0.279 D_GP: 0.021 D_real: 1.221 D_fake: 0.719 +(epoch: 167, iters: 1872, time: 0.064) G_GAN: 0.384 G_GAN_Feat: 0.837 G_ID: 0.180 G_Rec: 0.384 D_GP: 0.023 D_real: 1.130 D_fake: 0.616 +(epoch: 167, iters: 2272, time: 0.064) G_GAN: 0.315 G_GAN_Feat: 0.644 G_ID: 0.147 G_Rec: 0.336 D_GP: 0.025 D_real: 1.290 D_fake: 0.685 +(epoch: 167, iters: 2672, time: 0.064) G_GAN: 0.573 G_GAN_Feat: 0.753 G_ID: 0.185 G_Rec: 0.375 D_GP: 0.026 D_real: 1.356 D_fake: 0.432 +(epoch: 167, iters: 3072, time: 0.064) G_GAN: 0.156 G_GAN_Feat: 0.643 G_ID: 0.154 G_Rec: 0.320 D_GP: 0.025 D_real: 1.031 D_fake: 0.844 +(epoch: 167, iters: 3472, time: 0.064) G_GAN: 0.593 G_GAN_Feat: 0.987 G_ID: 0.177 G_Rec: 0.420 D_GP: 0.051 D_real: 1.297 D_fake: 0.421 +(epoch: 167, iters: 3872, time: 0.064) G_GAN: 0.037 G_GAN_Feat: 0.737 G_ID: 0.177 G_Rec: 0.320 D_GP: 0.047 D_real: 0.787 D_fake: 0.963 +(epoch: 167, iters: 4272, time: 0.064) G_GAN: 0.578 G_GAN_Feat: 0.925 G_ID: 0.203 G_Rec: 0.417 D_GP: 0.044 D_real: 1.175 D_fake: 0.442 +(epoch: 167, iters: 4672, time: 0.064) G_GAN: -0.319 G_GAN_Feat: 1.039 G_ID: 0.137 G_Rec: 0.447 D_GP: 0.318 D_real: 0.343 D_fake: 1.319 +(epoch: 167, iters: 5072, time: 0.064) G_GAN: 0.035 G_GAN_Feat: 0.992 G_ID: 0.225 G_Rec: 0.448 D_GP: 0.041 D_real: 0.503 D_fake: 0.965 +(epoch: 167, iters: 5472, time: 0.064) G_GAN: -0.107 G_GAN_Feat: 0.858 G_ID: 0.132 G_Rec: 0.340 D_GP: 0.133 D_real: 0.507 D_fake: 1.107 +(epoch: 167, iters: 5872, time: 0.064) G_GAN: 0.637 G_GAN_Feat: 0.906 G_ID: 0.178 G_Rec: 0.382 D_GP: 0.083 D_real: 1.198 D_fake: 0.383 +(epoch: 167, iters: 6272, time: 0.064) G_GAN: 0.173 G_GAN_Feat: 0.730 G_ID: 0.152 G_Rec: 0.344 D_GP: 0.030 D_real: 0.961 D_fake: 0.827 +(epoch: 167, iters: 6672, time: 0.064) G_GAN: 0.521 G_GAN_Feat: 1.008 G_ID: 0.194 G_Rec: 0.457 D_GP: 0.099 D_real: 0.940 D_fake: 0.488 +(epoch: 167, iters: 7072, time: 0.064) G_GAN: -0.060 G_GAN_Feat: 0.796 G_ID: 0.135 G_Rec: 0.316 D_GP: 0.089 D_real: 0.590 D_fake: 1.060 +(epoch: 167, iters: 7472, time: 0.064) G_GAN: 0.164 G_GAN_Feat: 0.908 G_ID: 0.206 G_Rec: 0.393 D_GP: 0.098 D_real: 0.854 D_fake: 0.837 +(epoch: 167, iters: 7872, time: 0.064) G_GAN: 0.116 G_GAN_Feat: 0.829 G_ID: 0.151 G_Rec: 0.311 D_GP: 0.034 D_real: 0.749 D_fake: 0.884 +(epoch: 167, iters: 8272, time: 0.064) G_GAN: 0.521 G_GAN_Feat: 1.158 G_ID: 0.196 G_Rec: 0.454 D_GP: 0.221 D_real: 0.555 D_fake: 0.522 +(epoch: 168, iters: 64, time: 0.064) G_GAN: 0.214 G_GAN_Feat: 0.698 G_ID: 0.162 G_Rec: 0.300 D_GP: 0.029 D_real: 1.097 D_fake: 0.786 +(epoch: 168, iters: 464, time: 0.064) G_GAN: 0.227 G_GAN_Feat: 0.964 G_ID: 0.215 G_Rec: 0.436 D_GP: 0.030 D_real: 0.848 D_fake: 0.775 +(epoch: 168, iters: 864, time: 0.064) G_GAN: 0.206 G_GAN_Feat: 0.776 G_ID: 0.150 G_Rec: 0.341 D_GP: 0.075 D_real: 0.958 D_fake: 0.795 +(epoch: 168, iters: 1264, time: 0.064) G_GAN: 0.277 G_GAN_Feat: 0.907 G_ID: 0.183 G_Rec: 0.378 D_GP: 0.029 D_real: 0.963 D_fake: 0.723 +(epoch: 168, iters: 1664, time: 0.064) G_GAN: 0.328 G_GAN_Feat: 0.839 G_ID: 0.139 G_Rec: 0.331 D_GP: 0.045 D_real: 1.087 D_fake: 0.687 +(epoch: 168, iters: 2064, time: 0.064) G_GAN: 0.449 G_GAN_Feat: 0.782 G_ID: 0.208 G_Rec: 0.393 D_GP: 0.021 D_real: 1.218 D_fake: 0.562 +(epoch: 168, iters: 2464, time: 0.064) G_GAN: 0.008 G_GAN_Feat: 0.629 G_ID: 0.135 G_Rec: 0.369 D_GP: 0.025 D_real: 0.934 D_fake: 0.992 +(epoch: 168, iters: 2864, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.877 G_ID: 0.196 G_Rec: 0.420 D_GP: 0.034 D_real: 1.027 D_fake: 0.720 +(epoch: 168, iters: 3264, time: 0.064) G_GAN: 0.051 G_GAN_Feat: 0.622 G_ID: 0.150 G_Rec: 0.298 D_GP: 0.022 D_real: 0.958 D_fake: 0.949 +(epoch: 168, iters: 3664, time: 0.064) G_GAN: 0.547 G_GAN_Feat: 0.757 G_ID: 0.195 G_Rec: 0.353 D_GP: 0.022 D_real: 1.337 D_fake: 0.454 +(epoch: 168, iters: 4064, time: 0.064) G_GAN: 0.342 G_GAN_Feat: 0.683 G_ID: 0.154 G_Rec: 0.416 D_GP: 0.025 D_real: 1.252 D_fake: 0.659 +(epoch: 168, iters: 4464, time: 0.064) G_GAN: 0.612 G_GAN_Feat: 1.021 G_ID: 0.178 G_Rec: 0.409 D_GP: 0.174 D_real: 0.779 D_fake: 0.395 +(epoch: 168, iters: 4864, time: 0.064) G_GAN: 0.031 G_GAN_Feat: 0.772 G_ID: 0.137 G_Rec: 0.354 D_GP: 0.023 D_real: 0.858 D_fake: 0.970 +(epoch: 168, iters: 5264, time: 0.064) G_GAN: 0.389 G_GAN_Feat: 0.860 G_ID: 0.193 G_Rec: 0.372 D_GP: 0.032 D_real: 1.087 D_fake: 0.617 +(epoch: 168, iters: 5664, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 0.801 G_ID: 0.177 G_Rec: 0.353 D_GP: 0.046 D_real: 0.852 D_fake: 0.782 +(epoch: 168, iters: 6064, time: 0.064) G_GAN: 0.604 G_GAN_Feat: 0.989 G_ID: 0.212 G_Rec: 0.410 D_GP: 0.043 D_real: 0.955 D_fake: 0.403 +(epoch: 168, iters: 6464, time: 0.064) G_GAN: 0.277 G_GAN_Feat: 0.783 G_ID: 0.163 G_Rec: 0.311 D_GP: 0.029 D_real: 1.070 D_fake: 0.724 +(epoch: 168, iters: 6864, time: 0.064) G_GAN: 0.662 G_GAN_Feat: 0.967 G_ID: 0.195 G_Rec: 0.379 D_GP: 0.061 D_real: 0.926 D_fake: 0.354 +(epoch: 168, iters: 7264, time: 0.064) G_GAN: 0.288 G_GAN_Feat: 0.738 G_ID: 0.149 G_Rec: 0.306 D_GP: 0.029 D_real: 1.103 D_fake: 0.713 +(epoch: 168, iters: 7664, time: 0.064) G_GAN: 0.614 G_GAN_Feat: 0.894 G_ID: 0.186 G_Rec: 0.452 D_GP: 0.024 D_real: 1.313 D_fake: 0.390 +(epoch: 168, iters: 8064, time: 0.064) G_GAN: 0.129 G_GAN_Feat: 0.604 G_ID: 0.150 G_Rec: 0.289 D_GP: 0.018 D_real: 1.058 D_fake: 0.871 +(epoch: 168, iters: 8464, time: 0.064) G_GAN: 0.244 G_GAN_Feat: 0.907 G_ID: 0.189 G_Rec: 0.386 D_GP: 0.036 D_real: 0.964 D_fake: 0.758 +(epoch: 169, iters: 256, time: 0.064) G_GAN: 0.213 G_GAN_Feat: 0.711 G_ID: 0.153 G_Rec: 0.283 D_GP: 0.032 D_real: 1.018 D_fake: 0.787 +(epoch: 169, iters: 656, time: 0.064) G_GAN: 0.763 G_GAN_Feat: 0.899 G_ID: 0.202 G_Rec: 0.426 D_GP: 0.039 D_real: 1.352 D_fake: 0.281 +(epoch: 169, iters: 1056, time: 0.064) G_GAN: 0.065 G_GAN_Feat: 0.823 G_ID: 0.122 G_Rec: 0.308 D_GP: 0.055 D_real: 0.499 D_fake: 0.936 +(epoch: 169, iters: 1456, time: 0.064) G_GAN: 0.369 G_GAN_Feat: 1.072 G_ID: 0.198 G_Rec: 0.405 D_GP: 0.041 D_real: 0.606 D_fake: 0.634 +(epoch: 169, iters: 1856, time: 0.064) G_GAN: 0.580 G_GAN_Feat: 0.945 G_ID: 0.126 G_Rec: 0.328 D_GP: 0.166 D_real: 0.557 D_fake: 0.550 +(epoch: 169, iters: 2256, time: 0.064) G_GAN: 0.507 G_GAN_Feat: 0.802 G_ID: 0.179 G_Rec: 0.406 D_GP: 0.017 D_real: 1.279 D_fake: 0.495 +(epoch: 169, iters: 2656, time: 0.064) G_GAN: 0.126 G_GAN_Feat: 0.679 G_ID: 0.155 G_Rec: 0.310 D_GP: 0.036 D_real: 1.068 D_fake: 0.875 +(epoch: 169, iters: 3056, time: 0.064) G_GAN: 0.642 G_GAN_Feat: 1.058 G_ID: 0.178 G_Rec: 0.417 D_GP: 0.043 D_real: 1.171 D_fake: 0.380 +(epoch: 169, iters: 3456, time: 0.064) G_GAN: 0.165 G_GAN_Feat: 0.747 G_ID: 0.151 G_Rec: 0.324 D_GP: 0.029 D_real: 0.996 D_fake: 0.835 +(epoch: 169, iters: 3856, time: 0.064) G_GAN: 0.477 G_GAN_Feat: 0.946 G_ID: 0.189 G_Rec: 0.428 D_GP: 0.026 D_real: 1.172 D_fake: 0.528 +(epoch: 169, iters: 4256, time: 0.064) G_GAN: 0.090 G_GAN_Feat: 0.856 G_ID: 0.142 G_Rec: 0.348 D_GP: 0.096 D_real: 0.585 D_fake: 0.910 +(epoch: 169, iters: 4656, time: 0.064) G_GAN: 0.479 G_GAN_Feat: 1.026 G_ID: 0.184 G_Rec: 0.416 D_GP: 0.043 D_real: 1.116 D_fake: 0.537 +(epoch: 169, iters: 5056, time: 0.064) G_GAN: 0.236 G_GAN_Feat: 0.709 G_ID: 0.180 G_Rec: 0.316 D_GP: 0.025 D_real: 1.086 D_fake: 0.764 +(epoch: 169, iters: 5456, time: 0.064) G_GAN: 0.268 G_GAN_Feat: 0.805 G_ID: 0.205 G_Rec: 0.416 D_GP: 0.028 D_real: 1.028 D_fake: 0.732 +(epoch: 169, iters: 5856, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 0.733 G_ID: 0.141 G_Rec: 0.303 D_GP: 0.051 D_real: 1.061 D_fake: 0.661 +(epoch: 169, iters: 6256, time: 0.064) G_GAN: 0.387 G_GAN_Feat: 0.947 G_ID: 0.195 G_Rec: 0.365 D_GP: 0.032 D_real: 0.914 D_fake: 0.614 +(epoch: 169, iters: 6656, time: 0.064) G_GAN: 0.547 G_GAN_Feat: 0.871 G_ID: 0.118 G_Rec: 0.320 D_GP: 0.133 D_real: 0.829 D_fake: 0.564 +(epoch: 169, iters: 7056, time: 0.064) G_GAN: 0.372 G_GAN_Feat: 0.841 G_ID: 0.201 G_Rec: 0.407 D_GP: 0.025 D_real: 1.063 D_fake: 0.631 +(epoch: 169, iters: 7456, time: 0.064) G_GAN: 0.079 G_GAN_Feat: 0.658 G_ID: 0.136 G_Rec: 0.316 D_GP: 0.025 D_real: 0.981 D_fake: 0.921 +(epoch: 169, iters: 7856, time: 0.064) G_GAN: 0.433 G_GAN_Feat: 1.058 G_ID: 0.150 G_Rec: 0.451 D_GP: 0.091 D_real: 0.778 D_fake: 0.572 +(epoch: 169, iters: 8256, time: 0.064) G_GAN: -0.009 G_GAN_Feat: 0.785 G_ID: 0.134 G_Rec: 0.332 D_GP: 0.032 D_real: 0.737 D_fake: 1.009 +(epoch: 170, iters: 48, time: 0.064) G_GAN: 0.546 G_GAN_Feat: 1.171 G_ID: 0.188 G_Rec: 0.447 D_GP: 0.108 D_real: 0.427 D_fake: 0.461 +(epoch: 170, iters: 448, time: 0.064) G_GAN: 0.092 G_GAN_Feat: 0.774 G_ID: 0.123 G_Rec: 0.307 D_GP: 0.023 D_real: 0.984 D_fake: 0.908 +(epoch: 170, iters: 848, time: 0.064) G_GAN: 0.144 G_GAN_Feat: 0.898 G_ID: 0.213 G_Rec: 0.393 D_GP: 0.045 D_real: 0.631 D_fake: 0.856 +(epoch: 170, iters: 1248, time: 0.064) G_GAN: 0.164 G_GAN_Feat: 0.742 G_ID: 0.112 G_Rec: 0.320 D_GP: 0.018 D_real: 1.112 D_fake: 0.836 +(epoch: 170, iters: 1648, time: 0.064) G_GAN: 0.254 G_GAN_Feat: 0.871 G_ID: 0.205 G_Rec: 0.426 D_GP: 0.025 D_real: 0.927 D_fake: 0.753 +(epoch: 170, iters: 2048, time: 0.064) G_GAN: 0.130 G_GAN_Feat: 0.720 G_ID: 0.119 G_Rec: 0.301 D_GP: 0.048 D_real: 0.896 D_fake: 0.872 +(epoch: 170, iters: 2448, time: 0.064) G_GAN: 0.548 G_GAN_Feat: 0.929 G_ID: 0.197 G_Rec: 0.390 D_GP: 0.030 D_real: 1.132 D_fake: 0.464 +(epoch: 170, iters: 2848, time: 0.064) G_GAN: 0.313 G_GAN_Feat: 0.947 G_ID: 0.123 G_Rec: 0.314 D_GP: 0.414 D_real: 0.492 D_fake: 0.692 +(epoch: 170, iters: 3248, time: 0.064) G_GAN: 0.651 G_GAN_Feat: 0.863 G_ID: 0.175 G_Rec: 0.388 D_GP: 0.024 D_real: 1.472 D_fake: 0.359 +(epoch: 170, iters: 3648, time: 0.064) G_GAN: 0.177 G_GAN_Feat: 0.644 G_ID: 0.123 G_Rec: 0.321 D_GP: 0.019 D_real: 1.140 D_fake: 0.823 +(epoch: 170, iters: 4048, time: 0.064) G_GAN: 0.689 G_GAN_Feat: 0.834 G_ID: 0.187 G_Rec: 0.385 D_GP: 0.023 D_real: 1.458 D_fake: 0.335 +(epoch: 170, iters: 4448, time: 0.064) G_GAN: 0.229 G_GAN_Feat: 0.644 G_ID: 0.140 G_Rec: 0.313 D_GP: 0.023 D_real: 1.118 D_fake: 0.772 +(epoch: 170, iters: 4848, time: 0.064) G_GAN: 0.580 G_GAN_Feat: 1.055 G_ID: 0.209 G_Rec: 0.387 D_GP: 0.057 D_real: 1.147 D_fake: 0.518 +(epoch: 170, iters: 5248, time: 0.064) G_GAN: 0.461 G_GAN_Feat: 0.769 G_ID: 0.163 G_Rec: 0.315 D_GP: 0.027 D_real: 1.274 D_fake: 0.554 +(epoch: 170, iters: 5648, time: 0.064) G_GAN: 0.259 G_GAN_Feat: 0.802 G_ID: 0.200 G_Rec: 0.362 D_GP: 0.025 D_real: 1.034 D_fake: 0.741 +(epoch: 170, iters: 6048, time: 0.064) G_GAN: 0.149 G_GAN_Feat: 0.830 G_ID: 0.146 G_Rec: 0.353 D_GP: 0.056 D_real: 0.758 D_fake: 0.852 +(epoch: 170, iters: 6448, time: 0.064) G_GAN: 0.709 G_GAN_Feat: 0.966 G_ID: 0.182 G_Rec: 0.410 D_GP: 0.027 D_real: 1.410 D_fake: 0.342 +(epoch: 170, iters: 6848, time: 0.064) G_GAN: 0.364 G_GAN_Feat: 0.734 G_ID: 0.126 G_Rec: 0.317 D_GP: 0.024 D_real: 1.320 D_fake: 0.640 +(epoch: 170, iters: 7248, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 0.838 G_ID: 0.198 G_Rec: 0.389 D_GP: 0.029 D_real: 0.844 D_fake: 0.826 +(epoch: 170, iters: 7648, time: 0.064) G_GAN: 0.190 G_GAN_Feat: 0.746 G_ID: 0.179 G_Rec: 0.331 D_GP: 0.033 D_real: 1.066 D_fake: 0.812 +(epoch: 170, iters: 8048, time: 0.064) G_GAN: 0.464 G_GAN_Feat: 0.805 G_ID: 0.190 G_Rec: 0.362 D_GP: 0.023 D_real: 1.183 D_fake: 0.541 +(epoch: 170, iters: 8448, time: 0.064) G_GAN: 0.243 G_GAN_Feat: 0.729 G_ID: 0.146 G_Rec: 0.371 D_GP: 0.033 D_real: 1.065 D_fake: 0.759 +(epoch: 171, iters: 240, time: 0.064) G_GAN: 0.392 G_GAN_Feat: 0.947 G_ID: 0.176 G_Rec: 0.428 D_GP: 0.042 D_real: 0.984 D_fake: 0.617 +(epoch: 171, iters: 640, time: 0.064) G_GAN: -0.068 G_GAN_Feat: 1.016 G_ID: 0.152 G_Rec: 0.398 D_GP: 0.204 D_real: 0.111 D_fake: 1.070 +(epoch: 171, iters: 1040, time: 0.064) G_GAN: 0.313 G_GAN_Feat: 0.767 G_ID: 0.218 G_Rec: 0.396 D_GP: 0.022 D_real: 1.103 D_fake: 0.687 +(epoch: 171, iters: 1440, time: 0.064) G_GAN: 0.348 G_GAN_Feat: 0.642 G_ID: 0.131 G_Rec: 0.292 D_GP: 0.030 D_real: 1.242 D_fake: 0.653 +(epoch: 171, iters: 1840, time: 0.064) G_GAN: 0.384 G_GAN_Feat: 0.868 G_ID: 0.219 G_Rec: 0.397 D_GP: 0.035 D_real: 1.080 D_fake: 0.618 +(epoch: 171, iters: 2240, time: 0.064) G_GAN: 0.368 G_GAN_Feat: 0.826 G_ID: 0.129 G_Rec: 0.313 D_GP: 0.057 D_real: 0.897 D_fake: 0.697 +(epoch: 171, iters: 2640, time: 0.064) G_GAN: 0.619 G_GAN_Feat: 0.773 G_ID: 0.189 G_Rec: 0.432 D_GP: 0.020 D_real: 1.365 D_fake: 0.389 +(epoch: 171, iters: 3040, time: 0.064) G_GAN: 0.468 G_GAN_Feat: 0.679 G_ID: 0.129 G_Rec: 0.305 D_GP: 0.026 D_real: 1.340 D_fake: 0.534 +(epoch: 171, iters: 3440, time: 0.064) G_GAN: 0.173 G_GAN_Feat: 1.036 G_ID: 0.213 G_Rec: 0.397 D_GP: 0.143 D_real: 0.361 D_fake: 0.828 +(epoch: 171, iters: 3840, time: 0.064) G_GAN: 0.083 G_GAN_Feat: 1.031 G_ID: 0.170 G_Rec: 0.379 D_GP: 0.229 D_real: 0.372 D_fake: 0.917 +(epoch: 171, iters: 4240, time: 0.064) G_GAN: 0.746 G_GAN_Feat: 1.012 G_ID: 0.233 G_Rec: 0.421 D_GP: 0.170 D_real: 0.986 D_fake: 0.514 +(epoch: 171, iters: 4640, time: 0.064) G_GAN: 0.203 G_GAN_Feat: 0.909 G_ID: 0.145 G_Rec: 0.359 D_GP: 0.067 D_real: 0.591 D_fake: 0.798 +(epoch: 171, iters: 5040, time: 0.064) G_GAN: 0.443 G_GAN_Feat: 0.983 G_ID: 0.196 G_Rec: 0.407 D_GP: 0.032 D_real: 0.891 D_fake: 0.559 +(epoch: 171, iters: 5440, time: 0.064) G_GAN: -0.026 G_GAN_Feat: 0.800 G_ID: 0.142 G_Rec: 0.319 D_GP: 0.076 D_real: 0.763 D_fake: 1.026 +(epoch: 171, iters: 5840, time: 0.064) G_GAN: 0.424 G_GAN_Feat: 0.928 G_ID: 0.178 G_Rec: 0.438 D_GP: 0.034 D_real: 0.989 D_fake: 0.588 +(epoch: 171, iters: 6240, time: 0.064) G_GAN: 0.309 G_GAN_Feat: 0.929 G_ID: 0.133 G_Rec: 0.358 D_GP: 0.350 D_real: 0.380 D_fake: 0.714 +(epoch: 171, iters: 6640, time: 0.064) G_GAN: 0.684 G_GAN_Feat: 0.952 G_ID: 0.205 G_Rec: 0.426 D_GP: 0.032 D_real: 1.224 D_fake: 0.376 +(epoch: 171, iters: 7040, time: 0.064) G_GAN: 0.148 G_GAN_Feat: 0.666 G_ID: 0.138 G_Rec: 0.341 D_GP: 0.021 D_real: 1.115 D_fake: 0.852 +(epoch: 171, iters: 7440, time: 0.064) G_GAN: 0.332 G_GAN_Feat: 0.798 G_ID: 0.181 G_Rec: 0.387 D_GP: 0.026 D_real: 1.006 D_fake: 0.670 +(epoch: 171, iters: 7840, time: 0.064) G_GAN: 0.048 G_GAN_Feat: 0.737 G_ID: 0.132 G_Rec: 0.337 D_GP: 0.062 D_real: 0.718 D_fake: 0.952 +(epoch: 171, iters: 8240, time: 0.064) G_GAN: 0.146 G_GAN_Feat: 0.815 G_ID: 0.217 G_Rec: 0.374 D_GP: 0.034 D_real: 0.884 D_fake: 0.854 +(epoch: 172, iters: 32, time: 0.064) G_GAN: 0.070 G_GAN_Feat: 0.712 G_ID: 0.134 G_Rec: 0.323 D_GP: 0.032 D_real: 0.935 D_fake: 0.930 +(epoch: 172, iters: 432, time: 0.064) G_GAN: 0.543 G_GAN_Feat: 0.806 G_ID: 0.203 G_Rec: 0.402 D_GP: 0.024 D_real: 1.262 D_fake: 0.468 +(epoch: 172, iters: 832, time: 0.064) G_GAN: 0.270 G_GAN_Feat: 0.708 G_ID: 0.154 G_Rec: 0.320 D_GP: 0.025 D_real: 1.170 D_fake: 0.730 +(epoch: 172, iters: 1232, time: 0.064) G_GAN: 0.129 G_GAN_Feat: 0.932 G_ID: 0.179 G_Rec: 0.391 D_GP: 0.026 D_real: 0.826 D_fake: 0.871 +(epoch: 172, iters: 1632, time: 0.064) G_GAN: 0.053 G_GAN_Feat: 0.678 G_ID: 0.163 G_Rec: 0.295 D_GP: 0.028 D_real: 0.936 D_fake: 0.947 +(epoch: 172, iters: 2032, time: 0.064) G_GAN: 0.626 G_GAN_Feat: 0.891 G_ID: 0.210 G_Rec: 0.398 D_GP: 0.028 D_real: 1.260 D_fake: 0.387 +(epoch: 172, iters: 2432, time: 0.064) G_GAN: 0.372 G_GAN_Feat: 0.701 G_ID: 0.148 G_Rec: 0.299 D_GP: 0.022 D_real: 1.257 D_fake: 0.628 +(epoch: 172, iters: 2832, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 0.905 G_ID: 0.194 G_Rec: 0.383 D_GP: 0.034 D_real: 1.033 D_fake: 0.556 +(epoch: 172, iters: 3232, time: 0.064) G_GAN: 0.173 G_GAN_Feat: 0.844 G_ID: 0.155 G_Rec: 0.338 D_GP: 0.058 D_real: 0.783 D_fake: 0.827 +(epoch: 172, iters: 3632, time: 0.064) G_GAN: 0.372 G_GAN_Feat: 0.916 G_ID: 0.192 G_Rec: 0.405 D_GP: 0.039 D_real: 0.922 D_fake: 0.628 +(epoch: 172, iters: 4032, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.693 G_ID: 0.160 G_Rec: 0.306 D_GP: 0.024 D_real: 1.201 D_fake: 0.715 +(epoch: 172, iters: 4432, time: 0.064) G_GAN: 0.509 G_GAN_Feat: 0.889 G_ID: 0.187 G_Rec: 0.382 D_GP: 0.037 D_real: 1.189 D_fake: 0.525 +(epoch: 172, iters: 4832, time: 0.064) G_GAN: 0.156 G_GAN_Feat: 0.681 G_ID: 0.152 G_Rec: 0.335 D_GP: 0.024 D_real: 1.104 D_fake: 0.844 +(epoch: 172, iters: 5232, time: 0.064) G_GAN: 0.764 G_GAN_Feat: 1.108 G_ID: 0.201 G_Rec: 0.424 D_GP: 0.061 D_real: 0.830 D_fake: 0.298 +(epoch: 172, iters: 5632, time: 0.064) G_GAN: 0.127 G_GAN_Feat: 0.697 G_ID: 0.146 G_Rec: 0.310 D_GP: 0.024 D_real: 0.996 D_fake: 0.873 +(epoch: 172, iters: 6032, time: 0.064) G_GAN: 0.504 G_GAN_Feat: 0.849 G_ID: 0.174 G_Rec: 0.389 D_GP: 0.037 D_real: 1.203 D_fake: 0.509 +(epoch: 172, iters: 6432, time: 0.064) G_GAN: 0.203 G_GAN_Feat: 0.896 G_ID: 0.111 G_Rec: 0.341 D_GP: 0.133 D_real: 0.631 D_fake: 0.797 +(epoch: 172, iters: 6832, time: 0.064) G_GAN: 0.568 G_GAN_Feat: 0.974 G_ID: 0.195 G_Rec: 0.464 D_GP: 0.034 D_real: 1.096 D_fake: 0.436 +(epoch: 172, iters: 7232, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 0.817 G_ID: 0.136 G_Rec: 0.364 D_GP: 0.019 D_real: 1.249 D_fake: 0.664 +(epoch: 172, iters: 7632, time: 0.064) G_GAN: 0.426 G_GAN_Feat: 0.832 G_ID: 0.170 G_Rec: 0.422 D_GP: 0.023 D_real: 1.176 D_fake: 0.594 +(epoch: 172, iters: 8032, time: 0.064) G_GAN: -0.030 G_GAN_Feat: 0.643 G_ID: 0.143 G_Rec: 0.332 D_GP: 0.020 D_real: 0.832 D_fake: 1.030 +(epoch: 172, iters: 8432, time: 0.064) G_GAN: 0.120 G_GAN_Feat: 0.814 G_ID: 0.194 G_Rec: 0.416 D_GP: 0.024 D_real: 0.854 D_fake: 0.881 +(epoch: 173, iters: 224, time: 0.064) G_GAN: 0.059 G_GAN_Feat: 0.653 G_ID: 0.126 G_Rec: 0.322 D_GP: 0.029 D_real: 0.911 D_fake: 0.942 +(epoch: 173, iters: 624, time: 0.064) G_GAN: 0.291 G_GAN_Feat: 0.897 G_ID: 0.177 G_Rec: 0.404 D_GP: 0.043 D_real: 0.821 D_fake: 0.715 +(epoch: 173, iters: 1024, time: 0.064) G_GAN: 0.154 G_GAN_Feat: 0.656 G_ID: 0.142 G_Rec: 0.297 D_GP: 0.030 D_real: 1.071 D_fake: 0.847 +(epoch: 173, iters: 1424, time: 0.064) G_GAN: 0.526 G_GAN_Feat: 0.893 G_ID: 0.177 G_Rec: 0.385 D_GP: 0.039 D_real: 1.088 D_fake: 0.482 +(epoch: 173, iters: 1824, time: 0.064) G_GAN: 0.277 G_GAN_Feat: 0.768 G_ID: 0.146 G_Rec: 0.297 D_GP: 0.025 D_real: 1.131 D_fake: 0.725 +(epoch: 173, iters: 2224, time: 0.064) G_GAN: 0.349 G_GAN_Feat: 0.837 G_ID: 0.190 G_Rec: 0.372 D_GP: 0.026 D_real: 1.048 D_fake: 0.652 +(epoch: 173, iters: 2624, time: 0.064) G_GAN: 0.059 G_GAN_Feat: 0.722 G_ID: 0.137 G_Rec: 0.334 D_GP: 0.025 D_real: 0.946 D_fake: 0.941 +(epoch: 173, iters: 3024, time: 0.064) G_GAN: 0.587 G_GAN_Feat: 0.947 G_ID: 0.219 G_Rec: 0.399 D_GP: 0.031 D_real: 1.160 D_fake: 0.426 +(epoch: 173, iters: 3424, time: 0.064) G_GAN: 0.023 G_GAN_Feat: 0.703 G_ID: 0.144 G_Rec: 0.310 D_GP: 0.028 D_real: 0.928 D_fake: 0.977 +(epoch: 173, iters: 3824, time: 0.064) G_GAN: 0.400 G_GAN_Feat: 0.979 G_ID: 0.233 G_Rec: 0.429 D_GP: 0.068 D_real: 0.842 D_fake: 0.606 +(epoch: 173, iters: 4224, time: 0.064) G_GAN: 0.279 G_GAN_Feat: 0.843 G_ID: 0.141 G_Rec: 0.315 D_GP: 0.032 D_real: 0.910 D_fake: 0.721 +(epoch: 173, iters: 4624, time: 0.064) G_GAN: 0.751 G_GAN_Feat: 0.874 G_ID: 0.177 G_Rec: 0.384 D_GP: 0.024 D_real: 1.467 D_fake: 0.351 +(epoch: 173, iters: 5024, time: 0.064) G_GAN: 0.144 G_GAN_Feat: 0.585 G_ID: 0.120 G_Rec: 0.306 D_GP: 0.020 D_real: 1.068 D_fake: 0.856 +(epoch: 173, iters: 5424, time: 0.064) G_GAN: 0.469 G_GAN_Feat: 0.710 G_ID: 0.187 G_Rec: 0.370 D_GP: 0.020 D_real: 1.285 D_fake: 0.535 +(epoch: 173, iters: 5824, time: 0.064) G_GAN: -0.010 G_GAN_Feat: 0.599 G_ID: 0.162 G_Rec: 0.324 D_GP: 0.024 D_real: 0.919 D_fake: 1.010 +(epoch: 173, iters: 6224, time: 0.064) G_GAN: 0.297 G_GAN_Feat: 0.770 G_ID: 0.194 G_Rec: 0.383 D_GP: 0.031 D_real: 1.034 D_fake: 0.703 +(epoch: 173, iters: 6624, time: 0.064) G_GAN: -0.007 G_GAN_Feat: 0.685 G_ID: 0.139 G_Rec: 0.334 D_GP: 0.035 D_real: 0.813 D_fake: 1.007 +(epoch: 173, iters: 7024, time: 0.064) G_GAN: 0.045 G_GAN_Feat: 0.938 G_ID: 0.189 G_Rec: 0.416 D_GP: 0.184 D_real: 0.517 D_fake: 0.955 +(epoch: 173, iters: 7424, time: 0.064) G_GAN: 0.158 G_GAN_Feat: 0.636 G_ID: 0.130 G_Rec: 0.317 D_GP: 0.066 D_real: 0.979 D_fake: 0.843 +(epoch: 173, iters: 7824, time: 0.064) G_GAN: 0.222 G_GAN_Feat: 0.776 G_ID: 0.200 G_Rec: 0.360 D_GP: 0.041 D_real: 0.861 D_fake: 0.779 +(epoch: 173, iters: 8224, time: 0.064) G_GAN: 0.305 G_GAN_Feat: 0.891 G_ID: 0.131 G_Rec: 0.340 D_GP: 0.083 D_real: 0.933 D_fake: 0.698 +(epoch: 174, iters: 16, time: 0.064) G_GAN: 0.246 G_GAN_Feat: 0.873 G_ID: 0.204 G_Rec: 0.390 D_GP: 0.033 D_real: 0.904 D_fake: 0.754 +(epoch: 174, iters: 416, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.766 G_ID: 0.152 G_Rec: 0.320 D_GP: 0.040 D_real: 1.111 D_fake: 0.675 +(epoch: 174, iters: 816, time: 0.064) G_GAN: 0.373 G_GAN_Feat: 0.836 G_ID: 0.177 G_Rec: 0.419 D_GP: 0.023 D_real: 1.195 D_fake: 0.628 +(epoch: 174, iters: 1216, time: 0.064) G_GAN: 0.253 G_GAN_Feat: 0.610 G_ID: 0.158 G_Rec: 0.307 D_GP: 0.025 D_real: 1.149 D_fake: 0.747 +(epoch: 174, iters: 1616, time: 0.064) G_GAN: 0.423 G_GAN_Feat: 0.782 G_ID: 0.197 G_Rec: 0.385 D_GP: 0.031 D_real: 1.158 D_fake: 0.578 +(epoch: 174, iters: 2016, time: 0.064) G_GAN: 0.128 G_GAN_Feat: 0.721 G_ID: 0.116 G_Rec: 0.295 D_GP: 0.044 D_real: 0.926 D_fake: 0.872 +(epoch: 174, iters: 2416, time: 0.064) G_GAN: 0.510 G_GAN_Feat: 0.961 G_ID: 0.172 G_Rec: 0.452 D_GP: 0.037 D_real: 1.031 D_fake: 0.494 +(epoch: 174, iters: 2816, time: 0.064) G_GAN: 0.381 G_GAN_Feat: 0.908 G_ID: 0.109 G_Rec: 0.359 D_GP: 0.100 D_real: 0.757 D_fake: 0.623 +(epoch: 174, iters: 3216, time: 0.064) G_GAN: 0.644 G_GAN_Feat: 0.895 G_ID: 0.260 G_Rec: 0.424 D_GP: 0.031 D_real: 1.301 D_fake: 0.386 +(epoch: 174, iters: 3616, time: 0.064) G_GAN: 0.355 G_GAN_Feat: 0.786 G_ID: 0.148 G_Rec: 0.304 D_GP: 0.066 D_real: 0.981 D_fake: 0.653 +(epoch: 174, iters: 4016, time: 0.064) G_GAN: 0.384 G_GAN_Feat: 0.875 G_ID: 0.197 G_Rec: 0.387 D_GP: 0.041 D_real: 0.916 D_fake: 0.617 +(epoch: 174, iters: 4416, time: 0.064) G_GAN: 0.083 G_GAN_Feat: 0.765 G_ID: 0.124 G_Rec: 0.325 D_GP: 0.066 D_real: 0.783 D_fake: 0.917 +(epoch: 174, iters: 4816, time: 0.064) G_GAN: 0.602 G_GAN_Feat: 0.995 G_ID: 0.190 G_Rec: 0.410 D_GP: 0.076 D_real: 0.934 D_fake: 0.414 +(epoch: 174, iters: 5216, time: 0.064) G_GAN: 0.597 G_GAN_Feat: 1.010 G_ID: 0.131 G_Rec: 0.406 D_GP: 0.870 D_real: 0.777 D_fake: 0.427 +(epoch: 174, iters: 5616, time: 0.064) G_GAN: 0.436 G_GAN_Feat: 0.994 G_ID: 0.189 G_Rec: 0.498 D_GP: 0.061 D_real: 0.923 D_fake: 0.582 +(epoch: 174, iters: 6016, time: 0.064) G_GAN: 0.054 G_GAN_Feat: 0.733 G_ID: 0.122 G_Rec: 0.320 D_GP: 0.025 D_real: 1.036 D_fake: 0.946 +(epoch: 174, iters: 6416, time: 0.064) G_GAN: 0.516 G_GAN_Feat: 0.882 G_ID: 0.190 G_Rec: 0.428 D_GP: 0.024 D_real: 1.183 D_fake: 0.501 +(epoch: 174, iters: 6816, time: 0.064) G_GAN: 0.424 G_GAN_Feat: 0.911 G_ID: 0.155 G_Rec: 0.349 D_GP: 0.060 D_real: 0.715 D_fake: 0.634 +(epoch: 174, iters: 7216, time: 0.064) G_GAN: 0.269 G_GAN_Feat: 0.786 G_ID: 0.186 G_Rec: 0.410 D_GP: 0.019 D_real: 1.014 D_fake: 0.731 +(epoch: 174, iters: 7616, time: 0.064) G_GAN: 0.234 G_GAN_Feat: 0.691 G_ID: 0.145 G_Rec: 0.320 D_GP: 0.023 D_real: 1.227 D_fake: 0.766 +(epoch: 174, iters: 8016, time: 0.064) G_GAN: 0.266 G_GAN_Feat: 0.833 G_ID: 0.204 G_Rec: 0.383 D_GP: 0.025 D_real: 0.948 D_fake: 0.735 +(epoch: 174, iters: 8416, time: 0.064) G_GAN: 0.259 G_GAN_Feat: 0.709 G_ID: 0.146 G_Rec: 0.302 D_GP: 0.036 D_real: 1.084 D_fake: 0.741 +(epoch: 175, iters: 208, time: 0.064) G_GAN: 0.620 G_GAN_Feat: 0.880 G_ID: 0.203 G_Rec: 0.391 D_GP: 0.027 D_real: 1.312 D_fake: 0.403 +(epoch: 175, iters: 608, time: 0.064) G_GAN: 0.202 G_GAN_Feat: 0.790 G_ID: 0.158 G_Rec: 0.339 D_GP: 0.037 D_real: 0.930 D_fake: 0.798 +(epoch: 175, iters: 1008, time: 0.064) G_GAN: 0.636 G_GAN_Feat: 1.072 G_ID: 0.181 G_Rec: 0.468 D_GP: 0.069 D_real: 0.840 D_fake: 0.395 +(epoch: 175, iters: 1408, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 0.751 G_ID: 0.143 G_Rec: 0.337 D_GP: 0.022 D_real: 1.155 D_fake: 0.704 +(epoch: 175, iters: 1808, time: 0.064) G_GAN: 0.615 G_GAN_Feat: 0.932 G_ID: 0.174 G_Rec: 0.406 D_GP: 0.038 D_real: 1.246 D_fake: 0.416 +(epoch: 175, iters: 2208, time: 0.064) G_GAN: 0.486 G_GAN_Feat: 0.696 G_ID: 0.125 G_Rec: 0.315 D_GP: 0.025 D_real: 1.448 D_fake: 0.515 +(epoch: 175, iters: 2608, time: 0.064) G_GAN: 0.592 G_GAN_Feat: 0.977 G_ID: 0.201 G_Rec: 0.422 D_GP: 0.040 D_real: 0.978 D_fake: 0.420 +(epoch: 175, iters: 3008, time: 0.064) G_GAN: 0.284 G_GAN_Feat: 0.686 G_ID: 0.130 G_Rec: 0.347 D_GP: 0.024 D_real: 1.213 D_fake: 0.716 +(epoch: 175, iters: 3408, time: 0.064) G_GAN: 0.185 G_GAN_Feat: 0.886 G_ID: 0.222 G_Rec: 0.367 D_GP: 0.047 D_real: 0.817 D_fake: 0.817 +(epoch: 175, iters: 3808, time: 0.064) G_GAN: 0.375 G_GAN_Feat: 0.680 G_ID: 0.130 G_Rec: 0.299 D_GP: 0.022 D_real: 1.295 D_fake: 0.625 +(epoch: 175, iters: 4208, time: 0.064) G_GAN: 0.562 G_GAN_Feat: 0.902 G_ID: 0.185 G_Rec: 0.378 D_GP: 0.035 D_real: 1.212 D_fake: 0.448 +(epoch: 175, iters: 4608, time: 0.064) G_GAN: 0.117 G_GAN_Feat: 0.706 G_ID: 0.137 G_Rec: 0.295 D_GP: 0.022 D_real: 1.097 D_fake: 0.883 +(epoch: 175, iters: 5008, time: 0.064) G_GAN: 0.104 G_GAN_Feat: 0.938 G_ID: 0.227 G_Rec: 0.409 D_GP: 0.049 D_real: 0.848 D_fake: 0.897 +(epoch: 175, iters: 5408, time: 0.064) G_GAN: 0.346 G_GAN_Feat: 0.662 G_ID: 0.152 G_Rec: 0.284 D_GP: 0.026 D_real: 1.303 D_fake: 0.654 +(epoch: 175, iters: 5808, time: 0.064) G_GAN: 0.463 G_GAN_Feat: 0.961 G_ID: 0.182 G_Rec: 0.428 D_GP: 0.072 D_real: 0.861 D_fake: 0.545 +(epoch: 175, iters: 6208, time: 0.064) G_GAN: 0.502 G_GAN_Feat: 0.766 G_ID: 0.138 G_Rec: 0.305 D_GP: 0.031 D_real: 1.289 D_fake: 0.502 +(epoch: 175, iters: 6608, time: 0.064) G_GAN: 0.598 G_GAN_Feat: 0.806 G_ID: 0.206 G_Rec: 0.350 D_GP: 0.029 D_real: 1.389 D_fake: 0.419 +(epoch: 175, iters: 7008, time: 0.064) G_GAN: 0.525 G_GAN_Feat: 0.707 G_ID: 0.149 G_Rec: 0.296 D_GP: 0.023 D_real: 1.465 D_fake: 0.489 +(epoch: 175, iters: 7408, time: 0.064) G_GAN: 0.392 G_GAN_Feat: 0.780 G_ID: 0.181 G_Rec: 0.392 D_GP: 0.021 D_real: 1.218 D_fake: 0.611 +(epoch: 175, iters: 7808, time: 0.064) G_GAN: -0.001 G_GAN_Feat: 0.688 G_ID: 0.142 G_Rec: 0.340 D_GP: 0.029 D_real: 0.905 D_fake: 1.001 +(epoch: 175, iters: 8208, time: 0.064) G_GAN: 0.330 G_GAN_Feat: 0.872 G_ID: 0.201 G_Rec: 0.403 D_GP: 0.043 D_real: 0.968 D_fake: 0.674 +(epoch: 175, iters: 8608, time: 0.064) G_GAN: 0.352 G_GAN_Feat: 0.790 G_ID: 0.147 G_Rec: 0.286 D_GP: 0.026 D_real: 1.098 D_fake: 0.648 +(epoch: 176, iters: 400, time: 0.064) G_GAN: 0.345 G_GAN_Feat: 0.862 G_ID: 0.182 G_Rec: 0.395 D_GP: 0.025 D_real: 1.133 D_fake: 0.657 +(epoch: 176, iters: 800, time: 0.064) G_GAN: 0.451 G_GAN_Feat: 0.680 G_ID: 0.141 G_Rec: 0.277 D_GP: 0.027 D_real: 1.344 D_fake: 0.550 +(epoch: 176, iters: 1200, time: 0.064) G_GAN: 0.269 G_GAN_Feat: 0.723 G_ID: 0.184 G_Rec: 0.376 D_GP: 0.022 D_real: 1.038 D_fake: 0.731 +(epoch: 176, iters: 1600, time: 0.064) G_GAN: 0.105 G_GAN_Feat: 0.712 G_ID: 0.138 G_Rec: 0.334 D_GP: 0.040 D_real: 0.885 D_fake: 0.896 +(epoch: 176, iters: 2000, time: 0.064) G_GAN: 0.142 G_GAN_Feat: 0.944 G_ID: 0.190 G_Rec: 0.419 D_GP: 0.271 D_real: 0.555 D_fake: 0.861 +(epoch: 176, iters: 2400, time: 0.064) G_GAN: 0.310 G_GAN_Feat: 0.803 G_ID: 0.157 G_Rec: 0.312 D_GP: 0.043 D_real: 0.921 D_fake: 0.692 +(epoch: 176, iters: 2800, time: 0.064) G_GAN: 0.489 G_GAN_Feat: 0.657 G_ID: 0.176 G_Rec: 0.366 D_GP: 0.021 D_real: 1.264 D_fake: 0.515 +(epoch: 176, iters: 3200, time: 0.064) G_GAN: 0.218 G_GAN_Feat: 0.531 G_ID: 0.140 G_Rec: 0.307 D_GP: 0.019 D_real: 1.175 D_fake: 0.782 +(epoch: 176, iters: 3600, time: 0.064) G_GAN: 0.342 G_GAN_Feat: 0.749 G_ID: 0.215 G_Rec: 0.403 D_GP: 0.026 D_real: 1.004 D_fake: 0.658 +(epoch: 176, iters: 4000, time: 0.064) G_GAN: 0.093 G_GAN_Feat: 0.626 G_ID: 0.146 G_Rec: 0.347 D_GP: 0.034 D_real: 1.001 D_fake: 0.907 +(epoch: 176, iters: 4400, time: 0.064) G_GAN: 0.462 G_GAN_Feat: 0.743 G_ID: 0.185 G_Rec: 0.371 D_GP: 0.029 D_real: 1.218 D_fake: 0.541 +(epoch: 176, iters: 4800, time: 0.064) G_GAN: 0.128 G_GAN_Feat: 0.710 G_ID: 0.139 G_Rec: 0.314 D_GP: 0.071 D_real: 0.897 D_fake: 0.872 +(epoch: 176, iters: 5200, time: 0.064) G_GAN: 0.338 G_GAN_Feat: 0.832 G_ID: 0.197 G_Rec: 0.385 D_GP: 0.039 D_real: 1.066 D_fake: 0.662 +(epoch: 176, iters: 5600, time: 0.064) G_GAN: 0.120 G_GAN_Feat: 0.680 G_ID: 0.142 G_Rec: 0.274 D_GP: 0.044 D_real: 0.870 D_fake: 0.880 +(epoch: 176, iters: 6000, time: 0.064) G_GAN: 0.484 G_GAN_Feat: 0.880 G_ID: 0.176 G_Rec: 0.382 D_GP: 0.036 D_real: 1.136 D_fake: 0.521 +(epoch: 176, iters: 6400, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 0.699 G_ID: 0.122 G_Rec: 0.301 D_GP: 0.024 D_real: 1.241 D_fake: 0.665 +(epoch: 176, iters: 6800, time: 0.064) G_GAN: 0.441 G_GAN_Feat: 0.918 G_ID: 0.170 G_Rec: 0.432 D_GP: 0.030 D_real: 1.030 D_fake: 0.560 +(epoch: 176, iters: 7200, time: 0.064) G_GAN: 0.172 G_GAN_Feat: 0.641 G_ID: 0.141 G_Rec: 0.305 D_GP: 0.028 D_real: 1.090 D_fake: 0.828 +(epoch: 176, iters: 7600, time: 0.064) G_GAN: 0.502 G_GAN_Feat: 1.102 G_ID: 0.223 G_Rec: 0.416 D_GP: 0.100 D_real: 0.528 D_fake: 0.586 +(epoch: 176, iters: 8000, time: 0.064) G_GAN: 0.178 G_GAN_Feat: 0.617 G_ID: 0.173 G_Rec: 0.311 D_GP: 0.018 D_real: 1.091 D_fake: 0.822 +(epoch: 176, iters: 8400, time: 0.064) G_GAN: 0.338 G_GAN_Feat: 0.788 G_ID: 0.206 G_Rec: 0.380 D_GP: 0.028 D_real: 1.054 D_fake: 0.666 +(epoch: 177, iters: 192, time: 0.064) G_GAN: 0.412 G_GAN_Feat: 0.785 G_ID: 0.130 G_Rec: 0.339 D_GP: 0.061 D_real: 1.077 D_fake: 0.590 +(epoch: 177, iters: 592, time: 0.064) G_GAN: 0.523 G_GAN_Feat: 1.016 G_ID: 0.173 G_Rec: 0.429 D_GP: 0.132 D_real: 0.780 D_fake: 0.485 +(epoch: 177, iters: 992, time: 0.064) G_GAN: 0.251 G_GAN_Feat: 0.840 G_ID: 0.162 G_Rec: 0.343 D_GP: 0.043 D_real: 0.880 D_fake: 0.750 +(epoch: 177, iters: 1392, time: 0.064) G_GAN: 0.427 G_GAN_Feat: 0.917 G_ID: 0.230 G_Rec: 0.392 D_GP: 0.042 D_real: 0.972 D_fake: 0.585 +(epoch: 177, iters: 1792, time: 0.064) G_GAN: 0.067 G_GAN_Feat: 0.696 G_ID: 0.150 G_Rec: 0.309 D_GP: 0.022 D_real: 1.012 D_fake: 0.935 +(epoch: 177, iters: 2192, time: 0.064) G_GAN: 0.269 G_GAN_Feat: 0.858 G_ID: 0.185 G_Rec: 0.435 D_GP: 0.023 D_real: 0.973 D_fake: 0.732 +(epoch: 177, iters: 2592, time: 0.064) G_GAN: 0.243 G_GAN_Feat: 0.740 G_ID: 0.152 G_Rec: 0.323 D_GP: 0.032 D_real: 1.063 D_fake: 0.758 +(epoch: 177, iters: 2992, time: 0.064) G_GAN: 0.322 G_GAN_Feat: 0.796 G_ID: 0.191 G_Rec: 0.374 D_GP: 0.032 D_real: 1.078 D_fake: 0.680 +(epoch: 177, iters: 3392, time: 0.064) G_GAN: 0.160 G_GAN_Feat: 0.665 G_ID: 0.151 G_Rec: 0.287 D_GP: 0.025 D_real: 1.047 D_fake: 0.840 +(epoch: 177, iters: 3792, time: 0.064) G_GAN: 0.139 G_GAN_Feat: 1.088 G_ID: 0.222 G_Rec: 0.419 D_GP: 0.379 D_real: 0.483 D_fake: 0.862 +(epoch: 177, iters: 4192, time: 0.064) G_GAN: 0.187 G_GAN_Feat: 0.684 G_ID: 0.175 G_Rec: 0.335 D_GP: 0.024 D_real: 1.175 D_fake: 0.813 +(epoch: 177, iters: 4592, time: 0.064) G_GAN: 0.261 G_GAN_Feat: 0.850 G_ID: 0.195 G_Rec: 0.357 D_GP: 0.028 D_real: 1.010 D_fake: 0.739 +(epoch: 177, iters: 4992, time: 0.064) G_GAN: 0.142 G_GAN_Feat: 0.894 G_ID: 0.161 G_Rec: 0.353 D_GP: 0.044 D_real: 0.742 D_fake: 0.858 +(epoch: 177, iters: 5392, time: 0.064) G_GAN: 0.367 G_GAN_Feat: 0.997 G_ID: 0.232 G_Rec: 0.415 D_GP: 0.058 D_real: 0.695 D_fake: 0.637 +(epoch: 177, iters: 5792, time: 0.064) G_GAN: 0.188 G_GAN_Feat: 0.807 G_ID: 0.138 G_Rec: 0.298 D_GP: 0.030 D_real: 0.872 D_fake: 0.812 +(epoch: 177, iters: 6192, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 0.932 G_ID: 0.194 G_Rec: 0.390 D_GP: 0.030 D_real: 0.807 D_fake: 0.807 +(epoch: 177, iters: 6592, time: 0.064) G_GAN: -0.117 G_GAN_Feat: 0.692 G_ID: 0.140 G_Rec: 0.330 D_GP: 0.036 D_real: 0.827 D_fake: 1.117 +(epoch: 177, iters: 6992, time: 0.064) G_GAN: 0.176 G_GAN_Feat: 0.866 G_ID: 0.191 G_Rec: 0.397 D_GP: 0.041 D_real: 0.881 D_fake: 0.825 +(epoch: 177, iters: 7392, time: 0.064) G_GAN: 0.266 G_GAN_Feat: 0.718 G_ID: 0.137 G_Rec: 0.281 D_GP: 0.054 D_real: 1.141 D_fake: 0.735 +(epoch: 177, iters: 7792, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 1.102 G_ID: 0.183 G_Rec: 0.418 D_GP: 0.046 D_real: 1.263 D_fake: 0.679 +(epoch: 177, iters: 8192, time: 0.064) G_GAN: 0.259 G_GAN_Feat: 0.747 G_ID: 0.139 G_Rec: 0.394 D_GP: 0.026 D_real: 1.099 D_fake: 0.742 +(epoch: 177, iters: 8592, time: 0.064) G_GAN: 0.182 G_GAN_Feat: 1.002 G_ID: 0.188 G_Rec: 0.408 D_GP: 0.039 D_real: 0.746 D_fake: 0.818 +(epoch: 178, iters: 384, time: 0.064) G_GAN: 0.184 G_GAN_Feat: 0.780 G_ID: 0.119 G_Rec: 0.312 D_GP: 0.293 D_real: 0.762 D_fake: 0.817 +(epoch: 178, iters: 784, time: 0.064) G_GAN: 0.616 G_GAN_Feat: 0.909 G_ID: 0.187 G_Rec: 0.393 D_GP: 0.046 D_real: 1.136 D_fake: 0.397 +(epoch: 178, iters: 1184, time: 0.064) G_GAN: 0.349 G_GAN_Feat: 0.793 G_ID: 0.147 G_Rec: 0.304 D_GP: 0.033 D_real: 0.997 D_fake: 0.653 +(epoch: 178, iters: 1584, time: 0.064) G_GAN: 0.556 G_GAN_Feat: 1.062 G_ID: 0.175 G_Rec: 0.452 D_GP: 0.053 D_real: 0.782 D_fake: 0.448 +(epoch: 178, iters: 1984, time: 0.064) G_GAN: 0.102 G_GAN_Feat: 0.703 G_ID: 0.164 G_Rec: 0.324 D_GP: 0.046 D_real: 0.920 D_fake: 0.898 +(epoch: 178, iters: 2384, time: 0.064) G_GAN: 0.657 G_GAN_Feat: 0.838 G_ID: 0.196 G_Rec: 0.395 D_GP: 0.046 D_real: 1.257 D_fake: 0.351 +(epoch: 178, iters: 2784, time: 0.064) G_GAN: 0.171 G_GAN_Feat: 0.836 G_ID: 0.140 G_Rec: 0.338 D_GP: 0.173 D_real: 0.537 D_fake: 0.829 +(epoch: 178, iters: 3184, time: 0.064) G_GAN: 0.414 G_GAN_Feat: 0.847 G_ID: 0.186 G_Rec: 0.416 D_GP: 0.022 D_real: 1.167 D_fake: 0.591 +(epoch: 178, iters: 3584, time: 0.064) G_GAN: 0.250 G_GAN_Feat: 0.733 G_ID: 0.170 G_Rec: 0.327 D_GP: 0.024 D_real: 1.108 D_fake: 0.751 +(epoch: 178, iters: 3984, time: 0.064) G_GAN: 0.289 G_GAN_Feat: 0.990 G_ID: 0.187 G_Rec: 0.431 D_GP: 0.055 D_real: 0.674 D_fake: 0.714 +(epoch: 178, iters: 4384, time: 0.064) G_GAN: 0.196 G_GAN_Feat: 0.976 G_ID: 0.161 G_Rec: 0.360 D_GP: 0.075 D_real: 0.722 D_fake: 0.807 +(epoch: 178, iters: 4784, time: 0.064) G_GAN: 0.505 G_GAN_Feat: 0.906 G_ID: 0.178 G_Rec: 0.389 D_GP: 0.032 D_real: 1.213 D_fake: 0.503 +(epoch: 178, iters: 5184, time: 0.064) G_GAN: 0.401 G_GAN_Feat: 0.812 G_ID: 0.142 G_Rec: 0.338 D_GP: 0.048 D_real: 1.214 D_fake: 0.601 +(epoch: 178, iters: 5584, time: 0.064) G_GAN: 0.323 G_GAN_Feat: 1.047 G_ID: 0.229 G_Rec: 0.412 D_GP: 0.132 D_real: 0.430 D_fake: 0.678 +(epoch: 178, iters: 5984, time: 0.064) G_GAN: 0.355 G_GAN_Feat: 1.019 G_ID: 0.123 G_Rec: 0.319 D_GP: 0.385 D_real: 0.299 D_fake: 0.708 +(epoch: 178, iters: 6384, time: 0.064) G_GAN: 0.442 G_GAN_Feat: 0.904 G_ID: 0.202 G_Rec: 0.387 D_GP: 0.034 D_real: 1.099 D_fake: 0.562 +(epoch: 178, iters: 6784, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.777 G_ID: 0.143 G_Rec: 0.322 D_GP: 0.030 D_real: 1.026 D_fake: 0.724 +(epoch: 178, iters: 7184, time: 0.064) G_GAN: 0.047 G_GAN_Feat: 0.896 G_ID: 0.202 G_Rec: 0.366 D_GP: 0.024 D_real: 0.848 D_fake: 0.953 +(epoch: 178, iters: 7584, time: 0.064) G_GAN: 0.340 G_GAN_Feat: 0.859 G_ID: 0.134 G_Rec: 0.324 D_GP: 0.036 D_real: 1.000 D_fake: 0.661 +(epoch: 178, iters: 7984, time: 0.064) G_GAN: 0.546 G_GAN_Feat: 1.125 G_ID: 0.192 G_Rec: 0.413 D_GP: 0.061 D_real: 0.676 D_fake: 0.461 +(epoch: 178, iters: 8384, time: 0.064) G_GAN: 0.248 G_GAN_Feat: 0.760 G_ID: 0.199 G_Rec: 0.357 D_GP: 0.031 D_real: 1.028 D_fake: 0.758 +(epoch: 179, iters: 176, time: 0.064) G_GAN: 0.545 G_GAN_Feat: 0.941 G_ID: 0.197 G_Rec: 0.414 D_GP: 0.054 D_real: 1.031 D_fake: 0.459 +(epoch: 179, iters: 576, time: 0.064) G_GAN: 0.419 G_GAN_Feat: 0.706 G_ID: 0.129 G_Rec: 0.301 D_GP: 0.040 D_real: 1.228 D_fake: 0.581 +(epoch: 179, iters: 976, time: 0.064) G_GAN: 0.666 G_GAN_Feat: 0.821 G_ID: 0.192 G_Rec: 0.383 D_GP: 0.023 D_real: 1.358 D_fake: 0.345 +(epoch: 179, iters: 1376, time: 0.064) G_GAN: 0.290 G_GAN_Feat: 0.775 G_ID: 0.141 G_Rec: 0.358 D_GP: 0.038 D_real: 0.977 D_fake: 0.715 +(epoch: 179, iters: 1776, time: 0.064) G_GAN: 0.416 G_GAN_Feat: 1.099 G_ID: 0.238 G_Rec: 0.407 D_GP: 0.179 D_real: 0.642 D_fake: 0.589 +(epoch: 179, iters: 2176, time: 0.064) G_GAN: 0.310 G_GAN_Feat: 0.891 G_ID: 0.132 G_Rec: 0.358 D_GP: 0.084 D_real: 0.737 D_fake: 0.692 +(epoch: 179, iters: 2576, time: 0.064) G_GAN: 0.572 G_GAN_Feat: 0.949 G_ID: 0.206 G_Rec: 0.394 D_GP: 0.045 D_real: 1.100 D_fake: 0.438 +(epoch: 179, iters: 2976, time: 0.064) G_GAN: 0.413 G_GAN_Feat: 0.696 G_ID: 0.168 G_Rec: 0.308 D_GP: 0.023 D_real: 1.290 D_fake: 0.624 +(epoch: 179, iters: 3376, time: 0.064) G_GAN: 0.509 G_GAN_Feat: 0.890 G_ID: 0.217 G_Rec: 0.393 D_GP: 0.024 D_real: 1.210 D_fake: 0.492 +(epoch: 179, iters: 3776, time: 0.064) G_GAN: 0.264 G_GAN_Feat: 0.639 G_ID: 0.154 G_Rec: 0.284 D_GP: 0.033 D_real: 1.173 D_fake: 0.740 +(epoch: 179, iters: 4176, time: 0.064) G_GAN: 0.262 G_GAN_Feat: 0.878 G_ID: 0.204 G_Rec: 0.395 D_GP: 0.035 D_real: 1.008 D_fake: 0.739 +(epoch: 179, iters: 4576, time: 0.064) G_GAN: 0.566 G_GAN_Feat: 0.833 G_ID: 0.122 G_Rec: 0.298 D_GP: 0.053 D_real: 1.117 D_fake: 0.443 +(epoch: 179, iters: 4976, time: 0.064) G_GAN: 0.469 G_GAN_Feat: 0.908 G_ID: 0.173 G_Rec: 0.408 D_GP: 0.035 D_real: 1.105 D_fake: 0.534 +(epoch: 179, iters: 5376, time: 0.064) G_GAN: 0.358 G_GAN_Feat: 0.789 G_ID: 0.138 G_Rec: 0.323 D_GP: 0.037 D_real: 1.164 D_fake: 0.651 +(epoch: 179, iters: 5776, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 0.732 G_ID: 0.193 G_Rec: 0.393 D_GP: 0.018 D_real: 1.068 D_fake: 0.807 +(epoch: 179, iters: 6176, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 0.619 G_ID: 0.140 G_Rec: 0.289 D_GP: 0.019 D_real: 1.191 D_fake: 0.784 +(epoch: 179, iters: 6576, time: 0.064) G_GAN: 0.382 G_GAN_Feat: 0.771 G_ID: 0.193 G_Rec: 0.372 D_GP: 0.021 D_real: 1.173 D_fake: 0.619 +(epoch: 179, iters: 6976, time: 0.064) G_GAN: 0.189 G_GAN_Feat: 0.726 G_ID: 0.161 G_Rec: 0.385 D_GP: 0.036 D_real: 1.074 D_fake: 0.811 +(epoch: 179, iters: 7376, time: 0.064) G_GAN: 0.234 G_GAN_Feat: 0.804 G_ID: 0.200 G_Rec: 0.353 D_GP: 0.040 D_real: 1.026 D_fake: 0.767 +(epoch: 179, iters: 7776, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 0.755 G_ID: 0.181 G_Rec: 0.303 D_GP: 0.048 D_real: 0.981 D_fake: 0.707 +(epoch: 179, iters: 8176, time: 0.064) G_GAN: 0.413 G_GAN_Feat: 0.917 G_ID: 0.174 G_Rec: 0.399 D_GP: 0.031 D_real: 1.099 D_fake: 0.588 +(epoch: 179, iters: 8576, time: 0.064) G_GAN: 0.123 G_GAN_Feat: 0.852 G_ID: 0.134 G_Rec: 0.337 D_GP: 0.080 D_real: 0.974 D_fake: 0.877 +(epoch: 180, iters: 368, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 0.805 G_ID: 0.228 G_Rec: 0.378 D_GP: 0.024 D_real: 1.073 D_fake: 0.704 +(epoch: 180, iters: 768, time: 0.064) G_GAN: 0.157 G_GAN_Feat: 0.731 G_ID: 0.151 G_Rec: 0.316 D_GP: 0.035 D_real: 1.009 D_fake: 0.843 +(epoch: 180, iters: 1168, time: 0.064) G_GAN: 0.491 G_GAN_Feat: 0.914 G_ID: 0.177 G_Rec: 0.413 D_GP: 0.038 D_real: 1.157 D_fake: 0.514 +(epoch: 180, iters: 1568, time: 0.064) G_GAN: 0.175 G_GAN_Feat: 0.736 G_ID: 0.160 G_Rec: 0.332 D_GP: 0.028 D_real: 1.023 D_fake: 0.827 +(epoch: 180, iters: 1968, time: 0.064) G_GAN: 0.957 G_GAN_Feat: 0.945 G_ID: 0.183 G_Rec: 0.377 D_GP: 0.168 D_real: 1.364 D_fake: 0.190 +(epoch: 180, iters: 2368, time: 0.064) G_GAN: 0.298 G_GAN_Feat: 0.774 G_ID: 0.146 G_Rec: 0.375 D_GP: 0.034 D_real: 1.044 D_fake: 0.702 +(epoch: 180, iters: 2768, time: 0.064) G_GAN: 0.531 G_GAN_Feat: 0.930 G_ID: 0.197 G_Rec: 0.371 D_GP: 0.034 D_real: 1.075 D_fake: 0.472 +(epoch: 180, iters: 3168, time: 0.064) G_GAN: 0.656 G_GAN_Feat: 0.855 G_ID: 0.147 G_Rec: 0.328 D_GP: 0.057 D_real: 1.220 D_fake: 0.363 +(epoch: 180, iters: 3568, time: 0.064) G_GAN: 0.815 G_GAN_Feat: 0.903 G_ID: 0.211 G_Rec: 0.378 D_GP: 0.100 D_real: 1.391 D_fake: 0.346 +(epoch: 180, iters: 3968, time: 0.064) G_GAN: -0.063 G_GAN_Feat: 0.669 G_ID: 0.130 G_Rec: 0.318 D_GP: 0.022 D_real: 0.933 D_fake: 1.063 +(epoch: 180, iters: 4368, time: 0.064) G_GAN: 0.230 G_GAN_Feat: 0.822 G_ID: 0.194 G_Rec: 0.433 D_GP: 0.024 D_real: 0.942 D_fake: 0.772 +(epoch: 180, iters: 4768, time: 0.064) G_GAN: -0.006 G_GAN_Feat: 0.705 G_ID: 0.124 G_Rec: 0.322 D_GP: 0.037 D_real: 0.739 D_fake: 1.006 +(epoch: 180, iters: 5168, time: 0.064) G_GAN: 0.290 G_GAN_Feat: 0.871 G_ID: 0.181 G_Rec: 0.409 D_GP: 0.025 D_real: 0.967 D_fake: 0.710 +(epoch: 180, iters: 5568, time: 0.064) G_GAN: 0.222 G_GAN_Feat: 0.848 G_ID: 0.115 G_Rec: 0.309 D_GP: 0.032 D_real: 0.921 D_fake: 0.779 +(epoch: 180, iters: 5968, time: 0.064) G_GAN: 0.506 G_GAN_Feat: 0.837 G_ID: 0.194 G_Rec: 0.390 D_GP: 0.024 D_real: 1.207 D_fake: 0.495 +(epoch: 180, iters: 6368, time: 0.064) G_GAN: 0.138 G_GAN_Feat: 0.823 G_ID: 0.150 G_Rec: 0.314 D_GP: 0.039 D_real: 0.839 D_fake: 0.862 +(epoch: 180, iters: 6768, time: 0.064) G_GAN: 0.485 G_GAN_Feat: 0.932 G_ID: 0.185 G_Rec: 0.395 D_GP: 0.030 D_real: 0.972 D_fake: 0.521 +(epoch: 180, iters: 7168, time: 0.064) G_GAN: 0.197 G_GAN_Feat: 0.937 G_ID: 0.123 G_Rec: 0.329 D_GP: 0.120 D_real: 0.423 D_fake: 0.804 +(epoch: 180, iters: 7568, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.762 G_ID: 0.184 G_Rec: 0.411 D_GP: 0.022 D_real: 1.074 D_fake: 0.718 +(epoch: 180, iters: 7968, time: 0.064) G_GAN: -0.015 G_GAN_Feat: 0.647 G_ID: 0.163 G_Rec: 0.342 D_GP: 0.020 D_real: 0.956 D_fake: 1.015 +(epoch: 180, iters: 8368, time: 0.064) G_GAN: 0.166 G_GAN_Feat: 0.794 G_ID: 0.204 G_Rec: 0.388 D_GP: 0.025 D_real: 0.908 D_fake: 0.834 +(epoch: 181, iters: 160, time: 0.064) G_GAN: 0.091 G_GAN_Feat: 0.646 G_ID: 0.145 G_Rec: 0.287 D_GP: 0.025 D_real: 1.086 D_fake: 0.910 +(epoch: 181, iters: 560, time: 0.064) G_GAN: 0.092 G_GAN_Feat: 0.972 G_ID: 0.203 G_Rec: 0.407 D_GP: 0.150 D_real: 0.424 D_fake: 0.913 +(epoch: 181, iters: 960, time: 0.064) G_GAN: 0.162 G_GAN_Feat: 0.717 G_ID: 0.135 G_Rec: 0.311 D_GP: 0.022 D_real: 1.007 D_fake: 0.838 +(epoch: 181, iters: 1360, time: 0.064) G_GAN: 0.417 G_GAN_Feat: 0.893 G_ID: 0.179 G_Rec: 0.428 D_GP: 0.034 D_real: 1.032 D_fake: 0.586 +(epoch: 181, iters: 1760, time: 0.064) G_GAN: 0.243 G_GAN_Feat: 0.897 G_ID: 0.131 G_Rec: 0.331 D_GP: 0.109 D_real: 0.639 D_fake: 0.758 +(epoch: 181, iters: 2160, time: 0.064) G_GAN: 0.429 G_GAN_Feat: 0.860 G_ID: 0.205 G_Rec: 0.396 D_GP: 0.036 D_real: 1.058 D_fake: 0.603 +(epoch: 181, iters: 2560, time: 0.064) G_GAN: 0.158 G_GAN_Feat: 1.108 G_ID: 0.163 G_Rec: 0.373 D_GP: 0.217 D_real: 0.312 D_fake: 0.842 +(epoch: 181, iters: 2960, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.938 G_ID: 0.225 G_Rec: 0.421 D_GP: 0.077 D_real: 0.737 D_fake: 0.751 +(epoch: 181, iters: 3360, time: 0.064) G_GAN: -0.018 G_GAN_Feat: 1.023 G_ID: 0.130 G_Rec: 0.433 D_GP: 0.345 D_real: 0.386 D_fake: 1.018 +(epoch: 181, iters: 3760, time: 0.064) G_GAN: 0.689 G_GAN_Feat: 0.946 G_ID: 0.165 G_Rec: 0.407 D_GP: 0.029 D_real: 1.247 D_fake: 0.325 +(epoch: 181, iters: 4160, time: 0.064) G_GAN: 0.093 G_GAN_Feat: 0.876 G_ID: 0.136 G_Rec: 0.333 D_GP: 0.104 D_real: 0.532 D_fake: 0.909 +(epoch: 181, iters: 4560, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 1.035 G_ID: 0.212 G_Rec: 0.394 D_GP: 0.037 D_real: 0.778 D_fake: 0.665 +(epoch: 181, iters: 4960, time: 0.064) G_GAN: 0.300 G_GAN_Feat: 0.680 G_ID: 0.154 G_Rec: 0.300 D_GP: 0.023 D_real: 1.255 D_fake: 0.702 +(epoch: 181, iters: 5360, time: 0.064) G_GAN: 0.868 G_GAN_Feat: 0.791 G_ID: 0.201 G_Rec: 0.410 D_GP: 0.018 D_real: 1.709 D_fake: 0.236 +(epoch: 181, iters: 5760, time: 0.064) G_GAN: 0.101 G_GAN_Feat: 0.653 G_ID: 0.150 G_Rec: 0.338 D_GP: 0.028 D_real: 1.016 D_fake: 0.899 +(epoch: 181, iters: 6160, time: 0.064) G_GAN: 0.539 G_GAN_Feat: 0.799 G_ID: 0.217 G_Rec: 0.365 D_GP: 0.027 D_real: 1.302 D_fake: 0.464 +(epoch: 181, iters: 6560, time: 0.064) G_GAN: 0.227 G_GAN_Feat: 0.754 G_ID: 0.125 G_Rec: 0.343 D_GP: 0.036 D_real: 0.985 D_fake: 0.773 +(epoch: 181, iters: 6960, time: 0.064) G_GAN: 0.502 G_GAN_Feat: 0.846 G_ID: 0.214 G_Rec: 0.387 D_GP: 0.024 D_real: 1.245 D_fake: 0.499 +(epoch: 181, iters: 7360, time: 0.064) G_GAN: 0.010 G_GAN_Feat: 0.619 G_ID: 0.161 G_Rec: 0.279 D_GP: 0.020 D_real: 0.977 D_fake: 0.990 +(epoch: 181, iters: 7760, time: 0.064) G_GAN: 0.253 G_GAN_Feat: 0.900 G_ID: 0.185 G_Rec: 0.374 D_GP: 0.069 D_real: 0.834 D_fake: 0.747 +(epoch: 181, iters: 8160, time: 0.064) G_GAN: 0.625 G_GAN_Feat: 0.666 G_ID: 0.117 G_Rec: 0.292 D_GP: 0.028 D_real: 1.524 D_fake: 0.397 +(epoch: 181, iters: 8560, time: 0.064) G_GAN: 0.317 G_GAN_Feat: 1.080 G_ID: 0.196 G_Rec: 0.494 D_GP: 0.173 D_real: 0.622 D_fake: 0.709 +(epoch: 182, iters: 352, time: 0.064) G_GAN: 0.114 G_GAN_Feat: 0.778 G_ID: 0.160 G_Rec: 0.305 D_GP: 0.050 D_real: 0.714 D_fake: 0.887 +(epoch: 182, iters: 752, time: 0.064) G_GAN: 0.360 G_GAN_Feat: 0.943 G_ID: 0.178 G_Rec: 0.386 D_GP: 0.044 D_real: 0.938 D_fake: 0.641 +(epoch: 182, iters: 1152, time: 0.064) G_GAN: 0.372 G_GAN_Feat: 0.766 G_ID: 0.180 G_Rec: 0.279 D_GP: 0.028 D_real: 1.113 D_fake: 0.647 +(epoch: 182, iters: 1552, time: 0.064) G_GAN: 0.318 G_GAN_Feat: 0.730 G_ID: 0.229 G_Rec: 0.353 D_GP: 0.029 D_real: 1.126 D_fake: 0.684 +(epoch: 182, iters: 1952, time: 0.064) G_GAN: 0.087 G_GAN_Feat: 0.763 G_ID: 0.139 G_Rec: 0.333 D_GP: 0.076 D_real: 0.778 D_fake: 0.913 +(epoch: 182, iters: 2352, time: 0.064) G_GAN: 0.372 G_GAN_Feat: 0.967 G_ID: 0.178 G_Rec: 0.448 D_GP: 0.031 D_real: 0.879 D_fake: 0.634 +(epoch: 182, iters: 2752, time: 0.064) G_GAN: 0.173 G_GAN_Feat: 0.794 G_ID: 0.117 G_Rec: 0.349 D_GP: 0.025 D_real: 1.043 D_fake: 0.827 +(epoch: 182, iters: 3152, time: 0.064) G_GAN: 0.467 G_GAN_Feat: 0.819 G_ID: 0.184 G_Rec: 0.361 D_GP: 0.023 D_real: 1.250 D_fake: 0.534 +(epoch: 182, iters: 3552, time: 0.064) G_GAN: 0.224 G_GAN_Feat: 0.691 G_ID: 0.155 G_Rec: 0.333 D_GP: 0.039 D_real: 1.091 D_fake: 0.776 +(epoch: 182, iters: 3952, time: 0.064) G_GAN: 0.867 G_GAN_Feat: 1.025 G_ID: 0.173 G_Rec: 0.411 D_GP: 0.051 D_real: 1.355 D_fake: 0.237 +(epoch: 182, iters: 4352, time: 0.064) G_GAN: 0.188 G_GAN_Feat: 0.862 G_ID: 0.141 G_Rec: 0.323 D_GP: 0.065 D_real: 0.640 D_fake: 0.812 +(epoch: 182, iters: 4752, time: 0.064) G_GAN: 0.874 G_GAN_Feat: 0.961 G_ID: 0.190 G_Rec: 0.419 D_GP: 0.028 D_real: 1.382 D_fake: 0.238 +(epoch: 182, iters: 5152, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 0.688 G_ID: 0.152 G_Rec: 0.293 D_GP: 0.022 D_real: 1.409 D_fake: 0.558 +(epoch: 182, iters: 5552, time: 0.064) G_GAN: 0.485 G_GAN_Feat: 1.106 G_ID: 0.185 G_Rec: 0.438 D_GP: 0.033 D_real: 0.913 D_fake: 0.517 +(epoch: 182, iters: 5952, time: 0.064) G_GAN: 0.277 G_GAN_Feat: 0.911 G_ID: 0.138 G_Rec: 0.334 D_GP: 0.083 D_real: 0.710 D_fake: 0.744 +(epoch: 182, iters: 6352, time: 0.064) G_GAN: 0.683 G_GAN_Feat: 0.856 G_ID: 0.190 G_Rec: 0.388 D_GP: 0.022 D_real: 1.485 D_fake: 0.339 +(epoch: 182, iters: 6752, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 0.709 G_ID: 0.161 G_Rec: 0.314 D_GP: 0.029 D_real: 1.131 D_fake: 0.668 +(epoch: 182, iters: 7152, time: 0.064) G_GAN: 0.198 G_GAN_Feat: 0.946 G_ID: 0.211 G_Rec: 0.353 D_GP: 0.028 D_real: 1.072 D_fake: 0.803 +(epoch: 182, iters: 7552, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.718 G_ID: 0.150 G_Rec: 0.320 D_GP: 0.032 D_real: 1.243 D_fake: 0.723 +(epoch: 182, iters: 7952, time: 0.064) G_GAN: 0.602 G_GAN_Feat: 1.042 G_ID: 0.207 G_Rec: 0.436 D_GP: 0.047 D_real: 1.072 D_fake: 0.417 +(epoch: 182, iters: 8352, time: 0.064) G_GAN: 0.328 G_GAN_Feat: 0.608 G_ID: 0.131 G_Rec: 0.319 D_GP: 0.021 D_real: 1.326 D_fake: 0.674 +(epoch: 183, iters: 144, time: 0.064) G_GAN: 0.438 G_GAN_Feat: 0.818 G_ID: 0.174 G_Rec: 0.418 D_GP: 0.025 D_real: 1.190 D_fake: 0.584 +(epoch: 183, iters: 544, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 0.679 G_ID: 0.147 G_Rec: 0.319 D_GP: 0.031 D_real: 1.037 D_fake: 0.827 +(epoch: 183, iters: 944, time: 0.064) G_GAN: 0.415 G_GAN_Feat: 0.863 G_ID: 0.186 G_Rec: 0.423 D_GP: 0.026 D_real: 1.052 D_fake: 0.593 +(epoch: 183, iters: 1344, time: 0.064) G_GAN: 0.321 G_GAN_Feat: 0.698 G_ID: 0.144 G_Rec: 0.294 D_GP: 0.056 D_real: 1.181 D_fake: 0.679 +(epoch: 183, iters: 1744, time: 0.064) G_GAN: 0.244 G_GAN_Feat: 1.034 G_ID: 0.214 G_Rec: 0.417 D_GP: 0.222 D_real: 0.324 D_fake: 0.760 +(epoch: 183, iters: 2144, time: 0.064) G_GAN: 0.288 G_GAN_Feat: 0.801 G_ID: 0.144 G_Rec: 0.328 D_GP: 0.048 D_real: 0.856 D_fake: 0.713 +(epoch: 183, iters: 2544, time: 0.064) G_GAN: 0.592 G_GAN_Feat: 0.784 G_ID: 0.189 G_Rec: 0.392 D_GP: 0.022 D_real: 1.374 D_fake: 0.414 +(epoch: 183, iters: 2944, time: 0.064) G_GAN: 0.356 G_GAN_Feat: 0.769 G_ID: 0.144 G_Rec: 0.321 D_GP: 0.077 D_real: 0.926 D_fake: 0.644 +(epoch: 183, iters: 3344, time: 0.064) G_GAN: 0.246 G_GAN_Feat: 0.906 G_ID: 0.186 G_Rec: 0.380 D_GP: 0.092 D_real: 0.761 D_fake: 0.758 +(epoch: 183, iters: 3744, time: 0.064) G_GAN: 0.345 G_GAN_Feat: 0.704 G_ID: 0.144 G_Rec: 0.300 D_GP: 0.030 D_real: 1.136 D_fake: 0.657 +(epoch: 183, iters: 4144, time: 0.064) G_GAN: 0.186 G_GAN_Feat: 0.893 G_ID: 0.196 G_Rec: 0.385 D_GP: 0.041 D_real: 0.757 D_fake: 0.814 +(epoch: 183, iters: 4544, time: 0.064) G_GAN: 0.232 G_GAN_Feat: 0.818 G_ID: 0.133 G_Rec: 0.360 D_GP: 0.063 D_real: 0.918 D_fake: 0.771 +(epoch: 183, iters: 4944, time: 0.064) G_GAN: 0.210 G_GAN_Feat: 0.802 G_ID: 0.178 G_Rec: 0.376 D_GP: 0.031 D_real: 0.873 D_fake: 0.790 +(epoch: 183, iters: 5344, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.765 G_ID: 0.116 G_Rec: 0.303 D_GP: 0.038 D_real: 1.133 D_fake: 0.693 +(epoch: 183, iters: 5744, time: 0.064) G_GAN: 0.400 G_GAN_Feat: 0.842 G_ID: 0.196 G_Rec: 0.392 D_GP: 0.028 D_real: 1.080 D_fake: 0.602 +(epoch: 183, iters: 6144, time: 0.064) G_GAN: 0.197 G_GAN_Feat: 0.882 G_ID: 0.140 G_Rec: 0.302 D_GP: 0.182 D_real: 0.450 D_fake: 0.803 +(epoch: 183, iters: 6544, time: 0.064) G_GAN: 0.284 G_GAN_Feat: 1.015 G_ID: 0.189 G_Rec: 0.461 D_GP: 0.082 D_real: 0.826 D_fake: 0.717 +(epoch: 183, iters: 6944, time: 0.064) G_GAN: 0.416 G_GAN_Feat: 0.663 G_ID: 0.139 G_Rec: 0.295 D_GP: 0.024 D_real: 1.310 D_fake: 0.585 +(epoch: 183, iters: 7344, time: 0.064) G_GAN: 0.353 G_GAN_Feat: 1.111 G_ID: 0.207 G_Rec: 0.402 D_GP: 0.034 D_real: 0.453 D_fake: 0.649 +(epoch: 183, iters: 7744, time: 0.064) G_GAN: 0.240 G_GAN_Feat: 0.665 G_ID: 0.133 G_Rec: 0.305 D_GP: 0.025 D_real: 1.173 D_fake: 0.762 +(epoch: 183, iters: 8144, time: 0.064) G_GAN: 0.349 G_GAN_Feat: 0.876 G_ID: 0.168 G_Rec: 0.405 D_GP: 0.027 D_real: 1.012 D_fake: 0.651 +(epoch: 183, iters: 8544, time: 0.064) G_GAN: 0.163 G_GAN_Feat: 0.763 G_ID: 0.148 G_Rec: 0.319 D_GP: 0.028 D_real: 1.080 D_fake: 0.838 +(epoch: 184, iters: 336, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 1.025 G_ID: 0.226 G_Rec: 0.448 D_GP: 0.086 D_real: 0.798 D_fake: 0.721 +(epoch: 184, iters: 736, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 0.872 G_ID: 0.147 G_Rec: 0.334 D_GP: 0.175 D_real: 0.732 D_fake: 0.840 +(epoch: 184, iters: 1136, time: 0.064) G_GAN: 0.303 G_GAN_Feat: 0.971 G_ID: 0.195 G_Rec: 0.390 D_GP: 0.084 D_real: 0.661 D_fake: 0.697 +(epoch: 184, iters: 1536, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 0.776 G_ID: 0.133 G_Rec: 0.344 D_GP: 0.026 D_real: 1.175 D_fake: 0.652 +(epoch: 184, iters: 1936, time: 0.064) G_GAN: 0.326 G_GAN_Feat: 0.943 G_ID: 0.211 G_Rec: 0.403 D_GP: 0.027 D_real: 1.019 D_fake: 0.677 +(epoch: 184, iters: 2336, time: 0.064) G_GAN: 0.006 G_GAN_Feat: 0.711 G_ID: 0.176 G_Rec: 0.352 D_GP: 0.037 D_real: 0.796 D_fake: 0.994 +(epoch: 184, iters: 2736, time: 0.064) G_GAN: 0.628 G_GAN_Feat: 0.851 G_ID: 0.172 G_Rec: 0.372 D_GP: 0.028 D_real: 1.333 D_fake: 0.384 +(epoch: 184, iters: 3136, time: 0.064) G_GAN: -0.093 G_GAN_Feat: 0.796 G_ID: 0.130 G_Rec: 0.330 D_GP: 0.025 D_real: 0.883 D_fake: 1.098 +(epoch: 184, iters: 3536, time: 0.064) G_GAN: 0.903 G_GAN_Feat: 0.948 G_ID: 0.152 G_Rec: 0.399 D_GP: 0.026 D_real: 1.482 D_fake: 0.152 +(epoch: 184, iters: 3936, time: 0.064) G_GAN: 0.322 G_GAN_Feat: 0.912 G_ID: 0.151 G_Rec: 0.382 D_GP: 0.078 D_real: 1.024 D_fake: 0.714 +(epoch: 184, iters: 4336, time: 0.064) G_GAN: 0.246 G_GAN_Feat: 0.799 G_ID: 0.214 G_Rec: 0.402 D_GP: 0.021 D_real: 1.016 D_fake: 0.754 +(epoch: 184, iters: 4736, time: 0.064) G_GAN: 0.203 G_GAN_Feat: 0.766 G_ID: 0.138 G_Rec: 0.327 D_GP: 0.044 D_real: 0.879 D_fake: 0.797 +(epoch: 184, iters: 5136, time: 0.064) G_GAN: 0.547 G_GAN_Feat: 0.933 G_ID: 0.186 G_Rec: 0.409 D_GP: 0.038 D_real: 1.036 D_fake: 0.457 +(epoch: 184, iters: 5536, time: 0.064) G_GAN: 0.664 G_GAN_Feat: 0.848 G_ID: 0.107 G_Rec: 0.358 D_GP: 0.167 D_real: 1.265 D_fake: 0.366 +(epoch: 184, iters: 5936, time: 0.064) G_GAN: 0.240 G_GAN_Feat: 1.010 G_ID: 0.180 G_Rec: 0.433 D_GP: 0.104 D_real: 0.472 D_fake: 0.761 +(epoch: 184, iters: 6336, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 0.819 G_ID: 0.136 G_Rec: 0.322 D_GP: 0.038 D_real: 0.944 D_fake: 0.738 +(epoch: 184, iters: 6736, time: 0.064) G_GAN: 0.595 G_GAN_Feat: 1.113 G_ID: 0.198 G_Rec: 0.415 D_GP: 0.091 D_real: 0.572 D_fake: 0.414 +(epoch: 184, iters: 7136, time: 0.064) G_GAN: 0.157 G_GAN_Feat: 0.830 G_ID: 0.168 G_Rec: 0.345 D_GP: 0.112 D_real: 0.739 D_fake: 0.844 +(epoch: 184, iters: 7536, time: 0.064) G_GAN: 0.349 G_GAN_Feat: 1.130 G_ID: 0.165 G_Rec: 0.425 D_GP: 0.138 D_real: 0.556 D_fake: 0.652 +(epoch: 184, iters: 7936, time: 0.064) G_GAN: 0.203 G_GAN_Feat: 0.743 G_ID: 0.129 G_Rec: 0.301 D_GP: 0.022 D_real: 1.015 D_fake: 0.797 +(epoch: 184, iters: 8336, time: 0.064) G_GAN: 0.548 G_GAN_Feat: 1.078 G_ID: 0.203 G_Rec: 0.454 D_GP: 0.031 D_real: 0.863 D_fake: 0.484 +(epoch: 185, iters: 128, time: 0.064) G_GAN: 0.466 G_GAN_Feat: 0.727 G_ID: 0.131 G_Rec: 0.293 D_GP: 0.022 D_real: 1.396 D_fake: 0.538 +(epoch: 185, iters: 528, time: 0.064) G_GAN: 0.372 G_GAN_Feat: 0.994 G_ID: 0.174 G_Rec: 0.414 D_GP: 0.040 D_real: 0.826 D_fake: 0.630 +(epoch: 185, iters: 928, time: 0.064) G_GAN: 0.560 G_GAN_Feat: 0.813 G_ID: 0.143 G_Rec: 0.340 D_GP: 0.026 D_real: 1.346 D_fake: 0.544 +(epoch: 185, iters: 1328, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 1.038 G_ID: 0.189 G_Rec: 0.418 D_GP: 0.024 D_real: 1.230 D_fake: 0.555 +(epoch: 185, iters: 1728, time: 0.064) G_GAN: 0.214 G_GAN_Feat: 0.688 G_ID: 0.135 G_Rec: 0.311 D_GP: 0.027 D_real: 1.035 D_fake: 0.786 +(epoch: 185, iters: 2128, time: 0.064) G_GAN: 0.398 G_GAN_Feat: 1.004 G_ID: 0.192 G_Rec: 0.401 D_GP: 0.133 D_real: 0.731 D_fake: 0.617 +(epoch: 185, iters: 2528, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.715 G_ID: 0.130 G_Rec: 0.308 D_GP: 0.021 D_real: 1.111 D_fake: 0.751 +(epoch: 185, iters: 2928, time: 0.064) G_GAN: 0.147 G_GAN_Feat: 1.102 G_ID: 0.186 G_Rec: 0.451 D_GP: 0.035 D_real: 0.520 D_fake: 0.854 +(epoch: 185, iters: 3328, time: 0.064) G_GAN: 0.215 G_GAN_Feat: 0.686 G_ID: 0.148 G_Rec: 0.325 D_GP: 0.022 D_real: 1.199 D_fake: 0.785 +(epoch: 185, iters: 3728, time: 0.064) G_GAN: 0.472 G_GAN_Feat: 1.111 G_ID: 0.187 G_Rec: 0.442 D_GP: 0.086 D_real: 0.743 D_fake: 0.608 +(epoch: 185, iters: 4128, time: 0.064) G_GAN: 0.487 G_GAN_Feat: 0.746 G_ID: 0.146 G_Rec: 0.328 D_GP: 0.021 D_real: 1.467 D_fake: 0.516 +(epoch: 185, iters: 4528, time: 0.064) G_GAN: 0.271 G_GAN_Feat: 0.818 G_ID: 0.182 G_Rec: 0.417 D_GP: 0.022 D_real: 1.043 D_fake: 0.731 +(epoch: 185, iters: 4928, time: 0.064) G_GAN: -0.084 G_GAN_Feat: 0.776 G_ID: 0.157 G_Rec: 0.329 D_GP: 0.059 D_real: 0.769 D_fake: 1.084 +(epoch: 185, iters: 5328, time: 0.064) G_GAN: 0.615 G_GAN_Feat: 0.827 G_ID: 0.176 G_Rec: 0.379 D_GP: 0.022 D_real: 1.353 D_fake: 0.398 +(epoch: 185, iters: 5728, time: 0.064) G_GAN: 0.260 G_GAN_Feat: 0.688 G_ID: 0.142 G_Rec: 0.313 D_GP: 0.027 D_real: 1.156 D_fake: 0.740 +(epoch: 185, iters: 6128, time: 0.064) G_GAN: 0.531 G_GAN_Feat: 1.114 G_ID: 0.200 G_Rec: 0.463 D_GP: 0.140 D_real: 0.476 D_fake: 0.485 +(epoch: 185, iters: 6528, time: 0.064) G_GAN: -0.015 G_GAN_Feat: 0.866 G_ID: 0.142 G_Rec: 0.328 D_GP: 0.131 D_real: 0.393 D_fake: 1.015 +(epoch: 185, iters: 6928, time: 0.064) G_GAN: 0.359 G_GAN_Feat: 0.968 G_ID: 0.180 G_Rec: 0.443 D_GP: 0.027 D_real: 0.994 D_fake: 0.642 +(epoch: 185, iters: 7328, time: 0.064) G_GAN: 0.180 G_GAN_Feat: 0.745 G_ID: 0.120 G_Rec: 0.291 D_GP: 0.025 D_real: 0.983 D_fake: 0.821 +(epoch: 185, iters: 7728, time: 0.064) G_GAN: 0.518 G_GAN_Feat: 0.941 G_ID: 0.186 G_Rec: 0.404 D_GP: 0.027 D_real: 1.115 D_fake: 0.484 +(epoch: 185, iters: 8128, time: 0.064) G_GAN: 0.502 G_GAN_Feat: 0.876 G_ID: 0.137 G_Rec: 0.311 D_GP: 0.073 D_real: 0.979 D_fake: 0.518 +(epoch: 185, iters: 8528, time: 0.064) G_GAN: 0.141 G_GAN_Feat: 0.929 G_ID: 0.209 G_Rec: 0.386 D_GP: 0.037 D_real: 0.877 D_fake: 0.859 +(epoch: 186, iters: 320, time: 0.064) G_GAN: 0.315 G_GAN_Feat: 0.764 G_ID: 0.137 G_Rec: 0.309 D_GP: 0.048 D_real: 1.169 D_fake: 0.689 +(epoch: 186, iters: 720, time: 0.064) G_GAN: 0.201 G_GAN_Feat: 0.949 G_ID: 0.218 G_Rec: 0.438 D_GP: 0.084 D_real: 0.808 D_fake: 0.800 +(epoch: 186, iters: 1120, time: 0.064) G_GAN: 0.144 G_GAN_Feat: 0.757 G_ID: 0.139 G_Rec: 0.317 D_GP: 0.027 D_real: 0.988 D_fake: 0.857 +(epoch: 186, iters: 1520, time: 0.064) G_GAN: 0.559 G_GAN_Feat: 0.898 G_ID: 0.157 G_Rec: 0.395 D_GP: 0.027 D_real: 1.188 D_fake: 0.452 +(epoch: 186, iters: 1920, time: 0.064) G_GAN: -0.094 G_GAN_Feat: 0.783 G_ID: 0.160 G_Rec: 0.302 D_GP: 0.021 D_real: 0.792 D_fake: 1.094 +(epoch: 186, iters: 2320, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 1.102 G_ID: 0.216 G_Rec: 0.406 D_GP: 0.564 D_real: 0.450 D_fake: 0.565 +(epoch: 186, iters: 2720, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 0.638 G_ID: 0.139 G_Rec: 0.322 D_GP: 0.020 D_real: 1.257 D_fake: 0.704 +(epoch: 186, iters: 3120, time: 0.064) G_GAN: 0.258 G_GAN_Feat: 1.056 G_ID: 0.219 G_Rec: 0.432 D_GP: 0.117 D_real: 0.399 D_fake: 0.746 +(epoch: 186, iters: 3520, time: 0.064) G_GAN: 0.252 G_GAN_Feat: 0.787 G_ID: 0.130 G_Rec: 0.305 D_GP: 0.040 D_real: 1.016 D_fake: 0.748 +(epoch: 186, iters: 3920, time: 0.064) G_GAN: 0.414 G_GAN_Feat: 1.015 G_ID: 0.203 G_Rec: 0.417 D_GP: 0.050 D_real: 0.798 D_fake: 0.592 +(epoch: 186, iters: 4320, time: 0.064) G_GAN: 0.223 G_GAN_Feat: 1.039 G_ID: 0.134 G_Rec: 0.372 D_GP: 0.089 D_real: 0.425 D_fake: 0.778 +(epoch: 186, iters: 4720, time: 0.064) G_GAN: 0.570 G_GAN_Feat: 0.802 G_ID: 0.171 G_Rec: 0.406 D_GP: 0.017 D_real: 1.396 D_fake: 0.437 +(epoch: 186, iters: 5120, time: 0.064) G_GAN: 0.096 G_GAN_Feat: 0.720 G_ID: 0.148 G_Rec: 0.356 D_GP: 0.033 D_real: 0.936 D_fake: 0.904 +(epoch: 186, iters: 5520, time: 0.064) G_GAN: 0.466 G_GAN_Feat: 0.990 G_ID: 0.235 G_Rec: 0.413 D_GP: 0.032 D_real: 0.922 D_fake: 0.537 +(epoch: 186, iters: 5920, time: 0.064) G_GAN: 0.168 G_GAN_Feat: 0.840 G_ID: 0.130 G_Rec: 0.333 D_GP: 0.068 D_real: 0.865 D_fake: 0.832 +(epoch: 186, iters: 6320, time: 0.064) G_GAN: 0.303 G_GAN_Feat: 0.922 G_ID: 0.192 G_Rec: 0.416 D_GP: 0.033 D_real: 0.870 D_fake: 0.699 +(epoch: 186, iters: 6720, time: 0.064) G_GAN: -0.011 G_GAN_Feat: 0.724 G_ID: 0.157 G_Rec: 0.315 D_GP: 0.027 D_real: 0.970 D_fake: 1.013 +(epoch: 186, iters: 7120, time: 0.064) G_GAN: 0.327 G_GAN_Feat: 1.017 G_ID: 0.185 G_Rec: 0.403 D_GP: 0.043 D_real: 0.970 D_fake: 0.677 +(epoch: 186, iters: 7520, time: 0.064) G_GAN: 0.064 G_GAN_Feat: 0.748 G_ID: 0.133 G_Rec: 0.303 D_GP: 0.018 D_real: 1.026 D_fake: 0.937 +(epoch: 186, iters: 7920, time: 0.064) G_GAN: 0.400 G_GAN_Feat: 0.905 G_ID: 0.219 G_Rec: 0.416 D_GP: 0.022 D_real: 1.125 D_fake: 0.604 +(epoch: 186, iters: 8320, time: 0.064) G_GAN: 0.219 G_GAN_Feat: 0.768 G_ID: 0.144 G_Rec: 0.316 D_GP: 0.038 D_real: 0.895 D_fake: 0.783 +(epoch: 187, iters: 112, time: 0.064) G_GAN: 0.367 G_GAN_Feat: 0.849 G_ID: 0.163 G_Rec: 0.400 D_GP: 0.024 D_real: 1.166 D_fake: 0.635 +(epoch: 187, iters: 512, time: 0.064) G_GAN: 0.295 G_GAN_Feat: 0.807 G_ID: 0.141 G_Rec: 0.346 D_GP: 0.025 D_real: 1.195 D_fake: 0.705 +(epoch: 187, iters: 912, time: 0.064) G_GAN: 0.294 G_GAN_Feat: 0.885 G_ID: 0.172 G_Rec: 0.407 D_GP: 0.024 D_real: 1.124 D_fake: 0.706 +(epoch: 187, iters: 1312, time: 0.064) G_GAN: 0.175 G_GAN_Feat: 0.705 G_ID: 0.138 G_Rec: 0.319 D_GP: 0.027 D_real: 1.029 D_fake: 0.828 +(epoch: 187, iters: 1712, time: 0.064) G_GAN: 0.368 G_GAN_Feat: 0.995 G_ID: 0.208 G_Rec: 0.413 D_GP: 0.027 D_real: 1.005 D_fake: 0.633 +(epoch: 187, iters: 2112, time: 0.064) G_GAN: 0.153 G_GAN_Feat: 0.718 G_ID: 0.122 G_Rec: 0.302 D_GP: 0.020 D_real: 1.023 D_fake: 0.847 +(epoch: 187, iters: 2512, time: 0.064) G_GAN: 0.365 G_GAN_Feat: 0.953 G_ID: 0.192 G_Rec: 0.424 D_GP: 0.027 D_real: 1.064 D_fake: 0.635 +(epoch: 187, iters: 2912, time: 0.064) G_GAN: 0.194 G_GAN_Feat: 1.027 G_ID: 0.140 G_Rec: 0.363 D_GP: 0.086 D_real: 0.948 D_fake: 0.807 +(epoch: 187, iters: 3312, time: 0.064) G_GAN: 0.351 G_GAN_Feat: 0.845 G_ID: 0.208 G_Rec: 0.352 D_GP: 0.026 D_real: 1.101 D_fake: 0.651 +(epoch: 187, iters: 3712, time: 0.064) G_GAN: 0.305 G_GAN_Feat: 0.709 G_ID: 0.165 G_Rec: 0.314 D_GP: 0.025 D_real: 1.249 D_fake: 0.699 +(epoch: 187, iters: 4112, time: 0.064) G_GAN: 0.419 G_GAN_Feat: 0.828 G_ID: 0.192 G_Rec: 0.383 D_GP: 0.023 D_real: 1.207 D_fake: 0.584 +(epoch: 187, iters: 4512, time: 0.064) G_GAN: -0.122 G_GAN_Feat: 0.871 G_ID: 0.146 G_Rec: 0.326 D_GP: 0.164 D_real: 0.178 D_fake: 1.122 +(epoch: 187, iters: 4912, time: 0.064) G_GAN: 0.117 G_GAN_Feat: 0.847 G_ID: 0.181 G_Rec: 0.469 D_GP: 0.025 D_real: 0.883 D_fake: 0.883 +(epoch: 187, iters: 5312, time: 0.064) G_GAN: 0.289 G_GAN_Feat: 0.734 G_ID: 0.138 G_Rec: 0.300 D_GP: 0.033 D_real: 1.111 D_fake: 0.711 +(epoch: 187, iters: 5712, time: 0.064) G_GAN: 0.923 G_GAN_Feat: 0.989 G_ID: 0.183 G_Rec: 0.423 D_GP: 0.028 D_real: 1.405 D_fake: 0.190 +(epoch: 187, iters: 6112, time: 0.064) G_GAN: -0.082 G_GAN_Feat: 0.983 G_ID: 0.175 G_Rec: 0.340 D_GP: 0.118 D_real: 0.423 D_fake: 1.082 +(epoch: 187, iters: 6512, time: 0.064) G_GAN: 0.435 G_GAN_Feat: 0.768 G_ID: 0.183 G_Rec: 0.384 D_GP: 0.019 D_real: 1.195 D_fake: 0.579 +(epoch: 187, iters: 6912, time: 0.064) G_GAN: 0.267 G_GAN_Feat: 0.949 G_ID: 0.152 G_Rec: 0.333 D_GP: 0.172 D_real: 0.453 D_fake: 0.741 +(epoch: 187, iters: 7312, time: 0.064) G_GAN: 0.559 G_GAN_Feat: 1.122 G_ID: 0.184 G_Rec: 0.456 D_GP: 0.080 D_real: 0.598 D_fake: 0.488 +(epoch: 187, iters: 7712, time: 0.064) G_GAN: 0.122 G_GAN_Feat: 0.734 G_ID: 0.120 G_Rec: 0.285 D_GP: 0.023 D_real: 1.064 D_fake: 0.878 +(epoch: 187, iters: 8112, time: 0.064) G_GAN: 0.522 G_GAN_Feat: 1.076 G_ID: 0.179 G_Rec: 0.396 D_GP: 0.031 D_real: 0.829 D_fake: 0.492 +(epoch: 187, iters: 8512, time: 0.064) G_GAN: 0.211 G_GAN_Feat: 0.923 G_ID: 0.138 G_Rec: 0.333 D_GP: 0.051 D_real: 0.587 D_fake: 0.789 +(epoch: 188, iters: 304, time: 0.064) G_GAN: 0.878 G_GAN_Feat: 1.021 G_ID: 0.163 G_Rec: 0.429 D_GP: 0.027 D_real: 1.388 D_fake: 0.213 +(epoch: 188, iters: 704, time: 0.064) G_GAN: -0.213 G_GAN_Feat: 0.713 G_ID: 0.156 G_Rec: 0.291 D_GP: 0.025 D_real: 0.818 D_fake: 1.213 +(epoch: 188, iters: 1104, time: 0.064) G_GAN: 0.266 G_GAN_Feat: 0.971 G_ID: 0.191 G_Rec: 0.400 D_GP: 0.027 D_real: 0.830 D_fake: 0.734 +(epoch: 188, iters: 1504, time: 0.064) G_GAN: 0.277 G_GAN_Feat: 0.938 G_ID: 0.132 G_Rec: 0.327 D_GP: 0.101 D_real: 0.459 D_fake: 0.724 +(epoch: 188, iters: 1904, time: 0.064) G_GAN: 0.415 G_GAN_Feat: 0.790 G_ID: 0.186 G_Rec: 0.409 D_GP: 0.019 D_real: 1.235 D_fake: 0.586 +(epoch: 188, iters: 2304, time: 0.064) G_GAN: 0.319 G_GAN_Feat: 0.788 G_ID: 0.125 G_Rec: 0.305 D_GP: 0.031 D_real: 1.189 D_fake: 0.682 +(epoch: 188, iters: 2704, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.850 G_ID: 0.213 G_Rec: 0.396 D_GP: 0.024 D_real: 1.032 D_fake: 0.717 +(epoch: 188, iters: 3104, time: 0.064) G_GAN: 0.388 G_GAN_Feat: 0.705 G_ID: 0.140 G_Rec: 0.330 D_GP: 0.022 D_real: 1.243 D_fake: 0.614 +(epoch: 188, iters: 3504, time: 0.064) G_GAN: 0.294 G_GAN_Feat: 0.824 G_ID: 0.194 G_Rec: 0.362 D_GP: 0.027 D_real: 1.000 D_fake: 0.707 +(epoch: 188, iters: 3904, time: 0.064) G_GAN: 0.053 G_GAN_Feat: 0.834 G_ID: 0.144 G_Rec: 0.317 D_GP: 0.110 D_real: 0.685 D_fake: 0.947 +(epoch: 188, iters: 4304, time: 0.064) G_GAN: 0.372 G_GAN_Feat: 0.893 G_ID: 0.196 G_Rec: 0.380 D_GP: 0.037 D_real: 0.926 D_fake: 0.631 +(epoch: 188, iters: 4704, time: 0.064) G_GAN: 0.166 G_GAN_Feat: 0.605 G_ID: 0.138 G_Rec: 0.288 D_GP: 0.023 D_real: 1.163 D_fake: 0.834 +(epoch: 188, iters: 5104, time: 0.064) G_GAN: 0.211 G_GAN_Feat: 1.058 G_ID: 0.187 G_Rec: 0.427 D_GP: 0.129 D_real: 0.467 D_fake: 0.789 +(epoch: 188, iters: 5504, time: 0.064) G_GAN: 0.248 G_GAN_Feat: 0.710 G_ID: 0.157 G_Rec: 0.333 D_GP: 0.023 D_real: 1.115 D_fake: 0.752 +(epoch: 188, iters: 5904, time: 0.064) G_GAN: 0.281 G_GAN_Feat: 0.947 G_ID: 0.181 G_Rec: 0.373 D_GP: 0.066 D_real: 0.675 D_fake: 0.722 +(epoch: 188, iters: 6304, time: 0.064) G_GAN: 0.240 G_GAN_Feat: 0.771 G_ID: 0.146 G_Rec: 0.292 D_GP: 0.031 D_real: 1.050 D_fake: 0.763 +(epoch: 188, iters: 6704, time: 0.064) G_GAN: 0.558 G_GAN_Feat: 1.002 G_ID: 0.177 G_Rec: 0.398 D_GP: 0.035 D_real: 1.052 D_fake: 0.449 +(epoch: 188, iters: 7104, time: 0.064) G_GAN: 0.262 G_GAN_Feat: 0.808 G_ID: 0.147 G_Rec: 0.301 D_GP: 0.050 D_real: 0.912 D_fake: 0.740 +(epoch: 188, iters: 7504, time: 0.064) G_GAN: 0.400 G_GAN_Feat: 0.969 G_ID: 0.172 G_Rec: 0.383 D_GP: 0.025 D_real: 1.005 D_fake: 0.602 +(epoch: 188, iters: 7904, time: 0.064) G_GAN: 0.462 G_GAN_Feat: 0.635 G_ID: 0.125 G_Rec: 0.318 D_GP: 0.020 D_real: 1.458 D_fake: 0.543 +(epoch: 188, iters: 8304, time: 0.064) G_GAN: 0.147 G_GAN_Feat: 0.882 G_ID: 0.207 G_Rec: 0.416 D_GP: 0.031 D_real: 0.777 D_fake: 0.854 +(epoch: 189, iters: 96, time: 0.064) G_GAN: 0.191 G_GAN_Feat: 0.719 G_ID: 0.131 G_Rec: 0.298 D_GP: 0.040 D_real: 0.980 D_fake: 0.809 +(epoch: 189, iters: 496, time: 0.064) G_GAN: 0.514 G_GAN_Feat: 0.860 G_ID: 0.199 G_Rec: 0.382 D_GP: 0.029 D_real: 1.188 D_fake: 0.501 +(epoch: 189, iters: 896, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.733 G_ID: 0.116 G_Rec: 0.308 D_GP: 0.042 D_real: 0.996 D_fake: 0.725 +(epoch: 189, iters: 1296, time: 0.064) G_GAN: 0.817 G_GAN_Feat: 1.011 G_ID: 0.197 G_Rec: 0.416 D_GP: 0.084 D_real: 1.229 D_fake: 0.455 +(epoch: 189, iters: 1696, time: 0.064) G_GAN: 0.318 G_GAN_Feat: 0.733 G_ID: 0.133 G_Rec: 0.360 D_GP: 0.023 D_real: 1.203 D_fake: 0.683 +(epoch: 189, iters: 2096, time: 0.064) G_GAN: 0.295 G_GAN_Feat: 1.021 G_ID: 0.186 G_Rec: 0.457 D_GP: 0.773 D_real: 0.586 D_fake: 0.707 +(epoch: 189, iters: 2496, time: 0.064) G_GAN: 0.042 G_GAN_Feat: 0.615 G_ID: 0.167 G_Rec: 0.295 D_GP: 0.020 D_real: 0.936 D_fake: 0.958 +(epoch: 189, iters: 2896, time: 0.064) G_GAN: 0.262 G_GAN_Feat: 1.159 G_ID: 0.195 G_Rec: 0.457 D_GP: 0.404 D_real: 0.433 D_fake: 0.742 +(epoch: 189, iters: 3296, time: 0.064) G_GAN: 0.261 G_GAN_Feat: 0.834 G_ID: 0.159 G_Rec: 0.388 D_GP: 0.102 D_real: 0.814 D_fake: 0.751 +(epoch: 189, iters: 3696, time: 0.064) G_GAN: 0.489 G_GAN_Feat: 0.812 G_ID: 0.158 G_Rec: 0.398 D_GP: 0.027 D_real: 1.283 D_fake: 0.516 +(epoch: 189, iters: 4096, time: 0.064) G_GAN: 0.110 G_GAN_Feat: 0.744 G_ID: 0.161 G_Rec: 0.299 D_GP: 0.032 D_real: 0.980 D_fake: 0.890 +(epoch: 189, iters: 4496, time: 0.064) G_GAN: 0.505 G_GAN_Feat: 0.857 G_ID: 0.190 G_Rec: 0.393 D_GP: 0.026 D_real: 1.184 D_fake: 0.499 +(epoch: 189, iters: 4896, time: 0.064) G_GAN: 0.431 G_GAN_Feat: 0.723 G_ID: 0.131 G_Rec: 0.323 D_GP: 0.023 D_real: 1.295 D_fake: 0.569 +(epoch: 189, iters: 5296, time: 0.064) G_GAN: 0.378 G_GAN_Feat: 0.942 G_ID: 0.187 G_Rec: 0.394 D_GP: 0.029 D_real: 1.054 D_fake: 0.623 +(epoch: 189, iters: 5696, time: 0.064) G_GAN: 0.404 G_GAN_Feat: 0.573 G_ID: 0.123 G_Rec: 0.293 D_GP: 0.026 D_real: 1.400 D_fake: 0.596 +(epoch: 189, iters: 6096, time: 0.064) G_GAN: 0.289 G_GAN_Feat: 0.919 G_ID: 0.183 G_Rec: 0.457 D_GP: 0.105 D_real: 0.725 D_fake: 0.712 +(epoch: 189, iters: 6496, time: 0.064) G_GAN: -0.029 G_GAN_Feat: 0.661 G_ID: 0.127 G_Rec: 0.332 D_GP: 0.027 D_real: 0.880 D_fake: 1.029 +(epoch: 189, iters: 6896, time: 0.064) G_GAN: 0.448 G_GAN_Feat: 0.844 G_ID: 0.192 G_Rec: 0.340 D_GP: 0.037 D_real: 1.176 D_fake: 0.554 +(epoch: 189, iters: 7296, time: 0.064) G_GAN: 0.322 G_GAN_Feat: 0.774 G_ID: 0.177 G_Rec: 0.313 D_GP: 0.038 D_real: 1.083 D_fake: 0.690 +(epoch: 189, iters: 7696, time: 0.064) G_GAN: 0.281 G_GAN_Feat: 0.969 G_ID: 0.197 G_Rec: 0.378 D_GP: 0.056 D_real: 0.580 D_fake: 0.719 +(epoch: 189, iters: 8096, time: 0.064) G_GAN: 0.227 G_GAN_Feat: 0.714 G_ID: 0.172 G_Rec: 0.314 D_GP: 0.024 D_real: 1.172 D_fake: 0.773 +(epoch: 189, iters: 8496, time: 0.064) G_GAN: 0.448 G_GAN_Feat: 1.146 G_ID: 0.202 G_Rec: 0.462 D_GP: 0.063 D_real: 0.324 D_fake: 0.554 +(epoch: 190, iters: 288, time: 0.064) G_GAN: 0.098 G_GAN_Feat: 0.563 G_ID: 0.149 G_Rec: 0.298 D_GP: 0.019 D_real: 1.038 D_fake: 0.902 +(epoch: 190, iters: 688, time: 0.064) G_GAN: 0.432 G_GAN_Feat: 0.760 G_ID: 0.181 G_Rec: 0.399 D_GP: 0.021 D_real: 1.152 D_fake: 0.569 +(epoch: 190, iters: 1088, time: 0.064) G_GAN: 0.155 G_GAN_Feat: 0.573 G_ID: 0.132 G_Rec: 0.302 D_GP: 0.020 D_real: 1.110 D_fake: 0.845 +(epoch: 190, iters: 1488, time: 0.064) G_GAN: 0.407 G_GAN_Feat: 0.807 G_ID: 0.200 G_Rec: 0.395 D_GP: 0.039 D_real: 1.115 D_fake: 0.598 +(epoch: 190, iters: 1888, time: 0.064) G_GAN: 0.112 G_GAN_Feat: 0.659 G_ID: 0.125 G_Rec: 0.319 D_GP: 0.034 D_real: 1.003 D_fake: 0.888 +(epoch: 190, iters: 2288, time: 0.064) G_GAN: 0.224 G_GAN_Feat: 0.786 G_ID: 0.182 G_Rec: 0.381 D_GP: 0.027 D_real: 0.986 D_fake: 0.776 +(epoch: 190, iters: 2688, time: 0.064) G_GAN: 0.173 G_GAN_Feat: 0.671 G_ID: 0.117 G_Rec: 0.301 D_GP: 0.053 D_real: 0.988 D_fake: 0.828 +(epoch: 190, iters: 3088, time: 0.064) G_GAN: 0.185 G_GAN_Feat: 0.803 G_ID: 0.208 G_Rec: 0.365 D_GP: 0.062 D_real: 0.823 D_fake: 0.816 +(epoch: 190, iters: 3488, time: 0.064) G_GAN: 0.314 G_GAN_Feat: 0.736 G_ID: 0.139 G_Rec: 0.303 D_GP: 0.077 D_real: 0.947 D_fake: 0.692 +(epoch: 190, iters: 3888, time: 0.064) G_GAN: 0.660 G_GAN_Feat: 0.843 G_ID: 0.174 G_Rec: 0.380 D_GP: 0.025 D_real: 1.362 D_fake: 0.375 +(epoch: 190, iters: 4288, time: 0.064) G_GAN: 0.431 G_GAN_Feat: 0.708 G_ID: 0.125 G_Rec: 0.306 D_GP: 0.034 D_real: 1.266 D_fake: 0.603 +(epoch: 190, iters: 4688, time: 0.064) G_GAN: 0.173 G_GAN_Feat: 0.888 G_ID: 0.208 G_Rec: 0.372 D_GP: 0.032 D_real: 0.838 D_fake: 0.827 +(epoch: 190, iters: 5088, time: 0.064) G_GAN: 0.192 G_GAN_Feat: 0.938 G_ID: 0.151 G_Rec: 0.303 D_GP: 0.060 D_real: 0.536 D_fake: 0.808 +(epoch: 190, iters: 5488, time: 0.064) G_GAN: 0.641 G_GAN_Feat: 0.881 G_ID: 0.190 G_Rec: 0.397 D_GP: 0.026 D_real: 1.291 D_fake: 0.373 +(epoch: 190, iters: 5888, time: 0.064) G_GAN: 0.459 G_GAN_Feat: 0.986 G_ID: 0.172 G_Rec: 0.336 D_GP: 0.079 D_real: 0.994 D_fake: 0.697 +(epoch: 190, iters: 6288, time: 0.064) G_GAN: 0.885 G_GAN_Feat: 0.911 G_ID: 0.196 G_Rec: 0.406 D_GP: 0.029 D_real: 1.648 D_fake: 0.222 +(epoch: 190, iters: 6688, time: 0.064) G_GAN: 0.584 G_GAN_Feat: 1.004 G_ID: 0.140 G_Rec: 0.363 D_GP: 0.085 D_real: 0.770 D_fake: 0.485 +(epoch: 190, iters: 7088, time: 0.064) G_GAN: 0.655 G_GAN_Feat: 0.926 G_ID: 0.176 G_Rec: 0.404 D_GP: 0.030 D_real: 1.265 D_fake: 0.354 +(epoch: 190, iters: 7488, time: 0.064) G_GAN: 0.154 G_GAN_Feat: 0.823 G_ID: 0.144 G_Rec: 0.311 D_GP: 0.064 D_real: 0.724 D_fake: 0.846 +(epoch: 190, iters: 7888, time: 0.064) G_GAN: 0.445 G_GAN_Feat: 0.848 G_ID: 0.206 G_Rec: 0.400 D_GP: 0.025 D_real: 1.144 D_fake: 0.557 +(epoch: 190, iters: 8288, time: 0.064) G_GAN: 0.273 G_GAN_Feat: 0.775 G_ID: 0.124 G_Rec: 0.337 D_GP: 0.040 D_real: 1.012 D_fake: 0.727 +(epoch: 191, iters: 80, time: 0.064) G_GAN: 0.682 G_GAN_Feat: 1.216 G_ID: 0.200 G_Rec: 0.454 D_GP: 0.277 D_real: 0.460 D_fake: 0.374 +(epoch: 191, iters: 480, time: 0.064) G_GAN: 0.289 G_GAN_Feat: 0.695 G_ID: 0.138 G_Rec: 0.369 D_GP: 0.021 D_real: 1.166 D_fake: 0.711 +(epoch: 191, iters: 880, time: 0.064) G_GAN: 0.448 G_GAN_Feat: 0.843 G_ID: 0.185 G_Rec: 0.381 D_GP: 0.028 D_real: 1.138 D_fake: 0.556 +(epoch: 191, iters: 1280, time: 0.064) G_GAN: 0.052 G_GAN_Feat: 0.824 G_ID: 0.142 G_Rec: 0.328 D_GP: 0.106 D_real: 0.468 D_fake: 0.948 +(epoch: 191, iters: 1680, time: 0.064) G_GAN: 0.391 G_GAN_Feat: 0.829 G_ID: 0.169 G_Rec: 0.377 D_GP: 0.022 D_real: 1.153 D_fake: 0.609 +(epoch: 191, iters: 2080, time: 0.064) G_GAN: 0.238 G_GAN_Feat: 0.831 G_ID: 0.136 G_Rec: 0.389 D_GP: 0.064 D_real: 0.936 D_fake: 0.765 +(epoch: 191, iters: 2480, time: 0.064) G_GAN: 0.514 G_GAN_Feat: 0.817 G_ID: 0.202 G_Rec: 0.390 D_GP: 0.029 D_real: 1.281 D_fake: 0.492 +(epoch: 191, iters: 2880, time: 0.064) G_GAN: 0.359 G_GAN_Feat: 0.895 G_ID: 0.144 G_Rec: 0.367 D_GP: 0.140 D_real: 0.548 D_fake: 0.655 +(epoch: 191, iters: 3280, time: 0.064) G_GAN: 0.374 G_GAN_Feat: 1.096 G_ID: 0.157 G_Rec: 0.375 D_GP: 0.047 D_real: 0.571 D_fake: 0.627 +(epoch: 191, iters: 3680, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.826 G_ID: 0.131 G_Rec: 0.320 D_GP: 0.072 D_real: 1.161 D_fake: 0.672 +(epoch: 191, iters: 4080, time: 0.064) G_GAN: 0.435 G_GAN_Feat: 0.936 G_ID: 0.193 G_Rec: 0.396 D_GP: 0.031 D_real: 1.106 D_fake: 0.568 +(epoch: 191, iters: 4480, time: 0.064) G_GAN: 0.085 G_GAN_Feat: 0.794 G_ID: 0.124 G_Rec: 0.324 D_GP: 0.045 D_real: 0.640 D_fake: 0.915 +(epoch: 191, iters: 4880, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 1.117 G_ID: 0.195 G_Rec: 0.454 D_GP: 2.094 D_real: 0.499 D_fake: 0.652 +(epoch: 191, iters: 5280, time: 0.064) G_GAN: 0.247 G_GAN_Feat: 0.601 G_ID: 0.137 G_Rec: 0.465 D_GP: 0.018 D_real: 1.230 D_fake: 0.753 +(epoch: 191, iters: 5680, time: 0.064) G_GAN: 0.380 G_GAN_Feat: 0.764 G_ID: 0.198 G_Rec: 0.405 D_GP: 0.019 D_real: 1.091 D_fake: 0.621 +(epoch: 191, iters: 6080, time: 0.064) G_GAN: 0.171 G_GAN_Feat: 0.693 G_ID: 0.140 G_Rec: 0.331 D_GP: 0.037 D_real: 0.940 D_fake: 0.829 +(epoch: 191, iters: 6480, time: 0.064) G_GAN: 0.232 G_GAN_Feat: 1.013 G_ID: 0.186 G_Rec: 0.404 D_GP: 0.093 D_real: 0.552 D_fake: 0.769 +(epoch: 191, iters: 6880, time: 0.064) G_GAN: 0.285 G_GAN_Feat: 0.746 G_ID: 0.143 G_Rec: 0.314 D_GP: 0.059 D_real: 0.927 D_fake: 0.715 +(epoch: 191, iters: 7280, time: 0.064) G_GAN: 0.656 G_GAN_Feat: 0.981 G_ID: 0.205 G_Rec: 0.426 D_GP: 0.059 D_real: 1.085 D_fake: 0.430 +(epoch: 191, iters: 7680, time: 0.064) G_GAN: 0.438 G_GAN_Feat: 0.776 G_ID: 0.151 G_Rec: 0.351 D_GP: 0.028 D_real: 1.386 D_fake: 0.575 +(epoch: 191, iters: 8080, time: 0.064) G_GAN: 0.093 G_GAN_Feat: 0.950 G_ID: 0.203 G_Rec: 0.371 D_GP: 0.076 D_real: 0.729 D_fake: 0.908 +(epoch: 191, iters: 8480, time: 0.064) G_GAN: 0.217 G_GAN_Feat: 0.749 G_ID: 0.132 G_Rec: 0.310 D_GP: 0.040 D_real: 0.964 D_fake: 0.784 +(epoch: 192, iters: 272, time: 0.064) G_GAN: 0.495 G_GAN_Feat: 0.823 G_ID: 0.192 G_Rec: 0.391 D_GP: 0.022 D_real: 1.333 D_fake: 0.508 +(epoch: 192, iters: 672, time: 0.064) G_GAN: 0.411 G_GAN_Feat: 0.803 G_ID: 0.146 G_Rec: 0.323 D_GP: 0.070 D_real: 1.019 D_fake: 0.593 +(epoch: 192, iters: 1072, time: 0.064) G_GAN: 0.557 G_GAN_Feat: 0.959 G_ID: 0.182 G_Rec: 0.418 D_GP: 0.037 D_real: 1.019 D_fake: 0.448 +(epoch: 192, iters: 1472, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 0.732 G_ID: 0.139 G_Rec: 0.336 D_GP: 0.040 D_real: 1.122 D_fake: 0.665 +(epoch: 192, iters: 1872, time: 0.064) G_GAN: 0.483 G_GAN_Feat: 0.811 G_ID: 0.188 G_Rec: 0.396 D_GP: 0.025 D_real: 1.161 D_fake: 0.517 +(epoch: 192, iters: 2272, time: 0.064) G_GAN: 0.230 G_GAN_Feat: 0.646 G_ID: 0.138 G_Rec: 0.285 D_GP: 0.028 D_real: 1.097 D_fake: 0.770 +(epoch: 192, iters: 2672, time: 0.064) G_GAN: 0.347 G_GAN_Feat: 1.044 G_ID: 0.196 G_Rec: 0.443 D_GP: 0.112 D_real: 0.568 D_fake: 0.654 +(epoch: 192, iters: 3072, time: 0.064) G_GAN: 0.233 G_GAN_Feat: 0.663 G_ID: 0.139 G_Rec: 0.330 D_GP: 0.042 D_real: 1.136 D_fake: 0.767 +(epoch: 192, iters: 3472, time: 0.064) G_GAN: 0.700 G_GAN_Feat: 0.928 G_ID: 0.185 G_Rec: 0.415 D_GP: 0.036 D_real: 1.219 D_fake: 0.334 +(epoch: 192, iters: 3872, time: 0.064) G_GAN: 0.285 G_GAN_Feat: 0.757 G_ID: 0.144 G_Rec: 0.321 D_GP: 0.060 D_real: 1.014 D_fake: 0.715 +(epoch: 192, iters: 4272, time: 0.064) G_GAN: 0.363 G_GAN_Feat: 1.098 G_ID: 0.204 G_Rec: 0.450 D_GP: 0.202 D_real: 0.338 D_fake: 0.638 +(epoch: 192, iters: 4672, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.683 G_ID: 0.126 G_Rec: 0.309 D_GP: 0.022 D_real: 1.166 D_fake: 0.744 +(epoch: 192, iters: 5072, time: 0.064) G_GAN: 0.387 G_GAN_Feat: 0.862 G_ID: 0.235 G_Rec: 0.392 D_GP: 0.030 D_real: 1.022 D_fake: 0.613 +(epoch: 192, iters: 5472, time: 0.064) G_GAN: 0.454 G_GAN_Feat: 0.721 G_ID: 0.128 G_Rec: 0.315 D_GP: 0.040 D_real: 1.260 D_fake: 0.559 +(epoch: 192, iters: 5872, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.873 G_ID: 0.185 G_Rec: 0.384 D_GP: 0.024 D_real: 0.961 D_fake: 0.669 +(epoch: 192, iters: 6272, time: 0.064) G_GAN: 0.267 G_GAN_Feat: 0.777 G_ID: 0.139 G_Rec: 0.312 D_GP: 0.035 D_real: 1.029 D_fake: 0.739 +(epoch: 192, iters: 6672, time: 0.064) G_GAN: 0.489 G_GAN_Feat: 0.987 G_ID: 0.216 G_Rec: 0.429 D_GP: 0.054 D_real: 0.924 D_fake: 0.517 +(epoch: 192, iters: 7072, time: 0.064) G_GAN: -0.049 G_GAN_Feat: 1.017 G_ID: 0.144 G_Rec: 0.431 D_GP: 0.291 D_real: 0.382 D_fake: 1.051 +(epoch: 192, iters: 7472, time: 0.064) G_GAN: 0.268 G_GAN_Feat: 0.869 G_ID: 0.200 G_Rec: 0.402 D_GP: 0.024 D_real: 1.069 D_fake: 0.733 +(epoch: 192, iters: 7872, time: 0.064) G_GAN: 0.381 G_GAN_Feat: 0.656 G_ID: 0.172 G_Rec: 0.281 D_GP: 0.027 D_real: 1.297 D_fake: 0.621 +(epoch: 192, iters: 8272, time: 0.064) G_GAN: 0.540 G_GAN_Feat: 0.970 G_ID: 0.205 G_Rec: 0.434 D_GP: 0.037 D_real: 1.114 D_fake: 0.504 +(epoch: 193, iters: 64, time: 0.064) G_GAN: 0.264 G_GAN_Feat: 0.708 G_ID: 0.136 G_Rec: 0.291 D_GP: 0.025 D_real: 1.148 D_fake: 0.736 +(epoch: 193, iters: 464, time: 0.064) G_GAN: 0.486 G_GAN_Feat: 0.830 G_ID: 0.208 G_Rec: 0.350 D_GP: 0.026 D_real: 1.205 D_fake: 0.514 +(epoch: 193, iters: 864, time: 0.064) G_GAN: 0.207 G_GAN_Feat: 0.630 G_ID: 0.137 G_Rec: 0.307 D_GP: 0.020 D_real: 1.211 D_fake: 0.794 +(epoch: 193, iters: 1264, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 0.794 G_ID: 0.195 G_Rec: 0.391 D_GP: 0.024 D_real: 1.067 D_fake: 0.689 +(epoch: 193, iters: 1664, time: 0.064) G_GAN: 0.145 G_GAN_Feat: 0.664 G_ID: 0.130 G_Rec: 0.312 D_GP: 0.029 D_real: 1.048 D_fake: 0.855 +(epoch: 193, iters: 2064, time: 0.064) G_GAN: 0.368 G_GAN_Feat: 0.869 G_ID: 0.180 G_Rec: 0.404 D_GP: 0.034 D_real: 0.943 D_fake: 0.634 +(epoch: 193, iters: 2464, time: 0.064) G_GAN: -0.166 G_GAN_Feat: 0.827 G_ID: 0.157 G_Rec: 0.367 D_GP: 0.051 D_real: 0.430 D_fake: 1.168 +(epoch: 193, iters: 2864, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.951 G_ID: 0.192 G_Rec: 0.383 D_GP: 0.057 D_real: 0.758 D_fake: 0.723 +(epoch: 193, iters: 3264, time: 0.064) G_GAN: 0.323 G_GAN_Feat: 1.028 G_ID: 0.157 G_Rec: 0.322 D_GP: 0.047 D_real: 0.404 D_fake: 0.711 +(epoch: 193, iters: 3664, time: 0.064) G_GAN: 0.665 G_GAN_Feat: 0.891 G_ID: 0.192 G_Rec: 0.399 D_GP: 0.030 D_real: 1.254 D_fake: 0.347 +(epoch: 193, iters: 4064, time: 0.064) G_GAN: 0.231 G_GAN_Feat: 0.757 G_ID: 0.136 G_Rec: 0.333 D_GP: 0.035 D_real: 0.960 D_fake: 0.769 +(epoch: 193, iters: 4464, time: 0.064) G_GAN: 0.729 G_GAN_Feat: 0.905 G_ID: 0.196 G_Rec: 0.387 D_GP: 0.027 D_real: 1.491 D_fake: 0.299 +(epoch: 193, iters: 4864, time: 0.064) G_GAN: -0.100 G_GAN_Feat: 0.749 G_ID: 0.156 G_Rec: 0.331 D_GP: 0.060 D_real: 0.627 D_fake: 1.100 +(epoch: 193, iters: 5264, time: 0.064) G_GAN: 0.562 G_GAN_Feat: 0.970 G_ID: 0.180 G_Rec: 0.382 D_GP: 0.096 D_real: 0.826 D_fake: 0.461 +(epoch: 193, iters: 5664, time: 0.064) G_GAN: 0.022 G_GAN_Feat: 0.742 G_ID: 0.157 G_Rec: 0.329 D_GP: 0.032 D_real: 0.911 D_fake: 0.978 +(epoch: 193, iters: 6064, time: 0.064) G_GAN: 0.579 G_GAN_Feat: 1.055 G_ID: 0.211 G_Rec: 0.417 D_GP: 0.067 D_real: 0.630 D_fake: 0.430 +(epoch: 193, iters: 6464, time: 0.064) G_GAN: 0.143 G_GAN_Feat: 0.966 G_ID: 0.160 G_Rec: 0.373 D_GP: 0.441 D_real: 0.368 D_fake: 0.857 +(epoch: 193, iters: 6864, time: 0.064) G_GAN: 0.573 G_GAN_Feat: 1.010 G_ID: 0.185 G_Rec: 0.420 D_GP: 0.074 D_real: 0.889 D_fake: 0.452 +(epoch: 193, iters: 7264, time: 0.064) G_GAN: 0.351 G_GAN_Feat: 0.702 G_ID: 0.141 G_Rec: 0.341 D_GP: 0.022 D_real: 1.289 D_fake: 0.649 +(epoch: 193, iters: 7664, time: 0.064) G_GAN: 0.598 G_GAN_Feat: 0.860 G_ID: 0.165 G_Rec: 0.390 D_GP: 0.030 D_real: 1.335 D_fake: 0.420 +(epoch: 193, iters: 8064, time: 0.064) G_GAN: 0.152 G_GAN_Feat: 0.715 G_ID: 0.128 G_Rec: 0.298 D_GP: 0.027 D_real: 0.934 D_fake: 0.848 +(epoch: 193, iters: 8464, time: 0.064) G_GAN: 0.663 G_GAN_Feat: 0.867 G_ID: 0.176 G_Rec: 0.401 D_GP: 0.023 D_real: 1.396 D_fake: 0.344 +(epoch: 194, iters: 256, time: 0.064) G_GAN: 0.200 G_GAN_Feat: 0.686 G_ID: 0.155 G_Rec: 0.296 D_GP: 0.025 D_real: 1.140 D_fake: 0.800 +(epoch: 194, iters: 656, time: 0.064) G_GAN: 0.389 G_GAN_Feat: 0.951 G_ID: 0.170 G_Rec: 0.381 D_GP: 0.088 D_real: 0.755 D_fake: 0.612 +(epoch: 194, iters: 1056, time: 0.064) G_GAN: 0.559 G_GAN_Feat: 0.798 G_ID: 0.154 G_Rec: 0.326 D_GP: 0.090 D_real: 1.117 D_fake: 0.455 +(epoch: 194, iters: 1456, time: 0.064) G_GAN: 0.591 G_GAN_Feat: 0.961 G_ID: 0.176 G_Rec: 0.403 D_GP: 0.040 D_real: 1.165 D_fake: 0.424 +(epoch: 194, iters: 1856, time: 0.064) G_GAN: 0.177 G_GAN_Feat: 0.779 G_ID: 0.152 G_Rec: 0.323 D_GP: 0.071 D_real: 0.828 D_fake: 0.824 +(epoch: 194, iters: 2256, time: 0.064) G_GAN: 0.388 G_GAN_Feat: 0.821 G_ID: 0.188 G_Rec: 0.374 D_GP: 0.023 D_real: 1.087 D_fake: 0.620 +(epoch: 194, iters: 2656, time: 0.064) G_GAN: 0.070 G_GAN_Feat: 0.754 G_ID: 0.135 G_Rec: 0.310 D_GP: 0.032 D_real: 0.790 D_fake: 0.930 +(epoch: 194, iters: 3056, time: 0.064) G_GAN: 0.575 G_GAN_Feat: 0.967 G_ID: 0.170 G_Rec: 0.447 D_GP: 0.043 D_real: 1.133 D_fake: 0.438 +(epoch: 194, iters: 3456, time: 0.064) G_GAN: 0.392 G_GAN_Feat: 0.711 G_ID: 0.137 G_Rec: 0.307 D_GP: 0.029 D_real: 1.206 D_fake: 0.649 +(epoch: 194, iters: 3856, time: 0.064) G_GAN: 0.805 G_GAN_Feat: 0.961 G_ID: 0.178 G_Rec: 0.384 D_GP: 0.034 D_real: 1.444 D_fake: 0.251 +(epoch: 194, iters: 4256, time: 0.064) G_GAN: 0.103 G_GAN_Feat: 0.832 G_ID: 0.155 G_Rec: 0.319 D_GP: 0.040 D_real: 0.771 D_fake: 0.897 +(epoch: 194, iters: 4656, time: 0.064) G_GAN: 0.609 G_GAN_Feat: 0.844 G_ID: 0.168 G_Rec: 0.350 D_GP: 0.032 D_real: 1.291 D_fake: 0.407 +(epoch: 194, iters: 5056, time: 0.064) G_GAN: 0.392 G_GAN_Feat: 0.775 G_ID: 0.134 G_Rec: 0.298 D_GP: 0.038 D_real: 1.144 D_fake: 0.608 +(epoch: 194, iters: 5456, time: 0.064) G_GAN: 0.588 G_GAN_Feat: 1.154 G_ID: 0.172 G_Rec: 0.401 D_GP: 0.068 D_real: 0.476 D_fake: 0.425 +(epoch: 194, iters: 5856, time: 0.064) G_GAN: 0.429 G_GAN_Feat: 0.891 G_ID: 0.137 G_Rec: 0.301 D_GP: 0.045 D_real: 0.978 D_fake: 0.572 +(epoch: 194, iters: 6256, time: 0.064) G_GAN: 0.437 G_GAN_Feat: 0.832 G_ID: 0.198 G_Rec: 0.421 D_GP: 0.025 D_real: 1.128 D_fake: 0.573 +(epoch: 194, iters: 6656, time: 0.064) G_GAN: -0.079 G_GAN_Feat: 0.744 G_ID: 0.162 G_Rec: 0.333 D_GP: 0.050 D_real: 0.686 D_fake: 1.079 +(epoch: 194, iters: 7056, time: 0.064) G_GAN: 0.328 G_GAN_Feat: 0.916 G_ID: 0.191 G_Rec: 0.397 D_GP: 0.046 D_real: 0.839 D_fake: 0.678 +(epoch: 194, iters: 7456, time: 0.064) G_GAN: 0.073 G_GAN_Feat: 0.738 G_ID: 0.135 G_Rec: 0.311 D_GP: 0.053 D_real: 0.875 D_fake: 0.927 +(epoch: 194, iters: 7856, time: 0.064) G_GAN: 0.343 G_GAN_Feat: 1.008 G_ID: 0.189 G_Rec: 0.414 D_GP: 0.037 D_real: 0.682 D_fake: 0.659 +(epoch: 194, iters: 8256, time: 0.064) G_GAN: 0.268 G_GAN_Feat: 0.632 G_ID: 0.142 G_Rec: 0.268 D_GP: 0.026 D_real: 1.204 D_fake: 0.732 +(epoch: 195, iters: 48, time: 0.064) G_GAN: 0.270 G_GAN_Feat: 1.022 G_ID: 0.181 G_Rec: 0.404 D_GP: 0.086 D_real: 0.542 D_fake: 0.732 +(epoch: 195, iters: 448, time: 0.064) G_GAN: 0.479 G_GAN_Feat: 0.790 G_ID: 0.159 G_Rec: 0.312 D_GP: 0.034 D_real: 1.196 D_fake: 0.533 +(epoch: 195, iters: 848, time: 0.064) G_GAN: 0.445 G_GAN_Feat: 1.128 G_ID: 0.199 G_Rec: 0.418 D_GP: 0.084 D_real: 0.372 D_fake: 0.558 +(epoch: 195, iters: 1248, time: 0.064) G_GAN: 0.357 G_GAN_Feat: 0.783 G_ID: 0.165 G_Rec: 0.338 D_GP: 0.047 D_real: 1.064 D_fake: 0.645 +(epoch: 195, iters: 1648, time: 0.064) G_GAN: 0.240 G_GAN_Feat: 0.997 G_ID: 0.200 G_Rec: 0.398 D_GP: 0.074 D_real: 0.450 D_fake: 0.762 +(epoch: 195, iters: 2048, time: 0.064) G_GAN: 0.427 G_GAN_Feat: 0.667 G_ID: 0.143 G_Rec: 0.316 D_GP: 0.021 D_real: 1.393 D_fake: 0.574 +(epoch: 195, iters: 2448, time: 0.064) G_GAN: 0.215 G_GAN_Feat: 0.892 G_ID: 0.180 G_Rec: 0.418 D_GP: 0.024 D_real: 1.006 D_fake: 0.785 +(epoch: 195, iters: 2848, time: 0.064) G_GAN: 0.192 G_GAN_Feat: 0.746 G_ID: 0.137 G_Rec: 0.295 D_GP: 0.027 D_real: 1.059 D_fake: 0.808 +(epoch: 195, iters: 3248, time: 0.064) G_GAN: 0.481 G_GAN_Feat: 0.898 G_ID: 0.185 G_Rec: 0.431 D_GP: 0.022 D_real: 1.198 D_fake: 0.537 +(epoch: 195, iters: 3648, time: 0.064) G_GAN: 0.020 G_GAN_Feat: 0.697 G_ID: 0.126 G_Rec: 0.288 D_GP: 0.025 D_real: 0.871 D_fake: 0.980 +(epoch: 195, iters: 4048, time: 0.064) G_GAN: 0.448 G_GAN_Feat: 0.941 G_ID: 0.180 G_Rec: 0.392 D_GP: 0.074 D_real: 0.814 D_fake: 0.559 +(epoch: 195, iters: 4448, time: 0.064) G_GAN: 0.179 G_GAN_Feat: 0.754 G_ID: 0.153 G_Rec: 0.311 D_GP: 0.028 D_real: 1.036 D_fake: 0.823 +(epoch: 195, iters: 4848, time: 0.064) G_GAN: 0.424 G_GAN_Feat: 0.935 G_ID: 0.178 G_Rec: 0.358 D_GP: 0.045 D_real: 0.848 D_fake: 0.577 +(epoch: 195, iters: 5248, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.885 G_ID: 0.159 G_Rec: 0.341 D_GP: 0.028 D_real: 0.994 D_fake: 0.670 +(epoch: 195, iters: 5648, time: 0.064) G_GAN: 0.238 G_GAN_Feat: 1.153 G_ID: 0.166 G_Rec: 0.399 D_GP: 0.481 D_real: 0.379 D_fake: 0.768 +(epoch: 195, iters: 6048, time: 0.064) G_GAN: 0.324 G_GAN_Feat: 0.642 G_ID: 0.137 G_Rec: 0.350 D_GP: 0.020 D_real: 1.278 D_fake: 0.676 +(epoch: 195, iters: 6448, time: 0.064) G_GAN: 0.712 G_GAN_Feat: 1.001 G_ID: 0.192 G_Rec: 0.450 D_GP: 0.054 D_real: 1.007 D_fake: 0.311 +(epoch: 195, iters: 6848, time: 0.064) G_GAN: 0.140 G_GAN_Feat: 0.909 G_ID: 0.140 G_Rec: 0.309 D_GP: 0.037 D_real: 0.472 D_fake: 0.861 +(epoch: 195, iters: 7248, time: 0.064) G_GAN: 0.409 G_GAN_Feat: 0.881 G_ID: 0.168 G_Rec: 0.422 D_GP: 0.033 D_real: 1.044 D_fake: 0.593 +(epoch: 195, iters: 7648, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.907 G_ID: 0.147 G_Rec: 0.353 D_GP: 0.198 D_real: 0.858 D_fake: 0.716 +(epoch: 195, iters: 8048, time: 0.064) G_GAN: 0.656 G_GAN_Feat: 0.871 G_ID: 0.198 G_Rec: 0.390 D_GP: 0.030 D_real: 1.399 D_fake: 0.380 +(epoch: 195, iters: 8448, time: 0.064) G_GAN: 0.135 G_GAN_Feat: 0.703 G_ID: 0.140 G_Rec: 0.275 D_GP: 0.027 D_real: 0.976 D_fake: 0.865 +(epoch: 196, iters: 240, time: 0.064) G_GAN: 0.351 G_GAN_Feat: 0.827 G_ID: 0.195 G_Rec: 0.395 D_GP: 0.030 D_real: 1.175 D_fake: 0.651 +(epoch: 196, iters: 640, time: 0.064) G_GAN: -0.215 G_GAN_Feat: 0.917 G_ID: 0.164 G_Rec: 0.363 D_GP: 0.057 D_real: 0.903 D_fake: 1.215 +(epoch: 196, iters: 1040, time: 0.064) G_GAN: 0.411 G_GAN_Feat: 0.923 G_ID: 0.182 G_Rec: 0.418 D_GP: 0.031 D_real: 1.123 D_fake: 0.596 +(epoch: 196, iters: 1440, time: 0.064) G_GAN: -0.116 G_GAN_Feat: 0.741 G_ID: 0.131 G_Rec: 0.333 D_GP: 0.110 D_real: 0.654 D_fake: 1.116 +(epoch: 196, iters: 1840, time: 0.064) G_GAN: 0.231 G_GAN_Feat: 0.935 G_ID: 0.194 G_Rec: 0.400 D_GP: 0.031 D_real: 1.093 D_fake: 0.769 +(epoch: 196, iters: 2240, time: 0.064) G_GAN: 0.420 G_GAN_Feat: 0.818 G_ID: 0.118 G_Rec: 0.337 D_GP: 0.054 D_real: 1.179 D_fake: 0.697 +(epoch: 196, iters: 2640, time: 0.064) G_GAN: 0.315 G_GAN_Feat: 0.846 G_ID: 0.180 G_Rec: 0.429 D_GP: 0.026 D_real: 0.956 D_fake: 0.694 +(epoch: 196, iters: 3040, time: 0.064) G_GAN: 0.158 G_GAN_Feat: 0.633 G_ID: 0.137 G_Rec: 0.317 D_GP: 0.024 D_real: 1.079 D_fake: 0.842 +(epoch: 196, iters: 3440, time: 0.064) G_GAN: 0.285 G_GAN_Feat: 1.062 G_ID: 0.192 G_Rec: 0.460 D_GP: 0.167 D_real: 0.597 D_fake: 0.732 +(epoch: 196, iters: 3840, time: 0.064) G_GAN: -0.087 G_GAN_Feat: 0.767 G_ID: 0.139 G_Rec: 0.333 D_GP: 0.044 D_real: 0.730 D_fake: 1.087 +(epoch: 196, iters: 4240, time: 0.064) G_GAN: 0.503 G_GAN_Feat: 0.780 G_ID: 0.154 G_Rec: 0.384 D_GP: 0.020 D_real: 1.366 D_fake: 0.514 +(epoch: 196, iters: 4640, time: 0.064) G_GAN: 0.159 G_GAN_Feat: 0.744 G_ID: 0.159 G_Rec: 0.316 D_GP: 0.027 D_real: 0.972 D_fake: 0.841 +(epoch: 196, iters: 5040, time: 0.064) G_GAN: 0.533 G_GAN_Feat: 0.893 G_ID: 0.179 G_Rec: 0.419 D_GP: 0.026 D_real: 1.285 D_fake: 0.517 +(epoch: 196, iters: 5440, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.850 G_ID: 0.139 G_Rec: 0.341 D_GP: 0.057 D_real: 0.727 D_fake: 0.752 +(epoch: 196, iters: 5840, time: 0.064) G_GAN: 0.439 G_GAN_Feat: 1.166 G_ID: 0.192 G_Rec: 0.420 D_GP: 0.074 D_real: 0.659 D_fake: 0.616 +(epoch: 196, iters: 6240, time: 0.064) G_GAN: 0.213 G_GAN_Feat: 0.593 G_ID: 0.158 G_Rec: 0.289 D_GP: 0.018 D_real: 1.159 D_fake: 0.787 +(epoch: 196, iters: 6640, time: 0.064) G_GAN: 0.274 G_GAN_Feat: 0.857 G_ID: 0.173 G_Rec: 0.431 D_GP: 0.023 D_real: 0.989 D_fake: 0.726 +(epoch: 196, iters: 7040, time: 0.064) G_GAN: 0.127 G_GAN_Feat: 1.115 G_ID: 0.130 G_Rec: 0.378 D_GP: 0.054 D_real: 1.326 D_fake: 0.875 +(epoch: 196, iters: 7440, time: 0.064) G_GAN: 0.125 G_GAN_Feat: 0.805 G_ID: 0.184 G_Rec: 0.404 D_GP: 0.022 D_real: 0.936 D_fake: 0.879 +(epoch: 196, iters: 7840, time: 0.064) G_GAN: -0.015 G_GAN_Feat: 0.700 G_ID: 0.139 G_Rec: 0.304 D_GP: 0.037 D_real: 0.829 D_fake: 1.016 +(epoch: 196, iters: 8240, time: 0.064) G_GAN: 0.313 G_GAN_Feat: 0.808 G_ID: 0.190 G_Rec: 0.358 D_GP: 0.035 D_real: 1.111 D_fake: 0.688 +(epoch: 197, iters: 32, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.973 G_ID: 0.152 G_Rec: 0.323 D_GP: 0.126 D_real: 1.055 D_fake: 0.755 +(epoch: 197, iters: 432, time: 0.064) G_GAN: 0.473 G_GAN_Feat: 0.844 G_ID: 0.221 G_Rec: 0.374 D_GP: 0.023 D_real: 1.237 D_fake: 0.534 +(epoch: 197, iters: 832, time: 0.064) G_GAN: 0.196 G_GAN_Feat: 0.814 G_ID: 0.151 G_Rec: 0.300 D_GP: 0.071 D_real: 0.671 D_fake: 0.805 +(epoch: 197, iters: 1232, time: 0.064) G_GAN: 0.332 G_GAN_Feat: 0.824 G_ID: 0.220 G_Rec: 0.410 D_GP: 0.024 D_real: 1.064 D_fake: 0.673 +(epoch: 197, iters: 1632, time: 0.064) G_GAN: 0.062 G_GAN_Feat: 0.668 G_ID: 0.116 G_Rec: 0.333 D_GP: 0.020 D_real: 0.973 D_fake: 0.938 +(epoch: 197, iters: 2032, time: 0.064) G_GAN: 0.236 G_GAN_Feat: 0.863 G_ID: 0.190 G_Rec: 0.388 D_GP: 0.046 D_real: 0.882 D_fake: 0.764 +(epoch: 197, iters: 2432, time: 0.064) G_GAN: 0.023 G_GAN_Feat: 0.827 G_ID: 0.146 G_Rec: 0.332 D_GP: 0.145 D_real: 0.507 D_fake: 0.977 +(epoch: 197, iters: 2832, time: 0.064) G_GAN: 0.299 G_GAN_Feat: 0.968 G_ID: 0.185 G_Rec: 0.427 D_GP: 0.033 D_real: 0.836 D_fake: 0.701 +(epoch: 197, iters: 3232, time: 0.064) G_GAN: 0.437 G_GAN_Feat: 0.655 G_ID: 0.129 G_Rec: 0.354 D_GP: 0.028 D_real: 1.331 D_fake: 0.563 +(epoch: 197, iters: 3632, time: 0.064) G_GAN: 0.622 G_GAN_Feat: 1.025 G_ID: 0.206 G_Rec: 0.414 D_GP: 0.058 D_real: 0.803 D_fake: 0.402 +(epoch: 197, iters: 4032, time: 0.064) G_GAN: 0.423 G_GAN_Feat: 0.744 G_ID: 0.146 G_Rec: 0.308 D_GP: 0.025 D_real: 1.326 D_fake: 0.582 +(epoch: 197, iters: 4432, time: 0.064) G_GAN: 0.317 G_GAN_Feat: 0.924 G_ID: 0.184 G_Rec: 0.413 D_GP: 0.027 D_real: 0.996 D_fake: 0.684 +(epoch: 197, iters: 4832, time: 0.064) G_GAN: 0.402 G_GAN_Feat: 0.712 G_ID: 0.129 G_Rec: 0.312 D_GP: 0.027 D_real: 1.289 D_fake: 0.617 +(epoch: 197, iters: 5232, time: 0.064) G_GAN: 0.691 G_GAN_Feat: 0.862 G_ID: 0.203 G_Rec: 0.380 D_GP: 0.027 D_real: 1.338 D_fake: 0.347 +(epoch: 197, iters: 5632, time: 0.064) G_GAN: 0.156 G_GAN_Feat: 0.677 G_ID: 0.168 G_Rec: 0.350 D_GP: 0.030 D_real: 1.035 D_fake: 0.844 +(epoch: 197, iters: 6032, time: 0.064) G_GAN: 0.700 G_GAN_Feat: 0.786 G_ID: 0.179 G_Rec: 0.381 D_GP: 0.025 D_real: 1.423 D_fake: 0.349 +(epoch: 197, iters: 6432, time: 0.064) G_GAN: 0.343 G_GAN_Feat: 0.674 G_ID: 0.129 G_Rec: 0.314 D_GP: 0.020 D_real: 1.254 D_fake: 0.658 +(epoch: 197, iters: 6832, time: 0.064) G_GAN: 0.134 G_GAN_Feat: 0.787 G_ID: 0.211 G_Rec: 0.420 D_GP: 0.033 D_real: 0.888 D_fake: 0.866 +(epoch: 197, iters: 7232, time: 0.064) G_GAN: 0.259 G_GAN_Feat: 0.682 G_ID: 0.136 G_Rec: 0.305 D_GP: 0.043 D_real: 1.130 D_fake: 0.743 +(epoch: 197, iters: 7632, time: 0.064) G_GAN: 0.412 G_GAN_Feat: 0.959 G_ID: 0.187 G_Rec: 0.402 D_GP: 0.159 D_real: 0.802 D_fake: 0.598 +(epoch: 197, iters: 8032, time: 0.064) G_GAN: 0.122 G_GAN_Feat: 0.810 G_ID: 0.152 G_Rec: 0.321 D_GP: 0.043 D_real: 0.793 D_fake: 0.879 +(epoch: 197, iters: 8432, time: 0.064) G_GAN: 0.395 G_GAN_Feat: 0.962 G_ID: 0.238 G_Rec: 0.389 D_GP: 0.043 D_real: 0.778 D_fake: 0.605 +(epoch: 198, iters: 224, time: 0.064) G_GAN: 0.079 G_GAN_Feat: 0.866 G_ID: 0.128 G_Rec: 0.343 D_GP: 0.052 D_real: 0.672 D_fake: 0.921 +(epoch: 198, iters: 624, time: 0.064) G_GAN: 0.036 G_GAN_Feat: 0.873 G_ID: 0.184 G_Rec: 0.393 D_GP: 0.035 D_real: 0.705 D_fake: 0.964 +(epoch: 198, iters: 1024, time: 0.064) G_GAN: 0.116 G_GAN_Feat: 0.953 G_ID: 0.124 G_Rec: 0.365 D_GP: 0.980 D_real: 0.376 D_fake: 0.885 +(epoch: 198, iters: 1424, time: 0.064) G_GAN: 0.545 G_GAN_Feat: 0.777 G_ID: 0.170 G_Rec: 0.363 D_GP: 0.021 D_real: 1.330 D_fake: 0.460 +(epoch: 198, iters: 1824, time: 0.064) G_GAN: 0.401 G_GAN_Feat: 0.633 G_ID: 0.121 G_Rec: 0.278 D_GP: 0.028 D_real: 1.307 D_fake: 0.601 +(epoch: 198, iters: 2224, time: 0.064) G_GAN: 0.444 G_GAN_Feat: 0.824 G_ID: 0.182 G_Rec: 0.369 D_GP: 0.035 D_real: 1.177 D_fake: 0.557 +(epoch: 198, iters: 2624, time: 0.064) G_GAN: 0.416 G_GAN_Feat: 0.765 G_ID: 0.144 G_Rec: 0.304 D_GP: 0.098 D_real: 1.102 D_fake: 0.586 +(epoch: 198, iters: 3024, time: 0.064) G_GAN: 0.377 G_GAN_Feat: 1.047 G_ID: 0.176 G_Rec: 0.426 D_GP: 0.162 D_real: 0.896 D_fake: 0.634 +(epoch: 198, iters: 3424, time: 0.064) G_GAN: -0.074 G_GAN_Feat: 0.803 G_ID: 0.121 G_Rec: 0.377 D_GP: 0.024 D_real: 0.800 D_fake: 1.074 +(epoch: 198, iters: 3824, time: 0.064) G_GAN: 0.436 G_GAN_Feat: 1.107 G_ID: 0.176 G_Rec: 0.391 D_GP: 0.246 D_real: 0.369 D_fake: 0.576 +(epoch: 198, iters: 4224, time: 0.064) G_GAN: 0.133 G_GAN_Feat: 0.746 G_ID: 0.132 G_Rec: 0.314 D_GP: 0.029 D_real: 1.013 D_fake: 0.867 +(epoch: 198, iters: 4624, time: 0.064) G_GAN: 0.563 G_GAN_Feat: 0.974 G_ID: 0.207 G_Rec: 0.408 D_GP: 0.031 D_real: 1.174 D_fake: 0.443 +(epoch: 198, iters: 5024, time: 0.064) G_GAN: 0.239 G_GAN_Feat: 0.671 G_ID: 0.130 G_Rec: 0.298 D_GP: 0.021 D_real: 1.173 D_fake: 0.761 +(epoch: 198, iters: 5424, time: 0.064) G_GAN: 0.253 G_GAN_Feat: 0.895 G_ID: 0.199 G_Rec: 0.437 D_GP: 0.080 D_real: 0.829 D_fake: 0.750 +(epoch: 198, iters: 5824, time: 0.064) G_GAN: 0.060 G_GAN_Feat: 0.742 G_ID: 0.115 G_Rec: 0.305 D_GP: 0.052 D_real: 0.847 D_fake: 0.940 +(epoch: 198, iters: 6224, time: 0.064) G_GAN: 0.514 G_GAN_Feat: 0.807 G_ID: 0.161 G_Rec: 0.375 D_GP: 0.023 D_real: 1.242 D_fake: 0.489 +(epoch: 198, iters: 6624, time: 0.064) G_GAN: 0.218 G_GAN_Feat: 0.683 G_ID: 0.137 G_Rec: 0.305 D_GP: 0.023 D_real: 1.110 D_fake: 0.782 +(epoch: 198, iters: 7024, time: 0.064) G_GAN: 0.268 G_GAN_Feat: 0.869 G_ID: 0.191 G_Rec: 0.388 D_GP: 0.024 D_real: 1.021 D_fake: 0.733 +(epoch: 198, iters: 7424, time: 0.064) G_GAN: 0.319 G_GAN_Feat: 0.847 G_ID: 0.140 G_Rec: 0.297 D_GP: 0.050 D_real: 0.775 D_fake: 0.684 +(epoch: 198, iters: 7824, time: 0.064) G_GAN: 0.265 G_GAN_Feat: 0.768 G_ID: 0.190 G_Rec: 0.401 D_GP: 0.022 D_real: 1.049 D_fake: 0.735 +(epoch: 198, iters: 8224, time: 0.064) G_GAN: 0.245 G_GAN_Feat: 0.586 G_ID: 0.134 G_Rec: 0.313 D_GP: 0.021 D_real: 1.250 D_fake: 0.755 +(epoch: 199, iters: 16, time: 0.064) G_GAN: 0.254 G_GAN_Feat: 0.712 G_ID: 0.163 G_Rec: 0.360 D_GP: 0.022 D_real: 1.104 D_fake: 0.749 +(epoch: 199, iters: 416, time: 0.064) G_GAN: 0.058 G_GAN_Feat: 0.619 G_ID: 0.198 G_Rec: 0.307 D_GP: 0.025 D_real: 1.056 D_fake: 0.942 +(epoch: 199, iters: 816, time: 0.064) G_GAN: 0.608 G_GAN_Feat: 0.807 G_ID: 0.166 G_Rec: 0.416 D_GP: 0.021 D_real: 1.313 D_fake: 0.423 +(epoch: 199, iters: 1216, time: 0.064) G_GAN: 0.223 G_GAN_Feat: 0.747 G_ID: 0.117 G_Rec: 0.288 D_GP: 0.030 D_real: 1.139 D_fake: 0.779 +(epoch: 199, iters: 1616, time: 0.064) G_GAN: 0.253 G_GAN_Feat: 0.884 G_ID: 0.188 G_Rec: 0.433 D_GP: 0.029 D_real: 0.988 D_fake: 0.747 +(epoch: 199, iters: 2016, time: 0.064) G_GAN: 0.146 G_GAN_Feat: 0.788 G_ID: 0.162 G_Rec: 0.307 D_GP: 0.049 D_real: 0.703 D_fake: 0.854 +(epoch: 199, iters: 2416, time: 0.064) G_GAN: 0.462 G_GAN_Feat: 0.714 G_ID: 0.195 G_Rec: 0.364 D_GP: 0.021 D_real: 1.217 D_fake: 0.539 +(epoch: 199, iters: 2816, time: 0.064) G_GAN: 0.053 G_GAN_Feat: 0.628 G_ID: 0.136 G_Rec: 0.297 D_GP: 0.030 D_real: 1.049 D_fake: 0.947 +(epoch: 199, iters: 3216, time: 0.064) G_GAN: 0.282 G_GAN_Feat: 0.793 G_ID: 0.188 G_Rec: 0.400 D_GP: 0.027 D_real: 1.076 D_fake: 0.718 +(epoch: 199, iters: 3616, time: 0.064) G_GAN: 0.433 G_GAN_Feat: 0.767 G_ID: 0.143 G_Rec: 0.349 D_GP: 0.040 D_real: 1.246 D_fake: 0.568 +(epoch: 199, iters: 4016, time: 0.064) G_GAN: 0.168 G_GAN_Feat: 0.855 G_ID: 0.182 G_Rec: 0.385 D_GP: 0.029 D_real: 0.842 D_fake: 0.833 +(epoch: 199, iters: 4416, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.717 G_ID: 0.136 G_Rec: 0.311 D_GP: 0.044 D_real: 1.147 D_fake: 0.720 +(epoch: 199, iters: 4816, time: 0.064) G_GAN: 0.476 G_GAN_Feat: 1.011 G_ID: 0.185 G_Rec: 0.422 D_GP: 0.052 D_real: 0.899 D_fake: 0.527 +(epoch: 199, iters: 5216, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.730 G_ID: 0.128 G_Rec: 0.307 D_GP: 0.028 D_real: 1.075 D_fake: 0.751 +(epoch: 199, iters: 5616, time: 0.064) G_GAN: 0.398 G_GAN_Feat: 0.830 G_ID: 0.180 G_Rec: 0.400 D_GP: 0.020 D_real: 1.123 D_fake: 0.603 +(epoch: 199, iters: 6016, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 0.602 G_ID: 0.133 G_Rec: 0.278 D_GP: 0.022 D_real: 1.254 D_fake: 0.688 +(epoch: 199, iters: 6416, time: 0.064) G_GAN: 0.330 G_GAN_Feat: 0.809 G_ID: 0.193 G_Rec: 0.396 D_GP: 0.036 D_real: 1.038 D_fake: 0.670 +(epoch: 199, iters: 6816, time: 0.064) G_GAN: 0.133 G_GAN_Feat: 0.749 G_ID: 0.138 G_Rec: 0.305 D_GP: 0.054 D_real: 1.007 D_fake: 0.867 +(epoch: 199, iters: 7216, time: 0.064) G_GAN: 0.553 G_GAN_Feat: 0.837 G_ID: 0.205 G_Rec: 0.388 D_GP: 0.020 D_real: 1.287 D_fake: 0.456 +(epoch: 199, iters: 7616, time: 0.064) G_GAN: 0.118 G_GAN_Feat: 0.701 G_ID: 0.128 G_Rec: 0.308 D_GP: 0.038 D_real: 1.019 D_fake: 0.882 +(epoch: 199, iters: 8016, time: 0.064) G_GAN: 0.615 G_GAN_Feat: 1.115 G_ID: 0.191 G_Rec: 0.451 D_GP: 0.090 D_real: 0.596 D_fake: 0.407 +(epoch: 199, iters: 8416, time: 0.064) G_GAN: 0.293 G_GAN_Feat: 0.685 G_ID: 0.140 G_Rec: 0.313 D_GP: 0.022 D_real: 1.228 D_fake: 0.709 +(epoch: 200, iters: 208, time: 0.064) G_GAN: 0.584 G_GAN_Feat: 1.043 G_ID: 0.197 G_Rec: 0.411 D_GP: 0.054 D_real: 0.665 D_fake: 0.438 +(epoch: 200, iters: 608, time: 0.064) G_GAN: 0.236 G_GAN_Feat: 0.598 G_ID: 0.137 G_Rec: 0.277 D_GP: 0.021 D_real: 1.199 D_fake: 0.764 +(epoch: 200, iters: 1008, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.796 G_ID: 0.209 G_Rec: 0.388 D_GP: 0.027 D_real: 1.000 D_fake: 0.723 +(epoch: 200, iters: 1408, time: 0.064) G_GAN: 0.014 G_GAN_Feat: 0.772 G_ID: 0.142 G_Rec: 0.338 D_GP: 0.053 D_real: 0.666 D_fake: 0.987 +(epoch: 200, iters: 1808, time: 0.064) G_GAN: 0.429 G_GAN_Feat: 0.997 G_ID: 0.189 G_Rec: 0.450 D_GP: 0.083 D_real: 0.664 D_fake: 0.575 +(epoch: 200, iters: 2208, time: 0.064) G_GAN: 0.303 G_GAN_Feat: 0.856 G_ID: 0.145 G_Rec: 0.312 D_GP: 0.061 D_real: 0.683 D_fake: 0.697 +(epoch: 200, iters: 2608, time: 0.064) G_GAN: 0.444 G_GAN_Feat: 0.866 G_ID: 0.183 G_Rec: 0.398 D_GP: 0.026 D_real: 1.174 D_fake: 0.567 +(epoch: 200, iters: 3008, time: 0.064) G_GAN: 0.082 G_GAN_Feat: 0.693 G_ID: 0.126 G_Rec: 0.308 D_GP: 0.024 D_real: 0.956 D_fake: 0.918 +(epoch: 200, iters: 3408, time: 0.064) G_GAN: 0.273 G_GAN_Feat: 0.992 G_ID: 0.183 G_Rec: 0.435 D_GP: 0.072 D_real: 0.699 D_fake: 0.727 +(epoch: 200, iters: 3808, time: 0.064) G_GAN: 0.418 G_GAN_Feat: 0.734 G_ID: 0.148 G_Rec: 0.291 D_GP: 0.025 D_real: 1.273 D_fake: 0.595 +(epoch: 200, iters: 4208, time: 0.064) G_GAN: 0.550 G_GAN_Feat: 0.900 G_ID: 0.188 G_Rec: 0.421 D_GP: 0.030 D_real: 1.239 D_fake: 0.465 +(epoch: 200, iters: 4608, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 1.008 G_ID: 0.149 G_Rec: 0.322 D_GP: 0.214 D_real: 0.368 D_fake: 0.732 +(epoch: 200, iters: 5008, time: 0.064) G_GAN: 0.559 G_GAN_Feat: 0.969 G_ID: 0.193 G_Rec: 0.485 D_GP: 0.025 D_real: 1.216 D_fake: 0.453 +(epoch: 200, iters: 5408, time: 0.064) G_GAN: 0.115 G_GAN_Feat: 0.648 G_ID: 0.128 G_Rec: 0.310 D_GP: 0.026 D_real: 1.082 D_fake: 0.888 +(epoch: 200, iters: 5808, time: 0.064) G_GAN: 0.445 G_GAN_Feat: 0.784 G_ID: 0.189 G_Rec: 0.376 D_GP: 0.029 D_real: 1.253 D_fake: 0.567 +(epoch: 200, iters: 6208, time: 0.064) G_GAN: 0.217 G_GAN_Feat: 0.718 G_ID: 0.125 G_Rec: 0.323 D_GP: 0.038 D_real: 0.946 D_fake: 0.783 +(epoch: 200, iters: 6608, time: 0.064) G_GAN: 0.410 G_GAN_Feat: 1.081 G_ID: 0.190 G_Rec: 0.442 D_GP: 0.061 D_real: 0.627 D_fake: 0.594 +(epoch: 200, iters: 7008, time: 0.064) G_GAN: 0.053 G_GAN_Feat: 0.777 G_ID: 0.152 G_Rec: 0.339 D_GP: 0.031 D_real: 0.959 D_fake: 0.947 +(epoch: 200, iters: 7408, time: 0.064) G_GAN: 0.512 G_GAN_Feat: 0.910 G_ID: 0.166 G_Rec: 0.411 D_GP: 0.037 D_real: 1.197 D_fake: 0.493 +(epoch: 200, iters: 7808, time: 0.064) G_GAN: 0.259 G_GAN_Feat: 0.676 G_ID: 0.144 G_Rec: 0.283 D_GP: 0.025 D_real: 1.123 D_fake: 0.741 +(epoch: 200, iters: 8208, time: 0.064) G_GAN: 0.611 G_GAN_Feat: 0.860 G_ID: 0.184 G_Rec: 0.391 D_GP: 0.023 D_real: 1.351 D_fake: 0.394 +(epoch: 200, iters: 8608, time: 0.064) G_GAN: 0.303 G_GAN_Feat: 0.798 G_ID: 0.133 G_Rec: 0.322 D_GP: 0.026 D_real: 1.020 D_fake: 0.697 +(epoch: 201, iters: 400, time: 0.064) G_GAN: 0.426 G_GAN_Feat: 0.898 G_ID: 0.174 G_Rec: 0.368 D_GP: 0.033 D_real: 0.942 D_fake: 0.575 +(epoch: 201, iters: 800, time: 0.064) G_GAN: 0.275 G_GAN_Feat: 0.745 G_ID: 0.141 G_Rec: 0.308 D_GP: 0.029 D_real: 1.020 D_fake: 0.725 +(epoch: 201, iters: 1200, time: 0.064) G_GAN: 0.517 G_GAN_Feat: 1.131 G_ID: 0.170 G_Rec: 0.414 D_GP: 0.209 D_real: 0.425 D_fake: 0.489 +(epoch: 201, iters: 1600, time: 0.064) G_GAN: 0.287 G_GAN_Feat: 0.775 G_ID: 0.132 G_Rec: 0.301 D_GP: 0.027 D_real: 1.152 D_fake: 0.713 +(epoch: 201, iters: 2000, time: 0.064) G_GAN: 0.602 G_GAN_Feat: 0.732 G_ID: 0.166 G_Rec: 0.387 D_GP: 0.020 D_real: 1.479 D_fake: 0.423 +(epoch: 201, iters: 2400, time: 0.064) G_GAN: 0.119 G_GAN_Feat: 0.649 G_ID: 0.147 G_Rec: 0.306 D_GP: 0.020 D_real: 1.026 D_fake: 0.882 +(epoch: 201, iters: 2800, time: 0.064) G_GAN: 0.464 G_GAN_Feat: 0.796 G_ID: 0.194 G_Rec: 0.391 D_GP: 0.027 D_real: 1.161 D_fake: 0.556 +(epoch: 201, iters: 3200, time: 0.064) G_GAN: 0.089 G_GAN_Feat: 0.625 G_ID: 0.138 G_Rec: 0.281 D_GP: 0.025 D_real: 1.016 D_fake: 0.914 +(epoch: 201, iters: 3600, time: 0.064) G_GAN: 0.247 G_GAN_Feat: 0.970 G_ID: 0.165 G_Rec: 0.402 D_GP: 0.085 D_real: 0.571 D_fake: 0.756 +(epoch: 201, iters: 4000, time: 0.064) G_GAN: 0.144 G_GAN_Feat: 0.649 G_ID: 0.142 G_Rec: 0.268 D_GP: 0.028 D_real: 1.034 D_fake: 0.856 +(epoch: 201, iters: 4400, time: 0.064) G_GAN: 0.474 G_GAN_Feat: 0.977 G_ID: 0.199 G_Rec: 0.449 D_GP: 0.033 D_real: 0.995 D_fake: 0.535 +(epoch: 201, iters: 4800, time: 0.064) G_GAN: 0.079 G_GAN_Feat: 0.690 G_ID: 0.136 G_Rec: 0.296 D_GP: 0.026 D_real: 1.061 D_fake: 0.921 +(epoch: 201, iters: 5200, time: 0.064) G_GAN: 0.518 G_GAN_Feat: 0.950 G_ID: 0.179 G_Rec: 0.406 D_GP: 0.027 D_real: 1.081 D_fake: 0.486 +(epoch: 201, iters: 5600, time: 0.064) G_GAN: 0.075 G_GAN_Feat: 0.920 G_ID: 0.141 G_Rec: 0.321 D_GP: 0.104 D_real: 0.559 D_fake: 0.925 +(epoch: 201, iters: 6000, time: 0.064) G_GAN: 0.410 G_GAN_Feat: 0.813 G_ID: 0.166 G_Rec: 0.369 D_GP: 0.020 D_real: 1.220 D_fake: 0.591 +(epoch: 201, iters: 6400, time: 0.064) G_GAN: -0.013 G_GAN_Feat: 0.845 G_ID: 0.136 G_Rec: 0.302 D_GP: 0.116 D_real: 0.501 D_fake: 1.013 +(epoch: 201, iters: 6800, time: 0.064) G_GAN: 0.578 G_GAN_Feat: 0.863 G_ID: 0.172 G_Rec: 0.405 D_GP: 0.023 D_real: 1.341 D_fake: 0.430 +(epoch: 201, iters: 7200, time: 0.064) G_GAN: 0.369 G_GAN_Feat: 0.706 G_ID: 0.133 G_Rec: 0.293 D_GP: 0.025 D_real: 1.230 D_fake: 0.632 +(epoch: 201, iters: 7600, time: 0.064) G_GAN: 0.457 G_GAN_Feat: 0.857 G_ID: 0.193 G_Rec: 0.397 D_GP: 0.028 D_real: 1.075 D_fake: 0.550 +(epoch: 201, iters: 8000, time: 0.064) G_GAN: 0.635 G_GAN_Feat: 0.964 G_ID: 0.126 G_Rec: 0.325 D_GP: 0.037 D_real: 1.354 D_fake: 0.528 +(epoch: 201, iters: 8400, time: 0.064) G_GAN: 0.484 G_GAN_Feat: 0.789 G_ID: 0.195 G_Rec: 0.401 D_GP: 0.026 D_real: 1.257 D_fake: 0.525 +(epoch: 202, iters: 192, time: 0.064) G_GAN: 0.097 G_GAN_Feat: 0.551 G_ID: 0.139 G_Rec: 0.345 D_GP: 0.017 D_real: 1.048 D_fake: 0.903 +(epoch: 202, iters: 592, time: 0.064) G_GAN: 0.329 G_GAN_Feat: 0.679 G_ID: 0.176 G_Rec: 0.337 D_GP: 0.023 D_real: 1.172 D_fake: 0.672 +(epoch: 202, iters: 992, time: 0.064) G_GAN: 0.155 G_GAN_Feat: 0.602 G_ID: 0.154 G_Rec: 0.307 D_GP: 0.024 D_real: 1.023 D_fake: 0.845 +(epoch: 202, iters: 1392, time: 0.064) G_GAN: 0.160 G_GAN_Feat: 0.773 G_ID: 0.181 G_Rec: 0.382 D_GP: 0.026 D_real: 0.926 D_fake: 0.840 +(epoch: 202, iters: 1792, time: 0.064) G_GAN: 0.142 G_GAN_Feat: 0.617 G_ID: 0.126 G_Rec: 0.289 D_GP: 0.024 D_real: 1.005 D_fake: 0.859 +(epoch: 202, iters: 2192, time: 0.064) G_GAN: 0.348 G_GAN_Feat: 0.927 G_ID: 0.178 G_Rec: 0.429 D_GP: 0.116 D_real: 0.768 D_fake: 0.654 +(epoch: 202, iters: 2592, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 0.637 G_ID: 0.133 G_Rec: 0.337 D_GP: 0.020 D_real: 1.242 D_fake: 0.704 +(epoch: 202, iters: 2992, time: 0.064) G_GAN: 0.525 G_GAN_Feat: 0.915 G_ID: 0.183 G_Rec: 0.474 D_GP: 0.026 D_real: 1.348 D_fake: 0.480 +(epoch: 202, iters: 3392, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.593 G_ID: 0.137 G_Rec: 0.304 D_GP: 0.021 D_real: 1.242 D_fake: 0.717 +(epoch: 202, iters: 3792, time: 0.064) G_GAN: 0.451 G_GAN_Feat: 0.842 G_ID: 0.189 G_Rec: 0.380 D_GP: 0.044 D_real: 1.040 D_fake: 0.550 +(epoch: 202, iters: 4192, time: 0.064) G_GAN: -0.026 G_GAN_Feat: 0.750 G_ID: 0.150 G_Rec: 0.312 D_GP: 0.069 D_real: 0.667 D_fake: 1.026 +(epoch: 202, iters: 4592, time: 0.064) G_GAN: 0.442 G_GAN_Feat: 1.014 G_ID: 0.183 G_Rec: 0.443 D_GP: 0.517 D_real: 0.659 D_fake: 0.592 +(epoch: 202, iters: 4992, time: 0.064) G_GAN: 0.179 G_GAN_Feat: 0.745 G_ID: 0.139 G_Rec: 0.335 D_GP: 0.036 D_real: 0.963 D_fake: 0.822 +(epoch: 202, iters: 5392, time: 0.064) G_GAN: 0.328 G_GAN_Feat: 0.866 G_ID: 0.177 G_Rec: 0.399 D_GP: 0.023 D_real: 1.024 D_fake: 0.672 +(epoch: 202, iters: 5792, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 0.885 G_ID: 0.118 G_Rec: 0.324 D_GP: 0.453 D_real: 0.587 D_fake: 0.684 +(epoch: 202, iters: 6192, time: 0.064) G_GAN: 0.407 G_GAN_Feat: 0.859 G_ID: 0.192 G_Rec: 0.389 D_GP: 0.034 D_real: 1.080 D_fake: 0.596 +(epoch: 202, iters: 6592, time: 0.064) G_GAN: 0.420 G_GAN_Feat: 0.703 G_ID: 0.127 G_Rec: 0.286 D_GP: 0.040 D_real: 1.199 D_fake: 0.581 +(epoch: 202, iters: 6992, time: 0.064) G_GAN: -0.206 G_GAN_Feat: 1.055 G_ID: 0.224 G_Rec: 0.423 D_GP: 0.113 D_real: 0.079 D_fake: 1.206 +(epoch: 202, iters: 7392, time: 0.064) G_GAN: 0.067 G_GAN_Feat: 0.848 G_ID: 0.170 G_Rec: 0.308 D_GP: 0.030 D_real: 0.723 D_fake: 0.933 +(epoch: 202, iters: 7792, time: 0.064) G_GAN: 0.372 G_GAN_Feat: 0.840 G_ID: 0.172 G_Rec: 0.368 D_GP: 0.024 D_real: 1.134 D_fake: 0.628 +(epoch: 202, iters: 8192, time: 0.064) G_GAN: 0.241 G_GAN_Feat: 0.763 G_ID: 0.137 G_Rec: 0.316 D_GP: 0.045 D_real: 0.908 D_fake: 0.760 +(epoch: 202, iters: 8592, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 1.020 G_ID: 0.174 G_Rec: 0.399 D_GP: 0.052 D_real: 0.968 D_fake: 0.727 +(epoch: 203, iters: 384, time: 0.064) G_GAN: 0.195 G_GAN_Feat: 0.914 G_ID: 0.131 G_Rec: 0.365 D_GP: 0.033 D_real: 0.498 D_fake: 0.810 +(epoch: 203, iters: 784, time: 0.064) G_GAN: 0.516 G_GAN_Feat: 0.923 G_ID: 0.153 G_Rec: 0.367 D_GP: 0.072 D_real: 0.959 D_fake: 0.498 +(epoch: 203, iters: 1184, time: 0.064) G_GAN: 0.268 G_GAN_Feat: 0.759 G_ID: 0.138 G_Rec: 0.328 D_GP: 0.031 D_real: 1.097 D_fake: 0.733 +(epoch: 203, iters: 1584, time: 0.064) G_GAN: 0.693 G_GAN_Feat: 0.821 G_ID: 0.169 G_Rec: 0.370 D_GP: 0.022 D_real: 1.442 D_fake: 0.322 +(epoch: 203, iters: 1984, time: 0.064) G_GAN: 0.344 G_GAN_Feat: 0.647 G_ID: 0.138 G_Rec: 0.280 D_GP: 0.024 D_real: 1.229 D_fake: 0.660 +(epoch: 203, iters: 2384, time: 0.064) G_GAN: 0.437 G_GAN_Feat: 0.861 G_ID: 0.183 G_Rec: 0.387 D_GP: 0.022 D_real: 1.161 D_fake: 0.564 +(epoch: 203, iters: 2784, time: 0.064) G_GAN: 0.353 G_GAN_Feat: 0.850 G_ID: 0.119 G_Rec: 0.327 D_GP: 0.077 D_real: 0.649 D_fake: 0.659 +(epoch: 203, iters: 3184, time: 0.064) G_GAN: 0.477 G_GAN_Feat: 1.064 G_ID: 0.216 G_Rec: 0.419 D_GP: 0.048 D_real: 0.579 D_fake: 0.533 +(epoch: 203, iters: 3584, time: 0.064) G_GAN: 0.452 G_GAN_Feat: 0.699 G_ID: 0.116 G_Rec: 0.321 D_GP: 0.021 D_real: 1.356 D_fake: 0.550 +(epoch: 203, iters: 3984, time: 0.064) G_GAN: 0.231 G_GAN_Feat: 0.914 G_ID: 0.204 G_Rec: 0.436 D_GP: 0.033 D_real: 0.904 D_fake: 0.769 +(epoch: 203, iters: 4384, time: 0.064) G_GAN: 0.293 G_GAN_Feat: 0.640 G_ID: 0.127 G_Rec: 0.361 D_GP: 0.021 D_real: 1.214 D_fake: 0.710 +(epoch: 203, iters: 4784, time: 0.064) G_GAN: 0.355 G_GAN_Feat: 0.924 G_ID: 0.196 G_Rec: 0.445 D_GP: 0.052 D_real: 0.802 D_fake: 0.650 +(epoch: 203, iters: 5184, time: 0.064) G_GAN: 0.045 G_GAN_Feat: 0.778 G_ID: 0.133 G_Rec: 0.291 D_GP: 0.065 D_real: 0.618 D_fake: 0.956 +(epoch: 203, iters: 5584, time: 0.064) G_GAN: 0.490 G_GAN_Feat: 1.057 G_ID: 0.197 G_Rec: 0.475 D_GP: 0.046 D_real: 0.753 D_fake: 0.526 +(epoch: 203, iters: 5984, time: 0.064) G_GAN: 0.490 G_GAN_Feat: 0.576 G_ID: 0.141 G_Rec: 0.314 D_GP: 0.018 D_real: 1.503 D_fake: 0.513 +(epoch: 203, iters: 6384, time: 0.064) G_GAN: 0.366 G_GAN_Feat: 0.814 G_ID: 0.221 G_Rec: 0.447 D_GP: 0.022 D_real: 1.048 D_fake: 0.636 +(epoch: 203, iters: 6784, time: 0.064) G_GAN: 0.223 G_GAN_Feat: 0.623 G_ID: 0.136 G_Rec: 0.312 D_GP: 0.022 D_real: 1.182 D_fake: 0.777 +(epoch: 203, iters: 7184, time: 0.064) G_GAN: 0.450 G_GAN_Feat: 0.697 G_ID: 0.176 G_Rec: 0.403 D_GP: 0.022 D_real: 1.184 D_fake: 0.551 +(epoch: 203, iters: 7584, time: 0.064) G_GAN: 0.013 G_GAN_Feat: 0.624 G_ID: 0.194 G_Rec: 0.319 D_GP: 0.027 D_real: 0.939 D_fake: 0.988 +(epoch: 203, iters: 7984, time: 0.064) G_GAN: 0.273 G_GAN_Feat: 0.788 G_ID: 0.192 G_Rec: 0.384 D_GP: 0.022 D_real: 1.114 D_fake: 0.728 +(epoch: 203, iters: 8384, time: 0.064) G_GAN: 0.272 G_GAN_Feat: 0.552 G_ID: 0.138 G_Rec: 0.285 D_GP: 0.020 D_real: 1.219 D_fake: 0.728 +(epoch: 204, iters: 176, time: 0.064) G_GAN: 0.516 G_GAN_Feat: 0.803 G_ID: 0.183 G_Rec: 0.399 D_GP: 0.026 D_real: 1.202 D_fake: 0.491 +(epoch: 204, iters: 576, time: 0.064) G_GAN: 0.240 G_GAN_Feat: 0.647 G_ID: 0.124 G_Rec: 0.306 D_GP: 0.045 D_real: 1.149 D_fake: 0.760 +(epoch: 204, iters: 976, time: 0.064) G_GAN: 0.234 G_GAN_Feat: 0.828 G_ID: 0.221 G_Rec: 0.402 D_GP: 0.023 D_real: 0.999 D_fake: 0.766 +(epoch: 204, iters: 1376, time: 0.064) G_GAN: 0.124 G_GAN_Feat: 0.661 G_ID: 0.137 G_Rec: 0.313 D_GP: 0.042 D_real: 1.022 D_fake: 0.876 +(epoch: 204, iters: 1776, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.783 G_ID: 0.239 G_Rec: 0.404 D_GP: 0.028 D_real: 1.106 D_fake: 0.671 +(epoch: 204, iters: 2176, time: 0.064) G_GAN: 0.110 G_GAN_Feat: 0.705 G_ID: 0.144 G_Rec: 0.309 D_GP: 0.064 D_real: 1.002 D_fake: 0.890 +(epoch: 204, iters: 2576, time: 0.064) G_GAN: 0.343 G_GAN_Feat: 0.865 G_ID: 0.179 G_Rec: 0.405 D_GP: 0.035 D_real: 1.060 D_fake: 0.662 +(epoch: 204, iters: 2976, time: 0.064) G_GAN: -0.006 G_GAN_Feat: 0.838 G_ID: 0.124 G_Rec: 0.364 D_GP: 0.108 D_real: 0.773 D_fake: 1.007 +(epoch: 204, iters: 3376, time: 0.064) G_GAN: 0.656 G_GAN_Feat: 0.855 G_ID: 0.168 G_Rec: 0.418 D_GP: 0.030 D_real: 1.312 D_fake: 0.373 +(epoch: 204, iters: 3776, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 0.668 G_ID: 0.144 G_Rec: 0.296 D_GP: 0.021 D_real: 1.192 D_fake: 0.737 +(epoch: 204, iters: 4176, time: 0.064) G_GAN: 0.345 G_GAN_Feat: 0.743 G_ID: 0.166 G_Rec: 0.358 D_GP: 0.026 D_real: 1.068 D_fake: 0.656 +(epoch: 204, iters: 4576, time: 0.064) G_GAN: 0.365 G_GAN_Feat: 0.689 G_ID: 0.126 G_Rec: 0.293 D_GP: 0.027 D_real: 1.165 D_fake: 0.636 +(epoch: 204, iters: 4976, time: 0.064) G_GAN: 0.388 G_GAN_Feat: 0.727 G_ID: 0.181 G_Rec: 0.371 D_GP: 0.023 D_real: 1.170 D_fake: 0.612 +(epoch: 204, iters: 5376, time: 0.064) G_GAN: 0.372 G_GAN_Feat: 0.639 G_ID: 0.122 G_Rec: 0.287 D_GP: 0.025 D_real: 1.289 D_fake: 0.631 +(epoch: 204, iters: 5776, time: 0.064) G_GAN: 0.344 G_GAN_Feat: 0.799 G_ID: 0.212 G_Rec: 0.412 D_GP: 0.025 D_real: 1.150 D_fake: 0.658 +(epoch: 204, iters: 6176, time: 0.064) G_GAN: 0.073 G_GAN_Feat: 0.734 G_ID: 0.141 G_Rec: 0.325 D_GP: 0.033 D_real: 0.883 D_fake: 0.927 +(epoch: 204, iters: 6576, time: 0.064) G_GAN: 0.473 G_GAN_Feat: 0.809 G_ID: 0.194 G_Rec: 0.395 D_GP: 0.023 D_real: 1.271 D_fake: 0.530 +(epoch: 204, iters: 6976, time: 0.064) G_GAN: 0.493 G_GAN_Feat: 0.612 G_ID: 0.145 G_Rec: 0.269 D_GP: 0.025 D_real: 1.408 D_fake: 0.509 +(epoch: 204, iters: 7376, time: 0.064) G_GAN: 0.694 G_GAN_Feat: 0.911 G_ID: 0.173 G_Rec: 0.465 D_GP: 0.028 D_real: 1.416 D_fake: 0.329 +(epoch: 204, iters: 7776, time: 0.064) G_GAN: 0.437 G_GAN_Feat: 0.802 G_ID: 0.143 G_Rec: 0.316 D_GP: 0.039 D_real: 1.153 D_fake: 0.564 +(epoch: 204, iters: 8176, time: 0.064) G_GAN: 0.584 G_GAN_Feat: 0.817 G_ID: 0.160 G_Rec: 0.395 D_GP: 0.020 D_real: 1.343 D_fake: 0.431 +(epoch: 204, iters: 8576, time: 0.064) G_GAN: 0.202 G_GAN_Feat: 0.657 G_ID: 0.141 G_Rec: 0.308 D_GP: 0.029 D_real: 1.057 D_fake: 0.798 +(epoch: 205, iters: 368, time: 0.064) G_GAN: 0.404 G_GAN_Feat: 0.954 G_ID: 0.154 G_Rec: 0.459 D_GP: 0.041 D_real: 0.876 D_fake: 0.624 +(epoch: 205, iters: 768, time: 0.064) G_GAN: 0.272 G_GAN_Feat: 0.764 G_ID: 0.123 G_Rec: 0.348 D_GP: 0.033 D_real: 1.044 D_fake: 0.730 +(epoch: 205, iters: 1168, time: 0.064) G_GAN: 0.547 G_GAN_Feat: 1.158 G_ID: 0.173 G_Rec: 0.462 D_GP: 0.134 D_real: 1.037 D_fake: 0.471 +(epoch: 205, iters: 1568, time: 0.064) G_GAN: 0.360 G_GAN_Feat: 0.710 G_ID: 0.134 G_Rec: 0.296 D_GP: 0.029 D_real: 1.250 D_fake: 0.653 +(epoch: 205, iters: 1968, time: 0.064) G_GAN: 0.413 G_GAN_Feat: 0.951 G_ID: 0.154 G_Rec: 0.415 D_GP: 0.044 D_real: 0.848 D_fake: 0.591 +(epoch: 205, iters: 2368, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.725 G_ID: 0.125 G_Rec: 0.317 D_GP: 0.037 D_real: 1.121 D_fake: 0.681 +(epoch: 205, iters: 2768, time: 0.064) G_GAN: 0.865 G_GAN_Feat: 0.880 G_ID: 0.175 G_Rec: 0.375 D_GP: 0.029 D_real: 1.547 D_fake: 0.206 +(epoch: 205, iters: 3168, time: 0.064) G_GAN: 0.344 G_GAN_Feat: 0.771 G_ID: 0.124 G_Rec: 0.320 D_GP: 0.035 D_real: 1.136 D_fake: 0.662 +(epoch: 205, iters: 3568, time: 0.064) G_GAN: 0.864 G_GAN_Feat: 1.269 G_ID: 0.172 G_Rec: 0.440 D_GP: 0.133 D_real: 0.624 D_fake: 0.254 +(epoch: 205, iters: 3968, time: 0.064) G_GAN: 0.418 G_GAN_Feat: 0.737 G_ID: 0.143 G_Rec: 0.327 D_GP: 0.023 D_real: 1.325 D_fake: 0.590 +(epoch: 205, iters: 4368, time: 0.064) G_GAN: 0.444 G_GAN_Feat: 1.039 G_ID: 0.188 G_Rec: 0.402 D_GP: 0.028 D_real: 0.778 D_fake: 0.561 +(epoch: 205, iters: 4768, time: 0.064) G_GAN: 0.381 G_GAN_Feat: 0.617 G_ID: 0.117 G_Rec: 0.288 D_GP: 0.023 D_real: 1.318 D_fake: 0.619 +(epoch: 205, iters: 5168, time: 0.064) G_GAN: 0.386 G_GAN_Feat: 0.892 G_ID: 0.181 G_Rec: 0.456 D_GP: 0.035 D_real: 1.023 D_fake: 0.617 +(epoch: 205, iters: 5568, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.676 G_ID: 0.131 G_Rec: 0.307 D_GP: 0.033 D_real: 1.099 D_fake: 0.718 +(epoch: 205, iters: 5968, time: 0.064) G_GAN: 0.396 G_GAN_Feat: 0.856 G_ID: 0.167 G_Rec: 0.445 D_GP: 0.026 D_real: 1.003 D_fake: 0.608 +(epoch: 205, iters: 6368, time: 0.064) G_GAN: 0.203 G_GAN_Feat: 0.608 G_ID: 0.149 G_Rec: 0.270 D_GP: 0.023 D_real: 1.137 D_fake: 0.797 +(epoch: 205, iters: 6768, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 1.003 G_ID: 0.175 G_Rec: 0.406 D_GP: 0.048 D_real: 0.760 D_fake: 0.652 +(epoch: 205, iters: 7168, time: 0.064) G_GAN: 0.232 G_GAN_Feat: 0.696 G_ID: 0.144 G_Rec: 0.280 D_GP: 0.022 D_real: 1.067 D_fake: 0.768 +(epoch: 205, iters: 7568, time: 0.064) G_GAN: 0.476 G_GAN_Feat: 1.145 G_ID: 0.173 G_Rec: 0.439 D_GP: 0.106 D_real: 0.507 D_fake: 0.526 +(epoch: 205, iters: 7968, time: 0.064) G_GAN: 0.119 G_GAN_Feat: 0.743 G_ID: 0.148 G_Rec: 0.317 D_GP: 0.020 D_real: 0.997 D_fake: 0.881 +(epoch: 205, iters: 8368, time: 0.064) G_GAN: 0.506 G_GAN_Feat: 1.257 G_ID: 0.207 G_Rec: 0.499 D_GP: 0.362 D_real: 0.349 D_fake: 0.502 +(epoch: 206, iters: 160, time: 0.064) G_GAN: 0.098 G_GAN_Feat: 0.752 G_ID: 0.137 G_Rec: 0.374 D_GP: 0.035 D_real: 0.779 D_fake: 0.902 +(epoch: 206, iters: 560, time: 0.064) G_GAN: 0.472 G_GAN_Feat: 0.921 G_ID: 0.209 G_Rec: 0.427 D_GP: 0.024 D_real: 1.107 D_fake: 0.528 +(epoch: 206, iters: 960, time: 0.064) G_GAN: 0.145 G_GAN_Feat: 0.673 G_ID: 0.172 G_Rec: 0.279 D_GP: 0.029 D_real: 1.174 D_fake: 0.856 +(epoch: 206, iters: 1360, time: 0.064) G_GAN: 0.462 G_GAN_Feat: 0.933 G_ID: 0.185 G_Rec: 0.365 D_GP: 0.030 D_real: 0.996 D_fake: 0.540 +(epoch: 206, iters: 1760, time: 0.064) G_GAN: 0.219 G_GAN_Feat: 0.764 G_ID: 0.131 G_Rec: 0.324 D_GP: 0.039 D_real: 0.962 D_fake: 0.781 +(epoch: 206, iters: 2160, time: 0.064) G_GAN: 0.244 G_GAN_Feat: 0.834 G_ID: 0.202 G_Rec: 0.415 D_GP: 0.027 D_real: 0.960 D_fake: 0.756 +(epoch: 206, iters: 2560, time: 0.064) G_GAN: 0.322 G_GAN_Feat: 0.704 G_ID: 0.172 G_Rec: 0.283 D_GP: 0.027 D_real: 1.186 D_fake: 0.679 +(epoch: 206, iters: 2960, time: 0.064) G_GAN: 0.275 G_GAN_Feat: 0.785 G_ID: 0.182 G_Rec: 0.324 D_GP: 0.022 D_real: 1.022 D_fake: 0.726 +(epoch: 206, iters: 3360, time: 0.064) G_GAN: 0.650 G_GAN_Feat: 0.748 G_ID: 0.131 G_Rec: 0.333 D_GP: 0.024 D_real: 1.523 D_fake: 0.367 +(epoch: 206, iters: 3760, time: 0.064) G_GAN: 0.556 G_GAN_Feat: 0.852 G_ID: 0.155 G_Rec: 0.394 D_GP: 0.026 D_real: 1.312 D_fake: 0.448 +(epoch: 206, iters: 4160, time: 0.064) G_GAN: 0.274 G_GAN_Feat: 0.577 G_ID: 0.171 G_Rec: 0.311 D_GP: 0.016 D_real: 1.214 D_fake: 0.729 +(epoch: 206, iters: 4560, time: 0.064) G_GAN: 0.406 G_GAN_Feat: 0.696 G_ID: 0.187 G_Rec: 0.332 D_GP: 0.021 D_real: 1.214 D_fake: 0.594 +(epoch: 206, iters: 4960, time: 0.064) G_GAN: 0.201 G_GAN_Feat: 0.667 G_ID: 0.147 G_Rec: 0.332 D_GP: 0.035 D_real: 1.052 D_fake: 0.799 +(epoch: 206, iters: 5360, time: 0.064) G_GAN: 0.419 G_GAN_Feat: 0.880 G_ID: 0.171 G_Rec: 0.378 D_GP: 0.028 D_real: 1.137 D_fake: 0.582 +(epoch: 206, iters: 5760, time: 0.064) G_GAN: 0.182 G_GAN_Feat: 0.873 G_ID: 0.165 G_Rec: 0.312 D_GP: 0.197 D_real: 0.482 D_fake: 0.818 +(epoch: 206, iters: 6160, time: 0.064) G_GAN: 0.466 G_GAN_Feat: 0.907 G_ID: 0.166 G_Rec: 0.389 D_GP: 0.038 D_real: 1.030 D_fake: 0.537 +(epoch: 206, iters: 6560, time: 0.064) G_GAN: 0.455 G_GAN_Feat: 0.640 G_ID: 0.123 G_Rec: 0.288 D_GP: 0.023 D_real: 1.384 D_fake: 0.547 +(epoch: 206, iters: 6960, time: 0.064) G_GAN: 0.346 G_GAN_Feat: 1.217 G_ID: 0.170 G_Rec: 0.410 D_GP: 0.488 D_real: 0.362 D_fake: 0.664 +(epoch: 206, iters: 7360, time: 0.064) G_GAN: 0.146 G_GAN_Feat: 0.723 G_ID: 0.139 G_Rec: 0.284 D_GP: 0.026 D_real: 1.040 D_fake: 0.854 +(epoch: 206, iters: 7760, time: 0.064) G_GAN: 0.604 G_GAN_Feat: 0.935 G_ID: 0.169 G_Rec: 0.392 D_GP: 0.043 D_real: 1.218 D_fake: 0.481 +(epoch: 206, iters: 8160, time: 0.064) G_GAN: 0.258 G_GAN_Feat: 0.893 G_ID: 0.165 G_Rec: 0.353 D_GP: 0.060 D_real: 0.652 D_fake: 0.756 +(epoch: 206, iters: 8560, time: 0.064) G_GAN: 0.261 G_GAN_Feat: 0.662 G_ID: 0.190 G_Rec: 0.368 D_GP: 0.018 D_real: 1.103 D_fake: 0.740 +(epoch: 207, iters: 352, time: 0.064) G_GAN: 0.386 G_GAN_Feat: 0.533 G_ID: 0.113 G_Rec: 0.289 D_GP: 0.016 D_real: 1.356 D_fake: 0.615 +(epoch: 207, iters: 752, time: 0.064) G_GAN: 0.343 G_GAN_Feat: 0.721 G_ID: 0.177 G_Rec: 0.422 D_GP: 0.017 D_real: 1.181 D_fake: 0.659 +(epoch: 207, iters: 1152, time: 0.064) G_GAN: 0.041 G_GAN_Feat: 0.529 G_ID: 0.175 G_Rec: 0.295 D_GP: 0.018 D_real: 1.017 D_fake: 0.959 +(epoch: 207, iters: 1552, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 0.750 G_ID: 0.162 G_Rec: 0.452 D_GP: 0.022 D_real: 1.067 D_fake: 0.647 +(epoch: 207, iters: 1952, time: 0.064) G_GAN: 0.062 G_GAN_Feat: 0.561 G_ID: 0.149 G_Rec: 0.298 D_GP: 0.020 D_real: 1.011 D_fake: 0.938 +(epoch: 207, iters: 2352, time: 0.064) G_GAN: 0.040 G_GAN_Feat: 0.753 G_ID: 0.163 G_Rec: 0.391 D_GP: 0.024 D_real: 0.751 D_fake: 0.960 +(epoch: 207, iters: 2752, time: 0.064) G_GAN: 0.122 G_GAN_Feat: 0.568 G_ID: 0.148 G_Rec: 0.315 D_GP: 0.020 D_real: 1.072 D_fake: 0.879 +(epoch: 207, iters: 3152, time: 0.064) G_GAN: 0.150 G_GAN_Feat: 0.772 G_ID: 0.191 G_Rec: 0.375 D_GP: 0.028 D_real: 0.918 D_fake: 0.850 +(epoch: 207, iters: 3552, time: 0.064) G_GAN: -0.010 G_GAN_Feat: 0.667 G_ID: 0.128 G_Rec: 0.334 D_GP: 0.055 D_real: 0.905 D_fake: 1.010 +(epoch: 207, iters: 3952, time: 0.064) G_GAN: 0.245 G_GAN_Feat: 0.936 G_ID: 0.186 G_Rec: 0.417 D_GP: 0.050 D_real: 0.720 D_fake: 0.756 +(epoch: 207, iters: 4352, time: 0.064) G_GAN: 0.145 G_GAN_Feat: 0.621 G_ID: 0.145 G_Rec: 0.285 D_GP: 0.026 D_real: 1.088 D_fake: 0.855 +(epoch: 207, iters: 4752, time: 0.064) G_GAN: 0.471 G_GAN_Feat: 0.887 G_ID: 0.165 G_Rec: 0.398 D_GP: 0.049 D_real: 1.079 D_fake: 0.539 +(epoch: 207, iters: 5152, time: 0.064) G_GAN: -0.056 G_GAN_Feat: 0.733 G_ID: 0.121 G_Rec: 0.313 D_GP: 0.083 D_real: 0.651 D_fake: 1.056 +(epoch: 207, iters: 5552, time: 0.064) G_GAN: 0.238 G_GAN_Feat: 0.872 G_ID: 0.198 G_Rec: 0.393 D_GP: 0.030 D_real: 0.907 D_fake: 0.762 +(epoch: 207, iters: 5952, time: 0.064) G_GAN: 0.117 G_GAN_Feat: 0.757 G_ID: 0.158 G_Rec: 0.334 D_GP: 0.030 D_real: 0.990 D_fake: 0.885 +(epoch: 207, iters: 6352, time: 0.064) G_GAN: 0.498 G_GAN_Feat: 0.825 G_ID: 0.162 G_Rec: 0.379 D_GP: 0.024 D_real: 1.218 D_fake: 0.509 +(epoch: 207, iters: 6752, time: 0.064) G_GAN: 0.148 G_GAN_Feat: 0.684 G_ID: 0.136 G_Rec: 0.317 D_GP: 0.030 D_real: 0.965 D_fake: 0.853 +(epoch: 207, iters: 7152, time: 0.064) G_GAN: 0.346 G_GAN_Feat: 1.046 G_ID: 0.165 G_Rec: 0.457 D_GP: 0.107 D_real: 0.657 D_fake: 0.654 +(epoch: 207, iters: 7552, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.765 G_ID: 0.144 G_Rec: 0.324 D_GP: 0.041 D_real: 0.941 D_fake: 0.723 +(epoch: 207, iters: 7952, time: 0.064) G_GAN: 0.313 G_GAN_Feat: 0.769 G_ID: 0.205 G_Rec: 0.386 D_GP: 0.023 D_real: 1.103 D_fake: 0.687 +(epoch: 207, iters: 8352, time: 0.064) G_GAN: 0.038 G_GAN_Feat: 0.779 G_ID: 0.152 G_Rec: 0.345 D_GP: 0.058 D_real: 0.823 D_fake: 0.962 +(epoch: 208, iters: 144, time: 0.064) G_GAN: 0.402 G_GAN_Feat: 1.182 G_ID: 0.170 G_Rec: 0.414 D_GP: 0.101 D_real: 0.458 D_fake: 0.602 +(epoch: 208, iters: 544, time: 0.064) G_GAN: 0.214 G_GAN_Feat: 0.742 G_ID: 0.139 G_Rec: 0.311 D_GP: 0.053 D_real: 0.832 D_fake: 0.787 +(epoch: 208, iters: 944, time: 0.064) G_GAN: 0.381 G_GAN_Feat: 0.963 G_ID: 0.193 G_Rec: 0.446 D_GP: 0.060 D_real: 0.924 D_fake: 0.622 +(epoch: 208, iters: 1344, time: 0.064) G_GAN: 0.275 G_GAN_Feat: 0.791 G_ID: 0.131 G_Rec: 0.352 D_GP: 0.034 D_real: 0.956 D_fake: 0.726 +(epoch: 208, iters: 1744, time: 0.064) G_GAN: 0.199 G_GAN_Feat: 0.951 G_ID: 0.193 G_Rec: 0.402 D_GP: 0.044 D_real: 0.589 D_fake: 0.801 +(epoch: 208, iters: 2144, time: 0.064) G_GAN: -0.002 G_GAN_Feat: 0.654 G_ID: 0.154 G_Rec: 0.286 D_GP: 0.024 D_real: 0.962 D_fake: 1.002 +(epoch: 208, iters: 2544, time: 0.064) G_GAN: 0.270 G_GAN_Feat: 0.897 G_ID: 0.188 G_Rec: 0.379 D_GP: 0.023 D_real: 0.961 D_fake: 0.730 +(epoch: 208, iters: 2944, time: 0.064) G_GAN: 0.287 G_GAN_Feat: 0.856 G_ID: 0.119 G_Rec: 0.322 D_GP: 0.108 D_real: 1.013 D_fake: 0.714 +(epoch: 208, iters: 3344, time: 0.064) G_GAN: 0.432 G_GAN_Feat: 0.818 G_ID: 0.189 G_Rec: 0.354 D_GP: 0.028 D_real: 1.155 D_fake: 0.572 +(epoch: 208, iters: 3744, time: 0.064) G_GAN: 0.053 G_GAN_Feat: 0.812 G_ID: 0.163 G_Rec: 0.335 D_GP: 0.073 D_real: 0.726 D_fake: 0.947 +(epoch: 208, iters: 4144, time: 0.064) G_GAN: 0.925 G_GAN_Feat: 1.102 G_ID: 0.203 G_Rec: 0.418 D_GP: 0.047 D_real: 1.338 D_fake: 0.455 +(epoch: 208, iters: 4544, time: 0.064) G_GAN: -0.071 G_GAN_Feat: 0.645 G_ID: 0.152 G_Rec: 0.291 D_GP: 0.025 D_real: 0.862 D_fake: 1.071 +(epoch: 208, iters: 4944, time: 0.064) G_GAN: 0.379 G_GAN_Feat: 0.991 G_ID: 0.180 G_Rec: 0.414 D_GP: 0.057 D_real: 0.725 D_fake: 0.624 +(epoch: 208, iters: 5344, time: 0.064) G_GAN: 0.591 G_GAN_Feat: 0.758 G_ID: 0.141 G_Rec: 0.311 D_GP: 0.035 D_real: 1.423 D_fake: 0.466 +(epoch: 208, iters: 5744, time: 0.064) G_GAN: 0.204 G_GAN_Feat: 0.831 G_ID: 0.172 G_Rec: 0.400 D_GP: 0.025 D_real: 0.920 D_fake: 0.797 +(epoch: 208, iters: 6144, time: 0.064) G_GAN: 0.125 G_GAN_Feat: 0.816 G_ID: 0.189 G_Rec: 0.298 D_GP: 0.043 D_real: 0.740 D_fake: 0.875 +(epoch: 208, iters: 6544, time: 0.064) G_GAN: 0.783 G_GAN_Feat: 1.110 G_ID: 0.203 G_Rec: 0.459 D_GP: 0.407 D_real: 0.805 D_fake: 0.329 +(epoch: 208, iters: 6944, time: 0.064) G_GAN: 0.329 G_GAN_Feat: 0.706 G_ID: 0.143 G_Rec: 0.295 D_GP: 0.034 D_real: 1.167 D_fake: 0.671 +(epoch: 208, iters: 7344, time: 0.064) G_GAN: 0.529 G_GAN_Feat: 0.970 G_ID: 0.167 G_Rec: 0.411 D_GP: 0.080 D_real: 0.939 D_fake: 0.476 +(epoch: 208, iters: 7744, time: 0.064) G_GAN: 0.037 G_GAN_Feat: 0.774 G_ID: 0.138 G_Rec: 0.351 D_GP: 0.067 D_real: 0.679 D_fake: 0.964 +(epoch: 208, iters: 8144, time: 0.064) G_GAN: 0.488 G_GAN_Feat: 0.892 G_ID: 0.154 G_Rec: 0.408 D_GP: 0.025 D_real: 1.096 D_fake: 0.519 +(epoch: 208, iters: 8544, time: 0.064) G_GAN: 0.192 G_GAN_Feat: 0.849 G_ID: 0.133 G_Rec: 0.319 D_GP: 0.029 D_real: 0.849 D_fake: 0.808 +(epoch: 209, iters: 336, time: 0.064) G_GAN: 0.592 G_GAN_Feat: 0.878 G_ID: 0.180 G_Rec: 0.431 D_GP: 0.027 D_real: 1.293 D_fake: 0.429 +(epoch: 209, iters: 736, time: 0.064) G_GAN: 0.068 G_GAN_Feat: 0.612 G_ID: 0.144 G_Rec: 0.312 D_GP: 0.023 D_real: 1.019 D_fake: 0.932 +(epoch: 209, iters: 1136, time: 0.064) G_GAN: 0.196 G_GAN_Feat: 0.853 G_ID: 0.190 G_Rec: 0.423 D_GP: 0.035 D_real: 0.870 D_fake: 0.804 +(epoch: 209, iters: 1536, time: 0.064) G_GAN: -0.025 G_GAN_Feat: 0.722 G_ID: 0.156 G_Rec: 0.300 D_GP: 0.055 D_real: 0.671 D_fake: 1.026 +(epoch: 209, iters: 1936, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 0.919 G_ID: 0.163 G_Rec: 0.387 D_GP: 0.279 D_real: 0.689 D_fake: 0.653 +(epoch: 209, iters: 2336, time: 0.064) G_GAN: 0.187 G_GAN_Feat: 0.696 G_ID: 0.118 G_Rec: 0.316 D_GP: 0.036 D_real: 0.968 D_fake: 0.814 +(epoch: 209, iters: 2736, time: 0.064) G_GAN: 0.475 G_GAN_Feat: 0.778 G_ID: 0.192 G_Rec: 0.329 D_GP: 0.023 D_real: 1.316 D_fake: 0.535 +(epoch: 209, iters: 3136, time: 0.064) G_GAN: 0.299 G_GAN_Feat: 0.661 G_ID: 0.130 G_Rec: 0.279 D_GP: 0.023 D_real: 1.242 D_fake: 0.701 +(epoch: 209, iters: 3536, time: 0.064) G_GAN: 0.113 G_GAN_Feat: 0.780 G_ID: 0.179 G_Rec: 0.354 D_GP: 0.021 D_real: 1.033 D_fake: 0.887 +(epoch: 209, iters: 3936, time: 0.064) G_GAN: 0.244 G_GAN_Feat: 0.688 G_ID: 0.136 G_Rec: 0.344 D_GP: 0.025 D_real: 1.143 D_fake: 0.756 +(epoch: 209, iters: 4336, time: 0.064) G_GAN: 0.281 G_GAN_Feat: 0.891 G_ID: 0.173 G_Rec: 0.370 D_GP: 0.037 D_real: 0.937 D_fake: 0.719 +(epoch: 209, iters: 4736, time: 0.064) G_GAN: 0.305 G_GAN_Feat: 0.755 G_ID: 0.126 G_Rec: 0.287 D_GP: 0.049 D_real: 0.902 D_fake: 0.696 +(epoch: 209, iters: 5136, time: 0.064) G_GAN: 0.554 G_GAN_Feat: 1.060 G_ID: 0.169 G_Rec: 0.438 D_GP: 0.059 D_real: 0.889 D_fake: 0.462 +(epoch: 209, iters: 5536, time: 0.064) G_GAN: 0.361 G_GAN_Feat: 0.713 G_ID: 0.135 G_Rec: 0.282 D_GP: 0.026 D_real: 1.240 D_fake: 0.640 +(epoch: 209, iters: 5936, time: 0.064) G_GAN: 0.562 G_GAN_Feat: 0.965 G_ID: 0.156 G_Rec: 0.430 D_GP: 0.028 D_real: 1.194 D_fake: 0.446 +(epoch: 209, iters: 6336, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 0.783 G_ID: 0.128 G_Rec: 0.317 D_GP: 0.027 D_real: 0.919 D_fake: 0.812 +(epoch: 209, iters: 6736, time: 0.064) G_GAN: 0.470 G_GAN_Feat: 0.834 G_ID: 0.162 G_Rec: 0.368 D_GP: 0.022 D_real: 1.328 D_fake: 0.533 +(epoch: 209, iters: 7136, time: 0.064) G_GAN: 0.012 G_GAN_Feat: 0.749 G_ID: 0.134 G_Rec: 0.297 D_GP: 0.042 D_real: 0.863 D_fake: 0.988 +(epoch: 209, iters: 7536, time: 0.064) G_GAN: 0.634 G_GAN_Feat: 0.911 G_ID: 0.155 G_Rec: 0.449 D_GP: 0.026 D_real: 1.351 D_fake: 0.378 +(epoch: 209, iters: 7936, time: 0.064) G_GAN: 0.289 G_GAN_Feat: 0.772 G_ID: 0.132 G_Rec: 0.385 D_GP: 0.132 D_real: 0.912 D_fake: 0.712 +(epoch: 209, iters: 8336, time: 0.064) G_GAN: 0.415 G_GAN_Feat: 1.038 G_ID: 0.222 G_Rec: 0.410 D_GP: 0.039 D_real: 0.653 D_fake: 0.590 +(epoch: 210, iters: 128, time: 0.064) G_GAN: 0.107 G_GAN_Feat: 0.967 G_ID: 0.128 G_Rec: 0.361 D_GP: 0.224 D_real: 0.536 D_fake: 0.897 +(epoch: 210, iters: 528, time: 0.064) G_GAN: 0.654 G_GAN_Feat: 0.975 G_ID: 0.147 G_Rec: 0.394 D_GP: 0.026 D_real: 1.238 D_fake: 0.371 +(epoch: 210, iters: 928, time: 0.064) G_GAN: 0.361 G_GAN_Feat: 0.774 G_ID: 0.139 G_Rec: 0.314 D_GP: 0.025 D_real: 1.169 D_fake: 0.640 +(epoch: 210, iters: 1328, time: 0.064) G_GAN: 0.464 G_GAN_Feat: 0.933 G_ID: 0.179 G_Rec: 0.420 D_GP: 0.036 D_real: 1.015 D_fake: 0.540 +(epoch: 210, iters: 1728, time: 0.064) G_GAN: 0.058 G_GAN_Feat: 0.723 G_ID: 0.157 G_Rec: 0.347 D_GP: 0.025 D_real: 0.936 D_fake: 0.942 +(epoch: 210, iters: 2128, time: 0.064) G_GAN: 0.374 G_GAN_Feat: 0.879 G_ID: 0.181 G_Rec: 0.395 D_GP: 0.056 D_real: 0.885 D_fake: 0.633 +(epoch: 210, iters: 2528, time: 0.064) G_GAN: 0.512 G_GAN_Feat: 0.698 G_ID: 0.141 G_Rec: 0.316 D_GP: 0.023 D_real: 1.378 D_fake: 0.491 +(epoch: 210, iters: 2928, time: 0.064) G_GAN: 0.501 G_GAN_Feat: 0.840 G_ID: 0.193 G_Rec: 0.426 D_GP: 0.021 D_real: 1.229 D_fake: 0.505 +(epoch: 210, iters: 3328, time: 0.064) G_GAN: 0.406 G_GAN_Feat: 0.683 G_ID: 0.132 G_Rec: 0.307 D_GP: 0.048 D_real: 1.212 D_fake: 0.596 +(epoch: 210, iters: 3728, time: 0.064) G_GAN: 0.627 G_GAN_Feat: 0.919 G_ID: 0.180 G_Rec: 0.409 D_GP: 0.030 D_real: 1.349 D_fake: 0.401 +(epoch: 210, iters: 4128, time: 0.064) G_GAN: 0.201 G_GAN_Feat: 0.740 G_ID: 0.125 G_Rec: 0.285 D_GP: 0.027 D_real: 1.051 D_fake: 0.799 +(epoch: 210, iters: 4528, time: 0.064) G_GAN: 0.177 G_GAN_Feat: 1.167 G_ID: 0.228 G_Rec: 0.434 D_GP: 0.544 D_real: 0.306 D_fake: 0.823 +(epoch: 210, iters: 4928, time: 0.064) G_GAN: 0.317 G_GAN_Feat: 0.940 G_ID: 0.111 G_Rec: 0.318 D_GP: 0.057 D_real: 0.473 D_fake: 0.683 +(epoch: 210, iters: 5328, time: 0.064) G_GAN: 0.498 G_GAN_Feat: 0.759 G_ID: 0.172 G_Rec: 0.371 D_GP: 0.023 D_real: 1.277 D_fake: 0.515 +(epoch: 210, iters: 5728, time: 0.064) G_GAN: 0.077 G_GAN_Feat: 0.654 G_ID: 0.163 G_Rec: 0.330 D_GP: 0.025 D_real: 0.973 D_fake: 0.923 +(epoch: 210, iters: 6128, time: 0.064) G_GAN: 0.167 G_GAN_Feat: 0.801 G_ID: 0.209 G_Rec: 0.357 D_GP: 0.027 D_real: 0.874 D_fake: 0.833 +(epoch: 210, iters: 6528, time: 0.064) G_GAN: 0.241 G_GAN_Feat: 0.648 G_ID: 0.143 G_Rec: 0.339 D_GP: 0.021 D_real: 1.148 D_fake: 0.759 +(epoch: 210, iters: 6928, time: 0.064) G_GAN: 0.008 G_GAN_Feat: 1.020 G_ID: 0.211 G_Rec: 0.417 D_GP: 0.212 D_real: 0.192 D_fake: 0.992 +(epoch: 210, iters: 7328, time: 0.064) G_GAN: 0.308 G_GAN_Feat: 0.642 G_ID: 0.158 G_Rec: 0.279 D_GP: 0.022 D_real: 1.237 D_fake: 0.693 +(epoch: 210, iters: 7728, time: 0.064) G_GAN: 0.390 G_GAN_Feat: 0.842 G_ID: 0.192 G_Rec: 0.398 D_GP: 0.025 D_real: 1.186 D_fake: 0.611 +(epoch: 210, iters: 8128, time: 0.064) G_GAN: 0.327 G_GAN_Feat: 0.820 G_ID: 0.142 G_Rec: 0.310 D_GP: 0.027 D_real: 0.997 D_fake: 0.673 +(epoch: 210, iters: 8528, time: 0.064) G_GAN: 0.688 G_GAN_Feat: 0.952 G_ID: 0.165 G_Rec: 0.440 D_GP: 0.021 D_real: 1.403 D_fake: 0.348 +(epoch: 211, iters: 320, time: 0.064) G_GAN: 0.309 G_GAN_Feat: 0.594 G_ID: 0.142 G_Rec: 0.285 D_GP: 0.019 D_real: 1.238 D_fake: 0.692 +(epoch: 211, iters: 720, time: 0.064) G_GAN: 0.481 G_GAN_Feat: 1.014 G_ID: 0.181 G_Rec: 0.440 D_GP: 0.058 D_real: 0.849 D_fake: 0.538 +(epoch: 211, iters: 1120, time: 0.064) G_GAN: 0.210 G_GAN_Feat: 0.710 G_ID: 0.154 G_Rec: 0.304 D_GP: 0.023 D_real: 1.032 D_fake: 0.790 +(epoch: 211, iters: 1520, time: 0.064) G_GAN: 0.601 G_GAN_Feat: 0.863 G_ID: 0.190 G_Rec: 0.406 D_GP: 0.027 D_real: 1.422 D_fake: 0.426 +(epoch: 211, iters: 1920, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.744 G_ID: 0.142 G_Rec: 0.342 D_GP: 0.053 D_real: 0.993 D_fake: 0.751 +(epoch: 211, iters: 2320, time: 0.064) G_GAN: 0.428 G_GAN_Feat: 0.865 G_ID: 0.164 G_Rec: 0.363 D_GP: 0.028 D_real: 1.122 D_fake: 0.573 +(epoch: 211, iters: 2720, time: 0.064) G_GAN: 0.127 G_GAN_Feat: 0.675 G_ID: 0.130 G_Rec: 0.286 D_GP: 0.022 D_real: 1.065 D_fake: 0.873 +(epoch: 211, iters: 3120, time: 0.064) G_GAN: 0.386 G_GAN_Feat: 0.824 G_ID: 0.179 G_Rec: 0.401 D_GP: 0.019 D_real: 1.092 D_fake: 0.616 +(epoch: 211, iters: 3520, time: 0.064) G_GAN: 0.426 G_GAN_Feat: 0.710 G_ID: 0.133 G_Rec: 0.292 D_GP: 0.025 D_real: 1.300 D_fake: 0.576 +(epoch: 211, iters: 3920, time: 0.064) G_GAN: 0.552 G_GAN_Feat: 1.065 G_ID: 0.183 G_Rec: 0.385 D_GP: 0.044 D_real: 0.547 D_fake: 0.451 +(epoch: 211, iters: 4320, time: 0.064) G_GAN: 0.187 G_GAN_Feat: 0.643 G_ID: 0.122 G_Rec: 0.280 D_GP: 0.024 D_real: 1.109 D_fake: 0.813 +(epoch: 211, iters: 4720, time: 0.064) G_GAN: 0.521 G_GAN_Feat: 0.928 G_ID: 0.184 G_Rec: 0.393 D_GP: 0.060 D_real: 1.055 D_fake: 0.484 +(epoch: 211, iters: 5120, time: 0.064) G_GAN: 0.469 G_GAN_Feat: 0.786 G_ID: 0.138 G_Rec: 0.315 D_GP: 0.035 D_real: 1.068 D_fake: 0.534 +(epoch: 211, iters: 5520, time: 0.064) G_GAN: 0.522 G_GAN_Feat: 1.029 G_ID: 0.175 G_Rec: 0.410 D_GP: 0.033 D_real: 0.757 D_fake: 0.512 +(epoch: 211, iters: 5920, time: 0.064) G_GAN: 0.385 G_GAN_Feat: 0.652 G_ID: 0.122 G_Rec: 0.284 D_GP: 0.021 D_real: 1.306 D_fake: 0.615 +(epoch: 211, iters: 6320, time: 0.064) G_GAN: 0.375 G_GAN_Feat: 0.905 G_ID: 0.192 G_Rec: 0.420 D_GP: 0.024 D_real: 1.024 D_fake: 0.634 +(epoch: 211, iters: 6720, time: 0.064) G_GAN: 0.008 G_GAN_Feat: 0.754 G_ID: 0.141 G_Rec: 0.337 D_GP: 0.032 D_real: 0.830 D_fake: 0.992 +(epoch: 211, iters: 7120, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 0.958 G_ID: 0.157 G_Rec: 0.424 D_GP: 0.047 D_real: 0.817 D_fake: 0.690 +(epoch: 211, iters: 7520, time: 0.064) G_GAN: 0.203 G_GAN_Feat: 0.884 G_ID: 0.138 G_Rec: 0.347 D_GP: 0.090 D_real: 0.571 D_fake: 0.797 +(epoch: 211, iters: 7920, time: 0.064) G_GAN: 0.371 G_GAN_Feat: 0.937 G_ID: 0.205 G_Rec: 0.392 D_GP: 0.029 D_real: 0.984 D_fake: 0.633 +(epoch: 211, iters: 8320, time: 0.064) G_GAN: 0.152 G_GAN_Feat: 0.718 G_ID: 0.140 G_Rec: 0.331 D_GP: 0.021 D_real: 1.085 D_fake: 0.863 +(epoch: 212, iters: 112, time: 0.064) G_GAN: 0.367 G_GAN_Feat: 0.814 G_ID: 0.165 G_Rec: 0.410 D_GP: 0.023 D_real: 1.093 D_fake: 0.634 +(epoch: 212, iters: 512, time: 0.064) G_GAN: 0.137 G_GAN_Feat: 0.608 G_ID: 0.139 G_Rec: 0.292 D_GP: 0.021 D_real: 1.160 D_fake: 0.863 +(epoch: 212, iters: 912, time: 0.064) G_GAN: 0.427 G_GAN_Feat: 0.787 G_ID: 0.147 G_Rec: 0.401 D_GP: 0.019 D_real: 1.219 D_fake: 0.576 +(epoch: 212, iters: 1312, time: 0.064) G_GAN: 0.203 G_GAN_Feat: 0.680 G_ID: 0.123 G_Rec: 0.310 D_GP: 0.025 D_real: 1.085 D_fake: 0.797 +(epoch: 212, iters: 1712, time: 0.064) G_GAN: 0.747 G_GAN_Feat: 0.956 G_ID: 0.181 G_Rec: 0.427 D_GP: 0.025 D_real: 1.476 D_fake: 0.276 +(epoch: 212, iters: 2112, time: 0.064) G_GAN: 0.343 G_GAN_Feat: 0.733 G_ID: 0.128 G_Rec: 0.316 D_GP: 0.028 D_real: 1.220 D_fake: 0.657 +(epoch: 212, iters: 2512, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 0.823 G_ID: 0.168 G_Rec: 0.378 D_GP: 0.025 D_real: 1.085 D_fake: 0.562 +(epoch: 212, iters: 2912, time: 0.064) G_GAN: 0.255 G_GAN_Feat: 0.688 G_ID: 0.122 G_Rec: 0.288 D_GP: 0.034 D_real: 1.048 D_fake: 0.745 +(epoch: 212, iters: 3312, time: 0.064) G_GAN: 0.498 G_GAN_Feat: 0.850 G_ID: 0.173 G_Rec: 0.395 D_GP: 0.026 D_real: 1.307 D_fake: 0.504 +(epoch: 212, iters: 3712, time: 0.064) G_GAN: 0.038 G_GAN_Feat: 0.593 G_ID: 0.135 G_Rec: 0.289 D_GP: 0.019 D_real: 1.005 D_fake: 0.962 +(epoch: 212, iters: 4112, time: 0.064) G_GAN: 0.222 G_GAN_Feat: 0.821 G_ID: 0.185 G_Rec: 0.450 D_GP: 0.027 D_real: 0.909 D_fake: 0.779 +(epoch: 212, iters: 4512, time: 0.064) G_GAN: 0.113 G_GAN_Feat: 0.670 G_ID: 0.119 G_Rec: 0.307 D_GP: 0.072 D_real: 0.901 D_fake: 0.887 +(epoch: 212, iters: 4912, time: 0.064) G_GAN: 0.452 G_GAN_Feat: 0.852 G_ID: 0.185 G_Rec: 0.401 D_GP: 0.031 D_real: 1.119 D_fake: 0.573 +(epoch: 212, iters: 5312, time: 0.064) G_GAN: 0.291 G_GAN_Feat: 0.812 G_ID: 0.125 G_Rec: 0.324 D_GP: 0.056 D_real: 0.871 D_fake: 0.709 +(epoch: 212, iters: 5712, time: 0.064) G_GAN: 0.123 G_GAN_Feat: 0.930 G_ID: 0.166 G_Rec: 0.394 D_GP: 0.058 D_real: 0.764 D_fake: 0.885 +(epoch: 212, iters: 6112, time: 0.064) G_GAN: 0.211 G_GAN_Feat: 0.788 G_ID: 0.151 G_Rec: 0.316 D_GP: 0.064 D_real: 0.773 D_fake: 0.789 +(epoch: 212, iters: 6512, time: 0.064) G_GAN: 0.513 G_GAN_Feat: 0.889 G_ID: 0.187 G_Rec: 0.403 D_GP: 0.025 D_real: 1.197 D_fake: 0.493 +(epoch: 212, iters: 6912, time: 0.064) G_GAN: 0.386 G_GAN_Feat: 0.871 G_ID: 0.121 G_Rec: 0.308 D_GP: 0.102 D_real: 0.618 D_fake: 0.617 +(epoch: 212, iters: 7312, time: 0.064) G_GAN: 0.669 G_GAN_Feat: 0.813 G_ID: 0.158 G_Rec: 0.460 D_GP: 0.019 D_real: 1.467 D_fake: 0.366 +(epoch: 212, iters: 7712, time: 0.064) G_GAN: 0.169 G_GAN_Feat: 0.624 G_ID: 0.133 G_Rec: 0.313 D_GP: 0.026 D_real: 1.094 D_fake: 0.831 +(epoch: 212, iters: 8112, time: 0.064) G_GAN: 0.436 G_GAN_Feat: 0.925 G_ID: 0.155 G_Rec: 0.409 D_GP: 0.064 D_real: 0.956 D_fake: 0.569 +(epoch: 212, iters: 8512, time: 0.064) G_GAN: 0.403 G_GAN_Feat: 0.757 G_ID: 0.144 G_Rec: 0.297 D_GP: 0.041 D_real: 1.132 D_fake: 0.597 +(epoch: 213, iters: 304, time: 0.064) G_GAN: 0.464 G_GAN_Feat: 0.830 G_ID: 0.183 G_Rec: 0.387 D_GP: 0.025 D_real: 1.154 D_fake: 0.548 +(epoch: 213, iters: 704, time: 0.064) G_GAN: 0.272 G_GAN_Feat: 0.732 G_ID: 0.122 G_Rec: 0.301 D_GP: 0.042 D_real: 1.067 D_fake: 0.728 +(epoch: 213, iters: 1104, time: 0.064) G_GAN: 0.299 G_GAN_Feat: 0.976 G_ID: 0.162 G_Rec: 0.447 D_GP: 0.025 D_real: 0.893 D_fake: 0.702 +(epoch: 213, iters: 1504, time: 0.064) G_GAN: -0.027 G_GAN_Feat: 0.676 G_ID: 0.132 G_Rec: 0.298 D_GP: 0.022 D_real: 0.873 D_fake: 1.027 +(epoch: 213, iters: 1904, time: 0.064) G_GAN: 0.373 G_GAN_Feat: 1.053 G_ID: 0.194 G_Rec: 0.446 D_GP: 0.159 D_real: 0.492 D_fake: 0.630 +(epoch: 213, iters: 2304, time: 0.064) G_GAN: 0.315 G_GAN_Feat: 0.816 G_ID: 0.139 G_Rec: 0.350 D_GP: 0.048 D_real: 0.892 D_fake: 0.686 +(epoch: 213, iters: 2704, time: 0.064) G_GAN: 0.662 G_GAN_Feat: 0.784 G_ID: 0.179 G_Rec: 0.399 D_GP: 0.019 D_real: 1.392 D_fake: 0.372 +(epoch: 213, iters: 3104, time: 0.064) G_GAN: 0.148 G_GAN_Feat: 0.592 G_ID: 0.134 G_Rec: 0.312 D_GP: 0.018 D_real: 1.097 D_fake: 0.852 +(epoch: 213, iters: 3504, time: 0.064) G_GAN: 0.332 G_GAN_Feat: 0.710 G_ID: 0.166 G_Rec: 0.350 D_GP: 0.026 D_real: 1.213 D_fake: 0.669 +(epoch: 213, iters: 3904, time: 0.064) G_GAN: 0.224 G_GAN_Feat: 0.599 G_ID: 0.106 G_Rec: 0.291 D_GP: 0.028 D_real: 1.143 D_fake: 0.776 +(epoch: 213, iters: 4304, time: 0.064) G_GAN: 0.346 G_GAN_Feat: 0.818 G_ID: 0.174 G_Rec: 0.408 D_GP: 0.046 D_real: 1.057 D_fake: 0.657 +(epoch: 213, iters: 4704, time: 0.064) G_GAN: 0.277 G_GAN_Feat: 0.768 G_ID: 0.135 G_Rec: 0.327 D_GP: 0.027 D_real: 1.111 D_fake: 0.723 +(epoch: 213, iters: 5104, time: 0.064) G_GAN: 0.515 G_GAN_Feat: 0.854 G_ID: 0.180 G_Rec: 0.400 D_GP: 0.039 D_real: 1.175 D_fake: 0.490 +(epoch: 213, iters: 5504, time: 0.064) G_GAN: 0.043 G_GAN_Feat: 0.741 G_ID: 0.124 G_Rec: 0.329 D_GP: 0.073 D_real: 0.856 D_fake: 0.957 +(epoch: 213, iters: 5904, time: 0.064) G_GAN: 0.267 G_GAN_Feat: 0.942 G_ID: 0.179 G_Rec: 0.399 D_GP: 0.139 D_real: 0.592 D_fake: 0.733 +(epoch: 213, iters: 6304, time: 0.064) G_GAN: 0.308 G_GAN_Feat: 0.830 G_ID: 0.158 G_Rec: 0.341 D_GP: 0.054 D_real: 0.912 D_fake: 0.694 +(epoch: 213, iters: 6704, time: 0.064) G_GAN: 0.259 G_GAN_Feat: 0.824 G_ID: 0.207 G_Rec: 0.355 D_GP: 0.026 D_real: 0.957 D_fake: 0.742 +(epoch: 213, iters: 7104, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.704 G_ID: 0.125 G_Rec: 0.327 D_GP: 0.025 D_real: 1.228 D_fake: 0.674 +(epoch: 213, iters: 7504, time: 0.064) G_GAN: 0.404 G_GAN_Feat: 0.935 G_ID: 0.186 G_Rec: 0.386 D_GP: 0.043 D_real: 0.859 D_fake: 0.599 +(epoch: 213, iters: 7904, time: 0.064) G_GAN: 0.555 G_GAN_Feat: 0.793 G_ID: 0.121 G_Rec: 0.318 D_GP: 0.077 D_real: 1.223 D_fake: 0.474 +(epoch: 213, iters: 8304, time: 0.064) G_GAN: 0.224 G_GAN_Feat: 0.852 G_ID: 0.156 G_Rec: 0.413 D_GP: 0.026 D_real: 0.943 D_fake: 0.777 +(epoch: 214, iters: 96, time: 0.064) G_GAN: 0.225 G_GAN_Feat: 0.713 G_ID: 0.131 G_Rec: 0.316 D_GP: 0.050 D_real: 1.050 D_fake: 0.775 +(epoch: 214, iters: 496, time: 0.064) G_GAN: 0.328 G_GAN_Feat: 0.974 G_ID: 0.168 G_Rec: 0.386 D_GP: 0.025 D_real: 1.043 D_fake: 0.672 +(epoch: 214, iters: 896, time: 0.064) G_GAN: 0.213 G_GAN_Feat: 0.809 G_ID: 0.136 G_Rec: 0.319 D_GP: 0.038 D_real: 0.840 D_fake: 0.787 +(epoch: 214, iters: 1296, time: 0.064) G_GAN: 0.762 G_GAN_Feat: 0.903 G_ID: 0.190 G_Rec: 0.376 D_GP: 0.038 D_real: 1.428 D_fake: 0.347 +(epoch: 214, iters: 1696, time: 0.064) G_GAN: 0.118 G_GAN_Feat: 0.785 G_ID: 0.120 G_Rec: 0.278 D_GP: 0.070 D_real: 1.051 D_fake: 0.882 +(epoch: 214, iters: 2096, time: 0.064) G_GAN: 0.138 G_GAN_Feat: 0.995 G_ID: 0.171 G_Rec: 0.469 D_GP: 0.071 D_real: 0.617 D_fake: 0.864 +(epoch: 214, iters: 2496, time: 0.064) G_GAN: 0.010 G_GAN_Feat: 0.848 G_ID: 0.161 G_Rec: 0.332 D_GP: 0.141 D_real: 0.417 D_fake: 0.991 +(epoch: 214, iters: 2896, time: 0.064) G_GAN: 0.879 G_GAN_Feat: 0.807 G_ID: 0.166 G_Rec: 0.371 D_GP: 0.025 D_real: 1.612 D_fake: 0.220 +(epoch: 214, iters: 3296, time: 0.064) G_GAN: 0.137 G_GAN_Feat: 0.666 G_ID: 0.189 G_Rec: 0.288 D_GP: 0.025 D_real: 1.022 D_fake: 0.863 +(epoch: 214, iters: 3696, time: 0.064) G_GAN: 0.355 G_GAN_Feat: 0.951 G_ID: 0.198 G_Rec: 0.443 D_GP: 0.059 D_real: 1.032 D_fake: 0.647 +(epoch: 214, iters: 4096, time: 0.064) G_GAN: 0.268 G_GAN_Feat: 0.690 G_ID: 0.134 G_Rec: 0.269 D_GP: 0.023 D_real: 1.154 D_fake: 0.732 +(epoch: 214, iters: 4496, time: 0.064) G_GAN: 0.722 G_GAN_Feat: 0.771 G_ID: 0.148 G_Rec: 0.349 D_GP: 0.026 D_real: 1.522 D_fake: 0.291 +(epoch: 214, iters: 4896, time: 0.064) G_GAN: 0.237 G_GAN_Feat: 0.899 G_ID: 0.128 G_Rec: 0.324 D_GP: 0.622 D_real: 0.450 D_fake: 0.767 +(epoch: 214, iters: 5296, time: 0.064) G_GAN: 0.453 G_GAN_Feat: 0.840 G_ID: 0.180 G_Rec: 0.382 D_GP: 0.028 D_real: 1.162 D_fake: 0.548 +(epoch: 214, iters: 5696, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.781 G_ID: 0.144 G_Rec: 0.335 D_GP: 0.054 D_real: 0.885 D_fake: 0.694 +(epoch: 214, iters: 6096, time: 0.064) G_GAN: 0.672 G_GAN_Feat: 0.883 G_ID: 0.171 G_Rec: 0.412 D_GP: 0.036 D_real: 1.309 D_fake: 0.364 +(epoch: 214, iters: 6496, time: 0.064) G_GAN: 0.214 G_GAN_Feat: 0.908 G_ID: 0.143 G_Rec: 0.341 D_GP: 0.092 D_real: 0.485 D_fake: 0.792 +(epoch: 214, iters: 6896, time: 0.064) G_GAN: 0.420 G_GAN_Feat: 0.828 G_ID: 0.184 G_Rec: 0.447 D_GP: 0.020 D_real: 1.188 D_fake: 0.584 +(epoch: 214, iters: 7296, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 0.796 G_ID: 0.128 G_Rec: 0.318 D_GP: 0.043 D_real: 1.055 D_fake: 0.665 +(epoch: 214, iters: 7696, time: 0.064) G_GAN: 0.422 G_GAN_Feat: 0.804 G_ID: 0.161 G_Rec: 0.361 D_GP: 0.022 D_real: 1.236 D_fake: 0.583 +(epoch: 214, iters: 8096, time: 0.064) G_GAN: 0.326 G_GAN_Feat: 0.655 G_ID: 0.131 G_Rec: 0.283 D_GP: 0.024 D_real: 1.215 D_fake: 0.674 +(epoch: 214, iters: 8496, time: 0.064) G_GAN: 0.534 G_GAN_Feat: 0.957 G_ID: 0.171 G_Rec: 0.403 D_GP: 0.024 D_real: 1.106 D_fake: 0.473 +(epoch: 215, iters: 288, time: 0.064) G_GAN: 0.041 G_GAN_Feat: 0.610 G_ID: 0.129 G_Rec: 0.308 D_GP: 0.020 D_real: 0.972 D_fake: 0.959 +(epoch: 215, iters: 688, time: 0.064) G_GAN: 0.246 G_GAN_Feat: 0.835 G_ID: 0.168 G_Rec: 0.374 D_GP: 0.026 D_real: 0.958 D_fake: 0.755 +(epoch: 215, iters: 1088, time: 0.064) G_GAN: 0.106 G_GAN_Feat: 0.687 G_ID: 0.128 G_Rec: 0.300 D_GP: 0.025 D_real: 1.063 D_fake: 0.894 +(epoch: 215, iters: 1488, time: 0.064) G_GAN: 0.515 G_GAN_Feat: 0.950 G_ID: 0.160 G_Rec: 0.380 D_GP: 0.034 D_real: 0.982 D_fake: 0.489 +(epoch: 215, iters: 1888, time: 0.064) G_GAN: 0.395 G_GAN_Feat: 0.708 G_ID: 0.133 G_Rec: 0.281 D_GP: 0.030 D_real: 1.196 D_fake: 0.605 +(epoch: 215, iters: 2288, time: 0.064) G_GAN: 0.477 G_GAN_Feat: 0.986 G_ID: 0.199 G_Rec: 0.430 D_GP: 0.038 D_real: 0.963 D_fake: 0.534 +(epoch: 215, iters: 2688, time: 0.064) G_GAN: -0.024 G_GAN_Feat: 0.772 G_ID: 0.119 G_Rec: 0.344 D_GP: 0.085 D_real: 0.585 D_fake: 1.024 +(epoch: 215, iters: 3088, time: 0.064) G_GAN: 0.099 G_GAN_Feat: 1.141 G_ID: 0.162 G_Rec: 0.438 D_GP: 0.505 D_real: 0.312 D_fake: 0.902 +(epoch: 215, iters: 3488, time: 0.064) G_GAN: 0.340 G_GAN_Feat: 0.636 G_ID: 0.151 G_Rec: 0.287 D_GP: 0.027 D_real: 1.272 D_fake: 0.661 +(epoch: 215, iters: 3888, time: 0.064) G_GAN: 0.599 G_GAN_Feat: 1.068 G_ID: 0.174 G_Rec: 0.476 D_GP: 0.104 D_real: 0.723 D_fake: 0.412 +(epoch: 215, iters: 4288, time: 0.064) G_GAN: 0.129 G_GAN_Feat: 0.654 G_ID: 0.128 G_Rec: 0.286 D_GP: 0.028 D_real: 1.042 D_fake: 0.872 +(epoch: 215, iters: 4688, time: 0.064) G_GAN: 0.695 G_GAN_Feat: 0.927 G_ID: 0.171 G_Rec: 0.406 D_GP: 0.049 D_real: 1.248 D_fake: 0.323 +(epoch: 215, iters: 5088, time: 0.064) G_GAN: 0.267 G_GAN_Feat: 0.803 G_ID: 0.147 G_Rec: 0.312 D_GP: 0.076 D_real: 0.690 D_fake: 0.741 +(epoch: 215, iters: 5488, time: 0.064) G_GAN: 0.198 G_GAN_Feat: 0.843 G_ID: 0.190 G_Rec: 0.370 D_GP: 0.020 D_real: 1.005 D_fake: 0.802 +(epoch: 215, iters: 5888, time: 0.064) G_GAN: 0.183 G_GAN_Feat: 0.626 G_ID: 0.120 G_Rec: 0.282 D_GP: 0.022 D_real: 1.093 D_fake: 0.817 +(epoch: 215, iters: 6288, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.923 G_ID: 0.197 G_Rec: 0.431 D_GP: 0.082 D_real: 0.754 D_fake: 0.693 +(epoch: 215, iters: 6688, time: 0.064) G_GAN: 0.080 G_GAN_Feat: 0.835 G_ID: 0.156 G_Rec: 0.353 D_GP: 0.029 D_real: 0.710 D_fake: 0.921 +(epoch: 215, iters: 7088, time: 0.064) G_GAN: 0.538 G_GAN_Feat: 0.981 G_ID: 0.187 G_Rec: 0.418 D_GP: 0.040 D_real: 0.910 D_fake: 0.483 +(epoch: 215, iters: 7488, time: 0.064) G_GAN: 0.157 G_GAN_Feat: 0.857 G_ID: 0.136 G_Rec: 0.290 D_GP: 0.052 D_real: 0.609 D_fake: 0.843 +(epoch: 215, iters: 7888, time: 0.064) G_GAN: 0.145 G_GAN_Feat: 0.869 G_ID: 0.192 G_Rec: 0.388 D_GP: 0.020 D_real: 0.913 D_fake: 0.855 +(epoch: 215, iters: 8288, time: 0.064) G_GAN: 0.254 G_GAN_Feat: 0.738 G_ID: 0.135 G_Rec: 0.298 D_GP: 0.022 D_real: 1.140 D_fake: 0.746 +(epoch: 216, iters: 80, time: 0.064) G_GAN: 0.150 G_GAN_Feat: 0.889 G_ID: 0.169 G_Rec: 0.349 D_GP: 0.021 D_real: 0.768 D_fake: 0.853 +(epoch: 216, iters: 480, time: 0.064) G_GAN: 0.020 G_GAN_Feat: 0.748 G_ID: 0.114 G_Rec: 0.316 D_GP: 0.028 D_real: 0.859 D_fake: 0.980 +(epoch: 216, iters: 880, time: 0.064) G_GAN: 0.768 G_GAN_Feat: 1.086 G_ID: 0.179 G_Rec: 0.445 D_GP: 0.233 D_real: 0.697 D_fake: 0.405 +(epoch: 216, iters: 1280, time: 0.064) G_GAN: 0.214 G_GAN_Feat: 0.684 G_ID: 0.133 G_Rec: 0.344 D_GP: 0.027 D_real: 1.138 D_fake: 0.791 +(epoch: 216, iters: 1680, time: 0.064) G_GAN: 0.231 G_GAN_Feat: 0.852 G_ID: 0.165 G_Rec: 0.403 D_GP: 0.033 D_real: 0.939 D_fake: 0.769 +(epoch: 216, iters: 2080, time: 0.064) G_GAN: 0.292 G_GAN_Feat: 0.608 G_ID: 0.143 G_Rec: 0.278 D_GP: 0.020 D_real: 1.248 D_fake: 0.709 +(epoch: 216, iters: 2480, time: 0.064) G_GAN: 0.387 G_GAN_Feat: 0.885 G_ID: 0.162 G_Rec: 0.389 D_GP: 0.029 D_real: 1.069 D_fake: 0.615 +(epoch: 216, iters: 2880, time: 0.064) G_GAN: -0.017 G_GAN_Feat: 0.648 G_ID: 0.133 G_Rec: 0.273 D_GP: 0.033 D_real: 0.867 D_fake: 1.017 +(epoch: 216, iters: 3280, time: 0.064) G_GAN: 0.439 G_GAN_Feat: 0.771 G_ID: 0.170 G_Rec: 0.391 D_GP: 0.022 D_real: 1.268 D_fake: 0.562 +(epoch: 216, iters: 3680, time: 0.064) G_GAN: 0.048 G_GAN_Feat: 0.580 G_ID: 0.173 G_Rec: 0.281 D_GP: 0.019 D_real: 1.041 D_fake: 0.952 +(epoch: 216, iters: 4080, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 0.795 G_ID: 0.169 G_Rec: 0.388 D_GP: 0.022 D_real: 1.091 D_fake: 0.661 +(epoch: 216, iters: 4480, time: 0.064) G_GAN: 0.288 G_GAN_Feat: 0.668 G_ID: 0.143 G_Rec: 0.320 D_GP: 0.034 D_real: 1.115 D_fake: 0.714 +(epoch: 216, iters: 4880, time: 0.064) G_GAN: 0.281 G_GAN_Feat: 0.781 G_ID: 0.182 G_Rec: 0.365 D_GP: 0.030 D_real: 0.990 D_fake: 0.720 +(epoch: 216, iters: 5280, time: 0.064) G_GAN: 0.169 G_GAN_Feat: 0.645 G_ID: 0.129 G_Rec: 0.320 D_GP: 0.025 D_real: 1.024 D_fake: 0.831 +(epoch: 216, iters: 5680, time: 0.064) G_GAN: 0.610 G_GAN_Feat: 0.873 G_ID: 0.171 G_Rec: 0.403 D_GP: 0.041 D_real: 1.213 D_fake: 0.421 +(epoch: 216, iters: 6080, time: 0.064) G_GAN: 0.236 G_GAN_Feat: 0.753 G_ID: 0.128 G_Rec: 0.303 D_GP: 0.048 D_real: 0.899 D_fake: 0.765 +(epoch: 216, iters: 6480, time: 0.064) G_GAN: 0.237 G_GAN_Feat: 0.894 G_ID: 0.180 G_Rec: 0.427 D_GP: 0.031 D_real: 0.879 D_fake: 0.765 +(epoch: 216, iters: 6880, time: 0.064) G_GAN: 0.143 G_GAN_Feat: 0.608 G_ID: 0.136 G_Rec: 0.257 D_GP: 0.027 D_real: 1.038 D_fake: 0.857 +(epoch: 216, iters: 7280, time: 0.064) G_GAN: 0.303 G_GAN_Feat: 0.941 G_ID: 0.170 G_Rec: 0.439 D_GP: 0.040 D_real: 0.794 D_fake: 0.698 +(epoch: 216, iters: 7680, time: 0.064) G_GAN: 0.301 G_GAN_Feat: 0.840 G_ID: 0.128 G_Rec: 0.319 D_GP: 0.088 D_real: 0.680 D_fake: 0.712 +(epoch: 216, iters: 8080, time: 0.064) G_GAN: 0.413 G_GAN_Feat: 0.807 G_ID: 0.157 G_Rec: 0.384 D_GP: 0.022 D_real: 1.261 D_fake: 0.588 +(epoch: 216, iters: 8480, time: 0.064) G_GAN: 0.059 G_GAN_Feat: 0.707 G_ID: 0.149 G_Rec: 0.294 D_GP: 0.043 D_real: 0.941 D_fake: 0.941 +(epoch: 217, iters: 272, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.879 G_ID: 0.176 G_Rec: 0.406 D_GP: 0.076 D_real: 1.063 D_fake: 0.726 +(epoch: 217, iters: 672, time: 0.064) G_GAN: 0.076 G_GAN_Feat: 0.719 G_ID: 0.122 G_Rec: 0.299 D_GP: 0.035 D_real: 0.935 D_fake: 0.924 +(epoch: 217, iters: 1072, time: 0.064) G_GAN: 0.186 G_GAN_Feat: 0.872 G_ID: 0.183 G_Rec: 0.367 D_GP: 0.030 D_real: 0.785 D_fake: 0.816 +(epoch: 217, iters: 1472, time: 0.064) G_GAN: 0.044 G_GAN_Feat: 0.720 G_ID: 0.166 G_Rec: 0.296 D_GP: 0.022 D_real: 0.942 D_fake: 0.956 +(epoch: 217, iters: 1872, time: 0.064) G_GAN: 0.832 G_GAN_Feat: 0.938 G_ID: 0.183 G_Rec: 0.426 D_GP: 0.024 D_real: 1.501 D_fake: 0.229 +(epoch: 217, iters: 2272, time: 0.064) G_GAN: 0.102 G_GAN_Feat: 0.704 G_ID: 0.120 G_Rec: 0.336 D_GP: 0.020 D_real: 0.933 D_fake: 0.898 +(epoch: 217, iters: 2672, time: 0.064) G_GAN: 0.352 G_GAN_Feat: 0.903 G_ID: 0.151 G_Rec: 0.395 D_GP: 0.047 D_real: 0.892 D_fake: 0.651 +(epoch: 217, iters: 3072, time: 0.064) G_GAN: -0.176 G_GAN_Feat: 0.802 G_ID: 0.139 G_Rec: 0.308 D_GP: 0.061 D_real: 0.617 D_fake: 1.176 +(epoch: 217, iters: 3472, time: 0.064) G_GAN: 0.404 G_GAN_Feat: 0.852 G_ID: 0.201 G_Rec: 0.401 D_GP: 0.024 D_real: 1.210 D_fake: 0.596 +(epoch: 217, iters: 3872, time: 0.064) G_GAN: 0.485 G_GAN_Feat: 0.887 G_ID: 0.194 G_Rec: 0.336 D_GP: 0.110 D_real: 0.807 D_fake: 0.556 +(epoch: 217, iters: 4272, time: 0.064) G_GAN: 0.669 G_GAN_Feat: 0.911 G_ID: 0.175 G_Rec: 0.409 D_GP: 0.091 D_real: 1.361 D_fake: 0.381 +(epoch: 217, iters: 4672, time: 0.064) G_GAN: 0.062 G_GAN_Feat: 0.742 G_ID: 0.168 G_Rec: 0.332 D_GP: 0.057 D_real: 0.836 D_fake: 0.938 +(epoch: 217, iters: 5072, time: 0.064) G_GAN: 0.393 G_GAN_Feat: 0.774 G_ID: 0.181 G_Rec: 0.395 D_GP: 0.022 D_real: 1.257 D_fake: 0.611 +(epoch: 217, iters: 5472, time: 0.064) G_GAN: 0.213 G_GAN_Feat: 0.618 G_ID: 0.148 G_Rec: 0.281 D_GP: 0.022 D_real: 1.129 D_fake: 0.788 +(epoch: 217, iters: 5872, time: 0.064) G_GAN: 0.343 G_GAN_Feat: 0.955 G_ID: 0.194 G_Rec: 0.411 D_GP: 0.037 D_real: 0.718 D_fake: 0.658 +(epoch: 217, iters: 6272, time: 0.064) G_GAN: 0.050 G_GAN_Feat: 0.741 G_ID: 0.159 G_Rec: 0.322 D_GP: 0.025 D_real: 0.896 D_fake: 0.950 +(epoch: 217, iters: 6672, time: 0.064) G_GAN: 0.517 G_GAN_Feat: 0.918 G_ID: 0.172 G_Rec: 0.401 D_GP: 0.031 D_real: 1.166 D_fake: 0.492 +(epoch: 217, iters: 7072, time: 0.064) G_GAN: 0.202 G_GAN_Feat: 0.741 G_ID: 0.119 G_Rec: 0.302 D_GP: 0.048 D_real: 0.969 D_fake: 0.798 +(epoch: 217, iters: 7472, time: 0.064) G_GAN: 0.319 G_GAN_Feat: 0.830 G_ID: 0.212 G_Rec: 0.387 D_GP: 0.028 D_real: 1.066 D_fake: 0.682 +(epoch: 217, iters: 7872, time: 0.064) G_GAN: 0.218 G_GAN_Feat: 0.681 G_ID: 0.142 G_Rec: 0.318 D_GP: 0.022 D_real: 1.124 D_fake: 0.782 +(epoch: 217, iters: 8272, time: 0.064) G_GAN: 0.422 G_GAN_Feat: 1.053 G_ID: 0.183 G_Rec: 0.411 D_GP: 0.218 D_real: 0.554 D_fake: 0.583 +(epoch: 218, iters: 64, time: 0.064) G_GAN: 0.207 G_GAN_Feat: 0.600 G_ID: 0.135 G_Rec: 0.316 D_GP: 0.019 D_real: 1.186 D_fake: 0.793 +(epoch: 218, iters: 464, time: 0.064) G_GAN: 0.620 G_GAN_Feat: 0.807 G_ID: 0.142 G_Rec: 0.398 D_GP: 0.019 D_real: 1.382 D_fake: 0.396 +(epoch: 218, iters: 864, time: 0.064) G_GAN: 0.219 G_GAN_Feat: 0.643 G_ID: 0.119 G_Rec: 0.311 D_GP: 0.028 D_real: 1.129 D_fake: 0.781 +(epoch: 218, iters: 1264, time: 0.064) G_GAN: 0.401 G_GAN_Feat: 0.801 G_ID: 0.219 G_Rec: 0.390 D_GP: 0.031 D_real: 1.148 D_fake: 0.608 +(epoch: 218, iters: 1664, time: 0.064) G_GAN: 0.262 G_GAN_Feat: 0.727 G_ID: 0.140 G_Rec: 0.308 D_GP: 0.033 D_real: 1.009 D_fake: 0.738 +(epoch: 218, iters: 2064, time: 0.064) G_GAN: 0.697 G_GAN_Feat: 0.853 G_ID: 0.166 G_Rec: 0.402 D_GP: 0.025 D_real: 1.369 D_fake: 0.330 +(epoch: 218, iters: 2464, time: 0.064) G_GAN: 0.321 G_GAN_Feat: 0.725 G_ID: 0.151 G_Rec: 0.310 D_GP: 0.029 D_real: 1.161 D_fake: 0.682 +(epoch: 218, iters: 2864, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 0.974 G_ID: 0.191 G_Rec: 0.417 D_GP: 0.028 D_real: 0.820 D_fake: 0.647 +(epoch: 218, iters: 3264, time: 0.064) G_GAN: -0.050 G_GAN_Feat: 0.750 G_ID: 0.125 G_Rec: 0.299 D_GP: 0.026 D_real: 0.791 D_fake: 1.050 +(epoch: 218, iters: 3664, time: 0.064) G_GAN: 0.199 G_GAN_Feat: 0.806 G_ID: 0.212 G_Rec: 0.392 D_GP: 0.027 D_real: 1.033 D_fake: 0.801 +(epoch: 218, iters: 4064, time: 0.064) G_GAN: 0.108 G_GAN_Feat: 0.661 G_ID: 0.132 G_Rec: 0.311 D_GP: 0.028 D_real: 1.012 D_fake: 0.893 +(epoch: 218, iters: 4464, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 0.781 G_ID: 0.186 G_Rec: 0.370 D_GP: 0.020 D_real: 1.147 D_fake: 0.664 +(epoch: 218, iters: 4864, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.610 G_ID: 0.136 G_Rec: 0.263 D_GP: 0.021 D_real: 1.173 D_fake: 0.745 +(epoch: 218, iters: 5264, time: 0.064) G_GAN: 0.797 G_GAN_Feat: 1.289 G_ID: 0.185 G_Rec: 0.441 D_GP: 0.033 D_real: 1.469 D_fake: 0.291 +(epoch: 218, iters: 5664, time: 0.064) G_GAN: 0.008 G_GAN_Feat: 0.646 G_ID: 0.141 G_Rec: 0.318 D_GP: 0.018 D_real: 0.958 D_fake: 0.992 +(epoch: 218, iters: 6064, time: 0.064) G_GAN: 0.079 G_GAN_Feat: 0.818 G_ID: 0.199 G_Rec: 0.394 D_GP: 0.030 D_real: 0.848 D_fake: 0.922 +(epoch: 218, iters: 6464, time: 0.064) G_GAN: -0.068 G_GAN_Feat: 0.669 G_ID: 0.140 G_Rec: 0.327 D_GP: 0.028 D_real: 0.804 D_fake: 1.069 +(epoch: 218, iters: 6864, time: 0.064) G_GAN: 0.413 G_GAN_Feat: 0.935 G_ID: 0.177 G_Rec: 0.424 D_GP: 0.060 D_real: 0.922 D_fake: 0.589 +(epoch: 218, iters: 7264, time: 0.064) G_GAN: 0.287 G_GAN_Feat: 0.680 G_ID: 0.162 G_Rec: 0.271 D_GP: 0.024 D_real: 1.147 D_fake: 0.714 +(epoch: 218, iters: 7664, time: 0.064) G_GAN: 0.427 G_GAN_Feat: 0.938 G_ID: 0.183 G_Rec: 0.411 D_GP: 0.026 D_real: 1.200 D_fake: 0.575 +(epoch: 218, iters: 8064, time: 0.064) G_GAN: 0.178 G_GAN_Feat: 0.722 G_ID: 0.145 G_Rec: 0.325 D_GP: 0.037 D_real: 1.023 D_fake: 0.825 +(epoch: 218, iters: 8464, time: 0.064) G_GAN: 0.383 G_GAN_Feat: 0.876 G_ID: 0.163 G_Rec: 0.404 D_GP: 0.022 D_real: 1.065 D_fake: 0.617 +(epoch: 219, iters: 256, time: 0.064) G_GAN: 0.448 G_GAN_Feat: 0.846 G_ID: 0.152 G_Rec: 0.319 D_GP: 0.097 D_real: 0.847 D_fake: 0.639 +(epoch: 219, iters: 656, time: 0.064) G_GAN: 0.644 G_GAN_Feat: 1.005 G_ID: 0.158 G_Rec: 0.409 D_GP: 0.037 D_real: 1.431 D_fake: 0.371 +(epoch: 219, iters: 1056, time: 0.064) G_GAN: 0.223 G_GAN_Feat: 0.675 G_ID: 0.152 G_Rec: 0.319 D_GP: 0.018 D_real: 1.131 D_fake: 0.779 +(epoch: 219, iters: 1456, time: 0.064) G_GAN: 0.466 G_GAN_Feat: 0.903 G_ID: 0.149 G_Rec: 0.382 D_GP: 0.046 D_real: 1.016 D_fake: 0.542 +(epoch: 219, iters: 1856, time: 0.064) G_GAN: -0.294 G_GAN_Feat: 0.723 G_ID: 0.126 G_Rec: 0.299 D_GP: 0.042 D_real: 0.592 D_fake: 1.294 +(epoch: 219, iters: 2256, time: 0.064) G_GAN: 0.390 G_GAN_Feat: 1.016 G_ID: 0.183 G_Rec: 0.458 D_GP: 0.067 D_real: 0.621 D_fake: 0.614 +(epoch: 219, iters: 2656, time: 0.064) G_GAN: 0.084 G_GAN_Feat: 0.715 G_ID: 0.142 G_Rec: 0.313 D_GP: 0.029 D_real: 1.025 D_fake: 0.919 +(epoch: 219, iters: 3056, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 0.916 G_ID: 0.159 G_Rec: 0.394 D_GP: 0.027 D_real: 1.070 D_fake: 0.654 +(epoch: 219, iters: 3456, time: 0.064) G_GAN: 0.361 G_GAN_Feat: 0.732 G_ID: 0.130 G_Rec: 0.295 D_GP: 0.038 D_real: 1.120 D_fake: 0.640 +(epoch: 219, iters: 3856, time: 0.064) G_GAN: 0.232 G_GAN_Feat: 0.899 G_ID: 0.163 G_Rec: 0.387 D_GP: 0.042 D_real: 0.922 D_fake: 0.771 +(epoch: 219, iters: 4256, time: 0.064) G_GAN: 0.369 G_GAN_Feat: 0.799 G_ID: 0.143 G_Rec: 0.326 D_GP: 0.040 D_real: 1.075 D_fake: 0.725 +(epoch: 219, iters: 4656, time: 0.064) G_GAN: 0.433 G_GAN_Feat: 1.211 G_ID: 0.200 G_Rec: 0.436 D_GP: 0.584 D_real: 0.359 D_fake: 0.577 +(epoch: 219, iters: 5056, time: 0.064) G_GAN: 0.179 G_GAN_Feat: 0.715 G_ID: 0.134 G_Rec: 0.290 D_GP: 0.028 D_real: 1.048 D_fake: 0.822 +(epoch: 219, iters: 5456, time: 0.064) G_GAN: 0.363 G_GAN_Feat: 0.884 G_ID: 0.196 G_Rec: 0.408 D_GP: 0.021 D_real: 1.036 D_fake: 0.637 +(epoch: 219, iters: 5856, time: 0.064) G_GAN: 0.318 G_GAN_Feat: 0.751 G_ID: 0.126 G_Rec: 0.293 D_GP: 0.025 D_real: 1.111 D_fake: 0.682 +(epoch: 219, iters: 6256, time: 0.064) G_GAN: 0.436 G_GAN_Feat: 0.905 G_ID: 0.167 G_Rec: 0.395 D_GP: 0.025 D_real: 1.149 D_fake: 0.572 +(epoch: 219, iters: 6656, time: 0.064) G_GAN: 0.269 G_GAN_Feat: 0.621 G_ID: 0.148 G_Rec: 0.275 D_GP: 0.023 D_real: 1.264 D_fake: 0.731 +(epoch: 219, iters: 7056, time: 0.064) G_GAN: 0.237 G_GAN_Feat: 0.858 G_ID: 0.194 G_Rec: 0.372 D_GP: 0.029 D_real: 0.947 D_fake: 0.763 +(epoch: 219, iters: 7456, time: 0.064) G_GAN: 0.202 G_GAN_Feat: 0.845 G_ID: 0.146 G_Rec: 0.355 D_GP: 0.077 D_real: 0.733 D_fake: 0.798 +(epoch: 219, iters: 7856, time: 0.064) G_GAN: 0.418 G_GAN_Feat: 1.020 G_ID: 0.204 G_Rec: 0.439 D_GP: 0.258 D_real: 0.634 D_fake: 0.591 +(epoch: 219, iters: 8256, time: 0.064) G_GAN: 0.264 G_GAN_Feat: 0.737 G_ID: 0.114 G_Rec: 0.282 D_GP: 0.035 D_real: 1.148 D_fake: 0.736 +(epoch: 220, iters: 48, time: 0.064) G_GAN: 0.340 G_GAN_Feat: 0.929 G_ID: 0.187 G_Rec: 0.410 D_GP: 0.048 D_real: 0.815 D_fake: 0.665 +(epoch: 220, iters: 448, time: 0.064) G_GAN: 0.085 G_GAN_Feat: 0.884 G_ID: 0.134 G_Rec: 0.330 D_GP: 0.062 D_real: 0.493 D_fake: 0.915 +(epoch: 220, iters: 848, time: 0.064) G_GAN: 0.207 G_GAN_Feat: 1.007 G_ID: 0.208 G_Rec: 0.390 D_GP: 0.043 D_real: 0.417 D_fake: 0.794 +(epoch: 220, iters: 1248, time: 0.064) G_GAN: 0.254 G_GAN_Feat: 0.695 G_ID: 0.171 G_Rec: 0.279 D_GP: 0.026 D_real: 1.197 D_fake: 0.746 +(epoch: 220, iters: 1648, time: 0.064) G_GAN: 0.534 G_GAN_Feat: 0.954 G_ID: 0.160 G_Rec: 0.423 D_GP: 0.041 D_real: 1.161 D_fake: 0.472 +(epoch: 220, iters: 2048, time: 0.064) G_GAN: 0.179 G_GAN_Feat: 0.739 G_ID: 0.134 G_Rec: 0.341 D_GP: 0.023 D_real: 1.026 D_fake: 0.821 +(epoch: 220, iters: 2448, time: 0.064) G_GAN: 0.556 G_GAN_Feat: 0.940 G_ID: 0.180 G_Rec: 0.398 D_GP: 0.025 D_real: 1.193 D_fake: 0.449 +(epoch: 220, iters: 2848, time: 0.064) G_GAN: 0.059 G_GAN_Feat: 0.692 G_ID: 0.126 G_Rec: 0.307 D_GP: 0.050 D_real: 0.904 D_fake: 0.942 +(epoch: 220, iters: 3248, time: 0.064) G_GAN: 0.370 G_GAN_Feat: 0.749 G_ID: 0.175 G_Rec: 0.375 D_GP: 0.019 D_real: 1.188 D_fake: 0.631 +(epoch: 220, iters: 3648, time: 0.064) G_GAN: 0.195 G_GAN_Feat: 0.640 G_ID: 0.145 G_Rec: 0.326 D_GP: 0.028 D_real: 1.084 D_fake: 0.805 +(epoch: 220, iters: 4048, time: 0.064) G_GAN: 0.326 G_GAN_Feat: 0.799 G_ID: 0.194 G_Rec: 0.387 D_GP: 0.031 D_real: 1.038 D_fake: 0.676 +(epoch: 220, iters: 4448, time: 0.064) G_GAN: 0.166 G_GAN_Feat: 0.638 G_ID: 0.125 G_Rec: 0.263 D_GP: 0.039 D_real: 0.998 D_fake: 0.834 +(epoch: 220, iters: 4848, time: 0.064) G_GAN: 0.319 G_GAN_Feat: 0.932 G_ID: 0.177 G_Rec: 0.422 D_GP: 0.063 D_real: 0.866 D_fake: 0.683 +(epoch: 220, iters: 5248, time: 0.064) G_GAN: 0.181 G_GAN_Feat: 0.809 G_ID: 0.133 G_Rec: 0.324 D_GP: 0.082 D_real: 0.717 D_fake: 0.819 +(epoch: 220, iters: 5648, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 0.996 G_ID: 0.190 G_Rec: 0.454 D_GP: 0.126 D_real: 0.699 D_fake: 0.658 +(epoch: 220, iters: 6048, time: 0.064) G_GAN: 0.377 G_GAN_Feat: 0.875 G_ID: 0.139 G_Rec: 0.342 D_GP: 0.028 D_real: 1.088 D_fake: 0.623 +(epoch: 220, iters: 6448, time: 0.064) G_GAN: 0.441 G_GAN_Feat: 0.832 G_ID: 0.205 G_Rec: 0.348 D_GP: 0.036 D_real: 1.212 D_fake: 0.562 +(epoch: 220, iters: 6848, time: 0.064) G_GAN: -0.083 G_GAN_Feat: 0.882 G_ID: 0.195 G_Rec: 0.318 D_GP: 0.225 D_real: 0.294 D_fake: 1.084 +(epoch: 220, iters: 7248, time: 0.064) G_GAN: 0.210 G_GAN_Feat: 1.002 G_ID: 0.189 G_Rec: 0.388 D_GP: 0.031 D_real: 0.737 D_fake: 0.795 +(epoch: 220, iters: 7648, time: 0.064) G_GAN: 0.768 G_GAN_Feat: 1.046 G_ID: 0.151 G_Rec: 0.345 D_GP: 0.057 D_real: 1.100 D_fake: 0.655 +(epoch: 220, iters: 8048, time: 0.064) G_GAN: 0.443 G_GAN_Feat: 0.997 G_ID: 0.165 G_Rec: 0.442 D_GP: 0.022 D_real: 1.171 D_fake: 0.558 +(epoch: 220, iters: 8448, time: 0.064) G_GAN: 0.079 G_GAN_Feat: 0.786 G_ID: 0.122 G_Rec: 0.334 D_GP: 0.084 D_real: 0.678 D_fake: 0.921 +(epoch: 221, iters: 240, time: 0.064) G_GAN: 0.629 G_GAN_Feat: 0.899 G_ID: 0.164 G_Rec: 0.390 D_GP: 0.043 D_real: 1.293 D_fake: 0.383 +(epoch: 221, iters: 640, time: 0.064) G_GAN: 0.165 G_GAN_Feat: 0.627 G_ID: 0.146 G_Rec: 0.309 D_GP: 0.023 D_real: 1.128 D_fake: 0.835 +(epoch: 221, iters: 1040, time: 0.064) G_GAN: 0.541 G_GAN_Feat: 0.825 G_ID: 0.162 G_Rec: 0.362 D_GP: 0.026 D_real: 1.243 D_fake: 0.480 +(epoch: 221, iters: 1440, time: 0.064) G_GAN: 0.420 G_GAN_Feat: 0.643 G_ID: 0.133 G_Rec: 0.277 D_GP: 0.020 D_real: 1.365 D_fake: 0.582 +(epoch: 221, iters: 1840, time: 0.064) G_GAN: 0.425 G_GAN_Feat: 1.092 G_ID: 0.159 G_Rec: 0.468 D_GP: 0.046 D_real: 0.557 D_fake: 0.580 +(epoch: 221, iters: 2240, time: 0.064) G_GAN: -0.043 G_GAN_Feat: 0.687 G_ID: 0.161 G_Rec: 0.314 D_GP: 0.028 D_real: 0.801 D_fake: 1.044 +(epoch: 221, iters: 2640, time: 0.064) G_GAN: 0.381 G_GAN_Feat: 0.937 G_ID: 0.181 G_Rec: 0.439 D_GP: 0.033 D_real: 0.997 D_fake: 0.626 +(epoch: 221, iters: 3040, time: 0.064) G_GAN: 0.316 G_GAN_Feat: 0.750 G_ID: 0.139 G_Rec: 0.339 D_GP: 0.032 D_real: 1.172 D_fake: 0.686 +(epoch: 221, iters: 3440, time: 0.064) G_GAN: 0.490 G_GAN_Feat: 0.882 G_ID: 0.164 G_Rec: 0.396 D_GP: 0.023 D_real: 1.219 D_fake: 0.511 +(epoch: 221, iters: 3840, time: 0.064) G_GAN: 0.284 G_GAN_Feat: 0.642 G_ID: 0.142 G_Rec: 0.292 D_GP: 0.022 D_real: 1.221 D_fake: 0.717 +(epoch: 221, iters: 4240, time: 0.064) G_GAN: 0.539 G_GAN_Feat: 0.863 G_ID: 0.152 G_Rec: 0.368 D_GP: 0.024 D_real: 1.302 D_fake: 0.463 +(epoch: 221, iters: 4640, time: 0.064) G_GAN: 0.218 G_GAN_Feat: 0.537 G_ID: 0.130 G_Rec: 0.299 D_GP: 0.018 D_real: 1.211 D_fake: 0.782 +(epoch: 221, iters: 5040, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.713 G_ID: 0.180 G_Rec: 0.393 D_GP: 0.020 D_real: 1.145 D_fake: 0.725 +(epoch: 221, iters: 5440, time: 0.064) G_GAN: 0.171 G_GAN_Feat: 0.569 G_ID: 0.136 G_Rec: 0.315 D_GP: 0.017 D_real: 1.119 D_fake: 0.829 +(epoch: 221, iters: 5840, time: 0.064) G_GAN: 0.394 G_GAN_Feat: 0.775 G_ID: 0.170 G_Rec: 0.455 D_GP: 0.022 D_real: 1.142 D_fake: 0.608 +(epoch: 221, iters: 6240, time: 0.064) G_GAN: 0.115 G_GAN_Feat: 0.589 G_ID: 0.156 G_Rec: 0.317 D_GP: 0.027 D_real: 1.019 D_fake: 0.885 +(epoch: 221, iters: 6640, time: 0.064) G_GAN: 0.191 G_GAN_Feat: 0.717 G_ID: 0.194 G_Rec: 0.381 D_GP: 0.026 D_real: 0.997 D_fake: 0.809 +(epoch: 221, iters: 7040, time: 0.064) G_GAN: -0.034 G_GAN_Feat: 0.538 G_ID: 0.132 G_Rec: 0.306 D_GP: 0.022 D_real: 0.939 D_fake: 1.034 +(epoch: 221, iters: 7440, time: 0.064) G_GAN: 0.111 G_GAN_Feat: 0.725 G_ID: 0.177 G_Rec: 0.401 D_GP: 0.027 D_real: 0.860 D_fake: 0.889 +(epoch: 221, iters: 7840, time: 0.064) G_GAN: 0.016 G_GAN_Feat: 0.627 G_ID: 0.175 G_Rec: 0.306 D_GP: 0.038 D_real: 0.883 D_fake: 0.984 +(epoch: 221, iters: 8240, time: 0.064) G_GAN: 0.134 G_GAN_Feat: 0.757 G_ID: 0.195 G_Rec: 0.365 D_GP: 0.037 D_real: 0.853 D_fake: 0.867 +(epoch: 222, iters: 32, time: 0.064) G_GAN: 0.098 G_GAN_Feat: 0.610 G_ID: 0.119 G_Rec: 0.299 D_GP: 0.027 D_real: 1.126 D_fake: 0.905 +(epoch: 222, iters: 432, time: 0.064) G_GAN: 0.120 G_GAN_Feat: 0.787 G_ID: 0.190 G_Rec: 0.408 D_GP: 0.025 D_real: 0.915 D_fake: 0.881 +(epoch: 222, iters: 832, time: 0.064) G_GAN: 0.057 G_GAN_Feat: 0.581 G_ID: 0.115 G_Rec: 0.268 D_GP: 0.026 D_real: 1.005 D_fake: 0.943 +(epoch: 222, iters: 1232, time: 0.064) G_GAN: 0.426 G_GAN_Feat: 0.740 G_ID: 0.163 G_Rec: 0.367 D_GP: 0.027 D_real: 1.248 D_fake: 0.580 +(epoch: 222, iters: 1632, time: 0.064) G_GAN: 0.073 G_GAN_Feat: 0.611 G_ID: 0.153 G_Rec: 0.308 D_GP: 0.039 D_real: 0.946 D_fake: 0.927 +(epoch: 222, iters: 2032, time: 0.064) G_GAN: 0.284 G_GAN_Feat: 0.801 G_ID: 0.170 G_Rec: 0.402 D_GP: 0.023 D_real: 1.066 D_fake: 0.718 +(epoch: 222, iters: 2432, time: 0.064) G_GAN: 0.022 G_GAN_Feat: 0.689 G_ID: 0.129 G_Rec: 0.293 D_GP: 0.039 D_real: 0.831 D_fake: 0.978 +(epoch: 222, iters: 2832, time: 0.064) G_GAN: 0.228 G_GAN_Feat: 0.814 G_ID: 0.189 G_Rec: 0.372 D_GP: 0.037 D_real: 0.927 D_fake: 0.772 +(epoch: 222, iters: 3232, time: 0.064) G_GAN: -0.181 G_GAN_Feat: 0.711 G_ID: 0.165 G_Rec: 0.336 D_GP: 0.035 D_real: 0.814 D_fake: 1.182 +(epoch: 222, iters: 3632, time: 0.064) G_GAN: 0.345 G_GAN_Feat: 0.790 G_ID: 0.180 G_Rec: 0.400 D_GP: 0.025 D_real: 1.082 D_fake: 0.656 +(epoch: 222, iters: 4032, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.601 G_ID: 0.121 G_Rec: 0.288 D_GP: 0.023 D_real: 1.273 D_fake: 0.675 +(epoch: 222, iters: 4432, time: 0.064) G_GAN: 0.463 G_GAN_Feat: 0.831 G_ID: 0.173 G_Rec: 0.461 D_GP: 0.042 D_real: 1.090 D_fake: 0.543 +(epoch: 222, iters: 4832, time: 0.064) G_GAN: 0.196 G_GAN_Feat: 0.553 G_ID: 0.122 G_Rec: 0.261 D_GP: 0.022 D_real: 1.127 D_fake: 0.804 +(epoch: 222, iters: 5232, time: 0.064) G_GAN: 0.445 G_GAN_Feat: 1.118 G_ID: 0.182 G_Rec: 0.512 D_GP: 1.347 D_real: 0.623 D_fake: 0.578 +(epoch: 222, iters: 5632, time: 0.064) G_GAN: 0.241 G_GAN_Feat: 0.577 G_ID: 0.129 G_Rec: 0.279 D_GP: 0.021 D_real: 1.176 D_fake: 0.759 +(epoch: 222, iters: 6032, time: 0.064) G_GAN: 0.504 G_GAN_Feat: 0.838 G_ID: 0.154 G_Rec: 0.382 D_GP: 0.041 D_real: 1.107 D_fake: 0.498 +(epoch: 222, iters: 6432, time: 0.064) G_GAN: 0.205 G_GAN_Feat: 0.650 G_ID: 0.128 G_Rec: 0.291 D_GP: 0.031 D_real: 1.142 D_fake: 0.795 +(epoch: 222, iters: 6832, time: 0.064) G_GAN: 0.260 G_GAN_Feat: 0.895 G_ID: 0.184 G_Rec: 0.432 D_GP: 0.053 D_real: 0.800 D_fake: 0.740 +(epoch: 222, iters: 7232, time: 0.064) G_GAN: 0.197 G_GAN_Feat: 0.618 G_ID: 0.140 G_Rec: 0.290 D_GP: 0.022 D_real: 1.065 D_fake: 0.803 +(epoch: 222, iters: 7632, time: 0.064) G_GAN: 0.442 G_GAN_Feat: 0.773 G_ID: 0.175 G_Rec: 0.380 D_GP: 0.026 D_real: 1.204 D_fake: 0.559 +(epoch: 222, iters: 8032, time: 0.064) G_GAN: 0.367 G_GAN_Feat: 0.591 G_ID: 0.120 G_Rec: 0.277 D_GP: 0.022 D_real: 1.326 D_fake: 0.635 +(epoch: 222, iters: 8432, time: 0.064) G_GAN: 0.508 G_GAN_Feat: 0.895 G_ID: 0.199 G_Rec: 0.370 D_GP: 0.062 D_real: 0.908 D_fake: 0.496 +(epoch: 223, iters: 224, time: 0.064) G_GAN: 0.183 G_GAN_Feat: 0.676 G_ID: 0.141 G_Rec: 0.301 D_GP: 0.032 D_real: 0.958 D_fake: 0.817 +(epoch: 223, iters: 624, time: 0.064) G_GAN: 0.431 G_GAN_Feat: 0.817 G_ID: 0.179 G_Rec: 0.460 D_GP: 0.020 D_real: 1.241 D_fake: 0.570 +(epoch: 223, iters: 1024, time: 0.064) G_GAN: 0.159 G_GAN_Feat: 0.730 G_ID: 0.166 G_Rec: 0.315 D_GP: 0.035 D_real: 0.971 D_fake: 0.841 +(epoch: 223, iters: 1424, time: 0.064) G_GAN: 0.503 G_GAN_Feat: 0.811 G_ID: 0.169 G_Rec: 0.450 D_GP: 0.024 D_real: 1.189 D_fake: 0.506 +(epoch: 223, iters: 1824, time: 0.064) G_GAN: -0.041 G_GAN_Feat: 0.662 G_ID: 0.156 G_Rec: 0.301 D_GP: 0.042 D_real: 0.776 D_fake: 1.041 +(epoch: 223, iters: 2224, time: 0.064) G_GAN: 0.299 G_GAN_Feat: 0.940 G_ID: 0.166 G_Rec: 0.431 D_GP: 0.035 D_real: 0.898 D_fake: 0.702 +(epoch: 223, iters: 2624, time: 0.064) G_GAN: 0.079 G_GAN_Feat: 0.731 G_ID: 0.126 G_Rec: 0.333 D_GP: 0.101 D_real: 0.770 D_fake: 0.921 +(epoch: 223, iters: 3024, time: 0.064) G_GAN: 0.572 G_GAN_Feat: 0.841 G_ID: 0.170 G_Rec: 0.382 D_GP: 0.024 D_real: 1.228 D_fake: 0.452 +(epoch: 223, iters: 3424, time: 0.064) G_GAN: 0.203 G_GAN_Feat: 0.755 G_ID: 0.141 G_Rec: 0.324 D_GP: 0.058 D_real: 0.958 D_fake: 0.798 +(epoch: 223, iters: 3824, time: 0.064) G_GAN: 0.568 G_GAN_Feat: 1.018 G_ID: 0.163 G_Rec: 0.425 D_GP: 0.157 D_real: 0.682 D_fake: 0.440 +(epoch: 223, iters: 4224, time: 0.064) G_GAN: 0.172 G_GAN_Feat: 0.702 G_ID: 0.144 G_Rec: 0.374 D_GP: 0.029 D_real: 1.098 D_fake: 0.829 +(epoch: 223, iters: 4624, time: 0.064) G_GAN: 0.586 G_GAN_Feat: 0.838 G_ID: 0.168 G_Rec: 0.390 D_GP: 0.020 D_real: 1.330 D_fake: 0.419 +(epoch: 223, iters: 5024, time: 0.064) G_GAN: 0.074 G_GAN_Feat: 0.718 G_ID: 0.134 G_Rec: 0.301 D_GP: 0.057 D_real: 0.790 D_fake: 0.926 +(epoch: 223, iters: 5424, time: 0.064) G_GAN: 0.566 G_GAN_Feat: 0.883 G_ID: 0.194 G_Rec: 0.404 D_GP: 0.025 D_real: 1.245 D_fake: 0.440 +(epoch: 223, iters: 5824, time: 0.064) G_GAN: 0.571 G_GAN_Feat: 0.788 G_ID: 0.136 G_Rec: 0.321 D_GP: 0.036 D_real: 1.409 D_fake: 0.539 +(epoch: 223, iters: 6224, time: 0.064) G_GAN: 0.126 G_GAN_Feat: 0.952 G_ID: 0.160 G_Rec: 0.373 D_GP: 0.161 D_real: 0.397 D_fake: 0.874 +(epoch: 223, iters: 6624, time: 0.064) G_GAN: 0.271 G_GAN_Feat: 0.729 G_ID: 0.126 G_Rec: 0.357 D_GP: 0.033 D_real: 1.132 D_fake: 0.729 +(epoch: 223, iters: 7024, time: 0.064) G_GAN: 0.251 G_GAN_Feat: 0.764 G_ID: 0.194 G_Rec: 0.421 D_GP: 0.020 D_real: 1.110 D_fake: 0.750 +(epoch: 223, iters: 7424, time: 0.064) G_GAN: 0.093 G_GAN_Feat: 0.836 G_ID: 0.134 G_Rec: 0.356 D_GP: 0.021 D_real: 0.933 D_fake: 0.907 +(epoch: 223, iters: 7824, time: 0.064) G_GAN: 0.025 G_GAN_Feat: 0.752 G_ID: 0.163 G_Rec: 0.359 D_GP: 0.020 D_real: 0.878 D_fake: 0.978 +(epoch: 223, iters: 8224, time: 0.064) G_GAN: 0.024 G_GAN_Feat: 0.654 G_ID: 0.138 G_Rec: 0.301 D_GP: 0.030 D_real: 0.956 D_fake: 0.976 +(epoch: 224, iters: 16, time: 0.064) G_GAN: 0.408 G_GAN_Feat: 1.031 G_ID: 0.151 G_Rec: 0.429 D_GP: 0.085 D_real: 0.633 D_fake: 0.595 +(epoch: 224, iters: 416, time: 0.064) G_GAN: 0.390 G_GAN_Feat: 0.587 G_ID: 0.124 G_Rec: 0.251 D_GP: 0.025 D_real: 1.350 D_fake: 0.614 +(epoch: 224, iters: 816, time: 0.064) G_GAN: 0.241 G_GAN_Feat: 0.698 G_ID: 0.172 G_Rec: 0.334 D_GP: 0.021 D_real: 1.019 D_fake: 0.759 +(epoch: 224, iters: 1216, time: 0.064) G_GAN: 0.036 G_GAN_Feat: 0.628 G_ID: 0.143 G_Rec: 0.295 D_GP: 0.024 D_real: 0.940 D_fake: 0.965 +(epoch: 224, iters: 1616, time: 0.064) G_GAN: 0.114 G_GAN_Feat: 0.831 G_ID: 0.170 G_Rec: 0.377 D_GP: 0.035 D_real: 0.826 D_fake: 0.886 +(epoch: 224, iters: 2016, time: 0.064) G_GAN: -0.224 G_GAN_Feat: 0.790 G_ID: 0.118 G_Rec: 0.325 D_GP: 0.100 D_real: 0.361 D_fake: 1.224 +(epoch: 224, iters: 2416, time: 0.064) G_GAN: 0.515 G_GAN_Feat: 0.917 G_ID: 0.164 G_Rec: 0.399 D_GP: 0.088 D_real: 0.913 D_fake: 0.489 +(epoch: 224, iters: 2816, time: 0.064) G_GAN: 0.068 G_GAN_Feat: 0.905 G_ID: 0.122 G_Rec: 0.328 D_GP: 0.085 D_real: 0.513 D_fake: 0.933 +(epoch: 224, iters: 3216, time: 0.064) G_GAN: 0.316 G_GAN_Feat: 0.926 G_ID: 0.195 G_Rec: 0.401 D_GP: 0.037 D_real: 1.107 D_fake: 0.684 +(epoch: 224, iters: 3616, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.707 G_ID: 0.154 G_Rec: 0.300 D_GP: 0.034 D_real: 1.044 D_fake: 0.744 +(epoch: 224, iters: 4016, time: 0.064) G_GAN: 0.694 G_GAN_Feat: 0.831 G_ID: 0.173 G_Rec: 0.394 D_GP: 0.023 D_real: 1.421 D_fake: 0.330 +(epoch: 224, iters: 4416, time: 0.064) G_GAN: 0.398 G_GAN_Feat: 0.743 G_ID: 0.130 G_Rec: 0.288 D_GP: 0.041 D_real: 1.111 D_fake: 0.605 +(epoch: 224, iters: 4816, time: 0.064) G_GAN: 0.566 G_GAN_Feat: 0.797 G_ID: 0.167 G_Rec: 0.366 D_GP: 0.025 D_real: 1.356 D_fake: 0.441 +(epoch: 224, iters: 5216, time: 0.064) G_GAN: 0.349 G_GAN_Feat: 0.682 G_ID: 0.133 G_Rec: 0.298 D_GP: 0.030 D_real: 1.239 D_fake: 0.652 +(epoch: 224, iters: 5616, time: 0.064) G_GAN: 0.833 G_GAN_Feat: 0.994 G_ID: 0.173 G_Rec: 0.440 D_GP: 0.071 D_real: 1.141 D_fake: 0.389 +(epoch: 224, iters: 6016, time: 0.064) G_GAN: 0.326 G_GAN_Feat: 0.909 G_ID: 0.134 G_Rec: 0.354 D_GP: 0.140 D_real: 0.478 D_fake: 0.684 +(epoch: 224, iters: 6416, time: 0.064) G_GAN: 0.401 G_GAN_Feat: 1.206 G_ID: 0.179 G_Rec: 0.435 D_GP: 0.369 D_real: 0.270 D_fake: 0.611 +(epoch: 224, iters: 6816, time: 0.064) G_GAN: 0.332 G_GAN_Feat: 0.877 G_ID: 0.118 G_Rec: 0.308 D_GP: 0.050 D_real: 1.008 D_fake: 0.726 +(epoch: 224, iters: 7216, time: 0.064) G_GAN: 0.607 G_GAN_Feat: 0.878 G_ID: 0.186 G_Rec: 0.412 D_GP: 0.020 D_real: 1.313 D_fake: 0.403 +(epoch: 224, iters: 7616, time: 0.064) G_GAN: 0.248 G_GAN_Feat: 0.643 G_ID: 0.152 G_Rec: 0.287 D_GP: 0.023 D_real: 1.190 D_fake: 0.752 +(epoch: 224, iters: 8016, time: 0.064) G_GAN: 0.299 G_GAN_Feat: 1.062 G_ID: 0.188 G_Rec: 0.451 D_GP: 0.315 D_real: 0.377 D_fake: 0.707 +(epoch: 224, iters: 8416, time: 0.064) G_GAN: 0.271 G_GAN_Feat: 0.744 G_ID: 0.127 G_Rec: 0.299 D_GP: 0.030 D_real: 1.035 D_fake: 0.730 +(epoch: 225, iters: 208, time: 0.064) G_GAN: 0.346 G_GAN_Feat: 0.946 G_ID: 0.174 G_Rec: 0.413 D_GP: 0.057 D_real: 0.889 D_fake: 0.661 +(epoch: 225, iters: 608, time: 0.064) G_GAN: -0.008 G_GAN_Feat: 0.724 G_ID: 0.149 G_Rec: 0.306 D_GP: 0.021 D_real: 0.926 D_fake: 1.008 +(epoch: 225, iters: 1008, time: 0.064) G_GAN: 0.515 G_GAN_Feat: 0.847 G_ID: 0.162 G_Rec: 0.368 D_GP: 0.034 D_real: 1.212 D_fake: 0.495 +(epoch: 225, iters: 1408, time: 0.064) G_GAN: 0.405 G_GAN_Feat: 0.655 G_ID: 0.138 G_Rec: 0.294 D_GP: 0.020 D_real: 1.290 D_fake: 0.655 +(epoch: 225, iters: 1808, time: 0.064) G_GAN: 0.104 G_GAN_Feat: 0.838 G_ID: 0.173 G_Rec: 0.373 D_GP: 0.021 D_real: 0.885 D_fake: 0.896 +(epoch: 225, iters: 2208, time: 0.064) G_GAN: 0.388 G_GAN_Feat: 0.876 G_ID: 0.156 G_Rec: 0.325 D_GP: 0.098 D_real: 0.539 D_fake: 0.618 +(epoch: 225, iters: 2608, time: 0.064) G_GAN: 0.229 G_GAN_Feat: 0.822 G_ID: 0.165 G_Rec: 0.411 D_GP: 0.024 D_real: 0.964 D_fake: 0.771 +(epoch: 225, iters: 3008, time: 0.064) G_GAN: 0.217 G_GAN_Feat: 0.631 G_ID: 0.121 G_Rec: 0.295 D_GP: 0.023 D_real: 1.177 D_fake: 0.783 +(epoch: 225, iters: 3408, time: 0.064) G_GAN: 0.426 G_GAN_Feat: 0.938 G_ID: 0.169 G_Rec: 0.432 D_GP: 0.036 D_real: 0.976 D_fake: 0.581 +(epoch: 225, iters: 3808, time: 0.064) G_GAN: -0.226 G_GAN_Feat: 0.563 G_ID: 0.122 G_Rec: 0.317 D_GP: 0.016 D_real: 0.738 D_fake: 1.227 +(epoch: 225, iters: 4208, time: 0.064) G_GAN: -0.061 G_GAN_Feat: 0.753 G_ID: 0.200 G_Rec: 0.384 D_GP: 0.021 D_real: 0.740 D_fake: 1.062 +(epoch: 225, iters: 4608, time: 0.064) G_GAN: -0.231 G_GAN_Feat: 0.730 G_ID: 0.123 G_Rec: 0.355 D_GP: 0.041 D_real: 0.633 D_fake: 1.232 +(epoch: 225, iters: 5008, time: 0.064) G_GAN: -0.018 G_GAN_Feat: 0.769 G_ID: 0.220 G_Rec: 0.374 D_GP: 0.026 D_real: 0.779 D_fake: 1.018 +(epoch: 225, iters: 5408, time: 0.064) G_GAN: 0.013 G_GAN_Feat: 0.621 G_ID: 0.127 G_Rec: 0.286 D_GP: 0.029 D_real: 0.937 D_fake: 0.987 +(epoch: 225, iters: 5808, time: 0.064) G_GAN: 0.495 G_GAN_Feat: 0.782 G_ID: 0.159 G_Rec: 0.377 D_GP: 0.025 D_real: 1.241 D_fake: 0.520 +(epoch: 225, iters: 6208, time: 0.064) G_GAN: 0.235 G_GAN_Feat: 0.898 G_ID: 0.120 G_Rec: 0.335 D_GP: 0.159 D_real: 0.549 D_fake: 0.767 +(epoch: 225, iters: 6608, time: 0.064) G_GAN: 0.329 G_GAN_Feat: 0.890 G_ID: 0.190 G_Rec: 0.375 D_GP: 0.045 D_real: 0.858 D_fake: 0.672 +(epoch: 225, iters: 7008, time: 0.064) G_GAN: 0.274 G_GAN_Feat: 0.688 G_ID: 0.152 G_Rec: 0.365 D_GP: 0.020 D_real: 1.254 D_fake: 0.726 +(epoch: 225, iters: 7408, time: 0.064) G_GAN: 0.386 G_GAN_Feat: 0.819 G_ID: 0.168 G_Rec: 0.413 D_GP: 0.023 D_real: 1.159 D_fake: 0.623 +(epoch: 225, iters: 7808, time: 0.064) G_GAN: -0.070 G_GAN_Feat: 0.702 G_ID: 0.143 G_Rec: 0.303 D_GP: 0.034 D_real: 0.831 D_fake: 1.070 +(epoch: 225, iters: 8208, time: 0.064) G_GAN: 0.590 G_GAN_Feat: 0.835 G_ID: 0.165 G_Rec: 0.371 D_GP: 0.022 D_real: 1.268 D_fake: 0.417 +(epoch: 225, iters: 8608, time: 0.064) G_GAN: 0.186 G_GAN_Feat: 0.714 G_ID: 0.129 G_Rec: 0.290 D_GP: 0.032 D_real: 1.042 D_fake: 0.814 +(epoch: 226, iters: 400, time: 0.064) G_GAN: 0.393 G_GAN_Feat: 0.809 G_ID: 0.168 G_Rec: 0.412 D_GP: 0.024 D_real: 1.131 D_fake: 0.608 +(epoch: 226, iters: 800, time: 0.064) G_GAN: 0.169 G_GAN_Feat: 0.773 G_ID: 0.113 G_Rec: 0.314 D_GP: 0.100 D_real: 0.778 D_fake: 0.831 +(epoch: 226, iters: 1200, time: 0.064) G_GAN: 0.427 G_GAN_Feat: 0.873 G_ID: 0.211 G_Rec: 0.387 D_GP: 0.024 D_real: 1.095 D_fake: 0.575 +(epoch: 226, iters: 1600, time: 0.064) G_GAN: 0.185 G_GAN_Feat: 0.857 G_ID: 0.156 G_Rec: 0.319 D_GP: 0.159 D_real: 0.505 D_fake: 0.819 +(epoch: 226, iters: 2000, time: 0.064) G_GAN: 0.436 G_GAN_Feat: 0.812 G_ID: 0.224 G_Rec: 0.338 D_GP: 0.028 D_real: 1.146 D_fake: 0.565 +(epoch: 226, iters: 2400, time: 0.064) G_GAN: 0.294 G_GAN_Feat: 0.906 G_ID: 0.134 G_Rec: 0.317 D_GP: 0.032 D_real: 0.708 D_fake: 0.707 +(epoch: 226, iters: 2800, time: 0.064) G_GAN: 0.321 G_GAN_Feat: 0.717 G_ID: 0.178 G_Rec: 0.385 D_GP: 0.021 D_real: 1.179 D_fake: 0.679 +(epoch: 226, iters: 3200, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.568 G_ID: 0.144 G_Rec: 0.310 D_GP: 0.019 D_real: 1.284 D_fake: 0.675 +(epoch: 226, iters: 3600, time: 0.064) G_GAN: 0.338 G_GAN_Feat: 0.701 G_ID: 0.172 G_Rec: 0.353 D_GP: 0.021 D_real: 1.209 D_fake: 0.662 +(epoch: 226, iters: 4000, time: 0.064) G_GAN: 0.166 G_GAN_Feat: 0.652 G_ID: 0.134 G_Rec: 0.322 D_GP: 0.028 D_real: 1.016 D_fake: 0.834 +(epoch: 226, iters: 4400, time: 0.064) G_GAN: 0.072 G_GAN_Feat: 0.791 G_ID: 0.173 G_Rec: 0.391 D_GP: 0.037 D_real: 0.805 D_fake: 0.928 +(epoch: 226, iters: 4800, time: 0.064) G_GAN: 0.093 G_GAN_Feat: 0.617 G_ID: 0.138 G_Rec: 0.313 D_GP: 0.028 D_real: 1.018 D_fake: 0.909 +(epoch: 226, iters: 5200, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 0.827 G_ID: 0.164 G_Rec: 0.396 D_GP: 0.033 D_real: 1.185 D_fake: 0.651 +(epoch: 226, iters: 5600, time: 0.064) G_GAN: 0.239 G_GAN_Feat: 0.611 G_ID: 0.120 G_Rec: 0.299 D_GP: 0.031 D_real: 1.165 D_fake: 0.763 +(epoch: 226, iters: 6000, time: 0.064) G_GAN: 0.472 G_GAN_Feat: 0.953 G_ID: 0.190 G_Rec: 0.438 D_GP: 0.049 D_real: 1.021 D_fake: 0.534 +(epoch: 226, iters: 6400, time: 0.064) G_GAN: 0.188 G_GAN_Feat: 0.703 G_ID: 0.142 G_Rec: 0.329 D_GP: 0.053 D_real: 0.948 D_fake: 0.812 +(epoch: 226, iters: 6800, time: 0.064) G_GAN: 0.431 G_GAN_Feat: 0.767 G_ID: 0.151 G_Rec: 0.381 D_GP: 0.025 D_real: 1.168 D_fake: 0.572 +(epoch: 226, iters: 7200, time: 0.064) G_GAN: 0.318 G_GAN_Feat: 0.644 G_ID: 0.136 G_Rec: 0.310 D_GP: 0.034 D_real: 1.257 D_fake: 0.687 +(epoch: 226, iters: 7600, time: 0.064) G_GAN: 0.442 G_GAN_Feat: 0.898 G_ID: 0.173 G_Rec: 0.402 D_GP: 0.038 D_real: 1.109 D_fake: 0.563 +(epoch: 226, iters: 8000, time: 0.064) G_GAN: -0.020 G_GAN_Feat: 0.722 G_ID: 0.154 G_Rec: 0.305 D_GP: 0.039 D_real: 0.684 D_fake: 1.020 +(epoch: 226, iters: 8400, time: 0.064) G_GAN: 0.203 G_GAN_Feat: 1.019 G_ID: 0.180 G_Rec: 0.413 D_GP: 0.124 D_real: 0.449 D_fake: 0.799 +(epoch: 227, iters: 192, time: 0.064) G_GAN: 0.231 G_GAN_Feat: 0.639 G_ID: 0.130 G_Rec: 0.314 D_GP: 0.017 D_real: 1.214 D_fake: 0.769 +(epoch: 227, iters: 592, time: 0.064) G_GAN: 0.480 G_GAN_Feat: 0.777 G_ID: 0.161 G_Rec: 0.400 D_GP: 0.020 D_real: 1.218 D_fake: 0.522 +(epoch: 227, iters: 992, time: 0.064) G_GAN: 0.183 G_GAN_Feat: 0.706 G_ID: 0.131 G_Rec: 0.350 D_GP: 0.040 D_real: 0.977 D_fake: 0.817 +(epoch: 227, iters: 1392, time: 0.064) G_GAN: 0.491 G_GAN_Feat: 0.759 G_ID: 0.167 G_Rec: 0.384 D_GP: 0.029 D_real: 1.296 D_fake: 0.511 +(epoch: 227, iters: 1792, time: 0.064) G_GAN: 0.252 G_GAN_Feat: 0.729 G_ID: 0.130 G_Rec: 0.362 D_GP: 0.052 D_real: 1.129 D_fake: 0.749 +(epoch: 227, iters: 2192, time: 0.064) G_GAN: 0.405 G_GAN_Feat: 0.861 G_ID: 0.190 G_Rec: 0.446 D_GP: 0.029 D_real: 1.008 D_fake: 0.597 +(epoch: 227, iters: 2592, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.632 G_ID: 0.114 G_Rec: 0.295 D_GP: 0.031 D_real: 1.181 D_fake: 0.722 +(epoch: 227, iters: 2992, time: 0.064) G_GAN: 0.390 G_GAN_Feat: 1.011 G_ID: 0.182 G_Rec: 0.420 D_GP: 0.088 D_real: 0.805 D_fake: 0.632 +(epoch: 227, iters: 3392, time: 0.064) G_GAN: 0.085 G_GAN_Feat: 0.804 G_ID: 0.127 G_Rec: 0.306 D_GP: 0.040 D_real: 0.695 D_fake: 0.915 +(epoch: 227, iters: 3792, time: 0.064) G_GAN: 0.123 G_GAN_Feat: 0.897 G_ID: 0.150 G_Rec: 0.416 D_GP: 0.023 D_real: 0.877 D_fake: 0.878 +(epoch: 227, iters: 4192, time: 0.064) G_GAN: 0.272 G_GAN_Feat: 0.695 G_ID: 0.139 G_Rec: 0.287 D_GP: 0.026 D_real: 1.176 D_fake: 0.729 +(epoch: 227, iters: 4592, time: 0.064) G_GAN: 0.567 G_GAN_Feat: 1.122 G_ID: 0.228 G_Rec: 0.439 D_GP: 0.090 D_real: 0.423 D_fake: 0.489 +(epoch: 227, iters: 4992, time: 0.064) G_GAN: 0.311 G_GAN_Feat: 0.695 G_ID: 0.132 G_Rec: 0.331 D_GP: 0.031 D_real: 1.121 D_fake: 0.691 +(epoch: 227, iters: 5392, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 0.869 G_ID: 0.174 G_Rec: 0.379 D_GP: 0.042 D_real: 0.942 D_fake: 0.646 +(epoch: 227, iters: 5792, time: 0.064) G_GAN: 0.313 G_GAN_Feat: 0.881 G_ID: 0.141 G_Rec: 0.322 D_GP: 0.067 D_real: 1.356 D_fake: 0.721 +(epoch: 227, iters: 6192, time: 0.064) G_GAN: 0.347 G_GAN_Feat: 0.854 G_ID: 0.167 G_Rec: 0.409 D_GP: 0.028 D_real: 0.962 D_fake: 0.653 +(epoch: 227, iters: 6592, time: 0.064) G_GAN: 0.132 G_GAN_Feat: 0.630 G_ID: 0.111 G_Rec: 0.302 D_GP: 0.031 D_real: 1.082 D_fake: 0.868 +(epoch: 227, iters: 6992, time: 0.064) G_GAN: 0.366 G_GAN_Feat: 1.008 G_ID: 0.164 G_Rec: 0.454 D_GP: 0.057 D_real: 0.789 D_fake: 0.638 +(epoch: 227, iters: 7392, time: 0.064) G_GAN: 0.076 G_GAN_Feat: 0.681 G_ID: 0.129 G_Rec: 0.327 D_GP: 0.037 D_real: 1.011 D_fake: 0.925 +(epoch: 227, iters: 7792, time: 0.064) G_GAN: 0.529 G_GAN_Feat: 0.942 G_ID: 0.147 G_Rec: 0.395 D_GP: 0.066 D_real: 0.956 D_fake: 0.478 +(epoch: 227, iters: 8192, time: 0.064) G_GAN: 0.113 G_GAN_Feat: 0.596 G_ID: 0.143 G_Rec: 0.252 D_GP: 0.022 D_real: 1.034 D_fake: 0.887 +(epoch: 227, iters: 8592, time: 0.064) G_GAN: 0.391 G_GAN_Feat: 0.824 G_ID: 0.169 G_Rec: 0.403 D_GP: 0.031 D_real: 1.077 D_fake: 0.610 +(epoch: 228, iters: 384, time: 0.064) G_GAN: 0.187 G_GAN_Feat: 0.652 G_ID: 0.153 G_Rec: 0.331 D_GP: 0.028 D_real: 1.130 D_fake: 0.813 +(epoch: 228, iters: 784, time: 0.064) G_GAN: 0.171 G_GAN_Feat: 0.885 G_ID: 0.158 G_Rec: 0.390 D_GP: 0.063 D_real: 0.848 D_fake: 0.832 +(epoch: 228, iters: 1184, time: 0.064) G_GAN: 0.026 G_GAN_Feat: 0.741 G_ID: 0.130 G_Rec: 0.308 D_GP: 0.044 D_real: 0.797 D_fake: 0.974 +(epoch: 228, iters: 1584, time: 0.064) G_GAN: 0.647 G_GAN_Feat: 1.097 G_ID: 0.160 G_Rec: 0.422 D_GP: 0.039 D_real: 1.221 D_fake: 0.408 +(epoch: 228, iters: 1984, time: 0.064) G_GAN: 0.094 G_GAN_Feat: 0.825 G_ID: 0.142 G_Rec: 0.313 D_GP: 0.124 D_real: 0.709 D_fake: 0.907 +(epoch: 228, iters: 2384, time: 0.064) G_GAN: 0.438 G_GAN_Feat: 0.851 G_ID: 0.198 G_Rec: 0.413 D_GP: 0.028 D_real: 1.116 D_fake: 0.570 +(epoch: 228, iters: 2784, time: 0.064) G_GAN: 0.148 G_GAN_Feat: 0.630 G_ID: 0.128 G_Rec: 0.273 D_GP: 0.026 D_real: 1.027 D_fake: 0.852 +(epoch: 228, iters: 3184, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.801 G_ID: 0.163 G_Rec: 0.368 D_GP: 0.033 D_real: 1.074 D_fake: 0.671 +(epoch: 228, iters: 3584, time: 0.064) G_GAN: 0.057 G_GAN_Feat: 1.051 G_ID: 0.117 G_Rec: 0.328 D_GP: 0.169 D_real: 0.537 D_fake: 0.945 +(epoch: 228, iters: 3984, time: 0.064) G_GAN: 0.720 G_GAN_Feat: 0.966 G_ID: 0.198 G_Rec: 0.409 D_GP: 0.036 D_real: 1.287 D_fake: 0.359 +(epoch: 228, iters: 4384, time: 0.064) G_GAN: 0.210 G_GAN_Feat: 1.016 G_ID: 0.126 G_Rec: 0.327 D_GP: 0.316 D_real: 0.385 D_fake: 0.792 +(epoch: 228, iters: 4784, time: 0.064) G_GAN: 0.356 G_GAN_Feat: 0.908 G_ID: 0.203 G_Rec: 0.372 D_GP: 0.050 D_real: 0.856 D_fake: 0.648 +(epoch: 228, iters: 5184, time: 0.064) G_GAN: 0.167 G_GAN_Feat: 0.720 G_ID: 0.155 G_Rec: 0.307 D_GP: 0.023 D_real: 1.047 D_fake: 0.838 +(epoch: 228, iters: 5584, time: 0.064) G_GAN: 0.251 G_GAN_Feat: 0.873 G_ID: 0.202 G_Rec: 0.398 D_GP: 0.026 D_real: 0.913 D_fake: 0.750 +(epoch: 228, iters: 5984, time: 0.064) G_GAN: 0.083 G_GAN_Feat: 0.699 G_ID: 0.147 G_Rec: 0.305 D_GP: 0.020 D_real: 0.993 D_fake: 0.917 +(epoch: 228, iters: 6384, time: 0.064) G_GAN: 0.385 G_GAN_Feat: 0.874 G_ID: 0.176 G_Rec: 0.353 D_GP: 0.062 D_real: 0.839 D_fake: 0.618 +(epoch: 228, iters: 6784, time: 0.064) G_GAN: 0.225 G_GAN_Feat: 0.600 G_ID: 0.123 G_Rec: 0.285 D_GP: 0.022 D_real: 1.159 D_fake: 0.775 +(epoch: 228, iters: 7184, time: 0.064) G_GAN: 0.461 G_GAN_Feat: 0.872 G_ID: 0.183 G_Rec: 0.365 D_GP: 0.026 D_real: 1.190 D_fake: 0.544 +(epoch: 228, iters: 7584, time: 0.064) G_GAN: 0.200 G_GAN_Feat: 0.892 G_ID: 0.141 G_Rec: 0.308 D_GP: 0.047 D_real: 0.616 D_fake: 0.801 +(epoch: 228, iters: 7984, time: 0.064) G_GAN: 0.456 G_GAN_Feat: 1.145 G_ID: 0.180 G_Rec: 0.421 D_GP: 0.243 D_real: 0.421 D_fake: 0.552 +(epoch: 228, iters: 8384, time: 0.064) G_GAN: 0.377 G_GAN_Feat: 0.842 G_ID: 0.126 G_Rec: 0.310 D_GP: 0.077 D_real: 0.751 D_fake: 0.695 +(epoch: 229, iters: 176, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.838 G_ID: 0.144 G_Rec: 0.366 D_GP: 0.027 D_real: 1.103 D_fake: 0.669 +(epoch: 229, iters: 576, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.779 G_ID: 0.116 G_Rec: 0.354 D_GP: 0.023 D_real: 1.099 D_fake: 0.725 +(epoch: 229, iters: 976, time: 0.064) G_GAN: 0.422 G_GAN_Feat: 0.904 G_ID: 0.162 G_Rec: 0.421 D_GP: 0.024 D_real: 1.211 D_fake: 0.581 +(epoch: 229, iters: 1376, time: 0.064) G_GAN: -0.210 G_GAN_Feat: 0.656 G_ID: 0.143 G_Rec: 0.304 D_GP: 0.020 D_real: 0.745 D_fake: 1.210 +(epoch: 229, iters: 1776, time: 0.064) G_GAN: -0.130 G_GAN_Feat: 0.750 G_ID: 0.170 G_Rec: 0.389 D_GP: 0.017 D_real: 0.675 D_fake: 1.131 +(epoch: 229, iters: 2176, time: 0.064) G_GAN: -0.192 G_GAN_Feat: 0.564 G_ID: 0.112 G_Rec: 0.267 D_GP: 0.019 D_real: 0.803 D_fake: 1.192 +(epoch: 229, iters: 2576, time: 0.064) G_GAN: 0.048 G_GAN_Feat: 0.808 G_ID: 0.171 G_Rec: 0.386 D_GP: 0.030 D_real: 0.781 D_fake: 0.953 +(epoch: 229, iters: 2976, time: 0.064) G_GAN: -0.275 G_GAN_Feat: 0.742 G_ID: 0.122 G_Rec: 0.326 D_GP: 0.060 D_real: 0.403 D_fake: 1.275 +(epoch: 229, iters: 3376, time: 0.064) G_GAN: 0.488 G_GAN_Feat: 0.971 G_ID: 0.166 G_Rec: 0.444 D_GP: 0.035 D_real: 1.150 D_fake: 0.550 +(epoch: 229, iters: 3776, time: 0.064) G_GAN: 0.284 G_GAN_Feat: 0.784 G_ID: 0.125 G_Rec: 0.315 D_GP: 0.038 D_real: 0.920 D_fake: 0.721 +(epoch: 229, iters: 4176, time: 0.064) G_GAN: 0.118 G_GAN_Feat: 0.969 G_ID: 0.184 G_Rec: 0.368 D_GP: 0.102 D_real: 0.348 D_fake: 0.882 +(epoch: 229, iters: 4576, time: 0.064) G_GAN: 0.287 G_GAN_Feat: 0.587 G_ID: 0.110 G_Rec: 0.295 D_GP: 0.020 D_real: 1.260 D_fake: 0.714 +(epoch: 229, iters: 4976, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.718 G_ID: 0.158 G_Rec: 0.413 D_GP: 0.017 D_real: 1.136 D_fake: 0.676 +(epoch: 229, iters: 5376, time: 0.064) G_GAN: 0.190 G_GAN_Feat: 0.607 G_ID: 0.131 G_Rec: 0.330 D_GP: 0.022 D_real: 1.136 D_fake: 0.810 +(epoch: 229, iters: 5776, time: 0.064) G_GAN: 0.150 G_GAN_Feat: 0.695 G_ID: 0.181 G_Rec: 0.339 D_GP: 0.023 D_real: 0.937 D_fake: 0.850 +(epoch: 229, iters: 6176, time: 0.064) G_GAN: 0.069 G_GAN_Feat: 0.584 G_ID: 0.137 G_Rec: 0.342 D_GP: 0.026 D_real: 0.994 D_fake: 0.932 +(epoch: 229, iters: 6576, time: 0.064) G_GAN: 0.123 G_GAN_Feat: 0.827 G_ID: 0.167 G_Rec: 0.480 D_GP: 0.035 D_real: 0.750 D_fake: 0.878 +(epoch: 229, iters: 6976, time: 0.064) G_GAN: 0.046 G_GAN_Feat: 0.589 G_ID: 0.162 G_Rec: 0.283 D_GP: 0.028 D_real: 0.998 D_fake: 0.954 +(epoch: 229, iters: 7376, time: 0.064) G_GAN: 0.204 G_GAN_Feat: 0.816 G_ID: 0.189 G_Rec: 0.392 D_GP: 0.064 D_real: 0.777 D_fake: 0.799 +(epoch: 229, iters: 7776, time: 0.064) G_GAN: 0.111 G_GAN_Feat: 0.622 G_ID: 0.142 G_Rec: 0.314 D_GP: 0.036 D_real: 1.002 D_fake: 0.889 +(epoch: 229, iters: 8176, time: 0.064) G_GAN: 0.267 G_GAN_Feat: 0.844 G_ID: 0.173 G_Rec: 0.406 D_GP: 0.056 D_real: 0.785 D_fake: 0.736 +(epoch: 229, iters: 8576, time: 0.064) G_GAN: 0.109 G_GAN_Feat: 0.591 G_ID: 0.136 G_Rec: 0.303 D_GP: 0.021 D_real: 1.033 D_fake: 0.891 +(epoch: 230, iters: 368, time: 0.064) G_GAN: 0.171 G_GAN_Feat: 0.805 G_ID: 0.155 G_Rec: 0.379 D_GP: 0.032 D_real: 0.862 D_fake: 0.830 +(epoch: 230, iters: 768, time: 0.064) G_GAN: -0.028 G_GAN_Feat: 0.709 G_ID: 0.122 G_Rec: 0.328 D_GP: 0.029 D_real: 0.930 D_fake: 1.028 +(epoch: 230, iters: 1168, time: 0.064) G_GAN: 0.441 G_GAN_Feat: 0.825 G_ID: 0.166 G_Rec: 0.424 D_GP: 0.023 D_real: 1.162 D_fake: 0.566 +(epoch: 230, iters: 1568, time: 0.064) G_GAN: 0.144 G_GAN_Feat: 0.646 G_ID: 0.130 G_Rec: 0.449 D_GP: 0.025 D_real: 1.048 D_fake: 0.856 +(epoch: 230, iters: 1968, time: 0.064) G_GAN: 0.370 G_GAN_Feat: 0.804 G_ID: 0.171 G_Rec: 0.396 D_GP: 0.028 D_real: 1.142 D_fake: 0.631 +(epoch: 230, iters: 2368, time: 0.064) G_GAN: -0.019 G_GAN_Feat: 0.718 G_ID: 0.145 G_Rec: 0.301 D_GP: 0.074 D_real: 0.715 D_fake: 1.019 +(epoch: 230, iters: 2768, time: 0.064) G_GAN: 0.365 G_GAN_Feat: 0.812 G_ID: 0.193 G_Rec: 0.386 D_GP: 0.029 D_real: 1.040 D_fake: 0.638 +(epoch: 230, iters: 3168, time: 0.064) G_GAN: -0.105 G_GAN_Feat: 0.639 G_ID: 0.160 G_Rec: 0.325 D_GP: 0.022 D_real: 0.921 D_fake: 1.105 +(epoch: 230, iters: 3568, time: 0.064) G_GAN: 0.099 G_GAN_Feat: 0.842 G_ID: 0.169 G_Rec: 0.395 D_GP: 0.025 D_real: 0.842 D_fake: 0.901 +(epoch: 230, iters: 3968, time: 0.064) G_GAN: 0.432 G_GAN_Feat: 0.691 G_ID: 0.112 G_Rec: 0.303 D_GP: 0.035 D_real: 1.258 D_fake: 0.572 +(epoch: 230, iters: 4368, time: 0.064) G_GAN: 0.238 G_GAN_Feat: 0.722 G_ID: 0.166 G_Rec: 0.362 D_GP: 0.019 D_real: 1.082 D_fake: 0.762 +(epoch: 230, iters: 4768, time: 0.064) G_GAN: 0.402 G_GAN_Feat: 0.579 G_ID: 0.116 G_Rec: 0.295 D_GP: 0.020 D_real: 1.372 D_fake: 0.598 +(epoch: 230, iters: 5168, time: 0.064) G_GAN: 0.453 G_GAN_Feat: 0.794 G_ID: 0.184 G_Rec: 0.363 D_GP: 0.030 D_real: 1.169 D_fake: 0.548 +(epoch: 230, iters: 5568, time: 0.064) G_GAN: 0.054 G_GAN_Feat: 0.679 G_ID: 0.137 G_Rec: 0.310 D_GP: 0.030 D_real: 1.036 D_fake: 0.946 +(epoch: 230, iters: 5968, time: 0.064) G_GAN: 0.413 G_GAN_Feat: 0.871 G_ID: 0.175 G_Rec: 0.380 D_GP: 0.036 D_real: 1.011 D_fake: 0.587 +(epoch: 230, iters: 6368, time: 0.064) G_GAN: 0.171 G_GAN_Feat: 0.674 G_ID: 0.113 G_Rec: 0.313 D_GP: 0.041 D_real: 1.029 D_fake: 0.829 +(epoch: 230, iters: 6768, time: 0.064) G_GAN: 0.390 G_GAN_Feat: 0.946 G_ID: 0.180 G_Rec: 0.452 D_GP: 0.041 D_real: 0.887 D_fake: 0.614 +(epoch: 230, iters: 7168, time: 0.064) G_GAN: 0.489 G_GAN_Feat: 0.857 G_ID: 0.138 G_Rec: 0.310 D_GP: 0.132 D_real: 0.931 D_fake: 0.536 +(epoch: 230, iters: 7568, time: 0.064) G_GAN: 0.332 G_GAN_Feat: 0.871 G_ID: 0.176 G_Rec: 0.479 D_GP: 0.019 D_real: 1.257 D_fake: 0.669 +(epoch: 230, iters: 7968, time: 0.064) G_GAN: 0.084 G_GAN_Feat: 0.622 G_ID: 0.129 G_Rec: 0.312 D_GP: 0.020 D_real: 0.984 D_fake: 0.916 +(epoch: 230, iters: 8368, time: 0.064) G_GAN: -0.020 G_GAN_Feat: 0.805 G_ID: 0.172 G_Rec: 0.363 D_GP: 0.031 D_real: 0.738 D_fake: 1.020 +(epoch: 231, iters: 160, time: 0.064) G_GAN: 0.161 G_GAN_Feat: 0.620 G_ID: 0.114 G_Rec: 0.341 D_GP: 0.028 D_real: 1.038 D_fake: 0.839 +(epoch: 231, iters: 560, time: 0.064) G_GAN: 0.392 G_GAN_Feat: 0.808 G_ID: 0.154 G_Rec: 0.360 D_GP: 0.037 D_real: 1.091 D_fake: 0.610 +(epoch: 231, iters: 960, time: 0.064) G_GAN: 0.152 G_GAN_Feat: 0.696 G_ID: 0.138 G_Rec: 0.337 D_GP: 0.033 D_real: 1.008 D_fake: 0.849 +(epoch: 231, iters: 1360, time: 0.064) G_GAN: 0.830 G_GAN_Feat: 0.911 G_ID: 0.166 G_Rec: 0.408 D_GP: 0.057 D_real: 1.468 D_fake: 0.211 +(epoch: 231, iters: 1760, time: 0.064) G_GAN: 0.373 G_GAN_Feat: 0.706 G_ID: 0.135 G_Rec: 0.334 D_GP: 0.025 D_real: 1.193 D_fake: 0.643 +(epoch: 231, iters: 2160, time: 0.064) G_GAN: 0.473 G_GAN_Feat: 0.778 G_ID: 0.178 G_Rec: 0.379 D_GP: 0.021 D_real: 1.210 D_fake: 0.532 +(epoch: 231, iters: 2560, time: 0.064) G_GAN: 0.062 G_GAN_Feat: 0.677 G_ID: 0.138 G_Rec: 0.309 D_GP: 0.024 D_real: 0.919 D_fake: 0.938 +(epoch: 231, iters: 2960, time: 0.064) G_GAN: 0.489 G_GAN_Feat: 0.984 G_ID: 0.184 G_Rec: 0.424 D_GP: 0.039 D_real: 0.939 D_fake: 0.522 +(epoch: 231, iters: 3360, time: 0.064) G_GAN: 0.192 G_GAN_Feat: 0.662 G_ID: 0.130 G_Rec: 0.308 D_GP: 0.025 D_real: 1.110 D_fake: 0.808 +(epoch: 231, iters: 3760, time: 0.064) G_GAN: 0.525 G_GAN_Feat: 0.739 G_ID: 0.173 G_Rec: 0.351 D_GP: 0.032 D_real: 1.271 D_fake: 0.477 +(epoch: 231, iters: 4160, time: 0.064) G_GAN: 0.025 G_GAN_Feat: 0.731 G_ID: 0.135 G_Rec: 0.308 D_GP: 0.049 D_real: 0.808 D_fake: 0.975 +(epoch: 231, iters: 4560, time: 0.064) G_GAN: -0.008 G_GAN_Feat: 1.070 G_ID: 0.212 G_Rec: 0.413 D_GP: 0.069 D_real: 0.145 D_fake: 1.013 +(epoch: 231, iters: 4960, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 0.715 G_ID: 0.141 G_Rec: 0.299 D_GP: 0.039 D_real: 0.924 D_fake: 0.826 +(epoch: 231, iters: 5360, time: 0.064) G_GAN: 0.343 G_GAN_Feat: 0.950 G_ID: 0.189 G_Rec: 0.415 D_GP: 0.057 D_real: 0.715 D_fake: 0.658 +(epoch: 231, iters: 5760, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 0.784 G_ID: 0.108 G_Rec: 0.287 D_GP: 0.072 D_real: 0.905 D_fake: 0.779 +(epoch: 231, iters: 6160, time: 0.064) G_GAN: 0.675 G_GAN_Feat: 0.865 G_ID: 0.193 G_Rec: 0.357 D_GP: 0.029 D_real: 1.363 D_fake: 0.337 +(epoch: 231, iters: 6560, time: 0.064) G_GAN: 0.115 G_GAN_Feat: 0.724 G_ID: 0.138 G_Rec: 0.299 D_GP: 0.042 D_real: 0.877 D_fake: 0.885 +(epoch: 231, iters: 6960, time: 0.064) G_GAN: 0.362 G_GAN_Feat: 0.921 G_ID: 0.179 G_Rec: 0.401 D_GP: 0.033 D_real: 0.998 D_fake: 0.640 +(epoch: 231, iters: 7360, time: 0.064) G_GAN: 0.362 G_GAN_Feat: 0.742 G_ID: 0.133 G_Rec: 0.305 D_GP: 0.026 D_real: 1.179 D_fake: 0.646 +(epoch: 231, iters: 7760, time: 0.064) G_GAN: 0.410 G_GAN_Feat: 0.729 G_ID: 0.187 G_Rec: 0.379 D_GP: 0.021 D_real: 1.303 D_fake: 0.593 +(epoch: 231, iters: 8160, time: 0.064) G_GAN: 0.227 G_GAN_Feat: 0.591 G_ID: 0.124 G_Rec: 0.307 D_GP: 0.018 D_real: 1.212 D_fake: 0.773 +(epoch: 231, iters: 8560, time: 0.064) G_GAN: 0.304 G_GAN_Feat: 0.798 G_ID: 0.193 G_Rec: 0.433 D_GP: 0.018 D_real: 1.063 D_fake: 0.697 +(epoch: 232, iters: 352, time: 0.064) G_GAN: 0.103 G_GAN_Feat: 0.558 G_ID: 0.132 G_Rec: 0.279 D_GP: 0.025 D_real: 1.052 D_fake: 0.898 +(epoch: 232, iters: 752, time: 0.064) G_GAN: 0.320 G_GAN_Feat: 0.818 G_ID: 0.174 G_Rec: 0.407 D_GP: 0.028 D_real: 0.989 D_fake: 0.686 +(epoch: 232, iters: 1152, time: 0.064) G_GAN: 0.064 G_GAN_Feat: 0.686 G_ID: 0.142 G_Rec: 0.324 D_GP: 0.035 D_real: 0.873 D_fake: 0.942 +(epoch: 232, iters: 1552, time: 0.064) G_GAN: 0.273 G_GAN_Feat: 0.871 G_ID: 0.193 G_Rec: 0.432 D_GP: 0.056 D_real: 0.855 D_fake: 0.729 +(epoch: 232, iters: 1952, time: 0.064) G_GAN: 0.195 G_GAN_Feat: 0.669 G_ID: 0.131 G_Rec: 0.291 D_GP: 0.044 D_real: 0.994 D_fake: 0.807 +(epoch: 232, iters: 2352, time: 0.064) G_GAN: 0.293 G_GAN_Feat: 0.896 G_ID: 0.214 G_Rec: 0.430 D_GP: 0.045 D_real: 0.888 D_fake: 0.711 +(epoch: 232, iters: 2752, time: 0.064) G_GAN: 0.058 G_GAN_Feat: 0.667 G_ID: 0.132 G_Rec: 0.310 D_GP: 0.052 D_real: 0.937 D_fake: 0.942 +(epoch: 232, iters: 3152, time: 0.064) G_GAN: 0.451 G_GAN_Feat: 0.864 G_ID: 0.181 G_Rec: 0.436 D_GP: 0.022 D_real: 1.218 D_fake: 0.550 +(epoch: 232, iters: 3552, time: 0.064) G_GAN: 0.264 G_GAN_Feat: 0.656 G_ID: 0.153 G_Rec: 0.272 D_GP: 0.043 D_real: 1.119 D_fake: 0.736 +(epoch: 232, iters: 3952, time: 0.064) G_GAN: 0.571 G_GAN_Feat: 0.900 G_ID: 0.191 G_Rec: 0.434 D_GP: 0.027 D_real: 1.199 D_fake: 0.445 +(epoch: 232, iters: 4352, time: 0.064) G_GAN: 0.238 G_GAN_Feat: 0.669 G_ID: 0.130 G_Rec: 0.300 D_GP: 0.026 D_real: 1.215 D_fake: 0.763 +(epoch: 232, iters: 4752, time: 0.064) G_GAN: 0.416 G_GAN_Feat: 0.914 G_ID: 0.172 G_Rec: 0.410 D_GP: 0.025 D_real: 1.063 D_fake: 0.587 +(epoch: 232, iters: 5152, time: 0.064) G_GAN: 0.053 G_GAN_Feat: 0.662 G_ID: 0.124 G_Rec: 0.275 D_GP: 0.042 D_real: 0.907 D_fake: 0.947 +(epoch: 232, iters: 5552, time: 0.064) G_GAN: 0.530 G_GAN_Feat: 0.754 G_ID: 0.174 G_Rec: 0.381 D_GP: 0.020 D_real: 1.321 D_fake: 0.475 +(epoch: 232, iters: 5952, time: 0.064) G_GAN: 0.243 G_GAN_Feat: 0.666 G_ID: 0.165 G_Rec: 0.296 D_GP: 0.025 D_real: 1.130 D_fake: 0.757 +(epoch: 232, iters: 6352, time: 0.064) G_GAN: 0.585 G_GAN_Feat: 0.785 G_ID: 0.178 G_Rec: 0.383 D_GP: 0.026 D_real: 1.300 D_fake: 0.437 +(epoch: 232, iters: 6752, time: 0.064) G_GAN: 0.057 G_GAN_Feat: 0.788 G_ID: 0.142 G_Rec: 0.333 D_GP: 0.058 D_real: 0.663 D_fake: 0.943 +(epoch: 232, iters: 7152, time: 0.064) G_GAN: 0.574 G_GAN_Feat: 0.913 G_ID: 0.177 G_Rec: 0.408 D_GP: 0.050 D_real: 0.960 D_fake: 0.437 +(epoch: 232, iters: 7552, time: 0.064) G_GAN: 0.322 G_GAN_Feat: 0.672 G_ID: 0.128 G_Rec: 0.315 D_GP: 0.024 D_real: 1.200 D_fake: 0.682 +(epoch: 232, iters: 7952, time: 0.064) G_GAN: 0.619 G_GAN_Feat: 0.982 G_ID: 0.179 G_Rec: 0.449 D_GP: 0.037 D_real: 1.156 D_fake: 0.413 +(epoch: 232, iters: 8352, time: 0.064) G_GAN: 0.198 G_GAN_Feat: 0.954 G_ID: 0.145 G_Rec: 0.296 D_GP: 0.080 D_real: 0.390 D_fake: 0.802 +(epoch: 233, iters: 144, time: 0.064) G_GAN: 0.682 G_GAN_Feat: 1.001 G_ID: 0.170 G_Rec: 0.425 D_GP: 0.021 D_real: 1.414 D_fake: 0.394 +(epoch: 233, iters: 544, time: 0.064) G_GAN: 0.181 G_GAN_Feat: 0.631 G_ID: 0.139 G_Rec: 0.297 D_GP: 0.018 D_real: 1.122 D_fake: 0.819 +(epoch: 233, iters: 944, time: 0.064) G_GAN: 0.267 G_GAN_Feat: 0.848 G_ID: 0.179 G_Rec: 0.424 D_GP: 0.023 D_real: 1.001 D_fake: 0.733 +(epoch: 233, iters: 1344, time: 0.064) G_GAN: 0.030 G_GAN_Feat: 0.598 G_ID: 0.149 G_Rec: 0.287 D_GP: 0.022 D_real: 0.992 D_fake: 0.970 +(epoch: 233, iters: 1744, time: 0.064) G_GAN: 0.341 G_GAN_Feat: 0.874 G_ID: 0.175 G_Rec: 0.402 D_GP: 0.045 D_real: 0.870 D_fake: 0.667 +(epoch: 233, iters: 2144, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.721 G_ID: 0.169 G_Rec: 0.311 D_GP: 0.025 D_real: 1.206 D_fake: 0.693 +(epoch: 233, iters: 2544, time: 0.064) G_GAN: 0.442 G_GAN_Feat: 1.023 G_ID: 0.184 G_Rec: 0.421 D_GP: 0.167 D_real: 0.560 D_fake: 0.578 +(epoch: 233, iters: 2944, time: 0.064) G_GAN: 0.081 G_GAN_Feat: 0.673 G_ID: 0.130 G_Rec: 0.321 D_GP: 0.022 D_real: 0.973 D_fake: 0.919 +(epoch: 233, iters: 3344, time: 0.064) G_GAN: 0.750 G_GAN_Feat: 0.787 G_ID: 0.178 G_Rec: 0.367 D_GP: 0.026 D_real: 1.502 D_fake: 0.315 +(epoch: 233, iters: 3744, time: 0.064) G_GAN: 0.357 G_GAN_Feat: 0.780 G_ID: 0.155 G_Rec: 0.324 D_GP: 0.038 D_real: 1.016 D_fake: 0.644 +(epoch: 233, iters: 4144, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 1.061 G_ID: 0.167 G_Rec: 0.428 D_GP: 0.065 D_real: 0.470 D_fake: 0.652 +(epoch: 233, iters: 4544, time: 0.064) G_GAN: -0.002 G_GAN_Feat: 0.683 G_ID: 0.131 G_Rec: 0.303 D_GP: 0.030 D_real: 0.947 D_fake: 1.002 +(epoch: 233, iters: 4944, time: 0.064) G_GAN: 0.507 G_GAN_Feat: 0.923 G_ID: 0.172 G_Rec: 0.402 D_GP: 0.039 D_real: 1.091 D_fake: 0.499 +(epoch: 233, iters: 5344, time: 0.064) G_GAN: 0.369 G_GAN_Feat: 0.646 G_ID: 0.145 G_Rec: 0.306 D_GP: 0.020 D_real: 1.375 D_fake: 0.632 +(epoch: 233, iters: 5744, time: 0.064) G_GAN: 0.291 G_GAN_Feat: 0.869 G_ID: 0.210 G_Rec: 0.430 D_GP: 0.021 D_real: 1.006 D_fake: 0.711 +(epoch: 233, iters: 6144, time: 0.064) G_GAN: 0.062 G_GAN_Feat: 0.648 G_ID: 0.133 G_Rec: 0.335 D_GP: 0.023 D_real: 0.997 D_fake: 0.939 +(epoch: 233, iters: 6544, time: 0.064) G_GAN: 0.469 G_GAN_Feat: 0.771 G_ID: 0.148 G_Rec: 0.370 D_GP: 0.025 D_real: 1.252 D_fake: 0.553 +(epoch: 233, iters: 6944, time: 0.064) G_GAN: 0.222 G_GAN_Feat: 0.667 G_ID: 0.110 G_Rec: 0.289 D_GP: 0.036 D_real: 1.065 D_fake: 0.780 +(epoch: 233, iters: 7344, time: 0.064) G_GAN: 0.426 G_GAN_Feat: 0.904 G_ID: 0.172 G_Rec: 0.393 D_GP: 0.030 D_real: 1.111 D_fake: 0.577 +(epoch: 233, iters: 7744, time: 0.064) G_GAN: -0.033 G_GAN_Feat: 0.935 G_ID: 0.131 G_Rec: 0.340 D_GP: 0.172 D_real: 0.608 D_fake: 1.034 +(epoch: 233, iters: 8144, time: 0.064) G_GAN: 0.343 G_GAN_Feat: 0.906 G_ID: 0.186 G_Rec: 0.375 D_GP: 0.034 D_real: 1.043 D_fake: 0.658 +(epoch: 233, iters: 8544, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 0.656 G_ID: 0.123 G_Rec: 0.297 D_GP: 0.020 D_real: 1.205 D_fake: 0.737 +(epoch: 234, iters: 336, time: 0.064) G_GAN: 0.329 G_GAN_Feat: 0.953 G_ID: 0.164 G_Rec: 0.427 D_GP: 0.051 D_real: 0.704 D_fake: 0.671 +(epoch: 234, iters: 736, time: 0.064) G_GAN: 0.323 G_GAN_Feat: 0.670 G_ID: 0.115 G_Rec: 0.295 D_GP: 0.026 D_real: 1.217 D_fake: 0.683 +(epoch: 234, iters: 1136, time: 0.064) G_GAN: 0.787 G_GAN_Feat: 0.919 G_ID: 0.163 G_Rec: 0.375 D_GP: 0.323 D_real: 1.141 D_fake: 0.281 +(epoch: 234, iters: 1536, time: 0.064) G_GAN: -0.271 G_GAN_Feat: 0.589 G_ID: 0.121 G_Rec: 0.281 D_GP: 0.017 D_real: 0.694 D_fake: 1.271 +(epoch: 234, iters: 1936, time: 0.064) G_GAN: -0.093 G_GAN_Feat: 0.774 G_ID: 0.182 G_Rec: 0.381 D_GP: 0.019 D_real: 0.740 D_fake: 1.094 +(epoch: 234, iters: 2336, time: 0.064) G_GAN: -0.090 G_GAN_Feat: 0.605 G_ID: 0.127 G_Rec: 0.288 D_GP: 0.023 D_real: 0.831 D_fake: 1.090 +(epoch: 234, iters: 2736, time: 0.064) G_GAN: -0.038 G_GAN_Feat: 0.816 G_ID: 0.161 G_Rec: 0.396 D_GP: 0.026 D_real: 0.711 D_fake: 1.038 +(epoch: 234, iters: 3136, time: 0.064) G_GAN: -0.005 G_GAN_Feat: 0.645 G_ID: 0.129 G_Rec: 0.282 D_GP: 0.030 D_real: 0.887 D_fake: 1.007 +(epoch: 234, iters: 3536, time: 0.064) G_GAN: 0.561 G_GAN_Feat: 0.933 G_ID: 0.160 G_Rec: 0.428 D_GP: 0.043 D_real: 1.107 D_fake: 0.445 +(epoch: 234, iters: 3936, time: 0.064) G_GAN: -0.069 G_GAN_Feat: 0.788 G_ID: 0.111 G_Rec: 0.300 D_GP: 0.115 D_real: 0.518 D_fake: 1.069 +(epoch: 234, iters: 4336, time: 0.064) G_GAN: 0.544 G_GAN_Feat: 1.121 G_ID: 0.148 G_Rec: 0.413 D_GP: 0.209 D_real: 0.506 D_fake: 0.537 +(epoch: 234, iters: 4736, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 0.674 G_ID: 0.139 G_Rec: 0.261 D_GP: 0.029 D_real: 1.061 D_fake: 0.830 +(epoch: 234, iters: 5136, time: 0.064) G_GAN: 0.450 G_GAN_Feat: 0.972 G_ID: 0.182 G_Rec: 0.392 D_GP: 0.071 D_real: 0.719 D_fake: 0.556 +(epoch: 234, iters: 5536, time: 0.064) G_GAN: 0.564 G_GAN_Feat: 0.738 G_ID: 0.124 G_Rec: 0.285 D_GP: 0.025 D_real: 1.436 D_fake: 0.481 +(epoch: 234, iters: 5936, time: 0.064) G_GAN: 0.557 G_GAN_Feat: 0.920 G_ID: 0.157 G_Rec: 0.400 D_GP: 0.032 D_real: 1.108 D_fake: 0.460 +(epoch: 234, iters: 6336, time: 0.064) G_GAN: 0.531 G_GAN_Feat: 0.992 G_ID: 0.125 G_Rec: 0.324 D_GP: 0.157 D_real: 0.590 D_fake: 0.488 +(epoch: 234, iters: 6736, time: 0.064) G_GAN: 0.385 G_GAN_Feat: 0.859 G_ID: 0.185 G_Rec: 0.413 D_GP: 0.050 D_real: 1.168 D_fake: 0.662 +(epoch: 234, iters: 7136, time: 0.064) G_GAN: 0.287 G_GAN_Feat: 0.731 G_ID: 0.115 G_Rec: 0.317 D_GP: 0.024 D_real: 1.142 D_fake: 0.713 +(epoch: 234, iters: 7536, time: 0.064) G_GAN: 0.068 G_GAN_Feat: 0.877 G_ID: 0.165 G_Rec: 0.396 D_GP: 0.040 D_real: 0.797 D_fake: 0.933 +(epoch: 234, iters: 7936, time: 0.064) G_GAN: 0.121 G_GAN_Feat: 0.625 G_ID: 0.153 G_Rec: 0.298 D_GP: 0.024 D_real: 1.026 D_fake: 0.879 +(epoch: 234, iters: 8336, time: 0.064) G_GAN: 0.439 G_GAN_Feat: 0.821 G_ID: 0.179 G_Rec: 0.381 D_GP: 0.024 D_real: 1.254 D_fake: 0.567 +(epoch: 235, iters: 128, time: 0.064) G_GAN: 0.114 G_GAN_Feat: 0.670 G_ID: 0.128 G_Rec: 0.291 D_GP: 0.035 D_real: 0.978 D_fake: 0.886 +(epoch: 235, iters: 528, time: 0.064) G_GAN: 0.754 G_GAN_Feat: 1.018 G_ID: 0.176 G_Rec: 0.402 D_GP: 0.059 D_real: 1.222 D_fake: 0.315 +(epoch: 235, iters: 928, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 0.813 G_ID: 0.138 G_Rec: 0.318 D_GP: 0.032 D_real: 1.006 D_fake: 0.657 +(epoch: 235, iters: 1328, time: 0.064) G_GAN: 0.477 G_GAN_Feat: 1.059 G_ID: 0.200 G_Rec: 0.434 D_GP: 0.069 D_real: 0.537 D_fake: 0.528 +(epoch: 235, iters: 1728, time: 0.064) G_GAN: 0.486 G_GAN_Feat: 0.933 G_ID: 0.122 G_Rec: 0.335 D_GP: 0.035 D_real: 0.925 D_fake: 0.516 +(epoch: 235, iters: 2128, time: 0.064) G_GAN: 0.393 G_GAN_Feat: 0.848 G_ID: 0.168 G_Rec: 0.364 D_GP: 0.024 D_real: 1.089 D_fake: 0.608 +(epoch: 235, iters: 2528, time: 0.064) G_GAN: 0.186 G_GAN_Feat: 0.781 G_ID: 0.123 G_Rec: 0.331 D_GP: 0.050 D_real: 0.828 D_fake: 0.817 +(epoch: 235, iters: 2928, time: 0.064) G_GAN: 0.458 G_GAN_Feat: 0.894 G_ID: 0.178 G_Rec: 0.385 D_GP: 0.036 D_real: 1.134 D_fake: 0.548 +(epoch: 235, iters: 3328, time: 0.064) G_GAN: 0.028 G_GAN_Feat: 0.790 G_ID: 0.156 G_Rec: 0.324 D_GP: 0.041 D_real: 0.996 D_fake: 0.973 +(epoch: 235, iters: 3728, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 1.083 G_ID: 0.176 G_Rec: 0.412 D_GP: 0.100 D_real: 0.804 D_fake: 0.707 +(epoch: 235, iters: 4128, time: 0.064) G_GAN: 0.372 G_GAN_Feat: 0.663 G_ID: 0.131 G_Rec: 0.314 D_GP: 0.024 D_real: 1.352 D_fake: 0.628 +(epoch: 235, iters: 4528, time: 0.064) G_GAN: 0.270 G_GAN_Feat: 0.909 G_ID: 0.177 G_Rec: 0.410 D_GP: 0.024 D_real: 1.064 D_fake: 0.731 +(epoch: 235, iters: 4928, time: 0.064) G_GAN: 0.073 G_GAN_Feat: 0.670 G_ID: 0.114 G_Rec: 0.318 D_GP: 0.116 D_real: 0.825 D_fake: 0.927 +(epoch: 235, iters: 5328, time: 0.064) G_GAN: 0.420 G_GAN_Feat: 0.861 G_ID: 0.164 G_Rec: 0.420 D_GP: 0.022 D_real: 1.157 D_fake: 0.582 +(epoch: 235, iters: 5728, time: 0.064) G_GAN: 0.112 G_GAN_Feat: 0.674 G_ID: 0.154 G_Rec: 0.332 D_GP: 0.043 D_real: 0.939 D_fake: 0.888 +(epoch: 235, iters: 6128, time: 0.064) G_GAN: -0.043 G_GAN_Feat: 1.048 G_ID: 0.172 G_Rec: 0.396 D_GP: 0.305 D_real: 0.430 D_fake: 1.043 +(epoch: 235, iters: 6528, time: 0.064) G_GAN: 0.289 G_GAN_Feat: 0.734 G_ID: 0.136 G_Rec: 0.288 D_GP: 0.039 D_real: 1.120 D_fake: 0.712 +(epoch: 235, iters: 6928, time: 0.064) G_GAN: 0.361 G_GAN_Feat: 0.834 G_ID: 0.177 G_Rec: 0.366 D_GP: 0.027 D_real: 1.115 D_fake: 0.649 +(epoch: 235, iters: 7328, time: 0.064) G_GAN: 0.290 G_GAN_Feat: 0.671 G_ID: 0.122 G_Rec: 0.296 D_GP: 0.033 D_real: 1.149 D_fake: 0.711 +(epoch: 235, iters: 7728, time: 0.064) G_GAN: 0.217 G_GAN_Feat: 0.858 G_ID: 0.170 G_Rec: 0.386 D_GP: 0.025 D_real: 0.891 D_fake: 0.783 +(epoch: 235, iters: 8128, time: 0.064) G_GAN: 0.195 G_GAN_Feat: 0.633 G_ID: 0.119 G_Rec: 0.284 D_GP: 0.022 D_real: 1.070 D_fake: 0.805 +(epoch: 235, iters: 8528, time: 0.064) G_GAN: 0.434 G_GAN_Feat: 1.078 G_ID: 0.185 G_Rec: 0.436 D_GP: 0.153 D_real: 0.542 D_fake: 0.569 +(epoch: 236, iters: 320, time: 0.064) G_GAN: 0.364 G_GAN_Feat: 0.788 G_ID: 0.121 G_Rec: 0.287 D_GP: 0.049 D_real: 0.944 D_fake: 0.637 +(epoch: 236, iters: 720, time: 0.064) G_GAN: 0.799 G_GAN_Feat: 0.943 G_ID: 0.186 G_Rec: 0.420 D_GP: 0.027 D_real: 1.425 D_fake: 0.246 +(epoch: 236, iters: 1120, time: 0.064) G_GAN: 0.233 G_GAN_Feat: 0.687 G_ID: 0.136 G_Rec: 0.289 D_GP: 0.024 D_real: 1.157 D_fake: 0.767 +(epoch: 236, iters: 1520, time: 0.064) G_GAN: 0.407 G_GAN_Feat: 1.033 G_ID: 0.174 G_Rec: 0.434 D_GP: 0.080 D_real: 0.516 D_fake: 0.604 +(epoch: 236, iters: 1920, time: 0.064) G_GAN: 0.098 G_GAN_Feat: 0.709 G_ID: 0.154 G_Rec: 0.291 D_GP: 0.022 D_real: 1.042 D_fake: 0.902 +(epoch: 236, iters: 2320, time: 0.064) G_GAN: 0.440 G_GAN_Feat: 1.039 G_ID: 0.168 G_Rec: 0.405 D_GP: 0.026 D_real: 0.862 D_fake: 0.565 +(epoch: 236, iters: 2720, time: 0.064) G_GAN: 0.177 G_GAN_Feat: 0.734 G_ID: 0.139 G_Rec: 0.346 D_GP: 0.028 D_real: 1.057 D_fake: 0.824 +(epoch: 236, iters: 3120, time: 0.064) G_GAN: 0.565 G_GAN_Feat: 1.226 G_ID: 0.186 G_Rec: 0.498 D_GP: 0.044 D_real: 0.292 D_fake: 0.453 +(epoch: 236, iters: 3520, time: 0.064) G_GAN: 0.237 G_GAN_Feat: 1.003 G_ID: 0.138 G_Rec: 0.351 D_GP: 0.041 D_real: 0.410 D_fake: 0.764 +(epoch: 236, iters: 3920, time: 0.064) G_GAN: 0.246 G_GAN_Feat: 0.804 G_ID: 0.161 G_Rec: 0.411 D_GP: 0.020 D_real: 1.031 D_fake: 0.754 +(epoch: 236, iters: 4320, time: 0.064) G_GAN: 0.081 G_GAN_Feat: 0.691 G_ID: 0.144 G_Rec: 0.295 D_GP: 0.034 D_real: 0.877 D_fake: 0.919 +(epoch: 236, iters: 4720, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 0.947 G_ID: 0.161 G_Rec: 0.420 D_GP: 0.033 D_real: 1.164 D_fake: 0.738 +(epoch: 236, iters: 5120, time: 0.064) G_GAN: 0.141 G_GAN_Feat: 0.620 G_ID: 0.113 G_Rec: 0.302 D_GP: 0.019 D_real: 1.143 D_fake: 0.859 +(epoch: 236, iters: 5520, time: 0.064) G_GAN: 0.409 G_GAN_Feat: 0.862 G_ID: 0.154 G_Rec: 0.382 D_GP: 0.024 D_real: 1.158 D_fake: 0.594 +(epoch: 236, iters: 5920, time: 0.064) G_GAN: 0.097 G_GAN_Feat: 0.882 G_ID: 0.123 G_Rec: 0.313 D_GP: 0.066 D_real: 0.480 D_fake: 0.903 +(epoch: 236, iters: 6320, time: 0.064) G_GAN: 0.356 G_GAN_Feat: 0.887 G_ID: 0.200 G_Rec: 0.407 D_GP: 0.023 D_real: 1.097 D_fake: 0.644 +(epoch: 236, iters: 6720, time: 0.064) G_GAN: 0.352 G_GAN_Feat: 0.780 G_ID: 0.126 G_Rec: 0.303 D_GP: 0.027 D_real: 1.135 D_fake: 0.648 +(epoch: 236, iters: 7120, time: 0.064) G_GAN: 0.527 G_GAN_Feat: 0.897 G_ID: 0.168 G_Rec: 0.405 D_GP: 0.029 D_real: 1.173 D_fake: 0.479 +(epoch: 236, iters: 7520, time: 0.064) G_GAN: 0.322 G_GAN_Feat: 0.721 G_ID: 0.118 G_Rec: 0.294 D_GP: 0.040 D_real: 1.154 D_fake: 0.679 +(epoch: 236, iters: 7920, time: 0.064) G_GAN: 0.556 G_GAN_Feat: 0.865 G_ID: 0.192 G_Rec: 0.402 D_GP: 0.027 D_real: 1.231 D_fake: 0.451 +(epoch: 236, iters: 8320, time: 0.064) G_GAN: 0.184 G_GAN_Feat: 0.762 G_ID: 0.131 G_Rec: 0.315 D_GP: 0.023 D_real: 0.977 D_fake: 0.816 +(epoch: 237, iters: 112, time: 0.064) G_GAN: 0.504 G_GAN_Feat: 0.941 G_ID: 0.189 G_Rec: 0.370 D_GP: 0.085 D_real: 0.743 D_fake: 0.500 +(epoch: 237, iters: 512, time: 0.064) G_GAN: 0.295 G_GAN_Feat: 0.961 G_ID: 0.116 G_Rec: 0.296 D_GP: 0.394 D_real: 0.523 D_fake: 0.705 +(epoch: 237, iters: 912, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 1.026 G_ID: 0.158 G_Rec: 0.398 D_GP: 0.069 D_real: 0.564 D_fake: 0.690 +(epoch: 237, iters: 1312, time: 0.064) G_GAN: 0.334 G_GAN_Feat: 0.755 G_ID: 0.151 G_Rec: 0.292 D_GP: 0.031 D_real: 1.116 D_fake: 0.668 +(epoch: 237, iters: 1712, time: 0.064) G_GAN: 0.451 G_GAN_Feat: 0.728 G_ID: 0.157 G_Rec: 0.422 D_GP: 0.019 D_real: 1.298 D_fake: 0.550 +(epoch: 237, iters: 2112, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.557 G_ID: 0.117 G_Rec: 0.269 D_GP: 0.019 D_real: 1.303 D_fake: 0.669 +(epoch: 237, iters: 2512, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 0.953 G_ID: 0.166 G_Rec: 0.448 D_GP: 0.036 D_real: 0.949 D_fake: 0.663 +(epoch: 237, iters: 2912, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 0.798 G_ID: 0.130 G_Rec: 0.307 D_GP: 0.026 D_real: 0.835 D_fake: 0.826 +(epoch: 237, iters: 3312, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 0.774 G_ID: 0.188 G_Rec: 0.376 D_GP: 0.021 D_real: 1.032 D_fake: 0.784 +(epoch: 237, iters: 3712, time: 0.064) G_GAN: 0.210 G_GAN_Feat: 0.710 G_ID: 0.128 G_Rec: 0.308 D_GP: 0.064 D_real: 0.951 D_fake: 0.790 +(epoch: 237, iters: 4112, time: 0.064) G_GAN: 0.409 G_GAN_Feat: 0.876 G_ID: 0.150 G_Rec: 0.384 D_GP: 0.035 D_real: 1.041 D_fake: 0.593 +(epoch: 237, iters: 4512, time: 0.064) G_GAN: 0.205 G_GAN_Feat: 0.719 G_ID: 0.122 G_Rec: 0.301 D_GP: 0.024 D_real: 1.123 D_fake: 0.796 +(epoch: 237, iters: 4912, time: 0.064) G_GAN: 0.610 G_GAN_Feat: 0.833 G_ID: 0.149 G_Rec: 0.446 D_GP: 0.020 D_real: 1.357 D_fake: 0.398 +(epoch: 237, iters: 5312, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.619 G_ID: 0.106 G_Rec: 0.292 D_GP: 0.021 D_real: 1.336 D_fake: 0.714 +(epoch: 237, iters: 5712, time: 0.064) G_GAN: 0.375 G_GAN_Feat: 0.804 G_ID: 0.189 G_Rec: 0.396 D_GP: 0.024 D_real: 1.128 D_fake: 0.627 +(epoch: 237, iters: 6112, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 0.615 G_ID: 0.137 G_Rec: 0.313 D_GP: 0.028 D_real: 1.141 D_fake: 0.780 +(epoch: 237, iters: 6512, time: 0.064) G_GAN: 0.363 G_GAN_Feat: 0.750 G_ID: 0.165 G_Rec: 0.358 D_GP: 0.030 D_real: 1.137 D_fake: 0.637 +(epoch: 237, iters: 6912, time: 0.064) G_GAN: 0.084 G_GAN_Feat: 0.648 G_ID: 0.143 G_Rec: 0.294 D_GP: 0.035 D_real: 0.930 D_fake: 0.916 +(epoch: 237, iters: 7312, time: 0.064) G_GAN: 0.417 G_GAN_Feat: 0.855 G_ID: 0.200 G_Rec: 0.395 D_GP: 0.104 D_real: 1.030 D_fake: 0.592 +(epoch: 237, iters: 7712, time: 0.064) G_GAN: 0.164 G_GAN_Feat: 0.705 G_ID: 0.135 G_Rec: 0.302 D_GP: 0.039 D_real: 0.921 D_fake: 0.836 +(epoch: 237, iters: 8112, time: 0.064) G_GAN: 0.329 G_GAN_Feat: 0.882 G_ID: 0.173 G_Rec: 0.377 D_GP: 0.098 D_real: 0.844 D_fake: 0.673 +(epoch: 237, iters: 8512, time: 0.064) G_GAN: -0.053 G_GAN_Feat: 0.684 G_ID: 0.156 G_Rec: 0.292 D_GP: 0.033 D_real: 0.855 D_fake: 1.053 +(epoch: 238, iters: 304, time: 0.064) G_GAN: 0.431 G_GAN_Feat: 0.787 G_ID: 0.163 G_Rec: 0.345 D_GP: 0.036 D_real: 1.160 D_fake: 0.574 +(epoch: 238, iters: 704, time: 0.064) G_GAN: 0.122 G_GAN_Feat: 0.680 G_ID: 0.137 G_Rec: 0.289 D_GP: 0.026 D_real: 0.982 D_fake: 0.878 +(epoch: 238, iters: 1104, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.810 G_ID: 0.186 G_Rec: 0.366 D_GP: 0.033 D_real: 1.053 D_fake: 0.721 +(epoch: 238, iters: 1504, time: 0.064) G_GAN: 0.186 G_GAN_Feat: 0.706 G_ID: 0.143 G_Rec: 0.324 D_GP: 0.027 D_real: 1.059 D_fake: 0.814 +(epoch: 238, iters: 1904, time: 0.064) G_GAN: 0.553 G_GAN_Feat: 1.064 G_ID: 0.162 G_Rec: 0.422 D_GP: 0.121 D_real: 0.578 D_fake: 0.472 +(epoch: 238, iters: 2304, time: 0.064) G_GAN: 0.375 G_GAN_Feat: 0.613 G_ID: 0.109 G_Rec: 0.284 D_GP: 0.019 D_real: 1.317 D_fake: 0.626 +(epoch: 238, iters: 2704, time: 0.064) G_GAN: 0.451 G_GAN_Feat: 0.811 G_ID: 0.173 G_Rec: 0.377 D_GP: 0.028 D_real: 1.151 D_fake: 0.553 +(epoch: 238, iters: 3104, time: 0.064) G_GAN: 0.134 G_GAN_Feat: 0.697 G_ID: 0.125 G_Rec: 0.296 D_GP: 0.059 D_real: 0.989 D_fake: 0.866 +(epoch: 238, iters: 3504, time: 0.064) G_GAN: 0.360 G_GAN_Feat: 0.784 G_ID: 0.160 G_Rec: 0.363 D_GP: 0.023 D_real: 1.157 D_fake: 0.641 +(epoch: 238, iters: 3904, time: 0.064) G_GAN: 0.171 G_GAN_Feat: 0.676 G_ID: 0.123 G_Rec: 0.296 D_GP: 0.028 D_real: 1.003 D_fake: 0.829 +(epoch: 238, iters: 4304, time: 0.064) G_GAN: 0.341 G_GAN_Feat: 0.819 G_ID: 0.199 G_Rec: 0.358 D_GP: 0.026 D_real: 1.089 D_fake: 0.661 +(epoch: 238, iters: 4704, time: 0.064) G_GAN: 0.414 G_GAN_Feat: 0.721 G_ID: 0.136 G_Rec: 0.298 D_GP: 0.041 D_real: 1.179 D_fake: 0.589 +(epoch: 238, iters: 5104, time: 0.064) G_GAN: 0.461 G_GAN_Feat: 0.765 G_ID: 0.154 G_Rec: 0.326 D_GP: 0.026 D_real: 1.267 D_fake: 0.540 +(epoch: 238, iters: 5504, time: 0.064) G_GAN: 0.128 G_GAN_Feat: 0.725 G_ID: 0.127 G_Rec: 0.302 D_GP: 0.022 D_real: 1.018 D_fake: 0.872 +(epoch: 238, iters: 5904, time: 0.064) G_GAN: 0.567 G_GAN_Feat: 0.927 G_ID: 0.208 G_Rec: 0.402 D_GP: 0.031 D_real: 1.127 D_fake: 0.449 +(epoch: 238, iters: 6304, time: 0.064) G_GAN: 0.398 G_GAN_Feat: 0.842 G_ID: 0.122 G_Rec: 0.299 D_GP: 0.065 D_real: 0.705 D_fake: 0.604 +(epoch: 238, iters: 6704, time: 0.064) G_GAN: 0.348 G_GAN_Feat: 0.747 G_ID: 0.195 G_Rec: 0.399 D_GP: 0.019 D_real: 1.182 D_fake: 0.653 +(epoch: 238, iters: 7104, time: 0.064) G_GAN: 0.125 G_GAN_Feat: 0.657 G_ID: 0.179 G_Rec: 0.357 D_GP: 0.022 D_real: 1.079 D_fake: 0.876 +(epoch: 238, iters: 7504, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 0.766 G_ID: 0.166 G_Rec: 0.375 D_GP: 0.022 D_real: 1.099 D_fake: 0.661 +(epoch: 238, iters: 7904, time: 0.064) G_GAN: 0.069 G_GAN_Feat: 0.575 G_ID: 0.126 G_Rec: 0.276 D_GP: 0.024 D_real: 1.004 D_fake: 0.931 +(epoch: 238, iters: 8304, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.940 G_ID: 0.187 G_Rec: 0.441 D_GP: 0.044 D_real: 0.653 D_fake: 0.671 +(epoch: 239, iters: 96, time: 0.064) G_GAN: 0.117 G_GAN_Feat: 0.839 G_ID: 0.126 G_Rec: 0.311 D_GP: 0.216 D_real: 0.646 D_fake: 0.883 +(epoch: 239, iters: 496, time: 0.064) G_GAN: 0.079 G_GAN_Feat: 0.965 G_ID: 0.193 G_Rec: 0.367 D_GP: 0.079 D_real: 0.306 D_fake: 0.921 +(epoch: 239, iters: 896, time: 0.064) G_GAN: 0.075 G_GAN_Feat: 0.640 G_ID: 0.140 G_Rec: 0.285 D_GP: 0.021 D_real: 1.012 D_fake: 0.925 +(epoch: 239, iters: 1296, time: 0.064) G_GAN: 0.357 G_GAN_Feat: 0.821 G_ID: 0.175 G_Rec: 0.405 D_GP: 0.032 D_real: 1.038 D_fake: 0.647 +(epoch: 239, iters: 1696, time: 0.064) G_GAN: 0.023 G_GAN_Feat: 0.657 G_ID: 0.127 G_Rec: 0.292 D_GP: 0.024 D_real: 0.908 D_fake: 0.977 +(epoch: 239, iters: 2096, time: 0.064) G_GAN: 0.610 G_GAN_Feat: 0.848 G_ID: 0.174 G_Rec: 0.387 D_GP: 0.038 D_real: 1.152 D_fake: 0.425 +(epoch: 239, iters: 2496, time: 0.064) G_GAN: 0.285 G_GAN_Feat: 0.776 G_ID: 0.115 G_Rec: 0.320 D_GP: 0.042 D_real: 1.153 D_fake: 0.722 +(epoch: 239, iters: 2896, time: 0.064) G_GAN: 0.401 G_GAN_Feat: 1.128 G_ID: 0.176 G_Rec: 0.440 D_GP: 0.061 D_real: 0.416 D_fake: 0.601 +(epoch: 239, iters: 3296, time: 0.064) G_GAN: 0.380 G_GAN_Feat: 0.738 G_ID: 0.134 G_Rec: 0.300 D_GP: 0.056 D_real: 1.105 D_fake: 0.622 +(epoch: 239, iters: 3696, time: 0.064) G_GAN: 0.198 G_GAN_Feat: 0.826 G_ID: 0.215 G_Rec: 0.369 D_GP: 0.027 D_real: 1.034 D_fake: 0.803 +(epoch: 239, iters: 4096, time: 0.064) G_GAN: 0.294 G_GAN_Feat: 0.833 G_ID: 0.111 G_Rec: 0.311 D_GP: 0.031 D_real: 0.877 D_fake: 0.708 +(epoch: 239, iters: 4496, time: 0.064) G_GAN: 0.053 G_GAN_Feat: 0.832 G_ID: 0.158 G_Rec: 0.420 D_GP: 0.021 D_real: 0.842 D_fake: 0.947 +(epoch: 239, iters: 4896, time: 0.064) G_GAN: 0.202 G_GAN_Feat: 0.691 G_ID: 0.133 G_Rec: 0.307 D_GP: 0.022 D_real: 1.133 D_fake: 0.798 +(epoch: 239, iters: 5296, time: 0.064) G_GAN: 0.540 G_GAN_Feat: 1.122 G_ID: 0.164 G_Rec: 0.465 D_GP: 0.192 D_real: 0.372 D_fake: 0.511 +(epoch: 239, iters: 5696, time: 0.064) G_GAN: 0.242 G_GAN_Feat: 0.896 G_ID: 0.127 G_Rec: 0.342 D_GP: 0.057 D_real: 0.528 D_fake: 0.769 +(epoch: 239, iters: 6096, time: 0.064) G_GAN: 0.441 G_GAN_Feat: 0.885 G_ID: 0.167 G_Rec: 0.409 D_GP: 0.022 D_real: 1.182 D_fake: 0.565 +(epoch: 239, iters: 6496, time: 0.064) G_GAN: 0.177 G_GAN_Feat: 0.656 G_ID: 0.154 G_Rec: 0.307 D_GP: 0.019 D_real: 1.105 D_fake: 0.823 +(epoch: 239, iters: 6896, time: 0.064) G_GAN: 0.369 G_GAN_Feat: 0.769 G_ID: 0.174 G_Rec: 0.415 D_GP: 0.019 D_real: 1.141 D_fake: 0.632 +(epoch: 239, iters: 7296, time: 0.064) G_GAN: 0.240 G_GAN_Feat: 0.537 G_ID: 0.131 G_Rec: 0.285 D_GP: 0.016 D_real: 1.191 D_fake: 0.761 +(epoch: 239, iters: 7696, time: 0.064) G_GAN: 0.468 G_GAN_Feat: 0.781 G_ID: 0.184 G_Rec: 0.410 D_GP: 0.025 D_real: 1.233 D_fake: 0.542 +(epoch: 239, iters: 8096, time: 0.064) G_GAN: 0.201 G_GAN_Feat: 0.597 G_ID: 0.130 G_Rec: 0.288 D_GP: 0.024 D_real: 1.082 D_fake: 0.800 +(epoch: 239, iters: 8496, time: 0.064) G_GAN: 0.359 G_GAN_Feat: 0.775 G_ID: 0.172 G_Rec: 0.362 D_GP: 0.029 D_real: 1.124 D_fake: 0.641 +(epoch: 240, iters: 288, time: 0.064) G_GAN: 0.182 G_GAN_Feat: 0.614 G_ID: 0.123 G_Rec: 0.273 D_GP: 0.025 D_real: 1.116 D_fake: 0.818 +(epoch: 240, iters: 688, time: 0.064) G_GAN: 0.429 G_GAN_Feat: 0.943 G_ID: 0.175 G_Rec: 0.412 D_GP: 0.037 D_real: 0.933 D_fake: 0.574 +(epoch: 240, iters: 1088, time: 0.064) G_GAN: 0.052 G_GAN_Feat: 0.732 G_ID: 0.144 G_Rec: 0.327 D_GP: 0.043 D_real: 0.801 D_fake: 0.948 +(epoch: 240, iters: 1488, time: 0.064) G_GAN: 0.491 G_GAN_Feat: 0.811 G_ID: 0.169 G_Rec: 0.355 D_GP: 0.022 D_real: 1.336 D_fake: 0.513 +(epoch: 240, iters: 1888, time: 0.064) G_GAN: 0.182 G_GAN_Feat: 0.710 G_ID: 0.146 G_Rec: 0.333 D_GP: 0.029 D_real: 0.975 D_fake: 0.819 +(epoch: 240, iters: 2288, time: 0.064) G_GAN: 0.378 G_GAN_Feat: 1.051 G_ID: 0.182 G_Rec: 0.429 D_GP: 0.155 D_real: 0.514 D_fake: 0.640 +(epoch: 240, iters: 2688, time: 0.064) G_GAN: 0.292 G_GAN_Feat: 0.722 G_ID: 0.126 G_Rec: 0.314 D_GP: 0.021 D_real: 1.128 D_fake: 0.710 +(epoch: 240, iters: 3088, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 0.784 G_ID: 0.185 G_Rec: 0.372 D_GP: 0.034 D_real: 1.069 D_fake: 0.690 +(epoch: 240, iters: 3488, time: 0.064) G_GAN: 0.070 G_GAN_Feat: 0.730 G_ID: 0.118 G_Rec: 0.271 D_GP: 0.042 D_real: 0.800 D_fake: 0.930 +(epoch: 240, iters: 3888, time: 0.064) G_GAN: 0.457 G_GAN_Feat: 0.882 G_ID: 0.205 G_Rec: 0.378 D_GP: 0.103 D_real: 0.809 D_fake: 0.548 +(epoch: 240, iters: 4288, time: 0.064) G_GAN: 0.258 G_GAN_Feat: 0.923 G_ID: 0.123 G_Rec: 0.320 D_GP: 0.129 D_real: 0.514 D_fake: 0.744 +(epoch: 240, iters: 4688, time: 0.064) G_GAN: 0.431 G_GAN_Feat: 0.845 G_ID: 0.168 G_Rec: 0.367 D_GP: 0.022 D_real: 1.207 D_fake: 0.573 +(epoch: 240, iters: 5088, time: 0.064) G_GAN: -0.036 G_GAN_Feat: 0.680 G_ID: 0.146 G_Rec: 0.298 D_GP: 0.020 D_real: 0.913 D_fake: 1.036 +(epoch: 240, iters: 5488, time: 0.064) G_GAN: 0.645 G_GAN_Feat: 0.819 G_ID: 0.163 G_Rec: 0.432 D_GP: 0.027 D_real: 1.316 D_fake: 0.366 +(epoch: 240, iters: 5888, time: 0.064) G_GAN: 0.132 G_GAN_Feat: 0.650 G_ID: 0.143 G_Rec: 0.291 D_GP: 0.021 D_real: 1.073 D_fake: 0.869 +(epoch: 240, iters: 6288, time: 0.064) G_GAN: 0.459 G_GAN_Feat: 0.931 G_ID: 0.153 G_Rec: 0.410 D_GP: 0.063 D_real: 0.977 D_fake: 0.544 +(epoch: 240, iters: 6688, time: 0.064) G_GAN: 0.113 G_GAN_Feat: 0.808 G_ID: 0.157 G_Rec: 0.337 D_GP: 0.083 D_real: 0.524 D_fake: 0.888 +(epoch: 240, iters: 7088, time: 0.064) G_GAN: 0.389 G_GAN_Feat: 0.950 G_ID: 0.175 G_Rec: 0.366 D_GP: 0.098 D_real: 0.522 D_fake: 0.612 +(epoch: 240, iters: 7488, time: 0.064) G_GAN: 0.236 G_GAN_Feat: 0.726 G_ID: 0.129 G_Rec: 0.298 D_GP: 0.026 D_real: 1.073 D_fake: 0.765 +(epoch: 240, iters: 7888, time: 0.064) G_GAN: 0.240 G_GAN_Feat: 0.927 G_ID: 0.185 G_Rec: 0.390 D_GP: 0.112 D_real: 0.798 D_fake: 0.762 +(epoch: 240, iters: 8288, time: 0.064) G_GAN: 0.489 G_GAN_Feat: 0.761 G_ID: 0.139 G_Rec: 0.309 D_GP: 0.025 D_real: 1.402 D_fake: 0.524 +(epoch: 241, iters: 80, time: 0.064) G_GAN: 0.117 G_GAN_Feat: 1.083 G_ID: 0.187 G_Rec: 0.426 D_GP: 0.943 D_real: 0.430 D_fake: 0.889 +(epoch: 241, iters: 480, time: 0.064) G_GAN: 0.205 G_GAN_Feat: 0.687 G_ID: 0.110 G_Rec: 0.290 D_GP: 0.021 D_real: 1.105 D_fake: 0.795 +(epoch: 241, iters: 880, time: 0.064) G_GAN: 0.448 G_GAN_Feat: 0.945 G_ID: 0.170 G_Rec: 0.410 D_GP: 0.023 D_real: 1.086 D_fake: 0.553 +(epoch: 241, iters: 1280, time: 0.064) G_GAN: 0.188 G_GAN_Feat: 0.827 G_ID: 0.147 G_Rec: 0.339 D_GP: 0.088 D_real: 0.568 D_fake: 0.814 +(epoch: 241, iters: 1680, time: 0.064) G_GAN: 0.502 G_GAN_Feat: 0.979 G_ID: 0.191 G_Rec: 0.378 D_GP: 0.036 D_real: 0.856 D_fake: 0.508 +(epoch: 241, iters: 2080, time: 0.064) G_GAN: 0.269 G_GAN_Feat: 0.733 G_ID: 0.134 G_Rec: 0.287 D_GP: 0.035 D_real: 1.049 D_fake: 0.733 +(epoch: 241, iters: 2480, time: 0.064) G_GAN: 0.332 G_GAN_Feat: 0.903 G_ID: 0.163 G_Rec: 0.407 D_GP: 0.104 D_real: 0.819 D_fake: 0.691 +(epoch: 241, iters: 2880, time: 0.064) G_GAN: -0.060 G_GAN_Feat: 0.719 G_ID: 0.140 G_Rec: 0.297 D_GP: 0.032 D_real: 0.749 D_fake: 1.060 +(epoch: 241, iters: 3280, time: 0.064) G_GAN: 0.814 G_GAN_Feat: 1.002 G_ID: 0.160 G_Rec: 0.441 D_GP: 0.039 D_real: 1.226 D_fake: 0.256 +(epoch: 241, iters: 3680, time: 0.064) G_GAN: 0.177 G_GAN_Feat: 0.845 G_ID: 0.124 G_Rec: 0.319 D_GP: 0.068 D_real: 0.784 D_fake: 0.824 +(epoch: 241, iters: 4080, time: 0.064) G_GAN: 0.373 G_GAN_Feat: 0.749 G_ID: 0.173 G_Rec: 0.368 D_GP: 0.018 D_real: 1.359 D_fake: 0.634 +(epoch: 241, iters: 4480, time: 0.064) G_GAN: 0.227 G_GAN_Feat: 0.619 G_ID: 0.124 G_Rec: 0.318 D_GP: 0.022 D_real: 1.187 D_fake: 0.774 +(epoch: 241, iters: 4880, time: 0.064) G_GAN: 0.463 G_GAN_Feat: 0.697 G_ID: 0.129 G_Rec: 0.346 D_GP: 0.015 D_real: 1.326 D_fake: 0.539 +(epoch: 241, iters: 5280, time: 0.064) G_GAN: 0.161 G_GAN_Feat: 0.649 G_ID: 0.126 G_Rec: 0.319 D_GP: 0.036 D_real: 1.064 D_fake: 0.839 +(epoch: 241, iters: 5680, time: 0.064) G_GAN: 0.455 G_GAN_Feat: 0.782 G_ID: 0.168 G_Rec: 0.380 D_GP: 0.024 D_real: 1.198 D_fake: 0.554 +(epoch: 241, iters: 6080, time: 0.064) G_GAN: 0.049 G_GAN_Feat: 0.633 G_ID: 0.133 G_Rec: 0.288 D_GP: 0.044 D_real: 0.923 D_fake: 0.951 +(epoch: 241, iters: 6480, time: 0.064) G_GAN: 0.370 G_GAN_Feat: 0.732 G_ID: 0.172 G_Rec: 0.364 D_GP: 0.020 D_real: 1.175 D_fake: 0.631 +(epoch: 241, iters: 6880, time: 0.064) G_GAN: 0.145 G_GAN_Feat: 0.622 G_ID: 0.112 G_Rec: 0.306 D_GP: 0.039 D_real: 1.018 D_fake: 0.855 +(epoch: 241, iters: 7280, time: 0.064) G_GAN: 0.392 G_GAN_Feat: 0.924 G_ID: 0.163 G_Rec: 0.411 D_GP: 0.026 D_real: 1.018 D_fake: 0.610 +(epoch: 241, iters: 7680, time: 0.064) G_GAN: 0.203 G_GAN_Feat: 0.592 G_ID: 0.132 G_Rec: 0.263 D_GP: 0.022 D_real: 1.119 D_fake: 0.798 +(epoch: 241, iters: 8080, time: 0.064) G_GAN: 0.344 G_GAN_Feat: 0.872 G_ID: 0.154 G_Rec: 0.436 D_GP: 0.041 D_real: 1.032 D_fake: 0.658 +(epoch: 241, iters: 8480, time: 0.064) G_GAN: 0.048 G_GAN_Feat: 0.690 G_ID: 0.106 G_Rec: 0.293 D_GP: 0.128 D_real: 0.817 D_fake: 0.952 +(epoch: 242, iters: 272, time: 0.064) G_GAN: 0.213 G_GAN_Feat: 0.777 G_ID: 0.152 G_Rec: 0.378 D_GP: 0.022 D_real: 1.000 D_fake: 0.788 +(epoch: 242, iters: 672, time: 0.064) G_GAN: 0.097 G_GAN_Feat: 0.635 G_ID: 0.107 G_Rec: 0.319 D_GP: 0.028 D_real: 1.095 D_fake: 0.903 +(epoch: 242, iters: 1072, time: 0.064) G_GAN: 0.348 G_GAN_Feat: 0.815 G_ID: 0.155 G_Rec: 0.391 D_GP: 0.027 D_real: 1.101 D_fake: 0.654 +(epoch: 242, iters: 1472, time: 0.064) G_GAN: 0.115 G_GAN_Feat: 0.818 G_ID: 0.118 G_Rec: 0.322 D_GP: 0.457 D_real: 0.715 D_fake: 0.886 +(epoch: 242, iters: 1872, time: 0.064) G_GAN: 0.239 G_GAN_Feat: 0.813 G_ID: 0.166 G_Rec: 0.360 D_GP: 0.023 D_real: 0.931 D_fake: 0.761 +(epoch: 242, iters: 2272, time: 0.064) G_GAN: 0.239 G_GAN_Feat: 0.683 G_ID: 0.125 G_Rec: 0.298 D_GP: 0.034 D_real: 1.034 D_fake: 0.761 +(epoch: 242, iters: 2672, time: 0.064) G_GAN: 0.386 G_GAN_Feat: 0.922 G_ID: 0.187 G_Rec: 0.425 D_GP: 0.028 D_real: 1.065 D_fake: 0.618 +(epoch: 242, iters: 3072, time: 0.064) G_GAN: -0.087 G_GAN_Feat: 0.760 G_ID: 0.133 G_Rec: 0.301 D_GP: 0.102 D_real: 0.521 D_fake: 1.087 +(epoch: 242, iters: 3472, time: 0.064) G_GAN: 0.395 G_GAN_Feat: 0.756 G_ID: 0.174 G_Rec: 0.356 D_GP: 0.022 D_real: 1.235 D_fake: 0.606 +(epoch: 242, iters: 3872, time: 0.064) G_GAN: 0.021 G_GAN_Feat: 0.707 G_ID: 0.130 G_Rec: 0.328 D_GP: 0.022 D_real: 0.913 D_fake: 0.979 +(epoch: 242, iters: 4272, time: 0.064) G_GAN: 0.214 G_GAN_Feat: 0.841 G_ID: 0.168 G_Rec: 0.409 D_GP: 0.026 D_real: 0.993 D_fake: 0.787 +(epoch: 242, iters: 4672, time: 0.064) G_GAN: 0.106 G_GAN_Feat: 0.769 G_ID: 0.139 G_Rec: 0.342 D_GP: 0.083 D_real: 0.739 D_fake: 0.896 +(epoch: 242, iters: 5072, time: 0.064) G_GAN: 0.368 G_GAN_Feat: 0.807 G_ID: 0.194 G_Rec: 0.403 D_GP: 0.024 D_real: 1.163 D_fake: 0.632 +(epoch: 242, iters: 5472, time: 0.064) G_GAN: 0.222 G_GAN_Feat: 0.597 G_ID: 0.130 G_Rec: 0.279 D_GP: 0.019 D_real: 1.165 D_fake: 0.778 +(epoch: 242, iters: 5872, time: 0.064) G_GAN: 0.330 G_GAN_Feat: 0.807 G_ID: 0.180 G_Rec: 0.379 D_GP: 0.026 D_real: 1.073 D_fake: 0.670 +(epoch: 242, iters: 6272, time: 0.064) G_GAN: 0.266 G_GAN_Feat: 0.734 G_ID: 0.132 G_Rec: 0.269 D_GP: 0.035 D_real: 1.028 D_fake: 0.736 +(epoch: 242, iters: 6672, time: 0.064) G_GAN: 0.647 G_GAN_Feat: 1.153 G_ID: 0.170 G_Rec: 0.455 D_GP: 0.033 D_real: 0.958 D_fake: 0.402 +(epoch: 242, iters: 7072, time: 0.064) G_GAN: -0.231 G_GAN_Feat: 0.743 G_ID: 0.126 G_Rec: 0.285 D_GP: 0.036 D_real: 0.517 D_fake: 1.231 +(epoch: 242, iters: 7472, time: 0.064) G_GAN: 0.424 G_GAN_Feat: 0.941 G_ID: 0.196 G_Rec: 0.418 D_GP: 0.059 D_real: 0.823 D_fake: 0.580 +(epoch: 242, iters: 7872, time: 0.064) G_GAN: 0.287 G_GAN_Feat: 0.571 G_ID: 0.116 G_Rec: 0.282 D_GP: 0.018 D_real: 1.270 D_fake: 0.713 +(epoch: 242, iters: 8272, time: 0.064) G_GAN: 0.254 G_GAN_Feat: 0.874 G_ID: 0.169 G_Rec: 0.432 D_GP: 0.034 D_real: 0.937 D_fake: 0.748 +(epoch: 243, iters: 64, time: 0.064) G_GAN: 0.001 G_GAN_Feat: 0.671 G_ID: 0.140 G_Rec: 0.292 D_GP: 0.035 D_real: 0.863 D_fake: 0.999 +(epoch: 243, iters: 464, time: 0.064) G_GAN: 0.401 G_GAN_Feat: 0.936 G_ID: 0.186 G_Rec: 0.406 D_GP: 0.037 D_real: 0.855 D_fake: 0.601 +(epoch: 243, iters: 864, time: 0.064) G_GAN: 0.517 G_GAN_Feat: 0.641 G_ID: 0.129 G_Rec: 0.271 D_GP: 0.025 D_real: 1.405 D_fake: 0.484 +(epoch: 243, iters: 1264, time: 0.064) G_GAN: 0.070 G_GAN_Feat: 0.857 G_ID: 0.177 G_Rec: 0.442 D_GP: 0.020 D_real: 0.765 D_fake: 0.930 +(epoch: 243, iters: 1664, time: 0.064) G_GAN: -0.112 G_GAN_Feat: 0.659 G_ID: 0.137 G_Rec: 0.312 D_GP: 0.026 D_real: 0.765 D_fake: 1.112 +(epoch: 243, iters: 2064, time: 0.064) G_GAN: -0.069 G_GAN_Feat: 0.976 G_ID: 0.185 G_Rec: 0.452 D_GP: 0.098 D_real: 0.404 D_fake: 1.069 +(epoch: 243, iters: 2464, time: 0.064) G_GAN: 0.132 G_GAN_Feat: 0.672 G_ID: 0.121 G_Rec: 0.283 D_GP: 0.021 D_real: 1.061 D_fake: 0.868 +(epoch: 243, iters: 2864, time: 0.064) G_GAN: 0.561 G_GAN_Feat: 0.847 G_ID: 0.189 G_Rec: 0.376 D_GP: 0.033 D_real: 1.224 D_fake: 0.481 +(epoch: 243, iters: 3264, time: 0.064) G_GAN: 0.301 G_GAN_Feat: 0.690 G_ID: 0.107 G_Rec: 0.283 D_GP: 0.024 D_real: 1.189 D_fake: 0.699 +(epoch: 243, iters: 3664, time: 0.064) G_GAN: 0.716 G_GAN_Feat: 0.934 G_ID: 0.177 G_Rec: 0.391 D_GP: 0.022 D_real: 1.452 D_fake: 0.374 +(epoch: 243, iters: 4064, time: 0.064) G_GAN: 0.474 G_GAN_Feat: 0.640 G_ID: 0.132 G_Rec: 0.290 D_GP: 0.023 D_real: 1.431 D_fake: 0.532 +(epoch: 243, iters: 4464, time: 0.064) G_GAN: 0.611 G_GAN_Feat: 0.980 G_ID: 0.164 G_Rec: 0.429 D_GP: 0.033 D_real: 1.093 D_fake: 0.407 +(epoch: 243, iters: 4864, time: 0.064) G_GAN: 0.201 G_GAN_Feat: 0.556 G_ID: 0.140 G_Rec: 0.287 D_GP: 0.015 D_real: 1.163 D_fake: 0.799 +(epoch: 243, iters: 5264, time: 0.064) G_GAN: 0.371 G_GAN_Feat: 0.722 G_ID: 0.187 G_Rec: 0.373 D_GP: 0.018 D_real: 1.174 D_fake: 0.630 +(epoch: 243, iters: 5664, time: 0.064) G_GAN: 0.218 G_GAN_Feat: 0.540 G_ID: 0.138 G_Rec: 0.278 D_GP: 0.016 D_real: 1.190 D_fake: 0.782 +(epoch: 243, iters: 6064, time: 0.064) G_GAN: 0.169 G_GAN_Feat: 0.768 G_ID: 0.163 G_Rec: 0.375 D_GP: 0.029 D_real: 0.988 D_fake: 0.831 +(epoch: 243, iters: 6464, time: 0.064) G_GAN: 0.102 G_GAN_Feat: 0.546 G_ID: 0.127 G_Rec: 0.265 D_GP: 0.022 D_real: 1.032 D_fake: 0.898 +(epoch: 243, iters: 6864, time: 0.064) G_GAN: 0.240 G_GAN_Feat: 0.868 G_ID: 0.150 G_Rec: 0.421 D_GP: 0.048 D_real: 0.824 D_fake: 0.761 +(epoch: 243, iters: 7264, time: 0.064) G_GAN: 0.142 G_GAN_Feat: 0.720 G_ID: 0.124 G_Rec: 0.325 D_GP: 0.043 D_real: 0.885 D_fake: 0.858 +(epoch: 243, iters: 7664, time: 0.064) G_GAN: 0.387 G_GAN_Feat: 0.909 G_ID: 0.173 G_Rec: 0.433 D_GP: 0.052 D_real: 1.008 D_fake: 0.617 +(epoch: 243, iters: 8064, time: 0.064) G_GAN: 0.281 G_GAN_Feat: 0.783 G_ID: 0.124 G_Rec: 0.326 D_GP: 0.073 D_real: 0.922 D_fake: 0.726 +(epoch: 243, iters: 8464, time: 0.064) G_GAN: 0.369 G_GAN_Feat: 0.801 G_ID: 0.175 G_Rec: 0.414 D_GP: 0.021 D_real: 1.079 D_fake: 0.631 +(epoch: 244, iters: 256, time: 0.064) G_GAN: 0.110 G_GAN_Feat: 0.731 G_ID: 0.127 G_Rec: 0.312 D_GP: 0.077 D_real: 0.782 D_fake: 0.890 +(epoch: 244, iters: 656, time: 0.064) G_GAN: 0.427 G_GAN_Feat: 0.886 G_ID: 0.157 G_Rec: 0.392 D_GP: 0.043 D_real: 0.929 D_fake: 0.575 +(epoch: 244, iters: 1056, time: 0.064) G_GAN: 0.391 G_GAN_Feat: 0.691 G_ID: 0.133 G_Rec: 0.312 D_GP: 0.024 D_real: 1.269 D_fake: 0.609 +(epoch: 244, iters: 1456, time: 0.064) G_GAN: 0.494 G_GAN_Feat: 0.868 G_ID: 0.183 G_Rec: 0.400 D_GP: 0.024 D_real: 1.116 D_fake: 0.507 +(epoch: 244, iters: 1856, time: 0.064) G_GAN: 0.099 G_GAN_Feat: 0.620 G_ID: 0.147 G_Rec: 0.310 D_GP: 0.024 D_real: 0.997 D_fake: 0.901 +(epoch: 244, iters: 2256, time: 0.064) G_GAN: 0.482 G_GAN_Feat: 0.755 G_ID: 0.162 G_Rec: 0.358 D_GP: 0.031 D_real: 1.262 D_fake: 0.523 +(epoch: 244, iters: 2656, time: 0.064) G_GAN: 0.348 G_GAN_Feat: 0.689 G_ID: 0.116 G_Rec: 0.309 D_GP: 0.039 D_real: 1.078 D_fake: 0.653 +(epoch: 244, iters: 3056, time: 0.064) G_GAN: 0.671 G_GAN_Feat: 0.905 G_ID: 0.183 G_Rec: 0.411 D_GP: 0.039 D_real: 1.187 D_fake: 0.357 +(epoch: 244, iters: 3456, time: 0.064) G_GAN: 0.260 G_GAN_Feat: 0.651 G_ID: 0.108 G_Rec: 0.260 D_GP: 0.023 D_real: 1.212 D_fake: 0.740 +(epoch: 244, iters: 3856, time: 0.064) G_GAN: 0.169 G_GAN_Feat: 1.079 G_ID: 0.175 G_Rec: 0.422 D_GP: 0.046 D_real: 0.255 D_fake: 0.831 +(epoch: 244, iters: 4256, time: 0.064) G_GAN: 0.087 G_GAN_Feat: 0.689 G_ID: 0.164 G_Rec: 0.319 D_GP: 0.021 D_real: 0.931 D_fake: 0.913 +(epoch: 244, iters: 4656, time: 0.064) G_GAN: 0.364 G_GAN_Feat: 0.852 G_ID: 0.147 G_Rec: 0.396 D_GP: 0.028 D_real: 0.993 D_fake: 0.668 +(epoch: 244, iters: 5056, time: 0.064) G_GAN: 0.016 G_GAN_Feat: 0.606 G_ID: 0.119 G_Rec: 0.266 D_GP: 0.023 D_real: 0.962 D_fake: 0.984 +(epoch: 244, iters: 5456, time: 0.064) G_GAN: 0.447 G_GAN_Feat: 0.919 G_ID: 0.163 G_Rec: 0.378 D_GP: 0.032 D_real: 1.177 D_fake: 0.556 +(epoch: 244, iters: 5856, time: 0.064) G_GAN: 0.239 G_GAN_Feat: 0.737 G_ID: 0.131 G_Rec: 0.329 D_GP: 0.025 D_real: 1.130 D_fake: 0.761 +(epoch: 244, iters: 6256, time: 0.064) G_GAN: 0.417 G_GAN_Feat: 0.891 G_ID: 0.186 G_Rec: 0.377 D_GP: 0.035 D_real: 1.017 D_fake: 0.586 +(epoch: 244, iters: 6656, time: 0.064) G_GAN: 0.131 G_GAN_Feat: 0.687 G_ID: 0.132 G_Rec: 0.288 D_GP: 0.051 D_real: 0.873 D_fake: 0.869 +(epoch: 244, iters: 7056, time: 0.064) G_GAN: 0.462 G_GAN_Feat: 0.934 G_ID: 0.160 G_Rec: 0.430 D_GP: 0.099 D_real: 0.856 D_fake: 0.544 +(epoch: 244, iters: 7456, time: 0.064) G_GAN: 0.363 G_GAN_Feat: 0.621 G_ID: 0.145 G_Rec: 0.287 D_GP: 0.023 D_real: 1.196 D_fake: 0.638 +(epoch: 244, iters: 7856, time: 0.064) G_GAN: 0.767 G_GAN_Feat: 0.826 G_ID: 0.162 G_Rec: 0.388 D_GP: 0.023 D_real: 1.565 D_fake: 0.265 +(epoch: 244, iters: 8256, time: 0.064) G_GAN: -0.168 G_GAN_Feat: 0.932 G_ID: 0.120 G_Rec: 0.308 D_GP: 0.740 D_real: 0.328 D_fake: 1.170 +(epoch: 245, iters: 48, time: 0.064) G_GAN: 0.394 G_GAN_Feat: 0.863 G_ID: 0.157 G_Rec: 0.379 D_GP: 0.024 D_real: 1.127 D_fake: 0.609 +(epoch: 245, iters: 448, time: 0.064) G_GAN: 0.180 G_GAN_Feat: 0.799 G_ID: 0.157 G_Rec: 0.366 D_GP: 0.056 D_real: 0.774 D_fake: 0.823 +(epoch: 245, iters: 848, time: 0.064) G_GAN: 0.492 G_GAN_Feat: 0.968 G_ID: 0.183 G_Rec: 0.405 D_GP: 0.052 D_real: 0.848 D_fake: 0.519 +(epoch: 245, iters: 1248, time: 0.064) G_GAN: -0.267 G_GAN_Feat: 0.670 G_ID: 0.122 G_Rec: 0.370 D_GP: 0.025 D_real: 0.693 D_fake: 1.267 +(epoch: 245, iters: 1648, time: 0.064) G_GAN: 0.404 G_GAN_Feat: 0.903 G_ID: 0.156 G_Rec: 0.389 D_GP: 0.031 D_real: 1.088 D_fake: 0.606 +(epoch: 245, iters: 2048, time: 0.064) G_GAN: 0.493 G_GAN_Feat: 0.661 G_ID: 0.134 G_Rec: 0.276 D_GP: 0.025 D_real: 1.450 D_fake: 0.510 +(epoch: 245, iters: 2448, time: 0.064) G_GAN: 0.326 G_GAN_Feat: 1.027 G_ID: 0.173 G_Rec: 0.450 D_GP: 0.033 D_real: 0.854 D_fake: 0.677 +(epoch: 245, iters: 2848, time: 0.064) G_GAN: 0.223 G_GAN_Feat: 0.679 G_ID: 0.124 G_Rec: 0.314 D_GP: 0.022 D_real: 1.148 D_fake: 0.777 +(epoch: 245, iters: 3248, time: 0.064) G_GAN: 0.405 G_GAN_Feat: 0.822 G_ID: 0.167 G_Rec: 0.379 D_GP: 0.023 D_real: 1.182 D_fake: 0.597 +(epoch: 245, iters: 3648, time: 0.064) G_GAN: 0.140 G_GAN_Feat: 0.720 G_ID: 0.134 G_Rec: 0.311 D_GP: 0.026 D_real: 0.991 D_fake: 0.860 +(epoch: 245, iters: 4048, time: 0.064) G_GAN: 0.264 G_GAN_Feat: 0.812 G_ID: 0.188 G_Rec: 0.372 D_GP: 0.022 D_real: 1.026 D_fake: 0.737 +(epoch: 245, iters: 4448, time: 0.064) G_GAN: -0.289 G_GAN_Feat: 0.867 G_ID: 0.134 G_Rec: 0.331 D_GP: 0.644 D_real: 0.332 D_fake: 1.289 +(epoch: 245, iters: 4848, time: 0.064) G_GAN: 0.358 G_GAN_Feat: 0.957 G_ID: 0.167 G_Rec: 0.411 D_GP: 0.057 D_real: 0.763 D_fake: 0.643 +(epoch: 245, iters: 5248, time: 0.064) G_GAN: 0.328 G_GAN_Feat: 0.691 G_ID: 0.115 G_Rec: 0.283 D_GP: 0.035 D_real: 1.135 D_fake: 0.674 +(epoch: 245, iters: 5648, time: 0.064) G_GAN: 0.587 G_GAN_Feat: 0.883 G_ID: 0.171 G_Rec: 0.394 D_GP: 0.027 D_real: 1.333 D_fake: 0.462 +(epoch: 245, iters: 6048, time: 0.064) G_GAN: 0.313 G_GAN_Feat: 0.759 G_ID: 0.131 G_Rec: 0.300 D_GP: 0.031 D_real: 1.080 D_fake: 0.690 +(epoch: 245, iters: 6448, time: 0.064) G_GAN: 0.846 G_GAN_Feat: 0.907 G_ID: 0.174 G_Rec: 0.404 D_GP: 0.024 D_real: 1.545 D_fake: 0.217 +(epoch: 245, iters: 6848, time: 0.064) G_GAN: 0.235 G_GAN_Feat: 0.599 G_ID: 0.119 G_Rec: 0.280 D_GP: 0.019 D_real: 1.132 D_fake: 0.765 +(epoch: 245, iters: 7248, time: 0.064) G_GAN: 0.192 G_GAN_Feat: 0.839 G_ID: 0.208 G_Rec: 0.400 D_GP: 0.026 D_real: 0.928 D_fake: 0.808 +(epoch: 245, iters: 7648, time: 0.064) G_GAN: 0.181 G_GAN_Feat: 0.809 G_ID: 0.120 G_Rec: 0.336 D_GP: 0.378 D_real: 0.736 D_fake: 0.821 +(epoch: 245, iters: 8048, time: 0.064) G_GAN: 0.455 G_GAN_Feat: 1.014 G_ID: 0.166 G_Rec: 0.450 D_GP: 0.090 D_real: 0.621 D_fake: 0.548 +(epoch: 245, iters: 8448, time: 0.064) G_GAN: 0.215 G_GAN_Feat: 0.872 G_ID: 0.126 G_Rec: 0.290 D_GP: 0.059 D_real: 0.510 D_fake: 0.785 +(epoch: 246, iters: 240, time: 0.064) G_GAN: 0.641 G_GAN_Feat: 0.854 G_ID: 0.181 G_Rec: 0.403 D_GP: 0.021 D_real: 1.361 D_fake: 0.419 +(epoch: 246, iters: 640, time: 0.064) G_GAN: 0.110 G_GAN_Feat: 0.758 G_ID: 0.121 G_Rec: 0.324 D_GP: 0.026 D_real: 0.901 D_fake: 0.890 +(epoch: 246, iters: 1040, time: 0.064) G_GAN: 0.800 G_GAN_Feat: 1.047 G_ID: 0.160 G_Rec: 0.438 D_GP: 0.065 D_real: 0.601 D_fake: 0.321 +(epoch: 246, iters: 1440, time: 0.064) G_GAN: 0.194 G_GAN_Feat: 0.626 G_ID: 0.127 G_Rec: 0.311 D_GP: 0.017 D_real: 1.193 D_fake: 0.806 +(epoch: 246, iters: 1840, time: 0.064) G_GAN: 0.260 G_GAN_Feat: 0.857 G_ID: 0.175 G_Rec: 0.411 D_GP: 0.021 D_real: 1.018 D_fake: 0.741 +(epoch: 246, iters: 2240, time: 0.064) G_GAN: 0.107 G_GAN_Feat: 0.722 G_ID: 0.117 G_Rec: 0.318 D_GP: 0.029 D_real: 1.055 D_fake: 0.894 +(epoch: 246, iters: 2640, time: 0.064) G_GAN: 0.751 G_GAN_Feat: 0.856 G_ID: 0.208 G_Rec: 0.384 D_GP: 0.025 D_real: 1.545 D_fake: 0.295 +(epoch: 246, iters: 3040, time: 0.064) G_GAN: 0.300 G_GAN_Feat: 0.780 G_ID: 0.118 G_Rec: 0.283 D_GP: 0.114 D_real: 0.746 D_fake: 0.702 +(epoch: 246, iters: 3440, time: 0.064) G_GAN: 0.468 G_GAN_Feat: 0.925 G_ID: 0.168 G_Rec: 0.463 D_GP: 0.022 D_real: 1.104 D_fake: 0.537 +(epoch: 246, iters: 3840, time: 0.064) G_GAN: 0.262 G_GAN_Feat: 0.638 G_ID: 0.122 G_Rec: 0.308 D_GP: 0.022 D_real: 1.241 D_fake: 0.740 +(epoch: 246, iters: 4240, time: 0.064) G_GAN: 0.413 G_GAN_Feat: 0.700 G_ID: 0.190 G_Rec: 0.346 D_GP: 0.018 D_real: 1.278 D_fake: 0.587 +(epoch: 246, iters: 4640, time: 0.064) G_GAN: 0.226 G_GAN_Feat: 0.557 G_ID: 0.129 G_Rec: 0.274 D_GP: 0.019 D_real: 1.178 D_fake: 0.774 +(epoch: 246, iters: 5040, time: 0.064) G_GAN: 0.291 G_GAN_Feat: 0.807 G_ID: 0.164 G_Rec: 0.381 D_GP: 0.030 D_real: 1.069 D_fake: 0.709 +(epoch: 246, iters: 5440, time: 0.064) G_GAN: 0.158 G_GAN_Feat: 0.707 G_ID: 0.116 G_Rec: 0.301 D_GP: 0.032 D_real: 1.005 D_fake: 0.844 +(epoch: 246, iters: 5840, time: 0.064) G_GAN: 0.491 G_GAN_Feat: 0.898 G_ID: 0.206 G_Rec: 0.389 D_GP: 0.026 D_real: 1.117 D_fake: 0.519 +(epoch: 246, iters: 6240, time: 0.064) G_GAN: 0.192 G_GAN_Feat: 0.600 G_ID: 0.159 G_Rec: 0.295 D_GP: 0.023 D_real: 1.166 D_fake: 0.808 +(epoch: 246, iters: 6640, time: 0.064) G_GAN: 0.329 G_GAN_Feat: 0.840 G_ID: 0.174 G_Rec: 0.360 D_GP: 0.029 D_real: 1.183 D_fake: 0.672 +(epoch: 246, iters: 7040, time: 0.064) G_GAN: 0.329 G_GAN_Feat: 0.702 G_ID: 0.106 G_Rec: 0.297 D_GP: 0.032 D_real: 1.136 D_fake: 0.672 +(epoch: 246, iters: 7440, time: 0.064) G_GAN: 0.151 G_GAN_Feat: 0.864 G_ID: 0.192 G_Rec: 0.358 D_GP: 0.055 D_real: 0.698 D_fake: 0.849 +(epoch: 246, iters: 7840, time: 0.064) G_GAN: 0.266 G_GAN_Feat: 0.752 G_ID: 0.123 G_Rec: 0.283 D_GP: 0.083 D_real: 0.917 D_fake: 0.735 +(epoch: 246, iters: 8240, time: 0.064) G_GAN: 0.409 G_GAN_Feat: 0.753 G_ID: 0.163 G_Rec: 0.356 D_GP: 0.023 D_real: 1.186 D_fake: 0.593 +(epoch: 247, iters: 32, time: 0.064) G_GAN: 0.141 G_GAN_Feat: 0.875 G_ID: 0.144 G_Rec: 0.340 D_GP: 0.335 D_real: 0.523 D_fake: 0.861 +(epoch: 247, iters: 432, time: 0.064) G_GAN: 0.544 G_GAN_Feat: 1.140 G_ID: 0.184 G_Rec: 0.411 D_GP: 0.155 D_real: 0.488 D_fake: 0.475 +(epoch: 247, iters: 832, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.586 G_ID: 0.154 G_Rec: 0.326 D_GP: 0.020 D_real: 1.250 D_fake: 0.717 +(epoch: 247, iters: 1232, time: 0.064) G_GAN: 0.486 G_GAN_Feat: 0.805 G_ID: 0.169 G_Rec: 0.387 D_GP: 0.020 D_real: 1.230 D_fake: 0.529 +(epoch: 247, iters: 1632, time: 0.064) G_GAN: 0.160 G_GAN_Feat: 0.611 G_ID: 0.109 G_Rec: 0.278 D_GP: 0.026 D_real: 1.059 D_fake: 0.840 +(epoch: 247, iters: 2032, time: 0.064) G_GAN: 0.265 G_GAN_Feat: 0.793 G_ID: 0.162 G_Rec: 0.385 D_GP: 0.024 D_real: 0.977 D_fake: 0.736 +(epoch: 247, iters: 2432, time: 0.064) G_GAN: 0.224 G_GAN_Feat: 0.610 G_ID: 0.158 G_Rec: 0.290 D_GP: 0.025 D_real: 1.096 D_fake: 0.776 +(epoch: 247, iters: 2832, time: 0.064) G_GAN: 0.400 G_GAN_Feat: 0.865 G_ID: 0.178 G_Rec: 0.384 D_GP: 0.042 D_real: 1.050 D_fake: 0.600 +(epoch: 247, iters: 3232, time: 0.064) G_GAN: 0.096 G_GAN_Feat: 0.666 G_ID: 0.141 G_Rec: 0.294 D_GP: 0.028 D_real: 0.932 D_fake: 0.904 +(epoch: 247, iters: 3632, time: 0.064) G_GAN: 0.651 G_GAN_Feat: 0.852 G_ID: 0.153 G_Rec: 0.375 D_GP: 0.027 D_real: 1.382 D_fake: 0.365 +(epoch: 247, iters: 4032, time: 0.064) G_GAN: 0.246 G_GAN_Feat: 0.747 G_ID: 0.115 G_Rec: 0.290 D_GP: 0.051 D_real: 1.002 D_fake: 0.755 +(epoch: 247, iters: 4432, time: 0.064) G_GAN: 0.478 G_GAN_Feat: 0.977 G_ID: 0.183 G_Rec: 0.440 D_GP: 0.044 D_real: 0.863 D_fake: 0.527 +(epoch: 247, iters: 4832, time: 0.064) G_GAN: -0.109 G_GAN_Feat: 1.017 G_ID: 0.130 G_Rec: 0.356 D_GP: 3.370 D_real: 0.390 D_fake: 1.110 +(epoch: 247, iters: 5232, time: 0.064) G_GAN: 0.629 G_GAN_Feat: 0.817 G_ID: 0.138 G_Rec: 0.421 D_GP: 0.028 D_real: 1.368 D_fake: 0.391 +(epoch: 247, iters: 5632, time: 0.064) G_GAN: 0.154 G_GAN_Feat: 0.664 G_ID: 0.130 G_Rec: 0.335 D_GP: 0.034 D_real: 1.040 D_fake: 0.847 +(epoch: 247, iters: 6032, time: 0.064) G_GAN: 0.212 G_GAN_Feat: 0.872 G_ID: 0.170 G_Rec: 0.448 D_GP: 0.046 D_real: 0.818 D_fake: 0.788 +(epoch: 247, iters: 6432, time: 0.064) G_GAN: 0.025 G_GAN_Feat: 0.599 G_ID: 0.119 G_Rec: 0.303 D_GP: 0.047 D_real: 0.868 D_fake: 0.975 +(epoch: 247, iters: 6832, time: 0.064) G_GAN: 0.275 G_GAN_Feat: 0.806 G_ID: 0.154 G_Rec: 0.393 D_GP: 0.030 D_real: 1.026 D_fake: 0.725 +(epoch: 247, iters: 7232, time: 0.064) G_GAN: 0.161 G_GAN_Feat: 0.601 G_ID: 0.131 G_Rec: 0.289 D_GP: 0.022 D_real: 1.112 D_fake: 0.839 +(epoch: 247, iters: 7632, time: 0.064) G_GAN: 0.188 G_GAN_Feat: 0.842 G_ID: 0.185 G_Rec: 0.372 D_GP: 0.057 D_real: 0.741 D_fake: 0.813 +(epoch: 247, iters: 8032, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.598 G_ID: 0.137 G_Rec: 0.304 D_GP: 0.020 D_real: 1.194 D_fake: 0.715 +(epoch: 247, iters: 8432, time: 0.064) G_GAN: 0.306 G_GAN_Feat: 0.999 G_ID: 0.183 G_Rec: 0.390 D_GP: 0.396 D_real: 0.516 D_fake: 0.698 +(epoch: 248, iters: 224, time: 0.064) G_GAN: 0.206 G_GAN_Feat: 0.637 G_ID: 0.120 G_Rec: 0.283 D_GP: 0.026 D_real: 1.126 D_fake: 0.794 +(epoch: 248, iters: 624, time: 0.064) G_GAN: 0.513 G_GAN_Feat: 0.959 G_ID: 0.159 G_Rec: 0.407 D_GP: 0.089 D_real: 0.940 D_fake: 0.496 +(epoch: 248, iters: 1024, time: 0.064) G_GAN: 0.069 G_GAN_Feat: 0.933 G_ID: 0.137 G_Rec: 0.337 D_GP: 0.128 D_real: 0.502 D_fake: 0.942 +(epoch: 248, iters: 1424, time: 0.064) G_GAN: 0.238 G_GAN_Feat: 0.824 G_ID: 0.189 G_Rec: 0.385 D_GP: 0.029 D_real: 1.000 D_fake: 0.763 +(epoch: 248, iters: 1824, time: 0.064) G_GAN: 0.041 G_GAN_Feat: 0.766 G_ID: 0.134 G_Rec: 0.311 D_GP: 0.146 D_real: 0.979 D_fake: 0.959 +(epoch: 248, iters: 2224, time: 0.064) G_GAN: 0.508 G_GAN_Feat: 0.869 G_ID: 0.170 G_Rec: 0.390 D_GP: 0.037 D_real: 1.117 D_fake: 0.497 +(epoch: 248, iters: 2624, time: 0.064) G_GAN: 0.344 G_GAN_Feat: 0.684 G_ID: 0.149 G_Rec: 0.277 D_GP: 0.025 D_real: 1.279 D_fake: 0.665 +(epoch: 248, iters: 3024, time: 0.064) G_GAN: 0.596 G_GAN_Feat: 1.048 G_ID: 0.158 G_Rec: 0.456 D_GP: 0.101 D_real: 1.093 D_fake: 0.428 +(epoch: 248, iters: 3424, time: 0.064) G_GAN: -0.177 G_GAN_Feat: 0.846 G_ID: 0.153 G_Rec: 0.308 D_GP: 0.086 D_real: 0.816 D_fake: 1.177 +(epoch: 248, iters: 3824, time: 0.064) G_GAN: 0.392 G_GAN_Feat: 0.853 G_ID: 0.177 G_Rec: 0.391 D_GP: 0.021 D_real: 1.107 D_fake: 0.613 +(epoch: 248, iters: 4224, time: 0.064) G_GAN: 0.080 G_GAN_Feat: 0.771 G_ID: 0.131 G_Rec: 0.303 D_GP: 0.037 D_real: 0.821 D_fake: 0.920 +(epoch: 248, iters: 4624, time: 0.064) G_GAN: 0.667 G_GAN_Feat: 0.895 G_ID: 0.159 G_Rec: 0.408 D_GP: 0.023 D_real: 1.340 D_fake: 0.343 +(epoch: 248, iters: 5024, time: 0.064) G_GAN: 0.234 G_GAN_Feat: 0.645 G_ID: 0.124 G_Rec: 0.262 D_GP: 0.022 D_real: 1.147 D_fake: 0.766 +(epoch: 248, iters: 5424, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.856 G_ID: 0.173 G_Rec: 0.390 D_GP: 0.034 D_real: 0.885 D_fake: 0.722 +(epoch: 248, iters: 5824, time: 0.064) G_GAN: -0.004 G_GAN_Feat: 0.763 G_ID: 0.129 G_Rec: 0.313 D_GP: 0.048 D_real: 0.760 D_fake: 1.005 +(epoch: 248, iters: 6224, time: 0.064) G_GAN: 0.535 G_GAN_Feat: 1.123 G_ID: 0.169 G_Rec: 0.400 D_GP: 0.134 D_real: 0.492 D_fake: 0.467 +(epoch: 248, iters: 6624, time: 0.064) G_GAN: 0.320 G_GAN_Feat: 0.647 G_ID: 0.142 G_Rec: 0.306 D_GP: 0.024 D_real: 1.228 D_fake: 0.681 +(epoch: 248, iters: 7024, time: 0.064) G_GAN: 0.502 G_GAN_Feat: 0.875 G_ID: 0.172 G_Rec: 0.377 D_GP: 0.025 D_real: 1.109 D_fake: 0.517 +(epoch: 248, iters: 7424, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 0.829 G_ID: 0.133 G_Rec: 0.308 D_GP: 0.034 D_real: 0.841 D_fake: 0.785 +(epoch: 248, iters: 7824, time: 0.064) G_GAN: 0.613 G_GAN_Feat: 0.946 G_ID: 0.162 G_Rec: 0.388 D_GP: 0.034 D_real: 1.143 D_fake: 0.409 +(epoch: 248, iters: 8224, time: 0.064) G_GAN: -0.272 G_GAN_Feat: 0.981 G_ID: 0.135 G_Rec: 0.338 D_GP: 0.176 D_real: 0.135 D_fake: 1.272 +(epoch: 249, iters: 16, time: 0.064) G_GAN: 0.546 G_GAN_Feat: 0.888 G_ID: 0.175 G_Rec: 0.448 D_GP: 0.026 D_real: 1.283 D_fake: 0.463 +(epoch: 249, iters: 416, time: 0.064) G_GAN: 0.200 G_GAN_Feat: 0.651 G_ID: 0.116 G_Rec: 0.374 D_GP: 0.071 D_real: 1.020 D_fake: 0.801 +(epoch: 249, iters: 816, time: 0.064) G_GAN: 0.519 G_GAN_Feat: 0.793 G_ID: 0.143 G_Rec: 0.391 D_GP: 0.022 D_real: 1.195 D_fake: 0.488 +(epoch: 249, iters: 1216, time: 0.064) G_GAN: 0.223 G_GAN_Feat: 0.632 G_ID: 0.104 G_Rec: 0.289 D_GP: 0.023 D_real: 1.113 D_fake: 0.777 +(epoch: 249, iters: 1616, time: 0.064) G_GAN: 0.288 G_GAN_Feat: 0.827 G_ID: 0.161 G_Rec: 0.358 D_GP: 0.044 D_real: 1.003 D_fake: 0.712 +(epoch: 249, iters: 2016, time: 0.064) G_GAN: 0.215 G_GAN_Feat: 0.635 G_ID: 0.149 G_Rec: 0.296 D_GP: 0.022 D_real: 1.173 D_fake: 0.785 +(epoch: 249, iters: 2416, time: 0.064) G_GAN: 0.155 G_GAN_Feat: 0.706 G_ID: 0.171 G_Rec: 0.367 D_GP: 0.018 D_real: 1.122 D_fake: 0.846 +(epoch: 249, iters: 2816, time: 0.064) G_GAN: 0.199 G_GAN_Feat: 0.568 G_ID: 0.126 G_Rec: 0.317 D_GP: 0.021 D_real: 1.181 D_fake: 0.801 +(epoch: 249, iters: 3216, time: 0.064) G_GAN: 0.316 G_GAN_Feat: 0.725 G_ID: 0.162 G_Rec: 0.367 D_GP: 0.019 D_real: 1.098 D_fake: 0.686 +(epoch: 249, iters: 3616, time: 0.064) G_GAN: 0.099 G_GAN_Feat: 0.561 G_ID: 0.148 G_Rec: 0.259 D_GP: 0.029 D_real: 1.006 D_fake: 0.901 +(epoch: 249, iters: 4016, time: 0.064) G_GAN: 0.516 G_GAN_Feat: 0.741 G_ID: 0.164 G_Rec: 0.365 D_GP: 0.021 D_real: 1.301 D_fake: 0.491 +(epoch: 249, iters: 4416, time: 0.064) G_GAN: -0.059 G_GAN_Feat: 0.562 G_ID: 0.143 G_Rec: 0.321 D_GP: 0.022 D_real: 0.850 D_fake: 1.059 +(epoch: 249, iters: 4816, time: 0.064) G_GAN: 0.365 G_GAN_Feat: 0.792 G_ID: 0.143 G_Rec: 0.387 D_GP: 0.024 D_real: 1.122 D_fake: 0.637 +(epoch: 249, iters: 5216, time: 0.064) G_GAN: 0.243 G_GAN_Feat: 0.648 G_ID: 0.156 G_Rec: 0.289 D_GP: 0.024 D_real: 1.206 D_fake: 0.757 +(epoch: 249, iters: 5616, time: 0.064) G_GAN: 0.425 G_GAN_Feat: 0.835 G_ID: 0.159 G_Rec: 0.398 D_GP: 0.024 D_real: 1.162 D_fake: 0.578 +(epoch: 249, iters: 6016, time: 0.064) G_GAN: 0.136 G_GAN_Feat: 0.719 G_ID: 0.136 G_Rec: 0.306 D_GP: 0.052 D_real: 0.858 D_fake: 0.867 +(epoch: 249, iters: 6416, time: 0.064) G_GAN: 0.493 G_GAN_Feat: 0.878 G_ID: 0.196 G_Rec: 0.414 D_GP: 0.025 D_real: 1.266 D_fake: 0.511 +(epoch: 249, iters: 6816, time: 0.064) G_GAN: 0.292 G_GAN_Feat: 0.752 G_ID: 0.134 G_Rec: 0.340 D_GP: 0.054 D_real: 0.975 D_fake: 0.710 +(epoch: 249, iters: 7216, time: 0.064) G_GAN: 0.841 G_GAN_Feat: 0.894 G_ID: 0.236 G_Rec: 0.450 D_GP: 0.035 D_real: 1.402 D_fake: 0.276 +(epoch: 249, iters: 7616, time: 0.064) G_GAN: 0.156 G_GAN_Feat: 0.711 G_ID: 0.120 G_Rec: 0.325 D_GP: 0.039 D_real: 0.899 D_fake: 0.844 +(epoch: 249, iters: 8016, time: 0.064) G_GAN: 0.236 G_GAN_Feat: 0.865 G_ID: 0.189 G_Rec: 0.392 D_GP: 0.028 D_real: 0.954 D_fake: 0.764 +(epoch: 249, iters: 8416, time: 0.064) G_GAN: 0.110 G_GAN_Feat: 0.820 G_ID: 0.140 G_Rec: 0.302 D_GP: 0.084 D_real: 0.597 D_fake: 0.894 +(epoch: 250, iters: 208, time: 0.064) G_GAN: 0.271 G_GAN_Feat: 0.926 G_ID: 0.163 G_Rec: 0.362 D_GP: 0.063 D_real: 0.723 D_fake: 0.730 +(epoch: 250, iters: 608, time: 0.064) G_GAN: 0.092 G_GAN_Feat: 0.612 G_ID: 0.150 G_Rec: 0.288 D_GP: 0.019 D_real: 1.068 D_fake: 0.908 +(epoch: 250, iters: 1008, time: 0.064) G_GAN: 0.257 G_GAN_Feat: 0.808 G_ID: 0.177 G_Rec: 0.382 D_GP: 0.033 D_real: 0.971 D_fake: 0.746 +(epoch: 250, iters: 1408, time: 0.064) G_GAN: 0.090 G_GAN_Feat: 0.691 G_ID: 0.121 G_Rec: 0.304 D_GP: 0.041 D_real: 0.967 D_fake: 0.910 +(epoch: 250, iters: 1808, time: 0.064) G_GAN: 0.461 G_GAN_Feat: 0.949 G_ID: 0.173 G_Rec: 0.476 D_GP: 0.031 D_real: 1.224 D_fake: 0.550 +(epoch: 250, iters: 2208, time: 0.064) G_GAN: 0.125 G_GAN_Feat: 0.710 G_ID: 0.123 G_Rec: 0.296 D_GP: 0.028 D_real: 1.008 D_fake: 0.875 +(epoch: 250, iters: 2608, time: 0.064) G_GAN: 0.543 G_GAN_Feat: 0.763 G_ID: 0.146 G_Rec: 0.340 D_GP: 0.021 D_real: 1.310 D_fake: 0.470 +(epoch: 250, iters: 3008, time: 0.064) G_GAN: 0.302 G_GAN_Feat: 0.603 G_ID: 0.126 G_Rec: 0.260 D_GP: 0.022 D_real: 1.252 D_fake: 0.702 +(epoch: 250, iters: 3408, time: 0.064) G_GAN: 0.122 G_GAN_Feat: 0.939 G_ID: 0.194 G_Rec: 0.394 D_GP: 0.029 D_real: 0.774 D_fake: 0.878 +(epoch: 250, iters: 3808, time: 0.064) G_GAN: 0.192 G_GAN_Feat: 0.711 G_ID: 0.126 G_Rec: 0.310 D_GP: 0.033 D_real: 0.957 D_fake: 0.808 +(epoch: 250, iters: 4208, time: 0.064) G_GAN: 0.342 G_GAN_Feat: 0.788 G_ID: 0.179 G_Rec: 0.341 D_GP: 0.028 D_real: 1.112 D_fake: 0.661 +(epoch: 250, iters: 4608, time: 0.064) G_GAN: 0.282 G_GAN_Feat: 0.785 G_ID: 0.125 G_Rec: 0.313 D_GP: 0.044 D_real: 0.881 D_fake: 0.718 +(epoch: 250, iters: 5008, time: 0.064) G_GAN: 0.474 G_GAN_Feat: 0.888 G_ID: 0.203 G_Rec: 0.422 D_GP: 0.029 D_real: 1.167 D_fake: 0.542 +(epoch: 250, iters: 5408, time: 0.064) G_GAN: 0.538 G_GAN_Feat: 1.047 G_ID: 0.138 G_Rec: 0.352 D_GP: 0.948 D_real: 0.578 D_fake: 0.568 +(epoch: 250, iters: 5808, time: 0.064) G_GAN: 0.447 G_GAN_Feat: 0.826 G_ID: 0.178 G_Rec: 0.369 D_GP: 0.027 D_real: 1.170 D_fake: 0.555 +(epoch: 250, iters: 6208, time: 0.064) G_GAN: 0.314 G_GAN_Feat: 0.656 G_ID: 0.132 G_Rec: 0.291 D_GP: 0.027 D_real: 1.212 D_fake: 0.686 +(epoch: 250, iters: 6608, time: 0.064) G_GAN: 0.701 G_GAN_Feat: 0.881 G_ID: 0.156 G_Rec: 0.441 D_GP: 0.029 D_real: 1.397 D_fake: 0.315 +(epoch: 250, iters: 7008, time: 0.064) G_GAN: 0.083 G_GAN_Feat: 0.569 G_ID: 0.130 G_Rec: 0.287 D_GP: 0.018 D_real: 1.049 D_fake: 0.918 +(epoch: 250, iters: 7408, time: 0.064) G_GAN: 0.156 G_GAN_Feat: 0.877 G_ID: 0.139 G_Rec: 0.462 D_GP: 0.032 D_real: 0.743 D_fake: 0.844 +(epoch: 250, iters: 7808, time: 0.064) G_GAN: -0.004 G_GAN_Feat: 0.680 G_ID: 0.153 G_Rec: 0.326 D_GP: 0.027 D_real: 0.847 D_fake: 1.004 +(epoch: 250, iters: 8208, time: 0.064) G_GAN: 0.293 G_GAN_Feat: 0.867 G_ID: 0.211 G_Rec: 0.397 D_GP: 0.025 D_real: 0.913 D_fake: 0.712 +(epoch: 250, iters: 8608, time: 0.064) G_GAN: 0.237 G_GAN_Feat: 0.728 G_ID: 0.144 G_Rec: 0.294 D_GP: 0.037 D_real: 1.070 D_fake: 0.763 +(epoch: 251, iters: 400, time: 0.064) G_GAN: 0.701 G_GAN_Feat: 0.823 G_ID: 0.168 G_Rec: 0.358 D_GP: 0.024 D_real: 1.507 D_fake: 0.319 +(epoch: 251, iters: 800, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.560 G_ID: 0.137 G_Rec: 0.289 D_GP: 0.019 D_real: 1.241 D_fake: 0.745 +(epoch: 251, iters: 1200, time: 0.064) G_GAN: 0.559 G_GAN_Feat: 0.883 G_ID: 0.143 G_Rec: 0.415 D_GP: 0.031 D_real: 1.199 D_fake: 0.452 +(epoch: 251, iters: 1600, time: 0.064) G_GAN: 0.082 G_GAN_Feat: 0.586 G_ID: 0.123 G_Rec: 0.286 D_GP: 0.022 D_real: 1.041 D_fake: 0.918 +(epoch: 251, iters: 2000, time: 0.064) G_GAN: 0.465 G_GAN_Feat: 0.895 G_ID: 0.169 G_Rec: 0.401 D_GP: 0.030 D_real: 1.086 D_fake: 0.543 +(epoch: 251, iters: 2400, time: 0.064) G_GAN: 0.287 G_GAN_Feat: 0.705 G_ID: 0.120 G_Rec: 0.323 D_GP: 0.033 D_real: 1.065 D_fake: 0.714 +(epoch: 251, iters: 2800, time: 0.064) G_GAN: 0.136 G_GAN_Feat: 0.928 G_ID: 0.165 G_Rec: 0.401 D_GP: 0.176 D_real: 0.709 D_fake: 0.864 +(epoch: 251, iters: 3200, time: 0.064) G_GAN: 0.258 G_GAN_Feat: 0.751 G_ID: 0.120 G_Rec: 0.303 D_GP: 0.036 D_real: 0.965 D_fake: 0.742 +(epoch: 251, iters: 3600, time: 0.064) G_GAN: 0.376 G_GAN_Feat: 0.866 G_ID: 0.161 G_Rec: 0.404 D_GP: 0.025 D_real: 1.068 D_fake: 0.625 +(epoch: 251, iters: 4000, time: 0.064) G_GAN: 0.114 G_GAN_Feat: 0.797 G_ID: 0.128 G_Rec: 0.335 D_GP: 0.295 D_real: 0.631 D_fake: 0.887 +(epoch: 251, iters: 4400, time: 0.064) G_GAN: 0.392 G_GAN_Feat: 0.835 G_ID: 0.170 G_Rec: 0.378 D_GP: 0.030 D_real: 1.072 D_fake: 0.609 +(epoch: 251, iters: 4800, time: 0.064) G_GAN: 0.120 G_GAN_Feat: 0.696 G_ID: 0.130 G_Rec: 0.289 D_GP: 0.030 D_real: 0.952 D_fake: 0.880 +(epoch: 251, iters: 5200, time: 0.064) G_GAN: 0.750 G_GAN_Feat: 0.782 G_ID: 0.155 G_Rec: 0.347 D_GP: 0.022 D_real: 1.556 D_fake: 0.348 +(epoch: 251, iters: 5600, time: 0.064) G_GAN: 0.344 G_GAN_Feat: 0.680 G_ID: 0.140 G_Rec: 0.281 D_GP: 0.022 D_real: 1.230 D_fake: 0.656 +(epoch: 251, iters: 6000, time: 0.064) G_GAN: 0.299 G_GAN_Feat: 0.955 G_ID: 0.184 G_Rec: 0.387 D_GP: 0.027 D_real: 0.717 D_fake: 0.702 +(epoch: 251, iters: 6400, time: 0.064) G_GAN: 0.063 G_GAN_Feat: 0.775 G_ID: 0.147 G_Rec: 0.325 D_GP: 0.070 D_real: 0.826 D_fake: 0.937 +(epoch: 251, iters: 6800, time: 0.064) G_GAN: -0.008 G_GAN_Feat: 1.032 G_ID: 0.201 G_Rec: 0.402 D_GP: 0.378 D_real: 0.406 D_fake: 1.008 +(epoch: 251, iters: 7200, time: 0.064) G_GAN: 0.162 G_GAN_Feat: 0.696 G_ID: 0.150 G_Rec: 0.297 D_GP: 0.030 D_real: 1.046 D_fake: 0.838 +(epoch: 251, iters: 7600, time: 0.064) G_GAN: 0.578 G_GAN_Feat: 0.862 G_ID: 0.199 G_Rec: 0.412 D_GP: 0.025 D_real: 1.177 D_fake: 0.430 +(epoch: 251, iters: 8000, time: 0.064) G_GAN: 0.315 G_GAN_Feat: 0.646 G_ID: 0.132 G_Rec: 0.281 D_GP: 0.022 D_real: 1.250 D_fake: 0.685 +(epoch: 251, iters: 8400, time: 0.064) G_GAN: 0.352 G_GAN_Feat: 0.975 G_ID: 0.199 G_Rec: 0.418 D_GP: 0.118 D_real: 0.709 D_fake: 0.650 +(epoch: 252, iters: 192, time: 0.064) G_GAN: 0.246 G_GAN_Feat: 0.687 G_ID: 0.136 G_Rec: 0.284 D_GP: 0.025 D_real: 1.072 D_fake: 0.755 +(epoch: 252, iters: 592, time: 0.064) G_GAN: 0.513 G_GAN_Feat: 0.834 G_ID: 0.157 G_Rec: 0.387 D_GP: 0.022 D_real: 1.297 D_fake: 0.491 +(epoch: 252, iters: 992, time: 0.064) G_GAN: 0.171 G_GAN_Feat: 0.670 G_ID: 0.124 G_Rec: 0.251 D_GP: 0.026 D_real: 1.064 D_fake: 0.830 +(epoch: 252, iters: 1392, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.782 G_ID: 0.176 G_Rec: 0.361 D_GP: 0.024 D_real: 1.070 D_fake: 0.724 +(epoch: 252, iters: 1792, time: 0.064) G_GAN: 0.100 G_GAN_Feat: 0.603 G_ID: 0.155 G_Rec: 0.254 D_GP: 0.028 D_real: 1.020 D_fake: 0.900 +(epoch: 252, iters: 2192, time: 0.064) G_GAN: 0.578 G_GAN_Feat: 0.981 G_ID: 0.155 G_Rec: 0.418 D_GP: 0.042 D_real: 0.917 D_fake: 0.430 +(epoch: 252, iters: 2592, time: 0.064) G_GAN: -0.129 G_GAN_Feat: 0.894 G_ID: 0.132 G_Rec: 0.348 D_GP: 1.274 D_real: 0.261 D_fake: 1.129 +(epoch: 252, iters: 2992, time: 0.064) G_GAN: 0.387 G_GAN_Feat: 0.842 G_ID: 0.180 G_Rec: 0.371 D_GP: 0.030 D_real: 1.075 D_fake: 0.618 +(epoch: 252, iters: 3392, time: 0.064) G_GAN: 0.418 G_GAN_Feat: 0.706 G_ID: 0.126 G_Rec: 0.299 D_GP: 0.020 D_real: 1.357 D_fake: 0.583 +(epoch: 252, iters: 3792, time: 0.064) G_GAN: 0.410 G_GAN_Feat: 1.019 G_ID: 0.171 G_Rec: 0.438 D_GP: 0.056 D_real: 0.731 D_fake: 0.592 +(epoch: 252, iters: 4192, time: 0.064) G_GAN: 0.291 G_GAN_Feat: 0.896 G_ID: 0.113 G_Rec: 0.298 D_GP: 0.037 D_real: 0.733 D_fake: 0.711 +(epoch: 252, iters: 4592, time: 0.064) G_GAN: 0.411 G_GAN_Feat: 0.934 G_ID: 0.159 G_Rec: 0.384 D_GP: 0.023 D_real: 1.040 D_fake: 0.589 +(epoch: 252, iters: 4992, time: 0.064) G_GAN: -0.270 G_GAN_Feat: 0.900 G_ID: 0.124 G_Rec: 0.360 D_GP: 0.214 D_real: 0.575 D_fake: 1.270 +(epoch: 252, iters: 5392, time: 0.064) G_GAN: 0.344 G_GAN_Feat: 0.876 G_ID: 0.176 G_Rec: 0.384 D_GP: 0.047 D_real: 0.913 D_fake: 0.660 +(epoch: 252, iters: 5792, time: 0.064) G_GAN: 0.382 G_GAN_Feat: 0.905 G_ID: 0.142 G_Rec: 0.330 D_GP: 0.174 D_real: 0.712 D_fake: 0.627 +(epoch: 252, iters: 6192, time: 0.064) G_GAN: 0.605 G_GAN_Feat: 1.006 G_ID: 0.173 G_Rec: 0.407 D_GP: 0.031 D_real: 0.970 D_fake: 0.405 +(epoch: 252, iters: 6592, time: 0.064) G_GAN: 0.151 G_GAN_Feat: 0.696 G_ID: 0.123 G_Rec: 0.297 D_GP: 0.024 D_real: 1.104 D_fake: 0.849 +(epoch: 252, iters: 6992, time: 0.064) G_GAN: 0.486 G_GAN_Feat: 1.005 G_ID: 0.162 G_Rec: 0.421 D_GP: 0.078 D_real: 1.027 D_fake: 0.533 +(epoch: 252, iters: 7392, time: 0.064) G_GAN: 0.347 G_GAN_Feat: 0.994 G_ID: 0.139 G_Rec: 0.342 D_GP: 1.859 D_real: 0.348 D_fake: 0.718 +(epoch: 252, iters: 7792, time: 0.064) G_GAN: 0.640 G_GAN_Feat: 0.752 G_ID: 0.161 G_Rec: 0.346 D_GP: 0.023 D_real: 1.411 D_fake: 0.425 +(epoch: 252, iters: 8192, time: 0.064) G_GAN: 0.039 G_GAN_Feat: 0.658 G_ID: 0.113 G_Rec: 0.319 D_GP: 0.026 D_real: 0.901 D_fake: 0.961 +(epoch: 252, iters: 8592, time: 0.064) G_GAN: 0.177 G_GAN_Feat: 1.051 G_ID: 0.178 G_Rec: 0.452 D_GP: 0.072 D_real: 0.979 D_fake: 0.826 +(epoch: 253, iters: 384, time: 0.064) G_GAN: 0.177 G_GAN_Feat: 0.665 G_ID: 0.134 G_Rec: 0.326 D_GP: 0.045 D_real: 1.004 D_fake: 0.823 +(epoch: 253, iters: 784, time: 0.064) G_GAN: 0.487 G_GAN_Feat: 0.953 G_ID: 0.149 G_Rec: 0.381 D_GP: 0.038 D_real: 0.968 D_fake: 0.517 +(epoch: 253, iters: 1184, time: 0.064) G_GAN: 0.169 G_GAN_Feat: 0.676 G_ID: 0.118 G_Rec: 0.285 D_GP: 0.019 D_real: 1.128 D_fake: 0.831 +(epoch: 253, iters: 1584, time: 0.064) G_GAN: 0.669 G_GAN_Feat: 0.953 G_ID: 0.148 G_Rec: 0.419 D_GP: 0.029 D_real: 1.156 D_fake: 0.375 +(epoch: 253, iters: 1984, time: 0.064) G_GAN: 0.359 G_GAN_Feat: 0.829 G_ID: 0.120 G_Rec: 0.358 D_GP: 0.038 D_real: 1.042 D_fake: 0.675 +(epoch: 253, iters: 2384, time: 0.064) G_GAN: 0.419 G_GAN_Feat: 1.011 G_ID: 0.144 G_Rec: 0.422 D_GP: 0.022 D_real: 0.963 D_fake: 0.582 +(epoch: 253, iters: 2784, time: 0.064) G_GAN: -0.106 G_GAN_Feat: 0.732 G_ID: 0.145 G_Rec: 0.287 D_GP: 0.027 D_real: 0.689 D_fake: 1.106 +(epoch: 253, iters: 3184, time: 0.064) G_GAN: 0.267 G_GAN_Feat: 0.849 G_ID: 0.180 G_Rec: 0.409 D_GP: 0.022 D_real: 1.034 D_fake: 0.736 +(epoch: 253, iters: 3584, time: 0.064) G_GAN: -0.003 G_GAN_Feat: 0.740 G_ID: 0.130 G_Rec: 0.319 D_GP: 0.032 D_real: 0.780 D_fake: 1.004 +(epoch: 253, iters: 3984, time: 0.064) G_GAN: 0.708 G_GAN_Feat: 0.823 G_ID: 0.164 G_Rec: 0.369 D_GP: 0.021 D_real: 1.509 D_fake: 0.312 +(epoch: 253, iters: 4384, time: 0.064) G_GAN: 0.299 G_GAN_Feat: 0.644 G_ID: 0.130 G_Rec: 0.308 D_GP: 0.022 D_real: 1.219 D_fake: 0.702 +(epoch: 253, iters: 4784, time: 0.064) G_GAN: 0.069 G_GAN_Feat: 0.972 G_ID: 0.155 G_Rec: 0.415 D_GP: 0.084 D_real: 0.697 D_fake: 0.932 +(epoch: 253, iters: 5184, time: 0.064) G_GAN: 0.425 G_GAN_Feat: 0.891 G_ID: 0.141 G_Rec: 0.337 D_GP: 0.105 D_real: 1.200 D_fake: 0.657 +(epoch: 253, iters: 5584, time: 0.064) G_GAN: 0.556 G_GAN_Feat: 0.963 G_ID: 0.184 G_Rec: 0.416 D_GP: 0.046 D_real: 0.880 D_fake: 0.455 +(epoch: 253, iters: 5984, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 0.747 G_ID: 0.132 G_Rec: 0.302 D_GP: 0.021 D_real: 1.131 D_fake: 0.807 +(epoch: 253, iters: 6384, time: 0.064) G_GAN: 0.178 G_GAN_Feat: 0.765 G_ID: 0.145 G_Rec: 0.347 D_GP: 0.022 D_real: 1.061 D_fake: 0.823 +(epoch: 253, iters: 6784, time: 0.064) G_GAN: 0.324 G_GAN_Feat: 0.834 G_ID: 0.127 G_Rec: 0.324 D_GP: 0.045 D_real: 1.059 D_fake: 0.687 +(epoch: 253, iters: 7184, time: 0.064) G_GAN: 0.168 G_GAN_Feat: 0.875 G_ID: 0.161 G_Rec: 0.400 D_GP: 0.046 D_real: 0.741 D_fake: 0.832 +(epoch: 253, iters: 7584, time: 0.064) G_GAN: 0.244 G_GAN_Feat: 0.665 G_ID: 0.130 G_Rec: 0.317 D_GP: 0.023 D_real: 1.164 D_fake: 0.756 +(epoch: 253, iters: 7984, time: 0.064) G_GAN: 0.314 G_GAN_Feat: 0.873 G_ID: 0.165 G_Rec: 0.441 D_GP: 0.024 D_real: 1.042 D_fake: 0.688 +(epoch: 253, iters: 8384, time: 0.064) G_GAN: 0.223 G_GAN_Feat: 0.724 G_ID: 0.116 G_Rec: 0.306 D_GP: 0.039 D_real: 0.925 D_fake: 0.777 +(epoch: 254, iters: 176, time: 0.064) G_GAN: 0.314 G_GAN_Feat: 0.980 G_ID: 0.180 G_Rec: 0.387 D_GP: 0.035 D_real: 0.634 D_fake: 0.688 +(epoch: 254, iters: 576, time: 0.064) G_GAN: 0.316 G_GAN_Feat: 0.756 G_ID: 0.139 G_Rec: 0.311 D_GP: 0.030 D_real: 0.992 D_fake: 0.687 +(epoch: 254, iters: 976, time: 0.064) G_GAN: 0.490 G_GAN_Feat: 0.866 G_ID: 0.180 G_Rec: 0.332 D_GP: 0.027 D_real: 1.280 D_fake: 0.515 +(epoch: 254, iters: 1376, time: 0.064) G_GAN: 0.524 G_GAN_Feat: 0.729 G_ID: 0.117 G_Rec: 0.305 D_GP: 0.036 D_real: 1.297 D_fake: 0.485 +(epoch: 254, iters: 1776, time: 0.064) G_GAN: 0.540 G_GAN_Feat: 0.801 G_ID: 0.195 G_Rec: 0.386 D_GP: 0.019 D_real: 1.445 D_fake: 0.480 +(epoch: 254, iters: 2176, time: 0.064) G_GAN: 0.231 G_GAN_Feat: 0.772 G_ID: 0.160 G_Rec: 0.333 D_GP: 0.039 D_real: 1.009 D_fake: 0.769 +(epoch: 254, iters: 2576, time: 0.064) G_GAN: 0.262 G_GAN_Feat: 0.821 G_ID: 0.150 G_Rec: 0.381 D_GP: 0.021 D_real: 1.024 D_fake: 0.739 +(epoch: 254, iters: 2976, time: 0.064) G_GAN: 0.259 G_GAN_Feat: 0.831 G_ID: 0.136 G_Rec: 0.332 D_GP: 0.074 D_real: 0.586 D_fake: 0.743 +(epoch: 254, iters: 3376, time: 0.064) G_GAN: 0.508 G_GAN_Feat: 0.909 G_ID: 0.169 G_Rec: 0.409 D_GP: 0.032 D_real: 1.176 D_fake: 0.497 +(epoch: 254, iters: 3776, time: 0.064) G_GAN: 0.041 G_GAN_Feat: 0.895 G_ID: 0.126 G_Rec: 0.315 D_GP: 0.125 D_real: 0.434 D_fake: 0.959 +(epoch: 254, iters: 4176, time: 0.064) G_GAN: 0.877 G_GAN_Feat: 1.115 G_ID: 0.180 G_Rec: 0.425 D_GP: 0.098 D_real: 1.177 D_fake: 0.408 +(epoch: 254, iters: 4576, time: 0.064) G_GAN: 0.233 G_GAN_Feat: 0.701 G_ID: 0.128 G_Rec: 0.300 D_GP: 0.031 D_real: 1.119 D_fake: 0.768 +(epoch: 254, iters: 4976, time: 0.064) G_GAN: 0.474 G_GAN_Feat: 0.810 G_ID: 0.174 G_Rec: 0.407 D_GP: 0.020 D_real: 1.239 D_fake: 0.530 +(epoch: 254, iters: 5376, time: 0.064) G_GAN: 0.271 G_GAN_Feat: 0.621 G_ID: 0.119 G_Rec: 0.294 D_GP: 0.024 D_real: 1.268 D_fake: 0.729 +(epoch: 254, iters: 5776, time: 0.064) G_GAN: 0.773 G_GAN_Feat: 1.024 G_ID: 0.177 G_Rec: 0.438 D_GP: 0.046 D_real: 1.067 D_fake: 0.368 +(epoch: 254, iters: 6176, time: 0.064) G_GAN: 0.247 G_GAN_Feat: 0.684 G_ID: 0.138 G_Rec: 0.344 D_GP: 0.018 D_real: 1.153 D_fake: 0.754 +(epoch: 254, iters: 6576, time: 0.064) G_GAN: 0.539 G_GAN_Feat: 0.784 G_ID: 0.146 G_Rec: 0.370 D_GP: 0.023 D_real: 1.307 D_fake: 0.464 +(epoch: 254, iters: 6976, time: 0.064) G_GAN: 0.231 G_GAN_Feat: 0.590 G_ID: 0.141 G_Rec: 0.340 D_GP: 0.020 D_real: 1.228 D_fake: 0.769 +(epoch: 254, iters: 7376, time: 0.064) G_GAN: 0.457 G_GAN_Feat: 0.793 G_ID: 0.168 G_Rec: 0.387 D_GP: 0.027 D_real: 1.169 D_fake: 0.546 +(epoch: 254, iters: 7776, time: 0.064) G_GAN: 0.269 G_GAN_Feat: 0.601 G_ID: 0.113 G_Rec: 0.289 D_GP: 0.024 D_real: 1.148 D_fake: 0.731 +(epoch: 254, iters: 8176, time: 0.064) G_GAN: 0.481 G_GAN_Feat: 0.815 G_ID: 0.162 G_Rec: 0.422 D_GP: 0.029 D_real: 1.164 D_fake: 0.527 +(epoch: 254, iters: 8576, time: 0.064) G_GAN: 0.195 G_GAN_Feat: 0.736 G_ID: 0.127 G_Rec: 0.306 D_GP: 0.026 D_real: 1.053 D_fake: 0.805 +(epoch: 255, iters: 368, time: 0.064) G_GAN: 0.360 G_GAN_Feat: 0.873 G_ID: 0.159 G_Rec: 0.364 D_GP: 0.029 D_real: 0.874 D_fake: 0.640 +(epoch: 255, iters: 768, time: 0.064) G_GAN: 0.027 G_GAN_Feat: 0.662 G_ID: 0.170 G_Rec: 0.283 D_GP: 0.038 D_real: 0.812 D_fake: 0.974 +(epoch: 255, iters: 1168, time: 0.064) G_GAN: 0.348 G_GAN_Feat: 0.924 G_ID: 0.186 G_Rec: 0.393 D_GP: 0.068 D_real: 0.858 D_fake: 0.657 +(epoch: 255, iters: 1568, time: 0.064) G_GAN: 0.060 G_GAN_Feat: 0.751 G_ID: 0.123 G_Rec: 0.306 D_GP: 0.071 D_real: 0.651 D_fake: 0.941 +(epoch: 255, iters: 1968, time: 0.064) G_GAN: 0.300 G_GAN_Feat: 0.905 G_ID: 0.179 G_Rec: 0.366 D_GP: 0.053 D_real: 0.744 D_fake: 0.700 +(epoch: 255, iters: 2368, time: 0.064) G_GAN: 0.454 G_GAN_Feat: 0.714 G_ID: 0.120 G_Rec: 0.300 D_GP: 0.028 D_real: 1.241 D_fake: 0.547 +(epoch: 255, iters: 2768, time: 0.064) G_GAN: 0.742 G_GAN_Feat: 1.026 G_ID: 0.193 G_Rec: 0.520 D_GP: 0.081 D_real: 1.132 D_fake: 0.512 +(epoch: 255, iters: 3168, time: 0.064) G_GAN: 0.076 G_GAN_Feat: 0.638 G_ID: 0.148 G_Rec: 0.276 D_GP: 0.021 D_real: 0.994 D_fake: 0.924 +(epoch: 255, iters: 3568, time: 0.064) G_GAN: 0.437 G_GAN_Feat: 0.865 G_ID: 0.168 G_Rec: 0.394 D_GP: 0.022 D_real: 1.102 D_fake: 0.566 +(epoch: 255, iters: 3968, time: 0.064) G_GAN: 0.085 G_GAN_Feat: 0.642 G_ID: 0.170 G_Rec: 0.272 D_GP: 0.021 D_real: 1.055 D_fake: 0.915 +(epoch: 255, iters: 4368, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.998 G_ID: 0.182 G_Rec: 0.439 D_GP: 0.081 D_real: 0.579 D_fake: 0.745 +(epoch: 255, iters: 4768, time: 0.064) G_GAN: 0.075 G_GAN_Feat: 0.612 G_ID: 0.132 G_Rec: 0.271 D_GP: 0.023 D_real: 1.116 D_fake: 0.925 +(epoch: 255, iters: 5168, time: 0.064) G_GAN: 0.198 G_GAN_Feat: 0.938 G_ID: 0.166 G_Rec: 0.427 D_GP: 0.046 D_real: 0.736 D_fake: 0.805 +(epoch: 255, iters: 5568, time: 0.064) G_GAN: 0.102 G_GAN_Feat: 0.692 G_ID: 0.117 G_Rec: 0.282 D_GP: 0.038 D_real: 0.896 D_fake: 0.898 +(epoch: 255, iters: 5968, time: 0.064) G_GAN: 0.619 G_GAN_Feat: 0.904 G_ID: 0.197 G_Rec: 0.378 D_GP: 0.026 D_real: 1.283 D_fake: 0.390 +(epoch: 255, iters: 6368, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.748 G_ID: 0.157 G_Rec: 0.294 D_GP: 0.033 D_real: 1.039 D_fake: 0.751 +(epoch: 255, iters: 6768, time: 0.064) G_GAN: 0.616 G_GAN_Feat: 0.956 G_ID: 0.176 G_Rec: 0.386 D_GP: 0.025 D_real: 1.307 D_fake: 0.387 +(epoch: 255, iters: 7168, time: 0.064) G_GAN: 0.101 G_GAN_Feat: 0.959 G_ID: 0.106 G_Rec: 0.350 D_GP: 0.049 D_real: 0.576 D_fake: 0.900 +(epoch: 255, iters: 7568, time: 0.064) G_GAN: 0.455 G_GAN_Feat: 0.973 G_ID: 0.151 G_Rec: 0.413 D_GP: 0.033 D_real: 1.086 D_fake: 0.547 +(epoch: 255, iters: 7968, time: 0.064) G_GAN: 0.232 G_GAN_Feat: 0.940 G_ID: 0.131 G_Rec: 0.304 D_GP: 0.188 D_real: 0.388 D_fake: 0.768 +(epoch: 255, iters: 8368, time: 0.064) G_GAN: 0.638 G_GAN_Feat: 0.841 G_ID: 0.175 G_Rec: 0.402 D_GP: 0.022 D_real: 1.380 D_fake: 0.388 +(epoch: 256, iters: 160, time: 0.064) G_GAN: 0.198 G_GAN_Feat: 0.924 G_ID: 0.137 G_Rec: 0.323 D_GP: 0.034 D_real: 0.539 D_fake: 0.803 +(epoch: 256, iters: 560, time: 0.064) G_GAN: 0.530 G_GAN_Feat: 0.837 G_ID: 0.155 G_Rec: 0.408 D_GP: 0.033 D_real: 1.351 D_fake: 0.499 +(epoch: 256, iters: 960, time: 0.064) G_GAN: 0.012 G_GAN_Feat: 0.561 G_ID: 0.125 G_Rec: 0.288 D_GP: 0.018 D_real: 0.976 D_fake: 0.988 +(epoch: 256, iters: 1360, time: 0.064) G_GAN: 0.215 G_GAN_Feat: 0.717 G_ID: 0.169 G_Rec: 0.383 D_GP: 0.021 D_real: 1.057 D_fake: 0.788 +(epoch: 256, iters: 1760, time: 0.064) G_GAN: 0.070 G_GAN_Feat: 0.603 G_ID: 0.144 G_Rec: 0.347 D_GP: 0.018 D_real: 1.017 D_fake: 0.930 +(epoch: 256, iters: 2160, time: 0.064) G_GAN: 0.178 G_GAN_Feat: 0.853 G_ID: 0.147 G_Rec: 0.435 D_GP: 0.039 D_real: 0.944 D_fake: 0.822 +(epoch: 256, iters: 2560, time: 0.064) G_GAN: 0.027 G_GAN_Feat: 0.653 G_ID: 0.138 G_Rec: 0.315 D_GP: 0.032 D_real: 0.856 D_fake: 0.973 +(epoch: 256, iters: 2960, time: 0.064) G_GAN: 0.241 G_GAN_Feat: 0.743 G_ID: 0.167 G_Rec: 0.346 D_GP: 0.026 D_real: 1.061 D_fake: 0.761 +(epoch: 256, iters: 3360, time: 0.064) G_GAN: -0.107 G_GAN_Feat: 0.659 G_ID: 0.108 G_Rec: 0.315 D_GP: 0.042 D_real: 0.711 D_fake: 1.107 +(epoch: 256, iters: 3760, time: 0.064) G_GAN: 0.154 G_GAN_Feat: 0.899 G_ID: 0.172 G_Rec: 0.434 D_GP: 0.040 D_real: 0.755 D_fake: 0.847 +(epoch: 256, iters: 4160, time: 0.064) G_GAN: 0.002 G_GAN_Feat: 0.687 G_ID: 0.121 G_Rec: 0.298 D_GP: 0.064 D_real: 0.812 D_fake: 0.998 +(epoch: 256, iters: 4560, time: 0.064) G_GAN: 0.092 G_GAN_Feat: 0.851 G_ID: 0.204 G_Rec: 0.395 D_GP: 0.034 D_real: 0.785 D_fake: 0.908 +(epoch: 256, iters: 4960, time: 0.064) G_GAN: 0.429 G_GAN_Feat: 0.605 G_ID: 0.129 G_Rec: 0.264 D_GP: 0.021 D_real: 1.341 D_fake: 0.572 +(epoch: 256, iters: 5360, time: 0.064) G_GAN: 0.429 G_GAN_Feat: 0.871 G_ID: 0.159 G_Rec: 0.359 D_GP: 0.028 D_real: 1.068 D_fake: 0.575 +(epoch: 256, iters: 5760, time: 0.064) G_GAN: 0.027 G_GAN_Feat: 0.726 G_ID: 0.130 G_Rec: 0.313 D_GP: 0.026 D_real: 0.803 D_fake: 0.973 +(epoch: 256, iters: 6160, time: 0.064) G_GAN: 0.464 G_GAN_Feat: 0.903 G_ID: 0.176 G_Rec: 0.402 D_GP: 0.040 D_real: 0.989 D_fake: 0.542 +(epoch: 256, iters: 6560, time: 0.064) G_GAN: 0.335 G_GAN_Feat: 0.615 G_ID: 0.161 G_Rec: 0.303 D_GP: 0.022 D_real: 1.309 D_fake: 0.668 +(epoch: 256, iters: 6960, time: 0.064) G_GAN: 0.444 G_GAN_Feat: 0.858 G_ID: 0.173 G_Rec: 0.397 D_GP: 0.033 D_real: 1.068 D_fake: 0.558 +(epoch: 256, iters: 7360, time: 0.064) G_GAN: 0.382 G_GAN_Feat: 0.574 G_ID: 0.140 G_Rec: 0.255 D_GP: 0.019 D_real: 1.418 D_fake: 0.654 +(epoch: 256, iters: 7760, time: 0.064) G_GAN: 0.432 G_GAN_Feat: 0.873 G_ID: 0.182 G_Rec: 0.415 D_GP: 0.028 D_real: 1.126 D_fake: 0.573 +(epoch: 256, iters: 8160, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.758 G_ID: 0.134 G_Rec: 0.318 D_GP: 0.065 D_real: 0.909 D_fake: 0.725 +(epoch: 256, iters: 8560, time: 0.064) G_GAN: 0.389 G_GAN_Feat: 0.834 G_ID: 0.167 G_Rec: 0.367 D_GP: 0.028 D_real: 1.103 D_fake: 0.614 +(epoch: 257, iters: 352, time: 0.064) G_GAN: 0.237 G_GAN_Feat: 0.684 G_ID: 0.131 G_Rec: 0.275 D_GP: 0.021 D_real: 1.125 D_fake: 0.763 +(epoch: 257, iters: 752, time: 0.064) G_GAN: 0.492 G_GAN_Feat: 0.848 G_ID: 0.158 G_Rec: 0.375 D_GP: 0.023 D_real: 1.257 D_fake: 0.511 +(epoch: 257, iters: 1152, time: 0.064) G_GAN: 0.407 G_GAN_Feat: 0.785 G_ID: 0.155 G_Rec: 0.354 D_GP: 0.043 D_real: 1.104 D_fake: 0.595 +(epoch: 257, iters: 1552, time: 0.064) G_GAN: 0.309 G_GAN_Feat: 0.999 G_ID: 0.177 G_Rec: 0.427 D_GP: 0.023 D_real: 0.785 D_fake: 0.692 +(epoch: 257, iters: 1952, time: 0.064) G_GAN: 0.265 G_GAN_Feat: 0.805 G_ID: 0.142 G_Rec: 0.297 D_GP: 0.066 D_real: 0.611 D_fake: 0.736 +(epoch: 257, iters: 2352, time: 0.064) G_GAN: 0.720 G_GAN_Feat: 1.041 G_ID: 0.157 G_Rec: 0.412 D_GP: 0.033 D_real: 1.179 D_fake: 0.351 +(epoch: 257, iters: 2752, time: 0.064) G_GAN: 0.142 G_GAN_Feat: 0.761 G_ID: 0.129 G_Rec: 0.313 D_GP: 0.037 D_real: 0.887 D_fake: 0.860 +(epoch: 257, iters: 3152, time: 0.064) G_GAN: 0.111 G_GAN_Feat: 0.789 G_ID: 0.157 G_Rec: 0.376 D_GP: 0.017 D_real: 0.963 D_fake: 0.892 +(epoch: 257, iters: 3552, time: 0.064) G_GAN: 0.148 G_GAN_Feat: 0.644 G_ID: 0.116 G_Rec: 0.284 D_GP: 0.027 D_real: 1.049 D_fake: 0.852 +(epoch: 257, iters: 3952, time: 0.064) G_GAN: 0.385 G_GAN_Feat: 0.812 G_ID: 0.177 G_Rec: 0.384 D_GP: 0.024 D_real: 1.200 D_fake: 0.615 +(epoch: 257, iters: 4352, time: 0.064) G_GAN: 0.429 G_GAN_Feat: 0.728 G_ID: 0.109 G_Rec: 0.290 D_GP: 0.033 D_real: 1.247 D_fake: 0.572 +(epoch: 257, iters: 4752, time: 0.064) G_GAN: 0.599 G_GAN_Feat: 0.846 G_ID: 0.190 G_Rec: 0.391 D_GP: 0.034 D_real: 1.251 D_fake: 0.461 +(epoch: 257, iters: 5152, time: 0.064) G_GAN: -0.062 G_GAN_Feat: 0.698 G_ID: 0.105 G_Rec: 0.296 D_GP: 0.030 D_real: 0.755 D_fake: 1.062 +(epoch: 257, iters: 5552, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 0.921 G_ID: 0.170 G_Rec: 0.413 D_GP: 0.046 D_real: 0.697 D_fake: 0.785 +(epoch: 257, iters: 5952, time: 0.064) G_GAN: -0.057 G_GAN_Feat: 0.835 G_ID: 0.132 G_Rec: 0.307 D_GP: 0.036 D_real: 1.008 D_fake: 1.060 +(epoch: 257, iters: 6352, time: 0.064) G_GAN: 0.503 G_GAN_Feat: 0.977 G_ID: 0.157 G_Rec: 0.424 D_GP: 0.039 D_real: 0.931 D_fake: 0.500 +(epoch: 257, iters: 6752, time: 0.064) G_GAN: 0.142 G_GAN_Feat: 0.646 G_ID: 0.131 G_Rec: 0.328 D_GP: 0.018 D_real: 1.129 D_fake: 0.858 +(epoch: 257, iters: 7152, time: 0.064) G_GAN: 0.327 G_GAN_Feat: 0.840 G_ID: 0.181 G_Rec: 0.407 D_GP: 0.021 D_real: 1.089 D_fake: 0.675 +(epoch: 257, iters: 7552, time: 0.064) G_GAN: 0.309 G_GAN_Feat: 0.678 G_ID: 0.113 G_Rec: 0.305 D_GP: 0.020 D_real: 1.227 D_fake: 0.691 +(epoch: 257, iters: 7952, time: 0.064) G_GAN: 0.463 G_GAN_Feat: 0.916 G_ID: 0.169 G_Rec: 0.404 D_GP: 0.047 D_real: 0.925 D_fake: 0.547 +(epoch: 257, iters: 8352, time: 0.064) G_GAN: 0.147 G_GAN_Feat: 0.763 G_ID: 0.123 G_Rec: 0.335 D_GP: 0.051 D_real: 0.914 D_fake: 0.853 +(epoch: 258, iters: 144, time: 0.064) G_GAN: 0.988 G_GAN_Feat: 1.237 G_ID: 0.168 G_Rec: 0.407 D_GP: 0.028 D_real: 1.428 D_fake: 0.232 +(epoch: 258, iters: 544, time: 0.064) G_GAN: -0.014 G_GAN_Feat: 0.724 G_ID: 0.148 G_Rec: 0.304 D_GP: 0.031 D_real: 0.816 D_fake: 1.014 +(epoch: 258, iters: 944, time: 0.064) G_GAN: 0.429 G_GAN_Feat: 0.978 G_ID: 0.170 G_Rec: 0.422 D_GP: 0.075 D_real: 0.904 D_fake: 0.577 +(epoch: 258, iters: 1344, time: 0.064) G_GAN: 0.288 G_GAN_Feat: 0.712 G_ID: 0.118 G_Rec: 0.307 D_GP: 0.020 D_real: 1.128 D_fake: 0.712 +(epoch: 258, iters: 1744, time: 0.064) G_GAN: 0.483 G_GAN_Feat: 0.939 G_ID: 0.179 G_Rec: 0.380 D_GP: 0.066 D_real: 0.840 D_fake: 0.522 +(epoch: 258, iters: 2144, time: 0.064) G_GAN: -0.038 G_GAN_Feat: 0.841 G_ID: 0.138 G_Rec: 0.301 D_GP: 0.099 D_real: 0.392 D_fake: 1.038 +(epoch: 258, iters: 2544, time: 0.064) G_GAN: 0.495 G_GAN_Feat: 0.882 G_ID: 0.144 G_Rec: 0.401 D_GP: 0.021 D_real: 1.239 D_fake: 0.507 +(epoch: 258, iters: 2944, time: 0.064) G_GAN: 0.357 G_GAN_Feat: 0.831 G_ID: 0.176 G_Rec: 0.314 D_GP: 0.035 D_real: 0.945 D_fake: 0.652 +(epoch: 258, iters: 3344, time: 0.064) G_GAN: 0.743 G_GAN_Feat: 0.986 G_ID: 0.170 G_Rec: 0.395 D_GP: 0.066 D_real: 1.195 D_fake: 0.299 +(epoch: 258, iters: 3744, time: 0.064) G_GAN: 0.388 G_GAN_Feat: 0.793 G_ID: 0.124 G_Rec: 0.306 D_GP: 0.040 D_real: 1.041 D_fake: 0.615 +(epoch: 258, iters: 4144, time: 0.064) G_GAN: 0.358 G_GAN_Feat: 0.787 G_ID: 0.162 G_Rec: 0.385 D_GP: 0.019 D_real: 1.194 D_fake: 0.644 +(epoch: 258, iters: 4544, time: 0.064) G_GAN: 0.111 G_GAN_Feat: 0.629 G_ID: 0.125 G_Rec: 0.315 D_GP: 0.019 D_real: 1.087 D_fake: 0.889 +(epoch: 258, iters: 4944, time: 0.064) G_GAN: 0.262 G_GAN_Feat: 0.816 G_ID: 0.186 G_Rec: 0.388 D_GP: 0.024 D_real: 0.961 D_fake: 0.739 +(epoch: 258, iters: 5344, time: 0.064) G_GAN: 0.052 G_GAN_Feat: 0.645 G_ID: 0.135 G_Rec: 0.297 D_GP: 0.024 D_real: 1.021 D_fake: 0.948 +(epoch: 258, iters: 5744, time: 0.064) G_GAN: 0.456 G_GAN_Feat: 0.960 G_ID: 0.161 G_Rec: 0.443 D_GP: 0.106 D_real: 0.957 D_fake: 0.558 +(epoch: 258, iters: 6144, time: 0.064) G_GAN: 0.112 G_GAN_Feat: 0.678 G_ID: 0.114 G_Rec: 0.319 D_GP: 0.026 D_real: 0.985 D_fake: 0.888 +(epoch: 258, iters: 6544, time: 0.064) G_GAN: 0.357 G_GAN_Feat: 0.788 G_ID: 0.169 G_Rec: 0.400 D_GP: 0.023 D_real: 1.094 D_fake: 0.645 +(epoch: 258, iters: 6944, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 0.781 G_ID: 0.158 G_Rec: 0.318 D_GP: 0.105 D_real: 0.717 D_fake: 0.834 +(epoch: 258, iters: 7344, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 0.819 G_ID: 0.157 G_Rec: 0.359 D_GP: 0.031 D_real: 1.080 D_fake: 0.647 +(epoch: 258, iters: 7744, time: 0.064) G_GAN: 0.112 G_GAN_Feat: 0.777 G_ID: 0.121 G_Rec: 0.316 D_GP: 0.025 D_real: 1.255 D_fake: 0.890 +(epoch: 258, iters: 8144, time: 0.064) G_GAN: 0.363 G_GAN_Feat: 0.777 G_ID: 0.167 G_Rec: 0.410 D_GP: 0.018 D_real: 1.153 D_fake: 0.638 +(epoch: 258, iters: 8544, time: 0.064) G_GAN: 0.270 G_GAN_Feat: 0.535 G_ID: 0.125 G_Rec: 0.270 D_GP: 0.019 D_real: 1.224 D_fake: 0.730 +(epoch: 259, iters: 336, time: 0.064) G_GAN: 0.431 G_GAN_Feat: 0.771 G_ID: 0.164 G_Rec: 0.410 D_GP: 0.025 D_real: 1.174 D_fake: 0.572 +(epoch: 259, iters: 736, time: 0.064) G_GAN: 0.109 G_GAN_Feat: 0.629 G_ID: 0.131 G_Rec: 0.317 D_GP: 0.030 D_real: 1.038 D_fake: 0.892 +(epoch: 259, iters: 1136, time: 0.064) G_GAN: 0.351 G_GAN_Feat: 0.771 G_ID: 0.186 G_Rec: 0.357 D_GP: 0.035 D_real: 1.058 D_fake: 0.652 +(epoch: 259, iters: 1536, time: 0.064) G_GAN: 0.069 G_GAN_Feat: 0.673 G_ID: 0.126 G_Rec: 0.301 D_GP: 0.049 D_real: 0.893 D_fake: 0.931 +(epoch: 259, iters: 1936, time: 0.064) G_GAN: 0.257 G_GAN_Feat: 0.863 G_ID: 0.168 G_Rec: 0.383 D_GP: 0.024 D_real: 1.025 D_fake: 0.743 +(epoch: 259, iters: 2336, time: 0.064) G_GAN: 0.101 G_GAN_Feat: 0.625 G_ID: 0.130 G_Rec: 0.254 D_GP: 0.033 D_real: 1.013 D_fake: 0.899 +(epoch: 259, iters: 2736, time: 0.064) G_GAN: 0.217 G_GAN_Feat: 0.753 G_ID: 0.172 G_Rec: 0.351 D_GP: 0.025 D_real: 1.052 D_fake: 0.783 +(epoch: 259, iters: 3136, time: 0.064) G_GAN: 0.045 G_GAN_Feat: 0.705 G_ID: 0.135 G_Rec: 0.310 D_GP: 0.024 D_real: 0.908 D_fake: 0.955 +(epoch: 259, iters: 3536, time: 0.064) G_GAN: 0.362 G_GAN_Feat: 0.840 G_ID: 0.175 G_Rec: 0.368 D_GP: 0.030 D_real: 1.090 D_fake: 0.640 +(epoch: 259, iters: 3936, time: 0.064) G_GAN: 0.133 G_GAN_Feat: 0.737 G_ID: 0.109 G_Rec: 0.312 D_GP: 0.059 D_real: 0.897 D_fake: 0.868 +(epoch: 259, iters: 4336, time: 0.064) G_GAN: 0.418 G_GAN_Feat: 0.934 G_ID: 0.151 G_Rec: 0.391 D_GP: 0.025 D_real: 1.088 D_fake: 0.587 +(epoch: 259, iters: 4736, time: 0.064) G_GAN: 0.041 G_GAN_Feat: 0.678 G_ID: 0.125 G_Rec: 0.312 D_GP: 0.026 D_real: 0.923 D_fake: 0.959 +(epoch: 259, iters: 5136, time: 0.064) G_GAN: 0.393 G_GAN_Feat: 0.770 G_ID: 0.160 G_Rec: 0.342 D_GP: 0.024 D_real: 1.168 D_fake: 0.608 +(epoch: 259, iters: 5536, time: 0.064) G_GAN: 0.138 G_GAN_Feat: 0.859 G_ID: 0.136 G_Rec: 0.323 D_GP: 0.055 D_real: 0.537 D_fake: 0.862 +(epoch: 259, iters: 5936, time: 0.064) G_GAN: 0.324 G_GAN_Feat: 0.958 G_ID: 0.161 G_Rec: 0.369 D_GP: 0.039 D_real: 0.743 D_fake: 0.678 +(epoch: 259, iters: 6336, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 0.751 G_ID: 0.116 G_Rec: 0.332 D_GP: 0.036 D_real: 1.049 D_fake: 0.737 +(epoch: 259, iters: 6736, time: 0.064) G_GAN: 0.225 G_GAN_Feat: 1.081 G_ID: 0.173 G_Rec: 0.493 D_GP: 0.209 D_real: 0.368 D_fake: 0.777 +(epoch: 259, iters: 7136, time: 0.064) G_GAN: 0.237 G_GAN_Feat: 0.647 G_ID: 0.125 G_Rec: 0.277 D_GP: 0.018 D_real: 1.166 D_fake: 0.763 +(epoch: 259, iters: 7536, time: 0.064) G_GAN: 0.465 G_GAN_Feat: 0.885 G_ID: 0.161 G_Rec: 0.404 D_GP: 0.038 D_real: 1.173 D_fake: 0.539 +(epoch: 259, iters: 7936, time: 0.064) G_GAN: 0.348 G_GAN_Feat: 0.721 G_ID: 0.130 G_Rec: 0.302 D_GP: 0.029 D_real: 1.130 D_fake: 0.652 +(epoch: 259, iters: 8336, time: 0.064) G_GAN: 0.852 G_GAN_Feat: 1.092 G_ID: 0.154 G_Rec: 0.452 D_GP: 0.084 D_real: 1.379 D_fake: 0.309 +(epoch: 260, iters: 128, time: 0.064) G_GAN: -0.148 G_GAN_Feat: 0.699 G_ID: 0.131 G_Rec: 0.286 D_GP: 0.021 D_real: 0.904 D_fake: 1.149 +(epoch: 260, iters: 528, time: 0.064) G_GAN: 0.498 G_GAN_Feat: 0.842 G_ID: 0.154 G_Rec: 0.488 D_GP: 0.028 D_real: 1.133 D_fake: 0.502 +(epoch: 260, iters: 928, time: 0.064) G_GAN: 0.246 G_GAN_Feat: 0.911 G_ID: 0.146 G_Rec: 0.322 D_GP: 0.298 D_real: 0.357 D_fake: 0.768 +(epoch: 260, iters: 1328, time: 0.064) G_GAN: 0.813 G_GAN_Feat: 1.025 G_ID: 0.159 G_Rec: 0.402 D_GP: 0.039 D_real: 1.064 D_fake: 0.234 +(epoch: 260, iters: 1728, time: 0.064) G_GAN: 0.100 G_GAN_Feat: 0.544 G_ID: 0.130 G_Rec: 0.256 D_GP: 0.019 D_real: 1.085 D_fake: 0.900 +(epoch: 260, iters: 2128, time: 0.064) G_GAN: 0.423 G_GAN_Feat: 0.784 G_ID: 0.194 G_Rec: 0.383 D_GP: 0.019 D_real: 1.239 D_fake: 0.578 +(epoch: 260, iters: 2528, time: 0.064) G_GAN: 0.151 G_GAN_Feat: 0.577 G_ID: 0.137 G_Rec: 0.286 D_GP: 0.020 D_real: 1.046 D_fake: 0.849 +(epoch: 260, iters: 2928, time: 0.064) G_GAN: 0.519 G_GAN_Feat: 0.835 G_ID: 0.130 G_Rec: 0.403 D_GP: 0.030 D_real: 1.279 D_fake: 0.494 +(epoch: 260, iters: 3328, time: 0.064) G_GAN: 0.119 G_GAN_Feat: 0.568 G_ID: 0.125 G_Rec: 0.312 D_GP: 0.028 D_real: 1.052 D_fake: 0.881 +(epoch: 260, iters: 3728, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 0.843 G_ID: 0.156 G_Rec: 0.418 D_GP: 0.031 D_real: 0.989 D_fake: 0.649 +(epoch: 260, iters: 4128, time: 0.064) G_GAN: -0.029 G_GAN_Feat: 0.738 G_ID: 0.135 G_Rec: 0.304 D_GP: 0.066 D_real: 0.706 D_fake: 1.029 +(epoch: 260, iters: 4528, time: 0.064) G_GAN: 0.518 G_GAN_Feat: 0.890 G_ID: 0.144 G_Rec: 0.439 D_GP: 0.030 D_real: 1.088 D_fake: 0.491 +(epoch: 260, iters: 4928, time: 0.064) G_GAN: 0.185 G_GAN_Feat: 0.639 G_ID: 0.135 G_Rec: 0.266 D_GP: 0.026 D_real: 1.089 D_fake: 0.816 +(epoch: 260, iters: 5328, time: 0.064) G_GAN: 0.558 G_GAN_Feat: 0.925 G_ID: 0.151 G_Rec: 0.404 D_GP: 0.031 D_real: 1.156 D_fake: 0.446 +(epoch: 260, iters: 5728, time: 0.064) G_GAN: 0.159 G_GAN_Feat: 0.673 G_ID: 0.113 G_Rec: 0.282 D_GP: 0.040 D_real: 1.025 D_fake: 0.841 +(epoch: 260, iters: 6128, time: 0.064) G_GAN: 0.522 G_GAN_Feat: 0.975 G_ID: 0.162 G_Rec: 0.368 D_GP: 0.101 D_real: 0.872 D_fake: 0.483 +(epoch: 260, iters: 6528, time: 0.064) G_GAN: -0.072 G_GAN_Feat: 0.804 G_ID: 0.151 G_Rec: 0.341 D_GP: 0.188 D_real: 0.485 D_fake: 1.073 +(epoch: 260, iters: 6928, time: 0.064) G_GAN: 0.436 G_GAN_Feat: 0.912 G_ID: 0.165 G_Rec: 0.404 D_GP: 0.037 D_real: 1.088 D_fake: 0.572 +(epoch: 260, iters: 7328, time: 0.064) G_GAN: 0.091 G_GAN_Feat: 0.705 G_ID: 0.154 G_Rec: 0.299 D_GP: 0.029 D_real: 0.948 D_fake: 0.909 +(epoch: 260, iters: 7728, time: 0.064) G_GAN: 0.383 G_GAN_Feat: 0.952 G_ID: 0.173 G_Rec: 0.415 D_GP: 0.068 D_real: 0.863 D_fake: 0.621 +(epoch: 260, iters: 8128, time: 0.064) G_GAN: 0.192 G_GAN_Feat: 0.637 G_ID: 0.119 G_Rec: 0.265 D_GP: 0.022 D_real: 1.161 D_fake: 0.808 +(epoch: 260, iters: 8528, time: 0.064) G_GAN: 0.560 G_GAN_Feat: 0.947 G_ID: 0.168 G_Rec: 0.430 D_GP: 0.032 D_real: 1.043 D_fake: 0.445 +(epoch: 261, iters: 320, time: 0.064) G_GAN: 0.326 G_GAN_Feat: 0.850 G_ID: 0.128 G_Rec: 0.289 D_GP: 0.033 D_real: 0.825 D_fake: 0.676 +(epoch: 261, iters: 720, time: 0.064) G_GAN: 0.398 G_GAN_Feat: 0.864 G_ID: 0.187 G_Rec: 0.379 D_GP: 0.029 D_real: 1.028 D_fake: 0.609 +(epoch: 261, iters: 1120, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 0.677 G_ID: 0.125 G_Rec: 0.298 D_GP: 0.026 D_real: 1.143 D_fake: 0.779 +(epoch: 261, iters: 1520, time: 0.064) G_GAN: 0.257 G_GAN_Feat: 0.848 G_ID: 0.178 G_Rec: 0.403 D_GP: 0.022 D_real: 1.007 D_fake: 0.743 +(epoch: 261, iters: 1920, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.864 G_ID: 0.123 G_Rec: 0.339 D_GP: 0.068 D_real: 0.935 D_fake: 0.723 +(epoch: 261, iters: 2320, time: 0.064) G_GAN: 0.529 G_GAN_Feat: 0.919 G_ID: 0.168 G_Rec: 0.359 D_GP: 0.052 D_real: 0.871 D_fake: 0.476 +(epoch: 261, iters: 2720, time: 0.064) G_GAN: 0.093 G_GAN_Feat: 0.636 G_ID: 0.121 G_Rec: 0.311 D_GP: 0.019 D_real: 1.090 D_fake: 0.907 +(epoch: 261, iters: 3120, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 0.816 G_ID: 0.172 G_Rec: 0.397 D_GP: 0.021 D_real: 1.130 D_fake: 0.666 +(epoch: 261, iters: 3520, time: 0.064) G_GAN: 0.272 G_GAN_Feat: 0.586 G_ID: 0.126 G_Rec: 0.289 D_GP: 0.018 D_real: 1.201 D_fake: 0.729 +(epoch: 261, iters: 3920, time: 0.064) G_GAN: 0.180 G_GAN_Feat: 0.728 G_ID: 0.169 G_Rec: 0.350 D_GP: 0.019 D_real: 0.980 D_fake: 0.820 +(epoch: 261, iters: 4320, time: 0.064) G_GAN: 0.173 G_GAN_Feat: 0.624 G_ID: 0.119 G_Rec: 0.301 D_GP: 0.024 D_real: 1.077 D_fake: 0.827 +(epoch: 261, iters: 4720, time: 0.064) G_GAN: 0.507 G_GAN_Feat: 0.848 G_ID: 0.152 G_Rec: 0.396 D_GP: 0.025 D_real: 1.189 D_fake: 0.502 +(epoch: 261, iters: 5120, time: 0.064) G_GAN: 0.267 G_GAN_Feat: 0.665 G_ID: 0.132 G_Rec: 0.288 D_GP: 0.021 D_real: 1.138 D_fake: 0.733 +(epoch: 261, iters: 5520, time: 0.064) G_GAN: 0.432 G_GAN_Feat: 0.948 G_ID: 0.162 G_Rec: 0.415 D_GP: 0.100 D_real: 0.753 D_fake: 0.570 +(epoch: 261, iters: 5920, time: 0.064) G_GAN: 0.004 G_GAN_Feat: 0.837 G_ID: 0.147 G_Rec: 0.330 D_GP: 0.234 D_real: 0.456 D_fake: 0.996 +(epoch: 261, iters: 6320, time: 0.064) G_GAN: 0.348 G_GAN_Feat: 0.913 G_ID: 0.156 G_Rec: 0.425 D_GP: 0.021 D_real: 1.054 D_fake: 0.655 +(epoch: 261, iters: 6720, time: 0.064) G_GAN: 0.144 G_GAN_Feat: 0.709 G_ID: 0.107 G_Rec: 0.275 D_GP: 0.030 D_real: 0.886 D_fake: 0.856 +(epoch: 261, iters: 7120, time: 0.064) G_GAN: 0.542 G_GAN_Feat: 1.020 G_ID: 0.161 G_Rec: 0.442 D_GP: 0.032 D_real: 0.889 D_fake: 0.462 +(epoch: 261, iters: 7520, time: 0.064) G_GAN: 0.317 G_GAN_Feat: 0.657 G_ID: 0.124 G_Rec: 0.272 D_GP: 0.022 D_real: 1.227 D_fake: 0.683 +(epoch: 261, iters: 7920, time: 0.064) G_GAN: 0.208 G_GAN_Feat: 1.138 G_ID: 0.191 G_Rec: 0.450 D_GP: 0.039 D_real: 0.959 D_fake: 0.800 +(epoch: 261, iters: 8320, time: 0.064) G_GAN: 0.200 G_GAN_Feat: 0.613 G_ID: 0.117 G_Rec: 0.261 D_GP: 0.023 D_real: 1.207 D_fake: 0.800 +(epoch: 262, iters: 112, time: 0.064) G_GAN: 0.373 G_GAN_Feat: 0.878 G_ID: 0.169 G_Rec: 0.354 D_GP: 0.022 D_real: 1.063 D_fake: 0.629 +(epoch: 262, iters: 512, time: 0.064) G_GAN: 0.163 G_GAN_Feat: 0.867 G_ID: 0.121 G_Rec: 0.284 D_GP: 0.055 D_real: 0.545 D_fake: 0.837 +(epoch: 262, iters: 912, time: 0.064) G_GAN: 0.329 G_GAN_Feat: 0.897 G_ID: 0.180 G_Rec: 0.423 D_GP: 0.026 D_real: 1.007 D_fake: 0.675 +(epoch: 262, iters: 1312, time: 0.064) G_GAN: 0.077 G_GAN_Feat: 0.677 G_ID: 0.143 G_Rec: 0.308 D_GP: 0.038 D_real: 0.919 D_fake: 0.923 +(epoch: 262, iters: 1712, time: 0.064) G_GAN: 0.370 G_GAN_Feat: 0.886 G_ID: 0.158 G_Rec: 0.383 D_GP: 0.037 D_real: 0.931 D_fake: 0.632 +(epoch: 262, iters: 2112, time: 0.064) G_GAN: 0.304 G_GAN_Feat: 0.737 G_ID: 0.128 G_Rec: 0.291 D_GP: 0.032 D_real: 1.012 D_fake: 0.696 +(epoch: 262, iters: 2512, time: 0.064) G_GAN: 0.599 G_GAN_Feat: 0.918 G_ID: 0.164 G_Rec: 0.388 D_GP: 0.040 D_real: 1.170 D_fake: 0.408 +(epoch: 262, iters: 2912, time: 0.064) G_GAN: 0.124 G_GAN_Feat: 0.789 G_ID: 0.150 G_Rec: 0.369 D_GP: 0.029 D_real: 0.816 D_fake: 0.876 +(epoch: 262, iters: 3312, time: 0.064) G_GAN: 0.541 G_GAN_Feat: 1.124 G_ID: 0.149 G_Rec: 0.413 D_GP: 0.028 D_real: 1.403 D_fake: 0.475 +(epoch: 262, iters: 3712, time: 0.064) G_GAN: 0.036 G_GAN_Feat: 0.677 G_ID: 0.151 G_Rec: 0.312 D_GP: 0.019 D_real: 0.985 D_fake: 0.964 +(epoch: 262, iters: 4112, time: 0.064) G_GAN: 0.176 G_GAN_Feat: 0.769 G_ID: 0.207 G_Rec: 0.331 D_GP: 0.033 D_real: 0.884 D_fake: 0.824 +(epoch: 262, iters: 4512, time: 0.064) G_GAN: 0.236 G_GAN_Feat: 0.668 G_ID: 0.121 G_Rec: 0.262 D_GP: 0.031 D_real: 1.094 D_fake: 0.764 +(epoch: 262, iters: 4912, time: 0.064) G_GAN: 0.613 G_GAN_Feat: 0.970 G_ID: 0.149 G_Rec: 0.382 D_GP: 0.027 D_real: 1.334 D_fake: 0.402 +(epoch: 262, iters: 5312, time: 0.064) G_GAN: 0.195 G_GAN_Feat: 0.749 G_ID: 0.133 G_Rec: 0.274 D_GP: 0.025 D_real: 0.938 D_fake: 0.805 +(epoch: 262, iters: 5712, time: 0.064) G_GAN: 0.271 G_GAN_Feat: 0.915 G_ID: 0.167 G_Rec: 0.372 D_GP: 0.044 D_real: 0.823 D_fake: 0.731 +(epoch: 262, iters: 6112, time: 0.064) G_GAN: 0.304 G_GAN_Feat: 0.603 G_ID: 0.141 G_Rec: 0.280 D_GP: 0.021 D_real: 1.300 D_fake: 0.698 +(epoch: 262, iters: 6512, time: 0.064) G_GAN: 0.208 G_GAN_Feat: 0.894 G_ID: 0.194 G_Rec: 0.396 D_GP: 0.033 D_real: 0.859 D_fake: 0.792 +(epoch: 262, iters: 6912, time: 0.064) G_GAN: 0.211 G_GAN_Feat: 0.833 G_ID: 0.135 G_Rec: 0.324 D_GP: 0.022 D_real: 1.019 D_fake: 0.789 +(epoch: 262, iters: 7312, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.839 G_ID: 0.193 G_Rec: 0.390 D_GP: 0.024 D_real: 1.083 D_fake: 0.694 +(epoch: 262, iters: 7712, time: 0.064) G_GAN: 0.248 G_GAN_Feat: 0.823 G_ID: 0.121 G_Rec: 0.296 D_GP: 0.070 D_real: 0.670 D_fake: 0.752 +(epoch: 262, iters: 8112, time: 0.064) G_GAN: 0.596 G_GAN_Feat: 1.346 G_ID: 0.161 G_Rec: 0.447 D_GP: 0.109 D_real: 1.281 D_fake: 0.582 +(epoch: 262, iters: 8512, time: 0.064) G_GAN: -0.011 G_GAN_Feat: 0.657 G_ID: 0.132 G_Rec: 0.287 D_GP: 0.021 D_real: 0.953 D_fake: 1.011 +(epoch: 263, iters: 304, time: 0.064) G_GAN: 0.209 G_GAN_Feat: 0.898 G_ID: 0.151 G_Rec: 0.398 D_GP: 0.032 D_real: 0.829 D_fake: 0.792 +(epoch: 263, iters: 704, time: 0.064) G_GAN: 0.335 G_GAN_Feat: 0.714 G_ID: 0.105 G_Rec: 0.281 D_GP: 0.027 D_real: 1.139 D_fake: 0.665 +(epoch: 263, iters: 1104, time: 0.064) G_GAN: 0.597 G_GAN_Feat: 0.802 G_ID: 0.158 G_Rec: 0.417 D_GP: 0.021 D_real: 1.319 D_fake: 0.413 +(epoch: 263, iters: 1504, time: 0.064) G_GAN: 0.128 G_GAN_Feat: 0.614 G_ID: 0.110 G_Rec: 0.311 D_GP: 0.026 D_real: 1.047 D_fake: 0.872 +(epoch: 263, iters: 1904, time: 0.064) G_GAN: 0.319 G_GAN_Feat: 0.775 G_ID: 0.169 G_Rec: 0.385 D_GP: 0.032 D_real: 1.136 D_fake: 0.682 +(epoch: 263, iters: 2304, time: 0.064) G_GAN: 0.128 G_GAN_Feat: 0.578 G_ID: 0.123 G_Rec: 0.250 D_GP: 0.022 D_real: 1.079 D_fake: 0.872 +(epoch: 263, iters: 2704, time: 0.064) G_GAN: 0.490 G_GAN_Feat: 0.770 G_ID: 0.166 G_Rec: 0.384 D_GP: 0.025 D_real: 1.264 D_fake: 0.530 +(epoch: 263, iters: 3104, time: 0.064) G_GAN: 0.277 G_GAN_Feat: 0.575 G_ID: 0.123 G_Rec: 0.261 D_GP: 0.019 D_real: 1.229 D_fake: 0.723 +(epoch: 263, iters: 3504, time: 0.064) G_GAN: 0.240 G_GAN_Feat: 0.912 G_ID: 0.173 G_Rec: 0.417 D_GP: 0.049 D_real: 0.951 D_fake: 0.762 +(epoch: 263, iters: 3904, time: 0.064) G_GAN: 0.232 G_GAN_Feat: 0.614 G_ID: 0.124 G_Rec: 0.278 D_GP: 0.019 D_real: 1.216 D_fake: 0.769 +(epoch: 263, iters: 4304, time: 0.064) G_GAN: 0.137 G_GAN_Feat: 0.984 G_ID: 0.159 G_Rec: 0.426 D_GP: 0.142 D_real: 0.492 D_fake: 0.865 +(epoch: 263, iters: 4704, time: 0.064) G_GAN: 0.232 G_GAN_Feat: 0.695 G_ID: 0.130 G_Rec: 0.306 D_GP: 0.033 D_real: 1.065 D_fake: 0.768 +(epoch: 263, iters: 5104, time: 0.064) G_GAN: 0.349 G_GAN_Feat: 0.795 G_ID: 0.172 G_Rec: 0.358 D_GP: 0.022 D_real: 1.135 D_fake: 0.652 +(epoch: 263, iters: 5504, time: 0.064) G_GAN: 0.168 G_GAN_Feat: 0.676 G_ID: 0.120 G_Rec: 0.292 D_GP: 0.073 D_real: 0.927 D_fake: 0.832 +(epoch: 263, iters: 5904, time: 0.064) G_GAN: 0.340 G_GAN_Feat: 0.793 G_ID: 0.156 G_Rec: 0.330 D_GP: 0.028 D_real: 1.117 D_fake: 0.661 +(epoch: 263, iters: 6304, time: 0.064) G_GAN: 0.016 G_GAN_Feat: 0.752 G_ID: 0.137 G_Rec: 0.300 D_GP: 0.052 D_real: 0.667 D_fake: 0.984 +(epoch: 263, iters: 6704, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.889 G_ID: 0.174 G_Rec: 0.372 D_GP: 0.041 D_real: 0.895 D_fake: 0.752 +(epoch: 263, iters: 7104, time: 0.064) G_GAN: -0.069 G_GAN_Feat: 0.759 G_ID: 0.152 G_Rec: 0.308 D_GP: 0.042 D_real: 0.666 D_fake: 1.070 +(epoch: 263, iters: 7504, time: 0.064) G_GAN: 0.707 G_GAN_Feat: 0.918 G_ID: 0.157 G_Rec: 0.427 D_GP: 0.022 D_real: 1.333 D_fake: 0.333 +(epoch: 263, iters: 7904, time: 0.064) G_GAN: 0.181 G_GAN_Feat: 0.651 G_ID: 0.114 G_Rec: 0.276 D_GP: 0.029 D_real: 1.184 D_fake: 0.819 +(epoch: 263, iters: 8304, time: 0.064) G_GAN: 0.629 G_GAN_Feat: 0.811 G_ID: 0.158 G_Rec: 0.367 D_GP: 0.024 D_real: 1.411 D_fake: 0.385 +(epoch: 264, iters: 96, time: 0.064) G_GAN: 0.139 G_GAN_Feat: 0.649 G_ID: 0.141 G_Rec: 0.272 D_GP: 0.023 D_real: 1.111 D_fake: 0.862 +(epoch: 264, iters: 496, time: 0.064) G_GAN: 0.380 G_GAN_Feat: 0.754 G_ID: 0.164 G_Rec: 0.332 D_GP: 0.026 D_real: 1.235 D_fake: 0.622 +(epoch: 264, iters: 896, time: 0.064) G_GAN: -0.013 G_GAN_Feat: 0.707 G_ID: 0.114 G_Rec: 0.308 D_GP: 0.051 D_real: 0.826 D_fake: 1.013 +(epoch: 264, iters: 1296, time: 0.064) G_GAN: 0.351 G_GAN_Feat: 0.832 G_ID: 0.152 G_Rec: 0.436 D_GP: 0.035 D_real: 1.044 D_fake: 0.650 +(epoch: 264, iters: 1696, time: 0.064) G_GAN: 0.065 G_GAN_Feat: 0.720 G_ID: 0.120 G_Rec: 0.315 D_GP: 0.034 D_real: 0.828 D_fake: 0.935 +(epoch: 264, iters: 2096, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 0.878 G_ID: 0.173 G_Rec: 0.412 D_GP: 0.045 D_real: 0.993 D_fake: 0.649 +(epoch: 264, iters: 2496, time: 0.064) G_GAN: 0.328 G_GAN_Feat: 0.726 G_ID: 0.114 G_Rec: 0.281 D_GP: 0.053 D_real: 1.063 D_fake: 0.674 +(epoch: 264, iters: 2896, time: 0.064) G_GAN: 0.072 G_GAN_Feat: 0.955 G_ID: 0.173 G_Rec: 0.388 D_GP: 0.034 D_real: 0.984 D_fake: 0.936 +(epoch: 264, iters: 3296, time: 0.064) G_GAN: 0.485 G_GAN_Feat: 0.869 G_ID: 0.132 G_Rec: 0.362 D_GP: 0.061 D_real: 0.972 D_fake: 0.575 +(epoch: 264, iters: 3696, time: 0.064) G_GAN: 0.436 G_GAN_Feat: 0.827 G_ID: 0.176 G_Rec: 0.379 D_GP: 0.023 D_real: 1.225 D_fake: 0.567 +(epoch: 264, iters: 4096, time: 0.064) G_GAN: 0.294 G_GAN_Feat: 0.643 G_ID: 0.115 G_Rec: 0.273 D_GP: 0.024 D_real: 1.249 D_fake: 0.706 +(epoch: 264, iters: 4496, time: 0.064) G_GAN: 0.491 G_GAN_Feat: 1.000 G_ID: 0.154 G_Rec: 0.404 D_GP: 0.070 D_real: 0.906 D_fake: 0.515 +(epoch: 264, iters: 4896, time: 0.064) G_GAN: 0.107 G_GAN_Feat: 0.784 G_ID: 0.133 G_Rec: 0.318 D_GP: 0.048 D_real: 0.678 D_fake: 0.893 +(epoch: 264, iters: 5296, time: 0.064) G_GAN: 0.398 G_GAN_Feat: 0.831 G_ID: 0.159 G_Rec: 0.408 D_GP: 0.020 D_real: 1.141 D_fake: 0.603 +(epoch: 264, iters: 5696, time: 0.064) G_GAN: 0.117 G_GAN_Feat: 0.660 G_ID: 0.128 G_Rec: 0.285 D_GP: 0.030 D_real: 0.982 D_fake: 0.883 +(epoch: 264, iters: 6096, time: 0.064) G_GAN: 0.465 G_GAN_Feat: 0.900 G_ID: 0.191 G_Rec: 0.390 D_GP: 0.036 D_real: 1.168 D_fake: 0.540 +(epoch: 264, iters: 6496, time: 0.064) G_GAN: 0.223 G_GAN_Feat: 0.697 G_ID: 0.125 G_Rec: 0.267 D_GP: 0.033 D_real: 0.986 D_fake: 0.777 +(epoch: 264, iters: 6896, time: 0.064) G_GAN: 0.402 G_GAN_Feat: 0.994 G_ID: 0.169 G_Rec: 0.410 D_GP: 0.047 D_real: 0.749 D_fake: 0.599 +(epoch: 264, iters: 7296, time: 0.064) G_GAN: 0.341 G_GAN_Feat: 0.931 G_ID: 0.137 G_Rec: 0.331 D_GP: 0.496 D_real: 0.554 D_fake: 0.668 +(epoch: 264, iters: 7696, time: 0.064) G_GAN: 0.566 G_GAN_Feat: 0.933 G_ID: 0.168 G_Rec: 0.402 D_GP: 0.023 D_real: 1.188 D_fake: 0.440 +(epoch: 264, iters: 8096, time: 0.064) G_GAN: 0.390 G_GAN_Feat: 0.671 G_ID: 0.122 G_Rec: 0.309 D_GP: 0.022 D_real: 1.377 D_fake: 0.614 +(epoch: 264, iters: 8496, time: 0.064) G_GAN: 0.515 G_GAN_Feat: 1.106 G_ID: 0.151 G_Rec: 0.432 D_GP: 0.130 D_real: 0.797 D_fake: 0.492 +(epoch: 265, iters: 288, time: 0.064) G_GAN: 0.244 G_GAN_Feat: 0.716 G_ID: 0.134 G_Rec: 0.318 D_GP: 0.024 D_real: 1.207 D_fake: 0.758 +(epoch: 265, iters: 688, time: 0.064) G_GAN: 0.460 G_GAN_Feat: 0.835 G_ID: 0.156 G_Rec: 0.356 D_GP: 0.055 D_real: 1.123 D_fake: 0.543 +(epoch: 265, iters: 1088, time: 0.064) G_GAN: 0.232 G_GAN_Feat: 0.869 G_ID: 0.113 G_Rec: 0.293 D_GP: 0.147 D_real: 0.409 D_fake: 0.772 +(epoch: 265, iters: 1488, time: 0.064) G_GAN: 0.484 G_GAN_Feat: 0.951 G_ID: 0.157 G_Rec: 0.388 D_GP: 0.029 D_real: 0.985 D_fake: 0.519 +(epoch: 265, iters: 1888, time: 0.064) G_GAN: 0.362 G_GAN_Feat: 0.703 G_ID: 0.108 G_Rec: 0.296 D_GP: 0.026 D_real: 1.352 D_fake: 0.641 +(epoch: 265, iters: 2288, time: 0.064) G_GAN: 0.418 G_GAN_Feat: 1.019 G_ID: 0.183 G_Rec: 0.437 D_GP: 0.082 D_real: 0.808 D_fake: 0.584 +(epoch: 265, iters: 2688, time: 0.064) G_GAN: 0.275 G_GAN_Feat: 0.937 G_ID: 0.132 G_Rec: 0.322 D_GP: 0.063 D_real: 0.468 D_fake: 0.727 +(epoch: 265, iters: 3088, time: 0.064) G_GAN: 0.508 G_GAN_Feat: 0.796 G_ID: 0.165 G_Rec: 0.384 D_GP: 0.019 D_real: 1.231 D_fake: 0.527 +(epoch: 265, iters: 3488, time: 0.064) G_GAN: -0.013 G_GAN_Feat: 0.647 G_ID: 0.122 G_Rec: 0.294 D_GP: 0.018 D_real: 0.928 D_fake: 1.013 +(epoch: 265, iters: 3888, time: 0.064) G_GAN: 0.468 G_GAN_Feat: 0.965 G_ID: 0.165 G_Rec: 0.406 D_GP: 0.039 D_real: 0.924 D_fake: 0.535 +(epoch: 265, iters: 4288, time: 0.064) G_GAN: 0.393 G_GAN_Feat: 0.729 G_ID: 0.111 G_Rec: 0.300 D_GP: 0.028 D_real: 1.190 D_fake: 0.608 +(epoch: 265, iters: 4688, time: 0.064) G_GAN: 0.515 G_GAN_Feat: 0.827 G_ID: 0.158 G_Rec: 0.349 D_GP: 0.022 D_real: 1.249 D_fake: 0.487 +(epoch: 265, iters: 5088, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.624 G_ID: 0.140 G_Rec: 0.332 D_GP: 0.019 D_real: 1.245 D_fake: 0.723 +(epoch: 265, iters: 5488, time: 0.064) G_GAN: 0.439 G_GAN_Feat: 0.666 G_ID: 0.165 G_Rec: 0.350 D_GP: 0.020 D_real: 1.261 D_fake: 0.562 +(epoch: 265, iters: 5888, time: 0.064) G_GAN: 0.179 G_GAN_Feat: 0.576 G_ID: 0.108 G_Rec: 0.282 D_GP: 0.023 D_real: 1.131 D_fake: 0.821 +(epoch: 265, iters: 6288, time: 0.064) G_GAN: 0.424 G_GAN_Feat: 0.814 G_ID: 0.159 G_Rec: 0.435 D_GP: 0.034 D_real: 1.143 D_fake: 0.576 +(epoch: 265, iters: 6688, time: 0.064) G_GAN: 0.073 G_GAN_Feat: 0.716 G_ID: 0.119 G_Rec: 0.309 D_GP: 0.052 D_real: 0.839 D_fake: 0.927 +(epoch: 265, iters: 7088, time: 0.064) G_GAN: 0.501 G_GAN_Feat: 0.795 G_ID: 0.150 G_Rec: 0.387 D_GP: 0.022 D_real: 1.231 D_fake: 0.511 +(epoch: 265, iters: 7488, time: 0.064) G_GAN: 0.264 G_GAN_Feat: 0.669 G_ID: 0.144 G_Rec: 0.284 D_GP: 0.020 D_real: 1.141 D_fake: 0.737 +(epoch: 265, iters: 7888, time: 0.064) G_GAN: 0.490 G_GAN_Feat: 0.924 G_ID: 0.160 G_Rec: 0.387 D_GP: 0.046 D_real: 0.985 D_fake: 0.518 +(epoch: 265, iters: 8288, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 0.713 G_ID: 0.107 G_Rec: 0.330 D_GP: 0.035 D_real: 1.045 D_fake: 0.689 +(epoch: 266, iters: 80, time: 0.064) G_GAN: 0.250 G_GAN_Feat: 0.962 G_ID: 0.173 G_Rec: 0.421 D_GP: 0.033 D_real: 0.747 D_fake: 0.752 +(epoch: 266, iters: 480, time: 0.064) G_GAN: 0.100 G_GAN_Feat: 0.847 G_ID: 0.151 G_Rec: 0.327 D_GP: 0.045 D_real: 0.475 D_fake: 0.900 +(epoch: 266, iters: 880, time: 0.064) G_GAN: 0.253 G_GAN_Feat: 0.823 G_ID: 0.163 G_Rec: 0.376 D_GP: 0.024 D_real: 1.130 D_fake: 0.754 +(epoch: 266, iters: 1280, time: 0.064) G_GAN: 0.081 G_GAN_Feat: 0.696 G_ID: 0.129 G_Rec: 0.298 D_GP: 0.031 D_real: 0.932 D_fake: 0.919 +(epoch: 266, iters: 1680, time: 0.064) G_GAN: 0.943 G_GAN_Feat: 1.122 G_ID: 0.147 G_Rec: 0.440 D_GP: 0.070 D_real: 1.356 D_fake: 0.339 +(epoch: 266, iters: 2080, time: 0.064) G_GAN: -0.157 G_GAN_Feat: 0.752 G_ID: 0.151 G_Rec: 0.313 D_GP: 0.052 D_real: 0.572 D_fake: 1.157 +(epoch: 266, iters: 2480, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 0.851 G_ID: 0.171 G_Rec: 0.384 D_GP: 0.032 D_real: 0.933 D_fake: 0.737 +(epoch: 266, iters: 2880, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 0.736 G_ID: 0.134 G_Rec: 0.287 D_GP: 0.051 D_real: 1.097 D_fake: 0.780 +(epoch: 266, iters: 3280, time: 0.064) G_GAN: 0.293 G_GAN_Feat: 0.771 G_ID: 0.182 G_Rec: 0.370 D_GP: 0.021 D_real: 1.093 D_fake: 0.709 +(epoch: 266, iters: 3680, time: 0.064) G_GAN: -0.063 G_GAN_Feat: 0.687 G_ID: 0.148 G_Rec: 0.287 D_GP: 0.050 D_real: 0.798 D_fake: 1.063 +(epoch: 266, iters: 4080, time: 0.064) G_GAN: 0.392 G_GAN_Feat: 0.927 G_ID: 0.163 G_Rec: 0.418 D_GP: 0.034 D_real: 0.993 D_fake: 0.622 +(epoch: 266, iters: 4480, time: 0.064) G_GAN: 0.313 G_GAN_Feat: 1.043 G_ID: 0.116 G_Rec: 0.330 D_GP: 1.340 D_real: 0.541 D_fake: 0.691 +(epoch: 266, iters: 4880, time: 0.064) G_GAN: 0.409 G_GAN_Feat: 0.871 G_ID: 0.179 G_Rec: 0.382 D_GP: 0.023 D_real: 1.067 D_fake: 0.599 +(epoch: 266, iters: 5280, time: 0.064) G_GAN: 0.265 G_GAN_Feat: 0.876 G_ID: 0.147 G_Rec: 0.341 D_GP: 0.057 D_real: 0.762 D_fake: 0.738 +(epoch: 266, iters: 5680, time: 0.064) G_GAN: 0.559 G_GAN_Feat: 0.913 G_ID: 0.165 G_Rec: 0.389 D_GP: 0.027 D_real: 1.172 D_fake: 0.445 +(epoch: 266, iters: 6080, time: 0.064) G_GAN: 0.386 G_GAN_Feat: 0.658 G_ID: 0.103 G_Rec: 0.265 D_GP: 0.022 D_real: 1.311 D_fake: 0.614 +(epoch: 266, iters: 6480, time: 0.064) G_GAN: 0.392 G_GAN_Feat: 0.910 G_ID: 0.169 G_Rec: 0.411 D_GP: 0.028 D_real: 1.036 D_fake: 0.609 +(epoch: 266, iters: 6880, time: 0.064) G_GAN: 0.514 G_GAN_Feat: 0.779 G_ID: 0.119 G_Rec: 0.303 D_GP: 0.052 D_real: 1.251 D_fake: 0.491 +(epoch: 266, iters: 7280, time: 0.064) G_GAN: 0.706 G_GAN_Feat: 0.852 G_ID: 0.161 G_Rec: 0.347 D_GP: 0.023 D_real: 1.561 D_fake: 0.317 +(epoch: 266, iters: 7680, time: 0.064) G_GAN: 0.410 G_GAN_Feat: 0.681 G_ID: 0.126 G_Rec: 0.310 D_GP: 0.027 D_real: 1.349 D_fake: 0.600 +(epoch: 266, iters: 8080, time: 0.064) G_GAN: 0.609 G_GAN_Feat: 1.046 G_ID: 0.167 G_Rec: 0.400 D_GP: 0.080 D_real: 0.564 D_fake: 0.404 +(epoch: 266, iters: 8480, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 0.699 G_ID: 0.131 G_Rec: 0.292 D_GP: 0.026 D_real: 1.143 D_fake: 0.662 +(epoch: 267, iters: 272, time: 0.064) G_GAN: 0.501 G_GAN_Feat: 0.993 G_ID: 0.160 G_Rec: 0.413 D_GP: 0.029 D_real: 1.023 D_fake: 0.594 +(epoch: 267, iters: 672, time: 0.064) G_GAN: 0.251 G_GAN_Feat: 0.835 G_ID: 0.139 G_Rec: 0.296 D_GP: 0.112 D_real: 0.743 D_fake: 0.750 +(epoch: 267, iters: 1072, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 0.797 G_ID: 0.199 G_Rec: 0.398 D_GP: 0.019 D_real: 1.091 D_fake: 0.662 +(epoch: 267, iters: 1472, time: 0.064) G_GAN: 0.291 G_GAN_Feat: 0.583 G_ID: 0.120 G_Rec: 0.316 D_GP: 0.020 D_real: 1.256 D_fake: 0.709 +(epoch: 267, iters: 1872, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.951 G_ID: 0.208 G_Rec: 0.452 D_GP: 0.055 D_real: 0.878 D_fake: 0.671 +(epoch: 267, iters: 2272, time: 0.064) G_GAN: 0.155 G_GAN_Feat: 0.687 G_ID: 0.119 G_Rec: 0.294 D_GP: 0.033 D_real: 1.013 D_fake: 0.845 +(epoch: 267, iters: 2672, time: 0.064) G_GAN: 0.382 G_GAN_Feat: 0.797 G_ID: 0.193 G_Rec: 0.413 D_GP: 0.020 D_real: 1.101 D_fake: 0.622 +(epoch: 267, iters: 3072, time: 0.064) G_GAN: 0.182 G_GAN_Feat: 0.621 G_ID: 0.125 G_Rec: 0.298 D_GP: 0.028 D_real: 1.112 D_fake: 0.818 +(epoch: 267, iters: 3472, time: 0.064) G_GAN: 0.402 G_GAN_Feat: 0.845 G_ID: 0.156 G_Rec: 0.405 D_GP: 0.030 D_real: 1.119 D_fake: 0.600 +(epoch: 267, iters: 3872, time: 0.064) G_GAN: 0.151 G_GAN_Feat: 0.612 G_ID: 0.124 G_Rec: 0.286 D_GP: 0.024 D_real: 1.080 D_fake: 0.849 +(epoch: 267, iters: 4272, time: 0.064) G_GAN: 0.228 G_GAN_Feat: 0.865 G_ID: 0.186 G_Rec: 0.388 D_GP: 0.139 D_real: 0.852 D_fake: 0.772 +(epoch: 267, iters: 4672, time: 0.064) G_GAN: 0.072 G_GAN_Feat: 0.713 G_ID: 0.132 G_Rec: 0.293 D_GP: 0.041 D_real: 0.812 D_fake: 0.928 +(epoch: 267, iters: 5072, time: 0.064) G_GAN: 0.348 G_GAN_Feat: 0.756 G_ID: 0.173 G_Rec: 0.335 D_GP: 0.020 D_real: 1.117 D_fake: 0.653 +(epoch: 267, iters: 5472, time: 0.064) G_GAN: 0.356 G_GAN_Feat: 0.814 G_ID: 0.132 G_Rec: 0.314 D_GP: 0.093 D_real: 1.083 D_fake: 0.662 +(epoch: 267, iters: 5872, time: 0.064) G_GAN: 0.316 G_GAN_Feat: 1.252 G_ID: 0.149 G_Rec: 0.427 D_GP: 0.091 D_real: 1.158 D_fake: 0.697 +(epoch: 267, iters: 6272, time: 0.064) G_GAN: 0.043 G_GAN_Feat: 0.691 G_ID: 0.133 G_Rec: 0.296 D_GP: 0.031 D_real: 0.830 D_fake: 0.957 +(epoch: 267, iters: 6672, time: 0.064) G_GAN: 0.285 G_GAN_Feat: 0.951 G_ID: 0.153 G_Rec: 0.433 D_GP: 0.023 D_real: 1.093 D_fake: 0.716 +(epoch: 267, iters: 7072, time: 0.064) G_GAN: 0.115 G_GAN_Feat: 0.732 G_ID: 0.124 G_Rec: 0.296 D_GP: 0.040 D_real: 0.987 D_fake: 0.885 +(epoch: 267, iters: 7472, time: 0.064) G_GAN: 0.572 G_GAN_Feat: 1.029 G_ID: 0.160 G_Rec: 0.432 D_GP: 0.039 D_real: 0.963 D_fake: 0.451 +(epoch: 267, iters: 7872, time: 0.064) G_GAN: 0.319 G_GAN_Feat: 0.747 G_ID: 0.169 G_Rec: 0.296 D_GP: 0.024 D_real: 1.145 D_fake: 0.682 +(epoch: 267, iters: 8272, time: 0.064) G_GAN: 0.414 G_GAN_Feat: 0.818 G_ID: 0.141 G_Rec: 0.403 D_GP: 0.018 D_real: 1.227 D_fake: 0.599 +(epoch: 268, iters: 64, time: 0.064) G_GAN: 0.023 G_GAN_Feat: 0.704 G_ID: 0.140 G_Rec: 0.306 D_GP: 0.027 D_real: 0.863 D_fake: 0.977 +(epoch: 268, iters: 464, time: 0.064) G_GAN: 0.489 G_GAN_Feat: 0.907 G_ID: 0.137 G_Rec: 0.403 D_GP: 0.033 D_real: 0.998 D_fake: 0.518 +(epoch: 268, iters: 864, time: 0.064) G_GAN: 0.472 G_GAN_Feat: 0.725 G_ID: 0.108 G_Rec: 0.295 D_GP: 0.104 D_real: 1.142 D_fake: 0.540 +(epoch: 268, iters: 1264, time: 0.064) G_GAN: 0.514 G_GAN_Feat: 0.990 G_ID: 0.141 G_Rec: 0.427 D_GP: 0.036 D_real: 1.046 D_fake: 0.518 +(epoch: 268, iters: 1664, time: 0.064) G_GAN: 0.501 G_GAN_Feat: 0.725 G_ID: 0.141 G_Rec: 0.306 D_GP: 0.021 D_real: 1.427 D_fake: 0.506 +(epoch: 268, iters: 2064, time: 0.064) G_GAN: -0.010 G_GAN_Feat: 0.968 G_ID: 0.187 G_Rec: 0.393 D_GP: 0.051 D_real: 0.470 D_fake: 1.010 +(epoch: 268, iters: 2464, time: 0.064) G_GAN: 0.366 G_GAN_Feat: 0.728 G_ID: 0.143 G_Rec: 0.329 D_GP: 0.023 D_real: 1.242 D_fake: 0.638 +(epoch: 268, iters: 2864, time: 0.064) G_GAN: 0.362 G_GAN_Feat: 0.891 G_ID: 0.183 G_Rec: 0.363 D_GP: 0.020 D_real: 1.082 D_fake: 0.642 +(epoch: 268, iters: 3264, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.854 G_ID: 0.096 G_Rec: 0.330 D_GP: 0.056 D_real: 0.877 D_fake: 0.730 +(epoch: 268, iters: 3664, time: 0.064) G_GAN: 0.518 G_GAN_Feat: 0.866 G_ID: 0.170 G_Rec: 0.366 D_GP: 0.047 D_real: 1.245 D_fake: 0.486 +(epoch: 268, iters: 4064, time: 0.064) G_GAN: 0.147 G_GAN_Feat: 0.571 G_ID: 0.115 G_Rec: 0.293 D_GP: 0.022 D_real: 1.112 D_fake: 0.853 +(epoch: 268, iters: 4464, time: 0.064) G_GAN: 0.282 G_GAN_Feat: 0.858 G_ID: 0.150 G_Rec: 0.416 D_GP: 0.034 D_real: 0.963 D_fake: 0.720 +(epoch: 268, iters: 4864, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.628 G_ID: 0.118 G_Rec: 0.278 D_GP: 0.024 D_real: 1.194 D_fake: 0.744 +(epoch: 268, iters: 5264, time: 0.064) G_GAN: 0.337 G_GAN_Feat: 0.962 G_ID: 0.179 G_Rec: 0.433 D_GP: 0.157 D_real: 0.609 D_fake: 0.667 +(epoch: 268, iters: 5664, time: 0.064) G_GAN: 0.032 G_GAN_Feat: 0.689 G_ID: 0.130 G_Rec: 0.290 D_GP: 0.029 D_real: 0.908 D_fake: 0.968 +(epoch: 268, iters: 6064, time: 0.064) G_GAN: 0.105 G_GAN_Feat: 0.981 G_ID: 0.179 G_Rec: 0.410 D_GP: 0.033 D_real: 0.511 D_fake: 0.895 +(epoch: 268, iters: 6464, time: 0.064) G_GAN: 0.091 G_GAN_Feat: 0.711 G_ID: 0.121 G_Rec: 0.281 D_GP: 0.033 D_real: 1.063 D_fake: 0.909 +(epoch: 268, iters: 6864, time: 0.064) G_GAN: 0.666 G_GAN_Feat: 0.945 G_ID: 0.186 G_Rec: 0.407 D_GP: 0.032 D_real: 1.256 D_fake: 0.359 +(epoch: 268, iters: 7264, time: 0.064) G_GAN: 0.265 G_GAN_Feat: 0.596 G_ID: 0.122 G_Rec: 0.299 D_GP: 0.018 D_real: 1.254 D_fake: 0.735 +(epoch: 268, iters: 7664, time: 0.064) G_GAN: 0.303 G_GAN_Feat: 0.714 G_ID: 0.153 G_Rec: 0.324 D_GP: 0.022 D_real: 1.134 D_fake: 0.697 +(epoch: 268, iters: 8064, time: 0.064) G_GAN: 0.007 G_GAN_Feat: 0.641 G_ID: 0.131 G_Rec: 0.290 D_GP: 0.022 D_real: 0.921 D_fake: 0.993 +(epoch: 268, iters: 8464, time: 0.064) G_GAN: 0.363 G_GAN_Feat: 0.808 G_ID: 0.173 G_Rec: 0.388 D_GP: 0.023 D_real: 1.105 D_fake: 0.637 +(epoch: 269, iters: 256, time: 0.064) G_GAN: -0.070 G_GAN_Feat: 0.762 G_ID: 0.188 G_Rec: 0.281 D_GP: 0.200 D_real: 0.384 D_fake: 1.070 +(epoch: 269, iters: 656, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 0.937 G_ID: 0.167 G_Rec: 0.380 D_GP: 0.025 D_real: 0.939 D_fake: 0.688 +(epoch: 269, iters: 1056, time: 0.064) G_GAN: 0.255 G_GAN_Feat: 0.815 G_ID: 0.127 G_Rec: 0.334 D_GP: 0.028 D_real: 0.901 D_fake: 0.746 +(epoch: 269, iters: 1456, time: 0.064) G_GAN: 0.139 G_GAN_Feat: 0.740 G_ID: 0.200 G_Rec: 0.391 D_GP: 0.021 D_real: 0.993 D_fake: 0.861 +(epoch: 269, iters: 1856, time: 0.064) G_GAN: 0.131 G_GAN_Feat: 0.696 G_ID: 0.101 G_Rec: 0.302 D_GP: 0.027 D_real: 1.006 D_fake: 0.869 +(epoch: 269, iters: 2256, time: 0.064) G_GAN: 0.369 G_GAN_Feat: 0.838 G_ID: 0.187 G_Rec: 0.393 D_GP: 0.031 D_real: 1.056 D_fake: 0.631 +(epoch: 269, iters: 2656, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 0.743 G_ID: 0.111 G_Rec: 0.295 D_GP: 0.034 D_real: 0.976 D_fake: 0.665 +(epoch: 269, iters: 3056, time: 0.064) G_GAN: 0.359 G_GAN_Feat: 0.851 G_ID: 0.166 G_Rec: 0.422 D_GP: 0.021 D_real: 1.096 D_fake: 0.643 +(epoch: 269, iters: 3456, time: 0.064) G_GAN: 0.257 G_GAN_Feat: 0.696 G_ID: 0.126 G_Rec: 0.274 D_GP: 0.035 D_real: 1.017 D_fake: 0.744 +(epoch: 269, iters: 3856, time: 0.064) G_GAN: 0.397 G_GAN_Feat: 0.788 G_ID: 0.153 G_Rec: 0.355 D_GP: 0.021 D_real: 1.205 D_fake: 0.616 +(epoch: 269, iters: 4256, time: 0.064) G_GAN: 0.231 G_GAN_Feat: 0.692 G_ID: 0.109 G_Rec: 0.284 D_GP: 0.020 D_real: 1.145 D_fake: 0.770 +(epoch: 269, iters: 4656, time: 0.064) G_GAN: 0.579 G_GAN_Feat: 1.175 G_ID: 0.164 G_Rec: 0.436 D_GP: 1.962 D_real: 0.407 D_fake: 0.490 +(epoch: 269, iters: 5056, time: 0.064) G_GAN: 0.250 G_GAN_Feat: 0.603 G_ID: 0.123 G_Rec: 0.272 D_GP: 0.018 D_real: 1.202 D_fake: 0.750 +(epoch: 269, iters: 5456, time: 0.064) G_GAN: 0.472 G_GAN_Feat: 0.841 G_ID: 0.150 G_Rec: 0.395 D_GP: 0.023 D_real: 1.251 D_fake: 0.531 +(epoch: 269, iters: 5856, time: 0.064) G_GAN: 0.040 G_GAN_Feat: 0.804 G_ID: 0.111 G_Rec: 0.315 D_GP: 0.049 D_real: 1.047 D_fake: 0.961 +(epoch: 269, iters: 6256, time: 0.064) G_GAN: 0.394 G_GAN_Feat: 0.834 G_ID: 0.162 G_Rec: 0.420 D_GP: 0.043 D_real: 1.018 D_fake: 0.609 +(epoch: 269, iters: 6656, time: 0.064) G_GAN: 0.149 G_GAN_Feat: 0.624 G_ID: 0.140 G_Rec: 0.260 D_GP: 0.027 D_real: 1.013 D_fake: 0.851 +(epoch: 269, iters: 7056, time: 0.064) G_GAN: 0.017 G_GAN_Feat: 0.876 G_ID: 0.163 G_Rec: 0.424 D_GP: 0.025 D_real: 0.757 D_fake: 0.983 +(epoch: 269, iters: 7456, time: 0.064) G_GAN: 0.176 G_GAN_Feat: 0.740 G_ID: 0.140 G_Rec: 0.309 D_GP: 0.044 D_real: 0.883 D_fake: 0.825 +(epoch: 269, iters: 7856, time: 0.064) G_GAN: 0.358 G_GAN_Feat: 0.936 G_ID: 0.205 G_Rec: 0.423 D_GP: 0.031 D_real: 0.999 D_fake: 0.646 +(epoch: 269, iters: 8256, time: 0.064) G_GAN: 0.262 G_GAN_Feat: 0.674 G_ID: 0.124 G_Rec: 0.280 D_GP: 0.035 D_real: 1.054 D_fake: 0.738 +(epoch: 270, iters: 48, time: 0.064) G_GAN: 0.362 G_GAN_Feat: 0.825 G_ID: 0.168 G_Rec: 0.400 D_GP: 0.022 D_real: 1.070 D_fake: 0.640 +(epoch: 270, iters: 448, time: 0.064) G_GAN: 0.155 G_GAN_Feat: 0.712 G_ID: 0.109 G_Rec: 0.264 D_GP: 0.033 D_real: 0.888 D_fake: 0.845 +(epoch: 270, iters: 848, time: 0.064) G_GAN: 0.362 G_GAN_Feat: 0.867 G_ID: 0.163 G_Rec: 0.352 D_GP: 0.040 D_real: 1.048 D_fake: 0.640 +(epoch: 270, iters: 1248, time: 0.064) G_GAN: 0.191 G_GAN_Feat: 0.873 G_ID: 0.131 G_Rec: 0.316 D_GP: 0.065 D_real: 0.910 D_fake: 0.819 +(epoch: 270, iters: 1648, time: 0.064) G_GAN: 0.226 G_GAN_Feat: 0.971 G_ID: 0.161 G_Rec: 0.402 D_GP: 0.025 D_real: 0.989 D_fake: 0.774 +(epoch: 270, iters: 2048, time: 0.064) G_GAN: -0.054 G_GAN_Feat: 0.688 G_ID: 0.162 G_Rec: 0.308 D_GP: 0.026 D_real: 0.812 D_fake: 1.054 +(epoch: 270, iters: 2448, time: 0.064) G_GAN: 0.272 G_GAN_Feat: 0.887 G_ID: 0.175 G_Rec: 0.409 D_GP: 0.032 D_real: 0.965 D_fake: 0.732 +(epoch: 270, iters: 2848, time: 0.064) G_GAN: 0.145 G_GAN_Feat: 0.774 G_ID: 0.122 G_Rec: 0.329 D_GP: 0.029 D_real: 0.793 D_fake: 0.855 +(epoch: 270, iters: 3248, time: 0.064) G_GAN: 0.574 G_GAN_Feat: 0.883 G_ID: 0.170 G_Rec: 0.383 D_GP: 0.081 D_real: 1.177 D_fake: 0.440 +(epoch: 270, iters: 3648, time: 0.064) G_GAN: 0.119 G_GAN_Feat: 0.739 G_ID: 0.137 G_Rec: 0.349 D_GP: 0.044 D_real: 0.785 D_fake: 0.882 +(epoch: 270, iters: 4048, time: 0.064) G_GAN: 0.482 G_GAN_Feat: 1.002 G_ID: 0.150 G_Rec: 0.389 D_GP: 0.052 D_real: 0.659 D_fake: 0.522 +(epoch: 270, iters: 4448, time: 0.064) G_GAN: 0.279 G_GAN_Feat: 0.683 G_ID: 0.136 G_Rec: 0.291 D_GP: 0.021 D_real: 1.157 D_fake: 0.721 +(epoch: 270, iters: 4848, time: 0.064) G_GAN: 0.445 G_GAN_Feat: 0.906 G_ID: 0.174 G_Rec: 0.381 D_GP: 0.028 D_real: 1.129 D_fake: 0.566 +(epoch: 270, iters: 5248, time: 0.064) G_GAN: 0.131 G_GAN_Feat: 0.726 G_ID: 0.118 G_Rec: 0.313 D_GP: 0.050 D_real: 0.946 D_fake: 0.871 +(epoch: 270, iters: 5648, time: 0.064) G_GAN: 0.555 G_GAN_Feat: 1.019 G_ID: 0.146 G_Rec: 0.439 D_GP: 0.069 D_real: 0.874 D_fake: 0.452 +(epoch: 270, iters: 6048, time: 0.064) G_GAN: 0.528 G_GAN_Feat: 0.743 G_ID: 0.138 G_Rec: 0.304 D_GP: 0.024 D_real: 1.371 D_fake: 0.476 +(epoch: 270, iters: 6448, time: 0.064) G_GAN: 0.394 G_GAN_Feat: 0.828 G_ID: 0.159 G_Rec: 0.382 D_GP: 0.021 D_real: 1.247 D_fake: 0.608 +(epoch: 270, iters: 6848, time: 0.064) G_GAN: 0.140 G_GAN_Feat: 0.600 G_ID: 0.124 G_Rec: 0.268 D_GP: 0.019 D_real: 1.097 D_fake: 0.860 +(epoch: 270, iters: 7248, time: 0.064) G_GAN: 0.374 G_GAN_Feat: 0.866 G_ID: 0.163 G_Rec: 0.389 D_GP: 0.022 D_real: 1.147 D_fake: 0.627 +(epoch: 270, iters: 7648, time: 0.064) G_GAN: 0.144 G_GAN_Feat: 0.704 G_ID: 0.140 G_Rec: 0.302 D_GP: 0.032 D_real: 0.981 D_fake: 0.856 +(epoch: 270, iters: 8048, time: 0.064) G_GAN: 0.201 G_GAN_Feat: 0.907 G_ID: 0.182 G_Rec: 0.386 D_GP: 0.029 D_real: 0.888 D_fake: 0.800 +(epoch: 270, iters: 8448, time: 0.064) G_GAN: 0.295 G_GAN_Feat: 0.745 G_ID: 0.157 G_Rec: 0.308 D_GP: 0.060 D_real: 0.953 D_fake: 0.705 +(epoch: 271, iters: 240, time: 0.064) G_GAN: 0.677 G_GAN_Feat: 0.908 G_ID: 0.149 G_Rec: 0.390 D_GP: 0.027 D_real: 1.356 D_fake: 0.335 +(epoch: 271, iters: 640, time: 0.064) G_GAN: 0.172 G_GAN_Feat: 0.797 G_ID: 0.121 G_Rec: 0.291 D_GP: 0.027 D_real: 0.761 D_fake: 0.828 +(epoch: 271, iters: 1040, time: 0.064) G_GAN: 0.544 G_GAN_Feat: 0.930 G_ID: 0.180 G_Rec: 0.394 D_GP: 0.027 D_real: 1.103 D_fake: 0.463 +(epoch: 271, iters: 1440, time: 0.064) G_GAN: 0.120 G_GAN_Feat: 0.678 G_ID: 0.140 G_Rec: 0.279 D_GP: 0.021 D_real: 1.022 D_fake: 0.880 +(epoch: 271, iters: 1840, time: 0.064) G_GAN: 0.452 G_GAN_Feat: 0.820 G_ID: 0.156 G_Rec: 0.413 D_GP: 0.020 D_real: 1.126 D_fake: 0.549 +(epoch: 271, iters: 2240, time: 0.064) G_GAN: 0.200 G_GAN_Feat: 0.715 G_ID: 0.129 G_Rec: 0.314 D_GP: 0.044 D_real: 1.077 D_fake: 0.800 +(epoch: 271, iters: 2640, time: 0.064) G_GAN: 0.507 G_GAN_Feat: 0.857 G_ID: 0.165 G_Rec: 0.403 D_GP: 0.021 D_real: 1.187 D_fake: 0.498 +(epoch: 271, iters: 3040, time: 0.064) G_GAN: 0.254 G_GAN_Feat: 0.647 G_ID: 0.176 G_Rec: 0.281 D_GP: 0.022 D_real: 1.201 D_fake: 0.764 +(epoch: 271, iters: 3440, time: 0.064) G_GAN: 0.552 G_GAN_Feat: 0.915 G_ID: 0.154 G_Rec: 0.371 D_GP: 0.023 D_real: 1.229 D_fake: 0.462 +(epoch: 271, iters: 3840, time: 0.064) G_GAN: 0.163 G_GAN_Feat: 0.887 G_ID: 0.129 G_Rec: 0.305 D_GP: 0.034 D_real: 0.439 D_fake: 0.837 +(epoch: 271, iters: 4240, time: 0.064) G_GAN: 0.393 G_GAN_Feat: 0.914 G_ID: 0.193 G_Rec: 0.432 D_GP: 0.024 D_real: 1.213 D_fake: 0.611 +(epoch: 271, iters: 4640, time: 0.064) G_GAN: 0.163 G_GAN_Feat: 0.615 G_ID: 0.144 G_Rec: 0.299 D_GP: 0.018 D_real: 1.124 D_fake: 0.838 +(epoch: 271, iters: 5040, time: 0.064) G_GAN: 0.165 G_GAN_Feat: 0.809 G_ID: 0.190 G_Rec: 0.366 D_GP: 0.030 D_real: 0.969 D_fake: 0.835 +(epoch: 271, iters: 5440, time: 0.064) G_GAN: 0.250 G_GAN_Feat: 0.663 G_ID: 0.127 G_Rec: 0.297 D_GP: 0.032 D_real: 1.127 D_fake: 0.753 +(epoch: 271, iters: 5840, time: 0.064) G_GAN: 0.282 G_GAN_Feat: 0.833 G_ID: 0.174 G_Rec: 0.390 D_GP: 0.027 D_real: 0.959 D_fake: 0.719 +(epoch: 271, iters: 6240, time: 0.064) G_GAN: 0.268 G_GAN_Feat: 0.836 G_ID: 0.105 G_Rec: 0.322 D_GP: 0.058 D_real: 0.816 D_fake: 0.736 +(epoch: 271, iters: 6640, time: 0.064) G_GAN: 0.218 G_GAN_Feat: 0.930 G_ID: 0.151 G_Rec: 0.408 D_GP: 0.024 D_real: 1.076 D_fake: 0.783 +(epoch: 271, iters: 7040, time: 0.064) G_GAN: 0.102 G_GAN_Feat: 0.785 G_ID: 0.119 G_Rec: 0.325 D_GP: 0.043 D_real: 0.872 D_fake: 0.900 +(epoch: 271, iters: 7440, time: 0.064) G_GAN: 0.571 G_GAN_Feat: 0.954 G_ID: 0.170 G_Rec: 0.349 D_GP: 0.035 D_real: 1.418 D_fake: 0.439 +(epoch: 271, iters: 7840, time: 0.064) G_GAN: 0.172 G_GAN_Feat: 0.725 G_ID: 0.128 G_Rec: 0.285 D_GP: 0.034 D_real: 0.977 D_fake: 0.828 +(epoch: 271, iters: 8240, time: 0.064) G_GAN: 0.449 G_GAN_Feat: 0.852 G_ID: 0.155 G_Rec: 0.357 D_GP: 0.023 D_real: 1.311 D_fake: 0.554 +(epoch: 272, iters: 32, time: 0.064) G_GAN: 0.301 G_GAN_Feat: 0.978 G_ID: 0.132 G_Rec: 0.341 D_GP: 0.108 D_real: 0.445 D_fake: 0.706 +(epoch: 272, iters: 432, time: 0.064) G_GAN: 0.330 G_GAN_Feat: 0.915 G_ID: 0.175 G_Rec: 0.397 D_GP: 0.027 D_real: 1.022 D_fake: 0.670 +(epoch: 272, iters: 832, time: 0.064) G_GAN: 0.289 G_GAN_Feat: 0.682 G_ID: 0.124 G_Rec: 0.336 D_GP: 0.028 D_real: 1.284 D_fake: 0.712 +(epoch: 272, iters: 1232, time: 0.064) G_GAN: 0.300 G_GAN_Feat: 0.776 G_ID: 0.174 G_Rec: 0.397 D_GP: 0.020 D_real: 1.082 D_fake: 0.700 +(epoch: 272, iters: 1632, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.560 G_ID: 0.099 G_Rec: 0.254 D_GP: 0.021 D_real: 1.225 D_fake: 0.717 +(epoch: 272, iters: 2032, time: 0.064) G_GAN: -0.015 G_GAN_Feat: 0.963 G_ID: 0.158 G_Rec: 0.443 D_GP: 0.180 D_real: 0.612 D_fake: 1.015 +(epoch: 272, iters: 2432, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 0.633 G_ID: 0.141 G_Rec: 0.273 D_GP: 0.037 D_real: 1.110 D_fake: 0.739 +(epoch: 272, iters: 2832, time: 0.064) G_GAN: 0.452 G_GAN_Feat: 0.974 G_ID: 0.169 G_Rec: 0.400 D_GP: 0.028 D_real: 1.195 D_fake: 0.552 +(epoch: 272, iters: 3232, time: 0.064) G_GAN: 0.048 G_GAN_Feat: 0.756 G_ID: 0.115 G_Rec: 0.330 D_GP: 0.044 D_real: 0.871 D_fake: 0.952 +(epoch: 272, iters: 3632, time: 0.064) G_GAN: 0.461 G_GAN_Feat: 0.862 G_ID: 0.164 G_Rec: 0.386 D_GP: 0.020 D_real: 1.258 D_fake: 0.540 +(epoch: 272, iters: 4032, time: 0.064) G_GAN: 0.245 G_GAN_Feat: 0.758 G_ID: 0.121 G_Rec: 0.312 D_GP: 0.040 D_real: 0.977 D_fake: 0.755 +(epoch: 272, iters: 4432, time: 0.064) G_GAN: 0.542 G_GAN_Feat: 0.946 G_ID: 0.160 G_Rec: 0.374 D_GP: 0.064 D_real: 0.897 D_fake: 0.462 +(epoch: 272, iters: 4832, time: 0.064) G_GAN: 0.663 G_GAN_Feat: 0.775 G_ID: 0.126 G_Rec: 0.281 D_GP: 0.112 D_real: 1.288 D_fake: 0.545 +(epoch: 272, iters: 5232, time: 0.064) G_GAN: 0.443 G_GAN_Feat: 1.027 G_ID: 0.160 G_Rec: 0.396 D_GP: 0.186 D_real: 0.459 D_fake: 0.561 +(epoch: 272, iters: 5632, time: 0.064) G_GAN: 0.297 G_GAN_Feat: 0.652 G_ID: 0.150 G_Rec: 0.307 D_GP: 0.019 D_real: 1.324 D_fake: 0.704 +(epoch: 272, iters: 6032, time: 0.064) G_GAN: 0.457 G_GAN_Feat: 0.780 G_ID: 0.180 G_Rec: 0.375 D_GP: 0.020 D_real: 1.271 D_fake: 0.546 +(epoch: 272, iters: 6432, time: 0.064) G_GAN: 0.284 G_GAN_Feat: 0.618 G_ID: 0.119 G_Rec: 0.297 D_GP: 0.022 D_real: 1.211 D_fake: 0.716 +(epoch: 272, iters: 6832, time: 0.064) G_GAN: 0.491 G_GAN_Feat: 0.735 G_ID: 0.173 G_Rec: 0.352 D_GP: 0.023 D_real: 1.333 D_fake: 0.512 +(epoch: 272, iters: 7232, time: 0.064) G_GAN: 0.136 G_GAN_Feat: 0.696 G_ID: 0.131 G_Rec: 0.328 D_GP: 0.034 D_real: 0.962 D_fake: 0.864 +(epoch: 272, iters: 7632, time: 0.064) G_GAN: 0.343 G_GAN_Feat: 0.974 G_ID: 0.169 G_Rec: 0.411 D_GP: 0.069 D_real: 0.892 D_fake: 0.660 +(epoch: 272, iters: 8032, time: 0.064) G_GAN: 0.165 G_GAN_Feat: 0.622 G_ID: 0.111 G_Rec: 0.272 D_GP: 0.026 D_real: 1.077 D_fake: 0.835 +(epoch: 272, iters: 8432, time: 0.064) G_GAN: 0.382 G_GAN_Feat: 0.822 G_ID: 0.166 G_Rec: 0.373 D_GP: 0.037 D_real: 1.076 D_fake: 0.619 +(epoch: 273, iters: 224, time: 0.064) G_GAN: 0.177 G_GAN_Feat: 0.631 G_ID: 0.105 G_Rec: 0.329 D_GP: 0.035 D_real: 1.056 D_fake: 0.823 +(epoch: 273, iters: 624, time: 0.064) G_GAN: 0.352 G_GAN_Feat: 0.886 G_ID: 0.141 G_Rec: 0.392 D_GP: 0.036 D_real: 0.927 D_fake: 0.650 +(epoch: 273, iters: 1024, time: 0.064) G_GAN: 0.109 G_GAN_Feat: 0.755 G_ID: 0.135 G_Rec: 0.358 D_GP: 0.053 D_real: 0.760 D_fake: 0.891 +(epoch: 273, iters: 1424, time: 0.064) G_GAN: 0.337 G_GAN_Feat: 0.811 G_ID: 0.175 G_Rec: 0.365 D_GP: 0.029 D_real: 1.064 D_fake: 0.663 +(epoch: 273, iters: 1824, time: 0.064) G_GAN: 0.383 G_GAN_Feat: 0.762 G_ID: 0.134 G_Rec: 0.341 D_GP: 0.047 D_real: 1.085 D_fake: 0.625 +(epoch: 273, iters: 2224, time: 0.064) G_GAN: 0.253 G_GAN_Feat: 1.014 G_ID: 0.157 G_Rec: 0.453 D_GP: 0.153 D_real: 0.456 D_fake: 0.748 +(epoch: 273, iters: 2624, time: 0.064) G_GAN: 0.244 G_GAN_Feat: 0.815 G_ID: 0.128 G_Rec: 0.296 D_GP: 0.028 D_real: 1.134 D_fake: 0.757 +(epoch: 273, iters: 3024, time: 0.064) G_GAN: 0.553 G_GAN_Feat: 0.934 G_ID: 0.172 G_Rec: 0.396 D_GP: 0.060 D_real: 0.954 D_fake: 0.458 +(epoch: 273, iters: 3424, time: 0.064) G_GAN: 0.190 G_GAN_Feat: 0.706 G_ID: 0.097 G_Rec: 0.277 D_GP: 0.027 D_real: 1.021 D_fake: 0.810 +(epoch: 273, iters: 3824, time: 0.064) G_GAN: 0.320 G_GAN_Feat: 0.825 G_ID: 0.172 G_Rec: 0.392 D_GP: 0.022 D_real: 1.116 D_fake: 0.681 +(epoch: 273, iters: 4224, time: 0.064) G_GAN: 0.073 G_GAN_Feat: 0.622 G_ID: 0.128 G_Rec: 0.289 D_GP: 0.019 D_real: 1.069 D_fake: 0.927 +(epoch: 273, iters: 4624, time: 0.064) G_GAN: 0.381 G_GAN_Feat: 0.879 G_ID: 0.155 G_Rec: 0.445 D_GP: 0.037 D_real: 0.930 D_fake: 0.625 +(epoch: 273, iters: 5024, time: 0.064) G_GAN: -0.040 G_GAN_Feat: 0.789 G_ID: 0.135 G_Rec: 0.318 D_GP: 0.121 D_real: 0.510 D_fake: 1.041 +(epoch: 273, iters: 5424, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 0.822 G_ID: 0.176 G_Rec: 0.374 D_GP: 0.026 D_real: 1.134 D_fake: 0.555 +(epoch: 273, iters: 5824, time: 0.064) G_GAN: 0.212 G_GAN_Feat: 0.636 G_ID: 0.134 G_Rec: 0.285 D_GP: 0.028 D_real: 1.090 D_fake: 0.788 +(epoch: 273, iters: 6224, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.798 G_ID: 0.168 G_Rec: 0.385 D_GP: 0.030 D_real: 1.098 D_fake: 0.669 +(epoch: 273, iters: 6624, time: 0.064) G_GAN: 0.252 G_GAN_Feat: 1.061 G_ID: 0.135 G_Rec: 0.371 D_GP: 1.437 D_real: 0.384 D_fake: 0.766 +(epoch: 273, iters: 7024, time: 0.064) G_GAN: 0.344 G_GAN_Feat: 0.859 G_ID: 0.161 G_Rec: 0.429 D_GP: 0.022 D_real: 1.153 D_fake: 0.659 +(epoch: 273, iters: 7424, time: 0.064) G_GAN: -0.042 G_GAN_Feat: 0.580 G_ID: 0.123 G_Rec: 0.302 D_GP: 0.019 D_real: 0.897 D_fake: 1.042 +(epoch: 273, iters: 7824, time: 0.064) G_GAN: 0.268 G_GAN_Feat: 0.852 G_ID: 0.165 G_Rec: 0.409 D_GP: 0.036 D_real: 0.943 D_fake: 0.732 +(epoch: 273, iters: 8224, time: 0.064) G_GAN: 0.130 G_GAN_Feat: 0.636 G_ID: 0.118 G_Rec: 0.272 D_GP: 0.024 D_real: 1.041 D_fake: 0.870 +(epoch: 274, iters: 16, time: 0.064) G_GAN: 0.438 G_GAN_Feat: 0.906 G_ID: 0.155 G_Rec: 0.420 D_GP: 0.060 D_real: 1.038 D_fake: 0.571 +(epoch: 274, iters: 416, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 0.669 G_ID: 0.112 G_Rec: 0.302 D_GP: 0.022 D_real: 1.259 D_fake: 0.704 +(epoch: 274, iters: 816, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.978 G_ID: 0.161 G_Rec: 0.397 D_GP: 0.302 D_real: 0.393 D_fake: 0.721 +(epoch: 274, iters: 1216, time: 0.064) G_GAN: 0.048 G_GAN_Feat: 0.773 G_ID: 0.122 G_Rec: 0.296 D_GP: 0.081 D_real: 0.699 D_fake: 0.952 +(epoch: 274, iters: 1616, time: 0.064) G_GAN: 0.353 G_GAN_Feat: 0.709 G_ID: 0.158 G_Rec: 0.381 D_GP: 0.017 D_real: 1.104 D_fake: 0.647 +(epoch: 274, iters: 2016, time: 0.064) G_GAN: 0.220 G_GAN_Feat: 0.557 G_ID: 0.110 G_Rec: 0.313 D_GP: 0.016 D_real: 1.154 D_fake: 0.781 +(epoch: 274, iters: 2416, time: 0.064) G_GAN: 0.251 G_GAN_Feat: 0.661 G_ID: 0.168 G_Rec: 0.351 D_GP: 0.021 D_real: 1.044 D_fake: 0.749 +(epoch: 274, iters: 2816, time: 0.064) G_GAN: 0.179 G_GAN_Feat: 0.527 G_ID: 0.103 G_Rec: 0.266 D_GP: 0.018 D_real: 1.102 D_fake: 0.821 +(epoch: 274, iters: 3216, time: 0.064) G_GAN: 0.353 G_GAN_Feat: 0.706 G_ID: 0.182 G_Rec: 0.349 D_GP: 0.025 D_real: 1.154 D_fake: 0.648 +(epoch: 274, iters: 3616, time: 0.064) G_GAN: -0.057 G_GAN_Feat: 0.721 G_ID: 0.119 G_Rec: 0.333 D_GP: 0.042 D_real: 0.737 D_fake: 1.058 +(epoch: 274, iters: 4016, time: 0.064) G_GAN: 0.442 G_GAN_Feat: 0.794 G_ID: 0.157 G_Rec: 0.404 D_GP: 0.029 D_real: 1.122 D_fake: 0.570 +(epoch: 274, iters: 4416, time: 0.064) G_GAN: 0.150 G_GAN_Feat: 0.641 G_ID: 0.140 G_Rec: 0.291 D_GP: 0.038 D_real: 1.020 D_fake: 0.852 +(epoch: 274, iters: 4816, time: 0.064) G_GAN: 0.055 G_GAN_Feat: 0.832 G_ID: 0.169 G_Rec: 0.399 D_GP: 0.044 D_real: 0.713 D_fake: 0.945 +(epoch: 274, iters: 5216, time: 0.064) G_GAN: 0.087 G_GAN_Feat: 0.780 G_ID: 0.130 G_Rec: 0.360 D_GP: 0.064 D_real: 0.675 D_fake: 0.913 +(epoch: 274, iters: 5616, time: 0.064) G_GAN: 0.288 G_GAN_Feat: 0.779 G_ID: 0.218 G_Rec: 0.399 D_GP: 0.028 D_real: 1.010 D_fake: 0.715 +(epoch: 274, iters: 6016, time: 0.064) G_GAN: 0.050 G_GAN_Feat: 0.715 G_ID: 0.130 G_Rec: 0.289 D_GP: 0.051 D_real: 0.846 D_fake: 0.950 +(epoch: 274, iters: 6416, time: 0.064) G_GAN: 0.353 G_GAN_Feat: 0.913 G_ID: 0.196 G_Rec: 0.396 D_GP: 0.050 D_real: 0.959 D_fake: 0.655 +(epoch: 274, iters: 6816, time: 0.064) G_GAN: 0.176 G_GAN_Feat: 0.599 G_ID: 0.115 G_Rec: 0.267 D_GP: 0.024 D_real: 1.105 D_fake: 0.825 +(epoch: 274, iters: 7216, time: 0.064) G_GAN: 0.214 G_GAN_Feat: 0.844 G_ID: 0.154 G_Rec: 0.400 D_GP: 0.021 D_real: 0.960 D_fake: 0.786 +(epoch: 274, iters: 7616, time: 0.064) G_GAN: 0.203 G_GAN_Feat: 0.609 G_ID: 0.127 G_Rec: 0.278 D_GP: 0.024 D_real: 1.057 D_fake: 0.797 +(epoch: 274, iters: 8016, time: 0.064) G_GAN: 0.301 G_GAN_Feat: 0.773 G_ID: 0.177 G_Rec: 0.361 D_GP: 0.029 D_real: 1.140 D_fake: 0.705 +(epoch: 274, iters: 8416, time: 0.064) G_GAN: 0.269 G_GAN_Feat: 0.673 G_ID: 0.117 G_Rec: 0.306 D_GP: 0.056 D_real: 1.071 D_fake: 0.732 +(epoch: 275, iters: 208, time: 0.064) G_GAN: 0.342 G_GAN_Feat: 0.720 G_ID: 0.172 G_Rec: 0.348 D_GP: 0.023 D_real: 1.172 D_fake: 0.658 +(epoch: 275, iters: 608, time: 0.064) G_GAN: 0.228 G_GAN_Feat: 0.738 G_ID: 0.113 G_Rec: 0.322 D_GP: 0.037 D_real: 1.037 D_fake: 0.774 +(epoch: 275, iters: 1008, time: 0.064) G_GAN: 0.171 G_GAN_Feat: 0.800 G_ID: 0.177 G_Rec: 0.359 D_GP: 0.032 D_real: 0.883 D_fake: 0.829 +(epoch: 275, iters: 1408, time: 0.064) G_GAN: 0.192 G_GAN_Feat: 0.705 G_ID: 0.117 G_Rec: 0.292 D_GP: 0.082 D_real: 0.957 D_fake: 0.808 +(epoch: 275, iters: 1808, time: 0.064) G_GAN: 0.319 G_GAN_Feat: 0.906 G_ID: 0.160 G_Rec: 0.384 D_GP: 0.064 D_real: 0.830 D_fake: 0.682 +(epoch: 275, iters: 2208, time: 0.064) G_GAN: 0.450 G_GAN_Feat: 0.746 G_ID: 0.131 G_Rec: 0.298 D_GP: 0.051 D_real: 1.119 D_fake: 0.552 +(epoch: 275, iters: 2608, time: 0.064) G_GAN: 0.404 G_GAN_Feat: 1.119 G_ID: 0.153 G_Rec: 0.424 D_GP: 0.226 D_real: 1.161 D_fake: 0.615 +(epoch: 275, iters: 3008, time: 0.064) G_GAN: 0.181 G_GAN_Feat: 0.718 G_ID: 0.157 G_Rec: 0.303 D_GP: 0.020 D_real: 1.024 D_fake: 0.821 +(epoch: 275, iters: 3408, time: 0.064) G_GAN: 0.267 G_GAN_Feat: 0.753 G_ID: 0.167 G_Rec: 0.335 D_GP: 0.035 D_real: 1.051 D_fake: 0.734 +(epoch: 275, iters: 3808, time: 0.064) G_GAN: 0.313 G_GAN_Feat: 0.665 G_ID: 0.131 G_Rec: 0.278 D_GP: 0.020 D_real: 1.241 D_fake: 0.687 +(epoch: 275, iters: 4208, time: 0.064) G_GAN: 0.575 G_GAN_Feat: 0.837 G_ID: 0.144 G_Rec: 0.401 D_GP: 0.032 D_real: 1.266 D_fake: 0.439 +(epoch: 275, iters: 4608, time: 0.064) G_GAN: 0.212 G_GAN_Feat: 0.730 G_ID: 0.126 G_Rec: 0.293 D_GP: 0.035 D_real: 0.967 D_fake: 0.790 +(epoch: 275, iters: 5008, time: 0.064) G_GAN: 0.502 G_GAN_Feat: 0.936 G_ID: 0.157 G_Rec: 0.401 D_GP: 0.026 D_real: 1.042 D_fake: 0.499 +(epoch: 275, iters: 5408, time: 0.064) G_GAN: 0.235 G_GAN_Feat: 0.674 G_ID: 0.138 G_Rec: 0.276 D_GP: 0.023 D_real: 1.068 D_fake: 0.765 +(epoch: 275, iters: 5808, time: 0.064) G_GAN: 0.299 G_GAN_Feat: 1.014 G_ID: 0.181 G_Rec: 0.428 D_GP: 0.213 D_real: 0.539 D_fake: 0.702 +(epoch: 275, iters: 6208, time: 0.064) G_GAN: 0.267 G_GAN_Feat: 0.884 G_ID: 0.108 G_Rec: 0.301 D_GP: 0.836 D_real: 0.518 D_fake: 0.742 +(epoch: 275, iters: 6608, time: 0.064) G_GAN: 0.254 G_GAN_Feat: 0.767 G_ID: 0.173 G_Rec: 0.348 D_GP: 0.020 D_real: 1.097 D_fake: 0.747 +(epoch: 275, iters: 7008, time: 0.064) G_GAN: 0.117 G_GAN_Feat: 0.883 G_ID: 0.110 G_Rec: 0.301 D_GP: 0.041 D_real: 0.495 D_fake: 0.883 +(epoch: 275, iters: 7408, time: 0.064) G_GAN: 0.559 G_GAN_Feat: 1.080 G_ID: 0.144 G_Rec: 0.442 D_GP: 0.079 D_real: 0.562 D_fake: 0.458 +(epoch: 275, iters: 7808, time: 0.064) G_GAN: 0.364 G_GAN_Feat: 0.873 G_ID: 0.118 G_Rec: 0.318 D_GP: 0.031 D_real: 0.811 D_fake: 0.645 +(epoch: 275, iters: 8208, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 0.832 G_ID: 0.166 G_Rec: 0.429 D_GP: 0.018 D_real: 1.228 D_fake: 0.558 +(epoch: 275, iters: 8608, time: 0.064) G_GAN: -0.088 G_GAN_Feat: 0.584 G_ID: 0.147 G_Rec: 0.254 D_GP: 0.021 D_real: 0.836 D_fake: 1.088 +(epoch: 276, iters: 400, time: 0.064) G_GAN: 0.599 G_GAN_Feat: 0.962 G_ID: 0.170 G_Rec: 0.417 D_GP: 0.046 D_real: 1.069 D_fake: 0.418 +(epoch: 276, iters: 800, time: 0.064) G_GAN: 0.374 G_GAN_Feat: 0.687 G_ID: 0.120 G_Rec: 0.313 D_GP: 0.036 D_real: 1.207 D_fake: 0.627 +(epoch: 276, iters: 1200, time: 0.064) G_GAN: 0.619 G_GAN_Feat: 0.967 G_ID: 0.162 G_Rec: 0.431 D_GP: 0.025 D_real: 1.114 D_fake: 0.430 +(epoch: 276, iters: 1600, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.695 G_ID: 0.158 G_Rec: 0.309 D_GP: 0.020 D_real: 1.165 D_fake: 0.724 +(epoch: 276, iters: 2000, time: 0.064) G_GAN: 0.449 G_GAN_Feat: 0.978 G_ID: 0.161 G_Rec: 0.402 D_GP: 0.062 D_real: 0.715 D_fake: 0.567 +(epoch: 276, iters: 2400, time: 0.064) G_GAN: 0.088 G_GAN_Feat: 0.663 G_ID: 0.115 G_Rec: 0.296 D_GP: 0.022 D_real: 1.178 D_fake: 0.914 +(epoch: 276, iters: 2800, time: 0.064) G_GAN: 0.427 G_GAN_Feat: 0.677 G_ID: 0.159 G_Rec: 0.327 D_GP: 0.020 D_real: 1.334 D_fake: 0.573 +(epoch: 276, iters: 3200, time: 0.064) G_GAN: 0.321 G_GAN_Feat: 0.572 G_ID: 0.126 G_Rec: 0.277 D_GP: 0.021 D_real: 1.285 D_fake: 0.679 +(epoch: 276, iters: 3600, time: 0.064) G_GAN: 0.432 G_GAN_Feat: 0.735 G_ID: 0.144 G_Rec: 0.340 D_GP: 0.022 D_real: 1.276 D_fake: 0.573 +(epoch: 276, iters: 4000, time: 0.064) G_GAN: 0.211 G_GAN_Feat: 0.611 G_ID: 0.132 G_Rec: 0.290 D_GP: 0.025 D_real: 1.097 D_fake: 0.789 +(epoch: 276, iters: 4400, time: 0.064) G_GAN: 0.442 G_GAN_Feat: 0.806 G_ID: 0.160 G_Rec: 0.386 D_GP: 0.023 D_real: 1.188 D_fake: 0.565 +(epoch: 276, iters: 4800, time: 0.064) G_GAN: 0.091 G_GAN_Feat: 0.718 G_ID: 0.132 G_Rec: 0.317 D_GP: 0.060 D_real: 0.803 D_fake: 0.909 +(epoch: 276, iters: 5200, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 0.810 G_ID: 0.166 G_Rec: 0.400 D_GP: 0.024 D_real: 1.126 D_fake: 0.651 +(epoch: 276, iters: 5600, time: 0.064) G_GAN: 0.064 G_GAN_Feat: 0.678 G_ID: 0.117 G_Rec: 0.314 D_GP: 0.030 D_real: 0.922 D_fake: 0.936 +(epoch: 276, iters: 6000, time: 0.064) G_GAN: 0.259 G_GAN_Feat: 0.785 G_ID: 0.166 G_Rec: 0.375 D_GP: 0.028 D_real: 1.015 D_fake: 0.741 +(epoch: 276, iters: 6400, time: 0.064) G_GAN: 0.160 G_GAN_Feat: 0.642 G_ID: 0.113 G_Rec: 0.272 D_GP: 0.022 D_real: 1.048 D_fake: 0.840 +(epoch: 276, iters: 6800, time: 0.064) G_GAN: 0.366 G_GAN_Feat: 0.857 G_ID: 0.150 G_Rec: 0.375 D_GP: 0.028 D_real: 1.078 D_fake: 0.635 +(epoch: 276, iters: 7200, time: 0.064) G_GAN: 0.182 G_GAN_Feat: 0.577 G_ID: 0.119 G_Rec: 0.261 D_GP: 0.024 D_real: 1.133 D_fake: 0.818 +(epoch: 276, iters: 7600, time: 0.064) G_GAN: 0.382 G_GAN_Feat: 0.905 G_ID: 0.140 G_Rec: 0.397 D_GP: 0.036 D_real: 0.950 D_fake: 0.621 +(epoch: 276, iters: 8000, time: 0.064) G_GAN: 0.037 G_GAN_Feat: 0.830 G_ID: 0.144 G_Rec: 0.339 D_GP: 0.083 D_real: 0.769 D_fake: 0.963 +(epoch: 276, iters: 8400, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.859 G_ID: 0.176 G_Rec: 0.384 D_GP: 0.021 D_real: 0.939 D_fake: 0.751 +(epoch: 277, iters: 192, time: 0.064) G_GAN: 0.315 G_GAN_Feat: 0.704 G_ID: 0.116 G_Rec: 0.282 D_GP: 0.042 D_real: 1.137 D_fake: 0.686 +(epoch: 277, iters: 592, time: 0.064) G_GAN: 0.380 G_GAN_Feat: 0.853 G_ID: 0.157 G_Rec: 0.376 D_GP: 0.022 D_real: 1.127 D_fake: 0.621 +(epoch: 277, iters: 992, time: 0.064) G_GAN: 0.200 G_GAN_Feat: 0.742 G_ID: 0.147 G_Rec: 0.384 D_GP: 0.047 D_real: 0.957 D_fake: 0.802 +(epoch: 277, iters: 1392, time: 0.064) G_GAN: 0.368 G_GAN_Feat: 0.935 G_ID: 0.161 G_Rec: 0.408 D_GP: 0.036 D_real: 0.943 D_fake: 0.634 +(epoch: 277, iters: 1792, time: 0.064) G_GAN: 0.273 G_GAN_Feat: 0.684 G_ID: 0.125 G_Rec: 0.271 D_GP: 0.029 D_real: 1.092 D_fake: 0.729 +(epoch: 277, iters: 2192, time: 0.064) G_GAN: 0.260 G_GAN_Feat: 0.834 G_ID: 0.185 G_Rec: 0.366 D_GP: 0.021 D_real: 1.043 D_fake: 0.742 +(epoch: 277, iters: 2592, time: 0.064) G_GAN: 0.237 G_GAN_Feat: 0.902 G_ID: 0.118 G_Rec: 0.316 D_GP: 0.095 D_real: 0.582 D_fake: 0.764 +(epoch: 277, iters: 2992, time: 0.064) G_GAN: 0.489 G_GAN_Feat: 0.929 G_ID: 0.188 G_Rec: 0.380 D_GP: 0.047 D_real: 1.153 D_fake: 0.557 +(epoch: 277, iters: 3392, time: 0.064) G_GAN: 0.255 G_GAN_Feat: 0.631 G_ID: 0.114 G_Rec: 0.301 D_GP: 0.019 D_real: 1.244 D_fake: 0.747 +(epoch: 277, iters: 3792, time: 0.064) G_GAN: 0.219 G_GAN_Feat: 0.730 G_ID: 0.148 G_Rec: 0.354 D_GP: 0.022 D_real: 1.025 D_fake: 0.781 +(epoch: 277, iters: 4192, time: 0.064) G_GAN: 0.087 G_GAN_Feat: 0.719 G_ID: 0.135 G_Rec: 0.306 D_GP: 0.051 D_real: 0.914 D_fake: 0.914 +(epoch: 277, iters: 4592, time: 0.064) G_GAN: 0.340 G_GAN_Feat: 0.953 G_ID: 0.167 G_Rec: 0.395 D_GP: 0.055 D_real: 0.806 D_fake: 0.661 +(epoch: 277, iters: 4992, time: 0.064) G_GAN: 0.379 G_GAN_Feat: 0.800 G_ID: 0.122 G_Rec: 0.333 D_GP: 0.039 D_real: 1.110 D_fake: 0.630 +(epoch: 277, iters: 5392, time: 0.064) G_GAN: 0.105 G_GAN_Feat: 0.849 G_ID: 0.180 G_Rec: 0.338 D_GP: 0.053 D_real: 0.761 D_fake: 0.898 +(epoch: 277, iters: 5792, time: 0.064) G_GAN: -0.208 G_GAN_Feat: 0.902 G_ID: 0.144 G_Rec: 0.336 D_GP: 0.130 D_real: 0.122 D_fake: 1.209 +(epoch: 277, iters: 6192, time: 0.064) G_GAN: 0.638 G_GAN_Feat: 0.976 G_ID: 0.173 G_Rec: 0.400 D_GP: 0.038 D_real: 1.188 D_fake: 0.382 +(epoch: 277, iters: 6592, time: 0.064) G_GAN: -0.005 G_GAN_Feat: 0.747 G_ID: 0.127 G_Rec: 0.310 D_GP: 0.028 D_real: 0.881 D_fake: 1.005 +(epoch: 277, iters: 6992, time: 0.064) G_GAN: 0.222 G_GAN_Feat: 0.905 G_ID: 0.166 G_Rec: 0.397 D_GP: 0.022 D_real: 0.907 D_fake: 0.778 +(epoch: 277, iters: 7392, time: 0.064) G_GAN: 0.389 G_GAN_Feat: 0.722 G_ID: 0.117 G_Rec: 0.328 D_GP: 0.036 D_real: 1.295 D_fake: 0.612 +(epoch: 277, iters: 7792, time: 0.064) G_GAN: 0.486 G_GAN_Feat: 1.067 G_ID: 0.151 G_Rec: 0.418 D_GP: 0.046 D_real: 0.470 D_fake: 0.517 +(epoch: 277, iters: 8192, time: 0.064) G_GAN: 0.255 G_GAN_Feat: 0.709 G_ID: 0.116 G_Rec: 0.309 D_GP: 0.018 D_real: 1.195 D_fake: 0.746 +(epoch: 277, iters: 8592, time: 0.064) G_GAN: 0.231 G_GAN_Feat: 0.935 G_ID: 0.149 G_Rec: 0.389 D_GP: 0.039 D_real: 0.759 D_fake: 0.780 +(epoch: 278, iters: 384, time: 0.064) G_GAN: 0.180 G_GAN_Feat: 0.815 G_ID: 0.117 G_Rec: 0.314 D_GP: 0.107 D_real: 0.558 D_fake: 0.821 +(epoch: 278, iters: 784, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 0.914 G_ID: 0.187 G_Rec: 0.405 D_GP: 0.032 D_real: 1.071 D_fake: 0.780 +(epoch: 278, iters: 1184, time: 0.064) G_GAN: 0.091 G_GAN_Feat: 0.626 G_ID: 0.125 G_Rec: 0.277 D_GP: 0.020 D_real: 1.053 D_fake: 0.909 +(epoch: 278, iters: 1584, time: 0.064) G_GAN: 0.460 G_GAN_Feat: 0.803 G_ID: 0.161 G_Rec: 0.361 D_GP: 0.021 D_real: 1.282 D_fake: 0.541 +(epoch: 278, iters: 1984, time: 0.064) G_GAN: 0.248 G_GAN_Feat: 1.031 G_ID: 0.121 G_Rec: 0.314 D_GP: 0.384 D_real: 0.402 D_fake: 0.753 +(epoch: 278, iters: 2384, time: 0.064) G_GAN: -0.027 G_GAN_Feat: 1.030 G_ID: 0.178 G_Rec: 0.381 D_GP: 0.096 D_real: 0.196 D_fake: 1.027 +(epoch: 278, iters: 2784, time: 0.064) G_GAN: 0.105 G_GAN_Feat: 0.763 G_ID: 0.117 G_Rec: 0.291 D_GP: 0.035 D_real: 0.870 D_fake: 0.895 +(epoch: 278, iters: 3184, time: 0.064) G_GAN: 0.418 G_GAN_Feat: 1.005 G_ID: 0.151 G_Rec: 0.419 D_GP: 0.044 D_real: 0.834 D_fake: 0.585 +(epoch: 278, iters: 3584, time: 0.064) G_GAN: 0.406 G_GAN_Feat: 0.721 G_ID: 0.142 G_Rec: 0.293 D_GP: 0.025 D_real: 1.204 D_fake: 0.597 +(epoch: 278, iters: 3984, time: 0.064) G_GAN: 0.563 G_GAN_Feat: 0.875 G_ID: 0.141 G_Rec: 0.369 D_GP: 0.025 D_real: 1.214 D_fake: 0.441 +(epoch: 278, iters: 4384, time: 0.064) G_GAN: 0.390 G_GAN_Feat: 0.696 G_ID: 0.151 G_Rec: 0.308 D_GP: 0.022 D_real: 1.246 D_fake: 0.615 +(epoch: 278, iters: 4784, time: 0.064) G_GAN: 0.345 G_GAN_Feat: 0.742 G_ID: 0.181 G_Rec: 0.391 D_GP: 0.018 D_real: 1.171 D_fake: 0.660 +(epoch: 278, iters: 5184, time: 0.064) G_GAN: 0.111 G_GAN_Feat: 0.606 G_ID: 0.107 G_Rec: 0.301 D_GP: 0.017 D_real: 1.112 D_fake: 0.889 +(epoch: 278, iters: 5584, time: 0.064) G_GAN: 0.093 G_GAN_Feat: 0.708 G_ID: 0.191 G_Rec: 0.358 D_GP: 0.019 D_real: 0.903 D_fake: 0.907 +(epoch: 278, iters: 5984, time: 0.064) G_GAN: 0.128 G_GAN_Feat: 0.518 G_ID: 0.115 G_Rec: 0.252 D_GP: 0.020 D_real: 1.100 D_fake: 0.872 +(epoch: 278, iters: 6384, time: 0.064) G_GAN: 0.134 G_GAN_Feat: 0.723 G_ID: 0.167 G_Rec: 0.344 D_GP: 0.024 D_real: 0.964 D_fake: 0.868 +(epoch: 278, iters: 6784, time: 0.064) G_GAN: -0.101 G_GAN_Feat: 0.694 G_ID: 0.138 G_Rec: 0.324 D_GP: 0.040 D_real: 0.737 D_fake: 1.101 +(epoch: 278, iters: 7184, time: 0.064) G_GAN: 0.480 G_GAN_Feat: 0.901 G_ID: 0.153 G_Rec: 0.384 D_GP: 0.037 D_real: 1.084 D_fake: 0.534 +(epoch: 278, iters: 7584, time: 0.064) G_GAN: 0.298 G_GAN_Feat: 0.622 G_ID: 0.116 G_Rec: 0.300 D_GP: 0.032 D_real: 1.219 D_fake: 0.702 +(epoch: 278, iters: 7984, time: 0.064) G_GAN: 0.311 G_GAN_Feat: 0.784 G_ID: 0.154 G_Rec: 0.362 D_GP: 0.028 D_real: 1.134 D_fake: 0.691 +(epoch: 278, iters: 8384, time: 0.064) G_GAN: -0.182 G_GAN_Feat: 0.758 G_ID: 0.120 G_Rec: 0.314 D_GP: 0.048 D_real: 0.958 D_fake: 1.182 +(epoch: 279, iters: 176, time: 0.064) G_GAN: 0.279 G_GAN_Feat: 0.910 G_ID: 0.177 G_Rec: 0.380 D_GP: 0.117 D_real: 0.782 D_fake: 0.725 +(epoch: 279, iters: 576, time: 0.064) G_GAN: 0.332 G_GAN_Feat: 0.689 G_ID: 0.134 G_Rec: 0.299 D_GP: 0.039 D_real: 1.131 D_fake: 0.669 +(epoch: 279, iters: 976, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.907 G_ID: 0.167 G_Rec: 0.437 D_GP: 0.126 D_real: 0.660 D_fake: 0.725 +(epoch: 279, iters: 1376, time: 0.064) G_GAN: 0.261 G_GAN_Feat: 0.852 G_ID: 0.124 G_Rec: 0.315 D_GP: 0.104 D_real: 0.675 D_fake: 0.754 +(epoch: 279, iters: 1776, time: 0.064) G_GAN: 0.070 G_GAN_Feat: 0.781 G_ID: 0.167 G_Rec: 0.381 D_GP: 0.025 D_real: 0.922 D_fake: 0.930 +(epoch: 279, iters: 2176, time: 0.064) G_GAN: -0.009 G_GAN_Feat: 0.930 G_ID: 0.122 G_Rec: 0.358 D_GP: 0.307 D_real: 0.308 D_fake: 1.010 +(epoch: 279, iters: 2576, time: 0.064) G_GAN: 0.715 G_GAN_Feat: 1.205 G_ID: 0.163 G_Rec: 0.436 D_GP: 0.066 D_real: 1.284 D_fake: 0.405 +(epoch: 279, iters: 2976, time: 0.064) G_GAN: 0.040 G_GAN_Feat: 0.623 G_ID: 0.128 G_Rec: 0.284 D_GP: 0.020 D_real: 0.974 D_fake: 0.962 +(epoch: 279, iters: 3376, time: 0.064) G_GAN: 0.032 G_GAN_Feat: 0.929 G_ID: 0.181 G_Rec: 0.392 D_GP: 0.080 D_real: 0.496 D_fake: 0.968 +(epoch: 279, iters: 3776, time: 0.064) G_GAN: 0.130 G_GAN_Feat: 0.813 G_ID: 0.118 G_Rec: 0.317 D_GP: 0.116 D_real: 0.442 D_fake: 0.874 +(epoch: 279, iters: 4176, time: 0.064) G_GAN: 0.361 G_GAN_Feat: 0.849 G_ID: 0.170 G_Rec: 0.405 D_GP: 0.030 D_real: 1.098 D_fake: 0.640 +(epoch: 279, iters: 4576, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.656 G_ID: 0.140 G_Rec: 0.285 D_GP: 0.021 D_real: 1.162 D_fake: 0.719 +(epoch: 279, iters: 4976, time: 0.064) G_GAN: 0.605 G_GAN_Feat: 0.806 G_ID: 0.156 G_Rec: 0.386 D_GP: 0.022 D_real: 1.365 D_fake: 0.399 +(epoch: 279, iters: 5376, time: 0.064) G_GAN: 0.244 G_GAN_Feat: 0.626 G_ID: 0.108 G_Rec: 0.279 D_GP: 0.028 D_real: 1.149 D_fake: 0.757 +(epoch: 279, iters: 5776, time: 0.064) G_GAN: 0.228 G_GAN_Feat: 0.940 G_ID: 0.193 G_Rec: 0.419 D_GP: 0.056 D_real: 0.611 D_fake: 0.772 +(epoch: 279, iters: 6176, time: 0.064) G_GAN: 0.153 G_GAN_Feat: 0.792 G_ID: 0.126 G_Rec: 0.314 D_GP: 0.075 D_real: 0.773 D_fake: 0.848 +(epoch: 279, iters: 6576, time: 0.064) G_GAN: 0.553 G_GAN_Feat: 1.053 G_ID: 0.186 G_Rec: 0.406 D_GP: 0.160 D_real: 0.700 D_fake: 0.556 +(epoch: 279, iters: 6976, time: 0.064) G_GAN: 0.399 G_GAN_Feat: 0.705 G_ID: 0.124 G_Rec: 0.306 D_GP: 0.024 D_real: 1.382 D_fake: 0.615 +(epoch: 279, iters: 7376, time: 0.064) G_GAN: 0.316 G_GAN_Feat: 0.935 G_ID: 0.181 G_Rec: 0.362 D_GP: 0.032 D_real: 0.795 D_fake: 0.685 +(epoch: 279, iters: 7776, time: 0.064) G_GAN: 0.371 G_GAN_Feat: 0.707 G_ID: 0.110 G_Rec: 0.289 D_GP: 0.025 D_real: 1.170 D_fake: 0.633 +(epoch: 279, iters: 8176, time: 0.064) G_GAN: 0.578 G_GAN_Feat: 0.877 G_ID: 0.154 G_Rec: 0.389 D_GP: 0.021 D_real: 1.427 D_fake: 0.445 +(epoch: 279, iters: 8576, time: 0.064) G_GAN: 0.230 G_GAN_Feat: 0.717 G_ID: 0.135 G_Rec: 0.296 D_GP: 0.024 D_real: 1.182 D_fake: 0.770 +(epoch: 280, iters: 368, time: 0.064) G_GAN: 0.381 G_GAN_Feat: 0.890 G_ID: 0.132 G_Rec: 0.394 D_GP: 0.026 D_real: 1.073 D_fake: 0.620 +(epoch: 280, iters: 768, time: 0.064) G_GAN: 0.132 G_GAN_Feat: 0.737 G_ID: 0.131 G_Rec: 0.314 D_GP: 0.057 D_real: 0.818 D_fake: 0.869 +(epoch: 280, iters: 1168, time: 0.064) G_GAN: 0.466 G_GAN_Feat: 0.924 G_ID: 0.202 G_Rec: 0.383 D_GP: 0.078 D_real: 1.066 D_fake: 0.540 +(epoch: 280, iters: 1568, time: 0.064) G_GAN: 0.368 G_GAN_Feat: 0.666 G_ID: 0.136 G_Rec: 0.302 D_GP: 0.028 D_real: 1.303 D_fake: 0.633 +(epoch: 280, iters: 1968, time: 0.064) G_GAN: 0.324 G_GAN_Feat: 0.963 G_ID: 0.176 G_Rec: 0.441 D_GP: 0.207 D_real: 0.649 D_fake: 0.677 +(epoch: 280, iters: 2368, time: 0.064) G_GAN: 0.114 G_GAN_Feat: 0.787 G_ID: 0.145 G_Rec: 0.309 D_GP: 0.027 D_real: 0.871 D_fake: 0.886 +(epoch: 280, iters: 2768, time: 0.064) G_GAN: 0.320 G_GAN_Feat: 0.944 G_ID: 0.172 G_Rec: 0.430 D_GP: 0.044 D_real: 0.918 D_fake: 0.682 +(epoch: 280, iters: 3168, time: 0.064) G_GAN: 0.290 G_GAN_Feat: 1.021 G_ID: 0.132 G_Rec: 0.350 D_GP: 0.360 D_real: 0.416 D_fake: 0.722 +(epoch: 280, iters: 3568, time: 0.064) G_GAN: -0.012 G_GAN_Feat: 1.043 G_ID: 0.173 G_Rec: 0.399 D_GP: 0.042 D_real: 0.545 D_fake: 1.012 +(epoch: 280, iters: 3968, time: 0.064) G_GAN: 0.230 G_GAN_Feat: 0.720 G_ID: 0.125 G_Rec: 0.272 D_GP: 0.028 D_real: 0.983 D_fake: 0.770 +(epoch: 280, iters: 4368, time: 0.064) G_GAN: 0.297 G_GAN_Feat: 0.747 G_ID: 0.183 G_Rec: 0.379 D_GP: 0.019 D_real: 1.070 D_fake: 0.703 +(epoch: 280, iters: 4768, time: 0.064) G_GAN: 0.013 G_GAN_Feat: 0.601 G_ID: 0.118 G_Rec: 0.269 D_GP: 0.032 D_real: 0.946 D_fake: 0.987 +(epoch: 280, iters: 5168, time: 0.064) G_GAN: 0.250 G_GAN_Feat: 0.733 G_ID: 0.151 G_Rec: 0.330 D_GP: 0.023 D_real: 1.099 D_fake: 0.750 +(epoch: 280, iters: 5568, time: 0.064) G_GAN: -0.002 G_GAN_Feat: 0.633 G_ID: 0.126 G_Rec: 0.294 D_GP: 0.021 D_real: 0.962 D_fake: 1.002 +(epoch: 280, iters: 5968, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.875 G_ID: 0.173 G_Rec: 0.416 D_GP: 0.067 D_real: 0.933 D_fake: 0.695 +(epoch: 280, iters: 6368, time: 0.064) G_GAN: 0.254 G_GAN_Feat: 0.771 G_ID: 0.130 G_Rec: 0.343 D_GP: 0.029 D_real: 1.005 D_fake: 0.747 +(epoch: 280, iters: 6768, time: 0.064) G_GAN: 0.386 G_GAN_Feat: 0.849 G_ID: 0.173 G_Rec: 0.393 D_GP: 0.026 D_real: 1.177 D_fake: 0.617 +(epoch: 280, iters: 7168, time: 0.064) G_GAN: 0.160 G_GAN_Feat: 0.581 G_ID: 0.132 G_Rec: 0.247 D_GP: 0.022 D_real: 1.126 D_fake: 0.840 +(epoch: 280, iters: 7568, time: 0.064) G_GAN: 0.181 G_GAN_Feat: 0.830 G_ID: 0.168 G_Rec: 0.349 D_GP: 0.038 D_real: 0.942 D_fake: 0.819 +(epoch: 280, iters: 7968, time: 0.064) G_GAN: 0.272 G_GAN_Feat: 0.743 G_ID: 0.128 G_Rec: 0.299 D_GP: 0.044 D_real: 0.975 D_fake: 0.731 +(epoch: 280, iters: 8368, time: 0.064) G_GAN: 0.298 G_GAN_Feat: 1.089 G_ID: 0.174 G_Rec: 0.432 D_GP: 0.177 D_real: 0.297 D_fake: 0.703 +(epoch: 281, iters: 160, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.629 G_ID: 0.116 G_Rec: 0.275 D_GP: 0.022 D_real: 1.210 D_fake: 0.719 +(epoch: 281, iters: 560, time: 0.064) G_GAN: 0.355 G_GAN_Feat: 0.846 G_ID: 0.175 G_Rec: 0.347 D_GP: 0.029 D_real: 1.018 D_fake: 0.645 +(epoch: 281, iters: 960, time: 0.064) G_GAN: 0.210 G_GAN_Feat: 0.727 G_ID: 0.135 G_Rec: 0.274 D_GP: 0.029 D_real: 0.964 D_fake: 0.790 +(epoch: 281, iters: 1360, time: 0.064) G_GAN: 0.578 G_GAN_Feat: 0.923 G_ID: 0.180 G_Rec: 0.399 D_GP: 0.028 D_real: 1.236 D_fake: 0.429 +(epoch: 281, iters: 1760, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.701 G_ID: 0.133 G_Rec: 0.282 D_GP: 0.022 D_real: 1.167 D_fake: 0.676 +(epoch: 281, iters: 2160, time: 0.064) G_GAN: 0.217 G_GAN_Feat: 0.786 G_ID: 0.189 G_Rec: 0.355 D_GP: 0.021 D_real: 1.024 D_fake: 0.783 +(epoch: 281, iters: 2560, time: 0.064) G_GAN: 0.095 G_GAN_Feat: 0.650 G_ID: 0.133 G_Rec: 0.310 D_GP: 0.022 D_real: 1.073 D_fake: 0.905 +(epoch: 281, iters: 2960, time: 0.064) G_GAN: 0.258 G_GAN_Feat: 0.846 G_ID: 0.148 G_Rec: 0.385 D_GP: 0.058 D_real: 0.975 D_fake: 0.743 +(epoch: 281, iters: 3360, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.645 G_ID: 0.113 G_Rec: 0.274 D_GP: 0.031 D_real: 1.137 D_fake: 0.724 +(epoch: 281, iters: 3760, time: 0.064) G_GAN: 0.246 G_GAN_Feat: 0.939 G_ID: 0.178 G_Rec: 0.409 D_GP: 0.076 D_real: 0.793 D_fake: 0.754 +(epoch: 281, iters: 4160, time: 0.064) G_GAN: 0.153 G_GAN_Feat: 0.797 G_ID: 0.136 G_Rec: 0.283 D_GP: 0.048 D_real: 0.601 D_fake: 0.847 +(epoch: 281, iters: 4560, time: 0.064) G_GAN: 0.844 G_GAN_Feat: 0.932 G_ID: 0.148 G_Rec: 0.406 D_GP: 0.025 D_real: 1.586 D_fake: 0.203 +(epoch: 281, iters: 4960, time: 0.064) G_GAN: -0.065 G_GAN_Feat: 0.661 G_ID: 0.149 G_Rec: 0.333 D_GP: 0.019 D_real: 0.863 D_fake: 1.065 +(epoch: 281, iters: 5360, time: 0.064) G_GAN: 0.188 G_GAN_Feat: 0.871 G_ID: 0.163 G_Rec: 0.376 D_GP: 0.024 D_real: 0.871 D_fake: 0.812 +(epoch: 281, iters: 5760, time: 0.064) G_GAN: -0.009 G_GAN_Feat: 0.716 G_ID: 0.149 G_Rec: 0.330 D_GP: 0.045 D_real: 0.756 D_fake: 1.009 +(epoch: 281, iters: 6160, time: 0.064) G_GAN: 0.259 G_GAN_Feat: 0.844 G_ID: 0.165 G_Rec: 0.365 D_GP: 0.029 D_real: 1.031 D_fake: 0.744 +(epoch: 281, iters: 6560, time: 0.064) G_GAN: 0.222 G_GAN_Feat: 0.753 G_ID: 0.117 G_Rec: 0.315 D_GP: 0.031 D_real: 0.969 D_fake: 0.782 +(epoch: 281, iters: 6960, time: 0.064) G_GAN: 0.477 G_GAN_Feat: 0.916 G_ID: 0.164 G_Rec: 0.416 D_GP: 0.035 D_real: 1.073 D_fake: 0.527 +(epoch: 281, iters: 7360, time: 0.064) G_GAN: 0.348 G_GAN_Feat: 0.797 G_ID: 0.114 G_Rec: 0.333 D_GP: 0.033 D_real: 0.977 D_fake: 0.662 +(epoch: 281, iters: 7760, time: 0.064) G_GAN: 0.438 G_GAN_Feat: 0.864 G_ID: 0.156 G_Rec: 0.386 D_GP: 0.022 D_real: 1.196 D_fake: 0.564 +(epoch: 281, iters: 8160, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 0.642 G_ID: 0.134 G_Rec: 0.281 D_GP: 0.020 D_real: 1.241 D_fake: 0.664 +(epoch: 281, iters: 8560, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 0.877 G_ID: 0.169 G_Rec: 0.413 D_GP: 0.023 D_real: 1.132 D_fake: 0.665 +(epoch: 282, iters: 352, time: 0.064) G_GAN: 0.050 G_GAN_Feat: 0.645 G_ID: 0.129 G_Rec: 0.282 D_GP: 0.023 D_real: 0.969 D_fake: 0.950 +(epoch: 282, iters: 752, time: 0.064) G_GAN: -0.065 G_GAN_Feat: 0.836 G_ID: 0.194 G_Rec: 0.367 D_GP: 0.026 D_real: 0.768 D_fake: 1.065 +(epoch: 282, iters: 1152, time: 0.064) G_GAN: 0.345 G_GAN_Feat: 0.740 G_ID: 0.122 G_Rec: 0.288 D_GP: 0.028 D_real: 1.044 D_fake: 0.656 +(epoch: 282, iters: 1552, time: 0.064) G_GAN: 0.667 G_GAN_Feat: 1.217 G_ID: 0.175 G_Rec: 0.497 D_GP: 0.052 D_real: 0.630 D_fake: 0.377 +(epoch: 282, iters: 1952, time: 0.064) G_GAN: 0.143 G_GAN_Feat: 0.845 G_ID: 0.132 G_Rec: 0.297 D_GP: 0.111 D_real: 0.491 D_fake: 0.858 +(epoch: 282, iters: 2352, time: 0.064) G_GAN: 0.524 G_GAN_Feat: 0.972 G_ID: 0.149 G_Rec: 0.371 D_GP: 0.021 D_real: 1.132 D_fake: 0.490 +(epoch: 282, iters: 2752, time: 0.064) G_GAN: 0.008 G_GAN_Feat: 0.689 G_ID: 0.125 G_Rec: 0.307 D_GP: 0.028 D_real: 0.902 D_fake: 0.992 +(epoch: 282, iters: 3152, time: 0.064) G_GAN: 0.264 G_GAN_Feat: 0.797 G_ID: 0.171 G_Rec: 0.371 D_GP: 0.021 D_real: 1.099 D_fake: 0.737 +(epoch: 282, iters: 3552, time: 0.064) G_GAN: -0.077 G_GAN_Feat: 0.685 G_ID: 0.135 G_Rec: 0.283 D_GP: 0.035 D_real: 0.853 D_fake: 1.077 +(epoch: 282, iters: 3952, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 1.006 G_ID: 0.165 G_Rec: 0.394 D_GP: 0.050 D_real: 0.737 D_fake: 0.665 +(epoch: 282, iters: 4352, time: 0.064) G_GAN: 0.208 G_GAN_Feat: 0.635 G_ID: 0.148 G_Rec: 0.289 D_GP: 0.022 D_real: 1.152 D_fake: 0.792 +(epoch: 282, iters: 4752, time: 0.064) G_GAN: 0.352 G_GAN_Feat: 0.835 G_ID: 0.163 G_Rec: 0.351 D_GP: 0.030 D_real: 1.164 D_fake: 0.649 +(epoch: 282, iters: 5152, time: 0.064) G_GAN: 0.173 G_GAN_Feat: 0.740 G_ID: 0.116 G_Rec: 0.287 D_GP: 0.033 D_real: 0.920 D_fake: 0.827 +(epoch: 282, iters: 5552, time: 0.064) G_GAN: 0.418 G_GAN_Feat: 0.941 G_ID: 0.194 G_Rec: 0.371 D_GP: 0.068 D_real: 1.108 D_fake: 0.584 +(epoch: 282, iters: 5952, time: 0.064) G_GAN: 0.373 G_GAN_Feat: 0.774 G_ID: 0.131 G_Rec: 0.294 D_GP: 0.045 D_real: 1.189 D_fake: 0.632 +(epoch: 282, iters: 6352, time: 0.064) G_GAN: 0.569 G_GAN_Feat: 1.026 G_ID: 0.165 G_Rec: 0.397 D_GP: 0.036 D_real: 0.847 D_fake: 0.441 +(epoch: 282, iters: 6752, time: 0.064) G_GAN: 0.147 G_GAN_Feat: 0.671 G_ID: 0.131 G_Rec: 0.319 D_GP: 0.021 D_real: 1.026 D_fake: 0.854 +(epoch: 282, iters: 7152, time: 0.064) G_GAN: 0.149 G_GAN_Feat: 0.826 G_ID: 0.179 G_Rec: 0.397 D_GP: 0.029 D_real: 0.849 D_fake: 0.851 +(epoch: 282, iters: 7552, time: 0.064) G_GAN: -0.072 G_GAN_Feat: 0.663 G_ID: 0.114 G_Rec: 0.304 D_GP: 0.054 D_real: 0.810 D_fake: 1.072 +(epoch: 282, iters: 7952, time: 0.064) G_GAN: 0.277 G_GAN_Feat: 0.838 G_ID: 0.172 G_Rec: 0.412 D_GP: 0.030 D_real: 1.019 D_fake: 0.724 +(epoch: 282, iters: 8352, time: 0.064) G_GAN: 0.112 G_GAN_Feat: 0.781 G_ID: 0.120 G_Rec: 0.331 D_GP: 0.053 D_real: 0.766 D_fake: 0.888 +(epoch: 283, iters: 144, time: 0.064) G_GAN: 0.398 G_GAN_Feat: 0.925 G_ID: 0.169 G_Rec: 0.399 D_GP: 0.031 D_real: 1.060 D_fake: 0.602 +(epoch: 283, iters: 544, time: 0.064) G_GAN: 0.097 G_GAN_Feat: 0.815 G_ID: 0.148 G_Rec: 0.312 D_GP: 0.046 D_real: 0.758 D_fake: 0.903 +(epoch: 283, iters: 944, time: 0.064) G_GAN: 0.473 G_GAN_Feat: 0.845 G_ID: 0.136 G_Rec: 0.382 D_GP: 0.029 D_real: 1.152 D_fake: 0.531 +(epoch: 283, iters: 1344, time: 0.064) G_GAN: 0.136 G_GAN_Feat: 0.789 G_ID: 0.133 G_Rec: 0.350 D_GP: 0.063 D_real: 0.911 D_fake: 0.866 +(epoch: 283, iters: 1744, time: 0.064) G_GAN: 0.428 G_GAN_Feat: 1.041 G_ID: 0.158 G_Rec: 0.451 D_GP: 0.040 D_real: 0.818 D_fake: 0.579 +(epoch: 283, iters: 2144, time: 0.064) G_GAN: 0.131 G_GAN_Feat: 0.850 G_ID: 0.122 G_Rec: 0.291 D_GP: 0.031 D_real: 0.599 D_fake: 0.870 +(epoch: 283, iters: 2544, time: 0.064) G_GAN: 0.636 G_GAN_Feat: 0.836 G_ID: 0.187 G_Rec: 0.366 D_GP: 0.022 D_real: 1.366 D_fake: 0.406 +(epoch: 283, iters: 2944, time: 0.064) G_GAN: 0.039 G_GAN_Feat: 0.780 G_ID: 0.152 G_Rec: 0.287 D_GP: 0.026 D_real: 0.782 D_fake: 0.961 +(epoch: 283, iters: 3344, time: 0.064) G_GAN: 0.387 G_GAN_Feat: 0.847 G_ID: 0.161 G_Rec: 0.373 D_GP: 0.029 D_real: 1.100 D_fake: 0.615 +(epoch: 283, iters: 3744, time: 0.064) G_GAN: 0.169 G_GAN_Feat: 0.651 G_ID: 0.142 G_Rec: 0.326 D_GP: 0.019 D_real: 1.086 D_fake: 0.831 +(epoch: 283, iters: 4144, time: 0.064) G_GAN: 0.203 G_GAN_Feat: 0.935 G_ID: 0.154 G_Rec: 0.375 D_GP: 0.054 D_real: 0.614 D_fake: 0.801 +(epoch: 283, iters: 4544, time: 0.064) G_GAN: 0.484 G_GAN_Feat: 0.830 G_ID: 0.150 G_Rec: 0.320 D_GP: 0.039 D_real: 1.029 D_fake: 0.592 +(epoch: 283, iters: 4944, time: 0.064) G_GAN: 0.379 G_GAN_Feat: 0.813 G_ID: 0.178 G_Rec: 0.385 D_GP: 0.021 D_real: 1.201 D_fake: 0.637 +(epoch: 283, iters: 5344, time: 0.064) G_GAN: 0.342 G_GAN_Feat: 0.572 G_ID: 0.111 G_Rec: 0.288 D_GP: 0.018 D_real: 1.320 D_fake: 0.658 +(epoch: 283, iters: 5744, time: 0.064) G_GAN: 0.397 G_GAN_Feat: 0.851 G_ID: 0.166 G_Rec: 0.378 D_GP: 0.021 D_real: 1.217 D_fake: 0.605 +(epoch: 283, iters: 6144, time: 0.064) G_GAN: 0.089 G_GAN_Feat: 0.696 G_ID: 0.110 G_Rec: 0.314 D_GP: 0.027 D_real: 0.909 D_fake: 0.911 +(epoch: 283, iters: 6544, time: 0.064) G_GAN: 0.341 G_GAN_Feat: 0.878 G_ID: 0.184 G_Rec: 0.409 D_GP: 0.024 D_real: 1.097 D_fake: 0.663 +(epoch: 283, iters: 6944, time: 0.064) G_GAN: 0.071 G_GAN_Feat: 0.627 G_ID: 0.165 G_Rec: 0.306 D_GP: 0.019 D_real: 1.034 D_fake: 0.929 +(epoch: 283, iters: 7344, time: 0.064) G_GAN: 0.351 G_GAN_Feat: 0.820 G_ID: 0.160 G_Rec: 0.388 D_GP: 0.024 D_real: 1.075 D_fake: 0.651 +(epoch: 283, iters: 7744, time: 0.064) G_GAN: 0.165 G_GAN_Feat: 0.682 G_ID: 0.134 G_Rec: 0.309 D_GP: 0.030 D_real: 1.040 D_fake: 0.835 +(epoch: 283, iters: 8144, time: 0.064) G_GAN: 0.427 G_GAN_Feat: 0.900 G_ID: 0.160 G_Rec: 0.391 D_GP: 0.028 D_real: 1.111 D_fake: 0.578 +(epoch: 283, iters: 8544, time: 0.064) G_GAN: 0.051 G_GAN_Feat: 0.783 G_ID: 0.125 G_Rec: 0.296 D_GP: 0.036 D_real: 0.845 D_fake: 0.952 +(epoch: 284, iters: 336, time: 0.064) G_GAN: 0.506 G_GAN_Feat: 0.843 G_ID: 0.148 G_Rec: 0.376 D_GP: 0.025 D_real: 1.207 D_fake: 0.500 +(epoch: 284, iters: 736, time: 0.064) G_GAN: 0.229 G_GAN_Feat: 0.659 G_ID: 0.127 G_Rec: 0.272 D_GP: 0.020 D_real: 1.094 D_fake: 0.771 +(epoch: 284, iters: 1136, time: 0.064) G_GAN: 0.372 G_GAN_Feat: 0.895 G_ID: 0.169 G_Rec: 0.352 D_GP: 0.028 D_real: 1.216 D_fake: 0.632 +(epoch: 284, iters: 1536, time: 0.064) G_GAN: 0.232 G_GAN_Feat: 0.681 G_ID: 0.118 G_Rec: 0.281 D_GP: 0.022 D_real: 1.152 D_fake: 0.768 +(epoch: 284, iters: 1936, time: 0.064) G_GAN: 0.528 G_GAN_Feat: 0.818 G_ID: 0.153 G_Rec: 0.369 D_GP: 0.022 D_real: 1.327 D_fake: 0.484 +(epoch: 284, iters: 2336, time: 0.064) G_GAN: 0.154 G_GAN_Feat: 0.585 G_ID: 0.121 G_Rec: 0.279 D_GP: 0.016 D_real: 1.087 D_fake: 0.846 +(epoch: 284, iters: 2736, time: 0.064) G_GAN: 0.290 G_GAN_Feat: 0.804 G_ID: 0.148 G_Rec: 0.374 D_GP: 0.025 D_real: 1.014 D_fake: 0.711 +(epoch: 284, iters: 3136, time: 0.064) G_GAN: 0.050 G_GAN_Feat: 0.765 G_ID: 0.142 G_Rec: 0.305 D_GP: 0.038 D_real: 0.622 D_fake: 0.950 +(epoch: 284, iters: 3536, time: 0.064) G_GAN: 0.313 G_GAN_Feat: 0.886 G_ID: 0.156 G_Rec: 0.389 D_GP: 0.033 D_real: 0.929 D_fake: 0.687 +(epoch: 284, iters: 3936, time: 0.064) G_GAN: 0.217 G_GAN_Feat: 0.692 G_ID: 0.107 G_Rec: 0.266 D_GP: 0.024 D_real: 1.089 D_fake: 0.784 +(epoch: 284, iters: 4336, time: 0.064) G_GAN: 0.215 G_GAN_Feat: 0.856 G_ID: 0.164 G_Rec: 0.367 D_GP: 0.028 D_real: 0.990 D_fake: 0.786 +(epoch: 284, iters: 4736, time: 0.064) G_GAN: 0.094 G_GAN_Feat: 0.872 G_ID: 0.130 G_Rec: 0.353 D_GP: 0.154 D_real: 0.446 D_fake: 0.906 +(epoch: 284, iters: 5136, time: 0.064) G_GAN: 0.548 G_GAN_Feat: 0.975 G_ID: 0.144 G_Rec: 0.396 D_GP: 0.026 D_real: 1.228 D_fake: 0.470 +(epoch: 284, iters: 5536, time: 0.064) G_GAN: 0.202 G_GAN_Feat: 0.905 G_ID: 0.176 G_Rec: 0.378 D_GP: 0.030 D_real: 0.699 D_fake: 0.806 +(epoch: 284, iters: 5936, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.921 G_ID: 0.151 G_Rec: 0.397 D_GP: 0.030 D_real: 0.956 D_fake: 0.752 +(epoch: 284, iters: 6336, time: 0.064) G_GAN: 0.226 G_GAN_Feat: 0.715 G_ID: 0.104 G_Rec: 0.270 D_GP: 0.029 D_real: 1.010 D_fake: 0.775 +(epoch: 284, iters: 6736, time: 0.064) G_GAN: 0.705 G_GAN_Feat: 0.962 G_ID: 0.161 G_Rec: 0.454 D_GP: 0.032 D_real: 1.379 D_fake: 0.400 +(epoch: 284, iters: 7136, time: 0.064) G_GAN: 0.361 G_GAN_Feat: 0.643 G_ID: 0.117 G_Rec: 0.254 D_GP: 0.025 D_real: 1.325 D_fake: 0.641 +(epoch: 284, iters: 7536, time: 0.064) G_GAN: 0.411 G_GAN_Feat: 0.940 G_ID: 0.150 G_Rec: 0.406 D_GP: 0.049 D_real: 1.188 D_fake: 0.595 +(epoch: 284, iters: 7936, time: 0.064) G_GAN: 0.167 G_GAN_Feat: 0.657 G_ID: 0.126 G_Rec: 0.287 D_GP: 0.021 D_real: 1.076 D_fake: 0.833 +(epoch: 284, iters: 8336, time: 0.064) G_GAN: 0.486 G_GAN_Feat: 0.891 G_ID: 0.147 G_Rec: 0.402 D_GP: 0.044 D_real: 1.131 D_fake: 0.524 +(epoch: 285, iters: 128, time: 0.064) G_GAN: 0.416 G_GAN_Feat: 0.786 G_ID: 0.138 G_Rec: 0.292 D_GP: 0.034 D_real: 1.082 D_fake: 0.591 +(epoch: 285, iters: 528, time: 0.064) G_GAN: 0.503 G_GAN_Feat: 0.905 G_ID: 0.161 G_Rec: 0.352 D_GP: 0.033 D_real: 1.030 D_fake: 0.501 +(epoch: 285, iters: 928, time: 0.064) G_GAN: 0.360 G_GAN_Feat: 0.856 G_ID: 0.116 G_Rec: 0.322 D_GP: 0.038 D_real: 0.746 D_fake: 0.642 +(epoch: 285, iters: 1328, time: 0.064) G_GAN: 0.421 G_GAN_Feat: 0.742 G_ID: 0.159 G_Rec: 0.474 D_GP: 0.019 D_real: 1.232 D_fake: 0.590 +(epoch: 285, iters: 1728, time: 0.064) G_GAN: -0.022 G_GAN_Feat: 0.610 G_ID: 0.142 G_Rec: 0.282 D_GP: 0.020 D_real: 0.917 D_fake: 1.022 +(epoch: 285, iters: 2128, time: 0.064) G_GAN: 0.447 G_GAN_Feat: 0.806 G_ID: 0.147 G_Rec: 0.361 D_GP: 0.025 D_real: 1.203 D_fake: 0.565 +(epoch: 285, iters: 2528, time: 0.064) G_GAN: -0.081 G_GAN_Feat: 0.669 G_ID: 0.127 G_Rec: 0.298 D_GP: 0.023 D_real: 0.833 D_fake: 1.081 +(epoch: 285, iters: 2928, time: 0.064) G_GAN: 0.397 G_GAN_Feat: 0.834 G_ID: 0.155 G_Rec: 0.379 D_GP: 0.026 D_real: 1.107 D_fake: 0.615 +(epoch: 285, iters: 3328, time: 0.064) G_GAN: 0.028 G_GAN_Feat: 0.714 G_ID: 0.117 G_Rec: 0.297 D_GP: 0.037 D_real: 0.766 D_fake: 0.972 +(epoch: 285, iters: 3728, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 1.061 G_ID: 0.163 G_Rec: 0.439 D_GP: 0.199 D_real: 0.637 D_fake: 0.566 +(epoch: 285, iters: 4128, time: 0.064) G_GAN: 0.089 G_GAN_Feat: 0.717 G_ID: 0.106 G_Rec: 0.307 D_GP: 0.022 D_real: 0.927 D_fake: 0.911 +(epoch: 285, iters: 4528, time: 0.064) G_GAN: 0.586 G_GAN_Feat: 0.910 G_ID: 0.179 G_Rec: 0.407 D_GP: 0.033 D_real: 1.094 D_fake: 0.456 +(epoch: 285, iters: 4928, time: 0.064) G_GAN: 0.306 G_GAN_Feat: 0.640 G_ID: 0.124 G_Rec: 0.311 D_GP: 0.019 D_real: 1.310 D_fake: 0.696 +(epoch: 285, iters: 5328, time: 0.064) G_GAN: 0.395 G_GAN_Feat: 0.814 G_ID: 0.174 G_Rec: 0.363 D_GP: 0.024 D_real: 1.216 D_fake: 0.605 +(epoch: 285, iters: 5728, time: 0.064) G_GAN: 0.213 G_GAN_Feat: 0.734 G_ID: 0.135 G_Rec: 0.296 D_GP: 0.048 D_real: 0.947 D_fake: 0.788 +(epoch: 285, iters: 6128, time: 0.064) G_GAN: 0.389 G_GAN_Feat: 0.919 G_ID: 0.160 G_Rec: 0.411 D_GP: 0.031 D_real: 0.907 D_fake: 0.612 +(epoch: 285, iters: 6528, time: 0.064) G_GAN: -0.023 G_GAN_Feat: 0.705 G_ID: 0.110 G_Rec: 0.288 D_GP: 0.023 D_real: 0.835 D_fake: 1.023 +(epoch: 285, iters: 6928, time: 0.064) G_GAN: 0.697 G_GAN_Feat: 0.866 G_ID: 0.156 G_Rec: 0.380 D_GP: 0.024 D_real: 1.479 D_fake: 0.318 +(epoch: 285, iters: 7328, time: 0.064) G_GAN: -0.066 G_GAN_Feat: 0.614 G_ID: 0.149 G_Rec: 0.294 D_GP: 0.025 D_real: 1.015 D_fake: 1.066 +(epoch: 285, iters: 7728, time: 0.064) G_GAN: 0.179 G_GAN_Feat: 0.753 G_ID: 0.154 G_Rec: 0.397 D_GP: 0.033 D_real: 0.968 D_fake: 0.821 +(epoch: 285, iters: 8128, time: 0.064) G_GAN: 0.103 G_GAN_Feat: 0.604 G_ID: 0.125 G_Rec: 0.289 D_GP: 0.028 D_real: 1.009 D_fake: 0.897 +(epoch: 285, iters: 8528, time: 0.064) G_GAN: 0.411 G_GAN_Feat: 0.806 G_ID: 0.169 G_Rec: 0.382 D_GP: 0.029 D_real: 1.196 D_fake: 0.599 +(epoch: 286, iters: 320, time: 0.064) G_GAN: 0.043 G_GAN_Feat: 0.733 G_ID: 0.114 G_Rec: 0.316 D_GP: 0.288 D_real: 0.617 D_fake: 0.958 +(epoch: 286, iters: 720, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.851 G_ID: 0.153 G_Rec: 0.416 D_GP: 0.025 D_real: 0.967 D_fake: 0.670 +(epoch: 286, iters: 1120, time: 0.064) G_GAN: 0.235 G_GAN_Feat: 0.631 G_ID: 0.138 G_Rec: 0.284 D_GP: 0.019 D_real: 1.163 D_fake: 0.765 +(epoch: 286, iters: 1520, time: 0.064) G_GAN: 0.375 G_GAN_Feat: 0.790 G_ID: 0.168 G_Rec: 0.344 D_GP: 0.024 D_real: 1.114 D_fake: 0.628 +(epoch: 286, iters: 1920, time: 0.064) G_GAN: 0.428 G_GAN_Feat: 0.755 G_ID: 0.147 G_Rec: 0.337 D_GP: 0.022 D_real: 1.340 D_fake: 0.587 +(epoch: 286, iters: 2320, time: 0.064) G_GAN: 0.334 G_GAN_Feat: 0.642 G_ID: 0.146 G_Rec: 0.320 D_GP: 0.017 D_real: 1.143 D_fake: 0.666 +(epoch: 286, iters: 2720, time: 0.064) G_GAN: 0.184 G_GAN_Feat: 0.573 G_ID: 0.135 G_Rec: 0.288 D_GP: 0.018 D_real: 1.109 D_fake: 0.816 +(epoch: 286, iters: 3120, time: 0.064) G_GAN: 0.351 G_GAN_Feat: 0.709 G_ID: 0.153 G_Rec: 0.345 D_GP: 0.021 D_real: 1.091 D_fake: 0.650 +(epoch: 286, iters: 3520, time: 0.064) G_GAN: 0.302 G_GAN_Feat: 0.649 G_ID: 0.120 G_Rec: 0.314 D_GP: 0.034 D_real: 1.160 D_fake: 0.700 +(epoch: 286, iters: 3920, time: 0.064) G_GAN: 0.235 G_GAN_Feat: 0.765 G_ID: 0.158 G_Rec: 0.371 D_GP: 0.041 D_real: 1.029 D_fake: 0.765 +(epoch: 286, iters: 4320, time: 0.064) G_GAN: 0.061 G_GAN_Feat: 0.622 G_ID: 0.133 G_Rec: 0.302 D_GP: 0.029 D_real: 0.917 D_fake: 0.939 +(epoch: 286, iters: 4720, time: 0.064) G_GAN: 0.471 G_GAN_Feat: 0.891 G_ID: 0.162 G_Rec: 0.386 D_GP: 0.072 D_real: 1.123 D_fake: 0.532 +(epoch: 286, iters: 5120, time: 0.064) G_GAN: 0.083 G_GAN_Feat: 0.685 G_ID: 0.116 G_Rec: 0.290 D_GP: 0.054 D_real: 0.887 D_fake: 0.917 +(epoch: 286, iters: 5520, time: 0.064) G_GAN: 0.520 G_GAN_Feat: 0.881 G_ID: 0.161 G_Rec: 0.403 D_GP: 0.022 D_real: 1.201 D_fake: 0.487 +(epoch: 286, iters: 5920, time: 0.064) G_GAN: 0.129 G_GAN_Feat: 0.699 G_ID: 0.149 G_Rec: 0.304 D_GP: 0.082 D_real: 0.851 D_fake: 0.871 +(epoch: 286, iters: 6320, time: 0.064) G_GAN: 0.464 G_GAN_Feat: 0.888 G_ID: 0.155 G_Rec: 0.393 D_GP: 0.040 D_real: 1.004 D_fake: 0.544 +(epoch: 286, iters: 6720, time: 0.064) G_GAN: 0.259 G_GAN_Feat: 0.650 G_ID: 0.116 G_Rec: 0.295 D_GP: 0.020 D_real: 1.207 D_fake: 0.741 +(epoch: 286, iters: 7120, time: 0.064) G_GAN: -0.019 G_GAN_Feat: 0.840 G_ID: 0.161 G_Rec: 0.412 D_GP: 0.036 D_real: 0.804 D_fake: 1.019 +(epoch: 286, iters: 7520, time: 0.064) G_GAN: 0.082 G_GAN_Feat: 0.636 G_ID: 0.148 G_Rec: 0.271 D_GP: 0.025 D_real: 0.991 D_fake: 0.918 +(epoch: 286, iters: 7920, time: 0.064) G_GAN: 0.395 G_GAN_Feat: 0.772 G_ID: 0.173 G_Rec: 0.340 D_GP: 0.022 D_real: 1.193 D_fake: 0.607 +(epoch: 286, iters: 8320, time: 0.064) G_GAN: 0.116 G_GAN_Feat: 0.729 G_ID: 0.120 G_Rec: 0.290 D_GP: 0.030 D_real: 1.037 D_fake: 0.885 +(epoch: 287, iters: 112, time: 0.064) G_GAN: 0.706 G_GAN_Feat: 0.952 G_ID: 0.117 G_Rec: 0.402 D_GP: 0.032 D_real: 1.213 D_fake: 0.310 +(epoch: 287, iters: 512, time: 0.064) G_GAN: 0.122 G_GAN_Feat: 0.666 G_ID: 0.115 G_Rec: 0.290 D_GP: 0.018 D_real: 1.076 D_fake: 0.878 +(epoch: 287, iters: 912, time: 0.064) G_GAN: 0.342 G_GAN_Feat: 0.787 G_ID: 0.141 G_Rec: 0.360 D_GP: 0.022 D_real: 1.035 D_fake: 0.664 +(epoch: 287, iters: 1312, time: 0.064) G_GAN: 0.353 G_GAN_Feat: 0.891 G_ID: 0.130 G_Rec: 0.319 D_GP: 0.028 D_real: 1.391 D_fake: 0.676 +(epoch: 287, iters: 1712, time: 0.064) G_GAN: 0.566 G_GAN_Feat: 0.898 G_ID: 0.149 G_Rec: 0.387 D_GP: 0.022 D_real: 1.277 D_fake: 0.458 +(epoch: 287, iters: 2112, time: 0.064) G_GAN: 0.275 G_GAN_Feat: 0.691 G_ID: 0.117 G_Rec: 0.308 D_GP: 0.024 D_real: 1.151 D_fake: 0.726 +(epoch: 287, iters: 2512, time: 0.064) G_GAN: 0.640 G_GAN_Feat: 0.993 G_ID: 0.164 G_Rec: 0.397 D_GP: 0.040 D_real: 1.085 D_fake: 0.451 +(epoch: 287, iters: 2912, time: 0.064) G_GAN: 0.168 G_GAN_Feat: 0.676 G_ID: 0.118 G_Rec: 0.316 D_GP: 0.018 D_real: 1.081 D_fake: 0.833 +(epoch: 287, iters: 3312, time: 0.064) G_GAN: 0.544 G_GAN_Feat: 0.838 G_ID: 0.159 G_Rec: 0.384 D_GP: 0.020 D_real: 1.274 D_fake: 0.464 +(epoch: 287, iters: 3712, time: 0.064) G_GAN: 0.011 G_GAN_Feat: 0.761 G_ID: 0.138 G_Rec: 0.378 D_GP: 0.077 D_real: 0.827 D_fake: 0.989 +(epoch: 287, iters: 4112, time: 0.064) G_GAN: 0.778 G_GAN_Feat: 0.796 G_ID: 0.165 G_Rec: 0.376 D_GP: 0.021 D_real: 1.519 D_fake: 0.261 +(epoch: 287, iters: 4512, time: 0.064) G_GAN: 0.413 G_GAN_Feat: 0.629 G_ID: 0.128 G_Rec: 0.269 D_GP: 0.023 D_real: 1.353 D_fake: 0.589 +(epoch: 287, iters: 4912, time: 0.064) G_GAN: 0.430 G_GAN_Feat: 0.763 G_ID: 0.155 G_Rec: 0.350 D_GP: 0.023 D_real: 1.231 D_fake: 0.573 +(epoch: 287, iters: 5312, time: 0.064) G_GAN: 0.106 G_GAN_Feat: 0.720 G_ID: 0.124 G_Rec: 0.302 D_GP: 0.039 D_real: 0.870 D_fake: 0.894 +(epoch: 287, iters: 5712, time: 0.064) G_GAN: 0.169 G_GAN_Feat: 1.019 G_ID: 0.183 G_Rec: 0.437 D_GP: 0.142 D_real: 0.496 D_fake: 0.835 +(epoch: 287, iters: 6112, time: 0.064) G_GAN: 0.156 G_GAN_Feat: 0.815 G_ID: 0.121 G_Rec: 0.324 D_GP: 0.099 D_real: 0.780 D_fake: 0.846 +(epoch: 287, iters: 6512, time: 0.064) G_GAN: 0.318 G_GAN_Feat: 0.939 G_ID: 0.164 G_Rec: 0.404 D_GP: 0.053 D_real: 0.624 D_fake: 0.684 +(epoch: 287, iters: 6912, time: 0.064) G_GAN: 0.284 G_GAN_Feat: 0.686 G_ID: 0.115 G_Rec: 0.302 D_GP: 0.016 D_real: 1.234 D_fake: 0.716 +(epoch: 287, iters: 7312, time: 0.064) G_GAN: 0.472 G_GAN_Feat: 0.956 G_ID: 0.165 G_Rec: 0.446 D_GP: 0.054 D_real: 1.078 D_fake: 0.537 +(epoch: 287, iters: 7712, time: 0.064) G_GAN: 0.059 G_GAN_Feat: 0.734 G_ID: 0.122 G_Rec: 0.319 D_GP: 0.044 D_real: 0.903 D_fake: 0.941 +(epoch: 287, iters: 8112, time: 0.064) G_GAN: 0.201 G_GAN_Feat: 0.882 G_ID: 0.178 G_Rec: 0.436 D_GP: 0.024 D_real: 1.082 D_fake: 0.799 +(epoch: 287, iters: 8512, time: 0.064) G_GAN: 0.026 G_GAN_Feat: 0.701 G_ID: 0.164 G_Rec: 0.274 D_GP: 0.040 D_real: 0.820 D_fake: 0.974 +(epoch: 288, iters: 304, time: 0.064) G_GAN: 0.520 G_GAN_Feat: 1.012 G_ID: 0.143 G_Rec: 0.482 D_GP: 0.054 D_real: 0.883 D_fake: 0.488 +(epoch: 288, iters: 704, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.658 G_ID: 0.114 G_Rec: 0.269 D_GP: 0.027 D_real: 1.147 D_fake: 0.744 +(epoch: 288, iters: 1104, time: 0.064) G_GAN: 0.203 G_GAN_Feat: 0.947 G_ID: 0.142 G_Rec: 0.422 D_GP: 0.038 D_real: 0.610 D_fake: 0.799 +(epoch: 288, iters: 1504, time: 0.064) G_GAN: 0.056 G_GAN_Feat: 0.598 G_ID: 0.151 G_Rec: 0.299 D_GP: 0.022 D_real: 1.030 D_fake: 0.944 +(epoch: 288, iters: 1904, time: 0.064) G_GAN: 0.310 G_GAN_Feat: 0.837 G_ID: 0.158 G_Rec: 0.402 D_GP: 0.027 D_real: 1.042 D_fake: 0.691 +(epoch: 288, iters: 2304, time: 0.064) G_GAN: 0.195 G_GAN_Feat: 0.703 G_ID: 0.146 G_Rec: 0.332 D_GP: 0.051 D_real: 1.002 D_fake: 0.805 +(epoch: 288, iters: 2704, time: 0.064) G_GAN: 0.483 G_GAN_Feat: 0.937 G_ID: 0.149 G_Rec: 0.431 D_GP: 0.050 D_real: 1.027 D_fake: 0.543 +(epoch: 288, iters: 3104, time: 0.064) G_GAN: 0.005 G_GAN_Feat: 0.804 G_ID: 0.119 G_Rec: 0.333 D_GP: 0.198 D_real: 0.625 D_fake: 0.995 +(epoch: 288, iters: 3504, time: 0.064) G_GAN: 0.395 G_GAN_Feat: 0.985 G_ID: 0.156 G_Rec: 0.444 D_GP: 0.061 D_real: 0.870 D_fake: 0.606 +(epoch: 288, iters: 3904, time: 0.064) G_GAN: 0.298 G_GAN_Feat: 0.657 G_ID: 0.124 G_Rec: 0.297 D_GP: 0.031 D_real: 1.121 D_fake: 0.704 +(epoch: 288, iters: 4304, time: 0.064) G_GAN: 0.472 G_GAN_Feat: 0.921 G_ID: 0.155 G_Rec: 0.377 D_GP: 0.032 D_real: 1.022 D_fake: 0.535 +(epoch: 288, iters: 4704, time: 0.064) G_GAN: 0.316 G_GAN_Feat: 0.703 G_ID: 0.136 G_Rec: 0.295 D_GP: 0.039 D_real: 1.000 D_fake: 0.685 +(epoch: 288, iters: 5104, time: 0.064) G_GAN: 0.322 G_GAN_Feat: 0.819 G_ID: 0.165 G_Rec: 0.371 D_GP: 0.034 D_real: 1.008 D_fake: 0.678 +(epoch: 288, iters: 5504, time: 0.064) G_GAN: 0.220 G_GAN_Feat: 0.740 G_ID: 0.148 G_Rec: 0.369 D_GP: 0.035 D_real: 0.856 D_fake: 0.781 +(epoch: 288, iters: 5904, time: 0.064) G_GAN: 0.594 G_GAN_Feat: 0.876 G_ID: 0.195 G_Rec: 0.389 D_GP: 0.023 D_real: 1.315 D_fake: 0.425 +(epoch: 288, iters: 6304, time: 0.064) G_GAN: 0.215 G_GAN_Feat: 0.666 G_ID: 0.130 G_Rec: 0.290 D_GP: 0.031 D_real: 1.092 D_fake: 0.785 +(epoch: 288, iters: 6704, time: 0.064) G_GAN: 0.482 G_GAN_Feat: 0.848 G_ID: 0.158 G_Rec: 0.365 D_GP: 0.030 D_real: 1.071 D_fake: 0.520 +(epoch: 288, iters: 7104, time: 0.064) G_GAN: 0.303 G_GAN_Feat: 0.869 G_ID: 0.134 G_Rec: 0.303 D_GP: 0.631 D_real: 0.472 D_fake: 0.707 +(epoch: 288, iters: 7504, time: 0.064) G_GAN: 0.383 G_GAN_Feat: 1.075 G_ID: 0.181 G_Rec: 0.457 D_GP: 0.277 D_real: 0.454 D_fake: 0.642 +(epoch: 288, iters: 7904, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.791 G_ID: 0.142 G_Rec: 0.330 D_GP: 0.027 D_real: 1.010 D_fake: 0.753 +(epoch: 288, iters: 8304, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.982 G_ID: 0.157 G_Rec: 0.434 D_GP: 0.024 D_real: 0.927 D_fake: 0.694 +(epoch: 289, iters: 96, time: 0.064) G_GAN: -0.114 G_GAN_Feat: 0.674 G_ID: 0.142 G_Rec: 0.281 D_GP: 0.031 D_real: 0.832 D_fake: 1.114 +(epoch: 289, iters: 496, time: 0.064) G_GAN: 0.437 G_GAN_Feat: 1.056 G_ID: 0.172 G_Rec: 0.433 D_GP: 0.034 D_real: 1.343 D_fake: 0.586 +(epoch: 289, iters: 896, time: 0.064) G_GAN: -0.011 G_GAN_Feat: 0.640 G_ID: 0.131 G_Rec: 0.282 D_GP: 0.032 D_real: 0.942 D_fake: 1.011 +(epoch: 289, iters: 1296, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.780 G_ID: 0.173 G_Rec: 0.364 D_GP: 0.021 D_real: 1.103 D_fake: 0.693 +(epoch: 289, iters: 1696, time: 0.064) G_GAN: 0.144 G_GAN_Feat: 0.561 G_ID: 0.103 G_Rec: 0.282 D_GP: 0.021 D_real: 1.079 D_fake: 0.856 +(epoch: 289, iters: 2096, time: 0.064) G_GAN: 0.272 G_GAN_Feat: 0.737 G_ID: 0.173 G_Rec: 0.372 D_GP: 0.022 D_real: 1.067 D_fake: 0.729 +(epoch: 289, iters: 2496, time: 0.064) G_GAN: 0.123 G_GAN_Feat: 0.595 G_ID: 0.128 G_Rec: 0.274 D_GP: 0.021 D_real: 1.055 D_fake: 0.877 +(epoch: 289, iters: 2896, time: 0.064) G_GAN: 0.376 G_GAN_Feat: 0.757 G_ID: 0.170 G_Rec: 0.398 D_GP: 0.025 D_real: 1.126 D_fake: 0.626 +(epoch: 289, iters: 3296, time: 0.064) G_GAN: 0.196 G_GAN_Feat: 0.733 G_ID: 0.126 G_Rec: 0.308 D_GP: 0.035 D_real: 1.083 D_fake: 0.805 +(epoch: 289, iters: 3696, time: 0.064) G_GAN: 0.464 G_GAN_Feat: 0.851 G_ID: 0.150 G_Rec: 0.392 D_GP: 0.022 D_real: 1.197 D_fake: 0.545 +(epoch: 289, iters: 4096, time: 0.064) G_GAN: 0.113 G_GAN_Feat: 0.923 G_ID: 0.127 G_Rec: 0.318 D_GP: 0.084 D_real: 0.898 D_fake: 0.893 +(epoch: 289, iters: 4496, time: 0.064) G_GAN: 0.819 G_GAN_Feat: 0.880 G_ID: 0.158 G_Rec: 0.353 D_GP: 0.049 D_real: 1.361 D_fake: 0.252 +(epoch: 289, iters: 4896, time: 0.064) G_GAN: 0.297 G_GAN_Feat: 0.857 G_ID: 0.128 G_Rec: 0.304 D_GP: 0.092 D_real: 0.628 D_fake: 0.704 +(epoch: 289, iters: 5296, time: 0.064) G_GAN: 0.659 G_GAN_Feat: 0.862 G_ID: 0.137 G_Rec: 0.392 D_GP: 0.022 D_real: 1.377 D_fake: 0.357 +(epoch: 289, iters: 5696, time: 0.064) G_GAN: 0.115 G_GAN_Feat: 0.614 G_ID: 0.115 G_Rec: 0.264 D_GP: 0.020 D_real: 1.076 D_fake: 0.885 +(epoch: 289, iters: 6096, time: 0.064) G_GAN: 0.332 G_GAN_Feat: 0.845 G_ID: 0.158 G_Rec: 0.402 D_GP: 0.032 D_real: 1.067 D_fake: 0.669 +(epoch: 289, iters: 6496, time: 0.064) G_GAN: 0.226 G_GAN_Feat: 0.667 G_ID: 0.122 G_Rec: 0.276 D_GP: 0.026 D_real: 1.102 D_fake: 0.774 +(epoch: 289, iters: 6896, time: 0.064) G_GAN: 0.250 G_GAN_Feat: 0.911 G_ID: 0.177 G_Rec: 0.373 D_GP: 0.036 D_real: 0.836 D_fake: 0.751 +(epoch: 289, iters: 7296, time: 0.064) G_GAN: 0.300 G_GAN_Feat: 0.744 G_ID: 0.134 G_Rec: 0.280 D_GP: 0.029 D_real: 1.198 D_fake: 0.703 +(epoch: 289, iters: 7696, time: 0.064) G_GAN: 0.637 G_GAN_Feat: 0.970 G_ID: 0.198 G_Rec: 0.400 D_GP: 0.038 D_real: 1.201 D_fake: 0.424 +(epoch: 289, iters: 8096, time: 0.064) G_GAN: -0.038 G_GAN_Feat: 0.851 G_ID: 0.119 G_Rec: 0.318 D_GP: 0.038 D_real: 0.604 D_fake: 1.038 +(epoch: 289, iters: 8496, time: 0.064) G_GAN: 0.436 G_GAN_Feat: 0.986 G_ID: 0.175 G_Rec: 0.383 D_GP: 0.080 D_real: 0.623 D_fake: 0.567 +(epoch: 290, iters: 288, time: 0.064) G_GAN: 0.107 G_GAN_Feat: 0.648 G_ID: 0.126 G_Rec: 0.302 D_GP: 0.023 D_real: 1.065 D_fake: 0.893 +(epoch: 290, iters: 688, time: 0.064) G_GAN: 0.356 G_GAN_Feat: 0.999 G_ID: 0.145 G_Rec: 0.450 D_GP: 0.046 D_real: 0.994 D_fake: 0.648 +(epoch: 290, iters: 1088, time: 0.064) G_GAN: 0.101 G_GAN_Feat: 0.634 G_ID: 0.122 G_Rec: 0.237 D_GP: 0.024 D_real: 1.106 D_fake: 0.899 +(epoch: 290, iters: 1488, time: 0.064) G_GAN: 0.084 G_GAN_Feat: 0.879 G_ID: 0.143 G_Rec: 0.425 D_GP: 0.022 D_real: 0.810 D_fake: 0.918 +(epoch: 290, iters: 1888, time: 0.064) G_GAN: 0.172 G_GAN_Feat: 0.684 G_ID: 0.119 G_Rec: 0.272 D_GP: 0.027 D_real: 1.121 D_fake: 0.828 +(epoch: 290, iters: 2288, time: 0.064) G_GAN: 0.456 G_GAN_Feat: 0.897 G_ID: 0.167 G_Rec: 0.424 D_GP: 0.034 D_real: 1.117 D_fake: 0.546 +(epoch: 290, iters: 2688, time: 0.064) G_GAN: 0.322 G_GAN_Feat: 0.636 G_ID: 0.116 G_Rec: 0.292 D_GP: 0.028 D_real: 1.224 D_fake: 0.681 +(epoch: 290, iters: 3088, time: 0.064) G_GAN: 0.515 G_GAN_Feat: 0.780 G_ID: 0.156 G_Rec: 0.357 D_GP: 0.024 D_real: 1.272 D_fake: 0.495 +(epoch: 290, iters: 3488, time: 0.064) G_GAN: 0.485 G_GAN_Feat: 0.777 G_ID: 0.121 G_Rec: 0.289 D_GP: 0.026 D_real: 1.354 D_fake: 0.546 +(epoch: 290, iters: 3888, time: 0.064) G_GAN: 0.316 G_GAN_Feat: 1.113 G_ID: 0.167 G_Rec: 0.448 D_GP: 0.335 D_real: 0.462 D_fake: 0.689 +(epoch: 290, iters: 4288, time: 0.064) G_GAN: 0.341 G_GAN_Feat: 0.547 G_ID: 0.122 G_Rec: 0.272 D_GP: 0.017 D_real: 1.319 D_fake: 0.659 +(epoch: 290, iters: 4688, time: 0.064) G_GAN: 0.412 G_GAN_Feat: 0.836 G_ID: 0.166 G_Rec: 0.448 D_GP: 0.025 D_real: 1.093 D_fake: 0.589 +(epoch: 290, iters: 5088, time: 0.064) G_GAN: 0.136 G_GAN_Feat: 0.583 G_ID: 0.121 G_Rec: 0.276 D_GP: 0.021 D_real: 1.102 D_fake: 0.864 +(epoch: 290, iters: 5488, time: 0.064) G_GAN: 0.238 G_GAN_Feat: 0.795 G_ID: 0.151 G_Rec: 0.397 D_GP: 0.024 D_real: 1.025 D_fake: 0.762 +(epoch: 290, iters: 5888, time: 0.064) G_GAN: 0.057 G_GAN_Feat: 0.685 G_ID: 0.137 G_Rec: 0.302 D_GP: 0.043 D_real: 0.836 D_fake: 0.943 +(epoch: 290, iters: 6288, time: 0.064) G_GAN: 0.352 G_GAN_Feat: 0.829 G_ID: 0.153 G_Rec: 0.391 D_GP: 0.026 D_real: 1.071 D_fake: 0.648 +(epoch: 290, iters: 6688, time: 0.064) G_GAN: 0.237 G_GAN_Feat: 0.673 G_ID: 0.128 G_Rec: 0.309 D_GP: 0.038 D_real: 1.065 D_fake: 0.765 +(epoch: 290, iters: 7088, time: 0.064) G_GAN: 0.288 G_GAN_Feat: 0.781 G_ID: 0.146 G_Rec: 0.353 D_GP: 0.027 D_real: 1.094 D_fake: 0.714 +(epoch: 290, iters: 7488, time: 0.064) G_GAN: 0.204 G_GAN_Feat: 0.682 G_ID: 0.128 G_Rec: 0.318 D_GP: 0.133 D_real: 0.873 D_fake: 0.797 +(epoch: 290, iters: 7888, time: 0.064) G_GAN: 0.334 G_GAN_Feat: 0.850 G_ID: 0.177 G_Rec: 0.363 D_GP: 0.035 D_real: 1.050 D_fake: 0.671 +(epoch: 290, iters: 8288, time: 0.064) G_GAN: 0.253 G_GAN_Feat: 0.637 G_ID: 0.120 G_Rec: 0.318 D_GP: 0.024 D_real: 1.207 D_fake: 0.747 +(epoch: 291, iters: 80, time: 0.064) G_GAN: 0.317 G_GAN_Feat: 1.008 G_ID: 0.138 G_Rec: 0.430 D_GP: 0.116 D_real: 0.556 D_fake: 0.683 +(epoch: 291, iters: 480, time: 0.064) G_GAN: 0.227 G_GAN_Feat: 0.664 G_ID: 0.097 G_Rec: 0.242 D_GP: 0.026 D_real: 1.169 D_fake: 0.773 +(epoch: 291, iters: 880, time: 0.064) G_GAN: 0.461 G_GAN_Feat: 0.756 G_ID: 0.147 G_Rec: 0.381 D_GP: 0.020 D_real: 1.281 D_fake: 0.541 +(epoch: 291, iters: 1280, time: 0.064) G_GAN: 0.121 G_GAN_Feat: 0.665 G_ID: 0.123 G_Rec: 0.301 D_GP: 0.037 D_real: 1.010 D_fake: 0.879 +(epoch: 291, iters: 1680, time: 0.064) G_GAN: 0.182 G_GAN_Feat: 0.728 G_ID: 0.168 G_Rec: 0.341 D_GP: 0.030 D_real: 0.985 D_fake: 0.818 +(epoch: 291, iters: 2080, time: 0.064) G_GAN: 0.148 G_GAN_Feat: 0.857 G_ID: 0.138 G_Rec: 0.342 D_GP: 0.068 D_real: 0.698 D_fake: 0.852 +(epoch: 291, iters: 2480, time: 0.064) G_GAN: 0.503 G_GAN_Feat: 0.846 G_ID: 0.151 G_Rec: 0.419 D_GP: 0.022 D_real: 1.219 D_fake: 0.500 +(epoch: 291, iters: 2880, time: 0.064) G_GAN: 0.108 G_GAN_Feat: 0.854 G_ID: 0.124 G_Rec: 0.327 D_GP: 0.234 D_real: 0.597 D_fake: 0.892 +(epoch: 291, iters: 3280, time: 0.064) G_GAN: 0.422 G_GAN_Feat: 0.878 G_ID: 0.150 G_Rec: 0.368 D_GP: 0.022 D_real: 1.126 D_fake: 0.581 +(epoch: 291, iters: 3680, time: 0.064) G_GAN: 0.265 G_GAN_Feat: 0.756 G_ID: 0.122 G_Rec: 0.299 D_GP: 0.091 D_real: 0.761 D_fake: 0.736 +(epoch: 291, iters: 4080, time: 0.064) G_GAN: 0.211 G_GAN_Feat: 0.867 G_ID: 0.170 G_Rec: 0.383 D_GP: 0.030 D_real: 1.002 D_fake: 0.790 +(epoch: 291, iters: 4480, time: 0.064) G_GAN: 0.215 G_GAN_Feat: 0.807 G_ID: 0.107 G_Rec: 0.312 D_GP: 0.054 D_real: 0.757 D_fake: 0.785 +(epoch: 291, iters: 4880, time: 0.064) G_GAN: 0.345 G_GAN_Feat: 1.092 G_ID: 0.162 G_Rec: 0.402 D_GP: 0.113 D_real: 0.423 D_fake: 0.660 +(epoch: 291, iters: 5280, time: 0.064) G_GAN: 0.303 G_GAN_Feat: 0.596 G_ID: 0.117 G_Rec: 0.245 D_GP: 0.017 D_real: 1.262 D_fake: 0.699 +(epoch: 291, iters: 5680, time: 0.064) G_GAN: 0.509 G_GAN_Feat: 0.814 G_ID: 0.161 G_Rec: 0.402 D_GP: 0.020 D_real: 1.247 D_fake: 0.504 +(epoch: 291, iters: 6080, time: 0.064) G_GAN: 0.154 G_GAN_Feat: 0.631 G_ID: 0.127 G_Rec: 0.284 D_GP: 0.023 D_real: 1.107 D_fake: 0.846 +(epoch: 291, iters: 6480, time: 0.064) G_GAN: 0.092 G_GAN_Feat: 0.815 G_ID: 0.207 G_Rec: 0.343 D_GP: 0.027 D_real: 0.927 D_fake: 0.908 +(epoch: 291, iters: 6880, time: 0.064) G_GAN: 0.387 G_GAN_Feat: 0.726 G_ID: 0.113 G_Rec: 0.269 D_GP: 0.038 D_real: 1.199 D_fake: 0.632 +(epoch: 291, iters: 7280, time: 0.064) G_GAN: 0.285 G_GAN_Feat: 0.898 G_ID: 0.155 G_Rec: 0.404 D_GP: 0.027 D_real: 0.913 D_fake: 0.715 +(epoch: 291, iters: 7680, time: 0.064) G_GAN: 0.224 G_GAN_Feat: 0.724 G_ID: 0.107 G_Rec: 0.288 D_GP: 0.122 D_real: 0.895 D_fake: 0.776 +(epoch: 291, iters: 8080, time: 0.064) G_GAN: 0.599 G_GAN_Feat: 0.838 G_ID: 0.163 G_Rec: 0.400 D_GP: 0.019 D_real: 1.389 D_fake: 0.405 +(epoch: 291, iters: 8480, time: 0.064) G_GAN: 0.188 G_GAN_Feat: 0.739 G_ID: 0.116 G_Rec: 0.304 D_GP: 0.055 D_real: 1.102 D_fake: 0.812 +(epoch: 292, iters: 272, time: 0.064) G_GAN: 0.580 G_GAN_Feat: 1.096 G_ID: 0.182 G_Rec: 0.414 D_GP: 0.101 D_real: 0.396 D_fake: 0.448 +(epoch: 292, iters: 672, time: 0.064) G_GAN: 0.488 G_GAN_Feat: 0.658 G_ID: 0.117 G_Rec: 0.259 D_GP: 0.021 D_real: 1.439 D_fake: 0.597 +(epoch: 292, iters: 1072, time: 0.064) G_GAN: 0.539 G_GAN_Feat: 0.797 G_ID: 0.182 G_Rec: 0.378 D_GP: 0.020 D_real: 1.375 D_fake: 0.475 +(epoch: 292, iters: 1472, time: 0.064) G_GAN: 0.239 G_GAN_Feat: 0.637 G_ID: 0.106 G_Rec: 0.277 D_GP: 0.019 D_real: 1.174 D_fake: 0.761 +(epoch: 292, iters: 1872, time: 0.064) G_GAN: 0.212 G_GAN_Feat: 0.916 G_ID: 0.170 G_Rec: 0.386 D_GP: 0.117 D_real: 0.739 D_fake: 0.791 +(epoch: 292, iters: 2272, time: 0.064) G_GAN: 0.335 G_GAN_Feat: 0.771 G_ID: 0.138 G_Rec: 0.313 D_GP: 0.047 D_real: 0.963 D_fake: 0.668 +(epoch: 292, iters: 2672, time: 0.064) G_GAN: 0.478 G_GAN_Feat: 0.984 G_ID: 0.149 G_Rec: 0.429 D_GP: 0.039 D_real: 1.132 D_fake: 0.529 +(epoch: 292, iters: 3072, time: 0.064) G_GAN: 0.298 G_GAN_Feat: 0.727 G_ID: 0.161 G_Rec: 0.269 D_GP: 0.024 D_real: 1.223 D_fake: 0.705 +(epoch: 292, iters: 3472, time: 0.064) G_GAN: 0.042 G_GAN_Feat: 0.833 G_ID: 0.161 G_Rec: 0.365 D_GP: 0.022 D_real: 0.943 D_fake: 0.958 +(epoch: 292, iters: 3872, time: 0.064) G_GAN: 0.147 G_GAN_Feat: 0.645 G_ID: 0.116 G_Rec: 0.280 D_GP: 0.023 D_real: 1.059 D_fake: 0.854 +(epoch: 292, iters: 4272, time: 0.064) G_GAN: 0.361 G_GAN_Feat: 0.665 G_ID: 0.148 G_Rec: 0.330 D_GP: 0.019 D_real: 1.281 D_fake: 0.640 +(epoch: 292, iters: 4672, time: 0.064) G_GAN: -0.000 G_GAN_Feat: 0.602 G_ID: 0.133 G_Rec: 0.294 D_GP: 0.024 D_real: 0.921 D_fake: 1.000 +(epoch: 292, iters: 5072, time: 0.064) G_GAN: 0.188 G_GAN_Feat: 0.753 G_ID: 0.165 G_Rec: 0.353 D_GP: 0.027 D_real: 0.981 D_fake: 0.812 +(epoch: 292, iters: 5472, time: 0.064) G_GAN: 0.080 G_GAN_Feat: 0.636 G_ID: 0.123 G_Rec: 0.296 D_GP: 0.027 D_real: 1.046 D_fake: 0.920 +(epoch: 292, iters: 5872, time: 0.064) G_GAN: 0.169 G_GAN_Feat: 0.837 G_ID: 0.177 G_Rec: 0.390 D_GP: 0.023 D_real: 0.813 D_fake: 0.832 +(epoch: 292, iters: 6272, time: 0.064) G_GAN: 0.121 G_GAN_Feat: 0.706 G_ID: 0.122 G_Rec: 0.358 D_GP: 0.029 D_real: 0.935 D_fake: 0.880 +(epoch: 292, iters: 6672, time: 0.064) G_GAN: 0.420 G_GAN_Feat: 0.780 G_ID: 0.150 G_Rec: 0.364 D_GP: 0.022 D_real: 1.202 D_fake: 0.580 +(epoch: 292, iters: 7072, time: 0.064) G_GAN: 0.361 G_GAN_Feat: 0.787 G_ID: 0.139 G_Rec: 0.308 D_GP: 0.039 D_real: 1.101 D_fake: 0.641 +(epoch: 292, iters: 7472, time: 0.064) G_GAN: 0.507 G_GAN_Feat: 0.888 G_ID: 0.141 G_Rec: 0.377 D_GP: 0.042 D_real: 1.021 D_fake: 0.499 +(epoch: 292, iters: 7872, time: 0.064) G_GAN: 0.546 G_GAN_Feat: 0.747 G_ID: 0.117 G_Rec: 0.288 D_GP: 0.041 D_real: 1.336 D_fake: 0.488 +(epoch: 292, iters: 8272, time: 0.064) G_GAN: 0.424 G_GAN_Feat: 0.849 G_ID: 0.157 G_Rec: 0.400 D_GP: 0.022 D_real: 1.208 D_fake: 0.577 +(epoch: 293, iters: 64, time: 0.064) G_GAN: 0.308 G_GAN_Feat: 0.659 G_ID: 0.140 G_Rec: 0.270 D_GP: 0.020 D_real: 1.233 D_fake: 0.692 +(epoch: 293, iters: 464, time: 0.064) G_GAN: 0.295 G_GAN_Feat: 0.961 G_ID: 0.157 G_Rec: 0.400 D_GP: 0.051 D_real: 0.732 D_fake: 0.709 +(epoch: 293, iters: 864, time: 0.064) G_GAN: 0.409 G_GAN_Feat: 0.747 G_ID: 0.147 G_Rec: 0.290 D_GP: 0.057 D_real: 1.042 D_fake: 0.603 +(epoch: 293, iters: 1264, time: 0.064) G_GAN: 0.247 G_GAN_Feat: 0.894 G_ID: 0.170 G_Rec: 0.395 D_GP: 0.029 D_real: 0.961 D_fake: 0.753 +(epoch: 293, iters: 1664, time: 0.064) G_GAN: 0.247 G_GAN_Feat: 0.625 G_ID: 0.119 G_Rec: 0.281 D_GP: 0.022 D_real: 1.175 D_fake: 0.753 +(epoch: 293, iters: 2064, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 0.846 G_ID: 0.154 G_Rec: 0.365 D_GP: 0.032 D_real: 1.163 D_fake: 0.659 +(epoch: 293, iters: 2464, time: 0.064) G_GAN: 0.021 G_GAN_Feat: 0.689 G_ID: 0.139 G_Rec: 0.297 D_GP: 0.062 D_real: 0.757 D_fake: 0.980 +(epoch: 293, iters: 2864, time: 0.064) G_GAN: 0.537 G_GAN_Feat: 0.923 G_ID: 0.174 G_Rec: 0.382 D_GP: 0.038 D_real: 1.085 D_fake: 0.484 +(epoch: 293, iters: 3264, time: 0.064) G_GAN: 0.104 G_GAN_Feat: 0.629 G_ID: 0.145 G_Rec: 0.252 D_GP: 0.022 D_real: 0.992 D_fake: 0.896 +(epoch: 293, iters: 3664, time: 0.064) G_GAN: 0.300 G_GAN_Feat: 1.114 G_ID: 0.158 G_Rec: 0.399 D_GP: 0.141 D_real: 0.351 D_fake: 0.701 +(epoch: 293, iters: 4064, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 0.648 G_ID: 0.158 G_Rec: 0.262 D_GP: 0.026 D_real: 1.161 D_fake: 0.738 +(epoch: 293, iters: 4464, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.895 G_ID: 0.157 G_Rec: 0.404 D_GP: 0.033 D_real: 0.913 D_fake: 0.746 +(epoch: 293, iters: 4864, time: 0.064) G_GAN: 0.086 G_GAN_Feat: 0.681 G_ID: 0.122 G_Rec: 0.269 D_GP: 0.030 D_real: 0.923 D_fake: 0.914 +(epoch: 293, iters: 5264, time: 0.064) G_GAN: 0.603 G_GAN_Feat: 0.976 G_ID: 0.177 G_Rec: 0.398 D_GP: 0.095 D_real: 0.983 D_fake: 0.432 +(epoch: 293, iters: 5664, time: 0.064) G_GAN: 0.268 G_GAN_Feat: 0.870 G_ID: 0.125 G_Rec: 0.338 D_GP: 0.084 D_real: 0.491 D_fake: 0.735 +(epoch: 293, iters: 6064, time: 0.064) G_GAN: 0.157 G_GAN_Feat: 0.885 G_ID: 0.171 G_Rec: 0.376 D_GP: 0.028 D_real: 0.861 D_fake: 0.844 +(epoch: 293, iters: 6464, time: 0.064) G_GAN: 0.297 G_GAN_Feat: 0.831 G_ID: 0.113 G_Rec: 0.294 D_GP: 0.077 D_real: 0.616 D_fake: 0.730 +(epoch: 293, iters: 6864, time: 0.064) G_GAN: 0.303 G_GAN_Feat: 1.158 G_ID: 0.161 G_Rec: 0.452 D_GP: 0.279 D_real: 0.482 D_fake: 0.699 +(epoch: 293, iters: 7264, time: 0.064) G_GAN: 0.023 G_GAN_Feat: 0.835 G_ID: 0.129 G_Rec: 0.331 D_GP: 0.034 D_real: 0.876 D_fake: 0.999 +(epoch: 293, iters: 7664, time: 0.064) G_GAN: 0.191 G_GAN_Feat: 0.865 G_ID: 0.165 G_Rec: 0.378 D_GP: 0.023 D_real: 1.005 D_fake: 0.809 +(epoch: 293, iters: 8064, time: 0.064) G_GAN: 0.107 G_GAN_Feat: 0.779 G_ID: 0.126 G_Rec: 0.343 D_GP: 0.061 D_real: 0.809 D_fake: 0.895 +(epoch: 293, iters: 8464, time: 0.064) G_GAN: 0.213 G_GAN_Feat: 0.903 G_ID: 0.165 G_Rec: 0.409 D_GP: 0.048 D_real: 0.775 D_fake: 0.788 +(epoch: 294, iters: 256, time: 0.064) G_GAN: -0.003 G_GAN_Feat: 0.734 G_ID: 0.134 G_Rec: 0.292 D_GP: 0.074 D_real: 0.689 D_fake: 1.003 +(epoch: 294, iters: 656, time: 0.064) G_GAN: 0.546 G_GAN_Feat: 0.864 G_ID: 0.173 G_Rec: 0.376 D_GP: 0.026 D_real: 1.269 D_fake: 0.463 +(epoch: 294, iters: 1056, time: 0.064) G_GAN: 0.385 G_GAN_Feat: 0.686 G_ID: 0.133 G_Rec: 0.284 D_GP: 0.025 D_real: 1.308 D_fake: 0.616 +(epoch: 294, iters: 1456, time: 0.064) G_GAN: 0.498 G_GAN_Feat: 0.922 G_ID: 0.144 G_Rec: 0.389 D_GP: 0.029 D_real: 1.086 D_fake: 0.504 +(epoch: 294, iters: 1856, time: 0.064) G_GAN: 0.405 G_GAN_Feat: 0.839 G_ID: 0.114 G_Rec: 0.287 D_GP: 0.026 D_real: 0.869 D_fake: 0.615 +(epoch: 294, iters: 2256, time: 0.064) G_GAN: 0.259 G_GAN_Feat: 0.838 G_ID: 0.156 G_Rec: 0.386 D_GP: 0.023 D_real: 1.044 D_fake: 0.743 +(epoch: 294, iters: 2656, time: 0.064) G_GAN: 0.206 G_GAN_Feat: 0.628 G_ID: 0.128 G_Rec: 0.268 D_GP: 0.022 D_real: 1.142 D_fake: 0.795 +(epoch: 294, iters: 3056, time: 0.064) G_GAN: 0.353 G_GAN_Feat: 0.847 G_ID: 0.176 G_Rec: 0.367 D_GP: 0.022 D_real: 1.216 D_fake: 0.648 +(epoch: 294, iters: 3456, time: 0.064) G_GAN: 0.334 G_GAN_Feat: 0.899 G_ID: 0.101 G_Rec: 0.315 D_GP: 0.065 D_real: 0.614 D_fake: 0.673 +(epoch: 294, iters: 3856, time: 0.064) G_GAN: 0.391 G_GAN_Feat: 0.869 G_ID: 0.159 G_Rec: 0.393 D_GP: 0.022 D_real: 1.132 D_fake: 0.609 +(epoch: 294, iters: 4256, time: 0.064) G_GAN: 0.179 G_GAN_Feat: 0.817 G_ID: 0.146 G_Rec: 0.292 D_GP: 0.039 D_real: 1.119 D_fake: 0.822 +(epoch: 294, iters: 4656, time: 0.064) G_GAN: 0.386 G_GAN_Feat: 0.937 G_ID: 0.153 G_Rec: 0.349 D_GP: 0.027 D_real: 0.826 D_fake: 0.615 +(epoch: 294, iters: 5056, time: 0.064) G_GAN: 0.032 G_GAN_Feat: 0.619 G_ID: 0.141 G_Rec: 0.282 D_GP: 0.020 D_real: 0.991 D_fake: 0.968 +(epoch: 294, iters: 5456, time: 0.064) G_GAN: 0.305 G_GAN_Feat: 0.953 G_ID: 0.156 G_Rec: 0.398 D_GP: 0.101 D_real: 0.696 D_fake: 0.698 +(epoch: 294, iters: 5856, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.605 G_ID: 0.137 G_Rec: 0.285 D_GP: 0.018 D_real: 1.282 D_fake: 0.694 +(epoch: 294, iters: 6256, time: 0.064) G_GAN: 0.518 G_GAN_Feat: 0.861 G_ID: 0.144 G_Rec: 0.442 D_GP: 0.029 D_real: 1.215 D_fake: 0.491 +(epoch: 294, iters: 6656, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.708 G_ID: 0.122 G_Rec: 0.298 D_GP: 0.021 D_real: 1.172 D_fake: 0.724 +(epoch: 294, iters: 7056, time: 0.064) G_GAN: 0.500 G_GAN_Feat: 0.903 G_ID: 0.158 G_Rec: 0.377 D_GP: 0.051 D_real: 1.135 D_fake: 0.501 +(epoch: 294, iters: 7456, time: 0.064) G_GAN: 0.254 G_GAN_Feat: 0.733 G_ID: 0.123 G_Rec: 0.279 D_GP: 0.040 D_real: 0.867 D_fake: 0.746 +(epoch: 294, iters: 7856, time: 0.064) G_GAN: 0.374 G_GAN_Feat: 0.967 G_ID: 0.166 G_Rec: 0.413 D_GP: 0.054 D_real: 0.682 D_fake: 0.629 +(epoch: 294, iters: 8256, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.779 G_ID: 0.109 G_Rec: 0.288 D_GP: 0.050 D_real: 0.701 D_fake: 0.744 +(epoch: 295, iters: 48, time: 0.064) G_GAN: 0.506 G_GAN_Feat: 0.832 G_ID: 0.159 G_Rec: 0.364 D_GP: 0.030 D_real: 1.209 D_fake: 0.500 +(epoch: 295, iters: 448, time: 0.064) G_GAN: 0.329 G_GAN_Feat: 0.830 G_ID: 0.107 G_Rec: 0.308 D_GP: 0.039 D_real: 0.936 D_fake: 0.672 +(epoch: 295, iters: 848, time: 0.064) G_GAN: 0.616 G_GAN_Feat: 1.167 G_ID: 0.160 G_Rec: 0.428 D_GP: 0.039 D_real: 0.372 D_fake: 0.415 +(epoch: 295, iters: 1248, time: 0.064) G_GAN: -0.006 G_GAN_Feat: 0.603 G_ID: 0.121 G_Rec: 0.311 D_GP: 0.017 D_real: 0.978 D_fake: 1.006 +(epoch: 295, iters: 1648, time: 0.064) G_GAN: 0.297 G_GAN_Feat: 0.689 G_ID: 0.145 G_Rec: 0.356 D_GP: 0.019 D_real: 1.196 D_fake: 0.705 +(epoch: 295, iters: 2048, time: 0.064) G_GAN: 0.220 G_GAN_Feat: 0.555 G_ID: 0.106 G_Rec: 0.271 D_GP: 0.026 D_real: 1.185 D_fake: 0.781 +(epoch: 295, iters: 2448, time: 0.064) G_GAN: 0.191 G_GAN_Feat: 0.748 G_ID: 0.149 G_Rec: 0.401 D_GP: 0.027 D_real: 0.947 D_fake: 0.809 +(epoch: 295, iters: 2848, time: 0.064) G_GAN: 0.108 G_GAN_Feat: 0.566 G_ID: 0.122 G_Rec: 0.256 D_GP: 0.027 D_real: 1.021 D_fake: 0.892 +(epoch: 295, iters: 3248, time: 0.064) G_GAN: 0.324 G_GAN_Feat: 0.755 G_ID: 0.165 G_Rec: 0.388 D_GP: 0.019 D_real: 1.156 D_fake: 0.676 +(epoch: 295, iters: 3648, time: 0.064) G_GAN: 0.113 G_GAN_Feat: 0.674 G_ID: 0.165 G_Rec: 0.296 D_GP: 0.023 D_real: 0.948 D_fake: 0.887 +(epoch: 295, iters: 4048, time: 0.064) G_GAN: 0.426 G_GAN_Feat: 0.792 G_ID: 0.166 G_Rec: 0.357 D_GP: 0.039 D_real: 1.166 D_fake: 0.581 +(epoch: 295, iters: 4448, time: 0.064) G_GAN: 0.096 G_GAN_Feat: 0.744 G_ID: 0.105 G_Rec: 0.328 D_GP: 0.063 D_real: 0.826 D_fake: 0.904 +(epoch: 295, iters: 4848, time: 0.064) G_GAN: 0.261 G_GAN_Feat: 0.838 G_ID: 0.160 G_Rec: 0.384 D_GP: 0.045 D_real: 0.969 D_fake: 0.739 +(epoch: 295, iters: 5248, time: 0.064) G_GAN: 0.104 G_GAN_Feat: 0.653 G_ID: 0.113 G_Rec: 0.277 D_GP: 0.025 D_real: 1.033 D_fake: 0.896 +(epoch: 295, iters: 5648, time: 0.064) G_GAN: 0.460 G_GAN_Feat: 0.823 G_ID: 0.150 G_Rec: 0.398 D_GP: 0.024 D_real: 1.215 D_fake: 0.543 +(epoch: 295, iters: 6048, time: 0.064) G_GAN: 0.102 G_GAN_Feat: 0.709 G_ID: 0.179 G_Rec: 0.300 D_GP: 0.048 D_real: 0.786 D_fake: 0.898 +(epoch: 295, iters: 6448, time: 0.064) G_GAN: 0.285 G_GAN_Feat: 0.894 G_ID: 0.155 G_Rec: 0.367 D_GP: 0.059 D_real: 0.724 D_fake: 0.724 +(epoch: 295, iters: 6848, time: 0.064) G_GAN: 0.468 G_GAN_Feat: 0.702 G_ID: 0.122 G_Rec: 0.270 D_GP: 0.024 D_real: 1.284 D_fake: 0.532 +(epoch: 295, iters: 7248, time: 0.064) G_GAN: 0.822 G_GAN_Feat: 1.100 G_ID: 0.174 G_Rec: 0.402 D_GP: 0.064 D_real: 1.073 D_fake: 0.390 +(epoch: 295, iters: 7648, time: 0.064) G_GAN: 0.179 G_GAN_Feat: 0.710 G_ID: 0.135 G_Rec: 0.299 D_GP: 0.025 D_real: 1.120 D_fake: 0.821 +(epoch: 295, iters: 8048, time: 0.064) G_GAN: 0.640 G_GAN_Feat: 0.921 G_ID: 0.163 G_Rec: 0.414 D_GP: 0.037 D_real: 1.147 D_fake: 0.405 +(epoch: 295, iters: 8448, time: 0.064) G_GAN: 0.166 G_GAN_Feat: 0.611 G_ID: 0.117 G_Rec: 0.264 D_GP: 0.019 D_real: 1.106 D_fake: 0.834 +(epoch: 296, iters: 240, time: 0.064) G_GAN: 0.497 G_GAN_Feat: 0.943 G_ID: 0.156 G_Rec: 0.425 D_GP: 0.065 D_real: 0.959 D_fake: 0.510 +(epoch: 296, iters: 640, time: 0.064) G_GAN: 0.127 G_GAN_Feat: 0.893 G_ID: 0.135 G_Rec: 0.334 D_GP: 0.393 D_real: 0.603 D_fake: 0.903 +(epoch: 296, iters: 1040, time: 0.064) G_GAN: 0.694 G_GAN_Feat: 0.800 G_ID: 0.148 G_Rec: 0.356 D_GP: 0.022 D_real: 1.492 D_fake: 0.320 +(epoch: 296, iters: 1440, time: 0.064) G_GAN: 0.179 G_GAN_Feat: 0.702 G_ID: 0.133 G_Rec: 0.322 D_GP: 0.020 D_real: 1.125 D_fake: 0.822 +(epoch: 296, iters: 1840, time: 0.064) G_GAN: 0.481 G_GAN_Feat: 0.829 G_ID: 0.151 G_Rec: 0.378 D_GP: 0.019 D_real: 1.317 D_fake: 0.527 +(epoch: 296, iters: 2240, time: 0.064) G_GAN: 0.374 G_GAN_Feat: 0.853 G_ID: 0.131 G_Rec: 0.337 D_GP: 0.100 D_real: 0.897 D_fake: 0.656 +(epoch: 296, iters: 2640, time: 0.064) G_GAN: 0.273 G_GAN_Feat: 0.882 G_ID: 0.176 G_Rec: 0.356 D_GP: 0.037 D_real: 1.108 D_fake: 0.729 +(epoch: 296, iters: 3040, time: 0.064) G_GAN: 0.447 G_GAN_Feat: 0.631 G_ID: 0.126 G_Rec: 0.282 D_GP: 0.019 D_real: 1.369 D_fake: 0.558 +(epoch: 296, iters: 3440, time: 0.064) G_GAN: 0.330 G_GAN_Feat: 0.891 G_ID: 0.170 G_Rec: 0.362 D_GP: 0.030 D_real: 1.053 D_fake: 0.673 +(epoch: 296, iters: 3840, time: 0.064) G_GAN: 0.318 G_GAN_Feat: 0.792 G_ID: 0.126 G_Rec: 0.293 D_GP: 0.073 D_real: 1.019 D_fake: 0.688 +(epoch: 296, iters: 4240, time: 0.064) G_GAN: 0.412 G_GAN_Feat: 0.954 G_ID: 0.159 G_Rec: 0.383 D_GP: 0.046 D_real: 0.856 D_fake: 0.589 +(epoch: 296, iters: 4640, time: 0.064) G_GAN: 0.272 G_GAN_Feat: 0.863 G_ID: 0.123 G_Rec: 0.312 D_GP: 0.136 D_real: 0.586 D_fake: 0.738 +(epoch: 296, iters: 5040, time: 0.064) G_GAN: 0.735 G_GAN_Feat: 1.073 G_ID: 0.172 G_Rec: 0.411 D_GP: 1.489 D_real: 0.654 D_fake: 0.317 +(epoch: 296, iters: 5440, time: 0.064) G_GAN: 0.106 G_GAN_Feat: 0.540 G_ID: 0.122 G_Rec: 0.257 D_GP: 0.017 D_real: 1.075 D_fake: 0.894 +(epoch: 296, iters: 5840, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 0.824 G_ID: 0.157 G_Rec: 0.409 D_GP: 0.018 D_real: 1.060 D_fake: 0.650 +(epoch: 296, iters: 6240, time: 0.064) G_GAN: 0.266 G_GAN_Feat: 0.606 G_ID: 0.103 G_Rec: 0.280 D_GP: 0.019 D_real: 1.214 D_fake: 0.738 +(epoch: 296, iters: 6640, time: 0.064) G_GAN: 0.197 G_GAN_Feat: 0.765 G_ID: 0.178 G_Rec: 0.368 D_GP: 0.027 D_real: 1.060 D_fake: 0.804 +(epoch: 296, iters: 7040, time: 0.064) G_GAN: 0.034 G_GAN_Feat: 0.583 G_ID: 0.140 G_Rec: 0.276 D_GP: 0.026 D_real: 0.937 D_fake: 0.966 +(epoch: 296, iters: 7440, time: 0.064) G_GAN: 0.063 G_GAN_Feat: 0.780 G_ID: 0.184 G_Rec: 0.377 D_GP: 0.037 D_real: 0.791 D_fake: 0.937 +(epoch: 296, iters: 7840, time: 0.064) G_GAN: 0.091 G_GAN_Feat: 0.653 G_ID: 0.129 G_Rec: 0.293 D_GP: 0.035 D_real: 0.982 D_fake: 0.909 +(epoch: 296, iters: 8240, time: 0.064) G_GAN: 0.139 G_GAN_Feat: 0.756 G_ID: 0.164 G_Rec: 0.370 D_GP: 0.023 D_real: 0.932 D_fake: 0.861 +(epoch: 297, iters: 32, time: 0.064) G_GAN: 0.135 G_GAN_Feat: 0.675 G_ID: 0.128 G_Rec: 0.300 D_GP: 0.030 D_real: 1.053 D_fake: 0.865 +(epoch: 297, iters: 432, time: 0.064) G_GAN: 0.417 G_GAN_Feat: 0.854 G_ID: 0.163 G_Rec: 0.399 D_GP: 0.048 D_real: 1.058 D_fake: 0.585 +(epoch: 297, iters: 832, time: 0.064) G_GAN: 0.052 G_GAN_Feat: 0.940 G_ID: 0.122 G_Rec: 0.344 D_GP: 0.022 D_real: 1.280 D_fake: 0.951 +(epoch: 297, iters: 1232, time: 0.064) G_GAN: 0.179 G_GAN_Feat: 0.787 G_ID: 0.177 G_Rec: 0.402 D_GP: 0.020 D_real: 0.934 D_fake: 0.821 +(epoch: 297, iters: 1632, time: 0.064) G_GAN: 0.212 G_GAN_Feat: 0.598 G_ID: 0.133 G_Rec: 0.291 D_GP: 0.019 D_real: 1.106 D_fake: 0.788 +(epoch: 297, iters: 2032, time: 0.064) G_GAN: 0.394 G_GAN_Feat: 0.796 G_ID: 0.143 G_Rec: 0.398 D_GP: 0.024 D_real: 1.171 D_fake: 0.609 +(epoch: 297, iters: 2432, time: 0.064) G_GAN: 0.098 G_GAN_Feat: 0.631 G_ID: 0.153 G_Rec: 0.328 D_GP: 0.023 D_real: 1.040 D_fake: 0.902 +(epoch: 297, iters: 2832, time: 0.064) G_GAN: 0.422 G_GAN_Feat: 0.722 G_ID: 0.162 G_Rec: 0.315 D_GP: 0.035 D_real: 1.241 D_fake: 0.584 +(epoch: 297, iters: 3232, time: 0.064) G_GAN: -0.030 G_GAN_Feat: 0.706 G_ID: 0.144 G_Rec: 0.287 D_GP: 0.052 D_real: 0.745 D_fake: 1.030 +(epoch: 297, iters: 3632, time: 0.064) G_GAN: 0.319 G_GAN_Feat: 0.868 G_ID: 0.139 G_Rec: 0.389 D_GP: 0.046 D_real: 0.966 D_fake: 0.681 +(epoch: 297, iters: 4032, time: 0.064) G_GAN: 0.328 G_GAN_Feat: 0.621 G_ID: 0.105 G_Rec: 0.262 D_GP: 0.035 D_real: 1.236 D_fake: 0.672 +(epoch: 297, iters: 4432, time: 0.064) G_GAN: -0.221 G_GAN_Feat: 1.105 G_ID: 0.201 G_Rec: 0.466 D_GP: 1.106 D_real: 0.257 D_fake: 1.221 +(epoch: 297, iters: 4832, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 0.719 G_ID: 0.115 G_Rec: 0.311 D_GP: 0.027 D_real: 1.065 D_fake: 0.737 +(epoch: 297, iters: 5232, time: 0.064) G_GAN: 0.544 G_GAN_Feat: 0.813 G_ID: 0.166 G_Rec: 0.347 D_GP: 0.030 D_real: 1.297 D_fake: 0.466 +(epoch: 297, iters: 5632, time: 0.064) G_GAN: 0.225 G_GAN_Feat: 0.657 G_ID: 0.110 G_Rec: 0.293 D_GP: 0.026 D_real: 1.184 D_fake: 0.775 +(epoch: 297, iters: 6032, time: 0.064) G_GAN: 0.644 G_GAN_Feat: 1.034 G_ID: 0.154 G_Rec: 0.439 D_GP: 0.077 D_real: 0.854 D_fake: 0.385 +(epoch: 297, iters: 6432, time: 0.064) G_GAN: 0.132 G_GAN_Feat: 0.687 G_ID: 0.128 G_Rec: 0.286 D_GP: 0.033 D_real: 1.019 D_fake: 0.868 +(epoch: 297, iters: 6832, time: 0.064) G_GAN: 0.266 G_GAN_Feat: 0.946 G_ID: 0.171 G_Rec: 0.377 D_GP: 0.148 D_real: 0.583 D_fake: 0.735 +(epoch: 297, iters: 7232, time: 0.064) G_GAN: 0.266 G_GAN_Feat: 0.736 G_ID: 0.131 G_Rec: 0.274 D_GP: 0.027 D_real: 1.053 D_fake: 0.735 +(epoch: 297, iters: 7632, time: 0.064) G_GAN: 0.365 G_GAN_Feat: 0.895 G_ID: 0.157 G_Rec: 0.419 D_GP: 0.030 D_real: 1.020 D_fake: 0.637 +(epoch: 297, iters: 8032, time: 0.064) G_GAN: 0.289 G_GAN_Feat: 0.621 G_ID: 0.116 G_Rec: 0.273 D_GP: 0.019 D_real: 1.220 D_fake: 0.711 +(epoch: 297, iters: 8432, time: 0.064) G_GAN: 0.638 G_GAN_Feat: 0.876 G_ID: 0.187 G_Rec: 0.407 D_GP: 0.034 D_real: 1.275 D_fake: 0.373 +(epoch: 298, iters: 224, time: 0.064) G_GAN: 0.229 G_GAN_Feat: 0.660 G_ID: 0.113 G_Rec: 0.290 D_GP: 0.029 D_real: 1.118 D_fake: 0.771 +(epoch: 298, iters: 624, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.936 G_ID: 0.180 G_Rec: 0.386 D_GP: 0.102 D_real: 0.748 D_fake: 0.676 +(epoch: 298, iters: 1024, time: 0.064) G_GAN: 0.279 G_GAN_Feat: 0.774 G_ID: 0.103 G_Rec: 0.303 D_GP: 0.099 D_real: 0.800 D_fake: 0.723 +(epoch: 298, iters: 1424, time: 0.064) G_GAN: 0.787 G_GAN_Feat: 0.846 G_ID: 0.135 G_Rec: 0.414 D_GP: 0.026 D_real: 1.396 D_fake: 0.270 +(epoch: 298, iters: 1824, time: 0.064) G_GAN: 0.294 G_GAN_Feat: 0.659 G_ID: 0.133 G_Rec: 0.293 D_GP: 0.035 D_real: 1.145 D_fake: 0.707 +(epoch: 298, iters: 2224, time: 0.064) G_GAN: 0.457 G_GAN_Feat: 0.890 G_ID: 0.139 G_Rec: 0.385 D_GP: 0.028 D_real: 1.049 D_fake: 0.545 +(epoch: 298, iters: 2624, time: 0.064) G_GAN: 0.251 G_GAN_Feat: 0.740 G_ID: 0.116 G_Rec: 0.276 D_GP: 0.027 D_real: 0.843 D_fake: 0.749 +(epoch: 298, iters: 3024, time: 0.064) G_GAN: 0.069 G_GAN_Feat: 0.852 G_ID: 0.163 G_Rec: 0.397 D_GP: 0.035 D_real: 0.771 D_fake: 0.931 +(epoch: 298, iters: 3424, time: 0.064) G_GAN: -0.169 G_GAN_Feat: 0.733 G_ID: 0.123 G_Rec: 0.270 D_GP: 0.027 D_real: 0.654 D_fake: 1.169 +(epoch: 298, iters: 3824, time: 0.064) G_GAN: 0.498 G_GAN_Feat: 0.928 G_ID: 0.160 G_Rec: 0.415 D_GP: 0.025 D_real: 1.107 D_fake: 0.507 +(epoch: 298, iters: 4224, time: 0.064) G_GAN: 0.245 G_GAN_Feat: 0.782 G_ID: 0.150 G_Rec: 0.310 D_GP: 0.030 D_real: 0.961 D_fake: 0.755 +(epoch: 298, iters: 4624, time: 0.064) G_GAN: 0.482 G_GAN_Feat: 0.878 G_ID: 0.147 G_Rec: 0.381 D_GP: 0.030 D_real: 1.163 D_fake: 0.521 +(epoch: 298, iters: 5024, time: 0.064) G_GAN: 0.074 G_GAN_Feat: 0.736 G_ID: 0.152 G_Rec: 0.356 D_GP: 0.026 D_real: 0.972 D_fake: 0.926 +(epoch: 298, iters: 5424, time: 0.064) G_GAN: 0.136 G_GAN_Feat: 0.830 G_ID: 0.192 G_Rec: 0.359 D_GP: 0.023 D_real: 0.834 D_fake: 0.864 +(epoch: 298, iters: 5824, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 0.756 G_ID: 0.132 G_Rec: 0.311 D_GP: 0.048 D_real: 0.996 D_fake: 0.785 +(epoch: 298, iters: 6224, time: 0.064) G_GAN: 0.414 G_GAN_Feat: 0.901 G_ID: 0.158 G_Rec: 0.411 D_GP: 0.027 D_real: 1.076 D_fake: 0.590 +(epoch: 298, iters: 6624, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 0.704 G_ID: 0.121 G_Rec: 0.255 D_GP: 0.039 D_real: 0.935 D_fake: 0.830 +(epoch: 298, iters: 7024, time: 0.064) G_GAN: 0.184 G_GAN_Feat: 1.070 G_ID: 0.169 G_Rec: 0.424 D_GP: 0.194 D_real: 0.442 D_fake: 0.817 +(epoch: 298, iters: 7424, time: 0.064) G_GAN: 0.140 G_GAN_Feat: 0.638 G_ID: 0.132 G_Rec: 0.300 D_GP: 0.021 D_real: 1.087 D_fake: 0.860 +(epoch: 298, iters: 7824, time: 0.064) G_GAN: 0.137 G_GAN_Feat: 0.918 G_ID: 0.177 G_Rec: 0.432 D_GP: 0.043 D_real: 0.733 D_fake: 0.864 +(epoch: 298, iters: 8224, time: 0.064) G_GAN: 0.099 G_GAN_Feat: 0.678 G_ID: 0.123 G_Rec: 0.274 D_GP: 0.043 D_real: 0.917 D_fake: 0.901 +(epoch: 299, iters: 16, time: 0.064) G_GAN: 0.359 G_GAN_Feat: 0.879 G_ID: 0.152 G_Rec: 0.349 D_GP: 0.031 D_real: 0.918 D_fake: 0.642 +(epoch: 299, iters: 416, time: 0.064) G_GAN: 0.155 G_GAN_Feat: 0.653 G_ID: 0.133 G_Rec: 0.271 D_GP: 0.029 D_real: 1.036 D_fake: 0.845 +(epoch: 299, iters: 816, time: 0.064) G_GAN: 0.476 G_GAN_Feat: 0.880 G_ID: 0.165 G_Rec: 0.372 D_GP: 0.025 D_real: 1.067 D_fake: 0.531 +(epoch: 299, iters: 1216, time: 0.064) G_GAN: 0.190 G_GAN_Feat: 0.704 G_ID: 0.105 G_Rec: 0.267 D_GP: 0.025 D_real: 0.974 D_fake: 0.810 +(epoch: 299, iters: 1616, time: 0.064) G_GAN: 0.244 G_GAN_Feat: 1.013 G_ID: 0.169 G_Rec: 0.374 D_GP: 0.041 D_real: 0.709 D_fake: 0.757 +(epoch: 299, iters: 2016, time: 0.064) G_GAN: 0.236 G_GAN_Feat: 0.706 G_ID: 0.119 G_Rec: 0.278 D_GP: 0.023 D_real: 1.099 D_fake: 0.764 +(epoch: 299, iters: 2416, time: 0.064) G_GAN: 0.244 G_GAN_Feat: 0.831 G_ID: 0.155 G_Rec: 0.376 D_GP: 0.024 D_real: 1.029 D_fake: 0.756 +(epoch: 299, iters: 2816, time: 0.064) G_GAN: 0.248 G_GAN_Feat: 0.702 G_ID: 0.140 G_Rec: 0.264 D_GP: 0.026 D_real: 1.128 D_fake: 0.752 +(epoch: 299, iters: 3216, time: 0.064) G_GAN: 0.364 G_GAN_Feat: 0.773 G_ID: 0.171 G_Rec: 0.362 D_GP: 0.020 D_real: 1.175 D_fake: 0.636 +(epoch: 299, iters: 3616, time: 0.064) G_GAN: 0.032 G_GAN_Feat: 0.726 G_ID: 0.128 G_Rec: 0.292 D_GP: 0.030 D_real: 0.876 D_fake: 0.968 +(epoch: 299, iters: 4016, time: 0.064) G_GAN: 0.179 G_GAN_Feat: 0.827 G_ID: 0.164 G_Rec: 0.365 D_GP: 0.025 D_real: 0.941 D_fake: 0.821 +(epoch: 299, iters: 4416, time: 0.064) G_GAN: 0.271 G_GAN_Feat: 0.704 G_ID: 0.109 G_Rec: 0.283 D_GP: 0.038 D_real: 1.090 D_fake: 0.730 +(epoch: 299, iters: 4816, time: 0.064) G_GAN: 0.428 G_GAN_Feat: 0.799 G_ID: 0.144 G_Rec: 0.363 D_GP: 0.021 D_real: 1.185 D_fake: 0.573 +(epoch: 299, iters: 5216, time: 0.064) G_GAN: 0.158 G_GAN_Feat: 0.975 G_ID: 0.121 G_Rec: 0.319 D_GP: 0.041 D_real: 1.169 D_fake: 0.855 +(epoch: 299, iters: 5616, time: 0.064) G_GAN: 0.917 G_GAN_Feat: 1.094 G_ID: 0.165 G_Rec: 0.443 D_GP: 0.097 D_real: 1.350 D_fake: 0.368 +(epoch: 299, iters: 6016, time: 0.064) G_GAN: 0.421 G_GAN_Feat: 0.707 G_ID: 0.113 G_Rec: 0.280 D_GP: 0.040 D_real: 1.152 D_fake: 0.581 +(epoch: 299, iters: 6416, time: 0.064) G_GAN: 0.370 G_GAN_Feat: 1.107 G_ID: 0.188 G_Rec: 0.446 D_GP: 0.104 D_real: 0.365 D_fake: 0.632 +(epoch: 299, iters: 6816, time: 0.064) G_GAN: -0.078 G_GAN_Feat: 0.605 G_ID: 0.135 G_Rec: 0.277 D_GP: 0.019 D_real: 0.902 D_fake: 1.078 +(epoch: 299, iters: 7216, time: 0.064) G_GAN: 0.251 G_GAN_Feat: 0.846 G_ID: 0.178 G_Rec: 0.400 D_GP: 0.025 D_real: 0.952 D_fake: 0.752 +(epoch: 299, iters: 7616, time: 0.064) G_GAN: 0.118 G_GAN_Feat: 0.658 G_ID: 0.112 G_Rec: 0.302 D_GP: 0.034 D_real: 0.946 D_fake: 0.883 +(epoch: 299, iters: 8016, time: 0.064) G_GAN: 0.391 G_GAN_Feat: 0.783 G_ID: 0.178 G_Rec: 0.371 D_GP: 0.021 D_real: 1.236 D_fake: 0.609 +(epoch: 299, iters: 8416, time: 0.064) G_GAN: 0.104 G_GAN_Feat: 0.905 G_ID: 0.140 G_Rec: 0.337 D_GP: 0.115 D_real: 0.324 D_fake: 0.896 +(epoch: 300, iters: 208, time: 0.064) G_GAN: 0.457 G_GAN_Feat: 0.866 G_ID: 0.166 G_Rec: 0.389 D_GP: 0.027 D_real: 1.124 D_fake: 0.555 +(epoch: 300, iters: 608, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.843 G_ID: 0.114 G_Rec: 0.327 D_GP: 0.066 D_real: 0.517 D_fake: 0.745 +(epoch: 300, iters: 1008, time: 0.064) G_GAN: -0.031 G_GAN_Feat: 0.777 G_ID: 0.203 G_Rec: 0.357 D_GP: 0.019 D_real: 0.806 D_fake: 1.031 +(epoch: 300, iters: 1408, time: 0.064) G_GAN: -0.008 G_GAN_Feat: 0.613 G_ID: 0.124 G_Rec: 0.269 D_GP: 0.018 D_real: 0.945 D_fake: 1.008 +(epoch: 300, iters: 1808, time: 0.064) G_GAN: -0.030 G_GAN_Feat: 0.755 G_ID: 0.167 G_Rec: 0.371 D_GP: 0.019 D_real: 0.801 D_fake: 1.030 +(epoch: 300, iters: 2208, time: 0.064) G_GAN: -0.094 G_GAN_Feat: 0.680 G_ID: 0.116 G_Rec: 0.300 D_GP: 0.027 D_real: 0.727 D_fake: 1.094 +(epoch: 300, iters: 2608, time: 0.064) G_GAN: 0.438 G_GAN_Feat: 0.863 G_ID: 0.152 G_Rec: 0.422 D_GP: 0.036 D_real: 1.144 D_fake: 0.576 +(epoch: 300, iters: 3008, time: 0.064) G_GAN: 0.152 G_GAN_Feat: 0.712 G_ID: 0.151 G_Rec: 0.288 D_GP: 0.027 D_real: 0.906 D_fake: 0.850 +(epoch: 300, iters: 3408, time: 0.064) G_GAN: 0.387 G_GAN_Feat: 0.877 G_ID: 0.174 G_Rec: 0.389 D_GP: 0.038 D_real: 1.000 D_fake: 0.614 +(epoch: 300, iters: 3808, time: 0.064) G_GAN: 0.298 G_GAN_Feat: 0.705 G_ID: 0.112 G_Rec: 0.300 D_GP: 0.037 D_real: 1.135 D_fake: 0.703 +(epoch: 300, iters: 4208, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 0.881 G_ID: 0.165 G_Rec: 0.393 D_GP: 0.031 D_real: 1.135 D_fake: 0.662 +(epoch: 300, iters: 4608, time: 0.064) G_GAN: 0.516 G_GAN_Feat: 0.764 G_ID: 0.123 G_Rec: 0.312 D_GP: 0.037 D_real: 1.222 D_fake: 0.491 +(epoch: 300, iters: 5008, time: 0.064) G_GAN: 0.346 G_GAN_Feat: 0.971 G_ID: 0.166 G_Rec: 0.410 D_GP: 0.069 D_real: 0.706 D_fake: 0.659 +(epoch: 300, iters: 5408, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 0.705 G_ID: 0.124 G_Rec: 0.281 D_GP: 0.029 D_real: 1.175 D_fake: 0.661 +(epoch: 300, iters: 5808, time: 0.064) G_GAN: 0.200 G_GAN_Feat: 0.956 G_ID: 0.179 G_Rec: 0.404 D_GP: 0.042 D_real: 0.744 D_fake: 0.801 +(epoch: 300, iters: 6208, time: 0.064) G_GAN: 0.474 G_GAN_Feat: 0.815 G_ID: 0.131 G_Rec: 0.289 D_GP: 0.038 D_real: 1.044 D_fake: 0.547 +(epoch: 300, iters: 6608, time: 0.064) G_GAN: 0.711 G_GAN_Feat: 0.986 G_ID: 0.155 G_Rec: 0.413 D_GP: 0.039 D_real: 1.024 D_fake: 0.330 +(epoch: 300, iters: 7008, time: 0.064) G_GAN: 0.506 G_GAN_Feat: 0.856 G_ID: 0.125 G_Rec: 0.291 D_GP: 0.047 D_real: 0.700 D_fake: 0.530 +(epoch: 300, iters: 7408, time: 0.064) G_GAN: 0.510 G_GAN_Feat: 0.805 G_ID: 0.174 G_Rec: 0.382 D_GP: 0.022 D_real: 1.228 D_fake: 0.499 +(epoch: 300, iters: 7808, time: 0.064) G_GAN: 0.095 G_GAN_Feat: 0.789 G_ID: 0.120 G_Rec: 0.311 D_GP: 0.116 D_real: 0.751 D_fake: 0.908 +(epoch: 300, iters: 8208, time: 0.064) G_GAN: 0.182 G_GAN_Feat: 0.813 G_ID: 0.138 G_Rec: 0.378 D_GP: 0.023 D_real: 0.958 D_fake: 0.819 +(epoch: 300, iters: 8608, time: 0.064) G_GAN: 0.257 G_GAN_Feat: 0.633 G_ID: 0.116 G_Rec: 0.282 D_GP: 0.023 D_real: 1.149 D_fake: 0.743 +(epoch: 301, iters: 400, time: 0.064) G_GAN: 0.597 G_GAN_Feat: 0.908 G_ID: 0.144 G_Rec: 0.399 D_GP: 0.027 D_real: 1.318 D_fake: 0.410 +(epoch: 301, iters: 800, time: 0.064) G_GAN: 0.132 G_GAN_Feat: 0.757 G_ID: 0.117 G_Rec: 0.295 D_GP: 0.056 D_real: 0.995 D_fake: 0.868 +(epoch: 301, iters: 1200, time: 0.064) G_GAN: 0.637 G_GAN_Feat: 0.881 G_ID: 0.156 G_Rec: 0.341 D_GP: 0.026 D_real: 1.305 D_fake: 0.388 +(epoch: 301, iters: 1600, time: 0.064) G_GAN: 0.565 G_GAN_Feat: 0.796 G_ID: 0.101 G_Rec: 0.305 D_GP: 0.025 D_real: 1.458 D_fake: 0.466 +(epoch: 301, iters: 2000, time: 0.064) G_GAN: 0.345 G_GAN_Feat: 0.902 G_ID: 0.145 G_Rec: 0.378 D_GP: 0.021 D_real: 1.092 D_fake: 0.656 +(epoch: 301, iters: 2400, time: 0.064) G_GAN: 0.165 G_GAN_Feat: 0.648 G_ID: 0.114 G_Rec: 0.270 D_GP: 0.020 D_real: 1.098 D_fake: 0.835 +(epoch: 301, iters: 2800, time: 0.064) G_GAN: 0.625 G_GAN_Feat: 0.888 G_ID: 0.176 G_Rec: 0.408 D_GP: 0.032 D_real: 1.455 D_fake: 0.386 +(epoch: 301, iters: 3200, time: 0.064) G_GAN: 0.011 G_GAN_Feat: 0.604 G_ID: 0.127 G_Rec: 0.280 D_GP: 0.024 D_real: 0.944 D_fake: 0.989 +(epoch: 301, iters: 3600, time: 0.064) G_GAN: 0.287 G_GAN_Feat: 0.833 G_ID: 0.186 G_Rec: 0.417 D_GP: 0.032 D_real: 1.038 D_fake: 0.714 +(epoch: 301, iters: 4000, time: 0.064) G_GAN: 0.062 G_GAN_Feat: 0.686 G_ID: 0.122 G_Rec: 0.294 D_GP: 0.040 D_real: 0.808 D_fake: 0.938 +(epoch: 301, iters: 4400, time: 0.064) G_GAN: 0.704 G_GAN_Feat: 0.960 G_ID: 0.144 G_Rec: 0.380 D_GP: 0.207 D_real: 1.058 D_fake: 0.321 +(epoch: 301, iters: 4800, time: 0.064) G_GAN: 0.007 G_GAN_Feat: 0.675 G_ID: 0.127 G_Rec: 0.292 D_GP: 0.020 D_real: 1.027 D_fake: 0.993 +(epoch: 301, iters: 5200, time: 0.064) G_GAN: 0.233 G_GAN_Feat: 0.846 G_ID: 0.189 G_Rec: 0.370 D_GP: 0.030 D_real: 0.925 D_fake: 0.767 +(epoch: 301, iters: 5600, time: 0.064) G_GAN: 0.394 G_GAN_Feat: 0.626 G_ID: 0.122 G_Rec: 0.276 D_GP: 0.018 D_real: 1.363 D_fake: 0.611 +(epoch: 301, iters: 6000, time: 0.064) G_GAN: 0.381 G_GAN_Feat: 0.888 G_ID: 0.176 G_Rec: 0.372 D_GP: 0.053 D_real: 0.866 D_fake: 0.622 +(epoch: 301, iters: 6400, time: 0.064) G_GAN: 0.017 G_GAN_Feat: 0.602 G_ID: 0.120 G_Rec: 0.283 D_GP: 0.021 D_real: 1.024 D_fake: 0.983 +(epoch: 301, iters: 6800, time: 0.064) G_GAN: 0.282 G_GAN_Feat: 0.841 G_ID: 0.163 G_Rec: 0.375 D_GP: 0.045 D_real: 1.013 D_fake: 0.724 +(epoch: 301, iters: 7200, time: 0.064) G_GAN: 0.091 G_GAN_Feat: 0.717 G_ID: 0.110 G_Rec: 0.310 D_GP: 0.048 D_real: 0.875 D_fake: 0.910 +(epoch: 301, iters: 7600, time: 0.064) G_GAN: 0.370 G_GAN_Feat: 0.986 G_ID: 0.146 G_Rec: 0.419 D_GP: 0.029 D_real: 0.848 D_fake: 0.633 +(epoch: 301, iters: 8000, time: 0.064) G_GAN: 0.166 G_GAN_Feat: 0.801 G_ID: 0.123 G_Rec: 0.292 D_GP: 0.028 D_real: 0.751 D_fake: 0.834 +(epoch: 301, iters: 8400, time: 0.064) G_GAN: 0.509 G_GAN_Feat: 0.844 G_ID: 0.170 G_Rec: 0.347 D_GP: 0.041 D_real: 1.292 D_fake: 0.503 +(epoch: 302, iters: 192, time: 0.064) G_GAN: 0.255 G_GAN_Feat: 0.812 G_ID: 0.124 G_Rec: 0.300 D_GP: 0.029 D_real: 0.897 D_fake: 0.748 +(epoch: 302, iters: 592, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.915 G_ID: 0.142 G_Rec: 0.361 D_GP: 0.024 D_real: 0.788 D_fake: 0.744 +(epoch: 302, iters: 992, time: 0.064) G_GAN: 0.363 G_GAN_Feat: 0.716 G_ID: 0.113 G_Rec: 0.316 D_GP: 0.025 D_real: 1.279 D_fake: 0.637 +(epoch: 302, iters: 1392, time: 0.064) G_GAN: 0.394 G_GAN_Feat: 1.158 G_ID: 0.157 G_Rec: 0.414 D_GP: 0.553 D_real: 0.309 D_fake: 0.612 +(epoch: 302, iters: 1792, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.810 G_ID: 0.113 G_Rec: 0.304 D_GP: 0.030 D_real: 0.881 D_fake: 0.678 +(epoch: 302, iters: 2192, time: 0.064) G_GAN: 0.203 G_GAN_Feat: 0.836 G_ID: 0.145 G_Rec: 0.326 D_GP: 0.024 D_real: 0.951 D_fake: 0.797 +(epoch: 302, iters: 2592, time: 0.064) G_GAN: -0.098 G_GAN_Feat: 0.872 G_ID: 0.138 G_Rec: 0.315 D_GP: 0.022 D_real: 0.501 D_fake: 1.098 +(epoch: 302, iters: 2992, time: 0.064) G_GAN: 0.267 G_GAN_Feat: 1.042 G_ID: 0.171 G_Rec: 0.412 D_GP: 0.034 D_real: 0.442 D_fake: 0.733 +(epoch: 302, iters: 3392, time: 0.064) G_GAN: 0.398 G_GAN_Feat: 0.567 G_ID: 0.128 G_Rec: 0.261 D_GP: 0.016 D_real: 1.372 D_fake: 0.604 +(epoch: 302, iters: 3792, time: 0.064) G_GAN: 0.513 G_GAN_Feat: 0.802 G_ID: 0.153 G_Rec: 0.355 D_GP: 0.022 D_real: 1.216 D_fake: 0.490 +(epoch: 302, iters: 4192, time: 0.064) G_GAN: 0.135 G_GAN_Feat: 0.615 G_ID: 0.126 G_Rec: 0.285 D_GP: 0.023 D_real: 1.021 D_fake: 0.865 +(epoch: 302, iters: 4592, time: 0.064) G_GAN: 0.515 G_GAN_Feat: 1.033 G_ID: 0.169 G_Rec: 0.415 D_GP: 0.100 D_real: 0.536 D_fake: 0.517 +(epoch: 302, iters: 4992, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.697 G_ID: 0.129 G_Rec: 0.294 D_GP: 0.030 D_real: 1.134 D_fake: 0.720 +(epoch: 302, iters: 5392, time: 0.064) G_GAN: 0.234 G_GAN_Feat: 0.946 G_ID: 0.134 G_Rec: 0.409 D_GP: 0.038 D_real: 1.019 D_fake: 0.767 +(epoch: 302, iters: 5792, time: 0.064) G_GAN: 0.559 G_GAN_Feat: 1.010 G_ID: 0.138 G_Rec: 0.318 D_GP: 0.046 D_real: 1.284 D_fake: 0.610 +(epoch: 302, iters: 6192, time: 0.064) G_GAN: 0.242 G_GAN_Feat: 0.822 G_ID: 0.175 G_Rec: 0.357 D_GP: 0.027 D_real: 1.018 D_fake: 0.758 +(epoch: 302, iters: 6592, time: 0.064) G_GAN: 0.232 G_GAN_Feat: 0.806 G_ID: 0.128 G_Rec: 0.321 D_GP: 0.039 D_real: 0.844 D_fake: 0.770 +(epoch: 302, iters: 6992, time: 0.064) G_GAN: 1.149 G_GAN_Feat: 1.001 G_ID: 0.162 G_Rec: 0.452 D_GP: 0.104 D_real: 1.608 D_fake: 0.274 +(epoch: 302, iters: 7392, time: 0.064) G_GAN: 0.085 G_GAN_Feat: 0.625 G_ID: 0.155 G_Rec: 0.274 D_GP: 0.022 D_real: 0.962 D_fake: 0.915 +(epoch: 302, iters: 7792, time: 0.064) G_GAN: 0.277 G_GAN_Feat: 0.885 G_ID: 0.172 G_Rec: 0.461 D_GP: 0.028 D_real: 0.937 D_fake: 0.723 +(epoch: 302, iters: 8192, time: 0.064) G_GAN: 0.158 G_GAN_Feat: 0.660 G_ID: 0.110 G_Rec: 0.285 D_GP: 0.030 D_real: 0.966 D_fake: 0.842 +(epoch: 302, iters: 8592, time: 0.064) G_GAN: 0.542 G_GAN_Feat: 0.985 G_ID: 0.143 G_Rec: 0.421 D_GP: 0.047 D_real: 0.864 D_fake: 0.482 +(epoch: 303, iters: 384, time: 0.064) G_GAN: 0.112 G_GAN_Feat: 0.863 G_ID: 0.135 G_Rec: 0.306 D_GP: 0.048 D_real: 0.477 D_fake: 0.888 +(epoch: 303, iters: 784, time: 0.064) G_GAN: 0.722 G_GAN_Feat: 1.021 G_ID: 0.191 G_Rec: 0.410 D_GP: 0.085 D_real: 0.898 D_fake: 0.535 +(epoch: 303, iters: 1184, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 0.912 G_ID: 0.098 G_Rec: 0.309 D_GP: 0.253 D_real: 0.360 D_fake: 0.792 +(epoch: 303, iters: 1584, time: 0.064) G_GAN: 0.628 G_GAN_Feat: 1.083 G_ID: 0.191 G_Rec: 0.435 D_GP: 0.042 D_real: 0.924 D_fake: 0.431 +(epoch: 303, iters: 1984, time: 0.064) G_GAN: 0.397 G_GAN_Feat: 0.968 G_ID: 0.127 G_Rec: 0.282 D_GP: 0.059 D_real: 0.499 D_fake: 0.606 +(epoch: 303, iters: 2384, time: 0.064) G_GAN: 0.586 G_GAN_Feat: 0.988 G_ID: 0.167 G_Rec: 0.426 D_GP: 0.022 D_real: 1.358 D_fake: 0.428 +(epoch: 303, iters: 2784, time: 0.064) G_GAN: -0.022 G_GAN_Feat: 0.799 G_ID: 0.153 G_Rec: 0.297 D_GP: 0.060 D_real: 0.605 D_fake: 1.022 +(epoch: 303, iters: 3184, time: 0.064) G_GAN: 0.381 G_GAN_Feat: 0.994 G_ID: 0.143 G_Rec: 0.404 D_GP: 0.163 D_real: 0.475 D_fake: 0.620 +(epoch: 303, iters: 3584, time: 0.064) G_GAN: 0.997 G_GAN_Feat: 0.787 G_ID: 0.124 G_Rec: 0.331 D_GP: 0.366 D_real: 1.473 D_fake: 0.482 +(epoch: 303, iters: 3984, time: 0.064) G_GAN: 0.320 G_GAN_Feat: 0.778 G_ID: 0.140 G_Rec: 0.383 D_GP: 0.020 D_real: 1.194 D_fake: 0.680 +(epoch: 303, iters: 4384, time: 0.064) G_GAN: 0.211 G_GAN_Feat: 0.659 G_ID: 0.131 G_Rec: 0.304 D_GP: 0.025 D_real: 1.090 D_fake: 0.789 +(epoch: 303, iters: 4784, time: 0.064) G_GAN: 0.305 G_GAN_Feat: 0.825 G_ID: 0.166 G_Rec: 0.383 D_GP: 0.034 D_real: 1.029 D_fake: 0.698 +(epoch: 303, iters: 5184, time: 0.064) G_GAN: 0.176 G_GAN_Feat: 0.688 G_ID: 0.104 G_Rec: 0.315 D_GP: 0.037 D_real: 1.027 D_fake: 0.824 +(epoch: 303, iters: 5584, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.793 G_ID: 0.148 G_Rec: 0.360 D_GP: 0.026 D_real: 1.094 D_fake: 0.752 +(epoch: 303, iters: 5984, time: 0.064) G_GAN: 0.094 G_GAN_Feat: 0.649 G_ID: 0.141 G_Rec: 0.296 D_GP: 0.030 D_real: 1.006 D_fake: 0.907 +(epoch: 303, iters: 6384, time: 0.064) G_GAN: 0.175 G_GAN_Feat: 0.893 G_ID: 0.173 G_Rec: 0.434 D_GP: 0.082 D_real: 0.708 D_fake: 0.826 +(epoch: 303, iters: 6784, time: 0.064) G_GAN: 0.082 G_GAN_Feat: 0.697 G_ID: 0.143 G_Rec: 0.304 D_GP: 0.026 D_real: 1.050 D_fake: 0.918 +(epoch: 303, iters: 7184, time: 0.064) G_GAN: 0.323 G_GAN_Feat: 0.817 G_ID: 0.150 G_Rec: 0.346 D_GP: 0.028 D_real: 1.106 D_fake: 0.678 +(epoch: 303, iters: 7584, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 0.726 G_ID: 0.117 G_Rec: 0.317 D_GP: 0.061 D_real: 1.022 D_fake: 0.830 +(epoch: 303, iters: 7984, time: 0.064) G_GAN: 0.484 G_GAN_Feat: 0.819 G_ID: 0.146 G_Rec: 0.394 D_GP: 0.025 D_real: 1.256 D_fake: 0.522 +(epoch: 303, iters: 8384, time: 0.064) G_GAN: 0.230 G_GAN_Feat: 0.777 G_ID: 0.131 G_Rec: 0.359 D_GP: 0.130 D_real: 0.780 D_fake: 0.771 +(epoch: 304, iters: 176, time: 0.064) G_GAN: 0.668 G_GAN_Feat: 0.874 G_ID: 0.171 G_Rec: 0.375 D_GP: 0.054 D_real: 1.139 D_fake: 0.358 +(epoch: 304, iters: 576, time: 0.064) G_GAN: 0.155 G_GAN_Feat: 0.543 G_ID: 0.130 G_Rec: 0.292 D_GP: 0.018 D_real: 1.161 D_fake: 0.845 +(epoch: 304, iters: 976, time: 0.064) G_GAN: 0.391 G_GAN_Feat: 0.717 G_ID: 0.141 G_Rec: 0.346 D_GP: 0.018 D_real: 1.265 D_fake: 0.609 +(epoch: 304, iters: 1376, time: 0.064) G_GAN: 0.199 G_GAN_Feat: 0.591 G_ID: 0.122 G_Rec: 0.273 D_GP: 0.024 D_real: 1.087 D_fake: 0.801 +(epoch: 304, iters: 1776, time: 0.064) G_GAN: 0.442 G_GAN_Feat: 0.774 G_ID: 0.168 G_Rec: 0.371 D_GP: 0.029 D_real: 1.114 D_fake: 0.559 +(epoch: 304, iters: 2176, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.691 G_ID: 0.118 G_Rec: 0.301 D_GP: 0.036 D_real: 1.089 D_fake: 0.751 +(epoch: 304, iters: 2576, time: 0.064) G_GAN: 0.402 G_GAN_Feat: 0.924 G_ID: 0.147 G_Rec: 0.399 D_GP: 0.106 D_real: 0.723 D_fake: 0.607 +(epoch: 304, iters: 2976, time: 0.064) G_GAN: 0.304 G_GAN_Feat: 0.685 G_ID: 0.100 G_Rec: 0.304 D_GP: 0.076 D_real: 1.088 D_fake: 0.697 +(epoch: 304, iters: 3376, time: 0.064) G_GAN: 0.044 G_GAN_Feat: 0.862 G_ID: 0.183 G_Rec: 0.416 D_GP: 0.030 D_real: 0.736 D_fake: 0.956 +(epoch: 304, iters: 3776, time: 0.064) G_GAN: 0.129 G_GAN_Feat: 0.694 G_ID: 0.120 G_Rec: 0.295 D_GP: 0.029 D_real: 0.987 D_fake: 0.871 +(epoch: 304, iters: 4176, time: 0.064) G_GAN: 0.380 G_GAN_Feat: 0.816 G_ID: 0.166 G_Rec: 0.369 D_GP: 0.030 D_real: 1.090 D_fake: 0.624 +(epoch: 304, iters: 4576, time: 0.064) G_GAN: 0.252 G_GAN_Feat: 0.776 G_ID: 0.121 G_Rec: 0.289 D_GP: 0.088 D_real: 0.822 D_fake: 0.749 +(epoch: 304, iters: 4976, time: 0.064) G_GAN: 0.401 G_GAN_Feat: 1.402 G_ID: 0.166 G_Rec: 0.506 D_GP: 1.087 D_real: 0.459 D_fake: 0.607 +(epoch: 304, iters: 5376, time: 0.064) G_GAN: 0.155 G_GAN_Feat: 0.797 G_ID: 0.126 G_Rec: 0.319 D_GP: 0.049 D_real: 0.828 D_fake: 0.846 +(epoch: 304, iters: 5776, time: 0.064) G_GAN: 0.601 G_GAN_Feat: 0.972 G_ID: 0.140 G_Rec: 0.421 D_GP: 0.103 D_real: 0.883 D_fake: 0.416 +(epoch: 304, iters: 6176, time: 0.064) G_GAN: 0.077 G_GAN_Feat: 0.766 G_ID: 0.117 G_Rec: 0.280 D_GP: 0.078 D_real: 0.666 D_fake: 0.923 +(epoch: 304, iters: 6576, time: 0.064) G_GAN: 0.636 G_GAN_Feat: 1.085 G_ID: 0.152 G_Rec: 0.447 D_GP: 0.065 D_real: 0.721 D_fake: 0.383 +(epoch: 304, iters: 6976, time: 0.064) G_GAN: 0.113 G_GAN_Feat: 0.778 G_ID: 0.123 G_Rec: 0.286 D_GP: 0.031 D_real: 0.855 D_fake: 0.887 +(epoch: 304, iters: 7376, time: 0.064) G_GAN: 0.510 G_GAN_Feat: 0.989 G_ID: 0.157 G_Rec: 0.411 D_GP: 0.028 D_real: 1.061 D_fake: 0.494 +(epoch: 304, iters: 7776, time: 0.064) G_GAN: 0.172 G_GAN_Feat: 0.776 G_ID: 0.135 G_Rec: 0.282 D_GP: 0.032 D_real: 0.778 D_fake: 0.829 +(epoch: 304, iters: 8176, time: 0.064) G_GAN: 0.258 G_GAN_Feat: 0.887 G_ID: 0.193 G_Rec: 0.375 D_GP: 0.026 D_real: 0.952 D_fake: 0.742 +(epoch: 304, iters: 8576, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.901 G_ID: 0.136 G_Rec: 0.307 D_GP: 0.123 D_real: 0.443 D_fake: 0.726 +(epoch: 305, iters: 368, time: 0.064) G_GAN: 0.387 G_GAN_Feat: 0.782 G_ID: 0.172 G_Rec: 0.410 D_GP: 0.019 D_real: 1.223 D_fake: 0.614 +(epoch: 305, iters: 768, time: 0.064) G_GAN: 0.192 G_GAN_Feat: 0.554 G_ID: 0.104 G_Rec: 0.272 D_GP: 0.021 D_real: 1.220 D_fake: 0.809 +(epoch: 305, iters: 1168, time: 0.064) G_GAN: 0.252 G_GAN_Feat: 0.777 G_ID: 0.155 G_Rec: 0.363 D_GP: 0.029 D_real: 0.999 D_fake: 0.748 +(epoch: 305, iters: 1568, time: 0.064) G_GAN: 0.149 G_GAN_Feat: 0.550 G_ID: 0.103 G_Rec: 0.267 D_GP: 0.018 D_real: 1.164 D_fake: 0.851 +(epoch: 305, iters: 1968, time: 0.064) G_GAN: 0.443 G_GAN_Feat: 0.773 G_ID: 0.148 G_Rec: 0.359 D_GP: 0.020 D_real: 1.265 D_fake: 0.565 +(epoch: 305, iters: 2368, time: 0.064) G_GAN: 0.094 G_GAN_Feat: 0.677 G_ID: 0.146 G_Rec: 0.308 D_GP: 0.033 D_real: 0.906 D_fake: 0.906 +(epoch: 305, iters: 2768, time: 0.064) G_GAN: 0.351 G_GAN_Feat: 0.903 G_ID: 0.140 G_Rec: 0.392 D_GP: 0.037 D_real: 0.952 D_fake: 0.649 +(epoch: 305, iters: 3168, time: 0.064) G_GAN: 0.150 G_GAN_Feat: 0.742 G_ID: 0.094 G_Rec: 0.309 D_GP: 0.125 D_real: 0.799 D_fake: 0.850 +(epoch: 305, iters: 3568, time: 0.064) G_GAN: 0.539 G_GAN_Feat: 0.905 G_ID: 0.179 G_Rec: 0.405 D_GP: 0.024 D_real: 1.246 D_fake: 0.468 +(epoch: 305, iters: 3968, time: 0.064) G_GAN: 0.311 G_GAN_Feat: 0.719 G_ID: 0.145 G_Rec: 0.304 D_GP: 0.052 D_real: 1.034 D_fake: 0.693 +(epoch: 305, iters: 4368, time: 0.064) G_GAN: 0.584 G_GAN_Feat: 0.810 G_ID: 0.160 G_Rec: 0.383 D_GP: 0.025 D_real: 1.429 D_fake: 0.426 +(epoch: 305, iters: 4768, time: 0.064) G_GAN: 0.032 G_GAN_Feat: 0.641 G_ID: 0.139 G_Rec: 0.285 D_GP: 0.046 D_real: 0.862 D_fake: 0.968 +(epoch: 305, iters: 5168, time: 0.064) G_GAN: 0.429 G_GAN_Feat: 0.796 G_ID: 0.152 G_Rec: 0.382 D_GP: 0.023 D_real: 1.152 D_fake: 0.573 +(epoch: 305, iters: 5568, time: 0.064) G_GAN: 0.338 G_GAN_Feat: 0.908 G_ID: 0.153 G_Rec: 0.346 D_GP: 0.398 D_real: 0.576 D_fake: 0.665 +(epoch: 305, iters: 5968, time: 0.064) G_GAN: 0.197 G_GAN_Feat: 0.897 G_ID: 0.179 G_Rec: 0.414 D_GP: 0.025 D_real: 0.875 D_fake: 0.803 +(epoch: 305, iters: 6368, time: 0.064) G_GAN: 0.248 G_GAN_Feat: 0.727 G_ID: 0.119 G_Rec: 0.310 D_GP: 0.022 D_real: 1.144 D_fake: 0.752 +(epoch: 305, iters: 6768, time: 0.064) G_GAN: 0.489 G_GAN_Feat: 0.792 G_ID: 0.166 G_Rec: 0.351 D_GP: 0.021 D_real: 1.260 D_fake: 0.520 +(epoch: 305, iters: 7168, time: 0.064) G_GAN: 0.088 G_GAN_Feat: 0.787 G_ID: 0.118 G_Rec: 0.288 D_GP: 0.060 D_real: 0.486 D_fake: 0.915 +(epoch: 305, iters: 7568, time: 0.064) G_GAN: 0.494 G_GAN_Feat: 0.839 G_ID: 0.168 G_Rec: 0.375 D_GP: 0.023 D_real: 1.232 D_fake: 0.520 +(epoch: 305, iters: 7968, time: 0.064) G_GAN: 0.403 G_GAN_Feat: 0.849 G_ID: 0.135 G_Rec: 0.325 D_GP: 0.070 D_real: 0.853 D_fake: 0.604 +(epoch: 305, iters: 8368, time: 0.064) G_GAN: 0.433 G_GAN_Feat: 0.919 G_ID: 0.172 G_Rec: 0.357 D_GP: 0.027 D_real: 1.199 D_fake: 0.570 +(epoch: 306, iters: 160, time: 0.064) G_GAN: 0.160 G_GAN_Feat: 0.733 G_ID: 0.109 G_Rec: 0.286 D_GP: 0.024 D_real: 0.988 D_fake: 0.840 +(epoch: 306, iters: 560, time: 0.064) G_GAN: 0.990 G_GAN_Feat: 1.099 G_ID: 0.143 G_Rec: 0.454 D_GP: 0.024 D_real: 1.433 D_fake: 0.251 +(epoch: 306, iters: 960, time: 0.064) G_GAN: 0.366 G_GAN_Feat: 1.023 G_ID: 0.132 G_Rec: 0.323 D_GP: 0.629 D_real: 0.455 D_fake: 0.637 +(epoch: 306, iters: 1360, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 0.856 G_ID: 0.150 G_Rec: 0.348 D_GP: 0.021 D_real: 1.042 D_fake: 0.651 +(epoch: 306, iters: 1760, time: 0.064) G_GAN: 0.145 G_GAN_Feat: 0.727 G_ID: 0.111 G_Rec: 0.285 D_GP: 0.027 D_real: 0.979 D_fake: 0.855 +(epoch: 306, iters: 2160, time: 0.064) G_GAN: 0.247 G_GAN_Feat: 0.756 G_ID: 0.188 G_Rec: 0.320 D_GP: 0.025 D_real: 1.103 D_fake: 0.754 +(epoch: 306, iters: 2560, time: 0.064) G_GAN: 0.215 G_GAN_Feat: 0.680 G_ID: 0.125 G_Rec: 0.288 D_GP: 0.023 D_real: 1.173 D_fake: 0.786 +(epoch: 306, iters: 2960, time: 0.064) G_GAN: 0.578 G_GAN_Feat: 1.235 G_ID: 0.171 G_Rec: 0.429 D_GP: 0.068 D_real: 0.527 D_fake: 0.432 +(epoch: 306, iters: 3360, time: 0.064) G_GAN: 0.192 G_GAN_Feat: 0.535 G_ID: 0.129 G_Rec: 0.306 D_GP: 0.018 D_real: 1.198 D_fake: 0.808 +(epoch: 306, iters: 3760, time: 0.064) G_GAN: 0.425 G_GAN_Feat: 0.739 G_ID: 0.159 G_Rec: 0.388 D_GP: 0.019 D_real: 1.257 D_fake: 0.577 +(epoch: 306, iters: 4160, time: 0.064) G_GAN: 0.186 G_GAN_Feat: 0.558 G_ID: 0.125 G_Rec: 0.287 D_GP: 0.032 D_real: 1.108 D_fake: 0.814 +(epoch: 306, iters: 4560, time: 0.064) G_GAN: 0.418 G_GAN_Feat: 0.715 G_ID: 0.155 G_Rec: 0.378 D_GP: 0.022 D_real: 1.173 D_fake: 0.583 +(epoch: 306, iters: 4960, time: 0.064) G_GAN: 0.290 G_GAN_Feat: 0.557 G_ID: 0.120 G_Rec: 0.285 D_GP: 0.024 D_real: 1.260 D_fake: 0.711 +(epoch: 306, iters: 5360, time: 0.064) G_GAN: 0.304 G_GAN_Feat: 0.737 G_ID: 0.157 G_Rec: 0.373 D_GP: 0.024 D_real: 1.098 D_fake: 0.697 +(epoch: 306, iters: 5760, time: 0.064) G_GAN: 0.060 G_GAN_Feat: 0.553 G_ID: 0.134 G_Rec: 0.266 D_GP: 0.024 D_real: 0.988 D_fake: 0.940 +(epoch: 306, iters: 6160, time: 0.064) G_GAN: 0.370 G_GAN_Feat: 0.808 G_ID: 0.199 G_Rec: 0.387 D_GP: 0.035 D_real: 0.996 D_fake: 0.636 +(epoch: 306, iters: 6560, time: 0.064) G_GAN: 0.033 G_GAN_Feat: 0.587 G_ID: 0.114 G_Rec: 0.260 D_GP: 0.038 D_real: 0.913 D_fake: 0.967 +(epoch: 306, iters: 6960, time: 0.064) G_GAN: 0.267 G_GAN_Feat: 0.790 G_ID: 0.145 G_Rec: 0.389 D_GP: 0.046 D_real: 1.007 D_fake: 0.736 +(epoch: 306, iters: 7360, time: 0.064) G_GAN: 0.121 G_GAN_Feat: 0.676 G_ID: 0.137 G_Rec: 0.304 D_GP: 0.034 D_real: 1.017 D_fake: 0.879 +(epoch: 306, iters: 7760, time: 0.064) G_GAN: 0.262 G_GAN_Feat: 0.815 G_ID: 0.150 G_Rec: 0.375 D_GP: 0.030 D_real: 0.907 D_fake: 0.739 +(epoch: 306, iters: 8160, time: 0.064) G_GAN: 0.310 G_GAN_Feat: 0.658 G_ID: 0.119 G_Rec: 0.311 D_GP: 0.038 D_real: 1.142 D_fake: 0.691 +(epoch: 306, iters: 8560, time: 0.064) G_GAN: 0.518 G_GAN_Feat: 0.891 G_ID: 0.168 G_Rec: 0.378 D_GP: 0.037 D_real: 1.102 D_fake: 0.489 +(epoch: 307, iters: 352, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 0.644 G_ID: 0.121 G_Rec: 0.317 D_GP: 0.024 D_real: 1.000 D_fake: 0.827 +(epoch: 307, iters: 752, time: 0.064) G_GAN: 0.546 G_GAN_Feat: 0.814 G_ID: 0.158 G_Rec: 0.382 D_GP: 0.024 D_real: 1.273 D_fake: 0.457 +(epoch: 307, iters: 1152, time: 0.064) G_GAN: -0.025 G_GAN_Feat: 0.784 G_ID: 0.158 G_Rec: 0.334 D_GP: 0.182 D_real: 0.506 D_fake: 1.025 +(epoch: 307, iters: 1552, time: 0.064) G_GAN: 0.225 G_GAN_Feat: 1.010 G_ID: 0.153 G_Rec: 0.397 D_GP: 0.219 D_real: 0.335 D_fake: 0.780 +(epoch: 307, iters: 1952, time: 0.064) G_GAN: 0.279 G_GAN_Feat: 0.718 G_ID: 0.115 G_Rec: 0.260 D_GP: 0.070 D_real: 0.815 D_fake: 0.722 +(epoch: 307, iters: 2352, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 0.888 G_ID: 0.160 G_Rec: 0.332 D_GP: 0.031 D_real: 0.985 D_fake: 0.781 +(epoch: 307, iters: 2752, time: 0.064) G_GAN: 0.167 G_GAN_Feat: 0.841 G_ID: 0.123 G_Rec: 0.307 D_GP: 0.024 D_real: 0.909 D_fake: 0.833 +(epoch: 307, iters: 3152, time: 0.064) G_GAN: -0.090 G_GAN_Feat: 1.281 G_ID: 0.148 G_Rec: 0.450 D_GP: 0.051 D_real: 1.212 D_fake: 1.093 +(epoch: 307, iters: 3552, time: 0.064) G_GAN: -0.280 G_GAN_Feat: 0.760 G_ID: 0.123 G_Rec: 0.318 D_GP: 0.020 D_real: 0.644 D_fake: 1.280 +(epoch: 307, iters: 3952, time: 0.064) G_GAN: 0.097 G_GAN_Feat: 0.789 G_ID: 0.156 G_Rec: 0.359 D_GP: 0.021 D_real: 0.939 D_fake: 0.904 +(epoch: 307, iters: 4352, time: 0.064) G_GAN: -0.034 G_GAN_Feat: 0.663 G_ID: 0.112 G_Rec: 0.308 D_GP: 0.023 D_real: 0.855 D_fake: 1.034 +(epoch: 307, iters: 4752, time: 0.064) G_GAN: 0.052 G_GAN_Feat: 0.840 G_ID: 0.184 G_Rec: 0.342 D_GP: 0.038 D_real: 0.784 D_fake: 0.949 +(epoch: 307, iters: 5152, time: 0.064) G_GAN: 0.100 G_GAN_Feat: 0.875 G_ID: 0.135 G_Rec: 0.312 D_GP: 0.201 D_real: 0.469 D_fake: 0.901 +(epoch: 307, iters: 5552, time: 0.064) G_GAN: 0.574 G_GAN_Feat: 0.907 G_ID: 0.151 G_Rec: 0.430 D_GP: 0.043 D_real: 1.206 D_fake: 0.439 +(epoch: 307, iters: 5952, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 0.614 G_ID: 0.119 G_Rec: 0.269 D_GP: 0.021 D_real: 1.308 D_fake: 0.661 +(epoch: 307, iters: 6352, time: 0.064) G_GAN: 0.520 G_GAN_Feat: 1.062 G_ID: 0.150 G_Rec: 0.440 D_GP: 0.173 D_real: 0.592 D_fake: 0.494 +(epoch: 307, iters: 6752, time: 0.064) G_GAN: 0.392 G_GAN_Feat: 0.897 G_ID: 0.118 G_Rec: 0.318 D_GP: 0.024 D_real: 0.789 D_fake: 0.609 +(epoch: 307, iters: 7152, time: 0.064) G_GAN: 0.252 G_GAN_Feat: 0.965 G_ID: 0.160 G_Rec: 0.396 D_GP: 0.109 D_real: 0.674 D_fake: 0.754 +(epoch: 307, iters: 7552, time: 0.064) G_GAN: 0.380 G_GAN_Feat: 0.739 G_ID: 0.121 G_Rec: 0.311 D_GP: 0.023 D_real: 1.253 D_fake: 0.636 +(epoch: 307, iters: 7952, time: 0.064) G_GAN: 0.428 G_GAN_Feat: 0.959 G_ID: 0.161 G_Rec: 0.382 D_GP: 0.032 D_real: 0.937 D_fake: 0.572 +(epoch: 307, iters: 8352, time: 0.064) G_GAN: 0.326 G_GAN_Feat: 0.787 G_ID: 0.134 G_Rec: 0.268 D_GP: 0.032 D_real: 0.846 D_fake: 0.675 +(epoch: 308, iters: 144, time: 0.064) G_GAN: 0.476 G_GAN_Feat: 0.824 G_ID: 0.145 G_Rec: 0.374 D_GP: 0.021 D_real: 1.245 D_fake: 0.531 +(epoch: 308, iters: 544, time: 0.064) G_GAN: 0.203 G_GAN_Feat: 0.644 G_ID: 0.156 G_Rec: 0.303 D_GP: 0.018 D_real: 1.139 D_fake: 0.797 +(epoch: 308, iters: 944, time: 0.064) G_GAN: 0.385 G_GAN_Feat: 0.883 G_ID: 0.151 G_Rec: 0.382 D_GP: 0.026 D_real: 1.085 D_fake: 0.615 +(epoch: 308, iters: 1344, time: 0.064) G_GAN: 0.358 G_GAN_Feat: 0.620 G_ID: 0.115 G_Rec: 0.290 D_GP: 0.024 D_real: 1.269 D_fake: 0.642 +(epoch: 308, iters: 1744, time: 0.064) G_GAN: 0.333 G_GAN_Feat: 0.788 G_ID: 0.151 G_Rec: 0.351 D_GP: 0.031 D_real: 1.105 D_fake: 0.667 +(epoch: 308, iters: 2144, time: 0.064) G_GAN: -0.406 G_GAN_Feat: 0.635 G_ID: 0.140 G_Rec: 0.316 D_GP: 0.020 D_real: 0.609 D_fake: 1.406 +(epoch: 308, iters: 2544, time: 0.064) G_GAN: 0.065 G_GAN_Feat: 0.767 G_ID: 0.149 G_Rec: 0.355 D_GP: 0.021 D_real: 0.813 D_fake: 0.937 +(epoch: 308, iters: 2944, time: 0.064) G_GAN: -0.096 G_GAN_Feat: 0.602 G_ID: 0.122 G_Rec: 0.267 D_GP: 0.022 D_real: 0.834 D_fake: 1.099 +(epoch: 308, iters: 3344, time: 0.064) G_GAN: 0.010 G_GAN_Feat: 0.909 G_ID: 0.169 G_Rec: 0.399 D_GP: 0.049 D_real: 0.559 D_fake: 0.990 +(epoch: 308, iters: 3744, time: 0.064) G_GAN: 0.058 G_GAN_Feat: 0.669 G_ID: 0.130 G_Rec: 0.279 D_GP: 0.037 D_real: 0.834 D_fake: 0.942 +(epoch: 308, iters: 4144, time: 0.064) G_GAN: 0.517 G_GAN_Feat: 0.871 G_ID: 0.135 G_Rec: 0.379 D_GP: 0.042 D_real: 0.999 D_fake: 0.489 +(epoch: 308, iters: 4544, time: 0.064) G_GAN: 0.466 G_GAN_Feat: 0.715 G_ID: 0.121 G_Rec: 0.283 D_GP: 0.037 D_real: 1.242 D_fake: 0.543 +(epoch: 308, iters: 4944, time: 0.064) G_GAN: 0.289 G_GAN_Feat: 0.850 G_ID: 0.169 G_Rec: 0.431 D_GP: 0.025 D_real: 1.101 D_fake: 0.711 +(epoch: 308, iters: 5344, time: 0.064) G_GAN: 0.218 G_GAN_Feat: 0.618 G_ID: 0.114 G_Rec: 0.275 D_GP: 0.021 D_real: 1.133 D_fake: 0.782 +(epoch: 308, iters: 5744, time: 0.064) G_GAN: 0.294 G_GAN_Feat: 0.873 G_ID: 0.157 G_Rec: 0.387 D_GP: 0.036 D_real: 0.952 D_fake: 0.710 +(epoch: 308, iters: 6144, time: 0.064) G_GAN: 0.169 G_GAN_Feat: 0.611 G_ID: 0.131 G_Rec: 0.264 D_GP: 0.025 D_real: 1.046 D_fake: 0.832 +(epoch: 308, iters: 6544, time: 0.064) G_GAN: 0.506 G_GAN_Feat: 0.873 G_ID: 0.163 G_Rec: 0.419 D_GP: 0.032 D_real: 1.177 D_fake: 0.511 +(epoch: 308, iters: 6944, time: 0.064) G_GAN: 0.124 G_GAN_Feat: 0.627 G_ID: 0.114 G_Rec: 0.291 D_GP: 0.023 D_real: 1.027 D_fake: 0.876 +(epoch: 308, iters: 7344, time: 0.064) G_GAN: 0.428 G_GAN_Feat: 0.769 G_ID: 0.139 G_Rec: 0.358 D_GP: 0.024 D_real: 1.137 D_fake: 0.574 +(epoch: 308, iters: 7744, time: 0.064) G_GAN: 0.107 G_GAN_Feat: 0.578 G_ID: 0.121 G_Rec: 0.275 D_GP: 0.023 D_real: 1.028 D_fake: 0.893 +(epoch: 308, iters: 8144, time: 0.064) G_GAN: 0.491 G_GAN_Feat: 0.842 G_ID: 0.170 G_Rec: 0.369 D_GP: 0.033 D_real: 1.141 D_fake: 0.516 +(epoch: 308, iters: 8544, time: 0.064) G_GAN: 0.137 G_GAN_Feat: 0.652 G_ID: 0.119 G_Rec: 0.278 D_GP: 0.052 D_real: 0.941 D_fake: 0.863 +(epoch: 309, iters: 336, time: 0.064) G_GAN: 0.484 G_GAN_Feat: 0.971 G_ID: 0.161 G_Rec: 0.450 D_GP: 0.153 D_real: 0.790 D_fake: 0.522 +(epoch: 309, iters: 736, time: 0.064) G_GAN: 0.111 G_GAN_Feat: 0.703 G_ID: 0.124 G_Rec: 0.283 D_GP: 0.066 D_real: 0.799 D_fake: 0.889 +(epoch: 309, iters: 1136, time: 0.064) G_GAN: 0.565 G_GAN_Feat: 0.887 G_ID: 0.147 G_Rec: 0.392 D_GP: 0.040 D_real: 1.222 D_fake: 0.441 +(epoch: 309, iters: 1536, time: 0.064) G_GAN: 0.377 G_GAN_Feat: 0.714 G_ID: 0.119 G_Rec: 0.260 D_GP: 0.032 D_real: 1.204 D_fake: 0.624 +(epoch: 309, iters: 1936, time: 0.064) G_GAN: 0.363 G_GAN_Feat: 0.876 G_ID: 0.160 G_Rec: 0.384 D_GP: 0.025 D_real: 1.040 D_fake: 0.637 +(epoch: 309, iters: 2336, time: 0.064) G_GAN: 0.187 G_GAN_Feat: 0.861 G_ID: 0.128 G_Rec: 0.323 D_GP: 0.169 D_real: 0.598 D_fake: 0.817 +(epoch: 309, iters: 2736, time: 0.064) G_GAN: 0.459 G_GAN_Feat: 0.934 G_ID: 0.170 G_Rec: 0.404 D_GP: 0.039 D_real: 1.229 D_fake: 0.544 +(epoch: 309, iters: 3136, time: 0.064) G_GAN: 0.633 G_GAN_Feat: 0.861 G_ID: 0.126 G_Rec: 0.310 D_GP: 0.215 D_real: 0.899 D_fake: 0.557 +(epoch: 309, iters: 3536, time: 0.064) G_GAN: 0.413 G_GAN_Feat: 0.935 G_ID: 0.148 G_Rec: 0.388 D_GP: 0.033 D_real: 1.126 D_fake: 0.603 +(epoch: 309, iters: 3936, time: 0.064) G_GAN: 0.349 G_GAN_Feat: 0.670 G_ID: 0.124 G_Rec: 0.292 D_GP: 0.025 D_real: 1.164 D_fake: 0.652 +(epoch: 309, iters: 4336, time: 0.064) G_GAN: 0.454 G_GAN_Feat: 1.086 G_ID: 0.158 G_Rec: 0.436 D_GP: 0.168 D_real: 0.509 D_fake: 0.552 +(epoch: 309, iters: 4736, time: 0.064) G_GAN: 0.455 G_GAN_Feat: 0.767 G_ID: 0.109 G_Rec: 0.297 D_GP: 0.039 D_real: 1.044 D_fake: 0.550 +(epoch: 309, iters: 5136, time: 0.064) G_GAN: 0.366 G_GAN_Feat: 0.850 G_ID: 0.146 G_Rec: 0.447 D_GP: 0.023 D_real: 1.177 D_fake: 0.643 +(epoch: 309, iters: 5536, time: 0.064) G_GAN: -0.072 G_GAN_Feat: 0.664 G_ID: 0.107 G_Rec: 0.292 D_GP: 0.019 D_real: 0.816 D_fake: 1.072 +(epoch: 309, iters: 5936, time: 0.064) G_GAN: 0.217 G_GAN_Feat: 0.828 G_ID: 0.136 G_Rec: 0.364 D_GP: 0.025 D_real: 0.933 D_fake: 0.785 +(epoch: 309, iters: 6336, time: 0.064) G_GAN: 0.081 G_GAN_Feat: 0.654 G_ID: 0.126 G_Rec: 0.287 D_GP: 0.025 D_real: 0.965 D_fake: 0.919 +(epoch: 309, iters: 6736, time: 0.064) G_GAN: 0.250 G_GAN_Feat: 0.937 G_ID: 0.162 G_Rec: 0.386 D_GP: 0.028 D_real: 0.806 D_fake: 0.750 +(epoch: 309, iters: 7136, time: 0.064) G_GAN: 0.314 G_GAN_Feat: 0.771 G_ID: 0.121 G_Rec: 0.308 D_GP: 0.031 D_real: 0.920 D_fake: 0.687 +(epoch: 309, iters: 7536, time: 0.064) G_GAN: 0.442 G_GAN_Feat: 0.872 G_ID: 0.166 G_Rec: 0.358 D_GP: 0.023 D_real: 1.220 D_fake: 0.560 +(epoch: 309, iters: 7936, time: 0.064) G_GAN: 0.192 G_GAN_Feat: 0.616 G_ID: 0.156 G_Rec: 0.262 D_GP: 0.023 D_real: 1.053 D_fake: 0.808 +(epoch: 309, iters: 8336, time: 0.064) G_GAN: 0.421 G_GAN_Feat: 0.946 G_ID: 0.162 G_Rec: 0.359 D_GP: 0.053 D_real: 0.886 D_fake: 0.584 +(epoch: 310, iters: 128, time: 0.064) G_GAN: 0.272 G_GAN_Feat: 0.757 G_ID: 0.138 G_Rec: 0.303 D_GP: 0.053 D_real: 1.131 D_fake: 0.729 +(epoch: 310, iters: 528, time: 0.064) G_GAN: 0.245 G_GAN_Feat: 1.012 G_ID: 0.144 G_Rec: 0.418 D_GP: 0.135 D_real: 0.522 D_fake: 0.757 +(epoch: 310, iters: 928, time: 0.064) G_GAN: 0.379 G_GAN_Feat: 0.716 G_ID: 0.129 G_Rec: 0.290 D_GP: 0.030 D_real: 1.193 D_fake: 0.623 +(epoch: 310, iters: 1328, time: 0.064) G_GAN: 0.797 G_GAN_Feat: 1.103 G_ID: 0.167 G_Rec: 0.428 D_GP: 0.343 D_real: 0.508 D_fake: 0.352 +(epoch: 310, iters: 1728, time: 0.064) G_GAN: 0.340 G_GAN_Feat: 0.703 G_ID: 0.139 G_Rec: 0.294 D_GP: 0.028 D_real: 1.247 D_fake: 0.661 +(epoch: 310, iters: 2128, time: 0.064) G_GAN: 0.324 G_GAN_Feat: 0.751 G_ID: 0.145 G_Rec: 0.313 D_GP: 0.022 D_real: 1.231 D_fake: 0.677 +(epoch: 310, iters: 2528, time: 0.064) G_GAN: 0.320 G_GAN_Feat: 0.806 G_ID: 0.115 G_Rec: 0.302 D_GP: 0.047 D_real: 1.154 D_fake: 0.686 +(epoch: 310, iters: 2928, time: 0.064) G_GAN: 0.690 G_GAN_Feat: 0.983 G_ID: 0.153 G_Rec: 0.377 D_GP: 0.038 D_real: 1.078 D_fake: 0.367 +(epoch: 310, iters: 3328, time: 0.064) G_GAN: 0.338 G_GAN_Feat: 0.701 G_ID: 0.102 G_Rec: 0.265 D_GP: 0.032 D_real: 1.091 D_fake: 0.662 +(epoch: 310, iters: 3728, time: 0.064) G_GAN: 0.851 G_GAN_Feat: 0.918 G_ID: 0.152 G_Rec: 0.408 D_GP: 0.068 D_real: 1.521 D_fake: 0.220 +(epoch: 310, iters: 4128, time: 0.064) G_GAN: 0.110 G_GAN_Feat: 0.621 G_ID: 0.126 G_Rec: 0.267 D_GP: 0.022 D_real: 1.008 D_fake: 0.890 +(epoch: 310, iters: 4528, time: 0.064) G_GAN: 0.361 G_GAN_Feat: 0.883 G_ID: 0.177 G_Rec: 0.410 D_GP: 0.025 D_real: 1.013 D_fake: 0.646 +(epoch: 310, iters: 4928, time: 0.064) G_GAN: 0.185 G_GAN_Feat: 0.792 G_ID: 0.138 G_Rec: 0.292 D_GP: 0.067 D_real: 0.836 D_fake: 0.819 +(epoch: 310, iters: 5328, time: 0.064) G_GAN: 0.727 G_GAN_Feat: 0.954 G_ID: 0.158 G_Rec: 0.402 D_GP: 0.021 D_real: 1.398 D_fake: 0.289 +(epoch: 310, iters: 5728, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 0.703 G_ID: 0.123 G_Rec: 0.281 D_GP: 0.019 D_real: 1.095 D_fake: 0.784 +(epoch: 310, iters: 6128, time: 0.064) G_GAN: 0.579 G_GAN_Feat: 0.977 G_ID: 0.178 G_Rec: 0.406 D_GP: 0.026 D_real: 1.051 D_fake: 0.425 +(epoch: 310, iters: 6528, time: 0.064) G_GAN: 0.255 G_GAN_Feat: 0.595 G_ID: 0.120 G_Rec: 0.289 D_GP: 0.020 D_real: 1.301 D_fake: 0.746 +(epoch: 310, iters: 6928, time: 0.064) G_GAN: 0.420 G_GAN_Feat: 0.847 G_ID: 0.165 G_Rec: 0.491 D_GP: 0.031 D_real: 1.105 D_fake: 0.583 +(epoch: 310, iters: 7328, time: 0.064) G_GAN: 0.102 G_GAN_Feat: 0.661 G_ID: 0.147 G_Rec: 0.297 D_GP: 0.029 D_real: 0.989 D_fake: 0.898 +(epoch: 310, iters: 7728, time: 0.064) G_GAN: 0.310 G_GAN_Feat: 0.824 G_ID: 0.144 G_Rec: 0.391 D_GP: 0.032 D_real: 0.961 D_fake: 0.692 +(epoch: 310, iters: 8128, time: 0.064) G_GAN: 0.183 G_GAN_Feat: 0.655 G_ID: 0.114 G_Rec: 0.298 D_GP: 0.023 D_real: 1.121 D_fake: 0.817 +(epoch: 310, iters: 8528, time: 0.064) G_GAN: 0.567 G_GAN_Feat: 0.879 G_ID: 0.152 G_Rec: 0.399 D_GP: 0.039 D_real: 1.284 D_fake: 0.449 +(epoch: 311, iters: 320, time: 0.064) G_GAN: 0.246 G_GAN_Feat: 0.622 G_ID: 0.112 G_Rec: 0.289 D_GP: 0.019 D_real: 1.181 D_fake: 0.754 +(epoch: 311, iters: 720, time: 0.064) G_GAN: 0.510 G_GAN_Feat: 0.934 G_ID: 0.145 G_Rec: 0.375 D_GP: 0.085 D_real: 0.875 D_fake: 0.510 +(epoch: 311, iters: 1120, time: 0.064) G_GAN: 0.112 G_GAN_Feat: 0.826 G_ID: 0.129 G_Rec: 0.296 D_GP: 0.061 D_real: 0.463 D_fake: 0.889 +(epoch: 311, iters: 1520, time: 0.064) G_GAN: 0.402 G_GAN_Feat: 0.794 G_ID: 0.170 G_Rec: 0.386 D_GP: 0.017 D_real: 1.261 D_fake: 0.604 +(epoch: 311, iters: 1920, time: 0.064) G_GAN: 0.187 G_GAN_Feat: 0.662 G_ID: 0.110 G_Rec: 0.336 D_GP: 0.021 D_real: 1.123 D_fake: 0.814 +(epoch: 311, iters: 2320, time: 0.064) G_GAN: 0.420 G_GAN_Feat: 0.745 G_ID: 0.162 G_Rec: 0.362 D_GP: 0.019 D_real: 1.273 D_fake: 0.580 +(epoch: 311, iters: 2720, time: 0.064) G_GAN: 0.211 G_GAN_Feat: 0.577 G_ID: 0.116 G_Rec: 0.299 D_GP: 0.024 D_real: 1.156 D_fake: 0.789 +(epoch: 311, iters: 3120, time: 0.064) G_GAN: 0.360 G_GAN_Feat: 0.729 G_ID: 0.150 G_Rec: 0.337 D_GP: 0.023 D_real: 1.204 D_fake: 0.640 +(epoch: 311, iters: 3520, time: 0.064) G_GAN: 0.011 G_GAN_Feat: 0.700 G_ID: 0.136 G_Rec: 0.327 D_GP: 0.104 D_real: 0.881 D_fake: 0.989 +(epoch: 311, iters: 3920, time: 0.064) G_GAN: 0.353 G_GAN_Feat: 0.747 G_ID: 0.165 G_Rec: 0.346 D_GP: 0.024 D_real: 1.159 D_fake: 0.650 +(epoch: 311, iters: 4320, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 0.597 G_ID: 0.130 G_Rec: 0.268 D_GP: 0.023 D_real: 1.122 D_fake: 0.826 +(epoch: 311, iters: 4720, time: 0.064) G_GAN: 0.345 G_GAN_Feat: 0.799 G_ID: 0.161 G_Rec: 0.370 D_GP: 0.029 D_real: 1.108 D_fake: 0.655 +(epoch: 311, iters: 5120, time: 0.064) G_GAN: 0.064 G_GAN_Feat: 0.755 G_ID: 0.119 G_Rec: 0.306 D_GP: 0.242 D_real: 0.525 D_fake: 0.936 +(epoch: 311, iters: 5520, time: 0.064) G_GAN: 0.641 G_GAN_Feat: 0.854 G_ID: 0.161 G_Rec: 0.396 D_GP: 0.023 D_real: 1.384 D_fake: 0.369 +(epoch: 311, iters: 5920, time: 0.064) G_GAN: 0.305 G_GAN_Feat: 0.744 G_ID: 0.097 G_Rec: 0.315 D_GP: 0.100 D_real: 0.963 D_fake: 0.695 +(epoch: 311, iters: 6320, time: 0.064) G_GAN: 0.470 G_GAN_Feat: 0.833 G_ID: 0.168 G_Rec: 0.360 D_GP: 0.025 D_real: 1.207 D_fake: 0.538 +(epoch: 311, iters: 6720, time: 0.064) G_GAN: 0.270 G_GAN_Feat: 0.764 G_ID: 0.109 G_Rec: 0.332 D_GP: 0.038 D_real: 0.977 D_fake: 0.737 +(epoch: 311, iters: 7120, time: 0.064) G_GAN: 0.395 G_GAN_Feat: 0.873 G_ID: 0.169 G_Rec: 0.425 D_GP: 0.051 D_real: 0.975 D_fake: 0.605 +(epoch: 311, iters: 7520, time: 0.064) G_GAN: 0.252 G_GAN_Feat: 0.832 G_ID: 0.113 G_Rec: 0.298 D_GP: 0.051 D_real: 0.835 D_fake: 0.797 +(epoch: 311, iters: 7920, time: 0.064) G_GAN: 0.530 G_GAN_Feat: 0.946 G_ID: 0.156 G_Rec: 0.388 D_GP: 0.030 D_real: 1.207 D_fake: 0.475 +(epoch: 311, iters: 8320, time: 0.064) G_GAN: 0.200 G_GAN_Feat: 0.568 G_ID: 0.111 G_Rec: 0.241 D_GP: 0.018 D_real: 1.157 D_fake: 0.800 +(epoch: 312, iters: 112, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.843 G_ID: 0.154 G_Rec: 0.371 D_GP: 0.037 D_real: 1.051 D_fake: 0.680 +(epoch: 312, iters: 512, time: 0.064) G_GAN: 0.220 G_GAN_Feat: 0.664 G_ID: 0.103 G_Rec: 0.282 D_GP: 0.059 D_real: 1.140 D_fake: 0.781 +(epoch: 312, iters: 912, time: 0.064) G_GAN: 0.593 G_GAN_Feat: 0.893 G_ID: 0.159 G_Rec: 0.391 D_GP: 0.022 D_real: 1.352 D_fake: 0.410 +(epoch: 312, iters: 1312, time: 0.064) G_GAN: 0.455 G_GAN_Feat: 0.630 G_ID: 0.113 G_Rec: 0.272 D_GP: 0.017 D_real: 1.369 D_fake: 0.545 +(epoch: 312, iters: 1712, time: 0.064) G_GAN: 0.424 G_GAN_Feat: 1.030 G_ID: 0.148 G_Rec: 0.419 D_GP: 0.151 D_real: 0.559 D_fake: 0.583 +(epoch: 312, iters: 2112, time: 0.064) G_GAN: 0.130 G_GAN_Feat: 0.733 G_ID: 0.111 G_Rec: 0.307 D_GP: 0.023 D_real: 0.941 D_fake: 0.870 +(epoch: 312, iters: 2512, time: 0.064) G_GAN: 0.078 G_GAN_Feat: 0.752 G_ID: 0.170 G_Rec: 0.340 D_GP: 0.021 D_real: 0.984 D_fake: 0.922 +(epoch: 312, iters: 2912, time: 0.064) G_GAN: 0.219 G_GAN_Feat: 0.685 G_ID: 0.117 G_Rec: 0.282 D_GP: 0.046 D_real: 1.098 D_fake: 0.782 +(epoch: 312, iters: 3312, time: 0.064) G_GAN: 0.483 G_GAN_Feat: 1.071 G_ID: 0.159 G_Rec: 0.416 D_GP: 0.555 D_real: 0.662 D_fake: 0.538 +(epoch: 312, iters: 3712, time: 0.064) G_GAN: 0.217 G_GAN_Feat: 0.672 G_ID: 0.100 G_Rec: 0.274 D_GP: 0.023 D_real: 1.089 D_fake: 0.783 +(epoch: 312, iters: 4112, time: 0.064) G_GAN: 0.675 G_GAN_Feat: 1.069 G_ID: 0.162 G_Rec: 0.439 D_GP: 0.181 D_real: 1.007 D_fake: 0.471 +(epoch: 312, iters: 4512, time: 0.064) G_GAN: 0.217 G_GAN_Feat: 0.846 G_ID: 0.135 G_Rec: 0.336 D_GP: 0.082 D_real: 0.558 D_fake: 0.787 +(epoch: 312, iters: 4912, time: 0.064) G_GAN: 0.308 G_GAN_Feat: 0.969 G_ID: 0.169 G_Rec: 0.381 D_GP: 0.063 D_real: 0.748 D_fake: 0.694 +(epoch: 312, iters: 5312, time: 0.064) G_GAN: 0.309 G_GAN_Feat: 0.709 G_ID: 0.151 G_Rec: 0.292 D_GP: 0.029 D_real: 1.101 D_fake: 0.691 +(epoch: 312, iters: 5712, time: 0.064) G_GAN: 0.281 G_GAN_Feat: 0.763 G_ID: 0.162 G_Rec: 0.427 D_GP: 0.020 D_real: 1.104 D_fake: 0.723 +(epoch: 312, iters: 6112, time: 0.064) G_GAN: 0.113 G_GAN_Feat: 0.503 G_ID: 0.109 G_Rec: 0.299 D_GP: 0.020 D_real: 1.057 D_fake: 0.887 +(epoch: 312, iters: 6512, time: 0.064) G_GAN: -0.018 G_GAN_Feat: 0.677 G_ID: 0.152 G_Rec: 0.354 D_GP: 0.021 D_real: 0.821 D_fake: 1.018 +(epoch: 312, iters: 6912, time: 0.064) G_GAN: 0.183 G_GAN_Feat: 0.505 G_ID: 0.128 G_Rec: 0.285 D_GP: 0.021 D_real: 1.135 D_fake: 0.817 +(epoch: 312, iters: 7312, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 0.715 G_ID: 0.148 G_Rec: 0.373 D_GP: 0.021 D_real: 1.032 D_fake: 0.711 +(epoch: 312, iters: 7712, time: 0.064) G_GAN: 0.091 G_GAN_Feat: 0.545 G_ID: 0.113 G_Rec: 0.273 D_GP: 0.022 D_real: 1.037 D_fake: 0.909 +(epoch: 312, iters: 8112, time: 0.064) G_GAN: 0.242 G_GAN_Feat: 0.745 G_ID: 0.163 G_Rec: 0.370 D_GP: 0.026 D_real: 0.966 D_fake: 0.760 +(epoch: 312, iters: 8512, time: 0.064) G_GAN: 0.065 G_GAN_Feat: 0.562 G_ID: 0.133 G_Rec: 0.267 D_GP: 0.028 D_real: 1.018 D_fake: 0.935 +(epoch: 313, iters: 304, time: 0.064) G_GAN: -0.055 G_GAN_Feat: 0.804 G_ID: 0.166 G_Rec: 0.400 D_GP: 0.034 D_real: 0.668 D_fake: 1.055 +(epoch: 313, iters: 704, time: 0.064) G_GAN: 0.098 G_GAN_Feat: 0.571 G_ID: 0.136 G_Rec: 0.261 D_GP: 0.022 D_real: 1.079 D_fake: 0.903 +(epoch: 313, iters: 1104, time: 0.064) G_GAN: 0.157 G_GAN_Feat: 0.863 G_ID: 0.182 G_Rec: 0.408 D_GP: 0.045 D_real: 0.797 D_fake: 0.848 +(epoch: 313, iters: 1504, time: 0.064) G_GAN: 0.076 G_GAN_Feat: 0.663 G_ID: 0.125 G_Rec: 0.307 D_GP: 0.034 D_real: 0.860 D_fake: 0.924 +(epoch: 313, iters: 1904, time: 0.064) G_GAN: 0.418 G_GAN_Feat: 0.828 G_ID: 0.142 G_Rec: 0.398 D_GP: 0.022 D_real: 1.177 D_fake: 0.590 +(epoch: 313, iters: 2304, time: 0.064) G_GAN: 0.024 G_GAN_Feat: 0.614 G_ID: 0.134 G_Rec: 0.276 D_GP: 0.036 D_real: 0.917 D_fake: 0.976 +(epoch: 313, iters: 2704, time: 0.064) G_GAN: 0.254 G_GAN_Feat: 0.737 G_ID: 0.149 G_Rec: 0.319 D_GP: 0.027 D_real: 1.089 D_fake: 0.747 +(epoch: 313, iters: 3104, time: 0.064) G_GAN: 0.299 G_GAN_Feat: 0.628 G_ID: 0.118 G_Rec: 0.267 D_GP: 0.021 D_real: 1.290 D_fake: 0.702 +(epoch: 313, iters: 3504, time: 0.064) G_GAN: 0.449 G_GAN_Feat: 0.852 G_ID: 0.157 G_Rec: 0.415 D_GP: 0.021 D_real: 1.215 D_fake: 0.552 +(epoch: 313, iters: 3904, time: 0.064) G_GAN: 0.220 G_GAN_Feat: 0.699 G_ID: 0.111 G_Rec: 0.280 D_GP: 0.057 D_real: 0.896 D_fake: 0.780 +(epoch: 313, iters: 4304, time: 0.064) G_GAN: 0.507 G_GAN_Feat: 0.934 G_ID: 0.155 G_Rec: 0.423 D_GP: 0.082 D_real: 0.957 D_fake: 0.504 +(epoch: 313, iters: 4704, time: 0.064) G_GAN: -0.016 G_GAN_Feat: 0.755 G_ID: 0.123 G_Rec: 0.312 D_GP: 0.032 D_real: 1.108 D_fake: 1.017 +(epoch: 313, iters: 5104, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.736 G_ID: 0.183 G_Rec: 0.355 D_GP: 0.018 D_real: 1.144 D_fake: 0.751 +(epoch: 313, iters: 5504, time: 0.064) G_GAN: 0.269 G_GAN_Feat: 0.668 G_ID: 0.118 G_Rec: 0.303 D_GP: 0.028 D_real: 1.147 D_fake: 0.732 +(epoch: 313, iters: 5904, time: 0.064) G_GAN: 0.248 G_GAN_Feat: 0.824 G_ID: 0.148 G_Rec: 0.387 D_GP: 0.028 D_real: 0.955 D_fake: 0.752 +(epoch: 313, iters: 6304, time: 0.064) G_GAN: -0.050 G_GAN_Feat: 0.706 G_ID: 0.125 G_Rec: 0.312 D_GP: 0.043 D_real: 0.718 D_fake: 1.050 +(epoch: 313, iters: 6704, time: 0.064) G_GAN: 0.306 G_GAN_Feat: 0.758 G_ID: 0.147 G_Rec: 0.359 D_GP: 0.020 D_real: 1.141 D_fake: 0.694 +(epoch: 313, iters: 7104, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 0.616 G_ID: 0.114 G_Rec: 0.264 D_GP: 0.027 D_real: 1.091 D_fake: 0.808 +(epoch: 313, iters: 7504, time: 0.064) G_GAN: 0.299 G_GAN_Feat: 0.866 G_ID: 0.168 G_Rec: 0.387 D_GP: 0.049 D_real: 0.821 D_fake: 0.702 +(epoch: 313, iters: 7904, time: 0.064) G_GAN: 0.104 G_GAN_Feat: 0.696 G_ID: 0.133 G_Rec: 0.295 D_GP: 0.027 D_real: 0.957 D_fake: 0.896 +(epoch: 313, iters: 8304, time: 0.064) G_GAN: 0.418 G_GAN_Feat: 0.852 G_ID: 0.160 G_Rec: 0.374 D_GP: 0.030 D_real: 1.049 D_fake: 0.585 +(epoch: 314, iters: 96, time: 0.064) G_GAN: 0.367 G_GAN_Feat: 0.805 G_ID: 0.131 G_Rec: 0.331 D_GP: 0.049 D_real: 1.055 D_fake: 0.770 +(epoch: 314, iters: 496, time: 0.064) G_GAN: 0.304 G_GAN_Feat: 1.013 G_ID: 0.156 G_Rec: 0.415 D_GP: 0.091 D_real: 0.623 D_fake: 0.697 +(epoch: 314, iters: 896, time: 0.064) G_GAN: 0.190 G_GAN_Feat: 0.639 G_ID: 0.106 G_Rec: 0.259 D_GP: 0.029 D_real: 1.131 D_fake: 0.810 +(epoch: 314, iters: 1296, time: 0.064) G_GAN: 0.302 G_GAN_Feat: 0.999 G_ID: 0.152 G_Rec: 0.423 D_GP: 0.039 D_real: 0.806 D_fake: 0.699 +(epoch: 314, iters: 1696, time: 0.064) G_GAN: 0.157 G_GAN_Feat: 0.643 G_ID: 0.141 G_Rec: 0.296 D_GP: 0.021 D_real: 1.064 D_fake: 0.843 +(epoch: 314, iters: 2096, time: 0.064) G_GAN: 0.335 G_GAN_Feat: 0.931 G_ID: 0.153 G_Rec: 0.398 D_GP: 0.081 D_real: 0.893 D_fake: 0.665 +(epoch: 314, iters: 2496, time: 0.064) G_GAN: 0.415 G_GAN_Feat: 0.670 G_ID: 0.124 G_Rec: 0.289 D_GP: 0.025 D_real: 1.270 D_fake: 0.591 +(epoch: 314, iters: 2896, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 0.866 G_ID: 0.140 G_Rec: 0.397 D_GP: 0.028 D_real: 1.030 D_fake: 0.706 +(epoch: 314, iters: 3296, time: 0.064) G_GAN: 0.113 G_GAN_Feat: 0.707 G_ID: 0.126 G_Rec: 0.303 D_GP: 0.041 D_real: 0.927 D_fake: 0.887 +(epoch: 314, iters: 3696, time: 0.064) G_GAN: 0.133 G_GAN_Feat: 0.859 G_ID: 0.177 G_Rec: 0.435 D_GP: 0.026 D_real: 0.985 D_fake: 0.868 +(epoch: 314, iters: 4096, time: 0.064) G_GAN: -0.030 G_GAN_Feat: 0.631 G_ID: 0.127 G_Rec: 0.280 D_GP: 0.037 D_real: 0.885 D_fake: 1.030 +(epoch: 314, iters: 4496, time: 0.064) G_GAN: 0.240 G_GAN_Feat: 0.785 G_ID: 0.168 G_Rec: 0.359 D_GP: 0.028 D_real: 0.959 D_fake: 0.765 +(epoch: 314, iters: 4896, time: 0.064) G_GAN: 0.116 G_GAN_Feat: 0.688 G_ID: 0.148 G_Rec: 0.285 D_GP: 0.090 D_real: 0.813 D_fake: 0.885 +(epoch: 314, iters: 5296, time: 0.064) G_GAN: 0.108 G_GAN_Feat: 1.000 G_ID: 0.184 G_Rec: 0.419 D_GP: 0.046 D_real: 0.509 D_fake: 0.894 +(epoch: 314, iters: 5696, time: 0.064) G_GAN: 0.187 G_GAN_Feat: 0.610 G_ID: 0.110 G_Rec: 0.289 D_GP: 0.023 D_real: 1.169 D_fake: 0.813 +(epoch: 314, iters: 6096, time: 0.064) G_GAN: 0.379 G_GAN_Feat: 0.901 G_ID: 0.171 G_Rec: 0.394 D_GP: 0.045 D_real: 0.865 D_fake: 0.622 +(epoch: 314, iters: 6496, time: 0.064) G_GAN: 0.337 G_GAN_Feat: 0.659 G_ID: 0.124 G_Rec: 0.307 D_GP: 0.026 D_real: 1.134 D_fake: 0.663 +(epoch: 314, iters: 6896, time: 0.064) G_GAN: 0.376 G_GAN_Feat: 1.048 G_ID: 0.163 G_Rec: 0.413 D_GP: 0.082 D_real: 0.329 D_fake: 0.637 +(epoch: 314, iters: 7296, time: 0.064) G_GAN: 0.390 G_GAN_Feat: 0.822 G_ID: 0.118 G_Rec: 0.311 D_GP: 0.025 D_real: 0.949 D_fake: 0.610 +(epoch: 314, iters: 7696, time: 0.064) G_GAN: 0.399 G_GAN_Feat: 0.809 G_ID: 0.159 G_Rec: 0.374 D_GP: 0.023 D_real: 1.229 D_fake: 0.604 +(epoch: 314, iters: 8096, time: 0.064) G_GAN: 0.092 G_GAN_Feat: 0.823 G_ID: 0.128 G_Rec: 0.335 D_GP: 0.082 D_real: 0.668 D_fake: 0.910 +(epoch: 314, iters: 8496, time: 0.064) G_GAN: 0.469 G_GAN_Feat: 0.969 G_ID: 0.151 G_Rec: 0.403 D_GP: 0.088 D_real: 0.736 D_fake: 0.534 +(epoch: 315, iters: 288, time: 0.064) G_GAN: 0.369 G_GAN_Feat: 0.862 G_ID: 0.135 G_Rec: 0.315 D_GP: 0.063 D_real: 0.690 D_fake: 0.639 +(epoch: 315, iters: 688, time: 0.064) G_GAN: 0.214 G_GAN_Feat: 0.926 G_ID: 0.158 G_Rec: 0.422 D_GP: 0.020 D_real: 0.980 D_fake: 0.788 +(epoch: 315, iters: 1088, time: 0.064) G_GAN: -0.014 G_GAN_Feat: 0.715 G_ID: 0.133 G_Rec: 0.386 D_GP: 0.021 D_real: 0.888 D_fake: 1.014 +(epoch: 315, iters: 1488, time: 0.064) G_GAN: 0.107 G_GAN_Feat: 0.779 G_ID: 0.159 G_Rec: 0.374 D_GP: 0.023 D_real: 0.946 D_fake: 0.893 +(epoch: 315, iters: 1888, time: 0.064) G_GAN: -0.040 G_GAN_Feat: 0.623 G_ID: 0.121 G_Rec: 0.285 D_GP: 0.024 D_real: 0.879 D_fake: 1.040 +(epoch: 315, iters: 2288, time: 0.064) G_GAN: 0.352 G_GAN_Feat: 0.816 G_ID: 0.137 G_Rec: 0.391 D_GP: 0.023 D_real: 1.120 D_fake: 0.661 +(epoch: 315, iters: 2688, time: 0.064) G_GAN: -0.143 G_GAN_Feat: 0.667 G_ID: 0.121 G_Rec: 0.285 D_GP: 0.038 D_real: 0.736 D_fake: 1.143 +(epoch: 315, iters: 3088, time: 0.064) G_GAN: 0.367 G_GAN_Feat: 0.900 G_ID: 0.119 G_Rec: 0.396 D_GP: 0.034 D_real: 1.046 D_fake: 0.636 +(epoch: 315, iters: 3488, time: 0.064) G_GAN: 0.704 G_GAN_Feat: 0.861 G_ID: 0.116 G_Rec: 0.343 D_GP: 0.047 D_real: 1.123 D_fake: 0.508 +(epoch: 315, iters: 3888, time: 0.064) G_GAN: 0.201 G_GAN_Feat: 0.865 G_ID: 0.173 G_Rec: 0.370 D_GP: 0.051 D_real: 0.907 D_fake: 0.800 +(epoch: 315, iters: 4288, time: 0.064) G_GAN: 0.588 G_GAN_Feat: 0.824 G_ID: 0.115 G_Rec: 0.306 D_GP: 0.045 D_real: 1.416 D_fake: 0.468 +(epoch: 315, iters: 4688, time: 0.064) G_GAN: 0.257 G_GAN_Feat: 1.123 G_ID: 0.158 G_Rec: 0.468 D_GP: 0.215 D_real: 0.298 D_fake: 0.745 +(epoch: 315, iters: 5088, time: 0.064) G_GAN: 0.146 G_GAN_Feat: 0.633 G_ID: 0.131 G_Rec: 0.271 D_GP: 0.023 D_real: 1.075 D_fake: 0.854 +(epoch: 315, iters: 5488, time: 0.064) G_GAN: 0.637 G_GAN_Feat: 1.161 G_ID: 0.162 G_Rec: 0.480 D_GP: 0.208 D_real: 0.444 D_fake: 0.434 +(epoch: 315, iters: 5888, time: 0.064) G_GAN: 0.116 G_GAN_Feat: 0.712 G_ID: 0.131 G_Rec: 0.305 D_GP: 0.033 D_real: 0.880 D_fake: 0.885 +(epoch: 315, iters: 6288, time: 0.064) G_GAN: 0.542 G_GAN_Feat: 1.027 G_ID: 0.169 G_Rec: 0.394 D_GP: 0.276 D_real: 0.638 D_fake: 0.491 +(epoch: 315, iters: 6688, time: 0.064) G_GAN: 0.594 G_GAN_Feat: 0.982 G_ID: 0.114 G_Rec: 0.289 D_GP: 0.037 D_real: 1.397 D_fake: 0.561 +(epoch: 315, iters: 7088, time: 0.064) G_GAN: 0.631 G_GAN_Feat: 0.859 G_ID: 0.144 G_Rec: 0.354 D_GP: 0.030 D_real: 1.267 D_fake: 0.383 +(epoch: 315, iters: 7488, time: 0.064) G_GAN: 0.389 G_GAN_Feat: 0.900 G_ID: 0.113 G_Rec: 0.299 D_GP: 0.067 D_real: 0.379 D_fake: 0.659 +(epoch: 315, iters: 7888, time: 0.064) G_GAN: 0.304 G_GAN_Feat: 1.046 G_ID: 0.163 G_Rec: 0.419 D_GP: 0.043 D_real: 0.788 D_fake: 0.698 +(epoch: 315, iters: 8288, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 0.747 G_ID: 0.118 G_Rec: 0.280 D_GP: 0.037 D_real: 0.957 D_fake: 0.782 +(epoch: 316, iters: 80, time: 0.064) G_GAN: 0.395 G_GAN_Feat: 1.271 G_ID: 0.167 G_Rec: 0.452 D_GP: 0.528 D_real: 0.312 D_fake: 0.612 +(epoch: 316, iters: 480, time: 0.064) G_GAN: -0.151 G_GAN_Feat: 0.633 G_ID: 0.101 G_Rec: 0.319 D_GP: 0.021 D_real: 0.872 D_fake: 1.151 +(epoch: 316, iters: 880, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 0.858 G_ID: 0.145 G_Rec: 0.408 D_GP: 0.018 D_real: 0.895 D_fake: 0.832 +(epoch: 316, iters: 1280, time: 0.064) G_GAN: -0.111 G_GAN_Feat: 0.700 G_ID: 0.122 G_Rec: 0.327 D_GP: 0.026 D_real: 0.785 D_fake: 1.112 +(epoch: 316, iters: 1680, time: 0.064) G_GAN: 0.168 G_GAN_Feat: 0.760 G_ID: 0.147 G_Rec: 0.352 D_GP: 0.024 D_real: 0.893 D_fake: 0.832 +(epoch: 316, iters: 2080, time: 0.064) G_GAN: 0.012 G_GAN_Feat: 0.765 G_ID: 0.125 G_Rec: 0.306 D_GP: 0.082 D_real: 0.707 D_fake: 0.988 +(epoch: 316, iters: 2480, time: 0.064) G_GAN: 0.409 G_GAN_Feat: 0.985 G_ID: 0.137 G_Rec: 0.415 D_GP: 0.062 D_real: 0.720 D_fake: 0.598 +(epoch: 316, iters: 2880, time: 0.064) G_GAN: 0.117 G_GAN_Feat: 0.665 G_ID: 0.120 G_Rec: 0.306 D_GP: 0.029 D_real: 1.157 D_fake: 0.889 +(epoch: 316, iters: 3280, time: 0.064) G_GAN: 0.387 G_GAN_Feat: 0.816 G_ID: 0.149 G_Rec: 0.381 D_GP: 0.031 D_real: 1.118 D_fake: 0.613 +(epoch: 316, iters: 3680, time: 0.064) G_GAN: 0.191 G_GAN_Feat: 0.685 G_ID: 0.121 G_Rec: 0.319 D_GP: 0.041 D_real: 1.057 D_fake: 0.809 +(epoch: 316, iters: 4080, time: 0.064) G_GAN: 0.581 G_GAN_Feat: 0.785 G_ID: 0.162 G_Rec: 0.344 D_GP: 0.041 D_real: 1.327 D_fake: 0.432 +(epoch: 316, iters: 4480, time: 0.064) G_GAN: -0.057 G_GAN_Feat: 0.621 G_ID: 0.118 G_Rec: 0.271 D_GP: 0.023 D_real: 0.844 D_fake: 1.057 +(epoch: 316, iters: 4880, time: 0.064) G_GAN: 0.459 G_GAN_Feat: 0.953 G_ID: 0.168 G_Rec: 0.412 D_GP: 0.030 D_real: 1.118 D_fake: 0.547 +(epoch: 316, iters: 5280, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.742 G_ID: 0.126 G_Rec: 0.290 D_GP: 0.023 D_real: 1.154 D_fake: 0.693 +(epoch: 316, iters: 5680, time: 0.064) G_GAN: 0.433 G_GAN_Feat: 1.048 G_ID: 0.154 G_Rec: 0.446 D_GP: 0.038 D_real: 1.003 D_fake: 0.574 +(epoch: 316, iters: 6080, time: 0.064) G_GAN: 0.477 G_GAN_Feat: 0.898 G_ID: 0.155 G_Rec: 0.315 D_GP: 0.122 D_real: 0.582 D_fake: 0.563 +================ Training Loss (Tue Apr 21 12:46:57 2020) ================ +(epoch: 315, iters: 7488, time: 0.075) G_GAN: 0.436 G_GAN_Feat: 0.885 G_ID: 0.143 G_Rec: 0.375 D_GP: 0.027 D_real: 1.123 D_fake: 0.566 +(epoch: 315, iters: 7888, time: 0.063) G_GAN: 0.172 G_GAN_Feat: 0.831 G_ID: 0.129 G_Rec: 0.312 D_GP: 0.032 D_real: 0.934 D_fake: 0.857 +(epoch: 315, iters: 8288, time: 0.063) G_GAN: 0.629 G_GAN_Feat: 1.244 G_ID: 0.151 G_Rec: 0.425 D_GP: 0.072 D_real: 0.481 D_fake: 0.384 +(epoch: 315, iters: 8688, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.816 G_ID: 0.118 G_Rec: 0.341 D_GP: 0.073 D_real: 0.723 D_fake: 0.699 +(epoch: 315, iters: 9088, time: 0.063) G_GAN: 0.632 G_GAN_Feat: 0.942 G_ID: 0.132 G_Rec: 0.419 D_GP: 0.027 D_real: 1.228 D_fake: 0.406 +(epoch: 315, iters: 9488, time: 0.063) G_GAN: 0.339 G_GAN_Feat: 0.769 G_ID: 0.094 G_Rec: 0.305 D_GP: 0.038 D_real: 1.035 D_fake: 0.667 +(epoch: 315, iters: 9888, time: 0.063) G_GAN: 0.933 G_GAN_Feat: 1.035 G_ID: 0.140 G_Rec: 0.405 D_GP: 0.032 D_real: 1.385 D_fake: 0.148 +(epoch: 315, iters: 10288, time: 0.064) G_GAN: 0.382 G_GAN_Feat: 0.686 G_ID: 0.124 G_Rec: 0.289 D_GP: 0.023 D_real: 1.286 D_fake: 0.618 +(epoch: 315, iters: 10688, time: 0.063) G_GAN: 0.751 G_GAN_Feat: 1.101 G_ID: 0.159 G_Rec: 0.440 D_GP: 0.062 D_real: 0.495 D_fake: 0.286 +(epoch: 315, iters: 11088, time: 0.063) G_GAN: 0.415 G_GAN_Feat: 0.733 G_ID: 0.112 G_Rec: 0.283 D_GP: 0.029 D_real: 1.292 D_fake: 0.592 +(epoch: 315, iters: 11488, time: 0.063) G_GAN: 0.606 G_GAN_Feat: 1.195 G_ID: 0.163 G_Rec: 0.421 D_GP: 0.142 D_real: 0.290 D_fake: 0.508 +(epoch: 315, iters: 11888, time: 0.064) G_GAN: 0.422 G_GAN_Feat: 0.732 G_ID: 0.102 G_Rec: 0.286 D_GP: 0.027 D_real: 1.314 D_fake: 0.580 +(epoch: 315, iters: 12288, time: 0.064) G_GAN: 0.795 G_GAN_Feat: 1.130 G_ID: 0.150 G_Rec: 0.454 D_GP: 0.036 D_real: 1.068 D_fake: 0.261 +(epoch: 315, iters: 12688, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 0.978 G_ID: 0.119 G_Rec: 0.361 D_GP: 0.087 D_real: 0.949 D_fake: 0.661 +(epoch: 315, iters: 13088, time: 0.064) G_GAN: 0.483 G_GAN_Feat: 1.163 G_ID: 0.145 G_Rec: 0.473 D_GP: 0.084 D_real: 0.491 D_fake: 0.524 +(epoch: 315, iters: 13488, time: 0.064) G_GAN: 0.385 G_GAN_Feat: 0.744 G_ID: 0.114 G_Rec: 0.312 D_GP: 0.033 D_real: 1.316 D_fake: 0.624 +(epoch: 315, iters: 13888, time: 0.064) G_GAN: 0.449 G_GAN_Feat: 0.893 G_ID: 0.142 G_Rec: 0.406 D_GP: 0.045 D_real: 0.997 D_fake: 0.561 +(epoch: 315, iters: 14288, time: 0.064) G_GAN: 0.393 G_GAN_Feat: 0.828 G_ID: 0.125 G_Rec: 0.318 D_GP: 0.166 D_real: 0.875 D_fake: 0.619 +(epoch: 315, iters: 14688, time: 0.064) G_GAN: 0.534 G_GAN_Feat: 0.946 G_ID: 0.135 G_Rec: 0.411 D_GP: 0.028 D_real: 1.180 D_fake: 0.469 +(epoch: 315, iters: 15088, time: 0.064) G_GAN: 0.344 G_GAN_Feat: 0.644 G_ID: 0.109 G_Rec: 0.272 D_GP: 0.026 D_real: 1.276 D_fake: 0.658 +(epoch: 315, iters: 15488, time: 0.063) G_GAN: 0.653 G_GAN_Feat: 0.875 G_ID: 0.142 G_Rec: 0.405 D_GP: 0.030 D_real: 1.307 D_fake: 0.364 +(epoch: 316, iters: 286, time: 0.063) G_GAN: 0.178 G_GAN_Feat: 0.858 G_ID: 0.099 G_Rec: 0.324 D_GP: 0.109 D_real: 0.509 D_fake: 0.824 +(epoch: 316, iters: 686, time: 0.063) G_GAN: 0.728 G_GAN_Feat: 1.022 G_ID: 0.135 G_Rec: 0.447 D_GP: 0.034 D_real: 1.279 D_fake: 0.301 +(epoch: 316, iters: 1086, time: 0.064) G_GAN: 0.131 G_GAN_Feat: 0.753 G_ID: 0.120 G_Rec: 0.326 D_GP: 0.030 D_real: 0.947 D_fake: 0.869 +(epoch: 316, iters: 1486, time: 0.063) G_GAN: 0.516 G_GAN_Feat: 0.917 G_ID: 0.154 G_Rec: 0.416 D_GP: 0.042 D_real: 1.112 D_fake: 0.488 +(epoch: 316, iters: 1886, time: 0.063) G_GAN: 0.396 G_GAN_Feat: 0.821 G_ID: 0.095 G_Rec: 0.286 D_GP: 0.057 D_real: 0.844 D_fake: 0.605 +(epoch: 316, iters: 2286, time: 0.063) G_GAN: 0.320 G_GAN_Feat: 0.992 G_ID: 0.138 G_Rec: 0.433 D_GP: 0.033 D_real: 0.959 D_fake: 0.681 +(epoch: 316, iters: 2686, time: 0.064) G_GAN: 0.424 G_GAN_Feat: 0.833 G_ID: 0.110 G_Rec: 0.334 D_GP: 0.029 D_real: 1.181 D_fake: 0.578 +(epoch: 316, iters: 3086, time: 0.063) G_GAN: 0.819 G_GAN_Feat: 1.221 G_ID: 0.150 G_Rec: 0.472 D_GP: 0.570 D_real: 0.536 D_fake: 0.269 +(epoch: 316, iters: 3486, time: 0.063) G_GAN: 0.366 G_GAN_Feat: 0.850 G_ID: 0.106 G_Rec: 0.313 D_GP: 0.028 D_real: 0.922 D_fake: 0.635 +(epoch: 316, iters: 3886, time: 0.063) G_GAN: 0.928 G_GAN_Feat: 1.102 G_ID: 0.154 G_Rec: 0.452 D_GP: 0.040 D_real: 1.486 D_fake: 0.242 +(epoch: 316, iters: 4286, time: 0.064) G_GAN: 0.201 G_GAN_Feat: 0.660 G_ID: 0.120 G_Rec: 0.299 D_GP: 0.025 D_real: 1.111 D_fake: 0.799 +(epoch: 316, iters: 4686, time: 0.063) G_GAN: 0.411 G_GAN_Feat: 0.899 G_ID: 0.157 G_Rec: 0.403 D_GP: 0.034 D_real: 0.993 D_fake: 0.592 +(epoch: 316, iters: 5086, time: 0.063) G_GAN: 0.332 G_GAN_Feat: 0.691 G_ID: 0.098 G_Rec: 0.289 D_GP: 0.027 D_real: 1.151 D_fake: 0.669 +(epoch: 316, iters: 5486, time: 0.063) G_GAN: 0.598 G_GAN_Feat: 0.986 G_ID: 0.155 G_Rec: 0.445 D_GP: 0.056 D_real: 1.043 D_fake: 0.461 +(epoch: 316, iters: 5886, time: 0.064) G_GAN: 0.316 G_GAN_Feat: 0.755 G_ID: 0.102 G_Rec: 0.284 D_GP: 0.044 D_real: 0.985 D_fake: 0.686 +(epoch: 316, iters: 6286, time: 0.063) G_GAN: 0.524 G_GAN_Feat: 0.996 G_ID: 0.134 G_Rec: 0.420 D_GP: 0.064 D_real: 0.750 D_fake: 0.479 +(epoch: 316, iters: 6686, time: 0.063) G_GAN: 0.219 G_GAN_Feat: 0.752 G_ID: 0.105 G_Rec: 0.302 D_GP: 0.028 D_real: 0.955 D_fake: 0.782 +(epoch: 316, iters: 7086, time: 0.063) G_GAN: 0.843 G_GAN_Feat: 0.939 G_ID: 0.124 G_Rec: 0.404 D_GP: 0.032 D_real: 1.306 D_fake: 0.231 +(epoch: 316, iters: 7486, time: 0.064) G_GAN: 0.179 G_GAN_Feat: 0.809 G_ID: 0.128 G_Rec: 0.305 D_GP: 0.063 D_real: 0.570 D_fake: 0.823 +(epoch: 316, iters: 7886, time: 0.063) G_GAN: 0.548 G_GAN_Feat: 1.000 G_ID: 0.152 G_Rec: 0.410 D_GP: 0.178 D_real: 0.841 D_fake: 0.497 +(epoch: 316, iters: 8286, time: 0.063) G_GAN: 0.303 G_GAN_Feat: 0.812 G_ID: 0.126 G_Rec: 0.293 D_GP: 0.045 D_real: 0.767 D_fake: 0.698 +(epoch: 316, iters: 8686, time: 0.063) G_GAN: 0.602 G_GAN_Feat: 0.872 G_ID: 0.122 G_Rec: 0.364 D_GP: 0.030 D_real: 1.261 D_fake: 0.408 +(epoch: 317, iters: 478, time: 0.064) G_GAN: 0.330 G_GAN_Feat: 0.821 G_ID: 0.115 G_Rec: 0.311 D_GP: 0.033 D_real: 0.967 D_fake: 0.674 +(epoch: 317, iters: 878, time: 0.063) G_GAN: 0.710 G_GAN_Feat: 1.150 G_ID: 0.122 G_Rec: 0.448 D_GP: 0.270 D_real: 0.414 D_fake: 0.327 +(epoch: 317, iters: 1278, time: 0.063) G_GAN: 0.463 G_GAN_Feat: 0.963 G_ID: 0.116 G_Rec: 0.306 D_GP: 0.074 D_real: 0.394 D_fake: 0.559 +(epoch: 317, iters: 1678, time: 0.063) G_GAN: 0.306 G_GAN_Feat: 0.960 G_ID: 0.137 G_Rec: 0.456 D_GP: 0.032 D_real: 1.053 D_fake: 0.695 +(epoch: 317, iters: 2078, time: 0.064) G_GAN: 0.110 G_GAN_Feat: 0.768 G_ID: 0.145 G_Rec: 0.318 D_GP: 0.031 D_real: 0.970 D_fake: 0.891 +(epoch: 317, iters: 2478, time: 0.063) G_GAN: 0.473 G_GAN_Feat: 1.213 G_ID: 0.145 G_Rec: 0.467 D_GP: 0.138 D_real: 0.291 D_fake: 0.534 +(epoch: 317, iters: 2878, time: 0.063) G_GAN: 0.492 G_GAN_Feat: 0.886 G_ID: 0.112 G_Rec: 0.337 D_GP: 0.043 D_real: 1.042 D_fake: 0.563 +(epoch: 317, iters: 3278, time: 0.063) G_GAN: 0.559 G_GAN_Feat: 1.035 G_ID: 0.111 G_Rec: 0.435 D_GP: 0.028 D_real: 1.002 D_fake: 0.468 +(epoch: 317, iters: 3678, time: 0.064) G_GAN: -0.027 G_GAN_Feat: 0.831 G_ID: 0.131 G_Rec: 0.335 D_GP: 0.067 D_real: 0.549 D_fake: 1.028 +(epoch: 317, iters: 4078, time: 0.063) G_GAN: 0.615 G_GAN_Feat: 0.968 G_ID: 0.124 G_Rec: 0.427 D_GP: 0.028 D_real: 1.118 D_fake: 0.400 +(epoch: 317, iters: 4478, time: 0.063) G_GAN: 0.224 G_GAN_Feat: 0.738 G_ID: 0.106 G_Rec: 0.294 D_GP: 0.040 D_real: 0.949 D_fake: 0.776 +(epoch: 317, iters: 4878, time: 0.063) G_GAN: 0.715 G_GAN_Feat: 0.935 G_ID: 0.119 G_Rec: 0.435 D_GP: 0.026 D_real: 1.450 D_fake: 0.307 +(epoch: 317, iters: 5278, time: 0.064) G_GAN: 0.151 G_GAN_Feat: 0.743 G_ID: 0.119 G_Rec: 0.302 D_GP: 0.032 D_real: 0.858 D_fake: 0.849 +(epoch: 317, iters: 5678, time: 0.064) G_GAN: 0.432 G_GAN_Feat: 1.023 G_ID: 0.124 G_Rec: 0.407 D_GP: 0.068 D_real: 0.721 D_fake: 0.573 +(epoch: 317, iters: 6078, time: 0.064) G_GAN: 0.118 G_GAN_Feat: 0.875 G_ID: 0.108 G_Rec: 0.316 D_GP: 0.064 D_real: 0.325 D_fake: 0.885 +(epoch: 317, iters: 6478, time: 0.064) G_GAN: 0.503 G_GAN_Feat: 1.193 G_ID: 0.138 G_Rec: 0.462 D_GP: 0.093 D_real: 0.214 D_fake: 0.532 +(epoch: 317, iters: 6878, time: 0.064) G_GAN: 0.386 G_GAN_Feat: 0.676 G_ID: 0.106 G_Rec: 0.297 D_GP: 0.023 D_real: 1.273 D_fake: 0.618 +(epoch: 317, iters: 7278, time: 0.063) G_GAN: 0.526 G_GAN_Feat: 0.972 G_ID: 0.129 G_Rec: 0.431 D_GP: 0.037 D_real: 0.985 D_fake: 0.479 +(epoch: 317, iters: 7678, time: 0.063) G_GAN: 0.338 G_GAN_Feat: 0.747 G_ID: 0.133 G_Rec: 0.289 D_GP: 0.037 D_real: 1.165 D_fake: 0.663 +(epoch: 317, iters: 8078, time: 0.063) G_GAN: 0.738 G_GAN_Feat: 0.902 G_ID: 0.119 G_Rec: 0.400 D_GP: 0.030 D_real: 1.337 D_fake: 0.286 +(epoch: 317, iters: 8478, time: 0.064) G_GAN: 0.083 G_GAN_Feat: 0.769 G_ID: 0.132 G_Rec: 0.327 D_GP: 0.054 D_real: 0.908 D_fake: 0.918 +(epoch: 318, iters: 270, time: 0.063) G_GAN: 0.506 G_GAN_Feat: 0.874 G_ID: 0.138 G_Rec: 0.409 D_GP: 0.034 D_real: 1.092 D_fake: 0.506 +(epoch: 318, iters: 670, time: 0.063) G_GAN: 0.173 G_GAN_Feat: 0.904 G_ID: 0.121 G_Rec: 0.333 D_GP: 0.063 D_real: 0.853 D_fake: 0.845 +(epoch: 318, iters: 1070, time: 0.063) G_GAN: 0.588 G_GAN_Feat: 0.811 G_ID: 0.128 G_Rec: 0.389 D_GP: 0.031 D_real: 1.325 D_fake: 0.423 +(epoch: 318, iters: 1470, time: 0.064) G_GAN: 0.011 G_GAN_Feat: 0.656 G_ID: 0.127 G_Rec: 0.297 D_GP: 0.027 D_real: 0.933 D_fake: 0.989 +(epoch: 318, iters: 1870, time: 0.063) G_GAN: 0.528 G_GAN_Feat: 0.946 G_ID: 0.121 G_Rec: 0.468 D_GP: 0.033 D_real: 1.161 D_fake: 0.485 +(epoch: 318, iters: 2270, time: 0.063) G_GAN: 0.187 G_GAN_Feat: 0.641 G_ID: 0.096 G_Rec: 0.292 D_GP: 0.028 D_real: 1.127 D_fake: 0.814 +(epoch: 318, iters: 2670, time: 0.063) G_GAN: 0.557 G_GAN_Feat: 0.844 G_ID: 0.128 G_Rec: 0.396 D_GP: 0.033 D_real: 1.299 D_fake: 0.470 +(epoch: 318, iters: 3070, time: 0.064) G_GAN: 0.032 G_GAN_Feat: 0.662 G_ID: 0.121 G_Rec: 0.302 D_GP: 0.036 D_real: 0.849 D_fake: 0.968 +(epoch: 318, iters: 3470, time: 0.063) G_GAN: 0.214 G_GAN_Feat: 0.871 G_ID: 0.124 G_Rec: 0.410 D_GP: 0.066 D_real: 0.811 D_fake: 0.790 +(epoch: 318, iters: 3870, time: 0.063) G_GAN: -0.087 G_GAN_Feat: 0.765 G_ID: 0.102 G_Rec: 0.324 D_GP: 0.055 D_real: 0.675 D_fake: 1.087 +(epoch: 318, iters: 4270, time: 0.063) G_GAN: 0.190 G_GAN_Feat: 1.108 G_ID: 0.132 G_Rec: 0.491 D_GP: 0.049 D_real: 0.874 D_fake: 0.829 +(epoch: 318, iters: 4670, time: 0.064) G_GAN: 0.224 G_GAN_Feat: 0.731 G_ID: 0.097 G_Rec: 0.331 D_GP: 0.043 D_real: 1.075 D_fake: 0.776 +(epoch: 318, iters: 5070, time: 0.063) G_GAN: 0.409 G_GAN_Feat: 0.916 G_ID: 0.131 G_Rec: 0.414 D_GP: 0.046 D_real: 1.045 D_fake: 0.596 +(epoch: 318, iters: 5470, time: 0.063) G_GAN: 0.054 G_GAN_Feat: 0.740 G_ID: 0.121 G_Rec: 0.338 D_GP: 0.037 D_real: 0.907 D_fake: 0.946 +(epoch: 318, iters: 5870, time: 0.063) G_GAN: 0.628 G_GAN_Feat: 1.041 G_ID: 0.129 G_Rec: 0.479 D_GP: 0.062 D_real: 0.883 D_fake: 0.391 +(epoch: 318, iters: 6270, time: 0.064) G_GAN: 0.240 G_GAN_Feat: 0.896 G_ID: 0.117 G_Rec: 0.332 D_GP: 0.160 D_real: 0.557 D_fake: 0.761 +(epoch: 318, iters: 6670, time: 0.063) G_GAN: 0.372 G_GAN_Feat: 0.878 G_ID: 0.147 G_Rec: 0.369 D_GP: 0.040 D_real: 0.925 D_fake: 0.628 +(epoch: 318, iters: 7070, time: 0.063) G_GAN: 0.367 G_GAN_Feat: 0.770 G_ID: 0.107 G_Rec: 0.320 D_GP: 0.056 D_real: 1.046 D_fake: 0.640 +(epoch: 318, iters: 7470, time: 0.063) G_GAN: 0.956 G_GAN_Feat: 0.974 G_ID: 0.126 G_Rec: 0.417 D_GP: 0.032 D_real: 1.510 D_fake: 0.164 +(epoch: 318, iters: 7870, time: 0.064) G_GAN: 0.211 G_GAN_Feat: 0.789 G_ID: 0.110 G_Rec: 0.308 D_GP: 0.057 D_real: 0.782 D_fake: 0.790 +(epoch: 318, iters: 8270, time: 0.063) G_GAN: 0.369 G_GAN_Feat: 0.964 G_ID: 0.139 G_Rec: 0.426 D_GP: 0.032 D_real: 0.954 D_fake: 0.632 +(epoch: 318, iters: 8670, time: 0.063) G_GAN: -0.080 G_GAN_Feat: 0.844 G_ID: 0.119 G_Rec: 0.316 D_GP: 0.130 D_real: 0.593 D_fake: 1.082 +(epoch: 319, iters: 462, time: 0.063) G_GAN: 0.703 G_GAN_Feat: 0.989 G_ID: 0.140 G_Rec: 0.413 D_GP: 0.053 D_real: 1.029 D_fake: 0.329 +(epoch: 319, iters: 862, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 0.944 G_ID: 0.102 G_Rec: 0.351 D_GP: 0.480 D_real: 0.456 D_fake: 0.739 +(epoch: 319, iters: 1262, time: 0.063) G_GAN: 0.399 G_GAN_Feat: 1.009 G_ID: 0.143 G_Rec: 0.429 D_GP: 0.039 D_real: 0.882 D_fake: 0.618 +(epoch: 319, iters: 1662, time: 0.063) G_GAN: -0.030 G_GAN_Feat: 0.719 G_ID: 0.119 G_Rec: 0.276 D_GP: 0.028 D_real: 0.882 D_fake: 1.030 +(epoch: 319, iters: 2062, time: 0.063) G_GAN: 0.440 G_GAN_Feat: 1.050 G_ID: 0.152 G_Rec: 0.400 D_GP: 0.033 D_real: 0.495 D_fake: 0.561 +(epoch: 319, iters: 2462, time: 0.064) G_GAN: 0.305 G_GAN_Feat: 0.965 G_ID: 0.107 G_Rec: 0.307 D_GP: 0.102 D_real: 0.273 D_fake: 0.714 +(epoch: 319, iters: 2862, time: 0.063) G_GAN: 0.485 G_GAN_Feat: 0.882 G_ID: 0.151 G_Rec: 0.475 D_GP: 0.028 D_real: 1.196 D_fake: 0.543 +(epoch: 319, iters: 3262, time: 0.063) G_GAN: -0.078 G_GAN_Feat: 0.677 G_ID: 0.108 G_Rec: 0.305 D_GP: 0.027 D_real: 0.830 D_fake: 1.078 +(epoch: 319, iters: 3662, time: 0.063) G_GAN: 0.284 G_GAN_Feat: 0.851 G_ID: 0.117 G_Rec: 0.418 D_GP: 0.028 D_real: 0.893 D_fake: 0.718 +(epoch: 319, iters: 4062, time: 0.064) G_GAN: -0.106 G_GAN_Feat: 0.658 G_ID: 0.113 G_Rec: 0.315 D_GP: 0.028 D_real: 0.733 D_fake: 1.106 +(epoch: 319, iters: 4462, time: 0.063) G_GAN: 0.190 G_GAN_Feat: 0.861 G_ID: 0.123 G_Rec: 0.410 D_GP: 0.041 D_real: 0.828 D_fake: 0.811 +(epoch: 319, iters: 4862, time: 0.063) G_GAN: -0.178 G_GAN_Feat: 0.735 G_ID: 0.132 G_Rec: 0.315 D_GP: 0.038 D_real: 0.624 D_fake: 1.178 +(epoch: 319, iters: 5262, time: 0.063) G_GAN: 0.233 G_GAN_Feat: 0.828 G_ID: 0.147 G_Rec: 0.376 D_GP: 0.033 D_real: 0.913 D_fake: 0.768 +(epoch: 319, iters: 5662, time: 0.063) G_GAN: 0.223 G_GAN_Feat: 0.757 G_ID: 0.107 G_Rec: 0.308 D_GP: 0.038 D_real: 0.955 D_fake: 0.778 +(epoch: 319, iters: 6062, time: 0.063) G_GAN: 0.430 G_GAN_Feat: 0.954 G_ID: 0.142 G_Rec: 0.418 D_GP: 0.047 D_real: 0.920 D_fake: 0.571 +(epoch: 319, iters: 6462, time: 0.063) G_GAN: 0.162 G_GAN_Feat: 0.722 G_ID: 0.120 G_Rec: 0.319 D_GP: 0.040 D_real: 1.021 D_fake: 0.838 +(epoch: 319, iters: 6862, time: 0.064) G_GAN: 0.627 G_GAN_Feat: 0.936 G_ID: 0.130 G_Rec: 0.403 D_GP: 0.039 D_real: 1.063 D_fake: 0.381 +(epoch: 319, iters: 7262, time: 0.063) G_GAN: 0.014 G_GAN_Feat: 0.815 G_ID: 0.103 G_Rec: 0.350 D_GP: 0.068 D_real: 0.587 D_fake: 0.987 +(epoch: 319, iters: 7662, time: 0.063) G_GAN: 0.418 G_GAN_Feat: 0.989 G_ID: 0.138 G_Rec: 0.419 D_GP: 0.062 D_real: 0.914 D_fake: 0.585 +(epoch: 319, iters: 8062, time: 0.063) G_GAN: 0.225 G_GAN_Feat: 0.781 G_ID: 0.103 G_Rec: 0.304 D_GP: 0.043 D_real: 0.857 D_fake: 0.776 +(epoch: 319, iters: 8462, time: 0.064) G_GAN: 0.383 G_GAN_Feat: 1.014 G_ID: 0.141 G_Rec: 0.466 D_GP: 0.062 D_real: 0.823 D_fake: 0.622 +(epoch: 320, iters: 254, time: 0.063) G_GAN: 0.443 G_GAN_Feat: 0.874 G_ID: 0.102 G_Rec: 0.319 D_GP: 0.176 D_real: 0.753 D_fake: 0.593 +(epoch: 320, iters: 654, time: 0.063) G_GAN: 0.678 G_GAN_Feat: 0.975 G_ID: 0.129 G_Rec: 0.460 D_GP: 0.034 D_real: 1.260 D_fake: 0.335 +(epoch: 320, iters: 1054, time: 0.063) G_GAN: -0.069 G_GAN_Feat: 0.931 G_ID: 0.130 G_Rec: 0.331 D_GP: 0.040 D_real: 0.648 D_fake: 1.069 +(epoch: 320, iters: 1454, time: 0.064) G_GAN: 0.265 G_GAN_Feat: 1.001 G_ID: 0.111 G_Rec: 0.455 D_GP: 0.035 D_real: 0.944 D_fake: 0.736 +(epoch: 320, iters: 1854, time: 0.063) G_GAN: 0.997 G_GAN_Feat: 0.909 G_ID: 0.113 G_Rec: 0.360 D_GP: 0.174 D_real: 1.446 D_fake: 0.361 +(epoch: 320, iters: 2254, time: 0.063) G_GAN: 0.581 G_GAN_Feat: 1.215 G_ID: 0.147 G_Rec: 0.484 D_GP: 0.247 D_real: 0.512 D_fake: 0.443 +(epoch: 320, iters: 2654, time: 0.063) G_GAN: 0.380 G_GAN_Feat: 0.813 G_ID: 0.108 G_Rec: 0.324 D_GP: 0.045 D_real: 0.884 D_fake: 0.623 +(epoch: 320, iters: 3054, time: 0.064) G_GAN: 0.453 G_GAN_Feat: 0.918 G_ID: 0.175 G_Rec: 0.438 D_GP: 0.031 D_real: 1.162 D_fake: 0.555 +(epoch: 320, iters: 3454, time: 0.063) G_GAN: 0.216 G_GAN_Feat: 0.740 G_ID: 0.140 G_Rec: 0.343 D_GP: 0.031 D_real: 1.041 D_fake: 0.785 +(epoch: 320, iters: 3854, time: 0.063) G_GAN: 0.404 G_GAN_Feat: 0.960 G_ID: 0.152 G_Rec: 0.415 D_GP: 0.045 D_real: 0.854 D_fake: 0.601 +(epoch: 320, iters: 4254, time: 0.063) G_GAN: 0.185 G_GAN_Feat: 0.700 G_ID: 0.106 G_Rec: 0.305 D_GP: 0.028 D_real: 1.057 D_fake: 0.815 +(epoch: 320, iters: 4654, time: 0.064) G_GAN: 0.511 G_GAN_Feat: 0.986 G_ID: 0.124 G_Rec: 0.426 D_GP: 0.032 D_real: 1.062 D_fake: 0.491 +(epoch: 320, iters: 5054, time: 0.063) G_GAN: 0.322 G_GAN_Feat: 0.987 G_ID: 0.087 G_Rec: 0.325 D_GP: 1.654 D_real: 0.347 D_fake: 0.692 +(epoch: 320, iters: 5454, time: 0.063) G_GAN: 0.445 G_GAN_Feat: 0.975 G_ID: 0.111 G_Rec: 0.417 D_GP: 0.034 D_real: 0.997 D_fake: 0.557 +(epoch: 320, iters: 5854, time: 0.063) G_GAN: 0.008 G_GAN_Feat: 1.035 G_ID: 0.107 G_Rec: 0.354 D_GP: 0.436 D_real: 0.323 D_fake: 0.992 +(epoch: 320, iters: 6254, time: 0.064) G_GAN: 0.661 G_GAN_Feat: 1.234 G_ID: 0.142 G_Rec: 0.504 D_GP: 0.178 D_real: 0.386 D_fake: 0.415 +(epoch: 320, iters: 6654, time: 0.063) G_GAN: 0.478 G_GAN_Feat: 0.854 G_ID: 0.121 G_Rec: 0.340 D_GP: 0.038 D_real: 1.063 D_fake: 0.552 +(epoch: 320, iters: 7054, time: 0.063) G_GAN: 0.490 G_GAN_Feat: 0.951 G_ID: 0.134 G_Rec: 0.484 D_GP: 0.027 D_real: 1.212 D_fake: 0.523 +(epoch: 320, iters: 7454, time: 0.063) G_GAN: 0.059 G_GAN_Feat: 0.732 G_ID: 0.101 G_Rec: 0.313 D_GP: 0.031 D_real: 0.853 D_fake: 0.941 +(epoch: 320, iters: 7854, time: 0.064) G_GAN: 0.608 G_GAN_Feat: 1.072 G_ID: 0.117 G_Rec: 0.454 D_GP: 0.143 D_real: 0.673 D_fake: 0.414 +(epoch: 320, iters: 8254, time: 0.063) G_GAN: 0.337 G_GAN_Feat: 0.790 G_ID: 0.112 G_Rec: 0.335 D_GP: 0.050 D_real: 1.066 D_fake: 0.694 +(epoch: 320, iters: 8654, time: 0.063) G_GAN: 0.557 G_GAN_Feat: 1.223 G_ID: 0.135 G_Rec: 0.496 D_GP: 0.137 D_real: 0.499 D_fake: 0.469 +(epoch: 321, iters: 446, time: 0.063) G_GAN: 0.476 G_GAN_Feat: 0.743 G_ID: 0.106 G_Rec: 0.315 D_GP: 0.027 D_real: 1.314 D_fake: 0.530 +(epoch: 321, iters: 846, time: 0.064) G_GAN: -0.190 G_GAN_Feat: 1.140 G_ID: 0.146 G_Rec: 0.483 D_GP: 0.029 D_real: 0.513 D_fake: 1.191 +(epoch: 321, iters: 1246, time: 0.063) G_GAN: -0.088 G_GAN_Feat: 0.686 G_ID: 0.106 G_Rec: 0.342 D_GP: 0.024 D_real: 0.830 D_fake: 1.088 +(epoch: 321, iters: 1646, time: 0.063) G_GAN: -0.018 G_GAN_Feat: 0.813 G_ID: 0.123 G_Rec: 0.393 D_GP: 0.030 D_real: 0.764 D_fake: 1.018 +(epoch: 321, iters: 2046, time: 0.063) G_GAN: 0.077 G_GAN_Feat: 0.631 G_ID: 0.106 G_Rec: 0.291 D_GP: 0.034 D_real: 0.953 D_fake: 0.925 +(epoch: 321, iters: 2446, time: 0.064) G_GAN: 0.128 G_GAN_Feat: 0.803 G_ID: 0.133 G_Rec: 0.389 D_GP: 0.032 D_real: 0.807 D_fake: 0.873 +(epoch: 321, iters: 2846, time: 0.063) G_GAN: -0.111 G_GAN_Feat: 0.738 G_ID: 0.114 G_Rec: 0.366 D_GP: 0.059 D_real: 0.682 D_fake: 1.112 +(epoch: 321, iters: 3246, time: 0.063) G_GAN: 0.573 G_GAN_Feat: 0.888 G_ID: 0.115 G_Rec: 0.441 D_GP: 0.039 D_real: 1.091 D_fake: 0.503 +(epoch: 321, iters: 3646, time: 0.063) G_GAN: 0.023 G_GAN_Feat: 0.653 G_ID: 0.112 G_Rec: 0.304 D_GP: 0.040 D_real: 0.856 D_fake: 0.977 +(epoch: 321, iters: 4046, time: 0.064) G_GAN: 0.452 G_GAN_Feat: 0.944 G_ID: 0.135 G_Rec: 0.450 D_GP: 0.057 D_real: 0.986 D_fake: 0.575 +(epoch: 321, iters: 4446, time: 0.063) G_GAN: -0.041 G_GAN_Feat: 0.759 G_ID: 0.116 G_Rec: 0.321 D_GP: 0.051 D_real: 0.626 D_fake: 1.045 +(epoch: 321, iters: 4846, time: 0.063) G_GAN: 0.276 G_GAN_Feat: 0.901 G_ID: 0.121 G_Rec: 0.416 D_GP: 0.049 D_real: 0.908 D_fake: 0.725 +(epoch: 321, iters: 5246, time: 0.063) G_GAN: 0.098 G_GAN_Feat: 0.669 G_ID: 0.094 G_Rec: 0.319 D_GP: 0.037 D_real: 0.971 D_fake: 0.903 +(epoch: 321, iters: 5646, time: 0.064) G_GAN: 0.572 G_GAN_Feat: 0.960 G_ID: 0.122 G_Rec: 0.444 D_GP: 0.053 D_real: 1.109 D_fake: 0.480 +(epoch: 321, iters: 6046, time: 0.063) G_GAN: 0.234 G_GAN_Feat: 0.670 G_ID: 0.112 G_Rec: 0.296 D_GP: 0.041 D_real: 1.148 D_fake: 0.768 +(epoch: 321, iters: 6446, time: 0.063) G_GAN: 0.365 G_GAN_Feat: 0.892 G_ID: 0.131 G_Rec: 0.385 D_GP: 0.047 D_real: 0.975 D_fake: 0.639 +(epoch: 321, iters: 6846, time: 0.063) G_GAN: 0.217 G_GAN_Feat: 0.688 G_ID: 0.109 G_Rec: 0.312 D_GP: 0.035 D_real: 1.165 D_fake: 0.783 +(epoch: 321, iters: 7246, time: 0.064) G_GAN: 0.288 G_GAN_Feat: 0.920 G_ID: 0.154 G_Rec: 0.449 D_GP: 0.037 D_real: 0.798 D_fake: 0.714 +(epoch: 321, iters: 7646, time: 0.063) G_GAN: 0.144 G_GAN_Feat: 0.766 G_ID: 0.112 G_Rec: 0.304 D_GP: 0.051 D_real: 0.930 D_fake: 0.856 +(epoch: 321, iters: 8046, time: 0.063) G_GAN: 0.322 G_GAN_Feat: 1.001 G_ID: 0.129 G_Rec: 0.429 D_GP: 0.055 D_real: 0.854 D_fake: 0.680 +(epoch: 321, iters: 8446, time: 0.063) G_GAN: 0.262 G_GAN_Feat: 0.855 G_ID: 0.106 G_Rec: 0.314 D_GP: 0.082 D_real: 0.673 D_fake: 0.739 +(epoch: 322, iters: 238, time: 0.064) G_GAN: 0.394 G_GAN_Feat: 1.217 G_ID: 0.152 G_Rec: 0.482 D_GP: 0.238 D_real: 0.429 D_fake: 0.616 +(epoch: 322, iters: 638, time: 0.063) G_GAN: 0.190 G_GAN_Feat: 0.740 G_ID: 0.112 G_Rec: 0.315 D_GP: 0.030 D_real: 1.056 D_fake: 0.810 +(epoch: 322, iters: 1038, time: 0.063) G_GAN: 0.236 G_GAN_Feat: 0.947 G_ID: 0.128 G_Rec: 0.443 D_GP: 0.037 D_real: 0.878 D_fake: 0.765 +(epoch: 322, iters: 1438, time: 0.063) G_GAN: 0.050 G_GAN_Feat: 0.723 G_ID: 0.105 G_Rec: 0.309 D_GP: 0.048 D_real: 0.793 D_fake: 0.950 +(epoch: 322, iters: 1838, time: 0.064) G_GAN: 0.153 G_GAN_Feat: 1.027 G_ID: 0.137 G_Rec: 0.406 D_GP: 0.059 D_real: 0.408 D_fake: 0.847 +(epoch: 322, iters: 2238, time: 0.063) G_GAN: 0.455 G_GAN_Feat: 0.783 G_ID: 0.092 G_Rec: 0.315 D_GP: 0.039 D_real: 1.130 D_fake: 0.559 +(epoch: 322, iters: 2638, time: 0.063) G_GAN: 0.643 G_GAN_Feat: 0.969 G_ID: 0.131 G_Rec: 0.452 D_GP: 0.031 D_real: 1.250 D_fake: 0.377 +(epoch: 322, iters: 3038, time: 0.063) G_GAN: 0.232 G_GAN_Feat: 0.889 G_ID: 0.114 G_Rec: 0.354 D_GP: 0.041 D_real: 0.827 D_fake: 0.769 +(epoch: 322, iters: 3438, time: 0.064) G_GAN: 0.029 G_GAN_Feat: 1.008 G_ID: 0.151 G_Rec: 0.465 D_GP: 0.057 D_real: 0.581 D_fake: 0.973 +(epoch: 322, iters: 3838, time: 0.063) G_GAN: 0.091 G_GAN_Feat: 0.699 G_ID: 0.111 G_Rec: 0.286 D_GP: 0.030 D_real: 0.979 D_fake: 0.909 +(epoch: 322, iters: 4238, time: 0.063) G_GAN: 0.682 G_GAN_Feat: 0.900 G_ID: 0.115 G_Rec: 0.471 D_GP: 0.029 D_real: 1.326 D_fake: 0.371 +(epoch: 322, iters: 4638, time: 0.063) G_GAN: 0.193 G_GAN_Feat: 0.725 G_ID: 0.103 G_Rec: 0.305 D_GP: 0.033 D_real: 1.142 D_fake: 0.808 +(epoch: 322, iters: 5038, time: 0.064) G_GAN: 0.606 G_GAN_Feat: 0.961 G_ID: 0.140 G_Rec: 0.462 D_GP: 0.033 D_real: 1.108 D_fake: 0.441 +(epoch: 322, iters: 5438, time: 0.063) G_GAN: 0.423 G_GAN_Feat: 0.702 G_ID: 0.096 G_Rec: 0.295 D_GP: 0.029 D_real: 1.355 D_fake: 0.581 +(epoch: 322, iters: 5838, time: 0.063) G_GAN: 0.427 G_GAN_Feat: 0.937 G_ID: 0.128 G_Rec: 0.393 D_GP: 0.039 D_real: 0.889 D_fake: 0.574 +(epoch: 322, iters: 6238, time: 0.063) G_GAN: -0.181 G_GAN_Feat: 0.811 G_ID: 0.115 G_Rec: 0.365 D_GP: 0.128 D_real: 0.477 D_fake: 1.181 +(epoch: 322, iters: 6638, time: 0.064) G_GAN: 0.106 G_GAN_Feat: 0.995 G_ID: 0.160 G_Rec: 0.453 D_GP: 0.060 D_real: 0.668 D_fake: 0.895 +(epoch: 322, iters: 7038, time: 0.063) G_GAN: 0.422 G_GAN_Feat: 0.812 G_ID: 0.105 G_Rec: 0.342 D_GP: 0.043 D_real: 1.037 D_fake: 0.579 +(epoch: 322, iters: 7438, time: 0.063) G_GAN: 0.825 G_GAN_Feat: 0.981 G_ID: 0.130 G_Rec: 0.441 D_GP: 0.028 D_real: 1.389 D_fake: 0.236 +(epoch: 322, iters: 7838, time: 0.063) G_GAN: 0.274 G_GAN_Feat: 0.795 G_ID: 0.098 G_Rec: 0.305 D_GP: 0.045 D_real: 1.194 D_fake: 0.727 +(epoch: 322, iters: 8238, time: 0.064) G_GAN: 0.320 G_GAN_Feat: 1.082 G_ID: 0.144 G_Rec: 0.439 D_GP: 0.062 D_real: 0.510 D_fake: 0.682 +(epoch: 322, iters: 8638, time: 0.063) G_GAN: 0.242 G_GAN_Feat: 0.947 G_ID: 0.116 G_Rec: 0.318 D_GP: 0.112 D_real: 0.362 D_fake: 0.758 +(epoch: 323, iters: 430, time: 0.063) G_GAN: 0.023 G_GAN_Feat: 1.024 G_ID: 0.152 G_Rec: 0.431 D_GP: 0.036 D_real: 0.841 D_fake: 0.980 +(epoch: 323, iters: 830, time: 0.063) G_GAN: 0.309 G_GAN_Feat: 0.715 G_ID: 0.103 G_Rec: 0.321 D_GP: 0.032 D_real: 1.107 D_fake: 0.697 +(epoch: 323, iters: 1230, time: 0.064) G_GAN: 0.447 G_GAN_Feat: 0.916 G_ID: 0.118 G_Rec: 0.440 D_GP: 0.029 D_real: 1.076 D_fake: 0.554 +(epoch: 323, iters: 1630, time: 0.063) G_GAN: 0.420 G_GAN_Feat: 0.898 G_ID: 0.112 G_Rec: 0.316 D_GP: 0.034 D_real: 0.737 D_fake: 0.591 +(epoch: 323, iters: 2030, time: 0.063) G_GAN: 0.144 G_GAN_Feat: 1.214 G_ID: 0.142 G_Rec: 0.484 D_GP: 0.337 D_real: 0.288 D_fake: 0.856 +(epoch: 323, iters: 2430, time: 0.063) G_GAN: 0.273 G_GAN_Feat: 0.684 G_ID: 0.113 G_Rec: 0.324 D_GP: 0.025 D_real: 1.173 D_fake: 0.727 +(epoch: 323, iters: 2830, time: 0.064) G_GAN: 0.554 G_GAN_Feat: 0.946 G_ID: 0.123 G_Rec: 0.475 D_GP: 0.032 D_real: 1.147 D_fake: 0.463 +(epoch: 323, iters: 3230, time: 0.063) G_GAN: 0.159 G_GAN_Feat: 0.670 G_ID: 0.095 G_Rec: 0.302 D_GP: 0.030 D_real: 0.986 D_fake: 0.841 +(epoch: 323, iters: 3630, time: 0.063) G_GAN: 0.416 G_GAN_Feat: 1.023 G_ID: 0.121 G_Rec: 0.491 D_GP: 0.079 D_real: 0.794 D_fake: 0.594 +(epoch: 323, iters: 4030, time: 0.063) G_GAN: 0.133 G_GAN_Feat: 0.771 G_ID: 0.108 G_Rec: 0.314 D_GP: 0.060 D_real: 0.713 D_fake: 0.867 +(epoch: 323, iters: 4430, time: 0.064) G_GAN: 0.812 G_GAN_Feat: 0.952 G_ID: 0.131 G_Rec: 0.413 D_GP: 0.050 D_real: 1.408 D_fake: 0.267 +(epoch: 323, iters: 4830, time: 0.063) G_GAN: 0.289 G_GAN_Feat: 0.717 G_ID: 0.094 G_Rec: 0.273 D_GP: 0.034 D_real: 1.131 D_fake: 0.711 +(epoch: 323, iters: 5230, time: 0.063) G_GAN: 0.396 G_GAN_Feat: 1.105 G_ID: 0.120 G_Rec: 0.432 D_GP: 0.057 D_real: 0.553 D_fake: 0.606 +(epoch: 323, iters: 5630, time: 0.063) G_GAN: -0.037 G_GAN_Feat: 0.738 G_ID: 0.115 G_Rec: 0.343 D_GP: 0.026 D_real: 0.888 D_fake: 1.039 +(epoch: 323, iters: 6030, time: 0.064) G_GAN: 0.601 G_GAN_Feat: 0.833 G_ID: 0.121 G_Rec: 0.384 D_GP: 0.031 D_real: 1.268 D_fake: 0.415 +(epoch: 323, iters: 6430, time: 0.063) G_GAN: 0.084 G_GAN_Feat: 0.708 G_ID: 0.110 G_Rec: 0.318 D_GP: 0.034 D_real: 0.986 D_fake: 0.916 +(epoch: 323, iters: 6830, time: 0.063) G_GAN: 0.412 G_GAN_Feat: 0.950 G_ID: 0.138 G_Rec: 0.417 D_GP: 0.054 D_real: 0.910 D_fake: 0.595 +(epoch: 323, iters: 7230, time: 0.063) G_GAN: 0.086 G_GAN_Feat: 0.686 G_ID: 0.104 G_Rec: 0.295 D_GP: 0.050 D_real: 0.891 D_fake: 0.914 +(epoch: 323, iters: 7630, time: 0.064) G_GAN: 0.532 G_GAN_Feat: 0.988 G_ID: 0.146 G_Rec: 0.419 D_GP: 0.057 D_real: 0.904 D_fake: 0.477 +(epoch: 323, iters: 8030, time: 0.063) G_GAN: 0.359 G_GAN_Feat: 0.760 G_ID: 0.099 G_Rec: 0.311 D_GP: 0.032 D_real: 1.181 D_fake: 0.642 +(epoch: 323, iters: 8430, time: 0.063) G_GAN: 0.333 G_GAN_Feat: 0.950 G_ID: 0.130 G_Rec: 0.421 D_GP: 0.039 D_real: 0.905 D_fake: 0.668 +(epoch: 324, iters: 222, time: 0.063) G_GAN: 0.507 G_GAN_Feat: 0.759 G_ID: 0.104 G_Rec: 0.308 D_GP: 0.032 D_real: 1.287 D_fake: 0.496 +(epoch: 324, iters: 622, time: 0.064) G_GAN: 0.512 G_GAN_Feat: 0.912 G_ID: 0.153 G_Rec: 0.417 D_GP: 0.029 D_real: 1.219 D_fake: 0.494 +(epoch: 324, iters: 1022, time: 0.063) G_GAN: -0.085 G_GAN_Feat: 0.767 G_ID: 0.106 G_Rec: 0.330 D_GP: 0.061 D_real: 0.564 D_fake: 1.085 +(epoch: 324, iters: 1422, time: 0.063) G_GAN: 0.293 G_GAN_Feat: 1.016 G_ID: 0.129 G_Rec: 0.450 D_GP: 0.056 D_real: 1.147 D_fake: 0.713 +(epoch: 324, iters: 1822, time: 0.063) G_GAN: 0.129 G_GAN_Feat: 0.705 G_ID: 0.128 G_Rec: 0.299 D_GP: 0.035 D_real: 0.938 D_fake: 0.871 +(epoch: 324, iters: 2222, time: 0.063) G_GAN: 0.484 G_GAN_Feat: 0.904 G_ID: 0.138 G_Rec: 0.419 D_GP: 0.034 D_real: 1.059 D_fake: 0.519 +(epoch: 324, iters: 2622, time: 0.063) G_GAN: 0.438 G_GAN_Feat: 0.840 G_ID: 0.119 G_Rec: 0.332 D_GP: 0.077 D_real: 0.938 D_fake: 0.566 +(epoch: 324, iters: 3022, time: 0.063) G_GAN: 0.367 G_GAN_Feat: 1.145 G_ID: 0.123 G_Rec: 0.464 D_GP: 0.910 D_real: 0.545 D_fake: 0.687 +(epoch: 324, iters: 3422, time: 0.064) G_GAN: 0.087 G_GAN_Feat: 0.736 G_ID: 0.082 G_Rec: 0.315 D_GP: 0.023 D_real: 1.002 D_fake: 0.913 +(epoch: 324, iters: 3822, time: 0.063) G_GAN: 0.280 G_GAN_Feat: 0.874 G_ID: 0.121 G_Rec: 0.399 D_GP: 0.029 D_real: 0.971 D_fake: 0.721 +(epoch: 324, iters: 4222, time: 0.063) G_GAN: -0.046 G_GAN_Feat: 0.760 G_ID: 0.109 G_Rec: 0.317 D_GP: 0.062 D_real: 0.731 D_fake: 1.046 +(epoch: 324, iters: 4622, time: 0.063) G_GAN: 0.562 G_GAN_Feat: 0.928 G_ID: 0.117 G_Rec: 0.384 D_GP: 0.040 D_real: 1.144 D_fake: 0.459 +(epoch: 324, iters: 5022, time: 0.064) G_GAN: 0.140 G_GAN_Feat: 0.762 G_ID: 0.128 G_Rec: 0.310 D_GP: 0.117 D_real: 0.812 D_fake: 0.861 +(epoch: 324, iters: 5422, time: 0.063) G_GAN: 0.559 G_GAN_Feat: 0.894 G_ID: 0.112 G_Rec: 0.392 D_GP: 0.035 D_real: 1.188 D_fake: 0.444 +(epoch: 324, iters: 5822, time: 0.063) G_GAN: 0.090 G_GAN_Feat: 0.760 G_ID: 0.119 G_Rec: 0.334 D_GP: 0.028 D_real: 0.989 D_fake: 0.910 +(epoch: 324, iters: 6222, time: 0.063) G_GAN: 0.475 G_GAN_Feat: 0.913 G_ID: 0.130 G_Rec: 0.448 D_GP: 0.028 D_real: 1.114 D_fake: 0.539 +(epoch: 324, iters: 6622, time: 0.064) G_GAN: 0.138 G_GAN_Feat: 0.671 G_ID: 0.105 G_Rec: 0.288 D_GP: 0.031 D_real: 1.041 D_fake: 0.862 +(epoch: 324, iters: 7022, time: 0.063) G_GAN: 0.542 G_GAN_Feat: 0.921 G_ID: 0.138 G_Rec: 0.403 D_GP: 0.047 D_real: 1.120 D_fake: 0.463 +(epoch: 324, iters: 7422, time: 0.063) G_GAN: 0.528 G_GAN_Feat: 0.802 G_ID: 0.100 G_Rec: 0.334 D_GP: 0.055 D_real: 1.200 D_fake: 0.494 +(epoch: 324, iters: 7822, time: 0.063) G_GAN: 0.855 G_GAN_Feat: 1.003 G_ID: 0.145 G_Rec: 0.424 D_GP: 0.121 D_real: 1.269 D_fake: 0.303 +(epoch: 324, iters: 8222, time: 0.064) G_GAN: 0.380 G_GAN_Feat: 0.750 G_ID: 0.117 G_Rec: 0.311 D_GP: 0.031 D_real: 1.209 D_fake: 0.627 +(epoch: 324, iters: 8622, time: 0.063) G_GAN: 0.396 G_GAN_Feat: 0.998 G_ID: 0.139 G_Rec: 0.440 D_GP: 0.030 D_real: 0.977 D_fake: 0.608 +(epoch: 325, iters: 414, time: 0.063) G_GAN: -0.025 G_GAN_Feat: 0.742 G_ID: 0.092 G_Rec: 0.297 D_GP: 0.033 D_real: 0.780 D_fake: 1.025 +(epoch: 325, iters: 814, time: 0.063) G_GAN: 0.696 G_GAN_Feat: 0.949 G_ID: 0.122 G_Rec: 0.435 D_GP: 0.041 D_real: 1.202 D_fake: 0.323 +(epoch: 325, iters: 1214, time: 0.064) G_GAN: 0.517 G_GAN_Feat: 0.756 G_ID: 0.100 G_Rec: 0.289 D_GP: 0.032 D_real: 1.253 D_fake: 0.486 +(epoch: 325, iters: 1614, time: 0.063) G_GAN: 0.449 G_GAN_Feat: 1.050 G_ID: 0.128 G_Rec: 0.444 D_GP: 0.043 D_real: 0.862 D_fake: 0.555 +(epoch: 325, iters: 2014, time: 0.063) G_GAN: 0.178 G_GAN_Feat: 1.134 G_ID: 0.113 G_Rec: 0.350 D_GP: 0.029 D_real: 1.547 D_fake: 0.835 +(epoch: 325, iters: 2414, time: 0.063) G_GAN: 0.224 G_GAN_Feat: 0.788 G_ID: 0.141 G_Rec: 0.376 D_GP: 0.025 D_real: 1.054 D_fake: 0.779 +(epoch: 325, iters: 2814, time: 0.064) G_GAN: -0.105 G_GAN_Feat: 0.661 G_ID: 0.106 G_Rec: 0.283 D_GP: 0.023 D_real: 0.806 D_fake: 1.106 +(epoch: 325, iters: 3214, time: 0.063) G_GAN: 0.405 G_GAN_Feat: 0.924 G_ID: 0.130 G_Rec: 0.444 D_GP: 0.036 D_real: 1.056 D_fake: 0.624 +(epoch: 325, iters: 3614, time: 0.063) G_GAN: -0.100 G_GAN_Feat: 0.715 G_ID: 0.129 G_Rec: 0.337 D_GP: 0.030 D_real: 0.651 D_fake: 1.100 +(epoch: 325, iters: 4014, time: 0.063) G_GAN: 0.413 G_GAN_Feat: 0.923 G_ID: 0.123 G_Rec: 0.416 D_GP: 0.032 D_real: 1.038 D_fake: 0.589 +(epoch: 325, iters: 4414, time: 0.064) G_GAN: 0.096 G_GAN_Feat: 0.697 G_ID: 0.115 G_Rec: 0.298 D_GP: 0.035 D_real: 0.861 D_fake: 0.904 +(epoch: 325, iters: 4814, time: 0.063) G_GAN: 0.328 G_GAN_Feat: 0.896 G_ID: 0.143 G_Rec: 0.388 D_GP: 0.050 D_real: 0.910 D_fake: 0.673 +(epoch: 325, iters: 5214, time: 0.063) G_GAN: 0.227 G_GAN_Feat: 0.854 G_ID: 0.104 G_Rec: 0.337 D_GP: 0.063 D_real: 0.694 D_fake: 0.773 +(epoch: 325, iters: 5614, time: 0.063) G_GAN: 0.540 G_GAN_Feat: 0.969 G_ID: 0.130 G_Rec: 0.413 D_GP: 0.060 D_real: 0.936 D_fake: 0.466 +(epoch: 325, iters: 6014, time: 0.064) G_GAN: 0.191 G_GAN_Feat: 0.684 G_ID: 0.110 G_Rec: 0.296 D_GP: 0.028 D_real: 1.085 D_fake: 0.809 +(epoch: 325, iters: 6414, time: 0.063) G_GAN: 0.452 G_GAN_Feat: 1.129 G_ID: 0.172 G_Rec: 0.501 D_GP: 0.130 D_real: 0.462 D_fake: 0.569 +(epoch: 325, iters: 6814, time: 0.063) G_GAN: 0.252 G_GAN_Feat: 0.823 G_ID: 0.098 G_Rec: 0.307 D_GP: 0.048 D_real: 0.784 D_fake: 0.749 +(epoch: 325, iters: 7214, time: 0.063) G_GAN: 0.278 G_GAN_Feat: 0.965 G_ID: 0.136 G_Rec: 0.431 D_GP: 0.035 D_real: 0.846 D_fake: 0.724 +(epoch: 325, iters: 7614, time: 0.064) G_GAN: 0.255 G_GAN_Feat: 0.807 G_ID: 0.130 G_Rec: 0.326 D_GP: 0.034 D_real: 0.883 D_fake: 0.745 +(epoch: 325, iters: 8014, time: 0.063) G_GAN: 0.987 G_GAN_Feat: 1.171 G_ID: 0.135 G_Rec: 0.466 D_GP: 0.117 D_real: 0.844 D_fake: 0.141 +(epoch: 325, iters: 8414, time: 0.063) G_GAN: 0.191 G_GAN_Feat: 0.797 G_ID: 0.114 G_Rec: 0.303 D_GP: 0.037 D_real: 1.001 D_fake: 0.818 +(epoch: 326, iters: 206, time: 0.063) G_GAN: 0.378 G_GAN_Feat: 1.044 G_ID: 0.140 G_Rec: 0.476 D_GP: 0.038 D_real: 0.851 D_fake: 0.623 +(epoch: 326, iters: 606, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 0.673 G_ID: 0.094 G_Rec: 0.273 D_GP: 0.031 D_real: 1.107 D_fake: 0.784 +(epoch: 326, iters: 1006, time: 0.063) G_GAN: 0.723 G_GAN_Feat: 0.964 G_ID: 0.126 G_Rec: 0.429 D_GP: 0.047 D_real: 1.243 D_fake: 0.312 +(epoch: 326, iters: 1406, time: 0.063) G_GAN: 0.349 G_GAN_Feat: 0.796 G_ID: 0.097 G_Rec: 0.300 D_GP: 0.046 D_real: 1.023 D_fake: 0.652 +(epoch: 326, iters: 1806, time: 0.063) G_GAN: 0.673 G_GAN_Feat: 1.133 G_ID: 0.132 G_Rec: 0.436 D_GP: 0.106 D_real: 0.628 D_fake: 0.344 +(epoch: 326, iters: 2206, time: 0.064) G_GAN: 0.176 G_GAN_Feat: 1.108 G_ID: 0.108 G_Rec: 0.367 D_GP: 0.129 D_real: 1.109 D_fake: 0.858 +(epoch: 326, iters: 2606, time: 0.063) G_GAN: 0.499 G_GAN_Feat: 1.036 G_ID: 0.127 G_Rec: 0.450 D_GP: 0.039 D_real: 0.952 D_fake: 0.522 +(epoch: 326, iters: 3006, time: 0.063) G_GAN: 0.157 G_GAN_Feat: 0.775 G_ID: 0.116 G_Rec: 0.310 D_GP: 0.045 D_real: 0.948 D_fake: 0.844 +(epoch: 326, iters: 3406, time: 0.063) G_GAN: 0.756 G_GAN_Feat: 1.238 G_ID: 0.129 G_Rec: 0.464 D_GP: 0.052 D_real: 0.470 D_fake: 0.291 +(epoch: 326, iters: 3806, time: 0.064) G_GAN: 0.068 G_GAN_Feat: 0.796 G_ID: 0.122 G_Rec: 0.346 D_GP: 0.039 D_real: 0.771 D_fake: 0.932 +(epoch: 326, iters: 4206, time: 0.063) G_GAN: 0.642 G_GAN_Feat: 1.234 G_ID: 0.139 G_Rec: 0.483 D_GP: 0.076 D_real: 0.460 D_fake: 0.379 +(epoch: 326, iters: 4606, time: 0.063) G_GAN: -0.075 G_GAN_Feat: 0.911 G_ID: 0.114 G_Rec: 0.346 D_GP: 0.071 D_real: 0.270 D_fake: 1.077 +(epoch: 326, iters: 5006, time: 0.063) G_GAN: 0.778 G_GAN_Feat: 1.176 G_ID: 0.114 G_Rec: 0.455 D_GP: 0.044 D_real: 0.778 D_fake: 0.274 +(epoch: 326, iters: 5406, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 0.736 G_ID: 0.127 G_Rec: 0.303 D_GP: 0.045 D_real: 1.082 D_fake: 0.795 +(epoch: 326, iters: 5806, time: 0.063) G_GAN: 0.502 G_GAN_Feat: 1.104 G_ID: 0.119 G_Rec: 0.455 D_GP: 0.038 D_real: 0.982 D_fake: 0.503 +(epoch: 326, iters: 6206, time: 0.064) G_GAN: 0.505 G_GAN_Feat: 0.827 G_ID: 0.111 G_Rec: 0.349 D_GP: 0.038 D_real: 1.262 D_fake: 0.604 +(epoch: 326, iters: 6606, time: 0.063) G_GAN: 0.201 G_GAN_Feat: 0.938 G_ID: 0.133 G_Rec: 0.385 D_GP: 0.036 D_real: 0.853 D_fake: 0.799 +(epoch: 326, iters: 7006, time: 0.064) G_GAN: 0.244 G_GAN_Feat: 0.828 G_ID: 0.083 G_Rec: 0.314 D_GP: 0.046 D_real: 0.894 D_fake: 0.756 +(epoch: 326, iters: 7406, time: 0.063) G_GAN: 0.424 G_GAN_Feat: 1.009 G_ID: 0.142 G_Rec: 0.453 D_GP: 0.032 D_real: 0.929 D_fake: 0.578 +(epoch: 326, iters: 7806, time: 0.063) G_GAN: 0.236 G_GAN_Feat: 0.729 G_ID: 0.107 G_Rec: 0.335 D_GP: 0.026 D_real: 1.219 D_fake: 0.764 +(epoch: 326, iters: 8206, time: 0.063) G_GAN: 0.654 G_GAN_Feat: 0.914 G_ID: 0.132 G_Rec: 0.446 D_GP: 0.030 D_real: 1.304 D_fake: 0.376 +(epoch: 326, iters: 8606, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.721 G_ID: 0.089 G_Rec: 0.309 D_GP: 0.041 D_real: 1.120 D_fake: 0.717 +(epoch: 327, iters: 398, time: 0.063) G_GAN: 0.639 G_GAN_Feat: 0.908 G_ID: 0.115 G_Rec: 0.421 D_GP: 0.046 D_real: 1.194 D_fake: 0.403 +(epoch: 327, iters: 798, time: 0.063) G_GAN: 0.059 G_GAN_Feat: 0.650 G_ID: 0.107 G_Rec: 0.299 D_GP: 0.038 D_real: 0.928 D_fake: 0.941 +(epoch: 327, iters: 1198, time: 0.063) G_GAN: 0.042 G_GAN_Feat: 0.985 G_ID: 0.155 G_Rec: 0.463 D_GP: 0.071 D_real: 0.489 D_fake: 0.958 +(epoch: 327, iters: 1598, time: 0.064) G_GAN: 0.204 G_GAN_Feat: 0.726 G_ID: 0.127 G_Rec: 0.328 D_GP: 0.038 D_real: 0.961 D_fake: 0.796 +(epoch: 327, iters: 1998, time: 0.063) G_GAN: 0.863 G_GAN_Feat: 0.893 G_ID: 0.115 G_Rec: 0.422 D_GP: 0.027 D_real: 1.579 D_fake: 0.191 +(epoch: 327, iters: 2398, time: 0.063) G_GAN: 0.163 G_GAN_Feat: 0.693 G_ID: 0.102 G_Rec: 0.300 D_GP: 0.040 D_real: 1.025 D_fake: 0.837 +(epoch: 327, iters: 2798, time: 0.063) G_GAN: 0.493 G_GAN_Feat: 1.035 G_ID: 0.127 G_Rec: 0.469 D_GP: 0.060 D_real: 0.759 D_fake: 0.520 +(epoch: 327, iters: 3198, time: 0.064) G_GAN: 0.090 G_GAN_Feat: 0.983 G_ID: 0.115 G_Rec: 0.355 D_GP: 0.368 D_real: 0.338 D_fake: 0.911 +(epoch: 327, iters: 3598, time: 0.063) G_GAN: 0.377 G_GAN_Feat: 0.980 G_ID: 0.116 G_Rec: 0.421 D_GP: 0.045 D_real: 0.873 D_fake: 0.626 +(epoch: 327, iters: 3998, time: 0.063) G_GAN: 0.214 G_GAN_Feat: 0.684 G_ID: 0.099 G_Rec: 0.283 D_GP: 0.033 D_real: 1.106 D_fake: 0.786 +(epoch: 327, iters: 4398, time: 0.063) G_GAN: 0.627 G_GAN_Feat: 1.123 G_ID: 0.126 G_Rec: 0.447 D_GP: 0.079 D_real: 0.604 D_fake: 0.418 +(epoch: 327, iters: 4798, time: 0.064) G_GAN: 0.413 G_GAN_Feat: 0.894 G_ID: 0.103 G_Rec: 0.340 D_GP: 0.042 D_real: 0.792 D_fake: 0.596 +(epoch: 327, iters: 5198, time: 0.063) G_GAN: 0.746 G_GAN_Feat: 1.153 G_ID: 0.151 G_Rec: 0.467 D_GP: 0.086 D_real: 0.612 D_fake: 0.314 +(epoch: 327, iters: 5598, time: 0.063) G_GAN: 0.098 G_GAN_Feat: 0.657 G_ID: 0.105 G_Rec: 0.305 D_GP: 0.032 D_real: 1.047 D_fake: 0.902 +(epoch: 327, iters: 5998, time: 0.063) G_GAN: 0.351 G_GAN_Feat: 0.857 G_ID: 0.139 G_Rec: 0.399 D_GP: 0.031 D_real: 1.009 D_fake: 0.651 +(epoch: 327, iters: 6398, time: 0.064) G_GAN: 0.213 G_GAN_Feat: 0.650 G_ID: 0.112 G_Rec: 0.316 D_GP: 0.029 D_real: 1.167 D_fake: 0.788 +(epoch: 327, iters: 6798, time: 0.063) G_GAN: 0.394 G_GAN_Feat: 0.912 G_ID: 0.145 G_Rec: 0.443 D_GP: 0.059 D_real: 0.978 D_fake: 0.620 +(epoch: 327, iters: 7198, time: 0.063) G_GAN: 0.090 G_GAN_Feat: 0.700 G_ID: 0.115 G_Rec: 0.309 D_GP: 0.039 D_real: 0.892 D_fake: 0.910 +(epoch: 327, iters: 7598, time: 0.063) G_GAN: 0.386 G_GAN_Feat: 0.783 G_ID: 0.139 G_Rec: 0.356 D_GP: 0.030 D_real: 1.133 D_fake: 0.619 +(epoch: 327, iters: 7998, time: 0.064) G_GAN: 0.279 G_GAN_Feat: 0.763 G_ID: 0.114 G_Rec: 0.312 D_GP: 0.085 D_real: 0.989 D_fake: 0.730 +(epoch: 327, iters: 8398, time: 0.063) G_GAN: 0.482 G_GAN_Feat: 0.838 G_ID: 0.119 G_Rec: 0.397 D_GP: 0.030 D_real: 1.196 D_fake: 0.540 +(epoch: 328, iters: 190, time: 0.063) G_GAN: -0.165 G_GAN_Feat: 0.827 G_ID: 0.114 G_Rec: 0.330 D_GP: 0.081 D_real: 0.548 D_fake: 1.165 +(epoch: 328, iters: 590, time: 0.063) G_GAN: 0.394 G_GAN_Feat: 0.889 G_ID: 0.127 G_Rec: 0.409 D_GP: 0.030 D_real: 1.072 D_fake: 0.609 +(epoch: 328, iters: 990, time: 0.064) G_GAN: 0.074 G_GAN_Feat: 0.754 G_ID: 0.100 G_Rec: 0.331 D_GP: 0.031 D_real: 0.896 D_fake: 0.926 +(epoch: 328, iters: 1390, time: 0.063) G_GAN: 0.666 G_GAN_Feat: 1.010 G_ID: 0.117 G_Rec: 0.454 D_GP: 0.037 D_real: 1.062 D_fake: 0.376 +(epoch: 328, iters: 1790, time: 0.063) G_GAN: 0.025 G_GAN_Feat: 0.840 G_ID: 0.112 G_Rec: 0.333 D_GP: 0.068 D_real: 0.535 D_fake: 0.975 +(epoch: 328, iters: 2190, time: 0.063) G_GAN: 0.491 G_GAN_Feat: 0.917 G_ID: 0.123 G_Rec: 0.406 D_GP: 0.038 D_real: 1.099 D_fake: 0.519 +(epoch: 328, iters: 2590, time: 0.064) G_GAN: 0.184 G_GAN_Feat: 0.890 G_ID: 0.101 G_Rec: 0.342 D_GP: 1.264 D_real: 0.495 D_fake: 0.821 +(epoch: 328, iters: 2990, time: 0.063) G_GAN: 0.127 G_GAN_Feat: 0.905 G_ID: 0.149 G_Rec: 0.406 D_GP: 0.054 D_real: 0.720 D_fake: 0.874 +(epoch: 328, iters: 3390, time: 0.064) G_GAN: 0.186 G_GAN_Feat: 0.767 G_ID: 0.115 G_Rec: 0.317 D_GP: 0.043 D_real: 0.865 D_fake: 0.815 +(epoch: 328, iters: 3790, time: 0.064) G_GAN: 0.378 G_GAN_Feat: 0.838 G_ID: 0.129 G_Rec: 0.398 D_GP: 0.028 D_real: 1.185 D_fake: 0.623 +(epoch: 328, iters: 4190, time: 0.064) G_GAN: 0.187 G_GAN_Feat: 0.695 G_ID: 0.104 G_Rec: 0.302 D_GP: 0.033 D_real: 1.005 D_fake: 0.813 +(epoch: 328, iters: 4590, time: 0.063) G_GAN: 0.368 G_GAN_Feat: 0.980 G_ID: 0.166 G_Rec: 0.445 D_GP: 0.046 D_real: 0.950 D_fake: 0.637 +(epoch: 328, iters: 4990, time: 0.063) G_GAN: -0.170 G_GAN_Feat: 0.887 G_ID: 0.100 G_Rec: 0.330 D_GP: 0.129 D_real: 0.251 D_fake: 1.170 +(epoch: 328, iters: 5390, time: 0.063) G_GAN: 0.502 G_GAN_Feat: 0.976 G_ID: 0.129 G_Rec: 0.454 D_GP: 0.038 D_real: 1.013 D_fake: 0.501 +(epoch: 328, iters: 5790, time: 0.064) G_GAN: 0.211 G_GAN_Feat: 0.836 G_ID: 0.120 G_Rec: 0.333 D_GP: 0.043 D_real: 0.770 D_fake: 0.796 +(epoch: 328, iters: 6190, time: 0.063) G_GAN: 0.801 G_GAN_Feat: 1.225 G_ID: 0.137 G_Rec: 0.487 D_GP: 0.095 D_real: 0.612 D_fake: 0.257 +(epoch: 328, iters: 6590, time: 0.063) G_GAN: 0.402 G_GAN_Feat: 0.676 G_ID: 0.100 G_Rec: 0.334 D_GP: 0.028 D_real: 1.305 D_fake: 0.600 +(epoch: 328, iters: 6990, time: 0.063) G_GAN: 0.414 G_GAN_Feat: 0.905 G_ID: 0.142 G_Rec: 0.443 D_GP: 0.034 D_real: 1.000 D_fake: 0.596 +(epoch: 328, iters: 7390, time: 0.063) G_GAN: 0.010 G_GAN_Feat: 0.796 G_ID: 0.123 G_Rec: 0.349 D_GP: 0.056 D_real: 0.668 D_fake: 0.990 +(epoch: 328, iters: 7790, time: 0.064) G_GAN: 0.389 G_GAN_Feat: 0.873 G_ID: 0.130 G_Rec: 0.376 D_GP: 0.095 D_real: 1.025 D_fake: 0.617 +(epoch: 328, iters: 8190, time: 0.064) G_GAN: 0.442 G_GAN_Feat: 0.678 G_ID: 0.104 G_Rec: 0.292 D_GP: 0.034 D_real: 1.240 D_fake: 0.560 +(epoch: 328, iters: 8590, time: 0.064) G_GAN: 0.535 G_GAN_Feat: 1.042 G_ID: 0.144 G_Rec: 0.460 D_GP: 0.045 D_real: 0.907 D_fake: 0.486 +(epoch: 329, iters: 382, time: 0.064) G_GAN: 0.105 G_GAN_Feat: 0.741 G_ID: 0.114 G_Rec: 0.307 D_GP: 0.039 D_real: 0.762 D_fake: 0.895 +(epoch: 329, iters: 782, time: 0.064) G_GAN: 0.658 G_GAN_Feat: 0.981 G_ID: 0.128 G_Rec: 0.440 D_GP: 0.085 D_real: 1.008 D_fake: 0.360 +(epoch: 329, iters: 1182, time: 0.064) G_GAN: 0.134 G_GAN_Feat: 0.944 G_ID: 0.117 G_Rec: 0.349 D_GP: 0.240 D_real: 0.373 D_fake: 0.867 +(epoch: 329, iters: 1582, time: 0.064) G_GAN: 0.635 G_GAN_Feat: 1.044 G_ID: 0.140 G_Rec: 0.448 D_GP: 0.038 D_real: 1.023 D_fake: 0.383 +(epoch: 329, iters: 1982, time: 0.064) G_GAN: 0.258 G_GAN_Feat: 0.871 G_ID: 0.109 G_Rec: 0.327 D_GP: 0.057 D_real: 0.607 D_fake: 0.764 +(epoch: 329, iters: 2382, time: 0.064) G_GAN: 0.495 G_GAN_Feat: 1.211 G_ID: 0.121 G_Rec: 0.465 D_GP: 1.065 D_real: 0.505 D_fake: 0.552 +(epoch: 329, iters: 2782, time: 0.064) G_GAN: 0.114 G_GAN_Feat: 0.657 G_ID: 0.095 G_Rec: 0.291 D_GP: 0.030 D_real: 0.971 D_fake: 0.887 +(epoch: 329, iters: 3182, time: 0.064) G_GAN: 0.382 G_GAN_Feat: 1.068 G_ID: 0.123 G_Rec: 0.499 D_GP: 0.043 D_real: 0.825 D_fake: 0.621 +(epoch: 329, iters: 3582, time: 0.064) G_GAN: 0.264 G_GAN_Feat: 0.771 G_ID: 0.110 G_Rec: 0.316 D_GP: 0.087 D_real: 0.868 D_fake: 0.740 +(epoch: 329, iters: 3982, time: 0.064) G_GAN: 0.402 G_GAN_Feat: 1.036 G_ID: 0.147 G_Rec: 0.455 D_GP: 0.092 D_real: 0.547 D_fake: 0.602 +(epoch: 329, iters: 4382, time: 0.064) G_GAN: 0.111 G_GAN_Feat: 0.850 G_ID: 0.099 G_Rec: 0.307 D_GP: 0.084 D_real: 0.489 D_fake: 0.908 +(epoch: 329, iters: 4782, time: 0.064) G_GAN: 0.028 G_GAN_Feat: 1.079 G_ID: 0.141 G_Rec: 0.481 D_GP: 0.034 D_real: 0.498 D_fake: 0.972 +(epoch: 329, iters: 5182, time: 0.064) G_GAN: 0.268 G_GAN_Feat: 0.783 G_ID: 0.087 G_Rec: 0.304 D_GP: 0.045 D_real: 0.945 D_fake: 0.733 +(epoch: 329, iters: 5582, time: 0.064) G_GAN: 0.684 G_GAN_Feat: 1.000 G_ID: 0.150 G_Rec: 0.477 D_GP: 0.033 D_real: 1.229 D_fake: 0.335 +(epoch: 329, iters: 5982, time: 0.064) G_GAN: -0.092 G_GAN_Feat: 0.791 G_ID: 0.117 G_Rec: 0.326 D_GP: 0.063 D_real: 0.745 D_fake: 1.093 +(epoch: 329, iters: 6382, time: 0.064) G_GAN: 0.860 G_GAN_Feat: 1.086 G_ID: 0.116 G_Rec: 0.457 D_GP: 0.101 D_real: 0.891 D_fake: 0.231 +(epoch: 329, iters: 6782, time: 0.063) G_GAN: 0.421 G_GAN_Feat: 0.812 G_ID: 0.107 G_Rec: 0.331 D_GP: 0.143 D_real: 0.862 D_fake: 0.588 +(epoch: 329, iters: 7182, time: 0.063) G_GAN: 0.442 G_GAN_Feat: 0.873 G_ID: 0.132 G_Rec: 0.433 D_GP: 0.029 D_real: 1.149 D_fake: 0.559 +(epoch: 329, iters: 7582, time: 0.063) G_GAN: 0.065 G_GAN_Feat: 0.733 G_ID: 0.141 G_Rec: 0.320 D_GP: 0.034 D_real: 0.925 D_fake: 0.935 +(epoch: 329, iters: 7982, time: 0.064) G_GAN: 0.478 G_GAN_Feat: 1.000 G_ID: 0.139 G_Rec: 0.441 D_GP: 0.036 D_real: 1.183 D_fake: 0.549 +(epoch: 329, iters: 8382, time: 0.063) G_GAN: 0.311 G_GAN_Feat: 0.716 G_ID: 0.132 G_Rec: 0.289 D_GP: 0.042 D_real: 1.194 D_fake: 0.690 +(epoch: 330, iters: 174, time: 0.063) G_GAN: 0.700 G_GAN_Feat: 0.909 G_ID: 0.119 G_Rec: 0.445 D_GP: 0.029 D_real: 1.335 D_fake: 0.348 +(epoch: 330, iters: 574, time: 0.063) G_GAN: 0.171 G_GAN_Feat: 0.773 G_ID: 0.108 G_Rec: 0.319 D_GP: 0.047 D_real: 0.782 D_fake: 0.830 +(epoch: 330, iters: 974, time: 0.064) G_GAN: 0.406 G_GAN_Feat: 1.135 G_ID: 0.137 G_Rec: 0.447 D_GP: 0.069 D_real: 0.445 D_fake: 0.600 +(epoch: 330, iters: 1374, time: 0.063) G_GAN: 0.333 G_GAN_Feat: 0.925 G_ID: 0.094 G_Rec: 0.334 D_GP: 0.491 D_real: 0.397 D_fake: 0.703 +(epoch: 330, iters: 1774, time: 0.063) G_GAN: 0.460 G_GAN_Feat: 0.912 G_ID: 0.129 G_Rec: 0.409 D_GP: 0.032 D_real: 1.188 D_fake: 0.555 +(epoch: 330, iters: 2174, time: 0.063) G_GAN: 0.149 G_GAN_Feat: 0.795 G_ID: 0.118 G_Rec: 0.308 D_GP: 0.038 D_real: 0.809 D_fake: 0.853 +(epoch: 330, iters: 2574, time: 0.064) G_GAN: 0.569 G_GAN_Feat: 1.046 G_ID: 0.153 G_Rec: 0.429 D_GP: 0.033 D_real: 0.729 D_fake: 0.434 +(epoch: 330, iters: 2974, time: 0.063) G_GAN: 0.352 G_GAN_Feat: 0.786 G_ID: 0.119 G_Rec: 0.330 D_GP: 0.034 D_real: 1.166 D_fake: 0.656 +(epoch: 330, iters: 3374, time: 0.063) G_GAN: 0.757 G_GAN_Feat: 1.016 G_ID: 0.168 G_Rec: 0.424 D_GP: 0.072 D_real: 1.066 D_fake: 0.299 +(epoch: 330, iters: 3774, time: 0.063) G_GAN: 0.312 G_GAN_Feat: 0.777 G_ID: 0.119 G_Rec: 0.295 D_GP: 0.041 D_real: 1.080 D_fake: 0.699 +(epoch: 330, iters: 4174, time: 0.064) G_GAN: 0.251 G_GAN_Feat: 0.950 G_ID: 0.144 G_Rec: 0.410 D_GP: 0.031 D_real: 0.927 D_fake: 0.750 +(epoch: 330, iters: 4574, time: 0.064) G_GAN: 0.265 G_GAN_Feat: 0.850 G_ID: 0.111 G_Rec: 0.315 D_GP: 0.031 D_real: 0.882 D_fake: 0.752 +(epoch: 330, iters: 4974, time: 0.064) G_GAN: 0.662 G_GAN_Feat: 1.028 G_ID: 0.144 G_Rec: 0.447 D_GP: 0.036 D_real: 1.105 D_fake: 0.353 +(epoch: 330, iters: 5374, time: 0.064) G_GAN: 0.159 G_GAN_Feat: 0.760 G_ID: 0.096 G_Rec: 0.315 D_GP: 0.033 D_real: 0.911 D_fake: 0.844 +(epoch: 330, iters: 5774, time: 0.064) G_GAN: 0.531 G_GAN_Feat: 1.161 G_ID: 0.121 G_Rec: 0.484 D_GP: 0.115 D_real: 0.626 D_fake: 0.503 +(epoch: 330, iters: 6174, time: 0.064) G_GAN: -0.057 G_GAN_Feat: 0.792 G_ID: 0.132 G_Rec: 0.325 D_GP: 0.047 D_real: 0.626 D_fake: 1.057 +(epoch: 330, iters: 6574, time: 0.064) G_GAN: 0.770 G_GAN_Feat: 0.955 G_ID: 0.147 G_Rec: 0.414 D_GP: 0.033 D_real: 1.111 D_fake: 0.307 +(epoch: 330, iters: 6974, time: 0.064) G_GAN: 0.188 G_GAN_Feat: 0.703 G_ID: 0.111 G_Rec: 0.282 D_GP: 0.051 D_real: 1.009 D_fake: 0.812 +(epoch: 330, iters: 7374, time: 0.064) G_GAN: 0.563 G_GAN_Feat: 1.023 G_ID: 0.140 G_Rec: 0.445 D_GP: 0.055 D_real: 0.960 D_fake: 0.445 +(epoch: 330, iters: 7774, time: 0.064) G_GAN: 0.279 G_GAN_Feat: 0.833 G_ID: 0.098 G_Rec: 0.322 D_GP: 0.043 D_real: 0.951 D_fake: 0.721 +(epoch: 330, iters: 8174, time: 0.064) G_GAN: 0.011 G_GAN_Feat: 1.101 G_ID: 0.131 G_Rec: 0.469 D_GP: 0.110 D_real: 0.911 D_fake: 1.004 +(epoch: 330, iters: 8574, time: 0.064) G_GAN: -0.030 G_GAN_Feat: 0.650 G_ID: 0.118 G_Rec: 0.307 D_GP: 0.026 D_real: 0.956 D_fake: 1.031 +(epoch: 331, iters: 366, time: 0.064) G_GAN: 0.392 G_GAN_Feat: 0.840 G_ID: 0.134 G_Rec: 0.439 D_GP: 0.029 D_real: 1.108 D_fake: 0.619 +(epoch: 331, iters: 766, time: 0.064) G_GAN: -0.016 G_GAN_Feat: 0.652 G_ID: 0.111 G_Rec: 0.292 D_GP: 0.035 D_real: 0.826 D_fake: 1.016 +(epoch: 331, iters: 1166, time: 0.064) G_GAN: 0.187 G_GAN_Feat: 0.911 G_ID: 0.114 G_Rec: 0.440 D_GP: 0.034 D_real: 0.856 D_fake: 0.813 +(epoch: 331, iters: 1566, time: 0.064) G_GAN: -0.075 G_GAN_Feat: 0.660 G_ID: 0.115 G_Rec: 0.323 D_GP: 0.031 D_real: 0.776 D_fake: 1.075 +(epoch: 331, iters: 1966, time: 0.064) G_GAN: 0.338 G_GAN_Feat: 0.845 G_ID: 0.129 G_Rec: 0.389 D_GP: 0.035 D_real: 0.949 D_fake: 0.662 +(epoch: 331, iters: 2366, time: 0.064) G_GAN: 0.130 G_GAN_Feat: 0.677 G_ID: 0.098 G_Rec: 0.288 D_GP: 0.036 D_real: 0.978 D_fake: 0.870 +(epoch: 331, iters: 2766, time: 0.064) G_GAN: 0.501 G_GAN_Feat: 0.978 G_ID: 0.114 G_Rec: 0.471 D_GP: 0.050 D_real: 0.968 D_fake: 0.522 +(epoch: 331, iters: 3166, time: 0.064) G_GAN: 0.094 G_GAN_Feat: 0.696 G_ID: 0.108 G_Rec: 0.301 D_GP: 0.035 D_real: 0.977 D_fake: 0.906 +(epoch: 331, iters: 3566, time: 0.064) G_GAN: 0.168 G_GAN_Feat: 1.085 G_ID: 0.103 G_Rec: 0.477 D_GP: 0.085 D_real: 0.524 D_fake: 0.839 +(epoch: 331, iters: 3966, time: 0.063) G_GAN: 0.072 G_GAN_Feat: 0.782 G_ID: 0.123 G_Rec: 0.333 D_GP: 0.073 D_real: 0.745 D_fake: 0.929 +(epoch: 331, iters: 4366, time: 0.063) G_GAN: 0.541 G_GAN_Feat: 0.975 G_ID: 0.135 G_Rec: 0.419 D_GP: 0.066 D_real: 1.157 D_fake: 0.507 +(epoch: 331, iters: 4766, time: 0.063) G_GAN: 0.233 G_GAN_Feat: 0.704 G_ID: 0.126 G_Rec: 0.314 D_GP: 0.029 D_real: 1.090 D_fake: 0.768 +(epoch: 331, iters: 5166, time: 0.064) G_GAN: 0.594 G_GAN_Feat: 0.916 G_ID: 0.122 G_Rec: 0.431 D_GP: 0.050 D_real: 1.023 D_fake: 0.439 +(epoch: 331, iters: 5566, time: 0.063) G_GAN: 0.147 G_GAN_Feat: 0.787 G_ID: 0.104 G_Rec: 0.346 D_GP: 0.084 D_real: 0.817 D_fake: 0.856 +(epoch: 331, iters: 5966, time: 0.063) G_GAN: 0.659 G_GAN_Feat: 0.956 G_ID: 0.126 G_Rec: 0.410 D_GP: 0.054 D_real: 1.133 D_fake: 0.412 +(epoch: 331, iters: 6366, time: 0.063) G_GAN: 0.058 G_GAN_Feat: 0.786 G_ID: 0.114 G_Rec: 0.315 D_GP: 0.043 D_real: 0.741 D_fake: 0.942 +(epoch: 331, iters: 6766, time: 0.064) G_GAN: 0.125 G_GAN_Feat: 0.929 G_ID: 0.119 G_Rec: 0.446 D_GP: 0.028 D_real: 0.755 D_fake: 0.875 +(epoch: 331, iters: 7166, time: 0.063) G_GAN: 0.507 G_GAN_Feat: 0.860 G_ID: 0.112 G_Rec: 0.351 D_GP: 0.094 D_real: 0.923 D_fake: 0.509 +(epoch: 331, iters: 7566, time: 0.063) G_GAN: 0.473 G_GAN_Feat: 0.863 G_ID: 0.113 G_Rec: 0.383 D_GP: 0.029 D_real: 1.120 D_fake: 0.533 +(epoch: 331, iters: 7966, time: 0.063) G_GAN: 0.234 G_GAN_Feat: 0.865 G_ID: 0.105 G_Rec: 0.376 D_GP: 0.326 D_real: 0.721 D_fake: 0.804 +(epoch: 331, iters: 8366, time: 0.064) G_GAN: 0.477 G_GAN_Feat: 0.854 G_ID: 0.148 G_Rec: 0.370 D_GP: 0.032 D_real: 1.146 D_fake: 0.528 +(epoch: 332, iters: 158, time: 0.063) G_GAN: 0.222 G_GAN_Feat: 0.725 G_ID: 0.107 G_Rec: 0.298 D_GP: 0.033 D_real: 1.077 D_fake: 0.778 +(epoch: 332, iters: 558, time: 0.063) G_GAN: 0.270 G_GAN_Feat: 0.933 G_ID: 0.168 G_Rec: 0.405 D_GP: 0.033 D_real: 0.860 D_fake: 0.730 +(epoch: 332, iters: 958, time: 0.063) G_GAN: 0.124 G_GAN_Feat: 0.822 G_ID: 0.119 G_Rec: 0.342 D_GP: 0.044 D_real: 0.781 D_fake: 0.876 +(epoch: 332, iters: 1358, time: 0.064) G_GAN: 0.322 G_GAN_Feat: 0.929 G_ID: 0.145 G_Rec: 0.413 D_GP: 0.050 D_real: 0.781 D_fake: 0.679 +(epoch: 332, iters: 1758, time: 0.063) G_GAN: 0.183 G_GAN_Feat: 0.841 G_ID: 0.090 G_Rec: 0.351 D_GP: 0.081 D_real: 0.849 D_fake: 0.818 +(epoch: 332, iters: 2158, time: 0.063) G_GAN: 0.257 G_GAN_Feat: 1.195 G_ID: 0.167 G_Rec: 0.477 D_GP: 0.169 D_real: 0.174 D_fake: 0.755 +(epoch: 332, iters: 2558, time: 0.063) G_GAN: 0.333 G_GAN_Feat: 0.909 G_ID: 0.108 G_Rec: 0.418 D_GP: 0.063 D_real: 0.640 D_fake: 0.668 +(epoch: 332, iters: 2958, time: 0.064) G_GAN: 0.855 G_GAN_Feat: 0.971 G_ID: 0.128 G_Rec: 0.436 D_GP: 0.039 D_real: 1.453 D_fake: 0.215 +(epoch: 332, iters: 3358, time: 0.063) G_GAN: 0.356 G_GAN_Feat: 0.715 G_ID: 0.123 G_Rec: 0.327 D_GP: 0.030 D_real: 1.160 D_fake: 0.646 +(epoch: 332, iters: 3758, time: 0.063) G_GAN: 0.424 G_GAN_Feat: 0.949 G_ID: 0.131 G_Rec: 0.445 D_GP: 0.040 D_real: 1.032 D_fake: 0.595 +(epoch: 332, iters: 4158, time: 0.063) G_GAN: 0.087 G_GAN_Feat: 0.676 G_ID: 0.088 G_Rec: 0.301 D_GP: 0.038 D_real: 0.947 D_fake: 0.913 +(epoch: 332, iters: 4558, time: 0.064) G_GAN: 0.386 G_GAN_Feat: 1.157 G_ID: 0.147 G_Rec: 0.504 D_GP: 0.084 D_real: 0.497 D_fake: 0.624 +(epoch: 332, iters: 4958, time: 0.063) G_GAN: 0.254 G_GAN_Feat: 0.779 G_ID: 0.097 G_Rec: 0.321 D_GP: 0.033 D_real: 0.966 D_fake: 0.746 +(epoch: 332, iters: 5358, time: 0.063) G_GAN: 0.838 G_GAN_Feat: 1.120 G_ID: 0.134 G_Rec: 0.477 D_GP: 0.066 D_real: 0.966 D_fake: 0.236 +(epoch: 332, iters: 5758, time: 0.063) G_GAN: 0.205 G_GAN_Feat: 0.791 G_ID: 0.115 G_Rec: 0.300 D_GP: 0.069 D_real: 0.807 D_fake: 0.796 +(epoch: 332, iters: 6158, time: 0.064) G_GAN: 0.489 G_GAN_Feat: 1.106 G_ID: 0.120 G_Rec: 0.477 D_GP: 0.135 D_real: 0.529 D_fake: 0.526 +(epoch: 332, iters: 6558, time: 0.063) G_GAN: 0.223 G_GAN_Feat: 0.963 G_ID: 0.106 G_Rec: 0.330 D_GP: 0.469 D_real: 0.253 D_fake: 0.781 +(epoch: 332, iters: 6958, time: 0.063) G_GAN: 0.268 G_GAN_Feat: 0.932 G_ID: 0.139 G_Rec: 0.442 D_GP: 0.031 D_real: 1.043 D_fake: 0.733 +(epoch: 332, iters: 7358, time: 0.063) G_GAN: 0.187 G_GAN_Feat: 0.856 G_ID: 0.122 G_Rec: 0.321 D_GP: 0.035 D_real: 0.946 D_fake: 0.815 +(epoch: 332, iters: 7758, time: 0.064) G_GAN: 0.654 G_GAN_Feat: 0.997 G_ID: 0.125 G_Rec: 0.453 D_GP: 0.029 D_real: 1.156 D_fake: 0.387 +(epoch: 332, iters: 8158, time: 0.063) G_GAN: 0.462 G_GAN_Feat: 0.751 G_ID: 0.112 G_Rec: 0.297 D_GP: 0.034 D_real: 1.270 D_fake: 0.539 +(epoch: 332, iters: 8558, time: 0.063) G_GAN: 0.849 G_GAN_Feat: 1.023 G_ID: 0.119 G_Rec: 0.490 D_GP: 0.031 D_real: 1.287 D_fake: 0.259 +(epoch: 333, iters: 350, time: 0.063) G_GAN: 0.116 G_GAN_Feat: 0.766 G_ID: 0.114 G_Rec: 0.330 D_GP: 0.030 D_real: 0.936 D_fake: 0.884 +(epoch: 333, iters: 750, time: 0.064) G_GAN: 0.696 G_GAN_Feat: 0.960 G_ID: 0.129 G_Rec: 0.415 D_GP: 0.030 D_real: 1.200 D_fake: 0.332 +(epoch: 333, iters: 1150, time: 0.063) G_GAN: 0.248 G_GAN_Feat: 0.848 G_ID: 0.115 G_Rec: 0.297 D_GP: 0.051 D_real: 0.717 D_fake: 0.752 +(epoch: 333, iters: 1550, time: 0.063) G_GAN: 0.403 G_GAN_Feat: 0.943 G_ID: 0.134 G_Rec: 0.414 D_GP: 0.043 D_real: 1.020 D_fake: 0.601 +(epoch: 333, iters: 1950, time: 0.063) G_GAN: 0.665 G_GAN_Feat: 0.716 G_ID: 0.112 G_Rec: 0.352 D_GP: 0.046 D_real: 1.502 D_fake: 0.479 +(epoch: 333, iters: 2350, time: 0.064) G_GAN: 0.606 G_GAN_Feat: 0.914 G_ID: 0.120 G_Rec: 0.447 D_GP: 0.030 D_real: 1.258 D_fake: 0.425 +(epoch: 333, iters: 2750, time: 0.063) G_GAN: 0.105 G_GAN_Feat: 0.658 G_ID: 0.108 G_Rec: 0.297 D_GP: 0.031 D_real: 0.947 D_fake: 0.895 +(epoch: 333, iters: 3150, time: 0.063) G_GAN: 0.485 G_GAN_Feat: 0.866 G_ID: 0.137 G_Rec: 0.411 D_GP: 0.041 D_real: 1.044 D_fake: 0.538 +(epoch: 333, iters: 3550, time: 0.063) G_GAN: 0.587 G_GAN_Feat: 0.690 G_ID: 0.094 G_Rec: 0.299 D_GP: 0.029 D_real: 1.515 D_fake: 0.448 +(epoch: 333, iters: 3950, time: 0.063) G_GAN: 0.266 G_GAN_Feat: 0.963 G_ID: 0.157 G_Rec: 0.436 D_GP: 0.065 D_real: 0.727 D_fake: 0.738 +(epoch: 333, iters: 4350, time: 0.063) G_GAN: 0.247 G_GAN_Feat: 0.754 G_ID: 0.104 G_Rec: 0.332 D_GP: 0.036 D_real: 0.985 D_fake: 0.755 +(epoch: 333, iters: 4750, time: 0.063) G_GAN: 0.599 G_GAN_Feat: 1.076 G_ID: 0.131 G_Rec: 0.451 D_GP: 0.239 D_real: 0.539 D_fake: 0.445 +(epoch: 333, iters: 5150, time: 0.064) G_GAN: 0.244 G_GAN_Feat: 0.718 G_ID: 0.095 G_Rec: 0.311 D_GP: 0.033 D_real: 1.185 D_fake: 0.756 +(epoch: 333, iters: 5550, time: 0.063) G_GAN: 0.057 G_GAN_Feat: 1.135 G_ID: 0.122 G_Rec: 0.488 D_GP: 0.065 D_real: 0.804 D_fake: 0.946 +(epoch: 333, iters: 5950, time: 0.063) G_GAN: 0.214 G_GAN_Feat: 0.763 G_ID: 0.134 G_Rec: 0.324 D_GP: 0.061 D_real: 0.818 D_fake: 0.789 +(epoch: 333, iters: 6350, time: 0.063) G_GAN: 0.624 G_GAN_Feat: 0.972 G_ID: 0.137 G_Rec: 0.431 D_GP: 0.037 D_real: 1.092 D_fake: 0.416 +(epoch: 333, iters: 6750, time: 0.064) G_GAN: 0.037 G_GAN_Feat: 0.747 G_ID: 0.099 G_Rec: 0.323 D_GP: 0.035 D_real: 0.965 D_fake: 0.964 +(epoch: 333, iters: 7150, time: 0.063) G_GAN: 0.364 G_GAN_Feat: 0.953 G_ID: 0.133 G_Rec: 0.432 D_GP: 0.037 D_real: 1.023 D_fake: 0.636 +(epoch: 333, iters: 7550, time: 0.063) G_GAN: 0.171 G_GAN_Feat: 0.736 G_ID: 0.132 G_Rec: 0.292 D_GP: 0.033 D_real: 1.048 D_fake: 0.829 +(epoch: 333, iters: 7950, time: 0.063) G_GAN: 0.505 G_GAN_Feat: 1.155 G_ID: 0.133 G_Rec: 0.486 D_GP: 0.037 D_real: 0.825 D_fake: 0.504 +(epoch: 333, iters: 8350, time: 0.064) G_GAN: 0.277 G_GAN_Feat: 0.760 G_ID: 0.125 G_Rec: 0.324 D_GP: 0.031 D_real: 1.148 D_fake: 0.730 +(epoch: 334, iters: 142, time: 0.063) G_GAN: 0.576 G_GAN_Feat: 1.002 G_ID: 0.120 G_Rec: 0.426 D_GP: 0.044 D_real: 1.150 D_fake: 0.461 +(epoch: 334, iters: 542, time: 0.063) G_GAN: 0.370 G_GAN_Feat: 0.891 G_ID: 0.115 G_Rec: 0.368 D_GP: 0.089 D_real: 0.927 D_fake: 0.656 +(epoch: 334, iters: 942, time: 0.063) G_GAN: 0.347 G_GAN_Feat: 1.217 G_ID: 0.129 G_Rec: 0.505 D_GP: 0.486 D_real: 0.311 D_fake: 0.657 +(epoch: 334, iters: 1342, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 0.880 G_ID: 0.096 G_Rec: 0.299 D_GP: 0.034 D_real: 1.101 D_fake: 0.565 +(epoch: 334, iters: 1742, time: 0.063) G_GAN: 0.868 G_GAN_Feat: 1.241 G_ID: 0.127 G_Rec: 0.442 D_GP: 0.054 D_real: 0.620 D_fake: 0.188 +(epoch: 334, iters: 2142, time: 0.063) G_GAN: 0.209 G_GAN_Feat: 1.024 G_ID: 0.112 G_Rec: 0.388 D_GP: 0.360 D_real: 0.089 D_fake: 0.895 +(epoch: 334, iters: 2542, time: 0.063) G_GAN: 0.586 G_GAN_Feat: 1.002 G_ID: 0.133 G_Rec: 0.409 D_GP: 0.031 D_real: 1.127 D_fake: 0.422 +(epoch: 334, iters: 2942, time: 0.064) G_GAN: 0.754 G_GAN_Feat: 0.897 G_ID: 0.105 G_Rec: 0.308 D_GP: 0.044 D_real: 1.163 D_fake: 0.366 +(epoch: 334, iters: 3342, time: 0.063) G_GAN: 0.759 G_GAN_Feat: 1.186 G_ID: 0.116 G_Rec: 0.503 D_GP: 0.040 D_real: 1.337 D_fake: 0.338 +(epoch: 334, iters: 3742, time: 0.063) G_GAN: 0.111 G_GAN_Feat: 0.654 G_ID: 0.116 G_Rec: 0.308 D_GP: 0.024 D_real: 1.099 D_fake: 0.890 +(epoch: 334, iters: 4142, time: 0.063) G_GAN: 0.369 G_GAN_Feat: 0.835 G_ID: 0.113 G_Rec: 0.434 D_GP: 0.026 D_real: 1.162 D_fake: 0.636 +(epoch: 334, iters: 4542, time: 0.064) G_GAN: 0.162 G_GAN_Feat: 0.626 G_ID: 0.094 G_Rec: 0.299 D_GP: 0.027 D_real: 1.122 D_fake: 0.839 +(epoch: 334, iters: 4942, time: 0.063) G_GAN: 0.325 G_GAN_Feat: 0.800 G_ID: 0.130 G_Rec: 0.376 D_GP: 0.029 D_real: 1.115 D_fake: 0.679 +(epoch: 334, iters: 5342, time: 0.063) G_GAN: 0.041 G_GAN_Feat: 0.697 G_ID: 0.131 G_Rec: 0.314 D_GP: 0.031 D_real: 0.934 D_fake: 0.960 +(epoch: 334, iters: 5742, time: 0.063) G_GAN: 0.338 G_GAN_Feat: 0.813 G_ID: 0.123 G_Rec: 0.391 D_GP: 0.027 D_real: 1.098 D_fake: 0.668 +(epoch: 334, iters: 6142, time: 0.064) G_GAN: -0.011 G_GAN_Feat: 0.639 G_ID: 0.123 G_Rec: 0.275 D_GP: 0.034 D_real: 0.844 D_fake: 1.011 +(epoch: 334, iters: 6542, time: 0.063) G_GAN: 0.311 G_GAN_Feat: 0.860 G_ID: 0.131 G_Rec: 0.395 D_GP: 0.042 D_real: 0.920 D_fake: 0.695 +(epoch: 334, iters: 6942, time: 0.063) G_GAN: -0.163 G_GAN_Feat: 0.716 G_ID: 0.116 G_Rec: 0.307 D_GP: 0.038 D_real: 0.620 D_fake: 1.163 +(epoch: 334, iters: 7342, time: 0.063) G_GAN: 0.479 G_GAN_Feat: 0.866 G_ID: 0.115 G_Rec: 0.405 D_GP: 0.034 D_real: 1.123 D_fake: 0.569 +(epoch: 334, iters: 7742, time: 0.064) G_GAN: -0.168 G_GAN_Feat: 0.731 G_ID: 0.105 G_Rec: 0.326 D_GP: 0.079 D_real: 0.681 D_fake: 1.168 +(epoch: 334, iters: 8142, time: 0.063) G_GAN: 0.485 G_GAN_Feat: 0.965 G_ID: 0.146 G_Rec: 0.435 D_GP: 0.042 D_real: 0.906 D_fake: 0.536 +(epoch: 334, iters: 8542, time: 0.063) G_GAN: 0.101 G_GAN_Feat: 0.813 G_ID: 0.118 G_Rec: 0.341 D_GP: 0.044 D_real: 0.799 D_fake: 0.900 +(epoch: 335, iters: 334, time: 0.063) G_GAN: 0.159 G_GAN_Feat: 0.916 G_ID: 0.139 G_Rec: 0.424 D_GP: 0.037 D_real: 0.708 D_fake: 0.842 +(epoch: 335, iters: 734, time: 0.064) G_GAN: -0.005 G_GAN_Feat: 0.740 G_ID: 0.096 G_Rec: 0.315 D_GP: 0.076 D_real: 0.742 D_fake: 1.006 +(epoch: 335, iters: 1134, time: 0.063) G_GAN: 0.693 G_GAN_Feat: 0.946 G_ID: 0.126 G_Rec: 0.432 D_GP: 0.033 D_real: 1.308 D_fake: 0.357 +(epoch: 335, iters: 1534, time: 0.063) G_GAN: 0.051 G_GAN_Feat: 0.682 G_ID: 0.093 G_Rec: 0.292 D_GP: 0.028 D_real: 0.918 D_fake: 0.949 +(epoch: 335, iters: 1934, time: 0.063) G_GAN: 0.721 G_GAN_Feat: 0.993 G_ID: 0.127 G_Rec: 0.433 D_GP: 0.061 D_real: 1.185 D_fake: 0.337 +(epoch: 335, iters: 2334, time: 0.064) G_GAN: 0.093 G_GAN_Feat: 0.693 G_ID: 0.109 G_Rec: 0.304 D_GP: 0.030 D_real: 0.992 D_fake: 0.907 +(epoch: 335, iters: 2734, time: 0.063) G_GAN: 0.353 G_GAN_Feat: 1.129 G_ID: 0.134 G_Rec: 0.509 D_GP: 0.360 D_real: 0.502 D_fake: 0.661 +(epoch: 335, iters: 3134, time: 0.063) G_GAN: 0.390 G_GAN_Feat: 0.706 G_ID: 0.096 G_Rec: 0.315 D_GP: 0.026 D_real: 1.209 D_fake: 0.616 +(epoch: 335, iters: 3534, time: 0.063) G_GAN: 0.576 G_GAN_Feat: 0.990 G_ID: 0.126 G_Rec: 0.450 D_GP: 0.035 D_real: 1.141 D_fake: 0.441 +(epoch: 335, iters: 3934, time: 0.064) G_GAN: 0.287 G_GAN_Feat: 0.714 G_ID: 0.107 G_Rec: 0.335 D_GP: 0.030 D_real: 1.204 D_fake: 0.713 +(epoch: 335, iters: 4334, time: 0.063) G_GAN: 0.506 G_GAN_Feat: 0.934 G_ID: 0.131 G_Rec: 0.437 D_GP: 0.037 D_real: 1.121 D_fake: 0.519 +(epoch: 335, iters: 4734, time: 0.063) G_GAN: -0.340 G_GAN_Feat: 0.774 G_ID: 0.120 G_Rec: 0.320 D_GP: 0.072 D_real: 0.497 D_fake: 1.340 +(epoch: 335, iters: 5134, time: 0.063) G_GAN: 0.518 G_GAN_Feat: 1.083 G_ID: 0.126 G_Rec: 0.465 D_GP: 0.161 D_real: 0.739 D_fake: 0.515 +(epoch: 335, iters: 5534, time: 0.064) G_GAN: 0.385 G_GAN_Feat: 0.793 G_ID: 0.106 G_Rec: 0.305 D_GP: 0.059 D_real: 1.025 D_fake: 0.617 +(epoch: 335, iters: 5934, time: 0.063) G_GAN: 0.493 G_GAN_Feat: 1.079 G_ID: 0.130 G_Rec: 0.473 D_GP: 0.099 D_real: 0.607 D_fake: 0.526 +(epoch: 335, iters: 6334, time: 0.063) G_GAN: -0.003 G_GAN_Feat: 0.784 G_ID: 0.116 G_Rec: 0.334 D_GP: 0.032 D_real: 0.879 D_fake: 1.003 +(epoch: 335, iters: 6734, time: 0.063) G_GAN: 0.446 G_GAN_Feat: 0.946 G_ID: 0.119 G_Rec: 0.463 D_GP: 0.032 D_real: 1.041 D_fake: 0.559 +(epoch: 335, iters: 7134, time: 0.064) G_GAN: 0.250 G_GAN_Feat: 0.805 G_ID: 0.111 G_Rec: 0.313 D_GP: 0.064 D_real: 0.814 D_fake: 0.750 +(epoch: 335, iters: 7534, time: 0.063) G_GAN: 0.867 G_GAN_Feat: 0.998 G_ID: 0.120 G_Rec: 0.419 D_GP: 0.044 D_real: 1.353 D_fake: 0.238 +(epoch: 335, iters: 7934, time: 0.063) G_GAN: 0.296 G_GAN_Feat: 0.790 G_ID: 0.113 G_Rec: 0.339 D_GP: 0.032 D_real: 1.165 D_fake: 0.705 +(epoch: 335, iters: 8334, time: 0.063) G_GAN: 0.574 G_GAN_Feat: 0.822 G_ID: 0.108 G_Rec: 0.419 D_GP: 0.028 D_real: 1.264 D_fake: 0.438 +(epoch: 336, iters: 126, time: 0.064) G_GAN: 0.314 G_GAN_Feat: 0.744 G_ID: 0.107 G_Rec: 0.286 D_GP: 0.045 D_real: 1.081 D_fake: 0.697 +(epoch: 336, iters: 526, time: 0.063) G_GAN: 0.342 G_GAN_Feat: 0.997 G_ID: 0.153 G_Rec: 0.441 D_GP: 0.034 D_real: 0.866 D_fake: 0.665 +(epoch: 336, iters: 926, time: 0.063) G_GAN: 0.184 G_GAN_Feat: 0.738 G_ID: 0.110 G_Rec: 0.297 D_GP: 0.038 D_real: 0.954 D_fake: 0.818 +(epoch: 336, iters: 1326, time: 0.064) G_GAN: 0.804 G_GAN_Feat: 1.140 G_ID: 0.125 G_Rec: 0.536 D_GP: 0.050 D_real: 0.986 D_fake: 0.300 +(epoch: 336, iters: 1726, time: 0.064) G_GAN: 0.262 G_GAN_Feat: 0.884 G_ID: 0.106 G_Rec: 0.330 D_GP: 0.076 D_real: 0.739 D_fake: 0.765 +(epoch: 336, iters: 2126, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 1.021 G_ID: 0.127 G_Rec: 0.437 D_GP: 0.057 D_real: 0.524 D_fake: 0.677 +(epoch: 336, iters: 2526, time: 0.064) G_GAN: 0.093 G_GAN_Feat: 0.770 G_ID: 0.112 G_Rec: 0.354 D_GP: 0.033 D_real: 0.896 D_fake: 0.908 +(epoch: 336, iters: 2926, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 1.097 G_ID: 0.138 G_Rec: 0.434 D_GP: 0.048 D_real: 0.464 D_fake: 0.667 +(epoch: 336, iters: 3326, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 0.747 G_ID: 0.100 G_Rec: 0.306 D_GP: 0.058 D_real: 0.911 D_fake: 0.809 +(epoch: 336, iters: 3726, time: 0.064) G_GAN: 0.391 G_GAN_Feat: 0.977 G_ID: 0.147 G_Rec: 0.463 D_GP: 0.031 D_real: 0.967 D_fake: 0.614 +(epoch: 336, iters: 4126, time: 0.064) G_GAN: 0.478 G_GAN_Feat: 0.743 G_ID: 0.097 G_Rec: 0.296 D_GP: 0.034 D_real: 1.263 D_fake: 0.525 +(epoch: 336, iters: 4526, time: 0.064) G_GAN: 0.371 G_GAN_Feat: 0.978 G_ID: 0.142 G_Rec: 0.443 D_GP: 0.034 D_real: 1.044 D_fake: 0.631 +(epoch: 336, iters: 4926, time: 0.064) G_GAN: 0.161 G_GAN_Feat: 0.807 G_ID: 0.114 G_Rec: 0.343 D_GP: 0.033 D_real: 0.876 D_fake: 0.840 +(epoch: 336, iters: 5326, time: 0.064) G_GAN: 0.559 G_GAN_Feat: 1.205 G_ID: 0.112 G_Rec: 0.465 D_GP: 0.413 D_real: 0.271 D_fake: 0.490 +(epoch: 336, iters: 5726, time: 0.064) G_GAN: 0.041 G_GAN_Feat: 0.688 G_ID: 0.099 G_Rec: 0.292 D_GP: 0.028 D_real: 0.967 D_fake: 0.959 +(epoch: 336, iters: 6126, time: 0.064) G_GAN: 0.522 G_GAN_Feat: 0.955 G_ID: 0.138 G_Rec: 0.432 D_GP: 0.052 D_real: 0.951 D_fake: 0.498 +(epoch: 336, iters: 6526, time: 0.064) G_GAN: 0.333 G_GAN_Feat: 0.908 G_ID: 0.113 G_Rec: 0.330 D_GP: 0.068 D_real: 0.474 D_fake: 0.674 +(epoch: 336, iters: 6926, time: 0.064) G_GAN: 0.542 G_GAN_Feat: 0.961 G_ID: 0.120 G_Rec: 0.509 D_GP: 0.036 D_real: 1.132 D_fake: 0.495 +(epoch: 336, iters: 7326, time: 0.064) G_GAN: 0.169 G_GAN_Feat: 0.609 G_ID: 0.110 G_Rec: 0.280 D_GP: 0.031 D_real: 1.100 D_fake: 0.831 +(epoch: 336, iters: 7726, time: 0.064) G_GAN: 0.252 G_GAN_Feat: 0.910 G_ID: 0.136 G_Rec: 0.445 D_GP: 0.040 D_real: 0.941 D_fake: 0.749 +(epoch: 336, iters: 8126, time: 0.064) G_GAN: 0.233 G_GAN_Feat: 0.766 G_ID: 0.098 G_Rec: 0.326 D_GP: 0.058 D_real: 0.950 D_fake: 0.768 +(epoch: 336, iters: 8526, time: 0.064) G_GAN: 0.113 G_GAN_Feat: 1.005 G_ID: 0.133 G_Rec: 0.478 D_GP: 0.104 D_real: 0.418 D_fake: 0.888 +(epoch: 337, iters: 318, time: 0.064) G_GAN: 0.358 G_GAN_Feat: 0.701 G_ID: 0.110 G_Rec: 0.296 D_GP: 0.030 D_real: 1.228 D_fake: 0.643 +(epoch: 337, iters: 718, time: 0.064) G_GAN: 0.393 G_GAN_Feat: 0.961 G_ID: 0.128 G_Rec: 0.408 D_GP: 0.061 D_real: 0.740 D_fake: 0.619 +(epoch: 337, iters: 1118, time: 0.064) G_GAN: 0.225 G_GAN_Feat: 0.847 G_ID: 0.105 G_Rec: 0.315 D_GP: 0.055 D_real: 0.623 D_fake: 0.776 +(epoch: 337, iters: 1518, time: 0.063) G_GAN: 0.728 G_GAN_Feat: 1.060 G_ID: 0.140 G_Rec: 0.440 D_GP: 0.042 D_real: 1.081 D_fake: 0.315 +(epoch: 337, iters: 1918, time: 0.063) G_GAN: 0.040 G_GAN_Feat: 0.782 G_ID: 0.118 G_Rec: 0.323 D_GP: 0.067 D_real: 0.630 D_fake: 0.960 +(epoch: 337, iters: 2318, time: 0.063) G_GAN: 0.492 G_GAN_Feat: 0.952 G_ID: 0.138 G_Rec: 0.436 D_GP: 0.034 D_real: 1.094 D_fake: 0.512 +(epoch: 337, iters: 2718, time: 0.064) G_GAN: 0.248 G_GAN_Feat: 0.666 G_ID: 0.091 G_Rec: 0.290 D_GP: 0.035 D_real: 1.191 D_fake: 0.752 +(epoch: 337, iters: 3118, time: 0.063) G_GAN: 0.583 G_GAN_Feat: 1.027 G_ID: 0.127 G_Rec: 0.464 D_GP: 0.038 D_real: 1.026 D_fake: 0.438 +(epoch: 337, iters: 3518, time: 0.063) G_GAN: 0.098 G_GAN_Feat: 0.826 G_ID: 0.108 G_Rec: 0.333 D_GP: 0.089 D_real: 0.524 D_fake: 0.903 +(epoch: 337, iters: 3918, time: 0.063) G_GAN: 0.389 G_GAN_Feat: 0.921 G_ID: 0.130 G_Rec: 0.429 D_GP: 0.030 D_real: 1.079 D_fake: 0.615 +(epoch: 337, iters: 4318, time: 0.064) G_GAN: -0.207 G_GAN_Feat: 0.656 G_ID: 0.103 G_Rec: 0.320 D_GP: 0.032 D_real: 0.799 D_fake: 1.207 +(epoch: 337, iters: 4718, time: 0.063) G_GAN: 0.535 G_GAN_Feat: 0.866 G_ID: 0.129 G_Rec: 0.400 D_GP: 0.033 D_real: 1.269 D_fake: 0.483 +(epoch: 337, iters: 5118, time: 0.063) G_GAN: 0.227 G_GAN_Feat: 0.665 G_ID: 0.102 G_Rec: 0.310 D_GP: 0.028 D_real: 1.105 D_fake: 0.773 +(epoch: 337, iters: 5518, time: 0.063) G_GAN: 0.439 G_GAN_Feat: 0.963 G_ID: 0.117 G_Rec: 0.473 D_GP: 0.028 D_real: 1.169 D_fake: 0.565 +(epoch: 337, iters: 5918, time: 0.064) G_GAN: -0.001 G_GAN_Feat: 0.714 G_ID: 0.130 G_Rec: 0.287 D_GP: 0.042 D_real: 0.845 D_fake: 1.001 +(epoch: 337, iters: 6318, time: 0.063) G_GAN: 0.547 G_GAN_Feat: 1.089 G_ID: 0.142 G_Rec: 0.485 D_GP: 0.475 D_real: 0.858 D_fake: 0.543 +(epoch: 337, iters: 6718, time: 0.063) G_GAN: 0.143 G_GAN_Feat: 0.700 G_ID: 0.107 G_Rec: 0.305 D_GP: 0.034 D_real: 1.085 D_fake: 0.857 +(epoch: 337, iters: 7118, time: 0.063) G_GAN: 0.247 G_GAN_Feat: 0.899 G_ID: 0.133 G_Rec: 0.404 D_GP: 0.041 D_real: 0.856 D_fake: 0.754 +(epoch: 337, iters: 7518, time: 0.064) G_GAN: 0.134 G_GAN_Feat: 0.697 G_ID: 0.110 G_Rec: 0.285 D_GP: 0.031 D_real: 1.053 D_fake: 0.866 +(epoch: 337, iters: 7918, time: 0.063) G_GAN: 0.427 G_GAN_Feat: 0.929 G_ID: 0.119 G_Rec: 0.410 D_GP: 0.035 D_real: 1.128 D_fake: 0.579 +(epoch: 337, iters: 8318, time: 0.063) G_GAN: 0.341 G_GAN_Feat: 0.755 G_ID: 0.110 G_Rec: 0.319 D_GP: 0.048 D_real: 1.018 D_fake: 0.660 +(epoch: 338, iters: 110, time: 0.063) G_GAN: 0.574 G_GAN_Feat: 1.122 G_ID: 0.140 G_Rec: 0.468 D_GP: 0.360 D_real: 0.549 D_fake: 0.451 +(epoch: 338, iters: 510, time: 0.063) G_GAN: 0.213 G_GAN_Feat: 0.934 G_ID: 0.107 G_Rec: 0.365 D_GP: 0.377 D_real: 0.391 D_fake: 0.794 +(epoch: 338, iters: 910, time: 0.063) G_GAN: 0.662 G_GAN_Feat: 1.012 G_ID: 0.153 G_Rec: 0.424 D_GP: 0.052 D_real: 0.964 D_fake: 0.364 +(epoch: 338, iters: 1310, time: 0.064) G_GAN: 0.146 G_GAN_Feat: 0.988 G_ID: 0.120 G_Rec: 0.352 D_GP: 0.318 D_real: 0.380 D_fake: 0.857 +(epoch: 338, iters: 1710, time: 0.064) G_GAN: 0.869 G_GAN_Feat: 1.009 G_ID: 0.128 G_Rec: 0.476 D_GP: 0.033 D_real: 1.549 D_fake: 0.188 +(epoch: 338, iters: 2110, time: 0.063) G_GAN: 0.569 G_GAN_Feat: 0.825 G_ID: 0.102 G_Rec: 0.353 D_GP: 0.038 D_real: 1.388 D_fake: 0.444 +(epoch: 338, iters: 2510, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 1.111 G_ID: 0.128 G_Rec: 0.483 D_GP: 0.139 D_real: 0.715 D_fake: 0.662 +(epoch: 338, iters: 2910, time: 0.063) G_GAN: 0.158 G_GAN_Feat: 0.805 G_ID: 0.108 G_Rec: 0.336 D_GP: 0.063 D_real: 0.804 D_fake: 0.842 +(epoch: 338, iters: 3310, time: 0.064) G_GAN: 0.348 G_GAN_Feat: 1.006 G_ID: 0.147 G_Rec: 0.419 D_GP: 0.051 D_real: 0.725 D_fake: 0.660 +(epoch: 338, iters: 3710, time: 0.063) G_GAN: 0.151 G_GAN_Feat: 0.841 G_ID: 0.104 G_Rec: 0.354 D_GP: 0.031 D_real: 0.950 D_fake: 0.849 +(epoch: 338, iters: 4110, time: 0.063) G_GAN: 0.441 G_GAN_Feat: 1.120 G_ID: 0.127 G_Rec: 0.505 D_GP: 0.125 D_real: 0.294 D_fake: 0.586 +(epoch: 338, iters: 4510, time: 0.063) G_GAN: -0.428 G_GAN_Feat: 0.842 G_ID: 0.113 G_Rec: 0.326 D_GP: 0.043 D_real: 0.431 D_fake: 1.428 +(epoch: 338, iters: 4910, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.902 G_ID: 0.145 G_Rec: 0.416 D_GP: 0.034 D_real: 0.997 D_fake: 0.675 +(epoch: 338, iters: 5310, time: 0.063) G_GAN: 0.200 G_GAN_Feat: 0.865 G_ID: 0.116 G_Rec: 0.339 D_GP: 0.078 D_real: 0.542 D_fake: 0.801 +(epoch: 338, iters: 5710, time: 0.063) G_GAN: 0.303 G_GAN_Feat: 1.165 G_ID: 0.142 G_Rec: 0.487 D_GP: 0.244 D_real: 0.513 D_fake: 0.715 +(epoch: 338, iters: 6110, time: 0.063) G_GAN: 0.200 G_GAN_Feat: 1.136 G_ID: 0.095 G_Rec: 0.384 D_GP: 1.795 D_real: 0.811 D_fake: 0.805 +(epoch: 338, iters: 6510, time: 0.064) G_GAN: 0.158 G_GAN_Feat: 0.893 G_ID: 0.118 G_Rec: 0.437 D_GP: 0.028 D_real: 0.854 D_fake: 0.845 +(epoch: 338, iters: 6910, time: 0.063) G_GAN: -0.024 G_GAN_Feat: 0.812 G_ID: 0.102 G_Rec: 0.350 D_GP: 0.091 D_real: 0.736 D_fake: 1.024 +(epoch: 338, iters: 7310, time: 0.063) G_GAN: 0.208 G_GAN_Feat: 0.863 G_ID: 0.128 G_Rec: 0.411 D_GP: 0.030 D_real: 0.891 D_fake: 0.795 +(epoch: 338, iters: 7710, time: 0.063) G_GAN: -0.261 G_GAN_Feat: 0.752 G_ID: 0.101 G_Rec: 0.342 D_GP: 0.057 D_real: 0.498 D_fake: 1.261 +(epoch: 338, iters: 8110, time: 0.064) G_GAN: 0.142 G_GAN_Feat: 0.941 G_ID: 0.139 G_Rec: 0.394 D_GP: 0.081 D_real: 0.613 D_fake: 0.861 +(epoch: 338, iters: 8510, time: 0.063) G_GAN: 0.009 G_GAN_Feat: 0.855 G_ID: 0.125 G_Rec: 0.340 D_GP: 0.108 D_real: 0.590 D_fake: 0.991 +(epoch: 339, iters: 302, time: 0.063) G_GAN: 0.434 G_GAN_Feat: 1.076 G_ID: 0.132 G_Rec: 0.487 D_GP: 0.164 D_real: 0.507 D_fake: 0.578 +(epoch: 339, iters: 702, time: 0.063) G_GAN: 0.326 G_GAN_Feat: 0.679 G_ID: 0.094 G_Rec: 0.323 D_GP: 0.023 D_real: 1.241 D_fake: 0.675 +(epoch: 339, iters: 1102, time: 0.064) G_GAN: 0.639 G_GAN_Feat: 1.058 G_ID: 0.137 G_Rec: 0.482 D_GP: 0.099 D_real: 0.946 D_fake: 0.370 +(epoch: 339, iters: 1502, time: 0.064) G_GAN: 0.243 G_GAN_Feat: 0.805 G_ID: 0.122 G_Rec: 0.341 D_GP: 0.031 D_real: 1.074 D_fake: 0.758 +(epoch: 339, iters: 1902, time: 0.063) G_GAN: 0.421 G_GAN_Feat: 1.063 G_ID: 0.128 G_Rec: 0.469 D_GP: 0.040 D_real: 0.611 D_fake: 0.580 +(epoch: 339, iters: 2302, time: 0.063) G_GAN: 0.096 G_GAN_Feat: 0.728 G_ID: 0.117 G_Rec: 0.320 D_GP: 0.024 D_real: 0.984 D_fake: 0.905 +(epoch: 339, iters: 2702, time: 0.064) G_GAN: 0.340 G_GAN_Feat: 1.002 G_ID: 0.120 G_Rec: 0.449 D_GP: 0.050 D_real: 0.874 D_fake: 0.665 +(epoch: 339, iters: 3102, time: 0.063) G_GAN: 0.035 G_GAN_Feat: 0.688 G_ID: 0.110 G_Rec: 0.284 D_GP: 0.031 D_real: 0.833 D_fake: 0.966 +(epoch: 339, iters: 3502, time: 0.064) G_GAN: 0.206 G_GAN_Feat: 0.946 G_ID: 0.157 G_Rec: 0.407 D_GP: 0.042 D_real: 0.709 D_fake: 0.798 +(epoch: 339, iters: 3902, time: 0.063) G_GAN: 0.160 G_GAN_Feat: 0.742 G_ID: 0.097 G_Rec: 0.326 D_GP: 0.040 D_real: 1.037 D_fake: 0.840 +(epoch: 339, iters: 4302, time: 0.064) G_GAN: 0.421 G_GAN_Feat: 1.027 G_ID: 0.130 G_Rec: 0.476 D_GP: 0.045 D_real: 0.762 D_fake: 0.595 +(epoch: 339, iters: 4702, time: 0.063) G_GAN: 0.116 G_GAN_Feat: 0.839 G_ID: 0.112 G_Rec: 0.342 D_GP: 0.102 D_real: 0.642 D_fake: 0.885 +(epoch: 339, iters: 5102, time: 0.064) G_GAN: 0.576 G_GAN_Feat: 0.967 G_ID: 0.130 G_Rec: 0.426 D_GP: 0.041 D_real: 1.199 D_fake: 0.445 +(epoch: 339, iters: 5502, time: 0.064) G_GAN: 0.222 G_GAN_Feat: 0.847 G_ID: 0.101 G_Rec: 0.354 D_GP: 0.032 D_real: 0.719 D_fake: 0.785 +(epoch: 339, iters: 5902, time: 0.064) G_GAN: 0.538 G_GAN_Feat: 1.017 G_ID: 0.122 G_Rec: 0.423 D_GP: 0.049 D_real: 0.785 D_fake: 0.465 +(epoch: 339, iters: 6302, time: 0.064) G_GAN: 0.356 G_GAN_Feat: 0.709 G_ID: 0.110 G_Rec: 0.315 D_GP: 0.027 D_real: 1.284 D_fake: 0.645 +(epoch: 339, iters: 6702, time: 0.064) G_GAN: 0.253 G_GAN_Feat: 0.884 G_ID: 0.134 G_Rec: 0.422 D_GP: 0.032 D_real: 0.907 D_fake: 0.748 +(epoch: 339, iters: 7102, time: 0.064) G_GAN: -0.023 G_GAN_Feat: 0.748 G_ID: 0.117 G_Rec: 0.327 D_GP: 0.035 D_real: 0.835 D_fake: 1.023 +(epoch: 339, iters: 7502, time: 0.064) G_GAN: 0.182 G_GAN_Feat: 0.970 G_ID: 0.160 G_Rec: 0.433 D_GP: 0.043 D_real: 0.586 D_fake: 0.819 +(epoch: 339, iters: 7902, time: 0.064) G_GAN: 0.320 G_GAN_Feat: 0.745 G_ID: 0.117 G_Rec: 0.308 D_GP: 0.082 D_real: 0.995 D_fake: 0.683 +(epoch: 339, iters: 8302, time: 0.063) G_GAN: 0.724 G_GAN_Feat: 1.103 G_ID: 0.137 G_Rec: 0.486 D_GP: 0.108 D_real: 0.704 D_fake: 0.344 +(epoch: 339, iters: 8702, time: 0.063) G_GAN: 0.311 G_GAN_Feat: 0.774 G_ID: 0.115 G_Rec: 0.303 D_GP: 0.034 D_real: 1.134 D_fake: 0.689 +(epoch: 340, iters: 494, time: 0.064) G_GAN: 0.306 G_GAN_Feat: 1.015 G_ID: 0.127 G_Rec: 0.425 D_GP: 0.080 D_real: 0.651 D_fake: 0.703 +(epoch: 340, iters: 894, time: 0.063) G_GAN: 0.278 G_GAN_Feat: 0.783 G_ID: 0.105 G_Rec: 0.361 D_GP: 0.026 D_real: 1.100 D_fake: 0.726 +(epoch: 340, iters: 1294, time: 0.064) G_GAN: 0.620 G_GAN_Feat: 1.071 G_ID: 0.138 G_Rec: 0.456 D_GP: 0.037 D_real: 1.223 D_fake: 0.420 +(epoch: 340, iters: 1694, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 0.816 G_ID: 0.143 G_Rec: 0.325 D_GP: 0.062 D_real: 0.904 D_fake: 0.779 +(epoch: 340, iters: 2094, time: 0.064) G_GAN: 0.800 G_GAN_Feat: 1.232 G_ID: 0.152 G_Rec: 0.484 D_GP: 0.238 D_real: 0.404 D_fake: 0.252 +(epoch: 340, iters: 2494, time: 0.064) G_GAN: -0.021 G_GAN_Feat: 0.752 G_ID: 0.109 G_Rec: 0.335 D_GP: 0.038 D_real: 0.832 D_fake: 1.021 +(epoch: 340, iters: 2894, time: 0.063) G_GAN: 0.449 G_GAN_Feat: 0.977 G_ID: 0.139 G_Rec: 0.463 D_GP: 0.046 D_real: 0.863 D_fake: 0.562 +(epoch: 340, iters: 3294, time: 0.063) G_GAN: 0.220 G_GAN_Feat: 0.729 G_ID: 0.098 G_Rec: 0.306 D_GP: 0.033 D_real: 1.077 D_fake: 0.781 +(epoch: 340, iters: 3694, time: 0.064) G_GAN: 0.517 G_GAN_Feat: 1.164 G_ID: 0.142 G_Rec: 0.460 D_GP: 0.864 D_real: 0.274 D_fake: 0.506 +(epoch: 340, iters: 4094, time: 0.063) G_GAN: 0.254 G_GAN_Feat: 0.700 G_ID: 0.092 G_Rec: 0.342 D_GP: 0.032 D_real: 1.202 D_fake: 0.747 +(epoch: 340, iters: 4494, time: 0.063) G_GAN: 0.605 G_GAN_Feat: 1.060 G_ID: 0.122 G_Rec: 0.429 D_GP: 0.063 D_real: 0.794 D_fake: 0.440 +(epoch: 340, iters: 4894, time: 0.063) G_GAN: 0.264 G_GAN_Feat: 0.703 G_ID: 0.116 G_Rec: 0.315 D_GP: 0.027 D_real: 1.192 D_fake: 0.827 +(epoch: 340, iters: 5294, time: 0.064) G_GAN: 0.356 G_GAN_Feat: 0.851 G_ID: 0.121 G_Rec: 0.426 D_GP: 0.026 D_real: 1.058 D_fake: 0.648 +(epoch: 340, iters: 5694, time: 0.063) G_GAN: 0.220 G_GAN_Feat: 0.613 G_ID: 0.101 G_Rec: 0.309 D_GP: 0.026 D_real: 1.194 D_fake: 0.780 +(epoch: 340, iters: 6094, time: 0.063) G_GAN: 0.456 G_GAN_Feat: 0.936 G_ID: 0.116 G_Rec: 0.472 D_GP: 0.040 D_real: 1.071 D_fake: 0.554 +(epoch: 340, iters: 6494, time: 0.063) G_GAN: 0.134 G_GAN_Feat: 0.694 G_ID: 0.103 G_Rec: 0.331 D_GP: 0.046 D_real: 0.992 D_fake: 0.867 +(epoch: 340, iters: 6894, time: 0.064) G_GAN: 0.269 G_GAN_Feat: 0.791 G_ID: 0.114 G_Rec: 0.375 D_GP: 0.038 D_real: 0.977 D_fake: 0.735 +(epoch: 340, iters: 7294, time: 0.064) G_GAN: 0.095 G_GAN_Feat: 0.737 G_ID: 0.097 G_Rec: 0.370 D_GP: 0.061 D_real: 0.834 D_fake: 0.912 +(epoch: 340, iters: 7694, time: 0.063) G_GAN: 0.310 G_GAN_Feat: 0.911 G_ID: 0.138 G_Rec: 0.429 D_GP: 0.047 D_real: 0.880 D_fake: 0.698 +(epoch: 340, iters: 8094, time: 0.063) G_GAN: 0.001 G_GAN_Feat: 0.720 G_ID: 0.101 G_Rec: 0.327 D_GP: 0.068 D_real: 0.808 D_fake: 0.999 +(epoch: 340, iters: 8494, time: 0.064) G_GAN: 0.414 G_GAN_Feat: 0.880 G_ID: 0.111 G_Rec: 0.417 D_GP: 0.037 D_real: 0.995 D_fake: 0.591 +(epoch: 341, iters: 286, time: 0.064) G_GAN: 0.116 G_GAN_Feat: 0.687 G_ID: 0.099 G_Rec: 0.306 D_GP: 0.038 D_real: 1.007 D_fake: 0.884 +(epoch: 341, iters: 686, time: 0.063) G_GAN: 0.112 G_GAN_Feat: 0.931 G_ID: 0.128 G_Rec: 0.450 D_GP: 0.049 D_real: 0.752 D_fake: 0.893 +(epoch: 341, iters: 1086, time: 0.063) G_GAN: 0.079 G_GAN_Feat: 0.660 G_ID: 0.125 G_Rec: 0.280 D_GP: 0.031 D_real: 0.994 D_fake: 0.921 +(epoch: 341, iters: 1486, time: 0.064) G_GAN: 0.594 G_GAN_Feat: 0.969 G_ID: 0.132 G_Rec: 0.425 D_GP: 0.066 D_real: 1.092 D_fake: 0.446 +(epoch: 341, iters: 1886, time: 0.064) G_GAN: 0.063 G_GAN_Feat: 0.754 G_ID: 0.103 G_Rec: 0.321 D_GP: 0.042 D_real: 0.883 D_fake: 0.937 +(epoch: 341, iters: 2286, time: 0.063) G_GAN: 0.118 G_GAN_Feat: 0.906 G_ID: 0.159 G_Rec: 0.385 D_GP: 0.048 D_real: 0.694 D_fake: 0.882 +(epoch: 341, iters: 2686, time: 0.064) G_GAN: 0.036 G_GAN_Feat: 0.773 G_ID: 0.099 G_Rec: 0.317 D_GP: 0.030 D_real: 0.859 D_fake: 0.964 +(epoch: 341, iters: 3086, time: 0.064) G_GAN: 0.333 G_GAN_Feat: 1.017 G_ID: 0.115 G_Rec: 0.425 D_GP: 0.059 D_real: 0.746 D_fake: 0.669 +(epoch: 341, iters: 3486, time: 0.063) G_GAN: 0.059 G_GAN_Feat: 0.768 G_ID: 0.107 G_Rec: 0.333 D_GP: 0.038 D_real: 0.877 D_fake: 0.942 +(epoch: 341, iters: 3886, time: 0.063) G_GAN: 0.293 G_GAN_Feat: 0.893 G_ID: 0.121 G_Rec: 0.378 D_GP: 0.041 D_real: 0.878 D_fake: 0.708 +(epoch: 341, iters: 4286, time: 0.064) G_GAN: 0.012 G_GAN_Feat: 0.795 G_ID: 0.093 G_Rec: 0.322 D_GP: 0.042 D_real: 0.851 D_fake: 0.989 +(epoch: 341, iters: 4686, time: 0.064) G_GAN: 0.483 G_GAN_Feat: 1.001 G_ID: 0.132 G_Rec: 0.492 D_GP: 0.058 D_real: 0.987 D_fake: 0.522 +(epoch: 341, iters: 5086, time: 0.063) G_GAN: 0.151 G_GAN_Feat: 0.746 G_ID: 0.121 G_Rec: 0.310 D_GP: 0.030 D_real: 1.021 D_fake: 0.849 +(epoch: 341, iters: 5486, time: 0.063) G_GAN: 0.286 G_GAN_Feat: 0.955 G_ID: 0.126 G_Rec: 0.435 D_GP: 0.033 D_real: 0.899 D_fake: 0.716 +(epoch: 341, iters: 5886, time: 0.064) G_GAN: 0.048 G_GAN_Feat: 0.905 G_ID: 0.112 G_Rec: 0.337 D_GP: 0.051 D_real: 0.483 D_fake: 0.952 +(epoch: 341, iters: 6286, time: 0.064) G_GAN: 0.507 G_GAN_Feat: 0.961 G_ID: 0.132 G_Rec: 0.402 D_GP: 0.058 D_real: 0.917 D_fake: 0.506 +(epoch: 341, iters: 6686, time: 0.064) G_GAN: 0.004 G_GAN_Feat: 0.749 G_ID: 0.125 G_Rec: 0.321 D_GP: 0.026 D_real: 0.885 D_fake: 0.996 +(epoch: 341, iters: 7086, time: 0.064) G_GAN: 0.376 G_GAN_Feat: 1.061 G_ID: 0.128 G_Rec: 0.417 D_GP: 0.033 D_real: 0.874 D_fake: 0.625 +(epoch: 341, iters: 7486, time: 0.063) G_GAN: 0.201 G_GAN_Feat: 0.861 G_ID: 0.111 G_Rec: 0.319 D_GP: 0.104 D_real: 0.550 D_fake: 0.799 +(epoch: 341, iters: 7886, time: 0.064) G_GAN: 0.340 G_GAN_Feat: 0.902 G_ID: 0.146 G_Rec: 0.447 D_GP: 0.029 D_real: 1.069 D_fake: 0.665 +(epoch: 341, iters: 8286, time: 0.064) G_GAN: 0.239 G_GAN_Feat: 0.730 G_ID: 0.089 G_Rec: 0.314 D_GP: 0.028 D_real: 1.144 D_fake: 0.761 +(epoch: 341, iters: 8686, time: 0.064) G_GAN: 0.320 G_GAN_Feat: 0.993 G_ID: 0.146 G_Rec: 0.453 D_GP: 0.033 D_real: 0.844 D_fake: 0.681 +(epoch: 342, iters: 478, time: 0.064) G_GAN: 0.384 G_GAN_Feat: 0.777 G_ID: 0.119 G_Rec: 0.310 D_GP: 0.038 D_real: 1.159 D_fake: 0.616 +(epoch: 342, iters: 878, time: 0.064) G_GAN: 0.452 G_GAN_Feat: 0.988 G_ID: 0.132 G_Rec: 0.440 D_GP: 0.063 D_real: 0.970 D_fake: 0.554 +(epoch: 342, iters: 1278, time: 0.064) G_GAN: 0.121 G_GAN_Feat: 0.845 G_ID: 0.112 G_Rec: 0.320 D_GP: 0.060 D_real: 0.614 D_fake: 0.880 +(epoch: 342, iters: 1678, time: 0.064) G_GAN: 0.255 G_GAN_Feat: 0.965 G_ID: 0.157 G_Rec: 0.431 D_GP: 0.029 D_real: 0.774 D_fake: 0.745 +(epoch: 342, iters: 2078, time: 0.063) G_GAN: 0.370 G_GAN_Feat: 0.789 G_ID: 0.100 G_Rec: 0.313 D_GP: 0.043 D_real: 1.070 D_fake: 0.633 +(epoch: 342, iters: 2478, time: 0.064) G_GAN: 0.239 G_GAN_Feat: 1.074 G_ID: 0.142 G_Rec: 0.462 D_GP: 0.079 D_real: 0.513 D_fake: 0.763 +(epoch: 342, iters: 2878, time: 0.064) G_GAN: 0.208 G_GAN_Feat: 0.788 G_ID: 0.110 G_Rec: 0.358 D_GP: 0.030 D_real: 1.062 D_fake: 0.792 +(epoch: 342, iters: 3278, time: 0.064) G_GAN: 0.705 G_GAN_Feat: 0.880 G_ID: 0.129 G_Rec: 0.447 D_GP: 0.031 D_real: 1.268 D_fake: 0.397 +(epoch: 342, iters: 3678, time: 0.063) G_GAN: 0.106 G_GAN_Feat: 0.689 G_ID: 0.099 G_Rec: 0.314 D_GP: 0.030 D_real: 0.979 D_fake: 0.894 +(epoch: 342, iters: 4078, time: 0.064) G_GAN: 0.472 G_GAN_Feat: 0.988 G_ID: 0.130 G_Rec: 0.478 D_GP: 0.037 D_real: 1.095 D_fake: 0.534 +(epoch: 342, iters: 4478, time: 0.063) G_GAN: 0.314 G_GAN_Feat: 0.789 G_ID: 0.117 G_Rec: 0.356 D_GP: 0.053 D_real: 0.972 D_fake: 0.688 +(epoch: 342, iters: 4878, time: 0.064) G_GAN: 0.257 G_GAN_Feat: 0.960 G_ID: 0.146 G_Rec: 0.449 D_GP: 0.218 D_real: 0.874 D_fake: 0.746 +(epoch: 342, iters: 5278, time: 0.064) G_GAN: 0.002 G_GAN_Feat: 0.728 G_ID: 0.096 G_Rec: 0.289 D_GP: 0.048 D_real: 0.849 D_fake: 0.998 +(epoch: 342, iters: 5678, time: 0.063) G_GAN: 0.413 G_GAN_Feat: 1.042 G_ID: 0.134 G_Rec: 0.446 D_GP: 0.057 D_real: 0.943 D_fake: 0.604 +(epoch: 342, iters: 6078, time: 0.063) G_GAN: 0.014 G_GAN_Feat: 0.830 G_ID: 0.096 G_Rec: 0.323 D_GP: 0.033 D_real: 0.770 D_fake: 0.987 +(epoch: 342, iters: 6478, time: 0.063) G_GAN: 0.291 G_GAN_Feat: 1.018 G_ID: 0.124 G_Rec: 0.438 D_GP: 0.053 D_real: 0.724 D_fake: 0.710 +(epoch: 342, iters: 6878, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 0.726 G_ID: 0.112 G_Rec: 0.295 D_GP: 0.030 D_real: 1.149 D_fake: 0.664 +(epoch: 342, iters: 7278, time: 0.063) G_GAN: 0.410 G_GAN_Feat: 0.947 G_ID: 0.152 G_Rec: 0.396 D_GP: 0.035 D_real: 1.167 D_fake: 0.593 +(epoch: 342, iters: 7678, time: 0.063) G_GAN: 0.137 G_GAN_Feat: 1.002 G_ID: 0.103 G_Rec: 0.405 D_GP: 0.245 D_real: 0.440 D_fake: 0.865 +(epoch: 342, iters: 8078, time: 0.063) G_GAN: 0.448 G_GAN_Feat: 1.180 G_ID: 0.145 G_Rec: 0.448 D_GP: 0.067 D_real: 0.460 D_fake: 0.554 +(epoch: 342, iters: 8478, time: 0.064) G_GAN: 0.290 G_GAN_Feat: 0.967 G_ID: 0.125 G_Rec: 0.334 D_GP: 0.080 D_real: 0.643 D_fake: 0.714 +(epoch: 343, iters: 270, time: 0.063) G_GAN: 0.520 G_GAN_Feat: 1.167 G_ID: 0.150 G_Rec: 0.447 D_GP: 0.032 D_real: 0.905 D_fake: 0.485 +(epoch: 343, iters: 670, time: 0.063) G_GAN: 0.062 G_GAN_Feat: 0.700 G_ID: 0.110 G_Rec: 0.347 D_GP: 0.027 D_real: 0.964 D_fake: 0.938 +(epoch: 343, iters: 1070, time: 0.064) G_GAN: 0.430 G_GAN_Feat: 0.931 G_ID: 0.157 G_Rec: 0.435 D_GP: 0.036 D_real: 0.926 D_fake: 0.590 +(epoch: 343, iters: 1470, time: 0.064) G_GAN: -0.107 G_GAN_Feat: 0.818 G_ID: 0.118 G_Rec: 0.361 D_GP: 0.121 D_real: 0.617 D_fake: 1.107 +(epoch: 343, iters: 1870, time: 0.063) G_GAN: 0.242 G_GAN_Feat: 0.864 G_ID: 0.132 G_Rec: 0.372 D_GP: 0.043 D_real: 0.989 D_fake: 0.760 +(epoch: 343, iters: 2270, time: 0.063) G_GAN: 0.386 G_GAN_Feat: 0.692 G_ID: 0.106 G_Rec: 0.302 D_GP: 0.036 D_real: 1.285 D_fake: 0.621 +(epoch: 343, iters: 2670, time: 0.063) G_GAN: 0.560 G_GAN_Feat: 0.997 G_ID: 0.151 G_Rec: 0.486 D_GP: 0.070 D_real: 1.069 D_fake: 0.453 +(epoch: 343, iters: 3070, time: 0.064) G_GAN: 0.214 G_GAN_Feat: 0.721 G_ID: 0.111 G_Rec: 0.287 D_GP: 0.042 D_real: 0.967 D_fake: 0.786 +(epoch: 343, iters: 3470, time: 0.064) G_GAN: 0.796 G_GAN_Feat: 1.043 G_ID: 0.141 G_Rec: 0.429 D_GP: 0.094 D_real: 0.997 D_fake: 0.293 +(epoch: 343, iters: 3870, time: 0.063) G_GAN: -0.083 G_GAN_Feat: 0.800 G_ID: 0.110 G_Rec: 0.312 D_GP: 0.044 D_real: 0.786 D_fake: 1.084 +(epoch: 343, iters: 4270, time: 0.064) G_GAN: 0.692 G_GAN_Feat: 1.064 G_ID: 0.125 G_Rec: 0.458 D_GP: 0.039 D_real: 0.959 D_fake: 0.343 +(epoch: 343, iters: 4670, time: 0.064) G_GAN: 0.266 G_GAN_Feat: 0.943 G_ID: 0.114 G_Rec: 0.354 D_GP: 0.981 D_real: 0.401 D_fake: 0.739 +(epoch: 343, iters: 5070, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 1.181 G_ID: 0.133 G_Rec: 0.500 D_GP: 0.155 D_real: 0.439 D_fake: 0.786 +(epoch: 343, iters: 5470, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 0.724 G_ID: 0.115 G_Rec: 0.307 D_GP: 0.033 D_real: 1.126 D_fake: 0.738 +(epoch: 343, iters: 5870, time: 0.064) G_GAN: 0.315 G_GAN_Feat: 1.066 G_ID: 0.127 G_Rec: 0.394 D_GP: 0.057 D_real: 0.386 D_fake: 0.723 +(epoch: 343, iters: 6270, time: 0.064) G_GAN: 0.517 G_GAN_Feat: 0.857 G_ID: 0.103 G_Rec: 0.349 D_GP: 0.035 D_real: 1.306 D_fake: 0.493 +(epoch: 343, iters: 6670, time: 0.063) G_GAN: 0.105 G_GAN_Feat: 1.221 G_ID: 0.147 G_Rec: 0.490 D_GP: 0.172 D_real: 0.089 D_fake: 0.901 +(epoch: 343, iters: 7070, time: 0.063) G_GAN: 0.022 G_GAN_Feat: 0.750 G_ID: 0.122 G_Rec: 0.289 D_GP: 0.043 D_real: 0.745 D_fake: 0.978 +(epoch: 343, iters: 7470, time: 0.063) G_GAN: 0.286 G_GAN_Feat: 1.123 G_ID: 0.122 G_Rec: 0.434 D_GP: 0.093 D_real: 0.751 D_fake: 0.722 +(epoch: 343, iters: 7870, time: 0.064) G_GAN: 0.586 G_GAN_Feat: 0.821 G_ID: 0.099 G_Rec: 0.334 D_GP: 0.046 D_real: 1.389 D_fake: 0.468 +(epoch: 343, iters: 8270, time: 0.063) G_GAN: 0.401 G_GAN_Feat: 0.990 G_ID: 0.122 G_Rec: 0.428 D_GP: 0.029 D_real: 0.990 D_fake: 0.599 +(epoch: 343, iters: 8670, time: 0.063) G_GAN: 0.786 G_GAN_Feat: 0.828 G_ID: 0.113 G_Rec: 0.330 D_GP: 0.037 D_real: 1.386 D_fake: 0.275 +(epoch: 344, iters: 462, time: 0.063) G_GAN: 0.416 G_GAN_Feat: 0.961 G_ID: 0.136 G_Rec: 0.436 D_GP: 0.032 D_real: 1.005 D_fake: 0.587 +(epoch: 344, iters: 862, time: 0.064) G_GAN: 0.416 G_GAN_Feat: 0.836 G_ID: 0.097 G_Rec: 0.329 D_GP: 0.034 D_real: 1.131 D_fake: 0.585 +(epoch: 344, iters: 1262, time: 0.063) G_GAN: 0.545 G_GAN_Feat: 0.873 G_ID: 0.132 G_Rec: 0.378 D_GP: 0.032 D_real: 1.331 D_fake: 0.459 +(epoch: 344, iters: 1662, time: 0.063) G_GAN: 0.348 G_GAN_Feat: 0.764 G_ID: 0.123 G_Rec: 0.315 D_GP: 0.045 D_real: 1.153 D_fake: 0.658 +(epoch: 344, iters: 2062, time: 0.064) G_GAN: 0.637 G_GAN_Feat: 0.885 G_ID: 0.146 G_Rec: 0.453 D_GP: 0.033 D_real: 1.288 D_fake: 0.374 +(epoch: 344, iters: 2462, time: 0.064) G_GAN: 0.168 G_GAN_Feat: 0.732 G_ID: 0.113 G_Rec: 0.318 D_GP: 0.044 D_real: 0.979 D_fake: 0.832 +(epoch: 344, iters: 2862, time: 0.064) G_GAN: 0.366 G_GAN_Feat: 0.980 G_ID: 0.149 G_Rec: 0.445 D_GP: 0.033 D_real: 1.053 D_fake: 0.641 +(epoch: 344, iters: 3262, time: 0.063) G_GAN: 0.201 G_GAN_Feat: 0.681 G_ID: 0.102 G_Rec: 0.305 D_GP: 0.038 D_real: 1.129 D_fake: 0.799 +(epoch: 344, iters: 3662, time: 0.063) G_GAN: 0.500 G_GAN_Feat: 0.838 G_ID: 0.130 G_Rec: 0.379 D_GP: 0.039 D_real: 1.179 D_fake: 0.510 +(epoch: 344, iters: 4062, time: 0.064) G_GAN: 0.102 G_GAN_Feat: 0.687 G_ID: 0.108 G_Rec: 0.302 D_GP: 0.038 D_real: 0.934 D_fake: 0.898 +(epoch: 344, iters: 4462, time: 0.063) G_GAN: 0.623 G_GAN_Feat: 0.937 G_ID: 0.118 G_Rec: 0.413 D_GP: 0.032 D_real: 1.313 D_fake: 0.390 +(epoch: 344, iters: 4862, time: 0.063) G_GAN: 0.238 G_GAN_Feat: 0.706 G_ID: 0.111 G_Rec: 0.308 D_GP: 0.028 D_real: 1.040 D_fake: 0.762 +(epoch: 344, iters: 5262, time: 0.063) G_GAN: 0.667 G_GAN_Feat: 0.998 G_ID: 0.130 G_Rec: 0.440 D_GP: 0.034 D_real: 1.393 D_fake: 0.354 +(epoch: 344, iters: 5662, time: 0.064) G_GAN: -0.011 G_GAN_Feat: 0.892 G_ID: 0.100 G_Rec: 0.326 D_GP: 0.235 D_real: 0.322 D_fake: 1.012 +(epoch: 344, iters: 6062, time: 0.063) G_GAN: 0.635 G_GAN_Feat: 1.193 G_ID: 0.127 G_Rec: 0.447 D_GP: 0.050 D_real: 0.682 D_fake: 0.446 +(epoch: 344, iters: 6462, time: 0.063) G_GAN: 0.184 G_GAN_Feat: 0.736 G_ID: 0.093 G_Rec: 0.269 D_GP: 0.036 D_real: 0.927 D_fake: 0.816 +(epoch: 344, iters: 6862, time: 0.063) G_GAN: 0.786 G_GAN_Feat: 1.003 G_ID: 0.128 G_Rec: 0.411 D_GP: 0.033 D_real: 1.091 D_fake: 0.247 +(epoch: 344, iters: 7262, time: 0.064) G_GAN: 0.099 G_GAN_Feat: 0.854 G_ID: 0.126 G_Rec: 0.316 D_GP: 0.035 D_real: 0.753 D_fake: 0.901 +(epoch: 344, iters: 7662, time: 0.063) G_GAN: 0.648 G_GAN_Feat: 1.212 G_ID: 0.148 G_Rec: 0.488 D_GP: 0.044 D_real: 0.626 D_fake: 0.366 +(epoch: 344, iters: 8062, time: 0.063) G_GAN: 0.194 G_GAN_Feat: 0.735 G_ID: 0.105 G_Rec: 0.327 D_GP: 0.026 D_real: 1.125 D_fake: 0.809 +(epoch: 344, iters: 8462, time: 0.063) G_GAN: 0.723 G_GAN_Feat: 0.922 G_ID: 0.122 G_Rec: 0.434 D_GP: 0.031 D_real: 1.366 D_fake: 0.382 +(epoch: 345, iters: 254, time: 0.064) G_GAN: 0.213 G_GAN_Feat: 0.998 G_ID: 0.103 G_Rec: 0.341 D_GP: 0.153 D_real: 0.435 D_fake: 0.794 +(epoch: 345, iters: 654, time: 0.063) G_GAN: 0.741 G_GAN_Feat: 0.936 G_ID: 0.115 G_Rec: 0.384 D_GP: 0.033 D_real: 1.320 D_fake: 0.281 +(epoch: 345, iters: 1054, time: 0.063) G_GAN: 0.170 G_GAN_Feat: 0.817 G_ID: 0.105 G_Rec: 0.342 D_GP: 0.036 D_real: 0.928 D_fake: 0.832 +(epoch: 345, iters: 1454, time: 0.063) G_GAN: 0.591 G_GAN_Feat: 1.013 G_ID: 0.114 G_Rec: 0.446 D_GP: 0.036 D_real: 1.055 D_fake: 0.418 +(epoch: 345, iters: 1854, time: 0.064) G_GAN: 0.467 G_GAN_Feat: 1.051 G_ID: 0.101 G_Rec: 0.385 D_GP: 0.389 D_real: 0.475 D_fake: 0.625 +(epoch: 345, iters: 2254, time: 0.063) G_GAN: 0.382 G_GAN_Feat: 0.923 G_ID: 0.119 G_Rec: 0.429 D_GP: 0.028 D_real: 1.078 D_fake: 0.621 +(epoch: 345, iters: 2654, time: 0.063) G_GAN: 0.362 G_GAN_Feat: 0.843 G_ID: 0.097 G_Rec: 0.332 D_GP: 0.034 D_real: 1.169 D_fake: 0.655 +(epoch: 345, iters: 3054, time: 0.064) G_GAN: 0.506 G_GAN_Feat: 0.946 G_ID: 0.133 G_Rec: 0.417 D_GP: 0.035 D_real: 1.050 D_fake: 0.500 +(epoch: 345, iters: 3454, time: 0.064) G_GAN: 0.571 G_GAN_Feat: 0.910 G_ID: 0.106 G_Rec: 0.351 D_GP: 0.065 D_real: 0.935 D_fake: 0.529 +(epoch: 345, iters: 3854, time: 0.064) G_GAN: 0.547 G_GAN_Feat: 1.176 G_ID: 0.152 G_Rec: 0.470 D_GP: 0.153 D_real: 0.404 D_fake: 0.468 +(epoch: 345, iters: 4254, time: 0.064) G_GAN: 0.205 G_GAN_Feat: 0.858 G_ID: 0.103 G_Rec: 0.374 D_GP: 0.031 D_real: 0.671 D_fake: 0.796 +(epoch: 345, iters: 4654, time: 0.064) G_GAN: 0.426 G_GAN_Feat: 1.148 G_ID: 0.140 G_Rec: 0.509 D_GP: 0.205 D_real: 0.419 D_fake: 0.597 +(epoch: 345, iters: 5054, time: 0.064) G_GAN: 0.184 G_GAN_Feat: 0.824 G_ID: 0.094 G_Rec: 0.318 D_GP: 0.028 D_real: 1.014 D_fake: 0.816 +(epoch: 345, iters: 5454, time: 0.064) G_GAN: 0.826 G_GAN_Feat: 0.964 G_ID: 0.118 G_Rec: 0.469 D_GP: 0.036 D_real: 1.351 D_fake: 0.336 +(epoch: 345, iters: 5854, time: 0.064) G_GAN: 0.150 G_GAN_Feat: 0.661 G_ID: 0.086 G_Rec: 0.288 D_GP: 0.029 D_real: 1.027 D_fake: 0.850 +(epoch: 345, iters: 6254, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.896 G_ID: 0.125 G_Rec: 0.400 D_GP: 0.031 D_real: 0.997 D_fake: 0.725 +(epoch: 345, iters: 6654, time: 0.064) G_GAN: 0.545 G_GAN_Feat: 0.924 G_ID: 0.097 G_Rec: 0.361 D_GP: 0.490 D_real: 0.963 D_fake: 0.472 +(epoch: 345, iters: 7054, time: 0.064) G_GAN: 0.314 G_GAN_Feat: 1.033 G_ID: 0.124 G_Rec: 0.469 D_GP: 0.093 D_real: 0.682 D_fake: 0.689 +(epoch: 345, iters: 7454, time: 0.064) G_GAN: 0.178 G_GAN_Feat: 0.764 G_ID: 0.100 G_Rec: 0.302 D_GP: 0.036 D_real: 0.936 D_fake: 0.822 +(epoch: 345, iters: 7854, time: 0.064) G_GAN: 0.275 G_GAN_Feat: 1.005 G_ID: 0.135 G_Rec: 0.443 D_GP: 0.041 D_real: 0.768 D_fake: 0.726 +(epoch: 345, iters: 8254, time: 0.064) G_GAN: 0.084 G_GAN_Feat: 0.835 G_ID: 0.101 G_Rec: 0.319 D_GP: 0.046 D_real: 0.783 D_fake: 0.917 +(epoch: 345, iters: 8654, time: 0.064) G_GAN: 0.497 G_GAN_Feat: 0.982 G_ID: 0.135 G_Rec: 0.444 D_GP: 0.033 D_real: 1.192 D_fake: 0.505 +(epoch: 346, iters: 446, time: 0.064) G_GAN: 0.531 G_GAN_Feat: 1.044 G_ID: 0.104 G_Rec: 0.356 D_GP: 0.286 D_real: 0.468 D_fake: 0.536 +(epoch: 346, iters: 846, time: 0.063) G_GAN: 0.501 G_GAN_Feat: 1.169 G_ID: 0.117 G_Rec: 0.465 D_GP: 0.037 D_real: 0.421 D_fake: 0.506 +(epoch: 346, iters: 1246, time: 0.064) G_GAN: 0.122 G_GAN_Feat: 0.772 G_ID: 0.117 G_Rec: 0.342 D_GP: 0.030 D_real: 0.969 D_fake: 0.878 +(epoch: 346, iters: 1646, time: 0.063) G_GAN: 0.395 G_GAN_Feat: 0.933 G_ID: 0.122 G_Rec: 0.452 D_GP: 0.032 D_real: 1.008 D_fake: 0.614 +(epoch: 346, iters: 2046, time: 0.063) G_GAN: -0.136 G_GAN_Feat: 0.649 G_ID: 0.115 G_Rec: 0.290 D_GP: 0.030 D_real: 0.815 D_fake: 1.136 +(epoch: 346, iters: 2446, time: 0.063) G_GAN: 0.569 G_GAN_Feat: 0.990 G_ID: 0.116 G_Rec: 0.483 D_GP: 0.035 D_real: 0.963 D_fake: 0.477 +(epoch: 346, iters: 2846, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 0.758 G_ID: 0.104 G_Rec: 0.375 D_GP: 0.027 D_real: 1.022 D_fake: 0.779 +(epoch: 346, iters: 3246, time: 0.064) G_GAN: 0.438 G_GAN_Feat: 0.909 G_ID: 0.120 G_Rec: 0.430 D_GP: 0.031 D_real: 1.138 D_fake: 0.570 +(epoch: 346, iters: 3646, time: 0.063) G_GAN: -0.001 G_GAN_Feat: 0.734 G_ID: 0.147 G_Rec: 0.338 D_GP: 0.048 D_real: 0.836 D_fake: 1.001 +(epoch: 346, iters: 4046, time: 0.064) G_GAN: 0.431 G_GAN_Feat: 1.103 G_ID: 0.131 G_Rec: 0.480 D_GP: 0.231 D_real: 0.482 D_fake: 0.582 +(epoch: 346, iters: 4446, time: 0.064) G_GAN: 0.139 G_GAN_Feat: 0.744 G_ID: 0.120 G_Rec: 0.296 D_GP: 0.035 D_real: 1.025 D_fake: 0.870 +(epoch: 346, iters: 4846, time: 0.064) G_GAN: 0.424 G_GAN_Feat: 1.016 G_ID: 0.107 G_Rec: 0.426 D_GP: 0.042 D_real: 0.911 D_fake: 0.588 +(epoch: 346, iters: 5246, time: 0.064) G_GAN: 0.059 G_GAN_Feat: 0.886 G_ID: 0.119 G_Rec: 0.320 D_GP: 0.043 D_real: 0.555 D_fake: 0.941 +(epoch: 346, iters: 5646, time: 0.063) G_GAN: 0.287 G_GAN_Feat: 1.013 G_ID: 0.110 G_Rec: 0.406 D_GP: 0.044 D_real: 0.614 D_fake: 0.713 +(epoch: 346, iters: 6046, time: 0.064) G_GAN: 0.364 G_GAN_Feat: 0.822 G_ID: 0.101 G_Rec: 0.317 D_GP: 0.049 D_real: 1.076 D_fake: 0.645 +(epoch: 346, iters: 6446, time: 0.063) G_GAN: 0.664 G_GAN_Feat: 0.996 G_ID: 0.127 G_Rec: 0.460 D_GP: 0.031 D_real: 1.309 D_fake: 0.394 +(epoch: 346, iters: 6846, time: 0.063) G_GAN: 0.270 G_GAN_Feat: 0.732 G_ID: 0.106 G_Rec: 0.292 D_GP: 0.028 D_real: 1.103 D_fake: 0.730 +(epoch: 346, iters: 7246, time: 0.063) G_GAN: 0.538 G_GAN_Feat: 1.005 G_ID: 0.136 G_Rec: 0.453 D_GP: 0.037 D_real: 1.035 D_fake: 0.483 +(epoch: 346, iters: 7646, time: 0.064) G_GAN: 0.095 G_GAN_Feat: 0.793 G_ID: 0.122 G_Rec: 0.317 D_GP: 0.038 D_real: 0.967 D_fake: 0.906 +(epoch: 346, iters: 8046, time: 0.063) G_GAN: 0.738 G_GAN_Feat: 0.954 G_ID: 0.121 G_Rec: 0.445 D_GP: 0.032 D_real: 1.399 D_fake: 0.350 +(epoch: 346, iters: 8446, time: 0.063) G_GAN: 0.206 G_GAN_Feat: 0.782 G_ID: 0.116 G_Rec: 0.319 D_GP: 0.027 D_real: 1.058 D_fake: 0.794 +(epoch: 347, iters: 238, time: 0.063) G_GAN: 0.578 G_GAN_Feat: 1.049 G_ID: 0.111 G_Rec: 0.488 D_GP: 0.032 D_real: 1.070 D_fake: 0.427 +(epoch: 347, iters: 638, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.787 G_ID: 0.113 G_Rec: 0.316 D_GP: 0.031 D_real: 1.086 D_fake: 0.724 +(epoch: 347, iters: 1038, time: 0.063) G_GAN: 0.453 G_GAN_Feat: 1.089 G_ID: 0.130 G_Rec: 0.420 D_GP: 0.052 D_real: 0.690 D_fake: 0.551 +(epoch: 347, iters: 1438, time: 0.063) G_GAN: 0.682 G_GAN_Feat: 0.799 G_ID: 0.091 G_Rec: 0.345 D_GP: 0.035 D_real: 1.443 D_fake: 0.486 +(epoch: 347, iters: 1838, time: 0.063) G_GAN: 0.334 G_GAN_Feat: 0.865 G_ID: 0.136 G_Rec: 0.420 D_GP: 0.031 D_real: 1.081 D_fake: 0.667 +(epoch: 347, iters: 2238, time: 0.064) G_GAN: 0.190 G_GAN_Feat: 0.696 G_ID: 0.108 G_Rec: 0.331 D_GP: 0.028 D_real: 1.086 D_fake: 0.810 +(epoch: 347, iters: 2638, time: 0.064) G_GAN: 0.411 G_GAN_Feat: 0.883 G_ID: 0.126 G_Rec: 0.400 D_GP: 0.035 D_real: 1.017 D_fake: 0.596 +(epoch: 347, iters: 3038, time: 0.063) G_GAN: -0.197 G_GAN_Feat: 0.726 G_ID: 0.122 G_Rec: 0.347 D_GP: 0.039 D_real: 0.632 D_fake: 1.197 +(epoch: 347, iters: 3438, time: 0.064) G_GAN: 0.425 G_GAN_Feat: 0.885 G_ID: 0.122 G_Rec: 0.418 D_GP: 0.034 D_real: 1.079 D_fake: 0.592 +(epoch: 347, iters: 3838, time: 0.064) G_GAN: -0.071 G_GAN_Feat: 0.782 G_ID: 0.111 G_Rec: 0.347 D_GP: 0.053 D_real: 0.609 D_fake: 1.071 +(epoch: 347, iters: 4238, time: 0.063) G_GAN: 0.473 G_GAN_Feat: 0.984 G_ID: 0.126 G_Rec: 0.491 D_GP: 0.040 D_real: 1.144 D_fake: 0.546 +(epoch: 347, iters: 4638, time: 0.063) G_GAN: 0.082 G_GAN_Feat: 0.667 G_ID: 0.107 G_Rec: 0.295 D_GP: 0.037 D_real: 0.958 D_fake: 0.918 +(epoch: 347, iters: 5038, time: 0.064) G_GAN: 0.474 G_GAN_Feat: 0.948 G_ID: 0.130 G_Rec: 0.403 D_GP: 0.056 D_real: 1.092 D_fake: 0.568 +(epoch: 347, iters: 5438, time: 0.063) G_GAN: 0.107 G_GAN_Feat: 0.698 G_ID: 0.115 G_Rec: 0.325 D_GP: 0.035 D_real: 0.960 D_fake: 0.893 +(epoch: 347, iters: 5838, time: 0.063) G_GAN: 0.189 G_GAN_Feat: 0.977 G_ID: 0.138 G_Rec: 0.466 D_GP: 0.082 D_real: 0.604 D_fake: 0.811 +(epoch: 347, iters: 6238, time: 0.063) G_GAN: 0.014 G_GAN_Feat: 0.834 G_ID: 0.137 G_Rec: 0.343 D_GP: 0.042 D_real: 1.090 D_fake: 0.986 +(epoch: 347, iters: 6638, time: 0.064) G_GAN: 0.623 G_GAN_Feat: 0.944 G_ID: 0.111 G_Rec: 0.435 D_GP: 0.072 D_real: 1.297 D_fake: 0.395 +(epoch: 347, iters: 7038, time: 0.063) G_GAN: 0.351 G_GAN_Feat: 0.804 G_ID: 0.101 G_Rec: 0.369 D_GP: 0.075 D_real: 1.011 D_fake: 0.657 +(epoch: 347, iters: 7438, time: 0.063) G_GAN: 0.546 G_GAN_Feat: 0.994 G_ID: 0.127 G_Rec: 0.454 D_GP: 0.036 D_real: 1.015 D_fake: 0.468 +(epoch: 347, iters: 7838, time: 0.063) G_GAN: 0.221 G_GAN_Feat: 0.813 G_ID: 0.101 G_Rec: 0.328 D_GP: 0.037 D_real: 0.941 D_fake: 0.781 +(epoch: 347, iters: 8238, time: 0.064) G_GAN: 0.628 G_GAN_Feat: 0.997 G_ID: 0.126 G_Rec: 0.450 D_GP: 0.033 D_real: 1.245 D_fake: 0.389 +(epoch: 347, iters: 8638, time: 0.063) G_GAN: 0.077 G_GAN_Feat: 0.878 G_ID: 0.114 G_Rec: 0.350 D_GP: 0.067 D_real: 0.480 D_fake: 0.923 +(epoch: 348, iters: 430, time: 0.063) G_GAN: 0.409 G_GAN_Feat: 0.967 G_ID: 0.113 G_Rec: 0.444 D_GP: 0.039 D_real: 0.905 D_fake: 0.591 +(epoch: 348, iters: 830, time: 0.063) G_GAN: 0.387 G_GAN_Feat: 1.042 G_ID: 0.114 G_Rec: 0.362 D_GP: 0.087 D_real: 0.246 D_fake: 0.659 +(epoch: 348, iters: 1230, time: 0.064) G_GAN: 0.622 G_GAN_Feat: 1.152 G_ID: 0.124 G_Rec: 0.474 D_GP: 0.089 D_real: 0.969 D_fake: 0.422 +(epoch: 348, iters: 1630, time: 0.063) G_GAN: 0.435 G_GAN_Feat: 0.747 G_ID: 0.101 G_Rec: 0.305 D_GP: 0.044 D_real: 1.238 D_fake: 0.575 +(epoch: 348, iters: 2030, time: 0.063) G_GAN: 0.451 G_GAN_Feat: 1.107 G_ID: 0.114 G_Rec: 0.471 D_GP: 0.046 D_real: 0.663 D_fake: 0.557 +(epoch: 348, iters: 2430, time: 0.063) G_GAN: 0.165 G_GAN_Feat: 0.773 G_ID: 0.109 G_Rec: 0.308 D_GP: 0.033 D_real: 0.949 D_fake: 0.836 +(epoch: 348, iters: 2830, time: 0.064) G_GAN: 0.652 G_GAN_Feat: 1.000 G_ID: 0.144 G_Rec: 0.423 D_GP: 0.034 D_real: 1.255 D_fake: 0.371 +(epoch: 348, iters: 3230, time: 0.063) G_GAN: 0.078 G_GAN_Feat: 0.665 G_ID: 0.120 G_Rec: 0.287 D_GP: 0.032 D_real: 1.023 D_fake: 0.922 +(epoch: 348, iters: 3630, time: 0.063) G_GAN: 0.294 G_GAN_Feat: 1.051 G_ID: 0.130 G_Rec: 0.474 D_GP: 0.053 D_real: 0.872 D_fake: 0.706 +(epoch: 348, iters: 4030, time: 0.063) G_GAN: 0.200 G_GAN_Feat: 0.742 G_ID: 0.117 G_Rec: 0.311 D_GP: 0.029 D_real: 0.897 D_fake: 0.800 +(epoch: 348, iters: 4430, time: 0.064) G_GAN: 0.682 G_GAN_Feat: 1.080 G_ID: 0.114 G_Rec: 0.477 D_GP: 0.052 D_real: 0.955 D_fake: 0.352 +(epoch: 348, iters: 4830, time: 0.064) G_GAN: 0.147 G_GAN_Feat: 0.796 G_ID: 0.103 G_Rec: 0.322 D_GP: 0.051 D_real: 1.133 D_fake: 0.853 +(epoch: 348, iters: 5230, time: 0.064) G_GAN: 0.386 G_GAN_Feat: 1.031 G_ID: 0.122 G_Rec: 0.434 D_GP: 0.034 D_real: 0.794 D_fake: 0.618 +(epoch: 348, iters: 5630, time: 0.064) G_GAN: 1.125 G_GAN_Feat: 1.159 G_ID: 0.119 G_Rec: 0.408 D_GP: 0.116 D_real: 1.515 D_fake: 0.335 +(epoch: 348, iters: 6030, time: 0.064) G_GAN: 0.015 G_GAN_Feat: 0.883 G_ID: 0.137 G_Rec: 0.438 D_GP: 0.028 D_real: 0.751 D_fake: 0.986 +(epoch: 348, iters: 6430, time: 0.064) G_GAN: -0.104 G_GAN_Feat: 0.712 G_ID: 0.109 G_Rec: 0.313 D_GP: 0.032 D_real: 0.757 D_fake: 1.104 +(epoch: 348, iters: 6830, time: 0.064) G_GAN: 0.318 G_GAN_Feat: 0.948 G_ID: 0.125 G_Rec: 0.457 D_GP: 0.041 D_real: 0.940 D_fake: 0.697 +(epoch: 348, iters: 7230, time: 0.064) G_GAN: 0.121 G_GAN_Feat: 0.723 G_ID: 0.112 G_Rec: 0.298 D_GP: 0.041 D_real: 0.983 D_fake: 0.879 +(epoch: 348, iters: 7630, time: 0.064) G_GAN: 1.004 G_GAN_Feat: 1.187 G_ID: 0.123 G_Rec: 0.544 D_GP: 0.085 D_real: 1.040 D_fake: 0.166 +(epoch: 348, iters: 8030, time: 0.063) G_GAN: 0.400 G_GAN_Feat: 0.778 G_ID: 0.118 G_Rec: 0.339 D_GP: 0.032 D_real: 1.206 D_fake: 0.612 +(epoch: 348, iters: 8430, time: 0.063) G_GAN: 0.656 G_GAN_Feat: 1.044 G_ID: 0.123 G_Rec: 0.434 D_GP: 0.054 D_real: 1.004 D_fake: 0.359 +(epoch: 349, iters: 222, time: 0.063) G_GAN: 0.096 G_GAN_Feat: 0.956 G_ID: 0.112 G_Rec: 0.367 D_GP: 0.050 D_real: 0.365 D_fake: 0.905 +(epoch: 349, iters: 622, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 1.153 G_ID: 0.148 G_Rec: 0.462 D_GP: 0.079 D_real: 0.372 D_fake: 0.650 +(epoch: 349, iters: 1022, time: 0.063) G_GAN: 0.572 G_GAN_Feat: 0.951 G_ID: 0.095 G_Rec: 0.328 D_GP: 0.780 D_real: 0.589 D_fake: 0.461 +(epoch: 349, iters: 1422, time: 0.063) G_GAN: 0.590 G_GAN_Feat: 1.076 G_ID: 0.127 G_Rec: 0.441 D_GP: 0.071 D_real: 0.633 D_fake: 0.432 +(epoch: 349, iters: 1822, time: 0.063) G_GAN: 0.112 G_GAN_Feat: 0.844 G_ID: 0.100 G_Rec: 0.326 D_GP: 0.060 D_real: 0.744 D_fake: 0.889 +(epoch: 349, iters: 2222, time: 0.064) G_GAN: 0.800 G_GAN_Feat: 1.086 G_ID: 0.120 G_Rec: 0.399 D_GP: 0.042 D_real: 1.006 D_fake: 0.230 +(epoch: 349, iters: 2622, time: 0.063) G_GAN: 0.568 G_GAN_Feat: 1.078 G_ID: 0.115 G_Rec: 0.385 D_GP: 0.063 D_real: 1.012 D_fake: 0.615 +(epoch: 349, iters: 3022, time: 0.063) G_GAN: 0.435 G_GAN_Feat: 1.076 G_ID: 0.136 G_Rec: 0.431 D_GP: 0.040 D_real: 0.577 D_fake: 0.568 +(epoch: 349, iters: 3422, time: 0.064) G_GAN: 0.391 G_GAN_Feat: 0.975 G_ID: 0.103 G_Rec: 0.337 D_GP: 0.030 D_real: 0.785 D_fake: 0.609 +(epoch: 349, iters: 3822, time: 0.064) G_GAN: 0.916 G_GAN_Feat: 1.068 G_ID: 0.130 G_Rec: 0.415 D_GP: 0.037 D_real: 1.180 D_fake: 0.166 +(epoch: 349, iters: 4222, time: 0.063) G_GAN: 0.097 G_GAN_Feat: 1.066 G_ID: 0.117 G_Rec: 0.364 D_GP: 0.325 D_real: 0.259 D_fake: 0.908 +(epoch: 349, iters: 4622, time: 0.063) G_GAN: 0.694 G_GAN_Feat: 1.063 G_ID: 0.130 G_Rec: 0.599 D_GP: 0.037 D_real: 1.199 D_fake: 0.326 +(epoch: 349, iters: 5022, time: 0.064) G_GAN: -0.028 G_GAN_Feat: 0.792 G_ID: 0.095 G_Rec: 0.303 D_GP: 0.061 D_real: 0.716 D_fake: 1.029 +(epoch: 349, iters: 5422, time: 0.064) G_GAN: 0.589 G_GAN_Feat: 0.971 G_ID: 0.125 G_Rec: 0.477 D_GP: 0.041 D_real: 1.082 D_fake: 0.424 +(epoch: 349, iters: 5822, time: 0.063) G_GAN: 0.536 G_GAN_Feat: 0.745 G_ID: 0.102 G_Rec: 0.367 D_GP: 0.040 D_real: 1.371 D_fake: 0.470 +(epoch: 349, iters: 6222, time: 0.063) G_GAN: 0.552 G_GAN_Feat: 1.104 G_ID: 0.129 G_Rec: 0.438 D_GP: 0.042 D_real: 0.831 D_fake: 0.457 +(epoch: 349, iters: 6622, time: 0.064) G_GAN: 0.250 G_GAN_Feat: 0.677 G_ID: 0.121 G_Rec: 0.327 D_GP: 0.027 D_real: 1.175 D_fake: 0.751 +(epoch: 349, iters: 7022, time: 0.064) G_GAN: 0.367 G_GAN_Feat: 0.862 G_ID: 0.115 G_Rec: 0.384 D_GP: 0.044 D_real: 1.094 D_fake: 0.633 +(epoch: 349, iters: 7422, time: 0.063) G_GAN: 0.295 G_GAN_Feat: 0.788 G_ID: 0.127 G_Rec: 0.334 D_GP: 0.080 D_real: 0.967 D_fake: 0.708 +(epoch: 349, iters: 7822, time: 0.063) G_GAN: 0.467 G_GAN_Feat: 1.029 G_ID: 0.113 G_Rec: 0.450 D_GP: 0.040 D_real: 1.003 D_fake: 0.546 +(epoch: 349, iters: 8222, time: 0.063) G_GAN: 0.126 G_GAN_Feat: 0.795 G_ID: 0.090 G_Rec: 0.313 D_GP: 0.027 D_real: 1.063 D_fake: 0.874 +(epoch: 349, iters: 8622, time: 0.064) G_GAN: 0.384 G_GAN_Feat: 1.074 G_ID: 0.146 G_Rec: 0.471 D_GP: 0.094 D_real: 0.657 D_fake: 0.624 +(epoch: 350, iters: 414, time: 0.063) G_GAN: 0.203 G_GAN_Feat: 0.933 G_ID: 0.111 G_Rec: 0.323 D_GP: 0.059 D_real: 1.159 D_fake: 0.800 +(epoch: 350, iters: 814, time: 0.063) G_GAN: 0.876 G_GAN_Feat: 1.041 G_ID: 0.139 G_Rec: 0.436 D_GP: 0.037 D_real: 1.475 D_fake: 0.194 +(epoch: 350, iters: 1214, time: 0.063) G_GAN: 0.002 G_GAN_Feat: 0.795 G_ID: 0.107 G_Rec: 0.310 D_GP: 0.025 D_real: 0.758 D_fake: 0.998 +(epoch: 350, iters: 1614, time: 0.064) G_GAN: 0.620 G_GAN_Feat: 1.113 G_ID: 0.110 G_Rec: 0.408 D_GP: 0.068 D_real: 0.417 D_fake: 0.391 +(epoch: 350, iters: 2014, time: 0.063) G_GAN: 0.178 G_GAN_Feat: 0.874 G_ID: 0.097 G_Rec: 0.332 D_GP: 0.028 D_real: 0.941 D_fake: 0.822 +(epoch: 350, iters: 2414, time: 0.063) G_GAN: 1.007 G_GAN_Feat: 1.268 G_ID: 0.122 G_Rec: 0.507 D_GP: 0.182 D_real: 0.532 D_fake: 0.257 +(epoch: 350, iters: 2814, time: 0.063) G_GAN: 0.044 G_GAN_Feat: 0.686 G_ID: 0.103 G_Rec: 0.346 D_GP: 0.025 D_real: 0.956 D_fake: 0.956 +(epoch: 350, iters: 3214, time: 0.064) G_GAN: 0.401 G_GAN_Feat: 0.794 G_ID: 0.133 G_Rec: 0.382 D_GP: 0.026 D_real: 1.222 D_fake: 0.610 +(epoch: 350, iters: 3614, time: 0.063) G_GAN: 0.173 G_GAN_Feat: 0.650 G_ID: 0.107 G_Rec: 0.297 D_GP: 0.029 D_real: 1.071 D_fake: 0.828 +(epoch: 350, iters: 4014, time: 0.063) G_GAN: -0.070 G_GAN_Feat: 0.874 G_ID: 0.177 G_Rec: 0.411 D_GP: 0.031 D_real: 0.646 D_fake: 1.071 +(epoch: 350, iters: 4414, time: 0.063) G_GAN: 0.109 G_GAN_Feat: 0.678 G_ID: 0.096 G_Rec: 0.310 D_GP: 0.030 D_real: 0.964 D_fake: 0.892 +(epoch: 350, iters: 4814, time: 0.064) G_GAN: 0.078 G_GAN_Feat: 0.936 G_ID: 0.127 G_Rec: 0.463 D_GP: 0.039 D_real: 0.691 D_fake: 0.923 +(epoch: 350, iters: 5214, time: 0.063) G_GAN: 0.205 G_GAN_Feat: 0.703 G_ID: 0.101 G_Rec: 0.301 D_GP: 0.036 D_real: 1.060 D_fake: 0.802 +(epoch: 350, iters: 5614, time: 0.063) G_GAN: 0.383 G_GAN_Feat: 0.966 G_ID: 0.128 G_Rec: 0.461 D_GP: 0.049 D_real: 0.814 D_fake: 0.634 +(epoch: 350, iters: 6014, time: 0.063) G_GAN: 0.132 G_GAN_Feat: 0.753 G_ID: 0.097 G_Rec: 0.350 D_GP: 0.057 D_real: 0.796 D_fake: 0.868 +(epoch: 350, iters: 6414, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.908 G_ID: 0.125 G_Rec: 0.412 D_GP: 0.052 D_real: 0.787 D_fake: 0.679 +(epoch: 350, iters: 6814, time: 0.063) G_GAN: -0.100 G_GAN_Feat: 0.685 G_ID: 0.120 G_Rec: 0.301 D_GP: 0.034 D_real: 0.742 D_fake: 1.100 +(epoch: 350, iters: 7214, time: 0.063) G_GAN: 0.579 G_GAN_Feat: 1.001 G_ID: 0.138 G_Rec: 0.458 D_GP: 0.082 D_real: 0.844 D_fake: 0.441 +(epoch: 350, iters: 7614, time: 0.063) G_GAN: 0.053 G_GAN_Feat: 0.734 G_ID: 0.093 G_Rec: 0.343 D_GP: 0.030 D_real: 1.024 D_fake: 0.950 +(epoch: 350, iters: 8014, time: 0.064) G_GAN: 0.267 G_GAN_Feat: 0.997 G_ID: 0.126 G_Rec: 0.441 D_GP: 0.055 D_real: 0.590 D_fake: 0.734 +(epoch: 350, iters: 8414, time: 0.064) G_GAN: 0.279 G_GAN_Feat: 0.793 G_ID: 0.110 G_Rec: 0.356 D_GP: 0.064 D_real: 0.953 D_fake: 0.726 +(epoch: 351, iters: 206, time: 0.064) G_GAN: 0.674 G_GAN_Feat: 1.022 G_ID: 0.133 G_Rec: 0.437 D_GP: 0.090 D_real: 0.877 D_fake: 0.376 +(epoch: 351, iters: 606, time: 0.064) G_GAN: 0.187 G_GAN_Feat: 0.811 G_ID: 0.101 G_Rec: 0.313 D_GP: 0.123 D_real: 0.690 D_fake: 0.814 +(epoch: 351, iters: 1006, time: 0.064) G_GAN: 0.513 G_GAN_Feat: 1.072 G_ID: 0.134 G_Rec: 0.449 D_GP: 0.062 D_real: 0.933 D_fake: 0.493 +(epoch: 351, iters: 1406, time: 0.064) G_GAN: 0.524 G_GAN_Feat: 0.703 G_ID: 0.093 G_Rec: 0.272 D_GP: 0.034 D_real: 1.402 D_fake: 0.488 +(epoch: 351, iters: 1806, time: 0.064) G_GAN: 0.604 G_GAN_Feat: 1.152 G_ID: 0.131 G_Rec: 0.464 D_GP: 0.319 D_real: 0.411 D_fake: 0.439 +(epoch: 351, iters: 2206, time: 0.064) G_GAN: 0.368 G_GAN_Feat: 0.853 G_ID: 0.110 G_Rec: 0.322 D_GP: 0.338 D_real: 0.614 D_fake: 0.644 +(epoch: 351, iters: 2606, time: 0.064) G_GAN: 0.497 G_GAN_Feat: 1.051 G_ID: 0.120 G_Rec: 0.431 D_GP: 0.066 D_real: 0.847 D_fake: 0.509 +(epoch: 351, iters: 3006, time: 0.064) G_GAN: 0.415 G_GAN_Feat: 0.923 G_ID: 0.116 G_Rec: 0.352 D_GP: 0.103 D_real: 0.514 D_fake: 0.609 +(epoch: 351, iters: 3406, time: 0.063) G_GAN: 0.568 G_GAN_Feat: 0.983 G_ID: 0.129 G_Rec: 0.456 D_GP: 0.042 D_real: 0.979 D_fake: 0.443 +(epoch: 351, iters: 3806, time: 0.063) G_GAN: 0.353 G_GAN_Feat: 0.889 G_ID: 0.106 G_Rec: 0.305 D_GP: 0.049 D_real: 0.624 D_fake: 0.649 +(epoch: 351, iters: 4206, time: 0.064) G_GAN: 0.238 G_GAN_Feat: 1.053 G_ID: 0.137 G_Rec: 0.404 D_GP: 0.044 D_real: 0.564 D_fake: 0.763 +(epoch: 351, iters: 4606, time: 0.064) G_GAN: 0.484 G_GAN_Feat: 0.749 G_ID: 0.102 G_Rec: 0.319 D_GP: 0.041 D_real: 1.449 D_fake: 0.523 +(epoch: 351, iters: 5006, time: 0.064) G_GAN: 0.445 G_GAN_Feat: 1.006 G_ID: 0.143 G_Rec: 0.434 D_GP: 0.080 D_real: 0.634 D_fake: 0.561 +(epoch: 351, iters: 5406, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 0.987 G_ID: 0.114 G_Rec: 0.358 D_GP: 0.356 D_real: 0.402 D_fake: 0.651 +(epoch: 351, iters: 5806, time: 0.064) G_GAN: 0.194 G_GAN_Feat: 0.974 G_ID: 0.115 G_Rec: 0.461 D_GP: 0.032 D_real: 0.848 D_fake: 0.807 +(epoch: 351, iters: 6206, time: 0.064) G_GAN: 0.046 G_GAN_Feat: 0.652 G_ID: 0.106 G_Rec: 0.313 D_GP: 0.032 D_real: 0.879 D_fake: 0.954 +(epoch: 351, iters: 6606, time: 0.064) G_GAN: 0.426 G_GAN_Feat: 0.983 G_ID: 0.126 G_Rec: 0.466 D_GP: 0.048 D_real: 1.015 D_fake: 0.598 +(epoch: 351, iters: 7006, time: 0.063) G_GAN: 0.213 G_GAN_Feat: 0.791 G_ID: 0.100 G_Rec: 0.348 D_GP: 0.080 D_real: 0.799 D_fake: 0.787 +(epoch: 351, iters: 7406, time: 0.063) G_GAN: 0.357 G_GAN_Feat: 0.950 G_ID: 0.131 G_Rec: 0.436 D_GP: 0.048 D_real: 0.914 D_fake: 0.660 +(epoch: 351, iters: 7806, time: 0.064) G_GAN: 0.168 G_GAN_Feat: 0.872 G_ID: 0.108 G_Rec: 0.363 D_GP: 0.063 D_real: 0.709 D_fake: 0.833 +(epoch: 351, iters: 8206, time: 0.063) G_GAN: 0.594 G_GAN_Feat: 1.010 G_ID: 0.120 G_Rec: 0.490 D_GP: 0.048 D_real: 1.162 D_fake: 0.436 +(epoch: 351, iters: 8606, time: 0.064) G_GAN: 0.130 G_GAN_Feat: 0.739 G_ID: 0.104 G_Rec: 0.331 D_GP: 0.043 D_real: 0.863 D_fake: 0.871 +(epoch: 352, iters: 398, time: 0.063) G_GAN: 0.590 G_GAN_Feat: 0.852 G_ID: 0.113 G_Rec: 0.378 D_GP: 0.031 D_real: 1.353 D_fake: 0.442 +(epoch: 352, iters: 798, time: 0.063) G_GAN: 0.011 G_GAN_Feat: 0.805 G_ID: 0.097 G_Rec: 0.338 D_GP: 0.037 D_real: 0.797 D_fake: 0.989 +(epoch: 352, iters: 1198, time: 0.063) G_GAN: 0.370 G_GAN_Feat: 0.992 G_ID: 0.132 G_Rec: 0.453 D_GP: 0.045 D_real: 0.720 D_fake: 0.641 +(epoch: 352, iters: 1598, time: 0.064) G_GAN: 0.217 G_GAN_Feat: 0.850 G_ID: 0.105 G_Rec: 0.319 D_GP: 0.161 D_real: 0.482 D_fake: 0.783 +(epoch: 352, iters: 1998, time: 0.063) G_GAN: 0.700 G_GAN_Feat: 1.200 G_ID: 0.112 G_Rec: 0.445 D_GP: 0.089 D_real: 0.561 D_fake: 0.329 +(epoch: 352, iters: 2398, time: 0.063) G_GAN: 0.284 G_GAN_Feat: 0.721 G_ID: 0.092 G_Rec: 0.283 D_GP: 0.031 D_real: 1.123 D_fake: 0.716 +(epoch: 352, iters: 2798, time: 0.063) G_GAN: 0.577 G_GAN_Feat: 0.984 G_ID: 0.121 G_Rec: 0.423 D_GP: 0.036 D_real: 1.187 D_fake: 0.430 +(epoch: 352, iters: 3198, time: 0.064) G_GAN: 0.512 G_GAN_Feat: 0.928 G_ID: 0.105 G_Rec: 0.331 D_GP: 0.044 D_real: 1.014 D_fake: 0.489 +(epoch: 352, iters: 3598, time: 0.064) G_GAN: 0.583 G_GAN_Feat: 1.057 G_ID: 0.112 G_Rec: 0.426 D_GP: 0.040 D_real: 1.040 D_fake: 0.435 +(epoch: 352, iters: 3998, time: 0.064) G_GAN: -0.089 G_GAN_Feat: 0.886 G_ID: 0.102 G_Rec: 0.373 D_GP: 0.156 D_real: 0.558 D_fake: 1.090 +(epoch: 352, iters: 4398, time: 0.064) G_GAN: 0.268 G_GAN_Feat: 0.944 G_ID: 0.120 G_Rec: 0.424 D_GP: 0.032 D_real: 0.911 D_fake: 0.733 +(epoch: 352, iters: 4798, time: 0.064) G_GAN: -0.094 G_GAN_Feat: 0.710 G_ID: 0.115 G_Rec: 0.299 D_GP: 0.032 D_real: 0.875 D_fake: 1.094 +(epoch: 352, iters: 5198, time: 0.064) G_GAN: 0.549 G_GAN_Feat: 1.031 G_ID: 0.126 G_Rec: 0.420 D_GP: 0.044 D_real: 0.980 D_fake: 0.461 +(epoch: 352, iters: 5598, time: 0.064) G_GAN: 0.384 G_GAN_Feat: 0.902 G_ID: 0.119 G_Rec: 0.319 D_GP: 0.037 D_real: 0.874 D_fake: 0.629 +(epoch: 352, iters: 5998, time: 0.064) G_GAN: 0.673 G_GAN_Feat: 1.119 G_ID: 0.113 G_Rec: 0.429 D_GP: 0.064 D_real: 0.576 D_fake: 0.352 +(epoch: 352, iters: 6398, time: 0.064) G_GAN: 0.040 G_GAN_Feat: 0.681 G_ID: 0.103 G_Rec: 0.299 D_GP: 0.027 D_real: 0.967 D_fake: 0.960 +(epoch: 352, iters: 6798, time: 0.064) G_GAN: 0.661 G_GAN_Feat: 1.068 G_ID: 0.112 G_Rec: 0.454 D_GP: 0.039 D_real: 1.037 D_fake: 0.368 +(epoch: 352, iters: 7198, time: 0.064) G_GAN: 0.116 G_GAN_Feat: 0.828 G_ID: 0.122 G_Rec: 0.320 D_GP: 0.036 D_real: 0.806 D_fake: 0.897 +(epoch: 352, iters: 7598, time: 0.064) G_GAN: 0.588 G_GAN_Feat: 1.122 G_ID: 0.128 G_Rec: 0.467 D_GP: 0.053 D_real: 0.980 D_fake: 0.449 +(epoch: 352, iters: 7998, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 0.899 G_ID: 0.129 G_Rec: 0.327 D_GP: 0.322 D_real: 0.703 D_fake: 0.838 +(epoch: 352, iters: 8398, time: 0.064) G_GAN: 0.516 G_GAN_Feat: 0.954 G_ID: 0.125 G_Rec: 0.393 D_GP: 0.053 D_real: 1.097 D_fake: 0.498 +(epoch: 353, iters: 190, time: 0.064) G_GAN: 0.053 G_GAN_Feat: 0.761 G_ID: 0.123 G_Rec: 0.327 D_GP: 0.028 D_real: 0.987 D_fake: 0.947 +(epoch: 353, iters: 590, time: 0.064) G_GAN: 0.445 G_GAN_Feat: 0.948 G_ID: 0.121 G_Rec: 0.437 D_GP: 0.035 D_real: 1.053 D_fake: 0.565 +(epoch: 353, iters: 990, time: 0.064) G_GAN: 0.380 G_GAN_Feat: 0.761 G_ID: 0.097 G_Rec: 0.307 D_GP: 0.032 D_real: 1.239 D_fake: 0.621 +(epoch: 353, iters: 1390, time: 0.064) G_GAN: 0.372 G_GAN_Feat: 0.877 G_ID: 0.130 G_Rec: 0.440 D_GP: 0.032 D_real: 1.200 D_fake: 0.628 +(epoch: 353, iters: 1790, time: 0.064) G_GAN: 0.235 G_GAN_Feat: 0.716 G_ID: 0.104 G_Rec: 0.295 D_GP: 0.031 D_real: 1.149 D_fake: 0.766 +(epoch: 353, iters: 2190, time: 0.064) G_GAN: 0.453 G_GAN_Feat: 0.894 G_ID: 0.138 G_Rec: 0.408 D_GP: 0.035 D_real: 0.967 D_fake: 0.552 +(epoch: 353, iters: 2590, time: 0.064) G_GAN: 0.081 G_GAN_Feat: 0.754 G_ID: 0.114 G_Rec: 0.372 D_GP: 0.030 D_real: 0.968 D_fake: 0.919 +(epoch: 353, iters: 2990, time: 0.064) G_GAN: 0.367 G_GAN_Feat: 1.039 G_ID: 0.130 G_Rec: 0.439 D_GP: 0.044 D_real: 0.722 D_fake: 0.636 +(epoch: 353, iters: 3390, time: 0.064) G_GAN: 0.344 G_GAN_Feat: 0.970 G_ID: 0.100 G_Rec: 0.345 D_GP: 0.185 D_real: 0.327 D_fake: 0.692 +(epoch: 353, iters: 3790, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 1.251 G_ID: 0.146 G_Rec: 0.461 D_GP: 0.065 D_real: 0.202 D_fake: 0.691 +(epoch: 353, iters: 4190, time: 0.064) G_GAN: 0.266 G_GAN_Feat: 0.741 G_ID: 0.084 G_Rec: 0.341 D_GP: 0.030 D_real: 1.238 D_fake: 0.736 +(epoch: 353, iters: 4590, time: 0.064) G_GAN: 0.337 G_GAN_Feat: 0.884 G_ID: 0.134 G_Rec: 0.440 D_GP: 0.031 D_real: 1.074 D_fake: 0.664 +(epoch: 353, iters: 4990, time: 0.064) G_GAN: 0.014 G_GAN_Feat: 0.656 G_ID: 0.109 G_Rec: 0.303 D_GP: 0.029 D_real: 0.903 D_fake: 0.987 +(epoch: 353, iters: 5390, time: 0.064) G_GAN: 0.348 G_GAN_Feat: 0.840 G_ID: 0.119 G_Rec: 0.388 D_GP: 0.034 D_real: 0.958 D_fake: 0.663 +(epoch: 353, iters: 5790, time: 0.064) G_GAN: 0.093 G_GAN_Feat: 0.565 G_ID: 0.081 G_Rec: 0.269 D_GP: 0.028 D_real: 1.081 D_fake: 0.908 +(epoch: 353, iters: 6190, time: 0.064) G_GAN: 0.436 G_GAN_Feat: 0.801 G_ID: 0.132 G_Rec: 0.380 D_GP: 0.035 D_real: 1.142 D_fake: 0.596 +(epoch: 353, iters: 6590, time: 0.064) G_GAN: -0.069 G_GAN_Feat: 0.719 G_ID: 0.099 G_Rec: 0.366 D_GP: 0.045 D_real: 0.805 D_fake: 1.069 +(epoch: 353, iters: 6990, time: 0.064) G_GAN: -0.044 G_GAN_Feat: 0.840 G_ID: 0.129 G_Rec: 0.405 D_GP: 0.039 D_real: 0.591 D_fake: 1.044 +(epoch: 353, iters: 7390, time: 0.064) G_GAN: -0.122 G_GAN_Feat: 0.687 G_ID: 0.110 G_Rec: 0.321 D_GP: 0.039 D_real: 0.709 D_fake: 1.122 +(epoch: 353, iters: 7790, time: 0.064) G_GAN: 0.538 G_GAN_Feat: 0.943 G_ID: 0.121 G_Rec: 0.493 D_GP: 0.042 D_real: 1.152 D_fake: 0.546 +(epoch: 353, iters: 8190, time: 0.064) G_GAN: 0.093 G_GAN_Feat: 0.677 G_ID: 0.106 G_Rec: 0.314 D_GP: 0.048 D_real: 0.854 D_fake: 0.907 +(epoch: 353, iters: 8590, time: 0.064) G_GAN: 0.155 G_GAN_Feat: 0.896 G_ID: 0.130 G_Rec: 0.415 D_GP: 0.060 D_real: 0.749 D_fake: 0.845 +(epoch: 354, iters: 382, time: 0.064) G_GAN: -0.078 G_GAN_Feat: 0.752 G_ID: 0.123 G_Rec: 0.339 D_GP: 0.052 D_real: 0.759 D_fake: 1.079 +(epoch: 354, iters: 782, time: 0.064) G_GAN: -0.084 G_GAN_Feat: 1.019 G_ID: 0.131 G_Rec: 0.483 D_GP: 0.052 D_real: 0.392 D_fake: 1.084 +(epoch: 354, iters: 1182, time: 0.064) G_GAN: 0.093 G_GAN_Feat: 0.687 G_ID: 0.086 G_Rec: 0.314 D_GP: 0.074 D_real: 0.805 D_fake: 0.907 +(epoch: 354, iters: 1582, time: 0.064) G_GAN: 0.425 G_GAN_Feat: 0.878 G_ID: 0.131 G_Rec: 0.403 D_GP: 0.040 D_real: 1.055 D_fake: 0.581 +(epoch: 354, iters: 1982, time: 0.064) G_GAN: 0.209 G_GAN_Feat: 0.679 G_ID: 0.099 G_Rec: 0.286 D_GP: 0.045 D_real: 1.021 D_fake: 0.794 +(epoch: 354, iters: 2382, time: 0.064) G_GAN: 0.201 G_GAN_Feat: 0.916 G_ID: 0.131 G_Rec: 0.425 D_GP: 0.064 D_real: 0.724 D_fake: 0.799 +(epoch: 354, iters: 2782, time: 0.064) G_GAN: 0.077 G_GAN_Feat: 0.785 G_ID: 0.102 G_Rec: 0.343 D_GP: 0.050 D_real: 0.763 D_fake: 0.923 +(epoch: 354, iters: 3182, time: 0.064) G_GAN: 0.285 G_GAN_Feat: 0.901 G_ID: 0.118 G_Rec: 0.440 D_GP: 0.042 D_real: 0.914 D_fake: 0.715 +(epoch: 354, iters: 3582, time: 0.064) G_GAN: 0.159 G_GAN_Feat: 0.812 G_ID: 0.109 G_Rec: 0.333 D_GP: 0.061 D_real: 0.823 D_fake: 0.841 +(epoch: 354, iters: 3982, time: 0.064) G_GAN: 0.057 G_GAN_Feat: 0.955 G_ID: 0.129 G_Rec: 0.426 D_GP: 0.047 D_real: 0.730 D_fake: 0.943 +(epoch: 354, iters: 4382, time: 0.064) G_GAN: 0.287 G_GAN_Feat: 0.869 G_ID: 0.102 G_Rec: 0.341 D_GP: 0.089 D_real: 1.064 D_fake: 0.720 +(epoch: 354, iters: 4782, time: 0.064) G_GAN: 0.499 G_GAN_Feat: 1.049 G_ID: 0.127 G_Rec: 0.462 D_GP: 0.427 D_real: 0.629 D_fake: 0.511 +(epoch: 354, iters: 5182, time: 0.064) G_GAN: 0.121 G_GAN_Feat: 0.888 G_ID: 0.101 G_Rec: 0.351 D_GP: 0.087 D_real: 0.514 D_fake: 0.879 +(epoch: 354, iters: 5582, time: 0.064) G_GAN: 0.627 G_GAN_Feat: 0.963 G_ID: 0.115 G_Rec: 0.432 D_GP: 0.066 D_real: 1.143 D_fake: 0.395 +(epoch: 354, iters: 5982, time: 0.064) G_GAN: 0.083 G_GAN_Feat: 0.824 G_ID: 0.113 G_Rec: 0.326 D_GP: 0.095 D_real: 0.520 D_fake: 0.919 +(epoch: 354, iters: 6382, time: 0.064) G_GAN: 0.401 G_GAN_Feat: 0.904 G_ID: 0.113 G_Rec: 0.425 D_GP: 0.041 D_real: 1.068 D_fake: 0.601 +(epoch: 354, iters: 6782, time: 0.064) G_GAN: 0.107 G_GAN_Feat: 0.758 G_ID: 0.104 G_Rec: 0.319 D_GP: 0.045 D_real: 0.910 D_fake: 0.893 +(epoch: 354, iters: 7182, time: 0.064) G_GAN: 0.733 G_GAN_Feat: 0.912 G_ID: 0.118 G_Rec: 0.433 D_GP: 0.032 D_real: 1.412 D_fake: 0.318 +(epoch: 354, iters: 7582, time: 0.064) G_GAN: 0.357 G_GAN_Feat: 0.801 G_ID: 0.109 G_Rec: 0.402 D_GP: 0.041 D_real: 0.934 D_fake: 0.644 +(epoch: 354, iters: 7982, time: 0.063) G_GAN: 0.196 G_GAN_Feat: 1.052 G_ID: 0.140 G_Rec: 0.454 D_GP: 0.157 D_real: 0.269 D_fake: 0.814 +(epoch: 354, iters: 8382, time: 0.064) G_GAN: 0.138 G_GAN_Feat: 0.855 G_ID: 0.107 G_Rec: 0.318 D_GP: 0.064 D_real: 0.526 D_fake: 0.862 +(epoch: 355, iters: 174, time: 0.064) G_GAN: 0.465 G_GAN_Feat: 1.020 G_ID: 0.115 G_Rec: 0.431 D_GP: 0.040 D_real: 0.749 D_fake: 0.547 +(epoch: 355, iters: 574, time: 0.064) G_GAN: 0.123 G_GAN_Feat: 0.894 G_ID: 0.115 G_Rec: 0.364 D_GP: 0.083 D_real: 0.536 D_fake: 0.882 +(epoch: 355, iters: 974, time: 0.064) G_GAN: 0.604 G_GAN_Feat: 0.922 G_ID: 0.114 G_Rec: 0.399 D_GP: 0.035 D_real: 1.320 D_fake: 0.464 +(epoch: 355, iters: 1374, time: 0.064) G_GAN: 0.236 G_GAN_Feat: 0.777 G_ID: 0.104 G_Rec: 0.349 D_GP: 0.033 D_real: 0.984 D_fake: 0.765 +(epoch: 355, iters: 1774, time: 0.064) G_GAN: 0.476 G_GAN_Feat: 0.936 G_ID: 0.115 G_Rec: 0.420 D_GP: 0.037 D_real: 1.120 D_fake: 0.525 +(epoch: 355, iters: 2174, time: 0.063) G_GAN: 0.548 G_GAN_Feat: 0.835 G_ID: 0.092 G_Rec: 0.326 D_GP: 0.044 D_real: 1.094 D_fake: 0.481 +(epoch: 355, iters: 2574, time: 0.064) G_GAN: 0.627 G_GAN_Feat: 0.888 G_ID: 0.118 G_Rec: 0.417 D_GP: 0.027 D_real: 1.321 D_fake: 0.387 +(epoch: 355, iters: 2974, time: 0.064) G_GAN: 0.134 G_GAN_Feat: 0.729 G_ID: 0.093 G_Rec: 0.287 D_GP: 0.038 D_real: 0.968 D_fake: 0.866 +(epoch: 355, iters: 3374, time: 0.064) G_GAN: 0.782 G_GAN_Feat: 0.875 G_ID: 0.111 G_Rec: 0.372 D_GP: 0.046 D_real: 1.342 D_fake: 0.286 +(epoch: 355, iters: 3774, time: 0.064) G_GAN: 0.702 G_GAN_Feat: 0.899 G_ID: 0.090 G_Rec: 0.304 D_GP: 0.039 D_real: 1.479 D_fake: 0.356 +(epoch: 355, iters: 4174, time: 0.064) G_GAN: 0.300 G_GAN_Feat: 1.080 G_ID: 0.117 G_Rec: 0.487 D_GP: 0.047 D_real: 0.728 D_fake: 0.705 +(epoch: 355, iters: 4574, time: 0.064) G_GAN: 0.299 G_GAN_Feat: 0.823 G_ID: 0.096 G_Rec: 0.340 D_GP: 0.049 D_real: 0.924 D_fake: 0.704 +(epoch: 355, iters: 4974, time: 0.063) G_GAN: 0.400 G_GAN_Feat: 0.919 G_ID: 0.142 G_Rec: 0.444 D_GP: 0.034 D_real: 1.013 D_fake: 0.600 +(epoch: 355, iters: 5374, time: 0.063) G_GAN: 0.327 G_GAN_Feat: 0.751 G_ID: 0.084 G_Rec: 0.359 D_GP: 0.029 D_real: 1.102 D_fake: 0.673 +(epoch: 355, iters: 5774, time: 0.064) G_GAN: 1.076 G_GAN_Feat: 1.116 G_ID: 0.107 G_Rec: 0.439 D_GP: 0.064 D_real: 1.194 D_fake: 0.163 +(epoch: 355, iters: 6174, time: 0.064) G_GAN: 0.573 G_GAN_Feat: 0.803 G_ID: 0.120 G_Rec: 0.341 D_GP: 0.032 D_real: 1.384 D_fake: 0.446 +(epoch: 355, iters: 6574, time: 0.064) G_GAN: 0.482 G_GAN_Feat: 1.060 G_ID: 0.130 G_Rec: 0.497 D_GP: 0.042 D_real: 0.945 D_fake: 0.525 +(epoch: 355, iters: 6974, time: 0.064) G_GAN: 0.520 G_GAN_Feat: 0.895 G_ID: 0.108 G_Rec: 0.354 D_GP: 0.061 D_real: 1.020 D_fake: 0.544 +(epoch: 355, iters: 7374, time: 0.064) G_GAN: 0.686 G_GAN_Feat: 1.369 G_ID: 0.125 G_Rec: 0.501 D_GP: 0.126 D_real: 1.111 D_fake: 0.403 +(epoch: 355, iters: 7774, time: 0.064) G_GAN: -0.080 G_GAN_Feat: 0.691 G_ID: 0.128 G_Rec: 0.331 D_GP: 0.027 D_real: 0.827 D_fake: 1.080 +(epoch: 355, iters: 8174, time: 0.064) G_GAN: 0.227 G_GAN_Feat: 1.034 G_ID: 0.145 G_Rec: 0.486 D_GP: 0.037 D_real: 0.767 D_fake: 0.778 +(epoch: 355, iters: 8574, time: 0.064) G_GAN: 0.195 G_GAN_Feat: 0.724 G_ID: 0.101 G_Rec: 0.349 D_GP: 0.064 D_real: 0.955 D_fake: 0.808 +(epoch: 356, iters: 366, time: 0.064) G_GAN: 0.332 G_GAN_Feat: 0.930 G_ID: 0.141 G_Rec: 0.465 D_GP: 0.043 D_real: 0.840 D_fake: 0.670 +(epoch: 356, iters: 766, time: 0.064) G_GAN: 0.245 G_GAN_Feat: 0.775 G_ID: 0.127 G_Rec: 0.317 D_GP: 0.033 D_real: 1.151 D_fake: 0.756 +(epoch: 356, iters: 1166, time: 0.064) G_GAN: 0.595 G_GAN_Feat: 1.021 G_ID: 0.124 G_Rec: 0.406 D_GP: 0.073 D_real: 0.691 D_fake: 0.421 +(epoch: 356, iters: 1566, time: 0.064) G_GAN: 0.451 G_GAN_Feat: 0.910 G_ID: 0.117 G_Rec: 0.318 D_GP: 0.057 D_real: 0.500 D_fake: 0.564 +(epoch: 356, iters: 1966, time: 0.064) G_GAN: 0.751 G_GAN_Feat: 0.939 G_ID: 0.124 G_Rec: 0.432 D_GP: 0.033 D_real: 1.369 D_fake: 0.316 +(epoch: 356, iters: 2366, time: 0.064) G_GAN: 0.006 G_GAN_Feat: 0.723 G_ID: 0.099 G_Rec: 0.316 D_GP: 0.029 D_real: 0.997 D_fake: 0.994 +(epoch: 356, iters: 2766, time: 0.064) G_GAN: 0.496 G_GAN_Feat: 0.977 G_ID: 0.130 G_Rec: 0.449 D_GP: 0.037 D_real: 0.990 D_fake: 0.546 +(epoch: 356, iters: 3166, time: 0.064) G_GAN: 0.027 G_GAN_Feat: 0.853 G_ID: 0.099 G_Rec: 0.360 D_GP: 0.077 D_real: 0.673 D_fake: 0.975 +(epoch: 356, iters: 3566, time: 0.064) G_GAN: 0.247 G_GAN_Feat: 0.975 G_ID: 0.119 G_Rec: 0.433 D_GP: 0.056 D_real: 0.682 D_fake: 0.754 +(epoch: 356, iters: 3966, time: 0.064) G_GAN: 0.147 G_GAN_Feat: 0.693 G_ID: 0.112 G_Rec: 0.293 D_GP: 0.039 D_real: 1.032 D_fake: 0.853 +(epoch: 356, iters: 4366, time: 0.064) G_GAN: 0.636 G_GAN_Feat: 1.074 G_ID: 0.135 G_Rec: 0.500 D_GP: 0.071 D_real: 0.858 D_fake: 0.389 +(epoch: 356, iters: 4766, time: 0.064) G_GAN: 0.567 G_GAN_Feat: 0.973 G_ID: 0.125 G_Rec: 0.340 D_GP: 0.628 D_real: 0.482 D_fake: 0.486 +(epoch: 356, iters: 5166, time: 0.064) G_GAN: 0.874 G_GAN_Feat: 1.138 G_ID: 0.118 G_Rec: 0.448 D_GP: 0.137 D_real: 0.637 D_fake: 0.242 +(epoch: 356, iters: 5566, time: 0.064) G_GAN: -0.077 G_GAN_Feat: 0.819 G_ID: 0.117 G_Rec: 0.314 D_GP: 0.039 D_real: 0.682 D_fake: 1.077 +(epoch: 356, iters: 5966, time: 0.064) G_GAN: 0.430 G_GAN_Feat: 0.986 G_ID: 0.151 G_Rec: 0.440 D_GP: 0.034 D_real: 1.162 D_fake: 0.575 +(epoch: 356, iters: 6366, time: 0.064) G_GAN: -0.030 G_GAN_Feat: 0.676 G_ID: 0.135 G_Rec: 0.299 D_GP: 0.030 D_real: 0.837 D_fake: 1.030 +(epoch: 356, iters: 6766, time: 0.064) G_GAN: 0.290 G_GAN_Feat: 0.931 G_ID: 0.133 G_Rec: 0.426 D_GP: 0.033 D_real: 0.930 D_fake: 0.711 +(epoch: 356, iters: 7166, time: 0.064) G_GAN: 0.261 G_GAN_Feat: 0.771 G_ID: 0.091 G_Rec: 0.328 D_GP: 0.129 D_real: 0.941 D_fake: 0.742 +(epoch: 356, iters: 7566, time: 0.064) G_GAN: 0.242 G_GAN_Feat: 0.997 G_ID: 0.143 G_Rec: 0.449 D_GP: 0.267 D_real: 0.515 D_fake: 0.760 +(epoch: 356, iters: 7966, time: 0.064) G_GAN: 0.208 G_GAN_Feat: 0.782 G_ID: 0.095 G_Rec: 0.346 D_GP: 0.030 D_real: 0.940 D_fake: 0.793 +(epoch: 356, iters: 8366, time: 0.064) G_GAN: 0.654 G_GAN_Feat: 0.956 G_ID: 0.124 G_Rec: 0.412 D_GP: 0.039 D_real: 1.110 D_fake: 0.365 +(epoch: 357, iters: 158, time: 0.064) G_GAN: 0.127 G_GAN_Feat: 0.669 G_ID: 0.104 G_Rec: 0.303 D_GP: 0.026 D_real: 1.118 D_fake: 0.874 +(epoch: 357, iters: 558, time: 0.064) G_GAN: 0.243 G_GAN_Feat: 0.891 G_ID: 0.138 G_Rec: 0.440 D_GP: 0.036 D_real: 0.957 D_fake: 0.760 +(epoch: 357, iters: 958, time: 0.064) G_GAN: -0.155 G_GAN_Feat: 0.710 G_ID: 0.111 G_Rec: 0.310 D_GP: 0.049 D_real: 0.617 D_fake: 1.155 +(epoch: 357, iters: 1358, time: 0.064) G_GAN: 0.080 G_GAN_Feat: 0.967 G_ID: 0.131 G_Rec: 0.449 D_GP: 0.053 D_real: 0.527 D_fake: 0.922 +(epoch: 357, iters: 1758, time: 0.064) G_GAN: -0.001 G_GAN_Feat: 0.799 G_ID: 0.107 G_Rec: 0.331 D_GP: 0.046 D_real: 0.721 D_fake: 1.001 +(epoch: 357, iters: 2158, time: 0.064) G_GAN: 0.797 G_GAN_Feat: 0.924 G_ID: 0.111 G_Rec: 0.426 D_GP: 0.035 D_real: 1.349 D_fake: 0.349 +(epoch: 357, iters: 2558, time: 0.064) G_GAN: 0.261 G_GAN_Feat: 0.819 G_ID: 0.098 G_Rec: 0.332 D_GP: 0.067 D_real: 1.027 D_fake: 0.741 +(epoch: 357, iters: 2958, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 1.086 G_ID: 0.113 G_Rec: 0.450 D_GP: 0.178 D_real: 0.455 D_fake: 0.681 +(epoch: 357, iters: 3358, time: 0.064) G_GAN: -0.191 G_GAN_Feat: 0.898 G_ID: 0.112 G_Rec: 0.335 D_GP: 0.292 D_real: 0.262 D_fake: 1.191 +(epoch: 357, iters: 3758, time: 0.064) G_GAN: 0.275 G_GAN_Feat: 0.995 G_ID: 0.142 G_Rec: 0.471 D_GP: 0.033 D_real: 0.798 D_fake: 0.725 +(epoch: 357, iters: 4158, time: 0.064) G_GAN: 0.085 G_GAN_Feat: 0.804 G_ID: 0.095 G_Rec: 0.372 D_GP: 0.083 D_real: 0.661 D_fake: 0.915 +(epoch: 357, iters: 4558, time: 0.064) G_GAN: 0.111 G_GAN_Feat: 0.984 G_ID: 0.134 G_Rec: 0.388 D_GP: 0.044 D_real: 0.735 D_fake: 0.889 +(epoch: 357, iters: 4958, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 0.973 G_ID: 0.100 G_Rec: 0.359 D_GP: 0.098 D_real: 0.627 D_fake: 0.560 +(epoch: 357, iters: 5358, time: 0.064) G_GAN: 0.657 G_GAN_Feat: 0.933 G_ID: 0.121 G_Rec: 0.380 D_GP: 0.036 D_real: 1.303 D_fake: 0.371 +(epoch: 357, iters: 5758, time: 0.064) G_GAN: 0.377 G_GAN_Feat: 0.819 G_ID: 0.131 G_Rec: 0.328 D_GP: 0.051 D_real: 1.174 D_fake: 0.632 +(epoch: 357, iters: 6158, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 0.950 G_ID: 0.114 G_Rec: 0.456 D_GP: 0.034 D_real: 1.010 D_fake: 0.555 +(epoch: 357, iters: 6558, time: 0.063) G_GAN: 0.419 G_GAN_Feat: 0.753 G_ID: 0.093 G_Rec: 0.311 D_GP: 0.033 D_real: 1.235 D_fake: 0.589 +(epoch: 357, iters: 6958, time: 0.063) G_GAN: 0.365 G_GAN_Feat: 0.952 G_ID: 0.103 G_Rec: 0.430 D_GP: 0.035 D_real: 1.049 D_fake: 0.636 +(epoch: 357, iters: 7358, time: 0.063) G_GAN: 0.137 G_GAN_Feat: 0.842 G_ID: 0.089 G_Rec: 0.303 D_GP: 0.028 D_real: 0.846 D_fake: 0.863 +(epoch: 357, iters: 7758, time: 0.064) G_GAN: 0.694 G_GAN_Feat: 0.974 G_ID: 0.114 G_Rec: 0.474 D_GP: 0.030 D_real: 1.328 D_fake: 0.344 +(epoch: 357, iters: 8158, time: 0.063) G_GAN: 0.130 G_GAN_Feat: 0.815 G_ID: 0.093 G_Rec: 0.347 D_GP: 0.049 D_real: 0.842 D_fake: 0.872 +(epoch: 357, iters: 8558, time: 0.063) G_GAN: 0.442 G_GAN_Feat: 1.233 G_ID: 0.125 G_Rec: 0.512 D_GP: 0.220 D_real: 0.406 D_fake: 0.570 +(epoch: 358, iters: 350, time: 0.064) G_GAN: 0.363 G_GAN_Feat: 0.826 G_ID: 0.094 G_Rec: 0.304 D_GP: 0.045 D_real: 0.951 D_fake: 0.638 +(epoch: 358, iters: 750, time: 0.064) G_GAN: 0.651 G_GAN_Feat: 1.036 G_ID: 0.137 G_Rec: 0.399 D_GP: 0.045 D_real: 0.954 D_fake: 0.377 +(epoch: 358, iters: 1150, time: 0.064) G_GAN: 0.099 G_GAN_Feat: 0.837 G_ID: 0.091 G_Rec: 0.332 D_GP: 0.040 D_real: 0.849 D_fake: 0.901 +(epoch: 358, iters: 1550, time: 0.063) G_GAN: 0.453 G_GAN_Feat: 0.894 G_ID: 0.148 G_Rec: 0.437 D_GP: 0.030 D_real: 1.066 D_fake: 0.551 +(epoch: 358, iters: 1950, time: 0.063) G_GAN: 0.186 G_GAN_Feat: 0.902 G_ID: 0.109 G_Rec: 0.321 D_GP: 0.099 D_real: 0.385 D_fake: 0.830 +(epoch: 358, iters: 2350, time: 0.064) G_GAN: -0.043 G_GAN_Feat: 1.263 G_ID: 0.139 G_Rec: 0.490 D_GP: 0.124 D_real: 0.712 D_fake: 1.044 +(epoch: 358, iters: 2750, time: 0.063) G_GAN: 0.125 G_GAN_Feat: 0.720 G_ID: 0.140 G_Rec: 0.307 D_GP: 0.030 D_real: 0.956 D_fake: 0.875 +(epoch: 358, iters: 3150, time: 0.064) G_GAN: 0.382 G_GAN_Feat: 0.933 G_ID: 0.149 G_Rec: 0.440 D_GP: 0.030 D_real: 1.101 D_fake: 0.620 +(epoch: 358, iters: 3550, time: 0.063) G_GAN: 0.285 G_GAN_Feat: 0.835 G_ID: 0.103 G_Rec: 0.340 D_GP: 0.052 D_real: 0.777 D_fake: 0.723 +(epoch: 358, iters: 3950, time: 0.064) G_GAN: 0.466 G_GAN_Feat: 0.890 G_ID: 0.124 G_Rec: 0.384 D_GP: 0.039 D_real: 1.159 D_fake: 0.542 +(epoch: 358, iters: 4350, time: 0.063) G_GAN: 0.437 G_GAN_Feat: 0.636 G_ID: 0.091 G_Rec: 0.270 D_GP: 0.029 D_real: 1.364 D_fake: 0.564 +(epoch: 358, iters: 4750, time: 0.063) G_GAN: 0.479 G_GAN_Feat: 0.946 G_ID: 0.131 G_Rec: 0.423 D_GP: 0.035 D_real: 0.938 D_fake: 0.533 +(epoch: 358, iters: 5150, time: 0.063) G_GAN: 0.074 G_GAN_Feat: 0.768 G_ID: 0.092 G_Rec: 0.319 D_GP: 0.050 D_real: 0.695 D_fake: 0.926 +(epoch: 358, iters: 5550, time: 0.064) G_GAN: 0.600 G_GAN_Feat: 1.044 G_ID: 0.124 G_Rec: 0.473 D_GP: 0.064 D_real: 1.018 D_fake: 0.460 +(epoch: 358, iters: 5950, time: 0.063) G_GAN: 0.438 G_GAN_Feat: 0.775 G_ID: 0.102 G_Rec: 0.340 D_GP: 0.055 D_real: 1.218 D_fake: 0.568 +(epoch: 358, iters: 6350, time: 0.063) G_GAN: 0.585 G_GAN_Feat: 1.227 G_ID: 0.122 G_Rec: 0.446 D_GP: 0.178 D_real: 0.519 D_fake: 0.437 +(epoch: 358, iters: 6750, time: 0.063) G_GAN: 0.333 G_GAN_Feat: 0.869 G_ID: 0.114 G_Rec: 0.330 D_GP: 0.043 D_real: 0.894 D_fake: 0.668 +(epoch: 358, iters: 7150, time: 0.064) G_GAN: 0.841 G_GAN_Feat: 1.128 G_ID: 0.130 G_Rec: 0.405 D_GP: 0.412 D_real: 0.743 D_fake: 0.202 +(epoch: 358, iters: 7550, time: 0.063) G_GAN: 0.307 G_GAN_Feat: 0.800 G_ID: 0.102 G_Rec: 0.332 D_GP: 0.034 D_real: 1.208 D_fake: 0.700 +(epoch: 358, iters: 7950, time: 0.063) G_GAN: 0.435 G_GAN_Feat: 1.150 G_ID: 0.131 G_Rec: 0.455 D_GP: 0.165 D_real: 0.302 D_fake: 0.575 +(epoch: 358, iters: 8350, time: 0.063) G_GAN: 0.039 G_GAN_Feat: 0.663 G_ID: 0.102 G_Rec: 0.321 D_GP: 0.028 D_real: 0.952 D_fake: 0.961 +(epoch: 359, iters: 142, time: 0.064) G_GAN: 0.370 G_GAN_Feat: 0.947 G_ID: 0.116 G_Rec: 0.436 D_GP: 0.035 D_real: 1.080 D_fake: 0.654 +(epoch: 359, iters: 542, time: 0.063) G_GAN: 0.088 G_GAN_Feat: 0.643 G_ID: 0.092 G_Rec: 0.314 D_GP: 0.028 D_real: 0.993 D_fake: 0.912 +(epoch: 359, iters: 942, time: 0.064) G_GAN: 0.323 G_GAN_Feat: 0.850 G_ID: 0.123 G_Rec: 0.386 D_GP: 0.032 D_real: 1.042 D_fake: 0.686 +(epoch: 359, iters: 1342, time: 0.063) G_GAN: 0.090 G_GAN_Feat: 0.645 G_ID: 0.101 G_Rec: 0.298 D_GP: 0.029 D_real: 1.045 D_fake: 0.910 +(epoch: 359, iters: 1742, time: 0.064) G_GAN: 0.329 G_GAN_Feat: 0.874 G_ID: 0.138 G_Rec: 0.402 D_GP: 0.044 D_real: 0.930 D_fake: 0.676 +(epoch: 359, iters: 2142, time: 0.063) G_GAN: 0.308 G_GAN_Feat: 0.705 G_ID: 0.098 G_Rec: 0.286 D_GP: 0.040 D_real: 1.116 D_fake: 0.694 +(epoch: 359, iters: 2542, time: 0.063) G_GAN: 0.518 G_GAN_Feat: 1.013 G_ID: 0.107 G_Rec: 0.474 D_GP: 0.064 D_real: 1.022 D_fake: 0.530 +(epoch: 359, iters: 2942, time: 0.063) G_GAN: 0.290 G_GAN_Feat: 0.721 G_ID: 0.122 G_Rec: 0.325 D_GP: 0.030 D_real: 1.142 D_fake: 0.710 +(epoch: 359, iters: 3342, time: 0.064) G_GAN: 0.514 G_GAN_Feat: 1.005 G_ID: 0.109 G_Rec: 0.478 D_GP: 0.042 D_real: 1.121 D_fake: 0.492 +(epoch: 359, iters: 3742, time: 0.063) G_GAN: 0.160 G_GAN_Feat: 0.654 G_ID: 0.097 G_Rec: 0.294 D_GP: 0.029 D_real: 1.006 D_fake: 0.840 +(epoch: 359, iters: 4142, time: 0.063) G_GAN: 0.237 G_GAN_Feat: 0.920 G_ID: 0.136 G_Rec: 0.434 D_GP: 0.044 D_real: 0.860 D_fake: 0.764 +(epoch: 359, iters: 4542, time: 0.063) G_GAN: 0.307 G_GAN_Feat: 0.728 G_ID: 0.104 G_Rec: 0.299 D_GP: 0.034 D_real: 1.081 D_fake: 0.694 +(epoch: 359, iters: 4942, time: 0.064) G_GAN: 0.604 G_GAN_Feat: 1.026 G_ID: 0.128 G_Rec: 0.464 D_GP: 0.060 D_real: 1.031 D_fake: 0.407 +(epoch: 359, iters: 5342, time: 0.063) G_GAN: 0.188 G_GAN_Feat: 0.752 G_ID: 0.101 G_Rec: 0.308 D_GP: 0.037 D_real: 0.986 D_fake: 0.812 +(epoch: 359, iters: 5742, time: 0.063) G_GAN: 0.011 G_GAN_Feat: 1.137 G_ID: 0.123 G_Rec: 0.469 D_GP: 0.041 D_real: 0.471 D_fake: 0.989 +(epoch: 359, iters: 6142, time: 0.063) G_GAN: 0.192 G_GAN_Feat: 0.876 G_ID: 0.108 G_Rec: 0.340 D_GP: 0.151 D_real: 0.493 D_fake: 0.808 +(epoch: 359, iters: 6542, time: 0.064) G_GAN: 0.712 G_GAN_Feat: 0.903 G_ID: 0.133 G_Rec: 0.448 D_GP: 0.032 D_real: 1.365 D_fake: 0.303 +(epoch: 359, iters: 6942, time: 0.063) G_GAN: 0.232 G_GAN_Feat: 0.751 G_ID: 0.121 G_Rec: 0.300 D_GP: 0.038 D_real: 1.101 D_fake: 0.769 +(epoch: 359, iters: 7342, time: 0.063) G_GAN: 0.180 G_GAN_Feat: 0.987 G_ID: 0.140 G_Rec: 0.454 D_GP: 0.029 D_real: 0.816 D_fake: 0.821 +(epoch: 359, iters: 7742, time: 0.063) G_GAN: -0.106 G_GAN_Feat: 0.741 G_ID: 0.107 G_Rec: 0.326 D_GP: 0.029 D_real: 0.783 D_fake: 1.106 +(epoch: 359, iters: 8142, time: 0.064) G_GAN: 0.427 G_GAN_Feat: 0.936 G_ID: 0.104 G_Rec: 0.432 D_GP: 0.030 D_real: 0.931 D_fake: 0.591 +(epoch: 359, iters: 8542, time: 0.063) G_GAN: 0.102 G_GAN_Feat: 0.791 G_ID: 0.090 G_Rec: 0.335 D_GP: 0.058 D_real: 0.792 D_fake: 0.899 +(epoch: 360, iters: 334, time: 0.063) G_GAN: 0.321 G_GAN_Feat: 0.936 G_ID: 0.134 G_Rec: 0.420 D_GP: 0.036 D_real: 0.981 D_fake: 0.679 +(epoch: 360, iters: 734, time: 0.063) G_GAN: 0.270 G_GAN_Feat: 0.736 G_ID: 0.091 G_Rec: 0.314 D_GP: 0.035 D_real: 1.148 D_fake: 0.731 +(epoch: 360, iters: 1134, time: 0.064) G_GAN: 0.738 G_GAN_Feat: 0.923 G_ID: 0.122 G_Rec: 0.511 D_GP: 0.029 D_real: 1.408 D_fake: 0.299 +(epoch: 360, iters: 1534, time: 0.063) G_GAN: 0.306 G_GAN_Feat: 0.800 G_ID: 0.104 G_Rec: 0.296 D_GP: 0.060 D_real: 0.792 D_fake: 0.739 +(epoch: 360, iters: 1934, time: 0.063) G_GAN: 0.393 G_GAN_Feat: 1.121 G_ID: 0.137 G_Rec: 0.440 D_GP: 0.094 D_real: 0.257 D_fake: 0.616 +(epoch: 360, iters: 2334, time: 0.063) G_GAN: 0.285 G_GAN_Feat: 0.762 G_ID: 0.109 G_Rec: 0.304 D_GP: 0.032 D_real: 1.089 D_fake: 0.715 +(epoch: 360, iters: 2734, time: 0.064) G_GAN: 0.566 G_GAN_Feat: 1.007 G_ID: 0.121 G_Rec: 0.464 D_GP: 0.034 D_real: 1.033 D_fake: 0.442 +(epoch: 360, iters: 3134, time: 0.063) G_GAN: 0.043 G_GAN_Feat: 0.675 G_ID: 0.108 G_Rec: 0.253 D_GP: 0.035 D_real: 1.017 D_fake: 0.957 +(epoch: 360, iters: 3534, time: 0.063) G_GAN: 0.385 G_GAN_Feat: 0.889 G_ID: 0.133 G_Rec: 0.417 D_GP: 0.029 D_real: 1.045 D_fake: 0.626 +(epoch: 360, iters: 3934, time: 0.063) G_GAN: 0.408 G_GAN_Feat: 0.967 G_ID: 0.118 G_Rec: 0.356 D_GP: 0.101 D_real: 0.394 D_fake: 0.647 +(epoch: 360, iters: 4334, time: 0.064) G_GAN: 0.549 G_GAN_Feat: 1.021 G_ID: 0.129 G_Rec: 0.441 D_GP: 0.041 D_real: 0.993 D_fake: 0.466 +(epoch: 360, iters: 4734, time: 0.063) G_GAN: 0.238 G_GAN_Feat: 0.722 G_ID: 0.101 G_Rec: 0.310 D_GP: 0.029 D_real: 1.012 D_fake: 0.763 +(epoch: 360, iters: 5134, time: 0.063) G_GAN: 0.571 G_GAN_Feat: 0.920 G_ID: 0.119 G_Rec: 0.441 D_GP: 0.029 D_real: 1.321 D_fake: 0.456 +(epoch: 360, iters: 5534, time: 0.063) G_GAN: -0.041 G_GAN_Feat: 0.743 G_ID: 0.121 G_Rec: 0.333 D_GP: 0.036 D_real: 0.824 D_fake: 1.041 +(epoch: 360, iters: 5934, time: 0.064) G_GAN: 0.418 G_GAN_Feat: 0.876 G_ID: 0.114 G_Rec: 0.413 D_GP: 0.033 D_real: 1.052 D_fake: 0.596 +(epoch: 360, iters: 6334, time: 0.063) G_GAN: 0.144 G_GAN_Feat: 0.718 G_ID: 0.114 G_Rec: 0.330 D_GP: 0.042 D_real: 0.910 D_fake: 0.856 +(epoch: 360, iters: 6734, time: 0.063) G_GAN: 0.576 G_GAN_Feat: 0.943 G_ID: 0.134 G_Rec: 0.422 D_GP: 0.033 D_real: 1.098 D_fake: 0.462 +(epoch: 360, iters: 7134, time: 0.063) G_GAN: 0.161 G_GAN_Feat: 0.725 G_ID: 0.096 G_Rec: 0.328 D_GP: 0.029 D_real: 1.029 D_fake: 0.839 +(epoch: 360, iters: 7534, time: 0.064) G_GAN: 0.809 G_GAN_Feat: 0.981 G_ID: 0.120 G_Rec: 0.455 D_GP: 0.035 D_real: 1.350 D_fake: 0.247 +(epoch: 360, iters: 7934, time: 0.063) G_GAN: 0.299 G_GAN_Feat: 0.752 G_ID: 0.104 G_Rec: 0.314 D_GP: 0.028 D_real: 1.078 D_fake: 0.701 +(epoch: 360, iters: 8334, time: 0.063) G_GAN: 0.601 G_GAN_Feat: 1.238 G_ID: 0.151 G_Rec: 0.509 D_GP: 0.079 D_real: 0.232 D_fake: 0.438 +(epoch: 361, iters: 126, time: 0.063) G_GAN: 0.532 G_GAN_Feat: 0.971 G_ID: 0.099 G_Rec: 0.339 D_GP: 0.913 D_real: 0.581 D_fake: 0.588 +(epoch: 361, iters: 526, time: 0.063) G_GAN: 0.307 G_GAN_Feat: 0.998 G_ID: 0.152 G_Rec: 0.470 D_GP: 0.035 D_real: 0.896 D_fake: 0.695 +(epoch: 361, iters: 926, time: 0.064) G_GAN: 0.330 G_GAN_Feat: 0.950 G_ID: 0.102 G_Rec: 0.332 D_GP: 0.169 D_real: 0.470 D_fake: 0.674 +(epoch: 361, iters: 1326, time: 0.063) G_GAN: 0.647 G_GAN_Feat: 1.090 G_ID: 0.123 G_Rec: 0.420 D_GP: 0.092 D_real: 0.496 D_fake: 0.372 +(epoch: 361, iters: 1726, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.656 G_ID: 0.098 G_Rec: 0.272 D_GP: 0.035 D_real: 1.198 D_fake: 0.744 +(epoch: 361, iters: 2126, time: 0.063) G_GAN: 0.335 G_GAN_Feat: 0.855 G_ID: 0.128 G_Rec: 0.409 D_GP: 0.033 D_real: 0.990 D_fake: 0.669 +(epoch: 361, iters: 2526, time: 0.063) G_GAN: 0.199 G_GAN_Feat: 0.760 G_ID: 0.107 G_Rec: 0.311 D_GP: 0.033 D_real: 0.930 D_fake: 0.801 +(epoch: 361, iters: 2926, time: 0.064) G_GAN: 0.437 G_GAN_Feat: 1.049 G_ID: 0.128 G_Rec: 0.452 D_GP: 0.073 D_real: 0.831 D_fake: 0.575 +(epoch: 361, iters: 3326, time: 0.064) G_GAN: 0.150 G_GAN_Feat: 0.724 G_ID: 0.101 G_Rec: 0.298 D_GP: 0.032 D_real: 0.891 D_fake: 0.850 +(epoch: 361, iters: 3726, time: 0.063) G_GAN: 0.141 G_GAN_Feat: 0.917 G_ID: 0.137 G_Rec: 0.445 D_GP: 0.036 D_real: 0.765 D_fake: 0.861 +(epoch: 361, iters: 4126, time: 0.064) G_GAN: 0.011 G_GAN_Feat: 0.791 G_ID: 0.111 G_Rec: 0.295 D_GP: 0.037 D_real: 0.745 D_fake: 0.989 +(epoch: 361, iters: 4526, time: 0.064) G_GAN: 0.799 G_GAN_Feat: 1.035 G_ID: 0.132 G_Rec: 0.482 D_GP: 0.038 D_real: 1.266 D_fake: 0.268 +(epoch: 361, iters: 4926, time: 0.064) G_GAN: 0.289 G_GAN_Feat: 0.731 G_ID: 0.102 G_Rec: 0.312 D_GP: 0.035 D_real: 1.114 D_fake: 0.711 +(epoch: 361, iters: 5326, time: 0.063) G_GAN: 0.563 G_GAN_Feat: 0.977 G_ID: 0.124 G_Rec: 0.425 D_GP: 0.073 D_real: 0.789 D_fake: 0.459 +(epoch: 361, iters: 5726, time: 0.063) G_GAN: 0.338 G_GAN_Feat: 0.805 G_ID: 0.103 G_Rec: 0.326 D_GP: 0.038 D_real: 1.253 D_fake: 0.667 +(epoch: 361, iters: 6126, time: 0.063) G_GAN: 0.703 G_GAN_Feat: 0.860 G_ID: 0.115 G_Rec: 0.417 D_GP: 0.027 D_real: 1.415 D_fake: 0.352 +(epoch: 361, iters: 6526, time: 0.064) G_GAN: 0.082 G_GAN_Feat: 0.717 G_ID: 0.109 G_Rec: 0.317 D_GP: 0.036 D_real: 0.918 D_fake: 0.918 +(epoch: 361, iters: 6926, time: 0.063) G_GAN: 0.579 G_GAN_Feat: 0.863 G_ID: 0.124 G_Rec: 0.403 D_GP: 0.027 D_real: 1.267 D_fake: 0.454 +(epoch: 361, iters: 7326, time: 0.063) G_GAN: 0.263 G_GAN_Feat: 0.743 G_ID: 0.088 G_Rec: 0.301 D_GP: 0.034 D_real: 1.117 D_fake: 0.738 +(epoch: 361, iters: 7726, time: 0.063) G_GAN: 0.402 G_GAN_Feat: 1.013 G_ID: 0.127 G_Rec: 0.442 D_GP: 0.045 D_real: 0.817 D_fake: 0.599 +(epoch: 361, iters: 8126, time: 0.064) G_GAN: 0.395 G_GAN_Feat: 0.785 G_ID: 0.094 G_Rec: 0.336 D_GP: 0.054 D_real: 0.984 D_fake: 0.606 +(epoch: 361, iters: 8526, time: 0.063) G_GAN: 0.437 G_GAN_Feat: 0.877 G_ID: 0.121 G_Rec: 0.413 D_GP: 0.030 D_real: 1.180 D_fake: 0.567 +(epoch: 362, iters: 318, time: 0.063) G_GAN: 0.106 G_GAN_Feat: 0.818 G_ID: 0.112 G_Rec: 0.341 D_GP: 0.087 D_real: 0.752 D_fake: 0.895 +(epoch: 362, iters: 718, time: 0.063) G_GAN: 0.281 G_GAN_Feat: 0.934 G_ID: 0.120 G_Rec: 0.398 D_GP: 0.037 D_real: 0.765 D_fake: 0.721 +(epoch: 362, iters: 1118, time: 0.064) G_GAN: 0.119 G_GAN_Feat: 0.768 G_ID: 0.101 G_Rec: 0.438 D_GP: 0.029 D_real: 0.843 D_fake: 0.882 +(epoch: 362, iters: 1518, time: 0.063) G_GAN: 0.700 G_GAN_Feat: 1.002 G_ID: 0.119 G_Rec: 0.428 D_GP: 0.036 D_real: 1.297 D_fake: 0.313 +(epoch: 362, iters: 1918, time: 0.063) G_GAN: 0.436 G_GAN_Feat: 0.817 G_ID: 0.096 G_Rec: 0.309 D_GP: 0.037 D_real: 1.201 D_fake: 0.568 +(epoch: 362, iters: 2318, time: 0.063) G_GAN: 0.418 G_GAN_Feat: 1.088 G_ID: 0.120 G_Rec: 0.465 D_GP: 0.037 D_real: 0.942 D_fake: 0.585 +(epoch: 362, iters: 2718, time: 0.064) G_GAN: -0.110 G_GAN_Feat: 0.872 G_ID: 0.116 G_Rec: 0.375 D_GP: 0.036 D_real: 0.666 D_fake: 1.110 +(epoch: 362, iters: 3118, time: 0.064) G_GAN: 0.539 G_GAN_Feat: 1.029 G_ID: 0.138 G_Rec: 0.438 D_GP: 0.088 D_real: 0.735 D_fake: 0.481 +(epoch: 362, iters: 3518, time: 0.064) G_GAN: 0.137 G_GAN_Feat: 0.923 G_ID: 0.123 G_Rec: 0.320 D_GP: 0.067 D_real: 0.220 D_fake: 0.870 +(epoch: 362, iters: 3918, time: 0.063) G_GAN: 0.240 G_GAN_Feat: 0.837 G_ID: 0.132 G_Rec: 0.469 D_GP: 0.031 D_real: 1.006 D_fake: 0.761 +(epoch: 362, iters: 4318, time: 0.064) G_GAN: 0.085 G_GAN_Feat: 0.602 G_ID: 0.099 G_Rec: 0.313 D_GP: 0.029 D_real: 0.983 D_fake: 0.915 +(epoch: 362, iters: 4718, time: 0.064) G_GAN: 0.429 G_GAN_Feat: 0.792 G_ID: 0.128 G_Rec: 0.405 D_GP: 0.031 D_real: 1.200 D_fake: 0.574 +(epoch: 362, iters: 5118, time: 0.064) G_GAN: 0.264 G_GAN_Feat: 0.655 G_ID: 0.103 G_Rec: 0.315 D_GP: 0.038 D_real: 1.137 D_fake: 0.740 +(epoch: 362, iters: 5518, time: 0.063) G_GAN: 0.388 G_GAN_Feat: 0.875 G_ID: 0.120 G_Rec: 0.460 D_GP: 0.042 D_real: 1.037 D_fake: 0.616 +(epoch: 362, iters: 5918, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 0.599 G_ID: 0.105 G_Rec: 0.285 D_GP: 0.033 D_real: 1.144 D_fake: 0.784 +(epoch: 362, iters: 6318, time: 0.064) G_GAN: 0.382 G_GAN_Feat: 0.930 G_ID: 0.124 G_Rec: 0.497 D_GP: 0.062 D_real: 0.930 D_fake: 0.628 +(epoch: 362, iters: 6718, time: 0.064) G_GAN: 0.036 G_GAN_Feat: 0.693 G_ID: 0.104 G_Rec: 0.325 D_GP: 0.040 D_real: 0.873 D_fake: 0.964 +(epoch: 362, iters: 7118, time: 0.064) G_GAN: 0.233 G_GAN_Feat: 0.792 G_ID: 0.125 G_Rec: 0.408 D_GP: 0.039 D_real: 0.936 D_fake: 0.771 +(epoch: 362, iters: 7518, time: 0.064) G_GAN: 0.097 G_GAN_Feat: 0.611 G_ID: 0.093 G_Rec: 0.288 D_GP: 0.029 D_real: 1.002 D_fake: 0.903 +(epoch: 362, iters: 7918, time: 0.064) G_GAN: 0.206 G_GAN_Feat: 0.936 G_ID: 0.126 G_Rec: 0.468 D_GP: 0.068 D_real: 0.694 D_fake: 0.795 +(epoch: 362, iters: 8318, time: 0.063) G_GAN: 0.037 G_GAN_Feat: 0.656 G_ID: 0.132 G_Rec: 0.285 D_GP: 0.042 D_real: 0.886 D_fake: 0.963 +(epoch: 363, iters: 110, time: 0.064) G_GAN: 0.584 G_GAN_Feat: 0.924 G_ID: 0.141 G_Rec: 0.419 D_GP: 0.043 D_real: 1.128 D_fake: 0.436 +(epoch: 363, iters: 510, time: 0.064) G_GAN: 0.305 G_GAN_Feat: 0.691 G_ID: 0.099 G_Rec: 0.304 D_GP: 0.042 D_real: 1.124 D_fake: 0.698 +(epoch: 363, iters: 910, time: 0.064) G_GAN: 0.550 G_GAN_Feat: 0.924 G_ID: 0.115 G_Rec: 0.434 D_GP: 0.036 D_real: 1.082 D_fake: 0.475 +(epoch: 363, iters: 1310, time: 0.063) G_GAN: 0.210 G_GAN_Feat: 0.736 G_ID: 0.094 G_Rec: 0.302 D_GP: 0.052 D_real: 0.890 D_fake: 0.791 +(epoch: 363, iters: 1710, time: 0.064) G_GAN: 0.539 G_GAN_Feat: 0.905 G_ID: 0.126 G_Rec: 0.407 D_GP: 0.073 D_real: 1.059 D_fake: 0.467 +(epoch: 363, iters: 2110, time: 0.064) G_GAN: 0.008 G_GAN_Feat: 0.782 G_ID: 0.130 G_Rec: 0.321 D_GP: 0.064 D_real: 0.658 D_fake: 0.992 +(epoch: 363, iters: 2510, time: 0.063) G_GAN: 0.545 G_GAN_Feat: 0.967 G_ID: 0.136 G_Rec: 0.466 D_GP: 0.064 D_real: 0.945 D_fake: 0.480 +(epoch: 363, iters: 2910, time: 0.064) G_GAN: -0.059 G_GAN_Feat: 0.778 G_ID: 0.118 G_Rec: 0.353 D_GP: 0.037 D_real: 0.941 D_fake: 1.060 +(epoch: 363, iters: 3310, time: 0.064) G_GAN: 0.368 G_GAN_Feat: 0.916 G_ID: 0.132 G_Rec: 0.446 D_GP: 0.086 D_real: 0.875 D_fake: 0.632 +(epoch: 363, iters: 3710, time: 0.064) G_GAN: 0.288 G_GAN_Feat: 0.801 G_ID: 0.101 G_Rec: 0.316 D_GP: 0.096 D_real: 0.797 D_fake: 0.719 +(epoch: 363, iters: 4110, time: 0.063) G_GAN: 0.582 G_GAN_Feat: 0.959 G_ID: 0.137 G_Rec: 0.391 D_GP: 0.046 D_real: 1.212 D_fake: 0.434 +(epoch: 363, iters: 4510, time: 0.063) G_GAN: 0.351 G_GAN_Feat: 0.841 G_ID: 0.099 G_Rec: 0.362 D_GP: 0.211 D_real: 0.564 D_fake: 0.657 +(epoch: 363, iters: 4910, time: 0.064) G_GAN: 0.564 G_GAN_Feat: 0.929 G_ID: 0.113 G_Rec: 0.449 D_GP: 0.034 D_real: 1.226 D_fake: 0.450 +(epoch: 363, iters: 5310, time: 0.064) G_GAN: 0.460 G_GAN_Feat: 0.786 G_ID: 0.104 G_Rec: 0.315 D_GP: 0.047 D_real: 1.017 D_fake: 0.545 +(epoch: 363, iters: 5710, time: 0.063) G_GAN: 0.403 G_GAN_Feat: 0.882 G_ID: 0.119 G_Rec: 0.391 D_GP: 0.032 D_real: 1.205 D_fake: 0.598 +(epoch: 363, iters: 6110, time: 0.063) G_GAN: 0.239 G_GAN_Feat: 0.797 G_ID: 0.127 G_Rec: 0.318 D_GP: 0.049 D_real: 0.994 D_fake: 0.762 +(epoch: 363, iters: 6510, time: 0.064) G_GAN: 0.653 G_GAN_Feat: 1.099 G_ID: 0.147 G_Rec: 0.451 D_GP: 0.059 D_real: 0.671 D_fake: 0.362 +(epoch: 363, iters: 6910, time: 0.064) G_GAN: 0.207 G_GAN_Feat: 0.858 G_ID: 0.109 G_Rec: 0.320 D_GP: 0.128 D_real: 0.603 D_fake: 0.811 +(epoch: 363, iters: 7310, time: 0.064) G_GAN: 0.122 G_GAN_Feat: 1.085 G_ID: 0.140 G_Rec: 0.469 D_GP: 0.260 D_real: 0.494 D_fake: 0.890 +(epoch: 363, iters: 7710, time: 0.064) G_GAN: 0.260 G_GAN_Feat: 0.747 G_ID: 0.103 G_Rec: 0.322 D_GP: 0.046 D_real: 1.019 D_fake: 0.740 +(epoch: 363, iters: 8110, time: 0.064) G_GAN: 0.006 G_GAN_Feat: 0.997 G_ID: 0.147 G_Rec: 0.397 D_GP: 0.067 D_real: 0.446 D_fake: 0.994 +(epoch: 363, iters: 8510, time: 0.064) G_GAN: -0.213 G_GAN_Feat: 0.849 G_ID: 0.096 G_Rec: 0.335 D_GP: 0.181 D_real: 0.239 D_fake: 1.214 +(epoch: 364, iters: 302, time: 0.064) G_GAN: 0.516 G_GAN_Feat: 0.884 G_ID: 0.119 G_Rec: 0.390 D_GP: 0.034 D_real: 1.105 D_fake: 0.489 +(epoch: 364, iters: 702, time: 0.063) G_GAN: 0.446 G_GAN_Feat: 1.005 G_ID: 0.113 G_Rec: 0.364 D_GP: 0.467 D_real: 0.555 D_fake: 0.563 +(epoch: 364, iters: 1102, time: 0.064) G_GAN: 0.769 G_GAN_Feat: 1.082 G_ID: 0.150 G_Rec: 0.503 D_GP: 0.055 D_real: 1.026 D_fake: 0.267 +(epoch: 364, iters: 1502, time: 0.064) G_GAN: -0.060 G_GAN_Feat: 0.964 G_ID: 0.112 G_Rec: 0.360 D_GP: 0.330 D_real: 0.188 D_fake: 1.063 +(epoch: 364, iters: 1902, time: 0.063) G_GAN: 0.926 G_GAN_Feat: 1.001 G_ID: 0.134 G_Rec: 0.458 D_GP: 0.032 D_real: 1.391 D_fake: 0.169 +(epoch: 364, iters: 2302, time: 0.064) G_GAN: 0.164 G_GAN_Feat: 0.925 G_ID: 0.104 G_Rec: 0.358 D_GP: 0.056 D_real: 0.491 D_fake: 0.836 +(epoch: 364, iters: 2702, time: 0.064) G_GAN: 0.751 G_GAN_Feat: 0.992 G_ID: 0.121 G_Rec: 0.414 D_GP: 0.031 D_real: 1.239 D_fake: 0.316 +(epoch: 364, iters: 3102, time: 0.064) G_GAN: 0.102 G_GAN_Feat: 0.643 G_ID: 0.121 G_Rec: 0.303 D_GP: 0.027 D_real: 0.997 D_fake: 0.898 +(epoch: 364, iters: 3502, time: 0.063) G_GAN: 0.166 G_GAN_Feat: 0.851 G_ID: 0.143 G_Rec: 0.439 D_GP: 0.031 D_real: 0.891 D_fake: 0.834 +(epoch: 364, iters: 3902, time: 0.063) G_GAN: -0.066 G_GAN_Feat: 0.688 G_ID: 0.115 G_Rec: 0.311 D_GP: 0.043 D_real: 0.748 D_fake: 1.066 +(epoch: 364, iters: 4302, time: 0.063) G_GAN: 0.118 G_GAN_Feat: 0.900 G_ID: 0.132 G_Rec: 0.407 D_GP: 0.045 D_real: 0.693 D_fake: 0.882 +(epoch: 364, iters: 4702, time: 0.064) G_GAN: 0.086 G_GAN_Feat: 0.740 G_ID: 0.109 G_Rec: 0.339 D_GP: 0.139 D_real: 0.736 D_fake: 0.914 +(epoch: 364, iters: 5102, time: 0.063) G_GAN: 0.531 G_GAN_Feat: 0.994 G_ID: 0.122 G_Rec: 0.470 D_GP: 0.196 D_real: 0.872 D_fake: 0.506 +(epoch: 364, iters: 5502, time: 0.063) G_GAN: 0.160 G_GAN_Feat: 0.619 G_ID: 0.101 G_Rec: 0.295 D_GP: 0.029 D_real: 1.091 D_fake: 0.840 +(epoch: 364, iters: 5902, time: 0.063) G_GAN: 0.755 G_GAN_Feat: 0.999 G_ID: 0.138 G_Rec: 0.445 D_GP: 0.054 D_real: 1.217 D_fake: 0.363 +(epoch: 364, iters: 6302, time: 0.064) G_GAN: -0.082 G_GAN_Feat: 0.737 G_ID: 0.099 G_Rec: 0.355 D_GP: 0.070 D_real: 0.669 D_fake: 1.082 +(epoch: 364, iters: 6702, time: 0.063) G_GAN: 0.343 G_GAN_Feat: 1.039 G_ID: 0.111 G_Rec: 0.485 D_GP: 0.052 D_real: 0.756 D_fake: 0.662 +(epoch: 364, iters: 7102, time: 0.063) G_GAN: -0.126 G_GAN_Feat: 0.705 G_ID: 0.100 G_Rec: 0.292 D_GP: 0.049 D_real: 0.673 D_fake: 1.126 +(epoch: 364, iters: 7502, time: 0.063) G_GAN: 0.284 G_GAN_Feat: 1.019 G_ID: 0.115 G_Rec: 0.474 D_GP: 0.054 D_real: 0.766 D_fake: 0.719 +(epoch: 364, iters: 7902, time: 0.064) G_GAN: 0.161 G_GAN_Feat: 0.714 G_ID: 0.105 G_Rec: 0.284 D_GP: 0.032 D_real: 1.019 D_fake: 0.840 +(epoch: 364, iters: 8302, time: 0.063) G_GAN: 0.438 G_GAN_Feat: 0.848 G_ID: 0.118 G_Rec: 0.367 D_GP: 0.037 D_real: 1.118 D_fake: 0.566 +(epoch: 364, iters: 8702, time: 0.064) G_GAN: 0.067 G_GAN_Feat: 0.773 G_ID: 0.128 G_Rec: 0.359 D_GP: 0.029 D_real: 0.966 D_fake: 0.934 +(epoch: 365, iters: 494, time: 0.063) G_GAN: 0.509 G_GAN_Feat: 1.055 G_ID: 0.112 G_Rec: 0.458 D_GP: 0.054 D_real: 0.800 D_fake: 0.497 +(epoch: 365, iters: 894, time: 0.064) G_GAN: 0.265 G_GAN_Feat: 0.757 G_ID: 0.105 G_Rec: 0.299 D_GP: 0.032 D_real: 1.001 D_fake: 0.737 +(epoch: 365, iters: 1294, time: 0.063) G_GAN: 0.588 G_GAN_Feat: 0.956 G_ID: 0.105 G_Rec: 0.400 D_GP: 0.031 D_real: 1.112 D_fake: 0.445 +(epoch: 365, iters: 1694, time: 0.063) G_GAN: 0.259 G_GAN_Feat: 0.840 G_ID: 0.090 G_Rec: 0.322 D_GP: 0.112 D_real: 0.752 D_fake: 0.747 +(epoch: 365, iters: 2094, time: 0.063) G_GAN: 0.500 G_GAN_Feat: 1.062 G_ID: 0.115 G_Rec: 0.421 D_GP: 0.041 D_real: 0.798 D_fake: 0.505 +(epoch: 365, iters: 2494, time: 0.064) G_GAN: 0.885 G_GAN_Feat: 1.002 G_ID: 0.095 G_Rec: 0.333 D_GP: 0.066 D_real: 0.980 D_fake: 0.205 +(epoch: 365, iters: 2894, time: 0.064) G_GAN: 0.603 G_GAN_Feat: 1.064 G_ID: 0.120 G_Rec: 0.419 D_GP: 0.030 D_real: 0.811 D_fake: 0.409 +(epoch: 365, iters: 3294, time: 0.063) G_GAN: 0.386 G_GAN_Feat: 0.930 G_ID: 0.101 G_Rec: 0.313 D_GP: 0.042 D_real: 0.556 D_fake: 0.666 +(epoch: 365, iters: 3694, time: 0.063) G_GAN: 0.775 G_GAN_Feat: 1.091 G_ID: 0.124 G_Rec: 0.497 D_GP: 0.112 D_real: 0.631 D_fake: 0.295 +(epoch: 365, iters: 4094, time: 0.064) G_GAN: 0.022 G_GAN_Feat: 0.940 G_ID: 0.100 G_Rec: 0.327 D_GP: 0.050 D_real: 0.232 D_fake: 0.978 +(epoch: 365, iters: 4494, time: 0.063) G_GAN: 0.545 G_GAN_Feat: 1.259 G_ID: 0.124 G_Rec: 0.486 D_GP: 0.040 D_real: 1.136 D_fake: 0.535 +(epoch: 365, iters: 4894, time: 0.063) G_GAN: 0.322 G_GAN_Feat: 0.714 G_ID: 0.098 G_Rec: 0.317 D_GP: 0.026 D_real: 1.278 D_fake: 0.683 +(epoch: 365, iters: 5294, time: 0.063) G_GAN: 0.424 G_GAN_Feat: 0.942 G_ID: 0.124 G_Rec: 0.426 D_GP: 0.034 D_real: 1.034 D_fake: 0.578 +(epoch: 365, iters: 5694, time: 0.063) G_GAN: 0.676 G_GAN_Feat: 0.782 G_ID: 0.101 G_Rec: 0.324 D_GP: 0.090 D_real: 1.270 D_fake: 0.343 +(epoch: 365, iters: 6094, time: 0.063) G_GAN: 0.489 G_GAN_Feat: 0.826 G_ID: 0.131 G_Rec: 0.392 D_GP: 0.030 D_real: 1.214 D_fake: 0.518 +(epoch: 365, iters: 6494, time: 0.063) G_GAN: 0.225 G_GAN_Feat: 0.771 G_ID: 0.109 G_Rec: 0.316 D_GP: 0.037 D_real: 0.979 D_fake: 0.776 +(epoch: 365, iters: 6894, time: 0.064) G_GAN: 0.497 G_GAN_Feat: 1.249 G_ID: 0.118 G_Rec: 0.518 D_GP: 0.050 D_real: 1.182 D_fake: 0.544 +(epoch: 365, iters: 7294, time: 0.063) G_GAN: 0.288 G_GAN_Feat: 0.749 G_ID: 0.126 G_Rec: 0.325 D_GP: 0.030 D_real: 1.152 D_fake: 0.718 +(epoch: 365, iters: 7694, time: 0.063) G_GAN: 0.605 G_GAN_Feat: 0.875 G_ID: 0.131 G_Rec: 0.408 D_GP: 0.041 D_real: 1.180 D_fake: 0.469 +(epoch: 365, iters: 8094, time: 0.064) G_GAN: 0.218 G_GAN_Feat: 0.737 G_ID: 0.095 G_Rec: 0.327 D_GP: 0.036 D_real: 0.904 D_fake: 0.783 +(epoch: 365, iters: 8494, time: 0.064) G_GAN: 0.453 G_GAN_Feat: 0.894 G_ID: 0.135 G_Rec: 0.434 D_GP: 0.030 D_real: 1.183 D_fake: 0.550 +(epoch: 366, iters: 286, time: 0.064) G_GAN: 0.236 G_GAN_Feat: 0.859 G_ID: 0.111 G_Rec: 0.346 D_GP: 0.034 D_real: 0.859 D_fake: 0.765 +(epoch: 366, iters: 686, time: 0.064) G_GAN: 0.733 G_GAN_Feat: 1.119 G_ID: 0.145 G_Rec: 0.493 D_GP: 0.047 D_real: 0.870 D_fake: 0.319 +(epoch: 366, iters: 1086, time: 0.064) G_GAN: 0.036 G_GAN_Feat: 1.082 G_ID: 0.126 G_Rec: 0.347 D_GP: 0.073 D_real: 0.088 D_fake: 0.964 +(epoch: 366, iters: 1486, time: 0.064) G_GAN: 0.448 G_GAN_Feat: 0.867 G_ID: 0.115 G_Rec: 0.419 D_GP: 0.027 D_real: 1.125 D_fake: 0.555 +(epoch: 366, iters: 1886, time: 0.063) G_GAN: 0.022 G_GAN_Feat: 0.734 G_ID: 0.087 G_Rec: 0.303 D_GP: 0.030 D_real: 0.909 D_fake: 0.978 +(epoch: 366, iters: 2286, time: 0.063) G_GAN: 0.221 G_GAN_Feat: 0.883 G_ID: 0.130 G_Rec: 0.402 D_GP: 0.037 D_real: 0.930 D_fake: 0.780 +(epoch: 366, iters: 2686, time: 0.063) G_GAN: 0.140 G_GAN_Feat: 0.735 G_ID: 0.095 G_Rec: 0.284 D_GP: 0.047 D_real: 0.787 D_fake: 0.860 +(epoch: 366, iters: 3086, time: 0.064) G_GAN: 0.591 G_GAN_Feat: 1.020 G_ID: 0.123 G_Rec: 0.430 D_GP: 0.036 D_real: 0.925 D_fake: 0.425 +(epoch: 366, iters: 3486, time: 0.064) G_GAN: 0.272 G_GAN_Feat: 0.908 G_ID: 0.098 G_Rec: 0.334 D_GP: 0.086 D_real: 0.517 D_fake: 0.728 +(epoch: 366, iters: 3886, time: 0.063) G_GAN: 0.567 G_GAN_Feat: 1.193 G_ID: 0.137 G_Rec: 0.446 D_GP: 0.131 D_real: 0.259 D_fake: 0.488 +(epoch: 366, iters: 4286, time: 0.063) G_GAN: 0.363 G_GAN_Feat: 0.856 G_ID: 0.116 G_Rec: 0.312 D_GP: 0.052 D_real: 0.966 D_fake: 0.643 +(epoch: 366, iters: 4686, time: 0.064) G_GAN: 0.403 G_GAN_Feat: 0.979 G_ID: 0.135 G_Rec: 0.476 D_GP: 0.037 D_real: 0.964 D_fake: 0.603 +(epoch: 366, iters: 5086, time: 0.063) G_GAN: 0.189 G_GAN_Feat: 0.731 G_ID: 0.096 G_Rec: 0.327 D_GP: 0.030 D_real: 1.018 D_fake: 0.816 +(epoch: 366, iters: 5486, time: 0.063) G_GAN: 0.574 G_GAN_Feat: 1.018 G_ID: 0.128 G_Rec: 0.485 D_GP: 0.096 D_real: 0.896 D_fake: 0.474 +(epoch: 366, iters: 5886, time: 0.063) G_GAN: 0.194 G_GAN_Feat: 0.736 G_ID: 0.101 G_Rec: 0.301 D_GP: 0.036 D_real: 1.037 D_fake: 0.807 +(epoch: 366, iters: 6286, time: 0.064) G_GAN: 0.282 G_GAN_Feat: 0.866 G_ID: 0.137 G_Rec: 0.380 D_GP: 0.036 D_real: 1.001 D_fake: 0.719 +(epoch: 366, iters: 6686, time: 0.063) G_GAN: 0.028 G_GAN_Feat: 0.957 G_ID: 0.115 G_Rec: 0.360 D_GP: 0.432 D_real: 0.184 D_fake: 0.979 +(epoch: 366, iters: 7086, time: 0.063) G_GAN: 0.662 G_GAN_Feat: 1.098 G_ID: 0.126 G_Rec: 0.477 D_GP: 0.049 D_real: 0.907 D_fake: 0.377 +(epoch: 366, iters: 7486, time: 0.063) G_GAN: 0.226 G_GAN_Feat: 0.915 G_ID: 0.097 G_Rec: 0.342 D_GP: 0.072 D_real: 0.502 D_fake: 0.775 +(epoch: 366, iters: 7886, time: 0.064) G_GAN: 0.358 G_GAN_Feat: 1.164 G_ID: 0.122 G_Rec: 0.437 D_GP: 0.089 D_real: 0.491 D_fake: 0.647 +(epoch: 366, iters: 8286, time: 0.063) G_GAN: 0.336 G_GAN_Feat: 0.846 G_ID: 0.106 G_Rec: 0.307 D_GP: 0.062 D_real: 0.725 D_fake: 0.664 +(epoch: 366, iters: 8686, time: 0.063) G_GAN: 0.511 G_GAN_Feat: 1.022 G_ID: 0.141 G_Rec: 0.462 D_GP: 0.038 D_real: 1.033 D_fake: 0.502 +(epoch: 367, iters: 478, time: 0.063) G_GAN: 0.251 G_GAN_Feat: 0.778 G_ID: 0.098 G_Rec: 0.320 D_GP: 0.043 D_real: 1.115 D_fake: 0.749 +(epoch: 367, iters: 878, time: 0.064) G_GAN: 0.324 G_GAN_Feat: 0.926 G_ID: 0.136 G_Rec: 0.453 D_GP: 0.037 D_real: 0.964 D_fake: 0.683 +(epoch: 367, iters: 1278, time: 0.063) G_GAN: 0.274 G_GAN_Feat: 0.811 G_ID: 0.105 G_Rec: 0.313 D_GP: 0.039 D_real: 0.893 D_fake: 0.727 +(epoch: 367, iters: 1678, time: 0.063) G_GAN: 0.975 G_GAN_Feat: 1.169 G_ID: 0.105 G_Rec: 0.464 D_GP: 0.324 D_real: 0.414 D_fake: 0.193 +(epoch: 367, iters: 2078, time: 0.063) G_GAN: 0.457 G_GAN_Feat: 0.946 G_ID: 0.104 G_Rec: 0.342 D_GP: 0.063 D_real: 0.967 D_fake: 0.615 +(epoch: 367, iters: 2478, time: 0.064) G_GAN: 0.701 G_GAN_Feat: 1.117 G_ID: 0.125 G_Rec: 0.460 D_GP: 0.101 D_real: 0.711 D_fake: 0.335 +(epoch: 367, iters: 2878, time: 0.063) G_GAN: -0.062 G_GAN_Feat: 0.864 G_ID: 0.115 G_Rec: 0.342 D_GP: 0.029 D_real: 0.781 D_fake: 1.062 +(epoch: 367, iters: 3278, time: 0.063) G_GAN: 0.897 G_GAN_Feat: 1.111 G_ID: 0.105 G_Rec: 0.464 D_GP: 0.033 D_real: 1.112 D_fake: 0.171 +(epoch: 367, iters: 3678, time: 0.063) G_GAN: -0.066 G_GAN_Feat: 0.731 G_ID: 0.120 G_Rec: 0.311 D_GP: 0.028 D_real: 0.872 D_fake: 1.066 +(epoch: 367, iters: 4078, time: 0.064) G_GAN: 0.408 G_GAN_Feat: 1.128 G_ID: 0.121 G_Rec: 0.470 D_GP: 0.069 D_real: 0.731 D_fake: 0.603 +(epoch: 367, iters: 4478, time: 0.064) G_GAN: -0.045 G_GAN_Feat: 0.846 G_ID: 0.103 G_Rec: 0.332 D_GP: 0.118 D_real: 0.501 D_fake: 1.045 +(epoch: 367, iters: 4878, time: 0.064) G_GAN: 0.936 G_GAN_Feat: 1.109 G_ID: 0.125 G_Rec: 0.480 D_GP: 0.105 D_real: 1.054 D_fake: 0.214 +(epoch: 367, iters: 5278, time: 0.063) G_GAN: 0.287 G_GAN_Feat: 0.756 G_ID: 0.102 G_Rec: 0.315 D_GP: 0.036 D_real: 1.115 D_fake: 0.714 +(epoch: 367, iters: 5678, time: 0.064) G_GAN: 0.584 G_GAN_Feat: 0.937 G_ID: 0.120 G_Rec: 0.397 D_GP: 0.042 D_real: 1.211 D_fake: 0.431 +(epoch: 367, iters: 6078, time: 0.063) G_GAN: 0.159 G_GAN_Feat: 0.890 G_ID: 0.107 G_Rec: 0.304 D_GP: 0.033 D_real: 0.558 D_fake: 0.841 +(epoch: 367, iters: 6478, time: 0.063) G_GAN: 0.785 G_GAN_Feat: 1.078 G_ID: 0.144 G_Rec: 0.484 D_GP: 0.032 D_real: 0.998 D_fake: 0.346 +(epoch: 367, iters: 6878, time: 0.063) G_GAN: 0.381 G_GAN_Feat: 1.062 G_ID: 0.094 G_Rec: 0.369 D_GP: 0.032 D_real: 1.135 D_fake: 0.687 +(epoch: 367, iters: 7278, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.871 G_ID: 0.136 G_Rec: 0.442 D_GP: 0.027 D_real: 1.085 D_fake: 0.681 +(epoch: 367, iters: 7678, time: 0.063) G_GAN: 0.111 G_GAN_Feat: 0.620 G_ID: 0.081 G_Rec: 0.308 D_GP: 0.026 D_real: 1.092 D_fake: 0.890 +(epoch: 367, iters: 8078, time: 0.063) G_GAN: 0.398 G_GAN_Feat: 0.808 G_ID: 0.113 G_Rec: 0.416 D_GP: 0.028 D_real: 1.203 D_fake: 0.612 +(epoch: 367, iters: 8478, time: 0.063) G_GAN: 0.049 G_GAN_Feat: 0.614 G_ID: 0.090 G_Rec: 0.293 D_GP: 0.033 D_real: 0.979 D_fake: 0.951 +(epoch: 368, iters: 270, time: 0.064) G_GAN: 0.308 G_GAN_Feat: 0.826 G_ID: 0.121 G_Rec: 0.467 D_GP: 0.038 D_real: 0.992 D_fake: 0.719 +(epoch: 368, iters: 670, time: 0.064) G_GAN: 0.100 G_GAN_Feat: 0.623 G_ID: 0.103 G_Rec: 0.291 D_GP: 0.037 D_real: 0.927 D_fake: 0.901 +(epoch: 368, iters: 1070, time: 0.063) G_GAN: 0.089 G_GAN_Feat: 0.759 G_ID: 0.110 G_Rec: 0.366 D_GP: 0.038 D_real: 0.797 D_fake: 0.911 +(epoch: 368, iters: 1470, time: 0.063) G_GAN: -0.104 G_GAN_Feat: 0.648 G_ID: 0.105 G_Rec: 0.331 D_GP: 0.035 D_real: 0.796 D_fake: 1.104 +(epoch: 368, iters: 1870, time: 0.064) G_GAN: 0.029 G_GAN_Feat: 0.853 G_ID: 0.127 G_Rec: 0.412 D_GP: 0.046 D_real: 0.694 D_fake: 0.971 +(epoch: 368, iters: 2270, time: 0.063) G_GAN: -0.177 G_GAN_Feat: 0.678 G_ID: 0.111 G_Rec: 0.320 D_GP: 0.050 D_real: 0.673 D_fake: 1.177 +(epoch: 368, iters: 2670, time: 0.064) G_GAN: 0.370 G_GAN_Feat: 0.817 G_ID: 0.111 G_Rec: 0.405 D_GP: 0.041 D_real: 1.053 D_fake: 0.646 +(epoch: 368, iters: 3070, time: 0.063) G_GAN: 0.005 G_GAN_Feat: 0.697 G_ID: 0.096 G_Rec: 0.319 D_GP: 0.039 D_real: 0.903 D_fake: 0.995 +(epoch: 368, iters: 3470, time: 0.064) G_GAN: 0.309 G_GAN_Feat: 0.857 G_ID: 0.134 G_Rec: 0.381 D_GP: 0.044 D_real: 1.030 D_fake: 0.697 +(epoch: 368, iters: 3870, time: 0.063) G_GAN: 0.322 G_GAN_Feat: 0.704 G_ID: 0.105 G_Rec: 0.309 D_GP: 0.036 D_real: 1.160 D_fake: 0.679 +(epoch: 368, iters: 4270, time: 0.063) G_GAN: 0.112 G_GAN_Feat: 0.833 G_ID: 0.124 G_Rec: 0.373 D_GP: 0.043 D_real: 0.771 D_fake: 0.889 +(epoch: 368, iters: 4670, time: 0.063) G_GAN: 0.196 G_GAN_Feat: 0.783 G_ID: 0.101 G_Rec: 0.301 D_GP: 0.107 D_real: 0.769 D_fake: 0.804 +(epoch: 368, iters: 5070, time: 0.064) G_GAN: 0.622 G_GAN_Feat: 0.901 G_ID: 0.108 G_Rec: 0.378 D_GP: 0.047 D_real: 1.204 D_fake: 0.388 +(epoch: 368, iters: 5470, time: 0.064) G_GAN: 0.088 G_GAN_Feat: 0.659 G_ID: 0.094 G_Rec: 0.303 D_GP: 0.031 D_real: 1.007 D_fake: 0.913 +(epoch: 368, iters: 5870, time: 0.064) G_GAN: 0.344 G_GAN_Feat: 0.890 G_ID: 0.119 G_Rec: 0.432 D_GP: 0.034 D_real: 0.996 D_fake: 0.662 +(epoch: 368, iters: 6270, time: 0.064) G_GAN: -0.100 G_GAN_Feat: 0.721 G_ID: 0.145 G_Rec: 0.321 D_GP: 0.047 D_real: 0.722 D_fake: 1.100 +(epoch: 368, iters: 6670, time: 0.064) G_GAN: 0.118 G_GAN_Feat: 1.023 G_ID: 0.145 G_Rec: 0.473 D_GP: 0.103 D_real: 0.430 D_fake: 0.886 +(epoch: 368, iters: 7070, time: 0.064) G_GAN: 0.129 G_GAN_Feat: 0.702 G_ID: 0.104 G_Rec: 0.302 D_GP: 0.038 D_real: 0.869 D_fake: 0.871 +(epoch: 368, iters: 7470, time: 0.064) G_GAN: 0.678 G_GAN_Feat: 0.968 G_ID: 0.126 G_Rec: 0.474 D_GP: 0.035 D_real: 1.217 D_fake: 0.351 +(epoch: 368, iters: 7870, time: 0.064) G_GAN: 0.112 G_GAN_Feat: 0.785 G_ID: 0.121 G_Rec: 0.354 D_GP: 0.050 D_real: 0.817 D_fake: 0.888 +(epoch: 368, iters: 8270, time: 0.064) G_GAN: 0.377 G_GAN_Feat: 0.883 G_ID: 0.129 G_Rec: 0.379 D_GP: 0.041 D_real: 1.061 D_fake: 0.624 +(epoch: 368, iters: 8670, time: 0.064) G_GAN: 0.305 G_GAN_Feat: 0.771 G_ID: 0.104 G_Rec: 0.354 D_GP: 0.033 D_real: 1.103 D_fake: 0.695 +(epoch: 369, iters: 462, time: 0.064) G_GAN: 0.568 G_GAN_Feat: 0.923 G_ID: 0.131 G_Rec: 0.388 D_GP: 0.048 D_real: 1.243 D_fake: 0.439 +(epoch: 369, iters: 862, time: 0.064) G_GAN: 0.308 G_GAN_Feat: 0.668 G_ID: 0.103 G_Rec: 0.292 D_GP: 0.029 D_real: 1.245 D_fake: 0.692 +(epoch: 369, iters: 1262, time: 0.064) G_GAN: 0.413 G_GAN_Feat: 0.958 G_ID: 0.122 G_Rec: 0.434 D_GP: 0.042 D_real: 1.006 D_fake: 0.595 +(epoch: 369, iters: 1662, time: 0.064) G_GAN: 0.090 G_GAN_Feat: 0.788 G_ID: 0.117 G_Rec: 0.311 D_GP: 0.063 D_real: 0.659 D_fake: 0.910 +(epoch: 369, iters: 2062, time: 0.064) G_GAN: 0.456 G_GAN_Feat: 1.080 G_ID: 0.138 G_Rec: 0.490 D_GP: 0.051 D_real: 0.743 D_fake: 0.551 +(epoch: 369, iters: 2462, time: 0.064) G_GAN: 0.471 G_GAN_Feat: 0.839 G_ID: 0.111 G_Rec: 0.332 D_GP: 0.042 D_real: 1.314 D_fake: 0.531 +(epoch: 369, iters: 2862, time: 0.064) G_GAN: 0.874 G_GAN_Feat: 0.868 G_ID: 0.104 G_Rec: 0.433 D_GP: 0.028 D_real: 1.570 D_fake: 0.324 +(epoch: 369, iters: 3262, time: 0.064) G_GAN: -0.026 G_GAN_Feat: 0.637 G_ID: 0.119 G_Rec: 0.292 D_GP: 0.029 D_real: 0.899 D_fake: 1.026 +(epoch: 369, iters: 3662, time: 0.064) G_GAN: 0.378 G_GAN_Feat: 0.845 G_ID: 0.120 G_Rec: 0.406 D_GP: 0.036 D_real: 0.959 D_fake: 0.634 +(epoch: 369, iters: 4062, time: 0.064) G_GAN: 0.130 G_GAN_Feat: 0.626 G_ID: 0.113 G_Rec: 0.278 D_GP: 0.035 D_real: 1.015 D_fake: 0.871 +(epoch: 369, iters: 4462, time: 0.064) G_GAN: 0.188 G_GAN_Feat: 0.919 G_ID: 0.156 G_Rec: 0.440 D_GP: 0.037 D_real: 0.745 D_fake: 0.814 +(epoch: 369, iters: 4862, time: 0.064) G_GAN: 0.119 G_GAN_Feat: 0.724 G_ID: 0.099 G_Rec: 0.300 D_GP: 0.047 D_real: 0.871 D_fake: 0.881 +(epoch: 369, iters: 5262, time: 0.064) G_GAN: 0.564 G_GAN_Feat: 0.938 G_ID: 0.131 G_Rec: 0.427 D_GP: 0.074 D_real: 1.047 D_fake: 0.463 +(epoch: 369, iters: 5662, time: 0.064) G_GAN: 0.259 G_GAN_Feat: 0.805 G_ID: 0.092 G_Rec: 0.331 D_GP: 0.045 D_real: 0.951 D_fake: 0.742 +(epoch: 369, iters: 6062, time: 0.064) G_GAN: 0.617 G_GAN_Feat: 0.992 G_ID: 0.128 G_Rec: 0.442 D_GP: 0.041 D_real: 1.215 D_fake: 0.391 +(epoch: 369, iters: 6462, time: 0.064) G_GAN: 0.258 G_GAN_Feat: 0.725 G_ID: 0.092 G_Rec: 0.287 D_GP: 0.032 D_real: 1.147 D_fake: 0.742 +(epoch: 369, iters: 6862, time: 0.064) G_GAN: 0.649 G_GAN_Feat: 1.054 G_ID: 0.111 G_Rec: 0.451 D_GP: 0.053 D_real: 0.942 D_fake: 0.371 +(epoch: 369, iters: 7262, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.871 G_ID: 0.100 G_Rec: 0.337 D_GP: 0.070 D_real: 0.704 D_fake: 0.694 +(epoch: 369, iters: 7662, time: 0.064) G_GAN: 0.485 G_GAN_Feat: 0.960 G_ID: 0.131 G_Rec: 0.452 D_GP: 0.052 D_real: 1.012 D_fake: 0.555 +(epoch: 369, iters: 8062, time: 0.064) G_GAN: 0.228 G_GAN_Feat: 0.717 G_ID: 0.116 G_Rec: 0.317 D_GP: 0.036 D_real: 1.043 D_fake: 0.773 +(epoch: 369, iters: 8462, time: 0.064) G_GAN: 0.344 G_GAN_Feat: 1.100 G_ID: 0.150 G_Rec: 0.489 D_GP: 0.061 D_real: 0.652 D_fake: 0.657 +(epoch: 370, iters: 254, time: 0.064) G_GAN: 0.385 G_GAN_Feat: 0.808 G_ID: 0.095 G_Rec: 0.303 D_GP: 0.034 D_real: 1.031 D_fake: 0.615 +(epoch: 370, iters: 654, time: 0.064) G_GAN: 1.037 G_GAN_Feat: 1.029 G_ID: 0.112 G_Rec: 0.478 D_GP: 0.102 D_real: 1.488 D_fake: 0.246 +(epoch: 370, iters: 1054, time: 0.064) G_GAN: 0.005 G_GAN_Feat: 0.754 G_ID: 0.112 G_Rec: 0.322 D_GP: 0.034 D_real: 0.766 D_fake: 0.995 +(epoch: 370, iters: 1454, time: 0.064) G_GAN: 0.057 G_GAN_Feat: 1.027 G_ID: 0.142 G_Rec: 0.487 D_GP: 0.068 D_real: 0.460 D_fake: 0.945 +(epoch: 370, iters: 1854, time: 0.064) G_GAN: 0.105 G_GAN_Feat: 0.681 G_ID: 0.088 G_Rec: 0.290 D_GP: 0.033 D_real: 1.019 D_fake: 0.895 +(epoch: 370, iters: 2254, time: 0.064) G_GAN: 0.332 G_GAN_Feat: 0.941 G_ID: 0.124 G_Rec: 0.424 D_GP: 0.031 D_real: 1.013 D_fake: 0.668 +(epoch: 370, iters: 2654, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.769 G_ID: 0.091 G_Rec: 0.311 D_GP: 0.037 D_real: 0.960 D_fake: 0.751 +(epoch: 370, iters: 3054, time: 0.064) G_GAN: 0.478 G_GAN_Feat: 1.105 G_ID: 0.135 G_Rec: 0.496 D_GP: 0.095 D_real: 0.658 D_fake: 0.536 +(epoch: 370, iters: 3454, time: 0.064) G_GAN: 0.136 G_GAN_Feat: 0.817 G_ID: 0.105 G_Rec: 0.313 D_GP: 0.050 D_real: 0.792 D_fake: 0.866 +(epoch: 370, iters: 3854, time: 0.064) G_GAN: 0.806 G_GAN_Feat: 1.058 G_ID: 0.119 G_Rec: 0.459 D_GP: 0.067 D_real: 1.067 D_fake: 0.290 +(epoch: 370, iters: 4254, time: 0.064) G_GAN: 0.334 G_GAN_Feat: 0.838 G_ID: 0.098 G_Rec: 0.311 D_GP: 0.041 D_real: 0.946 D_fake: 0.671 +(epoch: 370, iters: 4654, time: 0.064) G_GAN: 0.456 G_GAN_Feat: 1.115 G_ID: 0.161 G_Rec: 0.454 D_GP: 0.138 D_real: 0.322 D_fake: 0.552 +(epoch: 370, iters: 5054, time: 0.064) G_GAN: 0.228 G_GAN_Feat: 0.832 G_ID: 0.101 G_Rec: 0.321 D_GP: 0.053 D_real: 0.942 D_fake: 0.772 +(epoch: 370, iters: 5454, time: 0.064) G_GAN: 1.058 G_GAN_Feat: 1.194 G_ID: 0.128 G_Rec: 0.543 D_GP: 0.156 D_real: 0.601 D_fake: 0.117 +(epoch: 370, iters: 5854, time: 0.064) G_GAN: 0.161 G_GAN_Feat: 0.802 G_ID: 0.087 G_Rec: 0.315 D_GP: 0.069 D_real: 0.930 D_fake: 0.839 +(epoch: 370, iters: 6254, time: 0.064) G_GAN: 0.376 G_GAN_Feat: 1.024 G_ID: 0.124 G_Rec: 0.462 D_GP: 0.034 D_real: 0.878 D_fake: 0.624 +(epoch: 370, iters: 6654, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.836 G_ID: 0.100 G_Rec: 0.335 D_GP: 0.037 D_real: 0.878 D_fake: 0.722 +(epoch: 370, iters: 7054, time: 0.064) G_GAN: 0.428 G_GAN_Feat: 1.035 G_ID: 0.119 G_Rec: 0.474 D_GP: 0.032 D_real: 0.988 D_fake: 0.575 +(epoch: 370, iters: 7454, time: 0.064) G_GAN: 0.364 G_GAN_Feat: 0.772 G_ID: 0.123 G_Rec: 0.291 D_GP: 0.032 D_real: 1.138 D_fake: 0.647 +(epoch: 370, iters: 7854, time: 0.064) G_GAN: 0.029 G_GAN_Feat: 1.009 G_ID: 0.118 G_Rec: 0.458 D_GP: 0.047 D_real: 0.539 D_fake: 0.971 +(epoch: 370, iters: 8254, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 0.895 G_ID: 0.117 G_Rec: 0.348 D_GP: 0.136 D_real: 0.632 D_fake: 0.666 +(epoch: 370, iters: 8654, time: 0.064) G_GAN: 0.714 G_GAN_Feat: 1.005 G_ID: 0.126 G_Rec: 0.453 D_GP: 0.036 D_real: 1.389 D_fake: 0.315 +(epoch: 371, iters: 446, time: 0.064) G_GAN: 0.219 G_GAN_Feat: 0.814 G_ID: 0.102 G_Rec: 0.316 D_GP: 0.040 D_real: 0.931 D_fake: 0.786 +(epoch: 371, iters: 846, time: 0.064) G_GAN: 0.809 G_GAN_Feat: 1.174 G_ID: 0.122 G_Rec: 0.483 D_GP: 0.061 D_real: 0.634 D_fake: 0.237 +(epoch: 371, iters: 1246, time: 0.064) G_GAN: 0.239 G_GAN_Feat: 0.960 G_ID: 0.098 G_Rec: 0.377 D_GP: 0.103 D_real: 0.679 D_fake: 0.770 +(epoch: 371, iters: 1646, time: 0.064) G_GAN: 0.855 G_GAN_Feat: 1.034 G_ID: 0.133 G_Rec: 0.466 D_GP: 0.042 D_real: 1.432 D_fake: 0.207 +(epoch: 371, iters: 2046, time: 0.064) G_GAN: -0.022 G_GAN_Feat: 0.752 G_ID: 0.109 G_Rec: 0.363 D_GP: 0.031 D_real: 0.790 D_fake: 1.022 +(epoch: 371, iters: 2446, time: 0.064) G_GAN: 0.374 G_GAN_Feat: 1.056 G_ID: 0.114 G_Rec: 0.432 D_GP: 0.054 D_real: 0.614 D_fake: 0.633 +(epoch: 371, iters: 2846, time: 0.064) G_GAN: 0.084 G_GAN_Feat: 0.725 G_ID: 0.102 G_Rec: 0.315 D_GP: 0.030 D_real: 0.954 D_fake: 0.916 +(epoch: 371, iters: 3246, time: 0.064) G_GAN: 0.567 G_GAN_Feat: 0.952 G_ID: 0.127 G_Rec: 0.417 D_GP: 0.046 D_real: 1.104 D_fake: 0.476 +(epoch: 371, iters: 3646, time: 0.064) G_GAN: -0.083 G_GAN_Feat: 0.861 G_ID: 0.111 G_Rec: 0.324 D_GP: 0.134 D_real: 0.353 D_fake: 1.091 +(epoch: 371, iters: 4046, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 0.953 G_ID: 0.126 G_Rec: 0.449 D_GP: 0.055 D_real: 1.046 D_fake: 0.566 +(epoch: 371, iters: 4446, time: 0.064) G_GAN: 0.029 G_GAN_Feat: 0.836 G_ID: 0.106 G_Rec: 0.347 D_GP: 0.102 D_real: 0.622 D_fake: 0.972 +(epoch: 371, iters: 4846, time: 0.064) G_GAN: -0.088 G_GAN_Feat: 1.010 G_ID: 0.129 G_Rec: 0.433 D_GP: 1.688 D_real: 0.349 D_fake: 1.090 +(epoch: 371, iters: 5246, time: 0.064) G_GAN: 0.228 G_GAN_Feat: 0.629 G_ID: 0.088 G_Rec: 0.290 D_GP: 0.026 D_real: 1.169 D_fake: 0.773 +(epoch: 371, iters: 5646, time: 0.064) G_GAN: 0.459 G_GAN_Feat: 0.897 G_ID: 0.111 G_Rec: 0.454 D_GP: 0.036 D_real: 1.101 D_fake: 0.556 +(epoch: 371, iters: 6046, time: 0.064) G_GAN: 0.088 G_GAN_Feat: 0.681 G_ID: 0.098 G_Rec: 0.279 D_GP: 0.037 D_real: 0.896 D_fake: 0.912 +(epoch: 371, iters: 6446, time: 0.064) G_GAN: 0.361 G_GAN_Feat: 0.937 G_ID: 0.144 G_Rec: 0.439 D_GP: 0.050 D_real: 0.975 D_fake: 0.644 +(epoch: 371, iters: 6846, time: 0.064) G_GAN: -0.067 G_GAN_Feat: 0.694 G_ID: 0.096 G_Rec: 0.305 D_GP: 0.038 D_real: 0.757 D_fake: 1.067 +(epoch: 371, iters: 7246, time: 0.064) G_GAN: 0.551 G_GAN_Feat: 0.986 G_ID: 0.124 G_Rec: 0.453 D_GP: 0.052 D_real: 0.939 D_fake: 0.471 +(epoch: 371, iters: 7646, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 0.776 G_ID: 0.153 G_Rec: 0.360 D_GP: 0.070 D_real: 1.038 D_fake: 0.665 +(epoch: 371, iters: 8046, time: 0.064) G_GAN: 0.683 G_GAN_Feat: 1.005 G_ID: 0.134 G_Rec: 0.481 D_GP: 0.045 D_real: 1.072 D_fake: 0.351 +(epoch: 371, iters: 8446, time: 0.064) G_GAN: 0.527 G_GAN_Feat: 1.036 G_ID: 0.116 G_Rec: 0.381 D_GP: 0.080 D_real: 0.819 D_fake: 0.520 +(epoch: 372, iters: 238, time: 0.064) G_GAN: 0.614 G_GAN_Feat: 0.998 G_ID: 0.118 G_Rec: 0.431 D_GP: 0.047 D_real: 0.910 D_fake: 0.407 +(epoch: 372, iters: 638, time: 0.064) G_GAN: 0.404 G_GAN_Feat: 0.866 G_ID: 0.110 G_Rec: 0.336 D_GP: 0.072 D_real: 0.753 D_fake: 0.612 +(epoch: 372, iters: 1038, time: 0.064) G_GAN: 0.318 G_GAN_Feat: 1.147 G_ID: 0.113 G_Rec: 0.451 D_GP: 0.100 D_real: 0.310 D_fake: 0.693 +(epoch: 372, iters: 1438, time: 0.064) G_GAN: 0.652 G_GAN_Feat: 0.761 G_ID: 0.114 G_Rec: 0.310 D_GP: 0.077 D_real: 1.337 D_fake: 0.546 +(epoch: 372, iters: 1838, time: 0.064) G_GAN: 0.346 G_GAN_Feat: 0.891 G_ID: 0.118 G_Rec: 0.398 D_GP: 0.030 D_real: 1.038 D_fake: 0.666 +(epoch: 372, iters: 2238, time: 0.064) G_GAN: 0.198 G_GAN_Feat: 0.708 G_ID: 0.097 G_Rec: 0.309 D_GP: 0.033 D_real: 1.121 D_fake: 0.802 +(epoch: 372, iters: 2638, time: 0.064) G_GAN: 0.101 G_GAN_Feat: 1.085 G_ID: 0.143 G_Rec: 0.461 D_GP: 0.109 D_real: 0.353 D_fake: 0.907 +(epoch: 372, iters: 3038, time: 0.064) G_GAN: 0.257 G_GAN_Feat: 0.983 G_ID: 0.104 G_Rec: 0.342 D_GP: 0.039 D_real: 1.480 D_fake: 0.773 +(epoch: 372, iters: 3438, time: 0.064) G_GAN: 0.662 G_GAN_Feat: 0.929 G_ID: 0.132 G_Rec: 0.432 D_GP: 0.032 D_real: 1.298 D_fake: 0.389 +(epoch: 372, iters: 3838, time: 0.064) G_GAN: 0.508 G_GAN_Feat: 0.772 G_ID: 0.110 G_Rec: 0.295 D_GP: 0.036 D_real: 1.337 D_fake: 0.513 +(epoch: 372, iters: 4238, time: 0.064) G_GAN: 0.709 G_GAN_Feat: 1.208 G_ID: 0.119 G_Rec: 0.502 D_GP: 0.648 D_real: 0.494 D_fake: 0.361 +(epoch: 372, iters: 4638, time: 0.064) G_GAN: 0.143 G_GAN_Feat: 0.722 G_ID: 0.102 G_Rec: 0.309 D_GP: 0.028 D_real: 1.052 D_fake: 0.858 +(epoch: 372, iters: 5038, time: 0.064) G_GAN: 0.636 G_GAN_Feat: 0.847 G_ID: 0.129 G_Rec: 0.404 D_GP: 0.031 D_real: 1.377 D_fake: 0.371 +(epoch: 372, iters: 5438, time: 0.064) G_GAN: 0.085 G_GAN_Feat: 0.629 G_ID: 0.092 G_Rec: 0.285 D_GP: 0.028 D_real: 1.058 D_fake: 0.915 +(epoch: 372, iters: 5838, time: 0.064) G_GAN: 0.274 G_GAN_Feat: 0.929 G_ID: 0.140 G_Rec: 0.426 D_GP: 0.038 D_real: 0.878 D_fake: 0.727 +(epoch: 372, iters: 6238, time: 0.064) G_GAN: 0.213 G_GAN_Feat: 0.710 G_ID: 0.088 G_Rec: 0.295 D_GP: 0.083 D_real: 0.892 D_fake: 0.787 +(epoch: 372, iters: 6638, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 0.876 G_ID: 0.140 G_Rec: 0.440 D_GP: 0.033 D_real: 1.105 D_fake: 0.665 +(epoch: 372, iters: 7038, time: 0.064) G_GAN: 0.184 G_GAN_Feat: 0.760 G_ID: 0.125 G_Rec: 0.328 D_GP: 0.038 D_real: 0.951 D_fake: 0.817 +(epoch: 372, iters: 7438, time: 0.064) G_GAN: 0.622 G_GAN_Feat: 0.845 G_ID: 0.119 G_Rec: 0.372 D_GP: 0.032 D_real: 1.287 D_fake: 0.414 +(epoch: 372, iters: 7838, time: 0.064) G_GAN: 0.360 G_GAN_Feat: 0.805 G_ID: 0.102 G_Rec: 0.357 D_GP: 0.051 D_real: 1.086 D_fake: 0.642 +(epoch: 372, iters: 8238, time: 0.064) G_GAN: 0.234 G_GAN_Feat: 1.218 G_ID: 0.121 G_Rec: 0.444 D_GP: 0.053 D_real: 1.501 D_fake: 0.799 +(epoch: 372, iters: 8638, time: 0.064) G_GAN: 0.161 G_GAN_Feat: 0.721 G_ID: 0.100 G_Rec: 0.309 D_GP: 0.035 D_real: 1.013 D_fake: 0.840 +(epoch: 373, iters: 430, time: 0.064) G_GAN: 0.292 G_GAN_Feat: 1.126 G_ID: 0.128 G_Rec: 0.490 D_GP: 0.144 D_real: 0.415 D_fake: 0.713 +(epoch: 373, iters: 830, time: 0.064) G_GAN: 0.520 G_GAN_Feat: 0.723 G_ID: 0.101 G_Rec: 0.305 D_GP: 0.035 D_real: 1.402 D_fake: 0.488 +(epoch: 373, iters: 1230, time: 0.064) G_GAN: 0.732 G_GAN_Feat: 1.019 G_ID: 0.113 G_Rec: 0.409 D_GP: 0.061 D_real: 1.046 D_fake: 0.286 +(epoch: 373, iters: 1630, time: 0.064) G_GAN: 0.223 G_GAN_Feat: 0.915 G_ID: 0.110 G_Rec: 0.336 D_GP: 0.117 D_real: 0.319 D_fake: 0.805 +(epoch: 373, iters: 2030, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 1.053 G_ID: 0.138 G_Rec: 0.477 D_GP: 0.062 D_real: 0.581 D_fake: 0.667 +(epoch: 373, iters: 2430, time: 0.064) G_GAN: 0.199 G_GAN_Feat: 0.752 G_ID: 0.103 G_Rec: 0.307 D_GP: 0.029 D_real: 1.061 D_fake: 0.801 +(epoch: 373, iters: 2830, time: 0.064) G_GAN: 0.166 G_GAN_Feat: 1.005 G_ID: 0.123 G_Rec: 0.503 D_GP: 0.039 D_real: 0.821 D_fake: 0.835 +(epoch: 373, iters: 3230, time: 0.064) G_GAN: 0.204 G_GAN_Feat: 0.686 G_ID: 0.099 G_Rec: 0.300 D_GP: 0.032 D_real: 1.114 D_fake: 0.796 +(epoch: 373, iters: 3630, time: 0.064) G_GAN: 0.298 G_GAN_Feat: 0.902 G_ID: 0.113 G_Rec: 0.382 D_GP: 0.035 D_real: 0.956 D_fake: 0.703 +(epoch: 373, iters: 4030, time: 0.064) G_GAN: 0.126 G_GAN_Feat: 0.814 G_ID: 0.105 G_Rec: 0.323 D_GP: 0.062 D_real: 0.898 D_fake: 0.874 +(epoch: 373, iters: 4430, time: 0.064) G_GAN: 0.444 G_GAN_Feat: 1.233 G_ID: 0.123 G_Rec: 0.471 D_GP: 0.054 D_real: 0.320 D_fake: 0.560 +(epoch: 373, iters: 4830, time: 0.064) G_GAN: 0.150 G_GAN_Feat: 0.649 G_ID: 0.107 G_Rec: 0.312 D_GP: 0.029 D_real: 1.108 D_fake: 0.850 +(epoch: 373, iters: 5230, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 0.874 G_ID: 0.137 G_Rec: 0.404 D_GP: 0.032 D_real: 0.981 D_fake: 0.738 +(epoch: 373, iters: 5630, time: 0.064) G_GAN: 0.299 G_GAN_Feat: 0.609 G_ID: 0.100 G_Rec: 0.276 D_GP: 0.029 D_real: 1.197 D_fake: 0.704 +(epoch: 373, iters: 6030, time: 0.064) G_GAN: 0.455 G_GAN_Feat: 0.918 G_ID: 0.120 G_Rec: 0.446 D_GP: 0.035 D_real: 1.105 D_fake: 0.571 +(epoch: 373, iters: 6430, time: 0.064) G_GAN: -0.168 G_GAN_Feat: 0.629 G_ID: 0.102 G_Rec: 0.272 D_GP: 0.033 D_real: 0.731 D_fake: 1.168 +(epoch: 373, iters: 6830, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 0.814 G_ID: 0.106 G_Rec: 0.379 D_GP: 0.033 D_real: 1.166 D_fake: 0.576 +(epoch: 373, iters: 7230, time: 0.064) G_GAN: -0.168 G_GAN_Feat: 0.755 G_ID: 0.131 G_Rec: 0.329 D_GP: 0.065 D_real: 0.546 D_fake: 1.168 +(epoch: 373, iters: 7630, time: 0.064) G_GAN: 0.303 G_GAN_Feat: 0.901 G_ID: 0.118 G_Rec: 0.406 D_GP: 0.048 D_real: 0.821 D_fake: 0.701 +(epoch: 373, iters: 8030, time: 0.064) G_GAN: 0.133 G_GAN_Feat: 0.771 G_ID: 0.107 G_Rec: 0.306 D_GP: 0.032 D_real: 0.885 D_fake: 0.867 +(epoch: 373, iters: 8430, time: 0.064) G_GAN: 0.518 G_GAN_Feat: 0.984 G_ID: 0.123 G_Rec: 0.439 D_GP: 0.062 D_real: 1.066 D_fake: 0.491 +(epoch: 374, iters: 222, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.740 G_ID: 0.111 G_Rec: 0.320 D_GP: 0.043 D_real: 1.077 D_fake: 0.714 +(epoch: 374, iters: 622, time: 0.064) G_GAN: 0.744 G_GAN_Feat: 1.133 G_ID: 0.117 G_Rec: 0.498 D_GP: 0.737 D_real: 0.619 D_fake: 0.330 +(epoch: 374, iters: 1022, time: 0.064) G_GAN: 0.229 G_GAN_Feat: 0.687 G_ID: 0.108 G_Rec: 0.291 D_GP: 0.030 D_real: 1.099 D_fake: 0.771 +(epoch: 374, iters: 1422, time: 0.064) G_GAN: 0.219 G_GAN_Feat: 1.022 G_ID: 0.131 G_Rec: 0.402 D_GP: 0.084 D_real: 0.360 D_fake: 0.782 +(epoch: 374, iters: 1822, time: 0.064) G_GAN: 0.222 G_GAN_Feat: 0.789 G_ID: 0.101 G_Rec: 0.302 D_GP: 0.044 D_real: 0.885 D_fake: 0.786 +(epoch: 374, iters: 2222, time: 0.064) G_GAN: 0.620 G_GAN_Feat: 0.970 G_ID: 0.124 G_Rec: 0.402 D_GP: 0.053 D_real: 1.145 D_fake: 0.412 +(epoch: 374, iters: 2622, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 0.860 G_ID: 0.103 G_Rec: 0.351 D_GP: 0.040 D_real: 0.906 D_fake: 0.826 +(epoch: 374, iters: 3022, time: 0.063) G_GAN: 0.945 G_GAN_Feat: 1.029 G_ID: 0.117 G_Rec: 0.449 D_GP: 0.048 D_real: 1.238 D_fake: 0.163 +(epoch: 374, iters: 3422, time: 0.063) G_GAN: -0.120 G_GAN_Feat: 0.982 G_ID: 0.096 G_Rec: 0.351 D_GP: 0.244 D_real: 0.289 D_fake: 1.120 +(epoch: 374, iters: 3822, time: 0.063) G_GAN: 0.394 G_GAN_Feat: 0.964 G_ID: 0.136 G_Rec: 0.417 D_GP: 0.034 D_real: 0.888 D_fake: 0.620 +(epoch: 374, iters: 4222, time: 0.064) G_GAN: 0.366 G_GAN_Feat: 0.796 G_ID: 0.107 G_Rec: 0.331 D_GP: 0.030 D_real: 1.087 D_fake: 0.643 +(epoch: 374, iters: 4622, time: 0.063) G_GAN: 0.762 G_GAN_Feat: 1.119 G_ID: 0.118 G_Rec: 0.426 D_GP: 0.078 D_real: 0.706 D_fake: 0.384 +(epoch: 374, iters: 5022, time: 0.063) G_GAN: -0.127 G_GAN_Feat: 0.835 G_ID: 0.096 G_Rec: 0.288 D_GP: 0.037 D_real: 0.579 D_fake: 1.127 +(epoch: 374, iters: 5422, time: 0.063) G_GAN: 0.432 G_GAN_Feat: 1.009 G_ID: 0.124 G_Rec: 0.458 D_GP: 0.037 D_real: 1.002 D_fake: 0.571 +(epoch: 374, iters: 5822, time: 0.064) G_GAN: -0.164 G_GAN_Feat: 0.827 G_ID: 0.105 G_Rec: 0.333 D_GP: 0.068 D_real: 0.406 D_fake: 1.164 +(epoch: 374, iters: 6222, time: 0.063) G_GAN: 0.672 G_GAN_Feat: 1.031 G_ID: 0.137 G_Rec: 0.454 D_GP: 0.051 D_real: 0.930 D_fake: 0.346 +(epoch: 374, iters: 6622, time: 0.063) G_GAN: 0.926 G_GAN_Feat: 1.004 G_ID: 0.110 G_Rec: 0.358 D_GP: 0.071 D_real: 1.320 D_fake: 0.332 +(epoch: 374, iters: 7022, time: 0.063) G_GAN: 0.550 G_GAN_Feat: 0.982 G_ID: 0.123 G_Rec: 0.463 D_GP: 0.030 D_real: 1.274 D_fake: 0.472 +(epoch: 374, iters: 7422, time: 0.063) G_GAN: -0.049 G_GAN_Feat: 0.708 G_ID: 0.110 G_Rec: 0.305 D_GP: 0.028 D_real: 0.876 D_fake: 1.049 +(epoch: 374, iters: 7822, time: 0.063) G_GAN: 0.423 G_GAN_Feat: 0.901 G_ID: 0.125 G_Rec: 0.455 D_GP: 0.040 D_real: 1.187 D_fake: 0.593 +(epoch: 374, iters: 8222, time: 0.063) G_GAN: 0.021 G_GAN_Feat: 0.693 G_ID: 0.096 G_Rec: 0.305 D_GP: 0.035 D_real: 0.837 D_fake: 0.979 +(epoch: 374, iters: 8622, time: 0.064) G_GAN: -0.011 G_GAN_Feat: 0.821 G_ID: 0.132 G_Rec: 0.401 D_GP: 0.027 D_real: 0.896 D_fake: 1.011 +(epoch: 375, iters: 414, time: 0.063) G_GAN: 0.324 G_GAN_Feat: 0.692 G_ID: 0.093 G_Rec: 0.307 D_GP: 0.026 D_real: 1.257 D_fake: 0.678 +(epoch: 375, iters: 814, time: 0.063) G_GAN: 0.409 G_GAN_Feat: 0.871 G_ID: 0.122 G_Rec: 0.392 D_GP: 0.036 D_real: 1.105 D_fake: 0.596 +(epoch: 375, iters: 1214, time: 0.063) G_GAN: 0.249 G_GAN_Feat: 0.723 G_ID: 0.094 G_Rec: 0.304 D_GP: 0.041 D_real: 1.083 D_fake: 0.751 +(epoch: 375, iters: 1614, time: 0.064) G_GAN: 0.457 G_GAN_Feat: 0.942 G_ID: 0.112 G_Rec: 0.459 D_GP: 0.051 D_real: 1.066 D_fake: 0.567 +(epoch: 375, iters: 2014, time: 0.063) G_GAN: -0.091 G_GAN_Feat: 0.792 G_ID: 0.109 G_Rec: 0.331 D_GP: 0.046 D_real: 0.641 D_fake: 1.091 +(epoch: 375, iters: 2414, time: 0.063) G_GAN: 0.191 G_GAN_Feat: 1.021 G_ID: 0.124 G_Rec: 0.498 D_GP: 0.050 D_real: 0.795 D_fake: 0.810 +(epoch: 375, iters: 2814, time: 0.063) G_GAN: 0.139 G_GAN_Feat: 0.816 G_ID: 0.107 G_Rec: 0.336 D_GP: 0.076 D_real: 0.667 D_fake: 0.861 +(epoch: 375, iters: 3214, time: 0.064) G_GAN: 0.488 G_GAN_Feat: 0.995 G_ID: 0.130 G_Rec: 0.424 D_GP: 0.056 D_real: 0.948 D_fake: 0.518 +(epoch: 375, iters: 3614, time: 0.063) G_GAN: 0.475 G_GAN_Feat: 0.909 G_ID: 0.109 G_Rec: 0.340 D_GP: 0.180 D_real: 0.776 D_fake: 0.570 +(epoch: 375, iters: 4014, time: 0.063) G_GAN: 0.971 G_GAN_Feat: 1.253 G_ID: 0.115 G_Rec: 0.500 D_GP: 0.036 D_real: 1.680 D_fake: 0.171 +(epoch: 375, iters: 4414, time: 0.063) G_GAN: 0.145 G_GAN_Feat: 0.807 G_ID: 0.111 G_Rec: 0.348 D_GP: 0.056 D_real: 0.945 D_fake: 0.856 +(epoch: 375, iters: 4814, time: 0.064) G_GAN: 0.697 G_GAN_Feat: 0.999 G_ID: 0.105 G_Rec: 0.434 D_GP: 0.080 D_real: 1.050 D_fake: 0.343 +(epoch: 375, iters: 5214, time: 0.063) G_GAN: 0.282 G_GAN_Feat: 0.814 G_ID: 0.102 G_Rec: 0.308 D_GP: 0.057 D_real: 0.991 D_fake: 0.752 +(epoch: 375, iters: 5614, time: 0.063) G_GAN: 0.684 G_GAN_Feat: 1.123 G_ID: 0.131 G_Rec: 0.425 D_GP: 0.052 D_real: 0.537 D_fake: 0.348 +(epoch: 375, iters: 6014, time: 0.063) G_GAN: 0.226 G_GAN_Feat: 0.936 G_ID: 0.100 G_Rec: 0.326 D_GP: 0.167 D_real: 0.544 D_fake: 0.774 +(epoch: 375, iters: 6414, time: 0.064) G_GAN: 0.788 G_GAN_Feat: 1.075 G_ID: 0.128 G_Rec: 0.433 D_GP: 0.056 D_real: 0.720 D_fake: 0.253 +(epoch: 375, iters: 6814, time: 0.063) G_GAN: 0.492 G_GAN_Feat: 0.934 G_ID: 0.102 G_Rec: 0.360 D_GP: 0.055 D_real: 0.893 D_fake: 0.527 +(epoch: 375, iters: 7214, time: 0.063) G_GAN: 0.422 G_GAN_Feat: 0.842 G_ID: 0.124 G_Rec: 0.404 D_GP: 0.034 D_real: 1.109 D_fake: 0.582 +(epoch: 375, iters: 7614, time: 0.063) G_GAN: 0.142 G_GAN_Feat: 0.662 G_ID: 0.101 G_Rec: 0.285 D_GP: 0.032 D_real: 1.007 D_fake: 0.858 +(epoch: 375, iters: 8014, time: 0.064) G_GAN: 0.328 G_GAN_Feat: 1.007 G_ID: 0.127 G_Rec: 0.471 D_GP: 0.048 D_real: 0.739 D_fake: 0.679 +(epoch: 375, iters: 8414, time: 0.063) G_GAN: 0.096 G_GAN_Feat: 0.854 G_ID: 0.111 G_Rec: 0.384 D_GP: 0.086 D_real: 0.783 D_fake: 0.905 +(epoch: 376, iters: 206, time: 0.063) G_GAN: 0.524 G_GAN_Feat: 0.903 G_ID: 0.120 G_Rec: 0.429 D_GP: 0.031 D_real: 1.184 D_fake: 0.482 +(epoch: 376, iters: 606, time: 0.063) G_GAN: 0.147 G_GAN_Feat: 0.882 G_ID: 0.107 G_Rec: 0.360 D_GP: 0.347 D_real: 0.499 D_fake: 0.868 +(epoch: 376, iters: 1006, time: 0.064) G_GAN: 0.422 G_GAN_Feat: 0.964 G_ID: 0.125 G_Rec: 0.435 D_GP: 0.058 D_real: 0.949 D_fake: 0.581 +(epoch: 376, iters: 1406, time: 0.063) G_GAN: 0.299 G_GAN_Feat: 0.852 G_ID: 0.102 G_Rec: 0.361 D_GP: 0.097 D_real: 0.882 D_fake: 0.707 +(epoch: 376, iters: 1806, time: 0.063) G_GAN: 0.505 G_GAN_Feat: 1.016 G_ID: 0.176 G_Rec: 0.493 D_GP: 0.051 D_real: 1.059 D_fake: 0.498 +(epoch: 376, iters: 2206, time: 0.063) G_GAN: 0.355 G_GAN_Feat: 0.734 G_ID: 0.095 G_Rec: 0.314 D_GP: 0.033 D_real: 1.184 D_fake: 0.649 +(epoch: 376, iters: 2606, time: 0.064) G_GAN: 0.640 G_GAN_Feat: 1.011 G_ID: 0.121 G_Rec: 0.437 D_GP: 0.039 D_real: 1.019 D_fake: 0.393 +(epoch: 376, iters: 3006, time: 0.064) G_GAN: 0.644 G_GAN_Feat: 0.768 G_ID: 0.097 G_Rec: 0.332 D_GP: 0.036 D_real: 1.551 D_fake: 0.370 +(epoch: 376, iters: 3406, time: 0.064) G_GAN: 0.758 G_GAN_Feat: 0.934 G_ID: 0.108 G_Rec: 0.391 D_GP: 0.039 D_real: 1.409 D_fake: 0.277 +(epoch: 376, iters: 3806, time: 0.064) G_GAN: 0.426 G_GAN_Feat: 0.741 G_ID: 0.116 G_Rec: 0.272 D_GP: 0.038 D_real: 1.223 D_fake: 0.607 +(epoch: 376, iters: 4206, time: 0.064) G_GAN: 0.298 G_GAN_Feat: 1.187 G_ID: 0.134 G_Rec: 0.424 D_GP: 0.035 D_real: 1.157 D_fake: 0.710 +(epoch: 376, iters: 4606, time: 0.064) G_GAN: 0.087 G_GAN_Feat: 0.617 G_ID: 0.108 G_Rec: 0.271 D_GP: 0.028 D_real: 1.108 D_fake: 0.913 +(epoch: 376, iters: 5006, time: 0.064) G_GAN: 0.362 G_GAN_Feat: 0.827 G_ID: 0.114 G_Rec: 0.462 D_GP: 0.030 D_real: 1.082 D_fake: 0.651 +(epoch: 376, iters: 5406, time: 0.064) G_GAN: 0.180 G_GAN_Feat: 0.678 G_ID: 0.097 G_Rec: 0.314 D_GP: 0.038 D_real: 1.061 D_fake: 0.820 +(epoch: 376, iters: 5806, time: 0.064) G_GAN: 0.289 G_GAN_Feat: 0.969 G_ID: 0.121 G_Rec: 0.482 D_GP: 0.055 D_real: 0.796 D_fake: 0.715 +(epoch: 376, iters: 6206, time: 0.064) G_GAN: 0.116 G_GAN_Feat: 0.816 G_ID: 0.108 G_Rec: 0.360 D_GP: 0.114 D_real: 0.726 D_fake: 0.885 +(epoch: 376, iters: 6606, time: 0.064) G_GAN: 0.562 G_GAN_Feat: 0.985 G_ID: 0.120 G_Rec: 0.416 D_GP: 0.034 D_real: 1.028 D_fake: 0.453 +(epoch: 376, iters: 7006, time: 0.064) G_GAN: 0.326 G_GAN_Feat: 0.686 G_ID: 0.086 G_Rec: 0.296 D_GP: 0.035 D_real: 1.220 D_fake: 0.674 +(epoch: 376, iters: 7406, time: 0.064) G_GAN: 0.472 G_GAN_Feat: 0.991 G_ID: 0.120 G_Rec: 0.453 D_GP: 0.063 D_real: 0.844 D_fake: 0.534 +(epoch: 376, iters: 7806, time: 0.064) G_GAN: 0.219 G_GAN_Feat: 0.782 G_ID: 0.103 G_Rec: 0.313 D_GP: 0.043 D_real: 0.961 D_fake: 0.781 +(epoch: 376, iters: 8206, time: 0.064) G_GAN: 0.507 G_GAN_Feat: 0.937 G_ID: 0.128 G_Rec: 0.410 D_GP: 0.035 D_real: 1.150 D_fake: 0.498 +(epoch: 376, iters: 8606, time: 0.064) G_GAN: 0.167 G_GAN_Feat: 0.761 G_ID: 0.087 G_Rec: 0.315 D_GP: 0.033 D_real: 1.050 D_fake: 0.833 +(epoch: 377, iters: 398, time: 0.064) G_GAN: 0.580 G_GAN_Feat: 1.013 G_ID: 0.119 G_Rec: 0.452 D_GP: 0.036 D_real: 1.035 D_fake: 0.431 +(epoch: 377, iters: 798, time: 0.063) G_GAN: -0.068 G_GAN_Feat: 0.941 G_ID: 0.113 G_Rec: 0.337 D_GP: 0.578 D_real: 0.206 D_fake: 1.079 +(epoch: 377, iters: 1198, time: 0.063) G_GAN: 0.450 G_GAN_Feat: 1.001 G_ID: 0.109 G_Rec: 0.428 D_GP: 0.049 D_real: 0.853 D_fake: 0.561 +(epoch: 377, iters: 1598, time: 0.063) G_GAN: 0.109 G_GAN_Feat: 0.707 G_ID: 0.119 G_Rec: 0.361 D_GP: 0.029 D_real: 0.924 D_fake: 0.891 +(epoch: 377, iters: 1998, time: 0.064) G_GAN: 0.525 G_GAN_Feat: 1.086 G_ID: 0.120 G_Rec: 0.450 D_GP: 0.042 D_real: 0.861 D_fake: 0.493 +(epoch: 377, iters: 2398, time: 0.063) G_GAN: 0.332 G_GAN_Feat: 1.021 G_ID: 0.093 G_Rec: 0.349 D_GP: 0.107 D_real: 0.479 D_fake: 0.677 +(epoch: 377, iters: 2798, time: 0.063) G_GAN: 0.529 G_GAN_Feat: 0.967 G_ID: 0.133 G_Rec: 0.441 D_GP: 0.034 D_real: 1.093 D_fake: 0.488 +(epoch: 377, iters: 3198, time: 0.063) G_GAN: 0.109 G_GAN_Feat: 0.697 G_ID: 0.122 G_Rec: 0.313 D_GP: 0.038 D_real: 0.996 D_fake: 0.891 +(epoch: 377, iters: 3598, time: 0.064) G_GAN: 0.346 G_GAN_Feat: 0.931 G_ID: 0.111 G_Rec: 0.429 D_GP: 0.033 D_real: 0.976 D_fake: 0.665 +(epoch: 377, iters: 3998, time: 0.063) G_GAN: 0.143 G_GAN_Feat: 0.666 G_ID: 0.102 G_Rec: 0.288 D_GP: 0.042 D_real: 0.971 D_fake: 0.857 +(epoch: 377, iters: 4398, time: 0.063) G_GAN: 0.231 G_GAN_Feat: 0.977 G_ID: 0.142 G_Rec: 0.457 D_GP: 0.040 D_real: 1.041 D_fake: 0.776 +(epoch: 377, iters: 4798, time: 0.063) G_GAN: 0.159 G_GAN_Feat: 0.723 G_ID: 0.090 G_Rec: 0.305 D_GP: 0.031 D_real: 1.039 D_fake: 0.841 +(epoch: 377, iters: 5198, time: 0.064) G_GAN: 0.423 G_GAN_Feat: 0.953 G_ID: 0.130 G_Rec: 0.425 D_GP: 0.063 D_real: 0.880 D_fake: 0.592 +(epoch: 377, iters: 5598, time: 0.063) G_GAN: 0.118 G_GAN_Feat: 0.852 G_ID: 0.107 G_Rec: 0.325 D_GP: 0.059 D_real: 0.560 D_fake: 0.882 +(epoch: 377, iters: 5998, time: 0.063) G_GAN: 0.316 G_GAN_Feat: 1.014 G_ID: 0.109 G_Rec: 0.480 D_GP: 0.047 D_real: 0.888 D_fake: 0.685 +(epoch: 377, iters: 6398, time: 0.063) G_GAN: 0.209 G_GAN_Feat: 0.857 G_ID: 0.103 G_Rec: 0.330 D_GP: 0.037 D_real: 1.006 D_fake: 0.791 +(epoch: 377, iters: 6798, time: 0.064) G_GAN: 0.996 G_GAN_Feat: 1.008 G_ID: 0.120 G_Rec: 0.434 D_GP: 0.035 D_real: 1.554 D_fake: 0.115 +(epoch: 377, iters: 7198, time: 0.063) G_GAN: 0.458 G_GAN_Feat: 0.798 G_ID: 0.096 G_Rec: 0.319 D_GP: 0.055 D_real: 1.445 D_fake: 0.544 +(epoch: 377, iters: 7598, time: 0.063) G_GAN: 0.283 G_GAN_Feat: 0.995 G_ID: 0.148 G_Rec: 0.442 D_GP: 0.033 D_real: 0.901 D_fake: 0.719 +(epoch: 377, iters: 7998, time: 0.063) G_GAN: -0.124 G_GAN_Feat: 0.867 G_ID: 0.107 G_Rec: 0.321 D_GP: 0.048 D_real: 0.538 D_fake: 1.124 +(epoch: 377, iters: 8398, time: 0.064) G_GAN: 0.679 G_GAN_Feat: 1.026 G_ID: 0.119 G_Rec: 0.440 D_GP: 0.052 D_real: 1.110 D_fake: 0.354 +(epoch: 378, iters: 190, time: 0.063) G_GAN: 0.271 G_GAN_Feat: 0.804 G_ID: 0.114 G_Rec: 0.310 D_GP: 0.041 D_real: 1.022 D_fake: 0.731 +(epoch: 378, iters: 590, time: 0.063) G_GAN: 0.509 G_GAN_Feat: 0.922 G_ID: 0.115 G_Rec: 0.456 D_GP: 0.026 D_real: 1.230 D_fake: 0.497 +(epoch: 378, iters: 990, time: 0.063) G_GAN: 0.104 G_GAN_Feat: 0.793 G_ID: 0.107 G_Rec: 0.335 D_GP: 0.042 D_real: 0.755 D_fake: 0.896 +(epoch: 378, iters: 1390, time: 0.064) G_GAN: 0.678 G_GAN_Feat: 1.002 G_ID: 0.126 G_Rec: 0.440 D_GP: 0.036 D_real: 0.979 D_fake: 0.346 +(epoch: 378, iters: 1790, time: 0.063) G_GAN: 0.418 G_GAN_Feat: 1.007 G_ID: 0.114 G_Rec: 0.356 D_GP: 0.416 D_real: 0.314 D_fake: 0.712 +(epoch: 378, iters: 2190, time: 0.063) G_GAN: 0.416 G_GAN_Feat: 0.858 G_ID: 0.130 G_Rec: 0.392 D_GP: 0.036 D_real: 1.179 D_fake: 0.589 +(epoch: 378, iters: 2590, time: 0.063) G_GAN: 0.108 G_GAN_Feat: 0.692 G_ID: 0.102 G_Rec: 0.293 D_GP: 0.028 D_real: 1.064 D_fake: 0.893 +(epoch: 378, iters: 2990, time: 0.064) G_GAN: 0.241 G_GAN_Feat: 1.003 G_ID: 0.135 G_Rec: 0.453 D_GP: 0.040 D_real: 0.892 D_fake: 0.764 +(epoch: 378, iters: 3390, time: 0.063) G_GAN: 0.133 G_GAN_Feat: 0.701 G_ID: 0.105 G_Rec: 0.296 D_GP: 0.040 D_real: 1.023 D_fake: 0.870 +(epoch: 378, iters: 3790, time: 0.063) G_GAN: 0.125 G_GAN_Feat: 1.040 G_ID: 0.135 G_Rec: 0.462 D_GP: 0.071 D_real: 0.438 D_fake: 0.875 +(epoch: 378, iters: 4190, time: 0.064) G_GAN: 0.154 G_GAN_Feat: 0.756 G_ID: 0.110 G_Rec: 0.333 D_GP: 0.034 D_real: 0.988 D_fake: 0.847 +(epoch: 378, iters: 4590, time: 0.064) G_GAN: 0.538 G_GAN_Feat: 0.985 G_ID: 0.122 G_Rec: 0.484 D_GP: 0.042 D_real: 1.262 D_fake: 0.509 +(epoch: 378, iters: 4990, time: 0.063) G_GAN: 0.042 G_GAN_Feat: 0.886 G_ID: 0.110 G_Rec: 0.335 D_GP: 0.052 D_real: 0.405 D_fake: 0.958 +(epoch: 378, iters: 5390, time: 0.063) G_GAN: 0.713 G_GAN_Feat: 0.999 G_ID: 0.124 G_Rec: 0.424 D_GP: 0.037 D_real: 1.180 D_fake: 0.309 +(epoch: 378, iters: 5790, time: 0.063) G_GAN: 0.237 G_GAN_Feat: 0.836 G_ID: 0.100 G_Rec: 0.341 D_GP: 0.034 D_real: 1.046 D_fake: 0.769 +(epoch: 378, iters: 6190, time: 0.064) G_GAN: 0.334 G_GAN_Feat: 0.900 G_ID: 0.129 G_Rec: 0.423 D_GP: 0.028 D_real: 1.110 D_fake: 0.669 +(epoch: 378, iters: 6590, time: 0.063) G_GAN: 0.119 G_GAN_Feat: 0.726 G_ID: 0.100 G_Rec: 0.293 D_GP: 0.031 D_real: 0.944 D_fake: 0.881 +(epoch: 378, iters: 6990, time: 0.063) G_GAN: 0.388 G_GAN_Feat: 1.031 G_ID: 0.140 G_Rec: 0.496 D_GP: 0.095 D_real: 0.838 D_fake: 0.624 +(epoch: 378, iters: 7390, time: 0.063) G_GAN: 0.069 G_GAN_Feat: 0.747 G_ID: 0.098 G_Rec: 0.308 D_GP: 0.040 D_real: 0.933 D_fake: 0.932 +(epoch: 378, iters: 7790, time: 0.064) G_GAN: 0.494 G_GAN_Feat: 0.926 G_ID: 0.121 G_Rec: 0.415 D_GP: 0.038 D_real: 1.042 D_fake: 0.527 +(epoch: 378, iters: 8190, time: 0.063) G_GAN: -0.035 G_GAN_Feat: 0.767 G_ID: 0.095 G_Rec: 0.326 D_GP: 0.047 D_real: 0.728 D_fake: 1.035 +(epoch: 378, iters: 8590, time: 0.063) G_GAN: 0.530 G_GAN_Feat: 1.029 G_ID: 0.121 G_Rec: 0.456 D_GP: 0.045 D_real: 0.833 D_fake: 0.489 +(epoch: 379, iters: 382, time: 0.063) G_GAN: 0.220 G_GAN_Feat: 0.673 G_ID: 0.105 G_Rec: 0.269 D_GP: 0.034 D_real: 1.092 D_fake: 0.780 +(epoch: 379, iters: 782, time: 0.064) G_GAN: 0.665 G_GAN_Feat: 0.956 G_ID: 0.112 G_Rec: 0.494 D_GP: 0.037 D_real: 1.285 D_fake: 0.352 +(epoch: 379, iters: 1182, time: 0.063) G_GAN: 0.479 G_GAN_Feat: 0.869 G_ID: 0.079 G_Rec: 0.308 D_GP: 0.124 D_real: 0.730 D_fake: 0.526 +(epoch: 379, iters: 1582, time: 0.063) G_GAN: 0.491 G_GAN_Feat: 1.218 G_ID: 0.138 G_Rec: 0.557 D_GP: 0.043 D_real: 0.987 D_fake: 0.541 +(epoch: 379, iters: 1982, time: 0.063) G_GAN: -0.050 G_GAN_Feat: 0.709 G_ID: 0.110 G_Rec: 0.305 D_GP: 0.030 D_real: 0.824 D_fake: 1.050 +(epoch: 379, iters: 2382, time: 0.064) G_GAN: 0.463 G_GAN_Feat: 1.035 G_ID: 0.140 G_Rec: 0.467 D_GP: 0.120 D_real: 0.530 D_fake: 0.548 +(epoch: 379, iters: 2782, time: 0.063) G_GAN: 0.432 G_GAN_Feat: 0.827 G_ID: 0.089 G_Rec: 0.315 D_GP: 0.059 D_real: 0.933 D_fake: 0.573 +(epoch: 379, iters: 3182, time: 0.063) G_GAN: 0.682 G_GAN_Feat: 0.995 G_ID: 0.132 G_Rec: 0.414 D_GP: 0.047 D_real: 1.255 D_fake: 0.343 +(epoch: 379, iters: 3582, time: 0.063) G_GAN: 0.102 G_GAN_Feat: 0.805 G_ID: 0.109 G_Rec: 0.329 D_GP: 0.062 D_real: 0.748 D_fake: 0.898 +(epoch: 379, iters: 3982, time: 0.063) G_GAN: 1.118 G_GAN_Feat: 0.951 G_ID: 0.158 G_Rec: 0.421 D_GP: 0.035 D_real: 1.666 D_fake: 0.106 +(epoch: 379, iters: 4382, time: 0.063) G_GAN: 0.336 G_GAN_Feat: 0.734 G_ID: 0.100 G_Rec: 0.292 D_GP: 0.035 D_real: 1.114 D_fake: 0.667 +(epoch: 379, iters: 4782, time: 0.063) G_GAN: 0.678 G_GAN_Feat: 1.050 G_ID: 0.124 G_Rec: 0.495 D_GP: 0.036 D_real: 1.211 D_fake: 0.367 +(epoch: 379, iters: 5182, time: 0.064) G_GAN: 0.071 G_GAN_Feat: 0.879 G_ID: 0.106 G_Rec: 0.342 D_GP: 0.116 D_real: 0.667 D_fake: 0.929 +(epoch: 379, iters: 5582, time: 0.063) G_GAN: 0.606 G_GAN_Feat: 1.127 G_ID: 0.114 G_Rec: 0.473 D_GP: 0.079 D_real: 0.714 D_fake: 0.409 +(epoch: 379, iters: 5982, time: 0.063) G_GAN: -0.109 G_GAN_Feat: 0.785 G_ID: 0.128 G_Rec: 0.347 D_GP: 0.035 D_real: 0.797 D_fake: 1.109 +(epoch: 379, iters: 6382, time: 0.063) G_GAN: 0.673 G_GAN_Feat: 0.990 G_ID: 0.106 G_Rec: 0.440 D_GP: 0.033 D_real: 1.273 D_fake: 0.359 +(epoch: 379, iters: 6782, time: 0.064) G_GAN: 0.234 G_GAN_Feat: 0.791 G_ID: 0.109 G_Rec: 0.340 D_GP: 0.037 D_real: 0.899 D_fake: 0.767 +(epoch: 379, iters: 7182, time: 0.063) G_GAN: 0.559 G_GAN_Feat: 0.873 G_ID: 0.128 G_Rec: 0.395 D_GP: 0.029 D_real: 1.240 D_fake: 0.456 +(epoch: 379, iters: 7582, time: 0.063) G_GAN: 0.158 G_GAN_Feat: 0.806 G_ID: 0.125 G_Rec: 0.340 D_GP: 0.036 D_real: 0.762 D_fake: 0.843 +(epoch: 379, iters: 7982, time: 0.063) G_GAN: 0.330 G_GAN_Feat: 0.906 G_ID: 0.123 G_Rec: 0.414 D_GP: 0.034 D_real: 1.036 D_fake: 0.673 +(epoch: 379, iters: 8382, time: 0.064) G_GAN: -0.235 G_GAN_Feat: 0.697 G_ID: 0.100 G_Rec: 0.290 D_GP: 0.033 D_real: 0.648 D_fake: 1.235 +(epoch: 380, iters: 174, time: 0.063) G_GAN: 0.348 G_GAN_Feat: 1.080 G_ID: 0.118 G_Rec: 0.491 D_GP: 0.050 D_real: 0.647 D_fake: 0.668 +(epoch: 380, iters: 574, time: 0.063) G_GAN: 0.077 G_GAN_Feat: 0.714 G_ID: 0.098 G_Rec: 0.299 D_GP: 0.043 D_real: 0.873 D_fake: 0.923 +(epoch: 380, iters: 974, time: 0.063) G_GAN: 0.488 G_GAN_Feat: 1.011 G_ID: 0.109 G_Rec: 0.450 D_GP: 0.037 D_real: 1.028 D_fake: 0.517 +(epoch: 380, iters: 1374, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 0.790 G_ID: 0.098 G_Rec: 0.307 D_GP: 0.034 D_real: 1.179 D_fake: 0.662 +(epoch: 380, iters: 1774, time: 0.063) G_GAN: 0.900 G_GAN_Feat: 1.237 G_ID: 0.123 G_Rec: 0.463 D_GP: 0.072 D_real: 1.352 D_fake: 0.254 +(epoch: 380, iters: 2174, time: 0.063) G_GAN: 0.166 G_GAN_Feat: 0.740 G_ID: 0.113 G_Rec: 0.299 D_GP: 0.029 D_real: 1.000 D_fake: 0.835 +(epoch: 380, iters: 2574, time: 0.063) G_GAN: 0.189 G_GAN_Feat: 1.083 G_ID: 0.128 G_Rec: 0.431 D_GP: 0.049 D_real: 0.467 D_fake: 0.811 +(epoch: 380, iters: 2974, time: 0.064) G_GAN: 0.107 G_GAN_Feat: 0.804 G_ID: 0.098 G_Rec: 0.312 D_GP: 0.034 D_real: 0.809 D_fake: 0.893 +(epoch: 380, iters: 3374, time: 0.063) G_GAN: 0.732 G_GAN_Feat: 1.098 G_ID: 0.116 G_Rec: 0.452 D_GP: 0.054 D_real: 1.093 D_fake: 0.308 +(epoch: 380, iters: 3774, time: 0.063) G_GAN: 0.307 G_GAN_Feat: 0.907 G_ID: 0.094 G_Rec: 0.311 D_GP: 0.057 D_real: 0.625 D_fake: 0.695 +(epoch: 380, iters: 4174, time: 0.063) G_GAN: 0.562 G_GAN_Feat: 0.845 G_ID: 0.112 G_Rec: 0.401 D_GP: 0.032 D_real: 1.270 D_fake: 0.459 +(epoch: 380, iters: 4574, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 0.729 G_ID: 0.092 G_Rec: 0.325 D_GP: 0.038 D_real: 1.182 D_fake: 0.669 +(epoch: 380, iters: 4974, time: 0.063) G_GAN: 0.533 G_GAN_Feat: 0.948 G_ID: 0.127 G_Rec: 0.440 D_GP: 0.039 D_real: 1.158 D_fake: 0.497 +(epoch: 380, iters: 5374, time: 0.063) G_GAN: 0.262 G_GAN_Feat: 0.797 G_ID: 0.105 G_Rec: 0.336 D_GP: 0.082 D_real: 0.832 D_fake: 0.743 +(epoch: 380, iters: 5774, time: 0.063) G_GAN: 0.558 G_GAN_Feat: 0.912 G_ID: 0.116 G_Rec: 0.417 D_GP: 0.033 D_real: 1.073 D_fake: 0.450 +(epoch: 380, iters: 6174, time: 0.064) G_GAN: 0.143 G_GAN_Feat: 0.848 G_ID: 0.117 G_Rec: 0.323 D_GP: 0.046 D_real: 0.883 D_fake: 0.858 +(epoch: 380, iters: 6574, time: 0.063) G_GAN: 0.431 G_GAN_Feat: 1.079 G_ID: 0.109 G_Rec: 0.453 D_GP: 0.044 D_real: 0.637 D_fake: 0.572 +(epoch: 380, iters: 6974, time: 0.063) G_GAN: -0.222 G_GAN_Feat: 0.888 G_ID: 0.114 G_Rec: 0.352 D_GP: 0.051 D_real: 0.412 D_fake: 1.222 +(epoch: 380, iters: 7374, time: 0.063) G_GAN: 0.697 G_GAN_Feat: 1.016 G_ID: 0.120 G_Rec: 0.476 D_GP: 0.035 D_real: 1.323 D_fake: 0.325 +(epoch: 380, iters: 7774, time: 0.064) G_GAN: 0.181 G_GAN_Feat: 0.734 G_ID: 0.099 G_Rec: 0.318 D_GP: 0.041 D_real: 1.026 D_fake: 0.819 +(epoch: 380, iters: 8174, time: 0.063) G_GAN: 0.499 G_GAN_Feat: 1.039 G_ID: 0.123 G_Rec: 0.477 D_GP: 0.062 D_real: 0.778 D_fake: 0.511 +(epoch: 380, iters: 8574, time: 0.063) G_GAN: -0.057 G_GAN_Feat: 0.987 G_ID: 0.123 G_Rec: 0.349 D_GP: 0.219 D_real: 0.392 D_fake: 1.060 +(epoch: 381, iters: 366, time: 0.063) G_GAN: 0.834 G_GAN_Feat: 1.283 G_ID: 0.130 G_Rec: 0.520 D_GP: 0.636 D_real: 0.404 D_fake: 0.315 +(epoch: 381, iters: 766, time: 0.064) G_GAN: 0.244 G_GAN_Feat: 0.849 G_ID: 0.127 G_Rec: 0.300 D_GP: 0.037 D_real: 0.891 D_fake: 0.764 +(epoch: 381, iters: 1166, time: 0.063) G_GAN: 0.305 G_GAN_Feat: 0.927 G_ID: 0.120 G_Rec: 0.481 D_GP: 0.037 D_real: 1.025 D_fake: 0.699 +(epoch: 381, iters: 1566, time: 0.063) G_GAN: 0.275 G_GAN_Feat: 0.756 G_ID: 0.103 G_Rec: 0.331 D_GP: 0.036 D_real: 1.124 D_fake: 0.725 +(epoch: 381, iters: 1966, time: 0.063) G_GAN: 0.739 G_GAN_Feat: 0.943 G_ID: 0.122 G_Rec: 0.440 D_GP: 0.044 D_real: 1.320 D_fake: 0.386 +(epoch: 381, iters: 2366, time: 0.064) G_GAN: -0.055 G_GAN_Feat: 0.799 G_ID: 0.109 G_Rec: 0.354 D_GP: 0.097 D_real: 0.610 D_fake: 1.056 +(epoch: 381, iters: 2766, time: 0.063) G_GAN: 0.211 G_GAN_Feat: 0.932 G_ID: 0.121 G_Rec: 0.438 D_GP: 0.056 D_real: 0.735 D_fake: 0.790 +(epoch: 381, iters: 3166, time: 0.063) G_GAN: 0.306 G_GAN_Feat: 0.739 G_ID: 0.106 G_Rec: 0.318 D_GP: 0.037 D_real: 1.220 D_fake: 0.696 +(epoch: 381, iters: 3566, time: 0.063) G_GAN: 0.494 G_GAN_Feat: 1.105 G_ID: 0.117 G_Rec: 0.486 D_GP: 0.093 D_real: 0.469 D_fake: 0.507 +(epoch: 381, iters: 3966, time: 0.064) G_GAN: 0.175 G_GAN_Feat: 0.909 G_ID: 0.107 G_Rec: 0.328 D_GP: 0.293 D_real: 0.483 D_fake: 0.838 +(epoch: 381, iters: 4366, time: 0.063) G_GAN: 0.532 G_GAN_Feat: 1.052 G_ID: 0.130 G_Rec: 0.412 D_GP: 0.042 D_real: 0.846 D_fake: 0.477 +(epoch: 381, iters: 4766, time: 0.063) G_GAN: 0.082 G_GAN_Feat: 0.791 G_ID: 0.121 G_Rec: 0.329 D_GP: 0.034 D_real: 0.911 D_fake: 0.919 +(epoch: 381, iters: 5166, time: 0.063) G_GAN: 0.472 G_GAN_Feat: 1.171 G_ID: 0.138 G_Rec: 0.478 D_GP: 0.153 D_real: 0.294 D_fake: 0.536 +(epoch: 381, iters: 5566, time: 0.064) G_GAN: 0.244 G_GAN_Feat: 0.737 G_ID: 0.094 G_Rec: 0.312 D_GP: 0.036 D_real: 1.039 D_fake: 0.757 +(epoch: 381, iters: 5966, time: 0.063) G_GAN: 0.540 G_GAN_Feat: 1.054 G_ID: 0.129 G_Rec: 0.432 D_GP: 0.132 D_real: 0.610 D_fake: 0.471 +(epoch: 381, iters: 6366, time: 0.063) G_GAN: -0.027 G_GAN_Feat: 0.871 G_ID: 0.103 G_Rec: 0.319 D_GP: 0.036 D_real: 0.352 D_fake: 1.027 +(epoch: 381, iters: 6766, time: 0.063) G_GAN: 0.611 G_GAN_Feat: 1.153 G_ID: 0.126 G_Rec: 0.501 D_GP: 0.375 D_real: 0.829 D_fake: 0.518 +(epoch: 381, iters: 7166, time: 0.064) G_GAN: 0.363 G_GAN_Feat: 0.836 G_ID: 0.119 G_Rec: 0.318 D_GP: 0.035 D_real: 0.982 D_fake: 0.637 +(epoch: 381, iters: 7566, time: 0.063) G_GAN: 0.196 G_GAN_Feat: 0.985 G_ID: 0.128 G_Rec: 0.457 D_GP: 0.033 D_real: 0.862 D_fake: 0.804 +(epoch: 381, iters: 7966, time: 0.063) G_GAN: 0.314 G_GAN_Feat: 0.958 G_ID: 0.095 G_Rec: 0.354 D_GP: 0.125 D_real: 0.595 D_fake: 0.691 +(epoch: 381, iters: 8366, time: 0.063) G_GAN: 0.580 G_GAN_Feat: 0.867 G_ID: 0.112 G_Rec: 0.436 D_GP: 0.029 D_real: 1.406 D_fake: 0.429 +(epoch: 382, iters: 158, time: 0.064) G_GAN: 0.238 G_GAN_Feat: 0.707 G_ID: 0.093 G_Rec: 0.321 D_GP: 0.033 D_real: 1.192 D_fake: 0.763 +(epoch: 382, iters: 558, time: 0.063) G_GAN: 0.439 G_GAN_Feat: 0.937 G_ID: 0.122 G_Rec: 0.447 D_GP: 0.031 D_real: 1.038 D_fake: 0.563 +(epoch: 382, iters: 958, time: 0.063) G_GAN: -0.036 G_GAN_Feat: 0.679 G_ID: 0.090 G_Rec: 0.303 D_GP: 0.031 D_real: 0.880 D_fake: 1.036 +(epoch: 382, iters: 1358, time: 0.063) G_GAN: 0.281 G_GAN_Feat: 0.899 G_ID: 0.144 G_Rec: 0.402 D_GP: 0.035 D_real: 0.967 D_fake: 0.719 +(epoch: 382, iters: 1758, time: 0.064) G_GAN: 0.142 G_GAN_Feat: 0.821 G_ID: 0.112 G_Rec: 0.349 D_GP: 0.029 D_real: 1.019 D_fake: 0.858 +(epoch: 382, iters: 2158, time: 0.063) G_GAN: 0.208 G_GAN_Feat: 0.903 G_ID: 0.129 G_Rec: 0.423 D_GP: 0.047 D_real: 0.767 D_fake: 0.794 +(epoch: 382, iters: 2558, time: 0.063) G_GAN: 0.063 G_GAN_Feat: 0.738 G_ID: 0.110 G_Rec: 0.306 D_GP: 0.033 D_real: 0.894 D_fake: 0.937 +(epoch: 382, iters: 2958, time: 0.063) G_GAN: 0.350 G_GAN_Feat: 1.111 G_ID: 0.133 G_Rec: 0.444 D_GP: 0.104 D_real: 0.349 D_fake: 0.655 +(epoch: 382, iters: 3358, time: 0.064) G_GAN: 0.090 G_GAN_Feat: 0.693 G_ID: 0.130 G_Rec: 0.299 D_GP: 0.032 D_real: 0.960 D_fake: 0.910 +(epoch: 382, iters: 3758, time: 0.063) G_GAN: 0.471 G_GAN_Feat: 1.006 G_ID: 0.112 G_Rec: 0.425 D_GP: 0.033 D_real: 1.011 D_fake: 0.530 +(epoch: 382, iters: 4158, time: 0.063) G_GAN: 0.465 G_GAN_Feat: 0.686 G_ID: 0.094 G_Rec: 0.282 D_GP: 0.035 D_real: 1.435 D_fake: 0.543 +(epoch: 382, iters: 4558, time: 0.063) G_GAN: 0.479 G_GAN_Feat: 0.945 G_ID: 0.108 G_Rec: 0.411 D_GP: 0.030 D_real: 1.102 D_fake: 0.536 +(epoch: 382, iters: 4958, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.886 G_ID: 0.126 G_Rec: 0.360 D_GP: 0.211 D_real: 0.679 D_fake: 0.747 +(epoch: 382, iters: 5358, time: 0.063) G_GAN: 0.276 G_GAN_Feat: 0.998 G_ID: 0.123 G_Rec: 0.412 D_GP: 0.103 D_real: 0.624 D_fake: 0.724 +(epoch: 382, iters: 5758, time: 0.063) G_GAN: 0.279 G_GAN_Feat: 0.759 G_ID: 0.102 G_Rec: 0.328 D_GP: 0.033 D_real: 1.151 D_fake: 0.722 +(epoch: 382, iters: 6158, time: 0.063) G_GAN: 0.677 G_GAN_Feat: 1.040 G_ID: 0.114 G_Rec: 0.444 D_GP: 0.108 D_real: 1.105 D_fake: 0.374 +(epoch: 382, iters: 6558, time: 0.064) G_GAN: 0.671 G_GAN_Feat: 0.819 G_ID: 0.101 G_Rec: 0.323 D_GP: 0.037 D_real: 1.556 D_fake: 0.409 +(epoch: 382, iters: 6958, time: 0.063) G_GAN: 0.099 G_GAN_Feat: 1.060 G_ID: 0.121 G_Rec: 0.435 D_GP: 0.114 D_real: 0.348 D_fake: 0.901 +(epoch: 382, iters: 7358, time: 0.063) G_GAN: 0.510 G_GAN_Feat: 0.928 G_ID: 0.095 G_Rec: 0.346 D_GP: 0.086 D_real: 0.633 D_fake: 0.497 +(epoch: 382, iters: 7758, time: 0.063) G_GAN: 0.271 G_GAN_Feat: 0.993 G_ID: 0.131 G_Rec: 0.450 D_GP: 0.036 D_real: 0.900 D_fake: 0.730 +(epoch: 382, iters: 8158, time: 0.064) G_GAN: 0.457 G_GAN_Feat: 0.729 G_ID: 0.106 G_Rec: 0.281 D_GP: 0.034 D_real: 1.220 D_fake: 0.544 +(epoch: 382, iters: 8558, time: 0.063) G_GAN: 0.811 G_GAN_Feat: 1.118 G_ID: 0.151 G_Rec: 0.459 D_GP: 0.160 D_real: 0.918 D_fake: 0.397 +(epoch: 383, iters: 350, time: 0.063) G_GAN: -0.408 G_GAN_Feat: 0.774 G_ID: 0.118 G_Rec: 0.354 D_GP: 0.031 D_real: 0.676 D_fake: 1.408 +(epoch: 383, iters: 750, time: 0.063) G_GAN: 0.278 G_GAN_Feat: 0.903 G_ID: 0.151 G_Rec: 0.418 D_GP: 0.034 D_real: 0.895 D_fake: 0.724 +(epoch: 383, iters: 1150, time: 0.064) G_GAN: 0.079 G_GAN_Feat: 0.771 G_ID: 0.093 G_Rec: 0.339 D_GP: 0.035 D_real: 0.832 D_fake: 0.922 +(epoch: 383, iters: 1550, time: 0.063) G_GAN: 0.210 G_GAN_Feat: 0.997 G_ID: 0.127 G_Rec: 0.409 D_GP: 0.051 D_real: 0.752 D_fake: 0.794 +(epoch: 383, iters: 1950, time: 0.063) G_GAN: 0.321 G_GAN_Feat: 0.944 G_ID: 0.104 G_Rec: 0.317 D_GP: 0.396 D_real: 0.503 D_fake: 0.679 +(epoch: 383, iters: 2350, time: 0.063) G_GAN: 0.672 G_GAN_Feat: 0.886 G_ID: 0.105 G_Rec: 0.372 D_GP: 0.029 D_real: 1.361 D_fake: 0.352 +(epoch: 383, iters: 2750, time: 0.064) G_GAN: 0.279 G_GAN_Feat: 0.858 G_ID: 0.091 G_Rec: 0.355 D_GP: 0.032 D_real: 0.881 D_fake: 0.721 +(epoch: 383, iters: 3150, time: 0.063) G_GAN: 0.469 G_GAN_Feat: 0.974 G_ID: 0.140 G_Rec: 0.455 D_GP: 0.041 D_real: 1.018 D_fake: 0.539 +(epoch: 383, iters: 3550, time: 0.063) G_GAN: 0.077 G_GAN_Feat: 0.757 G_ID: 0.106 G_Rec: 0.301 D_GP: 0.042 D_real: 0.791 D_fake: 0.923 +(epoch: 383, iters: 3950, time: 0.063) G_GAN: 0.409 G_GAN_Feat: 1.034 G_ID: 0.133 G_Rec: 0.466 D_GP: 0.052 D_real: 0.830 D_fake: 0.598 +(epoch: 383, iters: 4350, time: 0.064) G_GAN: 0.318 G_GAN_Feat: 0.896 G_ID: 0.109 G_Rec: 0.298 D_GP: 0.067 D_real: 0.588 D_fake: 0.683 +(epoch: 383, iters: 4750, time: 0.063) G_GAN: 0.298 G_GAN_Feat: 1.149 G_ID: 0.129 G_Rec: 0.422 D_GP: 0.042 D_real: 0.473 D_fake: 0.704 +(epoch: 383, iters: 5150, time: 0.063) G_GAN: 0.314 G_GAN_Feat: 0.794 G_ID: 0.109 G_Rec: 0.315 D_GP: 0.033 D_real: 1.096 D_fake: 0.687 +(epoch: 383, iters: 5550, time: 0.063) G_GAN: 0.314 G_GAN_Feat: 0.903 G_ID: 0.138 G_Rec: 0.423 D_GP: 0.030 D_real: 1.050 D_fake: 0.695 +(epoch: 383, iters: 5950, time: 0.064) G_GAN: 0.126 G_GAN_Feat: 0.833 G_ID: 0.088 G_Rec: 0.355 D_GP: 0.040 D_real: 0.871 D_fake: 0.875 +(epoch: 383, iters: 6350, time: 0.063) G_GAN: 0.212 G_GAN_Feat: 1.000 G_ID: 0.133 G_Rec: 0.471 D_GP: 0.037 D_real: 0.728 D_fake: 0.788 +(epoch: 383, iters: 6750, time: 0.063) G_GAN: 0.143 G_GAN_Feat: 0.722 G_ID: 0.096 G_Rec: 0.297 D_GP: 0.031 D_real: 1.047 D_fake: 0.857 +(epoch: 383, iters: 7150, time: 0.063) G_GAN: 0.351 G_GAN_Feat: 1.014 G_ID: 0.120 G_Rec: 0.435 D_GP: 0.040 D_real: 0.851 D_fake: 0.652 +(epoch: 383, iters: 7550, time: 0.064) G_GAN: -0.022 G_GAN_Feat: 0.791 G_ID: 0.103 G_Rec: 0.312 D_GP: 0.035 D_real: 0.904 D_fake: 1.022 +(epoch: 383, iters: 7950, time: 0.063) G_GAN: 0.423 G_GAN_Feat: 1.052 G_ID: 0.126 G_Rec: 0.426 D_GP: 0.152 D_real: 0.500 D_fake: 0.582 +(epoch: 383, iters: 8350, time: 0.064) G_GAN: 0.555 G_GAN_Feat: 0.932 G_ID: 0.116 G_Rec: 0.359 D_GP: 0.179 D_real: 0.663 D_fake: 0.507 +(epoch: 384, iters: 142, time: 0.064) G_GAN: 0.610 G_GAN_Feat: 0.938 G_ID: 0.131 G_Rec: 0.421 D_GP: 0.030 D_real: 1.207 D_fake: 0.443 +(epoch: 384, iters: 542, time: 0.064) G_GAN: 0.594 G_GAN_Feat: 1.078 G_ID: 0.100 G_Rec: 0.374 D_GP: 0.038 D_real: 1.363 D_fake: 0.510 +(epoch: 384, iters: 942, time: 0.064) G_GAN: 0.763 G_GAN_Feat: 1.143 G_ID: 0.122 G_Rec: 0.455 D_GP: 0.082 D_real: 0.677 D_fake: 0.275 +(epoch: 384, iters: 1342, time: 0.064) G_GAN: -0.047 G_GAN_Feat: 0.845 G_ID: 0.119 G_Rec: 0.349 D_GP: 0.036 D_real: 0.728 D_fake: 1.047 +(epoch: 384, iters: 1742, time: 0.064) G_GAN: 0.412 G_GAN_Feat: 0.950 G_ID: 0.121 G_Rec: 0.420 D_GP: 0.044 D_real: 0.939 D_fake: 0.590 +(epoch: 384, iters: 2142, time: 0.063) G_GAN: 0.195 G_GAN_Feat: 0.758 G_ID: 0.101 G_Rec: 0.291 D_GP: 0.045 D_real: 0.941 D_fake: 0.807 +(epoch: 384, iters: 2542, time: 0.064) G_GAN: 0.369 G_GAN_Feat: 1.161 G_ID: 0.130 G_Rec: 0.464 D_GP: 0.325 D_real: 0.152 D_fake: 0.642 +(epoch: 384, iters: 2942, time: 0.063) G_GAN: 0.583 G_GAN_Feat: 1.005 G_ID: 0.113 G_Rec: 0.365 D_GP: 0.286 D_real: 0.439 D_fake: 0.560 +(epoch: 384, iters: 3342, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 1.238 G_ID: 0.119 G_Rec: 0.465 D_GP: 0.045 D_real: 0.323 D_fake: 0.705 +(epoch: 384, iters: 3742, time: 0.063) G_GAN: 0.094 G_GAN_Feat: 0.891 G_ID: 0.109 G_Rec: 0.349 D_GP: 0.039 D_real: 0.695 D_fake: 0.907 +(epoch: 384, iters: 4142, time: 0.063) G_GAN: 0.508 G_GAN_Feat: 1.031 G_ID: 0.129 G_Rec: 0.491 D_GP: 0.031 D_real: 1.070 D_fake: 0.494 +(epoch: 384, iters: 4542, time: 0.063) G_GAN: 0.715 G_GAN_Feat: 1.099 G_ID: 0.114 G_Rec: 0.406 D_GP: 0.136 D_real: 0.492 D_fake: 0.441 +(epoch: 384, iters: 4942, time: 0.064) G_GAN: 0.842 G_GAN_Feat: 1.189 G_ID: 0.120 G_Rec: 0.469 D_GP: 0.047 D_real: 1.175 D_fake: 0.232 +(epoch: 384, iters: 5342, time: 0.063) G_GAN: 0.300 G_GAN_Feat: 1.004 G_ID: 0.111 G_Rec: 0.365 D_GP: 0.094 D_real: 0.881 D_fake: 0.707 +(epoch: 384, iters: 5742, time: 0.063) G_GAN: 0.393 G_GAN_Feat: 1.075 G_ID: 0.137 G_Rec: 0.479 D_GP: 0.050 D_real: 0.727 D_fake: 0.608 +(epoch: 384, iters: 6142, time: 0.064) G_GAN: 0.218 G_GAN_Feat: 1.001 G_ID: 0.096 G_Rec: 0.408 D_GP: 0.270 D_real: 0.387 D_fake: 0.786 +(epoch: 384, iters: 6542, time: 0.064) G_GAN: 0.865 G_GAN_Feat: 1.090 G_ID: 0.131 G_Rec: 0.464 D_GP: 0.038 D_real: 0.927 D_fake: 0.181 +(epoch: 384, iters: 6942, time: 0.063) G_GAN: 0.149 G_GAN_Feat: 0.701 G_ID: 0.106 G_Rec: 0.314 D_GP: 0.024 D_real: 1.086 D_fake: 0.851 +(epoch: 384, iters: 7342, time: 0.063) G_GAN: 0.177 G_GAN_Feat: 1.059 G_ID: 0.126 G_Rec: 0.467 D_GP: 0.040 D_real: 0.658 D_fake: 0.823 +(epoch: 384, iters: 7742, time: 0.063) G_GAN: 0.203 G_GAN_Feat: 0.704 G_ID: 0.124 G_Rec: 0.309 D_GP: 0.031 D_real: 1.053 D_fake: 0.798 +(epoch: 384, iters: 8142, time: 0.064) G_GAN: 0.786 G_GAN_Feat: 1.094 G_ID: 0.114 G_Rec: 0.488 D_GP: 0.078 D_real: 1.361 D_fake: 0.268 +(epoch: 384, iters: 8542, time: 0.063) G_GAN: 0.058 G_GAN_Feat: 0.718 G_ID: 0.121 G_Rec: 0.338 D_GP: 0.033 D_real: 0.832 D_fake: 0.942 +(epoch: 385, iters: 334, time: 0.063) G_GAN: 0.068 G_GAN_Feat: 0.882 G_ID: 0.135 G_Rec: 0.401 D_GP: 0.038 D_real: 0.681 D_fake: 0.932 +(epoch: 385, iters: 734, time: 0.063) G_GAN: 0.022 G_GAN_Feat: 0.742 G_ID: 0.101 G_Rec: 0.323 D_GP: 0.035 D_real: 0.848 D_fake: 0.979 +(epoch: 385, iters: 1134, time: 0.064) G_GAN: 0.479 G_GAN_Feat: 0.975 G_ID: 0.129 G_Rec: 0.463 D_GP: 0.030 D_real: 1.176 D_fake: 0.542 +(epoch: 385, iters: 1534, time: 0.064) G_GAN: 0.194 G_GAN_Feat: 0.764 G_ID: 0.099 G_Rec: 0.348 D_GP: 0.031 D_real: 0.992 D_fake: 0.808 +(epoch: 385, iters: 1934, time: 0.063) G_GAN: 0.512 G_GAN_Feat: 0.860 G_ID: 0.122 G_Rec: 0.404 D_GP: 0.037 D_real: 1.220 D_fake: 0.521 +(epoch: 385, iters: 2334, time: 0.063) G_GAN: 0.125 G_GAN_Feat: 0.713 G_ID: 0.121 G_Rec: 0.316 D_GP: 0.039 D_real: 1.010 D_fake: 0.875 +(epoch: 385, iters: 2734, time: 0.064) G_GAN: 0.056 G_GAN_Feat: 1.003 G_ID: 0.144 G_Rec: 0.458 D_GP: 0.060 D_real: 0.421 D_fake: 0.944 +(epoch: 385, iters: 3134, time: 0.063) G_GAN: -0.093 G_GAN_Feat: 0.903 G_ID: 0.128 G_Rec: 0.342 D_GP: 0.294 D_real: 0.302 D_fake: 1.093 +(epoch: 385, iters: 3534, time: 0.063) G_GAN: 0.422 G_GAN_Feat: 1.075 G_ID: 0.118 G_Rec: 0.473 D_GP: 0.111 D_real: 0.505 D_fake: 0.591 +(epoch: 385, iters: 3934, time: 0.063) G_GAN: 0.761 G_GAN_Feat: 0.754 G_ID: 0.092 G_Rec: 0.313 D_GP: 0.034 D_real: 1.682 D_fake: 0.274 +(epoch: 385, iters: 4334, time: 0.064) G_GAN: 0.827 G_GAN_Feat: 0.991 G_ID: 0.124 G_Rec: 0.407 D_GP: 0.045 D_real: 1.404 D_fake: 0.219 +(epoch: 385, iters: 4734, time: 0.063) G_GAN: 0.421 G_GAN_Feat: 0.935 G_ID: 0.098 G_Rec: 0.312 D_GP: 0.044 D_real: 1.214 D_fake: 0.629 +(epoch: 385, iters: 5134, time: 0.063) G_GAN: 0.460 G_GAN_Feat: 0.983 G_ID: 0.157 G_Rec: 0.413 D_GP: 0.043 D_real: 1.117 D_fake: 0.541 +(epoch: 385, iters: 5534, time: 0.063) G_GAN: 0.448 G_GAN_Feat: 0.798 G_ID: 0.101 G_Rec: 0.312 D_GP: 0.032 D_real: 1.372 D_fake: 0.557 +(epoch: 385, iters: 5934, time: 0.064) G_GAN: 0.711 G_GAN_Feat: 1.036 G_ID: 0.124 G_Rec: 0.459 D_GP: 0.055 D_real: 1.056 D_fake: 0.319 +(epoch: 385, iters: 6334, time: 0.063) G_GAN: 0.328 G_GAN_Feat: 0.771 G_ID: 0.099 G_Rec: 0.352 D_GP: 0.059 D_real: 1.122 D_fake: 0.697 +(epoch: 385, iters: 6734, time: 0.063) G_GAN: 0.552 G_GAN_Feat: 0.911 G_ID: 0.132 G_Rec: 0.441 D_GP: 0.040 D_real: 1.096 D_fake: 0.480 +(epoch: 385, iters: 7134, time: 0.063) G_GAN: 0.053 G_GAN_Feat: 0.687 G_ID: 0.104 G_Rec: 0.328 D_GP: 0.032 D_real: 0.915 D_fake: 0.947 +(epoch: 385, iters: 7534, time: 0.064) G_GAN: 0.335 G_GAN_Feat: 0.882 G_ID: 0.123 G_Rec: 0.425 D_GP: 0.031 D_real: 1.022 D_fake: 0.672 +(epoch: 385, iters: 7934, time: 0.063) G_GAN: 0.195 G_GAN_Feat: 0.723 G_ID: 0.124 G_Rec: 0.301 D_GP: 0.042 D_real: 0.877 D_fake: 0.805 +(epoch: 385, iters: 8334, time: 0.063) G_GAN: 0.519 G_GAN_Feat: 0.927 G_ID: 0.124 G_Rec: 0.435 D_GP: 0.029 D_real: 1.099 D_fake: 0.500 +(epoch: 386, iters: 126, time: 0.063) G_GAN: 0.039 G_GAN_Feat: 0.844 G_ID: 0.106 G_Rec: 0.337 D_GP: 0.043 D_real: 0.698 D_fake: 0.961 +(epoch: 386, iters: 526, time: 0.064) G_GAN: 0.810 G_GAN_Feat: 0.900 G_ID: 0.106 G_Rec: 0.410 D_GP: 0.033 D_real: 1.514 D_fake: 0.233 +(epoch: 386, iters: 926, time: 0.063) G_GAN: 0.454 G_GAN_Feat: 0.740 G_ID: 0.095 G_Rec: 0.294 D_GP: 0.030 D_real: 1.297 D_fake: 0.550 +(epoch: 386, iters: 1326, time: 0.063) G_GAN: 0.686 G_GAN_Feat: 1.033 G_ID: 0.120 G_Rec: 0.412 D_GP: 0.076 D_real: 0.909 D_fake: 0.345 +(epoch: 386, iters: 1726, time: 0.064) G_GAN: 0.142 G_GAN_Feat: 0.744 G_ID: 0.107 G_Rec: 0.340 D_GP: 0.037 D_real: 1.011 D_fake: 0.860 +(epoch: 386, iters: 2126, time: 0.064) G_GAN: 0.125 G_GAN_Feat: 0.888 G_ID: 0.140 G_Rec: 0.432 D_GP: 0.033 D_real: 0.847 D_fake: 0.875 +(epoch: 386, iters: 2526, time: 0.064) G_GAN: 0.077 G_GAN_Feat: 0.642 G_ID: 0.095 G_Rec: 0.259 D_GP: 0.027 D_real: 1.010 D_fake: 0.923 +(epoch: 386, iters: 2926, time: 0.064) G_GAN: 0.535 G_GAN_Feat: 0.994 G_ID: 0.127 G_Rec: 0.468 D_GP: 0.032 D_real: 1.127 D_fake: 0.475 +(epoch: 386, iters: 3326, time: 0.064) G_GAN: 0.041 G_GAN_Feat: 0.852 G_ID: 0.118 G_Rec: 0.332 D_GP: 0.061 D_real: 0.565 D_fake: 0.959 +(epoch: 386, iters: 3726, time: 0.064) G_GAN: 0.618 G_GAN_Feat: 0.924 G_ID: 0.131 G_Rec: 0.392 D_GP: 0.041 D_real: 1.098 D_fake: 0.391 +(epoch: 386, iters: 4126, time: 0.064) G_GAN: 0.335 G_GAN_Feat: 0.794 G_ID: 0.096 G_Rec: 0.294 D_GP: 0.035 D_real: 1.002 D_fake: 0.666 +(epoch: 386, iters: 4526, time: 0.064) G_GAN: 0.527 G_GAN_Feat: 0.934 G_ID: 0.133 G_Rec: 0.454 D_GP: 0.036 D_real: 1.240 D_fake: 0.492 +(epoch: 386, iters: 4926, time: 0.064) G_GAN: 0.212 G_GAN_Feat: 0.805 G_ID: 0.101 G_Rec: 0.366 D_GP: 0.039 D_real: 1.032 D_fake: 0.792 +(epoch: 386, iters: 5326, time: 0.064) G_GAN: 0.373 G_GAN_Feat: 0.916 G_ID: 0.113 G_Rec: 0.441 D_GP: 0.034 D_real: 0.960 D_fake: 0.628 +(epoch: 386, iters: 5726, time: 0.064) G_GAN: 0.028 G_GAN_Feat: 0.723 G_ID: 0.107 G_Rec: 0.319 D_GP: 0.035 D_real: 0.877 D_fake: 0.972 +(epoch: 386, iters: 6126, time: 0.064) G_GAN: 0.305 G_GAN_Feat: 0.919 G_ID: 0.120 G_Rec: 0.418 D_GP: 0.053 D_real: 0.913 D_fake: 0.696 +(epoch: 386, iters: 6526, time: 0.064) G_GAN: 0.056 G_GAN_Feat: 0.915 G_ID: 0.115 G_Rec: 0.365 D_GP: 0.045 D_real: 0.589 D_fake: 0.944 +(epoch: 386, iters: 6926, time: 0.064) G_GAN: 0.348 G_GAN_Feat: 0.943 G_ID: 0.126 G_Rec: 0.402 D_GP: 0.036 D_real: 0.903 D_fake: 0.657 +(epoch: 386, iters: 7326, time: 0.064) G_GAN: 0.445 G_GAN_Feat: 0.724 G_ID: 0.105 G_Rec: 0.287 D_GP: 0.033 D_real: 1.294 D_fake: 0.560 +(epoch: 386, iters: 7726, time: 0.064) G_GAN: 0.574 G_GAN_Feat: 1.071 G_ID: 0.118 G_Rec: 0.434 D_GP: 0.092 D_real: 0.590 D_fake: 0.442 +(epoch: 386, iters: 8126, time: 0.064) G_GAN: 0.281 G_GAN_Feat: 0.935 G_ID: 0.097 G_Rec: 0.346 D_GP: 0.078 D_real: 0.771 D_fake: 0.722 +(epoch: 386, iters: 8526, time: 0.064) G_GAN: 0.659 G_GAN_Feat: 1.151 G_ID: 0.135 G_Rec: 0.517 D_GP: 0.093 D_real: 1.027 D_fake: 0.544 +(epoch: 387, iters: 318, time: 0.064) G_GAN: 0.386 G_GAN_Feat: 0.900 G_ID: 0.106 G_Rec: 0.339 D_GP: 0.142 D_real: 0.651 D_fake: 0.626 +(epoch: 387, iters: 718, time: 0.064) G_GAN: 0.257 G_GAN_Feat: 1.173 G_ID: 0.163 G_Rec: 0.487 D_GP: 0.046 D_real: 0.545 D_fake: 0.745 +(epoch: 387, iters: 1118, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.771 G_ID: 0.107 G_Rec: 0.315 D_GP: 0.037 D_real: 1.160 D_fake: 0.723 +(epoch: 387, iters: 1518, time: 0.064) G_GAN: 0.717 G_GAN_Feat: 1.098 G_ID: 0.142 G_Rec: 0.439 D_GP: 0.043 D_real: 0.950 D_fake: 0.331 +(epoch: 387, iters: 1918, time: 0.064) G_GAN: -0.143 G_GAN_Feat: 0.997 G_ID: 0.110 G_Rec: 0.322 D_GP: 0.040 D_real: 0.462 D_fake: 1.143 +(epoch: 387, iters: 2318, time: 0.064) G_GAN: 0.827 G_GAN_Feat: 1.036 G_ID: 0.116 G_Rec: 0.462 D_GP: 0.054 D_real: 1.362 D_fake: 0.298 +(epoch: 387, iters: 2718, time: 0.064) G_GAN: 0.143 G_GAN_Feat: 0.855 G_ID: 0.109 G_Rec: 0.371 D_GP: 0.043 D_real: 0.939 D_fake: 0.857 +(epoch: 387, iters: 3118, time: 0.064) G_GAN: 0.714 G_GAN_Feat: 0.975 G_ID: 0.122 G_Rec: 0.404 D_GP: 0.048 D_real: 1.273 D_fake: 0.330 +(epoch: 387, iters: 3518, time: 0.063) G_GAN: 0.742 G_GAN_Feat: 0.980 G_ID: 0.115 G_Rec: 0.335 D_GP: 0.100 D_real: 0.525 D_fake: 0.506 +(epoch: 387, iters: 3918, time: 0.063) G_GAN: 1.195 G_GAN_Feat: 1.289 G_ID: 0.116 G_Rec: 0.489 D_GP: 0.251 D_real: 0.618 D_fake: 0.130 +(epoch: 387, iters: 4318, time: 0.063) G_GAN: 0.363 G_GAN_Feat: 0.888 G_ID: 0.107 G_Rec: 0.310 D_GP: 0.040 D_real: 0.801 D_fake: 0.680 +(epoch: 387, iters: 4718, time: 0.064) G_GAN: 0.445 G_GAN_Feat: 0.952 G_ID: 0.125 G_Rec: 0.467 D_GP: 0.028 D_real: 1.109 D_fake: 0.557 +(epoch: 387, iters: 5118, time: 0.063) G_GAN: 0.095 G_GAN_Feat: 0.660 G_ID: 0.131 G_Rec: 0.306 D_GP: 0.029 D_real: 1.019 D_fake: 0.905 +(epoch: 387, iters: 5518, time: 0.063) G_GAN: 0.424 G_GAN_Feat: 0.837 G_ID: 0.132 G_Rec: 0.381 D_GP: 0.033 D_real: 1.077 D_fake: 0.581 +(epoch: 387, iters: 5918, time: 0.063) G_GAN: -0.076 G_GAN_Feat: 0.703 G_ID: 0.085 G_Rec: 0.308 D_GP: 0.031 D_real: 0.800 D_fake: 1.076 +(epoch: 387, iters: 6318, time: 0.064) G_GAN: 0.455 G_GAN_Feat: 0.969 G_ID: 0.118 G_Rec: 0.489 D_GP: 0.069 D_real: 1.032 D_fake: 0.557 +(epoch: 387, iters: 6718, time: 0.063) G_GAN: -0.000 G_GAN_Feat: 0.713 G_ID: 0.169 G_Rec: 0.314 D_GP: 0.036 D_real: 0.768 D_fake: 1.000 +(epoch: 387, iters: 7118, time: 0.063) G_GAN: 0.388 G_GAN_Feat: 1.100 G_ID: 0.119 G_Rec: 0.498 D_GP: 0.127 D_real: 0.493 D_fake: 0.635 +(epoch: 387, iters: 7518, time: 0.063) G_GAN: 0.078 G_GAN_Feat: 0.717 G_ID: 0.126 G_Rec: 0.291 D_GP: 0.042 D_real: 0.743 D_fake: 0.922 +(epoch: 387, iters: 7918, time: 0.064) G_GAN: 0.397 G_GAN_Feat: 0.975 G_ID: 0.127 G_Rec: 0.425 D_GP: 0.052 D_real: 0.771 D_fake: 0.606 +(epoch: 387, iters: 8318, time: 0.063) G_GAN: -0.091 G_GAN_Feat: 0.861 G_ID: 0.101 G_Rec: 0.354 D_GP: 0.036 D_real: 1.012 D_fake: 1.108 +(epoch: 388, iters: 110, time: 0.063) G_GAN: 0.626 G_GAN_Feat: 0.885 G_ID: 0.114 G_Rec: 0.426 D_GP: 0.030 D_real: 1.340 D_fake: 0.402 +(epoch: 388, iters: 510, time: 0.063) G_GAN: 0.215 G_GAN_Feat: 0.813 G_ID: 0.106 G_Rec: 0.301 D_GP: 0.096 D_real: 0.787 D_fake: 0.786 +(epoch: 388, iters: 910, time: 0.064) G_GAN: 0.829 G_GAN_Feat: 1.056 G_ID: 0.110 G_Rec: 0.476 D_GP: 0.040 D_real: 1.196 D_fake: 0.223 +(epoch: 388, iters: 1310, time: 0.064) G_GAN: 0.400 G_GAN_Feat: 0.802 G_ID: 0.113 G_Rec: 0.337 D_GP: 0.098 D_real: 1.095 D_fake: 0.603 +(epoch: 388, iters: 1710, time: 0.064) G_GAN: 0.591 G_GAN_Feat: 1.053 G_ID: 0.125 G_Rec: 0.417 D_GP: 0.047 D_real: 0.802 D_fake: 0.415 +(epoch: 388, iters: 2110, time: 0.063) G_GAN: 0.577 G_GAN_Feat: 0.833 G_ID: 0.153 G_Rec: 0.307 D_GP: 0.045 D_real: 1.149 D_fake: 0.429 +(epoch: 388, iters: 2510, time: 0.064) G_GAN: -0.090 G_GAN_Feat: 0.868 G_ID: 0.121 G_Rec: 0.389 D_GP: 0.032 D_real: 0.843 D_fake: 1.090 +(epoch: 388, iters: 2910, time: 0.063) G_GAN: 0.432 G_GAN_Feat: 0.851 G_ID: 0.104 G_Rec: 0.291 D_GP: 0.091 D_real: 0.836 D_fake: 0.569 +(epoch: 388, iters: 3310, time: 0.063) G_GAN: 0.609 G_GAN_Feat: 1.048 G_ID: 0.143 G_Rec: 0.455 D_GP: 0.040 D_real: 1.187 D_fake: 0.401 +(epoch: 388, iters: 3710, time: 0.063) G_GAN: 0.225 G_GAN_Feat: 0.757 G_ID: 0.111 G_Rec: 0.317 D_GP: 0.034 D_real: 1.087 D_fake: 0.776 +(epoch: 388, iters: 4110, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 0.984 G_ID: 0.142 G_Rec: 0.460 D_GP: 0.038 D_real: 0.786 D_fake: 0.830 +(epoch: 388, iters: 4510, time: 0.063) G_GAN: 0.171 G_GAN_Feat: 0.755 G_ID: 0.122 G_Rec: 0.308 D_GP: 0.031 D_real: 1.091 D_fake: 0.829 +(epoch: 388, iters: 4910, time: 0.063) G_GAN: 0.327 G_GAN_Feat: 1.299 G_ID: 0.138 G_Rec: 0.499 D_GP: 0.331 D_real: 0.862 D_fake: 0.688 +(epoch: 388, iters: 5310, time: 0.063) G_GAN: 0.132 G_GAN_Feat: 0.752 G_ID: 0.112 G_Rec: 0.317 D_GP: 0.030 D_real: 0.940 D_fake: 0.868 +(epoch: 388, iters: 5710, time: 0.064) G_GAN: 0.545 G_GAN_Feat: 0.916 G_ID: 0.110 G_Rec: 0.421 D_GP: 0.038 D_real: 1.076 D_fake: 0.476 +(epoch: 388, iters: 6110, time: 0.063) G_GAN: 0.375 G_GAN_Feat: 0.797 G_ID: 0.107 G_Rec: 0.321 D_GP: 0.046 D_real: 0.986 D_fake: 0.633 +(epoch: 388, iters: 6510, time: 0.064) G_GAN: 0.823 G_GAN_Feat: 0.982 G_ID: 0.126 G_Rec: 0.390 D_GP: 0.063 D_real: 1.372 D_fake: 0.264 +(epoch: 388, iters: 6910, time: 0.064) G_GAN: -0.004 G_GAN_Feat: 0.936 G_ID: 0.101 G_Rec: 0.365 D_GP: 0.053 D_real: 0.953 D_fake: 1.004 +(epoch: 388, iters: 7310, time: 0.063) G_GAN: 0.623 G_GAN_Feat: 0.958 G_ID: 0.143 G_Rec: 0.417 D_GP: 0.047 D_real: 1.262 D_fake: 0.415 +(epoch: 388, iters: 7710, time: 0.063) G_GAN: 0.322 G_GAN_Feat: 0.749 G_ID: 0.110 G_Rec: 0.281 D_GP: 0.034 D_real: 0.967 D_fake: 0.680 +(epoch: 388, iters: 8110, time: 0.063) G_GAN: 0.520 G_GAN_Feat: 1.062 G_ID: 0.119 G_Rec: 0.418 D_GP: 0.089 D_real: 0.859 D_fake: 0.526 +(epoch: 388, iters: 8510, time: 0.064) G_GAN: 0.474 G_GAN_Feat: 0.842 G_ID: 0.096 G_Rec: 0.310 D_GP: 0.062 D_real: 1.039 D_fake: 0.545 +(epoch: 389, iters: 302, time: 0.063) G_GAN: 0.570 G_GAN_Feat: 1.065 G_ID: 0.118 G_Rec: 0.475 D_GP: 0.035 D_real: 1.066 D_fake: 0.439 +(epoch: 389, iters: 702, time: 0.063) G_GAN: 0.260 G_GAN_Feat: 0.894 G_ID: 0.080 G_Rec: 0.324 D_GP: 1.041 D_real: 0.477 D_fake: 0.744 +(epoch: 389, iters: 1102, time: 0.063) G_GAN: 0.577 G_GAN_Feat: 1.008 G_ID: 0.107 G_Rec: 0.467 D_GP: 0.031 D_real: 1.118 D_fake: 0.471 +(epoch: 389, iters: 1502, time: 0.064) G_GAN: 0.574 G_GAN_Feat: 0.739 G_ID: 0.092 G_Rec: 0.297 D_GP: 0.031 D_real: 1.361 D_fake: 0.444 +(epoch: 389, iters: 1902, time: 0.063) G_GAN: 0.276 G_GAN_Feat: 1.119 G_ID: 0.136 G_Rec: 0.478 D_GP: 0.031 D_real: 0.711 D_fake: 0.725 +(epoch: 389, iters: 2302, time: 0.063) G_GAN: 0.747 G_GAN_Feat: 1.047 G_ID: 0.112 G_Rec: 0.401 D_GP: 0.152 D_real: 0.524 D_fake: 0.551 +(epoch: 389, iters: 2702, time: 0.063) G_GAN: 0.541 G_GAN_Feat: 0.960 G_ID: 0.122 G_Rec: 0.434 D_GP: 0.030 D_real: 1.275 D_fake: 0.463 +(epoch: 389, iters: 3102, time: 0.064) G_GAN: 0.137 G_GAN_Feat: 0.979 G_ID: 0.096 G_Rec: 0.349 D_GP: 0.044 D_real: 0.545 D_fake: 0.863 +(epoch: 389, iters: 3502, time: 0.063) G_GAN: 0.895 G_GAN_Feat: 1.142 G_ID: 0.133 G_Rec: 0.458 D_GP: 0.210 D_real: 0.843 D_fake: 0.207 +(epoch: 389, iters: 3902, time: 0.063) G_GAN: 0.102 G_GAN_Feat: 0.793 G_ID: 0.108 G_Rec: 0.339 D_GP: 0.033 D_real: 0.947 D_fake: 0.898 +(epoch: 389, iters: 4302, time: 0.063) G_GAN: 0.779 G_GAN_Feat: 0.995 G_ID: 0.115 G_Rec: 0.442 D_GP: 0.036 D_real: 1.339 D_fake: 0.250 +(epoch: 389, iters: 4702, time: 0.064) G_GAN: 0.586 G_GAN_Feat: 0.887 G_ID: 0.088 G_Rec: 0.323 D_GP: 0.046 D_real: 0.820 D_fake: 0.540 +(epoch: 389, iters: 5102, time: 0.063) G_GAN: 0.443 G_GAN_Feat: 1.160 G_ID: 0.132 G_Rec: 0.465 D_GP: 0.043 D_real: 1.019 D_fake: 0.563 +(epoch: 389, iters: 5502, time: 0.063) G_GAN: -0.071 G_GAN_Feat: 0.880 G_ID: 0.115 G_Rec: 0.328 D_GP: 0.039 D_real: 0.465 D_fake: 1.072 +(epoch: 389, iters: 5902, time: 0.063) G_GAN: 0.477 G_GAN_Feat: 1.022 G_ID: 0.114 G_Rec: 0.461 D_GP: 0.047 D_real: 0.988 D_fake: 0.531 +(epoch: 389, iters: 6302, time: 0.064) G_GAN: 0.207 G_GAN_Feat: 0.806 G_ID: 0.095 G_Rec: 0.318 D_GP: 0.044 D_real: 0.992 D_fake: 0.793 +(epoch: 389, iters: 6702, time: 0.063) G_GAN: 0.635 G_GAN_Feat: 0.942 G_ID: 0.121 G_Rec: 0.434 D_GP: 0.030 D_real: 1.401 D_fake: 0.387 +(epoch: 389, iters: 7102, time: 0.063) G_GAN: 0.207 G_GAN_Feat: 0.857 G_ID: 0.088 G_Rec: 0.298 D_GP: 0.030 D_real: 0.741 D_fake: 0.794 +(epoch: 389, iters: 7502, time: 0.063) G_GAN: 0.394 G_GAN_Feat: 1.119 G_ID: 0.136 G_Rec: 0.466 D_GP: 0.047 D_real: 0.597 D_fake: 0.610 +(epoch: 389, iters: 7902, time: 0.064) G_GAN: -0.389 G_GAN_Feat: 0.762 G_ID: 0.097 G_Rec: 0.343 D_GP: 0.036 D_real: 0.634 D_fake: 1.389 +(epoch: 389, iters: 8302, time: 0.063) G_GAN: 0.487 G_GAN_Feat: 0.962 G_ID: 0.132 G_Rec: 0.420 D_GP: 0.033 D_real: 1.037 D_fake: 0.525 +(epoch: 389, iters: 8702, time: 0.063) G_GAN: 0.264 G_GAN_Feat: 0.757 G_ID: 0.122 G_Rec: 0.322 D_GP: 0.033 D_real: 1.114 D_fake: 0.736 +(epoch: 390, iters: 494, time: 0.063) G_GAN: 0.454 G_GAN_Feat: 0.989 G_ID: 0.124 G_Rec: 0.422 D_GP: 0.042 D_real: 0.942 D_fake: 0.562 +(epoch: 390, iters: 894, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.776 G_ID: 0.105 G_Rec: 0.313 D_GP: 0.041 D_real: 1.364 D_fake: 0.715 +(epoch: 390, iters: 1294, time: 0.063) G_GAN: 0.560 G_GAN_Feat: 0.886 G_ID: 0.113 G_Rec: 0.407 D_GP: 0.037 D_real: 1.276 D_fake: 0.443 +(epoch: 390, iters: 1694, time: 0.063) G_GAN: 0.313 G_GAN_Feat: 0.729 G_ID: 0.097 G_Rec: 0.304 D_GP: 0.032 D_real: 1.216 D_fake: 0.688 +(epoch: 390, iters: 2094, time: 0.063) G_GAN: 0.529 G_GAN_Feat: 0.991 G_ID: 0.116 G_Rec: 0.423 D_GP: 0.038 D_real: 1.180 D_fake: 0.492 +(epoch: 390, iters: 2494, time: 0.064) G_GAN: -0.001 G_GAN_Feat: 0.920 G_ID: 0.119 G_Rec: 0.332 D_GP: 0.050 D_real: 0.349 D_fake: 1.001 +(epoch: 390, iters: 2894, time: 0.063) G_GAN: 0.561 G_GAN_Feat: 0.954 G_ID: 0.115 G_Rec: 0.440 D_GP: 0.030 D_real: 1.256 D_fake: 0.455 +(epoch: 390, iters: 3294, time: 0.063) G_GAN: -0.004 G_GAN_Feat: 0.741 G_ID: 0.104 G_Rec: 0.347 D_GP: 0.051 D_real: 0.781 D_fake: 1.004 +(epoch: 390, iters: 3694, time: 0.063) G_GAN: 0.614 G_GAN_Feat: 1.079 G_ID: 0.143 G_Rec: 0.464 D_GP: 0.156 D_real: 0.806 D_fake: 0.398 +(epoch: 390, iters: 4094, time: 0.064) G_GAN: -0.120 G_GAN_Feat: 0.943 G_ID: 0.135 G_Rec: 0.332 D_GP: 0.063 D_real: 0.188 D_fake: 1.120 +(epoch: 390, iters: 4494, time: 0.063) G_GAN: 0.461 G_GAN_Feat: 1.048 G_ID: 0.135 G_Rec: 0.387 D_GP: 0.046 D_real: 0.813 D_fake: 0.540 +(epoch: 390, iters: 4894, time: 0.064) G_GAN: 0.274 G_GAN_Feat: 0.999 G_ID: 0.113 G_Rec: 0.362 D_GP: 0.065 D_real: 0.383 D_fake: 0.730 +(epoch: 390, iters: 5294, time: 0.063) G_GAN: 0.293 G_GAN_Feat: 1.224 G_ID: 0.136 G_Rec: 0.469 D_GP: 0.049 D_real: 0.461 D_fake: 0.709 +(epoch: 390, iters: 5694, time: 0.064) G_GAN: 0.126 G_GAN_Feat: 0.872 G_ID: 0.114 G_Rec: 0.346 D_GP: 0.151 D_real: 0.535 D_fake: 0.889 +(epoch: 390, iters: 6094, time: 0.063) G_GAN: 0.630 G_GAN_Feat: 1.109 G_ID: 0.138 G_Rec: 0.401 D_GP: 0.047 D_real: 0.760 D_fake: 0.414 +(epoch: 390, iters: 6494, time: 0.063) G_GAN: 0.428 G_GAN_Feat: 0.863 G_ID: 0.099 G_Rec: 0.300 D_GP: 0.042 D_real: 0.790 D_fake: 0.592 +(epoch: 390, iters: 6894, time: 0.063) G_GAN: 0.386 G_GAN_Feat: 0.965 G_ID: 0.130 G_Rec: 0.427 D_GP: 0.033 D_real: 1.018 D_fake: 0.615 +(epoch: 390, iters: 7294, time: 0.064) G_GAN: 0.412 G_GAN_Feat: 0.800 G_ID: 0.094 G_Rec: 0.305 D_GP: 0.039 D_real: 1.158 D_fake: 0.589 +(epoch: 390, iters: 7694, time: 0.063) G_GAN: 0.726 G_GAN_Feat: 0.972 G_ID: 0.143 G_Rec: 0.434 D_GP: 0.038 D_real: 1.293 D_fake: 0.296 +(epoch: 390, iters: 8094, time: 0.063) G_GAN: 0.488 G_GAN_Feat: 1.095 G_ID: 0.104 G_Rec: 0.381 D_GP: 0.058 D_real: 1.474 D_fake: 0.548 +(epoch: 390, iters: 8494, time: 0.063) G_GAN: 0.383 G_GAN_Feat: 0.988 G_ID: 0.127 G_Rec: 0.471 D_GP: 0.031 D_real: 1.039 D_fake: 0.652 +(epoch: 391, iters: 286, time: 0.064) G_GAN: -0.046 G_GAN_Feat: 0.711 G_ID: 0.103 G_Rec: 0.281 D_GP: 0.034 D_real: 0.930 D_fake: 1.046 +(epoch: 391, iters: 686, time: 0.063) G_GAN: 0.424 G_GAN_Feat: 1.056 G_ID: 0.121 G_Rec: 0.448 D_GP: 0.038 D_real: 0.784 D_fake: 0.578 +(epoch: 391, iters: 1086, time: 0.063) G_GAN: 0.347 G_GAN_Feat: 0.907 G_ID: 0.104 G_Rec: 0.313 D_GP: 0.037 D_real: 0.582 D_fake: 0.657 +(epoch: 391, iters: 1486, time: 0.064) G_GAN: 0.820 G_GAN_Feat: 1.011 G_ID: 0.124 G_Rec: 0.425 D_GP: 0.070 D_real: 1.651 D_fake: 0.238 +(epoch: 391, iters: 1886, time: 0.064) G_GAN: 0.180 G_GAN_Feat: 0.692 G_ID: 0.092 G_Rec: 0.309 D_GP: 0.028 D_real: 1.100 D_fake: 0.820 +(epoch: 391, iters: 2286, time: 0.064) G_GAN: 0.453 G_GAN_Feat: 0.875 G_ID: 0.122 G_Rec: 0.410 D_GP: 0.033 D_real: 0.998 D_fake: 0.552 +(epoch: 391, iters: 2686, time: 0.064) G_GAN: -0.302 G_GAN_Feat: 0.735 G_ID: 0.092 G_Rec: 0.306 D_GP: 0.035 D_real: 0.602 D_fake: 1.302 +(epoch: 391, iters: 3086, time: 0.064) G_GAN: 0.774 G_GAN_Feat: 1.079 G_ID: 0.116 G_Rec: 0.479 D_GP: 0.112 D_real: 1.048 D_fake: 0.369 +(epoch: 391, iters: 3486, time: 0.064) G_GAN: 0.095 G_GAN_Feat: 0.808 G_ID: 0.099 G_Rec: 0.326 D_GP: 0.047 D_real: 0.754 D_fake: 0.906 +(epoch: 391, iters: 3886, time: 0.063) G_GAN: 0.433 G_GAN_Feat: 1.054 G_ID: 0.118 G_Rec: 0.451 D_GP: 0.053 D_real: 0.892 D_fake: 0.575 +(epoch: 391, iters: 4286, time: 0.063) G_GAN: 0.156 G_GAN_Feat: 0.895 G_ID: 0.129 G_Rec: 0.372 D_GP: 0.051 D_real: 0.766 D_fake: 0.845 +(epoch: 391, iters: 4686, time: 0.063) G_GAN: 0.663 G_GAN_Feat: 1.049 G_ID: 0.125 G_Rec: 0.469 D_GP: 0.052 D_real: 0.930 D_fake: 0.363 +(epoch: 391, iters: 5086, time: 0.064) G_GAN: 0.542 G_GAN_Feat: 0.876 G_ID: 0.083 G_Rec: 0.332 D_GP: 0.050 D_real: 1.201 D_fake: 0.553 +(epoch: 391, iters: 5486, time: 0.063) G_GAN: 0.746 G_GAN_Feat: 1.114 G_ID: 0.121 G_Rec: 0.475 D_GP: 0.053 D_real: 0.878 D_fake: 0.340 +(epoch: 391, iters: 5886, time: 0.063) G_GAN: 0.160 G_GAN_Feat: 0.972 G_ID: 0.092 G_Rec: 0.315 D_GP: 0.112 D_real: 0.285 D_fake: 0.840 +(epoch: 391, iters: 6286, time: 0.063) G_GAN: 0.653 G_GAN_Feat: 1.321 G_ID: 0.115 G_Rec: 0.475 D_GP: 0.172 D_real: 0.254 D_fake: 0.382 +(epoch: 391, iters: 6686, time: 0.064) G_GAN: 0.391 G_GAN_Feat: 0.935 G_ID: 0.099 G_Rec: 0.322 D_GP: 0.045 D_real: 0.490 D_fake: 0.626 +(epoch: 391, iters: 7086, time: 0.063) G_GAN: 0.364 G_GAN_Feat: 1.025 G_ID: 0.133 G_Rec: 0.432 D_GP: 0.045 D_real: 0.711 D_fake: 0.637 +(epoch: 391, iters: 7486, time: 0.063) G_GAN: 0.224 G_GAN_Feat: 0.940 G_ID: 0.103 G_Rec: 0.301 D_GP: 0.079 D_real: 0.324 D_fake: 0.781 +(epoch: 391, iters: 7886, time: 0.063) G_GAN: 0.474 G_GAN_Feat: 1.043 G_ID: 0.147 G_Rec: 0.490 D_GP: 0.033 D_real: 1.014 D_fake: 0.530 +(epoch: 391, iters: 8286, time: 0.064) G_GAN: -0.029 G_GAN_Feat: 0.753 G_ID: 0.109 G_Rec: 0.324 D_GP: 0.030 D_real: 0.851 D_fake: 1.029 +(epoch: 391, iters: 8686, time: 0.063) G_GAN: 0.147 G_GAN_Feat: 1.043 G_ID: 0.109 G_Rec: 0.448 D_GP: 0.084 D_real: 0.460 D_fake: 0.855 +(epoch: 392, iters: 478, time: 0.063) G_GAN: 0.234 G_GAN_Feat: 0.951 G_ID: 0.123 G_Rec: 0.324 D_GP: 0.211 D_real: 0.372 D_fake: 0.774 +(epoch: 392, iters: 878, time: 0.063) G_GAN: 0.851 G_GAN_Feat: 1.320 G_ID: 0.121 G_Rec: 0.544 D_GP: 0.060 D_real: 0.427 D_fake: 0.212 +(epoch: 392, iters: 1278, time: 0.064) G_GAN: 0.422 G_GAN_Feat: 0.879 G_ID: 0.091 G_Rec: 0.288 D_GP: 0.077 D_real: 0.680 D_fake: 0.580 +(epoch: 392, iters: 1678, time: 0.063) G_GAN: 0.485 G_GAN_Feat: 1.001 G_ID: 0.124 G_Rec: 0.506 D_GP: 0.035 D_real: 1.173 D_fake: 0.523 +(epoch: 392, iters: 2078, time: 0.063) G_GAN: 0.093 G_GAN_Feat: 0.717 G_ID: 0.097 G_Rec: 0.302 D_GP: 0.040 D_real: 0.995 D_fake: 0.908 +(epoch: 392, iters: 2478, time: 0.063) G_GAN: 0.424 G_GAN_Feat: 1.116 G_ID: 0.129 G_Rec: 0.436 D_GP: 0.227 D_real: 0.388 D_fake: 0.584 +(epoch: 392, iters: 2878, time: 0.064) G_GAN: 0.426 G_GAN_Feat: 0.852 G_ID: 0.108 G_Rec: 0.399 D_GP: 0.069 D_real: 0.851 D_fake: 0.619 +(epoch: 392, iters: 3278, time: 0.063) G_GAN: 0.342 G_GAN_Feat: 0.932 G_ID: 0.106 G_Rec: 0.441 D_GP: 0.032 D_real: 1.056 D_fake: 0.664 +(epoch: 392, iters: 3678, time: 0.063) G_GAN: 0.218 G_GAN_Feat: 0.825 G_ID: 0.106 G_Rec: 0.323 D_GP: 0.056 D_real: 0.845 D_fake: 0.782 +(epoch: 392, iters: 4078, time: 0.063) G_GAN: 0.466 G_GAN_Feat: 1.183 G_ID: 0.134 G_Rec: 0.473 D_GP: 0.042 D_real: 1.184 D_fake: 0.591 +(epoch: 392, iters: 4478, time: 0.064) G_GAN: 0.207 G_GAN_Feat: 0.676 G_ID: 0.099 G_Rec: 0.304 D_GP: 0.025 D_real: 1.125 D_fake: 0.794 +(epoch: 392, iters: 4878, time: 0.063) G_GAN: 0.271 G_GAN_Feat: 0.916 G_ID: 0.110 G_Rec: 0.475 D_GP: 0.036 D_real: 0.841 D_fake: 0.730 +(epoch: 392, iters: 5278, time: 0.063) G_GAN: -0.082 G_GAN_Feat: 0.677 G_ID: 0.093 G_Rec: 0.309 D_GP: 0.033 D_real: 0.793 D_fake: 1.082 +(epoch: 392, iters: 5678, time: 0.063) G_GAN: 0.108 G_GAN_Feat: 0.953 G_ID: 0.118 G_Rec: 0.461 D_GP: 0.090 D_real: 0.672 D_fake: 0.894 +(epoch: 392, iters: 6078, time: 0.064) G_GAN: 0.061 G_GAN_Feat: 0.658 G_ID: 0.121 G_Rec: 0.298 D_GP: 0.031 D_real: 0.975 D_fake: 0.939 +(epoch: 392, iters: 6478, time: 0.063) G_GAN: 0.324 G_GAN_Feat: 0.862 G_ID: 0.104 G_Rec: 0.399 D_GP: 0.033 D_real: 0.991 D_fake: 0.677 +(epoch: 392, iters: 6878, time: 0.063) G_GAN: -0.030 G_GAN_Feat: 0.850 G_ID: 0.126 G_Rec: 0.356 D_GP: 0.143 D_real: 0.549 D_fake: 1.030 +(epoch: 392, iters: 7278, time: 0.063) G_GAN: 0.469 G_GAN_Feat: 1.013 G_ID: 0.113 G_Rec: 0.424 D_GP: 0.081 D_real: 0.721 D_fake: 0.551 +(epoch: 392, iters: 7678, time: 0.064) G_GAN: 0.224 G_GAN_Feat: 0.717 G_ID: 0.093 G_Rec: 0.307 D_GP: 0.042 D_real: 1.076 D_fake: 0.776 +(epoch: 392, iters: 8078, time: 0.063) G_GAN: 0.283 G_GAN_Feat: 0.921 G_ID: 0.136 G_Rec: 0.408 D_GP: 0.039 D_real: 0.964 D_fake: 0.725 +(epoch: 392, iters: 8478, time: 0.063) G_GAN: 0.333 G_GAN_Feat: 0.859 G_ID: 0.117 G_Rec: 0.326 D_GP: 0.082 D_real: 0.849 D_fake: 0.692 +(epoch: 393, iters: 270, time: 0.063) G_GAN: 0.475 G_GAN_Feat: 0.919 G_ID: 0.122 G_Rec: 0.448 D_GP: 0.032 D_real: 1.162 D_fake: 0.562 +(epoch: 393, iters: 670, time: 0.064) G_GAN: 0.093 G_GAN_Feat: 0.652 G_ID: 0.111 G_Rec: 0.292 D_GP: 0.029 D_real: 1.013 D_fake: 0.908 +(epoch: 393, iters: 1070, time: 0.063) G_GAN: 0.227 G_GAN_Feat: 0.857 G_ID: 0.103 G_Rec: 0.411 D_GP: 0.039 D_real: 0.877 D_fake: 0.774 +(epoch: 393, iters: 1470, time: 0.063) G_GAN: 0.014 G_GAN_Feat: 0.768 G_ID: 0.096 G_Rec: 0.336 D_GP: 0.044 D_real: 0.810 D_fake: 0.986 +(epoch: 393, iters: 1870, time: 0.063) G_GAN: 0.801 G_GAN_Feat: 1.007 G_ID: 0.107 G_Rec: 0.416 D_GP: 0.045 D_real: 1.190 D_fake: 0.318 +(epoch: 393, iters: 2270, time: 0.063) G_GAN: 0.265 G_GAN_Feat: 0.850 G_ID: 0.115 G_Rec: 0.342 D_GP: 0.095 D_real: 0.947 D_fake: 0.757 +(epoch: 393, iters: 2670, time: 0.063) G_GAN: 0.606 G_GAN_Feat: 1.033 G_ID: 0.114 G_Rec: 0.435 D_GP: 0.042 D_real: 1.239 D_fake: 0.401 +(epoch: 393, iters: 3070, time: 0.063) G_GAN: 0.368 G_GAN_Feat: 0.896 G_ID: 0.098 G_Rec: 0.321 D_GP: 0.205 D_real: 0.605 D_fake: 0.642 +(epoch: 393, iters: 3470, time: 0.064) G_GAN: 0.311 G_GAN_Feat: 1.272 G_ID: 0.137 G_Rec: 0.470 D_GP: 0.116 D_real: 0.304 D_fake: 0.690 +(epoch: 393, iters: 3870, time: 0.063) G_GAN: 0.436 G_GAN_Feat: 0.881 G_ID: 0.102 G_Rec: 0.322 D_GP: 0.049 D_real: 0.909 D_fake: 0.568 +(epoch: 393, iters: 4270, time: 0.063) G_GAN: 0.791 G_GAN_Feat: 1.346 G_ID: 0.139 G_Rec: 0.506 D_GP: 0.073 D_real: 0.442 D_fake: 0.261 +(epoch: 393, iters: 4670, time: 0.064) G_GAN: 0.298 G_GAN_Feat: 0.683 G_ID: 0.090 G_Rec: 0.365 D_GP: 0.026 D_real: 1.157 D_fake: 0.702 +(epoch: 393, iters: 5070, time: 0.064) G_GAN: 0.433 G_GAN_Feat: 0.828 G_ID: 0.111 G_Rec: 0.395 D_GP: 0.033 D_real: 1.198 D_fake: 0.582 +(epoch: 393, iters: 5470, time: 0.064) G_GAN: 0.185 G_GAN_Feat: 0.619 G_ID: 0.109 G_Rec: 0.284 D_GP: 0.029 D_real: 1.104 D_fake: 0.817 +(epoch: 393, iters: 5870, time: 0.064) G_GAN: 0.424 G_GAN_Feat: 0.868 G_ID: 0.121 G_Rec: 0.444 D_GP: 0.030 D_real: 1.101 D_fake: 0.589 +(epoch: 393, iters: 6270, time: 0.064) G_GAN: 0.134 G_GAN_Feat: 0.703 G_ID: 0.084 G_Rec: 0.325 D_GP: 0.046 D_real: 1.000 D_fake: 0.866 +(epoch: 393, iters: 6670, time: 0.064) G_GAN: 0.534 G_GAN_Feat: 0.859 G_ID: 0.110 G_Rec: 0.406 D_GP: 0.034 D_real: 1.208 D_fake: 0.514 +(epoch: 393, iters: 7070, time: 0.064) G_GAN: 0.313 G_GAN_Feat: 0.652 G_ID: 0.099 G_Rec: 0.310 D_GP: 0.032 D_real: 1.298 D_fake: 0.688 +(epoch: 393, iters: 7470, time: 0.064) G_GAN: 0.467 G_GAN_Feat: 0.867 G_ID: 0.126 G_Rec: 0.429 D_GP: 0.041 D_real: 1.012 D_fake: 0.554 +(epoch: 393, iters: 7870, time: 0.064) G_GAN: 0.244 G_GAN_Feat: 0.638 G_ID: 0.098 G_Rec: 0.289 D_GP: 0.043 D_real: 1.122 D_fake: 0.756 +(epoch: 393, iters: 8270, time: 0.064) G_GAN: 0.482 G_GAN_Feat: 0.888 G_ID: 0.135 G_Rec: 0.448 D_GP: 0.037 D_real: 1.133 D_fake: 0.536 +(epoch: 393, iters: 8670, time: 0.064) G_GAN: -0.030 G_GAN_Feat: 0.780 G_ID: 0.134 G_Rec: 0.366 D_GP: 0.072 D_real: 0.669 D_fake: 1.030 +(epoch: 394, iters: 462, time: 0.064) G_GAN: 0.425 G_GAN_Feat: 0.892 G_ID: 0.120 G_Rec: 0.431 D_GP: 0.039 D_real: 1.097 D_fake: 0.586 +(epoch: 394, iters: 862, time: 0.064) G_GAN: -0.153 G_GAN_Feat: 0.675 G_ID: 0.103 G_Rec: 0.309 D_GP: 0.040 D_real: 0.729 D_fake: 1.153 +(epoch: 394, iters: 1262, time: 0.064) G_GAN: 0.474 G_GAN_Feat: 0.934 G_ID: 0.112 G_Rec: 0.446 D_GP: 0.049 D_real: 0.943 D_fake: 0.553 +(epoch: 394, iters: 1662, time: 0.064) G_GAN: 0.015 G_GAN_Feat: 0.685 G_ID: 0.096 G_Rec: 0.321 D_GP: 0.037 D_real: 0.879 D_fake: 0.987 +(epoch: 394, iters: 2062, time: 0.064) G_GAN: 0.337 G_GAN_Feat: 0.899 G_ID: 0.119 G_Rec: 0.422 D_GP: 0.060 D_real: 0.895 D_fake: 0.666 +(epoch: 394, iters: 2462, time: 0.064) G_GAN: 0.157 G_GAN_Feat: 0.729 G_ID: 0.106 G_Rec: 0.296 D_GP: 0.082 D_real: 0.750 D_fake: 0.843 +(epoch: 394, iters: 2862, time: 0.064) G_GAN: 0.605 G_GAN_Feat: 0.880 G_ID: 0.103 G_Rec: 0.409 D_GP: 0.038 D_real: 1.254 D_fake: 0.429 +(epoch: 394, iters: 3262, time: 0.064) G_GAN: 0.203 G_GAN_Feat: 0.740 G_ID: 0.117 G_Rec: 0.325 D_GP: 0.043 D_real: 0.845 D_fake: 0.798 +(epoch: 394, iters: 3662, time: 0.064) G_GAN: 0.500 G_GAN_Feat: 0.940 G_ID: 0.126 G_Rec: 0.409 D_GP: 0.128 D_real: 0.796 D_fake: 0.509 +(epoch: 394, iters: 4062, time: 0.064) G_GAN: 0.196 G_GAN_Feat: 0.727 G_ID: 0.120 G_Rec: 0.333 D_GP: 0.045 D_real: 0.953 D_fake: 0.805 +(epoch: 394, iters: 4462, time: 0.064) G_GAN: 0.570 G_GAN_Feat: 0.970 G_ID: 0.109 G_Rec: 0.499 D_GP: 0.069 D_real: 1.076 D_fake: 0.444 +(epoch: 394, iters: 4862, time: 0.063) G_GAN: 0.380 G_GAN_Feat: 0.707 G_ID: 0.112 G_Rec: 0.285 D_GP: 0.045 D_real: 1.170 D_fake: 0.623 +(epoch: 394, iters: 5262, time: 0.063) G_GAN: 0.275 G_GAN_Feat: 0.930 G_ID: 0.130 G_Rec: 0.439 D_GP: 0.054 D_real: 0.841 D_fake: 0.725 +(epoch: 394, iters: 5662, time: 0.063) G_GAN: 0.246 G_GAN_Feat: 0.741 G_ID: 0.103 G_Rec: 0.303 D_GP: 0.051 D_real: 1.085 D_fake: 0.754 +(epoch: 394, iters: 6062, time: 0.064) G_GAN: 0.755 G_GAN_Feat: 1.090 G_ID: 0.119 G_Rec: 0.488 D_GP: 0.137 D_real: 0.802 D_fake: 0.334 +(epoch: 394, iters: 6462, time: 0.063) G_GAN: -0.105 G_GAN_Feat: 0.731 G_ID: 0.107 G_Rec: 0.348 D_GP: 0.041 D_real: 0.852 D_fake: 1.105 +(epoch: 394, iters: 6862, time: 0.063) G_GAN: 0.452 G_GAN_Feat: 0.871 G_ID: 0.116 G_Rec: 0.456 D_GP: 0.027 D_real: 1.262 D_fake: 0.562 +(epoch: 394, iters: 7262, time: 0.063) G_GAN: 0.064 G_GAN_Feat: 0.635 G_ID: 0.083 G_Rec: 0.278 D_GP: 0.030 D_real: 1.014 D_fake: 0.936 +(epoch: 394, iters: 7662, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.861 G_ID: 0.107 G_Rec: 0.423 D_GP: 0.033 D_real: 1.003 D_fake: 0.720 +(epoch: 394, iters: 8062, time: 0.063) G_GAN: 0.094 G_GAN_Feat: 0.648 G_ID: 0.108 G_Rec: 0.283 D_GP: 0.038 D_real: 0.983 D_fake: 0.907 +(epoch: 394, iters: 8462, time: 0.063) G_GAN: 0.214 G_GAN_Feat: 0.925 G_ID: 0.130 G_Rec: 0.438 D_GP: 0.052 D_real: 0.854 D_fake: 0.789 +(epoch: 395, iters: 254, time: 0.063) G_GAN: 0.112 G_GAN_Feat: 0.635 G_ID: 0.101 G_Rec: 0.291 D_GP: 0.044 D_real: 0.979 D_fake: 0.888 +(epoch: 395, iters: 654, time: 0.064) G_GAN: 0.043 G_GAN_Feat: 0.887 G_ID: 0.142 G_Rec: 0.418 D_GP: 0.046 D_real: 0.668 D_fake: 0.957 +(epoch: 395, iters: 1054, time: 0.063) G_GAN: 0.186 G_GAN_Feat: 0.717 G_ID: 0.083 G_Rec: 0.309 D_GP: 0.114 D_real: 0.865 D_fake: 0.815 +(epoch: 395, iters: 1454, time: 0.063) G_GAN: 0.800 G_GAN_Feat: 0.999 G_ID: 0.117 G_Rec: 0.470 D_GP: 0.060 D_real: 1.170 D_fake: 0.273 +(epoch: 395, iters: 1854, time: 0.063) G_GAN: 0.346 G_GAN_Feat: 0.699 G_ID: 0.117 G_Rec: 0.281 D_GP: 0.042 D_real: 1.103 D_fake: 0.654 +(epoch: 395, iters: 2254, time: 0.064) G_GAN: 0.445 G_GAN_Feat: 1.001 G_ID: 0.128 G_Rec: 0.476 D_GP: 0.040 D_real: 0.866 D_fake: 0.559 +(epoch: 395, iters: 2654, time: 0.063) G_GAN: 0.204 G_GAN_Feat: 0.723 G_ID: 0.100 G_Rec: 0.325 D_GP: 0.033 D_real: 0.986 D_fake: 0.796 +(epoch: 395, iters: 3054, time: 0.063) G_GAN: 0.551 G_GAN_Feat: 0.946 G_ID: 0.115 G_Rec: 0.446 D_GP: 0.042 D_real: 1.329 D_fake: 0.456 +(epoch: 395, iters: 3454, time: 0.063) G_GAN: 0.204 G_GAN_Feat: 0.669 G_ID: 0.103 G_Rec: 0.290 D_GP: 0.031 D_real: 1.090 D_fake: 0.796 +(epoch: 395, iters: 3854, time: 0.064) G_GAN: 0.375 G_GAN_Feat: 0.896 G_ID: 0.135 G_Rec: 0.400 D_GP: 0.035 D_real: 0.898 D_fake: 0.625 +(epoch: 395, iters: 4254, time: 0.063) G_GAN: 0.453 G_GAN_Feat: 0.869 G_ID: 0.109 G_Rec: 0.329 D_GP: 0.070 D_real: 0.853 D_fake: 0.552 +(epoch: 395, iters: 4654, time: 0.063) G_GAN: 0.340 G_GAN_Feat: 0.993 G_ID: 0.121 G_Rec: 0.427 D_GP: 0.035 D_real: 0.857 D_fake: 0.664 +(epoch: 395, iters: 5054, time: 0.063) G_GAN: 0.559 G_GAN_Feat: 0.747 G_ID: 0.098 G_Rec: 0.290 D_GP: 0.034 D_real: 1.281 D_fake: 0.445 +(epoch: 395, iters: 5454, time: 0.064) G_GAN: 0.145 G_GAN_Feat: 1.023 G_ID: 0.131 G_Rec: 0.481 D_GP: 0.041 D_real: 0.650 D_fake: 0.855 +(epoch: 395, iters: 5854, time: 0.063) G_GAN: 0.361 G_GAN_Feat: 0.714 G_ID: 0.105 G_Rec: 0.307 D_GP: 0.046 D_real: 1.127 D_fake: 0.643 +(epoch: 395, iters: 6254, time: 0.063) G_GAN: 0.288 G_GAN_Feat: 1.067 G_ID: 0.126 G_Rec: 0.494 D_GP: 0.115 D_real: 0.441 D_fake: 0.714 +(epoch: 395, iters: 6654, time: 0.063) G_GAN: 0.189 G_GAN_Feat: 0.754 G_ID: 0.088 G_Rec: 0.292 D_GP: 0.049 D_real: 0.857 D_fake: 0.811 +(epoch: 395, iters: 7054, time: 0.064) G_GAN: 0.911 G_GAN_Feat: 0.999 G_ID: 0.134 G_Rec: 0.448 D_GP: 0.151 D_real: 1.397 D_fake: 0.206 +(epoch: 395, iters: 7454, time: 0.063) G_GAN: 0.183 G_GAN_Feat: 0.927 G_ID: 0.106 G_Rec: 0.338 D_GP: 0.184 D_real: 0.399 D_fake: 0.817 +(epoch: 395, iters: 7854, time: 0.063) G_GAN: 0.492 G_GAN_Feat: 1.107 G_ID: 0.128 G_Rec: 0.441 D_GP: 0.163 D_real: 0.533 D_fake: 0.514 +(epoch: 395, iters: 8254, time: 0.063) G_GAN: 0.190 G_GAN_Feat: 0.936 G_ID: 0.113 G_Rec: 0.336 D_GP: 0.123 D_real: 0.477 D_fake: 0.814 +(epoch: 395, iters: 8654, time: 0.064) G_GAN: 0.779 G_GAN_Feat: 1.140 G_ID: 0.129 G_Rec: 0.466 D_GP: 0.459 D_real: 0.863 D_fake: 0.400 +(epoch: 396, iters: 446, time: 0.063) G_GAN: 0.327 G_GAN_Feat: 0.922 G_ID: 0.113 G_Rec: 0.348 D_GP: 0.072 D_real: 0.465 D_fake: 0.749 +(epoch: 396, iters: 846, time: 0.063) G_GAN: 0.266 G_GAN_Feat: 1.186 G_ID: 0.126 G_Rec: 0.457 D_GP: 0.364 D_real: 0.209 D_fake: 0.746 +(epoch: 396, iters: 1246, time: 0.063) G_GAN: 0.160 G_GAN_Feat: 0.859 G_ID: 0.106 G_Rec: 0.382 D_GP: 0.050 D_real: 0.964 D_fake: 0.851 +(epoch: 396, iters: 1646, time: 0.064) G_GAN: 0.465 G_GAN_Feat: 0.991 G_ID: 0.112 G_Rec: 0.444 D_GP: 0.035 D_real: 0.924 D_fake: 0.539 +(epoch: 396, iters: 2046, time: 0.063) G_GAN: 0.291 G_GAN_Feat: 0.714 G_ID: 0.086 G_Rec: 0.269 D_GP: 0.036 D_real: 1.198 D_fake: 0.711 +(epoch: 396, iters: 2446, time: 0.063) G_GAN: 0.686 G_GAN_Feat: 0.929 G_ID: 0.129 G_Rec: 0.418 D_GP: 0.035 D_real: 1.287 D_fake: 0.368 +(epoch: 396, iters: 2846, time: 0.063) G_GAN: 0.249 G_GAN_Feat: 0.716 G_ID: 0.096 G_Rec: 0.288 D_GP: 0.029 D_real: 1.135 D_fake: 0.752 +(epoch: 396, iters: 3246, time: 0.064) G_GAN: 0.381 G_GAN_Feat: 0.999 G_ID: 0.122 G_Rec: 0.386 D_GP: 0.055 D_real: 0.776 D_fake: 0.620 +(epoch: 396, iters: 3646, time: 0.063) G_GAN: 0.288 G_GAN_Feat: 0.744 G_ID: 0.110 G_Rec: 0.290 D_GP: 0.040 D_real: 1.132 D_fake: 0.712 +(epoch: 396, iters: 4046, time: 0.063) G_GAN: 0.768 G_GAN_Feat: 1.230 G_ID: 0.120 G_Rec: 0.440 D_GP: 0.116 D_real: 0.589 D_fake: 0.298 +(epoch: 396, iters: 4446, time: 0.063) G_GAN: 0.517 G_GAN_Feat: 0.772 G_ID: 0.095 G_Rec: 0.311 D_GP: 0.033 D_real: 1.348 D_fake: 0.488 +(epoch: 396, iters: 4846, time: 0.064) G_GAN: 0.599 G_GAN_Feat: 0.958 G_ID: 0.106 G_Rec: 0.463 D_GP: 0.040 D_real: 1.338 D_fake: 0.405 +(epoch: 396, iters: 5246, time: 0.063) G_GAN: 0.499 G_GAN_Feat: 0.777 G_ID: 0.102 G_Rec: 0.302 D_GP: 0.044 D_real: 1.269 D_fake: 0.522 +(epoch: 396, iters: 5646, time: 0.063) G_GAN: 0.647 G_GAN_Feat: 1.050 G_ID: 0.122 G_Rec: 0.467 D_GP: 0.044 D_real: 1.031 D_fake: 0.368 +(epoch: 396, iters: 6046, time: 0.063) G_GAN: 0.481 G_GAN_Feat: 1.134 G_ID: 0.096 G_Rec: 0.347 D_GP: 0.625 D_real: 1.176 D_fake: 0.585 +(epoch: 396, iters: 6446, time: 0.064) G_GAN: 0.086 G_GAN_Feat: 0.908 G_ID: 0.114 G_Rec: 0.447 D_GP: 0.027 D_real: 0.849 D_fake: 0.918 +(epoch: 396, iters: 6846, time: 0.063) G_GAN: -0.146 G_GAN_Feat: 0.684 G_ID: 0.090 G_Rec: 0.309 D_GP: 0.028 D_real: 0.775 D_fake: 1.146 +(epoch: 396, iters: 7246, time: 0.063) G_GAN: 0.062 G_GAN_Feat: 0.980 G_ID: 0.116 G_Rec: 0.474 D_GP: 0.037 D_real: 0.670 D_fake: 0.939 +(epoch: 396, iters: 7646, time: 0.063) G_GAN: -0.055 G_GAN_Feat: 0.762 G_ID: 0.092 G_Rec: 0.312 D_GP: 0.039 D_real: 0.791 D_fake: 1.055 +(epoch: 396, iters: 8046, time: 0.064) G_GAN: -0.025 G_GAN_Feat: 1.147 G_ID: 0.115 G_Rec: 0.465 D_GP: 0.401 D_real: 0.233 D_fake: 1.026 +(epoch: 396, iters: 8446, time: 0.063) G_GAN: 0.034 G_GAN_Feat: 0.757 G_ID: 0.101 G_Rec: 0.300 D_GP: 0.056 D_real: 0.822 D_fake: 0.966 +(epoch: 397, iters: 238, time: 0.063) G_GAN: 0.258 G_GAN_Feat: 1.038 G_ID: 0.128 G_Rec: 0.427 D_GP: 0.096 D_real: 0.515 D_fake: 0.742 +(epoch: 397, iters: 638, time: 0.063) G_GAN: 0.152 G_GAN_Feat: 0.839 G_ID: 0.100 G_Rec: 0.347 D_GP: 0.035 D_real: 0.865 D_fake: 0.848 +(epoch: 397, iters: 1038, time: 0.064) G_GAN: 0.664 G_GAN_Feat: 1.157 G_ID: 0.117 G_Rec: 0.441 D_GP: 0.051 D_real: 0.793 D_fake: 0.393 +(epoch: 397, iters: 1438, time: 0.063) G_GAN: 0.247 G_GAN_Feat: 0.812 G_ID: 0.094 G_Rec: 0.334 D_GP: 0.063 D_real: 0.957 D_fake: 0.754 +(epoch: 397, iters: 1838, time: 0.063) G_GAN: 0.679 G_GAN_Feat: 0.887 G_ID: 0.130 G_Rec: 0.447 D_GP: 0.039 D_real: 1.282 D_fake: 0.357 +(epoch: 397, iters: 2238, time: 0.063) G_GAN: 0.049 G_GAN_Feat: 0.795 G_ID: 0.096 G_Rec: 0.327 D_GP: 0.054 D_real: 0.840 D_fake: 0.951 +(epoch: 397, iters: 2638, time: 0.064) G_GAN: 0.467 G_GAN_Feat: 1.017 G_ID: 0.134 G_Rec: 0.455 D_GP: 0.057 D_real: 0.869 D_fake: 0.564 +(epoch: 397, iters: 3038, time: 0.063) G_GAN: 0.238 G_GAN_Feat: 0.933 G_ID: 0.117 G_Rec: 0.355 D_GP: 0.101 D_real: 0.678 D_fake: 0.764 +(epoch: 397, iters: 3438, time: 0.063) G_GAN: 0.580 G_GAN_Feat: 1.003 G_ID: 0.139 G_Rec: 0.458 D_GP: 0.047 D_real: 1.116 D_fake: 0.434 +(epoch: 397, iters: 3838, time: 0.063) G_GAN: 0.399 G_GAN_Feat: 0.749 G_ID: 0.093 G_Rec: 0.282 D_GP: 0.037 D_real: 1.222 D_fake: 0.604 +(epoch: 397, iters: 4238, time: 0.064) G_GAN: 0.920 G_GAN_Feat: 0.983 G_ID: 0.130 G_Rec: 0.446 D_GP: 0.053 D_real: 1.527 D_fake: 0.224 +(epoch: 397, iters: 4638, time: 0.063) G_GAN: 0.371 G_GAN_Feat: 0.661 G_ID: 0.084 G_Rec: 0.279 D_GP: 0.029 D_real: 1.244 D_fake: 0.633 +(epoch: 397, iters: 5038, time: 0.063) G_GAN: 0.137 G_GAN_Feat: 0.994 G_ID: 0.121 G_Rec: 0.446 D_GP: 0.043 D_real: 0.507 D_fake: 0.863 +(epoch: 397, iters: 5438, time: 0.063) G_GAN: 0.168 G_GAN_Feat: 0.895 G_ID: 0.095 G_Rec: 0.328 D_GP: 0.095 D_real: 0.396 D_fake: 0.837 +(epoch: 397, iters: 5838, time: 0.064) G_GAN: 0.662 G_GAN_Feat: 0.951 G_ID: 0.115 G_Rec: 0.418 D_GP: 0.031 D_real: 1.277 D_fake: 0.357 +(epoch: 397, iters: 6238, time: 0.063) G_GAN: 0.360 G_GAN_Feat: 0.877 G_ID: 0.093 G_Rec: 0.331 D_GP: 0.074 D_real: 0.613 D_fake: 0.691 +(epoch: 397, iters: 6638, time: 0.063) G_GAN: 0.375 G_GAN_Feat: 0.921 G_ID: 0.118 G_Rec: 0.427 D_GP: 0.034 D_real: 1.017 D_fake: 0.627 +(epoch: 397, iters: 7038, time: 0.063) G_GAN: 0.519 G_GAN_Feat: 0.729 G_ID: 0.101 G_Rec: 0.355 D_GP: 0.030 D_real: 1.350 D_fake: 0.496 +(epoch: 397, iters: 7438, time: 0.063) G_GAN: 0.733 G_GAN_Feat: 1.051 G_ID: 0.118 G_Rec: 0.448 D_GP: 0.068 D_real: 1.002 D_fake: 0.305 +(epoch: 397, iters: 7838, time: 0.063) G_GAN: 0.233 G_GAN_Feat: 0.801 G_ID: 0.115 G_Rec: 0.321 D_GP: 0.041 D_real: 0.803 D_fake: 0.771 +(epoch: 397, iters: 8238, time: 0.063) G_GAN: 0.234 G_GAN_Feat: 0.973 G_ID: 0.139 G_Rec: 0.462 D_GP: 0.065 D_real: 0.908 D_fake: 0.767 +(epoch: 397, iters: 8638, time: 0.064) G_GAN: 0.150 G_GAN_Feat: 0.740 G_ID: 0.093 G_Rec: 0.316 D_GP: 0.057 D_real: 1.092 D_fake: 0.850 +(epoch: 398, iters: 430, time: 0.063) G_GAN: 0.269 G_GAN_Feat: 0.981 G_ID: 0.108 G_Rec: 0.437 D_GP: 0.063 D_real: 0.891 D_fake: 0.732 +(epoch: 398, iters: 830, time: 0.063) G_GAN: 0.181 G_GAN_Feat: 0.699 G_ID: 0.093 G_Rec: 0.295 D_GP: 0.042 D_real: 1.148 D_fake: 0.821 +(epoch: 398, iters: 1230, time: 0.063) G_GAN: 0.347 G_GAN_Feat: 0.984 G_ID: 0.121 G_Rec: 0.459 D_GP: 0.067 D_real: 0.886 D_fake: 0.660 +(epoch: 398, iters: 1630, time: 0.064) G_GAN: 0.013 G_GAN_Feat: 0.816 G_ID: 0.104 G_Rec: 0.349 D_GP: 0.069 D_real: 0.700 D_fake: 0.987 +(epoch: 398, iters: 2030, time: 0.063) G_GAN: 0.285 G_GAN_Feat: 0.923 G_ID: 0.125 G_Rec: 0.427 D_GP: 0.054 D_real: 0.858 D_fake: 0.725 +(epoch: 398, iters: 2430, time: 0.063) G_GAN: 0.157 G_GAN_Feat: 0.736 G_ID: 0.092 G_Rec: 0.330 D_GP: 0.048 D_real: 0.984 D_fake: 0.844 +(epoch: 398, iters: 2830, time: 0.063) G_GAN: 0.218 G_GAN_Feat: 0.933 G_ID: 0.123 G_Rec: 0.417 D_GP: 0.102 D_real: 0.787 D_fake: 0.783 +(epoch: 398, iters: 3230, time: 0.064) G_GAN: 0.071 G_GAN_Feat: 0.703 G_ID: 0.106 G_Rec: 0.304 D_GP: 0.039 D_real: 0.881 D_fake: 0.929 +(epoch: 398, iters: 3630, time: 0.063) G_GAN: 0.533 G_GAN_Feat: 0.993 G_ID: 0.124 G_Rec: 0.466 D_GP: 0.050 D_real: 1.028 D_fake: 0.486 +(epoch: 398, iters: 4030, time: 0.063) G_GAN: 0.147 G_GAN_Feat: 0.774 G_ID: 0.119 G_Rec: 0.337 D_GP: 0.043 D_real: 0.986 D_fake: 0.854 +(epoch: 398, iters: 4430, time: 0.063) G_GAN: 0.409 G_GAN_Feat: 1.007 G_ID: 0.102 G_Rec: 0.428 D_GP: 0.048 D_real: 1.181 D_fake: 0.608 +(epoch: 398, iters: 4830, time: 0.064) G_GAN: 0.121 G_GAN_Feat: 0.772 G_ID: 0.106 G_Rec: 0.305 D_GP: 0.052 D_real: 0.863 D_fake: 0.879 +(epoch: 398, iters: 5230, time: 0.063) G_GAN: 0.209 G_GAN_Feat: 0.949 G_ID: 0.125 G_Rec: 0.420 D_GP: 0.051 D_real: 0.804 D_fake: 0.794 +(epoch: 398, iters: 5630, time: 0.063) G_GAN: 0.212 G_GAN_Feat: 0.736 G_ID: 0.117 G_Rec: 0.296 D_GP: 0.036 D_real: 1.050 D_fake: 0.790 +(epoch: 398, iters: 6030, time: 0.063) G_GAN: 0.381 G_GAN_Feat: 0.915 G_ID: 0.101 G_Rec: 0.438 D_GP: 0.038 D_real: 0.969 D_fake: 0.620 +(epoch: 398, iters: 6430, time: 0.064) G_GAN: 0.014 G_GAN_Feat: 0.805 G_ID: 0.110 G_Rec: 0.336 D_GP: 0.075 D_real: 0.789 D_fake: 0.986 +(epoch: 398, iters: 6830, time: 0.063) G_GAN: 0.463 G_GAN_Feat: 0.970 G_ID: 0.108 G_Rec: 0.443 D_GP: 0.041 D_real: 0.900 D_fake: 0.548 +(epoch: 398, iters: 7230, time: 0.063) G_GAN: 0.070 G_GAN_Feat: 0.793 G_ID: 0.094 G_Rec: 0.321 D_GP: 0.052 D_real: 0.658 D_fake: 0.930 +(epoch: 398, iters: 7630, time: 0.063) G_GAN: 0.663 G_GAN_Feat: 1.020 G_ID: 0.105 G_Rec: 0.431 D_GP: 0.036 D_real: 1.196 D_fake: 0.399 +(epoch: 398, iters: 8030, time: 0.064) G_GAN: 0.155 G_GAN_Feat: 0.803 G_ID: 0.099 G_Rec: 0.310 D_GP: 0.049 D_real: 0.801 D_fake: 0.845 +(epoch: 398, iters: 8430, time: 0.063) G_GAN: 0.538 G_GAN_Feat: 1.030 G_ID: 0.115 G_Rec: 0.437 D_GP: 0.330 D_real: 0.752 D_fake: 0.475 +(epoch: 399, iters: 222, time: 0.063) G_GAN: 0.085 G_GAN_Feat: 0.759 G_ID: 0.097 G_Rec: 0.306 D_GP: 0.050 D_real: 0.793 D_fake: 0.915 +(epoch: 399, iters: 622, time: 0.063) G_GAN: 0.490 G_GAN_Feat: 0.933 G_ID: 0.129 G_Rec: 0.412 D_GP: 0.037 D_real: 1.099 D_fake: 0.513 +(epoch: 399, iters: 1022, time: 0.064) G_GAN: 0.369 G_GAN_Feat: 0.867 G_ID: 0.105 G_Rec: 0.334 D_GP: 0.121 D_real: 0.831 D_fake: 0.632 +(epoch: 399, iters: 1422, time: 0.063) G_GAN: 0.406 G_GAN_Feat: 1.030 G_ID: 0.119 G_Rec: 0.432 D_GP: 0.043 D_real: 0.869 D_fake: 0.597 +(epoch: 399, iters: 1822, time: 0.063) G_GAN: -0.107 G_GAN_Feat: 0.755 G_ID: 0.101 G_Rec: 0.294 D_GP: 0.035 D_real: 0.694 D_fake: 1.107 +(epoch: 399, iters: 2222, time: 0.063) G_GAN: 0.379 G_GAN_Feat: 0.967 G_ID: 0.129 G_Rec: 0.457 D_GP: 0.035 D_real: 1.036 D_fake: 0.622 +(epoch: 399, iters: 2622, time: 0.064) G_GAN: 0.397 G_GAN_Feat: 0.793 G_ID: 0.095 G_Rec: 0.302 D_GP: 0.034 D_real: 1.299 D_fake: 0.653 +(epoch: 399, iters: 3022, time: 0.063) G_GAN: 0.218 G_GAN_Feat: 0.920 G_ID: 0.123 G_Rec: 0.399 D_GP: 0.042 D_real: 0.828 D_fake: 0.784 +(epoch: 399, iters: 3422, time: 0.063) G_GAN: 0.296 G_GAN_Feat: 0.803 G_ID: 0.091 G_Rec: 0.307 D_GP: 0.051 D_real: 0.973 D_fake: 0.704 +(epoch: 399, iters: 3822, time: 0.063) G_GAN: 0.898 G_GAN_Feat: 1.011 G_ID: 0.123 G_Rec: 0.436 D_GP: 0.045 D_real: 1.359 D_fake: 0.213 +(epoch: 399, iters: 4222, time: 0.064) G_GAN: 0.323 G_GAN_Feat: 0.802 G_ID: 0.102 G_Rec: 0.318 D_GP: 0.039 D_real: 1.048 D_fake: 0.683 +(epoch: 399, iters: 4622, time: 0.063) G_GAN: 0.558 G_GAN_Feat: 1.073 G_ID: 0.123 G_Rec: 0.452 D_GP: 0.117 D_real: 0.694 D_fake: 0.451 +(epoch: 399, iters: 5022, time: 0.063) G_GAN: 0.602 G_GAN_Feat: 0.828 G_ID: 0.092 G_Rec: 0.272 D_GP: 0.038 D_real: 1.167 D_fake: 0.412 +(epoch: 399, iters: 5422, time: 0.063) G_GAN: 0.619 G_GAN_Feat: 0.975 G_ID: 0.138 G_Rec: 0.433 D_GP: 0.033 D_real: 1.271 D_fake: 0.390 +(epoch: 399, iters: 5822, time: 0.064) G_GAN: 0.387 G_GAN_Feat: 0.896 G_ID: 0.103 G_Rec: 0.335 D_GP: 0.063 D_real: 0.795 D_fake: 0.748 +(epoch: 399, iters: 6222, time: 0.063) G_GAN: 0.607 G_GAN_Feat: 1.048 G_ID: 0.114 G_Rec: 0.435 D_GP: 0.040 D_real: 1.089 D_fake: 0.408 +(epoch: 399, iters: 6622, time: 0.063) G_GAN: 0.261 G_GAN_Feat: 1.030 G_ID: 0.108 G_Rec: 0.365 D_GP: 0.031 D_real: 1.354 D_fake: 0.775 +(epoch: 399, iters: 7022, time: 0.063) G_GAN: 0.156 G_GAN_Feat: 0.807 G_ID: 0.136 G_Rec: 0.420 D_GP: 0.026 D_real: 0.921 D_fake: 0.844 +(epoch: 399, iters: 7422, time: 0.064) G_GAN: 0.083 G_GAN_Feat: 0.672 G_ID: 0.100 G_Rec: 0.362 D_GP: 0.025 D_real: 0.986 D_fake: 0.917 +(epoch: 399, iters: 7822, time: 0.063) G_GAN: 0.238 G_GAN_Feat: 0.843 G_ID: 0.122 G_Rec: 0.430 D_GP: 0.030 D_real: 0.895 D_fake: 0.763 +(epoch: 399, iters: 8222, time: 0.063) G_GAN: -0.026 G_GAN_Feat: 0.635 G_ID: 0.102 G_Rec: 0.319 D_GP: 0.035 D_real: 0.844 D_fake: 1.026 +(epoch: 399, iters: 8622, time: 0.063) G_GAN: -0.030 G_GAN_Feat: 0.879 G_ID: 0.156 G_Rec: 0.442 D_GP: 0.055 D_real: 0.561 D_fake: 1.031 +(epoch: 400, iters: 414, time: 0.064) G_GAN: -0.273 G_GAN_Feat: 0.859 G_ID: 0.118 G_Rec: 0.355 D_GP: 0.091 D_real: 0.374 D_fake: 1.273 +(epoch: 400, iters: 814, time: 0.063) G_GAN: 0.541 G_GAN_Feat: 0.848 G_ID: 0.106 G_Rec: 0.404 D_GP: 0.036 D_real: 1.260 D_fake: 0.514 +(epoch: 400, iters: 1214, time: 0.063) G_GAN: 0.054 G_GAN_Feat: 0.699 G_ID: 0.104 G_Rec: 0.296 D_GP: 0.037 D_real: 0.966 D_fake: 0.946 +(epoch: 400, iters: 1614, time: 0.063) G_GAN: 0.619 G_GAN_Feat: 1.016 G_ID: 0.120 G_Rec: 0.440 D_GP: 0.042 D_real: 1.027 D_fake: 0.417 +(epoch: 400, iters: 2014, time: 0.064) G_GAN: 0.132 G_GAN_Feat: 0.592 G_ID: 0.092 G_Rec: 0.273 D_GP: 0.027 D_real: 1.076 D_fake: 0.869 +(epoch: 400, iters: 2414, time: 0.063) G_GAN: 0.347 G_GAN_Feat: 0.873 G_ID: 0.105 G_Rec: 0.445 D_GP: 0.036 D_real: 1.002 D_fake: 0.668 +(epoch: 400, iters: 2814, time: 0.063) G_GAN: -0.021 G_GAN_Feat: 0.617 G_ID: 0.091 G_Rec: 0.305 D_GP: 0.032 D_real: 0.796 D_fake: 1.021 +(epoch: 400, iters: 3214, time: 0.063) G_GAN: 0.339 G_GAN_Feat: 0.872 G_ID: 0.127 G_Rec: 0.411 D_GP: 0.077 D_real: 0.914 D_fake: 0.687 +(epoch: 400, iters: 3614, time: 0.064) G_GAN: 0.100 G_GAN_Feat: 0.662 G_ID: 0.093 G_Rec: 0.351 D_GP: 0.035 D_real: 0.986 D_fake: 0.901 +(epoch: 400, iters: 4014, time: 0.063) G_GAN: 0.268 G_GAN_Feat: 1.007 G_ID: 0.118 G_Rec: 0.459 D_GP: 0.107 D_real: 0.775 D_fake: 0.742 +(epoch: 400, iters: 4414, time: 0.063) G_GAN: -0.157 G_GAN_Feat: 0.657 G_ID: 0.104 G_Rec: 0.320 D_GP: 0.029 D_real: 0.694 D_fake: 1.157 +(epoch: 400, iters: 4814, time: 0.063) G_GAN: 0.149 G_GAN_Feat: 1.035 G_ID: 0.137 G_Rec: 0.466 D_GP: 0.056 D_real: 0.547 D_fake: 0.854 +(epoch: 400, iters: 5214, time: 0.064) G_GAN: 0.367 G_GAN_Feat: 0.641 G_ID: 0.093 G_Rec: 0.262 D_GP: 0.033 D_real: 1.224 D_fake: 0.641 +(epoch: 400, iters: 5614, time: 0.063) G_GAN: 0.336 G_GAN_Feat: 0.999 G_ID: 0.132 G_Rec: 0.429 D_GP: 0.155 D_real: 0.761 D_fake: 0.672 +(epoch: 400, iters: 6014, time: 0.063) G_GAN: 0.041 G_GAN_Feat: 0.836 G_ID: 0.117 G_Rec: 0.343 D_GP: 0.096 D_real: 0.682 D_fake: 0.959 +(epoch: 400, iters: 6414, time: 0.063) G_GAN: 0.282 G_GAN_Feat: 1.012 G_ID: 0.121 G_Rec: 0.426 D_GP: 0.075 D_real: 0.553 D_fake: 0.719 +(epoch: 400, iters: 6814, time: 0.064) G_GAN: 0.058 G_GAN_Feat: 0.775 G_ID: 0.086 G_Rec: 0.291 D_GP: 0.040 D_real: 0.743 D_fake: 0.942 +(epoch: 400, iters: 7214, time: 0.063) G_GAN: 0.519 G_GAN_Feat: 0.868 G_ID: 0.134 G_Rec: 0.438 D_GP: 0.029 D_real: 1.245 D_fake: 0.509 +(epoch: 400, iters: 7614, time: 0.063) G_GAN: 0.317 G_GAN_Feat: 0.679 G_ID: 0.097 G_Rec: 0.310 D_GP: 0.030 D_real: 1.207 D_fake: 0.683 +(epoch: 400, iters: 8014, time: 0.063) G_GAN: 0.424 G_GAN_Feat: 0.842 G_ID: 0.121 G_Rec: 0.381 D_GP: 0.035 D_real: 1.034 D_fake: 0.581 +(epoch: 400, iters: 8414, time: 0.064) G_GAN: 0.245 G_GAN_Feat: 0.687 G_ID: 0.122 G_Rec: 0.285 D_GP: 0.037 D_real: 1.101 D_fake: 0.755 +(epoch: 401, iters: 206, time: 0.064) G_GAN: 0.659 G_GAN_Feat: 0.965 G_ID: 0.101 G_Rec: 0.435 D_GP: 0.032 D_real: 1.337 D_fake: 0.349 +(epoch: 401, iters: 606, time: 0.063) G_GAN: 0.376 G_GAN_Feat: 0.890 G_ID: 0.108 G_Rec: 0.363 D_GP: 0.115 D_real: 0.576 D_fake: 0.650 +(epoch: 401, iters: 1006, time: 0.063) G_GAN: 0.886 G_GAN_Feat: 1.085 G_ID: 0.130 G_Rec: 0.426 D_GP: 0.146 D_real: 0.897 D_fake: 0.349 +(epoch: 401, iters: 1406, time: 0.064) G_GAN: 0.307 G_GAN_Feat: 0.744 G_ID: 0.114 G_Rec: 0.308 D_GP: 0.028 D_real: 1.186 D_fake: 0.694 +(epoch: 401, iters: 1806, time: 0.063) G_GAN: 0.896 G_GAN_Feat: 1.130 G_ID: 0.112 G_Rec: 0.478 D_GP: 0.129 D_real: 0.765 D_fake: 0.211 +(epoch: 401, iters: 2206, time: 0.063) G_GAN: 0.226 G_GAN_Feat: 1.001 G_ID: 0.097 G_Rec: 0.338 D_GP: 0.809 D_real: 0.295 D_fake: 0.779 +(epoch: 401, iters: 2606, time: 0.063) G_GAN: 0.119 G_GAN_Feat: 0.951 G_ID: 0.134 G_Rec: 0.439 D_GP: 0.060 D_real: 0.643 D_fake: 0.881 +(epoch: 401, iters: 3006, time: 0.064) G_GAN: 0.239 G_GAN_Feat: 0.765 G_ID: 0.102 G_Rec: 0.324 D_GP: 0.032 D_real: 1.131 D_fake: 0.761 +(epoch: 401, iters: 3406, time: 0.063) G_GAN: 0.476 G_GAN_Feat: 0.955 G_ID: 0.117 G_Rec: 0.412 D_GP: 0.040 D_real: 1.047 D_fake: 0.531 +(epoch: 401, iters: 3806, time: 0.063) G_GAN: 0.271 G_GAN_Feat: 0.725 G_ID: 0.101 G_Rec: 0.297 D_GP: 0.036 D_real: 1.106 D_fake: 0.730 +(epoch: 401, iters: 4206, time: 0.063) G_GAN: 0.541 G_GAN_Feat: 0.917 G_ID: 0.127 G_Rec: 0.450 D_GP: 0.033 D_real: 1.237 D_fake: 0.470 +(epoch: 401, iters: 4606, time: 0.064) G_GAN: 0.198 G_GAN_Feat: 0.811 G_ID: 0.098 G_Rec: 0.318 D_GP: 0.037 D_real: 0.871 D_fake: 0.802 +(epoch: 401, iters: 5006, time: 0.063) G_GAN: 0.710 G_GAN_Feat: 0.976 G_ID: 0.123 G_Rec: 0.385 D_GP: 0.046 D_real: 1.122 D_fake: 0.308 +(epoch: 401, iters: 5406, time: 0.063) G_GAN: 0.168 G_GAN_Feat: 0.722 G_ID: 0.116 G_Rec: 0.301 D_GP: 0.038 D_real: 1.045 D_fake: 0.836 +(epoch: 401, iters: 5806, time: 0.063) G_GAN: 0.307 G_GAN_Feat: 1.036 G_ID: 0.149 G_Rec: 0.472 D_GP: 0.285 D_real: 0.616 D_fake: 0.702 +(epoch: 401, iters: 6206, time: 0.064) G_GAN: 0.405 G_GAN_Feat: 0.738 G_ID: 0.099 G_Rec: 0.327 D_GP: 0.038 D_real: 1.207 D_fake: 0.596 +(epoch: 401, iters: 6606, time: 0.063) G_GAN: 0.672 G_GAN_Feat: 1.126 G_ID: 0.122 G_Rec: 0.483 D_GP: 0.154 D_real: 0.500 D_fake: 0.373 +(epoch: 401, iters: 7006, time: 0.063) G_GAN: 0.284 G_GAN_Feat: 0.795 G_ID: 0.108 G_Rec: 0.344 D_GP: 0.038 D_real: 1.101 D_fake: 0.716 +(epoch: 401, iters: 7406, time: 0.063) G_GAN: 0.673 G_GAN_Feat: 0.899 G_ID: 0.116 G_Rec: 0.390 D_GP: 0.041 D_real: 1.323 D_fake: 0.365 +(epoch: 401, iters: 7806, time: 0.064) G_GAN: 0.362 G_GAN_Feat: 0.879 G_ID: 0.088 G_Rec: 0.352 D_GP: 0.054 D_real: 0.818 D_fake: 0.638 +(epoch: 401, iters: 8206, time: 0.063) G_GAN: 0.626 G_GAN_Feat: 1.027 G_ID: 0.121 G_Rec: 0.434 D_GP: 0.032 D_real: 1.125 D_fake: 0.425 +(epoch: 401, iters: 8606, time: 0.063) G_GAN: -0.029 G_GAN_Feat: 0.964 G_ID: 0.110 G_Rec: 0.351 D_GP: 0.214 D_real: 0.426 D_fake: 1.029 +(epoch: 402, iters: 398, time: 0.063) G_GAN: 0.343 G_GAN_Feat: 0.909 G_ID: 0.130 G_Rec: 0.429 D_GP: 0.030 D_real: 1.018 D_fake: 0.660 +(epoch: 402, iters: 798, time: 0.064) G_GAN: 0.090 G_GAN_Feat: 0.684 G_ID: 0.105 G_Rec: 0.311 D_GP: 0.027 D_real: 1.031 D_fake: 0.910 +(epoch: 402, iters: 1198, time: 0.063) G_GAN: 0.425 G_GAN_Feat: 0.966 G_ID: 0.119 G_Rec: 0.457 D_GP: 0.045 D_real: 0.892 D_fake: 0.610 +(epoch: 402, iters: 1598, time: 0.063) G_GAN: 0.100 G_GAN_Feat: 0.681 G_ID: 0.091 G_Rec: 0.303 D_GP: 0.037 D_real: 1.020 D_fake: 0.900 +(epoch: 402, iters: 1998, time: 0.063) G_GAN: 0.323 G_GAN_Feat: 0.868 G_ID: 0.110 G_Rec: 0.435 D_GP: 0.041 D_real: 1.002 D_fake: 0.692 +(epoch: 402, iters: 2398, time: 0.064) G_GAN: 0.047 G_GAN_Feat: 0.731 G_ID: 0.098 G_Rec: 0.306 D_GP: 0.041 D_real: 0.830 D_fake: 0.953 +(epoch: 402, iters: 2798, time: 0.063) G_GAN: 0.556 G_GAN_Feat: 0.961 G_ID: 0.108 G_Rec: 0.476 D_GP: 0.036 D_real: 1.260 D_fake: 0.484 +(epoch: 402, iters: 3198, time: 0.063) G_GAN: 0.004 G_GAN_Feat: 0.928 G_ID: 0.118 G_Rec: 0.387 D_GP: 0.556 D_real: 0.441 D_fake: 0.997 +(epoch: 402, iters: 3598, time: 0.063) G_GAN: 0.412 G_GAN_Feat: 1.053 G_ID: 0.104 G_Rec: 0.500 D_GP: 0.040 D_real: 0.857 D_fake: 0.592 +(epoch: 402, iters: 3998, time: 0.063) G_GAN: 0.405 G_GAN_Feat: 0.700 G_ID: 0.091 G_Rec: 0.316 D_GP: 0.049 D_real: 1.268 D_fake: 0.604 +(epoch: 402, iters: 4398, time: 0.063) G_GAN: 0.469 G_GAN_Feat: 0.978 G_ID: 0.114 G_Rec: 0.417 D_GP: 0.113 D_real: 0.904 D_fake: 0.538 +(epoch: 402, iters: 4798, time: 0.063) G_GAN: 0.224 G_GAN_Feat: 0.775 G_ID: 0.103 G_Rec: 0.317 D_GP: 0.088 D_real: 0.867 D_fake: 0.777 +(epoch: 402, iters: 5198, time: 0.064) G_GAN: 0.730 G_GAN_Feat: 0.993 G_ID: 0.135 G_Rec: 0.469 D_GP: 0.041 D_real: 1.173 D_fake: 0.303 +(epoch: 402, iters: 5598, time: 0.063) G_GAN: 0.145 G_GAN_Feat: 0.745 G_ID: 0.122 G_Rec: 0.313 D_GP: 0.036 D_real: 0.932 D_fake: 0.855 +(epoch: 402, iters: 5998, time: 0.063) G_GAN: 0.696 G_GAN_Feat: 1.016 G_ID: 0.118 G_Rec: 0.440 D_GP: 0.545 D_real: 0.854 D_fake: 0.346 +(epoch: 402, iters: 6398, time: 0.063) G_GAN: 0.220 G_GAN_Feat: 0.739 G_ID: 0.111 G_Rec: 0.299 D_GP: 0.038 D_real: 1.044 D_fake: 0.780 +(epoch: 402, iters: 6798, time: 0.064) G_GAN: 0.557 G_GAN_Feat: 1.016 G_ID: 0.127 G_Rec: 0.466 D_GP: 0.047 D_real: 1.023 D_fake: 0.450 +(epoch: 402, iters: 7198, time: 0.063) G_GAN: 0.416 G_GAN_Feat: 0.855 G_ID: 0.097 G_Rec: 0.314 D_GP: 0.080 D_real: 0.793 D_fake: 0.591 +(epoch: 402, iters: 7598, time: 0.063) G_GAN: 0.257 G_GAN_Feat: 1.197 G_ID: 0.124 G_Rec: 0.510 D_GP: 0.255 D_real: 0.240 D_fake: 0.749 +(epoch: 402, iters: 7998, time: 0.063) G_GAN: 0.298 G_GAN_Feat: 0.858 G_ID: 0.119 G_Rec: 0.356 D_GP: 0.049 D_real: 0.969 D_fake: 0.712 +(epoch: 402, iters: 8398, time: 0.064) G_GAN: 0.423 G_GAN_Feat: 1.039 G_ID: 0.113 G_Rec: 0.420 D_GP: 0.050 D_real: 0.581 D_fake: 0.580 +(epoch: 403, iters: 190, time: 0.063) G_GAN: 0.673 G_GAN_Feat: 1.016 G_ID: 0.110 G_Rec: 0.318 D_GP: 0.484 D_real: 0.566 D_fake: 0.386 +(epoch: 403, iters: 590, time: 0.063) G_GAN: 0.966 G_GAN_Feat: 1.084 G_ID: 0.120 G_Rec: 0.471 D_GP: 0.039 D_real: 1.289 D_fake: 0.181 +(epoch: 403, iters: 990, time: 0.063) G_GAN: 0.238 G_GAN_Feat: 0.978 G_ID: 0.114 G_Rec: 0.355 D_GP: 0.394 D_real: 0.284 D_fake: 0.833 +(epoch: 403, iters: 1390, time: 0.064) G_GAN: 0.329 G_GAN_Feat: 0.890 G_ID: 0.124 G_Rec: 0.413 D_GP: 0.029 D_real: 1.097 D_fake: 0.677 +(epoch: 403, iters: 1790, time: 0.063) G_GAN: -0.012 G_GAN_Feat: 0.878 G_ID: 0.110 G_Rec: 0.331 D_GP: 0.129 D_real: 0.382 D_fake: 1.012 +(epoch: 403, iters: 2190, time: 0.063) G_GAN: 0.717 G_GAN_Feat: 0.987 G_ID: 0.110 G_Rec: 0.395 D_GP: 0.032 D_real: 1.191 D_fake: 0.305 +(epoch: 403, iters: 2590, time: 0.063) G_GAN: 0.192 G_GAN_Feat: 0.807 G_ID: 0.120 G_Rec: 0.332 D_GP: 0.066 D_real: 0.864 D_fake: 0.808 +(epoch: 403, iters: 2990, time: 0.064) G_GAN: 0.605 G_GAN_Feat: 0.936 G_ID: 0.139 G_Rec: 0.412 D_GP: 0.034 D_real: 1.316 D_fake: 0.423 +(epoch: 403, iters: 3390, time: 0.063) G_GAN: 0.147 G_GAN_Feat: 0.854 G_ID: 0.090 G_Rec: 0.319 D_GP: 0.032 D_real: 0.913 D_fake: 0.853 +(epoch: 403, iters: 3790, time: 0.063) G_GAN: 0.417 G_GAN_Feat: 0.914 G_ID: 0.127 G_Rec: 0.453 D_GP: 0.036 D_real: 1.209 D_fake: 0.586 +(epoch: 403, iters: 4190, time: 0.064) G_GAN: 0.066 G_GAN_Feat: 0.693 G_ID: 0.104 G_Rec: 0.295 D_GP: 0.043 D_real: 0.814 D_fake: 0.934 +(epoch: 403, iters: 4590, time: 0.064) G_GAN: 0.502 G_GAN_Feat: 0.997 G_ID: 0.115 G_Rec: 0.443 D_GP: 0.057 D_real: 0.892 D_fake: 0.511 +(epoch: 403, iters: 4990, time: 0.063) G_GAN: 0.289 G_GAN_Feat: 0.838 G_ID: 0.104 G_Rec: 0.323 D_GP: 0.034 D_real: 0.873 D_fake: 0.712 +(epoch: 403, iters: 5390, time: 0.063) G_GAN: 0.451 G_GAN_Feat: 0.986 G_ID: 0.106 G_Rec: 0.464 D_GP: 0.038 D_real: 1.075 D_fake: 0.552 +(epoch: 403, iters: 5790, time: 0.063) G_GAN: 0.285 G_GAN_Feat: 0.781 G_ID: 0.096 G_Rec: 0.324 D_GP: 0.110 D_real: 0.864 D_fake: 0.715 +(epoch: 403, iters: 6190, time: 0.064) G_GAN: 0.362 G_GAN_Feat: 1.015 G_ID: 0.139 G_Rec: 0.448 D_GP: 0.067 D_real: 0.864 D_fake: 0.639 +(epoch: 403, iters: 6590, time: 0.063) G_GAN: 0.309 G_GAN_Feat: 0.798 G_ID: 0.095 G_Rec: 0.299 D_GP: 0.083 D_real: 0.856 D_fake: 0.693 +(epoch: 403, iters: 6990, time: 0.063) G_GAN: 0.700 G_GAN_Feat: 1.163 G_ID: 0.126 G_Rec: 0.425 D_GP: 0.740 D_real: 0.589 D_fake: 0.325 +(epoch: 403, iters: 7390, time: 0.063) G_GAN: 0.180 G_GAN_Feat: 0.836 G_ID: 0.096 G_Rec: 0.301 D_GP: 0.049 D_real: 0.689 D_fake: 0.821 +(epoch: 403, iters: 7790, time: 0.064) G_GAN: 0.538 G_GAN_Feat: 0.981 G_ID: 0.118 G_Rec: 0.431 D_GP: 0.039 D_real: 1.048 D_fake: 0.472 +(epoch: 403, iters: 8190, time: 0.063) G_GAN: 0.230 G_GAN_Feat: 0.822 G_ID: 0.096 G_Rec: 0.320 D_GP: 0.039 D_real: 0.981 D_fake: 0.770 +(epoch: 403, iters: 8590, time: 0.063) G_GAN: 0.654 G_GAN_Feat: 1.029 G_ID: 0.108 G_Rec: 0.440 D_GP: 0.035 D_real: 1.161 D_fake: 0.383 +(epoch: 404, iters: 382, time: 0.063) G_GAN: 0.260 G_GAN_Feat: 0.879 G_ID: 0.111 G_Rec: 0.336 D_GP: 0.096 D_real: 0.367 D_fake: 0.744 +(epoch: 404, iters: 782, time: 0.064) G_GAN: 0.584 G_GAN_Feat: 1.254 G_ID: 0.126 G_Rec: 0.533 D_GP: 1.268 D_real: 0.302 D_fake: 0.489 +(epoch: 404, iters: 1182, time: 0.063) G_GAN: -0.237 G_GAN_Feat: 0.670 G_ID: 0.115 G_Rec: 0.296 D_GP: 0.025 D_real: 0.681 D_fake: 1.237 +(epoch: 404, iters: 1582, time: 0.063) G_GAN: 0.061 G_GAN_Feat: 0.958 G_ID: 0.115 G_Rec: 0.479 D_GP: 0.024 D_real: 0.840 D_fake: 0.940 +(epoch: 404, iters: 1982, time: 0.063) G_GAN: -0.116 G_GAN_Feat: 0.698 G_ID: 0.094 G_Rec: 0.327 D_GP: 0.031 D_real: 0.756 D_fake: 1.117 +(epoch: 404, iters: 2382, time: 0.064) G_GAN: 0.057 G_GAN_Feat: 0.819 G_ID: 0.111 G_Rec: 0.382 D_GP: 0.035 D_real: 0.706 D_fake: 0.946 +(epoch: 404, iters: 2782, time: 0.063) G_GAN: -0.041 G_GAN_Feat: 0.669 G_ID: 0.089 G_Rec: 0.308 D_GP: 0.034 D_real: 0.838 D_fake: 1.041 +(epoch: 404, iters: 3182, time: 0.063) G_GAN: -0.019 G_GAN_Feat: 0.943 G_ID: 0.118 G_Rec: 0.418 D_GP: 0.055 D_real: 0.532 D_fake: 1.019 +(epoch: 404, iters: 3582, time: 0.063) G_GAN: 0.201 G_GAN_Feat: 0.742 G_ID: 0.096 G_Rec: 0.314 D_GP: 0.057 D_real: 0.930 D_fake: 0.804 +(epoch: 404, iters: 3982, time: 0.064) G_GAN: 0.533 G_GAN_Feat: 0.965 G_ID: 0.114 G_Rec: 0.365 D_GP: 0.043 D_real: 0.979 D_fake: 0.475 +(epoch: 404, iters: 4382, time: 0.063) G_GAN: 0.168 G_GAN_Feat: 0.722 G_ID: 0.091 G_Rec: 0.276 D_GP: 0.041 D_real: 0.907 D_fake: 0.832 +(epoch: 404, iters: 4782, time: 0.063) G_GAN: 0.668 G_GAN_Feat: 0.991 G_ID: 0.103 G_Rec: 0.421 D_GP: 0.036 D_real: 1.075 D_fake: 0.356 +(epoch: 404, iters: 5182, time: 0.063) G_GAN: 0.660 G_GAN_Feat: 0.853 G_ID: 0.095 G_Rec: 0.341 D_GP: 0.039 D_real: 1.451 D_fake: 0.355 +(epoch: 404, iters: 5582, time: 0.064) G_GAN: 0.160 G_GAN_Feat: 1.081 G_ID: 0.119 G_Rec: 0.443 D_GP: 0.045 D_real: 0.760 D_fake: 0.842 +(epoch: 404, iters: 5982, time: 0.063) G_GAN: 0.229 G_GAN_Feat: 0.853 G_ID: 0.107 G_Rec: 0.303 D_GP: 0.044 D_real: 0.528 D_fake: 0.771 +(epoch: 404, iters: 6382, time: 0.063) G_GAN: 0.335 G_GAN_Feat: 0.928 G_ID: 0.120 G_Rec: 0.445 D_GP: 0.031 D_real: 1.058 D_fake: 0.671 +(epoch: 404, iters: 6782, time: 0.063) G_GAN: 0.216 G_GAN_Feat: 0.712 G_ID: 0.116 G_Rec: 0.301 D_GP: 0.034 D_real: 1.054 D_fake: 0.786 +(epoch: 404, iters: 7182, time: 0.064) G_GAN: 0.474 G_GAN_Feat: 1.107 G_ID: 0.114 G_Rec: 0.518 D_GP: 0.127 D_real: 0.702 D_fake: 0.555 +(epoch: 404, iters: 7582, time: 0.063) G_GAN: 0.299 G_GAN_Feat: 0.768 G_ID: 0.103 G_Rec: 0.335 D_GP: 0.037 D_real: 0.998 D_fake: 0.704 +(epoch: 404, iters: 7982, time: 0.063) G_GAN: 0.429 G_GAN_Feat: 1.163 G_ID: 0.111 G_Rec: 0.505 D_GP: 0.433 D_real: 1.237 D_fake: 0.809 +(epoch: 404, iters: 8382, time: 0.063) G_GAN: -0.106 G_GAN_Feat: 0.821 G_ID: 0.109 G_Rec: 0.347 D_GP: 0.032 D_real: 0.647 D_fake: 1.106 +(epoch: 405, iters: 174, time: 0.064) G_GAN: 0.275 G_GAN_Feat: 1.016 G_ID: 0.133 G_Rec: 0.422 D_GP: 0.037 D_real: 0.772 D_fake: 0.727 +(epoch: 405, iters: 574, time: 0.063) G_GAN: 0.284 G_GAN_Feat: 0.791 G_ID: 0.115 G_Rec: 0.298 D_GP: 0.065 D_real: 0.915 D_fake: 0.717 +(epoch: 405, iters: 974, time: 0.063) G_GAN: 0.379 G_GAN_Feat: 0.911 G_ID: 0.121 G_Rec: 0.432 D_GP: 0.032 D_real: 1.046 D_fake: 0.623 +(epoch: 405, iters: 1374, time: 0.063) G_GAN: 0.063 G_GAN_Feat: 0.824 G_ID: 0.112 G_Rec: 0.338 D_GP: 0.077 D_real: 0.713 D_fake: 0.937 +(epoch: 405, iters: 1774, time: 0.064) G_GAN: 0.522 G_GAN_Feat: 1.061 G_ID: 0.110 G_Rec: 0.424 D_GP: 0.050 D_real: 0.735 D_fake: 0.479 +(epoch: 405, iters: 2174, time: 0.063) G_GAN: 0.209 G_GAN_Feat: 0.966 G_ID: 0.095 G_Rec: 0.367 D_GP: 0.642 D_real: 0.271 D_fake: 0.804 +(epoch: 405, iters: 2574, time: 0.063) G_GAN: 0.399 G_GAN_Feat: 0.969 G_ID: 0.112 G_Rec: 0.423 D_GP: 0.041 D_real: 1.064 D_fake: 0.601 +(epoch: 405, iters: 2974, time: 0.063) G_GAN: 0.169 G_GAN_Feat: 1.022 G_ID: 0.114 G_Rec: 0.359 D_GP: 3.856 D_real: 0.381 D_fake: 0.835 +(epoch: 405, iters: 3374, time: 0.064) G_GAN: 0.422 G_GAN_Feat: 0.859 G_ID: 0.110 G_Rec: 0.434 D_GP: 0.030 D_real: 1.175 D_fake: 0.581 +(epoch: 405, iters: 3774, time: 0.063) G_GAN: 0.059 G_GAN_Feat: 0.730 G_ID: 0.091 G_Rec: 0.354 D_GP: 0.052 D_real: 0.824 D_fake: 0.941 +(epoch: 405, iters: 4174, time: 0.063) G_GAN: 0.282 G_GAN_Feat: 0.919 G_ID: 0.113 G_Rec: 0.447 D_GP: 0.034 D_real: 0.945 D_fake: 0.719 +(epoch: 405, iters: 4574, time: 0.063) G_GAN: 0.042 G_GAN_Feat: 0.723 G_ID: 0.092 G_Rec: 0.311 D_GP: 0.051 D_real: 0.813 D_fake: 0.958 +(epoch: 405, iters: 4974, time: 0.064) G_GAN: 0.429 G_GAN_Feat: 0.895 G_ID: 0.118 G_Rec: 0.391 D_GP: 0.063 D_real: 0.983 D_fake: 0.589 +(epoch: 405, iters: 5374, time: 0.063) G_GAN: -0.120 G_GAN_Feat: 0.748 G_ID: 0.122 G_Rec: 0.331 D_GP: 0.063 D_real: 0.551 D_fake: 1.120 +(epoch: 405, iters: 5774, time: 0.063) G_GAN: 0.506 G_GAN_Feat: 0.837 G_ID: 0.138 G_Rec: 0.375 D_GP: 0.028 D_real: 1.275 D_fake: 0.505 +(epoch: 405, iters: 6174, time: 0.063) G_GAN: -0.044 G_GAN_Feat: 0.754 G_ID: 0.111 G_Rec: 0.334 D_GP: 0.049 D_real: 0.625 D_fake: 1.044 +(epoch: 405, iters: 6574, time: 0.064) G_GAN: 0.424 G_GAN_Feat: 0.956 G_ID: 0.113 G_Rec: 0.460 D_GP: 0.029 D_real: 1.049 D_fake: 0.578 +(epoch: 405, iters: 6974, time: 0.063) G_GAN: -0.126 G_GAN_Feat: 0.842 G_ID: 0.098 G_Rec: 0.359 D_GP: 0.255 D_real: 0.419 D_fake: 1.127 +(epoch: 405, iters: 7374, time: 0.063) G_GAN: 0.559 G_GAN_Feat: 0.956 G_ID: 0.122 G_Rec: 0.520 D_GP: 0.029 D_real: 1.104 D_fake: 0.445 +(epoch: 405, iters: 7774, time: 0.063) G_GAN: 0.437 G_GAN_Feat: 0.713 G_ID: 0.093 G_Rec: 0.292 D_GP: 0.040 D_real: 1.203 D_fake: 0.571 +(epoch: 405, iters: 8174, time: 0.064) G_GAN: 0.488 G_GAN_Feat: 1.115 G_ID: 0.132 G_Rec: 0.491 D_GP: 0.115 D_real: 0.488 D_fake: 0.519 +(epoch: 405, iters: 8574, time: 0.063) G_GAN: 0.278 G_GAN_Feat: 0.712 G_ID: 0.102 G_Rec: 0.289 D_GP: 0.035 D_real: 1.048 D_fake: 0.722 +(epoch: 406, iters: 366, time: 0.063) G_GAN: 0.518 G_GAN_Feat: 1.114 G_ID: 0.122 G_Rec: 0.471 D_GP: 0.219 D_real: 0.439 D_fake: 0.510 +(epoch: 406, iters: 766, time: 0.063) G_GAN: 0.320 G_GAN_Feat: 0.854 G_ID: 0.112 G_Rec: 0.361 D_GP: 0.205 D_real: 0.985 D_fake: 0.817 +(epoch: 406, iters: 1166, time: 0.064) G_GAN: 0.009 G_GAN_Feat: 0.925 G_ID: 0.142 G_Rec: 0.480 D_GP: 0.033 D_real: 0.681 D_fake: 0.991 +(epoch: 406, iters: 1566, time: 0.063) G_GAN: 0.070 G_GAN_Feat: 0.784 G_ID: 0.099 G_Rec: 0.311 D_GP: 0.054 D_real: 0.882 D_fake: 0.930 +(epoch: 406, iters: 1966, time: 0.063) G_GAN: 0.452 G_GAN_Feat: 1.114 G_ID: 0.127 G_Rec: 0.507 D_GP: 0.080 D_real: 0.363 D_fake: 0.553 +(epoch: 406, iters: 2366, time: 0.063) G_GAN: 0.236 G_GAN_Feat: 1.011 G_ID: 0.097 G_Rec: 0.365 D_GP: 0.888 D_real: 0.374 D_fake: 0.767 +(epoch: 406, iters: 2766, time: 0.064) G_GAN: 0.458 G_GAN_Feat: 0.961 G_ID: 0.151 G_Rec: 0.417 D_GP: 0.038 D_real: 1.036 D_fake: 0.544 +(epoch: 406, iters: 3166, time: 0.063) G_GAN: 0.314 G_GAN_Feat: 0.816 G_ID: 0.094 G_Rec: 0.325 D_GP: 0.046 D_real: 1.074 D_fake: 0.688 +(epoch: 406, iters: 3566, time: 0.063) G_GAN: 0.793 G_GAN_Feat: 1.001 G_ID: 0.113 G_Rec: 0.469 D_GP: 0.041 D_real: 1.345 D_fake: 0.276 +(epoch: 406, iters: 3966, time: 0.063) G_GAN: 0.233 G_GAN_Feat: 0.862 G_ID: 0.101 G_Rec: 0.310 D_GP: 0.065 D_real: 0.650 D_fake: 0.772 +(epoch: 406, iters: 4366, time: 0.064) G_GAN: 0.700 G_GAN_Feat: 1.133 G_ID: 0.112 G_Rec: 0.445 D_GP: 0.035 D_real: 1.184 D_fake: 0.349 +(epoch: 406, iters: 4766, time: 0.063) G_GAN: 0.157 G_GAN_Feat: 0.999 G_ID: 0.092 G_Rec: 0.337 D_GP: 0.189 D_real: 0.511 D_fake: 0.857 +(epoch: 406, iters: 5166, time: 0.063) G_GAN: 0.414 G_GAN_Feat: 1.284 G_ID: 0.150 G_Rec: 0.451 D_GP: 0.153 D_real: 0.139 D_fake: 0.616 +(epoch: 406, iters: 5566, time: 0.063) G_GAN: 0.049 G_GAN_Feat: 0.975 G_ID: 0.141 G_Rec: 0.357 D_GP: 0.552 D_real: 0.383 D_fake: 0.954 +(epoch: 406, iters: 5966, time: 0.064) G_GAN: 0.418 G_GAN_Feat: 0.919 G_ID: 0.131 G_Rec: 0.426 D_GP: 0.031 D_real: 1.048 D_fake: 0.592 +(epoch: 406, iters: 6366, time: 0.063) G_GAN: 0.220 G_GAN_Feat: 0.841 G_ID: 0.112 G_Rec: 0.351 D_GP: 0.033 D_real: 1.014 D_fake: 0.781 +(epoch: 406, iters: 6766, time: 0.063) G_GAN: 0.220 G_GAN_Feat: 1.107 G_ID: 0.123 G_Rec: 0.464 D_GP: 0.100 D_real: 0.260 D_fake: 0.785 +(epoch: 406, iters: 7166, time: 0.063) G_GAN: 0.162 G_GAN_Feat: 0.720 G_ID: 0.123 G_Rec: 0.309 D_GP: 0.031 D_real: 1.111 D_fake: 0.867 +(epoch: 406, iters: 7566, time: 0.064) G_GAN: 0.202 G_GAN_Feat: 0.841 G_ID: 0.140 G_Rec: 0.415 D_GP: 0.026 D_real: 0.957 D_fake: 0.798 +(epoch: 406, iters: 7966, time: 0.063) G_GAN: 0.167 G_GAN_Feat: 0.778 G_ID: 0.118 G_Rec: 0.340 D_GP: 0.031 D_real: 0.987 D_fake: 0.834 +(epoch: 406, iters: 8366, time: 0.063) G_GAN: 0.391 G_GAN_Feat: 0.937 G_ID: 0.127 G_Rec: 0.455 D_GP: 0.031 D_real: 1.052 D_fake: 0.623 +(epoch: 407, iters: 158, time: 0.063) G_GAN: 0.022 G_GAN_Feat: 0.704 G_ID: 0.091 G_Rec: 0.314 D_GP: 0.032 D_real: 0.925 D_fake: 0.978 +(epoch: 407, iters: 558, time: 0.063) G_GAN: 0.108 G_GAN_Feat: 0.899 G_ID: 0.134 G_Rec: 0.416 D_GP: 0.055 D_real: 0.709 D_fake: 0.894 +(epoch: 407, iters: 958, time: 0.064) G_GAN: -0.131 G_GAN_Feat: 0.720 G_ID: 0.098 G_Rec: 0.379 D_GP: 0.040 D_real: 0.647 D_fake: 1.131 +(epoch: 407, iters: 1358, time: 0.064) G_GAN: 0.478 G_GAN_Feat: 1.076 G_ID: 0.110 G_Rec: 0.486 D_GP: 0.049 D_real: 0.895 D_fake: 0.529 +(epoch: 407, iters: 1758, time: 0.064) G_GAN: 0.036 G_GAN_Feat: 0.812 G_ID: 0.101 G_Rec: 0.316 D_GP: 0.121 D_real: 0.638 D_fake: 0.964 +(epoch: 407, iters: 2158, time: 0.063) G_GAN: 0.347 G_GAN_Feat: 1.045 G_ID: 0.118 G_Rec: 0.449 D_GP: 0.046 D_real: 0.864 D_fake: 0.655 +(epoch: 407, iters: 2558, time: 0.063) G_GAN: 0.401 G_GAN_Feat: 0.832 G_ID: 0.095 G_Rec: 0.305 D_GP: 0.039 D_real: 1.033 D_fake: 0.600 +(epoch: 407, iters: 2958, time: 0.063) G_GAN: 0.661 G_GAN_Feat: 1.216 G_ID: 0.115 G_Rec: 0.454 D_GP: 0.067 D_real: 0.678 D_fake: 0.373 +(epoch: 407, iters: 3358, time: 0.064) G_GAN: 0.662 G_GAN_Feat: 0.723 G_ID: 0.082 G_Rec: 0.269 D_GP: 0.034 D_real: 1.668 D_fake: 0.495 +(epoch: 407, iters: 3758, time: 0.063) G_GAN: 0.827 G_GAN_Feat: 1.122 G_ID: 0.115 G_Rec: 0.435 D_GP: 0.046 D_real: 0.592 D_fake: 0.226 +(epoch: 407, iters: 4158, time: 0.063) G_GAN: -0.015 G_GAN_Feat: 0.690 G_ID: 0.105 G_Rec: 0.339 D_GP: 0.045 D_real: 0.925 D_fake: 1.015 +(epoch: 407, iters: 4558, time: 0.063) G_GAN: 0.074 G_GAN_Feat: 0.769 G_ID: 0.111 G_Rec: 0.403 D_GP: 0.035 D_real: 0.894 D_fake: 0.927 +(epoch: 407, iters: 4958, time: 0.064) G_GAN: 0.161 G_GAN_Feat: 0.591 G_ID: 0.097 G_Rec: 0.292 D_GP: 0.035 D_real: 1.077 D_fake: 0.839 +(epoch: 407, iters: 5358, time: 0.063) G_GAN: 0.189 G_GAN_Feat: 0.801 G_ID: 0.140 G_Rec: 0.407 D_GP: 0.038 D_real: 0.828 D_fake: 0.813 +(epoch: 407, iters: 5758, time: 0.063) G_GAN: 0.036 G_GAN_Feat: 0.625 G_ID: 0.093 G_Rec: 0.317 D_GP: 0.038 D_real: 0.998 D_fake: 0.964 +(epoch: 407, iters: 6158, time: 0.063) G_GAN: 0.340 G_GAN_Feat: 0.804 G_ID: 0.118 G_Rec: 0.397 D_GP: 0.038 D_real: 0.976 D_fake: 0.669 +(epoch: 407, iters: 6558, time: 0.064) G_GAN: -0.125 G_GAN_Feat: 0.682 G_ID: 0.097 G_Rec: 0.347 D_GP: 0.049 D_real: 0.750 D_fake: 1.125 +(epoch: 407, iters: 6958, time: 0.063) G_GAN: 0.210 G_GAN_Feat: 0.882 G_ID: 0.128 G_Rec: 0.466 D_GP: 0.047 D_real: 0.742 D_fake: 0.795 +(epoch: 407, iters: 7358, time: 0.063) G_GAN: -0.012 G_GAN_Feat: 0.711 G_ID: 0.097 G_Rec: 0.344 D_GP: 0.050 D_real: 0.809 D_fake: 1.012 +(epoch: 407, iters: 7758, time: 0.063) G_GAN: 0.079 G_GAN_Feat: 0.787 G_ID: 0.118 G_Rec: 0.377 D_GP: 0.037 D_real: 0.736 D_fake: 0.921 +(epoch: 407, iters: 8158, time: 0.064) G_GAN: -0.139 G_GAN_Feat: 0.577 G_ID: 0.105 G_Rec: 0.272 D_GP: 0.037 D_real: 0.848 D_fake: 1.139 +(epoch: 407, iters: 8558, time: 0.063) G_GAN: 0.155 G_GAN_Feat: 0.850 G_ID: 0.116 G_Rec: 0.410 D_GP: 0.059 D_real: 0.850 D_fake: 0.847 +(epoch: 408, iters: 350, time: 0.063) G_GAN: -0.262 G_GAN_Feat: 0.665 G_ID: 0.099 G_Rec: 0.313 D_GP: 0.043 D_real: 0.597 D_fake: 1.262 +(epoch: 408, iters: 750, time: 0.063) G_GAN: -0.075 G_GAN_Feat: 0.848 G_ID: 0.137 G_Rec: 0.415 D_GP: 0.044 D_real: 0.579 D_fake: 1.075 +(epoch: 408, iters: 1150, time: 0.064) G_GAN: -0.060 G_GAN_Feat: 0.675 G_ID: 0.107 G_Rec: 0.331 D_GP: 0.058 D_real: 0.714 D_fake: 1.063 +(epoch: 408, iters: 1550, time: 0.063) G_GAN: 0.243 G_GAN_Feat: 0.934 G_ID: 0.113 G_Rec: 0.472 D_GP: 0.058 D_real: 0.837 D_fake: 0.760 +(epoch: 408, iters: 1950, time: 0.063) G_GAN: 0.062 G_GAN_Feat: 0.600 G_ID: 0.094 G_Rec: 0.307 D_GP: 0.037 D_real: 0.901 D_fake: 0.939 +(epoch: 408, iters: 2350, time: 0.063) G_GAN: 0.369 G_GAN_Feat: 0.792 G_ID: 0.115 G_Rec: 0.385 D_GP: 0.036 D_real: 0.982 D_fake: 0.645 +(epoch: 408, iters: 2750, time: 0.064) G_GAN: 0.190 G_GAN_Feat: 0.621 G_ID: 0.106 G_Rec: 0.281 D_GP: 0.034 D_real: 1.064 D_fake: 0.815 +(epoch: 408, iters: 3150, time: 0.063) G_GAN: 0.315 G_GAN_Feat: 0.888 G_ID: 0.119 G_Rec: 0.442 D_GP: 0.040 D_real: 0.941 D_fake: 0.696 +(epoch: 408, iters: 3550, time: 0.063) G_GAN: 0.052 G_GAN_Feat: 0.659 G_ID: 0.098 G_Rec: 0.302 D_GP: 0.033 D_real: 0.897 D_fake: 0.949 +(epoch: 408, iters: 3950, time: 0.063) G_GAN: 0.267 G_GAN_Feat: 0.819 G_ID: 0.105 G_Rec: 0.376 D_GP: 0.039 D_real: 1.016 D_fake: 0.734 +(epoch: 408, iters: 4350, time: 0.064) G_GAN: -0.021 G_GAN_Feat: 0.747 G_ID: 0.107 G_Rec: 0.326 D_GP: 0.053 D_real: 0.673 D_fake: 1.021 +(epoch: 408, iters: 4750, time: 0.063) G_GAN: 0.383 G_GAN_Feat: 0.955 G_ID: 0.125 G_Rec: 0.420 D_GP: 0.079 D_real: 0.867 D_fake: 0.623 +(epoch: 408, iters: 5150, time: 0.063) G_GAN: 0.126 G_GAN_Feat: 0.723 G_ID: 0.111 G_Rec: 0.328 D_GP: 0.039 D_real: 0.959 D_fake: 0.874 +(epoch: 408, iters: 5550, time: 0.063) G_GAN: 0.444 G_GAN_Feat: 0.932 G_ID: 0.123 G_Rec: 0.418 D_GP: 0.061 D_real: 0.959 D_fake: 0.568 +(epoch: 408, iters: 5950, time: 0.064) G_GAN: -0.063 G_GAN_Feat: 0.692 G_ID: 0.111 G_Rec: 0.337 D_GP: 0.036 D_real: 0.814 D_fake: 1.063 +(epoch: 408, iters: 6350, time: 0.063) G_GAN: 0.505 G_GAN_Feat: 1.121 G_ID: 0.108 G_Rec: 0.507 D_GP: 0.142 D_real: 0.570 D_fake: 0.523 +(epoch: 408, iters: 6750, time: 0.063) G_GAN: 0.335 G_GAN_Feat: 0.704 G_ID: 0.109 G_Rec: 0.300 D_GP: 0.043 D_real: 1.149 D_fake: 0.666 +(epoch: 408, iters: 7150, time: 0.063) G_GAN: 0.112 G_GAN_Feat: 1.008 G_ID: 0.127 G_Rec: 0.488 D_GP: 0.052 D_real: 0.536 D_fake: 0.888 +(epoch: 408, iters: 7550, time: 0.064) G_GAN: 0.055 G_GAN_Feat: 0.691 G_ID: 0.102 G_Rec: 0.301 D_GP: 0.035 D_real: 0.944 D_fake: 0.946 +(epoch: 408, iters: 7950, time: 0.063) G_GAN: 0.384 G_GAN_Feat: 1.007 G_ID: 0.113 G_Rec: 0.436 D_GP: 0.057 D_real: 0.757 D_fake: 0.622 +(epoch: 408, iters: 8350, time: 0.063) G_GAN: 0.227 G_GAN_Feat: 0.747 G_ID: 0.104 G_Rec: 0.328 D_GP: 0.039 D_real: 1.041 D_fake: 0.774 +(epoch: 409, iters: 142, time: 0.063) G_GAN: 0.317 G_GAN_Feat: 0.911 G_ID: 0.142 G_Rec: 0.403 D_GP: 0.045 D_real: 0.796 D_fake: 0.683 +(epoch: 409, iters: 542, time: 0.064) G_GAN: 0.260 G_GAN_Feat: 0.748 G_ID: 0.114 G_Rec: 0.330 D_GP: 0.072 D_real: 0.869 D_fake: 0.741 +(epoch: 409, iters: 942, time: 0.063) G_GAN: 0.229 G_GAN_Feat: 0.981 G_ID: 0.120 G_Rec: 0.449 D_GP: 0.041 D_real: 0.845 D_fake: 0.773 +(epoch: 409, iters: 1342, time: 0.063) G_GAN: -0.051 G_GAN_Feat: 0.819 G_ID: 0.122 G_Rec: 0.320 D_GP: 0.082 D_real: 0.321 D_fake: 1.051 +(epoch: 409, iters: 1742, time: 0.063) G_GAN: 0.478 G_GAN_Feat: 1.079 G_ID: 0.111 G_Rec: 0.491 D_GP: 0.083 D_real: 0.568 D_fake: 0.531 +(epoch: 409, iters: 2142, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 0.638 G_ID: 0.100 G_Rec: 0.291 D_GP: 0.027 D_real: 1.080 D_fake: 0.826 +(epoch: 409, iters: 2542, time: 0.063) G_GAN: 0.597 G_GAN_Feat: 0.953 G_ID: 0.114 G_Rec: 0.447 D_GP: 0.030 D_real: 1.158 D_fake: 0.421 +(epoch: 409, iters: 2942, time: 0.063) G_GAN: 0.233 G_GAN_Feat: 0.711 G_ID: 0.092 G_Rec: 0.332 D_GP: 0.036 D_real: 1.113 D_fake: 0.768 +(epoch: 409, iters: 3342, time: 0.063) G_GAN: 0.394 G_GAN_Feat: 1.051 G_ID: 0.123 G_Rec: 0.481 D_GP: 0.113 D_real: 0.662 D_fake: 0.615 +(epoch: 409, iters: 3742, time: 0.064) G_GAN: 0.364 G_GAN_Feat: 0.668 G_ID: 0.097 G_Rec: 0.336 D_GP: 0.031 D_real: 1.306 D_fake: 0.638 +(epoch: 409, iters: 4142, time: 0.063) G_GAN: 0.344 G_GAN_Feat: 0.995 G_ID: 0.119 G_Rec: 0.449 D_GP: 0.054 D_real: 0.705 D_fake: 0.657 +(epoch: 409, iters: 4542, time: 0.063) G_GAN: 0.080 G_GAN_Feat: 0.760 G_ID: 0.108 G_Rec: 0.334 D_GP: 0.039 D_real: 0.830 D_fake: 0.920 +(epoch: 409, iters: 4942, time: 0.063) G_GAN: 0.752 G_GAN_Feat: 0.959 G_ID: 0.122 G_Rec: 0.452 D_GP: 0.038 D_real: 1.221 D_fake: 0.288 +(epoch: 409, iters: 5342, time: 0.064) G_GAN: 0.340 G_GAN_Feat: 0.730 G_ID: 0.111 G_Rec: 0.352 D_GP: 0.028 D_real: 1.187 D_fake: 0.661 +(epoch: 409, iters: 5742, time: 0.063) G_GAN: 0.426 G_GAN_Feat: 0.880 G_ID: 0.122 G_Rec: 0.405 D_GP: 0.037 D_real: 1.111 D_fake: 0.577 +(epoch: 409, iters: 6142, time: 0.063) G_GAN: 0.528 G_GAN_Feat: 0.724 G_ID: 0.091 G_Rec: 0.297 D_GP: 0.031 D_real: 1.371 D_fake: 0.473 +(epoch: 409, iters: 6542, time: 0.063) G_GAN: 0.531 G_GAN_Feat: 0.948 G_ID: 0.125 G_Rec: 0.446 D_GP: 0.033 D_real: 1.142 D_fake: 0.473 +(epoch: 409, iters: 6942, time: 0.064) G_GAN: -0.000 G_GAN_Feat: 0.672 G_ID: 0.099 G_Rec: 0.267 D_GP: 0.031 D_real: 0.951 D_fake: 1.000 +(epoch: 409, iters: 7342, time: 0.063) G_GAN: 0.388 G_GAN_Feat: 0.916 G_ID: 0.127 G_Rec: 0.461 D_GP: 0.034 D_real: 1.159 D_fake: 0.614 +(epoch: 409, iters: 7742, time: 0.063) G_GAN: 0.312 G_GAN_Feat: 0.743 G_ID: 0.116 G_Rec: 0.323 D_GP: 0.036 D_real: 1.089 D_fake: 0.689 +(epoch: 409, iters: 8142, time: 0.063) G_GAN: 0.443 G_GAN_Feat: 0.913 G_ID: 0.113 G_Rec: 0.412 D_GP: 0.038 D_real: 0.973 D_fake: 0.567 +(epoch: 409, iters: 8542, time: 0.064) G_GAN: 0.248 G_GAN_Feat: 0.826 G_ID: 0.102 G_Rec: 0.327 D_GP: 0.094 D_real: 0.729 D_fake: 0.752 +(epoch: 410, iters: 334, time: 0.063) G_GAN: 0.660 G_GAN_Feat: 1.062 G_ID: 0.119 G_Rec: 0.460 D_GP: 0.050 D_real: 0.799 D_fake: 0.363 +(epoch: 410, iters: 734, time: 0.063) G_GAN: 0.089 G_GAN_Feat: 0.859 G_ID: 0.089 G_Rec: 0.339 D_GP: 0.089 D_real: 0.314 D_fake: 0.911 +(epoch: 410, iters: 1134, time: 0.063) G_GAN: 0.655 G_GAN_Feat: 1.004 G_ID: 0.121 G_Rec: 0.456 D_GP: 0.032 D_real: 1.113 D_fake: 0.363 +(epoch: 410, iters: 1534, time: 0.064) G_GAN: 0.002 G_GAN_Feat: 0.756 G_ID: 0.103 G_Rec: 0.306 D_GP: 0.028 D_real: 0.938 D_fake: 0.998 +(epoch: 410, iters: 1934, time: 0.063) G_GAN: 0.223 G_GAN_Feat: 1.045 G_ID: 0.109 G_Rec: 0.471 D_GP: 0.078 D_real: 0.697 D_fake: 0.779 +(epoch: 410, iters: 2334, time: 0.063) G_GAN: 0.208 G_GAN_Feat: 0.702 G_ID: 0.096 G_Rec: 0.280 D_GP: 0.038 D_real: 1.034 D_fake: 0.793 +(epoch: 410, iters: 2734, time: 0.063) G_GAN: 0.343 G_GAN_Feat: 1.007 G_ID: 0.138 G_Rec: 0.433 D_GP: 0.044 D_real: 0.740 D_fake: 0.657 +(epoch: 410, iters: 3134, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.774 G_ID: 0.093 G_Rec: 0.321 D_GP: 0.033 D_real: 1.050 D_fake: 0.725 +(epoch: 410, iters: 3534, time: 0.063) G_GAN: 0.458 G_GAN_Feat: 0.873 G_ID: 0.121 G_Rec: 0.374 D_GP: 0.031 D_real: 1.148 D_fake: 0.551 +(epoch: 410, iters: 3934, time: 0.063) G_GAN: 0.045 G_GAN_Feat: 0.878 G_ID: 0.116 G_Rec: 0.361 D_GP: 0.123 D_real: 0.600 D_fake: 0.955 +(epoch: 410, iters: 4334, time: 0.063) G_GAN: 0.319 G_GAN_Feat: 0.919 G_ID: 0.119 G_Rec: 0.472 D_GP: 0.030 D_real: 0.974 D_fake: 0.684 +(epoch: 410, iters: 4734, time: 0.064) G_GAN: 0.054 G_GAN_Feat: 0.819 G_ID: 0.111 G_Rec: 0.311 D_GP: 0.031 D_real: 0.719 D_fake: 0.946 +(epoch: 410, iters: 5134, time: 0.063) G_GAN: -0.186 G_GAN_Feat: 0.991 G_ID: 0.133 G_Rec: 0.428 D_GP: 0.166 D_real: 0.168 D_fake: 1.187 +(epoch: 410, iters: 5534, time: 0.063) G_GAN: 0.602 G_GAN_Feat: 0.739 G_ID: 0.089 G_Rec: 0.305 D_GP: 0.035 D_real: 1.351 D_fake: 0.405 +(epoch: 410, iters: 5934, time: 0.063) G_GAN: 0.377 G_GAN_Feat: 0.939 G_ID: 0.117 G_Rec: 0.430 D_GP: 0.032 D_real: 1.083 D_fake: 0.624 +(epoch: 410, iters: 6334, time: 0.064) G_GAN: 0.138 G_GAN_Feat: 0.766 G_ID: 0.107 G_Rec: 0.335 D_GP: 0.032 D_real: 0.950 D_fake: 0.863 +(epoch: 410, iters: 6734, time: 0.063) G_GAN: 0.564 G_GAN_Feat: 0.966 G_ID: 0.123 G_Rec: 0.479 D_GP: 0.030 D_real: 1.167 D_fake: 0.440 +(epoch: 410, iters: 7134, time: 0.063) G_GAN: 0.490 G_GAN_Feat: 0.841 G_ID: 0.100 G_Rec: 0.347 D_GP: 0.053 D_real: 1.020 D_fake: 0.530 +(epoch: 410, iters: 7534, time: 0.063) G_GAN: 0.884 G_GAN_Feat: 0.980 G_ID: 0.110 G_Rec: 0.425 D_GP: 0.050 D_real: 1.330 D_fake: 0.165 +(epoch: 410, iters: 7934, time: 0.064) G_GAN: 0.106 G_GAN_Feat: 0.786 G_ID: 0.125 G_Rec: 0.307 D_GP: 0.034 D_real: 0.893 D_fake: 0.895 +(epoch: 410, iters: 8334, time: 0.063) G_GAN: 0.883 G_GAN_Feat: 1.061 G_ID: 0.122 G_Rec: 0.444 D_GP: 0.062 D_real: 1.184 D_fake: 0.285 +(epoch: 411, iters: 126, time: 0.063) G_GAN: 0.219 G_GAN_Feat: 0.720 G_ID: 0.102 G_Rec: 0.335 D_GP: 0.029 D_real: 1.052 D_fake: 0.781 +(epoch: 411, iters: 526, time: 0.063) G_GAN: 0.244 G_GAN_Feat: 0.960 G_ID: 0.124 G_Rec: 0.409 D_GP: 0.050 D_real: 0.746 D_fake: 0.756 +(epoch: 411, iters: 926, time: 0.064) G_GAN: 0.077 G_GAN_Feat: 0.950 G_ID: 0.119 G_Rec: 0.335 D_GP: 0.549 D_real: 0.266 D_fake: 0.923 +(epoch: 411, iters: 1326, time: 0.063) G_GAN: 0.676 G_GAN_Feat: 1.017 G_ID: 0.126 G_Rec: 0.431 D_GP: 0.035 D_real: 1.182 D_fake: 0.343 +(epoch: 411, iters: 1726, time: 0.063) G_GAN: 0.516 G_GAN_Feat: 0.868 G_ID: 0.100 G_Rec: 0.337 D_GP: 0.052 D_real: 0.934 D_fake: 0.492 +(epoch: 411, iters: 2126, time: 0.063) G_GAN: 0.577 G_GAN_Feat: 0.977 G_ID: 0.140 G_Rec: 0.400 D_GP: 0.029 D_real: 1.085 D_fake: 0.453 +(epoch: 411, iters: 2526, time: 0.064) G_GAN: 0.284 G_GAN_Feat: 0.882 G_ID: 0.099 G_Rec: 0.357 D_GP: 0.141 D_real: 0.775 D_fake: 0.719 +(epoch: 411, iters: 2926, time: 0.063) G_GAN: 0.953 G_GAN_Feat: 0.979 G_ID: 0.122 G_Rec: 0.442 D_GP: 0.034 D_real: 1.602 D_fake: 0.213 +(epoch: 411, iters: 3326, time: 0.063) G_GAN: 0.126 G_GAN_Feat: 0.808 G_ID: 0.101 G_Rec: 0.284 D_GP: 0.047 D_real: 0.862 D_fake: 0.874 +(epoch: 411, iters: 3726, time: 0.063) G_GAN: 0.314 G_GAN_Feat: 1.035 G_ID: 0.122 G_Rec: 0.456 D_GP: 0.073 D_real: 0.788 D_fake: 0.687 +(epoch: 411, iters: 4126, time: 0.064) G_GAN: 0.258 G_GAN_Feat: 0.726 G_ID: 0.103 G_Rec: 0.303 D_GP: 0.034 D_real: 1.001 D_fake: 0.742 +(epoch: 411, iters: 4526, time: 0.063) G_GAN: 0.704 G_GAN_Feat: 1.181 G_ID: 0.120 G_Rec: 0.476 D_GP: 0.988 D_real: 0.790 D_fake: 0.342 +(epoch: 411, iters: 4926, time: 0.063) G_GAN: 0.309 G_GAN_Feat: 0.798 G_ID: 0.096 G_Rec: 0.309 D_GP: 0.059 D_real: 1.044 D_fake: 0.691 +(epoch: 411, iters: 5326, time: 0.063) G_GAN: 0.730 G_GAN_Feat: 0.916 G_ID: 0.119 G_Rec: 0.411 D_GP: 0.060 D_real: 1.339 D_fake: 0.389 +(epoch: 411, iters: 5726, time: 0.063) G_GAN: 0.072 G_GAN_Feat: 0.833 G_ID: 0.112 G_Rec: 0.348 D_GP: 0.045 D_real: 0.792 D_fake: 0.929 +(epoch: 411, iters: 6126, time: 0.063) G_GAN: 0.423 G_GAN_Feat: 0.929 G_ID: 0.113 G_Rec: 0.425 D_GP: 0.030 D_real: 1.054 D_fake: 0.579 +(epoch: 411, iters: 6526, time: 0.063) G_GAN: 0.583 G_GAN_Feat: 0.791 G_ID: 0.086 G_Rec: 0.315 D_GP: 0.032 D_real: 1.330 D_fake: 0.436 +(epoch: 411, iters: 6926, time: 0.064) G_GAN: 0.628 G_GAN_Feat: 1.150 G_ID: 0.115 G_Rec: 0.454 D_GP: 0.049 D_real: 0.920 D_fake: 0.391 +(epoch: 411, iters: 7326, time: 0.063) G_GAN: 0.583 G_GAN_Feat: 1.013 G_ID: 0.104 G_Rec: 0.344 D_GP: 0.059 D_real: 0.516 D_fake: 0.433 +(epoch: 411, iters: 7726, time: 0.063) G_GAN: 0.871 G_GAN_Feat: 1.070 G_ID: 0.115 G_Rec: 0.492 D_GP: 0.040 D_real: 1.262 D_fake: 0.186 +(epoch: 411, iters: 8126, time: 0.063) G_GAN: 0.713 G_GAN_Feat: 0.851 G_ID: 0.099 G_Rec: 0.329 D_GP: 0.060 D_real: 1.275 D_fake: 0.475 +(epoch: 411, iters: 8526, time: 0.064) G_GAN: 0.016 G_GAN_Feat: 0.992 G_ID: 0.134 G_Rec: 0.439 D_GP: 0.044 D_real: 0.649 D_fake: 0.984 +(epoch: 412, iters: 318, time: 0.063) G_GAN: 0.521 G_GAN_Feat: 0.756 G_ID: 0.094 G_Rec: 0.285 D_GP: 0.038 D_real: 1.254 D_fake: 0.486 +(epoch: 412, iters: 718, time: 0.063) G_GAN: 0.288 G_GAN_Feat: 1.164 G_ID: 0.129 G_Rec: 0.439 D_GP: 0.048 D_real: 0.369 D_fake: 0.713 +(epoch: 412, iters: 1118, time: 0.063) G_GAN: 0.376 G_GAN_Feat: 0.930 G_ID: 0.106 G_Rec: 0.329 D_GP: 0.270 D_real: 0.511 D_fake: 0.627 +(epoch: 412, iters: 1518, time: 0.064) G_GAN: 0.801 G_GAN_Feat: 0.990 G_ID: 0.107 G_Rec: 0.451 D_GP: 0.032 D_real: 1.392 D_fake: 0.233 +(epoch: 412, iters: 1918, time: 0.063) G_GAN: 0.402 G_GAN_Feat: 0.721 G_ID: 0.089 G_Rec: 0.287 D_GP: 0.028 D_real: 1.310 D_fake: 0.603 +(epoch: 412, iters: 2318, time: 0.063) G_GAN: 0.314 G_GAN_Feat: 0.835 G_ID: 0.119 G_Rec: 0.376 D_GP: 0.026 D_real: 1.118 D_fake: 0.687 +(epoch: 412, iters: 2718, time: 0.063) G_GAN: 0.215 G_GAN_Feat: 0.779 G_ID: 0.097 G_Rec: 0.319 D_GP: 0.028 D_real: 1.114 D_fake: 0.787 +(epoch: 412, iters: 3118, time: 0.064) G_GAN: 0.793 G_GAN_Feat: 1.228 G_ID: 0.121 G_Rec: 0.473 D_GP: 0.138 D_real: 0.674 D_fake: 0.387 +(epoch: 412, iters: 3518, time: 0.063) G_GAN: 0.186 G_GAN_Feat: 0.765 G_ID: 0.090 G_Rec: 0.292 D_GP: 0.035 D_real: 1.077 D_fake: 0.814 +(epoch: 412, iters: 3918, time: 0.063) G_GAN: 0.136 G_GAN_Feat: 0.943 G_ID: 0.123 G_Rec: 0.394 D_GP: 0.037 D_real: 0.800 D_fake: 0.865 +(epoch: 412, iters: 4318, time: 0.063) G_GAN: 0.082 G_GAN_Feat: 0.785 G_ID: 0.111 G_Rec: 0.305 D_GP: 0.038 D_real: 0.867 D_fake: 0.918 +(epoch: 412, iters: 4718, time: 0.064) G_GAN: 0.459 G_GAN_Feat: 1.002 G_ID: 0.112 G_Rec: 0.470 D_GP: 0.067 D_real: 0.909 D_fake: 0.546 +(epoch: 412, iters: 5118, time: 0.063) G_GAN: 0.291 G_GAN_Feat: 0.800 G_ID: 0.077 G_Rec: 0.296 D_GP: 0.080 D_real: 0.936 D_fake: 0.711 +(epoch: 412, iters: 5518, time: 0.063) G_GAN: 0.509 G_GAN_Feat: 1.028 G_ID: 0.118 G_Rec: 0.422 D_GP: 0.057 D_real: 0.934 D_fake: 0.499 +(epoch: 412, iters: 5918, time: 0.063) G_GAN: 0.263 G_GAN_Feat: 0.835 G_ID: 0.093 G_Rec: 0.310 D_GP: 0.074 D_real: 0.691 D_fake: 0.737 +(epoch: 412, iters: 6318, time: 0.064) G_GAN: 0.492 G_GAN_Feat: 1.043 G_ID: 0.136 G_Rec: 0.504 D_GP: 0.031 D_real: 0.984 D_fake: 0.518 +(epoch: 412, iters: 6718, time: 0.063) G_GAN: 0.358 G_GAN_Feat: 0.841 G_ID: 0.097 G_Rec: 0.323 D_GP: 0.071 D_real: 0.847 D_fake: 0.645 +(epoch: 412, iters: 7118, time: 0.063) G_GAN: 0.593 G_GAN_Feat: 1.006 G_ID: 0.116 G_Rec: 0.422 D_GP: 0.044 D_real: 0.990 D_fake: 0.417 +(epoch: 412, iters: 7518, time: 0.063) G_GAN: 0.260 G_GAN_Feat: 0.673 G_ID: 0.091 G_Rec: 0.295 D_GP: 0.028 D_real: 1.173 D_fake: 0.742 +(epoch: 412, iters: 7918, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 0.930 G_ID: 0.128 G_Rec: 0.423 D_GP: 0.039 D_real: 0.956 D_fake: 0.689 +(epoch: 412, iters: 8318, time: 0.063) G_GAN: -0.061 G_GAN_Feat: 0.720 G_ID: 0.107 G_Rec: 0.313 D_GP: 0.036 D_real: 0.770 D_fake: 1.061 +(epoch: 413, iters: 110, time: 0.063) G_GAN: 0.760 G_GAN_Feat: 0.921 G_ID: 0.100 G_Rec: 0.441 D_GP: 0.033 D_real: 1.294 D_fake: 0.353 +(epoch: 413, iters: 510, time: 0.063) G_GAN: 0.127 G_GAN_Feat: 0.741 G_ID: 0.089 G_Rec: 0.298 D_GP: 0.035 D_real: 1.099 D_fake: 0.873 +(epoch: 413, iters: 910, time: 0.064) G_GAN: 0.426 G_GAN_Feat: 0.988 G_ID: 0.121 G_Rec: 0.439 D_GP: 0.113 D_real: 0.776 D_fake: 0.577 +(epoch: 413, iters: 1310, time: 0.063) G_GAN: 0.216 G_GAN_Feat: 0.763 G_ID: 0.105 G_Rec: 0.303 D_GP: 0.035 D_real: 1.060 D_fake: 0.786 +(epoch: 413, iters: 1710, time: 0.063) G_GAN: 0.591 G_GAN_Feat: 0.984 G_ID: 0.117 G_Rec: 0.460 D_GP: 0.030 D_real: 1.197 D_fake: 0.419 +(epoch: 413, iters: 2110, time: 0.063) G_GAN: 0.389 G_GAN_Feat: 0.701 G_ID: 0.099 G_Rec: 0.306 D_GP: 0.026 D_real: 1.297 D_fake: 0.612 +(epoch: 413, iters: 2510, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.917 G_ID: 0.112 G_Rec: 0.421 D_GP: 0.033 D_real: 0.888 D_fake: 0.723 +(epoch: 413, iters: 2910, time: 0.063) G_GAN: 0.459 G_GAN_Feat: 0.815 G_ID: 0.105 G_Rec: 0.319 D_GP: 0.055 D_real: 0.987 D_fake: 0.561 +(epoch: 413, iters: 3310, time: 0.063) G_GAN: 0.905 G_GAN_Feat: 1.078 G_ID: 0.103 G_Rec: 0.456 D_GP: 0.052 D_real: 0.999 D_fake: 0.170 +(epoch: 413, iters: 3710, time: 0.063) G_GAN: 0.545 G_GAN_Feat: 0.879 G_ID: 0.104 G_Rec: 0.339 D_GP: 0.059 D_real: 1.197 D_fake: 0.574 +(epoch: 413, iters: 4110, time: 0.064) G_GAN: 0.454 G_GAN_Feat: 1.059 G_ID: 0.124 G_Rec: 0.438 D_GP: 0.040 D_real: 0.625 D_fake: 0.554 +(epoch: 413, iters: 4510, time: 0.063) G_GAN: 0.027 G_GAN_Feat: 0.771 G_ID: 0.121 G_Rec: 0.313 D_GP: 0.034 D_real: 0.843 D_fake: 0.973 +(epoch: 413, iters: 4910, time: 0.063) G_GAN: 0.698 G_GAN_Feat: 1.031 G_ID: 0.111 G_Rec: 0.436 D_GP: 0.068 D_real: 0.776 D_fake: 0.335 +(epoch: 413, iters: 5310, time: 0.063) G_GAN: -0.034 G_GAN_Feat: 0.890 G_ID: 0.103 G_Rec: 0.343 D_GP: 0.035 D_real: 0.696 D_fake: 1.034 +(epoch: 413, iters: 5710, time: 0.064) G_GAN: 0.285 G_GAN_Feat: 0.998 G_ID: 0.132 G_Rec: 0.448 D_GP: 0.038 D_real: 0.729 D_fake: 0.716 +(epoch: 413, iters: 6110, time: 0.063) G_GAN: 0.369 G_GAN_Feat: 0.935 G_ID: 0.107 G_Rec: 0.314 D_GP: 0.089 D_real: 0.591 D_fake: 0.632 +(epoch: 413, iters: 6510, time: 0.063) G_GAN: 0.397 G_GAN_Feat: 0.837 G_ID: 0.102 G_Rec: 0.418 D_GP: 0.033 D_real: 1.171 D_fake: 0.604 +(epoch: 413, iters: 6910, time: 0.063) G_GAN: 0.168 G_GAN_Feat: 0.693 G_ID: 0.103 G_Rec: 0.313 D_GP: 0.029 D_real: 1.082 D_fake: 0.832 +(epoch: 413, iters: 7310, time: 0.064) G_GAN: 0.452 G_GAN_Feat: 1.013 G_ID: 0.115 G_Rec: 0.486 D_GP: 0.032 D_real: 0.890 D_fake: 0.571 +(epoch: 413, iters: 7710, time: 0.063) G_GAN: -0.017 G_GAN_Feat: 0.677 G_ID: 0.102 G_Rec: 0.317 D_GP: 0.033 D_real: 0.868 D_fake: 1.017 +(epoch: 413, iters: 8110, time: 0.063) G_GAN: 0.217 G_GAN_Feat: 0.888 G_ID: 0.126 G_Rec: 0.416 D_GP: 0.037 D_real: 0.894 D_fake: 0.789 +(epoch: 413, iters: 8510, time: 0.063) G_GAN: 0.073 G_GAN_Feat: 0.745 G_ID: 0.090 G_Rec: 0.309 D_GP: 0.039 D_real: 0.858 D_fake: 0.927 +(epoch: 414, iters: 302, time: 0.064) G_GAN: 0.479 G_GAN_Feat: 0.982 G_ID: 0.145 G_Rec: 0.430 D_GP: 0.065 D_real: 0.835 D_fake: 0.564 +(epoch: 414, iters: 702, time: 0.063) G_GAN: 0.006 G_GAN_Feat: 0.746 G_ID: 0.106 G_Rec: 0.333 D_GP: 0.056 D_real: 0.618 D_fake: 0.994 +(epoch: 414, iters: 1102, time: 0.063) G_GAN: 0.445 G_GAN_Feat: 0.948 G_ID: 0.124 G_Rec: 0.455 D_GP: 0.040 D_real: 1.024 D_fake: 0.557 +(epoch: 414, iters: 1502, time: 0.063) G_GAN: -0.012 G_GAN_Feat: 0.836 G_ID: 0.124 G_Rec: 0.346 D_GP: 0.040 D_real: 0.551 D_fake: 1.012 +(epoch: 414, iters: 1902, time: 0.064) G_GAN: 0.576 G_GAN_Feat: 1.049 G_ID: 0.106 G_Rec: 0.421 D_GP: 0.066 D_real: 0.728 D_fake: 0.431 +(epoch: 414, iters: 2302, time: 0.063) G_GAN: 0.505 G_GAN_Feat: 0.803 G_ID: 0.139 G_Rec: 0.336 D_GP: 0.034 D_real: 1.241 D_fake: 0.513 +(epoch: 414, iters: 2702, time: 0.063) G_GAN: 0.412 G_GAN_Feat: 0.950 G_ID: 0.113 G_Rec: 0.440 D_GP: 0.034 D_real: 0.955 D_fake: 0.596 +(epoch: 414, iters: 3102, time: 0.063) G_GAN: 0.339 G_GAN_Feat: 0.835 G_ID: 0.105 G_Rec: 0.326 D_GP: 0.032 D_real: 1.328 D_fake: 0.667 +(epoch: 414, iters: 3502, time: 0.064) G_GAN: 0.435 G_GAN_Feat: 0.859 G_ID: 0.117 G_Rec: 0.434 D_GP: 0.028 D_real: 1.172 D_fake: 0.566 +(epoch: 414, iters: 3902, time: 0.063) G_GAN: 0.215 G_GAN_Feat: 0.716 G_ID: 0.092 G_Rec: 0.332 D_GP: 0.040 D_real: 1.043 D_fake: 0.785 +(epoch: 414, iters: 4302, time: 0.063) G_GAN: 0.554 G_GAN_Feat: 0.913 G_ID: 0.132 G_Rec: 0.418 D_GP: 0.047 D_real: 1.152 D_fake: 0.456 +(epoch: 414, iters: 4702, time: 0.063) G_GAN: 0.156 G_GAN_Feat: 0.737 G_ID: 0.090 G_Rec: 0.309 D_GP: 0.044 D_real: 0.932 D_fake: 0.844 +(epoch: 414, iters: 5102, time: 0.064) G_GAN: 0.085 G_GAN_Feat: 0.924 G_ID: 0.151 G_Rec: 0.409 D_GP: 0.036 D_real: 0.767 D_fake: 0.915 +(epoch: 414, iters: 5502, time: 0.063) G_GAN: 0.084 G_GAN_Feat: 0.805 G_ID: 0.113 G_Rec: 0.352 D_GP: 0.065 D_real: 0.771 D_fake: 0.917 +(epoch: 414, iters: 5902, time: 0.063) G_GAN: 0.699 G_GAN_Feat: 1.030 G_ID: 0.123 G_Rec: 0.416 D_GP: 0.162 D_real: 0.967 D_fake: 0.354 +(epoch: 414, iters: 6302, time: 0.063) G_GAN: 0.168 G_GAN_Feat: 0.778 G_ID: 0.099 G_Rec: 0.316 D_GP: 0.057 D_real: 0.788 D_fake: 0.832 +(epoch: 414, iters: 6702, time: 0.064) G_GAN: 0.534 G_GAN_Feat: 0.966 G_ID: 0.114 G_Rec: 0.427 D_GP: 0.032 D_real: 1.099 D_fake: 0.471 +(epoch: 414, iters: 7102, time: 0.063) G_GAN: 0.617 G_GAN_Feat: 0.818 G_ID: 0.095 G_Rec: 0.323 D_GP: 0.047 D_real: 1.413 D_fake: 0.505 +(epoch: 414, iters: 7502, time: 0.063) G_GAN: 0.629 G_GAN_Feat: 0.989 G_ID: 0.117 G_Rec: 0.432 D_GP: 0.056 D_real: 1.287 D_fake: 0.387 +(epoch: 414, iters: 7902, time: 0.063) G_GAN: 0.103 G_GAN_Feat: 0.841 G_ID: 0.106 G_Rec: 0.335 D_GP: 0.052 D_real: 0.604 D_fake: 0.897 +(epoch: 414, iters: 8302, time: 0.064) G_GAN: 0.685 G_GAN_Feat: 1.036 G_ID: 0.127 G_Rec: 0.447 D_GP: 0.036 D_real: 1.007 D_fake: 0.337 +(epoch: 414, iters: 8702, time: 0.063) G_GAN: 0.148 G_GAN_Feat: 0.859 G_ID: 0.092 G_Rec: 0.340 D_GP: 0.038 D_real: 0.745 D_fake: 0.857 +(epoch: 415, iters: 494, time: 0.063) G_GAN: 0.652 G_GAN_Feat: 1.149 G_ID: 0.149 G_Rec: 0.477 D_GP: 0.045 D_real: 1.011 D_fake: 0.390 +(epoch: 415, iters: 894, time: 0.063) G_GAN: 0.214 G_GAN_Feat: 0.651 G_ID: 0.100 G_Rec: 0.316 D_GP: 0.030 D_real: 1.127 D_fake: 0.787 +(epoch: 415, iters: 1294, time: 0.064) G_GAN: 0.458 G_GAN_Feat: 0.895 G_ID: 0.120 G_Rec: 0.479 D_GP: 0.031 D_real: 1.231 D_fake: 0.562 +(epoch: 415, iters: 1694, time: 0.063) G_GAN: 0.077 G_GAN_Feat: 0.692 G_ID: 0.092 G_Rec: 0.316 D_GP: 0.028 D_real: 1.041 D_fake: 0.924 +(epoch: 415, iters: 2094, time: 0.063) G_GAN: 0.485 G_GAN_Feat: 0.872 G_ID: 0.101 G_Rec: 0.437 D_GP: 0.033 D_real: 1.140 D_fake: 0.528 +(epoch: 415, iters: 2494, time: 0.063) G_GAN: -0.188 G_GAN_Feat: 0.651 G_ID: 0.089 G_Rec: 0.300 D_GP: 0.037 D_real: 0.769 D_fake: 1.188 +(epoch: 415, iters: 2894, time: 0.064) G_GAN: 0.229 G_GAN_Feat: 0.896 G_ID: 0.106 G_Rec: 0.450 D_GP: 0.037 D_real: 0.839 D_fake: 0.773 +(epoch: 415, iters: 3294, time: 0.063) G_GAN: -0.046 G_GAN_Feat: 0.643 G_ID: 0.100 G_Rec: 0.292 D_GP: 0.044 D_real: 0.793 D_fake: 1.046 +(epoch: 415, iters: 3694, time: 0.063) G_GAN: 0.464 G_GAN_Feat: 0.906 G_ID: 0.114 G_Rec: 0.452 D_GP: 0.041 D_real: 1.050 D_fake: 0.588 +(epoch: 415, iters: 4094, time: 0.063) G_GAN: -0.055 G_GAN_Feat: 0.742 G_ID: 0.101 G_Rec: 0.357 D_GP: 0.064 D_real: 0.668 D_fake: 1.055 +(epoch: 415, iters: 4494, time: 0.064) G_GAN: 0.917 G_GAN_Feat: 0.910 G_ID: 0.120 G_Rec: 0.448 D_GP: 0.041 D_real: 1.518 D_fake: 0.410 +(epoch: 415, iters: 4894, time: 0.063) G_GAN: -0.131 G_GAN_Feat: 0.710 G_ID: 0.093 G_Rec: 0.324 D_GP: 0.048 D_real: 0.621 D_fake: 1.131 +(epoch: 415, iters: 5294, time: 0.063) G_GAN: 0.199 G_GAN_Feat: 0.910 G_ID: 0.110 G_Rec: 0.469 D_GP: 0.036 D_real: 0.802 D_fake: 0.801 +(epoch: 415, iters: 5694, time: 0.063) G_GAN: -0.059 G_GAN_Feat: 0.736 G_ID: 0.101 G_Rec: 0.320 D_GP: 0.054 D_real: 0.745 D_fake: 1.060 +(epoch: 415, iters: 6094, time: 0.064) G_GAN: 0.226 G_GAN_Feat: 0.887 G_ID: 0.117 G_Rec: 0.407 D_GP: 0.048 D_real: 0.731 D_fake: 0.775 +(epoch: 415, iters: 6494, time: 0.063) G_GAN: 0.241 G_GAN_Feat: 0.711 G_ID: 0.101 G_Rec: 0.298 D_GP: 0.037 D_real: 1.056 D_fake: 0.760 +(epoch: 415, iters: 6894, time: 0.063) G_GAN: 0.417 G_GAN_Feat: 0.965 G_ID: 0.119 G_Rec: 0.431 D_GP: 0.056 D_real: 0.869 D_fake: 0.596 +(epoch: 415, iters: 7294, time: 0.063) G_GAN: -0.007 G_GAN_Feat: 0.838 G_ID: 0.100 G_Rec: 0.337 D_GP: 0.797 D_real: 0.414 D_fake: 1.008 +(epoch: 415, iters: 7694, time: 0.064) G_GAN: 0.512 G_GAN_Feat: 1.013 G_ID: 0.117 G_Rec: 0.481 D_GP: 0.081 D_real: 0.942 D_fake: 0.500 +(epoch: 415, iters: 8094, time: 0.063) G_GAN: 0.041 G_GAN_Feat: 0.730 G_ID: 0.105 G_Rec: 0.303 D_GP: 0.048 D_real: 0.781 D_fake: 0.959 +(epoch: 415, iters: 8494, time: 0.063) G_GAN: 0.305 G_GAN_Feat: 0.946 G_ID: 0.130 G_Rec: 0.461 D_GP: 0.050 D_real: 0.885 D_fake: 0.695 +(epoch: 416, iters: 286, time: 0.063) G_GAN: 0.517 G_GAN_Feat: 0.833 G_ID: 0.101 G_Rec: 0.352 D_GP: 0.056 D_real: 1.210 D_fake: 0.496 +(epoch: 416, iters: 686, time: 0.064) G_GAN: 0.725 G_GAN_Feat: 0.912 G_ID: 0.111 G_Rec: 0.449 D_GP: 0.033 D_real: 1.306 D_fake: 0.294 +(epoch: 416, iters: 1086, time: 0.063) G_GAN: 0.153 G_GAN_Feat: 0.864 G_ID: 0.097 G_Rec: 0.358 D_GP: 0.140 D_real: 0.351 D_fake: 0.852 +(epoch: 416, iters: 1486, time: 0.063) G_GAN: 0.852 G_GAN_Feat: 0.936 G_ID: 0.099 G_Rec: 0.401 D_GP: 0.036 D_real: 1.466 D_fake: 0.202 +(epoch: 416, iters: 1886, time: 0.063) G_GAN: 0.008 G_GAN_Feat: 0.603 G_ID: 0.100 G_Rec: 0.306 D_GP: 0.028 D_real: 0.990 D_fake: 0.992 +(epoch: 416, iters: 2286, time: 0.063) G_GAN: 0.275 G_GAN_Feat: 0.792 G_ID: 0.130 G_Rec: 0.406 D_GP: 0.026 D_real: 1.134 D_fake: 0.727 +(epoch: 416, iters: 2686, time: 0.063) G_GAN: 0.062 G_GAN_Feat: 0.656 G_ID: 0.089 G_Rec: 0.300 D_GP: 0.029 D_real: 0.924 D_fake: 0.938 +(epoch: 416, iters: 3086, time: 0.063) G_GAN: 0.228 G_GAN_Feat: 0.917 G_ID: 0.121 G_Rec: 0.432 D_GP: 0.057 D_real: 0.926 D_fake: 0.779 +(epoch: 416, iters: 3486, time: 0.064) G_GAN: -0.010 G_GAN_Feat: 0.791 G_ID: 0.093 G_Rec: 0.327 D_GP: 0.092 D_real: 0.562 D_fake: 1.010 +(epoch: 416, iters: 3886, time: 0.063) G_GAN: 0.653 G_GAN_Feat: 0.989 G_ID: 0.115 G_Rec: 0.481 D_GP: 0.038 D_real: 1.109 D_fake: 0.381 +(epoch: 416, iters: 4286, time: 0.063) G_GAN: 0.080 G_GAN_Feat: 0.725 G_ID: 0.094 G_Rec: 0.302 D_GP: 0.051 D_real: 0.879 D_fake: 0.920 +(epoch: 416, iters: 4686, time: 0.063) G_GAN: 0.567 G_GAN_Feat: 0.840 G_ID: 0.111 G_Rec: 0.421 D_GP: 0.036 D_real: 1.199 D_fake: 0.438 +(epoch: 416, iters: 5086, time: 0.064) G_GAN: 0.503 G_GAN_Feat: 0.719 G_ID: 0.094 G_Rec: 0.306 D_GP: 0.044 D_real: 1.262 D_fake: 0.501 +(epoch: 416, iters: 5486, time: 0.063) G_GAN: 0.429 G_GAN_Feat: 0.967 G_ID: 0.117 G_Rec: 0.464 D_GP: 0.048 D_real: 0.954 D_fake: 0.575 +(epoch: 416, iters: 5886, time: 0.063) G_GAN: -0.007 G_GAN_Feat: 0.799 G_ID: 0.102 G_Rec: 0.358 D_GP: 0.036 D_real: 0.751 D_fake: 1.007 +(epoch: 416, iters: 6286, time: 0.063) G_GAN: 0.484 G_GAN_Feat: 0.900 G_ID: 0.137 G_Rec: 0.411 D_GP: 0.043 D_real: 1.019 D_fake: 0.521 +(epoch: 416, iters: 6686, time: 0.064) G_GAN: 0.308 G_GAN_Feat: 0.788 G_ID: 0.089 G_Rec: 0.321 D_GP: 0.045 D_real: 0.953 D_fake: 0.692 +(epoch: 416, iters: 7086, time: 0.063) G_GAN: 0.537 G_GAN_Feat: 1.008 G_ID: 0.128 G_Rec: 0.418 D_GP: 0.071 D_real: 0.856 D_fake: 0.474 +(epoch: 416, iters: 7486, time: 0.063) G_GAN: 0.425 G_GAN_Feat: 0.851 G_ID: 0.091 G_Rec: 0.313 D_GP: 0.050 D_real: 0.874 D_fake: 0.576 +(epoch: 416, iters: 7886, time: 0.063) G_GAN: 0.410 G_GAN_Feat: 1.245 G_ID: 0.130 G_Rec: 0.468 D_GP: 0.065 D_real: 0.885 D_fake: 0.613 +(epoch: 416, iters: 8286, time: 0.064) G_GAN: -0.103 G_GAN_Feat: 0.689 G_ID: 0.097 G_Rec: 0.318 D_GP: 0.028 D_real: 0.861 D_fake: 1.103 +(epoch: 416, iters: 8686, time: 0.063) G_GAN: 0.139 G_GAN_Feat: 0.872 G_ID: 0.112 G_Rec: 0.425 D_GP: 0.029 D_real: 0.788 D_fake: 0.863 +(epoch: 417, iters: 478, time: 0.063) G_GAN: -0.050 G_GAN_Feat: 0.666 G_ID: 0.122 G_Rec: 0.289 D_GP: 0.036 D_real: 0.826 D_fake: 1.050 +(epoch: 417, iters: 878, time: 0.063) G_GAN: 0.395 G_GAN_Feat: 0.916 G_ID: 0.110 G_Rec: 0.451 D_GP: 0.043 D_real: 0.902 D_fake: 0.628 +(epoch: 417, iters: 1278, time: 0.064) G_GAN: -0.024 G_GAN_Feat: 0.668 G_ID: 0.097 G_Rec: 0.308 D_GP: 0.039 D_real: 0.854 D_fake: 1.024 +(epoch: 417, iters: 1678, time: 0.063) G_GAN: 0.534 G_GAN_Feat: 0.942 G_ID: 0.114 G_Rec: 0.478 D_GP: 0.035 D_real: 1.074 D_fake: 0.507 +(epoch: 417, iters: 2078, time: 0.063) G_GAN: -0.031 G_GAN_Feat: 0.671 G_ID: 0.109 G_Rec: 0.325 D_GP: 0.029 D_real: 0.864 D_fake: 1.031 +(epoch: 417, iters: 2478, time: 0.063) G_GAN: 0.150 G_GAN_Feat: 0.942 G_ID: 0.127 G_Rec: 0.477 D_GP: 0.042 D_real: 0.674 D_fake: 0.852 +(epoch: 417, iters: 2878, time: 0.064) G_GAN: 0.002 G_GAN_Feat: 0.649 G_ID: 0.112 G_Rec: 0.282 D_GP: 0.031 D_real: 0.964 D_fake: 0.999 +(epoch: 417, iters: 3278, time: 0.063) G_GAN: 0.501 G_GAN_Feat: 0.949 G_ID: 0.154 G_Rec: 0.452 D_GP: 0.046 D_real: 0.993 D_fake: 0.523 +(epoch: 417, iters: 3678, time: 0.063) G_GAN: 0.271 G_GAN_Feat: 0.776 G_ID: 0.095 G_Rec: 0.334 D_GP: 0.051 D_real: 1.045 D_fake: 0.732 +(epoch: 417, iters: 4078, time: 0.063) G_GAN: 0.543 G_GAN_Feat: 0.860 G_ID: 0.113 G_Rec: 0.385 D_GP: 0.032 D_real: 1.276 D_fake: 0.470 +(epoch: 417, iters: 4478, time: 0.064) G_GAN: 0.227 G_GAN_Feat: 0.762 G_ID: 0.087 G_Rec: 0.305 D_GP: 0.045 D_real: 0.932 D_fake: 0.775 +(epoch: 417, iters: 4878, time: 0.063) G_GAN: 0.496 G_GAN_Feat: 0.930 G_ID: 0.116 G_Rec: 0.440 D_GP: 0.035 D_real: 1.145 D_fake: 0.512 +(epoch: 417, iters: 5278, time: 0.063) G_GAN: 0.216 G_GAN_Feat: 0.733 G_ID: 0.093 G_Rec: 0.304 D_GP: 0.040 D_real: 1.056 D_fake: 0.786 +(epoch: 417, iters: 5678, time: 0.063) G_GAN: 0.486 G_GAN_Feat: 0.925 G_ID: 0.113 G_Rec: 0.448 D_GP: 0.063 D_real: 0.930 D_fake: 0.530 +(epoch: 417, iters: 6078, time: 0.064) G_GAN: 0.364 G_GAN_Feat: 0.789 G_ID: 0.088 G_Rec: 0.307 D_GP: 0.064 D_real: 0.879 D_fake: 0.637 +(epoch: 417, iters: 6478, time: 0.063) G_GAN: 0.549 G_GAN_Feat: 0.875 G_ID: 0.125 G_Rec: 0.391 D_GP: 0.031 D_real: 1.153 D_fake: 0.467 +(epoch: 417, iters: 6878, time: 0.063) G_GAN: -0.040 G_GAN_Feat: 0.815 G_ID: 0.113 G_Rec: 0.340 D_GP: 0.098 D_real: 0.464 D_fake: 1.040 +(epoch: 417, iters: 7278, time: 0.063) G_GAN: 0.528 G_GAN_Feat: 1.117 G_ID: 0.108 G_Rec: 0.492 D_GP: 0.110 D_real: 0.744 D_fake: 0.487 +(epoch: 417, iters: 7678, time: 0.064) G_GAN: 0.241 G_GAN_Feat: 0.960 G_ID: 0.115 G_Rec: 0.356 D_GP: 0.054 D_real: 0.811 D_fake: 0.870 +(epoch: 417, iters: 8078, time: 0.063) G_GAN: 0.703 G_GAN_Feat: 0.977 G_ID: 0.110 G_Rec: 0.430 D_GP: 0.033 D_real: 1.298 D_fake: 0.333 +(epoch: 417, iters: 8478, time: 0.063) G_GAN: -0.024 G_GAN_Feat: 0.938 G_ID: 0.102 G_Rec: 0.322 D_GP: 3.707 D_real: 0.330 D_fake: 1.025 +(epoch: 418, iters: 270, time: 0.063) G_GAN: 0.360 G_GAN_Feat: 0.882 G_ID: 0.122 G_Rec: 0.441 D_GP: 0.029 D_real: 1.077 D_fake: 0.640 +(epoch: 418, iters: 670, time: 0.064) G_GAN: -0.062 G_GAN_Feat: 0.643 G_ID: 0.140 G_Rec: 0.328 D_GP: 0.028 D_real: 0.808 D_fake: 1.062 +(epoch: 418, iters: 1070, time: 0.063) G_GAN: 0.241 G_GAN_Feat: 0.837 G_ID: 0.116 G_Rec: 0.409 D_GP: 0.035 D_real: 0.984 D_fake: 0.760 +(epoch: 418, iters: 1470, time: 0.063) G_GAN: -0.007 G_GAN_Feat: 0.603 G_ID: 0.104 G_Rec: 0.285 D_GP: 0.034 D_real: 0.902 D_fake: 1.007 +(epoch: 418, iters: 1870, time: 0.063) G_GAN: 0.316 G_GAN_Feat: 0.810 G_ID: 0.126 G_Rec: 0.416 D_GP: 0.038 D_real: 1.006 D_fake: 0.698 +(epoch: 418, iters: 2270, time: 0.064) G_GAN: -0.061 G_GAN_Feat: 0.698 G_ID: 0.101 G_Rec: 0.323 D_GP: 0.054 D_real: 0.768 D_fake: 1.061 +(epoch: 418, iters: 2670, time: 0.064) G_GAN: 0.247 G_GAN_Feat: 0.876 G_ID: 0.121 G_Rec: 0.433 D_GP: 0.046 D_real: 0.971 D_fake: 0.763 +(epoch: 418, iters: 3070, time: 0.063) G_GAN: -0.143 G_GAN_Feat: 0.669 G_ID: 0.078 G_Rec: 0.312 D_GP: 0.049 D_real: 0.664 D_fake: 1.143 +(epoch: 418, iters: 3470, time: 0.063) G_GAN: 0.296 G_GAN_Feat: 0.928 G_ID: 0.120 G_Rec: 0.462 D_GP: 0.044 D_real: 0.926 D_fake: 0.713 +(epoch: 418, iters: 3870, time: 0.064) G_GAN: 0.251 G_GAN_Feat: 0.676 G_ID: 0.110 G_Rec: 0.290 D_GP: 0.037 D_real: 1.156 D_fake: 0.762 +(epoch: 418, iters: 4270, time: 0.063) G_GAN: 0.485 G_GAN_Feat: 0.961 G_ID: 0.107 G_Rec: 0.457 D_GP: 0.042 D_real: 1.220 D_fake: 0.540 +(epoch: 418, iters: 4670, time: 0.063) G_GAN: 0.526 G_GAN_Feat: 0.783 G_ID: 0.119 G_Rec: 0.343 D_GP: 0.033 D_real: 1.416 D_fake: 0.481 +(epoch: 418, iters: 5070, time: 0.063) G_GAN: 0.316 G_GAN_Feat: 0.952 G_ID: 0.120 G_Rec: 0.439 D_GP: 0.082 D_real: 0.763 D_fake: 0.691 +(epoch: 418, iters: 5470, time: 0.064) G_GAN: 0.239 G_GAN_Feat: 0.669 G_ID: 0.096 G_Rec: 0.298 D_GP: 0.040 D_real: 1.127 D_fake: 0.761 +(epoch: 418, iters: 5870, time: 0.063) G_GAN: 0.342 G_GAN_Feat: 1.010 G_ID: 0.126 G_Rec: 0.472 D_GP: 0.052 D_real: 0.840 D_fake: 0.659 +(epoch: 418, iters: 6270, time: 0.063) G_GAN: 0.094 G_GAN_Feat: 0.656 G_ID: 0.099 G_Rec: 0.302 D_GP: 0.028 D_real: 1.014 D_fake: 0.909 +(epoch: 418, iters: 6670, time: 0.063) G_GAN: 0.448 G_GAN_Feat: 1.090 G_ID: 0.124 G_Rec: 0.464 D_GP: 0.085 D_real: 0.463 D_fake: 0.557 +(epoch: 418, iters: 7070, time: 0.064) G_GAN: 0.449 G_GAN_Feat: 0.743 G_ID: 0.091 G_Rec: 0.311 D_GP: 0.065 D_real: 1.264 D_fake: 0.587 +(epoch: 418, iters: 7470, time: 0.063) G_GAN: 0.487 G_GAN_Feat: 0.970 G_ID: 0.118 G_Rec: 0.455 D_GP: 0.091 D_real: 1.075 D_fake: 0.523 +(epoch: 418, iters: 7870, time: 0.063) G_GAN: 0.056 G_GAN_Feat: 0.660 G_ID: 0.110 G_Rec: 0.374 D_GP: 0.035 D_real: 0.955 D_fake: 0.944 +(epoch: 418, iters: 8270, time: 0.063) G_GAN: 0.142 G_GAN_Feat: 0.943 G_ID: 0.111 G_Rec: 0.450 D_GP: 0.050 D_real: 0.777 D_fake: 0.858 +(epoch: 418, iters: 8670, time: 0.064) G_GAN: 0.262 G_GAN_Feat: 0.760 G_ID: 0.107 G_Rec: 0.318 D_GP: 0.034 D_real: 1.026 D_fake: 0.738 +(epoch: 419, iters: 462, time: 0.063) G_GAN: 0.383 G_GAN_Feat: 0.891 G_ID: 0.124 G_Rec: 0.419 D_GP: 0.031 D_real: 0.951 D_fake: 0.618 +(epoch: 419, iters: 862, time: 0.063) G_GAN: 0.431 G_GAN_Feat: 0.656 G_ID: 0.100 G_Rec: 0.270 D_GP: 0.025 D_real: 1.312 D_fake: 0.571 +(epoch: 419, iters: 1262, time: 0.063) G_GAN: 0.541 G_GAN_Feat: 0.906 G_ID: 0.104 G_Rec: 0.408 D_GP: 0.034 D_real: 1.124 D_fake: 0.467 +(epoch: 419, iters: 1662, time: 0.064) G_GAN: 0.272 G_GAN_Feat: 0.739 G_ID: 0.105 G_Rec: 0.281 D_GP: 0.051 D_real: 1.160 D_fake: 0.728 +(epoch: 419, iters: 2062, time: 0.063) G_GAN: 0.835 G_GAN_Feat: 0.984 G_ID: 0.114 G_Rec: 0.470 D_GP: 0.037 D_real: 1.401 D_fake: 0.250 +(epoch: 419, iters: 2462, time: 0.063) G_GAN: 0.089 G_GAN_Feat: 0.718 G_ID: 0.096 G_Rec: 0.328 D_GP: 0.036 D_real: 0.977 D_fake: 0.911 +(epoch: 419, iters: 2862, time: 0.063) G_GAN: 0.512 G_GAN_Feat: 0.891 G_ID: 0.101 G_Rec: 0.391 D_GP: 0.038 D_real: 1.121 D_fake: 0.507 +(epoch: 419, iters: 3262, time: 0.064) G_GAN: 0.195 G_GAN_Feat: 0.746 G_ID: 0.096 G_Rec: 0.320 D_GP: 0.042 D_real: 1.021 D_fake: 0.805 +(epoch: 419, iters: 3662, time: 0.063) G_GAN: 0.500 G_GAN_Feat: 0.911 G_ID: 0.112 G_Rec: 0.422 D_GP: 0.031 D_real: 1.218 D_fake: 0.512 +(epoch: 419, iters: 4062, time: 0.064) G_GAN: 0.217 G_GAN_Feat: 0.710 G_ID: 0.122 G_Rec: 0.290 D_GP: 0.032 D_real: 1.060 D_fake: 0.784 +(epoch: 419, iters: 4462, time: 0.064) G_GAN: 0.474 G_GAN_Feat: 0.914 G_ID: 0.126 G_Rec: 0.392 D_GP: 0.037 D_real: 1.051 D_fake: 0.529 +(epoch: 419, iters: 4862, time: 0.064) G_GAN: -0.112 G_GAN_Feat: 0.785 G_ID: 0.120 G_Rec: 0.325 D_GP: 0.042 D_real: 0.600 D_fake: 1.112 +(epoch: 419, iters: 5262, time: 0.064) G_GAN: 0.134 G_GAN_Feat: 0.892 G_ID: 0.119 G_Rec: 0.376 D_GP: 0.030 D_real: 0.707 D_fake: 0.866 +(epoch: 419, iters: 5662, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.732 G_ID: 0.103 G_Rec: 0.294 D_GP: 0.053 D_real: 1.033 D_fake: 0.675 +(epoch: 419, iters: 6062, time: 0.064) G_GAN: 0.436 G_GAN_Feat: 1.059 G_ID: 0.131 G_Rec: 0.459 D_GP: 0.062 D_real: 0.647 D_fake: 0.569 +(epoch: 419, iters: 6462, time: 0.064) G_GAN: 0.246 G_GAN_Feat: 0.812 G_ID: 0.105 G_Rec: 0.322 D_GP: 0.046 D_real: 0.995 D_fake: 0.756 +(epoch: 419, iters: 6862, time: 0.064) G_GAN: 0.800 G_GAN_Feat: 1.035 G_ID: 0.132 G_Rec: 0.437 D_GP: 0.064 D_real: 0.818 D_fake: 0.255 +(epoch: 419, iters: 7262, time: 0.064) G_GAN: -0.239 G_GAN_Feat: 0.832 G_ID: 0.100 G_Rec: 0.321 D_GP: 0.048 D_real: 0.546 D_fake: 1.240 +(epoch: 419, iters: 7662, time: 0.064) G_GAN: 0.429 G_GAN_Feat: 1.029 G_ID: 0.127 G_Rec: 0.433 D_GP: 0.034 D_real: 0.831 D_fake: 0.572 +(epoch: 419, iters: 8062, time: 0.064) G_GAN: 0.229 G_GAN_Feat: 0.716 G_ID: 0.099 G_Rec: 0.316 D_GP: 0.039 D_real: 1.180 D_fake: 0.775 +(epoch: 419, iters: 8462, time: 0.064) G_GAN: 0.292 G_GAN_Feat: 0.951 G_ID: 0.114 G_Rec: 0.431 D_GP: 0.029 D_real: 0.974 D_fake: 0.708 +(epoch: 420, iters: 254, time: 0.064) G_GAN: 0.346 G_GAN_Feat: 0.723 G_ID: 0.106 G_Rec: 0.274 D_GP: 0.036 D_real: 1.177 D_fake: 0.654 +(epoch: 420, iters: 654, time: 0.064) G_GAN: 0.510 G_GAN_Feat: 0.924 G_ID: 0.124 G_Rec: 0.430 D_GP: 0.034 D_real: 1.078 D_fake: 0.509 +(epoch: 420, iters: 1054, time: 0.064) G_GAN: 0.353 G_GAN_Feat: 0.793 G_ID: 0.096 G_Rec: 0.313 D_GP: 0.057 D_real: 0.953 D_fake: 0.651 +(epoch: 420, iters: 1454, time: 0.063) G_GAN: 0.533 G_GAN_Feat: 0.929 G_ID: 0.117 G_Rec: 0.486 D_GP: 0.027 D_real: 1.179 D_fake: 0.473 +(epoch: 420, iters: 1854, time: 0.063) G_GAN: 0.153 G_GAN_Feat: 0.796 G_ID: 0.105 G_Rec: 0.314 D_GP: 0.097 D_real: 0.840 D_fake: 0.848 +(epoch: 420, iters: 2254, time: 0.063) G_GAN: 0.617 G_GAN_Feat: 0.916 G_ID: 0.112 G_Rec: 0.423 D_GP: 0.034 D_real: 1.198 D_fake: 0.395 +(epoch: 420, iters: 2654, time: 0.064) G_GAN: 0.436 G_GAN_Feat: 0.801 G_ID: 0.087 G_Rec: 0.310 D_GP: 0.051 D_real: 1.149 D_fake: 0.572 +(epoch: 420, iters: 3054, time: 0.063) G_GAN: 0.931 G_GAN_Feat: 1.168 G_ID: 0.113 G_Rec: 0.467 D_GP: 0.057 D_real: 0.877 D_fake: 0.237 +(epoch: 420, iters: 3454, time: 0.063) G_GAN: 0.242 G_GAN_Feat: 0.901 G_ID: 0.110 G_Rec: 0.322 D_GP: 0.077 D_real: 0.493 D_fake: 0.761 +(epoch: 420, iters: 3854, time: 0.063) G_GAN: 0.454 G_GAN_Feat: 1.039 G_ID: 0.125 G_Rec: 0.499 D_GP: 0.030 D_real: 1.089 D_fake: 0.558 +(epoch: 420, iters: 4254, time: 0.064) G_GAN: 0.365 G_GAN_Feat: 0.752 G_ID: 0.095 G_Rec: 0.283 D_GP: 0.037 D_real: 1.136 D_fake: 0.637 +(epoch: 420, iters: 4654, time: 0.063) G_GAN: 1.416 G_GAN_Feat: 1.097 G_ID: 0.132 G_Rec: 0.460 D_GP: 0.121 D_real: 1.590 D_fake: 0.148 +(epoch: 420, iters: 5054, time: 0.063) G_GAN: 0.045 G_GAN_Feat: 0.731 G_ID: 0.104 G_Rec: 0.308 D_GP: 0.030 D_real: 0.996 D_fake: 0.955 +(epoch: 420, iters: 5454, time: 0.063) G_GAN: 0.241 G_GAN_Feat: 0.929 G_ID: 0.116 G_Rec: 0.418 D_GP: 0.046 D_real: 0.877 D_fake: 0.762 +(epoch: 420, iters: 5854, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.882 G_ID: 0.102 G_Rec: 0.336 D_GP: 0.083 D_real: 0.611 D_fake: 0.728 +(epoch: 420, iters: 6254, time: 0.063) G_GAN: 0.442 G_GAN_Feat: 0.936 G_ID: 0.138 G_Rec: 0.457 D_GP: 0.035 D_real: 1.051 D_fake: 0.561 +(epoch: 420, iters: 6654, time: 0.063) G_GAN: 0.237 G_GAN_Feat: 0.701 G_ID: 0.086 G_Rec: 0.307 D_GP: 0.047 D_real: 1.140 D_fake: 0.763 +(epoch: 420, iters: 7054, time: 0.063) G_GAN: 0.643 G_GAN_Feat: 0.952 G_ID: 0.137 G_Rec: 0.463 D_GP: 0.038 D_real: 1.136 D_fake: 0.383 +(epoch: 420, iters: 7454, time: 0.063) G_GAN: 0.407 G_GAN_Feat: 0.643 G_ID: 0.090 G_Rec: 0.271 D_GP: 0.043 D_real: 1.285 D_fake: 0.594 +(epoch: 420, iters: 7854, time: 0.063) G_GAN: 0.480 G_GAN_Feat: 0.925 G_ID: 0.126 G_Rec: 0.391 D_GP: 0.043 D_real: 1.072 D_fake: 0.529 +(epoch: 420, iters: 8254, time: 0.063) G_GAN: 0.503 G_GAN_Feat: 0.933 G_ID: 0.098 G_Rec: 0.353 D_GP: 0.282 D_real: 0.645 D_fake: 0.526 +(epoch: 420, iters: 8654, time: 0.064) G_GAN: 0.643 G_GAN_Feat: 1.010 G_ID: 0.116 G_Rec: 0.439 D_GP: 0.037 D_real: 1.175 D_fake: 0.371 +(epoch: 421, iters: 446, time: 0.063) G_GAN: 0.376 G_GAN_Feat: 0.771 G_ID: 0.122 G_Rec: 0.327 D_GP: 0.037 D_real: 1.211 D_fake: 0.640 +(epoch: 421, iters: 846, time: 0.063) G_GAN: 0.577 G_GAN_Feat: 1.018 G_ID: 0.120 G_Rec: 0.499 D_GP: 0.135 D_real: 0.932 D_fake: 0.431 +(epoch: 421, iters: 1246, time: 0.063) G_GAN: 0.283 G_GAN_Feat: 0.789 G_ID: 0.098 G_Rec: 0.318 D_GP: 0.051 D_real: 0.818 D_fake: 0.718 +(epoch: 421, iters: 1646, time: 0.064) G_GAN: 0.443 G_GAN_Feat: 1.042 G_ID: 0.131 G_Rec: 0.459 D_GP: 0.065 D_real: 0.620 D_fake: 0.563 +(epoch: 421, iters: 2046, time: 0.063) G_GAN: 0.112 G_GAN_Feat: 0.854 G_ID: 0.130 G_Rec: 0.334 D_GP: 0.044 D_real: 0.822 D_fake: 0.889 +(epoch: 421, iters: 2446, time: 0.063) G_GAN: 0.676 G_GAN_Feat: 1.279 G_ID: 0.128 G_Rec: 0.467 D_GP: 0.047 D_real: 0.531 D_fake: 0.345 +(epoch: 421, iters: 2846, time: 0.063) G_GAN: 0.250 G_GAN_Feat: 0.842 G_ID: 0.119 G_Rec: 0.339 D_GP: 0.032 D_real: 1.092 D_fake: 0.751 +(epoch: 421, iters: 3246, time: 0.064) G_GAN: 0.535 G_GAN_Feat: 0.991 G_ID: 0.122 G_Rec: 0.458 D_GP: 0.034 D_real: 1.111 D_fake: 0.491 +(epoch: 421, iters: 3646, time: 0.063) G_GAN: -0.159 G_GAN_Feat: 0.712 G_ID: 0.095 G_Rec: 0.301 D_GP: 0.040 D_real: 0.669 D_fake: 1.159 +(epoch: 421, iters: 4046, time: 0.063) G_GAN: 0.416 G_GAN_Feat: 0.971 G_ID: 0.136 G_Rec: 0.484 D_GP: 0.033 D_real: 1.027 D_fake: 0.590 +(epoch: 421, iters: 4446, time: 0.063) G_GAN: 0.431 G_GAN_Feat: 0.990 G_ID: 0.098 G_Rec: 0.338 D_GP: 0.057 D_real: 0.657 D_fake: 0.574 +(epoch: 421, iters: 4846, time: 0.064) G_GAN: 1.212 G_GAN_Feat: 1.140 G_ID: 0.105 G_Rec: 0.446 D_GP: 0.179 D_real: 1.433 D_fake: 0.236 +(epoch: 421, iters: 5246, time: 0.063) G_GAN: 0.358 G_GAN_Feat: 1.009 G_ID: 0.097 G_Rec: 0.334 D_GP: 0.644 D_real: 0.382 D_fake: 0.708 +(epoch: 421, iters: 5646, time: 0.063) G_GAN: 0.298 G_GAN_Feat: 1.038 G_ID: 0.133 G_Rec: 0.468 D_GP: 0.072 D_real: 0.572 D_fake: 0.706 +(epoch: 421, iters: 6046, time: 0.063) G_GAN: 0.347 G_GAN_Feat: 0.963 G_ID: 0.097 G_Rec: 0.349 D_GP: 0.078 D_real: 0.379 D_fake: 0.665 +(epoch: 421, iters: 6446, time: 0.064) G_GAN: 0.369 G_GAN_Feat: 1.223 G_ID: 0.165 G_Rec: 0.464 D_GP: 0.069 D_real: 0.773 D_fake: 0.711 +(epoch: 421, iters: 6846, time: 0.063) G_GAN: 0.190 G_GAN_Feat: 0.975 G_ID: 0.099 G_Rec: 0.364 D_GP: 0.072 D_real: 0.331 D_fake: 0.812 +(epoch: 421, iters: 7246, time: 0.063) G_GAN: 0.490 G_GAN_Feat: 1.242 G_ID: 0.153 G_Rec: 0.485 D_GP: 0.060 D_real: 0.315 D_fake: 0.515 +(epoch: 421, iters: 7646, time: 0.063) G_GAN: 0.534 G_GAN_Feat: 0.817 G_ID: 0.087 G_Rec: 0.348 D_GP: 0.037 D_real: 1.109 D_fake: 0.480 +(epoch: 421, iters: 8046, time: 0.064) G_GAN: 0.241 G_GAN_Feat: 0.802 G_ID: 0.120 G_Rec: 0.422 D_GP: 0.026 D_real: 1.051 D_fake: 0.759 +(epoch: 421, iters: 8446, time: 0.063) G_GAN: 0.155 G_GAN_Feat: 0.579 G_ID: 0.093 G_Rec: 0.284 D_GP: 0.026 D_real: 1.107 D_fake: 0.845 +(epoch: 422, iters: 238, time: 0.063) G_GAN: 0.459 G_GAN_Feat: 0.847 G_ID: 0.120 G_Rec: 0.413 D_GP: 0.030 D_real: 1.177 D_fake: 0.547 +(epoch: 422, iters: 638, time: 0.063) G_GAN: 0.253 G_GAN_Feat: 0.612 G_ID: 0.095 G_Rec: 0.344 D_GP: 0.030 D_real: 1.178 D_fake: 0.748 +(epoch: 422, iters: 1038, time: 0.064) G_GAN: 0.447 G_GAN_Feat: 0.880 G_ID: 0.113 G_Rec: 0.422 D_GP: 0.047 D_real: 1.069 D_fake: 0.566 +(epoch: 422, iters: 1438, time: 0.063) G_GAN: 0.181 G_GAN_Feat: 0.617 G_ID: 0.096 G_Rec: 0.287 D_GP: 0.035 D_real: 1.117 D_fake: 0.820 +(epoch: 422, iters: 1838, time: 0.063) G_GAN: 0.516 G_GAN_Feat: 0.887 G_ID: 0.101 G_Rec: 0.411 D_GP: 0.039 D_real: 1.112 D_fake: 0.517 +(epoch: 422, iters: 2238, time: 0.063) G_GAN: -0.082 G_GAN_Feat: 0.618 G_ID: 0.095 G_Rec: 0.293 D_GP: 0.030 D_real: 0.766 D_fake: 1.082 +(epoch: 422, iters: 2638, time: 0.064) G_GAN: 0.416 G_GAN_Feat: 0.882 G_ID: 0.112 G_Rec: 0.432 D_GP: 0.037 D_real: 1.122 D_fake: 0.599 +(epoch: 422, iters: 3038, time: 0.063) G_GAN: -0.025 G_GAN_Feat: 0.657 G_ID: 0.114 G_Rec: 0.302 D_GP: 0.035 D_real: 0.796 D_fake: 1.025 +(epoch: 422, iters: 3438, time: 0.063) G_GAN: 0.311 G_GAN_Feat: 0.906 G_ID: 0.107 G_Rec: 0.426 D_GP: 0.036 D_real: 0.897 D_fake: 0.696 +(epoch: 422, iters: 3838, time: 0.063) G_GAN: 0.108 G_GAN_Feat: 0.708 G_ID: 0.101 G_Rec: 0.341 D_GP: 0.038 D_real: 0.949 D_fake: 0.894 +(epoch: 422, iters: 4238, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 0.882 G_ID: 0.127 G_Rec: 0.446 D_GP: 0.034 D_real: 0.903 D_fake: 0.784 +(epoch: 422, iters: 4638, time: 0.063) G_GAN: -0.196 G_GAN_Feat: 0.767 G_ID: 0.119 G_Rec: 0.364 D_GP: 0.067 D_real: 0.471 D_fake: 1.196 +(epoch: 422, iters: 5038, time: 0.063) G_GAN: 0.376 G_GAN_Feat: 0.966 G_ID: 0.126 G_Rec: 0.490 D_GP: 0.039 D_real: 0.916 D_fake: 0.633 +(epoch: 422, iters: 5438, time: 0.063) G_GAN: 0.125 G_GAN_Feat: 0.697 G_ID: 0.116 G_Rec: 0.307 D_GP: 0.041 D_real: 0.892 D_fake: 0.875 +(epoch: 422, iters: 5838, time: 0.064) G_GAN: 0.228 G_GAN_Feat: 0.907 G_ID: 0.115 G_Rec: 0.456 D_GP: 0.036 D_real: 0.861 D_fake: 0.773 +(epoch: 422, iters: 6238, time: 0.063) G_GAN: 0.227 G_GAN_Feat: 0.691 G_ID: 0.100 G_Rec: 0.302 D_GP: 0.031 D_real: 1.094 D_fake: 0.774 +(epoch: 422, iters: 6638, time: 0.063) G_GAN: 0.458 G_GAN_Feat: 0.966 G_ID: 0.112 G_Rec: 0.439 D_GP: 0.055 D_real: 1.055 D_fake: 0.544 +(epoch: 422, iters: 7038, time: 0.063) G_GAN: 0.202 G_GAN_Feat: 0.831 G_ID: 0.102 G_Rec: 0.333 D_GP: 0.126 D_real: 0.808 D_fake: 0.800 +(epoch: 422, iters: 7438, time: 0.064) G_GAN: 0.351 G_GAN_Feat: 0.916 G_ID: 0.128 G_Rec: 0.422 D_GP: 0.031 D_real: 1.007 D_fake: 0.650 +(epoch: 422, iters: 7838, time: 0.063) G_GAN: 0.234 G_GAN_Feat: 0.604 G_ID: 0.096 G_Rec: 0.291 D_GP: 0.027 D_real: 1.219 D_fake: 0.766 +(epoch: 422, iters: 8238, time: 0.063) G_GAN: 0.485 G_GAN_Feat: 0.915 G_ID: 0.118 G_Rec: 0.425 D_GP: 0.032 D_real: 1.266 D_fake: 0.520 +(epoch: 422, iters: 8638, time: 0.063) G_GAN: 0.208 G_GAN_Feat: 0.704 G_ID: 0.102 G_Rec: 0.320 D_GP: 0.035 D_real: 1.066 D_fake: 0.792 +(epoch: 423, iters: 430, time: 0.064) G_GAN: 0.622 G_GAN_Feat: 0.925 G_ID: 0.109 G_Rec: 0.424 D_GP: 0.050 D_real: 1.197 D_fake: 0.395 +(epoch: 423, iters: 830, time: 0.063) G_GAN: -0.040 G_GAN_Feat: 0.766 G_ID: 0.108 G_Rec: 0.358 D_GP: 0.062 D_real: 0.821 D_fake: 1.040 +(epoch: 423, iters: 1230, time: 0.063) G_GAN: 0.518 G_GAN_Feat: 0.987 G_ID: 0.112 G_Rec: 0.484 D_GP: 0.068 D_real: 0.872 D_fake: 0.509 +(epoch: 423, iters: 1630, time: 0.063) G_GAN: 0.139 G_GAN_Feat: 0.756 G_ID: 0.099 G_Rec: 0.295 D_GP: 0.051 D_real: 0.779 D_fake: 0.861 +(epoch: 423, iters: 2030, time: 0.064) G_GAN: 0.418 G_GAN_Feat: 0.910 G_ID: 0.136 G_Rec: 0.413 D_GP: 0.058 D_real: 0.891 D_fake: 0.585 +(epoch: 423, iters: 2430, time: 0.063) G_GAN: 0.436 G_GAN_Feat: 0.783 G_ID: 0.108 G_Rec: 0.310 D_GP: 0.067 D_real: 0.959 D_fake: 0.575 +(epoch: 423, iters: 2830, time: 0.063) G_GAN: 0.418 G_GAN_Feat: 0.910 G_ID: 0.105 G_Rec: 0.394 D_GP: 0.036 D_real: 1.052 D_fake: 0.583 +(epoch: 423, iters: 3230, time: 0.063) G_GAN: 0.246 G_GAN_Feat: 0.730 G_ID: 0.083 G_Rec: 0.304 D_GP: 0.038 D_real: 1.088 D_fake: 0.754 +(epoch: 423, iters: 3630, time: 0.064) G_GAN: 0.671 G_GAN_Feat: 0.981 G_ID: 0.108 G_Rec: 0.429 D_GP: 0.126 D_real: 0.951 D_fake: 0.370 +(epoch: 423, iters: 4030, time: 0.063) G_GAN: 0.148 G_GAN_Feat: 0.776 G_ID: 0.108 G_Rec: 0.307 D_GP: 0.054 D_real: 0.771 D_fake: 0.852 +(epoch: 423, iters: 4430, time: 0.063) G_GAN: 0.315 G_GAN_Feat: 1.010 G_ID: 0.113 G_Rec: 0.494 D_GP: 0.043 D_real: 0.852 D_fake: 0.700 +(epoch: 423, iters: 4830, time: 0.063) G_GAN: 0.199 G_GAN_Feat: 0.780 G_ID: 0.086 G_Rec: 0.315 D_GP: 0.067 D_real: 0.911 D_fake: 0.803 +(epoch: 423, iters: 5230, time: 0.064) G_GAN: 0.171 G_GAN_Feat: 0.978 G_ID: 0.123 G_Rec: 0.443 D_GP: 0.046 D_real: 0.670 D_fake: 0.829 +(epoch: 423, iters: 5630, time: 0.064) G_GAN: -0.109 G_GAN_Feat: 0.899 G_ID: 0.092 G_Rec: 0.373 D_GP: 0.155 D_real: 0.205 D_fake: 1.111 +(epoch: 423, iters: 6030, time: 0.063) G_GAN: 0.274 G_GAN_Feat: 0.974 G_ID: 0.135 G_Rec: 0.424 D_GP: 0.040 D_real: 0.683 D_fake: 0.731 +(epoch: 423, iters: 6430, time: 0.063) G_GAN: 0.108 G_GAN_Feat: 0.861 G_ID: 0.101 G_Rec: 0.357 D_GP: 0.094 D_real: 0.569 D_fake: 0.892 +(epoch: 423, iters: 6830, time: 0.064) G_GAN: 0.629 G_GAN_Feat: 0.995 G_ID: 0.116 G_Rec: 0.490 D_GP: 0.052 D_real: 0.995 D_fake: 0.402 +(epoch: 423, iters: 7230, time: 0.063) G_GAN: 0.221 G_GAN_Feat: 0.752 G_ID: 0.097 G_Rec: 0.340 D_GP: 0.034 D_real: 1.074 D_fake: 0.779 +(epoch: 423, iters: 7630, time: 0.063) G_GAN: 0.546 G_GAN_Feat: 0.962 G_ID: 0.114 G_Rec: 0.430 D_GP: 0.043 D_real: 1.177 D_fake: 0.500 +(epoch: 423, iters: 8030, time: 0.063) G_GAN: 0.442 G_GAN_Feat: 0.835 G_ID: 0.091 G_Rec: 0.315 D_GP: 0.054 D_real: 1.045 D_fake: 0.562 +(epoch: 423, iters: 8430, time: 0.064) G_GAN: 0.382 G_GAN_Feat: 0.997 G_ID: 0.104 G_Rec: 0.529 D_GP: 0.036 D_real: 0.774 D_fake: 0.622 +(epoch: 424, iters: 222, time: 0.063) G_GAN: 0.245 G_GAN_Feat: 0.826 G_ID: 0.111 G_Rec: 0.297 D_GP: 0.050 D_real: 0.698 D_fake: 0.761 +(epoch: 424, iters: 622, time: 0.063) G_GAN: 0.446 G_GAN_Feat: 0.869 G_ID: 0.114 G_Rec: 0.415 D_GP: 0.026 D_real: 1.185 D_fake: 0.557 +(epoch: 424, iters: 1022, time: 0.063) G_GAN: 0.259 G_GAN_Feat: 0.692 G_ID: 0.103 G_Rec: 0.305 D_GP: 0.032 D_real: 1.113 D_fake: 0.742 +(epoch: 424, iters: 1422, time: 0.064) G_GAN: 0.317 G_GAN_Feat: 1.008 G_ID: 0.111 G_Rec: 0.450 D_GP: 0.050 D_real: 0.725 D_fake: 0.684 +(epoch: 424, iters: 1822, time: 0.063) G_GAN: 0.479 G_GAN_Feat: 0.781 G_ID: 0.093 G_Rec: 0.301 D_GP: 0.045 D_real: 0.999 D_fake: 0.532 +(epoch: 424, iters: 2222, time: 0.063) G_GAN: 0.962 G_GAN_Feat: 1.097 G_ID: 0.120 G_Rec: 0.462 D_GP: 0.139 D_real: 0.944 D_fake: 0.201 +(epoch: 424, iters: 2622, time: 0.063) G_GAN: 0.223 G_GAN_Feat: 0.715 G_ID: 0.093 G_Rec: 0.304 D_GP: 0.036 D_real: 1.119 D_fake: 0.780 +(epoch: 424, iters: 3022, time: 0.064) G_GAN: 0.512 G_GAN_Feat: 0.880 G_ID: 0.133 G_Rec: 0.382 D_GP: 0.029 D_real: 1.202 D_fake: 0.524 +(epoch: 424, iters: 3422, time: 0.063) G_GAN: 0.479 G_GAN_Feat: 0.907 G_ID: 0.105 G_Rec: 0.342 D_GP: 0.136 D_real: 0.499 D_fake: 0.588 +(epoch: 424, iters: 3822, time: 0.063) G_GAN: 0.869 G_GAN_Feat: 1.011 G_ID: 0.131 G_Rec: 0.454 D_GP: 0.045 D_real: 1.296 D_fake: 0.209 +(epoch: 424, iters: 4222, time: 0.063) G_GAN: 0.123 G_GAN_Feat: 0.700 G_ID: 0.089 G_Rec: 0.309 D_GP: 0.025 D_real: 1.073 D_fake: 0.877 +(epoch: 424, iters: 4622, time: 0.064) G_GAN: 0.241 G_GAN_Feat: 0.960 G_ID: 0.103 G_Rec: 0.437 D_GP: 0.031 D_real: 0.849 D_fake: 0.765 +(epoch: 424, iters: 5022, time: 0.063) G_GAN: -0.190 G_GAN_Feat: 0.747 G_ID: 0.108 G_Rec: 0.297 D_GP: 0.033 D_real: 0.817 D_fake: 1.191 +(epoch: 424, iters: 5422, time: 0.063) G_GAN: 0.808 G_GAN_Feat: 1.071 G_ID: 0.105 G_Rec: 0.485 D_GP: 0.034 D_real: 0.946 D_fake: 0.274 +(epoch: 424, iters: 5822, time: 0.063) G_GAN: 0.190 G_GAN_Feat: 0.788 G_ID: 0.101 G_Rec: 0.313 D_GP: 0.040 D_real: 0.954 D_fake: 0.811 +(epoch: 424, iters: 6222, time: 0.064) G_GAN: 0.243 G_GAN_Feat: 1.124 G_ID: 0.131 G_Rec: 0.444 D_GP: 0.042 D_real: 0.984 D_fake: 0.761 +(epoch: 424, iters: 6622, time: 0.063) G_GAN: -0.164 G_GAN_Feat: 0.752 G_ID: 0.121 G_Rec: 0.325 D_GP: 0.031 D_real: 0.752 D_fake: 1.164 +(epoch: 424, iters: 7022, time: 0.063) G_GAN: 0.260 G_GAN_Feat: 0.974 G_ID: 0.113 G_Rec: 0.457 D_GP: 0.035 D_real: 0.852 D_fake: 0.742 +(epoch: 424, iters: 7422, time: 0.063) G_GAN: 0.350 G_GAN_Feat: 0.750 G_ID: 0.090 G_Rec: 0.313 D_GP: 0.035 D_real: 1.176 D_fake: 0.652 +(epoch: 424, iters: 7822, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 0.935 G_ID: 0.110 G_Rec: 0.419 D_GP: 0.027 D_real: 0.901 D_fake: 0.784 +(epoch: 424, iters: 8222, time: 0.063) G_GAN: -0.044 G_GAN_Feat: 0.764 G_ID: 0.100 G_Rec: 0.322 D_GP: 0.034 D_real: 0.742 D_fake: 1.045 +(epoch: 424, iters: 8622, time: 0.063) G_GAN: 0.254 G_GAN_Feat: 1.003 G_ID: 0.111 G_Rec: 0.425 D_GP: 0.147 D_real: 0.652 D_fake: 0.747 +(epoch: 425, iters: 414, time: 0.063) G_GAN: 0.214 G_GAN_Feat: 0.683 G_ID: 0.123 G_Rec: 0.278 D_GP: 0.031 D_real: 1.165 D_fake: 0.786 +(epoch: 425, iters: 814, time: 0.064) G_GAN: 0.849 G_GAN_Feat: 1.068 G_ID: 0.107 G_Rec: 0.485 D_GP: 0.111 D_real: 1.138 D_fake: 0.230 +(epoch: 425, iters: 1214, time: 0.063) G_GAN: 0.504 G_GAN_Feat: 0.728 G_ID: 0.096 G_Rec: 0.310 D_GP: 0.031 D_real: 1.430 D_fake: 0.504 +(epoch: 425, iters: 1614, time: 0.063) G_GAN: 0.214 G_GAN_Feat: 0.852 G_ID: 0.134 G_Rec: 0.354 D_GP: 0.038 D_real: 0.920 D_fake: 0.786 +(epoch: 425, iters: 2014, time: 0.063) G_GAN: 0.030 G_GAN_Feat: 0.739 G_ID: 0.128 G_Rec: 0.299 D_GP: 0.043 D_real: 0.943 D_fake: 0.970 +(epoch: 425, iters: 2414, time: 0.064) G_GAN: 0.696 G_GAN_Feat: 0.861 G_ID: 0.132 G_Rec: 0.419 D_GP: 0.034 D_real: 1.407 D_fake: 0.330 +(epoch: 425, iters: 2814, time: 0.063) G_GAN: 0.143 G_GAN_Feat: 0.644 G_ID: 0.105 G_Rec: 0.287 D_GP: 0.030 D_real: 1.033 D_fake: 0.857 +(epoch: 425, iters: 3214, time: 0.063) G_GAN: 0.397 G_GAN_Feat: 0.875 G_ID: 0.120 G_Rec: 0.434 D_GP: 0.037 D_real: 1.033 D_fake: 0.615 +(epoch: 425, iters: 3614, time: 0.063) G_GAN: 0.035 G_GAN_Feat: 0.696 G_ID: 0.107 G_Rec: 0.318 D_GP: 0.044 D_real: 0.885 D_fake: 0.965 +(epoch: 425, iters: 4014, time: 0.063) G_GAN: 0.194 G_GAN_Feat: 0.910 G_ID: 0.111 G_Rec: 0.406 D_GP: 0.057 D_real: 0.761 D_fake: 0.807 +(epoch: 425, iters: 4414, time: 0.063) G_GAN: 0.018 G_GAN_Feat: 0.732 G_ID: 0.093 G_Rec: 0.321 D_GP: 0.056 D_real: 0.805 D_fake: 0.982 +(epoch: 425, iters: 4814, time: 0.063) G_GAN: 0.223 G_GAN_Feat: 0.843 G_ID: 0.129 G_Rec: 0.387 D_GP: 0.032 D_real: 0.990 D_fake: 0.777 +(epoch: 425, iters: 5214, time: 0.064) G_GAN: 0.167 G_GAN_Feat: 0.819 G_ID: 0.092 G_Rec: 0.360 D_GP: 0.084 D_real: 0.753 D_fake: 0.834 +(epoch: 425, iters: 5614, time: 0.063) G_GAN: 0.247 G_GAN_Feat: 0.939 G_ID: 0.113 G_Rec: 0.449 D_GP: 0.038 D_real: 0.906 D_fake: 0.754 +(epoch: 425, iters: 6014, time: 0.063) G_GAN: 0.247 G_GAN_Feat: 0.686 G_ID: 0.099 G_Rec: 0.283 D_GP: 0.052 D_real: 1.038 D_fake: 0.753 +(epoch: 425, iters: 6414, time: 0.063) G_GAN: 0.917 G_GAN_Feat: 0.970 G_ID: 0.102 G_Rec: 0.435 D_GP: 0.038 D_real: 1.505 D_fake: 0.173 +(epoch: 425, iters: 6814, time: 0.064) G_GAN: 0.136 G_GAN_Feat: 0.766 G_ID: 0.110 G_Rec: 0.304 D_GP: 0.033 D_real: 0.848 D_fake: 0.865 +(epoch: 425, iters: 7214, time: 0.063) G_GAN: 0.529 G_GAN_Feat: 0.988 G_ID: 0.115 G_Rec: 0.441 D_GP: 0.033 D_real: 1.092 D_fake: 0.474 +(epoch: 425, iters: 7614, time: 0.063) G_GAN: 0.290 G_GAN_Feat: 0.806 G_ID: 0.112 G_Rec: 0.312 D_GP: 0.046 D_real: 0.861 D_fake: 0.731 +(epoch: 425, iters: 8014, time: 0.063) G_GAN: 0.491 G_GAN_Feat: 0.907 G_ID: 0.145 G_Rec: 0.474 D_GP: 0.034 D_real: 1.101 D_fake: 0.515 +(epoch: 425, iters: 8414, time: 0.064) G_GAN: 0.271 G_GAN_Feat: 0.690 G_ID: 0.113 G_Rec: 0.333 D_GP: 0.031 D_real: 1.146 D_fake: 0.731 +(epoch: 426, iters: 206, time: 0.063) G_GAN: 0.746 G_GAN_Feat: 0.903 G_ID: 0.114 G_Rec: 0.446 D_GP: 0.035 D_real: 1.331 D_fake: 0.345 +(epoch: 426, iters: 606, time: 0.063) G_GAN: 0.028 G_GAN_Feat: 0.817 G_ID: 0.095 G_Rec: 0.351 D_GP: 0.061 D_real: 0.648 D_fake: 0.972 +(epoch: 426, iters: 1006, time: 0.063) G_GAN: 0.474 G_GAN_Feat: 0.867 G_ID: 0.122 G_Rec: 0.392 D_GP: 0.036 D_real: 1.146 D_fake: 0.545 +(epoch: 426, iters: 1406, time: 0.064) G_GAN: 0.184 G_GAN_Feat: 0.803 G_ID: 0.104 G_Rec: 0.373 D_GP: 0.042 D_real: 0.956 D_fake: 0.818 +(epoch: 426, iters: 1806, time: 0.063) G_GAN: 0.716 G_GAN_Feat: 1.045 G_ID: 0.106 G_Rec: 0.486 D_GP: 0.033 D_real: 1.416 D_fake: 0.305 +(epoch: 426, iters: 2206, time: 0.063) G_GAN: 0.216 G_GAN_Feat: 0.706 G_ID: 0.088 G_Rec: 0.267 D_GP: 0.039 D_real: 1.048 D_fake: 0.784 +(epoch: 426, iters: 2606, time: 0.063) G_GAN: 0.434 G_GAN_Feat: 0.916 G_ID: 0.100 G_Rec: 0.440 D_GP: 0.027 D_real: 1.137 D_fake: 0.572 +(epoch: 426, iters: 3006, time: 0.064) G_GAN: 0.248 G_GAN_Feat: 0.774 G_ID: 0.090 G_Rec: 0.298 D_GP: 0.032 D_real: 1.020 D_fake: 0.752 +(epoch: 426, iters: 3406, time: 0.063) G_GAN: 0.445 G_GAN_Feat: 0.951 G_ID: 0.137 G_Rec: 0.397 D_GP: 0.039 D_real: 1.055 D_fake: 0.574 +(epoch: 426, iters: 3806, time: 0.063) G_GAN: -0.328 G_GAN_Feat: 1.137 G_ID: 0.119 G_Rec: 0.375 D_GP: 0.220 D_real: 0.927 D_fake: 1.328 +(epoch: 426, iters: 4206, time: 0.063) G_GAN: 0.348 G_GAN_Feat: 0.880 G_ID: 0.126 G_Rec: 0.462 D_GP: 0.024 D_real: 1.076 D_fake: 0.658 +(epoch: 426, iters: 4606, time: 0.064) G_GAN: -0.098 G_GAN_Feat: 0.696 G_ID: 0.092 G_Rec: 0.311 D_GP: 0.037 D_real: 0.810 D_fake: 1.098 +(epoch: 426, iters: 5006, time: 0.063) G_GAN: 0.276 G_GAN_Feat: 0.955 G_ID: 0.129 G_Rec: 0.436 D_GP: 0.063 D_real: 0.751 D_fake: 0.726 +(epoch: 426, iters: 5406, time: 0.063) G_GAN: 0.359 G_GAN_Feat: 0.823 G_ID: 0.103 G_Rec: 0.343 D_GP: 0.044 D_real: 0.845 D_fake: 0.645 +(epoch: 426, iters: 5806, time: 0.063) G_GAN: 0.337 G_GAN_Feat: 0.897 G_ID: 0.114 G_Rec: 0.414 D_GP: 0.035 D_real: 0.999 D_fake: 0.668 +(epoch: 426, iters: 6206, time: 0.064) G_GAN: 0.126 G_GAN_Feat: 0.717 G_ID: 0.092 G_Rec: 0.314 D_GP: 0.033 D_real: 0.986 D_fake: 0.874 +(epoch: 426, iters: 6606, time: 0.063) G_GAN: 0.324 G_GAN_Feat: 1.064 G_ID: 0.125 G_Rec: 0.438 D_GP: 0.063 D_real: 0.718 D_fake: 0.677 +(epoch: 426, iters: 7006, time: 0.063) G_GAN: 0.179 G_GAN_Feat: 0.767 G_ID: 0.090 G_Rec: 0.319 D_GP: 0.060 D_real: 0.827 D_fake: 0.821 +(epoch: 426, iters: 7406, time: 0.063) G_GAN: 0.669 G_GAN_Feat: 1.028 G_ID: 0.111 G_Rec: 0.441 D_GP: 0.049 D_real: 0.932 D_fake: 0.347 +(epoch: 426, iters: 7806, time: 0.064) G_GAN: -0.125 G_GAN_Feat: 0.771 G_ID: 0.090 G_Rec: 0.330 D_GP: 0.068 D_real: 0.626 D_fake: 1.125 +(epoch: 426, iters: 8206, time: 0.063) G_GAN: 0.573 G_GAN_Feat: 1.013 G_ID: 0.106 G_Rec: 0.491 D_GP: 0.030 D_real: 0.967 D_fake: 0.461 +(epoch: 426, iters: 8606, time: 0.063) G_GAN: 0.355 G_GAN_Feat: 0.839 G_ID: 0.108 G_Rec: 0.310 D_GP: 0.067 D_real: 0.961 D_fake: 0.647 +(epoch: 427, iters: 398, time: 0.063) G_GAN: 0.832 G_GAN_Feat: 1.136 G_ID: 0.117 G_Rec: 0.452 D_GP: 0.113 D_real: 0.678 D_fake: 0.328 +(epoch: 427, iters: 798, time: 0.064) G_GAN: -0.039 G_GAN_Feat: 0.724 G_ID: 0.119 G_Rec: 0.315 D_GP: 0.034 D_real: 0.835 D_fake: 1.040 +(epoch: 427, iters: 1198, time: 0.064) G_GAN: 0.630 G_GAN_Feat: 0.965 G_ID: 0.117 G_Rec: 0.454 D_GP: 0.036 D_real: 1.197 D_fake: 0.387 +(epoch: 427, iters: 1598, time: 0.063) G_GAN: -0.024 G_GAN_Feat: 0.826 G_ID: 0.089 G_Rec: 0.344 D_GP: 0.076 D_real: 0.561 D_fake: 1.025 +(epoch: 427, iters: 1998, time: 0.063) G_GAN: 1.528 G_GAN_Feat: 1.058 G_ID: 0.116 G_Rec: 0.505 D_GP: 0.165 D_real: 1.850 D_fake: 0.025 +(epoch: 427, iters: 2398, time: 0.064) G_GAN: 0.119 G_GAN_Feat: 0.718 G_ID: 0.099 G_Rec: 0.309 D_GP: 0.040 D_real: 0.904 D_fake: 0.881 +(epoch: 427, iters: 2798, time: 0.063) G_GAN: 0.768 G_GAN_Feat: 0.973 G_ID: 0.124 G_Rec: 0.433 D_GP: 0.134 D_real: 1.051 D_fake: 0.351 +(epoch: 427, iters: 3198, time: 0.063) G_GAN: 0.173 G_GAN_Feat: 0.837 G_ID: 0.100 G_Rec: 0.338 D_GP: 0.047 D_real: 0.698 D_fake: 0.828 +(epoch: 427, iters: 3598, time: 0.063) G_GAN: 0.965 G_GAN_Feat: 1.248 G_ID: 0.135 G_Rec: 0.495 D_GP: 0.084 D_real: 0.494 D_fake: 0.150 +(epoch: 427, iters: 3998, time: 0.064) G_GAN: 0.425 G_GAN_Feat: 0.954 G_ID: 0.099 G_Rec: 0.346 D_GP: 0.055 D_real: 0.729 D_fake: 0.605 +(epoch: 427, iters: 4398, time: 0.063) G_GAN: 0.846 G_GAN_Feat: 0.996 G_ID: 0.110 G_Rec: 0.381 D_GP: 0.038 D_real: 1.394 D_fake: 0.211 +(epoch: 427, iters: 4798, time: 0.063) G_GAN: 0.285 G_GAN_Feat: 0.765 G_ID: 0.116 G_Rec: 0.339 D_GP: 0.033 D_real: 1.064 D_fake: 0.716 +(epoch: 427, iters: 5198, time: 0.063) G_GAN: 0.209 G_GAN_Feat: 0.924 G_ID: 0.136 G_Rec: 0.463 D_GP: 0.031 D_real: 0.901 D_fake: 0.791 +(epoch: 427, iters: 5598, time: 0.064) G_GAN: 0.103 G_GAN_Feat: 0.859 G_ID: 0.091 G_Rec: 0.344 D_GP: 0.352 D_real: 0.583 D_fake: 0.897 +(epoch: 427, iters: 5998, time: 0.063) G_GAN: 0.187 G_GAN_Feat: 0.964 G_ID: 0.124 G_Rec: 0.421 D_GP: 0.038 D_real: 0.852 D_fake: 0.815 +(epoch: 427, iters: 6398, time: 0.063) G_GAN: 0.252 G_GAN_Feat: 0.693 G_ID: 0.116 G_Rec: 0.295 D_GP: 0.027 D_real: 1.105 D_fake: 0.748 +(epoch: 427, iters: 6798, time: 0.063) G_GAN: 0.672 G_GAN_Feat: 0.931 G_ID: 0.119 G_Rec: 0.434 D_GP: 0.032 D_real: 1.382 D_fake: 0.343 +(epoch: 427, iters: 7198, time: 0.064) G_GAN: 0.078 G_GAN_Feat: 0.805 G_ID: 0.114 G_Rec: 0.356 D_GP: 0.107 D_real: 0.756 D_fake: 0.924 +(epoch: 427, iters: 7598, time: 0.063) G_GAN: 0.397 G_GAN_Feat: 1.204 G_ID: 0.115 G_Rec: 0.467 D_GP: 0.090 D_real: 0.229 D_fake: 0.606 +(epoch: 427, iters: 7998, time: 0.063) G_GAN: 0.124 G_GAN_Feat: 0.740 G_ID: 0.091 G_Rec: 0.306 D_GP: 0.029 D_real: 1.053 D_fake: 0.877 +(epoch: 427, iters: 8398, time: 0.063) G_GAN: 0.544 G_GAN_Feat: 0.955 G_ID: 0.122 G_Rec: 0.417 D_GP: 0.042 D_real: 1.097 D_fake: 0.490 +(epoch: 428, iters: 190, time: 0.064) G_GAN: 0.424 G_GAN_Feat: 0.761 G_ID: 0.097 G_Rec: 0.299 D_GP: 0.052 D_real: 1.226 D_fake: 0.656 +(epoch: 428, iters: 590, time: 0.063) G_GAN: 0.763 G_GAN_Feat: 1.187 G_ID: 0.134 G_Rec: 0.524 D_GP: 0.151 D_real: 0.419 D_fake: 0.306 +(epoch: 428, iters: 990, time: 0.063) G_GAN: 0.535 G_GAN_Feat: 0.816 G_ID: 0.109 G_Rec: 0.315 D_GP: 0.060 D_real: 1.268 D_fake: 0.509 +(epoch: 428, iters: 1390, time: 0.063) G_GAN: 0.498 G_GAN_Feat: 1.129 G_ID: 0.146 G_Rec: 0.450 D_GP: 0.091 D_real: 0.368 D_fake: 0.504 +(epoch: 428, iters: 1790, time: 0.064) G_GAN: 0.865 G_GAN_Feat: 0.956 G_ID: 0.109 G_Rec: 0.338 D_GP: 0.050 D_real: 0.883 D_fake: 0.204 +(epoch: 428, iters: 2190, time: 0.063) G_GAN: 0.955 G_GAN_Feat: 1.040 G_ID: 0.103 G_Rec: 0.433 D_GP: 0.078 D_real: 1.454 D_fake: 0.224 +(epoch: 428, iters: 2590, time: 0.063) G_GAN: 0.107 G_GAN_Feat: 0.649 G_ID: 0.094 G_Rec: 0.263 D_GP: 0.026 D_real: 1.068 D_fake: 0.893 +(epoch: 428, iters: 2990, time: 0.063) G_GAN: 0.514 G_GAN_Feat: 1.101 G_ID: 0.125 G_Rec: 0.488 D_GP: 0.090 D_real: 0.563 D_fake: 0.500 +(epoch: 428, iters: 3390, time: 0.064) G_GAN: 0.442 G_GAN_Feat: 0.897 G_ID: 0.093 G_Rec: 0.300 D_GP: 0.143 D_real: 0.531 D_fake: 0.561 +(epoch: 428, iters: 3790, time: 0.064) G_GAN: 0.662 G_GAN_Feat: 1.053 G_ID: 0.118 G_Rec: 0.433 D_GP: 0.052 D_real: 0.966 D_fake: 0.374 +(epoch: 428, iters: 4190, time: 0.064) G_GAN: 0.328 G_GAN_Feat: 0.817 G_ID: 0.090 G_Rec: 0.318 D_GP: 0.049 D_real: 0.826 D_fake: 0.674 +(epoch: 428, iters: 4590, time: 0.064) G_GAN: 0.169 G_GAN_Feat: 1.190 G_ID: 0.144 G_Rec: 0.439 D_GP: 0.044 D_real: 1.077 D_fake: 0.837 +(epoch: 428, iters: 4990, time: 0.064) G_GAN: 0.240 G_GAN_Feat: 0.610 G_ID: 0.097 G_Rec: 0.297 D_GP: 0.022 D_real: 1.201 D_fake: 0.760 +(epoch: 428, iters: 5390, time: 0.063) G_GAN: 0.533 G_GAN_Feat: 0.913 G_ID: 0.105 G_Rec: 0.429 D_GP: 0.031 D_real: 1.190 D_fake: 0.491 +(epoch: 428, iters: 5790, time: 0.063) G_GAN: 0.191 G_GAN_Feat: 0.693 G_ID: 0.092 G_Rec: 0.304 D_GP: 0.037 D_real: 1.011 D_fake: 0.809 +(epoch: 428, iters: 6190, time: 0.063) G_GAN: 0.236 G_GAN_Feat: 0.887 G_ID: 0.123 G_Rec: 0.450 D_GP: 0.039 D_real: 0.760 D_fake: 0.765 +(epoch: 428, iters: 6590, time: 0.064) G_GAN: 0.035 G_GAN_Feat: 0.763 G_ID: 0.106 G_Rec: 0.327 D_GP: 0.061 D_real: 0.926 D_fake: 0.966 +(epoch: 428, iters: 6990, time: 0.063) G_GAN: 0.642 G_GAN_Feat: 0.908 G_ID: 0.112 G_Rec: 0.438 D_GP: 0.040 D_real: 1.195 D_fake: 0.402 +(epoch: 428, iters: 7390, time: 0.063) G_GAN: 0.058 G_GAN_Feat: 0.812 G_ID: 0.086 G_Rec: 0.346 D_GP: 0.146 D_real: 0.801 D_fake: 0.942 +(epoch: 428, iters: 7790, time: 0.063) G_GAN: 0.409 G_GAN_Feat: 0.963 G_ID: 0.114 G_Rec: 0.406 D_GP: 0.044 D_real: 0.891 D_fake: 0.595 +(epoch: 428, iters: 8190, time: 0.064) G_GAN: 0.340 G_GAN_Feat: 0.786 G_ID: 0.094 G_Rec: 0.320 D_GP: 0.068 D_real: 0.978 D_fake: 0.666 +(epoch: 428, iters: 8590, time: 0.063) G_GAN: 0.313 G_GAN_Feat: 1.035 G_ID: 0.144 G_Rec: 0.417 D_GP: 0.060 D_real: 0.576 D_fake: 0.688 +(epoch: 429, iters: 382, time: 0.063) G_GAN: 0.439 G_GAN_Feat: 0.815 G_ID: 0.099 G_Rec: 0.334 D_GP: 0.061 D_real: 0.999 D_fake: 0.563 +(epoch: 429, iters: 782, time: 0.063) G_GAN: 0.384 G_GAN_Feat: 0.975 G_ID: 0.124 G_Rec: 0.411 D_GP: 0.043 D_real: 0.904 D_fake: 0.618 +(epoch: 429, iters: 1182, time: 0.064) G_GAN: -0.109 G_GAN_Feat: 0.890 G_ID: 0.100 G_Rec: 0.349 D_GP: 0.141 D_real: 0.510 D_fake: 1.109 +(epoch: 429, iters: 1582, time: 0.063) G_GAN: 0.679 G_GAN_Feat: 1.033 G_ID: 0.098 G_Rec: 0.417 D_GP: 0.050 D_real: 1.031 D_fake: 0.338 +(epoch: 429, iters: 1982, time: 0.063) G_GAN: 0.089 G_GAN_Feat: 0.731 G_ID: 0.096 G_Rec: 0.300 D_GP: 0.041 D_real: 0.952 D_fake: 0.911 +(epoch: 429, iters: 2382, time: 0.064) G_GAN: 0.362 G_GAN_Feat: 1.041 G_ID: 0.116 G_Rec: 0.454 D_GP: 0.092 D_real: 0.644 D_fake: 0.640 +(epoch: 429, iters: 2782, time: 0.064) G_GAN: 0.401 G_GAN_Feat: 0.755 G_ID: 0.093 G_Rec: 0.297 D_GP: 0.046 D_real: 1.242 D_fake: 0.691 +(epoch: 429, iters: 3182, time: 0.064) G_GAN: 1.030 G_GAN_Feat: 1.183 G_ID: 0.110 G_Rec: 0.479 D_GP: 0.110 D_real: 0.924 D_fake: 0.184 +(epoch: 429, iters: 3582, time: 0.064) G_GAN: 0.166 G_GAN_Feat: 0.811 G_ID: 0.100 G_Rec: 0.332 D_GP: 0.032 D_real: 1.019 D_fake: 0.834 +(epoch: 429, iters: 3982, time: 0.064) G_GAN: 0.368 G_GAN_Feat: 1.111 G_ID: 0.125 G_Rec: 0.464 D_GP: 0.074 D_real: 0.684 D_fake: 0.644 +(epoch: 429, iters: 4382, time: 0.064) G_GAN: 0.483 G_GAN_Feat: 0.730 G_ID: 0.092 G_Rec: 0.302 D_GP: 0.032 D_real: 1.438 D_fake: 0.520 +(epoch: 429, iters: 4782, time: 0.064) G_GAN: 0.617 G_GAN_Feat: 1.035 G_ID: 0.108 G_Rec: 0.475 D_GP: 0.057 D_real: 1.071 D_fake: 0.395 +(epoch: 429, iters: 5182, time: 0.064) G_GAN: 0.374 G_GAN_Feat: 0.754 G_ID: 0.091 G_Rec: 0.310 D_GP: 0.051 D_real: 0.995 D_fake: 0.629 +(epoch: 429, iters: 5582, time: 0.064) G_GAN: 0.701 G_GAN_Feat: 1.055 G_ID: 0.111 G_Rec: 0.410 D_GP: 0.108 D_real: 0.908 D_fake: 0.418 +(epoch: 429, iters: 5982, time: 0.064) G_GAN: 0.164 G_GAN_Feat: 0.887 G_ID: 0.111 G_Rec: 0.314 D_GP: 0.039 D_real: 0.859 D_fake: 0.836 +(epoch: 429, iters: 6382, time: 0.064) G_GAN: 0.688 G_GAN_Feat: 1.203 G_ID: 0.116 G_Rec: 0.487 D_GP: 0.063 D_real: 0.342 D_fake: 0.336 +(epoch: 429, iters: 6782, time: 0.064) G_GAN: 0.097 G_GAN_Feat: 0.901 G_ID: 0.108 G_Rec: 0.309 D_GP: 0.037 D_real: 0.597 D_fake: 0.904 +(epoch: 429, iters: 7182, time: 0.064) G_GAN: 0.390 G_GAN_Feat: 0.797 G_ID: 0.112 G_Rec: 0.398 D_GP: 0.027 D_real: 1.157 D_fake: 0.611 +(epoch: 429, iters: 7582, time: 0.064) G_GAN: 0.207 G_GAN_Feat: 0.664 G_ID: 0.115 G_Rec: 0.347 D_GP: 0.026 D_real: 1.120 D_fake: 0.796 +(epoch: 429, iters: 7982, time: 0.064) G_GAN: 0.342 G_GAN_Feat: 0.899 G_ID: 0.121 G_Rec: 0.429 D_GP: 0.030 D_real: 1.035 D_fake: 0.663 +(epoch: 429, iters: 8382, time: 0.064) G_GAN: 0.137 G_GAN_Feat: 0.641 G_ID: 0.094 G_Rec: 0.296 D_GP: 0.028 D_real: 1.071 D_fake: 0.863 +(epoch: 430, iters: 174, time: 0.064) G_GAN: 0.308 G_GAN_Feat: 0.855 G_ID: 0.128 G_Rec: 0.408 D_GP: 0.032 D_real: 0.930 D_fake: 0.692 +(epoch: 430, iters: 574, time: 0.064) G_GAN: 0.106 G_GAN_Feat: 0.709 G_ID: 0.120 G_Rec: 0.343 D_GP: 0.035 D_real: 0.857 D_fake: 0.897 +(epoch: 430, iters: 974, time: 0.064) G_GAN: 0.333 G_GAN_Feat: 0.863 G_ID: 0.124 G_Rec: 0.426 D_GP: 0.038 D_real: 0.944 D_fake: 0.673 +(epoch: 430, iters: 1374, time: 0.064) G_GAN: -0.065 G_GAN_Feat: 0.762 G_ID: 0.116 G_Rec: 0.357 D_GP: 0.072 D_real: 0.683 D_fake: 1.065 +(epoch: 430, iters: 1774, time: 0.064) G_GAN: 0.233 G_GAN_Feat: 0.918 G_ID: 0.110 G_Rec: 0.416 D_GP: 0.054 D_real: 0.786 D_fake: 0.769 +(epoch: 430, iters: 2174, time: 0.063) G_GAN: 0.160 G_GAN_Feat: 0.729 G_ID: 0.095 G_Rec: 0.314 D_GP: 0.042 D_real: 0.932 D_fake: 0.841 +(epoch: 430, iters: 2574, time: 0.063) G_GAN: 0.215 G_GAN_Feat: 0.874 G_ID: 0.124 G_Rec: 0.403 D_GP: 0.040 D_real: 0.808 D_fake: 0.785 +(epoch: 430, iters: 2974, time: 0.063) G_GAN: 0.228 G_GAN_Feat: 0.825 G_ID: 0.123 G_Rec: 0.374 D_GP: 0.064 D_real: 0.933 D_fake: 0.780 +(epoch: 430, iters: 3374, time: 0.064) G_GAN: 0.582 G_GAN_Feat: 0.940 G_ID: 0.125 G_Rec: 0.442 D_GP: 0.033 D_real: 1.160 D_fake: 0.425 +(epoch: 430, iters: 3774, time: 0.064) G_GAN: 0.300 G_GAN_Feat: 0.734 G_ID: 0.094 G_Rec: 0.300 D_GP: 0.048 D_real: 1.053 D_fake: 0.701 +(epoch: 430, iters: 4174, time: 0.064) G_GAN: 0.701 G_GAN_Feat: 1.006 G_ID: 0.116 G_Rec: 0.446 D_GP: 0.049 D_real: 1.091 D_fake: 0.328 +(epoch: 430, iters: 4574, time: 0.064) G_GAN: 0.103 G_GAN_Feat: 0.745 G_ID: 0.092 G_Rec: 0.304 D_GP: 0.046 D_real: 0.928 D_fake: 0.897 +(epoch: 430, iters: 4974, time: 0.064) G_GAN: 0.591 G_GAN_Feat: 0.989 G_ID: 0.104 G_Rec: 0.468 D_GP: 0.032 D_real: 1.195 D_fake: 0.427 +(epoch: 430, iters: 5374, time: 0.064) G_GAN: 0.318 G_GAN_Feat: 0.769 G_ID: 0.106 G_Rec: 0.311 D_GP: 0.035 D_real: 1.108 D_fake: 0.683 +(epoch: 430, iters: 5774, time: 0.064) G_GAN: 0.663 G_GAN_Feat: 1.013 G_ID: 0.118 G_Rec: 0.450 D_GP: 0.039 D_real: 1.114 D_fake: 0.349 +(epoch: 430, iters: 6174, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.654 G_ID: 0.102 G_Rec: 0.302 D_GP: 0.033 D_real: 1.209 D_fake: 0.718 +(epoch: 430, iters: 6574, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.906 G_ID: 0.129 G_Rec: 0.443 D_GP: 0.048 D_real: 0.925 D_fake: 0.676 +(epoch: 430, iters: 6974, time: 0.064) G_GAN: 0.333 G_GAN_Feat: 0.715 G_ID: 0.088 G_Rec: 0.301 D_GP: 0.037 D_real: 1.183 D_fake: 0.669 +(epoch: 430, iters: 7374, time: 0.064) G_GAN: 0.487 G_GAN_Feat: 0.978 G_ID: 0.149 G_Rec: 0.449 D_GP: 0.063 D_real: 0.984 D_fake: 0.525 +(epoch: 430, iters: 7774, time: 0.064) G_GAN: -0.058 G_GAN_Feat: 0.732 G_ID: 0.119 G_Rec: 0.291 D_GP: 0.046 D_real: 0.743 D_fake: 1.058 +(epoch: 430, iters: 8174, time: 0.064) G_GAN: 0.579 G_GAN_Feat: 0.944 G_ID: 0.110 G_Rec: 0.432 D_GP: 0.029 D_real: 1.274 D_fake: 0.427 +(epoch: 430, iters: 8574, time: 0.064) G_GAN: 0.269 G_GAN_Feat: 0.729 G_ID: 0.106 G_Rec: 0.319 D_GP: 0.034 D_real: 1.220 D_fake: 0.737 +(epoch: 431, iters: 366, time: 0.064) G_GAN: 0.463 G_GAN_Feat: 0.983 G_ID: 0.112 G_Rec: 0.459 D_GP: 0.043 D_real: 0.979 D_fake: 0.542 +(epoch: 431, iters: 766, time: 0.064) G_GAN: 0.118 G_GAN_Feat: 0.723 G_ID: 0.106 G_Rec: 0.299 D_GP: 0.044 D_real: 0.905 D_fake: 0.886 +(epoch: 431, iters: 1166, time: 0.064) G_GAN: 0.435 G_GAN_Feat: 0.938 G_ID: 0.115 G_Rec: 0.427 D_GP: 0.042 D_real: 0.951 D_fake: 0.577 +(epoch: 431, iters: 1566, time: 0.064) G_GAN: 0.244 G_GAN_Feat: 0.709 G_ID: 0.093 G_Rec: 0.282 D_GP: 0.035 D_real: 1.155 D_fake: 0.756 +(epoch: 431, iters: 1966, time: 0.063) G_GAN: 0.336 G_GAN_Feat: 1.187 G_ID: 0.115 G_Rec: 0.508 D_GP: 0.118 D_real: 0.372 D_fake: 0.678 +(epoch: 431, iters: 2366, time: 0.063) G_GAN: 0.290 G_GAN_Feat: 0.789 G_ID: 0.094 G_Rec: 0.301 D_GP: 0.040 D_real: 0.850 D_fake: 0.711 +(epoch: 431, iters: 2766, time: 0.064) G_GAN: 0.704 G_GAN_Feat: 1.024 G_ID: 0.122 G_Rec: 0.447 D_GP: 0.035 D_real: 1.315 D_fake: 0.312 +(epoch: 431, iters: 3166, time: 0.063) G_GAN: 0.444 G_GAN_Feat: 1.087 G_ID: 0.112 G_Rec: 0.364 D_GP: 0.141 D_real: 0.416 D_fake: 0.563 +(epoch: 431, iters: 3566, time: 0.063) G_GAN: 0.630 G_GAN_Feat: 0.856 G_ID: 0.113 G_Rec: 0.399 D_GP: 0.037 D_real: 1.315 D_fake: 0.427 +(epoch: 431, iters: 3966, time: 0.063) G_GAN: 0.029 G_GAN_Feat: 0.631 G_ID: 0.100 G_Rec: 0.301 D_GP: 0.026 D_real: 0.988 D_fake: 0.971 +(epoch: 431, iters: 4366, time: 0.064) G_GAN: 0.222 G_GAN_Feat: 0.886 G_ID: 0.120 G_Rec: 0.426 D_GP: 0.030 D_real: 0.829 D_fake: 0.782 +(epoch: 431, iters: 4766, time: 0.063) G_GAN: 0.024 G_GAN_Feat: 0.708 G_ID: 0.079 G_Rec: 0.326 D_GP: 0.031 D_real: 0.934 D_fake: 0.976 +(epoch: 431, iters: 5166, time: 0.063) G_GAN: 0.489 G_GAN_Feat: 1.008 G_ID: 0.112 G_Rec: 0.487 D_GP: 0.056 D_real: 1.053 D_fake: 0.559 +(epoch: 431, iters: 5566, time: 0.063) G_GAN: -0.026 G_GAN_Feat: 0.664 G_ID: 0.104 G_Rec: 0.310 D_GP: 0.029 D_real: 0.949 D_fake: 1.027 +(epoch: 431, iters: 5966, time: 0.064) G_GAN: 0.123 G_GAN_Feat: 1.018 G_ID: 0.118 G_Rec: 0.466 D_GP: 0.049 D_real: 0.548 D_fake: 0.880 +(epoch: 431, iters: 6366, time: 0.063) G_GAN: -0.160 G_GAN_Feat: 0.732 G_ID: 0.109 G_Rec: 0.323 D_GP: 0.065 D_real: 0.672 D_fake: 1.161 +(epoch: 431, iters: 6766, time: 0.063) G_GAN: 0.249 G_GAN_Feat: 1.001 G_ID: 0.110 G_Rec: 0.463 D_GP: 0.043 D_real: 0.666 D_fake: 0.754 +(epoch: 431, iters: 7166, time: 0.063) G_GAN: 0.063 G_GAN_Feat: 0.794 G_ID: 0.115 G_Rec: 0.321 D_GP: 0.039 D_real: 1.049 D_fake: 0.937 +(epoch: 431, iters: 7566, time: 0.064) G_GAN: 0.637 G_GAN_Feat: 0.936 G_ID: 0.123 G_Rec: 0.442 D_GP: 0.045 D_real: 1.095 D_fake: 0.407 +(epoch: 431, iters: 7966, time: 0.063) G_GAN: 0.097 G_GAN_Feat: 0.675 G_ID: 0.098 G_Rec: 0.311 D_GP: 0.044 D_real: 0.978 D_fake: 0.904 +(epoch: 431, iters: 8366, time: 0.063) G_GAN: 0.365 G_GAN_Feat: 0.995 G_ID: 0.111 G_Rec: 0.459 D_GP: 0.049 D_real: 0.908 D_fake: 0.639 +(epoch: 432, iters: 158, time: 0.063) G_GAN: 0.126 G_GAN_Feat: 0.829 G_ID: 0.106 G_Rec: 0.332 D_GP: 0.044 D_real: 1.008 D_fake: 0.877 +(epoch: 432, iters: 558, time: 0.064) G_GAN: 0.360 G_GAN_Feat: 0.953 G_ID: 0.117 G_Rec: 0.435 D_GP: 0.038 D_real: 0.876 D_fake: 0.644 +(epoch: 432, iters: 958, time: 0.063) G_GAN: -0.059 G_GAN_Feat: 0.771 G_ID: 0.095 G_Rec: 0.322 D_GP: 0.048 D_real: 0.695 D_fake: 1.059 +(epoch: 432, iters: 1358, time: 0.063) G_GAN: 0.301 G_GAN_Feat: 0.988 G_ID: 0.153 G_Rec: 0.458 D_GP: 0.036 D_real: 0.833 D_fake: 0.700 +(epoch: 432, iters: 1758, time: 0.063) G_GAN: 0.457 G_GAN_Feat: 0.892 G_ID: 0.093 G_Rec: 0.330 D_GP: 0.086 D_real: 1.296 D_fake: 0.554 +(epoch: 432, iters: 2158, time: 0.064) G_GAN: 0.348 G_GAN_Feat: 1.000 G_ID: 0.124 G_Rec: 0.438 D_GP: 0.049 D_real: 0.816 D_fake: 0.654 +(epoch: 432, iters: 2558, time: 0.063) G_GAN: 0.175 G_GAN_Feat: 0.983 G_ID: 0.107 G_Rec: 0.344 D_GP: 0.423 D_real: 0.265 D_fake: 0.835 +(epoch: 432, iters: 2958, time: 0.063) G_GAN: 0.573 G_GAN_Feat: 1.078 G_ID: 0.125 G_Rec: 0.458 D_GP: 0.052 D_real: 0.807 D_fake: 0.438 +(epoch: 432, iters: 3358, time: 0.063) G_GAN: 0.141 G_GAN_Feat: 0.870 G_ID: 0.094 G_Rec: 0.327 D_GP: 0.166 D_real: 0.335 D_fake: 0.860 +(epoch: 432, iters: 3758, time: 0.064) G_GAN: 0.460 G_GAN_Feat: 0.974 G_ID: 0.104 G_Rec: 0.439 D_GP: 0.037 D_real: 1.158 D_fake: 0.554 +(epoch: 432, iters: 4158, time: 0.063) G_GAN: -0.037 G_GAN_Feat: 0.736 G_ID: 0.095 G_Rec: 0.333 D_GP: 0.064 D_real: 0.693 D_fake: 1.038 +(epoch: 432, iters: 4558, time: 0.063) G_GAN: 0.379 G_GAN_Feat: 1.041 G_ID: 0.116 G_Rec: 0.478 D_GP: 0.043 D_real: 1.084 D_fake: 0.627 +(epoch: 432, iters: 4958, time: 0.063) G_GAN: 0.154 G_GAN_Feat: 0.792 G_ID: 0.107 G_Rec: 0.325 D_GP: 0.034 D_real: 0.869 D_fake: 0.846 +(epoch: 432, iters: 5358, time: 0.064) G_GAN: 0.700 G_GAN_Feat: 1.027 G_ID: 0.132 G_Rec: 0.445 D_GP: 0.059 D_real: 1.139 D_fake: 0.439 +(epoch: 432, iters: 5758, time: 0.063) G_GAN: 0.214 G_GAN_Feat: 0.873 G_ID: 0.122 G_Rec: 0.347 D_GP: 0.045 D_real: 0.901 D_fake: 0.787 +(epoch: 432, iters: 6158, time: 0.063) G_GAN: 0.515 G_GAN_Feat: 1.031 G_ID: 0.115 G_Rec: 0.437 D_GP: 0.055 D_real: 0.803 D_fake: 0.496 +(epoch: 432, iters: 6558, time: 0.063) G_GAN: 0.425 G_GAN_Feat: 0.889 G_ID: 0.116 G_Rec: 0.300 D_GP: 0.048 D_real: 0.663 D_fake: 0.584 +(epoch: 432, iters: 6958, time: 0.064) G_GAN: 0.558 G_GAN_Feat: 1.172 G_ID: 0.117 G_Rec: 0.455 D_GP: 0.051 D_real: 0.372 D_fake: 0.449 +(epoch: 432, iters: 7358, time: 0.063) G_GAN: 0.149 G_GAN_Feat: 0.861 G_ID: 0.125 G_Rec: 0.335 D_GP: 0.043 D_real: 0.925 D_fake: 0.851 +(epoch: 432, iters: 7758, time: 0.063) G_GAN: 0.714 G_GAN_Feat: 1.009 G_ID: 0.105 G_Rec: 0.433 D_GP: 0.038 D_real: 1.143 D_fake: 0.343 +(epoch: 432, iters: 8158, time: 0.063) G_GAN: -0.154 G_GAN_Feat: 0.777 G_ID: 0.099 G_Rec: 0.282 D_GP: 0.030 D_real: 0.689 D_fake: 1.154 +(epoch: 432, iters: 8558, time: 0.064) G_GAN: 0.532 G_GAN_Feat: 1.028 G_ID: 0.119 G_Rec: 0.398 D_GP: 0.038 D_real: 0.971 D_fake: 0.470 +(epoch: 433, iters: 350, time: 0.063) G_GAN: 0.295 G_GAN_Feat: 0.753 G_ID: 0.123 G_Rec: 0.320 D_GP: 0.031 D_real: 1.233 D_fake: 0.706 +(epoch: 433, iters: 750, time: 0.063) G_GAN: 0.369 G_GAN_Feat: 0.935 G_ID: 0.118 G_Rec: 0.399 D_GP: 0.028 D_real: 1.035 D_fake: 0.636 +(epoch: 433, iters: 1150, time: 0.063) G_GAN: 0.124 G_GAN_Feat: 0.759 G_ID: 0.094 G_Rec: 0.314 D_GP: 0.029 D_real: 1.058 D_fake: 0.876 +(epoch: 433, iters: 1550, time: 0.064) G_GAN: 0.279 G_GAN_Feat: 0.930 G_ID: 0.107 G_Rec: 0.413 D_GP: 0.037 D_real: 0.951 D_fake: 0.724 +(epoch: 433, iters: 1950, time: 0.063) G_GAN: 0.062 G_GAN_Feat: 0.788 G_ID: 0.090 G_Rec: 0.295 D_GP: 0.031 D_real: 0.918 D_fake: 0.938 +(epoch: 433, iters: 2350, time: 0.063) G_GAN: 0.850 G_GAN_Feat: 1.063 G_ID: 0.124 G_Rec: 0.412 D_GP: 0.072 D_real: 0.975 D_fake: 0.243 +(epoch: 433, iters: 2750, time: 0.064) G_GAN: 0.142 G_GAN_Feat: 0.904 G_ID: 0.105 G_Rec: 0.324 D_GP: 0.046 D_real: 0.540 D_fake: 0.869 +(epoch: 433, iters: 3150, time: 0.064) G_GAN: 0.814 G_GAN_Feat: 1.386 G_ID: 0.128 G_Rec: 0.517 D_GP: 0.047 D_real: 1.185 D_fake: 0.283 +(epoch: 433, iters: 3550, time: 0.063) G_GAN: 0.189 G_GAN_Feat: 0.754 G_ID: 0.107 G_Rec: 0.307 D_GP: 0.034 D_real: 1.044 D_fake: 0.813 +(epoch: 433, iters: 3950, time: 0.063) G_GAN: 0.921 G_GAN_Feat: 0.891 G_ID: 0.115 G_Rec: 0.446 D_GP: 0.034 D_real: 1.563 D_fake: 0.161 +(epoch: 433, iters: 4350, time: 0.064) G_GAN: 0.150 G_GAN_Feat: 0.617 G_ID: 0.101 G_Rec: 0.273 D_GP: 0.027 D_real: 1.115 D_fake: 0.850 +(epoch: 433, iters: 4750, time: 0.064) G_GAN: 0.262 G_GAN_Feat: 0.897 G_ID: 0.122 G_Rec: 0.492 D_GP: 0.041 D_real: 0.855 D_fake: 0.739 +(epoch: 433, iters: 5150, time: 0.063) G_GAN: 0.089 G_GAN_Feat: 0.628 G_ID: 0.092 G_Rec: 0.296 D_GP: 0.032 D_real: 0.993 D_fake: 0.911 +(epoch: 433, iters: 5550, time: 0.063) G_GAN: 0.424 G_GAN_Feat: 0.849 G_ID: 0.111 G_Rec: 0.404 D_GP: 0.038 D_real: 1.104 D_fake: 0.585 +(epoch: 433, iters: 5950, time: 0.064) G_GAN: -0.160 G_GAN_Feat: 0.635 G_ID: 0.106 G_Rec: 0.272 D_GP: 0.037 D_real: 0.740 D_fake: 1.160 +(epoch: 433, iters: 6350, time: 0.064) G_GAN: 0.479 G_GAN_Feat: 0.934 G_ID: 0.118 G_Rec: 0.450 D_GP: 0.041 D_real: 1.089 D_fake: 0.529 +(epoch: 433, iters: 6750, time: 0.063) G_GAN: 0.060 G_GAN_Feat: 0.655 G_ID: 0.101 G_Rec: 0.331 D_GP: 0.034 D_real: 0.924 D_fake: 0.940 +(epoch: 433, iters: 7150, time: 0.063) G_GAN: 0.561 G_GAN_Feat: 0.967 G_ID: 0.114 G_Rec: 0.440 D_GP: 0.063 D_real: 0.890 D_fake: 0.459 +(epoch: 433, iters: 7550, time: 0.063) G_GAN: 0.252 G_GAN_Feat: 0.770 G_ID: 0.107 G_Rec: 0.313 D_GP: 0.162 D_real: 0.708 D_fake: 0.757 +(epoch: 433, iters: 7950, time: 0.064) G_GAN: 0.229 G_GAN_Feat: 0.975 G_ID: 0.123 G_Rec: 0.416 D_GP: 0.046 D_real: 0.748 D_fake: 0.772 +(epoch: 433, iters: 8350, time: 0.063) G_GAN: 0.149 G_GAN_Feat: 0.794 G_ID: 0.102 G_Rec: 0.333 D_GP: 0.044 D_real: 1.012 D_fake: 0.854 +(epoch: 434, iters: 142, time: 0.063) G_GAN: 0.396 G_GAN_Feat: 0.971 G_ID: 0.131 G_Rec: 0.436 D_GP: 0.030 D_real: 1.037 D_fake: 0.610 +(epoch: 434, iters: 542, time: 0.063) G_GAN: 0.264 G_GAN_Feat: 0.782 G_ID: 0.099 G_Rec: 0.309 D_GP: 0.040 D_real: 1.000 D_fake: 0.737 +(epoch: 434, iters: 942, time: 0.064) G_GAN: 0.856 G_GAN_Feat: 0.977 G_ID: 0.106 G_Rec: 0.401 D_GP: 0.050 D_real: 1.326 D_fake: 0.184 +(epoch: 434, iters: 1342, time: 0.063) G_GAN: 0.493 G_GAN_Feat: 0.798 G_ID: 0.085 G_Rec: 0.269 D_GP: 0.039 D_real: 0.919 D_fake: 0.513 +(epoch: 434, iters: 1742, time: 0.063) G_GAN: 0.482 G_GAN_Feat: 1.127 G_ID: 0.124 G_Rec: 0.443 D_GP: 0.042 D_real: 0.246 D_fake: 0.526 +(epoch: 434, iters: 2142, time: 0.063) G_GAN: 0.546 G_GAN_Feat: 0.823 G_ID: 0.110 G_Rec: 0.315 D_GP: 0.043 D_real: 1.387 D_fake: 0.493 +(epoch: 434, iters: 2542, time: 0.064) G_GAN: 0.710 G_GAN_Feat: 1.067 G_ID: 0.120 G_Rec: 0.448 D_GP: 0.048 D_real: 1.075 D_fake: 0.317 +(epoch: 434, iters: 2942, time: 0.064) G_GAN: 0.373 G_GAN_Feat: 0.797 G_ID: 0.107 G_Rec: 0.316 D_GP: 0.031 D_real: 1.072 D_fake: 0.632 +(epoch: 434, iters: 3342, time: 0.063) G_GAN: 0.560 G_GAN_Feat: 0.952 G_ID: 0.125 G_Rec: 0.418 D_GP: 0.039 D_real: 1.220 D_fake: 0.490 +(epoch: 434, iters: 3742, time: 0.063) G_GAN: -0.041 G_GAN_Feat: 0.772 G_ID: 0.093 G_Rec: 0.311 D_GP: 0.038 D_real: 0.881 D_fake: 1.041 +(epoch: 434, iters: 4142, time: 0.064) G_GAN: 0.706 G_GAN_Feat: 1.127 G_ID: 0.104 G_Rec: 0.459 D_GP: 0.031 D_real: 1.344 D_fake: 0.347 +(epoch: 434, iters: 4542, time: 0.063) G_GAN: 0.023 G_GAN_Feat: 0.774 G_ID: 0.110 G_Rec: 0.324 D_GP: 0.031 D_real: 0.925 D_fake: 0.978 +(epoch: 434, iters: 4942, time: 0.063) G_GAN: 0.318 G_GAN_Feat: 0.935 G_ID: 0.122 G_Rec: 0.413 D_GP: 0.038 D_real: 0.914 D_fake: 0.684 +(epoch: 434, iters: 5342, time: 0.063) G_GAN: 0.271 G_GAN_Feat: 0.786 G_ID: 0.108 G_Rec: 0.321 D_GP: 0.036 D_real: 1.025 D_fake: 0.729 +(epoch: 434, iters: 5742, time: 0.063) G_GAN: 0.715 G_GAN_Feat: 1.093 G_ID: 0.117 G_Rec: 0.467 D_GP: 0.044 D_real: 1.114 D_fake: 0.339 +(epoch: 434, iters: 6142, time: 0.063) G_GAN: 0.120 G_GAN_Feat: 0.740 G_ID: 0.087 G_Rec: 0.313 D_GP: 0.036 D_real: 0.924 D_fake: 0.880 +(epoch: 434, iters: 6542, time: 0.063) G_GAN: 0.589 G_GAN_Feat: 1.213 G_ID: 0.126 G_Rec: 0.507 D_GP: 0.281 D_real: 0.396 D_fake: 0.436 +(epoch: 434, iters: 6942, time: 0.064) G_GAN: 0.334 G_GAN_Feat: 0.827 G_ID: 0.107 G_Rec: 0.321 D_GP: 0.040 D_real: 1.162 D_fake: 0.669 +(epoch: 434, iters: 7342, time: 0.063) G_GAN: 0.857 G_GAN_Feat: 1.037 G_ID: 0.115 G_Rec: 0.425 D_GP: 0.054 D_real: 1.160 D_fake: 0.197 +(epoch: 434, iters: 7742, time: 0.063) G_GAN: 0.656 G_GAN_Feat: 0.959 G_ID: 0.094 G_Rec: 0.338 D_GP: 0.093 D_real: 0.511 D_fake: 0.558 +(epoch: 434, iters: 8142, time: 0.063) G_GAN: 0.565 G_GAN_Feat: 1.003 G_ID: 0.114 G_Rec: 0.440 D_GP: 0.034 D_real: 1.090 D_fake: 0.462 +(epoch: 434, iters: 8542, time: 0.064) G_GAN: 0.223 G_GAN_Feat: 0.862 G_ID: 0.108 G_Rec: 0.300 D_GP: 0.042 D_real: 0.603 D_fake: 0.778 +(epoch: 435, iters: 334, time: 0.063) G_GAN: 0.535 G_GAN_Feat: 1.015 G_ID: 0.114 G_Rec: 0.425 D_GP: 0.069 D_real: 0.719 D_fake: 0.485 +(epoch: 435, iters: 734, time: 0.063) G_GAN: 0.480 G_GAN_Feat: 0.957 G_ID: 0.108 G_Rec: 0.331 D_GP: 0.037 D_real: 0.981 D_fake: 0.527 +(epoch: 435, iters: 1134, time: 0.063) G_GAN: 0.606 G_GAN_Feat: 0.961 G_ID: 0.127 G_Rec: 0.416 D_GP: 0.040 D_real: 1.243 D_fake: 0.427 +(epoch: 435, iters: 1534, time: 0.064) G_GAN: 0.026 G_GAN_Feat: 0.761 G_ID: 0.112 G_Rec: 0.349 D_GP: 0.035 D_real: 0.878 D_fake: 0.974 +(epoch: 435, iters: 1934, time: 0.063) G_GAN: 0.188 G_GAN_Feat: 0.964 G_ID: 0.111 G_Rec: 0.445 D_GP: 0.040 D_real: 0.841 D_fake: 0.812 +(epoch: 435, iters: 2334, time: 0.063) G_GAN: 0.173 G_GAN_Feat: 0.755 G_ID: 0.092 G_Rec: 0.320 D_GP: 0.034 D_real: 0.984 D_fake: 0.827 +(epoch: 435, iters: 2734, time: 0.063) G_GAN: 0.573 G_GAN_Feat: 0.968 G_ID: 0.110 G_Rec: 0.505 D_GP: 0.033 D_real: 1.073 D_fake: 0.457 +(epoch: 435, iters: 3134, time: 0.064) G_GAN: -0.100 G_GAN_Feat: 0.697 G_ID: 0.108 G_Rec: 0.310 D_GP: 0.027 D_real: 0.868 D_fake: 1.100 +(epoch: 435, iters: 3534, time: 0.063) G_GAN: 0.448 G_GAN_Feat: 1.001 G_ID: 0.116 G_Rec: 0.509 D_GP: 0.035 D_real: 1.011 D_fake: 0.554 +(epoch: 435, iters: 3934, time: 0.063) G_GAN: 0.410 G_GAN_Feat: 0.896 G_ID: 0.092 G_Rec: 0.351 D_GP: 0.197 D_real: 0.739 D_fake: 0.592 +(epoch: 435, iters: 4334, time: 0.063) G_GAN: 0.658 G_GAN_Feat: 0.910 G_ID: 0.107 G_Rec: 0.385 D_GP: 0.043 D_real: 1.278 D_fake: 0.360 +(epoch: 435, iters: 4734, time: 0.064) G_GAN: 0.449 G_GAN_Feat: 0.826 G_ID: 0.096 G_Rec: 0.333 D_GP: 0.039 D_real: 1.444 D_fake: 0.560 +(epoch: 435, iters: 5134, time: 0.063) G_GAN: 0.548 G_GAN_Feat: 1.077 G_ID: 0.106 G_Rec: 0.449 D_GP: 0.040 D_real: 0.765 D_fake: 0.465 +(epoch: 435, iters: 5534, time: 0.063) G_GAN: 0.241 G_GAN_Feat: 0.723 G_ID: 0.083 G_Rec: 0.302 D_GP: 0.034 D_real: 1.140 D_fake: 0.760 +(epoch: 435, iters: 5934, time: 0.063) G_GAN: 0.504 G_GAN_Feat: 0.899 G_ID: 0.121 G_Rec: 0.405 D_GP: 0.037 D_real: 1.064 D_fake: 0.512 +(epoch: 435, iters: 6334, time: 0.064) G_GAN: 0.043 G_GAN_Feat: 0.746 G_ID: 0.097 G_Rec: 0.317 D_GP: 0.040 D_real: 0.832 D_fake: 0.957 +(epoch: 435, iters: 6734, time: 0.063) G_GAN: 0.581 G_GAN_Feat: 1.014 G_ID: 0.115 G_Rec: 0.442 D_GP: 0.124 D_real: 0.903 D_fake: 0.460 +(epoch: 435, iters: 7134, time: 0.063) G_GAN: 0.436 G_GAN_Feat: 0.849 G_ID: 0.097 G_Rec: 0.339 D_GP: 0.042 D_real: 0.996 D_fake: 0.576 +(epoch: 435, iters: 7534, time: 0.063) G_GAN: 0.320 G_GAN_Feat: 0.941 G_ID: 0.124 G_Rec: 0.427 D_GP: 0.036 D_real: 0.958 D_fake: 0.680 +(epoch: 435, iters: 7934, time: 0.064) G_GAN: 0.248 G_GAN_Feat: 0.825 G_ID: 0.101 G_Rec: 0.303 D_GP: 0.066 D_real: 0.634 D_fake: 0.753 +(epoch: 435, iters: 8334, time: 0.063) G_GAN: 0.159 G_GAN_Feat: 0.903 G_ID: 0.135 G_Rec: 0.507 D_GP: 0.032 D_real: 0.994 D_fake: 0.842 +(epoch: 436, iters: 126, time: 0.063) G_GAN: 0.085 G_GAN_Feat: 0.645 G_ID: 0.096 G_Rec: 0.307 D_GP: 0.025 D_real: 1.012 D_fake: 0.917 +(epoch: 436, iters: 526, time: 0.063) G_GAN: 0.388 G_GAN_Feat: 0.830 G_ID: 0.118 G_Rec: 0.423 D_GP: 0.031 D_real: 1.165 D_fake: 0.619 +(epoch: 436, iters: 926, time: 0.064) G_GAN: 0.121 G_GAN_Feat: 0.718 G_ID: 0.100 G_Rec: 0.320 D_GP: 0.039 D_real: 0.881 D_fake: 0.879 +(epoch: 436, iters: 1326, time: 0.063) G_GAN: 0.225 G_GAN_Feat: 0.986 G_ID: 0.120 G_Rec: 0.454 D_GP: 0.073 D_real: 0.667 D_fake: 0.784 +(epoch: 436, iters: 1726, time: 0.063) G_GAN: -0.241 G_GAN_Feat: 0.707 G_ID: 0.101 G_Rec: 0.307 D_GP: 0.038 D_real: 0.706 D_fake: 1.241 +(epoch: 436, iters: 2126, time: 0.063) G_GAN: 0.487 G_GAN_Feat: 0.929 G_ID: 0.106 G_Rec: 0.422 D_GP: 0.049 D_real: 1.062 D_fake: 0.535 +(epoch: 436, iters: 2526, time: 0.064) G_GAN: 0.220 G_GAN_Feat: 0.647 G_ID: 0.090 G_Rec: 0.289 D_GP: 0.037 D_real: 1.150 D_fake: 0.781 +(epoch: 436, iters: 2926, time: 0.063) G_GAN: 0.249 G_GAN_Feat: 0.926 G_ID: 0.118 G_Rec: 0.453 D_GP: 0.033 D_real: 0.925 D_fake: 0.755 +(epoch: 436, iters: 3326, time: 0.063) G_GAN: -0.070 G_GAN_Feat: 0.826 G_ID: 0.111 G_Rec: 0.355 D_GP: 0.110 D_real: 0.385 D_fake: 1.070 +(epoch: 436, iters: 3726, time: 0.063) G_GAN: 0.460 G_GAN_Feat: 0.925 G_ID: 0.111 G_Rec: 0.443 D_GP: 0.034 D_real: 1.107 D_fake: 0.545 +(epoch: 436, iters: 4126, time: 0.064) G_GAN: 0.138 G_GAN_Feat: 0.690 G_ID: 0.091 G_Rec: 0.322 D_GP: 0.029 D_real: 1.058 D_fake: 0.862 +(epoch: 436, iters: 4526, time: 0.063) G_GAN: 0.352 G_GAN_Feat: 0.974 G_ID: 0.117 G_Rec: 0.476 D_GP: 0.038 D_real: 1.013 D_fake: 0.648 +(epoch: 436, iters: 4926, time: 0.063) G_GAN: 0.307 G_GAN_Feat: 0.744 G_ID: 0.102 G_Rec: 0.378 D_GP: 0.039 D_real: 1.125 D_fake: 0.696 +(epoch: 436, iters: 5326, time: 0.063) G_GAN: 0.712 G_GAN_Feat: 0.929 G_ID: 0.102 G_Rec: 0.428 D_GP: 0.038 D_real: 1.351 D_fake: 0.316 +(epoch: 436, iters: 5726, time: 0.064) G_GAN: 0.411 G_GAN_Feat: 0.788 G_ID: 0.115 G_Rec: 0.310 D_GP: 0.061 D_real: 1.031 D_fake: 0.594 +(epoch: 436, iters: 6126, time: 0.063) G_GAN: 0.570 G_GAN_Feat: 0.983 G_ID: 0.113 G_Rec: 0.421 D_GP: 0.043 D_real: 1.022 D_fake: 0.441 +(epoch: 436, iters: 6526, time: 0.063) G_GAN: 0.299 G_GAN_Feat: 0.709 G_ID: 0.089 G_Rec: 0.279 D_GP: 0.035 D_real: 1.136 D_fake: 0.701 +(epoch: 436, iters: 6926, time: 0.063) G_GAN: 0.890 G_GAN_Feat: 0.996 G_ID: 0.126 G_Rec: 0.410 D_GP: 0.061 D_real: 1.257 D_fake: 0.184 +(epoch: 436, iters: 7326, time: 0.064) G_GAN: 0.019 G_GAN_Feat: 0.862 G_ID: 0.093 G_Rec: 0.343 D_GP: 0.038 D_real: 0.656 D_fake: 0.981 +(epoch: 436, iters: 7726, time: 0.063) G_GAN: 0.533 G_GAN_Feat: 1.205 G_ID: 0.117 G_Rec: 0.537 D_GP: 0.438 D_real: 0.445 D_fake: 0.482 +(epoch: 436, iters: 8126, time: 0.063) G_GAN: 0.456 G_GAN_Feat: 0.919 G_ID: 0.092 G_Rec: 0.369 D_GP: 0.126 D_real: 0.656 D_fake: 0.555 +(epoch: 436, iters: 8526, time: 0.063) G_GAN: 1.024 G_GAN_Feat: 0.951 G_ID: 0.114 G_Rec: 0.440 D_GP: 0.059 D_real: 1.508 D_fake: 0.107 +(epoch: 437, iters: 318, time: 0.064) G_GAN: 0.227 G_GAN_Feat: 0.960 G_ID: 0.097 G_Rec: 0.347 D_GP: 0.331 D_real: 0.378 D_fake: 0.775 +(epoch: 437, iters: 718, time: 0.063) G_GAN: 0.675 G_GAN_Feat: 1.061 G_ID: 0.117 G_Rec: 0.402 D_GP: 0.037 D_real: 0.872 D_fake: 0.335 +(epoch: 437, iters: 1118, time: 0.063) G_GAN: 0.124 G_GAN_Feat: 0.918 G_ID: 0.111 G_Rec: 0.334 D_GP: 0.058 D_real: 0.281 D_fake: 0.879 +(epoch: 437, iters: 1518, time: 0.063) G_GAN: 0.913 G_GAN_Feat: 1.362 G_ID: 0.117 G_Rec: 0.511 D_GP: 0.077 D_real: 1.543 D_fake: 0.255 +(epoch: 437, iters: 1918, time: 0.064) G_GAN: -0.207 G_GAN_Feat: 0.609 G_ID: 0.095 G_Rec: 0.312 D_GP: 0.026 D_real: 0.823 D_fake: 1.207 +(epoch: 437, iters: 2318, time: 0.063) G_GAN: 0.515 G_GAN_Feat: 0.893 G_ID: 0.111 G_Rec: 0.451 D_GP: 0.026 D_real: 1.140 D_fake: 0.526 +(epoch: 437, iters: 2718, time: 0.063) G_GAN: 0.043 G_GAN_Feat: 0.664 G_ID: 0.102 G_Rec: 0.328 D_GP: 0.033 D_real: 0.954 D_fake: 0.957 +(epoch: 437, iters: 3118, time: 0.063) G_GAN: 0.078 G_GAN_Feat: 0.890 G_ID: 0.106 G_Rec: 0.439 D_GP: 0.048 D_real: 0.757 D_fake: 0.923 +(epoch: 437, iters: 3518, time: 0.064) G_GAN: 0.011 G_GAN_Feat: 0.619 G_ID: 0.092 G_Rec: 0.276 D_GP: 0.031 D_real: 0.989 D_fake: 0.990 +(epoch: 437, iters: 3918, time: 0.063) G_GAN: 0.320 G_GAN_Feat: 0.874 G_ID: 0.113 G_Rec: 0.418 D_GP: 0.035 D_real: 1.012 D_fake: 0.691 +(epoch: 437, iters: 4318, time: 0.063) G_GAN: 0.185 G_GAN_Feat: 0.697 G_ID: 0.093 G_Rec: 0.302 D_GP: 0.033 D_real: 1.074 D_fake: 0.817 +(epoch: 437, iters: 4718, time: 0.063) G_GAN: 0.370 G_GAN_Feat: 0.882 G_ID: 0.124 G_Rec: 0.376 D_GP: 0.041 D_real: 1.007 D_fake: 0.635 +(epoch: 437, iters: 5118, time: 0.064) G_GAN: 0.149 G_GAN_Feat: 0.805 G_ID: 0.118 G_Rec: 0.334 D_GP: 0.037 D_real: 0.942 D_fake: 0.851 +(epoch: 437, iters: 5518, time: 0.063) G_GAN: 0.488 G_GAN_Feat: 0.849 G_ID: 0.118 G_Rec: 0.406 D_GP: 0.030 D_real: 1.282 D_fake: 0.515 +(epoch: 437, iters: 5918, time: 0.063) G_GAN: 0.309 G_GAN_Feat: 0.647 G_ID: 0.087 G_Rec: 0.298 D_GP: 0.029 D_real: 1.234 D_fake: 0.692 +(epoch: 437, iters: 6318, time: 0.063) G_GAN: 0.384 G_GAN_Feat: 0.879 G_ID: 0.117 G_Rec: 0.405 D_GP: 0.040 D_real: 1.017 D_fake: 0.622 +(epoch: 437, iters: 6718, time: 0.064) G_GAN: 0.104 G_GAN_Feat: 0.620 G_ID: 0.093 G_Rec: 0.264 D_GP: 0.032 D_real: 1.029 D_fake: 0.896 +(epoch: 437, iters: 7118, time: 0.063) G_GAN: 0.067 G_GAN_Feat: 0.987 G_ID: 0.116 G_Rec: 0.438 D_GP: 0.083 D_real: 0.571 D_fake: 0.934 +(epoch: 437, iters: 7518, time: 0.063) G_GAN: 0.183 G_GAN_Feat: 0.741 G_ID: 0.115 G_Rec: 0.314 D_GP: 0.045 D_real: 0.955 D_fake: 0.818 +(epoch: 437, iters: 7918, time: 0.063) G_GAN: 0.639 G_GAN_Feat: 0.950 G_ID: 0.125 G_Rec: 0.445 D_GP: 0.032 D_real: 1.199 D_fake: 0.394 +(epoch: 437, iters: 8318, time: 0.064) G_GAN: 0.213 G_GAN_Feat: 0.797 G_ID: 0.144 G_Rec: 0.314 D_GP: 0.037 D_real: 0.850 D_fake: 0.791 +(epoch: 438, iters: 110, time: 0.063) G_GAN: 0.306 G_GAN_Feat: 0.929 G_ID: 0.119 G_Rec: 0.420 D_GP: 0.037 D_real: 1.014 D_fake: 0.694 +(epoch: 438, iters: 510, time: 0.063) G_GAN: 0.132 G_GAN_Feat: 0.660 G_ID: 0.097 G_Rec: 0.287 D_GP: 0.029 D_real: 1.031 D_fake: 0.868 +(epoch: 438, iters: 910, time: 0.063) G_GAN: 0.457 G_GAN_Feat: 0.853 G_ID: 0.135 G_Rec: 0.394 D_GP: 0.042 D_real: 1.140 D_fake: 0.557 +(epoch: 438, iters: 1310, time: 0.064) G_GAN: 0.244 G_GAN_Feat: 0.778 G_ID: 0.083 G_Rec: 0.332 D_GP: 0.059 D_real: 1.072 D_fake: 0.756 +(epoch: 438, iters: 1710, time: 0.063) G_GAN: 0.200 G_GAN_Feat: 1.002 G_ID: 0.100 G_Rec: 0.424 D_GP: 0.099 D_real: 0.523 D_fake: 0.803 +(epoch: 438, iters: 2110, time: 0.063) G_GAN: 0.284 G_GAN_Feat: 0.764 G_ID: 0.101 G_Rec: 0.316 D_GP: 0.031 D_real: 1.075 D_fake: 0.716 +(epoch: 438, iters: 2510, time: 0.063) G_GAN: 0.508 G_GAN_Feat: 0.976 G_ID: 0.112 G_Rec: 0.415 D_GP: 0.034 D_real: 1.106 D_fake: 0.497 +(epoch: 438, iters: 2910, time: 0.064) G_GAN: 0.206 G_GAN_Feat: 0.846 G_ID: 0.102 G_Rec: 0.334 D_GP: 0.044 D_real: 0.776 D_fake: 0.795 +(epoch: 438, iters: 3310, time: 0.063) G_GAN: 0.524 G_GAN_Feat: 1.100 G_ID: 0.107 G_Rec: 0.420 D_GP: 0.127 D_real: 0.373 D_fake: 0.487 +(epoch: 438, iters: 3710, time: 0.063) G_GAN: 0.332 G_GAN_Feat: 0.827 G_ID: 0.094 G_Rec: 0.301 D_GP: 0.032 D_real: 0.844 D_fake: 0.676 +(epoch: 438, iters: 4110, time: 0.063) G_GAN: 0.495 G_GAN_Feat: 1.074 G_ID: 0.107 G_Rec: 0.399 D_GP: 0.061 D_real: 0.577 D_fake: 0.516 +(epoch: 438, iters: 4510, time: 0.064) G_GAN: 0.100 G_GAN_Feat: 0.746 G_ID: 0.089 G_Rec: 0.324 D_GP: 0.031 D_real: 0.968 D_fake: 0.900 +(epoch: 438, iters: 4910, time: 0.063) G_GAN: 0.494 G_GAN_Feat: 1.052 G_ID: 0.115 G_Rec: 0.486 D_GP: 0.044 D_real: 0.939 D_fake: 0.546 +(epoch: 438, iters: 5310, time: 0.063) G_GAN: 0.140 G_GAN_Feat: 0.855 G_ID: 0.098 G_Rec: 0.343 D_GP: 0.163 D_real: 0.651 D_fake: 0.860 +(epoch: 438, iters: 5710, time: 0.063) G_GAN: 0.595 G_GAN_Feat: 1.098 G_ID: 0.126 G_Rec: 0.490 D_GP: 0.085 D_real: 0.756 D_fake: 0.423 +(epoch: 438, iters: 6110, time: 0.064) G_GAN: 0.069 G_GAN_Feat: 0.933 G_ID: 0.098 G_Rec: 0.338 D_GP: 0.191 D_real: 0.423 D_fake: 0.932 +(epoch: 438, iters: 6510, time: 0.063) G_GAN: 0.268 G_GAN_Feat: 0.861 G_ID: 0.107 G_Rec: 0.419 D_GP: 0.031 D_real: 1.021 D_fake: 0.733 +(epoch: 438, iters: 6910, time: 0.063) G_GAN: -0.022 G_GAN_Feat: 0.658 G_ID: 0.110 G_Rec: 0.300 D_GP: 0.029 D_real: 0.877 D_fake: 1.022 +(epoch: 438, iters: 7310, time: 0.063) G_GAN: 0.106 G_GAN_Feat: 0.856 G_ID: 0.124 G_Rec: 0.429 D_GP: 0.035 D_real: 0.925 D_fake: 0.897 +(epoch: 438, iters: 7710, time: 0.064) G_GAN: 0.052 G_GAN_Feat: 0.709 G_ID: 0.098 G_Rec: 0.359 D_GP: 0.053 D_real: 0.930 D_fake: 0.950 +(epoch: 438, iters: 8110, time: 0.063) G_GAN: 0.183 G_GAN_Feat: 0.920 G_ID: 0.130 G_Rec: 0.474 D_GP: 0.043 D_real: 0.728 D_fake: 0.818 +(epoch: 438, iters: 8510, time: 0.063) G_GAN: -0.089 G_GAN_Feat: 0.627 G_ID: 0.120 G_Rec: 0.309 D_GP: 0.030 D_real: 0.789 D_fake: 1.089 +(epoch: 439, iters: 302, time: 0.063) G_GAN: 0.365 G_GAN_Feat: 0.870 G_ID: 0.118 G_Rec: 0.423 D_GP: 0.042 D_real: 1.014 D_fake: 0.648 +(epoch: 439, iters: 702, time: 0.064) G_GAN: -0.253 G_GAN_Feat: 0.731 G_ID: 0.096 G_Rec: 0.336 D_GP: 0.046 D_real: 0.570 D_fake: 1.253 +(epoch: 439, iters: 1102, time: 0.063) G_GAN: 0.374 G_GAN_Feat: 0.919 G_ID: 0.132 G_Rec: 0.454 D_GP: 0.052 D_real: 0.924 D_fake: 0.640 +(epoch: 439, iters: 1502, time: 0.063) G_GAN: 0.011 G_GAN_Feat: 0.680 G_ID: 0.083 G_Rec: 0.308 D_GP: 0.048 D_real: 0.865 D_fake: 0.989 +(epoch: 439, iters: 1902, time: 0.063) G_GAN: 0.419 G_GAN_Feat: 0.873 G_ID: 0.126 G_Rec: 0.421 D_GP: 0.032 D_real: 0.981 D_fake: 0.593 +(epoch: 439, iters: 2302, time: 0.063) G_GAN: 0.080 G_GAN_Feat: 0.687 G_ID: 0.114 G_Rec: 0.298 D_GP: 0.038 D_real: 0.903 D_fake: 0.920 +(epoch: 439, iters: 2702, time: 0.063) G_GAN: 0.376 G_GAN_Feat: 0.948 G_ID: 0.137 G_Rec: 0.437 D_GP: 0.050 D_real: 0.969 D_fake: 0.633 +(epoch: 439, iters: 3102, time: 0.063) G_GAN: 0.314 G_GAN_Feat: 0.647 G_ID: 0.089 G_Rec: 0.275 D_GP: 0.035 D_real: 1.233 D_fake: 0.687 +(epoch: 439, iters: 3502, time: 0.064) G_GAN: 0.347 G_GAN_Feat: 0.959 G_ID: 0.125 G_Rec: 0.449 D_GP: 0.059 D_real: 0.833 D_fake: 0.661 +(epoch: 439, iters: 3902, time: 0.063) G_GAN: 0.370 G_GAN_Feat: 0.737 G_ID: 0.090 G_Rec: 0.301 D_GP: 0.063 D_real: 0.994 D_fake: 0.640 +(epoch: 439, iters: 4302, time: 0.063) G_GAN: 0.400 G_GAN_Feat: 0.911 G_ID: 0.123 G_Rec: 0.410 D_GP: 0.037 D_real: 1.001 D_fake: 0.605 +(epoch: 439, iters: 4702, time: 0.063) G_GAN: 0.074 G_GAN_Feat: 0.691 G_ID: 0.094 G_Rec: 0.314 D_GP: 0.025 D_real: 0.999 D_fake: 0.926 +(epoch: 439, iters: 5102, time: 0.064) G_GAN: 0.344 G_GAN_Feat: 0.976 G_ID: 0.108 G_Rec: 0.446 D_GP: 0.052 D_real: 0.905 D_fake: 0.675 +(epoch: 439, iters: 5502, time: 0.063) G_GAN: 0.121 G_GAN_Feat: 0.667 G_ID: 0.099 G_Rec: 0.281 D_GP: 0.036 D_real: 1.013 D_fake: 0.879 +(epoch: 439, iters: 5902, time: 0.063) G_GAN: 0.575 G_GAN_Feat: 0.925 G_ID: 0.113 G_Rec: 0.402 D_GP: 0.061 D_real: 1.159 D_fake: 0.465 +(epoch: 439, iters: 6302, time: 0.063) G_GAN: 0.133 G_GAN_Feat: 0.766 G_ID: 0.094 G_Rec: 0.297 D_GP: 0.044 D_real: 0.897 D_fake: 0.867 +(epoch: 439, iters: 6702, time: 0.064) G_GAN: 0.602 G_GAN_Feat: 1.025 G_ID: 0.134 G_Rec: 0.469 D_GP: 0.038 D_real: 1.087 D_fake: 0.422 +(epoch: 439, iters: 7102, time: 0.063) G_GAN: -0.103 G_GAN_Feat: 0.795 G_ID: 0.097 G_Rec: 0.321 D_GP: 0.049 D_real: 0.567 D_fake: 1.103 +(epoch: 439, iters: 7502, time: 0.063) G_GAN: 0.327 G_GAN_Feat: 1.029 G_ID: 0.111 G_Rec: 0.463 D_GP: 0.100 D_real: 0.797 D_fake: 0.674 +(epoch: 439, iters: 7902, time: 0.063) G_GAN: 0.163 G_GAN_Feat: 0.696 G_ID: 0.092 G_Rec: 0.267 D_GP: 0.051 D_real: 0.950 D_fake: 0.837 +(epoch: 439, iters: 8302, time: 0.064) G_GAN: 0.565 G_GAN_Feat: 1.052 G_ID: 0.125 G_Rec: 0.460 D_GP: 0.051 D_real: 0.908 D_fake: 0.441 +(epoch: 439, iters: 8702, time: 0.063) G_GAN: -0.022 G_GAN_Feat: 0.828 G_ID: 0.103 G_Rec: 0.342 D_GP: 0.039 D_real: 0.675 D_fake: 1.022 +(epoch: 440, iters: 494, time: 0.063) G_GAN: 0.201 G_GAN_Feat: 1.013 G_ID: 0.138 G_Rec: 0.460 D_GP: 0.086 D_real: 0.597 D_fake: 0.801 +(epoch: 440, iters: 894, time: 0.063) G_GAN: 0.149 G_GAN_Feat: 0.757 G_ID: 0.093 G_Rec: 0.328 D_GP: 0.041 D_real: 0.920 D_fake: 0.851 +(epoch: 440, iters: 1294, time: 0.064) G_GAN: 0.396 G_GAN_Feat: 1.011 G_ID: 0.114 G_Rec: 0.448 D_GP: 0.041 D_real: 0.734 D_fake: 0.604 +(epoch: 440, iters: 1694, time: 0.063) G_GAN: 0.189 G_GAN_Feat: 0.779 G_ID: 0.108 G_Rec: 0.332 D_GP: 0.032 D_real: 1.048 D_fake: 0.811 +(epoch: 440, iters: 2094, time: 0.063) G_GAN: 0.289 G_GAN_Feat: 1.100 G_ID: 0.120 G_Rec: 0.480 D_GP: 0.347 D_real: 0.258 D_fake: 0.716 +(epoch: 440, iters: 2494, time: 0.063) G_GAN: 0.099 G_GAN_Feat: 0.882 G_ID: 0.103 G_Rec: 0.347 D_GP: 0.073 D_real: 0.295 D_fake: 0.901 +(epoch: 440, iters: 2894, time: 0.064) G_GAN: 0.504 G_GAN_Feat: 0.984 G_ID: 0.104 G_Rec: 0.447 D_GP: 0.038 D_real: 1.062 D_fake: 0.506 +(epoch: 440, iters: 3294, time: 0.063) G_GAN: 0.367 G_GAN_Feat: 0.860 G_ID: 0.093 G_Rec: 0.364 D_GP: 0.036 D_real: 1.078 D_fake: 0.635 +(epoch: 440, iters: 3694, time: 0.063) G_GAN: 0.767 G_GAN_Feat: 1.168 G_ID: 0.123 G_Rec: 0.461 D_GP: 0.132 D_real: 0.501 D_fake: 0.284 +(epoch: 440, iters: 4094, time: 0.063) G_GAN: 0.289 G_GAN_Feat: 0.749 G_ID: 0.097 G_Rec: 0.311 D_GP: 0.033 D_real: 1.287 D_fake: 0.716 +(epoch: 440, iters: 4494, time: 0.064) G_GAN: 0.443 G_GAN_Feat: 0.874 G_ID: 0.135 G_Rec: 0.417 D_GP: 0.028 D_real: 1.158 D_fake: 0.562 +(epoch: 440, iters: 4894, time: 0.063) G_GAN: 0.190 G_GAN_Feat: 0.726 G_ID: 0.091 G_Rec: 0.317 D_GP: 0.048 D_real: 0.992 D_fake: 0.810 +(epoch: 440, iters: 5294, time: 0.063) G_GAN: 0.326 G_GAN_Feat: 0.939 G_ID: 0.122 G_Rec: 0.452 D_GP: 0.054 D_real: 0.902 D_fake: 0.677 +(epoch: 440, iters: 5694, time: 0.063) G_GAN: 0.146 G_GAN_Feat: 0.703 G_ID: 0.091 G_Rec: 0.323 D_GP: 0.031 D_real: 0.960 D_fake: 0.855 +(epoch: 440, iters: 6094, time: 0.064) G_GAN: 0.526 G_GAN_Feat: 0.981 G_ID: 0.109 G_Rec: 0.473 D_GP: 0.028 D_real: 1.081 D_fake: 0.484 +(epoch: 440, iters: 6494, time: 0.063) G_GAN: -0.093 G_GAN_Feat: 0.730 G_ID: 0.104 G_Rec: 0.330 D_GP: 0.064 D_real: 0.667 D_fake: 1.093 +(epoch: 440, iters: 6894, time: 0.063) G_GAN: 0.470 G_GAN_Feat: 1.038 G_ID: 0.131 G_Rec: 0.448 D_GP: 0.096 D_real: 0.605 D_fake: 0.545 +(epoch: 440, iters: 7294, time: 0.063) G_GAN: 0.203 G_GAN_Feat: 0.779 G_ID: 0.095 G_Rec: 0.299 D_GP: 0.040 D_real: 0.914 D_fake: 0.797 +(epoch: 440, iters: 7694, time: 0.064) G_GAN: 0.409 G_GAN_Feat: 0.907 G_ID: 0.112 G_Rec: 0.413 D_GP: 0.034 D_real: 1.054 D_fake: 0.592 +(epoch: 440, iters: 8094, time: 0.063) G_GAN: 0.125 G_GAN_Feat: 0.714 G_ID: 0.090 G_Rec: 0.273 D_GP: 0.032 D_real: 1.004 D_fake: 0.875 +(epoch: 440, iters: 8494, time: 0.063) G_GAN: 0.477 G_GAN_Feat: 0.932 G_ID: 0.164 G_Rec: 0.418 D_GP: 0.035 D_real: 1.011 D_fake: 0.524 +(epoch: 441, iters: 286, time: 0.063) G_GAN: 0.486 G_GAN_Feat: 0.802 G_ID: 0.102 G_Rec: 0.335 D_GP: 0.046 D_real: 1.235 D_fake: 0.523 +(epoch: 441, iters: 686, time: 0.064) G_GAN: 0.856 G_GAN_Feat: 1.025 G_ID: 0.133 G_Rec: 0.467 D_GP: 0.034 D_real: 1.165 D_fake: 0.227 +(epoch: 441, iters: 1086, time: 0.063) G_GAN: 0.232 G_GAN_Feat: 0.836 G_ID: 0.123 G_Rec: 0.326 D_GP: 0.063 D_real: 0.820 D_fake: 0.779 +(epoch: 441, iters: 1486, time: 0.063) G_GAN: 0.412 G_GAN_Feat: 0.947 G_ID: 0.124 G_Rec: 0.424 D_GP: 0.030 D_real: 1.010 D_fake: 0.626 +(epoch: 441, iters: 1886, time: 0.063) G_GAN: 0.036 G_GAN_Feat: 0.775 G_ID: 0.087 G_Rec: 0.314 D_GP: 0.034 D_real: 0.811 D_fake: 0.968 +(epoch: 441, iters: 2286, time: 0.064) G_GAN: 0.392 G_GAN_Feat: 0.996 G_ID: 0.125 G_Rec: 0.439 D_GP: 0.078 D_real: 0.839 D_fake: 0.614 +(epoch: 441, iters: 2686, time: 0.063) G_GAN: -0.070 G_GAN_Feat: 0.710 G_ID: 0.104 G_Rec: 0.280 D_GP: 0.028 D_real: 0.831 D_fake: 1.070 +(epoch: 441, iters: 3086, time: 0.063) G_GAN: 0.618 G_GAN_Feat: 1.185 G_ID: 0.128 G_Rec: 0.455 D_GP: 0.060 D_real: 0.390 D_fake: 0.427 +(epoch: 441, iters: 3486, time: 0.063) G_GAN: 0.542 G_GAN_Feat: 0.791 G_ID: 0.101 G_Rec: 0.304 D_GP: 0.063 D_real: 1.164 D_fake: 0.470 +(epoch: 441, iters: 3886, time: 0.064) G_GAN: 0.351 G_GAN_Feat: 1.193 G_ID: 0.121 G_Rec: 0.445 D_GP: 0.147 D_real: 0.259 D_fake: 0.651 +(epoch: 441, iters: 4286, time: 0.063) G_GAN: 0.513 G_GAN_Feat: 0.783 G_ID: 0.106 G_Rec: 0.300 D_GP: 0.041 D_real: 1.226 D_fake: 0.494 +(epoch: 441, iters: 4686, time: 0.063) G_GAN: 0.529 G_GAN_Feat: 0.914 G_ID: 0.105 G_Rec: 0.442 D_GP: 0.029 D_real: 1.225 D_fake: 0.520 +(epoch: 441, iters: 5086, time: 0.063) G_GAN: -0.083 G_GAN_Feat: 0.699 G_ID: 0.102 G_Rec: 0.295 D_GP: 0.030 D_real: 0.819 D_fake: 1.083 +(epoch: 441, iters: 5486, time: 0.064) G_GAN: 0.056 G_GAN_Feat: 0.905 G_ID: 0.119 G_Rec: 0.443 D_GP: 0.038 D_real: 0.719 D_fake: 0.945 +(epoch: 441, iters: 5886, time: 0.063) G_GAN: -0.166 G_GAN_Feat: 0.712 G_ID: 0.108 G_Rec: 0.314 D_GP: 0.036 D_real: 0.707 D_fake: 1.166 +(epoch: 441, iters: 6286, time: 0.063) G_GAN: -0.010 G_GAN_Feat: 0.992 G_ID: 0.134 G_Rec: 0.464 D_GP: 0.109 D_real: 0.509 D_fake: 1.010 +(epoch: 441, iters: 6686, time: 0.063) G_GAN: -0.204 G_GAN_Feat: 0.697 G_ID: 0.096 G_Rec: 0.315 D_GP: 0.043 D_real: 0.666 D_fake: 1.204 +(epoch: 441, iters: 7086, time: 0.064) G_GAN: 0.324 G_GAN_Feat: 1.031 G_ID: 0.115 G_Rec: 0.475 D_GP: 0.069 D_real: 0.796 D_fake: 0.688 +(epoch: 441, iters: 7486, time: 0.063) G_GAN: -0.298 G_GAN_Feat: 0.911 G_ID: 0.114 G_Rec: 0.371 D_GP: 0.127 D_real: 0.204 D_fake: 1.298 +(epoch: 441, iters: 7886, time: 0.063) G_GAN: 0.466 G_GAN_Feat: 0.986 G_ID: 0.121 G_Rec: 0.480 D_GP: 0.073 D_real: 0.839 D_fake: 0.574 +(epoch: 441, iters: 8286, time: 0.063) G_GAN: 0.230 G_GAN_Feat: 0.698 G_ID: 0.100 G_Rec: 0.276 D_GP: 0.042 D_real: 1.094 D_fake: 0.772 +(epoch: 441, iters: 8686, time: 0.064) G_GAN: 0.423 G_GAN_Feat: 0.994 G_ID: 0.118 G_Rec: 0.492 D_GP: 0.038 D_real: 1.025 D_fake: 0.579 +(epoch: 442, iters: 478, time: 0.063) G_GAN: 0.271 G_GAN_Feat: 0.813 G_ID: 0.110 G_Rec: 0.320 D_GP: 0.111 D_real: 0.778 D_fake: 0.735 +(epoch: 442, iters: 878, time: 0.063) G_GAN: 0.926 G_GAN_Feat: 0.994 G_ID: 0.114 G_Rec: 0.452 D_GP: 0.047 D_real: 1.296 D_fake: 0.203 +(epoch: 442, iters: 1278, time: 0.063) G_GAN: 0.022 G_GAN_Feat: 0.718 G_ID: 0.116 G_Rec: 0.366 D_GP: 0.028 D_real: 0.975 D_fake: 0.978 +(epoch: 442, iters: 1678, time: 0.064) G_GAN: 0.342 G_GAN_Feat: 0.888 G_ID: 0.118 G_Rec: 0.430 D_GP: 0.026 D_real: 1.124 D_fake: 0.660 +(epoch: 442, iters: 2078, time: 0.063) G_GAN: 0.111 G_GAN_Feat: 0.676 G_ID: 0.106 G_Rec: 0.324 D_GP: 0.030 D_real: 1.039 D_fake: 0.890 +(epoch: 442, iters: 2478, time: 0.063) G_GAN: 0.161 G_GAN_Feat: 0.838 G_ID: 0.106 G_Rec: 0.384 D_GP: 0.036 D_real: 0.958 D_fake: 0.839 +(epoch: 442, iters: 2878, time: 0.063) G_GAN: 0.236 G_GAN_Feat: 0.637 G_ID: 0.095 G_Rec: 0.260 D_GP: 0.032 D_real: 1.133 D_fake: 0.764 +(epoch: 442, iters: 3278, time: 0.064) G_GAN: 0.161 G_GAN_Feat: 0.880 G_ID: 0.143 G_Rec: 0.392 D_GP: 0.032 D_real: 0.883 D_fake: 0.840 +(epoch: 442, iters: 3678, time: 0.063) G_GAN: -0.039 G_GAN_Feat: 0.803 G_ID: 0.097 G_Rec: 0.347 D_GP: 0.073 D_real: 0.627 D_fake: 1.039 +(epoch: 442, iters: 4078, time: 0.063) G_GAN: 0.537 G_GAN_Feat: 0.981 G_ID: 0.114 G_Rec: 0.430 D_GP: 0.044 D_real: 1.037 D_fake: 0.470 +(epoch: 442, iters: 4478, time: 0.063) G_GAN: 0.335 G_GAN_Feat: 0.735 G_ID: 0.079 G_Rec: 0.298 D_GP: 0.033 D_real: 1.169 D_fake: 0.665 +(epoch: 442, iters: 4878, time: 0.064) G_GAN: 0.628 G_GAN_Feat: 1.020 G_ID: 0.101 G_Rec: 0.420 D_GP: 0.094 D_real: 0.998 D_fake: 0.396 +(epoch: 442, iters: 5278, time: 0.063) G_GAN: 0.062 G_GAN_Feat: 0.736 G_ID: 0.109 G_Rec: 0.294 D_GP: 0.031 D_real: 0.874 D_fake: 0.938 +(epoch: 442, iters: 5678, time: 0.063) G_GAN: 0.503 G_GAN_Feat: 1.020 G_ID: 0.128 G_Rec: 0.431 D_GP: 0.053 D_real: 0.955 D_fake: 0.512 +(epoch: 442, iters: 6078, time: 0.063) G_GAN: 0.208 G_GAN_Feat: 0.759 G_ID: 0.086 G_Rec: 0.303 D_GP: 0.047 D_real: 0.900 D_fake: 0.792 +(epoch: 442, iters: 6478, time: 0.064) G_GAN: 0.646 G_GAN_Feat: 0.893 G_ID: 0.122 G_Rec: 0.366 D_GP: 0.032 D_real: 1.351 D_fake: 0.370 +(epoch: 442, iters: 6878, time: 0.063) G_GAN: 0.409 G_GAN_Feat: 0.970 G_ID: 0.121 G_Rec: 0.353 D_GP: 0.050 D_real: 1.071 D_fake: 0.657 +(epoch: 442, iters: 7278, time: 0.063) G_GAN: 0.676 G_GAN_Feat: 1.024 G_ID: 0.104 G_Rec: 0.455 D_GP: 0.039 D_real: 1.304 D_fake: 0.455 +(epoch: 442, iters: 7678, time: 0.063) G_GAN: 0.238 G_GAN_Feat: 0.804 G_ID: 0.094 G_Rec: 0.317 D_GP: 0.043 D_real: 1.062 D_fake: 0.762 +(epoch: 442, iters: 8078, time: 0.064) G_GAN: 0.735 G_GAN_Feat: 1.119 G_ID: 0.130 G_Rec: 0.508 D_GP: 0.046 D_real: 0.930 D_fake: 0.403 +(epoch: 442, iters: 8478, time: 0.063) G_GAN: 0.104 G_GAN_Feat: 0.774 G_ID: 0.091 G_Rec: 0.296 D_GP: 0.028 D_real: 0.984 D_fake: 0.896 +(epoch: 443, iters: 270, time: 0.063) G_GAN: 0.572 G_GAN_Feat: 1.013 G_ID: 0.120 G_Rec: 0.452 D_GP: 0.036 D_real: 1.103 D_fake: 0.433 +(epoch: 443, iters: 670, time: 0.063) G_GAN: 0.204 G_GAN_Feat: 1.287 G_ID: 0.130 G_Rec: 0.430 D_GP: 0.212 D_real: 0.909 D_fake: 0.833 +(epoch: 443, iters: 1070, time: 0.064) G_GAN: 0.179 G_GAN_Feat: 0.883 G_ID: 0.140 G_Rec: 0.457 D_GP: 0.028 D_real: 0.964 D_fake: 0.843 +(epoch: 443, iters: 1470, time: 0.063) G_GAN: -0.003 G_GAN_Feat: 0.691 G_ID: 0.107 G_Rec: 0.304 D_GP: 0.029 D_real: 0.837 D_fake: 1.003 +(epoch: 443, iters: 1870, time: 0.063) G_GAN: 0.197 G_GAN_Feat: 0.978 G_ID: 0.115 G_Rec: 0.488 D_GP: 0.038 D_real: 0.740 D_fake: 0.810 +(epoch: 443, iters: 2270, time: 0.063) G_GAN: 0.021 G_GAN_Feat: 0.721 G_ID: 0.103 G_Rec: 0.287 D_GP: 0.037 D_real: 0.836 D_fake: 0.979 +(epoch: 443, iters: 2670, time: 0.064) G_GAN: 0.509 G_GAN_Feat: 0.969 G_ID: 0.124 G_Rec: 0.402 D_GP: 0.041 D_real: 1.108 D_fake: 0.533 +(epoch: 443, iters: 3070, time: 0.063) G_GAN: 0.183 G_GAN_Feat: 0.850 G_ID: 0.091 G_Rec: 0.299 D_GP: 0.037 D_real: 0.791 D_fake: 0.817 +(epoch: 443, iters: 3470, time: 0.063) G_GAN: 0.689 G_GAN_Feat: 0.967 G_ID: 0.099 G_Rec: 0.413 D_GP: 0.038 D_real: 1.382 D_fake: 0.331 +(epoch: 443, iters: 3870, time: 0.063) G_GAN: 0.182 G_GAN_Feat: 0.845 G_ID: 0.111 G_Rec: 0.305 D_GP: 0.039 D_real: 0.832 D_fake: 0.819 +(epoch: 443, iters: 4270, time: 0.064) G_GAN: 0.892 G_GAN_Feat: 1.015 G_ID: 0.114 G_Rec: 0.432 D_GP: 0.043 D_real: 1.315 D_fake: 0.179 +(epoch: 443, iters: 4670, time: 0.063) G_GAN: 0.237 G_GAN_Feat: 0.616 G_ID: 0.094 G_Rec: 0.306 D_GP: 0.026 D_real: 1.130 D_fake: 0.763 +(epoch: 443, iters: 5070, time: 0.063) G_GAN: -0.049 G_GAN_Feat: 0.902 G_ID: 0.121 G_Rec: 0.447 D_GP: 0.050 D_real: 0.605 D_fake: 1.049 +(epoch: 443, iters: 5470, time: 0.063) G_GAN: -0.037 G_GAN_Feat: 0.687 G_ID: 0.113 G_Rec: 0.326 D_GP: 0.045 D_real: 0.834 D_fake: 1.037 +(epoch: 443, iters: 5870, time: 0.064) G_GAN: 0.297 G_GAN_Feat: 0.924 G_ID: 0.139 G_Rec: 0.484 D_GP: 0.043 D_real: 0.834 D_fake: 0.706 +(epoch: 443, iters: 6270, time: 0.063) G_GAN: 0.159 G_GAN_Feat: 0.698 G_ID: 0.096 G_Rec: 0.304 D_GP: 0.068 D_real: 0.953 D_fake: 0.843 +(epoch: 443, iters: 6670, time: 0.063) G_GAN: 0.435 G_GAN_Feat: 1.017 G_ID: 0.133 G_Rec: 0.477 D_GP: 0.153 D_real: 0.558 D_fake: 0.580 +(epoch: 443, iters: 7070, time: 0.063) G_GAN: 0.335 G_GAN_Feat: 0.759 G_ID: 0.089 G_Rec: 0.321 D_GP: 0.046 D_real: 1.280 D_fake: 0.669 +(epoch: 443, iters: 7470, time: 0.063) G_GAN: 0.476 G_GAN_Feat: 0.892 G_ID: 0.129 G_Rec: 0.380 D_GP: 0.041 D_real: 1.070 D_fake: 0.536 +(epoch: 443, iters: 7870, time: 0.063) G_GAN: 0.444 G_GAN_Feat: 0.751 G_ID: 0.100 G_Rec: 0.320 D_GP: 0.048 D_real: 1.253 D_fake: 0.571 +(epoch: 443, iters: 8270, time: 0.063) G_GAN: 0.129 G_GAN_Feat: 0.941 G_ID: 0.123 G_Rec: 0.433 D_GP: 0.040 D_real: 0.771 D_fake: 0.871 +(epoch: 443, iters: 8670, time: 0.064) G_GAN: -0.131 G_GAN_Feat: 0.714 G_ID: 0.113 G_Rec: 0.297 D_GP: 0.045 D_real: 0.809 D_fake: 1.131 +(epoch: 444, iters: 462, time: 0.063) G_GAN: 0.182 G_GAN_Feat: 0.929 G_ID: 0.131 G_Rec: 0.434 D_GP: 0.030 D_real: 0.882 D_fake: 0.818 +(epoch: 444, iters: 862, time: 0.063) G_GAN: 0.296 G_GAN_Feat: 0.913 G_ID: 0.105 G_Rec: 0.351 D_GP: 0.211 D_real: 0.403 D_fake: 0.731 +(epoch: 444, iters: 1262, time: 0.063) G_GAN: 0.215 G_GAN_Feat: 1.019 G_ID: 0.146 G_Rec: 0.442 D_GP: 0.044 D_real: 0.497 D_fake: 0.788 +(epoch: 444, iters: 1662, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 1.010 G_ID: 0.112 G_Rec: 0.361 D_GP: 0.205 D_real: 0.282 D_fake: 0.771 +(epoch: 444, iters: 2062, time: 0.063) G_GAN: 0.571 G_GAN_Feat: 0.932 G_ID: 0.119 G_Rec: 0.378 D_GP: 0.033 D_real: 1.087 D_fake: 0.469 +(epoch: 444, iters: 2462, time: 0.063) G_GAN: 0.047 G_GAN_Feat: 0.899 G_ID: 0.105 G_Rec: 0.328 D_GP: 0.107 D_real: 0.378 D_fake: 0.960 +(epoch: 444, iters: 2862, time: 0.063) G_GAN: 0.388 G_GAN_Feat: 1.069 G_ID: 0.137 G_Rec: 0.389 D_GP: 0.044 D_real: 0.844 D_fake: 0.614 +(epoch: 444, iters: 3262, time: 0.064) G_GAN: 0.135 G_GAN_Feat: 0.780 G_ID: 0.096 G_Rec: 0.318 D_GP: 0.036 D_real: 0.867 D_fake: 0.865 +(epoch: 444, iters: 3662, time: 0.064) G_GAN: 0.589 G_GAN_Feat: 1.128 G_ID: 0.117 G_Rec: 0.497 D_GP: 0.094 D_real: 0.765 D_fake: 0.423 +(epoch: 444, iters: 4062, time: 0.064) G_GAN: -0.105 G_GAN_Feat: 0.879 G_ID: 0.095 G_Rec: 0.339 D_GP: 0.422 D_real: 0.351 D_fake: 1.105 +(epoch: 444, iters: 4462, time: 0.064) G_GAN: 0.247 G_GAN_Feat: 1.028 G_ID: 0.133 G_Rec: 0.412 D_GP: 0.036 D_real: 1.095 D_fake: 0.755 +(epoch: 444, iters: 4862, time: 0.064) G_GAN: 0.460 G_GAN_Feat: 0.772 G_ID: 0.095 G_Rec: 0.291 D_GP: 0.029 D_real: 1.238 D_fake: 0.542 +(epoch: 444, iters: 5262, time: 0.064) G_GAN: 0.366 G_GAN_Feat: 0.903 G_ID: 0.104 G_Rec: 0.381 D_GP: 0.035 D_real: 0.980 D_fake: 0.635 +(epoch: 444, iters: 5662, time: 0.063) G_GAN: 0.263 G_GAN_Feat: 0.828 G_ID: 0.095 G_Rec: 0.293 D_GP: 0.033 D_real: 0.815 D_fake: 0.738 +(epoch: 444, iters: 6062, time: 0.064) G_GAN: 0.323 G_GAN_Feat: 0.961 G_ID: 0.114 G_Rec: 0.459 D_GP: 0.034 D_real: 0.949 D_fake: 0.678 +(epoch: 444, iters: 6462, time: 0.064) G_GAN: 0.347 G_GAN_Feat: 0.758 G_ID: 0.095 G_Rec: 0.337 D_GP: 0.032 D_real: 1.246 D_fake: 0.665 +(epoch: 444, iters: 6862, time: 0.064) G_GAN: 0.075 G_GAN_Feat: 0.891 G_ID: 0.117 G_Rec: 0.420 D_GP: 0.033 D_real: 0.702 D_fake: 0.925 +(epoch: 444, iters: 7262, time: 0.064) G_GAN: -0.182 G_GAN_Feat: 0.697 G_ID: 0.123 G_Rec: 0.315 D_GP: 0.033 D_real: 0.702 D_fake: 1.182 +(epoch: 444, iters: 7662, time: 0.064) G_GAN: 0.164 G_GAN_Feat: 0.857 G_ID: 0.115 G_Rec: 0.397 D_GP: 0.034 D_real: 0.929 D_fake: 0.839 +(epoch: 444, iters: 8062, time: 0.064) G_GAN: 0.097 G_GAN_Feat: 0.758 G_ID: 0.100 G_Rec: 0.346 D_GP: 0.050 D_real: 0.865 D_fake: 0.903 +(epoch: 444, iters: 8462, time: 0.064) G_GAN: 0.405 G_GAN_Feat: 0.816 G_ID: 0.125 G_Rec: 0.374 D_GP: 0.034 D_real: 1.152 D_fake: 0.602 +(epoch: 445, iters: 254, time: 0.064) G_GAN: -0.104 G_GAN_Feat: 0.699 G_ID: 0.100 G_Rec: 0.314 D_GP: 0.031 D_real: 0.790 D_fake: 1.104 +(epoch: 445, iters: 654, time: 0.064) G_GAN: 0.202 G_GAN_Feat: 1.007 G_ID: 0.119 G_Rec: 0.458 D_GP: 0.054 D_real: 0.712 D_fake: 0.799 +(epoch: 445, iters: 1054, time: 0.064) G_GAN: 0.397 G_GAN_Feat: 0.752 G_ID: 0.089 G_Rec: 0.300 D_GP: 0.042 D_real: 1.175 D_fake: 0.606 +(epoch: 445, iters: 1454, time: 0.064) G_GAN: 0.638 G_GAN_Feat: 0.935 G_ID: 0.114 G_Rec: 0.424 D_GP: 0.039 D_real: 1.195 D_fake: 0.379 +(epoch: 445, iters: 1854, time: 0.064) G_GAN: 0.492 G_GAN_Feat: 0.744 G_ID: 0.104 G_Rec: 0.338 D_GP: 0.034 D_real: 1.378 D_fake: 0.517 +(epoch: 445, iters: 2254, time: 0.063) G_GAN: 0.552 G_GAN_Feat: 0.845 G_ID: 0.103 G_Rec: 0.460 D_GP: 0.028 D_real: 1.274 D_fake: 0.466 +(epoch: 445, iters: 2654, time: 0.064) G_GAN: 0.254 G_GAN_Feat: 0.618 G_ID: 0.087 G_Rec: 0.285 D_GP: 0.030 D_real: 1.124 D_fake: 0.747 +(epoch: 445, iters: 3054, time: 0.064) G_GAN: 0.027 G_GAN_Feat: 0.930 G_ID: 0.121 G_Rec: 0.449 D_GP: 0.043 D_real: 0.703 D_fake: 0.973 +(epoch: 445, iters: 3454, time: 0.063) G_GAN: -0.039 G_GAN_Feat: 0.744 G_ID: 0.106 G_Rec: 0.309 D_GP: 0.043 D_real: 0.784 D_fake: 1.039 +(epoch: 445, iters: 3854, time: 0.063) G_GAN: 0.545 G_GAN_Feat: 0.957 G_ID: 0.110 G_Rec: 0.433 D_GP: 0.052 D_real: 1.070 D_fake: 0.473 +(epoch: 445, iters: 4254, time: 0.064) G_GAN: -0.029 G_GAN_Feat: 0.816 G_ID: 0.110 G_Rec: 0.338 D_GP: 0.047 D_real: 0.793 D_fake: 1.031 +(epoch: 445, iters: 4654, time: 0.063) G_GAN: 0.570 G_GAN_Feat: 1.041 G_ID: 0.115 G_Rec: 0.410 D_GP: 0.172 D_real: 0.685 D_fake: 0.440 +(epoch: 445, iters: 5054, time: 0.063) G_GAN: 0.110 G_GAN_Feat: 0.760 G_ID: 0.120 G_Rec: 0.300 D_GP: 0.037 D_real: 0.854 D_fake: 0.890 +(epoch: 445, iters: 5454, time: 0.063) G_GAN: 0.251 G_GAN_Feat: 1.000 G_ID: 0.107 G_Rec: 0.413 D_GP: 0.038 D_real: 0.799 D_fake: 0.749 +(epoch: 445, iters: 5854, time: 0.064) G_GAN: 0.370 G_GAN_Feat: 0.858 G_ID: 0.094 G_Rec: 0.327 D_GP: 0.038 D_real: 1.058 D_fake: 0.630 +(epoch: 445, iters: 6254, time: 0.063) G_GAN: 0.483 G_GAN_Feat: 0.967 G_ID: 0.128 G_Rec: 0.416 D_GP: 0.036 D_real: 1.037 D_fake: 0.523 +(epoch: 445, iters: 6654, time: 0.063) G_GAN: 0.350 G_GAN_Feat: 1.045 G_ID: 0.126 G_Rec: 0.354 D_GP: 0.211 D_real: 0.277 D_fake: 0.725 +(epoch: 445, iters: 7054, time: 0.063) G_GAN: 0.526 G_GAN_Feat: 1.251 G_ID: 0.124 G_Rec: 0.502 D_GP: 0.359 D_real: 0.528 D_fake: 0.499 +(epoch: 445, iters: 7454, time: 0.064) G_GAN: 0.327 G_GAN_Feat: 0.947 G_ID: 0.101 G_Rec: 0.401 D_GP: 0.045 D_real: 1.064 D_fake: 0.699 +(epoch: 445, iters: 7854, time: 0.063) G_GAN: 0.266 G_GAN_Feat: 0.860 G_ID: 0.104 G_Rec: 0.439 D_GP: 0.027 D_real: 0.987 D_fake: 0.738 +(epoch: 445, iters: 8254, time: 0.063) G_GAN: 0.121 G_GAN_Feat: 0.667 G_ID: 0.082 G_Rec: 0.298 D_GP: 0.029 D_real: 1.063 D_fake: 0.879 +(epoch: 445, iters: 8654, time: 0.063) G_GAN: 0.166 G_GAN_Feat: 0.874 G_ID: 0.126 G_Rec: 0.411 D_GP: 0.038 D_real: 0.785 D_fake: 0.834 +(epoch: 446, iters: 446, time: 0.064) G_GAN: -0.054 G_GAN_Feat: 0.684 G_ID: 0.084 G_Rec: 0.349 D_GP: 0.055 D_real: 0.846 D_fake: 1.054 +(epoch: 446, iters: 846, time: 0.063) G_GAN: 0.390 G_GAN_Feat: 0.909 G_ID: 0.114 G_Rec: 0.439 D_GP: 0.033 D_real: 0.940 D_fake: 0.621 +(epoch: 446, iters: 1246, time: 0.063) G_GAN: 0.207 G_GAN_Feat: 0.735 G_ID: 0.100 G_Rec: 0.320 D_GP: 0.039 D_real: 1.041 D_fake: 0.794 +(epoch: 446, iters: 1646, time: 0.063) G_GAN: 0.307 G_GAN_Feat: 0.994 G_ID: 0.112 G_Rec: 0.427 D_GP: 0.037 D_real: 0.852 D_fake: 0.693 +(epoch: 446, iters: 2046, time: 0.064) G_GAN: 0.309 G_GAN_Feat: 0.705 G_ID: 0.102 G_Rec: 0.299 D_GP: 0.040 D_real: 1.180 D_fake: 0.691 +(epoch: 446, iters: 2446, time: 0.063) G_GAN: 0.486 G_GAN_Feat: 0.985 G_ID: 0.130 G_Rec: 0.439 D_GP: 0.037 D_real: 1.112 D_fake: 0.553 +(epoch: 446, iters: 2846, time: 0.063) G_GAN: 0.337 G_GAN_Feat: 0.749 G_ID: 0.098 G_Rec: 0.336 D_GP: 0.033 D_real: 1.214 D_fake: 0.666 +(epoch: 446, iters: 3246, time: 0.063) G_GAN: 0.335 G_GAN_Feat: 0.843 G_ID: 0.109 G_Rec: 0.430 D_GP: 0.029 D_real: 1.067 D_fake: 0.666 +(epoch: 446, iters: 3646, time: 0.064) G_GAN: 0.368 G_GAN_Feat: 0.735 G_ID: 0.099 G_Rec: 0.324 D_GP: 0.033 D_real: 1.176 D_fake: 0.635 +(epoch: 446, iters: 4046, time: 0.063) G_GAN: 0.318 G_GAN_Feat: 0.924 G_ID: 0.129 G_Rec: 0.395 D_GP: 0.061 D_real: 0.957 D_fake: 0.685 +(epoch: 446, iters: 4446, time: 0.063) G_GAN: 0.371 G_GAN_Feat: 0.838 G_ID: 0.105 G_Rec: 0.319 D_GP: 0.084 D_real: 0.656 D_fake: 0.643 +(epoch: 446, iters: 4846, time: 0.063) G_GAN: 0.593 G_GAN_Feat: 1.064 G_ID: 0.106 G_Rec: 0.439 D_GP: 0.061 D_real: 0.848 D_fake: 0.419 +(epoch: 446, iters: 5246, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.718 G_ID: 0.095 G_Rec: 0.283 D_GP: 0.028 D_real: 1.153 D_fake: 0.717 +(epoch: 446, iters: 5646, time: 0.064) G_GAN: 0.459 G_GAN_Feat: 1.025 G_ID: 0.123 G_Rec: 0.412 D_GP: 0.044 D_real: 0.914 D_fake: 0.547 +(epoch: 446, iters: 6046, time: 0.064) G_GAN: 0.643 G_GAN_Feat: 0.789 G_ID: 0.107 G_Rec: 0.321 D_GP: 0.040 D_real: 1.457 D_fake: 0.385 +(epoch: 446, iters: 6446, time: 0.063) G_GAN: 0.482 G_GAN_Feat: 1.030 G_ID: 0.130 G_Rec: 0.408 D_GP: 0.056 D_real: 0.687 D_fake: 0.537 +(epoch: 446, iters: 6846, time: 0.064) G_GAN: 0.259 G_GAN_Feat: 0.872 G_ID: 0.110 G_Rec: 0.302 D_GP: 0.039 D_real: 0.525 D_fake: 0.747 +(epoch: 446, iters: 7246, time: 0.063) G_GAN: 0.258 G_GAN_Feat: 0.917 G_ID: 0.118 G_Rec: 0.443 D_GP: 0.034 D_real: 1.034 D_fake: 0.753 +(epoch: 446, iters: 7646, time: 0.063) G_GAN: 0.103 G_GAN_Feat: 0.674 G_ID: 0.087 G_Rec: 0.301 D_GP: 0.040 D_real: 1.018 D_fake: 0.897 +(epoch: 446, iters: 8046, time: 0.063) G_GAN: 0.222 G_GAN_Feat: 1.004 G_ID: 0.117 G_Rec: 0.502 D_GP: 0.076 D_real: 0.801 D_fake: 0.783 +(epoch: 446, iters: 8446, time: 0.064) G_GAN: 0.011 G_GAN_Feat: 0.660 G_ID: 0.093 G_Rec: 0.296 D_GP: 0.039 D_real: 0.869 D_fake: 0.989 +(epoch: 447, iters: 238, time: 0.064) G_GAN: 0.347 G_GAN_Feat: 0.907 G_ID: 0.106 G_Rec: 0.454 D_GP: 0.034 D_real: 0.918 D_fake: 0.661 +(epoch: 447, iters: 638, time: 0.063) G_GAN: 0.145 G_GAN_Feat: 0.700 G_ID: 0.091 G_Rec: 0.315 D_GP: 0.033 D_real: 1.045 D_fake: 0.858 +(epoch: 447, iters: 1038, time: 0.063) G_GAN: 0.569 G_GAN_Feat: 0.886 G_ID: 0.119 G_Rec: 0.400 D_GP: 0.032 D_real: 1.147 D_fake: 0.480 +(epoch: 447, iters: 1438, time: 0.064) G_GAN: 0.095 G_GAN_Feat: 0.723 G_ID: 0.091 G_Rec: 0.310 D_GP: 0.054 D_real: 0.870 D_fake: 0.905 +(epoch: 447, iters: 1838, time: 0.063) G_GAN: 0.288 G_GAN_Feat: 0.897 G_ID: 0.128 G_Rec: 0.401 D_GP: 0.036 D_real: 0.882 D_fake: 0.713 +(epoch: 447, iters: 2238, time: 0.063) G_GAN: 0.316 G_GAN_Feat: 0.772 G_ID: 0.105 G_Rec: 0.336 D_GP: 0.039 D_real: 1.020 D_fake: 0.690 +(epoch: 447, iters: 2638, time: 0.063) G_GAN: 0.382 G_GAN_Feat: 1.035 G_ID: 0.110 G_Rec: 0.478 D_GP: 0.067 D_real: 0.851 D_fake: 0.626 +(epoch: 447, iters: 3038, time: 0.064) G_GAN: 0.217 G_GAN_Feat: 0.768 G_ID: 0.101 G_Rec: 0.333 D_GP: 0.043 D_real: 1.119 D_fake: 0.783 +(epoch: 447, iters: 3438, time: 0.063) G_GAN: 0.507 G_GAN_Feat: 1.064 G_ID: 0.116 G_Rec: 0.455 D_GP: 0.131 D_real: 0.866 D_fake: 0.503 +(epoch: 447, iters: 3838, time: 0.064) G_GAN: 0.243 G_GAN_Feat: 0.753 G_ID: 0.100 G_Rec: 0.329 D_GP: 0.054 D_real: 0.989 D_fake: 0.757 +(epoch: 447, iters: 4238, time: 0.063) G_GAN: 0.411 G_GAN_Feat: 0.953 G_ID: 0.138 G_Rec: 0.429 D_GP: 0.039 D_real: 0.934 D_fake: 0.593 +(epoch: 447, iters: 4638, time: 0.064) G_GAN: 0.242 G_GAN_Feat: 0.686 G_ID: 0.107 G_Rec: 0.292 D_GP: 0.032 D_real: 1.129 D_fake: 0.759 +(epoch: 447, iters: 5038, time: 0.064) G_GAN: 0.337 G_GAN_Feat: 0.948 G_ID: 0.113 G_Rec: 0.402 D_GP: 0.051 D_real: 0.770 D_fake: 0.664 +(epoch: 447, iters: 5438, time: 0.063) G_GAN: 0.244 G_GAN_Feat: 0.685 G_ID: 0.102 G_Rec: 0.326 D_GP: 0.032 D_real: 1.147 D_fake: 0.756 +(epoch: 447, iters: 5838, time: 0.063) G_GAN: 0.238 G_GAN_Feat: 0.983 G_ID: 0.116 G_Rec: 0.477 D_GP: 0.037 D_real: 0.687 D_fake: 0.762 +(epoch: 447, iters: 6238, time: 0.064) G_GAN: -0.070 G_GAN_Feat: 0.797 G_ID: 0.115 G_Rec: 0.314 D_GP: 0.044 D_real: 0.622 D_fake: 1.070 +(epoch: 447, iters: 6638, time: 0.064) G_GAN: 0.688 G_GAN_Feat: 0.983 G_ID: 0.121 G_Rec: 0.443 D_GP: 0.040 D_real: 1.216 D_fake: 0.381 +(epoch: 447, iters: 7038, time: 0.063) G_GAN: 0.177 G_GAN_Feat: 0.805 G_ID: 0.106 G_Rec: 0.344 D_GP: 0.041 D_real: 0.834 D_fake: 0.824 +(epoch: 447, iters: 7438, time: 0.063) G_GAN: 0.363 G_GAN_Feat: 1.012 G_ID: 0.137 G_Rec: 0.423 D_GP: 0.050 D_real: 0.842 D_fake: 0.638 +(epoch: 447, iters: 7838, time: 0.064) G_GAN: 0.251 G_GAN_Feat: 0.695 G_ID: 0.097 G_Rec: 0.309 D_GP: 0.036 D_real: 1.084 D_fake: 0.749 +(epoch: 447, iters: 8238, time: 0.063) G_GAN: 0.520 G_GAN_Feat: 1.038 G_ID: 0.112 G_Rec: 0.443 D_GP: 0.040 D_real: 0.914 D_fake: 0.485 +(epoch: 447, iters: 8638, time: 0.063) G_GAN: 0.306 G_GAN_Feat: 0.766 G_ID: 0.107 G_Rec: 0.313 D_GP: 0.039 D_real: 1.013 D_fake: 0.695 +(epoch: 448, iters: 430, time: 0.063) G_GAN: 0.564 G_GAN_Feat: 0.913 G_ID: 0.130 G_Rec: 0.411 D_GP: 0.037 D_real: 1.244 D_fake: 0.453 +(epoch: 448, iters: 830, time: 0.064) G_GAN: 0.080 G_GAN_Feat: 0.882 G_ID: 0.098 G_Rec: 0.346 D_GP: 0.137 D_real: 0.365 D_fake: 0.921 +(epoch: 448, iters: 1230, time: 0.064) G_GAN: 0.483 G_GAN_Feat: 0.994 G_ID: 0.114 G_Rec: 0.433 D_GP: 0.035 D_real: 0.927 D_fake: 0.521 +(epoch: 448, iters: 1630, time: 0.064) G_GAN: 0.123 G_GAN_Feat: 0.836 G_ID: 0.121 G_Rec: 0.351 D_GP: 0.054 D_real: 0.541 D_fake: 0.878 +(epoch: 448, iters: 2030, time: 0.064) G_GAN: 0.360 G_GAN_Feat: 1.002 G_ID: 0.116 G_Rec: 0.420 D_GP: 0.117 D_real: 0.525 D_fake: 0.649 +(epoch: 448, iters: 2430, time: 0.064) G_GAN: -0.086 G_GAN_Feat: 0.836 G_ID: 0.083 G_Rec: 0.319 D_GP: 0.247 D_real: 0.370 D_fake: 1.091 +(epoch: 448, iters: 2830, time: 0.064) G_GAN: 0.619 G_GAN_Feat: 1.047 G_ID: 0.097 G_Rec: 0.456 D_GP: 0.040 D_real: 1.098 D_fake: 0.394 +(epoch: 448, iters: 3230, time: 0.064) G_GAN: 0.135 G_GAN_Feat: 0.865 G_ID: 0.090 G_Rec: 0.332 D_GP: 0.187 D_real: 0.507 D_fake: 0.866 +(epoch: 448, iters: 3630, time: 0.064) G_GAN: 0.457 G_GAN_Feat: 1.024 G_ID: 0.128 G_Rec: 0.434 D_GP: 0.052 D_real: 0.790 D_fake: 0.552 +(epoch: 448, iters: 4030, time: 0.064) G_GAN: 0.011 G_GAN_Feat: 0.848 G_ID: 0.112 G_Rec: 0.305 D_GP: 0.079 D_real: 0.350 D_fake: 0.994 +(epoch: 448, iters: 4430, time: 0.064) G_GAN: 0.359 G_GAN_Feat: 0.994 G_ID: 0.121 G_Rec: 0.455 D_GP: 0.036 D_real: 1.001 D_fake: 0.643 +(epoch: 448, iters: 4830, time: 0.064) G_GAN: -0.046 G_GAN_Feat: 0.799 G_ID: 0.092 G_Rec: 0.333 D_GP: 0.061 D_real: 0.792 D_fake: 1.046 +(epoch: 448, iters: 5230, time: 0.064) G_GAN: 0.203 G_GAN_Feat: 1.029 G_ID: 0.133 G_Rec: 0.434 D_GP: 0.180 D_real: 0.273 D_fake: 0.800 +(epoch: 448, iters: 5630, time: 0.063) G_GAN: 0.113 G_GAN_Feat: 0.747 G_ID: 0.090 G_Rec: 0.296 D_GP: 0.033 D_real: 0.792 D_fake: 0.888 +(epoch: 448, iters: 6030, time: 0.063) G_GAN: 0.386 G_GAN_Feat: 1.100 G_ID: 0.131 G_Rec: 0.485 D_GP: 0.043 D_real: 0.940 D_fake: 0.619 +(epoch: 448, iters: 6430, time: 0.063) G_GAN: 0.388 G_GAN_Feat: 0.757 G_ID: 0.096 G_Rec: 0.315 D_GP: 0.030 D_real: 1.162 D_fake: 0.614 +(epoch: 448, iters: 6830, time: 0.064) G_GAN: 0.956 G_GAN_Feat: 1.229 G_ID: 0.121 G_Rec: 0.461 D_GP: 0.071 D_real: 0.469 D_fake: 0.193 +(epoch: 448, iters: 7230, time: 0.063) G_GAN: 0.158 G_GAN_Feat: 0.747 G_ID: 0.090 G_Rec: 0.329 D_GP: 0.029 D_real: 1.080 D_fake: 0.842 +(epoch: 448, iters: 7630, time: 0.063) G_GAN: 0.050 G_GAN_Feat: 0.968 G_ID: 0.115 G_Rec: 0.429 D_GP: 0.036 D_real: 0.755 D_fake: 0.950 +(epoch: 448, iters: 8030, time: 0.063) G_GAN: -0.038 G_GAN_Feat: 0.858 G_ID: 0.110 G_Rec: 0.316 D_GP: 0.045 D_real: 0.657 D_fake: 1.038 +(epoch: 448, iters: 8430, time: 0.064) G_GAN: 0.674 G_GAN_Feat: 0.941 G_ID: 0.135 G_Rec: 0.354 D_GP: 0.041 D_real: 1.109 D_fake: 0.343 +(epoch: 449, iters: 222, time: 0.064) G_GAN: 0.652 G_GAN_Feat: 0.769 G_ID: 0.097 G_Rec: 0.328 D_GP: 0.045 D_real: 1.480 D_fake: 0.379 +(epoch: 449, iters: 622, time: 0.064) G_GAN: 0.516 G_GAN_Feat: 0.947 G_ID: 0.118 G_Rec: 0.439 D_GP: 0.033 D_real: 1.008 D_fake: 0.499 +(epoch: 449, iters: 1022, time: 0.064) G_GAN: 0.301 G_GAN_Feat: 0.730 G_ID: 0.116 G_Rec: 0.295 D_GP: 0.033 D_real: 1.142 D_fake: 0.699 +(epoch: 449, iters: 1422, time: 0.064) G_GAN: 0.771 G_GAN_Feat: 1.042 G_ID: 0.119 G_Rec: 0.461 D_GP: 0.048 D_real: 1.159 D_fake: 0.274 +(epoch: 449, iters: 1822, time: 0.063) G_GAN: 0.289 G_GAN_Feat: 0.806 G_ID: 0.105 G_Rec: 0.322 D_GP: 0.067 D_real: 0.844 D_fake: 0.716 +(epoch: 449, iters: 2222, time: 0.063) G_GAN: 0.686 G_GAN_Feat: 1.162 G_ID: 0.123 G_Rec: 0.435 D_GP: 0.748 D_real: 0.494 D_fake: 0.343 +(epoch: 449, iters: 2622, time: 0.063) G_GAN: 0.168 G_GAN_Feat: 0.943 G_ID: 0.096 G_Rec: 0.339 D_GP: 0.766 D_real: 0.371 D_fake: 0.838 +(epoch: 449, iters: 3022, time: 0.064) G_GAN: 0.605 G_GAN_Feat: 1.038 G_ID: 0.145 G_Rec: 0.445 D_GP: 0.035 D_real: 0.957 D_fake: 0.427 +(epoch: 449, iters: 3422, time: 0.063) G_GAN: 0.429 G_GAN_Feat: 0.733 G_ID: 0.106 G_Rec: 0.268 D_GP: 0.035 D_real: 1.241 D_fake: 0.571 +(epoch: 449, iters: 3822, time: 0.063) G_GAN: 0.192 G_GAN_Feat: 0.930 G_ID: 0.131 G_Rec: 0.483 D_GP: 0.031 D_real: 0.835 D_fake: 0.810 +(epoch: 449, iters: 4222, time: 0.063) G_GAN: -0.063 G_GAN_Feat: 0.752 G_ID: 0.090 G_Rec: 0.297 D_GP: 0.055 D_real: 0.632 D_fake: 1.063 +(epoch: 449, iters: 4622, time: 0.064) G_GAN: 0.351 G_GAN_Feat: 0.955 G_ID: 0.138 G_Rec: 0.417 D_GP: 0.038 D_real: 0.948 D_fake: 0.651 +(epoch: 449, iters: 5022, time: 0.063) G_GAN: 0.054 G_GAN_Feat: 0.879 G_ID: 0.107 G_Rec: 0.336 D_GP: 0.130 D_real: 0.340 D_fake: 0.947 +(epoch: 449, iters: 5422, time: 0.063) G_GAN: 0.565 G_GAN_Feat: 1.059 G_ID: 0.110 G_Rec: 0.487 D_GP: 0.044 D_real: 0.784 D_fake: 0.445 +(epoch: 449, iters: 5822, time: 0.063) G_GAN: -0.012 G_GAN_Feat: 0.763 G_ID: 0.111 G_Rec: 0.287 D_GP: 0.034 D_real: 0.789 D_fake: 1.014 +(epoch: 449, iters: 6222, time: 0.064) G_GAN: 0.638 G_GAN_Feat: 0.947 G_ID: 0.123 G_Rec: 0.449 D_GP: 0.042 D_real: 1.353 D_fake: 0.392 +(epoch: 449, iters: 6622, time: 0.063) G_GAN: 0.179 G_GAN_Feat: 0.682 G_ID: 0.099 G_Rec: 0.275 D_GP: 0.028 D_real: 1.141 D_fake: 0.821 +(epoch: 449, iters: 7022, time: 0.063) G_GAN: 0.325 G_GAN_Feat: 0.852 G_ID: 0.117 G_Rec: 0.359 D_GP: 0.033 D_real: 1.079 D_fake: 0.676 +(epoch: 449, iters: 7422, time: 0.063) G_GAN: 0.218 G_GAN_Feat: 0.738 G_ID: 0.093 G_Rec: 0.304 D_GP: 0.031 D_real: 1.124 D_fake: 0.783 +(epoch: 449, iters: 7822, time: 0.064) G_GAN: 0.348 G_GAN_Feat: 1.022 G_ID: 0.131 G_Rec: 0.465 D_GP: 0.067 D_real: 0.752 D_fake: 0.658 +(epoch: 449, iters: 8222, time: 0.063) G_GAN: 0.242 G_GAN_Feat: 0.866 G_ID: 0.113 G_Rec: 0.377 D_GP: 0.223 D_real: 0.752 D_fake: 0.765 +(epoch: 449, iters: 8622, time: 0.063) G_GAN: 0.498 G_GAN_Feat: 0.936 G_ID: 0.130 G_Rec: 0.425 D_GP: 0.033 D_real: 1.152 D_fake: 0.507 +(epoch: 450, iters: 414, time: 0.063) G_GAN: -0.158 G_GAN_Feat: 0.748 G_ID: 0.116 G_Rec: 0.315 D_GP: 0.038 D_real: 0.656 D_fake: 1.158 +(epoch: 450, iters: 814, time: 0.064) G_GAN: 0.616 G_GAN_Feat: 0.930 G_ID: 0.129 G_Rec: 0.445 D_GP: 0.033 D_real: 1.230 D_fake: 0.417 +(epoch: 450, iters: 1214, time: 0.063) G_GAN: 0.158 G_GAN_Feat: 0.851 G_ID: 0.134 G_Rec: 0.330 D_GP: 0.053 D_real: 0.673 D_fake: 0.842 +(epoch: 450, iters: 1614, time: 0.063) G_GAN: 0.694 G_GAN_Feat: 1.133 G_ID: 0.103 G_Rec: 0.454 D_GP: 0.079 D_real: 0.648 D_fake: 0.329 +(epoch: 450, iters: 2014, time: 0.063) G_GAN: 0.423 G_GAN_Feat: 0.873 G_ID: 0.098 G_Rec: 0.328 D_GP: 0.036 D_real: 0.937 D_fake: 0.581 +(epoch: 450, iters: 2414, time: 0.064) G_GAN: 0.716 G_GAN_Feat: 0.886 G_ID: 0.110 G_Rec: 0.394 D_GP: 0.080 D_real: 1.279 D_fake: 0.397 +(epoch: 450, iters: 2814, time: 0.063) G_GAN: 0.068 G_GAN_Feat: 0.742 G_ID: 0.091 G_Rec: 0.306 D_GP: 0.032 D_real: 0.938 D_fake: 0.932 +(epoch: 450, iters: 3214, time: 0.063) G_GAN: 0.392 G_GAN_Feat: 0.967 G_ID: 0.156 G_Rec: 0.421 D_GP: 0.037 D_real: 0.964 D_fake: 0.610 +(epoch: 450, iters: 3614, time: 0.063) G_GAN: 0.256 G_GAN_Feat: 0.720 G_ID: 0.103 G_Rec: 0.288 D_GP: 0.033 D_real: 1.177 D_fake: 0.745 +(epoch: 450, iters: 4014, time: 0.064) G_GAN: 0.544 G_GAN_Feat: 0.978 G_ID: 0.111 G_Rec: 0.449 D_GP: 0.036 D_real: 1.233 D_fake: 0.460 +(epoch: 450, iters: 4414, time: 0.063) G_GAN: 0.430 G_GAN_Feat: 0.716 G_ID: 0.079 G_Rec: 0.272 D_GP: 0.025 D_real: 1.304 D_fake: 0.571 +(epoch: 450, iters: 4814, time: 0.063) G_GAN: 0.833 G_GAN_Feat: 1.063 G_ID: 0.128 G_Rec: 0.403 D_GP: 0.048 D_real: 1.121 D_fake: 0.203 +(epoch: 450, iters: 5214, time: 0.063) G_GAN: 0.312 G_GAN_Feat: 0.900 G_ID: 0.091 G_Rec: 0.327 D_GP: 0.040 D_real: 0.600 D_fake: 0.688 +(epoch: 450, iters: 5614, time: 0.064) G_GAN: 0.812 G_GAN_Feat: 0.911 G_ID: 0.109 G_Rec: 0.419 D_GP: 0.027 D_real: 1.513 D_fake: 0.279 +(epoch: 450, iters: 6014, time: 0.064) G_GAN: 0.351 G_GAN_Feat: 0.788 G_ID: 0.087 G_Rec: 0.324 D_GP: 0.039 D_real: 1.079 D_fake: 0.651 +(epoch: 450, iters: 6414, time: 0.063) G_GAN: 0.649 G_GAN_Feat: 1.042 G_ID: 0.109 G_Rec: 0.460 D_GP: 0.044 D_real: 1.218 D_fake: 0.378 +(epoch: 450, iters: 6814, time: 0.063) G_GAN: 0.420 G_GAN_Feat: 0.689 G_ID: 0.092 G_Rec: 0.281 D_GP: 0.027 D_real: 1.272 D_fake: 0.581 +(epoch: 450, iters: 7214, time: 0.064) G_GAN: 0.712 G_GAN_Feat: 0.958 G_ID: 0.127 G_Rec: 0.388 D_GP: 0.069 D_real: 1.002 D_fake: 0.306 +(epoch: 450, iters: 7614, time: 0.063) G_GAN: 0.281 G_GAN_Feat: 0.785 G_ID: 0.096 G_Rec: 0.300 D_GP: 0.030 D_real: 0.946 D_fake: 0.719 +(epoch: 450, iters: 8014, time: 0.063) G_GAN: 0.675 G_GAN_Feat: 1.119 G_ID: 0.123 G_Rec: 0.420 D_GP: 0.059 D_real: 0.604 D_fake: 0.356 +(epoch: 450, iters: 8414, time: 0.063) G_GAN: 0.547 G_GAN_Feat: 0.956 G_ID: 0.101 G_Rec: 0.337 D_GP: 0.091 D_real: 0.629 D_fake: 0.522 +(epoch: 451, iters: 206, time: 0.064) G_GAN: 0.356 G_GAN_Feat: 0.867 G_ID: 0.131 G_Rec: 0.411 D_GP: 0.031 D_real: 1.075 D_fake: 0.647 +(epoch: 451, iters: 606, time: 0.063) G_GAN: 0.222 G_GAN_Feat: 0.659 G_ID: 0.096 G_Rec: 0.280 D_GP: 0.026 D_real: 1.208 D_fake: 0.778 +(epoch: 451, iters: 1006, time: 0.063) G_GAN: 0.358 G_GAN_Feat: 0.981 G_ID: 0.113 G_Rec: 0.443 D_GP: 0.037 D_real: 0.979 D_fake: 0.649 +(epoch: 451, iters: 1406, time: 0.063) G_GAN: -0.209 G_GAN_Feat: 0.712 G_ID: 0.118 G_Rec: 0.359 D_GP: 0.032 D_real: 0.731 D_fake: 1.209 +(epoch: 451, iters: 1806, time: 0.064) G_GAN: 0.130 G_GAN_Feat: 0.884 G_ID: 0.122 G_Rec: 0.396 D_GP: 0.043 D_real: 0.769 D_fake: 0.871 +(epoch: 451, iters: 2206, time: 0.063) G_GAN: -0.086 G_GAN_Feat: 0.755 G_ID: 0.121 G_Rec: 0.321 D_GP: 0.042 D_real: 0.565 D_fake: 1.086 +(epoch: 451, iters: 2606, time: 0.063) G_GAN: 0.088 G_GAN_Feat: 0.970 G_ID: 0.117 G_Rec: 0.430 D_GP: 0.053 D_real: 0.581 D_fake: 0.912 +(epoch: 451, iters: 3006, time: 0.063) G_GAN: 0.248 G_GAN_Feat: 0.791 G_ID: 0.082 G_Rec: 0.300 D_GP: 0.080 D_real: 0.794 D_fake: 0.757 +(epoch: 451, iters: 3406, time: 0.064) G_GAN: 0.364 G_GAN_Feat: 0.997 G_ID: 0.113 G_Rec: 0.452 D_GP: 0.035 D_real: 0.984 D_fake: 0.637 +(epoch: 451, iters: 3806, time: 0.063) G_GAN: 0.264 G_GAN_Feat: 0.723 G_ID: 0.098 G_Rec: 0.317 D_GP: 0.038 D_real: 1.151 D_fake: 0.736 +(epoch: 451, iters: 4206, time: 0.063) G_GAN: 0.463 G_GAN_Feat: 0.956 G_ID: 0.117 G_Rec: 0.417 D_GP: 0.054 D_real: 0.938 D_fake: 0.546 +(epoch: 451, iters: 4606, time: 0.064) G_GAN: 0.255 G_GAN_Feat: 0.763 G_ID: 0.089 G_Rec: 0.308 D_GP: 0.064 D_real: 0.858 D_fake: 0.747 +(epoch: 451, iters: 5006, time: 0.064) G_GAN: 0.500 G_GAN_Feat: 1.044 G_ID: 0.112 G_Rec: 0.455 D_GP: 0.097 D_real: 0.599 D_fake: 0.508 +(epoch: 451, iters: 5406, time: 0.063) G_GAN: 0.298 G_GAN_Feat: 0.988 G_ID: 0.113 G_Rec: 0.388 D_GP: 0.149 D_real: 0.320 D_fake: 0.723 +(epoch: 451, iters: 5806, time: 0.063) G_GAN: 0.432 G_GAN_Feat: 1.177 G_ID: 0.115 G_Rec: 0.471 D_GP: 0.080 D_real: 0.422 D_fake: 0.568 +(epoch: 451, iters: 6206, time: 0.063) G_GAN: 0.072 G_GAN_Feat: 0.942 G_ID: 0.126 G_Rec: 0.347 D_GP: 0.141 D_real: 0.234 D_fake: 0.932 +(epoch: 451, iters: 6606, time: 0.064) G_GAN: 0.281 G_GAN_Feat: 1.001 G_ID: 0.147 G_Rec: 0.453 D_GP: 0.052 D_real: 0.673 D_fake: 0.724 +(epoch: 451, iters: 7006, time: 0.063) G_GAN: 0.078 G_GAN_Feat: 0.776 G_ID: 0.107 G_Rec: 0.287 D_GP: 0.065 D_real: 0.748 D_fake: 0.924 +(epoch: 451, iters: 7406, time: 0.063) G_GAN: 0.609 G_GAN_Feat: 1.211 G_ID: 0.109 G_Rec: 0.473 D_GP: 0.049 D_real: 0.603 D_fake: 0.407 +(epoch: 451, iters: 7806, time: 0.063) G_GAN: 0.249 G_GAN_Feat: 0.723 G_ID: 0.090 G_Rec: 0.291 D_GP: 0.029 D_real: 1.132 D_fake: 0.751 +(epoch: 451, iters: 8206, time: 0.064) G_GAN: 0.371 G_GAN_Feat: 1.003 G_ID: 0.129 G_Rec: 0.440 D_GP: 0.047 D_real: 0.866 D_fake: 0.631 +(epoch: 451, iters: 8606, time: 0.063) G_GAN: 0.166 G_GAN_Feat: 0.902 G_ID: 0.093 G_Rec: 0.358 D_GP: 0.186 D_real: 0.555 D_fake: 0.841 +(epoch: 452, iters: 398, time: 0.063) G_GAN: 0.602 G_GAN_Feat: 1.172 G_ID: 0.126 G_Rec: 0.459 D_GP: 0.073 D_real: 0.292 D_fake: 0.405 +(epoch: 452, iters: 798, time: 0.063) G_GAN: 0.479 G_GAN_Feat: 0.907 G_ID: 0.092 G_Rec: 0.324 D_GP: 0.067 D_real: 0.709 D_fake: 0.525 +(epoch: 452, iters: 1198, time: 0.064) G_GAN: 0.450 G_GAN_Feat: 1.089 G_ID: 0.129 G_Rec: 0.465 D_GP: 0.040 D_real: 0.608 D_fake: 0.552 +(epoch: 452, iters: 1598, time: 0.063) G_GAN: 0.190 G_GAN_Feat: 0.735 G_ID: 0.090 G_Rec: 0.290 D_GP: 0.027 D_real: 1.056 D_fake: 0.810 +(epoch: 452, iters: 1998, time: 0.064) G_GAN: 0.679 G_GAN_Feat: 1.083 G_ID: 0.120 G_Rec: 0.455 D_GP: 0.048 D_real: 0.846 D_fake: 0.354 +(epoch: 452, iters: 2398, time: 0.064) G_GAN: 0.364 G_GAN_Feat: 1.104 G_ID: 0.095 G_Rec: 0.352 D_GP: 0.224 D_real: 0.415 D_fake: 0.645 +(epoch: 452, iters: 2798, time: 0.064) G_GAN: 1.045 G_GAN_Feat: 1.166 G_ID: 0.110 G_Rec: 0.442 D_GP: 0.091 D_real: 0.887 D_fake: 0.111 +(epoch: 452, iters: 3198, time: 0.064) G_GAN: 0.092 G_GAN_Feat: 0.839 G_ID: 0.087 G_Rec: 0.293 D_GP: 0.044 D_real: 0.645 D_fake: 0.908 +(epoch: 452, iters: 3598, time: 0.064) G_GAN: 0.565 G_GAN_Feat: 1.020 G_ID: 0.119 G_Rec: 0.408 D_GP: 0.049 D_real: 0.658 D_fake: 0.446 +(epoch: 452, iters: 3998, time: 0.063) G_GAN: 0.492 G_GAN_Feat: 0.776 G_ID: 0.092 G_Rec: 0.283 D_GP: 0.041 D_real: 1.099 D_fake: 0.524 +(epoch: 452, iters: 4398, time: 0.064) G_GAN: 0.237 G_GAN_Feat: 0.926 G_ID: 0.113 G_Rec: 0.431 D_GP: 0.029 D_real: 0.896 D_fake: 0.766 +(epoch: 452, iters: 4798, time: 0.063) G_GAN: 0.169 G_GAN_Feat: 0.741 G_ID: 0.088 G_Rec: 0.302 D_GP: 0.099 D_real: 0.970 D_fake: 0.832 +(epoch: 452, iters: 5198, time: 0.063) G_GAN: 0.505 G_GAN_Feat: 1.003 G_ID: 0.129 G_Rec: 0.408 D_GP: 0.039 D_real: 0.927 D_fake: 0.503 +(epoch: 452, iters: 5598, time: 0.064) G_GAN: 0.357 G_GAN_Feat: 0.738 G_ID: 0.089 G_Rec: 0.310 D_GP: 0.033 D_real: 1.339 D_fake: 0.643 +(epoch: 452, iters: 5998, time: 0.064) G_GAN: 0.640 G_GAN_Feat: 1.038 G_ID: 0.116 G_Rec: 0.415 D_GP: 0.064 D_real: 0.529 D_fake: 0.375 +(epoch: 452, iters: 6398, time: 0.063) G_GAN: 0.081 G_GAN_Feat: 0.708 G_ID: 0.096 G_Rec: 0.326 D_GP: 0.034 D_real: 0.868 D_fake: 0.919 +(epoch: 452, iters: 6798, time: 0.063) G_GAN: 0.439 G_GAN_Feat: 1.017 G_ID: 0.125 G_Rec: 0.432 D_GP: 0.085 D_real: 0.741 D_fake: 0.584 +(epoch: 452, iters: 7198, time: 0.063) G_GAN: -0.148 G_GAN_Feat: 0.798 G_ID: 0.095 G_Rec: 0.326 D_GP: 0.037 D_real: 0.724 D_fake: 1.148 +(epoch: 452, iters: 7598, time: 0.064) G_GAN: 0.196 G_GAN_Feat: 0.943 G_ID: 0.135 G_Rec: 0.414 D_GP: 0.046 D_real: 0.796 D_fake: 0.809 +(epoch: 452, iters: 7998, time: 0.063) G_GAN: -0.047 G_GAN_Feat: 0.732 G_ID: 0.081 G_Rec: 0.291 D_GP: 0.055 D_real: 0.840 D_fake: 1.047 +(epoch: 452, iters: 8398, time: 0.063) G_GAN: 0.517 G_GAN_Feat: 1.036 G_ID: 0.116 G_Rec: 0.458 D_GP: 0.045 D_real: 0.936 D_fake: 0.498 +(epoch: 453, iters: 190, time: 0.063) G_GAN: 0.296 G_GAN_Feat: 0.772 G_ID: 0.096 G_Rec: 0.301 D_GP: 0.038 D_real: 1.136 D_fake: 0.705 +(epoch: 453, iters: 590, time: 0.063) G_GAN: 0.379 G_GAN_Feat: 0.931 G_ID: 0.116 G_Rec: 0.424 D_GP: 0.033 D_real: 1.096 D_fake: 0.621 +(epoch: 453, iters: 990, time: 0.063) G_GAN: 0.298 G_GAN_Feat: 0.858 G_ID: 0.090 G_Rec: 0.335 D_GP: 0.059 D_real: 0.833 D_fake: 0.702 +(epoch: 453, iters: 1390, time: 0.063) G_GAN: 0.452 G_GAN_Feat: 1.078 G_ID: 0.098 G_Rec: 0.470 D_GP: 0.051 D_real: 0.769 D_fake: 0.551 +(epoch: 453, iters: 1790, time: 0.064) G_GAN: 0.283 G_GAN_Feat: 0.894 G_ID: 0.107 G_Rec: 0.334 D_GP: 0.037 D_real: 0.750 D_fake: 0.717 +(epoch: 453, iters: 2190, time: 0.063) G_GAN: 0.861 G_GAN_Feat: 1.103 G_ID: 0.122 G_Rec: 0.478 D_GP: 0.076 D_real: 0.714 D_fake: 0.233 +(epoch: 453, iters: 2590, time: 0.063) G_GAN: 0.131 G_GAN_Feat: 0.720 G_ID: 0.084 G_Rec: 0.306 D_GP: 0.032 D_real: 1.057 D_fake: 0.869 +(epoch: 453, iters: 2990, time: 0.063) G_GAN: 0.432 G_GAN_Feat: 0.929 G_ID: 0.124 G_Rec: 0.449 D_GP: 0.041 D_real: 1.066 D_fake: 0.587 +(epoch: 453, iters: 3390, time: 0.064) G_GAN: -0.082 G_GAN_Feat: 0.625 G_ID: 0.100 G_Rec: 0.276 D_GP: 0.032 D_real: 0.764 D_fake: 1.082 +(epoch: 453, iters: 3790, time: 0.063) G_GAN: 0.197 G_GAN_Feat: 0.922 G_ID: 0.110 G_Rec: 0.412 D_GP: 0.034 D_real: 0.823 D_fake: 0.804 +(epoch: 453, iters: 4190, time: 0.063) G_GAN: 0.038 G_GAN_Feat: 0.755 G_ID: 0.103 G_Rec: 0.318 D_GP: 0.052 D_real: 0.818 D_fake: 0.962 +(epoch: 453, iters: 4590, time: 0.063) G_GAN: 0.228 G_GAN_Feat: 1.014 G_ID: 0.115 G_Rec: 0.478 D_GP: 0.043 D_real: 0.722 D_fake: 0.774 +(epoch: 453, iters: 4990, time: 0.064) G_GAN: 0.277 G_GAN_Feat: 0.714 G_ID: 0.080 G_Rec: 0.292 D_GP: 0.037 D_real: 1.091 D_fake: 0.724 +(epoch: 453, iters: 5390, time: 0.063) G_GAN: 0.237 G_GAN_Feat: 0.907 G_ID: 0.121 G_Rec: 0.407 D_GP: 0.028 D_real: 1.087 D_fake: 0.763 +(epoch: 453, iters: 5790, time: 0.063) G_GAN: 0.182 G_GAN_Feat: 0.728 G_ID: 0.107 G_Rec: 0.281 D_GP: 0.033 D_real: 1.101 D_fake: 0.818 +(epoch: 453, iters: 6190, time: 0.063) G_GAN: 0.377 G_GAN_Feat: 0.995 G_ID: 0.125 G_Rec: 0.427 D_GP: 0.072 D_real: 0.793 D_fake: 0.625 +(epoch: 453, iters: 6590, time: 0.064) G_GAN: 0.266 G_GAN_Feat: 0.859 G_ID: 0.104 G_Rec: 0.330 D_GP: 0.064 D_real: 0.850 D_fake: 0.735 +(epoch: 453, iters: 6990, time: 0.063) G_GAN: 0.563 G_GAN_Feat: 0.970 G_ID: 0.120 G_Rec: 0.445 D_GP: 0.032 D_real: 1.151 D_fake: 0.448 +(epoch: 453, iters: 7390, time: 0.063) G_GAN: 0.157 G_GAN_Feat: 0.774 G_ID: 0.106 G_Rec: 0.317 D_GP: 0.033 D_real: 0.907 D_fake: 0.843 +(epoch: 453, iters: 7790, time: 0.063) G_GAN: 0.657 G_GAN_Feat: 1.036 G_ID: 0.121 G_Rec: 0.465 D_GP: 0.037 D_real: 1.157 D_fake: 0.355 +(epoch: 453, iters: 8190, time: 0.064) G_GAN: 0.255 G_GAN_Feat: 0.875 G_ID: 0.116 G_Rec: 0.350 D_GP: 0.075 D_real: 0.639 D_fake: 0.752 +(epoch: 453, iters: 8590, time: 0.063) G_GAN: 0.750 G_GAN_Feat: 1.182 G_ID: 0.122 G_Rec: 0.476 D_GP: 0.073 D_real: 0.651 D_fake: 0.274 +(epoch: 454, iters: 382, time: 0.063) G_GAN: -0.017 G_GAN_Feat: 0.883 G_ID: 0.110 G_Rec: 0.339 D_GP: 0.039 D_real: 0.375 D_fake: 1.017 +(epoch: 454, iters: 782, time: 0.063) G_GAN: 0.324 G_GAN_Feat: 0.948 G_ID: 0.124 G_Rec: 0.389 D_GP: 0.037 D_real: 0.900 D_fake: 0.677 +(epoch: 454, iters: 1182, time: 0.064) G_GAN: 0.349 G_GAN_Feat: 0.737 G_ID: 0.078 G_Rec: 0.326 D_GP: 0.029 D_real: 1.211 D_fake: 0.651 +(epoch: 454, iters: 1582, time: 0.063) G_GAN: 0.629 G_GAN_Feat: 0.850 G_ID: 0.110 G_Rec: 0.383 D_GP: 0.042 D_real: 1.296 D_fake: 0.403 +(epoch: 454, iters: 1982, time: 0.063) G_GAN: 0.090 G_GAN_Feat: 0.751 G_ID: 0.090 G_Rec: 0.330 D_GP: 0.036 D_real: 0.881 D_fake: 0.910 +(epoch: 454, iters: 2382, time: 0.063) G_GAN: 0.545 G_GAN_Feat: 1.022 G_ID: 0.110 G_Rec: 0.410 D_GP: 0.035 D_real: 1.092 D_fake: 0.464 +(epoch: 454, iters: 2782, time: 0.064) G_GAN: 0.106 G_GAN_Feat: 0.697 G_ID: 0.079 G_Rec: 0.293 D_GP: 0.032 D_real: 0.953 D_fake: 0.894 +(epoch: 454, iters: 3182, time: 0.063) G_GAN: 0.353 G_GAN_Feat: 1.042 G_ID: 0.111 G_Rec: 0.464 D_GP: 0.055 D_real: 0.930 D_fake: 0.649 +(epoch: 454, iters: 3582, time: 0.063) G_GAN: 0.527 G_GAN_Feat: 0.751 G_ID: 0.095 G_Rec: 0.330 D_GP: 0.037 D_real: 1.406 D_fake: 0.477 +(epoch: 454, iters: 3982, time: 0.063) G_GAN: 0.523 G_GAN_Feat: 0.894 G_ID: 0.132 G_Rec: 0.396 D_GP: 0.034 D_real: 1.143 D_fake: 0.487 +(epoch: 454, iters: 4382, time: 0.064) G_GAN: 0.360 G_GAN_Feat: 0.690 G_ID: 0.112 G_Rec: 0.341 D_GP: 0.031 D_real: 1.279 D_fake: 0.642 +(epoch: 454, iters: 4782, time: 0.063) G_GAN: 0.362 G_GAN_Feat: 1.059 G_ID: 0.115 G_Rec: 0.472 D_GP: 0.090 D_real: 0.698 D_fake: 0.647 +(epoch: 454, iters: 5182, time: 0.063) G_GAN: 0.344 G_GAN_Feat: 0.886 G_ID: 0.102 G_Rec: 0.299 D_GP: 0.072 D_real: 0.590 D_fake: 0.658 +(epoch: 454, iters: 5582, time: 0.063) G_GAN: 0.421 G_GAN_Feat: 1.151 G_ID: 0.125 G_Rec: 0.471 D_GP: 0.672 D_real: 0.344 D_fake: 0.590 +(epoch: 454, iters: 5982, time: 0.064) G_GAN: 0.369 G_GAN_Feat: 0.925 G_ID: 0.085 G_Rec: 0.321 D_GP: 0.132 D_real: 0.324 D_fake: 0.679 +(epoch: 454, iters: 6382, time: 0.063) G_GAN: 0.697 G_GAN_Feat: 1.006 G_ID: 0.119 G_Rec: 0.424 D_GP: 0.035 D_real: 1.197 D_fake: 0.316 +(epoch: 454, iters: 6782, time: 0.063) G_GAN: 0.118 G_GAN_Feat: 0.817 G_ID: 0.094 G_Rec: 0.330 D_GP: 0.044 D_real: 0.796 D_fake: 0.882 +(epoch: 454, iters: 7182, time: 0.063) G_GAN: 0.426 G_GAN_Feat: 0.936 G_ID: 0.126 G_Rec: 0.407 D_GP: 0.036 D_real: 1.076 D_fake: 0.582 +(epoch: 454, iters: 7582, time: 0.064) G_GAN: 0.154 G_GAN_Feat: 0.821 G_ID: 0.100 G_Rec: 0.333 D_GP: 0.075 D_real: 0.720 D_fake: 0.847 +(epoch: 454, iters: 7982, time: 0.063) G_GAN: 0.548 G_GAN_Feat: 1.156 G_ID: 0.119 G_Rec: 0.480 D_GP: 0.067 D_real: 0.442 D_fake: 0.466 +(epoch: 454, iters: 8382, time: 0.063) G_GAN: 0.097 G_GAN_Feat: 0.708 G_ID: 0.095 G_Rec: 0.294 D_GP: 0.027 D_real: 0.977 D_fake: 0.903 +(epoch: 455, iters: 174, time: 0.063) G_GAN: 0.863 G_GAN_Feat: 1.181 G_ID: 0.123 G_Rec: 0.457 D_GP: 0.091 D_real: 0.645 D_fake: 0.376 +(epoch: 455, iters: 574, time: 0.064) G_GAN: 0.145 G_GAN_Feat: 0.784 G_ID: 0.110 G_Rec: 0.319 D_GP: 0.035 D_real: 0.965 D_fake: 0.855 +(epoch: 455, iters: 974, time: 0.063) G_GAN: 0.609 G_GAN_Feat: 1.105 G_ID: 0.120 G_Rec: 0.447 D_GP: 0.051 D_real: 0.950 D_fake: 0.409 +(epoch: 455, iters: 1374, time: 0.063) G_GAN: 0.118 G_GAN_Feat: 0.754 G_ID: 0.093 G_Rec: 0.320 D_GP: 0.036 D_real: 0.996 D_fake: 0.882 +(epoch: 455, iters: 1774, time: 0.063) G_GAN: 0.689 G_GAN_Feat: 1.051 G_ID: 0.103 G_Rec: 0.489 D_GP: 0.036 D_real: 1.127 D_fake: 0.371 +(epoch: 455, iters: 2174, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 0.833 G_ID: 0.088 G_Rec: 0.353 D_GP: 0.096 D_real: 0.808 D_fake: 0.690 +(epoch: 455, iters: 2574, time: 0.063) G_GAN: 0.431 G_GAN_Feat: 1.051 G_ID: 0.136 G_Rec: 0.475 D_GP: 0.050 D_real: 0.759 D_fake: 0.582 +(epoch: 455, iters: 2974, time: 0.063) G_GAN: 0.246 G_GAN_Feat: 1.074 G_ID: 0.095 G_Rec: 0.340 D_GP: 0.213 D_real: 0.301 D_fake: 0.756 +(epoch: 455, iters: 3374, time: 0.063) G_GAN: 1.050 G_GAN_Feat: 1.150 G_ID: 0.128 G_Rec: 0.406 D_GP: 0.095 D_real: 0.853 D_fake: 0.234 +(epoch: 455, iters: 3774, time: 0.064) G_GAN: 0.408 G_GAN_Feat: 0.869 G_ID: 0.101 G_Rec: 0.327 D_GP: 0.050 D_real: 0.801 D_fake: 0.621 +(epoch: 455, iters: 4174, time: 0.063) G_GAN: 0.664 G_GAN_Feat: 1.026 G_ID: 0.123 G_Rec: 0.479 D_GP: 0.035 D_real: 1.279 D_fake: 0.400 +(epoch: 455, iters: 4574, time: 0.063) G_GAN: -0.041 G_GAN_Feat: 0.749 G_ID: 0.106 G_Rec: 0.321 D_GP: 0.039 D_real: 0.749 D_fake: 1.041 +(epoch: 455, iters: 4974, time: 0.063) G_GAN: 0.718 G_GAN_Feat: 0.996 G_ID: 0.106 G_Rec: 0.422 D_GP: 0.054 D_real: 1.200 D_fake: 0.310 +(epoch: 455, iters: 5374, time: 0.064) G_GAN: 0.572 G_GAN_Feat: 0.809 G_ID: 0.099 G_Rec: 0.303 D_GP: 0.087 D_real: 1.164 D_fake: 0.437 +(epoch: 455, iters: 5774, time: 0.063) G_GAN: 0.816 G_GAN_Feat: 1.038 G_ID: 0.125 G_Rec: 0.427 D_GP: 0.043 D_real: 1.259 D_fake: 0.313 +(epoch: 455, iters: 6174, time: 0.063) G_GAN: 0.465 G_GAN_Feat: 0.772 G_ID: 0.102 G_Rec: 0.297 D_GP: 0.036 D_real: 1.273 D_fake: 0.544 +(epoch: 455, iters: 6574, time: 0.063) G_GAN: 0.454 G_GAN_Feat: 1.150 G_ID: 0.127 G_Rec: 0.468 D_GP: 0.066 D_real: 0.543 D_fake: 0.559 +(epoch: 455, iters: 6974, time: 0.064) G_GAN: 0.236 G_GAN_Feat: 0.778 G_ID: 0.100 G_Rec: 0.345 D_GP: 0.034 D_real: 1.052 D_fake: 0.764 +(epoch: 455, iters: 7374, time: 0.063) G_GAN: 0.141 G_GAN_Feat: 0.897 G_ID: 0.134 G_Rec: 0.440 D_GP: 0.041 D_real: 0.834 D_fake: 0.860 +(epoch: 455, iters: 7774, time: 0.063) G_GAN: 0.167 G_GAN_Feat: 0.723 G_ID: 0.092 G_Rec: 0.317 D_GP: 0.037 D_real: 1.072 D_fake: 0.834 +(epoch: 455, iters: 8174, time: 0.063) G_GAN: 0.369 G_GAN_Feat: 0.922 G_ID: 0.104 G_Rec: 0.433 D_GP: 0.069 D_real: 1.028 D_fake: 0.636 +(epoch: 455, iters: 8574, time: 0.064) G_GAN: -0.033 G_GAN_Feat: 0.754 G_ID: 0.118 G_Rec: 0.329 D_GP: 0.042 D_real: 0.747 D_fake: 1.033 +(epoch: 456, iters: 366, time: 0.063) G_GAN: 0.385 G_GAN_Feat: 0.931 G_ID: 0.116 G_Rec: 0.423 D_GP: 0.045 D_real: 0.900 D_fake: 0.621 +(epoch: 456, iters: 766, time: 0.063) G_GAN: 0.242 G_GAN_Feat: 0.645 G_ID: 0.107 G_Rec: 0.299 D_GP: 0.028 D_real: 1.126 D_fake: 0.759 +(epoch: 456, iters: 1166, time: 0.063) G_GAN: 0.479 G_GAN_Feat: 0.893 G_ID: 0.122 G_Rec: 0.402 D_GP: 0.048 D_real: 1.078 D_fake: 0.528 +(epoch: 456, iters: 1566, time: 0.064) G_GAN: 0.239 G_GAN_Feat: 0.769 G_ID: 0.091 G_Rec: 0.316 D_GP: 0.060 D_real: 1.007 D_fake: 0.764 +(epoch: 456, iters: 1966, time: 0.063) G_GAN: 0.512 G_GAN_Feat: 0.925 G_ID: 0.115 G_Rec: 0.402 D_GP: 0.028 D_real: 1.152 D_fake: 0.492 +(epoch: 456, iters: 2366, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 0.930 G_ID: 0.087 G_Rec: 0.347 D_GP: 0.162 D_real: 0.510 D_fake: 0.660 +(epoch: 456, iters: 2766, time: 0.064) G_GAN: 0.141 G_GAN_Feat: 1.048 G_ID: 0.135 G_Rec: 0.461 D_GP: 0.036 D_real: 0.868 D_fake: 0.861 +(epoch: 456, iters: 3166, time: 0.064) G_GAN: -0.067 G_GAN_Feat: 0.737 G_ID: 0.124 G_Rec: 0.342 D_GP: 0.029 D_real: 0.840 D_fake: 1.067 +(epoch: 456, iters: 3566, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 0.890 G_ID: 0.122 G_Rec: 0.419 D_GP: 0.033 D_real: 0.838 D_fake: 0.835 +(epoch: 456, iters: 3966, time: 0.063) G_GAN: -0.153 G_GAN_Feat: 0.728 G_ID: 0.102 G_Rec: 0.327 D_GP: 0.035 D_real: 0.704 D_fake: 1.153 +(epoch: 456, iters: 4366, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 0.937 G_ID: 0.123 G_Rec: 0.426 D_GP: 0.040 D_real: 0.889 D_fake: 0.708 +(epoch: 456, iters: 4766, time: 0.064) G_GAN: 0.130 G_GAN_Feat: 0.641 G_ID: 0.097 G_Rec: 0.269 D_GP: 0.035 D_real: 1.053 D_fake: 0.872 +(epoch: 456, iters: 5166, time: 0.064) G_GAN: 0.198 G_GAN_Feat: 0.991 G_ID: 0.113 G_Rec: 0.459 D_GP: 0.060 D_real: 0.566 D_fake: 0.808 +(epoch: 456, iters: 5566, time: 0.064) G_GAN: -0.027 G_GAN_Feat: 0.670 G_ID: 0.107 G_Rec: 0.287 D_GP: 0.041 D_real: 0.813 D_fake: 1.030 +(epoch: 456, iters: 5966, time: 0.064) G_GAN: 0.361 G_GAN_Feat: 1.002 G_ID: 0.118 G_Rec: 0.459 D_GP: 0.052 D_real: 0.750 D_fake: 0.648 +(epoch: 456, iters: 6366, time: 0.064) G_GAN: -0.178 G_GAN_Feat: 0.789 G_ID: 0.105 G_Rec: 0.347 D_GP: 0.070 D_real: 0.464 D_fake: 1.178 +(epoch: 456, iters: 6766, time: 0.064) G_GAN: 0.456 G_GAN_Feat: 1.039 G_ID: 0.120 G_Rec: 0.415 D_GP: 0.063 D_real: 0.743 D_fake: 0.549 +(epoch: 456, iters: 7166, time: 0.064) G_GAN: 0.246 G_GAN_Feat: 0.827 G_ID: 0.085 G_Rec: 0.331 D_GP: 0.047 D_real: 0.866 D_fake: 0.758 +(epoch: 456, iters: 7566, time: 0.064) G_GAN: 0.609 G_GAN_Feat: 1.169 G_ID: 0.138 G_Rec: 0.479 D_GP: 0.073 D_real: 0.324 D_fake: 0.442 +(epoch: 456, iters: 7966, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.762 G_ID: 0.088 G_Rec: 0.304 D_GP: 0.036 D_real: 1.181 D_fake: 0.725 +(epoch: 456, iters: 8366, time: 0.064) G_GAN: 0.854 G_GAN_Feat: 1.106 G_ID: 0.115 G_Rec: 0.503 D_GP: 0.055 D_real: 1.121 D_fake: 0.221 +(epoch: 457, iters: 158, time: 0.064) G_GAN: 0.499 G_GAN_Feat: 0.947 G_ID: 0.099 G_Rec: 0.333 D_GP: 0.046 D_real: 0.573 D_fake: 0.520 +(epoch: 457, iters: 558, time: 0.064) G_GAN: 0.251 G_GAN_Feat: 0.904 G_ID: 0.104 G_Rec: 0.449 D_GP: 0.030 D_real: 1.006 D_fake: 0.751 +(epoch: 457, iters: 958, time: 0.064) G_GAN: 0.077 G_GAN_Feat: 0.680 G_ID: 0.098 G_Rec: 0.300 D_GP: 0.029 D_real: 0.943 D_fake: 0.923 +(epoch: 457, iters: 1358, time: 0.063) G_GAN: 0.477 G_GAN_Feat: 0.965 G_ID: 0.122 G_Rec: 0.417 D_GP: 0.039 D_real: 1.033 D_fake: 0.526 +(epoch: 457, iters: 1758, time: 0.063) G_GAN: 0.095 G_GAN_Feat: 0.656 G_ID: 0.093 G_Rec: 0.267 D_GP: 0.038 D_real: 0.967 D_fake: 0.905 +(epoch: 457, iters: 2158, time: 0.063) G_GAN: 0.476 G_GAN_Feat: 0.987 G_ID: 0.112 G_Rec: 0.444 D_GP: 0.037 D_real: 1.024 D_fake: 0.526 +(epoch: 457, iters: 2558, time: 0.064) G_GAN: 0.111 G_GAN_Feat: 0.775 G_ID: 0.099 G_Rec: 0.279 D_GP: 0.066 D_real: 0.730 D_fake: 0.889 +(epoch: 457, iters: 2958, time: 0.063) G_GAN: 0.647 G_GAN_Feat: 1.095 G_ID: 0.113 G_Rec: 0.470 D_GP: 0.048 D_real: 0.950 D_fake: 0.482 +(epoch: 457, iters: 3358, time: 0.063) G_GAN: 0.339 G_GAN_Feat: 0.671 G_ID: 0.124 G_Rec: 0.335 D_GP: 0.044 D_real: 1.275 D_fake: 0.663 +(epoch: 457, iters: 3758, time: 0.063) G_GAN: 0.479 G_GAN_Feat: 0.809 G_ID: 0.112 G_Rec: 0.391 D_GP: 0.029 D_real: 1.123 D_fake: 0.531 +(epoch: 457, iters: 4158, time: 0.064) G_GAN: 0.220 G_GAN_Feat: 0.714 G_ID: 0.107 G_Rec: 0.319 D_GP: 0.040 D_real: 1.097 D_fake: 0.781 +(epoch: 457, iters: 4558, time: 0.063) G_GAN: 0.359 G_GAN_Feat: 0.822 G_ID: 0.117 G_Rec: 0.398 D_GP: 0.029 D_real: 1.077 D_fake: 0.653 +(epoch: 457, iters: 4958, time: 0.063) G_GAN: -0.047 G_GAN_Feat: 0.658 G_ID: 0.096 G_Rec: 0.318 D_GP: 0.034 D_real: 0.871 D_fake: 1.047 +(epoch: 457, iters: 5358, time: 0.063) G_GAN: 0.081 G_GAN_Feat: 0.856 G_ID: 0.114 G_Rec: 0.426 D_GP: 0.033 D_real: 0.738 D_fake: 0.919 +(epoch: 457, iters: 5758, time: 0.063) G_GAN: 0.073 G_GAN_Feat: 0.686 G_ID: 0.104 G_Rec: 0.331 D_GP: 0.040 D_real: 0.937 D_fake: 0.927 +(epoch: 457, iters: 6158, time: 0.063) G_GAN: 0.311 G_GAN_Feat: 0.846 G_ID: 0.100 G_Rec: 0.413 D_GP: 0.037 D_real: 1.017 D_fake: 0.704 +(epoch: 457, iters: 6558, time: 0.063) G_GAN: 0.022 G_GAN_Feat: 0.650 G_ID: 0.090 G_Rec: 0.294 D_GP: 0.046 D_real: 0.926 D_fake: 0.979 +(epoch: 457, iters: 6958, time: 0.064) G_GAN: 0.158 G_GAN_Feat: 0.869 G_ID: 0.110 G_Rec: 0.409 D_GP: 0.037 D_real: 0.820 D_fake: 0.844 +(epoch: 457, iters: 7358, time: 0.063) G_GAN: 0.157 G_GAN_Feat: 0.674 G_ID: 0.091 G_Rec: 0.340 D_GP: 0.035 D_real: 0.927 D_fake: 0.843 +(epoch: 457, iters: 7758, time: 0.063) G_GAN: 0.348 G_GAN_Feat: 0.911 G_ID: 0.110 G_Rec: 0.476 D_GP: 0.036 D_real: 0.974 D_fake: 0.658 +(epoch: 457, iters: 8158, time: 0.063) G_GAN: 0.068 G_GAN_Feat: 0.639 G_ID: 0.102 G_Rec: 0.275 D_GP: 0.036 D_real: 0.946 D_fake: 0.932 +(epoch: 457, iters: 8558, time: 0.064) G_GAN: 0.455 G_GAN_Feat: 1.028 G_ID: 0.113 G_Rec: 0.471 D_GP: 0.098 D_real: 0.804 D_fake: 0.568 +(epoch: 458, iters: 350, time: 0.063) G_GAN: 0.230 G_GAN_Feat: 0.670 G_ID: 0.084 G_Rec: 0.287 D_GP: 0.042 D_real: 1.092 D_fake: 0.774 +(epoch: 458, iters: 750, time: 0.063) G_GAN: 0.168 G_GAN_Feat: 0.983 G_ID: 0.120 G_Rec: 0.467 D_GP: 0.060 D_real: 0.685 D_fake: 0.835 +(epoch: 458, iters: 1150, time: 0.063) G_GAN: 0.274 G_GAN_Feat: 0.748 G_ID: 0.107 G_Rec: 0.307 D_GP: 0.084 D_real: 0.882 D_fake: 0.729 +(epoch: 458, iters: 1550, time: 0.064) G_GAN: 0.294 G_GAN_Feat: 0.882 G_ID: 0.145 G_Rec: 0.418 D_GP: 0.044 D_real: 0.884 D_fake: 0.706 +(epoch: 458, iters: 1950, time: 0.063) G_GAN: 0.148 G_GAN_Feat: 0.734 G_ID: 0.084 G_Rec: 0.309 D_GP: 0.040 D_real: 0.940 D_fake: 0.852 +(epoch: 458, iters: 2350, time: 0.063) G_GAN: 0.276 G_GAN_Feat: 0.915 G_ID: 0.127 G_Rec: 0.417 D_GP: 0.087 D_real: 0.818 D_fake: 0.724 +(epoch: 458, iters: 2750, time: 0.063) G_GAN: 0.389 G_GAN_Feat: 0.765 G_ID: 0.099 G_Rec: 0.322 D_GP: 0.039 D_real: 1.165 D_fake: 0.626 +(epoch: 458, iters: 3150, time: 0.064) G_GAN: 0.452 G_GAN_Feat: 0.945 G_ID: 0.139 G_Rec: 0.403 D_GP: 0.042 D_real: 0.988 D_fake: 0.551 +(epoch: 458, iters: 3550, time: 0.063) G_GAN: 0.121 G_GAN_Feat: 0.781 G_ID: 0.104 G_Rec: 0.332 D_GP: 0.051 D_real: 0.799 D_fake: 0.879 +(epoch: 458, iters: 3950, time: 0.063) G_GAN: 0.793 G_GAN_Feat: 0.967 G_ID: 0.111 G_Rec: 0.405 D_GP: 0.047 D_real: 1.485 D_fake: 0.252 +(epoch: 458, iters: 4350, time: 0.063) G_GAN: 0.019 G_GAN_Feat: 0.848 G_ID: 0.080 G_Rec: 0.346 D_GP: 0.092 D_real: 0.393 D_fake: 0.981 +(epoch: 458, iters: 4750, time: 0.064) G_GAN: 0.330 G_GAN_Feat: 0.970 G_ID: 0.116 G_Rec: 0.432 D_GP: 0.044 D_real: 0.788 D_fake: 0.671 +(epoch: 458, iters: 5150, time: 0.063) G_GAN: 0.421 G_GAN_Feat: 0.765 G_ID: 0.103 G_Rec: 0.300 D_GP: 0.032 D_real: 1.137 D_fake: 0.583 +(epoch: 458, iters: 5550, time: 0.063) G_GAN: 0.478 G_GAN_Feat: 0.969 G_ID: 0.128 G_Rec: 0.423 D_GP: 0.037 D_real: 1.105 D_fake: 0.527 +(epoch: 458, iters: 5950, time: 0.063) G_GAN: 0.031 G_GAN_Feat: 0.880 G_ID: 0.109 G_Rec: 0.335 D_GP: 0.084 D_real: 0.419 D_fake: 0.969 +(epoch: 458, iters: 6350, time: 0.064) G_GAN: 0.452 G_GAN_Feat: 0.937 G_ID: 0.096 G_Rec: 0.407 D_GP: 0.052 D_real: 0.967 D_fake: 0.550 +(epoch: 458, iters: 6750, time: 0.063) G_GAN: -0.005 G_GAN_Feat: 0.782 G_ID: 0.104 G_Rec: 0.324 D_GP: 0.042 D_real: 0.570 D_fake: 1.005 +(epoch: 458, iters: 7150, time: 0.063) G_GAN: 0.398 G_GAN_Feat: 0.889 G_ID: 0.113 G_Rec: 0.429 D_GP: 0.035 D_real: 1.120 D_fake: 0.604 +(epoch: 458, iters: 7550, time: 0.063) G_GAN: 0.258 G_GAN_Feat: 0.688 G_ID: 0.090 G_Rec: 0.325 D_GP: 0.055 D_real: 1.068 D_fake: 0.743 +(epoch: 458, iters: 7950, time: 0.064) G_GAN: 0.634 G_GAN_Feat: 1.037 G_ID: 0.114 G_Rec: 0.429 D_GP: 0.158 D_real: 0.790 D_fake: 0.406 +(epoch: 458, iters: 8350, time: 0.063) G_GAN: 0.177 G_GAN_Feat: 0.756 G_ID: 0.102 G_Rec: 0.308 D_GP: 0.053 D_real: 0.938 D_fake: 0.827 +(epoch: 459, iters: 142, time: 0.063) G_GAN: 0.084 G_GAN_Feat: 0.985 G_ID: 0.112 G_Rec: 0.461 D_GP: 0.036 D_real: 0.612 D_fake: 0.916 +(epoch: 459, iters: 542, time: 0.063) G_GAN: -0.042 G_GAN_Feat: 0.692 G_ID: 0.099 G_Rec: 0.289 D_GP: 0.054 D_real: 0.763 D_fake: 1.044 +(epoch: 459, iters: 942, time: 0.064) G_GAN: 0.446 G_GAN_Feat: 1.067 G_ID: 0.145 G_Rec: 0.457 D_GP: 0.054 D_real: 0.789 D_fake: 0.562 +(epoch: 459, iters: 1342, time: 0.063) G_GAN: -0.025 G_GAN_Feat: 0.892 G_ID: 0.121 G_Rec: 0.332 D_GP: 0.685 D_real: 0.179 D_fake: 1.031 +(epoch: 459, iters: 1742, time: 0.063) G_GAN: 0.356 G_GAN_Feat: 1.064 G_ID: 0.116 G_Rec: 0.447 D_GP: 0.082 D_real: 0.566 D_fake: 0.645 +(epoch: 459, iters: 2142, time: 0.063) G_GAN: 0.234 G_GAN_Feat: 0.766 G_ID: 0.083 G_Rec: 0.297 D_GP: 0.033 D_real: 1.021 D_fake: 0.766 +(epoch: 459, iters: 2542, time: 0.064) G_GAN: 0.611 G_GAN_Feat: 0.899 G_ID: 0.121 G_Rec: 0.394 D_GP: 0.045 D_real: 1.255 D_fake: 0.533 +(epoch: 459, iters: 2942, time: 0.063) G_GAN: 0.272 G_GAN_Feat: 0.719 G_ID: 0.104 G_Rec: 0.307 D_GP: 0.032 D_real: 1.065 D_fake: 0.731 +(epoch: 459, iters: 3342, time: 0.063) G_GAN: 0.585 G_GAN_Feat: 0.982 G_ID: 0.108 G_Rec: 0.395 D_GP: 0.042 D_real: 1.080 D_fake: 0.424 +(epoch: 459, iters: 3742, time: 0.063) G_GAN: 0.128 G_GAN_Feat: 0.821 G_ID: 0.125 G_Rec: 0.278 D_GP: 0.082 D_real: 0.591 D_fake: 0.874 +(epoch: 459, iters: 4142, time: 0.064) G_GAN: 0.196 G_GAN_Feat: 1.077 G_ID: 0.108 G_Rec: 0.452 D_GP: 0.131 D_real: 0.584 D_fake: 0.808 +(epoch: 459, iters: 4542, time: 0.063) G_GAN: 0.244 G_GAN_Feat: 0.753 G_ID: 0.111 G_Rec: 0.300 D_GP: 0.035 D_real: 0.976 D_fake: 0.757 +(epoch: 459, iters: 4942, time: 0.063) G_GAN: 0.505 G_GAN_Feat: 0.990 G_ID: 0.115 G_Rec: 0.421 D_GP: 0.097 D_real: 0.747 D_fake: 0.511 +(epoch: 459, iters: 5342, time: 0.063) G_GAN: -0.010 G_GAN_Feat: 0.857 G_ID: 0.114 G_Rec: 0.308 D_GP: 0.051 D_real: 0.528 D_fake: 1.010 +(epoch: 459, iters: 5742, time: 0.064) G_GAN: 0.601 G_GAN_Feat: 1.082 G_ID: 0.128 G_Rec: 0.402 D_GP: 0.041 D_real: 0.629 D_fake: 0.408 +(epoch: 459, iters: 6142, time: 0.063) G_GAN: 0.597 G_GAN_Feat: 0.867 G_ID: 0.102 G_Rec: 0.331 D_GP: 0.041 D_real: 1.389 D_fake: 0.427 +(epoch: 459, iters: 6542, time: 0.063) G_GAN: 0.226 G_GAN_Feat: 0.995 G_ID: 0.119 G_Rec: 0.430 D_GP: 0.182 D_real: 0.505 D_fake: 0.775 +(epoch: 459, iters: 6942, time: 0.063) G_GAN: 0.099 G_GAN_Feat: 0.759 G_ID: 0.091 G_Rec: 0.299 D_GP: 0.033 D_real: 0.924 D_fake: 0.901 +(epoch: 459, iters: 7342, time: 0.064) G_GAN: 0.471 G_GAN_Feat: 1.064 G_ID: 0.122 G_Rec: 0.480 D_GP: 0.039 D_real: 0.941 D_fake: 0.536 +(epoch: 459, iters: 7742, time: 0.063) G_GAN: 0.620 G_GAN_Feat: 0.914 G_ID: 0.094 G_Rec: 0.312 D_GP: 0.057 D_real: 0.685 D_fake: 0.402 +(epoch: 459, iters: 8142, time: 0.063) G_GAN: 0.346 G_GAN_Feat: 0.931 G_ID: 0.126 G_Rec: 0.443 D_GP: 0.033 D_real: 0.985 D_fake: 0.654 +(epoch: 459, iters: 8542, time: 0.063) G_GAN: 0.134 G_GAN_Feat: 0.795 G_ID: 0.098 G_Rec: 0.336 D_GP: 0.078 D_real: 0.803 D_fake: 0.867 +(epoch: 460, iters: 334, time: 0.064) G_GAN: 0.411 G_GAN_Feat: 0.947 G_ID: 0.108 G_Rec: 0.434 D_GP: 0.033 D_real: 1.018 D_fake: 0.592 +(epoch: 460, iters: 734, time: 0.063) G_GAN: 0.200 G_GAN_Feat: 0.787 G_ID: 0.112 G_Rec: 0.303 D_GP: 0.048 D_real: 0.959 D_fake: 0.802 +(epoch: 460, iters: 1134, time: 0.063) G_GAN: 0.459 G_GAN_Feat: 1.056 G_ID: 0.122 G_Rec: 0.449 D_GP: 0.033 D_real: 0.979 D_fake: 0.544 +(epoch: 460, iters: 1534, time: 0.063) G_GAN: 0.069 G_GAN_Feat: 0.795 G_ID: 0.095 G_Rec: 0.333 D_GP: 0.045 D_real: 0.849 D_fake: 0.931 +(epoch: 460, iters: 1934, time: 0.064) G_GAN: 0.503 G_GAN_Feat: 0.998 G_ID: 0.122 G_Rec: 0.424 D_GP: 0.037 D_real: 0.957 D_fake: 0.505 +(epoch: 460, iters: 2334, time: 0.063) G_GAN: 0.367 G_GAN_Feat: 0.874 G_ID: 0.099 G_Rec: 0.376 D_GP: 0.034 D_real: 0.953 D_fake: 0.633 +(epoch: 460, iters: 2734, time: 0.063) G_GAN: 0.706 G_GAN_Feat: 1.097 G_ID: 0.132 G_Rec: 0.437 D_GP: 0.128 D_real: 0.548 D_fake: 0.329 +(epoch: 460, iters: 3134, time: 0.063) G_GAN: 0.053 G_GAN_Feat: 0.748 G_ID: 0.109 G_Rec: 0.358 D_GP: 0.032 D_real: 0.958 D_fake: 0.947 +(epoch: 460, iters: 3534, time: 0.064) G_GAN: 0.248 G_GAN_Feat: 0.884 G_ID: 0.122 G_Rec: 0.411 D_GP: 0.033 D_real: 1.043 D_fake: 0.754 +(epoch: 460, iters: 3934, time: 0.063) G_GAN: 0.022 G_GAN_Feat: 0.683 G_ID: 0.115 G_Rec: 0.279 D_GP: 0.035 D_real: 0.883 D_fake: 0.978 +(epoch: 460, iters: 4334, time: 0.063) G_GAN: 0.286 G_GAN_Feat: 0.889 G_ID: 0.135 G_Rec: 0.397 D_GP: 0.036 D_real: 0.932 D_fake: 0.717 +(epoch: 460, iters: 4734, time: 0.063) G_GAN: -0.009 G_GAN_Feat: 0.784 G_ID: 0.100 G_Rec: 0.338 D_GP: 0.057 D_real: 0.760 D_fake: 1.009 +(epoch: 460, iters: 5134, time: 0.064) G_GAN: 0.423 G_GAN_Feat: 0.950 G_ID: 0.117 G_Rec: 0.423 D_GP: 0.034 D_real: 1.086 D_fake: 0.579 +(epoch: 460, iters: 5534, time: 0.064) G_GAN: 0.298 G_GAN_Feat: 0.739 G_ID: 0.095 G_Rec: 0.286 D_GP: 0.036 D_real: 1.142 D_fake: 0.702 +(epoch: 460, iters: 5934, time: 0.064) G_GAN: 0.309 G_GAN_Feat: 0.988 G_ID: 0.112 G_Rec: 0.454 D_GP: 0.033 D_real: 0.945 D_fake: 0.693 +(epoch: 460, iters: 6334, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.849 G_ID: 0.098 G_Rec: 0.307 D_GP: 0.050 D_real: 0.632 D_fake: 0.721 +(epoch: 460, iters: 6734, time: 0.064) G_GAN: 0.191 G_GAN_Feat: 1.172 G_ID: 0.123 G_Rec: 0.479 D_GP: 0.072 D_real: 0.183 D_fake: 0.810 +(epoch: 460, iters: 7134, time: 0.064) G_GAN: 0.248 G_GAN_Feat: 0.741 G_ID: 0.091 G_Rec: 0.310 D_GP: 0.033 D_real: 1.206 D_fake: 0.754 +(epoch: 460, iters: 7534, time: 0.064) G_GAN: 0.292 G_GAN_Feat: 0.993 G_ID: 0.128 G_Rec: 0.430 D_GP: 0.039 D_real: 0.755 D_fake: 0.708 +(epoch: 460, iters: 7934, time: 0.064) G_GAN: 0.423 G_GAN_Feat: 0.868 G_ID: 0.097 G_Rec: 0.303 D_GP: 0.068 D_real: 0.775 D_fake: 0.583 +(epoch: 460, iters: 8334, time: 0.064) G_GAN: 0.745 G_GAN_Feat: 1.277 G_ID: 0.109 G_Rec: 0.506 D_GP: 0.106 D_real: 0.942 D_fake: 0.375 +(epoch: 461, iters: 126, time: 0.064) G_GAN: 0.372 G_GAN_Feat: 0.967 G_ID: 0.101 G_Rec: 0.366 D_GP: 0.227 D_real: 0.323 D_fake: 0.696 +(epoch: 461, iters: 526, time: 0.063) G_GAN: 0.256 G_GAN_Feat: 1.001 G_ID: 0.149 G_Rec: 0.449 D_GP: 0.038 D_real: 0.911 D_fake: 0.745 +(epoch: 461, iters: 926, time: 0.064) G_GAN: 0.208 G_GAN_Feat: 0.836 G_ID: 0.099 G_Rec: 0.326 D_GP: 0.042 D_real: 0.797 D_fake: 0.792 +(epoch: 461, iters: 1326, time: 0.064) G_GAN: 0.455 G_GAN_Feat: 0.948 G_ID: 0.115 G_Rec: 0.388 D_GP: 0.035 D_real: 1.173 D_fake: 0.546 +(epoch: 461, iters: 1726, time: 0.064) G_GAN: 0.173 G_GAN_Feat: 0.812 G_ID: 0.127 G_Rec: 0.357 D_GP: 0.039 D_real: 1.075 D_fake: 0.827 +(epoch: 461, iters: 2126, time: 0.064) G_GAN: 0.356 G_GAN_Feat: 0.871 G_ID: 0.104 G_Rec: 0.419 D_GP: 0.030 D_real: 1.061 D_fake: 0.645 +(epoch: 461, iters: 2526, time: 0.063) G_GAN: 0.067 G_GAN_Feat: 0.656 G_ID: 0.110 G_Rec: 0.294 D_GP: 0.033 D_real: 1.012 D_fake: 0.934 +(epoch: 461, iters: 2926, time: 0.064) G_GAN: 0.335 G_GAN_Feat: 0.882 G_ID: 0.115 G_Rec: 0.410 D_GP: 0.045 D_real: 0.996 D_fake: 0.672 +(epoch: 461, iters: 3326, time: 0.064) G_GAN: 0.109 G_GAN_Feat: 0.728 G_ID: 0.081 G_Rec: 0.321 D_GP: 0.035 D_real: 0.928 D_fake: 0.892 +(epoch: 461, iters: 3726, time: 0.063) G_GAN: 0.317 G_GAN_Feat: 0.959 G_ID: 0.106 G_Rec: 0.434 D_GP: 0.038 D_real: 0.980 D_fake: 0.689 +(epoch: 461, iters: 4126, time: 0.064) G_GAN: -0.106 G_GAN_Feat: 0.697 G_ID: 0.109 G_Rec: 0.297 D_GP: 0.041 D_real: 0.785 D_fake: 1.106 +(epoch: 461, iters: 4526, time: 0.064) G_GAN: 0.210 G_GAN_Feat: 0.873 G_ID: 0.121 G_Rec: 0.404 D_GP: 0.040 D_real: 0.831 D_fake: 0.790 +(epoch: 461, iters: 4926, time: 0.063) G_GAN: 0.216 G_GAN_Feat: 0.761 G_ID: 0.111 G_Rec: 0.331 D_GP: 0.036 D_real: 0.980 D_fake: 0.785 +(epoch: 461, iters: 5326, time: 0.064) G_GAN: 0.633 G_GAN_Feat: 0.916 G_ID: 0.102 G_Rec: 0.403 D_GP: 0.043 D_real: 1.341 D_fake: 0.405 +(epoch: 461, iters: 5726, time: 0.064) G_GAN: 0.565 G_GAN_Feat: 0.679 G_ID: 0.101 G_Rec: 0.293 D_GP: 0.030 D_real: 1.464 D_fake: 0.462 +(epoch: 461, iters: 6126, time: 0.064) G_GAN: 0.348 G_GAN_Feat: 1.004 G_ID: 0.118 G_Rec: 0.455 D_GP: 0.052 D_real: 0.813 D_fake: 0.662 +(epoch: 461, iters: 6526, time: 0.064) G_GAN: 0.048 G_GAN_Feat: 0.791 G_ID: 0.082 G_Rec: 0.378 D_GP: 0.044 D_real: 0.954 D_fake: 0.953 +(epoch: 461, iters: 6926, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 1.033 G_ID: 0.113 G_Rec: 0.453 D_GP: 0.045 D_real: 0.798 D_fake: 0.652 +(epoch: 461, iters: 7326, time: 0.064) G_GAN: 0.149 G_GAN_Feat: 0.743 G_ID: 0.094 G_Rec: 0.296 D_GP: 0.044 D_real: 0.931 D_fake: 0.851 +(epoch: 461, iters: 7726, time: 0.064) G_GAN: 0.437 G_GAN_Feat: 1.151 G_ID: 0.112 G_Rec: 0.496 D_GP: 0.209 D_real: 0.413 D_fake: 0.565 +(epoch: 461, iters: 8126, time: 0.064) G_GAN: 0.466 G_GAN_Feat: 0.858 G_ID: 0.097 G_Rec: 0.305 D_GP: 0.040 D_real: 1.133 D_fake: 0.541 +(epoch: 461, iters: 8526, time: 0.064) G_GAN: 0.543 G_GAN_Feat: 1.046 G_ID: 0.114 G_Rec: 0.458 D_GP: 0.065 D_real: 0.949 D_fake: 0.523 +(epoch: 462, iters: 318, time: 0.064) G_GAN: 0.018 G_GAN_Feat: 0.733 G_ID: 0.102 G_Rec: 0.330 D_GP: 0.037 D_real: 0.960 D_fake: 0.982 +(epoch: 462, iters: 718, time: 0.064) G_GAN: 0.684 G_GAN_Feat: 0.891 G_ID: 0.104 G_Rec: 0.420 D_GP: 0.030 D_real: 1.405 D_fake: 0.349 +(epoch: 462, iters: 1118, time: 0.064) G_GAN: 0.077 G_GAN_Feat: 0.798 G_ID: 0.109 G_Rec: 0.311 D_GP: 0.055 D_real: 0.697 D_fake: 0.923 +(epoch: 462, iters: 1518, time: 0.064) G_GAN: 0.859 G_GAN_Feat: 0.964 G_ID: 0.106 G_Rec: 0.447 D_GP: 0.039 D_real: 1.615 D_fake: 0.239 +(epoch: 462, iters: 1918, time: 0.064) G_GAN: -0.037 G_GAN_Feat: 0.780 G_ID: 0.107 G_Rec: 0.330 D_GP: 0.031 D_real: 0.821 D_fake: 1.037 +(epoch: 462, iters: 2318, time: 0.064) G_GAN: 0.086 G_GAN_Feat: 0.871 G_ID: 0.116 G_Rec: 0.387 D_GP: 0.029 D_real: 0.749 D_fake: 0.914 +(epoch: 462, iters: 2718, time: 0.064) G_GAN: 0.123 G_GAN_Feat: 0.641 G_ID: 0.104 G_Rec: 0.280 D_GP: 0.033 D_real: 1.030 D_fake: 0.877 +(epoch: 462, iters: 3118, time: 0.064) G_GAN: 0.133 G_GAN_Feat: 0.920 G_ID: 0.126 G_Rec: 0.399 D_GP: 0.050 D_real: 0.685 D_fake: 0.867 +(epoch: 462, iters: 3518, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.650 G_ID: 0.096 G_Rec: 0.293 D_GP: 0.032 D_real: 1.146 D_fake: 0.745 +(epoch: 462, iters: 3918, time: 0.064) G_GAN: 0.415 G_GAN_Feat: 1.026 G_ID: 0.124 G_Rec: 0.467 D_GP: 0.072 D_real: 0.726 D_fake: 0.594 +(epoch: 462, iters: 4318, time: 0.064) G_GAN: 0.184 G_GAN_Feat: 0.897 G_ID: 0.108 G_Rec: 0.368 D_GP: 0.071 D_real: 0.727 D_fake: 0.817 +(epoch: 462, iters: 4718, time: 0.064) G_GAN: 0.607 G_GAN_Feat: 0.920 G_ID: 0.114 G_Rec: 0.390 D_GP: 0.037 D_real: 1.238 D_fake: 0.415 +(epoch: 462, iters: 5118, time: 0.064) G_GAN: 0.005 G_GAN_Feat: 0.821 G_ID: 0.099 G_Rec: 0.323 D_GP: 0.043 D_real: 0.719 D_fake: 0.995 +(epoch: 462, iters: 5518, time: 0.064) G_GAN: 0.523 G_GAN_Feat: 1.201 G_ID: 0.128 G_Rec: 0.477 D_GP: 0.188 D_real: 0.300 D_fake: 0.491 +(epoch: 462, iters: 5918, time: 0.064) G_GAN: 0.026 G_GAN_Feat: 1.074 G_ID: 0.096 G_Rec: 0.339 D_GP: 1.703 D_real: 0.660 D_fake: 0.996 +(epoch: 462, iters: 6318, time: 0.064) G_GAN: 0.573 G_GAN_Feat: 1.032 G_ID: 0.109 G_Rec: 0.476 D_GP: 0.034 D_real: 1.135 D_fake: 0.451 +(epoch: 462, iters: 6718, time: 0.064) G_GAN: 0.206 G_GAN_Feat: 0.700 G_ID: 0.101 G_Rec: 0.305 D_GP: 0.040 D_real: 1.139 D_fake: 0.794 +(epoch: 462, iters: 7118, time: 0.064) G_GAN: 0.491 G_GAN_Feat: 1.024 G_ID: 0.127 G_Rec: 0.389 D_GP: 0.050 D_real: 1.141 D_fake: 0.559 +(epoch: 462, iters: 7518, time: 0.064) G_GAN: 0.570 G_GAN_Feat: 0.687 G_ID: 0.101 G_Rec: 0.281 D_GP: 0.031 D_real: 1.424 D_fake: 0.440 +(epoch: 462, iters: 7918, time: 0.064) G_GAN: 0.354 G_GAN_Feat: 1.115 G_ID: 0.127 G_Rec: 0.415 D_GP: 0.047 D_real: 0.976 D_fake: 0.647 +(epoch: 462, iters: 8318, time: 0.064) G_GAN: 0.369 G_GAN_Feat: 0.910 G_ID: 0.103 G_Rec: 0.326 D_GP: 0.059 D_real: 0.395 D_fake: 0.695 +(epoch: 463, iters: 110, time: 0.064) G_GAN: 0.492 G_GAN_Feat: 1.282 G_ID: 0.116 G_Rec: 0.497 D_GP: 0.174 D_real: 0.351 D_fake: 0.513 +(epoch: 463, iters: 510, time: 0.064) G_GAN: 0.363 G_GAN_Feat: 0.946 G_ID: 0.098 G_Rec: 0.336 D_GP: 0.092 D_real: 0.584 D_fake: 0.638 +(epoch: 463, iters: 910, time: 0.064) G_GAN: 0.435 G_GAN_Feat: 0.964 G_ID: 0.112 G_Rec: 0.459 D_GP: 0.030 D_real: 1.104 D_fake: 0.572 +(epoch: 463, iters: 1310, time: 0.064) G_GAN: 0.242 G_GAN_Feat: 0.671 G_ID: 0.095 G_Rec: 0.291 D_GP: 0.029 D_real: 1.191 D_fake: 0.758 +(epoch: 463, iters: 1710, time: 0.064) G_GAN: 0.091 G_GAN_Feat: 0.855 G_ID: 0.123 G_Rec: 0.418 D_GP: 0.037 D_real: 0.796 D_fake: 0.909 +(epoch: 463, iters: 2110, time: 0.064) G_GAN: -0.052 G_GAN_Feat: 0.719 G_ID: 0.095 G_Rec: 0.344 D_GP: 0.036 D_real: 0.802 D_fake: 1.052 +(epoch: 463, iters: 2510, time: 0.063) G_GAN: 0.283 G_GAN_Feat: 0.883 G_ID: 0.115 G_Rec: 0.405 D_GP: 0.034 D_real: 1.023 D_fake: 0.730 +(epoch: 463, iters: 2910, time: 0.064) G_GAN: 0.236 G_GAN_Feat: 0.670 G_ID: 0.093 G_Rec: 0.308 D_GP: 0.035 D_real: 1.105 D_fake: 0.768 +(epoch: 463, iters: 3310, time: 0.064) G_GAN: 0.114 G_GAN_Feat: 0.918 G_ID: 0.113 G_Rec: 0.428 D_GP: 0.033 D_real: 0.677 D_fake: 0.886 +(epoch: 463, iters: 3710, time: 0.064) G_GAN: 0.111 G_GAN_Feat: 0.699 G_ID: 0.088 G_Rec: 0.311 D_GP: 0.050 D_real: 0.926 D_fake: 0.890 +(epoch: 463, iters: 4110, time: 0.064) G_GAN: 0.329 G_GAN_Feat: 1.008 G_ID: 0.112 G_Rec: 0.465 D_GP: 0.057 D_real: 0.596 D_fake: 0.693 +(epoch: 463, iters: 4510, time: 0.064) G_GAN: 0.235 G_GAN_Feat: 0.763 G_ID: 0.100 G_Rec: 0.285 D_GP: 0.044 D_real: 1.197 D_fake: 0.765 +(epoch: 463, iters: 4910, time: 0.064) G_GAN: 0.677 G_GAN_Feat: 0.970 G_ID: 0.128 G_Rec: 0.452 D_GP: 0.046 D_real: 1.199 D_fake: 0.342 +(epoch: 463, iters: 5310, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.753 G_ID: 0.089 G_Rec: 0.305 D_GP: 0.045 D_real: 1.012 D_fake: 0.670 +(epoch: 463, iters: 5710, time: 0.064) G_GAN: 0.440 G_GAN_Feat: 0.911 G_ID: 0.118 G_Rec: 0.423 D_GP: 0.031 D_real: 1.213 D_fake: 0.564 +(epoch: 463, iters: 6110, time: 0.064) G_GAN: 0.287 G_GAN_Feat: 0.722 G_ID: 0.092 G_Rec: 0.295 D_GP: 0.032 D_real: 1.158 D_fake: 0.714 +(epoch: 463, iters: 6510, time: 0.064) G_GAN: 0.426 G_GAN_Feat: 0.894 G_ID: 0.107 G_Rec: 0.400 D_GP: 0.032 D_real: 1.054 D_fake: 0.575 +(epoch: 463, iters: 6910, time: 0.064) G_GAN: 0.253 G_GAN_Feat: 0.860 G_ID: 0.111 G_Rec: 0.317 D_GP: 0.152 D_real: 0.574 D_fake: 0.750 +(epoch: 463, iters: 7310, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 1.070 G_ID: 0.130 G_Rec: 0.530 D_GP: 0.704 D_real: 0.307 D_fake: 0.700 +(epoch: 463, iters: 7710, time: 0.064) G_GAN: 0.427 G_GAN_Feat: 0.818 G_ID: 0.096 G_Rec: 0.321 D_GP: 0.049 D_real: 1.063 D_fake: 0.578 +(epoch: 463, iters: 8110, time: 0.063) G_GAN: 0.463 G_GAN_Feat: 0.946 G_ID: 0.110 G_Rec: 0.469 D_GP: 0.035 D_real: 1.056 D_fake: 0.554 +(epoch: 463, iters: 8510, time: 0.064) G_GAN: 0.045 G_GAN_Feat: 0.585 G_ID: 0.098 G_Rec: 0.279 D_GP: 0.027 D_real: 0.997 D_fake: 0.955 +(epoch: 464, iters: 302, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 0.968 G_ID: 0.113 G_Rec: 0.465 D_GP: 0.036 D_real: 0.712 D_fake: 0.786 +(epoch: 464, iters: 702, time: 0.064) G_GAN: -0.066 G_GAN_Feat: 0.719 G_ID: 0.104 G_Rec: 0.325 D_GP: 0.050 D_real: 0.769 D_fake: 1.067 +(epoch: 464, iters: 1102, time: 0.064) G_GAN: 0.455 G_GAN_Feat: 0.910 G_ID: 0.111 G_Rec: 0.439 D_GP: 0.065 D_real: 1.015 D_fake: 0.569 +(epoch: 464, iters: 1502, time: 0.064) G_GAN: -0.025 G_GAN_Feat: 0.697 G_ID: 0.117 G_Rec: 0.294 D_GP: 0.037 D_real: 0.847 D_fake: 1.025 +(epoch: 464, iters: 1902, time: 0.064) G_GAN: 0.385 G_GAN_Feat: 0.911 G_ID: 0.113 G_Rec: 0.428 D_GP: 0.036 D_real: 0.980 D_fake: 0.629 +(epoch: 464, iters: 2302, time: 0.064) G_GAN: 0.125 G_GAN_Feat: 0.656 G_ID: 0.091 G_Rec: 0.277 D_GP: 0.030 D_real: 0.997 D_fake: 0.875 +(epoch: 464, iters: 2702, time: 0.064) G_GAN: 0.344 G_GAN_Feat: 1.050 G_ID: 0.117 G_Rec: 0.495 D_GP: 0.079 D_real: 0.628 D_fake: 0.670 +(epoch: 464, iters: 3102, time: 0.064) G_GAN: 0.171 G_GAN_Feat: 0.699 G_ID: 0.090 G_Rec: 0.307 D_GP: 0.038 D_real: 1.065 D_fake: 0.829 +(epoch: 464, iters: 3502, time: 0.064) G_GAN: 0.675 G_GAN_Feat: 1.026 G_ID: 0.120 G_Rec: 0.399 D_GP: 0.042 D_real: 1.078 D_fake: 0.380 +(epoch: 464, iters: 3902, time: 0.064) G_GAN: 0.246 G_GAN_Feat: 0.763 G_ID: 0.097 G_Rec: 0.360 D_GP: 0.036 D_real: 1.061 D_fake: 0.754 +(epoch: 464, iters: 4302, time: 0.064) G_GAN: 0.559 G_GAN_Feat: 0.990 G_ID: 0.115 G_Rec: 0.442 D_GP: 0.056 D_real: 0.813 D_fake: 0.452 +(epoch: 464, iters: 4702, time: 0.064) G_GAN: 0.408 G_GAN_Feat: 0.795 G_ID: 0.103 G_Rec: 0.329 D_GP: 0.046 D_real: 1.120 D_fake: 0.597 +(epoch: 464, iters: 5102, time: 0.064) G_GAN: 0.819 G_GAN_Feat: 1.049 G_ID: 0.104 G_Rec: 0.471 D_GP: 0.061 D_real: 1.081 D_fake: 0.274 +(epoch: 464, iters: 5502, time: 0.064) G_GAN: 0.086 G_GAN_Feat: 0.798 G_ID: 0.099 G_Rec: 0.332 D_GP: 0.032 D_real: 0.825 D_fake: 0.914 +(epoch: 464, iters: 5902, time: 0.064) G_GAN: -0.233 G_GAN_Feat: 1.176 G_ID: 0.115 G_Rec: 0.527 D_GP: 0.066 D_real: 0.815 D_fake: 1.234 +(epoch: 464, iters: 6302, time: 0.064) G_GAN: 0.091 G_GAN_Feat: 0.687 G_ID: 0.096 G_Rec: 0.303 D_GP: 0.024 D_real: 1.057 D_fake: 0.909 +(epoch: 464, iters: 6702, time: 0.064) G_GAN: 0.167 G_GAN_Feat: 0.953 G_ID: 0.113 G_Rec: 0.423 D_GP: 0.030 D_real: 0.796 D_fake: 0.838 +(epoch: 464, iters: 7102, time: 0.064) G_GAN: -0.184 G_GAN_Feat: 0.746 G_ID: 0.094 G_Rec: 0.340 D_GP: 0.044 D_real: 0.651 D_fake: 1.184 +(epoch: 464, iters: 7502, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 1.011 G_ID: 0.119 G_Rec: 0.475 D_GP: 0.048 D_real: 0.742 D_fake: 0.788 +(epoch: 464, iters: 7902, time: 0.064) G_GAN: -0.217 G_GAN_Feat: 0.773 G_ID: 0.096 G_Rec: 0.323 D_GP: 0.062 D_real: 0.553 D_fake: 1.217 +(epoch: 464, iters: 8302, time: 0.064) G_GAN: 0.404 G_GAN_Feat: 0.930 G_ID: 0.116 G_Rec: 0.380 D_GP: 0.054 D_real: 1.021 D_fake: 0.598 +(epoch: 464, iters: 8702, time: 0.064) G_GAN: 0.153 G_GAN_Feat: 0.879 G_ID: 0.091 G_Rec: 0.321 D_GP: 0.533 D_real: 0.395 D_fake: 0.847 +(epoch: 465, iters: 494, time: 0.064) G_GAN: 0.619 G_GAN_Feat: 1.027 G_ID: 0.124 G_Rec: 0.475 D_GP: 0.036 D_real: 1.316 D_fake: 0.486 +(epoch: 465, iters: 894, time: 0.064) G_GAN: 0.249 G_GAN_Feat: 0.679 G_ID: 0.081 G_Rec: 0.272 D_GP: 0.028 D_real: 1.153 D_fake: 0.752 +(epoch: 465, iters: 1294, time: 0.064) G_GAN: 0.590 G_GAN_Feat: 0.950 G_ID: 0.119 G_Rec: 0.441 D_GP: 0.040 D_real: 1.252 D_fake: 0.417 +(epoch: 465, iters: 1694, time: 0.064) G_GAN: 0.489 G_GAN_Feat: 0.958 G_ID: 0.088 G_Rec: 0.318 D_GP: 0.120 D_real: 0.620 D_fake: 0.518 +(epoch: 465, iters: 2094, time: 0.064) G_GAN: 0.254 G_GAN_Feat: 0.933 G_ID: 0.126 G_Rec: 0.451 D_GP: 0.041 D_real: 1.009 D_fake: 0.747 +(epoch: 465, iters: 2494, time: 0.064) G_GAN: 0.027 G_GAN_Feat: 0.731 G_ID: 0.106 G_Rec: 0.317 D_GP: 0.035 D_real: 0.906 D_fake: 0.973 +(epoch: 465, iters: 2894, time: 0.064) G_GAN: 0.399 G_GAN_Feat: 0.848 G_ID: 0.098 G_Rec: 0.424 D_GP: 0.027 D_real: 1.119 D_fake: 0.607 +(epoch: 465, iters: 3294, time: 0.064) G_GAN: 0.129 G_GAN_Feat: 0.657 G_ID: 0.104 G_Rec: 0.303 D_GP: 0.035 D_real: 1.013 D_fake: 0.872 +(epoch: 465, iters: 3694, time: 0.064) G_GAN: 0.339 G_GAN_Feat: 0.893 G_ID: 0.107 G_Rec: 0.451 D_GP: 0.032 D_real: 1.003 D_fake: 0.675 +(epoch: 465, iters: 4094, time: 0.064) G_GAN: -0.059 G_GAN_Feat: 0.668 G_ID: 0.095 G_Rec: 0.324 D_GP: 0.030 D_real: 0.847 D_fake: 1.059 +(epoch: 465, iters: 4494, time: 0.064) G_GAN: 0.420 G_GAN_Feat: 0.913 G_ID: 0.108 G_Rec: 0.446 D_GP: 0.039 D_real: 1.077 D_fake: 0.602 +(epoch: 465, iters: 4894, time: 0.064) G_GAN: 0.113 G_GAN_Feat: 0.728 G_ID: 0.090 G_Rec: 0.325 D_GP: 0.044 D_real: 0.948 D_fake: 0.887 +(epoch: 465, iters: 5294, time: 0.064) G_GAN: 0.325 G_GAN_Feat: 0.939 G_ID: 0.108 G_Rec: 0.455 D_GP: 0.035 D_real: 0.926 D_fake: 0.679 +(epoch: 465, iters: 5694, time: 0.064) G_GAN: 0.105 G_GAN_Feat: 0.707 G_ID: 0.095 G_Rec: 0.301 D_GP: 0.041 D_real: 0.949 D_fake: 0.896 +(epoch: 465, iters: 6094, time: 0.064) G_GAN: 0.210 G_GAN_Feat: 1.010 G_ID: 0.119 G_Rec: 0.448 D_GP: 0.057 D_real: 0.789 D_fake: 0.791 +(epoch: 465, iters: 6494, time: 0.064) G_GAN: -0.049 G_GAN_Feat: 0.721 G_ID: 0.103 G_Rec: 0.277 D_GP: 0.043 D_real: 0.714 D_fake: 1.049 +(epoch: 465, iters: 6894, time: 0.063) G_GAN: 0.194 G_GAN_Feat: 0.879 G_ID: 0.129 G_Rec: 0.364 D_GP: 0.040 D_real: 0.973 D_fake: 0.809 +(epoch: 465, iters: 7294, time: 0.064) G_GAN: 0.054 G_GAN_Feat: 0.791 G_ID: 0.104 G_Rec: 0.323 D_GP: 0.062 D_real: 0.615 D_fake: 0.946 +(epoch: 465, iters: 7694, time: 0.064) G_GAN: 0.762 G_GAN_Feat: 1.002 G_ID: 0.117 G_Rec: 0.428 D_GP: 0.043 D_real: 1.193 D_fake: 0.301 +(epoch: 465, iters: 8094, time: 0.064) G_GAN: 0.402 G_GAN_Feat: 0.845 G_ID: 0.103 G_Rec: 0.340 D_GP: 0.063 D_real: 0.945 D_fake: 0.603 +(epoch: 465, iters: 8494, time: 0.064) G_GAN: 0.658 G_GAN_Feat: 1.031 G_ID: 0.110 G_Rec: 0.467 D_GP: 0.049 D_real: 1.049 D_fake: 0.373 +(epoch: 466, iters: 286, time: 0.064) G_GAN: 0.288 G_GAN_Feat: 0.846 G_ID: 0.103 G_Rec: 0.332 D_GP: 0.033 D_real: 0.916 D_fake: 0.719 +(epoch: 466, iters: 686, time: 0.064) G_GAN: 0.449 G_GAN_Feat: 1.186 G_ID: 0.097 G_Rec: 0.467 D_GP: 0.136 D_real: 0.450 D_fake: 0.561 +(epoch: 466, iters: 1086, time: 0.064) G_GAN: 0.355 G_GAN_Feat: 0.972 G_ID: 0.105 G_Rec: 0.356 D_GP: 0.075 D_real: 0.494 D_fake: 0.648 +(epoch: 466, iters: 1486, time: 0.064) G_GAN: 0.954 G_GAN_Feat: 1.159 G_ID: 0.130 G_Rec: 0.465 D_GP: 0.124 D_real: 0.724 D_fake: 0.204 +(epoch: 466, iters: 1886, time: 0.063) G_GAN: -0.078 G_GAN_Feat: 0.836 G_ID: 0.106 G_Rec: 0.359 D_GP: 0.037 D_real: 0.605 D_fake: 1.078 +(epoch: 466, iters: 2286, time: 0.064) G_GAN: 0.768 G_GAN_Feat: 1.033 G_ID: 0.120 G_Rec: 0.451 D_GP: 0.042 D_real: 1.474 D_fake: 0.288 +(epoch: 466, iters: 2686, time: 0.064) G_GAN: 0.166 G_GAN_Feat: 0.748 G_ID: 0.099 G_Rec: 0.276 D_GP: 0.029 D_real: 0.998 D_fake: 0.834 +(epoch: 466, iters: 3086, time: 0.063) G_GAN: 0.986 G_GAN_Feat: 1.179 G_ID: 0.125 G_Rec: 0.449 D_GP: 0.056 D_real: 1.087 D_fake: 0.195 +(epoch: 466, iters: 3486, time: 0.063) G_GAN: 0.270 G_GAN_Feat: 0.735 G_ID: 0.083 G_Rec: 0.329 D_GP: 0.031 D_real: 1.142 D_fake: 0.731 +(epoch: 466, iters: 3886, time: 0.064) G_GAN: 0.393 G_GAN_Feat: 0.933 G_ID: 0.113 G_Rec: 0.475 D_GP: 0.028 D_real: 1.063 D_fake: 0.611 +(epoch: 466, iters: 4286, time: 0.064) G_GAN: 0.140 G_GAN_Feat: 0.648 G_ID: 0.107 G_Rec: 0.289 D_GP: 0.028 D_real: 1.025 D_fake: 0.860 +(epoch: 466, iters: 4686, time: 0.063) G_GAN: 0.333 G_GAN_Feat: 0.922 G_ID: 0.104 G_Rec: 0.441 D_GP: 0.042 D_real: 0.845 D_fake: 0.680 +(epoch: 466, iters: 5086, time: 0.063) G_GAN: 0.124 G_GAN_Feat: 0.686 G_ID: 0.081 G_Rec: 0.315 D_GP: 0.059 D_real: 0.903 D_fake: 0.878 +(epoch: 466, iters: 5486, time: 0.063) G_GAN: 0.549 G_GAN_Feat: 0.920 G_ID: 0.117 G_Rec: 0.464 D_GP: 0.038 D_real: 1.165 D_fake: 0.487 +(epoch: 466, iters: 5886, time: 0.064) G_GAN: 0.159 G_GAN_Feat: 0.697 G_ID: 0.088 G_Rec: 0.294 D_GP: 0.039 D_real: 0.978 D_fake: 0.841 +(epoch: 466, iters: 6286, time: 0.063) G_GAN: 0.422 G_GAN_Feat: 0.953 G_ID: 0.110 G_Rec: 0.414 D_GP: 0.036 D_real: 1.113 D_fake: 0.581 +(epoch: 466, iters: 6686, time: 0.063) G_GAN: 0.218 G_GAN_Feat: 0.770 G_ID: 0.084 G_Rec: 0.318 D_GP: 0.034 D_real: 1.007 D_fake: 0.783 +(epoch: 466, iters: 7086, time: 0.063) G_GAN: 0.472 G_GAN_Feat: 0.926 G_ID: 0.110 G_Rec: 0.414 D_GP: 0.036 D_real: 1.159 D_fake: 0.529 +(epoch: 466, iters: 7486, time: 0.064) G_GAN: 0.138 G_GAN_Feat: 0.813 G_ID: 0.095 G_Rec: 0.309 D_GP: 0.039 D_real: 1.155 D_fake: 0.863 +(epoch: 466, iters: 7886, time: 0.063) G_GAN: 0.597 G_GAN_Feat: 1.018 G_ID: 0.110 G_Rec: 0.433 D_GP: 0.051 D_real: 1.090 D_fake: 0.423 +(epoch: 466, iters: 8286, time: 0.063) G_GAN: 0.369 G_GAN_Feat: 0.756 G_ID: 0.091 G_Rec: 0.295 D_GP: 0.030 D_real: 1.263 D_fake: 0.656 +(epoch: 466, iters: 8686, time: 0.064) G_GAN: 0.636 G_GAN_Feat: 1.090 G_ID: 0.127 G_Rec: 0.446 D_GP: 0.047 D_real: 0.926 D_fake: 0.373 +(epoch: 467, iters: 478, time: 0.063) G_GAN: 0.696 G_GAN_Feat: 0.719 G_ID: 0.084 G_Rec: 0.258 D_GP: 0.031 D_real: 1.548 D_fake: 0.316 +(epoch: 467, iters: 878, time: 0.063) G_GAN: 0.449 G_GAN_Feat: 0.965 G_ID: 0.112 G_Rec: 0.465 D_GP: 0.030 D_real: 1.055 D_fake: 0.557 +(epoch: 467, iters: 1278, time: 0.063) G_GAN: 0.267 G_GAN_Feat: 0.808 G_ID: 0.113 G_Rec: 0.320 D_GP: 0.034 D_real: 0.969 D_fake: 0.733 +(epoch: 467, iters: 1678, time: 0.064) G_GAN: 0.545 G_GAN_Feat: 1.066 G_ID: 0.110 G_Rec: 0.472 D_GP: 0.032 D_real: 1.127 D_fake: 0.460 +(epoch: 467, iters: 2078, time: 0.063) G_GAN: 0.309 G_GAN_Feat: 0.740 G_ID: 0.087 G_Rec: 0.287 D_GP: 0.035 D_real: 1.276 D_fake: 0.691 +(epoch: 467, iters: 2478, time: 0.064) G_GAN: 0.608 G_GAN_Feat: 0.952 G_ID: 0.127 G_Rec: 0.412 D_GP: 0.034 D_real: 1.346 D_fake: 0.415 +(epoch: 467, iters: 2878, time: 0.064) G_GAN: 0.137 G_GAN_Feat: 0.965 G_ID: 0.119 G_Rec: 0.340 D_GP: 0.149 D_real: 0.378 D_fake: 0.864 +(epoch: 467, iters: 3278, time: 0.064) G_GAN: 0.820 G_GAN_Feat: 0.962 G_ID: 0.122 G_Rec: 0.427 D_GP: 0.034 D_real: 1.334 D_fake: 0.272 +(epoch: 467, iters: 3678, time: 0.064) G_GAN: 0.282 G_GAN_Feat: 1.008 G_ID: 0.108 G_Rec: 0.349 D_GP: 0.056 D_real: 0.330 D_fake: 0.719 +(epoch: 467, iters: 4078, time: 0.064) G_GAN: 0.589 G_GAN_Feat: 1.235 G_ID: 0.112 G_Rec: 0.426 D_GP: 0.035 D_real: 0.378 D_fake: 0.425 +(epoch: 467, iters: 4478, time: 0.064) G_GAN: 0.377 G_GAN_Feat: 0.914 G_ID: 0.105 G_Rec: 0.361 D_GP: 0.076 D_real: 0.767 D_fake: 0.790 +(epoch: 467, iters: 4878, time: 0.064) G_GAN: 0.561 G_GAN_Feat: 0.953 G_ID: 0.106 G_Rec: 0.437 D_GP: 0.030 D_real: 1.169 D_fake: 0.463 +(epoch: 467, iters: 5278, time: 0.064) G_GAN: 0.378 G_GAN_Feat: 0.589 G_ID: 0.093 G_Rec: 0.265 D_GP: 0.024 D_real: 1.313 D_fake: 0.624 +(epoch: 467, iters: 5678, time: 0.063) G_GAN: 0.441 G_GAN_Feat: 0.872 G_ID: 0.114 G_Rec: 0.396 D_GP: 0.030 D_real: 1.129 D_fake: 0.566 +(epoch: 467, iters: 6078, time: 0.063) G_GAN: 0.272 G_GAN_Feat: 0.639 G_ID: 0.100 G_Rec: 0.290 D_GP: 0.027 D_real: 1.209 D_fake: 0.731 +(epoch: 467, iters: 6478, time: 0.064) G_GAN: 0.226 G_GAN_Feat: 0.926 G_ID: 0.107 G_Rec: 0.442 D_GP: 0.040 D_real: 0.769 D_fake: 0.778 +(epoch: 467, iters: 6878, time: 0.064) G_GAN: 0.018 G_GAN_Feat: 0.687 G_ID: 0.086 G_Rec: 0.275 D_GP: 0.037 D_real: 0.900 D_fake: 0.982 +(epoch: 467, iters: 7278, time: 0.064) G_GAN: 0.678 G_GAN_Feat: 0.975 G_ID: 0.112 G_Rec: 0.453 D_GP: 0.035 D_real: 1.317 D_fake: 0.360 +(epoch: 467, iters: 7678, time: 0.064) G_GAN: -0.001 G_GAN_Feat: 0.796 G_ID: 0.157 G_Rec: 0.318 D_GP: 0.034 D_real: 0.829 D_fake: 1.001 +(epoch: 467, iters: 8078, time: 0.064) G_GAN: 0.356 G_GAN_Feat: 0.930 G_ID: 0.115 G_Rec: 0.421 D_GP: 0.061 D_real: 0.845 D_fake: 0.649 +(epoch: 467, iters: 8478, time: 0.064) G_GAN: 0.437 G_GAN_Feat: 0.781 G_ID: 0.082 G_Rec: 0.294 D_GP: 0.072 D_real: 0.888 D_fake: 0.565 +(epoch: 468, iters: 270, time: 0.064) G_GAN: 0.454 G_GAN_Feat: 0.993 G_ID: 0.107 G_Rec: 0.485 D_GP: 0.032 D_real: 1.116 D_fake: 0.551 +(epoch: 468, iters: 670, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 0.918 G_ID: 0.103 G_Rec: 0.334 D_GP: 0.095 D_real: 0.377 D_fake: 0.808 +(epoch: 468, iters: 1070, time: 0.064) G_GAN: 0.980 G_GAN_Feat: 1.116 G_ID: 0.111 G_Rec: 0.498 D_GP: 0.096 D_real: 0.955 D_fake: 0.154 +(epoch: 468, iters: 1470, time: 0.064) G_GAN: -0.035 G_GAN_Feat: 0.903 G_ID: 0.114 G_Rec: 0.369 D_GP: 0.137 D_real: 0.414 D_fake: 1.035 +(epoch: 468, iters: 1870, time: 0.064) G_GAN: 0.687 G_GAN_Feat: 1.186 G_ID: 0.108 G_Rec: 0.451 D_GP: 0.103 D_real: 1.061 D_fake: 0.382 +(epoch: 468, iters: 2270, time: 0.064) G_GAN: 0.284 G_GAN_Feat: 0.732 G_ID: 0.100 G_Rec: 0.283 D_GP: 0.034 D_real: 1.210 D_fake: 0.717 +(epoch: 468, iters: 2670, time: 0.064) G_GAN: 0.873 G_GAN_Feat: 1.053 G_ID: 0.111 G_Rec: 0.494 D_GP: 0.035 D_real: 1.337 D_fake: 0.215 +(epoch: 468, iters: 3070, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.840 G_ID: 0.102 G_Rec: 0.315 D_GP: 0.111 D_real: 0.995 D_fake: 0.723 +(epoch: 468, iters: 3470, time: 0.063) G_GAN: 0.398 G_GAN_Feat: 1.071 G_ID: 0.124 G_Rec: 0.456 D_GP: 0.039 D_real: 0.818 D_fake: 0.603 +(epoch: 468, iters: 3870, time: 0.064) G_GAN: -0.048 G_GAN_Feat: 0.727 G_ID: 0.098 G_Rec: 0.315 D_GP: 0.034 D_real: 0.784 D_fake: 1.048 +(epoch: 468, iters: 4270, time: 0.064) G_GAN: 0.281 G_GAN_Feat: 0.937 G_ID: 0.118 G_Rec: 0.434 D_GP: 0.036 D_real: 0.971 D_fake: 0.719 +(epoch: 468, iters: 4670, time: 0.063) G_GAN: 0.175 G_GAN_Feat: 0.715 G_ID: 0.090 G_Rec: 0.294 D_GP: 0.031 D_real: 1.027 D_fake: 0.825 +(epoch: 468, iters: 5070, time: 0.063) G_GAN: 0.499 G_GAN_Feat: 1.058 G_ID: 0.116 G_Rec: 0.469 D_GP: 0.049 D_real: 0.843 D_fake: 0.508 +(epoch: 468, iters: 5470, time: 0.064) G_GAN: 0.173 G_GAN_Feat: 0.740 G_ID: 0.107 G_Rec: 0.287 D_GP: 0.057 D_real: 0.840 D_fake: 0.827 +(epoch: 468, iters: 5870, time: 0.064) G_GAN: 0.490 G_GAN_Feat: 0.838 G_ID: 0.115 G_Rec: 0.434 D_GP: 0.026 D_real: 1.266 D_fake: 0.514 +(epoch: 468, iters: 6270, time: 0.063) G_GAN: 0.289 G_GAN_Feat: 0.651 G_ID: 0.093 G_Rec: 0.299 D_GP: 0.027 D_real: 1.181 D_fake: 0.715 +(epoch: 468, iters: 6670, time: 0.064) G_GAN: 0.646 G_GAN_Feat: 0.922 G_ID: 0.110 G_Rec: 0.476 D_GP: 0.032 D_real: 1.282 D_fake: 0.405 +(epoch: 468, iters: 7070, time: 0.063) G_GAN: 0.191 G_GAN_Feat: 0.720 G_ID: 0.101 G_Rec: 0.359 D_GP: 0.045 D_real: 1.023 D_fake: 0.811 +(epoch: 468, iters: 7470, time: 0.064) G_GAN: 0.393 G_GAN_Feat: 0.949 G_ID: 0.101 G_Rec: 0.446 D_GP: 0.039 D_real: 1.074 D_fake: 0.609 +(epoch: 468, iters: 7870, time: 0.064) G_GAN: 0.136 G_GAN_Feat: 0.745 G_ID: 0.080 G_Rec: 0.354 D_GP: 0.039 D_real: 0.917 D_fake: 0.864 +(epoch: 468, iters: 8270, time: 0.064) G_GAN: 0.435 G_GAN_Feat: 0.941 G_ID: 0.137 G_Rec: 0.417 D_GP: 0.036 D_real: 1.034 D_fake: 0.566 +(epoch: 468, iters: 8670, time: 0.064) G_GAN: 0.224 G_GAN_Feat: 0.829 G_ID: 0.097 G_Rec: 0.324 D_GP: 0.085 D_real: 0.845 D_fake: 0.777 +(epoch: 469, iters: 462, time: 0.064) G_GAN: 0.561 G_GAN_Feat: 0.969 G_ID: 0.116 G_Rec: 0.484 D_GP: 0.031 D_real: 1.136 D_fake: 0.447 +(epoch: 469, iters: 862, time: 0.064) G_GAN: 0.157 G_GAN_Feat: 0.785 G_ID: 0.132 G_Rec: 0.308 D_GP: 0.049 D_real: 0.839 D_fake: 0.844 +(epoch: 469, iters: 1262, time: 0.064) G_GAN: 0.756 G_GAN_Feat: 1.061 G_ID: 0.116 G_Rec: 0.423 D_GP: 0.048 D_real: 1.180 D_fake: 0.360 +(epoch: 469, iters: 1662, time: 0.064) G_GAN: 0.066 G_GAN_Feat: 0.656 G_ID: 0.125 G_Rec: 0.338 D_GP: 0.028 D_real: 0.969 D_fake: 0.934 +(epoch: 469, iters: 2062, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 0.786 G_ID: 0.104 G_Rec: 0.373 D_GP: 0.031 D_real: 1.027 D_fake: 0.726 +(epoch: 469, iters: 2462, time: 0.064) G_GAN: -0.207 G_GAN_Feat: 0.616 G_ID: 0.093 G_Rec: 0.294 D_GP: 0.030 D_real: 0.755 D_fake: 1.207 +(epoch: 469, iters: 2862, time: 0.064) G_GAN: 0.316 G_GAN_Feat: 0.830 G_ID: 0.118 G_Rec: 0.443 D_GP: 0.029 D_real: 0.944 D_fake: 0.705 +(epoch: 469, iters: 3262, time: 0.064) G_GAN: -0.113 G_GAN_Feat: 0.640 G_ID: 0.097 G_Rec: 0.302 D_GP: 0.029 D_real: 0.750 D_fake: 1.113 +(epoch: 469, iters: 3662, time: 0.064) G_GAN: 0.321 G_GAN_Feat: 0.868 G_ID: 0.112 G_Rec: 0.431 D_GP: 0.039 D_real: 0.962 D_fake: 0.698 +(epoch: 469, iters: 4062, time: 0.064) G_GAN: 0.051 G_GAN_Feat: 0.630 G_ID: 0.097 G_Rec: 0.285 D_GP: 0.040 D_real: 0.864 D_fake: 0.949 +(epoch: 469, iters: 4462, time: 0.063) G_GAN: 0.351 G_GAN_Feat: 0.838 G_ID: 0.113 G_Rec: 0.387 D_GP: 0.036 D_real: 1.030 D_fake: 0.659 +(epoch: 469, iters: 4862, time: 0.064) G_GAN: -0.032 G_GAN_Feat: 0.689 G_ID: 0.118 G_Rec: 0.309 D_GP: 0.047 D_real: 0.757 D_fake: 1.032 +(epoch: 469, iters: 5262, time: 0.064) G_GAN: 0.161 G_GAN_Feat: 0.974 G_ID: 0.118 G_Rec: 0.455 D_GP: 0.050 D_real: 0.687 D_fake: 0.840 +(epoch: 469, iters: 5662, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 0.684 G_ID: 0.101 G_Rec: 0.322 D_GP: 0.037 D_real: 0.970 D_fake: 0.826 +(epoch: 469, iters: 6062, time: 0.064) G_GAN: 0.160 G_GAN_Feat: 0.954 G_ID: 0.125 G_Rec: 0.466 D_GP: 0.064 D_real: 0.788 D_fake: 0.841 +(epoch: 469, iters: 6462, time: 0.064) G_GAN: 0.224 G_GAN_Feat: 0.799 G_ID: 0.099 G_Rec: 0.349 D_GP: 0.056 D_real: 0.848 D_fake: 0.778 +(epoch: 469, iters: 6862, time: 0.064) G_GAN: 0.331 G_GAN_Feat: 0.888 G_ID: 0.130 G_Rec: 0.423 D_GP: 0.035 D_real: 0.931 D_fake: 0.673 +(epoch: 469, iters: 7262, time: 0.064) G_GAN: 0.220 G_GAN_Feat: 0.709 G_ID: 0.096 G_Rec: 0.317 D_GP: 0.034 D_real: 1.105 D_fake: 0.780 +(epoch: 469, iters: 7662, time: 0.064) G_GAN: 0.562 G_GAN_Feat: 0.946 G_ID: 0.105 G_Rec: 0.426 D_GP: 0.037 D_real: 1.113 D_fake: 0.448 +(epoch: 469, iters: 8062, time: 0.064) G_GAN: -0.186 G_GAN_Feat: 0.749 G_ID: 0.096 G_Rec: 0.334 D_GP: 0.056 D_real: 0.795 D_fake: 1.186 +(epoch: 469, iters: 8462, time: 0.064) G_GAN: 0.293 G_GAN_Feat: 0.953 G_ID: 0.112 G_Rec: 0.443 D_GP: 0.077 D_real: 0.840 D_fake: 0.710 +(epoch: 470, iters: 254, time: 0.064) G_GAN: 0.179 G_GAN_Feat: 0.706 G_ID: 0.084 G_Rec: 0.290 D_GP: 0.034 D_real: 1.144 D_fake: 0.821 +(epoch: 470, iters: 654, time: 0.064) G_GAN: 0.335 G_GAN_Feat: 1.077 G_ID: 0.135 G_Rec: 0.487 D_GP: 0.185 D_real: 0.306 D_fake: 0.666 +(epoch: 470, iters: 1054, time: 0.064) G_GAN: 0.168 G_GAN_Feat: 0.731 G_ID: 0.108 G_Rec: 0.359 D_GP: 0.028 D_real: 1.080 D_fake: 0.832 +(epoch: 470, iters: 1454, time: 0.064) G_GAN: 0.235 G_GAN_Feat: 0.827 G_ID: 0.127 G_Rec: 0.389 D_GP: 0.033 D_real: 0.892 D_fake: 0.765 +(epoch: 470, iters: 1854, time: 0.064) G_GAN: 0.074 G_GAN_Feat: 0.706 G_ID: 0.106 G_Rec: 0.298 D_GP: 0.036 D_real: 0.861 D_fake: 0.926 +(epoch: 470, iters: 2254, time: 0.064) G_GAN: 0.107 G_GAN_Feat: 0.962 G_ID: 0.117 G_Rec: 0.445 D_GP: 0.041 D_real: 0.798 D_fake: 0.893 +(epoch: 470, iters: 2654, time: 0.064) G_GAN: 0.108 G_GAN_Feat: 0.750 G_ID: 0.093 G_Rec: 0.330 D_GP: 0.109 D_real: 0.850 D_fake: 0.892 +(epoch: 470, iters: 3054, time: 0.064) G_GAN: 0.302 G_GAN_Feat: 0.905 G_ID: 0.142 G_Rec: 0.399 D_GP: 0.051 D_real: 0.837 D_fake: 0.698 +(epoch: 470, iters: 3454, time: 0.064) G_GAN: 0.169 G_GAN_Feat: 0.679 G_ID: 0.090 G_Rec: 0.281 D_GP: 0.030 D_real: 1.079 D_fake: 0.832 +(epoch: 470, iters: 3854, time: 0.064) G_GAN: 0.486 G_GAN_Feat: 0.883 G_ID: 0.119 G_Rec: 0.405 D_GP: 0.038 D_real: 1.088 D_fake: 0.526 +(epoch: 470, iters: 4254, time: 0.064) G_GAN: 0.013 G_GAN_Feat: 0.951 G_ID: 0.121 G_Rec: 0.337 D_GP: 0.483 D_real: 0.217 D_fake: 0.990 +(epoch: 470, iters: 4654, time: 0.064) G_GAN: 0.684 G_GAN_Feat: 1.056 G_ID: 0.127 G_Rec: 0.463 D_GP: 0.093 D_real: 0.454 D_fake: 0.416 +(epoch: 470, iters: 5054, time: 0.064) G_GAN: 0.238 G_GAN_Feat: 0.628 G_ID: 0.106 G_Rec: 0.323 D_GP: 0.025 D_real: 1.168 D_fake: 0.768 +(epoch: 470, iters: 5454, time: 0.064) G_GAN: 0.461 G_GAN_Feat: 0.825 G_ID: 0.128 G_Rec: 0.418 D_GP: 0.028 D_real: 1.213 D_fake: 0.546 +(epoch: 470, iters: 5854, time: 0.064) G_GAN: 0.155 G_GAN_Feat: 0.607 G_ID: 0.093 G_Rec: 0.291 D_GP: 0.024 D_real: 1.102 D_fake: 0.845 +(epoch: 470, iters: 6254, time: 0.064) G_GAN: 0.264 G_GAN_Feat: 0.797 G_ID: 0.125 G_Rec: 0.390 D_GP: 0.025 D_real: 1.041 D_fake: 0.736 +(epoch: 470, iters: 6654, time: 0.064) G_GAN: 0.086 G_GAN_Feat: 0.633 G_ID: 0.101 G_Rec: 0.293 D_GP: 0.029 D_real: 1.050 D_fake: 0.914 +(epoch: 470, iters: 7054, time: 0.064) G_GAN: 0.525 G_GAN_Feat: 0.882 G_ID: 0.098 G_Rec: 0.431 D_GP: 0.035 D_real: 1.153 D_fake: 0.491 +(epoch: 470, iters: 7454, time: 0.064) G_GAN: 0.134 G_GAN_Feat: 0.639 G_ID: 0.087 G_Rec: 0.292 D_GP: 0.039 D_real: 1.008 D_fake: 0.866 +(epoch: 470, iters: 7854, time: 0.064) G_GAN: 0.185 G_GAN_Feat: 0.850 G_ID: 0.127 G_Rec: 0.406 D_GP: 0.043 D_real: 0.858 D_fake: 0.815 +(epoch: 470, iters: 8254, time: 0.064) G_GAN: 0.091 G_GAN_Feat: 0.641 G_ID: 0.108 G_Rec: 0.290 D_GP: 0.035 D_real: 0.954 D_fake: 0.909 +(epoch: 470, iters: 8654, time: 0.064) G_GAN: 0.211 G_GAN_Feat: 0.888 G_ID: 0.118 G_Rec: 0.439 D_GP: 0.039 D_real: 0.792 D_fake: 0.791 +(epoch: 471, iters: 446, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 0.674 G_ID: 0.097 G_Rec: 0.293 D_GP: 0.036 D_real: 1.029 D_fake: 0.809 +(epoch: 471, iters: 846, time: 0.064) G_GAN: 0.368 G_GAN_Feat: 0.890 G_ID: 0.117 G_Rec: 0.425 D_GP: 0.038 D_real: 0.973 D_fake: 0.639 +(epoch: 471, iters: 1246, time: 0.064) G_GAN: 0.047 G_GAN_Feat: 0.695 G_ID: 0.082 G_Rec: 0.296 D_GP: 0.082 D_real: 0.851 D_fake: 0.953 +(epoch: 471, iters: 1646, time: 0.064) G_GAN: 0.194 G_GAN_Feat: 0.880 G_ID: 0.125 G_Rec: 0.387 D_GP: 0.043 D_real: 0.857 D_fake: 0.807 +(epoch: 471, iters: 2046, time: 0.064) G_GAN: -0.042 G_GAN_Feat: 0.850 G_ID: 0.101 G_Rec: 0.337 D_GP: 0.070 D_real: 0.844 D_fake: 1.043 +(epoch: 471, iters: 2446, time: 0.064) G_GAN: 0.136 G_GAN_Feat: 0.881 G_ID: 0.138 G_Rec: 0.415 D_GP: 0.032 D_real: 0.828 D_fake: 0.864 +(epoch: 471, iters: 2846, time: 0.064) G_GAN: 0.002 G_GAN_Feat: 0.679 G_ID: 0.101 G_Rec: 0.284 D_GP: 0.044 D_real: 0.818 D_fake: 0.998 +(epoch: 471, iters: 3246, time: 0.063) G_GAN: 0.486 G_GAN_Feat: 0.881 G_ID: 0.109 G_Rec: 0.389 D_GP: 0.037 D_real: 1.185 D_fake: 0.533 +(epoch: 471, iters: 3646, time: 0.064) G_GAN: 0.203 G_GAN_Feat: 0.654 G_ID: 0.090 G_Rec: 0.274 D_GP: 0.031 D_real: 1.106 D_fake: 0.797 +(epoch: 471, iters: 4046, time: 0.064) G_GAN: 0.608 G_GAN_Feat: 0.870 G_ID: 0.103 G_Rec: 0.389 D_GP: 0.032 D_real: 1.370 D_fake: 0.404 +(epoch: 471, iters: 4446, time: 0.063) G_GAN: -0.100 G_GAN_Feat: 0.846 G_ID: 0.096 G_Rec: 0.362 D_GP: 0.193 D_real: 0.666 D_fake: 1.102 +(epoch: 471, iters: 4846, time: 0.064) G_GAN: 0.390 G_GAN_Feat: 0.910 G_ID: 0.120 G_Rec: 0.451 D_GP: 0.031 D_real: 1.006 D_fake: 0.621 +(epoch: 471, iters: 5246, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 0.641 G_ID: 0.078 G_Rec: 0.274 D_GP: 0.030 D_real: 1.097 D_fake: 0.807 +(epoch: 471, iters: 5646, time: 0.064) G_GAN: 0.691 G_GAN_Feat: 0.931 G_ID: 0.110 G_Rec: 0.442 D_GP: 0.032 D_real: 1.248 D_fake: 0.345 +(epoch: 471, iters: 6046, time: 0.063) G_GAN: 0.224 G_GAN_Feat: 0.678 G_ID: 0.094 G_Rec: 0.290 D_GP: 0.028 D_real: 1.074 D_fake: 0.776 +(epoch: 471, iters: 6446, time: 0.063) G_GAN: 0.530 G_GAN_Feat: 0.897 G_ID: 0.106 G_Rec: 0.408 D_GP: 0.031 D_real: 1.215 D_fake: 0.476 +(epoch: 471, iters: 6846, time: 0.064) G_GAN: 0.282 G_GAN_Feat: 0.781 G_ID: 0.090 G_Rec: 0.315 D_GP: 0.046 D_real: 1.059 D_fake: 0.719 +(epoch: 471, iters: 7246, time: 0.064) G_GAN: 0.102 G_GAN_Feat: 0.924 G_ID: 0.154 G_Rec: 0.430 D_GP: 0.033 D_real: 0.782 D_fake: 0.898 +(epoch: 471, iters: 7646, time: 0.063) G_GAN: 0.281 G_GAN_Feat: 0.702 G_ID: 0.115 G_Rec: 0.301 D_GP: 0.034 D_real: 1.153 D_fake: 0.725 +(epoch: 471, iters: 8046, time: 0.064) G_GAN: 0.514 G_GAN_Feat: 0.921 G_ID: 0.116 G_Rec: 0.441 D_GP: 0.037 D_real: 1.176 D_fake: 0.499 +(epoch: 471, iters: 8446, time: 0.064) G_GAN: 0.162 G_GAN_Feat: 0.664 G_ID: 0.095 G_Rec: 0.294 D_GP: 0.035 D_real: 1.006 D_fake: 0.839 +(epoch: 472, iters: 238, time: 0.064) G_GAN: 0.277 G_GAN_Feat: 1.018 G_ID: 0.125 G_Rec: 0.448 D_GP: 0.070 D_real: 0.821 D_fake: 0.724 +(epoch: 472, iters: 638, time: 0.063) G_GAN: 0.085 G_GAN_Feat: 0.650 G_ID: 0.102 G_Rec: 0.268 D_GP: 0.037 D_real: 1.019 D_fake: 0.915 +(epoch: 472, iters: 1038, time: 0.063) G_GAN: 0.523 G_GAN_Feat: 0.970 G_ID: 0.138 G_Rec: 0.409 D_GP: 0.037 D_real: 1.050 D_fake: 0.487 +(epoch: 472, iters: 1438, time: 0.064) G_GAN: 0.259 G_GAN_Feat: 0.788 G_ID: 0.109 G_Rec: 0.334 D_GP: 0.044 D_real: 0.972 D_fake: 0.742 +(epoch: 472, iters: 1838, time: 0.063) G_GAN: 0.354 G_GAN_Feat: 1.044 G_ID: 0.136 G_Rec: 0.422 D_GP: 0.151 D_real: 0.395 D_fake: 0.649 +(epoch: 472, iters: 2238, time: 0.063) G_GAN: 0.050 G_GAN_Feat: 0.755 G_ID: 0.109 G_Rec: 0.330 D_GP: 0.032 D_real: 0.973 D_fake: 0.951 +(epoch: 472, iters: 2638, time: 0.064) G_GAN: 0.275 G_GAN_Feat: 0.996 G_ID: 0.134 G_Rec: 0.494 D_GP: 0.048 D_real: 0.701 D_fake: 0.737 +(epoch: 472, iters: 3038, time: 0.064) G_GAN: 0.041 G_GAN_Feat: 0.779 G_ID: 0.098 G_Rec: 0.329 D_GP: 0.058 D_real: 0.786 D_fake: 0.960 +(epoch: 472, iters: 3438, time: 0.063) G_GAN: 0.734 G_GAN_Feat: 1.099 G_ID: 0.112 G_Rec: 0.464 D_GP: 0.039 D_real: 1.296 D_fake: 0.306 +(epoch: 472, iters: 3838, time: 0.063) G_GAN: -0.092 G_GAN_Feat: 0.850 G_ID: 0.091 G_Rec: 0.347 D_GP: 0.063 D_real: 0.405 D_fake: 1.092 +(epoch: 472, iters: 4238, time: 0.063) G_GAN: 0.788 G_GAN_Feat: 0.992 G_ID: 0.115 G_Rec: 0.433 D_GP: 0.057 D_real: 1.053 D_fake: 0.268 +(epoch: 472, iters: 4638, time: 0.064) G_GAN: 0.082 G_GAN_Feat: 0.783 G_ID: 0.097 G_Rec: 0.337 D_GP: 0.044 D_real: 0.774 D_fake: 0.918 +(epoch: 472, iters: 5038, time: 0.064) G_GAN: 0.362 G_GAN_Feat: 0.969 G_ID: 0.135 G_Rec: 0.450 D_GP: 0.041 D_real: 0.893 D_fake: 0.640 +(epoch: 472, iters: 5438, time: 0.063) G_GAN: 0.405 G_GAN_Feat: 0.804 G_ID: 0.114 G_Rec: 0.314 D_GP: 0.036 D_real: 1.112 D_fake: 0.596 +(epoch: 472, iters: 5838, time: 0.064) G_GAN: 0.604 G_GAN_Feat: 1.121 G_ID: 0.110 G_Rec: 0.424 D_GP: 0.041 D_real: 0.642 D_fake: 0.406 +(epoch: 472, iters: 6238, time: 0.064) G_GAN: 0.018 G_GAN_Feat: 0.699 G_ID: 0.106 G_Rec: 0.334 D_GP: 0.030 D_real: 0.934 D_fake: 0.984 +(epoch: 472, iters: 6638, time: 0.064) G_GAN: 0.126 G_GAN_Feat: 0.937 G_ID: 0.119 G_Rec: 0.417 D_GP: 0.046 D_real: 0.677 D_fake: 0.878 +(epoch: 472, iters: 7038, time: 0.063) G_GAN: -0.155 G_GAN_Feat: 0.699 G_ID: 0.100 G_Rec: 0.289 D_GP: 0.033 D_real: 0.838 D_fake: 1.155 +(epoch: 472, iters: 7438, time: 0.064) G_GAN: 0.309 G_GAN_Feat: 0.914 G_ID: 0.109 G_Rec: 0.387 D_GP: 0.034 D_real: 1.107 D_fake: 0.692 +(epoch: 472, iters: 7838, time: 0.064) G_GAN: 0.161 G_GAN_Feat: 0.756 G_ID: 0.107 G_Rec: 0.294 D_GP: 0.044 D_real: 1.012 D_fake: 0.839 +(epoch: 472, iters: 8238, time: 0.063) G_GAN: 0.682 G_GAN_Feat: 1.063 G_ID: 0.115 G_Rec: 0.476 D_GP: 0.062 D_real: 0.994 D_fake: 0.348 +(epoch: 472, iters: 8638, time: 0.063) G_GAN: 0.484 G_GAN_Feat: 0.855 G_ID: 0.110 G_Rec: 0.310 D_GP: 0.122 D_real: 0.763 D_fake: 0.530 +(epoch: 473, iters: 430, time: 0.063) G_GAN: 0.739 G_GAN_Feat: 1.186 G_ID: 0.104 G_Rec: 0.479 D_GP: 0.040 D_real: 0.778 D_fake: 0.317 +(epoch: 473, iters: 830, time: 0.064) G_GAN: 0.353 G_GAN_Feat: 0.868 G_ID: 0.103 G_Rec: 0.309 D_GP: 0.092 D_real: 0.787 D_fake: 0.647 +(epoch: 473, iters: 1230, time: 0.063) G_GAN: 0.447 G_GAN_Feat: 0.934 G_ID: 0.111 G_Rec: 0.472 D_GP: 0.031 D_real: 1.143 D_fake: 0.567 +(epoch: 473, iters: 1630, time: 0.064) G_GAN: 0.193 G_GAN_Feat: 0.662 G_ID: 0.100 G_Rec: 0.302 D_GP: 0.026 D_real: 1.151 D_fake: 0.808 +(epoch: 473, iters: 2030, time: 0.064) G_GAN: 0.376 G_GAN_Feat: 0.880 G_ID: 0.104 G_Rec: 0.419 D_GP: 0.033 D_real: 1.145 D_fake: 0.628 +(epoch: 473, iters: 2430, time: 0.064) G_GAN: 0.211 G_GAN_Feat: 0.703 G_ID: 0.105 G_Rec: 0.318 D_GP: 0.040 D_real: 0.983 D_fake: 0.790 +(epoch: 473, iters: 2830, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.922 G_ID: 0.120 G_Rec: 0.463 D_GP: 0.049 D_real: 0.808 D_fake: 0.726 +(epoch: 473, iters: 3230, time: 0.064) G_GAN: 0.215 G_GAN_Feat: 0.671 G_ID: 0.085 G_Rec: 0.322 D_GP: 0.040 D_real: 1.131 D_fake: 0.786 +(epoch: 473, iters: 3630, time: 0.063) G_GAN: 0.372 G_GAN_Feat: 0.973 G_ID: 0.106 G_Rec: 0.433 D_GP: 0.052 D_real: 0.906 D_fake: 0.639 +(epoch: 473, iters: 4030, time: 0.064) G_GAN: 0.047 G_GAN_Feat: 0.662 G_ID: 0.099 G_Rec: 0.292 D_GP: 0.039 D_real: 0.934 D_fake: 0.953 +(epoch: 473, iters: 4430, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 1.006 G_ID: 0.119 G_Rec: 0.473 D_GP: 0.074 D_real: 0.939 D_fake: 0.661 +(epoch: 473, iters: 4830, time: 0.064) G_GAN: 0.100 G_GAN_Feat: 0.702 G_ID: 0.103 G_Rec: 0.290 D_GP: 0.040 D_real: 0.895 D_fake: 0.900 +(epoch: 473, iters: 5230, time: 0.064) G_GAN: 0.320 G_GAN_Feat: 0.951 G_ID: 0.122 G_Rec: 0.410 D_GP: 0.054 D_real: 0.901 D_fake: 0.689 +(epoch: 473, iters: 5630, time: 0.064) G_GAN: 0.239 G_GAN_Feat: 0.716 G_ID: 0.085 G_Rec: 0.285 D_GP: 0.050 D_real: 0.993 D_fake: 0.762 +(epoch: 473, iters: 6030, time: 0.064) G_GAN: 0.415 G_GAN_Feat: 1.015 G_ID: 0.108 G_Rec: 0.421 D_GP: 0.064 D_real: 0.855 D_fake: 0.592 +(epoch: 473, iters: 6430, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 0.768 G_ID: 0.109 G_Rec: 0.302 D_GP: 0.048 D_real: 0.963 D_fake: 0.830 +(epoch: 473, iters: 6830, time: 0.063) G_GAN: 0.101 G_GAN_Feat: 1.208 G_ID: 0.109 G_Rec: 0.494 D_GP: 4.292 D_real: 0.437 D_fake: 0.930 +(epoch: 473, iters: 7230, time: 0.064) G_GAN: 0.197 G_GAN_Feat: 0.626 G_ID: 0.098 G_Rec: 0.286 D_GP: 0.028 D_real: 1.154 D_fake: 0.804 +(epoch: 473, iters: 7630, time: 0.064) G_GAN: 0.115 G_GAN_Feat: 0.793 G_ID: 0.118 G_Rec: 0.391 D_GP: 0.036 D_real: 0.812 D_fake: 0.886 +(epoch: 473, iters: 8030, time: 0.064) G_GAN: 0.056 G_GAN_Feat: 0.636 G_ID: 0.086 G_Rec: 0.300 D_GP: 0.027 D_real: 1.040 D_fake: 0.944 +(epoch: 473, iters: 8430, time: 0.064) G_GAN: 0.062 G_GAN_Feat: 0.873 G_ID: 0.101 G_Rec: 0.427 D_GP: 0.054 D_real: 0.569 D_fake: 0.941 +(epoch: 474, iters: 222, time: 0.064) G_GAN: -0.104 G_GAN_Feat: 0.715 G_ID: 0.094 G_Rec: 0.315 D_GP: 0.072 D_real: 0.684 D_fake: 1.105 +(epoch: 474, iters: 622, time: 0.064) G_GAN: 0.132 G_GAN_Feat: 0.896 G_ID: 0.113 G_Rec: 0.417 D_GP: 0.036 D_real: 0.687 D_fake: 0.868 +(epoch: 474, iters: 1022, time: 0.064) G_GAN: 0.096 G_GAN_Feat: 0.706 G_ID: 0.097 G_Rec: 0.321 D_GP: 0.041 D_real: 0.850 D_fake: 0.904 +(epoch: 474, iters: 1422, time: 0.064) G_GAN: 0.266 G_GAN_Feat: 0.901 G_ID: 0.104 G_Rec: 0.418 D_GP: 0.048 D_real: 0.759 D_fake: 0.738 +(epoch: 474, iters: 1822, time: 0.064) G_GAN: -0.061 G_GAN_Feat: 0.790 G_ID: 0.121 G_Rec: 0.322 D_GP: 0.067 D_real: 0.579 D_fake: 1.061 +(epoch: 474, iters: 2222, time: 0.064) G_GAN: 0.613 G_GAN_Feat: 0.973 G_ID: 0.122 G_Rec: 0.467 D_GP: 0.039 D_real: 1.159 D_fake: 0.412 +(epoch: 474, iters: 2622, time: 0.064) G_GAN: 0.261 G_GAN_Feat: 0.689 G_ID: 0.123 G_Rec: 0.272 D_GP: 0.043 D_real: 1.072 D_fake: 0.739 +(epoch: 474, iters: 3022, time: 0.063) G_GAN: 0.549 G_GAN_Feat: 0.944 G_ID: 0.139 G_Rec: 0.442 D_GP: 0.036 D_real: 1.018 D_fake: 0.459 +(epoch: 474, iters: 3422, time: 0.064) G_GAN: 0.413 G_GAN_Feat: 0.739 G_ID: 0.090 G_Rec: 0.323 D_GP: 0.042 D_real: 1.121 D_fake: 0.591 +(epoch: 474, iters: 3822, time: 0.063) G_GAN: 0.345 G_GAN_Feat: 1.057 G_ID: 0.120 G_Rec: 0.506 D_GP: 0.042 D_real: 1.081 D_fake: 0.679 +(epoch: 474, iters: 4222, time: 0.064) G_GAN: -0.026 G_GAN_Feat: 0.686 G_ID: 0.103 G_Rec: 0.324 D_GP: 0.031 D_real: 0.919 D_fake: 1.026 +(epoch: 474, iters: 4622, time: 0.063) G_GAN: -0.059 G_GAN_Feat: 0.939 G_ID: 0.138 G_Rec: 0.451 D_GP: 0.050 D_real: 0.665 D_fake: 1.059 +(epoch: 474, iters: 5022, time: 0.064) G_GAN: -0.027 G_GAN_Feat: 0.731 G_ID: 0.097 G_Rec: 0.325 D_GP: 0.065 D_real: 0.716 D_fake: 1.028 +(epoch: 474, iters: 5422, time: 0.063) G_GAN: 0.069 G_GAN_Feat: 0.822 G_ID: 0.162 G_Rec: 0.370 D_GP: 0.040 D_real: 0.668 D_fake: 0.931 +(epoch: 474, iters: 5822, time: 0.063) G_GAN: 0.012 G_GAN_Feat: 0.730 G_ID: 0.091 G_Rec: 0.303 D_GP: 0.042 D_real: 0.923 D_fake: 0.988 +(epoch: 474, iters: 6222, time: 0.064) G_GAN: 0.529 G_GAN_Feat: 0.952 G_ID: 0.107 G_Rec: 0.407 D_GP: 0.046 D_real: 1.174 D_fake: 0.517 +(epoch: 474, iters: 6622, time: 0.064) G_GAN: 0.245 G_GAN_Feat: 0.792 G_ID: 0.107 G_Rec: 0.346 D_GP: 0.050 D_real: 0.996 D_fake: 0.762 +(epoch: 474, iters: 7022, time: 0.064) G_GAN: 0.503 G_GAN_Feat: 0.892 G_ID: 0.103 G_Rec: 0.417 D_GP: 0.033 D_real: 1.050 D_fake: 0.510 +(epoch: 474, iters: 7422, time: 0.064) G_GAN: -0.088 G_GAN_Feat: 0.853 G_ID: 0.105 G_Rec: 0.355 D_GP: 0.105 D_real: 0.372 D_fake: 1.088 +(epoch: 474, iters: 7822, time: 0.064) G_GAN: 0.464 G_GAN_Feat: 0.983 G_ID: 0.111 G_Rec: 0.403 D_GP: 0.037 D_real: 0.882 D_fake: 0.549 +(epoch: 474, iters: 8222, time: 0.064) G_GAN: 0.049 G_GAN_Feat: 0.976 G_ID: 0.097 G_Rec: 0.365 D_GP: 1.100 D_real: 0.371 D_fake: 0.955 +(epoch: 474, iters: 8622, time: 0.064) G_GAN: 0.490 G_GAN_Feat: 0.956 G_ID: 0.108 G_Rec: 0.498 D_GP: 0.028 D_real: 1.058 D_fake: 0.549 +(epoch: 475, iters: 414, time: 0.064) G_GAN: -0.010 G_GAN_Feat: 0.752 G_ID: 0.092 G_Rec: 0.296 D_GP: 0.042 D_real: 0.700 D_fake: 1.010 +(epoch: 475, iters: 814, time: 0.064) G_GAN: -0.160 G_GAN_Feat: 0.994 G_ID: 0.125 G_Rec: 0.433 D_GP: 0.146 D_real: 0.351 D_fake: 1.161 +(epoch: 475, iters: 1214, time: 0.064) G_GAN: 0.160 G_GAN_Feat: 0.847 G_ID: 0.088 G_Rec: 0.363 D_GP: 0.132 D_real: 0.580 D_fake: 0.840 +(epoch: 475, iters: 1614, time: 0.063) G_GAN: 0.579 G_GAN_Feat: 0.999 G_ID: 0.120 G_Rec: 0.427 D_GP: 0.039 D_real: 0.931 D_fake: 0.443 +(epoch: 475, iters: 2014, time: 0.063) G_GAN: 0.226 G_GAN_Feat: 0.771 G_ID: 0.095 G_Rec: 0.284 D_GP: 0.033 D_real: 0.853 D_fake: 0.774 +(epoch: 475, iters: 2414, time: 0.064) G_GAN: 0.774 G_GAN_Feat: 1.023 G_ID: 0.136 G_Rec: 0.419 D_GP: 0.054 D_real: 1.159 D_fake: 0.287 +(epoch: 475, iters: 2814, time: 0.064) G_GAN: 0.142 G_GAN_Feat: 0.998 G_ID: 0.117 G_Rec: 0.367 D_GP: 0.685 D_real: 0.275 D_fake: 0.942 +(epoch: 475, iters: 3214, time: 0.063) G_GAN: 1.014 G_GAN_Feat: 1.042 G_ID: 0.127 G_Rec: 0.445 D_GP: 0.074 D_real: 1.303 D_fake: 0.113 +(epoch: 475, iters: 3614, time: 0.064) G_GAN: 0.037 G_GAN_Feat: 0.692 G_ID: 0.104 G_Rec: 0.303 D_GP: 0.032 D_real: 0.972 D_fake: 0.963 +(epoch: 475, iters: 4014, time: 0.063) G_GAN: -0.029 G_GAN_Feat: 0.915 G_ID: 0.143 G_Rec: 0.426 D_GP: 0.036 D_real: 0.667 D_fake: 1.031 +(epoch: 475, iters: 4414, time: 0.064) G_GAN: -0.022 G_GAN_Feat: 0.717 G_ID: 0.088 G_Rec: 0.319 D_GP: 0.069 D_real: 0.819 D_fake: 1.022 +(epoch: 475, iters: 4814, time: 0.063) G_GAN: -0.041 G_GAN_Feat: 0.963 G_ID: 0.117 G_Rec: 0.445 D_GP: 0.047 D_real: 0.593 D_fake: 1.041 +(epoch: 475, iters: 5214, time: 0.063) G_GAN: 0.008 G_GAN_Feat: 0.894 G_ID: 0.104 G_Rec: 0.342 D_GP: 0.059 D_real: 0.496 D_fake: 0.992 +(epoch: 475, iters: 5614, time: 0.064) G_GAN: 0.333 G_GAN_Feat: 0.928 G_ID: 0.157 G_Rec: 0.416 D_GP: 0.039 D_real: 0.965 D_fake: 0.671 +(epoch: 475, iters: 6014, time: 0.064) G_GAN: 0.370 G_GAN_Feat: 0.691 G_ID: 0.091 G_Rec: 0.276 D_GP: 0.037 D_real: 1.232 D_fake: 0.634 +(epoch: 475, iters: 6414, time: 0.064) G_GAN: 0.748 G_GAN_Feat: 0.953 G_ID: 0.117 G_Rec: 0.425 D_GP: 0.031 D_real: 1.278 D_fake: 0.301 +(epoch: 475, iters: 6814, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.710 G_ID: 0.088 G_Rec: 0.291 D_GP: 0.029 D_real: 1.176 D_fake: 0.720 +(epoch: 475, iters: 7214, time: 0.064) G_GAN: 0.528 G_GAN_Feat: 1.020 G_ID: 0.112 G_Rec: 0.437 D_GP: 0.060 D_real: 1.020 D_fake: 0.478 +(epoch: 475, iters: 7614, time: 0.064) G_GAN: 0.302 G_GAN_Feat: 0.804 G_ID: 0.103 G_Rec: 0.343 D_GP: 0.041 D_real: 1.021 D_fake: 0.713 +(epoch: 475, iters: 8014, time: 0.064) G_GAN: 0.588 G_GAN_Feat: 0.969 G_ID: 0.097 G_Rec: 0.462 D_GP: 0.032 D_real: 1.213 D_fake: 0.441 +(epoch: 475, iters: 8414, time: 0.064) G_GAN: 0.059 G_GAN_Feat: 0.712 G_ID: 0.112 G_Rec: 0.286 D_GP: 0.030 D_real: 0.978 D_fake: 0.941 +(epoch: 476, iters: 206, time: 0.064) G_GAN: 0.474 G_GAN_Feat: 0.994 G_ID: 0.132 G_Rec: 0.419 D_GP: 0.039 D_real: 0.910 D_fake: 0.546 +(epoch: 476, iters: 606, time: 0.064) G_GAN: 0.227 G_GAN_Feat: 0.657 G_ID: 0.093 G_Rec: 0.277 D_GP: 0.027 D_real: 1.176 D_fake: 0.773 +(epoch: 476, iters: 1006, time: 0.064) G_GAN: 0.493 G_GAN_Feat: 1.029 G_ID: 0.110 G_Rec: 0.496 D_GP: 0.037 D_real: 1.066 D_fake: 0.526 +(epoch: 476, iters: 1406, time: 0.064) G_GAN: 0.164 G_GAN_Feat: 0.651 G_ID: 0.098 G_Rec: 0.273 D_GP: 0.029 D_real: 1.062 D_fake: 0.837 +(epoch: 476, iters: 1806, time: 0.064) G_GAN: 0.334 G_GAN_Feat: 1.023 G_ID: 0.110 G_Rec: 0.479 D_GP: 0.068 D_real: 0.710 D_fake: 0.667 +(epoch: 476, iters: 2206, time: 0.064) G_GAN: -0.134 G_GAN_Feat: 0.749 G_ID: 0.080 G_Rec: 0.309 D_GP: 0.194 D_real: 0.504 D_fake: 1.134 +(epoch: 476, iters: 2606, time: 0.064) G_GAN: 0.274 G_GAN_Feat: 1.013 G_ID: 0.110 G_Rec: 0.445 D_GP: 0.033 D_real: 0.822 D_fake: 0.726 +(epoch: 476, iters: 3006, time: 0.064) G_GAN: 0.088 G_GAN_Feat: 0.667 G_ID: 0.095 G_Rec: 0.263 D_GP: 0.033 D_real: 0.995 D_fake: 0.912 +(epoch: 476, iters: 3406, time: 0.064) G_GAN: 0.894 G_GAN_Feat: 0.981 G_ID: 0.109 G_Rec: 0.435 D_GP: 0.041 D_real: 1.557 D_fake: 0.272 +(epoch: 476, iters: 3806, time: 0.064) G_GAN: 0.059 G_GAN_Feat: 0.736 G_ID: 0.097 G_Rec: 0.299 D_GP: 0.040 D_real: 0.865 D_fake: 0.941 +(epoch: 476, iters: 4206, time: 0.064) G_GAN: 0.434 G_GAN_Feat: 0.950 G_ID: 0.129 G_Rec: 0.424 D_GP: 0.037 D_real: 1.120 D_fake: 0.569 +(epoch: 476, iters: 4606, time: 0.064) G_GAN: 0.259 G_GAN_Feat: 0.748 G_ID: 0.095 G_Rec: 0.280 D_GP: 0.039 D_real: 1.056 D_fake: 0.742 +(epoch: 476, iters: 5006, time: 0.064) G_GAN: 0.785 G_GAN_Feat: 1.064 G_ID: 0.101 G_Rec: 0.460 D_GP: 0.061 D_real: 0.905 D_fake: 0.254 +(epoch: 476, iters: 5406, time: 0.064) G_GAN: 0.396 G_GAN_Feat: 0.910 G_ID: 0.108 G_Rec: 0.359 D_GP: 0.168 D_real: 0.714 D_fake: 0.718 +(epoch: 476, iters: 5806, time: 0.064) G_GAN: 0.058 G_GAN_Feat: 0.866 G_ID: 0.127 G_Rec: 0.396 D_GP: 0.030 D_real: 0.844 D_fake: 0.943 +(epoch: 476, iters: 6206, time: 0.064) G_GAN: -0.141 G_GAN_Feat: 0.754 G_ID: 0.095 G_Rec: 0.321 D_GP: 0.047 D_real: 0.594 D_fake: 1.141 +(epoch: 476, iters: 6606, time: 0.064) G_GAN: 0.303 G_GAN_Feat: 1.067 G_ID: 0.117 G_Rec: 0.478 D_GP: 0.101 D_real: 0.482 D_fake: 0.701 +(epoch: 476, iters: 7006, time: 0.064) G_GAN: 0.624 G_GAN_Feat: 0.870 G_ID: 0.088 G_Rec: 0.349 D_GP: 0.045 D_real: 1.102 D_fake: 0.549 +(epoch: 476, iters: 7406, time: 0.064) G_GAN: 0.455 G_GAN_Feat: 0.998 G_ID: 0.116 G_Rec: 0.427 D_GP: 0.052 D_real: 1.289 D_fake: 0.560 +(epoch: 476, iters: 7806, time: 0.064) G_GAN: 0.291 G_GAN_Feat: 0.734 G_ID: 0.079 G_Rec: 0.328 D_GP: 0.036 D_real: 1.199 D_fake: 0.709 +(epoch: 476, iters: 8206, time: 0.064) G_GAN: 0.451 G_GAN_Feat: 0.987 G_ID: 0.113 G_Rec: 0.424 D_GP: 0.041 D_real: 0.956 D_fake: 0.556 +(epoch: 476, iters: 8606, time: 0.064) G_GAN: 0.348 G_GAN_Feat: 0.824 G_ID: 0.088 G_Rec: 0.317 D_GP: 0.034 D_real: 1.082 D_fake: 0.653 +(epoch: 477, iters: 398, time: 0.064) G_GAN: 0.628 G_GAN_Feat: 0.951 G_ID: 0.125 G_Rec: 0.446 D_GP: 0.043 D_real: 1.211 D_fake: 0.386 +(epoch: 477, iters: 798, time: 0.064) G_GAN: 0.067 G_GAN_Feat: 0.814 G_ID: 0.089 G_Rec: 0.335 D_GP: 0.085 D_real: 0.826 D_fake: 0.933 +(epoch: 477, iters: 1198, time: 0.064) G_GAN: 0.619 G_GAN_Feat: 0.953 G_ID: 0.101 G_Rec: 0.401 D_GP: 0.035 D_real: 1.220 D_fake: 0.425 +(epoch: 477, iters: 1598, time: 0.064) G_GAN: 0.279 G_GAN_Feat: 0.849 G_ID: 0.083 G_Rec: 0.333 D_GP: 0.035 D_real: 0.679 D_fake: 0.721 +(epoch: 477, iters: 1998, time: 0.064) G_GAN: 0.635 G_GAN_Feat: 1.021 G_ID: 0.106 G_Rec: 0.462 D_GP: 0.035 D_real: 1.171 D_fake: 0.433 +(epoch: 477, iters: 2398, time: 0.064) G_GAN: 0.477 G_GAN_Feat: 0.871 G_ID: 0.096 G_Rec: 0.301 D_GP: 0.057 D_real: 0.953 D_fake: 0.533 +(epoch: 477, iters: 2798, time: 0.064) G_GAN: 0.494 G_GAN_Feat: 1.052 G_ID: 0.104 G_Rec: 0.452 D_GP: 0.056 D_real: 0.860 D_fake: 0.525 +(epoch: 477, iters: 3198, time: 0.064) G_GAN: 0.495 G_GAN_Feat: 1.013 G_ID: 0.091 G_Rec: 0.359 D_GP: 0.897 D_real: 0.578 D_fake: 0.563 +(epoch: 477, iters: 3598, time: 0.064) G_GAN: 0.357 G_GAN_Feat: 0.988 G_ID: 0.105 G_Rec: 0.461 D_GP: 0.038 D_real: 0.829 D_fake: 0.648 +(epoch: 477, iters: 3998, time: 0.064) G_GAN: 0.071 G_GAN_Feat: 0.901 G_ID: 0.103 G_Rec: 0.334 D_GP: 0.050 D_real: 0.768 D_fake: 0.934 +(epoch: 477, iters: 4398, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.945 G_ID: 0.136 G_Rec: 0.403 D_GP: 0.035 D_real: 0.959 D_fake: 0.746 +(epoch: 477, iters: 4798, time: 0.064) G_GAN: 0.041 G_GAN_Feat: 0.685 G_ID: 0.098 G_Rec: 0.306 D_GP: 0.038 D_real: 0.868 D_fake: 0.959 +(epoch: 477, iters: 5198, time: 0.064) G_GAN: 0.324 G_GAN_Feat: 1.078 G_ID: 0.120 G_Rec: 0.441 D_GP: 0.041 D_real: 0.604 D_fake: 0.677 +(epoch: 477, iters: 5598, time: 0.064) G_GAN: 0.303 G_GAN_Feat: 0.908 G_ID: 0.092 G_Rec: 0.343 D_GP: 0.074 D_real: 1.086 D_fake: 0.700 +(epoch: 477, iters: 5998, time: 0.064) G_GAN: 1.046 G_GAN_Feat: 1.147 G_ID: 0.108 G_Rec: 0.477 D_GP: 0.071 D_real: 0.990 D_fake: 0.167 +(epoch: 477, iters: 6398, time: 0.064) G_GAN: 0.151 G_GAN_Feat: 0.694 G_ID: 0.091 G_Rec: 0.294 D_GP: 0.032 D_real: 1.116 D_fake: 0.849 +(epoch: 477, iters: 6798, time: 0.064) G_GAN: 0.159 G_GAN_Feat: 0.921 G_ID: 0.131 G_Rec: 0.424 D_GP: 0.042 D_real: 0.641 D_fake: 0.842 +(epoch: 477, iters: 7198, time: 0.064) G_GAN: -0.195 G_GAN_Feat: 0.824 G_ID: 0.105 G_Rec: 0.328 D_GP: 0.088 D_real: 0.569 D_fake: 1.195 +(epoch: 477, iters: 7598, time: 0.064) G_GAN: 0.832 G_GAN_Feat: 0.941 G_ID: 0.127 G_Rec: 0.392 D_GP: 0.036 D_real: 1.493 D_fake: 0.251 +(epoch: 477, iters: 7998, time: 0.063) G_GAN: 0.318 G_GAN_Feat: 0.835 G_ID: 0.100 G_Rec: 0.379 D_GP: 0.053 D_real: 1.157 D_fake: 0.683 +(epoch: 477, iters: 8398, time: 0.064) G_GAN: 0.460 G_GAN_Feat: 1.017 G_ID: 0.110 G_Rec: 0.403 D_GP: 0.099 D_real: 0.593 D_fake: 0.542 +(epoch: 478, iters: 190, time: 0.063) G_GAN: 0.175 G_GAN_Feat: 0.900 G_ID: 0.091 G_Rec: 0.313 D_GP: 0.034 D_real: 0.844 D_fake: 0.825 +(epoch: 478, iters: 590, time: 0.064) G_GAN: 0.417 G_GAN_Feat: 0.862 G_ID: 0.121 G_Rec: 0.451 D_GP: 0.027 D_real: 1.156 D_fake: 0.587 +(epoch: 478, iters: 990, time: 0.063) G_GAN: 0.221 G_GAN_Feat: 0.646 G_ID: 0.077 G_Rec: 0.311 D_GP: 0.023 D_real: 1.148 D_fake: 0.779 +(epoch: 478, iters: 1390, time: 0.064) G_GAN: 0.280 G_GAN_Feat: 0.891 G_ID: 0.110 G_Rec: 0.462 D_GP: 0.035 D_real: 0.836 D_fake: 0.724 +(epoch: 478, iters: 1790, time: 0.063) G_GAN: 0.144 G_GAN_Feat: 0.603 G_ID: 0.105 G_Rec: 0.288 D_GP: 0.029 D_real: 1.013 D_fake: 0.856 +(epoch: 478, iters: 2190, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 0.908 G_ID: 0.132 G_Rec: 0.453 D_GP: 0.047 D_real: 0.744 D_fake: 0.833 +(epoch: 478, iters: 2590, time: 0.063) G_GAN: 0.027 G_GAN_Feat: 0.690 G_ID: 0.104 G_Rec: 0.328 D_GP: 0.043 D_real: 0.839 D_fake: 0.973 +(epoch: 478, iters: 2990, time: 0.063) G_GAN: 0.339 G_GAN_Feat: 0.927 G_ID: 0.115 G_Rec: 0.470 D_GP: 0.039 D_real: 0.924 D_fake: 0.678 +(epoch: 478, iters: 3390, time: 0.064) G_GAN: 0.006 G_GAN_Feat: 0.732 G_ID: 0.107 G_Rec: 0.366 D_GP: 0.042 D_real: 0.788 D_fake: 0.995 +(epoch: 478, iters: 3790, time: 0.064) G_GAN: 0.113 G_GAN_Feat: 0.905 G_ID: 0.134 G_Rec: 0.465 D_GP: 0.034 D_real: 0.654 D_fake: 0.888 +(epoch: 478, iters: 4190, time: 0.064) G_GAN: 0.084 G_GAN_Feat: 0.678 G_ID: 0.095 G_Rec: 0.313 D_GP: 0.043 D_real: 0.887 D_fake: 0.916 +(epoch: 478, iters: 4590, time: 0.064) G_GAN: 0.140 G_GAN_Feat: 0.877 G_ID: 0.112 G_Rec: 0.402 D_GP: 0.040 D_real: 0.863 D_fake: 0.867 +(epoch: 478, iters: 4990, time: 0.063) G_GAN: -0.141 G_GAN_Feat: 0.734 G_ID: 0.097 G_Rec: 0.334 D_GP: 0.058 D_real: 0.583 D_fake: 1.141 +(epoch: 478, iters: 5390, time: 0.064) G_GAN: 0.159 G_GAN_Feat: 0.907 G_ID: 0.118 G_Rec: 0.439 D_GP: 0.065 D_real: 0.777 D_fake: 0.849 +(epoch: 478, iters: 5790, time: 0.064) G_GAN: 0.064 G_GAN_Feat: 0.753 G_ID: 0.093 G_Rec: 0.312 D_GP: 0.085 D_real: 0.747 D_fake: 0.937 +(epoch: 478, iters: 6190, time: 0.064) G_GAN: 0.420 G_GAN_Feat: 0.909 G_ID: 0.104 G_Rec: 0.415 D_GP: 0.048 D_real: 1.077 D_fake: 0.603 +(epoch: 478, iters: 6590, time: 0.064) G_GAN: 0.170 G_GAN_Feat: 0.654 G_ID: 0.095 G_Rec: 0.289 D_GP: 0.033 D_real: 0.999 D_fake: 0.830 +(epoch: 478, iters: 6990, time: 0.064) G_GAN: 0.375 G_GAN_Feat: 0.900 G_ID: 0.105 G_Rec: 0.383 D_GP: 0.039 D_real: 1.194 D_fake: 0.632 +(epoch: 478, iters: 7390, time: 0.064) G_GAN: 0.091 G_GAN_Feat: 0.694 G_ID: 0.120 G_Rec: 0.326 D_GP: 0.030 D_real: 0.955 D_fake: 0.909 +(epoch: 478, iters: 7790, time: 0.063) G_GAN: 0.382 G_GAN_Feat: 0.933 G_ID: 0.116 G_Rec: 0.455 D_GP: 0.043 D_real: 0.927 D_fake: 0.626 +(epoch: 478, iters: 8190, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 0.648 G_ID: 0.104 G_Rec: 0.279 D_GP: 0.037 D_real: 1.049 D_fake: 0.784 +(epoch: 478, iters: 8590, time: 0.064) G_GAN: 0.072 G_GAN_Feat: 0.884 G_ID: 0.123 G_Rec: 0.402 D_GP: 0.049 D_real: 0.704 D_fake: 0.928 +(epoch: 479, iters: 382, time: 0.064) G_GAN: 0.144 G_GAN_Feat: 0.725 G_ID: 0.093 G_Rec: 0.307 D_GP: 0.044 D_real: 1.020 D_fake: 0.857 +(epoch: 479, iters: 782, time: 0.064) G_GAN: 0.636 G_GAN_Feat: 0.957 G_ID: 0.108 G_Rec: 0.434 D_GP: 0.043 D_real: 1.126 D_fake: 0.402 +(epoch: 479, iters: 1182, time: 0.064) G_GAN: 0.111 G_GAN_Feat: 0.762 G_ID: 0.094 G_Rec: 0.321 D_GP: 0.053 D_real: 0.803 D_fake: 0.889 +(epoch: 479, iters: 1582, time: 0.064) G_GAN: 0.304 G_GAN_Feat: 1.079 G_ID: 0.119 G_Rec: 0.484 D_GP: 0.640 D_real: 0.501 D_fake: 0.702 +(epoch: 479, iters: 1982, time: 0.064) G_GAN: 0.206 G_GAN_Feat: 0.743 G_ID: 0.105 G_Rec: 0.294 D_GP: 0.035 D_real: 1.122 D_fake: 0.794 +(epoch: 479, iters: 2382, time: 0.064) G_GAN: 0.274 G_GAN_Feat: 0.822 G_ID: 0.126 G_Rec: 0.373 D_GP: 0.032 D_real: 1.088 D_fake: 0.728 +(epoch: 479, iters: 2782, time: 0.064) G_GAN: 0.212 G_GAN_Feat: 0.740 G_ID: 0.089 G_Rec: 0.324 D_GP: 0.036 D_real: 1.008 D_fake: 0.788 +(epoch: 479, iters: 3182, time: 0.064) G_GAN: 0.834 G_GAN_Feat: 1.053 G_ID: 0.135 G_Rec: 0.481 D_GP: 0.050 D_real: 1.405 D_fake: 0.280 +(epoch: 479, iters: 3582, time: 0.063) G_GAN: 0.076 G_GAN_Feat: 0.869 G_ID: 0.091 G_Rec: 0.323 D_GP: 0.128 D_real: 0.548 D_fake: 0.924 +(epoch: 479, iters: 3982, time: 0.064) G_GAN: 0.443 G_GAN_Feat: 1.002 G_ID: 0.115 G_Rec: 0.486 D_GP: 0.064 D_real: 0.902 D_fake: 0.562 +(epoch: 479, iters: 4382, time: 0.064) G_GAN: -0.057 G_GAN_Feat: 0.723 G_ID: 0.109 G_Rec: 0.309 D_GP: 0.034 D_real: 0.904 D_fake: 1.057 +(epoch: 479, iters: 4782, time: 0.064) G_GAN: 0.593 G_GAN_Feat: 0.903 G_ID: 0.122 G_Rec: 0.391 D_GP: 0.037 D_real: 1.132 D_fake: 0.425 +(epoch: 479, iters: 5182, time: 0.064) G_GAN: 0.186 G_GAN_Feat: 0.709 G_ID: 0.101 G_Rec: 0.288 D_GP: 0.030 D_real: 1.079 D_fake: 0.814 +(epoch: 479, iters: 5582, time: 0.064) G_GAN: 0.633 G_GAN_Feat: 1.028 G_ID: 0.099 G_Rec: 0.447 D_GP: 0.088 D_real: 0.876 D_fake: 0.389 +(epoch: 479, iters: 5982, time: 0.064) G_GAN: 0.117 G_GAN_Feat: 0.713 G_ID: 0.102 G_Rec: 0.296 D_GP: 0.032 D_real: 0.973 D_fake: 0.883 +(epoch: 479, iters: 6382, time: 0.064) G_GAN: 0.567 G_GAN_Feat: 0.957 G_ID: 0.128 G_Rec: 0.442 D_GP: 0.035 D_real: 1.079 D_fake: 0.458 +(epoch: 479, iters: 6782, time: 0.064) G_GAN: 0.314 G_GAN_Feat: 0.727 G_ID: 0.104 G_Rec: 0.301 D_GP: 0.034 D_real: 1.237 D_fake: 0.687 +(epoch: 479, iters: 7182, time: 0.064) G_GAN: 0.492 G_GAN_Feat: 0.980 G_ID: 0.131 G_Rec: 0.400 D_GP: 0.036 D_real: 1.112 D_fake: 0.530 +(epoch: 479, iters: 7582, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.734 G_ID: 0.089 G_Rec: 0.288 D_GP: 0.034 D_real: 1.112 D_fake: 0.714 +(epoch: 479, iters: 7982, time: 0.064) G_GAN: 0.978 G_GAN_Feat: 1.002 G_ID: 0.114 G_Rec: 0.432 D_GP: 0.040 D_real: 1.573 D_fake: 0.190 +(epoch: 479, iters: 8382, time: 0.064) G_GAN: 0.275 G_GAN_Feat: 0.698 G_ID: 0.092 G_Rec: 0.277 D_GP: 0.032 D_real: 1.152 D_fake: 0.725 +(epoch: 480, iters: 174, time: 0.064) G_GAN: 1.056 G_GAN_Feat: 1.016 G_ID: 0.125 G_Rec: 0.426 D_GP: 0.062 D_real: 1.402 D_fake: 0.373 +(epoch: 480, iters: 574, time: 0.063) G_GAN: 0.076 G_GAN_Feat: 0.655 G_ID: 0.100 G_Rec: 0.270 D_GP: 0.032 D_real: 0.996 D_fake: 0.925 +(epoch: 480, iters: 974, time: 0.064) G_GAN: 0.629 G_GAN_Feat: 1.076 G_ID: 0.108 G_Rec: 0.462 D_GP: 0.094 D_real: 0.732 D_fake: 0.416 +(epoch: 480, iters: 1374, time: 0.064) G_GAN: 0.063 G_GAN_Feat: 0.693 G_ID: 0.114 G_Rec: 0.264 D_GP: 0.033 D_real: 0.940 D_fake: 0.937 +(epoch: 480, iters: 1774, time: 0.064) G_GAN: -0.048 G_GAN_Feat: 1.182 G_ID: 0.140 G_Rec: 0.483 D_GP: 0.070 D_real: 0.102 D_fake: 1.048 +(epoch: 480, iters: 2174, time: 0.064) G_GAN: 0.012 G_GAN_Feat: 0.779 G_ID: 0.093 G_Rec: 0.314 D_GP: 0.041 D_real: 0.700 D_fake: 0.988 +(epoch: 480, iters: 2574, time: 0.064) G_GAN: 0.289 G_GAN_Feat: 0.966 G_ID: 0.106 G_Rec: 0.432 D_GP: 0.032 D_real: 0.893 D_fake: 0.712 +(epoch: 480, iters: 2974, time: 0.064) G_GAN: 0.270 G_GAN_Feat: 0.799 G_ID: 0.102 G_Rec: 0.320 D_GP: 0.044 D_real: 1.123 D_fake: 0.734 +(epoch: 480, iters: 3374, time: 0.063) G_GAN: 0.727 G_GAN_Feat: 1.080 G_ID: 0.113 G_Rec: 0.434 D_GP: 0.041 D_real: 0.927 D_fake: 0.374 +(epoch: 480, iters: 3774, time: 0.064) G_GAN: 0.291 G_GAN_Feat: 1.055 G_ID: 0.086 G_Rec: 0.333 D_GP: 0.116 D_real: 0.496 D_fake: 0.711 +(epoch: 480, iters: 4174, time: 0.064) G_GAN: 0.640 G_GAN_Feat: 1.003 G_ID: 0.118 G_Rec: 0.459 D_GP: 0.036 D_real: 1.256 D_fake: 0.440 +(epoch: 480, iters: 4574, time: 0.064) G_GAN: 0.094 G_GAN_Feat: 0.647 G_ID: 0.104 G_Rec: 0.285 D_GP: 0.028 D_real: 1.025 D_fake: 0.906 +(epoch: 480, iters: 4974, time: 0.064) G_GAN: 0.439 G_GAN_Feat: 0.891 G_ID: 0.097 G_Rec: 0.430 D_GP: 0.032 D_real: 1.090 D_fake: 0.573 +(epoch: 480, iters: 5374, time: 0.064) G_GAN: 0.013 G_GAN_Feat: 0.696 G_ID: 0.098 G_Rec: 0.293 D_GP: 0.034 D_real: 0.864 D_fake: 0.987 +(epoch: 480, iters: 5774, time: 0.063) G_GAN: 0.187 G_GAN_Feat: 0.865 G_ID: 0.110 G_Rec: 0.406 D_GP: 0.047 D_real: 0.789 D_fake: 0.819 +(epoch: 480, iters: 6174, time: 0.063) G_GAN: 0.116 G_GAN_Feat: 0.700 G_ID: 0.094 G_Rec: 0.305 D_GP: 0.051 D_real: 0.942 D_fake: 0.887 +(epoch: 480, iters: 6574, time: 0.064) G_GAN: 0.075 G_GAN_Feat: 0.969 G_ID: 0.112 G_Rec: 0.444 D_GP: 0.048 D_real: 0.639 D_fake: 0.925 +(epoch: 480, iters: 6974, time: 0.064) G_GAN: -0.141 G_GAN_Feat: 0.622 G_ID: 0.075 G_Rec: 0.249 D_GP: 0.032 D_real: 0.868 D_fake: 1.141 +(epoch: 480, iters: 7374, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 0.864 G_ID: 0.132 G_Rec: 0.373 D_GP: 0.039 D_real: 0.795 D_fake: 0.826 +(epoch: 480, iters: 7774, time: 0.063) G_GAN: -0.057 G_GAN_Feat: 0.659 G_ID: 0.085 G_Rec: 0.265 D_GP: 0.044 D_real: 0.933 D_fake: 1.057 +(epoch: 480, iters: 8174, time: 0.064) G_GAN: 0.188 G_GAN_Feat: 0.956 G_ID: 0.123 G_Rec: 0.415 D_GP: 0.038 D_real: 0.850 D_fake: 0.812 +(epoch: 480, iters: 8574, time: 0.064) G_GAN: 0.155 G_GAN_Feat: 0.717 G_ID: 0.099 G_Rec: 0.315 D_GP: 0.036 D_real: 0.968 D_fake: 0.845 +(epoch: 481, iters: 366, time: 0.063) G_GAN: 0.430 G_GAN_Feat: 1.047 G_ID: 0.122 G_Rec: 0.476 D_GP: 0.077 D_real: 0.760 D_fake: 0.580 +(epoch: 481, iters: 766, time: 0.063) G_GAN: -0.508 G_GAN_Feat: 1.083 G_ID: 0.102 G_Rec: 0.384 D_GP: 0.050 D_real: 1.081 D_fake: 1.508 +(epoch: 481, iters: 1166, time: 0.063) G_GAN: 0.226 G_GAN_Feat: 0.832 G_ID: 0.116 G_Rec: 0.417 D_GP: 0.023 D_real: 1.010 D_fake: 0.787 +(epoch: 481, iters: 1566, time: 0.064) G_GAN: -0.196 G_GAN_Feat: 0.636 G_ID: 0.099 G_Rec: 0.285 D_GP: 0.023 D_real: 0.769 D_fake: 1.200 +(epoch: 481, iters: 1966, time: 0.064) G_GAN: 0.187 G_GAN_Feat: 0.886 G_ID: 0.119 G_Rec: 0.438 D_GP: 0.029 D_real: 0.850 D_fake: 0.822 +(epoch: 481, iters: 2366, time: 0.064) G_GAN: -0.035 G_GAN_Feat: 0.664 G_ID: 0.087 G_Rec: 0.295 D_GP: 0.031 D_real: 0.847 D_fake: 1.036 +(epoch: 481, iters: 2766, time: 0.064) G_GAN: -0.042 G_GAN_Feat: 0.894 G_ID: 0.129 G_Rec: 0.436 D_GP: 0.055 D_real: 0.587 D_fake: 1.043 +(epoch: 481, iters: 3166, time: 0.064) G_GAN: 0.171 G_GAN_Feat: 0.697 G_ID: 0.113 G_Rec: 0.301 D_GP: 0.036 D_real: 0.995 D_fake: 0.831 +(epoch: 481, iters: 3566, time: 0.063) G_GAN: 0.561 G_GAN_Feat: 0.896 G_ID: 0.099 G_Rec: 0.396 D_GP: 0.035 D_real: 1.235 D_fake: 0.476 +(epoch: 481, iters: 3966, time: 0.063) G_GAN: 0.014 G_GAN_Feat: 0.802 G_ID: 0.094 G_Rec: 0.315 D_GP: 0.099 D_real: 0.626 D_fake: 0.986 +(epoch: 481, iters: 4366, time: 0.064) G_GAN: 0.290 G_GAN_Feat: 0.961 G_ID: 0.118 G_Rec: 0.443 D_GP: 0.036 D_real: 0.932 D_fake: 0.712 +(epoch: 481, iters: 4766, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 0.858 G_ID: 0.107 G_Rec: 0.327 D_GP: 0.039 D_real: 0.758 D_fake: 0.784 +(epoch: 481, iters: 5166, time: 0.063) G_GAN: 0.370 G_GAN_Feat: 0.982 G_ID: 0.103 G_Rec: 0.424 D_GP: 0.042 D_real: 0.808 D_fake: 0.631 +(epoch: 481, iters: 5566, time: 0.064) G_GAN: 0.192 G_GAN_Feat: 0.813 G_ID: 0.099 G_Rec: 0.312 D_GP: 0.045 D_real: 0.877 D_fake: 0.809 +(epoch: 481, iters: 5966, time: 0.063) G_GAN: 0.324 G_GAN_Feat: 0.924 G_ID: 0.109 G_Rec: 0.392 D_GP: 0.030 D_real: 1.027 D_fake: 0.683 +(epoch: 481, iters: 6366, time: 0.064) G_GAN: -0.083 G_GAN_Feat: 0.799 G_ID: 0.109 G_Rec: 0.327 D_GP: 0.040 D_real: 0.577 D_fake: 1.083 +(epoch: 481, iters: 6766, time: 0.064) G_GAN: 0.632 G_GAN_Feat: 0.999 G_ID: 0.106 G_Rec: 0.458 D_GP: 0.037 D_real: 1.214 D_fake: 0.378 +(epoch: 481, iters: 7166, time: 0.064) G_GAN: 0.443 G_GAN_Feat: 0.801 G_ID: 0.091 G_Rec: 0.340 D_GP: 0.033 D_real: 1.134 D_fake: 0.561 +(epoch: 481, iters: 7566, time: 0.063) G_GAN: 0.720 G_GAN_Feat: 0.985 G_ID: 0.101 G_Rec: 0.431 D_GP: 0.077 D_real: 1.300 D_fake: 0.341 +(epoch: 481, iters: 7966, time: 0.064) G_GAN: 0.174 G_GAN_Feat: 0.844 G_ID: 0.087 G_Rec: 0.350 D_GP: 0.046 D_real: 0.826 D_fake: 0.827 +(epoch: 481, iters: 8366, time: 0.064) G_GAN: 0.542 G_GAN_Feat: 0.983 G_ID: 0.106 G_Rec: 0.407 D_GP: 0.056 D_real: 1.018 D_fake: 0.490 +(epoch: 482, iters: 158, time: 0.063) G_GAN: 0.245 G_GAN_Feat: 0.928 G_ID: 0.099 G_Rec: 0.333 D_GP: 0.040 D_real: 0.558 D_fake: 0.755 +(epoch: 482, iters: 558, time: 0.064) G_GAN: 0.159 G_GAN_Feat: 0.929 G_ID: 0.131 G_Rec: 0.444 D_GP: 0.037 D_real: 0.777 D_fake: 0.841 +(epoch: 482, iters: 958, time: 0.064) G_GAN: 0.277 G_GAN_Feat: 0.917 G_ID: 0.081 G_Rec: 0.324 D_GP: 0.064 D_real: 0.845 D_fake: 0.723 +(epoch: 482, iters: 1358, time: 0.064) G_GAN: 0.713 G_GAN_Feat: 0.996 G_ID: 0.108 G_Rec: 0.377 D_GP: 0.030 D_real: 1.085 D_fake: 0.403 +(epoch: 482, iters: 1758, time: 0.063) G_GAN: -0.066 G_GAN_Feat: 0.778 G_ID: 0.091 G_Rec: 0.322 D_GP: 0.029 D_real: 0.826 D_fake: 1.067 +(epoch: 482, iters: 2158, time: 0.063) G_GAN: 0.162 G_GAN_Feat: 0.896 G_ID: 0.135 G_Rec: 0.408 D_GP: 0.028 D_real: 0.741 D_fake: 0.843 +(epoch: 482, iters: 2558, time: 0.064) G_GAN: 0.136 G_GAN_Feat: 0.784 G_ID: 0.110 G_Rec: 0.327 D_GP: 0.075 D_real: 0.768 D_fake: 0.865 +(epoch: 482, iters: 2958, time: 0.063) G_GAN: 0.565 G_GAN_Feat: 1.084 G_ID: 0.117 G_Rec: 0.426 D_GP: 0.065 D_real: 0.499 D_fake: 0.446 +(epoch: 482, iters: 3358, time: 0.063) G_GAN: 0.127 G_GAN_Feat: 0.733 G_ID: 0.099 G_Rec: 0.334 D_GP: 0.039 D_real: 0.983 D_fake: 0.874 +(epoch: 482, iters: 3758, time: 0.064) G_GAN: 0.574 G_GAN_Feat: 0.939 G_ID: 0.112 G_Rec: 0.443 D_GP: 0.033 D_real: 1.190 D_fake: 0.435 +(epoch: 482, iters: 4158, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 0.982 G_ID: 0.090 G_Rec: 0.349 D_GP: 0.574 D_real: 0.486 D_fake: 0.658 +(epoch: 482, iters: 4558, time: 0.064) G_GAN: 0.575 G_GAN_Feat: 1.140 G_ID: 0.120 G_Rec: 0.436 D_GP: 0.055 D_real: 0.383 D_fake: 0.443 +(epoch: 482, iters: 4958, time: 0.064) G_GAN: 0.502 G_GAN_Feat: 0.981 G_ID: 0.086 G_Rec: 0.338 D_GP: 0.100 D_real: 0.524 D_fake: 0.517 +(epoch: 482, iters: 5358, time: 0.064) G_GAN: 0.388 G_GAN_Feat: 0.965 G_ID: 0.109 G_Rec: 0.436 D_GP: 0.031 D_real: 1.010 D_fake: 0.647 +(epoch: 482, iters: 5758, time: 0.064) G_GAN: 0.295 G_GAN_Feat: 0.871 G_ID: 0.097 G_Rec: 0.313 D_GP: 0.072 D_real: 0.597 D_fake: 0.710 +(epoch: 482, iters: 6158, time: 0.063) G_GAN: 0.556 G_GAN_Feat: 1.191 G_ID: 0.094 G_Rec: 0.452 D_GP: 0.321 D_real: 0.371 D_fake: 0.565 +(epoch: 482, iters: 6558, time: 0.063) G_GAN: -0.132 G_GAN_Feat: 0.774 G_ID: 0.083 G_Rec: 0.326 D_GP: 0.030 D_real: 0.790 D_fake: 1.132 +(epoch: 482, iters: 6958, time: 0.063) G_GAN: 0.481 G_GAN_Feat: 1.156 G_ID: 0.129 G_Rec: 0.440 D_GP: 0.098 D_real: 0.508 D_fake: 0.530 +(epoch: 482, iters: 7358, time: 0.064) G_GAN: 0.286 G_GAN_Feat: 0.898 G_ID: 0.104 G_Rec: 0.321 D_GP: 0.063 D_real: 0.309 D_fake: 0.717 +(epoch: 482, iters: 7758, time: 0.064) G_GAN: 0.579 G_GAN_Feat: 0.982 G_ID: 0.129 G_Rec: 0.449 D_GP: 0.034 D_real: 1.322 D_fake: 0.458 +(epoch: 482, iters: 8158, time: 0.063) G_GAN: 0.054 G_GAN_Feat: 0.773 G_ID: 0.092 G_Rec: 0.301 D_GP: 0.058 D_real: 0.795 D_fake: 0.947 +(epoch: 482, iters: 8558, time: 0.063) G_GAN: 0.516 G_GAN_Feat: 1.008 G_ID: 0.107 G_Rec: 0.475 D_GP: 0.038 D_real: 0.851 D_fake: 0.494 +(epoch: 483, iters: 350, time: 0.064) G_GAN: 0.518 G_GAN_Feat: 0.911 G_ID: 0.099 G_Rec: 0.342 D_GP: 0.336 D_real: 0.545 D_fake: 0.610 +(epoch: 483, iters: 750, time: 0.063) G_GAN: 0.633 G_GAN_Feat: 1.062 G_ID: 0.107 G_Rec: 0.447 D_GP: 0.068 D_real: 0.763 D_fake: 0.378 +(epoch: 483, iters: 1150, time: 0.063) G_GAN: 0.256 G_GAN_Feat: 0.809 G_ID: 0.099 G_Rec: 0.318 D_GP: 0.033 D_real: 0.848 D_fake: 0.755 +(epoch: 483, iters: 1550, time: 0.063) G_GAN: 0.841 G_GAN_Feat: 1.119 G_ID: 0.126 G_Rec: 0.473 D_GP: 0.085 D_real: 1.125 D_fake: 0.287 +(epoch: 483, iters: 1950, time: 0.064) G_GAN: 0.313 G_GAN_Feat: 0.758 G_ID: 0.098 G_Rec: 0.334 D_GP: 0.037 D_real: 1.112 D_fake: 0.690 +(epoch: 483, iters: 2350, time: 0.063) G_GAN: 0.268 G_GAN_Feat: 0.991 G_ID: 0.115 G_Rec: 0.441 D_GP: 0.033 D_real: 0.780 D_fake: 0.732 +(epoch: 483, iters: 2750, time: 0.063) G_GAN: 0.279 G_GAN_Feat: 0.995 G_ID: 0.099 G_Rec: 0.339 D_GP: 0.167 D_real: 0.318 D_fake: 0.733 +(epoch: 483, iters: 3150, time: 0.063) G_GAN: 0.422 G_GAN_Feat: 0.890 G_ID: 0.112 G_Rec: 0.435 D_GP: 0.027 D_real: 1.118 D_fake: 0.585 +(epoch: 483, iters: 3550, time: 0.064) G_GAN: -0.070 G_GAN_Feat: 0.683 G_ID: 0.123 G_Rec: 0.294 D_GP: 0.033 D_real: 0.814 D_fake: 1.070 +(epoch: 483, iters: 3950, time: 0.063) G_GAN: 0.283 G_GAN_Feat: 0.896 G_ID: 0.111 G_Rec: 0.387 D_GP: 0.034 D_real: 0.960 D_fake: 0.718 +(epoch: 483, iters: 4350, time: 0.063) G_GAN: 0.296 G_GAN_Feat: 0.810 G_ID: 0.123 G_Rec: 0.343 D_GP: 0.036 D_real: 1.063 D_fake: 0.712 +(epoch: 483, iters: 4750, time: 0.063) G_GAN: 0.685 G_GAN_Feat: 1.125 G_ID: 0.121 G_Rec: 0.509 D_GP: 0.039 D_real: 0.996 D_fake: 0.385 +(epoch: 483, iters: 5150, time: 0.064) G_GAN: 0.216 G_GAN_Feat: 0.796 G_ID: 0.094 G_Rec: 0.293 D_GP: 0.034 D_real: 0.968 D_fake: 0.785 +(epoch: 483, iters: 5550, time: 0.063) G_GAN: 0.567 G_GAN_Feat: 1.157 G_ID: 0.126 G_Rec: 0.483 D_GP: 0.047 D_real: 1.049 D_fake: 0.456 +(epoch: 483, iters: 5950, time: 0.063) G_GAN: 0.286 G_GAN_Feat: 0.835 G_ID: 0.102 G_Rec: 0.312 D_GP: 0.033 D_real: 0.790 D_fake: 0.715 +(epoch: 483, iters: 6350, time: 0.063) G_GAN: 0.584 G_GAN_Feat: 1.101 G_ID: 0.114 G_Rec: 0.442 D_GP: 0.965 D_real: 0.698 D_fake: 0.461 +(epoch: 483, iters: 6750, time: 0.064) G_GAN: 0.024 G_GAN_Feat: 0.772 G_ID: 0.114 G_Rec: 0.313 D_GP: 0.044 D_real: 0.789 D_fake: 0.976 +(epoch: 483, iters: 7150, time: 0.063) G_GAN: 0.390 G_GAN_Feat: 1.128 G_ID: 0.109 G_Rec: 0.486 D_GP: 0.034 D_real: 0.680 D_fake: 0.611 +(epoch: 483, iters: 7550, time: 0.063) G_GAN: 0.277 G_GAN_Feat: 0.770 G_ID: 0.115 G_Rec: 0.299 D_GP: 0.031 D_real: 1.072 D_fake: 0.724 +(epoch: 483, iters: 7950, time: 0.063) G_GAN: 0.304 G_GAN_Feat: 1.008 G_ID: 0.116 G_Rec: 0.433 D_GP: 0.032 D_real: 0.924 D_fake: 0.697 +(epoch: 483, iters: 8350, time: 0.064) G_GAN: 0.370 G_GAN_Feat: 0.742 G_ID: 0.094 G_Rec: 0.276 D_GP: 0.031 D_real: 1.173 D_fake: 0.632 +(epoch: 484, iters: 142, time: 0.063) G_GAN: 0.475 G_GAN_Feat: 1.036 G_ID: 0.119 G_Rec: 0.441 D_GP: 0.036 D_real: 1.073 D_fake: 0.530 +(epoch: 484, iters: 542, time: 0.063) G_GAN: 0.262 G_GAN_Feat: 0.734 G_ID: 0.093 G_Rec: 0.327 D_GP: 0.029 D_real: 1.174 D_fake: 0.738 +(epoch: 484, iters: 942, time: 0.063) G_GAN: 0.164 G_GAN_Feat: 0.857 G_ID: 0.136 G_Rec: 0.380 D_GP: 0.033 D_real: 0.829 D_fake: 0.837 +(epoch: 484, iters: 1342, time: 0.064) G_GAN: 0.062 G_GAN_Feat: 0.804 G_ID: 0.101 G_Rec: 0.351 D_GP: 0.037 D_real: 0.829 D_fake: 0.938 +(epoch: 484, iters: 1742, time: 0.063) G_GAN: 0.489 G_GAN_Feat: 0.941 G_ID: 0.105 G_Rec: 0.541 D_GP: 0.030 D_real: 1.072 D_fake: 0.531 +(epoch: 484, iters: 2142, time: 0.063) G_GAN: -0.288 G_GAN_Feat: 0.771 G_ID: 0.109 G_Rec: 0.336 D_GP: 0.046 D_real: 0.487 D_fake: 1.288 +(epoch: 484, iters: 2542, time: 0.063) G_GAN: 0.380 G_GAN_Feat: 1.020 G_ID: 0.105 G_Rec: 0.454 D_GP: 0.048 D_real: 0.879 D_fake: 0.624 +(epoch: 484, iters: 2942, time: 0.064) G_GAN: 0.298 G_GAN_Feat: 0.732 G_ID: 0.097 G_Rec: 0.291 D_GP: 0.039 D_real: 1.136 D_fake: 0.704 +(epoch: 484, iters: 3342, time: 0.063) G_GAN: 0.833 G_GAN_Feat: 0.974 G_ID: 0.105 G_Rec: 0.387 D_GP: 0.039 D_real: 1.487 D_fake: 0.212 +(epoch: 484, iters: 3742, time: 0.063) G_GAN: 0.204 G_GAN_Feat: 0.832 G_ID: 0.105 G_Rec: 0.337 D_GP: 0.149 D_real: 0.566 D_fake: 0.801 +(epoch: 484, iters: 4142, time: 0.063) G_GAN: 0.526 G_GAN_Feat: 1.038 G_ID: 0.123 G_Rec: 0.467 D_GP: 0.044 D_real: 0.914 D_fake: 0.477 +(epoch: 484, iters: 4542, time: 0.064) G_GAN: 0.438 G_GAN_Feat: 0.851 G_ID: 0.099 G_Rec: 0.318 D_GP: 0.042 D_real: 1.235 D_fake: 0.564 +(epoch: 484, iters: 4942, time: 0.063) G_GAN: 0.526 G_GAN_Feat: 1.047 G_ID: 0.106 G_Rec: 0.476 D_GP: 0.037 D_real: 1.114 D_fake: 0.493 +(epoch: 484, iters: 5342, time: 0.063) G_GAN: 0.021 G_GAN_Feat: 0.700 G_ID: 0.097 G_Rec: 0.285 D_GP: 0.034 D_real: 0.937 D_fake: 0.979 +(epoch: 484, iters: 5742, time: 0.063) G_GAN: 0.415 G_GAN_Feat: 1.058 G_ID: 0.126 G_Rec: 0.443 D_GP: 0.044 D_real: 0.701 D_fake: 0.591 +(epoch: 484, iters: 6142, time: 0.064) G_GAN: 0.254 G_GAN_Feat: 0.965 G_ID: 0.095 G_Rec: 0.375 D_GP: 0.113 D_real: 0.468 D_fake: 0.746 +(epoch: 484, iters: 6542, time: 0.063) G_GAN: 0.287 G_GAN_Feat: 1.123 G_ID: 0.114 G_Rec: 0.436 D_GP: 0.038 D_real: 0.670 D_fake: 0.714 +(epoch: 484, iters: 6942, time: 0.063) G_GAN: 0.349 G_GAN_Feat: 0.910 G_ID: 0.096 G_Rec: 0.336 D_GP: 0.058 D_real: 1.329 D_fake: 0.655 +(epoch: 484, iters: 7342, time: 0.063) G_GAN: 0.200 G_GAN_Feat: 1.109 G_ID: 0.126 G_Rec: 0.436 D_GP: 0.033 D_real: 0.498 D_fake: 0.801 +(epoch: 484, iters: 7742, time: 0.064) G_GAN: 0.241 G_GAN_Feat: 0.711 G_ID: 0.086 G_Rec: 0.276 D_GP: 0.033 D_real: 1.178 D_fake: 0.759 +(epoch: 484, iters: 8142, time: 0.063) G_GAN: 0.655 G_GAN_Feat: 1.234 G_ID: 0.114 G_Rec: 0.494 D_GP: 0.249 D_real: 0.552 D_fake: 0.373 +(epoch: 484, iters: 8542, time: 0.063) G_GAN: 0.357 G_GAN_Feat: 1.039 G_ID: 0.112 G_Rec: 0.355 D_GP: 0.123 D_real: 0.236 D_fake: 0.687 +(epoch: 485, iters: 334, time: 0.063) G_GAN: 0.423 G_GAN_Feat: 0.947 G_ID: 0.115 G_Rec: 0.434 D_GP: 0.029 D_real: 1.091 D_fake: 0.583 +(epoch: 485, iters: 734, time: 0.064) G_GAN: 0.184 G_GAN_Feat: 0.643 G_ID: 0.096 G_Rec: 0.307 D_GP: 0.027 D_real: 1.116 D_fake: 0.817 +(epoch: 485, iters: 1134, time: 0.063) G_GAN: -0.054 G_GAN_Feat: 0.883 G_ID: 0.146 G_Rec: 0.441 D_GP: 0.033 D_real: 0.768 D_fake: 1.054 +(epoch: 485, iters: 1534, time: 0.063) G_GAN: 0.278 G_GAN_Feat: 0.699 G_ID: 0.092 G_Rec: 0.302 D_GP: 0.034 D_real: 1.211 D_fake: 0.724 +(epoch: 485, iters: 1934, time: 0.063) G_GAN: 0.292 G_GAN_Feat: 0.978 G_ID: 0.122 G_Rec: 0.443 D_GP: 0.049 D_real: 0.854 D_fake: 0.713 +(epoch: 485, iters: 2334, time: 0.063) G_GAN: 0.252 G_GAN_Feat: 0.627 G_ID: 0.093 G_Rec: 0.275 D_GP: 0.027 D_real: 1.178 D_fake: 0.749 +(epoch: 485, iters: 2734, time: 0.063) G_GAN: 0.301 G_GAN_Feat: 0.907 G_ID: 0.117 G_Rec: 0.432 D_GP: 0.033 D_real: 0.895 D_fake: 0.707 +(epoch: 485, iters: 3134, time: 0.063) G_GAN: 0.103 G_GAN_Feat: 0.724 G_ID: 0.104 G_Rec: 0.313 D_GP: 0.043 D_real: 0.925 D_fake: 0.897 +(epoch: 485, iters: 3534, time: 0.064) G_GAN: 0.324 G_GAN_Feat: 0.956 G_ID: 0.131 G_Rec: 0.457 D_GP: 0.042 D_real: 0.861 D_fake: 0.688 +(epoch: 485, iters: 3934, time: 0.063) G_GAN: 0.065 G_GAN_Feat: 0.697 G_ID: 0.101 G_Rec: 0.305 D_GP: 0.029 D_real: 1.052 D_fake: 0.935 +(epoch: 485, iters: 4334, time: 0.063) G_GAN: 0.389 G_GAN_Feat: 1.010 G_ID: 0.105 G_Rec: 0.460 D_GP: 0.051 D_real: 0.819 D_fake: 0.616 +(epoch: 485, iters: 4734, time: 0.063) G_GAN: 0.133 G_GAN_Feat: 0.737 G_ID: 0.092 G_Rec: 0.298 D_GP: 0.032 D_real: 1.025 D_fake: 0.867 +(epoch: 485, iters: 5134, time: 0.064) G_GAN: 0.378 G_GAN_Feat: 0.991 G_ID: 0.131 G_Rec: 0.423 D_GP: 0.065 D_real: 0.784 D_fake: 0.631 +(epoch: 485, iters: 5534, time: 0.063) G_GAN: 0.113 G_GAN_Feat: 0.711 G_ID: 0.102 G_Rec: 0.295 D_GP: 0.029 D_real: 1.008 D_fake: 0.887 +(epoch: 485, iters: 5934, time: 0.063) G_GAN: 0.548 G_GAN_Feat: 1.038 G_ID: 0.106 G_Rec: 0.463 D_GP: 0.049 D_real: 0.918 D_fake: 0.464 +(epoch: 485, iters: 6334, time: 0.063) G_GAN: 0.138 G_GAN_Feat: 0.741 G_ID: 0.108 G_Rec: 0.312 D_GP: 0.033 D_real: 0.887 D_fake: 0.862 +(epoch: 485, iters: 6734, time: 0.064) G_GAN: 0.403 G_GAN_Feat: 0.839 G_ID: 0.110 G_Rec: 0.382 D_GP: 0.031 D_real: 1.213 D_fake: 0.604 +(epoch: 485, iters: 7134, time: 0.063) G_GAN: 0.323 G_GAN_Feat: 0.660 G_ID: 0.088 G_Rec: 0.301 D_GP: 0.034 D_real: 1.221 D_fake: 0.678 +(epoch: 485, iters: 7534, time: 0.063) G_GAN: 0.427 G_GAN_Feat: 0.996 G_ID: 0.115 G_Rec: 0.434 D_GP: 0.085 D_real: 0.778 D_fake: 0.575 +(epoch: 485, iters: 7934, time: 0.063) G_GAN: 0.180 G_GAN_Feat: 0.841 G_ID: 0.116 G_Rec: 0.413 D_GP: 0.056 D_real: 0.939 D_fake: 0.822 +(epoch: 485, iters: 8334, time: 0.064) G_GAN: 0.450 G_GAN_Feat: 0.975 G_ID: 0.136 G_Rec: 0.427 D_GP: 0.037 D_real: 1.199 D_fake: 0.555 +(epoch: 486, iters: 126, time: 0.063) G_GAN: 0.425 G_GAN_Feat: 0.649 G_ID: 0.087 G_Rec: 0.323 D_GP: 0.029 D_real: 1.351 D_fake: 0.575 +(epoch: 486, iters: 526, time: 0.063) G_GAN: 0.652 G_GAN_Feat: 0.893 G_ID: 0.104 G_Rec: 0.437 D_GP: 0.033 D_real: 1.373 D_fake: 0.393 +(epoch: 486, iters: 926, time: 0.063) G_GAN: 0.224 G_GAN_Feat: 0.724 G_ID: 0.105 G_Rec: 0.323 D_GP: 0.036 D_real: 0.998 D_fake: 0.777 +(epoch: 486, iters: 1326, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 0.897 G_ID: 0.121 G_Rec: 0.389 D_GP: 0.043 D_real: 0.941 D_fake: 0.689 +(epoch: 486, iters: 1726, time: 0.063) G_GAN: -0.064 G_GAN_Feat: 0.784 G_ID: 0.108 G_Rec: 0.300 D_GP: 0.070 D_real: 0.560 D_fake: 1.064 +(epoch: 486, iters: 2126, time: 0.063) G_GAN: 0.496 G_GAN_Feat: 1.028 G_ID: 0.107 G_Rec: 0.415 D_GP: 0.040 D_real: 0.883 D_fake: 0.507 +(epoch: 486, iters: 2526, time: 0.063) G_GAN: 0.200 G_GAN_Feat: 0.855 G_ID: 0.117 G_Rec: 0.343 D_GP: 0.057 D_real: 1.034 D_fake: 0.811 +(epoch: 486, iters: 2926, time: 0.064) G_GAN: 0.697 G_GAN_Feat: 0.937 G_ID: 0.100 G_Rec: 0.383 D_GP: 0.034 D_real: 1.359 D_fake: 0.329 +(epoch: 486, iters: 3326, time: 0.063) G_GAN: 0.181 G_GAN_Feat: 0.942 G_ID: 0.099 G_Rec: 0.338 D_GP: 0.226 D_real: 0.142 D_fake: 1.005 +(epoch: 486, iters: 3726, time: 0.063) G_GAN: 0.814 G_GAN_Feat: 1.116 G_ID: 0.102 G_Rec: 0.440 D_GP: 0.133 D_real: 0.816 D_fake: 0.253 +(epoch: 486, iters: 4126, time: 0.063) G_GAN: 0.036 G_GAN_Feat: 0.999 G_ID: 0.108 G_Rec: 0.383 D_GP: 0.539 D_real: 0.214 D_fake: 0.971 +(epoch: 486, iters: 4526, time: 0.064) G_GAN: 0.450 G_GAN_Feat: 1.030 G_ID: 0.121 G_Rec: 0.471 D_GP: 0.036 D_real: 1.188 D_fake: 0.567 +(epoch: 486, iters: 4926, time: 0.063) G_GAN: 0.145 G_GAN_Feat: 0.708 G_ID: 0.099 G_Rec: 0.320 D_GP: 0.031 D_real: 0.925 D_fake: 0.859 +(epoch: 486, iters: 5326, time: 0.063) G_GAN: 0.442 G_GAN_Feat: 0.922 G_ID: 0.125 G_Rec: 0.438 D_GP: 0.034 D_real: 1.109 D_fake: 0.584 +(epoch: 486, iters: 5726, time: 0.063) G_GAN: 0.213 G_GAN_Feat: 0.843 G_ID: 0.101 G_Rec: 0.364 D_GP: 0.038 D_real: 0.732 D_fake: 0.787 +(epoch: 486, iters: 6126, time: 0.064) G_GAN: 0.500 G_GAN_Feat: 1.057 G_ID: 0.110 G_Rec: 0.403 D_GP: 0.041 D_real: 0.848 D_fake: 0.503 +(epoch: 486, iters: 6526, time: 0.063) G_GAN: 0.641 G_GAN_Feat: 0.813 G_ID: 0.100 G_Rec: 0.301 D_GP: 0.036 D_real: 1.368 D_fake: 0.372 +(epoch: 486, iters: 6926, time: 0.063) G_GAN: 0.341 G_GAN_Feat: 1.255 G_ID: 0.114 G_Rec: 0.485 D_GP: 0.885 D_real: 0.329 D_fake: 0.661 +(epoch: 486, iters: 7326, time: 0.063) G_GAN: 0.110 G_GAN_Feat: 0.766 G_ID: 0.078 G_Rec: 0.309 D_GP: 0.032 D_real: 0.798 D_fake: 0.890 +(epoch: 486, iters: 7726, time: 0.064) G_GAN: 0.737 G_GAN_Feat: 1.005 G_ID: 0.114 G_Rec: 0.427 D_GP: 0.059 D_real: 1.191 D_fake: 0.290 +(epoch: 486, iters: 8126, time: 0.063) G_GAN: 0.492 G_GAN_Feat: 0.938 G_ID: 0.110 G_Rec: 0.341 D_GP: 0.041 D_real: 0.883 D_fake: 0.516 +(epoch: 486, iters: 8526, time: 0.063) G_GAN: 0.545 G_GAN_Feat: 0.945 G_ID: 0.147 G_Rec: 0.455 D_GP: 0.034 D_real: 1.256 D_fake: 0.469 +(epoch: 487, iters: 318, time: 0.063) G_GAN: 0.374 G_GAN_Feat: 0.731 G_ID: 0.106 G_Rec: 0.297 D_GP: 0.040 D_real: 1.270 D_fake: 0.627 +(epoch: 487, iters: 718, time: 0.064) G_GAN: 0.353 G_GAN_Feat: 1.037 G_ID: 0.100 G_Rec: 0.424 D_GP: 0.040 D_real: 0.618 D_fake: 0.649 +(epoch: 487, iters: 1118, time: 0.063) G_GAN: 0.226 G_GAN_Feat: 0.649 G_ID: 0.082 G_Rec: 0.285 D_GP: 0.031 D_real: 1.199 D_fake: 0.776 +(epoch: 487, iters: 1518, time: 0.063) G_GAN: 0.459 G_GAN_Feat: 0.875 G_ID: 0.113 G_Rec: 0.407 D_GP: 0.032 D_real: 1.110 D_fake: 0.568 +(epoch: 487, iters: 1918, time: 0.063) G_GAN: -0.023 G_GAN_Feat: 0.732 G_ID: 0.086 G_Rec: 0.321 D_GP: 0.042 D_real: 0.785 D_fake: 1.023 +(epoch: 487, iters: 2318, time: 0.064) G_GAN: 0.183 G_GAN_Feat: 0.917 G_ID: 0.150 G_Rec: 0.374 D_GP: 0.043 D_real: 0.740 D_fake: 0.821 +(epoch: 487, iters: 2718, time: 0.063) G_GAN: 0.270 G_GAN_Feat: 0.739 G_ID: 0.106 G_Rec: 0.312 D_GP: 0.040 D_real: 1.162 D_fake: 0.734 +(epoch: 487, iters: 3118, time: 0.063) G_GAN: 0.478 G_GAN_Feat: 1.032 G_ID: 0.123 G_Rec: 0.467 D_GP: 0.041 D_real: 1.008 D_fake: 0.534 +(epoch: 487, iters: 3518, time: 0.063) G_GAN: 0.430 G_GAN_Feat: 0.746 G_ID: 0.093 G_Rec: 0.316 D_GP: 0.030 D_real: 1.426 D_fake: 0.573 +(epoch: 487, iters: 3918, time: 0.064) G_GAN: 0.267 G_GAN_Feat: 1.059 G_ID: 0.109 G_Rec: 0.444 D_GP: 0.042 D_real: 0.619 D_fake: 0.735 +(epoch: 487, iters: 4318, time: 0.063) G_GAN: 0.688 G_GAN_Feat: 0.883 G_ID: 0.092 G_Rec: 0.325 D_GP: 0.056 D_real: 1.289 D_fake: 0.570 +(epoch: 487, iters: 4718, time: 0.063) G_GAN: 0.674 G_GAN_Feat: 1.163 G_ID: 0.124 G_Rec: 0.468 D_GP: 0.093 D_real: 0.458 D_fake: 0.363 +(epoch: 487, iters: 5118, time: 0.063) G_GAN: -0.061 G_GAN_Feat: 0.788 G_ID: 0.100 G_Rec: 0.279 D_GP: 0.032 D_real: 0.618 D_fake: 1.061 +(epoch: 487, iters: 5518, time: 0.064) G_GAN: 0.270 G_GAN_Feat: 0.904 G_ID: 0.122 G_Rec: 0.422 D_GP: 0.029 D_real: 0.963 D_fake: 0.730 +(epoch: 487, iters: 5918, time: 0.063) G_GAN: 0.190 G_GAN_Feat: 0.729 G_ID: 0.083 G_Rec: 0.285 D_GP: 0.039 D_real: 0.964 D_fake: 0.810 +(epoch: 487, iters: 6318, time: 0.063) G_GAN: 0.443 G_GAN_Feat: 0.989 G_ID: 0.106 G_Rec: 0.381 D_GP: 0.040 D_real: 1.167 D_fake: 0.562 +(epoch: 487, iters: 6718, time: 0.063) G_GAN: 0.198 G_GAN_Feat: 0.735 G_ID: 0.102 G_Rec: 0.304 D_GP: 0.030 D_real: 1.115 D_fake: 0.802 +(epoch: 487, iters: 7118, time: 0.064) G_GAN: 0.418 G_GAN_Feat: 0.972 G_ID: 0.108 G_Rec: 0.432 D_GP: 0.044 D_real: 0.973 D_fake: 0.591 +(epoch: 487, iters: 7518, time: 0.063) G_GAN: 0.321 G_GAN_Feat: 0.786 G_ID: 0.092 G_Rec: 0.345 D_GP: 0.038 D_real: 0.938 D_fake: 0.681 +(epoch: 487, iters: 7918, time: 0.063) G_GAN: 0.629 G_GAN_Feat: 0.940 G_ID: 0.109 G_Rec: 0.421 D_GP: 0.031 D_real: 1.276 D_fake: 0.398 +(epoch: 487, iters: 8318, time: 0.063) G_GAN: 0.423 G_GAN_Feat: 0.709 G_ID: 0.082 G_Rec: 0.295 D_GP: 0.033 D_real: 1.379 D_fake: 0.580 +(epoch: 488, iters: 110, time: 0.064) G_GAN: 0.408 G_GAN_Feat: 0.991 G_ID: 0.094 G_Rec: 0.455 D_GP: 0.036 D_real: 1.045 D_fake: 0.593 +(epoch: 488, iters: 510, time: 0.063) G_GAN: 0.042 G_GAN_Feat: 0.728 G_ID: 0.108 G_Rec: 0.315 D_GP: 0.034 D_real: 0.865 D_fake: 0.959 +(epoch: 488, iters: 910, time: 0.063) G_GAN: 0.275 G_GAN_Feat: 0.932 G_ID: 0.117 G_Rec: 0.424 D_GP: 0.041 D_real: 0.884 D_fake: 0.728 +(epoch: 488, iters: 1310, time: 0.063) G_GAN: 0.150 G_GAN_Feat: 0.690 G_ID: 0.122 G_Rec: 0.293 D_GP: 0.031 D_real: 0.965 D_fake: 0.850 +(epoch: 488, iters: 1710, time: 0.064) G_GAN: 0.336 G_GAN_Feat: 1.097 G_ID: 0.128 G_Rec: 0.476 D_GP: 0.379 D_real: 0.408 D_fake: 0.666 +(epoch: 488, iters: 2110, time: 0.063) G_GAN: 0.067 G_GAN_Feat: 0.755 G_ID: 0.107 G_Rec: 0.315 D_GP: 0.041 D_real: 0.810 D_fake: 0.933 +(epoch: 488, iters: 2510, time: 0.063) G_GAN: 0.666 G_GAN_Feat: 1.091 G_ID: 0.117 G_Rec: 0.466 D_GP: 0.058 D_real: 0.756 D_fake: 0.358 +(epoch: 488, iters: 2910, time: 0.063) G_GAN: 0.176 G_GAN_Feat: 0.744 G_ID: 0.108 G_Rec: 0.271 D_GP: 0.037 D_real: 0.864 D_fake: 0.824 +(epoch: 488, iters: 3310, time: 0.064) G_GAN: 0.938 G_GAN_Feat: 1.050 G_ID: 0.123 G_Rec: 0.509 D_GP: 0.031 D_real: 1.410 D_fake: 0.277 +(epoch: 488, iters: 3710, time: 0.063) G_GAN: 0.187 G_GAN_Feat: 0.741 G_ID: 0.086 G_Rec: 0.277 D_GP: 0.037 D_real: 1.124 D_fake: 0.814 +(epoch: 488, iters: 4110, time: 0.063) G_GAN: 0.662 G_GAN_Feat: 1.027 G_ID: 0.114 G_Rec: 0.433 D_GP: 0.030 D_real: 1.183 D_fake: 0.361 +(epoch: 488, iters: 4510, time: 0.063) G_GAN: 0.435 G_GAN_Feat: 0.827 G_ID: 0.096 G_Rec: 0.310 D_GP: 0.041 D_real: 1.158 D_fake: 0.608 +(epoch: 488, iters: 4910, time: 0.064) G_GAN: 0.598 G_GAN_Feat: 1.177 G_ID: 0.129 G_Rec: 0.469 D_GP: 0.111 D_real: 0.482 D_fake: 0.508 +(epoch: 488, iters: 5310, time: 0.063) G_GAN: 0.160 G_GAN_Feat: 0.905 G_ID: 0.110 G_Rec: 0.364 D_GP: 0.100 D_real: 0.511 D_fake: 0.843 +(epoch: 488, iters: 5710, time: 0.063) G_GAN: 0.596 G_GAN_Feat: 1.242 G_ID: 0.127 G_Rec: 0.465 D_GP: 1.181 D_real: 0.366 D_fake: 0.467 +(epoch: 488, iters: 6110, time: 0.063) G_GAN: 0.145 G_GAN_Feat: 0.829 G_ID: 0.096 G_Rec: 0.320 D_GP: 0.038 D_real: 0.802 D_fake: 0.856 +(epoch: 488, iters: 6510, time: 0.064) G_GAN: 0.781 G_GAN_Feat: 0.982 G_ID: 0.112 G_Rec: 0.422 D_GP: 0.039 D_real: 1.312 D_fake: 0.270 +(epoch: 488, iters: 6910, time: 0.063) G_GAN: 0.060 G_GAN_Feat: 1.035 G_ID: 0.108 G_Rec: 0.389 D_GP: 0.047 D_real: 0.897 D_fake: 0.959 +(epoch: 488, iters: 7310, time: 0.063) G_GAN: 0.301 G_GAN_Feat: 1.058 G_ID: 0.124 G_Rec: 0.455 D_GP: 0.030 D_real: 0.950 D_fake: 0.705 +(epoch: 488, iters: 7710, time: 0.063) G_GAN: -0.017 G_GAN_Feat: 0.760 G_ID: 0.109 G_Rec: 0.312 D_GP: 0.042 D_real: 0.741 D_fake: 1.017 +(epoch: 488, iters: 8110, time: 0.064) G_GAN: 0.609 G_GAN_Feat: 0.978 G_ID: 0.119 G_Rec: 0.410 D_GP: 0.037 D_real: 1.072 D_fake: 0.407 +(epoch: 488, iters: 8510, time: 0.063) G_GAN: 0.562 G_GAN_Feat: 0.834 G_ID: 0.105 G_Rec: 0.321 D_GP: 0.072 D_real: 1.383 D_fake: 0.523 +(epoch: 489, iters: 302, time: 0.063) G_GAN: 0.295 G_GAN_Feat: 1.036 G_ID: 0.116 G_Rec: 0.433 D_GP: 0.052 D_real: 0.309 D_fake: 0.736 +(epoch: 489, iters: 702, time: 0.063) G_GAN: 0.340 G_GAN_Feat: 0.765 G_ID: 0.110 G_Rec: 0.294 D_GP: 0.031 D_real: 1.113 D_fake: 0.661 +(epoch: 489, iters: 1102, time: 0.064) G_GAN: 0.546 G_GAN_Feat: 1.124 G_ID: 0.102 G_Rec: 0.441 D_GP: 0.036 D_real: 0.540 D_fake: 0.464 +(epoch: 489, iters: 1502, time: 0.063) G_GAN: -0.085 G_GAN_Feat: 0.768 G_ID: 0.116 G_Rec: 0.349 D_GP: 0.033 D_real: 0.800 D_fake: 1.086 +(epoch: 489, iters: 1902, time: 0.063) G_GAN: 0.549 G_GAN_Feat: 0.912 G_ID: 0.106 G_Rec: 0.418 D_GP: 0.028 D_real: 1.235 D_fake: 0.470 +(epoch: 489, iters: 2302, time: 0.063) G_GAN: 0.070 G_GAN_Feat: 0.735 G_ID: 0.115 G_Rec: 0.321 D_GP: 0.039 D_real: 0.981 D_fake: 0.931 +(epoch: 489, iters: 2702, time: 0.064) G_GAN: 0.377 G_GAN_Feat: 0.889 G_ID: 0.097 G_Rec: 0.423 D_GP: 0.031 D_real: 1.095 D_fake: 0.624 +(epoch: 489, iters: 3102, time: 0.063) G_GAN: 0.262 G_GAN_Feat: 0.710 G_ID: 0.090 G_Rec: 0.299 D_GP: 0.033 D_real: 1.117 D_fake: 0.739 +(epoch: 489, iters: 3502, time: 0.063) G_GAN: 0.189 G_GAN_Feat: 1.008 G_ID: 0.119 G_Rec: 0.473 D_GP: 0.067 D_real: 0.711 D_fake: 0.813 +(epoch: 489, iters: 3902, time: 0.063) G_GAN: -0.144 G_GAN_Feat: 0.781 G_ID: 0.114 G_Rec: 0.346 D_GP: 0.034 D_real: 0.651 D_fake: 1.144 +(epoch: 489, iters: 4302, time: 0.064) G_GAN: 0.414 G_GAN_Feat: 0.923 G_ID: 0.122 G_Rec: 0.415 D_GP: 0.034 D_real: 1.032 D_fake: 0.593 +(epoch: 489, iters: 4702, time: 0.063) G_GAN: 0.230 G_GAN_Feat: 0.796 G_ID: 0.093 G_Rec: 0.327 D_GP: 0.041 D_real: 0.959 D_fake: 0.771 +(epoch: 489, iters: 5102, time: 0.063) G_GAN: 0.271 G_GAN_Feat: 1.069 G_ID: 0.115 G_Rec: 0.477 D_GP: 0.084 D_real: 0.604 D_fake: 0.730 +(epoch: 489, iters: 5502, time: 0.063) G_GAN: 0.196 G_GAN_Feat: 0.762 G_ID: 0.090 G_Rec: 0.289 D_GP: 0.040 D_real: 0.770 D_fake: 0.804 +(epoch: 489, iters: 5902, time: 0.064) G_GAN: 0.740 G_GAN_Feat: 1.083 G_ID: 0.120 G_Rec: 0.481 D_GP: 0.051 D_real: 0.814 D_fake: 0.331 +(epoch: 489, iters: 6302, time: 0.063) G_GAN: 0.219 G_GAN_Feat: 0.814 G_ID: 0.089 G_Rec: 0.298 D_GP: 0.035 D_real: 0.939 D_fake: 0.781 +(epoch: 489, iters: 6702, time: 0.063) G_GAN: 0.518 G_GAN_Feat: 1.055 G_ID: 0.108 G_Rec: 0.408 D_GP: 0.070 D_real: 0.610 D_fake: 0.492 +(epoch: 489, iters: 7102, time: 0.063) G_GAN: 0.169 G_GAN_Feat: 0.868 G_ID: 0.093 G_Rec: 0.289 D_GP: 0.035 D_real: 0.645 D_fake: 0.831 +(epoch: 489, iters: 7502, time: 0.063) G_GAN: 0.237 G_GAN_Feat: 0.786 G_ID: 0.122 G_Rec: 0.392 D_GP: 0.028 D_real: 1.042 D_fake: 0.763 +(epoch: 489, iters: 7902, time: 0.063) G_GAN: 0.020 G_GAN_Feat: 0.646 G_ID: 0.101 G_Rec: 0.307 D_GP: 0.031 D_real: 0.896 D_fake: 0.981 +(epoch: 489, iters: 8302, time: 0.063) G_GAN: 0.362 G_GAN_Feat: 0.808 G_ID: 0.115 G_Rec: 0.396 D_GP: 0.032 D_real: 1.128 D_fake: 0.640 +(epoch: 489, iters: 8702, time: 0.064) G_GAN: -0.050 G_GAN_Feat: 0.632 G_ID: 0.086 G_Rec: 0.272 D_GP: 0.032 D_real: 0.869 D_fake: 1.050 +(epoch: 490, iters: 494, time: 0.063) G_GAN: 0.242 G_GAN_Feat: 0.869 G_ID: 0.130 G_Rec: 0.412 D_GP: 0.044 D_real: 0.739 D_fake: 0.760 +(epoch: 490, iters: 894, time: 0.063) G_GAN: 0.038 G_GAN_Feat: 0.692 G_ID: 0.092 G_Rec: 0.313 D_GP: 0.038 D_real: 0.988 D_fake: 0.962 +(epoch: 490, iters: 1294, time: 0.063) G_GAN: 0.514 G_GAN_Feat: 0.975 G_ID: 0.114 G_Rec: 0.446 D_GP: 0.040 D_real: 1.014 D_fake: 0.513 +(epoch: 490, iters: 1694, time: 0.064) G_GAN: 0.224 G_GAN_Feat: 0.706 G_ID: 0.082 G_Rec: 0.323 D_GP: 0.049 D_real: 1.063 D_fake: 0.778 +(epoch: 490, iters: 2094, time: 0.063) G_GAN: 0.347 G_GAN_Feat: 0.981 G_ID: 0.129 G_Rec: 0.453 D_GP: 0.053 D_real: 0.739 D_fake: 0.657 +(epoch: 490, iters: 2494, time: 0.063) G_GAN: 0.309 G_GAN_Feat: 0.745 G_ID: 0.109 G_Rec: 0.313 D_GP: 0.058 D_real: 0.988 D_fake: 0.692 +(epoch: 490, iters: 2894, time: 0.063) G_GAN: 0.637 G_GAN_Feat: 0.925 G_ID: 0.117 G_Rec: 0.414 D_GP: 0.037 D_real: 1.333 D_fake: 0.379 +(epoch: 490, iters: 3294, time: 0.064) G_GAN: 0.080 G_GAN_Feat: 0.861 G_ID: 0.109 G_Rec: 0.336 D_GP: 0.126 D_real: 0.293 D_fake: 0.922 +(epoch: 490, iters: 3694, time: 0.063) G_GAN: 0.398 G_GAN_Feat: 0.984 G_ID: 0.113 G_Rec: 0.389 D_GP: 0.037 D_real: 1.004 D_fake: 0.614 +(epoch: 490, iters: 4094, time: 0.063) G_GAN: 0.390 G_GAN_Feat: 0.753 G_ID: 0.086 G_Rec: 0.304 D_GP: 0.039 D_real: 1.216 D_fake: 0.611 +(epoch: 490, iters: 4494, time: 0.063) G_GAN: 0.730 G_GAN_Feat: 1.030 G_ID: 0.120 G_Rec: 0.444 D_GP: 0.043 D_real: 1.261 D_fake: 0.332 +(epoch: 490, iters: 4894, time: 0.064) G_GAN: 0.371 G_GAN_Feat: 0.763 G_ID: 0.099 G_Rec: 0.301 D_GP: 0.043 D_real: 1.116 D_fake: 0.630 +(epoch: 490, iters: 5294, time: 0.063) G_GAN: 0.238 G_GAN_Feat: 0.941 G_ID: 0.120 G_Rec: 0.461 D_GP: 0.025 D_real: 1.019 D_fake: 0.762 +(epoch: 490, iters: 5694, time: 0.063) G_GAN: 0.148 G_GAN_Feat: 0.716 G_ID: 0.114 G_Rec: 0.300 D_GP: 0.035 D_real: 0.957 D_fake: 0.852 +(epoch: 490, iters: 6094, time: 0.063) G_GAN: 0.377 G_GAN_Feat: 0.915 G_ID: 0.104 G_Rec: 0.408 D_GP: 0.037 D_real: 1.091 D_fake: 0.624 +(epoch: 490, iters: 6494, time: 0.064) G_GAN: 0.357 G_GAN_Feat: 0.814 G_ID: 0.096 G_Rec: 0.316 D_GP: 0.092 D_real: 1.053 D_fake: 0.649 +(epoch: 490, iters: 6894, time: 0.063) G_GAN: 0.503 G_GAN_Feat: 1.103 G_ID: 0.123 G_Rec: 0.451 D_GP: 0.084 D_real: 0.506 D_fake: 0.501 +(epoch: 490, iters: 7294, time: 0.063) G_GAN: 0.414 G_GAN_Feat: 0.848 G_ID: 0.098 G_Rec: 0.320 D_GP: 0.076 D_real: 0.754 D_fake: 0.617 +(epoch: 490, iters: 7694, time: 0.063) G_GAN: 0.463 G_GAN_Feat: 1.001 G_ID: 0.142 G_Rec: 0.428 D_GP: 0.062 D_real: 0.831 D_fake: 0.549 +(epoch: 490, iters: 8094, time: 0.064) G_GAN: 0.317 G_GAN_Feat: 0.827 G_ID: 0.107 G_Rec: 0.313 D_GP: 0.052 D_real: 0.745 D_fake: 0.689 +(epoch: 490, iters: 8494, time: 0.063) G_GAN: 0.461 G_GAN_Feat: 0.945 G_ID: 0.118 G_Rec: 0.433 D_GP: 0.028 D_real: 1.237 D_fake: 0.542 +(epoch: 491, iters: 286, time: 0.063) G_GAN: 0.125 G_GAN_Feat: 0.699 G_ID: 0.081 G_Rec: 0.294 D_GP: 0.034 D_real: 0.984 D_fake: 0.875 +(epoch: 491, iters: 686, time: 0.063) G_GAN: 0.302 G_GAN_Feat: 0.950 G_ID: 0.115 G_Rec: 0.416 D_GP: 0.040 D_real: 0.913 D_fake: 0.707 +(epoch: 491, iters: 1086, time: 0.064) G_GAN: 0.231 G_GAN_Feat: 0.839 G_ID: 0.088 G_Rec: 0.357 D_GP: 0.059 D_real: 0.849 D_fake: 0.781 +(epoch: 491, iters: 1486, time: 0.063) G_GAN: 0.794 G_GAN_Feat: 1.043 G_ID: 0.125 G_Rec: 0.426 D_GP: 0.053 D_real: 1.051 D_fake: 0.279 +(epoch: 491, iters: 1886, time: 0.063) G_GAN: 0.106 G_GAN_Feat: 0.948 G_ID: 0.083 G_Rec: 0.347 D_GP: 0.360 D_real: 0.236 D_fake: 0.910 +(epoch: 491, iters: 2286, time: 0.063) G_GAN: 0.696 G_GAN_Feat: 1.123 G_ID: 0.116 G_Rec: 0.448 D_GP: 0.053 D_real: 0.997 D_fake: 0.363 +(epoch: 491, iters: 2686, time: 0.064) G_GAN: 0.299 G_GAN_Feat: 0.962 G_ID: 0.092 G_Rec: 0.351 D_GP: 0.208 D_real: 0.488 D_fake: 0.704 +(epoch: 491, iters: 3086, time: 0.063) G_GAN: 0.466 G_GAN_Feat: 0.963 G_ID: 0.104 G_Rec: 0.453 D_GP: 0.031 D_real: 1.006 D_fake: 0.564 +(epoch: 491, iters: 3486, time: 0.063) G_GAN: 0.252 G_GAN_Feat: 0.738 G_ID: 0.118 G_Rec: 0.295 D_GP: 0.039 D_real: 1.039 D_fake: 0.748 +(epoch: 491, iters: 3886, time: 0.063) G_GAN: 0.375 G_GAN_Feat: 1.025 G_ID: 0.153 G_Rec: 0.421 D_GP: 0.058 D_real: 0.633 D_fake: 0.638 +(epoch: 491, iters: 4286, time: 0.064) G_GAN: 0.322 G_GAN_Feat: 0.903 G_ID: 0.107 G_Rec: 0.336 D_GP: 0.272 D_real: 0.302 D_fake: 0.881 +(epoch: 491, iters: 4686, time: 0.063) G_GAN: 0.488 G_GAN_Feat: 0.977 G_ID: 0.128 G_Rec: 0.462 D_GP: 0.042 D_real: 1.142 D_fake: 0.516 +(epoch: 491, iters: 5086, time: 0.063) G_GAN: 0.217 G_GAN_Feat: 0.686 G_ID: 0.087 G_Rec: 0.312 D_GP: 0.034 D_real: 1.060 D_fake: 0.784 +(epoch: 491, iters: 5486, time: 0.063) G_GAN: 0.280 G_GAN_Feat: 1.025 G_ID: 0.122 G_Rec: 0.472 D_GP: 0.068 D_real: 0.730 D_fake: 0.722 +(epoch: 491, iters: 5886, time: 0.064) G_GAN: 0.010 G_GAN_Feat: 0.797 G_ID: 0.090 G_Rec: 0.339 D_GP: 0.040 D_real: 0.761 D_fake: 0.990 +(epoch: 491, iters: 6286, time: 0.063) G_GAN: 0.430 G_GAN_Feat: 0.891 G_ID: 0.155 G_Rec: 0.410 D_GP: 0.036 D_real: 1.041 D_fake: 0.580 +(epoch: 491, iters: 6686, time: 0.063) G_GAN: 0.008 G_GAN_Feat: 0.814 G_ID: 0.101 G_Rec: 0.345 D_GP: 0.044 D_real: 0.611 D_fake: 0.992 +(epoch: 491, iters: 7086, time: 0.063) G_GAN: 0.459 G_GAN_Feat: 1.068 G_ID: 0.122 G_Rec: 0.468 D_GP: 0.215 D_real: 0.515 D_fake: 0.548 +(epoch: 491, iters: 7486, time: 0.064) G_GAN: 0.161 G_GAN_Feat: 0.840 G_ID: 0.099 G_Rec: 0.372 D_GP: 0.060 D_real: 0.654 D_fake: 0.840 +(epoch: 491, iters: 7886, time: 0.063) G_GAN: 0.373 G_GAN_Feat: 1.348 G_ID: 0.117 G_Rec: 0.484 D_GP: 0.061 D_real: 1.202 D_fake: 0.647 +(epoch: 491, iters: 8286, time: 0.063) G_GAN: 0.002 G_GAN_Feat: 0.649 G_ID: 0.088 G_Rec: 0.305 D_GP: 0.024 D_real: 0.994 D_fake: 0.998 +(epoch: 491, iters: 8686, time: 0.063) G_GAN: 0.321 G_GAN_Feat: 0.925 G_ID: 0.121 G_Rec: 0.458 D_GP: 0.032 D_real: 0.933 D_fake: 0.688 +(epoch: 492, iters: 478, time: 0.064) G_GAN: 0.168 G_GAN_Feat: 0.741 G_ID: 0.081 G_Rec: 0.337 D_GP: 0.042 D_real: 1.025 D_fake: 0.854 +(epoch: 492, iters: 878, time: 0.063) G_GAN: 0.076 G_GAN_Feat: 1.001 G_ID: 0.126 G_Rec: 0.489 D_GP: 0.072 D_real: 0.599 D_fake: 0.925 +(epoch: 492, iters: 1278, time: 0.063) G_GAN: 0.011 G_GAN_Feat: 0.725 G_ID: 0.086 G_Rec: 0.306 D_GP: 0.060 D_real: 0.835 D_fake: 0.989 +(epoch: 492, iters: 1678, time: 0.063) G_GAN: 0.361 G_GAN_Feat: 0.902 G_ID: 0.106 G_Rec: 0.404 D_GP: 0.040 D_real: 0.947 D_fake: 0.647 +(epoch: 492, iters: 2078, time: 0.064) G_GAN: 0.173 G_GAN_Feat: 0.791 G_ID: 0.094 G_Rec: 0.306 D_GP: 0.050 D_real: 0.865 D_fake: 0.827 +(epoch: 492, iters: 2478, time: 0.063) G_GAN: 0.652 G_GAN_Feat: 0.963 G_ID: 0.105 G_Rec: 0.426 D_GP: 0.035 D_real: 1.286 D_fake: 0.380 +(epoch: 492, iters: 2878, time: 0.063) G_GAN: 0.323 G_GAN_Feat: 0.844 G_ID: 0.099 G_Rec: 0.333 D_GP: 0.078 D_real: 0.729 D_fake: 0.677 +(epoch: 492, iters: 3278, time: 0.063) G_GAN: 0.064 G_GAN_Feat: 0.949 G_ID: 0.129 G_Rec: 0.453 D_GP: 0.037 D_real: 0.893 D_fake: 0.937 +(epoch: 492, iters: 3678, time: 0.064) G_GAN: -0.023 G_GAN_Feat: 0.700 G_ID: 0.111 G_Rec: 0.287 D_GP: 0.029 D_real: 0.859 D_fake: 1.023 +(epoch: 492, iters: 4078, time: 0.063) G_GAN: 0.362 G_GAN_Feat: 1.028 G_ID: 0.121 G_Rec: 0.431 D_GP: 0.084 D_real: 0.717 D_fake: 0.646 +(epoch: 492, iters: 4478, time: 0.063) G_GAN: 0.342 G_GAN_Feat: 0.648 G_ID: 0.103 G_Rec: 0.269 D_GP: 0.033 D_real: 1.262 D_fake: 0.659 +(epoch: 492, iters: 4878, time: 0.063) G_GAN: 0.398 G_GAN_Feat: 1.145 G_ID: 0.128 G_Rec: 0.435 D_GP: 0.770 D_real: 0.119 D_fake: 0.711 +(epoch: 492, iters: 5278, time: 0.064) G_GAN: 0.013 G_GAN_Feat: 0.884 G_ID: 0.093 G_Rec: 0.342 D_GP: 0.239 D_real: 0.311 D_fake: 0.988 +(epoch: 492, iters: 5678, time: 0.063) G_GAN: 0.536 G_GAN_Feat: 1.070 G_ID: 0.115 G_Rec: 0.489 D_GP: 0.034 D_real: 1.039 D_fake: 0.471 +(epoch: 492, iters: 6078, time: 0.063) G_GAN: 0.028 G_GAN_Feat: 0.897 G_ID: 0.129 G_Rec: 0.304 D_GP: 0.033 D_real: 0.447 D_fake: 0.972 +(epoch: 492, iters: 6478, time: 0.063) G_GAN: 0.418 G_GAN_Feat: 1.356 G_ID: 0.125 G_Rec: 0.462 D_GP: 0.105 D_real: 0.071 D_fake: 0.602 +(epoch: 492, iters: 6878, time: 0.064) G_GAN: 0.720 G_GAN_Feat: 0.858 G_ID: 0.095 G_Rec: 0.332 D_GP: 0.065 D_real: 1.349 D_fake: 0.654 +(epoch: 492, iters: 7278, time: 0.063) G_GAN: 0.238 G_GAN_Feat: 1.224 G_ID: 0.109 G_Rec: 0.466 D_GP: 0.076 D_real: 0.135 D_fake: 0.766 +(epoch: 492, iters: 7678, time: 0.063) G_GAN: 0.496 G_GAN_Feat: 0.838 G_ID: 0.091 G_Rec: 0.318 D_GP: 0.057 D_real: 1.113 D_fake: 0.510 +(epoch: 492, iters: 8078, time: 0.063) G_GAN: 0.370 G_GAN_Feat: 1.084 G_ID: 0.123 G_Rec: 0.559 D_GP: 0.035 D_real: 0.979 D_fake: 0.632 +(epoch: 492, iters: 8478, time: 0.064) G_GAN: 0.261 G_GAN_Feat: 0.794 G_ID: 0.115 G_Rec: 0.327 D_GP: 0.030 D_real: 1.123 D_fake: 0.740 +(epoch: 493, iters: 270, time: 0.063) G_GAN: 0.690 G_GAN_Feat: 1.012 G_ID: 0.114 G_Rec: 0.438 D_GP: 0.034 D_real: 1.082 D_fake: 0.378 +(epoch: 493, iters: 670, time: 0.063) G_GAN: 0.064 G_GAN_Feat: 0.807 G_ID: 0.084 G_Rec: 0.331 D_GP: 0.078 D_real: 0.733 D_fake: 0.936 +(epoch: 493, iters: 1070, time: 0.063) G_GAN: 0.579 G_GAN_Feat: 1.063 G_ID: 0.138 G_Rec: 0.465 D_GP: 0.050 D_real: 0.843 D_fake: 0.428 +(epoch: 493, iters: 1470, time: 0.064) G_GAN: 0.360 G_GAN_Feat: 0.828 G_ID: 0.104 G_Rec: 0.323 D_GP: 0.081 D_real: 0.831 D_fake: 0.640 +(epoch: 493, iters: 1870, time: 0.063) G_GAN: 0.697 G_GAN_Feat: 1.058 G_ID: 0.114 G_Rec: 0.442 D_GP: 0.065 D_real: 1.052 D_fake: 0.345 +(epoch: 493, iters: 2270, time: 0.063) G_GAN: 0.498 G_GAN_Feat: 0.922 G_ID: 0.124 G_Rec: 0.307 D_GP: 0.059 D_real: 0.951 D_fake: 0.681 +(epoch: 493, iters: 2670, time: 0.063) G_GAN: 0.858 G_GAN_Feat: 0.988 G_ID: 0.110 G_Rec: 0.440 D_GP: 0.031 D_real: 1.446 D_fake: 0.206 +(epoch: 493, iters: 3070, time: 0.064) G_GAN: 0.483 G_GAN_Feat: 0.887 G_ID: 0.105 G_Rec: 0.309 D_GP: 0.050 D_real: 1.212 D_fake: 0.524 +(epoch: 493, iters: 3470, time: 0.063) G_GAN: 0.985 G_GAN_Feat: 1.131 G_ID: 0.115 G_Rec: 0.472 D_GP: 0.039 D_real: 1.577 D_fake: 0.206 +(epoch: 493, iters: 3870, time: 0.063) G_GAN: 0.329 G_GAN_Feat: 0.840 G_ID: 0.099 G_Rec: 0.323 D_GP: 0.030 D_real: 1.109 D_fake: 0.671 +(epoch: 493, iters: 4270, time: 0.063) G_GAN: 0.387 G_GAN_Feat: 1.070 G_ID: 0.126 G_Rec: 0.509 D_GP: 0.032 D_real: 1.034 D_fake: 0.622 +(epoch: 493, iters: 4670, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 0.709 G_ID: 0.100 G_Rec: 0.287 D_GP: 0.035 D_real: 1.169 D_fake: 0.742 +(epoch: 493, iters: 5070, time: 0.063) G_GAN: 0.360 G_GAN_Feat: 0.968 G_ID: 0.109 G_Rec: 0.419 D_GP: 0.079 D_real: 0.768 D_fake: 0.642 +(epoch: 493, iters: 5470, time: 0.063) G_GAN: 0.345 G_GAN_Feat: 0.813 G_ID: 0.096 G_Rec: 0.292 D_GP: 0.127 D_real: 0.784 D_fake: 0.656 +(epoch: 493, iters: 5870, time: 0.063) G_GAN: 0.804 G_GAN_Feat: 0.976 G_ID: 0.120 G_Rec: 0.395 D_GP: 0.041 D_real: 1.347 D_fake: 0.254 +(epoch: 493, iters: 6270, time: 0.064) G_GAN: 0.426 G_GAN_Feat: 0.729 G_ID: 0.094 G_Rec: 0.311 D_GP: 0.032 D_real: 1.359 D_fake: 0.577 +(epoch: 493, iters: 6670, time: 0.063) G_GAN: 0.724 G_GAN_Feat: 1.152 G_ID: 0.149 G_Rec: 0.497 D_GP: 0.037 D_real: 1.048 D_fake: 0.376 +(epoch: 493, iters: 7070, time: 0.063) G_GAN: 0.531 G_GAN_Feat: 0.787 G_ID: 0.109 G_Rec: 0.283 D_GP: 0.038 D_real: 1.233 D_fake: 0.553 +(epoch: 493, iters: 7470, time: 0.063) G_GAN: 0.397 G_GAN_Feat: 0.843 G_ID: 0.123 G_Rec: 0.405 D_GP: 0.031 D_real: 1.164 D_fake: 0.611 +(epoch: 493, iters: 7870, time: 0.064) G_GAN: 0.151 G_GAN_Feat: 0.740 G_ID: 0.095 G_Rec: 0.330 D_GP: 0.033 D_real: 1.025 D_fake: 0.849 +(epoch: 493, iters: 8270, time: 0.063) G_GAN: 0.207 G_GAN_Feat: 0.884 G_ID: 0.121 G_Rec: 0.413 D_GP: 0.032 D_real: 0.985 D_fake: 0.794 +(epoch: 493, iters: 8670, time: 0.063) G_GAN: -0.003 G_GAN_Feat: 0.803 G_ID: 0.099 G_Rec: 0.325 D_GP: 0.081 D_real: 0.617 D_fake: 1.003 +(epoch: 494, iters: 462, time: 0.063) G_GAN: 0.633 G_GAN_Feat: 1.021 G_ID: 0.107 G_Rec: 0.481 D_GP: 0.035 D_real: 1.196 D_fake: 0.404 +(epoch: 494, iters: 862, time: 0.064) G_GAN: 0.189 G_GAN_Feat: 0.656 G_ID: 0.102 G_Rec: 0.284 D_GP: 0.030 D_real: 1.124 D_fake: 0.811 +(epoch: 494, iters: 1262, time: 0.063) G_GAN: 0.209 G_GAN_Feat: 0.950 G_ID: 0.121 G_Rec: 0.437 D_GP: 0.034 D_real: 0.859 D_fake: 0.792 +(epoch: 494, iters: 1662, time: 0.063) G_GAN: 0.082 G_GAN_Feat: 0.779 G_ID: 0.107 G_Rec: 0.318 D_GP: 0.063 D_real: 0.683 D_fake: 0.921 +(epoch: 494, iters: 2062, time: 0.063) G_GAN: 0.532 G_GAN_Feat: 1.008 G_ID: 0.144 G_Rec: 0.460 D_GP: 0.053 D_real: 1.003 D_fake: 0.486 +(epoch: 494, iters: 2462, time: 0.064) G_GAN: 0.270 G_GAN_Feat: 0.771 G_ID: 0.094 G_Rec: 0.305 D_GP: 0.029 D_real: 1.060 D_fake: 0.731 +(epoch: 494, iters: 2862, time: 0.063) G_GAN: 0.478 G_GAN_Feat: 1.028 G_ID: 0.117 G_Rec: 0.445 D_GP: 0.050 D_real: 0.687 D_fake: 0.538 +(epoch: 494, iters: 3262, time: 0.063) G_GAN: -0.159 G_GAN_Feat: 0.765 G_ID: 0.096 G_Rec: 0.293 D_GP: 0.103 D_real: 0.571 D_fake: 1.159 +(epoch: 494, iters: 3662, time: 0.063) G_GAN: 0.641 G_GAN_Feat: 1.048 G_ID: 0.127 G_Rec: 0.481 D_GP: 0.053 D_real: 1.055 D_fake: 0.384 +(epoch: 494, iters: 4062, time: 0.063) G_GAN: 0.313 G_GAN_Feat: 0.643 G_ID: 0.086 G_Rec: 0.326 D_GP: 0.025 D_real: 1.242 D_fake: 0.688 +(epoch: 494, iters: 4462, time: 0.063) G_GAN: 0.579 G_GAN_Feat: 0.904 G_ID: 0.117 G_Rec: 0.448 D_GP: 0.028 D_real: 1.324 D_fake: 0.429 +(epoch: 494, iters: 4862, time: 0.063) G_GAN: 0.245 G_GAN_Feat: 0.660 G_ID: 0.102 G_Rec: 0.276 D_GP: 0.028 D_real: 1.190 D_fake: 0.755 +(epoch: 494, iters: 5262, time: 0.064) G_GAN: 0.404 G_GAN_Feat: 0.951 G_ID: 0.112 G_Rec: 0.419 D_GP: 0.054 D_real: 0.988 D_fake: 0.600 +(epoch: 494, iters: 5662, time: 0.063) G_GAN: 0.296 G_GAN_Feat: 0.733 G_ID: 0.089 G_Rec: 0.290 D_GP: 0.045 D_real: 1.120 D_fake: 0.705 +(epoch: 494, iters: 6062, time: 0.063) G_GAN: 0.505 G_GAN_Feat: 0.954 G_ID: 0.125 G_Rec: 0.435 D_GP: 0.036 D_real: 1.129 D_fake: 0.503 +(epoch: 494, iters: 6462, time: 0.063) G_GAN: 0.437 G_GAN_Feat: 0.744 G_ID: 0.085 G_Rec: 0.309 D_GP: 0.038 D_real: 1.212 D_fake: 0.565 +(epoch: 494, iters: 6862, time: 0.064) G_GAN: 0.461 G_GAN_Feat: 0.941 G_ID: 0.108 G_Rec: 0.429 D_GP: 0.035 D_real: 1.113 D_fake: 0.541 +(epoch: 494, iters: 7262, time: 0.063) G_GAN: 0.290 G_GAN_Feat: 0.720 G_ID: 0.092 G_Rec: 0.310 D_GP: 0.040 D_real: 1.078 D_fake: 0.711 +(epoch: 494, iters: 7662, time: 0.063) G_GAN: 0.308 G_GAN_Feat: 0.973 G_ID: 0.119 G_Rec: 0.400 D_GP: 0.056 D_real: 0.795 D_fake: 0.693 +(epoch: 494, iters: 8062, time: 0.063) G_GAN: 0.304 G_GAN_Feat: 0.771 G_ID: 0.092 G_Rec: 0.304 D_GP: 0.057 D_real: 0.987 D_fake: 0.703 +(epoch: 494, iters: 8462, time: 0.064) G_GAN: 0.364 G_GAN_Feat: 1.012 G_ID: 0.119 G_Rec: 0.475 D_GP: 0.031 D_real: 0.870 D_fake: 0.638 +(epoch: 495, iters: 254, time: 0.063) G_GAN: 0.114 G_GAN_Feat: 0.757 G_ID: 0.097 G_Rec: 0.282 D_GP: 0.028 D_real: 0.919 D_fake: 0.886 +(epoch: 495, iters: 654, time: 0.063) G_GAN: 0.613 G_GAN_Feat: 1.002 G_ID: 0.105 G_Rec: 0.414 D_GP: 0.034 D_real: 1.305 D_fake: 0.410 +(epoch: 495, iters: 1054, time: 0.063) G_GAN: 0.263 G_GAN_Feat: 0.864 G_ID: 0.087 G_Rec: 0.315 D_GP: 0.052 D_real: 0.577 D_fake: 0.739 +(epoch: 495, iters: 1454, time: 0.064) G_GAN: 0.439 G_GAN_Feat: 1.079 G_ID: 0.114 G_Rec: 0.471 D_GP: 0.044 D_real: 0.980 D_fake: 0.569 +(epoch: 495, iters: 1854, time: 0.063) G_GAN: 0.358 G_GAN_Feat: 0.839 G_ID: 0.100 G_Rec: 0.314 D_GP: 0.096 D_real: 0.701 D_fake: 0.646 +(epoch: 495, iters: 2254, time: 0.063) G_GAN: 0.430 G_GAN_Feat: 0.928 G_ID: 0.106 G_Rec: 0.414 D_GP: 0.033 D_real: 1.122 D_fake: 0.580 +(epoch: 495, iters: 2654, time: 0.063) G_GAN: 0.339 G_GAN_Feat: 0.761 G_ID: 0.111 G_Rec: 0.323 D_GP: 0.036 D_real: 1.138 D_fake: 0.662 +(epoch: 495, iters: 3054, time: 0.064) G_GAN: 0.557 G_GAN_Feat: 1.147 G_ID: 0.122 G_Rec: 0.458 D_GP: 0.262 D_real: 0.395 D_fake: 0.465 +(epoch: 495, iters: 3454, time: 0.063) G_GAN: 0.141 G_GAN_Feat: 0.946 G_ID: 0.090 G_Rec: 0.308 D_GP: 0.055 D_real: 0.222 D_fake: 0.862 +(epoch: 495, iters: 3854, time: 0.063) G_GAN: 0.448 G_GAN_Feat: 0.881 G_ID: 0.118 G_Rec: 0.441 D_GP: 0.029 D_real: 1.198 D_fake: 0.559 +(epoch: 495, iters: 4254, time: 0.063) G_GAN: 0.143 G_GAN_Feat: 0.644 G_ID: 0.101 G_Rec: 0.324 D_GP: 0.028 D_real: 1.057 D_fake: 0.857 +(epoch: 495, iters: 4654, time: 0.064) G_GAN: 0.505 G_GAN_Feat: 0.861 G_ID: 0.112 G_Rec: 0.436 D_GP: 0.034 D_real: 1.042 D_fake: 0.512 +(epoch: 495, iters: 5054, time: 0.063) G_GAN: 0.197 G_GAN_Feat: 0.666 G_ID: 0.104 G_Rec: 0.304 D_GP: 0.033 D_real: 1.058 D_fake: 0.803 +(epoch: 495, iters: 5454, time: 0.064) G_GAN: 0.357 G_GAN_Feat: 0.893 G_ID: 0.117 G_Rec: 0.424 D_GP: 0.042 D_real: 1.062 D_fake: 0.644 +(epoch: 495, iters: 5854, time: 0.064) G_GAN: 0.127 G_GAN_Feat: 0.686 G_ID: 0.104 G_Rec: 0.314 D_GP: 0.034 D_real: 0.967 D_fake: 0.873 +(epoch: 495, iters: 6254, time: 0.064) G_GAN: 0.124 G_GAN_Feat: 0.861 G_ID: 0.118 G_Rec: 0.403 D_GP: 0.038 D_real: 0.899 D_fake: 0.876 +(epoch: 495, iters: 6654, time: 0.064) G_GAN: -0.079 G_GAN_Feat: 0.752 G_ID: 0.104 G_Rec: 0.341 D_GP: 0.046 D_real: 0.662 D_fake: 1.079 +(epoch: 495, iters: 7054, time: 0.064) G_GAN: 0.345 G_GAN_Feat: 0.914 G_ID: 0.124 G_Rec: 0.420 D_GP: 0.048 D_real: 0.907 D_fake: 0.670 +(epoch: 495, iters: 7454, time: 0.064) G_GAN: -0.182 G_GAN_Feat: 0.740 G_ID: 0.108 G_Rec: 0.319 D_GP: 0.039 D_real: 0.605 D_fake: 1.182 +(epoch: 495, iters: 7854, time: 0.064) G_GAN: 0.418 G_GAN_Feat: 0.975 G_ID: 0.115 G_Rec: 0.454 D_GP: 0.063 D_real: 0.789 D_fake: 0.615 +(epoch: 495, iters: 8254, time: 0.064) G_GAN: -0.126 G_GAN_Feat: 0.756 G_ID: 0.099 G_Rec: 0.355 D_GP: 0.108 D_real: 0.550 D_fake: 1.126 +(epoch: 495, iters: 8654, time: 0.064) G_GAN: 0.318 G_GAN_Feat: 1.027 G_ID: 0.113 G_Rec: 0.448 D_GP: 0.089 D_real: 0.641 D_fake: 0.691 +(epoch: 496, iters: 446, time: 0.064) G_GAN: 0.122 G_GAN_Feat: 0.726 G_ID: 0.112 G_Rec: 0.306 D_GP: 0.049 D_real: 0.906 D_fake: 0.878 +(epoch: 496, iters: 846, time: 0.064) G_GAN: 0.500 G_GAN_Feat: 0.955 G_ID: 0.113 G_Rec: 0.398 D_GP: 0.050 D_real: 1.036 D_fake: 0.508 +(epoch: 496, iters: 1246, time: 0.064) G_GAN: 0.035 G_GAN_Feat: 0.739 G_ID: 0.095 G_Rec: 0.308 D_GP: 0.053 D_real: 0.950 D_fake: 0.965 +(epoch: 496, iters: 1646, time: 0.064) G_GAN: 0.481 G_GAN_Feat: 0.865 G_ID: 0.107 G_Rec: 0.391 D_GP: 0.036 D_real: 1.251 D_fake: 0.524 +(epoch: 496, iters: 2046, time: 0.064) G_GAN: 0.107 G_GAN_Feat: 0.845 G_ID: 0.100 G_Rec: 0.357 D_GP: 0.077 D_real: 0.487 D_fake: 0.894 +(epoch: 496, iters: 2446, time: 0.064) G_GAN: 0.322 G_GAN_Feat: 1.054 G_ID: 0.140 G_Rec: 0.488 D_GP: 0.110 D_real: 0.452 D_fake: 0.681 +(epoch: 496, iters: 2846, time: 0.064) G_GAN: 0.208 G_GAN_Feat: 0.773 G_ID: 0.099 G_Rec: 0.313 D_GP: 0.074 D_real: 1.015 D_fake: 0.792 +(epoch: 496, iters: 3246, time: 0.063) G_GAN: 0.624 G_GAN_Feat: 0.936 G_ID: 0.116 G_Rec: 0.441 D_GP: 0.070 D_real: 1.160 D_fake: 0.401 +(epoch: 496, iters: 3646, time: 0.063) G_GAN: 0.282 G_GAN_Feat: 0.796 G_ID: 0.092 G_Rec: 0.327 D_GP: 0.050 D_real: 0.868 D_fake: 0.720 +(epoch: 496, iters: 4046, time: 0.064) G_GAN: 0.402 G_GAN_Feat: 0.964 G_ID: 0.132 G_Rec: 0.407 D_GP: 0.050 D_real: 0.837 D_fake: 0.599 +(epoch: 496, iters: 4446, time: 0.064) G_GAN: 0.040 G_GAN_Feat: 0.899 G_ID: 0.093 G_Rec: 0.333 D_GP: 0.117 D_real: 0.413 D_fake: 0.961 +(epoch: 496, iters: 4846, time: 0.064) G_GAN: 0.369 G_GAN_Feat: 0.930 G_ID: 0.109 G_Rec: 0.450 D_GP: 0.026 D_real: 1.146 D_fake: 0.635 +(epoch: 496, iters: 5246, time: 0.064) G_GAN: 0.059 G_GAN_Feat: 0.708 G_ID: 0.095 G_Rec: 0.314 D_GP: 0.031 D_real: 0.904 D_fake: 0.941 +(epoch: 496, iters: 5646, time: 0.064) G_GAN: 0.607 G_GAN_Feat: 0.944 G_ID: 0.109 G_Rec: 0.506 D_GP: 0.046 D_real: 1.106 D_fake: 0.431 +(epoch: 496, iters: 6046, time: 0.063) G_GAN: -0.131 G_GAN_Feat: 0.826 G_ID: 0.105 G_Rec: 0.325 D_GP: 0.115 D_real: 0.415 D_fake: 1.132 +(epoch: 496, iters: 6446, time: 0.063) G_GAN: 0.561 G_GAN_Feat: 0.956 G_ID: 0.103 G_Rec: 0.416 D_GP: 0.041 D_real: 1.115 D_fake: 0.448 +(epoch: 496, iters: 6846, time: 0.063) G_GAN: 0.166 G_GAN_Feat: 0.739 G_ID: 0.106 G_Rec: 0.309 D_GP: 0.036 D_real: 1.014 D_fake: 0.835 +(epoch: 496, iters: 7246, time: 0.064) G_GAN: 0.489 G_GAN_Feat: 0.932 G_ID: 0.117 G_Rec: 0.396 D_GP: 0.039 D_real: 1.177 D_fake: 0.517 +(epoch: 496, iters: 7646, time: 0.063) G_GAN: 0.297 G_GAN_Feat: 0.802 G_ID: 0.097 G_Rec: 0.291 D_GP: 0.039 D_real: 1.088 D_fake: 0.703 +(epoch: 496, iters: 8046, time: 0.063) G_GAN: 0.501 G_GAN_Feat: 1.032 G_ID: 0.129 G_Rec: 0.479 D_GP: 0.078 D_real: 0.903 D_fake: 0.520 +(epoch: 496, iters: 8446, time: 0.063) G_GAN: 0.098 G_GAN_Feat: 0.862 G_ID: 0.109 G_Rec: 0.325 D_GP: 0.057 D_real: 0.582 D_fake: 0.902 +(epoch: 497, iters: 238, time: 0.064) G_GAN: 0.420 G_GAN_Feat: 0.937 G_ID: 0.123 G_Rec: 0.379 D_GP: 0.068 D_real: 1.017 D_fake: 0.583 +(epoch: 497, iters: 638, time: 0.063) G_GAN: 0.251 G_GAN_Feat: 0.721 G_ID: 0.093 G_Rec: 0.314 D_GP: 0.035 D_real: 1.019 D_fake: 0.749 +(epoch: 497, iters: 1038, time: 0.063) G_GAN: 0.638 G_GAN_Feat: 0.963 G_ID: 0.112 G_Rec: 0.428 D_GP: 0.038 D_real: 1.276 D_fake: 0.384 +(epoch: 497, iters: 1438, time: 0.063) G_GAN: 0.373 G_GAN_Feat: 0.717 G_ID: 0.101 G_Rec: 0.289 D_GP: 0.032 D_real: 1.278 D_fake: 0.628 +(epoch: 497, iters: 1838, time: 0.064) G_GAN: 0.575 G_GAN_Feat: 1.022 G_ID: 0.119 G_Rec: 0.459 D_GP: 0.096 D_real: 1.108 D_fake: 0.442 +(epoch: 497, iters: 2238, time: 0.063) G_GAN: 0.196 G_GAN_Feat: 0.802 G_ID: 0.095 G_Rec: 0.295 D_GP: 0.035 D_real: 0.827 D_fake: 0.807 +(epoch: 497, iters: 2638, time: 0.063) G_GAN: 0.370 G_GAN_Feat: 1.019 G_ID: 0.120 G_Rec: 0.403 D_GP: 0.039 D_real: 0.622 D_fake: 0.639 +(epoch: 497, iters: 3038, time: 0.063) G_GAN: 0.088 G_GAN_Feat: 0.783 G_ID: 0.100 G_Rec: 0.289 D_GP: 0.032 D_real: 0.900 D_fake: 0.912 +(epoch: 497, iters: 3438, time: 0.064) G_GAN: 0.858 G_GAN_Feat: 1.025 G_ID: 0.113 G_Rec: 0.430 D_GP: 0.056 D_real: 1.212 D_fake: 0.209 +(epoch: 497, iters: 3838, time: 0.063) G_GAN: -0.051 G_GAN_Feat: 0.969 G_ID: 0.098 G_Rec: 0.371 D_GP: 0.205 D_real: 0.223 D_fake: 1.052 +(epoch: 497, iters: 4238, time: 0.063) G_GAN: 0.387 G_GAN_Feat: 0.927 G_ID: 0.126 G_Rec: 0.408 D_GP: 0.036 D_real: 1.054 D_fake: 0.646 +(epoch: 497, iters: 4638, time: 0.063) G_GAN: 0.384 G_GAN_Feat: 0.772 G_ID: 0.088 G_Rec: 0.287 D_GP: 0.037 D_real: 1.199 D_fake: 0.618 +(epoch: 497, iters: 5038, time: 0.064) G_GAN: 0.278 G_GAN_Feat: 1.063 G_ID: 0.119 G_Rec: 0.461 D_GP: 0.036 D_real: 0.829 D_fake: 0.723 +(epoch: 497, iters: 5438, time: 0.063) G_GAN: 0.103 G_GAN_Feat: 0.841 G_ID: 0.098 G_Rec: 0.305 D_GP: 0.058 D_real: 0.611 D_fake: 0.898 +(epoch: 497, iters: 5838, time: 0.063) G_GAN: 0.773 G_GAN_Feat: 1.073 G_ID: 0.114 G_Rec: 0.428 D_GP: 0.037 D_real: 0.833 D_fake: 0.252 +(epoch: 497, iters: 6238, time: 0.063) G_GAN: 0.376 G_GAN_Feat: 0.630 G_ID: 0.097 G_Rec: 0.290 D_GP: 0.025 D_real: 1.344 D_fake: 0.625 +(epoch: 497, iters: 6638, time: 0.064) G_GAN: 0.424 G_GAN_Feat: 0.845 G_ID: 0.109 G_Rec: 0.383 D_GP: 0.031 D_real: 1.157 D_fake: 0.578 +(epoch: 497, iters: 7038, time: 0.063) G_GAN: 0.139 G_GAN_Feat: 0.785 G_ID: 0.092 G_Rec: 0.348 D_GP: 0.050 D_real: 0.946 D_fake: 0.864 +(epoch: 497, iters: 7438, time: 0.063) G_GAN: 0.635 G_GAN_Feat: 1.005 G_ID: 0.108 G_Rec: 0.429 D_GP: 0.043 D_real: 1.141 D_fake: 0.383 +(epoch: 497, iters: 7838, time: 0.063) G_GAN: 0.278 G_GAN_Feat: 0.764 G_ID: 0.082 G_Rec: 0.316 D_GP: 0.045 D_real: 0.981 D_fake: 0.723 +(epoch: 497, iters: 8238, time: 0.064) G_GAN: 0.656 G_GAN_Feat: 1.051 G_ID: 0.108 G_Rec: 0.462 D_GP: 0.048 D_real: 1.188 D_fake: 0.386 +(epoch: 497, iters: 8638, time: 0.063) G_GAN: 0.452 G_GAN_Feat: 0.668 G_ID: 0.092 G_Rec: 0.281 D_GP: 0.027 D_real: 1.371 D_fake: 0.548 +(epoch: 498, iters: 430, time: 0.063) G_GAN: 0.531 G_GAN_Feat: 1.017 G_ID: 0.110 G_Rec: 0.456 D_GP: 0.062 D_real: 1.048 D_fake: 0.478 +(epoch: 498, iters: 830, time: 0.063) G_GAN: 0.148 G_GAN_Feat: 0.787 G_ID: 0.091 G_Rec: 0.325 D_GP: 0.096 D_real: 0.922 D_fake: 0.853 +(epoch: 498, iters: 1230, time: 0.064) G_GAN: 0.929 G_GAN_Feat: 0.970 G_ID: 0.110 G_Rec: 0.405 D_GP: 0.038 D_real: 1.544 D_fake: 0.147 +(epoch: 498, iters: 1630, time: 0.063) G_GAN: 0.108 G_GAN_Feat: 0.795 G_ID: 0.104 G_Rec: 0.323 D_GP: 0.032 D_real: 0.693 D_fake: 0.892 +(epoch: 498, iters: 2030, time: 0.063) G_GAN: 0.594 G_GAN_Feat: 0.988 G_ID: 0.124 G_Rec: 0.416 D_GP: 0.040 D_real: 1.075 D_fake: 0.431 +(epoch: 498, iters: 2430, time: 0.063) G_GAN: 0.154 G_GAN_Feat: 0.781 G_ID: 0.093 G_Rec: 0.296 D_GP: 0.034 D_real: 0.928 D_fake: 0.846 +(epoch: 498, iters: 2830, time: 0.064) G_GAN: 0.353 G_GAN_Feat: 1.035 G_ID: 0.107 G_Rec: 0.412 D_GP: 0.035 D_real: 0.649 D_fake: 0.665 +(epoch: 498, iters: 3230, time: 0.063) G_GAN: 0.020 G_GAN_Feat: 0.748 G_ID: 0.097 G_Rec: 0.286 D_GP: 0.032 D_real: 0.796 D_fake: 0.980 +(epoch: 498, iters: 3630, time: 0.063) G_GAN: 0.804 G_GAN_Feat: 0.951 G_ID: 0.134 G_Rec: 0.441 D_GP: 0.042 D_real: 1.472 D_fake: 0.289 +(epoch: 498, iters: 4030, time: 0.063) G_GAN: 0.121 G_GAN_Feat: 0.777 G_ID: 0.090 G_Rec: 0.340 D_GP: 0.029 D_real: 1.153 D_fake: 0.880 +(epoch: 498, iters: 4430, time: 0.064) G_GAN: 0.305 G_GAN_Feat: 0.821 G_ID: 0.112 G_Rec: 0.392 D_GP: 0.027 D_real: 1.129 D_fake: 0.701 +(epoch: 498, iters: 4830, time: 0.063) G_GAN: 0.007 G_GAN_Feat: 0.619 G_ID: 0.085 G_Rec: 0.288 D_GP: 0.025 D_real: 0.934 D_fake: 0.994 +(epoch: 498, iters: 5230, time: 0.063) G_GAN: 0.253 G_GAN_Feat: 0.852 G_ID: 0.106 G_Rec: 0.404 D_GP: 0.037 D_real: 0.918 D_fake: 0.752 +(epoch: 498, iters: 5630, time: 0.063) G_GAN: -0.196 G_GAN_Feat: 0.791 G_ID: 0.096 G_Rec: 0.358 D_GP: 0.033 D_real: 0.628 D_fake: 1.196 +(epoch: 498, iters: 6030, time: 0.064) G_GAN: 0.025 G_GAN_Feat: 0.829 G_ID: 0.127 G_Rec: 0.387 D_GP: 0.041 D_real: 0.575 D_fake: 0.976 +(epoch: 498, iters: 6430, time: 0.063) G_GAN: -0.163 G_GAN_Feat: 0.611 G_ID: 0.090 G_Rec: 0.290 D_GP: 0.029 D_real: 0.699 D_fake: 1.163 +(epoch: 498, iters: 6830, time: 0.063) G_GAN: 0.274 G_GAN_Feat: 0.871 G_ID: 0.113 G_Rec: 0.425 D_GP: 0.035 D_real: 0.926 D_fake: 0.748 +(epoch: 498, iters: 7230, time: 0.063) G_GAN: -0.364 G_GAN_Feat: 0.713 G_ID: 0.109 G_Rec: 0.316 D_GP: 0.040 D_real: 0.488 D_fake: 1.364 +(epoch: 498, iters: 7630, time: 0.064) G_GAN: 0.386 G_GAN_Feat: 0.945 G_ID: 0.113 G_Rec: 0.440 D_GP: 0.039 D_real: 0.986 D_fake: 0.632 +(epoch: 498, iters: 8030, time: 0.063) G_GAN: -0.089 G_GAN_Feat: 0.759 G_ID: 0.101 G_Rec: 0.311 D_GP: 0.097 D_real: 0.585 D_fake: 1.089 +(epoch: 498, iters: 8430, time: 0.063) G_GAN: 0.519 G_GAN_Feat: 1.044 G_ID: 0.116 G_Rec: 0.465 D_GP: 0.040 D_real: 1.035 D_fake: 0.497 +(epoch: 499, iters: 222, time: 0.063) G_GAN: 0.299 G_GAN_Feat: 0.680 G_ID: 0.090 G_Rec: 0.295 D_GP: 0.042 D_real: 1.174 D_fake: 0.701 +(epoch: 499, iters: 622, time: 0.063) G_GAN: 0.548 G_GAN_Feat: 0.915 G_ID: 0.117 G_Rec: 0.393 D_GP: 0.032 D_real: 1.210 D_fake: 0.454 +(epoch: 499, iters: 1022, time: 0.063) G_GAN: 0.248 G_GAN_Feat: 0.741 G_ID: 0.111 G_Rec: 0.291 D_GP: 0.030 D_real: 1.092 D_fake: 0.752 +(epoch: 499, iters: 1422, time: 0.063) G_GAN: 0.504 G_GAN_Feat: 1.030 G_ID: 0.114 G_Rec: 0.441 D_GP: 0.036 D_real: 0.938 D_fake: 0.500 +(epoch: 499, iters: 1822, time: 0.064) G_GAN: -0.153 G_GAN_Feat: 0.760 G_ID: 0.097 G_Rec: 0.311 D_GP: 0.033 D_real: 0.845 D_fake: 1.153 +(epoch: 499, iters: 2222, time: 0.063) G_GAN: 0.336 G_GAN_Feat: 1.036 G_ID: 0.107 G_Rec: 0.467 D_GP: 0.057 D_real: 0.848 D_fake: 0.670 +(epoch: 499, iters: 2622, time: 0.063) G_GAN: 0.070 G_GAN_Feat: 0.780 G_ID: 0.111 G_Rec: 0.341 D_GP: 0.047 D_real: 0.834 D_fake: 0.933 +(epoch: 499, iters: 3022, time: 0.063) G_GAN: 0.282 G_GAN_Feat: 0.934 G_ID: 0.126 G_Rec: 0.427 D_GP: 0.037 D_real: 0.857 D_fake: 0.722 +(epoch: 499, iters: 3422, time: 0.064) G_GAN: 0.117 G_GAN_Feat: 0.787 G_ID: 0.098 G_Rec: 0.313 D_GP: 0.067 D_real: 0.788 D_fake: 0.884 +(epoch: 499, iters: 3822, time: 0.063) G_GAN: 0.532 G_GAN_Feat: 1.041 G_ID: 0.123 G_Rec: 0.456 D_GP: 0.060 D_real: 0.887 D_fake: 0.497 +(epoch: 499, iters: 4222, time: 0.063) G_GAN: -0.197 G_GAN_Feat: 0.811 G_ID: 0.115 G_Rec: 0.306 D_GP: 0.077 D_real: 0.553 D_fake: 1.198 +(epoch: 499, iters: 4622, time: 0.063) G_GAN: 0.461 G_GAN_Feat: 1.094 G_ID: 0.108 G_Rec: 0.457 D_GP: 0.063 D_real: 0.883 D_fake: 0.547 +(epoch: 499, iters: 5022, time: 0.064) G_GAN: 0.297 G_GAN_Feat: 0.827 G_ID: 0.087 G_Rec: 0.304 D_GP: 0.060 D_real: 0.839 D_fake: 0.753 +(epoch: 499, iters: 5422, time: 0.063) G_GAN: 0.360 G_GAN_Feat: 0.838 G_ID: 0.108 G_Rec: 0.385 D_GP: 0.033 D_real: 1.073 D_fake: 0.641 +(epoch: 499, iters: 5822, time: 0.063) G_GAN: 0.037 G_GAN_Feat: 0.665 G_ID: 0.097 G_Rec: 0.294 D_GP: 0.032 D_real: 0.985 D_fake: 0.963 +(epoch: 499, iters: 6222, time: 0.063) G_GAN: 0.364 G_GAN_Feat: 0.912 G_ID: 0.113 G_Rec: 0.421 D_GP: 0.049 D_real: 1.049 D_fake: 0.645 +(epoch: 499, iters: 6622, time: 0.064) G_GAN: 0.208 G_GAN_Feat: 0.676 G_ID: 0.080 G_Rec: 0.297 D_GP: 0.032 D_real: 1.083 D_fake: 0.795 +(epoch: 499, iters: 7022, time: 0.063) G_GAN: 0.386 G_GAN_Feat: 0.902 G_ID: 0.103 G_Rec: 0.435 D_GP: 0.029 D_real: 1.020 D_fake: 0.628 +(epoch: 499, iters: 7422, time: 0.063) G_GAN: 0.111 G_GAN_Feat: 0.708 G_ID: 0.103 G_Rec: 0.309 D_GP: 0.033 D_real: 0.997 D_fake: 0.889 +(epoch: 499, iters: 7822, time: 0.063) G_GAN: 0.301 G_GAN_Feat: 0.860 G_ID: 0.115 G_Rec: 0.415 D_GP: 0.031 D_real: 1.046 D_fake: 0.703 +(epoch: 499, iters: 8222, time: 0.064) G_GAN: 0.222 G_GAN_Feat: 0.732 G_ID: 0.085 G_Rec: 0.313 D_GP: 0.035 D_real: 1.033 D_fake: 0.780 +(epoch: 499, iters: 8622, time: 0.063) G_GAN: 0.985 G_GAN_Feat: 1.019 G_ID: 0.104 G_Rec: 0.466 D_GP: 0.045 D_real: 1.403 D_fake: 0.288 +(epoch: 500, iters: 414, time: 0.063) G_GAN: 0.171 G_GAN_Feat: 0.739 G_ID: 0.095 G_Rec: 0.315 D_GP: 0.038 D_real: 1.006 D_fake: 0.829 +(epoch: 500, iters: 814, time: 0.063) G_GAN: 0.383 G_GAN_Feat: 1.007 G_ID: 0.121 G_Rec: 0.411 D_GP: 0.043 D_real: 0.834 D_fake: 0.620 +(epoch: 500, iters: 1214, time: 0.064) G_GAN: 0.332 G_GAN_Feat: 0.775 G_ID: 0.091 G_Rec: 0.286 D_GP: 0.039 D_real: 1.113 D_fake: 0.683 +(epoch: 500, iters: 1614, time: 0.063) G_GAN: 0.360 G_GAN_Feat: 0.888 G_ID: 0.114 G_Rec: 0.383 D_GP: 0.031 D_real: 1.095 D_fake: 0.641 +(epoch: 500, iters: 2014, time: 0.063) G_GAN: 0.261 G_GAN_Feat: 0.677 G_ID: 0.100 G_Rec: 0.289 D_GP: 0.030 D_real: 1.114 D_fake: 0.740 +(epoch: 500, iters: 2414, time: 0.063) G_GAN: 0.539 G_GAN_Feat: 0.982 G_ID: 0.122 G_Rec: 0.390 D_GP: 0.039 D_real: 0.984 D_fake: 0.468 +(epoch: 500, iters: 2814, time: 0.064) G_GAN: 0.168 G_GAN_Feat: 0.898 G_ID: 0.123 G_Rec: 0.306 D_GP: 0.064 D_real: 0.607 D_fake: 0.832 +(epoch: 500, iters: 3214, time: 0.063) G_GAN: 0.628 G_GAN_Feat: 1.152 G_ID: 0.115 G_Rec: 0.439 D_GP: 1.355 D_real: 0.337 D_fake: 0.444 +(epoch: 500, iters: 3614, time: 0.063) G_GAN: 0.118 G_GAN_Feat: 0.673 G_ID: 0.082 G_Rec: 0.286 D_GP: 0.026 D_real: 1.173 D_fake: 0.882 +(epoch: 500, iters: 4014, time: 0.063) G_GAN: 0.391 G_GAN_Feat: 0.989 G_ID: 0.113 G_Rec: 0.427 D_GP: 0.035 D_real: 0.859 D_fake: 0.609 +(epoch: 500, iters: 4414, time: 0.064) G_GAN: 0.345 G_GAN_Feat: 0.765 G_ID: 0.081 G_Rec: 0.291 D_GP: 0.038 D_real: 1.280 D_fake: 0.669 +(epoch: 500, iters: 4814, time: 0.063) G_GAN: 0.602 G_GAN_Feat: 0.998 G_ID: 0.116 G_Rec: 0.490 D_GP: 0.039 D_real: 1.107 D_fake: 0.426 +(epoch: 500, iters: 5214, time: 0.063) G_GAN: 0.256 G_GAN_Feat: 0.785 G_ID: 0.092 G_Rec: 0.288 D_GP: 0.032 D_real: 1.012 D_fake: 0.745 +(epoch: 500, iters: 5614, time: 0.063) G_GAN: 0.795 G_GAN_Feat: 1.131 G_ID: 0.114 G_Rec: 0.525 D_GP: 0.038 D_real: 1.323 D_fake: 0.262 +(epoch: 500, iters: 6014, time: 0.064) G_GAN: 0.114 G_GAN_Feat: 0.826 G_ID: 0.098 G_Rec: 0.294 D_GP: 0.045 D_real: 0.476 D_fake: 0.886 +(epoch: 500, iters: 6414, time: 0.063) G_GAN: 0.318 G_GAN_Feat: 1.043 G_ID: 0.098 G_Rec: 0.414 D_GP: 0.044 D_real: 0.891 D_fake: 0.683 +(epoch: 500, iters: 6814, time: 0.063) G_GAN: 0.361 G_GAN_Feat: 0.713 G_ID: 0.090 G_Rec: 0.266 D_GP: 0.029 D_real: 1.273 D_fake: 0.708 +(epoch: 500, iters: 7214, time: 0.063) G_GAN: 0.339 G_GAN_Feat: 0.934 G_ID: 0.119 G_Rec: 0.413 D_GP: 0.033 D_real: 0.988 D_fake: 0.675 +(epoch: 500, iters: 7614, time: 0.064) G_GAN: 0.074 G_GAN_Feat: 0.669 G_ID: 0.093 G_Rec: 0.281 D_GP: 0.029 D_real: 0.989 D_fake: 0.926 +(epoch: 500, iters: 8014, time: 0.063) G_GAN: 0.255 G_GAN_Feat: 1.055 G_ID: 0.108 G_Rec: 0.509 D_GP: 0.033 D_real: 0.635 D_fake: 0.759 +(epoch: 500, iters: 8414, time: 0.063) G_GAN: 0.030 G_GAN_Feat: 0.729 G_ID: 0.099 G_Rec: 0.300 D_GP: 0.045 D_real: 0.925 D_fake: 0.970 +(epoch: 501, iters: 206, time: 0.063) G_GAN: 0.113 G_GAN_Feat: 0.980 G_ID: 0.114 G_Rec: 0.404 D_GP: 0.092 D_real: 0.449 D_fake: 0.888 +(epoch: 501, iters: 606, time: 0.064) G_GAN: 0.374 G_GAN_Feat: 0.883 G_ID: 0.097 G_Rec: 0.323 D_GP: 0.220 D_real: 0.596 D_fake: 0.634 +(epoch: 501, iters: 1006, time: 0.063) G_GAN: 0.712 G_GAN_Feat: 1.246 G_ID: 0.111 G_Rec: 0.519 D_GP: 0.156 D_real: 0.793 D_fake: 0.348 +(epoch: 501, iters: 1406, time: 0.063) G_GAN: 0.450 G_GAN_Feat: 0.717 G_ID: 0.092 G_Rec: 0.317 D_GP: 0.033 D_real: 1.344 D_fake: 0.553 +(epoch: 501, iters: 1806, time: 0.063) G_GAN: 0.337 G_GAN_Feat: 1.019 G_ID: 0.126 G_Rec: 0.448 D_GP: 0.090 D_real: 0.788 D_fake: 0.664 +(epoch: 501, iters: 2206, time: 0.064) G_GAN: 0.432 G_GAN_Feat: 0.708 G_ID: 0.109 G_Rec: 0.281 D_GP: 0.028 D_real: 1.368 D_fake: 0.568 +(epoch: 501, iters: 2606, time: 0.063) G_GAN: 0.466 G_GAN_Feat: 0.974 G_ID: 0.101 G_Rec: 0.430 D_GP: 0.032 D_real: 1.161 D_fake: 0.545 +(epoch: 501, iters: 3006, time: 0.063) G_GAN: 0.157 G_GAN_Feat: 0.870 G_ID: 0.092 G_Rec: 0.286 D_GP: 0.384 D_real: 0.369 D_fake: 0.844 +(epoch: 501, iters: 3406, time: 0.063) G_GAN: 0.775 G_GAN_Feat: 1.242 G_ID: 0.117 G_Rec: 0.517 D_GP: 0.137 D_real: 0.297 D_fake: 0.293 +(epoch: 501, iters: 3806, time: 0.064) G_GAN: 0.541 G_GAN_Feat: 0.984 G_ID: 0.096 G_Rec: 0.355 D_GP: 0.417 D_real: 0.294 D_fake: 0.619 +(epoch: 501, iters: 4206, time: 0.063) G_GAN: 0.789 G_GAN_Feat: 1.115 G_ID: 0.106 G_Rec: 0.471 D_GP: 0.054 D_real: 0.917 D_fake: 0.291 +(epoch: 501, iters: 4606, time: 0.063) G_GAN: 0.022 G_GAN_Feat: 0.695 G_ID: 0.085 G_Rec: 0.306 D_GP: 0.028 D_real: 1.006 D_fake: 0.978 +(epoch: 501, iters: 5006, time: 0.063) G_GAN: 0.368 G_GAN_Feat: 0.945 G_ID: 0.118 G_Rec: 0.431 D_GP: 0.029 D_real: 1.019 D_fake: 0.643 +(epoch: 501, iters: 5406, time: 0.064) G_GAN: 0.087 G_GAN_Feat: 0.666 G_ID: 0.086 G_Rec: 0.283 D_GP: 0.029 D_real: 0.998 D_fake: 0.913 +(epoch: 501, iters: 5806, time: 0.063) G_GAN: 0.217 G_GAN_Feat: 0.904 G_ID: 0.114 G_Rec: 0.410 D_GP: 0.035 D_real: 0.974 D_fake: 0.787 +(epoch: 501, iters: 6206, time: 0.063) G_GAN: -0.161 G_GAN_Feat: 0.765 G_ID: 0.095 G_Rec: 0.301 D_GP: 0.054 D_real: 0.613 D_fake: 1.161 +(epoch: 501, iters: 6606, time: 0.063) G_GAN: 0.103 G_GAN_Feat: 0.941 G_ID: 0.116 G_Rec: 0.459 D_GP: 0.049 D_real: 0.656 D_fake: 0.897 +(epoch: 501, iters: 7006, time: 0.064) G_GAN: 0.080 G_GAN_Feat: 0.715 G_ID: 0.087 G_Rec: 0.298 D_GP: 0.037 D_real: 0.919 D_fake: 0.920 +(epoch: 501, iters: 7406, time: 0.063) G_GAN: 0.542 G_GAN_Feat: 1.144 G_ID: 0.112 G_Rec: 0.481 D_GP: 0.170 D_real: 0.589 D_fake: 0.483 +(epoch: 501, iters: 7806, time: 0.063) G_GAN: 0.464 G_GAN_Feat: 0.791 G_ID: 0.091 G_Rec: 0.350 D_GP: 0.041 D_real: 1.248 D_fake: 0.537 +(epoch: 501, iters: 8206, time: 0.063) G_GAN: 0.478 G_GAN_Feat: 1.042 G_ID: 0.123 G_Rec: 0.441 D_GP: 0.158 D_real: 0.644 D_fake: 0.529 +(epoch: 501, iters: 8606, time: 0.064) G_GAN: 0.304 G_GAN_Feat: 0.824 G_ID: 0.094 G_Rec: 0.305 D_GP: 0.132 D_real: 0.726 D_fake: 0.701 +(epoch: 502, iters: 398, time: 0.063) G_GAN: 0.542 G_GAN_Feat: 0.906 G_ID: 0.110 G_Rec: 0.379 D_GP: 0.036 D_real: 1.171 D_fake: 0.468 +(epoch: 502, iters: 798, time: 0.063) G_GAN: 0.527 G_GAN_Feat: 0.782 G_ID: 0.084 G_Rec: 0.312 D_GP: 0.046 D_real: 1.259 D_fake: 0.480 +(epoch: 502, iters: 1198, time: 0.063) G_GAN: 0.584 G_GAN_Feat: 1.168 G_ID: 0.130 G_Rec: 0.484 D_GP: 0.095 D_real: 0.449 D_fake: 0.440 +(epoch: 502, iters: 1598, time: 0.064) G_GAN: 0.266 G_GAN_Feat: 0.828 G_ID: 0.095 G_Rec: 0.302 D_GP: 0.136 D_real: 0.642 D_fake: 0.737 +(epoch: 502, iters: 1998, time: 0.063) G_GAN: 0.749 G_GAN_Feat: 1.213 G_ID: 0.103 G_Rec: 0.490 D_GP: 0.068 D_real: 0.525 D_fake: 0.380 +(epoch: 502, iters: 2398, time: 0.063) G_GAN: 0.004 G_GAN_Feat: 1.121 G_ID: 0.113 G_Rec: 0.406 D_GP: 2.753 D_real: 0.450 D_fake: 0.999 +(epoch: 502, iters: 2798, time: 0.063) G_GAN: 0.236 G_GAN_Feat: 0.953 G_ID: 0.105 G_Rec: 0.497 D_GP: 0.030 D_real: 1.049 D_fake: 0.765 +(epoch: 502, iters: 3198, time: 0.064) G_GAN: 0.231 G_GAN_Feat: 0.668 G_ID: 0.086 G_Rec: 0.307 D_GP: 0.027 D_real: 1.150 D_fake: 0.769 +(epoch: 502, iters: 3598, time: 0.063) G_GAN: 0.209 G_GAN_Feat: 0.731 G_ID: 0.110 G_Rec: 0.349 D_GP: 0.028 D_real: 1.011 D_fake: 0.792 +(epoch: 502, iters: 3998, time: 0.063) G_GAN: 0.236 G_GAN_Feat: 0.677 G_ID: 0.096 G_Rec: 0.302 D_GP: 0.053 D_real: 1.105 D_fake: 0.765 +(epoch: 502, iters: 4398, time: 0.063) G_GAN: 0.370 G_GAN_Feat: 0.890 G_ID: 0.115 G_Rec: 0.420 D_GP: 0.035 D_real: 1.054 D_fake: 0.631 +(epoch: 502, iters: 4798, time: 0.064) G_GAN: 0.256 G_GAN_Feat: 0.724 G_ID: 0.093 G_Rec: 0.331 D_GP: 0.040 D_real: 1.130 D_fake: 0.745 +(epoch: 502, iters: 5198, time: 0.063) G_GAN: 0.225 G_GAN_Feat: 0.963 G_ID: 0.120 G_Rec: 0.461 D_GP: 0.045 D_real: 0.759 D_fake: 0.776 +(epoch: 502, iters: 5598, time: 0.063) G_GAN: 0.055 G_GAN_Feat: 0.794 G_ID: 0.094 G_Rec: 0.391 D_GP: 0.122 D_real: 0.620 D_fake: 0.946 +(epoch: 502, iters: 5998, time: 0.063) G_GAN: 0.283 G_GAN_Feat: 0.928 G_ID: 0.128 G_Rec: 0.422 D_GP: 0.044 D_real: 0.833 D_fake: 0.717 +(epoch: 502, iters: 6398, time: 0.064) G_GAN: 0.674 G_GAN_Feat: 0.693 G_ID: 0.097 G_Rec: 0.404 D_GP: 0.027 D_real: 1.561 D_fake: 0.359 +(epoch: 502, iters: 6798, time: 0.063) G_GAN: 0.447 G_GAN_Feat: 0.836 G_ID: 0.113 G_Rec: 0.393 D_GP: 0.030 D_real: 1.152 D_fake: 0.556 +(epoch: 502, iters: 7198, time: 0.063) G_GAN: 0.124 G_GAN_Feat: 0.747 G_ID: 0.089 G_Rec: 0.330 D_GP: 0.039 D_real: 0.922 D_fake: 0.876 +(epoch: 502, iters: 7598, time: 0.063) G_GAN: 0.384 G_GAN_Feat: 0.932 G_ID: 0.115 G_Rec: 0.459 D_GP: 0.037 D_real: 1.066 D_fake: 0.638 +(epoch: 502, iters: 7998, time: 0.064) G_GAN: 0.011 G_GAN_Feat: 0.738 G_ID: 0.084 G_Rec: 0.314 D_GP: 0.062 D_real: 0.871 D_fake: 0.989 +(epoch: 502, iters: 8398, time: 0.063) G_GAN: 0.293 G_GAN_Feat: 0.989 G_ID: 0.114 G_Rec: 0.441 D_GP: 0.041 D_real: 0.886 D_fake: 0.707 +(epoch: 503, iters: 190, time: 0.063) G_GAN: 0.209 G_GAN_Feat: 0.743 G_ID: 0.102 G_Rec: 0.309 D_GP: 0.078 D_real: 0.910 D_fake: 0.792 +(epoch: 503, iters: 590, time: 0.063) G_GAN: 0.504 G_GAN_Feat: 0.956 G_ID: 0.115 G_Rec: 0.394 D_GP: 0.069 D_real: 0.995 D_fake: 0.516 +(epoch: 503, iters: 990, time: 0.064) G_GAN: 0.121 G_GAN_Feat: 0.865 G_ID: 0.109 G_Rec: 0.341 D_GP: 0.043 D_real: 0.775 D_fake: 0.880 +(epoch: 503, iters: 1390, time: 0.063) G_GAN: 0.396 G_GAN_Feat: 0.929 G_ID: 0.102 G_Rec: 0.459 D_GP: 0.028 D_real: 1.196 D_fake: 0.605 +(epoch: 503, iters: 1790, time: 0.063) G_GAN: 0.161 G_GAN_Feat: 0.796 G_ID: 0.100 G_Rec: 0.321 D_GP: 0.043 D_real: 0.967 D_fake: 0.839 +(epoch: 503, iters: 2190, time: 0.063) G_GAN: 0.511 G_GAN_Feat: 0.980 G_ID: 0.111 G_Rec: 0.457 D_GP: 0.041 D_real: 1.062 D_fake: 0.510 +(epoch: 503, iters: 2590, time: 0.064) G_GAN: 0.191 G_GAN_Feat: 0.726 G_ID: 0.095 G_Rec: 0.306 D_GP: 0.035 D_real: 0.982 D_fake: 0.809 +(epoch: 503, iters: 2990, time: 0.063) G_GAN: 0.081 G_GAN_Feat: 0.936 G_ID: 0.114 G_Rec: 0.428 D_GP: 0.047 D_real: 0.648 D_fake: 0.919 +(epoch: 503, iters: 3390, time: 0.063) G_GAN: 0.044 G_GAN_Feat: 0.737 G_ID: 0.100 G_Rec: 0.290 D_GP: 0.046 D_real: 0.909 D_fake: 0.956 +(epoch: 503, iters: 3790, time: 0.063) G_GAN: 0.628 G_GAN_Feat: 0.912 G_ID: 0.106 G_Rec: 0.376 D_GP: 0.034 D_real: 1.443 D_fake: 0.382 +(epoch: 503, iters: 4190, time: 0.064) G_GAN: 0.077 G_GAN_Feat: 0.830 G_ID: 0.125 G_Rec: 0.399 D_GP: 0.042 D_real: 1.127 D_fake: 0.936 +(epoch: 503, iters: 4590, time: 0.063) G_GAN: 0.337 G_GAN_Feat: 0.909 G_ID: 0.118 G_Rec: 0.466 D_GP: 0.024 D_real: 1.117 D_fake: 0.667 +(epoch: 503, iters: 4990, time: 0.063) G_GAN: -0.047 G_GAN_Feat: 0.708 G_ID: 0.105 G_Rec: 0.345 D_GP: 0.027 D_real: 0.900 D_fake: 1.047 +(epoch: 503, iters: 5390, time: 0.063) G_GAN: 0.444 G_GAN_Feat: 0.813 G_ID: 0.111 G_Rec: 0.393 D_GP: 0.030 D_real: 1.195 D_fake: 0.560 +(epoch: 503, iters: 5790, time: 0.063) G_GAN: 0.141 G_GAN_Feat: 0.662 G_ID: 0.090 G_Rec: 0.353 D_GP: 0.028 D_real: 1.028 D_fake: 0.860 +(epoch: 503, iters: 6190, time: 0.063) G_GAN: 0.284 G_GAN_Feat: 0.890 G_ID: 0.127 G_Rec: 0.458 D_GP: 0.040 D_real: 0.920 D_fake: 0.718 +(epoch: 503, iters: 6590, time: 0.063) G_GAN: 0.055 G_GAN_Feat: 0.642 G_ID: 0.094 G_Rec: 0.310 D_GP: 0.045 D_real: 0.896 D_fake: 0.945 +(epoch: 503, iters: 6990, time: 0.064) G_GAN: 0.177 G_GAN_Feat: 0.914 G_ID: 0.131 G_Rec: 0.441 D_GP: 0.054 D_real: 0.769 D_fake: 0.829 +(epoch: 503, iters: 7390, time: 0.063) G_GAN: 0.215 G_GAN_Feat: 0.658 G_ID: 0.096 G_Rec: 0.312 D_GP: 0.039 D_real: 1.161 D_fake: 0.786 +(epoch: 503, iters: 7790, time: 0.063) G_GAN: 0.304 G_GAN_Feat: 0.885 G_ID: 0.124 G_Rec: 0.424 D_GP: 0.044 D_real: 1.026 D_fake: 0.698 +(epoch: 503, iters: 8190, time: 0.063) G_GAN: 0.052 G_GAN_Feat: 0.668 G_ID: 0.094 G_Rec: 0.300 D_GP: 0.040 D_real: 0.933 D_fake: 0.948 +(epoch: 503, iters: 8590, time: 0.064) G_GAN: 0.351 G_GAN_Feat: 0.867 G_ID: 0.100 G_Rec: 0.416 D_GP: 0.037 D_real: 1.056 D_fake: 0.656 +(epoch: 504, iters: 382, time: 0.063) G_GAN: 0.186 G_GAN_Feat: 0.670 G_ID: 0.082 G_Rec: 0.302 D_GP: 0.064 D_real: 1.061 D_fake: 0.815 +(epoch: 504, iters: 782, time: 0.063) G_GAN: 0.170 G_GAN_Feat: 0.904 G_ID: 0.113 G_Rec: 0.443 D_GP: 0.040 D_real: 0.699 D_fake: 0.830 +(epoch: 504, iters: 1182, time: 0.063) G_GAN: 0.007 G_GAN_Feat: 0.719 G_ID: 0.094 G_Rec: 0.310 D_GP: 0.046 D_real: 0.737 D_fake: 0.993 +(epoch: 504, iters: 1582, time: 0.064) G_GAN: 0.322 G_GAN_Feat: 0.888 G_ID: 0.128 G_Rec: 0.417 D_GP: 0.047 D_real: 0.774 D_fake: 0.688 +(epoch: 504, iters: 1982, time: 0.063) G_GAN: 0.040 G_GAN_Feat: 0.696 G_ID: 0.083 G_Rec: 0.296 D_GP: 0.042 D_real: 0.817 D_fake: 0.960 +(epoch: 504, iters: 2382, time: 0.063) G_GAN: 0.320 G_GAN_Feat: 0.961 G_ID: 0.101 G_Rec: 0.462 D_GP: 0.046 D_real: 0.896 D_fake: 0.684 +(epoch: 504, iters: 2782, time: 0.063) G_GAN: 0.155 G_GAN_Feat: 0.760 G_ID: 0.095 G_Rec: 0.339 D_GP: 0.069 D_real: 0.873 D_fake: 0.846 +(epoch: 504, iters: 3182, time: 0.064) G_GAN: 0.340 G_GAN_Feat: 0.819 G_ID: 0.113 G_Rec: 0.367 D_GP: 0.035 D_real: 1.043 D_fake: 0.661 +(epoch: 504, iters: 3582, time: 0.063) G_GAN: 0.255 G_GAN_Feat: 0.715 G_ID: 0.106 G_Rec: 0.309 D_GP: 0.045 D_real: 1.079 D_fake: 0.747 +(epoch: 504, iters: 3982, time: 0.063) G_GAN: 0.646 G_GAN_Feat: 1.013 G_ID: 0.102 G_Rec: 0.434 D_GP: 0.059 D_real: 1.049 D_fake: 0.418 +(epoch: 504, iters: 4382, time: 0.063) G_GAN: 0.145 G_GAN_Feat: 0.818 G_ID: 0.104 G_Rec: 0.366 D_GP: 0.092 D_real: 0.712 D_fake: 0.855 +(epoch: 504, iters: 4782, time: 0.064) G_GAN: 0.368 G_GAN_Feat: 0.986 G_ID: 0.131 G_Rec: 0.465 D_GP: 0.042 D_real: 0.797 D_fake: 0.636 +(epoch: 504, iters: 5182, time: 0.063) G_GAN: 0.072 G_GAN_Feat: 0.792 G_ID: 0.119 G_Rec: 0.318 D_GP: 0.211 D_real: 0.656 D_fake: 0.930 +(epoch: 504, iters: 5582, time: 0.063) G_GAN: 0.442 G_GAN_Feat: 1.085 G_ID: 0.116 G_Rec: 0.502 D_GP: 0.375 D_real: 0.667 D_fake: 0.583 +(epoch: 504, iters: 5982, time: 0.063) G_GAN: -0.199 G_GAN_Feat: 0.921 G_ID: 0.118 G_Rec: 0.393 D_GP: 0.352 D_real: 0.425 D_fake: 1.200 +(epoch: 504, iters: 6382, time: 0.064) G_GAN: 0.500 G_GAN_Feat: 0.966 G_ID: 0.115 G_Rec: 0.422 D_GP: 0.041 D_real: 1.195 D_fake: 0.513 +(epoch: 504, iters: 6782, time: 0.063) G_GAN: -0.129 G_GAN_Feat: 0.770 G_ID: 0.095 G_Rec: 0.314 D_GP: 0.044 D_real: 0.610 D_fake: 1.129 +(epoch: 504, iters: 7182, time: 0.063) G_GAN: 0.541 G_GAN_Feat: 0.944 G_ID: 0.105 G_Rec: 0.392 D_GP: 0.038 D_real: 1.195 D_fake: 0.464 +(epoch: 504, iters: 7582, time: 0.063) G_GAN: 0.340 G_GAN_Feat: 0.798 G_ID: 0.088 G_Rec: 0.287 D_GP: 0.055 D_real: 0.928 D_fake: 0.661 +(epoch: 504, iters: 7982, time: 0.064) G_GAN: 0.295 G_GAN_Feat: 0.977 G_ID: 0.121 G_Rec: 0.445 D_GP: 0.032 D_real: 0.904 D_fake: 0.711 +(epoch: 504, iters: 8382, time: 0.063) G_GAN: 0.167 G_GAN_Feat: 0.743 G_ID: 0.092 G_Rec: 0.301 D_GP: 0.032 D_real: 0.951 D_fake: 0.834 +(epoch: 505, iters: 174, time: 0.063) G_GAN: 1.143 G_GAN_Feat: 1.145 G_ID: 0.114 G_Rec: 0.448 D_GP: 0.061 D_real: 1.485 D_fake: 0.122 +(epoch: 505, iters: 574, time: 0.063) G_GAN: 0.635 G_GAN_Feat: 0.892 G_ID: 0.086 G_Rec: 0.324 D_GP: 0.054 D_real: 0.752 D_fake: 0.416 +(epoch: 505, iters: 974, time: 0.064) G_GAN: 0.343 G_GAN_Feat: 0.953 G_ID: 0.118 G_Rec: 0.447 D_GP: 0.033 D_real: 0.986 D_fake: 0.663 +(epoch: 505, iters: 1374, time: 0.063) G_GAN: 0.195 G_GAN_Feat: 0.657 G_ID: 0.099 G_Rec: 0.288 D_GP: 0.030 D_real: 1.102 D_fake: 0.807 +(epoch: 505, iters: 1774, time: 0.063) G_GAN: 0.148 G_GAN_Feat: 0.861 G_ID: 0.115 G_Rec: 0.425 D_GP: 0.031 D_real: 0.859 D_fake: 0.854 +(epoch: 505, iters: 2174, time: 0.063) G_GAN: 0.073 G_GAN_Feat: 0.665 G_ID: 0.079 G_Rec: 0.304 D_GP: 0.030 D_real: 0.933 D_fake: 0.927 +(epoch: 505, iters: 2574, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 0.879 G_ID: 0.119 G_Rec: 0.423 D_GP: 0.044 D_real: 0.950 D_fake: 0.692 +(epoch: 505, iters: 2974, time: 0.063) G_GAN: -0.209 G_GAN_Feat: 0.681 G_ID: 0.113 G_Rec: 0.296 D_GP: 0.036 D_real: 0.665 D_fake: 1.209 +(epoch: 505, iters: 3374, time: 0.063) G_GAN: 0.400 G_GAN_Feat: 0.934 G_ID: 0.109 G_Rec: 0.510 D_GP: 0.050 D_real: 0.884 D_fake: 0.614 +(epoch: 505, iters: 3774, time: 0.063) G_GAN: 0.057 G_GAN_Feat: 0.751 G_ID: 0.101 G_Rec: 0.314 D_GP: 0.070 D_real: 0.801 D_fake: 0.943 +(epoch: 505, iters: 4174, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 0.994 G_ID: 0.117 G_Rec: 0.450 D_GP: 0.092 D_real: 0.639 D_fake: 0.783 +(epoch: 505, iters: 4574, time: 0.063) G_GAN: 0.064 G_GAN_Feat: 0.789 G_ID: 0.095 G_Rec: 0.338 D_GP: 0.048 D_real: 0.967 D_fake: 0.937 +(epoch: 505, iters: 4974, time: 0.063) G_GAN: 0.454 G_GAN_Feat: 1.077 G_ID: 0.142 G_Rec: 0.472 D_GP: 0.301 D_real: 0.618 D_fake: 0.560 +(epoch: 505, iters: 5374, time: 0.063) G_GAN: 0.252 G_GAN_Feat: 0.741 G_ID: 0.129 G_Rec: 0.297 D_GP: 0.093 D_real: 0.849 D_fake: 0.748 +(epoch: 505, iters: 5774, time: 0.064) G_GAN: 0.378 G_GAN_Feat: 1.036 G_ID: 0.102 G_Rec: 0.470 D_GP: 0.045 D_real: 0.780 D_fake: 0.623 +(epoch: 505, iters: 6174, time: 0.063) G_GAN: 0.615 G_GAN_Feat: 0.721 G_ID: 0.104 G_Rec: 0.295 D_GP: 0.039 D_real: 1.398 D_fake: 0.402 +(epoch: 505, iters: 6574, time: 0.063) G_GAN: 0.728 G_GAN_Feat: 1.079 G_ID: 0.122 G_Rec: 0.526 D_GP: 0.059 D_real: 0.996 D_fake: 0.300 +(epoch: 505, iters: 6974, time: 0.063) G_GAN: 0.244 G_GAN_Feat: 0.881 G_ID: 0.112 G_Rec: 0.342 D_GP: 0.032 D_real: 0.967 D_fake: 0.757 +(epoch: 505, iters: 7374, time: 0.064) G_GAN: 0.163 G_GAN_Feat: 1.016 G_ID: 0.125 G_Rec: 0.465 D_GP: 0.038 D_real: 0.864 D_fake: 0.837 +(epoch: 505, iters: 7774, time: 0.063) G_GAN: 0.051 G_GAN_Feat: 0.673 G_ID: 0.088 G_Rec: 0.307 D_GP: 0.028 D_real: 0.976 D_fake: 0.949 +(epoch: 505, iters: 8174, time: 0.063) G_GAN: 0.155 G_GAN_Feat: 0.972 G_ID: 0.120 G_Rec: 0.447 D_GP: 0.042 D_real: 0.808 D_fake: 0.847 +(epoch: 505, iters: 8574, time: 0.063) G_GAN: 0.005 G_GAN_Feat: 0.781 G_ID: 0.115 G_Rec: 0.313 D_GP: 0.050 D_real: 0.696 D_fake: 0.996 +(epoch: 506, iters: 366, time: 0.064) G_GAN: 0.391 G_GAN_Feat: 0.960 G_ID: 0.132 G_Rec: 0.413 D_GP: 0.045 D_real: 0.940 D_fake: 0.613 +(epoch: 506, iters: 766, time: 0.063) G_GAN: 0.102 G_GAN_Feat: 0.786 G_ID: 0.125 G_Rec: 0.326 D_GP: 0.042 D_real: 0.806 D_fake: 0.898 +(epoch: 506, iters: 1166, time: 0.063) G_GAN: 0.674 G_GAN_Feat: 1.018 G_ID: 0.110 G_Rec: 0.461 D_GP: 0.062 D_real: 1.021 D_fake: 0.344 +(epoch: 506, iters: 1566, time: 0.063) G_GAN: 0.207 G_GAN_Feat: 0.811 G_ID: 0.103 G_Rec: 0.298 D_GP: 0.038 D_real: 0.811 D_fake: 0.794 +(epoch: 506, iters: 1966, time: 0.064) G_GAN: 0.805 G_GAN_Feat: 1.186 G_ID: 0.106 G_Rec: 0.465 D_GP: 0.052 D_real: 0.656 D_fake: 0.268 +(epoch: 506, iters: 2366, time: 0.063) G_GAN: 0.424 G_GAN_Feat: 0.927 G_ID: 0.109 G_Rec: 0.315 D_GP: 0.048 D_real: 0.563 D_fake: 0.602 +(epoch: 506, iters: 2766, time: 0.063) G_GAN: 0.317 G_GAN_Feat: 0.904 G_ID: 0.110 G_Rec: 0.464 D_GP: 0.031 D_real: 1.081 D_fake: 0.688 +(epoch: 506, iters: 3166, time: 0.063) G_GAN: 0.145 G_GAN_Feat: 0.663 G_ID: 0.098 G_Rec: 0.310 D_GP: 0.028 D_real: 1.092 D_fake: 0.855 +(epoch: 506, iters: 3566, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 0.802 G_ID: 0.117 G_Rec: 0.384 D_GP: 0.028 D_real: 0.946 D_fake: 0.781 +(epoch: 506, iters: 3966, time: 0.063) G_GAN: 0.183 G_GAN_Feat: 0.682 G_ID: 0.092 G_Rec: 0.313 D_GP: 0.039 D_real: 1.059 D_fake: 0.818 +(epoch: 506, iters: 4366, time: 0.063) G_GAN: 0.153 G_GAN_Feat: 0.863 G_ID: 0.118 G_Rec: 0.405 D_GP: 0.043 D_real: 0.887 D_fake: 0.847 +(epoch: 506, iters: 4766, time: 0.063) G_GAN: -0.088 G_GAN_Feat: 0.762 G_ID: 0.125 G_Rec: 0.361 D_GP: 0.040 D_real: 0.755 D_fake: 1.088 +(epoch: 506, iters: 5166, time: 0.064) G_GAN: 0.347 G_GAN_Feat: 0.874 G_ID: 0.112 G_Rec: 0.425 D_GP: 0.036 D_real: 1.007 D_fake: 0.662 +(epoch: 506, iters: 5566, time: 0.063) G_GAN: -0.049 G_GAN_Feat: 0.676 G_ID: 0.100 G_Rec: 0.336 D_GP: 0.030 D_real: 0.821 D_fake: 1.049 +(epoch: 506, iters: 5966, time: 0.063) G_GAN: 0.121 G_GAN_Feat: 0.856 G_ID: 0.122 G_Rec: 0.400 D_GP: 0.034 D_real: 0.761 D_fake: 0.880 +(epoch: 506, iters: 6366, time: 0.063) G_GAN: 0.063 G_GAN_Feat: 0.645 G_ID: 0.087 G_Rec: 0.302 D_GP: 0.042 D_real: 0.925 D_fake: 0.937 +(epoch: 506, iters: 6766, time: 0.064) G_GAN: -0.033 G_GAN_Feat: 0.941 G_ID: 0.133 G_Rec: 0.445 D_GP: 0.042 D_real: 0.580 D_fake: 1.033 +(epoch: 506, iters: 7166, time: 0.063) G_GAN: -0.125 G_GAN_Feat: 0.662 G_ID: 0.117 G_Rec: 0.287 D_GP: 0.037 D_real: 0.767 D_fake: 1.125 +(epoch: 506, iters: 7566, time: 0.063) G_GAN: 0.372 G_GAN_Feat: 0.875 G_ID: 0.113 G_Rec: 0.422 D_GP: 0.036 D_real: 1.148 D_fake: 0.636 +(epoch: 506, iters: 7966, time: 0.063) G_GAN: -0.113 G_GAN_Feat: 0.703 G_ID: 0.103 G_Rec: 0.302 D_GP: 0.040 D_real: 0.720 D_fake: 1.113 +(epoch: 506, iters: 8366, time: 0.064) G_GAN: 0.374 G_GAN_Feat: 0.877 G_ID: 0.101 G_Rec: 0.393 D_GP: 0.034 D_real: 1.064 D_fake: 0.633 +(epoch: 507, iters: 158, time: 0.063) G_GAN: 0.378 G_GAN_Feat: 0.712 G_ID: 0.111 G_Rec: 0.323 D_GP: 0.046 D_real: 1.184 D_fake: 0.636 +(epoch: 507, iters: 558, time: 0.063) G_GAN: 0.140 G_GAN_Feat: 0.935 G_ID: 0.123 G_Rec: 0.453 D_GP: 0.070 D_real: 0.605 D_fake: 0.862 +(epoch: 507, iters: 958, time: 0.063) G_GAN: -0.099 G_GAN_Feat: 0.710 G_ID: 0.082 G_Rec: 0.298 D_GP: 0.050 D_real: 0.710 D_fake: 1.099 +(epoch: 507, iters: 1358, time: 0.064) G_GAN: 0.376 G_GAN_Feat: 0.929 G_ID: 0.113 G_Rec: 0.452 D_GP: 0.040 D_real: 1.001 D_fake: 0.639 +(epoch: 507, iters: 1758, time: 0.063) G_GAN: 0.137 G_GAN_Feat: 0.771 G_ID: 0.100 G_Rec: 0.344 D_GP: 0.057 D_real: 0.822 D_fake: 0.864 +(epoch: 507, iters: 2158, time: 0.063) G_GAN: 0.268 G_GAN_Feat: 0.876 G_ID: 0.094 G_Rec: 0.394 D_GP: 0.056 D_real: 0.984 D_fake: 0.735 +(epoch: 507, iters: 2558, time: 0.063) G_GAN: 0.082 G_GAN_Feat: 0.672 G_ID: 0.088 G_Rec: 0.287 D_GP: 0.039 D_real: 1.087 D_fake: 0.919 +(epoch: 507, iters: 2958, time: 0.064) G_GAN: 0.461 G_GAN_Feat: 0.905 G_ID: 0.106 G_Rec: 0.442 D_GP: 0.032 D_real: 1.172 D_fake: 0.545 +(epoch: 507, iters: 3358, time: 0.063) G_GAN: 0.315 G_GAN_Feat: 0.673 G_ID: 0.092 G_Rec: 0.294 D_GP: 0.031 D_real: 1.172 D_fake: 0.687 +(epoch: 507, iters: 3758, time: 0.063) G_GAN: 0.255 G_GAN_Feat: 1.055 G_ID: 0.108 G_Rec: 0.476 D_GP: 0.108 D_real: 0.580 D_fake: 0.747 +(epoch: 507, iters: 4158, time: 0.063) G_GAN: 0.087 G_GAN_Feat: 0.690 G_ID: 0.098 G_Rec: 0.320 D_GP: 0.044 D_real: 0.865 D_fake: 0.913 +(epoch: 507, iters: 4558, time: 0.064) G_GAN: 0.770 G_GAN_Feat: 0.973 G_ID: 0.112 G_Rec: 0.478 D_GP: 0.049 D_real: 1.291 D_fake: 0.313 +(epoch: 507, iters: 4958, time: 0.063) G_GAN: 0.078 G_GAN_Feat: 0.727 G_ID: 0.104 G_Rec: 0.328 D_GP: 0.050 D_real: 0.848 D_fake: 0.922 +(epoch: 507, iters: 5358, time: 0.063) G_GAN: 0.333 G_GAN_Feat: 0.970 G_ID: 0.114 G_Rec: 0.482 D_GP: 0.105 D_real: 0.653 D_fake: 0.672 +(epoch: 507, iters: 5758, time: 0.063) G_GAN: 0.196 G_GAN_Feat: 0.864 G_ID: 0.106 G_Rec: 0.360 D_GP: 0.070 D_real: 0.605 D_fake: 0.806 +(epoch: 507, iters: 6158, time: 0.064) G_GAN: 0.414 G_GAN_Feat: 1.021 G_ID: 0.118 G_Rec: 0.464 D_GP: 0.114 D_real: 0.697 D_fake: 0.594 +(epoch: 507, iters: 6558, time: 0.063) G_GAN: 0.234 G_GAN_Feat: 0.842 G_ID: 0.109 G_Rec: 0.344 D_GP: 0.119 D_real: 0.647 D_fake: 0.776 +(epoch: 507, iters: 6958, time: 0.063) G_GAN: 0.025 G_GAN_Feat: 1.013 G_ID: 0.106 G_Rec: 0.484 D_GP: 0.069 D_real: 0.541 D_fake: 0.976 +(epoch: 507, iters: 7358, time: 0.063) G_GAN: 0.103 G_GAN_Feat: 0.677 G_ID: 0.089 G_Rec: 0.315 D_GP: 0.031 D_real: 1.017 D_fake: 0.897 +(epoch: 507, iters: 7758, time: 0.064) G_GAN: 0.428 G_GAN_Feat: 0.946 G_ID: 0.111 G_Rec: 0.462 D_GP: 0.038 D_real: 1.011 D_fake: 0.584 +(epoch: 507, iters: 8158, time: 0.063) G_GAN: 0.013 G_GAN_Feat: 0.815 G_ID: 0.093 G_Rec: 0.348 D_GP: 0.129 D_real: 0.421 D_fake: 0.989 +(epoch: 507, iters: 8558, time: 0.063) G_GAN: 0.356 G_GAN_Feat: 1.043 G_ID: 0.120 G_Rec: 0.456 D_GP: 0.211 D_real: 0.767 D_fake: 0.656 +(epoch: 508, iters: 350, time: 0.063) G_GAN: 0.061 G_GAN_Feat: 0.674 G_ID: 0.088 G_Rec: 0.275 D_GP: 0.036 D_real: 0.906 D_fake: 0.939 +(epoch: 508, iters: 750, time: 0.064) G_GAN: 0.408 G_GAN_Feat: 1.028 G_ID: 0.122 G_Rec: 0.464 D_GP: 0.046 D_real: 0.826 D_fake: 0.596 +(epoch: 508, iters: 1150, time: 0.063) G_GAN: -0.104 G_GAN_Feat: 0.895 G_ID: 0.105 G_Rec: 0.354 D_GP: 0.749 D_real: 0.223 D_fake: 1.105 +(epoch: 508, iters: 1550, time: 0.063) G_GAN: 0.324 G_GAN_Feat: 0.918 G_ID: 0.117 G_Rec: 0.421 D_GP: 0.043 D_real: 0.893 D_fake: 0.680 +(epoch: 508, iters: 1950, time: 0.063) G_GAN: 0.297 G_GAN_Feat: 0.770 G_ID: 0.088 G_Rec: 0.313 D_GP: 0.105 D_real: 0.818 D_fake: 0.707 +(epoch: 508, iters: 2350, time: 0.063) G_GAN: 0.470 G_GAN_Feat: 1.096 G_ID: 0.091 G_Rec: 0.518 D_GP: 0.027 D_real: 1.159 D_fake: 0.544 +(epoch: 508, iters: 2750, time: 0.063) G_GAN: 0.098 G_GAN_Feat: 0.716 G_ID: 0.100 G_Rec: 0.321 D_GP: 0.027 D_real: 0.924 D_fake: 0.902 +(epoch: 508, iters: 3150, time: 0.063) G_GAN: 0.265 G_GAN_Feat: 0.884 G_ID: 0.110 G_Rec: 0.419 D_GP: 0.034 D_real: 0.975 D_fake: 0.737 +(epoch: 508, iters: 3550, time: 0.064) G_GAN: 0.011 G_GAN_Feat: 0.737 G_ID: 0.083 G_Rec: 0.355 D_GP: 0.057 D_real: 0.825 D_fake: 0.990 +(epoch: 508, iters: 3950, time: 0.063) G_GAN: 0.238 G_GAN_Feat: 0.832 G_ID: 0.116 G_Rec: 0.382 D_GP: 0.036 D_real: 0.974 D_fake: 0.771 +(epoch: 508, iters: 4350, time: 0.063) G_GAN: 0.097 G_GAN_Feat: 0.687 G_ID: 0.097 G_Rec: 0.297 D_GP: 0.049 D_real: 0.948 D_fake: 0.904 +(epoch: 508, iters: 4750, time: 0.063) G_GAN: 0.125 G_GAN_Feat: 0.922 G_ID: 0.109 G_Rec: 0.423 D_GP: 0.056 D_real: 0.718 D_fake: 0.876 +(epoch: 508, iters: 5150, time: 0.064) G_GAN: -0.177 G_GAN_Feat: 0.728 G_ID: 0.080 G_Rec: 0.307 D_GP: 0.052 D_real: 0.608 D_fake: 1.177 +(epoch: 508, iters: 5550, time: 0.063) G_GAN: 0.449 G_GAN_Feat: 1.037 G_ID: 0.105 G_Rec: 0.475 D_GP: 0.174 D_real: 0.660 D_fake: 0.559 +(epoch: 508, iters: 5950, time: 0.063) G_GAN: -0.175 G_GAN_Feat: 0.804 G_ID: 0.115 G_Rec: 0.355 D_GP: 0.115 D_real: 0.477 D_fake: 1.177 +(epoch: 508, iters: 6350, time: 0.063) G_GAN: 0.719 G_GAN_Feat: 1.063 G_ID: 0.121 G_Rec: 0.463 D_GP: 0.045 D_real: 1.108 D_fake: 0.315 +(epoch: 508, iters: 6750, time: 0.064) G_GAN: 0.450 G_GAN_Feat: 0.783 G_ID: 0.082 G_Rec: 0.295 D_GP: 0.049 D_real: 1.122 D_fake: 0.555 +(epoch: 508, iters: 7150, time: 0.063) G_GAN: 0.197 G_GAN_Feat: 0.959 G_ID: 0.129 G_Rec: 0.408 D_GP: 0.044 D_real: 0.859 D_fake: 0.804 +(epoch: 508, iters: 7550, time: 0.063) G_GAN: 0.042 G_GAN_Feat: 0.784 G_ID: 0.115 G_Rec: 0.320 D_GP: 0.032 D_real: 0.951 D_fake: 0.958 +(epoch: 508, iters: 7950, time: 0.063) G_GAN: 0.124 G_GAN_Feat: 0.930 G_ID: 0.116 G_Rec: 0.453 D_GP: 0.044 D_real: 0.667 D_fake: 0.878 +(epoch: 508, iters: 8350, time: 0.064) G_GAN: 0.088 G_GAN_Feat: 0.710 G_ID: 0.078 G_Rec: 0.284 D_GP: 0.068 D_real: 0.736 D_fake: 0.912 +(epoch: 509, iters: 142, time: 0.063) G_GAN: 0.557 G_GAN_Feat: 0.879 G_ID: 0.105 G_Rec: 0.373 D_GP: 0.035 D_real: 1.236 D_fake: 0.477 +(epoch: 509, iters: 542, time: 0.063) G_GAN: 0.122 G_GAN_Feat: 0.737 G_ID: 0.081 G_Rec: 0.287 D_GP: 0.034 D_real: 0.931 D_fake: 0.878 +(epoch: 509, iters: 942, time: 0.063) G_GAN: 0.535 G_GAN_Feat: 1.165 G_ID: 0.124 G_Rec: 0.517 D_GP: 0.080 D_real: 0.495 D_fake: 0.479 +(epoch: 509, iters: 1342, time: 0.064) G_GAN: 0.272 G_GAN_Feat: 0.874 G_ID: 0.092 G_Rec: 0.337 D_GP: 0.056 D_real: 0.586 D_fake: 0.755 +(epoch: 509, iters: 1742, time: 0.063) G_GAN: 0.374 G_GAN_Feat: 1.080 G_ID: 0.122 G_Rec: 0.452 D_GP: 0.054 D_real: 0.792 D_fake: 0.633 +(epoch: 509, iters: 2142, time: 0.063) G_GAN: -0.009 G_GAN_Feat: 0.881 G_ID: 0.124 G_Rec: 0.360 D_GP: 0.048 D_real: 0.659 D_fake: 1.010 +(epoch: 509, iters: 2542, time: 0.063) G_GAN: 0.440 G_GAN_Feat: 0.965 G_ID: 0.133 G_Rec: 0.410 D_GP: 0.043 D_real: 0.843 D_fake: 0.564 +(epoch: 509, iters: 2942, time: 0.064) G_GAN: 0.054 G_GAN_Feat: 0.763 G_ID: 0.117 G_Rec: 0.333 D_GP: 0.037 D_real: 0.991 D_fake: 0.946 +(epoch: 509, iters: 3342, time: 0.063) G_GAN: 0.180 G_GAN_Feat: 1.005 G_ID: 0.109 G_Rec: 0.493 D_GP: 0.033 D_real: 0.894 D_fake: 0.820 +(epoch: 509, iters: 3742, time: 0.063) G_GAN: 0.043 G_GAN_Feat: 0.609 G_ID: 0.088 G_Rec: 0.262 D_GP: 0.027 D_real: 1.061 D_fake: 0.957 +(epoch: 509, iters: 4142, time: 0.063) G_GAN: 0.455 G_GAN_Feat: 0.919 G_ID: 0.111 G_Rec: 0.424 D_GP: 0.035 D_real: 1.048 D_fake: 0.582 +(epoch: 509, iters: 4542, time: 0.064) G_GAN: -0.082 G_GAN_Feat: 0.739 G_ID: 0.117 G_Rec: 0.303 D_GP: 0.045 D_real: 0.670 D_fake: 1.082 +(epoch: 509, iters: 4942, time: 0.063) G_GAN: 0.525 G_GAN_Feat: 0.927 G_ID: 0.108 G_Rec: 0.388 D_GP: 0.055 D_real: 1.084 D_fake: 0.486 +(epoch: 509, iters: 5342, time: 0.063) G_GAN: 0.185 G_GAN_Feat: 0.719 G_ID: 0.099 G_Rec: 0.302 D_GP: 0.036 D_real: 1.106 D_fake: 0.815 +(epoch: 509, iters: 5742, time: 0.063) G_GAN: 0.427 G_GAN_Feat: 0.861 G_ID: 0.118 G_Rec: 0.388 D_GP: 0.043 D_real: 1.092 D_fake: 0.588 +(epoch: 509, iters: 6142, time: 0.064) G_GAN: 0.306 G_GAN_Feat: 0.789 G_ID: 0.093 G_Rec: 0.333 D_GP: 0.037 D_real: 0.968 D_fake: 0.696 +(epoch: 509, iters: 6542, time: 0.063) G_GAN: 0.535 G_GAN_Feat: 0.920 G_ID: 0.106 G_Rec: 0.382 D_GP: 0.037 D_real: 1.199 D_fake: 0.488 +(epoch: 509, iters: 6942, time: 0.063) G_GAN: -0.160 G_GAN_Feat: 0.746 G_ID: 0.106 G_Rec: 0.339 D_GP: 0.032 D_real: 0.792 D_fake: 1.160 +(epoch: 509, iters: 7342, time: 0.063) G_GAN: 0.237 G_GAN_Feat: 0.917 G_ID: 0.106 G_Rec: 0.392 D_GP: 0.031 D_real: 0.897 D_fake: 0.766 +(epoch: 509, iters: 7742, time: 0.064) G_GAN: 0.058 G_GAN_Feat: 0.802 G_ID: 0.085 G_Rec: 0.331 D_GP: 0.039 D_real: 0.813 D_fake: 0.942 +(epoch: 509, iters: 8142, time: 0.063) G_GAN: 0.292 G_GAN_Feat: 0.990 G_ID: 0.110 G_Rec: 0.408 D_GP: 0.036 D_real: 0.917 D_fake: 0.709 +(epoch: 509, iters: 8542, time: 0.063) G_GAN: 0.275 G_GAN_Feat: 0.859 G_ID: 0.087 G_Rec: 0.311 D_GP: 0.086 D_real: 0.740 D_fake: 0.728 +(epoch: 510, iters: 334, time: 0.063) G_GAN: 0.535 G_GAN_Feat: 1.059 G_ID: 0.116 G_Rec: 0.440 D_GP: 0.118 D_real: 0.552 D_fake: 0.487 +(epoch: 510, iters: 734, time: 0.064) G_GAN: 0.377 G_GAN_Feat: 0.979 G_ID: 0.102 G_Rec: 0.325 D_GP: 0.042 D_real: 0.845 D_fake: 0.626 +(epoch: 510, iters: 1134, time: 0.063) G_GAN: 0.563 G_GAN_Feat: 1.039 G_ID: 0.108 G_Rec: 0.443 D_GP: 0.057 D_real: 1.132 D_fake: 0.529 +(epoch: 510, iters: 1534, time: 0.063) G_GAN: 0.246 G_GAN_Feat: 0.763 G_ID: 0.133 G_Rec: 0.298 D_GP: 0.048 D_real: 1.056 D_fake: 0.755 +(epoch: 510, iters: 1934, time: 0.063) G_GAN: 0.268 G_GAN_Feat: 1.093 G_ID: 0.115 G_Rec: 0.430 D_GP: 0.469 D_real: 0.389 D_fake: 0.737 +(epoch: 510, iters: 2334, time: 0.064) G_GAN: 0.660 G_GAN_Feat: 0.713 G_ID: 0.080 G_Rec: 0.283 D_GP: 0.055 D_real: 1.518 D_fake: 0.474 +(epoch: 510, iters: 2734, time: 0.063) G_GAN: 0.428 G_GAN_Feat: 1.022 G_ID: 0.124 G_Rec: 0.455 D_GP: 0.060 D_real: 0.942 D_fake: 0.578 +(epoch: 510, iters: 3134, time: 0.063) G_GAN: 0.060 G_GAN_Feat: 0.752 G_ID: 0.096 G_Rec: 0.318 D_GP: 0.053 D_real: 0.801 D_fake: 0.940 +(epoch: 510, iters: 3534, time: 0.063) G_GAN: 0.319 G_GAN_Feat: 0.899 G_ID: 0.108 G_Rec: 0.408 D_GP: 0.040 D_real: 1.024 D_fake: 0.688 +(epoch: 510, iters: 3934, time: 0.064) G_GAN: -0.123 G_GAN_Feat: 0.822 G_ID: 0.092 G_Rec: 0.331 D_GP: 0.077 D_real: 0.883 D_fake: 1.123 +(epoch: 510, iters: 4334, time: 0.063) G_GAN: 0.568 G_GAN_Feat: 1.035 G_ID: 0.107 G_Rec: 0.481 D_GP: 0.051 D_real: 1.038 D_fake: 0.443 +(epoch: 510, iters: 4734, time: 0.063) G_GAN: 0.424 G_GAN_Feat: 0.824 G_ID: 0.132 G_Rec: 0.335 D_GP: 0.071 D_real: 0.961 D_fake: 0.616 +(epoch: 510, iters: 5134, time: 0.063) G_GAN: 0.454 G_GAN_Feat: 1.032 G_ID: 0.113 G_Rec: 0.473 D_GP: 0.046 D_real: 1.147 D_fake: 0.562 +(epoch: 510, iters: 5534, time: 0.064) G_GAN: 0.265 G_GAN_Feat: 0.789 G_ID: 0.095 G_Rec: 0.290 D_GP: 0.048 D_real: 0.893 D_fake: 0.735 +(epoch: 510, iters: 5934, time: 0.063) G_GAN: 0.409 G_GAN_Feat: 0.970 G_ID: 0.113 G_Rec: 0.431 D_GP: 0.052 D_real: 0.892 D_fake: 0.596 +(epoch: 510, iters: 6334, time: 0.063) G_GAN: 0.296 G_GAN_Feat: 0.881 G_ID: 0.100 G_Rec: 0.342 D_GP: 0.043 D_real: 0.756 D_fake: 0.705 +(epoch: 510, iters: 6734, time: 0.063) G_GAN: 0.581 G_GAN_Feat: 1.077 G_ID: 0.109 G_Rec: 0.466 D_GP: 0.036 D_real: 0.832 D_fake: 0.478 +(epoch: 510, iters: 7134, time: 0.064) G_GAN: 0.296 G_GAN_Feat: 0.856 G_ID: 0.091 G_Rec: 0.311 D_GP: 0.037 D_real: 1.121 D_fake: 0.707 +(epoch: 510, iters: 7534, time: 0.063) G_GAN: 0.575 G_GAN_Feat: 1.111 G_ID: 0.131 G_Rec: 0.456 D_GP: 0.047 D_real: 0.686 D_fake: 0.433 +(epoch: 510, iters: 7934, time: 0.063) G_GAN: -0.049 G_GAN_Feat: 0.859 G_ID: 0.092 G_Rec: 0.328 D_GP: 0.102 D_real: 0.526 D_fake: 1.049 +(epoch: 510, iters: 8334, time: 0.063) G_GAN: 0.311 G_GAN_Feat: 1.026 G_ID: 0.139 G_Rec: 0.476 D_GP: 0.033 D_real: 0.868 D_fake: 0.689 +(epoch: 511, iters: 126, time: 0.064) G_GAN: 0.433 G_GAN_Feat: 0.768 G_ID: 0.087 G_Rec: 0.293 D_GP: 0.032 D_real: 1.156 D_fake: 0.569 +(epoch: 511, iters: 526, time: 0.063) G_GAN: 0.920 G_GAN_Feat: 1.157 G_ID: 0.109 G_Rec: 0.474 D_GP: 0.135 D_real: 0.765 D_fake: 0.183 +(epoch: 511, iters: 926, time: 0.063) G_GAN: 0.307 G_GAN_Feat: 0.825 G_ID: 0.081 G_Rec: 0.327 D_GP: 0.032 D_real: 1.176 D_fake: 0.697 +(epoch: 511, iters: 1326, time: 0.063) G_GAN: 0.636 G_GAN_Feat: 1.069 G_ID: 0.096 G_Rec: 0.474 D_GP: 0.041 D_real: 0.835 D_fake: 0.399 +(epoch: 511, iters: 1726, time: 0.064) G_GAN: 0.007 G_GAN_Feat: 0.858 G_ID: 0.116 G_Rec: 0.318 D_GP: 0.105 D_real: 0.379 D_fake: 0.993 +(epoch: 511, iters: 2126, time: 0.063) G_GAN: 0.835 G_GAN_Feat: 1.212 G_ID: 0.094 G_Rec: 0.474 D_GP: 0.368 D_real: 0.539 D_fake: 0.241 +(epoch: 511, iters: 2526, time: 0.063) G_GAN: 0.326 G_GAN_Feat: 0.900 G_ID: 0.096 G_Rec: 0.332 D_GP: 0.058 D_real: 1.151 D_fake: 0.723 +(epoch: 511, iters: 2926, time: 0.063) G_GAN: 0.419 G_GAN_Feat: 0.994 G_ID: 0.105 G_Rec: 0.435 D_GP: 0.035 D_real: 1.095 D_fake: 0.586 +(epoch: 511, iters: 3326, time: 0.064) G_GAN: 0.386 G_GAN_Feat: 0.716 G_ID: 0.095 G_Rec: 0.317 D_GP: 0.031 D_real: 1.255 D_fake: 0.631 +(epoch: 511, iters: 3726, time: 0.063) G_GAN: 0.256 G_GAN_Feat: 0.916 G_ID: 0.119 G_Rec: 0.451 D_GP: 0.031 D_real: 0.934 D_fake: 0.750 +(epoch: 511, iters: 4126, time: 0.063) G_GAN: 0.079 G_GAN_Feat: 0.778 G_ID: 0.091 G_Rec: 0.335 D_GP: 0.053 D_real: 0.905 D_fake: 0.922 +(epoch: 511, iters: 4526, time: 0.063) G_GAN: 0.268 G_GAN_Feat: 0.891 G_ID: 0.122 G_Rec: 0.396 D_GP: 0.037 D_real: 0.814 D_fake: 0.735 +(epoch: 511, iters: 4926, time: 0.064) G_GAN: 0.383 G_GAN_Feat: 0.708 G_ID: 0.089 G_Rec: 0.283 D_GP: 0.033 D_real: 1.299 D_fake: 0.619 +(epoch: 511, iters: 5326, time: 0.063) G_GAN: 0.567 G_GAN_Feat: 0.962 G_ID: 0.108 G_Rec: 0.446 D_GP: 0.042 D_real: 1.231 D_fake: 0.446 +(epoch: 511, iters: 5726, time: 0.063) G_GAN: 0.540 G_GAN_Feat: 0.845 G_ID: 0.087 G_Rec: 0.311 D_GP: 0.054 D_real: 1.103 D_fake: 0.471 +(epoch: 511, iters: 6126, time: 0.063) G_GAN: 0.910 G_GAN_Feat: 1.030 G_ID: 0.105 G_Rec: 0.460 D_GP: 0.040 D_real: 1.410 D_fake: 0.219 +(epoch: 511, iters: 6526, time: 0.064) G_GAN: 0.340 G_GAN_Feat: 0.992 G_ID: 0.129 G_Rec: 0.368 D_GP: 0.041 D_real: 1.246 D_fake: 0.721 +(epoch: 511, iters: 6926, time: 0.063) G_GAN: 0.425 G_GAN_Feat: 1.031 G_ID: 0.113 G_Rec: 0.482 D_GP: 0.038 D_real: 1.062 D_fake: 0.578 +(epoch: 511, iters: 7326, time: 0.063) G_GAN: 0.376 G_GAN_Feat: 0.962 G_ID: 0.113 G_Rec: 0.342 D_GP: 0.079 D_real: 0.381 D_fake: 0.639 +(epoch: 511, iters: 7726, time: 0.063) G_GAN: 0.692 G_GAN_Feat: 1.029 G_ID: 0.112 G_Rec: 0.431 D_GP: 0.048 D_real: 1.165 D_fake: 0.464 +(epoch: 511, iters: 8126, time: 0.064) G_GAN: -0.064 G_GAN_Feat: 0.736 G_ID: 0.101 G_Rec: 0.323 D_GP: 0.037 D_real: 0.752 D_fake: 1.064 +(epoch: 511, iters: 8526, time: 0.063) G_GAN: 0.653 G_GAN_Feat: 1.027 G_ID: 0.119 G_Rec: 0.451 D_GP: 0.081 D_real: 0.903 D_fake: 0.383 +(epoch: 512, iters: 318, time: 0.063) G_GAN: 0.213 G_GAN_Feat: 0.815 G_ID: 0.104 G_Rec: 0.321 D_GP: 0.077 D_real: 0.640 D_fake: 0.791 +(epoch: 512, iters: 718, time: 0.063) G_GAN: 0.289 G_GAN_Feat: 1.149 G_ID: 0.115 G_Rec: 0.487 D_GP: 0.250 D_real: 0.380 D_fake: 0.723 +(epoch: 512, iters: 1118, time: 0.064) G_GAN: 0.586 G_GAN_Feat: 0.848 G_ID: 0.114 G_Rec: 0.323 D_GP: 0.051 D_real: 1.523 D_fake: 0.500 +(epoch: 512, iters: 1518, time: 0.063) G_GAN: 0.237 G_GAN_Feat: 0.987 G_ID: 0.125 G_Rec: 0.465 D_GP: 0.031 D_real: 0.878 D_fake: 0.763 +(epoch: 512, iters: 1918, time: 0.063) G_GAN: 0.068 G_GAN_Feat: 0.728 G_ID: 0.107 G_Rec: 0.316 D_GP: 0.048 D_real: 0.876 D_fake: 0.932 +(epoch: 512, iters: 2318, time: 0.063) G_GAN: 0.479 G_GAN_Feat: 1.017 G_ID: 0.112 G_Rec: 0.459 D_GP: 0.049 D_real: 0.926 D_fake: 0.536 +(epoch: 512, iters: 2718, time: 0.064) G_GAN: 0.450 G_GAN_Feat: 0.670 G_ID: 0.089 G_Rec: 0.315 D_GP: 0.028 D_real: 1.411 D_fake: 0.553 +(epoch: 512, iters: 3118, time: 0.063) G_GAN: 0.404 G_GAN_Feat: 0.966 G_ID: 0.100 G_Rec: 0.480 D_GP: 0.031 D_real: 0.973 D_fake: 0.606 +(epoch: 512, iters: 3518, time: 0.063) G_GAN: 0.053 G_GAN_Feat: 0.719 G_ID: 0.129 G_Rec: 0.320 D_GP: 0.035 D_real: 0.904 D_fake: 0.947 +(epoch: 512, iters: 3918, time: 0.063) G_GAN: 0.363 G_GAN_Feat: 1.017 G_ID: 0.118 G_Rec: 0.467 D_GP: 0.050 D_real: 0.792 D_fake: 0.647 +(epoch: 512, iters: 4318, time: 0.064) G_GAN: 0.137 G_GAN_Feat: 0.728 G_ID: 0.092 G_Rec: 0.310 D_GP: 0.041 D_real: 0.919 D_fake: 0.863 +(epoch: 512, iters: 4718, time: 0.063) G_GAN: 0.239 G_GAN_Feat: 1.038 G_ID: 0.108 G_Rec: 0.457 D_GP: 0.047 D_real: 0.610 D_fake: 0.762 +(epoch: 512, iters: 5118, time: 0.063) G_GAN: 0.277 G_GAN_Feat: 0.831 G_ID: 0.101 G_Rec: 0.324 D_GP: 0.044 D_real: 0.863 D_fake: 0.723 +(epoch: 512, iters: 5518, time: 0.063) G_GAN: 0.503 G_GAN_Feat: 1.035 G_ID: 0.106 G_Rec: 0.450 D_GP: 0.047 D_real: 0.729 D_fake: 0.507 +(epoch: 512, iters: 5918, time: 0.064) G_GAN: 0.357 G_GAN_Feat: 0.807 G_ID: 0.085 G_Rec: 0.332 D_GP: 0.031 D_real: 1.457 D_fake: 0.646 +(epoch: 512, iters: 6318, time: 0.063) G_GAN: 0.538 G_GAN_Feat: 0.932 G_ID: 0.112 G_Rec: 0.425 D_GP: 0.038 D_real: 1.234 D_fake: 0.474 +(epoch: 512, iters: 6718, time: 0.063) G_GAN: 0.216 G_GAN_Feat: 0.687 G_ID: 0.093 G_Rec: 0.279 D_GP: 0.030 D_real: 1.152 D_fake: 0.784 +(epoch: 512, iters: 7118, time: 0.063) G_GAN: 0.322 G_GAN_Feat: 1.023 G_ID: 0.117 G_Rec: 0.420 D_GP: 0.036 D_real: 0.695 D_fake: 0.679 +(epoch: 512, iters: 7518, time: 0.063) G_GAN: 0.417 G_GAN_Feat: 0.753 G_ID: 0.096 G_Rec: 0.317 D_GP: 0.045 D_real: 1.223 D_fake: 0.589 +(epoch: 512, iters: 7918, time: 0.063) G_GAN: 0.315 G_GAN_Feat: 0.985 G_ID: 0.111 G_Rec: 0.424 D_GP: 0.056 D_real: 0.878 D_fake: 0.686 +(epoch: 512, iters: 8318, time: 0.063) G_GAN: 0.206 G_GAN_Feat: 0.862 G_ID: 0.099 G_Rec: 0.320 D_GP: 0.072 D_real: 0.566 D_fake: 0.795 +(epoch: 513, iters: 110, time: 0.064) G_GAN: 0.312 G_GAN_Feat: 0.854 G_ID: 0.120 G_Rec: 0.376 D_GP: 0.036 D_real: 1.096 D_fake: 0.691 +(epoch: 513, iters: 510, time: 0.063) G_GAN: 0.084 G_GAN_Feat: 0.671 G_ID: 0.108 G_Rec: 0.297 D_GP: 0.033 D_real: 0.933 D_fake: 0.916 +(epoch: 513, iters: 910, time: 0.063) G_GAN: 0.185 G_GAN_Feat: 0.945 G_ID: 0.109 G_Rec: 0.418 D_GP: 0.037 D_real: 0.801 D_fake: 0.817 +(epoch: 513, iters: 1310, time: 0.063) G_GAN: 0.006 G_GAN_Feat: 0.772 G_ID: 0.095 G_Rec: 0.292 D_GP: 0.065 D_real: 0.779 D_fake: 0.995 +(epoch: 513, iters: 1710, time: 0.064) G_GAN: 0.188 G_GAN_Feat: 1.056 G_ID: 0.112 G_Rec: 0.461 D_GP: 0.040 D_real: 0.625 D_fake: 0.813 +(epoch: 513, iters: 2110, time: 0.063) G_GAN: 0.435 G_GAN_Feat: 0.723 G_ID: 0.096 G_Rec: 0.318 D_GP: 0.030 D_real: 1.341 D_fake: 0.565 +(epoch: 513, iters: 2510, time: 0.063) G_GAN: 0.829 G_GAN_Feat: 0.984 G_ID: 0.109 G_Rec: 0.408 D_GP: 0.044 D_real: 1.353 D_fake: 0.254 +(epoch: 513, iters: 2910, time: 0.063) G_GAN: 0.498 G_GAN_Feat: 0.728 G_ID: 0.098 G_Rec: 0.309 D_GP: 0.029 D_real: 1.454 D_fake: 0.513 +(epoch: 513, iters: 3310, time: 0.064) G_GAN: 0.051 G_GAN_Feat: 0.915 G_ID: 0.125 G_Rec: 0.412 D_GP: 0.030 D_real: 0.816 D_fake: 0.949 +(epoch: 513, iters: 3710, time: 0.063) G_GAN: 0.071 G_GAN_Feat: 0.663 G_ID: 0.093 G_Rec: 0.293 D_GP: 0.028 D_real: 0.992 D_fake: 0.931 +(epoch: 513, iters: 4110, time: 0.063) G_GAN: 0.520 G_GAN_Feat: 0.853 G_ID: 0.110 G_Rec: 0.395 D_GP: 0.030 D_real: 1.205 D_fake: 0.503 +(epoch: 513, iters: 4510, time: 0.063) G_GAN: 0.234 G_GAN_Feat: 0.748 G_ID: 0.093 G_Rec: 0.310 D_GP: 0.031 D_real: 1.145 D_fake: 0.767 +(epoch: 513, iters: 4910, time: 0.064) G_GAN: 0.083 G_GAN_Feat: 0.950 G_ID: 0.135 G_Rec: 0.411 D_GP: 0.048 D_real: 0.689 D_fake: 0.917 +(epoch: 513, iters: 5310, time: 0.063) G_GAN: 0.154 G_GAN_Feat: 0.734 G_ID: 0.091 G_Rec: 0.291 D_GP: 0.031 D_real: 0.981 D_fake: 0.846 +(epoch: 513, iters: 5710, time: 0.063) G_GAN: 0.067 G_GAN_Feat: 1.060 G_ID: 0.117 G_Rec: 0.467 D_GP: 0.037 D_real: 0.798 D_fake: 0.933 +(epoch: 513, iters: 6110, time: 0.063) G_GAN: 0.331 G_GAN_Feat: 0.942 G_ID: 0.079 G_Rec: 0.314 D_GP: 0.049 D_real: 0.739 D_fake: 0.670 +(epoch: 513, iters: 6510, time: 0.064) G_GAN: 0.106 G_GAN_Feat: 1.089 G_ID: 0.105 G_Rec: 0.452 D_GP: 0.070 D_real: 0.484 D_fake: 0.899 +(epoch: 513, iters: 6910, time: 0.063) G_GAN: 0.070 G_GAN_Feat: 0.783 G_ID: 0.083 G_Rec: 0.307 D_GP: 0.037 D_real: 0.883 D_fake: 0.930 +(epoch: 513, iters: 7310, time: 0.063) G_GAN: 0.732 G_GAN_Feat: 1.016 G_ID: 0.106 G_Rec: 0.442 D_GP: 0.033 D_real: 1.248 D_fake: 0.303 +(epoch: 513, iters: 7710, time: 0.063) G_GAN: 0.360 G_GAN_Feat: 0.865 G_ID: 0.086 G_Rec: 0.299 D_GP: 0.039 D_real: 0.920 D_fake: 0.641 +(epoch: 513, iters: 8110, time: 0.064) G_GAN: 0.406 G_GAN_Feat: 0.908 G_ID: 0.099 G_Rec: 0.403 D_GP: 0.027 D_real: 1.179 D_fake: 0.600 +(epoch: 513, iters: 8510, time: 0.063) G_GAN: 0.236 G_GAN_Feat: 0.691 G_ID: 0.090 G_Rec: 0.307 D_GP: 0.031 D_real: 1.161 D_fake: 0.768 +(epoch: 514, iters: 302, time: 0.063) G_GAN: 0.212 G_GAN_Feat: 1.016 G_ID: 0.123 G_Rec: 0.456 D_GP: 0.042 D_real: 0.677 D_fake: 0.788 +(epoch: 514, iters: 702, time: 0.063) G_GAN: -0.032 G_GAN_Feat: 0.778 G_ID: 0.106 G_Rec: 0.309 D_GP: 0.049 D_real: 0.684 D_fake: 1.032 +(epoch: 514, iters: 1102, time: 0.064) G_GAN: 0.322 G_GAN_Feat: 0.960 G_ID: 0.111 G_Rec: 0.421 D_GP: 0.055 D_real: 0.924 D_fake: 0.681 +(epoch: 514, iters: 1502, time: 0.063) G_GAN: 0.113 G_GAN_Feat: 0.793 G_ID: 0.099 G_Rec: 0.330 D_GP: 0.054 D_real: 0.896 D_fake: 0.887 +(epoch: 514, iters: 1902, time: 0.063) G_GAN: 0.371 G_GAN_Feat: 0.982 G_ID: 0.116 G_Rec: 0.448 D_GP: 0.050 D_real: 0.918 D_fake: 0.638 +(epoch: 514, iters: 2302, time: 0.063) G_GAN: -0.108 G_GAN_Feat: 0.734 G_ID: 0.103 G_Rec: 0.299 D_GP: 0.044 D_real: 0.650 D_fake: 1.108 +(epoch: 514, iters: 2702, time: 0.064) G_GAN: 0.442 G_GAN_Feat: 1.023 G_ID: 0.114 G_Rec: 0.450 D_GP: 0.048 D_real: 0.895 D_fake: 0.562 +(epoch: 514, iters: 3102, time: 0.063) G_GAN: 0.083 G_GAN_Feat: 0.919 G_ID: 0.119 G_Rec: 0.324 D_GP: 0.255 D_real: 0.203 D_fake: 0.917 +(epoch: 514, iters: 3502, time: 0.063) G_GAN: 0.659 G_GAN_Feat: 1.133 G_ID: 0.138 G_Rec: 0.501 D_GP: 0.117 D_real: 0.868 D_fake: 0.398 +(epoch: 514, iters: 3902, time: 0.063) G_GAN: 0.400 G_GAN_Feat: 0.819 G_ID: 0.097 G_Rec: 0.304 D_GP: 0.057 D_real: 0.742 D_fake: 0.631 +(epoch: 514, iters: 4302, time: 0.064) G_GAN: 0.454 G_GAN_Feat: 1.027 G_ID: 0.125 G_Rec: 0.436 D_GP: 0.039 D_real: 0.861 D_fake: 0.550 +(epoch: 514, iters: 4702, time: 0.063) G_GAN: 0.356 G_GAN_Feat: 0.921 G_ID: 0.117 G_Rec: 0.313 D_GP: 0.253 D_real: 0.452 D_fake: 0.647 +(epoch: 514, iters: 5102, time: 0.063) G_GAN: 0.310 G_GAN_Feat: 1.100 G_ID: 0.120 G_Rec: 0.433 D_GP: 0.039 D_real: 0.575 D_fake: 0.691 +(epoch: 514, iters: 5502, time: 0.063) G_GAN: 0.225 G_GAN_Feat: 0.931 G_ID: 0.104 G_Rec: 0.319 D_GP: 0.070 D_real: 0.403 D_fake: 0.796 +(epoch: 514, iters: 5902, time: 0.064) G_GAN: 0.364 G_GAN_Feat: 0.854 G_ID: 0.098 G_Rec: 0.456 D_GP: 0.027 D_real: 1.116 D_fake: 0.638 +(epoch: 514, iters: 6302, time: 0.063) G_GAN: 0.126 G_GAN_Feat: 0.589 G_ID: 0.104 G_Rec: 0.277 D_GP: 0.029 D_real: 0.998 D_fake: 0.874 +(epoch: 514, iters: 6702, time: 0.063) G_GAN: 0.275 G_GAN_Feat: 0.863 G_ID: 0.121 G_Rec: 0.433 D_GP: 0.041 D_real: 0.932 D_fake: 0.725 +(epoch: 514, iters: 7102, time: 0.063) G_GAN: 0.137 G_GAN_Feat: 0.575 G_ID: 0.091 G_Rec: 0.285 D_GP: 0.029 D_real: 1.071 D_fake: 0.863 +(epoch: 514, iters: 7502, time: 0.064) G_GAN: 0.124 G_GAN_Feat: 0.812 G_ID: 0.110 G_Rec: 0.403 D_GP: 0.033 D_real: 0.924 D_fake: 0.876 +(epoch: 514, iters: 7902, time: 0.063) G_GAN: -0.118 G_GAN_Feat: 0.670 G_ID: 0.098 G_Rec: 0.342 D_GP: 0.037 D_real: 0.823 D_fake: 1.118 +(epoch: 514, iters: 8302, time: 0.063) G_GAN: 0.202 G_GAN_Feat: 0.835 G_ID: 0.123 G_Rec: 0.411 D_GP: 0.038 D_real: 0.882 D_fake: 0.803 +(epoch: 514, iters: 8702, time: 0.063) G_GAN: 0.071 G_GAN_Feat: 0.649 G_ID: 0.088 G_Rec: 0.341 D_GP: 0.032 D_real: 0.941 D_fake: 0.930 +(epoch: 515, iters: 494, time: 0.064) G_GAN: 0.028 G_GAN_Feat: 0.901 G_ID: 0.116 G_Rec: 0.435 D_GP: 0.066 D_real: 0.686 D_fake: 0.972 +(epoch: 515, iters: 894, time: 0.063) G_GAN: 0.085 G_GAN_Feat: 0.591 G_ID: 0.082 G_Rec: 0.287 D_GP: 0.028 D_real: 1.019 D_fake: 0.915 +(epoch: 515, iters: 1294, time: 0.063) G_GAN: 0.096 G_GAN_Feat: 0.902 G_ID: 0.102 G_Rec: 0.444 D_GP: 0.042 D_real: 0.708 D_fake: 0.909 +(epoch: 515, iters: 1694, time: 0.063) G_GAN: -0.418 G_GAN_Feat: 0.742 G_ID: 0.112 G_Rec: 0.362 D_GP: 0.062 D_real: 0.463 D_fake: 1.418 +(epoch: 515, iters: 2094, time: 0.064) G_GAN: 0.276 G_GAN_Feat: 0.802 G_ID: 0.114 G_Rec: 0.390 D_GP: 0.035 D_real: 0.890 D_fake: 0.735 +(epoch: 515, iters: 2494, time: 0.063) G_GAN: 0.012 G_GAN_Feat: 0.657 G_ID: 0.089 G_Rec: 0.298 D_GP: 0.039 D_real: 0.872 D_fake: 0.988 +(epoch: 515, iters: 2894, time: 0.063) G_GAN: 0.002 G_GAN_Feat: 0.922 G_ID: 0.104 G_Rec: 0.444 D_GP: 0.037 D_real: 0.588 D_fake: 0.999 +(epoch: 515, iters: 3294, time: 0.063) G_GAN: -0.062 G_GAN_Feat: 0.730 G_ID: 0.106 G_Rec: 0.353 D_GP: 0.057 D_real: 0.669 D_fake: 1.064 +(epoch: 515, iters: 3694, time: 0.064) G_GAN: 0.198 G_GAN_Feat: 0.898 G_ID: 0.123 G_Rec: 0.430 D_GP: 0.039 D_real: 0.903 D_fake: 0.805 +(epoch: 515, iters: 4094, time: 0.063) G_GAN: -0.121 G_GAN_Feat: 0.683 G_ID: 0.084 G_Rec: 0.302 D_GP: 0.047 D_real: 0.725 D_fake: 1.121 +(epoch: 515, iters: 4494, time: 0.063) G_GAN: 0.244 G_GAN_Feat: 0.858 G_ID: 0.118 G_Rec: 0.414 D_GP: 0.034 D_real: 0.884 D_fake: 0.757 +(epoch: 515, iters: 4894, time: 0.063) G_GAN: 0.029 G_GAN_Feat: 0.759 G_ID: 0.099 G_Rec: 0.317 D_GP: 0.066 D_real: 0.742 D_fake: 0.971 +(epoch: 515, iters: 5294, time: 0.064) G_GAN: 0.350 G_GAN_Feat: 0.912 G_ID: 0.107 G_Rec: 0.411 D_GP: 0.042 D_real: 0.922 D_fake: 0.657 +(epoch: 515, iters: 5694, time: 0.063) G_GAN: 0.333 G_GAN_Feat: 0.636 G_ID: 0.092 G_Rec: 0.279 D_GP: 0.050 D_real: 1.208 D_fake: 0.668 +(epoch: 515, iters: 6094, time: 0.063) G_GAN: 0.287 G_GAN_Feat: 0.916 G_ID: 0.112 G_Rec: 0.407 D_GP: 0.064 D_real: 0.843 D_fake: 0.715 +(epoch: 515, iters: 6494, time: 0.063) G_GAN: 0.338 G_GAN_Feat: 0.671 G_ID: 0.103 G_Rec: 0.282 D_GP: 0.036 D_real: 1.256 D_fake: 0.665 +(epoch: 515, iters: 6894, time: 0.064) G_GAN: 0.406 G_GAN_Feat: 0.909 G_ID: 0.117 G_Rec: 0.419 D_GP: 0.042 D_real: 1.068 D_fake: 0.595 +(epoch: 515, iters: 7294, time: 0.063) G_GAN: 0.125 G_GAN_Feat: 0.742 G_ID: 0.093 G_Rec: 0.405 D_GP: 0.064 D_real: 0.872 D_fake: 0.875 +(epoch: 515, iters: 7694, time: 0.063) G_GAN: 0.302 G_GAN_Feat: 0.981 G_ID: 0.136 G_Rec: 0.440 D_GP: 0.047 D_real: 0.739 D_fake: 0.702 +(epoch: 515, iters: 8094, time: 0.063) G_GAN: 0.118 G_GAN_Feat: 0.744 G_ID: 0.110 G_Rec: 0.313 D_GP: 0.075 D_real: 0.759 D_fake: 0.884 +(epoch: 515, iters: 8494, time: 0.064) G_GAN: 0.362 G_GAN_Feat: 0.991 G_ID: 0.124 G_Rec: 0.434 D_GP: 0.085 D_real: 0.613 D_fake: 0.642 +(epoch: 516, iters: 286, time: 0.063) G_GAN: 0.356 G_GAN_Feat: 0.693 G_ID: 0.092 G_Rec: 0.281 D_GP: 0.040 D_real: 1.304 D_fake: 0.645 +(epoch: 516, iters: 686, time: 0.063) G_GAN: 0.720 G_GAN_Feat: 0.910 G_ID: 0.109 G_Rec: 0.382 D_GP: 0.038 D_real: 1.330 D_fake: 0.337 +(epoch: 516, iters: 1086, time: 0.063) G_GAN: 0.129 G_GAN_Feat: 0.752 G_ID: 0.088 G_Rec: 0.290 D_GP: 0.067 D_real: 0.815 D_fake: 0.872 +(epoch: 516, iters: 1486, time: 0.064) G_GAN: 0.611 G_GAN_Feat: 0.915 G_ID: 0.105 G_Rec: 0.413 D_GP: 0.037 D_real: 1.208 D_fake: 0.457 +(epoch: 516, iters: 1886, time: 0.063) G_GAN: 0.100 G_GAN_Feat: 0.781 G_ID: 0.113 G_Rec: 0.315 D_GP: 0.045 D_real: 0.765 D_fake: 0.900 +(epoch: 516, iters: 2286, time: 0.063) G_GAN: 0.301 G_GAN_Feat: 0.842 G_ID: 0.122 G_Rec: 0.403 D_GP: 0.025 D_real: 1.161 D_fake: 0.707 +(epoch: 516, iters: 2686, time: 0.063) G_GAN: -0.025 G_GAN_Feat: 0.611 G_ID: 0.092 G_Rec: 0.298 D_GP: 0.025 D_real: 0.957 D_fake: 1.025 +(epoch: 516, iters: 3086, time: 0.064) G_GAN: 0.221 G_GAN_Feat: 0.900 G_ID: 0.123 G_Rec: 0.437 D_GP: 0.037 D_real: 0.809 D_fake: 0.782 +(epoch: 516, iters: 3486, time: 0.063) G_GAN: -0.204 G_GAN_Feat: 0.693 G_ID: 0.085 G_Rec: 0.321 D_GP: 0.041 D_real: 0.647 D_fake: 1.204 +(epoch: 516, iters: 3886, time: 0.063) G_GAN: 0.284 G_GAN_Feat: 0.892 G_ID: 0.105 G_Rec: 0.419 D_GP: 0.036 D_real: 1.018 D_fake: 0.721 +(epoch: 516, iters: 4286, time: 0.063) G_GAN: -0.084 G_GAN_Feat: 0.729 G_ID: 0.108 G_Rec: 0.345 D_GP: 0.050 D_real: 0.687 D_fake: 1.084 +(epoch: 516, iters: 4686, time: 0.064) G_GAN: 0.397 G_GAN_Feat: 0.870 G_ID: 0.108 G_Rec: 0.410 D_GP: 0.034 D_real: 1.061 D_fake: 0.621 +(epoch: 516, iters: 5086, time: 0.063) G_GAN: -0.043 G_GAN_Feat: 0.757 G_ID: 0.096 G_Rec: 0.326 D_GP: 0.038 D_real: 0.823 D_fake: 1.043 +(epoch: 516, iters: 5486, time: 0.063) G_GAN: 0.451 G_GAN_Feat: 0.986 G_ID: 0.113 G_Rec: 0.460 D_GP: 0.062 D_real: 0.789 D_fake: 0.562 +(epoch: 516, iters: 5886, time: 0.063) G_GAN: 0.139 G_GAN_Feat: 0.687 G_ID: 0.085 G_Rec: 0.300 D_GP: 0.034 D_real: 1.086 D_fake: 0.862 +(epoch: 516, iters: 6286, time: 0.064) G_GAN: 0.263 G_GAN_Feat: 0.959 G_ID: 0.108 G_Rec: 0.436 D_GP: 0.048 D_real: 0.801 D_fake: 0.737 +(epoch: 516, iters: 6686, time: 0.063) G_GAN: -0.054 G_GAN_Feat: 0.849 G_ID: 0.089 G_Rec: 0.370 D_GP: 0.276 D_real: 0.285 D_fake: 1.054 +(epoch: 516, iters: 7086, time: 0.063) G_GAN: 0.435 G_GAN_Feat: 0.927 G_ID: 0.118 G_Rec: 0.390 D_GP: 0.036 D_real: 1.121 D_fake: 0.565 +(epoch: 516, iters: 7486, time: 0.063) G_GAN: 0.119 G_GAN_Feat: 0.837 G_ID: 0.089 G_Rec: 0.332 D_GP: 0.354 D_real: 0.484 D_fake: 0.881 +(epoch: 516, iters: 7886, time: 0.064) G_GAN: 0.580 G_GAN_Feat: 1.018 G_ID: 0.139 G_Rec: 0.456 D_GP: 0.071 D_real: 0.866 D_fake: 0.430 +(epoch: 516, iters: 8286, time: 0.063) G_GAN: 0.163 G_GAN_Feat: 0.959 G_ID: 0.103 G_Rec: 0.381 D_GP: 0.566 D_real: 0.369 D_fake: 0.841 +(epoch: 516, iters: 8686, time: 0.063) G_GAN: 0.593 G_GAN_Feat: 1.053 G_ID: 0.117 G_Rec: 0.512 D_GP: 0.052 D_real: 1.083 D_fake: 0.511 +(epoch: 517, iters: 478, time: 0.063) G_GAN: 0.446 G_GAN_Feat: 0.821 G_ID: 0.096 G_Rec: 0.316 D_GP: 0.060 D_real: 0.968 D_fake: 0.600 +(epoch: 517, iters: 878, time: 0.064) G_GAN: 0.660 G_GAN_Feat: 0.916 G_ID: 0.092 G_Rec: 0.450 D_GP: 0.029 D_real: 1.410 D_fake: 0.357 +(epoch: 517, iters: 1278, time: 0.063) G_GAN: 0.183 G_GAN_Feat: 0.680 G_ID: 0.078 G_Rec: 0.309 D_GP: 0.028 D_real: 1.094 D_fake: 0.817 +(epoch: 517, iters: 1678, time: 0.063) G_GAN: 0.359 G_GAN_Feat: 0.890 G_ID: 0.108 G_Rec: 0.400 D_GP: 0.032 D_real: 1.141 D_fake: 0.643 +(epoch: 517, iters: 2078, time: 0.063) G_GAN: 0.249 G_GAN_Feat: 0.651 G_ID: 0.090 G_Rec: 0.294 D_GP: 0.028 D_real: 1.132 D_fake: 0.751 +(epoch: 517, iters: 2478, time: 0.064) G_GAN: 0.346 G_GAN_Feat: 0.826 G_ID: 0.099 G_Rec: 0.387 D_GP: 0.033 D_real: 1.102 D_fake: 0.654 +(epoch: 517, iters: 2878, time: 0.063) G_GAN: 0.124 G_GAN_Feat: 0.695 G_ID: 0.086 G_Rec: 0.308 D_GP: 0.044 D_real: 0.914 D_fake: 0.878 +(epoch: 517, iters: 3278, time: 0.063) G_GAN: 0.420 G_GAN_Feat: 0.883 G_ID: 0.109 G_Rec: 0.403 D_GP: 0.039 D_real: 1.117 D_fake: 0.582 +(epoch: 517, iters: 3678, time: 0.063) G_GAN: 0.147 G_GAN_Feat: 0.649 G_ID: 0.087 G_Rec: 0.284 D_GP: 0.035 D_real: 1.010 D_fake: 0.853 +(epoch: 517, iters: 4078, time: 0.063) G_GAN: 0.373 G_GAN_Feat: 0.916 G_ID: 0.100 G_Rec: 0.446 D_GP: 0.034 D_real: 1.105 D_fake: 0.633 +(epoch: 517, iters: 4478, time: 0.063) G_GAN: 0.132 G_GAN_Feat: 0.702 G_ID: 0.091 G_Rec: 0.304 D_GP: 0.041 D_real: 0.948 D_fake: 0.870 +(epoch: 517, iters: 4878, time: 0.063) G_GAN: 0.534 G_GAN_Feat: 0.939 G_ID: 0.118 G_Rec: 0.418 D_GP: 0.050 D_real: 1.174 D_fake: 0.496 +(epoch: 517, iters: 5278, time: 0.064) G_GAN: 0.178 G_GAN_Feat: 0.763 G_ID: 0.085 G_Rec: 0.286 D_GP: 0.038 D_real: 0.952 D_fake: 0.823 +(epoch: 517, iters: 5678, time: 0.063) G_GAN: 0.335 G_GAN_Feat: 1.057 G_ID: 0.112 G_Rec: 0.454 D_GP: 0.064 D_real: 0.698 D_fake: 0.669 +(epoch: 517, iters: 6078, time: 0.063) G_GAN: 0.127 G_GAN_Feat: 0.824 G_ID: 0.105 G_Rec: 0.363 D_GP: 0.244 D_real: 0.693 D_fake: 0.885 +(epoch: 517, iters: 6478, time: 0.063) G_GAN: 0.260 G_GAN_Feat: 1.073 G_ID: 0.116 G_Rec: 0.489 D_GP: 0.157 D_real: 0.398 D_fake: 0.741 +(epoch: 517, iters: 6878, time: 0.064) G_GAN: 0.069 G_GAN_Feat: 0.689 G_ID: 0.088 G_Rec: 0.286 D_GP: 0.035 D_real: 0.903 D_fake: 0.931 +(epoch: 517, iters: 7278, time: 0.063) G_GAN: 0.569 G_GAN_Feat: 0.872 G_ID: 0.118 G_Rec: 0.417 D_GP: 0.032 D_real: 1.194 D_fake: 0.450 +(epoch: 517, iters: 7678, time: 0.063) G_GAN: 0.166 G_GAN_Feat: 0.793 G_ID: 0.095 G_Rec: 0.294 D_GP: 0.049 D_real: 0.779 D_fake: 0.834 +(epoch: 517, iters: 8078, time: 0.063) G_GAN: 0.362 G_GAN_Feat: 0.931 G_ID: 0.107 G_Rec: 0.444 D_GP: 0.029 D_real: 1.042 D_fake: 0.639 +(epoch: 517, iters: 8478, time: 0.064) G_GAN: 0.302 G_GAN_Feat: 0.798 G_ID: 0.104 G_Rec: 0.337 D_GP: 0.062 D_real: 0.988 D_fake: 0.699 +(epoch: 518, iters: 270, time: 0.063) G_GAN: 0.765 G_GAN_Feat: 0.913 G_ID: 0.120 G_Rec: 0.416 D_GP: 0.036 D_real: 1.386 D_fake: 0.312 +(epoch: 518, iters: 670, time: 0.063) G_GAN: 0.358 G_GAN_Feat: 0.852 G_ID: 0.129 G_Rec: 0.335 D_GP: 0.116 D_real: 0.780 D_fake: 0.715 +(epoch: 518, iters: 1070, time: 0.063) G_GAN: 0.431 G_GAN_Feat: 1.048 G_ID: 0.116 G_Rec: 0.422 D_GP: 0.041 D_real: 0.726 D_fake: 0.573 +(epoch: 518, iters: 1470, time: 0.064) G_GAN: 0.200 G_GAN_Feat: 0.829 G_ID: 0.106 G_Rec: 0.293 D_GP: 0.073 D_real: 0.574 D_fake: 0.802 +(epoch: 518, iters: 1870, time: 0.063) G_GAN: 0.074 G_GAN_Feat: 0.915 G_ID: 0.130 G_Rec: 0.419 D_GP: 0.032 D_real: 0.800 D_fake: 0.927 +(epoch: 518, iters: 2270, time: 0.063) G_GAN: 0.422 G_GAN_Feat: 0.835 G_ID: 0.086 G_Rec: 0.334 D_GP: 0.073 D_real: 0.676 D_fake: 0.597 +(epoch: 518, iters: 2670, time: 0.063) G_GAN: 0.484 G_GAN_Feat: 1.032 G_ID: 0.103 G_Rec: 0.447 D_GP: 0.035 D_real: 0.969 D_fake: 0.525 +(epoch: 518, iters: 3070, time: 0.064) G_GAN: 0.403 G_GAN_Feat: 0.802 G_ID: 0.093 G_Rec: 0.307 D_GP: 0.036 D_real: 1.041 D_fake: 0.603 +(epoch: 518, iters: 3470, time: 0.063) G_GAN: 0.611 G_GAN_Feat: 1.158 G_ID: 0.107 G_Rec: 0.455 D_GP: 0.122 D_real: 0.511 D_fake: 0.407 +(epoch: 518, iters: 3870, time: 0.063) G_GAN: 0.049 G_GAN_Feat: 0.874 G_ID: 0.098 G_Rec: 0.322 D_GP: 0.047 D_real: 0.553 D_fake: 0.951 +(epoch: 518, iters: 4270, time: 0.063) G_GAN: 0.559 G_GAN_Feat: 0.893 G_ID: 0.108 G_Rec: 0.415 D_GP: 0.037 D_real: 1.297 D_fake: 0.469 +(epoch: 518, iters: 4670, time: 0.064) G_GAN: -0.035 G_GAN_Feat: 0.726 G_ID: 0.106 G_Rec: 0.330 D_GP: 0.046 D_real: 0.846 D_fake: 1.035 +(epoch: 518, iters: 5070, time: 0.063) G_GAN: 0.163 G_GAN_Feat: 0.944 G_ID: 0.107 G_Rec: 0.457 D_GP: 0.048 D_real: 0.771 D_fake: 0.838 +(epoch: 518, iters: 5470, time: 0.063) G_GAN: -0.036 G_GAN_Feat: 0.723 G_ID: 0.091 G_Rec: 0.318 D_GP: 0.040 D_real: 0.904 D_fake: 1.036 +(epoch: 518, iters: 5870, time: 0.063) G_GAN: 0.400 G_GAN_Feat: 0.936 G_ID: 0.107 G_Rec: 0.413 D_GP: 0.040 D_real: 0.958 D_fake: 0.604 +(epoch: 518, iters: 6270, time: 0.064) G_GAN: 0.190 G_GAN_Feat: 0.654 G_ID: 0.095 G_Rec: 0.266 D_GP: 0.029 D_real: 1.066 D_fake: 0.810 +(epoch: 518, iters: 6670, time: 0.063) G_GAN: 0.356 G_GAN_Feat: 0.933 G_ID: 0.118 G_Rec: 0.431 D_GP: 0.032 D_real: 0.905 D_fake: 0.644 +(epoch: 518, iters: 7070, time: 0.063) G_GAN: 0.416 G_GAN_Feat: 0.782 G_ID: 0.095 G_Rec: 0.300 D_GP: 0.044 D_real: 1.109 D_fake: 0.588 +(epoch: 518, iters: 7470, time: 0.063) G_GAN: 0.812 G_GAN_Feat: 1.093 G_ID: 0.111 G_Rec: 0.467 D_GP: 0.101 D_real: 1.049 D_fake: 0.316 +(epoch: 518, iters: 7870, time: 0.064) G_GAN: 0.517 G_GAN_Feat: 0.924 G_ID: 0.097 G_Rec: 0.370 D_GP: 1.121 D_real: 0.810 D_fake: 0.511 +(epoch: 518, iters: 8270, time: 0.063) G_GAN: 0.311 G_GAN_Feat: 0.954 G_ID: 0.120 G_Rec: 0.464 D_GP: 0.029 D_real: 0.942 D_fake: 0.690 +(epoch: 518, iters: 8670, time: 0.063) G_GAN: 0.223 G_GAN_Feat: 0.665 G_ID: 0.097 G_Rec: 0.293 D_GP: 0.026 D_real: 1.128 D_fake: 0.778 +(epoch: 519, iters: 462, time: 0.063) G_GAN: 0.269 G_GAN_Feat: 0.942 G_ID: 0.100 G_Rec: 0.403 D_GP: 0.045 D_real: 0.932 D_fake: 0.731 +(epoch: 519, iters: 862, time: 0.064) G_GAN: 0.229 G_GAN_Feat: 0.719 G_ID: 0.096 G_Rec: 0.274 D_GP: 0.032 D_real: 1.080 D_fake: 0.772 +(epoch: 519, iters: 1262, time: 0.063) G_GAN: 0.521 G_GAN_Feat: 0.953 G_ID: 0.099 G_Rec: 0.454 D_GP: 0.046 D_real: 1.063 D_fake: 0.486 +(epoch: 519, iters: 1662, time: 0.063) G_GAN: 0.493 G_GAN_Feat: 0.717 G_ID: 0.094 G_Rec: 0.293 D_GP: 0.029 D_real: 1.397 D_fake: 0.512 +(epoch: 519, iters: 2062, time: 0.063) G_GAN: 0.554 G_GAN_Feat: 0.929 G_ID: 0.139 G_Rec: 0.394 D_GP: 0.035 D_real: 1.066 D_fake: 0.453 +(epoch: 519, iters: 2462, time: 0.064) G_GAN: 0.229 G_GAN_Feat: 0.803 G_ID: 0.090 G_Rec: 0.316 D_GP: 0.040 D_real: 0.930 D_fake: 0.773 +(epoch: 519, iters: 2862, time: 0.063) G_GAN: 0.438 G_GAN_Feat: 0.982 G_ID: 0.124 G_Rec: 0.421 D_GP: 0.033 D_real: 1.037 D_fake: 0.601 +(epoch: 519, iters: 3262, time: 0.063) G_GAN: 0.046 G_GAN_Feat: 0.880 G_ID: 0.100 G_Rec: 0.368 D_GP: 0.046 D_real: 0.724 D_fake: 0.955 +(epoch: 519, iters: 3662, time: 0.063) G_GAN: 0.197 G_GAN_Feat: 0.973 G_ID: 0.123 G_Rec: 0.445 D_GP: 0.060 D_real: 0.703 D_fake: 0.803 +(epoch: 519, iters: 4062, time: 0.064) G_GAN: 0.162 G_GAN_Feat: 0.694 G_ID: 0.101 G_Rec: 0.291 D_GP: 0.037 D_real: 1.088 D_fake: 0.838 +(epoch: 519, iters: 4462, time: 0.063) G_GAN: 0.743 G_GAN_Feat: 1.089 G_ID: 0.100 G_Rec: 0.470 D_GP: 0.155 D_real: 0.759 D_fake: 0.312 +(epoch: 519, iters: 4862, time: 0.063) G_GAN: 0.018 G_GAN_Feat: 0.770 G_ID: 0.113 G_Rec: 0.329 D_GP: 0.031 D_real: 0.829 D_fake: 0.982 +(epoch: 519, iters: 5262, time: 0.063) G_GAN: 0.506 G_GAN_Feat: 0.995 G_ID: 0.106 G_Rec: 0.445 D_GP: 0.030 D_real: 1.144 D_fake: 0.495 +(epoch: 519, iters: 5662, time: 0.064) G_GAN: 0.420 G_GAN_Feat: 0.729 G_ID: 0.080 G_Rec: 0.296 D_GP: 0.037 D_real: 1.238 D_fake: 0.586 +(epoch: 519, iters: 6062, time: 0.063) G_GAN: 0.781 G_GAN_Feat: 1.083 G_ID: 0.102 G_Rec: 0.471 D_GP: 0.042 D_real: 1.125 D_fake: 0.250 +(epoch: 519, iters: 6462, time: 0.063) G_GAN: 0.183 G_GAN_Feat: 0.864 G_ID: 0.108 G_Rec: 0.334 D_GP: 0.052 D_real: 0.838 D_fake: 0.827 +(epoch: 519, iters: 6862, time: 0.063) G_GAN: 0.782 G_GAN_Feat: 1.019 G_ID: 0.120 G_Rec: 0.433 D_GP: 0.047 D_real: 1.197 D_fake: 0.267 +(epoch: 519, iters: 7262, time: 0.064) G_GAN: 0.290 G_GAN_Feat: 0.803 G_ID: 0.088 G_Rec: 0.334 D_GP: 0.038 D_real: 1.170 D_fake: 0.717 +(epoch: 519, iters: 7662, time: 0.063) G_GAN: 0.183 G_GAN_Feat: 0.998 G_ID: 0.141 G_Rec: 0.473 D_GP: 0.044 D_real: 0.620 D_fake: 0.822 +(epoch: 519, iters: 8062, time: 0.063) G_GAN: 0.102 G_GAN_Feat: 0.680 G_ID: 0.098 G_Rec: 0.283 D_GP: 0.032 D_real: 1.063 D_fake: 0.898 +(epoch: 519, iters: 8462, time: 0.063) G_GAN: 0.655 G_GAN_Feat: 0.900 G_ID: 0.109 G_Rec: 0.429 D_GP: 0.041 D_real: 1.281 D_fake: 0.431 +(epoch: 520, iters: 254, time: 0.064) G_GAN: -0.002 G_GAN_Feat: 0.753 G_ID: 0.097 G_Rec: 0.321 D_GP: 0.034 D_real: 0.779 D_fake: 1.003 diff --git a/mlflow/registry/Swimswap/checkpoints/people/opt.txt b/mlflow/registry/Swimswap/checkpoints/people/opt.txt new file mode 100644 index 0000000..3cc4ed4 --- /dev/null +++ b/mlflow/registry/Swimswap/checkpoints/people/opt.txt @@ -0,0 +1,72 @@ +------------ Options ------------- +batchSize: 8 +beta1: 0.5 +checkpoints_dir: ./checkpoints +continue_train: False +data_type: 32 +dataroot: ./datasets/cityscapes/ +debug: False +display_freq: 99 +display_winsize: 512 +feat_num: 3 +fineSize: 512 +fp16: False +gan_mode: hinge +gpu_ids: [0] +image_size: 224 +input_nc: 3 +instance_feat: False +isTrain: True +label_feat: False +label_nc: 0 +lambda_GP: 10.0 +lambda_feat: 10.0 +lambda_id: 20.0 +lambda_rec: 10.0 +latent_size: 512 +loadSize: 1024 +load_features: False +load_pretrain: +local_rank: 0 +lr: 0.0002 +max_dataset_size: inf +model: pix2pixHD +nThreads: 2 +n_blocks_global: 6 +n_blocks_local: 3 +n_clusters: 10 +n_downsample_E: 4 +n_downsample_global: 3 +n_layers_D: 4 +n_local_enhancers: 1 +name: people +ndf: 64 +nef: 16 +netG: global +ngf: 64 +niter: 10000 +niter_decay: 10000 +niter_fix_global: 0 +no_flip: False +no_ganFeat_loss: False +no_html: False +no_instance: False +no_vgg_loss: False +norm: batch +norm_G: spectralspadesyncbatch3x3 +num_D: 2 +output_nc: 3 +phase: train +pool_size: 0 +print_freq: 100 +resize_or_crop: scale_width +save_epoch_freq: 10000 +save_latest_freq: 10000 +semantic_nc: 3 +serial_batches: False +tf_log: False +times_G: 1 +use_dropout: False +verbose: False +which_epoch: latest +-------------- End ---------------- diff --git a/mlflow/registry/Swimswap/insightface_func/__init__.py b/mlflow/registry/Swimswap/insightface_func/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/mlflow/registry/Swimswap/insightface_func/face_detect_crop_multi.py b/mlflow/registry/Swimswap/insightface_func/face_detect_crop_multi.py new file mode 100644 index 0000000..d75c36b --- /dev/null +++ b/mlflow/registry/Swimswap/insightface_func/face_detect_crop_multi.py @@ -0,0 +1,100 @@ +''' +Author: Naiyuan liu +Github: https://github.com/NNNNAI +Date: 2021-11-23 17:03:58 +LastEditors: Naiyuan liu +LastEditTime: 2021-11-24 16:45:41 +Description: +''' +from __future__ import division +import collections +import numpy as np +import glob +import os +import os.path as osp +import cv2 +from insightface.model_zoo import model_zoo +from insightface_func.utils import face_align_ffhqandnewarc as face_align + +__all__ = ['Face_detect_crop', 'Face'] + +Face = collections.namedtuple('Face', [ + 'bbox', 'kps', 'det_score', 'embedding', 'gender', 'age', + 'embedding_norm', 'normed_embedding', + 'landmark' +]) + +Face.__new__.__defaults__ = (None, ) * len(Face._fields) + + +class Face_detect_crop: + def __init__(self, name, root='~/.insightface_func/models'): + self.models = {} + root = os.path.expanduser(root) + onnx_files = glob.glob(osp.join(root, name, '*.onnx')) + onnx_files = sorted(onnx_files) + for onnx_file in onnx_files: + if onnx_file.find('_selfgen_')>0: + #print('ignore:', onnx_file) + continue + model = model_zoo.get_model(onnx_file) + if model.taskname not in self.models: + print('find model:', onnx_file, model.taskname) + self.models[model.taskname] = model + else: + print('duplicated model task type, ignore:', onnx_file, model.taskname) + del model + assert 'detection' in self.models + self.det_model = self.models['detection'] + + + def prepare(self, ctx_id, det_thresh=0.5, det_size=(640, 640), mode ='None'): + self.det_thresh = det_thresh + self.mode = mode + assert det_size is not None + print('set det-size:', det_size) + self.det_size = det_size + for taskname, model in self.models.items(): + if taskname=='detection': + model.prepare(ctx_id, input_size=det_size) + else: + model.prepare(ctx_id) + + def get(self, img, crop_size, max_num=0): + bboxes, kpss = self.det_model.detect(img, + threshold=self.det_thresh, + max_num=max_num, + metric='default') + if bboxes.shape[0] == 0: + return None + ret = [] + # for i in range(bboxes.shape[0]): + # bbox = bboxes[i, 0:4] + # det_score = bboxes[i, 4] + # kps = None + # if kpss is not None: + # kps = kpss[i] + # M, _ = face_align.estimate_norm(kps, crop_size, mode ='None') + # align_img = cv2.warpAffine(img, M, (crop_size, crop_size), borderValue=0.0) + align_img_list = [] + M_list = [] + for i in range(bboxes.shape[0]): + kps = None + if kpss is not None: + kps = kpss[i] + M, _ = face_align.estimate_norm(kps, crop_size, mode = self.mode) + align_img = cv2.warpAffine(img, M, (crop_size, crop_size), borderValue=0.0) + align_img_list.append(align_img) + M_list.append(M) + + # det_score = bboxes[..., 4] + + # best_index = np.argmax(det_score) + + # kps = None + # if kpss is not None: + # kps = kpss[best_index] + # M, _ = face_align.estimate_norm(kps, crop_size, mode ='None') + # align_img = cv2.warpAffine(img, M, (crop_size, crop_size), borderValue=0.0) + + return align_img_list, M_list diff --git a/mlflow/registry/Swimswap/insightface_func/face_detect_crop_single.py b/mlflow/registry/Swimswap/insightface_func/face_detect_crop_single.py new file mode 100644 index 0000000..f3f648f --- /dev/null +++ b/mlflow/registry/Swimswap/insightface_func/face_detect_crop_single.py @@ -0,0 +1,97 @@ +''' +Author: Naiyuan liu +Github: https://github.com/NNNNAI +Date: 2021-11-23 17:03:58 +LastEditors: Naiyuan liu +LastEditTime: 2021-11-24 16:46:04 +Description: +''' +from __future__ import division +import collections +import numpy as np +import glob +import os +import os.path as osp +import cv2 +from insightface.model_zoo import model_zoo +from insightface_func.utils import face_align_ffhqandnewarc as face_align + +__all__ = ['Face_detect_crop', 'Face'] + +Face = collections.namedtuple('Face', [ + 'bbox', 'kps', 'det_score', 'embedding', 'gender', 'age', + 'embedding_norm', 'normed_embedding', + 'landmark' +]) + +Face.__new__.__defaults__ = (None, ) * len(Face._fields) + + +class Face_detect_crop: + def __init__(self, name, root='~/.insightface_func/models'): + self.models = {} + root = os.path.expanduser(root) + onnx_files = glob.glob(osp.join(root, name, '*.onnx')) + onnx_files = sorted(onnx_files) + for onnx_file in onnx_files: + if onnx_file.find('_selfgen_')>0: + #print('ignore:', onnx_file) + continue + model = model_zoo.get_model(onnx_file) + if model.taskname not in self.models: + print('find model:', onnx_file, model.taskname) + self.models[model.taskname] = model + else: + print('duplicated model task type, ignore:', onnx_file, model.taskname) + del model + assert 'detection' in self.models + self.det_model = self.models['detection'] + + + def prepare(self, ctx_id, det_thresh=0.5, det_size=(640, 640), mode ='None'): + self.det_thresh = det_thresh + self.mode = mode + assert det_size is not None + print('set det-size:', det_size) + self.det_size = det_size + for taskname, model in self.models.items(): + if taskname=='detection': + model.prepare(ctx_id, input_size=det_size) + else: + model.prepare(ctx_id) + + def get(self, img, crop_size, max_num=0): + bboxes, kpss = self.det_model.detect(img, + threshold=self.det_thresh, + max_num=max_num, + metric='default') + if bboxes.shape[0] == 0: + return None + # ret = [] + # for i in range(bboxes.shape[0]): + # bbox = bboxes[i, 0:4] + # det_score = bboxes[i, 4] + # kps = None + # if kpss is not None: + # kps = kpss[i] + # M, _ = face_align.estimate_norm(kps, crop_size, mode ='None') + # align_img = cv2.warpAffine(img, M, (crop_size, crop_size), borderValue=0.0) + # for i in range(bboxes.shape[0]): + # kps = None + # if kpss is not None: + # kps = kpss[i] + # M, _ = face_align.estimate_norm(kps, crop_size, mode ='None') + # align_img = cv2.warpAffine(img, M, (crop_size, crop_size), borderValue=0.0) + + det_score = bboxes[..., 4] + + # select the face with the hightest detection score + best_index = np.argmax(det_score) + + kps = None + if kpss is not None: + kps = kpss[best_index] + M, _ = face_align.estimate_norm(kps, crop_size, mode = self.mode) + align_img = cv2.warpAffine(img, M, (crop_size, crop_size), borderValue=0.0) + + return [align_img], [M] diff --git a/mlflow/registry/Swimswap/insightface_func/utils/face_align_ffhqandnewarc.py b/mlflow/registry/Swimswap/insightface_func/utils/face_align_ffhqandnewarc.py new file mode 100644 index 0000000..2f5aeb7 --- /dev/null +++ b/mlflow/registry/Swimswap/insightface_func/utils/face_align_ffhqandnewarc.py @@ -0,0 +1,159 @@ +''' +Author: Naiyuan liu +Github: https://github.com/NNNNAI +Date: 2021-11-15 19:42:42 +LastEditors: Naiyuan liu +LastEditTime: 2021-11-15 20:01:47 +Description: +''' + +import cv2 +import numpy as np +from skimage import transform as trans + +src1 = np.array([[51.642, 50.115], [57.617, 49.990], [35.740, 69.007], + [51.157, 89.050], [57.025, 89.702]], + dtype=np.float32) +#<--left +src2 = np.array([[45.031, 50.118], [65.568, 50.872], [39.677, 68.111], + [45.177, 86.190], [64.246, 86.758]], + dtype=np.float32) + +#---frontal +src3 = np.array([[39.730, 51.138], [72.270, 51.138], [56.000, 68.493], + [42.463, 87.010], [69.537, 87.010]], + dtype=np.float32) + +#-->right +src4 = np.array([[46.845, 50.872], [67.382, 50.118], [72.737, 68.111], + [48.167, 86.758], [67.236, 86.190]], + dtype=np.float32) + +#-->right profile +src5 = np.array([[54.796, 49.990], [60.771, 50.115], [76.673, 69.007], + [55.388, 89.702], [61.257, 89.050]], + dtype=np.float32) + +src = np.array([src1, src2, src3, src4, src5]) +src_map = src + +ffhq_src = np.array([[192.98138, 239.94708], [318.90277, 240.1936], [256.63416, 314.01935], + [201.26117, 371.41043], [313.08905, 371.15118]]) +ffhq_src = np.expand_dims(ffhq_src, axis=0) + +# arcface_src = np.array( +# [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], +# [41.5493, 92.3655], [70.7299, 92.2041]], +# dtype=np.float32) + +# arcface_src = np.expand_dims(arcface_src, axis=0) + +# In[66]: + + +# lmk is prediction; src is template +def estimate_norm(lmk, image_size=112, mode='ffhq'): + assert lmk.shape == (5, 2) + tform = trans.SimilarityTransform() + lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1) + min_M = [] + min_index = [] + min_error = float('inf') + if mode == 'ffhq': + # assert image_size == 112 + src = ffhq_src * image_size / 512 + else: + src = src_map * image_size / 112 + for i in np.arange(src.shape[0]): + tform.estimate(lmk, src[i]) + M = tform.params[0:2, :] + results = np.dot(M, lmk_tran.T) + results = results.T + error = np.sum(np.sqrt(np.sum((results - src[i])**2, axis=1))) + # print(error) + if error < min_error: + min_error = error + min_M = M + min_index = i + return min_M, min_index + + +def norm_crop(img, landmark, image_size=112, mode='ffhq'): + if mode == 'Both': + M_None, _ = estimate_norm(landmark, image_size, mode = 'newarc') + M_ffhq, _ = estimate_norm(landmark, image_size, mode='ffhq') + warped_None = cv2.warpAffine(img, M_None, (image_size, image_size), borderValue=0.0) + warped_ffhq = cv2.warpAffine(img, M_ffhq, (image_size, image_size), borderValue=0.0) + return warped_ffhq, warped_None + else: + M, pose_index = estimate_norm(landmark, image_size, mode) + warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) + return warped + +def square_crop(im, S): + if im.shape[0] > im.shape[1]: + height = S + width = int(float(im.shape[1]) / im.shape[0] * S) + scale = float(S) / im.shape[0] + else: + width = S + height = int(float(im.shape[0]) / im.shape[1] * S) + scale = float(S) / im.shape[1] + resized_im = cv2.resize(im, (width, height)) + det_im = np.zeros((S, S, 3), dtype=np.uint8) + det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im + return det_im, scale + + +def transform(data, center, output_size, scale, rotation): + scale_ratio = scale + rot = float(rotation) * np.pi / 180.0 + #translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio) + t1 = trans.SimilarityTransform(scale=scale_ratio) + cx = center[0] * scale_ratio + cy = center[1] * scale_ratio + t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy)) + t3 = trans.SimilarityTransform(rotation=rot) + t4 = trans.SimilarityTransform(translation=(output_size / 2, + output_size / 2)) + t = t1 + t2 + t3 + t4 + M = t.params[0:2] + cropped = cv2.warpAffine(data, + M, (output_size, output_size), + borderValue=0.0) + return cropped, M + + +def trans_points2d(pts, M): + new_pts = np.zeros(shape=pts.shape, dtype=np.float32) + for i in range(pts.shape[0]): + pt = pts[i] + new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) + new_pt = np.dot(M, new_pt) + #print('new_pt', new_pt.shape, new_pt) + new_pts[i] = new_pt[0:2] + + return new_pts + + +def trans_points3d(pts, M): + scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1]) + #print(scale) + new_pts = np.zeros(shape=pts.shape, dtype=np.float32) + for i in range(pts.shape[0]): + pt = pts[i] + new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) + new_pt = np.dot(M, new_pt) + #print('new_pt', new_pt.shape, new_pt) + new_pts[i][0:2] = new_pt[0:2] + new_pts[i][2] = pts[i][2] * scale + + return new_pts + + +def trans_points(pts, M): + if pts.shape[1] == 2: + return trans_points2d(pts, M) + else: + return trans_points3d(pts, M) + diff --git a/mlflow/registry/Swimswap/model_registry.py b/mlflow/registry/Swimswap/model_registry.py new file mode 100644 index 0000000..aa9f9b5 --- /dev/null +++ b/mlflow/registry/Swimswap/model_registry.py @@ -0,0 +1,66 @@ +import cv2 +import torch +import fractions +import numpy as np +from PIL import Image +import torch.nn.functional as F +from torchvision import transforms +from models.models import create_model +from options.test_options import TestOptions +# from insightface_func.face_detect_crop_single import Face_detect_crop +# from util.gifswap import gif_swap +import os + +import mlflow + +os.environ["MLFLOW_S3_ENDPOINT_URL"] = "http://223.130.133.236:9000" +os.environ["MLFLOW_TRACKING_URI"] = "http://223.130.133.236:5001" +os.environ["AWS_ACCESS_KEY_ID"] = "minio" +os.environ["AWS_SECRET_ACCESS_KEY"] = "miniostorage" +mlflow.set_experiment("Swimswap") + + +def lcm(a, b): return abs(a * b) / fractions.gcd(a, b) if a and b else 0 + +transformer = transforms.Compose([ + transforms.ToTensor(), + #transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) + ]) + +transformer_Arcface = transforms.Compose([ + transforms.ToTensor(), + transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) + ]) + +# detransformer = transforms.Compose([ +# transforms.Normalize([0, 0, 0], [1/0.229, 1/0.224, 1/0.225]), +# transforms.Normalize([-0.485, -0.456, -0.406], [1, 1, 1]) +# ]) + +def main(): + opt = TestOptions().parse() + + start_epoch, epoch_iter = 1, 0 + crop_size = opt.crop_size + + torch.nn.Module.dump_patches = True + if crop_size == 512: + opt.which_epoch = 550000 + opt.name = '512' + mode = 'ffhq' + else: + mode = 'None' + model = create_model(opt) + model.eval() + + + with mlflow.start_run(): + mlflow.pytorch.log_model( + pytorch_model=model, + artifact_path = "swimswap_pytorch", + # signature= signature, + # input_example = input_sample, + # pip_requirements = "rec.txt" + ) +if __name__ == "__main__": + main() \ No newline at end of file diff --git a/mlflow/registry/Swimswap/models/__init__.py b/mlflow/registry/Swimswap/models/__init__.py new file mode 100644 index 0000000..289de91 --- /dev/null +++ b/mlflow/registry/Swimswap/models/__init__.py @@ -0,0 +1,4 @@ +from .arcface_models import ArcMarginModel +from .arcface_models import ResNet +from .arcface_models import IRBlock +from .arcface_models import SEBlock \ No newline at end of file diff --git a/mlflow/registry/Swimswap/models/arcface_models.py b/mlflow/registry/Swimswap/models/arcface_models.py new file mode 100644 index 0000000..39a6ac5 --- /dev/null +++ b/mlflow/registry/Swimswap/models/arcface_models.py @@ -0,0 +1,163 @@ +import math +import torch +import torch.nn.functional as F +from torch import nn +from torch.nn import Parameter +from .config import device, num_classes + + + +class SEBlock(nn.Module): + def __init__(self, channel, reduction=16): + super(SEBlock, self).__init__() + self.avg_pool = nn.AdaptiveAvgPool2d(1) + self.fc = nn.Sequential( + nn.Linear(channel, channel // reduction), + nn.PReLU(), + nn.Linear(channel // reduction, channel), + nn.Sigmoid() + ) + + def forward(self, x): + b, c, _, _ = x.size() + y = self.avg_pool(x).view(b, c) + y = self.fc(y).view(b, c, 1, 1) + return x * y + + +class IRBlock(nn.Module): + expansion = 1 + + def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True): + super(IRBlock, self).__init__() + self.bn0 = nn.BatchNorm2d(inplanes) + self.conv1 = conv3x3(inplanes, inplanes) + self.bn1 = nn.BatchNorm2d(inplanes) + self.prelu = nn.PReLU() + self.conv2 = conv3x3(inplanes, planes, stride) + self.bn2 = nn.BatchNorm2d(planes) + self.downsample = downsample + self.stride = stride + self.use_se = use_se + if self.use_se: + self.se = SEBlock(planes) + + def forward(self, x): + residual = x + out = self.bn0(x) + out = self.conv1(out) + out = self.bn1(out) + out = self.prelu(out) + + out = self.conv2(out) + out = self.bn2(out) + if self.use_se: + out = self.se(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.prelu(out) + + return out + + +class ResNet(nn.Module): + + def __init__(self, block, layers, use_se=True): + self.inplanes = 64 + self.use_se = use_se + super(ResNet, self).__init__() + self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, bias=False) + self.bn1 = nn.BatchNorm2d(64) + self.prelu = nn.PReLU() + self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2) + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) + self.layer3 = self._make_layer(block, 256, layers[2], stride=2) + self.layer4 = self._make_layer(block, 512, layers[3], stride=2) + self.bn2 = nn.BatchNorm2d(512) + self.dropout = nn.Dropout() + self.fc = nn.Linear(512 * 7 * 7, 512) + self.bn3 = nn.BatchNorm1d(512) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.xavier_normal_(m.weight) + elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.Linear): + nn.init.xavier_normal_(m.weight) + nn.init.constant_(m.bias, 0) + + def _make_layer(self, block, planes, blocks, stride=1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d(self.inplanes, planes * block.expansion, + kernel_size=1, stride=stride, bias=False), + nn.BatchNorm2d(planes * block.expansion), + ) + + layers = [] + layers.append(block(self.inplanes, planes, stride, downsample, use_se=self.use_se)) + self.inplanes = planes + for i in range(1, blocks): + layers.append(block(self.inplanes, planes, use_se=self.use_se)) + + return nn.Sequential(*layers) + + def forward(self, x): + x = self.conv1(x) + x = self.bn1(x) + x = self.prelu(x) + x = self.maxpool(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + + x = self.bn2(x) + x = self.dropout(x) + # feature = x + x = x.view(x.size(0), -1) + x = self.fc(x) + x = self.bn3(x) + + return x + + +class ArcMarginModel(nn.Module): + def __init__(self, args): + super(ArcMarginModel, self).__init__() + + self.weight = Parameter(torch.FloatTensor(num_classes, args.emb_size)) + nn.init.xavier_uniform_(self.weight) + + self.easy_margin = args.easy_margin + self.m = args.margin_m + self.s = args.margin_s + + self.cos_m = math.cos(self.m) + self.sin_m = math.sin(self.m) + self.th = math.cos(math.pi - self.m) + self.mm = math.sin(math.pi - self.m) * self.m + + def forward(self, input, label): + x = F.normalize(input) + W = F.normalize(self.weight) + cosine = F.linear(x, W) + sine = torch.sqrt(1.0 - torch.pow(cosine, 2)) + phi = cosine * self.cos_m - sine * self.sin_m # cos(theta + m) + if self.easy_margin: + phi = torch.where(cosine > 0, phi, cosine) + else: + phi = torch.where(cosine > self.th, phi, cosine - self.mm) + one_hot = torch.zeros(cosine.size(), device=device) + one_hot.scatter_(1, label.view(-1, 1).long(), 1) + output = (one_hot * phi) + ((1.0 - one_hot) * cosine) + output *= self.s + return output \ No newline at end of file diff --git a/mlflow/registry/Swimswap/models/base_model.py b/mlflow/registry/Swimswap/models/base_model.py new file mode 100644 index 0000000..0a6474a --- /dev/null +++ b/mlflow/registry/Swimswap/models/base_model.py @@ -0,0 +1,138 @@ +import os +import torch +import sys + +class BaseModel(torch.nn.Module): + def name(self): + return 'BaseModel' + + def initialize(self, opt): + self.opt = opt + self.gpu_ids = opt.gpu_ids + self.isTrain = opt.isTrain + self.Tensor = torch.cuda.FloatTensor if self.gpu_ids else torch.Tensor + self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) + + def set_input(self, input): + self.input = input + + def forward(self): + pass + + # used in test time, no backprop + def test(self): + pass + + def get_image_paths(self): + pass + + def optimize_parameters(self): + pass + + def get_current_visuals(self): + return self.input + + def get_current_errors(self): + return {} + + def save(self, label): + pass + + # helper saving function that can be used by subclasses + def save_network(self, network, network_label, epoch_label, gpu_ids=None): + save_filename = '{}_net_{}.pth'.format(epoch_label, network_label) + save_path = os.path.join(self.save_dir, save_filename) + torch.save(network.cpu().state_dict(), save_path) + if torch.cuda.is_available(): + network.cuda() + + def save_optim(self, network, network_label, epoch_label, gpu_ids=None): + save_filename = '{}_optim_{}.pth'.format(epoch_label, network_label) + save_path = os.path.join(self.save_dir, save_filename) + torch.save(network.state_dict(), save_path) + + + # helper loading function that can be used by subclasses + def load_network(self, network, network_label, epoch_label, save_dir=''): + save_filename = '%s_net_%s.pth' % (epoch_label, network_label) + if not save_dir: + save_dir = self.save_dir + save_path = os.path.join(save_dir, save_filename) + if not os.path.isfile(save_path): + print('%s not exists yet!' % save_path) + if network_label == 'G': + raise('Generator must exist!') + else: + #network.load_state_dict(torch.load(save_path)) + try: + network.load_state_dict(torch.load(save_path)) + except: + pretrained_dict = torch.load(save_path) + model_dict = network.state_dict() + try: + pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} + network.load_state_dict(pretrained_dict) + if self.opt.verbose: + print('Pretrained network %s has excessive layers; Only loading layers that are used' % network_label) + except: + print('Pretrained network %s has fewer layers; The following are not initialized:' % network_label) + for k, v in pretrained_dict.items(): + if v.size() == model_dict[k].size(): + model_dict[k] = v + + if sys.version_info >= (3,0): + not_initialized = set() + else: + from sets import Set + not_initialized = Set() + + for k, v in model_dict.items(): + if k not in pretrained_dict or v.size() != pretrained_dict[k].size(): + not_initialized.add(k.split('.')[0]) + + print(sorted(not_initialized)) + network.load_state_dict(model_dict) + + # helper loading function that can be used by subclasses + def load_optim(self, network, network_label, epoch_label, save_dir=''): + save_filename = '%s_optim_%s.pth' % (epoch_label, network_label) + if not save_dir: + save_dir = self.save_dir + save_path = os.path.join(save_dir, save_filename) + if not os.path.isfile(save_path): + print('%s not exists yet!' % save_path) + if network_label == 'G': + raise('Generator must exist!') + else: + #network.load_state_dict(torch.load(save_path)) + try: + network.load_state_dict(torch.load(save_path, map_location=torch.device("cpu"))) + except: + pretrained_dict = torch.load(save_path, map_location=torch.device("cpu")) + model_dict = network.state_dict() + try: + pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} + network.load_state_dict(pretrained_dict) + if self.opt.verbose: + print('Pretrained network %s has excessive layers; Only loading layers that are used' % network_label) + except: + print('Pretrained network %s has fewer layers; The following are not initialized:' % network_label) + for k, v in pretrained_dict.items(): + if v.size() == model_dict[k].size(): + model_dict[k] = v + + if sys.version_info >= (3,0): + not_initialized = set() + else: + from sets import Set + not_initialized = Set() + + for k, v in model_dict.items(): + if k not in pretrained_dict or v.size() != pretrained_dict[k].size(): + not_initialized.add(k.split('.')[0]) + + print(sorted(not_initialized)) + network.load_state_dict(model_dict) + + def update_learning_rate(): + pass diff --git a/mlflow/registry/Swimswap/models/config.py b/mlflow/registry/Swimswap/models/config.py new file mode 100644 index 0000000..eb83edb --- /dev/null +++ b/mlflow/registry/Swimswap/models/config.py @@ -0,0 +1,28 @@ +import os + +import torch + +device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # sets device for model and PyTorch tensors + +# Model parameters +image_w = 112 +image_h = 112 +channel = 3 +emb_size = 512 + +# Training parameters +num_workers = 1 # for data-loading; right now, only 1 works with h5py +grad_clip = 5. # clip gradients at an absolute value of +print_freq = 100 # print training/validation stats every __ batches +checkpoint = None # path to checkpoint, None if none + +# Data parameters +num_classes = 93431 +num_samples = 5179510 +DATA_DIR = 'data' +# faces_ms1m_folder = 'data/faces_ms1m_112x112' +faces_ms1m_folder = 'data/ms1m-retinaface-t1' +path_imgidx = os.path.join(faces_ms1m_folder, 'train.idx') +path_imgrec = os.path.join(faces_ms1m_folder, 'train.rec') +IMG_DIR = 'data/images' +pickle_file = 'data/faces_ms1m_112x112.pickle' diff --git a/mlflow/registry/Swimswap/models/fs_model.py b/mlflow/registry/Swimswap/models/fs_model.py new file mode 100644 index 0000000..95ac877 --- /dev/null +++ b/mlflow/registry/Swimswap/models/fs_model.py @@ -0,0 +1,242 @@ +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +import os +from torch.autograd import Variable +from .base_model import BaseModel +from . import networks + +class SpecificNorm(nn.Module): + def __init__(self, epsilon=1e-8): + """ + @notice: avoid in-place ops. + https://discuss.pytorch.org/t/encounter-the-runtimeerror-one-of-the-variables-needed-for-gradient-computation-has-been-modified-by-an-inplace-operation/836/3 + """ + super(SpecificNorm, self).__init__() + self.mean = np.array([0.485, 0.456, 0.406]) + self.mean = torch.from_numpy(self.mean).float().cuda() + self.mean = self.mean.view([1, 3, 1, 1]) + + self.std = np.array([0.229, 0.224, 0.225]) + self.std = torch.from_numpy(self.std).float().cuda() + self.std = self.std.view([1, 3, 1, 1]) + + def forward(self, x): + mean = self.mean.expand([1, 3, x.shape[2], x.shape[3]]) + std = self.std.expand([1, 3, x.shape[2], x.shape[3]]) + + x = (x - mean) / std + + return x + +class fsModel(BaseModel): + def name(self): + return 'fsModel' + + def init_loss_filter(self, use_gan_feat_loss, use_vgg_loss): + flags = (True, use_gan_feat_loss, use_vgg_loss, True, True, True, True, True) + + def loss_filter(g_gan, g_gan_feat, g_vgg, g_id, g_rec, g_mask, d_real, d_fake): + return [l for (l, f) in zip((g_gan, g_gan_feat, g_vgg, g_id, g_rec, g_mask, d_real, d_fake), flags) if f] + + return loss_filter + + def initialize(self, opt): + BaseModel.initialize(self, opt) + if opt.resize_or_crop != 'none' or not opt.isTrain: # when training at full res this causes OOM + torch.backends.cudnn.benchmark = True + self.isTrain = opt.isTrain + + device = torch.device("cuda:0") + + if opt.crop_size == 224: + from .fs_networks import Generator_Adain_Upsample, Discriminator + elif opt.crop_size == 512: + from .fs_networks_512 import Generator_Adain_Upsample, Discriminator + + # Generator network + self.netG = Generator_Adain_Upsample(input_nc=3, output_nc=3, latent_size=512, n_blocks=9, deep=False) + self.netG.to(device) + + # Id network + netArc_checkpoint = opt.Arc_path + netArc_checkpoint = torch.load(netArc_checkpoint, map_location=torch.device("cpu")) + self.netArc = netArc_checkpoint + self.netArc = self.netArc.to(device) + self.netArc.eval() + + if not self.isTrain: + pretrained_path = '' if not self.isTrain else opt.load_pretrain + self.load_network(self.netG, 'G', opt.which_epoch, pretrained_path) + return + + # Discriminator network + if opt.gan_mode == 'original': + use_sigmoid = True + else: + use_sigmoid = False + self.netD1 = Discriminator(input_nc=3, use_sigmoid=use_sigmoid) + self.netD2 = Discriminator(input_nc=3, use_sigmoid=use_sigmoid) + self.netD1.to(device) + self.netD2.to(device) + + # + self.spNorm =SpecificNorm() + self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False) + + # load networks + if opt.continue_train or opt.load_pretrain: + pretrained_path = '' if not self.isTrain else opt.load_pretrain + # print (pretrained_path) + self.load_network(self.netG, 'G', opt.which_epoch, pretrained_path) + self.load_network(self.netD1, 'D1', opt.which_epoch, pretrained_path) + self.load_network(self.netD2, 'D2', opt.which_epoch, pretrained_path) + + + + if self.isTrain: + # define loss functions + self.loss_filter = self.init_loss_filter(not opt.no_ganFeat_loss, not opt.no_vgg_loss) + + self.criterionGAN = networks.GANLoss(opt.gan_mode, tensor=self.Tensor, opt=self.opt) + self.criterionFeat = nn.L1Loss() + self.criterionRec = nn.L1Loss() + + # Names so we can breakout loss + self.loss_names = self.loss_filter('G_GAN', 'G_GAN_Feat', 'G_VGG', 'G_ID', 'G_Rec', 'D_GP', + 'D_real', 'D_fake') + + # initialize optimizers + + # optimizer G + params = list(self.netG.parameters()) + self.optimizer_G = torch.optim.Adam(params, lr=opt.lr, betas=(opt.beta1, 0.999)) + + # optimizer D + params = list(self.netD1.parameters()) + list(self.netD2.parameters()) + self.optimizer_D = torch.optim.Adam(params, lr=opt.lr, betas=(opt.beta1, 0.999)) + + def _gradinet_penalty_D(self, netD, img_att, img_fake): + # interpolate sample + bs = img_fake.shape[0] + alpha = torch.rand(bs, 1, 1, 1).expand_as(img_fake).cuda() + interpolated = Variable(alpha * img_att + (1 - alpha) * img_fake, requires_grad=True) + pred_interpolated = netD.forward(interpolated) + pred_interpolated = pred_interpolated[-1] + + # compute gradients + grad = torch.autograd.grad(outputs=pred_interpolated, + inputs=interpolated, + grad_outputs=torch.ones(pred_interpolated.size()).cuda(), + retain_graph=True, + create_graph=True, + only_inputs=True)[0] + + # penalize gradients + grad = grad.view(grad.size(0), -1) + grad_l2norm = torch.sqrt(torch.sum(grad ** 2, dim=1)) + loss_d_gp = torch.mean((grad_l2norm - 1) ** 2) + + return loss_d_gp + + def cosin_metric(self, x1, x2): + #return np.dot(x1, x2) / (np.linalg.norm(x1) * np.linalg.norm(x2)) + return torch.sum(x1 * x2, dim=1) / (torch.norm(x1, dim=1) * torch.norm(x2, dim=1)) + + def forward(self, img_id, img_att, latent_id, latent_att, for_G=False): + loss_D_fake, loss_D_real, loss_D_GP = 0, 0, 0 + loss_G_GAN, loss_G_GAN_Feat, loss_G_VGG, loss_G_ID, loss_G_Rec = 0,0,0,0,0 + + img_fake = self.netG.forward(img_att, latent_id) + if not self.isTrain: + return img_fake + img_fake_downsample = self.downsample(img_fake) + img_att_downsample = self.downsample(img_att) + + + + # D_Fake + fea1_fake = self.netD1.forward(img_fake.detach()) + fea2_fake = self.netD2.forward(img_fake_downsample.detach()) + pred_fake = [fea1_fake, fea2_fake] + loss_D_fake = self.criterionGAN(pred_fake, False, for_discriminator=True) + + + # D_Feal + fea1_real = self.netD1.forward(img_att) + fea2_real = self.netD2.forward(img_att_downsample) + pred_real = [fea1_real, fea2_real] + fea_real = [fea1_real, fea2_real] + loss_D_real = self.criterionGAN(pred_real, True, for_discriminator=True) + #print('=====================D_Real========================') + + # D_GP + + loss_D_GP = 0 + + # G_GAN + fea1_fake = self.netD1.forward(img_fake) + fea2_fake = self.netD2.forward(img_fake_downsample) + #pred_fake = [fea1_fake[-1], fea2_fake[-1]] + pred_fake = [fea1_fake, fea2_fake] + fea_fake = [fea1_fake, fea2_fake] + loss_G_GAN = self.criterionGAN(pred_fake, True, for_discriminator=False) + + # GAN feature matching loss + n_layers_D = 4 + num_D = 2 + if not self.opt.no_ganFeat_loss: + feat_weights = 4.0 / (n_layers_D + 1) + D_weights = 1.0 / num_D + for i in range(num_D): + for j in range(0, len(fea_fake[i]) - 1): + loss_G_GAN_Feat += D_weights * feat_weights * \ + self.criterionFeat(fea_fake[i][j], + fea_real[i][j].detach()) * self.opt.lambda_feat + + + #G_ID + img_fake_down = F.interpolate(img_fake, size=(112,112)) + img_fake_down = self.spNorm(img_fake_down) + latent_fake = self.netArc(img_fake_down) + loss_G_ID = (1 - self.cosin_metric(latent_fake, latent_id)) + #print('=====================G_ID========================') + #print(loss_G_ID) + + #G_Rec + loss_G_Rec = self.criterionRec(img_fake, img_att) * self.opt.lambda_rec + + # Only return the fake_B image if necessary to save BW + return [self.loss_filter(loss_G_GAN, loss_G_GAN_Feat, loss_G_VGG, loss_G_ID, loss_G_Rec, loss_D_GP, loss_D_real, loss_D_fake), + img_fake] + + + def save(self, which_epoch): + self.save_network(self.netG, 'G', which_epoch, self.gpu_ids) + self.save_network(self.netD1, 'D1', which_epoch, self.gpu_ids) + self.save_network(self.netD2, 'D2', which_epoch, self.gpu_ids) + '''if self.gen_features: + self.save_network(self.netE, 'E', which_epoch, self.gpu_ids)''' + + def update_fixed_params(self): + # after fixing the global generator for a number of iterations, also start finetuning it + params = list(self.netG.parameters()) + if self.gen_features: + params += list(self.netE.parameters()) + self.optimizer_G = torch.optim.Adam(params, lr=self.opt.lr, betas=(self.opt.beta1, 0.999)) + if self.opt.verbose: + print('------------ Now also finetuning global generator -----------') + + def update_learning_rate(self): + lrd = self.opt.lr / self.opt.niter_decay + lr = self.old_lr - lrd + for param_group in self.optimizer_D.param_groups: + param_group['lr'] = lr + for param_group in self.optimizer_G.param_groups: + param_group['lr'] = lr + if self.opt.verbose: + print('update learning rate: %f -> %f' % (self.old_lr, lr)) + self.old_lr = lr + + diff --git a/mlflow/registry/Swimswap/models/fs_networks.py b/mlflow/registry/Swimswap/models/fs_networks.py new file mode 100644 index 0000000..227f6fa --- /dev/null +++ b/mlflow/registry/Swimswap/models/fs_networks.py @@ -0,0 +1,215 @@ +""" +Copyright (C) 2019 NVIDIA Corporation. All rights reserved. +Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). +""" + +import torch +import torch.nn as nn + + +class InstanceNorm(nn.Module): + def __init__(self, epsilon=1e-8): + """ + @notice: avoid in-place ops. + https://discuss.pytorch.org/t/encounter-the-runtimeerror-one-of-the-variables-needed-for-gradient-computation-has-been-modified-by-an-inplace-operation/836/3 + """ + super(InstanceNorm, self).__init__() + self.epsilon = epsilon + + def forward(self, x): + x = x - torch.mean(x, (2, 3), True) + tmp = torch.mul(x, x) # or x ** 2 + tmp = torch.rsqrt(torch.mean(tmp, (2, 3), True) + self.epsilon) + return x * tmp + +class ApplyStyle(nn.Module): + """ + @ref: https://github.com/lernapparat/lernapparat/blob/master/style_gan/pytorch_style_gan.ipynb + """ + def __init__(self, latent_size, channels): + super(ApplyStyle, self).__init__() + self.linear = nn.Linear(latent_size, channels * 2) + + def forward(self, x, latent): + style = self.linear(latent) # style => [batch_size, n_channels*2] + shape = [-1, 2, x.size(1), 1, 1] + style = style.view(shape) # [batch_size, 2, n_channels, ...] + #x = x * (style[:, 0] + 1.) + style[:, 1] + x = x * (style[:, 0] * 1 + 1.) + style[:, 1] * 1 + return x + +class ResnetBlock_Adain(nn.Module): + def __init__(self, dim, latent_size, padding_type, activation=nn.ReLU(True)): + super(ResnetBlock_Adain, self).__init__() + + p = 0 + conv1 = [] + if padding_type == 'reflect': + conv1 += [nn.ReflectionPad2d(1)] + elif padding_type == 'replicate': + conv1 += [nn.ReplicationPad2d(1)] + elif padding_type == 'zero': + p = 1 + else: + raise NotImplementedError('padding [%s] is not implemented' % padding_type) + conv1 += [nn.Conv2d(dim, dim, kernel_size=3, padding = p), InstanceNorm()] + self.conv1 = nn.Sequential(*conv1) + self.style1 = ApplyStyle(latent_size, dim) + self.act1 = activation + + p = 0 + conv2 = [] + if padding_type == 'reflect': + conv2 += [nn.ReflectionPad2d(1)] + elif padding_type == 'replicate': + conv2 += [nn.ReplicationPad2d(1)] + elif padding_type == 'zero': + p = 1 + else: + raise NotImplementedError('padding [%s] is not implemented' % padding_type) + conv2 += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), InstanceNorm()] + self.conv2 = nn.Sequential(*conv2) + self.style2 = ApplyStyle(latent_size, dim) + + + def forward(self, x, dlatents_in_slice): + y = self.conv1(x) + y = self.style1(y, dlatents_in_slice) + y = self.act1(y) + y = self.conv2(y) + y = self.style2(y, dlatents_in_slice) + out = x + y + return out + + + +class Generator_Adain_Upsample(nn.Module): + def __init__(self, input_nc, output_nc, latent_size, n_blocks=6, deep=False, + norm_layer=nn.BatchNorm2d, + padding_type='reflect'): + assert (n_blocks >= 0) + super(Generator_Adain_Upsample, self).__init__() + activation = nn.ReLU(True) + self.deep = deep + + self.first_layer = nn.Sequential(nn.ReflectionPad2d(3), nn.Conv2d(input_nc, 64, kernel_size=7, padding=0), + norm_layer(64), activation) + ### downsample + self.down1 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1), + norm_layer(128), activation) + self.down2 = nn.Sequential(nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1), + norm_layer(256), activation) + self.down3 = nn.Sequential(nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1), + norm_layer(512), activation) + if self.deep: + self.down4 = nn.Sequential(nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1), + norm_layer(512), activation) + + ### resnet blocks + BN = [] + for i in range(n_blocks): + BN += [ + ResnetBlock_Adain(512, latent_size=latent_size, padding_type=padding_type, activation=activation)] + self.BottleNeck = nn.Sequential(*BN) + + if self.deep: + self.up4 = nn.Sequential( + nn.Upsample(scale_factor=2, mode='bilinear'), + nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), + nn.BatchNorm2d(512), activation + ) + self.up3 = nn.Sequential( + nn.Upsample(scale_factor=2, mode='bilinear'), + nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1), + nn.BatchNorm2d(256), activation + ) + self.up2 = nn.Sequential( + nn.Upsample(scale_factor=2, mode='bilinear'), + nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1), + nn.BatchNorm2d(128), activation + ) + self.up1 = nn.Sequential( + nn.Upsample(scale_factor=2, mode='bilinear'), + nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1), + nn.BatchNorm2d(64), activation + ) + self.last_layer = nn.Sequential(nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, kernel_size=7, padding=0), + nn.Tanh()) + + def forward(self, input, dlatents): + x = input # 3*224*224 + + skip1 = self.first_layer(x) + skip2 = self.down1(skip1) + skip3 = self.down2(skip2) + if self.deep: + skip4 = self.down3(skip3) + x = self.down4(skip4) + else: + x = self.down3(skip3) + + for i in range(len(self.BottleNeck)): + x = self.BottleNeck[i](x, dlatents) + + if self.deep: + x = self.up4(x) + x = self.up3(x) + x = self.up2(x) + x = self.up1(x) + x = self.last_layer(x) + x = (x + 1) / 2 + + return x + +class Discriminator(nn.Module): + def __init__(self, input_nc, norm_layer=nn.BatchNorm2d, use_sigmoid=False): + super(Discriminator, self).__init__() + + kw = 4 + padw = 1 + self.down1 = nn.Sequential( + nn.Conv2d(input_nc, 64, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True) + ) + self.down2 = nn.Sequential( + nn.Conv2d(64, 128, kernel_size=kw, stride=2, padding=padw), + norm_layer(128), nn.LeakyReLU(0.2, True) + ) + self.down3 = nn.Sequential( + nn.Conv2d(128, 256, kernel_size=kw, stride=2, padding=padw), + norm_layer(256), nn.LeakyReLU(0.2, True) + ) + self.down4 = nn.Sequential( + nn.Conv2d(256, 512, kernel_size=kw, stride=2, padding=padw), + norm_layer(512), nn.LeakyReLU(0.2, True) + ) + self.conv1 = nn.Sequential( + nn.Conv2d(512, 512, kernel_size=kw, stride=1, padding=padw), + norm_layer(512), + nn.LeakyReLU(0.2, True) + ) + + if use_sigmoid: + self.conv2 = nn.Sequential( + nn.Conv2d(512, 1, kernel_size=kw, stride=1, padding=padw), nn.Sigmoid() + ) + else: + self.conv2 = nn.Sequential( + nn.Conv2d(512, 1, kernel_size=kw, stride=1, padding=padw) + ) + + def forward(self, input): + out = [] + x = self.down1(input) + out.append(x) + x = self.down2(x) + out.append(x) + x = self.down3(x) + out.append(x) + x = self.down4(x) + out.append(x) + x = self.conv1(x) + out.append(x) + x = self.conv2(x) + out.append(x) + + return out \ No newline at end of file diff --git a/mlflow/registry/Swimswap/models/fs_networks_512.py b/mlflow/registry/Swimswap/models/fs_networks_512.py new file mode 100644 index 0000000..1b9f9c8 --- /dev/null +++ b/mlflow/registry/Swimswap/models/fs_networks_512.py @@ -0,0 +1,232 @@ +''' +Author: Naiyuan liu +Github: https://github.com/NNNNAI +Date: 2021-11-23 16:55:48 +LastEditors: Naiyuan liu +LastEditTime: 2021-11-24 16:58:06 +Description: +''' +""" +Copyright (C) 2019 NVIDIA Corporation. All rights reserved. +Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). +""" + +import torch +import torch.nn as nn + + +class InstanceNorm(nn.Module): + def __init__(self, epsilon=1e-8): + """ + @notice: avoid in-place ops. + https://discuss.pytorch.org/t/encounter-the-runtimeerror-one-of-the-variables-needed-for-gradient-computation-has-been-modified-by-an-inplace-operation/836/3 + """ + super(InstanceNorm, self).__init__() + self.epsilon = epsilon + + def forward(self, x): + x = x - torch.mean(x, (2, 3), True) + tmp = torch.mul(x, x) # or x ** 2 + tmp = torch.rsqrt(torch.mean(tmp, (2, 3), True) + self.epsilon) + return x * tmp + +class ApplyStyle(nn.Module): + """ + @ref: https://github.com/lernapparat/lernapparat/blob/master/style_gan/pytorch_style_gan.ipynb + """ + def __init__(self, latent_size, channels): + super(ApplyStyle, self).__init__() + self.linear = nn.Linear(latent_size, channels * 2) + + def forward(self, x, latent): + style = self.linear(latent) # style => [batch_size, n_channels*2] + shape = [-1, 2, x.size(1), 1, 1] + style = style.view(shape) # [batch_size, 2, n_channels, ...] + #x = x * (style[:, 0] + 1.) + style[:, 1] + x = x * (style[:, 0] * 1 + 1.) + style[:, 1] * 1 + return x + +class ResnetBlock_Adain(nn.Module): + def __init__(self, dim, latent_size, padding_type, activation=nn.ReLU(True)): + super(ResnetBlock_Adain, self).__init__() + + p = 0 + conv1 = [] + if padding_type == 'reflect': + conv1 += [nn.ReflectionPad2d(1)] + elif padding_type == 'replicate': + conv1 += [nn.ReplicationPad2d(1)] + elif padding_type == 'zero': + p = 1 + else: + raise NotImplementedError('padding [%s] is not implemented' % padding_type) + conv1 += [nn.Conv2d(dim, dim, kernel_size=3, padding = p), InstanceNorm()] + self.conv1 = nn.Sequential(*conv1) + self.style1 = ApplyStyle(latent_size, dim) + self.act1 = activation + + p = 0 + conv2 = [] + if padding_type == 'reflect': + conv2 += [nn.ReflectionPad2d(1)] + elif padding_type == 'replicate': + conv2 += [nn.ReplicationPad2d(1)] + elif padding_type == 'zero': + p = 1 + else: + raise NotImplementedError('padding [%s] is not implemented' % padding_type) + conv2 += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), InstanceNorm()] + self.conv2 = nn.Sequential(*conv2) + self.style2 = ApplyStyle(latent_size, dim) + + + def forward(self, x, dlatents_in_slice): + y = self.conv1(x) + y = self.style1(y, dlatents_in_slice) + y = self.act1(y) + y = self.conv2(y) + y = self.style2(y, dlatents_in_slice) + out = x + y + return out + + + +class Generator_Adain_Upsample(nn.Module): + def __init__(self, input_nc, output_nc, latent_size, n_blocks=6, deep=False, + norm_layer=nn.BatchNorm2d, + padding_type='reflect'): + assert (n_blocks >= 0) + super(Generator_Adain_Upsample, self).__init__() + activation = nn.ReLU(True) + self.deep = deep + + self.first_layer = nn.Sequential(nn.ReflectionPad2d(3), nn.Conv2d(input_nc, 32, kernel_size=7, padding=0), + norm_layer(32), activation) + ### downsample + self.down0 = nn.Sequential(nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1), + norm_layer(64), activation) + self.down1 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1), + norm_layer(128), activation) + self.down2 = nn.Sequential(nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1), + norm_layer(256), activation) + self.down3 = nn.Sequential(nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1), + norm_layer(512), activation) + if self.deep: + self.down4 = nn.Sequential(nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1), + norm_layer(512), activation) + + ### resnet blocks + BN = [] + for i in range(n_blocks): + BN += [ + ResnetBlock_Adain(512, latent_size=latent_size, padding_type=padding_type, activation=activation)] + self.BottleNeck = nn.Sequential(*BN) + + if self.deep: + self.up4 = nn.Sequential( + nn.Upsample(scale_factor=2, mode='bilinear'), + nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), + nn.BatchNorm2d(512), activation + ) + self.up3 = nn.Sequential( + nn.Upsample(scale_factor=2, mode='bilinear'), + nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1), + nn.BatchNorm2d(256), activation + ) + self.up2 = nn.Sequential( + nn.Upsample(scale_factor=2, mode='bilinear'), + nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1), + nn.BatchNorm2d(128), activation + ) + self.up1 = nn.Sequential( + nn.Upsample(scale_factor=2, mode='bilinear'), + nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1), + nn.BatchNorm2d(64), activation + ) + self.up0 = nn.Sequential( + nn.Upsample(scale_factor=2, mode='bilinear'), + nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1), + nn.BatchNorm2d(32), activation + ) + self.last_layer = nn.Sequential(nn.ReflectionPad2d(3), nn.Conv2d(32, output_nc, kernel_size=7, padding=0), + nn.Tanh()) + + def forward(self, input, dlatents): + x = input # 3*224*224 + + skip0 = self.first_layer(x) + skip1 = self.down0(skip0) + skip2 = self.down1(skip1) + skip3 = self.down2(skip2) + if self.deep: + skip4 = self.down3(skip3) + x = self.down4(skip4) + else: + x = self.down3(skip3) + + for i in range(len(self.BottleNeck)): + x = self.BottleNeck[i](x, dlatents) + + if self.deep: + x = self.up4(x) + x = self.up3(x) + x = self.up2(x) + x = self.up1(x) + x = self.up0(x) + x = self.last_layer(x) + x = (x + 1) / 2 + + return x + +class Discriminator(nn.Module): + def __init__(self, input_nc, norm_layer=nn.BatchNorm2d, use_sigmoid=False): + super(Discriminator, self).__init__() + + kw = 4 + padw = 1 + self.down1 = nn.Sequential( + nn.Conv2d(input_nc, 64, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True) + ) + self.down2 = nn.Sequential( + nn.Conv2d(64, 128, kernel_size=kw, stride=2, padding=padw), + norm_layer(128), nn.LeakyReLU(0.2, True) + ) + self.down3 = nn.Sequential( + nn.Conv2d(128, 256, kernel_size=kw, stride=2, padding=padw), + norm_layer(256), nn.LeakyReLU(0.2, True) + ) + self.down4 = nn.Sequential( + nn.Conv2d(256, 512, kernel_size=kw, stride=2, padding=padw), + norm_layer(512), nn.LeakyReLU(0.2, True) + ) + self.conv1 = nn.Sequential( + nn.Conv2d(512, 512, kernel_size=kw, stride=1, padding=padw), + norm_layer(512), + nn.LeakyReLU(0.2, True) + ) + + if use_sigmoid: + self.conv2 = nn.Sequential( + nn.Conv2d(512, 1, kernel_size=kw, stride=1, padding=padw), nn.Sigmoid() + ) + else: + self.conv2 = nn.Sequential( + nn.Conv2d(512, 1, kernel_size=kw, stride=1, padding=padw) + ) + + def forward(self, input): + out = [] + x = self.down1(input) + out.append(x) + x = self.down2(x) + out.append(x) + x = self.down3(x) + out.append(x) + x = self.down4(x) + out.append(x) + x = self.conv1(x) + out.append(x) + x = self.conv2(x) + out.append(x) + + return out diff --git a/mlflow/registry/Swimswap/models/fs_networks_fix.py b/mlflow/registry/Swimswap/models/fs_networks_fix.py new file mode 100644 index 0000000..c7b0525 --- /dev/null +++ b/mlflow/registry/Swimswap/models/fs_networks_fix.py @@ -0,0 +1,172 @@ +""" +Copyright (C) 2019 NVIDIA Corporation. All rights reserved. +Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). +""" + +import torch +import torch.nn as nn + + +class InstanceNorm(nn.Module): + def __init__(self, epsilon=1e-8): + """ + @notice: avoid in-place ops. + https://discuss.pytorch.org/t/encounter-the-runtimeerror-one-of-the-variables-needed-for-gradient-computation-has-been-modified-by-an-inplace-operation/836/3 + """ + super(InstanceNorm, self).__init__() + self.epsilon = epsilon + + def forward(self, x): + x = x - torch.mean(x, (2, 3), True) + tmp = torch.mul(x, x) # or x ** 2 + tmp = torch.rsqrt(torch.mean(tmp, (2, 3), True) + self.epsilon) + return x * tmp + +class ApplyStyle(nn.Module): + """ + @ref: https://github.com/lernapparat/lernapparat/blob/master/style_gan/pytorch_style_gan.ipynb + """ + def __init__(self, latent_size, channels): + super(ApplyStyle, self).__init__() + self.linear = nn.Linear(latent_size, channels * 2) + + def forward(self, x, latent): + style = self.linear(latent) # style => [batch_size, n_channels*2] + shape = [-1, 2, x.size(1), 1, 1] + style = style.view(shape) # [batch_size, 2, n_channels, ...] + #x = x * (style[:, 0] + 1.) + style[:, 1] + x = x * (style[:, 0] * 1 + 1.) + style[:, 1] * 1 + return x + +class ResnetBlock_Adain(nn.Module): + def __init__(self, dim, latent_size, padding_type, activation=nn.ReLU(True)): + super(ResnetBlock_Adain, self).__init__() + + p = 0 + conv1 = [] + if padding_type == 'reflect': + conv1 += [nn.ReflectionPad2d(1)] + elif padding_type == 'replicate': + conv1 += [nn.ReplicationPad2d(1)] + elif padding_type == 'zero': + p = 1 + else: + raise NotImplementedError('padding [%s] is not implemented' % padding_type) + conv1 += [nn.Conv2d(dim, dim, kernel_size=3, padding = p), InstanceNorm()] + self.conv1 = nn.Sequential(*conv1) + self.style1 = ApplyStyle(latent_size, dim) + self.act1 = activation + + p = 0 + conv2 = [] + if padding_type == 'reflect': + conv2 += [nn.ReflectionPad2d(1)] + elif padding_type == 'replicate': + conv2 += [nn.ReplicationPad2d(1)] + elif padding_type == 'zero': + p = 1 + else: + raise NotImplementedError('padding [%s] is not implemented' % padding_type) + conv2 += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), InstanceNorm()] + self.conv2 = nn.Sequential(*conv2) + self.style2 = ApplyStyle(latent_size, dim) + + + def forward(self, x, dlatents_in_slice): + y = self.conv1(x) + y = self.style1(y, dlatents_in_slice) + y = self.act1(y) + y = self.conv2(y) + y = self.style2(y, dlatents_in_slice) + out = x + y + return out + + + +class Generator_Adain_Upsample(nn.Module): + def __init__(self, input_nc, output_nc, latent_size, n_blocks=6, deep=False, + norm_layer=nn.BatchNorm2d, + padding_type='reflect'): + assert (n_blocks >= 0) + super(Generator_Adain_Upsample, self).__init__() + + activation = nn.ReLU(True) + + self.deep = deep + + self.first_layer = nn.Sequential(nn.ReflectionPad2d(3), nn.Conv2d(input_nc, 64, kernel_size=7, padding=0), + norm_layer(64), activation) + ### downsample + self.down1 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1), + norm_layer(128), activation) + self.down2 = nn.Sequential(nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1), + norm_layer(256), activation) + self.down3 = nn.Sequential(nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1), + norm_layer(512), activation) + + if self.deep: + self.down4 = nn.Sequential(nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1), + norm_layer(512), activation) + + ### resnet blocks + BN = [] + for i in range(n_blocks): + BN += [ + ResnetBlock_Adain(512, latent_size=latent_size, padding_type=padding_type, activation=activation)] + self.BottleNeck = nn.Sequential(*BN) + + if self.deep: + self.up4 = nn.Sequential( + nn.Upsample(scale_factor=2, mode='bilinear',align_corners=False), + nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), + nn.BatchNorm2d(512), activation + ) + self.up3 = nn.Sequential( + nn.Upsample(scale_factor=2, mode='bilinear',align_corners=False), + nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1), + nn.BatchNorm2d(256), activation + ) + self.up2 = nn.Sequential( + nn.Upsample(scale_factor=2, mode='bilinear',align_corners=False), + nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1), + nn.BatchNorm2d(128), activation + ) + self.up1 = nn.Sequential( + nn.Upsample(scale_factor=2, mode='bilinear',align_corners=False), + nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1), + nn.BatchNorm2d(64), activation + ) + self.last_layer = nn.Sequential(nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, kernel_size=7, padding=0)) + + def forward(self, input, dlatents): + x = input # 3*224*224 + + skip1 = self.first_layer(x) + skip2 = self.down1(skip1) + skip3 = self.down2(skip2) + if self.deep: + skip4 = self.down3(skip3) + x = self.down4(skip4) + else: + x = self.down3(skip3) + bot = [] + bot.append(x) + features = [] + for i in range(len(self.BottleNeck)): + x = self.BottleNeck[i](x, dlatents) + bot.append(x) + + if self.deep: + x = self.up4(x) + features.append(x) + x = self.up3(x) + features.append(x) + x = self.up2(x) + features.append(x) + x = self.up1(x) + features.append(x) + x = self.last_layer(x) + # x = (x + 1) / 2 + + # return x, bot, features, dlatents + return x \ No newline at end of file diff --git a/mlflow/registry/Swimswap/models/models.py b/mlflow/registry/Swimswap/models/models.py new file mode 100644 index 0000000..bf9e84e --- /dev/null +++ b/mlflow/registry/Swimswap/models/models.py @@ -0,0 +1,177 @@ +import math +import torch +import torch.nn.functional as F +from torch import nn +from torch.nn import Parameter +from .config import device, num_classes + + +def create_model(opt): + #from .pix2pixHD_model import Pix2PixHDModel, InferenceModel + from .fs_model import fsModel + model = fsModel() + + model.initialize(opt) + if opt.verbose: + print("model [%s] was created" % (model.name())) + + if opt.isTrain and len(opt.gpu_ids) and not opt.fp16: + model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids) + + return model + + + +class SEBlock(nn.Module): + def __init__(self, channel, reduction=16): + super(SEBlock, self).__init__() + self.avg_pool = nn.AdaptiveAvgPool2d(1) + self.fc = nn.Sequential( + nn.Linear(channel, channel // reduction), + nn.PReLU(), + nn.Linear(channel // reduction, channel), + nn.Sigmoid() + ) + + def forward(self, x): + b, c, _, _ = x.size() + y = self.avg_pool(x).view(b, c) + y = self.fc(y).view(b, c, 1, 1) + return x * y + + +class IRBlock(nn.Module): + expansion = 1 + + def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True): + super(IRBlock, self).__init__() + self.bn0 = nn.BatchNorm2d(inplanes) + self.conv1 = conv3x3(inplanes, inplanes) + self.bn1 = nn.BatchNorm2d(inplanes) + self.prelu = nn.PReLU() + self.conv2 = conv3x3(inplanes, planes, stride) + self.bn2 = nn.BatchNorm2d(planes) + self.downsample = downsample + self.stride = stride + self.use_se = use_se + if self.use_se: + self.se = SEBlock(planes) + + def forward(self, x): + residual = x + out = self.bn0(x) + out = self.conv1(out) + out = self.bn1(out) + out = self.prelu(out) + + out = self.conv2(out) + out = self.bn2(out) + if self.use_se: + out = self.se(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.prelu(out) + + return out + + +class ResNet(nn.Module): + + def __init__(self, block, layers, use_se=True): + self.inplanes = 64 + self.use_se = use_se + super(ResNet, self).__init__() + self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, bias=False) + self.bn1 = nn.BatchNorm2d(64) + self.prelu = nn.PReLU() + self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2) + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) + self.layer3 = self._make_layer(block, 256, layers[2], stride=2) + self.layer4 = self._make_layer(block, 512, layers[3], stride=2) + self.bn2 = nn.BatchNorm2d(512) + self.dropout = nn.Dropout() + self.fc = nn.Linear(512 * 7 * 7, 512) + self.bn3 = nn.BatchNorm1d(512) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.xavier_normal_(m.weight) + elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.Linear): + nn.init.xavier_normal_(m.weight) + nn.init.constant_(m.bias, 0) + + def _make_layer(self, block, planes, blocks, stride=1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d(self.inplanes, planes * block.expansion, + kernel_size=1, stride=stride, bias=False), + nn.BatchNorm2d(planes * block.expansion), + ) + + layers = [] + layers.append(block(self.inplanes, planes, stride, downsample, use_se=self.use_se)) + self.inplanes = planes + for i in range(1, blocks): + layers.append(block(self.inplanes, planes, use_se=self.use_se)) + + return nn.Sequential(*layers) + + def forward(self, x): + x = self.conv1(x) + x = self.bn1(x) + x = self.prelu(x) + x = self.maxpool(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + + x = self.bn2(x) + x = self.dropout(x) + x = x.view(x.size(0), -1) + x = self.fc(x) + x = self.bn3(x) + + return x + + +class ArcMarginModel(nn.Module): + def __init__(self, args): + super(ArcMarginModel, self).__init__() + + self.weight = Parameter(torch.FloatTensor(num_classes, args.emb_size)) + nn.init.xavier_uniform_(self.weight) + + self.easy_margin = args.easy_margin + self.m = args.margin_m + self.s = args.margin_s + + self.cos_m = math.cos(self.m) + self.sin_m = math.sin(self.m) + self.th = math.cos(math.pi - self.m) + self.mm = math.sin(math.pi - self.m) * self.m + + def forward(self, input, label): + x = F.normalize(input) + W = F.normalize(self.weight) + cosine = F.linear(x, W) + sine = torch.sqrt(1.0 - torch.pow(cosine, 2)) + phi = cosine * self.cos_m - sine * self.sin_m # cos(theta + m) + if self.easy_margin: + phi = torch.where(cosine > 0, phi, cosine) + else: + phi = torch.where(cosine > self.th, phi, cosine - self.mm) + one_hot = torch.zeros(cosine.size(), device=device) + one_hot.scatter_(1, label.view(-1, 1).long(), 1) + output = (one_hot * phi) + ((1.0 - one_hot) * cosine) + output *= self.s + return output diff --git a/mlflow/registry/Swimswap/models/networks.py b/mlflow/registry/Swimswap/models/networks.py new file mode 100644 index 0000000..3c7eb4d --- /dev/null +++ b/mlflow/registry/Swimswap/models/networks.py @@ -0,0 +1,845 @@ +import torch +import torch.nn as nn +import functools +from torch.autograd import Variable +import numpy as np +from torchvision import transforms +import torch.nn.functional as F + +############################################################################### +# Functions +############################################################################### +def weights_init(m): + classname = m.__class__.__name__ + if classname.find('Conv') != -1: + m.weight.data.normal_(0.0, 0.02) + elif classname.find('BatchNorm2d') != -1: + m.weight.data.normal_(1.0, 0.02) + m.bias.data.fill_(0) + +def get_norm_layer(norm_type='instance'): + if norm_type == 'batch': + norm_layer = functools.partial(nn.BatchNorm2d, affine=True) + elif norm_type == 'instance': + norm_layer = functools.partial(nn.InstanceNorm2d, affine=False) + else: + raise NotImplementedError('normalization layer [%s] is not found' % norm_type) + return norm_layer + +def define_G(input_nc, output_nc, ngf, netG, n_downsample_global=3, n_blocks_global=9, n_local_enhancers=1, + n_blocks_local=3, norm='instance', gpu_ids=[]): + norm_layer = get_norm_layer(norm_type=norm) + if netG == 'global': + netG = GlobalGenerator(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, norm_layer) + elif netG == 'local': + netG = LocalEnhancer(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, + n_local_enhancers, n_blocks_local, norm_layer) + elif netG == 'encoder': + netG = Encoder(input_nc, output_nc, ngf, n_downsample_global, norm_layer) + else: + raise('generator not implemented!') + print(netG) + if len(gpu_ids) > 0: + assert(torch.cuda.is_available()) + netG.cuda(gpu_ids[0]) + netG.apply(weights_init) + return netG + +def define_G_Adain(input_nc, output_nc, latent_size, ngf, netG, n_downsample_global=2, n_blocks_global=4, norm='instance', gpu_ids=[]): + norm_layer = get_norm_layer(norm_type=norm) + netG = Generator_Adain(input_nc, output_nc, latent_size, ngf, n_downsample_global, n_blocks_global, norm_layer) + print(netG) + if len(gpu_ids) > 0: + assert(torch.cuda.is_available()) + netG.cuda(gpu_ids[0]) + netG.apply(weights_init) + return netG + +def define_G_Adain_Mask(input_nc, output_nc, latent_size, ngf, netG, n_downsample_global=2, n_blocks_global=4, norm='instance', gpu_ids=[]): + norm_layer = get_norm_layer(norm_type=norm) + netG = Generator_Adain_Mask(input_nc, output_nc, latent_size, ngf, n_downsample_global, n_blocks_global, norm_layer) + print(netG) + if len(gpu_ids) > 0: + assert(torch.cuda.is_available()) + netG.cuda(gpu_ids[0]) + netG.apply(weights_init) + return netG + +def define_G_Adain_Upsample(input_nc, output_nc, latent_size, ngf, netG, n_downsample_global=2, n_blocks_global=4, norm='instance', gpu_ids=[]): + norm_layer = get_norm_layer(norm_type=norm) + netG = Generator_Adain_Upsample(input_nc, output_nc, latent_size, ngf, n_downsample_global, n_blocks_global, norm_layer) + print(netG) + if len(gpu_ids) > 0: + assert(torch.cuda.is_available()) + netG.cuda(gpu_ids[0]) + netG.apply(weights_init) + return netG + +def define_G_Adain_2(input_nc, output_nc, latent_size, ngf, netG, n_downsample_global=2, n_blocks_global=4, norm='instance', gpu_ids=[]): + norm_layer = get_norm_layer(norm_type=norm) + netG = Generator_Adain_2(input_nc, output_nc, latent_size, ngf, n_downsample_global, n_blocks_global, norm_layer) + print(netG) + if len(gpu_ids) > 0: + assert(torch.cuda.is_available()) + netG.cuda(gpu_ids[0]) + netG.apply(weights_init) + return netG + +def define_D(input_nc, ndf, n_layers_D, norm='instance', use_sigmoid=False, num_D=1, getIntermFeat=False, gpu_ids=[]): + norm_layer = get_norm_layer(norm_type=norm) + netD = MultiscaleDiscriminator(input_nc, ndf, n_layers_D, norm_layer, use_sigmoid, num_D, getIntermFeat) + print(netD) + if len(gpu_ids) > 0: + assert(torch.cuda.is_available()) + netD.cuda(gpu_ids[0]) + netD.apply(weights_init) + return netD + +def print_network(net): + if isinstance(net, list): + net = net[0] + num_params = 0 + for param in net.parameters(): + num_params += param.numel() + print(net) + print('Total number of parameters: %d' % num_params) + +############################################################################## +# Losses +############################################################################## +class GANLoss(nn.Module): + def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0, + tensor=torch.FloatTensor, opt=None): + super(GANLoss, self).__init__() + self.real_label = target_real_label + self.fake_label = target_fake_label + self.real_label_tensor = None + self.fake_label_tensor = None + self.zero_tensor = None + self.Tensor = tensor + self.gan_mode = gan_mode + self.opt = opt + if gan_mode == 'ls': + pass + elif gan_mode == 'original': + pass + elif gan_mode == 'w': + pass + elif gan_mode == 'hinge': + pass + else: + raise ValueError('Unexpected gan_mode {}'.format(gan_mode)) + + def get_target_tensor(self, input, target_is_real): + if target_is_real: + if self.real_label_tensor is None: + self.real_label_tensor = self.Tensor(1).fill_(self.real_label) + self.real_label_tensor.requires_grad_(False) + return self.real_label_tensor.expand_as(input) + else: + if self.fake_label_tensor is None: + self.fake_label_tensor = self.Tensor(1).fill_(self.fake_label) + self.fake_label_tensor.requires_grad_(False) + return self.fake_label_tensor.expand_as(input) + + def get_zero_tensor(self, input): + if self.zero_tensor is None: + self.zero_tensor = self.Tensor(1).fill_(0) + self.zero_tensor.requires_grad_(False) + return self.zero_tensor.expand_as(input) + + def loss(self, input, target_is_real, for_discriminator=True): + if self.gan_mode == 'original': # cross entropy loss + target_tensor = self.get_target_tensor(input, target_is_real) + loss = F.binary_cross_entropy_with_logits(input, target_tensor) + return loss + elif self.gan_mode == 'ls': + target_tensor = self.get_target_tensor(input, target_is_real) + return F.mse_loss(input, target_tensor) + elif self.gan_mode == 'hinge': + if for_discriminator: + if target_is_real: + minval = torch.min(input - 1, self.get_zero_tensor(input)) + loss = -torch.mean(minval) + else: + minval = torch.min(-input - 1, self.get_zero_tensor(input)) + loss = -torch.mean(minval) + else: + assert target_is_real, "The generator's hinge loss must be aiming for real" + loss = -torch.mean(input) + return loss + else: + # wgan + if target_is_real: + return -input.mean() + else: + return input.mean() + + def __call__(self, input, target_is_real, for_discriminator=True): + # computing loss is a bit complicated because |input| may not be + # a tensor, but list of tensors in case of multiscale discriminator + if isinstance(input, list): + loss = 0 + for pred_i in input: + if isinstance(pred_i, list): + pred_i = pred_i[-1] + loss_tensor = self.loss(pred_i, target_is_real, for_discriminator) + bs = 1 if len(loss_tensor.size()) == 0 else loss_tensor.size(0) + new_loss = torch.mean(loss_tensor.view(bs, -1), dim=1) + loss += new_loss + return loss / len(input) + else: + return self.loss(input, target_is_real, for_discriminator) + +class VGGLoss(nn.Module): + def __init__(self, gpu_ids): + super(VGGLoss, self).__init__() + self.vgg = Vgg19().cuda() + self.criterion = nn.L1Loss() + self.weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0] + + def forward(self, x, y): + x_vgg, y_vgg = self.vgg(x), self.vgg(y) + loss = 0 + for i in range(len(x_vgg)): + loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach()) + return loss + +############################################################################## +# Generator +############################################################################## +class LocalEnhancer(nn.Module): + def __init__(self, input_nc, output_nc, ngf=32, n_downsample_global=3, n_blocks_global=9, + n_local_enhancers=1, n_blocks_local=3, norm_layer=nn.BatchNorm2d, padding_type='reflect'): + super(LocalEnhancer, self).__init__() + self.n_local_enhancers = n_local_enhancers + + ###### global generator model ##### + ngf_global = ngf * (2**n_local_enhancers) + model_global = GlobalGenerator(input_nc, output_nc, ngf_global, n_downsample_global, n_blocks_global, norm_layer).model + model_global = [model_global[i] for i in range(len(model_global)-3)] # get rid of final convolution layers + self.model = nn.Sequential(*model_global) + + ###### local enhancer layers ##### + for n in range(1, n_local_enhancers+1): + ### downsample + ngf_global = ngf * (2**(n_local_enhancers-n)) + model_downsample = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf_global, kernel_size=7, padding=0), + norm_layer(ngf_global), nn.ReLU(True), + nn.Conv2d(ngf_global, ngf_global * 2, kernel_size=3, stride=2, padding=1), + norm_layer(ngf_global * 2), nn.ReLU(True)] + ### residual blocks + model_upsample = [] + for i in range(n_blocks_local): + model_upsample += [ResnetBlock(ngf_global * 2, padding_type=padding_type, norm_layer=norm_layer)] + + ### upsample + model_upsample += [nn.ConvTranspose2d(ngf_global * 2, ngf_global, kernel_size=3, stride=2, padding=1, output_padding=1), + norm_layer(ngf_global), nn.ReLU(True)] + + ### final convolution + if n == n_local_enhancers: + model_upsample += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()] + + setattr(self, 'model'+str(n)+'_1', nn.Sequential(*model_downsample)) + setattr(self, 'model'+str(n)+'_2', nn.Sequential(*model_upsample)) + + self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False) + + def forward(self, input): + ### create input pyramid + input_downsampled = [input] + for i in range(self.n_local_enhancers): + input_downsampled.append(self.downsample(input_downsampled[-1])) + + ### output at coarest level + output_prev = self.model(input_downsampled[-1]) + ### build up one layer at a time + for n_local_enhancers in range(1, self.n_local_enhancers+1): + model_downsample = getattr(self, 'model'+str(n_local_enhancers)+'_1') + model_upsample = getattr(self, 'model'+str(n_local_enhancers)+'_2') + input_i = input_downsampled[self.n_local_enhancers-n_local_enhancers] + output_prev = model_upsample(model_downsample(input_i) + output_prev) + return output_prev + +class GlobalGenerator(nn.Module): + def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d, + padding_type='reflect'): + assert(n_blocks >= 0) + super(GlobalGenerator, self).__init__() + activation = nn.ReLU(True) + + model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation] + ### downsample + for i in range(n_downsampling): + mult = 2**i + model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1), + norm_layer(ngf * mult * 2), activation] + + ### resnet blocks + mult = 2**n_downsampling + for i in range(n_blocks): + model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer)] + + ### upsample + for i in range(n_downsampling): + mult = 2**(n_downsampling - i) + model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1), + norm_layer(int(ngf * mult / 2)), activation] + model += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()] + self.model = nn.Sequential(*model) + + def forward(self, input): + return self.model(input) + +# Define a resnet block +class ResnetBlock(nn.Module): + def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False): + super(ResnetBlock, self).__init__() + self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, activation, use_dropout) + + def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout): + conv_block = [] + p = 0 + if padding_type == 'reflect': + conv_block += [nn.ReflectionPad2d(1)] + elif padding_type == 'replicate': + conv_block += [nn.ReplicationPad2d(1)] + elif padding_type == 'zero': + p = 1 + else: + raise NotImplementedError('padding [%s] is not implemented' % padding_type) + + conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), + norm_layer(dim), + activation] + if use_dropout: + conv_block += [nn.Dropout(0.5)] + + p = 0 + if padding_type == 'reflect': + conv_block += [nn.ReflectionPad2d(1)] + elif padding_type == 'replicate': + conv_block += [nn.ReplicationPad2d(1)] + elif padding_type == 'zero': + p = 1 + else: + raise NotImplementedError('padding [%s] is not implemented' % padding_type) + conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), + norm_layer(dim)] + + return nn.Sequential(*conv_block) + + def forward(self, x): + out = x + self.conv_block(x) + return out + +class InstanceNorm(nn.Module): + def __init__(self, epsilon=1e-8): + """ + @notice: avoid in-place ops. + https://discuss.pytorch.org/t/encounter-the-runtimeerror-one-of-the-variables-needed-for-gradient-computation-has-been-modified-by-an-inplace-operation/836/3 + """ + super(InstanceNorm, self).__init__() + self.epsilon = epsilon + + def forward(self, x): + x = x - torch.mean(x, (2, 3), True) + tmp = torch.mul(x, x) # or x ** 2 + tmp = torch.rsqrt(torch.mean(tmp, (2, 3), True) + self.epsilon) + return x * tmp + +class SpecificNorm(nn.Module): + def __init__(self, epsilon=1e-8): + """ + @notice: avoid in-place ops. + https://discuss.pytorch.org/t/encounter-the-runtimeerror-one-of-the-variables-needed-for-gradient-computation-has-been-modified-by-an-inplace-operation/836/3 + """ + super(SpecificNorm, self).__init__() + self.mean = np.array([0.485, 0.456, 0.406]) + self.mean = torch.from_numpy(self.mean).float().cuda() + self.mean = self.mean.view([1, 3, 1, 1]) + + self.std = np.array([0.229, 0.224, 0.225]) + self.std = torch.from_numpy(self.std).float().cuda() + self.std = self.std.view([1, 3, 1, 1]) + + def forward(self, x): + mean = self.mean.expand([1, 3, x.shape[2], x.shape[3]]) + std = self.std.expand([1, 3, x.shape[2], x.shape[3]]) + + x = (x - mean) / std + + return x + +class ApplyStyle(nn.Module): + """ + @ref: https://github.com/lernapparat/lernapparat/blob/master/style_gan/pytorch_style_gan.ipynb + """ + def __init__(self, latent_size, channels): + super(ApplyStyle, self).__init__() + self.linear = nn.Linear(latent_size, channels * 2) + + def forward(self, x, latent): + style = self.linear(latent) # style => [batch_size, n_channels*2] + shape = [-1, 2, x.size(1), 1, 1] + style = style.view(shape) # [batch_size, 2, n_channels, ...] + x = x * (style[:, 0] + 1.) + style[:, 1] + return x + +class ResnetBlock_Adain(nn.Module): + def __init__(self, dim, latent_size, padding_type, activation=nn.ReLU(True)): + super(ResnetBlock_Adain, self).__init__() + + p = 0 + conv1 = [] + if padding_type == 'reflect': + conv1 += [nn.ReflectionPad2d(1)] + elif padding_type == 'replicate': + conv1 += [nn.ReplicationPad2d(1)] + elif padding_type == 'zero': + p = 1 + else: + raise NotImplementedError('padding [%s] is not implemented' % padding_type) + conv1 += [nn.Conv2d(dim, dim, kernel_size=3, padding = p), InstanceNorm()] + self.conv1 = nn.Sequential(*conv1) + self.style1 = ApplyStyle(latent_size, dim) + self.act1 = activation + + p = 0 + conv2 = [] + if padding_type == 'reflect': + conv2 += [nn.ReflectionPad2d(1)] + elif padding_type == 'replicate': + conv2 += [nn.ReplicationPad2d(1)] + elif padding_type == 'zero': + p = 1 + else: + raise NotImplementedError('padding [%s] is not implemented' % padding_type) + conv2 += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), InstanceNorm()] + self.conv2 = nn.Sequential(*conv2) + self.style2 = ApplyStyle(latent_size, dim) + + + def forward(self, x, dlatents_in_slice): + y = self.conv1(x) + y = self.style1(y, dlatents_in_slice) + y = self.act1(y) + y = self.conv2(y) + y = self.style2(y, dlatents_in_slice) + out = x + y + return out + +class UpBlock_Adain(nn.Module): + def __init__(self, dim_in, dim_out, latent_size, padding_type, activation=nn.ReLU(True)): + super(UpBlock_Adain, self).__init__() + + p = 0 + conv1 = [nn.Upsample(scale_factor=2, mode='bilinear')] + if padding_type == 'reflect': + conv1 += [nn.ReflectionPad2d(1)] + elif padding_type == 'replicate': + conv1 += [nn.ReplicationPad2d(1)] + elif padding_type == 'zero': + p = 1 + else: + raise NotImplementedError('padding [%s] is not implemented' % padding_type) + conv1 += [nn.Conv2d(dim_in, dim_out, kernel_size=3, padding = p), InstanceNorm()] + self.conv1 = nn.Sequential(*conv1) + self.style1 = ApplyStyle(latent_size, dim_out) + self.act1 = activation + + + def forward(self, x, dlatents_in_slice): + y = self.conv1(x) + y = self.style1(y, dlatents_in_slice) + y = self.act1(y) + return y + +class Encoder(nn.Module): + def __init__(self, input_nc, output_nc, ngf=32, n_downsampling=4, norm_layer=nn.BatchNorm2d): + super(Encoder, self).__init__() + self.output_nc = output_nc + + model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), + norm_layer(ngf), nn.ReLU(True)] + ### downsample + for i in range(n_downsampling): + mult = 2**i + model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1), + norm_layer(ngf * mult * 2), nn.ReLU(True)] + + ### upsample + for i in range(n_downsampling): + mult = 2**(n_downsampling - i) + model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1), + norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] + + model += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()] + self.model = nn.Sequential(*model) + + def forward(self, input, inst): + outputs = self.model(input) + + # instance-wise average pooling + outputs_mean = outputs.clone() + inst_list = np.unique(inst.cpu().numpy().astype(int)) + for i in inst_list: + for b in range(input.size()[0]): + indices = (inst[b:b+1] == int(i)).nonzero() # n x 4 + for j in range(self.output_nc): + output_ins = outputs[indices[:,0] + b, indices[:,1] + j, indices[:,2], indices[:,3]] + mean_feat = torch.mean(output_ins).expand_as(output_ins) + outputs_mean[indices[:,0] + b, indices[:,1] + j, indices[:,2], indices[:,3]] = mean_feat + return outputs_mean + + +class Generator_Adain(nn.Module): + def __init__(self, input_nc, output_nc, latent_size, ngf=64, n_downsampling=2, n_blocks=4, norm_layer=nn.BatchNorm2d, + padding_type='reflect'): + assert (n_blocks >= 0) + super(Generator_Adain, self).__init__() + activation = nn.ReLU(True) + + Enc = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation] + ### downsample + for i in range(n_downsampling): + mult = 2 ** i + Enc += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1), + norm_layer(ngf * mult * 2), activation] + self.Encoder = nn.Sequential(*Enc) + + ### resnet blocks + BN = [] + mult = 2 ** n_downsampling + for i in range(n_blocks): + BN += [ResnetBlock_Adain(ngf*mult, latent_size=latent_size, padding_type=padding_type, activation=activation)] + self.BottleNeck = nn.Sequential(*BN) + '''self.ResBlockAdain1 = ResnetBlock_Adain(ngf * mult, latent_size=latent_size, padding_type=padding_type, + activation=activation) + self.ResBlockAdain2 = ResnetBlock_Adain(ngf * mult, latent_size=latent_size, padding_type=padding_type, + activation=activation) + self.ResBlockAdain3 = ResnetBlock_Adain(ngf * mult, latent_size=latent_size, padding_type=padding_type, + activation=activation) + self.ResBlockAdain4 = ResnetBlock_Adain(ngf * mult, latent_size=latent_size, padding_type=padding_type, + activation=activation)''' + + ### upsample + Dec = [] + for i in range(n_downsampling): + mult = 2 ** (n_downsampling - i) + Dec += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, + output_padding=1), + norm_layer(int(ngf * mult / 2)), activation] + Dec += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()] + + self.Decoder = nn.Sequential(*Dec) + #self.model = nn.Sequential(*model) + self.spNorm = SpecificNorm() + + def forward(self, input, dlatents): + x = input + x = self.Encoder(x) + + + for i in range(len(self.BottleNeck)): + x = self.BottleNeck[i](x, dlatents) + '''x = self.ResBlockAdain1(x, dlatents) + x = self.ResBlockAdain2(x, dlatents) + x = self.ResBlockAdain3(x, dlatents) + x = self.ResBlockAdain4(x, dlatents)''' + + x = self.Decoder(x) + + x = (x + 1) / 2 + x = self.spNorm(x) + + return x + +class Generator_Adain_Mask(nn.Module): + def __init__(self, input_nc, output_nc, latent_size, ngf=64, n_downsampling=2, n_blocks=4, norm_layer=nn.BatchNorm2d, + padding_type='reflect'): + assert (n_blocks >= 0) + super(Generator_Adain_Mask, self).__init__() + activation = nn.ReLU(True) + + Enc = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation] + ### downsample + for i in range(n_downsampling): + mult = 2 ** i + Enc += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1), + norm_layer(ngf * mult * 2), activation] + self.Encoder = nn.Sequential(*Enc) + + ### resnet blocks + BN = [] + mult = 2 ** n_downsampling + for i in range(n_blocks): + BN += [ResnetBlock_Adain(ngf*mult, latent_size=latent_size, padding_type=padding_type, activation=activation)] + self.BottleNeck = nn.Sequential(*BN) + + ### upsample + Dec = [] + for i in range(n_downsampling): + mult = 2 ** (n_downsampling - i) + Dec += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, + output_padding=1), + norm_layer(int(ngf * mult / 2)), activation] + Fake_out = [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()] + Mast_out = [nn.ReflectionPad2d(3), nn.Conv2d(ngf, 1, kernel_size=7, padding=0), nn.Sigmoid()] + + self.Decoder = nn.Sequential(*Dec) + #self.model = nn.Sequential(*model) + self.spNorm = SpecificNorm() + self.Fake_out = nn.Sequential(*Fake_out) + self.Mask_out = nn.Sequential(*Mast_out) + + def forward(self, input, dlatents): + x = input + x = self.Encoder(x) + + + for i in range(len(self.BottleNeck)): + x = self.BottleNeck[i](x, dlatents) + + x = self.Decoder(x) + + fake_out = self.Fake_out(x) + mask_out = self.Mask_out(x) + + fake_out = (fake_out + 1) / 2 + fake_out = self.spNorm(fake_out) + + generated = fake_out * mask_out + input * (1-mask_out) + + return generated, mask_out + +class Generator_Adain_Upsample(nn.Module): + def __init__(self, input_nc, output_nc, latent_size, ngf=64, n_downsampling=2, n_blocks=4, norm_layer=nn.BatchNorm2d, + padding_type='reflect'): + assert (n_blocks >= 0) + super(Generator_Adain_Upsample, self).__init__() + activation = nn.ReLU(True) + + Enc = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation] + ### downsample + for i in range(n_downsampling): + mult = 2 ** i + Enc += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1), + norm_layer(ngf * mult * 2), activation] + self.Encoder = nn.Sequential(*Enc) + + ### resnet blocks + BN = [] + mult = 2 ** n_downsampling + for i in range(n_blocks): + BN += [ResnetBlock_Adain(ngf*mult, latent_size=latent_size, padding_type=padding_type, activation=activation)] + self.BottleNeck = nn.Sequential(*BN) + + ### upsample + Dec = [] + for i in range(n_downsampling): + mult = 2 ** (n_downsampling - i) + '''Dec += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, + output_padding=1), + norm_layer(int(ngf * mult / 2)), activation]''' + Dec += [nn.Upsample(scale_factor=2, mode='bilinear'), + nn.Conv2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=1, padding=1), + norm_layer(int(ngf * mult / 2)), activation] + Dec += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()] + + self.Decoder = nn.Sequential(*Dec) + self.spNorm = SpecificNorm() + + def forward(self, input, dlatents): + x = input + x = self.Encoder(x) + + + for i in range(len(self.BottleNeck)): + x = self.BottleNeck[i](x, dlatents) + + x = self.Decoder(x) + + x = (x + 1) / 2 + x = self.spNorm(x) + + return x + +class Generator_Adain_2(nn.Module): + def __init__(self, input_nc, output_nc, latent_size, ngf=64, n_downsampling=2, n_blocks=4, norm_layer=nn.BatchNorm2d, + padding_type='reflect'): + assert (n_blocks >= 0) + super(Generator_Adain_2, self).__init__() + activation = nn.ReLU(True) + + Enc = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation] + ### downsample + for i in range(n_downsampling): + mult = 2 ** i + Enc += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1), + norm_layer(ngf * mult * 2), activation] + self.Encoder = nn.Sequential(*Enc) + + ### resnet blocks + BN = [] + mult = 2 ** n_downsampling + for i in range(n_blocks): + BN += [ResnetBlock_Adain(ngf*mult, latent_size=latent_size, padding_type=padding_type, activation=activation)] + self.BottleNeck = nn.Sequential(*BN) + + ### upsample + Dec = [] + for i in range(n_downsampling): + mult = 2 ** (n_downsampling - i) + Dec += [UpBlock_Adain(dim_in=ngf * mult, dim_out=int(ngf * mult / 2), latent_size=latent_size, padding_type=padding_type)] + layer_out = [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()] + + self.Decoder = nn.Sequential(*Dec) + #self.model = nn.Sequential(*model) + self.spNorm = SpecificNorm() + self.layer_out = nn.Sequential(*layer_out) + + def forward(self, input, dlatents): + x = input + x = self.Encoder(x) + + + for i in range(len(self.BottleNeck)): + x = self.BottleNeck[i](x, dlatents) + + for i in range(len(self.Decoder)): + x = self.Decoder[i](x, dlatents) + + x = self.layer_out(x) + + x = (x + 1) / 2 + x = self.spNorm(x) + + return x + +class MultiscaleDiscriminator(nn.Module): + def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, + use_sigmoid=False, num_D=3, getIntermFeat=False): + super(MultiscaleDiscriminator, self).__init__() + self.num_D = num_D + self.n_layers = n_layers + self.getIntermFeat = getIntermFeat + + for i in range(num_D): + netD = NLayerDiscriminator(input_nc, ndf, n_layers, norm_layer, use_sigmoid, getIntermFeat) + if getIntermFeat: + for j in range(n_layers+2): + setattr(self, 'scale'+str(i)+'_layer'+str(j), getattr(netD, 'model'+str(j))) + else: + setattr(self, 'layer'+str(i), netD.model) + + self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False) + + def singleD_forward(self, model, input): + if self.getIntermFeat: + result = [input] + for i in range(len(model)): + result.append(model[i](result[-1])) + return result[1:] + else: + return [model(input)] + + def forward(self, input): + num_D = self.num_D + result = [] + input_downsampled = input + for i in range(num_D): + if self.getIntermFeat: + model = [getattr(self, 'scale'+str(num_D-1-i)+'_layer'+str(j)) for j in range(self.n_layers+2)] + else: + model = getattr(self, 'layer'+str(num_D-1-i)) + result.append(self.singleD_forward(model, input_downsampled)) + if i != (num_D-1): + input_downsampled = self.downsample(input_downsampled) + return result + +# Defines the PatchGAN discriminator with the specified arguments. +class NLayerDiscriminator(nn.Module): + def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, getIntermFeat=False): + super(NLayerDiscriminator, self).__init__() + self.getIntermFeat = getIntermFeat + self.n_layers = n_layers + + kw = 4 + padw = 1 + sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]] + + nf = ndf + for n in range(1, n_layers): + nf_prev = nf + nf = min(nf * 2, 512) + sequence += [[ + nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw), + norm_layer(nf), nn.LeakyReLU(0.2, True) + ]] + + nf_prev = nf + nf = min(nf * 2, 512) + sequence += [[ + nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw), + norm_layer(nf), + nn.LeakyReLU(0.2, True) + ]] + + if use_sigmoid: + sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw), nn.Sigmoid()]] + else: + sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]] + + if getIntermFeat: + for n in range(len(sequence)): + setattr(self, 'model'+str(n), nn.Sequential(*sequence[n])) + else: + sequence_stream = [] + for n in range(len(sequence)): + sequence_stream += sequence[n] + self.model = nn.Sequential(*sequence_stream) + + def forward(self, input): + if self.getIntermFeat: + res = [input] + for n in range(self.n_layers+2): + model = getattr(self, 'model'+str(n)) + res.append(model(res[-1])) + return res[1:] + else: + return self.model(input) + +from torchvision import models +class Vgg19(torch.nn.Module): + def __init__(self, requires_grad=False): + super(Vgg19, self).__init__() + vgg_pretrained_features = models.vgg19(pretrained=True).features + self.slice1 = torch.nn.Sequential() + self.slice2 = torch.nn.Sequential() + self.slice3 = torch.nn.Sequential() + self.slice4 = torch.nn.Sequential() + self.slice5 = torch.nn.Sequential() + for x in range(2): + self.slice1.add_module(str(x), vgg_pretrained_features[x]) + for x in range(2, 7): + self.slice2.add_module(str(x), vgg_pretrained_features[x]) + for x in range(7, 12): + self.slice3.add_module(str(x), vgg_pretrained_features[x]) + for x in range(12, 21): + self.slice4.add_module(str(x), vgg_pretrained_features[x]) + for x in range(21, 30): + self.slice5.add_module(str(x), vgg_pretrained_features[x]) + if not requires_grad: + for param in self.parameters(): + param.requires_grad = False + + def forward(self, X): + h_relu1 = self.slice1(X) + h_relu2 = self.slice2(h_relu1) + h_relu3 = self.slice3(h_relu2) + h_relu4 = self.slice4(h_relu3) + h_relu5 = self.slice5(h_relu4) + out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] + return out diff --git a/mlflow/registry/Swimswap/models/pix2pixHD_model.py b/mlflow/registry/Swimswap/models/pix2pixHD_model.py new file mode 100644 index 0000000..fafdec0 --- /dev/null +++ b/mlflow/registry/Swimswap/models/pix2pixHD_model.py @@ -0,0 +1,304 @@ +import numpy as np +import torch +import os +from torch.autograd import Variable +from util.image_pool import ImagePool +from .base_model import BaseModel +from . import networks + +class Pix2PixHDModel(BaseModel): + def name(self): + return 'Pix2PixHDModel' + + def init_loss_filter(self, use_gan_feat_loss, use_vgg_loss): + flags = (True, use_gan_feat_loss, use_vgg_loss, True, True) + def loss_filter(g_gan, g_gan_feat, g_vgg, d_real, d_fake): + return [l for (l,f) in zip((g_gan,g_gan_feat,g_vgg,d_real,d_fake),flags) if f] + return loss_filter + + def initialize(self, opt): + BaseModel.initialize(self, opt) + if opt.resize_or_crop != 'none' or not opt.isTrain: # when training at full res this causes OOM + torch.backends.cudnn.benchmark = True + self.isTrain = opt.isTrain + self.use_features = opt.instance_feat or opt.label_feat + self.gen_features = self.use_features and not self.opt.load_features + input_nc = opt.label_nc if opt.label_nc != 0 else opt.input_nc + + ##### define networks + # Generator network + netG_input_nc = input_nc + if not opt.no_instance: + netG_input_nc += 1 + if self.use_features: + netG_input_nc += opt.feat_num + self.netG = networks.define_G(netG_input_nc, opt.output_nc, opt.ngf, opt.netG, + opt.n_downsample_global, opt.n_blocks_global, opt.n_local_enhancers, + opt.n_blocks_local, opt.norm, gpu_ids=self.gpu_ids) + + # Discriminator network + if self.isTrain: + use_sigmoid = opt.no_lsgan + netD_input_nc = input_nc + opt.output_nc + if not opt.no_instance: + netD_input_nc += 1 + self.netD = networks.define_D(netD_input_nc, opt.ndf, opt.n_layers_D, opt.norm, use_sigmoid, + opt.num_D, not opt.no_ganFeat_loss, gpu_ids=self.gpu_ids) + + ### Encoder network + if self.gen_features: + self.netE = networks.define_G(opt.output_nc, opt.feat_num, opt.nef, 'encoder', + opt.n_downsample_E, norm=opt.norm, gpu_ids=self.gpu_ids) + if self.opt.verbose: + print('---------- Networks initialized -------------') + + # load networks + if not self.isTrain or opt.continue_train or opt.load_pretrain: + pretrained_path = '' if not self.isTrain else opt.load_pretrain + self.load_network(self.netG, 'G', opt.which_epoch, pretrained_path) + if self.isTrain: + self.load_network(self.netD, 'D', opt.which_epoch, pretrained_path) + if self.gen_features: + self.load_network(self.netE, 'E', opt.which_epoch, pretrained_path) + + # set loss functions and optimizers + if self.isTrain: + if opt.pool_size > 0 and (len(self.gpu_ids)) > 1: + raise NotImplementedError("Fake Pool Not Implemented for MultiGPU") + self.fake_pool = ImagePool(opt.pool_size) + self.old_lr = opt.lr + + # define loss functions + self.loss_filter = self.init_loss_filter(not opt.no_ganFeat_loss, not opt.no_vgg_loss) + + self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan, tensor=self.Tensor) + self.criterionFeat = torch.nn.L1Loss() + if not opt.no_vgg_loss: + self.criterionVGG = networks.VGGLoss(self.gpu_ids) + + + # Names so we can breakout loss + self.loss_names = self.loss_filter('G_GAN','G_GAN_Feat','G_VGG','D_real', 'D_fake') + + # initialize optimizers + # optimizer G + if opt.niter_fix_global > 0: + import sys + if sys.version_info >= (3,0): + finetune_list = set() + else: + from sets import Set + finetune_list = Set() + + params_dict = dict(self.netG.named_parameters()) + params = [] + for key, value in params_dict.items(): + if key.startswith('model' + str(opt.n_local_enhancers)): + params += [value] + finetune_list.add(key.split('.')[0]) + print('------------- Only training the local enhancer network (for %d epochs) ------------' % opt.niter_fix_global) + print('The layers that are finetuned are ', sorted(finetune_list)) + else: + params = list(self.netG.parameters()) + if self.gen_features: + params += list(self.netE.parameters()) + self.optimizer_G = torch.optim.Adam(params, lr=opt.lr, betas=(opt.beta1, 0.999)) + + # optimizer D + params = list(self.netD.parameters()) + self.optimizer_D = torch.optim.Adam(params, lr=opt.lr, betas=(opt.beta1, 0.999)) + + def encode_input(self, label_map, inst_map=None, real_image=None, feat_map=None, infer=False): + if self.opt.label_nc == 0: + input_label = label_map.data.cuda() + else: + # create one-hot vector for label map + size = label_map.size() + oneHot_size = (size[0], self.opt.label_nc, size[2], size[3]) + input_label = torch.cuda.FloatTensor(torch.Size(oneHot_size)).zero_() + input_label = input_label.scatter_(1, label_map.data.long().cuda(), 1.0) + if self.opt.data_type == 16: + input_label = input_label.half() + + # get edges from instance map + if not self.opt.no_instance: + inst_map = inst_map.data.cuda() + edge_map = self.get_edges(inst_map) + input_label = torch.cat((input_label, edge_map), dim=1) + input_label = Variable(input_label, volatile=infer) + + # real images for training + if real_image is not None: + real_image = Variable(real_image.data.cuda()) + + # instance map for feature encoding + if self.use_features: + # get precomputed feature maps + if self.opt.load_features: + feat_map = Variable(feat_map.data.cuda()) + if self.opt.label_feat: + inst_map = label_map.cuda() + + return input_label, inst_map, real_image, feat_map + + def discriminate(self, input_label, test_image, use_pool=False): + input_concat = torch.cat((input_label, test_image.detach()), dim=1) + if use_pool: + fake_query = self.fake_pool.query(input_concat) + return self.netD.forward(fake_query) + else: + return self.netD.forward(input_concat) + + def forward(self, label, inst, image, feat, infer=False): + # Encode Inputs + input_label, inst_map, real_image, feat_map = self.encode_input(label, inst, image, feat) + + # Fake Generation + if self.use_features: + if not self.opt.load_features: + feat_map = self.netE.forward(real_image, inst_map) + input_concat = torch.cat((input_label, feat_map), dim=1) + else: + input_concat = input_label + fake_image = self.netG.forward(input_concat) + + # Fake Detection and Loss + pred_fake_pool = self.discriminate(input_label, fake_image, use_pool=True) + loss_D_fake = self.criterionGAN(pred_fake_pool, False) + + # Real Detection and Loss + pred_real = self.discriminate(input_label, real_image) + loss_D_real = self.criterionGAN(pred_real, True) + + # GAN loss (Fake Passability Loss) + pred_fake = self.netD.forward(torch.cat((input_label, fake_image), dim=1)) + loss_G_GAN = self.criterionGAN(pred_fake, True) + + # GAN feature matching loss + loss_G_GAN_Feat = 0 + if not self.opt.no_ganFeat_loss: + feat_weights = 4.0 / (self.opt.n_layers_D + 1) + D_weights = 1.0 / self.opt.num_D + for i in range(self.opt.num_D): + for j in range(len(pred_fake[i])-1): + loss_G_GAN_Feat += D_weights * feat_weights * \ + self.criterionFeat(pred_fake[i][j], pred_real[i][j].detach()) * self.opt.lambda_feat + + # VGG feature matching loss + loss_G_VGG = 0 + if not self.opt.no_vgg_loss: + loss_G_VGG = self.criterionVGG(fake_image, real_image) * self.opt.lambda_feat + + # Only return the fake_B image if necessary to save BW + return [ self.loss_filter( loss_G_GAN, loss_G_GAN_Feat, loss_G_VGG, loss_D_real, loss_D_fake ), None if not infer else fake_image ] + + def inference(self, label, inst, image=None): + # Encode Inputs + image = Variable(image) if image is not None else None + input_label, inst_map, real_image, _ = self.encode_input(Variable(label), Variable(inst), image, infer=True) + + # Fake Generation + if self.use_features: + if self.opt.use_encoded_image: + # encode the real image to get feature map + feat_map = self.netE.forward(real_image, inst_map) + else: + # sample clusters from precomputed features + feat_map = self.sample_features(inst_map) + input_concat = torch.cat((input_label, feat_map), dim=1) + else: + input_concat = input_label + + if torch.__version__.startswith('0.4'): + with torch.no_grad(): + fake_image = self.netG.forward(input_concat) + else: + fake_image = self.netG.forward(input_concat) + return fake_image + + def sample_features(self, inst): + # read precomputed feature clusters + cluster_path = os.path.join(self.opt.checkpoints_dir, self.opt.name, self.opt.cluster_path) + features_clustered = np.load(cluster_path, encoding='latin1').item() + + # randomly sample from the feature clusters + inst_np = inst.cpu().numpy().astype(int) + feat_map = self.Tensor(inst.size()[0], self.opt.feat_num, inst.size()[2], inst.size()[3]) + for i in np.unique(inst_np): + label = i if i < 1000 else i//1000 + if label in features_clustered: + feat = features_clustered[label] + cluster_idx = np.random.randint(0, feat.shape[0]) + + idx = (inst == int(i)).nonzero() + for k in range(self.opt.feat_num): + feat_map[idx[:,0], idx[:,1] + k, idx[:,2], idx[:,3]] = feat[cluster_idx, k] + if self.opt.data_type==16: + feat_map = feat_map.half() + return feat_map + + def encode_features(self, image, inst): + image = Variable(image.cuda(), volatile=True) + feat_num = self.opt.feat_num + h, w = inst.size()[2], inst.size()[3] + block_num = 32 + feat_map = self.netE.forward(image, inst.cuda()) + inst_np = inst.cpu().numpy().astype(int) + feature = {} + for i in range(self.opt.label_nc): + feature[i] = np.zeros((0, feat_num+1)) + for i in np.unique(inst_np): + label = i if i < 1000 else i//1000 + idx = (inst == int(i)).nonzero() + num = idx.size()[0] + idx = idx[num//2,:] + val = np.zeros((1, feat_num+1)) + for k in range(feat_num): + val[0, k] = feat_map[idx[0], idx[1] + k, idx[2], idx[3]].data[0] + val[0, feat_num] = float(num) / (h * w // block_num) + feature[label] = np.append(feature[label], val, axis=0) + return feature + + def get_edges(self, t): + edge = torch.cuda.ByteTensor(t.size()).zero_() + edge[:,:,:,1:] = edge[:,:,:,1:] | (t[:,:,:,1:] != t[:,:,:,:-1]) + edge[:,:,:,:-1] = edge[:,:,:,:-1] | (t[:,:,:,1:] != t[:,:,:,:-1]) + edge[:,:,1:,:] = edge[:,:,1:,:] | (t[:,:,1:,:] != t[:,:,:-1,:]) + edge[:,:,:-1,:] = edge[:,:,:-1,:] | (t[:,:,1:,:] != t[:,:,:-1,:]) + if self.opt.data_type==16: + return edge.half() + else: + return edge.float() + + def save(self, which_epoch): + self.save_network(self.netG, 'G', which_epoch, self.gpu_ids) + self.save_network(self.netD, 'D', which_epoch, self.gpu_ids) + if self.gen_features: + self.save_network(self.netE, 'E', which_epoch, self.gpu_ids) + + def update_fixed_params(self): + # after fixing the global generator for a number of iterations, also start finetuning it + params = list(self.netG.parameters()) + if self.gen_features: + params += list(self.netE.parameters()) + self.optimizer_G = torch.optim.Adam(params, lr=self.opt.lr, betas=(self.opt.beta1, 0.999)) + if self.opt.verbose: + print('------------ Now also finetuning global generator -----------') + + def update_learning_rate(self): + lrd = self.opt.lr / self.opt.niter_decay + lr = self.old_lr - lrd + for param_group in self.optimizer_D.param_groups: + param_group['lr'] = lr + for param_group in self.optimizer_G.param_groups: + param_group['lr'] = lr + if self.opt.verbose: + print('update learning rate: %f -> %f' % (self.old_lr, lr)) + self.old_lr = lr + +class InferenceModel(Pix2PixHDModel): + def forward(self, inp): + label, inst = inp + return self.inference(label, inst) + + diff --git a/mlflow/registry/Swimswap/models/projected_model.py b/mlflow/registry/Swimswap/models/projected_model.py new file mode 100644 index 0000000..15d70f9 --- /dev/null +++ b/mlflow/registry/Swimswap/models/projected_model.py @@ -0,0 +1,122 @@ +#!/usr/bin/env python3 +# -*- coding:utf-8 -*- +############################################################# +# File: fs_model_fix_idnorm_donggp_saveoptim copy.py +# Created Date: Wednesday January 12th 2022 +# Author: Chen Xuanhong +# Email: chenxuanhongzju@outlook.com +# Last Modified: Saturday, 13th May 2023 9:56:35 am +# Modified By: Chen Xuanhong +# Copyright (c) 2022 Shanghai Jiao Tong University +############################################################# + + +import torch +import torch.nn as nn + +from .base_model import BaseModel +from .fs_networks_fix import Generator_Adain_Upsample + +from pg_modules.projected_discriminator import ProjectedDiscriminator + +def compute_grad2(d_out, x_in): + batch_size = x_in.size(0) + grad_dout = torch.autograd.grad( + outputs=d_out.sum(), inputs=x_in, + create_graph=True, retain_graph=True, only_inputs=True + )[0] + grad_dout2 = grad_dout.pow(2) + assert(grad_dout2.size() == x_in.size()) + reg = grad_dout2.view(batch_size, -1).sum(1) + return reg + +class fsModel(BaseModel): + def name(self): + return 'fsModel' + + def initialize(self, opt): + BaseModel.initialize(self, opt) + # if opt.resize_or_crop != 'none' or not opt.isTrain: # when training at full res this causes OOM + self.isTrain = opt.isTrain + + # Generator network + self.netG = Generator_Adain_Upsample(input_nc=3, output_nc=3, latent_size=512, n_blocks=9, deep=opt.Gdeep) + self.netG.cuda() + + # Id network + netArc_checkpoint = opt.Arc_path + netArc_checkpoint = torch.load(netArc_checkpoint, map_location=torch.device("cpu")) + self.netArc = netArc_checkpoint + self.netArc = self.netArc.cuda() + self.netArc.eval() + self.netArc.requires_grad_(False) + if not self.isTrain: + pretrained_path = opt.checkpoints_dir + self.load_network(self.netG, 'G', opt.which_epoch, pretrained_path) + return + self.netD = ProjectedDiscriminator(diffaug=False, interp224=False, **{}) + # self.netD.feature_network.requires_grad_(False) + self.netD.cuda() + + + if self.isTrain: + # define loss functions + self.criterionFeat = nn.L1Loss() + self.criterionRec = nn.L1Loss() + + + # initialize optimizers + + # optimizer G + params = list(self.netG.parameters()) + self.optimizer_G = torch.optim.Adam(params, lr=opt.lr, betas=(opt.beta1, 0.99),eps=1e-8) + + # optimizer D + params = list(self.netD.parameters()) + self.optimizer_D = torch.optim.Adam(params, lr=opt.lr, betas=(opt.beta1, 0.99),eps=1e-8) + + # load networks + if opt.continue_train: + pretrained_path = '' if not self.isTrain else opt.load_pretrain + # print (pretrained_path) + self.load_network(self.netG, 'G', opt.which_epoch, pretrained_path) + self.load_network(self.netD, 'D', opt.which_epoch, pretrained_path) + self.load_optim(self.optimizer_G, 'G', opt.which_epoch, pretrained_path) + self.load_optim(self.optimizer_D, 'D', opt.which_epoch, pretrained_path) + torch.cuda.empty_cache() + + def cosin_metric(self, x1, x2): + #return np.dot(x1, x2) / (np.linalg.norm(x1) * np.linalg.norm(x2)) + return torch.sum(x1 * x2, dim=1) / (torch.norm(x1, dim=1) * torch.norm(x2, dim=1)) + + + + def save(self, which_epoch): + self.save_network(self.netG, 'G', which_epoch) + self.save_network(self.netD, 'D', which_epoch) + self.save_optim(self.optimizer_G, 'G', which_epoch) + self.save_optim(self.optimizer_D, 'D', which_epoch) + '''if self.gen_features: + self.save_network(self.netE, 'E', which_epoch, self.gpu_ids)''' + + def update_fixed_params(self): + # after fixing the global generator for a number of iterations, also start finetuning it + params = list(self.netG.parameters()) + if self.gen_features: + params += list(self.netE.parameters()) + self.optimizer_G = torch.optim.Adam(params, lr=self.opt.lr, betas=(self.opt.beta1, 0.999)) + if self.opt.verbose: + print('------------ Now also finetuning global generator -----------') + + def update_learning_rate(self): + lrd = self.opt.lr / self.opt.niter_decay + lr = self.old_lr - lrd + for param_group in self.optimizer_D.param_groups: + param_group['lr'] = lr + for param_group in self.optimizer_G.param_groups: + param_group['lr'] = lr + if self.opt.verbose: + print('update learning rate: %f -> %f' % (self.old_lr, lr)) + self.old_lr = lr + + diff --git a/mlflow/registry/Swimswap/models/projectionhead.py b/mlflow/registry/Swimswap/models/projectionhead.py new file mode 100644 index 0000000..a0d18f1 --- /dev/null +++ b/mlflow/registry/Swimswap/models/projectionhead.py @@ -0,0 +1,14 @@ +import torch.nn as nn + +class ProjectionHead(nn.Module): + def __init__(self, proj_dim=256): + super(ProjectionHead, self).__init__() + + self.proj = nn.Sequential( + nn.Linear(proj_dim, proj_dim), + nn.ReLU(), + nn.Linear(proj_dim, proj_dim), + ) + + def forward(self, x): + return self.proj(x) \ No newline at end of file diff --git a/mlflow/registry/Swimswap/models/ui_model.py b/mlflow/registry/Swimswap/models/ui_model.py new file mode 100644 index 0000000..c5b3433 --- /dev/null +++ b/mlflow/registry/Swimswap/models/ui_model.py @@ -0,0 +1,347 @@ +import torch +from torch.autograd import Variable +from collections import OrderedDict +import numpy as np +import os +from PIL import Image +import util.util as util +from .base_model import BaseModel +from . import networks + +class UIModel(BaseModel): + def name(self): + return 'UIModel' + + def initialize(self, opt): + assert(not opt.isTrain) + BaseModel.initialize(self, opt) + self.use_features = opt.instance_feat or opt.label_feat + + netG_input_nc = opt.label_nc + if not opt.no_instance: + netG_input_nc += 1 + if self.use_features: + netG_input_nc += opt.feat_num + + self.netG = networks.define_G(netG_input_nc, opt.output_nc, opt.ngf, opt.netG, + opt.n_downsample_global, opt.n_blocks_global, opt.n_local_enhancers, + opt.n_blocks_local, opt.norm, gpu_ids=self.gpu_ids) + self.load_network(self.netG, 'G', opt.which_epoch) + + print('---------- Networks initialized -------------') + + def toTensor(self, img, normalize=False): + tensor = torch.from_numpy(np.array(img, np.int32, copy=False)) + tensor = tensor.view(1, img.size[1], img.size[0], len(img.mode)) + tensor = tensor.transpose(1, 2).transpose(1, 3).contiguous() + if normalize: + return (tensor.float()/255.0 - 0.5) / 0.5 + return tensor.float() + + def load_image(self, label_path, inst_path, feat_path): + opt = self.opt + # read label map + label_img = Image.open(label_path) + if label_path.find('face') != -1: + label_img = label_img.convert('L') + ow, oh = label_img.size + w = opt.loadSize + h = int(w * oh / ow) + label_img = label_img.resize((w, h), Image.NEAREST) + label_map = self.toTensor(label_img) + + # onehot vector input for label map + self.label_map = label_map.cuda() + oneHot_size = (1, opt.label_nc, h, w) + input_label = self.Tensor(torch.Size(oneHot_size)).zero_() + self.input_label = input_label.scatter_(1, label_map.long().cuda(), 1.0) + + # read instance map + if not opt.no_instance: + inst_img = Image.open(inst_path) + inst_img = inst_img.resize((w, h), Image.NEAREST) + self.inst_map = self.toTensor(inst_img).cuda() + self.edge_map = self.get_edges(self.inst_map) + self.net_input = Variable(torch.cat((self.input_label, self.edge_map), dim=1), volatile=True) + else: + self.net_input = Variable(self.input_label, volatile=True) + + self.features_clustered = np.load(feat_path).item() + self.object_map = self.inst_map if opt.instance_feat else self.label_map + + object_np = self.object_map.cpu().numpy().astype(int) + self.feat_map = self.Tensor(1, opt.feat_num, h, w).zero_() + self.cluster_indices = np.zeros(self.opt.label_nc, np.uint8) + for i in np.unique(object_np): + label = i if i < 1000 else i//1000 + if label in self.features_clustered: + feat = self.features_clustered[label] + np.random.seed(i+1) + cluster_idx = np.random.randint(0, feat.shape[0]) + self.cluster_indices[label] = cluster_idx + idx = (self.object_map == i).nonzero() + self.set_features(idx, feat, cluster_idx) + + self.net_input_original = self.net_input.clone() + self.label_map_original = self.label_map.clone() + self.feat_map_original = self.feat_map.clone() + if not opt.no_instance: + self.inst_map_original = self.inst_map.clone() + + def reset(self): + self.net_input = self.net_input_prev = self.net_input_original.clone() + self.label_map = self.label_map_prev = self.label_map_original.clone() + self.feat_map = self.feat_map_prev = self.feat_map_original.clone() + if not self.opt.no_instance: + self.inst_map = self.inst_map_prev = self.inst_map_original.clone() + self.object_map = self.inst_map if self.opt.instance_feat else self.label_map + + def undo(self): + self.net_input = self.net_input_prev + self.label_map = self.label_map_prev + self.feat_map = self.feat_map_prev + if not self.opt.no_instance: + self.inst_map = self.inst_map_prev + self.object_map = self.inst_map if self.opt.instance_feat else self.label_map + + # get boundary map from instance map + def get_edges(self, t): + edge = torch.cuda.ByteTensor(t.size()).zero_() + edge[:,:,:,1:] = edge[:,:,:,1:] | (t[:,:,:,1:] != t[:,:,:,:-1]) + edge[:,:,:,:-1] = edge[:,:,:,:-1] | (t[:,:,:,1:] != t[:,:,:,:-1]) + edge[:,:,1:,:] = edge[:,:,1:,:] | (t[:,:,1:,:] != t[:,:,:-1,:]) + edge[:,:,:-1,:] = edge[:,:,:-1,:] | (t[:,:,1:,:] != t[:,:,:-1,:]) + return edge.float() + + # change the label at the source position to the label at the target position + def change_labels(self, click_src, click_tgt): + y_src, x_src = click_src[0], click_src[1] + y_tgt, x_tgt = click_tgt[0], click_tgt[1] + label_src = int(self.label_map[0, 0, y_src, x_src]) + inst_src = self.inst_map[0, 0, y_src, x_src] + label_tgt = int(self.label_map[0, 0, y_tgt, x_tgt]) + inst_tgt = self.inst_map[0, 0, y_tgt, x_tgt] + + idx_src = (self.inst_map == inst_src).nonzero() + # need to change 3 things: label map, instance map, and feature map + if idx_src.shape: + # backup current maps + self.backup_current_state() + + # change both the label map and the network input + self.label_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt + self.net_input[idx_src[:,0], idx_src[:,1] + label_src, idx_src[:,2], idx_src[:,3]] = 0 + self.net_input[idx_src[:,0], idx_src[:,1] + label_tgt, idx_src[:,2], idx_src[:,3]] = 1 + + # update the instance map (and the network input) + if inst_tgt > 1000: + # if different instances have different ids, give the new object a new id + tgt_indices = (self.inst_map > label_tgt * 1000) & (self.inst_map < (label_tgt+1) * 1000) + inst_tgt = self.inst_map[tgt_indices].max() + 1 + self.inst_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = inst_tgt + self.net_input[:,-1,:,:] = self.get_edges(self.inst_map) + + # also copy the source features to the target position + idx_tgt = (self.inst_map == inst_tgt).nonzero() + if idx_tgt.shape: + self.copy_features(idx_src, idx_tgt[0,:]) + + self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map)) + + # add strokes of target label in the image + def add_strokes(self, click_src, label_tgt, bw, save): + # get the region of the new strokes (bw is the brush width) + size = self.net_input.size() + h, w = size[2], size[3] + idx_src = torch.LongTensor(bw**2, 4).fill_(0) + for i in range(bw): + idx_src[i*bw:(i+1)*bw, 2] = min(h-1, max(0, click_src[0]-bw//2 + i)) + for j in range(bw): + idx_src[i*bw+j, 3] = min(w-1, max(0, click_src[1]-bw//2 + j)) + idx_src = idx_src.cuda() + + # again, need to update 3 things + if idx_src.shape: + # backup current maps + if save: + self.backup_current_state() + + # update the label map (and the network input) in the stroke region + self.label_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt + for k in range(self.opt.label_nc): + self.net_input[idx_src[:,0], idx_src[:,1] + k, idx_src[:,2], idx_src[:,3]] = 0 + self.net_input[idx_src[:,0], idx_src[:,1] + label_tgt, idx_src[:,2], idx_src[:,3]] = 1 + + # update the instance map (and the network input) + self.inst_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt + self.net_input[:,-1,:,:] = self.get_edges(self.inst_map) + + # also update the features if available + if self.opt.instance_feat: + feat = self.features_clustered[label_tgt] + #np.random.seed(label_tgt+1) + #cluster_idx = np.random.randint(0, feat.shape[0]) + cluster_idx = self.cluster_indices[label_tgt] + self.set_features(idx_src, feat, cluster_idx) + + self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map)) + + # add an object to the clicked position with selected style + def add_objects(self, click_src, label_tgt, mask, style_id=0): + y, x = click_src[0], click_src[1] + mask = np.transpose(mask, (2, 0, 1))[np.newaxis,...] + idx_src = torch.from_numpy(mask).cuda().nonzero() + idx_src[:,2] += y + idx_src[:,3] += x + + # backup current maps + self.backup_current_state() + + # update label map + self.label_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt + for k in range(self.opt.label_nc): + self.net_input[idx_src[:,0], idx_src[:,1] + k, idx_src[:,2], idx_src[:,3]] = 0 + self.net_input[idx_src[:,0], idx_src[:,1] + label_tgt, idx_src[:,2], idx_src[:,3]] = 1 + + # update instance map + self.inst_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt + self.net_input[:,-1,:,:] = self.get_edges(self.inst_map) + + # update feature map + self.set_features(idx_src, self.feat, style_id) + + self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map)) + + def single_forward(self, net_input, feat_map): + net_input = torch.cat((net_input, feat_map), dim=1) + fake_image = self.netG.forward(net_input) + + if fake_image.size()[0] == 1: + return fake_image.data[0] + return fake_image.data + + + # generate all outputs for different styles + def style_forward(self, click_pt, style_id=-1): + if click_pt is None: + self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map)) + self.crop = None + self.mask = None + else: + instToChange = int(self.object_map[0, 0, click_pt[0], click_pt[1]]) + self.instToChange = instToChange + label = instToChange if instToChange < 1000 else instToChange//1000 + self.feat = self.features_clustered[label] + self.fake_image = [] + self.mask = self.object_map == instToChange + idx = self.mask.nonzero() + self.get_crop_region(idx) + if idx.size(): + if style_id == -1: + (min_y, min_x, max_y, max_x) = self.crop + ### original + for cluster_idx in range(self.opt.multiple_output): + self.set_features(idx, self.feat, cluster_idx) + fake_image = self.single_forward(self.net_input, self.feat_map) + fake_image = util.tensor2im(fake_image[:,min_y:max_y,min_x:max_x]) + self.fake_image.append(fake_image) + """### To speed up previewing different style results, either crop or downsample the label maps + if instToChange > 1000: + (min_y, min_x, max_y, max_x) = self.crop + ### crop + _, _, h, w = self.net_input.size() + offset = 512 + y_start, x_start = max(0, min_y-offset), max(0, min_x-offset) + y_end, x_end = min(h, (max_y + offset)), min(w, (max_x + offset)) + y_region = slice(y_start, y_start+(y_end-y_start)//16*16) + x_region = slice(x_start, x_start+(x_end-x_start)//16*16) + net_input = self.net_input[:,:,y_region,x_region] + for cluster_idx in range(self.opt.multiple_output): + self.set_features(idx, self.feat, cluster_idx) + fake_image = self.single_forward(net_input, self.feat_map[:,:,y_region,x_region]) + fake_image = util.tensor2im(fake_image[:,min_y-y_start:max_y-y_start,min_x-x_start:max_x-x_start]) + self.fake_image.append(fake_image) + else: + ### downsample + (min_y, min_x, max_y, max_x) = [crop//2 for crop in self.crop] + net_input = self.net_input[:,:,::2,::2] + size = net_input.size() + net_input_batch = net_input.expand(self.opt.multiple_output, size[1], size[2], size[3]) + for cluster_idx in range(self.opt.multiple_output): + self.set_features(idx, self.feat, cluster_idx) + feat_map = self.feat_map[:,:,::2,::2] + if cluster_idx == 0: + feat_map_batch = feat_map + else: + feat_map_batch = torch.cat((feat_map_batch, feat_map), dim=0) + fake_image_batch = self.single_forward(net_input_batch, feat_map_batch) + for i in range(self.opt.multiple_output): + self.fake_image.append(util.tensor2im(fake_image_batch[i,:,min_y:max_y,min_x:max_x]))""" + + else: + self.set_features(idx, self.feat, style_id) + self.cluster_indices[label] = style_id + self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map)) + + def backup_current_state(self): + self.net_input_prev = self.net_input.clone() + self.label_map_prev = self.label_map.clone() + self.inst_map_prev = self.inst_map.clone() + self.feat_map_prev = self.feat_map.clone() + + # crop the ROI and get the mask of the object + def get_crop_region(self, idx): + size = self.net_input.size() + h, w = size[2], size[3] + min_y, min_x = idx[:,2].min(), idx[:,3].min() + max_y, max_x = idx[:,2].max(), idx[:,3].max() + crop_min = 128 + if max_y - min_y < crop_min: + min_y = max(0, (max_y + min_y) // 2 - crop_min // 2) + max_y = min(h-1, min_y + crop_min) + if max_x - min_x < crop_min: + min_x = max(0, (max_x + min_x) // 2 - crop_min // 2) + max_x = min(w-1, min_x + crop_min) + self.crop = (min_y, min_x, max_y, max_x) + self.mask = self.mask[:,:, min_y:max_y, min_x:max_x] + + # update the feature map once a new object is added or the label is changed + def update_features(self, cluster_idx, mask=None, click_pt=None): + self.feat_map_prev = self.feat_map.clone() + # adding a new object + if mask is not None: + y, x = click_pt[0], click_pt[1] + mask = np.transpose(mask, (2,0,1))[np.newaxis,...] + idx = torch.from_numpy(mask).cuda().nonzero() + idx[:,2] += y + idx[:,3] += x + # changing the label of an existing object + else: + idx = (self.object_map == self.instToChange).nonzero() + + # update feature map + self.set_features(idx, self.feat, cluster_idx) + + # set the class features to the target feature + def set_features(self, idx, feat, cluster_idx): + for k in range(self.opt.feat_num): + self.feat_map[idx[:,0], idx[:,1] + k, idx[:,2], idx[:,3]] = feat[cluster_idx, k] + + # copy the features at the target position to the source position + def copy_features(self, idx_src, idx_tgt): + for k in range(self.opt.feat_num): + val = self.feat_map[idx_tgt[0], idx_tgt[1] + k, idx_tgt[2], idx_tgt[3]] + self.feat_map[idx_src[:,0], idx_src[:,1] + k, idx_src[:,2], idx_src[:,3]] = val + + def get_current_visuals(self, getLabel=False): + mask = self.mask + if self.mask is not None: + mask = np.transpose(self.mask[0].cpu().float().numpy(), (1,2,0)).astype(np.uint8) + + dict_list = [('fake_image', self.fake_image), ('mask', mask)] + + if getLabel: # only output label map if needed to save bandwidth + label = util.tensor2label(self.net_input.data[0], self.opt.label_nc) + dict_list += [('label', label)] + + return OrderedDict(dict_list) \ No newline at end of file diff --git a/mlflow/registry/Swimswap/options/base_options.py b/mlflow/registry/Swimswap/options/base_options.py new file mode 100644 index 0000000..f5e5e8c --- /dev/null +++ b/mlflow/registry/Swimswap/options/base_options.py @@ -0,0 +1,104 @@ +import argparse +import os +from util import util +import torch + +class BaseOptions(): + def __init__(self): + self.parser = argparse.ArgumentParser() + self.initialized = False + + def initialize(self): + # experiment specifics + self.parser.add_argument('--name', type=str, default='people', help='name of the experiment. It decides where to store samples and models') + self.parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') + self.parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here') + # self.parser.add_argument('--model', type=str, default='pix2pixHD', help='which model to use') + self.parser.add_argument('--norm', type=str, default='batch', help='instance normalization or batch normalization') + self.parser.add_argument('--use_dropout', action='store_true', help='use dropout for the generator') + self.parser.add_argument('--data_type', default=32, type=int, choices=[8, 16, 32], help="Supported data type i.e. 8, 16, 32 bit") + self.parser.add_argument('--verbose', action='store_true', default=False, help='toggles verbose') + self.parser.add_argument('--fp16', action='store_true', default=False, help='train with AMP') + self.parser.add_argument('--local_rank', type=int, default=0, help='local rank for distributed training') + self.parser.add_argument('--isTrain', type=bool, default=True, help='local rank for distributed training') + + # input/output sizes + self.parser.add_argument('--batchSize', type=int, default=8, help='input batch size') + self.parser.add_argument('--loadSize', type=int, default=1024, help='scale images to this size') + self.parser.add_argument('--fineSize', type=int, default=512, help='then crop to this size') + self.parser.add_argument('--label_nc', type=int, default=0, help='# of input label channels') + self.parser.add_argument('--input_nc', type=int, default=3, help='# of input image channels') + self.parser.add_argument('--output_nc', type=int, default=3, help='# of output image channels') + + # for setting inputs + self.parser.add_argument('--dataroot', type=str, default='./SimSwap/datasets/cityscapes/') + self.parser.add_argument('--resize_or_crop', type=str, default='scale_width', help='scaling and cropping of images at load time [resize_and_crop|crop|scale_width|scale_width_and_crop]') + self.parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly') + self.parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data argumentation') + self.parser.add_argument('--nThreads', default=2, type=int, help='# threads for loading data') + self.parser.add_argument('--max_dataset_size', type=int, default=float("inf"), help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.') + + # for displays + self.parser.add_argument('--display_winsize', type=int, default=512, help='display window size') + self.parser.add_argument('--tf_log', action='store_true', help='if specified, use tensorboard logging. Requires tensorflow installed') + + # for generator + self.parser.add_argument('--netG', type=str, default='global', help='selects model to use for netG') + self.parser.add_argument('--latent_size', type=int, default=512, help='latent size of Adain layer') + self.parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer') + self.parser.add_argument('--n_downsample_global', type=int, default=3, help='number of downsampling layers in netG') + self.parser.add_argument('--n_blocks_global', type=int, default=6, help='number of residual blocks in the global generator network') + self.parser.add_argument('--n_blocks_local', type=int, default=3, help='number of residual blocks in the local enhancer network') + self.parser.add_argument('--n_local_enhancers', type=int, default=1, help='number of local enhancers to use') + self.parser.add_argument('--niter_fix_global', type=int, default=0, help='number of epochs that we only train the outmost local enhancer') + + # for instance-wise features + self.parser.add_argument('--no_instance', action='store_true', help='if specified, do *not* add instance map as input') + self.parser.add_argument('--instance_feat', action='store_true', help='if specified, add encoded instance features as input') + self.parser.add_argument('--label_feat', action='store_true', help='if specified, add encoded label features as input') + self.parser.add_argument('--feat_num', type=int, default=3, help='vector length for encoded features') + self.parser.add_argument('--load_features', action='store_true', help='if specified, load precomputed feature maps') + self.parser.add_argument('--n_downsample_E', type=int, default=4, help='# of downsampling layers in encoder') + self.parser.add_argument('--nef', type=int, default=16, help='# of encoder filters in the first conv layer') + self.parser.add_argument('--n_clusters', type=int, default=10, help='number of clusters for features') + self.parser.add_argument('--image_size', type=int, default=224, help='number of clusters for features') + self.parser.add_argument('--norm_G', type=str, default='spectralspadesyncbatch3x3', help='instance normalization or batch normalization') + self.parser.add_argument('--semantic_nc', type=int, default=3, help='number of clusters for features') + self.initialized = True + + def parse(self, save=True): + if not self.initialized: + self.initialize() + self.opt = self.parser.parse_args() + self.opt.isTrain = self.isTrain # train or test + + str_ids = self.opt.gpu_ids.split(',') + self.opt.gpu_ids = [] + for str_id in str_ids: + id = int(str_id) + if id >= 0: + self.opt.gpu_ids.append(id) + + # set gpu ids + if len(self.opt.gpu_ids) > 0: + torch.cuda.set_device(self.opt.gpu_ids[0]) + + args = vars(self.opt) + + print('------------ Options -------------') + for k, v in sorted(args.items()): + print('%s: %s' % (str(k), str(v))) + print('-------------- End ----------------') + + # save to the disk + if self.opt.isTrain: + expr_dir = os.path.join(self.opt.checkpoints_dir, self.opt.name) + util.mkdirs(expr_dir) + if save and not self.opt.continue_train: + file_name = os.path.join(expr_dir, 'opt.txt') + with open(file_name, 'wt') as opt_file: + opt_file.write('------------ Options -------------\n') + for k, v in sorted(args.items()): + opt_file.write('%s: %s\n' % (str(k), str(v))) + opt_file.write('-------------- End ----------------\n') + return self.opt diff --git a/mlflow/registry/Swimswap/options/test_options.py b/mlflow/registry/Swimswap/options/test_options.py new file mode 100644 index 0000000..e46e435 --- /dev/null +++ b/mlflow/registry/Swimswap/options/test_options.py @@ -0,0 +1,38 @@ +''' +Author: Naiyuan liu +Github: https://github.com/NNNNAI +Date: 2021-11-23 17:03:58 +LastEditors: Naiyuan liu +LastEditTime: 2021-11-23 17:08:08 +Description: +''' +from .base_options import BaseOptions + +class TestOptions(BaseOptions): + def initialize(self): + BaseOptions.initialize(self) + self.parser.add_argument('--ntest', type=int, default=float("inf"), help='# of test examples.') + self.parser.add_argument('--results_dir', type=str, default='./results/', help='saves results here.') + self.parser.add_argument('--aspect_ratio', type=float, default=1.0, help='aspect ratio of result images') + self.parser.add_argument('--phase', type=str, default='test', help='train, val, test, etc') + self.parser.add_argument('--which_epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model') + self.parser.add_argument('--how_many', type=int, default=50, help='how many test images to run') + self.parser.add_argument('--cluster_path', type=str, default='features_clustered_010.npy', help='the path for clustered results of encoded features') + self.parser.add_argument('--use_encoded_image', action='store_true', help='if specified, encode the real image to get the feature map') + self.parser.add_argument("--export_onnx", type=str, help="export ONNX model to a given file") + self.parser.add_argument("--engine", type=str, help="run serialized TRT engine") + self.parser.add_argument("--onnx", type=str, help="run ONNX model via TRT") + self.parser.add_argument("--Arc_path", type=str, default='SimSwap/arcface_model/arcface_checkpoint.tar', help="run ONNX model via TRT") + self.parser.add_argument("--pic_a_path", type=str, default='G:/swap_data/ID/elon-musk-hero-image.jpeg', help="Person who provides identity information") + self.parser.add_argument("--pic_b_path", type=str, default='./demo_file/multi_people.jpg', help="Person who provides information other than their identity") + self.parser.add_argument("--pic_specific_path", type=str, default='./crop_224/zrf.jpg', help="The specific person to be swapped") + self.parser.add_argument("--multisepcific_dir", type=str, default='./demo_file/multispecific', help="Dir for multi specific") + self.parser.add_argument("--video_path", type=str, default='G:/swap_data/video/HSB_Demo_Trim.mp4', help="path for the video to swap") + self.parser.add_argument("--temp_path", type=str, default='./temp_results', help="path to save temporarily images") + self.parser.add_argument("--output_path", type=str, default='./output/', help="results path") + self.parser.add_argument('--id_thres', type=float, default=0.03, help='how many test images to run') + self.parser.add_argument('--no_simswaplogo', action='store_true', help='Remove the watermark') + self.parser.add_argument('--use_mask', action='store_true', help='Use mask for better result') + self.parser.add_argument('--crop_size', type=int, default=224, help='Crop of size of input image') + + self.isTrain = False \ No newline at end of file diff --git a/mlflow/registry/Swimswap/parsing_model/model.py b/mlflow/registry/Swimswap/parsing_model/model.py new file mode 100644 index 0000000..d434836 --- /dev/null +++ b/mlflow/registry/Swimswap/parsing_model/model.py @@ -0,0 +1,283 @@ +#!/usr/bin/python +# -*- encoding: utf-8 -*- + + +import torch +import torch.nn as nn +import torch.nn.functional as F +import torchvision + +from parsing_model.resnet import Resnet18 +# from modules.bn import InPlaceABNSync as BatchNorm2d + + +class ConvBNReLU(nn.Module): + def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1, *args, **kwargs): + super(ConvBNReLU, self).__init__() + self.conv = nn.Conv2d(in_chan, + out_chan, + kernel_size = ks, + stride = stride, + padding = padding, + bias = False) + self.bn = nn.BatchNorm2d(out_chan) + self.init_weight() + + def forward(self, x): + x = self.conv(x) + x = F.relu(self.bn(x)) + return x + + def init_weight(self): + for ly in self.children(): + if isinstance(ly, nn.Conv2d): + nn.init.kaiming_normal_(ly.weight, a=1) + if not ly.bias is None: nn.init.constant_(ly.bias, 0) + +class BiSeNetOutput(nn.Module): + def __init__(self, in_chan, mid_chan, n_classes, *args, **kwargs): + super(BiSeNetOutput, self).__init__() + self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1) + self.conv_out = nn.Conv2d(mid_chan, n_classes, kernel_size=1, bias=False) + self.init_weight() + + def forward(self, x): + x = self.conv(x) + x = self.conv_out(x) + return x + + def init_weight(self): + for ly in self.children(): + if isinstance(ly, nn.Conv2d): + nn.init.kaiming_normal_(ly.weight, a=1) + if not ly.bias is None: nn.init.constant_(ly.bias, 0) + + def get_params(self): + wd_params, nowd_params = [], [] + for name, module in self.named_modules(): + if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d): + wd_params.append(module.weight) + if not module.bias is None: + nowd_params.append(module.bias) + elif isinstance(module, nn.BatchNorm2d): + nowd_params += list(module.parameters()) + return wd_params, nowd_params + + +class AttentionRefinementModule(nn.Module): + def __init__(self, in_chan, out_chan, *args, **kwargs): + super(AttentionRefinementModule, self).__init__() + self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1) + self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size= 1, bias=False) + self.bn_atten = nn.BatchNorm2d(out_chan) + self.sigmoid_atten = nn.Sigmoid() + self.init_weight() + + def forward(self, x): + feat = self.conv(x) + atten = F.avg_pool2d(feat, feat.size()[2:]) + atten = self.conv_atten(atten) + atten = self.bn_atten(atten) + atten = self.sigmoid_atten(atten) + out = torch.mul(feat, atten) + return out + + def init_weight(self): + for ly in self.children(): + if isinstance(ly, nn.Conv2d): + nn.init.kaiming_normal_(ly.weight, a=1) + if not ly.bias is None: nn.init.constant_(ly.bias, 0) + + +class ContextPath(nn.Module): + def __init__(self, *args, **kwargs): + super(ContextPath, self).__init__() + self.resnet = Resnet18() + self.arm16 = AttentionRefinementModule(256, 128) + self.arm32 = AttentionRefinementModule(512, 128) + self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) + self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) + self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0) + + self.init_weight() + + def forward(self, x): + H0, W0 = x.size()[2:] + feat8, feat16, feat32 = self.resnet(x) + H8, W8 = feat8.size()[2:] + H16, W16 = feat16.size()[2:] + H32, W32 = feat32.size()[2:] + + avg = F.avg_pool2d(feat32, feat32.size()[2:]) + avg = self.conv_avg(avg) + avg_up = F.interpolate(avg, (H32, W32), mode='nearest') + + feat32_arm = self.arm32(feat32) + feat32_sum = feat32_arm + avg_up + feat32_up = F.interpolate(feat32_sum, (H16, W16), mode='nearest') + feat32_up = self.conv_head32(feat32_up) + + feat16_arm = self.arm16(feat16) + feat16_sum = feat16_arm + feat32_up + feat16_up = F.interpolate(feat16_sum, (H8, W8), mode='nearest') + feat16_up = self.conv_head16(feat16_up) + + return feat8, feat16_up, feat32_up # x8, x8, x16 + + def init_weight(self): + for ly in self.children(): + if isinstance(ly, nn.Conv2d): + nn.init.kaiming_normal_(ly.weight, a=1) + if not ly.bias is None: nn.init.constant_(ly.bias, 0) + + def get_params(self): + wd_params, nowd_params = [], [] + for name, module in self.named_modules(): + if isinstance(module, (nn.Linear, nn.Conv2d)): + wd_params.append(module.weight) + if not module.bias is None: + nowd_params.append(module.bias) + elif isinstance(module, nn.BatchNorm2d): + nowd_params += list(module.parameters()) + return wd_params, nowd_params + + +### This is not used, since I replace this with the resnet feature with the same size +class SpatialPath(nn.Module): + def __init__(self, *args, **kwargs): + super(SpatialPath, self).__init__() + self.conv1 = ConvBNReLU(3, 64, ks=7, stride=2, padding=3) + self.conv2 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1) + self.conv3 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1) + self.conv_out = ConvBNReLU(64, 128, ks=1, stride=1, padding=0) + self.init_weight() + + def forward(self, x): + feat = self.conv1(x) + feat = self.conv2(feat) + feat = self.conv3(feat) + feat = self.conv_out(feat) + return feat + + def init_weight(self): + for ly in self.children(): + if isinstance(ly, nn.Conv2d): + nn.init.kaiming_normal_(ly.weight, a=1) + if not ly.bias is None: nn.init.constant_(ly.bias, 0) + + def get_params(self): + wd_params, nowd_params = [], [] + for name, module in self.named_modules(): + if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d): + wd_params.append(module.weight) + if not module.bias is None: + nowd_params.append(module.bias) + elif isinstance(module, nn.BatchNorm2d): + nowd_params += list(module.parameters()) + return wd_params, nowd_params + + +class FeatureFusionModule(nn.Module): + def __init__(self, in_chan, out_chan, *args, **kwargs): + super(FeatureFusionModule, self).__init__() + self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0) + self.conv1 = nn.Conv2d(out_chan, + out_chan//4, + kernel_size = 1, + stride = 1, + padding = 0, + bias = False) + self.conv2 = nn.Conv2d(out_chan//4, + out_chan, + kernel_size = 1, + stride = 1, + padding = 0, + bias = False) + self.relu = nn.ReLU(inplace=True) + self.sigmoid = nn.Sigmoid() + self.init_weight() + + def forward(self, fsp, fcp): + fcat = torch.cat([fsp, fcp], dim=1) + feat = self.convblk(fcat) + atten = F.avg_pool2d(feat, feat.size()[2:]) + atten = self.conv1(atten) + atten = self.relu(atten) + atten = self.conv2(atten) + atten = self.sigmoid(atten) + feat_atten = torch.mul(feat, atten) + feat_out = feat_atten + feat + return feat_out + + def init_weight(self): + for ly in self.children(): + if isinstance(ly, nn.Conv2d): + nn.init.kaiming_normal_(ly.weight, a=1) + if not ly.bias is None: nn.init.constant_(ly.bias, 0) + + def get_params(self): + wd_params, nowd_params = [], [] + for name, module in self.named_modules(): + if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d): + wd_params.append(module.weight) + if not module.bias is None: + nowd_params.append(module.bias) + elif isinstance(module, nn.BatchNorm2d): + nowd_params += list(module.parameters()) + return wd_params, nowd_params + + +class BiSeNet(nn.Module): + def __init__(self, n_classes, *args, **kwargs): + super(BiSeNet, self).__init__() + self.cp = ContextPath() + ## here self.sp is deleted + self.ffm = FeatureFusionModule(256, 256) + self.conv_out = BiSeNetOutput(256, 256, n_classes) + self.conv_out16 = BiSeNetOutput(128, 64, n_classes) + self.conv_out32 = BiSeNetOutput(128, 64, n_classes) + self.init_weight() + + def forward(self, x): + H, W = x.size()[2:] + feat_res8, feat_cp8, feat_cp16 = self.cp(x) # here return res3b1 feature + feat_sp = feat_res8 # use res3b1 feature to replace spatial path feature + feat_fuse = self.ffm(feat_sp, feat_cp8) + + feat_out = self.conv_out(feat_fuse) + feat_out16 = self.conv_out16(feat_cp8) + feat_out32 = self.conv_out32(feat_cp16) + + feat_out = F.interpolate(feat_out, (H, W), mode='bilinear', align_corners=True) + feat_out16 = F.interpolate(feat_out16, (H, W), mode='bilinear', align_corners=True) + feat_out32 = F.interpolate(feat_out32, (H, W), mode='bilinear', align_corners=True) + return feat_out, feat_out16, feat_out32 + + def init_weight(self): + for ly in self.children(): + if isinstance(ly, nn.Conv2d): + nn.init.kaiming_normal_(ly.weight, a=1) + if not ly.bias is None: nn.init.constant_(ly.bias, 0) + + def get_params(self): + wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params = [], [], [], [] + for name, child in self.named_children(): + child_wd_params, child_nowd_params = child.get_params() + if isinstance(child, FeatureFusionModule) or isinstance(child, BiSeNetOutput): + lr_mul_wd_params += child_wd_params + lr_mul_nowd_params += child_nowd_params + else: + wd_params += child_wd_params + nowd_params += child_nowd_params + return wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params + + +if __name__ == "__main__": + net = BiSeNet(19) + net.cuda() + net.eval() + in_ten = torch.randn(16, 3, 640, 480).cuda() + out, out16, out32 = net(in_ten) + print(out.shape) + + net.get_params() diff --git a/mlflow/registry/Swimswap/parsing_model/resnet.py b/mlflow/registry/Swimswap/parsing_model/resnet.py new file mode 100644 index 0000000..aa2bf95 --- /dev/null +++ b/mlflow/registry/Swimswap/parsing_model/resnet.py @@ -0,0 +1,109 @@ +#!/usr/bin/python +# -*- encoding: utf-8 -*- + +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.model_zoo as modelzoo + +# from modules.bn import InPlaceABNSync as BatchNorm2d + +resnet18_url = 'https://download.pytorch.org/models/resnet18-5c106cde.pth' + + +def conv3x3(in_planes, out_planes, stride=1): + """3x3 convolution with padding""" + return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, + padding=1, bias=False) + + +class BasicBlock(nn.Module): + def __init__(self, in_chan, out_chan, stride=1): + super(BasicBlock, self).__init__() + self.conv1 = conv3x3(in_chan, out_chan, stride) + self.bn1 = nn.BatchNorm2d(out_chan) + self.conv2 = conv3x3(out_chan, out_chan) + self.bn2 = nn.BatchNorm2d(out_chan) + self.relu = nn.ReLU(inplace=True) + self.downsample = None + if in_chan != out_chan or stride != 1: + self.downsample = nn.Sequential( + nn.Conv2d(in_chan, out_chan, + kernel_size=1, stride=stride, bias=False), + nn.BatchNorm2d(out_chan), + ) + + def forward(self, x): + residual = self.conv1(x) + residual = F.relu(self.bn1(residual)) + residual = self.conv2(residual) + residual = self.bn2(residual) + + shortcut = x + if self.downsample is not None: + shortcut = self.downsample(x) + + out = shortcut + residual + out = self.relu(out) + return out + + +def create_layer_basic(in_chan, out_chan, bnum, stride=1): + layers = [BasicBlock(in_chan, out_chan, stride=stride)] + for i in range(bnum-1): + layers.append(BasicBlock(out_chan, out_chan, stride=1)) + return nn.Sequential(*layers) + + +class Resnet18(nn.Module): + def __init__(self): + super(Resnet18, self).__init__() + self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, + bias=False) + self.bn1 = nn.BatchNorm2d(64) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1) + self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2) + self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2) + self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2) + self.init_weight() + + def forward(self, x): + x = self.conv1(x) + x = F.relu(self.bn1(x)) + x = self.maxpool(x) + + x = self.layer1(x) + feat8 = self.layer2(x) # 1/8 + feat16 = self.layer3(feat8) # 1/16 + feat32 = self.layer4(feat16) # 1/32 + return feat8, feat16, feat32 + + def init_weight(self): + state_dict = modelzoo.load_url(resnet18_url) + self_state_dict = self.state_dict() + for k, v in state_dict.items(): + if 'fc' in k: continue + self_state_dict.update({k: v}) + self.load_state_dict(self_state_dict) + + def get_params(self): + wd_params, nowd_params = [], [] + for name, module in self.named_modules(): + if isinstance(module, (nn.Linear, nn.Conv2d)): + wd_params.append(module.weight) + if not module.bias is None: + nowd_params.append(module.bias) + elif isinstance(module, nn.BatchNorm2d): + nowd_params += list(module.parameters()) + return wd_params, nowd_params + + +if __name__ == "__main__": + net = Resnet18() + x = torch.randn(16, 3, 224, 224) + out = net(x) + print(out[0].size()) + print(out[1].size()) + print(out[2].size()) + net.get_params() diff --git a/mlflow/registry/Swimswap/pg_modules/blocks.py b/mlflow/registry/Swimswap/pg_modules/blocks.py new file mode 100644 index 0000000..78bd113 --- /dev/null +++ b/mlflow/registry/Swimswap/pg_modules/blocks.py @@ -0,0 +1,325 @@ +import functools +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.nn.utils import spectral_norm + + +### single layers + + +def conv2d(*args, **kwargs): + return spectral_norm(nn.Conv2d(*args, **kwargs)) + + +def convTranspose2d(*args, **kwargs): + return spectral_norm(nn.ConvTranspose2d(*args, **kwargs)) + + +def embedding(*args, **kwargs): + return spectral_norm(nn.Embedding(*args, **kwargs)) + + +def linear(*args, **kwargs): + return spectral_norm(nn.Linear(*args, **kwargs)) + + +def NormLayer(c, mode='batch'): + if mode == 'group': + return nn.GroupNorm(c//2, c) + elif mode == 'batch': + return nn.BatchNorm2d(c) + + +### Activations + + +class GLU(nn.Module): + def forward(self, x): + nc = x.size(1) + assert nc % 2 == 0, 'channels dont divide 2!' + nc = int(nc/2) + return x[:, :nc] * torch.sigmoid(x[:, nc:]) + + +class Swish(nn.Module): + def forward(self, feat): + return feat * torch.sigmoid(feat) + + +### Upblocks + + +class InitLayer(nn.Module): + def __init__(self, nz, channel, sz=4): + super().__init__() + + self.init = nn.Sequential( + convTranspose2d(nz, channel*2, sz, 1, 0, bias=False), + NormLayer(channel*2), + GLU(), + ) + + def forward(self, noise): + noise = noise.view(noise.shape[0], -1, 1, 1) + return self.init(noise) + + +def UpBlockSmall(in_planes, out_planes): + block = nn.Sequential( + nn.Upsample(scale_factor=2, mode='nearest'), + conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False), + NormLayer(out_planes*2), GLU()) + return block + + +class UpBlockSmallCond(nn.Module): + def __init__(self, in_planes, out_planes, z_dim): + super().__init__() + self.in_planes = in_planes + self.out_planes = out_planes + self.up = nn.Upsample(scale_factor=2, mode='nearest') + self.conv = conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False) + + which_bn = functools.partial(CCBN, which_linear=linear, input_size=z_dim) + self.bn = which_bn(2*out_planes) + self.act = GLU() + + def forward(self, x, c): + x = self.up(x) + x = self.conv(x) + x = self.bn(x, c) + x = self.act(x) + return x + + +def UpBlockBig(in_planes, out_planes): + block = nn.Sequential( + nn.Upsample(scale_factor=2, mode='nearest'), + conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False), + NoiseInjection(), + NormLayer(out_planes*2), GLU(), + conv2d(out_planes, out_planes*2, 3, 1, 1, bias=False), + NoiseInjection(), + NormLayer(out_planes*2), GLU() + ) + return block + + +class UpBlockBigCond(nn.Module): + def __init__(self, in_planes, out_planes, z_dim): + super().__init__() + self.in_planes = in_planes + self.out_planes = out_planes + self.up = nn.Upsample(scale_factor=2, mode='nearest') + self.conv1 = conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False) + self.conv2 = conv2d(out_planes, out_planes*2, 3, 1, 1, bias=False) + + which_bn = functools.partial(CCBN, which_linear=linear, input_size=z_dim) + self.bn1 = which_bn(2*out_planes) + self.bn2 = which_bn(2*out_planes) + self.act = GLU() + self.noise = NoiseInjection() + + def forward(self, x, c): + # block 1 + x = self.up(x) + x = self.conv1(x) + x = self.noise(x) + x = self.bn1(x, c) + x = self.act(x) + + # block 2 + x = self.conv2(x) + x = self.noise(x) + x = self.bn2(x, c) + x = self.act(x) + + return x + + +class SEBlock(nn.Module): + def __init__(self, ch_in, ch_out): + super().__init__() + self.main = nn.Sequential( + nn.AdaptiveAvgPool2d(4), + conv2d(ch_in, ch_out, 4, 1, 0, bias=False), + Swish(), + conv2d(ch_out, ch_out, 1, 1, 0, bias=False), + nn.Sigmoid(), + ) + + def forward(self, feat_small, feat_big): + return feat_big * self.main(feat_small) + + +### Downblocks + + +class SeparableConv2d(nn.Module): + def __init__(self, in_channels, out_channels, kernel_size, bias=False): + super(SeparableConv2d, self).__init__() + self.depthwise = conv2d(in_channels, in_channels, kernel_size=kernel_size, + groups=in_channels, bias=bias, padding=1) + self.pointwise = conv2d(in_channels, out_channels, + kernel_size=1, bias=bias) + + def forward(self, x): + out = self.depthwise(x) + out = self.pointwise(out) + return out + + +class DownBlock(nn.Module): + def __init__(self, in_planes, out_planes, separable=False): + super().__init__() + if not separable: + self.main = nn.Sequential( + conv2d(in_planes, out_planes, 4, 2, 1), + NormLayer(out_planes), + nn.LeakyReLU(0.2, inplace=True), + ) + else: + self.main = nn.Sequential( + SeparableConv2d(in_planes, out_planes, 3), + NormLayer(out_planes), + nn.LeakyReLU(0.2, inplace=True), + nn.AvgPool2d(2, 2), + ) + + def forward(self, feat): + return self.main(feat) + + +class DownBlockPatch(nn.Module): + def __init__(self, in_planes, out_planes, separable=False): + super().__init__() + self.main = nn.Sequential( + DownBlock(in_planes, out_planes, separable), + conv2d(out_planes, out_planes, 1, 1, 0, bias=False), + NormLayer(out_planes), + nn.LeakyReLU(0.2, inplace=True), + ) + + def forward(self, feat): + return self.main(feat) + + +### CSM + + +class ResidualConvUnit(nn.Module): + def __init__(self, cin, activation, bn): + super().__init__() + self.conv = nn.Conv2d(cin, cin, kernel_size=3, stride=1, padding=1, bias=True) + self.skip_add = nn.quantized.FloatFunctional() + + def forward(self, x): + return self.skip_add.add(self.conv(x), x) + + +class FeatureFusionBlock(nn.Module): + def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, lowest=False): + super().__init__() + + self.deconv = deconv + self.align_corners = align_corners + + self.expand = expand + out_features = features + if self.expand==True: + out_features = features//2 + + self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1) + self.skip_add = nn.quantized.FloatFunctional() + + def forward(self, *xs): + output = xs[0] + + if len(xs) == 2: + output = self.skip_add.add(output, xs[1]) + + output = nn.functional.interpolate( + output, scale_factor=2, mode="bilinear", align_corners=self.align_corners + ) + + output = self.out_conv(output) + + return output + + +### Misc + + +class NoiseInjection(nn.Module): + def __init__(self): + super().__init__() + self.weight = nn.Parameter(torch.zeros(1), requires_grad=True) + + def forward(self, feat, noise=None): + if noise is None: + batch, _, height, width = feat.shape + noise = torch.randn(batch, 1, height, width).to(feat.device) + + return feat + self.weight * noise + + +class CCBN(nn.Module): + ''' conditional batchnorm ''' + def __init__(self, output_size, input_size, which_linear, eps=1e-5, momentum=0.1): + super().__init__() + self.output_size, self.input_size = output_size, input_size + + # Prepare gain and bias layers + self.gain = which_linear(input_size, output_size) + self.bias = which_linear(input_size, output_size) + + # epsilon to avoid dividing by 0 + self.eps = eps + # Momentum + self.momentum = momentum + + self.register_buffer('stored_mean', torch.zeros(output_size)) + self.register_buffer('stored_var', torch.ones(output_size)) + + def forward(self, x, y): + # Calculate class-conditional gains and biases + gain = (1 + self.gain(y)).view(y.size(0), -1, 1, 1) + bias = self.bias(y).view(y.size(0), -1, 1, 1) + out = F.batch_norm(x, self.stored_mean, self.stored_var, None, None, + self.training, 0.1, self.eps) + return out * gain + bias + + +class Interpolate(nn.Module): + """Interpolation module.""" + + def __init__(self, size, mode='bilinear', align_corners=False): + """Init. + Args: + scale_factor (float): scaling + mode (str): interpolation mode + """ + super(Interpolate, self).__init__() + + self.interp = nn.functional.interpolate + self.size = size + self.mode = mode + self.align_corners = align_corners + + def forward(self, x): + """Forward pass. + Args: + x (tensor): input + Returns: + tensor: interpolated data + """ + + x = self.interp( + x, + size=self.size, + mode=self.mode, + align_corners=self.align_corners, + ) + + return x diff --git a/mlflow/registry/Swimswap/pg_modules/diffaug.py b/mlflow/registry/Swimswap/pg_modules/diffaug.py new file mode 100644 index 0000000..54020be --- /dev/null +++ b/mlflow/registry/Swimswap/pg_modules/diffaug.py @@ -0,0 +1,76 @@ +# Differentiable Augmentation for Data-Efficient GAN Training +# Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han +# https://arxiv.org/pdf/2006.10738 + +import torch +import torch.nn.functional as F + + +def DiffAugment(x, policy='', channels_first=True): + if policy: + if not channels_first: + x = x.permute(0, 3, 1, 2) + for p in policy.split(','): + for f in AUGMENT_FNS[p]: + x = f(x) + if not channels_first: + x = x.permute(0, 2, 3, 1) + x = x.contiguous() + return x + + +def rand_brightness(x): + x = x + (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) - 0.5) + return x + + +def rand_saturation(x): + x_mean = x.mean(dim=1, keepdim=True) + x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) * 2) + x_mean + return x + + +def rand_contrast(x): + x_mean = x.mean(dim=[1, 2, 3], keepdim=True) + x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) + 0.5) + x_mean + return x + + +def rand_translation(x, ratio=0.125): + shift_x, shift_y = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5) + translation_x = torch.randint(-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device) + translation_y = torch.randint(-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device) + grid_batch, grid_x, grid_y = torch.meshgrid( + torch.arange(x.size(0), dtype=torch.long, device=x.device), + torch.arange(x.size(2), dtype=torch.long, device=x.device), + torch.arange(x.size(3), dtype=torch.long, device=x.device), + ) + grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1) + grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1) + x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0]) + x = x_pad.permute(0, 2, 3, 1).contiguous()[grid_batch, grid_x, grid_y].permute(0, 3, 1, 2) + return x + + +def rand_cutout(x, ratio=0.2): + cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5) + offset_x = torch.randint(0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device) + offset_y = torch.randint(0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device) + grid_batch, grid_x, grid_y = torch.meshgrid( + torch.arange(x.size(0), dtype=torch.long, device=x.device), + torch.arange(cutout_size[0], dtype=torch.long, device=x.device), + torch.arange(cutout_size[1], dtype=torch.long, device=x.device), + ) + grid_x = torch.clamp(grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1) + grid_y = torch.clamp(grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1) + mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device) + mask[grid_batch, grid_x, grid_y] = 0 + x = x * mask.unsqueeze(1) + return x + + +AUGMENT_FNS = { + 'color': [rand_brightness, rand_saturation, rand_contrast], + 'translation': [rand_translation], + 'cutout': [rand_cutout], +} diff --git a/mlflow/registry/Swimswap/pg_modules/projected_discriminator.py b/mlflow/registry/Swimswap/pg_modules/projected_discriminator.py new file mode 100644 index 0000000..d0c879f --- /dev/null +++ b/mlflow/registry/Swimswap/pg_modules/projected_discriminator.py @@ -0,0 +1,191 @@ +from functools import partial +import numpy as np +import torch +import torch.nn as nn + +from pg_modules.blocks import DownBlock, DownBlockPatch, conv2d +from pg_modules.projector import F_RandomProj +from pg_modules.diffaug import DiffAugment + + +class SingleDisc(nn.Module): + def __init__(self, nc=None, ndf=None, start_sz=256, end_sz=8, head=None, separable=False, patch=False): + super().__init__() + channel_dict = {4: 512, 8: 512, 16: 256, 32: 128, 64: 64, 128: 64, + 256: 32, 512: 16, 1024: 8} + + # interpolate for start sz that are not powers of two + if start_sz not in channel_dict.keys(): + sizes = np.array(list(channel_dict.keys())) + start_sz = sizes[np.argmin(abs(sizes - start_sz))] + self.start_sz = start_sz + + # if given ndf, allocate all layers with the same ndf + if ndf is None: + nfc = channel_dict + else: + nfc = {k: ndf for k, v in channel_dict.items()} + + # for feature map discriminators with nfc not in channel_dict + # this is the case for the pretrained backbone (midas.pretrained) + if nc is not None and head is None: + nfc[start_sz] = nc + + layers = [] + + # Head if the initial input is the full modality + if head: + layers += [conv2d(nc, nfc[256], 3, 1, 1, bias=False), + nn.LeakyReLU(0.2, inplace=True)] + + # Down Blocks + DB = partial(DownBlockPatch, separable=separable) if patch else partial(DownBlock, separable=separable) + while start_sz > end_sz: + layers.append(DB(nfc[start_sz], nfc[start_sz//2])) + start_sz = start_sz // 2 + + layers.append(conv2d(nfc[end_sz], 1, 4, 1, 0, bias=False)) + self.main = nn.Sequential(*layers) + + def forward(self, x, c): + return self.main(x) + + +class SingleDiscCond(nn.Module): + def __init__(self, nc=None, ndf=None, start_sz=256, end_sz=8, head=None, separable=False, patch=False, c_dim=1000, cmap_dim=64, embedding_dim=128): + super().__init__() + self.cmap_dim = cmap_dim + + # midas channels + channel_dict = {4: 512, 8: 512, 16: 256, 32: 128, 64: 64, 128: 64, + 256: 32, 512: 16, 1024: 8} + + # interpolate for start sz that are not powers of two + if start_sz not in channel_dict.keys(): + sizes = np.array(list(channel_dict.keys())) + start_sz = sizes[np.argmin(abs(sizes - start_sz))] + self.start_sz = start_sz + + # if given ndf, allocate all layers with the same ndf + if ndf is None: + nfc = channel_dict + else: + nfc = {k: ndf for k, v in channel_dict.items()} + + # for feature map discriminators with nfc not in channel_dict + # this is the case for the pretrained backbone (midas.pretrained) + if nc is not None and head is None: + nfc[start_sz] = nc + + layers = [] + + # Head if the initial input is the full modality + if head: + layers += [conv2d(nc, nfc[256], 3, 1, 1, bias=False), + nn.LeakyReLU(0.2, inplace=True)] + + # Down Blocks + DB = partial(DownBlockPatch, separable=separable) if patch else partial(DownBlock, separable=separable) + while start_sz > end_sz: + layers.append(DB(nfc[start_sz], nfc[start_sz//2])) + start_sz = start_sz // 2 + self.main = nn.Sequential(*layers) + + # additions for conditioning on class information + self.cls = conv2d(nfc[end_sz], self.cmap_dim, 4, 1, 0, bias=False) + self.embed = nn.Embedding(num_embeddings=c_dim, embedding_dim=embedding_dim) + self.embed_proj = nn.Sequential( + nn.Linear(self.embed.embedding_dim, self.cmap_dim), + nn.LeakyReLU(0.2, inplace=True), + ) + + def forward(self, x, c): + h = self.main(x) + out = self.cls(h) + + # conditioning via projection + cmap = self.embed_proj(self.embed(c.argmax(1))).unsqueeze(-1).unsqueeze(-1) + out = (out * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim)) + + return out + + +class MultiScaleD(nn.Module): + def __init__( + self, + channels, + resolutions, + num_discs=4, + proj_type=2, # 0 = no projection, 1 = cross channel mixing, 2 = cross scale mixing + cond=0, + separable=False, + patch=False, + **kwargs, + ): + super().__init__() + + assert num_discs in [1, 2, 3, 4] + + # the first disc is on the lowest level of the backbone + self.disc_in_channels = channels[:num_discs] + self.disc_in_res = resolutions[:num_discs] + Disc = SingleDiscCond if cond else SingleDisc + + mini_discs = [] + for i, (cin, res) in enumerate(zip(self.disc_in_channels, self.disc_in_res)): + start_sz = res if not patch else 16 + mini_discs += [str(i), Disc(nc=cin, start_sz=start_sz, end_sz=8, separable=separable, patch=patch)], + self.mini_discs = nn.ModuleDict(mini_discs) + + def forward(self, features, c): + all_logits = [] + for k, disc in self.mini_discs.items(): + res = disc(features[k], c).view(features[k].size(0), -1) + all_logits.append(res) + + all_logits = torch.cat(all_logits, dim=1) + return all_logits + + +class ProjectedDiscriminator(torch.nn.Module): + def __init__( + self, + diffaug=True, + interp224=True, + backbone_kwargs={}, + **kwargs + ): + super().__init__() + self.diffaug = diffaug + self.interp224 = interp224 + self.feature_network = F_RandomProj(**backbone_kwargs) + self.discriminator = MultiScaleD( + channels=self.feature_network.CHANNELS, + resolutions=self.feature_network.RESOLUTIONS, + **backbone_kwargs, + ) + + def train(self, mode=True): + self.feature_network = self.feature_network.train(False) + self.discriminator = self.discriminator.train(mode) + return self + + def eval(self): + return self.train(False) + + def get_feature(self, x): + features = self.feature_network(x, get_features=True) + return features + + def forward(self, x, c): + # if self.diffaug: + # x = DiffAugment(x, policy='color,translation,cutout') + + # if self.interp224: + # x = F.interpolate(x, 224, mode='bilinear', align_corners=False) + + features,backbone_features = self.feature_network(x) + logits = self.discriminator(features, c) + + return logits,backbone_features + diff --git a/mlflow/registry/Swimswap/pg_modules/projector.py b/mlflow/registry/Swimswap/pg_modules/projector.py new file mode 100644 index 0000000..610a482 --- /dev/null +++ b/mlflow/registry/Swimswap/pg_modules/projector.py @@ -0,0 +1,158 @@ +import torch +import torch.nn as nn +import timm +from pg_modules.blocks import FeatureFusionBlock + + +def _make_scratch_ccm(scratch, in_channels, cout, expand=False): + # shapes + out_channels = [cout, cout*2, cout*4, cout*8] if expand else [cout]*4 + + scratch.layer0_ccm = nn.Conv2d(in_channels[0], out_channels[0], kernel_size=1, stride=1, padding=0, bias=True) + scratch.layer1_ccm = nn.Conv2d(in_channels[1], out_channels[1], kernel_size=1, stride=1, padding=0, bias=True) + scratch.layer2_ccm = nn.Conv2d(in_channels[2], out_channels[2], kernel_size=1, stride=1, padding=0, bias=True) + scratch.layer3_ccm = nn.Conv2d(in_channels[3], out_channels[3], kernel_size=1, stride=1, padding=0, bias=True) + + scratch.CHANNELS = out_channels + + return scratch + + +def _make_scratch_csm(scratch, in_channels, cout, expand): + scratch.layer3_csm = FeatureFusionBlock(in_channels[3], nn.ReLU(False), expand=expand, lowest=True) + scratch.layer2_csm = FeatureFusionBlock(in_channels[2], nn.ReLU(False), expand=expand) + scratch.layer1_csm = FeatureFusionBlock(in_channels[1], nn.ReLU(False), expand=expand) + scratch.layer0_csm = FeatureFusionBlock(in_channels[0], nn.ReLU(False)) + + # last refinenet does not expand to save channels in higher dimensions + scratch.CHANNELS = [cout, cout, cout*2, cout*4] if expand else [cout]*4 + + return scratch + + +def _make_efficientnet(model): + pretrained = nn.Module() + pretrained.layer0 = nn.Sequential(model.conv_stem, model.bn1, model.act1, *model.blocks[0:2]) + pretrained.layer1 = nn.Sequential(*model.blocks[2:3]) + pretrained.layer2 = nn.Sequential(*model.blocks[3:5]) + pretrained.layer3 = nn.Sequential(*model.blocks[5:9]) + return pretrained + + +def calc_channels(pretrained, inp_res=224): + channels = [] + tmp = torch.zeros(1, 3, inp_res, inp_res) + + # forward pass + tmp = pretrained.layer0(tmp) + channels.append(tmp.shape[1]) + tmp = pretrained.layer1(tmp) + channels.append(tmp.shape[1]) + tmp = pretrained.layer2(tmp) + channels.append(tmp.shape[1]) + tmp = pretrained.layer3(tmp) + channels.append(tmp.shape[1]) + + return channels + + +def _make_projector(im_res, cout, proj_type, expand=False): + assert proj_type in [0, 1, 2], "Invalid projection type" + + ### Build pretrained feature network + model = timm.create_model('tf_efficientnet_lite0', pretrained=True) + pretrained = _make_efficientnet(model) + + # determine resolution of feature maps, this is later used to calculate the number + # of down blocks in the discriminators. Interestingly, the best results are achieved + # by fixing this to 256, ie., we use the same number of down blocks per discriminator + # independent of the dataset resolution + im_res = 256 + pretrained.RESOLUTIONS = [im_res//4, im_res//8, im_res//16, im_res//32] + pretrained.CHANNELS = calc_channels(pretrained) + + if proj_type == 0: return pretrained, None + + ### Build CCM + scratch = nn.Module() + scratch = _make_scratch_ccm(scratch, in_channels=pretrained.CHANNELS, cout=cout, expand=expand) + pretrained.CHANNELS = scratch.CHANNELS + + if proj_type == 1: return pretrained, scratch + + ### build CSM + scratch = _make_scratch_csm(scratch, in_channels=scratch.CHANNELS, cout=cout, expand=expand) + + # CSM upsamples x2 so the feature map resolution doubles + pretrained.RESOLUTIONS = [res*2 for res in pretrained.RESOLUTIONS] + pretrained.CHANNELS = scratch.CHANNELS + + return pretrained, scratch + + +class F_RandomProj(nn.Module): + def __init__( + self, + im_res=256, + cout=64, + expand=True, + proj_type=2, # 0 = no projection, 1 = cross channel mixing, 2 = cross scale mixing + **kwargs, + ): + super().__init__() + self.proj_type = proj_type + self.cout = cout + self.expand = expand + + # build pretrained feature network and random decoder (scratch) + self.pretrained, self.scratch = _make_projector(im_res=im_res, cout=self.cout, proj_type=self.proj_type, expand=self.expand) + self.CHANNELS = self.pretrained.CHANNELS + self.RESOLUTIONS = self.pretrained.RESOLUTIONS + + def forward(self, x, get_features=False): + # predict feature maps + out0 = self.pretrained.layer0(x) + out1 = self.pretrained.layer1(out0) + out2 = self.pretrained.layer2(out1) + out3 = self.pretrained.layer3(out2) + + # start enumerating at the lowest layer (this is where we put the first discriminator) + backbone_features = { + '0': out0, + '1': out1, + '2': out2, + '3': out3, + } + if get_features: + return backbone_features + + if self.proj_type == 0: return backbone_features + + out0_channel_mixed = self.scratch.layer0_ccm(backbone_features['0']) + out1_channel_mixed = self.scratch.layer1_ccm(backbone_features['1']) + out2_channel_mixed = self.scratch.layer2_ccm(backbone_features['2']) + out3_channel_mixed = self.scratch.layer3_ccm(backbone_features['3']) + + out = { + '0': out0_channel_mixed, + '1': out1_channel_mixed, + '2': out2_channel_mixed, + '3': out3_channel_mixed, + } + + if self.proj_type == 1: return out + + # from bottom to top + out3_scale_mixed = self.scratch.layer3_csm(out3_channel_mixed) + out2_scale_mixed = self.scratch.layer2_csm(out3_scale_mixed, out2_channel_mixed) + out1_scale_mixed = self.scratch.layer1_csm(out2_scale_mixed, out1_channel_mixed) + out0_scale_mixed = self.scratch.layer0_csm(out1_scale_mixed, out0_channel_mixed) + + out = { + '0': out0_scale_mixed, + '1': out1_scale_mixed, + '2': out2_scale_mixed, + '3': out3_scale_mixed, + } + + return out, backbone_features diff --git a/mlflow/registry/Swimswap/util/add_watermark.py b/mlflow/registry/Swimswap/util/add_watermark.py new file mode 100644 index 0000000..a4c5d3d --- /dev/null +++ b/mlflow/registry/Swimswap/util/add_watermark.py @@ -0,0 +1,118 @@ + +import cv2 +import numpy as np +from PIL import Image +import math +import numpy as np +# import torch +# from torchvision import transforms + +def rotate_image(image, angle, center = None, scale = 1.0): + (h, w) = image.shape[:2] + + if center is None: + center = (w / 2, h / 2) + + # Perform the rotation + M = cv2.getRotationMatrix2D(center, angle, scale) + rotated = cv2.warpAffine(image, M, (w, h)) + + return rotated + +class watermark_image: + def __init__(self, logo_path, size=0.3, oritation="DR", margin=(5,20,20,20), angle=15, rgb_weight=(0,1,1.5), input_frame_shape=None) -> None: + + logo_image = cv2.imread(logo_path, cv2.IMREAD_UNCHANGED) + h,w,c = logo_image.shape + if angle%360 != 0: + new_h = w*math.sin(angle/180*math.pi) + h*math.cos(angle/180*math.pi) + pad_h = int((new_h-h)//2) + + padding = np.zeros((pad_h, w, c), dtype=np.uint8) + logo_image = cv2.vconcat([logo_image, padding]) + logo_image = cv2.vconcat([padding, logo_image]) + + logo_image = rotate_image(logo_image, angle) + print(logo_image.shape) + self.logo_image = logo_image + + if self.logo_image.shape[2] < 4: + print("No alpha channel found!") + self.logo_image = self.__addAlpha__(self.logo_image) #add alpha channel + self.size = size + self.oritation = oritation + self.margin = margin + self.ori_shape = self.logo_image.shape + self.resized = False + self.rgb_weight = rgb_weight + + self.logo_image[:, :, 2] = self.logo_image[:, :, 2]*self.rgb_weight[0] + self.logo_image[:, :, 1] = self.logo_image[:, :, 1]*self.rgb_weight[1] + self.logo_image[:, :, 0] = self.logo_image[:, :, 0]*self.rgb_weight[2] + + if input_frame_shape is not None: + + logo_w = input_frame_shape[1] * self.size + ratio = logo_w / self.ori_shape[1] + logo_h = int(ratio * self.ori_shape[0]) + logo_w = int(logo_w) + + size = (logo_w, logo_h) + self.logo_image = cv2.resize(self.logo_image, size, interpolation = cv2.INTER_CUBIC) + self.resized = True + if oritation == "UL": + self.coor_h = self.margin[1] + self.coor_w = self.margin[0] + elif oritation == "UR": + self.coor_h = self.margin[1] + self.coor_w = input_frame_shape[1] - (logo_w + self.margin[2]) + elif oritation == "DL": + self.coor_h = input_frame_shape[0] - (logo_h + self.margin[1]) + self.coor_w = self.margin[0] + else: + self.coor_h = input_frame_shape[0] - (logo_h + self.margin[3]) + self.coor_w = input_frame_shape[1] - (logo_w + self.margin[2]) + self.logo_w = logo_w + self.logo_h = logo_h + self.mask = self.logo_image[:,:,3] + self.mask = cv2.bitwise_not(self.mask//255) + + def apply_frames(self, frame): + + if not self.resized: + shape = frame.shape + logo_w = shape[1] * self.size + ratio = logo_w / self.ori_shape[1] + logo_h = int(ratio * self.ori_shape[0]) + logo_w = int(logo_w) + + size = (logo_w, logo_h) + self.logo_image = cv2.resize(self.logo_image, size, interpolation = cv2.INTER_CUBIC) + self.resized = True + if self.oritation == "UL": + self.coor_h = self.margin[1] + self.coor_w = self.margin[0] + elif self.oritation == "UR": + self.coor_h = self.margin[1] + self.coor_w = shape[1] - (logo_w + self.margin[2]) + elif self.oritation == "DL": + self.coor_h = shape[0] - (logo_h + self.margin[1]) + self.coor_w = self.margin[0] + else: + self.coor_h = shape[0] - (logo_h + self.margin[3]) + self.coor_w = shape[1] - (logo_w + self.margin[2]) + self.logo_w = logo_w + self.logo_h = logo_h + self.mask = self.logo_image[:,:,3] + self.mask = cv2.bitwise_not(self.mask//255) + + original_frame = frame[self.coor_h:(self.coor_h+self.logo_h), self.coor_w:(self.coor_w+self.logo_w),:] + blending_logo = cv2.add(self.logo_image[:,:,0:3],original_frame,mask = self.mask) + frame[self.coor_h:(self.coor_h+self.logo_h), self.coor_w:(self.coor_w+self.logo_w),:] = blending_logo + return frame + + def __addAlpha__(self, image): + shape = image.shape + alpha_channel = np.ones((shape[0],shape[1],1),np.uint8)*255 + return np.concatenate((image,alpha_channel),2) + diff --git a/mlflow/registry/Swimswap/util/gifswap.py b/mlflow/registry/Swimswap/util/gifswap.py new file mode 100644 index 0000000..e0eaca9 --- /dev/null +++ b/mlflow/registry/Swimswap/util/gifswap.py @@ -0,0 +1,129 @@ +''' +Author: Naiyuan liu +Github: https://github.com/NNNNAI +Date: 2021-11-23 17:03:58 +LastEditors: Naiyuan liu +LastEditTime: 2021-11-24 19:19:52 +Description: +''' +import os +import cv2 +import glob +import torch +import shutil +import numpy as np +from tqdm import tqdm +from util.reverse2original import reverse2wholeimage +import moviepy.editor as mp +from moviepy.editor import AudioFileClip, VideoFileClip +from moviepy.video.io.ImageSequenceClip import ImageSequenceClip +import time +from util.add_watermark import watermark_image +from util.norm import SpecificNorm +from parsing_model.model import BiSeNet +from array2gif import write_gif + + +def _totensor(array): + tensor = torch.from_numpy(array) + img = tensor.transpose(0, 1).transpose(0, 2).contiguous() + return img.float().div(255) + +def gif_swap(video_path, id_vetor, swap_model, detect_model, save_path, temp_results_dir='./temp_results', crop_size=224, no_simswaplogo=False, use_mask=False): + video_forcheck = VideoFileClip(video_path) + if video_forcheck.audio is None: + no_audio = True + else: + no_audio = False + + del video_forcheck + + if not no_audio: + video_audio_clip = AudioFileClip(video_path) + + video = cv2.VideoCapture(video_path) + logoclass = watermark_image('./SimSwap/simswaplogo/simswaplogo.png') + ret = True + frame_index = 0 + + frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) + + # video_WIDTH = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) + + # video_HEIGHT = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) + + fps = video.get(cv2.CAP_PROP_FPS) + if os.path.exists(temp_results_dir): + shutil.rmtree(temp_results_dir) + + spNorm =SpecificNorm() + if use_mask: + n_classes = 19 + net = BiSeNet(n_classes=n_classes) + net.cuda() + save_pth = os.path.join('./SimSwap/parsing_model/checkpoint', '79999_iter.pth') + net.load_state_dict(torch.load(save_pth)) + net.eval() + else: + net =None + + frames = [] + # while ret: + for frame_index in tqdm(range(frame_count)): + ret, frame = video.read() + if ret: + detect_results = detect_model.get(frame,crop_size) + + if detect_results is not None: + # print(frame_index) + # if not os.path.exists(temp_results_dir): + # os.mkdir(temp_results_dir) + frame_align_crop_list = detect_results[0] + frame_mat_list = detect_results[1] + swap_result_list = [] + frame_align_crop_tenor_list = [] + for frame_align_crop in frame_align_crop_list: + + # BGR TO RGB + # frame_align_crop_RGB = frame_align_crop[...,::-1] + + frame_align_crop_tenor = _totensor(cv2.cvtColor(frame_align_crop,cv2.COLOR_BGR2RGB))[None,...].cuda() + + swap_result = swap_model(None, frame_align_crop_tenor, id_vetor, None, True)[0] + # cv2.imwrite(os.path.join(temp_results_dir, 'frame_{:0>7d}.jpg'.format(frame_index)), frame) # 원본 프레임 img 저장 + swap_result_list.append(swap_result) + frame_align_crop_tenor_list.append(frame_align_crop_tenor) + + + img = reverse2wholeimage(frame_align_crop_tenor_list,swap_result_list, frame_mat_list, crop_size, frame, logoclass,\ + os.path.join(temp_results_dir, 'frame_{:0>7d}.jpg'.format(frame_index)), no_simswaplogo, pasring_model=net, use_mask=use_mask, norm=spNorm) + frames.append(img.tobytes()) + + else: + if not os.path.exists(temp_results_dir): + os.mkdir(temp_results_dir) + frame = frame.astype(np.uint8) + # if not no_simswaplogo: + # frame = logoclass.apply_frames(frame) + cv2.imwrite(os.path.join(temp_results_dir, 'frame_{:0>7d}.jpg'.format(frame_index)), frame) + else: + break + + video.release() + + # image_filename_list = [] + # path = os.path.join(temp_results_dir, '*.jpg') + # image_filenames = sorted(glob.glob(path)) + + # clips = ImageSequenceClip(image_filenames, fps = fps) + + # if not no_audio: + # clips = clips.set_audio(video_audio_clip) + + # # if save_path.split('.')[-1] == 'gif': + # clips.write_gif(save_path) + + # write_gif(frames, save_path, fps=fps) + return frames, fps + + diff --git a/mlflow/registry/Swimswap/util/html.py b/mlflow/registry/Swimswap/util/html.py new file mode 100644 index 0000000..71c48ad --- /dev/null +++ b/mlflow/registry/Swimswap/util/html.py @@ -0,0 +1,63 @@ +import dominate +from dominate.tags import * +import os + + +class HTML: + def __init__(self, web_dir, title, refresh=0): + self.title = title + self.web_dir = web_dir + self.img_dir = os.path.join(self.web_dir, 'images') + if not os.path.exists(self.web_dir): + os.makedirs(self.web_dir) + if not os.path.exists(self.img_dir): + os.makedirs(self.img_dir) + + self.doc = dominate.document(title=title) + if refresh > 0: + with self.doc.head: + meta(http_equiv="refresh", content=str(refresh)) + + def get_image_dir(self): + return self.img_dir + + def add_header(self, str): + with self.doc: + h3(str) + + def add_table(self, border=1): + self.t = table(border=border, style="table-layout: fixed;") + self.doc.add(self.t) + + def add_images(self, ims, txts, links, width=512): + self.add_table() + with self.t: + with tr(): + for im, txt, link in zip(ims, txts, links): + with td(style="word-wrap: break-word;", halign="center", valign="top"): + with p(): + with a(href=os.path.join('images', link)): + img(style="width:%dpx" % (width), src=os.path.join('images', im)) + br() + p(txt) + + def save(self): + html_file = '%s/index.html' % self.web_dir + f = open(html_file, 'wt') + f.write(self.doc.render()) + f.close() + + +if __name__ == '__main__': + html = HTML('web/', 'test_html') + html.add_header('hello world') + + ims = [] + txts = [] + links = [] + for n in range(4): + ims.append('image_%d.jpg' % n) + txts.append('text_%d' % n) + links.append('image_%d.jpg' % n) + html.add_images(ims, txts, links) + html.save() diff --git a/mlflow/registry/Swimswap/util/image_pool.py b/mlflow/registry/Swimswap/util/image_pool.py new file mode 100644 index 0000000..63e1877 --- /dev/null +++ b/mlflow/registry/Swimswap/util/image_pool.py @@ -0,0 +1,31 @@ +import random +import torch +from torch.autograd import Variable +class ImagePool(): + def __init__(self, pool_size): + self.pool_size = pool_size + if self.pool_size > 0: + self.num_imgs = 0 + self.images = [] + + def query(self, images): + if self.pool_size == 0: + return images + return_images = [] + for image in images.data: + image = torch.unsqueeze(image, 0) + if self.num_imgs < self.pool_size: + self.num_imgs = self.num_imgs + 1 + self.images.append(image) + return_images.append(image) + else: + p = random.uniform(0, 1) + if p > 0.5: + random_id = random.randint(0, self.pool_size-1) + tmp = self.images[random_id].clone() + self.images[random_id] = image + return_images.append(tmp) + else: + return_images.append(image) + return_images = Variable(torch.cat(return_images, 0)) + return return_images diff --git a/mlflow/registry/Swimswap/util/json_config.py b/mlflow/registry/Swimswap/util/json_config.py new file mode 100644 index 0000000..c68fbff --- /dev/null +++ b/mlflow/registry/Swimswap/util/json_config.py @@ -0,0 +1,15 @@ +import json + + +def readConfig(path): + with open(path,'r') as cf: + nodelocaltionstr = cf.read() + nodelocaltioninf = json.loads(nodelocaltionstr) + if isinstance(nodelocaltioninf,str): + nodelocaltioninf = json.loads(nodelocaltioninf) + return nodelocaltioninf + +def writeConfig(path, info): + with open(path, 'w') as cf: + configjson = json.dumps(info, indent=4) + cf.writelines(configjson) \ No newline at end of file diff --git a/mlflow/registry/Swimswap/util/logo_class.py b/mlflow/registry/Swimswap/util/logo_class.py new file mode 100644 index 0000000..044dce3 --- /dev/null +++ b/mlflow/registry/Swimswap/util/logo_class.py @@ -0,0 +1,44 @@ +#!/usr/bin/env python3 +# -*- coding:utf-8 -*- +############################################################# +# File: logo_class.py +# Created Date: Tuesday June 29th 2021 +# Author: Chen Xuanhong +# Email: chenxuanhongzju@outlook.com +# Last Modified: Monday, 11th October 2021 12:39:55 am +# Modified By: Chen Xuanhong +# Copyright (c) 2021 Shanghai Jiao Tong University +############################################################# + +class logo_class: + + @staticmethod + def print_group_logo(): + logo_str = """ + +███╗ ██╗██████╗ ███████╗██╗ ██████╗ ███████╗ ██╗████████╗██╗ ██╗ +████╗ ██║██╔══██╗██╔════╝██║██╔════╝ ██╔════╝ ██║╚══██╔══╝██║ ██║ +██╔██╗ ██║██████╔╝███████╗██║██║ ███╗ ███████╗ ██║ ██║ ██║ ██║ +██║╚██╗██║██╔══██╗╚════██║██║██║ ██║ ╚════██║██ ██║ ██║ ██║ ██║ +██║ ╚████║██║ ██║███████║██║╚██████╔╝ ███████║╚█████╔╝ ██║ ╚██████╔╝ +╚═╝ ╚═══╝╚═╝ ╚═╝╚══════╝╚═╝ ╚═════╝ ╚══════╝ ╚════╝ ╚═╝ ╚═════╝ +Neural Rendering Special Interesting Group of SJTU + + """ + print(logo_str) + + @staticmethod + def print_start_training(): + logo_str = """ + _____ __ __ ______ _ _ + / ___/ / /_ ____ _ _____ / /_ /_ __/_____ ____ _ (_)____ (_)____ ____ _ + \__ \ / __// __ `// ___// __/ / / / ___// __ `// // __ \ / // __ \ / __ `/ + ___/ // /_ / /_/ // / / /_ / / / / / /_/ // // / / // // / / // /_/ / +/____/ \__/ \__,_//_/ \__/ /_/ /_/ \__,_//_//_/ /_//_//_/ /_/ \__, / + /____/ + """ + print(logo_str) + +if __name__=="__main__": + # logo_class.print_group_logo() + logo_class.print_start_training() \ No newline at end of file diff --git a/mlflow/registry/Swimswap/util/norm.py b/mlflow/registry/Swimswap/util/norm.py new file mode 100644 index 0000000..981adcf --- /dev/null +++ b/mlflow/registry/Swimswap/util/norm.py @@ -0,0 +1,25 @@ +import torch.nn as nn +import numpy as np +import torch +class SpecificNorm(nn.Module): + def __init__(self, epsilon=1e-8): + """ + @notice: avoid in-place ops. + https://discuss.pytorch.org/t/encounter-the-runtimeerror-one-of-the-variables-needed-for-gradient-computation-has-been-modified-by-an-inplace-operation/836/3 + """ + super(SpecificNorm, self).__init__() + self.mean = np.array([0.485, 0.456, 0.406]) + self.mean = torch.from_numpy(self.mean).float().cuda() + self.mean = self.mean.view([1, 3, 1, 1]) + + self.std = np.array([0.229, 0.224, 0.225]) + self.std = torch.from_numpy(self.std).float().cuda() + self.std = self.std.view([1, 3, 1, 1]) + + def forward(self, x): + mean = self.mean.expand([1, 3, x.shape[2], x.shape[3]]) + std = self.std.expand([1, 3, x.shape[2], x.shape[3]]) + + x = (x - mean) / std + + return x \ No newline at end of file diff --git a/mlflow/registry/Swimswap/util/plot.py b/mlflow/registry/Swimswap/util/plot.py new file mode 100644 index 0000000..0da1c75 --- /dev/null +++ b/mlflow/registry/Swimswap/util/plot.py @@ -0,0 +1,37 @@ +import numpy as np +import math +import PIL + +def postprocess(x): + """[0,1] to uint8.""" + + x = np.clip(255 * x, 0, 255) + x = np.cast[np.uint8](x) + return x + +def tile(X, rows, cols): + """Tile images for display.""" + tiling = np.zeros((rows * X.shape[1], cols * X.shape[2], X.shape[3]), dtype = X.dtype) + for i in range(rows): + for j in range(cols): + idx = i * cols + j + if idx < X.shape[0]: + img = X[idx,...] + tiling[ + i*X.shape[1]:(i+1)*X.shape[1], + j*X.shape[2]:(j+1)*X.shape[2], + :] = img + return tiling + + +def plot_batch(X, out_path): + """Save batch of images tiled.""" + n_channels = X.shape[3] + if n_channels > 3: + X = X[:,:,:,np.random.choice(n_channels, size = 3)] + X = postprocess(X) + rc = math.sqrt(X.shape[0]) + rows = cols = math.ceil(rc) + canvas = tile(X, rows, cols) + canvas = np.squeeze(canvas) + PIL.Image.fromarray(canvas).save(out_path) \ No newline at end of file diff --git a/mlflow/registry/Swimswap/util/reverse2original.py b/mlflow/registry/Swimswap/util/reverse2original.py new file mode 100644 index 0000000..81305b8 --- /dev/null +++ b/mlflow/registry/Swimswap/util/reverse2original.py @@ -0,0 +1,176 @@ +import cv2 +import numpy as np +# import time +import torch +from torch.nn import functional as F +import torch.nn as nn + + +def encode_segmentation_rgb(segmentation, no_neck=True): + parse = segmentation + + face_part_ids = [1, 2, 3, 4, 5, 6, 10, 12, 13] if no_neck else [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14] + mouth_id = 11 + # hair_id = 17 + face_map = np.zeros([parse.shape[0], parse.shape[1]]) + mouth_map = np.zeros([parse.shape[0], parse.shape[1]]) + # hair_map = np.zeros([parse.shape[0], parse.shape[1]]) + + for valid_id in face_part_ids: + valid_index = np.where(parse==valid_id) + face_map[valid_index] = 255 + valid_index = np.where(parse==mouth_id) + mouth_map[valid_index] = 255 + # valid_index = np.where(parse==hair_id) + # hair_map[valid_index] = 255 + #return np.stack([face_map, mouth_map,hair_map], axis=2) + return np.stack([face_map, mouth_map], axis=2) + + +class SoftErosion(nn.Module): + def __init__(self, kernel_size=15, threshold=0.6, iterations=1): + super(SoftErosion, self).__init__() + r = kernel_size // 2 + self.padding = r + self.iterations = iterations + self.threshold = threshold + + # Create kernel + y_indices, x_indices = torch.meshgrid(torch.arange(0., kernel_size), torch.arange(0., kernel_size)) + dist = torch.sqrt((x_indices - r) ** 2 + (y_indices - r) ** 2) + kernel = dist.max() - dist + kernel /= kernel.sum() + kernel = kernel.view(1, 1, *kernel.shape) + self.register_buffer('weight', kernel) + + def forward(self, x): + x = x.float() + for i in range(self.iterations - 1): + x = torch.min(x, F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding)) + x = F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding) + + mask = x >= self.threshold + x[mask] = 1.0 + x[~mask] /= x[~mask].max() + + return x, mask + + +def postprocess(swapped_face, target, target_mask,smooth_mask): + # target_mask = cv2.resize(target_mask, (self.size, self.size)) + + mask_tensor = torch.from_numpy(target_mask.copy().transpose((2, 0, 1))).float().mul_(1/255.0).cuda() + face_mask_tensor = mask_tensor[0] + mask_tensor[1] + + soft_face_mask_tensor, _ = smooth_mask(face_mask_tensor.unsqueeze_(0).unsqueeze_(0)) + soft_face_mask_tensor.squeeze_() + + soft_face_mask = soft_face_mask_tensor.cpu().numpy() + soft_face_mask = soft_face_mask[:, :, np.newaxis] + + result = swapped_face * soft_face_mask + target * (1 - soft_face_mask) + result = result[:,:,::-1]# .astype(np.uint8) + return result + +def reverse2wholeimage(b_align_crop_tenor_list, swaped_imgs, mats, crop_size, oriimg, logoclass, save_path='', \ + no_simswaplogo=False, pasring_model=None, norm=None, use_mask=False): + + target_image_list = [] + img_mask_list = [] + if use_mask: + smooth_mask = SoftErosion(kernel_size=17, threshold=0.9, iterations=7).cuda() + else: + pass + + # print(len(swaped_imgs)) + # print(mats) + # print(len(b_align_crop_tenor_list)) + for swaped_img, mat ,source_img in zip(swaped_imgs, mats, b_align_crop_tenor_list): + swaped_img = swaped_img.cpu().detach().numpy().transpose((1, 2, 0)) + img_white = np.full((crop_size,crop_size), 255, dtype=float) + + # inverse the Affine transformation matrix + mat_rev = np.zeros([2,3]) + div1 = mat[0][0]*mat[1][1]-mat[0][1]*mat[1][0] + mat_rev[0][0] = mat[1][1]/div1 + mat_rev[0][1] = -mat[0][1]/div1 + mat_rev[0][2] = -(mat[0][2]*mat[1][1]-mat[0][1]*mat[1][2])/div1 + div2 = mat[0][1]*mat[1][0]-mat[0][0]*mat[1][1] + mat_rev[1][0] = mat[1][0]/div2 + mat_rev[1][1] = -mat[0][0]/div2 + mat_rev[1][2] = -(mat[0][2]*mat[1][0]-mat[0][0]*mat[1][2])/div2 + + orisize = (oriimg.shape[1], oriimg.shape[0]) + if use_mask: + source_img_norm = norm(source_img) + source_img_512 = F.interpolate(source_img_norm,size=(512,512)) + out = pasring_model(source_img_512)[0] + parsing = out.squeeze(0).detach().cpu().numpy().argmax(0) + vis_parsing_anno = parsing.copy().astype(np.uint8) + tgt_mask = encode_segmentation_rgb(vis_parsing_anno) + if tgt_mask.sum() >= 5000: + # face_mask_tensor = tgt_mask[...,0] + tgt_mask[...,1] + target_mask = cv2.resize(tgt_mask, (crop_size, crop_size)) + # print(source_img) + target_image_parsing = postprocess(swaped_img, source_img[0].cpu().detach().numpy().transpose((1, 2, 0)), target_mask,smooth_mask) + + + target_image = cv2.warpAffine(target_image_parsing, mat_rev, orisize) + # target_image_parsing = cv2.warpAffine(swaped_img, mat_rev, orisize) + else: + target_image = cv2.warpAffine(swaped_img, mat_rev, orisize)[..., ::-1] + else: + target_image = cv2.warpAffine(swaped_img, mat_rev, orisize) + # source_image = cv2.warpAffine(source_img, mat_rev, orisize) + + img_white = cv2.warpAffine(img_white, mat_rev, orisize) + + + img_white[img_white>20] =255 + + img_mask = img_white + + # if use_mask: + # kernel = np.ones((40,40),np.uint8) + # img_mask = cv2.erode(img_mask,kernel,iterations = 1) + # else: + kernel = np.ones((40,40),np.uint8) + img_mask = cv2.erode(img_mask,kernel,iterations = 1) + kernel_size = (20, 20) + blur_size = tuple(2*i+1 for i in kernel_size) + img_mask = cv2.GaussianBlur(img_mask, blur_size, 0) + + # kernel = np.ones((10,10),np.uint8) + # img_mask = cv2.erode(img_mask,kernel,iterations = 1) + + + + img_mask /= 255 + + img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1]) + + # pasing mask + + # target_image_parsing = postprocess(target_image, source_image, tgt_mask) + + if use_mask: + target_image = np.array(target_image, dtype=np.float) * 255 + else: + target_image = np.array(target_image, dtype=np.float)[..., ::-1] * 255 + + + img_mask_list.append(img_mask) + target_image_list.append(target_image) + + + # target_image /= 255 + # target_image = 0 + img = np.array(oriimg, dtype=np.float) + for img_mask, target_image in zip(img_mask_list, target_image_list): + img = img_mask * target_image + (1-img_mask) * img + + final_img = img.astype(np.uint8) + # if not no_simswaplogo: + # final_img = logoclass.apply_frames(final_img) + # cv2.imwrite(save_path, final_img) # swap img 저장 + return final_img diff --git a/mlflow/registry/Swimswap/util/save_heatmap.py b/mlflow/registry/Swimswap/util/save_heatmap.py new file mode 100644 index 0000000..71ce4c9 --- /dev/null +++ b/mlflow/registry/Swimswap/util/save_heatmap.py @@ -0,0 +1,57 @@ +#!/usr/bin/env python3 +# -*- coding:utf-8 -*- +############################################################# +# File: save_heatmap.py +# Created Date: Friday January 15th 2021 +# Author: Chen Xuanhong +# Email: chenxuanhongzju@outlook.com +# Last Modified: Wednesday, 19th January 2022 1:22:47 am +# Modified By: Chen Xuanhong +# Copyright (c) 2021 Shanghai Jiao Tong University +############################################################# + +import os +import shutil +import seaborn as sns +import matplotlib.pyplot as plt +import cv2 +import numpy as np + +def SaveHeatmap(heatmaps, path, row=-1, dpi=72): + """ + The input tensor must be B X 1 X H X W + """ + batch_size = heatmaps.shape[0] + temp_path = ".temp/" + if not os.path.exists(temp_path): + os.makedirs(temp_path) + final_img = None + if row < 1: + col = batch_size + row = 1 + else: + col = batch_size // row + if row * col = col: + col_i = 0 + row_i += 1 + cv2.imwrite(path,final_img) + +if __name__ == "__main__": + random_map = np.random.randn(16,1,10,10) + SaveHeatmap(random_map,"./wocao.png",1) diff --git a/mlflow/registry/Swimswap/util/util.py b/mlflow/registry/Swimswap/util/util.py new file mode 100644 index 0000000..f4f79ec --- /dev/null +++ b/mlflow/registry/Swimswap/util/util.py @@ -0,0 +1,100 @@ +from __future__ import print_function +import torch +import numpy as np +from PIL import Image +import numpy as np +import os + +# Converts a Tensor into a Numpy array +# |imtype|: the desired type of the converted numpy array +def tensor2im(image_tensor, imtype=np.uint8, normalize=True): + if isinstance(image_tensor, list): + image_numpy = [] + for i in range(len(image_tensor)): + image_numpy.append(tensor2im(image_tensor[i], imtype, normalize)) + return image_numpy + image_numpy = image_tensor.cpu().float().numpy() + if normalize: + image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 + else: + image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0 + image_numpy = np.clip(image_numpy, 0, 255) + if image_numpy.shape[2] == 1 or image_numpy.shape[2] > 3: + image_numpy = image_numpy[:,:,0] + return image_numpy.astype(imtype) + +# Converts a one-hot tensor into a colorful label map +def tensor2label(label_tensor, n_label, imtype=np.uint8): + if n_label == 0: + return tensor2im(label_tensor, imtype) + label_tensor = label_tensor.cpu().float() + if label_tensor.size()[0] > 1: + label_tensor = label_tensor.max(0, keepdim=True)[1] + label_tensor = Colorize(n_label)(label_tensor) + label_numpy = np.transpose(label_tensor.numpy(), (1, 2, 0)) + return label_numpy.astype(imtype) + +def save_image(image_numpy, image_path): + image_pil = Image.fromarray(image_numpy) + image_pil.save(image_path) + +def mkdirs(paths): + if isinstance(paths, list) and not isinstance(paths, str): + for path in paths: + mkdir(path) + else: + mkdir(paths) + +def mkdir(path): + if not os.path.exists(path): + os.makedirs(path) + +############################################################################### +# Code from +# https://github.com/ycszen/pytorch-seg/blob/master/transform.py +# Modified so it complies with the Citscape label map colors +############################################################################### +def uint82bin(n, count=8): + """returns the binary of integer n, count refers to amount of bits""" + return ''.join([str((n >> y) & 1) for y in range(count-1, -1, -1)]) + +def labelcolormap(N): + if N == 35: # cityscape + cmap = np.array([( 0, 0, 0), ( 0, 0, 0), ( 0, 0, 0), ( 0, 0, 0), ( 0, 0, 0), (111, 74, 0), ( 81, 0, 81), + (128, 64,128), (244, 35,232), (250,170,160), (230,150,140), ( 70, 70, 70), (102,102,156), (190,153,153), + (180,165,180), (150,100,100), (150,120, 90), (153,153,153), (153,153,153), (250,170, 30), (220,220, 0), + (107,142, 35), (152,251,152), ( 70,130,180), (220, 20, 60), (255, 0, 0), ( 0, 0,142), ( 0, 0, 70), + ( 0, 60,100), ( 0, 0, 90), ( 0, 0,110), ( 0, 80,100), ( 0, 0,230), (119, 11, 32), ( 0, 0,142)], + dtype=np.uint8) + else: + cmap = np.zeros((N, 3), dtype=np.uint8) + for i in range(N): + r, g, b = 0, 0, 0 + id = i + for j in range(7): + str_id = uint82bin(id) + r = r ^ (np.uint8(str_id[-1]) << (7-j)) + g = g ^ (np.uint8(str_id[-2]) << (7-j)) + b = b ^ (np.uint8(str_id[-3]) << (7-j)) + id = id >> 3 + cmap[i, 0] = r + cmap[i, 1] = g + cmap[i, 2] = b + return cmap + +class Colorize(object): + def __init__(self, n=35): + self.cmap = labelcolormap(n) + self.cmap = torch.from_numpy(self.cmap[:n]) + + def __call__(self, gray_image): + size = gray_image.size() + color_image = torch.ByteTensor(3, size[1], size[2]).fill_(0) + + for label in range(0, len(self.cmap)): + mask = (label == gray_image[0]).cpu() + color_image[0][mask] = self.cmap[label][0] + color_image[1][mask] = self.cmap[label][1] + color_image[2][mask] = self.cmap[label][2] + + return color_image diff --git a/mlflow/registry/Swimswap/util/videoswap.py b/mlflow/registry/Swimswap/util/videoswap.py new file mode 100644 index 0000000..99294d5 --- /dev/null +++ b/mlflow/registry/Swimswap/util/videoswap.py @@ -0,0 +1,121 @@ +''' +Author: Naiyuan liu +Github: https://github.com/NNNNAI +Date: 2021-11-23 17:03:58 +LastEditors: Naiyuan liu +LastEditTime: 2021-11-24 19:19:52 +Description: +''' +import os +import cv2 +import glob +import torch +import shutil +import numpy as np +from tqdm import tqdm +from util.reverse2original import reverse2wholeimage +import moviepy.editor as mp +from moviepy.editor import AudioFileClip, VideoFileClip +from moviepy.video.io.ImageSequenceClip import ImageSequenceClip +import time +from util.add_watermark import watermark_image +from util.norm import SpecificNorm +from parsing_model.model import BiSeNet + +def _totensor(array): + tensor = torch.from_numpy(array) + img = tensor.transpose(0, 1).transpose(0, 2).contiguous() + return img.float().div(255) + +def video_swap(video_path, id_vetor, swap_model, detect_model, save_path, temp_results_dir='./temp_results', crop_size=224, no_simswaplogo = False,use_mask =False): + video_forcheck = VideoFileClip(video_path) + if video_forcheck.audio is None: + no_audio = True + else: + no_audio = False + + del video_forcheck + + if not no_audio: + video_audio_clip = AudioFileClip(video_path) + + video = cv2.VideoCapture(video_path) + logoclass = watermark_image('./simswaplogo/simswaplogo.png') + ret = True + frame_index = 0 + + frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) + + # video_WIDTH = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) + + # video_HEIGHT = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) + + fps = video.get(cv2.CAP_PROP_FPS) + if os.path.exists(temp_results_dir): + shutil.rmtree(temp_results_dir) + + spNorm =SpecificNorm() + if use_mask: + n_classes = 19 + net = BiSeNet(n_classes=n_classes) + net.cuda() + save_pth = os.path.join('./parsing_model/checkpoint', '79999_iter.pth') + net.load_state_dict(torch.load(save_pth)) + net.eval() + else: + net =None + + # while ret: + for frame_index in tqdm(range(frame_count)): + ret, frame = video.read() + if ret: + detect_results = detect_model.get(frame,crop_size) + + if detect_results is not None: + # print(frame_index) + if not os.path.exists(temp_results_dir): + os.mkdir(temp_results_dir) + frame_align_crop_list = detect_results[0] + frame_mat_list = detect_results[1] + swap_result_list = [] + frame_align_crop_tenor_list = [] + for frame_align_crop in frame_align_crop_list: + + # BGR TO RGB + # frame_align_crop_RGB = frame_align_crop[...,::-1] + + frame_align_crop_tenor = _totensor(cv2.cvtColor(frame_align_crop,cv2.COLOR_BGR2RGB))[None,...].cuda() + + swap_result = swap_model(None, frame_align_crop_tenor, id_vetor, None, True)[0] + cv2.imwrite(os.path.join(temp_results_dir, 'frame_{:0>7d}.jpg'.format(frame_index)), frame) + swap_result_list.append(swap_result) + frame_align_crop_tenor_list.append(frame_align_crop_tenor) + + + + reverse2wholeimage(frame_align_crop_tenor_list,swap_result_list, frame_mat_list, crop_size, frame, logoclass,\ + os.path.join(temp_results_dir, 'frame_{:0>7d}.jpg'.format(frame_index)),no_simswaplogo,pasring_model =net,use_mask=use_mask, norm = spNorm) + + else: + if not os.path.exists(temp_results_dir): + os.mkdir(temp_results_dir) + frame = frame.astype(np.uint8) + if not no_simswaplogo: + frame = logoclass.apply_frames(frame) + cv2.imwrite(os.path.join(temp_results_dir, 'frame_{:0>7d}.jpg'.format(frame_index)), frame) + else: + break + + video.release() + + # image_filename_list = [] + path = os.path.join(temp_results_dir,'*.jpg') + image_filenames = sorted(glob.glob(path)) + + clips = ImageSequenceClip(image_filenames,fps = fps) + + if not no_audio: + clips = clips.set_audio(video_audio_clip) + + + clips.write_videofile(save_path,audio_codec='aac') diff --git a/mlflow/registry/Swimswap/util/videoswap_multispecific.py b/mlflow/registry/Swimswap/util/videoswap_multispecific.py new file mode 100644 index 0000000..40e9488 --- /dev/null +++ b/mlflow/registry/Swimswap/util/videoswap_multispecific.py @@ -0,0 +1,146 @@ +import os +import cv2 +import glob +import torch +import shutil +import numpy as np +from tqdm import tqdm +from util.reverse2original import reverse2wholeimage +import moviepy.editor as mp +from moviepy.editor import AudioFileClip, VideoFileClip +from moviepy.video.io.ImageSequenceClip import ImageSequenceClip +import time +from util.add_watermark import watermark_image +from util.norm import SpecificNorm +import torch.nn.functional as F +from parsing_model.model import BiSeNet + +def _totensor(array): + tensor = torch.from_numpy(array) + img = tensor.transpose(0, 1).transpose(0, 2).contiguous() + return img.float().div(255) + +def video_swap(video_path, target_id_norm_list,source_specific_id_nonorm_list,id_thres, swap_model, detect_model, save_path, temp_results_dir='./temp_results', crop_size=224, no_simswaplogo = False,use_mask =False): + video_forcheck = VideoFileClip(video_path) + if video_forcheck.audio is None: + no_audio = True + else: + no_audio = False + + del video_forcheck + + if not no_audio: + video_audio_clip = AudioFileClip(video_path) + + video = cv2.VideoCapture(video_path) + logoclass = watermark_image('./simswaplogo/simswaplogo.png') + ret = True + frame_index = 0 + + frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) + + # video_WIDTH = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) + + # video_HEIGHT = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) + + fps = video.get(cv2.CAP_PROP_FPS) + if os.path.exists(temp_results_dir): + shutil.rmtree(temp_results_dir) + + spNorm =SpecificNorm() + mse = torch.nn.MSELoss().cuda() + + if use_mask: + n_classes = 19 + net = BiSeNet(n_classes=n_classes) + net.cuda() + save_pth = os.path.join('./parsing_model/checkpoint', '79999_iter.pth') + net.load_state_dict(torch.load(save_pth)) + net.eval() + else: + net =None + + # while ret: + for frame_index in tqdm(range(frame_count)): + ret, frame = video.read() + if ret: + detect_results = detect_model.get(frame,crop_size) + + if detect_results is not None: + # print(frame_index) + if not os.path.exists(temp_results_dir): + os.mkdir(temp_results_dir) + frame_align_crop_list = detect_results[0] + frame_mat_list = detect_results[1] + + id_compare_values = [] + frame_align_crop_tenor_list = [] + for frame_align_crop in frame_align_crop_list: + + # BGR TO RGB + # frame_align_crop_RGB = frame_align_crop[...,::-1] + + frame_align_crop_tenor = _totensor(cv2.cvtColor(frame_align_crop,cv2.COLOR_BGR2RGB))[None,...].cuda() + + frame_align_crop_tenor_arcnorm = spNorm(frame_align_crop_tenor) + frame_align_crop_tenor_arcnorm_downsample = F.interpolate(frame_align_crop_tenor_arcnorm, size=(112,112)) + frame_align_crop_crop_id_nonorm = swap_model.netArc(frame_align_crop_tenor_arcnorm_downsample) + id_compare_values.append([]) + for source_specific_id_nonorm_tmp in source_specific_id_nonorm_list: + id_compare_values[-1].append(mse(frame_align_crop_crop_id_nonorm,source_specific_id_nonorm_tmp).detach().cpu().numpy()) + frame_align_crop_tenor_list.append(frame_align_crop_tenor) + + id_compare_values_array = np.array(id_compare_values).transpose(1,0) + min_indexs = np.argmin(id_compare_values_array,axis=0) + min_value = np.min(id_compare_values_array,axis=0) + + swap_result_list = [] + swap_result_matrix_list = [] + swap_result_ori_pic_list = [] + for tmp_index, min_index in enumerate(min_indexs): + if min_value[tmp_index] < id_thres: + swap_result = swap_model(None, frame_align_crop_tenor_list[tmp_index], target_id_norm_list[min_index], None, True)[0] + swap_result_list.append(swap_result) + swap_result_matrix_list.append(frame_mat_list[tmp_index]) + swap_result_ori_pic_list.append(frame_align_crop_tenor_list[tmp_index]) + else: + pass + + + + if len(swap_result_list) !=0: + + reverse2wholeimage(swap_result_ori_pic_list,swap_result_list, swap_result_matrix_list, crop_size, frame, logoclass,\ + os.path.join(temp_results_dir, 'frame_{:0>7d}.jpg'.format(frame_index)),no_simswaplogo,pasring_model =net,use_mask=use_mask, norm = spNorm) + else: + if not os.path.exists(temp_results_dir): + os.mkdir(temp_results_dir) + frame = frame.astype(np.uint8) + if not no_simswaplogo: + frame = logoclass.apply_frames(frame) + cv2.imwrite(os.path.join(temp_results_dir, 'frame_{:0>7d}.jpg'.format(frame_index)), frame) + + else: + if not os.path.exists(temp_results_dir): + os.mkdir(temp_results_dir) + frame = frame.astype(np.uint8) + if not no_simswaplogo: + frame = logoclass.apply_frames(frame) + cv2.imwrite(os.path.join(temp_results_dir, 'frame_{:0>7d}.jpg'.format(frame_index)), frame) + else: + break + + video.release() + + # image_filename_list = [] + path = os.path.join(temp_results_dir,'*.jpg') + image_filenames = sorted(glob.glob(path)) + + clips = ImageSequenceClip(image_filenames,fps = fps) + + if not no_audio: + clips = clips.set_audio(video_audio_clip) + + + clips.write_videofile(save_path,audio_codec='aac') + diff --git a/mlflow/registry/Swimswap/util/videoswap_specific.py b/mlflow/registry/Swimswap/util/videoswap_specific.py new file mode 100644 index 0000000..8177efb --- /dev/null +++ b/mlflow/registry/Swimswap/util/videoswap_specific.py @@ -0,0 +1,130 @@ +import os +import cv2 +import glob +import torch +import shutil +import numpy as np +from tqdm import tqdm +from util.reverse2original import reverse2wholeimage +import moviepy.editor as mp +from moviepy.editor import AudioFileClip, VideoFileClip +from moviepy.video.io.ImageSequenceClip import ImageSequenceClip +import time +from util.add_watermark import watermark_image +from util.norm import SpecificNorm +import torch.nn.functional as F +from parsing_model.model import BiSeNet + +def _totensor(array): + tensor = torch.from_numpy(array) + img = tensor.transpose(0, 1).transpose(0, 2).contiguous() + return img.float().div(255) + +def video_swap(video_path, id_vetor,specific_person_id_nonorm,id_thres, swap_model, detect_model, save_path, temp_results_dir='./temp_results', crop_size=224, no_simswaplogo = False,use_mask =False): + video_forcheck = VideoFileClip(video_path) + if video_forcheck.audio is None: + no_audio = True + else: + no_audio = False + + del video_forcheck + + if not no_audio: + video_audio_clip = AudioFileClip(video_path) + + video = cv2.VideoCapture(video_path) + logoclass = watermark_image('./simswaplogo/simswaplogo.png') + ret = True + frame_index = 0 + + frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) + + # video_WIDTH = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) + + # video_HEIGHT = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) + + fps = video.get(cv2.CAP_PROP_FPS) + if os.path.exists(temp_results_dir): + shutil.rmtree(temp_results_dir) + + spNorm =SpecificNorm() + mse = torch.nn.MSELoss().cuda() + + if use_mask: + n_classes = 19 + net = BiSeNet(n_classes=n_classes) + net.cuda() + save_pth = os.path.join('./parsing_model/checkpoint', '79999_iter.pth') + net.load_state_dict(torch.load(save_pth)) + net.eval() + else: + net =None + + # while ret: + for frame_index in tqdm(range(frame_count)): + ret, frame = video.read() + if ret: + detect_results = detect_model.get(frame,crop_size) + + if detect_results is not None: + # print(frame_index) + if not os.path.exists(temp_results_dir): + os.mkdir(temp_results_dir) + frame_align_crop_list = detect_results[0] + frame_mat_list = detect_results[1] + + id_compare_values = [] + frame_align_crop_tenor_list = [] + for frame_align_crop in frame_align_crop_list: + + # BGR TO RGB + # frame_align_crop_RGB = frame_align_crop[...,::-1] + + frame_align_crop_tenor = _totensor(cv2.cvtColor(frame_align_crop,cv2.COLOR_BGR2RGB))[None,...].cuda() + + frame_align_crop_tenor_arcnorm = spNorm(frame_align_crop_tenor) + frame_align_crop_tenor_arcnorm_downsample = F.interpolate(frame_align_crop_tenor_arcnorm, size=(112,112)) + frame_align_crop_crop_id_nonorm = swap_model.netArc(frame_align_crop_tenor_arcnorm_downsample) + + id_compare_values.append(mse(frame_align_crop_crop_id_nonorm,specific_person_id_nonorm).detach().cpu().numpy()) + frame_align_crop_tenor_list.append(frame_align_crop_tenor) + id_compare_values_array = np.array(id_compare_values) + min_index = np.argmin(id_compare_values_array) + min_value = id_compare_values_array[min_index] + if min_value < id_thres: + swap_result = swap_model(None, frame_align_crop_tenor_list[min_index], id_vetor, None, True)[0] + + reverse2wholeimage([frame_align_crop_tenor_list[min_index]], [swap_result], [frame_mat_list[min_index]], crop_size, frame, logoclass,\ + os.path.join(temp_results_dir, 'frame_{:0>7d}.jpg'.format(frame_index)),no_simswaplogo,pasring_model =net,use_mask= use_mask, norm = spNorm) + else: + if not os.path.exists(temp_results_dir): + os.mkdir(temp_results_dir) + frame = frame.astype(np.uint8) + if not no_simswaplogo: + frame = logoclass.apply_frames(frame) + cv2.imwrite(os.path.join(temp_results_dir, 'frame_{:0>7d}.jpg'.format(frame_index)), frame) + + else: + if not os.path.exists(temp_results_dir): + os.mkdir(temp_results_dir) + frame = frame.astype(np.uint8) + if not no_simswaplogo: + frame = logoclass.apply_frames(frame) + cv2.imwrite(os.path.join(temp_results_dir, 'frame_{:0>7d}.jpg'.format(frame_index)), frame) + else: + break + + video.release() + + # image_filename_list = [] + path = os.path.join(temp_results_dir,'*.jpg') + image_filenames = sorted(glob.glob(path)) + + clips = ImageSequenceClip(image_filenames,fps = fps) + + if not no_audio: + clips = clips.set_audio(video_audio_clip) + + + clips.write_videofile(save_path,audio_codec='aac') + diff --git a/mlflow/registry/Swimswap/util/visualizer.py b/mlflow/registry/Swimswap/util/visualizer.py new file mode 100644 index 0000000..584ac45 --- /dev/null +++ b/mlflow/registry/Swimswap/util/visualizer.py @@ -0,0 +1,131 @@ +import numpy as np +import os +import ntpath +import time +from . import util +from . import html +import scipy.misc +try: + from StringIO import StringIO # Python 2.7 +except ImportError: + from io import BytesIO # Python 3.x + +class Visualizer(): + def __init__(self, opt): + # self.opt = opt + self.tf_log = opt.tf_log + self.use_html = opt.isTrain and not opt.no_html + self.win_size = opt.display_winsize + self.name = opt.name + if self.tf_log: + import tensorflow as tf + self.tf = tf + self.log_dir = os.path.join(opt.checkpoints_dir, opt.name, 'logs') + self.writer = tf.summary.FileWriter(self.log_dir) + + if self.use_html: + self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web') + self.img_dir = os.path.join(self.web_dir, 'images') + print('create web directory %s...' % self.web_dir) + util.mkdirs([self.web_dir, self.img_dir]) + self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt') + with open(self.log_name, "a") as log_file: + now = time.strftime("%c") + log_file.write('================ Training Loss (%s) ================\n' % now) + + # |visuals|: dictionary of images to display or save + def display_current_results(self, visuals, epoch, step): + if self.tf_log: # show images in tensorboard output + img_summaries = [] + for label, image_numpy in visuals.items(): + # Write the image to a string + try: + s = StringIO() + except: + s = BytesIO() + scipy.misc.toimage(image_numpy).save(s, format="jpeg") + # Create an Image object + img_sum = self.tf.Summary.Image(encoded_image_string=s.getvalue(), height=image_numpy.shape[0], width=image_numpy.shape[1]) + # Create a Summary value + img_summaries.append(self.tf.Summary.Value(tag=label, image=img_sum)) + + # Create and write Summary + summary = self.tf.Summary(value=img_summaries) + self.writer.add_summary(summary, step) + + if self.use_html: # save images to a html file + for label, image_numpy in visuals.items(): + if isinstance(image_numpy, list): + for i in range(len(image_numpy)): + img_path = os.path.join(self.img_dir, 'epoch%.3d_%s_%d.jpg' % (epoch, label, i)) + util.save_image(image_numpy[i], img_path) + else: + img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.jpg' % (epoch, label)) + util.save_image(image_numpy, img_path) + + # update website + webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=30) + for n in range(epoch, 0, -1): + webpage.add_header('epoch [%d]' % n) + ims = [] + txts = [] + links = [] + + for label, image_numpy in visuals.items(): + if isinstance(image_numpy, list): + for i in range(len(image_numpy)): + img_path = 'epoch%.3d_%s_%d.jpg' % (n, label, i) + ims.append(img_path) + txts.append(label+str(i)) + links.append(img_path) + else: + img_path = 'epoch%.3d_%s.jpg' % (n, label) + ims.append(img_path) + txts.append(label) + links.append(img_path) + if len(ims) < 10: + webpage.add_images(ims, txts, links, width=self.win_size) + else: + num = int(round(len(ims)/2.0)) + webpage.add_images(ims[:num], txts[:num], links[:num], width=self.win_size) + webpage.add_images(ims[num:], txts[num:], links[num:], width=self.win_size) + webpage.save() + + # errors: dictionary of error labels and values + def plot_current_errors(self, errors, step): + if self.tf_log: + for tag, value in errors.items(): + summary = self.tf.Summary(value=[self.tf.Summary.Value(tag=tag, simple_value=value)]) + self.writer.add_summary(summary, step) + + # errors: same format as |errors| of plotCurrentErrors + def print_current_errors(self, epoch, i, errors, t): + message = '(epoch: %d, iters: %d, time: %.3f) ' % (epoch, i, t) + for k, v in errors.items(): + if v != 0: + message += '%s: %.3f ' % (k, v) + + print(message) + with open(self.log_name, "a") as log_file: + log_file.write('%s\n' % message) + + # save image to the disk + def save_images(self, webpage, visuals, image_path): + image_dir = webpage.get_image_dir() + short_path = ntpath.basename(image_path[0]) + name = os.path.splitext(short_path)[0] + + webpage.add_header(name) + ims = [] + txts = [] + links = [] + + for label, image_numpy in visuals.items(): + image_name = '%s_%s.jpg' % (name, label) + save_path = os.path.join(image_dir, image_name) + util.save_image(image_numpy, save_path) + + ims.append(image_name) + txts.append(label) + links.append(image_name) + webpage.add_images(ims, txts, links, width=self.win_size) diff --git a/mlflow/train/sf2f/GETTING_STARTED.md b/mlflow/train/sf2f/GETTING_STARTED.md new file mode 100644 index 0000000..1241f5a --- /dev/null +++ b/mlflow/train/sf2f/GETTING_STARTED.md @@ -0,0 +1,120 @@ +## Environment Setup +Create python env: +``` +conda create -n sf2f python=3.6 +conda activate sf2f +``` +Our repo is developed with python 3.6, CUDA 10.1, and PyTorch 1.7.1. We suggest you to install the PyTorch version which is suitable for your machine, according to [PyTorch Official Website](https://pytorch.org/). +``` +# This is the installation command for our environment +conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch + +``` + +Next, install other python dependencies: +``` +pip install -r requirements.txt +``` + +## Prepare Dataset + +**Face Data.** Please download the high-quality face data from [HQ-VoxCeleb](https://github.com/BAI-Yeqi/HQ-VoxCeleb). + +**Speech Data.** Please download speech data from VoxCeleb1 and VoxCeleb2 on their [Offical Website](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/). + +The speech data need to be converted to mel-spectrograms via STFT with 30ms frame duration, please process the data using our script: +``` +python ./scripts/convert_wav_to_mel.py --n_jobs 5 +``` +`convert_wav_to_mel.py` used parallel processes to speed up the mel extraction. Feel free to adjust `n_jobs` to adapt to the configuration of your machine. + +**Train-val Split.** To create train-validation split: +``` +python ./scripts/create_split_json.py +``` + +**Dataset Structure.** Refer to the following picture for ```data/``` folder structure. + + + +## Download VGGFace2 Resnet Checkpoint +We developed VGGFace Score (VFS) with pretrained ResNet model on VGGFace2 Dataset (https://github.com/cydonia999/VGGFace2-pytorch). + +To make sure VGGFace Score can be evaluated, download this https://drive.google.com/file/d/1A94PAAnwk6L7hXdBXLFosB_s0SzEhAFU/view to ```./scripts/weights/resnet50_ft_weights.pkl```. + + + +## Launch Training + +To train SF2F 1st-stage, where only encoder & decoder is learned: +``` +python train.py \ + --path_opt options/vox/sf2f/sf2f_1st_stage.yaml \ + --batch_size 256 \ + --visualize_every 10 \ + --epochs 12000 \ + --eval_epochs 15 +``` + +To train SF2F 2nd-stage, where fuser is learned while encoder & decoder are frozen: +``` +python train.py \ + --path_opt options/vox/sf2f/sf2f_fuser.yaml \ + --batch_size 256 \ + --visualize_every 10 \ + --epochs 50 \ + --eval_epochs 1 \ + --eval_mode_after 100 \ + --train_fuser_only True \ + --pretrained_path \ + output/{sf2f_1st_stage_experiment_pretrained_model}.pt \ + --learning_rate 1e-4 +``` + +To train baseline voice2face: +``` +python train.py \ + --path_opt options/vox/baseline/v2f.yaml \ + --batch_size 256 \ + --visualize_every 10 \ + --epochs 12000 \ + --eval_epochs 15 +``` + +## Visualize Training Process + +The training process is visualized with [tensorboard](https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/04-utils/tensorboard). + +Start the **tensorboard** server: +``` +tensorboard --logdir='./output' --port=8097 +``` +(Optional) If working on a remote server, mapping the remote tensorboard server to local: +``` +ssh -N -L localhost:8000:localhost:8097 user@your_remote_server +``` +Visualize the training process by opening `localhost:8097` (from local) `localhost:8000` (from remote) + + +## Test +To evaluate 1st-stage SF2F and baseline models: +``` +python test.py \ + --path_opt xxxx.yaml \ + --batch_size 1 \ + --checkpoint_start_from output/xxxx/best_with_model.pt \ + --recall_method cos_sim +``` + +To evaluate SF2F with fuser: +``` +python test.py \ + --path_opt options/vox/sf2f/sf2f_fuser.yaml \ + --batch_size 1 \ + --checkpoint_start_from \ + output/{sf2f_fuser_experiment_name} \ + --recall_method cos_sim \ + --face_gen_mode naive \ + --train_fuser_only True \ + --checkpoint L1 cos R10 epoch_2 epoch_4 epoch_6 epoch_8 epoch_10 epoch_12 +``` diff --git a/mlflow/train/sf2f/datasets/__init__.py b/mlflow/train/sf2f/datasets/__init__.py new file mode 100644 index 0000000..1b99502 --- /dev/null +++ b/mlflow/train/sf2f/datasets/__init__.py @@ -0,0 +1,10 @@ +#!/usr/bin/python +# +from .utils import imagenet_preprocess, imagenet_deprocess, \ + imagenet_deprocess_batch, fast_imagenet_deprocess_batch, \ + fast_mel_deprocess_batch, set_mel_transform, deprocess_and_save, \ + window_segment +#from .coco import CocoSceneGraphDataset as coco +#from .vg import VgSceneGraphDataset as visual_genome +from .vox_dataset import VoxDataset +from .build_dataset import build_dataset, build_loaders diff --git a/mlflow/train/sf2f/datasets/build_dataset.py b/mlflow/train/sf2f/datasets/build_dataset.py new file mode 100644 index 0000000..6bc91c6 --- /dev/null +++ b/mlflow/train/sf2f/datasets/build_dataset.py @@ -0,0 +1,64 @@ +import json +import os +import os.path as osp +import numpy as np +from datasets import VoxDataset +from torch.utils.data import DataLoader + + +VOX_DIR = os.path.join('./data', 'VoxCeleb') + + +def build_vox_dsets(data_opts, batch_size, image_size): + dset_kwargs = { + 'data_dir': osp.join(data_opts['root_dir']), + 'image_size': image_size, + 'face_type': data_opts.get('face_type', 'masked'), + 'image_normalize_method': \ + data_opts.get('image_normalize_method', 'imagenet'), + 'mel_normalize_method': \ + data_opts.get('mel_normalize_method', 'vox_mel'), + 'split_set': 'train', + 'split_json': \ + data_opts.get('split_json', os.path.join(VOX_DIR, 'split.json')) + } + train_dset = VoxDataset(**dset_kwargs) + iter_per_epoch = len(train_dset) // batch_size + print('There are %d iterations per epoch' % iter_per_epoch) + + # make some modification to dset_kwargs so that it can be used to create val_dset + # dset_kwargs['max_samples'] = data_opts["num_val_samples"] + # val_dset = visual_genome(**dset_kwargs) + dset_kwargs['split_set'] = 'val' + val_dset = VoxDataset(**dset_kwargs) + + dset_kwargs['split_set'] = 'test' + test_dset = VoxDataset(**dset_kwargs) + + return train_dset, val_dset, test_dset + + +def build_dataset(opts): + if opts["dataset"] == "vox": + return build_vox_dsets(opts["data_opts"], opts["batch_size"], + opts["image_size"]) + else: + raise ValueError("Unrecognized dataset: {}".format(opts["dataset"])) + + +def build_loaders(opts): + train_dset, val_dset, test_dset = build_dataset(opts) + + loader_kwargs = { + 'batch_size': opts["batch_size"], + 'num_workers': opts["workers"], + 'shuffle': True, + "drop_last": True, + 'collate_fn': train_dset.collate_fn, + } + train_loader = DataLoader(train_dset, **loader_kwargs) + loader_kwargs['shuffle'] = False + loader_kwargs['drop_last'] = False + val_loader = DataLoader(val_dset, **loader_kwargs) + test_loader = DataLoader(test_dset, **loader_kwargs) + return train_loader, val_loader, test_loader diff --git a/mlflow/train/sf2f/datasets/utils.py b/mlflow/train/sf2f/datasets/utils.py new file mode 100644 index 0000000..c2bb4e4 --- /dev/null +++ b/mlflow/train/sf2f/datasets/utils.py @@ -0,0 +1,158 @@ +import PIL +import torch +import torchvision.transforms as T +import numpy as np + +# Imagenet macros +IMAGENET_MEAN = [0.485, 0.456, 0.406] +IMAGENET_STD = [0.229, 0.224, 0.225] + +INV_IMAGENET_MEAN = [-m for m in IMAGENET_MEAN] +INV_IMAGENET_STD = [1.0 / s for s in IMAGENET_STD] + +STANDARD_MEAN = [0.5, 0.5, 0.5] +STANDARD_STD = [0.5, 0.5, 0.5] + +INV_STANDARD_MEAN = [-m for m in STANDARD_MEAN] +INV_STANDARD_STD = [1.0 / s for s in STANDARD_STD] + +VOX_MEL_MEAN = [10.9915,] +VOX_MEL_STD = [3.1661,] + +def imagenet_preprocess(normalize_method='imagenet'): + if normalize_method == 'imagenet': + return T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD) + elif normalize_method == 'standard': + return T.Normalize(mean=STANDARD_MEAN, std=STANDARD_STD) + elif normalize_method == 'vox_mel': + return T.Normalize(mean=VOX_MEL_MEAN, std=VOX_MEL_STD) + + +def rescale(x): + lo, hi = x.min(), x.max() + return x.sub(lo).div(hi - lo + 1e-5) + + +def imagenet_deprocess(rescale_image=True, normalize_method='imagenet'): + if normalize_method == 'imagenet': + transforms = [ + T.Normalize(mean=[0, 0, 0], std=INV_IMAGENET_STD), + T.Normalize(mean=INV_IMAGENET_MEAN, std=[1.0, 1.0, 1.0]), + ] + elif normalize_method == 'standard': + transforms = [ + T.Normalize(mean=[0, 0, 0], std=INV_STANDARD_STD), + T.Normalize(mean=INV_STANDARD_MEAN, std=[1.0, 1.0, 1.0]), + ] + if rescale_image: + transforms.append(rescale) + return T.Compose(transforms) + + +def fast_imagenet_deprocess_batch(imgs, normalize_method='imagenet'): + ''' + ImageNet deprocess batch's non-loop and backpropable implementation + ''' + if normalize_method == 'imagenet': + mean = IMAGENET_MEAN + std = IMAGENET_STD + elif normalize_method == 'standard': + mean = STANDARD_MEAN + std = STANDARD_STD + mean = torch.tensor(mean).type(imgs.type()) + std = torch.tensor(std).type(imgs.type()) + # Initialize broadcasting Dims + mean = mean.unsqueeze(0).unsqueeze(-1).unsqueeze(-1) + std = std.unsqueeze(0).unsqueeze(-1).unsqueeze(-1) + + img_de = imgs * std + mean + img_de = img_de.mul(255).clamp(0, 255) + + return img_de + +def set_mel_transform(mel_normalize_method=None): + mel_transform = [T.ToTensor(), ] + print('Called mel_normalize_method:', + mel_normalize_method) + if mel_normalize_method is not None: + mel_transform.append(imagenet_preprocess( + normalize_method=mel_normalize_method)) + mel_transform.append(torch.squeeze) + mel_transform = T.Compose(mel_transform) + return mel_transform + +def fast_mel_deprocess_batch(log_mels, normalize_method='vox_mel'): + ''' + Mel Spectrogram deprocess batch's non-loop and backpropable implementation + ''' + if normalize_method == 'vox_mel': + mean = VOX_MEL_MEAN[0] + std = VOX_MEL_STD[0] + mean = torch.tensor(mean).type(log_mels.type()) + std = torch.tensor(std).type(log_mels.type()) + log_mels_de = log_mels * std + mean + + return log_mels_de + + +def window_segment(log_mel, window_length, stride_length): + """ + Sliding window segmentation on a log_mel tensor + """ + mel_length = log_mel.shape[1] + # Calulate the number of windows that can be generated + num_window = 1 + (mel_length - window_length) // stride_length + # Sliding Window + segments = [] + for i in range(0, num_window): + start_time = i * stride_length + segment = log_mel[:, start_time:start_time + window_length] + segments.append(segment) + segments = torch.stack(segments) + return segments + + +def imagenet_deprocess_batch(imgs, rescale=False, normalize_method='imagenet'): + """ + Input: + - imgs: FloatTensor of shape (N, C, H, W) giving preprocessed images + + Output: + - imgs_de: ByteTensor of shape (N, C, H, W) giving deprocessed images + in the range [0, 255] + """ + if isinstance(imgs, torch.autograd.Variable): + imgs = imgs.data + imgs = imgs.cpu().clone() + deprocess_fn = imagenet_deprocess( + rescale_image=rescale, normalize_method=normalize_method) + imgs_de = [] + for i in range(imgs.size(0)): + img_de = deprocess_fn(imgs[i])[None] + img_de = img_de.mul(255).clamp(0, 255).byte() + imgs_de.append(img_de) + imgs_de = torch.cat(imgs_de, dim=0) + return imgs_de + + +def deprocess_and_save(image, normalize_method, save_path): + ''' + Deprocess a image Tensor generated by VoxDataset, and save its image as a + jpg + ''' + deprocess_fn = imagenet_deprocess(normalize_method=normalize_method) + image = deprocess_fn(image) + #print('deprocessed image shape:', image.shape) + img = np.array(image) + img = np.transpose(img, (1, 2, 0)) + img = (img * 255).astype(np.uint8) + #print(img.shape) + #print(np.max(img), np.min(img)) + img = PIL.Image.fromarray(img) + img.save(save_path) + + +def unpack_var(v): + if isinstance(v, torch.autograd.Variable): + return v.data + return v diff --git a/mlflow/train/sf2f/datasets/vox_dataset.py b/mlflow/train/sf2f/datasets/vox_dataset.py new file mode 100644 index 0000000..d3dbc0f --- /dev/null +++ b/mlflow/train/sf2f/datasets/vox_dataset.py @@ -0,0 +1,465 @@ +''' +VoxCeleb DataSet +''' + + +import json, os +import numpy as np +import random +#import pandas as pd +#import h5py +import pickle +import PIL +from PIL import Image +import torch +from torch.utils.data import Dataset, DataLoader +from torch.utils.data.dataloader import default_collate +import torchvision.transforms as T +#from skimage.transform import resize as imresize +try: + from .utils import imagenet_preprocess, imagenet_deprocess_batch, \ + fast_imagenet_deprocess_batch, fast_mel_deprocess_batch +except: + from utils import imagenet_preprocess, imagenet_deprocess_batch, \ + fast_imagenet_deprocess_batch, fast_mel_deprocess_batch + + +VOX_DIR = os.path.join('./data', 'VoxCeleb') + +class VoxDataset(Dataset): + def __init__(self, + data_dir, + image_size=(64, 64), + face_type='masked', + image_normalize_method='imagenet', + mel_normalize_method='vox_mel', + nframe_range=(100, 150), + split_set='train', + split_json=os.path.join(VOX_DIR, 'split.json'), + return_mel_segments=False, + mel_seg_window_stride=(125, 125), + image_left_right_avg=False, + image_random_hflip=False): + ''' + A PyTorch Dataset for loading VoxCeleb 1 & 2 human speech + (as mel spectrograms) and face (as image) + + Inputs: + - data: Path to a directory where vox1 & vox2 data are held + - face_type: 'masked' or 'origin' + - image_size: Shape (h, w) to output the image + - image_normalize_method: Method to normalize the image, 'imagenet' or + 'standard' + - return_mel_segments: Return several segments of mel spectrogram + - mel_seg_window_stride: Tuple (int, int), defines the window size and + stride size when segmenting the mel spectrogram with sliding window + - image_left_right_avg: flip the image, average the original and flipped + image + - image_random_hflip: Add random horizontal image flip to training set + + ''' + self.data_dir = data_dir + self.image_size = image_size + self.face_type = face_type + self.face_dir = self.face_type + '_faces' + self.image_normalize_method = image_normalize_method + self.mel_normalize_method = mel_normalize_method + self.nframe_range = nframe_range + self.split_set = split_set + self.split_json = split_json + self.return_mel_segments = return_mel_segments + self.mel_seg_window_stride = mel_seg_window_stride + self.shuffle_mel_segments = True + # This attribute is added to make the return segment mode to start from + # a random time + # Thus improve the randomness in fuser data + self.mel_segments_rand_start = False + self.image_left_right_avg = image_left_right_avg + self.image_random_hflip = image_random_hflip + + self.load_split_dict() + self.list_available_names() + self.set_image_transform() + self.set_mel_transform() + + def __len__(self): + return len(self.available_names) + + def set_length(self, length): + self.available_names = self.available_names[0:length] + + def __getitem__(self, index): + ''' + Given an index, randomly return a face and a mel_spectrogram of this guy + ''' + sub_dataset, name = self.available_names[index] + # Face Image + image_dir = os.path.join( + self.data_dir, sub_dataset, self.face_dir, name) + image_jpg = random.choice(os.listdir(image_dir)) + image_path = os.path.join(image_dir, image_jpg) + + with open(image_path, 'rb') as f: + with PIL.Image.open(f) as image: + WW, HH = image.size + #print("PIL Image:", np.array(image)) + image = image.convert('RGB') + if self.image_left_right_avg: + arr = (np.array(image) / 2.0 + \ + np.array(T.functional.hflip(image)) / 2.0).astype( + np.uint8) + image = PIL.Image.fromarray(arr, mode="RGB") + image = self.image_transform(image) + + # Mel Spectrogram + mel_gram_dir = os.path.join( + self.data_dir, sub_dataset, 'mel_spectrograms', name) + mel_gram_pickle = random.choice(os.listdir(mel_gram_dir)) + mel_gram_path = os.path.join(mel_gram_dir, mel_gram_pickle) + if not self.return_mel_segments: + # Return single segment + log_mel = self.load_mel_gram(mel_gram_path) + log_mel = self.mel_transform(log_mel) + else: + log_mel = self.get_all_mel_segments_of_id( + index, shuffle=self.shuffle_mel_segments) + + human_id = torch.tensor(index) + + return image, log_mel, human_id + + def get_all_faces_of_id(self, index): + ''' + Given a id, return all the faces of him as a batch tensor, with shape + (N, C, H, W) + ''' + sub_dataset, name = self.available_names[index] + faces = [] + # Face Image + image_dir = os.path.join( + self.data_dir, sub_dataset, self.face_dir, name) + for image_jpg in os.listdir(image_dir): + image_path = os.path.join(image_dir, image_jpg) + with open(image_path, 'rb') as f: + with PIL.Image.open(f) as image: + WW, HH = image.size + #print("PIL Image:", np.array(image)) + image = self.image_transform(image.convert('RGB')) + faces.append(image) + faces = torch.stack(faces) + + return faces + + def get_all_mel_segments_of_id(self, + index, + shuffle=False): + ''' + Given a id, return all the speech segments of him as a batch tensor, + with shape (N, C, L) + ''' + sub_dataset, name = self.available_names[index] + window_length, stride_length = self.mel_seg_window_stride + segments = [] + # Mel Spectrogram + mel_gram_dir = os.path.join( + self.data_dir, sub_dataset, 'mel_spectrograms', name) + mel_gram_list = os.listdir(mel_gram_dir) + if shuffle: + random.shuffle(mel_gram_list) + else: + mel_gram_list.sort() + seg_count = 0 + for mel_gram_pickle in mel_gram_list: + mel_gram_path = os.path.join(mel_gram_dir, mel_gram_pickle) + log_mel = self.load_mel_gram(mel_gram_path) + log_mel = self.mel_transform(log_mel) + mel_length = log_mel.shape[1] + if self.mel_segments_rand_start: + + start = np.random.randint(mel_length - window_length) if mel_length > window_length else 0 + + log_mel = log_mel[:, start:] + mel_length = log_mel.shape[1] + # Calulate the number of windows that can be generated + num_window = 1 + (mel_length - window_length) // stride_length + # Sliding Window + for i in range(0, num_window): + start_time = i * stride_length + segment = log_mel[:, start_time:start_time + window_length] + segments.append(segment) + seg_count = seg_count + 1 + if seg_count == 20: # 20 + segments = torch.stack(segments) + return segments + segments = torch.stack(segments) + return segments + + def set_image_transform(self): + print('Dataloader: called set_image_size', self.image_size) + image_transform = [T.Resize(self.image_size), T.ToTensor()] + if self.image_random_hflip and self.split_set == 'train': + image_transform = [T.RandomHorizontalFlip(p=0.5),] + \ + image_transform + if self.image_normalize_method is not None: + print('Dataloader: called image_normalize_method', + self.image_normalize_method) + image_transform.append(imagenet_preprocess( + normalize_method=self.image_normalize_method)) + self.image_transform = T.Compose(image_transform) + + def set_mel_transform(self): + mel_transform = [T.ToTensor(), ] + print('Dataloader: called mel_normalize_method', + self.mel_normalize_method) + if self.mel_normalize_method is not None: + mel_transform.append(imagenet_preprocess( + normalize_method=self.mel_normalize_method)) + mel_transform.append(torch.squeeze) + self.mel_transform = T.Compose(mel_transform) + + def load_split_dict(self): + ''' + Load the train, val, test set information from split.json + ''' + with open(self.split_json) as json_file: + self.split_dict = json.load(json_file) + + def list_available_names(self): + ''' + Find the intersection of speech and face data + ''' + self.available_names = [] + # List VoxCeleb1 data: + for sub_dataset in (['vox1']): #, 'vox2' + mel_gram_available = os.listdir( + os.path.join(self.data_dir, sub_dataset, 'mel_spectrograms')) + face_available = os.listdir( + os.path.join(self.data_dir, sub_dataset, self.face_dir)) + available = \ + set(mel_gram_available).intersection(face_available) + for name in available: + if name in self.split_dict[sub_dataset][self.split_set]: + self.available_names.append((sub_dataset, name)) + + self.available_names.sort() + + def load_mel_gram(self, mel_pickle): + ''' + Load a speech's mel spectrogram from pickle file. + + Format of the pickled data: + LogMel_Features + spkid + clipid + wavid + + Inputs: + - mel_pickle: Path to the mel spectrogram to be loaded. + ''' + # open a file, where you stored the pickled data + file = open(mel_pickle, 'rb') + # dump information to that file + data = pickle.load(file) + # close the file + file.close() + log_mel = data['LogMel_Features'] + #log_mel = np.transpose(log_mel, axes=None) + + return log_mel + + def crop_or_pad(self, log_mel, out_frame): + ''' + Log_mel padding/cropping function to cooperate with collate_fn + ''' + freq, cur_frame = log_mel.shape + if cur_frame >= out_frame: + # Just crop + start = np.random.randint(0, cur_frame-out_frame+1) + log_mel = log_mel[..., start:start+out_frame] + else: + # Padding + zero_padding = np.zeros((freq, out_frame-cur_frame)) + zero_padding = self.mel_transform(zero_padding) + if len(zero_padding.shape) == 1: + zero_padding = zero_padding.view([-1, 1]) + log_mel = torch.cat([log_mel, zero_padding], -1) + + return log_mel + + def collate_fn(self, batch): + min_nframe, max_nframe = self.nframe_range + assert min_nframe <= max_nframe + np.random.seed() + num_frame = np.random.randint(min_nframe, max_nframe+1) + #start = np.random.randint(0, max_nframe-num_frame+1) + #batch = [(item[0], item[1][..., start:start+num_frame], item[2]) + # for item in batch] + + batch = [(item[0], + self.crop_or_pad(item[1], num_frame), + item[2]) for item in batch] + return default_collate(batch) + + def count_faces(self): + ''' + Count the number of faces in the dataset + ''' + total_count = 0 + for index in range(len(self.available_names)): + sub_dataset, name = self.available_names[index] + # Face Image + image_dir = os.path.join( + self.data_dir, sub_dataset, self.face_dir, name) + cur_count = len(os.listdir(image_dir)) + total_count = total_count + cur_count + print('Number of faces in current dataset: {}'.format(total_count)) + return total_count + + def count_speech(self): + ''' + Given a id, return all the speech segments of him as a batch tensor, + with shape (N, C, L) + ''' + total_count = 0 + for index in range(len(self.available_names)): + sub_dataset, name = self.available_names[index] + window_length, stride_length = self.mel_seg_window_stride + # Mel Spectrogram + mel_gram_dir = os.path.join( + self.data_dir, sub_dataset, 'mel_spectrograms', name) + mel_gram_list = os.listdir(mel_gram_dir) + cur_count = len(mel_gram_list) + total_count = total_count + cur_count + print('Number of speech in current dataset: {}'.format(total_count)) + return total_count + + +if __name__ == '__main__': + ''' + from utils import imagenet_deprocess, deprocess_and_save + + # Config + image_size = (256, 256) + #image_normalize_method = 'imagenet' + image_normalize_method = 'standard' + mel_normalize_method = 'vox_mel' + test_case_dir = os.path.join('./data', 'test_cases') + os.makedirs(test_case_dir, exist_ok=True) + + # Dataset + vox_dataset = VoxDataset( + data_dir=VOX_DIR, + image_size=image_size, + image_normalize_method=image_normalize_method, + mel_normalize_method=mel_normalize_method) + np_mel = vox_dataset.load_mel_gram(mel_pickle= \ + './data/VoxCeleb/vox1/mel_spectrograms/A.J._Buckley' + \ + '/id10001_J9lHsKG98U8_00026.pickle') + print('np_mel.shape:', np_mel.shape) + + print('dataset length:', len(vox_dataset)) + + # Try out 1 case + # image, log_mel, mel_len = vox_dataset[220] + image, log_mel, human_id = vox_dataset[220] + print('image shape:', image.shape) + print('log_mel shape:', log_mel.shape) + print('human_id:', human_id) + # print(mel_len) + deprocess_and_save(image, image_normalize_method, + os.path.join(test_case_dir, 'vox_dataset_image_test_1.jpg')) + + log_mel = np.array(log_mel) + print(log_mel) + print(np.max(log_mel), np.min(log_mel)) + + # Unit test after train test split update: + print('### Testing splitted dataset ###') + print('Test identities:', vox_dataset.split_dict['vox1']['test']) + ''' + + for split_set in ['train', 'val', 'test']: + vox_dataset = VoxDataset( + data_dir=VOX_DIR, + image_size=(64, 64), + nframe_range=(300, 600), + face_type='masked', + image_normalize_method='imagenet', + mel_normalize_method='vox_mel', + split_set=split_set, + split_json=os.path.join(VOX_DIR, 'split.json')) + print('Length of {} set: {}'.format(split_set, len(vox_dataset))) + vox_dataset.count_faces() + vox_dataset.count_speech() + + # Collate Function dataloader test + loader_kwargs = { + 'batch_size': 16, + 'num_workers': 8, + 'shuffle': False, + "drop_last": True, + 'collate_fn': vox_dataset.collate_fn, + } + val_loader = DataLoader(vox_dataset, **loader_kwargs) + for iter, batch in enumerate(val_loader): + images, log_mels, human_ids = batch + print('log_mels.shape:', log_mels.shape) + if iter > 10000: + break + + for e in range(1000): + for iter, batch in enumerate(val_loader): + images, log_mels, human_ids = batch + print('log_mels.shape:', log_mels.shape) + if iter > 10000: + break + + ''' + + #### Test utils imagenet_deprocess_batch and fast_imagenet_deprocess_batch + imgs_de = imagenet_deprocess_batch( + images, + rescale=False, + normalize_method='imagenet') + imgs_de_fast = fast_imagenet_deprocess_batch( + images, + normalize_method='imagenet') + + print('imgs_de:', imgs_de[0]) + print('imgs_de_fast:', imgs_de_fast[0]) + + #### Test utils fast_mel_deprocess_batch + log_mels_de = fast_mel_deprocess_batch( + log_mels, + normalize_method='vox_mel') + + print('log_mels_de:', log_mels_de[0]) + + # Test DataLoader Deepcopy + from copy import deepcopy + val_loader_copy = deepcopy(val_loader) + val_loader_copy.dataset.set_length(100) + print('length of copied val dataset: {}'.format( + len(val_loader_copy.dataset))) + print('length of val dataset: {}'.format( + len(val_loader.dataset))) + + # Test get all faces + faces = val_loader.dataset.get_all_faces_of_id(3) + print('get_all_faces_of_id:', faces.shape) + + # Test get all mel segments + segments = val_loader.dataset.get_all_mel_segments_of_id(3) + print('get_all_mel_segments_of_id:', segments.shape) + + # Test return many segments mode + val_loader.collate_fn = default_collate + val_loader.dataset.return_mel_segments = True + val_loader.dataset.mel_seg_window_stride = (125, 60) + for iter, batch in enumerate(val_loader): + images, log_mels, human_ids = batch + print('log_mels.shape (many segments mode):', log_mels.shape) + if iter > 10000: + break + + ''' diff --git a/mlflow/train/sf2f/infer.py b/mlflow/train/sf2f/infer.py new file mode 100644 index 0000000..a795e8e --- /dev/null +++ b/mlflow/train/sf2f/infer.py @@ -0,0 +1,121 @@ +''' +author: Bai Yeqi +email: yeqi.bai@yitu-inc.com +''' +''' +Reload the generator checkpoint, inference with provided audio, in form of .wav + or .m4a + +We infer with different policies: + 1. Generate the face conditioned on each segment + 2. Generate the face conditioned on the whole speech + 3. Generate the face with the fuser +''' + + +import os +import shutil +import glob +import pyprind +import glog as log +import torch +import numpy as np +from imageio import imwrite + +import models +from utils.wav2mel import wav_to_mel +from datasets import imagenet_deprocess_batch, set_mel_transform, \ + deprocess_and_save, window_segment +from options.opts import args, options + + +torch.backends.cudnn.benchmark = True + + +def main(): + global args, options + print(args) + device = torch.device('cuda') + float_dtype = torch.cuda.FloatTensor + long_dtype = torch.cuda.LongTensor + + image_normalize_method = options["data"]["data_opts"].get( + 'image_normalize_method', 'imagenet') + print('image_normalize_method:', image_normalize_method) + mel_normalize_method = options["data"]["data_opts"].get( + 'mel_normalize_method', 'vox_mel') + mel_transform = set_mel_transform(mel_normalize_method) + + # Model + log.info("Building Generative Model...") + print(options["generator"]) + model, _ = models.build_model( + options["generator"], + image_size=options["data"]["image_size"], + checkpoint_start_from=args.checkpoint_start_from) + model.cuda().eval() + + exp_dir = os.path.dirname(args.checkpoint_start_from) + result_dir = os.path.join(exp_dir, 'infer_result') + try: + shutil.copytree(args.input_wav_dir, result_dir) + except: + shutil.rmtree(result_dir) + shutil.copytree(args.input_wav_dir, result_dir) + voice_path = os.path.join(result_dir, '*.wav') + voice_list = glob.glob(voice_path) + for filename in voice_list: + result_sub_dir = filename.replace('.wav', '') + os.makedirs(result_sub_dir, exist_ok=True) + # Load mel_spectrogram + log_mel = wav_to_mel(filename) + log_mel = mel_transform(log_mel).type(float_dtype) + #print(log_mel) + log_mel_segs = window_segment( + log_mel, window_length=125, stride_length=63) + log_mel = log_mel.unsqueeze(0) + + # image generated by directly feed in mel gram + with torch.no_grad(): + img_d_fed, others = model(log_mel) + if isinstance(img_d_fed, tuple): + img_d_fed = img_d_fed[-1] + img_d_fed = img_d_fed.cpu().detach() + img_d_fed = imagenet_deprocess_batch( + img_d_fed, normalize_method=image_normalize_method) + + for j in range(img_d_fed.shape[0]): + img_np = img_d_fed[j].numpy().transpose(1, 2, 0) + img_path = os.path.join(result_sub_dir, 'd_fed_%d.png' % j) + imwrite(img_path, img_np) + + # image generated by each segment + with torch.no_grad(): + imgs_from_segs, others = model(log_mel_segs) + if isinstance(imgs_from_segs, tuple): + imgs_from_segs = imgs_from_segs[-1] + imgs_from_segs = imgs_from_segs.cpu().detach() + imgs_from_segs = imagenet_deprocess_batch( + imgs_from_segs, normalize_method=image_normalize_method) + for j in range(imgs_from_segs.shape[0]): + img_np = imgs_from_segs[j].numpy().transpose(1, 2, 0) + img_path = os.path.join(result_sub_dir, 'seg_%d.png' % j) + imwrite(img_path, img_np) + + # image generated by fuser + if args.fuser_infer: + with torch.no_grad(): + imgs_fused, others = model(log_mel_segs.unsqueeze(0)) + if isinstance(imgs_fused, tuple): + imgs_fused = imgs_fused[-1] + imgs_fused = imgs_fused.cpu().detach() + imgs_fused = imagenet_deprocess_batch( + imgs_fused, normalize_method=image_normalize_method) + for j in range(imgs_fused.shape[0]): + img_np = imgs_fused[j].numpy().transpose(1, 2, 0) + img_path = os.path.join(result_sub_dir, 'fused_%d.png' % j) + imwrite(img_path, img_np) + print(f"Done. file name : {filename}") + +if __name__ == '__main__': + main() diff --git a/mlflow/train/sf2f/inference_fuser.py b/mlflow/train/sf2f/inference_fuser.py new file mode 100644 index 0000000..aa7fa89 --- /dev/null +++ b/mlflow/train/sf2f/inference_fuser.py @@ -0,0 +1,92 @@ +''' +author: Bai Yeqi +email: yeqi.bai@yitu-inc.com +''' +''' +Reload the generator checkpoint, inference with provided audio, in form of .wav + or .m4a + +We infer with different policies: + 1. Generate the face conditioned on each segment + 2. Generate the face conditioned on the whole speech + 3. Generate the face with the fuser +''' + + +import os +import shutil +import glob +import pyprind +import glog as log +import torch +import numpy as np +from imageio import imwrite + +import models +from utils.wav2mel import wav_to_mel +from datasets import imagenet_deprocess_batch, set_mel_transform, \ + deprocess_and_save, window_segment +from options.opts import args, options + + +torch.backends.cudnn.benchmark = True + + +def main(): + global args, options + print(args) + device = torch.device('cuda') + float_dtype = torch.cuda.FloatTensor + long_dtype = torch.cuda.LongTensor + + image_normalize_method = options["data"]["data_opts"].get( + 'image_normalize_method', 'imagenet') + print('image_normalize_method:', image_normalize_method) + mel_normalize_method = options["data"]["data_opts"].get( + 'mel_normalize_method', 'vox_mel') + mel_transform = set_mel_transform(mel_normalize_method) + + # Model + log.info("Building Generative Model...") + print(options["generator"]) + model, _ = models.build_model( + options["generator"], + image_size=options["data"]["image_size"], + checkpoint_start_from=args.checkpoint_start_from) + model.cuda().eval() + + # voice_path = os.path.join(args.input_wav_dir, '*.wav') + # voice_list = glob.glob(voice_path) + # filename = voice_list[0] + filename = os.path.join(args.input_wav_file) + assert os.path.exists(filename), "File not found: {}".format(filename) + + # for filename in voice_list: + # result_sub_dir = filename.replace('.wav', '') + # os.makedirs(result_sub_dir, exist_ok=True) # 결과 폴더 생성 + # Load mel_spectrogram + log_mel = wav_to_mel(filename) + log_mel = mel_transform(log_mel).type(float_dtype) + #print(log_mel) + log_mel_segs = window_segment( + log_mel, window_length=125, stride_length=63) + log_mel = log_mel.unsqueeze(0) + + # image generated by fuser + # if args.fuser_infer: + with torch.no_grad(): + imgs_fused, others = model(log_mel_segs.unsqueeze(0)) + if isinstance(imgs_fused, tuple): + imgs_fused = imgs_fused[-1] + imgs_fused = imgs_fused.cpu().detach() + imgs_fused = imagenet_deprocess_batch( + imgs_fused, normalize_method=image_normalize_method) + for j in range(imgs_fused.shape[0]): + img_np = imgs_fused[j].numpy().transpose(1, 2, 0) # 64x64x3 + # img_path = os.path.join(result_sub_dir, 'fused_%d.png' % j) # 이미지 저장할 파일 + # imwrite(img_path, img_np) # 이미지 저장 + + return img_np.tobytes() + +if __name__ == '__main__': + main() diff --git a/mlflow/train/sf2f/model_registry.py b/mlflow/train/sf2f/model_registry.py new file mode 100644 index 0000000..0140dfe --- /dev/null +++ b/mlflow/train/sf2f/model_registry.py @@ -0,0 +1,65 @@ +from options.opts import options +import models +import torch +import os, glob +import mlflow +from utils.wav2mel import wav_to_mel +from datasets import imagenet_deprocess_batch, set_mel_transform, \ + deprocess_and_save, window_segment + +os.environ["MLFLOW_S3_ENDPOINT_URL"] = "http://223.130.133.236:9000" +os.environ["MLFLOW_TRACKING_URI"] = "http://223.130.133.236:5001" +os.environ["AWS_ACCESS_KEY_ID"] = "minio" +os.environ["AWS_SECRET_ACCESS_KEY"] = "miniostorage" +mlflow.set_experiment("new-exp") +model, _ = models.build_model( + options["generator"], + image_size=[128,128], + checkpoint_start_from="/home/hojun/Documents/project/boostcamp/final_project/mlops/temp/voice2face-mlops/best_IS_with_model.pt") +model.cuda().eval() + +voice_path = os.path.join("/home/hojun/Documents/project/boostcamp/final_project/mlops/mlflow/train/mlflow/sf2f/data/", '*.wav') +voice_list = glob.glob(voice_path) +filename = voice_list[0] +print(filename) + + + +#데이터 전처리 +mel_transform = set_mel_transform("vox_mel") +image_normalize_method = 'imagenet' +log_mel = wav_to_mel(filename) +float_dtype = torch.cuda.FloatTensor +log_mel = mel_transform(log_mel).type(float_dtype) + +log_mel_segs = window_segment( +log_mel, window_length=125, stride_length=63) +log_mel = log_mel.unsqueeze(0) + +with torch.no_grad(): + imgs_fused, others = model(log_mel_segs.unsqueeze(0)) + print("dksldklwkdlw : ",type(imgs_fused)) +if isinstance(imgs_fused, tuple): + imgs_fused = imgs_fused[-1] +imgs_fused = imgs_fused.cpu().detach() +imgs_fused = imagenet_deprocess_batch( + imgs_fused, normalize_method=image_normalize_method) +for j in range(imgs_fused.shape[0]): + img_np = imgs_fused[j].numpy().transpose(1, 2, 0) # 64x64x3 +# img_np = torch.from_numpy(img_np) +# log_mel_segs = log_mel_segs.unsqueeze(0).cpu().numpy() +print(type(img_np)) +print(type(log_mel_segs)) +signature = mlflow.models.signature.infer_signature(model_input=log_mel_segs.unsqueeze(0).cpu().numpy(), model_output=img_np) +input_sample = log_mel_segs.unsqueeze(0).cpu().numpy() + + + +with mlflow.start_run(): + mlflow.pytorch.log_model( + pytorch_model=model, + artifact_path = "sf2f_pytorch", + signature= signature, + input_example = input_sample, + # pip_requirements = "rec.txt" + ) \ No newline at end of file diff --git a/mlflow/train/sf2f/models/__init__.py b/mlflow/train/sf2f/models/__init__.py new file mode 100644 index 0000000..694bee5 --- /dev/null +++ b/mlflow/train/sf2f/models/__init__.py @@ -0,0 +1,19 @@ +from .model_setup import * +from .encoder_decoder import EncoderDecoder + +# Lower level encoder decoders +from .voice_encoders import V2F1DCNN +from .face_decoders import V2FDecoder + +# Progressive GAN +# from .pgan import PGan_Net +# from .pgan_dis import PGAN_Discriminator + +# Discriminator +from .discriminators import PatchDiscriminator +from .discriminators import AcDiscriminator +from .discriminators import AcCropDiscriminator +from .discriminators import CondPatchDiscriminator + +# Facenet for Perceptual Loss and Evaluation +from .inception_resnet_v1 import InceptionResnetV1, fixed_image_standardization diff --git a/mlflow/train/sf2f/models/attention.py b/mlflow/train/sf2f/models/attention.py new file mode 100644 index 0000000..e74b2af --- /dev/null +++ b/mlflow/train/sf2f/models/attention.py @@ -0,0 +1,223 @@ +''' +Attenion implementation +Adapted from torchnlp: + https://github.com/PetrochukM/PyTorch-NLP/tree/master/torchnlp/nn +''' +import torch +import torch.nn as nn +import torch.nn.functional as F +from math import sqrt +try: + from .layers import get_activation, get_normalization_2d +except: + from layers import get_activation, get_normalization_2d + + +class AttnBlock(nn.Module): + def __init__(self, + attn_dim_in, + attn_dim_out, + attn_num_query=16, + attn_type='general', + normalization='none'): + super(AttnBlock, self).__init__() + self.attn_layer = AttnLayer( + attn_dim_in, + attn_dim_out, + attn_num_query, + attn_type, + normalization) + + def forward(self, cat_tensor, context): + N, C, H, W = cat_tensor.shape + attn_map = self.attn_layer(context.transpose(1, 2)) + #print('attn_map 1:', attn_map.shape) + attn_map = F.interpolate(attn_map, (H, W)) + #print('attn_map 2:', attn_map.shape) + map_out = torch.cat([cat_tensor, attn_map], 1) + + return map_out + + def return_attn_weights(self): + return self.attn_layer.attn_weights + + +class AttnLayer(nn.Module): + def __init__(self, + dim_in, + dim_out, + num_query=16, + attention_type='general', + normalization='none'): + super(AttnLayer, self).__init__() + self.num_query = num_query + self.query = nn.Parameter( + torch.randn((1, num_query, dim_in), + requires_grad=True)) + self.attention = Attention( + dimensions=dim_in, + dim_out=dim_out, + attention_type=attention_type) + self.norm_layer = get_normalization_2d( + dim_out, normalization) + # Cache Attenion Weights for visualization + self.attn_weights = None + + def forward(self, context): + N, L, D_in = context.shape + # Repeat query layer over batch dim + query = self.query.repeat(N, 1, 1) + # **output** (:class:`torch.FloatTensor` + # [batch size, output length, dim_out] + attn_out, attn_weights = self.attention(query, context) + self.attn_weights = attn_weights + N, Q_L, D_out = attn_out.shape + # [batch size, dim_out, output length] + attn_out = torch.transpose(attn_out, 1, 2) + # [batch size, dimensions, H, W] + H = W = int(sqrt(self.num_query)) + attn_map = attn_out.view( + N, D_out, H, W) + if self.norm_layer is not None: + attn_map = self.norm_layer(attn_map) + + return attn_map + + +class Attention(nn.Module): + """ Applies attention mechanism on the `context` using the `query`. + + **Thank you** to IBM for their initial implementation of :class:`Attention`. Here is + their `License + `__. + + Args: + dimensions (int): Dimensionality of the query and context. + attention_type (str, optional): How to compute the attention score: + + * dot: :math:`score(H_j,q) = H_j^T q` + * general: :math:`score(H_j, q) = H_j^T W_a q` + + Example: + + >>> attention = Attention(256) + >>> query = torch.randn(5, 1, 256) + >>> context = torch.randn(5, 5, 256) + >>> output, weights = attention(query, context) + >>> output.size() + torch.Size([5, 1, 256]) + >>> weights.size() + torch.Size([5, 1, 5]) + """ + + def __init__(self, + dimensions, + dim_out, + attention_type='general', + linear_out_layer=True, + ignore_tanh=False): + super(Attention, self).__init__() + + if attention_type not in ['dot', 'general']: + raise ValueError('Invalid attention type selected.') + + # Attention Setup + self.attention_type = attention_type + if self.attention_type == 'general': + self.linear_in = nn.Linear(dimensions, dimensions, bias=False) + self.softmax = nn.Softmax(dim=-1) + + # Output Setup + self.linear_out_layer = linear_out_layer + if self.linear_out_layer: + self.dim_out = dim_out + self.linear_out = nn.Linear(dimensions * 2, dim_out, bias=False) + + self.ignore_tanh = ignore_tanh + if not ignore_tanh: + self.tanh = nn.Tanh() + + def forward(self, query, context): + """ + Args: + query (:class:`torch.FloatTensor` [batch size, output length, + dimensions]): Sequence of queries to query the context. + context (:class:`torch.FloatTensor` [batch size, query length, + dimensions]): Data overwhich to apply the attention mechanism. + + Returns: + :class:`tuple` with `output` and `weights`: + * **output** (:class:`torch.LongTensor` [batch size, output length, + dimensions]): + Tensor containing the attended features. + * **weights** (:class:`torch.FloatTensor` [batch size, + output length, query length]): + Tensor containing attention weights. + """ + batch_size, output_len, dimensions = query.size() + query_len = context.size(1) + + if self.attention_type == "general": + query = query.reshape(batch_size * output_len, dimensions) + query = self.linear_in(query) + query = query.reshape(batch_size, output_len, dimensions) + + # TODO: Include mask on PADDING_INDEX? + + # (batch_size, output_len, dimensions) * \ + # (batch_size, query_len, dimensions) -> + # (batch_size, output_len, query_len) + # batch matrix-matrix product + attention_scores = torch.bmm( + query, context.transpose(1, 2).contiguous()) + + # Compute weights across every context sequence + attention_scores = attention_scores.view( + batch_size * output_len, query_len) + attention_weights = self.softmax(attention_scores) + attention_weights = attention_weights.view( + batch_size, output_len, query_len) + + # (batch_size, output_len, query_len) * \ + # (batch_size, query_len, dimensions) -> + # (batch_size, output_len, dimensions) + mix = torch.bmm(attention_weights, context) + + if self.linear_out_layer: + # Concatenate the attention output with the context and process the + # concatenated feature with a fc output layer + # concat -> (batch_size * output_len, 2*dimensions) + combined = torch.cat((mix, query), dim=2) + combined = combined.view(batch_size * output_len, 2 * dimensions) + # Apply linear_out on every 2nd dimension of concat + # output -> (batch_size, output_len, dimensions) + output = self.linear_out(combined).view( + batch_size, output_len, self.dim_out) + else: + # Directly output the attention output + output = mix + + if not self.ignore_tanh: + output = self.tanh(output) + + return output, attention_weights + + +if __name__ == '__main__': + attention = Attention(256, 100, linear_out_layer=False) + query = torch.randn(5, 1, 256) + context = torch.randn(5, 5, 256) + cat_tensor = torch.randn(5, 170, 128, 128) + output, weights = attention(query, context) + print('output.shape:', output.shape) + ''' + attn_layer = AttnLayer(256, 110, 16) + attn_map = attn_layer(context) + print('attn_map.shape:', attn_map.shape) + for param in attn_layer.parameters(): + print(type(param.data), param.size()) + + attn_block = AttnBlock(256, 110, 16, normalization='batch') + cat_map = attn_block(cat_tensor, context.transpose(1, 2)) + print('cat_map.shape:', cat_map.shape) + ''' diff --git a/mlflow/train/sf2f/models/crn.py b/mlflow/train/sf2f/models/crn.py new file mode 100644 index 0000000..33cd9a3 --- /dev/null +++ b/mlflow/train/sf2f/models/crn.py @@ -0,0 +1,152 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .layers import get_normalization_2d +from .layers import get_activation + + +""" +Cascaded refinement network architecture, as described in: +Qifeng Chen and Vladlen Koltun, +"Photographic Image Synthesis with Cascaded Refinement Networks", +ICCV 2017 +""" + + +class RefinementModule(nn.Module): + def __init__(self, layout_dim, input_dim, output_dim, + normalization='instance', activation='leakyrelu'): + super(RefinementModule, self).__init__() + + layers = [] + layers.append(nn.Conv2d(layout_dim + input_dim, output_dim, + kernel_size=3, padding=1)) + layers.append(get_normalization_2d(output_dim, normalization)) + layers.append(get_activation(activation)) + layers.append(nn.Conv2d(output_dim, output_dim, + kernel_size=3, padding=1)) + layers.append(get_normalization_2d(output_dim, normalization)) + layers.append(get_activation(activation)) + layers = [layer for layer in layers if layer is not None] + for layer in layers: + if isinstance(layer, nn.Conv2d): + nn.init.kaiming_normal_(layer.weight) + self.net = nn.Sequential(*layers) + + def forward(self, layout, feats): + _, _, HH, WW = layout.size() + _, _, H, W = feats.size() + assert HH >= H + if HH > H: + factor = round(HH // H) + assert HH % factor == 0 + assert WW % factor == 0 and WW // factor == W + layout = F.avg_pool2d(layout, kernel_size=factor, stride=factor) + net_input = torch.cat([layout, feats], dim=1) + out = self.net(net_input) + return out + + +class RefinementNetwork(nn.Module): + def __init__(self, dims, normalization='instance', + activation='leakyrelu', + use_tanh=False, + use_deconv=False, + multi_resolution=False,): + super(RefinementNetwork, self).__init__() + layout_dim = dims[0] + self.refinement_modules = nn.ModuleList() + self.upsample_modules = nn.ModuleList() + self.multi_resolution = multi_resolution + for i in range(1, len(dims)): + input_dim = 1 if i == 1 else (dims[i] if use_deconv else dims[i-1]) + output_dim = dims[i] + mod = RefinementModule(layout_dim, input_dim, output_dim, + normalization=normalization, activation=activation) + self.refinement_modules.append(mod) + if use_deconv: + if i == 1: + mod = nn.Sequential() + else: + mod = nn.Sequential( + nn.ConvTranspose2d(dims[i-1], dims[i], + kernel_size=2, stride=2,), + get_normalization_2d(dims[i], normalization), + get_activation(activation) + ) + self.upsample_modules.append(mod) + output_conv_layers = None + if not multi_resolution: + output_conv_layers = [ + nn.Conv2d(dims[-1], dims[-1], kernel_size=3, padding=1), + get_activation(activation), + nn.Conv2d(dims[-1], 3, kernel_size=1, padding=0), + ] + if use_tanh: + ## added according to Pix2Pix-HD + output_conv_layers.append(nn.Tanh(),) + nn.init.kaiming_normal_(output_conv_layers[0].weight) + nn.init.kaiming_normal_(output_conv_layers[2].weight) + else: + output_conv_layers_low = [ + nn.Conv2d(dims[-2], dims[-2], kernel_size=3, padding=1), + get_activation(activation), + nn.Conv2d(dims[-2], 3, kernel_size=1, padding=0), + ] + output_conv_layers_high = [ + nn.Conv2d(dims[-1], dims[-1], kernel_size=3, padding=1), + get_activation(activation), + nn.Conv2d(dims[-1], 3, kernel_size=1, padding=0), + ] + if use_tanh: + ## added according to Pix2Pix-HD + output_conv_layers_low.append(nn.Tanh(),) + output_conv_layers_high.append(nn.Tanh(),) + + if output_conv_layers: + self.output_conv = nn.Sequential(*output_conv_layers) + else: + assert output_conv_layers_low + assert output_conv_layers_high + self.output_conv_low = nn.Sequential(*output_conv_layers_low) + self.output_conv_high = nn.Sequential(*output_conv_layers_high) + + def forward(self, layout): + """ + Output will have same size as layout + """ + # H, W = self.output_size + N, _, H, W = layout.size() + self.layout = layout + + # Figure out size of input + input_H, input_W = H, W + for _ in range(len(self.refinement_modules)): + input_H //= 2 + input_W //= 2 + + assert input_H != 0 + assert input_W != 0 + + feats = torch.zeros(N, 1, input_H, input_W).to(layout) + if not self.multi_resolution: + for i, mod in enumerate(self.refinement_modules): + if i == 0 or len(self.upsample_modules) == 0: + feats = F.interpolate(feats, scale_factor=2, mode='nearest') + else: + feats = self.upsample_modules[i](feats) + feats = mod(layout, feats) + out = self.output_conv(feats) + return (out, feats) + elif self.multi_resolution: + for i, mod in enumerate(self.refinement_modules): + if i == 0 or len(self.upsample_modules) == 0: + feats = F.interpolate(feats, scale_factor=2, mode='nearest') + else: + feats = self.upsample_modules[i](feats) + feats = mod(layout, feats) + if i == len(self.refinement_modules) - 2: + out_low = self.output_conv_low(feats) + out_high = self.output_conv_high(feats) + return (out_high, out_low) diff --git a/mlflow/train/sf2f/models/discriminators.py b/mlflow/train/sf2f/models/discriminators.py new file mode 100644 index 0000000..f0f276d --- /dev/null +++ b/mlflow/train/sf2f/models/discriminators.py @@ -0,0 +1,110 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +from utils.bilinear import crop_bbox_batch, uncrop_bbox +from utils.box_utils import box_union, box_in_region +from .layers import GlobalAvgPool, Flatten, get_activation, build_cnn +import models + + +class PatchDiscriminator(nn.Module): + def __init__(self, arch, normalization='batch', activation='leakyrelu-0.2', + padding='same', pooling='avg', input_size=(128, 128), + layout_dim=0): + super(PatchDiscriminator, self).__init__() + input_dim = 3 + layout_dim + arch = 'I%d,%s' % (input_dim, arch) + cnn_kwargs = { + 'arch': arch, + 'normalization': normalization, + 'activation': activation, + 'pooling': pooling, + 'padding': padding, + } + self.cnn, output_dim = build_cnn(**cnn_kwargs) + self.classifier = nn.Conv2d(output_dim, 1, kernel_size=1, stride=1) + + def forward(self, x): + return self.classifier(self.cnn(x)) + + +class AcDiscriminator(nn.Module): + def __init__(self, arch, normalization='none', activation='relu', + padding='same', pooling='avg', num_id=None): + super(AcDiscriminator, self).__init__() + # self.vocab = vocab + + cnn_kwargs = { + 'arch': arch, + 'normalization': normalization, + 'activation': activation, + 'pooling': pooling, + 'padding': padding, + } + cnn, D = build_cnn(**cnn_kwargs) + self.cnn = nn.Sequential(cnn, GlobalAvgPool(), nn.Linear(D, 1024)) + self.num_id = num_id + + self.real_classifier = nn.Linear(1024, 1) + self.id_classifier = nn.Linear(1024, num_id) + + def forward(self, x, y): + if x.dim() == 3: + x = x[:, None] + + vecs = self.cnn(x) + real_scores = self.real_classifier(vecs) + id_scores = self.id_classifier(vecs) + ac_loss = F.cross_entropy(id_scores, y) + return real_scores, ac_loss + + +class AcCropDiscriminator(nn.Module): + def __init__(self, arch, normalization='none', activation='relu', + object_size=64, padding='same', pooling='avg'): + super(AcCropDiscriminator, self).__init__() + self.discriminator = AcDiscriminator(arch, normalization, + activation, padding, pooling) + self.object_size = object_size + + def forward(self, imgs, objs, boxes, obj_to_img, + object_crops=None, **kwargs): + if object_crops is None: + object_crops = crop_bbox_batch(imgs, boxes, obj_to_img, self.object_size) + real_scores, ac_loss = self.discriminator(object_crops, objs) + return real_scores, ac_loss, object_crops + + +# Conditional Discriminator +class CondPatchDiscriminator(nn.Module): + def __init__(self, arch, normalization='batch', activation='leakyrelu-0.2', + padding='same', pooling='avg', input_size=(128, 128), + cond_dim=0): + super(CondPatchDiscriminator, self).__init__() + input_dim = 3 + arch = 'I%d,%s' % (input_dim, arch) + cnn_kwargs = { + 'arch': arch, + 'normalization': normalization, + 'activation': activation, + 'pooling': pooling, + 'padding': padding, + } + self.cnn, output_dim = build_cnn(**cnn_kwargs) + self.joint_conv = nn.Sequential( + nn.Conv2d(output_dim+cond_dim, output_dim, \ + kernel_size=3, stride=1, padding=1, bias=False), + nn.BatchNorm2d(output_dim), + nn.LeakyReLU(0.2, inplace=True) + ) + self.classifier = nn.Conv2d(output_dim, 1, kernel_size=1, stride=1) + + def forward(self, x, cond_vecs): + if len(cond_vecs) == 2: + cond_vecs = cond_vecs.view(-1, cond_vecs.size(1), 1, 1) + x = self.cnn(x) + cond_vecs = cond_vecs.expand(-1, cond_vecs.size(1), x.size(2), x.size(3)) + x = torch.cat([x, cond_vecs], dim=1) + x = self.joint_conv(x) + return self.classifier(x) diff --git a/mlflow/train/sf2f/models/encoder_decoder.py b/mlflow/train/sf2f/models/encoder_decoder.py new file mode 100644 index 0000000..d564d86 --- /dev/null +++ b/mlflow/train/sf2f/models/encoder_decoder.py @@ -0,0 +1,87 @@ +''' +Flexible Encoder-Decoder Framework +''' + + +import torch +import torch.nn as nn +import functools +from torch.autograd import Variable +import numpy as np + +try: + from .model_collection import model_collection +except: + from model_collection import model_collection +#from .voice_encoders import V2F1DCNN +#from .face_decoders import V2FDecoder + + +class EncoderDecoder(nn.Module): + def __init__(self, + encoder_arch, + encoder_kwargs, + decoder_arch, + decoder_kwargs, + image_size): + super(EncoderDecoder, self).__init__() + # Initialize Encoder Decoder + self.encoder = getattr(model_collection, encoder_arch)(**encoder_kwargs) + self.decoder = getattr(model_collection, decoder_arch)(**decoder_kwargs) + #self.model = nn.Sequential( + # self.encoder, + # self.decoder + #) + + def forward(self, x, average_voice_embedding=False): + ''' + average_encoder_embedding: an option for evaluation, not needed for + training + ''' + others = {} + if self.encoder.return_seq: + emb, seq_emb = self.encoder(x) + imgs_pred = self.decoder(emb, seq_emb) + else: + emb = self.encoder(x) + if average_voice_embedding: + emb = torch.mean(emb, 0, keepdim=True) + imgs_pred = self.decoder(emb) + others['cond'] = emb + return imgs_pred, others + + def train_fuser_only(self): + print('Training Attention Fuser Only') + for name, param in self.named_parameters(): + if 'attn_fuser' in name: + param.requires_grad = True + else: + param.requires_grad = False + + +if __name__ == '__main__': + # Demo Input + log_mels = torch.ones((16, 40, 127)) + + # Test V2F 1D CNN + v2f_id_cnn_kwargs = { + 'input_channel': 40, + 'channels': [256, 384, 576, 864], + 'output_channel': 64, + } + # Test V2F 1D CNN + v2f_decoder_kwargs = { + 'input_channel': 64, + 'channels': [1024, 512, 256, 128, 64], + 'output_channel': 3, + } + + baseline_v2f = EncoderDecoder( + encoder_arch='V2F1DCNN', + encoder_kwargs=v2f_id_cnn_kwargs, + decoder_arch='V2FDecoder', + decoder_kwargs=v2f_decoder_kwargs + ) + + print(baseline_v2f) + print('baseline_v2f Output shape:', baseline_v2f(log_mels).shape) diff --git a/mlflow/train/sf2f/models/face_decoders.py b/mlflow/train/sf2f/models/face_decoders.py new file mode 100644 index 0000000..a05a8b7 --- /dev/null +++ b/mlflow/train/sf2f/models/face_decoders.py @@ -0,0 +1,583 @@ +''' +Implementations of different Face Decoders +''' + + +import torch +import torch.nn as nn +from torch.autograd import Variable +import torch.nn.functional as F +import functools +import numpy as np +from collections import OrderedDict +try: + from .attention import AttnBlock +except: + from attention import AttnBlock +try: + from .layers import get_activation, get_normalization_2d +except: + from layers import get_activation, get_normalization_2d +try: + from .networks import upBlock, GLU +except: + from networks import upBlock, GLU + + +class DeConv2DBLK(nn.Module): + def __init__(self, + input_channel, + output_channel, + kernel_size, + stride, + padding, + activation='relu', + normalization='none'): + super(DeConv2DBLK, self).__init__() + self.layers = [] + self.layers.append( + nn.ConvTranspose2d( + input_channel, + output_channel, + kernel_size, + stride, + padding, + bias=True)) + self.layers.append(get_activation(activation)) + self.layers.append( + get_normalization_2d( + output_channel, + normalization)) + self.layers = [layer for layer in self.layers if \ + layer is not None] + self.model = nn.Sequential(*self.layers) + + def forward(self, x): + x = self.model(x) + return x + + +class ExtraFeatureBlock(nn.Module): + def __init__(self, + dim_in, + dim_hidden, + normalization='none'): + super(ExtraFeatureBlock, self).__init__() + self.projection = nn.Linear(dim_in, dim_hidden, bias=True) + self.norm_layer = get_normalization_2d( + dim_hidden // 16, normalization) + + def forward(self, embedding, cat_tensor): + ''' + Transform the embedding, then concat it to the hidden tensor map + ''' + # Projected Embedding + #print('embedding:', embedding.shape) + N, D_in, _, _ = embedding.shape + proj_emb = self.projection(embedding.view(N, -1)) + N, D_hid = proj_emb.shape + feat_map = proj_emb.view(N, -1, 4, 4) + if self.norm_layer is not None: + feat_map = self.norm_layer(feat_map) + N, C, H, W = cat_tensor.shape + feat_map = F.interpolate(feat_map, (H, W)) + map_out = torch.cat([cat_tensor, feat_map], 1) + + return map_out + + +class V2FDecoder(nn.Module): + def __init__(self, + input_channel, + channels, + output_channel, + normalization='none'): + super(V2FDecoder, self).__init__() + output_size = 2 ** (len(channels) + 1) + print('V2FDecoder: According to your channels list, ' + \ + 'the output will be generated with shape ({}, {})'.format( + output_size, output_size)) + #torch.nn.ConvTranspose2d( + #in_channels, out_channels, kernel_size, stride=1, padding=0, + #output_padding=0, groups=1, bias=True, + #dilation=1, padding_mode='zeros') + self.layers = [] + # First Layer + layer_id = 0 + self.layers.append( + DeConv2DBLK(input_channel, + channels[0], + kernel_size=4, + stride=1, + padding=0, + activation='relu', + normalization=normalization)) + # Hidden Layers + for layer_id in range(1, len(channels)): + self.layers.append( + DeConv2DBLK(channels[layer_id - 1], + channels[layer_id], + kernel_size=4, + stride=2, + padding=1, + activation='relu', + normalization=normalization)) + # Output Layer + layer_id = layer_id + 1 + self.layers.append( + DeConv2DBLK(channels[layer_id - 1], + output_channel, + kernel_size=1, + stride=1, + padding=0, + activation='none', + normalization='none')) + self.model = nn.Sequential(*self.layers) + + def forward(self, x): + x = self.model(x) + return x + + +class MRDecoder(nn.Module): + def __init__(self, + input_channel, + base_block_channels, + mid_block_channel=32, + high_block_channel=None, + output_channel=3, + normalization='none', + use_up_block=False, + extra_feature_map=False): + super(MRDecoder, self).__init__() + output_sizes = [] + output_sizes.append( + 2 ** (len(base_block_channels) + 1)) + output_sizes.append( + 2 ** (len(base_block_channels) + 2)) + if high_block_channel is not None: + self.build_high_img = True + output_sizes.append( + 2 ** (len(base_block_channels) + 3)) + else: + self.build_high_img = False + print('MRDecoder: According to your channels list:') + for i, output_size in enumerate(output_sizes): + print('\tOutput {} will be generated with shape ({}, {})'.format( + i, output_size, output_size)) + + self.input_channel = input_channel + self.base_block_channels = base_block_channels + self.mid_block_channel = mid_block_channel + self.high_block_channel = high_block_channel + self.output_channel = output_channel + self.normalization = normalization + self.use_up_block = use_up_block + self.extra_feature_map = extra_feature_map + + # Output Layer + self.build_base_block() + self.build_low_block() + self.build_mid_block() + if self.build_high_img: + self.build_high_block() + + def build_base_block(self): + #torch.nn.ConvTranspose2d( + #in_channels, out_channels, kernel_size, stride=1, padding=0, + #output_padding=0, groups=1, bias=True, + #dilation=1, padding_mode='zeros') + self.base_block_layers = [] + # First Layer + layer_id = 0 + self.base_block_layers.append( + DeConv2DBLK(self.input_channel, + self.base_block_channels[0], + kernel_size=4, + stride=1, + padding=0, + activation='relu', + normalization=self.normalization)) + # Hidden Layers + for layer_id in range(1, len(self.base_block_channels)): + self.base_block_layers.append( + DeConv2DBLK(self.base_block_channels[layer_id - 1], + self.base_block_channels[layer_id], + kernel_size=4, + stride=2, + padding=1, + activation='relu', + normalization=self.normalization)) + self.base_block = nn.Sequential(*self.base_block_layers) + + def build_low_block(self): + self.low_output_layer = \ + DeConv2DBLK(self.base_block_channels[-1], + self.output_channel, + kernel_size=1, + stride=1, + padding=0, + activation='none', + normalization='none') + + def build_mid_block(self): + extra_channel = 0 + if self.extra_feature_map: + # Mid-resolution ExtraFeatureBlock + self.mid_ef_block = ExtraFeatureBlock( + dim_in=self.input_channel, + dim_hidden=self.input_channel, + normalization=self.normalization) + extra_channel = self.input_channel // 16 + if self.use_up_block: + self.mid_hidden_layer = \ + upBlock(self.base_block_channels[-1] + extra_channel, + self.mid_block_channel) + else: + self.mid_hidden_layer = \ + DeConv2DBLK(self.base_block_channels[-1] + extra_channel, + self.mid_block_channel, + kernel_size=4, + stride=2, + padding=1, + activation='relu', + normalization=self.normalization) + self.mid_output_layer = \ + DeConv2DBLK(self.mid_block_channel, + self.output_channel, + kernel_size=1, + stride=1, + padding=0, + activation='none', + normalization='none') + + def build_high_block(self): + extra_channel = 0 + if self.extra_feature_map: + # High-resolution ExtraFeatureBlock + self.high_ef_block = ExtraFeatureBlock( + dim_in=self.input_channel, + dim_hidden=self.input_channel, + normalization=self.normalization) + extra_channel = self.input_channel // 16 + if self.use_up_block: + self.high_hidden_layer = \ + upBlock(self.mid_block_channel + extra_channel, + self.high_block_channel) + else: + self.high_hidden_layer = \ + DeConv2DBLK(self.mid_block_channel + extra_channel, + self.high_block_channel, + kernel_size=4, + stride=2, + padding=1, + activation='relu', + normalization=self.normalization) + self.high_output_layer = \ + DeConv2DBLK(self.high_block_channel, + self.output_channel, + kernel_size=1, + stride=1, + padding=0, + activation='none', + normalization='none') + + def forward(self, x): + low_code = self.base_block(x) + low_imgs = self.low_output_layer(low_code) + #print('low_code:', low_code.shape) + if self.extra_feature_map: + low_code = self.mid_ef_block(x, low_code) + #print('low_code:', low_code.shape) + mid_code = self.mid_hidden_layer(low_code) + mid_imgs = self.mid_output_layer(mid_code) + if self.build_high_img: + #print('mid_code:', mid_code.shape) + if self.extra_feature_map: + mid_code = self.high_ef_block(x, mid_code) + #print('mid_code:', mid_code.shape) + high_code = self.high_hidden_layer(mid_code) + high_imgs = self.high_output_layer(high_code) + return (low_imgs, mid_imgs, high_imgs) + else: + return (low_imgs, mid_imgs) + + +class AttnV2FDecoder(nn.Module): + def __init__(self, + input_channel, + cnn_channels, + attn_channels, + output_channel, + seq_in_dim, + normalization='none'): + super(AttnV2FDecoder, self).__init__() + output_size = 2 ** (len(cnn_channels) + 1) + print('V2FDecoder: According to your channels list, ' + \ + 'the output will be generated with shape ({}, {})'.format( + output_size, output_size)) + #torch.nn.ConvTranspose2d( + #in_channels, out_channels, kernel_size, stride=1, padding=0, + #output_padding=0, groups=1, bias=True, + #dilation=1, padding_mode='zeros') + self.layers = [] + self.layer_names = [] + # First Layer + layer_id = 0 + self.layers.append( + DeConv2DBLK(input_channel, + cnn_channels[0], + kernel_size=4, + stride=1, + padding=0, + activation='relu', + normalization=normalization)) + self.layer_names.append('DeConv2DBLK{}'.format(layer_id)) + # Hidden Layers + for layer_id in range(1, len(cnn_channels)): + self.layers.append( + DeConv2DBLK( + cnn_channels[layer_id - 1]+attn_channels[layer_id - 1], + cnn_channels[layer_id], + kernel_size=4, + stride=2, + padding=1, + activation='relu', + normalization=normalization)) + self.layer_names.append('DeConv2DBLK{}'.format(layer_id)) + attn_channel = attn_channels[layer_id] + if attn_channel > 0: + self.layers.append( + AttnBlock(attn_dim_in=seq_in_dim, + attn_dim_out=attn_channel, + attn_num_query=16, + normalization=normalization)) + self.layer_names.append('AttnBlock{}'.format(layer_id)) + # Output Layer + layer_id = layer_id + 1 + self.layers.append( + DeConv2DBLK(cnn_channels[layer_id - 1]+attn_channels[layer_id - 1], + output_channel, + kernel_size=1, + stride=1, + padding=0, + activation='none', + normalization='none')) + self.layer_names.append('DeConv2DBLK{}'.format(layer_id)) + + for layer_id, layer in enumerate(self.layers): + self.add_module(self.layer_names[layer_id], layer) + + def forward(self, x, seq_feat): + for layer, name in zip(self.layers, self.layer_names): + if 'AttnBlock' in name: + x = layer(x, seq_feat) + else: + x = layer(x) + #print(x.shape) + return x + + def return_attn_weights(self): + for layer, name in zip(self.layers, self.layer_names): + if 'AttnBlock' in name: + return layer.return_attn_weights() + + +class FaceGanDecoder(nn.Module): + def __init__(self, + image_size=(64, 64), + normalization='batch', + activation='leakyrelu-0.2', + mlp_normalization='none', + noise_dim=128, + **kwargs): + + super(FaceGanDecoder, self).__init__() + if len(kwargs) > 0: + print('WARNING: Model got unexpected kwargs ', kwargs) + + self.dim = noise_dim + self.image_size = image_size + + self.fc = nn.Sequential( + nn.Linear(self.dim, self.dim * 4 * 4 * 2, bias=False), + nn.BatchNorm1d(self.dim * 4 * 4 * 2), + GLU()) + + up_num, up_layers = [], [] + num_in, num_out = 1, 1 + up_num = range(1, int(np.log2(image_size[0]))-1) + + for i, num in enumerate(up_num): + if i == 0: + num_in = num + num_out = 2**num + up_layers.append(upBlock(self.dim//num_in, self.dim//num_out)) + num_in = num_out + + self.up_layers = nn.Sequential(*up_layers) + + gnet_layers = [ + nn.Conv2d(self.dim//num_out, self.dim//num_out, kernel_size=3, padding=1), + get_activation('leakyrelu'), + nn.Conv2d(self.dim//num_out, 3, kernel_size=1, padding=0), + ] + self.gnet = nn.Sequential(*gnet_layers) + + def forward(self, x): + """ + Required Inputs: + - placeholder: This is a placeholder. + + Optional Inputs: + - placeholder: This is a placeholder. + """ + + vecs = self.fc(x.view(-1, 512)) + vecs = vecs.view(x.size()[0], -1, 4, 4) + + img_code = self.up_layers(vecs) + img_pred = self.gnet(img_code) + + return img_pred + + +class FaceGanDecoder_v2(nn.Module): + def __init__(self, + image_size=(64, 64), + normalization='batch', + activation='leakyrelu-0.2', + mlp_normalization='none', + noise_dim=128, + **kwargs): + + super(FaceGanDecoder_v2, self).__init__() + if len(kwargs) > 0: + print('WARNING: Model got unexpected kwargs ', kwargs) + + self.dim = noise_dim + self.image_size = image_size + + self.fc = nn.Sequential( + nn.Linear(self.dim, self.dim * 4 * 4 * 2, bias=False), + nn.BatchNorm1d(self.dim * 4 * 4 * 2), + GLU()) + + up_num, up_layers = [], [] + num_in, num_out = 1, 1 + up_num = range(1, int(np.log2(image_size[0]))-1) + + for i, num in enumerate(up_num): + if i == 0: + num_in = num + num_out = 2**num + up_layers.append(upBlock(self.dim//num_in, self.dim//num_out)) + num_in = num_out + + self.up_low_layers = nn.Sequential(*up_layers) + self.up_mid_layer = upBlock(self.dim//num_out, self.dim//num_out//2) + + gnet_layers = [ + nn.Conv2d(self.dim//num_out, self.dim//num_out, kernel_size=3, padding=1), + get_activation('leakyrelu'), + nn.Conv2d(self.dim//num_out, 3, kernel_size=1, padding=0), + ] + self.gnet_low = nn.Sequential(*gnet_layers) + + gnet_layers = [ + nn.Conv2d(self.dim//num_out//2, self.dim//num_out//2, kernel_size=3, padding=1), + get_activation('leakyrelu'), + nn.Conv2d(self.dim//num_out//2, 3, kernel_size=1, padding=0), + ] + self.gnet_mid = nn.Sequential(*gnet_layers) + + def forward(self, x): + """ + Required Inputs: + - placeholder: This is a placeholder. + + Optional Inputs: + - placeholder: This is a placeholder. + """ + + vecs = self.fc(x.view(-1, 512)) + vecs = vecs.view(x.size()[0], -1, 4, 4) + + img_code_low = self.up_low_layers(vecs) + img_pred_low = self.gnet_low(img_code_low) + + img_code_mid = self.up_mid_layer(img_code_low) + img_pred_mid = self.gnet_mid(img_code_mid) + + return (img_pred_low, img_pred_mid) + + +if __name__ == '__main__': + # Demo Input + voice_embeddings = torch.ones((16, 512, 1, 1)) + seq_voice_embeddings = torch.ones((16, 512, 270)) + + # Test V2F 1D CNN + mr_decoder_kwargs = { + 'input_channel': 512, + 'base_block_channels': [1024, 512, 256, 128, 64], + 'mid_block_channel': 32, + 'high_block_channel': 32, + 'output_channel': 3, + 'normalization': 'batch', + 'use_up_block': True, + 'extra_feature_map': True, + } + mr_decoder = MRDecoder(**mr_decoder_kwargs) + print(mr_decoder) + for i, imgs in enumerate(mr_decoder(voice_embeddings)): + print('MRDecoder Output {} shape:'.format(i), imgs.shape) + + # Test V2F Decoder + v2f_decoder_kwargs = { + 'input_channel': 512, + 'channels': [1024, 512, 256, 128, 64], + 'output_channel': 3, + 'normalization': 'batch', + } + v2f_decoder = V2FDecoder(**v2f_decoder_kwargs) + print(v2f_decoder) + print('V2FDecoder Output shape:', v2f_decoder(voice_embeddings).shape) + print('V2F Sequential:') + print(v2f_decoder.model[5]) + for name, param in v2f_decoder.model[5].named_parameters(): + print(name) + #for module in v2f_decoder.model: + # print(module) + + v2f_decoder_kwargs = { + 'input_channel': 512, + 'cnn_channels': [1024, 512, 256, 128, 64], + 'attn_channels': [0, 0, 128, 0, 32], + 'output_channel': 3, + 'seq_in_dim': 512, + 'normalization': 'none', + } + attn_v2f_decoder = AttnV2FDecoder(**v2f_decoder_kwargs) + print(attn_v2f_decoder) + print('AttnV2FDecoder Output shape:', \ + attn_v2f_decoder(voice_embeddings, seq_voice_embeddings).shape) + print('Return Attention Weights:', + attn_v2f_decoder.return_attn_weights().shape, + attn_v2f_decoder.return_attn_weights()[0][0][0:10]) + + dimLatentVector = 512 + depthScale0 = 512 + + pgandecoder = PganDecoder(dimLatent=dimLatentVector, + depthScale0=depthScale0, + initBiasToZero=True, + leakyReluLeak=0.2, + normalization=True, + generationActivation=None, + dimOutput=3, + equalizedlR=True, + depthOtherScales=[512,512,512,256]) + + img = pgandecoder(voice_embeddings) + diff --git a/mlflow/train/sf2f/models/fusers.py b/mlflow/train/sf2f/models/fusers.py new file mode 100644 index 0000000..ecc8043 --- /dev/null +++ b/mlflow/train/sf2f/models/fusers.py @@ -0,0 +1,136 @@ +''' +Implementations of different Fusers +''' + + +import os +import torch +import torch.nn as nn +import torch.optim as optim +import torch.nn.functional as F +import numpy as np +import math + +try: + from attention import Attention +except: + from .attention import Attention + + +class AttentionFuserV1(nn.Module): + def __init__(self, + dimensions, + dim_out, + attention_type='general', + linear_out_layer=True, + ignore_tanh=False): + ''' + 1 Layer Attnetion Fuser + ''' + nn.Module.__init__(self) + self.attention = Attention( + dimensions, + dim_out, + attention_type=attention_type, + linear_out_layer=linear_out_layer, + ignore_tanh=ignore_tanh) + + def forward(self, embeddings): + ''' + seq_in: tensor with shape [N, D, L] + ''' + # Embeddings: [B, N, C] + embeddings, attention_weights = \ + self.attention(embeddings, embeddings) + # [B, C, N] + embeddings = embeddings.transpose(1, 2) + #print('Transposed Shape:', embeddings.shape) + embeddings = F.avg_pool1d( + embeddings, embeddings.size()[2], stride=1) + embeddings = embeddings.view(embeddings.size()[0], -1, 1, 1) + #print('Attention Fuser Output Shape:', embeddings.shape) + return embeddings + + +class AttentionFuserV2(nn.Module): + def __init__(self, + dimensions, + attention_type='general'): + ''' + 2-Layer Attention + ''' + nn.Module.__init__(self) + self.attention_1 = Attention( + dimensions, + dimensions, + attention_type=attention_type, + linear_out_layer=True, + ignore_tanh=False) + self.attention_2 = Attention( + dimensions, + dimensions, + attention_type=attention_type, + linear_out_layer=True, + ignore_tanh=True) + + def forward(self, embeddings): + ''' + seq_in: tensor with shape [N, D, L] + ''' + # Embeddings: [B, N, C] + embeddings, attention_weights = \ + self.attention_1(embeddings, embeddings) + embeddings, attention_weights = \ + self.attention_2(embeddings, embeddings) + # [B, C, N] + embeddings = embeddings.transpose(1, 2) + #print('Transposed Shape:', embeddings.shape) + embeddings = F.avg_pool1d( + embeddings, embeddings.size()[2], stride=1) + embeddings = embeddings.view(embeddings.size()[0], -1, 1, 1) + #print('Attention Fuser Output Shape:', embeddings.shape) + return embeddings + + +class AttentionFuserV3(nn.Module): + def __init__(self, + dimensions, + attention_type='general'): + ''' + 2-Layer Attention with Residual Connection + ''' + nn.Module.__init__(self) + self.attention_1 = Attention( + dimensions, + dimensions, + attention_type=attention_type, + linear_out_layer=True, + ignore_tanh=False) + self.attention_2 = Attention( + dimensions*2, + dimensions, + attention_type=attention_type, + linear_out_layer=True, + ignore_tanh=True) + + def forward(self, input): + ''' + seq_in: tensor with shape [N, D, L] + ''' + # Embeddings: [B, N, C] + hidden, attention_weights = \ + self.attention_1(input, input) + hidden = F.normalize(hidden, dim=2) + # Residual Connection + combined = torch.cat((hidden, input), dim=2) + # 2nd Attention + embeddings, attention_weights = \ + self.attention_2(combined, combined) + # [B, C, N] + embeddings = embeddings.transpose(1, 2) + #print('Transposed Shape:', embeddings.shape) + embeddings = F.avg_pool1d( + embeddings, embeddings.size()[2], stride=1) + embeddings = embeddings.view(embeddings.size()[0], -1, 1, 1) + #print('Attention Fuser Output Shape:', embeddings.shape) + return embeddings diff --git a/mlflow/train/sf2f/models/inception_resnet_v1.py b/mlflow/train/sf2f/models/inception_resnet_v1.py new file mode 100644 index 0000000..f95a1f8 --- /dev/null +++ b/mlflow/train/sf2f/models/inception_resnet_v1.py @@ -0,0 +1,439 @@ +''' +Reference: https://github.com/timesler/facenet-pytorch/ \ + blob/master/models/inception_resnet_v1.py + +Both pretrained models were trained on 160x160 px images, +so will perform best if applied to images resized to this shape. +For best results, images should also be cropped to the face using +MTCNN (see below). +''' + + +import torch +from torch import nn +from torch.nn import functional as F +import requests +from requests.adapters import HTTPAdapter +import os + + +class BasicConv2d(nn.Module): + + def __init__(self, in_planes, out_planes, kernel_size, stride, padding=0): + super().__init__() + self.conv = nn.Conv2d( + in_planes, out_planes, + kernel_size=kernel_size, stride=stride, + padding=padding, bias=False + ) # verify bias false + self.bn = nn.BatchNorm2d( + out_planes, + eps=0.001, # value found in tensorflow + momentum=0.1, # default pytorch value + affine=True + ) + self.relu = nn.ReLU(inplace=False) + + def forward(self, x): + x = self.conv(x) + x = self.bn(x) + x = self.relu(x) + return x + + +class Block35(nn.Module): + + def __init__(self, scale=1.0): + super().__init__() + + self.scale = scale + + self.branch0 = BasicConv2d(256, 32, kernel_size=1, stride=1) + + self.branch1 = nn.Sequential( + BasicConv2d(256, 32, kernel_size=1, stride=1), + BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1) + ) + + self.branch2 = nn.Sequential( + BasicConv2d(256, 32, kernel_size=1, stride=1), + BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1), + BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1) + ) + + self.conv2d = nn.Conv2d(96, 256, kernel_size=1, stride=1) + self.relu = nn.ReLU(inplace=False) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + out = torch.cat((x0, x1, x2), 1) + out = self.conv2d(out) + out = out * self.scale + x + out = self.relu(out) + return out + + +class Block17(nn.Module): + + def __init__(self, scale=1.0): + super().__init__() + + self.scale = scale + + self.branch0 = BasicConv2d(896, 128, kernel_size=1, stride=1) + + self.branch1 = nn.Sequential( + BasicConv2d(896, 128, kernel_size=1, stride=1), + BasicConv2d(128, 128, kernel_size=(1,7), stride=1, padding=(0,3)), + BasicConv2d(128, 128, kernel_size=(7,1), stride=1, padding=(3,0)) + ) + + self.conv2d = nn.Conv2d(256, 896, kernel_size=1, stride=1) + self.relu = nn.ReLU(inplace=False) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + out = torch.cat((x0, x1), 1) + out = self.conv2d(out) + out = out * self.scale + x + out = self.relu(out) + return out + + +class Block8(nn.Module): + + def __init__(self, scale=1.0, noReLU=False): + super().__init__() + + self.scale = scale + self.noReLU = noReLU + + self.branch0 = BasicConv2d(1792, 192, kernel_size=1, stride=1) + + self.branch1 = nn.Sequential( + BasicConv2d(1792, 192, kernel_size=1, stride=1), + BasicConv2d(192, 192, kernel_size=(1,3), stride=1, padding=(0,1)), + BasicConv2d(192, 192, kernel_size=(3,1), stride=1, padding=(1,0)) + ) + + self.conv2d = nn.Conv2d(384, 1792, kernel_size=1, stride=1) + if not self.noReLU: + self.relu = nn.ReLU(inplace=False) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + out = torch.cat((x0, x1), 1) + out = self.conv2d(out) + out = out * self.scale + x + if not self.noReLU: + out = self.relu(out) + return out + + +class Mixed_6a(nn.Module): + + def __init__(self): + super().__init__() + + self.branch0 = BasicConv2d(256, 384, kernel_size=3, stride=2) + + self.branch1 = nn.Sequential( + BasicConv2d(256, 192, kernel_size=1, stride=1), + BasicConv2d(192, 192, kernel_size=3, stride=1, padding=1), + BasicConv2d(192, 256, kernel_size=3, stride=2) + ) + + self.branch2 = nn.MaxPool2d(3, stride=2) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + out = torch.cat((x0, x1, x2), 1) + return out + + +class Mixed_7a(nn.Module): + + def __init__(self): + super().__init__() + + self.branch0 = nn.Sequential( + BasicConv2d(896, 256, kernel_size=1, stride=1), + BasicConv2d(256, 384, kernel_size=3, stride=2) + ) + + self.branch1 = nn.Sequential( + BasicConv2d(896, 256, kernel_size=1, stride=1), + BasicConv2d(256, 256, kernel_size=3, stride=2) + ) + + self.branch2 = nn.Sequential( + BasicConv2d(896, 256, kernel_size=1, stride=1), + BasicConv2d(256, 256, kernel_size=3, stride=1, padding=1), + BasicConv2d(256, 256, kernel_size=3, stride=2) + ) + + self.branch3 = nn.MaxPool2d(3, stride=2) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + x3 = self.branch3(x) + out = torch.cat((x0, x1, x2, x3), 1) + return out + + +class InceptionResnetV1(nn.Module): + """Inception Resnet V1 model with optional loading of pretrained weights. + + Model parameters can be loaded based on pretraining on the VGGFace2 or CASIA-Webface + datasets. Pretrained state_dicts are automatically downloaded on model instantiation if + requested and cached in the torch cache. Subsequent instantiations use the cache rather than + redownloading. + + Keyword Arguments: + pretrained {str} -- Optional pretraining dataset. Either 'vggface2' or 'casia-webface'. + (default: {None}) + classify {bool} -- Whether the model should output classification probabilities or feature + embeddings. (default: {False}) + num_classes {int} -- Number of output classes. If 'pretrained' is set and num_classes not + equal to that used for the pretrained model, the final linear layer will be randomly + initialized. (default: {None}) + dropout_prob {float} -- Dropout probability. (default: {0.6}) + """ + def __init__(self, + pretrained=None, + classify=False, + num_classes=None, + dropout_prob=0.6, + device=None, + auto_input_resize=True, + return_pooling=False): + super().__init__() + + # Set simple attributes + self.pretrained = pretrained + self.classify = classify + self.num_classes = num_classes + self.auto_input_resize = auto_input_resize + + if pretrained == 'vggface2': + tmp_classes = 8631 + elif pretrained == 'casia-webface': + tmp_classes = 10575 + elif pretrained is None and self.num_classes is None: + raise Exception('At least one of "pretrained" or "num_classes" must be specified') + else: + tmp_classes = self.num_classes + + if self.auto_input_resize: + self.input_resize = nn.UpsamplingBilinear2d(size=(140, 140)) + self.return_pooling = return_pooling + # Define layers + self.conv2d_1a = BasicConv2d(3, 32, kernel_size=3, stride=2) + self.conv2d_2a = BasicConv2d(32, 32, kernel_size=3, stride=1) + self.conv2d_2b = BasicConv2d(32, 64, kernel_size=3, stride=1, padding=1) + self.maxpool_3a = nn.MaxPool2d(3, stride=2) + self.conv2d_3b = BasicConv2d(64, 80, kernel_size=1, stride=1) + self.conv2d_4a = BasicConv2d(80, 192, kernel_size=3, stride=1) + self.conv2d_4b = BasicConv2d(192, 256, kernel_size=3, stride=2) + self.repeat_1 = nn.Sequential( + Block35(scale=0.17), + Block35(scale=0.17), + Block35(scale=0.17), + Block35(scale=0.17), + Block35(scale=0.17), + ) + self.mixed_6a = Mixed_6a() + self.repeat_2 = nn.Sequential( + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + ) + self.mixed_7a = Mixed_7a() + self.repeat_3 = nn.Sequential( + Block8(scale=0.20), + Block8(scale=0.20), + Block8(scale=0.20), + Block8(scale=0.20), + Block8(scale=0.20), + ) + self.block8 = Block8(noReLU=True) + self.avgpool_1a = nn.AdaptiveAvgPool2d(1) + self.dropout = nn.Dropout(dropout_prob) + self.last_linear = nn.Linear(1792, 512, bias=False) + self.last_bn = nn.BatchNorm1d(512, eps=0.001, momentum=0.1, affine=True) + self.logits = nn.Linear(512, tmp_classes) + + if pretrained is not None: + load_weights(self, pretrained) + + if self.num_classes is not None: + self.logits = nn.Linear(512, self.num_classes) + + self.device = torch.device('cpu') + if device is not None: + self.device = device + self.to(device) + + def forward(self, x): + """ + Calculate embeddings or probabilities given a batch of input image + tensors. + + Arguments: + x {torch.tensor} -- Batch of image tensors representing faces. + + Returns: + torch.tensor -- Batch of embeddings or softmax probabilities. + """ + if self.auto_input_resize: + x = self.input_resize(x) + x = self.conv2d_1a(x) + x = self.conv2d_2a(x) + x = self.conv2d_2b(x) + x = self.maxpool_3a(x) + x = self.conv2d_3b(x) + x = self.conv2d_4a(x) + x = self.conv2d_4b(x) + x = self.repeat_1(x) + x = self.mixed_6a(x) + x = self.repeat_2(x) + x = self.mixed_7a(x) + x = self.repeat_3(x) + x = self.block8(x) + x = self.avgpool_1a(x) + if self.return_pooling: + pooled = x.view(x.shape[0], -1) + pooled = F.normalize(pooled, p=2, dim=1) + return pooled + x = self.dropout(x) + x = self.last_linear(x.view(x.shape[0], -1)) + x = self.last_bn(x) + x = F.normalize(x, p=2, dim=1) + if self.classify: + x = self.logits(x) + return x + + def get_hidden_states(self, x): + """ + Calculate embeddings or probabilities given a batch of input image + tensors. + + Arguments: + x {torch.tensor} -- Batch of image tensors representing faces. + + Returns: + torch.tensor -- Batch of embeddings or softmax probabilities. + """ + if self.auto_input_resize: + x = self.input_resize(x) + conv2d_1a = self.conv2d_1a(x) + conv2d_2a = self.conv2d_2a(conv2d_1a) + conv2d_2b = self.conv2d_2b(conv2d_2a) + maxpool_3a = self.maxpool_3a(conv2d_2b) + conv2d_3b = self.conv2d_3b(maxpool_3a) + conv2d_4a = self.conv2d_4a(conv2d_3b) + conv2d_4b = self.conv2d_4b(conv2d_4a) + repeat_1 = self.repeat_1(conv2d_4b) + mixed_6a = self.mixed_6a(repeat_1) + repeat_2 = self.repeat_2(mixed_6a) + mixed_7a = self.mixed_7a(repeat_2) + repeat_3 = self.repeat_3(mixed_7a) + block8 = self.block8(repeat_3) + avgpool_1a = self.avgpool_1a(block8) + dropout = self.dropout(avgpool_1a) + last_linear = self.last_linear(dropout.view(x.shape[0], -1)) + last_bn = self.last_bn(last_linear) + x = F.normalize(last_bn, p=2, dim=1) + if self.classify: + x = self.logits(x) + out = [repeat_1, repeat_2, repeat_3, x] + return out + + +def load_weights(mdl, name): + """Download pretrained state_dict and load into model. + + Arguments: + mdl {torch.nn.Module} -- Pytorch model. + name {str} -- Name of dataset that was used to generate pretrained state_dict. + + Raises: + ValueError: If 'pretrained' not equal to 'vggface2' or 'casia-webface'. + """ + if name == 'vggface2': + features_path = \ + 'https://drive.google.com/uc?export=download&' + \ + 'id=1cWLH_hPns8kSfMz9kKl9PsG5aNV2VSMn' + logits_path = \ + 'https://drive.google.com/uc?export=download' + \ + '&id=1mAie3nzZeno9UIzFXvmVZrDG3kwML46X' + elif name == 'casia-webface': + features_path = 'https://drive.google.com/uc?export=download&id=1LSHHee_IQj5W3vjBcRyVaALv4py1XaGy' + logits_path = 'https://drive.google.com/uc?export=download&id=1QrhPgn1bGlDxAil2uc07ctunCQoDnCzT' + else: + raise ValueError('Pretrained models only exist for "vggface2" and "casia-webface"') + + model_dir = os.path.join(get_torch_home(), 'checkpoints') + os.makedirs(model_dir, exist_ok=True) + + state_dict = {} + for i, path in enumerate([features_path, logits_path]): + cached_file = os.path.join( + model_dir, '{}_{}.pt'.format(name, path[-10:])) + #print('Cashed File Location:', cached_file) + if not os.path.exists(cached_file): + print('Downloading parameters ({}/2)'.format(i+1)) + s = requests.Session() + s.mount('https://', HTTPAdapter(max_retries=10)) + r = s.get(path, allow_redirects=True) + with open(cached_file, 'wb') as f: + f.write(r.content) + state_dict.update(torch.load(cached_file)) + + mdl.load_state_dict(state_dict) + + +def get_torch_home(): + torch_home = os.path.expanduser( + os.getenv( + 'TORCH_HOME', + os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch') + ) + ) + return torch_home + + +def fixed_image_standardization(image_tensor): + ''' + This is the default preprocess function for this pretrained model + ''' + processed_tensor = (image_tensor - 127.5) / 128.0 + return processed_tensor + + +if __name__ == '__main__': + model = InceptionResnetV1(pretrained='vggface2').eval() + print(model) + demo_imgs = torch.zeros(16, 3, 64, 64) + print('Output size 1:', model(demo_imgs).shape, model(demo_imgs)[0]) + + model_2 = InceptionResnetV1( + pretrained='vggface2', + auto_input_resize=False).eval() + demo_imgs = torch.zeros(16, 3, 140, 140) + print('Output size 2:', model(demo_imgs).shape, model_2(demo_imgs)[0]) diff --git a/mlflow/train/sf2f/models/layers.py b/mlflow/train/sf2f/models/layers.py new file mode 100644 index 0000000..001e3eb --- /dev/null +++ b/mlflow/train/sf2f/models/layers.py @@ -0,0 +1,257 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +## We use the batchnorm in pytorch 0.3.x to avoid unexpected errors +## Otherwise, some in-place modification will bring some errors +# from models.utils.batchnorm import BatchNorm1d, BatchNorm2d + + + +def get_normalization_2d(channels, normalization): + if normalization == 'instance': + return nn.InstanceNorm2d(channels) + elif normalization == 'batch': + return nn.BatchNorm2d(channels) + elif normalization == 'none': + return None + else: + raise ValueError('Unrecognized normalization type "%s"' % + normalization) + + +def get_activation(name): + kwargs = {} + if name.lower().startswith('leakyrelu'): + if '-' in name: + slope = float(name.split('-')[1]) + kwargs = {'negative_slope': slope} + name = 'leakyrelu' + activations = { + 'relu': nn.ReLU, + 'leakyrelu': nn.LeakyReLU, + 'none': None, + } + if name.lower() not in activations: + raise ValueError('Invalid activation "%s"' % name) + if activations[name.lower()] is not None: + return activations[name.lower()](**kwargs) + + +def weights_init(m): + raise NotImplementedError + classname = m.__class__.__name__ + if classname.find('Conv') != -1: + m.weight.data.normal_(0.0, 0.02) + m.bias.data.fill_(0) + elif classname.find('BatchNorm2d') != -1: + m.weight.data.normal_(1.0, 0.02) + m.bias.data.fill_(0) + elif classname.find('BatchNorm1d') != -1: + m.weight.data.normal_(1.0, 0.02) + m.bias.data.fill_(0) + elif classname.find('Linear') != -1: + m.weight.data.normal_(0.0, 0.02) + m.bias.data.fill_(0) + + +class Flatten(nn.Module): + def forward(self, x): + return x.view(x.size(0), -1) + + def __repr__(self): + return 'Flatten()' + + +class Unflatten(nn.Module): + def __init__(self, size): + super(Unflatten, self).__init__() + self.size = size + + def forward(self, x): + return x.view(*self.size) + + def __repr__(self): + size_str = ', '.join('%d' % d for d in self.size) + return 'Unflatten(%s)' % size_str + + +class GlobalAvgPool(nn.Module): + def __init__(self, pooling="avg"): + super(GlobalAvgPool, self).__init__() + self.pooling = pooling + def forward(self, x): + N, C = x.size(0), x.size(1) + if self.pooling == "avg": + return x.view(N, C, -1).mean(dim=2) + elif self.pooling == "max": + return x.view(N, C, -1).max(dim=2)[0] + else: + assert False, "Unrecognized pooling: {}".format(self.pooling) + + +class ResidualBlock(nn.Module): + def __init__(self, channels, normalization='batch', activation='relu', + padding='same', kernel_size=3, init='default'): + super(ResidualBlock, self).__init__() + K = kernel_size + P = _get_padding(K, "same") + C = channels + self.padding = P + layers = [ + get_normalization_2d(C, normalization), + get_activation(activation), + nn.Conv2d(C, C, kernel_size=K, padding=P), + get_normalization_2d(C, normalization), + get_activation(activation), + nn.Conv2d(C, C, kernel_size=K, padding=P), + ] + layers = [layer for layer in layers if layer is not None] + # for layer in layers: + # _init_conv(layer, method=init) + self.net = nn.Sequential(*layers) + + def forward(self, x): + P = self.padding + shortcut = x + y = self.net(x) + return shortcut + self.net(x) + + +def _get_padding(K, mode): + """ Helper method to compute padding size """ + if mode == 'valid': + return 0 + elif mode == 'same': + assert K % 2 == 1, 'Invalid kernel size %d for "same" padding' % K + return (K - 1) // 2 + + +def build_cnn(arch, normalization='batch', activation='relu', padding='same', + pooling='max', init='default', non_linear_activated=False): + """ + Build a CNN from an architecture string, which is a list of layer + specification strings. The overall architecture can be given as a list or as + a comma-separated string. + + All convolutions *except for the first* are preceeded by normalization and + nonlinearity. + + non_linear_activated: whether to add [non-linear activation / normalization] + Default is [False] (do not add these layers) + + All other layers support the following: + - IX: Indicates that the number of input channels to the network is X. + Can only be used at the first layer; if not present then we assume + 3 input channels. + - CK-X: KxK convolution with X output channels + - CK-X-S: KxK convolution with X output channels and stride S + - R: Residual block keeping the same number of channels + - UX: Nearest-neighbor upsampling with factor X + - PX: Spatial pooling with factor X + - FC-X-Y: Flatten followed by fully-connected layer + + Returns a tuple of: + - cnn: An nn.Sequential + - channels: Number of output channels + """ + if isinstance(arch, str): + arch = arch.split(',') + cur_C = 3 + if len(arch) > 0 and arch[0][0] == 'I': + cur_C = int(arch[0][1:]) + arch = arch[1:] + + first_conv = True + flat = False + layers = [] + for i, s in enumerate(arch): + if s[0] == 'C': + if not first_conv: + layers.append(get_normalization_2d(cur_C, normalization)) + layers.append(get_activation(activation)) + first_conv = False + vals = [int(i) for i in s[1:].split('-')] + P = None + if len(vals) == 2: + K, next_C = vals + stride = 1 + elif len(vals) == 3: + K, next_C, stride = vals + elif len(vals) == 4: + # Add padding + K, next_C, stride, P = vals + # K, next_C = (int(i) for i in s[1:].split('-')) + if P is None: + P = _get_padding(K, padding) + conv = nn.Conv2d(cur_C, next_C, kernel_size=K, + padding=P, stride=stride) + layers.append(conv) + # _init_conv(layers[-1], init) + cur_C = next_C + elif s[0] == 'R': + norm = 'none' if first_conv else normalization + res = ResidualBlock(cur_C, normalization=norm, activation=activation, + padding=padding, init=init) + layers.append(res) + first_conv = False + elif s[0] == 'U': + factor = int(s[1:]) + layers.append(nn.Upsample(scale_factor=factor, mode='nearest')) + elif s[0] == 'P': + factor = int(s[1:]) + if pooling == 'max': + pool = nn.MaxPool2d(kernel_size=factor, stride=factor) + elif pooling == 'avg': + pool = nn.AvgPool2d(kernel_size=factor, stride=factor) + layers.append(pool) + elif s[:2] == 'FC': + _, Din, Dout = s.split('-') + Din, Dout = int(Din), int(Dout) + if not flat: + layers.append(Flatten()) + flat = True + layers.append(nn.Linear(Din, Dout)) + if i + 1 < len(arch): + layers.append(get_activation(activation)) + cur_C = Dout + else: + raise ValueError('Invalid layer "%s"' % s) + if non_linear_activated: + layers.append(get_normalization_2d(cur_C, normalization)) + layers.append(get_activation(activation)) + layers = [layer for layer in layers if layer is not None] + #for layer in layers: + # print(layer) + + model = nn.Sequential(*layers) + return model, cur_C + + +def build_mlp(dim_list, activation='relu', batch_norm='none', + dropout=0, final_nonlinearity=True, + start_nonlinearity=False,): + layers = [] + for i in range(len(dim_list) - 1): + dim_in, dim_out = dim_list[i], dim_list[i + 1] + if start_nonlinearity and i == 0: + if batch_norm == 'batch': + layers.append(nn.BatchNorm1d(dim_in)) + # elif batch_norm == 'instance': + # layers.append(InstanceNorm1d(dim_in)) + if activation == 'relu': + layers.append(nn.ReLU()) + elif activation == 'leakyrelu': + layers.append(nn.LeakyReLU()) + layers.append(nn.Linear(dim_in, dim_out)) + final_layer = (i == len(dim_list) - 2) + if not final_layer or final_nonlinearity: + if batch_norm == 'batch': + layers.append(nn.BatchNorm1d(dim_out)) + if activation == 'relu': + layers.append(nn.ReLU()) + elif activation == 'leakyrelu': + layers.append(nn.LeakyReLU()) + if dropout > 0: + layers.append(nn.Dropout(p=dropout)) + model = nn.Sequential(*layers) + return model diff --git a/mlflow/train/sf2f/models/model_collection.py b/mlflow/train/sf2f/models/model_collection.py new file mode 100644 index 0000000..bf3e4ba --- /dev/null +++ b/mlflow/train/sf2f/models/model_collection.py @@ -0,0 +1,38 @@ +''' +A collection of all the models, for the convenience of internal calling +''' + + +# Lower level encoder decoders +try: + from .voice_encoders import V2F1DCNN, TransEncoder +except: + from voice_encoders import V2F1DCNN, TransEncoder + +try: + from .face_decoders import V2FDecoder, AttnV2FDecoder, MRDecoder, \ + FaceGanDecoder, FaceGanDecoder_v2 +except: + from face_decoders import V2FDecoder, AttnV2FDecoder, MRDecoder, \ + FaceGanDecoder, FaceGanDecoder_v2 + +try: + from .attention import Attention +except: + from .attention import Attention + + +class ModelCollection(): + def __init__(self): + self.V2F1DCNN = V2F1DCNN + self.V2FDecoder = V2FDecoder + self.AttnV2FDecoder = AttnV2FDecoder + self.TransEncoder = TransEncoder + self.MRDecoder = MRDecoder + self.FaceGanDecoder = FaceGanDecoder + self.FaceGanDecoder_v2 = FaceGanDecoder_v2 + # self.PganDecoder = PganDecoder + self.Attention = Attention + + +model_collection = ModelCollection() diff --git a/mlflow/train/sf2f/models/model_setup.py b/mlflow/train/sf2f/models/model_setup.py new file mode 100644 index 0000000..94ef21a --- /dev/null +++ b/mlflow/train/sf2f/models/model_setup.py @@ -0,0 +1,99 @@ +import torch +import models +from copy import deepcopy +from utils import update_values, load_model_state +import glog as log + +def build_model(opts, image_size, checkpoint_start_from=None): + if checkpoint_start_from is not None: + log.info("Load checkpoint as initialization: {}".format( + checkpoint_start_from)) + checkpoint = torch.load(checkpoint_start_from) + # kwarg aka keyword arguments + #kwargs = checkpoint['model_kwargs'] + kwargs = deepcopy(opts["options"]) + kwargs["image_size"] = image_size + model = getattr(models, opts["arch"])(**kwargs) + raw_state_dict = checkpoint['model_state'] + state_dict = {} + for k, v in raw_state_dict.items(): + if k.startswith('module.'): + k = k[7:] + state_dict[k] = v + #print("state_dict: ", state_dict.keys()) + model = load_model_state(model, state_dict, strict=False) + else: + kwargs = deepcopy(opts["options"]) + kwargs["image_size"] = image_size + model = getattr(models, opts["arch"])(**kwargs) + return model, kwargs + +def build_ac_discriminator(opts): + d_kwargs = deepcopy(opts["generic"]) + discriminator = [] + if "identity" in opts.keys(): + d_kwargs = update_values(opts["identity"], d_kwargs) + dis = models.AcDiscriminator(**d_kwargs) + discriminator.append(dis) + if "identity_low" in opts.keys(): + d_kwargs = update_values(opts["identity_low"], d_kwargs) + dis_low = models.AcDiscriminator(**d_kwargs) + discriminator.append(dis_low) + if "identity_mid" in opts.keys(): + d_kwargs = update_values(opts["identity_mid"], d_kwargs) + dis_mid = models.AcDiscriminator(**d_kwargs) + discriminator.append(dis_mid) + if "identity_high" in opts.keys(): + d_kwargs = update_values(opts["identity_high"], d_kwargs) + dis_high = models.AcDiscriminator(**d_kwargs) + discriminator.append(dis_high) + return discriminator, d_kwargs + +def build_img_discriminator(opts): + discriminator = [] + if opts.get("pgan_dis") is not None: + d_kwargs = deepcopy(opts["pgan_dis"]) + pgan_dis = models.PGAN_Discriminator(**d_kwargs) + discriminator.append(pgan_dis) + else: + d_kwargs = deepcopy(opts["generic"]) + if "image" in opts.keys(): + d_kwargs = update_values(opts["image"], d_kwargs) + dis = models.PatchDiscriminator(**d_kwargs) + discriminator.append(dis) + else: + if "image_low" in opts.keys(): + d_kwargs = update_values(opts["image_low"], d_kwargs) + discriminator_low = models.PatchDiscriminator(**d_kwargs) + discriminator.append(discriminator_low) + if "image_mid" in opts.keys(): + d_kwargs = update_values(opts["image_mid"], d_kwargs) + discriminator_mid = models.PatchDiscriminator(**d_kwargs) + discriminator.append(discriminator_mid) + if "image_high" in opts.keys(): + d_kwargs = update_values(opts["image_high"], d_kwargs) + discriminator_high = models.PatchDiscriminator(**d_kwargs) + discriminator.append(discriminator_high) + return discriminator, d_kwargs + +def build_cond_discriminator(opts): + discriminator = [] + d_kwargs = deepcopy(opts["generic"]) + if "condition" in opts.keys(): + d_kwargs = update_values(opts["condition"], d_kwargs) + dis = models.CondPatchDiscriminator(**d_kwargs) + discriminator.append(dis) + else: + if "cond_low" in opts.keys(): + d_kwargs = update_values(opts["cond_low"], d_kwargs) + discriminator_low = models.CondPatchDiscriminator(**d_kwargs) + discriminator.append(discriminator_low) + if "cond_mid" in opts.keys(): + d_kwargs = update_values(opts["cond_mid"], d_kwargs) + discriminator_mid = models.CondPatchDiscriminator(**d_kwargs) + discriminator.append(discriminator_mid) + if "cond_high" in opts.keys(): + d_kwargs = update_values(opts["cond_high"], d_kwargs) + discriminator_high = models.CondPatchDiscriminator(**d_kwargs) + discriminator.append(discriminator_high) + return discriminator, d_kwargs diff --git a/mlflow/train/sf2f/models/networks.py b/mlflow/train/sf2f/models/networks.py new file mode 100644 index 0000000..28f3333 --- /dev/null +++ b/mlflow/train/sf2f/models/networks.py @@ -0,0 +1,203 @@ +import torch +import torch.nn as nn +import functools +from torch.autograd import Variable +import numpy as np +import torch.nn.functional as F +import math +from numpy import prod + + + +class VGGLoss(nn.Module): + def __init__(self): + super(VGGLoss, self).__init__() + self.vgg = Vgg19().cuda() + self.criterion = nn.L1Loss() + self.weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0] + + def forward(self, x, y): + x_vgg = self.vgg(x) + # we do not store gradients for y + with torch.no_grad(): + y_vgg = self.vgg(y) + loss = 0 + for i in range(len(x_vgg)): + loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i]) + return loss + +from torchvision import models +class Vgg19(torch.nn.Module): + def __init__(self, requires_grad=False, ignore_last=False): + super(Vgg19, self).__init__() + vgg_pretrained_features = models.vgg19(pretrained=True).features + self.slice1 = torch.nn.Sequential() + self.slice2 = torch.nn.Sequential() + self.slice3 = torch.nn.Sequential() + self.slice4 = torch.nn.Sequential() + if ignore_last: + self.slice5 = None + else: + self.slice5 = torch.nn.Sequential() + for x in range(2): + self.slice1.add_module(str(x), vgg_pretrained_features[x]) + for x in range(2, 7): + self.slice2.add_module(str(x), vgg_pretrained_features[x]) + for x in range(7, 12): + self.slice3.add_module(str(x), vgg_pretrained_features[x]) + for x in range(12, 21): + self.slice4.add_module(str(x), vgg_pretrained_features[x]) + if self.slice5 is not None: + for x in range(21, 30): + self.slice5.add_module(str(x), vgg_pretrained_features[x]) + if not requires_grad: + for param in self.parameters(): + param.requires_grad = False + + def forward(self, X): + h_relu1 = self.slice1(X) + h_relu2 = self.slice2(h_relu1) + h_relu3 = self.slice3(h_relu2) + h_relu4 = self.slice4(h_relu3) + if self.slice5 is None or h_relu4.size(3) < 3: + return [h_relu1, h_relu2, h_relu3, h_relu4,] + h_relu5 = self.slice5(h_relu4) + out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] + return out + + +class GLU(nn.Module): + def __init__(self): + super(GLU, self).__init__() + + def forward(self, x): + nc = x.size(1) + assert nc % 2 == 0, 'channels dont divide 2!' + nc = int(nc/2) + return x[:, :nc] * F.sigmoid(x[:, nc:]) + + +def upBlock(in_planes, out_planes): + block = nn.Sequential( + nn.Upsample(scale_factor=2, mode='nearest'), + nn.Conv2d(in_planes, out_planes * 2, kernel_size=3, + stride=1, padding=1, bias=False), + nn.BatchNorm2d(out_planes * 2), + GLU()) + return block + +# The defination of Progressive GAN + +class NormalizationLayer(nn.Module): + + def __init__(self): + super(NormalizationLayer, self).__init__() + + def forward(self, x, epsilon=1e-8): + return x * (((x**2).mean(dim=1, keepdim=True) + epsilon).rsqrt()) + + +def Upscale2d(x, factor=2): + assert isinstance(factor, int) and factor >= 1 + if factor == 1: + return x + s = x.size() + x = x.view(-1, s[1], s[2], 1, s[3], 1) + x = x.expand(-1, s[1], s[2], factor, s[3], factor) + x = x.contiguous().view(-1, s[1], s[2] * factor, s[3] * factor) + return x + + +def getLayerNormalizationFactor(x): + r""" + Get He's constant for the given layer + https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf + """ + size = x.weight.size() + fan_in = prod(size[1:]) + + return math.sqrt(2.0 / fan_in) + + +class ConstrainedLayer(nn.Module): + r""" + A handy refactor that allows the user to: + - initialize one layer's bias to zero + - apply He's initialization at runtime + """ + + def __init__(self, + module, + equalized=True, + lrMul=1.0, + initBiasToZero=True): + r""" + equalized (bool): if true, the layer's weight should evolve within + the range (-1, 1) + initBiasToZero (bool): if true, bias will be initialized to zero + """ + + super(ConstrainedLayer, self).__init__() + + self.module = module + self.equalized = equalized + + if initBiasToZero: + self.module.bias.data.fill_(0) + if self.equalized: + self.module.weight.data.normal_(0, 1) + self.module.weight.data /= lrMul + self.weight = getLayerNormalizationFactor(self.module) * lrMul + + def forward(self, x): + + x = self.module(x) + if self.equalized: + x *= self.weight + return x + + +class EqualizedConv2d(ConstrainedLayer): + + def __init__(self, + nChannelsPrevious, + nChannels, + kernelSize, + padding=0, + bias=True, + **kwargs): + r""" + A nn.Conv2d module with specific constraints + Args: + nChannelsPrevious (int): number of channels in the previous layer + nChannels (int): number of channels of the current layer + kernelSize (int): size of the convolutional kernel + padding (int): convolution's padding + bias (bool): with bias ? + """ + + ConstrainedLayer.__init__(self, + nn.Conv2d(nChannelsPrevious, nChannels, + kernelSize, padding=padding, + bias=bias), + **kwargs) + + +class EqualizedLinear(ConstrainedLayer): + + def __init__(self, + nChannelsPrevious, + nChannels, + bias=True, + **kwargs): + r""" + A nn.Linear module with specific constraints + Args: + nChannelsPrevious (int): number of channels in the previous layer + nChannels (int): number of channels of the current layer + bias (bool): with bias ? + """ + + ConstrainedLayer.__init__(self, + nn.Linear(nChannelsPrevious, nChannels, + bias=bias), **kwargs) diff --git a/mlflow/train/sf2f/models/perceptual.py b/mlflow/train/sf2f/models/perceptual.py new file mode 100644 index 0000000..c22015f --- /dev/null +++ b/mlflow/train/sf2f/models/perceptual.py @@ -0,0 +1,111 @@ +import torch +import torch.nn as nn +import functools +from torch.autograd import Variable +import numpy as np +from torchvision import models +try: + from .inception_resnet_v1 import InceptionResnetV1 +except: + from inception_resnet_v1 import InceptionResnetV1 + + +class FaceNetLoss(nn.Module): + def __init__(self, cos_loss_weight=0.0): + super(FaceNetLoss, self).__init__() + self.facenet = InceptionResnetV1(pretrained='vggface2').eval().cuda() + self.criterion = nn.L1Loss() + self.weights = [1.0/16, 1.0/8, 1.0/4, 1.0] + self.cos_loss_weight = cos_loss_weight + if self.cos_loss_weight > 0.0: + self.cos_emb_loss = torch.nn.CosineEmbeddingLoss() + self.cos_target = torch.ones((1,), dtype=torch.int8).cuda() + + def forward(self, x, y): + x_facenet = self.facenet.get_hidden_states(x) + # we do not store gradients for y + with torch.no_grad(): + y_facenet = self.facenet.get_hidden_states(y) + loss = 0 + for i in range(len(x_facenet)): + #print(x_facenet[i].shape) + #print(y_facenet[i].shape) + loss += self.weights[i] * \ + self.criterion(x_facenet[i], y_facenet[i]) + if self.cos_loss_weight > 0.0: + loss += self.cos_loss_weight * \ + self.cos_emb_loss( + x_facenet[-1], + y_facenet[-1], + self.cos_target) + return loss + + +class VGGLoss(nn.Module): + def __init__(self): + super(VGGLoss, self).__init__() + self.vgg = Vgg19().cuda() + self.criterion = nn.L1Loss() + self.weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0] + + def forward(self, x, y): + x_vgg = self.vgg(x) + # we do not store gradients for y + with torch.no_grad(): + y_vgg = self.vgg(y) + loss = 0 + for i in range(len(x_vgg)): + loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i]) + return loss + + +class Vgg19(torch.nn.Module): + def __init__(self, requires_grad=False, ignore_last=False): + super(Vgg19, self).__init__() + vgg_pretrained_features = models.vgg19(pretrained=True).features + self.slice1 = torch.nn.Sequential() + self.slice2 = torch.nn.Sequential() + self.slice3 = torch.nn.Sequential() + self.slice4 = torch.nn.Sequential() + if ignore_last: + self.slice5 = None + else: + self.slice5 = torch.nn.Sequential() + for x in range(2): + self.slice1.add_module(str(x), vgg_pretrained_features[x]) + for x in range(2, 7): + self.slice2.add_module(str(x), vgg_pretrained_features[x]) + for x in range(7, 12): + self.slice3.add_module(str(x), vgg_pretrained_features[x]) + for x in range(12, 21): + self.slice4.add_module(str(x), vgg_pretrained_features[x]) + if self.slice5 is not None: + for x in range(21, 30): + self.slice5.add_module(str(x), vgg_pretrained_features[x]) + if not requires_grad: + for param in self.parameters(): + param.requires_grad = False + + def forward(self, X): + h_relu1 = self.slice1(X) + h_relu2 = self.slice2(h_relu1) + h_relu3 = self.slice3(h_relu2) + h_relu4 = self.slice4(h_relu3) + if self.slice5 is None or h_relu4.size(3) < 3: + return [h_relu1, h_relu2, h_relu3, h_relu4,] + h_relu5 = self.slice5(h_relu4) + out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] + return out + + +if __name__ == '__main__': + demo_imgs = torch.ones((4, 3, 224, 224)) + facenet = InceptionResnetV1(pretrained='vggface2').eval() + facenet_out = facenet.get_hidden_states(demo_imgs) + for i, feature in enumerate(facenet_out): + print('FaceNet Feature Shape {}:'.format(i), feature.shape) + + vgg_19 = Vgg19() + vgg_out = vgg_19(demo_imgs) + for i, feature in enumerate(vgg_out): + print('VGG Feature Shape {}:'.format(i), feature.shape) diff --git a/mlflow/train/sf2f/models/voice_encoders.py b/mlflow/train/sf2f/models/voice_encoders.py new file mode 100644 index 0000000..f26acfb --- /dev/null +++ b/mlflow/train/sf2f/models/voice_encoders.py @@ -0,0 +1,474 @@ +''' +Implementations of different Voice Encoders +''' + + +import os +import torch +import torch.nn as nn +import torch.optim as optim +import torch.nn.functional as F +import numpy as np +import math + +try: + from fusers import AttentionFuserV1, AttentionFuserV2, AttentionFuserV3 +except: + from .fusers import AttentionFuserV1, AttentionFuserV2, AttentionFuserV3 + + +class EncoderModelCollection(): + def __init__(self): + self.AttentionFuserV1 = AttentionFuserV1 + self.AttentionFuserV2 = AttentionFuserV2 + self.AttentionFuserV3 = AttentionFuserV3 + +encoder_model_collection = EncoderModelCollection() + + +class TransposeLayer(nn.Module): + def __init__(self, dim_1, dim_2): + ''' + Transpose Layer + ''' + nn.Module.__init__(self) + self.dim_1 = dim_1 + self.dim_2 = dim_2 + + def forward(self, x): + ''' + seq_in: tensor with shape [N, D, L] + ''' + x = x.transpose(self.dim_1, self.dim_2) + return x + + +class CNN1DBlock(nn.Module): + def __init__(self, + channel_in, + channel_out, + kernel=3, + stride=2, + padding=1): + ''' + 1D CNN block + ''' + nn.Module.__init__(self) + self.layers = [] + self.layers.append( + nn.Conv1d(channel_in, + channel_out, + kernel, + stride, + padding, + bias=False)) + self.layers.append( + nn.BatchNorm1d(channel_out, affine=True)) + self.layers.append( + nn.ReLU(inplace=True)) + self.model = nn.Sequential(*self.layers) + + def forward(self, seq_in): + ''' + seq_in: tensor with shape [N, D, L] + ''' + seq_out = self.model(seq_in) + return seq_out + + +class Inception1DBlock(nn.Module): + def __init__(self, + channel_in, + channel_k2, + channel_k3, + channel_k5, + channel_k7): + ''' + Basic building block of 1D Inception Encoder + ''' + nn.Module.__init__(self) + self.conv_k2 = None + self.conv_k3 = None + self.conv_k5 = None + + if channel_k2 > 0: + self.conv_k2 = CNN1DBlock( + channel_in, + channel_k2, + 2, 2, 1) + if channel_k3 > 0: + self.conv_k3 = CNN1DBlock( + channel_in, + channel_k3, + 3, 2, 1) + if channel_k5 > 0: + self.conv_k5 = CNN1DBlock( + channel_in, + channel_k3, + 5, 2, 2) + if channel_k7 > 0: + self.conv_k7 = CNN1DBlock( + channel_in, + channel_k3, + 7, 2, 3) + + def forward(self, input): + output = [] + if self.conv_k2 is not None: + c2_out = self.conv_k2(input) + output.append(c2_out) + if self.conv_k3 is not None: + c3_out = self.conv_k3(input) + output.append(c3_out) + if self.conv_k5 is not None: + c5_out = self.conv_k5(input) + output.append(c5_out) + if self.conv_k7 is not None: + c7_out = self.conv_k7(input) + output.append(c7_out) + #print(c2_out.shape, c3_out.shape, c5_out.shape, c7_out.shape) + if output[0].shape[-1] > output[1].shape[-1]: + output[0] = output[0][:, :, 0:-1] + output = torch.cat(output, 1) + #print(output.shape) + return output + + +class PositionalEncoding(nn.Module): + + def __init__(self, d_model, dropout=0.1, max_len=10000): + super(PositionalEncoding, self).__init__() + self.dropout = nn.Dropout(p=dropout) + pe = torch.zeros(max_len, d_model) + position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) + div_term = torch.exp(torch.arange(0, d_model, 2).float() * \ + (-math.log(10000.0) / d_model)) + pe[:, 0::2] = torch.sin(position * div_term) + pe[:, 1::2] = torch.cos(position * div_term) + pe = pe.unsqueeze(0).transpose(0, 1) + self.register_buffer('pe', pe) + + def forward(self, x): + x = x + self.pe[:x.size(0), :] + return self.dropout(x) + + +class PosEmbLayer(nn.Module): + def __init__(self, max_length=2000, pos_embedding_dim=5): + ''' + Postional embedding block + ''' + nn.Module.__init__(self) + + self.max_length = max_length + self.pos_embedding_dim = pos_embedding_dim + # Position Embedding + # Each position index in range (0, 2 * max_length - 1) have its own embedding + self.pos_embedding = nn.Embedding( + max_length, pos_embedding_dim, padding_idx=0) + + def forward(self, seq_in): + ''' + seq_in: tensor with shape [N, L, D] + ''' + N, L, D = seq_in.shape + # (L, ) + pos_idx = torch.tensor(np.arange(0, L)) + # (1, L) + pos_idx = pos_idx.unsqueeze(0) + # (N, L) + pos_idx = pos_idx.repeat(N, 1).cuda() + # (N, L, D_pos) + pos_emb = self.pos_embedding(pos_idx).type(seq_in.type()) + #pos_emb = torch.transpose(pos_emb, 1, 2) + seq_out = torch.cat([seq_in, pos_emb], 2) + # (N, L, D + D_pos) + return seq_out + + +class TransEncoder(nn.Module): + def __init__(self, + input_channel=40, + cnn_channels=[512, ], + transformer_dim=512, + transformer_depth=3, + return_seq=True, + sin_pos_encoding=False, + pos_embedding_dim=8, + add_noise=False, + normalize_embedding=False): + super(TransEncoder, self).__init__() + self.layers = [] + + if pos_embedding_dim > 0: + # Postional Embedding Layer + # (N, L, D) + self.layers.append(TransposeLayer(1, 2)) + # (N, D, L) + self.layers.append( + PosEmbLayer(2000, pos_embedding_dim)) + # (N, L, D) + self.layers.append(TransposeLayer(1, 2)) + + # CNN Layer for dimension conversion + self.layers.append( + CNN1DBlock(input_channel+pos_embedding_dim, cnn_channels[0])) + for cnn_layer_id in range(1, len(cnn_channels)): + self.layers.append(CNN1DBlock( + cnn_channels[cnn_layer_id - 1], + cnn_channels[cnn_layer_id])) + + self.layers.append(TransposeLayer(1, 2)) + # Sin Positional Encoding + if sin_pos_encoding: + self.layers.append(PositionalEncoding(transformer_dim)) + + # Transformer + trans_layer = nn.TransformerEncoderLayer( + transformer_dim, + 8, + transformer_dim) + transformer_encoder = nn.TransformerEncoder( + trans_layer, transformer_depth) + self.layers.append(transformer_encoder) + self.layers.append(TransposeLayer(1, 2)) + + self.model = nn.Sequential(*self.layers) + self.add_noise = add_noise + self.normalize_embedding = normalize_embedding + self.return_seq = return_seq + + def forward(self, seq_in): + seq_out = self.model(seq_in) + #for layer in self.layers: + # print(layer) + # x = layer(x) + # print(x.shape) + embeddings = F.avg_pool1d(seq_out, seq_out.size()[2], stride=1) + embeddings = embeddings.view(embeddings.size()[0], -1, 1, 1) + + if self.normalize_embedding: + embeddings = F.normalize(embeddings) + if self.add_noise: + noise = 0.05 * torch.randn( + embeddings.shape[0], embeddings.shape[1], 1, 1) + noise = noise.type(embeddings.type()) + embeddings = embeddings + noise + if self.normalize_embedding: + embeddings = F.normalize(embeddings) + + if self.return_seq: + return embeddings, seq_out + else: + return embeddings + + +class V2F1DCNN(nn.Module): + def __init__(self, + input_channel, + channels, + output_channel, + add_noise=False, + normalize_embedding=False, + return_seq=False, + inception_mode=False, + segments_fusion=False, + normalize_fusion=False, + fuser_arch='Attention', + fuser_kwargs=None): + super(V2F1DCNN, self).__init__() + if inception_mode: + self.model = nn.Sequential( + Inception1DBlock( + channel_in=input_channel, + channel_k2=channels[0]//4, + channel_k3=channels[0]//4, + channel_k5=channels[0]//4, + channel_k7=channels[0]//4), + Inception1DBlock( + channel_in=channels[0], + channel_k2=channels[1]//4, + channel_k3=channels[1]//4, + channel_k5=channels[1]//4, + channel_k7=channels[1]//4), + Inception1DBlock( + channel_in=channels[1], + channel_k2=channels[2]//4, + channel_k3=channels[2]//4, + channel_k5=channels[2]//4, + channel_k7=channels[2]//4), + Inception1DBlock( + channel_in=channels[2], + channel_k2=channels[3]//4, + channel_k3=channels[3]//4, + channel_k5=channels[3]//4, + channel_k7=channels[3]//4), + nn.Conv1d(channels[3], output_channel, 3, 2, 1, bias=True), + ) + else: + self.model = nn.Sequential( + nn.Conv1d(input_channel, channels[0], 3, 2, 1, bias=False), + nn.BatchNorm1d(channels[0], affine=True), + nn.ReLU(inplace=True), + nn.Conv1d(channels[0], channels[1], 3, 2, 1, bias=False), + nn.BatchNorm1d(channels[1], affine=True), + nn.ReLU(inplace=True), + nn.Conv1d(channels[1], channels[2], 3, 2, 1, bias=False), + nn.BatchNorm1d(channels[2], affine=True), + nn.ReLU(inplace=True), + nn.Conv1d(channels[2], channels[3], 3, 2, 1, bias=False), + nn.BatchNorm1d(channels[3], affine=True), + nn.ReLU(inplace=True), + nn.Conv1d(channels[3], output_channel, 3, 2, 1, bias=True), + ) + self.add_noise = add_noise + self.normalize_embedding = normalize_embedding + self.return_seq = return_seq + self.output_channel = output_channel + + self.segments_fusion = segments_fusion + self.normalize_fusion = normalize_fusion + if segments_fusion: + #self.attn_fuser = Attention( + # output_channel, + # output_channel, + # ignore_tanh=True) + self.attn_fuser = \ + getattr(encoder_model_collection, fuser_arch)(**fuser_kwargs) + + def forward(self, x): + # In case more than one mel segment per person is passed + if len(x.shape) == 4: + fusion_mode = True + B, N, C, L = x.shape + #print('Fusion Mode On! Input Shape:', x.shape) + x = x.view(B*N, C, L) + else: + fusion_mode = False + B, C, L = x.shape + x = self.model(x) + embeddings = F.avg_pool1d(x, x.size()[2], stride=1) + embeddings = embeddings.view(embeddings.size()[0], -1, 1, 1) + + if self.normalize_embedding: + embeddings = F.normalize(embeddings) + if self.add_noise: + noise = 0.05 * torch.randn(x.shape[0], x.shape[1], 1, 1) + noise = noise.type(embeddings.type()) + embeddings = embeddings + noise + if self.normalize_embedding: + embeddings = F.normalize(embeddings) + + # Restore Tensor shape + if fusion_mode: + #print(embeddings.shape) + C_emb = embeddings.shape[1] + embeddings = embeddings.view(B, N, C_emb) + # Attention fusion + embeddings = self.attn_fuser(embeddings) + if self.normalize_fusion: + embeddings = F.normalize(embeddings) + + if self.return_seq: + return embeddings, x + else: + return embeddings + + def print_param(self): + print('All parameters:') + for name, param in self.named_parameters(): + print(name) + + def print_trainable_param(model): + print('Trainable Parameters:') + for name, param in model.named_parameters(): + if param.requires_grad: + print(name) + + def train_fuser_only(self): + print('Training Attention Fuser Only') + for name, param in self.named_parameters(): + if 'attn_fuser' in name: + param.requires_grad = True + else: + param.requires_grad = False + + def init_attn_fusion(self): + self.attn_fuser = Attention( + self.output_channel, + self.output_channel, + ignore_tanh=True) + +if __name__ == '__main__': + import time + # Demo Input + log_mels = torch.ones((16, 40, 151)) + pos_log_mel = torch.ones((16, 48, 150)).transpose(1, 2) + + # Test Inception1DBlock + incept_block = Inception1DBlock( + channel_in=40, + channel_k2=64, + channel_k3=64, + channel_k5=64, + channel_k7=64) + incept_block(log_mels) + + # Test V2F 1D CNN + log_mel_segs = torch.ones((16, 20, 40, 150)) + v2f_id_cnn_kwargs = { + 'input_channel': 40, + 'channels': [256, 384, 576, 864], + 'output_channel': 64, + 'segments_fusion': True, + 'inception_mode': True, + } + v2f_id_cnn_fuse = V2F1DCNN(**v2f_id_cnn_kwargs) + print(v2f_id_cnn_fuse) + print('V2F1DCNN Output shape:', v2f_id_cnn_fuse(log_mel_segs).shape) + v2f_id_cnn_fuse.print_param() + v2f_id_cnn_fuse.train_fuser_only() + v2f_id_cnn_fuse.print_trainable_param() + + # test a simple transformer layer + trans_layer = nn.TransformerEncoderLayer(48, 8, + dim_feedforward=48, dropout=0.1, activation='relu') + print(trans_layer(pos_log_mel).shape) + + + # Transformer + trans_kwargs = { + 'input_channel': 40, + 'cnn_channels': [512, 512], + 'transformer_dim': 512, + 'transformer_depth': 2, + 'return_seq': True, + 'pos_embedding_dim': 0, #8 + 'sin_pos_encoding': True, #False + } + trans_encoder = TransEncoder(**trans_kwargs).cuda() + print(trans_encoder) + emb, seq_emb = trans_encoder(log_mels.cuda()) + print('TransEncoder Output shape:', emb.shape, seq_emb.shape) + + # Test V2F 1D CNN + v2f_id_cnn_kwargs = { + 'input_channel': 40, + 'channels': [256, 384, 576, 864], + 'output_channel': 64, + } + v2f_id_cnn = V2F1DCNN(**v2f_id_cnn_kwargs) + print(v2f_id_cnn) + print('V2F1DCNN Output shape:', v2f_id_cnn(log_mels).shape) + + # Test V2F 1D CNN Sequential Return + v2f_id_cnn_kwargs = { + 'input_channel': 40, + 'channels': [256, 384, 576, 864], + 'output_channel': 64, + 'return_seq': True, + } + v2f_id_cnn = V2F1DCNN(**v2f_id_cnn_kwargs) + print(v2f_id_cnn) + emb, seq_emb = v2f_id_cnn(log_mels) + print('V2F1DCNN Output shape:', emb.shape, seq_emb.shape) diff --git a/mlflow/train/sf2f/options/__init__.py b/mlflow/train/sf2f/options/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/mlflow/train/sf2f/options/data_opts/vox.yaml b/mlflow/train/sf2f/options/data_opts/vox.yaml new file mode 100644 index 0000000..d0d3207 --- /dev/null +++ b/mlflow/train/sf2f/options/data_opts/vox.yaml @@ -0,0 +1,7 @@ +root_dir: /home/data/VoxCeleb +face_type: masked +image_normalize_method: imagenet #standard +mel_normalize_method: vox_mel +nframe_range: (100, 150) +split_set: train +split_json: /home/data/VoxCeleb/split.json diff --git a/mlflow/train/sf2f/options/opts.py b/mlflow/train/sf2f/options/opts.py new file mode 100644 index 0000000..988372f --- /dev/null +++ b/mlflow/train/sf2f/options/opts.py @@ -0,0 +1,92 @@ +import os +import os.path as osp +import argparse +import yaml +from utils import update_values +from utils import int_tuple, float_tuple, str_tuple, bool_flag + +parser = argparse.ArgumentParser() + +# Optimization hyperparameters +parser.add_argument('--batch_size', default=256, type=int) +parser.add_argument('--epochs', default=200, type=int) +parser.add_argument('--learning_rate', default=5e-4, type=float) +# by default, it is disabled +parser.add_argument('--decay_lr_epochs', default=10000, type=float) +parser.add_argument('--beta1', type=float, default=0.9, + help='momentum term of adam') +parser.add_argument('--eval_epochs', default=1, type=int) +parser.add_argument('--eval_mode_after', default=10000, type=int) +parser.add_argument('--disable_l1_loss_after', default=10000000, type=int) +parser.add_argument('--path_opts', type=str, + default='options/vox/sf2f/sf2f_1st_stage.yaml', help="Options.") + +parser.add_argument('--workers', default=12, type=int) + +# Output options +parser.add_argument('--print_every', default=100, type=int) +parser.add_argument('--visualize_every', type=int, + default=1, help="visualize to visdom.") +parser.add_argument('--timing', action="store_true") +parser.add_argument('--output_dir', type=str) +parser.add_argument('--log_suffix', type=str) +parser.add_argument('--checkpoint_name', default='checkpoint') +parser.add_argument('--checkpoint_start_from', default=None) +parser.add_argument('--checkpoint', nargs='+') +parser.add_argument('--resume', type=str) +parser.add_argument('--evaluate', action='store_true', + help="Set to evaluate the model.") +parser.add_argument('--evaluate_train', action='store_true', + help="Set to evaluate the training set.") + +# For inference in run_model.py +parser.add_argument('--output_demo_dir', default='output/results') +parser.add_argument('--samples_path', default='samples') + +# For evaluation +parser.add_argument('--recall_method', default='cos_sim') +parser.add_argument('--facenet_return_pooling', default=False) +# parser.add_argument('--face_gen_mode', default='average_facenet_embedding') +parser.add_argument('--face_gen_mode', nargs='+') + +# For test.py +parser.add_argument('--get_faces_from_different_segments', default=False) + +# Attention Fuser Mode +parser.add_argument('--train_fuser_only', default=False) +# Train the fuser and decoder +parser.add_argument('--train_fuser_decoder', default=False) +parser.add_argument('--pretrained_path', default=None) +parser.add_argument('--freeze_discriminators', default=False) + +# For Inference +parser.add_argument('--input_wav_dir', type=str, default='data/example_audio') +parser.add_argument('--fuser_infer', default=False) +parser.add_argument('--seed', type=int, default=311) +args = parser.parse_args() + +options = { + "data": { + "batch_size": args.batch_size, + "workers": args.workers, + "data_opts": {}, + }, + "optim": { + "lr": args.learning_rate, + "epochs": args.epochs, + "eval_epochs": args.eval_epochs, + }, + "logs": { + "output_dir": args.output_dir, + }, +} + +with open(args.path_opts, "r") as f: + options_yaml = yaml.full_load(f) +with open(options_yaml["data"]["data_opts_path"], "r") as f: + data_opts = yaml.full_load(f) + options_yaml["data"]["data_opts"] = data_opts + +options = update_values(options, options_yaml) +if args.log_suffix: + options["logs"]["name"] += "-" + args.log_suffix diff --git a/mlflow/train/sf2f/options/vox/baseline/v2f.yaml b/mlflow/train/sf2f/options/vox/baseline/v2f.yaml new file mode 100644 index 0000000..cd406bf --- /dev/null +++ b/mlflow/train/sf2f/options/vox/baseline/v2f.yaml @@ -0,0 +1,50 @@ +# The implementation of NeurIPS 19 V2F baseline model +# Log-related settings +logs: + name: v2f + output_dir: output/ +# data-related settings +data: + dataset: vox + data_opts_path: options/data_opts/vox.yaml + image_size: [64, 64] +# model related settings +generator: + arch: EncoderDecoder + options: + encoder_arch: V2F1DCNN + encoder_kwargs: + input_channel: 40 + channels: [256, 384, 576, 864] + output_channel: 512 + add_noise: True + normalize_embedding: True + decoder_arch: V2FDecoder + decoder_kwargs: + input_channel: 512 + channels: [1024, 512, 256, 128, 64] + output_channel: 3 +discriminator: + generic: + normalization: none + # padding mode is set to unused because we are specifying padding value + padding: unused + activation: leakyrelu-0.2 + # image discrimintor is implemented in AC Discriminator + identity: + # 'C{kernel_size}-{channel_out}-{stride}-{padding}' + arch: 'C1-32-1-0,C4-64-2-1,C4-128-2-1,C4-256-2-1,C4-512-1-0' + num_id: 0 # will be updated in train.py +optim: + # Discriminator Loss Weights + d_loss_weight: 1.0 + d_img_weight: -1 + ac_loss_weight: 1.0 + # Generator Loss Weights + gan_loss_type: 'gan' + l1_pixel_loss_weight: 100.0 + # Perceptual Loss +eval: + facenet: + deprocess_and_preprocess: True + crop_faces: True diff --git a/mlflow/train/sf2f/options/vox/sf2f/sf2f_1st_stage.yaml b/mlflow/train/sf2f/options/vox/sf2f/sf2f_1st_stage.yaml new file mode 100644 index 0000000..c627b1d --- /dev/null +++ b/mlflow/train/sf2f/options/vox/sf2f/sf2f_1st_stage.yaml @@ -0,0 +1,52 @@ +# Optimal final version of encoder-decoder and Loss Function +# Encoder: Inceptional 1D CNN +# Decoder: Upsampling + CNN +logs: + name: sf2f_1st_stage + output_dir: output/ +# data-related settings +data: + dataset: vox + data_opts_path: options/data_opts/vox.yaml + image_size: [64, 64] +# model related settings +generator: + arch: EncoderDecoder + options: + encoder_arch: V2F1DCNN + encoder_kwargs: + input_channel: 40 + channels: [256, 384, 576, 864] + output_channel: 512 + normalize_embedding: True + inception_mode: True + decoder_arch: FaceGanDecoder + decoder_kwargs: + noise_dim: 512 + mlp_normalization: none + normalization: batch + activation: leakyrelu-0.1 +discriminator: + generic: + normalization: batch + padding: valid + activation: leakyrelu-0.1 + image: + arch: 'C4-64-2,C4-128-2,C4-256-2' + identity: + arch: 'C4-64-2,C4-128-2,C4-256-2' + num_id: 0 # will be updated in train.py +optim: + # Discriminator Loss Weights + d_loss_weight: 1.0 + d_img_weight: 1.0 #0.5 + ac_loss_weight: 0.05 + # Generator Loss Weights + gan_loss_type: 'gan' + l1_pixel_loss_weight: 10.0 + # Perceptual Loss + perceptual_loss_weight: 100.0 +eval: + facenet: + deprocess_and_preprocess: True + crop_faces: True diff --git a/mlflow/train/sf2f/options/vox/sf2f/sf2f_fuser.yaml b/mlflow/train/sf2f/options/vox/sf2f/sf2f_fuser.yaml new file mode 100644 index 0000000..c354661 --- /dev/null +++ b/mlflow/train/sf2f/options/vox/sf2f/sf2f_fuser.yaml @@ -0,0 +1,62 @@ +# Optimal final version of encoder-decoder and Loss Function +# Encoder: Inceptional 1D CNN +# Decoder: Upsampling + CNN +# Fuser: Vanilla 1-layer attention 'general' +logs: + name: sf2f_fuser + output_dir: sf2f/output/ +# data-related settings +data: + dataset: vox + data_opts_path: /home/hojun/Documents/project/boostcamp/final_project/mlops/mlflow/train/mlflow/sf2f/options/data_opts/vox.yaml + image_size: [64, 64] +# model related settings +generator: + arch: EncoderDecoder + options: + encoder_arch: V2F1DCNN + encoder_kwargs: + input_channel: 40 + channels: [256, 384, 576, 864] + output_channel: 512 + normalize_embedding: True + inception_mode: True + segments_fusion: True + normalize_fusion: True + # Initialize Attention Fuser as a submodule of encoder + fuser_arch: AttentionFuserV1 + fuser_kwargs: + dimensions: 512 + dim_out: 512 + attention_type: general + ignore_tanh: True + decoder_arch: FaceGanDecoder + decoder_kwargs: + noise_dim: 512 + mlp_normalization: none + normalization: batch + activation: leakyrelu-0.1 +discriminator: + generic: + normalization: batch + padding: valid + activation: leakyrelu-0.1 + image: + arch: 'C4-64-2,C4-128-2,C4-256-2' + identity: + arch: 'C4-64-2,C4-128-2,C4-256-2' + num_id: 0 # will be updated in train.py +optim: + # Discriminator Loss Weights + d_loss_weight: 1.0 + d_img_weight: 1.0 #0.5 + ac_loss_weight: 0.05 + # Generator Loss Weights + gan_loss_type: 'gan' + l1_pixel_loss_weight: 10.0 + # Perceptual Loss + perceptual_loss_weight: 100.0 +eval: + facenet: + deprocess_and_preprocess: True + crop_faces: True diff --git a/mlflow/train/sf2f/options/vox/sf2f/sf2f_mid_1st_stage.yaml b/mlflow/train/sf2f/options/vox/sf2f/sf2f_mid_1st_stage.yaml new file mode 100644 index 0000000..6f0e407 --- /dev/null +++ b/mlflow/train/sf2f/options/vox/sf2f/sf2f_mid_1st_stage.yaml @@ -0,0 +1,58 @@ +# Optimal final version of encoder-decoder and Loss Function +# Encoder: Inceptional 1D CNN +# Decoder: Upsampling + CNN +# Mid resolution: with multi-reso training +logs: + name: sf2f_mid_1st_stage + output_dir: output/ +# data-related settings +data: + dataset: vox + data_opts_path: sf2f/options/data_opts/vox.yaml + image_size: [128, 128] +# model related settings +generator: + arch: EncoderDecoder + options: + encoder_arch: V2F1DCNN + encoder_kwargs: + input_channel: 40 + channels: [256, 384, 576, 864] + output_channel: 512 + normalize_embedding: True + inception_mode: True + decoder_arch: FaceGanDecoder_v2 + decoder_kwargs: + noise_dim: 512 + mlp_normalization: none + normalization: batch + activation: leakyrelu-0.1 +discriminator: + generic: + normalization: batch + padding: valid + activation: leakyrelu-0.1 + image_low: + arch: 'C4-64-2,C4-128-2,C4-256-2' + image_mid: + arch: 'C4-64-2,C4-128-2,C4-256-2,C4-512-2' + identity_low: + arch: 'C4-64-2,C4-128-2,C4-256-2' + num_id: 0 # will be updated in train.py + identity_mid: + arch: 'C4-64-2,C4-128-2,C4-256-2,C4-512-2' + num_id: 0 # will be updated in train.py +optim: + # Discriminator Loss Weights + d_loss_weight: 1.0 + d_img_weight: 1.0 #0.5 + ac_loss_weight: 0.05 + # Generator Loss Weights + gan_loss_type: 'gan' + l1_pixel_loss_weight: 100.0 + # Perceptual Loss + perceptual_loss_weight: 100.0 +eval: + facenet: + deprocess_and_preprocess: True + crop_faces: True diff --git a/mlflow/train/sf2f/options/vox/sf2f/sf2f_mid_fuser.yaml b/mlflow/train/sf2f/options/vox/sf2f/sf2f_mid_fuser.yaml new file mode 100644 index 0000000..ed021dc --- /dev/null +++ b/mlflow/train/sf2f/options/vox/sf2f/sf2f_mid_fuser.yaml @@ -0,0 +1,67 @@ +# Optimal final version of encoder-decoder and Loss Function +# Encoder: Inceptional 1D CNN +# Decoder: Upsampling + CNN +# Mid resolution: with multi-reso training +logs: + name: sf2f_mid_fuser + output_dir: output/ +# data-related settings +data: + dataset: vox + data_opts_path: sf2f/options/data_opts/vox.yaml + image_size: [128, 128] +# model related settings +generator: + arch: EncoderDecoder + options: + encoder_arch: V2F1DCNN + encoder_kwargs: + input_channel: 40 + channels: [256, 384, 576, 864] + output_channel: 512 + normalize_embedding: True + inception_mode: True + segments_fusion: True + normalize_fusion: True + # Initialize Attention Fuser as a submodule of encoder + fuser_arch: AttentionFuserV1 + fuser_kwargs: + dimensions: 512 + dim_out: 512 + attention_type: general + ignore_tanh: True + decoder_arch: FaceGanDecoder_v2 + decoder_kwargs: + noise_dim: 512 + mlp_normalization: none + normalization: batch + activation: leakyrelu-0.1 +discriminator: + generic: + normalization: batch + padding: valid + activation: leakyrelu-0.1 + image_low: + arch: 'C4-64-2,C4-128-2,C4-256-2' + image_mid: + arch: 'C4-64-2,C4-128-2,C4-256-2,C4-512-2' + identity_low: + arch: 'C4-64-2,C4-128-2,C4-256-2' + num_id: 0 # will be updated in train.py + identity_mid: + arch: 'C4-64-2,C4-128-2,C4-256-2,C4-512-2' + num_id: 0 # will be updated in train.py +optim: + # Discriminator Loss Weights + d_loss_weight: 1.0 + d_img_weight: 1.0 #0.5 + ac_loss_weight: 0.05 + # Generator Loss Weights + gan_loss_type: 'gan' + l1_pixel_loss_weight: 100.0 + # Perceptual Loss + perceptual_loss_weight: 100.0 +eval: + facenet: + deprocess_and_preprocess: True + crop_faces: True diff --git a/mlflow/train/sf2f/scripts/DScore/__init__.py b/mlflow/train/sf2f/scripts/DScore/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/mlflow/train/sf2f/scripts/DScore/models/__init__.py b/mlflow/train/sf2f/scripts/DScore/models/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/mlflow/train/sf2f/scripts/DScore/models/base_model.py b/mlflow/train/sf2f/scripts/DScore/models/base_model.py new file mode 100644 index 0000000..36f4d83 --- /dev/null +++ b/mlflow/train/sf2f/scripts/DScore/models/base_model.py @@ -0,0 +1,60 @@ +import os +import torch +import scripts.DScore.util.util as util +from torch.autograd import Variable +from pdb import set_trace as st +from IPython import embed + +class BaseModel(): + def __init__(self): + pass; + + def name(self): + return 'BaseModel' + + def initialize(self, use_gpu=True): + self.use_gpu = use_gpu + self.Tensor = torch.cuda.FloatTensor if self.use_gpu else torch.Tensor + # self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) + + def forward(self): + pass + + def get_image_paths(self): + pass + + def optimize_parameters(self): + pass + + def get_current_visuals(self): + return self.input + + def get_current_errors(self): + return {} + + def save(self, label): + pass + + # helper saving function that can be used by subclasses + def save_network(self, network, path, network_label, epoch_label): + save_filename = '%s_net_%s.pth' % (epoch_label, network_label) + save_path = os.path.join(path, save_filename) + torch.save(network.state_dict(), save_path) + + # helper loading function that can be used by subclasses + def load_network(self, network, network_label, epoch_label): + # embed() + save_filename = '%s_net_%s.pth' % (epoch_label, network_label) + save_path = os.path.join(self.save_dir, save_filename) + print('Loading network from %s'%save_path) + network.load_state_dict(torch.load(save_path)) + + def update_learning_rate(): + pass + + def get_image_paths(self): + return self.image_paths + + def save_done(self, flag=False): + np.save(os.path.join(self.save_dir, 'done_flag'),flag) + np.savetxt(os.path.join(self.save_dir, 'done_flag'),[flag,],fmt='%i') diff --git a/mlflow/train/sf2f/scripts/DScore/models/dist_model.py b/mlflow/train/sf2f/scripts/DScore/models/dist_model.py new file mode 100644 index 0000000..d11eee1 --- /dev/null +++ b/mlflow/train/sf2f/scripts/DScore/models/dist_model.py @@ -0,0 +1,326 @@ +from __future__ import absolute_import + +import sys +sys.path.append('..') +sys.path.append('.') +import numpy as np +import torch +from torch import nn +import os +from collections import OrderedDict +from torch.autograd import Variable +import itertools +from .base_model import BaseModel +from scipy.ndimage import zoom +import fractions +import functools +import skimage.transform +from IPython import embed + +from . import networks_basic as networks +# from PerceptualSimilarity.util import util +from scripts.DScore.util import util + +class DistModel(BaseModel): + def name(self): + return self.model_name + + def initialize(self, model='net-lin', net='alex', pnet_rand=False, pnet_tune=False, model_path=None, colorspace='Lab', use_gpu=True, printNet=False, spatial=False, spatial_shape=None, spatial_order=1, spatial_factor=None, is_train=False, lr=.0001, beta1=0.5, version='0.1'): + ''' + INPUTS + model - ['net-lin'] for linearly calibrated network + ['net'] for off-the-shelf network + ['L2'] for L2 distance in Lab colorspace + ['SSIM'] for ssim in RGB colorspace + net - ['squeeze','alex','vgg'] + model_path - if None, will look in weights/[NET_NAME].pth + colorspace - ['Lab','RGB'] colorspace to use for L2 and SSIM + use_gpu - bool - whether or not to use a GPU + printNet - bool - whether or not to print network architecture out + spatial - bool - whether to output an array containing varying distances across spatial dimensions + spatial_shape - if given, output spatial shape. if None then spatial shape is determined automatically via spatial_factor (see below). + spatial_factor - if given, specifies upsampling factor relative to the largest spatial extent of a convolutional layer. if None then resized to size of input images. + spatial_order - spline order of filter for upsampling in spatial mode, by default 1 (bilinear). + is_train - bool - [True] for training mode + lr - float - initial learning rate + beta1 - float - initial momentum term for adam + version - 0.1 for latest, 0.0 was original + ''' + BaseModel.initialize(self, use_gpu=use_gpu) + + self.model = model + self.net = net + self.use_gpu = use_gpu + self.is_train = is_train + self.spatial = spatial + self.spatial_shape = spatial_shape + self.spatial_order = spatial_order + self.spatial_factor = spatial_factor + + self.model_name = '%s [%s]'%(model,net) + if(self.model == 'net-lin'): # pretrained net + linear layer + self.net = networks.PNetLin(use_gpu=use_gpu,pnet_rand=pnet_rand, pnet_tune=pnet_tune, pnet_type=net,use_dropout=True,spatial=spatial,version=version) + kw = {} + if not use_gpu: + kw['map_location'] = 'cpu' + if(model_path is None): + import inspect + # model_path = './PerceptualSimilarity/weights/v%s/%s.pth'%(version,net) + model_path = os.path.abspath(os.path.join(inspect.getfile(self.initialize), '..', '..', 'weights/v%s/%s.pth'%(version,net))) + + if(not is_train): + # print('Loading model from: %s'%model_path) + self.net.load_state_dict(torch.load(model_path, **kw)) + + elif(self.model=='net'): # pretrained network + assert not self.spatial, 'spatial argument not supported yet for uncalibrated networks' + self.net = networks.PNet(use_gpu=use_gpu,pnet_type=net) + self.is_fake_net = True + elif(self.model in ['L2','l2']): + self.net = networks.L2(use_gpu=use_gpu,colorspace=colorspace) # not really a network, only for testing + self.model_name = 'L2' + elif(self.model in ['DSSIM','dssim','SSIM','ssim']): + self.net = networks.DSSIM(use_gpu=use_gpu,colorspace=colorspace) + self.model_name = 'SSIM' + else: + raise ValueError("Model [%s] not recognized." % self.model) + + self.parameters = list(self.net.parameters()) + + if self.is_train: # training mode + # extra network on top to go from distances (d0,d1) => predicted human judgment (h*) + self.rankLoss = networks.BCERankingLoss(use_gpu=use_gpu) + self.parameters+=self.rankLoss.parameters + self.lr = lr + self.old_lr = lr + self.optimizer_net = torch.optim.Adam(self.parameters, lr=lr, betas=(beta1, 0.999)) + else: # test mode + self.net.eval() + + if(printNet): + print('---------- Networks initialized -------------') + networks.print_network(self.net) + print('-----------------------------------------------') + + def forward_pair(self,in1,in2,retPerLayer=False): + if(retPerLayer): + return self.net.forward(in1,in2, retPerLayer=True) + else: + return self.net.forward(in1,in2) + + def forward(self, in0, in1, retNumpy=True): + ''' Function computes the distance between image patches in0 and in1 + INPUTS + in0, in1 - torch.Tensor object of shape Nx3xXxY - image patch scaled to [-1,1] + retNumpy - [False] to return as torch.Tensor, [True] to return as numpy array + OUTPUT + computed distances between in0 and in1 + ''' + + self.input_ref = in0 + self.input_p0 = in1 + + if(self.use_gpu): + self.input_ref = self.input_ref.cuda() + self.input_p0 = self.input_p0.cuda() + + self.var_ref = Variable(self.input_ref,requires_grad=True) + self.var_p0 = Variable(self.input_p0,requires_grad=True) + + self.d0 = self.forward_pair(self.var_ref, self.var_p0) + self.loss_total = self.d0 + + def convert_output(d0): + if(retNumpy): + ans = d0.cpu().data.numpy() + if not self.spatial: + ans = ans.flatten() + else: + assert(ans.shape[0] == 1 and len(ans.shape) == 4) + return ans[0,...].transpose([1, 2, 0]) # Reshape to usual numpy image format: (height, width, channels) + return ans + else: + return d0 + + if self.spatial: + L = [convert_output(x) for x in self.d0] + spatial_shape = self.spatial_shape + if spatial_shape is None: + if(self.spatial_factor is None): + spatial_shape = (in0.size()[2],in0.size()[3]) + else: + spatial_shape = (max([x.shape[0] for x in L])*self.spatial_factor, max([x.shape[1] for x in L])*self.spatial_factor) + + L = [skimage.transform.resize(x, spatial_shape, order=self.spatial_order, mode='edge') for x in L] + + L = np.mean(np.concatenate(L, 2) * len(L), 2) + return L + else: + return convert_output(self.d0) + + # ***** TRAINING FUNCTIONS ***** + def optimize_parameters(self): + self.forward_train() + self.optimizer_net.zero_grad() + self.backward_train() + self.optimizer_net.step() + self.clamp_weights() + + def clamp_weights(self): + for module in self.net.modules(): + if(hasattr(module, 'weight') and module.kernel_size==(1,1)): + module.weight.data = torch.clamp(module.weight.data,min=0) + + def set_input(self, data): + self.input_ref = data['ref'] + self.input_p0 = data['p0'] + self.input_p1 = data['p1'] + self.input_judge = data['judge'] + + if(self.use_gpu): + self.input_ref = self.input_ref.cuda() + self.input_p0 = self.input_p0.cuda() + self.input_p1 = self.input_p1.cuda() + self.input_judge = self.input_judge.cuda() + + self.var_ref = Variable(self.input_ref,requires_grad=True) + self.var_p0 = Variable(self.input_p0,requires_grad=True) + self.var_p1 = Variable(self.input_p1,requires_grad=True) + + def forward_train(self): # run forward pass + self.d0 = self.forward_pair(self.var_ref, self.var_p0) + self.d1 = self.forward_pair(self.var_ref, self.var_p1) + self.acc_r = self.compute_accuracy(self.d0,self.d1,self.input_judge) + + # var_judge + self.var_judge = Variable(1.*self.input_judge).view(self.d0.size()) + + self.loss_total = self.rankLoss.forward(self.d0, self.d1, self.var_judge*2.-1.) + return self.loss_total + + def backward_train(self): + torch.mean(self.loss_total).backward() + + def compute_accuracy(self,d0,d1,judge): + ''' d0, d1 are Variables, judge is a Tensor ''' + d1_lt_d0 = (d1 %f' % (type,self.old_lr, lr)) + self.old_lr = lr + + + +def score_2afc_dataset(data_loader,func): + ''' Function computes Two Alternative Forced Choice (2AFC) score using + distance function 'func' in dataset 'data_loader' + INPUTS + data_loader - CustomDatasetDataLoader object - contains a TwoAFCDataset inside + func - callable distance function - calling d=func(in0,in1) should take 2 + pytorch tensors with shape Nx3xXxY, and return numpy array of length N + OUTPUTS + [0] - 2AFC score in [0,1], fraction of time func agrees with human evaluators + [1] - dictionary with following elements + d0s,d1s - N arrays containing distances between reference patch to perturbed patches + gts - N array in [0,1], preferred patch selected by human evaluators + (closer to "0" for left patch p0, "1" for right patch p1, + "0.6" means 60pct people preferred right patch, 40pct preferred left) + scores - N array in [0,1], corresponding to what percentage function agreed with humans + CONSTS + N - number of test triplets in data_loader + ''' + + d0s = [] + d1s = [] + gts = [] + + # bar = pb.ProgressBar(max_value=data_loader.load_data().__len__()) + for (i,data) in enumerate(data_loader.load_data()): + d0s+=func(data['ref'],data['p0']).tolist() + d1s+=func(data['ref'],data['p1']).tolist() + gts+=data['judge'].cpu().numpy().flatten().tolist() + # bar.update(i) + + d0s = np.array(d0s) + d1s = np.array(d1s) + gts = np.array(gts) + scores = (d0s 0: + with self.doc.head: + meta(http_equiv="reflesh", content=str(reflesh)) + + def get_image_dir(self): + return self.img_dir + + def add_header(self, str): + with self.doc: + h3(str) + + def add_table(self, border=1): + self.t = table(border=border, style="table-layout: fixed;") + self.doc.add(self.t) + + def add_images(self, ims, txts, links, width=400): + self.add_table() + with self.t: + with tr(): + for im, txt, link in zip(ims, txts, links): + with td(style="word-wrap: break-word;", halign="center", valign="top"): + with p(): + with a(href=os.path.join(link)): + img(style="width:%dpx" % width, src=os.path.join(im)) + br() + p(txt) + + def save(self,file='index'): + html_file = '%s/%s.html' % (self.web_dir,file) + f = open(html_file, 'wt') + f.write(self.doc.render()) + f.close() + + +if __name__ == '__main__': + html = HTML('web/', 'test_html') + html.add_header('hello world') + + ims = [] + txts = [] + links = [] + for n in range(4): + ims.append('image_%d.png' % n) + txts.append('text_%d' % n) + links.append('image_%d.png' % n) + html.add_images(ims, txts, links) + html.save() diff --git a/mlflow/train/sf2f/scripts/DScore/util/util.py b/mlflow/train/sf2f/scripts/DScore/util/util.py new file mode 100644 index 0000000..1a84327 --- /dev/null +++ b/mlflow/train/sf2f/scripts/DScore/util/util.py @@ -0,0 +1,452 @@ +from __future__ import print_function + +import numpy as np +from PIL import Image +import inspect +import re +import numpy as np +import os +import collections +import matplotlib.pyplot as plt +from scipy.ndimage.interpolation import zoom +from skimage.measure import compare_ssim +import torch +from IPython import embed +# import cv2 +from datetime import datetime + +def datetime_str(): + now = datetime.now() + return '%04d-%02d-%02d-%02d-%02d-%02d'%(now.year,now.month,now.day,now.hour,now.minute,now.second) + +def read_text_file(in_path): + fid = open(in_path,'r') + + vals = [] + cur_line = fid.readline() + while(cur_line!=''): + vals.append(float(cur_line)) + cur_line = fid.readline() + + fid.close() + return np.array(vals) + +def bootstrap(in_vec,num_samples=100,bootfunc=np.mean): + from astropy import stats + return stats.bootstrap(np.array(in_vec),bootnum=num_samples,bootfunc=bootfunc) + +def rand_flip(input1,input2): + if(np.random.binomial(1,.5)==1): + return (input1,input2) + else: + return (input2,input1) + +def l2(p0, p1, range=255.): + return .5*np.mean((p0 / range - p1 / range)**2) + +def psnr(p0, p1, peak=255.): + return 10*np.log10(peak**2/np.mean((1.*p0-1.*p1)**2)) + +def dssim(p0, p1, range=255.): + # embed() + return (1 - compare_ssim(p0, p1, data_range=range, multichannel=True)) / 2. + +def rgb2lab(in_img,mean_cent=False): + from skimage import color + img_lab = color.rgb2lab(in_img) + if(mean_cent): + img_lab[:,:,0] = img_lab[:,:,0]-50 + return img_lab + +def normalize_blob(in_feat,eps=1e-10): + norm_factor = np.sqrt(np.sum(in_feat**2,axis=1,keepdims=True)) + return in_feat/(norm_factor+eps) + +def cos_sim_blob(in0,in1): + in0_norm = normalize_blob(in0) + in1_norm = normalize_blob(in1) + (N,C,X,Y) = in0_norm.shape + + return np.mean(np.mean(np.sum(in0_norm*in1_norm,axis=1),axis=1),axis=1) + +def normalize_tensor(in_feat,eps=1e-10): + # norm_factor = torch.sqrt(torch.sum(in_feat**2,dim=1)).view(in_feat.size()[0],1,in_feat.size()[2],in_feat.size()[3]).repeat(1,in_feat.size()[1],1,1) + norm_factor = torch.sqrt(torch.sum(in_feat**2,dim=1)).view(in_feat.size()[0],1,in_feat.size()[2],in_feat.size()[3]) + return in_feat/(norm_factor.expand_as(in_feat)+eps) + +def cos_sim(in0,in1): + in0_norm = normalize_tensor(in0) + in1_norm = normalize_tensor(in1) + N = in0.size()[0] + X = in0.size()[2] + Y = in0.size()[3] + + return torch.mean(torch.mean(torch.sum(in0_norm*in1_norm,dim=1).view(N,1,X,Y),dim=2).view(N,1,1,Y),dim=3).view(N) + +# Converts a Tensor into a Numpy array +# |imtype|: the desired type of the conve + +def tensor2np(tensor_obj): + # change dimension of a tensor object into a numpy array + return tensor_obj[0].cpu().float().numpy().transpose((1,2,0)) + +def np2tensor(np_obj): + # change dimenion of np array into tensor array + return torch.Tensor(np_obj[:, :, :, np.newaxis].transpose((3, 2, 0, 1))) + +def tensor2tensorlab(image_tensor,to_norm=True,mc_only=False): + # image tensor to lab tensor + from skimage import color + + img = tensor2im(image_tensor) + # print('img_rgb',img.flatten()) + img_lab = color.rgb2lab(img) + # print('img_lab',img_lab.flatten()) + if(mc_only): + img_lab[:,:,0] = img_lab[:,:,0]-50 + if(to_norm and not mc_only): + img_lab[:,:,0] = img_lab[:,:,0]-50 + img_lab = img_lab/100. + + return np2tensor(img_lab) + +def tensorlab2tensor(lab_tensor,return_inbnd=False): + from skimage import color + import warnings + warnings.filterwarnings("ignore") + + lab = tensor2np(lab_tensor)*100. + lab[:,:,0] = lab[:,:,0]+50 + # print('lab',lab) + + rgb_back = 255.*np.clip(color.lab2rgb(lab.astype('float')),0,1) + # print('rgb',rgb_back) + if(return_inbnd): + # convert back to lab, see if we match + lab_back = color.rgb2lab(rgb_back.astype('uint8')) + # print('lab_back',lab_back) + # print('lab==lab_back',np.isclose(lab_back,lab,atol=1.)) + # print('lab-lab_back',np.abs(lab-lab_back)) + mask = 1.*np.isclose(lab_back,lab,atol=2.) + mask = np2tensor(np.prod(mask,axis=2)[:,:,np.newaxis]) + return (im2tensor(rgb_back),mask) + else: + return im2tensor(rgb_back) + +def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255./2.): +# def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=1.): + image_numpy = image_tensor[0].cpu().float().numpy() + image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor + return image_numpy.astype(imtype) + +def im2tensor(image, imtype=np.uint8, cent=1., factor=255./2.): +# def im2tensor(image, imtype=np.uint8, cent=1., factor=1.): + return torch.Tensor((image / factor - cent) + [:, :, :, np.newaxis].transpose((3, 2, 0, 1))) + +def tensor2vec(vector_tensor): + return vector_tensor.data.cpu().numpy()[:, :, 0, 0] + +def diagnose_network(net, name='network'): + mean = 0.0 + count = 0 + for param in net.parameters(): + if param.grad is not None: + mean += torch.mean(torch.abs(param.grad.data)) + count += 1 + if count > 0: + mean = mean / count + print(name) + print(mean) + +def grab_patch(img_in, P, yy, xx): + return img_in[yy:yy+P,xx:xx+P,:] + +# def load_image(path): +# if(path[-3:] == 'dng'): +# import rawpy +# with rawpy.imread(path) as raw: +# img = raw.postprocess() +# # img = plt.imread(path) +# elif(path[-3:]=='bmp' or path[-3:]=='jpg' or path[-3:]=='png'): +# import cv2 +# return cv2.imread(path)[:,:,::-1] +# else: +# img = (255*plt.imread(path)[:,:,:3]).astype('uint8') +# +# return img + + +def resize_image(img, max_size=256): + [Y, X] = img.shape[:2] + + # resize + max_dim = max([Y, X]) + zoom_factor = 1. * max_size / max_dim + img = zoom(img, [zoom_factor, zoom_factor, 1]) + + return img + +def resize_image_zoom(img, zoom_factor=1., order=3): + if(zoom_factor==1): + return img + else: + return zoom(img, [zoom_factor, zoom_factor, 1], order=order) + +def save_image(image_numpy, image_path, ): + image_pil = Image.fromarray(image_numpy) + image_pil.save(image_path) + + +def prep_display_image(img, dtype='uint8'): + if(dtype == 'uint8'): + return np.clip(img, 0, 255).astype('uint8') + else: + return np.clip(img, 0, 1.) + + +def info(object, spacing=10, collapse=1): + """Print methods and doc strings. + Takes module, class, list, dictionary, or string.""" + methodList = [ + e for e in dir(object) if isinstance( + getattr( + object, + e), + collections.Callable)] + processFunc = collapse and (lambda s: " ".join(s.split())) or (lambda s: s) + print("\n".join(["%s %s" % + (method.ljust(spacing), + processFunc(str(getattr(object, method).__doc__))) + for method in methodList])) + + +def varname(p): + for line in inspect.getframeinfo(inspect.currentframe().f_back)[3]: + m = re.search(r'\bvarname\s*\(\s*([A-Za-z_][A-Za-z0-9_]*)\s*\)', line) + if m: + return m.group(1) + + +def print_numpy(x, val=True, shp=False): + x = x.astype(np.float64) + if shp: + print('shape,', x.shape) + if val: + x = x.flatten() + print( + 'mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % + (np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) + + +def mkdirs(paths): + if isinstance(paths, list) and not isinstance(paths, str): + for path in paths: + mkdir(path) + else: + mkdir(paths) + + +def mkdir(path): + if not os.path.exists(path): + os.makedirs(path) + + +def rgb2lab(input): + from skimage import color + return color.rgb2lab(input / 255.) + + +def montage( + imgs, + PAD=5, + RATIO=16 / 9., + EXTRA_PAD=( + False, + False), + MM=-1, + NN=-1, + primeDir=0, + verbose=False, + returnGridPos=False, + backClr=np.array( + (0, + 0, + 0))): + # INPUTS + # imgs YxXxMxN or YxXxN + # PAD scalar number of pixels in between + # RATIO scalar target ratio of cols/rows + # MM scalar # rows, if specified, overrides RATIO + # NN scalar # columns, if specified, overrides RATIO + # primeDir scalar 0 for top-to-bottom, 1 for left-to-right + # OUTPUTS + # mont_imgs MM*Y x NN*X x M big image with everything montaged + # def montage(imgs, PAD=5, RATIO=16/9., MM=-1, NN=-1, primeDir=0, + # verbose=False, forceFloat=False): + if(imgs.ndim == 3): + toExp = True + imgs = imgs[:, :, np.newaxis, :] + else: + toExp = False + + Y = imgs.shape[0] + X = imgs.shape[1] + M = imgs.shape[2] + N = imgs.shape[3] + + PADS = np.array((PAD)) + if(PADS.flatten().size == 1): + PADY = PADS + PADX = PADS + else: + PADY = PADS[0] + PADX = PADS[1] + + if(MM == -1 and NN == -1): + NN = np.ceil(np.sqrt(1.0 * N * RATIO)) + MM = np.ceil(1.0 * N / NN) + NN = np.ceil(1.0 * N / MM) + elif(MM == -1): + MM = np.ceil(1.0 * N / NN) + elif(NN == -1): + NN = np.ceil(1.0 * N / MM) + + if(primeDir == 0): # write top-to-bottom + [grid_mm, grid_nn] = np.meshgrid( + np.arange(MM, dtype='uint'), np.arange(NN, dtype='uint')) + elif(primeDir == 1): # write left-to-right + [grid_nn, grid_mm] = np.meshgrid( + np.arange(NN, dtype='uint'), np.arange(MM, dtype='uint')) + + grid_mm = np.uint(grid_mm.flatten()[0:N]) + grid_nn = np.uint(grid_nn.flatten()[0:N]) + + EXTRA_PADY = EXTRA_PAD[0] * PADY + EXTRA_PADX = EXTRA_PAD[0] * PADX + + # mont_imgs = np.zeros(((Y+PAD)*MM-PAD, (X+PAD)*NN-PAD, M), dtype=use_dtype) + mont_imgs = np.zeros( + (np.uint( + (Y + PADY) * MM - PADY + EXTRA_PADY), + np.uint( + (X + PADX) * NN - PADX + EXTRA_PADX), + M), + dtype=imgs.dtype) + mont_imgs = mont_imgs + \ + backClr.flatten()[np.newaxis, np.newaxis, :].astype(mont_imgs.dtype) + + for ii in np.random.permutation(N): + # print imgs[:,:,:,ii].shape + # mont_imgs[grid_mm[ii]*(Y+PAD):(grid_mm[ii]*(Y+PAD)+Y), grid_nn[ii]*(X+PAD):(grid_nn[ii]*(X+PAD)+X),:] + mont_imgs[np.uint(grid_mm[ii] * + (Y + + PADY)):np.uint((grid_mm[ii] * + (Y + + PADY) + + Y)), np.uint(grid_nn[ii] * + (X + + PADX)):np.uint((grid_nn[ii] * + (X + + PADX) + + X)), :] = imgs[:, :, :, ii] + + if(M == 1): + imgs = imgs.reshape(imgs.shape[0], imgs.shape[1], imgs.shape[3]) + + if(toExp): + mont_imgs = mont_imgs[:, :, 0] + + if(returnGridPos): + # return (mont_imgs,np.concatenate((grid_mm[:,:,np.newaxis]*(Y+PAD), + # grid_nn[:,:,np.newaxis]*(X+PAD)),axis=2)) + return (mont_imgs, np.concatenate( + (grid_mm[:, np.newaxis] * (Y + PADY), grid_nn[:, np.newaxis] * (X + PADX)), axis=1)) + # return (mont_imgs, (grid_mm,grid_nn)) + else: + return mont_imgs + +class zeroClipper(object): + def __init__(self, frequency=1): + self.frequency = frequency + + def __call__(self, module): + embed() + if hasattr(module, 'weight'): + # module.weight.data = torch.max(module.weight.data, 0) + module.weight.data = torch.max(module.weight.data, 0) + 100 + +def flatten_nested_list(nested_list): + # only works for list of list + accum = [] + for sublist in nested_list: + for item in sublist: + accum.append(item) + return accum + +def read_file(in_path,list_lines=False): + agg_str = '' + f = open(in_path,'r') + cur_line = f.readline() + while(cur_line!=''): + agg_str+=cur_line + cur_line = f.readline() + f.close() + if(list_lines==False): + return agg_str.replace('\n','') + else: + line_list = agg_str.split('\n') + ret_list = [] + for item in line_list: + if(item!=''): + ret_list.append(item) + return ret_list + +def read_csv_file_as_text(in_path): + agg_str = [] + f = open(in_path,'r') + cur_line = f.readline() + while(cur_line!=''): + agg_str.append(cur_line) + cur_line = f.readline() + f.close() + return agg_str + +def random_swap(obj0,obj1): + if(np.random.rand() < .5): + return (obj0,obj1,0) + else: + return (obj1,obj0,1) + +def voc_ap(rec, prec, use_07_metric=False): + """ ap = voc_ap(rec, prec, [use_07_metric]) + Compute VOC AP given precision and recall. + If use_07_metric is true, uses the + VOC 07 11 point method (default:False). + """ + if use_07_metric: + # 11 point metric + ap = 0. + for t in np.arange(0., 1.1, 0.1): + if np.sum(rec >= t) == 0: + p = 0 + else: + p = np.max(prec[rec >= t]) + ap = ap + p / 11. + else: + # correct AP calculation + # first append sentinel values at the end + mrec = np.concatenate(([0.], rec, [1.])) + mpre = np.concatenate(([0.], prec, [0.])) + + # compute the precision envelope + for i in range(mpre.size - 1, 0, -1): + mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) + + # to calculate area under PR curve, look for points + # where X axis (recall) changes value + i = np.where(mrec[1:] != mrec[:-1])[0] + + # and sum (\Delta recall) * prec + ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) + return ap diff --git a/mlflow/train/sf2f/scripts/DScore/util/visualizer.py b/mlflow/train/sf2f/scripts/DScore/util/visualizer.py new file mode 100644 index 0000000..3609705 --- /dev/null +++ b/mlflow/train/sf2f/scripts/DScore/util/visualizer.py @@ -0,0 +1,216 @@ +import numpy as np +import os +import time +from . import util +from . import html +# from pdb import set_trace as st +import matplotlib.pyplot as plt +import math +# from IPython import embed + +def zoom_to_res(img,res=256,order=0,axis=0): + # img 3xXxX + from scipy.ndimage import zoom + zoom_factor = res/img.shape[1] + if(axis==0): + return zoom(img,[1,zoom_factor,zoom_factor],order=order) + elif(axis==2): + return zoom(img,[zoom_factor,zoom_factor,1],order=order) + +class Visualizer(): + def __init__(self, opt): + # self.opt = opt + self.display_id = opt.display_id + # self.use_html = opt.is_train and not opt.no_html + self.win_size = opt.display_winsize + self.name = opt.name + self.display_cnt = 0 # display_current_results counter + self.display_cnt_high = 0 + self.use_html = opt.use_html + + if self.display_id > 0: + import visdom + self.vis = visdom.Visdom(port = opt.display_port) + + self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web') + util.mkdirs([self.web_dir,]) + if self.use_html: + self.img_dir = os.path.join(self.web_dir, 'images') + print('create web directory %s...' % self.web_dir) + util.mkdirs([self.img_dir,]) + + # |visuals|: dictionary of images to display or save + def display_current_results(self, visuals, epoch, nrows=None, res=256): + if self.display_id > 0: # show images in the browser + title = self.name + if(nrows is None): + nrows = int(math.ceil(len(visuals.items()) / 2.0)) + images = [] + idx = 0 + for label, image_numpy in visuals.items(): + title += " | " if idx % nrows == 0 else ", " + title += label + img = image_numpy.transpose([2, 0, 1]) + img = zoom_to_res(img,res=res,order=0) + images.append(img) + idx += 1 + if len(visuals.items()) % 2 != 0: + white_image = np.ones_like(image_numpy.transpose([2, 0, 1]))*255 + white_image = zoom_to_res(white_image,res=res,order=0) + images.append(white_image) + self.vis.images(images, nrow=nrows, win=self.display_id + 1, + opts=dict(title=title)) + + if self.use_html: # save images to a html file + for label, image_numpy in visuals.items(): + img_path = os.path.join(self.img_dir, 'epoch%.3d_cnt%.6d_%s.png' % (epoch, self.display_cnt, label)) + util.save_image(zoom_to_res(image_numpy, res=res, axis=2), img_path) + + self.display_cnt += 1 + self.display_cnt_high = np.maximum(self.display_cnt_high, self.display_cnt) + + # update website + webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, reflesh=1) + for n in range(epoch, 0, -1): + webpage.add_header('epoch [%d]' % n) + if(n==epoch): + high = self.display_cnt + else: + high = self.display_cnt_high + for c in range(high-1,-1,-1): + ims = [] + txts = [] + links = [] + + for label, image_numpy in visuals.items(): + img_path = 'epoch%.3d_cnt%.6d_%s.png' % (n, c, label) + ims.append(os.path.join('images',img_path)) + txts.append(label) + links.append(os.path.join('images',img_path)) + webpage.add_images(ims, txts, links, width=self.win_size) + webpage.save() + + # save errors into a directory + def plot_current_errors_save(self, epoch, counter_ratio, opt, errors,keys='+ALL',name='loss', to_plot=False): + if not hasattr(self, 'plot_data'): + self.plot_data = {'X':[],'Y':[], 'legend':list(errors.keys())} + self.plot_data['X'].append(epoch + counter_ratio) + self.plot_data['Y'].append([errors[k] for k in self.plot_data['legend']]) + + # embed() + if(keys=='+ALL'): + plot_keys = self.plot_data['legend'] + else: + plot_keys = keys + + if(to_plot): + (f,ax) = plt.subplots(1,1) + for (k,kname) in enumerate(plot_keys): + kk = np.where(np.array(self.plot_data['legend'])==kname)[0][0] + x = self.plot_data['X'] + y = np.array(self.plot_data['Y'])[:,kk] + if(to_plot): + ax.plot(x, y, 'o-', label=kname) + np.save(os.path.join(self.web_dir,'%s_x')%kname,x) + np.save(os.path.join(self.web_dir,'%s_y')%kname,y) + + if(to_plot): + plt.legend(loc=0,fontsize='small') + plt.xlabel('epoch') + plt.ylabel('Value') + f.savefig(os.path.join(self.web_dir,'%s.png'%name)) + f.clf() + plt.close() + + # errors: dictionary of error labels and values + def plot_current_errors(self, epoch, counter_ratio, opt, errors): + if not hasattr(self, 'plot_data'): + self.plot_data = {'X':[],'Y':[], 'legend':list(errors.keys())} + self.plot_data['X'].append(epoch + counter_ratio) + self.plot_data['Y'].append([errors[k] for k in self.plot_data['legend']]) + self.vis.line( + X=np.stack([np.array(self.plot_data['X'])]*len(self.plot_data['legend']),1), + Y=np.array(self.plot_data['Y']), + opts={ + 'title': self.name + ' loss over time', + 'legend': self.plot_data['legend'], + 'xlabel': 'epoch', + 'ylabel': 'loss'}, + win=self.display_id) + + # errors: same format as |errors| of plotCurrentErrors + def print_current_errors(self, epoch, i, errors, t, t2=-1, t2o=-1, fid=None): + message = '(ep: %d, it: %d, t: %.3f[s], ept: %.2f/%.2f[h]) ' % (epoch, i, t, t2o, t2) + message += (', ').join(['%s: %.3f' % (k, v) for k, v in errors.items()]) + + print(message) + if(fid is not None): + fid.write('%s\n'%message) + + + # save image to the disk + def save_images_simple(self, webpage, images, names, in_txts, prefix='', res=256): + image_dir = webpage.get_image_dir() + ims = [] + txts = [] + links = [] + + for name, image_numpy, txt in zip(names, images, in_txts): + image_name = '%s_%s.png' % (prefix, name) + save_path = os.path.join(image_dir, image_name) + if(res is not None): + util.save_image(zoom_to_res(image_numpy,res=res,axis=2), save_path) + else: + util.save_image(image_numpy, save_path) + + ims.append(os.path.join(webpage.img_subdir,image_name)) + # txts.append(name) + txts.append(txt) + links.append(os.path.join(webpage.img_subdir,image_name)) + # embed() + webpage.add_images(ims, txts, links, width=self.win_size) + + # save image to the disk + def save_images(self, webpage, images, names, image_path, title=''): + image_dir = webpage.get_image_dir() + # short_path = ntpath.basename(image_path) + # name = os.path.splitext(short_path)[0] + # name = short_path + # webpage.add_header('%s, %s' % (name, title)) + ims = [] + txts = [] + links = [] + + for label, image_numpy in zip(names, images): + image_name = '%s.jpg' % (label,) + save_path = os.path.join(image_dir, image_name) + util.save_image(image_numpy, save_path) + + ims.append(image_name) + txts.append(label) + links.append(image_name) + webpage.add_images(ims, txts, links, width=self.win_size) + + # save image to the disk + # def save_images(self, webpage, visuals, image_path, short=False): + # image_dir = webpage.get_image_dir() + # if short: + # short_path = ntpath.basename(image_path) + # name = os.path.splitext(short_path)[0] + # else: + # name = image_path + + # webpage.add_header(name) + # ims = [] + # txts = [] + # links = [] + + # for label, image_numpy in visuals.items(): + # image_name = '%s_%s.png' % (name, label) + # save_path = os.path.join(image_dir, image_name) + # util.save_image(image_numpy, save_path) + + # ims.append(image_name) + # txts.append(label) + # links.append(image_name) + # webpage.add_images(ims, txts, links, width=self.win_size) diff --git a/mlflow/train/sf2f/scripts/build_demo_set.py b/mlflow/train/sf2f/scripts/build_demo_set.py new file mode 100644 index 0000000..127a76e --- /dev/null +++ b/mlflow/train/sf2f/scripts/build_demo_set.py @@ -0,0 +1,85 @@ +''' +Build a demo inference dataset +''' + + +import os +import shutil +import json +import pandas as pd +from PIL import Image +from pydub import AudioSegment + + +DATA_DIR = './data' +vox2_face_dir = os.path.join(DATA_DIR, 'VoxCeleb', 'vox2', 'masked_faces') +vox2_wav_dir = os.path.join(DATA_DIR, 'VoxCeleb', 'raw_wav', 'vox2') +vox2_meta_csv = os.path.join(DATA_DIR, 'VoxCeleb', 'vox2', 'full_vox2_meta.csv') +vox_split_json = os.path.join(DATA_DIR, 'VoxCeleb', 'split.json') +demo_dir = os.path.join(DATA_DIR, 'VoxCeleb', 'demo_data') + +def main(): + try: + shutil.rmtree(demo_dir) + except: + pass + os.makedirs(demo_dir, exist_ok=True) + #print(os.listdir(vox2_face_dir)) + #print(os.listdir(vox2_wav_dir)) + with open(vox_split_json) as json_file: + split_dict = json.load(json_file) + # A list of names in the vox2 test set (in out splition) + test_list = split_dict['vox2']['test'] + # meta_csv + meta_df = pd.read_csv(vox2_meta_csv) + print(meta_df.head(5)) + name2id = {} + name2set = {} + for i in range(len(meta_df)): + name = meta_df['Name'][i] + id = meta_df['VoxCeleb2ID'][i] + split_set = meta_df['Set'][i] + name2id[name] = id + name2set[name] = split_set + #print(name2id) + available_names = set(test_list).intersection( + set(os.listdir(vox2_face_dir))) + available_names = list(available_names) + for name in available_names[:50]: + id = name2id[name] + split_set = name2set[name] + face_dir = os.path.join(vox2_face_dir, name) + #print(os.listdir(face_dir)) + wav_dir = os.path.join(vox2_wav_dir, split_set, id) + # Avoid PermissionError + try: + #print(os.listdir(wav_dir)) + wav_sub_dir_list = os.listdir(wav_dir) + except PermissionError: + continue + save_dir = os.path.join(demo_dir, name) + os.makedirs(save_dir, exist_ok=True) + for i, jpg in enumerate(os.listdir(face_dir)): + face_jpg = os.path.join(face_dir, jpg) + img = Image.open(face_jpg) + for reso, w in [('low', 64), ('mid', 128), ('high', 256)]: + save_path = os.path.join(save_dir, '{}_{}.jpg'.format(i, reso)) + cur_img = img.resize((w, w)) + cur_img.save(save_path) + # select 2 wavs + for j, wav_sub_dir in enumerate(wav_sub_dir_list[:2]): + #print(wav_sub_dir) + wav_sub_dir = os.path.join(wav_dir, wav_sub_dir) + wav_path = os.path.join(wav_sub_dir, os.listdir(wav_sub_dir)[0]) + wav_save_dir = os.path.join(save_dir, 'audio_{}'.format(j)) + os.makedirs(wav_save_dir, exist_ok=True) + try: + track = AudioSegment.from_file(wav_path, 'm4a') + wav_save_path = os.path.join(wav_save_dir, '{}.wav'.format(j)) + file_handle = track.export(wav_save_path, format='wav') + except: + print("ERROR CONVERTING " + str(wav_path)) + print(name) + +if __name__ == '__main__': + main() diff --git a/mlflow/train/sf2f/scripts/compute_diversity_score.py b/mlflow/train/sf2f/scripts/compute_diversity_score.py new file mode 100644 index 0000000..52e338c --- /dev/null +++ b/mlflow/train/sf2f/scripts/compute_diversity_score.py @@ -0,0 +1,28 @@ +from scripts.DScore.models import dist_model as dm +from scripts.DScore.util import util +import numpy as np +from pyprind import prog_bar + +def compute_diversity_score(images_A, images_B, use_gpu): + assert(type(images_A) == list) + assert(type(images_B) == list) + assert(len(images_A) == len(images_B)) + + img_pair_num = len(images_A) + + ## Initializing the model + model = dm.DistModel() + model.initialize(model='net-lin', net='alex', use_gpu=use_gpu) + + distance = [] + for i in prog_bar(range(img_pair_num), title="Calculating Diversity Scores", width=50): + img_A = util.im2tensor(images_A[i]) + img_B = util.im2tensor(images_B[i]) + dist = model.forward(img_A, img_B) + distance.append(dist) + + return np.mean(distance), np.std(distance) + + +if __name__ == '__main__': + print("please Call from other file.") diff --git a/mlflow/train/sf2f/scripts/compute_fid_score.py b/mlflow/train/sf2f/scripts/compute_fid_score.py new file mode 100644 index 0000000..d7a7212 --- /dev/null +++ b/mlflow/train/sf2f/scripts/compute_fid_score.py @@ -0,0 +1,230 @@ +# Code derived from https://github.com/openai/improved-gan/tree/master/inception_score +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import os.path +import sys +import tarfile + +import numpy as np +from six.moves import urllib +import tensorflow as tf +import glob +import scipy.misc +from scipy import linalg +import math +import sys +from pyprind import prog_bar + +tf.compat.v1.disable_v2_behavior() + + +try: + MODEL_DIR = '/mnt/.tensorflow/imagenet'#'/mnt/imagenet' + os.listdir(MODEL_DIR) +except: + MODEL_DIR = './.cache/.tensorflow/imagenet' +DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz' +softmax = None +last_layer = None + +config = tf.compat.v1.ConfigProto() +config.gpu_options.per_process_gpu_memory_fraction = 0.3 + + +def inception_forward(images, layer): + assert (type(images[0]) == np.ndarray) + assert (len(images[0].shape) == 3) + assert (np.max(images[0]) > 10) + assert (np.min(images[0]) >= 0.0) + # bs = 100 + bs = 1 + # images = images.transpose(0, 2, 3, 1) + #with tf.Session(config=config) as sess: + preds = [] + n_batches = int(math.ceil(float(len(images)) / float(bs))) + # for i in range(n_batches): + for i in prog_bar(range(n_batches), title="Calculating FID Scores", width=50): + # sys.stdout.write(".") + # sys.stdout.flush() + inps = images[(i * bs):min((i + 1) * bs, len(images))] + for inp in inps: + pred = fw_sess.run(layer, {'ExpandDims:0': [inp]}) + preds.append(pred) + preds = np.array(preds) + # preds = np.concatenate(preds, 0) + return preds + + +def get_mean_and_cov(images): + before_preds = inception_forward(images, last_layer) + m = np.mean(before_preds, 0) + cov = np.cov(before_preds, rowvar=False) + return m, cov + + +def get_fid(images, ref_stats=None, images_ref=None, splits=10): + before_preds = inception_forward(images, last_layer) + if ref_stats is None: + if images_ref is None: + raise ValueError('images_ref should be provided if ref_stats is None') + m_ref, cov_ref = get_mean_and_cov(images_ref) + fids = [] + for i in range(splits): + part = before_preds[(i * before_preds.shape[0] // splits):((i + 1) * before_preds.shape[0] // splits), :] + m_gen = np.mean(part, 0) + cov_gen = np.cov(part, rowvar=False) + fid = np.sum((m_ref - m_gen) ** 2) + np.trace( + cov_ref + cov_gen - 2 * scipy.linalg.sqrtm(np.dot(cov_ref, cov_gen))) + fids.append(fid) + return np.mean(fids), np.std(fids) + + +# Call this function with list of images. Each of elements should be a +# numpy array with values ranging from 0 to 255. +def get_inception_score(images, splits=10): + preds = inception_forward(images, softmax) + scores = [] + for i in range(splits): + part = preds[(i * preds.shape[0] // splits):((i + 1) * preds.shape[0] // splits), :] + kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0))) + kl = np.mean(np.sum(kl, 1)) + scores.append(np.exp(kl)) + return np.mean(scores), np.std(scores) + + +def get_inception_pred(images): + preds = inception_forward(images, softmax) + return preds + + +def get_fid_pred(images): + preds = inception_forward(images, last_layer) + return preds + +def close_sess(): + fw_sess.close() + + +# This function is called automatically. +def _init_inception(): + global softmax + global last_layer + if not os.path.exists(MODEL_DIR): + os.makedirs(MODEL_DIR) + filename = DATA_URL.split('/')[-1] + filepath = os.path.join(MODEL_DIR, filename) + if not os.path.exists(filepath): + def _progress(count, block_size, total_size): + sys.stdout.write('\r>> Downloading %s %.1f%%' % ( + filename, float(count * block_size) / float(total_size) * 100.0)) + sys.stdout.flush() + + filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress) + print() + statinfo = os.stat(filepath) + print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.') + tarfile.open(filepath, 'r:gz').extractall(MODEL_DIR) + with tf.io.gfile.GFile(os.path.join( + MODEL_DIR, 'classify_image_graph_def.pb'), 'rb') as f: + graph_def = tf.compat.v1.GraphDef() + graph_def.ParseFromString(f.read()) + _ = tf.import_graph_def(graph_def, name='') + # Works with an arbitrary minibatch size. + with tf.compat.v1.Session(config=config) as sess: + pool3 = sess.graph.get_tensor_by_name('pool_3:0') + ops = pool3.graph.get_operations() + for op_idx, op in enumerate(ops): + for o in op.outputs: + shape = o.get_shape() + shape = [s.value for s in shape] + new_shape = [] + for j, s in enumerate(shape): + if s == 1 and j == 0: + new_shape.append(None) + else: + new_shape.append(s) + # o.set_shape(tf.TensorShape(new_shape)) + o.set_shape = tf.TensorShape(new_shape) + w = sess.graph.get_operation_by_name("softmax/logits/MatMul").inputs[1] + last_layer = tf.squeeze(pool3) + logits = tf.matmul(tf.expand_dims(last_layer, 0), w) + softmax = tf.nn.softmax(logits[0]) + + global fw_sess + fw_sess = tf.compat.v1.Session(config=config) + + +if softmax is None: + _init_inception() + + + +def calculate_activation_statistics(act): + """Calculation of the statistics used by the FID. + Params: + -- act : Numpy array of dimension (n_images, dim (e.g. 2048)). + Returns: + -- mu : The mean over samples of the activations of the pool_3 layer of + the inception model. + -- sigma : The covariance matrix of the activations of the pool_3 layer of + the inception model. + """ + mu = np.mean(act, axis=0) + sigma = np.cov(act, rowvar=False) + return mu, sigma + + +def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): + """Numpy implementation of the Frechet Distance. + The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) + and X_2 ~ N(mu_2, C_2) is + d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). + Stable version by Dougal J. Sutherland. + Params: + -- mu1 : Numpy array containing the activations of a layer of the + inception net (like returned by the function 'get_predictions') + for generated samples. + -- mu2 : The sample mean over activations, precalculated on an + representive data set. + -- sigma1: The covariance matrix over activations for generated samples. + -- sigma2: The covariance matrix over activations, precalculated on an + representive data set. + Returns: + -- : The Frechet Distance. + """ + + mu1 = np.atleast_1d(mu1) + mu2 = np.atleast_1d(mu2) + + sigma1 = np.atleast_2d(sigma1) + sigma2 = np.atleast_2d(sigma2) + + assert mu1.shape == mu2.shape, \ + 'Training and test mean vectors have different lengths' + assert sigma1.shape == sigma2.shape, \ + 'Training and test covariances have different dimensions' + + diff = mu1 - mu2 + + # Product might be almost singular + covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) + if not np.isfinite(covmean).all(): + msg = ('fid calculation produces singular product; ' + 'adding %s to diagonal of cov estimates') % eps + print(msg) + offset = np.eye(sigma1.shape[0]) * eps + covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) + + # Numerical error might give slight imaginary component + if np.iscomplexobj(covmean): + if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): + m = np.max(np.abs(covmean.imag)) + raise ValueError('Imaginary component {}'.format(m)) + covmean = covmean.real + + tr_covmean = np.trace(covmean) + + return (diff.dot(diff) + np.trace(sigma1) + + np.trace(sigma2) - 2 * tr_covmean) diff --git a/mlflow/train/sf2f/scripts/compute_inception_score.py b/mlflow/train/sf2f/scripts/compute_inception_score.py new file mode 100644 index 0000000..85992e2 --- /dev/null +++ b/mlflow/train/sf2f/scripts/compute_inception_score.py @@ -0,0 +1,229 @@ +# Code adapted from +# https://github.com/openai/improved-gan/blob/master/inception_score/model.py +# which was in turn derived from +# tensorflow/tensorflow/models/image/imagenet/classify_image.py +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import argparse +import os +import sys +import tarfile +import h5py + +import numpy as np +from six.moves import urllib +import tensorflow as tf +import glob +# from scipy.misc import imread, imresize +from cv2 import resize as imresize +from imageio import imread + +from imageio import imwrite +import math +from pyprind import prog_bar + +tf.compat.v1.disable_v2_behavior() + +os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' + +parser = argparse.ArgumentParser() +parser.add_argument('--input_npy_file', default=None) +parser.add_argument('--input_image_dir', default=None) +parser.add_argument('--input_image_dir_list', default=None) +parser.add_argument('--input_image_superdir', default=None) +parser.add_argument('--image_size', default=None, type=int) + +# Most papers use 50k samples and 10 splits but I don't have that much +# data so I'll use 3 splits for everything +parser.add_argument('--num_splits', default=3, type=int) +parser.add_argument('--tensor_layout', default='NHWC', choices=['NHWC', 'NCHW']) + +IMAGE_EXTS = ['.png', '.jpg', '.jpeg'] + +def main(args): + got_npy_file = args.input_npy_file is not None + got_image_dir = args.input_image_dir is not None + got_image_dir_list = args.input_image_dir_list is not None + got_image_superdir = args.input_image_superdir is not None + inputs = [got_npy_file, got_image_dir, got_image_dir_list, got_image_superdir] + if sum(inputs) != 1: + # raise ValueError('Must give exactly one input type') + images = read_images() + mean, std = get_inception_score(images) + print('Inception mean: ', mean) + print('Inception std: ', std) + + + if args.input_npy_file is not None: + images = np.load(args.input_npy_file) + images = np.split(image, images.shape[0], axis=0) + images = [img[0] for img in images] + mean, std = get_inception_score(args, images) + print('Inception mean: ', mean) + print('Inception std: ', std) + elif args.input_image_dir is not None: + images = load_images(args, args.input_image_dir) + import pdb; pdb.set_trace() + print(type(images)) + import pdb; pdb.set_trace() + exit() + mean, std = get_inception_score(args, images) + print('Inception mean: ', mean) + print('Inception std: ', std) + elif got_image_dir_list: + with open(args.input_image_dir_list, 'r') as f: + dir_list = [line.strip() for line in f] + for image_dir in dir_list: + images = load_images(args, image_dir) + mean, std = get_inception_score(args, images) + print('Inception mean: ', mean) + print('Inception std: ', std) + print() + elif got_image_superdir: + for fn in sorted(os.listdir(args.input_image_superdir)): + print(fn) + if not fn.startswith('result'): continue + image_dir = os.path.join(args.input_image_superdir, fn, 'images') + if not os.path.isdir(image_dir): continue + images = load_images(args, image_dir) + mean, std = get_inception_score(args, images) + print('Inception mean: ', mean) + print('Inception std: ', std) + print() + +def load_images(args, image_dir): + print('Loading images from ', image_dir) + images = [] + args.tensor_layout = 'NHWC' + for fn in os.listdir(image_dir): + ext = os.path.splitext(fn)[1].lower() + if ext not in IMAGE_EXTS: + continue + img_path = os.path.join(image_dir, fn) + img = imread(img_path) + if args.image_size is not None: + img = imresize(img, (args.image_size, args.image_size)) + images.append(img) + print('Found %d images' % len(images)) + return images + +def read_images(): + img_dir = './data/vg/images/' + vg_dataset = [] + print("Begin to load test...") + test_file = "./data/visual_genome/val.h5" + test_set = h5py.File(test_file, 'r') + test_set_name = np.array(test_set['image_paths']) + for iter, img_name in enumerate(test_set_name): + img_path = os.path.join(img_dir, img_name) + img = imread(img_path) + if len(img.shape) != 3: + continue + vg_dataset.append(img) + print('Found %d images' % len(vg_dataset)) + return vg_dataset +try: + MODEL_DIR = '/mnt/.tensorflow/imagenet'#'/mnt/imagenet' + os.listdir(MODEL_DIR) +except: + MODEL_DIR = './.cache/.tensorflow/imagenet' +DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz' +softmax = None + +# Call this function with list of images. Each of elements should be a +# numpy array with values ranging from 0 to 255. +def get_inception_score(images): + splits = 3 + layout = 'NHWC' + + assert(type(images) == list) + assert(type(images[0]) == np.ndarray) + assert(len(images[0].shape) == 3) + # assert(np.max(images[0]) > 10) + # assert(np.min(images[0]) >= 0.0) + inps = [] + for img in images: + img = img.astype(np.float32) + inps.append(np.expand_dims(img, 0)) + bs = 1 + # bs = 100 + with tf.compat.v1.Session() as sess: + preds = [] + n_batches = int(math.ceil(float(len(inps)) / float(bs))) + n_preds = 0 + for i in prog_bar(range(n_batches), title="Calculating Inception Scores", width=50): + # import pdb; pdb.set_trace() + inp = inps[(i * bs):min((i + 1) * bs, len(inps))] + + inp = np.concatenate(inp, 0) + if layout == 'NCHW': + inp = inp.transpose(0, 2, 3, 1) + # print(inp.shape) + pred = sess.run(softmax, {'ExpandDims:0': inp}) + preds.append(pred) + n_preds += pred.shape[0] + # print('Ran %d / %d images' % (n_preds, len(images))) + # import pdb; pdb.set_trace() + preds = np.concatenate(preds, 0) + scores = [] + for i in range(splits): + part = preds[(i * preds.shape[0] // splits):((i + 1) * preds.shape[0] // splits), :] + kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0))) + kl = np.mean(np.sum(kl, 1)) + scores.append(np.exp(kl)) + return np.mean(scores), np.std(scores) + +# This function is called automatically. +def _init_inception(): + global softmax + if not os.path.exists(MODEL_DIR): + os.makedirs(MODEL_DIR) + filename = DATA_URL.split('/')[-1] + filepath = os.path.join(MODEL_DIR, filename) + if not os.path.exists(filepath): + def _progress(count, block_size, total_size): + sys.stdout.write('\r>> Downloading %s %.1f%%' % ( + filename, float(count * block_size) / float(total_size) * 100.0)) + sys.stdout.flush() + filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress) + print() + statinfo = os.stat(filepath) + print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.') + tarfile.open(filepath, 'r:gz').extractall(MODEL_DIR) + with tf.io.gfile.GFile(os.path.join( + MODEL_DIR, 'classify_image_graph_def.pb'), 'rb') as f: + # + graph_def = tf.compat.v1.GraphDef() + graph_def.ParseFromString(f.read()) + _ = tf.import_graph_def(graph_def, name='') + # Works with an arbitrary minibatch size. + with tf.compat.v1.Session() as sess: + pool3 = sess.graph.get_tensor_by_name('pool_3:0') + ops = pool3.graph.get_operations() + for op_idx, op in enumerate(ops): + for o in op.outputs: + shape = o.get_shape() + shape = [s.value for s in shape] + new_shape = [] + for j, s in enumerate(shape): + if s == 1 and j == 0: + new_shape.append(None) + else: + new_shape.append(s) + # o._shape = tf.TensorShape(new_shape) + o.set_shape = tf.TensorShape(new_shape) + w = sess.graph.get_operation_by_name("softmax/logits/MatMul").inputs[1] + pool3 = tf.squeeze(pool3) + pool3 = tf.reshape(pool3, (1, 2048)) + # logits = tf.matmul(tf.squeeze(pool3), w) + logits = tf.matmul(pool3, w) + softmax = tf.nn.softmax(logits) + +if softmax is None: + _init_inception() + +if __name__ == '__main__': + args = parser.parse_args() + main(args) diff --git a/mlflow/train/sf2f/scripts/compute_mel_mean_var.py b/mlflow/train/sf2f/scripts/compute_mel_mean_var.py new file mode 100644 index 0000000..d730e17 --- /dev/null +++ b/mlflow/train/sf2f/scripts/compute_mel_mean_var.py @@ -0,0 +1,55 @@ +# -*- coding: utf-8 -*- +''' +Compute the mean and variance of VoxCeleb dataset's mel spectrograms +''' + + +import os +import numpy as np +import sys +import torch +from torch.utils.data import DataLoader +sys.path.append('./') +print(sys.path) +from datasets.vox_dataset import VoxDataset + + +def mean(): + epoch_num = 100 + vox_dataset = VoxDataset( + data_dir='./data/VoxCeleb', + image_size=(64, 64), + image_normalize_method=None, + mel_normalize_method=None) + loader_kwargs = { + 'batch_size': 128, + 'num_workers': 8, + 'shuffle': False, + "drop_last": True, + } + print(vox_dataset) + vox_loader = DataLoader(vox_dataset, **loader_kwargs) + + total_mean = torch.tensor(0.0) + total_std = torch.tensor(0.0) + min_length = 10000000 + for epoch in range(epoch_num): + for iter, batch in enumerate(vox_loader): + #images, log_mels, mel_length = batch + images, log_mels = batch + total_mean = total_mean + torch.mean(log_mels) + total_std = total_std + torch.std(log_mels) + #cur_min_length = torch.min(mel_length) + #if cur_min_length < min_length: + # min_length = cur_min_length + print(epoch) + + avg_mean = (total_mean / epoch_num) / (iter + 1) + avg_std = (total_std / epoch_num) / (iter + 1) + + print('Dataset Mel Spectrogram Mean:', avg_mean) + print('Dataset Mel Spectrogram Standard Deviation:', avg_std) + print('Dataset minimum mel spectrogram length:', min_length) + +if __name__ == '__main__': + mean() diff --git a/mlflow/train/sf2f/scripts/compute_vggface_score.py b/mlflow/train/sf2f/scripts/compute_vggface_score.py new file mode 100644 index 0000000..8868c2b --- /dev/null +++ b/mlflow/train/sf2f/scripts/compute_vggface_score.py @@ -0,0 +1,291 @@ +import argparse +import os +import sys +import torch +import torch.nn as nn +import math +import pickle +import numpy as np +import torch.nn.functional as F +import requests +from requests.adapters import HTTPAdapter + + +__all__ = ['ResNet', 'resnet50'] + +def conv3x3(in_planes, out_planes, stride=1): + """3x3 convolution with padding""" + return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, + padding=1, bias=False) + + +class BasicBlock(nn.Module): + expansion = 1 + + def __init__(self, inplanes, planes, stride=1, downsample=None): + super(BasicBlock, self).__init__() + self.conv1 = conv3x3(inplanes, planes, stride) + self.bn1 = nn.BatchNorm2d(planes) + self.relu = nn.ReLU(inplace=True) + self.conv2 = conv3x3(planes, planes) + self.bn2 = nn.BatchNorm2d(planes) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + residual = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.relu(out) + + return out + + +class Bottleneck(nn.Module): + expansion = 4 + + def __init__(self, inplanes, planes, stride=1, downsample=None): + super(Bottleneck, self).__init__() + self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) + self.bn1 = nn.BatchNorm2d(planes) + self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) + self.bn2 = nn.BatchNorm2d(planes) + self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) + self.bn3 = nn.BatchNorm2d(planes * 4) + self.relu = nn.ReLU(inplace=True) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + residual = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + + out = self.conv3(out) + out = self.bn3(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.relu(out) + + return out + + +class ResNet(nn.Module): + + def __init__(self, block, layers, num_classes=1000, include_top=True): + self.inplanes = 64 + super(ResNet, self).__init__() + self.include_top = include_top + + self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) + self.bn1 = nn.BatchNorm2d(64) + self.relu = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=0, ceil_mode=True) + + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) + self.layer3 = self._make_layer(block, 256, layers[2], stride=2) + self.layer4 = self._make_layer(block, 512, layers[3], stride=2) + self.avgpool = nn.AvgPool2d(7, stride=1) + self.fc = nn.Linear(512 * block.expansion, num_classes) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, math.sqrt(2. / n)) + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + def _make_layer(self, block, planes, blocks, stride=1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d(self.inplanes, planes * block.expansion, + kernel_size=1, stride=stride, bias=False), + nn.BatchNorm2d(planes * block.expansion), + ) + + layers = [] + layers.append(block(self.inplanes, planes, stride, downsample)) + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(self.inplanes, planes)) + + return nn.Sequential(*layers) + + def forward(self, x): + x = self.conv1(x) + x = self.bn1(x) + x = self.relu(x) + x = self.maxpool(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + + x = self.avgpool(x) + + if not self.include_top: + return x + + x = x.view(x.size(0), -1) + x = self.fc(x) + return x + + def resnet50(**kwargs): + """Constructs a ResNet-50 model. + """ + model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) + return model + + +def load_state_dict(model, fname): + """ + Set parameters converted from Caffe models authors of VGGFace2 provide. + See https://www.robots.ox.ac.uk/~vgg/data/vgg_face2/. + Arguments: + model: model + fname: file name of parameters converted from a Caffe model, assuming the file format is Pickle. + """ + with open(fname, 'rb') as f: + weights = pickle.load(f, encoding='latin1') + + own_state = model.state_dict() + for name, param in weights.items(): + if name in own_state: + try: + own_state[name].copy_(torch.from_numpy(param)) + except Exception: + raise RuntimeError('While copying the parameter named {}, whose dimensions in the model are {} and whose '\ + 'dimensions in the checkpoint are {}.'.format(name, own_state[name].size(), param.size())) + else: + raise KeyError('unexpected key "{}" in state_dict'.format(name)) + + +def transform(img): + img = img[:, :, ::-1] # RGB -> BGR + img = img.astype(np.float32) + img -= self.mean_bgr + img = img.transpose(2, 0, 1) # C x H x W + img = torch.from_numpy(img).float() + return img + +def download_weight_for_small_file(weight_file): + ''' + Not working for large files + ''' + weight_url = 'https://drive.google.com/uc?export=download' + \ + '&id=1A94PAAnwk6L7hXdBXLFosB_s0SzEhAFU' + if not os.path.exists(weight_file): + print('Downloading VGGFace resnet50_ft_weight.pkl (1/1)') + s = requests.Session() + s.mount('https://', HTTPAdapter(max_retries=10)) + r = s.get(weight_url, allow_redirects=True) + with open(weight_file, 'wb') as f: + f.write(r.content) + +def download_weight(weight_file): + ''' + Reference: + https://medium.com/@acpanjan/ + download-google-drive-files-using-wget-3c2c025a8b99 + ''' + if not os.path.exists(weight_file): + cmd = "bash scripts/download_vggface_weights.sh" + print(cmd) + os.system(cmd) + +def get_vggface_score(imgs): + N_IDENTITY = 8631 + # include_top = True if args.cmd != 'extract' else False + include_top = True + weight_file = 'scripts/weights/resnet50_ft_weight.pkl' + # mean_bgr = np.array([91.4953, 103.8827, 131.0912]) # from resnet50_ft.prototxt + model = ResNet.resnet50(num_classes=N_IDENTITY, include_top=include_top) + download_weight(weight_file) + load_state_dict(model, weight_file) + model = model.cuda() + model.eval() + mean_rgb = np.array([131.0912, 103.8827, 91.4953]) + # mean_rgb = torch.Tensor([131.0912, 103.8827, 91.4953]).cuda() + preds = [] + for img in imgs: + # img = img.permute(1, 2, 0) - mean_rgb + img = img - mean_rgb + img = torch.Tensor(img).cuda().permute(2, 0, 1) + img = nn.UpsamplingBilinear2d(size=(224, 224))(img.view(1, 3, img.size(1), img.size(2))) + pred = model(img) + pred = F.softmax(pred, dim=1) + preds.append(pred.data.cpu().numpy()) + preds = np.concatenate(preds, 0) + # preds = model(imgs) + + np.random.shuffle(preds) + splits = 5 + scores = [] + for i in range(splits): + part = preds[(i * preds.shape[0] // splits):((i + 1) * preds.shape[0] // splits), :] + kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0))) + kl = np.mean(np.sum(kl, 1)) + scores.append(np.exp(kl)) + + return np.mean(scores), np.std(scores) + + +def get_vggface_act(imgs): + N_IDENTITY = 8631 + # include_top = True if args.cmd != 'extract' else False + include_top = True + weight_file = 'scripts/weights/resnet50_ft_weight.pkl' + # mean_bgr = np.array([91.4953, 103.8827, 131.0912]) # from resnet50_ft.prototxt + model = ResNet.resnet50(num_classes=N_IDENTITY, include_top=include_top) + load_state_dict(model, weight_file) + model = model.cuda() + model.eval() + mean_rgb = np.array([131.0912, 103.8827, 91.4953]) + # mean_rgb = torch.Tensor([131.0912, 103.8827, 91.4953]).cuda() + preds = [] + for img in imgs: + # img = img.permute(1, 2, 0) - mean_rgb + img = img - mean_rgb + img = torch.Tensor(img).cuda().permute(2, 0, 1) + img = nn.UpsamplingBilinear2d(size=(224, 224))(img.view(1, 3, img.size(1), img.size(2))) + pred = model(img) + pred = F.softmax(pred, dim=1) + preds.append(pred.data.cpu().numpy()) + preds = np.concatenate(preds, 0) + return preds + + +def main(): + N_IDENTITY = 8631 + # include_top = True if args.cmd != 'extract' else False + include_top = False + weight_file = 'scripts/weights/resnet50_ft_weights.pkl' + model = ResNet.resnet50(num_classes=N_IDENTITY, include_top=include_top) + load_state_dict(model, weight_file) + model = model.cuda() + +if __name__ == '__main__': + main() diff --git a/mlflow/train/sf2f/scripts/convert_wav_to_mel.py b/mlflow/train/sf2f/scripts/convert_wav_to_mel.py new file mode 100644 index 0000000..ff334fa --- /dev/null +++ b/mlflow/train/sf2f/scripts/convert_wav_to_mel.py @@ -0,0 +1,216 @@ +''' +Convert raw_wavs in VoxCeleb dataSet to mel_gram + + 1. Build two id2name mapping for vox1 & vox2 + 2. Create a folder for each identity with his/her name + 3. for each raw wav file, convert it to mel_gram, + save it under the identity folder +''' + + +import warnings +warnings.filterwarnings("ignore") +import argparse +import os +import shutil +import gc +import time +import pickle +import numpy as np +import pandas as pd +import multiprocessing as mp +from tensorflow.io import gfile +import sys +sys.path.append('./') +from utils.wav2mel import wav_to_mel +from concurrent.futures import ProcessPoolExecutor, as_completed +from utils.filter_pickle import filtering_pickle + + +VOX_DIR = os.path.join('/home/data/VoxCeleb') +vox1_raw = os.path.join(VOX_DIR, 'raw_wav', 'vox1') +# vox2_raw = os.path.join(VOX_DIR, 'raw_wav', 'vox2') +vox1_meta_csv = os.path.join(VOX_DIR, 'vox1', 'vox1_meta.csv') +# vox2_meta_csv = os.path.join(VOX_DIR, 'vox2', 'full_vox2_meta.csv') + +parser = argparse.ArgumentParser() + +# arguments: +#parser.add_argument('--output_folder', +# default=os.path.join(PROC_DIR, 'VoxCeleb1', 'faces'), +# help='folder that contains the outputs') + +args = parser.parse_args() + +class WavConvertor: + def __init__(self): + self.load_metadata() + self.get_id2name() + self.get_wav_dirs() + self.create_output_dirs() + + def load_metadata(self): + self.vox1_df = pd.read_csv(vox1_meta_csv, sep='\t') + # self.vox2_df = pd.read_csv(vox2_meta_csv, sep=',') + #print(self.vox1_df.head()) + #print(self.vox1_df.columns) + #print(self.vox2_df.head()) + #print(self.vox2_df.columns) + + def get_id2name(self): + self.vox1_id2name = dict( + zip(self.vox1_df['VoxCeleb1 ID'], self.vox1_df['VGGFace1 ID'])) + # self.vox2_id2name = dict( + # zip(self.vox2_df['VoxCeleb2ID'], self.vox2_df['Name'])) + #print((self.vox2_id2name)) + + def convert_identity(self, wav_dir, mel_home_dir, dataset): + ''' + Create a mel_gram folder for the given identity + + Arguments: + 1. wav_dir (str): path to the identity's raw_wav folder + 2. mel_home_dir (str): path to the identity's raw_wav folder + 3. dataset (str): 'vox1' or 'vox2' + ''' + spkid = wav_dir.split('/')[-1] + # In case the input path ends with '/' + if spkid == '': + spkid = wav_dir.split('/')[-2] + if dataset == 'vox1': + name = self.vox1_id2name[spkid] + # elif dataset == 'vox2': + # name = self.vox2_id2name[spkid] + else: + raise ValueError("Invalid dataset argument") + #print(name) + + # Create mel_gram directory of the speaker + mel_dir = os.path.join(mel_home_dir, name) + gfile.mkdir(mel_dir) + + clipids = os.listdir(wav_dir) + for clipid in clipids: + clip_dir = os.path.join(wav_dir, clipid) + wav_files = os.listdir(clip_dir) + for wav_file in wav_files: + # Read and process the wav + wav_path = os.path.join(clip_dir, wav_file) + try: + wavid = wav_file.replace('.wav', '').replace('.m4a', '') + pickle_name = "{}_{}_{}.pickle".format( + spkid, clipid, wavid) + pickle_path = os.path.join( + mel_dir, pickle_name) + if os.path.exists(pickle_path): + # Skip if exists + continue + # Vox1 use .wav format, Vox2 use .m4a format + log_mel = wav_to_mel(wav_path) + pickle_dict = { + 'LogMel_Features': log_mel, + 'spkid': spkid, + 'clipid': clipid, + 'wavid': wavid + } + pickle.dump( + pickle_dict, + open(pickle_path, "wb") + ) + except IndexError: + pass + gc.collect() + + def get_wav_dirs(self): + ''' + Generate a list containing paths to the wav_dir of all the speakers + ''' + # The original VoxCeleb dataset comes with test set and dev set + vox1_dev = os.path.join(vox1_raw, 'dev') + vox1_test = os.path.join(vox1_raw, 'test') + # vox2_dev = os.path.join(vox2_raw, 'dev') + # vox2_test = os.path.join(vox2_raw, 'test') + # Get Vox1 wav_dir paths + vox1_wav_dirs = [] + for wav_dir in os.listdir(vox1_dev): + vox1_wav_dirs.append(os.path.join(vox1_dev, wav_dir)) + for wav_dir in os.listdir(vox1_test): + vox1_wav_dirs.append(os.path.join(vox1_test, wav_dir)) + # Get Vox2 wav_dir paths + # vox2_wav_dirs = [] + # for wav_dir in os.listdir(vox2_dev): + # vox2_wav_dirs.append(os.path.join(vox2_dev, wav_dir)) + # for wav_dir in os.listdir(vox2_test): + # vox2_wav_dirs.append(os.path.join(vox2_test, wav_dir)) + self.vox1_wav_dirs = vox1_wav_dirs + # self.vox2_wav_dirs = vox2_wav_dirs + return 0 + + def create_output_dirs(self): + self.vox1_mel = os.path.join(VOX_DIR, 'vox1', 'mel_spectrograms') + # self.vox2_mel = os.path.join(VOX_DIR, 'vox2', 'mel_spectrograms') + if not gfile.exists(self.vox1_mel): + gfile.mkdir(self.vox1_mel) + # gfile.mkdir(self.vox2_mel) + + def _worker(self, job_id, infos): + for i, info in enumerate(infos): + self.convert_identity(info[0], info[1], info[2]) + print('job #{} prcess {} {} done'.format(job_id, i, info[0])) + shutil.rmtree(info[0]) # remove complete file + + def convert_wav_to_mel(self, n_jobs=1): + + infos = [] + for wav_dir in self.vox1_wav_dirs: + infos.append((wav_dir, self.vox1_mel, 'vox1')) + print(len(infos)) + # l1 = len(infos) + # for wav_dir in self.vox2_wav_dirs: + # infos.append((wav_dir, self.vox2_mel, 'vox2')) + # print(len(infos) - l1) + + n_wav_dirs = len(infos) + n_jobs = n_jobs if n_jobs <= n_wav_dirs else n_wav_dirs + n_wav_dirs_per_job = n_wav_dirs // n_jobs + process_index = [] + for ii in range(n_jobs): + process_index.append([ii*n_wav_dirs_per_job, (ii+1)*n_wav_dirs_per_job]) + if n_jobs * n_wav_dirs_per_job != n_wav_dirs: + process_index[-1][-1] = n_wav_dirs + + futures = set() + with ProcessPoolExecutor() as executor: + for job_id in range(n_jobs): + # future = executor.submit(_worker, process_index[job_id][0], process_index[job_id][1]) + future = executor.submit(self._worker, job_id, infos[process_index[job_id][0]:process_index[job_id][1]]) + futures.add(future) + print('submit job {}, {}-{}'.format(job_id, process_index[job_id][0], process_index[job_id][1])) + for future in as_completed(futures): + pass + + print("Done.") + + + +def main(): + + import argparse + parser = argparse.ArgumentParser() + parser.add_argument('--n_jobs', '-n_jobs', type=int, default=5) + args = parser.parse_args() + + wav_convertor = WavConvertor() + wav_convertor.convert_wav_to_mel(args.n_jobs) + #gfile.mkdir('./data/test') + #wav_convertor.convert_identity( + # 'data/VoxCeleb/raw_wav/vox1/dev/id10001/', + # './data/test', 'vox1') + + dir_path = './sf2f/data/VoxCeleb/vox1/mel_spectrograms' # wav_convertor.vox1_mel + filtering_pickle(dir_path) + + +if __name__ == '__main__': + print(os.listdir(VOX_DIR)) + main() diff --git a/mlflow/train/sf2f/scripts/create_split_json.py b/mlflow/train/sf2f/scripts/create_split_json.py new file mode 100644 index 0000000..3bb5b8f --- /dev/null +++ b/mlflow/train/sf2f/scripts/create_split_json.py @@ -0,0 +1,88 @@ +''' +This script generates a train/test/val split json for VoxCeleb dataset + +vox1_meta.csv could be download from VoxCeleb official website: + https://www.robots.ox.ac.uk/~vgg/data/voxceleb/meta/vox1_meta.csv +''' + + +import os +import json +import pandas as pd + +VOX_DIR = os.path.join('/home/data/VoxCeleb') +vox1_meta_csv = os.path.join(VOX_DIR, 'vox1', 'vox1_meta.csv') +# vox2_meta_csv = os.path.join(VOX_DIR, 'vox2', 'full_vox2_meta.csv') +# output: +split_json = os.path.join(VOX_DIR, 'split.json') + + +def main(): + vox1_df = pd.read_csv(vox1_meta_csv, sep='\t') + # vox2_df = pd.read_csv(vox2_meta_csv, sep=',') + + print(vox1_df.head()) + # print(vox2_df.head()) + + split_dict = { + 'vox1': {'train':[], 'val':[], 'test':[]}, + # 'vox2': {'train':[], 'val':[], 'test':[]} + } + + for i in range(len(vox1_df)): + name = vox1_df['VGGFace1 ID'].iloc[i] + if i % 10 == 8: + split_dict['vox1']['test'].append(name) + elif i % 10 == 9: + split_dict['vox1']['val'].append(name) + else: + split_dict['vox1']['train'].append(name) + + # for i in range(len(vox2_df)): + # name = vox2_df['Name'].iloc[i] + # if i % 10 == 8: + # split_dict['vox2']['test'].append(name) + # elif i % 10 == 9: + # split_dict['vox2']['val'].append(name) + # else: + # split_dict['vox2']['train'].append(name) + + ''' + for i in range(len(vox1_df)): + name = vox1_df['VGGFace1 ID'].iloc[i] + set = vox1_df['Set'].iloc[i] + if set == 'test': + split_dict['vox1']['test'].append(name) + if set == 'dev': + if i % 10 == 9: + split_dict['vox1']['val'].append(name) + else: + split_dict['vox1']['train'].append(name) + + for i in range(len(vox2_df)): + name = vox2_df['Name'].iloc[i] + set = vox2_df['Set'].iloc[i] + if set == 'test': + split_dict['vox2']['test'].append(name) + if set == 'dev': + if i % 10 == 9: + split_dict['vox2']['val'].append(name) + else: + split_dict['vox2']['train'].append(name) + ''' + + print(len(split_dict['vox1']['train']), + len(split_dict['vox1']['val']), + len(split_dict['vox1']['test'])) + # print(len(split_dict['vox2']['train']), + # len(split_dict['vox2']['val']), + # len(split_dict['vox2']['test'])) + + with open(split_json, 'w') as outfile: + json.dump(split_dict, outfile) + + return 0 + + +if __name__ == '__main__': + main() diff --git a/mlflow/train/sf2f/scripts/download_vggface_weights.sh b/mlflow/train/sf2f/scripts/download_vggface_weights.sh new file mode 100644 index 0000000..2d59ada --- /dev/null +++ b/mlflow/train/sf2f/scripts/download_vggface_weights.sh @@ -0,0 +1,4 @@ +mkdir './scripts/weights/' +wget --load-cookies /tmp/cookies.txt \ + "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1A94PAAnwk6L7hXdBXLFosB_s0SzEhAFU' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1A94PAAnwk6L7hXdBXLFosB_s0SzEhAFU" \ + -O 'scripts/weights/resnet50_ft_weight.pkl' && rm -rf /tmp/cookies.txt \ No newline at end of file diff --git a/mlflow/train/sf2f/scripts/install_requirements.py b/mlflow/train/sf2f/scripts/install_requirements.py new file mode 100644 index 0000000..b531402 --- /dev/null +++ b/mlflow/train/sf2f/scripts/install_requirements.py @@ -0,0 +1,50 @@ +import os +from multiprocessing import Process + + +def pip_install(package): + cmd = 'pip install {}'.format(package) + print(cmd) + try: + os.system(cmd) + return 0 + except: + print('###########################') + print('Exception') + print('###########################') + pip_install(package) + + +def txt2list(txt_path): + ''' + Read a txt file and return a list + Arguments: + txt_path (str): path to save the text file + ''' + output = [] + f = open(txt_path, 'r') + for line in f.readlines(): + output.append(line.replace('\n', '')) + f.close() + print('{} loaded.'.format(txt_path)) + return output + + +def install_once(): + packages = txt2list('./requirements.txt') + procs = [] + + # instantiating process with arguments + for package in packages: + proc = Process(target=pip_install, args=(package,)) + procs.append(proc) + proc.start() + + # complete the processes + for proc in procs: + proc.join() + + +if __name__ == "__main__": # confirms that the code is under main function + for i in range(100): + install_once() diff --git a/mlflow/train/sf2f/scripts/print_args.py b/mlflow/train/sf2f/scripts/print_args.py new file mode 100644 index 0000000..5ccaa26 --- /dev/null +++ b/mlflow/train/sf2f/scripts/print_args.py @@ -0,0 +1,22 @@ +""" +Tiny utility to print the command-line args used for a checkpoint +""" + + +import argparse +import torch + + +parser = argparse.ArgumentParser() +parser.add_argument('checkpoint') + + +def main(args): + checkpoint = torch.load(args.checkpoint, map_location='cpu') + for k, v in checkpoint['args'].items(): + print(k, v) + + +if __name__ == '__main__': + args = parser.parse_args() + main(args) diff --git a/mlflow/train/sf2f/scripts/sample_mel_spectrograms.py b/mlflow/train/sf2f/scripts/sample_mel_spectrograms.py new file mode 100644 index 0000000..deb63a8 --- /dev/null +++ b/mlflow/train/sf2f/scripts/sample_mel_spectrograms.py @@ -0,0 +1,52 @@ +''' +This file samples several mel spectrograms from the VoxCeleb Dataset, and + visualize them as png images +''' + + +import os +import PIL + +import sys +sys.path.append('./') +#print(sys.path) +from datasets import VoxDataset, fast_mel_deprocess_batch +from utils.visualization.plot import plot_mel_spectrogram #get_np_plot, +from tensorflow.io.gfile import mkdir + + +VOX_DIR = os.path.join('./data', 'VoxCeleb') +output_dir = os.path.join('./output', 'sampled_mel_spectrograms') +mkdir(output_dir) + + +def main(): + vox_dataset = VoxDataset( + data_dir=VOX_DIR, + image_size=(64, 64), + nframe_range=(300, 600), + face_type='masked', + image_normalize_method='imagenet', + mel_normalize_method='vox_mel', + mel_seg_window_stride=(125, 63), + split_set='test', + split_json=os.path.join(VOX_DIR, 'split.json')) + + log_mels = vox_dataset.get_all_mel_segments_of_id(5) + + log_mels_de = fast_mel_deprocess_batch(log_mels, 'vox_mel') + + for i in range(len(log_mels_de)): + log_mel = log_mels_de[i].cpu().detach().numpy() + buf = plot_mel_spectrogram( + log_mel, + colorbar=False, + label=False, + coordinate=False, + remove_boarder=True) + log_mel_img = PIL.Image.open(buf) + log_mel_img.save(os.path.join(output_dir, '{}.png'.format(i))) + + +if __name__ == '__main__': + main() diff --git a/mlflow/train/sf2f/scripts/strip_checkpoint.py b/mlflow/train/sf2f/scripts/strip_checkpoint.py new file mode 100644 index 0000000..f91831b --- /dev/null +++ b/mlflow/train/sf2f/scripts/strip_checkpoint.py @@ -0,0 +1,53 @@ +""" +Checkpoints saved by train.py contain not only model parameters but also +optimizer states, losses, a history of generated images, and other statistics. +This information is very useful for development and debugging models, but makes +the saved checkpoints very large. This utility script strips away all extra +information from saved checkpoints, keeping only the saved models. +""" + + +import argparse +import os +import torch + + +parser = argparse.ArgumentParser() +parser.add_argument('--input_checkpoint', default=None) +parser.add_argument('--output_checkpoint', default=None) +parser.add_argument('--input_dir', default=None) +parser.add_argument('--output_dir', default=None) +parser.add_argument('--keep_discriminators', type=int, default=1) + + +def main(args): + if args.input_checkpoint is not None: + handle_checkpoint(args, args.input_checkpoint, args.output_checkpoint) + if args.input_dir is not None: + handle_dir(args, args.input_dir, args.output_dir) + + +def handle_dir(args, input_dir, output_dir): + for fn in os.listdir(input_dir): + if not fn.endswith('.pt'): + continue + input_path = os.path.join(input_dir, fn) + output_path = os.path.join(output_dir, fn) + handle_checkpoint(args, input_path, output_path) + + +def handle_checkpoint(args, input_path, output_path): + input_checkpoint = torch.load(input_path) + keep = ['args', 'model_state', 'model_kwargs'] + if args.keep_discriminators == 1: + keep += ['d_img_state', 'd_img_kwargs', 'd_obj_state', 'd_obj_kwargs'] + output_checkpoint = {} + for k, v in input_checkpoint.items(): + if k in keep: + output_checkpoint[k] = v + torch.save(output_checkpoint, output_path) + + +if __name__ == '__main__': + args = parser.parse_args() + main(args) diff --git a/mlflow/train/sf2f/scripts/strip_old_args.py b/mlflow/train/sf2f/scripts/strip_old_args.py new file mode 100644 index 0000000..578cece --- /dev/null +++ b/mlflow/train/sf2f/scripts/strip_old_args.py @@ -0,0 +1,55 @@ +""" +This utility script removes deprecated kwargs in checkpoints. +""" + + +import argparse +import os +import torch + + +parser = argparse.ArgumentParser() +parser.add_argument('--input_checkpoint', default=None) +parser.add_argument('--input_dir', default=None) + + +DEPRECATED_KWARGS = { + 'model_kwargs': [ + 'vec_noise_dim', 'gconv_mode', 'box_anchor', 'decouple_obj_predictions', + ], +} + + +def main(args): + got_checkpoint = (args.input_checkpoint is not None) + got_dir = (args.input_dir is not None) + assert got_checkpoint != got_dir, "Must give exactly one of checkpoint or dir" + if got_checkpoint: + handle_checkpoint(args.input_checkpoint) + elif got_dir: + handle_dir(args.input_dir) + + +def handle_dir(dir_path): + for fn in os.listdir(dir_path): + if not fn.endswith('.pt'): + continue + checkpoint_path = os.path.join(dir_path, fn) + handle_checkpoint(checkpoint_path) + + +def handle_checkpoint(checkpoint_path): + print('Stripping old args from checkpoint "%s"' % checkpoint_path) + checkpoint = torch.load(checkpoint_path) + for group, deprecated in DEPRECATED_KWARGS.items(): + assert group in checkpoint + for k in deprecated: + if k in checkpoint[group]: + print('Removing key "%s" from "%s"' % (k, group)) + del checkpoint[group][k] + torch.save(checkpoint, checkpoint_path) + + +if __name__ == '__main__': + args = parser.parse_args() + main(args) diff --git a/mlflow/train/sf2f/scripts/watch_data.py b/mlflow/train/sf2f/scripts/watch_data.py new file mode 100644 index 0000000..8cd319c --- /dev/null +++ b/mlflow/train/sf2f/scripts/watch_data.py @@ -0,0 +1,111 @@ +import os +import numpy as np +import random +import pickle +import json +import PIL +from PIL import Image + +DIR = './data/VoxCeleb/' + + +def main(): + dir_1 = os.path.join(DIR, 'vox1/masked_faces') + names = os.listdir(dir_1) + print("Length of names: ", len(names)) # 1187 + img_num_1 = 0 + all_W1, all_H1 = 0, 0 + num1_50, num1_100, num1_200, num1_300, num1_400, num1_600 = 0, 0, 0, 0, 0, 0 + for i, name in enumerate(names): + path = os.path.join(dir_1, name) + images = os.listdir(path) + for j, image in enumerate(images): + image_path = os.path.join(path, image) + with open(image_path, 'rb') as f: + with PIL.Image.open(f) as image: + WW, HH = image.size + img_num_1 += 1 + all_W1 += WW + all_H1 += HH + # print("PIL Image:", np.array(image)) + if (WW >= 50 and WW < 100) or (HH >= 50 and HH < 100): + num1_50 += 1 + elif (WW >= 100 and WW < 200) or (HH >= 100 and HH < 200): + num1_100 += 1 + elif (WW >= 200 and WW < 300) or (HH >= 200 and HH < 300): + num1_200 += 1 + elif (WW >= 300 and WW < 400) or (HH >= 300 and HH < 400): + num1_300 += 1 + elif (WW >= 400 and WW < 600) or (HH >= 400 and HH < 600): + num1_400 += 1 + elif (WW >= 600) or (HH >= 600): + num1_600 += 1 + + print("======== Vox1 =========") + print("Number of vox1: ", img_num_1) + print("Average W: ", all_W1/img_num_1) + print("Average H: ", all_H1/img_num_1) + print("50~100: ", num1_50) + print("100~200: ", num1_100) + print("200~300: ", num1_200) + print("300~400: ", num1_300) + print("400~600: ", num1_400) + print("600+: ", num1_600) + print("\n") + + dir_2 = os.path.join(DIR, 'vox2/masked_faces') + names = os.listdir(dir_2) + print("Length of names: ", len(names)) # 2850 + img_num_2 = 0 + all_W2, all_H2 = 0, 0 + num2_50, num2_100, num2_200, num2_300, num2_400, num2_600 = 0, 0, 0, 0, 0, 0 + for i, name in enumerate(names): + path = os.path.join(dir_2, name) + images = os.listdir(path) + for j, image in enumerate(images): + image_path = os.path.join(path, image) + with open(image_path, 'rb') as f: + with PIL.Image.open(f) as image: + WW, HH = image.size + img_num_2 += 1 + all_W2 += WW + all_H2 += HH + # print("PIL Image:", np.array(image)) + if (WW >= 50 and WW < 100) or (HH >= 50 and HH < 100): + num2_50 += 1 + elif (WW >= 100 and WW < 200) or (HH >= 100 and HH < 200): + num2_100 += 1 + elif (WW >= 200 and WW < 300) or (HH >= 200 and HH < 300): + num2_200 += 1 + elif (WW >= 300 and WW < 400) or (HH >= 300 and HH < 400): + num2_300 += 1 + elif (WW >= 400 and WW < 600) or (HH >= 400 and HH < 600): + num2_400 += 1 + elif (WW >= 600) or (HH >= 600): + num2_600 += 1 + + print("======== Vox2 =========") + print("Number of vox2: ", img_num_2) + print("Average W: ", all_W2/img_num_2) + print("Average H: ", all_H2/img_num_2) + print("50~100: ", num2_50) + print("100~200: ", num2_100) + print("200~300: ", num2_200) + print("300~400: ", num2_300) + print("400~600: ", num2_400) + print("600+: ", num2_600) + print("\n") + + print("======== ALL DATASET ========") + print("Number of images: ", img_num_1 + img_num_2) + print("Average W: ", (all_W1 + all_W2) / (img_num_1 + img_num_2)) + print("Average H: ", (all_H1 + all_H2) / (img_num_1 + img_num_2)) + print("50~100: ", num1_50 + num2_50) + print("100~200: ", num1_100 + num2_100) + print("200~300: ", num1_200 + num2_200) + print("300~400: ", num1_300 + num2_300) + print("400~600: ", num1_400 + num2_400) + print("600+: ", num1_600 + num2_600) + +if __name__ == '__main__': + main() diff --git a/mlflow/train/sf2f/train.py b/mlflow/train/sf2f/train.py new file mode 100644 index 0000000..ab8304e --- /dev/null +++ b/mlflow/train/sf2f/train.py @@ -0,0 +1,854 @@ +import functools +import os +import json +import math +from collections import defaultdict +import random +import time +import pyprind +import glog as log +from shutil import copyfile + +import numpy as np +import torch +import torch.optim as optim +import torch.nn as nn +import torch.nn.functional as F +from torch.utils.data.dataloader import default_collate +import mlflow + +from datasets import imagenet_deprocess_batch +import datasets +import models +import models.perceptual +from utils.losses import get_gan_losses +from utils import timeit, LossManager +from options.opts import args, options +from utils.logger import Logger +from utils import tensor2im +from utils.utils import load_my_state_dict +# losseds need to be modified +from utils.training_utils import add_loss, check_model, calculate_model_losses +from utils.training_utils import visualize_sample +from utils.evaluate import evaluate +from utils.evaluate_fid import evaluate_fid +from utils.s2f_evaluator import S2fEvaluator +torch.backends.cudnn.benchmark = True + + +def main(): + global args, options + print(args) + print(options['data']) + # Set random seed, deterministic + torch.cuda.manual_seed(args.seed) + torch.manual_seed(args.seed) + np.random.seed(args.seed) + random.seed(args.seed) + torch.backends.cudnn.deterministic = True + torch.backends.cudnn.benchmark = False + #visualize_attn=options['eval'].get('visualize_attn', False) + #print('########### visualize_attn: {} ###########'.format(visualize_attn)) + float_dtype = torch.cuda.FloatTensor + long_dtype = torch.cuda.LongTensor + log.info("Building loader...") + train_loader, val_loader, test_loader = \ + datasets.build_loaders(options["data"]) + # Fuser Logic + if args.train_fuser_only: + train_loader.collate_fn = default_collate + train_loader.dataset.return_mel_segments = True + train_loader.dataset.mel_segments_rand_start = True + val_loader.collate_fn = default_collate + val_loader.dataset.return_mel_segments = True + s2f_face_gen_mode = 'naive' + else: + s2f_face_gen_mode = 'average_facenet_embedding' + # End of fuser logic + #s2f_val_evaluator = S2fEvaluator(val_loader, options) + s2f_val_evaluator = S2fEvaluator( + val_loader, + options, + extraction_size=100, #[100,200,300], + hq_emb_dict=True, + face_gen_mode=s2f_face_gen_mode) + + # [:len(checkpoint[term_name]['id_classifier.bias'])] class 맞추기 + # if restore_path is not None and os.path.isfile(restore_path): + train_loader.dataset.available_names = train_loader.dataset.available_names[:729] + + # Get total number of people in training set + num_train_id = len(train_loader.dataset) + # Initialize softmax neuron value + for ac_net in ['identity', 'identity_low', 'identity_mid', 'identity_high']: + if options['discriminator'].get(ac_net) is not None: + options['discriminator'][ac_net]['num_id'] = num_train_id + + log.info("Building Generative Model...") + model, model_kwargs = models.build_model( + options["generator"], + image_size=options["data"]["image_size"], + checkpoint_start_from=args.checkpoint_start_from) + model.type(float_dtype) + # Fuser logic + if args.train_fuser_only: + # Hardcode to freeze batchnorm layers + model.eval() + if args.train_fuser_decoder: + model.encoder.train_fuser_only() + else: + model.train_fuser_only() + # End of fuser logic + print(model) + + optimizer = torch.optim.Adam( + filter(lambda x: x.requires_grad, model.parameters()), + lr=args.learning_rate, + betas=(args.beta1, 0.999),) + + if (options["optim"]["d_loss_weight"] < 0 or \ + options["optim"]["d_img_weight"] < 0): + # Ignore image discriminator + img_discriminator = None + d_img_kwargs = {} + log.info("Ignoring Image Discriminator.") + else: + img_discriminator, d_img_kwargs = models.build_img_discriminator( + options["discriminator"]) + log.info("Done Building Image Discriminator.") + + if (options["optim"]["d_loss_weight"] < 0 or \ + options["optim"]["ac_loss_weight"] < 0): + # Ignore AC discriminator + ac_discriminator = None + ac_img_kwargs = {} + log.info("Ignoring Auxilary Classifier Discriminator.") + else: + ac_discriminator, ac_img_kwargs = models.build_ac_discriminator( + options["discriminator"]) + #print('AC Discriminator:', ac_discriminator) + log.info("Done Building Auxilary Classifier Discriminator.") + + if (options["optim"]["d_loss_weight"] < 0 or \ + options["optim"].get("cond_loss_weight", -1) < 0): + # Ignore Conditional discriminator + cond_discriminator = None + cond_d_kwargs = {} + log.info("Ignoring Conditional Discriminator.") + else: + cond_discriminator, cond_d_kwargs = models.build_cond_discriminator( + options["discriminator"]) + #print('Conditional Discriminator:', cond_discriminator) + log.info("Done Building Conditional Discriminator.") + + perceptual_module = None + if options["optim"].get("perceptual_loss_weight", -1) > 0: + ploss_name = options.get("perceptual", {}).get("arch", "FaceNetLoss") + ploss_cos_weight = options["optim"].get("cos_percept_loss_weight", -1) + perceptual_module = getattr( + models.perceptual, + ploss_name)(cos_loss_weight=ploss_cos_weight) + log.info("Done Building Perceptual {} Module.".format(ploss_name)) + if ploss_cos_weight > 0: + log.info("Perceptual Cos Loss Weight: {}".format(ploss_cos_weight)) + else: + log.info("Ignoring Perceptual Module.") + + gan_g_loss, gan_d_loss = get_gan_losses(options["optim"]["gan_loss_type"]) + + optimizer_d_img = [] + if img_discriminator is not None: + for i in range(len(img_discriminator)): + img_discriminator[i].type(float_dtype) + img_discriminator[i].train() + print(img_discriminator[i]) + optimizer_d_img.append(torch.optim.Adam( + filter(lambda x: x.requires_grad, + img_discriminator[i].parameters()), + lr=args.learning_rate, + betas=(args.beta1, 0.999),)) + + optimizer_d_ac = [] + if ac_discriminator is not None: + for i in range(len(ac_discriminator)): + ac_discriminator[i].type(float_dtype) + ac_discriminator[i].train() + print(ac_discriminator[i]) + optimizer_d_ac.append(torch.optim.Adam( + filter(lambda x: x.requires_grad, + ac_discriminator[i].parameters()), + lr=args.learning_rate, + betas=(args.beta1, 0.999),)) + + optimizer_cond_d = [] + if cond_discriminator is not None: + for i in range(len(cond_discriminator)): + cond_discriminator[i].type(float_dtype) + cond_discriminator[i].train() + print(cond_discriminator[i]) + optimizer_cond_d.append(torch.optim.Adam( + filter(lambda x: x.requires_grad, + cond_discriminator[i].parameters()), + lr=args.learning_rate, + betas=(args.beta1, 0.999),)) + + restore_path = None + if args.resume is not None: + restore_path = '%s_with_model.pt' % args.checkpoint_name + restore_path = os.path.join( + options["logs"]["output_dir"], args.resume, restore_path) + + if restore_path is not None and os.path.isfile(restore_path): + log.info('Restoring from checkpoint: {}'.format(restore_path)) + checkpoint = torch.load(restore_path) + model.load_state_dict(checkpoint['model_state']) + optimizer.load_state_dict(checkpoint['optim_state']) + + if img_discriminator is not None: + for i in range(len(img_discriminator)): + term_name = 'd_img_state_%d' % i + img_discriminator[i].load_state_dict(checkpoint[term_name]) + term_name = 'd_img_optim_state_%d' % i + optimizer_d_img[i].load_state_dict(checkpoint[term_name]) + + if ac_discriminator is not None: + for i in range(len(ac_discriminator)): + term_name = 'd_ac_state_%d' % i + ac_discriminator[i].load_state_dict(checkpoint[term_name]) + term_name = 'd_ac_optim_state_%d' % i + optimizer_d_ac[i].load_state_dict(checkpoint[term_name]) + + if cond_discriminator is not None: + for i in range(len(cond_discriminator)): + term_name = 'd_img_state_%d' % i + cond_discriminator[i].load_state_dict(checkpoint[term_name]) + term_name = 'd_img_optim_state_%d' % i + optimizer_cond_d[i].load_state_dict(checkpoint[term_name]) + + t = checkpoint['counters']['t'] + 1 + if 0 <= args.eval_mode_after <= t: + model.eval() + else: + model.train() + # Reset epoch here later + start_epoch = checkpoint['counters']['epoch'] + 1 + log_path = os.path.join(options["logs"]["output_dir"], args.resume,) + lr = checkpoint.get('learning_rate', args.learning_rate) + best_inception = checkpoint["counters"].get("best_inception", (0., 0.)) + best_vfs = checkpoint["counters"].get("best_vfs", (0., 0.)) + best_recall_1 = checkpoint["counters"].get("best_recall_1", 0.) + best_recall_5 = checkpoint["counters"].get("best_recall_5", 0.) + best_recall_10 = checkpoint["counters"].get("best_recall_10", 0.) + best_cos = checkpoint["counters"].get("best_cos", 0.) + best_L1 = checkpoint["counters"].get("best_L1", 100000.0) + options = checkpoint.get("options", options) + else: + t, start_epoch, best_inception, best_vfs = 0, 0, (0., 0.), (0., 0.) + best_recall_1, best_recall_5, best_recall_10 = 0.0, 0.0, 0.0 + best_cos, best_L1 = 0.0, 100000.0 + lr = args.learning_rate + checkpoint = { + 'args': args.__dict__, + 'options': options, + 'model_kwargs': model_kwargs, + 'd_img_kwargs': d_img_kwargs, + 'train_losses': defaultdict(list), + 'checkpoint_ts': [], + 'train_batch_data': [], + 'train_samples': [], + 'train_iou': [], + 'train_inception': [], + 'lr': [], + 'val_batch_data': [], + 'val_samples': [], + 'val_losses': defaultdict(list), + 'val_iou': [], + 'val_inception': [], + 'norm_d': [], + 'norm_g': [], + 'counters': { + 't': None, + 'epoch': None, + 'best_inception': None, + 'best_vfs': None, + 'best_recall_1': None, + 'best_recall_5': None, + 'best_recall_10': None, + 'best_cos': None, + 'best_L1': None, + }, + 'model_state': None, + 'model_best_state': None, + 'optim_state': None, + 'd_img_state': None, + 'd_img_best_state': None, + 'd_img_optim_state': None, + 'd_ac_state': None, + 'd_ac_optim_state': None, + } + + log_path = os.path.join( + options["logs"]["output_dir"], + options["logs"]["name"] + "-" + time.strftime("%Y%m%d-%H%M%S") + ) + + ### Fuser Logic + if args.pretrained_path is not None and \ + os.path.isfile(args.pretrained_path): + # Load + log.info('Loading Pretrained Model: {}'.format(args.pretrained_path)) + pre_checkpoint = torch.load(args.pretrained_path) + #model.load_state_dict(pre_checkpoint['model_state']) + load_my_state_dict(model, pre_checkpoint['model_state']) + #optimizer.load_state_dict(pre_checkpoint['optim_state']) + + if img_discriminator is not None: + for i in range(len(img_discriminator)): + term_name = 'd_img_state_%d' % i + img_discriminator[i].load_state_dict(pre_checkpoint[term_name]) + #term_name = 'd_img_optim_state_%d' % i + #optimizer_d_img[i].load_state_dict(pre_checkpoint[term_name]) + + if ac_discriminator is not None: + for i in range(len(ac_discriminator)): + term_name = 'd_ac_state_%d' % i + ac_discriminator[i].load_state_dict(pre_checkpoint[term_name]) + #term_name = 'd_ac_optim_state_%d' % i + #optimizer_d_ac[i].load_state_dict(pre_checkpoint[term_name]) + ### End of fuser logic + logger = Logger(log_path) + log.info("Logging to: {}".format(log_path)) + # save the current config yaml + copyfile(args.path_opts, + os.path.join(log_path, options["logs"]["name"] + '.yaml')) + + model = nn.DataParallel(model.cuda()) + if ac_discriminator is not None: + for i in range(len(ac_discriminator)): + ac_discriminator[i] = nn.DataParallel(ac_discriminator[i].cuda()) + if img_discriminator is not None: + for i in range(len(img_discriminator)): + img_discriminator[i] = nn.DataParallel(img_discriminator[i].cuda()) + if cond_discriminator is not None: + for i in range(len(cond_discriminator)): + cond_discriminator[i] = nn.DataParallel(cond_discriminator[i].cuda()) + perceptual_module = nn.DataParallel(perceptual_module.cuda()) if \ + perceptual_module else None + + if args.evaluate: + assert args.resume is not None + if args.evaluate_train: + log.info("Evaluting the training set.") + train_mean, train_std, train_vfs_mean, train_vfs_std = \ + evaluate(model, train_loader, options) + log.info("Inception score: {} ({})".format(train_mean, train_std)) + log.info("VggFace score: {} ({})".format( + train_vfs_mean, train_vfs_std)) + log.info("Evaluting the validation set.") + val_mean, val_std, vfs_mean, vfs_std = evaluate( + model, val_loader, options) + log.info("Inception score: {} ({})".format(val_mean, val_std)) + log.info("VggFace score: {} ({})".format(vfs_mean, vfs_std)) + fid_score = evaluate_fid(model, val_loader, options) + log.info("FID score: {}".format(fid_score)) + return 0 + + + got_best_IS = True + got_best_VFS = True + got_best_R1 = True + got_best_R5 = True + got_best_R10 = True + got_best_cos = True + got_best_L1 = True + others = None + for epoch in range(start_epoch, args.epochs): + if epoch >= args.eval_mode_after and model.training: + log.info('[Epoch {}/{}] switching to eval mode'.format( + epoch, args.epochs)) + model.eval() + if epoch == args.eval_mode_after: + optimizer = optim.Adam( + filter(lambda x: x.requires_grad, model.parameters()), + lr=lr, + betas=(args.beta1, 0.999),) + if epoch >= args.disable_l1_loss_after and \ + options["optim"]["l1_pixel_loss_weight"] > 1e-10: + # + log.info('[Epoch {}/{}] Disable L1 Loss'.format(epoch, args.epochs)) + options["optim"]["l1_pixel_loss_weight"] = 0 + start_time = time.time() + for iter, batch in enumerate(pyprind.prog_bar( + train_loader, + title="[Epoch {}/{}]".format(epoch, args.epochs), + width=50)): + # An iteration + if args.timing: + print("Loading Time: {} ms".format( + (time.time() - start_time) * 1000)) + t += 1 + ######### unpack the data ######### + imgs, log_mels, human_ids = batch + imgs = imgs.cuda() + log_mels = log_mels.type(float_dtype) + human_ids = human_ids.type(long_dtype) + ################################### + with timeit('forward', args.timing): + #model_out = model(imgs) + model_out = model(log_mels) + """ + imgs_pred: generated images + others: placeholder for other output + """ + imgs_pred, others = model_out + + if t % args.visualize_every == 0: + #print('Performing Visualization...') + training_status = model.training + model.eval() + samples = visualize_sample( + model, + imgs, + log_mels, + options["data"]["data_opts"]["image_normalize_method"], + visualize_attn=options['eval'].get('visualize_attn', False)) + model.train(mode=training_status) + logger.image_summary(samples, t, tag="vis") + + with timeit('G_loss', args.timing): + #model_boxes = None + # Skip the pixel loss if not using GT boxes + skip_pixel_loss = False + + # calculate L1 loss between imgs and imgs_self + total_loss, losses = calculate_model_losses( + options["optim"], skip_pixel_loss, imgs, imgs_pred,) + + if img_discriminator is not None: + for i in range(len(img_discriminator)): + # TODO: Here we need to choose the two methods: + # 1. determine whether imgs_pred is tuple or not + # 2. change the return (imgs_pred) of model to be tuple + if isinstance(imgs_pred, tuple): + scores_fake = img_discriminator[i](imgs_pred[i]) + else: + scores_fake = img_discriminator[i](imgs_pred) + weight = options["optim"]["d_loss_weight"] * \ + options["optim"]["d_img_weight"] + loss_name = 'g_gan_img_loss_%d' % i + total_loss = add_loss(total_loss, + gan_g_loss(scores_fake), losses, loss_name, weight) + + if ac_discriminator is not None: + for i in range(len(ac_discriminator)): + if isinstance(imgs_pred, tuple): + scores_fake, ac_loss = ac_discriminator[i]( + imgs_pred[i], human_ids) + else: + scores_fake, ac_loss = ac_discriminator[i]( + imgs_pred, human_ids) + weight = options["optim"]["d_loss_weight"] * \ + options["optim"]["ac_loss_weight"] + loss_name = 'ac_loss_%d' % i + total_loss = add_loss(total_loss, + ac_loss.mean(), + losses, + loss_name, + weight) + loss_name = 'g_gan_ac_loss_%d' % i + total_loss = add_loss(total_loss, + gan_g_loss(scores_fake), + losses, + loss_name, + weight) + + if cond_discriminator is not None: + for i in range(len(cond_discriminator)): + # TODO: check whether condition is in others or not ? + cond_vecs = others['cond'] + if isinstance(imgs_pred, tuple): + scores_fake = cond_discriminator[i]( + imgs_pred[i], cond_vecs) + else: + scores_fake = cond_discriminator[i]( + imgs_pred, cond_vecs) + weight = options["optim"]["d_loss_weight"] * \ + options["optim"]["cond_loss_weight"] + loss_name = 'g_cond_loss_%d' % i + total_loss = add_loss(total_loss, + gan_g_loss(scores_fake), losses, loss_name, weight) + + if options["optim"].get("perceptual_loss_weight", -1) > 0: + if isinstance(imgs_pred, tuple): + # Multi-Resolution Pixel Loss + for i, img_pred in enumerate(imgs_pred): + loss_name = 'img_perceptual_loss_%d' % i + img = imgs + while img.size()[2] != img_pred.size()[2]: + img = F.interpolate( + img, scale_factor=0.5, mode='nearest') + if s2f_val_evaluator.do_deprocess_and_preprocess: + img_pred_in = \ + s2f_val_evaluator.deprocess_and_preprocess( + img_pred) + img_in = \ + s2f_val_evaluator.deprocess_and_preprocess( + img) + if s2f_val_evaluator.crop_faces: + img_pred_in = \ + s2f_val_evaluator.crop_vgg_box(img_pred_in) + img_in = s2f_val_evaluator.crop_vgg_box(img_in) + perceptual_loss = perceptual_module( + img_pred_in, img_in) + perceptual_loss = perceptual_loss.mean() + weight = options["optim"]["perceptual_loss_weight"] + total_loss = add_loss(total_loss, perceptual_loss, + losses, loss_name, + weight) + else: + if s2f_val_evaluator.do_deprocess_and_preprocess: + imgs_pred_in = \ + s2f_val_evaluator.deprocess_and_preprocess( + imgs_pred) + imgs_in = \ + s2f_val_evaluator.deprocess_and_preprocess(imgs) + if s2f_val_evaluator.crop_faces: + imgs_pred_in = \ + s2f_val_evaluator.crop_vgg_box(imgs_pred_in) + imgs_in = s2f_val_evaluator.crop_vgg_box(imgs_in) + perceptual_loss = perceptual_module( + imgs_pred_in, imgs_in) + perceptual_loss = perceptual_loss.mean() + weight = options["optim"]["perceptual_loss_weight"] + total_loss = add_loss(total_loss, perceptual_loss, + losses, "img_perceptual_loss", + weight) + + losses['total_loss'] = total_loss.item() + if not math.isfinite(losses['total_loss']): + log.warn('WARNING: Got loss = NaN, not backpropping') + continue + + optimizer.zero_grad() + with timeit('backward', args.timing): + total_loss.backward() + optimizer.step() + + total_loss_d = None + ac_loss_real = None + ac_loss_fake = None + d_losses = {} + + with timeit('D_loss', args.timing): + if img_discriminator is not None: + d_img_losses = LossManager() + for i in range(len(img_discriminator)): + if isinstance(imgs_pred, tuple): + imgs_fake = imgs_pred[i].detach() + else: + imgs_fake = imgs_pred.detach() + imgs_real = imgs.detach() + while imgs_real.size()[2] != imgs_fake.size()[2]: + imgs_real = F.interpolate( + imgs_real, scale_factor=0.5, mode='nearest') + + scores_fake = img_discriminator[i](imgs_fake) + scores_real = img_discriminator[i](imgs_real) + + d_img_gan_loss = gan_d_loss(scores_real, scores_fake) + d_img_losses.add_loss( + d_img_gan_loss, 'd_img_gan_loss_%d' % i) + + for i in range(len(img_discriminator)): + optimizer_d_img[i].zero_grad() + d_img_losses.total_loss.backward() + for i in range(len(img_discriminator)): + optimizer_d_img[i].step() + + if ac_discriminator is not None: + d_ac_losses = LossManager() + for i in range(len(ac_discriminator)): + if isinstance(imgs_pred, tuple): + imgs_fake = imgs_pred[i].detach() + else: + imgs_fake = imgs_pred.detach() + + imgs_real = imgs.detach() + while imgs_real.size()[2] != imgs_fake.size()[2]: + imgs_real = F.interpolate( + imgs_real, scale_factor=0.5, mode='nearest') + + scores_real, ac_loss_real= ac_discriminator[i]( + imgs_real, human_ids) + scores_fake, ac_loss_fake = ac_discriminator[i]( + imgs_fake, human_ids) + + d_ac_gan_loss = gan_d_loss(scores_real, scores_fake) + d_ac_losses.add_loss( + d_ac_gan_loss, 'd_ac_gan_loss_%d' % i) + d_ac_losses.add_loss( + ac_loss_real.mean(), 'd_ac_loss_real_%d' % i) + + for i in range(len(ac_discriminator)): + optimizer_d_ac[i].zero_grad() + d_ac_losses.total_loss.backward() + for i in range(len(ac_discriminator)): + optimizer_d_ac[i].step() + + if cond_discriminator is not None: + cond_d_losses = LossManager() + for i in range(len(cond_discriminator)): + if isinstance(imgs_pred, tuple): + imgs_fake = imgs_pred[i].detach() + else: + imgs_fake = imgs_pred.detach() + imgs_real = imgs.detach() + cond_vecs = others['cond'].detach() + while imgs_real.size()[2] != imgs_fake.size()[2]: + imgs_real = F.interpolate( + imgs_real, scale_factor=0.5, mode='nearest') + + scores_fake = cond_discriminator[i]( + imgs_fake, cond_vecs) + scores_real = cond_discriminator[i]( + imgs_real, cond_vecs) + + cond_d_gan_loss = gan_d_loss(scores_real, scores_fake) + cond_d_losses.add_loss( + cond_d_gan_loss, 'cond_d_gan_loss_%d' % i) + + for i in range(len(cond_discriminator)): + optimizer_cond_d[i].zero_grad() + cond_d_losses.total_loss.backward() + for i in range(len(cond_discriminator)): + optimizer_cond_d[i].step() + + # Logging generative model losses + for name, val in losses.items(): + logger.scalar_summary("loss/{}".format(name), val, t) + if img_discriminator is not None: + for name, val in d_img_losses.items(): + logger.scalar_summary("d_loss/{}".format(name), val, t) + if ac_discriminator is not None: + for name, val in d_ac_losses.items(): + logger.scalar_summary("d_loss/{}".format(name), val, t) + if cond_discriminator is not None: + for name, val in cond_d_losses.items(): + logger.scalar_summary("d_loss/{}".format(name), val, t) + start_time = time.time() + + if epoch % args.eval_epochs == 0: + log.info('[Epoch {}/{}] checking on val'.format( + epoch, args.epochs) + ) + val_results = check_model( + args, options, epoch, val_loader, model) + val_losses, val_samples, val_inception, val_vfs = val_results + # call evaluate_s2f_metrics() here + val_facenet_L2_dist, val_facenet_L1_dist, val_facenet_cos_sim, \ + val_recall_tuple, val_ih_sim = \ + s2f_val_evaluator.get_metrics( + model, recall_method='cos_sim', get_ih_sim=True) + val_recall_at_1, val_recall_at_2, val_recall_at_5, \ + val_recall_at_10, val_recall_at_20, \ + val_recall_at_50 = val_recall_tuple + # Update the best of metrics + if val_inception[0] > best_inception[0]: + got_best_IS = True + best_inception = val_inception + if val_vfs[0] > best_vfs[0]: + got_best_VFS = True + best_vfs = val_vfs + if val_recall_at_1 > best_recall_1: + got_best_R1 = True + best_recall_1 = val_recall_at_1 + if val_recall_at_5 > best_recall_5: + got_best_R5 = True + best_recall_5 = val_recall_at_5 + if val_recall_at_10 > best_recall_10: + got_best_R10 = True + best_recall_10 = val_recall_at_10 + if val_facenet_cos_sim > best_cos: + got_best_cos = True + best_cos = val_facenet_cos_sim + if val_facenet_L1_dist < best_L1: + got_best_L1 = True + best_L1 = val_facenet_L1_dist + checkpoint['counters']['best_inception'] = best_inception + checkpoint['counters']['best_vfs'] = best_vfs + checkpoint['val_samples'].append(val_samples) + # checkpoint['val_batch_data'].append(val_batch_data) + for k, v in val_losses.items(): + checkpoint['val_losses'][k].append(v) + logger.scalar_summary("ckpt/val_{}".format(k), v, epoch) + logger.scalar_summary("ckpt/val_inception", val_inception[0], epoch) + logger.scalar_summary("ckpt/val_facenet_L2_dist", + val_facenet_L2_dist, epoch) + logger.scalar_summary("ckpt/val_facenet_L1_dist", + val_facenet_L1_dist, epoch) + logger.scalar_summary("ckpt/val_facenet_cos_sim", + val_facenet_cos_sim, epoch) + logger.scalar_summary("ckpt/val_recall_at_1", + val_recall_at_1, epoch) + logger.scalar_summary("ckpt/val_recall_at_2", + val_recall_at_2, epoch) + logger.scalar_summary("ckpt/val_recall_at_5", + val_recall_at_5, epoch) + logger.scalar_summary("ckpt/val_recall_at_10", + val_recall_at_10, epoch) + logger.scalar_summary("ckpt/val_recall_at_20", + val_recall_at_20, epoch) + logger.scalar_summary("ckpt/val_recall_at_50", + val_recall_at_50, epoch) + logger.scalar_summary("ckpt/val_ih_sim", + val_ih_sim, epoch) + logger.scalar_summary("ckpt/val_vfs", + val_vfs[0], epoch) + # Add speech2face metrics here.. + # + logger.image_summary(val_samples, epoch, tag="ckpt_val") + # log.info('[Epoch {}/{}] val iou: {}'.format( + # epoch, args.epochs, val_avg_iou)) + log.info('[Epoch {}/{}] val inception score: {} ({})'.format( + epoch, args.epochs, val_inception[0], val_inception[1])) + log.info('[Epoch {}/{}] best inception scores: {} ({})'.format( + epoch, args.epochs, best_inception[0], best_inception[1])) + log.info('[Epoch {}/{}] val vfs scores: {} ({})'.format( + epoch, args.epochs, val_vfs[0], val_vfs[1])) + log.info('[Epoch {}/{}] best vfs scores: {} ({})'.format( + epoch, args.epochs, best_vfs[0], best_vfs[1])) + log.info('[Epoch {}/{}] val recall at 5: {}, '.format( + epoch, args.epochs, val_recall_at_5) + \ + 'best recall at 5: {}'.format(best_recall_5)) + log.info('[Epoch {}/{}] val recall at 10: {}, '.format( + epoch, args.epochs, val_recall_at_10) + \ + 'best recall at 10: {}'.format(best_recall_10)) + log.info('[Epoch {}/{}] val cosine similarity: {}, '.format( + epoch, args.epochs, val_facenet_cos_sim) + \ + 'best cosine similarity: {}'.format(best_cos)) + log.info('[Epoch {}/{}] val L1 distance: {}, '.format( + epoch, args.epochs, val_facenet_L1_dist) + \ + 'best L1 distance: {}'.format(best_L1)) + + checkpoint['model_state'] = model.module.state_dict() + + if img_discriminator is not None: + for i in range(len(img_discriminator)): + term_name = 'd_img_state_%d' % i + checkpoint[term_name] = \ + img_discriminator[i].module.state_dict() + term_name = 'd_img_optim_state_%d' % i + checkpoint[term_name] = \ + optimizer_d_img[i].state_dict() + + if ac_discriminator is not None: + for i in range(len(ac_discriminator)): + term_name = 'd_ac_state_%d' % i + checkpoint[term_name] = \ + ac_discriminator[i].module.state_dict() + term_name = 'd_ac_optim_state_%d' % i + checkpoint[term_name] = \ + optimizer_d_ac[i].state_dict() + + if cond_discriminator is not None: + for i in range(len(cond_discriminator)): + term_name = 'cond_d_state_%d' % i + checkpoint[term_name] = \ + cond_discriminator[i].module.state_dict() + term_name = 'cond_d_optim_state_%d' % i + checkpoint[term_name] = \ + optimizer_cond_d[i].state_dict() + + checkpoint['optim_state'] = optimizer.state_dict() + checkpoint['counters']['epoch'] = epoch + checkpoint['counters']['t'] = t + checkpoint['counters']['best_inception'] = best_inception + checkpoint['counters']['best_vfs'] = best_vfs + checkpoint['counters']['best_recall_1'] = best_recall_1 + checkpoint['counters']['best_recall_5'] = best_recall_5 + checkpoint['counters']['best_recall_10'] = best_recall_10 + checkpoint['counters']['best_cos'] = best_cos + checkpoint['counters']['best_L1'] = best_L1 + checkpoint['lr'] = lr + checkpoint_path = os.path.join( + log_path, + '%s_with_model.pt' % args.checkpoint_name) + log.info('[Epoch {}/{}] Saving checkpoint: {}'.format( + epoch, args.epochs, checkpoint_path)) + torch.save(checkpoint, checkpoint_path) + if got_best_IS: + copyfile( + checkpoint_path, + os.path.join(log_path, 'best_IS_with_model.pt')) + got_best_IS = False + if got_best_VFS: + copyfile( + checkpoint_path, + os.path.join(log_path, 'best_VFS_with_model.pt')) + got_best_VFS = False + if got_best_R1: + copyfile( + checkpoint_path, + os.path.join(log_path, 'best_R1_with_model.pt')) + got_best_R1 = False + if got_best_R5: + copyfile( + checkpoint_path, + os.path.join(log_path, 'best_R5_with_model.pt')) + got_best_R5 = False + if got_best_R10: + copyfile( + checkpoint_path, + os.path.join(log_path, 'best_R10_with_model.pt')) + got_best_R10 = False + if got_best_L1: + copyfile( + checkpoint_path, + os.path.join(log_path, 'best_L1_with_model.pt')) + got_best_L1 = False + if got_best_cos: + copyfile( + checkpoint_path, + os.path.join(log_path, 'best_cos_with_model.pt')) + got_best_cos = False + + if epoch > 0 and epoch % 1000 == 0: + print('Saving checkpoint for Epoch {}.'.format(epoch)) + copyfile( + checkpoint_path, + os.path.join(log_path, 'epoch_{}_model.pt'.format(epoch))) + # Fuser Logic + elif args.train_fuser_only and epoch > 0 and epoch % 1 == 0: + print('Saving checkpoint for Epoch {}.'.format(epoch)) + copyfile( + checkpoint_path, + os.path.join(log_path, 'epoch_{}_model.pt'.format(epoch))) + # End of fuser logic + + if epoch >= args.decay_lr_epochs: + lr_end = args.learning_rate * 1e-3 + decay_frac = (epoch - args.decay_lr_epochs + 1) / \ + (args.epochs - args.decay_lr_epochs + 1e-5) + lr = args.learning_rate - decay_frac * (args.learning_rate - lr_end) + for param_group in optimizer.param_groups: + param_group["lr"] = lr + if img_discriminator is not None: + for i in range(len(optimizer_d_img)): + for param_group in optimizer_d_img[i].param_groups: + param_group["lr"] = lr + # for param_group in optimizer_d_img.param_groups: + # param_group["lr"] = lr + log.info('[Epoch {}/{}] learning rate: {}'.format( + epoch+1, args.epochs, lr)) + + logger.scalar_summary("ckpt/learning_rate", lr, epoch) + + # Evaluating after the whole training process. + log.info("Evaluting the validation set.") + is_mean, is_std, vfs_mean, vfs_std = evaluate(model, val_loader, options) + log.info("Inception score: {} ({})".format(is_mean, is_std)) + log.info("VggFace score: {} ({})".format(vfs_mean, vfs_std)) + + +if __name__ == '__main__': + main() diff --git a/mlflow/train/sf2f/train_registry.py b/mlflow/train/sf2f/train_registry.py new file mode 100644 index 0000000..f9785b3 --- /dev/null +++ b/mlflow/train/sf2f/train_registry.py @@ -0,0 +1,885 @@ +import functools +import os +import json +import math +from collections import defaultdict +import random +import time +import pyprind +import glog as log +from shutil import copyfile + +import numpy as np +import torch +import torch.optim as optim +import torch.nn as nn +import torch.nn.functional as F +from torch.utils.data.dataloader import default_collate +import mlflow, wandb + +from datasets import imagenet_deprocess_batch +from datasets import window_segment +import datasets +import models +import models.perceptual +from utils.losses import get_gan_losses +from utils import timeit, LossManager +from options.opts import args, options +from utils.logger import Logger +from utils import tensor2im +from utils.utils import load_my_state_dict +# losseds need to be modified +from utils.training_utils import add_loss, check_model, calculate_model_losses +from utils.training_utils import visualize_sample +from utils.evaluate import evaluate +from utils.evaluate_fid import evaluate_fid +from utils.s2f_evaluator import S2fEvaluator +from utils.mlflow_wandb import mlflow_wandb_logging + + +torch.backends.cudnn.benchmark = True + + +def main(): + global args, options + print(args) + print(options['data']) + # Set random seed, deterministic + torch.cuda.manual_seed(args.seed) + torch.manual_seed(args.seed) + np.random.seed(args.seed) + random.seed(args.seed) + torch.backends.cudnn.deterministic = True + torch.backends.cudnn.benchmark = False + #visualize_attn=options['eval'].get('visualize_attn', False) + #print('########### visualize_attn: {} ###########'.format(visualize_attn)) + float_dtype = torch.cuda.FloatTensor + long_dtype = torch.cuda.LongTensor + log.info("Building loader...") + train_loader, val_loader, test_loader = \ + datasets.build_loaders(options["data"]) + # Fuser Logic + if args.train_fuser_only: + train_loader.collate_fn = default_collate + train_loader.dataset.return_mel_segments = True + train_loader.dataset.mel_segments_rand_start = True + val_loader.collate_fn = default_collate + val_loader.dataset.return_mel_segments = True + s2f_face_gen_mode = 'naive' + else: + s2f_face_gen_mode = 'average_facenet_embedding' + # End of fuser logic + #s2f_val_evaluator = S2fEvaluator(val_loader, options) + s2f_val_evaluator = S2fEvaluator( + val_loader, + options, + extraction_size=100, #[100,200,300], + hq_emb_dict=True, + face_gen_mode=s2f_face_gen_mode) + + # [:len(checkpoint[term_name]['id_classifier.bias'])] class 맞추기 + # if restore_path is not None and os.path.isfile(restore_path): + train_loader.dataset.available_names = train_loader.dataset.available_names[:729] + + # Get total number of people in training set + num_train_id = len(train_loader.dataset) + # Initialize softmax neuron value + for ac_net in ['identity', 'identity_low', 'identity_mid', 'identity_high']: + if options['discriminator'].get(ac_net) is not None: + options['discriminator'][ac_net]['num_id'] = num_train_id + + log.info("Building Generative Model...") + model, model_kwargs = models.build_model( + options["generator"], + image_size=options["data"]["image_size"], + checkpoint_start_from=args.checkpoint_start_from) + model.type(float_dtype) + # Fuser logic + if args.train_fuser_only: + # Hardcode to freeze batchnorm layers + model.eval() + if args.train_fuser_decoder: + model.encoder.train_fuser_only() + else: + model.train_fuser_only() + # End of fuser logic + print(model) + + optimizer = torch.optim.Adam( + filter(lambda x: x.requires_grad, model.parameters()), + lr=args.learning_rate, + betas=(args.beta1, 0.999),) + + if (options["optim"]["d_loss_weight"] < 0 or \ + options["optim"]["d_img_weight"] < 0): + # Ignore image discriminator + img_discriminator = None + d_img_kwargs = {} + log.info("Ignoring Image Discriminator.") + else: + img_discriminator, d_img_kwargs = models.build_img_discriminator( + options["discriminator"]) + log.info("Done Building Image Discriminator.") + + if (options["optim"]["d_loss_weight"] < 0 or \ + options["optim"]["ac_loss_weight"] < 0): + # Ignore AC discriminator + ac_discriminator = None + ac_img_kwargs = {} + log.info("Ignoring Auxilary Classifier Discriminator.") + else: + ac_discriminator, ac_img_kwargs = models.build_ac_discriminator( + options["discriminator"]) + #print('AC Discriminator:', ac_discriminator) + log.info("Done Building Auxilary Classifier Discriminator.") + + if (options["optim"]["d_loss_weight"] < 0 or \ + options["optim"].get("cond_loss_weight", -1) < 0): + # Ignore Conditional discriminator + cond_discriminator = None + cond_d_kwargs = {} + log.info("Ignoring Conditional Discriminator.") + else: + cond_discriminator, cond_d_kwargs = models.build_cond_discriminator( + options["discriminator"]) + #print('Conditional Discriminator:', cond_discriminator) + log.info("Done Building Conditional Discriminator.") + + perceptual_module = None + if options["optim"].get("perceptual_loss_weight", -1) > 0: + ploss_name = options.get("perceptual", {}).get("arch", "FaceNetLoss") + ploss_cos_weight = options["optim"].get("cos_percept_loss_weight", -1) + perceptual_module = getattr( + models.perceptual, + ploss_name)(cos_loss_weight=ploss_cos_weight) + log.info("Done Building Perceptual {} Module.".format(ploss_name)) + if ploss_cos_weight > 0: + log.info("Perceptual Cos Loss Weight: {}".format(ploss_cos_weight)) + else: + log.info("Ignoring Perceptual Module.") + + gan_g_loss, gan_d_loss = get_gan_losses(options["optim"]["gan_loss_type"]) + + optimizer_d_img = [] + if img_discriminator is not None: + for i in range(len(img_discriminator)): + img_discriminator[i].type(float_dtype) + img_discriminator[i].train() + print(img_discriminator[i]) + optimizer_d_img.append(torch.optim.Adam( + filter(lambda x: x.requires_grad, + img_discriminator[i].parameters()), + lr=args.learning_rate, + betas=(args.beta1, 0.999),)) + + optimizer_d_ac = [] + if ac_discriminator is not None: + for i in range(len(ac_discriminator)): + ac_discriminator[i].type(float_dtype) + ac_discriminator[i].train() + print(ac_discriminator[i]) + optimizer_d_ac.append(torch.optim.Adam( + filter(lambda x: x.requires_grad, + ac_discriminator[i].parameters()), + lr=args.learning_rate, + betas=(args.beta1, 0.999),)) + + optimizer_cond_d = [] + if cond_discriminator is not None: + for i in range(len(cond_discriminator)): + cond_discriminator[i].type(float_dtype) + cond_discriminator[i].train() + print(cond_discriminator[i]) + optimizer_cond_d.append(torch.optim.Adam( + filter(lambda x: x.requires_grad, + cond_discriminator[i].parameters()), + lr=args.learning_rate, + betas=(args.beta1, 0.999),)) + + restore_path = None + if args.resume is not None: + restore_path = '%s_with_model.pt' % args.checkpoint_name + restore_path = os.path.join( + options["logs"]["output_dir"], args.resume, restore_path) + + if restore_path is not None and os.path.isfile(restore_path): + log.info('Restoring from checkpoint: {}'.format(restore_path)) + checkpoint = torch.load(restore_path) + model.load_state_dict(checkpoint['model_state']) + optimizer.load_state_dict(checkpoint['optim_state']) + + if img_discriminator is not None: + for i in range(len(img_discriminator)): + term_name = 'd_img_state_%d' % i + img_discriminator[i].load_state_dict(checkpoint[term_name]) + term_name = 'd_img_optim_state_%d' % i + optimizer_d_img[i].load_state_dict(checkpoint[term_name]) + + if ac_discriminator is not None: + for i in range(len(ac_discriminator)): + term_name = 'd_ac_state_%d' % i + ac_discriminator[i].load_state_dict(checkpoint[term_name]) + term_name = 'd_ac_optim_state_%d' % i + optimizer_d_ac[i].load_state_dict(checkpoint[term_name]) + + if cond_discriminator is not None: + for i in range(len(cond_discriminator)): + term_name = 'd_img_state_%d' % i + cond_discriminator[i].load_state_dict(checkpoint[term_name]) + term_name = 'd_img_optim_state_%d' % i + optimizer_cond_d[i].load_state_dict(checkpoint[term_name]) + + t = checkpoint['counters']['t'] + 1 + if 0 <= args.eval_mode_after <= t: + model.eval() + else: + model.train() + # Reset epoch here later + start_epoch = checkpoint['counters']['epoch'] + 1 + log_path = os.path.join(options["logs"]["output_dir"], args.resume,) + lr = checkpoint.get('learning_rate', args.learning_rate) + best_inception = checkpoint["counters"].get("best_inception", (0., 0.)) + best_vfs = checkpoint["counters"].get("best_vfs", (0., 0.)) + best_recall_1 = checkpoint["counters"].get("best_recall_1", 0.) + best_recall_5 = checkpoint["counters"].get("best_recall_5", 0.) + best_recall_10 = checkpoint["counters"].get("best_recall_10", 0.) + best_cos = checkpoint["counters"].get("best_cos", 0.) + best_L1 = checkpoint["counters"].get("best_L1", 100000.0) + options = checkpoint.get("options", options) + else: + t, start_epoch, best_inception, best_vfs = 0, 0, (0., 0.), (0., 0.) + best_recall_1, best_recall_5, best_recall_10 = 0.0, 0.0, 0.0 + best_cos, best_L1 = 0.0, 100000.0 + lr = args.learning_rate + checkpoint = { + 'args': args.__dict__, + 'options': options, + 'model_kwargs': model_kwargs, + 'd_img_kwargs': d_img_kwargs, + 'train_losses': defaultdict(list), + 'checkpoint_ts': [], + 'train_batch_data': [], + 'train_samples': [], + 'train_iou': [], + 'train_inception': [], + 'lr': [], + 'val_batch_data': [], + 'val_samples': [], + 'val_losses': defaultdict(list), + 'val_iou': [], + 'val_inception': [], + 'norm_d': [], + 'norm_g': [], + 'counters': { + 't': None, + 'epoch': None, + 'best_inception': None, + 'best_vfs': None, + 'best_recall_1': None, + 'best_recall_5': None, + 'best_recall_10': None, + 'best_cos': None, + 'best_L1': None, + }, + 'model_state': None, + 'model_best_state': None, + 'optim_state': None, + 'd_img_state': None, + 'd_img_best_state': None, + 'd_img_optim_state': None, + 'd_ac_state': None, + 'd_ac_optim_state': None, + } + + log_path = os.path.join( + options["logs"]["output_dir"], + options["logs"]["name"] + "-" + time.strftime("%Y%m%d-%H%M%S") + ) + + ### Fuser Logic + if args.pretrained_path is not None and \ + os.path.isfile(args.pretrained_path): + # Load + log.info('Loading Pretrained Model: {}'.format(args.pretrained_path)) + pre_checkpoint = torch.load(args.pretrained_path) + #model.load_state_dict(pre_checkpoint['model_state']) + load_my_state_dict(model, pre_checkpoint['model_state']) + #optimizer.load_state_dict(pre_checkpoint['optim_state']) + + if img_discriminator is not None: + for i in range(len(img_discriminator)): + term_name = 'd_img_state_%d' % i + img_discriminator[i].load_state_dict(pre_checkpoint[term_name]) + #term_name = 'd_img_optim_state_%d' % i + #optimizer_d_img[i].load_state_dict(pre_checkpoint[term_name]) + + if ac_discriminator is not None: + for i in range(len(ac_discriminator)): + term_name = 'd_ac_state_%d' % i + ac_discriminator[i].load_state_dict(pre_checkpoint[term_name]) + #term_name = 'd_ac_optim_state_%d' % i + #optimizer_d_ac[i].load_state_dict(pre_checkpoint[term_name]) + ### End of fuser logic + logger = Logger(log_path) + log.info("Logging to: {}".format(log_path)) + # save the current config yaml + copyfile(args.path_opts, + os.path.join(log_path, options["logs"]["name"] + '.yaml')) + + model = nn.DataParallel(model.cuda()) + if ac_discriminator is not None: + for i in range(len(ac_discriminator)): + ac_discriminator[i] = nn.DataParallel(ac_discriminator[i].cuda()) + if img_discriminator is not None: + for i in range(len(img_discriminator)): + img_discriminator[i] = nn.DataParallel(img_discriminator[i].cuda()) + if cond_discriminator is not None: + for i in range(len(cond_discriminator)): + cond_discriminator[i] = nn.DataParallel(cond_discriminator[i].cuda()) + perceptual_module = nn.DataParallel(perceptual_module.cuda()) if \ + perceptual_module else None + + if args.evaluate: + assert args.resume is not None + if args.evaluate_train: + log.info("Evaluting the training set.") + train_mean, train_std, train_vfs_mean, train_vfs_std = \ + evaluate(model, train_loader, options) + log.info("Inception score: {} ({})".format(train_mean, train_std)) + log.info("VggFace score: {} ({})".format( + train_vfs_mean, train_vfs_std)) + log.info("Evaluting the validation set.") + val_mean, val_std, vfs_mean, vfs_std = evaluate( + model, val_loader, options) + log.info("Inception score: {} ({})".format(val_mean, val_std)) + log.info("VggFace score: {} ({})".format(vfs_mean, vfs_std)) + fid_score = evaluate_fid(model, val_loader, options) + log.info("FID score: {}".format(fid_score)) + return 0 + + + got_best_IS = True + got_best_VFS = True + got_best_R1 = True + got_best_R5 = True + got_best_R10 = True + got_best_cos = True + got_best_L1 = True + others = None + for epoch in range(start_epoch, args.epochs): + if epoch >= args.eval_mode_after and model.training: + log.info('[Epoch {}/{}] switching to eval mode'.format( + epoch, args.epochs)) + model.eval() + if epoch == args.eval_mode_after: + optimizer = optim.Adam( + filter(lambda x: x.requires_grad, model.parameters()), + lr=lr, + betas=(args.beta1, 0.999),) + if epoch >= args.disable_l1_loss_after and \ + options["optim"]["l1_pixel_loss_weight"] > 1e-10: + # + log.info('[Epoch {}/{}] Disable L1 Loss'.format(epoch, args.epochs)) + options["optim"]["l1_pixel_loss_weight"] = 0 + start_time = time.time() + for iter, batch in enumerate(pyprind.prog_bar( + train_loader, + title="[Epoch {}/{}]".format(epoch, args.epochs), + width=50)): + # An iteration + if args.timing: + print("Loading Time: {} ms".format( + (time.time() - start_time) * 1000)) + t += 1 + ######### unpack the data ######### + imgs, log_mels, human_ids = batch + imgs = imgs.cuda() + log_mels = log_mels.type(float_dtype) + human_ids = human_ids.type(long_dtype) + ################################### + # log_mel_segs = window_segment(log_mels[0], window_length=125, stride_length=63) + ################################### + with timeit('forward', args.timing): + #model_out = model(imgs) + model_out = model(log_mels) + """ + imgs_pred: generated images + others: placeholder for other output + """ + imgs_pred, others = model_out + + if t % args.visualize_every == 0: + #print('Performing Visualization...') + training_status = model.training + model.eval() + samples = visualize_sample( + model, + imgs, + log_mels, + options["data"]["data_opts"]["image_normalize_method"], + visualize_attn=options['eval'].get('visualize_attn', False)) + model.train(mode=training_status) + logger.image_summary(samples, t, tag="vis") + + with timeit('G_loss', args.timing): + #model_boxes = None + # Skip the pixel loss if not using GT boxes + skip_pixel_loss = False + + # calculate L1 loss between imgs and imgs_self + total_loss, losses = calculate_model_losses( + options["optim"], skip_pixel_loss, imgs, imgs_pred,) + + if img_discriminator is not None: + for i in range(len(img_discriminator)): + # TODO: Here we need to choose the two methods: + # 1. determine whether imgs_pred is tuple or not + # 2. change the return (imgs_pred) of model to be tuple + if isinstance(imgs_pred, tuple): + scores_fake = img_discriminator[i](imgs_pred[i]) + else: + scores_fake = img_discriminator[i](imgs_pred) + weight = options["optim"]["d_loss_weight"] * \ + options["optim"]["d_img_weight"] + loss_name = 'g_gan_img_loss_%d' % i + total_loss = add_loss(total_loss, + gan_g_loss(scores_fake), losses, loss_name, weight) + + if ac_discriminator is not None: + for i in range(len(ac_discriminator)): + if isinstance(imgs_pred, tuple): + scores_fake, ac_loss = ac_discriminator[i]( + imgs_pred[i], human_ids) + else: + scores_fake, ac_loss = ac_discriminator[i]( + imgs_pred, human_ids) + weight = options["optim"]["d_loss_weight"] * \ + options["optim"]["ac_loss_weight"] + loss_name = 'ac_loss_%d' % i + total_loss = add_loss(total_loss, + ac_loss.mean(), + losses, + loss_name, + weight) + loss_name = 'g_gan_ac_loss_%d' % i + total_loss = add_loss(total_loss, + gan_g_loss(scores_fake), + losses, + loss_name, + weight) + + if cond_discriminator is not None: + for i in range(len(cond_discriminator)): + # TODO: check whether condition is in others or not ? + cond_vecs = others['cond'] + if isinstance(imgs_pred, tuple): + scores_fake = cond_discriminator[i]( + imgs_pred[i], cond_vecs) + else: + scores_fake = cond_discriminator[i]( + imgs_pred, cond_vecs) + weight = options["optim"]["d_loss_weight"] * \ + options["optim"]["cond_loss_weight"] + loss_name = 'g_cond_loss_%d' % i + total_loss = add_loss(total_loss, + gan_g_loss(scores_fake), losses, loss_name, weight) + + if options["optim"].get("perceptual_loss_weight", -1) > 0: + if isinstance(imgs_pred, tuple): + # Multi-Resolution Pixel Loss + for i, img_pred in enumerate(imgs_pred): + loss_name = 'img_perceptual_loss_%d' % i + img = imgs + while img.size()[2] != img_pred.size()[2]: + img = F.interpolate( + img, scale_factor=0.5, mode='nearest') + if s2f_val_evaluator.do_deprocess_and_preprocess: + img_pred_in = \ + s2f_val_evaluator.deprocess_and_preprocess( + img_pred) + img_in = \ + s2f_val_evaluator.deprocess_and_preprocess( + img) + if s2f_val_evaluator.crop_faces: + img_pred_in = \ + s2f_val_evaluator.crop_vgg_box(img_pred_in) + img_in = s2f_val_evaluator.crop_vgg_box(img_in) + perceptual_loss = perceptual_module( + img_pred_in, img_in) + perceptual_loss = perceptual_loss.mean() + weight = options["optim"]["perceptual_loss_weight"] + total_loss = add_loss(total_loss, perceptual_loss, + losses, loss_name, + weight) + else: + if s2f_val_evaluator.do_deprocess_and_preprocess: + imgs_pred_in = \ + s2f_val_evaluator.deprocess_and_preprocess( + imgs_pred) + imgs_in = \ + s2f_val_evaluator.deprocess_and_preprocess(imgs) + if s2f_val_evaluator.crop_faces: + imgs_pred_in = \ + s2f_val_evaluator.crop_vgg_box(imgs_pred_in) + imgs_in = s2f_val_evaluator.crop_vgg_box(imgs_in) + perceptual_loss = perceptual_module( + imgs_pred_in, imgs_in) + perceptual_loss = perceptual_loss.mean() + weight = options["optim"]["perceptual_loss_weight"] + total_loss = add_loss(total_loss, perceptual_loss, + losses, "img_perceptual_loss", + weight) + + losses['total_loss'] = total_loss.item() + if not math.isfinite(losses['total_loss']): + log.warn('WARNING: Got loss = NaN, not backpropping') + continue + + optimizer.zero_grad() + with timeit('backward', args.timing): + total_loss.backward() + optimizer.step() + + total_loss_d = None + ac_loss_real = None + ac_loss_fake = None + d_losses = {} + + with timeit('D_loss', args.timing): + if img_discriminator is not None: + d_img_losses = LossManager() + for i in range(len(img_discriminator)): + if isinstance(imgs_pred, tuple): + imgs_fake = imgs_pred[i].detach() + else: + imgs_fake = imgs_pred.detach() + imgs_real = imgs.detach() + while imgs_real.size()[2] != imgs_fake.size()[2]: + imgs_real = F.interpolate( + imgs_real, scale_factor=0.5, mode='nearest') + + scores_fake = img_discriminator[i](imgs_fake) + scores_real = img_discriminator[i](imgs_real) + + d_img_gan_loss = gan_d_loss(scores_real, scores_fake) + d_img_losses.add_loss( + d_img_gan_loss, 'd_img_gan_loss_%d' % i) + + for i in range(len(img_discriminator)): + optimizer_d_img[i].zero_grad() + d_img_losses.total_loss.backward() + for i in range(len(img_discriminator)): + optimizer_d_img[i].step() + + if ac_discriminator is not None: + d_ac_losses = LossManager() + for i in range(len(ac_discriminator)): + if isinstance(imgs_pred, tuple): + imgs_fake = imgs_pred[i].detach() + else: + imgs_fake = imgs_pred.detach() + + imgs_real = imgs.detach() + while imgs_real.size()[2] != imgs_fake.size()[2]: + imgs_real = F.interpolate( + imgs_real, scale_factor=0.5, mode='nearest') + + scores_real, ac_loss_real= ac_discriminator[i]( + imgs_real, human_ids) + scores_fake, ac_loss_fake = ac_discriminator[i]( + imgs_fake, human_ids) + + d_ac_gan_loss = gan_d_loss(scores_real, scores_fake) + d_ac_losses.add_loss( + d_ac_gan_loss, 'd_ac_gan_loss_%d' % i) + d_ac_losses.add_loss( + ac_loss_real.mean(), 'd_ac_loss_real_%d' % i) + + for i in range(len(ac_discriminator)): + optimizer_d_ac[i].zero_grad() + d_ac_losses.total_loss.backward() + for i in range(len(ac_discriminator)): + optimizer_d_ac[i].step() + + if cond_discriminator is not None: + cond_d_losses = LossManager() + for i in range(len(cond_discriminator)): + if isinstance(imgs_pred, tuple): + imgs_fake = imgs_pred[i].detach() + else: + imgs_fake = imgs_pred.detach() + imgs_real = imgs.detach() + cond_vecs = others['cond'].detach() + while imgs_real.size()[2] != imgs_fake.size()[2]: + imgs_real = F.interpolate( + imgs_real, scale_factor=0.5, mode='nearest') + + scores_fake = cond_discriminator[i]( + imgs_fake, cond_vecs) + scores_real = cond_discriminator[i]( + imgs_real, cond_vecs) + + cond_d_gan_loss = gan_d_loss(scores_real, scores_fake) + cond_d_losses.add_loss( + cond_d_gan_loss, 'cond_d_gan_loss_%d' % i) + + for i in range(len(cond_discriminator)): + optimizer_cond_d[i].zero_grad() + cond_d_losses.total_loss.backward() + for i in range(len(cond_discriminator)): + optimizer_cond_d[i].step() + + # Logging generative model losses + for name, val in losses.items(): + logger.scalar_summary("loss/{}".format(name), val, t) + if img_discriminator is not None: + for name, val in d_img_losses.items(): + logger.scalar_summary("d_loss/{}".format(name), val, t) + if ac_discriminator is not None: + for name, val in d_ac_losses.items(): + logger.scalar_summary("d_loss/{}".format(name), val, t) + if cond_discriminator is not None: + for name, val in cond_d_losses.items(): + logger.scalar_summary("d_loss/{}".format(name), val, t) + start_time = time.time() + + if epoch % args.eval_epochs == 0: + log.info('[Epoch {}/{}] checking on val'.format( + epoch, args.epochs) + ) + val_results = check_model( + args, options, epoch, val_loader, model) + val_losses, val_samples, val_inception, val_vfs = val_results + # call evaluate_s2f_metrics() here + val_facenet_L2_dist, val_facenet_L1_dist, val_facenet_cos_sim, \ + val_recall_tuple, val_ih_sim = \ + s2f_val_evaluator.get_metrics( + model, recall_method='cos_sim', get_ih_sim=True) + val_recall_at_1, val_recall_at_2, val_recall_at_5, \ + val_recall_at_10, val_recall_at_20, \ + val_recall_at_50 = val_recall_tuple + if log_mels.dim() == 2: + log_mel_segs = window_segment(log_mels, window_length=62, stride_length=31) + elif log_mels.dim() == 3: + log_mel_segs = window_segment(log_mels[0], window_length=62, stride_length=31) + + signature = mlflow.models.signature.infer_signature(model_input=log_mel_segs.unsqueeze(0).cpu().numpy(), model_output=model_out[0].detach().cpu().numpy()) + + log_dict = {"val_losses":val_losses['L1_pixel_loss'], "val_inception":val_inception[0], "val_vfs":val_vfs[0], "val_facenet_L2_dist":val_facenet_L2_dist, "val_facenet_L1_dist":val_facenet_L1_dist, "val_facenet_cos_sim":val_facenet_cos_sim, "val_ih_sim":val_ih_sim, "val_recall_at_1":val_recall_at_1, "val_recall_at_2":val_recall_at_2, "val_recall_at_5":val_recall_at_5, "val_recall_at_10":val_recall_at_10, "val_recall_at_20":val_recall_at_20, "val_recall_at_50":val_recall_at_50} + mlflow_wandb_logging(log_dict,model,signature,log_mel_segs.unsqueeze(0).cpu().numpy(),val_samples['samples']) + # Update the best of metrics + if val_inception[0] > best_inception[0]: + got_best_IS = True + best_inception = val_inception + if val_vfs[0] > best_vfs[0]: + got_best_VFS = True + best_vfs = val_vfs + if val_recall_at_1 > best_recall_1: + got_best_R1 = True + best_recall_1 = val_recall_at_1 + if val_recall_at_5 > best_recall_5: + got_best_R5 = True + best_recall_5 = val_recall_at_5 + if val_recall_at_10 > best_recall_10: + got_best_R10 = True + best_recall_10 = val_recall_at_10 + if val_facenet_cos_sim > best_cos: + got_best_cos = True + best_cos = val_facenet_cos_sim + if val_facenet_L1_dist < best_L1: + got_best_L1 = True + best_L1 = val_facenet_L1_dist + + checkpoint['counters']['best_inception'] = best_inception + checkpoint['counters']['best_vfs'] = best_vfs + checkpoint['val_samples'].append(val_samples) + # checkpoint['val_batch_data'].append(val_batch_data) + for k, v in val_losses.items(): + checkpoint['val_losses'][k].append(v) + logger.scalar_summary("ckpt/val_{}".format(k), v, epoch) + logger.scalar_summary("ckpt/val_inception", val_inception[0], epoch) + logger.scalar_summary("ckpt/val_facenet_L2_dist", + val_facenet_L2_dist, epoch) + logger.scalar_summary("ckpt/val_facenet_L1_dist", + val_facenet_L1_dist, epoch) + logger.scalar_summary("ckpt/val_facenet_cos_sim", + val_facenet_cos_sim, epoch) + logger.scalar_summary("ckpt/val_recall_at_1", + val_recall_at_1, epoch) + logger.scalar_summary("ckpt/val_recall_at_2", + val_recall_at_2, epoch) + logger.scalar_summary("ckpt/val_recall_at_5", + val_recall_at_5, epoch) + logger.scalar_summary("ckpt/val_recall_at_10", + val_recall_at_10, epoch) + logger.scalar_summary("ckpt/val_recall_at_20", + val_recall_at_20, epoch) + logger.scalar_summary("ckpt/val_recall_at_50", + val_recall_at_50, epoch) + logger.scalar_summary("ckpt/val_ih_sim", + val_ih_sim, epoch) + logger.scalar_summary("ckpt/val_vfs", + val_vfs[0], epoch) + # Add speech2face metrics here.. + # + logger.image_summary(val_samples, epoch, tag="ckpt_val") + # log.info('[Epoch {}/{}] val iou: {}'.format( + # epoch, args.epochs, val_avg_iou)) + log.info('[Epoch {}/{}] val inception score: {} ({})'.format( + epoch, args.epochs, val_inception[0], val_inception[1])) + log.info('[Epoch {}/{}] best inception scores: {} ({})'.format( + epoch, args.epochs, best_inception[0], best_inception[1])) + log.info('[Epoch {}/{}] val vfs scores: {} ({})'.format( + epoch, args.epochs, val_vfs[0], val_vfs[1])) + log.info('[Epoch {}/{}] best vfs scores: {} ({})'.format( + epoch, args.epochs, best_vfs[0], best_vfs[1])) + log.info('[Epoch {}/{}] val recall at 5: {}, '.format( + epoch, args.epochs, val_recall_at_5) + \ + 'best recall at 5: {}'.format(best_recall_5)) + log.info('[Epoch {}/{}] val recall at 10: {}, '.format( + epoch, args.epochs, val_recall_at_10) + \ + 'best recall at 10: {}'.format(best_recall_10)) + log.info('[Epoch {}/{}] val cosine similarity: {}, '.format( + epoch, args.epochs, val_facenet_cos_sim) + \ + 'best cosine similarity: {}'.format(best_cos)) + log.info('[Epoch {}/{}] val L1 distance: {}, '.format( + epoch, args.epochs, val_facenet_L1_dist) + \ + 'best L1 distance: {}'.format(best_L1)) + + checkpoint['model_state'] = model.module.state_dict() + + if img_discriminator is not None: + for i in range(len(img_discriminator)): + term_name = 'd_img_state_%d' % i + checkpoint[term_name] = \ + img_discriminator[i].module.state_dict() + term_name = 'd_img_optim_state_%d' % i + checkpoint[term_name] = \ + optimizer_d_img[i].state_dict() + + if ac_discriminator is not None: + for i in range(len(ac_discriminator)): + term_name = 'd_ac_state_%d' % i + checkpoint[term_name] = \ + ac_discriminator[i].module.state_dict() + term_name = 'd_ac_optim_state_%d' % i + checkpoint[term_name] = \ + optimizer_d_ac[i].state_dict() + + if cond_discriminator is not None: + for i in range(len(cond_discriminator)): + term_name = 'cond_d_state_%d' % i + checkpoint[term_name] = \ + cond_discriminator[i].module.state_dict() + term_name = 'cond_d_optim_state_%d' % i + checkpoint[term_name] = \ + optimizer_cond_d[i].state_dict() + + checkpoint['optim_state'] = optimizer.state_dict() + checkpoint['counters']['epoch'] = epoch + checkpoint['counters']['t'] = t + checkpoint['counters']['best_inception'] = best_inception + checkpoint['counters']['best_vfs'] = best_vfs + checkpoint['counters']['best_recall_1'] = best_recall_1 + checkpoint['counters']['best_recall_5'] = best_recall_5 + checkpoint['counters']['best_recall_10'] = best_recall_10 + checkpoint['counters']['best_cos'] = best_cos + checkpoint['counters']['best_L1'] = best_L1 + checkpoint['lr'] = lr + checkpoint_path = os.path.join( + log_path, + '%s_with_model.pt' % args.checkpoint_name) + log.info('[Epoch {}/{}] Saving checkpoint: {}'.format( + epoch, args.epochs, checkpoint_path)) + torch.save(checkpoint, checkpoint_path) + if got_best_IS: + copyfile( + checkpoint_path, + os.path.join(log_path, 'best_IS_with_model.pt')) + got_best_IS = False + if got_best_VFS: + copyfile( + checkpoint_path, + os.path.join(log_path, 'best_VFS_with_model.pt')) + got_best_VFS = False + if got_best_R1: + copyfile( + checkpoint_path, + os.path.join(log_path, 'best_R1_with_model.pt')) + got_best_R1 = False + if got_best_R5: + copyfile( + checkpoint_path, + os.path.join(log_path, 'best_R5_with_model.pt')) + got_best_R5 = False + if got_best_R10: + copyfile( + checkpoint_path, + os.path.join(log_path, 'best_R10_with_model.pt')) + got_best_R10 = False + if got_best_L1: + copyfile( + checkpoint_path, + os.path.join(log_path, 'best_L1_with_model.pt')) + got_best_L1 = False + if got_best_cos: + copyfile( + checkpoint_path, + os.path.join(log_path, 'best_cos_with_model.pt')) + got_best_cos = False + + if epoch > 0 and epoch % 1000 == 0: + print('Saving checkpoint for Epoch {}.'.format(epoch)) + copyfile( + checkpoint_path, + os.path.join(log_path, 'epoch_{}_model.pt'.format(epoch))) + # Fuser Logic + elif args.train_fuser_only and epoch > 0 and epoch % 1 == 0: + print('Saving checkpoint for Epoch {}.'.format(epoch)) + copyfile( + checkpoint_path, + os.path.join(log_path, 'epoch_{}_model.pt'.format(epoch))) + # End of fuser logic + + if epoch >= args.decay_lr_epochs: + lr_end = args.learning_rate * 1e-3 + decay_frac = (epoch - args.decay_lr_epochs + 1) / \ + (args.epochs - args.decay_lr_epochs + 1e-5) + lr = args.learning_rate - decay_frac * (args.learning_rate - lr_end) + for param_group in optimizer.param_groups: + param_group["lr"] = lr + if img_discriminator is not None: + for i in range(len(optimizer_d_img)): + for param_group in optimizer_d_img[i].param_groups: + param_group["lr"] = lr + # for param_group in optimizer_d_img.param_groups: + # param_group["lr"] = lr + log.info('[Epoch {}/{}] learning rate: {}'.format( + epoch+1, args.epochs, lr)) + + logger.scalar_summary("ckpt/learning_rate", lr, epoch) + + # Evaluating after the whole training process. + log.info("Evaluting the validation set.") + is_mean, is_std, vfs_mean, vfs_std = evaluate(model, val_loader, options) + log.info("Inception score: {} ({})".format(is_mean, is_std)) + log.info("VggFace score: {} ({})".format(vfs_mean, vfs_std)) + + +if __name__ == '__main__': + os.environ["MLFLOW_S3_ENDPOINT_URL"] = "http://localhost:9000" + os.environ["MLFLOW_TRACKING_URI"] = "http://localhost:5001" + os.environ["AWS_ACCESS_KEY_ID"] = "minio" + os.environ["AWS_SECRET_ACCESS_KEY"] = "miniostorage" + mlflow.start_run() + mlflow.set_experiment("sf2f_voxceleb") + wandb.init( + project="Voice2Face", + config={ + "architecture": "sf2f", + "dataset": "Voxceleb", + "notes": "test", + }, + name="sf2f_voxceleb_1", + ) + main() diff --git a/mlflow/train/sf2f/utils/__init__.py b/mlflow/train/sf2f/utils/__init__.py new file mode 100644 index 0000000..55e5f84 --- /dev/null +++ b/mlflow/train/sf2f/utils/__init__.py @@ -0,0 +1 @@ +from .common import * diff --git a/mlflow/train/sf2f/utils/bilinear.py b/mlflow/train/sf2f/utils/bilinear.py new file mode 100644 index 0000000..7a12100 --- /dev/null +++ b/mlflow/train/sf2f/utils/bilinear.py @@ -0,0 +1,296 @@ +import numpy as np +import torch +import torch.nn.functional as F +from .common import timeit + + +""" +Functions for performing differentiable bilinear cropping of images, for use in +the object discriminator +""" + +def crop_bbox_batch(feats, bbox, bbox_to_feats, HH, WW=None, backend='cudnn'): + """ + Inputs: + - feats: FloatTensor of shape (N, C, H, W) + - bbox: FloatTensor of shape (B, 4) giving bounding box coordinates + - bbox_to_feats: LongTensor of shape (B,) mapping boxes to feature maps; + each element is in the range [0, N) and bbox_to_feats[b] = i means that + bbox[b] will be cropped from feats[i]. + - HH, WW: Size of the output crops + + Returns: + - crops: FloatTensor of shape (B, C, HH, WW) where crops[i] uses bbox[i] to + crop from feats[bbox_to_feats[i]]. + """ + if backend == 'cudnn': + return crop_bbox_batch_cudnn(feats, bbox, bbox_to_feats, HH, WW) + N, C, H, W = feats.size() + B = bbox.size(0) + if WW is None: + WW = HH + dtype, device = feats.dtype, feats.device + crops = torch.zeros(B, C, HH, WW, dtype=dtype, device=device) + for i in range(N): + idx = (bbox_to_feats == i).nonzero() + if idx.dim() == 0: + continue + idx = idx.view(-1) + n = idx.size(0) + cur_feats = feats[i].view(1, C, H, W).expand(n, C, H, W).contiguous() + cur_bbox = bbox[idx] + cur_crops = crop_bbox(cur_feats, cur_bbox, HH, WW) + crops[idx] = cur_crops + return crops + + +def _invperm(p): + N = p.size(0) + eye = torch.arange(0, N).type_as(p) + pp = (eye[:, None] == p).nonzero()[:, 1] + return pp + + +def crop_bbox_batch_cudnn(feats, bbox, bbox_to_feats, HH, WW=None): + N, C, H, W = feats.size() + B = bbox.size(0) + if WW is None: + WW = HH + dtype = feats.type() + + feats_flat, bbox_flat, all_idx = [], [], [] + for i in range(N): + idx = (bbox_to_feats == i).nonzero() + if idx.dim() == 0: + continue + idx = idx.view(-1) + n = idx.size(0) + cur_feats = feats[i].view(1, C, H, W).expand(n, C, H, W).contiguous() + cur_bbox = bbox[idx] + + feats_flat.append(cur_feats) + bbox_flat.append(cur_bbox) + all_idx.append(idx) + + feats_flat = torch.cat(feats_flat, dim=0) + bbox_flat = torch.cat(bbox_flat, dim=0) + crops = crop_bbox(feats_flat, bbox_flat, HH, WW, backend='cudnn') + + # If the crops were sequential (all_idx is identity permutation) then we can + # simply return them; otherwise we need to permute crops by the inverse + # permutation from all_idx. + all_idx = torch.cat(all_idx, dim=0) + eye = torch.arange(0, B).type_as(all_idx) + if (all_idx == eye).all(): + return crops + return crops[_invperm(all_idx)] + + +def crop_bbox(feats, bbox, HH, WW=None, backend='cudnn'): + """ + Take differentiable crops of feats specified by bbox. + + Inputs: + - feats: Tensor of shape (N, C, H, W) + - bbox: Bounding box coordinates of shape (N, 4) in the format + [x0, y0, x1, y1] in the [0, 1] coordinate space. + - HH, WW: Size of the output crops. + + Returns: + - crops: Tensor of shape (N, C, HH, WW) where crops[i] is the portion of + feats[i] specified by bbox[i], reshaped to (HH, WW) using bilinear sampling. + """ + N = feats.size(0) + assert bbox.size(0) == N + assert bbox.size(1) == 4 + if WW is None: + WW = HH + if backend == 'cudnn': + # Change box from [0, 1] to [-1, 1] coordinate system + bbox = 2 * bbox - 1 + x0, y0 = bbox[:, 0], bbox[:, 1] + x1, y1 = bbox[:, 2], bbox[:, 3] + X = tensor_linspace(x0, x1, steps=WW).view(N, 1, WW).expand(N, HH, WW) + Y = tensor_linspace(y0, y1, steps=HH).view(N, HH, 1).expand(N, HH, WW) + if backend == 'jj': + return bilinear_sample(feats, X, Y) + elif backend == 'cudnn': + grid = torch.stack([X, Y], dim=3) + return F.grid_sample(feats, grid) + + +def uncrop_bbox(feats, bbox, H, W=None, fill_value=0): + """ + Inverse operation to crop_bbox; construct output images where the feature maps + from feats have been reshaped and placed into the positions specified by bbox. + + Inputs: + - feats: Tensor of shape (N, C, HH, WW) + - bbox: Bounding box coordinates of shape (N, 4) in the format + [x0, y0, x1, y1] in the [0, 1] coordinate space. + - H, W: Size of output. + - fill_value: Portions of the output image that are outside the bounding box + will be filled with this value. + + Returns: + - out: Tensor of shape (N, C, H, W) where the portion of out[i] given by + bbox[i] contains feats[i], reshaped using bilinear sampling. + """ + N, C = feats.size(0), feats.size(1) + assert bbox.size(0) == N + assert bbox.size(1) == 4 + if W is None: + W = H + + x0, y0 = bbox[:, 0], bbox[:, 1] + x1, y1 = bbox[:, 2], bbox[:, 3] + ww = x1 - x0 + hh = y1 - y0 + + x0 = x0.contiguous().view(N, 1).expand(N, H) + x1 = x1.contiguous().view(N, 1).expand(N, H) + ww = ww.view(N, 1).expand(N, H) + + y0 = y0.contiguous().view(N, 1).expand(N, W) + y1 = y1.contiguous().view(N, 1).expand(N, W) + hh = hh.view(N, 1).expand(N, W) + + X = torch.linspace(0, 1, steps=W).view(1, W).expand(N, W).to(feats) + Y = torch.linspace(0, 1, steps=H).view(1, H).expand(N, H).to(feats) + + X = (X - x0) / ww + Y = (Y - y0) / hh + + # For ByteTensors, (x + y).clamp(max=1) gives logical_or + X_out_mask = ((X < 0) + (X > 1)).view(N, 1, W).expand(N, H, W) + Y_out_mask = ((Y < 0) + (Y > 1)).view(N, H, 1).expand(N, H, W) + out_mask = (X_out_mask + Y_out_mask).clamp(max=1) + out_mask = out_mask.view(N, 1, H, W).expand(N, C, H, W) + + X = X.view(N, 1, W).expand(N, H, W) + Y = Y.view(N, H, 1).expand(N, H, W) + + grid = torch.stack([X, Y], dim=3) + out = F.grid_sample(feats, grid) + out[out_mask] = fill_value + return out + + +def bilinear_sample(feats, X, Y): + """ + Perform bilinear sampling on the features in feats using the sampling grid + given by X and Y. + + Inputs: + - feats: Tensor holding input feature map, of shape (N, C, H, W) + - X, Y: Tensors holding x and y coordinates of the sampling + grids; both have shape shape (N, HH, WW) and have elements in the range [0, 1]. + Returns: + - out: Tensor of shape (B, C, HH, WW) where out[i] is computed + by sampling from feats[idx[i]] using the sampling grid (X[i], Y[i]). + """ + N, C, H, W = feats.size() + assert X.size() == Y.size() + assert X.size(0) == N + _, HH, WW = X.size() + + X = X.mul(W) + Y = Y.mul(H) + + # Get the x and y coordinates for the four samples + x0 = X.floor().clamp(min=0, max=W-1) + x1 = (x0 + 1).clamp(min=0, max=W-1) + y0 = Y.floor().clamp(min=0, max=H-1) + y1 = (y0 + 1).clamp(min=0, max=H-1) + + # In numpy we could do something like feats[i, :, y0, x0] to pull out + # the elements of feats at coordinates y0 and x0, but PyTorch doesn't + # yet support this style of indexing. Instead we have to use the gather + # method, which only allows us to index along one dimension at a time; + # therefore we will collapse the features (BB, C, H, W) into (BB, C, H * W) + # and index along the last dimension. Below we generate linear indices into + # the collapsed last dimension for each of the four combinations we need. + y0x0_idx = (W * y0 + x0).view(N, 1, HH * WW).expand(N, C, HH * WW) + y1x0_idx = (W * y1 + x0).view(N, 1, HH * WW).expand(N, C, HH * WW) + y0x1_idx = (W * y0 + x1).view(N, 1, HH * WW).expand(N, C, HH * WW) + y1x1_idx = (W * y1 + x1).view(N, 1, HH * WW).expand(N, C, HH * WW) + + # Actually use gather to pull out the values from feats corresponding + # to our four samples, then reshape them to (BB, C, HH, WW) + feats_flat = feats.view(N, C, H * W) + v1 = feats_flat.gather(2, y0x0_idx.long()).view(N, C, HH, WW) + v2 = feats_flat.gather(2, y1x0_idx.long()).view(N, C, HH, WW) + v3 = feats_flat.gather(2, y0x1_idx.long()).view(N, C, HH, WW) + v4 = feats_flat.gather(2, y1x1_idx.long()).view(N, C, HH, WW) + + # Compute the weights for the four samples + w1 = ((x1 - X) * (y1 - Y)).view(N, 1, HH, WW).expand(N, C, HH, WW) + w2 = ((x1 - X) * (Y - y0)).view(N, 1, HH, WW).expand(N, C, HH, WW) + w3 = ((X - x0) * (y1 - Y)).view(N, 1, HH, WW).expand(N, C, HH, WW) + w4 = ((X - x0) * (Y - y0)).view(N, 1, HH, WW).expand(N, C, HH, WW) + + # Multiply the samples by the weights to give our interpolated results. + out = w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4 + return out + + +def tensor_linspace(start, end, steps=10): + """ + Vectorized version of torch.linspace. + + Inputs: + - start: Tensor of any shape + - end: Tensor of the same shape as start + - steps: Integer + + Returns: + - out: Tensor of shape start.size() + (steps,), such that + out.select(-1, 0) == start, out.select(-1, -1) == end, + and the other elements of out linearly interpolate between + start and end. + """ + assert start.size() == end.size() + view_size = start.size() + (1,) + w_size = (1,) * start.dim() + (steps,) + out_size = start.size() + (steps,) + + start_w = torch.linspace(1, 0, steps=steps).to(start) + start_w = start_w.view(w_size).expand(out_size) + end_w = torch.linspace(0, 1, steps=steps).to(start) + end_w = end_w.view(w_size).expand(out_size) + + start = start.contiguous().view(view_size).expand(out_size) + end = end.contiguous().view(view_size).expand(out_size) + + out = start_w * start + end_w * end + return out + + +if __name__ == '__main__': + import numpy as np + # from scipy.misc import imread, imsave, imresize + from cv2 import imresize + from imageio import imread + from imageio import imwrite as imsave + + cat = imresize(imread('cat.jpg'), (256, 256)) + dog = imresize(imread('dog.jpg'), (256, 256)) + feats = torch.stack([ + torch.from_numpy(cat.transpose(2, 0, 1).astype(np.float32)), + torch.from_numpy(dog.transpose(2, 0, 1).astype(np.float32))], + dim=0) + + boxes = torch.FloatTensor([ + [0, 0, 1, 1], + [0.25, 0.25, 0.75, 0.75], + [0, 0, 0.5, 0.5], + ]) + + box_to_feats = torch.LongTensor([1, 0, 1]).cuda() + + feats, boxes = feats.cuda(), boxes.cuda() + crops = crop_bbox_batch_cudnn(feats, boxes, box_to_feats, 128) + for i in range(crops.size(0)): + crop_np = crops.data[i].cpu().numpy().transpose( + 1, 2, 0).astype(np.uint8) + imsave('out%d.png' % i, crop_np) diff --git a/mlflow/train/sf2f/utils/box_utils.py b/mlflow/train/sf2f/utils/box_utils.py new file mode 100644 index 0000000..898e543 --- /dev/null +++ b/mlflow/train/sf2f/utils/box_utils.py @@ -0,0 +1,133 @@ +import torch +import numpy as np +""" +Utilities for dealing with bounding boxes +""" + + +def box_union(box1, box2): + assert isinstance(box1, torch.Tensor) + return torch.cat( + [torch.min( + torch.stack([box1[:, :2], box2[:, :2],], dim=0), + dim=0, + keepdim=False, + )[0], + torch.max( + torch.stack([box1[:, 2:], box2[:, 2:],], dim=0), + dim=0, + keepdim=False, + )[0],] + , dim=1) + +def box_in_region(boxes, regions): + region_w = regions[:, 2] - regions[:, 0] + region_h = regions[:, 3] - regions[:, 1] + assert (region_w > 0).all() and (region_h > 0).all() + result = torch.zeros_like(regions) + result[:, 0::2] = (boxes[:, 0::2] - regions[:, 0::2]) / region_w + result[:, 1::2] = (boxes[:, 1::2] - regions[:, 1::2]) / region_h + return result + + +def apply_box_transform(anchors, transforms): + """ + Apply box transforms to a set of anchor boxes. + + Inputs: + - anchors: Anchor boxes of shape (N, 4), where each anchor is specified + in the form [xc, yc, w, h] + - transforms: Box transforms of shape (N, 4) where each transform is + specified as [tx, ty, tw, th] + + Returns: + - boxes: Transformed boxes of shape (N, 4) where each box is in the + format [xc, yc, w, h] + """ + # Unpack anchors + xa, ya = anchors[:, 0], anchors[:, 1] + wa, ha = anchors[:, 2], anchors[:, 3] + + # Unpack transforms + tx, ty = transforms[:, 0], transforms[:, 1] + tw, th = transforms[:, 2], transforms[:, 3] + + x = xa + tx * wa + y = ya + ty * ha + w = wa * tw.exp() + h = ha * th.exp() + + boxes = torch.stack([x, y, w, h], dim=1) + return boxes + + +def invert_box_transform(anchors, boxes): + """ + Compute the box transform that, when applied to anchors, would give boxes. + + Inputs: + - anchors: Box anchors of shape (N, 4) in the format [xc, yc, w, h] + - boxes: Target boxes of shape (N, 4) in the format [xc, yc, w, h] + + Returns: + - transforms: Box transforms of shape (N, 4) in the format [tx, ty, tw, th] + """ + # Unpack anchors + xa, ya = anchors[:, 0], anchors[:, 1] + wa, ha = anchors[:, 2], anchors[:, 3] + + # Unpack boxes + x, y = boxes[:, 0], boxes[:, 1] + w, h = boxes[:, 2], boxes[:, 3] + + tx = (x - xa) / wa + ty = (y - ya) / ha + tw = w.log() - wa.log() + th = h.log() - ha.log() + + transforms = torch.stack([tx, ty, tw, th], dim=1) + return transforms + + +def centers_to_extents(boxes): + """ + Convert boxes from [xc, yc, w, h] format to [x0, y0, x1, y1] format + + Input: + - boxes: Input boxes of shape (N, 4) in [xc, yc, w, h] format + + Returns: + - boxes: Output boxes of shape (N, 4) in [x0, y0, x1, y1] format + """ + xc, yc = boxes[:, 0], boxes[:, 1] + w, h = boxes[:, 2], boxes[:, 3] + + x0 = xc - w / 2 + x1 = x0 + w + y0 = yc - h / 2 + y1 = y0 + h + + boxes_out = torch.stack([x0, y0, x1, y1], dim=1) + return boxes_out + + +def extents_to_centers(boxes): + """ + Convert boxes from [x0, y0, x1, y1] format to [xc, yc, w, h] format + + Input: + - boxes: Input boxes of shape (N, 4) in [x0, y0, x1, y1] format + + Returns: + - boxes: Output boxes of shape (N, 4) in [xc, yc, w, h] format + """ + x0, y0 = boxes[:, 0], boxes[:, 1] + x1, y1 = boxes[:, 2], boxes[:, 3] + + xc = 0.5 * (x0 + x1) + yc = 0.5 * (y0 + y1) + w = x1 - x0 + h = y1 - y0 + + boxes_out = torch.stack([xc, yc, w, h], dim=1) + return boxes_out diff --git a/mlflow/train/sf2f/utils/common.py b/mlflow/train/sf2f/utils/common.py new file mode 100644 index 0000000..2248793 --- /dev/null +++ b/mlflow/train/sf2f/utils/common.py @@ -0,0 +1,192 @@ +import os +import time +import inspect +import subprocess +from contextlib import contextmanager + +import torch +from PIL import Image +import numpy as np +from collections import OrderedDict + +def int_tuple(s): + return tuple(int(i) for i in s.split(',')) + + +def float_tuple(s): + return tuple(float(i) for i in s.split(',')) + + +def str_tuple(s): + return tuple(s.split(',')) + + +def set_trainable(model, requires_grad): + set_trainable_param(model.parameters(), requires_grad) + +def set_trainable_param(parameters, requires_grad): + for param in parameters: + param.requires_grad = requires_grad + + +def update_values(dict_from, dict_to): + for key, value in dict_from.items(): + if isinstance(value, dict) and key in dict_to.keys(): + update_values(dict_from[key], dict_to[key]) + elif value is not None or key not in dict_to.keys(): + dict_to[key] = dict_from[key] + return dict_to + + +def params_count(model): + count = 0 + for p in model.parameters(): + c = 1 + for i in range(p.dim()): + c *= p.size(i) + count += c + return count + + +def bool_flag(s): + if s == '1': + return True + elif s == '0': + return False + msg = 'Invalid value "%s" for bool flag (should be 0 or 1)' + raise ValueError(msg % s) + + +def lineno(): + return inspect.currentframe().f_back.f_lineno + + +def get_gpu_memory(): + torch.cuda.synchronize() + opts = [ + 'nvidia-smi', '-q', '--gpu=' + str(0), '|', 'grep', '"Used GPU Memory"' + ] + cmd = str.join(' ', opts) + ps = subprocess.Popen( + cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) + output = ps.communicate()[0].decode('utf-8') + output = output.split("\n")[1].split(":") + consumed_mem = int(output[1].strip().split(" ")[0]) + return consumed_mem + +# Converts a Tensor into an image array (numpy) +# |imtype|: the desired type of the converted numpy array + + +def tensor2im(input_image, imtype=np.uint8): + if not isinstance(input_image, torch.Tensor): + return input_image + image_numpy = input_image.numpy() + if image_numpy.ndim == 3: + if image_numpy.shape[0] == 1: + image_numpy = np.tile(image_numpy, (3, 1, 1)) + elif image_numpy.shape[0] == 3: + image_numpy = np.transpose(image_numpy, (1, 2, 0)) + elif image_numpy.ndim == 4: + if image_numpy.shape[1] == 1: + image_numpy = np.tile(image_numpy, (1, 3, 1, 1)) + elif image_numpy.shape[1] == 3: + image_numpy = np.transpose(image_numpy, (0, 2, 3, 1)) + else: + raise ValueError("Only support images or batches") + return image_numpy.astype(imtype) + + +def save_image(image_numpy, image_path): + image_pil = Image.fromarray(image_numpy) + image_pil.save(image_path) + + +def mkdirs(paths): + if isinstance(paths, list) and not isinstance(paths, str): + for path in paths: + mkdir(path) + else: + mkdir(paths) + + +def mkdir(path): + if not os.path.exists(path): + os.makedirs(path) + + +@contextmanager +def timeit(msg, should_time=True): + if should_time: + torch.cuda.synchronize() + t0 = time.time() + yield + if should_time: + torch.cuda.synchronize() + t1 = time.time() + duration = (t1 - t0) * 1000.0 + print('%s: %.2f ms' % (msg, duration)) + + +class LossManager(object): + def __init__(self): + self.total_loss = None + self.all_losses = {} + + def add_loss(self, loss, name, weight=1.0): + cur_loss = loss * weight + if self.total_loss is not None: + self.total_loss += cur_loss + else: + self.total_loss = cur_loss + + self.all_losses[name] = cur_loss.data.cpu().item() + + def items(self): + return self.all_losses.items() + + +def load_model_state(model, state_dict, strict=True): + # sometimes if the state_dict is saved from DataParallel model, the keys + # has a prefix "module.", so we remove them before Loading + new_state_dict = OrderedDict() + if not isinstance(model, torch.nn.DataParallel): + for k, v in state_dict.items(): + k = k[7:] if k.startswith("module") else k + new_state_dict[k] = v + else: + new_state_dict = state_dict + if strict: + # requires the model's state_dict to be exactly same as the new_state_dict + model.load_state_dict(new_state_dict) + else: + # only load parameters that are same size and type, and print warnings + # for parameters that don't match + own_state = model.state_dict() + for name, param in new_state_dict.items(): + if name in own_state: + if isinstance(param, torch.nn.Parameter): + # backwards compatibility for serialized parameters + param = param.data + if own_state[name].size() == param.size(): + own_state[name].copy_(param) + else: + print( + "Warning: While copying the parameter named {}, " + "whose dimensions in the model are {} and " + "whose dimensions in the checkpoint are {}.".format( + name, own_state[name].size(), param.size() + ) + ) + else: + print( + "Warning: Parameter named {} is not used " + "by this model.".format(name) + ) + for name, _ in own_state.items(): + if name not in new_state_dict: + print( + "Warning: Parameter named {} in the model " + "is not initialized.".format(name) + ) + return model diff --git a/mlflow/train/sf2f/utils/evaluate.py b/mlflow/train/sf2f/utils/evaluate.py new file mode 100644 index 0000000..81f27cc --- /dev/null +++ b/mlflow/train/sf2f/utils/evaluate.py @@ -0,0 +1,67 @@ +import pyprind +import numpy as np +import torch +import torch.nn.functional as F +import glog as log + +from datasets import imagenet_deprocess_batch +from scripts.compute_inception_score import get_inception_score +from scripts.compute_vggface_score import get_vggface_score + + +VGG_BOX = [0.235, 0.195, 0.765, 0.915] +def crop_vgg_box(imgs): + # with correct cropping & correct processing + left, top, right, bottom = VGG_BOX + # = [0.235015, 0.19505739, 0.76817876, 0.9154963] + N, C, H, W = imgs.shape + left = int(left * W) + right = int(right * W) + top = int(top * H) + bottom = int(bottom * H) + imgs = imgs[:, :, top:bottom+1, left:right+1] + return imgs + +def evaluate(model, data_loader, options): + ''' + Evaluate the current model... + ''' + normalize_method = options["data"]["data_opts"].get( + 'normalize_method', 'imagenet') + model.eval() + log.info("Evaluating with Inception Scores.") + images = [] + imgs_gt = [] + for iter, batch in enumerate(pyprind.prog_bar(data_loader, + title="[Generating Images]", + width=50)): + ######### unpack the data ######### + imgs, log_mels, human_ids = batch + imgs = imgs.cuda() + imgs_gt.append(imgs[0]) + ################################### + with torch.no_grad(): + float_dtype = torch.cuda.FloatTensor + log_mels = log_mels.type(float_dtype) + model_out = model(log_mels) + """ + imgs_pred: generated images + others: placeholder for other output + """ + imgs_pred, others = model_out + img = imagenet_deprocess_batch( + imgs_pred, normalize_method=normalize_method) + img = crop_vgg_box(img) + for i in range(img.shape[0]): + img_np = img[i].numpy().transpose(1, 2, 0) + images.append(img_np) + log.info("Computing inception scores...") + is_mean, is_std = get_inception_score(images) + log.info("Computing VF scores...") + vfs_mean, vfs_std = get_vggface_score(images) + + return is_mean, is_std, vfs_mean, vfs_std + + +if __name__ == '__main__': + evaluate() diff --git a/mlflow/train/sf2f/utils/evaluate_fid.py b/mlflow/train/sf2f/utils/evaluate_fid.py new file mode 100644 index 0000000..90da53d --- /dev/null +++ b/mlflow/train/sf2f/utils/evaluate_fid.py @@ -0,0 +1,82 @@ +import pyprind +import numpy as np +import torch +import torch.nn.functional as F +import glog as log + +from datasets import imagenet_deprocess_batch +from scripts.compute_fid_score import calculate_activation_statistics, calculate_frechet_distance +import scripts.compute_fid_score as inception_score +from scripts.compute_vggface_score import get_vggface_act + +VGG_BOX = [0.235, 0.195, 0.765, 0.915] +def crop_vgg_box(imgs): + # with correct cropping & correct processing + left, top, right, bottom = VGG_BOX + # = [0.235015, 0.19505739, 0.76817876, 0.9154963] + N, C, H, W = imgs.shape + left = int(left * W) + right = int(right * W) + top = int(top * H) + bottom = int(bottom * H) + imgs = imgs[:, :, top:bottom+1, left:right+1] + return imgs + +def evaluate_fid(model, data_loader, options): + ''' + Evaluate the current model... + ''' + normalize_method = options["data"]["data_opts"].get( + 'normalize_method', 'imagenet') + model.eval() + log.info("Evaluating with Inception Scores.") + images = [] + imgs_gt = [] + for iter, batch in enumerate(pyprind.prog_bar(data_loader, + title="[Generating Images]", + width=50)): + ######### unpack the data ######### + imgs, log_mels, human_ids = batch + imgs = imgs.cuda() + ################################### + with torch.no_grad(): + float_dtype = torch.cuda.FloatTensor + log_mels = log_mels.type(float_dtype) + model_out = model(log_mels) + """ + imgs_pred: generated images + others: placeholder for other output + """ + imgs_pred, others = model_out + img = imagenet_deprocess_batch( + imgs_pred, normalize_method=normalize_method) + img = crop_vgg_box(img) + for i in range(img.shape[0]): + img_np = img[i].numpy().transpose(1, 2, 0) + images.append(img_np) + + img = imagenet_deprocess_batch( + imgs, normalize_method=normalize_method) + img = crop_vgg_box(img) + for i in range(img.shape[0]): + img_np = img[i].numpy().transpose(1, 2, 0) + imgs_gt.append(img_np) + + log.info("Computing FID scores...") + acts_set = inception_score.get_fid_pred(imgs_gt) + fake_acts_set = inception_score.get_fid_pred(images) + real_mu, real_sigma = calculate_activation_statistics(acts_set) + fake_mu, fake_sigma = calculate_activation_statistics(fake_acts_set) + fid_score = calculate_frechet_distance(real_mu, real_sigma, fake_mu, fake_sigma) + + acts_set = get_vggface_act(imgs_gt) + fake_acts_set = get_vggface_act(images) + real_mu, real_sigma = calculate_activation_statistics(acts_set) + fake_mu, fake_sigma = calculate_activation_statistics(fake_acts_set) + fvfd_score = calculate_frechet_distance(real_mu, real_sigma, fake_mu, fake_sigma) + + return fid_score + + +if __name__ == '__main__': + evaluate() diff --git a/mlflow/train/sf2f/utils/filter_pickle.py b/mlflow/train/sf2f/utils/filter_pickle.py new file mode 100644 index 0000000..ccf5646 --- /dev/null +++ b/mlflow/train/sf2f/utils/filter_pickle.py @@ -0,0 +1,35 @@ +import pickle +import os + + +def check_pickle(mel_pickle): + """ + Load a mel pickle file and remove the file if it is empty + + Args: + mel_pickle: str, path to the mel pickle file + Returns: + None + """ + file = open(mel_pickle, 'rb') + try: + data = pickle.load(file) + except: + print('Error loading:', mel_pickle) + os.remove(mel_pickle) + + file.close() + +def filtering_pickle(dir_path): + for dir in os.listdir(dir_path): + data_path = os.path.join(dir_path, dir) + for id in os.listdir(data_path): + data = os.path.join(data_path, id) + check_pickle(data) + print("Filtering Done.") + + +# if __name__=="__main__": +# dir_path = './data/VoxCeleb/vox1/mel_spectrograms' # wav_convertor.vox1_mel +# filtering_pickle(dir_path) + diff --git a/mlflow/train/sf2f/utils/logger.py b/mlflow/train/sf2f/utils/logger.py new file mode 100644 index 0000000..c21f383 --- /dev/null +++ b/mlflow/train/sf2f/utils/logger.py @@ -0,0 +1,93 @@ +# Code referenced from https://gist.github.com/gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514 +import tensorflow as tf +import numpy as np +# import scipy.misc +from PIL.Image import fromarray + +try: + from StringIO import StringIO # Python 2.7 +except ImportError: + from io import BytesIO # Python 3.x + +tf.compat.v1.disable_v2_behavior() + + +class Logger(object): + + def __init__(self, log_dir): + """Create a summary writer logging to log_dir.""" + self.writer = tf.compat.v1.summary.FileWriter(log_dir) + # self.writer = tf.compat.v1.summary.create_file_writer(log_dir) + + def scalar_summary(self, tag, value, step): + """Log a scalar variable.""" + summary = tf.compat.v1.Summary( + value=[tf.compat.v1.Summary.Value(tag=tag, simple_value=value)]) + self.writer.add_summary(summary, step) + + def image_summary(self, images, step, tag="vis"): + """Log a list of images.""" + + img_summaries = [] + if isinstance(images, list): + for i, img in enumerate(images): + _tag = '%s/%d' % (tag, i) + # Create a Summary value + img_summaries.append(self.add_image(img, _tag)) + elif isinstance(images, dict): + for key, img in images.items(): + _tag = '%s/%s' % (tag, key) + # Create a Summary value + img_summaries.append(self.add_image(img, _tag)) + else: + raise ValueError("Either a list or a dict is supported.") + + # Create and write Summary + summary = tf.compat.v1.Summary(value=img_summaries) + self.writer.add_summary(summary, step) + + def histo_summary(self, tag, values, step, bins=1000): + """Log a histogram of the tensor of values.""" + + # Create a histogram using numpy + counts, bin_edges = np.histogram(values, bins=bins) + + # Fill the fields of the histogram proto + hist = tf.HistogramProto() + hist.min = float(np.min(values)) + hist.max = float(np.max(values)) + hist.num = int(np.prod(values.shape)) + hist.sum = float(np.sum(values)) + hist.sum_squares = float(np.sum(values**2)) + + # Drop the start of the first bin + bin_edges = bin_edges[1:] + + # Add bin edges and counts + for edge in bin_edges: + hist.bucket_limit.append(edge) + for c in counts: + hist.bucket.append(c) + + # Create and write Summary + summary = tf.compat.v1.Summary( + value=[tf.compat.v1.Summary.Value(tag=tag, histo=hist)]) + self.writer.add_summary(summary, step) + self.writer.flush() + + def add_image(self, img, tag): + # Write the image to a string + try: + s = StringIO() + except: + s = BytesIO() + # scipy.misc.toimage(img).save(s, format="png") + fromarray(img).save(s, format="png") + + + # Create an Image object + img_sum = tf.compat.v1.Summary.Image(encoded_image_string=s.getvalue(), + height=img.shape[0], + width=img.shape[1]) + + return tf.compat.v1.Summary.Value(tag=tag, image=img_sum) diff --git a/mlflow/train/sf2f/utils/losses.py b/mlflow/train/sf2f/utils/losses.py new file mode 100644 index 0000000..55fcb70 --- /dev/null +++ b/mlflow/train/sf2f/utils/losses.py @@ -0,0 +1,144 @@ +import torch +import torch.nn.functional as F + + +def get_gan_losses(gan_type): + """ + Returns the generator and discriminator loss for a particular GAN type. + + The returned functions have the following API: + loss_g = g_loss(scores_fake) + loss_d = d_loss(scores_real, scores_fake) + """ + if gan_type == 'gan': + return gan_g_loss, gan_d_loss + elif gan_type == 'wgan': + return wgan_g_loss, wgan_d_loss + elif gan_type == 'lsgan': + return lsgan_g_loss, lsgan_d_loss + else: + raise ValueError('Unrecognized GAN type "%s"' % gan_type) + + +def bce_loss(input, target): + """ + Numerically stable version of the binary cross-entropy loss function. + + As per https://github.com/pytorch/pytorch/issues/751 + See the TensorFlow docs for a derivation of this formula: + https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits + + Inputs: + - input: PyTorch Tensor of shape (N, ) giving scores. + - target: PyTorch Tensor of shape (N,) containing 0 and 1 giving targets. + + Returns: + - A PyTorch Tensor containing the mean BCE loss over the minibatch of + input data. + """ + neg_abs = -input.abs() + loss = input.clamp(min=0) - input * target + (1 + neg_abs.exp()).log() + return loss.mean() + + +def _make_targets(x, y): + """ + Inputs: + - x: PyTorch Tensor + - y: Python scalar + + Outputs: + - out: PyTorch Variable with same shape and dtype as x, but filled with y + """ + return torch.full_like(x, y) + + +def gan_g_loss(scores_fake): + """ + Input: + - scores_fake: Tensor of shape (N,) containing scores for fake samples + + Output: + - loss: Variable of shape (,) giving GAN generator loss + """ + if scores_fake.dim() > 1: + scores_fake = scores_fake.view(-1) + y_fake = _make_targets(scores_fake, 1) + return bce_loss(scores_fake, y_fake) + + +def gan_d_loss(scores_real, scores_fake): + """ + Input: + - scores_real: Tensor of shape (N,) giving scores for real samples + - scores_fake: Tensor of shape (N,) giving scores for fake samples + + Output: + - loss: Tensor of shape (,) giving GAN discriminator loss + """ + assert scores_real.size() == scores_fake.size() + if scores_real.dim() > 1: + scores_real = scores_real.view(-1) + scores_fake = scores_fake.view(-1) + y_real = _make_targets(scores_real, 1) + y_fake = _make_targets(scores_fake, 0) + loss_real = bce_loss(scores_real, y_real) + loss_fake = bce_loss(scores_fake, y_fake) + return loss_real + loss_fake + + +def wgan_g_loss(scores_fake): + """ + Input: + - scores_fake: Tensor of shape (N,) containing scores for fake samples + + Output: + - loss: Tensor of shape (,) giving WGAN generator loss + """ + return -scores_fake.mean() + + +def wgan_d_loss(scores_real, scores_fake): + """ + Input: + - scores_real: Tensor of shape (N,) giving scores for real samples + - scores_fake: Tensor of shape (N,) giving scores for fake samples + + Output: + - loss: Tensor of shape (,) giving WGAN discriminator loss + """ + return scores_fake.mean() - scores_real.mean() + + +def lsgan_g_loss(scores_fake): + if scores_fake.dim() > 1: + scores_fake = scores_fake.view(-1) + y_fake = _make_targets(scores_fake, 1) + return F.mse_loss(scores_fake.sigmoid(), y_fake) + + +def lsgan_d_loss(scores_real, scores_fake): + assert scores_real.size() == scores_fake.size() + if scores_real.dim() > 1: + scores_real = scores_real.view(-1) + scores_fake = scores_fake.view(-1) + y_real = _make_targets(scores_real, 1) + y_fake = _make_targets(scores_fake, 0) + loss_real = F.mse_loss(scores_real.sigmoid(), y_real) + loss_fake = F.mse_loss(scores_fake.sigmoid(), y_fake) + return loss_real + loss_fake + + +def gradient_penalty(x_real, x_fake, f, gamma=1.0): + N = x_real.size(0) + device, dtype = x_real.device, x_real.dtype + eps = torch.randn(N, 1, 1, 1, device=device, dtype=dtype) + x_hat = eps * x_real + (1 - eps) * x_fake + x_hat_score = f(x_hat) + if x_hat_score.dim() > 1: + x_hat_score = x_hat_score.view(x_hat_score.size(0), -1).mean(dim=1) + x_hat_score = x_hat_score.sum() + grad_x_hat, = torch.autograd.grad(x_hat_score, x_hat, create_graph=True) + grad_x_hat_norm = grad_x_hat.contiguous().view(N, -1).norm(p=2, dim=1) + gp_loss = (grad_x_hat_norm - gamma).pow(2).div(gamma * gamma).mean() + return gp_loss diff --git a/mlflow/train/sf2f/utils/metrics.py b/mlflow/train/sf2f/utils/metrics.py new file mode 100644 index 0000000..f337aaf --- /dev/null +++ b/mlflow/train/sf2f/utils/metrics.py @@ -0,0 +1,50 @@ +import torch + +def accuracy(output, target, topk=(1,)): + """Computes the accuracy over the k top predictions for the specified values of k""" + with torch.no_grad(): + maxk = max(topk) + batch_size = target.size(0) + + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + correct = pred.eq(target.view(1, -1).expand_as(pred)) + + res = [] + for k in topk: + correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) + res.append(correct_k.mul_(100.0 / batch_size).item()) + return res + + +def intersection(bbox_pred, bbox_gt): + max_xy = torch.min(bbox_pred[:, 2:], bbox_gt[:, 2:]) + min_xy = torch.max(bbox_pred[:, :2], bbox_gt[:, :2]) + inter = torch.clamp((max_xy - min_xy), min=0) + return inter[:, 0] * inter[:, 1] + + +def jaccard(bbox_pred, bbox_gt): + inter = intersection(bbox_pred, bbox_gt) + area_pred = (bbox_pred[:, 2] - bbox_pred[:, 0]) * (bbox_pred[:, 3] - + bbox_pred[:, 1]) + area_gt = (bbox_gt[:, 2] - bbox_gt[:, 0]) * (bbox_gt[:, 3] - + bbox_gt[:, 1]) + union = area_pred + area_gt - inter + iou = torch.div(inter, union) + return torch.sum(iou) + + +def get_total_norm(parameters, norm_type=2): + if norm_type == float('inf'): + total_norm = max(p.grad.data.abs().max() for p in parameters) + else: + total_norm = 0 + for p in parameters: + try: + param_norm = p.grad.data.norm(norm_type) + total_norm += param_norm ** norm_type + total_norm = total_norm ** (1. / norm_type) + except: + continue + return total_norm diff --git a/mlflow/train/sf2f/utils/mlflow_wandb.py b/mlflow/train/sf2f/utils/mlflow_wandb.py new file mode 100644 index 0000000..5ce4f04 --- /dev/null +++ b/mlflow/train/sf2f/utils/mlflow_wandb.py @@ -0,0 +1,15 @@ +import mlflow +import wandb + +def mlflow_wandb_logging(log_dict,model,signature,input_sample,sample_image): + #mlflow Log metric & model + mlflow.log_metrics(log_dict) + mlflow.pytorch.log_model( + pytorch_model=model, + artifact_path = "sf2f_pytorch", + signature= signature, + input_example = input_sample, + # pip_requirements = "rec.txt" + ) + log_dict['sample'] = [wandb.Image(sample_image, caption=f"Sample")] + wandb.log(log_dict) diff --git a/mlflow/train/sf2f/utils/pgan_utils.py b/mlflow/train/sf2f/utils/pgan_utils.py new file mode 100644 index 0000000..efb4e52 --- /dev/null +++ b/mlflow/train/sf2f/utils/pgan_utils.py @@ -0,0 +1,45 @@ +import os +import time +import json +import math +import torch + + +def num_flat_features(x): + size = x.size()[1:] # all dimensions except the batch dimension + num_features = 1 + for s in size: + num_features *= s + return num_features + + +def miniBatchStdDev(x, subGroupSize=4): + r""" + Add a minibatch standard deviation channel to the current layer. + In other words: + 1) Compute the standard deviation of the feature map over the minibatch + 2) Get the mean, over all pixels and all channels of thsi ValueError + 3) expand the layer and cocatenate it with the input + Args: + - x (tensor): previous layer + - subGroupSize (int): size of the mini-batches on which the standard deviation + should be computed + """ + size = x.size() + subGroupSize = min(size[0], subGroupSize) + if size[0] % subGroupSize != 0: + subGroupSize = size[0] + G = int(size[0] / subGroupSize) + if subGroupSize > 1: + y = x.view(-1, subGroupSize, size[1], size[2], size[3]) + y = torch.var(y, 1) + y = torch.sqrt(y + 1e-8) + y = y.view(G, -1) + y = torch.mean(y, 1).view(G, 1) + y = y.expand(G, size[2]*size[3]).view((G, 1, 1, size[2], size[3])) + y = y.expand(G, subGroupSize, -1, -1, -1) + y = y.contiguous().view((-1, 1, size[2], size[3])) + else: + y = torch.zeros(x.size(0), 1, x.size(2), x.size(3), device=x.device) + + return torch.cat([x, y], dim=1) diff --git a/mlflow/train/sf2f/utils/s2f_evaluator.py b/mlflow/train/sf2f/utils/s2f_evaluator.py new file mode 100644 index 0000000..9341cc0 --- /dev/null +++ b/mlflow/train/sf2f/utils/s2f_evaluator.py @@ -0,0 +1,449 @@ +''' +This file contains the utils for evaluation, and is used to cooperate with \ + training_utils.py and test.py +''' + + +import os +import json +import math +from collections import defaultdict +import time +from copy import deepcopy + +import numpy as np +import torch +import torch.optim as optim +import torch.nn as nn +import torch.nn.functional as F +from scipy.stats import entropy +from torchvision.models import inception_v3 +from pyprind import prog_bar +from tensorflow.io import gfile +from imageio import imwrite + +from datasets import fast_imagenet_deprocess_batch, imagenet_deprocess_batch +import datasets +import models +from models import InceptionResnetV1, fixed_image_standardization + + +# left, top, right, bottom +VGG_BOX = [0.235, 0.195, 0.765, 0.915] + + +class S2fEvaluator: + def __init__(self, + loader, + options, + nframe_range=None, + extraction_size=100, + hq_emb_dict=True, + face_gen_mode='naive', + facenet_return_pooling=False): + ''' + Inputs: + loader + options + ''' + self.loader = deepcopy(loader) + # This makes sure same group of meg_spectrograms is used for fuser + self.loader.dataset.shuffle_mel_segments = False + if nframe_range is not None: + self.loader.dataset.nframe_range = nframe_range + self.facenet = InceptionResnetV1( + pretrained='vggface2', + auto_input_resize=True, + return_pooling=facenet_return_pooling).cuda().eval() + self.float_dtype = torch.cuda.FloatTensor + self.long_dtype = torch.cuda.LongTensor + self.options = options + self.image_normalize_method= \ + self.options["data"]["data_opts"]["image_normalize_method"] + self.do_deprocess_and_preprocess = \ + self.options["eval"]["facenet"]["deprocess_and_preprocess"] + # crop faces according to VGG average bounding box + self.crop_faces = \ + self.options["eval"]["facenet"]["crop_faces"] + self.extraction_size = extraction_size + self.hq_emb_dict = hq_emb_dict + self.face_gen_mode = face_gen_mode + + self.get_dataset_embeddings() + + # Implement Evaluation Metrics + self.L2_dist = \ + nn.PairwiseDistance(p=2.0, eps=1e-06, keepdim=False) + self.L1_dist = \ + nn.PairwiseDistance(p=1.0, eps=1e-06, keepdim=False) + self.cos_sim = nn.CosineSimilarity(dim=-1, eps=1e-08) + + def deprocess_and_preprocess(self, imgs): + ''' + For a batch of real / generated image, perform 'imagenet' or 'standard' + deprocess, and FaceNet Preprocess + ''' + #print('Begin:', imgs[0]) + imgs = fast_imagenet_deprocess_batch( + imgs, + normalize_method=self.image_normalize_method) + #print('Our distribution:', imgs[0]) + imgs = fixed_image_standardization(imgs) + #print('fixed_image_standardization:', imgs[0]) + return imgs + + def crop_vgg_box(self, imgs): + # with correct cropping & correct processing + left, top, right, bottom = VGG_BOX + # = [0.235015, 0.19505739, 0.76817876, 0.9154963] + N, C, H, W = imgs.shape + left = int(left * W) + right = int(right * W) + top = int(top * H) + bottom = int(bottom * H) + imgs = imgs[:, :, top:bottom+1, left:right+1] + return imgs + + def get_dataset_embeddings(self): + with torch.no_grad(): + # To avoid influence to the running_mean/var of BatchNorm Layers + embedding_batches = [] + if self.hq_emb_dict: + for i in prog_bar( + range(len(self.loader.dataset)), + title="[S2fEvaluator: " + \ + "Preparing FaceNet Embedding Dictionary]", + width=50): + # Loop logic + ######### unpack the data ######### + imgs = self.loader.dataset.get_all_faces_of_id(i) + imgs = imgs.cuda() + ################################### + if self.do_deprocess_and_preprocess: + imgs = self.deprocess_and_preprocess(imgs) + if self.crop_faces: + imgs = self.crop_vgg_box(imgs) + embeddings = self.facenet(imgs) + embeddings = torch.mean(embeddings, 0, keepdim=True) + embedding_batches.append(embeddings) + else: + for batch in prog_bar( + self.loader, + title="[S2fEvaluator: " + \ + "Preparing FaceNet Embedding Dictionary]", + width=50): + # Loop logic + ######### unpack the data ######### + imgs, log_mels, human_ids = batch + imgs = imgs.cuda() + ################################### + if self.do_deprocess_and_preprocess: + imgs = self.deprocess_and_preprocess(imgs) + if self.crop_faces: + imgs = self.crop_vgg_box(imgs) + embeddings = self.facenet(imgs) + embedding_batches.append(embeddings) + self.dataset_embedding = torch.cat(embedding_batches, 0) + print("S2fEvaluator: dataset_embedding shape:", + self.dataset_embedding.shape) + + def get_pred_img_embeddings(self, model): + ''' + This function focus on evaluating the speech-to-face specific metrics, + Including: + 1. Deep feature (FaceNet Feature) Similarity + 2. Extraction Recall@K + 3. Landmark Correlation + ''' + training_status = model.training + model.eval() + pred_img_embedding_batches = [] + with torch.no_grad(): + # To avoid influence to the running_mean/var of BatchNorm Layers + if self.face_gen_mode == 'naive': + for batch in prog_bar( + self.loader, + title="[S2fEvaluator: " + \ + "Getting FaceNet Embedding for Predicted Images]", + width=50): + # Loop logic + ######### unpack the data ######### + imgs, log_mels, human_ids = batch + imgs = imgs.cuda() + log_mels = log_mels.type(self.float_dtype) + human_ids = human_ids.type(self.long_dtype) + ################################### + # Run the model as it has been run during training + model_out = model(log_mels) + imgs_pred, others = model_out + # Multi-Reso Case + if isinstance(imgs_pred, tuple): + imgs_pred = imgs_pred[-1] + if self.do_deprocess_and_preprocess: + imgs_pred = self.deprocess_and_preprocess(imgs_pred) + if self.crop_faces: + imgs_pred = self.crop_vgg_box(imgs_pred) + pred_img_embeddings = self.facenet(imgs_pred) + pred_img_embedding_batches.append(pred_img_embeddings) + elif self.face_gen_mode == 'average_facenet_embedding': + for i in prog_bar( + range(len(self.loader.dataset)), + title="[S2fEvaluator: " + \ + "Getting FaceNet Embedding for Predicted Images, " + \ + "with average Facenet embedding policy]", + width=50): + # Loop logic + ######### unpack the data ######### + log_mels = self.loader.dataset.get_all_mel_segments_of_id(i) + log_mels = log_mels.type(self.float_dtype) + ################################### + # Run the model as it has been run during training + model_out = model(log_mels) + imgs_pred, others = model_out + if isinstance(imgs_pred, tuple): + imgs_pred = imgs_pred[-1] + if self.do_deprocess_and_preprocess: + imgs_pred = self.deprocess_and_preprocess(imgs_pred) + if self.crop_faces: + imgs_pred = self.crop_vgg_box(imgs_pred) + pred_img_embeddings = self.facenet(imgs_pred) + pred_img_embeddings = torch.mean( + pred_img_embeddings, 0, keepdim=True) + pred_img_embedding_batches.append(pred_img_embeddings) + elif self.face_gen_mode == 'average_voice_embedding': + for i in prog_bar( + range(len(self.loader.dataset)), + title="[S2fEvaluator: " + \ + "Getting FaceNet Embedding for Predicted Images, " + \ + "with average voice embedding policy]", + width=50): + # Loop logic + ######### unpack the data ######### + log_mels = self.loader.dataset.get_all_mel_segments_of_id(i) + log_mels = log_mels.type(self.float_dtype) + ################################### + # Run the model as it has been run during training + model_out = model(log_mels, average_voice_embedding=True) + imgs_pred, others = model_out + if isinstance(imgs_pred, tuple): + imgs_pred = imgs_pred[-1] + if self.do_deprocess_and_preprocess: + imgs_pred = self.deprocess_and_preprocess(imgs_pred) + if self.crop_faces: + imgs_pred = self.crop_vgg_box(imgs_pred) + pred_img_embeddings = self.facenet(imgs_pred) + #pred_img_embeddings = torch.mean( + # pred_img_embeddings, 0, keepdim=True) + pred_img_embedding_batches.append(pred_img_embeddings) + pred_img_embedding = torch.cat(pred_img_embedding_batches, 0) + #print("S2fEvaluator: pred_img_embedding shape:", + # pred_img_embedding.shape) + model.train(mode=training_status) + + return pred_img_embedding + + def L1_query(self, x, y): + ''' + Given x, extract top K similar features from y, based on L1 distance + x in shape (N_x, D) + y in shape (N_y, D) + ''' + # (N_x, D) --> (N_x, 1, D) + x = x.unsqueeze(1) + # Initialize: (N_x, ) + x_ids = torch.tensor(np.arange(x.shape[0])).cpu() + # (N_y, D) --> (1, N_y, D) + y = y.unsqueeze(0) + # Output: (N_x, N_y, D) + L1_table = torch.abs(x - y) + # (N_x, N_y, D) --> (N_x, N_y) + L1_table = torch.mean(L1_table, dim=-1) + L1_table = torch.neg(L1_table) + # Top K: (N_x, K) + top_1_vals, top_1_indices = torch.topk(L1_table, 1, dim=-1) + top_5_vals, top_5_indices = torch.topk(L1_table, 5, dim=-1) + top_10_vals, top_10_indices = torch.topk(L1_table, 10, dim=-1) + top_50_vals, top_50_indices = torch.topk(L1_table, 50, dim=-1) + + recall_at_1 = self.in_top_k(top_1_indices.cpu(), x_ids) + recall_at_5 = self.in_top_k(top_5_indices.cpu(), x_ids) + recall_at_10 = self.in_top_k(top_10_indices.cpu(), x_ids) + recall_at_50 = self.in_top_k(top_50_indices.cpu(), x_ids) + + return recall_at_1, recall_at_5, recall_at_10, recall_at_50 + + def cos_query(self, x, y): + ''' + Given x, extract top K similar features from y, based on L1 distance + x in shape (N_x, D) + y in shape (N_y, D) + ''' + # (N_x, D) --> (N_x, 1, D) + x = x.unsqueeze(1) + # Initialize: (N_x, ) + x_ids = torch.tensor(np.arange(x.shape[0])).cpu() + # (N_y, D) --> (1, N_y, D) + y = y.unsqueeze(0) + # Output: (N_x, N_y) + cos_table = self.cos_sim(x, y) + + # Top K: (N_x, K) + top_1_vals, top_1_indices = torch.topk(cos_table, 1, dim=-1) + top_2_vals, top_2_indices = torch.topk(cos_table, 2, dim=-1) + top_5_vals, top_5_indices = torch.topk(cos_table, 5, dim=-1) + top_10_vals, top_10_indices = torch.topk(cos_table, 10, dim=-1) + top_20_vals, top_20_indices = torch.topk(cos_table, 20, dim=-1) + top_50_vals, top_50_indices = torch.topk(cos_table, 50, dim=-1) + + recall_at_1 = self.in_top_k(top_1_indices.cpu(), x_ids) + recall_at_2 = self.in_top_k(top_2_indices.cpu(), x_ids) + recall_at_5 = self.in_top_k(top_5_indices.cpu(), x_ids) + recall_at_10 = self.in_top_k(top_10_indices.cpu(), x_ids) + recall_at_20 = self.in_top_k(top_20_indices.cpu(), x_ids) + recall_at_50 = self.in_top_k(top_50_indices.cpu(), x_ids) + + recall_tuple = (recall_at_1, recall_at_2, recall_at_5, recall_at_10, \ + recall_at_20, recall_at_50) + + return recall_tuple + + def cal_ih_sim(self, x, y): + ''' + For an existing face embedding distribution, calculate the inter-human + similarity + + Arguments: + x in shape (N_x, D) + x in shape (N_y, D) + ''' + # (N_x, D) --> (N_x, 1, D) + y = y.unsqueeze(0) + x = x.unsqueeze(1) + # Output: (N_x, N_y) + cos_table = self.cos_sim(x, y) + cos_table = cos_table.detach().cpu().numpy() + ih_sum = 0.0 + for i in range(cos_table.shape[0]): + for j in range(cos_table.shape[1]): + if i != j: + ih_sum = ih_sum + cos_table[i, j] + ih_sim = ih_sum / float(cos_table.shape[0] * (cos_table.shape[1] - 1)) + return ih_sim + + def in_top_k(self, top_k_indices, gt_labels): + results = [] + for i, top_k_id in enumerate(top_k_indices): + gt_label = gt_labels[i] + #print(gt_label, top_k_id) + if gt_label in top_k_id: + results.append(1.0) + else: + results.append(0.0) + #print('results:', results) + return np.mean(results) + + def get_metrics(self, model, recall_method='cos_sim', get_ih_sim=False): + ''' + Arguments: + recall_method: the similarity metric to use for retrival + get_ih_sim: get the inter-human similarity + ''' + pred_img_embedding = self.get_pred_img_embeddings(model) + L2_dist = self.L2_dist(self.dataset_embedding, pred_img_embedding) + L2_dist = torch.mean(L2_dist).item() + L1_dist = self.L1_dist(self.dataset_embedding, pred_img_embedding) + L1_dist = torch.mean(L1_dist).item() + cos_sim = self.cos_sim(self.dataset_embedding, pred_img_embedding) + cos_sim = torch.mean(cos_sim).item() + + # We might use only 100 id for extraction + if self.extraction_size is None: + pred_emb_to_use = pred_img_embedding + data_emb_to_use = self.dataset_embedding + elif isinstance(self.extraction_size, list): + pred_emb_to_use = [pred_img_embedding[0:self.extraction_size[0]], \ + pred_img_embedding[self.extraction_size[0]:self.extraction_size[1]], \ + pred_img_embedding[self.extraction_size[1]:self.extraction_size[2]]] + data_emb_to_use = [self.dataset_embedding[0:self.extraction_size[0]], \ + self.dataset_embedding[self.extraction_size[0]:self.extraction_size[1]], \ + self.dataset_embedding[self.extraction_size[1]:self.extraction_size[2]]] + else: + pred_emb_to_use = pred_img_embedding[0:self.extraction_size] + data_emb_to_use = self.dataset_embedding[0:self.extraction_size] + + if recall_method == 'L1': + if isinstance(pred_emb_to_use, list): + recall_temp = [] + for i, pred_emb in enumerate(pred_emb_to_use): + recall_temp.append(self.L1_query(pred_emb, data_emb_to_use[i])) + recall_tuple = tuple(np.mean(np.array(recall_temp), axis=0)) + else: + recall_tuple = self.L1_query(pred_emb_to_use, data_emb_to_use) + elif recall_method == 'cos_sim': + if isinstance(pred_emb_to_use, list): + recall_temp = [] + for i, pred_emb in enumerate(pred_emb_to_use): + recall_temp.append(self.cos_query(pred_emb, data_emb_to_use[i])) + recall_tuple = tuple(np.mean(np.array(recall_temp), axis=0)) + else: + recall_tuple = self.cos_query(pred_emb_to_use, data_emb_to_use) + + if get_ih_sim: + ih_sim = self.cal_ih_sim(pred_img_embedding, self.dataset_embedding) + return L2_dist, L1_dist, cos_sim, recall_tuple, ih_sim + else: + return L2_dist, L1_dist, cos_sim, recall_tuple + + def get_faces_from_different_segments(self, model, output_dir): + #gfile.MkDir(output_dir) + os.makedirs(output_dir, exist_ok=True) + temp_loader = deepcopy(self.loader) + for i in prog_bar( + range(len(self.loader.dataset)), + title="[S2fEvaluator: " + \ + "Generating Faces from Different Speech Segments]", + width=50): + ######### unpack the data ######### + imgs = temp_loader.dataset.get_all_faces_of_id(i) + log_mels = temp_loader.dataset.get_all_mel_segments_of_id(i) + imgs = imgs.cuda() + log_mels = log_mels.type(self.float_dtype) #cuda() + #human_ids = human_ids.type(long_dtype) + ################################### + with torch.no_grad(): + model_out = model(log_mels) + imgs_pred, _ = model_out + if isinstance(imgs_pred, tuple): + imgs_pred = imgs_pred[-1] + imgs = imagenet_deprocess_batch( + imgs, normalize_method=self.image_normalize_method) + imgs_pred = imagenet_deprocess_batch( + imgs_pred, normalize_method=self.image_normalize_method) + #print(imgs.shape, imgs_pred.shape) + identity_dir = os.path.join(output_dir, str(i)) + gfile.MkDir(identity_dir) + + for j in range(imgs.shape[0]): + img_np = imgs[j].numpy().transpose(1, 2, 0) + img_path = os.path.join(identity_dir, 'origin_%d.png' % j) + imwrite(img_path, img_np) + + for k in range(imgs_pred.shape[0]): + img_np = imgs_pred[k].numpy().transpose(1, 2, 0) + img_path = os.path.join(identity_dir, 'pred_%d.png' % k) + imwrite(img_path, img_np) + + def L2_distances(self, x, y=None): + ''' + Input: x is a Nxd matrix + y is an optional Mxd matirx + Output: dist is a NxM matrix where dist[i,j] is the square norm between x[i,:] and y[j,:] + if y is not given then use 'y=x'. + i.e. dist[i,j] = ||x[i,:]-y[j,:]||^2 + ''' + if y is not None: + differences = x.unsqueeze(1) - y.unsqueeze(0) + else: + differences = x.unsqueeze(1) - x.unsqueeze(0) + distances = torch.sum(differences * differences, -1) + return distances diff --git a/mlflow/train/sf2f/utils/training_utils.py b/mlflow/train/sf2f/utils/training_utils.py new file mode 100644 index 0000000..b917b7f --- /dev/null +++ b/mlflow/train/sf2f/utils/training_utils.py @@ -0,0 +1,250 @@ +import os +import json +import math +from collections import defaultdict +import time + +import numpy as np +import torch +import torch.optim as optim +import torch.nn as nn +import torch.nn.functional as F +from scipy.stats import entropy +from torchvision.models import inception_v3 +from pyprind import prog_bar + +from datasets import imagenet_deprocess_batch, fast_mel_deprocess_batch +import datasets +import models +from utils.metrics import jaccard +from utils import tensor2im +from utils.visualization.plot import get_np_plot, plot_mel_spectrogram, \ + plot_attention + +from scripts.compute_vggface_score import get_vggface_score + + +def add_loss_with_tensor(total_loss, + curr_loss, + loss_dict, + loss_name, + weight=1): + curr_loss = curr_loss * weight + loss_dict[loss_name] = curr_loss + if total_loss is not None: + total_loss += curr_loss + else: + total_loss = curr_loss + return total_loss + +def add_loss(total_loss, curr_loss, loss_dict, loss_name, weight=1): + curr_loss = curr_loss * weight + loss_dict[loss_name] = curr_loss.item() + if total_loss is not None: + total_loss += curr_loss + else: + total_loss = curr_loss + return total_loss + + +def visualize_sample(model, + imgs, + log_mels, + image_normalize_method, + mel_normalize_method='vox_mel', + visualize_attn=False): + ''' + Prepare data for tensorboard + ''' + samples = [] + # add the ground-truth images + samples.append(imgs[:1]) + + with torch.no_grad(): + model_out = model(log_mels) + imgs_pred, others = model_out + # add the reconstructed images + if isinstance(imgs_pred, tuple): + if len(imgs_pred) >= 2: + low_imgs_pred = imgs_pred[0] + # Rescale + while low_imgs_pred.size()[2] != imgs_pred[-1].size()[2]: + low_imgs_pred = F.interpolate( + low_imgs_pred, scale_factor=2, mode='nearest') + samples.append(low_imgs_pred[:1]) + if len(imgs_pred) == 3: + mid_imgs_pred = imgs_pred[1] + while mid_imgs_pred.size()[2] != imgs_pred[-1].size()[2]: + mid_imgs_pred = F.interpolate( + mid_imgs_pred, scale_factor=2, mode='nearest') + samples.append(mid_imgs_pred[:1]) + imgs_pred = imgs_pred[-1] + samples.append(imgs_pred[:1]) + + log_mels_de = fast_mel_deprocess_batch(log_mels, mel_normalize_method) + log_mel = log_mels_de[0].cpu().detach().numpy() + + if visualize_attn: + attn_weights = model.module.decoder.return_attn_weights() + attn_weight = attn_weights[0].cpu().detach().numpy() + + samples = torch.cat(samples, dim=3) + samples = { + "samples": tensor2im( + imagenet_deprocess_batch( + samples, + rescale=False, + normalize_method=image_normalize_method + ).squeeze(0) + ), + #"mel_spectrogram": get_np_plot( + # plot_mel_spectrogram( + # log_mel) + #) + } + if visualize_attn: + samples['attention_weights'] = get_np_plot( + plot_attention(attn_weight)) + + # Draw Scene Graphs + #sg_array = draw_scene_graph(objs[obj_to_img == 0], + # triples[triple_to_img == 0], + # vocab=vocab) + #samples["scene_graph"] = sg_array + + return samples + + +def check_model(args, + options, + t, + loader, + model): + training_status = model.training + model.eval() + float_dtype = torch.cuda.FloatTensor + long_dtype = torch.cuda.LongTensor + num_samples = 0 + all_losses = defaultdict(list) + inception_module = nn.DataParallel( + inception_v3( + pretrained=True, + transform_input=False).cuda()) + inception_module.eval() + preds = [] + images = [] + with torch.no_grad(): + # To avoid influence to the running_mean/var of BatchNorm Layers + for batch in prog_bar( + loader, + title="[Validating Inception Score and Pixel Loss]", + width=50): + # Loop logic + ######### unpack the data ######### + imgs, log_mels, human_ids = batch + imgs = imgs.cuda() + log_mels = log_mels.type(float_dtype) + human_ids = human_ids.type(long_dtype) + ################################### + # Run the model as it has been run during training + model_out = model(log_mels) + imgs_pred, others = model_out + + skip_pixel_loss = False + total_loss, losses = calculate_model_losses( + options["optim"], + skip_pixel_loss, + imgs, + imgs_pred, + get_item=True) + + if isinstance(imgs_pred, tuple): + imgs_pred = imgs_pred[-1] + image = imagenet_deprocess_batch( + imgs_pred, + normalize_method=options["data"]["data_opts"]["image_normalize_method"]) + for i in range(image.shape[0]): + img_np = image[i].numpy().transpose(1, 2, 0) + images.append(img_np) + + # check inception scores + x = F.interpolate(imgs_pred, (299, 299), mode="bilinear") + x = inception_module(x) + preds.append(F.softmax(x).cpu().numpy()) + + for loss_name, loss_val in losses.items(): + all_losses[loss_name].append(loss_val) + num_samples += imgs.size(0) + + samples = visualize_sample( + model, + imgs, + log_mels, + options["data"]["data_opts"]["image_normalize_method"], + visualize_attn=options['eval'].get('visualize_attn', False)) + mean_losses = {k: np.mean(v) for k, v in all_losses.items()} + + # calculate the inception scores + splits = 5 + preds = np.concatenate(preds, axis=0) + # Now compute the mean kl-div + split_scores = [] + N = preds.shape[0] + for k in range(splits): + part = preds[k * (N // splits): (k+1) * (N // splits), :] + py = np.mean(part, axis=0) + scores = [] + for i in range(part.shape[0]): + pyx = part[i, :] + scores.append(entropy(pyx, py)) + split_scores.append(np.exp(np.mean(scores))) + inception_score = (np.mean(split_scores), np.std(split_scores)) + + vf_score = get_vggface_score(images) + + out = [mean_losses, samples, inception_score, vf_score] + model.train(mode=training_status) + return tuple(out) + + +def calculate_model_losses(opts, + skip_pixel_loss, + imgs, + imgs_pred, + get_item=False): + if get_item: + add_loss_fn = add_loss + else: + add_loss_fn = add_loss_with_tensor + total_loss = torch.zeros(1).to(imgs) + losses = {} + + l1_pixel_weight = opts["l1_pixel_loss_weight"] + if skip_pixel_loss: + l1_pixel_weight = 0 + + if isinstance(imgs_pred, tuple): + # Multi-Resolution Pixel Loss + for i, img_pred in enumerate(imgs_pred): + loss_name = 'L1_pixel_loss_%d' % i + img = imgs + while img.size()[2] != img_pred.size()[2]: + img = F.interpolate(img, scale_factor=0.5, mode='nearest') + l1_pixel_loss = F.l1_loss(img_pred, img) + total_loss = add_loss_fn( + total_loss, + l1_pixel_loss, + losses, + loss_name, + l1_pixel_weight) + else: + # Single Resolution + l1_pixel_loss = F.l1_loss(imgs_pred, imgs) + total_loss = add_loss_fn( + total_loss, + l1_pixel_loss, + losses, + 'L1_pixel_loss', + l1_pixel_weight) + + return total_loss, losses diff --git a/mlflow/train/sf2f/utils/utils.py b/mlflow/train/sf2f/utils/utils.py new file mode 100644 index 0000000..0157a82 --- /dev/null +++ b/mlflow/train/sf2f/utils/utils.py @@ -0,0 +1,89 @@ +import time +import inspect +import subprocess +from contextlib import contextmanager + +import torch +from torch import nn + +def int_tuple(s): + return tuple(int(i) for i in s.split(',')) + + +def float_tuple(s): + return tuple(float(i) for i in s.split(',')) + + +def str_tuple(s): + return tuple(s.split(',')) + + +def bool_flag(s): + if s == '1': + return True + elif s == '0': + return False + msg = 'Invalid value "%s" for bool flag (should be 0 or 1)' + raise ValueError(msg % s) + + +def lineno(): + return inspect.currentframe().f_back.f_lineno + + +def get_gpu_memory(): + torch.cuda.synchronize() + opts = [ + 'nvidia-smi', '-q', '--gpu=' + str(0), '|', 'grep', '"Used GPU Memory"' + ] + cmd = str.join(' ', opts) + ps = subprocess.Popen( + cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) + output = ps.communicate()[0].decode('utf-8') + output = output.split("\n")[1].split(":") + consumed_mem = int(output[1].strip().split(" ")[0]) + return consumed_mem + + +@contextmanager +def timeit(msg, should_time=True): + if should_time: + torch.cuda.synchronize() + t0 = time.time() + yield + if should_time: + torch.cuda.synchronize() + t1 = time.time() + duration = (t1 - t0) * 1000.0 + print('%s: %.2f ms' % (msg, duration)) + + +class LossManager(object): + def __init__(self): + self.total_loss = None + self.all_losses = {} + + def add_loss(self, loss, name, weight=1.0): + cur_loss = loss * weight + if self.total_loss is not None: + self.total_loss += cur_loss + else: + self.total_loss = cur_loss + + self.all_losses[name] = cur_loss.data.cpu().item() + + def items(self): + return self.all_losses.items() + + +def load_my_state_dict(model, state_dict): + print('Loading my state_dict') + own_state = model.state_dict() + for name, param in state_dict.items(): + if name not in own_state: + continue + if isinstance(param, nn.Parameter): + # backwards compatibility for serialized parameters + param = param.data + own_state[name].copy_(param) + print('{} Loaded!'.format(name)) diff --git a/mlflow/train/sf2f/utils/vad_ex.py b/mlflow/train/sf2f/utils/vad_ex.py new file mode 100644 index 0000000..f8b489e --- /dev/null +++ b/mlflow/train/sf2f/utils/vad_ex.py @@ -0,0 +1,174 @@ +import collections +import contextlib +import sys +import wave +from pydub import AudioSegment +import webrtcvad + +# Modified https://github.com/wiseman/py-webrtcvad/blob/master/example.py + +def read_wave(path): + """Reads a .wav file. + Takes the path, and returns (PCM audio data, sample rate). + """ + with contextlib.closing(wave.open(path, 'rb')) as wf: + num_channels = wf.getnchannels() + #assert num_channels == 1 + sample_width = wf.getsampwidth() + assert sample_width == 2 + sample_rate = wf.getframerate() + #assert sample_rate in (8000, 16000, 32000) + pcm_data = wf.readframes(wf.getnframes()) + return pcm_data, sample_rate + +def read_libri(path): + mf = AudioSegment.from_file(path, "wav") + sample_rate = mf.frame_rate + pcm_data = mf.raw_data + return pcm_data, sample_rate + + +def read_m4a(path): + mf = AudioSegment.from_file(path, "m4a") + sample_rate = mf.frame_rate + pcm_data = mf.raw_data + return pcm_data, sample_rate + + +def write_wave(path, audio, sample_rate): + """Writes a .wav file. + Takes path, PCM audio data, and sample rate. + """ + with contextlib.closing(wave.open(path, 'wb')) as wf: + wf.setnchannels(1) + wf.setsampwidth(2) + wf.setframerate(sample_rate) + wf.writeframes(audio) + + +class Frame(object): + """Represents a "frame" of audio data.""" + def __init__(self, bytes, timestamp, duration): + self.bytes = bytes + self.timestamp = timestamp + self.duration = duration + + +def frame_generator(frame_duration_ms, audio, sample_rate): + """Generates audio frames from PCM audio data. + Takes the desired frame duration in milliseconds, the PCM data, and + the sample rate. + Yields Frames of the requested duration. + """ + n = int(sample_rate * (frame_duration_ms / 1000.0) * 2) + offset = 0 + timestamp = 0.0 + duration = (float(n) / sample_rate) / 2.0 + while offset + n < len(audio): + yield Frame(audio[offset:offset + n], timestamp, duration) + timestamp += duration + offset += n + + +def vad_collector(sample_rate, frame_duration_ms, + padding_duration_ms, vad, frames): + """Filters out non-voiced audio frames. + Given a webrtcvad.Vad and a source of audio frames, yields only + the voiced audio. + Uses a padded, sliding window algorithm over the audio frames. + When more than 90% of the frames in the window are voiced (as + reported by the VAD), the collector triggers and begins yielding + audio frames. Then the collector waits until 90% of the frames in + the window are unvoiced to detrigger. + The window is padded at the front and back to provide a small + amount of silence or the beginnings/endings of speech around the + voiced frames. + Arguments: + sample_rate - The audio sample rate, in Hz. + frame_duration_ms - The frame duration in milliseconds. + padding_duration_ms - The amount to pad the window, in milliseconds. + vad - An instance of webrtcvad.Vad. + frames - a source of audio frames (sequence or generator). + Returns: A generator that yields PCM audio data. + """ + num_padding_frames = int(padding_duration_ms / frame_duration_ms) + # We use a deque for our sliding window/ring buffer. + ring_buffer = collections.deque(maxlen=num_padding_frames) + # We have two states: TRIGGERED and NOTTRIGGERED. We start in the + # NOTTRIGGERED state. + triggered = False + + voiced_frames = [] + for frame in frames: + is_speech = vad.is_speech(frame.bytes, sample_rate) + + #sys.stdout.write('1' if is_speech else '0') + if not triggered: + ring_buffer.append((frame, is_speech)) + num_voiced = len([f for f, speech in ring_buffer if speech]) + # If we're NOTTRIGGERED and more than 90% of the frames in + # the ring buffer are voiced frames, then enter the + # TRIGGERED state. + if num_voiced > 0.9 * ring_buffer.maxlen: + triggered = True + #sys.stdout.write('+(%s)' % (ring_buffer[0][0].timestamp,)) + # We want to yield all the audio we see from now until + # we are NOTTRIGGERED, but we have to start with the + # audio that's already in the ring buffer. + for f, s in ring_buffer: + voiced_frames.append(f) + ring_buffer.clear() + else: + # We're in the TRIGGERED state, so collect the audio data + # and add it to the ring buffer. + voiced_frames.append(frame) + ring_buffer.append((frame, is_speech)) + num_unvoiced = len([f for f, speech in ring_buffer if not speech]) + # If more than 90% of the frames in the ring buffer are + # unvoiced, then enter NOTTRIGGERED and yield whatever + # audio we've collected. + if num_unvoiced > 0.9 * ring_buffer.maxlen: + #sys.stdout.write('-(%s)' % (frame.timestamp + frame.duration)) + triggered = False + yield b''.join([f.bytes for f in voiced_frames]) + ring_buffer.clear() + voiced_frames = [] + #if triggered: + # sys.stdout.write('-(%s)' % (frame.timestamp + frame.duration)) + #sys.stdout.write('\n') + # If we have any leftover voiced audio when we run out of input, + # yield it. + if voiced_frames: + yield b''.join([f.bytes for f in voiced_frames]) + + +def main(args): + if len(args) != 2: + sys.stderr.write( + 'Usage: example.py \n') + sys.exit(1) + audio, sample_rate = read_wave(args[1]) + #audio, sample_rate = read_m4a(args[1]) + #audio, sample_rate = read_libri(args[1]) + vad = webrtcvad.Vad(int(args[0])) + frames = frame_generator(30, audio, sample_rate) + frames = list(frames) + segments = vad_collector(sample_rate, 30, 300, vad, frames) + total_wav = b"" + for i, segment in enumerate(segments): + total_wav += segment + + + path = 'test.wav' + write_wave(path, total_wav, sample_rate) + + +if __name__ == '__main__': + #main(sys.argv[1:]) + import os + WAV_DIR = os.path.join('./data', 'VoxCeleb', 'raw_wav') + wav_path = 'vox1/test/id10270/zjwijMp0Qyw/00001.wav' + wav_path = os.path.join(WAV_DIR, wav_path) + + audio, sample_rate = read_wave(wav_path) + print(audio, sample_rate) diff --git a/mlflow/train/sf2f/utils/visualization/__init__.py b/mlflow/train/sf2f/utils/visualization/__init__.py new file mode 100644 index 0000000..2b54423 --- /dev/null +++ b/mlflow/train/sf2f/utils/visualization/__init__.py @@ -0,0 +1,2 @@ +from .vis import * +# from .visualizer import Visualizer diff --git a/mlflow/train/sf2f/utils/visualization/html.py b/mlflow/train/sf2f/utils/visualization/html.py new file mode 100644 index 0000000..1e71687 --- /dev/null +++ b/mlflow/train/sf2f/utils/visualization/html.py @@ -0,0 +1,65 @@ +import dominate +from dominate.tags import * +import os + + +class HTML: + def __init__(self, web_dir, title, reflesh=0): + self.title = title + self.web_dir = web_dir + self.img_dir = os.path.join(self.web_dir, 'images') + if not os.path.exists(self.web_dir): + os.makedirs(self.web_dir) + if not os.path.exists(self.img_dir): + os.makedirs(self.img_dir) + # print(self.img_dir) + + self.doc = dominate.document(title=title) + if reflesh > 0: + with self.doc.head: + meta(http_equiv="reflesh", content=str(reflesh)) + + def get_image_dir(self): + return self.img_dir + + def add_header(self, str): + with self.doc: + h3(str) + + def add_table(self, border=1): + self.t = table(border=border, style="table-layout: fixed;") + self.doc.add(self.t) + + def add_images(self, ims, txts, links, width=400): + self.add_table() + with self.t: + with tr(): + for im, txt, link in zip(ims, txts, links): + with td(style="word-wrap: break-word;", halign="center", valign="top"): + with p(): + with a(href=os.path.join('images', link)): + img(style="width:%dpx" % + width, src=os.path.join('images', im)) + br() + p(txt) + + def save(self): + html_file = '%s/index.html' % self.web_dir + f = open(html_file, 'wt') + f.write(self.doc.render()) + f.close() + + +if __name__ == '__main__': + html = HTML('web/', 'test_html') + html.add_header('hello world') + + ims = [] + txts = [] + links = [] + for n in range(4): + ims.append('image_%d.png' % n) + txts.append('text_%d' % n) + links.append('image_%d.png' % n) + html.add_images(ims, txts, links) + html.save() diff --git a/mlflow/train/sf2f/utils/visualization/plot.py b/mlflow/train/sf2f/utils/visualization/plot.py new file mode 100644 index 0000000..7f24e9d --- /dev/null +++ b/mlflow/train/sf2f/utils/visualization/plot.py @@ -0,0 +1,199 @@ +import matplotlib +matplotlib.use('Agg') +import matplotlib.pyplot as plt +import io +import tensorflow as tf +import PIL +import numpy as np + + +def plot_attention(attn_mat, path=None, info=None): + num_query_head, seq_len = attn_mat.shape + fig, ax = plt.subplots() + fig.set_size_inches(10, 10) + + querys = ['query {}'.format(i) for i in range(num_query_head)] + steps = ['steps {}'.format(j) for j in range(seq_len)] + + im, cbar = heatmap(attn_mat, querys, steps, ax=ax, + cmap="YlGn", cbarlabel="Attention Weight") + annotate_heatmap(im) + + fig.tight_layout() + if path is not None: + plt.savefig(path, format='png') + buf = io.BytesIO() + plt.savefig(buf, format='png') + buf.seek(0) + plt.clf() + plt.cla() + plt.close(fig) + return buf + + +def plot_mel_spectrogram(log_mels, + path=None, + info=None, + colorbar=True, + label=True, + coordinate=True, + remove_boarder=False): + fig, ax = plt.subplots() + if not coordinate: + #ax.format_coord = lambda x, y: '' + plt.axis('off') + fig.set_size_inches(5, 3) + im = ax.imshow( + log_mels, + aspect='auto', + origin='lower', + interpolation='none') + im.set_cmap('viridis') + if colorbar: + fig.colorbar(im, ax=ax) + xlabel = 'Time' + if info is not None: + xlabel += '\n\n' + info + if label: + plt.xlabel(xlabel) + plt.ylabel('Frequency') + plt.tight_layout() + if path is not None: + plt.savefig(path, format='png') + buf = io.BytesIO() + if not remove_boarder: + plt.savefig(buf, format='png') + else: + plt.savefig(buf, format='png', bbox_inches='tight') + buf.seek(0) + plt.clf() + plt.cla() + plt.close(fig) + return buf + + +def get_np_plot(plot_buf): + image = PIL.Image.open(plot_buf) + WW, HH = image.size + + return np.array(image) + + +def heatmap(data, row_labels, col_labels, ax=None, + cbar_kw={}, cbarlabel="", **kwargs): + """ + Create a heatmap from a numpy array and two lists of labels. + + Parameters + ---------- + data + A 2D numpy array of shape (N, M). + row_labels + A list or array of length N with the labels for the rows. + col_labels + A list or array of length M with the labels for the columns. + ax + A `matplotlib.axes.Axes` instance to which the heatmap is plotted. If + not provided, use current axes or create a new one. Optional. + cbar_kw + A dictionary with arguments to `matplotlib.Figure.colorbar`. Optional. + cbarlabel + The label for the colorbar. Optional. + **kwargs + All other arguments are forwarded to `imshow`. + """ + + if not ax: + ax = plt.gca() + + # Plot the heatmap + im = ax.imshow(data, **kwargs) + + # Create colorbar + cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw) + cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom") + + # We want to show all ticks... + ax.set_xticks(np.arange(data.shape[1])) + ax.set_yticks(np.arange(data.shape[0])) + # ... and label them with the respective list entries. + ax.set_xticklabels(col_labels) + ax.set_yticklabels(row_labels) + + # Let the horizontal axes labeling appear on top. + ax.tick_params(top=True, bottom=False, + labeltop=True, labelbottom=False) + + # Rotate the tick labels and set their alignment. + plt.setp(ax.get_xticklabels(), rotation=-30, ha="right", + rotation_mode="anchor") + + # Turn spines off and create white grid. + for edge, spine in ax.spines.items(): + spine.set_visible(False) + + ax.set_xticks(np.arange(data.shape[1]+1)-.5, minor=True) + ax.set_yticks(np.arange(data.shape[0]+1)-.5, minor=True) + ax.grid(which="minor", color="w", linestyle='-', linewidth=3) + ax.tick_params(which="minor", bottom=False, left=False) + + return im, cbar + + +def annotate_heatmap(im, data=None, valfmt="{x:.2f}", + textcolors=["black", "white"], + threshold=None, **textkw): + """ + A function to annotate a heatmap. + + Parameters + ---------- + im + The AxesImage to be labeled. + data + Data used to annotate. If None, the image's data is used. Optional. + valfmt + The format of the annotations inside the heatmap. This should either + use the string format method, e.g. "$ {x:.2f}", or be a + `matplotlib.ticker.Formatter`. Optional. + textcolors + A list or array of two color specifications. The first is used for + values below a threshold, the second for those above. Optional. + threshold + Value in data units according to which the colors from textcolors are + applied. If None (the default) uses the middle of the colormap as + separation. Optional. + **kwargs + All other arguments are forwarded to each call to `text` used to create + the text labels. + """ + + if not isinstance(data, (list, np.ndarray)): + data = im.get_array() + + # Normalize the threshold to the images color range. + if threshold is not None: + threshold = im.norm(threshold) + else: + threshold = im.norm(data.max())/2. + + # Set default alignment to center, but allow it to be + # overwritten by textkw. + kw = dict(horizontalalignment="center", + verticalalignment="center") + kw.update(textkw) + + # Get the formatter in case a string is supplied + if isinstance(valfmt, str): + valfmt = matplotlib.ticker.StrMethodFormatter(valfmt) + + # Loop over the data and create a `Text` for each "pixel". + # Change the text's color depending on the data. + texts = [] + for i in range(data.shape[0]): + for j in range(data.shape[1]): + kw.update(color=textcolors[int(im.norm(data[i, j]) > threshold)]) + text = im.axes.text(j, i, valfmt(data[i, j], None), **kw) + texts.append(text) + + return texts diff --git a/mlflow/train/sf2f/utils/visualization/tsne.py b/mlflow/train/sf2f/utils/visualization/tsne.py new file mode 100644 index 0000000..62f8791 --- /dev/null +++ b/mlflow/train/sf2f/utils/visualization/tsne.py @@ -0,0 +1,40 @@ +''' +Visualize embeddings via TSNE +''' + + +import numpy as np +import matplotlib.pyplot as plt +from mpl_toolkits.mplot3d import Axes3D +from sklearn.manifold import TSNE + + +def visualize_distribution( + embeddings, + num_class, + sample_per_class, + class_names=None): + ''' + Inputs: + embeddings: numpy array with shape + [num_class * sample_per_class, emb_dim] + ''' + emb_2d = TSNE(n_components=2).fit_transform(embeddings) + emb_2d = emb_2d.reshape([num_class, sample_per_class, 2]) + fig, axes = plt.subplots() + fig.set_size_inches(18.5, 10.5) + if class_names is None: + class_names = [' ' for i in range(num_class)] + color_list = ['b', 'g', 'r', 'c', 'm', 'y', 'k', \ + 'orange', 'purple', 'pink'] + for i, class_name in enumerate(class_names): + x = emb_2d[i, :, 0] + y = emb_2d[i, :, 1] + axes.scatter(x=x, y=y, c=color_list[i], label=class_name) + + axes.set_xlabel("Component 1") + axes.set_ylabel("Component 2") + axes.legend(loc='upper left') + axes.set_xlim(-300, 300) + axes.set_ylim(-300, 300) + plt.show() diff --git a/mlflow/train/sf2f/utils/visualization/vis.py b/mlflow/train/sf2f/utils/visualization/vis.py new file mode 100644 index 0000000..de412bd --- /dev/null +++ b/mlflow/train/sf2f/utils/visualization/vis.py @@ -0,0 +1,219 @@ +import tempfile +import os +import torch +import numpy as np +import matplotlib.pyplot as plt +from matplotlib.patches import Rectangle +from imageio import imread +import time + + +""" +Utilities for making visualizations. +""" + + +def draw_layout(vocab, objs, boxes, masks=None, size=256, + show_boxes=False, bgcolor=(0, 0, 0)): + if bgcolor == 'white': + bgcolor = (255, 255, 255) + + cmap = plt.get_cmap('rainbow') + colors = cmap(np.linspace(0, 1, len(objs))) + + with torch.no_grad(): + objs = objs.cpu().clone() + boxes = boxes.cpu().clone() + boxes *= size + + if masks is not None: + masks = masks.cpu().clone() + + bgcolor = np.asarray(bgcolor) + bg = np.ones((size, size, 1)) * bgcolor + plt.imshow(bg.astype(np.uint8)) + + plt.gca().set_xlim(0, size) + plt.gca().set_ylim(size, 0) + plt.gca().set_aspect(1.0, adjustable='box') + + for i, obj in enumerate(objs): + name = vocab['object_idx_to_name'][obj] + if name == '__image__': + continue + box = boxes[i] + + if masks is None: + continue + mask = masks[i].numpy() + mask /= mask.max() + + r, g, b, a = colors[i] + colored_mask = mask[:, :, None] * np.asarray(colors[i]) + + x0, y0, x1, y1 = box + plt.imshow(colored_mask, extent=(x0, x1, y1, y0), + interpolation='bicubic', alpha=1.0) + + if show_boxes: + for i, obj in enumerate(objs): + name = vocab['object_idx_to_name'][obj] + if name == '__image__': + continue + box = boxes[i] + + draw_box(box, colors[i], name) + + +def draw_box(box, color, text=None): + """ + Draw a bounding box using pyplot, optionally with a text box label. + + Inputs: + - box: Tensor or list with 4 elements: [x0, y0, x1, y1] in [0, W] x [0, H] + coordinate system. + - color: pyplot color to use for the box. + - text: (Optional) String; if provided then draw a label for this box. + """ + TEXT_BOX_HEIGHT = 10 + if torch.is_tensor(box) and box.dim() == 2: + box = box.view(-1) + assert box.size(0) == 4 + x0, y0, x1, y1 = box + assert y1 > y0, box + assert x1 > x0, box + w, h = x1 - x0, y1 - y0 + rect = Rectangle((x0, y0), w, h, fc='none', lw=2, ec=color) + plt.gca().add_patch(rect) + if text is not None: + text_rect = Rectangle( + (x0, y0), w, TEXT_BOX_HEIGHT, fc=color, alpha=0.5) + plt.gca().add_patch(text_rect) + tx = 0.5 * (x0 + x1) + ty = y0 + TEXT_BOX_HEIGHT / 2.0 + plt.text(tx, ty, text, va='center', ha='center') + + +def draw_scene_graph(objs, triples, vocab=None, **kwargs): + """ + Use GraphViz to draw a scene graph. If vocab is not passed then we assume + that objs and triples are python lists containing strings for object and + relationship names. + + Using this requires that GraphViz is installed. On Ubuntu 16.04 this is easy: + sudo apt-get install graphviz + """ + output_filename = kwargs.pop('output_filename', + 'graph-{}.png'.format(time.strftime("%Y%m%d-%H%M%S"))) + orientation = kwargs.pop('orientation', 'V') + edge_width = kwargs.pop('edge_width', 6) + arrow_size = kwargs.pop('arrow_size', 1.5) + binary_edge_weight = kwargs.pop('binary_edge_weight', 1.2) + ignore_dummies = kwargs.pop('ignore_dummies', True) + + if orientation not in ['V', 'H']: + raise ValueError('Invalid orientation "%s"' % orientation) + rankdir = {'H': 'LR', 'V': 'TD'}[orientation] + + if vocab is not None: + # Decode object and relationship names + assert torch.is_tensor(objs) + assert torch.is_tensor(triples) + objs_list, triples_list = [], [] + for i in range(objs.size(0)): + objs_list.append(vocab['object_idx_to_name'][objs[i].item()]) + for i in range(triples.size(0)): + s = triples[i, 0].item() + p = vocab['pred_idx_to_name'][triples[i, 1].item()] + # p = triples[i, 1].item() + o = triples[i, 2].item() + triples_list.append([s, p, o]) + objs, triples = objs_list, triples_list + + # General setup, and style for object nodes + lines = [ + 'digraph{', + 'graph [size="5,3",ratio="compress",dpi="300",bgcolor="transparent"]', + 'rankdir=%s' % rankdir, + 'nodesep="0.5"', + 'ranksep="0.5"', + 'node [shape="box",style="rounded,filled",fontsize="48",color="none"]', + 'node [fillcolor="lightpink1"]', + ] + # Output nodes for objects + for i, obj in enumerate(objs): + if ignore_dummies and obj == '__image__': + continue + lines.append('%d [label="%s"]' % (i, obj)) + + # Output relationships + next_node_id = len(objs) + lines.append('node [fillcolor="lightblue1"]') + for s, p, o in triples: + if ignore_dummies and p == '__in_image__': + continue + lines += [ + '%d [label="%s"]' % (next_node_id, p), + '%d->%d [penwidth=%f,arrowsize=%f,weight=%f]' % ( + s, next_node_id, edge_width, arrow_size, binary_edge_weight), + '%d->%d [penwidth=%f,arrowsize=%f,weight=%f]' % ( + next_node_id, o, edge_width, arrow_size, binary_edge_weight) + ] + next_node_id += 1 + lines.append('}') + + # Now it gets slightly hacky. Write the graphviz spec to a temporary + # text file + ff, dot_filename = tempfile.mkstemp() + with open(dot_filename, 'w') as f: + for line in lines: + f.write('%s\n' % line) + os.close(ff) + + # Shell out to invoke graphviz; this will save the resulting image to disk, + # so we read it, delete it, then return it. + output_format = os.path.splitext(output_filename)[1][1:] + os.system('dot -T%s %s > %s' % + (output_format, dot_filename, output_filename)) + os.remove(dot_filename) + try: + img = imread(output_filename) + os.remove(output_filename) + except: + print("####################################") + print("Fail to load image: {}".format(output_filename)) + print("####################################") + img = np.zeros((400, 400, 3)) + + return np.array(img) + + +if __name__ == '__main__': + o_idx_to_name = ['cat', 'dog', 'hat', 'skateboard'] + p_idx_to_name = ['riding', 'wearing', 'on', 'next to', 'above'] + o_name_to_idx = {s: i for i, s in enumerate(o_idx_to_name)} + p_name_to_idx = {s: i for i, s in enumerate(p_idx_to_name)} + vocab = { + 'object_idx_to_name': o_idx_to_name, + 'object_name_to_idx': o_name_to_idx, + 'pred_idx_to_name': p_idx_to_name, + 'pred_name_to_idx': p_name_to_idx, + } + + objs = [ + 'cat', + 'cat', + 'skateboard', + 'hat', + ] + objs = torch.LongTensor([o_name_to_idx[o] for o in objs]) + triples = [ + [0, 'next to', 1], + [0, 'riding', 2], + [1, 'wearing', 3], + [3, 'above', 2], + ] + triples = [[s, p_name_to_idx[p], o] for s, p, o in triples] + triples = torch.LongTensor(triples) + + draw_scene_graph(objs, triples, vocab, orientation='V') diff --git a/mlflow/train/sf2f/utils/wav2mel.py b/mlflow/train/sf2f/utils/wav2mel.py new file mode 100644 index 0000000..35a822d --- /dev/null +++ b/mlflow/train/sf2f/utils/wav2mel.py @@ -0,0 +1,104 @@ +''' +Convert *.wav or *.m4a into mel spectrogram\ + +for unit test, run: + python utils/wav2mel.py +''' + + +import random +import numpy as np +import argparse +import time +from _thread import start_new_thread +import queue +from python_speech_features import logfbank +import webrtcvad +try: + import vad_ex +except: + from utils import vad_ex + + +def vad_process(path): + # VAD Process + if path.endswith('.wav'): + audio, sample_rate = vad_ex.read_wave(path) + elif path.endswith('.m4a'): + audio, sample_rate = vad_ex.read_m4a(path) + else: + raise TypeError('Unsupported file type: {}'.format(path.split('.')[-1])) + + vad = webrtcvad.Vad(1) + frames = vad_ex.frame_generator(30, audio, sample_rate) + frames = list(frames) + segments = vad_ex.vad_collector(sample_rate, 30, 300, vad, frames) + total_wav = b"" + for i, segment in enumerate(segments): + total_wav += segment + # Without writing, unpack total_wav into numpy [N,1] array + # 16bit PCM 기준 dtype=np.int16 + wav_arr = np.frombuffer(total_wav, dtype=np.int16) + #print("read audio data from byte string. np array of shape:" + \ + # str(wav_arr.shape)) + return wav_arr, sample_rate + + +def wav_to_mel(path, nfilt=40): + ''' + Output shape: (nfilt, length) + ''' + wav_arr, sample_rate = vad_process(path) + #print("sample_rate:", sample_rate) + logmel_feats = logfbank( + wav_arr, + samplerate=sample_rate, + nfilt=nfilt) + #print("created logmel feats from audio data. np array of shape:" \ + # + str(logmel_feats.shape)) + return np.transpose(logmel_feats) + + +if __name__ == '__main__': + import os + VOX_DIR = os.path.join('./data', 'VoxCeleb') + WAV_DIR = os.path.join('./data', 'VoxCeleb', 'raw_wav') + #wav_path = 'vox1/test/id10270/zjwijMp0Qyw/00001.wav' + wav_path = 'vox1/dev/id10001/J9lHsKG98U8/00026.wav' + wav_path = os.path.join(WAV_DIR, wav_path) + # m4a_path = 'vox2/test/id04253/dfbCPe2xOPA/00257.m4a' + # m4a_path = os.path.join(WAV_DIR, m4a_path) + + #wav_arr, sample_rate = vad_process(wav_path) + #print(wav_arr, sample_rate) + #wav_arr, sample_rate = vad_process(m4a_path) + #print(wav_arr, sample_rate) + + print(wav_to_mel(wav_path).shape) + # print(wav_to_mel(m4a_path).shape) + + # Compare with preprocessed pickles + import sys + sys.path.append('./') + from datasets.vox_dataset import VoxDataset + # Config + image_size = (256, 256) + #image_normalize_method = 'imagenet' + image_normalize_method = 'standard' + mel_normalize_method = 'vox_mel' + test_case_dir = os.path.join('./data', 'test_cases') + os.makedirs(test_case_dir, exist_ok=True) + + # Dataset + vox_dataset = VoxDataset( + data_dir=VOX_DIR, + image_size=image_size, + image_normalize_method=image_normalize_method, + mel_normalize_method=mel_normalize_method) + np_mel = vox_dataset.load_mel_gram(mel_pickle= \ + './data/VoxCeleb/vox1/mel_spectrograms/A.J._Buckley' + \ + '/id10001_J9lHsKG98U8_00026.pickle') + print('Load from pickle:', np_mel.shape) + print('Calculated by program:', wav_to_mel(wav_path).shape) + + print(np_mel - wav_to_mel(wav_path))