-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_training.py
393 lines (333 loc) · 15.2 KB
/
main_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 12 12:06:13 2022
@author: an553
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.backends.backend_pdf as plt_pdf
import h5py
import os as os
os.environ["OMP_NUM_THREADS"] = '1' # imposes only one core
import skopt
from skopt.space import Real
from skopt.learning import GaussianProcessRegressor as GPR
from skopt.learning.gaussian_process.kernels import Matern, ConstantKernel
from skopt.plots import plot_convergence
from scipy.sparse import csr_matrix, lil_matrix
from scipy.sparse.linalg import eigs as sparse_eigs
from scipy.io import savemat
import time
default_params = dict(trainData=None, filename='',
dt=1E-4, upsample=5,
N_wash=50, t_train=1.0, t_val=0.1,
N_units=100, connect=5, noise_level=0.03,
test_run=True, augment_data=True,
tikh_=np.array([1e-10, 1e-12, 1e-16]),
sigin_=[np.log10(1e-4), np.log10(0.5)],
rho_=[.7, 1.05],
path_dir=''
)
inputs = locals().copy()
for key, val in inputs.items():
if key in default_params.keys():
default_params[key] = val
locals().update(default_params)
# % LOAD REQUIRED FUNCTIONS AND ENVIRONMENTS
fns_training_file = path_dir + "fns_training.py"
exec(open(fns_training_file).read())
# __________________________________________________
if trainData is None:
filename = 'data/test_results_bias.npy'
trainData = np.load(filename)
ESN_filename = '/'.join(filename.split('/')[:-1])
ESN_filename += '/ESN{}_augment{}_L{}.mat'.format(N_units, augment_data, L)
# Force trainData to be (Nalpha, Nt, Nmic)
if len(np.shape(trainData)) == 1: # (Nt,)
trainData = np.expand_dims(trainData, 1)
trainData = np.expand_dims(trainData, 0)
elif len(np.shape(trainData)) == 2: # (Nt, Nmic)
trainData = np.expand_dims(trainData, 0)
else:
if np.argmax(np.shape(trainData)) == 0:
trainData = trainData.transpose((2, 0, 1))
is_param = trainData.min(axis=1)[0] - trainData.max(axis=1)[0] == 0
if any(is_param):
alpha = trainData[:, 0, is_param]
trainData = trainData[:, :, ~is_param]
norm_alpha = np.mean(0.1 / alpha, axis=0)
else:
alpha = []
parametrise = False # THIS WAS DEFINED BEFORE trainData AUGMENTATION, MAY JUST DELETE THE IMPLEMENTAITON
if not parametrise:
norm_alpha = None
# ____________________________ APPLY UPSAMPLE - CONVERT INTO ESN dt ______________________________________
dt_ESN = dt * upsample # ESN time step
trainData = trainData[:, ::upsample]
# _____________________________________ trainData AUGMENTATION ___________________________________________________
if augment_data:
l = int(trainData.shape[0])
U = np.vstack([trainData,
trainData[:l] * 1e-1,
trainData[-l:] * -1e-2
])
print('data augment ON')
else:
U = trainData
print('data augment OFF')
# _______________________________ SEPARATE INTO WASH/TRAIN/VAL SETS ________________________________________
N_dim = U.shape[-1] # dimension of inputs (and outputs)
N_alpha = U.shape[0] # number of training timeseries
N_train = int(t_train / dt_ESN)
N_val = int(t_val / dt_ESN) # length of the trainData used is train+val
N_tv = N_train + N_val
N_wtv = N_wash + N_tv # useful for compact code later
U_trainData = U[:, :N_wtv]
m = np.mean(U_trainData.min(axis=1), axis=0)
M = np.mean(U_trainData.max(axis=1), axis=0)
norm = M - m # compute norm (normalize inputs by component range)
U_wash = U[:, :N_wash]
U_tv = U[:, N_wash:N_wtv - 1]
Y_tv = U[:, N_wash + 1:N_wtv]
# ___________________________________________ ADD NOISE ______________________________________________________
# Add noise to inputs and targets during training. Larger noise_level promotes stability in long term,
# but hinders time accuracy
U_std = np.std(U, axis=1)
seed = 0
rnd = np.random.RandomState(seed)
for j in range(N_dim):
for i in range(N_alpha):
noise = rnd.normal(0, noise_level * U_std[i, j], N_tv - 1)
U_tv[i, :, j] += noise
# ________________________________________ INITIALISE ESN HYPERPARAMETRES _________________________________________
bias_in = np.array([.1]) # input bias
bias_out = np.array([1.0]) # output bias
sparse = 1 - connect / (N_units - 1)
# _________________________________ GRID SEARCH AND BAYESIAN OPTIMISATION PARAMS ____________________________________
n_tot = 20 # Total Number of Function Evaluations
n_in = 0 # Number of Initial random points
# The first n_grid^2 points are from grid search. If n_grid**2 < n_tot, perform Bayesian Optimization
n_grid = 4
if n_grid > 0:
x1 = [[None] * 2 for i in range(n_grid ** 2)]
k = 0
for i in range(n_grid):
for j in range(n_grid):
x1[k] = [rho_[0] + (rho_[1] - rho_[0]) / (n_grid - 1) * i,
sigin_[0] + (sigin_[1] - sigin_[0]) / (n_grid - 1) * j]
k += 1
# range for hyperparameters
search_space = [Real(rho_[0], rho_[1], name='spectral_radius'),
Real(sigin_[0], sigin_[1], name='input_scaling')]
# ARD 5/2 Matern Kernel with sigma_f in front for the Gaussian Process
kernell = ConstantKernel(constant_value=1.0, constant_value_bounds=(1e-1, 3e0)) * \
Matern(length_scale=[0.2, 0.2], nu=2.5, length_scale_bounds=(1e-2, 1e1))
print('\n -------------------- HYPERPARAMETER SEARCH ---------------------\n', str(n_grid) + 'x' + str(n_grid) +
' grid points and ' + str(n_tot - n_grid ** 2) + ' points with Bayesian Optimization')
# _____________________________________ HYPERPARAMS OPTIMISATION FUN _____________________________________
def g(val):
# Gaussian Process reconstruction
b_e = GPR(kernel=kernell,
normalize_y=True, # mean = avg of objective fun
n_restarts_optimizer=3, # num of random starts
noise=1e-10, # for numerical stability
random_state=10) # seed
# Bayesian Optimization
res = skopt.gp_minimize(val, # function to minimize
search_space, # bounds
base_estimator=b_e, # GP kernel
acq_func="gp_hedge", # acquisition function
n_calls=n_tot, # num of evaluations
x0=x1, # Initial grid points
n_random_starts=n_in, # num of random inits
n_restarts_optimizer=3, # tries per acquisition
random_state=10) # seed
return res
# ________________________________________ TRAIN & VALIDATE NETWORK ___________________________________________
ti = time.time() # check time
val = RVC_Noise # Which validation strategy
try:
N_fo = N_fo # number of folds
except:
N_fo = 4 # number of folds
N_in = 0 # interval before the first fold
N_fw = (N_train - N_val) // (N_fo - 1) # num steps forward the validation interval is shifted (evenly spaced)
# Quantities to be saved
tikh_opt = np.zeros(n_tot) # optimal tikhonov
gps = [None] # save the gp reconstruction for each network
k, seed = 0, 1
rnd = np.random.RandomState(seed)
# ======================================= Win & W generation ======================================= ##
N_aug = 1
if norm_alpha is not None:
N_aug += sum(is_param)
Win = lil_matrix((N_units, N_dim + N_aug))
for j in range(N_units):
Win[j, rnd.randint(0, N_dim + 1)] = rnd.uniform(-1, 1)
Win = Win.tocsr()
W = csr_matrix(rnd.uniform(-1, 1, (N_units, N_units)) * (rnd.rand(N_units, N_units) < (1 - sparse)))
spectral_radius = np.abs(sparse_eigs(W, k=1, which='LM', return_eigenvectors=False))[0]
W = (1 / spectral_radius) * W # scaled to have unitary spec radius
# ==================================== Bayesian Optimization ====================================== ##
res = g(val)
gp = res.models[-1]
x_iters = np.array(res.x_iters)
f_iters = np.array(res.func_vals)
minimum = np.append(res.x, [tikh_opt[np.argmin(f_iters)], res.fun])
params = gp.kernel_.get_params()
key = sorted(params)
params_gp = np.array([params[key[2]], params[key[5]][0], params[key[5]][1], gp.noise_])
# ========================================= Train Wout =========================================== ##
Wout = train_save_n(U_wash, U_tv, U[:, N_wash + 1:N_wtv], minimum[2], 10 ** minimum[1], minimum[0])
if len(Wout.shape) == 1:
Wout = np.expand_dims(Wout, axis=1)
print('\n Time per hyperparameter eval.:', (time.time() - ti) / n_tot,
'\n Best Results: x', minimum[0], 10 ** minimum[1], minimum[2], ', f', -minimum[-1])
pdf = plt_pdf.PdfPages(ESN_filename[:-len('.mat')] + '_Training.pdf')
fig = plt.figure()
plot_convergence(res)
pdf.savefig(fig)
plt.close(fig)
# %%
# ____________________________________ OUTPUTS: PLOT SEARCH AND SAVE trainData ____________________________________
# Plot Gaussian Process reconstruction for each network in the ensemble after n_tot evaluations.
# The GP reconstruction is based on the n_tot function evaluations decided in the search
n_len = 100 # points to evaluate the GP at
xx, yy = np.meshgrid(np.linspace(rho_[0], rho_[1], n_len),
np.linspace(sigin_[0], sigin_[1], n_len))
x_x = np.column_stack((xx.flatten(), yy.flatten()))
x_gp = res.space.transform(x_x.tolist()) # gp prediction needs norm. format
fig = plt.figure(figsize=[10, 5], tight_layout=True)
# retrieve the gp reconstruction
amin = np.amin([10, f_iters.max()])
# Final GP reconstruction for each realization at the evaluation points
y_pred = np.clip(-gp.predict(x_gp), a_min=-amin,
a_max=-f_iters.min()).reshape(n_len, n_len)
# Plot GP Mean
plt.xlabel('Spectral Radius')
plt.ylabel('Input Scaling (log-scale)')
CS = plt.contourf(xx, yy, y_pred, levels=20, cmap='Blues')
cbar = plt.colorbar()
cbar.set_label('-$\log_{10}$(MSE)', labelpad=15)
CSa = plt.contour(xx, yy, y_pred, levels=20, colors='black', linewidths=1, linestyles='solid', alpha=0.3)
# Plot the n_tot search points
plt.plot(x_iters[:n_grid ** 2, 0], x_iters[:n_grid ** 2, 1], 'v', c='w',
alpha=0.8, markeredgecolor='k', markersize=10)
plt.plot(x_iters[n_grid ** 2:, 0], x_iters[n_grid ** 2:, 1], 's', c='w',
alpha=0.8, markeredgecolor='k', markersize=8)
pdf.savefig(fig)
plt.close(fig)
if trainData.shape[0] > 1:
rows, cols = min(3, int(trainData.shape[0] / 2)), 2
else:
rows, cols = 1, 1
fig, ax = plt.subplots(3, 2, layout="constrained", figsize=[10, 5])
try:
ax = ax.flatten()
except:
ax = [ax]
finally:
for ii, ax_ in enumerate(ax):
try:
ax_.plot(U[ii, N_wash:N_wtv - 1], label='trainData')
ax_.set(title='l = {}/{}'.format(ii, trainData.shape[0]))
except:
break
pdf.savefig(fig)
plt.close(fig)
# ______________________________________________ RUN TEST _____________________________________________________
if test_run:
# Select number of tests
N_t0 = N_wtv + 10 # start test after washout, training and validation trainData
max_test_time = np.shape(U[:, N_t0:])[1] * dt_ESN
N_test = 50
if N_test * t_val > max_test_time:
N_test = int(np.floor(max_test_time / t_val))
# Break if not enough trainData for testing
if N_test < 1:
print('Test not performed. Not enough trainData')
else:
medians_alpha = []
maxs_alpha = []
alph = None
sub_loop = 5 # number of closed loop re-initialisations with true trainData
N_reinit = N_val // sub_loop # time between closed loop re-initialisations
# load matrices and hyperparameters
rho = minimum[0].copy()
sigma_in = 10 ** minimum[1].copy()
for kk in range(N_alpha):
if norm_alpha is not None:
alph = alpha[kk]
subplots = min(10, N_test) # number of plotted intervals
# plt.figure(figsize=[5, 10], tight_layout=True)
plt.subplots(subplots, 1, figsize=[10, 2*subplots])
errors = np.zeros(N_test)
# Different intervals in the test set
i, ii = -1, -1
while True:
i += 1
ii += 1
if i >= N_test:
break
# trainData for washout and target in each interval
U_wash = U[kk, N_t0 - N_wash + i * N_val: N_t0 + i * N_val]
Y_t = U[kk, N_t0 + i * N_val: N_t0 + i * N_val + N_reinit * sub_loop]
# washout for each interval
xa1 = open_loop(U_wash, np.zeros(N_units), sigma_in, rho, alph)[-1]
Yh_t, xa1 = closed_loop(N_reinit - 1, xa1, Wout, sigma_in, rho, alph)
try:
# Do the multiple sub_loop inside each test interval
if sub_loop > 1:
for j in range(sub_loop - 1):
Y_start = Y_t[(j + 1) * N_reinit - 1].copy() #
Y1, xa1 = closed_loop(N_reinit, xa1, Wout, sigma_in, rho, alph)
Yh_t = np.concatenate((Yh_t, Y1[1:]))
errors[i] = np.log10(np.mean((Yh_t - Y_t) ** 2) / np.mean(norm ** 2))
if i < subplots:
plt.subplot(subplots, 1, i + 1)
plt.plot(np.arange(N_reinit * sub_loop) * dt_ESN, Y_t[:, ii], 'k',
label='truth N_dim ' + str(ii))
plt.plot(np.arange(N_reinit * sub_loop) * dt_ESN, Yh_t[:, ii], '--r',
label='ESN N_dim ' + str(ii))
plt.legend(title='Test \#' + str(i), loc='upper left', bbox_to_anchor=(1.01, 1.01))
if ii == N_dim - 1:
ii = -1
except:
raise Exception('error at i = ', i, ', N_test = ', N_test)
maxs_alpha.append(errors.max())
medians_alpha.append(np.median(errors))
plt.tight_layout()
fig = plt.gcf()
pdf.savefig(fig)
plt.close(fig)
print('Median and max error in', N_alpha, ' test:', np.median(medians_alpha), max(maxs_alpha))
# _________________________________________ Save output and images ___________________________________
save_dict = dict(t_train=t_train,
t_val=t_val,
norm=norm,
Win=Win.T,
Wout=Wout,
W=W,
dt_ESN=dt_ESN,
augment_data=augment_data,
N_augment=int(N_alpha),
N_wash=int(N_wash),
N_units=int(N_units),
N_dim=int(N_dim),
bias_in=bias_in,
bias_out=bias_out,
rho=minimum[0],
sigma_in=10 ** minimum[1],
tikh=minimum[2],
upsample=int(upsample),
hyperparameters=[minimum[0], 10 ** minimum[1], bias_in[0]],
training_time=(N_train + N_val) * dt_ESN,
filename=filename,
connect=connect
)
if norm_alpha is not None:
save_dict['norm_alpha'] = norm_alpha
savemat(ESN_filename, save_dict, oned_as='column')
pdf.close()
print('\n --------------------------------------------------------------- \n')
# %% ====================================================================== %%#