diff --git a/_sources/core_concepts/configuration.rst.txt b/_sources/core_concepts/configuration.rst.txt index eb1afd7e..cc32dc89 100644 --- a/_sources/core_concepts/configuration.rst.txt +++ b/_sources/core_concepts/configuration.rst.txt @@ -5,6 +5,7 @@ Configuration ell provides various configuration options to customize its behavior. .. autofunction:: ell.init + :no-index: This ``init`` function is a convenience function that sets up the configuration for ell. It is a thin wrapper around the ``Config`` class, which is a Pydantic model. @@ -12,9 +13,10 @@ You can modify the global configuration using the ``ell.config`` object which is .. autopydantic_model:: ell.Config :members: - :exclude-members: default_client, registry, store + :exclude-members: default_client, registry, store, providers :model-show-json: false :model-show-validator-members: false :model-show-config-summary: false - :model-show-field-summary: false - :model-show-validator-summary: false \ No newline at end of file + :model-show-field-summary: true + :model-show-validator-summary: false + :no-index: \ No newline at end of file diff --git a/_sources/core_concepts/tool_usage.rst.txt b/_sources/core_concepts/tool_usage.rst.txt index 3d6df4a1..83f49cc3 100644 --- a/_sources/core_concepts/tool_usage.rst.txt +++ b/_sources/core_concepts/tool_usage.rst.txt @@ -271,7 +271,7 @@ This is accomplished by a language model program that takes the source code of a .. code-block:: python - @ell.simple(model="claude-3-5-sonnet", temperature=0.0) + @ell.simple(model="claude-3-5-sonnet-20241022", temperature=0.0) def generate_tool_spec(tool_source: str): ''' You are a helpful assistant that takes in source code for a python function and produces a JSON schema for the function. diff --git a/_sources/installation.rst.txt b/_sources/installation.rst.txt index 80a66135..dbd93638 100644 --- a/_sources/installation.rst.txt +++ b/_sources/installation.rst.txt @@ -10,13 +10,9 @@ Installing ell .. code-block:: bash - pip install -U ell-ai + pip install -U ell-ai[all] - By default, this installs only the OpenAI client SDK. If you want to include the Anthropic client SDK, use the "anthropic" extra like so: - - .. code-block:: bash - - pip install -U 'ell-ai[anthropic]' + This installs ``ell``, ``ell-studio``, versioning and tracing with SQLite, and the default provider clients. 2. Verify installation: @@ -24,6 +20,77 @@ Installing ell python -c "import ell; print(ell.__version__)" +Custom Installation +------------------- + +You can create a custom ``ell`` installation with the following options. + +Install ``ell`` without storage or ``ell-studio`` and with the default OpenAI client: + +.. code-block:: bash + + pip install -U ell-ai + +Supported options: + +``anthropic`` +~~~~~~~~~~~~~ +Adds the Anthropic client. + +.. code-block:: bash + + pip install -U ell-ai[anthropic] + + +``groq`` +~~~~~~~~ +Adds the Groq client. + +.. code-block:: bash + + pip install -U ell-ai[groq] + + +``studio`` +~~~~~~~~~~ +Adds ``ell-studio``. + +.. code-block:: bash + + pip install -U ell-ai[studio] + + +``sqlite`` +~~~~~~~~~~ +SQLite storage for versioning and tracing. + +.. code-block:: bash + + pip install -U ell-ai[sqlite] + + +``postgres`` +~~~~~~~~~~~~ +Postgres storage for versioning and tracing. + +Include this option if you'd like to use ``ell-studio`` with Postgres. + +.. code-block:: bash + + pip install -U ell-ai[postgres] + +Combining options +~~~~~~~~~~~~~~~~~ + +All options are additive and can be combined as needed. + +Example: Install ``ell`` with ``ell-studio``, Postgres, and the Anthropic client: + +.. code-block:: bash + + pip install -U ell-ai[studio, postgres, anthropic] + + API Key Setup ------------- diff --git a/core_concepts/configuration.html b/core_concepts/configuration.html index 516e9f1a..13d89169 100644 --- a/core_concepts/configuration.html +++ b/core_concepts/configuration.html @@ -350,8 +350,8 @@
ell provides various configuration options to customize its behavior.
Initialize the ELL configuration with various settings.
Config
class, which is a Pydantic model.
You can modify the global configuration using the ell.config
object which is an instance of Config
:
Configuration class for ELL.
+autocommit (bool)
autocommit_model (str)
default_api_params (Dict[str, Any])
default_client (openai.OpenAI | None)
lazy_versioning (bool)
override_wrapped_logging_width (int | None)
providers (Dict[Type, ell.provider.Provider])
registry (Dict[str, ell.configurator._Model])
store (None)
verbose (bool)
wrapped_logging (bool)
If True, enables automatic committing of changes to the store.
When set, changes the default autocommit model from GPT 4o mini.
Default parameters for language models.
If True, enables lazy versioning for improved performance.
If set, overrides the default width for wrapped logging.
A dictionary mapping client types to provider classes.
-If True, enables verbose logging.
If True, enables wrapped logging for better readability.
Get the OpenAI client for a specific model name.
Get the provider instance for a specific client instance.
Temporarily override the model registry with new model configurations.
Register a model with its configuration.
Register a provider class for a specific client type.
On this page
-init()
Config
Config.autocommit
Config.autocommit_model
Config.default_api_params
Config.lazy_versioning
Config.override_wrapped_logging_width
Config.providers
Config.verbose
Config.wrapped_logging
Config.get_client_for()
Config.get_provider_for()
Config.model_registry_override()
Config.register_model()
Config.register_provider()
Custom validation to handle deserialization
+Custom validation to handle deserialization from JSON string
+Serialize content blocks to a format suitable for JSON
+Create a system message with the given content.
Args: content (str): The content of the system message.
@@ -471,7 +486,7 @@Create a user message with the given content.
Args: content (str): The content of the user message.
@@ -480,7 +495,7 @@Create an assistant message with the given content.
Args: content (str): The content of the assistant message.
@@ -670,7 +685,12 @@Message
Message
+ContentBlock
ContentBlock.serialize_parsed()
ContentBlock.content
@ell.simple(model="claude-3-5-sonnet", temperature=0.0)
+@ell.simple(model="claude-3-5-sonnet-20241022", temperature=0.0)
def generate_tool_spec(tool_source: str):
'''
You are a helpful assistant that takes in source code for a python function and produces a JSON schema for the function.
diff --git a/genindex.html b/genindex.html
index 30b7c2a5..7ea0fa88 100644
--- a/genindex.html
+++ b/genindex.html
@@ -413,15 +413,17 @@ Index
A
@@ -430,14 +432,22 @@ A
C
@@ -445,7 +455,11 @@ C
D
+
@@ -468,11 +482,13 @@ E
G
@@ -481,11 +497,13 @@ G
I
@@ -494,7 +512,7 @@ I
L
@@ -503,10 +521,14 @@ L
M
+ - model_validate_json() (ell.Message class method), [1]
+
-
module
@@ -521,7 +543,7 @@
M
O
@@ -530,11 +552,15 @@ O
P
@@ -543,11 +569,19 @@ P
R
@@ -556,13 +590,19 @@ R
S
@@ -571,15 +611,27 @@ S
T
@@ -588,7 +640,7 @@ T
U
@@ -597,7 +649,7 @@ U
V
@@ -606,7 +658,7 @@ V
W
diff --git a/installation.html b/installation.html
index f5f5f3ce..20c4a8c3 100644
--- a/installation.html
+++ b/installation.html
@@ -353,13 +353,10 @@ Installation¶
Install using pip:
-pip install -U ell-ai
-
-
-By default, this installs only the OpenAI client SDK. If you want to include the Anthropic client SDK, use the “anthropic” extra like so:
-pip install -U 'ell-ai[anthropic]'
+pip install -U ell-ai[all]
+This installs ell
, ell-studio
, versioning and tracing with SQLite, and the default provider clients.
Verify installation:
python -c "import ell; print(ell.__version__)"
@@ -368,6 +365,59 @@ Installing ell
+Custom Installation¶
+You can create a custom ell
installation with the following options.
+Install ell
without storage or ell-studio
and with the default OpenAI client:
+pip install -U ell-ai
+
+
+Supported options:
+
+anthropic
¶
+Adds the Anthropic client.
+pip install -U ell-ai[anthropic]
+
+
+
+
+groq
¶
+Adds the Groq client.
+pip install -U ell-ai[groq]
+
+
+
+
+studio
¶
+Adds ell-studio
.
+pip install -U ell-ai[studio]
+
+
+
+
+sqlite
¶
+SQLite storage for versioning and tracing.
+pip install -U ell-ai[sqlite]
+
+
+
+
+postgres
¶
+Postgres storage for versioning and tracing.
+Include this option if you’d like to use ell-studio
with Postgres.
+pip install -U ell-ai[postgres]
+
+
+
+
+Combining options¶
+All options are additive and can be combined as needed.
+Example: Install ell
with ell-studio
, Postgres, and the Anthropic client:
+pip install -U ell-ai[studio, postgres, anthropic]
+
+
+
+
API Key Setup¶
@@ -459,6 +509,15 @@ Next StepsOn this page
- Installing ell
+- Custom Installation
+
- API Key Setup
- OpenAI API Key
- Anthropic API Key
diff --git a/objects.inv b/objects.inv
index 7de18350..eda410a7 100644
Binary files a/objects.inv and b/objects.inv differ
diff --git a/reference/index.html b/reference/index.html
index 6cc7c7b3..d90ccfe0 100644
--- a/reference/index.html
+++ b/reference/index.html
@@ -354,6 +354,1171 @@ ell packageell
.
ell is a Python library for language model programming (LMP). It provides a simple
and intuitive interface for working with large language models.
+
+-
+pydantic model ell.Config¶
+Bases: BaseModel
+Configuration class for ELL.
+
+Show JSON schema
{
+ "title": "Config",
+ "type": "object",
+ "properties": {
+ "registry": {
+ "additionalProperties": {
+ "$ref": "#/$defs/_Model"
+ },
+ "description": "A dictionary mapping model names to their configurations.",
+ "title": "Registry",
+ "type": "object"
+ },
+ "verbose": {
+ "default": false,
+ "description": "If True, enables verbose logging.",
+ "title": "Verbose",
+ "type": "boolean"
+ },
+ "wrapped_logging": {
+ "default": true,
+ "description": "If True, enables wrapped logging for better readability.",
+ "title": "Wrapped Logging",
+ "type": "boolean"
+ },
+ "override_wrapped_logging_width": {
+ "anyOf": [
+ {
+ "type": "integer"
+ },
+ {
+ "type": "null"
+ }
+ ],
+ "default": null,
+ "description": "If set, overrides the default width for wrapped logging.",
+ "title": "Override Wrapped Logging Width"
+ },
+ "store": {
+ "default": null,
+ "description": "An optional Store instance for persistence.",
+ "title": "Store",
+ "type": "null"
+ },
+ "autocommit": {
+ "default": false,
+ "description": "If True, enables automatic committing of changes to the store.",
+ "title": "Autocommit",
+ "type": "boolean"
+ },
+ "lazy_versioning": {
+ "default": true,
+ "description": "If True, enables lazy versioning for improved performance.",
+ "title": "Lazy Versioning",
+ "type": "boolean"
+ },
+ "default_api_params": {
+ "description": "Default parameters for language models.",
+ "title": "Default Api Params",
+ "type": "object"
+ },
+ "default_client": {
+ "default": null,
+ "title": "Default Client"
+ },
+ "autocommit_model": {
+ "default": "gpt-4o-mini",
+ "description": "When set, changes the default autocommit model from GPT 4o mini.",
+ "title": "Autocommit Model",
+ "type": "string"
+ },
+ "providers": {
+ "default": null,
+ "title": "Providers"
+ }
+ },
+ "$defs": {
+ "_Model": {
+ "properties": {
+ "name": {
+ "title": "Name",
+ "type": "string"
+ },
+ "default_client": {
+ "anyOf": [
+ {},
+ {
+ "type": "null"
+ }
+ ],
+ "default": null,
+ "title": "Default Client"
+ },
+ "supports_streaming": {
+ "anyOf": [
+ {
+ "type": "boolean"
+ },
+ {
+ "type": "null"
+ }
+ ],
+ "default": null,
+ "title": "Supports Streaming"
+ }
+ },
+ "required": [
+ "name"
+ ],
+ "title": "_Model",
+ "type": "object"
+ }
+ }
+}
+
+
+
+- Config:
+
+arbitrary_types_allowed: bool = True
+protected_namespaces: tuple = (‘protect_’,)
+
+
+- Fields:
+
+autocommit (bool)
+autocommit_model (str)
+default_api_params (Dict[str, Any])
+default_client (openai.OpenAI | None)
+lazy_versioning (bool)
+override_wrapped_logging_width (int | None)
+providers (Dict[Type, ell.provider.Provider])
+registry (Dict[str, ell.configurator._Model])
+store (None)
+verbose (bool)
+wrapped_logging (bool)
+
+
+
+
+-
+field autocommit: bool = False¶
+If True, enables automatic committing of changes to the store.
+
+
+-
+field autocommit_model: str = 'gpt-4o-mini'¶
+When set, changes the default autocommit model from GPT 4o mini.
+
+
+-
+field default_api_params: Dict[str, Any] [Optional]¶
+Default parameters for language models.
+
+
+-
+field default_client: OpenAI | None = None¶
+The default OpenAI client used when a specific model client is not found.
+
+
+-
+field lazy_versioning: bool = True¶
+If True, enables lazy versioning for improved performance.
+
+
+-
+field override_wrapped_logging_width: int | None = None¶
+If set, overrides the default width for wrapped logging.
+
+
+-
+field providers: Dict[Type, Provider] [Optional]¶
+A dictionary mapping client types to provider classes.
+
+
+-
+field registry: Dict[str, _Model] [Optional]¶
+A dictionary mapping model names to their configurations.
+
+
+-
+field store: None = None¶
+An optional Store instance for persistence.
+
+
+-
+field verbose: bool = False¶
+If True, enables verbose logging.
+
+
+-
+field wrapped_logging: bool = True¶
+If True, enables wrapped logging for better readability.
+
+
+-
+get_client_for(model_name: str) Tuple[OpenAI | None, bool] ¶
+Get the OpenAI client for a specific model name.
+
+- Parameters:
+model_name (str) – The name of the model to get the client for.
+
+- Returns:
+The OpenAI client for the specified model, or None if not found, and a fallback flag.
+
+- Return type:
+Tuple[Optional[openai.Client], bool]
+
+
+
+
+-
+get_provider_for(client: Type[Any] | Any) Provider | None ¶
+Get the provider instance for a specific client instance.
+
+- Parameters:
+client (Any) – The client instance to get the provider for.
+
+- Returns:
+The provider instance for the specified client, or None if not found.
+
+- Return type:
+Optional[Provider]
+
+
+
+
+-
+model_registry_override(overrides: Dict[str, _Model])¶
+Temporarily override the model registry with new model configurations.
+
+- Parameters:
+overrides (Dict[str, ModelConfig]) – A dictionary of model names to ModelConfig instances to override.
+
+
+
+
+-
+register_model(name: str, default_client: OpenAI | Any | None = None, supports_streaming: bool | None = None) None ¶
+Register a model with its configuration.
+
+
+-
+register_provider(provider: Provider, client_type: Type[Any]) None ¶
+Register a provider class for a specific client type.
+
+- Parameters:
+provider_class (Type[Provider]) – The provider class to register.
+
+
+
+
+
+-
+pydantic model ell.ContentBlock¶
+Bases: BaseModel
+
+Show JSON schema
{
+ "title": "ContentBlock",
+ "type": "object",
+ "properties": {
+ "text": {
+ "anyOf": [
+ {
+ "properties": {
+ "content": {
+ "title": "Content",
+ "type": "string"
+ },
+ "__origin_trace__": {
+ "title": " Origin Trace ",
+ "type": "string"
+ },
+ "__lstr": {
+ "title": " Lstr",
+ "type": "boolean"
+ }
+ },
+ "required": [
+ "content",
+ "__origin_trace__",
+ "__lstr"
+ ],
+ "type": "object"
+ },
+ {
+ "type": "string"
+ },
+ {
+ "type": "null"
+ }
+ ],
+ "default": null,
+ "title": "Text"
+ },
+ "image": {
+ "default": null,
+ "title": "Image"
+ },
+ "audio": {
+ "anyOf": [
+ {
+ "items": {
+ "type": "number"
+ },
+ "type": "array"
+ },
+ {
+ "type": "null"
+ }
+ ],
+ "default": null,
+ "title": "Audio"
+ },
+ "tool_call": {
+ "default": null,
+ "title": "Tool Call"
+ },
+ "parsed": {
+ "anyOf": [
+ {
+ "$ref": "#/$defs/BaseModel"
+ },
+ {
+ "type": "null"
+ }
+ ],
+ "default": null
+ },
+ "tool_result": {
+ "default": null,
+ "title": "Tool Result"
+ }
+ },
+ "$defs": {
+ "BaseModel": {
+ "properties": {},
+ "title": "BaseModel",
+ "type": "object"
+ }
+ }
+}
+
+
+
+- Config:
+
+arbitrary_types_allowed: bool = True
+
+
+- Fields:
+
+audio (numpy.ndarray | List[float] | None)
+image (ell.types.message.ImageContent | None)
+parsed (pydantic.main.BaseModel | None)
+text (ell.types._lstr._lstr | str | None)
+tool_call (ell.types.message.ToolCall | None)
+tool_result (ell.types.message.ToolResult | None)
+
+
+- Validators:
+
+check_single_non_null
» all fields
+
+
+
+
+-
+field audio: ndarray | List[float] | None = None¶
+
+- Validated by:
+
+check_single_non_null
+
+
+
+
+
+-
+field image: ImageContent | None = None¶
+
+- Validated by:
+
+check_single_non_null
+
+
+
+
+
+-
+field parsed: BaseModel | None = None¶
+
+- Validated by:
+
+check_single_non_null
+
+
+
+
+
+-
+field text: _lstr | str | None = None¶
+
+- Validated by:
+
+check_single_non_null
+
+
+
+
+
+-
+field tool_call: ToolCall | None = None¶
+
+- Validated by:
+
+check_single_non_null
+
+
+
+
+
+-
+field tool_result: ToolResult | None = None¶
+
+- Validated by:
+
+check_single_non_null
+
+
+
+
+
+-
+validator check_single_non_null » all fields¶
+
+
+-
+classmethod coerce(content: ContentBlock | str | ToolCall | ToolResult | ImageContent | ndarray | Image | BaseModel) ContentBlock ¶
+Coerce various types of content into a ContentBlock.
+This method provides a flexible way to create ContentBlock instances from different types of input.
+Args:
+content: The content to be coerced into a ContentBlock. Can be one of the following types:
+- str: Will be converted to a text ContentBlock.
+- ToolCall: Will be converted to a tool_call ContentBlock.
+- ToolResult: Will be converted to a tool_result ContentBlock.
+- BaseModel: Will be converted to a parsed ContentBlock.
+- ContentBlock: Will be returned as-is.
+- Image: Will be converted to an image ContentBlock.
+- np.ndarray: Will be converted to an image ContentBlock.
+- PILImage.Image: Will be converted to an image ContentBlock.
+Returns:
+ContentBlock: A new ContentBlock instance containing the coerced content.
+Raises:
+ValueError: If the content cannot be coerced into a valid ContentBlock.
+Examples:
+>>> ContentBlock.coerce(“Hello, world!”)
+ContentBlock(text=”Hello, world!”)
+>>> tool_call = ToolCall(...)
+>>> ContentBlock.coerce(tool_call)
+ContentBlock(tool_call=tool_call)
+
+
+>>> tool_result = ToolResult(...)
+>>> ContentBlock.coerce(tool_result)
+ContentBlock(tool_result=tool_result)
+
+
+>>> class MyModel(BaseModel):
+... field: str
+>>> model_instance = MyModel(field="value")
+>>> ContentBlock.coerce(model_instance)
+ContentBlock(parsed=model_instance)
+
+
+>>> from PIL import Image as PILImage
+>>> img = PILImage.new('RGB', (100, 100))
+>>> ContentBlock.coerce(img)
+ContentBlock(image=ImageContent(image=<PIL.Image.Image object>))
+
+
+>>> import numpy as np
+>>> arr = np.random.rand(100, 100, 3)
+>>> ContentBlock.coerce(arr)
+ContentBlock(image=ImageContent(image=<PIL.Image.Image object>))
+
+
+>>> image = Image(url="https://example.com/image.jpg")
+>>> ContentBlock.coerce(image)
+ContentBlock(image=ImageContent(url="https://example.com/image.jpg"))
+
+
+Notes:
+- This method is particularly useful when working with heterogeneous content types
+
+and you want to ensure they are all properly encapsulated in ContentBlock instances.
+
+
+The method performs type checking and appropriate conversions to ensure the resulting
+ContentBlock is valid according to the model’s constraints.
+For image content, Image objects, PIL Image objects, and numpy arrays are supported,
+with automatic conversion to the appropriate format.
+As a last resort, the method will attempt to create an image from the input before
+raising a ValueError.
+
+
+
+-
+serialize_parsed(value: BaseModel | None, _info)¶
+
+
+-
+property content¶
+
+
+-
+property type¶
+
+
+
+-
+pydantic model ell.Message¶
+Bases: BaseModel
+
+Show JSON schema
{
+ "title": "Message",
+ "type": "object",
+ "properties": {
+ "role": {
+ "title": "Role",
+ "type": "string"
+ },
+ "content": {
+ "default": null,
+ "title": "Content"
+ }
+ },
+ "required": [
+ "role"
+ ]
+}
+
+
+
+- Fields:
+
+content (List[ell.types.message.ContentBlock])
+role (str)
+
+
+
+
+-
+field content: List[ContentBlock] [Required]¶
+
+
+-
+field role: str [Required]¶
+
+
+-
+call_tools_and_collect_as_message(parallel=False, max_workers=None)¶
+
+
+
+-
+classmethod model_validate_json(json_str: str) Message ¶
+Custom validation to handle deserialization from JSON string
+
+
+-
+serialize_content(content: List[ContentBlock])¶
+Serialize content blocks to a format suitable for JSON
+
+
+-
+property audios: List[ndarray | List[float]]¶
+Returns a list of all audio content.
+Example
+>>> audio1 = np.array([0.1, 0.2, 0.3])
+>>> audio2 = np.array([0.4, 0.5, 0.6])
+>>> message = Message(role="user", content=["Text", audio1, "More text", audio2])
+>>> len(message.audios)
+2
+
+
+
+
+-
+property images: List[ImageContent]¶
+Returns a list of all image content.
+Example
+>>> from PIL import Image as PILImage
+>>> image1 = Image(url="https://example.com/image.jpg")
+>>> image2 = Image(image=PILImage.new('RGB', (200, 200)))
+>>> message = Message(role="user", content=["Text", image1, "More text", image2])
+>>> len(message.images)
+2
+>>> isinstance(message.images[0], Image)
+True
+>>> message.images[0].url
+'https://example.com/image.jpg'
+>>> isinstance(message.images[1].image, PILImage.Image)
+True
+
+
+
+
+-
+property parsed: BaseModel | List[BaseModel]¶
+Returns a list of all parsed content.
+Example
+>>> class CustomModel(BaseModel):
+... value: int
+>>> parsed_content = CustomModel(value=42)
+>>> message = Message(role="user", content=["Text", ContentBlock(parsed=parsed_content)])
+>>> len(message.parsed)
+1
+
+
+
+
+-
+property text: str¶
+Returns all text content, replacing non-text content with their representations.
+Example
+>>> message = Message(role="user", content=["Hello", PILImage.new('RGB', (100, 100)), "World"])
+>>> message.text
+'Hello\n<PilImage>\nWorld'
+
+
+
+
+-
+property text_only: str¶
+Returns only the text content, ignoring non-text content.
+Example
+>>> message = Message(role="user", content=["Hello", PILImage.new('RGB', (100, 100)), "World"])
+>>> message.text_only
+'Hello\nWorld'
+
+
+
+
+-
+property tool_calls: List[ToolCall]¶
+Returns a list of all tool calls.
+Example
+>>> tool_call = ToolCall(tool=lambda x: x, params=BaseModel())
+>>> message = Message(role="user", content=["Text", tool_call])
+>>> len(message.tool_calls)
+1
+
+
+
+
+-
+property tool_results: List[ToolResult]¶
+Returns a list of all tool results.
+Example
+>>> tool_result = ToolResult(tool_call_id="123", result=[ContentBlock(text="Result")])
+>>> message = Message(role="user", content=["Text", tool_result])
+>>> len(message.tool_results)
+1
+
+
+
+
+
+-
+ell.assistant(content: ContentBlock | str | ToolCall | ToolResult | ImageContent | ndarray | Image | BaseModel | List[ContentBlock | str | ToolCall | ToolResult | ImageContent | ndarray | Image | BaseModel]) Message ¶
+Create an assistant message with the given content.
+Args:
+content (str): The content of the assistant message.
+Returns:
+Message: A Message object with role set to ‘assistant’ and the provided content.
+
+
+-
+ell.complex(model: str, client: Any | None = None, tools: List[Callable] | None = None, exempt_from_tracking=False, post_callback: Callable | None = None, **api_params)¶
+A sophisticated language model programming decorator for complex LLM interactions.
+This decorator transforms a function into a Language Model Program (LMP) capable of handling
+multi-turn conversations, tool usage, and various output formats. It’s designed for advanced
+use cases where full control over the LLM’s capabilities is needed.
+
+- Parameters:
+
+model (str) – The name or identifier of the language model to use.
+client (Optional[openai.Client]) – An optional OpenAI client instance. If not provided, a default client will be used.
+tools (Optional[List[Callable]]) – A list of tool functions that can be used by the LLM. Only available for certain models.
+response_format (Optional[Dict[str, Any]]) – The response format for the LLM. Only available for certain models.
+n (Optional[int]) – The number of responses to generate for the LLM. Only available for certain models.
+temperature (Optional[float]) – The temperature parameter for controlling the randomness of the LLM.
+max_tokens (Optional[int]) – The maximum number of tokens to generate for the LLM.
+top_p (Optional[float]) – The top-p sampling parameter for controlling the diversity of the LLM.
+frequency_penalty (Optional[float]) – The frequency penalty parameter for controlling the LLM’s repetition.
+presence_penalty (Optional[float]) – The presence penalty parameter for controlling the LLM’s relevance.
+stop (Optional[List[str]]) – The stop sequence for the LLM.
+exempt_from_tracking (bool) – If True, the LMP usage won’t be tracked. Default is False.
+post_callback (Optional[Callable]) – An optional function to process the LLM’s output before returning.
+api_params (Any) – Additional keyword arguments to pass to the underlying API call.
+
+
+- Returns:
+A decorator that can be applied to a function, transforming it into a complex LMP.
+
+- Return type:
+Callable
+
+
+Functionality:
+
+
+- Advanced LMP Creation:
+Supports multi-turn conversations and stateful interactions.
+Enables tool usage within the LLM context.
+Allows for various output formats, including structured data and function calls.
+
+
+
+
+
+- Flexible Input Handling:
+Can process both single prompts and conversation histories.
+Supports multimodal inputs (text, images, etc.) in the prompt.
+
+
+
+
+
+- Comprehensive Integration:
+Integrates with ell’s tracking system for monitoring LMP versions, usage, and performance.
+Supports various language models and API configurations.
+
+
+
+
+
+- Output Processing:
+Can return raw LLM outputs or process them through a post-callback function.
+Supports returning multiple message types (e.g., text, function calls, tool results).
+
+
+
+
+
+Usage Modes and Examples:
+
+Basic Prompt:
+
+@ell.complex(model="gpt-4")
+def generate_story(prompt: str) -> List[Message]:
+ '''You are a creative story writer''' # System prompt
+ return [
+ ell.user(f"Write a short story based on this prompt: {prompt}")
+ ]
+
+story : ell.Message = generate_story("A robot discovers emotions")
+print(story.text) # Access the text content of the last message
+
+
+
+Multi-turn Conversation:
+
+@ell.complex(model="gpt-4")
+def chat_bot(message_history: List[Message]) -> List[Message]:
+ return [
+ ell.system("You are a helpful assistant."),
+ ] + message_history
+
+conversation = [
+ ell.user("Hello, who are you?"),
+ ell.assistant("I'm an AI assistant. How can I help you today?"),
+ ell.user("Can you explain quantum computing?")
+]
+response : ell.Message = chat_bot(conversation)
+print(response.text) # Print the assistant's response
+
+
+
+Tool Usage:
+
+@ell.tool()
+def get_weather(location: str) -> str:
+ # Implementation to fetch weather
+ return f"The weather in {location} is sunny."
+
+@ell.complex(model="gpt-4", tools=[get_weather])
+def weather_assistant(message_history: List[Message]) -> List[Message]:
+ return [
+ ell.system("You are a weather assistant. Use the get_weather tool when needed."),
+ ] + message_history
+
+conversation = [
+ ell.user("What's the weather like in New York?")
+]
+response : ell.Message = weather_assistant(conversation)
+
+if response.tool_calls:
+ tool_results = response.call_tools_and_collect_as_message()
+ print("Tool results:", tool_results.text)
+
+ # Continue the conversation with tool results
+ final_response = weather_assistant(conversation + [response, tool_results])
+ print("Final response:", final_response.text)
+
+
+
+Structured Output:
+
+from pydantic import BaseModel
+
+class PersonInfo(BaseModel):
+ name: str
+ age: int
+
+@ell.complex(model="gpt-4", response_format=PersonInfo)
+def extract_person_info(text: str) -> List[Message]:
+ return [
+ ell.system("Extract person information from the given text."),
+ ell.user(text)
+ ]
+
+text = "John Doe is a 30-year-old software engineer."
+result : ell.Message = extract_person_info(text)
+person_info = result.parsed
+print(f"Name: {person_info.name}, Age: {person_info.age}")
+
+
+
+Multimodal Input:
+
+@ell.complex(model="gpt-4-vision-preview")
+def describe_image(image: PIL.Image.Image) -> List[Message]:
+ return [
+ ell.system("Describe the contents of the image in detail."),
+ ell.user([
+ ContentBlock(text="What do you see in this image?"),
+ ContentBlock(image=image)
+ ])
+ ]
+
+image = PIL.Image.open("example.jpg")
+description = describe_image(image)
+print(description.text)
+
+
+
+Parallel Tool Execution:
+
+@ell.complex(model="gpt-4", tools=[tool1, tool2, tool3])
+def parallel_assistant(message_history: List[Message]) -> List[Message]:
+ return [
+ ell.system("You can use multiple tools in parallel."),
+ ] + message_history
+
+response = parallel_assistant([ell.user("Perform tasks A, B, and C simultaneously.")])
+if response.tool_calls:
+ tool_results : ell.Message = response.call_tools_and_collect_as_message(parallel=True, max_workers=3)
+ print("Parallel tool results:", tool_results.text)
+
+
+Helper Functions for Output Processing:
+
+response.text: Get the full text content of the last message.
+response.text_only: Get only the text content, excluding non-text elements.
+response.tool_calls: Access the list of tool calls in the message.
+response.tool_results: Access the list of tool results in the message.
+response.structured: Access structured data outputs.
+response.call_tools_and_collect_as_message(): Execute tool calls and collect results.
+Message(role=”user”, content=[…]).to_openai_message(): Convert to OpenAI API format.
+
+Notes:
+
+The decorated function should return a list of Message objects.
+For tool usage, ensure that tools are properly decorated with @ell.tool().
+When using structured outputs, specify the response_format in the decorator.
+The complex decorator supports all features of simpler decorators like @ell.simple.
+Use helper functions and properties to easily access and process different types of outputs.
+
+See Also:
+
+ell.simple: For simpler text-only LMP interactions.
+ell.tool: For defining tools that can be used within complex LMPs.
+ell.studio: For visualizing and analyzing LMP executions.
+
+
+
+-
+ell.get_store() None ¶
+
+
+-
+ell.init(store: None | str = None, verbose: bool = False, autocommit: bool = True, lazy_versioning: bool = True, default_api_params: Dict[str, Any] | None = None, default_client: Any | None = None, autocommit_model: str = 'gpt-4o-mini') None ¶
+Initialize the ELL configuration with various settings.
+
+- Parameters:
+
+verbose (bool) – Set verbosity of ELL operations.
+store (Union[Store, str], optional) – Set the store for ELL. Can be a Store instance or a string path for SQLiteStore.
+autocommit (bool) – Set autocommit for the store operations.
+lazy_versioning (bool) – Enable or disable lazy versioning.
+default_api_params (Dict[str, Any], optional) – Set default parameters for language models.
+default_openai_client (openai.Client, optional) – Set the default OpenAI client.
+autocommit_model (str) – Set the model used for autocommitting.
+
+
+
+
+
+-
+ell.register_provider(provider: Provider, client_type: Type[Any]) None ¶
+
+
+-
+ell.set_store(*args, **kwargs) None ¶
+
+
+-
+ell.simple(model: str, client: Any | None = None, exempt_from_tracking=False, **api_params)¶
+The fundamental unit of language model programming in ell.
+This decorator simplifies the process of creating Language Model Programs (LMPs)
+that return text-only outputs from language models, while supporting multimodal inputs.
+It wraps the more complex ‘complex’ decorator, providing a streamlined interface for common use cases.
+
+- Parameters:
+
+model (str) – The name or identifier of the language model to use.
+client (Optional[openai.Client]) – An optional OpenAI client instance. If not provided, a default client will be used.
+exempt_from_tracking (bool) – If True, the LMP usage won’t be tracked. Default is False.
+api_params (Any) – Additional keyword arguments to pass to the underlying API call.
+
+
+
+Usage:
+The decorated function can return either a single prompt or a list of ell.Message objects:
+@ell.simple(model="gpt-4", temperature=0.7)
+def summarize_text(text: str) -> str:
+ '''You are an expert at summarizing text.''' # System prompt
+ return f"Please summarize the following text:\n\n{text}" # User prompt
+
+
+@ell.simple(model="gpt-4", temperature=0.7)
+def describe_image(image : PIL.Image.Image) -> List[ell.Message]:
+ '''Describe the contents of an image.''' # unused because we're returning a list of Messages
+ return [
+ # helper function for ell.Message(text="...", role="system")
+ ell.system("You are an AI trained to describe images."),
+ # helper function for ell.Message(content="...", role="user")
+ ell.user(["Describe this image in detail.", image]),
+ ]
+
+
+image_description = describe_image(PIL.Image.open("https://example.com/image.jpg"))
+print(image_description)
+# Output will be a string text-only description of the image
+
+summary = summarize_text("Long text to summarize...")
+print(summary)
+# Output will be a text-only summary
+
+
+Notes:
+
+This decorator is designed for text-only model outputs, but supports multimodal inputs.
+It simplifies complex responses from language models to text-only format, regardless of
+the model’s capability for structured outputs, function calling, or multimodal outputs.
+For preserving complex model outputs (e.g., structured data, function calls, or multimodal
+outputs), use the @ell.complex decorator instead. @ell.complex returns a Message object (role=’assistant’)
+The decorated function can return a string or a list of ell.Message objects for more
+complex prompts, including multimodal inputs.
+If called with n > 1 in api_params, the wrapped LMP will return a list of strings for the n parallel outputs
+of the model instead of just one string. Otherwise, it will return a single string.
+You can pass LM API parameters either in the decorator or when calling the decorated function.
+Parameters passed during the function call will override those set in the decorator.
+
+Example of passing LM API params:
+@ell.simple(model="gpt-4", temperature=0.7)
+def generate_story(prompt: str) -> str:
+ return f"Write a short story based on this prompt: {prompt}"
+
+# Using default parameters
+story1 = generate_story("A day in the life of a time traveler")
+
+# Overriding parameters during function call
+story2 = generate_story("An AI's first day of consciousness", api_params={"temperature": 0.9, "max_tokens": 500})
+
+
+See Also:
+
+ell.complex()
: For LMPs that preserve full structure of model responses, including multimodal outputs.
+ell.tool()
: For defining tools that can be used within complex LMPs.
+ell.studio
: For visualizing and analyzing LMP executions.
+
+
+
+-
+ell.system(content: ContentBlock | str | ToolCall | ToolResult | ImageContent | ndarray | Image | BaseModel | List[ContentBlock | str | ToolCall | ToolResult | ImageContent | ndarray | Image | BaseModel]) Message ¶
+Create a system message with the given content.
+Args:
+content (str): The content of the system message.
+Returns:
+Message: A Message object with role set to ‘system’ and the provided content.
+
+
+-
+ell.tool(*, exempt_from_tracking: bool = False, **tool_kwargs)¶
+Defines a tool for use in language model programs (LMPs) that support tool use.
+This decorator wraps a function, adding metadata and handling for tool invocations.
+It automatically extracts the tool’s description and parameters from the function’s
+docstring and type annotations, creating a structured representation for LMs to use.
+
+- Parameters:
+
+exempt_from_tracking (bool) – If True, the tool usage won’t be tracked. Default is False.
+tool_kwargs – Additional keyword arguments for tool configuration.
+
+
+- Returns:
+A wrapped version of the original function, usable as a tool by LMs.
+
+- Return type:
+Callable
+
+
+Requirements:
+
+Function must have fully typed arguments (Pydantic-serializable).
+Return value must be one of: str, JSON-serializable object, Pydantic model, or List[ContentBlock].
+All parameters must have type annotations.
+Complex types should be Pydantic models.
+Function should have a descriptive docstring.
+Can only be used in LMPs with @ell.complex decorators
+
+Functionality:
+
+
+- Metadata Extraction:
+Uses function docstring as tool description.
+Extracts parameter info from type annotations and docstring.
+Creates a Pydantic model for parameter validation and schema generation.
+
+
+
+
+
+- Integration with LMs:
+Can be passed to @ell.complex decorators.
+Provides structured tool information to LMs.
+
+
+
+
+
+- Invocation Handling:
+Manages tracking, logging, and result processing.
+Wraps results in appropriate types (e.g., _lstr) for tracking.
+
+
+
+
+
+Usage Modes:
+
+
+- Normal Function Call:
+Behaves like a regular Python function.
+Example: result = my_tool(arg1=”value”, arg2=123)
+
+
+
+
+
+- LMP Tool Call:
+Used within LMPs or with explicit _tool_call_id.
+Returns a ToolResult object.
+Example: result = my_tool(arg1=”value”, arg2=123, _tool_call_id=”unique_id”)
+
+
+
+
+
+Result Coercion:
+
+String → ContentBlock(text=result)
+Pydantic BaseModel → ContentBlock(parsed=result)
+List[ContentBlock] → Used as-is
+Other types → ContentBlock(text=json.dumps(result))
+
+Example:
+@ell.tool()
+def create_claim_draft(
+ claim_details: str,
+ claim_type: str,
+ claim_amount: float,
+ claim_date: str = Field(description="Date format: YYYY-MM-DD")
+) -> str:
+ '''Create a claim draft. Returns the created claim ID.'''
+ return "12345"
+
+# For use in a complex LMP:
+@ell.complex(model="gpt-4", tools=[create_claim_draft], temperature=0.1)
+def insurance_chatbot(message_history: List[Message]) -> List[Message]:
+ # Chatbot implementation...
+
+x = insurance_chatbot([
+ ell.user("I crashed my car into a tree."),
+ ell.assistant("I'm sorry to hear that. Can you provide more details?"),
+ ell.user("The car is totaled and I need to file a claim. Happened on 2024-08-01. total value is like $5000")
+])
+print(x)
+'''ell.Message(content=[
+ ContentBlock(tool_call(
+ tool_call_id="asdas4e",
+ tool_fn=create_claim_draft,
+ input=create_claim_draftParams({
+ claim_details="The car is totaled and I need to file a claim. Happened on 2024-08-01. total value is like $5000",
+ claim_type="car",
+ claim_amount=5000,
+ claim_date="2024-08-01"
+ })
+ ))
+], role='assistant')'''
+
+if x.tool_calls:
+ next_user_message = response_message.call_tools_and_collect_as_message()
+ # This actually calls create_claim_draft
+ print(next_user_message)
+ '''
+ ell.Message(content=[
+ ContentBlock(tool_result=ToolResult(
+ tool_call_id="asdas4e",
+ result=[ContentBlock(text="12345")]
+ ))
+ ], role='user')
+ '''
+ y = insurance_chatbot(message_history + [x, next_user_message])
+ print(y)
+ '''
+ ell.Message("I've filed that for you!", role='assistant')
+ '''
+
+
+Note:
+- Tools are integrated into LMP calls via the ‘tools’ parameter in @ell.complex.
+- LMs receive structured tool information, enabling understanding and usage within the conversation context.
+
+
+-
+ell.user(content: ContentBlock | str | ToolCall | ToolResult | ImageContent | ndarray | Image | BaseModel | List[ContentBlock | str | ToolCall | ToolResult | ImageContent | ndarray | Image | BaseModel]) Message ¶
+Create a user message with the given content.
+Args:
+content (str): The content of the user message.
+Returns:
+Message: A Message object with role set to ‘user’ and the provided content.
+
@@ -370,7 +1535,71 @@ ell package
+On this page
+
+Config
+Config.autocommit
+Config.autocommit_model
+Config.default_api_params
+Config.default_client
+Config.lazy_versioning
+Config.override_wrapped_logging_width
+Config.providers
+Config.registry
+Config.store
+Config.verbose
+Config.wrapped_logging
+Config.get_client_for()
+Config.get_provider_for()
+Config.model_registry_override()
+Config.register_model()
+Config.register_provider()
+
+
+ContentBlock
+
+Message
+
+assistant()
+complex()
+get_store()
+init()
+register_provider()
+set_store()
+simple()
+system()
+tool()
+user()
+
+
+