-
Notifications
You must be signed in to change notification settings - Fork 0
/
my_tokenizer.py
55 lines (43 loc) · 1.78 KB
/
my_tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Copyright 2017 Johns Hopkins University. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tokenizer for CountVectorizer/TfidfVectorizer
Uses nltk.tokenize.TweetTokenizer to keep punctuations and expression marks
in reddit posts
Not removing any certain pattern(e.g., url, numeric, ...) as sklearn
vectorizer can build its own vocabulary(dictionary) with a minimum document
frequency
"""
from nltk.stem.porter import PorterStemmer
from nltk.tokenize import TweetTokenizer
stemmer = PorterStemmer()
def stem_tokens(tokens, porter_stemmer):
stemmed = []
for item in tokens:
stemmed.append(porter_stemmer.stem(item))
return stemmed
tweet_tokenizer = TweetTokenizer(strip_handles=True,
preserve_case=False,
reduce_len=True) # e.g. waaaayyyyyy -> waayyy
def tokenizer(text):
# remove punctuations other than ?!.
# remove urls
# text = re.sub(
# r'(https?|ftp|file)://[-A-Za-z0-9+&@#/%?=~_|!:,'
# r'.;]+[-A-Za-z0-9+&@#/%=~_|][\r\n]*',
# ' ', text, flags=re.MULTILINE)
tokens = tweet_tokenizer.tokenize(text)
# stems = stem_tokens(tokens, stemmer)
# return stems
return tokens