-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_extract_features.py
277 lines (243 loc) · 12.4 KB
/
main_extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import argparse
import os
import numpy as np
from tqdm import tqdm
import torch
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from PIL import Image
try:
from torchvision.transforms import InterpolationMode
BICUBIC = InterpolationMode.BICUBIC
except ImportError:
BICUBIC = Image.BICUBIC
import models.moco.backbones as backbones
from CLIP import clip
from models.moco.backbones import resnet50
import timm
from models.simclr_v2 import get_resnet, name_to_params
from models.simclr_v1 import resnet50x1
from models.mae import vit_base_patch16
from models.simmim import build_vit_B_16
from utils.tools import *
model_names = sorted(name for name in backbones.__dict__
if name.islower() and not name.startswith("__")
and callable(backbones.__dict__[name]))
parser = argparse.ArgumentParser(description='Extract features')
parser.add_argument('--dataset', default='cifar10', type=str, choices=['cifar10','cifar100'],
help='dataset the features belong to.')
parser.add_argument('--backbone', default='clip', type=str, choices=['moco_v1', 'moco_v2', 'clip','resnet',
'vit', 'simclr_v2', 'simclr_v1', 'vit2', 'mae', 'simmim'],
help='pretrained backbone.')
parser.add_argument('--arch', metavar='ARCH', default='resnet50', choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet50)')
parser.add_argument('--bs', default=100, type=int, metavar='N',
help='mini-batch size (default: 256)')
parser.add_argument('--aug', dest='aug', action='store_true',
help='train lr with data augmentation')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
def main():
args = parser.parse_args()
args.device = torch.device('cuda', args.gpu) if args.gpu is not None else 'cuda'
cudnn.benchmark = False
cudnn.deterministic = True
cudnn.enabled = False
args.features_dir = os.path.join('./datasets', args.backbone, args.dataset)
if not os.path.exists(args.features_dir):
os.makedirs(args.features_dir)
data_dir = os.path.join('./datasets')
if args.aug:
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.Resize((224,224), interpolation=BICUBIC),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])
transform_test = transforms.Compose([
transforms.Resize((224,224), interpolation=BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])
else:
if args.backbone not in ['simclr_v1', 'simclr_v2', 'vit']:
transform_train = transform_test = transforms.Compose([
transforms.Resize((224,224), interpolation=BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])
else:
transform_train = transform_test = transforms.Compose([
transforms.Resize((224,224), interpolation=BICUBIC),
transforms.ToTensor(),
])
if args.dataset == 'cifar10':
train_set = datasets.CIFAR10(root=data_dir, train=True, download=True, transform=transform_train)
test_set = datasets.CIFAR10(root=data_dir, train=False, download=True, transform=transform_test)
else:
train_set = datasets.CIFAR100(root=data_dir, train=True, download=True, transform=transform_train)
test_set = datasets.CIFAR100(root=data_dir, train=False, download=True, transform=transform_test)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.bs, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=args.bs, shuffle=True)
if args.backbone == 'moco_v1':
args.backbone_path = './checkpoints/moco_v1_200ep_pretrain.pth.tar'
elif args.backbone == 'moco_v2':
args.backbone_path = './checkpoints/moco_v2_800ep_pretrain.pth.tar'
elif args.backbone == 'clip':
args.backbone_path = './checkpoints'
elif args.backbone == 'simclr_v1':
args.backbone_path = "./checkpoints/resnet50-1x.pth"
elif args.backbone == 'simclr_v2':
args.backbone_path = './checkpoints/r50_1x_sk1.pth'
elif args.backbone == 'vit':
args.backbone_path = "./checkpoints/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz"
elif args.backbone == 'vit2':
args.backbone_path = "./checkpoints/ViT-B_16.npz"
elif args.backbone == 'mae':
args.backbone_path = "./checkpoints/mae_pretrain_vit_base.pth"
elif args.backbone == 'simmim':
args.backbone_path = "./checkpoints/simmim_pretrain__vit_base__img224__800ep.pth"
backbone = get_backbone(args)
backbone.eval()
extract(train_loader, test_loader, backbone, args)
def get_backbone(args):
if args.backbone == 'moco_v1' or args.backbone == 'moco_v2':
if args.dataset == 'cifar10':
backbone = backbones.__dict__[args.arch](num_classes=10)
elif args.dataset == 'cifar100':
backbone = backbones.__dict__[args.arch](num_classes=100)
# freeze all layers but the last fc
for name, param in backbone.named_parameters():
if name not in ['fc.weight', 'fc.bias']:
param.requires_grad = False
# init the fc layer
backbone.fc.weight.data.normal_(mean=0.0, std=0.01)
backbone.fc.bias.data.zero_()
# load from pre-trained, before DistributedDataParallel constructor
if args.backbone_path:
if os.path.isfile(args.backbone_path):
print("=> loading checkpoint '{}'".format(args.backbone_path))
checkpoint = torch.load(args.backbone_path, map_location="cpu")
# rename moco pre-trained keys
state_dict = checkpoint['state_dict']
for k in list(state_dict.keys()):
# retain only encoder_q up to before the embedding layer
if k.startswith('module.encoder_q') and not k.startswith('module.encoder_q.fc'):
# remove prefix
state_dict[k[len("module.encoder_q."):]] = state_dict[k]
# delete renamed or unused k
del state_dict[k]
msg = backbone.load_state_dict(state_dict, strict=False)
assert set(msg.missing_keys) == {"fc.weight", "fc.bias"}
print("=> loaded pre-trained model '{}'".format(args.backbone_path))
else:
print("=> no checkpoint found at '{}'".format(args.backbone_path))
elif args.backbone == 'clip':
assert args.arch == 'resnet50'
backbone, _ = clip.load('RN50', device=args.device, download_root=args.backbone_path)
for name, param in backbone.named_parameters():
param.requires_grad = False
elif args.backbone == 'simclr_v1':
assert args.arch == 'resnet50'
backbone = resnet50x1()
checkpoint = torch.load(args.backbone_path, map_location='cpu')
backbone.load_state_dict(checkpoint['state_dict'])
for name, param in backbone.named_parameters():
param.requires_grad = False
elif args.backbone == 'simclr_v2':
assert args.arch == 'resnet50'
backbone, _ = get_resnet(*name_to_params(args.backbone_path))
backbone.load_state_dict(torch.load(args.backbone_path)['resnet'])
for name, param in backbone.named_parameters():
if name not in ['fc.weight', 'fc.bias']:
param.requires_grad = False
elif args.backbone == 'resnet':
assert args.arch == 'resnet50'
backbone = resnet50(pretrained=True, progress=True)
for name, param in backbone.named_parameters():
param.requires_grad = False
elif args.backbone == 'vit' or args.backbone == 'vit2':
backbone = timm.create_model('vit_base_patch16_224.augreg_in21k', checkpoint_path=args.backbone_path)
for name, param in backbone.named_parameters():
if name not in ['head.weight', 'head.bias']:
param.requires_grad = False
elif args.backbone == 'mae':
if args.dataset == 'cifar10':
backbone = vit_base_patch16(num_classes=10,global_pool=False)
elif args.dataset == 'cifar100':
backbone = vit_base_patch16(num_classes=100,global_pool=False)
checkpoint = torch.load(args.backbone_path, map_location='cpu')
print("Load pre-trained checkpoint from: %s" % args.backbone_path)
checkpoint_model = checkpoint['model']
state_dict = backbone.state_dict()
for k in ['head.weight', 'head.bias']:
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
# interpolate position embedding
interpolate_pos_embed(backbone, checkpoint_model)
# load pre-trained model
msg = backbone.load_state_dict(checkpoint_model, strict=False)
print(msg)
assert set(msg.missing_keys) == {'head.weight', 'head.bias'}
for name, param in backbone.named_parameters():
param.requires_grad = False
elif args.backbone == 'simmim':
if args.dataset == 'cifar10':
backbone = build_vit_B_16(num_classes=10)
elif args.dataset == 'cifar100':
backbone = build_vit_B_16(num_classes=100)
load_pretrained(backbone, args)
for name, param in backbone.named_parameters():
param.requires_grad = False
else:
print('fault')
return backbone.to(args.device)
def extract(train_loader, test_loader, backbone, args):
train_features = []
train_labels = []
val_features = []
val_labels = []
with torch.no_grad():
for (x, target) in tqdm(train_loader, total= len(train_loader)):
x = x.to(args.device)
if args.backbone == 'moco_v1' or args.backbone == 'moco_v2' or args.backbone == 'resnet' or args.backbone == 'simclr_v2' or args.backbone == 'simclr_v1':
x = backbone(x)[0] if type(backbone(x)) is tuple else backbone(x)
elif args.backbone == 'clip':
x = backbone.encode_image(x)
elif args.backbone == 'vit' or args.backbone == 'vit2':
x = backbone.forward_features(x)[:,0]
elif args.backbone in ['mae', 'simmim']:
x = backbone.forward_features(x)
train_features.append(x.detach().cpu().numpy())
train_labels.append(target.numpy())
train_features, train_labels = np.concatenate(train_features), np.concatenate(train_labels)
train_features = np.concatenate([train_features, train_labels.reshape((-1,1))], axis=1)
np.save(os.path.join(args.features_dir, 'train_features.npy'), train_features)
print(train_features.shape)
print(train_features.max(), train_features.min())
for (x, target) in tqdm(test_loader, total= len(test_loader)):
x = x.to(args.device)
if args.backbone == 'moco_v1' or args.backbone == 'moco_v2' or args.backbone == 'resnet' or args.backbone == 'simclr_v2' or args.backbone == 'simclr_v1':
x = backbone(x)[0] if type(backbone(x)) is tuple else backbone(x)
elif args.backbone == 'clip':
x = backbone.encode_image(x)
elif args.backbone == 'vit' or args.backbone == 'vit2':
x = backbone.forward_features(x)[:,0]
elif args.backbone in ['mae', 'simmim']:
x = backbone.forward_features(x)
val_features.append(x.detach().cpu().numpy())
val_labels.append(target.numpy())
val_features, val_labels = np.concatenate(val_features), np.concatenate(val_labels)
val_features = np.concatenate([val_features, val_labels.reshape((-1,1))], axis=1)
np.save(os.path.join(args.features_dir, 'val_features.npy'), val_features)
print(val_features.shape)
return
if __name__ == '__main__':
main()