diff --git a/README.md b/README.md index 611ee885..f87ec1f1 100644 --- a/README.md +++ b/README.md @@ -2,7 +2,7 @@ # 一、介绍 -ABACUS(Atomic-orbtial Based Ab-initio Computation at UStc,中文名原子算筹)是国产开源密度泛函理论软件,相关介绍 ABACUS 的新闻可在[ABACUS 新闻稿整理](abacus-news.md)查看,以下是一些常用地址: +ABACUS(Atomic-orbtial Based Ab-initio Computation at UStc,中文名原子算筹)是国产开源密度泛函理论软件,相关介绍 ABACUS 的新闻可在[ABACUS 新闻稿整理](news.md)查看,以下是一些常用地址: ABACUS 在 DeepModeling 社区中的 GitHub 仓库地址为: @@ -31,14 +31,15 @@ ABACUS 网站访问: 1. ABACUS的编译介绍 1. [官方编译教程](https://abacus.deepmodeling.com/en/latest/quick_start/easy_install.html) 2. [GCC 编译 ABACUS 教程](abacus-gcc.md) - 3. [Intel oneAPI 编译 ABACUS 教程](abacus-intel.md) - 4. [编译 Nvidia GPU 版本的 ABACUS](abacus-gpu.md) - 5. [在超算环境编译 ABACUS 的建议](abacus-hpc.md) - 6. [ABACUS 在曙光 DCU 集群上的编译与使用](abacus-dcu.md) - 7. [ABACUS toolchain 脚本集](https://github.com/deepmodeling/abacus-develop/tree/develop/toolchain) (md文档待整理) - 8. [ABACUS 编译教程系列之一:基于Intel编译器](https://www.bilibili.com/video/BV1ZN411L75Z/)(B站视频) - 9. [ABACUS 编译教程系列之二:基于CUDA](https://www.bilibili.com/video/BV1Jb4y1L7KB/)(B站视频) - 10. [ABACUS 编译教程系列之三:docker的使用](https://www.bilibili.com/video/BV13C4y1R7DL/)(B站视频) + 3. [Intel oneAPI 2024.x 编译 ABACUS 教程](abacus-oneapi.md) + 4. [Intel oneAPI 编译 ABACUS 教程](abacus-intel.md) + 5. [编译 Nvidia GPU 版本的 ABACUS](abacus-gpu.md) + 6. [在超算环境编译 ABACUS 的建议](abacus-hpc.md) + 7. [ABACUS 在曙光 DCU 集群上的编译与使用](abacus-dcu.md) + 8. [ABACUS toolchain 脚本集](https://github.com/deepmodeling/abacus-develop/tree/develop/toolchain) (md文档待整理) + 9. [ABACUS 编译教程系列之一:基于Intel编译器](https://www.bilibili.com/video/BV1ZN411L75Z/)(B站视频) + 10. [ABACUS 编译教程系列之二:基于CUDA](https://www.bilibili.com/video/BV1Jb4y1L7KB/)(B站视频) + 11. [ABACUS 编译教程系列之三:docker的使用](https://www.bilibili.com/video/BV13C4y1R7DL/)(B站视频) 2. ABACUS建模介绍 1. 准备晶胞和原子位置等信息的文件STRU:[如何转换STRU的格式](https://nb.bohrium.dp.tech/detail/9814968648) @@ -51,29 +52,31 @@ ABACUS 网站访问: 3. Kohn-Sham密度泛函理论 1. [电子自洽迭代](https://nb.bohrium.dp.tech/detail/7417640496) 2. 带自旋的体系计算:[ABACUS磁性材料计算使用教程](https://nb.bohrium.dp.tech/detail/7141761751) - 3. \+U计算:[ABACUS DFT+U使用教程](https://nb.bohrium.dp.tech/detail/2112617648) - 4. 结构优化:[ABACUS 使用教程|结构优化](https://nb.bohrium.dp.tech/detail/9119461238) - 5. 分子动力学:[ABACUS 分子动力学使用教程](abacus-md.md) -4. DeePKS方法 + 3. \+U计算:[ABACUS使用DFT+U计算教程 |基础版 +](https://nb.bohrium.dp.tech/detail/52882361357) + 1. 结构优化:[ABACUS 使用教程|结构优化](https://nb.bohrium.dp.tech/detail/9119461238) + 2. [ABACUS 的平面波计算与收敛性测试](abacus-pw.md) + 3. 分子动力学:[ABACUS 分子动力学使用教程](abacus-md.md) +1. DeePKS方法 1. [DeePKS基础篇](https://nb.bohrium.dp.tech/detail/8742877753) 2. [DeePKS案例篇 + 增强采样](https://nb.bohrium.dp.tech/detail/7144731675) -5. [ABACUS 隐式溶剂模型使用教程](abacus-sol.md) -6. 随机波函数密度泛函理论:[ABACUS 随机波函数DFT方法使用教程](abacus-sdft.md) -7. 无轨道密度泛函理论:[ABACUS 无轨道密度泛函理论方法使用教程](abacus-ofdft.md) -8. 采用ABACUS进行表面计算 +2. [ABACUS 隐式溶剂模型使用教程](abacus-sol.md) +3. 随机波函数密度泛函理论:[ABACUS 随机波函数DFT方法使用教程](abacus-sdft.md) +4. 无轨道密度泛函理论:[ABACUS 无轨道密度泛函理论方法使用教程](abacus-ofdft.md) +5. [ABACUS 实时演化含时密度泛函理论使用教程](abacus-tddft.md) +6. 采用ABACUS进行表面计算 1. [静电势和功函数](abacus-surface1.md) 2. [偶极修正](abacus-surface2.md) 3. [表面能计算](abacus-surface3.md) 4. [表面缺陷能和吸附能计算](abacus-surface4.md) 5. [外加电场](abacus-surface5.md) 6. [补偿电荷](abacus-surface6.md) -9. 分析结果 +7. 分析结果 1. 能带计算 - 1. [如何正确画能带,NSCF读电荷密度](https://xmywuqhxb0.feishu.cn/docx/K8GRdTst4oXQNoxnQVbcFZTmntb) - 2. [用ABACUS-ASE自动产生能带路径](https://nb.bohrium.dp.tech/detail/1211642609) + 1. [ABACUS+Atomkit 计算态密度和能带](abacus-dos.md) 2. PDOS计算 1. [ABACUS里怎样做DOS和PDOS计算](https://xmywuqhxb0.feishu.cn/docx/ONSldj82VoNGKSxaoDQcoKBtnGh) -10. 和其他软件对接 +8. 和其他软件对接 1. [ABACUS+Phonopy 计算声子谱](abacus-phonopy.md) 2. [ABACUS+ShengBTE 计算晶格热导率](abacus-shengbte.md) 3. [ABACUS+Phono3py 计算晶格热导率](https://nb.bohrium.dp.tech/detail/6116471155) @@ -83,18 +86,35 @@ ABACUS 网站访问: 7. [ABACUS+USPEX 接口教程](abacus-uspex.md) 8. [ABACUS+Hefei NAMD 使用教程](abacus-namd.md) 9. [ABACUS+Wannier90 使用教程](abacus-wannier.md) - 10. [ABACUS+pyatb 能带反折叠计算](https://nb.bohrium.dp.tech/detail/2012704420) - 11. [ABACUS+DeepH 建立碳材料的哈密顿量模型](https://nb.bohrium.dp.tech/detail/6242632169) - 12. [ABACUS+ASE接口使用技巧](https://bbs.abacus-dft.com/forum.php?mod=viewthread&tid=4&extra=page%3D1) - 13. ABACUS+ASE 做过渡态计算 + 10. [ABACUS+pymatgen 计算弹性常数](abacus-elastic.md) + 11. [ABACUS+Bader charge 分析教程](abacus-bader.md) + 12. [ABACUS+pyatb 能带反折叠计算](https://nb.bohrium.dp.tech/detail/2012704420) + 13. [ABACUS+DeepH 建立碳材料的哈密顿量模型](https://nb.bohrium.dp.tech/detail/6242632169) + 14. [ABACUS+ASE接口使用技巧](https://bbs.abacus-dft.com/forum.php?mod=viewthread&tid=4&extra=page%3D1) + 15. ABACUS+ASE 做过渡态计算 1. [ATST-Tools: ASE-ABACUS过渡态计算工作流套件与算例](https://github.com/QuantumMisaka/ATST-Tools) 支持NEB,Dimer,AutoNEB等过渡态方法。 2. [ABACUS-ASE做NEB计算](https://dptechnology.feishu.cn/wiki/wikcnzar41sN8ZtGLtm3PLnarSc) (简单算例) - 14. ABACUS+ASE 遗传算法 (暂缺,待更新) + 16. ABACUS+ASE 遗传算法 (暂缺,待更新) # 三、使用经验 -1. [ABACUS 收敛性问题解决手册](abacus-conv.md) -2. 有VASP使用背景的用户上手ABACUS教程:[ABACUS新人使用的一些注意事项](https://xmywuqhxb0.feishu.cn/docx/KN3KdqbX6o9S6xxtbtCcD5YPnue) +1. [ABACUS 答疑手册](abacus-question.md) +2. [ABACUS 收敛性问题解决手册](abacus-conv.md) +3. [ABACUS计算模拟实例 | 概述](https://bohrium.dp.tech/notebooks/93842852314) +4. [ABACUS计算模拟实例 | I. 原子及小分子气体能量计算](https://bohrium.dp.tech/notebooks/81868491785) +5. [ABACUS计算模拟实例 | II. C2H5OH的振动模式与频率计算](https://bohrium.dp.tech/notebooks/52515261357) +6. [ABACUS计算模拟实例 | III. 材料平衡晶格常数计算](https://bohrium.dp.tech/notebooks/24564476824) +7. [ABACUS计算模拟实例 | IV. 堆垛层错能的计算](https://bohrium.dp.tech/notebooks/57232361357) +8. [ABACUS计算模拟实例 | V. Al的弹性性能指标计算](https://bohrium.dp.tech/notebooks/73791986918) +9. [ABACUS计算模拟实例 | VI. 空位形成能与间隙能计算](https://bohrium.dp.tech/notebooks/97738352314) +10. [2024秋计算材料学-上机练习:ABACUS能带和态密度计算](https://bohrium.dp.tech/notebooks/21913576824) +11. [ABACUS计算模拟实例 | VIII. 基于HSE06的态密度与能带计算](https://bohrium.dp.tech/notebooks/58898161357) +12. [ABACUS计算模拟实例 | IX. 表面能的计算](https://bohrium.dp.tech/notebooks/45588412168) +13. [ABACUS计算模拟实例 | XI. Pt表面简单物种的吸附能计算](https://bohrium.dp.tech/notebooks/15517833825) +14. [ABACUS计算模拟实例 | XII. Pt(111)表面羟基解离的过渡态搜索](https://bohrium.dp.tech/notebooks/36595625971) +15. [ABACUS计算模拟实例 | XIII. Pt表面的ORR催化路径](https://bohrium.dp.tech/notebooks/49942212168) +16. [ABACUS对比CP2K精度和效率测试 | Si的状态方程(EOS)](https://bohrium.dp.tech/notebooks/77351186918) +17. 有VASP使用背景的用户上手ABACUS教程:[ABACUS新人使用的一些注意事项](https://xmywuqhxb0.feishu.cn/docx/KN3KdqbX6o9S6xxtbtCcD5YPnue) # 四、开发者文档 @@ -104,27 +124,32 @@ ABACUS 网站访问: 4. [ABACUS 的 Github 仓库 Issues 处理流程](develop-issue.md) 5. [ABACUS 线上文档输入参数撰写规范](develop-input.md) 6. [ABACUS 代码存放规范](develop-rule.md) -7. [ABACUS 全局数据结构和代码行数检测](develop-linedete.md) -8. [ABACUS 中的测试(一):测试的重要性](develop-test1.md) -9. [ABACUS 中的测试(二):测试工具 gtest](develop-test2.md) -10. [Introduction to ABACUS: Path to PW calculation - Part 1](develop-path1.md) -11. [Introduction to ABACUS: Path to PW calculation - Part 2](develop-path2.md) -12. [Introduction to ABACUS: Path to PW calculation - Part 3](develop-path3.md) -13. [Introduction to ABACUS: Path to PW calculation - Part 4](develop-path4.md) -14. [Introduction to ABACUS: Path to PW calculation - Part 5](develop-path5.md) -15. [Introduction to ABACUS: Path to PW calculation - Summary 1](develop-sm1.md) -16. [Introduction to ABACUS: Path to PW calculation - Part 6](develop-path6.md) -17. [Introduction to ABACUS: Path to PW calculation - Part 7](develop-path7.md) -18. [Introduction to ABACUS: Path to PW calculation - Part 8](develop-path8.md) -19. [Introduction to ABACUS: Path to PW calculation - Part 9](develop-path9.md) -20. [Introduction to ABACUS: Path to PW calculation - Part 10](develop-path10.md) -21. [Introduction to ABACUS: Path to PW calculation - Part 11](develop-path11.md) -22. [Introduction to ABACUS: Path to PW calculation - Summary Final](develop-sm2.md) -23. [如何在 ABACUS 中新增一个输入参数(截至 v3.5.3)](develop-addinp.md) -24. [C++ 程序设计的一些想法](develop-design.md) +7. [ABACUS formatter-2.0 版本使用说明书](develop-formatter2.md) +8. [ABACUS 全局数据结构和代码行数检测](develop-linedete.md) +9. [性能分析工具:vtune 快速上手教程](develop-vtune.md) +10. [以格点积分程序为例:一些代码开发习惯小贴士](develop-grid.md) +11. [ABACUS 中的测试(一):测试的重要性](develop-test1.md) +12. [ABACUS 中的测试(二):测试工具 gtest](develop-test2.md) +13. [Introduction to ABACUS: Path to PW calculation - Part 1](develop-path1.md) +14. [Introduction to ABACUS: Path to PW calculation - Part 2](develop-path2.md) +15. [Introduction to ABACUS: Path to PW calculation - Part 3](develop-path3.md) +16. [Introduction to ABACUS: Path to PW calculation - Part 4](develop-path4.md) +17. [Introduction to ABACUS: Path to PW calculation - Part 5](develop-path5.md) +18. [Introduction to ABACUS: Path to PW calculation - Summary 1](develop-sm1.md) +19. [Introduction to ABACUS: Path to PW calculation - Part 6](develop-path6.md) +20. [Introduction to ABACUS: Path to PW calculation - Part 7](develop-path7.md) +21. [Introduction to ABACUS: Path to PW calculation - Part 8](develop-path8.md) +22. [Introduction to ABACUS: Path to PW calculation - Part 9](develop-path9.md) +23. [Introduction to ABACUS: Path to PW calculation - Part 10](develop-path10.md) +24. [Introduction to ABACUS: Path to PW calculation - Part 11](develop-path11.md) +25. [Introduction to ABACUS: Path to PW calculation - Summary Final](develop-sm2.md) +26. [如何在 ABACUS 中新增一个输入参数(v3.7.0 后)](develop-addinp2.md) +27. [如何在 ABACUS 中新增一个输入参数(截至 v3.5.3)](develop-addinp.md) +28. [C++ 程序设计的一些想法](develop-design.md) +29. [文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例](develop-cifparser.md) # 五、算法文档 1. [最大局域化 Wannier 函数方法简介](algorithm-wannier.md) 2. [电荷密度混合算法介绍](algorithm-mix.md) - +3. [在 ABACUS 中进行差分测试](algorithm-delta.md) diff --git a/SUMMARY.md b/SUMMARY.md index 62d9fe5a..59f822a0 100644 --- a/SUMMARY.md +++ b/SUMMARY.md @@ -2,24 +2,30 @@ * [ABACUS 使用教程](README.md) * [GCC 编译 ABACUS 教程](abacus-gcc.md) + * [Intel oneAPI 2024.x 编译 ABACUS 教程](abacus-oneapi.md) * [Intel oneAPI 编译 ABACUS 教程](abacus-intel.md) * [编译 Nvidia GPU 版本的 ABACUS](abacus-gpu.md) * [在超算环境编译 ABACUS 的建议](abacus-hpc.md) * [ABACUS 在曙光 DCU 集群上的编译与使用](abacus-dcu.md) + * [ABACUS 答疑手册](abacus-question.md) + * [ABACUS 收敛性问题解决手册](abacus-conv.md) * [模守恒赝势生成方法简介](abacus-upf.md) * [数值原子轨道(一):ABACUS 中的数值原子轨道命名和使用方法](abacus-nac1.md) * [数值原子轨道(二):生成给定模守恒赝势的数值原子轨道](abacus-nac2.md) * [数值原子轨道(三):产生高精度数值原子轨道](abacus-nac3.md) + * [ABACUS 的平面波计算与收敛性测试](abacus-pw.md) * [ABACUS 分子动力学使用教程](abacus-md.md) * [ABACUS 隐式溶剂模型使用教程](abacus-sol.md) * [ABACUS 随机波函数DFT方法使用教程](abacus-sdft.md) * [ABACUS 无轨道密度泛函理论方法使用教程](abacus-ofdft.md) + * [ABACUS 实时演化含时密度泛函理论使用教程](abacus-tddft.md) * [采用 ABACUS 进行表面计算(一):静电势和功函数](abacus-surface1.md) * [采用 ABACUS 进行表面计算(二):偶极修正](abacus-surface2.md) * [采用 ABACUS 进行表面计算(三):表面能计算](abacus-surface3.md) * [采用 ABACUS 进行表面计算(四):表面缺陷能和吸附能计算](abacus-surface4.md) * [采用 ABACUS 进行表面计算(五):外加电场](abacus-surface5.md) * [采用 ABACUS 进行表面计算(六):补偿电荷](abacus-surface6.md) + * [ABACUS+Atomkit 计算态密度和能带](abacus-dos.md) * [ABACUS+Phonopy 计算声子谱](abacus-phonopy.md) * [ABACUS+ShengBTE 计算晶格热导率](abacus-shengbte.md) * [ABACUS+DPGEN 使用教程](abacus-dpgen.md) @@ -28,7 +34,8 @@ * [ABACUS+USPEX 接口教程](abacus-uspex.md) * [ABACUS+Hefei NAMD 使用教程](abacus-namd.md) * [ABACUS+Wannier90 使用教程](abacus-wannier.md) - * [ABACUS 收敛性问题解决手册](abacus-conv.md) + * [ABACUS+pymatgen 计算弹性常数](abacus-elastic.md) + * [ABACUS+Bader charge 分析教程](abacus-bader.md) * ABACUS 开发者文档 * [ABACUS 开源项目 C++ 代码规范](develop-C++.md) * [ABACUS 中使用格式化工具 clang-format](develop-format.md) @@ -36,7 +43,11 @@ * [ABACUS 的 Github 仓库 Issues 处理流程](develop-issue.md) * [ABACUS 线上文档输入参数撰写规范](develop-input.md) * [ABACUS 代码存放规范](develop-rule.md) + * [ABACUS formatter-2.0 版本使用说明书](develop-formatter2.md) * [ABACUS 全局数据结构和代码行数检测](develop-linedete.md) + * [性能分析工具:vtune 快速上手教程](develop-vtune.md) + * [以格点积分程序为例:一些代码开发习惯小贴士](develop-grid.md) + * [文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例](develop-cifparser.md) * [ABACUS 中的测试(一):测试的重要性](develop-test1.md) * [ABACUS 中的测试(二):测试工具 gtest](develop-test2.md) * [Introduction to ABACUS: Path to PW calculation - Part 1](develop-path1.md) @@ -52,10 +63,12 @@ * [Introduction to ABACUS: Path to PW calculation - Part 10](develop-path10.md) * [Introduction to ABACUS: Path to PW calculation - Part 11](develop-path11.md) * [Introduction to ABACUS: Path to PW calculation - Summary Final](develop-sm2.md) + * [如何在 ABACUS 中新增一个输入参数(v3.7.0 后)](develop-addinp2.md) * [如何在 ABACUS 中新增一个输入参数(截至 v3.5.3)](develop-addinp.md) * [C++ 程序设计的一些想法](develop-design.md) * 算法文档 * [最大局域化 Wannier 函数方法简介](algorithm-wannier.md) * [电荷密度混合算法介绍](algorithm-mix.md) + * [在 ABACUS 中进行差分测试](algorithm-delta.md) * [ABACUS 新闻稿整理](news.md) * [如何贡献 ABACUS 使用教程](contribute.md) diff --git a/_book/abacus-bader.html b/_book/abacus-bader.html new file mode 100644 index 00000000..f21bc5a2 --- /dev/null +++ b/_book/abacus-bader.html @@ -0,0 +1,1481 @@ + + + + + + + ABACUS+Bader charge 分析教程 · GitBook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + + + + + + +
+ +
+ +
+ + + + + + + + +
+
+ +
+
+ +
+ +

ABACUS+Bader charge 分析教程

+

作者:黄一珂,邮箱:huangyk@aisi.ac.cn

+

最后更新时间:2024 年 7 月 13 日

+

前言

+

我们在软件开发时不可避免遇到化学相关应用场景的需求,其中一个可能重点关注的信息便是“价态”。尽管从原理上考虑,“价态”这个量的定义并不明确,但化学场景的使用者总希望找到各式各样的方法来契合他们的“化学直觉”,便诞生了各种布居分析(Population Analysis)方法:如 Mulliken、Hirshfeld、Hirshfeld-Iterative (Hirshfeld-I)、ADCH、DDEC6、CM5、Mayer、Bader 等,以及各种电子的定域化分析方法,如 Wannier、ELF 等。尽管他们各自存在或致命或物理上定义不明的问题,如 Mulliken 电荷具有非常显著的基组相关效应,Hirshfeld 电荷经常对过渡元素计算出携带负电,Bader 对于电荷分布极其不均匀的体系会得出异常结果等,但仍然有足够普遍的受众群体。

+

Bader charge 是将电子密度进行类似于 Voronoi tesellation 的剖分,在原子间以电荷密度的梯度为 0 处创建截面,然后将原子周围所有截面包络出的 cell 进行实空间积分,即为 Bader charge。考虑实际计算,我们总能对价电子的密度进行切分,但对近核电子的处理则有所差别:CP2K 支持构造出核电荷分布,VASP 支持从 PAW 势中重建核电荷分布,而 QE 和 ABACUS 则不支持以上处理方式。

+

Bader 分析软件部署

+

网站:https://theory.cm.utexas.edu/henkelman/code/bader/

+

我们可以直接运行 linux 命令以下载 Bader 电荷分析软件的可执行文件版本,也可以选择下载源码然后手动编译:

+
wget https://theory.cm.utexas.edu/henkelman/code/bader/download/bader_lnx_64.tar.gz
+tar -zxvf bader_lnx_64.tar.gz
+chmod +x bader
+
+

下载源码:

+
wget https://theory.cm.utexas.edu/henkelman/code/bader/download/bader.tar.gz
+tar -zxvf bader.tar.gz
+cd bader
+make
+chmod +x bader
+
+

使用示例

+

在了解 bader charge 的原理后,我们首先从 nspin 1(only one spin channel)开始讲解具体使用。

+

nspin 1 case

+

生成所需 cube 文件

+

bader 程序需要读取以 cube 方式,或者 CHGCAR 格式存储的实空间电荷密度,因此运行 ABACUS 时,只需要添加

+
out_chg 1
+
+

即可输出电荷密度。

+

运行 bader 电荷分析

+

只需要以

+
/path/to/bader Si2-ELECTRON_DENSITY.cube
+
+

即可,屏幕会有如下输出:

+
GRID BASED BADER ANALYSIS  (Version 1.05 08/19/23)
+
+  OPEN ... Si2-ELECTRO
+  GAUSSIAN-STYLE INPUT FILE
+  DENSITY-GRID:   60 x  60 x  60
+  CLOSE ... Si2-Si2.cube-ELECTRO
+  RUN TIME:    0.02 SECONDS
+
+  CALCULATING BADER CHARGE DISTRIBUTION
+                 0  10  25  50  75  100
+  PERCENT DONE:  **********************
+
+  REFINING AUTOMATICALLY
+  ITERATION: 1
+  EDGE POINTS:         97653
+  REASSIGNED POINTS:    7908
+
+  RUN TIME:       0.23 SECONDS
+
+  CALCULATING MINIMUM DISTANCES TO ATOMS
+                 0  10  25  50  75  100
+  PERCENT DONE:  **********************
+  RUN TIME:    0.02 SECONDS
+
+  WRITING BADER ATOMIC CHARGES TO ACF.dat
+  WRITING BADER VOLUME CHARGES TO BCF.dat
+
+  NUMBER OF BADER MAXIMA FOUND:              8
+      SIGNIFICANT MAXIMA FOUND:              8
+                 VACUUM CHARGE:         0.0000
+           NUMBER OF ELECTRONS:        8.00001
+
+

同时生成了 ACF.dat,AVF.dat 和 BCF.dat 文件,ACF.dat 中即是 bader 切分该电荷密度后在“Voronoi cell”切分的结果:

+
#         X           Y           Z       CHARGE      MIN DIST   ATOMIC VOL
+ --------------------------------------------------------------------------------
+    1    3.653762    2.109500    1.491642    3.999891     1.952476   137.965434
+    2    0.000000    0.000000    0.000000    4.000124     1.952474   137.962879
+ --------------------------------------------------------------------------------
+    VACUUM CHARGE:               0.0000
+    VACUUM VOLUME:               0.0000
+    NUMBER OF ELECTRONS:         8.0000
+
+

我们将“CHARGE”列数据和赝势中 PP_HEADER 部分的 z_valence 值相减,即可得到该原子所携带电荷量。

+

nspin 2 case

+

ABACUS 目前分 spin channel 进行电荷密度的输出,若 nspin 2,则会在目录下输出 SPIN1_CHG.cube 和 SPIN2_CHG.cube。然而,直接对每一个 spin channel 进行体积剖分,然后按照原子序号相加的结果可能是错误的,因为两个 spin channel 中不一定每个原子均具有位置相同的“0 梯度面”。因此对同一原子,可能在两个 spin channel 中具有不同大小的 cell。为了避免这种情况,可以首先将两 cube 文件进行加和,之后再调用 bader.x。

+

Cube manipulator

+

Cube manipulator 是处理 Gaussian cube 格式 3D 实空间格点数据的小工具,可以在 ABACUS 代码包 tools 文件夹下找到(https://github.com/deepmodeling/abacus-develop/blob/develop/tools/plot-tools/cube_manipulator.py)。

+

通过 --help 可以查看可用选项:

+
myaccount@mycomputer:~/abacus-develop/examples/spin_polarized/AFM/OUT.ABACUS# python3 cube_manipulator.py --help
+usage: cube_manipulator.py [-h] [-i INP] [-o OUT] [-s SCALE] [--p1d P1D] [--s2d S2D] [-p PLUS] [-m MINUS]
+
+manipulate the Gaussian cube format volumetric data.
+
+options:
+  -h, --help            show this help message and exit
+  -i INP, --inp INP     the input Gaussian cube file.
+  -o OUT, --out OUT     the output file.
+  -s SCALE, --scale SCALE
+                        scale the Gaussian cube file by a factor.
+  --p1d P1D             integrate the Gaussian cube file in 2D, followed by the axis: 'x', ...
+  --s2d S2D             slice the Gaussian cube file along one axis, followed by string like 'x=0.0', 'y=0.0', 'z=0.0'. Note: should be fractional coodinate.
+  -p PLUS, --plus PLUS  plus the two Gaussian cube files.
+  -m MINUS, --minus MINUS
+                        minus the two Gaussian cube files.
+
+Once meet any problem, please submit an issue at: https://github.com/deepmodeling/abacus-develop/issues
+
+

生成所需 cube 文件

+

我们选择 abacus-develop/examples/spin_polarized/AFM 算例,将 INPUT 文件中 out_chg flag 修改为 1,得到两个 cube 文件分别对应于两个 spin channel。此时我们只需要将两个 SPIN*_CHG.cube 相加即可:

+
python3 cube_manipulator.py -i SPIN1_CHG.cube -p SPIN2_CHG.cube -o ELECTRONIC_DENSITY.cube
+
+

运行 bader 电荷分析

+

对文件 ELECTRONIC_DENSITY.cube 使用 bader.x,得到:

+
GRID BASED BADER ANALYSIS  (Version 1.05 08/19/23)
+
+  OPEN ... ELECTRONIC_DENSITY.c
+  GAUSSIAN-STYLE INPUT FILE
+  DENSITY-GRID:   36 x  36 x  36
+  CLOSE ... ELECTRONIC_DENSITY.c
+  RUN TIME:    0.00 SECONDS
+
+  CALCULATING BADER CHARGE DISTRIBUTION
+                 0  10  25  50  75  100
+  PERCENT DONE:  ********************** 
+
+  REFINING AUTOMATICALLY
+  ITERATION: 1
+  EDGE POINTS:         39985
+  REASSIGNED POINTS:    6753
+
+  RUN TIME:       0.07 SECONDS
+
+  CALCULATING MINIMUM DISTANCES TO ATOMS
+                 0  10  25  50  75  100
+  PERCENT DONE:  **********************
+  RUN TIME:    0.00 SECONDS
+
+  WRITING BADER ATOMIC CHARGES TO ACF.dat
+  WRITING BADER VOLUME CHARGES TO BCF.dat
+
+  NUMBER OF BADER MAXIMA FOUND:            108
+      SIGNIFICANT MAXIMA FOUND:            108
+                 VACUUM CHARGE:         0.0000
+           NUMBER OF ELECTRONS:       31.99909
+
+

该例为,呈反铁磁态,每个 Fe 原子有 16 个价电子,最终积分得到电子数量为 31.99909,因此符合预期。同样查看 ACF.dat 文件:

+
#         X           Y           Z       CHARGE      MIN DIST   ATOMIC VOL
+ --------------------------------------------------------------------------------
+    1    0.000000    0.000000    0.000000   15.999544     2.060461    76.704205
+    2    2.676622    2.676622    2.676622   15.999544     2.060459    76.704205
+ --------------------------------------------------------------------------------
+    VACUUM CHARGE:               0.0000
+    VACUUM VOLUME:               0.0000
+    NUMBER OF ELECTRONS:        31.9991
+
+

发现两 Fe 原子均为电中性,同样符合预期。

+

附录:cube manipulator 更多的使用方法

+

Cube manipulator 还有除了加法之外的更多功能,例如两 cube 文件进行减法、一个 cube 文件进行乘法等,以及还有面向更实际的应用场景,2D 平面积分与 cube 3D 内容切片。

+

AXPY 类操作

+

AXPY 是 BLAS 中函数,代表了诸如:

+

+

的操作。因此-p flag 即为$\alpha=1, \beta=1$,-m flag 即为$\alpha=1,\beta=-1$,-s 为$\alpha=?, \beta=0$。

+

例如将 SPIN1_CHG.cube 和 SPIN2_CHG.cube 相减可以获得自旋密度:

+
python3 cube_manipulator.py -i SPIN1_CHG.cube -m SPIN2_CHG.cube -o SPIN_DENSITY.cube
+
+
SPIN1_CHG.cube
图 1. SPIN1_CHG.cube
+
SPIN2_CHG.cube
图 2. SPIN2_CHG.cube
+
SPIN_DENSITY.cube
图 3. SPIN_DENSITY.cube
+

Profile1d 操作

+

在进行表面模型的功函数计算时,需要对 Hartree 势进行面积分,得到沿某个轴的 1 维曲线。我们分别使用 ELECTRON_DENSITY.cube 和 SPIN_DENSITY.cube 对该功能进行演示:

+
python3 cube_manipulator.py -i ELECTRON_DENSITY.cube --p1d x -o charge1d.dat
+python3 cube_manipulator.py -i SPIN_DENSITY.cube --p1d x -o spin1d.dat
+
+

即对 yz 平面进行积分,进行简单的绘图:

+
charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75
图 4. charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75
+
spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期
图 5. spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期
+

Slice2d 操作

+

有时我们会考察某个截面的电子密度,对原子周围电子的局域化程度进行分析。我们仍然分别使用 ELECTRON_DENSITY.cube 和 SPIN_DENSITY.cube 对该功能进行演示:

+
python3 cube_manipulator.py -i ELECTRON_DENSITY.cube --s2d x=0 -o charge2d_000.dat
+python3 cube_manipulator.py -i ELECTRON_DENSITY.cube --s2d x=0.25 -o charge2d_025.dat
+python3 cube_manipulator.py -i ELECTRON_DENSITY.cube --s2d x=0.5 -o charge2d_050.dat
+
+python3 cube_manipulator.py -i SPIN_DENSITY.cube --s2d x=0 -o spin2d_000.dat
+python3 cube_manipulator.py -i SPIN_DENSITY.cube --s2d x=0.25 -o spin2d_025.dat
+python3 cube_manipulator.py -i SPIN_DENSITY.cube --s2d x=0.5 -o spin2d_050.dat
+
+

进行简单绘图,电荷密度:

+
charge2d_000.dat
图 6. charge2d_000.dat
+
charge2d_025.dat
图 7. charge2d_025.dat
+
charge2d_050.dat
图 8. charge2d_050.dat
+

自旋密度:

+
spin2d_000.dat
图 9. spin2d_000.dat
+
spin2d_025.dat
图 10. spin2d_025.dat
+
spin2d_050.dat
图 11. spin2d_050.dat
+

Have a question? Submit issue!

+

如果在使用 ABACUS+Bader Analysis 过程中发现了 bug 或者运行结果不达预期,可以在 deepmodeling/abacus-develop 仓库下提交 issue。

+
Copyright © mcresearch.gitee.io 2023 all right reserved,powered by Gitbook该文章修订时间: +2024-07-14 14:58:20 +
+ +
+ +
+
+
+ +

results matching ""

+
    + +
    +
    + +

    No results matching ""

    + +
    +
    +
    + +
    +
    + +
    + + + + + + + + + + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_book/abacus-candela.html b/_book/abacus-candela.html index 238d0d08..5d641728 100644 --- a/_book/abacus-candela.html +++ b/_book/abacus-candela.html @@ -176,7 +176,20 @@ -
  • +
  • + + + + + Intel oneAPI 2024.x 编译 ABACUS 教程 + + + + + +
  • + +
  • @@ -189,7 +202,7 @@
  • -
  • +
  • @@ -202,7 +215,7 @@
  • -
  • +
  • @@ -215,7 +228,7 @@
  • -
  • +
  • @@ -228,7 +241,33 @@
  • -
  • +
  • + + + + + ABACUS 答疑手册 + + + + + +
  • + +
  • + + + + + ABACUS 收敛性问题解决手册 + + + + + +
  • + +
  • @@ -241,7 +280,7 @@
  • -
  • +
  • @@ -254,7 +293,7 @@
  • -
  • +
  • @@ -267,7 +306,7 @@
  • -
  • +
  • @@ -280,7 +319,20 @@
  • -
  • +
  • + + + + + ABACUS 的平面波计算与收敛性测试 + + + + + +
  • + +
  • @@ -293,7 +345,7 @@
  • -
  • +
  • @@ -306,7 +358,7 @@
  • -
  • +
  • @@ -319,7 +371,7 @@
  • -
  • +
  • @@ -332,7 +384,20 @@
  • -
  • +
  • + + + + + ABACUS 实时演化含时密度泛函理论使用教程 + + + + + +
  • + +
  • @@ -345,7 +410,7 @@
  • -
  • +
  • @@ -358,7 +423,7 @@
  • -
  • +
  • @@ -371,7 +436,7 @@
  • -
  • +
  • @@ -384,7 +449,7 @@
  • -
  • +
  • @@ -397,7 +462,7 @@
  • -
  • +
  • @@ -410,7 +475,20 @@
  • -
  • +
  • + + + + + ABACUS+Atomkit 计算态密度和能带 + + + + + +
  • + +
  • @@ -423,7 +501,7 @@
  • -
  • +
  • @@ -436,7 +514,7 @@
  • -
  • +
  • @@ -449,7 +527,7 @@
  • -
  • +
  • @@ -462,7 +540,7 @@
  • -
  • +
  • @@ -475,7 +553,7 @@
  • -
  • +
  • @@ -488,7 +566,7 @@
  • -
  • +
  • @@ -501,7 +579,7 @@
  • -
  • +
  • @@ -514,12 +592,25 @@
  • -
  • +
  • - + - ABACUS 收敛性问题解决手册 + ABACUS+pymatgen 计算弹性常数 + + + + + +
  • + +
  • + + + + + ABACUS+Bader charge 分析教程 @@ -624,7 +715,20 @@
  • -
  • +
  • + + + + + ABACUS formatter-2.0 版本使用说明书 + + + + + +
  • + +
  • @@ -637,7 +741,46 @@
  • -
  • +
  • + + + + + 性能分析工具:vtune 快速上手教程 + + + + + +
  • + +
  • + + + + + 以格点积分程序为例:一些代码开发习惯小贴士 + + + + + +
  • + +
  • + + + + + 文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例 + + + + + +
  • + +
  • @@ -650,7 +793,7 @@
  • -
  • +
  • @@ -663,7 +806,7 @@
  • -
  • +
  • @@ -676,7 +819,7 @@
  • -
  • +
  • @@ -689,7 +832,7 @@
  • -
  • +
  • @@ -702,7 +845,7 @@
  • -
  • +
  • @@ -715,7 +858,7 @@
  • -
  • +
  • @@ -728,7 +871,7 @@
  • -
  • +
  • @@ -741,7 +884,7 @@
  • -
  • +
  • @@ -754,7 +897,7 @@
  • -
  • +
  • @@ -767,7 +910,7 @@
  • -
  • +
  • @@ -780,7 +923,7 @@
  • -
  • +
  • @@ -793,7 +936,7 @@
  • -
  • +
  • @@ -806,7 +949,7 @@
  • -
  • +
  • @@ -819,7 +962,7 @@
  • -
  • +
  • @@ -832,7 +975,20 @@
  • -
  • +
  • + + + + + 如何在 ABACUS 中新增一个输入参数(v3.7.0 后) + + + + + +
  • + +
  • @@ -845,7 +1001,7 @@
  • -
  • +
  • @@ -901,6 +1057,19 @@ +
  • + +
  • + + + + + 在 ABACUS 中进行差分测试 + + + + +
  • @@ -1226,7 +1395,7 @@

    No results matching " var gitbook = gitbook || []; gitbook.push(function() { - gitbook.page.hasChanged({"page":{"title":"ABACUS+Candela 使用教程","level":"1.1.24","depth":2,"next":{"title":"ABACUS+USPEX 接口教程","level":"1.1.25","depth":2,"path":"abacus-uspex.md","ref":"abacus-uspex.md","articles":[]},"previous":{"title":"ABACUS+LibRI 做杂化泛函计算教程","level":"1.1.23","depth":2,"path":"abacus-libri.md","ref":"abacus-libri.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.6.1","level":"1.1.6","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.6.1"},{"backlink":"abacus-upf.html#fig1.1.6.2","level":"1.1.6","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.6.2"},{"backlink":"abacus-upf.html#fig1.1.6.3","level":"1.1.6","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.6.3"},{"backlink":"abacus-upf.html#fig1.1.6.4","level":"1.1.6","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.6.4"},{"backlink":"abacus-upf.html#fig1.1.6.5","level":"1.1.6","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.6.5"},{"backlink":"abacus-surface2.html#fig1.1.15.1","level":"1.1.15","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":6,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.15.1"},{"backlink":"abacus-surface2.html#fig1.1.15.2","level":"1.1.15","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":7,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.15.2"},{"backlink":"abacus-surface2.html#fig1.1.15.3","level":"1.1.15","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":8,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.15.3"},{"backlink":"abacus-surface5.html#fig1.1.18.1","level":"1.1.18","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":9,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.18.1"},{"backlink":"abacus-surface5.html#fig1.1.18.2","level":"1.1.18","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.18.2"},{"backlink":"abacus-surface5.html#fig1.1.18.3","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":11,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.18.3"},{"backlink":"abacus-surface5.html#fig1.1.18.4","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":12,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.18.4"},{"backlink":"abacus-surface5.html#fig1.1.18.5","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":13,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.18.5"},{"backlink":"abacus-surface6.html#fig1.1.19.1","level":"1.1.19","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":14,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.19.1"},{"backlink":"abacus-surface6.html#fig1.1.19.2","level":"1.1.19","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":15,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.19.2"},{"backlink":"develop-path4.html#fig1.2.13.1","level":"1.2.13","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":16,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.13.1"},{"backlink":"develop-path4.html#fig1.2.13.2","level":"1.2.13","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":17,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.13.2"},{"backlink":"develop-path5.html#fig1.2.14.1","level":"1.2.14","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":18,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.14.1"},{"backlink":"develop-path5.html#fig1.2.14.2","level":"1.2.14","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":19,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.14.2"},{"backlink":"develop-path5.html#fig1.2.14.3","level":"1.2.14","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":20,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.14.3"},{"backlink":"develop-path5.html#fig1.2.14.4","level":"1.2.14","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":21,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.14.4"},{"backlink":"develop-path5.html#fig1.2.14.5","level":"1.2.14","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":22,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.14.5"},{"backlink":"develop-path6.html#fig1.2.16.1","level":"1.2.16","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":23,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.16.1"},{"backlink":"develop-path10.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":24,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.20.2","level":"1.2.20","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":25,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.20.2"},{"backlink":"develop-path10.html#fig1.2.20.3","level":"1.2.20","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":26,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.20.3"},{"backlink":"develop-path10.html#fig1.2.20.4","level":"1.2.20","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":27,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.20.4"},{"backlink":"develop-path10.html#fig1.2.20.5","level":"1.2.20","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":28,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.20.5"},{"backlink":"develop-path11.html#fig1.2.21.1","level":"1.2.21","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":29,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.21.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":30,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"abacus-candela.md","mtime":"2023-12-13T03:02:29.991Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-03-19T11:29:16.414Z"},"basePath":".","book":{"language":""}}); + gitbook.page.hasChanged({"page":{"title":"ABACUS+Candela 使用教程","level":"1.1.30","depth":2,"next":{"title":"ABACUS+USPEX 接口教程","level":"1.1.31","depth":2,"path":"abacus-uspex.md","ref":"abacus-uspex.md","articles":[]},"previous":{"title":"ABACUS+LibRI 做杂化泛函计算教程","level":"1.1.29","depth":2,"path":"abacus-libri.md","ref":"abacus-libri.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.9.1","level":"1.1.9","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.9.1"},{"backlink":"abacus-upf.html#fig1.1.9.2","level":"1.1.9","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.9.2"},{"backlink":"abacus-upf.html#fig1.1.9.3","level":"1.1.9","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.9.3"},{"backlink":"abacus-upf.html#fig1.1.9.4","level":"1.1.9","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.9.4"},{"backlink":"abacus-upf.html#fig1.1.9.5","level":"1.1.9","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.9.5"},{"backlink":"abacus-pw.html#fig1.1.13.1","level":"1.1.13","list_caption":"Figure: 电子自洽迭代计算流程。","alt":"电子自洽迭代计算流程。","nro":6,"url":"picture/fig_pw-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"电子自洽迭代计算流程。","attributes":{},"skip":false,"key":"1.1.13.1"},{"backlink":"abacus-pw.html#fig1.1.13.2","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","nro":7,"url":"picture/fig_pw-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","attributes":{},"skip":false,"key":"1.1.13.2"},{"backlink":"abacus-pw.html#fig1.1.13.3","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随K点变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","nro":8,"url":"picture/fig_pw-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","attributes":{},"skip":false,"key":"1.1.13.3"},{"backlink":"abacus-pw.html#fig1.1.13.4","level":"1.1.13","list_caption":"Figure: 计算时间随K点变化。","alt":"计算时间随K点变化。","nro":9,"url":"picture/fig_pw-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"计算时间随K点变化。","attributes":{},"skip":false,"key":"1.1.13.4"},{"backlink":"abacus-surface2.html#fig1.1.20.1","level":"1.1.20","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.20.1"},{"backlink":"abacus-surface2.html#fig1.1.20.2","level":"1.1.20","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":11,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.20.2"},{"backlink":"abacus-surface2.html#fig1.1.20.3","level":"1.1.20","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":12,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.20.3"},{"backlink":"abacus-surface5.html#fig1.1.23.1","level":"1.1.23","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":13,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.23.1"},{"backlink":"abacus-surface5.html#fig1.1.23.2","level":"1.1.23","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":14,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.23.2"},{"backlink":"abacus-surface5.html#fig1.1.23.3","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":15,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.23.3"},{"backlink":"abacus-surface5.html#fig1.1.23.4","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":16,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.23.4"},{"backlink":"abacus-surface5.html#fig1.1.23.5","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":17,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.23.5"},{"backlink":"abacus-surface6.html#fig1.1.24.1","level":"1.1.24","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":18,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.24.1"},{"backlink":"abacus-surface6.html#fig1.1.24.2","level":"1.1.24","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":19,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.24.2"},{"backlink":"abacus-dos.html#fig1.1.25.1","level":"1.1.25","list_caption":"Figure: 铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","alt":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","nro":20,"url":"picture/fig_dos-5.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","attributes":{},"skip":false,"key":"1.1.25.1"},{"backlink":"abacus-dos.html#fig1.1.25.2","level":"1.1.25","list_caption":"Figure: 铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","alt":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","nro":21,"url":"picture/fig_dos-6.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","attributes":{},"skip":false,"key":"1.1.25.2"},{"backlink":"abacus-bader.html#fig1.1.35.1","level":"1.1.35","list_caption":"Figure: SPIN1_CHG.cube","alt":"SPIN1_CHG.cube","nro":22,"url":"picture/fig_Bader1.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN1_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.1"},{"backlink":"abacus-bader.html#fig1.1.35.2","level":"1.1.35","list_caption":"Figure: SPIN2_CHG.cube","alt":"SPIN2_CHG.cube","nro":23,"url":"picture/fig_Bader2.jpg","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN2_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.2"},{"backlink":"abacus-bader.html#fig1.1.35.3","level":"1.1.35","list_caption":"Figure: SPIN_DENSITY.cube","alt":"SPIN_DENSITY.cube","nro":24,"url":"picture/fig_Bader3.jpg","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN_DENSITY.cube","attributes":{},"skip":false,"key":"1.1.35.3"},{"backlink":"abacus-bader.html#fig1.1.35.4","level":"1.1.35","list_caption":"Figure: charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","alt":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","nro":25,"url":"picture/fig_Bader4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","attributes":{},"skip":false,"key":"1.1.35.4"},{"backlink":"abacus-bader.html#fig1.1.35.5","level":"1.1.35","list_caption":"Figure: spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","alt":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","nro":26,"url":"picture/fig_Bader5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","attributes":{},"skip":false,"key":"1.1.35.5"},{"backlink":"abacus-bader.html#fig1.1.35.6","level":"1.1.35","list_caption":"Figure: charge2d_000.dat","alt":"charge2d_000.dat","nro":27,"url":"picture/fig_Bader6.png","index":6,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.6"},{"backlink":"abacus-bader.html#fig1.1.35.7","level":"1.1.35","list_caption":"Figure: charge2d_025.dat","alt":"charge2d_025.dat","nro":28,"url":"picture/fig_Bader7.png","index":7,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.7"},{"backlink":"abacus-bader.html#fig1.1.35.8","level":"1.1.35","list_caption":"Figure: charge2d_050.dat","alt":"charge2d_050.dat","nro":29,"url":"picture/fig_Bader8.png","index":8,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.8"},{"backlink":"abacus-bader.html#fig1.1.35.9","level":"1.1.35","list_caption":"Figure: spin2d_000.dat","alt":"spin2d_000.dat","nro":30,"url":"picture/fig_Bader9.png","index":9,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.9"},{"backlink":"abacus-bader.html#fig1.1.35.10","level":"1.1.35","list_caption":"Figure: spin2d_025.dat","alt":"spin2d_025.dat","nro":31,"url":"picture/fig_Bader10.png","index":10,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.10"},{"backlink":"abacus-bader.html#fig1.1.35.11","level":"1.1.35","list_caption":"Figure: spin2d_050.dat","alt":"spin2d_050.dat","nro":32,"url":"picture/fig_Bader11.png","index":11,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.11"},{"backlink":"develop-path4.html#fig1.2.17.1","level":"1.2.17","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":33,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.17.1"},{"backlink":"develop-path4.html#fig1.2.17.2","level":"1.2.17","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":34,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.17.2"},{"backlink":"develop-path5.html#fig1.2.18.1","level":"1.2.18","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":35,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.18.1"},{"backlink":"develop-path5.html#fig1.2.18.2","level":"1.2.18","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":36,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.18.2"},{"backlink":"develop-path5.html#fig1.2.18.3","level":"1.2.18","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":37,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.18.3"},{"backlink":"develop-path5.html#fig1.2.18.4","level":"1.2.18","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":38,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.18.4"},{"backlink":"develop-path5.html#fig1.2.18.5","level":"1.2.18","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":39,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.18.5"},{"backlink":"develop-path6.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":40,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.24.1","level":"1.2.24","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":41,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.24.1"},{"backlink":"develop-path10.html#fig1.2.24.2","level":"1.2.24","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":42,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.24.2"},{"backlink":"develop-path10.html#fig1.2.24.3","level":"1.2.24","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":43,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.24.3"},{"backlink":"develop-path10.html#fig1.2.24.4","level":"1.2.24","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":44,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.24.4"},{"backlink":"develop-path10.html#fig1.2.24.5","level":"1.2.24","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":45,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.24.5"},{"backlink":"develop-path11.html#fig1.2.25.1","level":"1.2.25","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":46,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.25.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":47,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"abacus-candela.md","mtime":"2023-12-13T03:02:29.991Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-09-06T11:53:05.785Z"},"basePath":".","book":{"language":""}}); }); diff --git a/_book/abacus-conv.html b/_book/abacus-conv.html index 219569e0..a1d624a4 100644 --- a/_book/abacus-conv.html +++ b/_book/abacus-conv.html @@ -106,8 +106,10 @@ + - + + + + + + + +
    +
    + + + + + + + + +
    + +
    + +
    + + + + + + + + +
    +
    + +
    +
    + +
    + +

    ABACUS+Atomkit 计算态密度和能带

    +

    作者:陈涛,邮箱:chentao@stu.pku.edu.cn

    +

    审核:陈默涵,邮箱:mohanchen@pku.edu.cn

    +

    最后更新时间:2024/04/22

    +

    一、介绍

    +

    电子的态密度(Density of States,简称DOS)和电子能带结构(Electronic band structure)在凝聚态物理和材料科学中分析物质的光学、磁学等诸多性质都有重要用途,因此学会计算和分析材料的 DOS 和能带结构也是一项重要技能。

    +

    电子能带结构描述了材料中电子能量与动量(或波矢K)之间的关系。通过电子能带可以揭示材料中电子能级的分布情况,包括能级的高低、能带的宽度、能带之间的间隙(带隙,band gap)等信息。能带结构中的价带和导带之间的能隙大小决定了材料是导体、半导体还是绝缘体。金属没有能隙,半导体有能隙但带隙不大,绝缘体拥有较大的能隙。

    +

    DOS 是指在能量为 E 的能量附近可供电子占据的电子状态数目,DOS 是关于能量的函数,通常以每单位能量范围的态数目来表示。DOS 和能带结构紧密相关,通过对能带结构在能量上的积分得到。DOS 的峰值通常对应于能带结构中的范霍夫奇点,这些点是电子浓度变化剧烈的地方,且在费米能级(通常把这个能量设为 0 点,负数代表费米面以下,正数代表费米面以上)附近的行为对材料的电学性质有显著影响。例如,金属的高 DOS 导致高电导率,而半导体和绝缘体在费米能级附近的低 DOS 则导致低电导率。

    +

    使用密度泛函理论软件来计算电子态密度和能带一般包括以下两个步骤:第一步,对结构弛豫后的稳定晶体结构(一般来讲是这样操作)做 self-consistent field(简称 scf)自洽计算输出收敛的体系基态电子密度文件;第二步,读入上一步的电子密度,选取想要计算的能级和 K 点,固定电子密度,做一次非自洽(non-self-consistent field,简称 nscf)计算得到态密度以及能带结构。

    +

    二、准备

    +

    1. 下载安装 Atomkit

    +

    在本教程里会用到 atomkit(并非一定要使用,只是会方便计算流程)来处理 ABACUS 的输入文件。首先推荐大家阅读以下文档并安装好 atomkit:

    +

    Atomkit 相关文档:ATOMKIT Code ‒ VASPKIT 1.5 documentation

    +

    Atomkit v0.8.0 下载地址:Download atomkit.0.8.0.linux.x64.tar.gz (vaspkit)

    +
    wget https://jaist.dl.sourceforge.net/project/vaspkit/Binaries/atomkit.0.8.0.linux.x64.tar.gz
    +tar -zxvf atomkit.0.8.0.linux.x64.tar.gz
    +cd atomkit/
    +bash setup.sh
    +# modify ~/.atomkit file based on your machine environment 
    +source ~/.bashrc
    +
    +

    2. 下载例子

    +

    可以从 Gitee 上下载。可以在网页右侧点击克隆/下载-> 下载 ZIP 得到算例,或者在 linux 终端执行如下命令得到算例:

    +
    git clone https://gitee.com/mcresearch/abacus-user-guide.git
    +
    +

    下载后解压,之后进入 abacus-user-guide/examples/dos_band 文件夹

    +

    里面有 AlFe 两个文件夹,分别演示铝(nspin=1,适用无磁性体系)和铁(nspin=2,适用有磁性体系)的计算,均使用平面波基组

    +

    三、铝的态密度以及电子能带结构计算

    +

    1. 自洽计算

    +

    首先进入 Al 文件夹,铝在常温常压下是面心立方结构(fcc),以下是它经过结构优化(弛豫)后的构型文件:

    +
    ATOMIC_SPECIES
    +Al 26.982 Al_ONCV_PBE-1.0.upf upf201
    +
    +LATTICE_CONSTANT
    +1.88972612546
    +
    +LATTICE_VECTORS
    +    4.0450551637     0.0000000000     0.0000000000 #latvec1
    +    0.0000000000     4.0450551637     0.0000000000 #latvec2
    +    0.0000000000     0.0000000000     4.0450551637 #latvec3
    +
    +ATOMIC_POSITIONS
    +Direct
    +
    +Al #label
    +0 #magnetism
    +4 #number of atoms
    +    0.0000000000     0.0000000000     0.0000000000 m  0  0  0
    +    0.5000000000     0.5000000000     0.0000000000 m  0  0  0
    +    0.5000000000     0.0000000000     0.5000000000 m  0  0  0
    +    0.0000000000     0.5000000000     0.5000000000 m  0  0  0
    +
    +

    这是一个标准的 fcc 单胞结构,但是我们做 DOS 和电子能带结构计算时,常用原胞,因此需要做一步结构转换,转换公式如下图所示:

    +

    +

    这时也可以使用 Atomkit,执行如下命令,即可得到原胞 PRIMCELL.STRU

    +
    echo -e "2\n 202\n 101 STRU\n 101" | atomkit
    +# 这里为了方便演示,使用了命令行,表示将'2'、'202'、'101 STRU'和'101'依次传入atomkit,实际可以按照atomkit的提示依次输入
    +# 2代表进行Symmetry Analysis
    +# 202代表进行Find Primitive Cell
    +# 101 STRU代表读取ABACUS的STRU文件
    +# 101代表输出格式为ABACUS
    +
    +

    接着执行如下命令进行自洽计算,要注意这里 calculation 为 scf,且需要设置 out_chg1 以输出电荷密度文件(SPIN1_CHG.cube)。此外,ABACUS 默认读取 STRU 文件,这里我们设置 stru_filePRIMCELL.STRU,读取得到的原胞

    +
    cp INPUT-scf INPUT
    +cp KPT-scf KPT
    +mpirun -n 8 abacus
    +
    +

    2. 非自洽计算得到态密度

    +

    做态密度计算中的非自洽计算通常情况下需设置更加密的 K 点网格。执行如下命令进行非自洽计算,要注意这里 calculationnscf,且需要设置 init_chgfile 以读取电荷密度文件(SPIN1_CHG.cube),out_dos 也需要设置为 1 以输出态密度

    +
    +

    电荷密度文件(SPIN1_CHG.cube)默认是放在 OUT.suffix 目录下面,非自洽计算会自动去 OUT.suffix 目录下面找这个文件,如果找不到就会报错。熟悉 VASP 的用户可能习惯将这个文件移到另一个目录,这样也可以,但是需要在 INPUT 里设置 read_file_dirSPIN1_CHG.cube 所在目录,read_file_dir 默认值是 OUT.suffix

    +
    +
    cp INPUT-nscf INPUT
    +cp KPT-nscf KPT
    +mpirun -n 8 abacus
    +
    +

    计算得到的态密度存在 DOS1DOS1_smearing.dat 内,我们常用 DOS1_smearing.dat 绘图,第一列是能量(单位为 eV),第二列是态密度,第三列是对态密度的积分

    +

    若需要减去费米能,可使用如下命令抓取费米能,然后在绘图时将第一列的数据减去费米能即可

    +
    grep EFERMI OUT.*/running_scf.log
    +#  EFERMI = 10.963171515 eV
    +
    +

    下面是使用 Origin 绘制的态密度图,出现很多毛刺的原因是为了减少计算量 K 点取得较少,可以通过展宽方法做得更平滑(dos_sigma,默认值为0.07),实际计算也可根据需要增大非自洽计算的 K 点网格

    +

    +

    2. 非自洽计算得到电子能带

    +

    上一步的自洽计算目的是为了得到收敛的电子密度,有了收敛的电子密度,我们就能够快速的得到任意 K 点以及任意多条能带所对应的波函数。根据能带的习惯画法,这一步的 KPT 文件需要选取晶胞的布里渊区高对称点和路径,不同晶胞的高对称点和路径可以参考这个文献 [1]。

    +

    这些高对称点能够反映出材料的电子性质,如能隙大小、有效质量、载流子迁移率等。例如,能隙大小直接影响材料是金属、半导体还是绝缘体;有效质量影响载流子的响应速度;而能带的形态和分布则与材料的光学吸收和发射特性密切相关。因此,通过研究布里渊区内的高对称点的能带结构,我们可以预测和解释材料的多种物理性质,这对于材料的设计和应用具有重要意义

    +

    对于 fcc 的原胞,它的高对称点和可选的路径如下图 [1] 所示:

    +

    +

    KPT 需要选择Line模式(Line模式的介绍可以参考这个链接),并且需要设置 symmetry0(INPUT 文件里若没有设置 symmetry,则会默认设置为 0

    +

    这里可以使用 Atomkit 软件自动生成 KPT,执行如下命令

    +
    echo -e "3\n 301\n 3\n 101 PRIMCELL.STRU\n 0.06" | atomkit
    +# 这里为了方便演示,使用了命令行,表示将'3'、'301'、'3'、'101 PRIMCELL.STRU'和'0.06'依次传入atomkit,实际可以按照atomkit的提示依次输入
    +# 3代表进行Generate K-Mesh & K-Path
    +# 301代表输出K点的格式为ABACUS
    +# 3代表Kpath for Bulk Structure
    +# 101 PRIMCELL.STRU代表读取ABACUS的PRIMCELL.STRU文件
    +# 0.06为kspacing的取值
    +
    +

    生成的 KLINES 即是计算所需的 KPT 文件,前三个数是高对称点的分数坐标,第四个数是两个高对称 K 点间采点数,#号后面是该高对称点的名称

    +
    K_POINTS
    +  8
    +Line
    +   0.00000000   0.00000000   0.00000000   25     # GAMMA                         
    +   0.50000000   0.00000000   0.50000000    9     # X                             
    +   0.62500000   0.25000000   0.62500000    1     # U                             
    +   0.37500000   0.37500000   0.75000000   27     # K                             
    +   0.00000000   0.00000000   0.00000000   22     # GAMMA                         
    +   0.50000000   0.50000000   0.50000000   18     # L                             
    +   0.50000000   0.25000000   0.75000000   12     # W                             
    +   0.50000000   0.00000000   0.50000000    1     # X
    +
    +

    接着执行如下命令进行非自洽计算,要注意这里 calculationnscf,同样需要设置 init_chgfile 以读取电荷密度文件(SPIN1_CHG.cube),out_band 也需要设置为 1 以输出电子能带

    +
    cp INPUT-band INPUT
    +cp KLINES KPT
    +mpirun -n 8 abacus
    +
    +

    计算结束之后在 OUT.* 目录下面会有 BANDS_1.dat 文件,其中第一列为 K 点序号,第二列是 K 点在布里渊区里的间隔(以笛卡尔坐标计算),从第三列往后是每条能带的电子能量,单位为 eV

    +
    1   0.00000000 -92.49968796 -54.00929724 ...
    +2   0.00988862 -92.49960078 -54.00938081 ...
    +3   0.01977723 -92.50345008 -54.00963444 ...
    +......
    +
    +

    这里,可以使用目录下的 gene_band_dat.py 生成绘图所需的能带文件

    +
    # 假设当前目录存在KPT文件存储能带信息,OUT.*目录下有BANDS_*.dat文件
    +python gene_band_dat.py 10.963171515
    +# 10.963171515即为费米能数值,也可空缺,则不将能量减去费米能
    +
    +

    运行完之后会在当前目录生成 plot_BANDS_1.dat 文件,即为绘图所需的能带文件,第一行为高对称 K 点的坐标,从第二行开始,第一列为 K 点在布里渊区里的间隔,第二列为每条能带的电子能量,单位为 eV。

    +
    # 0.0 0.24721543 0.32490774 0.47629565 0.73850721 0.95260205 1.12740976 1.25101747
    +0.000000 -103.462859
    +0.009889 -103.462772
    +......
    +
    +

    下面是绘制的能带图,图中有不够光滑连线的原因是为了减少计算量,K 点取得较少,实际计算可根据需要增多 K 点间采点数目

    +

    +

    四、铁的态密度以及电子能带结构计算

    +

    进入 Fe 文件夹,由于铁具有磁性,因此需要在 INPUT 中打开自旋极化选项,即增加参数 nspin 并设置为 2(默认值为 1),并且将铁的初始磁矩设置为非 0(直接设成 0 得不到铁磁基态)。注意此时再对铁做自洽迭代(相比于 nspin 设置为 1 的计算),程序对自旋向上和向下的电子在每一个布里渊区 K 点上都分别进行了 Kohn-Sham 方程的求解,因此计算时间将会几乎翻倍。

    +

    计算铁的态密度和电子能带结构的过程与铝几乎相同,但是要注意计算得到的态密度和电子能带结构文件均有两个(分别对应自旋向上和向下),分别为 DOS1DOS2BANDS_1.datBANDS_2.dat

    +

    绘图仍推荐使用 DOS1_smearing.datDOS2_smearing.dat,以及 gene_band_dat.py 生成的 plot_BANDS_1.datplot_BANDS_2.dat,使用绘图软件可得如下 DOS 以及能带图

    +
    铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。
    图 1. 铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。
    +
    铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。
    图 2. 铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。
    +

    五、参考文献

    +

    [1] Wahyu Setyawan and Stefano Curtarolo, High-throughput electronic band structure calculations: Challenges and tools, Comp. Mater. Sci., 49, 299-312 (2010).

    +
    Copyright © mcresearch.gitee.io 2023 all right reserved,powered by Gitbook该文章修订时间: +2024-04-22 20:24:44 +
    + +
    + +
    +
    +
    + +

    results matching ""

    +
      + +
      +
      + +

      No results matching ""

      + +
      +
      +
      + +
      +
      + +
      + + + + + + + + + + + + + + +
      + + +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_book/abacus-dpgen.html b/_book/abacus-dpgen.html index dda00539..743aeb2c 100644 --- a/_book/abacus-dpgen.html +++ b/_book/abacus-dpgen.html @@ -176,7 +176,20 @@ -
    • +
    • + + + + + Intel oneAPI 2024.x 编译 ABACUS 教程 + + + + + +
    • + +
    • @@ -189,7 +202,7 @@
    • -
    • +
    • @@ -202,7 +215,7 @@
    • -
    • +
    • @@ -215,7 +228,7 @@
    • -
    • +
    • @@ -228,7 +241,33 @@
    • -
    • +
    • + + + + + ABACUS 答疑手册 + + + + + +
    • + +
    • + + + + + ABACUS 收敛性问题解决手册 + + + + + +
    • + +
    • @@ -241,7 +280,7 @@
    • -
    • +
    • @@ -254,7 +293,7 @@
    • -
    • +
    • @@ -267,7 +306,7 @@
    • -
    • +
    • @@ -280,7 +319,20 @@
    • -
    • +
    • + + + + + ABACUS 的平面波计算与收敛性测试 + + + + + +
    • + +
    • @@ -293,7 +345,7 @@
    • -
    • +
    • @@ -306,7 +358,7 @@
    • -
    • +
    • @@ -319,7 +371,7 @@
    • -
    • +
    • @@ -332,7 +384,20 @@
    • -
    • +
    • + + + + + ABACUS 实时演化含时密度泛函理论使用教程 + + + + + +
    • + +
    • @@ -345,7 +410,7 @@
    • -
    • +
    • @@ -358,7 +423,7 @@
    • -
    • +
    • @@ -371,7 +436,7 @@
    • -
    • +
    • @@ -384,7 +449,7 @@
    • -
    • +
    • @@ -397,7 +462,7 @@
    • -
    • +
    • @@ -410,7 +475,20 @@
    • -
    • +
    • + + + + + ABACUS+Atomkit 计算态密度和能带 + + + + + +
    • + +
    • @@ -423,7 +501,7 @@
    • -
    • +
    • @@ -436,7 +514,7 @@
    • -
    • +
    • @@ -449,7 +527,7 @@
    • -
    • +
    • @@ -462,7 +540,7 @@
    • -
    • +
    • @@ -475,7 +553,7 @@
    • -
    • +
    • @@ -488,7 +566,7 @@
    • -
    • +
    • @@ -501,7 +579,7 @@
    • -
    • +
    • @@ -514,12 +592,25 @@
    • -
    • +
    • - + - ABACUS 收敛性问题解决手册 + ABACUS+pymatgen 计算弹性常数 + + + + + +
    • + +
    • + + + + + ABACUS+Bader charge 分析教程 @@ -624,7 +715,20 @@
    • -
    • +
    • + + + + + ABACUS formatter-2.0 版本使用说明书 + + + + + +
    • + +
    • @@ -637,7 +741,46 @@
    • -
    • +
    • + + + + + 性能分析工具:vtune 快速上手教程 + + + + + +
    • + +
    • + + + + + 以格点积分程序为例:一些代码开发习惯小贴士 + + + + + +
    • + +
    • + + + + + 文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例 + + + + + +
    • + +
    • @@ -650,7 +793,7 @@
    • -
    • +
    • @@ -663,7 +806,7 @@
    • -
    • +
    • @@ -676,7 +819,7 @@
    • -
    • +
    • @@ -689,7 +832,7 @@
    • -
    • +
    • @@ -702,7 +845,7 @@
    • -
    • +
    • @@ -715,7 +858,7 @@
    • -
    • +
    • @@ -728,7 +871,7 @@
    • -
    • +
    • @@ -741,7 +884,7 @@
    • -
    • +
    • @@ -754,7 +897,7 @@
    • -
    • +
    • @@ -767,7 +910,7 @@
    • -
    • +
    • @@ -780,7 +923,7 @@
    • -
    • +
    • @@ -793,7 +936,7 @@
    • -
    • +
    • @@ -806,7 +949,7 @@
    • -
    • +
    • @@ -819,7 +962,7 @@
    • -
    • +
    • @@ -832,7 +975,20 @@
    • -
    • +
    • + + + + + 如何在 ABACUS 中新增一个输入参数(v3.7.0 后) + + + + + +
    • + +
    • @@ -845,7 +1001,7 @@
    • -
    • +
    • @@ -901,6 +1057,19 @@ +
    • + +
    • + + + + + 在 ABACUS 中进行差分测试 + + + + +
    • @@ -1519,7 +1688,7 @@

      No results matching " var gitbook = gitbook || []; gitbook.push(function() { - gitbook.page.hasChanged({"page":{"title":"ABACUS+DPGEN 使用教程","level":"1.1.22","depth":2,"next":{"title":"ABACUS+LibRI 做杂化泛函计算教程","level":"1.1.23","depth":2,"path":"abacus-libri.md","ref":"abacus-libri.md","articles":[]},"previous":{"title":"ABACUS+ShengBTE 计算晶格热导率","level":"1.1.21","depth":2,"path":"abacus-shengbte.md","ref":"abacus-shengbte.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.6.1","level":"1.1.6","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.6.1"},{"backlink":"abacus-upf.html#fig1.1.6.2","level":"1.1.6","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.6.2"},{"backlink":"abacus-upf.html#fig1.1.6.3","level":"1.1.6","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.6.3"},{"backlink":"abacus-upf.html#fig1.1.6.4","level":"1.1.6","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.6.4"},{"backlink":"abacus-upf.html#fig1.1.6.5","level":"1.1.6","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.6.5"},{"backlink":"abacus-surface2.html#fig1.1.15.1","level":"1.1.15","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":6,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.15.1"},{"backlink":"abacus-surface2.html#fig1.1.15.2","level":"1.1.15","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":7,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.15.2"},{"backlink":"abacus-surface2.html#fig1.1.15.3","level":"1.1.15","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":8,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.15.3"},{"backlink":"abacus-surface5.html#fig1.1.18.1","level":"1.1.18","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":9,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.18.1"},{"backlink":"abacus-surface5.html#fig1.1.18.2","level":"1.1.18","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.18.2"},{"backlink":"abacus-surface5.html#fig1.1.18.3","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":11,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.18.3"},{"backlink":"abacus-surface5.html#fig1.1.18.4","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":12,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.18.4"},{"backlink":"abacus-surface5.html#fig1.1.18.5","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":13,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.18.5"},{"backlink":"abacus-surface6.html#fig1.1.19.1","level":"1.1.19","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":14,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.19.1"},{"backlink":"abacus-surface6.html#fig1.1.19.2","level":"1.1.19","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":15,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.19.2"},{"backlink":"develop-path4.html#fig1.2.13.1","level":"1.2.13","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":16,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.13.1"},{"backlink":"develop-path4.html#fig1.2.13.2","level":"1.2.13","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":17,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.13.2"},{"backlink":"develop-path5.html#fig1.2.14.1","level":"1.2.14","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":18,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.14.1"},{"backlink":"develop-path5.html#fig1.2.14.2","level":"1.2.14","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":19,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.14.2"},{"backlink":"develop-path5.html#fig1.2.14.3","level":"1.2.14","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":20,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.14.3"},{"backlink":"develop-path5.html#fig1.2.14.4","level":"1.2.14","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":21,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.14.4"},{"backlink":"develop-path5.html#fig1.2.14.5","level":"1.2.14","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":22,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.14.5"},{"backlink":"develop-path6.html#fig1.2.16.1","level":"1.2.16","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":23,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.16.1"},{"backlink":"develop-path10.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":24,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.20.2","level":"1.2.20","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":25,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.20.2"},{"backlink":"develop-path10.html#fig1.2.20.3","level":"1.2.20","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":26,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.20.3"},{"backlink":"develop-path10.html#fig1.2.20.4","level":"1.2.20","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":27,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.20.4"},{"backlink":"develop-path10.html#fig1.2.20.5","level":"1.2.20","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":28,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.20.5"},{"backlink":"develop-path11.html#fig1.2.21.1","level":"1.2.21","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":29,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.21.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":30,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"abacus-dpgen.md","mtime":"2023-09-25T02:30:38.879Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-03-19T11:29:16.414Z"},"basePath":".","book":{"language":""}}); + gitbook.page.hasChanged({"page":{"title":"ABACUS+DPGEN 使用教程","level":"1.1.28","depth":2,"next":{"title":"ABACUS+LibRI 做杂化泛函计算教程","level":"1.1.29","depth":2,"path":"abacus-libri.md","ref":"abacus-libri.md","articles":[]},"previous":{"title":"ABACUS+ShengBTE 计算晶格热导率","level":"1.1.27","depth":2,"path":"abacus-shengbte.md","ref":"abacus-shengbte.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.9.1","level":"1.1.9","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.9.1"},{"backlink":"abacus-upf.html#fig1.1.9.2","level":"1.1.9","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.9.2"},{"backlink":"abacus-upf.html#fig1.1.9.3","level":"1.1.9","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.9.3"},{"backlink":"abacus-upf.html#fig1.1.9.4","level":"1.1.9","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.9.4"},{"backlink":"abacus-upf.html#fig1.1.9.5","level":"1.1.9","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.9.5"},{"backlink":"abacus-pw.html#fig1.1.13.1","level":"1.1.13","list_caption":"Figure: 电子自洽迭代计算流程。","alt":"电子自洽迭代计算流程。","nro":6,"url":"picture/fig_pw-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"电子自洽迭代计算流程。","attributes":{},"skip":false,"key":"1.1.13.1"},{"backlink":"abacus-pw.html#fig1.1.13.2","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","nro":7,"url":"picture/fig_pw-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","attributes":{},"skip":false,"key":"1.1.13.2"},{"backlink":"abacus-pw.html#fig1.1.13.3","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随K点变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","nro":8,"url":"picture/fig_pw-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","attributes":{},"skip":false,"key":"1.1.13.3"},{"backlink":"abacus-pw.html#fig1.1.13.4","level":"1.1.13","list_caption":"Figure: 计算时间随K点变化。","alt":"计算时间随K点变化。","nro":9,"url":"picture/fig_pw-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"计算时间随K点变化。","attributes":{},"skip":false,"key":"1.1.13.4"},{"backlink":"abacus-surface2.html#fig1.1.20.1","level":"1.1.20","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.20.1"},{"backlink":"abacus-surface2.html#fig1.1.20.2","level":"1.1.20","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":11,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.20.2"},{"backlink":"abacus-surface2.html#fig1.1.20.3","level":"1.1.20","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":12,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.20.3"},{"backlink":"abacus-surface5.html#fig1.1.23.1","level":"1.1.23","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":13,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.23.1"},{"backlink":"abacus-surface5.html#fig1.1.23.2","level":"1.1.23","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":14,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.23.2"},{"backlink":"abacus-surface5.html#fig1.1.23.3","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":15,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.23.3"},{"backlink":"abacus-surface5.html#fig1.1.23.4","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":16,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.23.4"},{"backlink":"abacus-surface5.html#fig1.1.23.5","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":17,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.23.5"},{"backlink":"abacus-surface6.html#fig1.1.24.1","level":"1.1.24","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":18,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.24.1"},{"backlink":"abacus-surface6.html#fig1.1.24.2","level":"1.1.24","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":19,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.24.2"},{"backlink":"abacus-dos.html#fig1.1.25.1","level":"1.1.25","list_caption":"Figure: 铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","alt":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","nro":20,"url":"picture/fig_dos-5.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","attributes":{},"skip":false,"key":"1.1.25.1"},{"backlink":"abacus-dos.html#fig1.1.25.2","level":"1.1.25","list_caption":"Figure: 铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","alt":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","nro":21,"url":"picture/fig_dos-6.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","attributes":{},"skip":false,"key":"1.1.25.2"},{"backlink":"abacus-bader.html#fig1.1.35.1","level":"1.1.35","list_caption":"Figure: SPIN1_CHG.cube","alt":"SPIN1_CHG.cube","nro":22,"url":"picture/fig_Bader1.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN1_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.1"},{"backlink":"abacus-bader.html#fig1.1.35.2","level":"1.1.35","list_caption":"Figure: SPIN2_CHG.cube","alt":"SPIN2_CHG.cube","nro":23,"url":"picture/fig_Bader2.jpg","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN2_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.2"},{"backlink":"abacus-bader.html#fig1.1.35.3","level":"1.1.35","list_caption":"Figure: SPIN_DENSITY.cube","alt":"SPIN_DENSITY.cube","nro":24,"url":"picture/fig_Bader3.jpg","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN_DENSITY.cube","attributes":{},"skip":false,"key":"1.1.35.3"},{"backlink":"abacus-bader.html#fig1.1.35.4","level":"1.1.35","list_caption":"Figure: charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","alt":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","nro":25,"url":"picture/fig_Bader4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","attributes":{},"skip":false,"key":"1.1.35.4"},{"backlink":"abacus-bader.html#fig1.1.35.5","level":"1.1.35","list_caption":"Figure: spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","alt":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","nro":26,"url":"picture/fig_Bader5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","attributes":{},"skip":false,"key":"1.1.35.5"},{"backlink":"abacus-bader.html#fig1.1.35.6","level":"1.1.35","list_caption":"Figure: charge2d_000.dat","alt":"charge2d_000.dat","nro":27,"url":"picture/fig_Bader6.png","index":6,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.6"},{"backlink":"abacus-bader.html#fig1.1.35.7","level":"1.1.35","list_caption":"Figure: charge2d_025.dat","alt":"charge2d_025.dat","nro":28,"url":"picture/fig_Bader7.png","index":7,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.7"},{"backlink":"abacus-bader.html#fig1.1.35.8","level":"1.1.35","list_caption":"Figure: charge2d_050.dat","alt":"charge2d_050.dat","nro":29,"url":"picture/fig_Bader8.png","index":8,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.8"},{"backlink":"abacus-bader.html#fig1.1.35.9","level":"1.1.35","list_caption":"Figure: spin2d_000.dat","alt":"spin2d_000.dat","nro":30,"url":"picture/fig_Bader9.png","index":9,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.9"},{"backlink":"abacus-bader.html#fig1.1.35.10","level":"1.1.35","list_caption":"Figure: spin2d_025.dat","alt":"spin2d_025.dat","nro":31,"url":"picture/fig_Bader10.png","index":10,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.10"},{"backlink":"abacus-bader.html#fig1.1.35.11","level":"1.1.35","list_caption":"Figure: spin2d_050.dat","alt":"spin2d_050.dat","nro":32,"url":"picture/fig_Bader11.png","index":11,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.11"},{"backlink":"develop-path4.html#fig1.2.17.1","level":"1.2.17","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":33,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.17.1"},{"backlink":"develop-path4.html#fig1.2.17.2","level":"1.2.17","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":34,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.17.2"},{"backlink":"develop-path5.html#fig1.2.18.1","level":"1.2.18","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":35,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.18.1"},{"backlink":"develop-path5.html#fig1.2.18.2","level":"1.2.18","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":36,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.18.2"},{"backlink":"develop-path5.html#fig1.2.18.3","level":"1.2.18","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":37,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.18.3"},{"backlink":"develop-path5.html#fig1.2.18.4","level":"1.2.18","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":38,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.18.4"},{"backlink":"develop-path5.html#fig1.2.18.5","level":"1.2.18","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":39,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.18.5"},{"backlink":"develop-path6.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":40,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.24.1","level":"1.2.24","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":41,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.24.1"},{"backlink":"develop-path10.html#fig1.2.24.2","level":"1.2.24","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":42,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.24.2"},{"backlink":"develop-path10.html#fig1.2.24.3","level":"1.2.24","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":43,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.24.3"},{"backlink":"develop-path10.html#fig1.2.24.4","level":"1.2.24","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":44,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.24.4"},{"backlink":"develop-path10.html#fig1.2.24.5","level":"1.2.24","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":45,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.24.5"},{"backlink":"develop-path11.html#fig1.2.25.1","level":"1.2.25","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":46,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.25.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":47,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"abacus-dpgen.md","mtime":"2023-09-25T02:30:38.879Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-09-06T11:53:05.785Z"},"basePath":".","book":{"language":""}}); }); diff --git a/_book/abacus-elastic.html b/_book/abacus-elastic.html new file mode 100644 index 00000000..5dcf9c40 --- /dev/null +++ b/_book/abacus-elastic.html @@ -0,0 +1,1377 @@ + + + + + + + ABACUS+pymatgen 计算弹性常数 · GitBook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      +
      + + + + + + + + +
      + +
      + +
      + + + + + + + + +
      +
      + +
      +
      + +
      + +

      ABACUS+pymatgen 计算弹性常数

      +

      作者:陈涛,邮箱:chentao@stu.pku.edu.cn

      +

      审核:陈默涵,邮箱:mohanchen@pku.edu.cn

      +

      最后更新时间:2024/07/11

      +

      一、介绍

      +

      本教程旨在描述如何采用 ABACUS 来计算材料体系的弹性常数(elastic constants)。弹性常数是表征材料弹性的量,也是材料的重要力学性质,可以通过原子尺度模拟计算获得,例如通过密度泛函理论或者原子间的势函数方法。在晶体结构预测辅助的新材料计算设计中,弹性常数常用于检查结构的稳定性。

      +

      在晶体的线弹性范围内,应力和相应应变之间的关系符合胡克定律,,其中是笛卡尔指标(),即为弹性常数。

      +

      由于均是对称张量,基于 Voigt 表示法,则:

      +

      +

      此时,

      +

      +

      如果我们通过施加应变使晶体变形并计算相应的应力,则可以从方程中获得弹性常数。晶体晶胞上的变形矩阵为,其中是 3*3 的单位矩阵,是 Voigt 表示法中的应变矩阵。

      +

      在 3 维晶体中,应变矩阵为 ,在2维平面晶体中,应变矩阵为

      +

      变形后,晶格矢量为,其中是初始的晶格矢量。

      +

      在实际计算中,6 种应变状态将逐一应用于初始弛豫(relaxation)后的结构,因此每次只考虑一种独立变形。对于 6 种应变状态中的每一种,应用 4 种不同的默认应变大小:,将产生 24 种构型。接着对这 24 种构型分别使用 DFT 计算(固定晶格矢量,但允许原子弛豫,即 relax),对所获得的每种应变状态的 4 个应力和应变的集合使用线性拟合来计算相应的弹性常数。

      +

      更多细节可以参考:Elastic Constants | Materials Project Documentation

      +

      二、准备

      +

      1. 下载例子

      +

      首先可以下载一个 ABACUS 的计算实例,可以从 Gitee 上下载。具体来说,可以通过在网页右侧点击克隆/下载-> 下载 ZIP 得到算例,或者在 linux 终端执行如下命令得到算例:

      +
      git clone https://gitee.com/mcresearch/abacus-user-guide.git
      +
      +

      下载后解压,之后进入 abacus-user-guide/examples/elastic 文件夹

      +

      里面有 relax 文件夹,为 8 原子金刚石的算例,周期性边界条件。

      +

      此外,gene_dfm.pycompute_dfm.py 为计算弹性常数使用的 python 脚本。

      +

      run_task.shsub.sh 为批量运行 abacus 计算的 shell 脚本,INPUTKPTC_ONCV_PBE-1.0.upfC_gga_7au_100Ry_2s2p1d.orb 为运行 abacus 计算所需的输入文件。

      +

      2. 下载并安装 pymatgen

      +

      Python Materials Genomics (pymatgen,https://pymatgen.org/)是一个 API 包,该软件可以与 materials project 结合进行高通量计算。该软件包是由加州大学圣地亚哥雅各布斯工程学院的纳米工程教授 Shyue Ping Ong 和他的材料虚拟实验室(Materials Virtual Lab)团队开发并维护的程序。

      +

      在本教程里会用到 pymatgen 来计算弹性常数,此外还会用到 dpdata,monty,numpy 这三个库,可以使用如下命令安装:

      +
      pip install monty numpy dpdata pymatgen
      +
      +

      弹性常数所用方法相关文档:https://pymatgen.org/pymatgen.analysis.elasticity.html

      +

      三、金刚石的弹性常数计算

      +

      1. 结构弛豫

      +

      进入 relax 文件夹,运行 ABACUS 进行结构弛豫,完成后在 OUT.C8 文件夹下出现 STRU_ION_D 文件。之后的应变都将在这个构型文件基础上产生。此外,计算弹性常数所用的应力也会减去这个构型的应力,因此也需要 running_relax.log 输出应力

      +

      2. 产生应变构型

      +

      回到例子根目录,执行如下命令:

      +
      python gene_dfm.py abacus
      +
      +

      默认应变的大小(代表晶格常数的倍数,例如 0.01,其形变量是 1%)如下,对应 gene_dfm.py 的 41-42 行:

      +
      norm_strains = [-0.010, -0.005, 0.005, 0.010]
      +shear_strains = [-0.010, -0.005, 0.005, 0.010]
      +
      +

      将会产生 task.000task.023 共 24 个文件夹,分别对应第一节所说的 24 种构型。进入任意 task 文件夹,其中会有 INPUTKPTSTRUstrain.json 四个文件。

      +

      其中 INPUTKPT 拷贝自例子根目录下的 INPUTKPT,由于使用的赝势和轨道文件放在例子根目录下,所以 pseudo_dirorbital_dir 均设置为 ../。此外需要进行固定晶格矢量,但允许原子弛豫来计算应力,因此 calculation 设置为 relaxSTRUstrain.json 分别是生成的构型文件和相应的应变大小。

      +

      3. 计算应力

      +

      分别进入上述 task 文件夹,运行 abacus 计算相应构型的应力。也可以使用例子根目录下的 run_task.sh 脚本,但要注意根据实际修改其和 sub.sh 的内容。

      +

      4. 计算弹性常数

      +

      回到例子根目录,执行如下命令:

      +
      python compute_dfm.py abacus
      +
      +

      屏幕输出如下:

      +
      # Elastic Constants in GPa
      +1043.31  107.39  107.39    0.00    0.00    0.00 
      + 107.39 1043.31  107.39    0.00    0.00    0.00 
      + 107.39  107.39 1043.31    0.00    0.00    0.00 
      +   0.00   -0.00   -0.00  557.05    0.00    0.00 
      +  -0.00   -0.00   -0.00    0.00  557.05    0.00 
      +   0.00    0.00    0.00    0.00    0.00  557.05 
      +# Bulk   Modulus BV = 419.37 GPa
      +# Shear  Modulus GV = 521.42 GPa
      +# Youngs Modulus EV = 1105.91 GPa
      +# Poission Ratio uV = 0.06
      +
      +

      第 2 到 7 行即为计算的各种弹性常数(单位:GPa),分别是体弹性模量(Bulk Modulus)、剪切模量(Shear Modulus)、杨氏模量(Youngs Modulus)和泊松比(Poission Ratio)。精度更高的计算结果存储在 elastic.json 内。

      +

      以下是常用的几个弹性常数相关的名词解释:

      +

      弹性模量(Bulk Modulus):指当有力施加于物体或物质时,其弹性变形(非永久变形)趋势的数学描述。物体的弹性模量定义为弹性变形区的应力-应变曲线的斜率。

      +

      杨氏模量(Young's Modulus):是材料力学中的名词,一般将杨氏模量习惯称为弹性模量。弹性材料承受正向应力时会产生正向应变,在形变量没有超过对应材料的一定弹性限度时,定义正向应力与正向应变的比值为杨氏模量。杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。大部分金属在合金成分不同、热处理在加工过程中的应用,其杨氏模量值会有 5%或更大的波动。

      +

      剪切模量(Shear Modulus):又称刚度模量,描述材料在剪切力作用下抵抗形变的能力,即物体形变的大小与作用的剪切应力之间的关系。

      +

      泊松比(Poisson's Ratio):当材料在一个方向被压缩,它会在与该方向垂直的另外两个方向伸长,这就是泊松现象,泊松比是用来反映泊松现象的无量纲的物理量。泊松比一般是正值,表示在一方向拉伸后,在其他方向收缩。不过也存在泊松比为零(在一方向拉伸后,在其他方向的尺寸不变),其至为负的材料。

      +
      Copyright © mcresearch.gitee.io 2023 all right reserved,powered by Gitbook该文章修订时间: +2024-07-12 21:19:27 +
      + +
      + +
      +
      +
      + +

      results matching ""

      +
        + +
        +
        + +

        No results matching ""

        + +
        +
        +
        + +
        +
        + +
        + + + + + + + + + + + + + + +
        + + +
        + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_book/abacus-gcc.html b/_book/abacus-gcc.html index 986c009b..333d84ec 100644 --- a/_book/abacus-gcc.html +++ b/_book/abacus-gcc.html @@ -106,7 +106,7 @@ - + @@ -176,7 +176,20 @@ -
      • +
      • + + + + + Intel oneAPI 2024.x 编译 ABACUS 教程 + + + + + +
      • + +
      • @@ -189,7 +202,7 @@
      • -
      • +
      • @@ -202,7 +215,7 @@
      • -
      • +
      • @@ -215,7 +228,7 @@
      • -
      • +
      • @@ -228,7 +241,33 @@
      • -
      • +
      • + + + + + ABACUS 答疑手册 + + + + + +
      • + +
      • + + + + + ABACUS 收敛性问题解决手册 + + + + + +
      • + +
      • @@ -241,7 +280,7 @@
      • -
      • +
      • @@ -254,7 +293,7 @@
      • -
      • +
      • @@ -267,7 +306,7 @@
      • -
      • +
      • @@ -280,7 +319,20 @@
      • -
      • +
      • + + + + + ABACUS 的平面波计算与收敛性测试 + + + + + +
      • + +
      • @@ -293,7 +345,7 @@
      • -
      • +
      • @@ -306,7 +358,7 @@
      • -
      • +
      • @@ -319,7 +371,7 @@
      • -
      • +
      • @@ -332,7 +384,20 @@
      • -
      • +
      • + + + + + ABACUS 实时演化含时密度泛函理论使用教程 + + + + + +
      • + +
      • @@ -345,7 +410,7 @@
      • -
      • +
      • @@ -358,7 +423,7 @@
      • -
      • +
      • @@ -371,7 +436,7 @@
      • -
      • +
      • @@ -384,7 +449,7 @@
      • -
      • +
      • @@ -397,7 +462,7 @@
      • -
      • +
      • @@ -410,7 +475,20 @@
      • -
      • +
      • + + + + + ABACUS+Atomkit 计算态密度和能带 + + + + + +
      • + +
      • @@ -423,7 +501,7 @@
      • -
      • +
      • @@ -436,7 +514,7 @@
      • -
      • +
      • @@ -449,7 +527,7 @@
      • -
      • +
      • @@ -462,7 +540,7 @@
      • -
      • +
      • @@ -475,7 +553,7 @@
      • -
      • +
      • @@ -488,7 +566,7 @@
      • -
      • +
      • @@ -501,7 +579,7 @@
      • -
      • +
      • @@ -514,12 +592,25 @@
      • -
      • +
      • - + - ABACUS 收敛性问题解决手册 + ABACUS+pymatgen 计算弹性常数 + + + + + +
      • + +
      • + + + + + ABACUS+Bader charge 分析教程 @@ -624,7 +715,20 @@
      • -
      • +
      • + + + + + ABACUS formatter-2.0 版本使用说明书 + + + + + +
      • + +
      • @@ -637,7 +741,46 @@
      • -
      • +
      • + + + + + 性能分析工具:vtune 快速上手教程 + + + + + +
      • + +
      • + + + + + 以格点积分程序为例:一些代码开发习惯小贴士 + + + + + +
      • + +
      • + + + + + 文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例 + + + + + +
      • + +
      • @@ -650,7 +793,7 @@
      • -
      • +
      • @@ -663,7 +806,7 @@
      • -
      • +
      • @@ -676,7 +819,7 @@
      • -
      • +
      • @@ -689,7 +832,7 @@
      • -
      • +
      • @@ -702,7 +845,7 @@
      • -
      • +
      • @@ -715,7 +858,7 @@
      • -
      • +
      • @@ -728,7 +871,7 @@
      • -
      • +
      • @@ -741,7 +884,7 @@
      • -
      • +
      • @@ -754,7 +897,7 @@
      • -
      • +
      • @@ -767,7 +910,7 @@
      • -
      • +
      • @@ -780,7 +923,7 @@
      • -
      • +
      • @@ -793,7 +936,7 @@
      • -
      • +
      • @@ -806,7 +949,7 @@
      • -
      • +
      • @@ -819,7 +962,7 @@
      • -
      • +
      • @@ -832,7 +975,20 @@
      • -
      • +
      • + + + + + 如何在 ABACUS 中新增一个输入参数(v3.7.0 后) + + + + + +
      • + +
      • @@ -845,7 +1001,7 @@
      • -
      • +
      • @@ -901,6 +1057,19 @@ +
      • + +
      • + + + + + 在 ABACUS 中进行差分测试 + + + + +
      • @@ -1154,7 +1323,7 @@

        No results matching " - + @@ -1165,7 +1334,7 @@

        No results matching " var gitbook = gitbook || []; gitbook.push(function() { - gitbook.page.hasChanged({"page":{"title":"GCC 编译 ABACUS 教程","level":"1.1.1","depth":2,"next":{"title":"Intel oneAPI 编译 ABACUS 教程","level":"1.1.2","depth":2,"path":"abacus-intel.md","ref":"abacus-intel.md","articles":[]},"previous":{"title":"ABACUS 使用教程","level":"1.1","depth":1,"path":"README.md","ref":"README.md","articles":[{"title":"GCC 编译 ABACUS 教程","level":"1.1.1","depth":2,"path":"abacus-gcc.md","ref":"abacus-gcc.md","articles":[]},{"title":"Intel oneAPI 编译 ABACUS 教程","level":"1.1.2","depth":2,"path":"abacus-intel.md","ref":"abacus-intel.md","articles":[]},{"title":"编译 Nvidia GPU 版本的 ABACUS","level":"1.1.3","depth":2,"path":"abacus-gpu.md","ref":"abacus-gpu.md","articles":[]},{"title":"在超算环境编译 ABACUS 的建议","level":"1.1.4","depth":2,"path":"abacus-hpc.md","ref":"abacus-hpc.md","articles":[]},{"title":"ABACUS 在曙光 DCU 集群上的编译与使用","level":"1.1.5","depth":2,"path":"abacus-dcu.md","ref":"abacus-dcu.md","articles":[]},{"title":"模守恒赝势生成方法简介","level":"1.1.6","depth":2,"path":"abacus-upf.md","ref":"abacus-upf.md","articles":[]},{"title":"数值原子轨道(一):ABACUS 中的数值原子轨道命名和使用方法","level":"1.1.7","depth":2,"path":"abacus-nac1.md","ref":"abacus-nac1.md","articles":[]},{"title":"数值原子轨道(二):生成给定模守恒赝势的数值原子轨道","level":"1.1.8","depth":2,"path":"abacus-nac2.md","ref":"abacus-nac2.md","articles":[]},{"title":"数值原子轨道(三):产生高精度数值原子轨道","level":"1.1.9","depth":2,"path":"abacus-nac3.md","ref":"abacus-nac3.md","articles":[]},{"title":"ABACUS 分子动力学使用教程","level":"1.1.10","depth":2,"path":"abacus-md.md","ref":"abacus-md.md","articles":[]},{"title":"ABACUS 隐式溶剂模型使用教程","level":"1.1.11","depth":2,"path":"abacus-sol.md","ref":"abacus-sol.md","articles":[]},{"title":"ABACUS 随机波函数DFT方法使用教程","level":"1.1.12","depth":2,"path":"abacus-sdft.md","ref":"abacus-sdft.md","articles":[]},{"title":"ABACUS 无轨道密度泛函理论方法使用教程","level":"1.1.13","depth":2,"path":"abacus-ofdft.md","ref":"abacus-ofdft.md","articles":[]},{"title":"采用 ABACUS 进行表面计算(一):静电势和功函数","level":"1.1.14","depth":2,"path":"abacus-surface1.md","ref":"abacus-surface1.md","articles":[]},{"title":"采用 ABACUS 进行表面计算(二):偶极修正","level":"1.1.15","depth":2,"path":"abacus-surface2.md","ref":"abacus-surface2.md","articles":[]},{"title":"采用 ABACUS 进行表面计算(三):表面能计算","level":"1.1.16","depth":2,"path":"abacus-surface3.md","ref":"abacus-surface3.md","articles":[]},{"title":"采用 ABACUS 进行表面计算(四):表面缺陷能和吸附能计算","level":"1.1.17","depth":2,"path":"abacus-surface4.md","ref":"abacus-surface4.md","articles":[]},{"title":"采用 ABACUS 进行表面计算(五):外加电场","level":"1.1.18","depth":2,"path":"abacus-surface5.md","ref":"abacus-surface5.md","articles":[]},{"title":"采用 ABACUS 进行表面计算(六):补偿电荷","level":"1.1.19","depth":2,"path":"abacus-surface6.md","ref":"abacus-surface6.md","articles":[]},{"title":"ABACUS+Phonopy 计算声子谱","level":"1.1.20","depth":2,"path":"abacus-phonopy.md","ref":"abacus-phonopy.md","articles":[]},{"title":"ABACUS+ShengBTE 计算晶格热导率","level":"1.1.21","depth":2,"path":"abacus-shengbte.md","ref":"abacus-shengbte.md","articles":[]},{"title":"ABACUS+DPGEN 使用教程","level":"1.1.22","depth":2,"path":"abacus-dpgen.md","ref":"abacus-dpgen.md","articles":[]},{"title":"ABACUS+LibRI 做杂化泛函计算教程","level":"1.1.23","depth":2,"path":"abacus-libri.md","ref":"abacus-libri.md","articles":[]},{"title":"ABACUS+Candela 使用教程","level":"1.1.24","depth":2,"path":"abacus-candela.md","ref":"abacus-candela.md","articles":[]},{"title":"ABACUS+USPEX 接口教程","level":"1.1.25","depth":2,"path":"abacus-uspex.md","ref":"abacus-uspex.md","articles":[]},{"title":"ABACUS+Hefei NAMD 使用教程","level":"1.1.26","depth":2,"path":"abacus-namd.md","ref":"abacus-namd.md","articles":[]},{"title":"ABACUS+Wannier90 使用教程","level":"1.1.27","depth":2,"path":"abacus-wannier.md","ref":"abacus-wannier.md","articles":[]},{"title":"ABACUS 收敛性问题解决手册","level":"1.1.28","depth":2,"path":"abacus-conv.md","ref":"abacus-conv.md","articles":[]}]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.6.1","level":"1.1.6","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.6.1"},{"backlink":"abacus-upf.html#fig1.1.6.2","level":"1.1.6","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.6.2"},{"backlink":"abacus-upf.html#fig1.1.6.3","level":"1.1.6","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.6.3"},{"backlink":"abacus-upf.html#fig1.1.6.4","level":"1.1.6","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.6.4"},{"backlink":"abacus-upf.html#fig1.1.6.5","level":"1.1.6","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.6.5"},{"backlink":"abacus-surface2.html#fig1.1.15.1","level":"1.1.15","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":6,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.15.1"},{"backlink":"abacus-surface2.html#fig1.1.15.2","level":"1.1.15","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":7,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.15.2"},{"backlink":"abacus-surface2.html#fig1.1.15.3","level":"1.1.15","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":8,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.15.3"},{"backlink":"abacus-surface5.html#fig1.1.18.1","level":"1.1.18","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":9,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.18.1"},{"backlink":"abacus-surface5.html#fig1.1.18.2","level":"1.1.18","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.18.2"},{"backlink":"abacus-surface5.html#fig1.1.18.3","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":11,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.18.3"},{"backlink":"abacus-surface5.html#fig1.1.18.4","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":12,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.18.4"},{"backlink":"abacus-surface5.html#fig1.1.18.5","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":13,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.18.5"},{"backlink":"abacus-surface6.html#fig1.1.19.1","level":"1.1.19","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":14,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.19.1"},{"backlink":"abacus-surface6.html#fig1.1.19.2","level":"1.1.19","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":15,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.19.2"},{"backlink":"develop-path4.html#fig1.2.13.1","level":"1.2.13","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":16,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.13.1"},{"backlink":"develop-path4.html#fig1.2.13.2","level":"1.2.13","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":17,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.13.2"},{"backlink":"develop-path5.html#fig1.2.14.1","level":"1.2.14","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":18,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.14.1"},{"backlink":"develop-path5.html#fig1.2.14.2","level":"1.2.14","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":19,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.14.2"},{"backlink":"develop-path5.html#fig1.2.14.3","level":"1.2.14","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":20,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.14.3"},{"backlink":"develop-path5.html#fig1.2.14.4","level":"1.2.14","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":21,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.14.4"},{"backlink":"develop-path5.html#fig1.2.14.5","level":"1.2.14","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":22,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.14.5"},{"backlink":"develop-path6.html#fig1.2.16.1","level":"1.2.16","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":23,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.16.1"},{"backlink":"develop-path10.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":24,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.20.2","level":"1.2.20","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":25,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.20.2"},{"backlink":"develop-path10.html#fig1.2.20.3","level":"1.2.20","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":26,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.20.3"},{"backlink":"develop-path10.html#fig1.2.20.4","level":"1.2.20","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":27,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.20.4"},{"backlink":"develop-path10.html#fig1.2.20.5","level":"1.2.20","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":28,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.20.5"},{"backlink":"develop-path11.html#fig1.2.21.1","level":"1.2.21","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":29,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.21.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":30,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"abacus-gcc.md","mtime":"2023-12-04T04:04:49.654Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-03-19T11:29:16.414Z"},"basePath":".","book":{"language":""}}); + gitbook.page.hasChanged({"page":{"title":"GCC 编译 ABACUS 教程","level":"1.1.1","depth":2,"next":{"title":"Intel oneAPI 2024.x 编译 ABACUS 教程","level":"1.1.2","depth":2,"path":"abacus-oneapi.md","ref":"abacus-oneapi.md","articles":[]},"previous":{"title":"ABACUS 使用教程","level":"1.1","depth":1,"path":"README.md","ref":"README.md","articles":[{"title":"GCC 编译 ABACUS 教程","level":"1.1.1","depth":2,"path":"abacus-gcc.md","ref":"abacus-gcc.md","articles":[]},{"title":"Intel oneAPI 2024.x 编译 ABACUS 教程","level":"1.1.2","depth":2,"path":"abacus-oneapi.md","ref":"abacus-oneapi.md","articles":[]},{"title":"Intel oneAPI 编译 ABACUS 教程","level":"1.1.3","depth":2,"path":"abacus-intel.md","ref":"abacus-intel.md","articles":[]},{"title":"编译 Nvidia GPU 版本的 ABACUS","level":"1.1.4","depth":2,"path":"abacus-gpu.md","ref":"abacus-gpu.md","articles":[]},{"title":"在超算环境编译 ABACUS 的建议","level":"1.1.5","depth":2,"path":"abacus-hpc.md","ref":"abacus-hpc.md","articles":[]},{"title":"ABACUS 在曙光 DCU 集群上的编译与使用","level":"1.1.6","depth":2,"path":"abacus-dcu.md","ref":"abacus-dcu.md","articles":[]},{"title":"ABACUS 答疑手册","level":"1.1.7","depth":2,"path":"abacus-question.md","ref":"abacus-question.md","articles":[]},{"title":"ABACUS 收敛性问题解决手册","level":"1.1.8","depth":2,"path":"abacus-conv.md","ref":"abacus-conv.md","articles":[]},{"title":"模守恒赝势生成方法简介","level":"1.1.9","depth":2,"path":"abacus-upf.md","ref":"abacus-upf.md","articles":[]},{"title":"数值原子轨道(一):ABACUS 中的数值原子轨道命名和使用方法","level":"1.1.10","depth":2,"path":"abacus-nac1.md","ref":"abacus-nac1.md","articles":[]},{"title":"数值原子轨道(二):生成给定模守恒赝势的数值原子轨道","level":"1.1.11","depth":2,"path":"abacus-nac2.md","ref":"abacus-nac2.md","articles":[]},{"title":"数值原子轨道(三):产生高精度数值原子轨道","level":"1.1.12","depth":2,"path":"abacus-nac3.md","ref":"abacus-nac3.md","articles":[]},{"title":"ABACUS 的平面波计算与收敛性测试","level":"1.1.13","depth":2,"path":"abacus-pw.md","ref":"abacus-pw.md","articles":[]},{"title":"ABACUS 分子动力学使用教程","level":"1.1.14","depth":2,"path":"abacus-md.md","ref":"abacus-md.md","articles":[]},{"title":"ABACUS 隐式溶剂模型使用教程","level":"1.1.15","depth":2,"path":"abacus-sol.md","ref":"abacus-sol.md","articles":[]},{"title":"ABACUS 随机波函数DFT方法使用教程","level":"1.1.16","depth":2,"path":"abacus-sdft.md","ref":"abacus-sdft.md","articles":[]},{"title":"ABACUS 无轨道密度泛函理论方法使用教程","level":"1.1.17","depth":2,"path":"abacus-ofdft.md","ref":"abacus-ofdft.md","articles":[]},{"title":"ABACUS 实时演化含时密度泛函理论使用教程","level":"1.1.18","depth":2,"path":"abacus-tddft.md","ref":"abacus-tddft.md","articles":[]},{"title":"采用 ABACUS 进行表面计算(一):静电势和功函数","level":"1.1.19","depth":2,"path":"abacus-surface1.md","ref":"abacus-surface1.md","articles":[]},{"title":"采用 ABACUS 进行表面计算(二):偶极修正","level":"1.1.20","depth":2,"path":"abacus-surface2.md","ref":"abacus-surface2.md","articles":[]},{"title":"采用 ABACUS 进行表面计算(三):表面能计算","level":"1.1.21","depth":2,"path":"abacus-surface3.md","ref":"abacus-surface3.md","articles":[]},{"title":"采用 ABACUS 进行表面计算(四):表面缺陷能和吸附能计算","level":"1.1.22","depth":2,"path":"abacus-surface4.md","ref":"abacus-surface4.md","articles":[]},{"title":"采用 ABACUS 进行表面计算(五):外加电场","level":"1.1.23","depth":2,"path":"abacus-surface5.md","ref":"abacus-surface5.md","articles":[]},{"title":"采用 ABACUS 进行表面计算(六):补偿电荷","level":"1.1.24","depth":2,"path":"abacus-surface6.md","ref":"abacus-surface6.md","articles":[]},{"title":"ABACUS+Atomkit 计算态密度和能带","level":"1.1.25","depth":2,"path":"abacus-dos.md","ref":"abacus-dos.md","articles":[]},{"title":"ABACUS+Phonopy 计算声子谱","level":"1.1.26","depth":2,"path":"abacus-phonopy.md","ref":"abacus-phonopy.md","articles":[]},{"title":"ABACUS+ShengBTE 计算晶格热导率","level":"1.1.27","depth":2,"path":"abacus-shengbte.md","ref":"abacus-shengbte.md","articles":[]},{"title":"ABACUS+DPGEN 使用教程","level":"1.1.28","depth":2,"path":"abacus-dpgen.md","ref":"abacus-dpgen.md","articles":[]},{"title":"ABACUS+LibRI 做杂化泛函计算教程","level":"1.1.29","depth":2,"path":"abacus-libri.md","ref":"abacus-libri.md","articles":[]},{"title":"ABACUS+Candela 使用教程","level":"1.1.30","depth":2,"path":"abacus-candela.md","ref":"abacus-candela.md","articles":[]},{"title":"ABACUS+USPEX 接口教程","level":"1.1.31","depth":2,"path":"abacus-uspex.md","ref":"abacus-uspex.md","articles":[]},{"title":"ABACUS+Hefei NAMD 使用教程","level":"1.1.32","depth":2,"path":"abacus-namd.md","ref":"abacus-namd.md","articles":[]},{"title":"ABACUS+Wannier90 使用教程","level":"1.1.33","depth":2,"path":"abacus-wannier.md","ref":"abacus-wannier.md","articles":[]},{"title":"ABACUS+pymatgen 计算弹性常数","level":"1.1.34","depth":2,"path":"abacus-elastic.md","ref":"abacus-elastic.md","articles":[]},{"title":"ABACUS+Bader charge 分析教程","level":"1.1.35","depth":2,"path":"abacus-bader.md","ref":"abacus-bader.md","articles":[]}]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.9.1","level":"1.1.9","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.9.1"},{"backlink":"abacus-upf.html#fig1.1.9.2","level":"1.1.9","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.9.2"},{"backlink":"abacus-upf.html#fig1.1.9.3","level":"1.1.9","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.9.3"},{"backlink":"abacus-upf.html#fig1.1.9.4","level":"1.1.9","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.9.4"},{"backlink":"abacus-upf.html#fig1.1.9.5","level":"1.1.9","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.9.5"},{"backlink":"abacus-pw.html#fig1.1.13.1","level":"1.1.13","list_caption":"Figure: 电子自洽迭代计算流程。","alt":"电子自洽迭代计算流程。","nro":6,"url":"picture/fig_pw-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"电子自洽迭代计算流程。","attributes":{},"skip":false,"key":"1.1.13.1"},{"backlink":"abacus-pw.html#fig1.1.13.2","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","nro":7,"url":"picture/fig_pw-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","attributes":{},"skip":false,"key":"1.1.13.2"},{"backlink":"abacus-pw.html#fig1.1.13.3","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随K点变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","nro":8,"url":"picture/fig_pw-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","attributes":{},"skip":false,"key":"1.1.13.3"},{"backlink":"abacus-pw.html#fig1.1.13.4","level":"1.1.13","list_caption":"Figure: 计算时间随K点变化。","alt":"计算时间随K点变化。","nro":9,"url":"picture/fig_pw-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"计算时间随K点变化。","attributes":{},"skip":false,"key":"1.1.13.4"},{"backlink":"abacus-surface2.html#fig1.1.20.1","level":"1.1.20","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.20.1"},{"backlink":"abacus-surface2.html#fig1.1.20.2","level":"1.1.20","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":11,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.20.2"},{"backlink":"abacus-surface2.html#fig1.1.20.3","level":"1.1.20","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":12,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.20.3"},{"backlink":"abacus-surface5.html#fig1.1.23.1","level":"1.1.23","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":13,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.23.1"},{"backlink":"abacus-surface5.html#fig1.1.23.2","level":"1.1.23","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":14,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.23.2"},{"backlink":"abacus-surface5.html#fig1.1.23.3","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":15,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.23.3"},{"backlink":"abacus-surface5.html#fig1.1.23.4","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":16,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.23.4"},{"backlink":"abacus-surface5.html#fig1.1.23.5","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":17,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.23.5"},{"backlink":"abacus-surface6.html#fig1.1.24.1","level":"1.1.24","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":18,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.24.1"},{"backlink":"abacus-surface6.html#fig1.1.24.2","level":"1.1.24","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":19,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.24.2"},{"backlink":"abacus-dos.html#fig1.1.25.1","level":"1.1.25","list_caption":"Figure: 铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","alt":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","nro":20,"url":"picture/fig_dos-5.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","attributes":{},"skip":false,"key":"1.1.25.1"},{"backlink":"abacus-dos.html#fig1.1.25.2","level":"1.1.25","list_caption":"Figure: 铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","alt":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","nro":21,"url":"picture/fig_dos-6.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","attributes":{},"skip":false,"key":"1.1.25.2"},{"backlink":"abacus-bader.html#fig1.1.35.1","level":"1.1.35","list_caption":"Figure: SPIN1_CHG.cube","alt":"SPIN1_CHG.cube","nro":22,"url":"picture/fig_Bader1.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN1_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.1"},{"backlink":"abacus-bader.html#fig1.1.35.2","level":"1.1.35","list_caption":"Figure: SPIN2_CHG.cube","alt":"SPIN2_CHG.cube","nro":23,"url":"picture/fig_Bader2.jpg","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN2_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.2"},{"backlink":"abacus-bader.html#fig1.1.35.3","level":"1.1.35","list_caption":"Figure: SPIN_DENSITY.cube","alt":"SPIN_DENSITY.cube","nro":24,"url":"picture/fig_Bader3.jpg","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN_DENSITY.cube","attributes":{},"skip":false,"key":"1.1.35.3"},{"backlink":"abacus-bader.html#fig1.1.35.4","level":"1.1.35","list_caption":"Figure: charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","alt":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","nro":25,"url":"picture/fig_Bader4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","attributes":{},"skip":false,"key":"1.1.35.4"},{"backlink":"abacus-bader.html#fig1.1.35.5","level":"1.1.35","list_caption":"Figure: spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","alt":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","nro":26,"url":"picture/fig_Bader5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","attributes":{},"skip":false,"key":"1.1.35.5"},{"backlink":"abacus-bader.html#fig1.1.35.6","level":"1.1.35","list_caption":"Figure: charge2d_000.dat","alt":"charge2d_000.dat","nro":27,"url":"picture/fig_Bader6.png","index":6,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.6"},{"backlink":"abacus-bader.html#fig1.1.35.7","level":"1.1.35","list_caption":"Figure: charge2d_025.dat","alt":"charge2d_025.dat","nro":28,"url":"picture/fig_Bader7.png","index":7,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.7"},{"backlink":"abacus-bader.html#fig1.1.35.8","level":"1.1.35","list_caption":"Figure: charge2d_050.dat","alt":"charge2d_050.dat","nro":29,"url":"picture/fig_Bader8.png","index":8,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.8"},{"backlink":"abacus-bader.html#fig1.1.35.9","level":"1.1.35","list_caption":"Figure: spin2d_000.dat","alt":"spin2d_000.dat","nro":30,"url":"picture/fig_Bader9.png","index":9,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.9"},{"backlink":"abacus-bader.html#fig1.1.35.10","level":"1.1.35","list_caption":"Figure: spin2d_025.dat","alt":"spin2d_025.dat","nro":31,"url":"picture/fig_Bader10.png","index":10,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.10"},{"backlink":"abacus-bader.html#fig1.1.35.11","level":"1.1.35","list_caption":"Figure: spin2d_050.dat","alt":"spin2d_050.dat","nro":32,"url":"picture/fig_Bader11.png","index":11,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.11"},{"backlink":"develop-path4.html#fig1.2.17.1","level":"1.2.17","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":33,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.17.1"},{"backlink":"develop-path4.html#fig1.2.17.2","level":"1.2.17","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":34,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.17.2"},{"backlink":"develop-path5.html#fig1.2.18.1","level":"1.2.18","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":35,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.18.1"},{"backlink":"develop-path5.html#fig1.2.18.2","level":"1.2.18","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":36,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.18.2"},{"backlink":"develop-path5.html#fig1.2.18.3","level":"1.2.18","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":37,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.18.3"},{"backlink":"develop-path5.html#fig1.2.18.4","level":"1.2.18","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":38,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.18.4"},{"backlink":"develop-path5.html#fig1.2.18.5","level":"1.2.18","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":39,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.18.5"},{"backlink":"develop-path6.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":40,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.24.1","level":"1.2.24","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":41,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.24.1"},{"backlink":"develop-path10.html#fig1.2.24.2","level":"1.2.24","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":42,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.24.2"},{"backlink":"develop-path10.html#fig1.2.24.3","level":"1.2.24","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":43,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.24.3"},{"backlink":"develop-path10.html#fig1.2.24.4","level":"1.2.24","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":44,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.24.4"},{"backlink":"develop-path10.html#fig1.2.24.5","level":"1.2.24","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":45,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.24.5"},{"backlink":"develop-path11.html#fig1.2.25.1","level":"1.2.25","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":46,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.25.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":47,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"abacus-gcc.md","mtime":"2023-12-04T04:04:49.654Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-09-06T11:53:05.785Z"},"basePath":".","book":{"language":""}}); }); diff --git a/_book/abacus-gpu.html b/_book/abacus-gpu.html index 3a39d331..eef3be45 100644 --- a/_book/abacus-gpu.html +++ b/_book/abacus-gpu.html @@ -176,7 +176,20 @@ -
      • +
      • + + + + + Intel oneAPI 2024.x 编译 ABACUS 教程 + + + + + +
      • + +
      • @@ -189,7 +202,7 @@
      • -
      • +
      • @@ -202,7 +215,7 @@
      • -
      • +
      • @@ -215,7 +228,7 @@
      • -
      • +
      • @@ -228,7 +241,33 @@
      • -
      • +
      • + + + + + ABACUS 答疑手册 + + + + + +
      • + +
      • + + + + + ABACUS 收敛性问题解决手册 + + + + + +
      • + +
      • @@ -241,7 +280,7 @@
      • -
      • +
      • @@ -254,7 +293,7 @@
      • -
      • +
      • @@ -267,7 +306,7 @@
      • -
      • +
      • @@ -280,7 +319,20 @@
      • -
      • +
      • + + + + + ABACUS 的平面波计算与收敛性测试 + + + + + +
      • + +
      • @@ -293,7 +345,7 @@
      • -
      • +
      • @@ -306,7 +358,7 @@
      • -
      • +
      • @@ -319,7 +371,7 @@
      • -
      • +
      • @@ -332,7 +384,20 @@
      • -
      • +
      • + + + + + ABACUS 实时演化含时密度泛函理论使用教程 + + + + + +
      • + +
      • @@ -345,7 +410,7 @@
      • -
      • +
      • @@ -358,7 +423,7 @@
      • -
      • +
      • @@ -371,7 +436,7 @@
      • -
      • +
      • @@ -384,7 +449,7 @@
      • -
      • +
      • @@ -397,7 +462,7 @@
      • -
      • +
      • @@ -410,7 +475,20 @@
      • -
      • +
      • + + + + + ABACUS+Atomkit 计算态密度和能带 + + + + + +
      • + +
      • @@ -423,7 +501,7 @@
      • -
      • +
      • @@ -436,7 +514,7 @@
      • -
      • +
      • @@ -449,7 +527,7 @@
      • -
      • +
      • @@ -462,7 +540,7 @@
      • -
      • +
      • @@ -475,7 +553,7 @@
      • -
      • +
      • @@ -488,7 +566,7 @@
      • -
      • +
      • @@ -501,7 +579,7 @@
      • -
      • +
      • @@ -514,12 +592,25 @@
      • -
      • +
      • - + - ABACUS 收敛性问题解决手册 + ABACUS+pymatgen 计算弹性常数 + + + + + +
      • + +
      • + + + + + ABACUS+Bader charge 分析教程 @@ -624,7 +715,20 @@
      • -
      • +
      • + + + + + ABACUS formatter-2.0 版本使用说明书 + + + + + +
      • + +
      • @@ -637,7 +741,46 @@
      • -
      • +
      • + + + + + 性能分析工具:vtune 快速上手教程 + + + + + +
      • + +
      • + + + + + 以格点积分程序为例:一些代码开发习惯小贴士 + + + + + +
      • + +
      • + + + + + 文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例 + + + + + +
      • + +
      • @@ -650,7 +793,7 @@
      • -
      • +
      • @@ -663,7 +806,7 @@
      • -
      • +
      • @@ -676,7 +819,7 @@
      • -
      • +
      • @@ -689,7 +832,7 @@
      • -
      • +
      • @@ -702,7 +845,7 @@
      • -
      • +
      • @@ -715,7 +858,7 @@
      • -
      • +
      • @@ -728,7 +871,7 @@
      • -
      • +
      • @@ -741,7 +884,7 @@
      • -
      • +
      • @@ -754,7 +897,7 @@
      • -
      • +
      • @@ -767,7 +910,7 @@
      • -
      • +
      • @@ -780,7 +923,7 @@
      • -
      • +
      • @@ -793,7 +936,7 @@
      • -
      • +
      • @@ -806,7 +949,7 @@
      • -
      • +
      • @@ -819,7 +962,7 @@
      • -
      • +
      • @@ -832,7 +975,20 @@
      • -
      • +
      • + + + + + 如何在 ABACUS 中新增一个输入参数(v3.7.0 后) + + + + + +
      • + +
      • @@ -845,7 +1001,7 @@
      • -
      • +
      • @@ -901,6 +1057,19 @@ +
      • + +
      • + + + + + 在 ABACUS 中进行差分测试 + + + + +
      • @@ -1065,7 +1234,7 @@

        No results matching " var gitbook = gitbook || []; gitbook.push(function() { - gitbook.page.hasChanged({"page":{"title":"编译 Nvidia GPU 版本的 ABACUS","level":"1.1.3","depth":2,"next":{"title":"在超算环境编译 ABACUS 的建议","level":"1.1.4","depth":2,"path":"abacus-hpc.md","ref":"abacus-hpc.md","articles":[]},"previous":{"title":"Intel oneAPI 编译 ABACUS 教程","level":"1.1.2","depth":2,"path":"abacus-intel.md","ref":"abacus-intel.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.6.1","level":"1.1.6","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.6.1"},{"backlink":"abacus-upf.html#fig1.1.6.2","level":"1.1.6","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.6.2"},{"backlink":"abacus-upf.html#fig1.1.6.3","level":"1.1.6","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.6.3"},{"backlink":"abacus-upf.html#fig1.1.6.4","level":"1.1.6","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.6.4"},{"backlink":"abacus-upf.html#fig1.1.6.5","level":"1.1.6","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.6.5"},{"backlink":"abacus-surface2.html#fig1.1.15.1","level":"1.1.15","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":6,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.15.1"},{"backlink":"abacus-surface2.html#fig1.1.15.2","level":"1.1.15","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":7,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.15.2"},{"backlink":"abacus-surface2.html#fig1.1.15.3","level":"1.1.15","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":8,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.15.3"},{"backlink":"abacus-surface5.html#fig1.1.18.1","level":"1.1.18","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":9,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.18.1"},{"backlink":"abacus-surface5.html#fig1.1.18.2","level":"1.1.18","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.18.2"},{"backlink":"abacus-surface5.html#fig1.1.18.3","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":11,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.18.3"},{"backlink":"abacus-surface5.html#fig1.1.18.4","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":12,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.18.4"},{"backlink":"abacus-surface5.html#fig1.1.18.5","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":13,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.18.5"},{"backlink":"abacus-surface6.html#fig1.1.19.1","level":"1.1.19","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":14,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.19.1"},{"backlink":"abacus-surface6.html#fig1.1.19.2","level":"1.1.19","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":15,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.19.2"},{"backlink":"develop-path4.html#fig1.2.13.1","level":"1.2.13","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":16,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.13.1"},{"backlink":"develop-path4.html#fig1.2.13.2","level":"1.2.13","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":17,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.13.2"},{"backlink":"develop-path5.html#fig1.2.14.1","level":"1.2.14","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":18,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.14.1"},{"backlink":"develop-path5.html#fig1.2.14.2","level":"1.2.14","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":19,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.14.2"},{"backlink":"develop-path5.html#fig1.2.14.3","level":"1.2.14","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":20,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.14.3"},{"backlink":"develop-path5.html#fig1.2.14.4","level":"1.2.14","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":21,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.14.4"},{"backlink":"develop-path5.html#fig1.2.14.5","level":"1.2.14","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":22,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.14.5"},{"backlink":"develop-path6.html#fig1.2.16.1","level":"1.2.16","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":23,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.16.1"},{"backlink":"develop-path10.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":24,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.20.2","level":"1.2.20","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":25,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.20.2"},{"backlink":"develop-path10.html#fig1.2.20.3","level":"1.2.20","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":26,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.20.3"},{"backlink":"develop-path10.html#fig1.2.20.4","level":"1.2.20","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":27,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.20.4"},{"backlink":"develop-path10.html#fig1.2.20.5","level":"1.2.20","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":28,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.20.5"},{"backlink":"develop-path11.html#fig1.2.21.1","level":"1.2.21","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":29,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.21.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":30,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"abacus-gpu.md","mtime":"2024-03-15T07:08:11.178Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-03-19T11:29:16.414Z"},"basePath":".","book":{"language":""}}); + gitbook.page.hasChanged({"page":{"title":"编译 Nvidia GPU 版本的 ABACUS","level":"1.1.4","depth":2,"next":{"title":"在超算环境编译 ABACUS 的建议","level":"1.1.5","depth":2,"path":"abacus-hpc.md","ref":"abacus-hpc.md","articles":[]},"previous":{"title":"Intel oneAPI 编译 ABACUS 教程","level":"1.1.3","depth":2,"path":"abacus-intel.md","ref":"abacus-intel.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.9.1","level":"1.1.9","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.9.1"},{"backlink":"abacus-upf.html#fig1.1.9.2","level":"1.1.9","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.9.2"},{"backlink":"abacus-upf.html#fig1.1.9.3","level":"1.1.9","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.9.3"},{"backlink":"abacus-upf.html#fig1.1.9.4","level":"1.1.9","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.9.4"},{"backlink":"abacus-upf.html#fig1.1.9.5","level":"1.1.9","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.9.5"},{"backlink":"abacus-pw.html#fig1.1.13.1","level":"1.1.13","list_caption":"Figure: 电子自洽迭代计算流程。","alt":"电子自洽迭代计算流程。","nro":6,"url":"picture/fig_pw-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"电子自洽迭代计算流程。","attributes":{},"skip":false,"key":"1.1.13.1"},{"backlink":"abacus-pw.html#fig1.1.13.2","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","nro":7,"url":"picture/fig_pw-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","attributes":{},"skip":false,"key":"1.1.13.2"},{"backlink":"abacus-pw.html#fig1.1.13.3","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随K点变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","nro":8,"url":"picture/fig_pw-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","attributes":{},"skip":false,"key":"1.1.13.3"},{"backlink":"abacus-pw.html#fig1.1.13.4","level":"1.1.13","list_caption":"Figure: 计算时间随K点变化。","alt":"计算时间随K点变化。","nro":9,"url":"picture/fig_pw-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"计算时间随K点变化。","attributes":{},"skip":false,"key":"1.1.13.4"},{"backlink":"abacus-surface2.html#fig1.1.20.1","level":"1.1.20","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.20.1"},{"backlink":"abacus-surface2.html#fig1.1.20.2","level":"1.1.20","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":11,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.20.2"},{"backlink":"abacus-surface2.html#fig1.1.20.3","level":"1.1.20","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":12,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.20.3"},{"backlink":"abacus-surface5.html#fig1.1.23.1","level":"1.1.23","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":13,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.23.1"},{"backlink":"abacus-surface5.html#fig1.1.23.2","level":"1.1.23","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":14,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.23.2"},{"backlink":"abacus-surface5.html#fig1.1.23.3","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":15,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.23.3"},{"backlink":"abacus-surface5.html#fig1.1.23.4","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":16,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.23.4"},{"backlink":"abacus-surface5.html#fig1.1.23.5","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":17,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.23.5"},{"backlink":"abacus-surface6.html#fig1.1.24.1","level":"1.1.24","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":18,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.24.1"},{"backlink":"abacus-surface6.html#fig1.1.24.2","level":"1.1.24","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":19,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.24.2"},{"backlink":"abacus-dos.html#fig1.1.25.1","level":"1.1.25","list_caption":"Figure: 铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","alt":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","nro":20,"url":"picture/fig_dos-5.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","attributes":{},"skip":false,"key":"1.1.25.1"},{"backlink":"abacus-dos.html#fig1.1.25.2","level":"1.1.25","list_caption":"Figure: 铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","alt":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","nro":21,"url":"picture/fig_dos-6.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","attributes":{},"skip":false,"key":"1.1.25.2"},{"backlink":"abacus-bader.html#fig1.1.35.1","level":"1.1.35","list_caption":"Figure: SPIN1_CHG.cube","alt":"SPIN1_CHG.cube","nro":22,"url":"picture/fig_Bader1.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN1_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.1"},{"backlink":"abacus-bader.html#fig1.1.35.2","level":"1.1.35","list_caption":"Figure: SPIN2_CHG.cube","alt":"SPIN2_CHG.cube","nro":23,"url":"picture/fig_Bader2.jpg","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN2_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.2"},{"backlink":"abacus-bader.html#fig1.1.35.3","level":"1.1.35","list_caption":"Figure: SPIN_DENSITY.cube","alt":"SPIN_DENSITY.cube","nro":24,"url":"picture/fig_Bader3.jpg","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN_DENSITY.cube","attributes":{},"skip":false,"key":"1.1.35.3"},{"backlink":"abacus-bader.html#fig1.1.35.4","level":"1.1.35","list_caption":"Figure: charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","alt":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","nro":25,"url":"picture/fig_Bader4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","attributes":{},"skip":false,"key":"1.1.35.4"},{"backlink":"abacus-bader.html#fig1.1.35.5","level":"1.1.35","list_caption":"Figure: spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","alt":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","nro":26,"url":"picture/fig_Bader5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","attributes":{},"skip":false,"key":"1.1.35.5"},{"backlink":"abacus-bader.html#fig1.1.35.6","level":"1.1.35","list_caption":"Figure: charge2d_000.dat","alt":"charge2d_000.dat","nro":27,"url":"picture/fig_Bader6.png","index":6,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.6"},{"backlink":"abacus-bader.html#fig1.1.35.7","level":"1.1.35","list_caption":"Figure: charge2d_025.dat","alt":"charge2d_025.dat","nro":28,"url":"picture/fig_Bader7.png","index":7,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.7"},{"backlink":"abacus-bader.html#fig1.1.35.8","level":"1.1.35","list_caption":"Figure: charge2d_050.dat","alt":"charge2d_050.dat","nro":29,"url":"picture/fig_Bader8.png","index":8,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.8"},{"backlink":"abacus-bader.html#fig1.1.35.9","level":"1.1.35","list_caption":"Figure: spin2d_000.dat","alt":"spin2d_000.dat","nro":30,"url":"picture/fig_Bader9.png","index":9,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.9"},{"backlink":"abacus-bader.html#fig1.1.35.10","level":"1.1.35","list_caption":"Figure: spin2d_025.dat","alt":"spin2d_025.dat","nro":31,"url":"picture/fig_Bader10.png","index":10,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.10"},{"backlink":"abacus-bader.html#fig1.1.35.11","level":"1.1.35","list_caption":"Figure: spin2d_050.dat","alt":"spin2d_050.dat","nro":32,"url":"picture/fig_Bader11.png","index":11,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.11"},{"backlink":"develop-path4.html#fig1.2.17.1","level":"1.2.17","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":33,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.17.1"},{"backlink":"develop-path4.html#fig1.2.17.2","level":"1.2.17","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":34,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.17.2"},{"backlink":"develop-path5.html#fig1.2.18.1","level":"1.2.18","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":35,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.18.1"},{"backlink":"develop-path5.html#fig1.2.18.2","level":"1.2.18","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":36,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.18.2"},{"backlink":"develop-path5.html#fig1.2.18.3","level":"1.2.18","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":37,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.18.3"},{"backlink":"develop-path5.html#fig1.2.18.4","level":"1.2.18","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":38,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.18.4"},{"backlink":"develop-path5.html#fig1.2.18.5","level":"1.2.18","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":39,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.18.5"},{"backlink":"develop-path6.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":40,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.24.1","level":"1.2.24","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":41,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.24.1"},{"backlink":"develop-path10.html#fig1.2.24.2","level":"1.2.24","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":42,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.24.2"},{"backlink":"develop-path10.html#fig1.2.24.3","level":"1.2.24","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":43,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.24.3"},{"backlink":"develop-path10.html#fig1.2.24.4","level":"1.2.24","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":44,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.24.4"},{"backlink":"develop-path10.html#fig1.2.24.5","level":"1.2.24","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":45,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.24.5"},{"backlink":"develop-path11.html#fig1.2.25.1","level":"1.2.25","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":46,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.25.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":47,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"abacus-gpu.md","mtime":"2024-03-15T07:08:11.178Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-09-06T11:53:05.785Z"},"basePath":".","book":{"language":""}}); }); diff --git a/_book/abacus-hpc.html b/_book/abacus-hpc.html index fdd2d294..e5c88d8e 100644 --- a/_book/abacus-hpc.html +++ b/_book/abacus-hpc.html @@ -176,7 +176,20 @@ -
      • +
      • + + + + + Intel oneAPI 2024.x 编译 ABACUS 教程 + + + + + +
      • + +
      • @@ -189,7 +202,7 @@
      • -
      • +
      • @@ -202,7 +215,7 @@
      • -
      • +
      • @@ -215,7 +228,7 @@
      • -
      • +
      • @@ -228,7 +241,33 @@
      • -
      • +
      • + + + + + ABACUS 答疑手册 + + + + + +
      • + +
      • + + + + + ABACUS 收敛性问题解决手册 + + + + + +
      • + +
      • @@ -241,7 +280,7 @@
      • -
      • +
      • @@ -254,7 +293,7 @@
      • -
      • +
      • @@ -267,7 +306,7 @@
      • -
      • +
      • @@ -280,7 +319,20 @@
      • -
      • +
      • + + + + + ABACUS 的平面波计算与收敛性测试 + + + + + +
      • + +
      • @@ -293,7 +345,7 @@
      • -
      • +
      • @@ -306,7 +358,7 @@
      • -
      • +
      • @@ -319,7 +371,7 @@
      • -
      • +
      • @@ -332,7 +384,20 @@
      • -
      • +
      • + + + + + ABACUS 实时演化含时密度泛函理论使用教程 + + + + + +
      • + +
      • @@ -345,7 +410,7 @@
      • -
      • +
      • @@ -358,7 +423,7 @@
      • -
      • +
      • @@ -371,7 +436,7 @@
      • -
      • +
      • @@ -384,7 +449,7 @@
      • -
      • +
      • @@ -397,7 +462,7 @@
      • -
      • +
      • @@ -410,7 +475,20 @@
      • -
      • +
      • + + + + + ABACUS+Atomkit 计算态密度和能带 + + + + + +
      • + +
      • @@ -423,7 +501,7 @@
      • -
      • +
      • @@ -436,7 +514,7 @@
      • -
      • +
      • @@ -449,7 +527,7 @@
      • -
      • +
      • @@ -462,7 +540,7 @@
      • -
      • +
      • @@ -475,7 +553,7 @@
      • -
      • +
      • @@ -488,7 +566,7 @@
      • -
      • +
      • @@ -501,7 +579,7 @@
      • -
      • +
      • @@ -514,12 +592,25 @@
      • -
      • +
      • - + - ABACUS 收敛性问题解决手册 + ABACUS+pymatgen 计算弹性常数 + + + + + +
      • + +
      • + + + + + ABACUS+Bader charge 分析教程 @@ -624,7 +715,20 @@
      • -
      • +
      • + + + + + ABACUS formatter-2.0 版本使用说明书 + + + + + +
      • + +
      • @@ -637,7 +741,46 @@
      • -
      • +
      • + + + + + 性能分析工具:vtune 快速上手教程 + + + + + +
      • + +
      • + + + + + 以格点积分程序为例:一些代码开发习惯小贴士 + + + + + +
      • + +
      • + + + + + 文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例 + + + + + +
      • + +
      • @@ -650,7 +793,7 @@
      • -
      • +
      • @@ -663,7 +806,7 @@
      • -
      • +
      • @@ -676,7 +819,7 @@
      • -
      • +
      • @@ -689,7 +832,7 @@
      • -
      • +
      • @@ -702,7 +845,7 @@
      • -
      • +
      • @@ -715,7 +858,7 @@
      • -
      • +
      • @@ -728,7 +871,7 @@
      • -
      • +
      • @@ -741,7 +884,7 @@
      • -
      • +
      • @@ -754,7 +897,7 @@
      • -
      • +
      • @@ -767,7 +910,7 @@
      • -
      • +
      • @@ -780,7 +923,7 @@
      • -
      • +
      • @@ -793,7 +936,7 @@
      • -
      • +
      • @@ -806,7 +949,7 @@
      • -
      • +
      • @@ -819,7 +962,7 @@
      • -
      • +
      • @@ -832,7 +975,20 @@
      • -
      • +
      • + + + + + 如何在 ABACUS 中新增一个输入参数(v3.7.0 后) + + + + + +
      • + +
      • @@ -845,7 +1001,7 @@
      • -
      • +
      • @@ -901,6 +1057,19 @@ +
      • + +
      • + + + + + 在 ABACUS 中进行差分测试 + + + + +
      • @@ -1092,7 +1261,7 @@

        No results matching " var gitbook = gitbook || []; gitbook.push(function() { - gitbook.page.hasChanged({"page":{"title":"在超算环境编译 ABACUS 的建议","level":"1.1.4","depth":2,"next":{"title":"ABACUS 在曙光 DCU 集群上的编译与使用","level":"1.1.5","depth":2,"path":"abacus-dcu.md","ref":"abacus-dcu.md","articles":[]},"previous":{"title":"编译 Nvidia GPU 版本的 ABACUS","level":"1.1.3","depth":2,"path":"abacus-gpu.md","ref":"abacus-gpu.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.6.1","level":"1.1.6","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.6.1"},{"backlink":"abacus-upf.html#fig1.1.6.2","level":"1.1.6","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.6.2"},{"backlink":"abacus-upf.html#fig1.1.6.3","level":"1.1.6","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.6.3"},{"backlink":"abacus-upf.html#fig1.1.6.4","level":"1.1.6","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.6.4"},{"backlink":"abacus-upf.html#fig1.1.6.5","level":"1.1.6","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.6.5"},{"backlink":"abacus-surface2.html#fig1.1.15.1","level":"1.1.15","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":6,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.15.1"},{"backlink":"abacus-surface2.html#fig1.1.15.2","level":"1.1.15","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":7,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.15.2"},{"backlink":"abacus-surface2.html#fig1.1.15.3","level":"1.1.15","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":8,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.15.3"},{"backlink":"abacus-surface5.html#fig1.1.18.1","level":"1.1.18","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":9,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.18.1"},{"backlink":"abacus-surface5.html#fig1.1.18.2","level":"1.1.18","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.18.2"},{"backlink":"abacus-surface5.html#fig1.1.18.3","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":11,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.18.3"},{"backlink":"abacus-surface5.html#fig1.1.18.4","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":12,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.18.4"},{"backlink":"abacus-surface5.html#fig1.1.18.5","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":13,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.18.5"},{"backlink":"abacus-surface6.html#fig1.1.19.1","level":"1.1.19","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":14,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.19.1"},{"backlink":"abacus-surface6.html#fig1.1.19.2","level":"1.1.19","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":15,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.19.2"},{"backlink":"develop-path4.html#fig1.2.13.1","level":"1.2.13","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":16,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.13.1"},{"backlink":"develop-path4.html#fig1.2.13.2","level":"1.2.13","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":17,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.13.2"},{"backlink":"develop-path5.html#fig1.2.14.1","level":"1.2.14","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":18,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.14.1"},{"backlink":"develop-path5.html#fig1.2.14.2","level":"1.2.14","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":19,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.14.2"},{"backlink":"develop-path5.html#fig1.2.14.3","level":"1.2.14","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":20,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.14.3"},{"backlink":"develop-path5.html#fig1.2.14.4","level":"1.2.14","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":21,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.14.4"},{"backlink":"develop-path5.html#fig1.2.14.5","level":"1.2.14","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":22,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.14.5"},{"backlink":"develop-path6.html#fig1.2.16.1","level":"1.2.16","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":23,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.16.1"},{"backlink":"develop-path10.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":24,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.20.2","level":"1.2.20","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":25,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.20.2"},{"backlink":"develop-path10.html#fig1.2.20.3","level":"1.2.20","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":26,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.20.3"},{"backlink":"develop-path10.html#fig1.2.20.4","level":"1.2.20","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":27,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.20.4"},{"backlink":"develop-path10.html#fig1.2.20.5","level":"1.2.20","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":28,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.20.5"},{"backlink":"develop-path11.html#fig1.2.21.1","level":"1.2.21","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":29,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.21.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":30,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"abacus-hpc.md","mtime":"2023-09-26T11:08:07.101Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-03-19T11:29:16.414Z"},"basePath":".","book":{"language":""}}); + gitbook.page.hasChanged({"page":{"title":"在超算环境编译 ABACUS 的建议","level":"1.1.5","depth":2,"next":{"title":"ABACUS 在曙光 DCU 集群上的编译与使用","level":"1.1.6","depth":2,"path":"abacus-dcu.md","ref":"abacus-dcu.md","articles":[]},"previous":{"title":"编译 Nvidia GPU 版本的 ABACUS","level":"1.1.4","depth":2,"path":"abacus-gpu.md","ref":"abacus-gpu.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.9.1","level":"1.1.9","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.9.1"},{"backlink":"abacus-upf.html#fig1.1.9.2","level":"1.1.9","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.9.2"},{"backlink":"abacus-upf.html#fig1.1.9.3","level":"1.1.9","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.9.3"},{"backlink":"abacus-upf.html#fig1.1.9.4","level":"1.1.9","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.9.4"},{"backlink":"abacus-upf.html#fig1.1.9.5","level":"1.1.9","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.9.5"},{"backlink":"abacus-pw.html#fig1.1.13.1","level":"1.1.13","list_caption":"Figure: 电子自洽迭代计算流程。","alt":"电子自洽迭代计算流程。","nro":6,"url":"picture/fig_pw-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"电子自洽迭代计算流程。","attributes":{},"skip":false,"key":"1.1.13.1"},{"backlink":"abacus-pw.html#fig1.1.13.2","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","nro":7,"url":"picture/fig_pw-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","attributes":{},"skip":false,"key":"1.1.13.2"},{"backlink":"abacus-pw.html#fig1.1.13.3","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随K点变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","nro":8,"url":"picture/fig_pw-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","attributes":{},"skip":false,"key":"1.1.13.3"},{"backlink":"abacus-pw.html#fig1.1.13.4","level":"1.1.13","list_caption":"Figure: 计算时间随K点变化。","alt":"计算时间随K点变化。","nro":9,"url":"picture/fig_pw-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"计算时间随K点变化。","attributes":{},"skip":false,"key":"1.1.13.4"},{"backlink":"abacus-surface2.html#fig1.1.20.1","level":"1.1.20","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.20.1"},{"backlink":"abacus-surface2.html#fig1.1.20.2","level":"1.1.20","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":11,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.20.2"},{"backlink":"abacus-surface2.html#fig1.1.20.3","level":"1.1.20","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":12,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.20.3"},{"backlink":"abacus-surface5.html#fig1.1.23.1","level":"1.1.23","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":13,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.23.1"},{"backlink":"abacus-surface5.html#fig1.1.23.2","level":"1.1.23","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":14,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.23.2"},{"backlink":"abacus-surface5.html#fig1.1.23.3","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":15,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.23.3"},{"backlink":"abacus-surface5.html#fig1.1.23.4","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":16,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.23.4"},{"backlink":"abacus-surface5.html#fig1.1.23.5","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":17,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.23.5"},{"backlink":"abacus-surface6.html#fig1.1.24.1","level":"1.1.24","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":18,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.24.1"},{"backlink":"abacus-surface6.html#fig1.1.24.2","level":"1.1.24","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":19,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.24.2"},{"backlink":"abacus-dos.html#fig1.1.25.1","level":"1.1.25","list_caption":"Figure: 铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","alt":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","nro":20,"url":"picture/fig_dos-5.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","attributes":{},"skip":false,"key":"1.1.25.1"},{"backlink":"abacus-dos.html#fig1.1.25.2","level":"1.1.25","list_caption":"Figure: 铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","alt":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","nro":21,"url":"picture/fig_dos-6.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","attributes":{},"skip":false,"key":"1.1.25.2"},{"backlink":"abacus-bader.html#fig1.1.35.1","level":"1.1.35","list_caption":"Figure: SPIN1_CHG.cube","alt":"SPIN1_CHG.cube","nro":22,"url":"picture/fig_Bader1.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN1_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.1"},{"backlink":"abacus-bader.html#fig1.1.35.2","level":"1.1.35","list_caption":"Figure: SPIN2_CHG.cube","alt":"SPIN2_CHG.cube","nro":23,"url":"picture/fig_Bader2.jpg","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN2_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.2"},{"backlink":"abacus-bader.html#fig1.1.35.3","level":"1.1.35","list_caption":"Figure: SPIN_DENSITY.cube","alt":"SPIN_DENSITY.cube","nro":24,"url":"picture/fig_Bader3.jpg","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN_DENSITY.cube","attributes":{},"skip":false,"key":"1.1.35.3"},{"backlink":"abacus-bader.html#fig1.1.35.4","level":"1.1.35","list_caption":"Figure: charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","alt":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","nro":25,"url":"picture/fig_Bader4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","attributes":{},"skip":false,"key":"1.1.35.4"},{"backlink":"abacus-bader.html#fig1.1.35.5","level":"1.1.35","list_caption":"Figure: spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","alt":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","nro":26,"url":"picture/fig_Bader5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","attributes":{},"skip":false,"key":"1.1.35.5"},{"backlink":"abacus-bader.html#fig1.1.35.6","level":"1.1.35","list_caption":"Figure: charge2d_000.dat","alt":"charge2d_000.dat","nro":27,"url":"picture/fig_Bader6.png","index":6,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.6"},{"backlink":"abacus-bader.html#fig1.1.35.7","level":"1.1.35","list_caption":"Figure: charge2d_025.dat","alt":"charge2d_025.dat","nro":28,"url":"picture/fig_Bader7.png","index":7,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.7"},{"backlink":"abacus-bader.html#fig1.1.35.8","level":"1.1.35","list_caption":"Figure: charge2d_050.dat","alt":"charge2d_050.dat","nro":29,"url":"picture/fig_Bader8.png","index":8,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.8"},{"backlink":"abacus-bader.html#fig1.1.35.9","level":"1.1.35","list_caption":"Figure: spin2d_000.dat","alt":"spin2d_000.dat","nro":30,"url":"picture/fig_Bader9.png","index":9,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.9"},{"backlink":"abacus-bader.html#fig1.1.35.10","level":"1.1.35","list_caption":"Figure: spin2d_025.dat","alt":"spin2d_025.dat","nro":31,"url":"picture/fig_Bader10.png","index":10,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.10"},{"backlink":"abacus-bader.html#fig1.1.35.11","level":"1.1.35","list_caption":"Figure: spin2d_050.dat","alt":"spin2d_050.dat","nro":32,"url":"picture/fig_Bader11.png","index":11,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.11"},{"backlink":"develop-path4.html#fig1.2.17.1","level":"1.2.17","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":33,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.17.1"},{"backlink":"develop-path4.html#fig1.2.17.2","level":"1.2.17","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":34,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.17.2"},{"backlink":"develop-path5.html#fig1.2.18.1","level":"1.2.18","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":35,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.18.1"},{"backlink":"develop-path5.html#fig1.2.18.2","level":"1.2.18","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":36,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.18.2"},{"backlink":"develop-path5.html#fig1.2.18.3","level":"1.2.18","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":37,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.18.3"},{"backlink":"develop-path5.html#fig1.2.18.4","level":"1.2.18","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":38,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.18.4"},{"backlink":"develop-path5.html#fig1.2.18.5","level":"1.2.18","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":39,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.18.5"},{"backlink":"develop-path6.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":40,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.24.1","level":"1.2.24","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":41,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.24.1"},{"backlink":"develop-path10.html#fig1.2.24.2","level":"1.2.24","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":42,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.24.2"},{"backlink":"develop-path10.html#fig1.2.24.3","level":"1.2.24","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":43,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.24.3"},{"backlink":"develop-path10.html#fig1.2.24.4","level":"1.2.24","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":44,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.24.4"},{"backlink":"develop-path10.html#fig1.2.24.5","level":"1.2.24","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":45,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.24.5"},{"backlink":"develop-path11.html#fig1.2.25.1","level":"1.2.25","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":46,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.25.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":47,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"abacus-hpc.md","mtime":"2023-09-26T11:08:07.101Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-09-06T11:53:05.785Z"},"basePath":".","book":{"language":""}}); }); diff --git a/_book/abacus-intel.html b/_book/abacus-intel.html index bae85615..c914199c 100644 --- a/_book/abacus-intel.html +++ b/_book/abacus-intel.html @@ -109,7 +109,7 @@ - + + + + + + +
        +
        + + + + + + + + +
        + +
        + +
        + + + + + + + + +
        +
        + +
        +
        + +
        + +

        Intel oneAPI 2024.x 编译 ABACUS 教程

        +

        作者:陈诺,邮箱:cn037@stu.pku.edu.cn

        +

        最后更新时间:2024/07/14

        +

        Intel OneAPI 工具链

        +

        简介

        +

        本教程介绍如何使用 oneAPI 2024 工具链编译 ABACUS。

        +

        OneAPI Base Toolkit

        +

        OneAPI Base Toolkit 提供了一系列基础工具和库,包括 BLAS, LAPACK, ScaLAPACK and FFTW3 等关键组件:

        +
          +
        • Intel® oneAPI DPC++/C++ Compiler:面向 CPU、GPU、FPGA 的 C++ 编译器。
        • +
        • Intel® oneAPI DPC++ Library:提供并行算法的库。
        • +
        • Intel® oneAPI Math Kernel Library:即 MKL,提供高度优化的数学函数库,包括线性代数、FFT 等。
        • +
        • Intel® VTune™ Profiler:性能分析优化工具。
        • +
        +

        OneAPI HPC Toolkit

        +

        OneAPI HPC Toolkit 是为高性能计算(HPC)特别优化的工具集,它在 OneAPI Base Toolkit 的基础上增加了更多针对 HPC 应用的特性和工具,包括:

        +
          +
        • Intel® oneAPI DPC++/C++ Compiler:含有 MPI 编译器。
        • +
        • Intel® Fortran Compiler & Intel® Fortran Compiler Classic:Fortran 编译器。
        • +
        • Intel® MPI Library:MPI 库。
        • +
        +

        安装

        +

        可以从官网上获得最新的安装包。安装需要管理员权限。

        +

        Download the Intel® oneAPI Base Toolkit

        +

        Download the Intel® HPC Toolkit

        +
          +
        • Offline installer

          +
            +
          • Base Toolkit

            +
              +
            • 下载
            • +
            +
            wget https://registrationcenter-download.intel.com/akdlm/IRC_NAS/9a98af19-1c68-46ce-9fdd-e249240c7c42/l_BaseKit_p_2024.2.0.634_offline.sh
            +
            +
              +
            • 安装,可选图形化界面安装
              sudo sh ./l_BaseKit_p_2024.2.0.634_offline.sh
              +
              +
            • +
            • 或直接在shell中静默安装

              +
              sudo sh ./l_BaseKit_p_2024.2.0.634_offline.sh -a --silent --cli --eula accept
              +
              +
            • +
            • HPC Toolkit

              +
                +
              • 下载
                wget https://registrationcenter-download.intel.com/akdlm/IRC_NAS/d4e49548-1492-45c9-b678-8268cb0f1b05/l_HPCKit_p_2024.2.0.635_offline.sh
                +
                +
              • +
              +
            • +
            • 安装,类似

              +
              sudo sh ./l_HPCKit_p_2024.2.0.635_offline.sh -a --silent --cli --eula accept
              +
              +
            • +
            +
          • +
          +
        • +
        • 按照默认配置,全局安装目录位于/opt/intel/oneapi。以2024.2版本为例,该目录如下:

          +
        • +
        +
        ➜  oneapi ls
        +2024.2   basekit  common    dal       dev-utilities  dnnl      dpl     installer  ippcp      logs  modulefiles-setup.sh  setvars.sh   tbb  vtune
        +advisor  ccl      compiler  debugger  diagnostics    dpcpp-ct  hpckit  ipp        licensing  mkl   mpi                   support.txt  tcm
        +
        +
          +
        • 其中有一些重要的目录和工具,如 2024.2/installer/
        • +
        +

        环境变量设置

        +

        要使用 oneAPI 提供的编译器和库,需要正确设置环境。

        +
          +
        • 2024.0 及之后的版本,使用了新的目录布局。这导致了和老版本不同的环境配置方式。
        • +
        +
        +

        参见 Use the setvars and oneapi-vars Scripts with Linux*

        +
        +
          +
        • 和之前的版本相比,由组件目录布局(Component Directory Layout)改为统一目录布局(Unified Directory Layout),新版本的所有组件(bin, lib, include, share)等统一放在以工具包版本号命名的顶级目录中。
        • +
        • 在原先的 Component Directory Layout 中,不同的组件有各自的环境变量设置脚本,由一个位于 oneAPI 安装目录的脚本 /opt/intel/oneapi/setvars.sh 统一管理。新版的 Unified Directory Layout 中,每个组件被集中到组件共用的共享文件夹中,即每个组件将其头文件提供给一个公共的 include 文件夹,将其库文件提供给一个公共的 lib 文件夹,以此类推。这样,不同版本工具包之间的切换更容易,无需维护通用的 setvars.sh,而是通过工具包版本号命名的目录提供的脚本 /opt/intel/oneapi/<toolkit-version>/oneapi-vars.sh 设置。
        • +
        • 以 2024.2 为例,每次使用 icpx 等编译器之前,需要在 shell 环境中 source 一次脚本:
        • +
        +
        . /opt/intel/oneapi/2024.2/oneapi-vars.sh
        +# configure, build, ...
        +
        +

        此时,编译器应该被添加到环境中,可以运行命令检查是否正确配置:

        +
        # source前
        +➜  oneapi mpiicpx -v
        +zsh: command not found: mpiicpx
        +# source后
        +➜  oneapi mpiicpx -v
        +mpiicpx for the Intel(R) MPI Library @IMPI_OFFICIALVERSION@ for Linux*
        +Copyright Intel Corporation.
        +Intel(R) oneAPI DPC++/C++ Compiler 2024.2.0 (2024.2.0.20240602)
        +Target: x86_64-unknown-linux-gnu
        +Thread model: posix
        +InstalledDir: /opt/intel/oneapi/compiler/2024.2/bin/compiler
        +Configuration file: /opt/intel/oneapi/compiler/2024.2/bin/compiler/../icpx.cfg
        +Found candidate GCC installation: /usr/lib/gcc/x86_64-linux-gnu/11
        +Selected GCC installation: /usr/lib/gcc/x86_64-linux-gnu/11
        +Candidate multilib: .;@m64
        +Selected multilib: .;@m64
        +icpx: warning: argument unused during compilation: '-I /opt/intel/oneapi/2024.2/include' [-Wunused-command-line-argument]
        +
        +
        +

        source 和.命令

        +
          +
        • . 命令在 POSIX 标准中定义,因此它在所有 POSIX 兼容的 shell 中都应该可用。
        • +
        • source 命令一般情况下是 . 的别名,但在某些环境中不可用。如果脚本不能使用 source,请换成通用的 .
        • +
        +
        +

        这一步会配置环境变量,但是并不会设定默认的 C++ 编译器。因此,设置了 oneAPI 编译器的环境变量之后,还需要在配置(configure)时指定构建(build)采用的编译器,如 CXX=icpx

        +
          +
        • 2024.0 开始,原先的 classical 编译器停止使用。
        • +
        +
        +

        Intel® C++ Compiler Classic Release Notes

        +
        +

        请使用新的 icpx/mpiicpx 取代原来的 icpc/mpiicpc

        +

        abacus 安装

        +

        依赖库

        +

        安装 cereal

        +
        sudo apt install libcereal-dev
        +
        +

        安装 elpa

        +

        在 Ubuntu22.04 等发行版中,可以通过 apt 获取预构建的 elpa 包(pre-build packages)。不幸的是,使用不同的 MPI 库构建 elpa 可能会导致冲突,apt 获取的 elpa 包和 oneAPI 2024.2 在运行时可能出现问题。

        +
        /usr/bin/ld: warning: libmpi.so.40, needed by /usr/lib/x86_64-linux-gnu/libelpa.so, may conflict with libmpi.so.12
        +
        +

        运行算例时报错:

        +
        * * * * * *
        + << Start SCF iteration.
        +Abort(403251971) on node 0 (rank 0 in comm 0): Fatal error in internal_Bcast: Unknown error class, error stack:
        +internal_Bcast(4152): MPI_Bcast(buffer=0x2c0e960, count=1, INVALID DATATYPE, 1, comm=0xc400001b) failed
        +internal_Bcast(4112): Invalid datatype
        +Abort(67707651) on node 1 (rank 1 in comm 0): Fatal error in internal_Bcast: Unknown error class, error stack:
        +internal_Bcast(4152): MPI_Bcast(buffer=0x2fcdac0, count=1, INVALID DATATYPE, 1, comm=0xc4000013) failed
        +internal_Bcast(4112): Invalid datatype
        +
        +

        因此,我们需要手动利用 oneAPI 工具链构建 elpa。

        +

        使用 toolchain

        +

        由于 elpa 的编译较复杂,我们可以通过 abacus toolchain 脚本自动构建和安装 elpa。该脚本用 icpx 和 mpiicpc 编译 elpa,同时会默认安装 cereal 和 libxc。

        +

        一键配置编译 ABACUS | toolchain 脚本的使用

        +
        . /opt/intel/oneapi/2024.2/oneapi-vars.sh
        +cd abacus-develop/toolchain
        +./toolchain_intel.sh # 脚本将会用intel工具链安装依赖。
        +
        +

        安装完成的库目录为 abacus-develop/toolchain/install.

        +
        # 安装完成的库目录为abacus-develop/toolchain/install
        + ➜  toolchain git:(develop)ls install
        +cereal-1.3.2  cmake-3.28.1  elpa-2023.05.001  libxc-6.2.2  lsan.supp  setup  toolchain.conf  toolchain.env  tsan.supp  valgrind.supp
        +
        +
          +
        • 使用toolchain构建的elpa,在构建abacus时有警告如下,暂未发现影响使用。该问题由scalapack库未指定mkl版本导致,“自行编译安装”方式(见下)无此问题。
        • +
        +
        +

        参见2.4 Non standard paths or non standard libraries

        +
        +
        /usr/bin/ld: warning: libmpi.so.40, needed by /lib/x86_64-linux-gnu/libscalapack-openmpi.so.2.1, may conflict with libmpi.so.12
        +
        +

        也可以根据 documentation/INSTALL.md · master · elpa / elpa · GitLab,自行编译安装 elpa。

        +

        自行编译安装

        +

        自行下载和安装 elpa 到环境中。以 oneAPI 2024.2 和 elpa-2024.05.001 为例。

        +
          +
        • 在官网下载 elpa 包。
        • +
        +
        wget https://elpa.mpcdf.mpg.de/software/tarball-archive/Releases/2024.05.001/elpa-2024.05.001.tar.gz
        +
        +tar xvf elpa-2024.05.001.tar.gz
        +
        +
          +
        • 安装脚本,仅供参考。这一步可能需要几分钟。如果运行脚本时显示oneAPI warnings提示已经设置过环境变量并退出,请打开一个新的shell环境,执行安装脚本。最后的make install和ln需要sudo权限,如果无法提供,请手动完成这两步。
        • +
        +
        #!/bin/bash -e
        +
        +# buildelpa.sh
        +# run in elpa main dir
        +
        +# source oneAPI environments
        +echo "using oneAPI 2024.2"
        +. /opt/intel/oneapi/2024.2/oneapi-vars.sh \
        +|| { echo "Failed to load oneAPI environment. Please restart in a new shell without oneAPI vars set."; false; }
        +
        +# in elpa main dir
        +# check whether there is a 'build' directory
        +if [ -d "build" ]; then
        +    echo "rm -rf build"
        +    rm -rf build
        +fi
        +mkdir build && cd build
        +
        +MKL_HOME=/opt/intel/oneapi/2024.2
        +
        +CC=mpiicx CXX=mpiicpx FC=mpiifort ../configure \
        +--disable-avx --disable-avx2 --disable-avx512 --disable-sse --disable-sse-assembly \
        +SCALAPACK_LDFLAGS="-L$MKL_HOME/lib/ -lmkl_scalapack_lp64 -lmkl_intel_lp64 -lmkl_sequential \
        +                             -lmkl_core -lmkl_blacs_intelmpi_lp64 -lpthread -lm -Wl,-rpath,$MKL_HOME/lib/" \
        +SCALAPACK_FCFLAGS="-L$MKL_HOME/lib/ -lmkl_scalapack_lp64 -lmkl_intel_lp64 -lmkl_sequential \
        +                    -lmkl_core -lmkl_blacs_intelmpi_lp64 -lpthread -lm -I$MKL_HOME/include/mkl/intel64/lp64"
        +
        +make -j$(nproc) > make.log 2>&1 
        +echo "installation process may require administrative privileges."
        +read -p "Would you like to continue with 'sudo make install'? (y/n): " -n 1 -r
        +echo    # (Optional) Move to a new line
        +
        +if [[ $REPLY =~ ^[Yy]$ ]]
        +then
        +    echo "Proceeding with installation using administrative privileges..."
        +    sudo make install > install.log 2>&1 
        +else
        +    echo "Installation has been canceled."
        +    echo "Please manually execute 'make install' and link elpa to default path."
        +fi
        +
        +# link elpa to /usr/local/include
        +
        +# The target path for the symbolic link
        +LINK_PATH="/usr/local/include/elpa"
        +# The source path for the original link (replace with the actual source path)
        +SOURCE_PATH="/usr/local/include/elpa-2024.05.001/elpa"
        +
        +# Check if the link exists
        +if [ -L "$LINK_PATH" ]; then
        +    # If the link exists, delete it
        +    echo "The link already exists, deleting the old link..."
        +    sudo rm "$LINK_PATH"
        +else
        +    # If the link does not exist, check for the presence of a file or directory
        +    if [ -e "$LINK_PATH" ]; then
        +        echo "A file or directory exists at the path, unable to create the link. Please delete or rename the file/directory first."
        +        exit 1
        +    fi
        +fi
        +
        +# Create a new symbolic link
        +sudo ln -s "$SOURCE_PATH" "$LINK_PATH"
        +
        +# Check if the link was created successfully
        +if [ -L "$LINK_PATH" ]; then
        +    echo "The new symbolic link has been created successfully."
        +else
        +    echo "Failed to create the symbolic link."
        +    exit 1
        +fi
        +
        +echo "elpa install over."
        +
        +

        安装 ABACUS

        +

        配置好依赖后,我们可以开始安装 ABACUS。

        +

        构建时,可以选择利用 abacus-develop/toolchain/build_abacus_intel.sh 脚本直接构建 ABACUS(在其中修改配置选项),也可自行构建。

        +

        如果选择 toolchain 安装,需要记住此前安装 elpa 的目录。

        +
        # 设置环境
        +. /opt/intel/oneapi/2024.2/oneapi-vars.sh
        +# configure
        +# 在此选择oneAPI的编译器,添加编译选项,指定此前的安装路径
        +CXX=mpiicpx cmake -B build \
        +-DELPA_DIR=~/abacus-develop/toolchain/install/elpa-2023.05.001/cpu/
        +
        +# build
        +cmake --build build -j`nproc` 
        +# install
        +cmake --install build
        +
        +

        常见问题和解决方法

        +
          +
        • 在开始构建之前,请清除原有的 build 目录。
        • +
        +
        rm -rf build
        +
        +
          +
        • 找不到编译器,记得运行 vars 脚本设置 oneAPI 环境变量。
        • +
        +
        CMake Error at /usr/share/cmake-3.22/Modules/CMakeDetermineCXXCompiler.cmake:48 (message):
        +  Could not find compiler set in environment variable CXX:
        +
        +  mpiicpx.
        +
        +Call Stack (most recent call first):
        +  CMakeLists.txt:7 (project)
        +
        +
        +CMake Error: CMAKE_CXX_COMPILER not set, after EnableLanguage
        +-- Configuring incomplete, errors occurred!
        +
        +# 请设置环境
        +. /opt/intel/oneapi/2024.2/oneapi-vars.sh
        +
        +
          +
        • 找不到 elpa,请在配置时指定安装路径。
        • +
        +
        CMake Error in CMakeLists.txt:
        +  Imported target "ELPA::ELPA" includes non-existent path
        +
        +    "/usr/include/elpa"
        +
        +  in its INTERFACE_INCLUDE_DIRECTORIES.  Possible reasons include:
        +
        +  * The path was deleted, renamed, or moved to another location.
        +
        +  * An install or uninstall procedure did not complete successfully.
        +
        +  * The installation package was faulty and references files it does not
        +  provide.
        +
        +
        +# 请指定ELPA_DIR(及其他自己手动构建的库)
        +CXX=mpiicpx cmake -B build \
        +-DELPA_DIR=~/abacus-develop/toolchain/install/elpa-2023.05.001/cpu/
        +
        +
        +#####
        +CXX=mpiicpx cmake -B build -DELPA_DIR=~/abacus-develop/toolchain/install/elpa-2023.05.001/cpu/
        +
        +
          +
        • 期望使用 intel 工具链编译,但 cmake 显示使用 GNU 工具链。请使用 CXX=mpiicpx 指定编译器。
        • +
        +
        cmake -B build -DELPA_DIR=~/abacus-develop/toolchain/install/elpa-2023.05.001/cpu/
        +-- The CXX compiler identification is GNU 11.4.0
        +# CXX=mpiicpx cmake ...
        +# -- The CXX compiler identification is IntelLLVM 2024.2.0
        +
        +
          +
        • cmake 提示编译器错误,请使用新版的 icpx/mpiicpx,而不是 icpc/mpiicpc
        • +
        +
        CMake Error at /usr/share/cmake-3.22/Modules/CMakeTestCXXCompiler.cmake:62 (message):
        +  The C++ compiler
        +
        +    "/opt/intel/oneapi/2024.2/bin/mpiicpc"
        +
        +  is not able to compile a simple test program.
        +
        +  # use CXX=mpiicpx instead of CXX=mpiicpc
        +
        +
          +
        • 运行了oneAPI配置环境变量脚本,但是链接错误

          +
            +
          • 请检查oneAPI HPC kits的安装;可进入installer查看当前安装的所有Toolkits和对应版本,见下条。
          • +
          • 使用/opt/intel/oneapi/2024.2/oneapi-vars.sh,而不是/opt/intel/oneapi/setvars.sh
          • +
          +
        • +
        • 如果安装了多版本的 oneAPI 工具链,怀疑环境遭到破坏,可以使用 /opt/intel/oneapi/installer 中的 installer 工具修复和移除不需要版本以及更新。

          +
        • +
        +
        cd /opt/intel/oneapi/installer
        +sudo ./installer
        +
        +# 可以用Repair尝试修复环境
        +# 使用Remove移除不需要的组件
        +# 使用Update获得新版本
        +
        +
          +
        • 如果遇到 libmpi.so 相关报错,可以用 locate 查看所有相关库。
        • +
        +
        locate libmpi.so
        +
        +
          +
        • 运行算例或测试失败,请确保最新构建后运行了install命令,且没有因为权限不足安装失败。
        • +
        +

        参考

        +

        Abacus 文档

        +

        Easy Installation

        +

        一键配置编译 ABACUS | toolchain 脚本的使用

        +

        Intel oneAPI 编译 ABACUS 教程 · GitBook

        +

        elpa

        +

        documentation/INSTALL.md · master · elpa / elpa · GitLab

        +

        Intel 文档

        +

        Use the setvars and oneapi-vars Scripts with Linux*

        +

        Intel® C++ Compiler Classic Release Notes

        +

        Porting Guide for DPCPP or ICX

        +

        Porting Guide for ifort Users to ifx

        +

        Intel® oneAPI Base Toolkit Release Notes

        +
        Copyright © mcresearch.gitee.io 2023 all right reserved,powered by Gitbook该文章修订时间: +2024-07-14 10:09:27 +
        + +
        + +
        +
        +
        + +

        results matching ""

        +
          + +
          +
          + +

          No results matching ""

          + +
          +
          +
          + +
          +
          + +
          + + + + + + + + + + + + + + +
          + + +
          + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_book/abacus-phonopy.html b/_book/abacus-phonopy.html index e9e0c95c..a27bc0e8 100644 --- a/_book/abacus-phonopy.html +++ b/_book/abacus-phonopy.html @@ -109,7 +109,7 @@ - + + + + + + +
          +
          + + + + + + + + +
          + +
          + +
          + + + + + + + + +
          +
          + +
          +
          + +
          + +

          ABACUS 的平面波计算与收敛性测试

          +

          作者:谢炘玥,邮箱:xyxie@stu.pku.edu.cn

          +

          审核:陈默涵,邮箱:mohanchen@pku.edu.cn

          +

          最后更新时间:2024/04/09

          +

          一、背景介绍

          +

          ABACUS(原子算筹)作为一款国产的电子结构软件,可用于对材料进行密度泛函理论(Density Functional Theory,简称 DFT)第一性原理(first-principles)计算,其主要核心功能之一是电子自洽迭代计算(Self Consistent Field,简称SCF),在给定材料微观层面的晶胞和原子位置的条件下,我们可以通过 SCF 流程的计算获得电子结构的总能量、能级、电子波函数、电子密度等关键信息,这些信息可用于进一步计算得出材料体系的其它性质。然而,对于初学者来说,初次运行 ABACUS 难免不熟悉输入参数,容易出错,要熟练掌握好 SCF 计算要领也颇具难度。因此,本文将主要针对初学者,详细介绍(1)如何采用ABACUS设置合理的输入参数完成一个SCF 计算,以及(2)如何对体系做收敛性测试,以便确定所有计算参数。这里收敛性测试包括在平面波(Plane Wave,简称 pw)基矢量下面对 ecut(电子动能截断值)进行测试,以及对布里渊区的 k 点个数进行测试来确定这些参数。

          +

          对密度泛函理论计算不太了解的读者,我们想先介绍密度泛函理论的三个特点。第一,只要给定原子坐标和种类,密度泛函理论就可以用于预测该体系的许多物理和力学等性质。第二,对于不同的原子坐标排列方式以及不同元素种类,密度泛函理论软件提供了一系列参数用于调节计算的精度和效率,只有将参数设定在某一些正确的范围之内,得到的结果才有意义。反之,如果参数过于粗糙,则得到的结果可能也不收敛,因此不具有价值。第三,密度泛函理论计算是一种虽然较为流行的但也相对昂贵的科学计算方法。笔记本电脑只能跑得动几个原子的小体系计算,真正数十个原子乃至更大的体系需要借助超算进行长时间的计算(几个小时甚至几天),而选择不同的参数可能会对最终运行时间有较大的影响。因此,基于以上三点认识,有必要更加细致地掌握密度泛函理论计算的具体参数,下面我们予以介绍。

          +

          二、输入文件简介

          +
          电子自洽迭代计算流程。
          图 1. 电子自洽迭代计算流程。
          +
          +

          图1:控制 SCF 的主要输入文件有三个。KPTSTRU 文件分别存储了布里渊区的信息和晶体结构的信息。此外 INPUT 文件主要存储了 5 部分信息,对应于下一章的小节序号,可以对应查看。表示体系运行开始时的初猜电荷密度,表示电子系统的哈密顿量,表示波函数,其中代表不同的能级,代表体系的第一布里渊区里不同的采样点。表示特征值,代表点的个数,表示被电子占据的能级个数,表示电子的费米-狄拉克分布函数,表示由波函数算出来的电荷密度,表示迭代过程中第步的电荷密度而表示第步的电荷密度。表示混合新电荷密度的比例(取值范围为 0~1)。ABACUS 支持平面波和数值原子轨道双基组,如果使用平面波基矢量,则数值原子轨道信息可以在 STRU 里不提供。

          +
          +

          使用 ABACUS 中进行密度泛函理论或者第一性原理分子动力学计算时,一般需要 STRUKPTINPUT 三个最基本的文件作为 ABACUS 的基本输入文件。STRU 文件提供元素、晶格、原子的基本结构信息;KPT 文件提供周期性边界条件下布里渊区采样的网格设置。INPUT 文件主要提供计算所需的各种设置参数,在图1里我们分成了五部分且将在下面详细介绍。

          +

          三、STRU 和 KPT 文件简单介绍

          +

          1. STRU 文件

          +

          STRU 文件提供元素种类、原子质量(SCF 中不会用到)、赝势文件(如果做密度泛函理论计算)、数值原子轨道(如果采用该基组做计算)、晶格矢量、原子位置、原子位置是否可移动等基本结构相关的信息。其中,晶格是晶体中原子有序排列的具体形式,我们可以选取一组晶格矢量来描述晶格。晶格确定后,原子的相对位置也可以通过选取不同坐标系(例如 Cartesian 直角坐标系或者 Direct 晶格坐标系)确定下来。

          +

          例如,以下是一个金刚石硅的结构文件(8 个硅原子,周期性边界条件)

          +
          ATOMIC_SPECIES
          +Si   28.085   Si_ONCV_PBE-1.0.upf
          +
          +NUMERICAL_ORBITAL
          +Si_gga_8au_60Ry_2s2p1d.orb
          +
          +LATTICE_CONSTANT
          +1.8897261258369282 
          +
          +LATTICE_VECTORS
          +5.4307000000      0.0000000000      0.0000000000      
          +0.0000000000      5.4307000000      0.0000000000      
          +0.0000000000      0.0000000000      5.4307000000      
          +
          +ATOMIC_POSITIONS
          +Direct
          +Si
          +0.0000000000
          +8
          +0.0000000000 0.0000000000 0.0000000000 1 1 1 mag 0.0 
          +0.0000000000 0.5000000000 0.5000000000 1 1 1 mag 0.0 
          +0.5000000000 0.0000000000 0.5000000000 1 1 1 mag 0.0 
          +0.5000000000 0.5000000000 0.0000000000 1 1 1 mag 0.0 
          +0.7500000000 0.7500000000 0.2500000000 1 1 1 mag 0.0 
          +0.7500000000 0.2500000000 0.7500000000 1 1 1 mag 0.0 
          +0.2500000000 0.7500000000 0.7500000000 1 1 1 mag 0.0 
          +0.2500000000 0.2500000000 0.2500000000 1 1 1 mag 0.0
          +
          +
            +
          • 第 2 行 "元素 原子质量 赝势" 中的 "原子质量" 在进行 DFT 计算时不可以省略不写,哪怕在 SCF 中不会用到。那么什么时候会用到呢?比如在进行分子动力学(Molecular Dynamics,简称 MD,在 INPUT 的 calculation 参数里设置)计算时,涉及运动的积分方程时用的是牛顿的第二定律,此时会使用原子的质量。另外注意,此行需要提供所使用的 "赝势" 文件名称。
          • +
          • 第 5 行提供 LCAO 基组所需的 "某种元素的数值原子轨道" 文件名称,而如果采用 pw 基组计算,不需要写第 4~5 行内容。
          • +
          • 第 8 行代表晶格整体缩放的一个长度,注意1 Angstrom=1.8897261258369282 bohr,这里写 1.8 开头的小数意味着接下来的 LATTICE_VECTORS 部分可以写以 Angstrom 为单位的晶格。
          • +
          • 第 11~13 行表示方向分别对应的三条晶格矢量。
          • +
          • 第 16 行 "Direct" 表示给出原子位置的方法是分数坐标(或者称为晶格坐标),常用的还有Cartesian(笛卡尔坐标方法),就是直角坐标系下的坐标。
          • +
          • 第 17 行是元素种类的名称。
          • +
          • 第 18 行设置原子初始磁矩,如果 INPUT 里的 nspin 参数设为 1,则不考虑磁性,这个参数不起作用。
          • +
          • 第 19 行表示体系的硅原子个数。
          • +
          • 第 20~27 行给出所有 8 个硅原子的坐标;前三个数是坐标,之后的(1 1 1)三个数代表允许该原子在对应的对应方向上移动,相反,(0 0 0)表示不允许在对应的方向上移动;同样,当考虑磁性计算的时候,"mag 0.0" 指定每个原子的初始磁矩,若设置此参数,则第 18 行的值将被覆盖。
          • +
          +

          关于赝势,还值得多提一些。平面波基组计算涉及采用描述电子和离子吸引作用的赝势,例如模守恒赝势或者超软赝势需要注意的是,如果赝势换了,则相应的 ecut 能量截断值也需要重新测试收敛性。而基于局域原子轨道(Linear Combination of Atomic Orbitals,简称 LCAO)基组的计算则涉及赝势和数值原子轨道(Numerical Atomic Orbitals,简称 NAO),需要使用者准备好相应文件。这里提到的赝势是一种描述核外电子和离子之间相互作用的近似方法,数值原子轨道是通过数值方法构建的描述电子波函数和电子密度等性质的基函数。需要注意的是,LCAO 计算所采用的数值原子轨道要和对应的赝势匹配,即数值原子轨道是从给定赝势生成出来的,赝势如果改变了,相应的数值原子轨道也要重新生成,才能保证较好的精度。一般来说数值原子轨道的截断半径越长或轨道越多,则基矢量越完备,计算精度越高,但同时计算量也越大。

          +

          2. KPT 文件

          +

          KPT 文件提供周期性边界条件下布里渊区点采样的网格设置

          +
          K_POINTS
          +0
          +Gamma
          +k k k 0 0 0
          +
          +
            +
          • 第 2 行表示点的总数,如果设置成 "0" 代表点是自动生成的
          • +
          • 如果第二行是 0,则第 3 行 "Gamma" (Γ-centered Monkhorst-Pack method)是选择以 Gamma 点为中心的 Monkhorst-Pack 方法划分布里渊区网格,此外还可以使用 "mp" 方法,即最常用的 Monkhorst-Pack 方法。
          • +
          • 第 4 行的前三个整数代表网格沿着每个方向划分成几份,后三个数代表网格的平移量,0 0 0 即代表不平移。
          • +
          • 计算立方形晶格时,点各方向应取相同个数。在本次计算中,我们会将的各方向从 2 取到 8,测试不同点下体系能量的收敛情况。
          • +
          • 在后文我们将介绍如何进行点的收敛性测试,当选定一个点后,若体系在某方向扩胞次,该方向点个数大致可以缩小到原来的。对于 N 原子以上的立方大体系,可通过在 INPUT 文件中设置参数 gamma_only 取 1,即只使用 Gamma 点计算,这个时候计算所需内存会显著下降,计算效率也会有提升。
          • +
          • 此外,点还有所谓的 line mode,或者离散的点模式,若有兴趣的读者可以查看 KPT 的介绍文档(http://abacus.deepmodeling.com/en/latest/advanced/input_files/kpt.html)。
          • +
          +

          四、INPUT 文件关键输入参数

          +

          我们以金刚石结构硅原子体系(8 个原子)作为示例,进行电子自洽迭代计算(Self Consistent Field,SCF)。接下来让我们需要准备一个 INPUT 文件,我们把一些计算的关键参数分成如下 5 个部分。

          +

          1. 基本参数

          +
            +
          • suffix:suffix 是用户可以自定义的后缀,运行 ABACUS 可执行程序之后,输入文件所在的文件夹里会生成一个包含大部分运行信息的 OUT.suffix 文件夹。例如,在这个例子里我们可设为 "Si",运行后就会产生一个 OUT.Si 文件夹。
          • +
          • calculation:设置本次计算类型,例如本次文档主要展示 "scf"(自洽电子结构计算)。scf((Self Consistent Field)、relax、cell-relax、md(Molecular Dynamics)是较常用的四类计算。

            +
              +
            1. scf(自洽电子结构计算)是一种用于求解电子基态电子密度的自洽迭代计算方法,通过迭代来持续更新体系的电子密度,以达到收敛条件。通过电子自洽迭代,计算是否达到收敛由参数 scf_thr 决定。
            2. +
            3. relax(结构弛豫计算)是通过调整体系中原子的位置来达到系统最稳定的状态的计算方法,每一次 relax 中都包含若干步的 scf 计算。在 relax 中,需要设置参数 force_thr_ev (eV/Angstrom),代表所有原子中最大受力的收敛阈值。而 relax 计算的收敛需要每一步离子迭代时 scf 中的 scf_thr 都满足,以及最后多步离子迭代后 force_thr_ev 也满足。
            4. +
            5. cell-relax(结构弛豫计算)与 relax 不同的是,其晶胞参数,比如晶格常数、晶格形状也会发生变化。除 force_thr_ev 外,还需要设置参数 stress_thr(kbar),是晶胞感受到的应力的阈值。
            6. +
            7. md(分子动力学)基于牛顿力学原理,通过数值积分模拟粒子的运动轨迹,根据原子间的势能计算相互作用力,因此势函数的选择比较关键,在 ABACUS 里可以选择 DFT 来计算相互作用力,也可以选择 DP 势函数。
            8. +
            +
          • +
          • symmetry:是否考虑对称性,有如下三个选项

            +
            +

            -1 不进行对称性分析

            +

            0 仅考虑时间反演对称性

            +

            1 进行对称性分析

            +
            +
          • +
          +

          如果打开对称性(设置为 1),布里渊区点可以根据对称性进行简化处理,若体系有对称性,则可以减少所需计算的点。因为每个点都会进行一次 Kohn-Sham 方程的求解,对称性分析后若 k 点减少则将提升计算效率。本次计算中开启对称性分析,设置 "1",关于对称性分析的测试还在进一步完善,如果计算结果奇怪,建议设置成 "0"之后再进行计算,比较结果是否一致。

          +
            +
          • pseudo_dir:计算中需要使用赝势来近似离子和电子相互作用势能,为计算提供赝势文件。pseudo_dir指定 STRU 文件中赝势文件所在的目录。本次计算将赝势和轨道文件都与 INPUTSTRUKPT 文件放在一起,因此填入 ".",表示处在当前文件夹中。

            +
            +

            ABACUS 支持的赝势文件——Si_ONCV_PBE-1.0.upf

            +

            "ONCV"代表模守恒赝势的种类,"PBE"是采用的交换关联泛函。

            +
            +
          • +
          • orbital_dir:本次计算将采取 pw(平面波轨道)基组(后文 basis_type 中设置)。若采用 LCAO 基组进行计算,则需要提供作为基组的轨道文件,在 STRU 文件中指定轨道文件所在的目录。若选用 pw 基组,则不需要轨道文件,不需要填写此参数。常用的轨道有:DZP(Double-ζ valence orbitals plus SZ polarization,两条径向轨道和一条杂化轨道),TZDP(Triple-ζ valence orbitals plus DZ polarization,三条径向轨道和两条杂化轨道)。

            +
            +

            ABACUS 支持的轨道文件——Si_gga_7au_100Ry_2s2p1d.orb:

            +

            "gga"代表 GGA 泛函;"7au"是轨道半径,半径越大,计算结果会更准确,但花费时间也更久;"100Ry"是推荐的 ecutwfc 值;"2s2p1d"表明采用了 DZP 轨道,轨道数目越多,即基矢量更完备,计算也会更准确。

            +
            +
          • +
          • basis_type:计算的基组(指描述电子波函数的基函数),在 ABACUS 中常用的有两种:

            +
            +

            pw:平面波基组(由于基矢量更完备,pw 计算将更准确,同时计算时间也更长)

            +

            LCAO:局域原子轨道基组(没有 pw 准确,但效率高)

            +
            +
          • +
          • ecutwfc:平面波函数的能量截止(单位:Ry),在平面波基组里是很重要的一个参数,其大小决定着作为基矢的平面波函数的个数多少,而基矢的多少,也决定了计算精度的高低。

            +
            +

            在本次计算选用的 LCAO 基组中,一般选取轨道文件上推荐的值,设置 "100" Ry 即可。

            +
            +
          • +
          +

          本次计算中选择 pw 基组。如前所述,pw 中不会用到轨道文件。

          +

          我们目前填写好的基本参数如下:

          +
          #Parameters (1.General)
          +suffix                  Si
          +calculation             scf
          +symmetry                1
          +pseudo_dir              .
          +orbital_dir             .
          +basis_type              pw
          +ecutwfc                 100
          +
          +

          2. SCF 迭代参数

          +
            +
          • scf_nmax:针对每个离子构型,scf 电子迭代的最大次数为 scf_nmax,可设为"50"或"100" 次。半导体和绝缘体是较容易收敛的体系,一般 20 步 scf 以内即可达到收敛,对于金属体系或者费米面较为复杂的体系,有可能 50 步仍未收敛。注意,如果做 relax, cell-relax, 或者 md 的时候发现有某些 scf 迭代次数达到最大时仍未达到收敛条件,建议先把计算停下来弄清楚原因后再继续算,有可能是因为离子构型或者点等参数的设置不合理引起的。
          • +
          • scf_thr:代表两个相邻电子迭代步之间的电荷密度误差,也是 SCF 计算中判断是否收敛、完成计算的标准,对于 LCAO,一般设置为 "1e-7",可认为精度足够。对于 pw,建议设置 1e-8 或 1e-9 的精度。
          • +
          +
          #Parameters (2. SCF iterations)
          +scf_nmax                100
          +scf_thr                 1e-8
          +
          +

          3. 求解 Kohn-Sham 方程

          +
            +
          • nbands:计算的 Kohn-Sham 轨道数目,在本次计算中无磁性,参数 nspin 取 1(默认值),程序目前采取 0.5*max(1.2*occupied_bands, occupied_bands + 10) 计算 nbands。 对于 Si,价电子数为 4,每个能级填充可以填充自旋向上和向下 2 个电子,金刚石结构中共有 8 个原子,则nbands=max(1.282,8*2+10)=26
          • +
          • ks_solver:在不同基组中展开哈密顿矩阵的对角化方法,对于 pw,可以选择 cg(Conjugate Gradient,默认方法),bpcg(还不是太稳定、测试中),dav(Davidson 算法);对于 LCAO,可以选择 genelpa(默认值),scalapack_gvx(Scalable Linear Algebra PACKage)。如果选用 LCAO 基组,ks_solver 可设置为"genelpa"。
          • +
          +
          #Parameters (3. Solve KS equation)
          +nbands                  26
          +ks_solver               cg
          +
          +

          4. 展宽技术

          +
            +
          • smearing_method:对于金属体系或者费米面附近较复杂的体系,电子自洽迭代方法往往不容易收敛,这个时候可以选择给电子提供一个光滑的占据函数,用来调节程序计算电荷密度和总电子数时候的电子占据函数,这对于费米面附近的电子态尤为重要。我们这里称为 "smearing method",或者称为展宽方法。具体来说,对于金属体系可以选择 mp(methfessel-paxton),mp2(2-nd methfessel-paxton) ,也可以使用 gauss(也可以写作 gaussian)。因为我们计算金刚石 Si 具有半导体性质,所以 smearing 方法基本不起作用,默认可以选择 gauss。此外,非导体计算可以选择 fixed,半导体和非导体也可以选择 fd(Fermi-Dirac)方法。
          • +
          • smearing_sigma:给定展宽方法的能量范围(单位:Ry),默认是 0.015 Ry,我们按照通常情况给定 "0.01"。
          • +
          +
          #Parameters (4.Smearing)
          +smearing_method         gauss
          +smearing_sigma          0.01
          +
          +

          5. 电荷密度混合

          +
            +
          • mixing_type:进行新旧电荷密度混合时选用的方法,可选 "plain"(简单电荷密度混合方法,如图 1 所示)、"pulay"、"broyden"),默认选择 "broyden"算法。
          • +
          • mixing_beta:新旧电荷密度混合时,新电荷的比例,不同系统取值不同。能带大于 1 eV 的体系,设为 0.7;能带小于 1 eV 的金属和过渡金属,设为 0.2。这个参数越大,收敛得越快,但不收敛的风险也会变大,不过取值大小并不会改变基态能量的结果。对于 Si,因为其能带隙为 1.12 eV,本计算中设置此参数为 "0.7"。
          • +
          • mixing_gg0:电子迭代过程中,可能出现混合电荷密度不收敛的情况,此时可以通过一种叫 Kerker Mixing 的方法来加快收敛。这个参数代表 Kerker 方法中调整电荷密度的尺度,本计算中设置此参数为 "0"。
          • +
          +
          #Parameters (5.Mixing)
          +mixing_type             broyden
          +mixing_beta             0.7
          +mixing_gg0              0
          +
          +

          到此,我们完成了对主要计算参数的设置,此时集成了以上主要参数的 INPUT 文件如下:

          +
          #Parameters (1.General)
          +suffix                  Si
          +calculation             scf
          +symmetry                1
          +pseudo_dir              .
          +orbital_dir             .
          +basis_type              pw
          +ecutwfc                 100
          +
          +#Parameters (2. SCF iterations)
          +scf_nmax                100
          +scf_thr                 1e-8
          +
          +#Parameters (3. Solve KS equation)
          +nbands                  26
          +ks_solver               cg
          +
          +#Parameters (4.Smearing)
          +smearing_method         gauss
          +smearing_sigma          0.01
          +
          +#Parameters (5.Mixing)
          +mixing_type             broyden
          +mixing_beta             0.7
          +mixing_gg0              0
          +
          +

          五、收敛性测试

          +

          1. Ecut 收敛(只对平面波有效)

          +

          平面波(pw)作为一种可以用于描述周期性边界条件下的电子波函数和电荷密度基矢量,它们都是正交的,且可以通过一个 ecutwfc 参数来控制基矢量的个数,ecut 其实代表了每一个平面波所对应的动能,如果 ecut 取得越大,则基矢量可以描述震荡得越剧烈的物理量(例如氧原子的 2p 轨道),那么计算结果就会越精确,但同时所带来的机时成本消耗也越大。因此我们采用 pw 基组做真正计算前,需要对 ecut 进行测试来获得一个足够准确且效率也高的取值。

          +

          保持前文用于计算的基组为"pw",进行 ecut 的收敛性测试,ecut 取值范围为:20~100 Ry。这个例子在 4 进程下启动 MPI 进行并行计算,一般推荐总核数(=线程数*进程数)取 2 的 n 次方或者 n 倍。一个较为粗糙、但基本不会造成计算资源浪费的选取 n 值原则是:体系有多少个原子,不要用超过这个原子个数太多的总核数进行并行计算。例如,体系如果有 16 个原子,不要用远大于 16 的总核数进行计算,一般取 16 的总核数或者更少就够了,具体需要测试。

          +
          mpirun -n 4 abacus
          +

          计算完成后,建议用脚本提取 ecut 数值下OUT.Si文件夹里running_scf.log文件中收敛的系统总能量,计算单原子能量并绘制其随着 ecut 的变化曲线。如图2,可以看见随 ecut 增大,系统总能量趋于收敛。在 ecut=60 Ry 时,认为总能量收敛(与 ecut=50 Ry 的能量差小于 1 meV/atom)。

          +
          体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。
          图 2. 体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。
          +

          2. k 点收敛

          +

          对具有周期性的体系进行计算时,DFT 计算实际会对第一布里渊区中不同离散化点的单独进行计算(例如每个点都会单独求解一次依赖于该点的 Kohn-Sham 方程),并将计算结果进行积分。点越多,则需要求的离散积分就越多,也将越近似连续积分的结果,但计算资源也会增加。因此,pw 和 LCAO 都有必要对 "需要多少点" 进行测试并得出合适的点选取方案。

          +

          金刚石Si的点测试结果。同样在4进程下进行并行计算。

          +
          mpirun -n 4 abacus
          +

          计算完成后,提取各 K 点下OUT.Si文件夹里running_scf.log文件中收敛的系统总能量和计算时间,绘制这两个参数随 K 点的变化曲线。此处,表示各方向上的点取值个数,"" 图中采用单原子的能量。

          +

          分析图3和图4可知,在时,结果已收敛,能量不会再发生较大的变化(与的能量差小于 1 meV/atom),而此时花费时间 132 秒,相比于更大的点较低。因此选择 6×6×6 的点可以同时获得准确的结果和高的计算效率。

          +
          体系里平均单个Si原子能量(in eV/atom)随K点变化。
          图 3. 体系里平均单个Si原子能量(in eV/atom)随K点变化。
          +
          计算时间随K点变化。
          图 4. 计算时间随K点变化。
          +

          提取出每个计算中实际使用到点个数,如表一所示,实际使用点数相比总点数有较明显的简化。如前所述,INPUT 文件中我们设置了参数 symmetry 取 "1",因此在实际计算中利用了晶胞结构中的对称性,即倒易空间的积分没有使用所有的点计算,而是巧妙的利用了对称性得到其它点的信息,简化了布里渊区中的计算工作量。这也解释了图4中明明总点数不同,计算时间却十分接近的原因。

          +

          表一、点数,总点数,实际使用点数:

          + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
          2345678
          点个数82764125216343512
          实际计算点数(开了对称性)441010202035
          +

          以上就是本教程的内容,希望对学习密度泛函理论计算的初学者有所帮助。

          +
          Copyright © mcresearch.gitee.io 2023 all right reserved,powered by Gitbook该文章修订时间: +2024-04-10 09:55:27 +
          + +
          + +
          +
          +
          + +

          results matching ""

          +
            + +
            +
            + +

            No results matching ""

            + +
            +
            +
            + +
            +
            + +
            + + + + + + + + + + + + + + +
            + + +
            + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_book/abacus-question.html b/_book/abacus-question.html new file mode 100644 index 00000000..b7d1861c --- /dev/null +++ b/_book/abacus-question.html @@ -0,0 +1,1397 @@ + + + + + + + ABACUS 答疑手册 · GitBook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
            +
            + + + + + + + + +
            + +
            + +
            + + + + + + + + +
            +
            + +
            +
            + +
            + +

            ABACUS 答疑手册

            +

            作者:陈默涵,邮箱:mohanchen@pku.edu.cn

            +

            最后更新时间:2024/04/05

            +

            一、背景

            +

            本文档适用于想用 ABACUS(原子算筹)来做电子结构计算的科研工作者。

            +

            PW:Plane Wave,指平面波

            +

            NAO:Numerical Atomic Orbitals,指数值原子轨道

            +

            LCAO:Linear Combination of Atomic Orbitals,指局域轨道,在 ABACUS 里面也指数值原子轨道

            +

            基于过去几年来积累的用户问题,接下来本文档将尽量以问答的形式来替使用 ABACUS 的用户答疑解惑,例如:

            +
              +
            1. 问:ABACUS 和 ABAQUS 是什么关系? +答:ABAQUS 是一款知名的多物理场有限元仿真分析软件,ABACUS 的英文单词翻译是算盘,ABACUS 作为一款国产密度泛函理论软件,中文名是原子算筹。

              +
            2. +
            3. 问:使用 ABACUS 需要收费吗? + 答:从软件的角度来讲不收费,因为是开源软件,但跑该软件的机器得自己准备,机器要交电费。

              +
            4. +
            5. 问:ABACUS 的开发过程是怎样的,什么人可以成为开发者? +答:ABACUS 的代码开发记录完全公开,所有代码的修改都在 https://github.com/deepmodeling/abacus-develop 网页上可以查到,ABACUS 为所有感兴趣的参与者都保留了成为开发者的可能性,每个人都有可能称为开发者。

              +
            6. +
            +

            二、ABACUS 使用建议

            +

            1. 编译

            +

            1.1 从哪里可以下载到 ABACUS 的代码?

            +

            答:如果可以接 github,可以登录 https://github.com/deepmodeling/abacus-develop,建议下载最新版本使用,因为软件一直在更新,总体而言新版本的 bugs 会更少。

            +

            如果网络不方便登录 github,还可以登录国内网站 https://gitee.com/deepmodeling/abacus-develop.git 下载。

            +

            1.2 怎么安装 ABACUS?

            +

            答:可以参考官方文档 https://abacus.deepmodeling.com/en/latest/quick_start/easy_install.html

            +

            也可以登录网址 https://mcresearch.gitee.io/abacus-user-guide/,上面有一些针对不同编译器的中文编译教程。

            +

            另外,注意“安装 ABACUS”这句话其实有歧义,ABACUS 有很多不同的安装选项,比如是否只安装支持平面波的功能,还是也要安装支持数值原子轨道的功能,是否要使用 LIBXC 等等不同选项,可根据自己的需要来安装具体的代码模块。

            +

            1.3 如何在曙光的 DCU 上编译 ABACUS?

            +

            答:可参考文档 https://mcresearch.gitee.io/abacus-user-guide/abacus-dcu.html

            +

            2. 计算前准备

            +

            2.1 PW 计算需要准备的文件?

            +

            答:INPUT 文件控制输入参数,STRU 文件包含晶胞、原子信息和赝势;KPT 文件包含布里渊区 k 点信息。这三个文件默认是放在一个文件夹内的。但是 INPUT 文件里其实可以控制结构文件所在地址,以及 KPT 文件所在地址。

            +

            2.2 KPT 文件什么时候不适用?

            +

            答:第一,在使用 DPGEN 的时候,强烈建议设置 kspacing 这个参数,而不是在 KPT 文件里设置 k 点的个数,这是为了做不同大小体系密度泛函计算的时候,使得计算的精度尽量持平,从而得到不同结构里精度相当的总能量和受力,这对于 DPMD 的训练很重要。第二,LCAO 可以在 INPUT 使用 gamma_only(设为 1),那么 KPT 文件不起作用,所有计算只用到 Gamma(0,0,0)这个 k 点,这种情况下体系有更快速的特殊算法,效率更高,计算内存的消耗也更小。

            +

            2.3 LCAO 基组相比于 PW 基组需要额外准备的文件?

            +

            答:数值原子轨道文件,下载地址为 https://abacus.ustc.edu.cn/pseudo/list.htm。注意轨道文件要和对应的赝势相匹配。

            +

            关于数值原子轨道的背景知识,可以参考文档:

            +

            https://mcresearch.gitee.io/abacus-user-guide/abacus-nac1.html

            +

            https://mcresearch.gitee.io/abacus-user-guide/abacus-nac2.html

            +

            https://mcresearch.gitee.io/abacus-user-guide/abacus-nac3.html

            +

            2.4 能量截断值收敛性测试是必须要做的吗?

            +

            答:是的,除非你或者别人之前已经做过了,得到了推荐的能量截断值。否则,一般来讲一个给定的赝势(模守恒或者超软赝势),你需要从低到高逐步增加能量截断值来判断总能量已经收敛。

            +

            2.5 关于长度单位

            +

            答:没有注意到单位的转换是初学者容易犯的错之一。长度单位 Angstroms(埃)和 Bohr 的转换关系需要了解(1 埃=1.8897259886 Bohr,反过来 1 Borh=0.529177249 Angstroms,转换时候尽可能多地取有效数字,会让原子坐标更准确),不同软件的长度单位可能有取得不同的情况,涉及到晶格矢量、原子位置,以及坐标系转换(Direct 和 Cartesian 的区别,前者是晶格坐标系,后者单位才是长度单位),如果原子位置或者晶胞设错了,不同软件计算结果就会不同。一个小技巧判断不同软件的晶格结构和原子坐标是否一样:可以看不同软件算出来的 Ewald 能量(周期性边界条件下算离子-离子库伦排斥能的快速算法),如果 Ewald 能量能对上(精确到小数点后 10 位以上),那么说明两个软件的原子坐标和晶格矢量设置都是一样的。

            +

            2.6 关于能量单位

            +

            答:涉及到能量单位的有多处。首先是平面波的能量截断值,VASP 经常用的是 eV,QE 和 ABACUS 用的是 Ry,这两者有转换关系(1 Ry=13.605703976 eV),所以用 VASP 习惯的用户需要把对应的 eV 转换成 Ry 再使用 ABACUS。其次是 smearing 的参数选择,例如 0.015,其单位是 Ry 或者 eV 也对结果有较大影响。

            +

            3. 基矢量

            +

            3.1 ABACUS 支持的基矢量有几种?

            +

            答:分成 PW(平面波)和 LCAO(具体来讲是 Numerical atomic orbitals,NAO,即数值原子轨道)两种,目前 ABACUS 都支持,像是 VASP 和 QE 只支持 PW,SIESTA 和 OpenMP 支持 LCAO。还有一种叫 lcao_in_pw,就是把 NAO 展开成平面波进行计算,但一般只用于测试目的。

            +

            3.2 怎么选择是采用 PW 还是用 LCAO 基矢量来做计算?

            +

            答:如果是较小原子数的固体体系,建议可以采用 PW 效率较高。如果是体系原子数较大(例如大于 50 个原子),建议可以用 LCAO 试试,效率会更高。此外,当使用 LCAO 做计算时,可以先用 PW 这组相对完备的基组来测试赝势带来的能量收敛性。

            +

            3.3 如果感觉 LCAO 的效率慢,可能的原因是否和基矢量有关系?

            +

            答:ABACUS 里采用的 LCAO 的局域轨道长度一般在 6-10 au 之间,轨道的截断越长,往往计算精度越高,但计算量和内存消耗也会显著的更大。如果要提高速度,可以在尽可能不影响精度(需要自己测试)的前提下,减小数值原子轨道的半径,这样可以大幅度提升计算效率以及降低内存占用量。

            +

            3.4 ABACUS 中 LCAO 的 Ecut 是做什么用的?

            +

            答:LCAO 和 PW 一样,都会有一个 Ecut,在使用 LCAO 的时候,增加 Ecut 只会增加局域势格点积分部分的精度(赝势的局域部分 + 交换关联势 +Hartree 势),并不增加数值原子轨道基矢量的完备性,所以原先用于 PW 的收敛性测试方法是不能这样直接用于 LCAO 的。如果要增加 LCAO 的基矢量使得基矢量更完备,需要从例如 DZP 增加到 TZDP,而不是增加 Ecut。

            +

            3.5 LCAO 算小分子和固体有什么要注意的?

            +

            答:使用局域轨道的话,会有 BSSE(Basis set superposition error),对于小分子体系,BSSE 带来的误差会较为严重,使得对于一些分子体系,有必要采用更完备的基矢量(或者更长的局域轨道)或者 BSSE 修正。而对于固体系统,一般来讲每个原子会有若干近邻原子,这些近邻原子上的局域轨道会使得在描述每个原子的电子结构时基矢量总体更完备,所以可以相对选择更短的局域轨道。

            +

            3.6 如果算出来 SZ 结果比 DZP 好,是否可以用 SZ 结果?

            +

            答:采用 LCAO 时,SZ(single zeta 轨道)的结果一般来讲都不收敛,一般不可以用来发表文章。一般至少是 DZP 及以上才认为基矢量较为准确,是学界可以认可的 NAO 精度。

            +

            4. 赝势

            +

            4.1 PAW 是不是赝势?

            +

            答:准确来说不是,是一种描述电子-离子相互作用的方法。

            +

            4.2 为什么不同软件算出来的统一体系的总能量差距可能会巨大?

            +

            答:因为同样的元素,其不同的赝势(或 PAW 势)允许总能量有一个常数的偏移,因为都对库伦势进行了人为的修改。所以,我们一般在分析结果的时候也不用总能量这个数值,而是用总能量之间的差别,例如 bcc 相比于 fcc 更稳定这种结论,不同赝势哪怕总能量不对齐,其算出来的 bcc 和 fcc 之间的能量差也应该是对齐的。另外一件事情就是画态密度(Density of States,DOS)的时候,我们习惯把费米面取成 0 点,也是因为总能量是可以有一个常数的偏移的。

            +

            4.3 赝势为什么和交换关联泛函有关?

            +

            答:因为赝势生成过程中解的是一维的 Kohn-Sham 方程,这个过程也用到了泛函,所以不同泛函生成的赝势就不同。

            +

            4.4 赝势改变了,什么参数需要重新测试?

            +

            答:因为电子和离子的描述方式变了,所以需要重新测试能量截断值 Ecut 的收敛性,即增加 Ecut,看总能量变化,例如从 90 Ry 变到 100 Ry,如果总能量变化小于 1 meV/atom,则认为可以收敛。

            +

            4.5 别人文献看到的某元素的能量截断值,是否可以直接拿过来使用?

            +

            答:一般来说是不可以,例如用了 VASP 的 PAW 势,就难以直接拿到模守恒赝势里使用。

            +

            5. 电子自洽迭代过程

            +

            5.1 为什么 ABACUS 的 SCF 计算比 VASP 慢很多?

            +

            答:首先,先检查 Ecut 是否一样(注意 ABACS 的单位是 Ry,VASP 是 eV,要换算),一般来讲 VASP 用 PAW 方法所需的 Ecut 比 ABACUS 的模守恒赝势要低,目前来讲这部分参数 VASP 占优,你并不能降低 ABACUS 的 Ecut 来和 VASP 的 Ecut 持平。第二,检查你所计算的元素的电子数,往往电子数不同,计算效率会有很大差别。例如 Ga 的模守恒赝势可能有 13 个电子,但 VASP 的 Ga 的 PAW 势可能只有 3 个电子,那么 VASP 的计算效率会快很多也是可以预期的。

            +

            5.2 电子自洽迭代里的展宽技术是用来做什么的?

            +

            答:电子自洽迭代过程中使用的展宽(一般称为 Smearing)是一种数值技术,它用于提高计算中的收敛稳定性和速度,尤其是在处理金属和其他导体体系时非常有用。展宽通常采用几种不同的办法来实施,例如费米-狄拉克展宽(Fermi-Dirac smearing)、高斯展宽(Gaussian smearing)、Methfessel-Paxton 展宽等,它们代表不同的电子占据数分布方法。

            +

            5.3 电子自洽迭代收敛结果和 smearing 相关吗?

            +

            答:对于没有带隙的金属体系是相关的,采用 smearing 会在体系总能量里额外引入一个电子熵项。一般来讲 smearing_sigma 取得越大越容易收敛,但是要注意的是,smearing_sigma 取大了,总能量结果也愈发不准确。因此在迭代接近收敛时,通常需要逐步减少展宽值,以得到更加准确的接近零温的结果。对于半导体来讲,一般较小的 smearing 参数不影响总能量结果。

            +

            5.4 只要体系不收敛,就可以调整 smearing 吗?

            +

            答:在项目里对一系列相关体系进行密度泛函理论计算,如果需要用到这些体系的总能量相对值,但发现有体系不收敛,我可以针对不同体系调整不同的 smearing 参数吗?一般不可以,因为 smearing 可能会改变总能量的数值。

            +

            5.5 电荷密度混合是用来做什么的?

            +

            答:在电子自洽迭代过程中,需要不断更新电荷密度,直到输入的电荷密度和由此计算得到的输出电荷密度之间的差异足够小,即达到自洽。混合的具体方法有很多种,比如简单的线性混合、Broyden 混合、Pulay 混合(也称为 DIIS,Direct Inversion in the Iterative Subspace)等。这些方法通过考虑前几次迭代的电荷密度和/或电荷密度差异,来改进当前迭代的电荷密度估计。

            +

            5.6 总能量收敛、受力和应力是否收敛了?

            +

            答:一般来讲,总能量在 SCF 中收敛到几乎不变时,受力和应力不一定完全收敛。如果是对受力或者压力敏感的计算,建议也测试一下相应受力和应力是否收敛(即继续降低 scf_thr 数值,设置更严格收敛阈值)。

            +

            6. 原子位置和晶胞结构优化(弛豫)

            +

            6.1 原子位置和晶胞结构优化有什么需要注意的?

            +

            答:首先要注意的就是,原子位置和晶胞结构优化较慢,很耗机时,动辄就是几十上百个进程跑一两天。所以,如果不是很有把握了解你要算的体系,或者不是特别熟练密度泛函理论计算,建议动手算之前找导师聊一聊这样做的可行性,这样做一方面也是可以少走科研上的弯路,另外一方面也能有效的帮助导师节省机时费。

            +

            6.2 原子位置和晶胞结构优化有什么技巧?

            +

            答:首先,就是要小心一些参数不要设多了,例如不要包含太多费米面上方非占据的轨道,如果体系没有磁矩,没有必要打开自旋极化计算(nspin=2)。其次,如果你能预估偏离最终的构型较大,那你可以先采用低精度的方法达到一个接近最终构型的一个临时构型。例如,没有必要用 181818 的 k 点(虽然你认为这样才能完全收敛总能量)来做优化,你可以先选一个 999 的 k 点 mesh 来做。第三,如果你是做的一系列相关结构的原子位置和晶胞结构优化,可以想办法构造一些更好的初猜结构,除非考虑亚稳态的存在,否则一开始猜测的结构越接近,所需要的优化步数就越少。第四,BFGS 算法一般适用于偏离稳定结构较小的情况,而 cg 一般用于偏离稳定结构较大的情况。

            +

            6.3 做结构优化很多步都不收敛,怎么办?

            +

            答:首先,检查每一步的 SCF 是否收敛,如果不收敛,先让 SCF 能收敛,再做结构优化。其次,如果能不用 cell-relax 而只用 relax,建议尽量先用 relax,把晶胞内的原子位置先固定住了,最后再做 cell-realx,这样效率更高。原因是如果把 cell 的自由度和原子的自由度一起考虑做 relax,往往效率较低。

            +

            6.4 采用 LCAO 和 PW,结构优化收敛上有什么区别?

            +

            答:PW 基组更完备,一般结构优化可以收敛到 0.001 eV/Angstroms。而 LCAO 由于基矢量不够完备,存在诸如 egg box effect 的误差,所以求力能收敛到的精度一般要差一些,通常 0.04 eV/Angstroms 以下是可以接受的,也有不少文章采用这个精度来发表结果,是被认可的。

            +

            7. 并行

            +

            7.1 MPI 并行和 OpenMP 并行的区别是什么?什么叫进程,什么叫线程?

            +

            答:MPI 进程和 OpenMP 线程的差别,前者内存是不共享的,后者内存是共享的。

            +

            7.2 是不是进程或者线程越多,计算就越快?

            +

            答:举个例子,用 7au 的 DZP 轨道算 512 个 Fe 原子的体系,K 点 111,以下是运行时间(OMP 代表线程数,MPI 代表进程数):1 OMP x 32 MPI = 262s 每电子步;1 OMP x 64 MPI = 581s 每电子步;1 OMP x 128 MPI = 654s 每电子步;1 OMP x 256 MPI = 765s 每电子步。可以看到进程越多,计算反而越慢,这是因为进程间的通讯量随着进程数增多变大了。所以,并不是用的计算资源越多,计算就会越快,建议做计算前先评估好并行效率。

            +

            7.3 K 点并行(也就是 KPAR 这个参数),要怎么理解它的使用?

            +

            答:对 PW 来说,不同 K 点的 Kohn-Sham 方程求解(即寻找特征值和特征向量)是比较独立的,因此如果给定了总的进程数,我们可以想办法把不同 K 点的方程求解尽可能并行,KPAR 代表我们要将 K 点分成几组,因此原则上 KPAR 越大效率应该越高。如果 KPAR 设成 1,那么程序执行时是用平面波来并行,在某些时候,平面波并行效率也挺高,因此看不出 K 点并行的优势。对 LCAO 来说,KPAR 并行的优势不大,因此目前 ABACUS 不支持 LCAO 的 K 点并行功能。

            +
            Copyright © mcresearch.gitee.io 2023 all right reserved,powered by Gitbook该文章修订时间: +2024-04-05 17:37:42 +
            + +
            + +
            +
            +
            + +

            results matching ""

            +
              + +
              +
              + +

              No results matching ""

              + +
              +
              +
              + +
              +
              + +
              + + + + + + + + + + + + + + +
              + + +
              + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_book/abacus-sdft.html b/_book/abacus-sdft.html index 1eb58a9b..3833b560 100644 --- a/_book/abacus-sdft.html +++ b/_book/abacus-sdft.html @@ -176,7 +176,20 @@ -
            • +
            • + + + + + Intel oneAPI 2024.x 编译 ABACUS 教程 + + + + + +
            • + +
            • @@ -189,7 +202,7 @@
            • -
            • +
            • @@ -202,7 +215,7 @@
            • -
            • +
            • @@ -215,7 +228,7 @@
            • -
            • +
            • @@ -228,7 +241,33 @@
            • -
            • +
            • + + + + + ABACUS 答疑手册 + + + + + +
            • + +
            • + + + + + ABACUS 收敛性问题解决手册 + + + + + +
            • + +
            • @@ -241,7 +280,7 @@
            • -
            • +
            • @@ -254,7 +293,7 @@
            • -
            • +
            • @@ -267,7 +306,7 @@
            • -
            • +
            • @@ -280,7 +319,20 @@
            • -
            • +
            • + + + + + ABACUS 的平面波计算与收敛性测试 + + + + + +
            • + +
            • @@ -293,7 +345,7 @@
            • -
            • +
            • @@ -306,7 +358,7 @@
            • -
            • +
            • @@ -319,7 +371,7 @@
            • -
            • +
            • @@ -332,7 +384,20 @@
            • -
            • +
            • + + + + + ABACUS 实时演化含时密度泛函理论使用教程 + + + + + +
            • + +
            • @@ -345,7 +410,7 @@
            • -
            • +
            • @@ -358,7 +423,7 @@
            • -
            • +
            • @@ -371,7 +436,7 @@
            • -
            • +
            • @@ -384,7 +449,7 @@
            • -
            • +
            • @@ -397,7 +462,7 @@
            • -
            • +
            • @@ -410,7 +475,20 @@
            • -
            • +
            • + + + + + ABACUS+Atomkit 计算态密度和能带 + + + + + +
            • + +
            • @@ -423,7 +501,7 @@
            • -
            • +
            • @@ -436,7 +514,7 @@
            • -
            • +
            • @@ -449,7 +527,7 @@
            • -
            • +
            • @@ -462,7 +540,7 @@
            • -
            • +
            • @@ -475,7 +553,7 @@
            • -
            • +
            • @@ -488,7 +566,7 @@
            • -
            • +
            • @@ -501,7 +579,7 @@
            • -
            • +
            • @@ -514,12 +592,25 @@
            • -
            • +
            • - + - ABACUS 收敛性问题解决手册 + ABACUS+pymatgen 计算弹性常数 + + + + + +
            • + +
            • + + + + + ABACUS+Bader charge 分析教程 @@ -624,7 +715,20 @@
            • -
            • +
            • + + + + + ABACUS formatter-2.0 版本使用说明书 + + + + + +
            • + +
            • @@ -637,7 +741,46 @@
            • -
            • +
            • + + + + + 性能分析工具:vtune 快速上手教程 + + + + + +
            • + +
            • + + + + + 以格点积分程序为例:一些代码开发习惯小贴士 + + + + + +
            • + +
            • + + + + + 文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例 + + + + + +
            • + +
            • @@ -650,7 +793,7 @@
            • -
            • +
            • @@ -663,7 +806,7 @@
            • -
            • +
            • @@ -676,7 +819,7 @@
            • -
            • +
            • @@ -689,7 +832,7 @@
            • -
            • +
            • @@ -702,7 +845,7 @@
            • -
            • +
            • @@ -715,7 +858,7 @@
            • -
            • +
            • @@ -728,7 +871,7 @@
            • -
            • +
            • @@ -741,7 +884,7 @@
            • -
            • +
            • @@ -754,7 +897,7 @@
            • -
            • +
            • @@ -767,7 +910,7 @@
            • -
            • +
            • @@ -780,7 +923,7 @@
            • -
            • +
            • @@ -793,7 +936,7 @@
            • -
            • +
            • @@ -806,7 +949,7 @@
            • -
            • +
            • @@ -819,7 +962,7 @@
            • -
            • +
            • @@ -832,7 +975,20 @@
            • -
            • +
            • + + + + + 如何在 ABACUS 中新增一个输入参数(v3.7.0 后) + + + + + +
            • + +
            • @@ -845,7 +1001,7 @@
            • -
            • +
            • @@ -901,6 +1057,19 @@ +
            • + +
            • + + + + + 在 ABACUS 中进行差分测试 + + + + +
            • @@ -1158,7 +1327,7 @@

              No results matching " var gitbook = gitbook || []; gitbook.push(function() { - gitbook.page.hasChanged({"page":{"title":"ABACUS 随机波函数DFT方法使用教程","level":"1.1.12","depth":2,"next":{"title":"ABACUS 无轨道密度泛函理论方法使用教程","level":"1.1.13","depth":2,"path":"abacus-ofdft.md","ref":"abacus-ofdft.md","articles":[]},"previous":{"title":"ABACUS 隐式溶剂模型使用教程","level":"1.1.11","depth":2,"path":"abacus-sol.md","ref":"abacus-sol.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.6.1","level":"1.1.6","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.6.1"},{"backlink":"abacus-upf.html#fig1.1.6.2","level":"1.1.6","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.6.2"},{"backlink":"abacus-upf.html#fig1.1.6.3","level":"1.1.6","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.6.3"},{"backlink":"abacus-upf.html#fig1.1.6.4","level":"1.1.6","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.6.4"},{"backlink":"abacus-upf.html#fig1.1.6.5","level":"1.1.6","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.6.5"},{"backlink":"abacus-surface2.html#fig1.1.15.1","level":"1.1.15","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":6,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.15.1"},{"backlink":"abacus-surface2.html#fig1.1.15.2","level":"1.1.15","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":7,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.15.2"},{"backlink":"abacus-surface2.html#fig1.1.15.3","level":"1.1.15","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":8,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.15.3"},{"backlink":"abacus-surface5.html#fig1.1.18.1","level":"1.1.18","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":9,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.18.1"},{"backlink":"abacus-surface5.html#fig1.1.18.2","level":"1.1.18","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.18.2"},{"backlink":"abacus-surface5.html#fig1.1.18.3","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":11,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.18.3"},{"backlink":"abacus-surface5.html#fig1.1.18.4","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":12,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.18.4"},{"backlink":"abacus-surface5.html#fig1.1.18.5","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":13,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.18.5"},{"backlink":"abacus-surface6.html#fig1.1.19.1","level":"1.1.19","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":14,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.19.1"},{"backlink":"abacus-surface6.html#fig1.1.19.2","level":"1.1.19","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":15,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.19.2"},{"backlink":"develop-path4.html#fig1.2.13.1","level":"1.2.13","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":16,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.13.1"},{"backlink":"develop-path4.html#fig1.2.13.2","level":"1.2.13","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":17,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.13.2"},{"backlink":"develop-path5.html#fig1.2.14.1","level":"1.2.14","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":18,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.14.1"},{"backlink":"develop-path5.html#fig1.2.14.2","level":"1.2.14","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":19,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.14.2"},{"backlink":"develop-path5.html#fig1.2.14.3","level":"1.2.14","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":20,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.14.3"},{"backlink":"develop-path5.html#fig1.2.14.4","level":"1.2.14","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":21,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.14.4"},{"backlink":"develop-path5.html#fig1.2.14.5","level":"1.2.14","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":22,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.14.5"},{"backlink":"develop-path6.html#fig1.2.16.1","level":"1.2.16","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":23,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.16.1"},{"backlink":"develop-path10.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":24,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.20.2","level":"1.2.20","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":25,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.20.2"},{"backlink":"develop-path10.html#fig1.2.20.3","level":"1.2.20","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":26,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.20.3"},{"backlink":"develop-path10.html#fig1.2.20.4","level":"1.2.20","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":27,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.20.4"},{"backlink":"develop-path10.html#fig1.2.20.5","level":"1.2.20","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":28,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.20.5"},{"backlink":"develop-path11.html#fig1.2.21.1","level":"1.2.21","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":29,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.21.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":30,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"abacus-sdft.md","mtime":"2023-09-25T02:30:38.787Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-03-19T11:29:16.414Z"},"basePath":".","book":{"language":""}}); + gitbook.page.hasChanged({"page":{"title":"ABACUS 随机波函数DFT方法使用教程","level":"1.1.16","depth":2,"next":{"title":"ABACUS 无轨道密度泛函理论方法使用教程","level":"1.1.17","depth":2,"path":"abacus-ofdft.md","ref":"abacus-ofdft.md","articles":[]},"previous":{"title":"ABACUS 隐式溶剂模型使用教程","level":"1.1.15","depth":2,"path":"abacus-sol.md","ref":"abacus-sol.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.9.1","level":"1.1.9","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.9.1"},{"backlink":"abacus-upf.html#fig1.1.9.2","level":"1.1.9","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.9.2"},{"backlink":"abacus-upf.html#fig1.1.9.3","level":"1.1.9","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.9.3"},{"backlink":"abacus-upf.html#fig1.1.9.4","level":"1.1.9","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.9.4"},{"backlink":"abacus-upf.html#fig1.1.9.5","level":"1.1.9","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.9.5"},{"backlink":"abacus-pw.html#fig1.1.13.1","level":"1.1.13","list_caption":"Figure: 电子自洽迭代计算流程。","alt":"电子自洽迭代计算流程。","nro":6,"url":"picture/fig_pw-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"电子自洽迭代计算流程。","attributes":{},"skip":false,"key":"1.1.13.1"},{"backlink":"abacus-pw.html#fig1.1.13.2","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","nro":7,"url":"picture/fig_pw-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","attributes":{},"skip":false,"key":"1.1.13.2"},{"backlink":"abacus-pw.html#fig1.1.13.3","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随K点变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","nro":8,"url":"picture/fig_pw-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","attributes":{},"skip":false,"key":"1.1.13.3"},{"backlink":"abacus-pw.html#fig1.1.13.4","level":"1.1.13","list_caption":"Figure: 计算时间随K点变化。","alt":"计算时间随K点变化。","nro":9,"url":"picture/fig_pw-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"计算时间随K点变化。","attributes":{},"skip":false,"key":"1.1.13.4"},{"backlink":"abacus-surface2.html#fig1.1.20.1","level":"1.1.20","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.20.1"},{"backlink":"abacus-surface2.html#fig1.1.20.2","level":"1.1.20","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":11,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.20.2"},{"backlink":"abacus-surface2.html#fig1.1.20.3","level":"1.1.20","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":12,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.20.3"},{"backlink":"abacus-surface5.html#fig1.1.23.1","level":"1.1.23","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":13,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.23.1"},{"backlink":"abacus-surface5.html#fig1.1.23.2","level":"1.1.23","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":14,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.23.2"},{"backlink":"abacus-surface5.html#fig1.1.23.3","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":15,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.23.3"},{"backlink":"abacus-surface5.html#fig1.1.23.4","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":16,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.23.4"},{"backlink":"abacus-surface5.html#fig1.1.23.5","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":17,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.23.5"},{"backlink":"abacus-surface6.html#fig1.1.24.1","level":"1.1.24","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":18,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.24.1"},{"backlink":"abacus-surface6.html#fig1.1.24.2","level":"1.1.24","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":19,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.24.2"},{"backlink":"abacus-dos.html#fig1.1.25.1","level":"1.1.25","list_caption":"Figure: 铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","alt":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","nro":20,"url":"picture/fig_dos-5.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","attributes":{},"skip":false,"key":"1.1.25.1"},{"backlink":"abacus-dos.html#fig1.1.25.2","level":"1.1.25","list_caption":"Figure: 铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","alt":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","nro":21,"url":"picture/fig_dos-6.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","attributes":{},"skip":false,"key":"1.1.25.2"},{"backlink":"abacus-bader.html#fig1.1.35.1","level":"1.1.35","list_caption":"Figure: SPIN1_CHG.cube","alt":"SPIN1_CHG.cube","nro":22,"url":"picture/fig_Bader1.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN1_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.1"},{"backlink":"abacus-bader.html#fig1.1.35.2","level":"1.1.35","list_caption":"Figure: SPIN2_CHG.cube","alt":"SPIN2_CHG.cube","nro":23,"url":"picture/fig_Bader2.jpg","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN2_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.2"},{"backlink":"abacus-bader.html#fig1.1.35.3","level":"1.1.35","list_caption":"Figure: SPIN_DENSITY.cube","alt":"SPIN_DENSITY.cube","nro":24,"url":"picture/fig_Bader3.jpg","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN_DENSITY.cube","attributes":{},"skip":false,"key":"1.1.35.3"},{"backlink":"abacus-bader.html#fig1.1.35.4","level":"1.1.35","list_caption":"Figure: charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","alt":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","nro":25,"url":"picture/fig_Bader4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","attributes":{},"skip":false,"key":"1.1.35.4"},{"backlink":"abacus-bader.html#fig1.1.35.5","level":"1.1.35","list_caption":"Figure: spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","alt":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","nro":26,"url":"picture/fig_Bader5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","attributes":{},"skip":false,"key":"1.1.35.5"},{"backlink":"abacus-bader.html#fig1.1.35.6","level":"1.1.35","list_caption":"Figure: charge2d_000.dat","alt":"charge2d_000.dat","nro":27,"url":"picture/fig_Bader6.png","index":6,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.6"},{"backlink":"abacus-bader.html#fig1.1.35.7","level":"1.1.35","list_caption":"Figure: charge2d_025.dat","alt":"charge2d_025.dat","nro":28,"url":"picture/fig_Bader7.png","index":7,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.7"},{"backlink":"abacus-bader.html#fig1.1.35.8","level":"1.1.35","list_caption":"Figure: charge2d_050.dat","alt":"charge2d_050.dat","nro":29,"url":"picture/fig_Bader8.png","index":8,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.8"},{"backlink":"abacus-bader.html#fig1.1.35.9","level":"1.1.35","list_caption":"Figure: spin2d_000.dat","alt":"spin2d_000.dat","nro":30,"url":"picture/fig_Bader9.png","index":9,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.9"},{"backlink":"abacus-bader.html#fig1.1.35.10","level":"1.1.35","list_caption":"Figure: spin2d_025.dat","alt":"spin2d_025.dat","nro":31,"url":"picture/fig_Bader10.png","index":10,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.10"},{"backlink":"abacus-bader.html#fig1.1.35.11","level":"1.1.35","list_caption":"Figure: spin2d_050.dat","alt":"spin2d_050.dat","nro":32,"url":"picture/fig_Bader11.png","index":11,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.11"},{"backlink":"develop-path4.html#fig1.2.17.1","level":"1.2.17","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":33,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.17.1"},{"backlink":"develop-path4.html#fig1.2.17.2","level":"1.2.17","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":34,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.17.2"},{"backlink":"develop-path5.html#fig1.2.18.1","level":"1.2.18","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":35,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.18.1"},{"backlink":"develop-path5.html#fig1.2.18.2","level":"1.2.18","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":36,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.18.2"},{"backlink":"develop-path5.html#fig1.2.18.3","level":"1.2.18","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":37,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.18.3"},{"backlink":"develop-path5.html#fig1.2.18.4","level":"1.2.18","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":38,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.18.4"},{"backlink":"develop-path5.html#fig1.2.18.5","level":"1.2.18","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":39,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.18.5"},{"backlink":"develop-path6.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":40,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.24.1","level":"1.2.24","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":41,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.24.1"},{"backlink":"develop-path10.html#fig1.2.24.2","level":"1.2.24","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":42,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.24.2"},{"backlink":"develop-path10.html#fig1.2.24.3","level":"1.2.24","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":43,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.24.3"},{"backlink":"develop-path10.html#fig1.2.24.4","level":"1.2.24","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":44,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.24.4"},{"backlink":"develop-path10.html#fig1.2.24.5","level":"1.2.24","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":45,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.24.5"},{"backlink":"develop-path11.html#fig1.2.25.1","level":"1.2.25","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":46,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.25.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":47,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"abacus-sdft.md","mtime":"2023-09-25T02:30:38.787Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-09-06T11:53:05.785Z"},"basePath":".","book":{"language":""}}); }); diff --git a/_book/abacus-shengbte.html b/_book/abacus-shengbte.html index d021256b..f17a2904 100644 --- a/_book/abacus-shengbte.html +++ b/_book/abacus-shengbte.html @@ -176,7 +176,20 @@ -
            • +
            • + + + + + Intel oneAPI 2024.x 编译 ABACUS 教程 + + + + + +
            • + +
            • @@ -189,7 +202,7 @@
            • -
            • +
            • @@ -202,7 +215,7 @@
            • -
            • +
            • @@ -215,7 +228,7 @@
            • -
            • +
            • @@ -228,7 +241,33 @@
            • -
            • +
            • + + + + + ABACUS 答疑手册 + + + + + +
            • + +
            • + + + + + ABACUS 收敛性问题解决手册 + + + + + +
            • + +
            • @@ -241,7 +280,7 @@
            • -
            • +
            • @@ -254,7 +293,7 @@
            • -
            • +
            • @@ -267,7 +306,7 @@
            • -
            • +
            • @@ -280,7 +319,20 @@
            • -
            • +
            • + + + + + ABACUS 的平面波计算与收敛性测试 + + + + + +
            • + +
            • @@ -293,7 +345,7 @@
            • -
            • +
            • @@ -306,7 +358,7 @@
            • -
            • +
            • @@ -319,7 +371,7 @@
            • -
            • +
            • @@ -332,7 +384,20 @@
            • -
            • +
            • + + + + + ABACUS 实时演化含时密度泛函理论使用教程 + + + + + +
            • + +
            • @@ -345,7 +410,7 @@
            • -
            • +
            • @@ -358,7 +423,7 @@
            • -
            • +
            • @@ -371,7 +436,7 @@
            • -
            • +
            • @@ -384,7 +449,7 @@
            • -
            • +
            • @@ -397,7 +462,7 @@
            • -
            • +
            • @@ -410,7 +475,20 @@
            • -
            • +
            • + + + + + ABACUS+Atomkit 计算态密度和能带 + + + + + +
            • + +
            • @@ -423,7 +501,7 @@
            • -
            • +
            • @@ -436,7 +514,7 @@
            • -
            • +
            • @@ -449,7 +527,7 @@
            • -
            • +
            • @@ -462,7 +540,7 @@
            • -
            • +
            • @@ -475,7 +553,7 @@
            • -
            • +
            • @@ -488,7 +566,7 @@
            • -
            • +
            • @@ -501,7 +579,7 @@
            • -
            • +
            • @@ -514,12 +592,25 @@
            • -
            • +
            • - + - ABACUS 收敛性问题解决手册 + ABACUS+pymatgen 计算弹性常数 + + + + + +
            • + +
            • + + + + + ABACUS+Bader charge 分析教程 @@ -624,7 +715,20 @@
            • -
            • +
            • + + + + + ABACUS formatter-2.0 版本使用说明书 + + + + + +
            • + +
            • @@ -637,7 +741,46 @@
            • -
            • +
            • + + + + + 性能分析工具:vtune 快速上手教程 + + + + + +
            • + +
            • + + + + + 以格点积分程序为例:一些代码开发习惯小贴士 + + + + + +
            • + +
            • + + + + + 文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例 + + + + + +
            • + +
            • @@ -650,7 +793,7 @@
            • -
            • +
            • @@ -663,7 +806,7 @@
            • -
            • +
            • @@ -676,7 +819,7 @@
            • -
            • +
            • @@ -689,7 +832,7 @@
            • -
            • +
            • @@ -702,7 +845,7 @@
            • -
            • +
            • @@ -715,7 +858,7 @@
            • -
            • +
            • @@ -728,7 +871,7 @@
            • -
            • +
            • @@ -741,7 +884,7 @@
            • -
            • +
            • @@ -754,7 +897,7 @@
            • -
            • +
            • @@ -767,7 +910,7 @@
            • -
            • +
            • @@ -780,7 +923,7 @@
            • -
            • +
            • @@ -793,7 +936,7 @@
            • -
            • +
            • @@ -806,7 +949,7 @@
            • -
            • +
            • @@ -819,7 +962,7 @@
            • -
            • +
            • @@ -832,7 +975,20 @@
            • -
            • +
            • + + + + + 如何在 ABACUS 中新增一个输入参数(v3.7.0 后) + + + + + +
            • + +
            • @@ -845,7 +1001,7 @@
            • -
            • +
            • @@ -901,6 +1057,19 @@ +
            • + +
            • + + + + + 在 ABACUS 中进行差分测试 + + + + +
            • @@ -1169,7 +1338,7 @@

              No results matching " var gitbook = gitbook || []; gitbook.push(function() { - gitbook.page.hasChanged({"page":{"title":"ABACUS+ShengBTE 计算晶格热导率","level":"1.1.21","depth":2,"next":{"title":"ABACUS+DPGEN 使用教程","level":"1.1.22","depth":2,"path":"abacus-dpgen.md","ref":"abacus-dpgen.md","articles":[]},"previous":{"title":"ABACUS+Phonopy 计算声子谱","level":"1.1.20","depth":2,"path":"abacus-phonopy.md","ref":"abacus-phonopy.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.6.1","level":"1.1.6","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.6.1"},{"backlink":"abacus-upf.html#fig1.1.6.2","level":"1.1.6","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.6.2"},{"backlink":"abacus-upf.html#fig1.1.6.3","level":"1.1.6","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.6.3"},{"backlink":"abacus-upf.html#fig1.1.6.4","level":"1.1.6","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.6.4"},{"backlink":"abacus-upf.html#fig1.1.6.5","level":"1.1.6","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.6.5"},{"backlink":"abacus-surface2.html#fig1.1.15.1","level":"1.1.15","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":6,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.15.1"},{"backlink":"abacus-surface2.html#fig1.1.15.2","level":"1.1.15","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":7,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.15.2"},{"backlink":"abacus-surface2.html#fig1.1.15.3","level":"1.1.15","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":8,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.15.3"},{"backlink":"abacus-surface5.html#fig1.1.18.1","level":"1.1.18","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":9,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.18.1"},{"backlink":"abacus-surface5.html#fig1.1.18.2","level":"1.1.18","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.18.2"},{"backlink":"abacus-surface5.html#fig1.1.18.3","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":11,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.18.3"},{"backlink":"abacus-surface5.html#fig1.1.18.4","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":12,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.18.4"},{"backlink":"abacus-surface5.html#fig1.1.18.5","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":13,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.18.5"},{"backlink":"abacus-surface6.html#fig1.1.19.1","level":"1.1.19","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":14,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.19.1"},{"backlink":"abacus-surface6.html#fig1.1.19.2","level":"1.1.19","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":15,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.19.2"},{"backlink":"develop-path4.html#fig1.2.13.1","level":"1.2.13","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":16,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.13.1"},{"backlink":"develop-path4.html#fig1.2.13.2","level":"1.2.13","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":17,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.13.2"},{"backlink":"develop-path5.html#fig1.2.14.1","level":"1.2.14","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":18,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.14.1"},{"backlink":"develop-path5.html#fig1.2.14.2","level":"1.2.14","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":19,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.14.2"},{"backlink":"develop-path5.html#fig1.2.14.3","level":"1.2.14","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":20,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.14.3"},{"backlink":"develop-path5.html#fig1.2.14.4","level":"1.2.14","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":21,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.14.4"},{"backlink":"develop-path5.html#fig1.2.14.5","level":"1.2.14","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":22,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.14.5"},{"backlink":"develop-path6.html#fig1.2.16.1","level":"1.2.16","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":23,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.16.1"},{"backlink":"develop-path10.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":24,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.20.2","level":"1.2.20","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":25,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.20.2"},{"backlink":"develop-path10.html#fig1.2.20.3","level":"1.2.20","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":26,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.20.3"},{"backlink":"develop-path10.html#fig1.2.20.4","level":"1.2.20","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":27,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.20.4"},{"backlink":"develop-path10.html#fig1.2.20.5","level":"1.2.20","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":28,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.20.5"},{"backlink":"develop-path11.html#fig1.2.21.1","level":"1.2.21","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":29,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.21.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":30,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"abacus-shengbte.md","mtime":"2023-09-25T02:30:38.787Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-03-19T11:29:16.414Z"},"basePath":".","book":{"language":""}}); + gitbook.page.hasChanged({"page":{"title":"ABACUS+ShengBTE 计算晶格热导率","level":"1.1.27","depth":2,"next":{"title":"ABACUS+DPGEN 使用教程","level":"1.1.28","depth":2,"path":"abacus-dpgen.md","ref":"abacus-dpgen.md","articles":[]},"previous":{"title":"ABACUS+Phonopy 计算声子谱","level":"1.1.26","depth":2,"path":"abacus-phonopy.md","ref":"abacus-phonopy.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.9.1","level":"1.1.9","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.9.1"},{"backlink":"abacus-upf.html#fig1.1.9.2","level":"1.1.9","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.9.2"},{"backlink":"abacus-upf.html#fig1.1.9.3","level":"1.1.9","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.9.3"},{"backlink":"abacus-upf.html#fig1.1.9.4","level":"1.1.9","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.9.4"},{"backlink":"abacus-upf.html#fig1.1.9.5","level":"1.1.9","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.9.5"},{"backlink":"abacus-pw.html#fig1.1.13.1","level":"1.1.13","list_caption":"Figure: 电子自洽迭代计算流程。","alt":"电子自洽迭代计算流程。","nro":6,"url":"picture/fig_pw-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"电子自洽迭代计算流程。","attributes":{},"skip":false,"key":"1.1.13.1"},{"backlink":"abacus-pw.html#fig1.1.13.2","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","nro":7,"url":"picture/fig_pw-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","attributes":{},"skip":false,"key":"1.1.13.2"},{"backlink":"abacus-pw.html#fig1.1.13.3","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随K点变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","nro":8,"url":"picture/fig_pw-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","attributes":{},"skip":false,"key":"1.1.13.3"},{"backlink":"abacus-pw.html#fig1.1.13.4","level":"1.1.13","list_caption":"Figure: 计算时间随K点变化。","alt":"计算时间随K点变化。","nro":9,"url":"picture/fig_pw-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"计算时间随K点变化。","attributes":{},"skip":false,"key":"1.1.13.4"},{"backlink":"abacus-surface2.html#fig1.1.20.1","level":"1.1.20","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.20.1"},{"backlink":"abacus-surface2.html#fig1.1.20.2","level":"1.1.20","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":11,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.20.2"},{"backlink":"abacus-surface2.html#fig1.1.20.3","level":"1.1.20","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":12,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.20.3"},{"backlink":"abacus-surface5.html#fig1.1.23.1","level":"1.1.23","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":13,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.23.1"},{"backlink":"abacus-surface5.html#fig1.1.23.2","level":"1.1.23","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":14,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.23.2"},{"backlink":"abacus-surface5.html#fig1.1.23.3","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":15,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.23.3"},{"backlink":"abacus-surface5.html#fig1.1.23.4","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":16,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.23.4"},{"backlink":"abacus-surface5.html#fig1.1.23.5","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":17,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.23.5"},{"backlink":"abacus-surface6.html#fig1.1.24.1","level":"1.1.24","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":18,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.24.1"},{"backlink":"abacus-surface6.html#fig1.1.24.2","level":"1.1.24","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":19,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.24.2"},{"backlink":"abacus-dos.html#fig1.1.25.1","level":"1.1.25","list_caption":"Figure: 铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","alt":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","nro":20,"url":"picture/fig_dos-5.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","attributes":{},"skip":false,"key":"1.1.25.1"},{"backlink":"abacus-dos.html#fig1.1.25.2","level":"1.1.25","list_caption":"Figure: 铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","alt":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","nro":21,"url":"picture/fig_dos-6.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","attributes":{},"skip":false,"key":"1.1.25.2"},{"backlink":"abacus-bader.html#fig1.1.35.1","level":"1.1.35","list_caption":"Figure: SPIN1_CHG.cube","alt":"SPIN1_CHG.cube","nro":22,"url":"picture/fig_Bader1.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN1_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.1"},{"backlink":"abacus-bader.html#fig1.1.35.2","level":"1.1.35","list_caption":"Figure: SPIN2_CHG.cube","alt":"SPIN2_CHG.cube","nro":23,"url":"picture/fig_Bader2.jpg","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN2_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.2"},{"backlink":"abacus-bader.html#fig1.1.35.3","level":"1.1.35","list_caption":"Figure: SPIN_DENSITY.cube","alt":"SPIN_DENSITY.cube","nro":24,"url":"picture/fig_Bader3.jpg","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN_DENSITY.cube","attributes":{},"skip":false,"key":"1.1.35.3"},{"backlink":"abacus-bader.html#fig1.1.35.4","level":"1.1.35","list_caption":"Figure: charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","alt":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","nro":25,"url":"picture/fig_Bader4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","attributes":{},"skip":false,"key":"1.1.35.4"},{"backlink":"abacus-bader.html#fig1.1.35.5","level":"1.1.35","list_caption":"Figure: spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","alt":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","nro":26,"url":"picture/fig_Bader5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","attributes":{},"skip":false,"key":"1.1.35.5"},{"backlink":"abacus-bader.html#fig1.1.35.6","level":"1.1.35","list_caption":"Figure: charge2d_000.dat","alt":"charge2d_000.dat","nro":27,"url":"picture/fig_Bader6.png","index":6,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.6"},{"backlink":"abacus-bader.html#fig1.1.35.7","level":"1.1.35","list_caption":"Figure: charge2d_025.dat","alt":"charge2d_025.dat","nro":28,"url":"picture/fig_Bader7.png","index":7,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.7"},{"backlink":"abacus-bader.html#fig1.1.35.8","level":"1.1.35","list_caption":"Figure: charge2d_050.dat","alt":"charge2d_050.dat","nro":29,"url":"picture/fig_Bader8.png","index":8,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.8"},{"backlink":"abacus-bader.html#fig1.1.35.9","level":"1.1.35","list_caption":"Figure: spin2d_000.dat","alt":"spin2d_000.dat","nro":30,"url":"picture/fig_Bader9.png","index":9,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.9"},{"backlink":"abacus-bader.html#fig1.1.35.10","level":"1.1.35","list_caption":"Figure: spin2d_025.dat","alt":"spin2d_025.dat","nro":31,"url":"picture/fig_Bader10.png","index":10,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.10"},{"backlink":"abacus-bader.html#fig1.1.35.11","level":"1.1.35","list_caption":"Figure: spin2d_050.dat","alt":"spin2d_050.dat","nro":32,"url":"picture/fig_Bader11.png","index":11,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.11"},{"backlink":"develop-path4.html#fig1.2.17.1","level":"1.2.17","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":33,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.17.1"},{"backlink":"develop-path4.html#fig1.2.17.2","level":"1.2.17","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":34,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.17.2"},{"backlink":"develop-path5.html#fig1.2.18.1","level":"1.2.18","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":35,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.18.1"},{"backlink":"develop-path5.html#fig1.2.18.2","level":"1.2.18","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":36,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.18.2"},{"backlink":"develop-path5.html#fig1.2.18.3","level":"1.2.18","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":37,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.18.3"},{"backlink":"develop-path5.html#fig1.2.18.4","level":"1.2.18","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":38,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.18.4"},{"backlink":"develop-path5.html#fig1.2.18.5","level":"1.2.18","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":39,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.18.5"},{"backlink":"develop-path6.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":40,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.24.1","level":"1.2.24","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":41,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.24.1"},{"backlink":"develop-path10.html#fig1.2.24.2","level":"1.2.24","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":42,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.24.2"},{"backlink":"develop-path10.html#fig1.2.24.3","level":"1.2.24","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":43,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.24.3"},{"backlink":"develop-path10.html#fig1.2.24.4","level":"1.2.24","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":44,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.24.4"},{"backlink":"develop-path10.html#fig1.2.24.5","level":"1.2.24","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":45,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.24.5"},{"backlink":"develop-path11.html#fig1.2.25.1","level":"1.2.25","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":46,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.25.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":47,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"abacus-shengbte.md","mtime":"2023-09-25T02:30:38.787Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-09-06T11:53:05.785Z"},"basePath":".","book":{"language":""}}); }); diff --git a/_book/abacus-sol.html b/_book/abacus-sol.html index e21c0fbf..a65140e0 100644 --- a/_book/abacus-sol.html +++ b/_book/abacus-sol.html @@ -176,7 +176,20 @@ -
            • +
            • + + + + + Intel oneAPI 2024.x 编译 ABACUS 教程 + + + + + +
            • + +
            • @@ -189,7 +202,7 @@
            • -
            • +
            • @@ -202,7 +215,7 @@
            • -
            • +
            • @@ -215,7 +228,7 @@
            • -
            • +
            • @@ -228,7 +241,33 @@
            • -
            • +
            • + + + + + ABACUS 答疑手册 + + + + + +
            • + +
            • + + + + + ABACUS 收敛性问题解决手册 + + + + + +
            • + +
            • @@ -241,7 +280,7 @@
            • -
            • +
            • @@ -254,7 +293,7 @@
            • -
            • +
            • @@ -267,7 +306,7 @@
            • -
            • +
            • @@ -280,7 +319,20 @@
            • -
            • +
            • + + + + + ABACUS 的平面波计算与收敛性测试 + + + + + +
            • + +
            • @@ -293,7 +345,7 @@
            • -
            • +
            • @@ -306,7 +358,7 @@
            • -
            • +
            • @@ -319,7 +371,7 @@
            • -
            • +
            • @@ -332,7 +384,20 @@
            • -
            • +
            • + + + + + ABACUS 实时演化含时密度泛函理论使用教程 + + + + + +
            • + +
            • @@ -345,7 +410,7 @@
            • -
            • +
            • @@ -358,7 +423,7 @@
            • -
            • +
            • @@ -371,7 +436,7 @@
            • -
            • +
            • @@ -384,7 +449,7 @@
            • -
            • +
            • @@ -397,7 +462,7 @@
            • -
            • +
            • @@ -410,7 +475,20 @@
            • -
            • +
            • + + + + + ABACUS+Atomkit 计算态密度和能带 + + + + + +
            • + +
            • @@ -423,7 +501,7 @@
            • -
            • +
            • @@ -436,7 +514,7 @@
            • -
            • +
            • @@ -449,7 +527,7 @@
            • -
            • +
            • @@ -462,7 +540,7 @@
            • -
            • +
            • @@ -475,7 +553,7 @@
            • -
            • +
            • @@ -488,7 +566,7 @@
            • -
            • +
            • @@ -501,7 +579,7 @@
            • -
            • +
            • @@ -514,12 +592,25 @@
            • -
            • +
            • - + - ABACUS 收敛性问题解决手册 + ABACUS+pymatgen 计算弹性常数 + + + + + +
            • + +
            • + + + + + ABACUS+Bader charge 分析教程 @@ -624,7 +715,20 @@
            • -
            • +
            • + + + + + ABACUS formatter-2.0 版本使用说明书 + + + + + +
            • + +
            • @@ -637,7 +741,46 @@
            • -
            • +
            • + + + + + 性能分析工具:vtune 快速上手教程 + + + + + +
            • + +
            • + + + + + 以格点积分程序为例:一些代码开发习惯小贴士 + + + + + +
            • + +
            • + + + + + 文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例 + + + + + +
            • + +
            • @@ -650,7 +793,7 @@
            • -
            • +
            • @@ -663,7 +806,7 @@
            • -
            • +
            • @@ -676,7 +819,7 @@
            • -
            • +
            • @@ -689,7 +832,7 @@
            • -
            • +
            • @@ -702,7 +845,7 @@
            • -
            • +
            • @@ -715,7 +858,7 @@
            • -
            • +
            • @@ -728,7 +871,7 @@
            • -
            • +
            • @@ -741,7 +884,7 @@
            • -
            • +
            • @@ -754,7 +897,7 @@
            • -
            • +
            • @@ -767,7 +910,7 @@
            • -
            • +
            • @@ -780,7 +923,7 @@
            • -
            • +
            • @@ -793,7 +936,7 @@
            • -
            • +
            • @@ -806,7 +949,7 @@
            • -
            • +
            • @@ -819,7 +962,7 @@
            • -
            • +
            • @@ -832,7 +975,20 @@
            • -
            • +
            • + + + + + 如何在 ABACUS 中新增一个输入参数(v3.7.0 后) + + + + + +
            • + +
            • @@ -845,7 +1001,7 @@
            • -
            • +
            • @@ -901,6 +1057,19 @@ +
            • + +
            • + + + + + 在 ABACUS 中进行差分测试 + + + + +
            • @@ -1087,7 +1256,7 @@

              No results matching " var gitbook = gitbook || []; gitbook.push(function() { - gitbook.page.hasChanged({"page":{"title":"ABACUS 隐式溶剂模型使用教程","level":"1.1.11","depth":2,"next":{"title":"ABACUS 随机波函数DFT方法使用教程","level":"1.1.12","depth":2,"path":"abacus-sdft.md","ref":"abacus-sdft.md","articles":[]},"previous":{"title":"ABACUS 分子动力学使用教程","level":"1.1.10","depth":2,"path":"abacus-md.md","ref":"abacus-md.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.6.1","level":"1.1.6","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.6.1"},{"backlink":"abacus-upf.html#fig1.1.6.2","level":"1.1.6","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.6.2"},{"backlink":"abacus-upf.html#fig1.1.6.3","level":"1.1.6","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.6.3"},{"backlink":"abacus-upf.html#fig1.1.6.4","level":"1.1.6","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.6.4"},{"backlink":"abacus-upf.html#fig1.1.6.5","level":"1.1.6","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.6.5"},{"backlink":"abacus-surface2.html#fig1.1.15.1","level":"1.1.15","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":6,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.15.1"},{"backlink":"abacus-surface2.html#fig1.1.15.2","level":"1.1.15","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":7,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.15.2"},{"backlink":"abacus-surface2.html#fig1.1.15.3","level":"1.1.15","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":8,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.15.3"},{"backlink":"abacus-surface5.html#fig1.1.18.1","level":"1.1.18","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":9,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.18.1"},{"backlink":"abacus-surface5.html#fig1.1.18.2","level":"1.1.18","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.18.2"},{"backlink":"abacus-surface5.html#fig1.1.18.3","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":11,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.18.3"},{"backlink":"abacus-surface5.html#fig1.1.18.4","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":12,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.18.4"},{"backlink":"abacus-surface5.html#fig1.1.18.5","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":13,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.18.5"},{"backlink":"abacus-surface6.html#fig1.1.19.1","level":"1.1.19","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":14,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.19.1"},{"backlink":"abacus-surface6.html#fig1.1.19.2","level":"1.1.19","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":15,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.19.2"},{"backlink":"develop-path4.html#fig1.2.13.1","level":"1.2.13","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":16,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.13.1"},{"backlink":"develop-path4.html#fig1.2.13.2","level":"1.2.13","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":17,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.13.2"},{"backlink":"develop-path5.html#fig1.2.14.1","level":"1.2.14","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":18,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.14.1"},{"backlink":"develop-path5.html#fig1.2.14.2","level":"1.2.14","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":19,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.14.2"},{"backlink":"develop-path5.html#fig1.2.14.3","level":"1.2.14","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":20,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.14.3"},{"backlink":"develop-path5.html#fig1.2.14.4","level":"1.2.14","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":21,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.14.4"},{"backlink":"develop-path5.html#fig1.2.14.5","level":"1.2.14","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":22,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.14.5"},{"backlink":"develop-path6.html#fig1.2.16.1","level":"1.2.16","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":23,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.16.1"},{"backlink":"develop-path10.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":24,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.20.2","level":"1.2.20","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":25,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.20.2"},{"backlink":"develop-path10.html#fig1.2.20.3","level":"1.2.20","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":26,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.20.3"},{"backlink":"develop-path10.html#fig1.2.20.4","level":"1.2.20","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":27,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.20.4"},{"backlink":"develop-path10.html#fig1.2.20.5","level":"1.2.20","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":28,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.20.5"},{"backlink":"develop-path11.html#fig1.2.21.1","level":"1.2.21","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":29,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.21.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":30,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"abacus-sol.md","mtime":"2023-10-02T02:20:41.508Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-03-19T11:29:16.414Z"},"basePath":".","book":{"language":""}}); + gitbook.page.hasChanged({"page":{"title":"ABACUS 隐式溶剂模型使用教程","level":"1.1.15","depth":2,"next":{"title":"ABACUS 随机波函数DFT方法使用教程","level":"1.1.16","depth":2,"path":"abacus-sdft.md","ref":"abacus-sdft.md","articles":[]},"previous":{"title":"ABACUS 分子动力学使用教程","level":"1.1.14","depth":2,"path":"abacus-md.md","ref":"abacus-md.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.9.1","level":"1.1.9","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.9.1"},{"backlink":"abacus-upf.html#fig1.1.9.2","level":"1.1.9","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.9.2"},{"backlink":"abacus-upf.html#fig1.1.9.3","level":"1.1.9","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.9.3"},{"backlink":"abacus-upf.html#fig1.1.9.4","level":"1.1.9","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.9.4"},{"backlink":"abacus-upf.html#fig1.1.9.5","level":"1.1.9","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.9.5"},{"backlink":"abacus-pw.html#fig1.1.13.1","level":"1.1.13","list_caption":"Figure: 电子自洽迭代计算流程。","alt":"电子自洽迭代计算流程。","nro":6,"url":"picture/fig_pw-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"电子自洽迭代计算流程。","attributes":{},"skip":false,"key":"1.1.13.1"},{"backlink":"abacus-pw.html#fig1.1.13.2","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","nro":7,"url":"picture/fig_pw-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","attributes":{},"skip":false,"key":"1.1.13.2"},{"backlink":"abacus-pw.html#fig1.1.13.3","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随K点变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","nro":8,"url":"picture/fig_pw-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","attributes":{},"skip":false,"key":"1.1.13.3"},{"backlink":"abacus-pw.html#fig1.1.13.4","level":"1.1.13","list_caption":"Figure: 计算时间随K点变化。","alt":"计算时间随K点变化。","nro":9,"url":"picture/fig_pw-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"计算时间随K点变化。","attributes":{},"skip":false,"key":"1.1.13.4"},{"backlink":"abacus-surface2.html#fig1.1.20.1","level":"1.1.20","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.20.1"},{"backlink":"abacus-surface2.html#fig1.1.20.2","level":"1.1.20","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":11,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.20.2"},{"backlink":"abacus-surface2.html#fig1.1.20.3","level":"1.1.20","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":12,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.20.3"},{"backlink":"abacus-surface5.html#fig1.1.23.1","level":"1.1.23","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":13,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.23.1"},{"backlink":"abacus-surface5.html#fig1.1.23.2","level":"1.1.23","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":14,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.23.2"},{"backlink":"abacus-surface5.html#fig1.1.23.3","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":15,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.23.3"},{"backlink":"abacus-surface5.html#fig1.1.23.4","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":16,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.23.4"},{"backlink":"abacus-surface5.html#fig1.1.23.5","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":17,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.23.5"},{"backlink":"abacus-surface6.html#fig1.1.24.1","level":"1.1.24","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":18,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.24.1"},{"backlink":"abacus-surface6.html#fig1.1.24.2","level":"1.1.24","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":19,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.24.2"},{"backlink":"abacus-dos.html#fig1.1.25.1","level":"1.1.25","list_caption":"Figure: 铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","alt":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","nro":20,"url":"picture/fig_dos-5.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","attributes":{},"skip":false,"key":"1.1.25.1"},{"backlink":"abacus-dos.html#fig1.1.25.2","level":"1.1.25","list_caption":"Figure: 铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","alt":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","nro":21,"url":"picture/fig_dos-6.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","attributes":{},"skip":false,"key":"1.1.25.2"},{"backlink":"abacus-bader.html#fig1.1.35.1","level":"1.1.35","list_caption":"Figure: SPIN1_CHG.cube","alt":"SPIN1_CHG.cube","nro":22,"url":"picture/fig_Bader1.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN1_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.1"},{"backlink":"abacus-bader.html#fig1.1.35.2","level":"1.1.35","list_caption":"Figure: SPIN2_CHG.cube","alt":"SPIN2_CHG.cube","nro":23,"url":"picture/fig_Bader2.jpg","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN2_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.2"},{"backlink":"abacus-bader.html#fig1.1.35.3","level":"1.1.35","list_caption":"Figure: SPIN_DENSITY.cube","alt":"SPIN_DENSITY.cube","nro":24,"url":"picture/fig_Bader3.jpg","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN_DENSITY.cube","attributes":{},"skip":false,"key":"1.1.35.3"},{"backlink":"abacus-bader.html#fig1.1.35.4","level":"1.1.35","list_caption":"Figure: charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","alt":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","nro":25,"url":"picture/fig_Bader4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","attributes":{},"skip":false,"key":"1.1.35.4"},{"backlink":"abacus-bader.html#fig1.1.35.5","level":"1.1.35","list_caption":"Figure: spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","alt":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","nro":26,"url":"picture/fig_Bader5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","attributes":{},"skip":false,"key":"1.1.35.5"},{"backlink":"abacus-bader.html#fig1.1.35.6","level":"1.1.35","list_caption":"Figure: charge2d_000.dat","alt":"charge2d_000.dat","nro":27,"url":"picture/fig_Bader6.png","index":6,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.6"},{"backlink":"abacus-bader.html#fig1.1.35.7","level":"1.1.35","list_caption":"Figure: charge2d_025.dat","alt":"charge2d_025.dat","nro":28,"url":"picture/fig_Bader7.png","index":7,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.7"},{"backlink":"abacus-bader.html#fig1.1.35.8","level":"1.1.35","list_caption":"Figure: charge2d_050.dat","alt":"charge2d_050.dat","nro":29,"url":"picture/fig_Bader8.png","index":8,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.8"},{"backlink":"abacus-bader.html#fig1.1.35.9","level":"1.1.35","list_caption":"Figure: spin2d_000.dat","alt":"spin2d_000.dat","nro":30,"url":"picture/fig_Bader9.png","index":9,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.9"},{"backlink":"abacus-bader.html#fig1.1.35.10","level":"1.1.35","list_caption":"Figure: spin2d_025.dat","alt":"spin2d_025.dat","nro":31,"url":"picture/fig_Bader10.png","index":10,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.10"},{"backlink":"abacus-bader.html#fig1.1.35.11","level":"1.1.35","list_caption":"Figure: spin2d_050.dat","alt":"spin2d_050.dat","nro":32,"url":"picture/fig_Bader11.png","index":11,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.11"},{"backlink":"develop-path4.html#fig1.2.17.1","level":"1.2.17","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":33,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.17.1"},{"backlink":"develop-path4.html#fig1.2.17.2","level":"1.2.17","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":34,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.17.2"},{"backlink":"develop-path5.html#fig1.2.18.1","level":"1.2.18","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":35,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.18.1"},{"backlink":"develop-path5.html#fig1.2.18.2","level":"1.2.18","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":36,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.18.2"},{"backlink":"develop-path5.html#fig1.2.18.3","level":"1.2.18","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":37,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.18.3"},{"backlink":"develop-path5.html#fig1.2.18.4","level":"1.2.18","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":38,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.18.4"},{"backlink":"develop-path5.html#fig1.2.18.5","level":"1.2.18","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":39,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.18.5"},{"backlink":"develop-path6.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":40,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.24.1","level":"1.2.24","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":41,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.24.1"},{"backlink":"develop-path10.html#fig1.2.24.2","level":"1.2.24","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":42,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.24.2"},{"backlink":"develop-path10.html#fig1.2.24.3","level":"1.2.24","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":43,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.24.3"},{"backlink":"develop-path10.html#fig1.2.24.4","level":"1.2.24","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":44,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.24.4"},{"backlink":"develop-path10.html#fig1.2.24.5","level":"1.2.24","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":45,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.24.5"},{"backlink":"develop-path11.html#fig1.2.25.1","level":"1.2.25","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":46,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.25.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":47,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"abacus-sol.md","mtime":"2023-10-02T02:20:41.508Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-09-06T11:53:05.785Z"},"basePath":".","book":{"language":""}}); }); diff --git a/_book/abacus-surface1.html b/_book/abacus-surface1.html index 210bf6a7..9d2f9379 100644 --- a/_book/abacus-surface1.html +++ b/_book/abacus-surface1.html @@ -109,7 +109,7 @@ - + + + + + + +
              +
              + + + + + + + + +
              + +
              + +
              + + + + + + + + +
              +
              + +
              +
              + +
              + +

              ABACUS 实时演化含时密度泛函理论使用教程

              +

              作者:赵昊天,邮箱:zaotian@mail.ustc.edu.cn

              +

              审核:包涛尼,邮箱:baotaoni@pku.edu.cn

              +

              最后更新时间:2024 年 7 月 11 日

              +

              一、背景

              +

              实时演化含时密度泛函理论(Real-time Time-Dependent Density Functional Theory,简称 rt-TDDFT)是一种基于第一性原理的模拟激发态电子体系动态演化的方法。与传统的密度泛函理论(DFT)不同,rt-TDDFT 是建立在 Runge-Gross 定理之上,主要研究时间依赖的 Kohn-Sham 方程(TDKS 方程)。该理论通过构建时间传播子迭代求解 TDKS 方程,直接演化电子的波函数。此外,它还采用半经典的 Ehrenfest 动力学来模拟离子实的运动,可以实时地得到激发电子态以及离子位置的信息,因此具有较为广泛的应用前景。

              +

              周期性体系具有能带结构,而非周期性的原子或分子体系则具有离散能级。体系的基态是指价电子从低到高依次填充至能带或能级中。当体系吸收特定能量后,低能态的电子跃迁至高能态,此时体系便处于激发态。研究激发态性质是 TDDFT 的一大优势,因此掌握如何模拟体系的激发态变得尤为关键。ABACUS 为此提供了两种方式:一种是直接改变占据数,使得叠加态的波函数拥有更多高能态分量;另一种是向一个处于基态的体系施加一个外加电场,为其提供激发所需的能量。下面将分别介绍这两种方式的具体使用。文档中提到的算例可以在如下仓库中找到:https://gitee.com/mcresearch/abacus-user-guide/tree/master/examples/tddft

              +

              有关 TDDFT 输入参数的细节可参考输入参数线上文档:https://abacus.deepmodeling.com/en/latest/advanced/input_files/input-main.html#tddft-time-dependent-density-functional-theory

              +

              二、在ABACUS 中使用rt-TDDFT时改变电子的占据数

              +

              算例:https://gitee.com/mcresearch/abacus-user-guide/tree/master/examples/tddft/occupation

              +

              算例输入文件 INPUT 设置如下:

              +
              INPUT_PARAMETERS
              +#Parameters (1.General)
              +suffix              H2_ocp
              +calculation         md
              +esolver_type        tddft
              +nbands              5
              +nspin               1
              +pseudo_dir          ../../../tests/PP_ORB
              +orbital_dir         ../../../tests/PP_ORB
              +
              +#Parameters (2.Iteration)
              +ecutwfc             60
              +scf_thr             1e-6
              +scf_nmax            100
              +
              +#Parameters (3.Basis)
              +basis_type          lcao
              +gamma_only          0
              +
              +#Parameters (4.Smearing)
              +smearing_method     gauss
              +
              +#Parameters (5.MD Parameters)
              +md_type             nve
              +md_nstep            1000
              +md_dt               0.05
              +md_tfirst           0
              +
              +#Parameters (6.TDDFT Occupation Parameters)
              +ocp                 1
              +ocp_set             1 1 0 0 0
              +
              +

              具体参数设置请参考线上文档,这里仅对部分重要参数进行说明:

              +
                +
              • gamma_only:必须设置为 0gamma_only1 会采用 double 类型计算,rt-TDDFT 使用传播子迭代计算波函数,需要 complex 类型存储数据,不兼容 gamma_only1 的情况。
              • +
              • basis_type:必须设置为 lcao,目前 ABACUS 仅支持基于数值原子轨道基组的 rt-TDDFT 功能。
              • +
              • nbands:能带数,由于 ocp_set 需要手动设置每一条能带的占据数到最高带,建议手动设置 nbands,防止二者不对应。
              • +
              • calculation:必须为 md,同时一般 MD(Molecular Dynamics)计算所需的参数都需要设置,这部分参数会对应 rt-TDDFT 的离子实运动的计算。
              • +
              • esolver_typetddft,表示采用 rt-TDDFT 求解器。
              • +
              • ocp:改变占据数功能的开关,为 1 的时候开启。
              • +
              • ocp_set:占据数的设置,1 1 0 0`` 0 表示这个算例所计算的五条能带,各自占据的电子数,其总和为 2,代表 H₂ 的两个价电子,可以简化为 2*1 ``3``*0。另外,对于有多个 k 点的体系,ABACUS 支持对各个 k 点单独设置占据数。假设体系拥有 5 条能带,2 个 k 点,则 ocp_set 需要指定 10 个数值,前五个代表第一个 k 点五条能带的占据,后五个代表第二个 k 点五条能带的占据。
              • +
              +

              按照分子轨道理论,两个 H 原子的原子轨道发生相互作用形成一条成键轨道、一条反键轨道,H₂ 分子的基态占据可以表示为 2 0 0 0`` 0,最低的能态代表成键轨道,则 1 1 0 0`` 0 占据数表示将一个电子从成键轨道上激发到反键轨道,会导致 H₂ 分子发生解离。通过输出目录 OUT.H2_ocp/STRU 下的结构文件,可以看到随着时间的推移,两个 H 原子逐渐解离。运行 occupation 文件夹下的算例,通过 ASE-ABACUS 读取各个时刻 STRU 文件,并计算了两个 H 原子实时的间距,结果如下图所示:

              +

              +

              为了说明这个解离是由于改变占据数引起的,可以将 INPUT 替换为 occupation 文件夹中的 INPUT-1,其中 ocp_set 被改为:2 0 0 0`` 0,同样输出实时的原子间距,可以看到,两个原子间距稳定的振荡,并未发生解离:

              +

              +

              三、ABACUS 中使用rt-TDDFT 外加电场计算材料吸收谱

              +

              在任意外加电场的影响下,rt-TDDFT 能够实时模拟并获得材料的电子态和离子位置信息。按照 Runge-Gross 定理(相当于 KSDFT 中的 Hohenberg-Kohn 定理),这等价于材料的全部物理性质。在众多的物理性质中,吸收谱作为材料基本的光电响应性质,处理简单,结果直观,可参考对比的数据丰富,很适合用于介绍 TDDFT 外加电场功能的基本细节。

              +

              3.1 规范选择

              +

              如何加入电场存在规范问题,根据电动力学的知识:

              +

              +

              第一种是长度规范,把电场的影响归为纯标势的影响,向势场中加入:

              +

              +

              因为晶胞很小,按照通常所用的光的波长,体系内的电场在空间上是近似匀强的,故这里没有写成积分的形式。这种形式相对简单,需要处理的项较少,程序处理较快,但是由于的存在,它在周期性体系的边界是不连续的,只能采用锯齿状的方式在边界下降来衔接这种不连续性。对于非周期性体系,边界存在真空层,这种锯齿状衔接不会影响到材料的响应,但是对周期性体系,这种做法就行不通了。

              +

              对于周期性体系必须采用速度规范,它用矢势而非标势来引入电场:

              +

              +

              在这种规范下,需要对正常的项进行一系列变换,这里不详细论述,想进一步了解的可以参考文献 2 的内容。因而,我们实际上在程序里用的并不是直接的电场,而是标势或者矢势,但是它们都对应一个电场,程序指定电场的参数而不是势场的参数,这样可以统一处理长度和速度规范的场。

              +

              简单来说:长度规范只能处理非周期性体系,但是速度较快;速度规范可以处理周期性体系和非周期性体系,但是速度较慢,故一般建议对非周期性体系采用长度规范,周期性体系采用速度规范。

              +

              3.2 长度规范示例

              +

              算例:https://gitee.com/mcresearch/abacus-user-guide/tree/master/examples/tddft/absorption_H2_length

              +

              输入文件 INPUT:

              +
              INPUT_PARAMETERS
              +#Parameters (1.General)
              +suffix              H2_absoprion
              +calculation         md
              +esolver_type        tddft
              +pseudo_dir          ../../../tests/PP_ORB
              +orbital_dir         ../../../tests/PP_ORB
              +
              +#Parameters (2.Iteration)
              +ecutwfc             60
              +scf_thr             1e-6
              +scf_nmax            100
              +
              +#Parameters (3.Basis)
              +basis_type          lcao
              +gamma_only          0
              +
              +#Parameters (4.Smearing)
              +smearing_method     gauss
              +
              +#Parameters (5.MD Parameters)
              +md_type             nve
              +md_nstep            1000
              +md_dt               0.005
              +md_tfirst           0
              +
              +#Parameters (6.Efield Parameters)
              +td_vext             1
              +td_stype            0
              +
              +td_tstart           1
              +td_tend             1000
              +
              +td_vext_dire        3 3
              +td_ttype            0 0
              +td_gauss_freq       3.66 1.22
              +td_gauss_phase      0.0 0.0
              +td_gauss_sigma      0.2 0.2
              +td_gauss_t0         300 300
              +td_gauss_amp        0.01 0.01
              +
              +#Parameters (7.Output)
              +out_chg             1
              +out_efield          1
              +out_dipole          1
              +
              +

              其他的注意事项和占据数一样,这里注意补充一些电场参数的细节:

              +
                +
              • md_nstep:MD 步,这里为了做演示只用了 1000 步,演化总时长 5 fs,为了精度考虑,实际计算时应当增加步数,具体视所需体系有所差异,一般保证 20 fs 以上总时长较为妥当。
              • +
              • td_vext:外加电场的开关,1 为打开外加电场。
              • +
              • td_stype:规范的选择,0 为长度规范,1 为速度规范。
              • +
              • td_tstart:开始加入电场的步数,在 td_tstart 步之前,为无电场状态,一般为 1 即可。
              • +
              • td_tend:电场结束的步数,td_tend 后不再计算电场,用于无电场时节约资源,最大可以等同 md_nstep 的值。td_tend 后,标势为 0,而矢势固定为 td_tend 处的值不再变化。
              • +
              • td_type:电场的波包形状,0-3 分别对应高斯、梯形、三角、阶跃等不同类型的电场。
              • +
              • td_gauss_xxx:由于这里指定的是高斯型,对应高斯型的参数,具体可以参考输入参数的说明文档:https://abacus.deepmodeling.com/en/latest/advanced/input_files/input-main.html#tddft-time-dependent-density-functional-theory
              • +
              • out_dipole:输出每个时刻的电偶极矩,我们通过对电偶极矩的分析得到吸收谱。
              • +
              • out_efield:输出每个时刻的电场。
              • +
              +

              注意,这里为了覆盖更大的频率范围,通过对电场形式的参数多加一列的方式,在一次计算中加入了两个不同频率的电场。理论上可以用这种方式得到各种形状的场,当加的较多时,支持采用正则表达式 m*x 的形式进行简化。

              +

              运行算例,会输出全时刻的电偶极矩文件 SPIN1_DIPOLE,如果 nspin 为 2 则会有 SPIN2_DIPOLE 文件分别对应两种自旋的电子各自的电偶极矩;以及电场文件 efield_x.datx 的数量视所加的电场数量而定,这个算例就是两个:efield_0.datefield_1.dat。不考虑单位,通过下列公式得到分子的吸收谱信息:

              +

              +

              方向的电偶极矩,方向的电场。程序自带了相应的后处理功能,具体请参考 tools``/``plot-tools 下的说明进行使用,其结果如下:

              +

              +

              这表明在方向加的电场激发了一个频率为 8.5 eV 左右的吸收峰。

              +

              3.3 速度规范示例

              +

              算例:https://gitee.com/mcresearch/abacus-user-guide/tree/master/examples/tddft/absorption_H2_velocity

              +

              速度规范的流程与长度规范基本相同,主要不同的参数有两个:

              +
                +
              • td_stype:变为了 1,代表进行速度规范计算。
              • +
              • out_current:输出电流的开关。对无限大的周期性体系无法定义电偶极,采用电流来代替,公式可以参考本文的参考文献 2。简单来说:
              • +
              +

              +

              因此在傅里叶变换时:

              +

              +

              因此二者可以得到类似的结果,不过 current 的结果由于分母的原因,在极低频时会无法避免的发散。相应的问题在文献 3 中有讨论。

              +

              四、参考文献

              +
                +
              1. Meng S, Kaxiras E. Real-Time, Local Basis-Set Implementation of Time-Dependent Density Functional Theory for Excited State Dynamics Simulations[J]. The Journal of Chemical Physics, 2008, 129(5), https://doi.org/10.1063/1.2960628 .
              2. +
              3. Pemmaraju C D, Vila F D, Kas J J, et al. Velocity-Gauge Real-Time TDDFT Within a Numerical Atomic Orbital Basis Set[J]. Computer Physics Communications, 2018, 226: 30-38, https://doi.org/10.1016/j.cpc.2018.01.013 .
              4. +
              5. Yabana K, Sugiyama T, Shinohara Y, et al. Time-Dependent Density Functional Theory for Strong Electromagnetic Fields in Crystalline Solids[J]. Physical Review B, 2012, 85(4): 045134, https://link.aps.org/doi/10.1103/PhysRevB.85.045134 .
              6. +
              +
              Copyright © mcresearch.gitee.io 2023 all right reserved,powered by Gitbook该文章修订时间: +2024-07-11 22:36:27 +
              + +
              + +
              +
              +
              + +

              results matching ""

              +
                + +
                +
                + +

                No results matching ""

                + +
                +
                +
                + +
                +
                + +
                + + + + + + + + + + + + + + +
                + + +
                + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_book/abacus-upf.html b/_book/abacus-upf.html index 97ce2582..4e52b130 100644 --- a/_book/abacus-upf.html +++ b/_book/abacus-upf.html @@ -109,7 +109,7 @@ - + + + + + + +
                +
                + + + + + + + + +
                + +
                + +
                + + + + + + + + +
                +
                + +
                +
                + +
                + +

                在 ABACUS 中进行差分测试

                +

                作者:金祖鑫,邮箱:jinzx@aisi.ac.cn;彭星亮,邮箱:pengxl@aisi.ac.cn;周巍青,邮箱:zhouwq@aisi.ac.cn

                +

                工作单位:北京科学智能研究院

                +

                最后更新时间:2024/3/29

                +

                背景

                +

                对 DFT(Density Functional Theory)电子结构计算软件而言,数值计算的精度是软件质量的重要一环。纸面上,一个完整的 DFT 计算只包含构建例如哈密顿矩阵、对角化、最优化等寥寥几步,但在代码层面,很多数学操作的数值实现并非如纸上的公式一般平凡:一些基本的数值算法可能无法兼顾性能与精度;开发者可能需要采用专门的算法以同时满足两者,或者将一些控制参数交给用户设置自行权衡。不难想象,在一定计算资源下获得的精度一般受限于算法中精度最薄弱的一环。

                +

                从开发者的角度,单元测试固然是一种可将整体精度问题分割后方便逐个分析的有力措施,但在程序模块较多、部分环节不便于单元测试的情况下,集成测试亦是一种有效的检测方法。从使用者的角度,集成测试也能更为直接地反映软件的整体质量。

                +

                在 DFT 计算中能量与力的计算占据核心地位。通常能量会在自洽场收敛后依照能量泛函的表达式计算获得,而力的计算则会依赖 Hellmann-Feynman 定理,采用与能量计算不同的路径。由于两者存在密切的关联而在实现上又迥然不同,能量与力的一致性测试往往被视作最基本的数值集成测试。

                +

                能量的数值微分

                +

                记第 个原子的坐标 ,其沿 方向的受力为 ,根据定义有

                +

                +

                在最低阶的差分近似下

                +

                +

                其中 表示 方向的单位向量。

                +

                数值微分的步长与误差

                +

                差分公式本身作为近似会带来离散化误差。对于上述一阶导的最低阶差分,误差随步长关系为

                +

                【更高阶的差分及相应的误差项可参考 https://en.wikipedia.org/wiki/Finite_difference_coefficient

                +

                虽然离散化误差会随着差分步长的减小而降低,但这并不意味着差分步长越小越好。由于数值计算中的数不可避免地只具有有限的精度,当步长小于一定程度后数值微分的整体误差反而会上升。例如,双精度浮点数有大约 16 位有效数字,这意味着即使对正弦函数这样简单、平滑的函数做数值微分,当步长取到 时只会得到纯粹的噪音。不仅如此,由于浮点数减法在“大数减大数得到小数”情况下存在有效位数丢失,理想的步长应远大于

                +

                以正弦函数为例,若能进行足够精度的计算,有

                +

                +

                我们得到 处的数值差分导数

                +

                +

                与理论上的 对比,有 20 位左右的有效数字。然而,在双精度浮点数的运算下,

                +

                +

                10 位有效数字在两个三角函数值的减法中丢失,由浮点运算规则补齐的位数(蓝色数字)只是一些噪音,最后导致数值微分结果只有 6 位有效数字。

                +

                在上述三角函数例子中,浮点运算带来的精度误差主导了最终结果中的误差。事实上,如步长取为 则能获得8-9位有效数字,优于步长为 的情况。但若取为 ,则离散化误差将变为主导,最终只能得到约6位有效数字。实践中,为得到尽可能小的数值微分误差,步长的选择应当在离散化误差与精度误差间取得一个均衡。例如,https://en.wikipedia.org/wiki/Numerical_differentiation 中介绍了一个进行前向差分【】时的推荐步长。当采用不同的差分方案时,最优步长的估计方式也不尽相同。

                +

                由于 DFT 的能量源于一个自洽场计算,本身受到 SCF 收敛阈值等参数的影响,因此做数值微分时其精度不应直接视作相应的浮点数精度,而需综合多方面考量。

                +
                +

                利用 ABACUS 自动工作流进行差分测试

                +

                ABACUS(原子算筹)是一款国产的开源密度泛函理论软件。

                +

                在软件中,我们可以直接使用 abacustest 进行原子受力(force)的差分测试。

                +

                应用地址(需要 Bohrium 账号获得本文档提供的差分工作流,但实际上差分测试程序也可以自己写):https://app.bohrium.dp.tech/abacustest?request=GET%3A%2Fapplications%2Fabacustest

                +

                以下是该自动工作测试流的使用说明。

                +

                1. 准备算例

                +

                在进行测试之前,需要自己准备需要进行测试的算例,每个算例需要把 ABACUS 计算需要的所有文件(包括赝势和轨道文件)都放在一个文件中。同时需要额外准备一个 info.txt 文件,用于指定需要进行差分测试的原子以及 xyz 方向,每一行是对一个需要测试的原子的设置,格式为 <原子符号> <原子序号> <测试方向>...

                +
                >>> ls Fe  #假设你的算例你有一个Fe的算例,并且把计算需要的所有文件已经准备在Fe文件夹中
                +Fe_gga_7au_100Ry_4s2p2d1f.orb  Fe_ONCV_PBE-1.2.upf  info.txt  INPUT  KPT STRU
                +
                +>>> cat Fe/info.txt
                +Fe 1 x y      
                +Fe 2 y 
                +
                +>>> zip -r fe.zip Fe   # 对算例文件夹进行压缩
                +
                +

                比如上述设置,表明对第一个 Fe 原子的 x 和 y 方向进行测试,以及对第二个 Fe 原子的 y 方向进行测试。

                +

                2. 打开应用登入账号

                +

                打开应用地址,填入自己的 bohrium 账号密码进行登入

                +

                +

                3. 选择 abacustesst 的模式

                +

                点击 Form,并在 Select Sub Model 处选择 Reuse model

                +

                +

                4. 上传算例

                +

                Upload files locally 处,上传准备好的算例压缩包。完成后在页面的最后处点击 Next,进入下一页的设置。

                +

                +

                5. 选择 force 差分计算模式

                +

                Model 处选择 005-finite_diff_force 进行 force 的差分测试

                +

                +

                6. 计算细节设置

                +
                  +
                • Predft Command 可以对差分的细节进行设置,此处不填会使用默认值:python prepare.py -d 0.0001 -n 2,其中,-d 定义差分点的步长,单位是 bohr,-n 定义每个正负方向改变的构型数量。
                • +
                • Rundft Image 可以对进行 abacus 计算使用的镜像进行设置,此处不填会使用默认的 abacus 的 intel latest 镜像:registry.dp.tech/deepmodeling/abacus-intel:latest
                • +
                • Rundft Command 可以设置进行 abcus 计算的命令,此处不填会使用默认值:OMP_NUM_THREADS=1 mpirun -np 16 abacus | tee out.log。需要注意的是测试使用的机型是固定为 ali c32_m64_cpu(此机型的实际物理机为 16,所有使用 16 核并行计算),如果自己设置计算命令时需注意并行的核数。
                • +
                +

                +

                其他选项不需要额填写。点击页面最后的 Next,再点击 Next 进入最后的计算提交页面

                +

                7. 提交计算

                +

                在最后的 Review 页面的最后部分,点击 I agree to the terms and conditions 后点击 Submit 进行提交。

                +

                +

                8. 查看结果

                +

                计算完成后会在页面中显示差分值和解析值的作图结果。

                +

                +

                图. 对第一个 Fe 原子的 x 方向的差分测试结果。图最上方的 FD-Ana RMSD 是差分值和解析值得均方差。此算例表明 Fe_1_x force 得解析误差~1.28e-03 eV/A。此测试设置的步长为 0.01,差分点个数为 10(predft_command: python prepare.py -d 0.01 -n 10),任务地址:https://app.bohrium.dp.tech/abacustest?request=GET%3A%2Fapplications%2Fabacustest%2Fjobs%2Fjob-abacustest-v0.3.97-770b66

                +
                +

                ABACUS 能量差分与解析力结果不一致的可能原因及解决方案

                +

                原因 1:差分的步长选取过小/SCF 收敛不充分

                +

                差分与解析解之间的误差来源于两部分,一部分 SCF 基态与真实基态之间的误差;二是差分操作本身导致的数值误差。前者与 SCF 计算的收敛判据(scf_thr)、k 点采样(kspacing)、平面波基组个数(ecutwfc)等有关;而后者与差分的步长选取有关。具体的讨论可以参考本文第一部分的背景介绍。相关的问题也在 Issue#3645 中被较为详细的讨论。

                +

                解决方案 1

                +

                SCF 参数不变,重新预估一个合理的差分步长。

                +

                解决方案 2

                +

                调小 SCF 计算的收敛判据(scf_thr)、k 点采样(kspacing);增大平面波基组个数(ecutwfc),使得 SCF 的计算更为准确。

                +

                原因 2:LCAO 计算中的“egg box effect”

                +

                当差分不一致发生在 LCAO(采用数值原子局域轨道)的计算之中时,出现例如 Issue#3685 中展示的周期性波动的时候,那么有可能是因为 LCAO 中格点积分部分导致的“egg box effect”(此效应形容由于格点离散化带来的周期性平移对称性的破缺,原子在空间平移,会产生计算出来的能量和受力的规律性震荡,就像装鸡蛋的鸡蛋盒所呈现出来的形状)。

                +

                +

                为了确认这一点,你可以设置 basis_type=lcao_in_pw。因为 LCAO_IN_PW 的计算避开了格点积分,可以帮助确认是否是格点积分导致的数值误差。

                +

                解决方案 1

                +

                使用 basis_type=lcao_in_pw 避开格点积分。

                +

                解决方案 2

                +

                加密实空间的格点,减小“egg box effect”误差的量级。

                +
                +

                参考文献

                +
                  +
                1. Issue #3645 https://github.com/deepmodeling/abacus-develop/issues/3645
                2. +
                3. Issue #3685 https://github.com/deepmodeling/abacus-develop/issues/3685
                4. +
                5. Force 差分测试 (LCAO)(这个文档只有飞书有权限才可以浏览)
                6. +
                +
                Copyright © mcresearch.gitee.io 2023 all right reserved,powered by Gitbook该文章修订时间: +2024-04-03 16:28:21 +
                + +
                + +
                +
                +
                + +

                results matching ""

                +
                  + +
                  +
                  + +

                  No results matching ""

                  + +
                  +
                  +
                  + +
                  +
                  + +
                  + + + + + + + + + + + + + + +
                  + + +
                  + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_book/algorithm-mix.html b/_book/algorithm-mix.html index 7153dc94..be903b4a 100644 --- a/_book/algorithm-mix.html +++ b/_book/algorithm-mix.html @@ -106,7 +106,7 @@ - + @@ -176,7 +176,20 @@ -
                • +
                • + + + + + Intel oneAPI 2024.x 编译 ABACUS 教程 + + + + + +
                • + +
                • @@ -189,7 +202,7 @@
                • -
                • +
                • @@ -202,7 +215,7 @@
                • -
                • +
                • @@ -215,7 +228,7 @@
                • -
                • +
                • @@ -228,7 +241,33 @@
                • -
                • +
                • + + + + + ABACUS 答疑手册 + + + + + +
                • + +
                • + + + + + ABACUS 收敛性问题解决手册 + + + + + +
                • + +
                • @@ -241,7 +280,7 @@
                • -
                • +
                • @@ -254,7 +293,7 @@
                • -
                • +
                • @@ -267,7 +306,7 @@
                • -
                • +
                • @@ -280,7 +319,20 @@
                • -
                • +
                • + + + + + ABACUS 的平面波计算与收敛性测试 + + + + + +
                • + +
                • @@ -293,7 +345,7 @@
                • -
                • +
                • @@ -306,7 +358,7 @@
                • -
                • +
                • @@ -319,7 +371,7 @@
                • -
                • +
                • @@ -332,7 +384,20 @@
                • -
                • +
                • + + + + + ABACUS 实时演化含时密度泛函理论使用教程 + + + + + +
                • + +
                • @@ -345,7 +410,7 @@
                • -
                • +
                • @@ -358,7 +423,7 @@
                • -
                • +
                • @@ -371,7 +436,7 @@
                • -
                • +
                • @@ -384,7 +449,7 @@
                • -
                • +
                • @@ -397,7 +462,7 @@
                • -
                • +
                • @@ -410,7 +475,20 @@
                • -
                • +
                • + + + + + ABACUS+Atomkit 计算态密度和能带 + + + + + +
                • + +
                • @@ -423,7 +501,7 @@
                • -
                • +
                • @@ -436,7 +514,7 @@
                • -
                • +
                • @@ -449,7 +527,7 @@
                • -
                • +
                • @@ -462,7 +540,7 @@
                • -
                • +
                • @@ -475,7 +553,7 @@
                • -
                • +
                • @@ -488,7 +566,7 @@
                • -
                • +
                • @@ -501,7 +579,7 @@
                • -
                • +
                • @@ -514,12 +592,25 @@
                • -
                • +
                • - + - ABACUS 收敛性问题解决手册 + ABACUS+pymatgen 计算弹性常数 + + + + + +
                • + +
                • + + + + + ABACUS+Bader charge 分析教程 @@ -624,7 +715,20 @@
                • -
                • +
                • + + + + + ABACUS formatter-2.0 版本使用说明书 + + + + + +
                • + +
                • @@ -637,7 +741,46 @@
                • -
                • +
                • + + + + + 性能分析工具:vtune 快速上手教程 + + + + + +
                • + +
                • + + + + + 以格点积分程序为例:一些代码开发习惯小贴士 + + + + + +
                • + +
                • + + + + + 文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例 + + + + + +
                • + +
                • @@ -650,7 +793,7 @@
                • -
                • +
                • @@ -663,7 +806,7 @@
                • -
                • +
                • @@ -676,7 +819,7 @@
                • -
                • +
                • @@ -689,7 +832,7 @@
                • -
                • +
                • @@ -702,7 +845,7 @@
                • -
                • +
                • @@ -715,7 +858,7 @@
                • -
                • +
                • @@ -728,7 +871,7 @@
                • -
                • +
                • @@ -741,7 +884,7 @@
                • -
                • +
                • @@ -754,7 +897,7 @@
                • -
                • +
                • @@ -767,7 +910,7 @@
                • -
                • +
                • @@ -780,7 +923,7 @@
                • -
                • +
                • @@ -793,7 +936,7 @@
                • -
                • +
                • @@ -806,7 +949,7 @@
                • -
                • +
                • @@ -819,7 +962,7 @@
                • -
                • +
                • @@ -832,7 +975,20 @@
                • -
                • +
                • + + + + + 如何在 ABACUS 中新增一个输入参数(v3.7.0 后) + + + + + +
                • + +
                • @@ -845,7 +1001,7 @@
                • -
                • +
                • @@ -901,6 +1057,19 @@ +
                • + +
                • + + + + + 在 ABACUS 中进行差分测试 + + + + +
                • @@ -1232,7 +1401,7 @@

                  No results matching " - + @@ -1243,7 +1412,7 @@

                  No results matching " var gitbook = gitbook || []; gitbook.push(function() { - gitbook.page.hasChanged({"page":{"title":"电荷密度混合算法介绍","level":"1.3.2","depth":2,"next":{"title":"ABACUS 新闻稿整理","level":"1.4","depth":1,"path":"news.md","ref":"news.md","articles":[]},"previous":{"title":"最大局域化 Wannier 函数方法简介","level":"1.3.1","depth":2,"path":"algorithm-wannier.md","ref":"algorithm-wannier.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.6.1","level":"1.1.6","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.6.1"},{"backlink":"abacus-upf.html#fig1.1.6.2","level":"1.1.6","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.6.2"},{"backlink":"abacus-upf.html#fig1.1.6.3","level":"1.1.6","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.6.3"},{"backlink":"abacus-upf.html#fig1.1.6.4","level":"1.1.6","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.6.4"},{"backlink":"abacus-upf.html#fig1.1.6.5","level":"1.1.6","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.6.5"},{"backlink":"abacus-surface2.html#fig1.1.15.1","level":"1.1.15","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":6,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.15.1"},{"backlink":"abacus-surface2.html#fig1.1.15.2","level":"1.1.15","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":7,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.15.2"},{"backlink":"abacus-surface2.html#fig1.1.15.3","level":"1.1.15","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":8,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.15.3"},{"backlink":"abacus-surface5.html#fig1.1.18.1","level":"1.1.18","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":9,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.18.1"},{"backlink":"abacus-surface5.html#fig1.1.18.2","level":"1.1.18","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.18.2"},{"backlink":"abacus-surface5.html#fig1.1.18.3","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":11,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.18.3"},{"backlink":"abacus-surface5.html#fig1.1.18.4","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":12,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.18.4"},{"backlink":"abacus-surface5.html#fig1.1.18.5","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":13,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.18.5"},{"backlink":"abacus-surface6.html#fig1.1.19.1","level":"1.1.19","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":14,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.19.1"},{"backlink":"abacus-surface6.html#fig1.1.19.2","level":"1.1.19","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":15,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.19.2"},{"backlink":"develop-path4.html#fig1.2.13.1","level":"1.2.13","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":16,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.13.1"},{"backlink":"develop-path4.html#fig1.2.13.2","level":"1.2.13","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":17,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.13.2"},{"backlink":"develop-path5.html#fig1.2.14.1","level":"1.2.14","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":18,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.14.1"},{"backlink":"develop-path5.html#fig1.2.14.2","level":"1.2.14","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":19,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.14.2"},{"backlink":"develop-path5.html#fig1.2.14.3","level":"1.2.14","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":20,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.14.3"},{"backlink":"develop-path5.html#fig1.2.14.4","level":"1.2.14","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":21,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.14.4"},{"backlink":"develop-path5.html#fig1.2.14.5","level":"1.2.14","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":22,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.14.5"},{"backlink":"develop-path6.html#fig1.2.16.1","level":"1.2.16","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":23,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.16.1"},{"backlink":"develop-path10.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":24,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.20.2","level":"1.2.20","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":25,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.20.2"},{"backlink":"develop-path10.html#fig1.2.20.3","level":"1.2.20","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":26,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.20.3"},{"backlink":"develop-path10.html#fig1.2.20.4","level":"1.2.20","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":27,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.20.4"},{"backlink":"develop-path10.html#fig1.2.20.5","level":"1.2.20","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":28,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.20.5"},{"backlink":"develop-path11.html#fig1.2.21.1","level":"1.2.21","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":29,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.21.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":30,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"algorithm-mix.md","mtime":"2023-11-10T02:06:33.630Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-03-19T11:29:16.414Z"},"basePath":".","book":{"language":""}}); + gitbook.page.hasChanged({"page":{"title":"电荷密度混合算法介绍","level":"1.3.2","depth":2,"next":{"title":"在 ABACUS 中进行差分测试","level":"1.3.3","depth":2,"path":"algorithm-delta.md","ref":"algorithm-delta.md","articles":[]},"previous":{"title":"最大局域化 Wannier 函数方法简介","level":"1.3.1","depth":2,"path":"algorithm-wannier.md","ref":"algorithm-wannier.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.9.1","level":"1.1.9","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.9.1"},{"backlink":"abacus-upf.html#fig1.1.9.2","level":"1.1.9","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.9.2"},{"backlink":"abacus-upf.html#fig1.1.9.3","level":"1.1.9","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.9.3"},{"backlink":"abacus-upf.html#fig1.1.9.4","level":"1.1.9","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.9.4"},{"backlink":"abacus-upf.html#fig1.1.9.5","level":"1.1.9","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.9.5"},{"backlink":"abacus-pw.html#fig1.1.13.1","level":"1.1.13","list_caption":"Figure: 电子自洽迭代计算流程。","alt":"电子自洽迭代计算流程。","nro":6,"url":"picture/fig_pw-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"电子自洽迭代计算流程。","attributes":{},"skip":false,"key":"1.1.13.1"},{"backlink":"abacus-pw.html#fig1.1.13.2","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","nro":7,"url":"picture/fig_pw-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","attributes":{},"skip":false,"key":"1.1.13.2"},{"backlink":"abacus-pw.html#fig1.1.13.3","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随K点变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","nro":8,"url":"picture/fig_pw-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","attributes":{},"skip":false,"key":"1.1.13.3"},{"backlink":"abacus-pw.html#fig1.1.13.4","level":"1.1.13","list_caption":"Figure: 计算时间随K点变化。","alt":"计算时间随K点变化。","nro":9,"url":"picture/fig_pw-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"计算时间随K点变化。","attributes":{},"skip":false,"key":"1.1.13.4"},{"backlink":"abacus-surface2.html#fig1.1.20.1","level":"1.1.20","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.20.1"},{"backlink":"abacus-surface2.html#fig1.1.20.2","level":"1.1.20","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":11,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.20.2"},{"backlink":"abacus-surface2.html#fig1.1.20.3","level":"1.1.20","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":12,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.20.3"},{"backlink":"abacus-surface5.html#fig1.1.23.1","level":"1.1.23","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":13,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.23.1"},{"backlink":"abacus-surface5.html#fig1.1.23.2","level":"1.1.23","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":14,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.23.2"},{"backlink":"abacus-surface5.html#fig1.1.23.3","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":15,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.23.3"},{"backlink":"abacus-surface5.html#fig1.1.23.4","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":16,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.23.4"},{"backlink":"abacus-surface5.html#fig1.1.23.5","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":17,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.23.5"},{"backlink":"abacus-surface6.html#fig1.1.24.1","level":"1.1.24","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":18,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.24.1"},{"backlink":"abacus-surface6.html#fig1.1.24.2","level":"1.1.24","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":19,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.24.2"},{"backlink":"abacus-dos.html#fig1.1.25.1","level":"1.1.25","list_caption":"Figure: 铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","alt":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","nro":20,"url":"picture/fig_dos-5.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","attributes":{},"skip":false,"key":"1.1.25.1"},{"backlink":"abacus-dos.html#fig1.1.25.2","level":"1.1.25","list_caption":"Figure: 铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","alt":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","nro":21,"url":"picture/fig_dos-6.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","attributes":{},"skip":false,"key":"1.1.25.2"},{"backlink":"abacus-bader.html#fig1.1.35.1","level":"1.1.35","list_caption":"Figure: SPIN1_CHG.cube","alt":"SPIN1_CHG.cube","nro":22,"url":"picture/fig_Bader1.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN1_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.1"},{"backlink":"abacus-bader.html#fig1.1.35.2","level":"1.1.35","list_caption":"Figure: SPIN2_CHG.cube","alt":"SPIN2_CHG.cube","nro":23,"url":"picture/fig_Bader2.jpg","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN2_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.2"},{"backlink":"abacus-bader.html#fig1.1.35.3","level":"1.1.35","list_caption":"Figure: SPIN_DENSITY.cube","alt":"SPIN_DENSITY.cube","nro":24,"url":"picture/fig_Bader3.jpg","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN_DENSITY.cube","attributes":{},"skip":false,"key":"1.1.35.3"},{"backlink":"abacus-bader.html#fig1.1.35.4","level":"1.1.35","list_caption":"Figure: charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","alt":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","nro":25,"url":"picture/fig_Bader4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","attributes":{},"skip":false,"key":"1.1.35.4"},{"backlink":"abacus-bader.html#fig1.1.35.5","level":"1.1.35","list_caption":"Figure: spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","alt":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","nro":26,"url":"picture/fig_Bader5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","attributes":{},"skip":false,"key":"1.1.35.5"},{"backlink":"abacus-bader.html#fig1.1.35.6","level":"1.1.35","list_caption":"Figure: charge2d_000.dat","alt":"charge2d_000.dat","nro":27,"url":"picture/fig_Bader6.png","index":6,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.6"},{"backlink":"abacus-bader.html#fig1.1.35.7","level":"1.1.35","list_caption":"Figure: charge2d_025.dat","alt":"charge2d_025.dat","nro":28,"url":"picture/fig_Bader7.png","index":7,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.7"},{"backlink":"abacus-bader.html#fig1.1.35.8","level":"1.1.35","list_caption":"Figure: charge2d_050.dat","alt":"charge2d_050.dat","nro":29,"url":"picture/fig_Bader8.png","index":8,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.8"},{"backlink":"abacus-bader.html#fig1.1.35.9","level":"1.1.35","list_caption":"Figure: spin2d_000.dat","alt":"spin2d_000.dat","nro":30,"url":"picture/fig_Bader9.png","index":9,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.9"},{"backlink":"abacus-bader.html#fig1.1.35.10","level":"1.1.35","list_caption":"Figure: spin2d_025.dat","alt":"spin2d_025.dat","nro":31,"url":"picture/fig_Bader10.png","index":10,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.10"},{"backlink":"abacus-bader.html#fig1.1.35.11","level":"1.1.35","list_caption":"Figure: spin2d_050.dat","alt":"spin2d_050.dat","nro":32,"url":"picture/fig_Bader11.png","index":11,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.11"},{"backlink":"develop-path4.html#fig1.2.17.1","level":"1.2.17","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":33,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.17.1"},{"backlink":"develop-path4.html#fig1.2.17.2","level":"1.2.17","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":34,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.17.2"},{"backlink":"develop-path5.html#fig1.2.18.1","level":"1.2.18","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":35,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.18.1"},{"backlink":"develop-path5.html#fig1.2.18.2","level":"1.2.18","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":36,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.18.2"},{"backlink":"develop-path5.html#fig1.2.18.3","level":"1.2.18","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":37,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.18.3"},{"backlink":"develop-path5.html#fig1.2.18.4","level":"1.2.18","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":38,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.18.4"},{"backlink":"develop-path5.html#fig1.2.18.5","level":"1.2.18","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":39,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.18.5"},{"backlink":"develop-path6.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":40,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.24.1","level":"1.2.24","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":41,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.24.1"},{"backlink":"develop-path10.html#fig1.2.24.2","level":"1.2.24","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":42,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.24.2"},{"backlink":"develop-path10.html#fig1.2.24.3","level":"1.2.24","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":43,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.24.3"},{"backlink":"develop-path10.html#fig1.2.24.4","level":"1.2.24","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":44,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.24.4"},{"backlink":"develop-path10.html#fig1.2.24.5","level":"1.2.24","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":45,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.24.5"},{"backlink":"develop-path11.html#fig1.2.25.1","level":"1.2.25","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":46,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.25.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":47,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"algorithm-mix.md","mtime":"2023-11-10T02:06:33.630Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-09-06T11:53:05.785Z"},"basePath":".","book":{"language":""}}); }); diff --git a/_book/algorithm-wannier.html b/_book/algorithm-wannier.html index f8b73da8..1d7888f7 100644 --- a/_book/algorithm-wannier.html +++ b/_book/algorithm-wannier.html @@ -174,7 +174,20 @@ -
                • +
                • + + + + + Intel oneAPI 2024.x 编译 ABACUS 教程 + + + + + +
                • + +
                • @@ -187,7 +200,7 @@
                • -
                • +
                • @@ -200,7 +213,7 @@
                • -
                • +
                • @@ -213,7 +226,7 @@
                • -
                • +
                • @@ -226,7 +239,33 @@
                • -
                • +
                • + + + + + ABACUS 答疑手册 + + + + + +
                • + +
                • + + + + + ABACUS 收敛性问题解决手册 + + + + + +
                • + +
                • @@ -239,7 +278,7 @@
                • -
                • +
                • @@ -252,7 +291,7 @@
                • -
                • +
                • @@ -265,7 +304,7 @@
                • -
                • +
                • @@ -278,7 +317,20 @@
                • -
                • +
                • + + + + + ABACUS 的平面波计算与收敛性测试 + + + + + +
                • + +
                • @@ -291,7 +343,7 @@
                • -
                • +
                • @@ -304,7 +356,7 @@
                • -
                • +
                • @@ -317,7 +369,7 @@
                • -
                • +
                • @@ -330,7 +382,20 @@
                • -
                • +
                • + + + + + ABACUS 实时演化含时密度泛函理论使用教程 + + + + + +
                • + +
                • @@ -343,7 +408,7 @@
                • -
                • +
                • @@ -356,7 +421,7 @@
                • -
                • +
                • @@ -369,7 +434,7 @@
                • -
                • +
                • @@ -382,7 +447,7 @@
                • -
                • +
                • @@ -395,7 +460,7 @@
                • -
                • +
                • @@ -408,7 +473,20 @@
                • -
                • +
                • + + + + + ABACUS+Atomkit 计算态密度和能带 + + + + + +
                • + +
                • @@ -421,7 +499,7 @@
                • -
                • +
                • @@ -434,7 +512,7 @@
                • -
                • +
                • @@ -447,7 +525,7 @@
                • -
                • +
                • @@ -460,7 +538,7 @@
                • -
                • +
                • @@ -473,7 +551,7 @@
                • -
                • +
                • @@ -486,7 +564,7 @@
                • -
                • +
                • @@ -499,7 +577,7 @@
                • -
                • +
                • @@ -512,12 +590,25 @@
                • -
                • +
                • - + - ABACUS 收敛性问题解决手册 + ABACUS+pymatgen 计算弹性常数 + + + + + +
                • + +
                • + + + + + ABACUS+Bader charge 分析教程 @@ -622,7 +713,20 @@
                • -
                • +
                • + + + + + ABACUS formatter-2.0 版本使用说明书 + + + + + +
                • + +
                • @@ -635,7 +739,46 @@
                • -
                • +
                • + + + + + 性能分析工具:vtune 快速上手教程 + + + + + +
                • + +
                • + + + + + 以格点积分程序为例:一些代码开发习惯小贴士 + + + + + +
                • + +
                • + + + + + 文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例 + + + + + +
                • + +
                • @@ -648,7 +791,7 @@
                • -
                • +
                • @@ -661,7 +804,7 @@
                • -
                • +
                • @@ -674,7 +817,7 @@
                • -
                • +
                • @@ -687,7 +830,7 @@
                • -
                • +
                • @@ -700,7 +843,7 @@
                • -
                • +
                • @@ -713,7 +856,7 @@
                • -
                • +
                • @@ -726,7 +869,7 @@
                • -
                • +
                • @@ -739,7 +882,7 @@
                • -
                • +
                • @@ -752,7 +895,7 @@
                • -
                • +
                • @@ -765,7 +908,7 @@
                • -
                • +
                • @@ -778,7 +921,7 @@
                • -
                • +
                • @@ -791,7 +934,7 @@
                • -
                • +
                • @@ -804,7 +947,7 @@
                • -
                • +
                • @@ -817,7 +960,7 @@
                • -
                • +
                • @@ -830,7 +973,20 @@
                • -
                • +
                • + + + + + 如何在 ABACUS 中新增一个输入参数(v3.7.0 后) + + + + + +
                • + +
                • @@ -843,7 +999,7 @@
                • -
                • +
                • @@ -899,6 +1055,19 @@ +
                • + +
                • + + + + + 在 ABACUS 中进行差分测试 + + + + +
                • @@ -1150,7 +1319,7 @@

                  No results matching " var gitbook = gitbook || []; gitbook.push(function() { - gitbook.page.hasChanged({"page":{"title":"最大局域化 Wannier 函数方法简介","level":"1.3.1","depth":2,"next":{"title":"电荷密度混合算法介绍","level":"1.3.2","depth":2,"path":"algorithm-mix.md","ref":"algorithm-mix.md","articles":[]},"previous":{"title":"算法文档","level":"1.3","depth":1,"ref":"","articles":[{"title":"最大局域化 Wannier 函数方法简介","level":"1.3.1","depth":2,"path":"algorithm-wannier.md","ref":"algorithm-wannier.md","articles":[]},{"title":"电荷密度混合算法介绍","level":"1.3.2","depth":2,"path":"algorithm-mix.md","ref":"algorithm-mix.md","articles":[]}]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.6.1","level":"1.1.6","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.6.1"},{"backlink":"abacus-upf.html#fig1.1.6.2","level":"1.1.6","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.6.2"},{"backlink":"abacus-upf.html#fig1.1.6.3","level":"1.1.6","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.6.3"},{"backlink":"abacus-upf.html#fig1.1.6.4","level":"1.1.6","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.6.4"},{"backlink":"abacus-upf.html#fig1.1.6.5","level":"1.1.6","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.6.5"},{"backlink":"abacus-surface2.html#fig1.1.15.1","level":"1.1.15","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":6,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.15.1"},{"backlink":"abacus-surface2.html#fig1.1.15.2","level":"1.1.15","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":7,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.15.2"},{"backlink":"abacus-surface2.html#fig1.1.15.3","level":"1.1.15","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":8,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.15.3"},{"backlink":"abacus-surface5.html#fig1.1.18.1","level":"1.1.18","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":9,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.18.1"},{"backlink":"abacus-surface5.html#fig1.1.18.2","level":"1.1.18","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.18.2"},{"backlink":"abacus-surface5.html#fig1.1.18.3","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":11,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.18.3"},{"backlink":"abacus-surface5.html#fig1.1.18.4","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":12,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.18.4"},{"backlink":"abacus-surface5.html#fig1.1.18.5","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":13,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.18.5"},{"backlink":"abacus-surface6.html#fig1.1.19.1","level":"1.1.19","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":14,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.19.1"},{"backlink":"abacus-surface6.html#fig1.1.19.2","level":"1.1.19","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":15,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.19.2"},{"backlink":"develop-path4.html#fig1.2.13.1","level":"1.2.13","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":16,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.13.1"},{"backlink":"develop-path4.html#fig1.2.13.2","level":"1.2.13","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":17,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.13.2"},{"backlink":"develop-path5.html#fig1.2.14.1","level":"1.2.14","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":18,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.14.1"},{"backlink":"develop-path5.html#fig1.2.14.2","level":"1.2.14","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":19,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.14.2"},{"backlink":"develop-path5.html#fig1.2.14.3","level":"1.2.14","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":20,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.14.3"},{"backlink":"develop-path5.html#fig1.2.14.4","level":"1.2.14","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":21,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.14.4"},{"backlink":"develop-path5.html#fig1.2.14.5","level":"1.2.14","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":22,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.14.5"},{"backlink":"develop-path6.html#fig1.2.16.1","level":"1.2.16","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":23,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.16.1"},{"backlink":"develop-path10.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":24,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.20.2","level":"1.2.20","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":25,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.20.2"},{"backlink":"develop-path10.html#fig1.2.20.3","level":"1.2.20","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":26,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.20.3"},{"backlink":"develop-path10.html#fig1.2.20.4","level":"1.2.20","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":27,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.20.4"},{"backlink":"develop-path10.html#fig1.2.20.5","level":"1.2.20","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":28,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.20.5"},{"backlink":"develop-path11.html#fig1.2.21.1","level":"1.2.21","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":29,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.21.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":30,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"algorithm-wannier.md","mtime":"2023-11-10T03:05:17.573Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-03-19T11:29:16.414Z"},"basePath":".","book":{"language":""}}); + gitbook.page.hasChanged({"page":{"title":"最大局域化 Wannier 函数方法简介","level":"1.3.1","depth":2,"next":{"title":"电荷密度混合算法介绍","level":"1.3.2","depth":2,"path":"algorithm-mix.md","ref":"algorithm-mix.md","articles":[]},"previous":{"title":"算法文档","level":"1.3","depth":1,"ref":"","articles":[{"title":"最大局域化 Wannier 函数方法简介","level":"1.3.1","depth":2,"path":"algorithm-wannier.md","ref":"algorithm-wannier.md","articles":[]},{"title":"电荷密度混合算法介绍","level":"1.3.2","depth":2,"path":"algorithm-mix.md","ref":"algorithm-mix.md","articles":[]},{"title":"在 ABACUS 中进行差分测试","level":"1.3.3","depth":2,"path":"algorithm-delta.md","ref":"algorithm-delta.md","articles":[]}]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.9.1","level":"1.1.9","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.9.1"},{"backlink":"abacus-upf.html#fig1.1.9.2","level":"1.1.9","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.9.2"},{"backlink":"abacus-upf.html#fig1.1.9.3","level":"1.1.9","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.9.3"},{"backlink":"abacus-upf.html#fig1.1.9.4","level":"1.1.9","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.9.4"},{"backlink":"abacus-upf.html#fig1.1.9.5","level":"1.1.9","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.9.5"},{"backlink":"abacus-pw.html#fig1.1.13.1","level":"1.1.13","list_caption":"Figure: 电子自洽迭代计算流程。","alt":"电子自洽迭代计算流程。","nro":6,"url":"picture/fig_pw-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"电子自洽迭代计算流程。","attributes":{},"skip":false,"key":"1.1.13.1"},{"backlink":"abacus-pw.html#fig1.1.13.2","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","nro":7,"url":"picture/fig_pw-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","attributes":{},"skip":false,"key":"1.1.13.2"},{"backlink":"abacus-pw.html#fig1.1.13.3","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随K点变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","nro":8,"url":"picture/fig_pw-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","attributes":{},"skip":false,"key":"1.1.13.3"},{"backlink":"abacus-pw.html#fig1.1.13.4","level":"1.1.13","list_caption":"Figure: 计算时间随K点变化。","alt":"计算时间随K点变化。","nro":9,"url":"picture/fig_pw-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"计算时间随K点变化。","attributes":{},"skip":false,"key":"1.1.13.4"},{"backlink":"abacus-surface2.html#fig1.1.20.1","level":"1.1.20","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.20.1"},{"backlink":"abacus-surface2.html#fig1.1.20.2","level":"1.1.20","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":11,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.20.2"},{"backlink":"abacus-surface2.html#fig1.1.20.3","level":"1.1.20","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":12,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.20.3"},{"backlink":"abacus-surface5.html#fig1.1.23.1","level":"1.1.23","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":13,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.23.1"},{"backlink":"abacus-surface5.html#fig1.1.23.2","level":"1.1.23","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":14,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.23.2"},{"backlink":"abacus-surface5.html#fig1.1.23.3","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":15,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.23.3"},{"backlink":"abacus-surface5.html#fig1.1.23.4","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":16,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.23.4"},{"backlink":"abacus-surface5.html#fig1.1.23.5","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":17,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.23.5"},{"backlink":"abacus-surface6.html#fig1.1.24.1","level":"1.1.24","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":18,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.24.1"},{"backlink":"abacus-surface6.html#fig1.1.24.2","level":"1.1.24","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":19,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.24.2"},{"backlink":"abacus-dos.html#fig1.1.25.1","level":"1.1.25","list_caption":"Figure: 铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","alt":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","nro":20,"url":"picture/fig_dos-5.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","attributes":{},"skip":false,"key":"1.1.25.1"},{"backlink":"abacus-dos.html#fig1.1.25.2","level":"1.1.25","list_caption":"Figure: 铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","alt":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","nro":21,"url":"picture/fig_dos-6.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","attributes":{},"skip":false,"key":"1.1.25.2"},{"backlink":"abacus-bader.html#fig1.1.35.1","level":"1.1.35","list_caption":"Figure: SPIN1_CHG.cube","alt":"SPIN1_CHG.cube","nro":22,"url":"picture/fig_Bader1.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN1_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.1"},{"backlink":"abacus-bader.html#fig1.1.35.2","level":"1.1.35","list_caption":"Figure: SPIN2_CHG.cube","alt":"SPIN2_CHG.cube","nro":23,"url":"picture/fig_Bader2.jpg","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN2_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.2"},{"backlink":"abacus-bader.html#fig1.1.35.3","level":"1.1.35","list_caption":"Figure: SPIN_DENSITY.cube","alt":"SPIN_DENSITY.cube","nro":24,"url":"picture/fig_Bader3.jpg","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN_DENSITY.cube","attributes":{},"skip":false,"key":"1.1.35.3"},{"backlink":"abacus-bader.html#fig1.1.35.4","level":"1.1.35","list_caption":"Figure: charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","alt":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","nro":25,"url":"picture/fig_Bader4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","attributes":{},"skip":false,"key":"1.1.35.4"},{"backlink":"abacus-bader.html#fig1.1.35.5","level":"1.1.35","list_caption":"Figure: spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","alt":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","nro":26,"url":"picture/fig_Bader5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","attributes":{},"skip":false,"key":"1.1.35.5"},{"backlink":"abacus-bader.html#fig1.1.35.6","level":"1.1.35","list_caption":"Figure: charge2d_000.dat","alt":"charge2d_000.dat","nro":27,"url":"picture/fig_Bader6.png","index":6,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.6"},{"backlink":"abacus-bader.html#fig1.1.35.7","level":"1.1.35","list_caption":"Figure: charge2d_025.dat","alt":"charge2d_025.dat","nro":28,"url":"picture/fig_Bader7.png","index":7,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.7"},{"backlink":"abacus-bader.html#fig1.1.35.8","level":"1.1.35","list_caption":"Figure: charge2d_050.dat","alt":"charge2d_050.dat","nro":29,"url":"picture/fig_Bader8.png","index":8,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.8"},{"backlink":"abacus-bader.html#fig1.1.35.9","level":"1.1.35","list_caption":"Figure: spin2d_000.dat","alt":"spin2d_000.dat","nro":30,"url":"picture/fig_Bader9.png","index":9,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.9"},{"backlink":"abacus-bader.html#fig1.1.35.10","level":"1.1.35","list_caption":"Figure: spin2d_025.dat","alt":"spin2d_025.dat","nro":31,"url":"picture/fig_Bader10.png","index":10,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.10"},{"backlink":"abacus-bader.html#fig1.1.35.11","level":"1.1.35","list_caption":"Figure: spin2d_050.dat","alt":"spin2d_050.dat","nro":32,"url":"picture/fig_Bader11.png","index":11,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.11"},{"backlink":"develop-path4.html#fig1.2.17.1","level":"1.2.17","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":33,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.17.1"},{"backlink":"develop-path4.html#fig1.2.17.2","level":"1.2.17","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":34,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.17.2"},{"backlink":"develop-path5.html#fig1.2.18.1","level":"1.2.18","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":35,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.18.1"},{"backlink":"develop-path5.html#fig1.2.18.2","level":"1.2.18","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":36,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.18.2"},{"backlink":"develop-path5.html#fig1.2.18.3","level":"1.2.18","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":37,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.18.3"},{"backlink":"develop-path5.html#fig1.2.18.4","level":"1.2.18","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":38,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.18.4"},{"backlink":"develop-path5.html#fig1.2.18.5","level":"1.2.18","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":39,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.18.5"},{"backlink":"develop-path6.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":40,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.24.1","level":"1.2.24","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":41,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.24.1"},{"backlink":"develop-path10.html#fig1.2.24.2","level":"1.2.24","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":42,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.24.2"},{"backlink":"develop-path10.html#fig1.2.24.3","level":"1.2.24","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":43,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.24.3"},{"backlink":"develop-path10.html#fig1.2.24.4","level":"1.2.24","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":44,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.24.4"},{"backlink":"develop-path10.html#fig1.2.24.5","level":"1.2.24","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":45,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.24.5"},{"backlink":"develop-path11.html#fig1.2.25.1","level":"1.2.25","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":46,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.25.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":47,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"algorithm-wannier.md","mtime":"2023-11-10T03:05:17.573Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-09-06T11:53:05.785Z"},"basePath":".","book":{"language":""}}); }); diff --git a/_book/contribute.html b/_book/contribute.html index fd2ef483..8a34093c 100644 --- a/_book/contribute.html +++ b/_book/contribute.html @@ -174,7 +174,20 @@ -
                • +
                • + + + + + Intel oneAPI 2024.x 编译 ABACUS 教程 + + + + + +
                • + +
                • @@ -187,7 +200,7 @@
                • -
                • +
                • @@ -200,7 +213,7 @@
                • -
                • +
                • @@ -213,7 +226,7 @@
                • -
                • +
                • @@ -226,7 +239,33 @@
                • -
                • +
                • + + + + + ABACUS 答疑手册 + + + + + +
                • + +
                • + + + + + ABACUS 收敛性问题解决手册 + + + + + +
                • + +
                • @@ -239,7 +278,7 @@
                • -
                • +
                • @@ -252,7 +291,7 @@
                • -
                • +
                • @@ -265,7 +304,7 @@
                • -
                • +
                • @@ -278,7 +317,20 @@
                • -
                • +
                • + + + + + ABACUS 的平面波计算与收敛性测试 + + + + + +
                • + +
                • @@ -291,7 +343,7 @@
                • -
                • +
                • @@ -304,7 +356,7 @@
                • -
                • +
                • @@ -317,7 +369,7 @@
                • -
                • +
                • @@ -330,7 +382,20 @@
                • -
                • +
                • + + + + + ABACUS 实时演化含时密度泛函理论使用教程 + + + + + +
                • + +
                • @@ -343,7 +408,7 @@
                • -
                • +
                • @@ -356,7 +421,7 @@
                • -
                • +
                • @@ -369,7 +434,7 @@
                • -
                • +
                • @@ -382,7 +447,7 @@
                • -
                • +
                • @@ -395,7 +460,7 @@
                • -
                • +
                • @@ -408,7 +473,20 @@
                • -
                • +
                • + + + + + ABACUS+Atomkit 计算态密度和能带 + + + + + +
                • + +
                • @@ -421,7 +499,7 @@
                • -
                • +
                • @@ -434,7 +512,7 @@
                • -
                • +
                • @@ -447,7 +525,7 @@
                • -
                • +
                • @@ -460,7 +538,7 @@
                • -
                • +
                • @@ -473,7 +551,7 @@
                • -
                • +
                • @@ -486,7 +564,7 @@
                • -
                • +
                • @@ -499,7 +577,7 @@
                • -
                • +
                • @@ -512,12 +590,25 @@
                • -
                • +
                • - + - ABACUS 收敛性问题解决手册 + ABACUS+pymatgen 计算弹性常数 + + + + + +
                • + +
                • + + + + + ABACUS+Bader charge 分析教程 @@ -622,7 +713,20 @@
                • -
                • +
                • + + + + + ABACUS formatter-2.0 版本使用说明书 + + + + + +
                • + +
                • @@ -635,7 +739,46 @@
                • -
                • +
                • + + + + + 性能分析工具:vtune 快速上手教程 + + + + + +
                • + +
                • + + + + + 以格点积分程序为例:一些代码开发习惯小贴士 + + + + + +
                • + +
                • + + + + + 文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例 + + + + + +
                • + +
                • @@ -648,7 +791,7 @@
                • -
                • +
                • @@ -661,7 +804,7 @@
                • -
                • +
                • @@ -674,7 +817,7 @@
                • -
                • +
                • @@ -687,7 +830,7 @@
                • -
                • +
                • @@ -700,7 +843,7 @@
                • -
                • +
                • @@ -713,7 +856,7 @@
                • -
                • +
                • @@ -726,7 +869,7 @@
                • -
                • +
                • @@ -739,7 +882,7 @@
                • -
                • +
                • @@ -752,7 +895,7 @@
                • -
                • +
                • @@ -765,7 +908,7 @@
                • -
                • +
                • @@ -778,7 +921,7 @@
                • -
                • +
                • @@ -791,7 +934,7 @@
                • -
                • +
                • @@ -804,7 +947,7 @@
                • -
                • +
                • @@ -817,7 +960,7 @@
                • -
                • +
                • @@ -830,7 +973,20 @@
                • -
                • +
                • + + + + + 如何在 ABACUS 中新增一个输入参数(v3.7.0 后) + + + + + +
                • + +
                • @@ -843,7 +999,7 @@
                • -
                • +
                • @@ -899,6 +1055,19 @@ +
                • + +
                • + + + + + 在 ABACUS 中进行差分测试 + + + + +
                • @@ -1031,7 +1200,7 @@

                  No results matching " var gitbook = gitbook || []; gitbook.push(function() { - gitbook.page.hasChanged({"page":{"title":"如何贡献 ABACUS 使用教程","level":"1.5","depth":1,"previous":{"title":"ABACUS 新闻稿整理","level":"1.4","depth":1,"path":"news.md","ref":"news.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.6.1","level":"1.1.6","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.6.1"},{"backlink":"abacus-upf.html#fig1.1.6.2","level":"1.1.6","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.6.2"},{"backlink":"abacus-upf.html#fig1.1.6.3","level":"1.1.6","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.6.3"},{"backlink":"abacus-upf.html#fig1.1.6.4","level":"1.1.6","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.6.4"},{"backlink":"abacus-upf.html#fig1.1.6.5","level":"1.1.6","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.6.5"},{"backlink":"abacus-surface2.html#fig1.1.15.1","level":"1.1.15","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":6,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.15.1"},{"backlink":"abacus-surface2.html#fig1.1.15.2","level":"1.1.15","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":7,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.15.2"},{"backlink":"abacus-surface2.html#fig1.1.15.3","level":"1.1.15","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":8,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.15.3"},{"backlink":"abacus-surface5.html#fig1.1.18.1","level":"1.1.18","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":9,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.18.1"},{"backlink":"abacus-surface5.html#fig1.1.18.2","level":"1.1.18","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.18.2"},{"backlink":"abacus-surface5.html#fig1.1.18.3","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":11,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.18.3"},{"backlink":"abacus-surface5.html#fig1.1.18.4","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":12,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.18.4"},{"backlink":"abacus-surface5.html#fig1.1.18.5","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":13,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.18.5"},{"backlink":"abacus-surface6.html#fig1.1.19.1","level":"1.1.19","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":14,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.19.1"},{"backlink":"abacus-surface6.html#fig1.1.19.2","level":"1.1.19","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":15,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.19.2"},{"backlink":"develop-path4.html#fig1.2.13.1","level":"1.2.13","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":16,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.13.1"},{"backlink":"develop-path4.html#fig1.2.13.2","level":"1.2.13","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":17,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.13.2"},{"backlink":"develop-path5.html#fig1.2.14.1","level":"1.2.14","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":18,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.14.1"},{"backlink":"develop-path5.html#fig1.2.14.2","level":"1.2.14","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":19,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.14.2"},{"backlink":"develop-path5.html#fig1.2.14.3","level":"1.2.14","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":20,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.14.3"},{"backlink":"develop-path5.html#fig1.2.14.4","level":"1.2.14","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":21,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.14.4"},{"backlink":"develop-path5.html#fig1.2.14.5","level":"1.2.14","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":22,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.14.5"},{"backlink":"develop-path6.html#fig1.2.16.1","level":"1.2.16","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":23,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.16.1"},{"backlink":"develop-path10.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":24,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.20.2","level":"1.2.20","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":25,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.20.2"},{"backlink":"develop-path10.html#fig1.2.20.3","level":"1.2.20","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":26,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.20.3"},{"backlink":"develop-path10.html#fig1.2.20.4","level":"1.2.20","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":27,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.20.4"},{"backlink":"develop-path10.html#fig1.2.20.5","level":"1.2.20","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":28,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.20.5"},{"backlink":"develop-path11.html#fig1.2.21.1","level":"1.2.21","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":29,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.21.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":30,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"contribute.md","mtime":"2023-08-04T02:08:19.202Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-03-19T11:29:16.414Z"},"basePath":".","book":{"language":""}}); + gitbook.page.hasChanged({"page":{"title":"如何贡献 ABACUS 使用教程","level":"1.5","depth":1,"previous":{"title":"ABACUS 新闻稿整理","level":"1.4","depth":1,"path":"news.md","ref":"news.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.9.1","level":"1.1.9","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.9.1"},{"backlink":"abacus-upf.html#fig1.1.9.2","level":"1.1.9","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.9.2"},{"backlink":"abacus-upf.html#fig1.1.9.3","level":"1.1.9","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.9.3"},{"backlink":"abacus-upf.html#fig1.1.9.4","level":"1.1.9","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.9.4"},{"backlink":"abacus-upf.html#fig1.1.9.5","level":"1.1.9","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.9.5"},{"backlink":"abacus-pw.html#fig1.1.13.1","level":"1.1.13","list_caption":"Figure: 电子自洽迭代计算流程。","alt":"电子自洽迭代计算流程。","nro":6,"url":"picture/fig_pw-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"电子自洽迭代计算流程。","attributes":{},"skip":false,"key":"1.1.13.1"},{"backlink":"abacus-pw.html#fig1.1.13.2","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","nro":7,"url":"picture/fig_pw-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","attributes":{},"skip":false,"key":"1.1.13.2"},{"backlink":"abacus-pw.html#fig1.1.13.3","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随K点变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","nro":8,"url":"picture/fig_pw-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","attributes":{},"skip":false,"key":"1.1.13.3"},{"backlink":"abacus-pw.html#fig1.1.13.4","level":"1.1.13","list_caption":"Figure: 计算时间随K点变化。","alt":"计算时间随K点变化。","nro":9,"url":"picture/fig_pw-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"计算时间随K点变化。","attributes":{},"skip":false,"key":"1.1.13.4"},{"backlink":"abacus-surface2.html#fig1.1.20.1","level":"1.1.20","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.20.1"},{"backlink":"abacus-surface2.html#fig1.1.20.2","level":"1.1.20","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":11,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.20.2"},{"backlink":"abacus-surface2.html#fig1.1.20.3","level":"1.1.20","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":12,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.20.3"},{"backlink":"abacus-surface5.html#fig1.1.23.1","level":"1.1.23","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":13,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.23.1"},{"backlink":"abacus-surface5.html#fig1.1.23.2","level":"1.1.23","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":14,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.23.2"},{"backlink":"abacus-surface5.html#fig1.1.23.3","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":15,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.23.3"},{"backlink":"abacus-surface5.html#fig1.1.23.4","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":16,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.23.4"},{"backlink":"abacus-surface5.html#fig1.1.23.5","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":17,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.23.5"},{"backlink":"abacus-surface6.html#fig1.1.24.1","level":"1.1.24","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":18,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.24.1"},{"backlink":"abacus-surface6.html#fig1.1.24.2","level":"1.1.24","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":19,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.24.2"},{"backlink":"abacus-dos.html#fig1.1.25.1","level":"1.1.25","list_caption":"Figure: 铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","alt":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","nro":20,"url":"picture/fig_dos-5.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","attributes":{},"skip":false,"key":"1.1.25.1"},{"backlink":"abacus-dos.html#fig1.1.25.2","level":"1.1.25","list_caption":"Figure: 铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","alt":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","nro":21,"url":"picture/fig_dos-6.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","attributes":{},"skip":false,"key":"1.1.25.2"},{"backlink":"abacus-bader.html#fig1.1.35.1","level":"1.1.35","list_caption":"Figure: SPIN1_CHG.cube","alt":"SPIN1_CHG.cube","nro":22,"url":"picture/fig_Bader1.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN1_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.1"},{"backlink":"abacus-bader.html#fig1.1.35.2","level":"1.1.35","list_caption":"Figure: SPIN2_CHG.cube","alt":"SPIN2_CHG.cube","nro":23,"url":"picture/fig_Bader2.jpg","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN2_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.2"},{"backlink":"abacus-bader.html#fig1.1.35.3","level":"1.1.35","list_caption":"Figure: SPIN_DENSITY.cube","alt":"SPIN_DENSITY.cube","nro":24,"url":"picture/fig_Bader3.jpg","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN_DENSITY.cube","attributes":{},"skip":false,"key":"1.1.35.3"},{"backlink":"abacus-bader.html#fig1.1.35.4","level":"1.1.35","list_caption":"Figure: charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","alt":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","nro":25,"url":"picture/fig_Bader4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","attributes":{},"skip":false,"key":"1.1.35.4"},{"backlink":"abacus-bader.html#fig1.1.35.5","level":"1.1.35","list_caption":"Figure: spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","alt":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","nro":26,"url":"picture/fig_Bader5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","attributes":{},"skip":false,"key":"1.1.35.5"},{"backlink":"abacus-bader.html#fig1.1.35.6","level":"1.1.35","list_caption":"Figure: charge2d_000.dat","alt":"charge2d_000.dat","nro":27,"url":"picture/fig_Bader6.png","index":6,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.6"},{"backlink":"abacus-bader.html#fig1.1.35.7","level":"1.1.35","list_caption":"Figure: charge2d_025.dat","alt":"charge2d_025.dat","nro":28,"url":"picture/fig_Bader7.png","index":7,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.7"},{"backlink":"abacus-bader.html#fig1.1.35.8","level":"1.1.35","list_caption":"Figure: charge2d_050.dat","alt":"charge2d_050.dat","nro":29,"url":"picture/fig_Bader8.png","index":8,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.8"},{"backlink":"abacus-bader.html#fig1.1.35.9","level":"1.1.35","list_caption":"Figure: spin2d_000.dat","alt":"spin2d_000.dat","nro":30,"url":"picture/fig_Bader9.png","index":9,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.9"},{"backlink":"abacus-bader.html#fig1.1.35.10","level":"1.1.35","list_caption":"Figure: spin2d_025.dat","alt":"spin2d_025.dat","nro":31,"url":"picture/fig_Bader10.png","index":10,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.10"},{"backlink":"abacus-bader.html#fig1.1.35.11","level":"1.1.35","list_caption":"Figure: spin2d_050.dat","alt":"spin2d_050.dat","nro":32,"url":"picture/fig_Bader11.png","index":11,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.11"},{"backlink":"develop-path4.html#fig1.2.17.1","level":"1.2.17","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":33,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.17.1"},{"backlink":"develop-path4.html#fig1.2.17.2","level":"1.2.17","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":34,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.17.2"},{"backlink":"develop-path5.html#fig1.2.18.1","level":"1.2.18","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":35,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.18.1"},{"backlink":"develop-path5.html#fig1.2.18.2","level":"1.2.18","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":36,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.18.2"},{"backlink":"develop-path5.html#fig1.2.18.3","level":"1.2.18","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":37,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.18.3"},{"backlink":"develop-path5.html#fig1.2.18.4","level":"1.2.18","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":38,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.18.4"},{"backlink":"develop-path5.html#fig1.2.18.5","level":"1.2.18","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":39,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.18.5"},{"backlink":"develop-path6.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":40,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.24.1","level":"1.2.24","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":41,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.24.1"},{"backlink":"develop-path10.html#fig1.2.24.2","level":"1.2.24","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":42,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.24.2"},{"backlink":"develop-path10.html#fig1.2.24.3","level":"1.2.24","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":43,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.24.3"},{"backlink":"develop-path10.html#fig1.2.24.4","level":"1.2.24","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":44,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.24.4"},{"backlink":"develop-path10.html#fig1.2.24.5","level":"1.2.24","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":45,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.24.5"},{"backlink":"develop-path11.html#fig1.2.25.1","level":"1.2.25","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":46,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.25.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":47,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"contribute.md","mtime":"2023-08-04T02:08:19.202Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-09-06T11:53:05.785Z"},"basePath":".","book":{"language":""}}); }); diff --git a/_book/develop-C++.html b/_book/develop-C++.html index bc5e5c1b..83022f56 100644 --- a/_book/develop-C++.html +++ b/_book/develop-C++.html @@ -174,7 +174,20 @@ -
                • +
                • + + + + + Intel oneAPI 2024.x 编译 ABACUS 教程 + + + + + +
                • + +
                • @@ -187,7 +200,7 @@
                • -
                • +
                • @@ -200,7 +213,7 @@
                • -
                • +
                • @@ -213,7 +226,7 @@
                • -
                • +
                • @@ -226,7 +239,33 @@
                • -
                • +
                • + + + + + ABACUS 答疑手册 + + + + + +
                • + +
                • + + + + + ABACUS 收敛性问题解决手册 + + + + + +
                • + +
                • @@ -239,7 +278,7 @@
                • -
                • +
                • @@ -252,7 +291,7 @@
                • -
                • +
                • @@ -265,7 +304,7 @@
                • -
                • +
                • @@ -278,7 +317,20 @@
                • -
                • +
                • + + + + + ABACUS 的平面波计算与收敛性测试 + + + + + +
                • + +
                • @@ -291,7 +343,7 @@
                • -
                • +
                • @@ -304,7 +356,7 @@
                • -
                • +
                • @@ -317,7 +369,7 @@
                • -
                • +
                • @@ -330,7 +382,20 @@
                • -
                • +
                • + + + + + ABACUS 实时演化含时密度泛函理论使用教程 + + + + + +
                • + +
                • @@ -343,7 +408,7 @@
                • -
                • +
                • @@ -356,7 +421,7 @@
                • -
                • +
                • @@ -369,7 +434,7 @@
                • -
                • +
                • @@ -382,7 +447,7 @@
                • -
                • +
                • @@ -395,7 +460,7 @@
                • -
                • +
                • @@ -408,7 +473,20 @@
                • -
                • +
                • + + + + + ABACUS+Atomkit 计算态密度和能带 + + + + + +
                • + +
                • @@ -421,7 +499,7 @@
                • -
                • +
                • @@ -434,7 +512,7 @@
                • -
                • +
                • @@ -447,7 +525,7 @@
                • -
                • +
                • @@ -460,7 +538,7 @@
                • -
                • +
                • @@ -473,7 +551,7 @@
                • -
                • +
                • @@ -486,7 +564,7 @@
                • -
                • +
                • @@ -499,7 +577,7 @@
                • -
                • +
                • @@ -512,12 +590,25 @@
                • -
                • +
                • - + - ABACUS 收敛性问题解决手册 + ABACUS+pymatgen 计算弹性常数 + + + + + +
                • + +
                • + + + + + ABACUS+Bader charge 分析教程 @@ -622,7 +713,20 @@
                • -
                • +
                • + + + + + ABACUS formatter-2.0 版本使用说明书 + + + + + +
                • + +
                • @@ -635,7 +739,46 @@
                • -
                • +
                • + + + + + 性能分析工具:vtune 快速上手教程 + + + + + +
                • + +
                • + + + + + 以格点积分程序为例:一些代码开发习惯小贴士 + + + + + +
                • + +
                • + + + + + 文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例 + + + + + +
                • + +
                • @@ -648,7 +791,7 @@
                • -
                • +
                • @@ -661,7 +804,7 @@
                • -
                • +
                • @@ -674,7 +817,7 @@
                • -
                • +
                • @@ -687,7 +830,7 @@
                • -
                • +
                • @@ -700,7 +843,7 @@
                • -
                • +
                • @@ -713,7 +856,7 @@
                • -
                • +
                • @@ -726,7 +869,7 @@
                • -
                • +
                • @@ -739,7 +882,7 @@
                • -
                • +
                • @@ -752,7 +895,7 @@
                • -
                • +
                • @@ -765,7 +908,7 @@
                • -
                • +
                • @@ -778,7 +921,7 @@
                • -
                • +
                • @@ -791,7 +934,7 @@
                • -
                • +
                • @@ -804,7 +947,7 @@
                • -
                • +
                • @@ -817,7 +960,7 @@
                • -
                • +
                • @@ -830,7 +973,20 @@
                • -
                • +
                • + + + + + 如何在 ABACUS 中新增一个输入参数(v3.7.0 后) + + + + + +
                • + +
                • @@ -843,7 +999,7 @@
                • -
                • +
                • @@ -899,6 +1055,19 @@ +
                • + +
                • + + + + + 在 ABACUS 中进行差分测试 + + + + +
                • @@ -1418,7 +1587,7 @@

                  No results matching " var gitbook = gitbook || []; gitbook.push(function() { - gitbook.page.hasChanged({"page":{"title":"ABACUS 开源项目 C++ 代码规范","level":"1.2.1","depth":2,"next":{"title":"ABACUS 中使用格式化工具 clang-format","level":"1.2.2","depth":2,"path":"develop-format.md","ref":"develop-format.md","articles":[]},"previous":{"title":"ABACUS 开发者文档","level":"1.2","depth":1,"ref":"","articles":[{"title":"ABACUS 开源项目 C++ 代码规范","level":"1.2.1","depth":2,"path":"develop-C++.md","ref":"develop-C++.md","articles":[]},{"title":"ABACUS 中使用格式化工具 clang-format","level":"1.2.2","depth":2,"path":"develop-format.md","ref":"develop-format.md","articles":[]},{"title":"ABACUS 注释规范:Doxygen 入门 (c++)","level":"1.2.3","depth":2,"path":"develop-dox.md","ref":"develop-dox.md","articles":[]},{"title":"ABACUS 的 Github 仓库 Issues 处理流程","level":"1.2.4","depth":2,"path":"develop-issue.md","ref":"develop-issue.md","articles":[]},{"title":"ABACUS 线上文档输入参数撰写规范","level":"1.2.5","depth":2,"path":"develop-input.md","ref":"develop-input.md","articles":[]},{"title":"ABACUS 代码存放规范","level":"1.2.6","depth":2,"path":"develop-rule.md","ref":"develop-rule.md","articles":[]},{"title":"ABACUS 全局数据结构和代码行数检测","level":"1.2.7","depth":2,"path":"develop-linedete.md","ref":"develop-linedete.md","articles":[]},{"title":"ABACUS 中的测试(一):测试的重要性","level":"1.2.8","depth":2,"path":"develop-test1.md","ref":"develop-test1.md","articles":[]},{"title":"ABACUS 中的测试(二):测试工具 gtest","level":"1.2.9","depth":2,"path":"develop-test2.md","ref":"develop-test2.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Part 1","level":"1.2.10","depth":2,"path":"develop-path1.md","ref":"develop-path1.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Part 2","level":"1.2.11","depth":2,"path":"develop-path2.md","ref":"develop-path2.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Part 3","level":"1.2.12","depth":2,"path":"develop-path3.md","ref":"develop-path3.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Part 4","level":"1.2.13","depth":2,"path":"develop-path4.md","ref":"develop-path4.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Part 5","level":"1.2.14","depth":2,"path":"develop-path5.md","ref":"develop-path5.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Summary 1","level":"1.2.15","depth":2,"path":"develop-sm1.md","ref":"develop-sm1.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Part 6","level":"1.2.16","depth":2,"path":"develop-path6.md","ref":"develop-path6.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Part 7","level":"1.2.17","depth":2,"path":"develop-path7.md","ref":"develop-path7.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Part 8","level":"1.2.18","depth":2,"path":"develop-path8.md","ref":"develop-path8.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Part 9","level":"1.2.19","depth":2,"path":"develop-path9.md","ref":"develop-path9.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Part 10","level":"1.2.20","depth":2,"path":"develop-path10.md","ref":"develop-path10.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Part 11","level":"1.2.21","depth":2,"path":"develop-path11.md","ref":"develop-path11.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Summary Final","level":"1.2.22","depth":2,"path":"develop-sm2.md","ref":"develop-sm2.md","articles":[]},{"title":"如何在 ABACUS 中新增一个输入参数(截至 v3.5.3)","level":"1.2.23","depth":2,"path":"develop-addinp.md","ref":"develop-addinp.md","articles":[]},{"title":"C++ 程序设计的一些想法","level":"1.2.24","depth":2,"path":"develop-design.md","ref":"develop-design.md","articles":[]}]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.6.1","level":"1.1.6","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.6.1"},{"backlink":"abacus-upf.html#fig1.1.6.2","level":"1.1.6","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.6.2"},{"backlink":"abacus-upf.html#fig1.1.6.3","level":"1.1.6","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.6.3"},{"backlink":"abacus-upf.html#fig1.1.6.4","level":"1.1.6","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.6.4"},{"backlink":"abacus-upf.html#fig1.1.6.5","level":"1.1.6","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.6.5"},{"backlink":"abacus-surface2.html#fig1.1.15.1","level":"1.1.15","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":6,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.15.1"},{"backlink":"abacus-surface2.html#fig1.1.15.2","level":"1.1.15","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":7,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.15.2"},{"backlink":"abacus-surface2.html#fig1.1.15.3","level":"1.1.15","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":8,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.15.3"},{"backlink":"abacus-surface5.html#fig1.1.18.1","level":"1.1.18","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":9,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.18.1"},{"backlink":"abacus-surface5.html#fig1.1.18.2","level":"1.1.18","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.18.2"},{"backlink":"abacus-surface5.html#fig1.1.18.3","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":11,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.18.3"},{"backlink":"abacus-surface5.html#fig1.1.18.4","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":12,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.18.4"},{"backlink":"abacus-surface5.html#fig1.1.18.5","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":13,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.18.5"},{"backlink":"abacus-surface6.html#fig1.1.19.1","level":"1.1.19","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":14,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.19.1"},{"backlink":"abacus-surface6.html#fig1.1.19.2","level":"1.1.19","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":15,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.19.2"},{"backlink":"develop-path4.html#fig1.2.13.1","level":"1.2.13","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":16,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.13.1"},{"backlink":"develop-path4.html#fig1.2.13.2","level":"1.2.13","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":17,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.13.2"},{"backlink":"develop-path5.html#fig1.2.14.1","level":"1.2.14","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":18,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.14.1"},{"backlink":"develop-path5.html#fig1.2.14.2","level":"1.2.14","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":19,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.14.2"},{"backlink":"develop-path5.html#fig1.2.14.3","level":"1.2.14","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":20,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.14.3"},{"backlink":"develop-path5.html#fig1.2.14.4","level":"1.2.14","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":21,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.14.4"},{"backlink":"develop-path5.html#fig1.2.14.5","level":"1.2.14","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":22,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.14.5"},{"backlink":"develop-path6.html#fig1.2.16.1","level":"1.2.16","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":23,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.16.1"},{"backlink":"develop-path10.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":24,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.20.2","level":"1.2.20","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":25,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.20.2"},{"backlink":"develop-path10.html#fig1.2.20.3","level":"1.2.20","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":26,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.20.3"},{"backlink":"develop-path10.html#fig1.2.20.4","level":"1.2.20","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":27,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.20.4"},{"backlink":"develop-path10.html#fig1.2.20.5","level":"1.2.20","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":28,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.20.5"},{"backlink":"develop-path11.html#fig1.2.21.1","level":"1.2.21","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":29,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.21.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":30,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"develop-C++.md","mtime":"2023-10-09T09:05:52.154Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-03-19T11:29:16.414Z"},"basePath":".","book":{"language":""}}); + gitbook.page.hasChanged({"page":{"title":"ABACUS 开源项目 C++ 代码规范","level":"1.2.1","depth":2,"next":{"title":"ABACUS 中使用格式化工具 clang-format","level":"1.2.2","depth":2,"path":"develop-format.md","ref":"develop-format.md","articles":[]},"previous":{"title":"ABACUS 开发者文档","level":"1.2","depth":1,"ref":"","articles":[{"title":"ABACUS 开源项目 C++ 代码规范","level":"1.2.1","depth":2,"path":"develop-C++.md","ref":"develop-C++.md","articles":[]},{"title":"ABACUS 中使用格式化工具 clang-format","level":"1.2.2","depth":2,"path":"develop-format.md","ref":"develop-format.md","articles":[]},{"title":"ABACUS 注释规范:Doxygen 入门 (c++)","level":"1.2.3","depth":2,"path":"develop-dox.md","ref":"develop-dox.md","articles":[]},{"title":"ABACUS 的 Github 仓库 Issues 处理流程","level":"1.2.4","depth":2,"path":"develop-issue.md","ref":"develop-issue.md","articles":[]},{"title":"ABACUS 线上文档输入参数撰写规范","level":"1.2.5","depth":2,"path":"develop-input.md","ref":"develop-input.md","articles":[]},{"title":"ABACUS 代码存放规范","level":"1.2.6","depth":2,"path":"develop-rule.md","ref":"develop-rule.md","articles":[]},{"title":"ABACUS formatter-2.0 版本使用说明书","level":"1.2.7","depth":2,"path":"develop-formatter2.md","ref":"develop-formatter2.md","articles":[]},{"title":"ABACUS 全局数据结构和代码行数检测","level":"1.2.8","depth":2,"path":"develop-linedete.md","ref":"develop-linedete.md","articles":[]},{"title":"性能分析工具:vtune 快速上手教程","level":"1.2.9","depth":2,"path":"develop-vtune.md","ref":"develop-vtune.md","articles":[]},{"title":"以格点积分程序为例:一些代码开发习惯小贴士","level":"1.2.10","depth":2,"path":"develop-grid.md","ref":"develop-grid.md","articles":[]},{"title":"文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例","level":"1.2.11","depth":2,"path":"develop-cifparser.md","ref":"develop-cifparser.md","articles":[]},{"title":"ABACUS 中的测试(一):测试的重要性","level":"1.2.12","depth":2,"path":"develop-test1.md","ref":"develop-test1.md","articles":[]},{"title":"ABACUS 中的测试(二):测试工具 gtest","level":"1.2.13","depth":2,"path":"develop-test2.md","ref":"develop-test2.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Part 1","level":"1.2.14","depth":2,"path":"develop-path1.md","ref":"develop-path1.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Part 2","level":"1.2.15","depth":2,"path":"develop-path2.md","ref":"develop-path2.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Part 3","level":"1.2.16","depth":2,"path":"develop-path3.md","ref":"develop-path3.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Part 4","level":"1.2.17","depth":2,"path":"develop-path4.md","ref":"develop-path4.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Part 5","level":"1.2.18","depth":2,"path":"develop-path5.md","ref":"develop-path5.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Summary 1","level":"1.2.19","depth":2,"path":"develop-sm1.md","ref":"develop-sm1.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Part 6","level":"1.2.20","depth":2,"path":"develop-path6.md","ref":"develop-path6.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Part 7","level":"1.2.21","depth":2,"path":"develop-path7.md","ref":"develop-path7.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Part 8","level":"1.2.22","depth":2,"path":"develop-path8.md","ref":"develop-path8.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Part 9","level":"1.2.23","depth":2,"path":"develop-path9.md","ref":"develop-path9.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Part 10","level":"1.2.24","depth":2,"path":"develop-path10.md","ref":"develop-path10.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Part 11","level":"1.2.25","depth":2,"path":"develop-path11.md","ref":"develop-path11.md","articles":[]},{"title":"Introduction to ABACUS: Path to PW calculation - Summary Final","level":"1.2.26","depth":2,"path":"develop-sm2.md","ref":"develop-sm2.md","articles":[]},{"title":"如何在 ABACUS 中新增一个输入参数(v3.7.0 后)","level":"1.2.27","depth":2,"path":"develop-addinp2.md","ref":"develop-addinp2.md","articles":[]},{"title":"如何在 ABACUS 中新增一个输入参数(截至 v3.5.3)","level":"1.2.28","depth":2,"path":"develop-addinp.md","ref":"develop-addinp.md","articles":[]},{"title":"C++ 程序设计的一些想法","level":"1.2.29","depth":2,"path":"develop-design.md","ref":"develop-design.md","articles":[]}]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.9.1","level":"1.1.9","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.9.1"},{"backlink":"abacus-upf.html#fig1.1.9.2","level":"1.1.9","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.9.2"},{"backlink":"abacus-upf.html#fig1.1.9.3","level":"1.1.9","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.9.3"},{"backlink":"abacus-upf.html#fig1.1.9.4","level":"1.1.9","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.9.4"},{"backlink":"abacus-upf.html#fig1.1.9.5","level":"1.1.9","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.9.5"},{"backlink":"abacus-pw.html#fig1.1.13.1","level":"1.1.13","list_caption":"Figure: 电子自洽迭代计算流程。","alt":"电子自洽迭代计算流程。","nro":6,"url":"picture/fig_pw-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"电子自洽迭代计算流程。","attributes":{},"skip":false,"key":"1.1.13.1"},{"backlink":"abacus-pw.html#fig1.1.13.2","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","nro":7,"url":"picture/fig_pw-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","attributes":{},"skip":false,"key":"1.1.13.2"},{"backlink":"abacus-pw.html#fig1.1.13.3","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随K点变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","nro":8,"url":"picture/fig_pw-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","attributes":{},"skip":false,"key":"1.1.13.3"},{"backlink":"abacus-pw.html#fig1.1.13.4","level":"1.1.13","list_caption":"Figure: 计算时间随K点变化。","alt":"计算时间随K点变化。","nro":9,"url":"picture/fig_pw-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"计算时间随K点变化。","attributes":{},"skip":false,"key":"1.1.13.4"},{"backlink":"abacus-surface2.html#fig1.1.20.1","level":"1.1.20","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.20.1"},{"backlink":"abacus-surface2.html#fig1.1.20.2","level":"1.1.20","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":11,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.20.2"},{"backlink":"abacus-surface2.html#fig1.1.20.3","level":"1.1.20","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":12,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.20.3"},{"backlink":"abacus-surface5.html#fig1.1.23.1","level":"1.1.23","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":13,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.23.1"},{"backlink":"abacus-surface5.html#fig1.1.23.2","level":"1.1.23","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":14,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.23.2"},{"backlink":"abacus-surface5.html#fig1.1.23.3","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":15,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.23.3"},{"backlink":"abacus-surface5.html#fig1.1.23.4","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":16,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.23.4"},{"backlink":"abacus-surface5.html#fig1.1.23.5","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":17,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.23.5"},{"backlink":"abacus-surface6.html#fig1.1.24.1","level":"1.1.24","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":18,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.24.1"},{"backlink":"abacus-surface6.html#fig1.1.24.2","level":"1.1.24","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":19,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.24.2"},{"backlink":"abacus-dos.html#fig1.1.25.1","level":"1.1.25","list_caption":"Figure: 铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","alt":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","nro":20,"url":"picture/fig_dos-5.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","attributes":{},"skip":false,"key":"1.1.25.1"},{"backlink":"abacus-dos.html#fig1.1.25.2","level":"1.1.25","list_caption":"Figure: 铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","alt":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","nro":21,"url":"picture/fig_dos-6.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","attributes":{},"skip":false,"key":"1.1.25.2"},{"backlink":"abacus-bader.html#fig1.1.35.1","level":"1.1.35","list_caption":"Figure: SPIN1_CHG.cube","alt":"SPIN1_CHG.cube","nro":22,"url":"picture/fig_Bader1.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN1_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.1"},{"backlink":"abacus-bader.html#fig1.1.35.2","level":"1.1.35","list_caption":"Figure: SPIN2_CHG.cube","alt":"SPIN2_CHG.cube","nro":23,"url":"picture/fig_Bader2.jpg","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN2_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.2"},{"backlink":"abacus-bader.html#fig1.1.35.3","level":"1.1.35","list_caption":"Figure: SPIN_DENSITY.cube","alt":"SPIN_DENSITY.cube","nro":24,"url":"picture/fig_Bader3.jpg","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN_DENSITY.cube","attributes":{},"skip":false,"key":"1.1.35.3"},{"backlink":"abacus-bader.html#fig1.1.35.4","level":"1.1.35","list_caption":"Figure: charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","alt":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","nro":25,"url":"picture/fig_Bader4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","attributes":{},"skip":false,"key":"1.1.35.4"},{"backlink":"abacus-bader.html#fig1.1.35.5","level":"1.1.35","list_caption":"Figure: spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","alt":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","nro":26,"url":"picture/fig_Bader5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","attributes":{},"skip":false,"key":"1.1.35.5"},{"backlink":"abacus-bader.html#fig1.1.35.6","level":"1.1.35","list_caption":"Figure: charge2d_000.dat","alt":"charge2d_000.dat","nro":27,"url":"picture/fig_Bader6.png","index":6,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.6"},{"backlink":"abacus-bader.html#fig1.1.35.7","level":"1.1.35","list_caption":"Figure: charge2d_025.dat","alt":"charge2d_025.dat","nro":28,"url":"picture/fig_Bader7.png","index":7,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.7"},{"backlink":"abacus-bader.html#fig1.1.35.8","level":"1.1.35","list_caption":"Figure: charge2d_050.dat","alt":"charge2d_050.dat","nro":29,"url":"picture/fig_Bader8.png","index":8,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.8"},{"backlink":"abacus-bader.html#fig1.1.35.9","level":"1.1.35","list_caption":"Figure: spin2d_000.dat","alt":"spin2d_000.dat","nro":30,"url":"picture/fig_Bader9.png","index":9,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.9"},{"backlink":"abacus-bader.html#fig1.1.35.10","level":"1.1.35","list_caption":"Figure: spin2d_025.dat","alt":"spin2d_025.dat","nro":31,"url":"picture/fig_Bader10.png","index":10,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.10"},{"backlink":"abacus-bader.html#fig1.1.35.11","level":"1.1.35","list_caption":"Figure: spin2d_050.dat","alt":"spin2d_050.dat","nro":32,"url":"picture/fig_Bader11.png","index":11,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.11"},{"backlink":"develop-path4.html#fig1.2.17.1","level":"1.2.17","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":33,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.17.1"},{"backlink":"develop-path4.html#fig1.2.17.2","level":"1.2.17","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":34,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.17.2"},{"backlink":"develop-path5.html#fig1.2.18.1","level":"1.2.18","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":35,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.18.1"},{"backlink":"develop-path5.html#fig1.2.18.2","level":"1.2.18","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":36,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.18.2"},{"backlink":"develop-path5.html#fig1.2.18.3","level":"1.2.18","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":37,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.18.3"},{"backlink":"develop-path5.html#fig1.2.18.4","level":"1.2.18","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":38,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.18.4"},{"backlink":"develop-path5.html#fig1.2.18.5","level":"1.2.18","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":39,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.18.5"},{"backlink":"develop-path6.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":40,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.24.1","level":"1.2.24","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":41,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.24.1"},{"backlink":"develop-path10.html#fig1.2.24.2","level":"1.2.24","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":42,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.24.2"},{"backlink":"develop-path10.html#fig1.2.24.3","level":"1.2.24","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":43,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.24.3"},{"backlink":"develop-path10.html#fig1.2.24.4","level":"1.2.24","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":44,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.24.4"},{"backlink":"develop-path10.html#fig1.2.24.5","level":"1.2.24","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":45,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.24.5"},{"backlink":"develop-path11.html#fig1.2.25.1","level":"1.2.25","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":46,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.25.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":47,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"develop-C++.md","mtime":"2023-10-09T09:05:52.154Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-09-06T11:53:05.785Z"},"basePath":".","book":{"language":""}}); }); diff --git a/_book/develop-addinp.html b/_book/develop-addinp.html index e023820a..b9afd3dd 100644 --- a/_book/develop-addinp.html +++ b/_book/develop-addinp.html @@ -109,7 +109,7 @@ - + + + + + + +
                  +
                  + + + + + + + + +
                  + +
                  + +
                  + + + + + + + + +
                  +
                  + +
                  +
                  + +
                  + +

                  如何在 ABACUS 中新增一个输入参数(v3.7.0 后)

                  +

                  作者:刘千锐,邮箱:terry_liu@pku.edu.cn

                  +

                  单位:北京大学

                  +

                  最后更新日期:2024/7/10

                  +

                  如果遇到本文档无法解决的问题,欢迎给 ABACUS 提出 Issues,我们将持续更新这个文档

                  +

                  开发者须知

                  +

                  1.1 声明参数并给出初始值

                  +

                  路径 module_parameter/input_parameter.h

                  +

                  首先现在input_parameter.h中添加相关输入参数的定义,如 nelec_delta

                  +
                  bool init_vel = false;          ///< read velocity from STRU or not  liuyu 2021-07-14
                  +double symmetry_prec = 1.0e-6;  ///< LiuXh add 2021-08-12, accuracy for symmetry
                  +bool symmetry_autoclose = true; ///< whether to close symmetry automatically
                  +                                ///< when error occurs in symmetry analysis
                  +double nelec = 0.0;             ///< total number of electrons
                  +double nelec_delta = 0.0;       ///< change in the number of total electrons
                  +
                  +

                  在声明的同时给出默认值,如 nelec 默认为 0.0。

                  +

                  注:对于任何类成员变量的 double, int, bool 等一般类型变量,在定义时就建议给一个初始值。如果类成员没有初始值,很可能会有难以察觉的 bug

                  +

                  注:string类型变量的初始值不能为"", 如果想自动设置,可以设置初始值为"auto", "none"等。

                  +

                  1.2 在参数列表中添加参数

                  +

                  路径 module_io/read_input_item_*.cpp (不同的参数分好了类,其对应不同文件,需要加到属于的文件里面),如 nelec 就在read_input_item_general.cpp

                  +

                  添加 nelec 参数的 item

                  +
                  Input_Item item("nelec");
                  +
                  +

                  之后依次添加:(*为必填)

                  +

                  注释(annotation*):该注释会被打印在 OUT.*文件夹的 INPUT 中

                  +
                  item.annotation = "input number of electrons";
                  +
                  +

                  读入函数(read_value*):如何通过读入的 vector str_value 转化成想要的 parameter 参数,该函数只有在 INPUT 有相应参数的名字时才会执行。

                  +
                  item.read_value = [](const Input_Item& item, Parameter& para) {
                  +            para.input.nelec = std::stoi(item.str_values[0]); 
                  +        };
                  +
                  +

                  重新赋值函数(reset_value):如果其他某些参数满足特定条件是,需要对当前参数(nelec)进行修改的函数,该函数一定会执行。书写规范要求:只把修改当前参数的函数部分定义在当前参数的 reset_value,如果要修改其他参数,请定义在其他参数的 reset_value 。

                  +
                  item.reset_value = [](const Input_Item& item, Parameter& para) {
                  +            if(para.input.somecondition)
                  +            {
                  +                para.input.nelec = 0.0;
                  +            }
                  +        };
                  +
                  +

                  检验函数(check_value):用于检查目前参数是否合适,如果不合适就报错退出(warning_quit),该函数一定会执行。

                  +
                  item.check_value = [](const Input_Item& item, const Parameter& para) {
                  +            if(para.input.nelec < 0)
                  +            {
                  +                ModuleBase::WARNING_QUIT("ReadInput", "nelec should be no less than 0.0");
                  +            }
                  +
                  +

                  获取最终打印值函数(get_final_value*):用于给 stringstream final_value 赋值,最终 final_value.str()会被打印在 OUT.*的 INPUT 文件中,该函数一定会执行。

                  +
                  item.get_final_value = [](Input_Item& item, const Parameter& para) {
                  +            item.final_value << para.input.nelec;
                  +        };
                  +
                  +

                  以及如果是并行版,需要添加广播函数(bcastfuncs*):如何调用 Parallel_Common 进行 bcast 的函数,该函数一定会执行。该函数不一定只传输该参数,还可以传输其他引入的非 INPUT 参数,例如 gamma_only_local 这个变量不是 INPUT 参数,但是其由 gamma_only 和 basis_type 共同决定取值,这种额外引入的参数也需要在 gamma_only 或 basis_type 处添加他的 bcast 函数。

                  +
                  #ifdef __MPI
                  +        bcastfuncs.push_back([](Parameter& para) {
                  +            Parallel_Common::bcast_bool(para.input.nelec); 
                  +        });
                  +#endif
                  +
                  +

                  最后将 item 添加到参数列表中:

                  +
                  this->add_item(item);
                  +
                  +

                  总结:

                  +
                  {
                  +        Input_Item item("nelec");
                  +        item.annotation = "input number of electrons";
                  +        item.read_value = [](const Input_Item& item, Parameter& para) {
                  +            para.input.nelec = std::stoi(item.str_values[0]); 
                  +        };
                  +        item.reset_value = [](const Input_Item& item, Parameter& para) {
                  +            if(para.input.somecondition)
                  +            {
                  +                para.input.nelec = 0.0;
                  +            }
                  +        }; 
                  +        item.check_value = [](const Input_Item& item, const Parameter& para) {
                  +            if(para.input.nelec < 0)
                  +            {
                  +                ModuleBase::WARNING_QUIT("ReadInput", "nelec should be no less than 0.0");
                  +            }
                  +        };
                  +        item.get_final_value = [](Input_Item& item, const Parameter& para) {
                  +            item.final_value << para.input.nelec;
                  +        };  
                  +#ifdef __MPI
                  +        bcastfuncs.push_back([](Parameter& para) {
                  +            Parallel_Common::bcast_bool(para.input.nelec); 
                  +        });
                  +#endif
                  +        this->add_item(item);
                  +    }
                  +
                  +

                  以上是完整的参数添加实例,可以根据需要自己修改函数,然而实际上大部分参数的 bcastfuncs、get_final_value、read_value 函数填写是几乎一致的,他们有共同的形式,为了书写方便,可以利用 module_io/read_input_tool.h 定义的宏函数来进行书写的简化:

                  +

                  1. 对于形如

                  +
                  bcastfuncs.push_back([](Parameter& para) {
                  +            Parallel_Common::bcast_bool(para.input.nelec); 
                  +        });
                  +
                  +

                  的 bcastfuncs 函数书写可以分别使用 add_double_bcast, add_int_bcast, add_bool_bcast, add_string_bcast, add_doublevec_bcast, add_intvec_bcast, add_stringvec_bcast 函数进行代替

                  +

                  2. 对于形如

                  +
                  item.get_final_value = [](Input_Item& item, const Parameter& para) {
                  +            item.final_value << para.input.nelec;
                  +        };  
                  +        bcastfuncs.push_back([](Parameter& para) {
                  +            Parallel_Common::bcast_bool(para.input.PARAMETER); 
                  +        });
                  +
                  +

                  的 get_final_value 与 bcastfuncs 函数的合并书写可以使用 sync_double, sync_int, sync_bool, sync_string, sync_doublevec, sync_intvec, sync_stringvec 函数进行代替

                  +

                  3. 对于形如

                  +
                  item.read_value = [](const Input_Item& item, Parameter& para) {
                  +            para.input.nelec = std::stoi(item.str_values[0]); 
                  +        };
                  +        item.get_final_value = [](Input_Item& item, const Parameter& para) {
                  +            item.final_value << para.input.nelec;
                  +        };
                  +        bcastfuncs.push_back([](Parameter& para) {
                  +            Parallel_Common::bcast_bool(para.input.nelec); 
                  +        });
                  +
                  +

                  的 read_value, get_final_value 与 bcastfuncs 函数的合并书写可以使用 read_sync_double, read_sync_string, read_sync_int, read_sync_bool 函数进行代替

                  +

                  因此添加 nelec 的代码可以简化成:

                  +
                  {
                  +        Input_Item item("nelec");
                  +        item.annotation = "input number of electrons";
                  +        read_sync_double(nelec);
                  +        item.reset_value = [](const Input_Item& item, Parameter& para) {
                  +            if(para.input.somecondition)
                  +            {
                  +                para.input.nelec = 0.0;
                  +            }
                  +        }; 
                  +        item.check_value = [](const Input_Item& item, const Parameter& para) {
                  +            if(para.input.nelec < 0)
                  +            {
                  +                ModuleBase::WARNING_QUIT("ReadInput", "nelec should be no less than 0.0");
                  +            }
                  +        };
                  +        this->add_item(item);
                  +
                  +

                  1.2 参数的使用

                  +

                  目前已经舍弃使用 INPUT 与 GloablV::,请勿在里面添加新变量!

                  +

                  需要用到参数的地方,请以只读的方式使用

                  +
                  int nbands = PARAM.inp.nbands; //只读的访问元素
                  +
                  +

                  而其不能作为修改的对象,这时编译不能通过:

                  +
                  PARAM.inp.nbands = 0//会报错
                  +
                  +

                  1.3 添加测试

                  +

                  A. 读入测试

                  +

                  路径:source/module_io/test/read_input_pteset.cpp

                  +
                         <u>source/module_io/test/support/INPUT</u>
                  +

                  在 INPUT 中添加这一参数:

                  +
                  nelec                  10 #input number of electrons
                  +
                  +

                  TEST_F(InputParaTest, ParaRead) 测试这一读入是否正确,例如:

                  +
                  EXPECT_EQ(PARAM.inp.nelec, 10);
                  +

                  B. 特殊场景的 reset_value 和 check_value 测试

                  +

                  路径:source/module_io/test/read_input_item_test.cpp

                  +

                  TEST_F(InputTest, Item_test) 添加特定参数的 reset_value 函数和 check_value 的覆盖性测试。

                  +

                  1.4 添加文档

                  +

                  路径:docs/advanced/input_files/input-main.md

                  +

                  每个新参数的 PR必须包含相应的文档,否则不会被接收。请在 input-main.md 中添加参数描述。

                  +

                  设计文档参考

                  +

                  参考:林霈泽博士提的方案 github.com

                  +

                  2.1 背景

                  +

                  v3.7.0 之前添加参考如何在 ABACUS 中新增一个输入参数(截至 v3.5.3)

                  +

                  2.1.1 原 input.cpp

                  +

                  当添加一个新的 INPUT 参数,我们需在 input 类里做以下事情:

                  +

                  A. 首先在 Default 函数中给初始值;

                  +

                  B. 再在 read 函数中的 if 中加一个判断分支:

                  +
                  if (strcmp("suffix", word) == 0) // out dir
                  +{
                  +     read_value(ifs, suffix);
                  +}
                  +
                  +

                  C. 再在 Bcast 函数中添加 bcast

                  +

                  D. (大部分)在 GlobalV 定义一个相同功能的变量,并给个初始值(实际上这个初始值没有任何用,还容易让人误解到底这个和 input.cpp 哪个是初始值)

                  +

                  E. 再在 input_conv.cpp 中转化成 GlobalV 的变量

                  +

                  F. 再在 write_input.cpp 添加一行代码使其可以输出到 OUT.ABACUS 文件夹中 INPUT

                  +
                  +

                  痛点:

                  +
                    +
                  1. 每加一个参数,对于 ABACUS 主代码需“翻山越岭”地添加代码,不易管理
                  2. +
                  3. input.cpp 的变量和 GlobalV 的变量大部分重复,没有必要,且容易误解
                  4. +
                  5. 大量的 if 分支 +改进思路:
                  6. +
                  7. 将相同的参数代码集中起来
                  8. +
                  9. input 类只实现读的功能,不存储参数,参数由另一个类存储
                  10. +
                  +
                  +

                  2.1.2 GlobalV

                  +

                  其实代码有全局变量不可怕,可怕的是全局变量会在运行中改变,而部分 GlobalV 就是这样,因此需要限制他人在初始化参数之后改变的行为。

                  +

                  目前很多也使用了 public 的类静态成员变量,这其实和全局变量是一样的。

                  +

                  2.2 重构设计

                  +

                  2.2.1 Parameter 类

                  +

                  该类只存储 ABACUS 运行的参数,将代替 GlobalV 的功能,该类将成员设成私有变量,只给 ReadInput 类修改的权限,其他类只有访值权限,没有修改权限:

                  +
                  class Parameter
                  +{
                  +  public:
                  +    Parameter(){};
                  +    ~Parameter(){};
                  +  public:
                  +    // We can only read the value of input, but cannot modify it.
                  +    const Input_para& inp = input;
                  +    // We can only read the value of mdp, but cannot modify it.
                  +    const MD_para& mdp = input.mdp;
                  +    // We can only read the value of other parameters, but cannot modify it.
                  +    const System_para& globalv = system;
                  +
                  +    // Set the rank & nproc
                  +    void set_rank_nproc(const int& myrank, const int& nproc);
                  +    // Set the start time
                  +    void set_start_time(const std::time_t& start_time);
                  +
                  +  private:
                  +    // Only ReadInput can modify the value of Parameter.
                  +    friend class ModuleIO::ReadInput;
                  +    // INPUT parameters
                  +    Input_para input;
                  +    // System parameters
                  +    System_para system;
                  +};
                  +
                  +

                  2.2 Input_Item 类

                  +

                  用于存储 input 参数的信息,每一个参数用 input_item 的一个对象存储,不同 input_item 用 vector 打包。

                  +
                  class Input_Item
                  +{
                  +  public:
                  +    Input_Item(const std::string& label_in)
                  +    {
                  +        label = label_in;
                  +    }
                  +
                  +    std::string label;                   ///< label of the input item
                  +    std::vector<std::string> str_values; ///< string values of the input item
                  +    std::stringstream final_value;       ///< final value for writing to output INPUT file
                  +    std::string annotation; ///< annotation of the input item
                  +
                  +    // ====== !!! These functions are complete.        ======
                  +    // ====== !!! Do not add any more functions here.  ======
                  +    /// read value if INPUT file has this item
                  +    std::function<void(const Input_Item&, Parameter&)> read_value = [](const Input_Item& item, Parameter& param) {};
                  +    /// check value 
                  +    std::function<void(const Input_Item&, const Parameter&)> check_value = nullptr;
                  +    /// reset some values
                  +    std::function<void(const Input_Item&, Parameter&)> reset_value = nullptr;
                  +    /// get final_value function for output INPUT file
                  +    std::function<void(Input_Item&, const Parameter&)> get_final_value = nullptr;
                  +    // ====== !!! Do not add any more functions here.  ======
                  +};
                  +
                  +

                  四个存储的变量:

                  +

                  label: 参数的名字

                  +

                  annotation: 参数的注释,用于生成 INPUT 的注释

                  +

                  str_values: 读入的 raw 数据,一个参数可以有多个数据,因此用 vector 存储,例如:kspacing 3 3 3

                  +

                  final_value: 最终的取值,用于生成 INPUT

                  +

                  四个 std::function 成员:

                  +

                  read_value(必填): 当从 INPUT 读入参数后,需要进行的赋值操作

                  +

                  reset_value(选填): 根据其读入的值,可能会修改其他参数的值时填入,例如 calculation 默认是 scf,当你读入 calculation 是 nscf 后,则需要将 init_chg 改成 file

                  +

                  check_value(选填):根据其读入的值进行判断参数是否合适,例如:读入 ecut 为-100,则需要 warning_quit()

                  +

                  get_final_value(大部分必填):此函数一定会执行(无论是否从 INPUT 读入这个参数),需要在此函数中给出 final_value 的赋值函数,这样用于打印 INPUT 文件

                  +

                  2.2 ReadInput 类

                  +

                  此类只负责读入 INPUT 文件,并赋值给 Parameter 类的对象,此类不负责存储参数

                  +
                  class ReadInput
                  +{
                  + public:
                  +     /**
                  +     * @brief read in parameters from input file
                  +     *
                  +     * @param param parameters of ABACUS
                  +     * @param filename_in read INPUT file name
                  +     */
                  +    void read_parameters(Parameter& param, const std::string& filename_in);
                  +
                  +    /**
                  +     * @brief write out parameters to output file
                  +     *
                  +     * @param param parameters of ABACUS
                  +     * @param filename_out write output file name
                  +     */
                  +    void write_parameters(const Parameter& param, const std::string& filename_out);
                  +  private:
                  +    std::vector<std::pair<std::string, Input_Item>> input_lists;
                  +    //----These functions are done only when INPUT file has them.------
                  +    // read value if INPUT file has this item
                  +    std::vector<Input_Item*> readvalue_items;
                  +
                  +    /// bcast all values function
                  +    /// if no MPI, this function will resize the vector
                  +    std::vector<std::function<void(Parameter&)>> bcastfuncs;
                  +
                  +

                  主要两个 public 函数:

                  +

                  read_parameters: 读入 INPUT 文件,赋值给 param

                  +

                  write_parameters: 打印 INPUT 文件

                  +

                  3 个 vector:

                  +

                  input_lists: 用于存储所有的 Input_Item,用于遍历调用 resetvalue, getfinalvalue

                  +

                  readvalue_items: 用于存储读入 INPUT 中相应 Input_Item 指针,并进行读入赋值操作

                  +

                  bcastfuncs: 用于所有参数的 bcast

                  +

                  原则上bcastfuncs也可以用 vector 存储,一方面由于其不依赖 Input_Item,并且可能会 bcast 非 input 列表参数,另一方面但为了访存效率,用 vector存储更好

                  +

                  2.2.1 read_parameters 函数

                  +

                  对于 ReadInput 的 read_parameter,其执行的顺序是:

                  +

                  先确定 INPUT 对应哪些 Input_Item,然后将 INPUT 中读入的信息存入 item 的 str_values 中,之后依次执行

                  +
                    +
                  1. readvalue_items
                  2. +
                  3. inputlist->resetvalue
                  4. +
                  5. inputlist->checkvalue
                  6. +
                  7. bcastfuncs
                  8. +
                  +

                  2.2.2 write_parameters 函数

                  +

                  如果要打印 INPUT,顺序执行 input_lists 的getfinalvalue

                  +

                  然后

                  +
                  for (auto& item: this->input_lists)
                  +{
                  +   Input_Item* p_item = &(item.second);
                  +   if (p_item->getfinalvalue == nullptr)
                  +            continue;
                  +   p_item->getfinalvalue(*p_item, param);
                  +   ModuleBase::GlobalFunc::OUTP(ofs, p_item->label, p_item->final_value.str(), p_item->annotation);
                  +}
                  +
                  +
                  Copyright © mcresearch.gitee.io 2023 all right reserved,powered by Gitbook该文章修订时间: +2024-08-11 09:55:38 +
                  + +
                  + +
                  +
                  +
                  + +

                  results matching ""

                  +
                    + +
                    +
                    + +

                    No results matching ""

                    + +
                    +
                    +
                    + +
                    +
                    + +
                    + + + + + + + + + + + + + + +
                    + + +
                    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_book/develop-cifparser.html b/_book/develop-cifparser.html new file mode 100644 index 00000000..a0c908af --- /dev/null +++ b/_book/develop-cifparser.html @@ -0,0 +1,1472 @@ + + + + + + + 文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例 · GitBook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
                    +
                    + + + + + + + + +
                    + +
                    + +
                    + + + + + + + + +
                    +
                    + +
                    +
                    + +
                    + +

                    文件输出功能的实现代码结构设计建议:以 ABACUS CifParser 为例

                    +

                    作者:黄一珂,邮箱:huangyk@aisi.ac.cn

                    +

                    审核:陈默涵,邮箱:mohanchen@pku.edu.cn

                    +

                    最后更新时间:2024 年 9 月 6 日

                    +

                    输入输出功能并不是软件开发的边角任务。良好的输入输出设计不仅能便捷用户的使用,提升用户体验,使得软件能够无缝地结合 community 已有成熟工作范式,也会在必要时为以 disk I/O 解决内存问题发挥明显作用

                    +

                    背景

                    +
                      +
                    • 随着 ABACUS 的功能持续增加,对感兴趣物理量输出的需求也随之增加,且从 running_log 中抓取信息愈加困难
                    • +
                    • 随着 ABACUS 的用户群体增加,越来越多的 ABACUS 与各种具有结构化文件接口的后处理软件不兼容的 issue/报告数量也在增加
                    • +
                    • 将积分表和其他非高频访问(计算次数有限,但每次计算成本较高)数据写入文件来减轻内存使用,是模拟更大尺度体系的常见和成熟技术路线之一
                    • +
                    +

                    规范化文件输出-读入功能开发流程

                    +

                    第一步:对输出内容的重新思考

                    +

                    在设计和编写输出代码之前,我们必须再次明确至少以下两个方面:

                    +
                      +
                    • 这种输出功能的用途是什么?是给人读还是机器读
                    • +
                    • 从原则上讲,所需输出物理量,在输出过程中产生的精度损失是否应该发生?
                    • +
                    +

                    实际上,ABACUS 目前的确存在“具有有限保留位数,但用于被期望进行数值误差尽可能小的计算”这一情况中,例如:

                    +
                      +
                    • LCAO 波函数:out_wfc_lcao 关键词可赋值 1 输出为 plaintext,赋值 2 输出二进制格式。但 plaintext 文件用于 restart SCF 计算
                    • +
                    • 电荷密度:out_chg 关键词可赋值 1 输出实空间电荷密度为 Gaussian cube,该文件默认只保留 3 位小数,且在 PR#4958 之前无法更改,用于 restart SCF 计算
                    • +
                    • H(k), S(k):out_mat_hs 关键词可赋值 1 输出 H(k)和 S(k)为 plaintext。该类文件默认只保留 6 位小数,且在 PR#3468 之前无法更改,联合 out_wfc_lcao 1 所输出的波函数文件,数值误差达到1e-5数量级,已经无法用于精度要求稍高的后处理计算
                    • +
                    +

                    ...

                    +

                    这些情况的出现,反映了 ABACUS 涉及文件输入输出的一致性并未良好设计,且经常出现一种文件承担了人读和机器读,定性和严格定量两种场景需求。

                    +

                    第二步:输出文件格式调研

                    +

                    基于第一步对输入/输出目的的再次明确,之后考虑储存在文件中数据的结构问题。

                    +

                    实际上,整个计算化学/计算物理领域的软件已经对相当多的数据结构就“应当如何输出”、“输出为何种格式”凝聚出共识,如实空间三维格点数据以 Gaussian Cube/xsd 文件输出,稀疏矩阵使用 csr 格式输出,绘图数据使用 gnuplot 可读格式输出,结构文件使用 cif/(ext-)xyz/pdb 等格式输出。也不断有新的格式被推广,如三维格点数据使用具有更高压缩比的 BQB,因为 Python 的大范围应用因此支持输出 npy, npz 等。因此具有输出和读入物理量的需求时,如果希望该功能对用户可见且被高度信任地使用,应当首先对数据格式和标准进行调研。

                    +

                    举例:

                    +

                    https://www.quantum-espresso.org/Doc/INPUT_PP.html#idm124

                    +

                    https://manual.cp2k.org/trunk/CP2K_INPUT/FORCE_EVAL/DFT/PRINT.html

                    +

                    特别地,例如对于 restart 所需文件和 MD 轨迹的存储,应当在软件间进行广泛调研。对于 restart,如 QE 默认输出电荷密度、波函数的二进制文件,CP2K 默认输出最新三步的波函数二进制文件,GROMACS 将轨迹保存在二进制格式的 trr 中,LAMMPS 可以设置 dump 关键词将指定信息输出在文件中,CP2K 默认将 AIMD 轨迹保存在 xyz 文件中,且他们支持根据 suffix/prefix 来批量设置各种输出文件的文件名。

                    +

                    对于 MD 轨迹则应当调研常见的轨迹分析后处理软件和可视化软件的可接受格式,如 Visual Molecular Dynamics (VMD)、OVITO,分别在蛋白模拟、材料模拟领域久负盛名,各自具有庞大的用户群体:

                    +

                    +

                    第三步:写一个好用的工具库

                    +

                    不得不承认,文件读写代码的实现在实际功能开发时是“dirty work”,因此我们应当尽可能减少“dirty work”占用所有开发者的时间。基于这种目的,我们需要对需要输出的量其数据结构进行抽象的认识,之后根据精度要求选择合适的格式进行输出,因此所有真正对输入-输出的实现都应当具有库的性质,而非总是 case-by-case 地去编写代码,如 ABACUS 之前版本中出现的 STRU_SIMPLE.cif 和 STRU_READIN_ADJUST.cif,两文件具有相同的扩展名,但实际上两文件都不具有完整的 cif 文件规定的结构。

                    +

                    设计原则零:100% 明确封装的必要性

                    +

                    多人协作开发 C++ 程序时,有时会出现开发者起手就要把自己将要写的代码用“class XXX {}”套起来的情况,但至于为什么如此做却不能给出令人满意的回答,即“面向对象”其“对象”究竟为何物的意义不明确。就当前语境而言,将 ABACUS 中数据写入文件中,这一过程理想情况下不应该涉及任何数据的复制和存储,即输入输出函数并不应当在 ABACUS 功能模块和文件之间将数据存储在“其他地方”,而大部分 C++ 开发者在编写类声明时,又格外自然地将数据放在 private 域中,这无疑在设计上是错上加错的实现方式。

                    +

                    因此对于 ModuleIO::CifParser,尽管 CifParser 参考 pymatgen.CifParser 设计成类,但实际上对 cif 文件的读写均为 static 函数实现,封装成类的意图仅仅为对齐 pymatgen.CifParser 以文件名为输入参数构建对象的方式使用,此时类具有唯一数据成员“raw”,其被赋值是在调用构造函数构造对象,构造函数直接 static read 函数时,这实际上也符合了 RAII(Resource Acquisition Is Initiallization)原则,见扩展阅读材料。

                    +
                    class CifParser
                    +    {
                    +        public:
                    +            CifParser() = delete; // I cannot see any necessity to have a default constructor
                    +            CifParser(const std::string& fcif); // read the cif file and store the information
                    +            ~CifParser() {} // actually do not need to do anything explicitly
                    +
                    +            static void write(//...
                    +                             );
                    +            static void read(//...
                    +                             );
                    +
                    +            std::vector<std::string> get(const std::string& key);
                    +
                    +        private:
                    +            // interface to ABACUS UnitCell impl.
                    +            static void _unpack_ucell(//...
                    +                                      );
                    +            // stores the information of the cif file
                    +            std::map<std::string, std::vector<std::string>> raw_;
                    +    };
                    +
                    +

                    设计原则一:核心函数尽可能避免对 STL 容器和基本数据类型之外的任何类有依赖

                    +

                    +

                    我们总应当尽可能低耦合地编写代码,否则对于单元测试和代码调试都会造成极大的困难。原先对 cif 文件输出的函数实现作为 UnitCell 的成员函数,这实际上意味着“如果需要输出 cif 文件,则需要首先构造一个 UnitCell 对象”——这显然从原则上是荒谬的,在程序实现上,UnitCell 中只有少部分数据是 cif 文件写入所需要的。

                    +
                    static void write(const std::string& fcif,
                    +                  const double* abc_angles,
                    +                  const int natom,
                    +                  const std::string* atom_site_labels, // the one without numbers
                    +                  const double* atom_site_fract_coords,
                    +                  const std::string& title = "# generated by ABACUS",
                    +                  const std::string& data_tag = "data_?",
                    +                  const int rank = 0,
                    +                  const double* atom_site_occups = nullptr, // may be this will be useful after impementation of VCA?
                    +                  const std::string& cell_formula_units_z = "1");
                    +
                    +
                    static void read(const std::string& fcif,
                    +                 std::map<std::string, std::vector<std::string>>& out,
                    +                 const int rank = 0);
                    +
                    +

                    如此对两个核心函数的单元测试可以完全不构建 UnitCell 对象,使得该单元测试的编写相当容易。

                    +

                    之后因为当前 ABACUS 的程序结构原因,重载一个形参表具有 UnitCell 对象,

                    +
                    static void write(const std::string& fcif,
                    +                  const UnitCell& ucell,
                    +                  const std::string& title = "# generated by ABACUS",
                    +                  const std::string& data_tag = "data_?",
                    +                  const int rank = 0);
                    +
                    +

                    ,实际上只需要从 UnitCell 对象中获取需要的信息,之后调用核心函数。这使得 cif 的写入由

                    +
                    ucell.print_cell_cif("STRU.cif");
                    +
                    +

                    变化为

                    +
                    ModuleIO::CifParser::write(GlobalV::global_out_dir + "STRU.cif", ucell);
                    +
                    +

                    。另外出于对 ABACUS Python 化的考虑(pybind 对数据类型的支持范围,具体见 https://pybind11.readthedocs.io/en/stable/advanced/cast/overview.html#list-of-all-builtin-conversions),另设置一“write”函数的重载如:

                    +
                    static void write(const std::string& fcif,
                    +                  const std::vector<double>& abc_angles,
                    +                  const std::vector<std::string>& atom_site_labels, // the one without numbers
                    +                  const std::vector<double>& atom_site_fract_coords,
                    +                  const std::string& title = "# generated by ABACUS",
                    +                  const std::string& data_tag = "data_?",
                    +                  const int rank = 0,
                    +                  const std::vector<double>& atom_site_occups = {}, // may be this will be useful after impementation of VCA?
                    +                  const std::string& cell_formula_units_z = "1");
                    +
                    +

                    设计原则二:读写一致性

                    +

                    一般地,我们希望使用“write”将数据写入文件后,以“read”函数再读入的数据和原先完全相同,如单元测试:

                    +
                    TEST(CifParserTest, WriteTest)
                    +{
                    +    int rank = 0;
                    +#ifdef __MPI
                    +    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
                    +#endif
                    +    const std::string fcif = "test.cif";
                    +    std::ofstream ofs(fcif);
                    +    const std::vector<double> abc_angles = {2.46637620, 2.46637620, 24.84784531, 90.0, 90.0, 120.0};
                    +    const int natom = 4;
                    +    const std::vector<std::string> atom_site_labels = {"C", "C", "C", "C"};
                    +    const std::vector<double> atom_site_fract = {0.0, 0.0, 0.75, 
                    +                                                 0.0, 0.0, 0.25, 
                    +                                                 0.333333, 0.666667, 0.75, 
                    +                                                 0.666667, 0.333333, 0.25};
                    +    ModuleIO::CifParser::write(fcif, 
                    +                               abc_angles.data(), 
                    +                               natom, 
                    +                               atom_site_labels.data(), 
                    +                               atom_site_fract.data(),
                    +                               "# Generated during unittest of function ModuleIO::CifParser::write",
                    +                               "data_test");
                    +    std::map<std::string, std::vector<std::string>> data;
                    +    ModuleIO::CifParser::read(fcif, data);
                    +// ...
                    +
                    +

                    设计建议一:不要总是指望 rank 0

                    +

                    实际上,如果在运行过程中已经对部分数据进行分发,则可以通过不同的 rank 同时进行不同文件的读写,来减轻单一 rank(ABACUS 通常指定为 rank 0)的读写负担,因此在 read 和 write 函数中有如下字段:

                    +
                    void ModuleIO::CifParser::write(const std::string& fcif,
                    +                                const double* abc_angles,
                    +                                const int natom,
                    +                                const std::string* atom_site_labels,
                    +                                const double* atom_site_fract_coords,
                    +                                const std::string& title,
                    +                                const std::string& data_tag,
                    +                                const int rank,
                    +                                const double* atom_site_occups,
                    +                                const std::string& cell_formula_units_z)
                    +{
                    +#ifdef __MPI // well...very simple...
                    +    int myrank;
                    +    if (rank != 0)
                    +    {
                    +        return;
                    +    }
                    +#endif
                    +// ...
                    +}
                    +
                    +
                    void ModuleIO::CifParser::read(const std::string& fcif,
                    +                               std::map<std::string, std::vector<std::string>>& out,
                    +                               const int rank)
                    +{
                    +    // okey for read, cannot just use if rank != 0 then return, because need to broadcast the map
                    +    out.clear();
                    +#ifdef __MPI
                    +    int myrank;
                    +    if (rank == 0) // only the rank assigned to read the cif file will read the file
                    +    {
                    +#endif
                    +    std::ifstream ifs(fcif);
                    +// ...
                    +}
                    +
                    +

                    此时我们可以按照任意的规则,例如基于通讯域和具体 processor 的划分,在调用 read 或者 write 时将“rank”指定为 0,而并不一定绑定例如 GlobalV::MY_RANK == rank

                    +

                    设计建议三:并非所有数据都可以收集在一个 rank 再进行文件写入

                    +

                    尽管在当前 CifParser 的案例中不涉及,但有时我们会遇到需要输出大规模数据的情况,例如对 PW 波函数等信息的输出。为避免多个 MPI 进程写文件时发生冲突,ABACUS 中常常使用“收集到 rank0”-“rank 0 打开文件并写入”的方式进行。然而,并非所有数据都可以被单个 rank 的内存所承受,当数据量非常大时,通常需要数据在每个 rank 独立写入,而非进行收集。

                    +

                    扩展阅读

                    +

                    C++ 程序设计的一些想法:https://mcresearch.github.io/abacus-user-guide/develop-design.html

                    +
                    Copyright © mcresearch.gitee.io 2023 all right reserved,powered by Gitbook该文章修订时间: +2024-09-06 19:46:34 +
                    + +
                    + +
                    +
                    +
                    + +

                    results matching ""

                    +
                      + +
                      +
                      + +

                      No results matching ""

                      + +
                      +
                      +
                      + +
                      +
                      + +
                      + + + + + + + + + + + + + + +
                      + + +
                      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_book/develop-design.html b/_book/develop-design.html index 7d6607b2..0e590c70 100644 --- a/_book/develop-design.html +++ b/_book/develop-design.html @@ -174,7 +174,20 @@ -
                    • +
                    • + + + + + Intel oneAPI 2024.x 编译 ABACUS 教程 + + + + + +
                    • + +
                    • @@ -187,7 +200,7 @@
                    • -
                    • +
                    • @@ -200,7 +213,7 @@
                    • -
                    • +
                    • @@ -213,7 +226,7 @@
                    • -
                    • +
                    • @@ -226,7 +239,33 @@
                    • -
                    • +
                    • + + + + + ABACUS 答疑手册 + + + + + +
                    • + +
                    • + + + + + ABACUS 收敛性问题解决手册 + + + + + +
                    • + +
                    • @@ -239,7 +278,7 @@
                    • -
                    • +
                    • @@ -252,7 +291,7 @@
                    • -
                    • +
                    • @@ -265,7 +304,7 @@
                    • -
                    • +
                    • @@ -278,7 +317,20 @@
                    • -
                    • +
                    • + + + + + ABACUS 的平面波计算与收敛性测试 + + + + + +
                    • + +
                    • @@ -291,7 +343,7 @@
                    • -
                    • +
                    • @@ -304,7 +356,7 @@
                    • -
                    • +
                    • @@ -317,7 +369,7 @@
                    • -
                    • +
                    • @@ -330,7 +382,20 @@
                    • -
                    • +
                    • + + + + + ABACUS 实时演化含时密度泛函理论使用教程 + + + + + +
                    • + +
                    • @@ -343,7 +408,7 @@
                    • -
                    • +
                    • @@ -356,7 +421,7 @@
                    • -
                    • +
                    • @@ -369,7 +434,7 @@
                    • -
                    • +
                    • @@ -382,7 +447,7 @@
                    • -
                    • +
                    • @@ -395,7 +460,7 @@
                    • -
                    • +
                    • @@ -408,7 +473,20 @@
                    • -
                    • +
                    • + + + + + ABACUS+Atomkit 计算态密度和能带 + + + + + +
                    • + +
                    • @@ -421,7 +499,7 @@
                    • -
                    • +
                    • @@ -434,7 +512,7 @@
                    • -
                    • +
                    • @@ -447,7 +525,7 @@
                    • -
                    • +
                    • @@ -460,7 +538,7 @@
                    • -
                    • +
                    • @@ -473,7 +551,7 @@
                    • -
                    • +
                    • @@ -486,7 +564,7 @@
                    • -
                    • +
                    • @@ -499,7 +577,7 @@
                    • -
                    • +
                    • @@ -512,12 +590,25 @@
                    • -
                    • +
                    • - + - ABACUS 收敛性问题解决手册 + ABACUS+pymatgen 计算弹性常数 + + + + + +
                    • + +
                    • + + + + + ABACUS+Bader charge 分析教程 @@ -622,7 +713,20 @@
                    • -
                    • +
                    • + + + + + ABACUS formatter-2.0 版本使用说明书 + + + + + +
                    • + +
                    • @@ -635,7 +739,46 @@
                    • -
                    • +
                    • + + + + + 性能分析工具:vtune 快速上手教程 + + + + + +
                    • + +
                    • + + + + + 以格点积分程序为例:一些代码开发习惯小贴士 + + + + + +
                    • + +
                    • + + + + + 文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例 + + + + + +
                    • + +
                    • @@ -648,7 +791,7 @@
                    • -
                    • +
                    • @@ -661,7 +804,7 @@
                    • -
                    • +
                    • @@ -674,7 +817,7 @@
                    • -
                    • +
                    • @@ -687,7 +830,7 @@
                    • -
                    • +
                    • @@ -700,7 +843,7 @@
                    • -
                    • +
                    • @@ -713,7 +856,7 @@
                    • -
                    • +
                    • @@ -726,7 +869,7 @@
                    • -
                    • +
                    • @@ -739,7 +882,7 @@
                    • -
                    • +
                    • @@ -752,7 +895,7 @@
                    • -
                    • +
                    • @@ -765,7 +908,7 @@
                    • -
                    • +
                    • @@ -778,7 +921,7 @@
                    • -
                    • +
                    • @@ -791,7 +934,7 @@
                    • -
                    • +
                    • @@ -804,7 +947,7 @@
                    • -
                    • +
                    • @@ -817,7 +960,7 @@
                    • -
                    • +
                    • @@ -830,7 +973,20 @@
                    • -
                    • +
                    • + + + + + 如何在 ABACUS 中新增一个输入参数(v3.7.0 后) + + + + + +
                    • + +
                    • @@ -843,7 +999,7 @@
                    • -
                    • +
                    • @@ -899,6 +1055,19 @@ +
                    • + +
                    • + + + + + 在 ABACUS 中进行差分测试 + + + + +
                    • @@ -1238,7 +1407,7 @@

                      No results matching " var gitbook = gitbook || []; gitbook.push(function() { - gitbook.page.hasChanged({"page":{"title":"C++ 程序设计的一些想法","level":"1.2.24","depth":2,"next":{"title":"算法文档","level":"1.3","depth":1,"ref":"","articles":[{"title":"最大局域化 Wannier 函数方法简介","level":"1.3.1","depth":2,"path":"algorithm-wannier.md","ref":"algorithm-wannier.md","articles":[]},{"title":"电荷密度混合算法介绍","level":"1.3.2","depth":2,"path":"algorithm-mix.md","ref":"algorithm-mix.md","articles":[]}]},"previous":{"title":"如何在 ABACUS 中新增一个输入参数(截至 v3.5.3)","level":"1.2.23","depth":2,"path":"develop-addinp.md","ref":"develop-addinp.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.6.1","level":"1.1.6","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.6.1"},{"backlink":"abacus-upf.html#fig1.1.6.2","level":"1.1.6","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.6.2"},{"backlink":"abacus-upf.html#fig1.1.6.3","level":"1.1.6","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.6.3"},{"backlink":"abacus-upf.html#fig1.1.6.4","level":"1.1.6","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.6.4"},{"backlink":"abacus-upf.html#fig1.1.6.5","level":"1.1.6","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.6.5"},{"backlink":"abacus-surface2.html#fig1.1.15.1","level":"1.1.15","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":6,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.15.1"},{"backlink":"abacus-surface2.html#fig1.1.15.2","level":"1.1.15","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":7,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.15.2"},{"backlink":"abacus-surface2.html#fig1.1.15.3","level":"1.1.15","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":8,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.15.3"},{"backlink":"abacus-surface5.html#fig1.1.18.1","level":"1.1.18","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":9,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.18.1"},{"backlink":"abacus-surface5.html#fig1.1.18.2","level":"1.1.18","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.18.2"},{"backlink":"abacus-surface5.html#fig1.1.18.3","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":11,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.18.3"},{"backlink":"abacus-surface5.html#fig1.1.18.4","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":12,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.18.4"},{"backlink":"abacus-surface5.html#fig1.1.18.5","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":13,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.18.5"},{"backlink":"abacus-surface6.html#fig1.1.19.1","level":"1.1.19","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":14,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.19.1"},{"backlink":"abacus-surface6.html#fig1.1.19.2","level":"1.1.19","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":15,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.19.2"},{"backlink":"develop-path4.html#fig1.2.13.1","level":"1.2.13","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":16,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.13.1"},{"backlink":"develop-path4.html#fig1.2.13.2","level":"1.2.13","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":17,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.13.2"},{"backlink":"develop-path5.html#fig1.2.14.1","level":"1.2.14","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":18,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.14.1"},{"backlink":"develop-path5.html#fig1.2.14.2","level":"1.2.14","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":19,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.14.2"},{"backlink":"develop-path5.html#fig1.2.14.3","level":"1.2.14","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":20,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.14.3"},{"backlink":"develop-path5.html#fig1.2.14.4","level":"1.2.14","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":21,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.14.4"},{"backlink":"develop-path5.html#fig1.2.14.5","level":"1.2.14","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":22,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.14.5"},{"backlink":"develop-path6.html#fig1.2.16.1","level":"1.2.16","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":23,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.16.1"},{"backlink":"develop-path10.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":24,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.20.2","level":"1.2.20","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":25,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.20.2"},{"backlink":"develop-path10.html#fig1.2.20.3","level":"1.2.20","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":26,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.20.3"},{"backlink":"develop-path10.html#fig1.2.20.4","level":"1.2.20","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":27,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.20.4"},{"backlink":"develop-path10.html#fig1.2.20.5","level":"1.2.20","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":28,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.20.5"},{"backlink":"develop-path11.html#fig1.2.21.1","level":"1.2.21","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":29,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.21.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":30,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"develop-design.md","mtime":"2024-03-06T07:06:07.362Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-03-19T11:29:16.414Z"},"basePath":".","book":{"language":""}}); + gitbook.page.hasChanged({"page":{"title":"C++ 程序设计的一些想法","level":"1.2.29","depth":2,"next":{"title":"算法文档","level":"1.3","depth":1,"ref":"","articles":[{"title":"最大局域化 Wannier 函数方法简介","level":"1.3.1","depth":2,"path":"algorithm-wannier.md","ref":"algorithm-wannier.md","articles":[]},{"title":"电荷密度混合算法介绍","level":"1.3.2","depth":2,"path":"algorithm-mix.md","ref":"algorithm-mix.md","articles":[]},{"title":"在 ABACUS 中进行差分测试","level":"1.3.3","depth":2,"path":"algorithm-delta.md","ref":"algorithm-delta.md","articles":[]}]},"previous":{"title":"如何在 ABACUS 中新增一个输入参数(截至 v3.5.3)","level":"1.2.28","depth":2,"path":"develop-addinp.md","ref":"develop-addinp.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.9.1","level":"1.1.9","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.9.1"},{"backlink":"abacus-upf.html#fig1.1.9.2","level":"1.1.9","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.9.2"},{"backlink":"abacus-upf.html#fig1.1.9.3","level":"1.1.9","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.9.3"},{"backlink":"abacus-upf.html#fig1.1.9.4","level":"1.1.9","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.9.4"},{"backlink":"abacus-upf.html#fig1.1.9.5","level":"1.1.9","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.9.5"},{"backlink":"abacus-pw.html#fig1.1.13.1","level":"1.1.13","list_caption":"Figure: 电子自洽迭代计算流程。","alt":"电子自洽迭代计算流程。","nro":6,"url":"picture/fig_pw-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"电子自洽迭代计算流程。","attributes":{},"skip":false,"key":"1.1.13.1"},{"backlink":"abacus-pw.html#fig1.1.13.2","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","nro":7,"url":"picture/fig_pw-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","attributes":{},"skip":false,"key":"1.1.13.2"},{"backlink":"abacus-pw.html#fig1.1.13.3","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随K点变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","nro":8,"url":"picture/fig_pw-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","attributes":{},"skip":false,"key":"1.1.13.3"},{"backlink":"abacus-pw.html#fig1.1.13.4","level":"1.1.13","list_caption":"Figure: 计算时间随K点变化。","alt":"计算时间随K点变化。","nro":9,"url":"picture/fig_pw-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"计算时间随K点变化。","attributes":{},"skip":false,"key":"1.1.13.4"},{"backlink":"abacus-surface2.html#fig1.1.20.1","level":"1.1.20","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.20.1"},{"backlink":"abacus-surface2.html#fig1.1.20.2","level":"1.1.20","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":11,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.20.2"},{"backlink":"abacus-surface2.html#fig1.1.20.3","level":"1.1.20","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":12,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.20.3"},{"backlink":"abacus-surface5.html#fig1.1.23.1","level":"1.1.23","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":13,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.23.1"},{"backlink":"abacus-surface5.html#fig1.1.23.2","level":"1.1.23","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":14,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.23.2"},{"backlink":"abacus-surface5.html#fig1.1.23.3","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":15,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.23.3"},{"backlink":"abacus-surface5.html#fig1.1.23.4","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":16,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.23.4"},{"backlink":"abacus-surface5.html#fig1.1.23.5","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":17,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.23.5"},{"backlink":"abacus-surface6.html#fig1.1.24.1","level":"1.1.24","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":18,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.24.1"},{"backlink":"abacus-surface6.html#fig1.1.24.2","level":"1.1.24","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":19,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.24.2"},{"backlink":"abacus-dos.html#fig1.1.25.1","level":"1.1.25","list_caption":"Figure: 铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","alt":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","nro":20,"url":"picture/fig_dos-5.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","attributes":{},"skip":false,"key":"1.1.25.1"},{"backlink":"abacus-dos.html#fig1.1.25.2","level":"1.1.25","list_caption":"Figure: 铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","alt":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","nro":21,"url":"picture/fig_dos-6.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","attributes":{},"skip":false,"key":"1.1.25.2"},{"backlink":"abacus-bader.html#fig1.1.35.1","level":"1.1.35","list_caption":"Figure: SPIN1_CHG.cube","alt":"SPIN1_CHG.cube","nro":22,"url":"picture/fig_Bader1.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN1_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.1"},{"backlink":"abacus-bader.html#fig1.1.35.2","level":"1.1.35","list_caption":"Figure: SPIN2_CHG.cube","alt":"SPIN2_CHG.cube","nro":23,"url":"picture/fig_Bader2.jpg","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN2_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.2"},{"backlink":"abacus-bader.html#fig1.1.35.3","level":"1.1.35","list_caption":"Figure: SPIN_DENSITY.cube","alt":"SPIN_DENSITY.cube","nro":24,"url":"picture/fig_Bader3.jpg","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN_DENSITY.cube","attributes":{},"skip":false,"key":"1.1.35.3"},{"backlink":"abacus-bader.html#fig1.1.35.4","level":"1.1.35","list_caption":"Figure: charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","alt":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","nro":25,"url":"picture/fig_Bader4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","attributes":{},"skip":false,"key":"1.1.35.4"},{"backlink":"abacus-bader.html#fig1.1.35.5","level":"1.1.35","list_caption":"Figure: spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","alt":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","nro":26,"url":"picture/fig_Bader5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","attributes":{},"skip":false,"key":"1.1.35.5"},{"backlink":"abacus-bader.html#fig1.1.35.6","level":"1.1.35","list_caption":"Figure: charge2d_000.dat","alt":"charge2d_000.dat","nro":27,"url":"picture/fig_Bader6.png","index":6,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.6"},{"backlink":"abacus-bader.html#fig1.1.35.7","level":"1.1.35","list_caption":"Figure: charge2d_025.dat","alt":"charge2d_025.dat","nro":28,"url":"picture/fig_Bader7.png","index":7,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.7"},{"backlink":"abacus-bader.html#fig1.1.35.8","level":"1.1.35","list_caption":"Figure: charge2d_050.dat","alt":"charge2d_050.dat","nro":29,"url":"picture/fig_Bader8.png","index":8,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.8"},{"backlink":"abacus-bader.html#fig1.1.35.9","level":"1.1.35","list_caption":"Figure: spin2d_000.dat","alt":"spin2d_000.dat","nro":30,"url":"picture/fig_Bader9.png","index":9,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.9"},{"backlink":"abacus-bader.html#fig1.1.35.10","level":"1.1.35","list_caption":"Figure: spin2d_025.dat","alt":"spin2d_025.dat","nro":31,"url":"picture/fig_Bader10.png","index":10,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.10"},{"backlink":"abacus-bader.html#fig1.1.35.11","level":"1.1.35","list_caption":"Figure: spin2d_050.dat","alt":"spin2d_050.dat","nro":32,"url":"picture/fig_Bader11.png","index":11,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.11"},{"backlink":"develop-path4.html#fig1.2.17.1","level":"1.2.17","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":33,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.17.1"},{"backlink":"develop-path4.html#fig1.2.17.2","level":"1.2.17","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":34,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.17.2"},{"backlink":"develop-path5.html#fig1.2.18.1","level":"1.2.18","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":35,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.18.1"},{"backlink":"develop-path5.html#fig1.2.18.2","level":"1.2.18","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":36,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.18.2"},{"backlink":"develop-path5.html#fig1.2.18.3","level":"1.2.18","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":37,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.18.3"},{"backlink":"develop-path5.html#fig1.2.18.4","level":"1.2.18","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":38,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.18.4"},{"backlink":"develop-path5.html#fig1.2.18.5","level":"1.2.18","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":39,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.18.5"},{"backlink":"develop-path6.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":40,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.24.1","level":"1.2.24","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":41,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.24.1"},{"backlink":"develop-path10.html#fig1.2.24.2","level":"1.2.24","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":42,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.24.2"},{"backlink":"develop-path10.html#fig1.2.24.3","level":"1.2.24","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":43,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.24.3"},{"backlink":"develop-path10.html#fig1.2.24.4","level":"1.2.24","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":44,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.24.4"},{"backlink":"develop-path10.html#fig1.2.24.5","level":"1.2.24","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":45,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.24.5"},{"backlink":"develop-path11.html#fig1.2.25.1","level":"1.2.25","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":46,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.25.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":47,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"develop-design.md","mtime":"2024-03-06T07:06:07.362Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-09-06T11:53:05.785Z"},"basePath":".","book":{"language":""}}); }); diff --git a/_book/develop-dox.html b/_book/develop-dox.html index b338bf59..bc69122b 100644 --- a/_book/develop-dox.html +++ b/_book/develop-dox.html @@ -176,7 +176,20 @@ -
                    • +
                    • + + + + + Intel oneAPI 2024.x 编译 ABACUS 教程 + + + + + +
                    • + +
                    • @@ -189,7 +202,7 @@
                    • -
                    • +
                    • @@ -202,7 +215,7 @@
                    • -
                    • +
                    • @@ -215,7 +228,7 @@
                    • -
                    • +
                    • @@ -228,7 +241,33 @@
                    • -
                    • +
                    • + + + + + ABACUS 答疑手册 + + + + + +
                    • + +
                    • + + + + + ABACUS 收敛性问题解决手册 + + + + + +
                    • + +
                    • @@ -241,7 +280,7 @@
                    • -
                    • +
                    • @@ -254,7 +293,7 @@
                    • -
                    • +
                    • @@ -267,7 +306,7 @@
                    • -
                    • +
                    • @@ -280,7 +319,20 @@
                    • -
                    • +
                    • + + + + + ABACUS 的平面波计算与收敛性测试 + + + + + +
                    • + +
                    • @@ -293,7 +345,7 @@
                    • -
                    • +
                    • @@ -306,7 +358,7 @@
                    • -
                    • +
                    • @@ -319,7 +371,7 @@
                    • -
                    • +
                    • @@ -332,7 +384,20 @@
                    • -
                    • +
                    • + + + + + ABACUS 实时演化含时密度泛函理论使用教程 + + + + + +
                    • + +
                    • @@ -345,7 +410,7 @@
                    • -
                    • +
                    • @@ -358,7 +423,7 @@
                    • -
                    • +
                    • @@ -371,7 +436,7 @@
                    • -
                    • +
                    • @@ -384,7 +449,7 @@
                    • -
                    • +
                    • @@ -397,7 +462,7 @@
                    • -
                    • +
                    • @@ -410,7 +475,20 @@
                    • -
                    • +
                    • + + + + + ABACUS+Atomkit 计算态密度和能带 + + + + + +
                    • + +
                    • @@ -423,7 +501,7 @@
                    • -
                    • +
                    • @@ -436,7 +514,7 @@
                    • -
                    • +
                    • @@ -449,7 +527,7 @@
                    • -
                    • +
                    • @@ -462,7 +540,7 @@
                    • -
                    • +
                    • @@ -475,7 +553,7 @@
                    • -
                    • +
                    • @@ -488,7 +566,7 @@
                    • -
                    • +
                    • @@ -501,7 +579,7 @@
                    • -
                    • +
                    • @@ -514,12 +592,25 @@
                    • -
                    • +
                    • - + - ABACUS 收敛性问题解决手册 + ABACUS+pymatgen 计算弹性常数 + + + + + +
                    • + +
                    • + + + + + ABACUS+Bader charge 分析教程 @@ -624,7 +715,20 @@
                    • -
                    • +
                    • + + + + + ABACUS formatter-2.0 版本使用说明书 + + + + + +
                    • + +
                    • @@ -637,7 +741,46 @@
                    • -
                    • +
                    • + + + + + 性能分析工具:vtune 快速上手教程 + + + + + +
                    • + +
                    • + + + + + 以格点积分程序为例:一些代码开发习惯小贴士 + + + + + +
                    • + +
                    • + + + + + 文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例 + + + + + +
                    • + +
                    • @@ -650,7 +793,7 @@
                    • -
                    • +
                    • @@ -663,7 +806,7 @@
                    • -
                    • +
                    • @@ -676,7 +819,7 @@
                    • -
                    • +
                    • @@ -689,7 +832,7 @@
                    • -
                    • +
                    • @@ -702,7 +845,7 @@
                    • -
                    • +
                    • @@ -715,7 +858,7 @@
                    • -
                    • +
                    • @@ -728,7 +871,7 @@
                    • -
                    • +
                    • @@ -741,7 +884,7 @@
                    • -
                    • +
                    • @@ -754,7 +897,7 @@
                    • -
                    • +
                    • @@ -767,7 +910,7 @@
                    • -
                    • +
                    • @@ -780,7 +923,7 @@
                    • -
                    • +
                    • @@ -793,7 +936,7 @@
                    • -
                    • +
                    • @@ -806,7 +949,7 @@
                    • -
                    • +
                    • @@ -819,7 +962,7 @@
                    • -
                    • +
                    • @@ -832,7 +975,20 @@
                    • -
                    • +
                    • + + + + + 如何在 ABACUS 中新增一个输入参数(v3.7.0 后) + + + + + +
                    • + +
                    • @@ -845,7 +1001,7 @@
                    • -
                    • +
                    • @@ -901,6 +1057,19 @@ +
                    • + +
                    • + + + + + 在 ABACUS 中进行差分测试 + + + + +
                    • @@ -1323,7 +1492,7 @@

                      No results matching " var gitbook = gitbook || []; gitbook.push(function() { - gitbook.page.hasChanged({"page":{"title":"ABACUS 注释规范:Doxygen 入门 (c++)","level":"1.2.3","depth":2,"next":{"title":"ABACUS 的 Github 仓库 Issues 处理流程","level":"1.2.4","depth":2,"path":"develop-issue.md","ref":"develop-issue.md","articles":[]},"previous":{"title":"ABACUS 中使用格式化工具 clang-format","level":"1.2.2","depth":2,"path":"develop-format.md","ref":"develop-format.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.6.1","level":"1.1.6","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.6.1"},{"backlink":"abacus-upf.html#fig1.1.6.2","level":"1.1.6","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.6.2"},{"backlink":"abacus-upf.html#fig1.1.6.3","level":"1.1.6","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.6.3"},{"backlink":"abacus-upf.html#fig1.1.6.4","level":"1.1.6","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.6.4"},{"backlink":"abacus-upf.html#fig1.1.6.5","level":"1.1.6","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.6.5"},{"backlink":"abacus-surface2.html#fig1.1.15.1","level":"1.1.15","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":6,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.15.1"},{"backlink":"abacus-surface2.html#fig1.1.15.2","level":"1.1.15","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":7,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.15.2"},{"backlink":"abacus-surface2.html#fig1.1.15.3","level":"1.1.15","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":8,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.15.3"},{"backlink":"abacus-surface5.html#fig1.1.18.1","level":"1.1.18","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":9,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.18.1"},{"backlink":"abacus-surface5.html#fig1.1.18.2","level":"1.1.18","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.18.2"},{"backlink":"abacus-surface5.html#fig1.1.18.3","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":11,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.18.3"},{"backlink":"abacus-surface5.html#fig1.1.18.4","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":12,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.18.4"},{"backlink":"abacus-surface5.html#fig1.1.18.5","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":13,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.18.5"},{"backlink":"abacus-surface6.html#fig1.1.19.1","level":"1.1.19","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":14,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.19.1"},{"backlink":"abacus-surface6.html#fig1.1.19.2","level":"1.1.19","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":15,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.19.2"},{"backlink":"develop-path4.html#fig1.2.13.1","level":"1.2.13","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":16,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.13.1"},{"backlink":"develop-path4.html#fig1.2.13.2","level":"1.2.13","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":17,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.13.2"},{"backlink":"develop-path5.html#fig1.2.14.1","level":"1.2.14","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":18,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.14.1"},{"backlink":"develop-path5.html#fig1.2.14.2","level":"1.2.14","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":19,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.14.2"},{"backlink":"develop-path5.html#fig1.2.14.3","level":"1.2.14","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":20,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.14.3"},{"backlink":"develop-path5.html#fig1.2.14.4","level":"1.2.14","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":21,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.14.4"},{"backlink":"develop-path5.html#fig1.2.14.5","level":"1.2.14","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":22,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.14.5"},{"backlink":"develop-path6.html#fig1.2.16.1","level":"1.2.16","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":23,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.16.1"},{"backlink":"develop-path10.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":24,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.20.2","level":"1.2.20","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":25,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.20.2"},{"backlink":"develop-path10.html#fig1.2.20.3","level":"1.2.20","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":26,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.20.3"},{"backlink":"develop-path10.html#fig1.2.20.4","level":"1.2.20","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":27,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.20.4"},{"backlink":"develop-path10.html#fig1.2.20.5","level":"1.2.20","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":28,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.20.5"},{"backlink":"develop-path11.html#fig1.2.21.1","level":"1.2.21","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":29,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.21.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":30,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"develop-dox.md","mtime":"2023-09-15T11:30:43.169Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-03-19T11:29:16.414Z"},"basePath":".","book":{"language":""}}); + gitbook.page.hasChanged({"page":{"title":"ABACUS 注释规范:Doxygen 入门 (c++)","level":"1.2.3","depth":2,"next":{"title":"ABACUS 的 Github 仓库 Issues 处理流程","level":"1.2.4","depth":2,"path":"develop-issue.md","ref":"develop-issue.md","articles":[]},"previous":{"title":"ABACUS 中使用格式化工具 clang-format","level":"1.2.2","depth":2,"path":"develop-format.md","ref":"develop-format.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.9.1","level":"1.1.9","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.9.1"},{"backlink":"abacus-upf.html#fig1.1.9.2","level":"1.1.9","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.9.2"},{"backlink":"abacus-upf.html#fig1.1.9.3","level":"1.1.9","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.9.3"},{"backlink":"abacus-upf.html#fig1.1.9.4","level":"1.1.9","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.9.4"},{"backlink":"abacus-upf.html#fig1.1.9.5","level":"1.1.9","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.9.5"},{"backlink":"abacus-pw.html#fig1.1.13.1","level":"1.1.13","list_caption":"Figure: 电子自洽迭代计算流程。","alt":"电子自洽迭代计算流程。","nro":6,"url":"picture/fig_pw-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"电子自洽迭代计算流程。","attributes":{},"skip":false,"key":"1.1.13.1"},{"backlink":"abacus-pw.html#fig1.1.13.2","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","nro":7,"url":"picture/fig_pw-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","attributes":{},"skip":false,"key":"1.1.13.2"},{"backlink":"abacus-pw.html#fig1.1.13.3","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随K点变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","nro":8,"url":"picture/fig_pw-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","attributes":{},"skip":false,"key":"1.1.13.3"},{"backlink":"abacus-pw.html#fig1.1.13.4","level":"1.1.13","list_caption":"Figure: 计算时间随K点变化。","alt":"计算时间随K点变化。","nro":9,"url":"picture/fig_pw-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"计算时间随K点变化。","attributes":{},"skip":false,"key":"1.1.13.4"},{"backlink":"abacus-surface2.html#fig1.1.20.1","level":"1.1.20","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.20.1"},{"backlink":"abacus-surface2.html#fig1.1.20.2","level":"1.1.20","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":11,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.20.2"},{"backlink":"abacus-surface2.html#fig1.1.20.3","level":"1.1.20","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":12,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.20.3"},{"backlink":"abacus-surface5.html#fig1.1.23.1","level":"1.1.23","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":13,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.23.1"},{"backlink":"abacus-surface5.html#fig1.1.23.2","level":"1.1.23","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":14,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.23.2"},{"backlink":"abacus-surface5.html#fig1.1.23.3","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":15,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.23.3"},{"backlink":"abacus-surface5.html#fig1.1.23.4","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":16,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.23.4"},{"backlink":"abacus-surface5.html#fig1.1.23.5","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":17,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.23.5"},{"backlink":"abacus-surface6.html#fig1.1.24.1","level":"1.1.24","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":18,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.24.1"},{"backlink":"abacus-surface6.html#fig1.1.24.2","level":"1.1.24","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":19,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.24.2"},{"backlink":"abacus-dos.html#fig1.1.25.1","level":"1.1.25","list_caption":"Figure: 铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","alt":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","nro":20,"url":"picture/fig_dos-5.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","attributes":{},"skip":false,"key":"1.1.25.1"},{"backlink":"abacus-dos.html#fig1.1.25.2","level":"1.1.25","list_caption":"Figure: 铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","alt":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","nro":21,"url":"picture/fig_dos-6.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","attributes":{},"skip":false,"key":"1.1.25.2"},{"backlink":"abacus-bader.html#fig1.1.35.1","level":"1.1.35","list_caption":"Figure: SPIN1_CHG.cube","alt":"SPIN1_CHG.cube","nro":22,"url":"picture/fig_Bader1.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN1_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.1"},{"backlink":"abacus-bader.html#fig1.1.35.2","level":"1.1.35","list_caption":"Figure: SPIN2_CHG.cube","alt":"SPIN2_CHG.cube","nro":23,"url":"picture/fig_Bader2.jpg","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN2_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.2"},{"backlink":"abacus-bader.html#fig1.1.35.3","level":"1.1.35","list_caption":"Figure: SPIN_DENSITY.cube","alt":"SPIN_DENSITY.cube","nro":24,"url":"picture/fig_Bader3.jpg","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN_DENSITY.cube","attributes":{},"skip":false,"key":"1.1.35.3"},{"backlink":"abacus-bader.html#fig1.1.35.4","level":"1.1.35","list_caption":"Figure: charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","alt":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","nro":25,"url":"picture/fig_Bader4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","attributes":{},"skip":false,"key":"1.1.35.4"},{"backlink":"abacus-bader.html#fig1.1.35.5","level":"1.1.35","list_caption":"Figure: spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","alt":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","nro":26,"url":"picture/fig_Bader5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","attributes":{},"skip":false,"key":"1.1.35.5"},{"backlink":"abacus-bader.html#fig1.1.35.6","level":"1.1.35","list_caption":"Figure: charge2d_000.dat","alt":"charge2d_000.dat","nro":27,"url":"picture/fig_Bader6.png","index":6,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.6"},{"backlink":"abacus-bader.html#fig1.1.35.7","level":"1.1.35","list_caption":"Figure: charge2d_025.dat","alt":"charge2d_025.dat","nro":28,"url":"picture/fig_Bader7.png","index":7,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.7"},{"backlink":"abacus-bader.html#fig1.1.35.8","level":"1.1.35","list_caption":"Figure: charge2d_050.dat","alt":"charge2d_050.dat","nro":29,"url":"picture/fig_Bader8.png","index":8,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.8"},{"backlink":"abacus-bader.html#fig1.1.35.9","level":"1.1.35","list_caption":"Figure: spin2d_000.dat","alt":"spin2d_000.dat","nro":30,"url":"picture/fig_Bader9.png","index":9,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.9"},{"backlink":"abacus-bader.html#fig1.1.35.10","level":"1.1.35","list_caption":"Figure: spin2d_025.dat","alt":"spin2d_025.dat","nro":31,"url":"picture/fig_Bader10.png","index":10,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.10"},{"backlink":"abacus-bader.html#fig1.1.35.11","level":"1.1.35","list_caption":"Figure: spin2d_050.dat","alt":"spin2d_050.dat","nro":32,"url":"picture/fig_Bader11.png","index":11,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.11"},{"backlink":"develop-path4.html#fig1.2.17.1","level":"1.2.17","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":33,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.17.1"},{"backlink":"develop-path4.html#fig1.2.17.2","level":"1.2.17","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":34,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.17.2"},{"backlink":"develop-path5.html#fig1.2.18.1","level":"1.2.18","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":35,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.18.1"},{"backlink":"develop-path5.html#fig1.2.18.2","level":"1.2.18","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":36,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.18.2"},{"backlink":"develop-path5.html#fig1.2.18.3","level":"1.2.18","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":37,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.18.3"},{"backlink":"develop-path5.html#fig1.2.18.4","level":"1.2.18","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":38,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.18.4"},{"backlink":"develop-path5.html#fig1.2.18.5","level":"1.2.18","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":39,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.18.5"},{"backlink":"develop-path6.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":40,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.24.1","level":"1.2.24","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":41,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.24.1"},{"backlink":"develop-path10.html#fig1.2.24.2","level":"1.2.24","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":42,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.24.2"},{"backlink":"develop-path10.html#fig1.2.24.3","level":"1.2.24","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":43,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.24.3"},{"backlink":"develop-path10.html#fig1.2.24.4","level":"1.2.24","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":44,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.24.4"},{"backlink":"develop-path10.html#fig1.2.24.5","level":"1.2.24","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":45,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.24.5"},{"backlink":"develop-path11.html#fig1.2.25.1","level":"1.2.25","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":46,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.25.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":47,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"develop-dox.md","mtime":"2023-09-15T11:30:43.169Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-09-06T11:53:05.785Z"},"basePath":".","book":{"language":""}}); }); diff --git a/_book/develop-format.html b/_book/develop-format.html index 6e8e1d4a..43d01e91 100644 --- a/_book/develop-format.html +++ b/_book/develop-format.html @@ -176,7 +176,20 @@ -
                    • +
                    • + + + + + Intel oneAPI 2024.x 编译 ABACUS 教程 + + + + + +
                    • + +
                    • @@ -189,7 +202,7 @@
                    • -
                    • +
                    • @@ -202,7 +215,7 @@
                    • -
                    • +
                    • @@ -215,7 +228,7 @@
                    • -
                    • +
                    • @@ -228,7 +241,33 @@
                    • -
                    • +
                    • + + + + + ABACUS 答疑手册 + + + + + +
                    • + +
                    • + + + + + ABACUS 收敛性问题解决手册 + + + + + +
                    • + +
                    • @@ -241,7 +280,7 @@
                    • -
                    • +
                    • @@ -254,7 +293,7 @@
                    • -
                    • +
                    • @@ -267,7 +306,7 @@
                    • -
                    • +
                    • @@ -280,7 +319,20 @@
                    • -
                    • +
                    • + + + + + ABACUS 的平面波计算与收敛性测试 + + + + + +
                    • + +
                    • @@ -293,7 +345,7 @@
                    • -
                    • +
                    • @@ -306,7 +358,7 @@
                    • -
                    • +
                    • @@ -319,7 +371,7 @@
                    • -
                    • +
                    • @@ -332,7 +384,20 @@
                    • -
                    • +
                    • + + + + + ABACUS 实时演化含时密度泛函理论使用教程 + + + + + +
                    • + +
                    • @@ -345,7 +410,7 @@
                    • -
                    • +
                    • @@ -358,7 +423,7 @@
                    • -
                    • +
                    • @@ -371,7 +436,7 @@
                    • -
                    • +
                    • @@ -384,7 +449,7 @@
                    • -
                    • +
                    • @@ -397,7 +462,7 @@
                    • -
                    • +
                    • @@ -410,7 +475,20 @@
                    • -
                    • +
                    • + + + + + ABACUS+Atomkit 计算态密度和能带 + + + + + +
                    • + +
                    • @@ -423,7 +501,7 @@
                    • -
                    • +
                    • @@ -436,7 +514,7 @@
                    • -
                    • +
                    • @@ -449,7 +527,7 @@
                    • -
                    • +
                    • @@ -462,7 +540,7 @@
                    • -
                    • +
                    • @@ -475,7 +553,7 @@
                    • -
                    • +
                    • @@ -488,7 +566,7 @@
                    • -
                    • +
                    • @@ -501,7 +579,7 @@
                    • -
                    • +
                    • @@ -514,12 +592,25 @@
                    • -
                    • +
                    • - + - ABACUS 收敛性问题解决手册 + ABACUS+pymatgen 计算弹性常数 + + + + + +
                    • + +
                    • + + + + + ABACUS+Bader charge 分析教程 @@ -624,7 +715,20 @@
                    • -
                    • +
                    • + + + + + ABACUS formatter-2.0 版本使用说明书 + + + + + +
                    • + +
                    • @@ -637,7 +741,46 @@
                    • -
                    • +
                    • + + + + + 性能分析工具:vtune 快速上手教程 + + + + + +
                    • + +
                    • + + + + + 以格点积分程序为例:一些代码开发习惯小贴士 + + + + + +
                    • + +
                    • + + + + + 文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例 + + + + + +
                    • + +
                    • @@ -650,7 +793,7 @@
                    • -
                    • +
                    • @@ -663,7 +806,7 @@
                    • -
                    • +
                    • @@ -676,7 +819,7 @@
                    • -
                    • +
                    • @@ -689,7 +832,7 @@
                    • -
                    • +
                    • @@ -702,7 +845,7 @@
                    • -
                    • +
                    • @@ -715,7 +858,7 @@
                    • -
                    • +
                    • @@ -728,7 +871,7 @@
                    • -
                    • +
                    • @@ -741,7 +884,7 @@
                    • -
                    • +
                    • @@ -754,7 +897,7 @@
                    • -
                    • +
                    • @@ -767,7 +910,7 @@
                    • -
                    • +
                    • @@ -780,7 +923,7 @@
                    • -
                    • +
                    • @@ -793,7 +936,7 @@
                    • -
                    • +
                    • @@ -806,7 +949,7 @@
                    • -
                    • +
                    • @@ -819,7 +962,7 @@
                    • -
                    • +
                    • @@ -832,7 +975,20 @@
                    • -
                    • +
                    • + + + + + 如何在 ABACUS 中新增一个输入参数(v3.7.0 后) + + + + + +
                    • + +
                    • @@ -845,7 +1001,7 @@
                    • -
                    • +
                    • @@ -901,6 +1057,19 @@ +
                    • + +
                    • + + + + + 在 ABACUS 中进行差分测试 + + + + +
                    • @@ -1085,7 +1254,7 @@

                      No results matching " var gitbook = gitbook || []; gitbook.push(function() { - gitbook.page.hasChanged({"page":{"title":"ABACUS 中使用格式化工具 clang-format","level":"1.2.2","depth":2,"next":{"title":"ABACUS 注释规范:Doxygen 入门 (c++)","level":"1.2.3","depth":2,"path":"develop-dox.md","ref":"develop-dox.md","articles":[]},"previous":{"title":"ABACUS 开源项目 C++ 代码规范","level":"1.2.1","depth":2,"path":"develop-C++.md","ref":"develop-C++.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.6.1","level":"1.1.6","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.6.1"},{"backlink":"abacus-upf.html#fig1.1.6.2","level":"1.1.6","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.6.2"},{"backlink":"abacus-upf.html#fig1.1.6.3","level":"1.1.6","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.6.3"},{"backlink":"abacus-upf.html#fig1.1.6.4","level":"1.1.6","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.6.4"},{"backlink":"abacus-upf.html#fig1.1.6.5","level":"1.1.6","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.6.5"},{"backlink":"abacus-surface2.html#fig1.1.15.1","level":"1.1.15","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":6,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.15.1"},{"backlink":"abacus-surface2.html#fig1.1.15.2","level":"1.1.15","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":7,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.15.2"},{"backlink":"abacus-surface2.html#fig1.1.15.3","level":"1.1.15","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":8,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.15.3"},{"backlink":"abacus-surface5.html#fig1.1.18.1","level":"1.1.18","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":9,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.18.1"},{"backlink":"abacus-surface5.html#fig1.1.18.2","level":"1.1.18","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.18.2"},{"backlink":"abacus-surface5.html#fig1.1.18.3","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":11,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.18.3"},{"backlink":"abacus-surface5.html#fig1.1.18.4","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":12,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.18.4"},{"backlink":"abacus-surface5.html#fig1.1.18.5","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":13,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.18.5"},{"backlink":"abacus-surface6.html#fig1.1.19.1","level":"1.1.19","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":14,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.19.1"},{"backlink":"abacus-surface6.html#fig1.1.19.2","level":"1.1.19","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":15,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.19.2"},{"backlink":"develop-path4.html#fig1.2.13.1","level":"1.2.13","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":16,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.13.1"},{"backlink":"develop-path4.html#fig1.2.13.2","level":"1.2.13","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":17,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.13.2"},{"backlink":"develop-path5.html#fig1.2.14.1","level":"1.2.14","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":18,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.14.1"},{"backlink":"develop-path5.html#fig1.2.14.2","level":"1.2.14","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":19,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.14.2"},{"backlink":"develop-path5.html#fig1.2.14.3","level":"1.2.14","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":20,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.14.3"},{"backlink":"develop-path5.html#fig1.2.14.4","level":"1.2.14","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":21,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.14.4"},{"backlink":"develop-path5.html#fig1.2.14.5","level":"1.2.14","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":22,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.14.5"},{"backlink":"develop-path6.html#fig1.2.16.1","level":"1.2.16","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":23,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.16.1"},{"backlink":"develop-path10.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":24,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.20.2","level":"1.2.20","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":25,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.20.2"},{"backlink":"develop-path10.html#fig1.2.20.3","level":"1.2.20","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":26,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.20.3"},{"backlink":"develop-path10.html#fig1.2.20.4","level":"1.2.20","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":27,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.20.4"},{"backlink":"develop-path10.html#fig1.2.20.5","level":"1.2.20","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":28,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.20.5"},{"backlink":"develop-path11.html#fig1.2.21.1","level":"1.2.21","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":29,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.21.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":30,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"develop-format.md","mtime":"2023-11-07T01:47:31.243Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-03-19T11:29:16.414Z"},"basePath":".","book":{"language":""}}); + gitbook.page.hasChanged({"page":{"title":"ABACUS 中使用格式化工具 clang-format","level":"1.2.2","depth":2,"next":{"title":"ABACUS 注释规范:Doxygen 入门 (c++)","level":"1.2.3","depth":2,"path":"develop-dox.md","ref":"develop-dox.md","articles":[]},"previous":{"title":"ABACUS 开源项目 C++ 代码规范","level":"1.2.1","depth":2,"path":"develop-C++.md","ref":"develop-C++.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.9.1","level":"1.1.9","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.9.1"},{"backlink":"abacus-upf.html#fig1.1.9.2","level":"1.1.9","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.9.2"},{"backlink":"abacus-upf.html#fig1.1.9.3","level":"1.1.9","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.9.3"},{"backlink":"abacus-upf.html#fig1.1.9.4","level":"1.1.9","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.9.4"},{"backlink":"abacus-upf.html#fig1.1.9.5","level":"1.1.9","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.9.5"},{"backlink":"abacus-pw.html#fig1.1.13.1","level":"1.1.13","list_caption":"Figure: 电子自洽迭代计算流程。","alt":"电子自洽迭代计算流程。","nro":6,"url":"picture/fig_pw-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"电子自洽迭代计算流程。","attributes":{},"skip":false,"key":"1.1.13.1"},{"backlink":"abacus-pw.html#fig1.1.13.2","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","nro":7,"url":"picture/fig_pw-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","attributes":{},"skip":false,"key":"1.1.13.2"},{"backlink":"abacus-pw.html#fig1.1.13.3","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随K点变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","nro":8,"url":"picture/fig_pw-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","attributes":{},"skip":false,"key":"1.1.13.3"},{"backlink":"abacus-pw.html#fig1.1.13.4","level":"1.1.13","list_caption":"Figure: 计算时间随K点变化。","alt":"计算时间随K点变化。","nro":9,"url":"picture/fig_pw-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"计算时间随K点变化。","attributes":{},"skip":false,"key":"1.1.13.4"},{"backlink":"abacus-surface2.html#fig1.1.20.1","level":"1.1.20","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.20.1"},{"backlink":"abacus-surface2.html#fig1.1.20.2","level":"1.1.20","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":11,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.20.2"},{"backlink":"abacus-surface2.html#fig1.1.20.3","level":"1.1.20","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":12,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.20.3"},{"backlink":"abacus-surface5.html#fig1.1.23.1","level":"1.1.23","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":13,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.23.1"},{"backlink":"abacus-surface5.html#fig1.1.23.2","level":"1.1.23","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":14,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.23.2"},{"backlink":"abacus-surface5.html#fig1.1.23.3","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":15,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.23.3"},{"backlink":"abacus-surface5.html#fig1.1.23.4","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":16,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.23.4"},{"backlink":"abacus-surface5.html#fig1.1.23.5","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":17,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.23.5"},{"backlink":"abacus-surface6.html#fig1.1.24.1","level":"1.1.24","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":18,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.24.1"},{"backlink":"abacus-surface6.html#fig1.1.24.2","level":"1.1.24","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":19,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.24.2"},{"backlink":"abacus-dos.html#fig1.1.25.1","level":"1.1.25","list_caption":"Figure: 铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","alt":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","nro":20,"url":"picture/fig_dos-5.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","attributes":{},"skip":false,"key":"1.1.25.1"},{"backlink":"abacus-dos.html#fig1.1.25.2","level":"1.1.25","list_caption":"Figure: 铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","alt":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","nro":21,"url":"picture/fig_dos-6.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","attributes":{},"skip":false,"key":"1.1.25.2"},{"backlink":"abacus-bader.html#fig1.1.35.1","level":"1.1.35","list_caption":"Figure: SPIN1_CHG.cube","alt":"SPIN1_CHG.cube","nro":22,"url":"picture/fig_Bader1.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN1_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.1"},{"backlink":"abacus-bader.html#fig1.1.35.2","level":"1.1.35","list_caption":"Figure: SPIN2_CHG.cube","alt":"SPIN2_CHG.cube","nro":23,"url":"picture/fig_Bader2.jpg","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN2_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.2"},{"backlink":"abacus-bader.html#fig1.1.35.3","level":"1.1.35","list_caption":"Figure: SPIN_DENSITY.cube","alt":"SPIN_DENSITY.cube","nro":24,"url":"picture/fig_Bader3.jpg","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN_DENSITY.cube","attributes":{},"skip":false,"key":"1.1.35.3"},{"backlink":"abacus-bader.html#fig1.1.35.4","level":"1.1.35","list_caption":"Figure: charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","alt":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","nro":25,"url":"picture/fig_Bader4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","attributes":{},"skip":false,"key":"1.1.35.4"},{"backlink":"abacus-bader.html#fig1.1.35.5","level":"1.1.35","list_caption":"Figure: spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","alt":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","nro":26,"url":"picture/fig_Bader5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","attributes":{},"skip":false,"key":"1.1.35.5"},{"backlink":"abacus-bader.html#fig1.1.35.6","level":"1.1.35","list_caption":"Figure: charge2d_000.dat","alt":"charge2d_000.dat","nro":27,"url":"picture/fig_Bader6.png","index":6,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.6"},{"backlink":"abacus-bader.html#fig1.1.35.7","level":"1.1.35","list_caption":"Figure: charge2d_025.dat","alt":"charge2d_025.dat","nro":28,"url":"picture/fig_Bader7.png","index":7,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.7"},{"backlink":"abacus-bader.html#fig1.1.35.8","level":"1.1.35","list_caption":"Figure: charge2d_050.dat","alt":"charge2d_050.dat","nro":29,"url":"picture/fig_Bader8.png","index":8,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.8"},{"backlink":"abacus-bader.html#fig1.1.35.9","level":"1.1.35","list_caption":"Figure: spin2d_000.dat","alt":"spin2d_000.dat","nro":30,"url":"picture/fig_Bader9.png","index":9,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.9"},{"backlink":"abacus-bader.html#fig1.1.35.10","level":"1.1.35","list_caption":"Figure: spin2d_025.dat","alt":"spin2d_025.dat","nro":31,"url":"picture/fig_Bader10.png","index":10,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.10"},{"backlink":"abacus-bader.html#fig1.1.35.11","level":"1.1.35","list_caption":"Figure: spin2d_050.dat","alt":"spin2d_050.dat","nro":32,"url":"picture/fig_Bader11.png","index":11,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.11"},{"backlink":"develop-path4.html#fig1.2.17.1","level":"1.2.17","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":33,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.17.1"},{"backlink":"develop-path4.html#fig1.2.17.2","level":"1.2.17","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":34,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.17.2"},{"backlink":"develop-path5.html#fig1.2.18.1","level":"1.2.18","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":35,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.18.1"},{"backlink":"develop-path5.html#fig1.2.18.2","level":"1.2.18","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":36,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.18.2"},{"backlink":"develop-path5.html#fig1.2.18.3","level":"1.2.18","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":37,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.18.3"},{"backlink":"develop-path5.html#fig1.2.18.4","level":"1.2.18","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":38,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.18.4"},{"backlink":"develop-path5.html#fig1.2.18.5","level":"1.2.18","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":39,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.18.5"},{"backlink":"develop-path6.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":40,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.24.1","level":"1.2.24","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":41,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.24.1"},{"backlink":"develop-path10.html#fig1.2.24.2","level":"1.2.24","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":42,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.24.2"},{"backlink":"develop-path10.html#fig1.2.24.3","level":"1.2.24","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":43,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.24.3"},{"backlink":"develop-path10.html#fig1.2.24.4","level":"1.2.24","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":44,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.24.4"},{"backlink":"develop-path10.html#fig1.2.24.5","level":"1.2.24","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":45,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.24.5"},{"backlink":"develop-path11.html#fig1.2.25.1","level":"1.2.25","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":46,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.25.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":47,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"develop-format.md","mtime":"2023-11-07T01:47:31.243Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-09-06T11:53:05.785Z"},"basePath":".","book":{"language":""}}); }); diff --git a/_book/develop-formatter2.html b/_book/develop-formatter2.html new file mode 100644 index 00000000..f299cba0 --- /dev/null +++ b/_book/develop-formatter2.html @@ -0,0 +1,1455 @@ + + + + + + + ABACUS formatter-2.0 版本使用说明书 · GitBook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
                      +
                      + + + + + + + + +
                      + +
                      + +
                      + + + + + + + + +
                      +
                      + +
                      +
                      + +
                      + +

                      ABACUS formatter-2.0 版本使用说明书

                      +

                      作者:黄一珂,邮箱:huangyk@aisi.ac.cn

                      +

                      最后更新时间:2024 年 7 月 12 日

                      +

                      前言

                      +

                      为系统解决 ABACUS 对输出可读内容到屏幕和文件中的需求,2023 第三季度 ABACUS 开发团队进行了 ABACUS formatter library 1.0 版本的开发。随着后期 ABACUS 各功能的输出需求对 formatter library 的功能要求越来越多样化,我们对 formatter library 代码进行了全面重构,推出了 formatter-2.0 版本。相较于 1.0 版本(ABACUS formatter 库使用说明书),重构进行了大量冗余代码删减,如今已经轻量化成为只具有头文件、有明显“即插即用”性质的工具库。该工具库功能包括简单的字符串格式化、制表和部分 Python 字符串处理函数实现三部分。

                      +

                      字符串格式化

                      +

                      相较于 1.0 版本中只能对字符串加以 1)宽度、2)小数保留位数、3)正负号、4)左右对齐和 5)科学计数法的设定,2.0 版本基于 std::snprintf 函数(见 cppreference:https://en.cppreference.com/w/cpp/io/c/fprintf)实现了对 format string(例如 C++20 支持的 format library:https://en.cppreference.com/w/cpp/utility/format/format)的全面支持(如 %d, %o, %x, %u, %hd, %ld, %lu, %c, %s, %f, %e 等),弃置了基于 stream(iostream, )的技术路线(见 https://stackoverflow.com/questions/15106102/how-to-use-c-stdostream-with-printf-like-formatting)。

                      +

                      另一方面,std::cout 是在 ABACUS 中最普遍出现,且经常被修改的全局变量。任何不刻意设置便输出的内容都将受到“上一次”对 std::coutIOManipulator 的影响。

                      +

                      然而,使用新版的 formatter 需要注意数据类型,若数据类型出现不匹配,则很可能出现 undefined behavior(例如 issue #4540 中所报道),这一类型要求和 Python 自 3.12 版本开始功能健全且大范围流行和提倡的 f-string 一致。

                      +

                      static format 函数的使用

                      +

                      实际上,由于 formatter library 的轻量化重构,从单元测试中就足以可以明白 formatter library 这一基础函数的使用方法。又因为该函数是类中 static 函数,因此可以随时避免创建类对象而直接使用该函数。基本的使用方法展示在下面:

                      +
                      TEST(FormatterTest, FmtCoreStaticFormat) {
                      +    // const char*
                      +    std::string result = FmtCore::format("Hello, %s!", "world");
                      +    // remove the last '\0' character
                      +    EXPECT_EQ(result, "Hello, world!");
                      +    // std::string
                      +    result = FmtCore::format("Hello, %s!", std::string("world"));
                      +    EXPECT_EQ(result, "Hello, world!");
                      +    // int
                      +    result = FmtCore::format("Hello, %d!", 123);
                      +    EXPECT_EQ(result, "Hello, 123!");
                      +    // float
                      +    result = FmtCore::format("Hello, %f!", 123.456);
                      +    EXPECT_EQ(result, "Hello, 123.456000!");
                      +    // char
                      +    result = FmtCore::format("Hello, %c!", 'a');
                      +    EXPECT_EQ(result, "Hello, a!");
                      +    // invalid format
                      +    result = FmtCore::format("Hello, %z!", "world");
                      +    EXPECT_EQ(result, "Hello, %!");
                      +    // varadic template case
                      +    result = FmtCore::format("Hello, %s, %d, %f, %c!", "world", 123, 123.456, 'a');
                      +    EXPECT_EQ(result, "Hello, world, 123, 123.456000, a!");
                      +}
                      +
                      +

                      下面我们对 ABACUS 中常用于输出的数据类型进行详细举例。

                      +

                      int 类型输出:%d

                      +
                      #include "module_base/formatter.h"
                      +#include <iostream>
                      +
                      +std::cout << FmtCore::format("%d", 1);
                      +
                      +//output: "1"
                      +
                      +

                      如果想要修改其宽度,则需要在 d 之前设定数字,如设置宽度为 4:

                      +
                      std::cout << FmtCore::format("%4d", 1);
                      +//output: "   1"
                      +
                      +

                      如果需要输出左对齐而非右对齐的字符串,则在百分号 % 之后添加负号:

                      +
                      std::cout << FmtCore::format("%-5d", 10);
                      +// output: "10   "
                      +
                      +

                      float/double 类型输出:%f 和 %e

                      +

                      对于浮点型数据,最重要的是其是否使用科学计数法、保留位数和宽度各如何。请认真观察如下示例:

                      +
                      const double rough_pi = 3.1415926535897932384;
                      +std::cout << FmtCore::format("%8f", rough_pi);
                      +// output: "3.141592"
                      +std::cout << FmtCore::format("%8.4f", rough_pi);
                      +// output: "  3.1415"
                      +std::cout << FmtCore::format("%.4f", rough_pi);
                      +// output: "3.1415"
                      +std::cout << FmtCore::format("%.0f", rough_pi);
                      +// output: "3"
                      +
                      +

                      不难发现如果 f(或者 e)前面只有一个数字,该数字默认为最小宽度。如果在数字前有小数点,则该数字意为保留小数位数,因此 %.0f 将直接对数字取整。

                      +

                      对于需要使用科学计数法的场景,只需要将 f 替换成 e 即可。需要注意的是科学计数法中诸如 e+00 也需要占位 4 个长度,需要在规定字符串输出长度时加以考虑。

                      +

                      std::string 类型输出:%s

                      +

                      对于字符串的输出最简单,另外一个具有相似功能的占位符为 %c,意为为 char 类型在格式化字符串(format string)中占位。

                      +
                      std::cout << FmtCore::format("Hello, %s!\n", "world");
                      +// output: "Hello, world!"
                      +
                      +

                      dynamic format 函数的使用

                      +

                      为应对大批量、重复使用同一 format string 的需求,可以首先建立一个 FmtCore 对象,之后调用对象中的成员函数 format 时,就不需要再每次输入 format string:

                      +
                      FmtCore fmt("Hello, %s!\n");
                      +std::cout << fmt.format("world") << std::flush;
                      +std::cout << fmt.format("again") << std::flush;
                      +// output:
                      +// "Hello, world!
                      +//  Hello, again!"
                      +
                      +

                      因此在功能角度和 static 函数中的 format 基本无异。单元测试可以辅助理解:

                      +
                      TEST(FormatterTest, FmtCoreDynamic)
                      +{
                      +    FmtCore fmt("Hello, %s!");
                      +    EXPECT_EQ(fmt.fmt(), "Hello, %s!");
                      +    std::string result = fmt.format(std::string("world"));
                      +    EXPECT_EQ(result, "Hello, world!");
                      +
                      +    fmt.reset("Hello, %d!");
                      +    EXPECT_EQ(fmt.fmt(), "Hello, %d!");
                      +    result = fmt.format(123);
                      +    EXPECT_EQ(result, "Hello, 123!");
                      +
                      +    fmt.reset("Hello, %f!");
                      +    EXPECT_EQ(fmt.fmt(), "Hello, %f!");
                      +    result = fmt.format(123.456);
                      +    EXPECT_EQ(result, "Hello, 123.456000!");
                      +
                      +    fmt.reset("Hello, %c!");
                      +    EXPECT_EQ(fmt.fmt(), "Hello, %c!");
                      +    result = fmt.format('a');
                      +    EXPECT_EQ(result, "Hello, a!");
                      +
                      +    // varadic template case
                      +    fmt.reset("Hello, %s, %d, %f, %c!");
                      +    EXPECT_EQ(fmt.fmt(), "Hello, %s, %d, %f, %c!");
                      +    result = fmt.format(std::string("world"), 123, 123.456, 'a');
                      +    EXPECT_EQ(result, "Hello, world, 123, 123.456000, a!");
                      +}
                      +
                      +

                      制表功能

                      +

                      formatter-1.0 的另一项亮眼功能为自动制表,在 formatter-2.0 版本中这一 feature 得以保留,并由 1.0 版本的 Table 类重构成为更加轻量级的 FmtTable 类,用于提供想要制作排列整齐的数据表,又不太清楚表格的列宽的场景。

                      +

                      由于 FmtTable 类的设计初衷为”每一个 FmtTable instance“代表了一个 Table,因此在 Table 中设计需要用户提供如下信息:

                      +
                        +
                      • 每列标题,组织成 std::vectorstd::string
                      • +
                      • 每列 format string,组织成 std::vectorstd::string
                      • +
                      • 每列数据
                      • +
                      • (可选)表中数据与表标题的左右对称
                      • +
                      • (可选)表格的各个边框
                      • +
                      • (可选)表格中每列的分隔符
                      • +
                      +

                      形参表一览

                      +
                      /**
                      +     * @brief Construct a new Fmt Table object
                      +     * 
                      +     * @param titles titles, its size should be the same as the number of columns
                      +     * @param nrows number of rows
                      +     * @param aligns Alignments instance, can be constructed with initializer_list<char> like {'r', 'c'}, for right and center alignment for values and titles
                      +     * @param frames Frames instance, can be constructed with initializer_list<char> like {'-', '-', '-', ' ', ' '}, for up, middle, down, left and right frames
                      +     * @param delimiters Delimiters instance, can be constructed with initializer_list<char> like {'-', ' '}, for horizontal and vertical delimiters
                      +     */
                      +    FmtTable(const std::vector<std::string>& titles, 
                      +             const size_t& nrows, 
                      +             const std::vector<std::string>& fmts,
                      +             const Alignments& aligns = {},
                      +             const Frames& frames = {},
                      +             const Delimiters& delimiters = {}): titles_(titles), fmts_(fmts), data_(nrows, titles.size()), aligns_(aligns), frames_(frames), delimiters_(delimiters)
                      +    { assert(titles.size() == fmts.size()); };
                      +
                      +

                      基于 RAII 原则,我们假设需要制表并进行输出的数据经常是已经全部准备好的状态,而非如同 SCF 的迭代信息一样,需要特别估算每列的大致宽度信息。

                      +

                      因此在 FmtTable 构造函数中,我们一定需要 titles, n_rows, fmts,并对 align 和 Delimiter 参数设置了默认值因此并非总是需要。如果想要特殊配置,则可以选择单元测试中例子 https://github.com/deepmodeling/abacus-develop/blob/develop/source/module_base/test/formatter_test.cpp#L323,仿照其进行制表调整。

                      +

                      使用代码示例

                      +

                      除了单元测试(https://github.com/deepmodeling/abacus-develop/blob/develop/source/module_base/test/formatter_test.cpp)外,目前 FmtTable 也已经用于 ABACUS 运行时间统计的输出(https://github.com/deepmodeling/abacus-develop/blob/develop/source/module_base/timer.cpp#L280),但可进一步实现对表中数据区域的每列左右对齐控制。

                      +

                      static Python-style 字符串函数

                      +

                      函数功能简介

                      +

                      C/C++ 的文件读入功能也较为繁琐,尤其涉及需要进行字符串操作时,Python 中 str 的函数则更胜一筹。为了避免每次手动 parse 字符串,又注意到 std::string 同样是 STL 的标准容器,因此对标准容器支持的算法,也都能支持 std::string。目前出于个人使用习惯,实现了下列 Python-style static 函数:

                      +
                        +
                      • split:用于以固定分隔符切割字符串,返回 std::vectorstd::string,但也是因为该返回类型,注定 split 函数不会收录在 STL 中
                      • +
                      • startswith/endswith:返回 boolean,用于判断字符串是否以给定字符串开始,或者以给定字符串结束。
                      • +
                      • strip:用于消除出现在字符串行头行尾的空格、回车和\0 等字符,返回 std::string。
                      • +
                      • center:为了支持下一步的 ABACUS 输出重构,首先实现 center 函数用于将字符串以某一个宽度居中,两段则填充以 center 函数第一个参数,使得 ABACUS 中所有内容都可以具有给定宽度的输出(即两端对齐)
                      • +
                      • replace:用于消除字符串中存在的所有某个字符
                      • +
                      • join:split 的反函数
                      • +
                      +

                      代码示例

                      +

                      以上函数的例子可见单元测试:https://github.com/deepmodeling/abacus-develop/blob/develop/source/module_base/test/formatter_test.cpp

                      +

                      Find a bug? Submit issue!

                      +

                      如果在使用 formatter 过程中发现了 bug 或者运行结果不达预期,可以在 deepmodeling/abacus-develop 仓库下提交 issue。

                      +
                      Copyright © mcresearch.gitee.io 2023 all right reserved,powered by Gitbook该文章修订时间: +2024-07-12 17:06:36 +
                      + +
                      + +
                      +
                      +
                      + +

                      results matching ""

                      +
                        + +
                        +
                        + +

                        No results matching ""

                        + +
                        +
                        +
                        + +
                        +
                        + +
                        + + + + + + + + + + + + + + +
                        + + +
                        + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_book/develop-grid.html b/_book/develop-grid.html new file mode 100644 index 00000000..03572c87 --- /dev/null +++ b/_book/develop-grid.html @@ -0,0 +1,1372 @@ + + + + + + + 以格点积分程序为例:一些代码开发习惯小贴士 · GitBook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
                        +
                        + + + + + + + + +
                        + +
                        + +
                        + + + + + + + + +
                        +
                        + +
                        +
                        + +
                        + +

                        以格点积分程序为例:一些代码开发习惯小贴士

                        +

                        作者:张昊翀,邮箱:zhc@iai.ustc.edu.cn

                        +

                        单位:合肥综合性国家科学中心人工智能研究院

                        +

                        日期:2024 年 7 月 14 日

                        +

                        前言

                        +

                        在 ABACUS 的代码开发的实际过程中,会遇到很多技术和非技术的问题。这里我们结合数值原子轨道的格点积分功能 GPU 化的代码开发经历,介绍相关的编程、开发、调试经验,希望对初入 ABACUS 的开发者有所启发和帮助。

                        +

                        一、格点积分的调试技巧

                        +

                        先易后难的调试过程

                        +
                          +
                        1. bx,by,bz 先都设成 1,1 能跑通再设成 2 等等
                        2. +
                        3. 同步算法和异步算法优先调通同步的。异步算法不要一次性的全异步化,事先根据代码结构,分块异步化。
                        4. +
                        5. 多 stream 并行先从 stream 数=1 开发调试。
                        6. +
                        7. 针对格点积分的问题特点构造例子,我调试的顺序

                          +
                            +
                          1. 一个很大的(大于截断半径)晶胞中心一个铜原子,不考虑周期性边界条件
                          2. +
                          3. 把原子放到晶胞的一个面上,只考虑一个面的周期性边界条件
                          4. +
                          5. 缩小晶胞,考虑多个面的周期性边界条件
                          6. +
                          7. 一个很大的(大于截断半径)晶胞中心两个铜原子,不考虑周期性边界条件
                          8. +
                          9. 缩小晶胞
                          10. +
                          11. 一个很大的(大于截断半径)晶胞中心一个铜原子和一个氧原子,不考虑周期性边界条件,考虑多种类型的原子
                          12. +
                          13. 以上都调通基本上也没发现 bug 了
                          14. +
                          +
                        8. +
                        +

                        尽量构建更小规模的单元测试

                        +
                          +
                        1. 对格点积分 GPU 开发来说,我构建了批量矩阵乘的单元测试。测试方法主要是和 CPU 矩阵乘比较计算结果。
                        2. +
                        3. 对 GPU 开发来说,构建单元测试的一个有效方法是开发完 cuda 之后再写一份 CPU 的代码,然后比较计算结果。

                          +
                            +
                          1. 对于 abacus 来说,和 GPU 输出相同算法相同的 CPU 代码往往可以利用现有的 CPU 代码重构得到。
                          2. +
                          +
                        4. +
                        +

                        二、开发节奏

                        +

                        小步快跑,快速积累和迭代。

                        +

                        多提交

                        +
                          +
                        1. 每次完成一个小的原子改动就应该 commit 一下。
                        2. +
                        3. 每次 commit 应该只包含一个功能点相关的改动。
                        4. +
                        5. 每次 commit 的代码改动量最好不要超过 150 行。
                        6. +
                        7. 每次 pr 可能是过去几个月 commit 的积累。
                        8. +
                        +

                        多测试

                        +
                          +
                        1. 每次 commit 前先用两到三个有代表性的小例子做个快速的测试,尽量保证自己 commit 的代码都是能跑对的,如果 commit 会临时造成计算结果错误那么要在 message 里注明。
                        2. +
                        3. 每天晚上可以对当日积累的提交做个比较全面的全量测试。如果有例子测试不过可以单独挑出来回退版本看是哪个 commit 引起的。
                        4. +
                        +

                        多交流

                        +
                          +
                        1. 要充分利用他人的碎片时间来对自己的代码进行 Code review。每次 commit 的代码尽量让别人在 10 分钟的时间内完成 code review。
                        2. +
                        3. 好好写 message,写给别人看,也写给自己看。一般人三天以后是看不懂自己写了啥的。
                        4. +
                        +

                        三、内存错误怎么调试

                        +

                        先启用调试信息和编译 debug 版本

                        +
                        cmake -B build -DUSE_CUDA=ON -DCMAKE_BUILD_TYPE=Debug -DDEBUG_INFO=ON
                        +cmake --build build -j`nproc`
                        +
                        +

                        如果 debug 版本能跑对,但是 release 版本跑不对……那事情就大条了。这种情况有一些是多线程或者代码异步执行导致的。

                        +

                        core dump

                        +

                        请参考以下的教程:

                        +

                        https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/developer_guide/debugging-crashed-application

                        +

                        https://developer.toradex.com/software/linux-resources/linux-features/enable-and-analyse-core-dumps-in-linux/

                        +

                        gdb 或 cuda-gdb

                        +

                        gdb 执行程序调试,直接 run,正常情况下出现内存错误的时候就会停住。然后使用 bt 命令可以查看调用栈,可以定位代码。

                        +

                        Valgrind

                        +

                        内存泄露等错误的利器

                        +

                        https://valgrind.org/docs/manual/quick-start.html

                        +

                        善用 assert 断言

                        +

                        有效帮助我们规范内存使用逻辑

                        +

                        例如:

                        +
                        hamilt::AtomPair<double>* tmp_ap = hR->find_pair(iat1, iat2);
                        +#ifdef __DEBUG
                        +    assert(tmp_ap!=nullptr);
                        +#endif
                        +
                        +

                        最好和__DEBUG 选项配合使用。

                        +
                        Copyright © mcresearch.gitee.io 2023 all right reserved,powered by Gitbook该文章修订时间: +2024-07-14 14:27:56 +
                        + +
                        + +
                        +
                        +
                        + +

                        results matching ""

                        +
                          + +
                          +
                          + +

                          No results matching ""

                          + +
                          +
                          +
                          + +
                          +
                          + +
                          + + + + + + + + + + + + + + +
                          + + +
                          + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_book/develop-input.html b/_book/develop-input.html index b2bf26d3..8ca493e8 100644 --- a/_book/develop-input.html +++ b/_book/develop-input.html @@ -176,7 +176,20 @@ -
                        • +
                        • + + + + + Intel oneAPI 2024.x 编译 ABACUS 教程 + + + + + +
                        • + +
                        • @@ -189,7 +202,7 @@
                        • -
                        • +
                        • @@ -202,7 +215,7 @@
                        • -
                        • +
                        • @@ -215,7 +228,7 @@
                        • -
                        • +
                        • @@ -228,7 +241,33 @@
                        • -
                        • +
                        • + + + + + ABACUS 答疑手册 + + + + + +
                        • + +
                        • + + + + + ABACUS 收敛性问题解决手册 + + + + + +
                        • + +
                        • @@ -241,7 +280,7 @@
                        • -
                        • +
                        • @@ -254,7 +293,7 @@
                        • -
                        • +
                        • @@ -267,7 +306,7 @@
                        • -
                        • +
                        • @@ -280,7 +319,20 @@
                        • -
                        • +
                        • + + + + + ABACUS 的平面波计算与收敛性测试 + + + + + +
                        • + +
                        • @@ -293,7 +345,7 @@
                        • -
                        • +
                        • @@ -306,7 +358,7 @@
                        • -
                        • +
                        • @@ -319,7 +371,7 @@
                        • -
                        • +
                        • @@ -332,7 +384,20 @@
                        • -
                        • +
                        • + + + + + ABACUS 实时演化含时密度泛函理论使用教程 + + + + + +
                        • + +
                        • @@ -345,7 +410,7 @@
                        • -
                        • +
                        • @@ -358,7 +423,7 @@
                        • -
                        • +
                        • @@ -371,7 +436,7 @@
                        • -
                        • +
                        • @@ -384,7 +449,7 @@
                        • -
                        • +
                        • @@ -397,7 +462,7 @@
                        • -
                        • +
                        • @@ -410,7 +475,20 @@
                        • -
                        • +
                        • + + + + + ABACUS+Atomkit 计算态密度和能带 + + + + + +
                        • + +
                        • @@ -423,7 +501,7 @@
                        • -
                        • +
                        • @@ -436,7 +514,7 @@
                        • -
                        • +
                        • @@ -449,7 +527,7 @@
                        • -
                        • +
                        • @@ -462,7 +540,7 @@
                        • -
                        • +
                        • @@ -475,7 +553,7 @@
                        • -
                        • +
                        • @@ -488,7 +566,7 @@
                        • -
                        • +
                        • @@ -501,7 +579,7 @@
                        • -
                        • +
                        • @@ -514,12 +592,25 @@
                        • -
                        • +
                        • - + - ABACUS 收敛性问题解决手册 + ABACUS+pymatgen 计算弹性常数 + + + + + +
                        • + +
                        • + + + + + ABACUS+Bader charge 分析教程 @@ -624,7 +715,20 @@
                        • -
                        • +
                        • + + + + + ABACUS formatter-2.0 版本使用说明书 + + + + + +
                        • + +
                        • @@ -637,7 +741,46 @@
                        • -
                        • +
                        • + + + + + 性能分析工具:vtune 快速上手教程 + + + + + +
                        • + +
                        • + + + + + 以格点积分程序为例:一些代码开发习惯小贴士 + + + + + +
                        • + +
                        • + + + + + 文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例 + + + + + +
                        • + +
                        • @@ -650,7 +793,7 @@
                        • -
                        • +
                        • @@ -663,7 +806,7 @@
                        • -
                        • +
                        • @@ -676,7 +819,7 @@
                        • -
                        • +
                        • @@ -689,7 +832,7 @@
                        • -
                        • +
                        • @@ -702,7 +845,7 @@
                        • -
                        • +
                        • @@ -715,7 +858,7 @@
                        • -
                        • +
                        • @@ -728,7 +871,7 @@
                        • -
                        • +
                        • @@ -741,7 +884,7 @@
                        • -
                        • +
                        • @@ -754,7 +897,7 @@
                        • -
                        • +
                        • @@ -767,7 +910,7 @@
                        • -
                        • +
                        • @@ -780,7 +923,7 @@
                        • -
                        • +
                        • @@ -793,7 +936,7 @@
                        • -
                        • +
                        • @@ -806,7 +949,7 @@
                        • -
                        • +
                        • @@ -819,7 +962,7 @@
                        • -
                        • +
                        • @@ -832,7 +975,20 @@
                        • -
                        • +
                        • + + + + + 如何在 ABACUS 中新增一个输入参数(v3.7.0 后) + + + + + +
                        • + +
                        • @@ -845,7 +1001,7 @@
                        • -
                        • +
                        • @@ -901,6 +1057,19 @@ +
                        • + +
                        • + + + + + 在 ABACUS 中进行差分测试 + + + + +
                        • @@ -1117,7 +1286,7 @@

                          No results matching " var gitbook = gitbook || []; gitbook.push(function() { - gitbook.page.hasChanged({"page":{"title":"ABACUS 线上文档输入参数撰写规范","level":"1.2.5","depth":2,"next":{"title":"ABACUS 代码存放规范","level":"1.2.6","depth":2,"path":"develop-rule.md","ref":"develop-rule.md","articles":[]},"previous":{"title":"ABACUS 的 Github 仓库 Issues 处理流程","level":"1.2.4","depth":2,"path":"develop-issue.md","ref":"develop-issue.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.6.1","level":"1.1.6","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.6.1"},{"backlink":"abacus-upf.html#fig1.1.6.2","level":"1.1.6","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.6.2"},{"backlink":"abacus-upf.html#fig1.1.6.3","level":"1.1.6","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.6.3"},{"backlink":"abacus-upf.html#fig1.1.6.4","level":"1.1.6","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.6.4"},{"backlink":"abacus-upf.html#fig1.1.6.5","level":"1.1.6","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.6.5"},{"backlink":"abacus-surface2.html#fig1.1.15.1","level":"1.1.15","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":6,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.15.1"},{"backlink":"abacus-surface2.html#fig1.1.15.2","level":"1.1.15","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":7,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.15.2"},{"backlink":"abacus-surface2.html#fig1.1.15.3","level":"1.1.15","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":8,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.15.3"},{"backlink":"abacus-surface5.html#fig1.1.18.1","level":"1.1.18","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":9,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.18.1"},{"backlink":"abacus-surface5.html#fig1.1.18.2","level":"1.1.18","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.18.2"},{"backlink":"abacus-surface5.html#fig1.1.18.3","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":11,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.18.3"},{"backlink":"abacus-surface5.html#fig1.1.18.4","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":12,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.18.4"},{"backlink":"abacus-surface5.html#fig1.1.18.5","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":13,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.18.5"},{"backlink":"abacus-surface6.html#fig1.1.19.1","level":"1.1.19","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":14,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.19.1"},{"backlink":"abacus-surface6.html#fig1.1.19.2","level":"1.1.19","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":15,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.19.2"},{"backlink":"develop-path4.html#fig1.2.13.1","level":"1.2.13","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":16,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.13.1"},{"backlink":"develop-path4.html#fig1.2.13.2","level":"1.2.13","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":17,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.13.2"},{"backlink":"develop-path5.html#fig1.2.14.1","level":"1.2.14","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":18,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.14.1"},{"backlink":"develop-path5.html#fig1.2.14.2","level":"1.2.14","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":19,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.14.2"},{"backlink":"develop-path5.html#fig1.2.14.3","level":"1.2.14","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":20,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.14.3"},{"backlink":"develop-path5.html#fig1.2.14.4","level":"1.2.14","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":21,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.14.4"},{"backlink":"develop-path5.html#fig1.2.14.5","level":"1.2.14","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":22,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.14.5"},{"backlink":"develop-path6.html#fig1.2.16.1","level":"1.2.16","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":23,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.16.1"},{"backlink":"develop-path10.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":24,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.20.2","level":"1.2.20","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":25,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.20.2"},{"backlink":"develop-path10.html#fig1.2.20.3","level":"1.2.20","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":26,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.20.3"},{"backlink":"develop-path10.html#fig1.2.20.4","level":"1.2.20","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":27,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.20.4"},{"backlink":"develop-path10.html#fig1.2.20.5","level":"1.2.20","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":28,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.20.5"},{"backlink":"develop-path11.html#fig1.2.21.1","level":"1.2.21","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":29,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.21.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":30,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"develop-input.md","mtime":"2023-10-03T14:28:26.274Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-03-19T11:29:16.414Z"},"basePath":".","book":{"language":""}}); + gitbook.page.hasChanged({"page":{"title":"ABACUS 线上文档输入参数撰写规范","level":"1.2.5","depth":2,"next":{"title":"ABACUS 代码存放规范","level":"1.2.6","depth":2,"path":"develop-rule.md","ref":"develop-rule.md","articles":[]},"previous":{"title":"ABACUS 的 Github 仓库 Issues 处理流程","level":"1.2.4","depth":2,"path":"develop-issue.md","ref":"develop-issue.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.9.1","level":"1.1.9","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.9.1"},{"backlink":"abacus-upf.html#fig1.1.9.2","level":"1.1.9","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.9.2"},{"backlink":"abacus-upf.html#fig1.1.9.3","level":"1.1.9","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.9.3"},{"backlink":"abacus-upf.html#fig1.1.9.4","level":"1.1.9","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.9.4"},{"backlink":"abacus-upf.html#fig1.1.9.5","level":"1.1.9","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.9.5"},{"backlink":"abacus-pw.html#fig1.1.13.1","level":"1.1.13","list_caption":"Figure: 电子自洽迭代计算流程。","alt":"电子自洽迭代计算流程。","nro":6,"url":"picture/fig_pw-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"电子自洽迭代计算流程。","attributes":{},"skip":false,"key":"1.1.13.1"},{"backlink":"abacus-pw.html#fig1.1.13.2","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","nro":7,"url":"picture/fig_pw-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","attributes":{},"skip":false,"key":"1.1.13.2"},{"backlink":"abacus-pw.html#fig1.1.13.3","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随K点变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","nro":8,"url":"picture/fig_pw-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","attributes":{},"skip":false,"key":"1.1.13.3"},{"backlink":"abacus-pw.html#fig1.1.13.4","level":"1.1.13","list_caption":"Figure: 计算时间随K点变化。","alt":"计算时间随K点变化。","nro":9,"url":"picture/fig_pw-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"计算时间随K点变化。","attributes":{},"skip":false,"key":"1.1.13.4"},{"backlink":"abacus-surface2.html#fig1.1.20.1","level":"1.1.20","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.20.1"},{"backlink":"abacus-surface2.html#fig1.1.20.2","level":"1.1.20","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":11,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.20.2"},{"backlink":"abacus-surface2.html#fig1.1.20.3","level":"1.1.20","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":12,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.20.3"},{"backlink":"abacus-surface5.html#fig1.1.23.1","level":"1.1.23","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":13,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.23.1"},{"backlink":"abacus-surface5.html#fig1.1.23.2","level":"1.1.23","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":14,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.23.2"},{"backlink":"abacus-surface5.html#fig1.1.23.3","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":15,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.23.3"},{"backlink":"abacus-surface5.html#fig1.1.23.4","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":16,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.23.4"},{"backlink":"abacus-surface5.html#fig1.1.23.5","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":17,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.23.5"},{"backlink":"abacus-surface6.html#fig1.1.24.1","level":"1.1.24","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":18,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.24.1"},{"backlink":"abacus-surface6.html#fig1.1.24.2","level":"1.1.24","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":19,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.24.2"},{"backlink":"abacus-dos.html#fig1.1.25.1","level":"1.1.25","list_caption":"Figure: 铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","alt":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","nro":20,"url":"picture/fig_dos-5.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","attributes":{},"skip":false,"key":"1.1.25.1"},{"backlink":"abacus-dos.html#fig1.1.25.2","level":"1.1.25","list_caption":"Figure: 铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","alt":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","nro":21,"url":"picture/fig_dos-6.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","attributes":{},"skip":false,"key":"1.1.25.2"},{"backlink":"abacus-bader.html#fig1.1.35.1","level":"1.1.35","list_caption":"Figure: SPIN1_CHG.cube","alt":"SPIN1_CHG.cube","nro":22,"url":"picture/fig_Bader1.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN1_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.1"},{"backlink":"abacus-bader.html#fig1.1.35.2","level":"1.1.35","list_caption":"Figure: SPIN2_CHG.cube","alt":"SPIN2_CHG.cube","nro":23,"url":"picture/fig_Bader2.jpg","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN2_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.2"},{"backlink":"abacus-bader.html#fig1.1.35.3","level":"1.1.35","list_caption":"Figure: SPIN_DENSITY.cube","alt":"SPIN_DENSITY.cube","nro":24,"url":"picture/fig_Bader3.jpg","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN_DENSITY.cube","attributes":{},"skip":false,"key":"1.1.35.3"},{"backlink":"abacus-bader.html#fig1.1.35.4","level":"1.1.35","list_caption":"Figure: charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","alt":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","nro":25,"url":"picture/fig_Bader4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","attributes":{},"skip":false,"key":"1.1.35.4"},{"backlink":"abacus-bader.html#fig1.1.35.5","level":"1.1.35","list_caption":"Figure: spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","alt":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","nro":26,"url":"picture/fig_Bader5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","attributes":{},"skip":false,"key":"1.1.35.5"},{"backlink":"abacus-bader.html#fig1.1.35.6","level":"1.1.35","list_caption":"Figure: charge2d_000.dat","alt":"charge2d_000.dat","nro":27,"url":"picture/fig_Bader6.png","index":6,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.6"},{"backlink":"abacus-bader.html#fig1.1.35.7","level":"1.1.35","list_caption":"Figure: charge2d_025.dat","alt":"charge2d_025.dat","nro":28,"url":"picture/fig_Bader7.png","index":7,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.7"},{"backlink":"abacus-bader.html#fig1.1.35.8","level":"1.1.35","list_caption":"Figure: charge2d_050.dat","alt":"charge2d_050.dat","nro":29,"url":"picture/fig_Bader8.png","index":8,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.8"},{"backlink":"abacus-bader.html#fig1.1.35.9","level":"1.1.35","list_caption":"Figure: spin2d_000.dat","alt":"spin2d_000.dat","nro":30,"url":"picture/fig_Bader9.png","index":9,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.9"},{"backlink":"abacus-bader.html#fig1.1.35.10","level":"1.1.35","list_caption":"Figure: spin2d_025.dat","alt":"spin2d_025.dat","nro":31,"url":"picture/fig_Bader10.png","index":10,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.10"},{"backlink":"abacus-bader.html#fig1.1.35.11","level":"1.1.35","list_caption":"Figure: spin2d_050.dat","alt":"spin2d_050.dat","nro":32,"url":"picture/fig_Bader11.png","index":11,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.11"},{"backlink":"develop-path4.html#fig1.2.17.1","level":"1.2.17","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":33,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.17.1"},{"backlink":"develop-path4.html#fig1.2.17.2","level":"1.2.17","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":34,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.17.2"},{"backlink":"develop-path5.html#fig1.2.18.1","level":"1.2.18","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":35,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.18.1"},{"backlink":"develop-path5.html#fig1.2.18.2","level":"1.2.18","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":36,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.18.2"},{"backlink":"develop-path5.html#fig1.2.18.3","level":"1.2.18","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":37,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.18.3"},{"backlink":"develop-path5.html#fig1.2.18.4","level":"1.2.18","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":38,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.18.4"},{"backlink":"develop-path5.html#fig1.2.18.5","level":"1.2.18","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":39,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.18.5"},{"backlink":"develop-path6.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":40,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.24.1","level":"1.2.24","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":41,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.24.1"},{"backlink":"develop-path10.html#fig1.2.24.2","level":"1.2.24","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":42,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.24.2"},{"backlink":"develop-path10.html#fig1.2.24.3","level":"1.2.24","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":43,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.24.3"},{"backlink":"develop-path10.html#fig1.2.24.4","level":"1.2.24","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":44,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.24.4"},{"backlink":"develop-path10.html#fig1.2.24.5","level":"1.2.24","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":45,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.24.5"},{"backlink":"develop-path11.html#fig1.2.25.1","level":"1.2.25","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":46,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.25.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":47,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"develop-input.md","mtime":"2023-10-03T14:28:26.274Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-09-06T11:53:05.785Z"},"basePath":".","book":{"language":""}}); }); diff --git a/_book/develop-issue.html b/_book/develop-issue.html index 0a0f7dc2..417495fb 100644 --- a/_book/develop-issue.html +++ b/_book/develop-issue.html @@ -176,7 +176,20 @@ -
                        • +
                        • + + + + + Intel oneAPI 2024.x 编译 ABACUS 教程 + + + + + +
                        • + +
                        • @@ -189,7 +202,7 @@
                        • -
                        • +
                        • @@ -202,7 +215,7 @@
                        • -
                        • +
                        • @@ -215,7 +228,7 @@
                        • -
                        • +
                        • @@ -228,7 +241,33 @@
                        • -
                        • +
                        • + + + + + ABACUS 答疑手册 + + + + + +
                        • + +
                        • + + + + + ABACUS 收敛性问题解决手册 + + + + + +
                        • + +
                        • @@ -241,7 +280,7 @@
                        • -
                        • +
                        • @@ -254,7 +293,7 @@
                        • -
                        • +
                        • @@ -267,7 +306,7 @@
                        • -
                        • +
                        • @@ -280,7 +319,20 @@
                        • -
                        • +
                        • + + + + + ABACUS 的平面波计算与收敛性测试 + + + + + +
                        • + +
                        • @@ -293,7 +345,7 @@
                        • -
                        • +
                        • @@ -306,7 +358,7 @@
                        • -
                        • +
                        • @@ -319,7 +371,7 @@
                        • -
                        • +
                        • @@ -332,7 +384,20 @@
                        • -
                        • +
                        • + + + + + ABACUS 实时演化含时密度泛函理论使用教程 + + + + + +
                        • + +
                        • @@ -345,7 +410,7 @@
                        • -
                        • +
                        • @@ -358,7 +423,7 @@
                        • -
                        • +
                        • @@ -371,7 +436,7 @@
                        • -
                        • +
                        • @@ -384,7 +449,7 @@
                        • -
                        • +
                        • @@ -397,7 +462,7 @@
                        • -
                        • +
                        • @@ -410,7 +475,20 @@
                        • -
                        • +
                        • + + + + + ABACUS+Atomkit 计算态密度和能带 + + + + + +
                        • + +
                        • @@ -423,7 +501,7 @@
                        • -
                        • +
                        • @@ -436,7 +514,7 @@
                        • -
                        • +
                        • @@ -449,7 +527,7 @@
                        • -
                        • +
                        • @@ -462,7 +540,7 @@
                        • -
                        • +
                        • @@ -475,7 +553,7 @@
                        • -
                        • +
                        • @@ -488,7 +566,7 @@
                        • -
                        • +
                        • @@ -501,7 +579,7 @@
                        • -
                        • +
                        • @@ -514,12 +592,25 @@
                        • -
                        • +
                        • - + - ABACUS 收敛性问题解决手册 + ABACUS+pymatgen 计算弹性常数 + + + + + +
                        • + +
                        • + + + + + ABACUS+Bader charge 分析教程 @@ -624,7 +715,20 @@
                        • -
                        • +
                        • + + + + + ABACUS formatter-2.0 版本使用说明书 + + + + + +
                        • + +
                        • @@ -637,7 +741,46 @@
                        • -
                        • +
                        • + + + + + 性能分析工具:vtune 快速上手教程 + + + + + +
                        • + +
                        • + + + + + 以格点积分程序为例:一些代码开发习惯小贴士 + + + + + +
                        • + +
                        • + + + + + 文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例 + + + + + +
                        • + +
                        • @@ -650,7 +793,7 @@
                        • -
                        • +
                        • @@ -663,7 +806,7 @@
                        • -
                        • +
                        • @@ -676,7 +819,7 @@
                        • -
                        • +
                        • @@ -689,7 +832,7 @@
                        • -
                        • +
                        • @@ -702,7 +845,7 @@
                        • -
                        • +
                        • @@ -715,7 +858,7 @@
                        • -
                        • +
                        • @@ -728,7 +871,7 @@
                        • -
                        • +
                        • @@ -741,7 +884,7 @@
                        • -
                        • +
                        • @@ -754,7 +897,7 @@
                        • -
                        • +
                        • @@ -767,7 +910,7 @@
                        • -
                        • +
                        • @@ -780,7 +923,7 @@
                        • -
                        • +
                        • @@ -793,7 +936,7 @@
                        • -
                        • +
                        • @@ -806,7 +949,7 @@
                        • -
                        • +
                        • @@ -819,7 +962,7 @@
                        • -
                        • +
                        • @@ -832,7 +975,20 @@
                        • -
                        • +
                        • + + + + + 如何在 ABACUS 中新增一个输入参数(v3.7.0 后) + + + + + +
                        • + +
                        • @@ -845,7 +1001,7 @@
                        • -
                        • +
                        • @@ -901,6 +1057,19 @@ +
                        • + +
                        • + + + + + 在 ABACUS 中进行差分测试 + + + + +
                        • @@ -1124,7 +1293,7 @@

                          No results matching " var gitbook = gitbook || []; gitbook.push(function() { - gitbook.page.hasChanged({"page":{"title":"ABACUS 的 Github 仓库 Issues 处理流程","level":"1.2.4","depth":2,"next":{"title":"ABACUS 线上文档输入参数撰写规范","level":"1.2.5","depth":2,"path":"develop-input.md","ref":"develop-input.md","articles":[]},"previous":{"title":"ABACUS 注释规范:Doxygen 入门 (c++)","level":"1.2.3","depth":2,"path":"develop-dox.md","ref":"develop-dox.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.6.1","level":"1.1.6","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.6.1"},{"backlink":"abacus-upf.html#fig1.1.6.2","level":"1.1.6","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.6.2"},{"backlink":"abacus-upf.html#fig1.1.6.3","level":"1.1.6","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.6.3"},{"backlink":"abacus-upf.html#fig1.1.6.4","level":"1.1.6","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.6.4"},{"backlink":"abacus-upf.html#fig1.1.6.5","level":"1.1.6","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.6.5"},{"backlink":"abacus-surface2.html#fig1.1.15.1","level":"1.1.15","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":6,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.15.1"},{"backlink":"abacus-surface2.html#fig1.1.15.2","level":"1.1.15","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":7,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.15.2"},{"backlink":"abacus-surface2.html#fig1.1.15.3","level":"1.1.15","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":8,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.15.3"},{"backlink":"abacus-surface5.html#fig1.1.18.1","level":"1.1.18","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":9,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.18.1"},{"backlink":"abacus-surface5.html#fig1.1.18.2","level":"1.1.18","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.18.2"},{"backlink":"abacus-surface5.html#fig1.1.18.3","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":11,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.18.3"},{"backlink":"abacus-surface5.html#fig1.1.18.4","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":12,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.18.4"},{"backlink":"abacus-surface5.html#fig1.1.18.5","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":13,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.18.5"},{"backlink":"abacus-surface6.html#fig1.1.19.1","level":"1.1.19","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":14,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.19.1"},{"backlink":"abacus-surface6.html#fig1.1.19.2","level":"1.1.19","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":15,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.19.2"},{"backlink":"develop-path4.html#fig1.2.13.1","level":"1.2.13","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":16,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.13.1"},{"backlink":"develop-path4.html#fig1.2.13.2","level":"1.2.13","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":17,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.13.2"},{"backlink":"develop-path5.html#fig1.2.14.1","level":"1.2.14","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":18,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.14.1"},{"backlink":"develop-path5.html#fig1.2.14.2","level":"1.2.14","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":19,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.14.2"},{"backlink":"develop-path5.html#fig1.2.14.3","level":"1.2.14","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":20,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.14.3"},{"backlink":"develop-path5.html#fig1.2.14.4","level":"1.2.14","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":21,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.14.4"},{"backlink":"develop-path5.html#fig1.2.14.5","level":"1.2.14","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":22,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.14.5"},{"backlink":"develop-path6.html#fig1.2.16.1","level":"1.2.16","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":23,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.16.1"},{"backlink":"develop-path10.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":24,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.20.2","level":"1.2.20","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":25,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.20.2"},{"backlink":"develop-path10.html#fig1.2.20.3","level":"1.2.20","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":26,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.20.3"},{"backlink":"develop-path10.html#fig1.2.20.4","level":"1.2.20","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":27,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.20.4"},{"backlink":"develop-path10.html#fig1.2.20.5","level":"1.2.20","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":28,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.20.5"},{"backlink":"develop-path11.html#fig1.2.21.1","level":"1.2.21","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":29,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.21.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":30,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"develop-issue.md","mtime":"2023-10-02T03:02:27.718Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-03-19T11:29:16.414Z"},"basePath":".","book":{"language":""}}); + gitbook.page.hasChanged({"page":{"title":"ABACUS 的 Github 仓库 Issues 处理流程","level":"1.2.4","depth":2,"next":{"title":"ABACUS 线上文档输入参数撰写规范","level":"1.2.5","depth":2,"path":"develop-input.md","ref":"develop-input.md","articles":[]},"previous":{"title":"ABACUS 注释规范:Doxygen 入门 (c++)","level":"1.2.3","depth":2,"path":"develop-dox.md","ref":"develop-dox.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.9.1","level":"1.1.9","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.9.1"},{"backlink":"abacus-upf.html#fig1.1.9.2","level":"1.1.9","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.9.2"},{"backlink":"abacus-upf.html#fig1.1.9.3","level":"1.1.9","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.9.3"},{"backlink":"abacus-upf.html#fig1.1.9.4","level":"1.1.9","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.9.4"},{"backlink":"abacus-upf.html#fig1.1.9.5","level":"1.1.9","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.9.5"},{"backlink":"abacus-pw.html#fig1.1.13.1","level":"1.1.13","list_caption":"Figure: 电子自洽迭代计算流程。","alt":"电子自洽迭代计算流程。","nro":6,"url":"picture/fig_pw-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"电子自洽迭代计算流程。","attributes":{},"skip":false,"key":"1.1.13.1"},{"backlink":"abacus-pw.html#fig1.1.13.2","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","nro":7,"url":"picture/fig_pw-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","attributes":{},"skip":false,"key":"1.1.13.2"},{"backlink":"abacus-pw.html#fig1.1.13.3","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随K点变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","nro":8,"url":"picture/fig_pw-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","attributes":{},"skip":false,"key":"1.1.13.3"},{"backlink":"abacus-pw.html#fig1.1.13.4","level":"1.1.13","list_caption":"Figure: 计算时间随K点变化。","alt":"计算时间随K点变化。","nro":9,"url":"picture/fig_pw-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"计算时间随K点变化。","attributes":{},"skip":false,"key":"1.1.13.4"},{"backlink":"abacus-surface2.html#fig1.1.20.1","level":"1.1.20","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.20.1"},{"backlink":"abacus-surface2.html#fig1.1.20.2","level":"1.1.20","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":11,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.20.2"},{"backlink":"abacus-surface2.html#fig1.1.20.3","level":"1.1.20","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":12,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.20.3"},{"backlink":"abacus-surface5.html#fig1.1.23.1","level":"1.1.23","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":13,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.23.1"},{"backlink":"abacus-surface5.html#fig1.1.23.2","level":"1.1.23","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":14,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.23.2"},{"backlink":"abacus-surface5.html#fig1.1.23.3","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":15,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.23.3"},{"backlink":"abacus-surface5.html#fig1.1.23.4","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":16,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.23.4"},{"backlink":"abacus-surface5.html#fig1.1.23.5","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":17,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.23.5"},{"backlink":"abacus-surface6.html#fig1.1.24.1","level":"1.1.24","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":18,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.24.1"},{"backlink":"abacus-surface6.html#fig1.1.24.2","level":"1.1.24","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":19,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.24.2"},{"backlink":"abacus-dos.html#fig1.1.25.1","level":"1.1.25","list_caption":"Figure: 铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","alt":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","nro":20,"url":"picture/fig_dos-5.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","attributes":{},"skip":false,"key":"1.1.25.1"},{"backlink":"abacus-dos.html#fig1.1.25.2","level":"1.1.25","list_caption":"Figure: 铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","alt":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","nro":21,"url":"picture/fig_dos-6.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","attributes":{},"skip":false,"key":"1.1.25.2"},{"backlink":"abacus-bader.html#fig1.1.35.1","level":"1.1.35","list_caption":"Figure: SPIN1_CHG.cube","alt":"SPIN1_CHG.cube","nro":22,"url":"picture/fig_Bader1.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN1_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.1"},{"backlink":"abacus-bader.html#fig1.1.35.2","level":"1.1.35","list_caption":"Figure: SPIN2_CHG.cube","alt":"SPIN2_CHG.cube","nro":23,"url":"picture/fig_Bader2.jpg","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN2_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.2"},{"backlink":"abacus-bader.html#fig1.1.35.3","level":"1.1.35","list_caption":"Figure: SPIN_DENSITY.cube","alt":"SPIN_DENSITY.cube","nro":24,"url":"picture/fig_Bader3.jpg","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN_DENSITY.cube","attributes":{},"skip":false,"key":"1.1.35.3"},{"backlink":"abacus-bader.html#fig1.1.35.4","level":"1.1.35","list_caption":"Figure: charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","alt":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","nro":25,"url":"picture/fig_Bader4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","attributes":{},"skip":false,"key":"1.1.35.4"},{"backlink":"abacus-bader.html#fig1.1.35.5","level":"1.1.35","list_caption":"Figure: spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","alt":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","nro":26,"url":"picture/fig_Bader5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","attributes":{},"skip":false,"key":"1.1.35.5"},{"backlink":"abacus-bader.html#fig1.1.35.6","level":"1.1.35","list_caption":"Figure: charge2d_000.dat","alt":"charge2d_000.dat","nro":27,"url":"picture/fig_Bader6.png","index":6,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.6"},{"backlink":"abacus-bader.html#fig1.1.35.7","level":"1.1.35","list_caption":"Figure: charge2d_025.dat","alt":"charge2d_025.dat","nro":28,"url":"picture/fig_Bader7.png","index":7,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.7"},{"backlink":"abacus-bader.html#fig1.1.35.8","level":"1.1.35","list_caption":"Figure: charge2d_050.dat","alt":"charge2d_050.dat","nro":29,"url":"picture/fig_Bader8.png","index":8,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.8"},{"backlink":"abacus-bader.html#fig1.1.35.9","level":"1.1.35","list_caption":"Figure: spin2d_000.dat","alt":"spin2d_000.dat","nro":30,"url":"picture/fig_Bader9.png","index":9,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.9"},{"backlink":"abacus-bader.html#fig1.1.35.10","level":"1.1.35","list_caption":"Figure: spin2d_025.dat","alt":"spin2d_025.dat","nro":31,"url":"picture/fig_Bader10.png","index":10,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.10"},{"backlink":"abacus-bader.html#fig1.1.35.11","level":"1.1.35","list_caption":"Figure: spin2d_050.dat","alt":"spin2d_050.dat","nro":32,"url":"picture/fig_Bader11.png","index":11,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.11"},{"backlink":"develop-path4.html#fig1.2.17.1","level":"1.2.17","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":33,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.17.1"},{"backlink":"develop-path4.html#fig1.2.17.2","level":"1.2.17","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":34,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.17.2"},{"backlink":"develop-path5.html#fig1.2.18.1","level":"1.2.18","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":35,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.18.1"},{"backlink":"develop-path5.html#fig1.2.18.2","level":"1.2.18","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":36,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.18.2"},{"backlink":"develop-path5.html#fig1.2.18.3","level":"1.2.18","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":37,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.18.3"},{"backlink":"develop-path5.html#fig1.2.18.4","level":"1.2.18","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":38,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.18.4"},{"backlink":"develop-path5.html#fig1.2.18.5","level":"1.2.18","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":39,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.18.5"},{"backlink":"develop-path6.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":40,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.24.1","level":"1.2.24","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":41,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.24.1"},{"backlink":"develop-path10.html#fig1.2.24.2","level":"1.2.24","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":42,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.24.2"},{"backlink":"develop-path10.html#fig1.2.24.3","level":"1.2.24","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":43,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.24.3"},{"backlink":"develop-path10.html#fig1.2.24.4","level":"1.2.24","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":44,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.24.4"},{"backlink":"develop-path10.html#fig1.2.24.5","level":"1.2.24","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":45,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.24.5"},{"backlink":"develop-path11.html#fig1.2.25.1","level":"1.2.25","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":46,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.25.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":47,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"develop-issue.md","mtime":"2023-10-02T03:02:27.718Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-09-06T11:53:05.785Z"},"basePath":".","book":{"language":""}}); }); diff --git a/_book/develop-linedete.html b/_book/develop-linedete.html index 94efab32..c15d8493 100644 --- a/_book/develop-linedete.html +++ b/_book/develop-linedete.html @@ -106,10 +106,10 @@ - + - + + + + + + +
                          +
                          + + + + + + + + +
                          + +
                          + +
                          + + + + + + + + +
                          +
                          + +
                          +
                          + +
                          + +

                          性能分析工具:vtune 快速上手教程

                          +

                          作者:邓子超,邮箱:2301213154@pku.edu.cn

                          +

                          最后更新时间:2024 年 7 月 13 日

                          +

                          前言

                          +

                          vtune 是 intel 开发的性能分析工具,可以帮助开发者很方便的找到程序中的热点函数,进而优化程序效率。虽然 ABACUS 自带统计函数运行时间的 timer,但是 ABACUS 的 timer 比较粗糙,它自身会带来很大的运行开销,所以 ABACUS 的 timer 只适合用来看程序中各部分耗时的大概比例,不适合用来对大量调用的单个函数进行细致调优。

                          +

                          安装

                          +

                          下面的介绍都是基于 linux 系统

                          +

                          intel 的 oneapi 中自带了 vtune,如果没有下载 oneapi,可以先到官网下载安装。安装之后在 oneapi 文件夹下可以找到 vtune 的可执行文件:

                          +
                          /opt/intel/oneapi/vtune/2024.2/bin64/vtune
                          +/opt/intel/oneapi/vtune/2024.2/bin64/vtune-gui
                          +
                          +

                          使用

                          +

                          如果配置好了 oneapi 环境,可以直接在命令行输入 vtune-gui 启动 vtune 的图形界面:

                          +

                          +

                          创建 Project

                          +

                          进入 vtune 之后先点击左上角的 Project Navigator 右边的 + 号创建一个 project,比如我打算优化格点积分的 fvl 部分,就可以创建一个 project 命名为 gint_fvl。

                          +

                          配置 profile 参数

                          +

                          在右边 Configure Analysis 中配置运行参数,首先要在 Application:中填写可执行文件,这里可以输入 ABACUS 软件地址,也可以自己写一个 ABACUS 运行脚本(感觉这样比较方便配置 openmp 线程数以及 mpi 进程数),脚本记得 chmod +x 加上可执行权限,下面是我自己写的一个简单脚本:

                          +
                          #!/bin/bash
                          +abacus="${1:-abacus}"
                          +cd tests/performance/P102_si64_lcao
                          +OMP_NUM_THREADS=12 mpirun -n 2 $abacus
                          +cd ../../..
                          +
                          +

                          填完 Application 之后可以在下面的 Application parameter 中填写程序参数。

                          +

                          如果想要得到程序运行的火焰图,需要

                          +
                            +
                          1. 在 Advanced 选项里面把”Select finalization mode“设置为”Full“,这里默认设置是”Fast“,默认设置下得不到火焰图
                          2. +
                          +

                          +
                            +
                          1. 在右边 How 选项中选择"Hotspot"的 profile 方式
                          2. +
                          +

                          +

                          做完以上配置后,点击右下角的“start”按钮即可开始对程序进行 profile。

                          +

                          结果分析

                          +

                          profile 完成后 vtune 会输出一个程序报告:

                          +

                          +

                          报告中内容很多,大家可以自己慢慢探索,下面简单介绍两个比较实用的:

                          +

                          一个是火焰图:

                          +

                          +

                          点击其中某个具体函数,可以将更清楚看到这个函数里面每个自函数耗时占比:

                          +

                          +

                          第二是双击 Bottom-up 或者 Caller/callee 列出的函数,可以看到函数每行源代码耗时占比:

                          +

                          +

                          点击左上角的 Addembly,还可以看到源代码对应的汇编代码:

                          +

                          +

                          如果想知道 vtune 更深入用法,可以参考 intel 官方文档。

                          +
                          Copyright © mcresearch.gitee.io 2023 all right reserved,powered by Gitbook该文章修订时间: +2024-07-13 21:43:44 +
                          + +
                          + +
                          +
                          +
                          + +

                          results matching ""

                          +
                            + +
                            +
                            + +

                            No results matching ""

                            + +
                            +
                            +
                            + +
                            +
                            + +
                            + + + + + + + + + + + + + + +
                            + + +
                            + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_book/examples/dos_band/Al/Al_ONCV_PBE-1.0.upf b/_book/examples/dos_band/Al/Al_ONCV_PBE-1.0.upf new file mode 100644 index 00000000..51a1e8db --- /dev/null +++ b/_book/examples/dos_band/Al/Al_ONCV_PBE-1.0.upf @@ -0,0 +1,1226 @@ + + + + This pseudopotential file has been produced using the code + ONCVPSP (Optimized Norm-Conservinng Vanderbilt PSeudopotential) + scalar-relativistic version 2.1.1, 03/26/2014 by D. R. Hamann + The code is available through a link at URL www.mat-simresearch.com. + Documentation with the package provides a full discription of the + input data below. + + + While it is not required under the terms of the GNU GPL, it is + suggested that you cite D. R. Hamann, Phys. Rev. B 88, 085117 (2013) + in any publication using these pseudopotentials. + + + Copyright 2015 The Regents of the University of California + + This work is licensed under the Creative Commons Attribution-ShareAlike + 4.0 International License. To view a copy of this license, visit + http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to + Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. + + This pseudopotential is part of the Schlipf-Gygi norm-conserving + pseudopotential library. Its construction parameters were tuned to + reproduce materials of a training set with very high accuracy and + should be suitable as a general purpose pseudopotential to treat a + variety of different compounds. For details of the construction and + testing of the pseudopotential please refer to: + + [insert reference to paper here] + + We kindly ask that you include this reference in all publications + associated to this pseudopotential. + + + +# ATOM AND REFERENCE CONFIGURATION +# atsym z nc nv iexc psfile + Al 13.00 1 4 4 upf +# +# n l f energy (Ha) + 1 0 2.00 + 2 0 2.00 + 2 1 6.00 + 3 0 2.00 + 3 1 1.00 +# +# PSEUDOPOTENTIAL AND OPTIMIZATION +# lmax + 1 +# +# l, rc, ep, ncon, nbas, qcut + 0 1.29657 -3.97500 5 8 10.30030 + 1 2.41091 -2.55934 5 8 7.02214 +# +# LOCAL POTENTIAL +# lloc, lpopt, rc(5), dvloc0 + 4 5 0.93955 0.00000 +# +# VANDERBILT-KLEINMAN-BYLANDER PROJECTORs +# l, nproj, debl + 0 2 3.69008 + 1 2 2.45967 +# +# MODEL CORE CHARGE +# icmod, fcfact + 0 0.00000 +# +# LOG DERIVATIVE ANALYSIS +# epsh1, epsh2, depsh + -5.00 3.00 0.02 +# +# OUTPUT GRID +# rlmax, drl + 6.00 0.01 +# +# TEST CONFIGURATIONS +# ncnf + 0 +# nvcnf +# n l f + + + + + + + + + 0.0000 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 + 0.0800 0.0900 0.1000 0.1100 0.1200 0.1300 0.1400 0.1500 + 0.1600 0.1700 0.1800 0.1900 0.2000 0.2100 0.2200 0.2300 + 0.2400 0.2500 0.2600 0.2700 0.2800 0.2900 0.3000 0.3100 + 0.3200 0.3300 0.3400 0.3500 0.3600 0.3700 0.3800 0.3900 + 0.4000 0.4100 0.4200 0.4300 0.4400 0.4500 0.4600 0.4700 + 0.4800 0.4900 0.5000 0.5100 0.5200 0.5300 0.5400 0.5500 + 0.5600 0.5700 0.5800 0.5900 0.6000 0.6100 0.6200 0.6300 + 0.6400 0.6500 0.6600 0.6700 0.6800 0.6900 0.7000 0.7100 + 0.7200 0.7300 0.7400 0.7500 0.7600 0.7700 0.7800 0.7900 + 0.8000 0.8100 0.8200 0.8300 0.8400 0.8500 0.8600 0.8700 + 0.8800 0.8900 0.9000 0.9100 0.9200 0.9300 0.9400 0.9500 + 0.9600 0.9700 0.9800 0.9900 1.0000 1.0100 1.0200 1.0300 + 1.0400 1.0500 1.0600 1.0700 1.0800 1.0900 1.1000 1.1100 + 1.1200 1.1300 1.1400 1.1500 1.1600 1.1700 1.1800 1.1900 + 1.2000 1.2100 1.2200 1.2300 1.2400 1.2500 1.2600 1.2700 + 1.2800 1.2900 1.3000 1.3100 1.3200 1.3300 1.3400 1.3500 + 1.3600 1.3700 1.3800 1.3900 1.4000 1.4100 1.4200 1.4300 + 1.4400 1.4500 1.4600 1.4700 1.4800 1.4900 1.5000 1.5100 + 1.5200 1.5300 1.5400 1.5500 1.5600 1.5700 1.5800 1.5900 + 1.6000 1.6100 1.6200 1.6300 1.6400 1.6500 1.6600 1.6700 + 1.6800 1.6900 1.7000 1.7100 1.7200 1.7300 1.7400 1.7500 + 1.7600 1.7700 1.7800 1.7900 1.8000 1.8100 1.8200 1.8300 + 1.8400 1.8500 1.8600 1.8700 1.8800 1.8900 1.9000 1.9100 + 1.9200 1.9300 1.9400 1.9500 1.9600 1.9700 1.9800 1.9900 + 2.0000 2.0100 2.0200 2.0300 2.0400 2.0500 2.0600 2.0700 + 2.0800 2.0900 2.1000 2.1100 2.1200 2.1300 2.1400 2.1500 + 2.1600 2.1700 2.1800 2.1900 2.2000 2.2100 2.2200 2.2300 + 2.2400 2.2500 2.2600 2.2700 2.2800 2.2900 2.3000 2.3100 + 2.3200 2.3300 2.3400 2.3500 2.3600 2.3700 2.3800 2.3900 + 2.4000 2.4100 2.4200 2.4300 2.4400 2.4500 2.4600 2.4700 + 2.4800 2.4900 2.5000 2.5100 2.5200 2.5300 2.5400 2.5500 + 2.5600 2.5700 2.5800 2.5900 2.6000 2.6100 2.6200 2.6300 + 2.6400 2.6500 2.6600 2.6700 2.6800 2.6900 2.7000 2.7100 + 2.7200 2.7300 2.7400 2.7500 2.7600 2.7700 2.7800 2.7900 + 2.8000 2.8100 2.8200 2.8300 2.8400 2.8500 2.8600 2.8700 + 2.8800 2.8900 2.9000 2.9100 2.9200 2.9300 2.9400 2.9500 + 2.9600 2.9700 2.9800 2.9900 3.0000 3.0100 3.0200 3.0300 + 3.0400 3.0500 3.0600 3.0700 3.0800 3.0900 3.1000 3.1100 + 3.1200 3.1300 3.1400 3.1500 3.1600 3.1700 3.1800 3.1900 + 3.2000 3.2100 3.2200 3.2300 3.2400 3.2500 3.2600 3.2700 + 3.2800 3.2900 3.3000 3.3100 3.3200 3.3300 3.3400 3.3500 + 3.3600 3.3700 3.3800 3.3900 3.4000 3.4100 3.4200 3.4300 + 3.4400 3.4500 3.4600 3.4700 3.4800 3.4900 3.5000 3.5100 + 3.5200 3.5300 3.5400 3.5500 3.5600 3.5700 3.5800 3.5900 + 3.6000 3.6100 3.6200 3.6300 3.6400 3.6500 3.6600 3.6700 + 3.6800 3.6900 3.7000 3.7100 3.7200 3.7300 3.7400 3.7500 + 3.7600 3.7700 3.7800 3.7900 3.8000 3.8100 3.8200 3.8300 + 3.8400 3.8500 3.8600 3.8700 3.8800 3.8900 3.9000 3.9100 + 3.9200 3.9300 3.9400 3.9500 3.9600 3.9700 3.9800 3.9900 + 4.0000 4.0100 4.0200 4.0300 4.0400 4.0500 4.0600 4.0700 + 4.0800 4.0900 4.1000 4.1100 4.1200 4.1300 4.1400 4.1500 + 4.1600 4.1700 4.1800 4.1900 4.2000 4.2100 4.2200 4.2300 + 4.2400 4.2500 4.2600 4.2700 4.2800 4.2900 4.3000 4.3100 + 4.3200 4.3300 4.3400 4.3500 4.3600 4.3700 4.3800 4.3900 + 4.4000 4.4100 4.4200 4.4300 4.4400 4.4500 4.4600 4.4700 + 4.4800 4.4900 4.5000 4.5100 4.5200 4.5300 4.5400 4.5500 + 4.5600 4.5700 4.5800 4.5900 4.6000 4.6100 4.6200 4.6300 + 4.6400 4.6500 4.6600 4.6700 4.6800 4.6900 4.7000 4.7100 + 4.7200 4.7300 4.7400 4.7500 4.7600 4.7700 4.7800 4.7900 + 4.8000 4.8100 4.8200 4.8300 4.8400 4.8500 4.8600 4.8700 + 4.8800 4.8900 4.9000 4.9100 4.9200 4.9300 4.9400 4.9500 + 4.9600 4.9700 4.9800 4.9900 5.0000 5.0100 5.0200 5.0300 + 5.0400 5.0500 5.0600 5.0700 5.0800 5.0900 5.1000 5.1100 + 5.1200 5.1300 5.1400 5.1500 5.1600 5.1700 5.1800 5.1900 + 5.2000 5.2100 5.2200 5.2300 5.2400 5.2500 5.2600 5.2700 + 5.2800 5.2900 5.3000 5.3100 5.3200 5.3300 5.3400 5.3500 + 5.3600 5.3700 5.3800 5.3900 5.4000 5.4100 5.4200 5.4300 + 5.4400 5.4500 5.4600 5.4700 5.4800 5.4900 5.5000 5.5100 + 5.5200 5.5300 5.5400 5.5500 5.5600 5.5700 5.5800 5.5900 + 5.6000 5.6100 5.6200 5.6300 5.6400 5.6500 5.6600 5.6700 + 5.6800 5.6900 5.7000 5.7100 5.7200 5.7300 5.7400 5.7500 + 5.7600 5.7700 5.7800 5.7900 5.8000 5.8100 5.8200 5.8300 + 5.8400 5.8500 5.8600 5.8700 5.8800 5.8900 5.9000 5.9100 + 5.9200 5.9300 5.9400 5.9500 5.9600 5.9700 5.9800 5.9900 + 6.0000 6.0100 + + + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 + + + + -4.5793174225E+01 -4.5788454271E+01 -4.5774276797E+01 -4.5750659428E+01 + -4.5717619792E+01 -4.5675182552E+01 -4.5623379390E+01 -4.5562248988E+01 + -4.5491837004E+01 -4.5412196044E+01 -4.5323385623E+01 -4.5225472132E+01 + -4.5118528788E+01 -4.5002635589E+01 -4.4877879255E+01 -4.4744353169E+01 + -4.4602157309E+01 -4.4451398177E+01 -4.4292188720E+01 -4.4124648245E+01 + -4.3948902327E+01 -4.3765082717E+01 -4.3573327237E+01 -4.3373779671E+01 + -4.3166589651E+01 -4.2951912547E+01 -4.2729909330E+01 -4.2500746455E+01 + -4.2264595727E+01 -4.2021634162E+01 -4.1772043851E+01 -4.1516011824E+01 + -4.1253729894E+01 -4.0985394533E+01 -4.0711206709E+01 -4.0431371752E+01 + -4.0146099200E+01 -3.9855602666E+01 -3.9560099675E+01 -3.9259811534E+01 + -3.8954963181E+01 -3.8645783041E+01 -3.8332502872E+01 -3.8015357622E+01 + -3.7694585273E+01 -3.7370426682E+01 -3.7043125420E+01 -3.6712927591E+01 + -3.6380081658E+01 -3.6044838254E+01 -3.5707449960E+01 -3.5368171082E+01 + -3.5027257428E+01 -3.4684966035E+01 -3.4341554884E+01 -3.3997282619E+01 + -3.3652408207E+01 -3.3307190596E+01 -3.2961888362E+01 -3.2616759283E+01 + -3.2272059999E+01 -3.1928045476E+01 -3.1584968662E+01 -3.1243079972E+01 + -3.0902626759E+01 -3.0563852936E+01 -3.0226998404E+01 -2.9892298452E+01 + -2.9559983380E+01 -2.9230277982E+01 -2.8903400893E+01 -2.8579564063E+01 + -2.8258972337E+01 -2.7941822884E+01 -2.7628304667E+01 -2.7318598034E+01 + -2.7012873867E+01 -2.6711293357E+01 -2.6414007425E+01 -2.6121156194E+01 + -2.5832868475E+01 -2.5549261252E+01 -2.5270439163E+01 -2.4996493981E+01 + -2.4727504090E+01 -2.4463533948E+01 -2.4204633551E+01 -2.3950837873E+01 + -2.3702166308E+01 -2.3458622083E+01 -2.3220191664E+01 -2.2986844139E+01 + -2.2758530585E+01 -2.2535183375E+01 -2.2316715573E+01 -2.2103021768E+01 + -2.1893987279E+01 -2.1689498489E+01 -2.1489442457E+01 -2.1293706326E+01 + -2.1102176634E+01 -2.0914738702E+01 -2.0731276196E+01 -2.0551670390E+01 + -2.0375799754E+01 -2.0203539748E+01 -2.0034762549E+01 -1.9869337083E+01 + -1.9707128683E+01 -1.9547999147E+01 -1.9391807463E+01 -1.9238410108E+01 + -1.9087661528E+01 -1.8939414588E+01 -1.8793522086E+01 -1.8649837370E+01 + -1.8508214910E+01 -1.8368512890E+01 -1.8230593513E+01 -1.8094323159E+01 + -1.7959575768E+01 -1.7826233921E+01 -1.7694187632E+01 -1.7563336319E+01 + -1.7433593958E+01 -1.7304883939E+01 -1.7177140271E+01 -1.7050316722E+01 + -1.6924377020E+01 -1.6799297378E+01 -1.6675076787E+01 -1.6551723315E+01 + -1.6429261334E+01 -1.6307737259E+01 -1.6187204514E+01 -1.6067738582E+01 + -1.5949430494E+01 -1.5832376776E+01 -1.5716700129E+01 -1.5602525316E+01 + -1.5489990378E+01 -1.5379242195E+01 -1.5270429836E+01 -1.5163707747E+01 + -1.5059226717E+01 -1.4957136513E+01 -1.4857570026E+01 -1.4760663767E+01 + -1.4666511197E+01 -1.4575211522E+01 -1.4486807710E+01 -1.4401324722E+01 + -1.4318744132E+01 -1.4238980817E+01 -1.4161938010E+01 -1.4087395431E+01 + -1.4015161855E+01 -1.3944887653E+01 -1.3876268641E+01 -1.3808878106E+01 + -1.3742319487E+01 -1.3676155917E+01 -1.3609972047E+01 -1.3543392863E+01 + -1.3476076459E+01 -1.3407777571E+01 -1.3338297766E+01 -1.3267560877E+01 + -1.3195533856E+01 -1.3122304307E+01 -1.3047978845E+01 -1.2972761216E+01 + -1.2896845774E+01 -1.2820482588E+01 -1.2743900257E+01 -1.2667329709E+01 + -1.2590993198E+01 -1.2515060914E+01 -1.2439723914E+01 -1.2365079394E+01 + -1.2291274968E+01 -1.2218347544E+01 -1.2146390771E+01 -1.2075410030E+01 + -1.2005443278E+01 -1.1936484441E+01 -1.1868531365E+01 -1.1801570383E+01 + -1.1735578217E+01 -1.1670534625E+01 -1.1606409500E+01 -1.1543176908E+01 + -1.1480807926E+01 -1.1419273524E+01 -1.1358547699E+01 -1.1298603110E+01 + -1.1239414754E+01 -1.1180959916E+01 -1.1123213929E+01 -1.1066158555E+01 + -1.1009771504E+01 -1.0954036114E+01 -1.0898934548E+01 -1.0844449966E+01 + -1.0790568699E+01 -1.0737274132E+01 -1.0684554834E+01 -1.0632397012E+01 + -1.0580788619E+01 -1.0529718843E+01 -1.0479175385E+01 -1.0429149053E+01 + -1.0379629099E+01 -1.0330605943E+01 -1.0282070767E+01 -1.0234013649E+01 + -1.0186426820E+01 -1.0139301497E+01 -1.0092629437E+01 -1.0046403192E+01 + -1.0000614450E+01 -9.9552562574E+00 -9.9103213175E+00 -9.8658021883E+00 + -9.8216925418E+00 -9.7779853200E+00 -9.7346741018E+00 -9.6917528630E+00 + -9.6492148919E+00 -9.6070546837E+00 -9.5652664266E+00 -9.5238440186E+00 + -9.4827825370E+00 -9.4420764134E+00 -9.4017203379E+00 -9.3617097175E+00 + -9.3220393177E+00 -9.2827045571E+00 -9.2437011572E+00 -9.2050242481E+00 + -9.1666698740E+00 -9.1286340414E+00 -9.0909123106E+00 -9.0535011176E+00 + -9.0163966698E+00 -8.9795949149E+00 -8.9430924504E+00 -8.9068856197E+00 + -8.8709706212E+00 -8.8353441902E+00 -8.8000028322E+00 -8.7649429429E+00 + -8.7301613994E+00 -8.6956548633E+00 -8.6614198846E+00 -8.6274535016E+00 + -8.5937525419E+00 -8.5603136998E+00 -8.5271341568E+00 -8.4942109030E+00 + -8.4615407433E+00 -8.4291210081E+00 -8.3969488321E+00 -8.3650211679E+00 + -8.3333354339E+00 -8.3018889174E+00 -8.2706787325E+00 -8.2397023489E+00 + -8.2089572110E+00 -8.1784405968E+00 -8.1481500047E+00 -8.1180830358E+00 + -8.0882371342E+00 -8.0586098070E+00 -8.0291988103E+00 -8.0000017559E+00 + -7.9710161441E+00 -7.9422398810E+00 -7.9136707096E+00 -7.8853062259E+00 + -7.8571443658E+00 -7.8291830147E+00 -7.8014199340E+00 -7.7738530065E+00 + -7.7464802780E+00 -7.7192996806E+00 -7.6923090311E+00 -7.6655065287E+00 + -7.6388902172E+00 -7.6124580244E+00 -7.5862081118E+00 -7.5601386729E+00 + -7.5342478061E+00 -7.5085335693E+00 -7.4829943156E+00 -7.4576282669E+00 + -7.4324335284E+00 -7.4074084470E+00 -7.3825513770E+00 -7.3578605956E+00 + -7.3333343157E+00 -7.3089710527E+00 -7.2847691902E+00 -7.2607270198E+00 + -7.2368429926E+00 -7.2131156354E+00 -7.1895434072E+00 -7.1661246255E+00 + -7.1428579503E+00 -7.1197419205E+00 -7.0967750240E+00 -7.0739557449E+00 + -7.0512827904E+00 -7.0287547599E+00 -7.0063701691E+00 -6.9841276710E+00 + -6.9620259959E+00 -6.9400638084E+00 -6.9182396593E+00 -6.8965523464E+00 + -6.8750006260E+00 -6.8535832250E+00 -6.8322987355E+00 -6.8111460762E+00 + -6.7901240341E+00 -6.7692313755E+00 -6.7484667982E+00 -6.7278292605E+00 + -6.7073176048E+00 -6.6869306406E+00 -6.6666671559E+00 -6.6465261477E+00 + -6.6265065128E+00 -6.6066071075E+00 -6.5868267918E+00 -6.5671646050E+00 + -6.5476194954E+00 -6.5281903708E+00 -6.5088761451E+00 -6.4896759038E+00 + -6.4705886441E+00 -6.4516133289E+00 -6.4327489098E+00 -6.4139945219E+00 + -6.3953492088E+00 -6.3768119923E+00 -6.3583818464E+00 -6.3400579585E+00 + -6.3218394170E+00 -6.3037253054E+00 -6.2857146065E+00 -6.2678065624E+00 + -6.2500003039E+00 -6.2322949620E+00 -6.2146895692E+00 -6.1971833707E+00 + -6.1797755553E+00 -6.1624652945E+00 -6.1452516893E+00 -6.1281339595E+00 + -6.1111113599E+00 -6.0941831004E+00 -6.0773483541E+00 -6.0606063040E+00 + -6.0439562720E+00 -6.0273975048E+00 -6.0109292492E+00 -5.9945506474E+00 + -5.9782610829E+00 -5.9620598393E+00 -5.9459461983E+00 -5.9299193785E+00 + -5.9139787003E+00 -5.8981235231E+00 -5.8823531622E+00 -5.8666669171E+00 + -5.8510640359E+00 -5.8355439529E+00 -5.8201060154E+00 -5.8047495705E+00 + -5.7894738992E+00 -5.7742783981E+00 -5.7591624809E+00 -5.7441255252E+00 + -5.7291668988E+00 -5.7142859036E+00 -5.6994820342E+00 -5.6847546971E+00 + -5.6701032988E+00 -5.6555271981E+00 -5.6410258128E+00 -5.6265986270E+00 + -5.6122450750E+00 -5.5979645910E+00 -5.5837565316E+00 -5.5696204135E+00 + -5.5555557140E+00 -5.5415618937E+00 -5.5276384028E+00 -5.5137846338E+00 + -5.5000001533E+00 -5.4862844471E+00 -5.4726370009E+00 -5.4590572697E+00 + -5.4455447177E+00 -5.4320989146E+00 -5.4187193700E+00 -5.4054055938E+00 + -5.3921570507E+00 -5.3789732622E+00 -5.3658538052E+00 -5.3527982121E+00 + -5.3398060155E+00 -5.3268766948E+00 -5.3140098151E+00 -5.3012049642E+00 + -5.2884616967E+00 -5.2757795668E+00 -5.2631580727E+00 -5.2505968098E+00 + -5.2380953817E+00 -5.2256533635E+00 -5.2132703304E+00 -5.2009458033E+00 + -5.1886793955E+00 -5.1764707305E+00 -5.1643194032E+00 -5.1522250085E+00 + -5.1401870938E+00 -5.1282052788E+00 -5.1162792108E+00 -5.1044085035E+00 + -5.0925927708E+00 -5.0808315898E+00 -5.0691245763E+00 -5.0574714045E+00 + -5.0458717063E+00 -5.0343251134E+00 -5.0228312366E+00 -5.0113896772E+00 + -5.0000001400E+00 -4.9886622737E+00 -4.9773757274E+00 -4.9661401487E+00 + -4.9549551157E+00 -4.9438203658E+00 -4.9327355642E+00 -4.9217003762E+00 + -4.9107144672E+00 -4.8997774511E+00 -4.8888890330E+00 -4.8780489159E+00 + -4.8672567807E+00 -4.8565123083E+00 -4.8458151563E+00 -4.8351649849E+00 + -4.8245615383E+00 -4.8140045122E+00 -4.8034936025E+00 -4.7930285048E+00 + -4.7826088542E+00 -4.7722344106E+00 -4.7619048927E+00 -4.7516200103E+00 + -4.7413794734E+00 -4.7311829666E+00 -4.7210301867E+00 -4.7109209003E+00 + -4.7008548308E+00 -4.6908317017E+00 -4.6808512365E+00 -4.6709131059E+00 + -4.6610170820E+00 -4.6511629151E+00 -4.6413503415E+00 -4.6315790976E+00 + -4.6218489098E+00 -4.6121594711E+00 -4.6025105849E+00 -4.5929019999E+00 + -4.5833334646E+00 -4.5738047277E+00 -4.5643155095E+00 -4.5548655562E+00 + -4.5454546636E+00 -4.5360825922E+00 -4.5267491023E+00 -4.5174539542E+00 + -4.5081968671E+00 -4.4989776284E+00 -4.4897960308E+00 -4.4806518458E+00 + -4.4715448449E+00 -4.4624747996E+00 -4.4534414324E+00 -4.4444445607E+00 + -4.4354839781E+00 -4.4265594668E+00 -4.4176708089E+00 -4.4088177866E+00 + -4.4000001296E+00 -4.3912176749E+00 -4.3824702213E+00 -4.3737575609E+00 + -4.3650794862E+00 -4.3564357893E+00 -4.3478262108E+00 -4.3392505977E+00 + -4.3307087577E+00 -4.3222004926E+00 -4.3137256045E+00 -4.3052838953E+00 + -4.2968751196E+00 -4.2884991254E+00 -4.2801557329E+00 -4.2718447532E+00 + -4.2635659975E+00 -4.2553192771E+00 -4.2471043640E+00 -4.2389210984E+00 + -4.2307693165E+00 -4.2226488383E+00 -4.2145594838E+00 -4.2065010729E+00 + -4.1984733984E+00 -4.1904762847E+00 -4.1825095871E+00 -4.1745731339E+00 + -4.1666667536E+00 -4.1587902745E+00 -4.1509435132E+00 -4.1431262707E+00 + -4.1353384242E+00 -4.1275798099E+00 -4.1198502644E+00 -4.1121496240E+00 + -4.1044777250E+00 -4.0968343597E+00 -4.0892194079E+00 -4.0816327208E+00 + -4.0740741423E+00 -4.0665435164E+00 -4.0590406871E+00 -4.0515654768E+00 + -4.0441177254E+00 -4.0366973128E+00 -4.0293040903E+00 -4.0219379092E+00 + -4.0145986208E+00 -4.0072860764E+00 -4.0000000825E+00 -3.9927405372E+00 + -3.9855073028E+00 -3.9783002375E+00 -3.9711191995E+00 -3.9639640470E+00 + -3.9568346222E+00 -3.9497307693E+00 -3.9426523852E+00 -3.9355993345E+00 + -3.9285714822E+00 -3.9215686930E+00 -3.9145908318E+00 -3.9076377324E+00 + -3.9007092786E+00 -3.8938053575E+00 -3.8869258402E+00 -3.8800705978E+00 + -3.8732395014E+00 -3.8664324222E+00 -3.8596491897E+00 -3.8528897179E+00 + -3.8461538879E+00 -3.8394415767E+00 -3.8327526616E+00 -3.8260870197E+00 + -3.8194445241E+00 -3.8128250158E+00 -3.8062284180E+00 -3.7996546136E+00 + -3.7931034854E+00 -3.7865749162E+00 -3.7800687890E+00 -3.7735849788E+00 + -3.7671233412E+00 -3.7606838002E+00 -3.7542662442E+00 -3.7478705615E+00 + -3.7414966404E+00 -3.7351443691E+00 -3.7288136282E+00 -3.7225042799E+00 + -3.7162162523E+00 -3.7099494390E+00 -3.7037037335E+00 -3.6974790292E+00 + -3.6912752197E+00 -3.6850921941E+00 -3.6789298138E+00 -3.6727880140E+00 + -3.6666666933E+00 -3.6605657501E+00 + + + + 0.0000000000E+00 8.1959788337E-02 1.6389680452E-01 2.4578292762E-01 + 3.2757945385E-01 4.0923209012E-01 4.9066628384E-01 5.7178299213E-01 + 6.5245498564E-01 7.3252377312E-01 8.1179722184E-01 8.9004793688E-01 + 9.6701244883E-01 1.0423912454E+00 1.1158496674E+00 1.1870196733E+00 + 1.2555024628E+00 1.3208719323E+00 1.3826789204E+00 1.4404561895E+00 + 1.4937240648E+00 1.5419966682E+00 1.5847886227E+00 1.6216221501E+00 + 1.6520344202E+00 1.6755850973E+00 1.6918638179E+00 1.7004976921E+00 + 1.7011584600E+00 1.6935693577E+00 1.6775114916E+00 1.6528296167E+00 + 1.6194371715E+00 1.5773206519E+00 1.5265428914E+00 1.4672455267E+00 + 1.3996503949E+00 1.3240598869E+00 1.2408561029E+00 1.1504990593E+00 + 1.0535236873E+00 9.5053575514E-01 8.4220679309E-01 7.2926802100E-01 + 6.1250336841E-01 4.9274167614E-01 3.7084818278E-01 2.4771546294E-01 + 1.2425386707E-01 1.3813194463E-03 -1.1998657264E-01 -2.3894639470E-01 + -3.5461775436E-01 -4.6615303210E-01 -5.7274544611E-01 -6.7364109027E-01 + -7.6814360571E-01 -8.5562532978E-01 -9.3553062351E-01 -1.0073854605E+00 + -1.0707974255E+00 -1.1254649411E+00 -1.1711748262E+00 -1.2078060192E+00 + -1.2353302905E+00 -1.2538089488E+00 -1.2633921704E+00 -1.2643161462E+00 + -1.2568972238E+00 -1.2415270112E+00 -1.2186667307E+00 -1.1888397354E+00 + -1.1526235486E+00 -1.1106417836E+00 -1.0635554309E+00 -1.0120542028E+00 + -9.5684640407E-01 -8.9865036693E-01 -8.3818527115E-01 -7.7616221762E-01 + -7.1327568510E-01 -6.5019544375E-01 -5.8755902571E-01 -5.2596484036E-01 + -4.6596600774E-01 -4.0806496843E-01 -3.5270891279E-01 -3.0028605589E-01 + -2.5112276889E-01 -2.0548156076E-01 -1.6355988888E-01 -1.2548976165E-01 + -9.1338081356E-02 -6.1107635535E-02 -3.4738766420E-02 -1.2113182579E-02 + 6.9366425281E-03 2.2612724892E-02 3.5145144523E-02 4.4786293794E-02 + 5.1804938121E-02 5.6480406614E-02 5.9097799689E-02 5.9941271770E-02 + 5.9288880955E-02 5.7409099658E-02 5.4556678865E-02 5.0970738549E-02 + 4.6869448638E-02 4.2446513423E-02 3.7873610309E-02 3.3298679834E-02 + 2.8847425361E-02 2.4614620657E-02 2.0675219413E-02 1.7083365056E-02 + 1.3873528814E-02 1.1058091993E-02 8.6372297172E-03 6.5992973718E-03 + 4.9200658773E-03 3.5689959976E-03 2.5113059388E-03 1.7086013343E-03 + 1.1227305605E-03 7.1611571407E-04 4.5225014442E-04 2.9869025096E-04 + 2.2376348042E-04 2.0808442838E-04 1.5295374786E-04 2.3398705055E-05 + -1.2623857798E-05 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 + + + 0.0000000000E+00 -7.7175952907E-03 -1.4916854342E-02 -2.1086880496E-02 + -2.5731546758E-02 -2.8376608547E-02 -2.8576494606E-02 -2.5920676461E-02 + -2.0039523233E-02 -1.0609556503E-02 2.6419710152E-03 1.9933238862E-02 + 4.1424818823E-02 6.7217473921E-02 9.7350826557E-02 1.3180291127E-01 + 1.7049061644E-01 2.1327100328E-01 2.5994347910E-01 3.1025278862E-01 + 3.6389277025E-01 4.2051082780E-01 4.7971303013E-01 5.4106977360E-01 + 6.0412189959E-01 6.6838722019E-01 7.3336724280E-01 7.9855416069E-01 + 8.6343781125E-01 9.2751264008E-01 9.9028450228E-01 1.0512772086E+00 + 1.1100386765E+00 1.1661467811E+00 1.2192144736E+00 1.2688944425E+00 + 1.3148830711E+00 1.3569237057E+00 1.3948090182E+00 1.4283828005E+00 + 1.4575408219E+00 1.4822308453E+00 1.5024519230E+00 1.5182528874E+00 + 1.5297301022E+00 1.5370245181E+00 1.5403180955E+00 1.5398296691E+00 + 1.5358103451E+00 1.5285384000E+00 1.5183139567E+00 1.5054535589E+00 + 1.4902842587E+00 1.4731378880E+00 1.4543460523E+00 1.4342333766E+00 + 1.4131138878E+00 1.3912845692E+00 1.3690225108E+00 1.3465791146E+00 + 1.3241790763E+00 1.3020147293E+00 1.2802464515E+00 1.2589999252E+00 + 1.2383649827E+00 1.2183967307E+00 1.1991152464E+00 1.1805064719E+00 + 1.1625248997E+00 1.1450957228E+00 1.1281173437E+00 1.1114649877E+00 + 1.0949946488E+00 1.0785470304E+00 1.0619518542E+00 1.0450321853E+00 + 1.0276093245E+00 1.0095071212E+00 9.9055641022E-01 9.7059928504E-01 + 9.4949311358E-01 9.2711424462E-01 9.0336134563E-01 8.7815832242E-01 + 8.5145678087E-01 8.2323800106E-01 7.9351440554E-01 7.6233051397E-01 + 7.2976338788E-01 6.9592258017E-01 6.6094961455E-01 6.2501703037E-01 + 5.8832703790E-01 5.5110988669E-01 5.1362180519E-01 4.7614111278E-01 + 4.3895065095E-01 4.0231969623E-01 3.6650170831E-01 3.3173181093E-01 + 2.9822472583E-01 2.6617282323E-01 2.3574556921E-01 2.0708504676E-01 + 1.8030598672E-01 1.5549603366E-01 1.3271474535E-01 1.1199467316E-01 + 9.3339304043E-02 7.6723714857E-02 6.2098903174E-02 4.9392524523E-02 + 3.8511312292E-02 2.9340007125E-02 2.1749511592E-02 1.5598113229E-02 + 1.0733579834E-02 6.9985976130E-03 4.2344967945E-03 2.2819866171E-03 + 9.8836865576E-04 2.1129921025E-04 -1.8286643702E-04 -3.1447636558E-04 + -2.8064364907E-04 -1.6485866071E-04 -3.3670708672E-05 7.7242412191E-05 + 1.4571537069E-04 1.8119691635E-04 1.3914527860E-04 2.1967252687E-05 + -1.1290354030E-05 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 + + + 0.0000000000E+00 -9.9945741232E-05 -3.9560031198E-04 -8.7445007377E-04 + -1.5157531248E-03 -2.2907097090E-03 -3.1626991244E-03 -4.0875814821E-03 + -5.0140622112E-03 -5.8841167683E-03 -6.6334725893E-03 -7.1921449151E-03 + -7.4850227480E-03 -7.4325008418E-03 -6.9511532780E-03 -5.9544439475E-03 + -4.3534688675E-03 -2.0577252197E-03 1.0240984534E-03 4.9833163186E-03 + 9.9104295560E-03 1.5894306215E-02 2.3021363142E-02 3.1374755220E-02 + 4.1033578177E-02 5.2072090186E-02 6.4558958812E-02 7.8556537617E-02 + 9.4120178816E-02 1.1129758635E-01 1.3012821457E-01 1.5064271702E-01 + 1.7286244865E-01 1.9679902857E-01 2.2245396123E-01 2.4981832421E-01 + 2.7887252334E-01 3.0958611888E-01 3.4191771634E-01 3.7581493977E-01 + 4.1121447434E-01 4.4804217871E-01 4.8621327613E-01 5.2563261712E-01 + 5.6619501398E-01 6.0778564550E-01 6.5028052974E-01 6.9354705693E-01 + 7.3744458996E-01 7.8182514807E-01 8.2653409566E-01 8.7141088548E-01 + 9.1628993048E-01 9.6100144068E-01 1.0053722068E+00 1.0492267463E+00 + 1.0923879728E+00 1.1346784219E+00 1.1759209742E+00 1.2159401209E+00 + 1.2545625893E+00 1.2916187470E+00 1.3269431848E+00 1.3603758483E+00 + 1.3917630209E+00 1.4209580136E+00 1.4478221533E+00 1.4722256652E+00 + 1.4940482806E+00 1.5131799734E+00 1.5295217172E+00 1.5429860473E+00 + 1.5534975253E+00 1.5609932333E+00 1.5654231610E+00 1.5667505007E+00 + 1.5649519402E+00 1.5600177460E+00 1.5519518544E+00 1.5407718645E+00 + 1.5265089452E+00 1.5092076591E+00 1.4889257061E+00 1.4657335853E+00 + 1.4397141783E+00 1.4109622556E+00 1.3795839089E+00 1.3456959119E+00 + 1.3094250127E+00 1.2709071634E+00 1.2302866879E+00 1.1877153964E+00 + 1.1433516483E+00 1.0973593749E+00 1.0499070494E+00 1.0011667239E+00 + 9.5131123738E-01 9.0051243413E-01 8.4894081664E-01 7.9676488342E-01 + 7.4415063150E-01 6.9126107080E-01 6.3825619210E-01 5.8529138955E-01 + 5.3251756215E-01 4.8008106322E-01 4.2812307808E-01 3.7677966204E-01 + 3.2618054523E-01 2.7644862879E-01 2.2770078076E-01 1.8004723701E-01 + 1.3359184254E-01 8.8429474919E-02 4.4648519264E-02 2.3301135114E-03 + -3.8451993596E-02 -7.7633161320E-02 -1.1515564636E-01 -1.5096888387E-01 + -1.8503104826E-01 -2.1730791748E-01 -2.4777221308E-01 -2.7640431165E-01 + -3.0319233793E-01 -3.2813076609E-01 -3.5122097694E-01 -3.7247096173E-01 + -3.9189436432E-01 -4.0951091419E-01 -4.2534488669E-01 -4.3942561004E-01 + -4.5178693326E-01 -4.6246509387E-01 -4.7150113564E-01 -4.7893759190E-01 + -4.8481857411E-01 -4.8919295626E-01 -4.9210676034E-01 -4.9361023819E-01 + -4.9375409540E-01 -4.9258812052E-01 -4.9016680037E-01 -4.8654128055E-01 + -4.8176718158E-01 -4.7590038102E-01 -4.6899787912E-01 -4.6112073751E-01 + -4.5232902827E-01 -4.4268815818E-01 -4.3226315395E-01 -4.2112269111E-01 + -4.0933692057E-01 -3.9697638130E-01 -3.8411532119E-01 -3.7082386619E-01 + -3.5717873644E-01 -3.4324733042E-01 -3.2910537333E-01 -3.1481669456E-01 + -3.0045212655E-01 -2.8607106868E-01 -2.7173708238E-01 -2.5750367759E-01 + -2.4342593838E-01 -2.2955040551E-01 -2.1592329726E-01 -2.0258351882E-01 + -1.8956864256E-01 -1.7690966706E-01 -1.6463610250E-01 -1.5277111163E-01 + -1.4133688289E-01 -1.3034908904E-01 -1.1982335088E-01 -1.0976841093E-01 + -1.0019400584E-01 -9.1102675466E-02 -8.2498843713E-02 -7.4379711613E-02 + -6.6744837374E-02 -5.9587158080E-02 -5.2901396754E-02 -4.6677544158E-02 + -4.0905749075E-02 -3.5573783526E-02 -3.0668209988E-02 -2.6174638782E-02 + -2.2077320689E-02 -1.8359626189E-02 -1.5004818525E-02 -1.1993901594E-02 + -9.3100303837E-03 -6.9329121560E-03 -4.8450842795E-03 -3.0267586224E-03 + -1.4590651946E-03 -1.2421266598E-04 9.9844507624E-04 1.9242844757E-03 + 2.6738537500E-03 3.2621653424E-03 3.7066144692E-03 4.0238714604E-03 + 4.2268163111E-03 4.3337759130E-03 4.3545668729E-03 4.3040747398E-03 + 4.1939566699E-03 4.0336342835E-03 3.8366308830E-03 3.6086533374E-03 + 3.3600764424E-03 3.0980594804E-03 2.8276771418E-03 2.5578082615E-03 + 2.2903823604E-03 2.0308352750E-03 1.7829911670E-03 1.5480999508E-03 + 1.3301987527E-03 1.1293525376E-03 9.4656834312E-04 7.8328267224E-04 + 6.3832556782E-04 5.1194173150E-04 4.0340561061E-04 3.1134588957E-04 + 2.3498049038E-04 1.7273223574E-04 1.2308531443E-04 8.4466871588E-05 + 5.5468983325E-05 3.4361185347E-05 1.9569994672E-05 1.0087586140E-05 + 4.1587949536E-06 8.4730539255E-07 -4.0457636654E-07 -1.0986793689E-06 + -1.2459491952E-06 -9.2168416541E-07 -6.4347904540E-07 -3.1381847554E-07 + 1.6418605726E-09 5.8064837812E-08 4.4046055656E-08 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 + + + 0.0000000000E+00 2.3473144743E-04 9.3978935350E-04 2.1177458006E-03 + 3.7728257410E-03 5.9108148403E-03 8.5389316960E-03 1.1665665657E-02 + 1.5300581804E-02 1.9454094970E-02 2.4137214993E-02 2.9361265674E-02 + 3.5137580187E-02 4.1477175938E-02 4.8390412106E-02 5.5886633240E-02 + 6.3973802576E-02 7.2658128719E-02 8.1943689618E-02 9.1832057686E-02 + 1.0232193013E-01 1.1340876835E-01 1.2508445054E-01 1.3733694131E-01 + 1.5014998218E-01 1.6350280681E-01 1.7736988415E-01 1.9172069375E-01 + 2.0651953526E-01 2.2172537608E-01 2.3729173945E-01 2.5316663539E-01 + 2.6929253566E-01 2.8560639842E-01 3.0203973685E-01 3.1851873963E-01 + 3.3496444078E-01 3.5129294089E-01 3.6741567203E-01 3.8323972110E-01 + 3.9866819739E-01 4.1360064373E-01 4.2793349734E-01 4.4156059231E-01 + 4.5437370253E-01 4.6626312197E-01 4.7711827907E-01 4.8682837783E-01 + 4.9528306943E-01 5.0237316183E-01 5.0799131236E-01 5.1203273816E-01 + 5.1439598694E-01 5.1498365821E-01 5.1370307399E-01 5.1046713457E-01 + 5.0519486974E-01 4.9781227632E-01 4.8825284902E-01 4.7645835944E-01 + 4.6237928701E-01 4.4597557094E-01 4.2721695957E-01 4.0608355463E-01 + 3.8256623348E-01 3.5666693805E-01 3.2839900562E-01 2.9778739082E-01 + 2.6486878623E-01 2.2969172089E-01 1.9231655823E-01 1.5281540433E-01 + 1.1127196706E-01 6.7781320239E-02 2.2449589342E-02 -2.4606399304E-02 + -7.3259712313E-02 -1.2337376689E-01 -1.7480297607E-01 -2.2739345818E-01 + -2.8098381332E-01 -3.3540596893E-01 -3.9048609077E-01 -4.4604555536E-01 + -5.0190197939E-01 -5.5787030140E-01 -6.1376391058E-01 -6.6939581712E-01 + -7.2457985848E-01 -7.7913193545E-01 -8.3287127169E-01 -8.8562169027E-01 + -9.3721290067E-01 -9.8748179707E-01 -1.0362737300E+00 -1.0834432764E+00 + -1.1288533943E+00 -1.1723733832E+00 -1.2138791736E+00 -1.2532538460E+00 + -1.2903880678E+00 -1.3251804953E+00 -1.3575379316E+00 -1.3873762280E+00 + -1.4146202902E+00 -1.4392041677E+00 -1.4610713935E+00 -1.4801750180E+00 + -1.4964781344E+00 -1.5099539804E+00 -1.5205855875E+00 -1.5283659736E+00 + -1.5332980959E+00 -1.5353952942E+00 -1.5346804782E+00 -1.5311862536E+00 + -1.5249549122E+00 -1.5160379684E+00 -1.5044958200E+00 -1.4903978412E+00 + -1.4738214928E+00 -1.4548516999E+00 -1.4335811137E+00 -1.4101094271E+00 + -1.3845410012E+00 -1.3569863736E+00 -1.3275617315E+00 -1.2963840341E+00 + -1.2635747891E+00 -1.2292587253E+00 -1.1935571827E+00 -1.1565948216E+00 + -1.1184951743E+00 -1.0793757950E+00 -1.0393570420E+00 -9.9855161617E-01 + -9.5706768190E-01 -9.1501560887E-01 -8.7249185934E-01 -8.2959565947E-01 + -7.8642043018E-01 -7.4305414195E-01 -6.9958717760E-01 -6.5610269483E-01 + -6.1268736121E-01 -5.6942628572E-01 -5.2640623485E-01 -4.8371616181E-01 + -4.4144677760E-01 -3.9969189463E-01 -3.5854728903E-01 -3.1811069556E-01 + -2.7848167142E-01 -2.3975796567E-01 -2.0204019809E-01 -1.6542001159E-01 + -1.2999526555E-01 -9.5845740202E-02 -6.3059876657E-02 -3.1703203855E-02 + -1.8478069897E-03 2.6456388633E-02 5.3157312817E-02 7.8222294671E-02 + 1.0162022624E-01 1.2333624746E-01 1.4335935819E-01 1.6169204316E-01 + 1.7834145331E-01 1.9332609886E-01 2.0666887111E-01 2.1840235270E-01 + 2.2856277217E-01 2.3719441418E-01 2.4434470705E-01 2.5006702838E-01 + 2.5441823366E-01 2.5745807803E-01 2.5925143176E-01 2.5986170558E-01 + 2.5936066275E-01 2.5781313365E-01 2.5529563060E-01 2.5187401911E-01 + 2.4762567618E-01 2.4261845523E-01 2.3692721571E-01 2.3062201653E-01 + 2.2377226232E-01 2.1645046611E-01 2.0871801154E-01 2.0064985720E-01 + 1.9229951254E-01 1.8373774650E-01 1.7501646743E-01 1.6619557601E-01 + 1.5732879776E-01 1.4846228171E-01 1.3965183306E-01 1.3093126852E-01 + 1.2235110638E-01 1.1394168184E-01 1.0573925716E-01 9.7776770635E-02 + 9.0074365687E-02 8.2666351382E-02 7.5562674454E-02 6.8785364645E-02 + 6.2347453467E-02 5.6255327952E-02 5.0523756717E-02 4.5149397336E-02 + 4.0137616957E-02 3.5486734122E-02 3.1190137804E-02 2.7246728723E-02 + 2.3643672271E-02 2.0372238964E-02 1.7421055170E-02 1.4775017024E-02 + 1.2420317981E-02 1.0340462914E-02 8.5182289126E-03 6.9356094255E-03 + 5.5753944786E-03 4.4175665075E-03 3.4440767234E-03 2.6378733749E-03 + 1.9768667837E-03 1.4468136594E-03 1.0304532927E-03 7.0724358018E-04 + 4.6709087668E-04 2.9297414211E-04 1.7010811352E-04 9.1216598523E-05 + 4.1230126412E-05 1.2498772302E-05 8.1912250875E-07 -5.7304560233E-06 + -7.4821006550E-06 -5.2773363344E-06 -3.8024302514E-06 -1.9122122872E-06 + 9.2792861288E-09 3.2816443312E-07 2.4893462946E-07 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 + + + 5.3707838603E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 -8.2930195943E-01 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 -6.5836757852E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 -4.6797927123E+00 + + + + + + 0.0000000000E+00 3.6337392512E-03 1.4532726686E-02 3.2690254089E-02 + 5.8095083688E-02 9.0731362153E-02 1.3057850042E-01 1.7761101960E-01 + 2.3179836335E-01 2.9310467717E-01 3.6148855530E-01 4.3690275613E-01 + 5.1929388710E-01 6.0860206053E-01 7.0476052195E-01 8.0769525292E-01 + 9.1732455075E-01 1.0335585876E+00 1.1562989524E+00 1.2854381786E+00 + 1.4208592623E+00 1.5624351747E+00 1.7100283733E+00 1.8634903182E+00 + 2.0226609977E+00 2.1873684690E+00 2.3574284220E+00 2.5326437698E+00 + 2.7128042747E+00 2.8976862147E+00 3.0870520986E+00 3.2806504354E+00 + 3.4782155630E+00 3.6794675480E+00 3.8841121546E+00 4.0918408942E+00 + 4.3023311599E+00 4.5152464500E+00 4.7302366781E+00 4.9469385892E+00 + 5.1649762707E+00 5.3839617584E+00 5.6034957507E+00 5.8231684219E+00 + 6.0425603366E+00 6.2612434633E+00 6.4787822832E+00 6.6947349849E+00 + 6.9086547535E+00 7.1200911721E+00 7.3285916360E+00 7.5337028366E+00 + 7.7349724152E+00 7.9319505675E+00 8.1241915721E+00 8.3112557863E+00 + 8.4927110052E+00 8.6681345343E+00 8.8371145884E+00 8.9992523726E+00 + 9.1541633151E+00 9.3014792651E+00 9.4408496187E+00 9.5719431028E+00 + 9.6944493238E+00 9.8080799314E+00 9.9125700903E+00 1.0007679760E+01 + 1.0093194629E+01 1.0168927143E+01 1.0234717464E+01 1.0290434168E+01 + 1.0335974800E+01 1.0371266368E+01 1.0396265673E+01 1.0410959508E+01 + 1.0415364647E+01 1.0409527749E+01 1.0393525104E+01 1.0367462228E+01 + 1.0331473323E+01 1.0285720597E+01 1.0230393446E+01 1.0165707519E+01 + 1.0091903652E+01 1.0009246696E+01 9.9180242353E+00 9.8185452072E+00 + 9.7111384364E+00 9.5961510889E+00 9.4739470582E+00 9.3449052926E+00 + 9.2094180770E+00 9.0678892777E+00 8.9207325646E+00 8.7683700317E+00 + 8.6112294809E+00 8.4497429486E+00 8.2843452989E+00 8.1154722690E+00 + 7.9435587681E+00 7.7690372271E+00 7.5923368874E+00 7.4138800648E+00 + 7.2340816365E+00 7.0533484206E+00 6.8720774257E+00 6.6906555240E+00 + 6.5094564964E+00 6.3288395036E+00 6.1491505419E+00 5.9707208962E+00 + 5.7938674803E+00 5.6188868212E+00 5.4460604926E+00 5.2756533163E+00 + 5.1079129335E+00 4.9430658776E+00 4.7813225332E+00 4.6228764242E+00 + 4.4679007281E+00 4.3165508358E+00 4.1689657220E+00 4.0252663456E+00 + 3.8855554730E+00 3.7499205335E+00 3.6184323546E+00 3.4911456193E+00 + 3.3681006701E+00 3.2493225176E+00 3.1348234429E+00 3.0246019824E+00 + 2.9186436753E+00 2.8169246302E+00 2.7194071560E+00 2.6260454034E+00 + 2.5367854140E+00 2.4515589197E+00 2.3702979672E+00 2.2929218291E+00 + 2.2193439190E+00 2.1494770076E+00 2.0832191146E+00 2.0204757977E+00 + 1.9611404784E+00 1.9051060938E+00 1.8522672026E+00 1.8025059353E+00 + 1.7557184211E+00 1.7117841216E+00 1.6705956276E+00 1.6320368440E+00 + 1.5959953992E+00 1.5623623163E+00 1.5310219477E+00 1.5018733788E+00 + 1.4747995986E+00 1.4497071160E+00 1.4264823982E+00 1.4050359478E+00 + 1.3852617971E+00 1.3670731484E+00 1.3503725061E+00 1.3350767537E+00 + 1.3210966541E+00 1.3083536863E+00 1.2967664067E+00 1.2862616781E+00 + 1.2767652268E+00 1.2682099288E+00 1.2605279717E+00 1.2536586994E+00 + 1.2475400254E+00 1.2421180367E+00 1.2373356593E+00 1.2331458190E+00 + 1.2294958038E+00 1.2263452962E+00 1.2236453955E+00 1.2213622815E+00 + 1.2194504458E+00 1.2178816542E+00 1.2166149560E+00 1.2156251607E+00 + 1.2148777815E+00 1.2143485156E+00 1.2140095293E+00 1.2138371121E+00 + 1.2138095524E+00 1.2139036413E+00 1.2141030896E+00 1.2143853120E+00 + 1.2147378237E+00 1.2151412592E+00 1.2155835681E+00 1.2160501540E+00 + 1.2165283430E+00 1.2170080212E+00 1.2174761507E+00 1.2179257517E+00 + 1.2183454395E+00 1.2187286550E+00 1.2190674121E+00 1.2193542786E+00 + 1.2195844911E+00 1.2197502235E+00 1.2198483732E+00 1.2198733400E+00 + 1.2198210656E+00 1.2196885929E+00 1.2194712638E+00 1.2191675791E+00 + 1.2187742775E+00 1.2182892598E+00 1.2177111876E+00 1.2170374526E+00 + 1.2162677177E+00 1.2154005329E+00 1.2144349485E+00 1.2133708105E+00 + 1.2122071235E+00 1.2109440931E+00 1.2095816422E+00 1.2081195667E+00 + 1.2065584875E+00 1.2048985591E+00 1.2031402985E+00 1.2012844650E+00 + 1.1993315328E+00 1.1972824616E+00 1.1951381338E+00 1.1928993789E+00 + 1.1905673346E+00 1.1881430440E+00 1.1856276106E+00 1.1830222548E+00 + 1.1803281860E+00 1.1775466610E+00 1.1746789772E+00 1.1717264817E+00 + 1.1686905067E+00 1.1655724200E+00 1.1623736766E+00 1.1590956410E+00 + 1.1557397436E+00 1.1523075175E+00 1.1488003414E+00 1.1452197002E+00 + 1.1415671671E+00 1.1378441391E+00 1.1340521336E+00 1.1301927496E+00 + 1.1262673905E+00 1.1222775883E+00 1.1182249603E+00 1.1141109034E+00 + 1.1099369471E+00 1.1057047233E+00 1.1014156105E+00 1.0970711187E+00 + 1.0926728944E+00 1.0882222862E+00 1.0837207811E+00 1.0791700051E+00 + 1.0745713035E+00 1.0699261228E+00 1.0652360438E+00 1.0605024265E+00 + 1.0557266617E+00 1.0509102695E+00 1.0460546343E+00 1.0411610808E+00 + 1.0362310553E+00 1.0312659736E+00 1.0262670873E+00 1.0212357582E+00 + 1.0161734365E+00 1.0110812978E+00 1.0059606377E+00 1.0008128611E+00 + 9.9563914560E-01 9.9044070744E-01 9.8521885185E-01 9.7997480791E-01 + 9.7470969675E-01 9.6942471810E-01 9.6412114931E-01 9.5880002099E-01 + 9.5346246389E-01 9.4810968078E-01 9.4274273075E-01 9.3736265040E-01 + 9.3197053163E-01 9.2656748811E-01 9.2115446008E-01 9.1573245889E-01 + 9.1030255379E-01 9.0486568236E-01 8.9942277207E-01 8.9397478368E-01 + 8.8852270283E-01 8.8306736527E-01 8.7760966109E-01 8.7215051076E-01 + 8.6669076178E-01 8.6123122146E-01 8.5577271562E-01 8.5031610936E-01 + 8.4486214142E-01 8.3941158119E-01 8.3396520155E-01 8.2852376589E-01 + 8.2308796716E-01 8.1765851498E-01 8.1223612231E-01 8.0682146521E-01 + 8.0141519287E-01 7.9601795348E-01 7.9063039288E-01 7.8525312049E-01 + 7.7988673579E-01 7.7453182714E-01 7.6918896874E-01 7.6385872049E-01 + 7.5854162766E-01 7.5323821877E-01 7.4794900044E-01 7.4267448993E-01 + 7.3741517779E-01 7.3217153222E-01 7.2694400112E-01 7.2173305912E-01 + 7.1653914459E-01 7.1136266724E-01 7.0620402105E-01 7.0106363983E-01 + 6.9594191255E-01 6.9083919455E-01 6.8575582635E-01 6.8069220471E-01 + 6.7564867225E-01 6.7062553616E-01 6.6562307970E-01 6.6064166829E-01 + 6.5568160130E-01 6.5074314620E-01 6.4582652108E-01 6.4093206741E-01 + 6.3606004453E-01 6.3121069062E-01 6.2638414702E-01 6.2158073995E-01 + 6.1680069198E-01 6.1204420820E-01 6.0731138695E-01 6.0260250037E-01 + 5.9791775360E-01 5.9325731829E-01 5.8862127567E-01 5.8400981118E-01 + 5.7942312965E-01 5.7486137257E-01 5.7032462109E-01 5.6581294949E-01 + 5.6132657600E-01 5.5686561518E-01 5.5243016428E-01 5.4802016798E-01 + 5.4363586382E-01 5.3927734478E-01 5.3494468457E-01 5.3063784966E-01 + 5.2635693302E-01 5.2210206658E-01 5.1787330362E-01 5.1367065629E-01 + 5.0949403909E-01 5.0534363783E-01 5.0121948821E-01 4.9712160943E-01 + 4.9304989315E-01 4.8900440633E-01 4.8498523012E-01 4.8099236931E-01 + 4.7702579480E-01 4.7308534188E-01 4.6917117612E-01 4.6528329053E-01 + 4.6142166239E-01 4.5758616045E-01 4.5377675072E-01 4.4999351224E-01 + 4.4623641341E-01 4.4250540727E-01 4.3880027158E-01 4.3512109643E-01 + 4.3146787739E-01 4.2784056136E-01 4.2423905777E-01 4.2066313465E-01 + 4.1711292351E-01 4.1358836714E-01 4.1008939400E-01 4.0661584752E-01 + 4.0316757642E-01 3.9974465785E-01 3.9634701856E-01 3.9297457142E-01 + 3.8962710727E-01 3.8630453791E-01 3.8300689577E-01 3.7973409424E-01 + 3.7648603335E-01 3.7326246566E-01 3.7006334429E-01 3.6688866911E-01 + 3.6373834268E-01 3.6061225471E-01 3.5751013444E-01 3.5443195167E-01 + 3.5137768748E-01 3.4834723595E-01 3.4534047887E-01 3.4235713759E-01 + 3.3939717182E-01 3.3646055869E-01 3.3354718596E-01 3.3065692964E-01 + 3.2778951925E-01 3.2494487605E-01 3.2212298854E-01 3.1932374013E-01 + 3.1654700304E-01 3.1379253165E-01 3.1106017927E-01 3.0834996112E-01 + 3.0566175806E-01 3.0299544026E-01 3.0035080419E-01 2.9772760550E-01 + 2.9512590082E-01 2.9254557001E-01 2.8998648282E-01 2.8744849490E-01 + 2.8493123602E-01 2.8243481716E-01 2.7995911859E-01 2.7750401105E-01 + 2.7506935560E-01 2.7265484123E-01 2.7026043368E-01 2.6788608470E-01 + 2.6553166718E-01 2.6319704491E-01 2.6088199743E-01 2.5858630197E-01 + 2.5630999879E-01 2.5405296400E-01 2.5181506514E-01 2.4959616109E-01 + 2.4739590190E-01 2.4521433867E-01 2.4305138020E-01 2.4090689864E-01 + 2.3878075797E-01 2.3667272923E-01 2.3458261485E-01 2.3251044351E-01 + 2.3045609267E-01 2.2841943216E-01 2.2640032411E-01 2.2439844431E-01 + 2.2241380244E-01 2.2044632927E-01 2.1849590099E-01 2.1656238659E-01 + 2.1464561395E-01 2.1274528782E-01 2.1086148488E-01 2.0899408806E-01 + 2.0714297360E-01 2.0530801092E-01 2.0348896494E-01 2.0168568084E-01 + 1.9989817205E-01 1.9812632228E-01 1.9637000893E-01 1.9462910303E-01 + 1.9290332547E-01 1.9119262730E-01 1.8949697398E-01 1.8781625099E-01 + 1.8615033789E-01 1.8449910828E-01 1.8286225705E-01 1.8123980610E-01 + 1.7963168936E-01 1.7803779494E-01 1.7645800539E-01 1.7489219768E-01 + 1.7334005745E-01 1.7180164353E-01 1.7027687481E-01 1.6876564271E-01 + 1.6726783349E-01 1.6578332817E-01 1.6431181865E-01 1.6285336847E-01 + 1.6140789735E-01 1.5997530064E-01 1.5855546884E-01 1.5714828758E-01 + 1.5575346966E-01 1.5437105276E-01 1.5300097253E-01 1.5164312865E-01 + 1.5029741632E-01 1.4896372623E-01 1.4764180602E-01 1.4633163879E-01 + 1.4503318997E-01 1.4374636395E-01 1.4247106098E-01 1.4120717711E-01 + 1.3995450820E-01 1.3871295607E-01 1.3748252837E-01 1.3626313447E-01 + 1.3505467991E-01 1.3385706629E-01 1.3267015027E-01 1.3149372853E-01 + 1.3032786142E-01 1.2917246345E-01 1.2802744557E-01 1.2689271513E-01 + 1.2576817583E-01 1.2465357395E-01 1.2354895607E-01 1.2245426661E-01 + 1.2136942200E-01 1.2029433538E-01 1.1922891650E-01 1.1817299678E-01 + 1.1712646443E-01 1.1608934316E-01 1.1506155491E-01 1.1404301858E-01 + 1.1303364995E-01 1.1203336173E-01 1.1104191034E-01 1.1005936167E-01 + 1.0908565688E-01 1.0812072055E-01 1.0716447442E-01 1.0621683739E-01 + 1.0527767162E-01 1.0434684171E-01 1.0342438843E-01 1.0251024196E-01 + 1.0160432985E-01 1.0070657703E-01 9.9816905799E-02 9.8935132159E-02 + 9.8061235924E-02 9.7195205765E-02 9.6336974888E-02 9.5486474088E-02 + 9.4643631728E-02 9.3808373729E-02 9.2980486778E-02 9.2160032146E-02 + 9.1346961575E-02 9.0541211504E-02 8.9742716146E-02 8.8951407471E-02 + 8.8167202844E-02 8.7389911584E-02 8.6619608133E-02 8.5856234335E-02 + 8.5099729995E-02 8.4350032869E-02 8.3607078648E-02 8.2870776603E-02 + 8.2140970530E-02 8.1417721111E-02 8.0700973471E-02 7.9990670860E-02 + 7.9286754644E-02 7.8589164292E-02 7.7897813190E-02 7.7212554420E-02 + 7.6533446468E-02 7.5860437783E-02 7.5193475091E-02 7.4532503386E-02 + 7.3877465923E-02 7.3228291074E-02 7.2584818662E-02 7.1947115361E-02 + 7.1315132942E-02 7.0688821596E-02 + + diff --git a/_book/examples/dos_band/Al/INPUT-band b/_book/examples/dos_band/Al/INPUT-band new file mode 100644 index 00000000..ef45d3e6 --- /dev/null +++ b/_book/examples/dos_band/Al/INPUT-band @@ -0,0 +1,26 @@ +INPUT_PARAMETERS +#Parameters (1.General) +suffix Al-fcc +calculation nscf +esolver_type ksdft +pseudo_dir ./ +cal_stress 1 +cal_force 1 +stru_file PRIMCELL.STRU +#Parameters (2.Iteration) +ecutwfc 50 +scf_thr 1e-8 +scf_nmax 50 +#Parameters (3.Basis) +basis_type pw +kpar 4 +gamma_only 0 +#Parameters (4.Smearing) +smearing_method mp +smearing_sigma 0.015 +#Parameters (5.Mixing) +mixing_type broyden +mixing_beta 0.7 + +init_chg file +out_band 1 diff --git a/_book/examples/dos_band/Al/INPUT-nscf b/_book/examples/dos_band/Al/INPUT-nscf new file mode 100644 index 00000000..6892ed2f --- /dev/null +++ b/_book/examples/dos_band/Al/INPUT-nscf @@ -0,0 +1,26 @@ +INPUT_PARAMETERS +#Parameters (1.General) +suffix Al-fcc +calculation nscf +esolver_type ksdft +pseudo_dir ./ +cal_stress 1 +cal_force 1 +stru_file PRIMCELL.STRU +#Parameters (2.Iteration) +ecutwfc 50 +scf_thr 1e-8 +scf_nmax 50 +#Parameters (3.Basis) +basis_type pw +kpar 4 +gamma_only 0 +#Parameters (4.Smearing) +smearing_method mp +smearing_sigma 0.015 +#Parameters (5.Mixing) +mixing_type broyden +mixing_beta 0.7 + +init_chg file +out_dos 1 diff --git a/_book/examples/dos_band/Al/INPUT-scf b/_book/examples/dos_band/Al/INPUT-scf new file mode 100644 index 00000000..77e2374d --- /dev/null +++ b/_book/examples/dos_band/Al/INPUT-scf @@ -0,0 +1,25 @@ +INPUT_PARAMETERS +#Parameters (1.General) +suffix Al-fcc +calculation scf +esolver_type ksdft +pseudo_dir ./ +cal_stress 1 +cal_force 1 +stru_file PRIMCELL.STRU +#Parameters (2.Iteration) +ecutwfc 50 +scf_thr 1e-8 +scf_nmax 50 +#Parameters (3.Basis) +basis_type pw +kpar 4 +gamma_only 0 +#Parameters (4.Smearing) +smearing_method mp +smearing_sigma 0.015 +#Parameters (5.Mixing) +mixing_type broyden +mixing_beta 0.7 + +out_chg 1 diff --git a/_book/examples/dos_band/Al/KPT-nscf b/_book/examples/dos_band/Al/KPT-nscf new file mode 100644 index 00000000..743fb5c8 --- /dev/null +++ b/_book/examples/dos_band/Al/KPT-nscf @@ -0,0 +1,4 @@ +K_POINTS +0 +Gamma +12 12 12 0 0 0 \ No newline at end of file diff --git a/_book/examples/dos_band/Al/KPT-scf b/_book/examples/dos_band/Al/KPT-scf new file mode 100644 index 00000000..f7fffe21 --- /dev/null +++ b/_book/examples/dos_band/Al/KPT-scf @@ -0,0 +1,4 @@ +K_POINTS +0 +Gamma +8 8 8 0 0 0 \ No newline at end of file diff --git a/_book/examples/dos_band/Al/STRU b/_book/examples/dos_band/Al/STRU new file mode 100644 index 00000000..44e1caaf --- /dev/null +++ b/_book/examples/dos_band/Al/STRU @@ -0,0 +1,21 @@ +ATOMIC_SPECIES +Al 26.982 Al_ONCV_PBE-1.0.upf upf201 + +LATTICE_CONSTANT +1.88972612546 + +LATTICE_VECTORS + 4.0450551637 0.0000000000 0.0000000000 #latvec1 + 0.0000000000 4.0450551637 0.0000000000 #latvec2 + 0.0000000000 0.0000000000 4.0450551637 #latvec3 + +ATOMIC_POSITIONS +Direct + +Al #label +0 #magnetism +4 #number of atoms + 0.0000000000 0.0000000000 0.0000000000 m 0 0 0 + 0.5000000000 0.5000000000 0.0000000000 m 0 0 0 + 0.5000000000 0.0000000000 0.5000000000 m 0 0 0 + 0.0000000000 0.5000000000 0.5000000000 m 0 0 0 diff --git a/_book/examples/dos_band/Al/gene_band_dat.py b/_book/examples/dos_band/Al/gene_band_dat.py new file mode 100644 index 00000000..3f228906 --- /dev/null +++ b/_book/examples/dos_band/Al/gene_band_dat.py @@ -0,0 +1,55 @@ +import numpy as np +import sys +import glob +import os + +# 检查是否提供了命令行参数 +if len(sys.argv) > 1: + try: + e_fermi = float(sys.argv[1]) # 将e_fermi转换为浮点数 + except ValueError: + print("Usage: python plot_band.py e_fermi") + e_fermi = 0.0 # 如果转换失败,将e_fermi设置为0.0 +else: + e_fermi = 0.0 # 如果没有提供命令行参数,将e_fermi设置为0.0 + +# 读取KPT文件 +kpt_data = np.loadtxt('KPT', skiprows=3) # 假设KPT文件的前3行是标题行,需要跳过 +kpt_indice = np.delete(kpt_data[:, 3].astype(int), -1) +kpt_indice = np.insert(kpt_indice, 0, 1) # 删除最后一个元素,并在第一个位置插入1 +print(kpt_indice) +kpt_indices = np.cumsum(kpt_indice.astype(int)) +print(kpt_indices) + +# 获取所有BANDS_*.dat文件的路径 +band_files = glob.glob('OUT.*/BANDS_*.dat') + +for band_file in band_files: + data = np.loadtxt(band_file) + id = os.path.basename(band_file) # 获取文件名 + print('Processing ' + id + '...') + + for idx, ii in enumerate(kpt_indice): + if ii == 1 and idx != 0: + data[kpt_indices[idx]-1 : , 1] -= data[kpt_indices[idx]-1, 1] - data[kpt_indices[idx]-2, 1] + kpt_indices_modify = np.array([kpt_indices[i] for i in range(len(kpt_indices)) if i != idx]) + # kpt_indices_del = np.delete(kpt_indices, idx) + print(kpt_indices_modify) + # 使用KPT文件第四列的数据作为索引来查找data第二列对应行的数据 + selected_data = data[kpt_indices_modify-1, 1] + # print(selected_data) + + # 在文件的开头添加新内容 + plot_file = 'plot_' + id + with open(plot_file, 'w+') as f: + f.write('# ' + ' '.join(map(str, selected_data)) + '\n') + + merged_data = [] # 创建一个空列表来保存所有合并后的数据 + + # 循环读取第三列到最后一列,并将每一列与第二列合并 + for i in range(2, data.shape[1]): + data[:, i] -= e_fermi + merged = np.column_stack((data[:, 1], data[:, i])) + with open(plot_file, 'a') as f: + np.savetxt(f, merged, fmt='%.6f') + f.write('\n') diff --git a/_book/examples/dos_band/Fe/Fe_ONCV_PBE-1.0.upf b/_book/examples/dos_band/Fe/Fe_ONCV_PBE-1.0.upf new file mode 100644 index 00000000..42e0d33a --- /dev/null +++ b/_book/examples/dos_band/Fe/Fe_ONCV_PBE-1.0.upf @@ -0,0 +1,1555 @@ + + + + This pseudopotential file has been produced using the code + ONCVPSP (Optimized Norm-Conservinng Vanderbilt PSeudopotential) + scalar-relativistic version 2.1.1, 03/26/2014 by D. R. Hamann + The code is available through a link at URL www.mat-simresearch.com. + Documentation with the package provides a full discription of the + input data below. + + + While it is not required under the terms of the GNU GPL, it is + suggested that you cite D. R. Hamann, Phys. Rev. B 88, 085117 (2013) + in any publication using these pseudopotentials. + + + Copyright 2015 The Regents of the University of California + + This work is licensed under the Creative Commons Attribution-ShareAlike + 4.0 International License. To view a copy of this license, visit + http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to + Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. + + This pseudopotential is part of the Schlipf-Gygi norm-conserving + pseudopotential library. Its construction parameters were tuned to + reproduce materials of a training set with very high accuracy and + should be suitable as a general purpose pseudopotential to treat a + variety of different compounds. For details of the construction and + testing of the pseudopotential please refer to: + + [insert reference to paper here] + + We kindly ask that you include this reference in all publications + associated to this pseudopotential. + + + +# ATOM AND REFERENCE CONFIGURATION +# atsym z nc nv iexc psfile + Fe 26.00 3 4 4 upf +# +# n l f energy (Ha) + 1 0 2.00 + 2 0 2.00 + 2 1 6.00 + 3 0 2.00 + 3 1 6.00 + 4 0 2.00 + 3 2 6.00 +# +# PSEUDOPOTENTIAL AND OPTIMIZATION +# lmax + 2 +# +# l, rc, ep, ncon, nbas, qcut + 0 2.08667 -3.45509 5 8 6.68986 + 1 2.11172 -2.20653 5 8 7.45338 + 2 2.06193 -0.27580 5 8 8.55864 +# +# LOCAL POTENTIAL +# lloc, lpopt, rc(5), dvloc0 + 4 5 1.87426 0.00000 +# +# VANDERBILT-KLEINMAN-BYLANDER PROJECTORs +# l, nproj, debl + 0 2 3.26061 + 1 2 2.97009 + 2 2 1.24375 +# +# MODEL CORE CHARGE +# icmod, fcfact + 0 0.00000 +# +# LOG DERIVATIVE ANALYSIS +# epsh1, epsh2, depsh + -5.00 3.00 0.02 +# +# OUTPUT GRID +# rlmax, drl + 6.00 0.01 +# +# TEST CONFIGURATIONS +# ncnf + 0 +# nvcnf +# n l f + + + + + + + + + 0.0000 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 + 0.0800 0.0900 0.1000 0.1100 0.1200 0.1300 0.1400 0.1500 + 0.1600 0.1700 0.1800 0.1900 0.2000 0.2100 0.2200 0.2300 + 0.2400 0.2500 0.2600 0.2700 0.2800 0.2900 0.3000 0.3100 + 0.3200 0.3300 0.3400 0.3500 0.3600 0.3700 0.3800 0.3900 + 0.4000 0.4100 0.4200 0.4300 0.4400 0.4500 0.4600 0.4700 + 0.4800 0.4900 0.5000 0.5100 0.5200 0.5300 0.5400 0.5500 + 0.5600 0.5700 0.5800 0.5900 0.6000 0.6100 0.6200 0.6300 + 0.6400 0.6500 0.6600 0.6700 0.6800 0.6900 0.7000 0.7100 + 0.7200 0.7300 0.7400 0.7500 0.7600 0.7700 0.7800 0.7900 + 0.8000 0.8100 0.8200 0.8300 0.8400 0.8500 0.8600 0.8700 + 0.8800 0.8900 0.9000 0.9100 0.9200 0.9300 0.9400 0.9500 + 0.9600 0.9700 0.9800 0.9900 1.0000 1.0100 1.0200 1.0300 + 1.0400 1.0500 1.0600 1.0700 1.0800 1.0900 1.1000 1.1100 + 1.1200 1.1300 1.1400 1.1500 1.1600 1.1700 1.1800 1.1900 + 1.2000 1.2100 1.2200 1.2300 1.2400 1.2500 1.2600 1.2700 + 1.2800 1.2900 1.3000 1.3100 1.3200 1.3300 1.3400 1.3500 + 1.3600 1.3700 1.3800 1.3900 1.4000 1.4100 1.4200 1.4300 + 1.4400 1.4500 1.4600 1.4700 1.4800 1.4900 1.5000 1.5100 + 1.5200 1.5300 1.5400 1.5500 1.5600 1.5700 1.5800 1.5900 + 1.6000 1.6100 1.6200 1.6300 1.6400 1.6500 1.6600 1.6700 + 1.6800 1.6900 1.7000 1.7100 1.7200 1.7300 1.7400 1.7500 + 1.7600 1.7700 1.7800 1.7900 1.8000 1.8100 1.8200 1.8300 + 1.8400 1.8500 1.8600 1.8700 1.8800 1.8900 1.9000 1.9100 + 1.9200 1.9300 1.9400 1.9500 1.9600 1.9700 1.9800 1.9900 + 2.0000 2.0100 2.0200 2.0300 2.0400 2.0500 2.0600 2.0700 + 2.0800 2.0900 2.1000 2.1100 2.1200 2.1300 2.1400 2.1500 + 2.1600 2.1700 2.1800 2.1900 2.2000 2.2100 2.2200 2.2300 + 2.2400 2.2500 2.2600 2.2700 2.2800 2.2900 2.3000 2.3100 + 2.3200 2.3300 2.3400 2.3500 2.3600 2.3700 2.3800 2.3900 + 2.4000 2.4100 2.4200 2.4300 2.4400 2.4500 2.4600 2.4700 + 2.4800 2.4900 2.5000 2.5100 2.5200 2.5300 2.5400 2.5500 + 2.5600 2.5700 2.5800 2.5900 2.6000 2.6100 2.6200 2.6300 + 2.6400 2.6500 2.6600 2.6700 2.6800 2.6900 2.7000 2.7100 + 2.7200 2.7300 2.7400 2.7500 2.7600 2.7700 2.7800 2.7900 + 2.8000 2.8100 2.8200 2.8300 2.8400 2.8500 2.8600 2.8700 + 2.8800 2.8900 2.9000 2.9100 2.9200 2.9300 2.9400 2.9500 + 2.9600 2.9700 2.9800 2.9900 3.0000 3.0100 3.0200 3.0300 + 3.0400 3.0500 3.0600 3.0700 3.0800 3.0900 3.1000 3.1100 + 3.1200 3.1300 3.1400 3.1500 3.1600 3.1700 3.1800 3.1900 + 3.2000 3.2100 3.2200 3.2300 3.2400 3.2500 3.2600 3.2700 + 3.2800 3.2900 3.3000 3.3100 3.3200 3.3300 3.3400 3.3500 + 3.3600 3.3700 3.3800 3.3900 3.4000 3.4100 3.4200 3.4300 + 3.4400 3.4500 3.4600 3.4700 3.4800 3.4900 3.5000 3.5100 + 3.5200 3.5300 3.5400 3.5500 3.5600 3.5700 3.5800 3.5900 + 3.6000 3.6100 3.6200 3.6300 3.6400 3.6500 3.6600 3.6700 + 3.6800 3.6900 3.7000 3.7100 3.7200 3.7300 3.7400 3.7500 + 3.7600 3.7700 3.7800 3.7900 3.8000 3.8100 3.8200 3.8300 + 3.8400 3.8500 3.8600 3.8700 3.8800 3.8900 3.9000 3.9100 + 3.9200 3.9300 3.9400 3.9500 3.9600 3.9700 3.9800 3.9900 + 4.0000 4.0100 4.0200 4.0300 4.0400 4.0500 4.0600 4.0700 + 4.0800 4.0900 4.1000 4.1100 4.1200 4.1300 4.1400 4.1500 + 4.1600 4.1700 4.1800 4.1900 4.2000 4.2100 4.2200 4.2300 + 4.2400 4.2500 4.2600 4.2700 4.2800 4.2900 4.3000 4.3100 + 4.3200 4.3300 4.3400 4.3500 4.3600 4.3700 4.3800 4.3900 + 4.4000 4.4100 4.4200 4.4300 4.4400 4.4500 4.4600 4.4700 + 4.4800 4.4900 4.5000 4.5100 4.5200 4.5300 4.5400 4.5500 + 4.5600 4.5700 4.5800 4.5900 4.6000 4.6100 4.6200 4.6300 + 4.6400 4.6500 4.6600 4.6700 4.6800 4.6900 4.7000 4.7100 + 4.7200 4.7300 4.7400 4.7500 4.7600 4.7700 4.7800 4.7900 + 4.8000 4.8100 4.8200 4.8300 4.8400 4.8500 4.8600 4.8700 + 4.8800 4.8900 4.9000 4.9100 4.9200 4.9300 4.9400 4.9500 + 4.9600 4.9700 4.9800 4.9900 5.0000 5.0100 5.0200 5.0300 + 5.0400 5.0500 5.0600 5.0700 5.0800 5.0900 5.1000 5.1100 + 5.1200 5.1300 5.1400 5.1500 5.1600 5.1700 5.1800 5.1900 + 5.2000 5.2100 5.2200 5.2300 5.2400 5.2500 5.2600 5.2700 + 5.2800 5.2900 5.3000 5.3100 5.3200 5.3300 5.3400 5.3500 + 5.3600 5.3700 5.3800 5.3900 5.4000 5.4100 5.4200 5.4300 + 5.4400 5.4500 5.4600 5.4700 5.4800 5.4900 5.5000 5.5100 + 5.5200 5.5300 5.5400 5.5500 5.5600 5.5700 5.5800 5.5900 + 5.6000 5.6100 5.6200 5.6300 5.6400 5.6500 5.6600 5.6700 + 5.6800 5.6900 5.7000 5.7100 5.7200 5.7300 5.7400 5.7500 + 5.7600 5.7700 5.7800 5.7900 5.8000 5.8100 5.8200 5.8300 + 5.8400 5.8500 5.8600 5.8700 5.8800 5.8900 5.9000 5.9100 + 5.9200 5.9300 5.9400 5.9500 5.9600 5.9700 5.9800 5.9900 + 6.0000 6.0100 + + + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 + + + + -4.1198024945E+01 -4.1197713854E+01 -4.1197094345E+01 -4.1195780034E+01 + -4.1193384535E+01 -4.1189432138E+01 -4.1183408009E+01 -4.1174806003E+01 + -4.1163167885E+01 -4.1148110509E+01 -4.1129340261E+01 -4.1106656214E+01 + -4.1079944657E+01 -4.1049168039E+01 -4.1014351092E+01 -4.0975566331E+01 + -4.0932920430E+01 -4.0886542329E+01 -4.0836573460E+01 -4.0783160114E+01 + -4.0726447765E+01 -4.0666577068E+01 -4.0603681213E+01 -4.0537884316E+01 + -4.0469300601E+01 -4.0398034110E+01 -4.0324178798E+01 -4.0247818845E+01 + -4.0169029105E+01 -4.0087875604E+01 -4.0004416042E+01 -3.9918700268E+01 + -3.9830770710E+01 -3.9740662742E+01 -3.9648404982E+01 -3.9554019570E+01 + -3.9457522332E+01 -3.9358922959E+01 -3.9258225143E+01 -3.9155426660E+01 + -3.9050519516E+01 -3.8943490078E+01 -3.8834319253E+01 -3.8722982740E+01 + -3.8609451355E+01 -3.8493691466E+01 -3.8375665554E+01 -3.8255332907E+01 + -3.8132650461E+01 -3.8007573771E+01 -3.7880058164E+01 -3.7750059979E+01 + -3.7617537907E+01 -3.7482454490E+01 -3.7344777435E+01 -3.7204481219E+01 + -3.7061548279E+01 -3.6915970358E+01 -3.6767749450E+01 -3.6616898767E+01 + -3.6463443002E+01 -3.6307419102E+01 -3.6148875591E+01 -3.5987872875E+01 + -3.5824482347E+01 -3.5658785404E+01 -3.5490872855E+01 -3.5320843460E+01 + -3.5148802650E+01 -3.4974861221E+01 -3.4799134200E+01 -3.4621739340E+01 + -3.4442796009E+01 -3.4262424107E+01 -3.4080743119E+01 -3.3897871259E+01 + -3.3713924783E+01 -3.3529017459E+01 -3.3343260140E+01 -3.3156760451E+01 + -3.2969622590E+01 -3.2781947191E+01 -3.2593831281E+01 -3.2405368268E+01 + -3.2216647981E+01 -3.2027756730E+01 -3.1838777390E+01 -3.1649789477E+01 + -3.1460869242E+01 -3.1272089742E+01 -3.1083520915E+01 -3.0895229635E+01 + -3.0707279760E+01 -3.0519732161E+01 -3.0332644739E+01 -3.0146072440E+01 + -2.9960067318E+01 -2.9774678349E+01 -2.9589951509E+01 -2.9405929787E+01 + -2.9222653135E+01 -2.9040158448E+01 -2.8858479556E+01 -2.8677647404E+01 + -2.8497689445E+01 -2.8318630238E+01 -2.8140491301E+01 -2.7963291167E+01 + -2.7787045706E+01 -2.7611767375E+01 -2.7437466129E+01 -2.7264149346E+01 + -2.7091822154E+01 -2.6920487073E+01 -2.6750144565E+01 -2.6580793403E+01 + -2.6412430924E+01 -2.6245052788E+01 -2.6078653802E+01 -2.5913228118E+01 + -2.5748769342E+01 -2.5585270978E+01 -2.5422726792E+01 -2.5261130711E+01 + -2.5100477738E+01 -2.4940763775E+01 -2.4781985432E+01 -2.4624141321E+01 + -2.4467231399E+01 -2.4311256554E+01 -2.4156220364E+01 -2.4002127636E+01 + -2.3848984278E+01 -2.3696798963E+01 -2.3545581009E+01 -2.3395341245E+01 + -2.3246092184E+01 -2.3097846677E+01 -2.2950619000E+01 -2.2804423695E+01 + -2.2659275743E+01 -2.2515190239E+01 -2.2372182177E+01 -2.2230266174E+01 + -2.2089456036E+01 -2.1949765386E+01 -2.1811205743E+01 -2.1673788885E+01 + -2.1537523761E+01 -2.1402418992E+01 -2.1268481209E+01 -2.1135715228E+01 + -2.1004125250E+01 -2.0873712293E+01 -2.0744478094E+01 -2.0616420519E+01 + -2.0489538451E+01 -2.0363827854E+01 -2.0239285130E+01 -2.0115905006E+01 + -1.9993682321E+01 -1.9872611164E+01 -1.9752685817E+01 -1.9633900334E+01 + -1.9516249300E+01 -1.9399727286E+01 -1.9284329760E+01 -1.9170052228E+01 + -1.9056891276E+01 -1.8944843558E+01 -1.8833906678E+01 -1.8724078393E+01 + -1.8615356974E+01 -1.8507740953E+01 -1.8401228790E+01 -1.8295819198E+01 + -1.8191510350E+01 -1.8088300342E+01 -1.7986186673E+01 -1.7885165937E+01 + -1.7785234689E+01 -1.7686387178E+01 -1.7588618845E+01 -1.7491920944E+01 + -1.7396287625E+01 -1.7301707232E+01 -1.7208171167E+01 -1.7115666202E+01 + -1.7024180016E+01 -1.6933698630E+01 -1.6844207075E+01 -1.6755690699E+01 + -1.6668133494E+01 -1.6581520252E+01 -1.6495834515E+01 -1.6411060277E+01 + -1.6327181303E+01 -1.6244181223E+01 -1.6162043903E+01 -1.6080753555E+01 + -1.6000293779E+01 -1.5920650013E+01 -1.5841806414E+01 -1.5763748970E+01 + -1.5686463737E+01 -1.5609936505E+01 -1.5534155896E+01 -1.5459108384E+01 + -1.5384783624E+01 -1.5311170755E+01 -1.5238258939E+01 -1.5166038761E+01 + -1.5094499913E+01 -1.5023633018E+01 -1.4953428406E+01 -1.4883876460E+01 + -1.4814968653E+01 -1.4746695742E+01 -1.4679049236E+01 -1.4612020633E+01 + -1.4545601149E+01 -1.4479782936E+01 -1.4414557591E+01 -1.4349917140E+01 + -1.4285854015E+01 -1.4222360102E+01 -1.4159428184E+01 -1.4097050829E+01 + -1.4035220413E+01 -1.3973930176E+01 -1.3913172862E+01 -1.3852941487E+01 + -1.3793229523E+01 -1.3734029961E+01 -1.3675336396E+01 -1.3617142518E+01 + -1.3559441575E+01 -1.3502227673E+01 -1.3445494687E+01 -1.3389236214E+01 + -1.3333446719E+01 -1.3278120271E+01 -1.3223250887E+01 -1.3168833260E+01 + -1.3114861694E+01 -1.3061330582E+01 -1.3008234836E+01 -1.2955568998E+01 + -1.2903327785E+01 -1.2851506332E+01 -1.2800099416E+01 -1.2749102035E+01 + -1.2698509542E+01 -1.2648316953E+01 -1.2598519502E+01 -1.2549112762E+01 + -1.2500091986E+01 -1.2451452605E+01 -1.2403190412E+01 -1.2355300897E+01 + -1.2307779652E+01 -1.2260622686E+01 -1.2213825731E+01 -1.2167384500E+01 + -1.2121295222E+01 -1.2075553869E+01 -1.2030156246E+01 -1.1985098798E+01 + -1.1940377716E+01 -1.1895988935E+01 -1.1851929046E+01 -1.1808194440E+01 + -1.1764781285E+01 -1.1721686186E+01 -1.1678905766E+01 -1.1636436433E+01 + -1.1594274777E+01 -1.1552417647E+01 -1.1510861698E+01 -1.1469603480E+01 + -1.1428640065E+01 -1.1387968308E+01 -1.1347584846E+01 -1.1307486821E+01 + -1.1267671281E+01 -1.1228135104E+01 -1.1188875332E+01 -1.1149889246E+01 + -1.1111173975E+01 -1.1072726442E+01 -1.1034544153E+01 -1.0996624380E+01 + -1.0958964250E+01 -1.0921561151E+01 -1.0884412588E+01 -1.0847515937E+01 + -1.0810868421E+01 -1.0774467770E+01 -1.0738311507E+01 -1.0702397022E+01 + -1.0666721922E+01 -1.0631283951E+01 -1.0596080745E+01 -1.0561109728E+01 + -1.0526368849E+01 -1.0491855861E+01 -1.0457568433E+01 -1.0423504278E+01 + -1.0389661396E+01 -1.0356037638E+01 -1.0322630707E+01 -1.0289438598E+01 + -1.0256459336E+01 -1.0223690873E+01 -1.0191130959E+01 -1.0158777832E+01 + -1.0126629545E+01 -1.0094684101E+01 -1.0062939448E+01 -1.0031393886E+01 + -1.0000045555E+01 -9.9688925067E+00 -9.9379328777E+00 -9.9071650151E+00 + -9.8765871440E+00 -9.8461973761E+00 -9.8159940056E+00 -9.7859754299E+00 + -9.7561399568E+00 -9.7264857634E+00 -9.6970112732E+00 -9.6677149395E+00 + -9.6385951489E+00 -9.6096501497E+00 -9.5808784671E+00 -9.5522786166E+00 + -9.5238490599E+00 -9.4955881213E+00 -9.4674944025E+00 -9.4395664868E+00 + -9.4118029077E+00 -9.3842020703E+00 -9.3567626286E+00 -9.3294832397E+00 + -9.3023625054E+00 -9.2753989161E+00 -9.2485911558E+00 -9.2219379604E+00 + -9.1954379968E+00 -9.1690898457E+00 -9.1428921999E+00 -9.1168438785E+00 + -9.0909436107E+00 -9.0651900722E+00 -9.0395819450E+00 -9.0141181353E+00 + -8.9887974312E+00 -8.9636186086E+00 -8.9385803216E+00 -8.9136815651E+00 + -8.8889211839E+00 -8.8642980229E+00 -8.8398107993E+00 -8.8154584923E+00 + -8.7912400356E+00 -8.7671543275E+00 -8.7432001933E+00 -8.7193765409E+00 + -8.6956824070E+00 -8.6721167417E+00 -8.6486784838E+00 -8.6253664561E+00 + -8.6021797984E+00 -8.5791175095E+00 -8.5561785884E+00 -8.5333619379E+00 + -8.5106666247E+00 -8.4880917513E+00 -8.4656363631E+00 -8.4432994848E+00 + -8.4210800627E+00 -8.3989773124E+00 -8.3769903238E+00 -8.3551181870E+00 + -8.3333599058E+00 -8.3117146210E+00 -8.2901815248E+00 -8.2687597496E+00 + -8.2474484278E+00 -8.2262465550E+00 -8.2051534385E+00 -8.1841682526E+00 + -8.1632901699E+00 -8.1425183164E+00 -8.1218518324E+00 -8.1012900211E+00 + -8.0808320938E+00 -8.0604772619E+00 -8.0402246525E+00 -8.0200735319E+00 + -8.0000231999E+00 -7.9800729047E+00 -7.9602218942E+00 -7.9404693053E+00 + -7.9208145073E+00 -7.9012568029E+00 -7.8817954753E+00 -7.8624298038E+00 + -7.8431589537E+00 -7.8239823637E+00 -7.8048993502E+00 -7.7859092299E+00 + -7.7670113008E+00 -7.7482047960E+00 -7.7294891700E+00 -7.7108637712E+00 + -7.6923279480E+00 -7.6738810234E+00 -7.6555222799E+00 -7.6372511932E+00 + -7.6190671421E+00 -7.6009695054E+00 -7.5829576373E+00 -7.5650308514E+00 + -7.5471886505E+00 -7.5294304422E+00 -7.5117556343E+00 -7.4941636178E+00 + -7.4766537211E+00 -7.4592254788E+00 -7.4418783263E+00 -7.4246116990E+00 + -7.4074250300E+00 -7.3903176468E+00 -7.3732891209E+00 -7.3563389140E+00 + -7.3394664877E+00 -7.3226713036E+00 -7.3059527309E+00 -7.2893103252E+00 + -7.2727435922E+00 -7.2562520185E+00 -7.2398350910E+00 -7.2234922317E+00 + -7.2072229600E+00 -7.1910268321E+00 -7.1749033585E+00 -7.1588520499E+00 + -7.1428723868E+00 -7.1269638393E+00 -7.1111260173E+00 -7.0953584543E+00 + -7.0796606838E+00 -7.0640322392E+00 -7.0484725605E+00 -7.0329812839E+00 + -7.0175579745E+00 -7.0022021875E+00 -6.9869134779E+00 -6.9716913529E+00 + -6.9565353708E+00 -6.9414451618E+00 -6.9264203017E+00 -6.9114603664E+00 + -6.8965649319E+00 -6.8817334794E+00 -6.8669656946E+00 -6.8522611768E+00 + -6.8376195215E+00 -6.8230403245E+00 -6.8085231422E+00 -6.7940675580E+00 + -6.7796732450E+00 -6.7653398175E+00 -6.7510668902E+00 -6.7368540775E+00 + -6.7227009217E+00 -6.7086071000E+00 -6.6945722678E+00 -6.6805960573E+00 + -6.6666781012E+00 -6.6528180262E+00 -6.6390153852E+00 -6.6252699138E+00 + -6.6115812613E+00 -6.5979490775E+00 -6.5843730118E+00 -6.5708526875E+00 + -6.5573877207E+00 -6.5439778415E+00 -6.5306227158E+00 -6.5173220096E+00 + -6.5040753887E+00 -6.4908824791E+00 -6.4777429443E+00 -6.4646565149E+00 + -6.4516228721E+00 -6.4386416975E+00 -6.4257126726E+00 -6.4128354322E+00 + -6.4000096719E+00 -6.3872351281E+00 -6.3745114973E+00 -6.3618384756E+00 + -6.3492157595E+00 -6.3366429981E+00 -6.3241199047E+00 -6.3116462274E+00 + -6.2992216768E+00 -6.2868459632E+00 -6.2745187971E+00 -6.2622398474E+00 + -6.2500088315E+00 -6.2378255145E+00 -6.2256896203E+00 -6.2136008729E+00 + -6.2015589962E+00 -6.1895636836E+00 -6.1776146441E+00 -6.1657116646E+00 + -6.1538544818E+00 -6.1420428327E+00 -6.1302764541E+00 -6.1185550686E+00 + -6.1068783649E+00 -6.0952461563E+00 -6.0836581917E+00 -6.0721142204E+00 + -6.0606139912E+00 -6.0491572535E+00 -6.0377436873E+00 -6.0263731134E+00 + -6.0150453000E+00 -6.0037600079E+00 -5.9925169979E+00 -5.9813160307E+00 + -5.9701568253E+00 -5.9590391567E+00 -5.9479628302E+00 -5.9369276178E+00 + -5.9259332915E+00 -5.9149796230E+00 -5.9040663749E+00 -5.8931932664E+00 + -5.8823601433E+00 -5.8715667881E+00 -5.8608129835E+00 -5.8500985118E+00 + -5.8394231557E+00 -5.8287866528E+00 -5.8181888097E+00 -5.8076294461E+00 + -5.7971083545E+00 -5.7866253276E+00 -5.7761801582E+00 -5.7657726356E+00 + -5.7554024902E+00 -5.7450695901E+00 -5.7347737376E+00 -5.7245147351E+00 + -5.7142923849E+00 -5.7041064893E+00 -5.6939568241E+00 -5.6838431796E+00 + -5.6737654093E+00 -5.6637233247E+00 -5.6537167374E+00 -5.6437454588E+00 + -5.6338093006E+00 -5.6239080310E+00 -5.6140414867E+00 -5.6042095115E+00 + -5.5944119259E+00 -5.5846485501E+00 -5.5749192045E+00 -5.5652237093E+00 + -5.5555618314E+00 -5.5459334399E+00 -5.5363383750E+00 -5.5267764652E+00 + -5.5172475395E+00 -5.5077514263E+00 -5.4982879544E+00 -5.4888568942E+00 + -5.4794581351E+00 -5.4700915185E+00 -5.4607568811E+00 -5.4514540597E+00 + -5.4421828908E+00 -5.4329432112E+00 -5.4237347996E+00 -5.4145575539E+00 + -5.4054113220E+00 -5.3962959482E+00 -5.3872112769E+00 -5.3781571523E+00 + -5.3691334186E+00 -5.3601398678E+00 -5.3511763947E+00 -5.3422428589E+00 + -5.3333391119E+00 -5.3244650053E+00 + + + + 0.0000000000E+00 4.7602896530E-02 9.5144980836E-02 1.4256518351E-01 + 1.8980192433E-01 2.3679286571E-01 2.8347467666E-01 3.2978281074E-01 + 3.7565130112E-01 4.2101257602E-01 4.6579729734E-01 5.0993422537E-01 + 5.5335011208E-01 5.9596962520E-01 6.3771530537E-01 6.7850755785E-01 + 7.1826468053E-01 7.5690292918E-01 7.9433662101E-01 8.3047827693E-01 + 8.6523880264E-01 8.9852770872E-01 9.3025336876E-01 9.6032331512E-01 + 9.8864457056E-01 1.0151240157E+00 1.0396687875E+00 1.0621867111E+00 + 1.0825867575E+00 1.1007795281E+00 1.1166777622E+00 1.1301968633E+00 + 1.1412554389E+00 1.1497758583E+00 1.1556848155E+00 1.1589138878E+00 + 1.1594001165E+00 1.1570865604E+00 1.1519228429E+00 1.1438657158E+00 + 1.1328795647E+00 1.1189369176E+00 1.1020189221E+00 1.0821157933E+00 + 1.0592272273E+00 1.0333627768E+00 1.0045421850E+00 9.7279567433E-01 + 9.3816417393E-01 9.0069954329E-01 8.6046468333E-01 8.1753360568E-01 + 7.7199146513E-01 7.2393454876E-01 6.7347010793E-01 6.2071627086E-01 + 5.6580175701E-01 5.0886562488E-01 4.5005689937E-01 3.8953417110E-01 + 3.2746511842E-01 2.6402595692E-01 1.9940089514E-01 1.3378142358E-01 + 6.7365642838E-02 3.5759057511E-04 -6.7033697030E-02 -1.3459494351E-01 + -2.0210947881E-01 -2.6935806497E-01 -3.3612014055E-01 -4.0217448785E-01 + -4.6730029143E-01 -5.3127812891E-01 -5.9389088459E-01 -6.5492496418E-01 + -7.1417117114E-01 -7.7142564139E-01 -8.2649085408E-01 -8.7917658161E-01 + -9.2930081274E-01 -9.7669064335E-01 -1.0211831294E+00 -1.0626260966E+00 + -1.1008789026E+00 -1.1358131463E+00 -1.1673133192E+00 -1.1952773971E+00 + -1.2196173646E+00 -1.2402596727E+00 -1.2571456229E+00 -1.2702316776E+00 + -1.2794896932E+00 -1.2849070741E+00 -1.2864868465E+00 -1.2842476514E+00 + -1.2782234494E+00 -1.2684639161E+00 -1.2550338296E+00 -1.2380126704E+00 + -1.2174943012E+00 -1.1935864856E+00 -1.1664103302E+00 -1.1360995135E+00 + -1.1028002892E+00 -1.0666699092E+00 -1.0278760994E+00 -9.8659621348E-01 + -9.4301653794E-01 -8.9733102865E-01 -8.4974033357E-01 -8.0045086372E-01 + -7.4967428740E-01 -6.9762549368E-01 -6.4452160171E-01 -5.9058144937E-01 + -5.3602561852E-01 -4.8107213017E-01 -4.2593742285E-01 -3.7083619246E-01 + -3.1598005261E-01 -2.6157271655E-01 -2.0781371990E-01 -1.5489932179E-01 + -1.0301195589E-01 -5.2328302395E-02 -3.0198644044E-03 4.4758319091E-02 + 9.0859573849E-02 1.3514302311E-01 1.7748785745E-01 2.1778150096E-01 + 2.5591890107E-01 2.9181747838E-01 3.2540034731E-01 3.5660383749E-01 + 3.8538312188E-01 4.1169796824E-01 4.3552813082E-01 4.5686413876E-01 + 4.7570426948E-01 4.9206792934E-01 5.0597743160E-01 5.1747231644E-01 + 5.2660111102E-01 5.3342012312E-01 5.3800069260E-01 5.4041656814E-01 + 5.4075579459E-01 5.3910960965E-01 5.3557823136E-01 5.3026687499E-01 + 5.2328618240E-01 5.1475061696E-01 5.0477935001E-01 4.9349182265E-01 + 4.8101239292E-01 4.6746274723E-01 4.5296827437E-01 4.3765060943E-01 + 4.2163228057E-01 4.0503244908E-01 3.8796743332E-01 3.7055147742E-01 + 3.5289196826E-01 3.3509582843E-01 3.1725947886E-01 2.9948024097E-01 + 2.8184223944E-01 2.6443113835E-01 2.4731812038E-01 2.3057546604E-01 + 2.1426139833E-01 1.9843353370E-01 1.8313764767E-01 1.6841598695E-01 + 1.5430277848E-01 1.4082491136E-01 1.2800616486E-01 1.1585894871E-01 + 1.0439768871E-01 9.3622187636E-02 8.3538409577E-02 7.4136514451E-02 + 6.5414466563E-02 5.7357150922E-02 4.9953966914E-02 4.3188638025E-02 + 3.7046328853E-02 3.1507186133E-02 2.6549296262E-02 2.2149628858E-02 + 1.8276072395E-02 1.4900417876E-02 1.1986691000E-02 9.5001578206E-03 + 7.4050659941E-03 5.6638551910E-03 4.2397064600E-03 3.0978204294E-03 + 2.1985620795E-03 1.5125625178E-03 1.0026287457E-03 6.4031225139E-04 + 3.9714408038E-04 2.4257933471E-04 1.5858999907E-04 1.1959232528E-04 + 1.0634360952E-04 8.8289313884E-05 4.4859014994E-05 5.5880193442E-06 + -6.5158641634E-06 -4.5773168883E-06 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 + + + 0.0000000000E+00 -3.2558291001E-02 -6.5087387385E-02 -9.7558176489E-02 + -1.2994170905E-01 -1.6220927959E-01 -1.9433250530E-01 -2.2628340282E-01 + -2.5803446256E-01 -2.8955871995E-01 -3.2082982338E-01 -3.5182209815E-01 + -3.8251060625E-01 -4.1287120157E-01 -4.4288058011E-01 -4.7251632500E-01 + -5.0175694609E-01 -5.3058191379E-01 -5.5897168707E-01 -5.8690773555E-01 + -6.1437255535E-01 -6.4134967907E-01 -6.6782367940E-01 -6.9378016685E-01 + -7.1920578145E-01 -7.4408817860E-01 -7.6841600929E-01 -7.9217889488E-01 + -8.1536739669E-01 -8.3797298073E-01 -8.5998797790E-01 -8.8140553993E-01 + -9.0221959181E-01 -9.2242478048E-01 -9.4201642075E-01 -9.6099043956E-01 + -9.7934331653E-01 -9.9707202503E-01 -1.0141739722E+00 -1.0306469359E+00 + -1.0464890057E+00 -1.0616985223E+00 -1.0762740185E+00 -1.0902141622E+00 + -1.1035177012E+00 -1.1161834117E+00 -1.1282100485E+00 -1.1395963005E+00 + -1.1503407510E+00 -1.1604418367E+00 -1.1698978190E+00 -1.1787067583E+00 + -1.1868664920E+00 -1.1943746142E+00 -1.2012284761E+00 -1.2074251710E+00 + -1.2129615465E+00 -1.2178342065E+00 -1.2220395310E+00 -1.2255736927E+00 + -1.2284326902E+00 -1.2306123740E+00 -1.2321084927E+00 -1.2329167325E+00 + -1.2330327704E+00 -1.2324523254E+00 -1.2311712225E+00 -1.2291854550E+00 + -1.2264912498E+00 -1.2230851330E+00 -1.2189640215E+00 -1.2141252819E+00 + -1.2085668130E+00 -1.2022871235E+00 -1.1952854056E+00 -1.1875616285E+00 + -1.1791166086E+00 -1.1699520823E+00 -1.1600707838E+00 -1.1494765167E+00 + -1.1381742235E+00 -1.1261700497E+00 -1.1134714051E+00 -1.1000870188E+00 + -1.0860269894E+00 -1.0713028287E+00 -1.0559274994E+00 -1.0399154455E+00 + -1.0232826151E+00 -1.0060464761E+00 -9.8822602358E-01 -9.6984177891E-01 + -9.5091578027E-01 -9.3147156481E-01 -9.1153414194E-01 -8.9112995796E-01 + -8.7028684443E-01 -8.4903399076E-01 -8.2740186299E-01 -8.0542213297E-01 + -7.8312760466E-01 -7.6055212916E-01 -7.3773051349E-01 -7.1469844495E-01 + -6.9149233363E-01 -6.6814923208E-01 -6.4470671349E-01 -6.2120275291E-01 + -5.9767568821E-01 -5.7416386240E-01 -5.5070567289E-01 -5.2733940190E-01 + -5.0410319546E-01 -4.8103467230E-01 -4.5817087227E-01 -4.3554823315E-01 + -4.1320263369E-01 -3.9116866256E-01 -3.6947991048E-01 -3.4816897156E-01 + -3.2726724362E-01 -3.0680422774E-01 -2.8680818131E-01 -2.6730624758E-01 + -2.4832291837E-01 -2.2988130772E-01 -2.1200321587E-01 -1.9470755993E-01 + -1.7801158538E-01 -1.6193119963E-01 -1.4647907038E-01 -1.3166628198E-01 + -1.1750239789E-01 -1.0399357223E-01 -9.1144751462E-02 -7.8958697513E-02 + -6.7435369984E-02 -5.6573669271E-02 -4.6369606456E-02 -3.6817473396E-02 + -2.7910140769E-02 -1.9637660867E-02 -1.1989267052E-02 -4.9518702346E-03 + 1.4889796904E-03 7.3490617730E-03 1.2645944206E-02 1.7398005337E-02 + 2.1625177048E-02 2.5348151947E-02 2.8588712929E-02 3.1369244063E-02 + 3.3713083921E-02 3.5643597962E-02 3.7185353290E-02 3.8362133137E-02 + 3.9199024180E-02 3.9720013534E-02 3.9949996800E-02 3.9912840072E-02 + 3.9632674421E-02 3.9132867968E-02 3.8436313276E-02 3.7565499418E-02 + 3.6541703584E-02 3.5386160953E-02 3.4118258760E-02 3.2757622644E-02 + 3.1321577729E-02 2.9827817644E-02 2.8291531505E-02 2.6728206144E-02 + 2.5150910249E-02 2.3572712295E-02 2.2004651319E-02 2.0457246497E-02 + 1.8939652675E-02 1.7459809059E-02 1.6025159923E-02 1.4641155023E-02 + 1.3313699535E-02 1.2045984444E-02 1.0842515862E-02 9.7046161346E-03 + 8.6354557492E-03 7.6351738175E-03 6.7052613437E-03 5.8455144269E-03 + 5.0561975710E-03 4.3365189890E-03 3.6852390090E-03 3.1010421780E-03 + 2.5808868491E-03 2.1226892535E-03 1.7225305230E-03 1.3771346482E-03 + 1.0825271073E-03 8.3458856726E-04 6.2918807252E-04 4.6209459072E-04 + 3.2878378214E-04 2.2539062451E-04 1.4740010064E-04 9.1040015697E-05 + 5.2493212163E-05 2.7735622219E-05 1.3933512036E-05 7.1159246568E-06 + 4.9830032823E-06 4.1076820558E-06 1.8623005033E-06 2.1170171855E-07 + -3.1694617018E-07 -2.2265090570E-07 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 + + + 0.0000000000E+00 1.1241751088E-03 4.4932884715E-03 1.0097114745E-02 + 1.7918646817E-02 2.7934148395E-02 4.0113227406E-02 5.4418930010E-02 + 7.0807854934E-02 8.9230287809E-02 1.0963035510E-01 1.3194619720E-01 + 1.5611016012E-01 1.8204900532E-01 2.0968413688E-01 2.3893184556E-01 + 2.6970356879E-01 3.0190616597E-01 3.3544220818E-01 3.7021028145E-01 + 4.0610530254E-01 4.4301884656E-01 4.8083948504E-01 5.1945313365E-01 + 5.5874340836E-01 5.9859198922E-01 6.3887898987E-01 6.7948333269E-01 + 7.2028312727E-01 7.6115605182E-01 8.0197973582E-01 8.4263214287E-01 + 8.8299195219E-01 9.2293893808E-01 9.6235434556E-01 1.0011212604E+00 + 1.0391249746E+00 1.0762533422E+00 1.1123971282E+00 1.1474503471E+00 + 1.1813105898E+00 1.2138793388E+00 1.2450622700E+00 1.2747695401E+00 + 1.3029160582E+00 1.3294217412E+00 1.3542117520E+00 1.3772167190E+00 + 1.3983729388E+00 1.4176225530E+00 1.4349137099E+00 1.4502007074E+00 + 1.4634441100E+00 1.4746108324E+00 1.4836742377E+00 1.4906141573E+00 + 1.4954169452E+00 1.4980754633E+00 1.4985890778E+00 1.4969635964E+00 + 1.4932112457E+00 1.4873505113E+00 1.4794061279E+00 1.4694088506E+00 + 1.4573953486E+00 1.4434080774E+00 1.4274949851E+00 1.4097093593E+00 + 1.3901096084E+00 1.3687590448E+00 1.3457254796E+00 1.3210810827E+00 + 1.2949020486E+00 1.2672682901E+00 1.2382631511E+00 1.2079730008E+00 + 1.1764869442E+00 1.1438964952E+00 1.1102952128E+00 1.0757783473E+00 + 1.0404424836E+00 1.0043851826E+00 9.6770462374E-01 9.3049924820E-01 + 8.9286740566E-01 8.5490700542E-01 8.1671517354E-01 7.7838791735E-01 + 7.4001979872E-01 7.0170361750E-01 6.6353010632E-01 6.2558763813E-01 + 5.8796194764E-01 5.5073586762E-01 5.1398908132E-01 4.7779789176E-01 + 4.4223506700E-01 4.0736948848E-01 3.7326607548E-01 3.3998564963E-01 + 3.0758477512E-01 2.7611564357E-01 2.4562598111E-01 2.1615903233E-01 + 1.8775327045E-01 1.6044263061E-01 1.3425640975E-01 1.0921927205E-01 + 8.5351261714E-02 6.2667815333E-02 4.1179927481E-02 2.0894187797E-02 + 1.8127832499E-03 -1.6066232533E-02 -3.2748782170E-02 -4.8244726862E-02 + -6.2567949891E-02 -7.5735524241E-02 -8.7767915464E-02 -9.8688994920E-02 + -1.0852578996E-01 -1.1730738309E-01 -1.2506573728E-01 -1.3183595432E-01 + -1.3765372066E-01 -1.4255716717E-01 -1.4658705111E-01 -1.4978383839E-01 + -1.5218962870E-01 -1.5384885946E-01 -1.5480436378E-01 -1.5510038864E-01 + -1.5478285027E-01 -1.5389482488E-01 -1.5248124977E-01 -1.5058670333E-01 + -1.4825327751E-01 -1.4552505384E-01 -1.4244288254E-01 -1.3904705009E-01 + -1.3537852933E-01 -1.3147341461E-01 -1.2736984129E-01 -1.2310202576E-01 + -1.1870303993E-01 -1.1420576714E-01 -1.0963808418E-01 -1.0503002584E-01 + -1.0040579943E-01 -9.5790524555E-02 -9.1206087283E-02 -8.6672282777E-02 + -8.2208443603E-02 -7.7829385122E-02 -7.3551623829E-02 -6.9385786271E-02 + -6.5344507414E-02 -6.1435588037E-02 -5.7667602299E-02 -5.4045786854E-02 + -5.0575098861E-02 -4.7258330257E-02 -4.4097373459E-02 -4.1092745830E-02 + -3.8243835807E-02 -3.5549116994E-02 -3.3006011845E-02 -3.0611241092E-02 + -2.8360754571E-02 -2.6249863559E-02 -2.4273479089E-02 -2.2425887124E-02 + -2.0701324767E-02 -1.9093462914E-02 -1.7596156524E-02 -1.6202880576E-02 + -1.4907328436E-02 -1.3703186886E-02 -1.2584145854E-02 -1.1544476132E-02 + -1.0577976418E-02 -9.6798106098E-03 -8.8439755812E-03 -8.0667365453E-03 + -7.3424077759E-03 -6.6682215784E-03 -6.0395678630E-03 -5.4539835874E-03 + -4.9083143489E-03 -4.4002278832E-03 -3.9277759989E-03 -3.4887680035E-03 + -3.0820447894E-03 -2.7055747995E-03 -2.3586567131E-03 -2.0398189701E-03 + -1.7482655834E-03 -1.4830935989E-03 -1.2433961666E-03 -1.0285194949E-03 + -8.3757712942E-04 -6.6981151016E-04 -5.2439741006E-04 -4.0033267679E-04 + -2.9657321621E-04 -2.1202472617E-04 -1.4515560214E-04 -9.4698078159E-05 + -5.8735952725E-05 -3.5928967017E-05 -2.4255376817E-05 -1.8562147618E-05 + -1.0808505065E-05 -3.7060149746E-06 6.0094223441E-07 1.1853067662E-06 + 3.3423003219E-07 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 + + + 0.0000000000E+00 9.1218998701E-04 3.6442865603E-03 8.1828860365E-03 + 1.4505703833E-02 2.2581656652E-02 3.2370977230E-02 4.3825361354E-02 + 5.6888146750E-02 7.1494523360E-02 8.7571774444E-02 1.0503954785E-01 + 1.2381015670E-01 1.4378890866E-01 1.6487446287E-01 1.8695921352E-01 + 2.0992969897E-01 2.3366703517E-01 2.5804737222E-01 2.8294237257E-01 + 3.0821970934E-01 3.3374358360E-01 3.5937525837E-01 3.8497360814E-01 + 4.1039568181E-01 4.3549727752E-01 4.6013352668E-01 4.8415948645E-01 + 5.0743073698E-01 5.2980398271E-01 5.5113765464E-01 5.7129251173E-01 + 5.9013223866E-01 6.0752403859E-01 6.2333921753E-01 6.3745375775E-01 + 6.4974888003E-01 6.6011158902E-01 6.6843520193E-01 6.7461985769E-01 + 6.7857300291E-01 6.8020985408E-01 6.7945383283E-01 6.7623697225E-01 + 6.7050029214E-01 6.6219414126E-01 6.5127850462E-01 6.3772327408E-01 + 6.2150848504E-01 6.0262449937E-01 5.8107216087E-01 5.5686290986E-01 + 5.3001884764E-01 5.0057273203E-01 4.6856800443E-01 4.3405865684E-01 + 3.9710917025E-01 3.5779431419E-01 3.1619896706E-01 2.7241782147E-01 + 2.2655516773E-01 1.7872440439E-01 1.2904785210E-01 7.7656126861E-02 + 2.4687764370E-02 -2.9711197827E-02 -8.5387969401E-02 -1.4218346725E-01 + -1.9993290672E-01 -2.5846638409E-01 -3.1760982654E-01 -3.7718541204E-01 + -4.3701236652E-01 -4.9690769965E-01 -5.5668689758E-01 -6.1616483456E-01 + -6.7515645131E-01 -7.3347749602E-01 -7.9094532633E-01 -8.4737968005E-01 + -9.0260343902E-01 -9.5644338198E-01 -1.0087309231E+00 -1.0593028323E+00 + -1.1080019336E+00 -1.1546777783E+00 -1.1991872891E+00 -1.2413953722E+00 + -1.2811754939E+00 -1.3184102186E+00 -1.3529917053E+00 -1.3848221596E+00 + -1.4138142401E+00 -1.4398914142E+00 -1.4629882648E+00 -1.4830507435E+00 + -1.5000363180E+00 -1.5139142843E+00 -1.5246657250E+00 -1.5322835315E+00 + -1.5367724042E+00 -1.5381487728E+00 -1.5364406649E+00 -1.5316876240E+00 + -1.5239402400E+00 -1.5132599613E+00 -1.4997187354E+00 -1.4833986245E+00 + -1.4643918022E+00 -1.4427988976E+00 -1.4187293742E+00 -1.3923007806E+00 + -1.3636387424E+00 -1.3328749842E+00 -1.3001470897E+00 -1.2655983935E+00 + -1.2293782095E+00 -1.1916378919E+00 -1.1525323127E+00 -1.1122197837E+00 + -1.0708608694E+00 -1.0286144169E+00 -9.8564092099E-01 -9.4210308893E-01 + -8.9815709918E-01 -8.5395937124E-01 -8.0966674049E-01 -7.6542728501E-01 + -7.2138680372E-01 -6.7769052268E-01 -6.3447168324E-01 -5.9186071844E-01 + -5.4998544715E-01 -5.0895922674E-01 -4.6889377081E-01 -4.2989295900E-01 + -3.9204822281E-01 -3.5544931008E-01 -3.2017197616E-01 -2.8628485824E-01 + -2.5385156687E-01 -2.2291976457E-01 -1.9353530181E-01 -1.6573048344E-01 + -1.3953026645E-01 -1.1495310865E-01 -9.2004386103E-02 -7.0686921466E-02 + -5.0990253440E-02 -3.2900080711E-02 -1.6392859435E-02 -1.4386892782E-03 + 1.1998561212E-02 2.3961672926E-02 3.4498667784E-02 4.3662492821E-02 + 5.1511535721E-02 5.8106878111E-02 6.3514744627E-02 6.7802844007E-02 + 7.1042503019E-02 7.3306369877E-02 7.4668293818E-02 7.5203996161E-02 + 7.4987523442E-02 7.4095659324E-02 7.2600642510E-02 7.0578220308E-02 + 6.8097178389E-02 6.5230109620E-02 6.2041080316E-02 5.8597467312E-02 + 5.4957727890E-02 5.1182101233E-02 4.7322895072E-02 4.3431523680E-02 + 3.9553895963E-02 3.5731256826E-02 3.2003067467E-02 2.8399523011E-02 + 2.4953669243E-02 2.1684359362E-02 1.8618205159E-02 1.5763174934E-02 + 1.3139094885E-02 1.0745488061E-02 8.5915196556E-03 6.6731118770E-03 + 4.9882339105E-03 3.5299369003E-03 2.2879288354E-03 1.2521135808E-03 + 4.0768818803E-04 -2.5898769605E-04 -7.6447768600E-04 -1.1260318335E-03 + -1.3604196543E-03 -1.4860166056E-03 -1.5207294884E-03 -1.4805308344E-03 + -1.3855570020E-03 -1.2478037023E-03 -1.0854823013E-03 -9.1011632299E-04 + -7.3323159829E-04 -5.6797944475E-04 -4.1767308238E-04 -2.9380273191E-04 + -1.9604428175E-04 -1.2885905893E-04 -9.3730377798E-05 -7.2751111034E-05 + -4.3320219925E-05 -1.5270832369E-05 2.3446447692E-06 4.6246097381E-06 + 1.3040366474E-06 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 + + + 0.0000000000E+00 2.3053906208E-05 1.8427463057E-04 6.2104668165E-04 + 1.4691936135E-03 2.8622066959E-03 4.9304845237E-03 7.8005871471E-03 + 1.1594508250E-02 1.6428968837E-02 2.2414735802E-02 2.9655968669E-02 + 3.8249597665E-02 4.8284736189E-02 5.9842130587E-02 7.2993650004E-02 + 8.7801818919E-02 1.0431939480E-01 1.2258899315E-01 1.4264276196E-01 + 1.6450210745E-01 1.8817747275E-01 2.1366817088E-01 2.4096227320E-01 + 2.7003655432E-01 3.0085649409E-01 3.3337633701E-01 3.6753920948E-01 + 4.0327729429E-01 4.4051206248E-01 4.7915456149E-01 5.1910575890E-01 + 5.6025694026E-01 6.0249015986E-01 6.4567874240E-01 6.8968783308E-01 + 7.3437499515E-01 7.7959085045E-01 8.2517976149E-01 8.7098055172E-01 + 9.1682726000E-01 9.6254992651E-01 1.0079754060E+00 1.0529282045E+00 + 1.0972313353E+00 1.1407071899E+00 1.1831784197E+00 1.2244688244E+00 + 1.2644042438E+00 1.3028134383E+00 1.3395289708E+00 1.3743880764E+00 + 1.4072335125E+00 1.4379143668E+00 1.4662868967E+00 1.4922152528E+00 + 1.5155722542E+00 1.5362400551E+00 1.5541108184E+00 1.5690872874E+00 + 1.5810834052E+00 1.5900246939E+00 1.5958488607E+00 1.5985060138E+00 + 1.5979590564E+00 1.5941840191E+00 1.5871700685E+00 1.5769197263E+00 + 1.5634489379E+00 1.5467871080E+00 1.5269767489E+00 1.5040735698E+00 + 1.4781461703E+00 1.4492757395E+00 1.4175557431E+00 1.3830913434E+00 + 1.3459989882E+00 1.3064058874E+00 1.2644493706E+00 1.2202762188E+00 + 1.1740419449E+00 1.1259100287E+00 1.0760511097E+00 1.0246421420E+00 + 9.7186551692E-01 9.1790815838E-01 8.6296059517E-01 8.0721601682E-01 + 7.5086931794E-01 6.9411613676E-01 6.3715189375E-01 5.8017083591E-01 + 5.2336509242E-01 4.6692374742E-01 4.1103193506E-01 3.5586996224E-01 + 3.0161255145E-01 2.4842777968E-01 1.9647649235E-01 1.4591161100E-01 + 9.6877428632E-02 4.9508997404E-02 3.9315718069E-03 -3.9739925320E-02 + -8.1401351077E-02 -1.2095957448E-01 -1.5833283934E-01 -1.9345100734E-01 + -2.2625609877E-01 -2.5670145075E-01 -2.8475240266E-01 -3.1038614322E-01 + -3.3359218873E-01 -3.5437094283E-01 -3.7273378365E-01 -3.8870334863E-01 + -4.0231420407E-01 -4.1360908264E-01 -4.2264065210E-01 -4.2947177257E-01 + -4.3417452560E-01 -4.3682599057E-01 -4.3751213667E-01 -4.3632877772E-01 + -4.3337166121E-01 -4.2874427080E-01 -4.2255829461E-01 -4.1492278729E-01 + -4.0595177855E-01 -3.9576652858E-01 -3.8448150136E-01 -3.7221545548E-01 + -3.5909186075E-01 -3.4522369321E-01 -3.3072954061E-01 -3.1572570808E-01 + -3.0031973283E-01 -2.8462456010E-01 -2.6874183605E-01 -2.5277071640E-01 + -2.3681094367E-01 -2.2094674377E-01 -2.0526694060E-01 -1.8984757305E-01 + -1.7476032667E-01 -1.6007423737E-01 -1.4584387026E-01 -1.3212705279E-01 + -1.1896541200E-01 -1.0640078325E-01 -9.4465090673E-02 -8.3183986695E-02 + -7.2579045773E-02 -6.2661531620E-02 -5.3442170116E-02 -4.4920315287E-02 + -3.7094829921E-02 -2.9956031125E-02 -2.3491942210E-02 -1.7684820679E-02 + -1.2513965506E-02 -7.9545363271E-03 -3.9793163121E-03 -5.5758567396E-04 + 2.3423008557E-03 4.7554859827E-03 6.7161677939E-03 8.2622697804E-03 + 9.4289364518E-03 1.0255117343E-02 1.0775597334E-02 1.1028569938E-02 + 1.1047461637E-02 1.0867994544E-02 1.0521526659E-02 1.0039762273E-02 + 9.4515230147E-03 8.7832277910E-03 8.0608622742E-03 7.3046842649E-03 + 6.5376178877E-03 5.7733800271E-03 5.0315835201E-03 4.3196312699E-03 + 3.6533647873E-03 3.0354822118E-03 2.4753663942E-03 1.9741331180E-03 + 1.5344694654E-03 1.1560935631E-03 8.3672086048E-04 5.7436567484E-04 + 3.6405597575E-04 2.0167969579E-04 8.1531319172E-05 -2.5667244606E-06 + -5.6134438538E-05 -8.5624975592E-05 -9.7047300042E-05 -9.4890299436E-05 + -8.6199540615E-05 -7.2749186712E-05 -5.9882116096E-05 -4.8958976495E-05 + -4.1453737891E-05 -3.9514991645E-05 -3.6948748867E-05 -2.4642282823E-05 + -9.1476433427E-06 1.3799876429E-06 2.3833898216E-06 4.5235861649E-07 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 + + + 0.0000000000E+00 1.1564204465E-05 9.2400104303E-05 3.1121235240E-04 + 7.3557438335E-04 1.4313699636E-03 2.4622433129E-03 3.8890606191E-03 + 5.7693857415E-03 8.1569728567E-03 1.1101278759E-02 1.4646997472E-02 + 1.8833619764E-02 2.3695020088E-02 2.9259073387E-02 3.5547304111E-02 + 4.2574569693E-02 5.0348780605E-02 5.8870659008E-02 6.8133537875E-02 + 7.8123202259E-02 8.8817774357E-02 1.0018764363E-01 1.1219544332E-01 + 1.2479607418E-01 1.3793677650E-01 1.5155725057E-01 1.6558982649E-01 + 1.7995968275E-01 1.9458511399E-01 2.0937784729E-01 2.2424340620E-01 + 2.3908152161E-01 2.5378658847E-01 2.6824816649E-01 2.8235152263E-01 + 2.9597821475E-01 3.0900671192E-01 3.2131305023E-01 3.3277152102E-01 + 3.4325538721E-01 3.5263762543E-01 3.6079168964E-01 3.6759229224E-01 + 3.7291619856E-01 3.7664303032E-01 3.7865607329E-01 3.7884308471E-01 + 3.7709709822E-01 3.7331720987E-01 3.6740935721E-01 3.5928707952E-01 + 3.4887224866E-01 3.3609575105E-01 3.2089818920E-01 3.0323046003E-01 + 2.8305437353E-01 2.6034315249E-01 2.3508192849E-01 2.0726812423E-01 + 1.7691187352E-01 1.4403618586E-01 1.0867733126E-01 7.0884816080E-02 + 3.0721529743E-02 -1.1736180558E-02 -5.6398780363E-02 -1.0316360945E-01 + -1.5191510857E-01 -2.0252508769E-01 -2.5485340411E-01 -3.0874818995E-01 + -3.6404649489E-01 -4.2057492996E-01 -4.7815032546E-01 -5.3658067014E-01 + -5.9566587447E-01 -6.5519865209E-01 -7.1496552144E-01 -7.7474783161E-01 + -8.3432283516E-01 -8.9346480184E-01 -9.5194616698E-01 -1.0095387077E+00 + -1.0660147399E+00 -1.1211483295E+00 -1.1747165090E+00 -1.2265004933E+00 + -1.2762868858E+00 -1.3238688677E+00 -1.3690473622E+00 -1.4116321658E+00 + -1.4514430396E+00 -1.4883107526E+00 -1.5220780697E+00 -1.5526006792E+00 + -1.5797480204E+00 -1.6034041996E+00 -1.6234685676E+00 -1.6398563412E+00 + -1.6524991502E+00 -1.6613454732E+00 -1.6663609864E+00 -1.6675290826E+00 + -1.6648502975E+00 -1.6583428633E+00 -1.6480425149E+00 -1.6340023362E+00 + -1.6162933381E+00 -1.5950017316E+00 -1.5702303562E+00 -1.5420976938E+00 + -1.5107382753E+00 -1.4762994156E+00 -1.4389412449E+00 -1.3988368206E+00 + -1.3561727437E+00 -1.3111423875E+00 -1.2639488001E+00 -1.2148046466E+00 + -1.1639301587E+00 -1.1115464187E+00 -1.0578812042E+00 -1.0031697640E+00 + -9.4763997468E-01 -8.9152381584E-01 -8.3505730395E-01 -7.7846510254E-01 + -7.2197126024E-01 -6.6580149485E-01 -6.1016447935E-01 -5.5526665683E-01 + -5.0131183741E-01 -4.4848246720E-01 -3.9695953900E-01 -3.4691226010E-01 + -2.9849129505E-01 -2.5184432897E-01 -2.0709755269E-01 -1.6436595813E-01 + -1.2375514486E-01 -8.5346923180E-02 -4.9217699854E-02 -1.5422920148E-02 + 1.5994432442E-02 4.5004347996E-02 7.1595307120E-02 9.5765117883E-02 + 1.1752943286E-01 1.3691420036E-01 1.5395980044E-01 1.6871690156E-01 + 1.8124996573E-01 1.9162960815E-01 1.9994300603E-01 2.0627678851E-01 + 2.1073560588E-01 2.1342088212E-01 2.1444892310E-01 2.1393341146E-01 + 2.1199725582E-01 2.0876298725E-01 2.0435557955E-01 1.9890257923E-01 + 1.9252703333E-01 1.8535738677E-01 1.7751140798E-01 1.6911421279E-01 + 1.6027562760E-01 1.5111329156E-01 1.4172712151E-01 1.3222341124E-01 + 1.2269086025E-01 1.1322103489E-01 1.0389068191E-01 9.4773963426E-02 + 8.5935367367E-02 7.7429906613E-02 6.9309741186E-02 6.1610139720E-02 + 5.4370885099E-02 4.7608230645E-02 4.1349358860E-02 3.5593701446E-02 + 3.0355136532E-02 2.5620981580E-02 2.1387769223E-02 1.7637200733E-02 + 1.4350153920E-02 1.1502864726E-02 9.0665132935E-03 7.0109182842E-03 + 5.3044934797E-03 3.9096775018E-03 2.7964130761E-03 1.9243849793E-03 + 1.2632244492E-03 7.7747789778E-04 4.3367107777E-04 2.0773465716E-04 + 6.1977061445E-05 -1.6161589095E-05 -5.6009573580E-05 -7.0058409093E-05 + -7.0633555909E-05 -7.3724723435E-05 -6.8226660303E-05 -4.5665312707E-05 + -1.7133746194E-05 2.5254710546E-06 4.3617651486E-06 8.2784697249E-07 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 + + + 3.7693767088E+02 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 -4.6687102927E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 -9.2837348506E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 -3.2567280797E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + -1.6169477102E+01 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 -5.5381680148E+00 + + + + + + 0.0000000000E+00 1.7264974790E-03 6.9176308078E-03 1.5608268947E-02 + 2.7856347368E-02 4.3742597297E-02 6.3370163598E-02 8.6864108353E-02 + 1.1437079657E-01 1.4605715995E-01 1.8210983423E-01 2.2273416561E-01 + 2.6815308163E-01 3.1860582218E-01 3.7434652696E-01 4.3564267617E-01 + 5.0277338223E-01 5.7602753168E-01 6.5570177750E-01 7.4209838353E-01 + 8.3552292562E-01 9.3628185320E-01 1.0446799212E+00 1.1610175002E+00 + 1.2855877778E+00 1.4186738630E+00 1.5605458158E+00 1.7114576099E+00 + 1.8716440618E+00 2.0413177378E+00 2.2206658684E+00 2.4098472942E+00 + 2.6089894725E+00 2.8181855660E+00 3.0374916489E+00 3.2669240612E+00 + 3.5064569259E+00 3.7560198787E+00 4.0154960177E+00 4.2847201190E+00 + 4.5634771275E+00 4.8515009548E+00 5.1484736064E+00 5.4540246543E+00 + 5.7677310742E+00 6.0891174588E+00 6.4176566186E+00 6.7527705747E+00 + 7.0938318931E+00 7.4401655914E+00 7.7910512533E+00 8.1457255149E+00 + 8.5033850078E+00 8.8631899209E+00 9.2242670318E+00 9.5857143358E+00 + 9.9466046504E+00 1.0305990498E+01 1.0662908489E+01 1.1016384599E+01 + 1.1365438417E+01 1.1709089614E+01 1.2046361370E+01 1.2376287330E+01 + 1.2697915998E+01 1.3010315266E+01 1.3312579025E+01 1.3603831166E+01 + 1.3883230231E+01 1.4149973689E+01 1.4403303866E+01 1.4642510311E+01 + 1.4866934025E+01 1.5075970849E+01 1.5269074288E+01 1.5445758714E+01 + 1.5605601171E+01 1.5748243108E+01 1.5873391865E+01 1.5980821635E+01 + 1.6070373978E+01 1.6141957905E+01 1.6195549545E+01 1.6231191385E+01 + 1.6248991109E+01 1.6249120052E+01 1.6231811282E+01 1.6197357344E+01 + 1.6146107664E+01 1.6078465681E+01 1.5994885689E+01 1.5895869465E+01 + 1.5781962671E+01 1.5653751107E+01 1.5511856812E+01 1.5356934072E+01 + 1.5189666479E+01 1.5010760176E+01 1.4820941047E+01 1.4620951153E+01 + 1.4411544278E+01 1.4193481993E+01 1.3967529922E+01 1.3734457193E+01 + 1.3495022595E+01 1.3249980974E+01 1.3000077127E+01 1.2746042871E+01 + 1.2488598935E+01 1.2228437511E+01 1.1966233933E+01 1.1702640925E+01 + 1.1438290356E+01 1.1173781029E+01 1.0909683149E+01 1.0646540228E+01 + 1.0384870760E+01 1.0125152461E+01 9.8678344918E+00 9.6133378741E+00 + 9.3620519698E+00 9.1143272011E+00 8.8704877772E+00 8.6308314378E+00 + 8.3956148331E+00 8.1650708404E+00 7.9394065576E+00 7.7187940270E+00 + 7.5033821397E+00 7.2932958078E+00 7.0886309348E+00 6.8894631554E+00 + 6.6958450440E+00 6.5078082686E+00 6.3253655722E+00 6.1485098545E+00 + 5.9772204914E+00 5.8114569274E+00 5.6511679309E+00 5.4962896126E+00 + 5.3467400634E+00 5.2024375641E+00 5.0632802017E+00 4.9291650015E+00 + 4.7999811263E+00 4.6756039793E+00 4.5559184616E+00 4.4407862838E+00 + 4.3300846234E+00 4.2236742084E+00 4.1214197600E+00 4.0231870583E+00 + 3.9288307966E+00 3.8382241958E+00 3.7512148751E+00 3.6676822811E+00 + 3.5874773934E+00 3.5104789809E+00 3.4365469450E+00 3.3655597315E+00 + 3.2973873929E+00 3.2319098077E+00 3.1690073352E+00 3.1085630198E+00 + 3.0504672306E+00 2.9946077801E+00 2.9408844478E+00 2.8891912216E+00 + 2.8394364969E+00 2.7915216182E+00 2.7453626823E+00 2.7008693367E+00 + 2.6579644019E+00 2.6165665384E+00 2.5766042990E+00 2.5380058292E+00 + 2.5007044580E+00 2.4646380425E+00 2.4297438209E+00 2.3959693257E+00 + 2.3632549863E+00 2.3315576890E+00 2.3008205438E+00 2.2710090851E+00 + 2.2420690855E+00 2.2139718144E+00 2.1866710250E+00 2.1601374930E+00 + 2.1343343455E+00 2.1092313894E+00 2.0848003850E+00 2.0610100679E+00 + 2.0378397568E+00 2.0152573985E+00 1.9932469344E+00 1.9717808210E+00 + 1.9508414100E+00 1.9304079254E+00 1.9104601225E+00 1.8909833936E+00 + 1.8719553630E+00 1.8533648674E+00 1.8351926451E+00 1.8174252267E+00 + 1.8000486499E+00 1.7830464790E+00 1.7664088395E+00 1.7501191797E+00 + 1.7341676310E+00 1.7185416345E+00 1.7032280848E+00 1.6882185538E+00 + 1.6734989568E+00 1.6590613408E+00 1.6448952417E+00 1.6309893635E+00 + 1.6173369589E+00 1.6039264282E+00 1.5907505977E+00 1.5778015908E+00 + 1.5650689138E+00 1.5525475694E+00 1.5402284757E+00 1.5281043952E+00 + 1.5161699087E+00 1.5044158446E+00 1.4928377036E+00 1.4814292885E+00 + 1.4701827638E+00 1.4590946336E+00 1.4481582369E+00 1.4373678922E+00 + 1.4267199454E+00 1.4162078148E+00 1.4058275988E+00 1.3955755269E+00 + 1.3854452382E+00 1.3754342348E+00 1.3655385742E+00 1.3557526264E+00 + 1.3460745517E+00 1.3365003597E+00 1.3270255171E+00 1.3176482565E+00 + 1.3083648099E+00 1.2991715102E+00 1.2900666961E+00 1.2810468743E+00 + 1.2721090348E+00 1.2632516600E+00 1.2544715695E+00 1.2457662269E+00 + 1.2371342940E+00 1.2285729291E+00 1.2200799127E+00 1.2116541153E+00 + 1.2032930510E+00 1.1949946857E+00 1.1867581205E+00 1.1785812353E+00 + 1.1704620729E+00 1.1623999786E+00 1.1543932035E+00 1.1464397804E+00 + 1.1385393031E+00 1.1306903946E+00 1.1228910119E+00 1.1151409930E+00 + 1.1074392661E+00 1.0997838546E+00 1.0921746401E+00 1.0846107918E+00 + 1.0770907249E+00 1.0696139941E+00 1.0621801061E+00 1.0547878699E+00 + 1.0474364809E+00 1.0401257642E+00 1.0328549180E+00 1.0256227696E+00 + 1.0184294313E+00 1.0112743597E+00 1.0041563831E+00 9.9707550711E-01 + 9.9003142581E-01 9.8302334831E-01 9.7605078820E-01 9.6911377021E-01 + 9.6221188268E-01 9.5534416574E-01 9.4851092757E-01 9.4171188267E-01 + 9.3494635408E-01 9.2821417343E-01 9.2151537341E-01 9.1484964797E-01 + 9.0821629005E-01 9.0161562768E-01 8.9504748471E-01 8.8851135701E-01 + 8.8200712684E-01 8.7553491015E-01 8.6909454987E-01 8.6268540623E-01 + 8.5630783638E-01 8.4996176368E-01 8.4364689450E-01 8.3736297268E-01 + 8.3111024598E-01 8.2488863516E-01 8.1869773564E-01 8.1253763927E-01 + 8.0640845474E-01 8.0031011269E-01 7.9424213424E-01 7.8820487726E-01 + 7.8219833470E-01 7.7622236519E-01 7.7027668574E-01 7.6436160509E-01 + 7.5847710643E-01 7.5262298669E-01 7.4679914513E-01 7.4100581405E-01 + 7.3524297944E-01 7.2951039770E-01 7.2380809764E-01 7.1813625229E-01 + 7.1249484927E-01 7.0688362218E-01 7.0130268187E-01 6.9575215963E-01 + 6.9023204363E-01 6.8474205965E-01 6.7928235850E-01 6.7385304647E-01 + 6.6845411144E-01 6.6308528431E-01 6.5774671854E-01 6.5243851109E-01 + 6.4716064882E-01 6.4191287963E-01 6.3669532604E-01 6.3150809014E-01 + 6.2635115723E-01 6.2122430379E-01 6.1612759048E-01 6.1106113785E-01 + 6.0602492929E-01 6.0101878168E-01 5.9604266490E-01 5.9109673016E-01 + 5.8618095868E-01 5.8129521997E-01 5.7643936627E-01 5.7161359015E-01 + 5.6681787057E-01 5.6205214191E-01 5.5731611493E-01 5.5261003199E-01 + 5.4793386986E-01 5.4328758242E-01 5.3867089040E-01 5.3408392064E-01 + 5.2952670459E-01 5.2499919516E-01 5.2050120127E-01 5.1603264497E-01 + 5.1159364236E-01 5.0718414551E-01 5.0280406690E-01 4.9845310241E-01 + 4.9413145761E-01 4.8983908404E-01 4.8557591322E-01 4.8134169320E-01 + 4.7713642834E-01 4.7296016600E-01 4.6881283845E-01 4.6469432267E-01 + 4.6060434030E-01 4.5654305754E-01 4.5251040774E-01 4.4850630598E-01 + 4.4453049768E-01 4.4058294794E-01 4.3666369580E-01 4.3277265871E-01 + 4.2890973652E-01 4.2507456666E-01 4.2126732387E-01 4.1748793059E-01 + 4.1373629029E-01 4.1001220425E-01 4.0631548167E-01 4.0264621133E-01 + 3.9900430069E-01 3.9538964122E-01 3.9180195194E-01 3.8824119208E-01 + 3.8470736829E-01 3.8120037723E-01 3.7772010021E-01 3.7426619247E-01 + 3.7083873129E-01 3.6743765550E-01 3.6406285273E-01 3.6071418864E-01 + 3.5739129396E-01 3.5409430966E-01 3.5082312998E-01 3.4757763525E-01 + 3.4435765539E-01 3.4116287806E-01 3.3799341086E-01 3.3484914171E-01 + 3.3172994534E-01 3.2863563244E-01 3.2556591769E-01 3.2252088956E-01 + 3.1950043130E-01 3.1650441353E-01 3.1353264415E-01 3.1058483445E-01 + 3.0766106865E-01 3.0476122675E-01 3.0188517678E-01 2.9903274008E-01 + 2.9620359436E-01 2.9339783433E-01 2.9061533811E-01 2.8785597246E-01 + 2.8511958837E-01 2.8240580045E-01 2.7971472800E-01 2.7704624851E-01 + 2.7440022872E-01 2.7177652450E-01 2.6917478124E-01 2.6659503391E-01 + 2.6403720100E-01 2.6150115034E-01 2.5898673950E-01 2.5649367441E-01 + 2.5402186177E-01 2.5157128013E-01 2.4914179941E-01 2.4673327984E-01 + 2.4434550492E-01 2.4197822391E-01 2.3963148809E-01 2.3730517036E-01 + 2.3499913449E-01 2.3271323505E-01 2.3044710644E-01 2.2820081477E-01 + 2.2597425900E-01 2.2376730719E-01 2.2157981874E-01 2.1941153437E-01 + 2.1726230178E-01 2.1513212540E-01 2.1302087824E-01 2.1092842513E-01 + 2.0885462276E-01 2.0679910018E-01 2.0476195057E-01 2.0274306010E-01 + 2.0074229959E-01 1.9875953218E-01 1.9679452212E-01 1.9484708691E-01 + 1.9291724681E-01 1.9100487899E-01 1.8910985344E-01 1.8723203293E-01 + 1.8537110274E-01 1.8352705742E-01 1.8169983418E-01 1.7988931015E-01 + 1.7809535569E-01 1.7631782096E-01 1.7455637364E-01 1.7281110659E-01 + 1.7108190425E-01 1.6936864475E-01 1.6767119988E-01 1.6598937197E-01 + 1.6432293939E-01 1.6267194627E-01 1.6103627860E-01 1.5941581647E-01 + 1.5781043399E-01 1.5621990353E-01 1.5464408045E-01 1.5308297528E-01 + 1.5153647637E-01 1.5000446652E-01 1.4848682298E-01 1.4698330511E-01 + 1.4549381182E-01 1.4401833572E-01 1.4255676818E-01 1.4110899542E-01 + 1.3967489843E-01 1.3825423950E-01 1.3684692895E-01 1.3545295681E-01 + 1.3407221808E-01 1.3270460291E-01 1.3134999662E-01 1.3000817931E-01 + 1.2867904230E-01 1.2736258768E-01 1.2605871448E-01 1.2476731727E-01 + 1.2348828609E-01 1.2222143297E-01 1.2096660182E-01 1.1972382018E-01 + 1.1849299153E-01 1.1727401515E-01 1.1606678617E-01 1.1487116172E-01 + 1.1368691242E-01 1.1251410310E-01 1.1135264193E-01 1.1020243319E-01 + 1.0906337729E-01 1.0793537071E-01 1.0681814170E-01 1.0571174865E-01 + 1.0461612236E-01 1.0353117229E-01 1.0245680429E-01 1.0139292060E-01 + 1.0033932086E-01 9.9295932374E-02 9.8262752428E-02 9.7239695736E-02 + 9.6226673682E-02 9.5223594303E-02 9.4230339833E-02 9.3246687507E-02 + 9.2272708200E-02 9.1308321913E-02 9.0353445576E-02 8.9407993031E-02 + 8.8471875016E-02 8.7544894398E-02 8.6627010990E-02 8.5718212489E-02 + 8.4818421332E-02 8.3927557112E-02 8.3045536559E-02 8.2172266021E-02 + 8.1307512305E-02 8.0451356829E-02 7.9603727450E-02 7.8764549409E-02 + 7.7933745313E-02 7.7111235123E-02 7.6296875576E-02 7.5490553298E-02 + 7.4692296474E-02 7.3902035849E-02 7.3119699751E-02 7.2345214075E-02 + 7.1578502273E-02 7.0819388071E-02 7.0067845469E-02 6.9323863586E-02 + 6.8587376280E-02 6.7858315179E-02 6.7136609670E-02 6.6422186885E-02 + 6.5714852615E-02 6.5014637346E-02 6.4321505352E-02 6.3635393767E-02 + 6.2956237669E-02 6.2283970075E-02 6.1618521925E-02 6.0959694412E-02 + 6.0307546260E-02 5.9662030328E-02 5.9023087125E-02 5.8390655276E-02 + 5.7764671509E-02 5.7145070644E-02 5.6531661032E-02 5.5924504257E-02 + 5.5323554015E-02 5.4728754250E-02 5.4140047178E-02 5.3557373271E-02 + 5.2980671253E-02 5.2409767101E-02 5.1844702577E-02 5.1285443183E-02 + 5.0731936311E-02 5.0184127769E-02 + + diff --git a/_book/examples/dos_band/Fe/INPUT-band b/_book/examples/dos_band/Fe/INPUT-band new file mode 100644 index 00000000..8fe00047 --- /dev/null +++ b/_book/examples/dos_band/Fe/INPUT-band @@ -0,0 +1,27 @@ +INPUT_PARAMETERS +#Parameters (1.General) +suffix Fe-bcc +calculation nscf +esolver_type ksdft +pseudo_dir ./ +cal_stress 1 +cal_force 1 +stru_file PRIMCELL.STRU +#Parameters (2.Iteration) +ecutwfc 50 +scf_thr 1e-8 +scf_nmax 50 +#Parameters (3.Basis) +basis_type pw +kpar 4 +gamma_only 0 +#Parameters (4.Smearing) +smearing_method mp +smearing_sigma 0.015 +#Parameters (5.Mixing) +mixing_type broyden +mixing_beta 0.7 + +nspin 2 +init_chg file +out_band 1 diff --git a/_book/examples/dos_band/Fe/INPUT-nscf b/_book/examples/dos_band/Fe/INPUT-nscf new file mode 100644 index 00000000..dccb2d98 --- /dev/null +++ b/_book/examples/dos_band/Fe/INPUT-nscf @@ -0,0 +1,27 @@ +INPUT_PARAMETERS +#Parameters (1.General) +suffix Fe-bcc +calculation nscf +esolver_type ksdft +pseudo_dir ./ +cal_stress 1 +cal_force 1 +stru_file PRIMCELL.STRU +#Parameters (2.Iteration) +ecutwfc 50 +scf_thr 1e-8 +scf_nmax 50 +#Parameters (3.Basis) +basis_type pw +kpar 4 +gamma_only 0 +#Parameters (4.Smearing) +smearing_method mp +smearing_sigma 0.015 +#Parameters (5.Mixing) +mixing_type broyden +mixing_beta 0.7 + +nspin 2 +init_chg file +out_dos 1 diff --git a/_book/examples/dos_band/Fe/INPUT-scf b/_book/examples/dos_band/Fe/INPUT-scf new file mode 100644 index 00000000..b4bc8b00 --- /dev/null +++ b/_book/examples/dos_band/Fe/INPUT-scf @@ -0,0 +1,26 @@ +INPUT_PARAMETERS +#Parameters (1.General) +suffix Fe-bcc +calculation scf +esolver_type ksdft +pseudo_dir ./ +cal_stress 1 +cal_force 1 +stru_file PRIMCELL.STRU +#Parameters (2.Iteration) +ecutwfc 50 +scf_thr 1e-8 +scf_nmax 50 +#Parameters (3.Basis) +basis_type pw +kpar 4 +gamma_only 0 +#Parameters (4.Smearing) +smearing_method mp +smearing_sigma 0.015 +#Parameters (5.Mixing) +mixing_type broyden +mixing_beta 0.7 + +nspin 2 +out_chg 1 diff --git a/_book/examples/dos_band/Fe/KPT-nscf b/_book/examples/dos_band/Fe/KPT-nscf new file mode 100644 index 00000000..f7fffe21 --- /dev/null +++ b/_book/examples/dos_band/Fe/KPT-nscf @@ -0,0 +1,4 @@ +K_POINTS +0 +Gamma +8 8 8 0 0 0 \ No newline at end of file diff --git a/_book/examples/dos_band/Fe/KPT-scf b/_book/examples/dos_band/Fe/KPT-scf new file mode 100644 index 00000000..ae7f4b82 --- /dev/null +++ b/_book/examples/dos_band/Fe/KPT-scf @@ -0,0 +1,4 @@ +K_POINTS +0 +Gamma +6 6 6 0 0 0 \ No newline at end of file diff --git a/_book/examples/dos_band/Fe/STRU b/_book/examples/dos_band/Fe/STRU new file mode 100644 index 00000000..9cdc6f40 --- /dev/null +++ b/_book/examples/dos_band/Fe/STRU @@ -0,0 +1,19 @@ +ATOMIC_SPECIES +Fe 55.85 Fe_ONCV_PBE-1.0.upf upf201 + +LATTICE_CONSTANT +1.88972612584 + +LATTICE_VECTORS + 2.8997376650 0.0000000000 0.0000000000 #latvec1 + 0.0000000000 2.8997376650 0.0000000000 #latvec2 + 0.0000000000 0.0000000000 2.8997376650 #latvec3 + +ATOMIC_POSITIONS +Direct + +Fe #label +4 #magnetism +2 #number of atoms + 0.0000000000 0.0000000000 0.0000000000 m 1 1 1 mag 4.0000000000 + 0.5000000000 0.5000000000 0.5000000000 m 1 1 1 mag 4.0000000000 diff --git a/_book/examples/dos_band/Fe/gene_band_dat.py b/_book/examples/dos_band/Fe/gene_band_dat.py new file mode 100644 index 00000000..3f228906 --- /dev/null +++ b/_book/examples/dos_band/Fe/gene_band_dat.py @@ -0,0 +1,55 @@ +import numpy as np +import sys +import glob +import os + +# 检查是否提供了命令行参数 +if len(sys.argv) > 1: + try: + e_fermi = float(sys.argv[1]) # 将e_fermi转换为浮点数 + except ValueError: + print("Usage: python plot_band.py e_fermi") + e_fermi = 0.0 # 如果转换失败,将e_fermi设置为0.0 +else: + e_fermi = 0.0 # 如果没有提供命令行参数,将e_fermi设置为0.0 + +# 读取KPT文件 +kpt_data = np.loadtxt('KPT', skiprows=3) # 假设KPT文件的前3行是标题行,需要跳过 +kpt_indice = np.delete(kpt_data[:, 3].astype(int), -1) +kpt_indice = np.insert(kpt_indice, 0, 1) # 删除最后一个元素,并在第一个位置插入1 +print(kpt_indice) +kpt_indices = np.cumsum(kpt_indice.astype(int)) +print(kpt_indices) + +# 获取所有BANDS_*.dat文件的路径 +band_files = glob.glob('OUT.*/BANDS_*.dat') + +for band_file in band_files: + data = np.loadtxt(band_file) + id = os.path.basename(band_file) # 获取文件名 + print('Processing ' + id + '...') + + for idx, ii in enumerate(kpt_indice): + if ii == 1 and idx != 0: + data[kpt_indices[idx]-1 : , 1] -= data[kpt_indices[idx]-1, 1] - data[kpt_indices[idx]-2, 1] + kpt_indices_modify = np.array([kpt_indices[i] for i in range(len(kpt_indices)) if i != idx]) + # kpt_indices_del = np.delete(kpt_indices, idx) + print(kpt_indices_modify) + # 使用KPT文件第四列的数据作为索引来查找data第二列对应行的数据 + selected_data = data[kpt_indices_modify-1, 1] + # print(selected_data) + + # 在文件的开头添加新内容 + plot_file = 'plot_' + id + with open(plot_file, 'w+') as f: + f.write('# ' + ' '.join(map(str, selected_data)) + '\n') + + merged_data = [] # 创建一个空列表来保存所有合并后的数据 + + # 循环读取第三列到最后一列,并将每一列与第二列合并 + for i in range(2, data.shape[1]): + data[:, i] -= e_fermi + merged = np.column_stack((data[:, 1], data[:, i])) + with open(plot_file, 'a') as f: + np.savetxt(f, merged, fmt='%.6f') + f.write('\n') diff --git a/_book/examples/elastic/C_ONCV_PBE-1.0.upf b/_book/examples/elastic/C_ONCV_PBE-1.0.upf new file mode 100644 index 00000000..00668ca5 --- /dev/null +++ b/_book/examples/elastic/C_ONCV_PBE-1.0.upf @@ -0,0 +1,1224 @@ + + + + This pseudopotential file has been produced using the code + ONCVPSP (Optimized Norm-Conservinng Vanderbilt PSeudopotential) + scalar-relativistic version 2.1.1, 03/26/2014 by D. R. Hamann + The code is available through a link at URL www.mat-simresearch.com. + Documentation with the package provides a full discription of the + input data below. + + + While it is not required under the terms of the GNU GPL, it is + suggested that you cite D. R. Hamann, Phys. Rev. B 88, 085117 (2013) + in any publication using these pseudopotentials. + + + Copyright 2015 The Regents of the University of California + + This work is licensed under the Creative Commons Attribution-ShareAlike + 4.0 International License. To view a copy of this license, visit + http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to + Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. + + This pseudopotential is part of the Schlipf-Gygi norm-conserving + pseudopotential library. Its construction parameters were tuned to + reproduce materials of a training set with very high accuracy and + should be suitable as a general purpose pseudopotential to treat a + variety of different compounds. For details of the construction and + testing of the pseudopotential please refer to: + + [insert reference to paper here] + + We kindly ask that you include this reference in all publications + associated to this pseudopotential. + + + +# ATOM AND REFERENCE CONFIGURATION +# atsym z nc nv iexc psfile + C 6.00 1 2 4 upf +# +# n l f energy (Ha) + 1 0 2.00 + 2 0 2.00 + 2 1 2.00 +# +# PSEUDOPOTENTIAL AND OPTIMIZATION +# lmax + 1 +# +# l, rc, ep, ncon, nbas, qcut + 0 1.42330 -0.50533 5 8 6.97628 + 1 1.38975 -0.19424 5 8 8.59046 +# +# LOCAL POTENTIAL +# lloc, lpopt, rc(5), dvloc0 + 4 5 0.82223 0.00000 +# +# VANDERBILT-KLEINMAN-BYLANDER PROJECTORs +# l, nproj, debl + 0 2 1.09624 + 1 2 1.27170 +# +# MODEL CORE CHARGE +# icmod, fcfact + 0 0.00000 +# +# LOG DERIVATIVE ANALYSIS +# epsh1, epsh2, depsh + -5.00 3.00 0.02 +# +# OUTPUT GRID +# rlmax, drl + 6.00 0.01 +# +# TEST CONFIGURATIONS +# ncnf + 0 +# nvcnf +# n l f + + + + + + + + + 0.0000 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 + 0.0800 0.0900 0.1000 0.1100 0.1200 0.1300 0.1400 0.1500 + 0.1600 0.1700 0.1800 0.1900 0.2000 0.2100 0.2200 0.2300 + 0.2400 0.2500 0.2600 0.2700 0.2800 0.2900 0.3000 0.3100 + 0.3200 0.3300 0.3400 0.3500 0.3600 0.3700 0.3800 0.3900 + 0.4000 0.4100 0.4200 0.4300 0.4400 0.4500 0.4600 0.4700 + 0.4800 0.4900 0.5000 0.5100 0.5200 0.5300 0.5400 0.5500 + 0.5600 0.5700 0.5800 0.5900 0.6000 0.6100 0.6200 0.6300 + 0.6400 0.6500 0.6600 0.6700 0.6800 0.6900 0.7000 0.7100 + 0.7200 0.7300 0.7400 0.7500 0.7600 0.7700 0.7800 0.7900 + 0.8000 0.8100 0.8200 0.8300 0.8400 0.8500 0.8600 0.8700 + 0.8800 0.8900 0.9000 0.9100 0.9200 0.9300 0.9400 0.9500 + 0.9600 0.9700 0.9800 0.9900 1.0000 1.0100 1.0200 1.0300 + 1.0400 1.0500 1.0600 1.0700 1.0800 1.0900 1.1000 1.1100 + 1.1200 1.1300 1.1400 1.1500 1.1600 1.1700 1.1800 1.1900 + 1.2000 1.2100 1.2200 1.2300 1.2400 1.2500 1.2600 1.2700 + 1.2800 1.2900 1.3000 1.3100 1.3200 1.3300 1.3400 1.3500 + 1.3600 1.3700 1.3800 1.3900 1.4000 1.4100 1.4200 1.4300 + 1.4400 1.4500 1.4600 1.4700 1.4800 1.4900 1.5000 1.5100 + 1.5200 1.5300 1.5400 1.5500 1.5600 1.5700 1.5800 1.5900 + 1.6000 1.6100 1.6200 1.6300 1.6400 1.6500 1.6600 1.6700 + 1.6800 1.6900 1.7000 1.7100 1.7200 1.7300 1.7400 1.7500 + 1.7600 1.7700 1.7800 1.7900 1.8000 1.8100 1.8200 1.8300 + 1.8400 1.8500 1.8600 1.8700 1.8800 1.8900 1.9000 1.9100 + 1.9200 1.9300 1.9400 1.9500 1.9600 1.9700 1.9800 1.9900 + 2.0000 2.0100 2.0200 2.0300 2.0400 2.0500 2.0600 2.0700 + 2.0800 2.0900 2.1000 2.1100 2.1200 2.1300 2.1400 2.1500 + 2.1600 2.1700 2.1800 2.1900 2.2000 2.2100 2.2200 2.2300 + 2.2400 2.2500 2.2600 2.2700 2.2800 2.2900 2.3000 2.3100 + 2.3200 2.3300 2.3400 2.3500 2.3600 2.3700 2.3800 2.3900 + 2.4000 2.4100 2.4200 2.4300 2.4400 2.4500 2.4600 2.4700 + 2.4800 2.4900 2.5000 2.5100 2.5200 2.5300 2.5400 2.5500 + 2.5600 2.5700 2.5800 2.5900 2.6000 2.6100 2.6200 2.6300 + 2.6400 2.6500 2.6600 2.6700 2.6800 2.6900 2.7000 2.7100 + 2.7200 2.7300 2.7400 2.7500 2.7600 2.7700 2.7800 2.7900 + 2.8000 2.8100 2.8200 2.8300 2.8400 2.8500 2.8600 2.8700 + 2.8800 2.8900 2.9000 2.9100 2.9200 2.9300 2.9400 2.9500 + 2.9600 2.9700 2.9800 2.9900 3.0000 3.0100 3.0200 3.0300 + 3.0400 3.0500 3.0600 3.0700 3.0800 3.0900 3.1000 3.1100 + 3.1200 3.1300 3.1400 3.1500 3.1600 3.1700 3.1800 3.1900 + 3.2000 3.2100 3.2200 3.2300 3.2400 3.2500 3.2600 3.2700 + 3.2800 3.2900 3.3000 3.3100 3.3200 3.3300 3.3400 3.3500 + 3.3600 3.3700 3.3800 3.3900 3.4000 3.4100 3.4200 3.4300 + 3.4400 3.4500 3.4600 3.4700 3.4800 3.4900 3.5000 3.5100 + 3.5200 3.5300 3.5400 3.5500 3.5600 3.5700 3.5800 3.5900 + 3.6000 3.6100 3.6200 3.6300 3.6400 3.6500 3.6600 3.6700 + 3.6800 3.6900 3.7000 3.7100 3.7200 3.7300 3.7400 3.7500 + 3.7600 3.7700 3.7800 3.7900 3.8000 3.8100 3.8200 3.8300 + 3.8400 3.8500 3.8600 3.8700 3.8800 3.8900 3.9000 3.9100 + 3.9200 3.9300 3.9400 3.9500 3.9600 3.9700 3.9800 3.9900 + 4.0000 4.0100 4.0200 4.0300 4.0400 4.0500 4.0600 4.0700 + 4.0800 4.0900 4.1000 4.1100 4.1200 4.1300 4.1400 4.1500 + 4.1600 4.1700 4.1800 4.1900 4.2000 4.2100 4.2200 4.2300 + 4.2400 4.2500 4.2600 4.2700 4.2800 4.2900 4.3000 4.3100 + 4.3200 4.3300 4.3400 4.3500 4.3600 4.3700 4.3800 4.3900 + 4.4000 4.4100 4.4200 4.4300 4.4400 4.4500 4.4600 4.4700 + 4.4800 4.4900 4.5000 4.5100 4.5200 4.5300 4.5400 4.5500 + 4.5600 4.5700 4.5800 4.5900 4.6000 4.6100 4.6200 4.6300 + 4.6400 4.6500 4.6600 4.6700 4.6800 4.6900 4.7000 4.7100 + 4.7200 4.7300 4.7400 4.7500 4.7600 4.7700 4.7800 4.7900 + 4.8000 4.8100 4.8200 4.8300 4.8400 4.8500 4.8600 4.8700 + 4.8800 4.8900 4.9000 4.9100 4.9200 4.9300 4.9400 4.9500 + 4.9600 4.9700 4.9800 4.9900 5.0000 5.0100 5.0200 5.0300 + 5.0400 5.0500 5.0600 5.0700 5.0800 5.0900 5.1000 5.1100 + 5.1200 5.1300 5.1400 5.1500 5.1600 5.1700 5.1800 5.1900 + 5.2000 5.2100 5.2200 5.2300 5.2400 5.2500 5.2600 5.2700 + 5.2800 5.2900 5.3000 5.3100 5.3200 5.3300 5.3400 5.3500 + 5.3600 5.3700 5.3800 5.3900 5.4000 5.4100 5.4200 5.4300 + 5.4400 5.4500 5.4600 5.4700 5.4800 5.4900 5.5000 5.5100 + 5.5200 5.5300 5.5400 5.5500 5.5600 5.5700 5.5800 5.5900 + 5.6000 5.6100 5.6200 5.6300 5.6400 5.6500 5.6600 5.6700 + 5.6800 5.6900 5.7000 5.7100 5.7200 5.7300 5.7400 5.7500 + 5.7600 5.7700 5.7800 5.7900 5.8000 5.8100 5.8200 5.8300 + 5.8400 5.8500 5.8600 5.8700 5.8800 5.8900 5.9000 5.9100 + 5.9200 5.9300 5.9400 5.9500 5.9600 5.9700 5.9800 5.9900 + 6.0000 6.0100 + + + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 + 0.0100 0.0100 + + + + -1.6008071410E+01 -2.1830627683E+01 -2.3853269505E+01 -2.3574329571E+01 + -2.2492140576E+01 -2.1588630898E+01 -2.1008459079E+01 -2.0653649250E+01 + -2.0428732471E+01 -2.0275455012E+01 -2.0161748631E+01 -2.0070007874E+01 + -1.9990140248E+01 -1.9915936557E+01 -1.9843235051E+01 -1.9768997796E+01 + -1.9690850329E+01 -1.9606861604E+01 -1.9515451317E+01 -1.9415364504E+01 + -1.9305678651E+01 -1.9185821943E+01 -1.9055587769E+01 -1.8915136163E+01 + -1.8764976188E+01 -1.8605927616E+01 -1.8439063097E+01 -1.8265635919E+01 + -1.8086999951E+01 -1.7904530127E+01 -1.7719550825E+01 -1.7533278198E+01 + -1.7346779983E+01 -1.7160953257E+01 -1.6976517978E+01 -1.6794024567E+01 + -1.6613868083E+01 -1.6436309039E+01 -1.6261494147E+01 -1.6089475990E+01 + -1.5920230884E+01 -1.5753673229E+01 -1.5589667218E+01 -1.5428036305E+01 + -1.5268571117E+01 -1.5111036561E+01 -1.4955178714E+01 -1.4800731940E+01 + -1.4647426393E+01 -1.4494995930E+01 -1.4343186379E+01 -1.4191763426E+01 + -1.4040519707E+01 -1.3889282019E+01 -1.3737915112E+01 -1.3586325714E+01 + -1.3434463499E+01 -1.3282320383E+01 -1.3129928670E+01 -1.2977357002E+01 + -1.2824705617E+01 -1.2672101376E+01 -1.2519691095E+01 -1.2367636930E+01 + -1.2216110172E+01 -1.2065286702E+01 -1.1915342753E+01 -1.1766451327E+01 + -1.1618779529E+01 -1.1472486390E+01 -1.1327721105E+01 -1.1184622322E+01 + -1.1043317457E+01 -1.0903922441E+01 -1.0766541741E+01 -1.0631268174E+01 + -1.0498183565E+01 -1.0367358915E+01 -1.0238854727E+01 -1.0112721320E+01 + -9.9889991057E+00 -9.8677188166E+00 -9.7489016978E+00 -9.6325595140E+00 + -9.5186913881E+00 -9.4072808646E+00 -9.2982976382E+00 -9.1917006035E+00 + -9.0874405811E+00 -8.9854626692E+00 -8.8857082083E+00 -8.7881163707E+00 + -8.6926254146E+00 -8.5991736445E+00 -8.5077001265E+00 -8.4181452012E+00 + -8.3304508267E+00 -8.2445607521E+00 -8.1604208310E+00 -8.0779788848E+00 + -7.9971847504E+00 -7.9179902342E+00 -7.8403490427E+00 -7.7642166271E+00 + -7.6895502695E+00 -7.6163089026E+00 -7.5444529448E+00 -7.4739442505E+00 + -7.4047459490E+00 -7.3368225699E+00 -7.2701398654E+00 -7.2046646730E+00 + -7.1403648540E+00 -7.0772093157E+00 -7.0151680778E+00 -6.9542120045E+00 + -6.8943127701E+00 -6.8354430152E+00 -6.7775762822E+00 -6.7206868378E+00 + -6.6647495833E+00 -6.6097405074E+00 -6.5556361866E+00 -6.5024137766E+00 + -6.4500513803E+00 -6.3985277633E+00 -6.3478221808E+00 -6.2979147576E+00 + -6.2487862954E+00 -6.2004179978E+00 -6.1527919473E+00 -6.1058908206E+00 + -6.0596976122E+00 -6.0141962761E+00 -5.9693711362E+00 -5.9252068968E+00 + -5.8816891298E+00 -5.8388035598E+00 -5.7965364948E+00 -5.7548748315E+00 + -5.7138055675E+00 -5.6733166203E+00 -5.6333958667E+00 -5.5940314340E+00 + -5.5552118930E+00 -5.5169257724E+00 -5.4791626240E+00 -5.4419118561E+00 + -5.4051629538E+00 -5.3689058365E+00 -5.3331308642E+00 -5.2978286430E+00 + -5.2629897050E+00 -5.2286052370E+00 -5.1946662735E+00 -5.1611644099E+00 + -5.1280911797E+00 -5.0954385259E+00 -5.0631984682E+00 -5.0313632807E+00 + -4.9999254320E+00 -4.9688775167E+00 -4.9382124153E+00 -4.9079230348E+00 + -4.8780026327E+00 -4.8484444206E+00 -4.8192420004E+00 -4.7903888813E+00 + -4.7618789796E+00 -4.7337060949E+00 -4.7058644300E+00 -4.6783480687E+00 + -4.6511514738E+00 -4.6242690076E+00 -4.5976953683E+00 -4.5714251916E+00 + -4.5454533872E+00 -4.5197748602E+00 -4.4943847094E+00 -4.4692781051E+00 + -4.4444503148E+00 -4.4198967700E+00 -4.3956128875E+00 -4.3715943554E+00 + -4.3478367241E+00 -4.3243359245E+00 -4.3010876486E+00 -4.2780880128E+00 + -4.2553329315E+00 -4.2328186111E+00 -4.2105412152E+00 -4.1884970217E+00 + -4.1666824424E+00 -4.1450938142E+00 -4.1237277779E+00 -4.1025807614E+00 + -4.0816495497E+00 -4.0609307778E+00 -4.0404212558E+00 -4.0201178624E+00 + -4.0000174206E+00 -3.9801170243E+00 -3.9604135741E+00 -3.9409042649E+00 + -3.9215862023E+00 -3.9024565662E+00 -3.8835126991E+00 -3.8647517672E+00 + -3.8461712716E+00 -3.8277685515E+00 -3.8095410712E+00 -3.7914864072E+00 + -3.7736019807E+00 -3.7558855287E+00 -3.7383346313E+00 -3.7209469725E+00 + -3.7037203571E+00 -3.6866524370E+00 -3.6697411378E+00 -3.6529842828E+00 + -3.6363797198E+00 -3.6199254706E+00 -3.6036194133E+00 -3.5874596047E+00 + -3.5714441182E+00 -3.5555709190E+00 -3.5398382335E+00 -3.5242441615E+00 + -3.5087868441E+00 -3.4934645687E+00 -3.4782754967E+00 -3.4632179300E+00 + -3.4482902115E+00 -3.4334905674E+00 -3.4188174426E+00 -3.4042692237E+00 + -3.3898442341E+00 -3.3755410134E+00 -3.3613579953E+00 -3.3472936226E+00 + -3.3333464920E+00 -3.3195150961E+00 -3.3057979844E+00 -3.2921938088E+00 + -3.2787011217E+00 -3.2653185662E+00 -3.2520448487E+00 -3.2388785819E+00 + -3.2258184897E+00 -3.2128633334E+00 -3.2000117855E+00 -3.1872626396E+00 + -3.1746147117E+00 -3.1620667344E+00 -3.1496175596E+00 -3.1372660586E+00 + -3.1250110238E+00 -3.1128513554E+00 -3.1007859802E+00 -3.0888137502E+00 + -3.0769336047E+00 -3.0651445261E+00 -3.0534454259E+00 -3.0418352736E+00 + -3.0303131070E+00 -3.0188778981E+00 -3.0075286376E+00 -2.9962644191E+00 + -2.9850842746E+00 -2.9739872095E+00 -2.9629723718E+00 -2.9520388505E+00 + -2.9411856704E+00 -2.9304120215E+00 -2.9197170390E+00 -2.9090998062E+00 + -2.8985595094E+00 -2.8880953421E+00 -2.8777064480E+00 -2.8673920027E+00 + -2.8571512569E+00 -2.8469834162E+00 -2.8368876402E+00 -2.8268632351E+00 + -2.8169094482E+00 -2.8070254814E+00 -2.7972106324E+00 -2.7874642033E+00 + -2.7777854575E+00 -2.7681736617E+00 -2.7586281762E+00 -2.7491483170E+00 + -2.7397333489E+00 -2.7303826552E+00 -2.7210955939E+00 -2.7118714910E+00 + -2.7027096870E+00 -2.6936095993E+00 -2.6845706061E+00 -2.6755920385E+00 + -2.6666733334E+00 -2.6578139096E+00 -2.6490131603E+00 -2.6402704691E+00 + -2.6315853143E+00 -2.6229571308E+00 -2.6143853186E+00 -2.6058693407E+00 + -2.5974086806E+00 -2.5890027993E+00 -2.5806511075E+00 -2.5723531373E+00 + -2.5641083779E+00 -2.5559163023E+00 -2.5477763751E+00 -2.5396881467E+00 + -2.5316511273E+00 -2.5236648011E+00 -2.5157286879E+00 -2.5078423478E+00 + -2.5000053139E+00 -2.4922170837E+00 -2.4844772240E+00 -2.4767853059E+00 + -2.4691408842E+00 -2.4615434718E+00 -2.4539926744E+00 -2.4464880756E+00 + -2.4390292509E+00 -2.4316157303E+00 -2.4242471510E+00 -2.4169231107E+00 + -2.4096432037E+00 -2.4024069810E+00 -2.3952141020E+00 -2.3880641809E+00 + -2.3809568300E+00 -2.3738916219E+00 -2.3668682324E+00 -2.3598862936E+00 + -2.3529454375E+00 -2.3460452522E+00 -2.3391854308E+00 -2.3323656227E+00 + -2.3255854770E+00 -2.3188446025E+00 -2.3121427004E+00 -2.3054794397E+00 + -2.2988544860E+00 -2.2922674709E+00 -2.2857180969E+00 -2.2792060545E+00 + -2.2727310248E+00 -2.2662926622E+00 -2.2598906669E+00 -2.2535247514E+00 + -2.2471946120E+00 -2.2408999283E+00 -2.2346403924E+00 -2.2284157401E+00 + -2.2222256815E+00 -2.2160699224E+00 -2.2099481431E+00 -2.2038601028E+00 + -2.1978055253E+00 -2.1917841342E+00 -2.1857956225E+00 -2.1798397455E+00 + -2.1739162486E+00 -2.1680248686E+00 -2.1621653263E+00 -2.1563373550E+00 + -2.1505407270E+00 -2.1447751914E+00 -2.1390404968E+00 -2.1333363566E+00 + -2.1276625645E+00 -2.1220188829E+00 -2.1164050721E+00 -2.1108208752E+00 + -2.1052660555E+00 -2.0997404046E+00 -2.0942436941E+00 -2.0887756959E+00 + -2.0833361484E+00 -2.0779248636E+00 -2.0725416265E+00 -2.0671862192E+00 + -2.0618584124E+00 -2.0565579797E+00 -2.0512847374E+00 -2.0460384778E+00 + -2.0408189935E+00 -2.0356260534E+00 -2.0304594687E+00 -2.0253190528E+00 + -2.0202046078E+00 -2.0151159359E+00 -2.0100528071E+00 -2.0050150635E+00 + -2.0000025175E+00 -1.9950149803E+00 -1.9900522565E+00 -1.9851141402E+00 + -1.9802004773E+00 -1.9753110880E+00 -1.9704457925E+00 -1.9656043984E+00 + -1.9607867216E+00 -1.9559926106E+00 -1.9512218939E+00 -1.9464743999E+00 + -1.9417499412E+00 -1.9370483507E+00 -1.9323694804E+00 -1.9277131670E+00 + -1.9230792469E+00 -1.9184675391E+00 -1.9138778886E+00 -1.9093101528E+00 + -1.9047641758E+00 -1.9002398019E+00 -1.8957368580E+00 -1.8912551963E+00 + -1.8867946814E+00 -1.8823551647E+00 -1.8779364975E+00 -1.8735385160E+00 + -1.8691610760E+00 -1.8648040501E+00 -1.8604672967E+00 -1.8561506740E+00 + -1.8518540289E+00 -1.8475772165E+00 -1.8433201189E+00 -1.8390826011E+00 + -1.8348645280E+00 -1.8306657584E+00 -1.8264861429E+00 -1.8223255744E+00 + -1.8181839242E+00 -1.8140610635E+00 -1.8099568635E+00 -1.8058711692E+00 + -1.8018038831E+00 -1.7977548832E+00 -1.7937240466E+00 -1.7897112506E+00 + -1.7857163545E+00 -1.7817392482E+00 -1.7777798237E+00 -1.7738379637E+00 + -1.7699135514E+00 -1.7660064616E+00 -1.7621165686E+00 -1.7582437791E+00 + -1.7543879815E+00 -1.7505490640E+00 -1.7467269152E+00 -1.7429214014E+00 + -1.7391324341E+00 -1.7353599102E+00 -1.7316037234E+00 -1.7278637672E+00 + -1.7241399259E+00 -1.7204320885E+00 -1.7167401693E+00 -1.7130640668E+00 + -1.7094036796E+00 -1.7057589062E+00 -1.7021296256E+00 -1.6985157549E+00 + -1.6949172022E+00 -1.6913338707E+00 -1.6877656638E+00 -1.6842124803E+00 + -1.6806742093E+00 -1.6771507779E+00 -1.6736420938E+00 -1.6701480650E+00 + -1.6666685991E+00 -1.6632035926E+00 -1.6597529547E+00 -1.6563166093E+00 + -1.6528944686E+00 -1.6494864447E+00 -1.6460924497E+00 -1.6427123794E+00 + -1.6393461584E+00 -1.6359937096E+00 -1.6326549490E+00 -1.6293297928E+00 + -1.6260181573E+00 -1.6227199392E+00 -1.6194350747E+00 -1.6161634867E+00 + -1.6129050952E+00 -1.6096598203E+00 -1.6064275821E+00 -1.6032082799E+00 + -1.6000018575E+00 -1.5968082393E+00 -1.5936273492E+00 -1.5904591110E+00 + -1.5873034484E+00 -1.5841602644E+00 -1.5810295072E+00 -1.5779111042E+00 + -1.5748049826E+00 -1.5717110698E+00 -1.5686292932E+00 -1.5655595608E+00 + -1.5625018215E+00 -1.5594560069E+00 -1.5564220479E+00 -1.5533998753E+00 + -1.5503894196E+00 -1.5473905952E+00 -1.5444033484E+00 -1.5414276168E+00 + -1.5384633342E+00 -1.5355104347E+00 -1.5325688523E+00 -1.5296385084E+00 + -1.5267193441E+00 -1.5238113037E+00 -1.5209143244E+00 -1.5180283430E+00 + -1.5151532967E+00 -1.5122891155E+00 -1.5094357323E+00 -1.5065930992E+00 + -1.5037611563E+00 -1.5009398435E+00 -1.4981291009E+00 -1.4953288679E+00 + -1.4925390670E+00 -1.4897596589E+00 -1.4869905864E+00 -1.4842317924E+00 + -1.4814832196E+00 -1.4787448108E+00 -1.4760164977E+00 -1.4732982283E+00 + -1.4705899555E+00 -1.4678916247E+00 -1.4652031813E+00 -1.4625245707E+00 + -1.4598557366E+00 -1.4571966106E+00 -1.4545471566E+00 -1.4519073226E+00 + -1.4492770565E+00 -1.4466563063E+00 -1.4440450201E+00 -1.4414431364E+00 + -1.4388506056E+00 -1.4362673863E+00 -1.4336934291E+00 -1.4311286841E+00 + -1.4285731020E+00 -1.4260266330E+00 -1.4234892128E+00 -1.4209608064E+00 + -1.4184413687E+00 -1.4159308524E+00 -1.4134292103E+00 -1.4109363951E+00 + -1.4084523570E+00 -1.4059770374E+00 -1.4035104052E+00 -1.4010524155E+00 + -1.3986030231E+00 -1.3961621830E+00 -1.3937298501E+00 -1.3913059740E+00 + -1.3888905046E+00 -1.3864834099E+00 -1.3840846470E+00 -1.3816941729E+00 + -1.3793119446E+00 -1.3769379190E+00 -1.3745720464E+00 -1.3722142825E+00 + -1.3698645953E+00 -1.3675229438E+00 -1.3651892871E+00 -1.3628635842E+00 + -1.3605457941E+00 -1.3582358688E+00 -1.3559337667E+00 -1.3536394573E+00 + -1.3513529014E+00 -1.3490740601E+00 -1.3468028942E+00 -1.3445393647E+00 + -1.3422834265E+00 -1.3400350380E+00 -1.3377941712E+00 -1.3355607889E+00 + -1.3333348538E+00 -1.3311163286E+00 + + + + 0.0000000000E+00 -5.5613271269E-02 -1.1119051307E-01 -1.6669531982E-01 + -2.2209053692E-01 -2.7733789416E-01 -3.3239764864E-01 -3.8722824040E-01 + -4.4178596382E-01 -4.9602465812E-01 -5.4989541981E-01 -6.0334634048E-01 + -6.5632227279E-01 -7.0876462765E-01 -7.6061120571E-01 -8.1179606575E-01 + -8.6224943279E-01 -9.1189764856E-01 -9.6066316657E-01 -1.0084645940E+00 + -1.0552167827E+00 -1.1008309700E+00 -1.1452149723E+00 -1.1882734310E+00 + -1.2299081114E+00 -1.2700182571E+00 -1.3085009954E+00 -1.3452517986E+00 + -1.3801649934E+00 -1.4131343232E+00 -1.4440535559E+00 -1.4728171382E+00 + -1.4993208877E+00 -1.5234627239E+00 -1.5451434405E+00 -1.5642674755E+00 + -1.5807437527E+00 -1.5944864832E+00 -1.6054160053E+00 -1.6134596387E+00 + -1.6185524933E+00 -1.6206382900E+00 -1.6196701528E+00 -1.6156113680E+00 + -1.6084361037E+00 -1.5981300800E+00 -1.5846911817E+00 -1.5681300041E+00 + -1.5484703113E+00 -1.5257494496E+00 -1.5000186588E+00 -1.4713432376E+00 + -1.4398026348E+00 -1.4054905509E+00 -1.3685146772E+00 -1.3289965718E+00 + -1.2870712624E+00 -1.2428867860E+00 -1.1966036110E+00 -1.1483939266E+00 + -1.0984408255E+00 -1.0469373522E+00 -9.9408555019E-01 -9.4009516808E-01 + -8.8518254828E-01 -8.2956942126E-01 -7.7348116631E-01 -7.1714566782E-01 + -6.6079180421E-01 -6.0464785738E-01 -5.4893973387E-01 -4.9388970760E-01 + -4.3971475844E-01 -3.8662506605E-01 -3.3482257069E-01 -2.8449910584E-01 + -2.3583550385E-01 -1.8900014659E-01 -1.4414777488E-01 -1.0141841382E-01 + -6.0936428031E-02 -2.2809719759E-02 1.2870917665E-02 4.6032286873E-02 + 7.6619185954E-02 1.0459449581E-01 1.2993886432E-01 1.5265022723E-01 + 1.7274325482E-01 1.9024872713E-01 2.0521283746E-01 2.1769642230E-01 + 2.2777411557E-01 2.3553342652E-01 2.4107374225E-01 2.4450525808E-01 + 2.4594784404E-01 2.4552992635E-01 2.4338711116E-01 2.3966089207E-01 + 2.3449734129E-01 2.2804576362E-01 2.2045735035E-01 2.1188422137E-01 + 2.0247733702E-01 1.9238526163E-01 1.8175337847E-01 1.7072254511E-01 + 1.5942879480E-01 1.4800043560E-01 1.3655768834E-01 1.2521274981E-01 + 1.1406935220E-01 1.0322127664E-01 9.2750074200E-02 8.2727811014E-02 + 7.3216956189E-02 6.4267516697E-02 5.5917614308E-02 4.8195885141E-02 + 4.1122270271E-02 3.4702475278E-02 2.8934977668E-02 2.3810704026E-02 + 1.9309860275E-02 1.5406237827E-02 1.2068355857E-02 9.2577204258E-03 + 6.9320567266E-03 5.0459878610E-03 3.5511837804E-03 2.3989717107E-03 + 1.5391246660E-03 9.2381731001E-04 5.0691190516E-04 2.4289709098E-04 + 9.4025490031E-05 2.3604593760E-05 1.4941504363E-06 5.7525659110E-06 + 1.4918100380E-05 2.3327320257E-05 2.4278000861E-05 1.4355301716E-05 + 4.4864826766E-07 -1.4271774587E-06 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 + + + 0.0000000000E+00 2.3067709730E-02 4.5716658983E-02 6.7533617857E-02 + 8.8116353020E-02 1.0707896531E-01 1.2405703656E-01 1.3871252533E-01 + 1.5073835444E-01 1.5986263601E-01 1.6585248473E-01 1.6851737385E-01 + 1.6771199427E-01 1.6333858242E-01 1.5534868870E-01 1.4374436469E-01 + 1.2857875388E-01 1.0995607757E-01 8.8031014550E-02 6.3007479679E-02 + 3.5136814269E-02 4.7154060025E-03 -2.7918233600E-02 -6.2386905804E-02 + -9.8278631938E-02 -1.3515099787E-01 -1.7253587311E-01 -2.0994447350E-01 + -2.4687267826E-01 -2.8280657771E-01 -3.1722816874E-01 -3.4962113899E-01 + -3.7947665823E-01 -4.0629913454E-01 -4.2961194542E-01 -4.4896274320E-01 + -4.6392894971E-01 -4.7412249777E-01 -4.7919448847E-01 -4.7883952072E-01 + -4.7279929662E-01 -4.6086593767E-01 -4.4288472176E-01 -4.1875625821E-01 + -3.8843807730E-01 -3.5194561652E-01 -3.0935259113E-01 -2.6079074337E-01 + -2.0644893984E-01 -1.4657178976E-01 -8.1457572141E-02 -1.1455507612E-02 + 6.3037333155E-02 1.4157966980E-01 2.2369020627E-01 3.0885213908E-01 + 3.9651813121E-01 4.8611538829E-01 5.7705138513E-01 6.6871930973E-01 + 7.6050385263E-01 8.5178769419E-01 9.4195580569E-01 1.0304036347E+00 + 1.1165409947E+00 1.1997970938E+00 1.2796285372E+00 1.3555217873E+00 + 1.4269981510E+00 1.4936184008E+00 1.5549875529E+00 1.6107565292E+00 + 1.6606255060E+00 1.7043460376E+00 1.7417225630E+00 1.7726148147E+00 + 1.7969365993E+00 1.8146562309E+00 1.8257957750E+00 1.8304296834E+00 + 1.8286828316E+00 1.8207279743E+00 1.8067826546E+00 1.7871054642E+00 + 1.7619885640E+00 1.7317492614E+00 1.6967256087E+00 1.6572735203E+00 + 1.6137639478E+00 1.5665800584E+00 1.5161143767E+00 1.4627658799E+00 + 1.4069370546E+00 1.3490309383E+00 1.2894481785E+00 1.2285841437E+00 + 1.1668262281E+00 1.1045518696E+00 1.0421234163E+00 9.7988824683E-01 + 9.1817586315E-01 8.5729598099E-01 7.9753687277E-01 7.3916527239E-01 + 6.8242200310E-01 6.2752226975E-01 5.7465649266E-01 5.2398923604E-01 + 4.7566075833E-01 4.2978273454E-01 3.8644086782E-01 3.4569714807E-01 + 3.0759062354E-01 2.7213661126E-01 2.3932613834E-01 2.0913172082E-01 + 1.8150800390E-01 1.5639022604E-01 1.3369751312E-01 1.1333623863E-01 + 9.5200769880E-02 7.9173116586E-02 6.5128243168E-02 5.2933613582E-02 + 4.2451526636E-02 3.3541862170E-02 2.6061170654E-02 1.9867107189E-02 + 1.4820066031E-02 1.0779904049E-02 7.6141470477E-03 5.1967128759E-03 + 3.4024655844E-03 2.1220620902E-03 1.2519381938E-03 6.9364125876E-04 + 3.6952886338E-04 2.0433090635E-04 1.3841414032E-04 1.2849467237E-04 + 1.3272993813E-04 1.4184754494E-04 1.3802749548E-04 8.0181139989E-05 + 2.4740919097E-06 -8.0849129709E-06 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 + + + 0.0000000000E+00 -6.4780534934E-03 -2.5831375568E-02 -5.7818486445E-02 + -1.0204035718E-01 -1.5794551656E-01 -2.2483710312E-01 -3.0188176645E-01 + -3.8812029673E-01 -4.8247983830E-01 -5.8378752164E-01 -6.9078532921E-01 + -8.0214599457E-01 -9.1648972035E-01 -1.0324014905E+00 -1.1484487451E+00 + -1.2631991814E+00 -1.3752384452E+00 -1.4831874787E+00 -1.5857192965E+00 + -1.6815749714E+00 -1.7695786236E+00 -1.8486512221E+00 -1.9178230227E+00 + -1.9762444931E+00 -2.0231955860E+00 -2.0580932631E+00 -2.0804971676E+00 + -2.0901134232E+00 -2.0867964893E+00 -2.0705490932E+00 -2.0415202554E+00 + -2.0000014851E+00 -1.9464211906E+00 -1.8813372724E+00 -1.8054285750E+00 + -1.7194842234E+00 -1.6243924749E+00 -1.5211280584E+00 -1.4107384524E+00 + -1.2943299958E+00 -1.1730531331E+00 -1.0480874722E+00 -9.2062677608E-01 + -7.9186409411E-01 -6.6297723309E-01 -5.3511476459E-01 -4.0938275498E-01 + -2.8683251621E-01 -1.6844899210E-01 -5.5140513687E-02 5.2269706751E-02 + 1.5305107900E-01 2.4657251183E-01 3.3230583410E-01 4.0982967265E-01 + 4.7883054079E-01 5.3910301249E-01 5.9054812102E-01 6.3317061181E-01 + 6.6707477728E-01 6.9245843715E-01 7.0960815170E-01 7.1888895598E-01 + 7.2073814714E-01 7.1565722969E-01 7.0419830824E-01 6.8695784212E-01 + 6.6456613909E-01 6.3767659098E-01 6.0695381932E-01 5.7306668565E-01 + 5.3667795676E-01 4.9843565845E-01 4.5896519880E-01 4.1885922258E-01 + 3.7867427206E-01 3.3892398214E-01 3.0007435571E-01 2.6254005397E-01 + 2.2668172337E-01 1.9280436348E-01 1.6115671608E-01 1.3193170651E-01 + 1.0526933005E-01 8.1260672725E-02 5.9950713832E-02 4.1340980326E-02 + 2.5392664576E-02 1.2030165556E-02 1.1449998830E-03 -7.3999856435E-03 + -1.3766180910E-02 -1.8134646544E-02 -2.0701505164E-02 -2.1673378280E-02 + -2.1263046368E-02 -1.9685888356E-02 -1.7153506885E-02 -1.3872267208E-02 + -1.0039421716E-02 -5.8402945455E-03 -1.4459175127E-03 2.9876951068E-03 + 7.3240732701E-03 1.1445998236E-02 1.5254711502E-02 1.8670706195E-02 + 2.1632321977E-02 2.4098525180E-02 2.6045736448E-02 2.7465550791E-02 + 2.8363691568E-02 2.8759569248E-02 2.8684395719E-02 2.8177492138E-02 + 2.7285576270E-02 2.6061303265E-02 2.4560068495E-02 2.2838951223E-02 + 2.0956665912E-02 1.8968064006E-02 1.6926071592E-02 1.4881640113E-02 + 1.2878468908E-02 1.0955023836E-02 9.1461539054E-03 7.4779979514E-03 + 5.9702251379E-03 4.6386623851E-03 3.4900818963E-03 2.5259176398E-03 + 1.7440267218E-03 1.1340068894E-03 6.8245475751E-04 3.7199269305E-04 + 1.7980532826E-04 8.1027072051E-05 4.8165955532E-05 4.4918776300E-05 + 1.6335113598E-05 -2.3916882487E-06 -1.5347832897E-06 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 + + + 0.0000000000E+00 3.3926819602E-04 1.3423026381E-03 2.9649771736E-03 + 5.1343606960E-03 7.7496295697E-03 1.0683332478E-02 1.3782995257E-02 + 1.6873049872E-02 1.9757068432E-02 2.2220279966E-02 2.4032344745E-02 + 2.4950358140E-02 2.4722053436E-02 2.3089170742E-02 1.9790957048E-02 + 1.4567760739E-02 7.1646824257E-03 -2.6647571428E-03 -1.5154971953E-02 + -3.0524729289E-02 -4.8973671508E-02 -7.0678982025E-02 -9.5792233989E-02 + -1.2443645989E-01 -1.5670347878E-01 -1.9265151465E-01 -2.3230313995E-01 + -2.7564356940E-01 -3.2261933452E-01 -3.7313735903E-01 -4.2706445411E-01 + -4.8422724365E-01 -5.4441253331E-01 -6.0736815494E-01 -6.7280418163E-01 + -7.4039472117E-01 -8.0977999496E-01 -8.8056891805E-01 -9.5234212299E-01 + -1.0246552422E+00 -1.0970426178E+00 -1.1690213036E+00 -1.2400953403E+00 + -1.3097602602E+00 -1.3775077779E+00 -1.4428306162E+00 -1.5052274140E+00 + -1.5642076111E+00 -1.6192964501E+00 -1.6700398617E+00 -1.7160090074E+00 + -1.7568047199E+00 -1.7920622486E+00 -1.8214545753E+00 -1.8446965271E+00 + -1.8615477986E+00 -1.8718157422E+00 -1.8753578113E+00 -1.8720832856E+00 + -1.8619545702E+00 -1.8449880506E+00 -1.8212541423E+00 -1.7908769810E+00 + -1.7540334104E+00 -1.7109517609E+00 -1.6619091666E+00 -1.6072294707E+00 + -1.5472801924E+00 -1.4824688742E+00 -1.4132385398E+00 -1.3400640961E+00 + -1.2634474319E+00 -1.1839125740E+00 -1.1020007271E+00 -1.0182637939E+00 + -9.3326035755E-01 -8.4754988035E-01 -7.6168739697E-01 -6.7621833876E-01 + -5.9167355655E-01 -5.0856460743E-01 -4.2737935150E-01 -3.4857804855E-01 + -2.7259291435E-01 -1.9982808127E-01 -1.3065556838E-01 -6.5410321491E-02 + -4.3859424412E-03 5.2168794542E-02 1.0405257982E-01 1.5111333869E-01 + 1.9324914764E-01 2.3040833061E-01 2.6258878318E-01 2.8983658271E-01 + 3.1224392186E-01 3.2994657109E-01 3.4312112986E-01 3.5198051933E-01 + 3.5677037070E-01 3.5776475151E-01 3.5526169018E-01 3.4957966614E-01 + 3.4105076849E-01 3.3001585169E-01 3.1682125958E-01 3.0181383957E-01 + 2.8533912702E-01 2.6773127430E-01 2.4931096104E-01 2.3038473661E-01 + 2.1124272467E-01 1.9215298401E-01 1.7335372896E-01 1.5506117159E-01 + 1.3746822053E-01 1.2073503349E-01 1.0499062915E-01 9.0339430843E-02 + 7.6862538782E-02 6.4602290415E-02 5.3581942552E-02 4.3803754802E-02 + 3.5241253622E-02 2.7850999248E-02 2.1574482260E-02 1.6335292542E-02 + 1.2047590728E-02 8.6161355294E-03 5.9398450808E-03 3.9171607141E-03 + 2.4412851268E-03 1.4146206142E-03 7.4289686047E-04 3.3348650112E-04 + 1.1481678081E-04 1.6308184608E-05 -1.7347596771E-05 -1.7272691425E-05 + -7.8133394863E-06 9.1225652047E-07 5.8540909934E-07 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 + + + 1.4437245646E+01 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 1.3380201569E+00 0.0000000000E+00 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 -1.6499930844E+01 0.0000000000E+00 + 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 -2.8598023576E+00 + + + + + + 0.0000000000E+00 4.7859498887E-05 1.9355316570E-04 4.4340542956E-04 + 8.0788699632E-04 1.3015107415E-03 1.9426877588E-03 2.7535453252E-03 + 3.7597089978E-03 4.9900514717E-03 6.4764111993E-03 8.2532840995E-03 + 1.0357491950E-02 1.2827831278E-02 1.5704706704E-02 1.9029752823E-02 + 2.2845448696E-02 2.7194729055E-02 3.2120596215E-02 3.7665736556E-02 + 4.3872145324E-02 5.0780763155E-02 5.8431127647E-02 6.6861042840E-02 + 7.6106269269E-02 8.6200236923E-02 9.7173782975E-02 1.0905491609E-01 + 1.2186860821E-01 1.3563661512E-01 1.5037732622E-01 1.6610564368E-01 + 1.8283289070E-01 2.0056674882E-01 2.1931122568E-01 2.3906664422E-01 + 2.5982966860E-01 2.8159334394E-01 3.0434716607E-01 3.2807717624E-01 + 3.5276606799E-01 3.7839331847E-01 4.0493533507E-01 4.3236561662E-01 + 4.6065492750E-01 4.8977148236E-01 5.1968113968E-01 5.5034760183E-01 + 5.8173261662E-01 6.1379619057E-01 6.4649680109E-01 6.7979159474E-01 + 7.1363658791E-01 7.4798690102E-01 7.8279691109E-01 8.1802047441E-01 + 8.5361109488E-01 8.8952209397E-01 9.2570678529E-01 9.6211861639E-01 + 9.9871130945E-01 1.0354390103E+00 1.0722563643E+00 1.1091186782E+00 + 1.1459819721E+00 1.1828030648E+00 1.2195396780E+00 1.2561504649E+00 + 1.2925950716E+00 1.3288341836E+00 1.3648295609E+00 1.4005440590E+00 + 1.4359416538E+00 1.4709874573E+00 1.5056477313E+00 1.5398898878E+00 + 1.5736825013E+00 1.6069953109E+00 1.6397992236E+00 1.6720663167E+00 + 1.7037698410E+00 1.7348842243E+00 1.7653850763E+00 1.7952491938E+00 + 1.8244545682E+00 1.8529803932E+00 1.8808070734E+00 1.9079162346E+00 + 1.9342907329E+00 1.9599146652E+00 1.9847733780E+00 2.0088534760E+00 + 2.0321428287E+00 2.0546305759E+00 2.0763071296E+00 2.0971641749E+00 + 2.1171946689E+00 2.1363928519E+00 2.1547541724E+00 2.1722753377E+00 + 2.1889542756E+00 2.2047901137E+00 2.2197831544E+00 2.2339348833E+00 + 2.2472478540E+00 2.2597256784E+00 2.2713730273E+00 2.2821955710E+00 + 2.2921999978E+00 2.3013938222E+00 2.3097853903E+00 2.3173838959E+00 + 2.3241993514E+00 2.3302424744E+00 2.3355244927E+00 2.3400573297E+00 + 2.3438535775E+00 2.3469262215E+00 2.3492886062E+00 2.3509545872E+00 + 2.3519385946E+00 2.3522549210E+00 2.3519183364E+00 2.3509440563E+00 + 2.3493471324E+00 2.3471428062E+00 2.3443467150E+00 2.3409742633E+00 + 2.3370408613E+00 2.3325622891E+00 2.3275539199E+00 2.3220311066E+00 + 2.3160095528E+00 2.3095042782E+00 2.3025304720E+00 2.2951034371E+00 + 2.2872377496E+00 2.2789483531E+00 2.2702497921E+00 2.2611562710E+00 + 2.2516823407E+00 2.2418416462E+00 2.2316481521E+00 2.2211154467E+00 + 2.2102567308E+00 2.1990854688E+00 2.1876142404E+00 2.1758559909E+00 + 2.1638230406E+00 2.1515276486E+00 2.1389818831E+00 2.1261973283E+00 + 2.1131857484E+00 2.0999581362E+00 2.0865257879E+00 2.0728992702E+00 + 2.0590892975E+00 2.0451060687E+00 2.0309597175E+00 2.0166600500E+00 + 2.0022166518E+00 1.9876389133E+00 1.9729359048E+00 1.9581165824E+00 + 1.9431895324E+00 1.9281632636E+00 1.9130459060E+00 1.8978455147E+00 + 1.8825697872E+00 1.8672263245E+00 1.8518224113E+00 1.8363652001E+00 + 1.8208615782E+00 1.8053182608E+00 1.7897417492E+00 1.7741383380E+00 + 1.7585141486E+00 1.7428750782E+00 1.7272268691E+00 1.7115750500E+00 + 1.6959249798E+00 1.6802818527E+00 1.6646506355E+00 1.6490362265E+00 + 1.6334431879E+00 1.6178761560E+00 1.6023392961E+00 1.5868369649E+00 + 1.5713730373E+00 1.5559514993E+00 1.5405760160E+00 1.5252501679E+00 + 1.5099774718E+00 1.4947610699E+00 1.4796043621E+00 1.4645101006E+00 + 1.4494814610E+00 1.4345210542E+00 1.4196316056E+00 1.4048157238E+00 + 1.3900756316E+00 1.3754139430E+00 1.3608325228E+00 1.3463337509E+00 + 1.3319195031E+00 1.3175916103E+00 1.3033521208E+00 1.2892022884E+00 + 1.2751441615E+00 1.2611790158E+00 1.2473082916E+00 1.2335335654E+00 + 1.2198556103E+00 1.2062760996E+00 1.1927958820E+00 1.1794159591E+00 + 1.1661375670E+00 1.1529610806E+00 1.1398877691E+00 1.1269182394E+00 + 1.1140529663E+00 1.1012929646E+00 1.0886383687E+00 1.0760899123E+00 + 1.0636481888E+00 1.0513130373E+00 1.0390853634E+00 1.0269652263E+00 + 1.0149526744E+00 1.0030483060E+00 9.9125184020E-01 9.7956354330E-01 + 9.6798370595E-01 9.5651175627E-01 9.4514815942E-01 9.3389285630E-01 + 9.2274521184E-01 9.1170567770E-01 9.0077388531E-01 8.8994932492E-01 + 8.7923225194E-01 8.6862209030E-01 8.5811843573E-01 8.4772136714E-01 + 8.3743013886E-01 8.2724442227E-01 8.1716414628E-01 8.0718843219E-01 + 7.9731699136E-01 7.8754963318E-01 7.7788538085E-01 7.6832394665E-01 + 7.5886505283E-01 7.4950765838E-01 7.4025143486E-01 7.3109605066E-01 + 7.2204043388E-01 7.1308417176E-01 7.0422691194E-01 6.9546758520E-01 + 6.8680564914E-01 6.7824076269E-01 6.6977189374E-01 6.6139832380E-01 + 6.5311975323E-01 6.4493522206E-01 6.3684378994E-01 6.2884522543E-01 + 6.2093867550E-01 6.1312293590E-01 6.0539786474E-01 5.9776271912E-01 + 5.9021608620E-01 5.8275783804E-01 5.7538727366E-01 5.6810312998E-01 + 5.6090491799E-01 5.5379211000E-01 5.4676363663E-01 5.3981859507E-01 + 5.3295664852E-01 5.2617695945E-01 5.1947817785E-01 5.1286016073E-01 + 5.0632215139E-01 4.9986288243E-01 4.9348185573E-01 4.8717852802E-01 + 4.8095191177E-01 4.7480095669E-01 4.6872538554E-01 4.6272443218E-01 + 4.5679676822E-01 4.5094207796E-01 4.4515973496E-01 4.3944873512E-01 + 4.3380812107E-01 4.2823758725E-01 4.2273638540E-01 4.1730324109E-01 + 4.1193780872E-01 4.0663950062E-01 4.0140741638E-01 3.9624048793E-01 + 3.9113848548E-01 3.8610069909E-01 3.8112601560E-01 3.7621385802E-01 + 3.7136378621E-01 3.6657508368E-01 3.6184647863E-01 3.5717781339E-01 + 3.5256845914E-01 3.4801757050E-01 3.4352415675E-01 3.3908800839E-01 + 3.3470847096E-01 3.3038458044E-01 3.2611565931E-01 3.2190137729E-01 + 3.1774108782E-01 3.1363374585E-01 3.0957892543E-01 3.0557620002E-01 + 3.0162493553E-01 2.9772403985E-01 2.9387327597E-01 2.9007214924E-01 + 2.8632004183E-01 2.8261584420E-01 2.7895944865E-01 2.7535032112E-01 + 2.7178785440E-01 2.6827097357E-01 2.6479961859E-01 2.6137325250E-01 + 2.5799128280E-01 2.5465268696E-01 2.5135740657E-01 2.4810492608E-01 + 2.4489469195E-01 2.4172568791E-01 2.3859787669E-01 2.3551076584E-01 + 2.3246382893E-01 2.2945611554E-01 2.2648752526E-01 2.2355762384E-01 + 2.2066591166E-01 2.1781152761E-01 2.1499426219E-01 2.1221376016E-01 + 2.0946954939E-01 2.0676087717E-01 2.0408738623E-01 2.0144881682E-01 + 1.9884472468E-01 1.9627448372E-01 1.9373755507E-01 1.9123378697E-01 + 1.8876276311E-01 1.8632400009E-01 1.8391675136E-01 1.8154098015E-01 + 1.7919629787E-01 1.7688229264E-01 1.7459824535E-01 1.7234398433E-01 + 1.7011923139E-01 1.6792360375E-01 1.6575655504E-01 1.6361762568E-01 + 1.6150669470E-01 1.5942340764E-01 1.5736739012E-01 1.5533792641E-01 + 1.5333500502E-01 1.5135831315E-01 1.4940750546E-01 1.4748206134E-01 + 1.4558162223E-01 1.4370606187E-01 1.4185506283E-01 1.4002829067E-01 + 1.3822510456E-01 1.3644548381E-01 1.3468916075E-01 1.3295582901E-01 + 1.3124506401E-01 1.2955645276E-01 1.2788993172E-01 1.2624522117E-01 + 1.2462202703E-01 1.2301984173E-01 1.2143849769E-01 1.1987783513E-01 + 1.1833758643E-01 1.1681747066E-01 1.1531692592E-01 1.1383597467E-01 + 1.1237438225E-01 1.1093189380E-01 1.0950818553E-01 1.0810283595E-01 + 1.0671583525E-01 1.0534695294E-01 1.0399594738E-01 1.0266246502E-01 + 1.0134620687E-01 1.0004712271E-01 9.8764994650E-02 9.7499594530E-02 + 9.6250557961E-02 9.5017668238E-02 9.3800851445E-02 9.2599902427E-02 + 9.1414606624E-02 9.0244605216E-02 8.9089727141E-02 8.7949890700E-02 + 8.6824903488E-02 8.5714564476E-02 8.4618534614E-02 8.3536655840E-02 + 8.2468853121E-02 8.1414946671E-02 8.0374748813E-02 7.9347952631E-02 + 7.8334384347E-02 7.7333988264E-02 7.6346596980E-02 7.5372035880E-02 + 7.4410041038E-02 7.3460398052E-02 7.2523081249E-02 7.1597935291E-02 + 7.0684798248E-02 6.9783458637E-02 6.8893640463E-02 6.8015356545E-02 + 6.7148463210E-02 6.6292810772E-02 6.5448243497E-02 6.4614421041E-02 + 6.3791386841E-02 6.2979013012E-02 6.2177161619E-02 6.1385689211E-02 + 6.0604328028E-02 5.9833006906E-02 5.9071662548E-02 5.8320168230E-02 + 5.7578392209E-02 5.6846146173E-02 5.6123232310E-02 5.5409654961E-02 + 5.4705298052E-02 5.4010040945E-02 5.3323758411E-02 5.2646182826E-02 + 5.1977323059E-02 5.1317093874E-02 5.0665385117E-02 5.0022082470E-02 + 4.9387010365E-02 4.8760018154E-02 4.8141103569E-02 4.7530166321E-02 + 4.6927102338E-02 4.6331803742E-02 4.5744043179E-02 4.5163814073E-02 + 4.4591052867E-02 4.4025665082E-02 4.3467552792E-02 4.2916589902E-02 + 4.2372589385E-02 4.1835578572E-02 4.1305471934E-02 4.0782180820E-02 + 4.0265613437E-02 3.9755612426E-02 3.9252085351E-02 3.8755021601E-02 + 3.8264341142E-02 3.7779961100E-02 3.7301795742E-02 3.6829669407E-02 + 3.6363557122E-02 3.5903421648E-02 3.5449188366E-02 3.5000780074E-02 + 3.4558116974E-02 3.4121016115E-02 3.3689495641E-02 3.3263502446E-02 + 3.2842967198E-02 3.2427818221E-02 3.2017981483E-02 3.1613275859E-02 + 3.1213741545E-02 3.0819319209E-02 3.0429944641E-02 3.0045551512E-02 + 2.9666071353E-02 2.9291332383E-02 2.8921378922E-02 2.8556153760E-02 + 2.8195597626E-02 2.7839649325E-02 2.7488245727E-02 2.7141230680E-02 + 2.6798637420E-02 2.6460417959E-02 2.6126517749E-02 2.5796880502E-02 + 2.5471448180E-02 2.5150085629E-02 2.4832802122E-02 2.4519564796E-02 + 2.4210323597E-02 2.3905026904E-02 2.3603621512E-02 2.3305997892E-02 + 2.3012130578E-02 2.2722006572E-02 2.2435580079E-02 2.2152803890E-02 + 2.1873629367E-02 2.1597976507E-02 2.1325776471E-02 2.1057039632E-02 + 2.0791724214E-02 2.0529787162E-02 2.0271184134E-02 2.0015867662E-02 + 1.9763719375E-02 1.9514775107E-02 1.9268996854E-02 1.9026345458E-02 + 1.8786780603E-02 1.8550260812E-02 1.8316700132E-02 1.8086075191E-02 + 1.7858379859E-02 1.7633578620E-02 1.7411634919E-02 1.7192511151E-02 + 1.6976161386E-02 1.6762494506E-02 1.6551538285E-02 1.6343260598E-02 + 1.6137628385E-02 1.5934607644E-02 1.5734163430E-02 1.5536226144E-02 + 1.5340767172E-02 1.5147786973E-02 1.4957255726E-02 1.4769142768E-02 + 1.4583416587E-02 1.4400044817E-02 1.4218942566E-02 1.4040126655E-02 + 1.3863577445E-02 1.3689267354E-02 1.3517168040E-02 1.3347250396E-02 + 1.3179476420E-02 1.3013777402E-02 1.2850175946E-02 1.2688647309E-02 + 1.2529166064E-02 1.2371706102E-02 1.2216240626E-02 1.2062724853E-02 + 1.1911115118E-02 1.1761423733E-02 1.1613627947E-02 1.1467704401E-02 + 1.1323629117E-02 1.1181377503E-02 1.1040903112E-02 1.0902176185E-02 + 1.0765203733E-02 1.0629964908E-02 1.0496438313E-02 1.0364602001E-02 + 1.0234433467E-02 1.0105888842E-02 9.9789428109E-03 9.8536014070E-03 + 9.7298455850E-03 9.6076558073E-03 9.4870120416E-03 9.3678937587E-03 + 9.2502631410E-03 9.1340914544E-03 9.0193873613E-03 8.9061335154E-03 + 8.7943121298E-03 8.6839049750E-03 + + diff --git a/_book/examples/elastic/C_gga_7au_100Ry_2s2p1d.orb b/_book/examples/elastic/C_gga_7au_100Ry_2s2p1d.orb new file mode 100644 index 00000000..d794652b --- /dev/null +++ b/_book/examples/elastic/C_gga_7au_100Ry_2s2p1d.orb @@ -0,0 +1,903 @@ +--------------------------------------------------------------------------- +Element C +Energy Cutoff(Ry) 100 +Radius Cutoff(a.u.) 7 +Lmax 2 +Number of Sorbital--> 2 +Number of Porbital--> 2 +Number of Dorbital--> 1 +--------------------------------------------------------------------------- +SUMMARY END + +Mesh 701 +dr 0.01 + Type L N + 0 0 0 +-4.78125306054776e-01 -4.78259215842453e-01 -4.78660732210148e-01 -4.79329216515240e-01 +-4.80263605497629e-01 -4.81462412994922e-01 -4.82923732341278e-01 -4.84645239447443e-01 +-4.86624196558835e-01 -4.88857456687775e-01 -4.91341468715227e-01 -4.94072283156635e-01 +-4.97045558585645e-01 -5.00256568708705e-01 -5.03700210082669e-01 -5.07371010466679e-01 +-5.11263137798685e-01 -5.15370409786043e-01 -5.19686304098656e-01 -5.24203969152153e-01 +-5.28916235467550e-01 -5.33815627592810e-01 -5.38894376570616e-01 -5.44144432935582e-01 +-5.49557480222982e-01 -5.55124948969918e-01 -5.60838031188683e-01 -5.66687695290886e-01 +-5.72664701439678e-01 -5.78759617306241e-01 -5.84962834205461e-01 -5.91264583584509e-01 +-5.97654953836827e-01 -6.04123907412860e-01 -6.10661298197651e-01 -6.17256889124323e-01 +-6.23900369991296e-01 -6.30581375450066e-01 -6.37289503129289e-01 -6.44014331859973e-01 +-6.50745439965631e-01 -6.57472423580411e-01 -6.64184914957423e-01 -6.70872600728810e-01 +-6.77525240078462e-01 -6.84132682787781e-01 -6.90684887114480e-01 -6.97171937464103e-01 +-7.03584061813721e-01 -7.09911648847239e-01 -7.16145264761739e-01 -7.22275669704515e-01 +-7.28293833800725e-01 -7.34190952732049e-01 -7.39958462827352e-01 -7.45588055627030e-01 +-7.51071691883645e-01 -7.56401614962458e-01 -7.61570363606607e-01 -7.66570784033050e-01 +-7.71396041326790e-01 -7.76039630102544e-01 -7.80495384404735e-01 -7.84757486818564e-01 +-7.88820476766957e-01 -7.92679257970267e-01 -7.96329105047928e-01 -7.99765669243590e-01 +-8.02984983257756e-01 -8.05983465174535e-01 -8.08757921471778e-01 -8.11305549106616e-01 +-8.13623936671258e-01 -8.15711064616758e-01 -8.17565304545425e-01 -8.19185417575475e-01 +-8.20570551784547e-01 -8.21720238741685e-01 -8.22634389140394e-01 -8.23313287548366e-01 +-8.23757586292406e-01 -8.23968298500032e-01 -8.23946790322046e-01 -8.23694772363196e-01 +-8.23214290350719e-01 -8.22507715073184e-01 -8.21577731624548e-01 -8.20427327990729e-01 +-8.19059783018196e-01 -8.17478653806267e-01 -8.15687762566623e-01 -8.13691182995448e-01 +-8.11493226205100e-01 -8.09098426263705e-01 -8.06511525392229e-01 -8.03737458869637e-01 +-8.00781339697549e-01 -7.97648443076388e-01 -7.94344190745422e-01 -7.90874135239240e-01 +-7.87243944113160e-01 -7.83459384189784e-01 -7.79526305878413e-01 -7.75450627618298e-01 +-7.71238320495801e-01 -7.66895393084347e-01 -7.62427876554721e-01 -7.57841810101676e-01 +-7.53143226731086e-01 -7.48338139449920e-01 -7.43432527899199e-01 -7.38432325467816e-01 +-7.33343406922660e-01 -7.28171576587900e-01 -7.22922557103576e-01 -7.17601978790826e-01 +-7.12215369648133e-01 -7.06768145999984e-01 -7.01265603816242e-01 -6.95712910717389e-01 +-6.90115098677625e-01 -6.84477057434630e-01 -6.78803528611562e-01 -6.73099100553700e-01 +-6.67368203878974e-01 -6.61615107738487e-01 -6.55843916780113e-01 -6.50058568805242e-01 +-6.44262833105871e-01 -6.38460309466441e-01 -6.32654427812191e-01 -6.26848448483210e-01 +-6.21045463111060e-01 -6.15248396072529e-01 -6.09460006493091e-01 -6.03682890770719e-01 +-5.97919485589004e-01 -5.92172071387043e-01 -5.86442776252238e-01 -5.80733580201054e-01 +-5.75046319811867e-01 -5.69382693173379e-01 -5.63744265111558e-01 -5.58132472657829e-01 +-5.52548630721169e-01 -5.46993937926896e-01 -5.41469482585314e-01 -5.35976248753890e-01 +-5.30515122357427e-01 -5.25086897331539e-01 -5.19692281755914e-01 -5.14331903945038e-01 +-5.09006318465510e-01 -5.03716012050615e-01 -4.98461409384520e-01 -4.93242878730251e-01 +-4.88060737377534e-01 -4.82915256888593e-01 -4.77806668122040e-01 -4.72735166017192e-01 +-4.67700914123290e-01 -4.62704048860354e-01 -4.57744683500633e-01 -4.52822911861861e-01 +-4.47938811705760e-01 -4.43092447837454e-01 -4.38283874903621e-01 -4.33513139889310e-01 +-4.28780284315445e-01 -4.24085346140975e-01 -4.19428361375526e-01 -4.14809365410215e-01 +-4.10228394075927e-01 -4.05685484439958e-01 -4.01180675353319e-01 -3.96714007762319e-01 +-3.92285524799193e-01 -3.87895271667565e-01 -3.83543295339398e-01 -3.79229644080788e-01 +-3.74954366824562e-01 -3.70717512408003e-01 -3.66519128694333e-01 -3.62359261596665e-01 +-3.58237954023125e-01 -3.54155244761650e-01 -3.50111167322668e-01 -3.46105748757412e-01 +-3.42139008469052e-01 -3.38210957033144e-01 -3.34321595043083e-01 -3.30470911995368e-01 +-3.26658885228479e-01 -3.22885478928107e-01 -3.19150643210330e-01 -3.15454313293118e-01 +-3.11796408765328e-01 -3.08176832961018e-01 -3.04595472445627e-01 -3.01052196619236e-01 +-2.97546857440753e-01 -2.94079289275590e-01 -2.90649308868046e-01 -2.87256715438347e-01 +-2.83901290903041e-01 -2.80582800216246e-01 -2.77300991828114e-01 -2.74055598255785e-01 +-2.70846336761090e-01 -2.67672910128364e-01 -2.64535007534845e-01 -2.61432305505401e-01 +-2.58364468942672e-01 -2.55331152223127e-01 -2.52332000349097e-01 -2.49366650146457e-01 +-2.46434731497402e-01 -2.43535868597578e-01 -2.40669681226790e-01 -2.37835786022548e-01 +-2.35033797745867e-01 -2.32263330528957e-01 -2.29523999094788e-01 -2.26815419938918e-01 +-2.24137212464464e-01 -2.21489000061677e-01 -2.18870411124215e-01 -2.16281079994891e-01 +-2.13720647834452e-01 -2.11188763407723e-01 -2.08685083782282e-01 -2.06209274935714e-01 +-2.03761012268362e-01 -2.01339981019396e-01 -1.98945876584937e-01 -1.96578404737838e-01 +-1.94237281749665e-01 -1.91922234416232e-01 -1.89632999988933e-01 -1.87369326014889e-01 +-1.85130970089718e-01 -1.82917699527429e-01 -1.80729290952643e-01 -1.78565529820910e-01 +-1.76426209873468e-01 -1.74311132533271e-01 -1.72220106249479e-01 -1.70152945798000e-01 +-1.68109471545884e-01 -1.66089508687591e-01 -1.64092886461230e-01 -1.62119437352938e-01 +-1.60168996297487e-01 -1.58241399883124e-01 -1.56336485568434e-01 -1.54454090918778e-01 +-1.52594052869524e-01 -1.50756207022919e-01 -1.48940386984980e-01 -1.47146423748331e-01 +-1.45374145126326e-01 -1.43623375243249e-01 -1.41893934084760e-01 -1.40185637112076e-01 +-1.38498294942763e-01 -1.36831713100274e-01 -1.35185691833697e-01 -1.33560026008492e-01 +-1.31954505068248e-01 -1.30368913066879e-01 -1.28803028769928e-01 -1.27256625823061e-01 +-1.25729472985174e-01 -1.24221334422969e-01 -1.22731970063291e-01 -1.21261135999011e-01 +-1.19808584943800e-01 -1.18374066730691e-01 -1.16957328849009e-01 -1.15558117013917e-01 +-1.14176175762621e-01 -1.12811249071039e-01 -1.11463080984695e-01 -1.10131416257459e-01 +-1.08816000991833e-01 -1.07516583274476e-01 -1.06232913800840e-01 -1.04964746482936e-01 +-1.03711839034484e-01 -1.02473953528009e-01 -1.01250856918752e-01 -1.00042321530668e-01 +-9.88481255001869e-02 -9.76680531738838e-02 -9.65018954566802e-02 -9.53494501077281e-02 +-9.42105219816562e-02 -9.30849232134123e-02 -9.19724733455027e-02 -9.08729993969976e-02 +-8.97863358742409e-02 -8.87123247237656e-02 -8.76508152284704e-02 -8.66016638486490e-02 +-8.55647340099798e-02 -8.45398958410734e-02 -8.35270258636368e-02 -8.25260066387357e-02 +-8.15367263730314e-02 -8.05590784892051e-02 -7.95929611650966e-02 -7.86382768463329e-02 +-7.76949317374311e-02 -7.67628352765201e-02 -7.58418995989308e-02 -7.49320389949575e-02 +-7.40331693670983e-02 -7.31452076920346e-02 -7.22680714925087e-02 -7.14016783241142e-02 +-7.05459452818163e-02 -6.97007885307843e-02 -6.88661228658318e-02 -6.80418613034446e-02 +-6.72279147100185e-02 -6.64241914695409e-02 -6.56305971935353e-02 -6.48470344756500e-02 +-6.40734026928100e-02 -6.33095978543838e-02 -6.25555125003266e-02 -6.18110356487810e-02 +-6.10760527931207e-02 -6.03504459479415e-02 -5.96340937430293e-02 -5.89268715638687e-02 +-5.82286517368135e-02 -5.75393037566177e-02 -5.68586945536279e-02 -5.61866887975680e-02 +-5.55231492345177e-02 -5.48679370533786e-02 -5.42209122778698e-02 -5.35819341798654e-02 +-5.29508617097155e-02 -5.23275539390507e-02 -5.17118705114885e-02 -5.11036720966060e-02 +-5.05028208425528e-02 -4.99091808227180e-02 -4.93226184719583e-02 -4.87430030080266e-02 +-4.81702068340153e-02 -4.76041059178430e-02 -4.70445801450657e-02 -4.64915136415769e-02 +-4.59447950630842e-02 -4.54043178485885e-02 -4.48699804354697e-02 -4.43416864341691e-02 +-4.38193447608711e-02 -4.33028697270051e-02 -4.27921810848216e-02 -4.22872040287319e-02 +-4.17878691525309e-02 -4.12941123630634e-02 -4.08058747513083e-02 -4.03231024222731e-02 +-3.98457462854828e-02 -3.93737618082267e-02 -3.89071087340741e-02 -3.84457507695018e-02 +-3.79896552417679e-02 -3.75387927314332e-02 -3.70931366831607e-02 -3.66526629986164e-02 +-3.62173496154501e-02 -3.57871760764485e-02 -3.53621230930292e-02 -3.49421721072777e-02 +-3.45273048567208e-02 -3.41175029459826e-02 -3.37127474293815e-02 -3.33130184083980e-02 +-3.29182946477790e-02 -3.25285532138435e-02 -3.21437691383193e-02 -3.17639151107766e-02 +-3.13889612024283e-02 -3.10188746237479e-02 -3.06536195180144e-02 -3.02931567925326e-02 +-2.99374439889022e-02 -2.95864351933181e-02 -2.92400809874956e-02 -2.88983284404086e-02 +-2.85611211406342e-02 -2.82283992687006e-02 -2.79000997084488e-02 -2.75761561960419e-02 +-2.72564995048958e-02 -2.69410576644636e-02 -2.66297562104844e-02 -2.63225184640127e-02 +-2.60192658362757e-02 -2.57199181561687e-02 -2.54243940169925e-02 -2.51326111388644e-02 +-2.48444867430996e-02 -2.45599379347581e-02 -2.42788820894940e-02 -2.40012372408151e-02 +-2.37269224638795e-02 -2.34558582520062e-02 -2.31879668821644e-02 -2.29231727658332e-02 +-2.26614027817833e-02 -2.24025865875238e-02 -2.21466569063825e-02 -2.18935497874403e-02 +-2.16432048358195e-02 -2.13955654111272e-02 -2.11505787921790e-02 -2.09081963064668e-02 +-2.06683734231865e-02 -2.04310698090088e-02 -2.01962493461430e-02 -1.99638801126180e-02 +-1.97339343250777e-02 -1.95063882447565e-02 -1.92812220476601e-02 -1.90584196603274e-02 +-1.88379685628818e-02 -1.86198595613999e-02 -1.84040865319175e-02 -1.81906461386683e-02 +-1.79795375293929e-02 -1.77707620107771e-02 -1.75643227072588e-02 -1.73602242066034e-02 +-1.71584721957621e-02 -1.69590730906170e-02 -1.67620336632634e-02 -1.65673606704955e-02 +-1.63750604871397e-02 -1.61851387478194e-02 -1.59976000006451e-02 -1.58124473761953e-02 +-1.56296822749937e-02 -1.54493040764988e-02 -1.52713098724010e-02 -1.50956942267779e-02 +-1.49224489653833e-02 -1.47515629960587e-02 -1.45830221619388e-02 -1.44168091288001e-02 +-1.42529033075583e-02 -1.40912808125749e-02 -1.39319144560762e-02 -1.37747737786339e-02 +-1.36198251152986e-02 -1.34670316966289e-02 -1.33163537835157e-02 -1.31677488343704e-02 +-1.30211717029293e-02 -1.28765748646276e-02 -1.27339086692214e-02 -1.25931216170750e-02 +-1.24541606563110e-02 -1.23169714978114e-02 -1.21814989448921e-02 -1.20476872343318e-02 +-1.19154803853290e-02 -1.17848225528901e-02 -1.16556583821084e-02 -1.15279333597962e-02 +-1.14015941599571e-02 -1.12765889796546e-02 -1.11528678619309e-02 -1.10303830025606e-02 +-1.09090890375887e-02 -1.07889433087931e-02 -1.06699061044346e-02 -1.05519408729003e-02 +-1.04350144071190e-02 -1.03190969979154e-02 -1.02041625547769e-02 -1.00901886928302e-02 +-9.97715678515845e-03 -9.86505197993073e-03 -9.75386318216427e-03 -9.64358300028607e-03 +-9.53420765800884e-03 -9.42573687237697e-03 -9.31817369917055e-03 -9.21152434717695e-03 +-9.10579796314471e-03 -9.00100638952331e-03 -8.89716389735963e-03 -8.79428689696480e-03 +-8.69239362918556e-03 -8.59150384030305e-03 -8.49163844374398e-03 -8.39281917191840e-03 +-8.29506822159610e-03 -8.19840789629757e-03 -8.10286024920472e-03 -8.00844673009399e-03 +-7.91518783975411e-03 -7.82310279527956e-03 -7.73220920952540e-03 -7.64252278787057e-03 +-7.55405704526982e-03 -7.46682304637513e-03 -7.38082917128492e-03 -7.29608090922752e-03 +-7.21258068221445e-03 -7.13032770040541e-03 -7.04931785061898e-03 -6.96954361909735e-03 +-6.89099404930096e-03 -6.81365473516424e-03 -6.73750784989832e-03 -6.66253221007843e-03 +-6.58870337440704e-03 -6.51599377620495e-03 -6.44437288835108e-03 -6.37380741907232e-03 +-6.30426153668209e-03 -6.23569712107972e-03 -6.16807403955996e-03 -6.10135044423897e-03 +-6.03548308819043e-03 -5.97042765719669e-03 -5.90613911386433e-03 -5.84257205072691e-03 +-5.77968104886523e-03 -5.71742103851598e-03 -5.65574765811440e-03 -5.59461760822638e-03 +-5.53398899686871e-03 -5.47382167279397e-03 -5.41407754342834e-03 -5.35472087429363e-03 +-5.29571856691915e-03 -5.23704041245352e-03 -5.17865931841695e-03 -5.12055150629116e-03 +-5.06269667792387e-03 -5.00507814902306e-03 -4.94768294833358e-03 -4.89050188141944e-03 +-4.83352955831668e-03 -4.77676438467148e-03 -4.72020851633304e-03 -4.66386777772508e-03 +-4.60775154467342e-03 -4.55187259271413e-03 -4.49624691224456e-03 -4.44089349220586e-03 +-4.38583407429528e-03 -4.33109287999880e-03 -4.27669631300458e-03 -4.22267263980473e-03 +-4.16905165151226e-03 -4.11586431011240e-03 -4.06314238252754e-03 -4.01091806600506e-03 +-3.95922360843234e-03 -3.90809092724452e-03 -3.85755123061735e-03 -3.80763464462788e-03 +-3.75836985002159e-03 -3.70978373214514e-03 -3.66190104749026e-03 -3.61474411014665e-03 +-3.56833250128371e-03 -3.52268280457031e-03 -3.47780837020458e-03 -3.43371910996097e-03 +-3.39042132537402e-03 -3.34791757086892e-03 -3.30620655332083e-03 -3.26528306918294e-03 +-3.22513797996782e-03 -3.18575822650259e-03 -3.14712688201083e-03 -3.10922324370190e-03 +-3.07202296218059e-03 -3.03549820762538e-03 -2.99961787132871e-03 -2.96434780084935e-03 +-2.92965106669901e-03 -2.89548825817597e-03 -2.86181780567008e-03 -2.82859632649950e-03 +-2.79577899110289e-03 -2.76331990620135e-03 -2.73117251136852e-03 -2.69928998530185e-03 +-2.66762565797852e-03 -2.63613342480483e-03 -2.60476815882909e-03 -2.57348611708676e-03 +-2.54224533718148e-03 -2.51100602027713e-03 -2.47973089678455e-03 -2.44838557116872e-03 +-2.41693884247957e-03 -2.38536299741909e-03 -2.35363407299705e-03 -2.32173208609577e-03 +-2.28964122755976e-03 -2.25735001874258e-03 -2.22485142878290e-03 -2.19214295123573e-03 +-2.15922663905761e-03 -2.12610909732194e-03 -2.09280143343149e-03 -2.05931916498623e-03 +-2.02568208585599e-03 -1.99191409139768e-03 -1.95804296413740e-03 -1.92410012160913e-03 +-1.89012032839971e-03 -1.85614137478847e-03 -1.82220372469005e-03 -1.78835013590468e-03 +-1.75462525595020e-03 -1.72107519698956e-03 -1.68774709357941e-03 -1.65468864713986e-03 +-1.62194766118815e-03 -1.58957157148412e-03 -1.55760697530219e-03 -1.52609916407414e-03 +-1.49509166363623e-03 -1.46462578626292e-03 -1.43474019857863e-03 -1.40547050930605e-03 +-1.37684888063159e-03 -1.34890366674895e-03 -1.32165908287130e-03 -1.29513490767764e-03 +-1.26934622177478e-03 -1.24430318429812e-03 -1.22001084922621e-03 -1.19646902233020e-03 +-1.17367215888646e-03 -1.15160930132009e-03 -1.13026405478214e-03 -1.10961459725005e-03 +-1.08963371904506e-03 -1.07028888465308e-03 -1.05154230741483e-03 -1.03335102504958e-03 +-1.01566696120001e-03 -9.98436955420221e-04 -9.81602741587714e-04 -9.65100853071073e-04 +-9.48862432763395e-04 -9.32812928121516e-04 -9.16871656624380e-04 -9.00951236671033e-04 +-8.84956893982395e-04 -8.68785674970927e-04 -8.52325626822238e-04 -8.35455039004273e-04 +-8.18041881379027e-04 -7.99943617473242e-04 -7.81007613599005e-04 -7.61072399532818e-04 +-7.39970056887047e-04 -7.17530008549250e-04 -6.93584447698148e-04 -6.67975569916737e-04 +-6.40564651240182e-04 -6.11242847235441e-04 -5.79943377932700e-04 -5.46654522423618e-04 +-5.11432594925823e-04 -4.74413838338791e-04 -4.35823984874064e-04 -3.95984132005502e-04 +-3.55311599812163e-04 -3.14314599766721e-04 -2.73579869490461e-04 -2.33752909664251e-04 +-1.95511073871933e-04 -1.59530463480764e-04 -1.26448301945735e-04 -9.68231264114844e-05 +-7.10956541908184e-05 -4.95534783108567e-05 -3.23027578594907e-05 -1.92497613380717e-05 +-1.00944964570978e-05 -4.33775888429306e-06 -1.30183376752702e-06 -1.63895616836073e-07 +0.00000000000000e+00 + Type L N + 0 0 1 +7.33745801545778e-01 7.33290806539404e-01 7.31926443804244e-01 7.29654579504697e-01 +7.26478321620799e-01 7.22402016499204e-01 7.17431244008530e-01 7.11572811283351e-01 +7.04834745037023e-01 6.97226282419826e-01 6.88757860395480e-01 6.79441103606181e-01 +6.69288810693865e-01 6.58314939043479e-01 6.46534587912782e-01 6.33963979912456e-01 +6.20620440800381e-01 6.06522377554523e-01 5.91689254690363e-01 5.76141568790891e-01 +5.59900821220054e-01 5.42989488994175e-01 5.25430993790195e-01 5.07249669074626e-01 +4.88470725342898e-01 4.69120213465147e-01 4.49224986141600e-01 4.28812657478305e-01 +4.07911560702160e-01 3.86550704042881e-01 3.64759724818604e-01 3.42568841771315e-01 +3.20008805708063e-01 2.97110848513839e-01 2.73906630612210e-01 2.50428186959903e-01 +2.26707871671791e-01 2.02778301382734e-01 1.78672297462721e-01 1.54422827211307e-01 +1.30062944166702e-01 1.05625727673705e-01 8.11442218630545e-02 5.66513742025307e-02 +3.21799737873116e-02 7.76258954344762e-03 -1.65684914760146e-02 -4.07813255179918e-02 +-6.48443730912272e-02 -8.87265592719780e-02 -1.12397333160477e-01 -1.35826726294209e-01 +-1.58985409824179e-01 -1.81844750261488e-01 -2.04376863603877e-01 -2.26554667655176e-01 +-2.48351932355062e-01 -2.69743327942016e-01 -2.90704470778880e-01 -3.11211966678005e-01 +-3.31243451571470e-01 -3.50777629381380e-01 -3.69794306955549e-01 -3.88274425945122e-01 +-4.06200091512644e-01 -4.23554597771715e-01 -4.40322449872744e-01 -4.56489382663077e-01 +-4.72042375864168e-01 -4.86969665723109e-01 -5.01260753110861e-01 -5.14906408054708e-01 +-5.27898670707770e-01 -5.40230848773742e-01 -5.51897511420246e-01 -5.62894479729305e-01 +-5.73218813748211e-01 -5.82868796218562e-01 -5.91843913075243e-01 -6.00144830820633e-01 +-6.07773370892213e-01 -6.14732481153952e-01 -6.21026204653328e-01 -6.26659645796459e-01 +-6.31638934103605e-01 -6.35971185716107e-01 -6.39664462833702e-01 -6.42727731267975e-01 +-6.45170816303475e-01 -6.47004357062753e-01 -6.48239759575130e-01 -6.48889148751560e-01 +-6.48965319469267e-01 -6.48481686970183e-01 -6.47452236776317e-01 -6.45891474323364e-01 +-6.43814374510866e-01 -6.41236331363305e-01 -6.38173107991553e-01 -6.34640787038250e-01 +-6.30655721783922e-01 -6.26234488083088e-01 -6.21393837291254e-01 -6.16150650334686e-01 +-6.10521893065183e-01 -6.04524573031857e-01 -5.98175697791255e-01 -5.91492234866038e-01 +-5.84491073451065e-01 -5.77188987954016e-01 -5.69602603445914e-01 -5.61748363084975e-01 +-5.53642497565311e-01 -5.45300996630173e-01 -5.36739582677703e-01 -5.27973686475723e-01 +-5.19018424990834e-01 -5.09888581326319e-01 -5.00598586752854e-01 -4.91162504806097e-01 +-4.81594017415752e-01 -4.71906413021865e-01 -4.62112576625786e-01 -4.52224981715644e-01 +-4.42255683999215e-01 -4.32216316870794e-01 -4.22118088533171e-01 -4.11971780691002e-01 +-4.01787748727762e-01 -3.91575923275204e-01 -3.81345813081577e-01 -3.71106509083060e-01 +-3.60866689581643e-01 -3.50634626432270e-01 -3.40418192142207e-01 -3.30224867786476e-01 +-3.20061751644566e-01 -3.09935568465699e-01 -2.99852679272406e-01 -2.89819091615181e-01 +-2.79840470194447e-01 -2.69922147769891e-01 -2.60069136281389e-01 -2.50286138110236e-01 +-2.40577557414108e-01 -2.30947511474056e-01 -2.21399841996927e-01 -2.11938126321710e-01 +-2.02565688483498e-01 -1.93285610093964e-01 -1.84100741002350e-01 -1.75013709706042e-01 +-1.66026933484707e-01 -1.57142628236747e-01 -1.48362818001343e-01 -1.39689344153721e-01 +-1.31123874265323e-01 -1.22667910624347e-01 -1.14322798415629e-01 -1.06089733561983e-01 +-9.79697702319723e-02 -8.99638280215968e-02 -8.20726988195183e-02 -7.42970533672918e-02 +-6.66374475275389e-02 -5.90943282741506e-02 -5.16680394194222e-02 -4.43588270935487e-02 +-3.71668449921037e-02 -3.00921594070792e-02 -2.31347540567266e-02 -1.62945347288850e-02 +-9.57133375171257e-03 -2.96491430477236e-03 3.52502541769245e-03 9.89884818071260e-03 +1.61569738105607e-02 2.22998754169413e-02 2.83280757291166e-02 3.42421435411763e-02 +4.00426902631752e-02 4.57303665763418e-02 5.13058591919779e-02 5.67698877150261e-02 +6.21232016145307e-02 6.73665773043541e-02 7.25008153385191e-02 7.75267377263933e-02 +8.24451853736474e-02 8.72570156554307e-02 9.19631001285689e-02 9.65643223897609e-02 +1.01061576086735e-01 1.05455763089141e-01 1.09747791825565e-01 1.13938575792533e-01 +1.18029032240627e-01 1.22020081041992e-01 1.25912643742485e-01 1.29707642800577e-01 +1.33406001013860e-01 1.37008641132659e-01 1.40516485658796e-01 1.43930456826079e-01 +1.47251476757528e-01 1.50480467792801e-01 1.53618352977747e-01 1.56666056706425e-01 +1.59624505504500e-01 1.62494628941447e-01 1.65277360657674e-01 1.67973639491419e-01 +1.70584410689155e-01 1.73110627182234e-01 1.75553250911679e-01 1.77913254182325e-01 +1.80191621027034e-01 1.82389348561373e-01 1.84507448309004e-01 1.86546947478114e-01 +1.88508890169475e-01 1.90394338497170e-01 1.92204373603701e-01 1.93940096552022e-01 +1.95602629078113e-01 1.97193114188896e-01 1.98712716591707e-01 2.00162622943062e-01 +2.01544041906180e-01 2.02858204008477e-01 2.04106361292250e-01 2.05289786753712e-01 +2.06409773567686e-01 2.07467634097362e-01 2.08464698690721e-01 2.09402314267402e-01 +2.10281842701933e-01 2.11104659011410e-01 2.11872149357754e-01 2.12585708876682e-01 +2.13246739347412e-01 2.13856646718922e-01 2.14416838510181e-01 2.14928721103294e-01 +2.15393696949778e-01 2.15813161711345e-01 2.16188501357460e-01 2.16521089242698e-01 +2.16812283187389e-01 2.17063422585362e-01 2.17275825562593e-01 2.17450786210445e-01 +2.17589571916729e-01 2.17693420817213e-01 2.17763539389326e-01 2.17801100208763e-01 +2.17807239888379e-01 2.17783057217329e-01 2.17729611516742e-01 2.17647921226396e-01 +2.17538962734907e-01 2.17403669463854e-01 2.17242931214038e-01 2.17057593779796e-01 +2.16848458834922e-01 2.16616284091345e-01 2.16361783729265e-01 2.16085629095066e-01 +2.15788449660849e-01 2.15470834237160e-01 2.15133332428123e-01 2.14776456316058e-01 +2.14400682360545e-01 2.14006453494987e-01 2.13594181401904e-01 2.13164248946600e-01 +2.12717012747399e-01 2.12252805859425e-01 2.11771940547882e-01 2.11274711125998e-01 +2.10761396832236e-01 2.10232264721066e-01 2.09687572541488e-01 2.09127571577667e-01 +2.08552509426452e-01 2.07962632687175e-01 2.07358189539993e-01 2.06739432190154e-01 +2.06106619156842e-01 2.05460017386782e-01 2.04799904174484e-01 2.04126568872852e-01 +2.03440314379913e-01 2.02741458389572e-01 2.02030334396550e-01 2.01307292448038e-01 +2.00572699636999e-01 1.99826940334539e-01 1.99070416161248e-01 1.98303545699905e-01 +1.97526763954409e-01 1.96740521562192e-01 1.95945283769761e-01 1.95141529183181e-01 +1.94329748307548e-01 1.93510441891385e-01 1.92684119093823e-01 1.91851295494040e-01 +1.91012490963923e-01 1.90168227426199e-01 1.89319026521323e-01 1.88465407207251e-01 +1.87607883316833e-01 1.86746961097889e-01 1.85883136761199e-01 1.85016894061469e-01 +1.84148701935980e-01 1.83279012225045e-01 1.82408257497524e-01 1.81536849003626e-01 +1.80665174775921e-01 1.79793597898036e-01 1.78922454958837e-01 1.78052054708073e-01 +1.77182676927470e-01 1.76314571529163e-01 1.75447957891110e-01 1.74583024436827e-01 +1.73719928464386e-01 1.72858796227194e-01 1.71999723266629e-01 1.71142774994124e-01 +1.70287987517908e-01 1.69435368707207e-01 1.68584899484418e-01 1.67736535333555e-01 +1.66890208011185e-01 1.66045827444082e-01 1.65203283796083e-01 1.64362449684922e-01 +1.63523182528452e-01 1.62685326998366e-01 1.61848717558524e-01 1.61013181064193e-01 +1.60178539397906e-01 1.59344612117339e-01 1.58511219090475e-01 1.57678183093476e-01 +1.56845332347068e-01 1.56012502967844e-01 1.55179541311720e-01 1.54346306187865e-01 +1.53512670922674e-01 1.52678525254807e-01 1.51843777044003e-01 1.51008353778136e-01 +1.50172203865000e-01 1.49335297697339e-01 1.48497628481901e-01 1.47659212825520e-01 +1.46820091073633e-01 1.45980327398993e-01 1.45140009640783e-01 1.44299248896725e-01 +1.43458178873153e-01 1.42616955000389e-01 1.41775753322952e-01 1.40934769176355e-01 +1.40094215664247e-01 1.39254321951584e-01 1.38415331391267e-01 1.37577499503257e-01 +1.36741091826595e-01 1.35906381665918e-01 1.35073647755098e-01 1.34243171861326e-01 +1.33415236353587e-01 1.32590121759682e-01 1.31768104336107e-01 1.30949453674865e-01 +1.30134430370923e-01 1.29323283773385e-01 1.28516249842582e-01 1.27713549134228e-01 +1.26915384930496e-01 1.26121941536419e-01 1.25333382758341e-01 1.24549850579391e-01 +1.23771464044918e-01 1.22998318368848e-01 1.22230484269639e-01 1.21468007542332e-01 +1.20710908870815e-01 1.19959183882073e-01 1.19212803441814e-01 1.18471714188492e-01 +1.17735839300402e-01 1.17005079488231e-01 1.16279314203252e-01 1.15558403049211e-01 +1.14842187383994e-01 1.14130492095253e-01 1.13423127532530e-01 1.12719891576821e-01 +1.12020571827233e-01 1.11324947883205e-01 1.10632793699847e-01 1.09943879993239e-01 +1.09257976672032e-01 1.08574855271456e-01 1.07894291365805e-01 1.07216066935677e-01 +1.06539972666719e-01 1.05865810157271e-01 1.05193394013202e-01 1.04522553809354e-01 +1.03853135898296e-01 1.03185005048600e-01 1.02518045896512e-01 1.01852164196726e-01 +1.01187287859937e-01 1.00523367766921e-01 9.98603783511109e-02 9.91983179438690e-02 +9.85372088790148e-02 9.78770973554975e-02 9.72180530594940e-02 9.65601685495631e-02 +9.59035584108101e-02 9.52483581862849e-02 9.45947230960217e-02 9.39428265562184e-02 +9.32928585130100e-02 9.26450236071243e-02 9.19995391873662e-02 9.13566331923720e-02 +9.07165419213769e-02 9.00795077158349e-02 8.94457765746243e-02 8.88155957262297e-02 +8.81892111817361e-02 8.75668652926695e-02 8.69487943376926e-02 8.63352261618989e-02 +8.57263778919518e-02 8.51224537495912e-02 8.45236429850884e-02 8.39301179510713e-02 +8.33420323357898e-02 8.27595195733449e-02 8.21826914466916e-02 8.16116368973551e-02 +8.10464210537897e-02 8.04870844881826e-02 7.99336427092828e-02 7.93860858965301e-02 +7.88443788784108e-02 7.83084613555746e-02 7.77782483668595e-02 7.72536309939929e-02 +7.67344772983949e-02 7.62206334812393e-02 7.57119252557261e-02 7.52081594184390e-02 +7.47091256046926e-02 7.42145982109584e-02 7.37243384658042e-02 7.32380966293024e-02 +7.27556142995822e-02 7.22766268041212e-02 7.18008656525145e-02 7.13280610268226e-02 +7.08579442851988e-02 7.03902504543259e-02 6.99247206862719e-02 6.94611046556737e-02 +6.89991628737093e-02 6.85386688960917e-02 6.80794114033118e-02 6.76211961325742e-02 +6.71638476422765e-02 6.67072108914886e-02 6.62511526186631e-02 6.57955625057356e-02 +6.53403541158497e-02 6.48854655951220e-02 6.44308601311537e-02 6.39765261633502e-02 +6.35224773425252e-02 6.30687522397080e-02 6.26154138065154e-02 6.21625485918846e-02 +6.17102657223432e-02 6.12586956553230e-02 6.08079887172489e-02 6.03583134402690e-02 +5.99098547134794e-02 5.94628117663470e-02 5.90173960037095e-02 5.85738287132247e-02 +5.81323386674344e-02 5.76931596436934e-02 5.72565278860668e-02 5.68226795339319e-02 +5.63918480424048e-02 5.59642616198599e-02 5.55401407077131e-02 5.51196955272926e-02 +5.47031237180412e-02 5.42906080904720e-02 5.38823145162490e-02 5.34783899764978e-02 +5.30789607879718e-02 5.26841310250350e-02 5.22939811535660e-02 5.19085668908877e-02 +5.15279183036686e-02 5.11520391534744e-02 5.07809064972732e-02 5.04144705477491e-02 +5.00526547957757e-02 4.96953563948661e-02 4.93424468048792e-02 4.89937726897375e-02 +4.86491570614389e-02 4.83084006602314e-02 4.79712835584989e-02 4.76375669737014e-02 +4.73069952736373e-02 4.69792981553785e-02 4.66541929774832e-02 4.63313872235371e-02 +4.60105810737262e-02 4.56914700600144e-02 4.53737477796037e-02 4.50571086406961e-02 +4.47412506141686e-02 4.44258779646134e-02 4.41107039342944e-02 4.37954533539210e-02 +4.34798651547436e-02 4.31636947573252e-02 4.28467163134318e-02 4.25287247788034e-02 +4.22095377961038e-02 4.18889973690877e-02 4.15669713109515e-02 4.12433544519345e-02 +4.09180695934817e-02 4.05910681986656e-02 4.02623308110434e-02 3.99318671967002e-02 +3.95997162068610e-02 3.92659453611161e-02 3.89306501539835e-02 3.85939530901903e-02 +3.82560024566777e-02 3.79169708418832e-02 3.75770534153222e-02 3.72364659828376e-02 +3.68954428351004e-02 3.65542344089986e-02 3.62131047834285e-02 3.58723290326829e-02 +3.55321904620975e-02 3.51929777518555e-02 3.48549820358492e-02 3.45184939432459e-02 +3.41838006308935e-02 3.38511828349258e-02 3.35209119698871e-02 3.31932473033807e-02 +3.28684332336727e-02 3.25466966968423e-02 3.22282447289752e-02 3.19132622075581e-02 +3.16019097946605e-02 3.12943221026931e-02 3.09906061015393e-02 3.06908397836679e-02 +3.03950711014892e-02 3.01033171887181e-02 2.98155638748942e-02 2.95317654994895e-02 +2.92518450292475e-02 2.89756944795621e-02 2.87031756378449e-02 2.84341210839798e-02 +2.81683355001415e-02 2.79055972594963e-02 2.76456602806240e-02 2.73882561319333e-02 +2.71330963679104e-02 2.68798750767645e-02 2.66282716169372e-02 2.63779535180446e-02 +2.61285795201409e-02 2.58798027237479e-02 2.56312738218957e-02 2.53826443844840e-02 +2.51335701646056e-02 2.48837143960882e-02 2.46327510513975e-02 2.43803680292312e-02 +2.41262702415850e-02 2.38701825708240e-02 2.36118526683026e-02 2.33510535673672e-02 +2.30875860851107e-02 2.28212809890370e-02 2.25520009068015e-02 2.22796419594181e-02 +2.20041351007333e-02 2.17254471485516e-02 2.14435814955230e-02 2.11585784907571e-02 +2.08705154860680e-02 2.05795065437802e-02 2.02857018060786e-02 1.99892865289625e-02 +1.96904797869273e-02 1.93895328575159e-02 1.90867272978375e-02 1.87823727280089e-02 +1.84768043392085e-02 1.81703801466231e-02 1.78634780099901e-02 1.75564924466551e-02 +1.72498312640864e-02 1.69439120405566e-02 1.66391584842372e-02 1.63359967022096e-02 +1.60348514118831e-02 1.57361421280057e-02 1.54402793588524e-02 1.51476608452682e-02 +1.48586678760245e-02 1.45736617124154e-02 1.42929801541603e-02 1.40169342774871e-02 +1.37458053747344e-02 1.34798421228970e-02 1.32192580062212e-02 1.29642290151770e-02 +1.27148916408029e-02 1.24713411794334e-02 1.22336303580137e-02 1.20017682843705e-02 +1.17757197196914e-02 1.15554046617370e-02 1.13406982166226e-02 1.11314307239866e-02 +1.09273880846666e-02 1.07283122214352e-02 1.05339015819124e-02 1.03438115689391e-02 +1.01576547585191e-02 9.97500074088436e-03 9.79537539943856e-03 9.61825942981825e-03 +9.44308590325423e-03 9.26923670259079e-03 9.09603771492956e-03 8.92275276190034e-03 +8.74857639672660e-03 8.57262590433408e-03 8.39393311037899e-03 8.21143693405594e-03 +8.02397799489319e-03 7.83029697989882e-03 7.62903885418148e-03 7.41876530002157e-03 +7.19797792712576e-03 6.96515473201401e-03 6.71880191742349e-03 6.45752244349159e-03 +6.18010152568168e-03 5.88560771405712e-03 5.57350623346264e-03 5.24377904947446e-03 +4.89704383673722e-03 4.53466191688730e-03 4.15882360466559e-03 3.77259857550453e-03 +3.37993914821058e-03 2.98562599659153e-03 2.59514888044959e-03 2.21451947452888e-03 +1.85001903925186e-03 1.50789008925166e-03 1.19398777144122e-03 9.13412639538297e-04 +6.70151141181750e-04 4.66752708416642e-04 3.04072314601587e-04 1.81104438010851e-04 +9.49285854004205e-05 4.07782608820965e-05 1.22352332273227e-05 1.54013955681967e-06 +0.00000000000000e+00 + Type L N + 0 1 0 +0.00000000000000e+00 2.91444554048900e-02 5.82589529756913e-02 8.73135888414700e-02 +1.16278566978909e-01 1.45124252938988e-01 1.73821227335997e-01 2.02340339017847e-01 +2.30652757835119e-01 2.58730026924427e-01 2.86544114419587e-01 3.14067464501646e-01 +3.41273047696276e-01 3.68134410324294e-01 3.94625723008243e-01 4.20721828135111e-01 +4.46398286172441e-01 4.71631420732349e-01 4.96398362275433e-01 5.20677090344187e-01 +5.44446474213577e-01 5.67686311844727e-01 5.90377367026518e-01 6.12501404589169e-01 +6.34041223573764e-01 6.54980688242176e-01 6.75304756813039e-01 6.94999507811285e-01 +7.14052163921496e-01 7.32451113238754e-01 7.50185927815017e-01 7.67247379404206e-01 +7.83627452315235e-01 7.99319353289116e-01 8.14317518324053e-01 8.28617616381068e-01 +8.42216549912165e-01 8.55112452163304e-01 8.67304681215494e-01 8.78793810739033e-01 +8.89581617448360e-01 8.99671065257947e-01 9.09066286153214e-01 9.17772557804367e-01 +9.25796277965451e-01 9.33144935715413e-01 9.39827079612842e-01 9.45852282850781e-01 +9.51231105512903e-01 9.55975054046957e-01 9.60096538085837e-01 9.63608824760695e-01 +9.66525990664118e-01 9.68862871634442e-01 9.70635010544620e-01 9.71858603290663e-01 +9.72550443185380e-01 9.72727863972872e-01 9.72408681687928e-01 9.71611135592028e-01 +9.70353828423969e-01 9.68655666208210e-01 9.66535797867751e-01 9.64013554890691e-01 +9.61108391300567e-01 9.57839824180013e-01 9.54227374995342e-01 9.50290511966159e-01 +9.46048593719240e-01 9.41520814459523e-01 9.36726150883298e-01 9.31683311049510e-01 +9.26410685414637e-01 9.20926300224800e-01 9.15247773445850e-01 9.09392273398074e-01 +9.03376480247080e-01 8.97216550486347e-01 8.90928084530085e-01 8.84526097517461e-01 +8.78024993411024e-01 8.71438542453546e-01 8.64779862028447e-01 8.58061400949723e-01 +8.51294927188017e-01 8.44491519020135e-01 8.37661559570231e-01 8.30814734692094e-01 +8.23960034123571e-01 8.17105755826414e-01 8.10259513407693e-01 8.03428246502626e-01 +7.96618233983292e-01 7.89835109843300e-01 7.83083881595276e-01 7.76368951005912e-01 +7.69694136982616e-01 7.63062700416334e-01 7.56477370777101e-01 7.49940374252361e-01 +7.43453463212945e-01 7.37017946788114e-01 7.30634722329003e-01 7.24304307539281e-01 +7.18026873052900e-01 7.11802275241258e-01 7.05630089036109e-01 6.99509640559891e-01 +6.93440039361907e-01 6.87420210066830e-01 6.81448923251204e-01 6.75524825374077e-01 +6.69646467599243e-01 6.63812333359004e-01 6.58020864522533e-01 6.52270486045857e-01 +6.46559628995047e-01 6.40886751849176e-01 6.35250360005060e-01 6.29649023421419e-01 +6.24081392355834e-01 6.18546211163664e-01 6.13042330143695e-01 6.07568715430674e-01 +6.02124456949904e-01 5.96708774463607e-01 5.91321021752718e-01 5.85960688991046e-01 +5.80627403381243e-01 5.75320928133596e-01 5.70041159879453e-01 5.64788124620618e-01 +5.59561972324813e-01 5.54362970284642e-01 5.49191495363936e-01 5.44048025260393e-01 +5.38933128917405e-01 5.33847456220655e-01 5.28791727116520e-01 5.23766720289654e-01 +5.18773261536153e-01 5.13812211966707e-01 5.08884456170952e-01 5.03990890469994e-01 +4.99132411378892e-01 4.94309904394679e-01 4.89524233218494e-01 4.84776229512594e-01 +4.80066683284490e-01 4.75396333981331e-01 4.70765862368045e-01 4.66175883252683e-01 +4.61626939112021e-01 4.57119494659913e-01 4.52653932390156e-01 4.48230549114878e-01 +4.43849553508842e-01 4.39511064659525e-01 4.35215111612646e-01 4.30961633892932e-01 +4.26750482970489e-01 4.22581424634215e-01 4.18454142225395e-01 4.14368240676912e-01 +4.10323251296571e-01 4.06318637226825e-01 4.02353799507812e-01 3.98428083666046e-01 +3.94540786747451e-01 3.90691164710606e-01 3.86878440094189e-01 3.83101809871598e-01 +3.79360453405620e-01 3.75653540416772e-01 3.71980238880554e-01 3.68339722771279e-01 +3.64731179573359e-01 3.61153817484846e-01 3.57606872242691e-01 3.54089613504376e-01 +3.50601350726446e-01 3.47141438486725e-01 3.43709281203753e-01 3.40304337214061e-01 +3.36926122175265e-01 3.33574211770491e-01 3.30248243697355e-01 3.26947918932404e-01 +3.23673002269637e-01 3.20423322139272e-01 3.17198769720327e-01 3.13999297367708e-01 +3.10824916381312e-01 3.07675694151047e-01 3.04551750717715e-01 3.01453254795095e-01 +2.98380419303580e-01 2.95333496470025e-01 2.92312772552207e-01 2.89318562249371e-01 +2.86351202862743e-01 2.83411048271616e-01 2.80498462791622e-01 2.77613814982150e-01 +2.74757471469501e-01 2.71929790851319e-01 2.69131117746169e-01 2.66361777049786e-01 +2.63622068456587e-01 2.60912261301569e-01 2.58232589773680e-01 2.55583248547282e-01 +2.52964388873416e-01 2.50376115167295e-01 2.47818482122871e-01 2.45291492379500e-01 +2.42795094759684e-01 2.40329183090741e-01 2.37893595617052e-01 2.35488115003309e-01 +2.33112468923066e-01 2.30766331220894e-01 2.28449323630587e-01 2.26161018026334e-01 +2.23900939178430e-01 2.21668567980229e-01 2.19463345108459e-01 2.17284675074933e-01 +2.15131930624065e-01 2.13004457427468e-01 2.10901579024329e-01 2.08822601954198e-01 +2.06766821027395e-01 2.04733524677291e-01 2.02722000338460e-01 2.00731539794918e-01 +1.98761444443524e-01 1.96811030419003e-01 1.94879633528952e-01 1.92966613949663e-01 +1.91071360636469e-01 1.89193295405719e-01 1.87331876649233e-01 1.85486602646235e-01 +1.83657014442218e-01 1.81842698268930e-01 1.80043287484613e-01 1.78258464018747e-01 +1.76487959310807e-01 1.74731554737810e-01 1.72989081530759e-01 1.71260420185327e-01 +1.69545499377307e-01 1.67844294398329e-01 1.66156825132163e-01 1.64483153596494e-01 +1.62823381079286e-01 1.61177644902797e-01 1.59546114851864e-01 1.57928989306217e-01 +1.56326491119301e-01 1.54738863288350e-01 1.53166364462227e-01 1.51609264334852e-01 +1.50067838972819e-01 1.48542366126092e-01 1.47033120570451e-01 1.45540369529665e-01 +1.44064368224134e-01 1.42605355591110e-01 1.41163550219460e-01 1.39739146539417e-01 +1.38332311304800e-01 1.36943180401920e-01 1.35571856015720e-01 1.34218404179847e-01 +1.32882852733122e-01 1.31565189700608e-01 1.30265362112889e-01 1.28983275272618e-01 +1.27718792472673e-01 1.26471735165622e-01 1.25241883579511e-01 1.24028977770445e-01 +1.22832719098014e-01 1.21652772105324e-01 1.20488766781398e-01 1.19340301179882e-01 +1.18206944364541e-01 1.17088239648856e-01 1.15983708094198e-01 1.14892852228698e-01 +1.13815159946840e-01 1.12750108548277e-01 1.11697168873173e-01 1.10655809490673e-01 +1.09625500896863e-01 1.08605719678738e-01 1.07595952601356e-01 1.06595700576418e-01 +1.05604482471993e-01 1.04621838725028e-01 1.03647334720529e-01 1.02680563903947e-01 +1.01721150596271e-01 1.00768752484551e-01 9.98230627641252e-02 9.88838119125255e-02 +9.79507690789741e-02 9.70237430774281e-02 9.61025829752888e-02 9.51871782741016e-02 +9.42774586827954e-02 9.33733934882008e-02 9.24749905317050e-02 9.15822948049006e-02 +9.06953866809330e-02 8.98143798019020e-02 8.89394186460922e-02 8.80706758019656e-02 +8.72083489787099e-02 8.63526577856745e-02 8.55038403152190e-02 8.46621495653256e-02 +8.38278497397625e-02 8.30012124646400e-02 8.21825129608302e-02 8.13720262119620e-02 +8.05700231675181e-02 7.97767670199835e-02 7.89925095940110e-02 7.82174878842068e-02 +7.74519207764076e-02 7.66960059852356e-02 7.59499172383165e-02 7.52138017348319e-02 +7.44877779031091e-02 7.37719334787314e-02 7.30663239212388e-02 7.23709711839004e-02 +7.16858628473277e-02 7.10109516238878e-02 7.03461552360241e-02 6.96913566677098e-02 +6.90464047844344e-02 6.84111153133286e-02 6.77852721713804e-02 6.71686291261539e-02 +6.65609117700828e-02 6.59618197862642e-02 6.53710294807878e-02 6.47881965540084e-02 +6.42129590808399e-02 6.36449406681418e-02 6.30837537555969e-02 6.25290030251588e-02 +6.19802888831995e-02 6.14372109789027e-02 6.08993717222515e-02 6.03663797651327e-02 +5.98378534096311e-02 5.93134239085038e-02 5.87927386240989e-02 5.82754640135963e-02 +5.77612884103854e-02 5.72499245736352e-02 5.67411119806235e-02 5.62346188391671e-02 +5.57302438004720e-02 5.52278173559068e-02 5.47272029045320e-02 5.42282974816690e-02 +5.37310321423344e-02 5.32353719969485e-02 5.27413159003259e-02 5.22488957985275e-02 +5.17581757416626e-02 5.12692505741422e-02 5.07822443171630e-02 5.02973082613154e-02 +4.98146187901248e-02 4.93343749580273e-02 4.88567958487171e-02 4.83821177419645e-02 +4.79105911188683e-02 4.74424775370509e-02 4.69780464085257e-02 4.65175717138384e-02 +4.60613286866134e-02 4.56095905028098e-02 4.51626250088093e-02 4.47206915219325e-02 +4.42840377360998e-02 4.38528967641546e-02 4.34274843468310e-02 4.30079962565252e-02 +4.25946059219160e-02 4.21874622971040e-02 4.17866879963391e-02 4.13923777125841e-02 +4.10045969351768e-02 4.06233809787102e-02 4.02487343320047e-02 3.98806303327080e-02 +3.95190111696909e-02 3.91637882120138e-02 3.88148426598804e-02 3.84720265096920e-02 +3.81351638221042e-02 3.78040522789037e-02 3.74784650115922e-02 3.71581526818270e-02 +3.68428457913302e-02 3.65322571965967e-02 3.62260848016955e-02 3.59240144007177e-02 +3.56257226399679e-02 3.53308800688665e-02 3.50391542477129e-02 3.47502128799754e-02 +3.44637269366285e-02 3.41793737402399e-02 3.38968399770289e-02 3.36158246059607e-02 +3.33360416350986e-02 3.30572227368981e-02 3.27791196758755e-02 3.25015065240986e-02 +3.22241816422107e-02 3.19469694061865e-02 3.16697216626948e-02 3.13923188988011e-02 +3.11146711147240e-02 3.08367183914620e-02 3.05584311482725e-02 3.02798100882053e-02 +3.00008858331117e-02 2.97217182527508e-02 2.94423954957594e-02 2.91630327333063e-02 +2.88837706291836e-02 2.86047735528782e-02 2.83262275547684e-02 2.80483381249993e-02 +2.77713277597612e-02 2.74954333606246e-02 2.72209034942383e-02 2.69479955410698e-02 +2.66769727629399e-02 2.64081013198632e-02 2.61416472671576e-02 2.58778735639097e-02 +2.56170371236918e-02 2.53593859379139e-02 2.51051563013733e-02 2.48545701684385e-02 +2.46078326668894e-02 2.43651297947461e-02 2.41266263234719e-02 2.38924639287525e-02 +2.36627595676581e-02 2.34376041184078e-02 2.32170612962134e-02 2.30011668557964e-02 +2.27899280881937e-02 2.25833236164120e-02 2.23813034913963e-02 2.21837895866756e-02 +2.19906762869678e-02 2.18018314630023e-02 2.16170977218772e-02 2.14362939194461e-02 +2.12592169185497e-02 2.10856435743992e-02 2.09153329261099e-02 2.07480285712913e-02 +2.05834611987543e-02 2.04213512528068e-02 2.02614117012958e-02 2.01033508785325e-02 +1.99468753735123e-02 1.97916929334214e-02 1.96375153523154e-02 1.94840613150536e-02 +1.93310591670837e-02 1.91782495814813e-02 1.90253880957532e-02 1.88722474922962e-02 +1.87186199980585e-02 1.85643192808484e-02 1.84091822218665e-02 1.82530704463759e-02 +1.80958715969439e-02 1.79375003363654e-02 1.77778990701872e-02 1.76170383816557e-02 +1.74549171748863e-02 1.72915625250732e-02 1.71270292375772e-02 1.69613991207354e-02 +1.67947799801816e-02 1.66273043453341e-02 1.64591279414590e-02 1.62904279233277e-02 +1.61214008889325e-02 1.59522606939759e-02 1.57832360898831e-02 1.56145682098922e-02 +1.54465079293172e-02 1.52793131273616e-02 1.51132458788489e-02 1.49485696049417e-02 +1.47855462123199e-02 1.46244332503930e-02 1.44654811159082e-02 1.43089303338155e-02 +1.41550089424469e-02 1.40039300099727e-02 1.38558893077349e-02 1.37110631644243e-02 +1.35696065231964e-02 1.34316512217187e-02 1.32973045128356e-02 1.31666478410559e-02 +1.30397358874216e-02 1.29165958925524e-02 1.27972272647891e-02 1.26816014774239e-02 +1.25696622560252e-02 1.24613260538752e-02 1.23564828105778e-02 1.22549969859716e-02 +1.21567088586547e-02 1.20614360757001e-02 1.19689754375575e-02 1.18791048997137e-02 +1.17915857704535e-02 1.17061650820397e-02 1.16225781108477e-02 1.15405510204467e-02 +1.14598036003564e-02 1.13800520722106e-02 1.13010119343610e-02 1.12224008155506e-02 +1.11439413081782e-02 1.10653637518785e-02 1.09864089386369e-02 1.09068307114541e-02 +1.08263984296517e-02 1.07448992752707e-02 1.06621403766300e-02 1.05779507269760e-02 +1.04921828782470e-02 1.04047143922700e-02 1.03154490341887e-02 1.02243176955555e-02 +1.01312790372869e-02 1.00363198455497e-02 9.93945509658668e-03 9.84072772947517e-03 +9.74020812880940e-03 9.63799332227434e-03 9.53420590101425e-03 9.42899267354933e-03 +9.32252306674122e-03 9.21498728992124e-03 9.10659428074242e-03 8.99756945358226e-03 +8.88815227337525e-03 8.77859367957746e-03 8.66915338653976e-03 8.56009708787046e-03 +8.45169359340148e-03 8.34421192810665e-03 8.23791842276312e-03 8.13307382628412e-03 +8.02993046948714e-03 7.92872950959044e-03 7.82969828396509e-03 7.73304780061016e-03 +7.63897039148045e-03 7.54763755318833e-03 7.45919799774441e-03 7.37377593390759e-03 +7.29146959741482e-03 7.21235004586311e-03 7.13646023136285e-03 7.06381436128129e-03 +6.99439755449349e-03 6.92816579756711e-03 6.86504620227414e-03 6.80493756275996e-03 +6.74771120765754e-03 6.69321213942363e-03 6.64126045024096e-03 6.59165300099640e-03 +6.54416534713758e-03 6.49855389266553e-03 6.45455825115488e-03 6.41190379053311e-03 +6.37030433642367e-03 6.32946500717339e-03 6.28908515227372e-03 6.24886136474494e-03 +6.20849053721480e-03 6.16767293087864e-03 6.12611522629528e-03 6.08353352504912e-03 +6.03965627169294e-03 5.99422706608121e-03 5.94700733719514e-03 5.89777885084473e-03 +5.84634602519695e-03 5.79253802990616e-03 5.73621064669385e-03 5.67724787152931e-03 +5.61556324105798e-03 5.55110086861661e-03 5.48383617800015e-03 5.41377632611482e-03 +5.34096030870315e-03 5.26545874645471e-03 5.18737335197251e-03 5.10683608123165e-03 +5.02400797630134e-03 4.93907770918226e-03 4.85225983960211e-03 4.76379280248458e-03 +4.67393664353558e-03 4.58297052394245e-03 4.49119001753652e-03 4.39890422590305e-03 +4.30643273880871e-03 4.21410246894183e-03 4.12224439130602e-03 4.03119021865815e-03 +3.94126904512359e-03 3.85280399055241e-03 3.76610887828238e-03 3.68148497875112e-03 +3.59921785084018e-03 3.51957431193684e-03 3.44279956645498e-03 3.36911452095943e-03 +3.29871331206942e-03 3.23176107095125e-03 3.16839194541742e-03 3.10870739736002e-03 +3.05277478940282e-03 3.00062627013234e-03 2.95225796195628e-03 2.90762944935776e-03 +2.86666355790632e-03 2.82924640566630e-03 2.79522769847900e-03 2.76442122893866e-03 +2.73660552586372e-03 2.71152458710459e-03 2.68888861446446e-03 2.66837465676985e-03 +2.64962705788541e-03 2.63225760376601e-03 2.61584527046349e-03 2.59993549817332e-03 +2.58403896031093e-03 2.56762986661235e-03 2.55014393982851e-03 2.53097633902525e-03 +2.50947996741804e-03 2.48496479225109e-03 2.45669900466193e-03 2.42391303671709e-03 +2.38580760038295e-03 2.34156698115325e-03 2.29037876490821e-03 2.23146095803581e-03 +2.16409704274045e-03 2.08767887193575e-03 2.00175645555170e-03 1.90609265902713e-03 +1.80071969929027e-03 1.68599319613216e-03 1.56263856316046e-03 1.43178386892527e-03 +1.29497313326753e-03 1.15415449105795e-03 1.01163884900023e-03 8.70026597849283e-04 +7.32102542312665e-04 6.00702288732687e-04 4.78556601962763e-04 3.68123347171171e-04 +2.71419172158861e-04 1.89864677887776e-04 1.24157156864746e-04 7.41838628233046e-05 +3.89861884035394e-05 1.67812340962758e-05 5.04239618518066e-06 6.35276027285325e-07 +-0.00000000000000e+00 + Type L N + 0 1 1 +0.00000000000000e+00 3.95116828184810e-02 7.89723147285340e-02 1.18330974353690e-01 +1.57536998832843e-01 1.96540111709930e-01 2.35290549191421e-01 2.73739184243202e-01 +3.11837648011657e-01 3.49538448070125e-01 3.86795083011257e-01 4.23562152928003e-01 +4.59795465350827e-01 4.95452136236120e-01 5.30490685630383e-01 5.64871127666495e-01 +5.98555054581821e-01 6.31505714483028e-01 6.63688082618815e-01 6.95068925959142e-01 +7.25616860917725e-01 7.55302404093122e-01 7.84098015942601e-01 8.11978137341639e-01 +8.38919219020300e-01 8.64899743905413e-01 8.89900242434318e-01 9.13903300941582e-01 +9.36893563254385e-01 9.58857725664882e-01 9.79784525478735e-01 9.99664723367726e-01 +1.01849107978104e+00 1.03625832569402e+00 1.05296312799493e+00 1.06860404982955e+00 +1.08318150623985e+00 1.09669771544670e+00 1.10915664613767e+00 1.12056396112907e+00 +1.13092695777687e+00 1.14025450551351e+00 1.14855698088805e+00 1.15584620048372e+00 +1.16213535208238e+00 1.16743892443736e+00 1.17177263600621e+00 1.17515336298317e+00 +1.17759906695674e+00 1.17912872250235e+00 1.17976224500245e+00 1.17952041896770e+00 +1.17842482711310e+00 1.17649778042198e+00 1.17376224940899e+00 1.17024179677142e+00 +1.16596051159550e+00 1.16094294526193e+00 1.15521404917269e+00 1.14879911439885e+00 +1.14172371332798e+00 1.13401364336890e+00 1.12569487275163e+00 1.11679348844173e+00 +1.10733564617087e+00 1.09734752256886e+00 1.08685526936830e+00 1.07588496963921e+00 +1.06446259600001e+00 1.05261397074126e+00 1.04036472779033e+00 1.02774027643922e+00 +1.01476576675291e+00 1.00146605657297e+00 9.87865680029984e-01 9.73988817479000e-01 +9.59859266774095e-01 9.45500415802020e-01 9.30935216199638e-01 9.16186158186182e-01 +9.01275246448711e-01 8.86223977027431e-01 8.71053315156763e-01 8.55783674027833e-01 +8.40434894448454e-01 8.25026225387317e-01 8.09576305400004e-01 7.94103144945291e-01 +7.78624109610913e-01 7.63155904278310e-01 7.47714558265798e-01 7.32315411498791e-01 +7.16973101764183e-01 7.01701553113522e-01 6.86513965486084e-01 6.71422805628306e-01 +6.56439799390108e-01 6.41575925481432e-01 6.26841410773659e-01 6.12245727230540e-01 +5.97797590551745e-01 5.83504960609103e-01 5.69375043751167e-01 5.55414297045766e-01 +5.41628434522899e-01 5.28022435471589e-01 5.14600554834372e-01 5.01366335731879e-01 +4.88322624137725e-01 4.75471585710666e-01 4.62814724776885e-01 4.50352905440472e-01 +4.38086374784802e-01 4.26014788111756e-01 4.14137236149725e-01 4.02452274145258e-01 +3.90957952737284e-01 3.79651850497083e-01 3.68531108001988e-01 3.57592463296113e-01 +3.46832288577583e-01 3.36246627938783e-01 3.25831235974338e-01 3.15581617060900e-01 +3.05493065103602e-01 2.95560703536243e-01 2.85779525356118e-01 2.76144432969867e-01 +2.66650277623997e-01 2.57291898192744e-01 2.48064159096893e-01 2.38961987129907e-01 +2.29980406972411e-01 2.21114575182576e-01 2.12359812458335e-01 2.03711633977484e-01 +1.95165777633625e-01 1.86718229999400e-01 1.78365249863495e-01 1.70103389204410e-01 +1.61929511481692e-01 1.53840807144290e-01 1.45834806275560e-01 1.37909388315181e-01 +1.30062788819651e-01 1.22293603244837e-01 1.14600787756244e-01 1.06983657094826e-01 +9.94418795483403e-02 9.19754691000240e-02 8.45847748477238e-02 7.72704678072426e-02 +7.00335252334589e-02 6.28752126115126e-02 5.57970634878793e-02 4.88008573273174e-02 +4.18885955963247e-02 3.50624762867306e-02 2.83248671042937e-02 2.16782775565315e-02 +1.51253301814214e-02 8.66873116399658e-03 2.31124059117165e-03 -3.94435740366034e-03 +-1.00952843556309e-02 -1.61387967953950e-02 -2.20722149456309e-02 -2.78929505516935e-02 +-3.35985336202084e-02 -3.91866378504088e-02 -4.46551045558460e-02 -5.00019648886061e-02 +-5.52254601942167e-02 -6.03240603428982e-02 -6.52964799015223e-02 -7.01416920304391e-02 +-7.48589400100310e-02 -7.94477463232751e-02 -8.39079192425294e-02 -8.82395568910344e-02 +-9.24430487720147e-02 -9.65190747805970e-02 -1.00468601735803e-01 -1.04292877491467e-01 +-1.07993422705843e-01 -1.11572020369744e-01 -1.15030703212103e-01 -1.18371739119695e-01 +-1.21597614724286e-01 -1.24711017325457e-01 -1.27714815330778e-01 -1.30612037406646e-01 +-1.33405850542924e-01 -1.36099537242440e-01 -1.38696472052314e-01 -1.41200097658036e-01 +-1.43613900763036e-01 -1.45941387976336e-01 -1.48186061928632e-01 -1.50351397832936e-01 +-1.52440820699695e-01 -1.54457683408252e-01 -1.56405245826603e-01 -1.58286655159845e-01 +-1.60104927694506e-01 -1.61862932091355e-01 -1.63563374363341e-01 -1.65208784658212e-01 +-1.66801505947317e-01 -1.68343684703188e-01 -1.69837263628994e-01 -1.71283976482984e-01 +-1.72685345020842e-01 -1.74042678058594e-01 -1.75357072638534e-01 -1.76629417260844e-01 +-1.77860397124224e-01 -1.79050501300203e-01 -1.80200031748023e-01 -1.81309114060188e-01 +-1.82377709813163e-01 -1.83405630383432e-01 -1.84392552076225e-01 -1.85338032402929e-01 +-1.86241527333543e-01 -1.87102409342586e-01 -1.87919986060744e-01 -1.88693519340238e-01 +-1.89422244539481e-01 -1.90105389832052e-01 -1.90742195346365e-01 -1.91331931945593e-01 +-1.91873919462441e-01 -1.92367544210090e-01 -1.92812275599120e-01 -1.93207681700206e-01 +-1.93553443603920e-01 -1.93849368441838e-01 -1.94095400947238e-01 -1.94291633448886e-01 +-1.94438314207520e-01 -1.94535854021533e-01 -1.94584831045866e-01 -1.94585993786057e-01 +-1.94540262247578e-01 -1.94448727238874e-01 -1.94312647844677e-01 -1.94133447104090e-01 +-1.93912705945376e-01 -1.93652155446244e-01 -1.93353667504490e-01 -1.93019244019014e-01 +-1.92651004695311e-01 -1.92251173602424e-01 -1.91822064619941e-01 -1.91366065923745e-01 +-1.90885623667911e-01 -1.90383225027166e-01 -1.89861380769764e-01 -1.89322607534352e-01 +-1.88769409986386e-01 -1.88204263029964e-01 -1.87629594249467e-01 -1.87047766752287e-01 +-1.86461062579085e-01 -1.85871666841652e-01 -1.85281652740485e-01 -1.84692967604813e-01 +-1.84107420087085e-01 -1.83526668631949e-01 -1.82952211326690e-01 -1.82385377226025e-01 +-1.81827319229260e-01 -1.81279008572248e-01 -1.80741230980447e-01 -1.80214584512933e-01 +-1.79699479110506e-01 -1.79196137844317e-01 -1.78704599844824e-01 -1.78224724874562e-01 +-1.77756199492350e-01 -1.77298544741239e-01 -1.76851125277995e-01 -1.76413159848228e-01 +-1.75983732998640e-01 -1.75561807906337e-01 -1.75146240194886e-01 -1.74735792597818e-01 +-1.74329150322784e-01 -1.73924936963476e-01 -1.73521730801940e-01 -1.73118081340927e-01 +-1.72712525904596e-01 -1.72303606146099e-01 -1.71889884302420e-01 -1.71469959040198e-01 +-1.71042480741218e-01 -1.70606166082562e-01 -1.70159811774232e-01 -1.69702307326096e-01 +-1.69232646726316e-01 -1.68749938924818e-01 -1.68253417027733e-01 -1.67742446122029e-01 +-1.67216529663493e-01 -1.66675314375825e-01 -1.66118593623603e-01 -1.65546309237165e-01 +-1.64958551782923e-01 -1.64355559288024e-01 -1.63737714443517e-01 -1.63105540325164e-01 +-1.62459694685463e-01 -1.61800962884343e-01 -1.61130249539121e-01 -1.60448568986556e-01 +-1.59757034661153e-01 -1.59056847504017e-01 -1.58349283525600e-01 -1.57635680653401e-01 +-1.56917425002078e-01 -1.56195936708431e-01 -1.55472655477283e-01 -1.54749025986352e-01 +-1.54026483298832e-01 -1.53306438431526e-01 -1.52590264224009e-01 -1.51879281650541e-01 +-1.51174746711266e-01 -1.50477838032729e-01 -1.49789645299949e-01 -1.49111158633374e-01 +-1.48443259013950e-01 -1.47786709848548e-01 -1.47142149756077e-01 -1.46510086641995e-01 +-1.45890893115626e-01 -1.45284803291014e-01 -1.44691910997900e-01 -1.44112169415153e-01 +-1.43545392124645e-01 -1.42991255569273e-01 -1.42449302884816e-01 -1.41918949061643e-01 +-1.41399487379110e-01 -1.40890097042944e-01 -1.40389851944134e-01 -1.39897730446907e-01 +-1.39412626103432e-01 -1.38933359183999e-01 -1.38458688903691e-01 -1.37987326220055e-01 +-1.37517947071055e-01 -1.37049205918691e-01 -1.36579749461133e-01 -1.36108230375085e-01 +-1.35633320950323e-01 -1.35153726479990e-01 -1.34668198273198e-01 -1.34175546160827e-01 +-1.33674650370971e-01 -1.33164472657306e-01 -1.32644066571594e-01 -1.32112586780547e-01 +-1.31569297337257e-01 -1.31013578828215e-01 -1.30444934328556e-01 -1.29862994110355e-01 +-1.29267519061541e-01 -1.28658402786103e-01 -1.28035672369595e-01 -1.27399487807402e-01 +-1.26750140106691e-01 -1.26088048086202e-01 -1.25413753911053e-01 -1.24727917412268e-01 +-1.24031309252774e-01 -1.23324803012946e-01 -1.22609366279364e-01 -1.21886050830163e-01 +-1.21155982019046e-01 -1.20420347467733e-01 -1.19680385183153e-01 -1.18937371221015e-01 +-1.18192607021535e-01 -1.17447406545897e-01 -1.16703083343566e-01 -1.15960937680799e-01 +-1.15222243859575e-01 -1.14488237853808e-01 -1.13760105386029e-01 -1.13038970562837e-01 +-1.12325885181398e-01 -1.11621818812052e-01 -1.10927649753946e-01 -1.10244156951437e-01 +-1.09572012949022e-01 -1.08911777951814e-01 -1.08263895047193e-01 -1.07628686631379e-01 +-1.07006352072331e-01 -1.06396966627840e-01 -1.05800481624935e-01 -1.05216725893968e-01 +-1.04645408438125e-01 -1.04086122306687e-01 -1.03538349628333e-01 -1.03001467749209e-01 +-1.02474756409509e-01 -1.01957405882060e-01 -1.01448525986918e-01 -1.00947155887443e-01 +-1.00452274565691e-01 -9.99628118684835e-02 -9.94776600100341e-02 -9.89956854128225e-02 +-9.85157407653160e-02 -9.80366771733566e-02 -9.75573562814635e-02 -9.70766622409942e-02 +-9.65935134040334e-02 -9.61068736250372e-02 -9.56157630565827e-02 -9.51192683310445e-02 +-9.46165520265630e-02 -9.41068613232184e-02 -9.35895357638100e-02 -9.30640140429595e-02 +-9.25298397583260e-02 -9.19866660684302e-02 -9.14342592128250e-02 -9.08725008620100e-02 +-9.03013892764413e-02 -8.97210392661238e-02 -8.91316809544613e-02 -8.85336573621554e-02 +-8.79274208388753e-02 -8.73135283820374e-02 -8.66926358932195e-02 -8.60654914333888e-02 +-8.54329275481240e-02 -8.47958527432739e-02 -8.41552421999162e-02 -8.35121278249839e-02 +-8.28675877404366e-02 -8.22227353193066e-02 -8.15787078812952e-02 -8.09366551637829e-02 +-8.02977276861356e-02 -7.96630651259989e-02 -7.90337848258833e-02 -7.84109705467598e-02 +-7.77956615826171e-02 -7.71888423460182e-02 -7.65914325296779e-02 -7.60042779430073e-02 +-7.54281421155105e-02 -7.48636987509415e-02 -7.43115251073149e-02 -7.37720963683129e-02 +-7.32457810614280e-02 -7.27328375674434e-02 -7.22334117546786e-02 -7.17475357599438e-02 +-7.12751279264539e-02 -7.08159938971838e-02 -7.03698288504132e-02 -6.99362208526307e-02 +-6.95146552926631e-02 -6.91045203499746e-02 -6.87051134396605e-02 -6.83156485668345e-02 +-6.79352645139894e-02 -6.75630337765761e-02 -6.71979721545821e-02 -6.68390489013852e-02 +-6.64851973256471e-02 -6.61353257375829e-02 -6.57883286276096e-02 -6.54430979631907e-02 +-6.50985344886693e-02 -6.47535589130216e-02 -6.44071228717758e-02 -6.40582195518018e-02 +-6.37058938712599e-02 -6.33492521116769e-02 -6.29874709048214e-02 -6.26198054837491e-02 +-6.22455971149845e-02 -6.18642796372417e-02 -6.14753850412668e-02 -6.10785480352145e-02 +-6.06735095503560e-02 -6.02601191527457e-02 -5.98383363376387e-02 -5.94082306948401e-02 +-5.89699809446661e-02 -5.85238728556779e-02 -5.80702960667193e-02 -5.76097398469033e-02 +-5.71427878379680e-02 -5.66701118337286e-02 -5.61924646610981e-02 -5.57106722362290e-02 +-5.52256248776567e-02 -5.47382679658187e-02 -5.42495920448954e-02 -5.37606224685234e-02 +-5.32724086954933e-02 -5.27860133450340e-02 -5.23025011236514e-02 -5.18229277367318e-02 +-5.13483288981980e-02 -5.08797095504472e-02 -5.04180334046002e-02 -4.99642129077722e-02 +-4.95190997396807e-02 -4.90834759354778e-02 -4.86580457252775e-02 -4.82434281735271e-02 +-4.78401506932025e-02 -4.74486435008841e-02 -4.70692350691810e-02 -4.67021486228058e-02 +-4.63474997139822e-02 -4.60052949018724e-02 -4.56754315494832e-02 -4.53576987401354e-02 +-4.50517793041920e-02 -4.47572529354479e-02 -4.44736003654964e-02 -4.42002085536235e-02 +-4.39363768394473e-02 -4.36813239957186e-02 -4.34341961095329e-02 -4.31940752117586e-02 +-4.29599885668589e-02 -4.27309185285402e-02 -4.25058128608701e-02 -4.22835954197403e-02 +-4.20631770858343e-02 -4.18434668376535e-02 -4.16233828516716e-02 -4.14018635163469e-02 +-4.11778782475267e-02 -4.09504379947233e-02 -4.07186053308026e-02 -4.04815040217777e-02 +-4.02383279786002e-02 -3.99883494990329e-02 -3.97309267148175e-02 -3.94655101673396e-02 +-3.91916484437647e-02 -3.89089928150858e-02 -3.86173008275875e-02 -3.83164388097973e-02 +-3.80063832679515e-02 -3.76872211542409e-02 -3.73591490035147e-02 -3.70224709455841e-02 +-3.66775956116710e-02 -3.63250319647831e-02 -3.59653840947358e-02 -3.55993450290895e-02 +-3.52276896213148e-02 -3.48512665869310e-02 -3.44709897671076e-02 -3.40878287071595e-02 +-3.37027986444508e-02 -3.33169500063580e-02 -3.29313575240775e-02 -3.25471090721427e-02 +-3.21652943464904e-02 -3.17869934957708e-02 -3.14132658212935e-02 -3.10451386605435e-02 +-3.06835965675881e-02 -3.03295709009447e-02 -2.99839299256071e-02 -2.96474695309861e-02 +-2.93209046605450e-02 -2.90048615419605e-02 -2.86998707987936e-02 -2.84063615159768e-02 +-2.81246563220040e-02 -2.78549675406458e-02 -2.75973944543918e-02 -2.73519217107663e-02 +-2.71184188912611e-02 -2.68966412510150e-02 -2.66862316256392e-02 -2.64867234898756e-02 +-2.62975451411763e-02 -2.61180249699490e-02 -2.59473977672110e-02 -2.57848120098613e-02 +-2.56293380538204e-02 -2.54799771559860e-02 -2.53356712374231e-02 -2.51953132925219e-02 +-2.50577583420948e-02 -2.49218348226234e-02 -2.47863562991486e-02 -2.46501333856950e-02 +-2.45119857546474e-02 -2.43707541151933e-02 -2.42253120408292e-02 -2.40745775269902e-02 +-2.39175241621057e-02 -2.37531917987865e-02 -2.35806966163725e-02 -2.33992404716870e-02 +-2.32081194414856e-02 -2.30067314677025e-02 -2.27945830251068e-02 -2.25712947403069e-02 +-2.23366059010938e-02 -2.20903778057875e-02 -2.18325959134654e-02 -2.15633707675623e-02 +-2.12829376772687e-02 -2.09916551532601e-02 -2.06900021064836e-02 -2.03785738308622e-02 +-2.00580768027497e-02 -1.97293223416626e-02 -1.93932191881015e-02 -1.90507650650648e-02 +-1.87030373000228e-02 -1.83511825935812e-02 -1.79964060297078e-02 -1.76399594301569e-02 +-1.72831291625043e-02 -1.69272235169591e-02 -1.65735597717573e-02 -1.62234510704443e-02 +-1.58781932366603e-02 -1.55390516531277e-02 -1.52072483313814e-02 -1.48839492973617e-02 +-1.45702524152813e-02 -1.42671757681839e-02 -1.39756467082876e-02 -1.36964916835236e-02 +-1.34304269385732e-02 -1.31780501790612e-02 -1.29398332762252e-02 -1.27161160761101e-02 +-1.25071013618027e-02 -1.23128509989792e-02 -1.21332832735368e-02 -1.19681714046345e-02 +-1.18171431863490e-02 -1.16796816756115e-02 -1.15551268025845e-02 -1.14426777319597e-02 +-1.13413957504280e-02 -1.12502073985440e-02 -1.11679075079846e-02 -1.10931617538088e-02 +-1.10245082948940e-02 -1.09603580670299e-02 -1.08989933287760e-02 -1.08385641601664e-02 +-1.07770828009131e-02 -1.07124160099025e-02 -1.06422760495436e-02 -1.05642114557477e-02 +-1.04755994402964e-02 -1.03736425578470e-02 -1.02553730965007e-02 -1.01176694266068e-02 +-9.95728914048695e-03 -9.77092407912610e-03 -9.55528209559453e-03 -9.30719947612723e-03 +-9.02378618572184e-03 -8.70260344756897e-03 -8.34186962689137e-03 -7.94068612507501e-03 +-7.49927030886408e-03 -7.01917786841190e-03 -6.50349301833948e-03 -5.95696231210231e-03 +-5.38604721982528e-03 -4.79887261251551e-03 -4.20505327895194e-03 -3.61538863560806e-03 +-3.04142653695455e-03 -2.49490978375413e-03 -1.98713238599653e-03 -1.52824538138373e-03 +-1.12656240810401e-03 -7.87921712301823e-04 -5.15162560420322e-04 -3.07769361312289e-04 +-1.61726099786822e-04 -6.96076226019005e-05 -2.09143201414276e-05 -2.63483572410032e-06 +0.00000000000000e+00 + Type L N + 0 2 0 +0.00000000000000e+00 2.96314604685903e-04 1.18425544918142e-03 2.66081999934036e-03 +4.72102522878341e-03 7.35793923569839e-03 1.05627251499835e-02 1.43246969781109e-02 +1.86313869376622e-02 2.34686237419900e-02 2.88206212086861e-02 3.46700764842421e-02 +4.09982771021851e-02 4.77852160236974e-02 5.50097137488806e-02 6.26495465339175e-02 +7.06815797048653e-02 7.90819050230519e-02 8.78259810303367e-02 9.68887752850440e-02 +1.06244907391308e-01 1.15868791725922e-01 1.25734778777520e-01 1.35817294032894e-01 +1.46090973374281e-01 1.56530793989206e-01 1.67112199840600e-01 1.77811220798984e-01 +1.88604584599968e-01 1.99469820858609e-01 2.10385356446672e-01 2.21330601618791e-01 +2.32286026358277e-01 2.43233226501999e-01 2.54154979295625e-01 2.65035288124657e-01 +2.75859416262340e-01 2.86613909571714e-01 2.97286608195024e-01 3.07866647358495e-01 +3.18344447513308e-01 3.28711694123590e-01 3.38961307498666e-01 3.49087403148848e-01 +3.59085243221019e-01 3.68951179641512e-01 3.78682589658690e-01 3.88277804535653e-01 +3.97736032194161e-01 4.07057274653755e-01 4.16242241144863e-01 4.25292257801113e-01 +4.34209174853979e-01 4.42995272262176e-01 4.51653164708854e-01 4.60185706891685e-01 +4.68595900014563e-01 4.76886800365035e-01 4.85061430829040e-01 4.93122696154498e-01 +5.01073302728045e-01 5.08915683575444e-01 5.16651929236302e-01 5.24283725098421e-01 +5.31812295706970e-01 5.39238356489503e-01 5.46562073260234e-01 5.53783029786822e-01 +5.60900203620945e-01 5.67911950310856e-01 5.74815996030870e-01 5.81609438579972e-01 +5.88288756620328e-01 5.94849826947146e-01 6.01287949504812e-01 6.07597879791260e-01 +6.13773868223698e-01 6.19809705974828e-01 6.25698776730089e-01 6.31434113763685e-01 +6.37008461684800e-01 6.42414342165724e-01 6.47644122931039e-01 6.52690089261676e-01 +6.57544517249924e-01 6.62199748031183e-01 6.66648262215770e-01 6.70882753749035e-01 +6.74896202440593e-01 6.78681944423263e-01 6.82233739829152e-01 6.85545837003883e-01 +6.88613032619922e-01 6.91430727095739e-01 6.93994974778816e-01 6.96302528406619e-01 +6.98350877420052e-01 7.00138279767985e-01 7.01663786908541e-01 7.02927261782231e-01 +7.03929389603113e-01 7.04671681386136e-01 7.05156470201063e-01 7.05386900215112e-01 +7.05366908657033e-01 7.05101200904059e-01 7.04595218959344e-01 7.03855103650605e-01 +7.02887650939972e-01 7.01700262790126e-01 7.00300893082033e-01 6.98697989124600e-01 +6.96900429335928e-01 6.94917457709208e-01 6.92758615703408e-01 6.90433672219485e-01 +6.87952552336827e-01 6.85325265491875e-01 6.82561833781317e-01 6.79672221066068e-01 +6.76666263539383e-01 6.73553602403255e-01 6.70343619271793e-01 6.67045374889008e-01 +6.63667551711562e-01 6.60218400865093e-01 6.56705693936069e-01 6.53136680010297e-01 +6.49518048314725e-01 6.45855896761599e-01 6.42155706633976e-01 6.38422323589603e-01 +6.34659945096974e-01 6.30872114353508e-01 6.27061720671917e-01 6.23231006257650e-01 +6.19381579238284e-01 6.15514432745667e-01 6.11629969793886e-01 6.07728033641487e-01 +6.03807943275158e-01 5.99868533604888e-01 5.95908199917839e-01 5.91924946100190e-01 +5.87916436103393e-01 5.83880048103915e-01 5.79812930783806e-01 5.75712061143561e-01 +5.71574303248865e-01 5.67396467308836e-01 5.63175368485538e-01 5.58907884842505e-01 +5.54591013853910e-01 5.50221926915432e-01 5.45798021322771e-01 5.41316969213722e-01 +5.36776763004442e-01 5.32175756889696e-01 5.27512704019952e-01 5.22786789014785e-01 +5.17997655521697e-01 5.13145428581545e-01 5.08230731615874e-01 5.03254697906933e-01 +4.98218976497481e-01 4.93125732494095e-01 4.87977641814024e-01 4.82777880471076e-01 +4.77530108550104e-01 4.72238449071804e-01 4.66907461999207e-01 4.61542113684083e-01 +4.56147742094866e-01 4.50730018207387e-01 4.45294903975238e-01 4.39848607327625e-01 +4.34397534668926e-01 4.28948241375509e-01 4.23507380801586e-01 4.18081652316837e-01 +4.12677748904141e-01 4.07302304846023e-01 4.01961844023370e-01 3.96662729339701e-01 +3.91411113768906e-01 3.86212893504149e-01 3.81073663660731e-01 3.75998676956454e-01 +3.70992805759773e-01 3.66060507859034e-01 3.61205796265924e-01 3.56432213323164e-01 +3.51742809341084e-01 3.47140125940337e-01 3.42626184229287e-01 3.38202477894921e-01 +3.33869971236088e-01 3.29629102117877e-01 3.25479789776639e-01 3.21421447356863e-01 +3.17452999014497e-01 3.13572901376666e-01 3.09779169105606e-01 3.06069404275374e-01 +3.02440829233942e-01 2.98890322590856e-01 2.95414457942193e-01 2.92009544920241e-01 +2.88671672135359e-01 2.85396751562129e-01 2.82180563911175e-01 2.79018804522044e-01 +2.75907129311371e-01 2.72841200314063e-01 2.69816730363472e-01 2.66829526469289e-01 +2.63875531469055e-01 2.60950863550529e-01 2.58051853267443e-01 2.55175077700072e-01 +2.52317391444330e-01 2.49475954148301e-01 2.46648254352946e-01 2.43832129433696e-01 +2.41025781481424e-01 2.38227789004357e-01 2.35437114376408e-01 2.32653107001817e-01 +2.29875502210265e-01 2.27104415940455e-01 2.24340335313056e-01 2.21584105235386e-01 +2.18836911219932e-01 2.16100258636363e-01 2.13375948651653e-01 2.10666051145021e-01 +2.07972874913317e-01 2.05298935507861e-01 2.02646921065486e-01 2.00019656514310e-01 +1.97420066548531e-01 1.94851137776070e-01 1.92315880448261e-01 1.89817290181800e-01 +1.87358310079997e-01 1.84941793653019e-01 1.82570468925319e-01 1.80246904103103e-01 +1.77973475155525e-01 1.75752335640664e-01 1.73585389081420e-01 1.71474264167537e-01 +1.69420293028473e-01 1.67424492787906e-01 1.65487550574903e-01 1.63609812129387e-01 +1.61791274100991e-01 1.60031580101101e-01 1.58330020528224e-01 1.56685536147244e-01 +1.55096725363999e-01 1.53561855098379e-01 1.52078875122163e-01 1.50645435692471e-01 +1.49258908278368e-01 1.47916409147111e-01 1.46614825548178e-01 1.45350844207692e-01 +1.44120981823551e-01 1.42921617232621e-01 1.41749024905871e-01 1.40599409415662e-01 +1.39468940511350e-01 1.38353788435283e-01 1.37250159110957e-01 1.36154328838648e-01 +1.35062678141159e-01 1.33971724413303e-01 1.32878153043269e-01 1.31778846691900e-01 +1.30670912436949e-01 1.29551706513332e-01 1.28418856407027e-01 1.27270280089185e-01 +1.26104202208078e-01 1.24919167089199e-01 1.23714048427893e-01 1.22488055593995e-01 +1.21240736503627e-01 1.19971977049256e-01 1.18681997114939e-01 1.17371343239011e-01 +1.16040878020930e-01 1.14691766402239e-01 1.13325458983343e-01 1.11943672567568e-01 +1.10548368151688e-01 1.09141726607262e-01 1.07726122319692e-01 1.06304095071467e-01 +1.04878320472610e-01 1.03451579254551e-01 1.02026725753579e-01 1.00606655916394e-01 +9.91942751632653e-02 9.77924664436514e-02 9.64040588151097e-02 9.50317968688010e-02 +9.36783113140769e-02 9.23460910206208e-02 9.10374567995694e-02 8.97545371851573e-02 +8.84992464559397e-02 8.72732651097957e-02 8.60780229799681e-02 8.49146851506685e-02 +8.37841408005393e-02 8.26869950708871e-02 8.16235640233811e-02 8.05938727192084e-02 +7.95976564188251e-02 7.86343648687991e-02 7.77031696101227e-02 7.68029742111397e-02 +7.59324272981804e-02 7.50899382284496e-02 7.42736952229563e-02 7.34816857525701e-02 +7.27117189478946e-02 7.19614497837824e-02 7.12284047721595e-02 7.05100088825737e-02 +6.98036133986240e-02 6.91065244103074e-02 6.84160316373762e-02 6.77294372770784e-02 +6.70440845711570e-02 6.63573857916736e-02 6.56668493530366e-02 6.49701057684464e-02 +6.42649321827097e-02 6.35492752298309e-02 6.28212719828116e-02 6.20792687844352e-02 +6.13218377712651e-02 6.05477909283768e-02 5.97561915392090e-02 5.89463629230548e-02 +5.81178943818396e-02 5.72706443076092e-02 5.64047404323006e-02 5.55205772315299e-02 +5.46188105240281e-02 5.37003493376516e-02 5.27663451412926e-02 5.18181785692201e-02 +5.08574437901251e-02 4.98859306971458e-02 4.89056051171792e-02 4.79185872576221e-02 +4.69271286261243e-02 4.59335876738127e-02 4.49404044246193e-02 4.39500743626897e-02 +4.29651218562970e-02 4.19880734001719e-02 4.10214309586591e-02 4.00676456896559e-02 +3.91290923238824e-02 3.82080444657894e-02 3.73066510713894e-02 3.64269143446638e-02 +3.55706692780780e-02 3.47395650443364e-02 3.39350484260169e-02 3.31583494473653e-02 +3.24104693485681e-02 3.16921710174823e-02 3.10039719673923e-02 3.03461399221437e-02 +2.97186910422723e-02 2.91213907977970e-02 2.85537574654715e-02 2.80150682007833e-02 +2.75043676081354e-02 2.70204787067364e-02 2.65620161650047e-02 2.61274016530409e-02 +2.57148811411607e-02 2.53225439528295e-02 2.49483433628044e-02 2.45901185160395e-02 +2.42456174300867e-02 2.39125208334763e-02 2.35884665849459e-02 2.32710744135155e-02 +2.29579707172799e-02 2.26468131594406e-02 2.23353148035020e-02 2.20212675356572e-02 +2.17025645311206e-02 2.13772215324111e-02 2.10433967212358e-02 2.06994089814994e-02 +2.03437543689078e-02 1.99751206224285e-02 1.95923995743223e-02 1.91946973383085e-02 +1.87813421794513e-02 1.83518899942749e-02 1.79061273551824e-02 1.74440720991764e-02 +1.69659714669116e-02 1.64722978239322e-02 1.59637420213457e-02 1.54412044778350e-02 +1.49057840886019e-02 1.43587650892964e-02 1.38016020239939e-02 1.32359029856203e-02 +1.26634113147001e-02 1.20859859577276e-02 1.15055806997015e-02 1.09242224962650e-02 +1.03439891393743e-02 9.76698649638055e-03 9.19532556581707e-03 8.63109959399756e-03 +8.07636149476596e-03 7.53310181041197e-03 7.00322744494799e-03 6.48854139170465e-03 +5.99072366565891e-03 5.51131363718605e-03 5.05169394818966e-03 4.61307617397003e-03 +4.19648837495291e-03 3.80276466171642e-03 3.43253687485100e-03 3.08622845830479e-03 +2.76405058124929e-03 2.46600053939999e-03 2.19186244239952e-03 1.94121016958161e-03 +1.71341255243101e-03 1.50764071859289e-03 1.32287750962020e-03 1.15792886299795e-03 +1.01143702859348e-03 8.81895470747897e-04 7.67665289950562e-04 6.66992982593706e-04 +5.78029343852856e-04 4.98849307407390e-04 4.27472506621008e-04 3.61884335033082e-04 +3.00057279621746e-04 2.39972298339387e-04 1.79640013893682e-04 1.17121498632984e-04 +5.05484306729398e-05 -2.18575910175430e-05 -1.01766775042042e-04 -1.90724100054368e-04 +-2.90133687933514e-04 -4.01244748567523e-04 -5.25139239783116e-04 -6.62721367121558e-04 +-8.14709028070552e-04 -9.81627284232880e-04 -1.16380392297835e-03 -1.36136714761826e-03 +-1.57424541229952e-03 -1.80216939488984e-03 -2.04467607835588e-03 -2.30111488875779e-03 +-2.57065581624563e-03 -2.85229942456882e-03 -3.14488863480180e-03 -3.44712215049334e-03 +-3.75756937440333e-03 -4.07468665162779e-03 -4.39683466034357e-03 -4.72229675979971e-03 +-5.04929809563774e-03 -5.37602525524503e-03 -5.70064626069967e-03 -6.02133068400150e-03 +-6.33626966872089e-03 -6.64369564394289e-03 -6.94190152039696e-03 -7.22925916491046e-03 +-7.50423695772160e-03 -7.76541624763425e-03 -8.01150653239757e-03 -8.24135920587876e-03 +-8.45397972943697e-03 -8.64853810221305e-03 -8.82437752363696e-03 -8.98102116112612e-03 +-9.11817695648131e-03 -9.23574042566946e-03 -9.33379542828739e-03 -9.41261290478315e-03 +-9.47264760126170e-03 -9.51453282316574e-03 -9.53907328008901e-03 -9.54723610421577e-03 +-9.54014014418084e-03 -9.51904365430327e-03 -9.48533051596963e-03 -9.44049514326302e-03 +-9.38612623858850e-03 -9.32388957588344e-03 -9.25550999892661e-03 -9.18275283014035e-03 +-9.10740489106444e-03 -9.03125533929805e-03 -8.95607652812264e-03 -8.88360509424034e-03 +-8.81552347607912e-03 -8.75344205999264e-03 -8.69888214445265e-03 -8.65325990309727e-03 +-8.61787151635409e-03 -8.59387962842460e-03 -8.58230127184473e-03 -8.58399738577804e-03 +-8.59966403683123e-03 -8.62982543269531e-03 -8.67482879950263e-03 -8.73484117367231e-03 +-8.80984813839366e-03 -8.89965451400417e-03 -9.00388699057052e-03 -9.12199867020286e-03 +-9.25327546624935e-03 -9.39684428673564e-03 -9.55168291045865e-03 -9.71663144619812e-03 +-9.89040524877072e-03 -1.00716091503049e-02 -1.02587528512936e-02 -1.04502673038678e-02 +-1.06445219094189e-02 -1.08398423443056e-02 -1.10345288210001e-02 -1.12268745877081e-02 +-1.14151844672910e-02 -1.15977932362527e-02 -1.17730836465975e-02 -1.19395038975310e-02 +-1.20955843701845e-02 -1.22399534467385e-02 -1.23713522454159e-02 -1.24886481146859e-02 +-1.25908467435539e-02 -1.26771027598429e-02 -1.27467287047635e-02 -1.27992022896102e-02 +-1.28341718589627e-02 -1.28514600040801e-02 -1.28510652900611e-02 -1.28331620806014e-02 +-1.27980984645688e-02 -1.27463923089500e-02 -1.26787254827573e-02 -1.25959363160275e-02 +-1.24990103768763e-02 -1.23890696674999e-02 -1.22673603568457e-02 -1.21352391832336e-02 +-1.19941586743280e-02 -1.18456513443973e-02 -1.16913130396142e-02 -1.15327856111346e-02 +-1.13717391027628e-02 -1.12098536450683e-02 -1.10488012508401e-02 -1.08902277077035e-02 +-1.07357347625714e-02 -1.05868627893797e-02 -1.04450741262991e-02 -1.03117372613724e-02 +-1.01881120363869e-02 -1.00753360278467e-02 -9.97441225128028e-03 -9.88619832093796e-03 +-9.81139718135604e-03 -9.75054951044932e-03 -9.70402787593039e-03 -9.67203270811968e-03 +-9.65459013281765e-03 -9.65155168805148e-03 -9.66259592840515e-03 -9.68723190049979e-03 +-9.72480445322632e-03 -9.77450132675450e-03 -9.83536194536283e-03 -9.90628782094380e-03 +-9.98605445684083e-03 -1.00733246256416e-02 -1.01666628798584e-02 -1.02645511412249e-02 +-1.03654052027685e-02 -1.04675919680023e-02 -1.05694472436155e-02 -1.06692938960280e-02 +-1.07654601781495e-02 -1.08562980307185e-02 -1.09402011626865e-02 -1.10156227172739e-02 +-1.10810923345242e-02 -1.11352324273826e-02 -1.11767734964580e-02 -1.12045683186036e-02 +-1.12176048561767e-02 -1.12150177471768e-02 -1.11960982512834e-02 -1.11603025429591e-02 +-1.11072582600856e-02 -1.10367692348725e-02 -1.09488183528372e-02 -1.08435685052934e-02 +-1.07213616208027e-02 -1.05827157812321e-02 -1.04283204481996e-02 -1.02590298455826e-02 +-1.00758545631909e-02 -9.87995146546961e-03 -9.67261200700272e-03 -9.45524907344133e-03 +-9.22938248211556e-03 -8.99662329083218e-03 -8.75865707606887e-03 -8.51722635281296e-03 +-8.27411231754123e-03 -8.03111610319976e-03 -7.79003974043307e-03 -7.55266702267175e-03 +-7.32074447396267e-03 -7.09596261759177e-03 -6.87993774057993e-03 -6.67419434401735e-03 +-6.48014846193583e-03 -6.29909202196629e-03 -6.13217840937001e-03 -5.98040938205603e-03 +-5.84462346778617e-03 -5.72548595566806e-03 -5.62348057190390e-03 -5.53890290411410e-03 +-5.47185560873897e-03 -5.42224540127222e-03 -5.38978178855392e-03 -5.37397745525236e-03 +-5.37415016253164e-03 -5.38942595591149e-03 -5.41874341287658e-03 -5.46085859214443e-03 +-5.51435028156484e-03 -5.57762508982036e-03 -5.64892190195320e-03 -5.72631523828355e-03 +-5.80771714253700e-03 -5.89087740261572e-03 -5.97338220081338e-03 -6.05265171902068e-03 +-6.12593779738001e-03 -6.19032345238197e-03 -6.24272686682855e-03 -6.27991330046680e-03 +-6.29851912991192e-03 -6.29509276634786e-03 -6.26615734669904e-03 -6.20829966292876e-03 +-6.11828861191702e-03 -5.99322438847770e-03 -5.83071666491835e-03 -5.62908618334647e-03 +-5.38757976550450e-03 -5.10658411897506e-03 -4.78781954264229e-03 -4.43449137641884e-03 +-4.05137550952744e-03 -3.64481510821345e-03 -3.22260942265044e-03 -2.79378226782346e-03 +-2.36822734230608e-03 -1.95623931217962e-03 -1.56795247631427e-03 -1.21272142734308e-03 +-8.98488817111086e-04 -6.31192525266303e-04 -4.14266863961540e-04 -2.48289060576162e-04 +-1.30812939806244e-04 -5.64170387827997e-05 -1.69756542723036e-05 -2.14049068308346e-06 +0.00000000000000e+00 diff --git a/_book/examples/elastic/INPUT b/_book/examples/elastic/INPUT new file mode 100644 index 00000000..9adf712b --- /dev/null +++ b/_book/examples/elastic/INPUT @@ -0,0 +1,24 @@ +INPUT_PARAMETERS +#Parameters (1.General) +suffix C8 +calculation relax +esolver_type ksdft +symmetry 1 +pseudo_dir ../ +orbital_dir ../ +cal_stress 1 +cal_force 1 +#Parameters (2.Iteration) +ecutwfc 100 +scf_thr 1e-7 +scf_nmax 50 +#Parameters (3.Basis) +basis_type lcao +# kpar 8 +gamma_only 0 +#Parameters (4.Smearing) +smearing_method gaussian +smearing_sigma 0.002 +#Parameters (5.Mixing) +mixing_type broyden +mixing_beta 0.7 diff --git a/_book/examples/elastic/KPT b/_book/examples/elastic/KPT new file mode 100644 index 00000000..a4e9cbd4 --- /dev/null +++ b/_book/examples/elastic/KPT @@ -0,0 +1,4 @@ +K_POINTS +0 +MP +14 14 14 0 0 0 diff --git a/_book/examples/elastic/compute_dfm.py b/_book/examples/elastic/compute_dfm.py new file mode 100644 index 00000000..adab95ad --- /dev/null +++ b/_book/examples/elastic/compute_dfm.py @@ -0,0 +1,110 @@ +from monty.serialization import loadfn, dumpfn +from pymatgen.analysis.elasticity.elastic import ElasticTensor +from pymatgen.analysis.elasticity.stress import Stress +import glob, os, sys +import numpy as np + +def get_stress_vasp(lines: str) -> np.ndarray[3, 3]: + stress = np.zeros([3,3]) + for line in lines: + if "in kB" in line: + stress_xx = float(line.split()[2]) + stress_yy = float(line.split()[3]) + stress_zz = float(line.split()[4]) + stress_xy = float(line.split()[5]) + stress_yz = float(line.split()[6]) + stress_zx = float(line.split()[7]) + stress[0] = [stress_xx, stress_xy, stress_zx] + stress[1] = [stress_xy, stress_yy, stress_yz] + stress[2] = [stress_zx, stress_yz, stress_zz] + return stress + +def get_stress_abacus(lines: str) -> np.ndarray[3, 3]: + stress = np.zeros([3,3]) + for idx, line in enumerate(lines): + if "TOTAL-STRESS (KBAR)" in line: + stress_xx = float(lines[idx+2].split()[0]) + stress_yy = float(lines[idx+3].split()[1]) + stress_zz = float(lines[idx+4].split()[2]) + stress_xy = float(lines[idx+2].split()[1]) + stress_yz = float(lines[idx+3].split()[2]) + stress_zx = float(lines[idx+2].split()[2]) + stress[0] = [stress_xx, stress_xy, stress_zx] + stress[1] = [stress_xy, stress_yy, stress_yz] + stress[2] = [stress_zx, stress_yz, stress_zz] + return stress + +try: + run_type = sys.argv[1] +except: + print("Usage: python compute_dfm.py [abacus|vasp]") + sys.exit(1) + +if run_type == "abacus": + OUTCAR = "OUT.*/running_*.log" +elif run_type == "vasp": + OUTCAR = "OUTCAR" + +cwd = os.getcwd() +# print(cwd) + +# equi_stress +equi = glob.glob(os.path.join(cwd, "relax/", OUTCAR))[0] +# print(equi) +with open(equi, "r") as fin: + lines = fin.read().split("\n") +if run_type == "abacus": + equi_stress = Stress(get_stress_abacus(lines) * (-1000)) +elif run_type == "vasp": + equi_stress = Stress(get_stress_vasp(lines) * (-1000)) + # print(equi_stress) + + +# read all the task dir +task_dirs = glob.glob("task.*") +lst_strain = [] +lst_stress = [] +for ii in task_dirs: + os.chdir(os.path.join('./', ii)) + + strain = loadfn("strain.json") + # print(strain, strain.shape) + + stress = np.zeros([3,3]) + OUTCAR = glob.glob(OUTCAR)[0] + with open(OUTCAR, "r") as fin: + lines = fin.read().split("\n") + if run_type == "abacus": + stress = get_stress_abacus(lines) + elif run_type == "vasp": + stress = get_stress_vasp(lines) + # print(stress, stress.shape) + os.chdir(cwd) + lst_strain.append(strain) + lst_stress.append(Stress(stress * (-1000))) + +# print(lst_strain) +et = ElasticTensor.from_independent_strains(lst_strain, lst_stress, eq_stress=equi_stress, vasp=False) + +res_data = {} +ptr_data = '# Elastic Constants in GPa\n' +res_data["elastic_tensor"] = [] +for ii in range(6): + for jj in range(6): + res_data["elastic_tensor"].append(et.voigt[ii][jj] / 1e4) + ptr_data += "%7.2f " % (et.voigt[ii][jj] / 1e4) + ptr_data += "\n" +BV = et.k_voigt / 1e4 +GV = et.g_voigt / 1e4 +EV = 9 * BV * GV / (3 * BV + GV) +uV = 0.5 * (3 * BV - 2 * GV) / (3 * BV + GV) +res_data["BV"] = BV +res_data["GV"] = GV +res_data["EV"] = EV +res_data["uV"] = uV +ptr_data += "# Bulk Modulus BV = %.2f GPa\n" % BV +ptr_data += "# Shear Modulus GV = %.2f GPa\n" % GV +ptr_data += "# Youngs Modulus EV = %.2f GPa\n" % EV +ptr_data += "# Poission Ratio uV = %.2f " % uV +print(ptr_data) +dumpfn(res_data, "elastic.json", indent=4) diff --git a/_book/examples/elastic/gene_dfm.py b/_book/examples/elastic/gene_dfm.py new file mode 100644 index 00000000..df50762c --- /dev/null +++ b/_book/examples/elastic/gene_dfm.py @@ -0,0 +1,96 @@ +from pymatgen.core.structure import Structure +from pymatgen.analysis.elasticity.elastic import Strain +from pymatgen.analysis.elasticity.strain import DeformedStructureSet +import os, sys, dpdata, glob +from monty.serialization import dumpfn + +try: + run_type = sys.argv[1] +except: + print("Usage: python gene_dfm.py [abacus|vasp]") + sys.exit(1) + +cwd = os.getcwd() +path_to_equi = os.path.join(cwd, 'relax') + +if run_type == "abacus": + CONTCAR = os.path.join('OUT.*', 'STRU_ION_D') + POSCAR = "STRU" + INCAR = "INPUT" + KPOINTS = "KPT" +elif run_type == "vasp": + CONTCAR = "CONTCAR" + POSCAR = "POSCAR" + INCAR = "INCAR" + KPOINTS = "KPOINTS" + +# print(CONTCAR) +equi_contcar = glob.glob(os.path.join(path_to_equi, CONTCAR))[0] +# print(equi_contcar) +if not os.path.exists(equi_contcar): + raise RuntimeError("Please do relaxation first!") + +if run_type == "abacus": + stru = dpdata.System(equi_contcar, fmt = "stru") + stru.to("poscar", "POSCAR.tmp") + ss = Structure.from_file("POSCAR.tmp") + os.remove("POSCAR.tmp") +elif run_type == "vasp": + ss = Structure.from_file(equi_contcar) + +norm_strains = [-0.010, -0.005, 0.005, 0.010] +shear_strains = [-0.010, -0.005, 0.005, 0.010] + +dfm_ss = DeformedStructureSet(ss, symmetry=False, norm_strains=norm_strains, shear_strains=shear_strains) +# print(dfm_ss) +n_dfm = len(dfm_ss) + +print("gen with norm " + str(norm_strains)) +print("gen with shear " + str(shear_strains)) +for ii in range(n_dfm): + output_task = os.path.join('./', "task.%03d" % ii) + os.makedirs(output_task, exist_ok=True) + os.chdir(output_task) + dfm_ss.deformed_structures[ii].to("POSCAR", fmt = "POSCAR") + if run_type == "abacus": + stru = dpdata.System("POSCAR", fmt="vasp/poscar") + n_atoms = len(stru["atom_names"]) + atom_mass = [] + pseudo = [] + orb = [] + with open(equi_contcar, "r") as f: + lines = f.readlines() + for idx, line in enumerate(lines): + if "ATOMIC_SPECIES" in line: + for i in range(n_atoms): + atom_mass.append(float(lines[idx+i+1].split()[1])) + pseudo.append(lines[idx+i+1].split()[2]) + if "NUMERICAL_ORBITAL" in line: + for i in range(n_atoms): + orb.append(lines[idx+i+1]) + if orb == []: + stru.to("stru", "STRU", mass=atom_mass, pp_file=pseudo) + else: + stru.to("stru", "STRU", mass=atom_mass, pp_file=pseudo, numerical_orbital=orb) + os.remove("POSCAR") + os.system("cp ../{} .".format(INCAR)) + if run_type == "abacus": + with open(INCAR, "r") as f: + lines = f.readlines() + pseudo_dir = "../" + orb_dir = "../" + for line in lines: + if 'pseudo_dir' in line: + if pseudo_dir != line.split()[1].strip(): + line = line.replace(line, 'pseudo_dir ' + pseudo_dir) + if 'orb_dir' in line: + if orb_dir != line.split()[1].strip(): + line = line.replace(line, 'orb_dir ' + orb_dir) + with open(INCAR, "w") as f: + f.writelines(lines) + os.system("cp ../{} .".format(KPOINTS)) + if run_type == "vasp": + os.system("cp ../POTCAR .") + df = Strain.from_deformation(dfm_ss.deformations[ii]) + dumpfn(df.as_dict(), "strain.json", indent=4) + os.chdir(cwd) diff --git a/_book/examples/elastic/relax/INPUT b/_book/examples/elastic/relax/INPUT new file mode 100644 index 00000000..9adf712b --- /dev/null +++ b/_book/examples/elastic/relax/INPUT @@ -0,0 +1,24 @@ +INPUT_PARAMETERS +#Parameters (1.General) +suffix C8 +calculation relax +esolver_type ksdft +symmetry 1 +pseudo_dir ../ +orbital_dir ../ +cal_stress 1 +cal_force 1 +#Parameters (2.Iteration) +ecutwfc 100 +scf_thr 1e-7 +scf_nmax 50 +#Parameters (3.Basis) +basis_type lcao +# kpar 8 +gamma_only 0 +#Parameters (4.Smearing) +smearing_method gaussian +smearing_sigma 0.002 +#Parameters (5.Mixing) +mixing_type broyden +mixing_beta 0.7 diff --git a/_book/examples/elastic/relax/KPT b/_book/examples/elastic/relax/KPT new file mode 100644 index 00000000..a4e9cbd4 --- /dev/null +++ b/_book/examples/elastic/relax/KPT @@ -0,0 +1,4 @@ +K_POINTS +0 +MP +14 14 14 0 0 0 diff --git a/_book/examples/elastic/relax/STRU b/_book/examples/elastic/relax/STRU new file mode 100644 index 00000000..06052132 --- /dev/null +++ b/_book/examples/elastic/relax/STRU @@ -0,0 +1,29 @@ +ATOMIC_SPECIES +C 12.011 C_ONCV_PBE-1.0.upf upf201 + +NUMERICAL_ORBITAL +C_gga_7au_100Ry_2s2p1d.orb + +LATTICE_CONSTANT +1.889726 + +LATTICE_VECTORS + 3.5736050709821550 0.0000000000000000 0.0000000000000000 + 0.0000000000000000 3.5736050709821550 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 3.5736050709821550 + +ATOMIC_POSITIONS +Direct + +C #label +0 #magnetism +8 #number of atoms + 0.2500000000000000 0.2500000000000000 0.2500000000000000 + 0.0000000000000000 0.0000000000000000 0.0000000000000000 + 0.2500000000000000 0.7500000000000000 0.7500000000000000 + 0.0000000000000000 0.5000000000000000 0.5000000000000000 + 0.7500000000000000 0.2500000000000000 0.7500000000000000 + 0.5000000000000000 0.0000000000000000 0.5000000000000000 + 0.7500000000000000 0.7500000000000000 0.2500000000000000 + 0.5000000000000000 0.5000000000000000 0.0000000000000000 + \ No newline at end of file diff --git a/_book/examples/elastic/run_task.sh b/_book/examples/elastic/run_task.sh new file mode 100644 index 00000000..e9ed08c6 --- /dev/null +++ b/_book/examples/elastic/run_task.sh @@ -0,0 +1,11 @@ +#!/bin/bash +for i in task.* +do +cd ./$i +pwd +# 超算环境注意修改sub.sh中的内容 +sbatch ../sub.sh +# 或者直接运行abacus +# mpirun -n 4 abacus +cd ../ +done \ No newline at end of file diff --git a/_book/examples/elastic/sub.sh b/_book/examples/elastic/sub.sh new file mode 100644 index 00000000..b2be2b42 --- /dev/null +++ b/_book/examples/elastic/sub.sh @@ -0,0 +1,7 @@ +#!/bin/bash +#SBATCH -p master +#SBATCH -J lcao-elas +#SBATCH -n 6 + +intel +mpirun -n 6 abacus | tee abacus.out \ No newline at end of file diff --git a/_book/examples/electric_field/5_spin_elec_scf/INPUT b/_book/examples/electric_field/5_spin_elec_scf/INPUT index 2ec94a15..eaf96e7c 100644 --- a/_book/examples/electric_field/5_spin_elec_scf/INPUT +++ b/_book/examples/electric_field/5_spin_elec_scf/INPUT @@ -22,8 +22,10 @@ smearing_sigma 0.001 #Parameters (Charge mixing) mixing_type pulay mixing_beta 0.1 +mixing_beta_mag 0.1 mixing_ndim 20 mixing_gg0 1.5 +mixing_gg0_mag 1.5 #Parameters (Efield) efield_flag 1 diff --git a/_book/examples/tddft/absorption_H2_length/INPUT b/_book/examples/tddft/absorption_H2_length/INPUT new file mode 100644 index 00000000..c0129127 --- /dev/null +++ b/_book/examples/tddft/absorption_H2_length/INPUT @@ -0,0 +1,45 @@ +INPUT_PARAMETERS +#Parameters (1.General) +suffix H2_absoprion +calculation md +esolver_type tddft +pseudo_dir ../../../tests/PP_ORB +orbital_dir ../../../tests/PP_ORB + +#Parameters (2.Iteration) +ecutwfc 60 +scf_thr 1e-6 +scf_nmax 100 + +#Parameters (3.Basis) +basis_type lcao +gamma_only 0 + +#Parameters (4.Smearing) +smearing_method gauss + +#Parameters (5.MD Parameters) +md_type nve +md_nstep 1000 +md_dt 0.005 +md_tfirst 0 + +#Parameters (6.Efield Parameters) +td_vext 1 +td_stype 0 + +td_tstart 1 +td_tend 1000 + +td_vext_dire 3 3 +td_ttype 0 0 +td_gauss_freq 3.66 1.22 +td_gauss_phase 0.0 0.0 +td_gauss_sigma 0.2 0.2 +td_gauss_t0 300 300 +td_gauss_amp 0.01 0.01 + +#Parameters (7.Output) +out_chg 1 +out_efield 1 +out_dipole 1 diff --git a/_book/examples/tddft/absorption_H2_length/KPT b/_book/examples/tddft/absorption_H2_length/KPT new file mode 100644 index 00000000..c289c015 --- /dev/null +++ b/_book/examples/tddft/absorption_H2_length/KPT @@ -0,0 +1,4 @@ +K_POINTS +0 +Gamma +1 1 1 0 0 0 diff --git a/_book/examples/tddft/absorption_H2_length/STRU b/_book/examples/tddft/absorption_H2_length/STRU new file mode 100644 index 00000000..c56c8a34 --- /dev/null +++ b/_book/examples/tddft/absorption_H2_length/STRU @@ -0,0 +1,23 @@ +ATOMIC_SPECIES +H 1.008 H_ONCV_PBE-1.0.upf + +NUMERICAL_ORBITAL +1_H_gga_100Ry_7au_2s1p.orb + +LATTICE_CONSTANT +1.8897261258369282 + +LATTICE_VECTORS +10.000100000 0.0000000000 0.0000000000 +0.0000000000 10.006500000 0.0000000000 +0.0000000000 0.0000000000 10.740000000 + +ATOMIC_POSITIONS +Direct + +H +0.0000000000 +2 +0.4999950000 0.4996750000 0.5344510000 1 1 1 m 0 0 0 +0.5000050000 0.5003250000 0.4655490000 1 1 1 m 0 0 0 + diff --git a/_book/examples/tddft/absorption_H2_velocity/INPUT b/_book/examples/tddft/absorption_H2_velocity/INPUT new file mode 100644 index 00000000..b98601ed --- /dev/null +++ b/_book/examples/tddft/absorption_H2_velocity/INPUT @@ -0,0 +1,47 @@ +INPUT_PARAMETERS +#Parameters (1.General) +suffix H2_absoprion +calculation md +esolver_type tddft +pseudo_dir ../../../tests/PP_ORB +orbital_dir ../../../tests/PP_ORB + +#Parameters (2.Iteration) +ecutwfc 60 +scf_thr 1e-6 +scf_nmax 100 + +#Parameters (3.Basis) +basis_type lcao +gamma_only 0 + +#Parameters (4.Smearing) +smearing_method gauss + +#Parameters (5.MD Parameters) +md_type nve +md_nstep 1000 +md_dt 0.005 +md_tfirst 0 + +#Parameters (6.Efield Parameters) +td_vext 1 +td_stype 1 + +td_tstart 1 +td_tend 1000 +td_lcut1 0.01 +td_lcut2 0.99 + +td_vext_dire 3 3 +td_ttype 0 0 +td_gauss_freq 3.66 1.22 +td_gauss_phase 0.0 0.0 +td_gauss_sigma 0.2 0.2 +td_gauss_t0 300 300 +td_gauss_amp 0.01 0.01 + +#Parameters (7.Output) +out_chg 1 +out_efield 1 +out_dipole 1 diff --git a/_book/examples/tddft/absorption_H2_velocity/KPT b/_book/examples/tddft/absorption_H2_velocity/KPT new file mode 100644 index 00000000..c289c015 --- /dev/null +++ b/_book/examples/tddft/absorption_H2_velocity/KPT @@ -0,0 +1,4 @@ +K_POINTS +0 +Gamma +1 1 1 0 0 0 diff --git a/_book/examples/tddft/absorption_H2_velocity/STRU b/_book/examples/tddft/absorption_H2_velocity/STRU new file mode 100644 index 00000000..c56c8a34 --- /dev/null +++ b/_book/examples/tddft/absorption_H2_velocity/STRU @@ -0,0 +1,23 @@ +ATOMIC_SPECIES +H 1.008 H_ONCV_PBE-1.0.upf + +NUMERICAL_ORBITAL +1_H_gga_100Ry_7au_2s1p.orb + +LATTICE_CONSTANT +1.8897261258369282 + +LATTICE_VECTORS +10.000100000 0.0000000000 0.0000000000 +0.0000000000 10.006500000 0.0000000000 +0.0000000000 0.0000000000 10.740000000 + +ATOMIC_POSITIONS +Direct + +H +0.0000000000 +2 +0.4999950000 0.4996750000 0.5344510000 1 1 1 m 0 0 0 +0.5000050000 0.5003250000 0.4655490000 1 1 1 m 0 0 0 + diff --git a/_book/examples/tddft/occupation/INPUT b/_book/examples/tddft/occupation/INPUT new file mode 100644 index 00000000..a858d436 --- /dev/null +++ b/_book/examples/tddft/occupation/INPUT @@ -0,0 +1,31 @@ +INPUT_PARAMETERS +#Parameters (1.General) +suffix H2_ocp +calculation md +esolver_type tddft +nbands 5 +nspin 1 +pseudo_dir ../../../tests/PP_ORB +orbital_dir ../../../tests/PP_ORB + +#Parameters (2.Iteration) +ecutwfc 60 +scf_thr 1e-6 +scf_nmax 100 + +#Parameters (3.Basis) +basis_type lcao +gamma_only 0 + +#Parameters (4.Smearing) +smearing_method gauss + +#Parameters (5.MD Parameters) +md_type nve +md_nstep 1000 +md_dt 0.05 +md_tfirst 0 + +#Parameters (6.Occupation Parameters) +ocp 1 +ocp_set 1 1 0 0 0 \ No newline at end of file diff --git a/_book/examples/tddft/occupation/INPUT-1 b/_book/examples/tddft/occupation/INPUT-1 new file mode 100644 index 00000000..3513908c --- /dev/null +++ b/_book/examples/tddft/occupation/INPUT-1 @@ -0,0 +1,31 @@ +INPUT_PARAMETERS +#Parameters (1.General) +suffix H2_ocp +calculation md +esolver_type tddft +nbands 5 +nspin 1 +pseudo_dir ../../../tests/PP_ORB +orbital_dir ../../../tests/PP_ORB + +#Parameters (2.Iteration) +ecutwfc 60 +scf_thr 1e-6 +scf_nmax 100 + +#Parameters (3.Basis) +basis_type lcao +gamma_only 0 + +#Parameters (4.Smearing) +smearing_method gauss + +#Parameters (5.MD Parameters) +md_type nve +md_nstep 1000 +md_dt 0.05 +md_tfirst 0 + +#Parameters (6.Occupation Parameters) +ocp 1 +ocp_set 2 0 0 0 0 \ No newline at end of file diff --git a/_book/examples/tddft/occupation/KPT b/_book/examples/tddft/occupation/KPT new file mode 100644 index 00000000..c289c015 --- /dev/null +++ b/_book/examples/tddft/occupation/KPT @@ -0,0 +1,4 @@ +K_POINTS +0 +Gamma +1 1 1 0 0 0 diff --git a/_book/examples/tddft/occupation/STRU b/_book/examples/tddft/occupation/STRU new file mode 100644 index 00000000..f93d05b1 --- /dev/null +++ b/_book/examples/tddft/occupation/STRU @@ -0,0 +1,22 @@ +ATOMIC_SPECIES +H 1.008 H_ONCV_PBE-1.0.upf upf201 + +NUMERICAL_ORBITAL +H_gga_6au_100Ry_2s1p.orb + +LATTICE_CONSTANT +1 + +LATTICE_VECTORS +20 0 0 #latvec1 +0 20 0 #latvec2 +0 0 20 #latvec3 + +ATOMIC_POSITIONS +Cartesian + +H #label +0 #magnetism +2 #number of atoms +10.1504894046 10.5605348613 9.75031266064 m 1 1 1 v -0.000527479338344 -0.000734998733316 -0.000325252585153 +10.7295105954 10.3194651387 11.1296873394 m 1 1 1 v 0.000527479338344 0.000734998733316 0.000325252585153 diff --git a/_book/index.html b/_book/index.html index 1f500668..7366950b 100644 --- a/_book/index.html +++ b/_book/index.html @@ -174,7 +174,20 @@ -
                          • +
                          • + + + + + Intel oneAPI 2024.x 编译 ABACUS 教程 + + + + + +
                          • + +
                          • @@ -187,7 +200,7 @@
                          • -
                          • +
                          • @@ -200,7 +213,7 @@
                          • -
                          • +
                          • @@ -213,7 +226,7 @@
                          • -
                          • +
                          • @@ -226,7 +239,33 @@
                          • -
                          • +
                          • + + + + + ABACUS 答疑手册 + + + + + +
                          • + +
                          • + + + + + ABACUS 收敛性问题解决手册 + + + + + +
                          • + +
                          • @@ -239,7 +278,7 @@
                          • -
                          • +
                          • @@ -252,7 +291,7 @@
                          • -
                          • +
                          • @@ -265,7 +304,7 @@
                          • -
                          • +
                          • @@ -278,7 +317,20 @@
                          • -
                          • +
                          • + + + + + ABACUS 的平面波计算与收敛性测试 + + + + + +
                          • + +
                          • @@ -291,7 +343,7 @@
                          • -
                          • +
                          • @@ -304,7 +356,7 @@
                          • -
                          • +
                          • @@ -317,7 +369,7 @@
                          • -
                          • +
                          • @@ -330,7 +382,20 @@
                          • -
                          • +
                          • + + + + + ABACUS 实时演化含时密度泛函理论使用教程 + + + + + +
                          • + +
                          • @@ -343,7 +408,7 @@
                          • -
                          • +
                          • @@ -356,7 +421,7 @@
                          • -
                          • +
                          • @@ -369,7 +434,7 @@
                          • -
                          • +
                          • @@ -382,7 +447,7 @@
                          • -
                          • +
                          • @@ -395,7 +460,7 @@
                          • -
                          • +
                          • @@ -408,7 +473,20 @@
                          • -
                          • +
                          • + + + + + ABACUS+Atomkit 计算态密度和能带 + + + + + +
                          • + +
                          • @@ -421,7 +499,7 @@
                          • -
                          • +
                          • @@ -434,7 +512,7 @@
                          • -
                          • +
                          • @@ -447,7 +525,7 @@
                          • -
                          • +
                          • @@ -460,7 +538,7 @@
                          • -
                          • +
                          • @@ -473,7 +551,7 @@
                          • -
                          • +
                          • @@ -486,7 +564,7 @@
                          • -
                          • +
                          • @@ -499,7 +577,7 @@
                          • -
                          • +
                          • @@ -512,12 +590,25 @@
                          • -
                          • +
                          • - + - ABACUS 收敛性问题解决手册 + ABACUS+pymatgen 计算弹性常数 + + + + + +
                          • + +
                          • + + + + + ABACUS+Bader charge 分析教程 @@ -622,7 +713,20 @@
                          • -
                          • +
                          • + + + + + ABACUS formatter-2.0 版本使用说明书 + + + + + +
                          • + +
                          • @@ -635,7 +739,46 @@
                          • -
                          • +
                          • + + + + + 性能分析工具:vtune 快速上手教程 + + + + + +
                          • + +
                          • + + + + + 以格点积分程序为例:一些代码开发习惯小贴士 + + + + + +
                          • + +
                          • + + + + + 文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例 + + + + + +
                          • + +
                          • @@ -648,7 +791,7 @@
                          • -
                          • +
                          • @@ -661,7 +804,7 @@
                          • -
                          • +
                          • @@ -674,7 +817,7 @@
                          • -
                          • +
                          • @@ -687,7 +830,7 @@
                          • -
                          • +
                          • @@ -700,7 +843,7 @@
                          • -
                          • +
                          • @@ -713,7 +856,7 @@
                          • -
                          • +
                          • @@ -726,7 +869,7 @@
                          • -
                          • +
                          • @@ -739,7 +882,7 @@
                          • -
                          • +
                          • @@ -752,7 +895,7 @@
                          • -
                          • +
                          • @@ -765,7 +908,7 @@
                          • -
                          • +
                          • @@ -778,7 +921,7 @@
                          • -
                          • +
                          • @@ -791,7 +934,7 @@
                          • -
                          • +
                          • @@ -804,7 +947,7 @@
                          • -
                          • +
                          • @@ -817,7 +960,7 @@
                          • -
                          • +
                          • @@ -830,7 +973,20 @@
                          • -
                          • +
                          • + + + + + 如何在 ABACUS 中新增一个输入参数(v3.7.0 后) + + + + + +
                          • + +
                          • @@ -843,7 +999,7 @@
                          • -
                          • +
                          • @@ -899,6 +1055,19 @@ +
                          • + +
                          • + + + + + 在 ABACUS 中进行差分测试 + + + + +
                          • @@ -979,7 +1148,7 @@

                            ABACUS使用教程

                            一、介绍

                            -

                            ABACUS(Atomic-orbtial Based Ab-initio Computation at UStc,中文名原子算筹)是国产开源密度泛函理论软件,相关介绍 ABACUS 的新闻可在ABACUS 新闻稿整理查看,以下是一些常用地址:

                            +

                            ABACUS(Atomic-orbtial Based Ab-initio Computation at UStc,中文名原子算筹)是国产开源密度泛函理论软件,相关介绍 ABACUS 的新闻可在ABACUS 新闻稿整理查看,以下是一些常用地址:

                            ABACUS 在 DeepModeling 社区中的 GitHub 仓库地址为:

                            https://github.com/deepmodeling/abacus-develop

                            ABACUS 的 Gitee 镜像仓库地址为:

                            @@ -996,6 +1165,7 @@

                          • ABACUS的编译介绍
                            1. 官方编译教程
                            2. GCC 编译 ABACUS 教程
                            3. +
                            4. Intel oneAPI 2024.x 编译 ABACUS 教程
                            5. Intel oneAPI 编译 ABACUS 教程
                            6. 编译 Nvidia GPU 版本的 ABACUS
                            7. 在超算环境编译 ABACUS 的建议
                            8. @@ -1022,8 +1192,10 @@

                            9. Kohn-Sham密度泛函理论
                              1. 电子自洽迭代
                              2. 带自旋的体系计算:ABACUS磁性材料计算使用教程
                              3. -
                              4. +U计算:ABACUS DFT+U使用教程
                              5. +
                              6. +U计算:ABACUS使用DFT+U计算教程 |基础版 +
                              7. 结构优化:ABACUS 使用教程|结构优化
                              8. +
                              9. ABACUS 的平面波计算与收敛性测试
                              10. 分子动力学:ABACUS 分子动力学使用教程
                            10. @@ -1035,6 +1207,7 @@

                            11. ABACUS 隐式溶剂模型使用教程
                            12. 随机波函数密度泛函理论:ABACUS 随机波函数DFT方法使用教程
                            13. 无轨道密度泛函理论:ABACUS 无轨道密度泛函理论方法使用教程
                            14. +
                            15. ABACUS 实时演化含时密度泛函理论使用教程
                            16. 采用ABACUS进行表面计算
                              1. 静电势和功函数
                              2. 偶极修正
                              3. @@ -1046,8 +1219,7 @@

                              4. 分析结果
                                1. 能带计算
                                    -
                                  1. 如何正确画能带,NSCF读电荷密度
                                  2. -
                                  3. 用ABACUS-ASE自动产生能带路径
                                  4. +
                                  5. ABACUS+Atomkit 计算态密度和能带
                                2. PDOS计算
                                    @@ -1066,6 +1238,8 @@

                                  1. ABACUS+USPEX 接口教程
                                  2. ABACUS+Hefei NAMD 使用教程
                                  3. ABACUS+Wannier90 使用教程
                                  4. +
                                  5. ABACUS+pymatgen 计算弹性常数
                                  6. +
                                  7. ABACUS+Bader charge 分析教程
                                  8. ABACUS+pyatb 能带反折叠计算
                                  9. ABACUS+DeepH 建立碳材料的哈密顿量模型
                                  10. ABACUS+ASE接口使用技巧
                                  11. @@ -1080,7 +1254,22 @@

                                  三、使用经验

                                    +
                                  1. ABACUS 答疑手册
                                  2. ABACUS 收敛性问题解决手册
                                  3. +
                                  4. ABACUS计算模拟实例 | 概述
                                  5. +
                                  6. ABACUS计算模拟实例 | I. 原子及小分子气体能量计算
                                  7. +
                                  8. ABACUS计算模拟实例 | II. C2H5OH的振动模式与频率计算
                                  9. +
                                  10. ABACUS计算模拟实例 | III. 材料平衡晶格常数计算
                                  11. +
                                  12. ABACUS计算模拟实例 | IV. 堆垛层错能的计算
                                  13. +
                                  14. ABACUS计算模拟实例 | V. Al的弹性性能指标计算
                                  15. +
                                  16. ABACUS计算模拟实例 | VI. 空位形成能与间隙能计算
                                  17. +
                                  18. 2024秋计算材料学-上机练习:ABACUS能带和态密度计算
                                  19. +
                                  20. ABACUS计算模拟实例 | VIII. 基于HSE06的态密度与能带计算
                                  21. +
                                  22. ABACUS计算模拟实例 | IX. 表面能的计算
                                  23. +
                                  24. ABACUS计算模拟实例 | XI. Pt表面简单物种的吸附能计算
                                  25. +
                                  26. ABACUS计算模拟实例 | XII. Pt(111)表面羟基解离的过渡态搜索
                                  27. +
                                  28. ABACUS计算模拟实例 | XIII. Pt表面的ORR催化路径
                                  29. +
                                  30. ABACUS对比CP2K精度和效率测试 | Si的状态方程(EOS)
                                  31. 有VASP使用背景的用户上手ABACUS教程:ABACUS新人使用的一些注意事项

                                  四、开发者文档

                                  @@ -1091,7 +1280,10 @@

                                  ABACUS 的 Github 仓库 Issues 处理流程

                                3. ABACUS 线上文档输入参数撰写规范
                                4. ABACUS 代码存放规范
                                5. +
                                6. ABACUS formatter-2.0 版本使用说明书
                                7. ABACUS 全局数据结构和代码行数检测
                                8. +
                                9. 性能分析工具:vtune 快速上手教程
                                10. +
                                11. 以格点积分程序为例:一些代码开发习惯小贴士
                                12. ABACUS 中的测试(一):测试的重要性
                                13. ABACUS 中的测试(二):测试工具 gtest
                                14. Introduction to ABACUS: Path to PW calculation - Part 1
                                15. @@ -1107,16 +1299,19 @@

                                  Introduction to ABACUS: Path to PW calculation - Part 10
                                16. Introduction to ABACUS: Path to PW calculation - Part 11
                                17. Introduction to ABACUS: Path to PW calculation - Summary Final
                                18. +
                                19. 如何在 ABACUS 中新增一个输入参数(v3.7.0 后)
                                20. 如何在 ABACUS 中新增一个输入参数(截至 v3.5.3)
                                21. C++ 程序设计的一些想法
                                22. +
                                23. 文件输出功能的实现代码结构设计建议:以 ABCUS CifParser 为例

                                五、算法文档

                                1. 最大局域化 Wannier 函数方法简介
                                2. 电荷密度混合算法介绍
                                3. +
                                4. 在 ABACUS 中进行差分测试
                                Copyright © mcresearch.gitee.io 2023 all right reserved,powered by Gitbook该文章修订时间: -2024-03-15 15:06:43 +2024-09-06 16:55:52
                                @@ -1156,7 +1351,7 @@

                                No results matching " var gitbook = gitbook || []; gitbook.push(function() { - gitbook.page.hasChanged({"page":{"title":"ABACUS 使用教程","level":"1.1","depth":1,"next":{"title":"GCC 编译 ABACUS 教程","level":"1.1.1","depth":2,"path":"abacus-gcc.md","ref":"abacus-gcc.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.6.1","level":"1.1.6","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.6.1"},{"backlink":"abacus-upf.html#fig1.1.6.2","level":"1.1.6","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.6.2"},{"backlink":"abacus-upf.html#fig1.1.6.3","level":"1.1.6","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.6.3"},{"backlink":"abacus-upf.html#fig1.1.6.4","level":"1.1.6","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.6.4"},{"backlink":"abacus-upf.html#fig1.1.6.5","level":"1.1.6","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.6.5"},{"backlink":"abacus-surface2.html#fig1.1.15.1","level":"1.1.15","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":6,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.15.1"},{"backlink":"abacus-surface2.html#fig1.1.15.2","level":"1.1.15","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":7,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.15.2"},{"backlink":"abacus-surface2.html#fig1.1.15.3","level":"1.1.15","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":8,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.15.3"},{"backlink":"abacus-surface5.html#fig1.1.18.1","level":"1.1.18","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":9,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.18.1"},{"backlink":"abacus-surface5.html#fig1.1.18.2","level":"1.1.18","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.18.2"},{"backlink":"abacus-surface5.html#fig1.1.18.3","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":11,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.18.3"},{"backlink":"abacus-surface5.html#fig1.1.18.4","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":12,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.18.4"},{"backlink":"abacus-surface5.html#fig1.1.18.5","level":"1.1.18","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":13,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.18.5"},{"backlink":"abacus-surface6.html#fig1.1.19.1","level":"1.1.19","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":14,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.19.1"},{"backlink":"abacus-surface6.html#fig1.1.19.2","level":"1.1.19","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":15,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.19.2"},{"backlink":"develop-path4.html#fig1.2.13.1","level":"1.2.13","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":16,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.13.1"},{"backlink":"develop-path4.html#fig1.2.13.2","level":"1.2.13","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":17,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.13.2"},{"backlink":"develop-path5.html#fig1.2.14.1","level":"1.2.14","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":18,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.14.1"},{"backlink":"develop-path5.html#fig1.2.14.2","level":"1.2.14","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":19,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.14.2"},{"backlink":"develop-path5.html#fig1.2.14.3","level":"1.2.14","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":20,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.14.3"},{"backlink":"develop-path5.html#fig1.2.14.4","level":"1.2.14","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":21,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.14.4"},{"backlink":"develop-path5.html#fig1.2.14.5","level":"1.2.14","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":22,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.14.5"},{"backlink":"develop-path6.html#fig1.2.16.1","level":"1.2.16","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":23,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.16.1"},{"backlink":"develop-path10.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":24,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.20.2","level":"1.2.20","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":25,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.20.2"},{"backlink":"develop-path10.html#fig1.2.20.3","level":"1.2.20","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":26,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.20.3"},{"backlink":"develop-path10.html#fig1.2.20.4","level":"1.2.20","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":27,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.20.4"},{"backlink":"develop-path10.html#fig1.2.20.5","level":"1.2.20","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":28,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.20.5"},{"backlink":"develop-path11.html#fig1.2.21.1","level":"1.2.21","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":29,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.21.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":30,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"README.md","mtime":"2024-03-15T07:06:43.870Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-03-19T11:29:16.414Z"},"basePath":".","book":{"language":""}}); + gitbook.page.hasChanged({"page":{"title":"ABACUS 使用教程","level":"1.1","depth":1,"next":{"title":"GCC 编译 ABACUS 教程","level":"1.1.1","depth":2,"path":"abacus-gcc.md","ref":"abacus-gcc.md","articles":[]},"dir":"ltr"},"config":{"plugins":["image-captions","auto-scroll-table","splitter","3-ba","theme-comscore","insert-logo","custom-favicon","intopic-toc","anchors","chapter-fold","expandable-chapters","-lunr","-search","search-plus","prism","-highlight","code","mathjax-pro","hide-element","tbfed-pagefooter","disqus","github-buttons","sharing-plus","-sharing","livereload"],"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"pluginsConfig":{"tbfed-pagefooter":{"copyright":"Copyright © mcresearch.gitee.io 2023","modify_label":"该文章修订时间:","modify_format":"YYYY-MM-DD HH:mm:ss"},"page-treeview":{"copyright":"Copyright © aleen42","minHeaderCount":"2","minHeaderDeep":"2"},"chapter-fold":{},"prism":{},"disqus":{"useIdentifier":false,"shortName":"abacus-user-guide"},"intopic-toc":{"isCollapsed":true,"isScrollspyActive":true,"label":"In this article","maxDepth":6,"mode":"nested","selector":".markdown-section h1, .markdown-section h2, .markdown-section h3, .markdown-section h4, .markdown-section h5, .markdown-section h6","visible":true},"livereload":{},"splitter":{},"sharing-plus":{"qq":false,"all":["facebook","google","twitter","instapaper","linkedin","pocket","stumbleupon"],"douban":false,"facebook":true,"weibo":false,"instapaper":false,"whatsapp":false,"hatenaBookmark":false,"twitter":true,"messenger":false,"line":false,"vk":false,"pocket":true,"google":false,"viber":false,"stumbleupon":false,"qzone":false,"linkedin":false},"auto-scroll-table":{},"code":{"copyButtons":true},"hide-element":{"elements":[".gitbook-link"]},"fontsettings":{"theme":"white","family":"sans","size":2},"favicon":"./picture/abacus-logo.jpg","theme-comscore":{},"page-toc-button":{"maxTocDepth":2,"minTocSize":2},"github-buttons":{"buttons":[{"user":"MCresearch","repo":"abacus-user-guide","type":"star","size":"middle","count":true}]},"custom-favicon":{},"3-ba":{"configuration":"auto","token":"25153cb8bd9a872cfec60b4b23ac0176"},"mathjax-pro":{"forceSVG":false,"version":"2.7.7"},"sharing":{"weibo":false},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false},"anchors":{},"insert-logo":{"style":"background: none;max-height: 70px;width: -webkit-fill-available;max-width: 180px;","url":"./picture/abacus-logo.svg"},"expandable-chapters":{},"search-plus":{},"image-captions":{"caption":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","variable_name":"_pictures"}},"theme":"default","name":"abacus-user-guide","pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"variables":{"_pictures":[{"backlink":"abacus-upf.html#fig1.1.9.1","level":"1.1.9","list_caption":"Figure: 局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","alt":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","nro":1,"url":"picture/fig_upf-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"局域势函数与非局域势不同轨道角动量对应的半局域径向势函数","attributes":{},"skip":false,"key":"1.1.9.1"},{"backlink":"abacus-upf.html#fig1.1.9.2","level":"1.1.9","list_caption":"Figure: S赝波函数与全电子波函数对比","alt":"S赝波函数与全电子波函数对比","nro":2,"url":"picture/fig_upf-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S赝波函数与全电子波函数对比","attributes":{},"skip":false,"key":"1.1.9.2"},{"backlink":"abacus-upf.html#fig1.1.9.3","level":"1.1.9","list_caption":"Figure: S的双投影波函数","alt":"S的双投影波函数","nro":3,"url":"picture/fig_upf-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"S的双投影波函数","attributes":{},"skip":false,"key":"1.1.9.3"},{"backlink":"abacus-upf.html#fig1.1.9.4","level":"1.1.9","list_caption":"Figure: 不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","alt":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","nro":4,"url":"picture/fig_upf-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同能级波函数在截断半径处log导数对比,其影响散射性质的计算","attributes":{},"skip":false,"key":"1.1.9.4"},{"backlink":"abacus-upf.html#fig1.1.9.5","level":"1.1.9","list_caption":"Figure: 不同轨道角动量对应的截断能","alt":"不同轨道角动量对应的截断能","nro":5,"url":"picture/fig_upf-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"不同轨道角动量对应的截断能","attributes":{},"skip":false,"key":"1.1.9.5"},{"backlink":"abacus-pw.html#fig1.1.13.1","level":"1.1.13","list_caption":"Figure: 电子自洽迭代计算流程。","alt":"电子自洽迭代计算流程。","nro":6,"url":"picture/fig_pw-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"电子自洽迭代计算流程。","attributes":{},"skip":false,"key":"1.1.13.1"},{"backlink":"abacus-pw.html#fig1.1.13.2","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","nro":7,"url":"picture/fig_pw-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随ecut (in Ry)变化。","attributes":{},"skip":false,"key":"1.1.13.2"},{"backlink":"abacus-pw.html#fig1.1.13.3","level":"1.1.13","list_caption":"Figure: 体系里平均单个Si原子能量(in eV/atom)随K点变化。","alt":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","nro":8,"url":"picture/fig_pw-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"体系里平均单个Si原子能量(in eV/atom)随K点变化。","attributes":{},"skip":false,"key":"1.1.13.3"},{"backlink":"abacus-pw.html#fig1.1.13.4","level":"1.1.13","list_caption":"Figure: 计算时间随K点变化。","alt":"计算时间随K点变化。","nro":9,"url":"picture/fig_pw-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"计算时间随K点变化。","attributes":{},"skip":false,"key":"1.1.13.4"},{"backlink":"abacus-surface2.html#fig1.1.20.1","level":"1.1.20","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":10,"url":"picture/fig_surface2-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.20.1"},{"backlink":"abacus-surface2.html#fig1.1.20.2","level":"1.1.20","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":11,"url":"picture/fig_surface2-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.20.2"},{"backlink":"abacus-surface2.html#fig1.1.20.3","level":"1.1.20","list_caption":"Figure: 静电势沿超胞Z轴变化图","alt":"静电势沿超胞Z轴变化图","nro":12,"url":"picture/fig_surface2-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.20.3"},{"backlink":"abacus-surface5.html#fig1.1.23.1","level":"1.1.23","list_caption":"Figure: Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","alt":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","nro":13,"url":"picture/fig_surface5-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Nanoribbon结构图,黑框代表超胞大小,有真空。超胞里包含32个碳原子(棕色),超胞里接触真空的2个碳原子(每个表面一个碳原子)被2个氢原子(白色)饱和。","attributes":{},"skip":false,"key":"1.1.23.1"},{"backlink":"abacus-surface5.html#fig1.1.23.2","level":"1.1.23","list_caption":"Figure: 锯齿状势场分布图","alt":"锯齿状势场分布图","nro":14,"url":"picture/fig_surface2-1.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"锯齿状势场分布图","attributes":{},"skip":false,"key":"1.1.23.2"},{"backlink":"abacus-surface5.html#fig1.1.23.3","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","alt":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","nro":15,"url":"picture/fig_surface5-3.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和非自旋极化得到的二维nanoribbon的能带图,可以看出费米面附近CBM(Conduction Band Minimum)和VBM(Valence Band Maximum)重合,无带隙。","attributes":{},"skip":false,"key":"1.1.23.3"},{"backlink":"abacus-surface5.html#fig1.1.23.4","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","alt":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","nro":16,"url":"picture/fig_surface5-4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出不加电场时,两个自旋方向的能带图几乎一样,都有带隙。","attributes":{},"skip":false,"key":"1.1.23.4"},{"backlink":"abacus-surface5.html#fig1.1.23.5","level":"1.1.23","list_caption":"Figure: 采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","alt":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","nro":17,"url":"picture/fig_surface5-5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"采用PBE交换关联泛函和自旋极化,再给体系加上0.1 V/Å的电场得到的二维nanoribbon的能带图。蓝色和红色代表自旋极化方向不同时对应的两副能带图像,可以看出加了能带之后,其中一个自旋方向的能带图出现费米面附近的交叠,呈现金属性质,另外一个自旋方向的能带图依旧保持在费米面处的能隙。","attributes":{},"skip":false,"key":"1.1.23.5"},{"backlink":"abacus-surface6.html#fig1.1.24.1","level":"1.1.24","list_caption":"Figure: 一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","alt":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","nro":18,"url":"picture/fig_surface6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"一个水分子位于超胞中,红色代表氧原子,白色代表氢原子","attributes":{},"skip":false,"key":"1.1.24.1"},{"backlink":"abacus-surface6.html#fig1.1.24.2","level":"1.1.24","list_caption":"Figure: 静电势(Electrostatic Potential)沿超胞Z轴变化图","alt":"静电势(Electrostatic Potential)沿超胞Z轴变化图","nro":19,"url":"picture/fig_surface6-2.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"静电势(Electrostatic Potential)沿超胞Z轴变化图","attributes":{},"skip":false,"key":"1.1.24.2"},{"backlink":"abacus-dos.html#fig1.1.25.1","level":"1.1.25","list_caption":"Figure: 铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","alt":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","nro":20,"url":"picture/fig_dos-5.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的态密度(DOS),红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点,即蓝色虚线所在能量位置。可以看出铁的两个自旋方向态密度并不相等,因此铁具有磁性。","attributes":{},"skip":false,"key":"1.1.25.1"},{"backlink":"abacus-dos.html#fig1.1.25.2","level":"1.1.25","list_caption":"Figure: 铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","alt":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","nro":21,"url":"picture/fig_dos-6.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"铁的能带图,红线表示自旋向下电子的能带图,黑线表示自旋向上电子的能带图。费米面设为 0 点。","attributes":{},"skip":false,"key":"1.1.25.2"},{"backlink":"abacus-bader.html#fig1.1.35.1","level":"1.1.35","list_caption":"Figure: SPIN1_CHG.cube","alt":"SPIN1_CHG.cube","nro":22,"url":"picture/fig_Bader1.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN1_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.1"},{"backlink":"abacus-bader.html#fig1.1.35.2","level":"1.1.35","list_caption":"Figure: SPIN2_CHG.cube","alt":"SPIN2_CHG.cube","nro":23,"url":"picture/fig_Bader2.jpg","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN2_CHG.cube","attributes":{},"skip":false,"key":"1.1.35.2"},{"backlink":"abacus-bader.html#fig1.1.35.3","level":"1.1.35","list_caption":"Figure: SPIN_DENSITY.cube","alt":"SPIN_DENSITY.cube","nro":24,"url":"picture/fig_Bader3.jpg","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"SPIN_DENSITY.cube","attributes":{},"skip":false,"key":"1.1.35.3"},{"backlink":"abacus-bader.html#fig1.1.35.4","level":"1.1.35","list_caption":"Figure: charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","alt":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","nro":25,"url":"picture/fig_Bader4.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge1d.dat,0和0.5位置各有一个Fe原子,Bader电荷切分的地方接近0.25和0.75","attributes":{},"skip":false,"key":"1.1.35.4"},{"backlink":"abacus-bader.html#fig1.1.35.5","level":"1.1.35","list_caption":"Figure: spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","alt":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","nro":26,"url":"picture/fig_Bader5.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin1d.dat,spin density由正到负,符合反铁磁Fe2的预期","attributes":{},"skip":false,"key":"1.1.35.5"},{"backlink":"abacus-bader.html#fig1.1.35.6","level":"1.1.35","list_caption":"Figure: charge2d_000.dat","alt":"charge2d_000.dat","nro":27,"url":"picture/fig_Bader6.png","index":6,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.6"},{"backlink":"abacus-bader.html#fig1.1.35.7","level":"1.1.35","list_caption":"Figure: charge2d_025.dat","alt":"charge2d_025.dat","nro":28,"url":"picture/fig_Bader7.png","index":7,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.7"},{"backlink":"abacus-bader.html#fig1.1.35.8","level":"1.1.35","list_caption":"Figure: charge2d_050.dat","alt":"charge2d_050.dat","nro":29,"url":"picture/fig_Bader8.png","index":8,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"charge2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.8"},{"backlink":"abacus-bader.html#fig1.1.35.9","level":"1.1.35","list_caption":"Figure: spin2d_000.dat","alt":"spin2d_000.dat","nro":30,"url":"picture/fig_Bader9.png","index":9,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_000.dat","attributes":{},"skip":false,"key":"1.1.35.9"},{"backlink":"abacus-bader.html#fig1.1.35.10","level":"1.1.35","list_caption":"Figure: spin2d_025.dat","alt":"spin2d_025.dat","nro":31,"url":"picture/fig_Bader10.png","index":10,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_025.dat","attributes":{},"skip":false,"key":"1.1.35.10"},{"backlink":"abacus-bader.html#fig1.1.35.11","level":"1.1.35","list_caption":"Figure: spin2d_050.dat","alt":"spin2d_050.dat","nro":32,"url":"picture/fig_Bader11.png","index":11,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"spin2d_050.dat","attributes":{},"skip":false,"key":"1.1.35.11"},{"backlink":"develop-path4.html#fig1.2.17.1","level":"1.2.17","list_caption":"Figure: PW_Basis::distribute_r():设一个pool中有5个processors","alt":"PW_Basis::distribute_r():设一个pool中有5个processors","nro":33,"url":"picture/fig_path4-2.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW_Basis::distribute_r():设一个pool中有5个processors","attributes":{},"skip":false,"key":"1.2.17.1"},{"backlink":"develop-path4.html#fig1.2.17.2","level":"1.2.17","list_caption":"Figure: this->count_pw_st(st_length2D, st_bottom2D)","alt":"this->count_pw_st(st_length2D, st_bottom2D)","nro":34,"url":"picture/fig_path4-3.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"this->count_pw_st(st_length2D, st_bottom2D)","attributes":{},"skip":false,"key":"1.2.17.2"},{"backlink":"develop-path5.html#fig1.2.18.1","level":"1.2.18","list_caption":"Figure: 善用Ctrl+F","alt":"善用Ctrl+F","nro":35,"url":"picture/fig_path5-9.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"善用Ctrl+F","attributes":{},"skip":false,"key":"1.2.18.1"},{"backlink":"develop-path5.html#fig1.2.18.2","level":"1.2.18","list_caption":"Figure: klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","alt":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","nro":36,"url":"picture/fig_path5-10.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 486: K_Vectors::Monkhorst_Pack_formula(), k_type = 0 and 1","attributes":{},"skip":false,"key":"1.2.18.2"},{"backlink":"develop-path5.html#fig1.2.18.3","level":"1.2.18","list_caption":"Figure: klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","alt":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","nro":37,"url":"picture/fig_path5-11.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"klist.cpp line 520: const int i = mpnx * mpny * (z - 1) + mpnx * (y - 1) + (x - 1)","attributes":{},"skip":false,"key":"1.2.18.3"},{"backlink":"develop-path5.html#fig1.2.18.4","level":"1.2.18","list_caption":"Figure: 1-dimensional example","alt":"1-dimensional example","nro":38,"url":"picture/fig_path5-12.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"1-dimensional example","attributes":{},"skip":false,"key":"1.2.18.4"},{"backlink":"develop-path5.html#fig1.2.18.5","level":"1.2.18","list_caption":"Figure: 2-dimensional example","alt":"2-dimensional example","nro":39,"url":"picture/fig_path5-13.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"2-dimensional example","attributes":{},"skip":false,"key":"1.2.18.5"},{"backlink":"develop-path6.html#fig1.2.20.1","level":"1.2.20","list_caption":"Figure: update cutoff value based on factorized nx, ny and nz","alt":"update cutoff value based on factorized nx, ny and nz","nro":40,"url":"picture/fig_path6-1.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"update cutoff value based on factorized nx, ny and nz","attributes":{},"skip":false,"key":"1.2.20.1"},{"backlink":"develop-path10.html#fig1.2.24.1","level":"1.2.24","list_caption":"Figure: parallelization over kpoints","alt":"parallelization over kpoints","nro":41,"url":"picture/fig_path10-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parallelization over kpoints","attributes":{},"skip":false,"key":"1.2.24.1"},{"backlink":"develop-path10.html#fig1.2.24.2","level":"1.2.24","list_caption":"Figure: parts on which we are concentrated now","alt":"parts on which we are concentrated now","nro":42,"url":"picture/fig_path10-4.png","index":2,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"parts on which we are concentrated now","attributes":{},"skip":false,"key":"1.2.24.2"},{"backlink":"develop-path10.html#fig1.2.24.3","level":"1.2.24","list_caption":"Figure: PW和LCAO的代码设计平行关系与调用","alt":"PW和LCAO的代码设计平行关系与调用","nro":43,"url":"picture/fig_path10-5.png","index":3,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"PW和LCAO的代码设计平行关系与调用","attributes":{},"skip":false,"key":"1.2.24.3"},{"backlink":"develop-path10.html#fig1.2.24.4","level":"1.2.24","list_caption":"Figure: Relationship between variables that matter presently","alt":"Relationship between variables that matter presently","nro":44,"url":"picture/fig_path10-6.png","index":4,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Relationship between variables that matter presently","attributes":{},"skip":false,"key":"1.2.24.4"},{"backlink":"develop-path10.html#fig1.2.24.5","level":"1.2.24","list_caption":"Figure: Higher resolution framework of diag_mock() and relationship with other modules and functions","alt":"Higher resolution framework of diag_mock() and relationship with other modules and functions","nro":45,"url":"picture/fig_path10-9.png","index":5,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"Higher resolution framework of diag_mock() and relationship with other modules and functions","attributes":{},"skip":false,"key":"1.2.24.5"},{"backlink":"develop-path11.html#fig1.2.25.1","level":"1.2.25","list_caption":"Figure: mixing方法的通用框架设计","alt":"mixing方法的通用框架设计","nro":46,"url":"picture/fig_path11-3.png","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"mixing方法的通用框架设计","attributes":{},"skip":false,"key":"1.2.25.1"},{"backlink":"algorithm-wannier.html#fig1.3.1.1","level":"1.3.1","list_caption":"Figure: 左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","alt":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","nro":47,"url":"picture/fig_wannier.jpg","index":1,"caption_template":"图 _PAGE_IMAGE_NUMBER_. _CAPTION_","label":"左列:不同k点对应的布洛赫波函数;右列:不同晶格中的Wannier函数。","attributes":{},"skip":false,"key":"1.3.1.1"}]},"gitbook":"*","description":"国产DFT开源软件ABACUS中文使用教程"},"file":{"path":"README.md","mtime":"2024-09-06T08:55:52.585Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2024-09-06T11:53:05.785Z"},"basePath":".","book":{"language":""}}); }); diff --git a/_book/news.html b/_book/news.html index e3a7b3f0..e4f70eea 100644 --- a/_book/news.html +++ b/_book/news.html @@ -109,7 +109,7 @@ - +