-
Notifications
You must be signed in to change notification settings - Fork 27
/
planner_utils.py
executable file
·49 lines (35 loc) · 1.64 KB
/
planner_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import scipy
import numpy as np
import matplotlib.pyplot as plt
from common_utils import *
from nuplan.planning.simulation.path.path import AbstractPath
from nuplan.common.actor_state.tracked_objects_types import TrackedObjectType, STATIC_OBJECT_TYPES
from nuplan.planning.simulation.planner.utils.breadth_first_search import BreadthFirstSearch
from nuplan.common.maps.abstract_map_objects import RoadBlockGraphEdgeMapObject
from nuplan.common.maps.maps_datatypes import SemanticMapLayer, TrafficLightStatusData, TrafficLightStatusType
from nuplan.planning.simulation.planner.ml_planner.transform_utils import transform_predictions_to_states
from nuplan.planning.metrics.utils.expert_comparisons import principal_value
def check_path(path):
refine_path = [path[0]]
for i in range(1, path.shape[0]):
if np.linalg.norm(path[i] - path[i-1]) < 0.1:
continue
else:
refine_path.append(path[i])
line = np.array(refine_path)
return line
def calculate_path_heading(path):
heading = np.arctan2(path[1:, 1] - path[:-1, 1], path[1:, 0] - path[:-1, 0])
heading = np.append(heading, heading[-1])
return heading
def trajectory_smoothing(trajectory):
x = trajectory[:, 0]
y = trajectory[:, 1]
h = trajectory[:, 2]
window_length = 40
x = scipy.signal.savgol_filter(x, window_length=window_length, polyorder=3)
y = scipy.signal.savgol_filter(y, window_length=window_length, polyorder=3)
h = scipy.signal.savgol_filter(h, window_length=window_length, polyorder=3)
return np.column_stack([x, y, h])
def wrap_to_pi(theta):
return (theta+np.pi) % (2*np.pi) - np.pi