-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune_framework.py
729 lines (588 loc) · 28.6 KB
/
finetune_framework.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
from __future__ import print_function
import sys
sys.path.append('../')
sys.path.append('/')
from argparse import ArgumentParser
import os
#os.environ["CUDA_VISIBLE_DEVICES"] = '1'
import random
import torch
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
from tqdm import tqdm
import numpy as np
import pdb
# from torch.utils.tensorboard import SummaryWriter
from glob import glob
import pandas as pd
from metrics_manager import metrics_manager
from pathlib import Path
import time
import wandb
from collections import OrderedDict
import random
from BigredDataSet import BigredDataSet
from BigredDataSet_finetune import BigredDataSet_finetune
from BigredDataSetPTG import BigredDataSetPTG
from kornia.utils.metrics import mean_iou,confusion_matrix
import pandas as pd
import importlib
import shutil
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
from opt_deepgcn import OptInit as OptInit_deepgcn
from torch_geometric.data import DenseDataLoader
import torch_geometric.transforms
from torch.nn import Sequential as Seq
# from apex import amp
# import apex
# import ckpt
# importlib.import_module
# MODEL = importlib.import_module(args.model)
# shutil.copy('models/%s.py' % args.model, str(experiment_dir))
# shutil.copy('models/pointnet_util.py', str(experiment_dir))
def opt_global_inti():
parser = ArgumentParser()
parser.add_argument('--conda_env', type=str, default='some_name')
parser.add_argument('--notification_email', type=str, default='[email protected]')
# parser.add_argument('--dataset_root', type=str, default='../bigRed_h5_pointnet', help="dataset path")
parser.add_argument('--dataset_root', type=str, default='../bigRed_h5_pointnet_sorted', help="dataset path")
# parser.add_argument('--dataset_root', type=str, default='../bigRed_h5_gcn', help="dataset path")
parser.add_argument('--apex', type=lambda x: (str(x).lower() == 'true'),default=False ,help="is task for debugging?False for load entire dataset")
parser.add_argument('--opt_level', default='O2',type=str, metavar='N')
parser.add_argument('--num_workers', type=int, help='number of data loading workers', default=32)
parser.add_argument('--phase', type=str,default='Train' ,help="root load_pretrain")
parser.add_argument('--num_points', type=int,default=20000 ,help="use feature transform")
parser.add_argument('--wandb_history', type=lambda x: (str(x).lower() == 'true'),default=False ,help="load wandb history")
parser.add_argument('--wandb_id', type=str,default='',help="")
parser.add_argument('--wandb_file', type=str,default='',help="")
parser.add_argument('--unsave_epoch', type=int,default=0,help="")
parser.add_argument('--load_pretrain', type=str,default='ckpt/pointnet_4c_comlexbased',help="root load_pretrain")
parser.add_argument('--synchonization', type=str,default='BN' ,help="[BN,BN_syn,Instance]")
parser.add_argument('--tol_stop', type=float,default=1e-5 ,help="early stop for loss")
parser.add_argument('--epoch_max', type=int,default=500,help="epoch_max")
# parser.add_argument('--wd_project', type=str,default="Test_TimeComplexcity",help="[pointnet,pointnetpp,deepgcn,dgcnn,pointnet_ring,pointnet_ring_light]")
#Pointnet_ring_light4c_upsample+groupConv
parser.add_argument('--num_gpu', type=int,default=2,help="num_gpu")
parser.add_argument('--num_channel', type=int,default=4,help="num_channel")
parser.add_argument('--model', type=str,default='pointnet' ,help="[pointnet,pointnetpp,deepgcn,dgcnn,pointnet_ring,pointnet_ring_light]")
# parser.add_argument('--model', type=str,default='pointnet' ,help="[pointnet,pointnetpp,deepgcn,dgcnn,pointnet_ring,pointnet_ring_light]")
parser.add_argument('--including_ring', type=lambda x: (str(x).lower() == 'true'),default=False ,help="is task for debugging?False for load entire dataset")
parser.add_argument("--batch_size", type=int, default=18, help="size of the batches")
parser.add_argument('--wd_project', type=str,default="finetune",help="")
# parser.add_argument('--wd_project', type=str,default="debug",help="[pointnet,pointnetpp,deepgcn,dgcnn,pointnet_ring,pointnet_ring_light]")
parser.add_argument('--debug', type=lambda x: (str(x).lower() == 'true'),default=False ,help="is task for debugging?False for load entire dataset")
args = parser.parse_args()
return args
def save_model(package,root):
torch.save(package,root)
def setSeed(seed = 2):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.enabled = True
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def convert_state_dict(state_dict):
if not next(iter(state_dict)).startswith("module."):
return state_dict # abort if dict is not a DataParallel model_state
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
return new_state_dict
def visualize_wandb(points,pred,target):
# points [B,N,C]->[B*N,C]
# pred,target [B,N,1]->[B*N,1]
points = points.view(-1,5).numpy()
pred = pred.view(-1,1).numpy()
target = target.view(-1,1).numpy()
points_gt =np.concatenate((points[:,[0,1,2]],target),axis=1)
points_pd =np.concatenate((points[:,[0,1,2]],pred),axis=1)
wandb.log({"Ground_truth": wandb.Object3D(points_gt)})
wandb.log({"Prediction": wandb.Object3D(points_pd)})
class tag_getter(object):
def __init__(self,file_dict):
self.sorted_keys = np.array(sorted(file_dict.keys()))
self.file_dict = file_dict
def get_difficulty_location_isSingle(self,j):
temp_arr = self.sorted_keys<=j
index_for_keys = sum(temp_arr)
_key = self.sorted_keys[index_for_keys-1]
file_name = self.file_dict[_key]
file_name = file_name[:-3]
difficulty,location,isSingle = file_name.split("_")
return(difficulty,location,isSingle,file_name)
def generate_report(summery_dict,package):
save_sheet=[]
save_sheet.append(['name',package['name']])
save_sheet.append(['validation_miou',package['Validation_ave_miou']])
save_sheet.append(['test_miou',summery_dict['Miou']])
save_sheet.append(['Biou',summery_dict['Biou']])
save_sheet.append(['Fiou',summery_dict['Fiou']])
save_sheet.append(['time_complexicity(f/s)',summery_dict['time_complexicity']])
save_sheet.append(['storage_complexicity',summery_dict['storage_complexicity']])
save_sheet.append(['number_channel',package['num_channel']])
save_sheet.append(['Date',package['time']])
save_sheet.append(['Training-Validation-Testing','0.7-0.9-1'])
for name in summery_dict:
if(name!='Miou'
and name!='storage_complexicity'
and name!='time_complexicity'
and name!='Biou'
and name!='Fiou'
):
save_sheet.append([name,summery_dict[name]])
print(name+': %2f' % summery_dict[name])
# pdb.set_trace()
save_sheet.append(['para',''])
f = pd.DataFrame(save_sheet)
f.to_csv('testReport.csv',index=False,header=None)
def load_pretrained(opt):
print('---------------------load_pretrained----------------------')
pretrained_model_path = os.path.join(opt.load_pretrain,'val_miou0.8188_Epoch119.pth')
package = torch.load(pretrained_model_path)
para_state_dict = package['state_dict']
opt.num_channel = package['num_channel']
opt.time = package['time']
opt.epoch_ckpt = package['epoch']
opt.val_miou = package['Miou_validation_ave']
scheduler = package['scheduler']
state_dict = convert_state_dict(para_state_dict)
ckpt_,ckpt_file_name = opt.load_pretrain.split("/")
module_name = ckpt_+'.'+ckpt_file_name+'.'+'model'
MODEL = importlib.import_module(module_name)
model = MODEL.get_model(input_channel = opt.num_channel)
model.load_state_dict(state_dict)
Model_Specification = MODEL.get_model_name(input_channel = opt.num_channel)
f_loss = MODEL.get_loss(input_channel = opt.num_channel)
opt.model_name = package['model_name']
print('----------------------Model Info----------------------')
print('Root of prestrain model: ', pretrained_model_path)
print('Model: ', opt.model)
print('Model Specification: ', Model_Specification)
print('Trained Date:',opt.time)
print('num_channel:',opt.num_channel)
print('Model name:',opt.model_name)
print('----------------------Configure optimizer and scheduler----------------------')
experiment_dir = Path('ckpt/')
experiment_dir.mkdir(exist_ok=True)
experiment_dir = experiment_dir.joinpath(opt.model_name)
experiment_dir.mkdir(exist_ok=True)
shutil.copy('model/%s.py' % opt.model, str(experiment_dir))
shutil.move(os.path.join(str(experiment_dir), '%s.py'% opt.model),
os.path.join(str(experiment_dir), 'model.py'))
experiment_dir = experiment_dir.joinpath('saves')
experiment_dir.mkdir(exist_ok=True)
opt.save_root = str(experiment_dir)
model.ini_ft()
model.frozen_ft()
if(opt.apex==True):
# model = apex.parallel.convert_syncbn_model(model)
model.cuda()
f_loss.cuda()
model, optimizer = amp.initialize(model, optimizer, opt_level="O2")
model = torch.nn.DataParallel(model,device_ids =[0,1])
else:
# model = apex.parallel.convert_syncbn_model(model)
model.cuda()
f_loss.cuda()
model = torch.nn.DataParallel(model)
optimizer = optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999))
optimizer_dict = package['optimizer'].state_dict()
optimizer.load_state_dict(optimizer_dict)
return opt,model,f_loss,optimizer,scheduler
def creating_new_model(opt):
print('----------------------Creating model----------------------')
opt.time = time.ctime()
opt.epoch_ckpt = 0
opt.val_miou = 0
module_name = 'model.'+opt.model
MODEL = importlib.import_module(module_name)
opt_deepgcn = None
if(opt.model == 'deepgcn'):
opt_deepgcn = OptInit_deepgcn().initialize()
model = MODEL.get_model(opt2 = opt_deepgcn,input_channel = opt.num_channel,is_synchoization = opt.synchonization)
else:
model = MODEL.get_model(input_channel = opt.num_channel,is_synchoization = opt.synchonization)
Model_Specification = MODEL.get_model_name(input_channel = opt.num_channel)
f_loss = MODEL.get_loss(input_channel = opt.num_channel)
print('----------------------Model Info----------------------')
print('Root of prestrain model: ', '[No Prestrained loaded]')
print('Model: ', opt.model)
print('Model Specification: ', Model_Specification)
print('Trained Date: ',opt.time)
print('num_channel: ',opt.num_channel)
name = input("Edit the name or press ENTER to skip: ")
if(name!=''):
opt.model_name = name
else:
opt.model_name = Model_Specification
print('Model name: ', opt.model_name)
print('----------------------Configure optimizer and scheduler----------------------')
experiment_dir = Path('ckpt/')
experiment_dir.mkdir(exist_ok=True)
experiment_dir = experiment_dir.joinpath(opt.model_name)
experiment_dir.mkdir(exist_ok=True)
shutil.copy('model/%s.py' % opt.model, str(experiment_dir))
shutil.move(os.path.join(str(experiment_dir), '%s.py'% opt.model),
os.path.join(str(experiment_dir), 'model.py'))
experiment_dir = experiment_dir.joinpath('saves')
experiment_dir.mkdir(exist_ok=True)
opt.save_root = str(experiment_dir)
if(opt.apex==True):
# model = apex.parallel.convert_syncbn_model(model)
model.cuda()
f_loss.cuda()
optimizer = optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999))
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1)
model, optimizer = amp.initialize(model, optimizer, opt_level="O2")
model = torch.nn.DataParallel(model,device_ids =[0,1])
else:
# model = apex.parallel.convert_syncbn_model(model)
model.cuda()
f_loss.cuda()
optimizer = optim.Adam(model.parameters(), lr=0.0001, betas=(0.9, 0.999))
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.5)
model = torch.nn.DataParallel(model)
return opt,model,f_loss,optimizer,scheduler,opt_deepgcn
# def creating_new_model(point_set,label_set):
# #point_set [N,M,D]
def main():
setSeed(10)
opt = opt_global_inti()
print('----------------------Load ckpt----------------------')
pretrained_model_path = os.path.join(opt.load_pretrain,'best_model.pth')
package = torch.load(pretrained_model_path)
para_state_dict = package['state_dict']
opt.num_channel = package['num_channel']
opt.time = package['time']
opt.epoch_ckpt = package['epoch']
#pdb.set_trace()
state_dict = convert_state_dict(para_state_dict)
ckpt_,ckpt_file_name = opt.load_pretrain.split("/")
module_name = ckpt_+'.'+ckpt_file_name+'.'+'model'
MODEL = importlib.import_module(module_name)
opt_deepgcn = []
print(opt.model)
if(opt.model == 'deepgcn'):
opt_deepgcn = OptInit_deepgcn().initialize()
model = MODEL.get_model(opt2 = opt_deepgcn,input_channel = opt.num_channel)
else:
# print('opt.num_channel: ',opt.num_channel)
model = MODEL.get_model(input_channel = opt.num_channel)
Model_Specification = MODEL.get_model_name(input_channel = opt.num_channel)
f_loss = MODEL.get_loss(input_channel = opt.num_channel)
print('----------------------Test Model----------------------')
print('Root of prestrain model: ', pretrained_model_path)
print('Model: ', opt.model)
print('Pretrained model name: ', Model_Specification)
print('Trained Date: ',opt.time)
print('num_channel: ',opt.num_channel)
name = input("Edit the name or press ENTER to skip: ")
if(name!=''):
opt.model_name = name
else:
opt.model_name = Model_Specification
print('Pretrained model name: ', opt.model_name)
package['name'] = opt.model_name
save_model(package,pretrained_model_path)
print('----------------------Configure optimizer and scheduler----------------------')
experiment_dir = Path('ckpt/')
experiment_dir.mkdir(exist_ok=True)
experiment_dir = experiment_dir.joinpath(opt.model_name)
experiment_dir.mkdir(exist_ok=True)
experiment_dir = experiment_dir.joinpath('saves')
experiment_dir.mkdir(exist_ok=True)
opt.save_root = str(experiment_dir)
model.ini_ft()
model.frozen_ft()
if(opt.apex==True):
# model = apex.parallel.convert_syncbn_model(model)
model.cuda()
f_loss.cuda()
optimizer = optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999))
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1)
model, optimizer = amp.initialize(model, optimizer, opt_level="O2")
model = torch.nn.DataParallel(model,device_ids =[0,1])
else:
# model = apex.parallel.convert_syncbn_model(model)
model = torch.nn.DataParallel(model)
model.cuda()
f_loss.cuda()
# optimizer = optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999))
# scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1)
# optimizer = package['optimizer']
# scheduler = package['scheduler']
# optimizer = optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999))
# optimizer_dict = package['optimizer'].state_dict()
# optimizer.load_state_dict(optimizer_dict)
# scheduler = package['scheduler']
optimizer = optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999))
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1)
print('----------------------Load Dataset----------------------')
print('Root of dataset: ', opt.dataset_root)
print('Phase: ', opt.phase)
print('debug: ', opt.debug)
if(opt.model!='deepgcn'):
train_dataset = BigredDataSet_finetune(
root=opt.dataset_root,
is_train=True,
is_validation=False,
is_test=False,
num_channel = opt.num_channel,
test_code = opt.debug,
including_ring = opt.including_ring
)
f_loss.load_weight(train_dataset.labelweights)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=opt.batch_size,
shuffle=True,
pin_memory=True,
drop_last=True,
num_workers=int(opt.num_workers))
validation_dataset = BigredDataSet_finetune(
root=opt.dataset_root,
is_train=False,
is_validation=True,
is_test=False,
num_channel = opt.num_channel,
test_code = opt.debug,
including_ring = opt.including_ring)
validation_loader = torch.utils.data.DataLoader(
validation_dataset,
batch_size=opt.batch_size,
shuffle=False,
pin_memory=True,
drop_last=True,
num_workers=int(opt.num_workers))
else:
train_dataset = BigredDataSetPTG(root = opt.dataset_root,
is_train=True,
is_validation=False,
is_test=False,
num_channel=opt.num_channel,
new_dataset = False,
test_code = opt.debug,
pre_transform=torch_geometric.transforms.NormalizeScale()
)
train_loader = DenseDataLoader(train_dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers)
validation_dataset = BigredDataSetPTG(root = opt.dataset_root,
is_train=False,
is_validation=True,
is_test=False,
new_dataset = False,
test_code = opt.debug,
num_channel=opt.num_channel,
pre_transform=torch_geometric.transforms.NormalizeScale()
)
validation_loader = DenseDataLoader(validation_dataset, batch_size=opt.batch_size, shuffle=False, num_workers=opt.num_workers)
labelweights = np.zeros(2)
labelweights, _ = np.histogram(train_dataset.data.y.numpy(), range(3))
labelweights = labelweights.astype(np.float32)
labelweights = labelweights / np.sum(labelweights)
labelweights = np.power(np.amax(labelweights) / labelweights, 1 / 3.0)
weights = torch.Tensor(labelweights).cuda()
f_loss.load_weight(weights)
print('train dataset num_frame: ',len(train_dataset))
print('num_batch: ', int(len(train_loader) / opt.batch_size))
print('validation dataset num_frame: ',len(validation_dataset))
print('num_batch: ', int(len(validation_loader) / opt.batch_size))
print('Batch_size: ', opt.batch_size)
print('----------------------Prepareing Training----------------------')
metrics_list = ['Miou','Biou','Fiou','loss','OA','time_complexicity','storage_complexicity']
manager_test = metrics_manager(metrics_list)
metrics_list_train = ['Miou','Biou',
'Fiou','loss',
'storage_complexicity',
'time_complexicity']
manager_train = metrics_manager(metrics_list_train)
wandb.init(project=opt.wd_project,name=opt.model_name,resume=False)
if(opt.wandb_history == False):
best_value = 0
else:
temp = wandb.restore('best_model.pth',run_path = opt.wandb_id)
best_value = torch.load(temp.name)['Miou_validation_ave']
best_value = 0
wandb.config.update(opt)
if opt.epoch_ckpt == 0:
opt.unsave_epoch = 0
else:
opt.epoch_ckpt = opt.epoch_ckpt+1
# pdb.set_trace()
for epoch in range(opt.epoch_ckpt,opt.epoch_max):
manager_train.reset()
model.train()
tic_epoch = time.perf_counter()
print('---------------------Training----------------------')
print("Epoch: ",epoch)
for i, data in tqdm(enumerate(train_loader), total=len(train_loader), smoothing=0.9):
if(opt.model == 'deepgcn'):
points = torch.cat((data.pos.transpose(2, 1).unsqueeze(3), data.x.transpose(2, 1).unsqueeze(3)), 1)
points = points[:, :opt.num_channel, :, :]
target = data.y.cuda()
else:
points, target = data
#target.shape [B,N]
#points.shape [B,N,C]
points, target = points.cuda(non_blocking=True), target.cuda(non_blocking=True)
# pdb.set_trace()
#training...
optimizer.zero_grad()
tic = time.perf_counter()
pred_mics = model(points)
toc = time.perf_counter()
#compute loss
#For loss
#target.shape [B,N] ->[B*N]
#pred.shape [B,N,2]->[B*N,2]
#pdb.set_trace()
#pdb.set_trace()
loss = f_loss(pred_mics, target)
if(opt.apex):
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
#pred.shape [B,N,2] since pred returned pass F.log_softmax
pred, target = pred_mics[0].cpu(), target.cpu()
#pred:[B,N,2]->[B,N]
#pdb.set_trace()
pred = pred.data.max(dim=2)[1]
#compute iou
Biou,Fiou = mean_iou(pred,target,num_classes =2).mean(dim=0)
miou = (Biou+Fiou)/2
#compute Training time complexity
time_complexity = toc - tic
#compute Training storage complexsity
num_device = torch.cuda.device_count()
assert num_device == opt.num_gpu,"opt.num_gpu NOT equals torch.cuda.device_count()"
temp = []
for k in range(num_device):
temp.append(torch.cuda.memory_allocated(k))
RAM_usagePeak = torch.tensor(temp).float().mean()
#print(loss.item())
#print(miou.item())
#writeup logger
manager_train.update('loss',loss.item())
manager_train.update('Biou',Biou.item())
manager_train.update('Fiou',Fiou.item())
manager_train.update('Miou',miou.item())
manager_train.update('time_complexicity',float(1/time_complexity))
manager_train.update('storage_complexicity',RAM_usagePeak.item())
log_dict = {'loss_online':loss.item(),
'Biou_online':Biou.item(),
'Fiou_online':Fiou.item(),
'Miou_online':miou.item(),
'time_complexicity_online':float(1/time_complexity),
'storage_complexicity_online':RAM_usagePeak.item()
}
if(epoch - opt.unsave_epoch>=0):
wandb.log(log_dict)
toc_epoch = time.perf_counter()
time_tensor = toc_epoch-tic_epoch
summery_dict = manager_train.summary()
log_train_end = {}
for key in summery_dict:
log_train_end[key+'_train_ave'] = summery_dict[key]
print(key+'_train_ave: ',summery_dict[key])
log_train_end['Time_PerEpoch'] = time_tensor
if(epoch - opt.unsave_epoch>=0):
wandb.log(log_train_end)
else:
print('No data upload to wandb. Start upload: Epoch[%d] Current: Epoch[%d]'%(opt.unsave_epoch,epoch))
scheduler.step()
if(epoch % 10 == 1):
print('---------------------Validation----------------------')
manager_test.reset()
model.eval()
print("Epoch: ",epoch)
with torch.no_grad():
for j, data in tqdm(enumerate(validation_loader), total=len(validation_loader), smoothing=0.9):
if(opt.model == 'deepgcn'):
points = torch.cat((data.pos.transpose(2, 1).unsqueeze(3), data.x.transpose(2, 1).unsqueeze(3)), 1)
points = points[:, :opt.num_channel, :, :]
target = data.y.cuda()
else:
points, target = data
#target.shape [B,N]
#points.shape [B,N,C]
points, target = points.cuda(non_blocking=True), target.cuda(non_blocking=True)
tic = time.perf_counter()
pred_mics = model(points)
toc = time.perf_counter()
#pred.shape [B,N,2] since pred returned pass F.log_softmax
pred, target = pred_mics[0].cpu(), target.cpu()
#compute loss
test_loss = 0
#pred:[B,N,2]->[B,N]
pred = pred.data.max(dim=2)[1]
#compute confusion matrix
cm = confusion_matrix(pred,target,num_classes =2).sum(dim=0)
#compute OA
overall_correct_site = torch.diag(cm).sum()
overall_reference_site = cm.sum()
# if(overall_reference_site != opt.batch_size * opt.num_points):
#pdb.set_trace()
#assert overall_reference_site == opt.batch_size * opt.num_points,"Confusion_matrix computing error"
oa = float(overall_correct_site/overall_reference_site)
#compute iou
Biou,Fiou = mean_iou(pred,target,num_classes =2).mean(dim=0)
miou = (Biou+Fiou)/2
#compute inference time complexity
time_complexity = toc - tic
#compute inference storage complexsity
num_device = torch.cuda.device_count()
assert num_device == opt.num_gpu,"opt.num_gpu NOT equals torch.cuda.device_count()"
temp = []
for k in range(num_device):
temp.append(torch.cuda.memory_allocated(k))
RAM_usagePeak = torch.tensor(temp).float().mean()
#writeup logger
# metrics_list = ['test_loss','OA','Biou','Fiou','Miou','time_complexicity','storage_complexicity']
manager_test.update('loss',test_loss)
manager_test.update('OA',oa)
manager_test.update('Biou',Biou.item())
manager_test.update('Fiou',Fiou.item())
manager_test.update('Miou',miou.item())
manager_test.update('time_complexicity',float(1/time_complexity))
manager_test.update('storage_complexicity',RAM_usagePeak.item())
summery_dict = manager_test.summary()
log_val_end = {}
for key in summery_dict:
log_val_end[key+'_validation_ave'] = summery_dict[key]
print(key+'_validation_ave: ',summery_dict[key])
package = dict()
package['state_dict'] = model.state_dict()
package['scheduler'] = scheduler
package['optimizer'] = optimizer
package['epoch'] = epoch
opt_temp = vars(opt)
for k in opt_temp:
package[k] = opt_temp[k]
if(opt_deepgcn is None):
opt_temp = vars(opt_deepgcn)
for k in opt_temp:
package[k+'_opt2'] = opt_temp[k]
for k in log_val_end:
package[k] = log_val_end[k]
save_root = opt.save_root+'/val_miou%.4f_Epoch%s.pth'%(package['Miou_validation_ave'],package['epoch'])
torch.save(package,save_root)
print('Is Best?: ',(package['Miou_validation_ave']>best_value))
if(package['Miou_validation_ave']>best_value):
best_value = package['Miou_validation_ave']
save_root = opt.save_root+'/best_model.pth'
torch.save(package,save_root)
if(epoch - opt.unsave_epoch>=0):
wandb.log(log_val_end)
else:
print('No data upload to wandb. Start upload: Epoch[%d] Current: Epoch[%d]'%(opt.unsave_epoch,epoch))
if(opt.debug == True):
pdb.set_trace()
if __name__ == '__main__':
main()