-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlazy_greedy_cdf.m
153 lines (127 loc) · 5.86 KB
/
lazy_greedy_cdf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
function [i_a, X_n, radius]= Lazy_greedy_cdf(X_cand, X_Q, n, I_param)
% builds a design of size n (X_n) chosen amongst the Q points in
% X_cand, greedily optimisng the covering criterion w/ parameters I_param
% (q, b and B), which is computed in the set of points X_Q. I_param is a
% structure defining the parameters of I_A:
% I_param.q, I_param.b and I_param.B
%
% Output:
% - I_A_seq is the sequence of values of the criterion
% - X_n are the indices of the grid points that makeup the final design
% - radius is the sequence of covering radius of the partial designs
% X_n(1:k), k \in [1,n]
% Uses script ComputeI_A.m
%----
% Copyright 2021 CNRS [J. Rendas]
% See [A. Nogales Gómez, L. Pronzato and M.-J. Rendas. "Incremental space-filling design
% based on coverings and spacings: improving upon low discrepancy sequences",
% J. of Statistical Theory and Practice, 2021 (hal-02987983, arXiv:2106.05833)]
%
% Redistribution and use in source and binary forms, with or without modification,
% are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation and/or
% other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
% EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
% OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
% SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
% INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
% TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
% BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
% ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
% DAMAGE.
% the code works directly with the powers of all distances
I_param.B = I_param.B^(I_param.q+1);
I_param.b = I_param.b^(I_param.q+1);
% extract dimensions
Q = size(X_Q,1); % size of the grid
Q_cand = size(X_cand,1); % size of the set of possible design points
d = size(X_Q,2); % dimension of input space
if size(X_cand,2) ~= d
display('incompatible dimensions of grid and design sets in F_lazy_greedy. Returning...')
return
else
timebar= waitbar(0,'lazy greedy...');
end
% compute distance matrix and its power just once
A_dist = pdist2(X_cand, X_Q).^(I_param.q+1);
% allocate space for speed
i_a = NaN*ones(1,n);
radius = NaN*ones(1,n);
% Initialisation : start with the best greedy
[C_i, X_n, ~] = Select_greedy( A_dist, inf(1,Q), I_param);
R = A_dist(X_n, : ); % line vector of distance of grid points to the design
i_a(1) = C_i;
radius(1) = max(R)^(1/(I_param.q+1));
delta = NaN(Q_cand,1); % initialize the upper bound on the criterion increments (forces calculation for all)
% incrementally extend
i=1;
cand = setdiff(1:Q_cand, X_n);
% work with normalized distances
while (i < n)
waitbar(i/n,timebar, ['design point ' num2str(i)]);
i = i+1;
[C_i, x_new, delta_, I_param] = Select_greedy_lazy(C_i, delta(cand), A_dist(cand,:), R, I_param); % select the next point
delta(cand) = delta_; % store the updated upper bounds
X_n(i) = cand(x_new); % augment the design
cand(x_new) = [ ]; % delete from the set of candidate points
R = min(R, A_dist(X_n(end),:));
radius(i) = max(R)^(1/(I_param.q+1));
i_a(i) = C_i;
end
delete(timebar)
%
end
%
function [I_A, x_new, delta, I_param] = Select_greedy_lazy(I_old, delta, A_dist, R, I_param)
% lazzy-greedily selects a point (x_new) in set X_cand according to criterion I_A with
% parameters I_param.
% I_old is the current value of the criterion (in the current integration
% limits)
% delta is the current upper bound on the improvement
% A_dist is the power of the distance matrix
% R is the current set of design-2-grid_points distances
% I_param gathers the criterion parameters
% uses UpdateR.m and ComputeI_A.m
% the integral is actually computed over a shrinking interval
B = min(I_param.B, max(R)); OffSet = (I_param.B - B)/(I_param.q+1); I_param.B = B;
I_old = I_old - OffSet;
% delta = delta - OffSet;
if all(isnan(delta) )
% first point
R_ = min(R, A_dist);
I_all = ComputeI_A(R_ ,I_param);
[I_A, x_new] = max(I_all);
delta = I_all - I_old;
else
% not the first design point, delta has been calculated
LazyList = 1:size(A_dist,1); % consider all candidates at first
Updated = [];
while ~isempty(LazyList)
to_try = LazyList(1);
R_ = min(R, A_dist(to_try,:));
I_new = ComputeI_A(R_,I_param);
delta(to_try) = I_new - I_old ; % update upper bound for this element
Updated(end+1) = to_try;
[delta_max, x_new] = max(delta(Updated),[], 'omitnan'); % find new max of updated elements
x_new = Updated(x_new);
LazyList = find(delta > delta_max); % gather remaining candidate for optimality
end
I_A = delta_max + I_old ;
end
end
function [I_A, x_new, I_all] = Select_greedy(A_dist, R, I_param)
% greedily selects a point (x_new) according to criterion I_A with
% parameters I_param. R is the current set of design-2-grid_points
% distances
R_ = min(R, A_dist);
I_all = ComputeI_A(R_,I_param);
[I_A, x_new] = max(I_all);
end