-
Notifications
You must be signed in to change notification settings - Fork 0
/
configs_TransMorph.py
444 lines (426 loc) · 13.5 KB
/
configs_TransMorph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
'''
Junyu Chen
Johns Hopkins Unversity
'''
import ml_collections
'''
********************************************************
Swin Transformer
********************************************************
if_transskip (bool): Enable skip connections from Transformer Blocks
if_convskip (bool): Enable skip connections from Convolutional Blocks
patch_size (int | tuple(int)): Patch size. Default: 4
in_chans (int): Number of input image channels. Default: 2 (for moving and fixed images)
embed_dim (int): Patch embedding dimension. Default: 96
depths (tuple(int)): Depth of each Swin Transformer layer.
num_heads (tuple(int)): Number of attention heads in different layers.
window_size (tuple(int)): Image size should be divisible by window size,
e.g., if image has a size of (160, 192, 224), then the window size can be (5, 6, 7)
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
pat_merg_rf (int): Embed_dim reduction factor in patch merging, e.g., N*C->N/4*C if set to four. Default: 4.
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
drop_rate (float): Dropout rate. Default: 0
drop_path_rate (float): Stochastic depth rate. Default: 0.1
ape (bool): Enable learnable position embedding. Default: False
spe (bool): Enable sinusoidal position embedding. Default: False
rpe (bool): Enable relative position embedding. Default: True
patch_norm (bool): If True, add normalization after patch embedding. Default: True
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
(Carried over from Swin Transformer, it is not needed)
out_indices (tuple(int)): Indices of Transformer blocks to output features. Default: (0, 1, 2, 3)
reg_head_chan (int): Number of channels in the registration head (i.e., the final convolutional layer)
img_size (int | tuple(int)): Input image size, e.g., (160, 192, 224)
'''
def get_3D_CrossFormer():
'''
Trainable params: 15,201,579
'''
config = ml_collections.ConfigDict()
config.if_transskip = True
config.if_convskip = True
config.patch_size = (4,4,4)
config.padding = 3 #原来没有
config.in_chans = 2 #原始是2,复制一份后是4
config.embed_dim = 96
config.depths = (2, 2, 6, 2)
config.num_heads = (4, 4, 8, 8)
config.window_size = (5, 5, 5)
config.mlp_ratio = 4
config.pat_merg_rf = 4
config.qkv_bias = False
config.drop_rate = 0
config.drop_path_rate = 0.3
config.ape = False
config.spe = False
config.rpe = True
config.patch_norm = True
config.use_checkpoint = False
config.out_indices = (0, 1, 2, 3)
config.reg_head_chan = 16
config.img_size = (160, 160, 160)
return config
def get_3D_BiFormer():
'''s
Trainable params: 15,201,579
'''
config = ml_collections.ConfigDict()
config.if_transskip = True
config.if_convskip = True
config.patch_size = (4,4,4)
config.padding = 3 #原来没有
config.in_chans = 2 #原始是2,复制一份后是4
config.embed_dim = [64, 128, 320, 512]
config.depths = (2, 2, 4, 2)
config.num_heads = (4, 4, 8, 8)
config.window_size = (7, 7, 7)
config.mlp_ratios = [4, 4, 4, 4]
config.pat_merg_rf = 4
config.qkv_bias = False
config.drop_rate = 0
config.drop_path_rate = 0.3
config.ape = False
config.spe = False
config.rpe = True
config.patch_norm = True
config.use_checkpoint = False
config.out_indices = (0, 1, 2, 3)
config.reg_head_chan = 16
config.img_size = (160, 160, 160)
return config
def get_3D_Davit():
'''s
Trainable params: 15,201,579
'''
config = ml_collections.ConfigDict()
config.if_transskip = True
config.if_convskip = True
config.patch_size = (4,4,4)
config.padding = 3 #原来没有
config.in_chans = 4 #原始是2,复制一份后是4
config.embed_dim = 96
config.depths = (2, 2, 4, 2)
config.num_heads = (4, 4, 8, 8)
config.window_size = (7, 7, 7)
config.mlp_ratio = 4
config.pat_merg_rf = 4
config.qkv_bias = False
config.drop_rate = 0
config.drop_path_rate = 0.3
config.ape = False
config.spe = False
config.rpe = True
config.patch_norm = True
config.use_checkpoint = False
config.out_indices = (0, 1, 2, 3)
config.reg_head_chan = 16
config.img_size = (160, 160, 160)
return config
def get_3DTransMorph_config():
'''
Trainable params: 15,201,579
'''
config = ml_collections.ConfigDict()
config.if_transskip = True
config.if_convskip = True
config.patch_size = (4,4,4)
config.padding = 3 #原来没有
config.in_chans = 2 #原始是2,复制一份后是4
config.embed_dim = 96
config.depths = (2, 2, 4, 2)
config.num_heads = (4, 4, 8, 8)
config.window_size = (5, 5, 5)
config.mlp_ratio = 4
config.pat_merg_rf = 4
config.qkv_bias = False
config.drop_rate = 0
config.drop_path_rate = 0.3
config.ape = False
config.spe = False
config.rpe = True
config.patch_norm = True
config.use_checkpoint = False
config.out_indices = (0, 1, 2, 3)
config.reg_head_chan = 16
config.img_size = (160, 160, 160)
return config
def get_3DPVTNet_config():
'''
A Tiny TransMorph Network
'''
config = ml_collections.ConfigDict()
config.if_transskip = True
config.if_convskip = True
config.patch_size = 4
config.padding = 3 # 原来没有
config.in_chans = 2
config.embed_dim = 96
config.depths = [2, 2, 4, 2]
config.num_heads = (4, 4, 8, 8)
config.window_size = (5, 6, 7)
config.mlp_ratio = 4
config.pat_merg_rf = 4
config.qkv_bias = False
config.drop_rate = 0
config.drop_path_rate = 0.3
config.ape = False
config.spe = False
config.rpe = True
config.patch_norm = True
config.use_checkpoint = False
config.out_indices = (0, 1, 2, 3)
config.reg_head_chan = 16
config.img_size = (160, 192, 224)
config.sr_ratios = (8, 4, 2, 1)
return config
def get_3DTransMorphNoRelativePosEmbd_config():
'''
Trainable params: 15,201,579
'''
config = ml_collections.ConfigDict()
config.if_transskip = True
config.if_convskip = True
config.patch_size = 4
config.in_chans = 2
config.embed_dim = 96
config.depths = (2, 2, 4, 2)
config.num_heads = (4, 4, 8, 8)
config.window_size = (5, 6, 7)
config.mlp_ratio = 4
config.pat_merg_rf = 4
config.qkv_bias = False
config.drop_rate = 0
config.drop_path_rate = 0.3
config.ape = False
config.spe = False
config.rpe = False
config.patch_norm = True
config.use_checkpoint = False
config.out_indices = (0, 1, 2, 3)
config.reg_head_chan = 16
config.img_size = (160, 192, 224)
return config
def get_3DTransMorphSin_config():
'''
TransMorph with Sinusoidal Positional Embedding
'''
config = ml_collections.ConfigDict()
config.if_transskip = True
config.if_convskip = True
config.patch_size = 4
config.in_chans = 2
config.embed_dim = 96
config.depths = (2, 2, 4, 2)
config.num_heads = (4, 4, 8, 8)
config.window_size = (5, 6, 7)
config.mlp_ratio = 4
config.pat_merg_rf = 4
config.qkv_bias = False
config.drop_rate = 0
config.drop_path_rate = 0.3
config.ape = False
config.spe = True
config.rpe = True
config.patch_norm = True
config.use_checkpoint = False
config.out_indices = (0, 1, 2, 3)
config.reg_head_chan = 16
config.img_size = (160, 192, 224)
config.pos_embed_method = 'relative'
return config
def get_3DTransMorphLrn_config():
'''
TransMorph with Learnable Positional Embedding
'''
config = ml_collections.ConfigDict()
config.if_transskip = True
config.if_convskip = True
config.patch_size = 4
config.in_chans = 2
config.embed_dim = 96
config.depths = (2, 2, 4, 2)
config.num_heads = (4, 4, 8, 8)
config.window_size = (5, 6, 7)
config.mlp_ratio = 4
config.pat_merg_rf = 4
config.qkv_bias = False
config.drop_rate = 0
config.drop_path_rate = 0.3
config.ape = True
config.spe = False
config.rpe = True
config.patch_norm = True
config.use_checkpoint = False
config.out_indices = (0, 1, 2, 3)
config.reg_head_chan = 16
config.img_size = (160, 192, 224)
return config
def get_3DTransMorphNoConvSkip_config():
'''
No skip connections from convolution layers
Computational complexity: 577.34 GMac
Number of parameters: 63.56 M
'''
config = ml_collections.ConfigDict()
config.if_transskip = True
config.if_convskip = False
config.patch_size = 4
config.in_chans = 2
config.embed_dim = 96
config.depths = (2, 2, 4, 2)
config.num_heads = (4, 4, 8, 8)
config.window_size = (5, 6, 7)
config.mlp_ratio = 4
config.pat_merg_rf = 4
config.qkv_bias = False
config.drop_rate = 0
config.drop_path_rate = 0.3
config.ape = False
config.spe = False
config.rpe = True
config.patch_norm = True
config.use_checkpoint = False
config.out_indices = (0, 1, 2, 3)
config.reg_head_chan = 16
config.img_size = (160, 192, 224)
config.pos_embed_method = 'relative'
return config
def get_3DTransMorphNoTransSkip_config():
'''
No skip connections from Transformer blocks
Computational complexity: 639.93 GMac
Number of parameters: 58.4 M
'''
config = ml_collections.ConfigDict()
config.if_transskip = False
config.if_convskip = True
config.patch_size = 4
config.in_chans = 2
config.embed_dim = 96
config.depths = (2, 2, 4, 2)
config.num_heads = (4, 4, 8, 8)
config.window_size = (5, 6, 7)
config.mlp_ratio = 4
config.pat_merg_rf = 4
config.qkv_bias = False
config.drop_rate = 0
config.drop_path_rate = 0.3
config.ape = False
config.spe = False
config.rpe = True
config.patch_norm = True
config.use_checkpoint = False
config.out_indices = (0, 1, 2, 3)
config.reg_head_chan = 16
config.img_size = (160, 192, 224)
return config
def get_3DTransMorphNoSkip_config():
'''
No skip connections
Computational complexity: 639.93 GMac
Number of parameters: 58.4 M
'''
config = ml_collections.ConfigDict()
config.if_transskip = False
config.if_convskip = False
config.patch_size = 4
config.in_chans = 2
config.embed_dim = 96
config.depths = (2, 2, 4, 2)
config.num_heads = (4, 4, 8, 8)
config.window_size = (5, 6, 7)
config.mlp_ratio = 4
config.pat_merg_rf = 4
config.qkv_bias = False
config.drop_rate = 0
config.drop_path_rate = 0.3
config.ape = False
config.spe = False
config.rpe = True
config.patch_norm = True
config.use_checkpoint = False
config.out_indices = (0, 1, 2, 3)
config.reg_head_chan = 16
config.img_size = (160, 192, 224)
return config
def get_3DTransMorphLarge_config():
'''
A Large TransMorph Network
'''
config = ml_collections.ConfigDict()
config.if_transskip = True
config.if_convskip = True
config.patch_size = 4
config.in_chans = 2
config.embed_dim = 128
config.depths = (2, 2, 12, 2)
config.num_heads = (4, 4, 8, 16)
config.window_size = (5, 6, 7)
config.mlp_ratio = 4
config.pat_merg_rf = 4
config.qkv_bias = False
config.drop_rate = 0
config.drop_path_rate = 0.3
config.ape = False
config.spe = False
config.rpe = True
config.patch_norm = True
config.use_checkpoint = False
config.out_indices = (0, 1, 2, 3)
config.reg_head_chan = 16
config.img_size = (160, 192, 224)
return config
def get_3DTransMorphSmall_config():
'''
A Small TransMorph Network
'''
config = ml_collections.ConfigDict()
config.if_transskip = True
config.if_convskip = True
config.patch_size = 4
config.in_chans = 2
config.embed_dim = 48
config.depths = (2, 2, 4, 2)
config.num_heads = (4, 4, 4, 4)
config.window_size = (5, 6, 7)
config.mlp_ratio = 4
config.pat_merg_rf = 4
config.qkv_bias = False
config.drop_rate = 0
config.drop_path_rate = 0.3
config.ape = False
config.spe = False
config.rpe = True
config.patch_norm = True
config.use_checkpoint = False
config.out_indices = (0, 1, 2, 3)
config.reg_head_chan = 16
config.img_size = (160, 192, 224)
return config
def get_3DTransMorphTiny_config():
'''
A Tiny TransMorph Network
'''
config = ml_collections.ConfigDict()
config.if_transskip = True
config.if_convskip = True
config.patch_size = 4
config.in_chans = 2
config.embed_dim = 6
config.depths = (2, 2, 4, 2)
config.num_heads = (2, 2, 4, 4)
config.window_size = (5, 6, 7)
config.mlp_ratio = 4
config.pat_merg_rf = 4
config.qkv_bias = False
config.drop_rate = 0
config.drop_path_rate = 0.3
config.ape = False
config.spe = False
config.rpe = True
config.patch_norm = True
config.use_checkpoint = False
config.out_indices = (0, 1, 2, 3)
config.reg_head_chan = 16
config.img_size = (160, 192, 224)
return config