To meet the speed requirement of the model in practical use, usually, we deploy the trained model to inference backends. MMDeploy is OpenMMLab model deployment framework. Now MMDeploy has supported MMDetection3D model deployment, and you can deploy the trained model to inference backends by MMDeploy.
git clone -b master [email protected]:open-mmlab/mmdeploy.git
cd mmdeploy
git submodule update --init --recursive
According to MMDeploy documentation, choose to install the inference backend and build custom ops. Now supported inference backends for MMDetection3D include OnnxRuntime, TensorRT, OpenVINO.
Export the Pytorch model of MMDetection3D to the ONNX model file and the model file required by the backend. You could refer to MMDeploy docs how to convert model.
python ./tools/deploy.py \
${DEPLOY_CFG_PATH} \
${MODEL_CFG_PATH} \
${MODEL_CHECKPOINT_PATH} \
${INPUT_IMG} \
--test-img ${TEST_IMG} \
--work-dir ${WORK_DIR} \
--calib-dataset-cfg ${CALIB_DATA_CFG} \
--device ${DEVICE} \
--log-level INFO \
--show \
--dump-info
deploy_cfg
: The path of deploy config file in MMDeploy codebase.model_cfg
: The path of model config file in OpenMMLab codebase.checkpoint
: The path of model checkpoint file.img
: The path of point cloud file or image file that used to convert model.--test-img
: The path of image file that used to test model. If not specified, it will be set toNone
.--work-dir
: The path of work directory that used to save logs and models.--calib-dataset-cfg
: Only valid in int8 mode. Config used for calibration. If not specified, it will be set toNone
and use "val" dataset in model config for calibration.--device
: The device used for conversion. If not specified, it will be set tocpu
.--log-level
: To set log level which in'CRITICAL', 'FATAL', 'ERROR', 'WARN', 'WARNING', 'INFO', 'DEBUG', 'NOTSET'
. If not specified, it will be set toINFO
.--show
: Whether to show detection outputs.--dump-info
: Whether to output information for SDK.
cd mmdeploy
python tools/deploy.py \
configs/mmdet3d/voxel-detection/voxel-detection_tensorrt_dynamic-kitti.py \
${$MMDET3D_DIR}/configs/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py \
${$MMDET3D_DIR}/checkpoints/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class_20200620_230421-aa0f3adb.pth \
${$MMDET3D_DIR}/demo/data/kitti/kitti_000008.bin \
--work-dir work-dir \
--device cuda:0 \
--show
Now you can do model inference with the APIs provided by the backend. But what if you want to test the model instantly? We have some backend wrappers for you.
from mmdeploy.apis import inference_model
result = inference_model(model_cfg, deploy_cfg, backend_files, img=img, device=device)
The inference_model
will create a wrapper module and do the inference for you. The result has the same format as the original OpenMMLab repo.
You can test the accuracy and speed of the model in the inference backend. You could refer to MMDeploy docs how to measure performance of models.
python tools/test.py \
${DEPLOY_CFG} \
${MODEL_CFG} \
--model ${BACKEND_MODEL_FILES} \
[--out ${OUTPUT_PKL_FILE}] \
[--format-only] \
[--metrics ${METRICS}] \
[--show] \
[--show-dir ${OUTPUT_IMAGE_DIR}] \
[--show-score-thr ${SHOW_SCORE_THR}] \
--device ${DEVICE} \
[--cfg-options ${CFG_OPTIONS}] \
[--metric-options ${METRIC_OPTIONS}] \
[--log2file work_dirs/output.txt]
cd mmdeploy
python tools/test.py \
configs/mmdet3d/voxel-detection/voxel-detection_onnxruntime_dynamic.py \
${MMDET3D_DIR}/configs/centerpoint/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus.py \
--model work-dir/end2end.onnx \
--metrics bbox \
--device cpu
Model | TorchScript | OnnxRuntime | TensorRT | NCNN | PPLNN | OpenVINO | Model config |
---|---|---|---|---|---|---|---|
PointPillars | ? | Y | Y | N | N | Y | config |
CenterPoint (pillar) | ? | Y | Y | N | N | Y | config |
- MMDeploy version >= 0.4.0.
- Currently, CenterPoint has only supported the pillar version.