Skip to content

Latest commit

 

History

History
125 lines (99 loc) · 2.61 KB

README.md

File metadata and controls

125 lines (99 loc) · 2.61 KB

English Version

题目描述

括号。设计一种算法,打印n对括号的所有合法的(例如,开闭一一对应)组合。

说明:解集不能包含重复的子集。

例如,给出 n = 3,生成结果为:

[
  "((()))",
  "(()())",
  "(())()",
  "()(())",
  "()()()"
]

解法

递归求解。其中,left 表示剩余的 (right 表示剩余的 )

  • left > right 时,说明 state 中 ( 少于 ),不是合法组合,直接剪枝;
  • right == 0 时,说明 state 组合完毕;
  • left > 0 时,此时可往 state 添加一个 (
  • right > 0 时,此时可往 state 添加一个 )

Python3

class Solution:
    def generateParenthesis(self, n: int) -> List[str]:
        res = []
        def generate(state, left, right):
            # 剩余的`(`多于`)`
            if left > right:
                return
            if right == 0:
                res.append(state)
                return
            if left > 0:
                generate(state + '(', left - 1, right)
            if right > 0:
                generate(state + ')', left, right - 1)
        generate('', n, n)
        return res

Java

class Solution {
    List<String> res;

    public List<String> generateParenthesis(int n) {
        res = new ArrayList<>();
        generate("", n, n);
        return res;
    }

    private void generate(String state, int left, int right) {
        if (left > right) {
            return;
        }
        if (right == 0) {
            res.add(state);
            return;
        }
        if (left > 0) {
            generate(state + "(", left - 1, right);
        }
        if (right > 0) {
            generate(state + ")", left, right - 1);
        }
    }
}

JavaScript

/**
 * @param {number} n
 * @return {string[]}
 */
 var generateParenthesis = function(n) {
    let res = [];
    dfs(n, 0, 0, '', res);
    return res;
};

function dfs(n, left, right, prev, res) {
    if (left == n && right == n) {
        res.push(prev);
        return;
    }
    if (left < n) {
        dfs(n, left + 1, right, prev + '(', res);
    }
    if (right < left) {
        dfs(n, left, right + 1, prev + ')', res);
    }
}

...