forked from emilbjornson/MIMO-channel-estimation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulationFigure2.m
206 lines (144 loc) · 11.7 KB
/
simulationFigure2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
%This Matlab script can be used to generate Figure 2 in the article:
%
%Emil Björnson, Björn Ottersten, "A Framework for Training-Based Estimation
%in Arbitrarily Correlated Rician MIMO Channels with Rician Disturbance,”
%IEEE Transactions on Signal Processing, vol. 58, no. 3, pp. 1807-1820,
%March 2010.
%
%Download article: http://kth.diva-portal.org/smash/get/diva2:337243/FULLTEXT01
%
%This is version 1.0 (Last edited: 2014-03-20)
%
%License: This code is licensed under the GPLv2 license. If you in any way
%use this code for research that results in publications, please cite our
%original article listed above.
%
%Please note that the channels are generated randomly, thus the results
%will not be exactly the same as in the paper.
%Initialization
close all;
clear all;
%%Simulation parameters
rng('shuffle'); %Initiate the random number generators with a random seed
%%If rng('shuffle'); is not supported by your Matlab version, you can use
%%the following commands instead:
%randn('state',sum(100*clock));
%Number of realizations in the Monte-Carlo simulations
nbrOfMonteCarloRealizations = 100000;
Nt = 5; %Number of transmit antennas and length of the training sequence
Nr = 5; %Number of receive antennas
%Range of total training power in the simulation
totalTrainingPower_dB = 0:1:20; %In decibel scale
totalTrainingPower = 10.^(totalTrainingPower_dB/10); %In linear scale
%Options in the optimization Matlab algorithms used in this simulations
option = optimset('Display','off','TolFun',1e-7,'TolCon',1e-7,'Algorithm','interior-point');
%Placeholders for storing the MSEs with different channel estimators.
%Second dimension is 1 for the theoretical MSE results and 2 for empirical
%results using Monte-Carlo simulations
average_MSE_MMSE_estimator_optimal = zeros(length(totalTrainingPower),2); %MMSE estimator with optimal training
average_MSE_MMSE_estimator_heuristic = zeros(length(totalTrainingPower),2); %MMSE estimator with heuristic training (from Heuristic 1)
average_MSE_MMSE_estimator_uniform = zeros(length(totalTrainingPower),2); %MMSE estimator with a diagonal training matrix
average_MSE_onesided_estimator = zeros(length(totalTrainingPower),2); %One-sided linear estimator (from [8] by M. Biguesh and A. Gershman)
%A particular coupling matrix from Eq. (28) in [29].
V=25/5.7*[0.1 0 1 0 0; 0 0.1 1 0 0; 0 0 1 0 0; 0 0 1 0.25 0; 0 0 1 0 0.25];
%Compute the covariance matrix for the given coupling matrix
R = diag(V(:));
Rsqrt = diag(sqrt(V(:))); %Square root of covariance matrix
R_T = diag(sum(V,1)); %Compute transmit-side covariance matrix under the Weichselberger model
R_R = diag(sum(V,2)); %Compute receive-side covariance matrix under the Weichselberger model
%Compute optimal training power allocation for the MMSE estimator using built-in optimization algorithms
trainingpower_MMSE_optimal = zeros(Nt,length(totalTrainingPower)); %Vector with power allocation for each total training power
for k = 1:length(totalTrainingPower) %Go through each total training power
trainingpower_initial = totalTrainingPower(k)*ones(Nt,1)/Nt; %Equal power allocation is initial point in optimization
%Optimize power allocation using fmincon (i.e., minimize MSE under
%total training power constraint and all powers are nonnegative.
trainingpower_MMSE_optimal(:,k) = fmincon(@(q) functionMSEmatrix(R,q,Nr),trainingpower_initial,ones(1,Nt),totalTrainingPower(k),[],[],zeros(Nt,1),totalTrainingPower(k)*ones(Nt,1),[],option);
end
%Compute heuristic training power allocating according to Heuristic 1
%in the paper, which uses Corollary 1 and Eq. (14) heuristically
[eigenvalues_sorted,permutationorder] = sort(diag(R_T),'descend'); %Compute and sort the eigenvalues
[~,inversePermutation] = sort(permutationorder); %Keep track of the order of eigenvalues
q_MMSE_heuristic = zeros(Nt,length(totalTrainingPower));
for k = 1:length(totalTrainingPower) %Go through each total training power
alpha_candidates = (totalTrainingPower(k)+cumsum(1./eigenvalues_sorted(1:Nt,1)))./(1:Nt)'; %Compute different values on the Lagrange multiplier in Eq. (14), given that 1,2,...,Nt of the eigendirections get non-zero power
optimalIndex = find(alpha_candidates-1./eigenvalues_sorted(1:Nt,1)>0 & alpha_candidates-[1./eigenvalues_sorted(2:end,1); Inf]<0); %Find the true Lagrange multiplier alpha by checking which one of the candidates that only turns on the eigendirections that are supposed to be on
q_MMSE_heuristic(:,k) = max([alpha_candidates(optimalIndex)-1./eigenvalues_sorted(1:Nt,1) zeros(Nt,1)],[],2); %Compute the power allocation according to Eq. (14) using the optimal alpha
end
q_MMSE_heuristic = q_MMSE_heuristic(inversePermutation,:); %Finalize the heuristic power allocation by reverting the sorting of the eigenvalues
%Compute uniform power allocation for different total training powers
q_uniform = (ones(Nt,1)/Nt)*totalTrainingPower;
%Initialization of Monte-Carlo simulations
vecH_realizations = Rsqrt*( randn(Nt*Nr,nbrOfMonteCarloRealizations)+1i*randn(Nt*Nr,nbrOfMonteCarloRealizations) ) / sqrt(2); %Generate channel realizations on vectorized form. Each column is an independent realization of vec(H).
vecN_realizations = ( randn(Nt*Nr,nbrOfMonteCarloRealizations)+1i*randn(Nt*Nr,nbrOfMonteCarloRealizations) ) / sqrt(2); %Generate noise realizations on vectorized form. Each column is an independent realization of vec(N).
%Compute MSEs for each estimator and total training power
for k = 1:length(totalTrainingPower)
%MMSE estimator: Optimal training power allocation
P_tilde = kron(diag(sqrt(trainingpower_MMSE_optimal(:,k))),eye(Nr)); %Compute effective training matrix as in Eq. (5)
average_MSE_MMSE_estimator_optimal(k,1) = trace(R - (R*P_tilde'/(P_tilde*R*P_tilde' + eye(length(R))))*P_tilde*R); %Compute the MSE using Eq. (8)
H_hat = (R*P_tilde'/(P_tilde*R*P_tilde'+eye(length(R)))) * (P_tilde*vecH_realizations+vecN_realizations); %Compute the estimate by Monte-Carlo simulations using Eq. (6)
average_MSE_MMSE_estimator_optimal(k,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %Compute the MSE by Monte-Carlo simulations using the MSE definition
%MMSE estimator: Heuristic training power allocation
P_tilde = kron(diag(sqrt(q_MMSE_heuristic(:,k))),eye(Nr)); %Compute effective training matrix as in Eq. (5)
average_MSE_MMSE_estimator_heuristic(k,1) = trace(R - (R*P_tilde'/(P_tilde*R*P_tilde' + eye(length(R))))*P_tilde*R); %Compute the MSE using Eq. (8)
H_hat = (R*P_tilde'/(P_tilde*R*P_tilde'+eye(length(R)))) * (P_tilde*vecH_realizations + vecN_realizations); %Compute the estimate by Monte-Carlo simulations using Eq. (6)
average_MSE_MMSE_estimator_heuristic(k,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %Compute the MSE by Monte-Carlo simulations using the MSE definition
%MMSE estimator: Uniform training power allocation
P_tilde = kron(sqrt(totalTrainingPower(k))*eye(Nt)/sqrt(Nt),eye(Nr)); %Compute effective training matrix as in Eq. (5)
average_MSE_MMSE_estimator_uniform(k,1) = trace(R - (R*P_tilde'/(P_tilde*R*P_tilde' + eye(length(R))))*P_tilde*R); %Compute the MSE using Eq. (8)
H_hat = (R*P_tilde'/(P_tilde*R*P_tilde'+eye(length(R)))) * (P_tilde*vecH_realizations + vecN_realizations); %Compute the estimate by Monte-Carlo simulations using Eq. (6)
average_MSE_MMSE_estimator_uniform(k,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %Compute the MSE by Monte-Carlo simulations using the MSE definition
%One-sided linear estimator: Optimal training power allocation
%
%This heuristic estimator originates from the following paper:
%
%[8] M. Biguesh and A. Gershman, "Training-based MIMO channel estimation:
%A study of estimator tradeoffs and optimal training signals,"
%IEEE Trans. Signal Process., vol. 54, no. 3, pp. 884-893, 2006.
%
%Note: this estimator is called "LMMSE estimator" in [8], but this
%in a incorrect use of terminology.
P_training = diag(sqrt(q_MMSE_heuristic(:,k))); %Compute training matrix using the optimal power allocation in Eq. (41) of [8], which actually is the same as Heuristic 1 in this paper.
P_tilde = kron(P_training,eye(Nr)); %Compute effective training matrix as in Eq. (5)
average_MSE_onesided_estimator(k,1) = trace(inv(inv(R_T)+P_training*P_training'/Nr)); %Compute the MSE using Eq. (34) in [8]
Ao = (P_training'*R_T*P_training + Nr*eye(Nt))\P_training'*R_T; %Compute the matrix Ao in the one-sided linear estimator using Eq. (25) in [8]
H_hat = kron(transpose(Ao),eye(Nr))*(P_tilde*vecH_realizations + vecN_realizations); %Compute the estimate by Monte-Carlo simulations using Eq. (26) in [8]
average_MSE_onesided_estimator(k,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %Compute the MSE by Monte-Carlo simulations using the MSE definition
end
%Select a subset of training power for which we will plot markers
subset = linspace(1,length(totalTrainingPower_dB),6);
subset = subset(2:end-1);
normalizationFactor = trace(R); %Set MSE normalization factor to trace(R), so that the figures show normalized MSEs from 0 to 1.
%Plot the numerical results using the theoretical MSE formulas
figure(1); hold on; box on;
plot(totalTrainingPower_dB,average_MSE_MMSE_estimator_uniform(:,1)/normalizationFactor,'k--','LineWidth',1);
plot(totalTrainingPower_dB,average_MSE_onesided_estimator(:,1)/normalizationFactor,'r-','LineWidth',1);
plot(totalTrainingPower_dB(subset(1)),average_MSE_MMSE_estimator_heuristic(subset(1),1)/normalizationFactor,'b+-.','LineWidth',1);
plot(totalTrainingPower_dB(subset(1)),average_MSE_MMSE_estimator_optimal(subset(1),1)/normalizationFactor,'ko-','LineWidth',1);
legend('MMSE, uniform','One-sided linear, optimal','MMSE, heuristic','MMSE, optimal','Location','SouthWest')
plot(totalTrainingPower_dB(subset),average_MSE_MMSE_estimator_optimal(subset,1)/normalizationFactor,'ko','LineWidth',1);
plot(totalTrainingPower_dB(subset),average_MSE_MMSE_estimator_heuristic(subset,1)/normalizationFactor,'b+','LineWidth',1);
plot(totalTrainingPower_dB,average_MSE_MMSE_estimator_optimal(:,1)/normalizationFactor,'k','LineWidth',1);
plot(totalTrainingPower_dB,average_MSE_MMSE_estimator_heuristic(:,1)/normalizationFactor,'b-.','LineWidth',1);
set(gca,'YScale','Log'); %Set log-scale on vertical axis
xlabel('Total Training Power (dB)');
ylabel('Normalized MSE');
axis([0 20 1e-2 1]);
%Add title to Figure 1 to differentiate from Figure 2
title('Results based on theoretical formulas');
%Plot the numerical results using Monte-Carlo simulations
figure(2); hold on; box on;
plot(totalTrainingPower_dB,average_MSE_MMSE_estimator_uniform(:,2)/normalizationFactor,'k--','LineWidth',1);
plot(totalTrainingPower_dB,average_MSE_onesided_estimator(:,2)/normalizationFactor,'r-','LineWidth',1);
plot(totalTrainingPower_dB(subset(1)),average_MSE_MMSE_estimator_heuristic(subset(1),2)/normalizationFactor,'b+-.','LineWidth',1);
plot(totalTrainingPower_dB(subset(1)),average_MSE_MMSE_estimator_optimal(subset(1),2)/normalizationFactor,'ko-','LineWidth',1);
legend('MMSE, uniform','One-sided linear, optimal','MMSE, heuristic','MMSE, optimal','Location','SouthWest')
plot(totalTrainingPower_dB(subset),average_MSE_MMSE_estimator_optimal(subset,2)/normalizationFactor,'ko','LineWidth',1);
plot(totalTrainingPower_dB(subset),average_MSE_MMSE_estimator_heuristic(subset,2)/normalizationFactor,'b+','LineWidth',1);
plot(totalTrainingPower_dB,average_MSE_MMSE_estimator_optimal(:,2)/normalizationFactor,'k','LineWidth',1);
plot(totalTrainingPower_dB,average_MSE_MMSE_estimator_heuristic(:,2)/normalizationFactor,'b-.','LineWidth',1);
set(gca,'YScale','Log'); %Set log-scale on vertical axis
xlabel('Total Training Power (dB)');
ylabel('Normalized MSE');
axis([0 20 1e-2 1]);
%Add title to Figure 2 to differentiate from Figure 1
title('Results based on Monte-Carlo simulations');