-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathNormal.java
93 lines (74 loc) · 3.23 KB
/
Normal.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
package lphy.base.distribution;
import lphy.core.model.GenerativeDistribution1D;
import lphy.core.model.RandomVariable;
import lphy.core.model.Value;
import lphy.core.model.ValueUtils;
import lphy.core.model.annotation.GeneratorCategory;
import lphy.core.model.annotation.GeneratorInfo;
import lphy.core.model.annotation.ParameterInfo;
import lphy.core.simulator.RandomUtils;
import org.apache.commons.math3.distribution.NormalDistribution;
import org.apache.commons.math3.random.RandomGenerator;
import java.util.Map;
import java.util.TreeMap;
import static lphy.base.distribution.DistributionConstants.meanParamName;
import static lphy.base.distribution.DistributionConstants.sdParamName;
/**
* Normal distribution prior.
* @see NormalDistribution
* @author Alexei Drummond
* @author Walter Xie
*/
public class Normal extends ParametricDistribution<Double> implements GenerativeDistribution1D<Double> {
private Value<Number> mean;
private Value<Number> sd;
NormalDistribution normalDistribution;
public Normal(@ParameterInfo(name = "mean", description = "the mean of the distribution.") Value<Number> mean,
@ParameterInfo(name = "sd", narrativeName = "standard deviation", description = "the standard deviation of the distribution.") Value<Number> sd) {
super();
this.mean = mean;
this.sd = sd;
constructDistribution(random);
}
@Override
protected void constructDistribution(RandomGenerator random) {
if (mean == null) throw new IllegalArgumentException("The mean value can't be null!");
if (sd == null) throw new IllegalArgumentException("The sd value can't be null!");
normalDistribution = new NormalDistribution(RandomUtils.getRandom(), ValueUtils.doubleValue(mean), ValueUtils.doubleValue(sd),
NormalDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
}
@GeneratorInfo(name = "Normal", verbClause = "has", narrativeName = "normal prior",
category = GeneratorCategory.PRIOR, examples = {"simplePhyloBrownian.lphy","simplePhyloOU.lphy"},
description = "The normal probability distribution.")
public RandomVariable<Double> sample() {
// constructDistribution() only required in constructor and setParam
double x = normalDistribution.sample();
return new RandomVariable<>("x", x, this);
}
@Override
public double density(Double x) {
return normalDistribution.density(x);
}
public Map<String, Value> getParams() {
return new TreeMap<>() {{
put(meanParamName, mean);
put(sdParamName, sd);
}};
}
public void setParam(String paramName, Value value) {
if (paramName.equals(meanParamName)) mean = value;
else if (paramName.equals(sdParamName)) sd = value;
else throw new RuntimeException("Unrecognised parameter name: " + paramName);
super.setParam(paramName, value); // constructDistribution
}
public Value<Number> getMean() {
return mean;
}
public Value<Number> getSd() {
return sd;
}
private static final Double[] domainBounds = {Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY};
public Double[] getDomainBounds() {
return domainBounds;
}
}