-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmetrics.py
61 lines (53 loc) · 1.74 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
import math
import numpy as np
EPSILON = 0.000000000000001
def log10(x):
"""Convert a new tensor with the base-10 logarithm of the elements of x. """
return np.log(x) / math.log(10)
class Result(object):
def __init__(self):
self.rmse = 0.0
self.mean = 0.0
self.median = 0.0
self.var = 0.0
self.error_max = 0.0
self.abs_diff = None
def update(self, rmse, mean, median, var, error_max):
self.rmse = rmse
self.mean = mean
self.median = median
self.var = var
self.error_max = error_max
def evaluate(self, output, target):
diff = output - target
self.abs_diff = np.abs(diff)
self.rmse = math.sqrt(np.mean(np.power(diff, 2)))
self.var = np.var(self.abs_diff)
self.mean = np.mean(self.abs_diff)
self.median = np.median(self.abs_diff)
self.error_max = np.amax(self.abs_diff)
class AverageMeter(object):
def __init__(self):
self.reset()
self.is_initial = True
self.abs_diff = None
def reset(self):
self.count = 0.0
self.sum_rmse = 0.0
def update(self, result, gpu_time, data_time, n=1):
self.count += n
if self.is_initial:
self.abs_diff = result.abs_diff
self.is_initial = False
else:
self.abs_diff = np.concatenate((self.abs_diff, result.abs_diff), axis=0)
self.sum_rmse += n*result.rmse
def average(self):
avg = Result()
var = np.var(self.abs_diff)
mean = np.mean(self.abs_diff)
median = np.median(self.abs_diff)
error_max = np.amax(self.abs_diff)
avg.update(self.sum_rmse / self.count, mean, median, var, error_max)
return avg