forked from kornia/kornia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
conftest.py
110 lines (83 loc) · 3.38 KB
/
conftest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from itertools import product
from typing import Dict
import numpy
import pytest
import torch
import kornia
def get_test_devices() -> Dict[str, torch.device]:
"""Create a dictionary with the devices to test the source code. CUDA devices will be test only in case the
current hardware supports it.
Return:
dict(str, torch.device): list with devices names.
"""
devices: Dict[str, torch.device] = {}
devices["cpu"] = torch.device("cpu")
if torch.cuda.is_available():
devices["cuda"] = torch.device("cuda:0")
if kornia.xla_is_available():
import torch_xla.core.xla_model as xm
devices["tpu"] = xm.xla_device()
return devices
def get_test_dtypes() -> Dict[str, torch.dtype]:
"""Create a dictionary with the dtypes the source code.
Return:
dict(str, torch.dtype): list with dtype names.
"""
dtypes: Dict[str, torch.dtype] = {}
dtypes["bfloat16"] = torch.bfloat16
dtypes["float16"] = torch.float16
dtypes["float32"] = torch.float32
dtypes["float64"] = torch.float64
return dtypes
# setup the devices to test the source code
TEST_DEVICES: Dict[str, torch.device] = get_test_devices()
TEST_DTYPES: Dict[str, torch.dtype] = get_test_dtypes()
# Combinations of device and dtype to be excluded from testing.
# DEVICE_DTYPE_BLACKLIST = {('cpu', 'float16')}
DEVICE_DTYPE_BLACKLIST = {}
@pytest.fixture()
def device(device_name) -> torch.device:
return TEST_DEVICES[device_name]
@pytest.fixture()
def dtype(dtype_name) -> torch.dtype:
return TEST_DTYPES[dtype_name]
def pytest_generate_tests(metafunc):
device_names = None
dtype_names = None
if 'device_name' in metafunc.fixturenames:
raw_value = metafunc.config.getoption('--device')
if raw_value == 'all':
device_names = list(TEST_DEVICES.keys())
else:
device_names = raw_value.split(',')
if 'dtype_name' in metafunc.fixturenames:
raw_value = metafunc.config.getoption('--dtype')
if raw_value == 'all':
dtype_names = list(TEST_DTYPES.keys())
else:
dtype_names = raw_value.split(',')
if device_names is not None and dtype_names is not None:
# Exclude any blacklisted device/dtype combinations.
params = [combo for combo in product(device_names, dtype_names) if combo not in DEVICE_DTYPE_BLACKLIST]
metafunc.parametrize('device_name,dtype_name', params)
elif device_names is not None:
metafunc.parametrize('device_name', device_names)
elif dtype_names is not None:
metafunc.parametrize('dtype_name', dtype_names)
def pytest_addoption(parser):
parser.addoption('--device', action="store", default="cpu")
parser.addoption('--dtype', action="store", default="float32")
@pytest.fixture(autouse=True)
def add_np(doctest_namespace):
doctest_namespace["np"] = numpy
doctest_namespace["torch"] = torch
doctest_namespace["kornia"] = kornia
# the commit hash for the data version
sha: str = 'cb8f42bf28b9f347df6afba5558738f62a11f28a'
@pytest.fixture(scope='session')
def data(request):
url = {
'loftr_homo': f'https://github.com/kornia/data_test/blob/{sha}/loftr_outdoor_and_homography_data.pt?raw=true',
'loftr_fund': f'https://github.com/kornia/data_test/blob/{sha}/loftr_indoor_and_fundamental_data.pt?raw=true',
}
return torch.hub.load_state_dict_from_url(url[request.param])