We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
when trying to fit a TemporalFusionTransformer there is a typeerror.
2.0+
trainer = pl.Trainer( max_epochs=10, devices=1, accelerator="gpu", enable_model_summary=True, gradient_clip_val=0.25, limit_train_batches=10 ) tft = TemporalFusionTransformer.from_dataset( training, lstm_layers=1, hidden_size=16, attention_head_size=2, dropout=0.2, hidden_continuous_size=8, output_size=1, loss=SMAPE(), log_interval=10, reduce_on_plateau_patience=4 ) trainer.fit( tft, train_dataloaders=train_dataloader, val_dataloaders=val_dataloader, )
typeerror: `model` must be a `LightningModule` or `torch._dynamo.OptimizedModule`, got `TemporalFusionTransformer`
No response
The text was updated successfully, but these errors were encountered:
how to fix it? i also met this problem
Sorry, something went wrong.
Was there a solution for this? I am running into the same error
You can find a solution here
No branches or pull requests
Bug description
when trying to fit a TemporalFusionTransformer there is a typeerror.
What version are you seeing the problem on?
2.0+
How to reproduce the bug
Error messages and logs
Environment
Current environment
- GPU:
- NVIDIA A100-PCIE-40GB
- available: True
- version: 11.7
- lightning: 2.0.1
- lightning-cloud: 0.5.32
- lightning-utilities: 0.8.0
- pytorch-forecasting: 1.0.0
- pytorch-lightning: 2.0.1.post0
- pytorch-optimizer: 2.5.1
- torch: 2.0.0
- torchmetrics: 0.11.4
- absl-py: 1.4.0
- aiohttp: 3.8.4
- aiosignal: 1.3.1
- alembic: 1.10.3
- anyio: 3.6.2
- argon2-cffi: 21.3.0
- argon2-cffi-bindings: 21.2.0
- arrow: 1.2.3
- asttokens: 2.2.1
- astunparse: 1.6.3
- async-timeout: 4.0.2
- attrs: 22.2.0
- backcall: 0.2.0
- backports.functools-lru-cache: 1.6.4
- beautifulsoup4: 4.12.2
- bleach: 6.0.0
- blessed: 1.20.0
- cachetools: 5.3.0
- certifi: 2022.12.7
- cffi: 1.15.1
- charset-normalizer: 3.1.0
- click: 8.1.3
- cmaes: 0.9.1
- cmake: 3.26.3
- colorlog: 6.7.0
- comm: 0.1.3
- contourpy: 1.0.7
- convertdate: 2.4.0
- croniter: 1.3.10
- cubinlinker: 0.2.2
- cuda-python: 11.8.1
- cudf: 23.4.0
- cupy: 11.6.0
- cycler: 0.11.0
- dateutils: 0.6.12
- debugpy: 1.6.7
- decorator: 5.1.1
- deepdiff: 6.3.0
- defusedxml: 0.7.1
- dnspython: 2.3.0
- email-validator: 1.3.1
- entrypoints: 0.4
- executing: 1.2.0
- fastapi: 0.88.0
- fastavro: 1.7.3
- fastjsonschema: 2.16.3
- fastrlock: 0.8
- filelock: 3.11.0
- flatbuffers: 23.3.3
- flit-core: 3.8.0
- fonttools: 4.39.3
- frozenlist: 1.3.3
- fsspec: 2023.4.0
- gast: 0.4.0
- google-auth: 2.17.1
- google-auth-oauthlib: 1.0.0
- google-pasta: 0.2.0
- greenlet: 2.0.2
- grpcio: 1.53.0
- h11: 0.14.0
- h5py: 3.8.0
- hijri-converter: 2.2.4
- holidays: 0.23
- httpcore: 0.17.0
- httptools: 0.5.0
- httpx: 0.24.0
- hupper: 1.12
- idna: 3.4
- importlib-metadata: 6.6.0
- importlib-resources: 5.12.0
- inquirer: 3.1.3
- ipykernel: 6.22.0
- ipython: 8.12.0
- ipython-genutils: 0.2.0
- ipywidgets: 8.0.6
- itsdangerous: 2.1.2
- jedi: 0.18.2
- jinja2: 3.1.2
- joblib: 1.2.0
- jsonschema: 4.17.3
- jupyter: 1.0.0
- jupyter-client: 8.2.0
- jupyter-console: 6.6.3
- jupyter-core: 5.3.0
- jupyter-events: 0.6.3
- jupyter-server: 2.5.0
- jupyter-server-terminals: 0.4.4
- jupyterlab-pygments: 0.2.2
- jupyterlab-widgets: 3.0.7
- kiwisolver: 1.4.4
- korean-lunar-calendar: 0.3.1
- libclang: 16.0.0
- lightning: 2.0.1
- lightning-cloud: 0.5.32
- lightning-utilities: 0.8.0
- lit: 16.0.1
- llvmlite: 0.39.1
- mako: 1.2.4
- markdown: 3.4.3
- markdown-it-py: 2.2.0
- markupsafe: 2.1.2
- matplotlib: 3.7.1
- matplotlib-inline: 0.1.6
- mdurl: 0.1.2
- mistune: 2.0.5
- mpmath: 1.3.0
- multidict: 6.0.4
- nbclassic: 0.5.5
- nbclient: 0.7.3
- nbconvert: 7.3.1
- nbformat: 5.8.0
- nest-asyncio: 1.5.6
- networkx: 3.1
- notebook: 6.5.4
- notebook-shim: 0.2.2
- numba: 0.56.4
- numpy: 1.23.5
- nvidia-cublas-cu11: 11.10.3.66
- nvidia-cuda-cupti-cu11: 11.7.101
- nvidia-cuda-nvrtc-cu11: 11.7.99
- nvidia-cuda-runtime-cu11: 11.7.99
- nvidia-cudnn-cu11: 8.5.0.96
- nvidia-cufft-cu11: 10.9.0.58
- nvidia-curand-cu11: 10.2.10.91
- nvidia-cusolver-cu11: 11.4.0.1
- nvidia-cusparse-cu11: 11.7.4.91
- nvidia-nccl-cu11: 2.14.3
- nvidia-nvtx-cu11: 11.7.91
- nvtx: 0.2.5
- oauthlib: 3.2.2
- opt-einsum: 3.3.0
- optuna: 3.1.1
- ordered-set: 4.1.0
- orjson: 3.8.10
- packaging: 23.1
- pandas: 1.5.3
- pandocfilters: 1.5.0
- parso: 0.8.3
- pastedeploy: 3.0.1
- patsy: 0.5.3
- pexpect: 4.8.0
- pickleshare: 0.7.5
- pillow: 9.5.0
- pip: 23.1.1
- pkgutil-resolve-name: 1.3.10
- plaster: 1.0
- plaster-pastedeploy: 0.7
- platformdirs: 3.2.0
- ply: 3.11
- prometheus-client: 0.16.0
- prompt-toolkit: 3.0.38
- protobuf: 4.21.12
- psutil: 5.9.5
- ptxcompiler: 0.7.0
- ptyprocess: 0.7.0
- pure-eval: 0.2.2
- pyarrow: 10.0.1
- pyasn1: 0.4.8
- pyasn1-modules: 0.2.8
- pycparser: 2.21
- pydantic: 1.10.7
- pygments: 2.15.1
- pyjwt: 2.6.0
- pymeeus: 0.5.12
- pyparsing: 3.0.9
- pyqt5: 5.15.7
- pyqt5-sip: 12.11.0
- pyramid: 2.0.1
- pyrsistent: 0.19.3
- python-dateutil: 2.8.2
- python-dotenv: 1.0.0
- python-editor: 1.0.4
- python-json-logger: 2.0.7
- python-multipart: 0.0.6
- pytorch-forecasting: 1.0.0
- pytorch-lightning: 2.0.1.post0
- pytorch-optimizer: 2.5.1
- pytz: 2023.3
- pyyaml: 6.0
- pyzmq: 25.0.2
- qtconsole: 5.4.2
- qtpy: 2.3.1
- rapids: 0.0.1
- readchar: 4.0.5
- requests: 2.28.2
- requests-oauthlib: 1.3.1
- rfc3339-validator: 0.1.4
- rfc3986-validator: 0.1.1
- rich: 13.3.3
- rmm: 23.4.0
- rsa: 4.9
- scikit-learn: 1.2.2
- scipy: 1.10.1
- send2trash: 1.8.0
- setuptools: 67.7.1
- sip: 6.7.9
- six: 1.16.0
- sniffio: 1.3.0
- soupsieve: 2.3.2.post1
- sqlalchemy: 2.0.9
- stack-data: 0.6.2
- starlette: 0.22.0
- starsessions: 1.3.0
- statsmodels: 0.13.5
- sympy: 1.11.1
- tensorboard: 2.12.2
- tensorboard-data-server: 0.7.0
- tensorboard-plugin-wit: 1.8.1
- tensorflow-io-gcs-filesystem: 0.32.0
- termcolor: 2.2.0
- terminado: 0.17.1
- threadpoolctl: 3.1.0
- tinycss2: 1.2.1
- toml: 0.10.2
- tomli: 2.0.1
- torch: 2.0.0
- torchmetrics: 0.11.4
- tornado: 6.3
- tqdm: 4.65.0
- traitlets: 5.9.0
- translationstring: 1.4
- triton: 2.0.0
- typing-extensions: 4.5.0
- ujson: 5.7.0
- urllib3: 1.26.15
- uvicorn: 0.21.1
- uvloop: 0.17.0
- venusian: 3.0.0
- watchfiles: 0.19.0
- wcwidth: 0.2.6
- webencodings: 0.5.1
- webob: 1.8.7
- websocket-client: 1.5.1
- websockets: 11.0.1
- werkzeug: 2.2.3
- wheel: 0.40.0
- widgetsnbextension: 4.0.7
- yarl: 1.8.2
- zipp: 3.15.0
- zope.deprecation: 4.4.0
- zope.interface: 6.0
- OS: Linux
- architecture:
- 64bit
- ELF
- processor: x86_64
- python: 3.10.10
- version: Quantisation and Pruning Support #76-Ubuntu SMP Fri Mar 17 17:19:29 UTC 2023
More info
No response
The text was updated successfully, but these errors were encountered: