forked from bohdansok/Face_Recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mascarade.py
164 lines (158 loc) · 8.24 KB
/
mascarade.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# -*- coding: utf-8 -*-
__author__ = "Bohdan SOKRUT"
__www__ = 'https://github.com/bohdansok/Face_Recognition'
__version__ = '1.97'
from tkinter import filedialog, simpledialog
import face_recognition
import cv2
import numpy as np
def put_virt_mask(image_basic, nous, mod5_68, model_hogcnn, executor, fl_MultyTh=False, fl_wanted_scan=False):
"""[Applying virtual medical masks of 4 types]
Args:
image_basic ([type]): [description]
nous ([type]): [description]
mod ([type]): [description]
model_hogcnn ([type]): [description]
executor ([type]): [description]
fl_MultyTh (bool, optional): [description]. Defaults to False.
Returns:
images [list]: [list of 5 images (np.array)]
boxes [list]: [list of face boxes found on basic image]
"""
#make local functions - just to be stylish
frfl = face_recognition.face_locations
frfland = face_recognition.face_landmarks
images = []
#
if fl_MultyTh:
boxes = executor.submit(frfl, image_basic, number_of_times_to_upsample=nous, model=model_hogcnn).result()
else:
boxes = frfl(image_basic, number_of_times_to_upsample=nous, model=model_hogcnn)
if len(boxes) == 0:
images.append([image_basic])
return images, boxes
if fl_wanted_scan:
for box in boxes:
images.append([image_basic])
return images, boxes
#convert BGR into RGB-colour
rgb_image_basic_basic = cv2.cvtColor(image_basic, cv2.COLOR_BGR2RGB)
#run on all boxes found at the image_basic
#setting up colors
blue_mask = (237, 234, 101)
blue_mask_stripes = (242, 249, 170)
black_mask = (17, 17, 17)
black_mask_stripes = (42, 42, 42)
white_resp_stripes = (220, 220, 220)
white_resp = (250, 250, 250)
resp_valve = (44, 191, 218)
for box in boxes:
image_6 = []
rgb_image_basic = rgb_image_basic_basic.copy()
image_6.append(rgb_image_basic.copy())
basic_landmarks = frfland(rgb_image_basic,
[box],
mod5_68)
#Making a simple mask model
mask_list = []
mask_list.extend([basic_landmarks[0].get("chin")[x] for x in range(1, 16)])
mask_list.append(basic_landmarks[0]["nose_bridge"][1])
mask = np.array(mask_list, np.int32)
stripe_0_list = []
stripe_0_list.append(basic_landmarks[0]["chin"][1])
stripe_0_list.append(basic_landmarks[0]["nose_bridge"][1])
stripe_0_list.append(basic_landmarks[0]["chin"][15])
stripe_0 = np.array(stripe_0_list, np.int32)
stripe_1_list = []
stripe_1_list.append(basic_landmarks[0]["chin"][3])
stripe_1_list.append(basic_landmarks[0]["nose_tip"][2])
stripe_1_list.append(basic_landmarks[0]["chin"][13])
stripe_1 = np.array(stripe_1_list, np.int32)
stripe_2_list = []
stripe_2_list.append(basic_landmarks[0]["chin"][4])
stripe_2_list.append(basic_landmarks[0]["bottom_lip"][4])
stripe_2_list.append(basic_landmarks[0]["chin"][12])
stripe_2 = np.array(stripe_2_list, np.int32)
valve_left_center = basic_landmarks[0]["top_lip"][6]
valve_right_center = basic_landmarks[0]["top_lip"][0]
valve_main_axes = int(
(basic_landmarks[0]["bottom_lip"][4][1] - basic_landmarks[0]["nose_tip"][2][1]) * 0.8
)
valve_min_axes = int(valve_main_axes // 2)
stripe_0_width = int((basic_landmarks[0]["nose_bridge"][2][1] - basic_landmarks[0]["nose_bridge"][1][1]) * 0.35)
stripe_1_width = int((basic_landmarks[0]["nose_bridge"][3][1] - basic_landmarks[0]["nose_bridge"][1][1]) * 0.5)
stripe_2_width = stripe_0_width
#Applying digital blue mask
image_blue_mask = cv2.drawContours(rgb_image_basic, [mask], -1, blue_mask, thickness=cv2.FILLED)
image_blue_mask = cv2.polylines(image_blue_mask, [stripe_0], False, blue_mask_stripes, thickness=stripe_0_width)
image_blue_mask = cv2.polylines(image_blue_mask, [stripe_1], False, blue_mask_stripes, thickness=stripe_1_width)
image_blue_mask = cv2.polylines(image_blue_mask, [stripe_2], False, blue_mask_stripes, thickness=stripe_2_width)
image_6.append(image_blue_mask.copy())
#Applying digital black mask
image_black_mask = cv2.drawContours(rgb_image_basic, [mask], -1, black_mask, thickness=cv2.FILLED)
image_black_mask = cv2.polylines(image_black_mask, [stripe_0], False, black_mask_stripes, thickness=stripe_0_width)
image_black_mask = cv2.polylines(image_black_mask, [stripe_1], False, black_mask_stripes, thickness=stripe_1_width)
image_black_mask = cv2.polylines(image_black_mask, [stripe_2], False, black_mask_stripes, thickness=stripe_2_width)
image_6.append(image_black_mask.copy())
#Applying digital white mask
image_white_mask = cv2.drawContours(rgb_image_basic, [mask], -1, white_resp, thickness=cv2.FILLED)
image_white_mask = cv2.polylines(image_white_mask, [stripe_0], False, white_resp_stripes, thickness=stripe_0_width)
image_white_mask = cv2.polylines(image_white_mask, [stripe_1], False, white_resp_stripes, thickness=stripe_1_width)
image_white_mask = cv2.polylines(image_white_mask, [stripe_2], False, white_resp_stripes, thickness=stripe_2_width)
image_6.append(image_white_mask.copy())
#Applying digital respirator with left-side valve
image_resp_left = cv2.drawContours(rgb_image_basic, [mask], -1, white_resp, thickness=cv2.FILLED)
image_resp_left = cv2.polylines(image_resp_left, [stripe_0], False, white_resp_stripes, thickness=stripe_0_width)
image_resp_left = cv2.polylines(image_resp_left, [stripe_1], False, white_resp_stripes, thickness=stripe_1_width)
image_resp_left = cv2.polylines(image_resp_left, [stripe_2], False, white_resp_stripes, thickness=stripe_2_width)
image_resp_left = cv2.ellipse(image_resp_left, valve_left_center, (valve_main_axes, valve_min_axes), 285, 0, 360, resp_valve, -1)
image_6.append(image_resp_left.copy())
#Applying digital respirator with right-side valve
image_resp_right = cv2.drawContours(rgb_image_basic, [mask], -1, white_resp, thickness=cv2.FILLED)
image_resp_right = cv2.polylines(image_resp_right, [stripe_0], False, white_resp_stripes, thickness=stripe_0_width)
image_resp_right = cv2.polylines(image_resp_right, [stripe_1], False, white_resp_stripes, thickness=stripe_1_width)
image_resp_right = cv2.polylines(image_resp_right, [stripe_2], False, white_resp_stripes, thickness=stripe_0_width)
image_resp_right = cv2.ellipse(image_resp_right, valve_right_center,
(valve_main_axes, valve_min_axes), 255, 0, 360, resp_valve, -1)
image_6.append(image_resp_right.copy())
#adding list of 6 images to the common images list
images.append(image_6.copy())
del(image_6)
del(rgb_image_basic)
del(image_blue_mask)
del(image_black_mask)
del(image_white_mask)
del(image_resp_left)
del(image_resp_right)
del(frfl)
del(frfland)
return images, boxes
imfn = filedialog.askopenfilename("Choose a JPG-file with probe face")
image_basic = face_recognition.load_image_file(imfn)
aimages = []
aimages, boxes = put_virt_mask(image_basic,
1,
"large",
"hog",
None, False,
False)
for box_index, box in enumerate(boxes):
cv2.imshow("Mascarade - 0", aimages[box_index][0])
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imshow("Mascarade - 1", aimages[box_index][1])
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imshow("Mascarade - 2", aimages[box_index][2])
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imshow("Mascarade - 3", aimages[box_index][3])
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imshow("Mascarade - 4", aimages[box_index][4])
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imshow("Mascarade - 5", aimages[box_index][5])
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.destroyAllWindows()