-
Notifications
You must be signed in to change notification settings - Fork 2
/
test_picture.py
251 lines (190 loc) · 7.94 KB
/
test_picture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#!--*-- coding:utf-8 --*--
# Deeplab Demo
# This file calculates the final result and outputs the soling coverage
import os
import tarfile
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tempfile
from six.moves import urllib
import tensorflow as tf
import cv2
class DeepLabModel(object):
"""
加载 DeepLab 模型;
推断 Inference.
"""
INPUT_TENSOR_NAME = 'ImageTensor:0'
OUTPUT_TENSOR_NAME = 'SemanticPredictions:0'
INPUT_SIZE = 513
FROZEN_GRAPH_NAME = 'frozen_inference_graph'
def __init__(self, tarball_path):
"""
Creates and loads pretrained deeplab model.
"""
self.graph = tf.Graph()
graph_def = None
# Extract frozen graph from tar archive.
tar_file = tarfile.open(tarball_path)
for tar_info in tar_file.getmembers():
if self.FROZEN_GRAPH_NAME in os.path.basename(tar_info.name):
file_handle = tar_file.extractfile(tar_info)
graph_def = tf.GraphDef.FromString(file_handle.read())
break
tar_file.close()
if graph_def is None:
raise RuntimeError('Cannot find inference graph in tar archive.')
with self.graph.as_default():
tf.import_graph_def(graph_def, name='')
self.sess = tf.Session(graph=self.graph)
def run(self, image):
"""
Runs inference on a single image.
Args:
image: A PIL.Image object, raw input image.
Returns:
resized_image: RGB image resized from original input image.
seg_map: Segmentation map of `resized_image`.
"""
width, height = image.size
resize_ratio = 1.0 * self.INPUT_SIZE / max(width, height)
target_size = (int(resize_ratio * width), int(resize_ratio * height))
resized_image = image.convert('RGB').resize(target_size, Image.ANTIALIAS)
batch_seg_map = self.sess.run(self.OUTPUT_TENSOR_NAME,
feed_dict={self.INPUT_TENSOR_NAME: [np.asarray(resized_image)]})
seg_map = batch_seg_map[0]
return resized_image, seg_map
def create_pascal_label_colormap():
"""
Creates a label colormap used in PASCAL VOC segmentation benchmark.
Returns:
A Colormap for visualizing segmentation results.
"""
colormap = np.zeros((256, 3), dtype=int)
ind = np.arange(256, dtype=int)
for shift in reversed(range(8)):
for channel in range(3):
colormap[:, channel] |= ((ind >> channel) & 1) << shift
ind >>= 3
return colormap
def label_to_color_image(label):
"""
Adds color defined by the dataset colormap to the label.
Args:
label: A 2D array with integer type, storing the segmentation label.
Returns:
result: A 2D array with floating type. The element of the array
is the color indexed by the corresponding element in the input label
to the PASCAL color map.
Raises:
ValueError: If label is not of rank 2 or its value is larger than color
map maximum entry.
"""
if label.ndim != 2:
raise ValueError('Expect 2-D input label')
colormap = create_pascal_label_colormap()
if np.max(label) >= len(colormap):
raise ValueError('label value too large.')
return colormap[label]
def vis_segmentation(image, seg_map):
"""Visualizes input image, segmentation map and overlay view."""
plt.figure(figsize=(15, 5))
grid_spec = gridspec.GridSpec(1, 4, width_ratios=[6, 6, 6, 1])
plt.subplot(grid_spec[0])
plt.imshow(image)
plt.axis('off')
plt.title('input image')
plt.subplot(grid_spec[1])
seg_image = label_to_color_image(seg_map).astype(np.uint8)
Soiling_image = calculate_soiling_coverage(seg_image)
plt.imshow(Soiling_image)
plt.axis('off')
# plt.savefig('/home/ogai/Desktop/result.png')
plt.title('segmentation map')
plt.subplot(grid_spec[2])
plt.imshow(image)
plt.imshow(Soiling_image, alpha=0.7)
plt.axis('off')
plt.title('segmentation overlay')
unique_labels = np.unique(seg_map)
ax = plt.subplot(grid_spec[3])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation='nearest')
ax.yaxis.tick_right()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0)
# plt.grid('off')
plt.show()
##
LABEL_NAMES = np.asarray(
['clean', 'opaque', 'transparent' ])
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
## Tensorflow 提供的模型下载
MODEL_NAME = 'xception_coco_voctrainval'
# ['mobilenetv2_coco_voctrainaug', 'mobilenetv2_coco_voctrainval', 'xception_coco_voctrainaug', 'xception_coco_voctrainval']
_DOWNLOAD_URL_PREFIX = 'http://download.tensorflow.org/models/'
_MODEL_URLS = {'mobilenetv2_coco_voctrainaug': 'deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz',
'mobilenetv2_coco_voctrainval': 'deeplabv3_mnv2_pascal_trainval_2018_01_29.tar.gz',
'xception_coco_voctrainaug': 'deeplabv3_pascal_train_aug_2018_01_04.tar.gz',
'xception_coco_voctrainval': 'deeplabv3_pascal_trainval_2018_01_04.tar.gz', }
# _TARBALL_NAME = 'deeplab_model.tar.gz'
# model_dir = tempfile.mkdtemp()
# tf.gfile.MakeDirs(model_dir)
#
# download_path = os.path.join(model_dir, _TARBALL_NAME)
# print('downloading model, this might take a while...')
# urllib.request.urlretrieve(_DOWNLOAD_URL_PREFIX + _MODEL_URLS[MODEL_NAME], download_path)
# print('download completed! loading DeepLab model...')
download_path = '/home/ogai/Desktop/labeled_ubuntu/output_model/pb5_7w_5_25.tar.gz' #模型所在位置
MODEL = DeepLabModel(download_path)
print('model loaded successfully!')
##
def run_visualization(imagefile):
"""
DeepLab 语义分割,并可视化结果.
"""
orignal_im = Image.open(imagefile)
print('running deeplab on image %s...' % imagefile)
resized_im, seg_map = MODEL.run(orignal_im)
vis_segmentation(resized_im, seg_map)
def calculate_soiling_coverage(image):
Soiling_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
cv2.imshow('Soiling_image_test',Soiling_image)
# image = cv2.imread('image')
gray = cv2.cvtColor(Soiling_image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray,0,255,cv2.THRESH_OTSU + cv2.THRESH_BINARY)[1]
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
total = 0
for c in cnts:
x,y,w,h = cv2.boundingRect(c)
print('w=',w,'h=',h)
mask = np.zeros(Soiling_image.shape, dtype=np.uint8)
cv2.fillPoly(mask, [c], [255,255,255])
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
pixels = cv2.countNonZero(mask)
total += pixels
cv2.putText(Soiling_image, format(pixels), (x + w//3 ,y + h//3 ), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255,255,255), 2)
print('mask pixel',total)
image_area = Soiling_image.shape[0] * Soiling_image.shape[1]
area_ratio = (pixels / image_area) * 100
coverage = round((total / image_area),3)*100
cv2.putText(Soiling_image, ' soiling coverage = '+'{}'.format(coverage) +'%' , (20,20), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255,255,255), 2)
print('coverage of soiling part ',coverage)
cv2.namedWindow("thresh",0)
cv2.resizeWindow("thresh", 1600, 1200)
cv2.imshow("thresh",thresh)
cv2.namedWindow("Soiling_image",0)
cv2.resizeWindow("Soiling_image", 1600, 1200)
cv2.imshow("Soiling_image",Soiling_image)
cv2.waitKey(0)
Soiling_image = cv2.cvtColor(Soiling_image, cv2.COLOR_BGR2RGB)
return Soiling_image
images_dir = '/home/ogai/Desktop/Soiling_dataset/test' #测试图片目录所在位置
images = sorted(os.listdir(images_dir))
for imgfile in images:
run_visualization(os.path.join(images_dir, imgfile))
print('Done.')