-
Notifications
You must be signed in to change notification settings - Fork 1
/
generateCNVReport.py
256 lines (162 loc) · 6.71 KB
/
generateCNVReport.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import pandas
import allel
import argparse
from pathlib import Path
# Get the script arguments
parser = argparse.ArgumentParser()
parser.add_argument('--runid')
parser.add_argument('--output')
parser.add_argument('--bed')
parser.add_argument('--exome_metrics')
parser.add_argument('--manta_dir')
parser.add_argument('--exome_dir')
parser.add_argument('--coverage_dir')
args = parser.parse_args()
runid = args.runid
output_file = args.output
bed = args.bed
manta_dir = args.manta_dir
exome_dir = args.exome_dir
coverage_dir = args.coverage_dir
exome_metrics = args.exome_metrics
# Utility Functions
def fix_end_position(df):
"""
Fixes the END columns:
If the END column is equal to -1 then change the end columns \
to the start position + 1
"""
if df['END'] != 'NA':
if int(df['END']) == -1:
return int(df['POS']) + 1
return df['END']
def assign_qc(df):
"""
Assign a QC status e.g. is r squared is less than a certain value
"""
qc_comment = []
if df['Correlation'] < 0.98:
qc_comment.append('R2<0.98')
if df['depth'] < 160:
qc_comment.append('Depth<160')
if len(qc_comment) == 0:
return 'PASS'
else:
return '|'.join(qc_comment)
def get_overlapping_genes(df, grouped_bed):
"""
Get the custom roi file and check to see if any of our SVs overlap with the regions.
"""
sv_start = df['POS']
if sv_start == 'NA':
return 'NA'
sv_chrom = str(df['CHROM'])
sv_start = int(df['POS'])
sv_end = int(df['END'])
gene_list = []
for gene in grouped_bed.itertuples():
gene_chrom = str(gene.Chrom)
gene_start = int(gene.Start)
gene_end = int(gene.End)
# variant start is within the gene
if gene_chrom == sv_chrom and gene_start <= sv_start <= gene_end:
gene_list.append(gene.gene)
# variant end is within the gene
elif gene_chrom == sv_chrom and gene_start <= sv_end <= gene_end:
gene_list.append(gene.gene)
# variant start is before gene and variant end is after gene e.g. variant engulfs gene.
elif gene_chrom == sv_chrom and (sv_start <= gene_start and sv_end >= gene_end):
gene_list.append(gene.gene)
if len(gene_list) > 0:
return '|'.join(list(set(gene_list)))
else:
return 'NA'
# Create main dataframe
dataFrame = pandas.DataFrame()
# Read exome depth metrics file to get high coverage samples
exome_depth_metrics = pandas.read_table(exome_metrics)
num_rows_exome_depth_metrics = exome_depth_metrics.shape[0]
# Add sampleid column to exome depth
exome_depth_metrics['sampleid'] = exome_depth_metrics['BamPath'].apply(lambda x: Path(x).stem.replace('_final', ''))
samples_list = list(exome_depth_metrics.groupby('sampleid').count().index)
# Read BED file
bed_file = pandas.read_csv(bed, names=['Chrom', 'Start', 'End', 'Comment'], sep='\t', header=None)
# Extract gene to new column
bed_file['gene'] = bed_file['Comment'].apply(lambda x: x.split('.')[0])
# Groupby gene and get the smallest start and largest end for each gene.
grouped_bed = bed_file.groupby(['Chrom', 'gene']).agg({'Start': 'min', 'End': 'max'})
grouped_bed = grouped_bed.reset_index()
#Loop through all samples and read in the relevant files
for sample in samples_list:
# Get the mean depth from the summary file
depth_of_coverage_summary = pandas.read_table(coverage_dir + '/' + sample + '_DepthOfCoverage.sample_summary')
depth_of_coverage_summary_mean = depth_of_coverage_summary['mean'][1]
#Create dataframe from manta vcf
manta_df = allel.vcf_to_dataframe(manta_dir + '/' + sample + '_diploidSV.vcf.gz' , fields=['*'])
if manta_df is not None:
manta_df_2 = manta_df[['CHROM', 'POS', 'END', 'REF', 'SVTYPE']]
manta_df_2.columns = ['CHROM', 'POS', 'END', 'REF', 'SVTYPE']
manta_df_2['Regions'] = '-'
manta_df_2['QC'] = 'PASS'
manta_df_2['method'] = 'Manta'
manta_df_2['ALT_1'] = manta_df_2['SVTYPE']
else:
# Make a dataframe with a single row with everything set to NA
data = [{'CHROM':'NA', 'POS':'NA', 'END':'NA', 'REF':'NA', 'SVTYPE':'NA', 'Regions':'-'}]
manta_df_2 = pandas.DataFrame(data)
manta_df_2 = manta_df_2[['CHROM', 'POS', 'END', 'REF', 'SVTYPE', 'Regions']]
manta_df_2['QC'] = 'PASS'
manta_df_2['method'] = 'Manta'
manta_df_2['ALT_1'] = manta_df_2['SVTYPE']
#Create dataframe from Exome depth vcf
exome_df = allel.vcf_to_dataframe(exome_dir + '/' + sample + '_final_cnv_fixed.vcf.gz' , fields=['*'])
if exome_df is not None:
exome_df_2 = exome_df[['CHROM', 'POS', 'END', 'REF', 'ALT_1', 'Regions']]
exome_df_2['QC'] = 'PASS'
exome_df_2['method'] = 'exomeDepth'
else:
exome_data = [{'CHROM':'NA', 'POS':'NA', 'END':'NA', 'REF':'NA', 'ALT_1':'NA', 'Regions':'NA'}]
exome_df_2 = pandas.DataFrame(exome_data)
exome_df_2 = exome_df_2[['CHROM', 'POS', 'END', 'REF', 'ALT_1', 'Regions']]
exome_df_2['QC'] = 'PASS'
exome_df_2['method'] = 'exomeDepth'
#Combine both Manta and ExomeDepth dataframes and add depth and sample ID
if (exome_df_2 is not None) and (manta_df_2 is not None):
manta_exome = exome_df_2.append(manta_df_2)
manta_exome['depth'] = depth_of_coverage_summary_mean
manta_exome['sampleid'] = sample
elif (exome_df_2 is None) and (manta_df_2 is not None):
manta_exome = manta_df_2
manta_exome['depth'] = depth_of_coverage_summary_mean
manta_exome['sampleid'] = sample
elif (exome_df_2 is not None) and (manta_df_2 is None):
manta_exome = exome_df_2
manta_exome['depth'] = depth_of_coverage_summary_mean
manta_exome['sampleid'] = sample
else:
manta_exome = None
if manta_exome is not None:
manta_exome['END'] = manta_exome.apply(fix_end_position,axis=1)
# Annotate with data from the exome depth logs
manta_exome = pandas.merge(manta_exome, exome_depth_metrics, left_on = 'sampleid', right_on = 'sampleid')
manta_exome['QC'] = manta_exome.apply(assign_qc, axis=1)
# Add gene annotation
manta_exome['Gene'] = manta_exome.apply(get_overlapping_genes, axis=1, args=(grouped_bed,))
#Add sample dataframe to main dataframe containing all samples
dataFrame = dataFrame.append(manta_exome)
#output the dataframe containing the CNVs for all sample as a TSV
if manta_exome is not None:
final_df = dataFrame[['sampleid', 'method', 'CHROM', 'POS', 'END', 'REF', 'ALT_1', 'Regions', 'QC', 'depth', 'Gene']]
# Remove < and > from <DUP> and <DEL>
final_df['ALT_1'] = final_df['ALT_1'].apply(lambda x: x.strip('<').strip('>'))
# Create new columns with different names
final_df['Sample'] = final_df['sampleid']
final_df['Method'] = final_df['method']
final_df['Chr'] = final_df['CHROM']
final_df['Start'] = final_df['POS']
final_df['End'] = final_df['END']
final_df['Ref'] = final_df['REF']
final_df['Type'] = final_df['ALT_1']
final_df['Depth'] = final_df['depth']
# Write to TSV
final_df[['Sample', 'Method', 'Chr', 'Start', 'End', 'Ref', 'Type', 'Regions', 'QC', 'Depth', 'Gene']].to_csv(output_file, index=False, sep='\t')