-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
66 lines (49 loc) · 2.69 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from layer import ONGNNConv
import torch
import torch.nn.functional as F
from torch.nn import Module, ModuleList, Linear, LayerNorm
class GONN(Module):
def __init__(self, params):
super().__init__()
self.params = params
self.linear_trans_in = ModuleList()
self.linear_trans_out = Linear(params['hidden_channel'], params['out_channel'])
self.norm_input = ModuleList()
self.convs = ModuleList()
self.tm_norm = ModuleList()
self.tm_net = ModuleList()
self.linear_trans_in.append(Linear(params['in_channel'], params['hidden_channel']))
self.norm_input.append(LayerNorm(params['hidden_channel']))
for i in range(params['num_layers_input']-1):
self.linear_trans_in.append(Linear(params['hidden_channel'], params['hidden_channel']))
self.norm_input.append(LayerNorm(params['hidden_channel']))
if params['global_gating']==True:
tm_net = Linear(2*params['hidden_channel'], params['chunk_size'])
for i in range(params['num_layers']):
self.tm_norm.append(LayerNorm(params['hidden_channel']))
if params['global_gating']==False:
self.tm_net.append(Linear(2*params['hidden_channel'], params['chunk_size']))
else:
self.tm_net.append(tm_net)
if params['model']=="ONGNN":
self.convs.append(ONGNNConv(tm_net=self.tm_net[i], tm_norm=self.tm_norm[i], params=params))
self.params_conv = list(set(list(self.convs.parameters())+list(self.tm_net.parameters())))
self.params_others = list(self.linear_trans_in.parameters())+list(self.linear_trans_out.parameters())
def forward(self, x, edge_index):
check_signal = []
for i in range(len(self.linear_trans_in)):
x = F.dropout(x, p=self.params['dropout_rate'], training=self.training)
x = F.relu(self.linear_trans_in[i](x))
x = self.norm_input[i](x)
tm_signal = x.new_zeros(self.params['chunk_size'])
for j in range(len(self.convs)):
if self.params['dropout_rate2']!='None':
x = F.dropout(x, p=self.params['dropout_rate2'], training=self.training)
else:
x = F.dropout(x, p=self.params['dropout_rate'], training=self.training)
x, tm_signal = self.convs[j](x, edge_index, last_tm_signal=tm_signal)
check_signal.append(dict(zip(['tm_signal'], [tm_signal])))
x = F.dropout(x, p=self.params['dropout_rate'], training=self.training)
x = self.linear_trans_out(x)
encode_values = dict(zip(['x', 'check_signal'], [x, check_signal]))
return encode_values