Skip to content

Latest commit

 

History

History
62 lines (41 loc) · 2.48 KB

README.md

File metadata and controls

62 lines (41 loc) · 2.48 KB

Graph Parsing Networks

The official implementation of the paper "Graph Parsing Networks" (ICLR 2024).

Dependencies

See requirements.txt.

Run

We manage our experiments with wandb, to reproduce the results we reported in our paper, follow these steps:

  • First of all, in order to store the wandb files afterwards, please create the configs and remote folders in the GPN project root directory.

  • We provide hyperparameters for each dataset in the best_params folder. You can use them to create sweep and remember to indicate your wandb username and project name.

    python sweep.py --entity=$YOUR_WANDB_ENTITY$ --project=$YOUR_WANDB_PROJECT$ --source=file --info=best_params/$DATASET_NAME$.yaml
    

    Please note that $YOUR_WANDB_ENTITY$ and $YOUR_WANDB_PROJECT$ are your wandb username and project's name.

  • You will get an sweep ID $SWEEP_ID$ and sweep URL $SWEEP_URL$ from last step, like:

    Create sweep with ID: $SWEEP_ID$
    Sweep URL: $SWEEP_URL$
    

    Next you can choose to run the program using a single process or in parallel.

  • If you are using a single process

    python agents.py --entity=$YOUR_WANDB_ENTITY$ --project=$YOUR_WANDB_PROJECT$ --sweep_id=$SWEEP_ID$ --gpu_allocate=$INDEX_GPU$:1 --wandb_base=remote --mode=one-by-one --save_model=False
    
  • If you are using multiple processes

    python agents.py --entity=$YOUR_WANDB_ENTITY$ --project=$YOUR_WANDB_PROJECT$ --sweep_id=$SWEEP_ID$ --gpu_allocate=$INDEX_GPU$:$PARALLEL_RUNS$ --wandb_base=temp --mode=parallel --save_model=False
    

    Parameter $INDEX_GPU$:$PARALLEL_RUNS$ indicates that we will run $PARALLEL_RUNS$ runs in parallel with GPU $INDEX_GPU$. In multi-process mode, you can use - to connect any number of graphics cards to deploy tasks on multiple graphics cards at the same time. Example: --gpu_allocate=0:3-1:3

  • You can check the results in $SWEEP_URL$, a website hosted on wandb.ai.

Citation

If you found the provided code with our paper useful in your work, we kindly request that you cite our work.

@inproceedings{song2024graph,
    title={Graph Parsing Networks},
    author={Yunchong Song and Siyuan Huang and Xinbing Wang and Chenghu Zhou and Zhouhan Lin},
    booktitle={The Twelfth International Conference on Learning Representations},
    year={2024}
}