forked from FreddeFrallan/Multilingual-CLIP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference_example.py
34 lines (23 loc) · 1.1 KB
/
inference_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import transformers
def tf_example(texts, model_name='M-CLIP/XLM-Roberta-Large-Vit-L-14'):
from multilingual_clip import tf_multilingual_clip
model = tf_multilingual_clip.MultiLingualCLIP.from_pretrained(model_name)
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
inData = tokenizer.batch_encode_plus(texts, return_tensors='tf', padding=True)
embeddings = model(inData)
print(embeddings.shape)
def pt_example(texts, model_name='M-CLIP/XLM-Roberta-Large-Vit-L-14'):
from multilingual_clip import pt_multilingual_clip
model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_name)
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
embeddings = model.forward(texts, tokenizer)
print(embeddings.shape)
if __name__ == '__main__':
exampleTexts = [
'Three blind horses listening to Mozart.',
'Älgen är skogens konung!',
'Wie leben Eisbären in der Antarktis?',
'Вы знали, что все белые медведи левши?'
]
# tf_example(exampleTexts)
pt_example(exampleTexts)