-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_model.py
executable file
·84 lines (65 loc) · 3.85 KB
/
test_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import keras
# import keras_retinanet
from keras_retinanet import models
from keras_retinanet.utils.image import read_image_bgr, preprocess_image, resize_image
from keras_retinanet.utils.visualization import draw_box, draw_caption
from keras_retinanet.utils.colors import label_color
# import miscellaneous modules
import matplotlib.pyplot as plt
import cv2
import os
import numpy as np
import time
import pandas as pd
import csv
# set tf backend to allow memory to grow, instead of claiming everything
import tensorflow as tf
def get_session():
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
return tf.Session(config=config)
# use this environment flag to change which GPU to use
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
# set the modified tf session as backend in keras
keras.backend.tensorflow_backend.set_session(get_session())
# adjust this to point to your downloaded/trained model# adjus
# models can be downloaded here: https://github.com/fizyr/keras-retinanet/releases
# model_path = os.path.join('.', 'snapshots', 'resnet50_coco_best_v2.1.0.h5')
model_path = './resnet50_csv_11.h5'
# load retinanet model
# model = models.load_model(model_path, backbone_name='resnet50')
# if the model is not converted to an inference model, use the line below
# see: https://github.com/fizyr/keras-retinanet#converting-a-training-model-to-inference-model
model = models.load_model(model_path, backbone_name='resnet50', convert=True)
model.summary()
# load label to names mapping for visualization purposes
# labels_to_names = {0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'}
labels_to_names = {0: 'hat'}
for img in os.listdir('../DATASET/safe_hat/output'):
# load image
image = read_image_bgr('../DATASET/safe_hat/output/' + img)
# copy to draw on
draw = image.copy()
draw = cv2.cvtColor(draw, cv2.COLOR_BGR2RGB)
# preprocess image for network
image = preprocess_image(image)
image, scale = resize_image(image)
# process image
start = time.time()
boxes, scores, labels = model.predict(np.expand_dims(image, axis=0))
print("processing time: ", time.time() - start)
boxes /= scale
# print(scores)
# if np.max(scores[0]) < 0.95:
# no_hat_list.append(img)
# # visualize detections
# else:
for box, score, label in zip(boxes[0], scores[0], labels[0]):
# scores are sorted so we can break
if score < 0.95:
break
b = box.astype(int)
draw_box(draw, b, color=[0, 128, 0])
caption = "{} {:.3f}".format(labels_to_names[label], score)
draw_caption(draw, b, caption)
cv2.imwrite('../DATASET/safe_hat/output/' + img, cv2.cvtColor(draw, cv2.COLOR_RGB2BGR))