forked from Epitech/AutoML-For-Everyone
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature.py
100 lines (87 loc) · 2.77 KB
/
feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.feature_selection import SelectKBest, chi2
from sklearn.ensemble import ExtraTreesClassifier, RandomForestRegressor
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier
from xgboost import XGBRegressor
def check_same_values(data):
tab = []
for keys in data.keys():
nb = 1
column = data[keys].values
save = column[0]
for value in column:
if value != save:
nb = 0
break
tab.append(nb)
return tab
def check_index(data):
tab = []
for keys in data.keys():
nb = 1
column = data[keys].values
save = column[0]
for value in range(column.size):
if value == 0:
continue
if column[value] != save + 1:
nb = 0
break
save = column[value]
tab.append(nb)
return tab
def check_score(X, Y):
bestF = SelectKBest(score_func=chi2, k=4)
fit = bestF.fit(X, Y)
return fit.scores_
#dfscores = pd.DataFrame(fit.scores_)
#dfcolumns = pd.DataFrame(X.columns)
#featureScores = pd.concat([dfcolumns, dfscores], axis=1)
#featureScores.columns = ['Specs', 'Score']
#return featureScores.nlargest(4, 'Score')
#return fit.scores_
def check_importance(X, Y):
model = ExtraTreesClassifier()
model.fit(X, Y)
return model.feature_importances_
#feat = pd.Series(model.feature_importances_, index=X.columns)
#feat.nlargest(5).plot(kind='barh')
#plt.show()
#return model.feature_importances_
def check_importance_two(X, Y):
model = LinearRegression()
model.fit(X, Y)
return model.coef_
def check_importance_three(X, Y):
model = DecisionTreeRegressor()
model.fit(X, Y)
return model.feature_importances_
def check_importance_four(X, Y):
model = DecisionTreeClassifier()
model.fit(X, Y)
return model.feature_importances_
def check_importance_five(X, Y):
model = RandomForestRegressor()
model.fit(X, Y)
return model.feature_importances_
def check_importance_six(X, Y):
model = XGBRegressor()
model.fit(X, Y)
return model.feature_importances_
def automated_test(data, target):
X = data.drop([target], axis=1)
Y = data[target]
print(check_score(X, Y))
print(check_importance(X, Y))
print(check_importance_two(X, Y))
print(check_importance_three(X, Y))
print(check_importance_four(X, Y))
print(check_importance_five(X, Y))
print(check_importance_six(X, Y))
print(check_same_values(data))
print(check_index(data))
data_iris=pd.read_csv('datasets/iris.csv', sep=',', dtype=np.float64)
automated_test(data_iris, 'species')