forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 50
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
暴露接口可以直接增加 executor/node 的黑名单 #72
Comments
Aaaaaaron
added a commit
that referenced
this issue
Nov 8, 2019
Aaaaaaron
added a commit
that referenced
this issue
Nov 9, 2019
lxian
pushed a commit
to lxian/spark
that referenced
this issue
Mar 24, 2021
…join can be planned as broadcast join ### What changes were proposed in this pull request? Should not pushdown LeftSemi/LeftAnti over Aggregate for some cases. ```scala spark.range(50000000L).selectExpr("id % 10000 as a", "id % 10000 as b").write.saveAsTable("t1") spark.range(40000000L).selectExpr("id % 8000 as c", "id % 8000 as d").write.saveAsTable("t2") spark.sql("SELECT distinct a, b FROM t1 INTERSECT SELECT distinct c, d FROM t2").explain ``` Before this pr: ``` == Physical Plan == AdaptiveSparkPlan isFinalPlan=false +- HashAggregate(keys=[a#16L, b#17L], functions=[]) +- HashAggregate(keys=[a#16L, b#17L], functions=[]) +- HashAggregate(keys=[a#16L, b#17L], functions=[]) +- Exchange hashpartitioning(a#16L, b#17L, 5), ENSURE_REQUIREMENTS, [id=Kyligence#72] +- HashAggregate(keys=[a#16L, b#17L], functions=[]) +- SortMergeJoin [coalesce(a#16L, 0), isnull(a#16L), coalesce(b#17L, 0), isnull(b#17L)], [coalesce(c#18L, 0), isnull(c#18L), coalesce(d#19L, 0), isnull(d#19L)], LeftSemi :- Sort [coalesce(a#16L, 0) ASC NULLS FIRST, isnull(a#16L) ASC NULLS FIRST, coalesce(b#17L, 0) ASC NULLS FIRST, isnull(b#17L) ASC NULLS FIRST], false, 0 : +- Exchange hashpartitioning(coalesce(a#16L, 0), isnull(a#16L), coalesce(b#17L, 0), isnull(b#17L), 5), ENSURE_REQUIREMENTS, [id=Kyligence#65] : +- FileScan parquet default.t1[a#16L,b#17L] Batched: true, DataFilters: [], Format: Parquet, Location: InMemoryFileIndex[file:/Users/yumwang/spark/spark-warehouse/org.apache.spark.sql.Data..., PartitionFilters: [], PushedFilters: [], ReadSchema: struct<a:bigint,b:bigint> +- Sort [coalesce(c#18L, 0) ASC NULLS FIRST, isnull(c#18L) ASC NULLS FIRST, coalesce(d#19L, 0) ASC NULLS FIRST, isnull(d#19L) ASC NULLS FIRST], false, 0 +- Exchange hashpartitioning(coalesce(c#18L, 0), isnull(c#18L), coalesce(d#19L, 0), isnull(d#19L), 5), ENSURE_REQUIREMENTS, [id=Kyligence#66] +- HashAggregate(keys=[c#18L, d#19L], functions=[]) +- Exchange hashpartitioning(c#18L, d#19L, 5), ENSURE_REQUIREMENTS, [id=Kyligence#61] +- HashAggregate(keys=[c#18L, d#19L], functions=[]) +- FileScan parquet default.t2[c#18L,d#19L] Batched: true, DataFilters: [], Format: Parquet, Location: InMemoryFileIndex[file:/Users/yumwang/spark/spark-warehouse/org.apache.spark.sql.Data..., PartitionFilters: [], PushedFilters: [], ReadSchema: struct<c:bigint,d:bigint> ``` After this pr: ``` == Physical Plan == AdaptiveSparkPlan isFinalPlan=false +- HashAggregate(keys=[a#16L, b#17L], functions=[]) +- Exchange hashpartitioning(a#16L, b#17L, 5), ENSURE_REQUIREMENTS, [id=Kyligence#74] +- HashAggregate(keys=[a#16L, b#17L], functions=[]) +- SortMergeJoin [coalesce(a#16L, 0), isnull(a#16L), coalesce(b#17L, 0), isnull(b#17L)], [coalesce(c#18L, 0), isnull(c#18L), coalesce(d#19L, 0), isnull(d#19L)], LeftSemi :- Sort [coalesce(a#16L, 0) ASC NULLS FIRST, isnull(a#16L) ASC NULLS FIRST, coalesce(b#17L, 0) ASC NULLS FIRST, isnull(b#17L) ASC NULLS FIRST], false, 0 : +- Exchange hashpartitioning(coalesce(a#16L, 0), isnull(a#16L), coalesce(b#17L, 0), isnull(b#17L), 5), ENSURE_REQUIREMENTS, [id=Kyligence#67] : +- HashAggregate(keys=[a#16L, b#17L], functions=[]) : +- Exchange hashpartitioning(a#16L, b#17L, 5), ENSURE_REQUIREMENTS, [id=Kyligence#61] : +- HashAggregate(keys=[a#16L, b#17L], functions=[]) : +- FileScan parquet default.t1[a#16L,b#17L] Batched: true, DataFilters: [], Format: Parquet, Location: InMemoryFileIndex[file:/Users/yumwang/spark/spark-warehouse/org.apache.spark.sql.Data..., PartitionFilters: [], PushedFilters: [], ReadSchema: struct<a:bigint,b:bigint> +- Sort [coalesce(c#18L, 0) ASC NULLS FIRST, isnull(c#18L) ASC NULLS FIRST, coalesce(d#19L, 0) ASC NULLS FIRST, isnull(d#19L) ASC NULLS FIRST], false, 0 +- Exchange hashpartitioning(coalesce(c#18L, 0), isnull(c#18L), coalesce(d#19L, 0), isnull(d#19L), 5), ENSURE_REQUIREMENTS, [id=Kyligence#68] +- HashAggregate(keys=[c#18L, d#19L], functions=[]) +- Exchange hashpartitioning(c#18L, d#19L, 5), ENSURE_REQUIREMENTS, [id=Kyligence#63] +- HashAggregate(keys=[c#18L, d#19L], functions=[]) +- FileScan parquet default.t2[c#18L,d#19L] Batched: true, DataFilters: [], Format: Parquet, Location: InMemoryFileIndex[file:/Users/yumwang/spark/spark-warehouse/org.apache.spark.sql.Data..., PartitionFilters: [], PushedFilters: [], ReadSchema: struct<c:bigint,d:bigint> ``` ### Why are the changes needed? 1. Pushdown LeftSemi/LeftAnti over Aggregate will affect performance. 2. It will remove user added DISTINCT operator, e.g.: [q38](https://github.com/apache/spark/blob/master/sql/core/src/test/resources/tpcds/q38.sql), [q87](https://github.com/apache/spark/blob/master/sql/core/src/test/resources/tpcds/q87.sql). ### Does this PR introduce _any_ user-facing change? No. ### How was this patch tested? Unit test and benchmark test. SQL | Before this PR(Seconds) | After this PR(Seconds) -- | -- | -- q14a | 660 | 594 q14b | 660 | 600 q38 | 55 | 29 q87 | 66 | 35 Before this pr: ![image](https://user-images.githubusercontent.com/5399861/104452849-8789fc80-55de-11eb-88da-44059899f9a9.png) After this pr: ![image](https://user-images.githubusercontent.com/5399861/104452899-9a043600-55de-11eb-9286-d8f3a23ca3b8.png) Closes apache#31145 from wangyum/SPARK-34081. Authored-by: Yuming Wang <[email protected]> Signed-off-by: Wenchen Fan <[email protected]>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
https://github.com/Kyligence/KAP/issues/15855
The text was updated successfully, but these errors were encountered: