-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_chitchat_fredt5.py
64 lines (48 loc) · 2.33 KB
/
run_chitchat_fredt5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import os
import argparse
import torch
import transformers
from transformers import T5Config
if __name__ == '__main__':
proj_dir = os.path.expanduser('~/polygon/chatbot')
parser = argparse.ArgumentParser(description='Консольная интерактивная проверка модели читчата')
parser.add_argument('--model', type=str, default=os.path.join(proj_dir, 'tmp', 'fredt5_chitchat'), help='Путь к каталогу с файлами модели')
args = parser.parse_args()
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
model_dir = args.model
print(f'Loading model "{model_dir}"...')
t5_config = T5Config.from_pretrained(model_dir)
if 'FRED-T5' in t5_config.name_or_path:
t5_tokenizer = transformers.GPT2Tokenizer.from_pretrained(model_dir)
else:
t5_tokenizer = transformers.AutoTokenizer.from_pretrained(model_dir)
t5_model = transformers.T5ForConditionalGeneration.from_pretrained(model_dir)
t5_model.to(device)
t5_model.eval()
while True:
print('-'*80)
dialog = []
while True:
msg = input('H:> ').strip()
if len(msg) == 0:
break
msg = msg[0].upper() + msg[1:]
dialog.append('человек: ' + msg)
#prompt = '<LM>'+'\n'.join(dialog)
prompt = '<SC1>' + '\n'.join(dialog) + '\nчатбот: <extra_id_0>'
input_ids = t5_tokenizer(prompt, return_tensors='pt').input_ids
out_ids = t5_model.generate(input_ids=input_ids.to(device),
max_length=200,
eos_token_id=t5_tokenizer.eos_token_id,
early_stopping=True,
do_sample=True,
temperature=1.0,
top_k=0,
top_p=0.85)
t5_output = t5_tokenizer.decode(out_ids[0][1:])
if '</s>' in t5_output:
t5_output = t5_output[:t5_output.find('</s>')].strip()
t5_output = t5_output.replace('<extra_id_0>', '').strip()
print('B:> {}'.format(t5_output))
dialog.append('чатбот: ' + t5_output)