forked from YyzHarry/multi-domain-imbalance
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sweep.py
254 lines (226 loc) · 10.5 KB
/
sweep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import argparse
import copy
import os
import shutil
import numpy as np
import tqdm
import shlex
from mdlt import command_launchers
from mdlt.dataset import datasets
from mdlt.learning import algorithms, model_selection
from mdlt.utils import reporting
class Job:
NOT_LAUNCHED = 'Not launched'
INCOMPLETE = 'Incomplete'
DONE = 'Done'
def __init__(self, train_args):
self.output_dir = os.path.join(
args.output_dir,
args.output_folder_name,
f"{train_args['dataset']}_{train_args['algorithm']}"
f"_hparams{train_args['hparams_seed']}_seed{train_args['seed']}"
)
if 'selected_envs' in train_args:
self.output_dir += f"_env{str(train_args['selected_envs']).replace(' ', '')[1:-1]}"
self.train_args = copy.deepcopy(train_args)
command = ['python', '-m', 'mdlt.train']
for k, v in sorted(self.train_args.items()):
if isinstance(v, list):
v = ' '.join([str(v_) for v_ in v])
elif isinstance(v, str):
v = shlex.quote(v)
command.append(f'--{k} {v}')
self.command_str = ' '.join(command)
if os.path.exists(os.path.join(self.output_dir, 'done')):
self.state = Job.DONE
elif os.path.exists(self.output_dir):
self.state = Job.INCOMPLETE
else:
self.state = Job.NOT_LAUNCHED
def __str__(self):
job_info = (self.train_args['dataset'],
self.train_args['algorithm'],
self.train_args['hparams_seed'],
self.train_args['seed'])
return f'{self.state}: {self.output_dir} {job_info}'
@staticmethod
def launch(jobs, launcher_fn):
print('Launching...')
jobs = jobs.copy()
np.random.shuffle(jobs)
print('Making job directories:')
for job in tqdm.tqdm(jobs, leave=False):
os.makedirs(job.output_dir, exist_ok=True)
commands = [job.command_str for job in jobs]
launcher_fn(commands)
print(f'Launched {len(jobs)} jobs!')
@staticmethod
def delete(jobs):
print('Deleting...')
for job in jobs:
shutil.rmtree(job.output_dir)
print(f'Deleted {len(jobs)} jobs!')
def load_best_hparams(all_records, dataset, algo):
records = all_records.filter(
lambda r: r['dataset'] == dataset and r['algorithm'] == algo)
selection_method = model_selection.ValMeanAccSelectionMethod
assert len(records) == 1
group = records[0]
sorted_hparams = selection_method.hparams_accs(group['records'])
# 'sorted_hparams' sorted by 'val_acc'
run_acc, best_hparam_records = sorted_hparams[0]
for r in best_hparam_records:
assert(r['hparams'] == best_hparam_records[0]['hparams'])
output_dir = best_hparam_records.select('args.output_dir').unique()
assert len(output_dir) == 1
hp_seed = output_dir[0][output_dir[0].find('hparams') + len('hparams'):output_dir[0].find('_seed')]
return int(hp_seed)
def make_args_list(n_trials, dataset_names, algorithms, n_hparams_from, n_hparams, steps, stage1_folder, stage1_algo,
output_folder_name, single_train_env, hparams):
args_list = []
for trial_seed in range(n_trials):
for dataset in dataset_names:
for algorithm in algorithms:
if single_train_env:
all_train_envs = [[i] for i in range(datasets.num_environments(dataset))]
for train_env in all_train_envs:
for hparams_seed in range(n_hparams_from, n_hparams):
train_args = {}
train_args['dataset'] = dataset
train_args['algorithm'] = algorithm
train_args['output_folder_name'] = output_folder_name
train_args['hparams_seed'] = hparams_seed
train_args['seed'] = trial_seed
train_args['selected_envs'] = train_env
if stage1_folder is not None:
train_args['stage1_folder'] = stage1_folder
if stage1_algo is not None:
train_args['stage1_algo'] = stage1_algo
if steps is not None:
train_args['steps'] = steps
if hparams is not None:
train_args['hparams'] = hparams
args_list.append(train_args)
else:
for hparams_seed in range(n_hparams_from, n_hparams):
train_args = {}
train_args['dataset'] = dataset
train_args['algorithm'] = algorithm
train_args['output_folder_name'] = output_folder_name
train_args['hparams_seed'] = hparams_seed
train_args['seed'] = trial_seed
if stage1_folder is not None:
train_args['stage1_folder'] = stage1_folder
if stage1_algo is not None:
train_args['stage1_algo'] = stage1_algo
if steps is not None:
train_args['steps'] = steps
if hparams is not None:
train_args['hparams'] = hparams
args_list.append(train_args)
return args_list
def make_best_hp_args_list(n_trials, dataset_names, algorithms, steps, stage1_folder, stage1_algo, output_folder_name, hparams):
all_records = reporting.load_records(os.path.join(args.output_dir, args.input_folder))
all_records = reporting.get_grouped_records(all_records)
args_list = []
for dataset in dataset_names:
for algorithm in algorithms:
hparams_seed = load_best_hparams(all_records, dataset, algorithm)
for trial_seed in range(n_trials):
train_args = {}
train_args['dataset'] = dataset
train_args['algorithm'] = algorithm
train_args['output_folder_name'] = output_folder_name
train_args['hparams_seed'] = hparams_seed
train_args['seed'] = trial_seed
if stage1_folder is not None:
train_args['stage1_folder'] = stage1_folder
if stage1_algo is not None:
train_args['stage1_algo'] = stage1_algo
if steps is not None:
train_args['steps'] = steps
if hparams is not None:
train_args['hparams'] = hparams
args_list.append(train_args)
return args_list
def ask_for_confirmation():
response = input('Are you sure? (y/n) ')
if not response.lower().strip()[:1] == "y":
print('Nevermind!')
exit(0)
DATASETS = [d for d in datasets.DATASETS if "Debug" not in d and "Imbalance" not in d]
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Run a sweep')
# pass through commands / change here each run
parser.add_argument('command', choices=['launch', 'delete_incomplete', 'delete_all'])
parser.add_argument('--command_launcher', type=str, default='multi_gpu')
parser.add_argument('--output_folder_name', type=str, required=True)
parser.add_argument('--dataset', nargs='+', type=str, default=DATASETS)
parser.add_argument('--algorithms', nargs='+', type=str, default=algorithms.ALGORITHMS)
# sweep with best hparam, different seeds
parser.add_argument('--best_hp', action='store_true')
parser.add_argument('--input_folder', type=str, default='vanilla')
parser.add_argument('--n_trials', type=int, default=3)
# optional usage
parser.add_argument('--single_train_env', action='store_true')
parser.add_argument('--stage1_folder', type=str, default=None)
parser.add_argument('--stage1_algo', type=str, default=None)
# default fixed
parser.add_argument('--n_hparams_from', type=int, default=0)
parser.add_argument('--n_hparams', type=int, default=16)
parser.add_argument('--data_dir', type=str, default="./data")
parser.add_argument('--output_dir', type=str, default="./output")
parser.add_argument('--steps', type=int, default=None)
parser.add_argument('--hparams', type=str, default=None)
parser.add_argument('--skip_confirmation', action='store_true')
args = parser.parse_args()
args_list = make_args_list(
n_trials=1, # args.n_trials
dataset_names=args.dataset,
algorithms=args.algorithms,
n_hparams_from=args.n_hparams_from,
n_hparams=args.n_hparams,
steps=args.steps,
stage1_folder=args.stage1_folder,
stage1_algo=args.stage1_algo,
output_folder_name=args.output_folder_name,
single_train_env=args.single_train_env,
hparams=args.hparams
) if not args.best_hp else make_best_hp_args_list(
n_trials=args.n_trials,
dataset_names=args.dataset,
algorithms=args.algorithms,
steps=args.steps,
stage1_folder=args.stage1_folder,
stage1_algo=args.stage1_algo,
output_folder_name=args.output_folder_name,
hparams=args.hparams
)
jobs = [Job(train_args) for train_args in args_list]
for job in jobs:
print(job)
print("{} jobs: {} done, {} incomplete, {} not launched.".format(
len(jobs),
len([j for j in jobs if j.state == Job.DONE]),
len([j for j in jobs if j.state == Job.INCOMPLETE]),
len([j for j in jobs if j.state == Job.NOT_LAUNCHED]))
)
if args.command == 'launch':
to_launch = [j for j in jobs if j.state == Job.NOT_LAUNCHED]
print(f'About to launch {len(to_launch)} jobs.')
if not args.skip_confirmation:
ask_for_confirmation()
launcher_fn = command_launchers.REGISTRY[args.command_launcher]
Job.launch(to_launch, launcher_fn)
elif args.command == 'delete_incomplete':
to_delete = [j for j in jobs if j.state == Job.INCOMPLETE]
print(f'About to delete {len(to_delete)} jobs.')
if not args.skip_confirmation:
ask_for_confirmation()
Job.delete(to_delete)
elif args.command == 'delete_all':
to_delete = [j for j in jobs if j.state == Job.INCOMPLETE or j.state == Job.DONE]
print(f'About to delete {len(to_delete)} jobs.')
if not args.skip_confirmation:
ask_for_confirmation()
Job.delete(to_delete)