You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
==>>[2019-10-31 09:19:46] [Epoch=001/020] Stage 1, [Need: 05:18:16]
/data/qli/Person_Re-Identification/MAR/utils.py:165: RuntimeWarning: invalid value encountered in greater
is_positive = p_agree[similar_idx] > self.threshold.item()
Iter: [000/1348] Freq 96.7 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:19:48]
Iter: [100/1348] Freq 213.6 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:21:14]
Iter: [200/1348] Freq 211.7 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:22:41]
Iter: [300/1348] Freq 211.6 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:24:08]
Iter: [400/1348] Freq 211.8 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:25:35]
Iter: [500/1348] Freq 211.5 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:27:02]
Iter: [600/1348] Freq 211.2 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:28:30]
Iter: [700/1348] Freq 211.0 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:29:58]
Iter: [800/1348] Freq 211.2 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:31:24]
Iter: [900/1348] Freq 211.1 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:32:52]
Iter: [1000/1348] Freq 211.0 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:34:19]
Iter: [1100/1348] Freq 211.2 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:35:46]
Iter: [1200/1348] Freq 210.9 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:37:14]
Iter: [1300/1348] Freq 210.8 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:38:42] Train loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan Test r1 0.000 r5 0.119 r10 0.208 MAP 5.396
==>>[2019-10-31 09:42:20] [Epoch=002/020] Stage 1, [Need: 05:56:28]
Iter: [000/1348] Freq 93.9 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:42:22]
Iter: [100/1348] Freq 214.4 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:43:47]
Iter: [200/1348] Freq 212.8 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:45:14]
Iter: [300/1348] Freq 212.4 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:46:41]
Iter: [400/1348] Freq 212.3 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:48:08]
Iter: [500/1348] Freq 212.1 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:49:35]
Anybody face this problem, please tell me how to solve this problem?
The text was updated successfully, but these errors were encountered:
Sorry for the late reply. Do you use the default setting? Actually I have seen a similar issue before and I tried to reproduce it, but I failed. Could you use the default setting to see if any problem?
Iter: [600/1348] Freq 248.2 loss_source 2.152 loss_st 0.781 loss_ml 3458.865 loss_target 0.000 loss_total 116.117 [2019-10-31 09:07:41]
Iter: [700/1348] Freq 248.9 loss_source 2.127 loss_st 0.782 loss_ml 3387.675 loss_target 0.000 loss_total 114.824 [2019-10-31 09:08:53]
Iter: [800/1348] Freq 250.2 loss_source 2.104 loss_st 0.784 loss_ml 3329.171 loss_target 0.000 loss_total 113.704 [2019-10-31 09:10:04]
Iter: [900/1348] Freq 250.9 loss_source 2.078 loss_st 0.784 loss_ml 3280.807 loss_target 0.000 loss_total 112.419 [2019-10-31 09:11:16]
Iter: [1000/1348] Freq 251.3 loss_source 2.060 loss_st 0.786 loss_ml 3250.651 loss_target 0.000 loss_total 111.489 [2019-10-31 09:12:28]
Iter: [1100/1348] Freq 252.0 loss_source 2.040 loss_st 0.786 loss_ml 3223.414 loss_target 0.000 loss_total 110.485 [2019-10-31 09:13:39]
Iter: [1200/1348] Freq 252.7 loss_source nan loss_st nan loss_ml nan loss_target 0.000 loss_total nan [2019-10-31 09:14:49]
Iter: [1300/1348] Freq 253.6 loss_source nan loss_st nan loss_ml nan loss_target 0.000 loss_total nan [2019-10-31 09:15:59]
Train loss_source nan loss_st nan loss_ml nan loss_target 0.000 loss_total nan
Test r1 0.000 r5 0.119 r10 0.208 MAP 5.396
==>>[2019-10-31 09:19:46] [Epoch=001/020] Stage 1, [Need: 05:18:16]
/data/qli/Person_Re-Identification/MAR/utils.py:165: RuntimeWarning: invalid value encountered in greater
is_positive = p_agree[similar_idx] > self.threshold.item()
Iter: [000/1348] Freq 96.7 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:19:48]
Iter: [100/1348] Freq 213.6 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:21:14]
Iter: [200/1348] Freq 211.7 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:22:41]
Iter: [300/1348] Freq 211.6 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:24:08]
Iter: [400/1348] Freq 211.8 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:25:35]
Iter: [500/1348] Freq 211.5 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:27:02]
Iter: [600/1348] Freq 211.2 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:28:30]
Iter: [700/1348] Freq 211.0 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:29:58]
Iter: [800/1348] Freq 211.2 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:31:24]
Iter: [900/1348] Freq 211.1 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:32:52]
Iter: [1000/1348] Freq 211.0 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:34:19]
Iter: [1100/1348] Freq 211.2 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:35:46]
Iter: [1200/1348] Freq 210.9 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:37:14]
Iter: [1300/1348] Freq 210.8 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:38:42]
Train loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan
Test r1 0.000 r5 0.119 r10 0.208 MAP 5.396
==>>[2019-10-31 09:42:20] [Epoch=002/020] Stage 1, [Need: 05:56:28]
Iter: [000/1348] Freq 93.9 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:42:22]
Iter: [100/1348] Freq 214.4 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:43:47]
Iter: [200/1348] Freq 212.8 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:45:14]
Iter: [300/1348] Freq 212.4 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:46:41]
Iter: [400/1348] Freq 212.3 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:48:08]
Iter: [500/1348] Freq 212.1 loss_source nan loss_st nan loss_ml nan loss_target nan loss_total nan [2019-10-31 09:49:35]
Anybody face this problem, please tell me how to solve this problem?
The text was updated successfully, but these errors were encountered: