forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathload_derivatives.py
394 lines (328 loc) · 15.6 KB
/
load_derivatives.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# Parses derivatives.yaml into autograd functions
#
# Each autograd function is represented by dictionary containing a list of
# derivatives (also a dictionary). See `create_autograd_function` and
# `create_derivative` for the keys.
from collections import defaultdict
import copy
import re
import yaml
from .utils import YamlLoader
from .utils import IDENT_REGEX, split_name_params
def load_derivatives(path, declarations):
with open(path, 'r') as f:
definitions = yaml.load(f, Loader=YamlLoader)
declarations_by_signature = defaultdict(list)
declarations_by_schema = dict()
for declaration in declarations:
declarations_by_signature[get_signature(declaration)].append(declaration)
if declaration['schema_string']:
assert declaration['schema_string'] not in declarations_by_schema
declarations_by_schema[declaration['schema_string']] = declaration
differentiability_infos = [
process_definition(defn, declarations_by_signature, declarations_by_schema)
for defn in definitions]
autograd_functions = [d['autograd_fn'] for d in differentiability_infos if d['autograd_fn'] is not None]
ensure_unique_names(autograd_functions)
match_declarations_with_differentiability_info(declarations, differentiability_infos)
return autograd_functions
def create_differentiability_info(signature, non_differentiable_arg_names,
output_differentiability,
autograd_fn):
return {
'signature': signature,
'non_differentiable_arg_names': non_differentiable_arg_names,
'output_differentiability': output_differentiability,
'autograd_fn': autograd_fn,
}
# How do you feel about pasting declaration inside autograd function...
def create_autograd_function(name, derivatives, args_with_derivatives,
declaration):
op = to_camel_case(name) + 'Backward'
op = op.replace('ForwardBackward', 'Backward')
return {
'name': name,
'op': op,
'declaration': declaration,
'args_with_derivatives': args_with_derivatives,
'derivatives': derivatives,
'saved_inputs': all_saved_variables(derivatives, 'saved_inputs'),
'saved_outputs': all_saved_variables(derivatives, 'saved_outputs'),
}
def create_derivative(arguments, returns, name, formula, var_names):
def transform_return(r):
# In-place functions take in and return self. Call the modified version
# "output" so that it can be referred to in derivative definitions.
if r['name'] == 'self':
r = copy.deepcopy(r)
r['name'] = 'result'
return r
returns = [transform_return(r) for r in returns]
formula, saved_inputs = saved_variables(formula, arguments)
formula, saved_outputs = saved_variables(formula, returns)
# Check that the referenced derivatives in the formula are in bounds
for i in used_gradient_indices(formula):
if i >= len(returns):
raise RuntimeError(
"Out of bounds grads access: derivative formula for {} "
"used grads[{}], but the forward only returns {} outputs."
.format(name, i, len(returns)))
return {
'formula': formula,
'saved_inputs': saved_inputs,
'saved_outputs': saved_outputs,
'var_names': var_names,
}
def process_definition(defn, declarations_by_signature, declarations_by_schema):
"""Processes a single entry `defn` in derivatives.yaml"""
def canonical_declaration(declarations, name):
for declaration in declarations:
if declaration['name'] == name:
return declaration
# some functions only have in-place variants
assert name + '_' == declarations[0]['name']
return declarations[0]
def split_names(raw_names):
"""Given "foo, bar", return ["foo", "bar"]."""
return [x.strip() for x in raw_names.split(',')]
def lookup_pred(pred, xs):
"""Return the index of the first element of xs matching pred."""
return next((i, x) for i, x in enumerate(xs) if pred(x))
def check_grad_usage(defn_name, declaration, derivatives):
"""
Check for some subtle mistakes one might make when writing derivatives.
These mistakes will compile, but will be latent until a function is
used with double backwards.
"""
used_grad = 0
used_grads = 0
fully_implemented = True
used_grads_indices = []
for d in derivatives:
formula = d['formula']
used_grad += len(re.findall(IDENT_REGEX.format('grad'), formula))
used_grads += len(re.findall(IDENT_REGEX.format('grads'), formula))
fully_implemented = \
fully_implemented and \
not re.search(IDENT_REGEX.format('not_implemented'), formula)
used_grads_indices.extend(used_gradient_indices(formula))
assert used_grads >= len(used_grads_indices)
only_used_grads_indices = used_grads == len(used_grads_indices)
if used_grad and used_grads:
raise RuntimeError("Derivative definition of {} in derivatives.yaml illegally "
"mixes use of 'grad' and 'grads'. Consider replacing "
"occurrences of 'grad' with 'grads[0]'".format(defn_name))
if only_used_grads_indices and set(used_grads_indices) == {0}:
raise RuntimeError("Derivative definition of {} in derivatives.yaml solely "
"refers to 'grads[0]'. If the first output is indeed the "
"only differentiable output, replace 'grads[0]' with 'grad'; "
"otherwise, there is a likely error in your derivatives "
"declaration.".format(defn_name))
def set_up_derivatives(defn_name, defn, declaration):
# Determine the set of inputs which have derivatives
args_with_derivatives_set = set()
for raw_names in defn:
args_with_derivatives_set |= set(split_names(raw_names))
# Next, let us determine the list of inputs in order.
args_with_derivatives = []
for arg in declaration['arguments']:
if arg['name'] not in args_with_derivatives_set:
continue
args_with_derivatives.append(arg)
# Set up the derivative information
derivatives = []
non_differentiable_arg_names = []
for raw_names in sorted(defn.keys()):
formula = defn[raw_names]
names = split_names(raw_names)
derivative = create_derivative(declaration['arguments'], declaration['returns'],
declaration['name'], formula, names)
if formula.lower().strip() == 'non_differentiable':
assert not sum([type(var_name) == list
for var_name in derivative['var_names']]), \
"Variable names associated to a formula should be a flat list"
non_differentiable_arg_names += derivative['var_names']
else:
derivatives.append(derivative)
args_with_derivatives = list(filter(lambda x: x['name'] not in non_differentiable_arg_names,
args_with_derivatives))
# Test to see if the use of 'grads' makes sense.
check_grad_usage(defn_name, declaration, derivatives)
return derivatives, args_with_derivatives, non_differentiable_arg_names
def unzip(xs):
return zip(*xs)
# NB: Removes 'name' from defn dictionary
specification = defn.pop('name')
defn_name, params = split_name_params(specification)
# NB: Removes 'output_differentiability' from defn dictionary
# `None` means all differentiable.
output_differentiability = defn.pop('output_differentiability', None)
schema_declaration = declarations_by_schema.get('aten::' + specification)
if not schema_declaration:
avail = [k.replace('aten::', '') for k, v in declarations_by_schema.items()
if k.replace('aten::', '').startswith(defn_name + '(') and len(v) > 0]
raise RuntimeError('could not find ATen declaration for schema: {} '
'. Available signatures:\n{}'.format(specification, '\n'.join(avail)))
# now map this to the legacy schema; this isn't technically necessary, but we'd need some logic here
# to map in-place schemas to the out-of-place variants.
signature = get_signature(schema_declaration)
declarations = declarations_by_signature[signature]
if len(declarations) == 0:
avail = [k for k, v in declarations_by_signature.items()
if k.startswith(defn_name + '(') and len(v) > 0]
raise RuntimeError('could not find ATen declaration for legacy signature: {} '
'corresponding to schema {}. Please report a bug to PyTorch. '
'Available signatures: {}'.format(signature, specification, ', '.join(avail)))
canonical = canonical_declaration(declarations, defn_name)
if 'grad_input_mask' in (a['name'] for a in canonical['arguments']):
raise RuntimeError("Schema for {} has an argument named grad_input_mask, "
"but this name would be shadowed by our codegen. "
"Please use a different name in native_functions.yaml."
.format(defn_name))
derivatives, args_with_derivatives, non_differentiable_arg_names = set_up_derivatives(defn_name, defn, canonical)
autograd_fn = None
# only create an autograd function if we are actually going to calculate a derivative
if len(args_with_derivatives) > 0:
autograd_fn = create_autograd_function(defn_name, derivatives, args_with_derivatives,
canonical)
return create_differentiability_info(signature, non_differentiable_arg_names,
output_differentiability, autograd_fn)
def ensure_unique_names(autograd_functions):
# de-duplicate operation names
# you end up with something like:
# AddBackward0
# AddBackward1
# one for each overload
functions_by_name = defaultdict(list)
for func in autograd_functions:
functions_by_name[func['op']].append(func)
for op in functions_by_name.keys():
overloads = functions_by_name[op]
if len(overloads) > 1:
for i, func in enumerate(overloads):
func['op'] += str(i)
def get_signature(declaration, use_base_variant=False):
name = declaration['name']
arguments = declaration['arguments']
if use_base_variant:
if declaration['inplace']:
assert name.endswith('_')
name = name[:-1]
elif name.endswith('_out'):
name = name[:-4]
arguments = [arg for arg in arguments if not arg.get('output', False)]
simple_types = [arg['simple_type'] for arg in arguments]
return '{}({})'.format(name, ', '.join(simple_types))
GRAD_INDEX_REGEX = r'(?:^|\W)grads\[(\d+)\]'
def used_gradient_indices(formula):
"""Determine a list of gradient indices (the i in grads[i]) that
are used by the formula.
>>> used_gradient_indices("foo(grads[0], grads[1])")
[0, 1]
"""
return [int(i) for i in re.findall(GRAD_INDEX_REGEX, formula)]
def saved_variables(formula, args):
# find which arguments need to be saved
saved = []
REPLACEMENTS = [
# replace self.sizes() with self_sizes
(r'{}.sizes\(\)', {
'suffix': '_sizes',
'type': 'IntArrayRef',
}),
# replace zeros_like(self) with self_info
(r'zeros_like\({}\)', {
'suffix': '_info',
'type': 'TypeAndSize',
'expr': lambda name: name, # at save-time
'res': lambda name: name + '_info.zeros()', # at eval-time
}),
# replace self.size(2) with self_size_2
(r'{}.size\((\w+)\)', {
'suffix': lambda m: '_argsize_{}'.format(*m.groups()),
'type': 'int64_t',
}),
# replace self.numel() with self_numel
(r'{}.numel\(\)', {
'suffix': '_numel',
'type': 'int64_t',
}),
# replace to_args_sizes(self) with self_args_sizes
(r'to_args_sizes\({}\)', {
'suffix': '_args_sizes',
'type': 'std::vector<std::vector<int64_t>>',
}),
# replace TensorGeometry(self) with self_geometry
(r'TensorGeometry\({}\)', {
'suffix': '_geometry',
'type': 'TensorGeometry',
}),
(r'{}.scalar_type\(\)', {
'suffix': '_scalar_type',
'type': 'ScalarType',
}),
# replace self.dim() with self_dim
(r'{}.dim\(\)', {
'suffix': '_dim',
'type': 'int64_t',
}),
]
for arg in args:
if 'name' not in arg:
# some returned arguments do not have names
continue
name = arg['name']
# First search the formula for expressions which can be evaluated
# when the autograd Function is created to avoid saving variables
for regex, info in REPLACEMENTS:
def repl(m):
suffix = info['suffix']
suffix = suffix(m) if callable(suffix) else suffix
expr = info['expr'](name) if 'expr' in info else m.group(0)
saved.append({
'name': name + suffix,
'type': info['type'],
'expr': expr,
})
if 'res' in info:
return info['res'](name)
return name + suffix
formula = re.sub(regex.format(name), repl, formula)
# Find any variables which remain in the formula and save them
if re.search(IDENT_REGEX.format(name), formula):
arg = copy.deepcopy(arg)
arg['type'] = arg['type'].replace('const ', '').replace(' &', '')
saved.append(arg)
return formula, saved
def all_saved_variables(derivatives, key):
seen = set()
saved = []
for d in derivatives:
for saved_arg in d[key]:
if saved_arg['name'] in seen:
continue
seen.add(saved_arg['name'])
saved.append(saved_arg)
return saved
def to_camel_case(name):
return ''.join([p.title() for p in name.split('_')])
def match_declarations_with_differentiability_info(declarations, differentiability_infos):
"""Sets the "derivative" and "output_differentiability" key on declarations
to matching differentiability info
In-place functions will use the out-of-place derivative definition if there
is no in-place specific derivative.
"""
infos_by_signature = {f['signature']: f for f in differentiability_infos}
def find_info(declaration):
signature = get_signature(declaration)
if signature in infos_by_signature:
return infos_by_signature[signature]
# if there is no exact match look for the out-of-place signature.
# i.e mul() for mul_() or mul_out()
signature = get_signature(declaration, use_base_variant=True)
return infos_by_signature.get(signature)
for declaration in declarations:
info = find_info(declaration)
declaration['derivative'] = info['autograd_fn'] if info else None
declaration['non_differentiable_arg_names'] = info['non_differentiable_arg_names'] if info else []
declaration['output_differentiability'] = info['output_differentiability'] if info else None