forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMath.cuh
200 lines (180 loc) · 5.18 KB
/
Math.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#pragma once
#include <ATen/AccumulateType.h>
#include <c10/macros/Macros.h>
namespace at {
namespace native {
/*
* The following function was converted to CUDA form from code that comes
* with the following copyright notice. It has been released under the BSD license.
*
* Cephes Math Library Release 2.8: June, 2000
* Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
*/
template <typename scalar_t>
static inline __host__ __device__ scalar_t zeta(scalar_t _x, scalar_t _q) {
using accscalar_t = at::acc_type<scalar_t, true>;
static const accscalar_t MACHEP = 1.11022302462515654042E-16;
static accscalar_t A[] = {
12.0,
-720.0,
30240.0,
-1209600.0,
47900160.0,
-1.8924375803183791606e9, /*1.307674368e12/691*/
7.47242496e10,
-2.950130727918164224e12, /*1.067062284288e16/3617*/
1.1646782814350067249e14, /*5.109094217170944e18/43867*/
-4.5979787224074726105e15, /*8.028576626982912e20/174611*/
1.8152105401943546773e17, /*1.5511210043330985984e23/854513*/
-7.1661652561756670113e18 /*1.6938241367317436694528e27/236364091*/
};
accscalar_t x = static_cast<accscalar_t>(_x);
accscalar_t q = static_cast<accscalar_t>(_q);
int i = 0;
accscalar_t a, b, k, s, t, w;
if( x == 1.0 ) {
return static_cast<scalar_t>(INFINITY);
}
if( x < 1.0 ){
std::numeric_limits<scalar_t>::quiet_NaN();
}
bool q_is_integer = q == ::floor(q);
if(q <= 0.0) {
if(q_is_integer) {
return static_cast<scalar_t>(INFINITY);
}
else {
std::numeric_limits<scalar_t>::quiet_NaN();
}
}
s = ::pow(q, -x);
a = q;
i = 0;
b = 0.0;
while((i < 9) || (a <= 9.0)){
i += 1;
a += 1.0;
b = ::pow( a, -x );
s += b;
if((-MACHEP < (b / s)) && ((b / s) < MACHEP)) {
return static_cast<scalar_t>(s);
}
};
w = a;
s += b * w / (x - 1.0);
s -= 0.5 * b;
a = 1.0;
k = 0.0;
for(int i=0; i < 12; i++) {
a *= x + k;
b /= w;
t = a * b / A[i];
s = s + t;
t = t / s;
if(t < 0){
t = -t;
}
if((-MACHEP <t) && (t < MACHEP)){
return static_cast<scalar_t>(s);
}
k += 1.0;
a *= x + k;
b /= w;
k += 1.0;
}
return static_cast<scalar_t>(s);
}
/*
* The following function was converted to CUDA form from code that comes
* with the following copyright notice. It has been released under the BSD license.
*
* Cephes Math Library Release 2.8: June, 2000
* Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
*/
template <typename scalar_t>
static inline __host__ __device__ scalar_t calc_digamma(scalar_t in) {
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
static const double PI_f64 = 3.14159265358979323846;
const accscalar_t PSI_10 = 2.25175258906672110764;
const accscalar_t A[] = {
8.33333333333333333333E-2,
-2.10927960927960927961E-2,
7.57575757575757575758E-3,
-4.16666666666666666667E-3,
3.96825396825396825397E-3,
-8.33333333333333333333E-3,
8.33333333333333333333E-2,
};
accscalar_t x = static_cast<accscalar_t>(in);
if (x == 0) {
return static_cast<scalar_t>(INFINITY);
}
bool x_is_integer = x == ::floor(x);
accscalar_t result = 0;
if (x < 0) {
if (x_is_integer) {
return static_cast<scalar_t>(INFINITY);
}
// Rounding errors in tan's input can really affect the output
// for extreme values, so we always perform this computation in double.
result = static_cast<accscalar_t>(- PI_f64 / ::tan(PI_f64 * static_cast<double>(x)));
x = 1 - x;
}
while (x < 10) {
result -= 1 / x;
x += 1;
}
if (x == 10) {
return static_cast<scalar_t>(result + PSI_10);
}
accscalar_t y = 0;
if (x < 1.0e17) {
accscalar_t z = 1 / (x * x);
accscalar_t polevl_result = 0;
for (int i = 0; i <= 6; i++) {
polevl_result = polevl_result * z + A[i];
}
y = z * polevl_result;
}
return static_cast<scalar_t>(::log(x) - (static_cast<accscalar_t>(0.5) / x) - y + result);
}
template <typename scalar_t>
static inline __host__ __device__ scalar_t calc_trigamma(scalar_t in) {
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
const accscalar_t PI = 3.14159265358979323846;
accscalar_t x = static_cast<accscalar_t>(in);
accscalar_t sign = +1;
accscalar_t result = 0;
if (x < 0.5f) {
sign = -1;
accscalar_t sin_pi_x = ::sin(PI * x);
result -= (PI * PI) / (sin_pi_x * sin_pi_x);
x = 1 - x;
}
for (int i = 0; i < 6; ++i) {
result += 1 / (x * x);
x += 1;
}
const accscalar_t one = static_cast<scalar_t>(1);
const accscalar_t ixx = 1 / (x*x);
result += (1 + 1 / (2*x) + ixx * (one/6 - ixx * (one/30 - ixx * (one/42)))) / x;
return static_cast<scalar_t>(sign * result);
}
template <typename scalar_t>
static inline __host__ __device__ scalar_t calc_polygamma(int n, scalar_t x) {
// already blocked if n <= 1
return ((n % 2) ? 1.0 : -1.0) * ::exp(::lgamma(static_cast<scalar_t>(n) + 1.0)) * zeta(static_cast<scalar_t>(n + 1), x);
}
template <typename scalar_t>
static inline C10_HOST_DEVICE scalar_t calc_gcd(scalar_t a_in, scalar_t b_in) {
scalar_t a = ::abs(a_in);
scalar_t b = ::abs(b_in);
while (a != 0) {
scalar_t c = a;
a = b % a;
b = c;
}
return b;
}
}
}