This is a tutorial to guide you to setup an ubuntu machine. You are welcome!
sudo apt-get upgrade sudo apt-get update sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt install nvidia-410
reboot
nvidia-smi
- Download Linux/x86_64/Ubuntu/16.04/runfile(local): https://developer.nvidia.com/cuda-10.0-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1604&target_type=runfilelocal
sudo sh cuda_10.0.130_410.48_linux.run
Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 384.81? n
Install the CUDA 10.0 Toolkit? y
Do you want to install a symbolic link at /usr/local/cuda? y
Install the CUDA 10.0 Samples? y
cd /usr/local/cuda/samples
sudo make -k
cd /usr/local/cuda/samples/1_Utilities/deviceQuery
./deviceQuery
Download the following:
- cuDNN Runtime Library for Ubuntu16.04 (Deb)
- cuDNN Developer Library for Ubuntu16.04 (Deb)
- cuDNN Code Samples and User Guide for Ubuntu16.04 (Deb)
- sudo dpkg -i libcudnn7_7.4.2.24-1+cuda10.0_amd64.deb
- sudo dpkg -i libcudnn7-dev_7.4.2.24-1+cuda10.0_amd64.deb
- sudo dpkg -i libcudnn7-doc_7.4.2.24-1+cuda10.0_amd64.deb
The add those to ~/.bashrc
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64:$LD_LIBRARY_PATH
export PATH=/usr/local/cuda-10.0/bin:$PATH
source ~/.bashrc
cd Desktop/cudnn_samples_v7/mnistCUDNN/
make clean && make
./mnistCUDNN
source ~/.bashrc
conda config --set auto_activate_base False
conda create -n py3 python==3.7
conda activate py3
pip install tensorflow-gpu==1.14
python
import tensorflow as tf
tf.test.is_gpu_available(
cuda_only=False, min_cuda_compute_capability=None
)
~> You shall see True