-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrover_utils.py
339 lines (248 loc) · 10.3 KB
/
rover_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#from itertools import izip
import itertools
import numpy as np
import scipy.interpolate as si
class Trajectory:
def __init__(self):
pass
def set_params(self, start, goal, params):
raise NotImplemented
def get_points(self, t):
raise NotImplemented
@property
def param_size(self):
raise NotImplemented
class PointBSpline(Trajectory):
"""
dim : number of dimensions of the state space
num_points : number of internal points used to represent the trajectory.
Note, internal points are not necessarily on the trajectory.
"""
def __init__(self, dim, num_points):
self.tck = None
self.d = dim
self.npoints = num_points
"""
Set fit the parameters of the spline from a set of points. If values are given for start or goal,
the start or endpoint of the trajectory will be forces on those points, respectively.
"""
def set_params(self, params, start=None, goal=None):
points = params.reshape((-1, self.d)).T
if start is not None:
points = np.hstack((start[:, None], points))
if goal is not None:
points = np.hstack((points, goal[:, None]))
self.tck, u = si.splprep(points, k=3)
if start is not None:
for a, sv in zip(self.tck[1], start):
a[0] = sv
if goal is not None:
for a, gv in zip(self.tck[1], goal):
a[-1] = gv
def get_points(self, t):
assert self.tck is not None, "Parameters have to be set with set_params() before points can be queried."
return np.vstack(si.splev(t, self.tck)).T
@property
def param_size(self):
return self.d * self.npoints
def simple_rbf(x, point):
return (1 - np.exp(-np.sum(((x - point) / 0.25) ** 2)))
class RoverDomain:
"""
Rover domain defined on R^d
cost_fn : vectorized function giving a scalar cost to states
start : a start state for the rover
goal : a goal state
traj : a parameterized trajectory object offering an interface
to interpolate point on the trajectory
s_range : the min and max of the state with s_range[0] in R^d are
the mins and s_range[1] in R^d are the maxs
"""
def __init__(self, cost_fn,
start,
goal,
traj,
s_range,
start_miss_cost=None,
goal_miss_cost=None,
force_start=True,
force_goal=True,
only_add_start_goal=True,
rnd_stream=None):
self.cost_fn = cost_fn
self.start = start
self.goal = goal
self.traj = traj
self.s_range = s_range
self.rnd_stream = rnd_stream
self.force_start = force_start
self.force_goal = force_goal
self.goal_miss_cost = goal_miss_cost
self.start_miss_cost = start_miss_cost
if self.start_miss_cost is None:
self.start_miss_cost = simple_rbf
if self.goal_miss_cost is None:
self.goal_miss_cost = simple_rbf
if self.rnd_stream is None:
self.rnd_stream = np.random.RandomState(np.random.randint(0, 2 ** 32 - 1))
# return the negative cost which need to be optimized
def __call__(self, params, n_samples=1000):
self.set_params(params)
return -self.estimate_cost(n_samples=n_samples)
def set_params(self, params):
self.traj.set_params(params + self.rnd_stream.normal(0, 1e-4, params.shape),
self.start if self.force_start else None,
self.goal if self.force_goal else None)
def estimate_cost(self, n_samples=1000):
# get points on the trajectory
points = self.traj.get_points(np.linspace(0, 1.0, n_samples, endpoint=True))
# compute cost at each point
costs = self.cost_fn(points)
# estimate (trapezoidal) the integral of the cost along traj
avg_cost = 0.5 * (costs[:-1] + costs[1:])
l = np.linalg.norm(points[1:] - points[:-1], axis=1)
total_cost = np.sum(l * avg_cost)
if not self.force_start:
total_cost += self.start_miss_cost(points[0], self.start)
if not self.force_goal:
total_cost += self.goal_miss_cost(points[-1], self.goal)
return total_cost
@property
def input_size(self):
return self.traj.param_size
class AABoxes:
def __init__(self, lows, highs):
self.l = lows
self.h = highs
def contains(self, X):
if X.ndim == 1:
X = X[None, :]
lX = self.l.T[None, :, :] <= X[:, :, None]
hX = self.h.T[None, :, :] > X[:, :, None]
return (lX.all(axis=1) & hX.all(axis=1))
class NegGeom:
def __init__(self, geometry):
self.geom = geometry
def contains(self, X):
return ~self.geom.contains(X)
class UnionGeom:
def __init__(self, geometries):
self.geoms = geometries
def contains(self, X):
return np.any(np.hstack([g.contains(X) for g in self.geoms]), axis=1, keepdims=True)
class ConstObstacleCost:
def __init__(self, geometry, cost):
self.geom = geometry
self.c = cost
def __call__(self, X):
return self.c * self.geom.contains(X)
class ConstCost:
def __init__(self, cost):
self.c = cost
def __call__(self, X):
if X.ndim == 1:
X = X[None, :]
return np.ones((X.shape[0], 1)) * self.c
class AdditiveCosts:
def __init__(self, fns):
self.fns = fns
def __call__(self, X):
return np.sum(np.hstack([f(X) for f in self.fns]), axis=1)
class GMCost:
def __init__(self, centers, sigmas, weights=None):
self.c = centers
self.s = sigmas
if self.s.ndim == 1:
self.s = self.s[:, None]
self.w = weights
if weights is None:
self.w = np.ones(centers.shape[0])
def __call__(self, X):
if X.ndim == 1:
X = X[None, :]
return np.exp(-np.sum(((X[:, :, None] - self.c.T[None, :, :]) / self.s.T[None, :, :]) ** 2, axis=1)).dot(self.w)
def plot_2d_rover(roverdomain, ngrid_points=100, ntraj_points=100, colormap='RdBu', draw_colorbar=False):
import matplotlib.pyplot as plt
# get a grid of points over the state space
points = [np.linspace(mi, ma, ngrid_points, endpoint=True) for mi, ma in zip(*roverdomain.s_range)]
grid_points = np.meshgrid(*points)
points = np.hstack([g.reshape((-1, 1)) for g in grid_points])
# compute the cost at each point on the grid
costs = roverdomain.cost_fn(points)
# get the cost of the current trajectory
traj_cost = roverdomain.estimate_cost()
# get points on the current trajectory
traj_points = roverdomain.traj.get_points(np.linspace(0., 1.0, ntraj_points, endpoint=True))
# set title to be the total cost
plt.title('traj cost: {0}'.format(traj_cost))
print('traj cost: {0}'.format(traj_cost))
# plot cost function
cmesh = plt.pcolormesh(grid_points[0], grid_points[1], costs.reshape((ngrid_points, -1)), cmap=colormap)
if draw_colorbar:
plt.gcf().colorbar(cmesh)
# plot traj
plt.plot(traj_points[:, 0], traj_points[:, 1], 'g')
# plot start and goal
plt.plot([roverdomain.start[0], roverdomain.goal[0]], (roverdomain.start[1], roverdomain.goal[1]), 'ok')
return cmesh
def generate_verts(rectangles):
poly3d = []
all_faces = []
vertices = []
for l, h in zip(rectangles.l, rectangles.h):
verts = [[l[0], l[1], l[2]], [l[0], h[1], l[2]], [h[0], h[1], l[2]], [h[0], l[1], l[2]],
[l[0], l[1], h[2]], [l[0], h[1], h[2]], [h[0], h[1], h[2]], [h[0], l[1], h[2]]]
faces = [[0, 1, 2, 3], [0, 3, 7, 4], [3, 2, 6, 7], [7, 6, 5, 4], [1, 5, 6, 2], [0, 4, 5, 1]]
vert_ind = [[0, 1, 2], [0, 2, 3], [0, 3, 4], [4, 3, 7], [7, 3, 2], [2, 6, 7],
[7, 5, 4], [7, 6, 5], [2, 5, 6], [2, 1, 5], [0, 1, 4], [1, 4, 5]]
plist = [[verts[vert_ind[ix][iy]] for iy in range(len(vert_ind[0]))] for ix in range(len(vert_ind))]
faces = [[verts[faces[ix][iy]] for iy in range(len(faces[0]))] for ix in range(len(faces))]
poly3d = poly3d + plist
vertices = vertices + verts
all_faces = all_faces + faces
return poly3d, vertices, all_faces
def plot_3d_forest_rover(roverdomain, rectangles, ntraj_points=100):
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection
# get the cost of the current trajectory
traj_cost = roverdomain.estimate_cost()
# get points on the current trajectory
traj_points = roverdomain.traj.get_points(np.linspace(0., 1.0, ntraj_points, endpoint=True))
# convert the rectangles into lists of vertices for matplotlib
poly3d, verts, faces = generate_verts(rectangles)
ax = plt.gcf().add_subplot(111, projection='3d')
# plot start and goal
ax.scatter((roverdomain.start[0], roverdomain.goal[0]),
(roverdomain.start[1], roverdomain.goal[1]),
(roverdomain.start[2], roverdomain.goal[2]), c='k')
# plot traj
seg = (zip(traj_points[:-1, :], traj_points[1:, :]))
ax.add_collection3d(Line3DCollection(seg, colors=[(0, 1., 0, 1.)] * len(seg)))
# plot rectangles
ax.add_collection3d(Poly3DCollection(poly3d, facecolors=(0.7, 0.7, 0.7, 1.), linewidth=0.5))
# set limits of axis to be the same as domain
s_range = roverdomain.s_range
ax.set_xlim(s_range[0][0], s_range[1][0])
ax.set_ylim(s_range[0][1], s_range[1][1])
ax.set_zlim(s_range[0][2], s_range[1][2])
def main():
import matplotlib.pyplot as plt
center = np.array([[1., 1.], [1., 0.0]])
sigma = np.ones(2) * 0.5
cost_fn = GMCost(center, sigma)
start = np.zeros(2) + 0.1
goal = np.ones(2) * 1 - 0.1
traj = PointBSpline(dim=2, num_points=3)
p = np.array([[0.1, 0.5], [0.3, 1.3], [0.75, 1.2]])
traj.set_params(start, goal, p.flatten())
domain = RoverDomain(cost_fn,
start=start,
goal=goal,
traj=traj,
s_range=np.array([[0., 0.], [2., 2.]]))
plt.figure()
plot_2d_rover(domain)
plt.plot(p[:, 0], p[:, 1], '*g')
plt.show()
if __name__ == "__main__":
main()