-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
290 lines (266 loc) · 11.4 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
from anchor_distributed import master_data, working_dir
import matplotlib.pyplot as plt
names = {"baseline": "Fixed Interval Sampling",
# "baseline-nf": "Baseline",
# "simple": "One-Round",
# "multi_strict": "Layered Strict",
"miniception": "Miniception",
"multi_lax": "Layered Polar Sets",
"multi_lax_incl": "(Test) Extra Rounds"}
target_seq = "hg38_all"
kvals = [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]
all_dat = dict()
edat = dict()
def plot_res_single_w(seq, wval, kvals, names, skip_energy = False,
subplot = False):
'''
Create plot for single value of w and varying k.
Pulls data from global variables all_dat and edat.
@param seq: name of sequence file.
@param wval: the value of w.
@param kvals: values of k, in increasing order.
@param names: dictionary of {item_name : display_name}.
@param skip_energy: if using 2/(w+1) as random density.
@param subplot: if this is a subplot.
'''
if not subplot:
plt.clf()
random_df = []
if not skip_energy:
for k in kvals:
sp, df = edat[(seq, wval, k)]
random_df.append(2 + (sp - df) * (wval + 1))
else:
random_df = [2] * len(kvals)
plt.plot(kvals, random_df, label="Random Minimizers", linestyle='solid', marker='o', markersize=4)
plt.plot(kvals, [1 + 1 / wval] * len(kvals), '--', label="Lower Bound")
plt.xticks(kvals)
for sname, slabel in names.items():
xs = []
ys = []
for k in kvals:
iname = (sname, seq, wval, k)
if iname in all_dat:
xs.append(k)
ys.append(all_dat[iname] * (wval + 1))
if len(xs) > 0:
plt.plot(xs, ys, linestyle='solid', marker='o', label=slabel, markersize=4)
# plt.plot(kvals, list(x * (wval + 1) for x in dfs), label=slabel)
plt.xlabel("Value of k (w={})".format(wval))
plt.ylabel("Density factor")
if not subplot:
plt.legend()
plt.savefig("figures/{}_{}.pdf".format(seq, wval))
def plot_energy_single_w(seq, wval, kvals, subplot = False):
'''
Create sequence energy plots, for a single value of w and varying k.
Pulls data from global variables edat.
@param seq: name of sequence file.
@param wval: value of w.
@param kvals: values of k, in increasing order.
@param subplot: if this is part of a subplot.
'''
if not subplot:
plt.clf()
sps = []
dfs = []
for k in kvals:
sp, df = edat[(seq, wval, k)]
sps.append(sp * (wval + 1))
dfs.append(0 - df * (wval + 1))
plt.plot(kvals, [0] * len(kvals), 'k', label="Zero")
plt.plot(kvals, sps, label="Energy Surplus", linestyle="solid",
marker='o', markersize=4)
plt.plot(kvals, dfs, label="Energy Deficit", linestyle="solid",
marker='o', markersize=4)
plt.xlabel("Value of k (w={})".format(wval))
plt.xticks(kvals)
plt.ylabel("Density factor")
plt.ylim((-0.01, 0.01))
if not subplot:
plt.legend()
plt.savefig("figures/{}_{}_energy.pdf".format(seq, wval))
def parallel_plot(plot_func, p0, p1, fn, bbox, rect, leg_cols=3):
'''
Generate parallel plots as seen in the manuscript.
@param plot_func: the plotting function to be used.
@param p0, p1: list of parameters feed to plot_func.
@param fn: output file name.
@param bbox, rect: parameters for plt.figlegend and plt.tight_layout to control figure size.
@param leg_cols: parameter for plt.figlegend(). Defaults to 3.
'''
import matplotlib
matplotlib.rcParams.update({"font.size":6})
plt.clf()
plt.figure(figsize=(4, 3))
plt.subplot(121)
plot_func(*p0, subplot = True)
plt.figlegend(loc="lower center", ncol=leg_cols, bbox_to_anchor=bbox)
plt.subplot(122)
plot_func(*p1, subplot = True)
plt.tight_layout(rect=rect)
plt.savefig("figures/{}.pdf".format(fn))
def parse_old_logs(idx, w, n):
'''
Reads the old logs to recover the density factor estimates.
@param idx: index of the log file.
@param w: the value of w used.
@param n: the number of k-mers in the sequence.
@return: list of density factors.
'''
ret = []
with open(working_dir + idx + ".log") as f:
for line in f:
if "Coverage" in line: # int rounds
l = line.split()
cov = int(l[l.index("Coverage") + 2])
seg = int(l[l.index("segments") + 2])
ele = int(l[l.index("elements") + 2])
ret.append(2 - (cov * 2 - (seg + ele) *(w+1)) / n )
elif "Energy Information" in line: # final round
l = line.split()
ds = float(l[l.index("Current") + 2][:-1])
ret.append(ds)
if len(ret) == 14:
ret = list(ret[0:14:2])
return ret
def parse_trajectory(policy, seq, wval, kvals, subplot = False):
assert seq == "hg38_all"
hg38_len = 3049315783
seq_len = hg38_len
if not subplot:
plt.clf()
xs = list(range(8))[1:]
plt.plot(xs, [2] * len(xs), 'k', label="Start")
plt.plot(xs, [1 + 1 / wval] * len(xs), 'k--', label="Lower Bound")
for k in kvals:
idx = "{}_{}_{}_{}".format(policy, seq, wval, k)
dat = parse_old_logs(idx, wval, seq_len - k + 1)
# dat = [2] + dat
if k == 25:
plt.plot(xs, dat, "navy", label="k=" + str(k), linestyle='solid', linewidth=1.2, marker='o', markersize=3)
else:
plt.plot(xs, dat, label="k=" + str(k), linestyle='solid', linewidth=1.2, marker='o', markersize=3)
plt.xlabel("Round No. (hg38, w={})".format(wval))
plt.ylabel("Estimated Density Factor")
plt.xticks(xs)
if not subplot:
plt.legend()
plt.savefig("figures/prog/{}_{}_{}_prog.pdf".format(policy, seq, wval))
def parse_long_trajectory():
'''
a temporary function for extra long trajectories
'''
policy="multi_lax"
seq = "hg38_all"
seq_len = 3049315783
wval = 100
plt.clf()
for k in [15, 16, 17, 18]:
idx = "{}_{}_{}_{}".format(policy, seq, wval, k)
dat = parse_old_logs(idx, wval, seq_len - k + 1)
if k == 15:
dat = [2] + dat + list(2-x for x in [0.23907, 0.27626, 0.29981, 0.32087, 0.33445, 0.35128,
0.36209, 0.37246, 0.38132, 0.38766, 0.39340, 0.39418,
0.39801, 0.39995, 0.40379])
elif k == 16:
dat = [2] + dat + list(2-x for x in [0.46027, 0.47836, 0.48190, 0.48848,
0.49485, 0.50308, 0.50823, 0.51192,
0.51384, 0.51405, 0.51507, 0.51567,
0.51567, 0.51567, 0.51567])
elif k == 17:
dat = [2] + dat + list(2-x for x in [0.56462, 0.56823, 0.57139, 0.57190,
0.57406, 0.57543] + [0.57543] * 9)
elif k == 18:
dat = [2] + dat + list(2-x for x in [0.62639, 0.63481, 0.63628, 0.64110,
0.64207, 0.64625] + [0.64225] * 9)
plt.plot(dat, label="k="+str(k))
plt.axvline(x=5, color='k', linestyle='-.')
plt.axvline(x=7, color='k')
plt.xlabel("Round No. (hg38, w={})".format(wval))
plt.ylabel("Estimated Density Factor")
plt.legend()
plt.savefig("figures/prog/tmp_long_prog.pdf".format(policy, seq, wval))
if __name__ == "__main__":
# parse_long_trajectory()
# quit()
# parse_trajectory("multi_lax", "hg38_all", 10, range(15, 26))
# parse_trajectory("multi_lax", "hg38_all", 100, range(15, 26))
parallel_plot(parse_trajectory, ("multi_lax", "hg38_all", 10, kvals),
("multi_lax", "hg38_all", 100, kvals), "hg38_traj",
bbox=(0.52, 0), rect=[0, 0.15, 1, 1], leg_cols=5)
# quit()
with open(master_data) as f:
for l in f:
items = l.split(sep=',')
iname, seq, w, k, c0, c1 = items
w, k, c0 = int(w), int(k), float(c0)
s = None
for kw in names:
if iname.startswith(kw):
s = kw
all_dat[(s, seq, w, k)] = c0
with open(working_dir + "random_results.dat") as f:
for l in f:
items = l.split(sep=',')
iname, seq, w, k, c0 = items
w, k, c0 = int(w), int(k), float(c0)
s = None
for kw in names:
if iname.startswith(kw):
s = kw
all_dat[(s, "random", w, k)] = c0
with open(working_dir + "estats.dat") as f:
for l in f:
items = l.split(sep=',')
seq, w, k, sp, df = items
w, k, sp, df = int(w), int(k), float(sp), float(df)
edat[(seq, w, k)] = (sp, df)
with open(working_dir + "miniception.dat") as f:
for l in f:
items = l.split(sep=',')
seq, w, k, d = items
w, k, d = int(w), int(k), float(d)
all_dat[("miniception", seq, w, k)] = d
# with open(working_dir + "incremental.dat") as f:
# for l in f:
# items = l.split(sep=',')
# iname, seq, w, k, c0, c1 = items
# if iname.endswith("+0"):
# continue
# w, k, c0 = int(w), int(k), float(c0)
# s = None
# for kw in names:
# if iname.startswith(kw):
# s = kw + "_incl"
# all_dat[(s, seq, w, k)] = c0
# all_dat[("multi_lax_incl", "hg38_all", 100, 15)] = 0.015825
# all_dat[("multi_lax_incl", "hg38_all", 100, 16)] = 0.014712
# del names["miniception"]
# parallel_plot(plot_res_single_w, ("hg38_all", 10, kvals, names), ("hg38_all", 100, kvals, names),
# "hg38_all_res", bbox=(0.52, 0), rect=[0, 0.1, 1, 1])
# plot_res_single_w("chrX", 100, kvals, names, skip_energy=True)
# plot_res_single_w("chrX", 10, kvals, names, skip_energy=True)
# quit()
# _scramble_kvals = list(range(10, 21))
parallel_plot(plot_res_single_w, ("scramble", 10, kvals, names, True), ("scramble", 100, kvals, names, True),
"scramble", bbox=(0.52, 0), rect=[0, 0.1, 1, 1])
# quit()
parallel_plot(plot_energy_single_w, ("hg38_all", 10, kvals), ("hg38_all", 100, kvals),
"hg38_estat", bbox=(0.55, 0), rect=[0, 0.05, 1, 1])
parallel_plot(plot_res_single_w, ("hg38_all", 10, kvals, names), ("hg38_all", 100, kvals, names),
"hg38_all_res", bbox=(0.52, 0), rect=[0, 0.1, 1, 1])
parallel_plot(plot_res_single_w, ("chr1", 10, kvals, names), ("chr1", 100, kvals, names),
"chr1", bbox=(0.52, 0), rect=[0, 0.1, 1, 1])
# del names['miniception']
parallel_plot(plot_res_single_w, ("random", 10, kvals, names), ("random", 100, kvals, names),
"random_res", bbox=(0.52, 0), rect=[0, 0.1, 1, 1])
# plot_energy_single_w("hg38_all", 10, kvals)
# plot_energy_single_w("hg38_all", 100, kvals)
# plot_res_single_w("hg38_all", 10, kvals, names)
# plot_res_single_w("hg38_all", 100, kvals, names)
# plot_energy_single_w("chr1", 10, kvals)
# plot_energy_single_w("chr1", 100, kvals)
# plot_res_single_w("chr1", 10, kvals, names)
# plot_res_single_w("chr1", 100, kvals, names)
# plot_res_single_w("chr1", 100, list(range(7, 15)), names, skip_energy=True)