-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict_multiLayer_eig22.py
142 lines (107 loc) · 4.11 KB
/
predict_multiLayer_eig22.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# -*- coding: utf-8 -*-
"""
Created on Mon May 23 19:13:57 2016
@author: kezhili
"""
from keras.models import Model
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Dropout
from keras.layers.recurrent import LSTM
## single hidden layer
#in_out_neurons = 5
#hidden_neurons = 1000
#model = Sequential()
#model.add(LSTM(in_out_neurons, hidden_neurons, return_sequences=False))
#model.add(Dense(hidden_neurons, in_out_neurons))
#model.add(Activation("linear"))
#model.compile(loss="mean_squared_error", optimizer="rmsprop")
#model = Sequential()
#model.add(LSTM(7, 500, return_sequences=True))
#model.add(LSTM(500, 500, return_sequences=False))
#model.add(Dropout(0.2))
#model.add(Dense(500, 7))
#model.add(Activation("linear"))
#model.compile(loss="mean_squared_error", optimizer="rmsprop")
# as the first layer in a Sequential model
model = Sequential()
model.add(LSTM(200, input_dim=7, return_sequences=True))#input_length=50,
model.add(LSTM(output_dim=200, input_dim=200,return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(output_dim=200, input_dim=200,return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(output_dim=200, input_dim=200,return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(7,input_dim=200))
model.add(Activation("linear"))
model.compile(loss="mean_squared_error", optimizer="rmsprop")
import pandas as pd
import time
#from random import random
#import matplotlib.pyplot as plt
#import scipy.io
#mat = scipy.io.loadmat('angle_vec.mat')
import h5py
import numpy as np
with h5py.File('./data/eig_para_full22.hdf5', 'r') as fid:
eig_coef = fid['/eig_coef'][:]
columns = ['a', 'b','c','d','e','f','g']
data = pd.DataFrame(eig_coef, columns = columns)
def _load_data(data, n_prev = 50):
"""
data should be pd.DataFrame()
"""
docX, docY = [], []
for i in range(len(data)-n_prev):
docX.append(data.iloc[i:i+n_prev].as_matrix())
docY.append(data.iloc[i+n_prev].as_matrix())
alsX = np.array(docX)
alsY = np.array(docY)
return alsX, alsY
def train_test_split(df, test_size=0.1):
"""
This just splits data to training and testing parts
"""
ntrn = int(round(len(df) * (1 - test_size)))
X_train, y_train = _load_data(df.iloc[0:ntrn])
X_test, y_test = _load_data(df.iloc[ntrn:])
return (X_train, y_train), (X_test, y_test)
t0 = time.time()
(X_train, y_train), (X_test, y_test) = train_test_split(data) # retrieve data
# and now train the model
# batch_size should be appropriate to your memory size
# number of epochs should be higher for real world problems
model.fit(X_train, y_train, batch_size=450, nb_epoch=500, validation_split=0.05)
predicted = model.predict(X_test)
rmse = np.sqrt(((predicted - y_test) ** 2).mean(axis=0))
# and maybe plot it
pd.DataFrame(predicted[:50]).plot()
pd.DataFrame(y_test[:50]).plot()
# save to csv
np.savetxt("./data/eig_MulLayer_predicted_full22_temp1.csv", predicted, delimiter=",")
np.savetxt("./data/eig_MulLayer_y_test_full22_temp1.csv", y_test, delimiter=",")
### pure predict
#
#def sample(a, temperature=1.0):
# # helper function to sample an index from a probability array
# a = np.log(a) / temperature
# a = np.exp(a) / np.sum(np.exp(a))
# return np.argmax(np.random.multinomial(1, a, 1))
sentence = X_test[0,:,:]
eig_generated1 = sentence[-1,]
x_prev = np.zeros(sentence.shape)
x_prev[1:,] = sentence[0:-1,]
next_ske = sentence[-1,:]
for ii in range(400):
if ii % 50 == 1:
print "loop = %d / 400 ." % ii
x_now = np.zeros((1,sentence.shape[0],sentence.shape[1]))
#x_now[0:-2,] = x_prev[1:,]
x_now[0,] = np.concatenate((x_prev[1:,],[next_ske.T]))
next_ske = model.predict(x_now, verbose=0)[0]
eig_generated1 = np.vstack((eig_generated1, next_ske))
x_prev = np.copy(x_now[0,])
# save to csv
np.savetxt("./data/eig_MulLayer_generated_full22_temp1.csv", eig_generated1, delimiter=",")
print time.time() - t0
# save model weights
model.save_weights('./data/eig_MulLayer_generated_full22_temp1.h5')